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Abstract

Visual content constitutes the vast majority of the ever increasing global Internet traffic,

thus highlighting the central role that it plays in our daily lives. The perceived quality of

such content can be degraded due to a number of distortions that it may undergo during the

processes of acquisition, storage, transmission under bandwidth constraints, and display.

Since the subjective evaluation of such large volumes of visual content is impossible, the

development of perceptually well-aligned and practically applicable objective image quality

assessment (IQA) methods has taken on crucial importance to ensure the delivery of an

adequate quality of experience to the end user. Substantial strides have been made in the

last two decades in designing perceptual quality methods and three major paradigms are

now well-established in IQA research, these being Full-Reference (FR), Reduced-Reference

(RR), and No-Reference (NR), which require complete, partial, and no access to the pris-

tine reference content, respectively. Notwithstanding the progress made so far, significant

challenges are restricting the development of practically applicable IQA methods. In this

dissertation we aim to address two major challenges: 1) The data shortage challenge, and

2) The multi-stage distortion challenge.

NR or blind IQA (BIQA) methods usually rely on machine learning methods, such

as deep neural networks (DNNs), to learn a quality model by training on subject-rated

IQA databases. Due to constraints of subjective-testing, such annotated datasets are quite

small-scale, containing at best a few thousands of images. This is in sharp contrast to the

area of visual recognition where tens of millions of annotated images are available. Such

a data challenge has become a major hurdle on the breakthrough of DNN-based IQA ap-

proaches. We address the data challenge by developing the largest IQA dataset, called the

Waterloo Exploration-II database, which consists of 3,570 pristine and around 3.45 mil-

lion distorted images which are generated by using content adaptive distortion parameters

and consist of both singly and multiply distorted content. As a prerequisite requirement

of developing an alternative annotation mechanism, we conduct the largest performance

evaluation survey in the IQA area to-date to ascertain the top performing FR and fused

FR methods. Based on the findings of this survey, we develop a technique called Syn-

thetic Quality Benchmark (SQB), to automatically assign highly perceptual quality labels
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to large-scale IQA datasets. We train a DNN-based BIQA model, called EONSS, on the

SQB-annotated Waterloo Exploration-II database. Extensive tests on a large collection of

completely independent and subject-rated IQA datasets show that EONSS outperforms the

very state-of-the-art in BIQA, both in terms of perceptual quality prediction performance

and computation time, thereby demonstrating the efficacy of our approach to address the

data challenge.

In practical media distribution systems, visual content undergoes a number of degra-

dations as it is transmitted along the delivery chain, making it multiply distorted. Yet,

research in IQA has mainly focused on the simplistic case of singly distorted content. In

many practical systems, apart from the final multiply distorted content, access to earlier

degraded versions of such content is available. However, the three major IQA paradigms

(FR, RR, and, NR) are unable to take advantage of this additional information. To address

this challenge, we make one of the first attempts to study the behavior of multiple simul-

taneous distortion combinations in a two-stage distortion pipeline. Next, we introduce a

new major IQA paradigm, called degraded reference (DR) IQA, to evaluate the quality

of multiply distorted images by also taking into consideration their respective degraded

references. We construct two datasets for the purpose of DR IQA model development, and

call them DR IQA database V1 and V2. These datasets are designed on the pattern of

the Waterloo Exploration-II database and have 32,912 SQB-annotated distorted images,

composed of both singly distorted degraded references and multiply distorted content. We

develop distortion behavior based and SVR-based DR IQA models. Extensive testing on

an independent set of IQA datasets, including three subject-rated datasets, demonstrates

that by utilizing the additional information available in the form of degraded references,

the DR IQA models perform significantly better than their BIQA counterparts, thereby

establishing DR IQA as a new paradigm in IQA.
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Chapter 1

Introduction

Advances in technology have enabled ever increasing and affordable connectivity, and the

development of a multitude of mobile devices, leading to a well-connected world. An

increasingly large proportion of the global population now accesses visual content through

the Internet for various purposes such as communication, entertainment, education, sports,

social media sharing, and so on. For example, YouTube has over 2 billion users and around

one billion hours of video is watched daily [7]. Similarly, social media sharing platforms

such as Facebook and Instagram have an enormous user base leading to millions of photos

being uploaded on a daily basis. The subscriber base of streaming media platforms such

as Netflix and Disney+ is also running into hundreds of millions. The trend of employees

working remotely from their homes is on the rise in various industries, thereby increasing

the use of videoconferencing tools such as Cisco Webex, Microsoft Teams, Zoom, Skype,

etc. In academia, not only are various universities offering fully online degree and diploma

programs, but massive open online course platforms, such as edX and Coursera, are offering

thousands of courses fully online. Images and videos are fundamental to the success of such

online education. It is projected that by 2022 the annual global IP traffic will reach 4.8

zettabytes per year, with videos constituting the vast majority of this traffic at an expected

82% [8].

Visual content undergoes a number of distortions during the processes of acquisition,

storage, transmission under bandwidth constraints, and display, any of which can degrade
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its perceived quality. Given the important role that such content has come to play in our

lives, perceptual image and video quality assessment, aiming to assess the quality of visual

content as a human would perceive it, has become a fundamental problem that is pivotal for

the design, optimization and evaluation of various image and video processing algorithms

and systems. Image quality assessment (IQA) can be classified into subjective and objective

quality assessment (QA). In subjective QA, humans are tasked to rate the visual quality

of content. Since humans are the ultimate receivers of visual content, subjective QA is

regarded as the most reliable way to quantify its perceptual quality. However, subjective

QA is time consuming, expensive, cannot be embedded in algorithms for optimization

purposes, and cannot be deployed in a large-scale and real-time manner. To address

these issues, the goal of objective QA is to automatically predict the perceptual quality of

visual content as perceived by humans. Traditional objective QA methods such as Mean

Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR), which have been used for

decades, are found to have poor correlation with perceptual quality of images and videos [9].

Thus, the development of objective quality assessment algorithms that are known to have

good correlation with the perceptual quality of content, has not only been the target of

intense academic research but such methods have also been adopted and recognized by the

industry [10].

1.1 Motivation

Objective IQA algorithms can be further categorized into three major frameworks or

paradigms [11,12]: 1) Full-Reference (FR) IQA methods require complete access to the pris-

tine or reference version of a distorted image to evaluate its quality; 2) Reduced-Reference

(RR) IQA methods require partial access to the pristine reference image through certain

extracted features; 3) No-Reference (NR) or blind image quality assessment (BIQA) meth-

ods evaluate the quality of a distorted image in the absence of its reference version. In

the last two decades, significant progress has been made in the development of FR IQA

algorithms and the performance of state-of-the-art training-free FR methods (such as but

not limited to [13–16]) correlates well with human perception of quality while evaluating

images afflicted with common distortion types. Notwithstanding these advances, the prac-
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tical application of FR (and RR) methods remains limited because in real-world media

delivery systems, access to pristine reference images is either extremely rare or altogether

nonexistent especially at the end-user level. In such practical scenarios, NR IQA or BIQA

is the only feasible option.

While a lot of work has been done on the development of general-purpose BIQA meth-

ods, their performance is still a considerable distance away from FR IQA and significant

room for improvement exists to further enhance their proficiency (as we shall demonstrate

in Chapter 2). This is understandable as BIQA is a much more difficult task owing to

lack of access to the reference image. To fill the void left by the absence of the reference

image, BIQA methods mostly rely on machine learning tools to learn a quality model. This

usually involves extracting domain knowledge based features from a set of training images

that belong to a subject-rated IQA dataset and then using these features and subjective

ratings to train a quality model. However, this approach has shown only limited success

(see Chapter 2), mainly because research about truly universal perceptual quality features

and the human visual system (HVS) itself remains in its primitive stages. An alternative is

to learn perceptually relevant quality features automatically. Machine learning approaches,

such as deep neural network (DNN) based techniques, offer such a capability as they not

only perform regression but can learn goal-oriented features, thereby offering end-to-end

model development. Indeed, DNN based models have enjoyed tremendous successes in the

area of visual recognition in the past decade [17]. However, such breakthroughs have not

been witnessed in IQA, where DNN based models have offered only limited gains. This is

because such models require an adequately large amount of training data. For example,

the ImageNet database [18], which has been used widely in the area of visual recognition,

has 14 million annotated images. On the contrary, subject-rated datasets in the IQA area

are quite small-scale. For example, the largest well-known IQA dataset [19] has only 3,000

annotated images, while the largest subject-rated dataset [20] in IQA has only 12,000 im-

ages. Training DNN based models on such datasets leads to quite severe overfitting and

generalization issues. Supplementing training data through data augmentation techniques

has also witnessed limited success. Thus, the true potential of machine learning techniques,

such as DNNs, has not been realized in the area of IQA due to the shortage of large-scale

annotated data.
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Although creating visual content for large-scale IQA datasets is not a problem, a ma-

jor bottleneck arises when it comes to annotating such content with perceptually relevant

quality labels against which model training can be done later. Such labels are usually

assigned by conducting subjective tests, where human subjects come into a controlled lab-

oratory environment to rate the quality of test images. This leads to considerable logistical

constraints which means only a small number of images can be rated, thereby imposing

severe limitations on the size of IQA datasets, which thus remain small-scale. For example,

some large-scale IQA datasets do exist [21,22], however they do not have subjective quality

labels and hence cannot be used for model training. Thus, alternative means to annotate

new large-scale IQA datasets need to be found. In a few early efforts, researchers have

used FR IQA methods to annotate large-scale training data because their performance

has matured quite well. A few FR fusion-based methods have recently been proposed and

claim to perform better than their constituent FR methods, and perhaps these can be used

to annotate large-scale datasets. However, since there are quite a lot of FR methods, each

claiming state-of-the-art performance, the choice of selecting one method over the other

becomes difficult. The lack of a widespread and common test set makes comparing FR and

fused FR methods even more difficult. In any given research area, large-scale performance

evaluation surveys prove to be an invaluable resource as they independently compare a

number of methods on a wide variety of common test data. However, such surveys in the

area of IQA are either quite old missing significant recent developments, or the test data

that they use is not diverse which means that their findings cannot be generalized. Thus,

in the absence of such surveys, the development of alternative data annotation techniques,

that utilize the current state-of-the-art FR or fused FR methods, remains missing.

In practical media delivery systems, visual content undergoes a number of degradations

between the source and the final destination, which means that such content has been

afflicted with multiple distortions or is multiply distorted. In such practical scenarios,

apart from the final distorted version of visual content, its earlier degraded versions are

also available at different points in the distribution chain, for instance, at the input and

output of an encoder. However, the bulk of IQA research carried out so far and most

datasets have focused on the simplified case of singly distorted content. Some datasets

that have multiply or authentically distorted images have only recently been developed,
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but they are also small-scale in nature. In the absence of pristine reference images, FR

and RR methods cannot be applied to multiply distorted content, and thus researchers

have tried to design NR or BIQA methods for such content. However, these methods have

also demonstrated only limited success. More importantly, none of the three major IQA

paradigms (FR, RR, and NR) are capable of incorporating additional information about

a final distorted image, available in the shape of its earlier degraded versions which can

be regarded as degraded references, to determine its quality. Since the performance of

BIQA methods remains limited, the development of a new paradigm that uses degraded

references in the task of quality assessment, may enhance the objective quality prediction

performance of IQA methods when evaluating multiply distorted content. However, very

few efforts have been directed at the development of this new paradigm and it remains

largely missing.

The various challenges mentioned above are hindering the development of robust and

practically applicable IQA methods, and become the main motivation behind the work

done in this thesis.

1.2 Objectives

The work in this thesis has two main objectives:

1. To address the data shortage challenge in IQA by developing a new very large-scale

dataset, composed of both singly and multiply distorted images, and to develop

an alternative mechanism to automatically quality-annotate the constituent images

without relying on subjective testing.

2. To address the multi-stage distortion challenge by introducing a new IQA paradigm,

which we refer to as Degraded Reference (DR) IQA, aiming to build objective quality

assessment models that can predict the perceived quality of multiply distorted images

when access is available to degraded reference images.
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1.3 Contributions

The major contributions of this thesis can be grouped under the following three contexts.

Review and Performance Evaluation of IQA Algorithms

To address the shortcomings of existing surveys in the area of IQA, we conduct so far the

most comprehensive review and performance evaluation study of 64 state-of-the-art IQA

methods. Specifically, the performance of 43 FR, seven fused FR (22 versions), and 14

NR methods is evaluated on nine subject-rated IQA databases which include five singly

and four multiply distorted datasets. A common set of test databases, enables us to make

fair comparisons between IQA methods. The diversity of test data also allows for rigorous

testing. To the best of our knowledge, this is the largest IQA performance evaluation study

to-date and shall prove to be a beneficial resource for both new and seasoned researchers

in this area for the foreseeable future. By comprehensively comparing FR and fused FR

methods, this study allows us to determine that Reciprocal Rank Fusion (RRF) [23] based

FR fusion outperforms all other fused and individual FR methods. Thus, it forms the basis

of further work that we carry out to achieve the first objective of this thesis as stated in

Section 1.2.

Addressing the Data Challenge

As mentioned in Section 1.1, BIQA methods, including those that employ DNNs, have

achieved only limited success. Our study suggests that this is primarily due to the small-

scale nature of available subject-rated IQA databases. While researchers have focused

on the modeling aspect of the problem, the fundamental issue of the lack of large-scale

annotated training data thus far has not received major attention. One major bottleneck

in creating such large datasets is the lack of an automatic quality-annotation mechanism

that assigns perceptual quality labels to dataset images without requiring ratings from

humans. To address this annotated data shortage challenge, we make the following three

main contributions:
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1. We construct a very large-scale IQA dataset which we call the Waterloo Exploration-

II database. This dataset has 3,570 pristine and more than 3.45 million distorted

images, making it the largest IQA dataset to-date by a wide margin. This dataset

includes both singly distorted images, belonging to three distortion categories, and

multiply distorted images belonging to five distortion combinations. Another nov-

elty of this dataset is that we use content adaptive distortion parameters to create

distorted content so that the entire quality spectrum can be adequately represented,

which is in contrast to the usual practice of using fixed distortion parameters to

create IQA databases regardless of content.

2. We develop a novel data annotation mechanism, called Synthetic Quality Benchmark

(SQB), to automatically assign perceptually relevant quality ratings to constituent

images of an IQA dataset. This mechanism is based on RRF [23] and follows directly

from our comprehensive performance evaluation study discussed earlier. Extensive

testing of the SQB on nine subject-rated IQA databases reveals that it outperforms all

other state-of-the-art FR and fused FR methods. We use SQB to quality-annotate the

Waterloo Exploration-II dataset, thereby enabling its utilization for learning based

model development.

3. To validate our approach of using large-scale synthetically annotated datasets to

resolve the data challenge in IQA, we use the Waterloo Exploration-II database

to train a DNN based BIQA method which we call End-to-end Optimized deep

neural Network using Synthetic Scores (EONSS). Compared to other DNN based

methods, we choose a simple architecture for EONSS as our focus is not on DNN

model development but on establishing the impact of data on the performance of

DNN based BIQA methods. Extensive testing of EONSS on nine subject-rated IQA

databases reveals that it not only comprehensively outperforms existing DNN based

BIQA methods, but also the very state-of-the-art in BIQA, thereby establishing the

data shortage challenge as the major hurdle that limits existing learning based BIQA

methods, and also the efficacy of our approach to address the challenge.

The three contributions stated above and the comprehensive performance evaluation

study, help us in achieving the first objective of this thesis, mentioned in Section 1.2.
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Degraded Reference Image Quality Assessment

As discussed in Section 1.1, the three major paradigms of FR, RR and NR IQA are unable

to handle the practical scenario of evaluating the quality of a multiply distorted image

when its earlier distorted version, which we termed as degraded reference, is also available.

Such a scenario calls for the development of a new IQA paradigm, which we called DR IQA

in Section 1.2. To develop DR IQA and hence address this practical multi-stage distortion

challenge, we make the following main contributions:

1. Surprisingly, a comprehensive multiple distortions behavior analysis has remained

largely missing thus far in the IQA literature. We make one of the first attempts

to analyze the behavior of multiple simultaneous distortions on images. Specifically,

we consider the case of a two-stage distortion pipeline and study the behavior of five

distortion combinations. This analysis helps us in developing DR IQA models later.

2. We propose two scenarios for the DR IQA framework, where the first scenario consid-

ers the pristine reference images to be available in addition to the degraded references

and the final distorted images, while the second scenario does not make such an as-

sumption.

3. We construct two new databases specifically for the development of DR IQA mod-

els. Thus, they are referred to as DR IQA databases Version 1 (V1) and Version 2

(V2). Each of these datasets consists of 32,912 distorted images overall and contain

both singly distorted degraded references and multiply distorted images. They are

constructed in a manner similar to the Waterloo Exploration-II database, consist of

three single distortion categories, five multiple distortion combinations, and use SQB

for data annotation.

4. We develop three major DR IQA models, where 35 parameter settings are developed

under the umbrella of each model depending upon various combinations. The first

two models are distortion behavior based, where Model 1 follows directly from the

multiple distortions behavior analysis and Model 2 follows from Model 1. We also

develop Support Vector Regression (SVR) based models under the umbrella of Model
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3 to ascertain if machine learning based tools can lead to better results. Extensive

analysis on four multiply distorted datasets, which include degraded references, re-

veals that all three major models lead to more or less similar results and outperform

the use of NR methods to directly evaluate the quality of multiply distorted images.

The four contributions mentioned above help us in achieving the second objective of

this thesis, as mentioned in Section 1.2.

1.4 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 discusses the comprehensive

review and performance analysis survey of IQA algorithms. It starts with a review of IQA

databases that form the test set and analyzes their reference and distorted content. It then

provides a review of FR, fused FR, and NR methods being evaluated. This is followed by

the evaluation results for FR, fused FR, and NR methods along with associated analysis.

Chapter 3 begins with a discussion on the data challenge in IQA by first using the

success of DNNs in the area of visual recognition as a case study and then discussing the

challenges holding back similar successes in the area of BIQA. Next, the construction of

the very large-scale Waterloo Exploration-II database is presented which is followed by

a detailed discussion on the development and extensive testing of the synthetic quality

benchmark (SQB) for data annotation. The development of a DNN based BIQA model,

EONSS, along with its extensive performance analysis is discussed next as a means to

validate our approach to addressing the shortage of annotated data in IQA.

Chapter 4 opens with a discussion on the limitations of FR, RR and NR IQA, and the

multiply distorted nature of visual content in the real world. It provides a review of the

associated literature and then evaluates the performance of some IQA methods to define

a baseline against which the performance of DR IQA models can be evaluated. It then

introduces DR IQA as a new paradigm by first providing a detailed analysis on the behavior

of multiple distortions and then proposing two scenarios for the DR IQA framework. The

construction of DR IQA databases V1 and V2 is discussed next. A detailed account about
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the development of DR IQA Model 1 based on the multiple distortions behavior analysis is

provided, which is followed by the description of another distortion behavior based model

(Model 2) and an SVR-based model (Model 3). This chapter is concluded by extensively

discussing the performance of the DR IQA models, not only in comparison with the baseline

but also with each other.

Finally, Chapter 5 concludes this thesis and points out promising future research direc-

tions.
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Chapter 2

Review and Performance Evaluation

of IQA Algorithms

Image quality assessment (IQA) algorithms aim to predict perceived image quality by

human observers. Over the last two decades, a large amount of work has been carried out

in the field. New algorithms are being developed at a rapid rate in different areas of IQA,

but are often tested and compared with limited existing models using out-of-date test data.

There is a significant gap when it comes to large-scale performance evaluation studies that

include a wide variety of test data and competing algorithms. In this chapter we aim to

fill this gap by carrying out the largest performance evaluation study so far. We test the

performance of 43 full-reference (FR), seven fused FR (22 versions), and 14 no-reference

(NR) methods on nine subject-rated IQA datasets, of which five contain singly distorted

images and four contain multiply distorted content. We use a variety of performance

evaluation and statistical significance testing criteria. Our findings not only point to the

top performing FR and NR IQA methods, but also highlight the performance gap between

them. In addition, we have also conducted a comparative study on FR fusion methods,

and an important discovery is that rank aggregation based FR fusion is able to outperform

not only other FR fusion approaches but also the top performing FR methods.
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2.1 Introduction

Image quality assessment (IQA) can be broadly categorized into subjective and objective

quality assessment (QA). In subjective QA, humans are tasked to evaluate the visual

quality of content and the average of subjective ratings is termed as Mean Opinion Score

(MOS). Subjective QA is usually regarded as the most reliable method of quantifying

perceptual quality of content since in most cases such content is meant to be viewed by

humans. However, subjective QA is time consuming, expensive, and cannot be embedded

in image processing algorithms for optimization purposes. It is thus the goal of objective

QA algorithms to automatically predict the quality of images as perceived by humans.

Significant progress has been made in the last two decades in the design of objective QA

methods and three major frameworks are now well-established in IQA research [11,12]: 1)

Full-Reference (FR) IQA, 2) Reduced-Reference (RR) IQA, and 3) No-Reference (NR) or

blind IQA. To evaluate the quality of a distorted image, FR methods require the complete

availability of its pristine quality version termed as a reference image, while RR methods

require access to certain features that have been extracted from the reference image. On

the other hand, NR methods evaluate the quality of the distorted image in the absence of

the reference image.

Since the beginning of this century, with the availability of subject-rated datasets,

a large number of IQA methods belonging to all three frameworks (FR, RR, NR) have

been proposed. These methods are tested on one or more subject-rated datasets and

claim state-of-the-art performance. Given the large number of IQA methods that now

exist, a number of challenges arise when it comes to selecting the top performing methods

within and across different IQA frameworks for various purposes: 1) It can be respectively

seen from Tables 2.3, 2.4, and 2.5 that different FR, fused FR, and NR methods are

tested on different sets of subject-rated datasets, and thus straightforward performance

comparison becomes difficult. 2) It is also evident from Tables 2.3, 2.4, and 2.5 that

IQA methods are usually tested (and at times trained) on singly distorted subject-rated

datasets that contain different distortion types, but typically, each distorted image has been

afflicted with a single stage of distortion [19,24–30]. This is in contrast to real world media

distribution systems where the same visual content can undergo a number of distortions,
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during the processes of acquisition, transmission, and storage, before reaching the end

user. While some IQA datasets with multiply distorted images are now available [31–34],

only a limited number of IQA methods have used some of them for testing purposes. 3)

General-purpose NR methods, which either rely on handcrafted features or on end-to-end

learning, require training which is usually done on subject-rated IQA datasets where MOS

acts as ground truth. While such training requires the availability of a large amount of

data, subject-rated datasets offer only a small amount of annotated data. For example, the

largest well-known subject-rated singly distorted database has a total of 3,000 distorted

images [19], while there are only 1,600 distorted images in the largest multiply distorted

database [33]. The number of images in individual distortion categories is even smaller.

Such constraints make it difficult to avoid model overfitting and raises questions about

the generalizability of NR methods trained on these datasets (as will become evident later

in this chapter). To circumvent these issues, large-scale annotated datasets are required

that consist of thousands of pristine reference and hundreds of thousands if not millions of

distorted images. These datasets should have a wide variety of distortions and distortion

combinations along with appropriately selected distortion intensity levels that cover the

entire range of the quality spectrum with adequate density. However, given the limitations

of subjective testing, it is not possible to obtain quality ratings from humans for such

large datasets. Clearly, alternative methods for annotating large-scale IQA datasets are

desired. Since the area of FR IQA has matured quite well, one possible alternative is to

replace subjective ratings with scores from reliable FR methods. In fact, a number of

works in IQA literature have already used either FR scores [35–40] or fused FR scores [41]

as replacement of subjective ratings. However, their choice of FR methods seems rather

ad hoc as detailed analysis about method selection has not been provided. Essentially

the following questions remain unanswered while using FR scores for annotating large-

scale IQA datasets as alternatives to subjective ratings: i) Which FR method or methods

should be selected? ii) Can fused FR methods offer any further advantages over individual

methods?

To address the above-mentioned challenges, a comprehensive survey of the performance

of IQA methods, especially FR and fused FR methods, is desired that gauges their per-

formance on a large and diverse set of subject-rated IQA datasets. A number of re-
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views and surveys have been conducted in the field of IQA over the past decade or so.

The performance of ten FR IQA methods was evaluated on the LIVE R2 database [42]

in [24]. Performance evaluation criteria included the Pearson Linear Correlation Coeffi-

cient (PLCC), Root-Mean-Squared Error (RMSE), Spearman Rank-order Correlation Co-

efficient (SRCC), and statistical significance testing. A description of 111 FR IQA methods

is given in [43], however performance evaluation was not carried out. A comprehensive re-

view of basic computational building blocks used in the design of perceptual IQA metrics

is given in [44] along with a description of six FR IQA methods. The performance of

these methods is evaluated on seven IQA databases (A57 [27], CSIQ [26], IVC [30], LIVE

R2 [24], MICT [29], TID2008 [25], and WIQ [28]) in terms of PLCC and SRCC. A clas-

sification, description, and evaluation of 22 FR methods is provided in [45], where PLCC

and SRCC are used for performance evaluation on six datasets which include IVC [30],

TID2008 [25], and four other datasets whose description can be found in [45]. In [46], the

performance of 11 FR methods was evaluated on seven IQA datasets (A57 [27], CSIQ [26],

IVC [30], LIVE R2 [24], MICT [29], TID2008 [25], and WIQ [28]). PLCC, RMSE, SRCC,

and Kendall Rank-order Correlation Coefficient (KRCC) were used as evaluation criteria.

The computational complexity of these methods was evaluated in terms of their running

speed. Various aspects of subjective and objective IQA are surveyed in [47] including:

description of four subjective testing methods, description of seven FR IQA methods for

standard dynamic range (SDR) images, description of two FR methods for the IQA of

reference and test images with different dynamic ranges, description of six IQA datasets,

and performance evaluation of seven SDR FR IQA methods on three datasets (CSIQ [26],

LIVE R2 [24], TID2008 [25]) in terms of PLCC, SRCC, KRCC, RMSE, and Mean Ab-

solute Error (MAE). In addition, the performance of an FR method for the IQA of tone

mapped images (TMQI [48]) is evaluated, the computation time of different FR methods is

presented, and the IQA of three-dimensional images is discussed. In [49], several objective

IQA methods along with seven datasets are briefly discussed, and the performance of eight

FR, three RR, and eight NR methods is evaluated on the LIVE R2 database [24] in terms

of PLCC, SRCC, RMSE, and MAE. In [50], the performance of 60 FR methods was evalu-

ated on the CIDIQ database [5] which provides subjective ratings at two viewing distances.

PLCC, SRCC, and KRCC were used as performance evaluation criteria. A survey of Natu-
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ral Scene Statistics (NSS) and learning based non-distortion-specific (general-purpose) NR

IQA methods was performed in [51], where the design of 12 NR methods was reviewed

and the performance of nine such methods was evaluated on three IQA databases (LIVE

R2 [24], CSIQ [26], and TID2008 [25]). PLCC, SRCC, and statistical significance testing

(only on LIVE R2 database) were used as performance evaluation criteria. For comparison,

four FR methods are included in the performance evaluation. The computational complex-

ity of six NR methods was also compared. Several distortion-specific and general-purpose

NR IQA approaches were reviewed in [52], along with the performance evaluation of eight

NR methods on three datasets (CSIQ [26], LIVE R2 [24], TID2013 [19]) in terms of PLCC

and SRCC. The computational complexity of these methods was determined in terms of

their execution time. In a recent survey [53], different areas of IQA are reviewed including

two-dimensional (2D) image fidelity assessment (FR, RR, NR), three-dimensional (3D)

image fidelity assessment (FR, NR), image aesthetics assessment, and 3D image visual

comfort assessment. In the category of 2D image fidelity assessment, the performance of

20 FR, one fused FR, five RR, and 10 NR IQA methods is evaluated on four datasets

(CSIQ [26], LIVE R2 [24], TID2008 [25], TID2013 [19]) in terms of PLCC, SRCC and

RMSE. A summary of these earlier IQA reviews and surveys is given in Table 2.1.

Existing IQA surveys suffer from a number of shortcomings: 1) The earlier ones [24,

43–45] do not include state-of-the-art FR methods. 2) While conducting performance

evaluation, none of these surveys utilize multiply distorted IQA datasets (in some cases

this is because such datasets did not exist at the time of the survey). This puts into

question the assumptions made about algorithm performance while being tested on limited

data (singly distorted datasets only). 3) With the exception of [50], some recent singly

distorted datasets (VCLFER [54], CIDIQ [5]) are missing in these surveys. 4) Some surveys

use a single dataset [24,49,50], which limits content diversity and raises concerns about the

generalization of their findings. 5) None of the surveys evaluates the performance of fused

FR methods with the exception of [53] which evaluates only a single FR fusion method. 6)

Some surveys [51,52] are specific to the evaluation of NR methods. 7) With the exception

of [24, 51], statistical significance testing is missing in these surveys. Since IQA datasets

can only be regarded as small and sparse random samples from the enormous space of

all possible natural images and their distorted versions, the lack of such testing puts into
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Table 2.1: Summary of IQA performance evaluation surveys.

Survey Year

Number of Statistical

Methods Evaluated
Databases Used Significance

SDBa MDBb Testing

Sheikh et al. [24] 2006 10 FR 1 0 Yes

Pedersen and Hardeberg [43] 2009 Description of 111 FR Methods No

Lin and Kuo [44] 2011 6 FR 7 0 No

Pedersen and Hardeberg [45] 2012 22 FR 6 0 No

Zhang et al. [46] 2012 11 FR 7 0 No

Mohammadi et al. [47] 2014 7 FR 3 0 No

He et al. [49] 2014
19 (8 FR, 3 RR,

1 0 No
8 NR)

Pedersen [50] 2015 60 FR 1 0 No

Manap and Shao [51] 2015 13 (9 NR, 4 FR) 3 0 Yes

Xu et al. [52] 2017 8 NR 3 0 No

Niu et al. [53] 2019
36 (20 FR, 10 NR,

4 0 No
5 RR, 1 Fused FR)

This work 2019
64c (43 FR, 14 NR,

5 4 Yes
7c Fused FR)

aSDB: Singly Distorted Databases (Images afflicted with one distortion at a time).
aMDB: Multiply Distorted Databases (Images afflicted with multiple distortions

at the same time).
c22 versions of the seven Fused FR methods were tested, which if taken into account

separately means that we evaluated 79 methods.

question the universal nature of the findings in these surveys. 8) Although the survey

in [53] is quite recent, it does not evaluate the performance of IQA methods on multiply

distorted datasets, does not use the singly distorted datasets VCLFER [54] and CIDIQ [5],

does not perform statistical significance testing, evaluates only a single fused FR method,

and does not evaluate the performance of some state-of-the-art FR and NR IQA methods.

Reference [53] uses both TID2008 [25] and TID2013 [19] datasets, where the latter contains

all the reference and distorted images of the former. Given these shortcomings, it is evident

that existing surveys are unable to identify the top performing FR, fused FR, and NR

methods in a competitive and comparative setting. They are also unable to answer the

question about the choice of FR or fused FR methods as alternatives to subjective ratings.

In this chapter, we attempt to address the limitations of existing IQA surveys by

carrying out a comprehensive review and performance evaluation of 64 IQA methods, of

which 43 are FR and seven are fused FR methods. We also include 14 NR methods in

16



our study to provide a more thorough snapshot of the field. We tested 22 versions of the

seven fused FR methods, and thus collectively a total of 79 IQA methods were evaluated.

We test on nine subject-rated datasets, of which five are singly distorted and four are

multiply distorted datasets. This ensures that the methods under evaluation are tested

on as wide a range of reference and distorted content as possible. Apart from the usual

correlation coefficient based comparison criteria, we also compare IQA methods through

statistical significance testing in order to make statistically sound conclusions. To the best

of our knowledge, this is the largest evaluation study carried out in IQA literature and

thus is the first major contribution of this thesis. In addition to FR and NR IQA that

are surveyed and evaluated in this chapter, there are other types of IQA problems such

as reduced-reference (RR) IQA [11, 12], and IQA of reference/test images across different

spatial resolutions [55], frame rates [56,57], dynamic ranges [48], exposure levels [58], focus

points [59], color/gray tones [60], and viewing devices [61], that are beyond the major focus

of the current work.

The rest of this chapter is organized as follows. A review of IQA datasets and methods

included in this study is provided in Sections 2.2 and 2.3, respectively. The performance

of FR and fused FR IQA methods is thoroughly evaluated in Section 2.4 while that of NR

methods is evaluated in Section 2.5. Section 2.6 concludes this chapter.

2.2 Review of IQA Databases

Over the last 15 years, a significant number of IQA databases with human rated image

quality ratings have come out. Although recommendations have been made about the

conduct of subjective testing and content selection [70–72], a gold standard remains elu-

sive and the optimal method for subjective testing is still an open problem. As is evident

from Table 2.2 and the following sections, IQA datasets use a variety of subjective testing

methodologies, viewing distances, and ratings per image. Their benchmark quality ratings

have different ranges and are either in the form of Difference Mean Opinion Score (DMOS)

or Mean Opinion Scores (MOS). Reference image content is usually selected in an ad hoc

manner and different distortions are simulated by degrading the reference content at differ-
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Table 2.2: Summary of IQA databases used in this work.

Database Year
No. of Images

Distortion List (No. of Images)
Distortions Subjective Subjective Score Ratings Viewing

Ref. Dist. per Image Test Method Data Type Range per Image Distance

1. White Gaussian Noise (145)

LIVE R2 2006 29 779 2. Gaussian Blur (145) 1 Single DMOS -2.64 ≈ 23 2 - 2.5

[24,42] 3. JPEG Compression (175) Stimulus to Screen

4. JPEG2000 Compression (169) 111.77 Heights

5. Fast Fading Rayleigh Channel (145)

1. Additive Gaussian Noise (125)

TID2013 2013 25 3000 2. Additive Noise is more intensive in 1 to 2 Pair-wise MOS 0.24 to 7.21 ≈ 30 Varying

[19,62] color components (125) Comparison

3. Spatially Correlated Noise (125)

4. Masked Noise (125)

5. High Frequency Noise (125)

6. Impulse Noise (125)

7. Quantization Noise (125)

8. Gaussian Blur (125)

9. Image Denoising (125)

10. JPEG Compression (125)

11. JPEG2000 Compression (125)

12. JPEG Transmission Errors (125)

13. JPEG2000 Transmission Errors (125)

14. Non Eccentricity Pattern Noise (125)

15. Local Block-wise Distortions of

different intensity (125)

16. Mean Shift (Intensity Shift) (125)

17. Contrast Change (125)

18. Change of Color Saturation (125)

19. Multiplicative Gaussian Noise (125)

20. Comfort Noise (125)

21. Lossy Compression of Noisy Images (125)

22. Image Color Quantization with Dither (125)

23. Chromatic Aberrations (125)

24. Sparse Sampling and Reconstruction (125)

1. Additive White Gaussian Noise (150)

CSIQ 2010 30 866 2. Gaussian Blur (150) 1 Simultaneous DMOS 0 to 1 ≈ 6 70 cm

[26,63] 3. JPEG Compression (150) Comparison

4. JPEG2000 Compression (150)

5. Additive Pink Gaussian Noise (150)

6. Global Contrast Decrements (116)

1. Additive White Gaussian Noise (138)

VCLFER 2012 23 552 2. Gaussian Blur (138) 1 Single MOS 1.57 to 96.52 16 to 36 INP∗

[54, 64] 3. JPEG Compression (138) Stimulus

4. JPEG2000 Compression (138)

1. Poisson Noise (115)

CIDIQ 2014 23 690 2. Gaussian Blur (115) 1 Double MOS 1.18 to 7.65 17 50 cm

[5,65] 3. JPEG Compression (115) Stimulus 1 to 7.76 100 cm

4. JPEG2000 Compression (115)

5. SGCK Gamut Mapping (115)

6. ∆E Gamut Mapping (115)

1. Gaussian Noise (45) 1

LIVE MD 2012 15 405 2. Gaussian Blur (45) 1 Single DMOS 0.61 to 84.67 ≈ 19 4 Screen

[31,66] 3. JPEG Compression (45) 1 Stimulus Heights

4. Gaussian Blur + JPEG compression (135) 2

5. Gaussian Blur + Gaussian Noise (135) 2

1. Gaussian Blur followed by

MDID2013 2014 12 324 JPEG compression followed by 3 Single DMOS 0.32 to 0.55 25 4 Image

[32] White Gaussian Noise (324) Stimulus Heights

May include (Gaussian blur and/or

MDID 2017 20 1600 contrast change) followed by 1 to 4 Pair MOS 0.08 to 7.92 33 to 35 2 Screen

[33,67] (JPEG or JPEG2000 compression) Comparison Heights

followed by (Gaussian noise) Sorting

1. Gaussian Blur followed by

MDIVL 2017 10 750 JPEG Compression (350) 2 Single MOS 1.41 to 97.97 ≈ 12 INP∗

[34, 68,69] 2. Gaussian Noise followed by Stimulus

JPEG Compression (400)
∗INP: Information Not Provided by authors.
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ent distortion intensity levels which are themselves picked in an ad hoc manner. While the

target is to have distorted images such that the quality spectrum is uniformly represented,

this is often not the case (as discussed later). A majority of IQA datasets consider the

simplified case of images undergoing a single distortion which is in contradiction to prac-

tical scenarios where content typically undergoes multiple distortions. Given the arbitrary

nature of such benchmark data, it is unsurprising that at times the performance of IQA

methods varies widely across different datasets. Thus, it is vital to test the performance

of IQA methods on as many publicly available datasets as possible [73] in order to reliably

test their robustness.

To mitigate dataset specific impacts on the performance evaluation of IQA methods,

in this work we choose a large number of databases to carry out such an assessment. We

use four database selection criteria, specifically we use databases that contain: 1) Natural

images, 2) Color images, 3) Both reference and distorted content to enable evaluation of

FR IQA methods, and 4) Standard Dynamic Range (SDR) images, that is, images with a

bit depth of 8 bits per pixel per color channel. Following these criteria, we have selected

nine databases which simulate distortions at various intensity levels. Five of these datasets

can be classified as singly distorted databases while four fall under the multiply distorted

category. Table 2.2 presents a summary of these databases while they are briefly introduced

in the next two sub-sections. This is followed by a description of some other IQA databases

and the reasons for not including them in our current work. We close this section by a

discussion on the range of reference and distorted content in the datasets used in this work

for algorithm testing.

2.2.1 Single Distortion Databases

These datasets are also referred to as singly distorted databases. While they contain a

wide range of distortions, each distorted image is afflicted with only one kind of distortion.

Until recently, a majority of IQA datasets fell under this category.

The LIVE Release 2 (LIVE R2) database [24, 42], developed by the Laboratory for

Image and Video Engineering at UT Austin, is one of the most widely used IQA datasets.

It consists of 29 reference and 779 distorted images. The database has five distortion types
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and up to five distortion intensity levels within each type. Images either have a resolution

of 480×720 or up to 768×512. Subjective testing was carried out on 21′′ CRT monitors and

followed the single stimulus methodology [70] where reference images were also evaluated.

After undergoing a short training session, subjects rated the quality of test images by

moving a slider on a quality scale that was demarcated with five words: Bad, Poor, Fair,

Good, and Excellent. A quality score in the range of [1, 100] was obtained from the slider

location. Seven sessions of testing were done in order to minimize observer fatigue and

scale realignment was carried out to match the quality scale of all sessions. The database

provides subjective data in the form of DMOS after outlier removal, where better quality

is represented by a lower DMOS. Further details about the database are provided in Table

2.2.

The Tampere Image Database 2013 (TID2013) [19, 62] builds further upon the earlier

TID2008 database [25]. It consists of 25 reference images (of which 24 are natural and

one is artificial) and 3,000 distorted images. The database has 24 distortion types and five

distortion levels per type. All images have a resolution of 512×384. A total of 971 subjects

in five different countries took part in subjective testing. Experiments were carried out

either in the laboratory environment or remotely via internet, and subjects were given

prior instructions about the testing process. A tristimulus methodology [19] was adopted

to conduct the subjective tests where subjects observe a pair of distorted images in the

presence of their reference image and select the better of the two. Tests were conducted

mostly on 19′′ LCD or CRT monitors. Each distorted image was part of nine pair-wise

comparisons. The winning image in each pair received one point and a final score for

an image was obtained by summing the winning points. After outlier removal, MOS was

obtained for the database, where higher MOS represents better quality. Although we are

classifying TID2013 under the single distortion category, it should be noted that some of its

distortion types are multiply distorted in nature (for example, lossy compression of noisy

images). See Table 2.2 for more details.

The Computational and Subjective Image Quality (CSIQ) database [26,63] consists of

30 reference and 866 distorted images. It has six distortion types and four to five levels

of distortion per type. All images have a resolution of 512 × 512. Subjective tests were

carried out by placing four 24′′ LCD monitors side-by-side such that their viewing distance
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from the subject was equal. All the distorted images derived from the same reference

were simultaneously displayed on the monitor array and each subject horizontally ordered

images based on their perceived quality [63]. Cross-image ratings were obtained in order to

carry out realignment of the quality scale between different content. After outlier removal

DMOS was obtained, where a lower DMOS value represents better quality. Further details

about the database are provided in Table 2.2.

The Video Communications Laboratory @ FER (VCLFER) database [54, 64] is com-

posed of 23 reference and 552 distorted images. It has four distortion types and six distor-

tion levels per type. Images in VCLFER either have a resolution of up to 771× 512 or up

to 512 × 771. Subjective testing was conducted by following the single stimulus method-

ology [70] and by employing a numeric scale with 100 grades. After removing outliers, the

results for each subject were rescaled in the range of [0, 100], and MOS for the overall

database was computed. A higher MOS value is indicative of better visual quality. See

Table 2.2 for more details.

The Colourlab Image Database: Image Quality (CIDIQ) [5,65] consists of 23 reference

and 690 distorted images. It has six distortion types and five distortion levels per type.

All images in CIDIQ have a resolution of 800 × 800. Subjective testing was carried out

in accordance with the recommendations of CIE [74] and ITU [70]. A double stimulus

methodology was followed where two images were displayed simultaneously, and category

judgment was used to record responses from subjects. The rating scale had nine categories

where the odd numbered categories from 1 to 9 were respectively labeled as Bad, Poor,

Fair, Good, and Excellent quality. The actual subjective test was preceded by a training

sequence. The CIDIQ database is unique in that it carried out subjective testing at two

viewing distances, that of 50 cm and 100 cm. Therefore, it provides two sets of MOS, one

for each viewing distance. A higher MOS value represents better visual quality. Further

details about the database are provided in Table 2.2.

2.2.2 Multiple Distortion Databases

These datasets are also referred to as multiply distorted databases and contain images such

that an individual distorted image may have undergone multiple (two or more) distortions,
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thereby better mimicking practical content distribution scenarios.

The LIVE Multiply Distorted (LIVE MD) database [31, 66] is the first IQA dataset

that has been specifically designed for images with multiple simultaneous distortions. The

database has 15 reference and 405 distorted images of which 135 are singly distorted while

270 are multiply distorted. LIVE MD has three distortion types (Gaussian blur, JPEG

compression, and white Gaussian noise) and three distortion levels per type. Apart from

containing singly distorted images belonging to each of the three distortion types, the

database has two multiple distortion combinations of 1) Gaussian blur followed by JPEG

compression and 2) Gaussian blur followed by white Gaussian noise contamination. All

images in the database have a resolution of 1280×720. Subjective testing was conducted by

following the single stimulus [70] with hidden reference methodology. After going through

a training session, subjects rated the quality of test images by moving a slider on a continu-

ous scale from 0 to 100 which was also labeled with the words, Bad, Poor, Fair, Good, and

Excellent. The test was divided into two parts based on the multiple distortion combina-

tions and each part had two sessions of 30 minutes each. The database provides subjective

scores in the form of DMOS, where a lower value is indicative of better visual quality.

Further details about the database are provided in Table 2.2.

The Multiply Distorted Image Database 2013 (MDID2013) [32] is composed of 12 refer-

ence and 324 multiply distorted images. The database uses the same distortion parameters

as the LIVE MD database [31]. MDID2013 uses three distortion types (Gaussian blur,

JPEG compression, and white Gaussian noise) and three distortion levels per type. It

contains just one multiple distortion combination, where a reference image first undergoes

Gaussian blurring which is followed by JPEG compression followed by white noise contam-

ination. Images in MDID2013 have a resolution of up to 1280× 720. The single stimulus

methodology [70] was followed to conduct the subjective test and ratings were obtained

on a continuous quality scale from 0 to 1. After outlier removal, DMOS for the database

was computed, where a lower value signifies better visual quality. See Table 2.2 for more

details.

The Multiply Distorted Image Database (MDID) [33, 67] (different from MDID2013)

contains 20 reference and 1,600 multiply distorted images. The database uses five types of

distortions: Gaussian noise, Gaussian blur, contrast change, JPEG, and JPEG2000 com-
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pression. Four intensity levels are set for each distortion type. Distortions are introduced

in three steps in the following order: 1) To simulate image acquisition, Gaussian blur

and/or contrast change are added first in either order. 2) Image transmission is simulated

by compressing the image from the first step, either by using JPEG or JPEG2000 compres-

sion (one compression technique only). 3) Finally, display imperfections are simulated by

adding Gaussian noise to the image from the second step. In each of these steps, distortion

intensity levels, including the no-distortion case, are picked at random. However, it is en-

sured that the following three rules are obeyed: 1) At least one distortion is introduced, 2)

Only one compression technique (JPEG or JPEG2000) is used, and 3) Repetition of distor-

tions is avoided. Thus, each distorted image may be afflicted with one to four distortions.

MDID creates 80 distorted images for each reference image and provides details about the

distortion process for each image. All images in MDID have a resolution of 512×384. The

pair comparison sorting methodology [33] is used to conduct subjective testing, where two

images are simultaneously displayed along with their reference and subjects are required

to rate the quality of one distorted image with respect to the other by using one of three

possible rating options: better, worse, or equal quality. Testing was carried out on a 19′′

LCD monitor and was preceded by a training session. Following outlier removal and data

normalization, MOS for the database is computed, where a higher value is indicative of

better visual quality. Further details about the database are provided in Table 2.2.

The Multiple Distorted IVL database (MDIVL) [34,68,69] consists of 10 reference and

750 multiply distorted images. The database is divided into two parts based on two multiple

distortion combinations: 1) Blur-JPEG, where each reference image undergoes seven levels

of Gaussian blur and then each blurred image undergoes five levels of JPEG compression,

and 2) Noise-JPEG, where each reference image undergoes ten levels of Gaussian noise

and then each noisy image undergoes four levels of JPEG compression. All images in the

database have a resolution of 886 × 591. Subjective testing followed the single stimulus

methodology [70]. Subjects recorded their ratings on a continuous quality scale from 0

(Worst quality) to 100 (Best quality). To minimize fatigue effect, subjective testing was

conducted in several sessions where each session had around 100 images and did not exceed

30 minutes. MOS was computed for the database after outlier removal, where a higher

value indicates better quality. See Table 2.2 for more details.
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2.2.3 Other IQA Databases

Apart from the nine datasets mentioned in Sections 2.2.1 and 2.2.2, a number of other

datasets have been mentioned in Tables 2.3, 2.4 and 2.5 that follow in the subsequent

sections. Information about these and some other datasets follows.

The A57 database [27,75] contains three reference and 54 distorted images. It consists

of grayscale images with a resolution of 512 × 512. The dataset has six distortion types

which include: 1) Gaussian white noise, 2) Gaussian blur, 3) Baseline JPEG compression,

4) Baseline JPEG2000 compression, 5) JPEG2000 compression with dynamic contrast

based quantization, and 6) Flat allocation (equal distortion contrast at all scales). Each

distortion was applied at three distortion intensity levels. The MICT-Toyama database

[29] contains 14 reference and 168 distorted images. It consists of color images with a

resolution of 768× 512. The dataset contains two distortion types: 1) JPEG compression

and 2) JPEG2000 compression, and six distortion levels per type. The single stimulus

methodology was used to acquire subjective ratings, using a five category discrete quality

scale and through the participation of 16 subjects, on a 17′′ CRT display at a viewing

distance of four times the picture height. The IVC database [30] contains ten reference and

185 distorted images. The dataset consists of color images with a resolution of 512×512. It

has four distortion types which include: 1) JPEG compression, 2) JPEG2000 compression,

3) Local adaptive resolution (LAR) coding, and 4) Blurring. The subjective ratings for IVC

were obtained by following the double stimulus methodology with five rating categories. 15

observers participated in the test and viewed the content at a distance of six times the screen

height. The TID2008 database [25, 76] is an earlier version of the TID2013 database [19],

and contains 25 reference and 1,700 distorted images. It has color images with a resolution

of 512× 384. The dataset contains 17 distortion types and four distortion levels per type.

For a list of distortions contained in TID2008, refer to the first 17 distortions listed in Table

2.2 for the TID2013 database. Subjective testing for TID2008 was carried out by using the

same methodology as was later used for TID2013 (described in Section 2.2.1). The Wireless

Imaging Quality (WIQ) database [28] contains seven reference and 80 distorted images. It

consists of grayscale images with a resolution of 512×512. The dataset simulates a wireless

link distortion model by passing JPEG encoded images through an uncorrelated Rayleigh
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flat fading channel in the presence of additive white Gaussian noise. Two subjective tests

were performed at different locations, on 17′′ CRT monitors at a viewing distance of four

times the picture height. The double stimulus continuous quality scale (DSCQS) [70]

methodology was followed to conduct the tests. The Waterloo Exploration database [21] is

a very large dataset that is composed of 4,744 reference and 94,880 distorted images. It has

color images of various resolutions. The dataset contains four distortion types: 1) White

Gaussian noise, 2) Gaussian blur, 3) JPEG compression, and 4) JPEG2000 compression.

Each distortion is applied at five fixed intensity levels. Since the database consists of

such a large number of images, subjective testing is not possible. Instead, three alternative

testing criteria are proposed in [21] for the performance evaluation of objective IQA models.

These include: 1) the pristine/distorted image discriminability test (D-test), 2) the listwise

ranking consistency test (L-test), and 3) the pairwise preference consistency test (P-test).

The above-mentioned datasets have not been used in the current work for the following

reasons: The A57 and WIQ datasets are composed of grayscale images which does not fulfill

one of our database selection conditions, that a dataset should be composed of color images.

This condition is required to provide a uniform comparison basis, as some of the objective

IQA methods that we test are designed to take the color aspect into account. Besides, these

datasets are composed of only a small amount of source and distorted content. The MICT-

Toyama dataset has not been selected as 11 of its 14 reference images are found in LIVE

R2 dataset while the cropped versions of all its reference images are found in the TID2013

reference image set. Both LIVE R2 and TID2013 datasets contain the two distortion types

found in MICT-Toyama. Since we are including LIVE R2 and TID2013 in our analysis,

we believe that including MICT-Toyama would be redundant. The TID2008 dataset has

not been included since all of its reference content, distortion types and levels are found in

its enhanced version TID2013. The IVC dataset contains a small number of test images

per distortion type and three of its four distortion types (Blur, JPEG and JPEG2000

compression) are effectively covered in the five single distortion databases that we have

selected for testing. Although the Waterloo Exploration database is one of the largest

available IQA datasets, we have not used it because of the unavailability of subjective

ratings.

The databases discussed above, and in Sections 2.2.1 and 2.2.2, belong to the category
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of simulated distortion databases, where a number of pristine reference images are first

obtained and then artificially degraded with different types and levels of distortions in a

controlled manner. By contrast, authentic distortion databases constitute another cate-

gory of IQA datasets, where distortions are captured directly in real-world environments.

It is difficult to categorize images into different distortion types and intensity levels in

such datasets. The following four databases fall in the authentic distortion category. The

Blurred Image Database (BID) [77] consists of 585 images, taken by human users, that

represent realistic blur distortions. Images are classified into five blur classes which include

unblurred images, out-of-focus blur, simple motion blur, complex motion blur, and other

kinds of blur. Subjective testing was carried out by using a single stimulus methodology

on a continuous quality scale marked with labels (Excellent, Good, Fair, Poor, and Bad).

The Camera Image Database 2013 (CID2013) [78] consists of 480 images captured by 79

different cameras of varying quality. Different types of cameras were used to capture im-

ages, including mobile phone cameras, compact cameras and SLR cameras. The database

is divided into six smaller datasets each of which is composed of six different scenes that

have been captured by 12-14 different cameras. A dynamic reference method [78] was

proposed and used to conduct the subjective test. The subjects first saw a slideshow of

the test images to get an overall idea of quality variation, and then saw each image in a

single stimulus manner where they could give quality ratings on a continuous scale. Be-

sides MOS, subjective evaluations for the attributes of sharpness, graininess, brightness,

and color saturation are also provided. The LIVE in the Wild Image Quality Challenge

(LIVE WC) database [79] is composed of 1,162 images taken by a diverse set of mobile

device cameras. The images in this dataset depict a wide variety of real-world scenes.

The subjective study was performed online by using the Amazon Mechanical Turk [80],

which is a crowdsourcing platform. The single stimulus methodology was employed where

subjects recorded their quality ratings on a continuous scale that was divided into five

parts with appropriate labels (Excellent, Good, Fair, Poor, and Bad). Besides the sub-

jective test to provide MOS, a separate experiment was conducted to obtain subjective

opinion about the distortion category that a test image may belong to. Distortion cat-

egories included blurry, grainy, overexposed, underexposed, and no apparent distortion.

A majority voting policy was adopted to arrive at a distortion category for an image. A
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recent database called KonIQ-10K [81] consists of 10,073 images and is by far the largest

among the authentic distortion databases. The source of the KonIQ-10K images is the

very large-scale YFCC100M multimedia database [82] which has 100 million Flickr based

media objects (images and videos). Initially 10 million images were randomly picked from

the YFCC100M database from which 10,073 authentically distorted images were sampled

through the use of content and quality based indicators. The subjective study was carried

out online through a crowdsourcing platform [83]. A five-point absolute category rating

(ACR) scale was used to obtain subject ratings, where a rating of 1 indicated bad while

that of 5 indicated excellent quality. The database provides subjective ratings in terms

of MOS. In this work, we have not used authentic distortion datasets because they lack

the presence of reference images, which renders them unusable for the evaluation of FR

IQA methods. Nevertheless, these datasets are a valuable resource and should be used in

studies that are exclusive to NR IQA methods.

A number of datasets composed of content other than natural images have been con-

structed. The Screen Image Quality Assessment Database (SIQAD) [84] consists of 20

reference and 980 distorted screen content images. It follows the single stimulus method-

ology to obtain subjective scores on an 11 point numerical scale. The Document Image

Quality dataset [85] selected 25 documents from publicly available document datasets and

used a smart phone camera at varying distances to capture 175 document images. The

dataset provides Optical Character Recognition (OCR) accuracy as a measure of quality

that has to be predicted by objective methods. The Newspaper dataset [86] is composed of

521 grayscale text zone images derived from a collection of newspaper images. As ground

truth, the dataset provides OCR accuracy results. Since our focus is on natural images,

we have not utilized these datasets in this work.

A valuable compilation of various image and video quality databases can be found

at [87].

2.2.4 Content Analysis

The space of all possible natural images is enormous. Ideally, an IQA database should

properly reflect the statistical distribution of natural image content, or contain diverse
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content type for a wide coverage. In practical IQA databases, however, the large natural

image space is often represented by just a few source or reference images. From Table 2.2, it

can be seen that subject-rated datasets usually have 10 to 30 reference images. Limitations

on the amount of source content are encountered due to the constraints of subjective

testing. For example, even with just 25 reference images, the TID2013 database [19] has

3,000 distorted images, which leads to significant challenges in obtaining human ratings.

The limited source content that a dataset has, should thus be as diverse as possible in

order to sample different parts of the space of all possible natural images. This is also

an important reason for selecting as many subject-rated IQA databases as possible while

testing a new algorithm, so that its performance can be gauged on as wide a set of source

content as possible.

Usually the variety in reference content is described in subjective terms, such as the

presence of people, human faces, landscapes, animals, closeup or wide-angle shots, build-

ings, indoor or outdoor shots, and so on. However, a few quantitative descriptors have also

been used to describe such content. In [88], image spatial information (SI) and colorfulness

(CF) have been used to represent the dimensions of space and color respectively, and the

SI versus CF space has been proposed as a 2D space to represent the diversity of source

content. In this work, we use the SI versus CF space to examine the range of source content

in the nine IQA datasets under consideration.

SI is used to determine edge energy in an image [88]. Different SI measures have been

found to have high correlation with compression based image complexity measures [89]. A

standard deviation based SI measure (SIstd) was recommended in [71] while a root mean

square based measure (SIrms) was used in [88]. However in [89], SIstd, SIrms, and a mean

based SI measure (SImean) were compared and it was found that SImean has the highest

correlation with compression based image complexity measures. Therefore, we will use

SImean for further analysis in this work. To obtain SImean, a color image is first converted

to grayscale and then filtered with horizontal

−1 −2 −1

0 0 0

1 2 1

 and vertical

−1 0 1

−2 0 2

−1 0 1


Sobel filters, leading to images sh and sv respectively. The pixel-level edge magnitude is

then defined as [88,89]:
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smag =
√
s2
h + s2

v (2.1)

And SImean is obtained as [89]:

SImean =
1

N

∑
smag (2.2)

where N is the number of pixels in the image.

CF is an indicator of the variety and intensity of colors in an image [88]. A compu-

tationally efficient CF measure was proposed in [90] which correlates well with subjective

measurements of colorfulness. Assuming an image in the sRGB color space, it is first

transformed to an opponent color space as follows [90]:

rg = R−G (2.3)

yb =
1

2
(R +G)−B (2.4)

Then CF is defined as:

CF =
√
σ2
rg + σ2

yb + 0.3 ·
√
µ2
rg + µ2

yb (2.5)

where σrg and σyb are the standard deviations, while µrg and µyb are the mean values, in

the rg and yb directions respectively.

We computed the SI and CF values of all reference images in the nine IQA databases

by using the definitions given in (2.2) and (2.5) respectively. The SI versus CF plots for

these databases are given in Fig. 2.1 where the blue outer boundary marks the convex

hull in each case and the area inside is marked yellow. For convenience, we have used

the same scale for each axis in all the plots of Fig. 2.1. It is evident that the source

content in these datasets occupies different regions in the SI versus CF space. While the

VCLFER [54] and CIDIQ [5] datasets seem to cover the most area in this space, a majority
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(a) LIVE R2 (b) TID2013 (c) CSIQ

(d) VCLFER (e) CIDIQ (f) MDID

(g) MDID2013 (h) LIVE MD (i) MDIVL

Figure 2.1: Spatial Information (SIMean) versus Colorfulness (CF ) plots of the reference

images belonging to the nine databases being used for method performance evaluation in

this work. The blue lines represent the convex hull in each case.
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of their images are clustered in smaller regions. On the other hand, the content in the LIVE

R2 [24] and CSIQ [26] datasets is more uniformly distributed inside their respective convex

hulls. Among the multiply distorted datasets, MDID [33] appears to have a wider coverage

region while the other datasets in this category seem to have a limited range of source

content. Apart from such subjective analysis of the SI versus CF coverage of datasets,

efforts have been made to quantify this coverage as well. A 2D criteria called the relative

total coverage (RTC) was defined in [88] as the square root of the area of the convex hull of

all points in the normalized SI versus CF space. One drawback of using RTC as a coverage

metric is that it does not take into account empty spaces within the convex hull. Thus, a

single image that is located further away from the rest of the content in the SI versus CF

space can lead to elevated RTC values giving a false sense of better coverage. To address

this issue, another metric called total effective coverage (TEF) was proposed in [91] which

builds upon the RTC concept. TEF introduces a fill rate factor to weigh the RTC value

obtained for a dataset. A circle of certain radius r is considered around each image point

in the SI versus CF space, within which a presence parameter p is considered as 1. The

fill rate factor is then determined as a ratio of the area inside the convex hull where p = 1

to the area of the entire convex hull. By using a hypothetical database, it is demonstrated

in [91] that TEF is a more effective coverage metric than RTC. Apart from the MDID2013

dataset, the RTC and TEF analysis for the eight other datasets can be found in [91] (it

should be noted that the root mean square definition of SI is used in [91]).

2.2.5 Distortion Analysis

In addition to wide content coverage, another important property of an ideal IQA database

is diversity in terms of distortion types and levels. For a complete list of the types of

distortions included in the nine IQA databases under consideration refer to Table 2.2,

where this information is provided along with the number of images in each distortion

type. While creating distorted content, the goal should be to simulate varying degrees of

distortions such that the perceptual quality scale is uniformly sampled. This will ensure

that objective IQA methods are tested across the quality spectrum. To accomplish this,

IQA databases include different intensity levels for each distortion type. This information
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(a) LIVE R2 (b) TID2013 (c) CSIQ

(d) VCLFER (e) CIDIQ-50 (f) CIDIQ-100

(g) MDID (h) MDID2013 (i) LIVE MD

(j) MDIVL

Figure 2.2: Histograms of MOS/DMOS of the nine IQA databases being used for method

performance evaluation in this work. Note: The MOS of CIDIQ database has been obtained

at two viewing distances of 50 cm and 100 cm [5].
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is provided in Sections 2.2.1 and 2.2.2 for the datasets under consideration. To ascertain

the range of distortions in each database, the histograms of their subjective ratings (MOS

or DMOS) are plotted in Fig. 2.2. A higher MOS value represents better visual quality

while the opposite is true for DMOS where lower values signify better visual quality. The

distribution of distorted content across the quality spectrum can be regarded as relatively

uniform in MDID database [33] and mildly uniform in LIVE R2 [24], VCLFER [54], and

CIDIQ (at viewing distance of 50 cm) [5] databases. On the other hand, TID2013 [19]

and CSIQ [26] databases contain a relatively larger amount of better quality content while

LIVE MD [31] and MDIVL [34] databases contain relatively more low quality content. It

has been shown that objective IQA methods find it more difficult to evaluate better quality

images as compared to low quality ones [19]. Thus, a dataset with a higher proportion of

low quality content may not be as challenging as one with more better quality content.

The impact of viewing distance on perceptual quality can be observed while comparing the

MOS histogram of the CIDIQ database at a viewing distance of 50 cm (Fig. 2.2 e) with

the one obtained at 100 cm (Fig. 2.2 f). While the distorted content remains the same in

both cases, the presence of more higher quality ratings in the latter case demonstrates the

challenge that objective IQA methods need to overcome and also highlights the importance

of IQA databases which provide ratings at different viewing distances.

The non-uniform distribution of distorted content in most databases can be attributed

to the way in which distortions are simulated. In all datasets being considered here, fixed

parameters for each distortion type are used to simulate different levels of distortions across

the dataset. While convenient, such an approach does not take into account the nature

of source content and the masking effect that it can have upon different distortions. For

example, the same compression ratio may lead to very different results when applied to

images with different spatial information levels and the same amount of noise may appear

quite different when applied to images that differ in texture characteristics. Thus, a rea-

sonable alternative method is to simulate distortions in a content adaptive manner, that is,

content specific distortion parameters should be found for each constituent reference im-

age that roughly correspond to predefined perceptual quality levels (we use such a method

later in this thesis). Nevertheless, in the current context, the variation of distorted content

across the quality spectrum for different datasets provides one more reason to use as many
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Figure 2.3: PSNR box plots for all databases. The top and bottom edges of the blue

boxes represent the 75th and 25th percentiles, respectively, while the red line represents the

median (50th percentile). The top and bottom black lines (whiskers) represent the extreme

data points while the outliers are represented by red + symbols.

databases as possible in the performance analysis of objective IQA methods.

While the histograms in Fig. 2.2 allow for observing the distribution of distorted content

within each database, it is difficult to compare one dataset with another because they use

different quality scales and subjective testing methods. To provide a unified, albeit weak

[88], basis for comparing different datasets with each other, we compute the peak signal-to-

noise ratio (PSNR) of all distorted images in each dataset and provide the corresponding

boxplots in Fig. 2.3, where the range of distortions in different datasets can be compared. It

can be observed that single distortion databases offer a wider range of distortion intensities

while this range is quite limited in multiple distortion datasets. However, this comparison

is weak because: 1) PSNR is not a perceptual metric [9], and 2) Even if the individual

distortion intensities are wide-ranging in multiple distortion datasets, the interaction of

one distortion with another may diminish the effect of the overall distortion, for example,
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JPEG compression of noisy images may have a denoising effect. The opposite is also true,

and thus more research is needed to understand how multiple distortions interact with each

other and with image content (we explore this area later in this thesis).

2.3 Review of IQA Algorithms

Our focus in this work is to evaluate representative FR and NR IQA methods, designed

for 2D natural images. We will also evaluate fusion based methods where the aim is

to achieve better performance by combining results from multiple FR methods. We will

provide a brief description of the design philosophies of the methods under consideration.

As mentioned earlier, we have not evaluated the performance of RR and other types of

IQA methods [92] in this work.

2.3.1 Full-Reference Image Quality Assessment

Full-Reference (FR) IQA methods evaluate the quality of a distorted image with respect

to the corresponding original (reference) image that is assumed to be distortion-free and

of pristine quality [11]. In this work we evaluate the performance of 43 FR IQA methods

which are listed in Table 2.3 along with information about whether a method operates

on color or grayscale images, year of publication, and the number and names of the IQA

databases that it was tested on. Although this list is not exhaustive, it is representative

of different IQA design philosophies. The FR IQA methods being considered are reviewed

next and are classified based on their design philosophies.

Error Based Methods

Historically, the mean squared error (MSE) and the related peak signal-to-noise ratio

(PSNR) have been used as the “standard” quality measures [11]. Let X = {xi|i =

1, 2, ..., N} and Y = {yi|i = 1, 2, ..., N} represent the reference and distorted images re-

spectively, where xi and yi represent the intensities of the i-th samples in the images X
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Table 2.3: Information about 43 FR IQA methods under performance evaluation.

FR Method
Color/

Year
No. of Test

Single Distortion Test Databases Used
Multiple Distortion

Gray Databases Test Databases Used

AD DWT [93] Gray 2013 3 IVC LIVE R2 TID2008 None

ADM [94] Gray 2011 5 CSIQ IVC LIVE R2 MICT TID2008 None

CID MS [95]
Color 2013 2 TID2008

Images from six Gamut Mapping Datasets
None

CID SS [95] (See references [11], [41]-[44] of [95])

DSS [16] Gray 2015 3 CSIQ LIVE R2 TID2008 None

DVICOM [96]
Gray 2018 3 CSIQ LIVE R2 TID2008 None

DVICOM F [96]

DWT VIF [97] Gray 2010 1 LIVE R2 None

ESSIM [98] Gray 2013 6 A57 CSIQ IVC LIVE R2 MICT TID2008 None

FSIM [14] Gray 2011 6 A57 CSIQ IVC LIVE R2 MICT TID2008 None

FSIMc [14] Color 2011 5 CSIQ IVC LIVE R2 MICT TID2008 None

GMSD [99] Gray 2014 3 CSIQ LIVE R2 TID2008 None

GSIM [100] Gray 2012 6 A57 CSIQ IVC LIVE R2 MICT TID2008 None

IFC [101] Gray 2005 1 LIVE R2 None

IW PSNR [13] Gray 2011 6 A57 CSIQ IVC LIVE R2 MICT TID2008 None

IWSSIM [13] Gray 2011 6 A57 CSIQ IVC LIVE R2 MICT TID2008 None

MAD [26] Gray 2010 4 CSIQ LIVE R2 MICT TID2008 None

MCSD [102] Gray 2016 6 CSIQ IVC LIVE R2 MICT TID2008 TID2013 None

MSSSIM [4] Gray 2003 1 Earlier Version of LIVE R2 None

NQM [103] Gray 2000 — Barbara, Boats, Lena, Mandrill, Peppers images None

PSNR Gray — — Legacy Method

PSNR DWT [93] Gray 2013 3 IVC LIVE R2 TID2008 None

PSNR HAc [104] Color 2011 1 TID2008 None

PSNR HA [104] Gray 2011 1 TID2008 None

PSNR HMAc [104] Color 2011 1 TID2008 None

PSNR HMA [104] Gray 2011 1 TID2008 None

PSNR HVS [105] Gray 2006 — Barbara, Lena images None

PSNR HVSM [106] Gray 2007 — Test set composed of 19 images None

QASD [107] Color 2016 5 CSIQ IVC LIVE R2 TID2008 TID2013 None

RFSIM [108] Gray 2010 1 TID2008 None

SFF [109] Color 2013 5 CSIQ IVC LIVE R2 MICT TID2008 None

SNR Gray — — Legacy Method

SRSIM [110] Gray 2012 3 CSIQ LIVE R2 TID2008 None

SSIM [111] Gray 2004 1 Earlier Version of LIVE R2 None

SSIM DWT [93] Gray 2013 3 IVC LIVE R2 TID2008 None

UQI [112] Gray 2002 — Lena image None

VIF [113] Gray 2006 1 LIVE R2 None

VIF DWT [93] Gray 2013 3 IVC LIVE R2 TID2008 None

VIF P [113,114] Gray 2005 — Faster version of VIF, not tested in original paper [113] None

VSI [15] Color 2014 4 CSIQ LIVE R2 TID2008 TID2013 None

VSNR [75] Gray 2007 1 LIVE R2 None

WSNR [103] Gray 2000 — Barbara, Boats, Lena, Mandrill, Peppers images None

WSSI [115] Gray 2009 1 LIVE R2 None

36



and Y, respectively, and N is the number of image samples (pixels). MSE and PSNR are

defined as:

MSE =
1

N

N∑
i=1

(xi − yi)2 (2.6)

PSNR = 10 log10
L2

MSE
(2.7)

where L is the dynamic range of image pixel intensities. For gray-scale images with a bit

depth of 8 bits/pixel, L = 28− 1 = 255. The PSNR is similar to the Signal-to-Noise Ratio

(SNR) which is defined as:

SNR = 10 log10

1
N

∑N
i=1 x

2
i

MSE
(2.8)

The MSE has certain advantages [9] such as ease of use, clear physical meaning since it

is the energy of the error signal and thus satisfying the Parseval’s theorem, and ability to

be used for algorithm optimization leading to closed-form solutions, etc. However, it has

been repeatedly shown that MSE and PSNR have poor correlation with perceptual image

quality, i.e., relative to subjective quality assessment by humans. This is because MSE-

type of measures make the following underlying assumptions about perceptual image (and

video) quality [9]: 1) It is independent of any spatial and temporal relationships between

samples, 2) It is independent of the relationships between the image (and video) signals

and error signals, 3) It is determined by the magnitude of the error signal only but ignoring

the signs of errors, and 4) All signal samples are of equal importance. Unfortunately, not

even one of these assumptions hold in the context of perceptual image (and video) quality

assessment [9, 11]. It was also shown in [9] that images along the equal-MSE hypersphere

have drastically different perceptual quality. Thus, the advantages of using signal-to-noise

ratio based methods are negated by their shortcomings in the context of perceptual quality

assessment.

To address the shortcomings of PSNR and SNR, several efforts have been made to

modify these methods in order to make them perceptually better suited for IQA. In [103]
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the contrast sensitivity function (CSF), which is used to approximate the behavior of the

human visual system (HVS), was used to weigh the signal and noise powers, leading to a

linear quality measure called Weighted Signal-to-Noise Ratio (WSNR). The Noise Quality

Measure (NQM) was also presented in [103] and uses a nonlinear quasi-local processing

model of the HVS to accomplish quality assessment. An HVS based version of PSNR,

called PSNR-HVS, was proposed in [105] which uses the CSF. PSNR-HVS was modified

by incorporating a model that takes into account the between-coefficient contrast masking

of discrete cosine transform (DCT) basis functions leading to a new method called PSNR-

HVSM [106]. PSNR-HVS and PSNR-HVSM were further modified by incorporating human

perception of contrast and mean brightness distortions, leading to modified methods called

PSNR-HA and PSNR-HMA respectively [104]. To deal with color images, PSNR-HA and

PSNR-HMA were applied separately to each component of YCbCr transformed images and

the results were combined into a quality score, leading to PSNR-HAc and PSNR-HMAc

respectively [104]. The Visual Signal-to-Noise Ratio (VSNR) [75] is another HVS based

method, which uses wavelet based models of visual masking and visual summation to first

ascertain if the distortions are beyond contrast thresholds of detection, in which case they

are deemed visible. For suprathreshold distortions, low-level and mid-level visual prop-

erties of perceived contrast and global precedence respectively, are modeled as Euclidean

distances in the distortion-contrast space of a multiscale wavelet decomposition. VSNR

is then calculated as the ratio of the RMS contrast of the pristine reference image to the

weighted sum of the two Euclidean distances. An information content weighted version of

PSNR, called IW-PSNR is proposed in [13], where the underlying premise is that some

regions of visual content are perceptually more important than others, either due to the

visual attention property of the HVS or due to the influence of distortions [116,117]. IW-

PSNR uses information theoretic principles to compute information content weights which

are used in the pooling stage of quality score generation. In [93] a Haar wavelet based dis-

crete wavelet transform (DWT) framework is developed to compute image quality methods

in the DWT domain. Image quality methods are separately applied to the approximation

subbands and edge-maps obtained from detail subbands, leading to approximation and

edge quality scores which are linearly combined to yield the final quality scores. Of the

four developed methods in [93], two are error-based methods and include PSNR-DWT and
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absolute difference based AD-DWT.

Structural Similarity Based Methods

It can be seen from the previous section that HVS characteristics have been used to modify

error based methods such as the MSE and PSNR. This is essentially a bottom-up approach

to IQA design since the functionality of different HVS components is being simulated. By

contrast, the top-down approach to IQA design does not try to model the functionality

of individual HVS components. Instead, it tries to mimic the functionality of HVS as a

whole [11]. The last two decades have seen the advent of a number of successful IQA

methods that follow the top-down approach, some of which will be briefly explained in this

and subsequent sub-sections.

One of the most well-known FR methods following the top-down approach is the Struc-

tural Similarity (SSIM) index [111], which is a modified version of the Universal image

Quality Index (UQI) [112], and is based on the assumption that the HVS is adapted for

extracting structural information from visual content. SSIM operates in the spatial do-

main and performs three types of comparisons between the reference and distorted images:

luminance, contrast and structure. Luminance comparison is a function of mean inten-

sity of the images being compared, while contrast comparison is a function of standard

deviations. Structural comparison is done through correlation between the image patches

being compared after mean subtraction and variance normalization. All comparisons are

done locally by a sliding window and the three SSIM components are combined, leading

to local quality scores, which together lead to a quality map. The overall quality score for

the entire distorted image with respect to the reference image is obtained by taking the

mean of all the local quality scores. The SSIM index is a single-scale approach, that is, it

can take into account only one set of viewing conditions. To account for the variations in

viewing conditions, a multi-scale version of SSIM called Multi-scale Structural Similarity

(MSSSIM) was developed in [4] and uses 5 scales. Images at different scales are obtained

by downsampling the images at the previous scale by a factor of 2. The contrast and struc-

tural comparisons are performed at all scales, while the luminance comparison takes place

only at the final scale. The quality scores obtained at each scale are combined through a
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weighted product, where the weights assigned to different scales are obtained through an

image synthesis calibration experiment that involved subjective testing. To generate final

quality scores, both SSIM and MSSSIM use mean pooling, which assigns equal importance

to all areas of visual content. As discussed earlier, some regions of visual content are

perceptually more important, either because of the visual attention property of the HVS

or due to the influence of distortions [116, 117]. In [13], a modified version of MSSSIM,

called Information content Weighted Structural Similarity (IWSSIM) was presented. IWS-

SIM operates at 5 scales and uses information theoretic principles to compute information

content weights that are used in the pooling stage. A wavelet domain implementation of

SSIM, called Wavelet Structural Similarity Index (WSSI) was proposed in [115] which uses

the Haar wavelet for image decomposition. In WSSI, edge-maps are obtained from detail

subbands followed by the generation of approximation and edge structural similarity maps.

A contrast map is used to pool together the different wavelet domain structural similarity

maps leading to approximation and edge similarity scores which are then linearly combined

into the final WSSI quality score. Another SSIM based wavelet domain method called the

SSIM-DWT was developed in [93] and uses the same design philosophy as WSSI.

Besides SSIM and methods that are directly based on it, several other FR IQA methods

have been proposed that utilize the SSIM design philosophy. The Riesz-transform based

Feature Similarity (RFSIM) index was proposed in [108]. RFSIM uses first and second

order Riesz Transform coefficients as features and compares them only at key locations

identified by an edge-based feature mask which is obtained by using the Canny edge de-

tection operator without thinning. The final RFSIM quality score is obtained as a product

of similarity scores of individual feature maps. The Feature Similarity (FSIM) index was

proposed in [14] and uses phase congruency as the primary feature to evaluate image sim-

ilarity. Since phase congruency is contrast invariant, the gradient magnitude is used as a

secondary feature in FSIM to capture contrast information. The phase congruency and

gradient magnitude maps of the reference and distorted images are compared leading to

phase congruency and gradient magnitude quality maps which are then combined into a

single quality map for the luminance channel of the images through a weighted product.

The final FSIM quality score is obtained by pooling this quality map by using a weighting

function that is derived from the phase congruency maps of the images being compared.
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A color version of FSIM, called FSIMc, has also been proposed in [14]. RGB color versions

of the images being compared are first converted to the YIQ color space [118]. Phase

congruence and gradient magnitude based comparisons are performed on the luminance

channel Y, as in FSIM, leading to the luminance similarity map. Additionally, the I and Q

chromatic channels are compared leading to I and Q similarity maps whose product leads

to a chrominance similarity map. The luminance and chrominance similarity maps are

pooled into the final FSIMc score by using the phase congruence based weighting function.

The Spectral Residual based Similarity (SRSIM) index is proposed in [110] and uses the

Spectral Residual based Visual Saliency (SRVS) model [119] to perform two functions:

1) SRVS maps act as features to ascertain local quality and 2) A weighting function is

derived from the SRVS map to highlight the importance of visual regions when pooling

to obtain the final quality score. To account for the lack of contrast sensitivity of SRVS,

SRSIM uses gradient magnitude maps of the images being compared as supplementary

features. Following a similar design approach as SRSIM, the Visual Saliency-based Index

(VSI) is proposed in [15] which is able to handle color images. VSI uses the visual saliency

model called Saliency Detection by combining Simple Priors (SDSP) [120] to generate vi-

sual saliency maps, which are used as features in local quality estimation and also act as

a weighting function during the pooling stage for final quality score generation. It was

shown in [15] that visual saliency maps are insensitive to change of contrast and color

saturation, which thus requires VSI to include additional features. This is accomplished

by first transforming the RGB color images into an opponent color space. Next, gradient

magnitude is used as a feature to generate gradient similarity maps in order to make VSI

contrast sensitive, while chrominance similarity maps are generated through the two chro-

matic channels to make VSI color saturation sensitive. An IQA method based on Gradient

Similarity (GSIM) is proposed in [100], where changes in contrast and structure in images

being compared are measured through gradient comparison. It also takes into account

masking effects, visibility threshold and luminance distortions. GSIM combines the mea-

surement of luminance distortion and contrast-structure distortion in an adaptive manner

to give a final quality score, where more weight is given to the latter. An IQA method

based on Edge Strength Similarity (ESSIM) is proposed in [98], where it is assumed that

the edge-strength of each pixel fully represents the semantic information of images. Based
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on the characteristics of the edge in images, ESSIM defines edge-strength to take both

anisotropic regularity and irregularity into account. Another FR IQA method based on

gradient similarity called Gradient Magnitude Similarity Deviation (GMSD) is proposed

in [99]. While GMSD compares the gradient magnitude maps of the reference and dis-

torted images to compute a local quality map, it uses standard deviation as the pooling

strategy to generate the final quality score from the local quality map. The underlying

premise is that the global variation of local image quality is an indicator of overall image

quality. Following the design philosophy of GMSD, an FR IQA method called Multiscale

Contrast Similarity Deviation (MCSD) is proposed in [102]. First, the pristine reference

and distorted images are downsampled by a factor of 2 and a contrast similarity map for

the images being compared is computed by using their respective contrast maps. Next,

standard deviation is used as a pooling strategy to generate a contrast similarity deviation

(CSD) quality score from the contrast similarity map. To incorporate the effect of viewing

distance, this process is repeated at two further scales by downsampling by a factor of 2

each time and computing the CSD at each scale. The product of the three CSD scores

gives the final MCSD quality score. A discrete cosine transform (DCT) domain FR IQA

method called the DCT Subbands Similarity (DSS) is proposed in [16]. DSS measures the

amount of local change of respective subband coefficients by comparing the local variance

and generates a quality score for each subband. A final DSS quality score is obtained by

combining the individual subband scores such that more weight is given to subbands cor-

responding to lower spatial frequencies in accordance with the characteristics of the HVS.

The Color-Image-Difference measure (CID) [95] is an FR IQA method for color images.

CID uses an image-appearance model to normalize the images being compared and trans-

forms them to a working color space. It then extracts features from both the reference and

distorted images, which are compared for similarity. Feature comparisons include light-

ness, chroma, hue, contrast and structure comparisons. A multiscale approach similar to

MSSSIM [4] is used for contrast and structure comparisons. Lightness comparison is made

on the smallest scale. A factorial combination model is finally used to combine the scores

from different feature comparisons into a single CID quality score.
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Natural Scene Statistics based Methods

IQA methods belonging to this paradigm regard natural images as entities with certain

statistical properties which can be defined in terms of representative models and that are

effected due to distortions [12]. Statistical models of the reference and distorted images

are compared using principles of information theory, thereby providing an opportunity for

quality assessment. Early works apply this idea to RR IQA [121, 122], where the original

reference image is not fully available, but certain statistical features (in this case natural

scene statistics features) are extracted and compared with those extracted from the test

image to yield a quality evaluation. The idea was later extended for FR IQA.

A well-known FR IQA method following this design approach is the Information Fi-

delity Criterion (IFC) that was proposed in [101]. IFC treats IQA as an information fidelity

problem where the reference image from the natural image source is being communicated

to a receiver who is a human observer, through a channel which is the distortion pro-

cess. Here, the reference and distorted images are the input and output of the channel

respectively. IFC uses a Natural Scene Statistics (NSS) [123] based Gaussian Scale Mix-

tures (GSM) model [124] in the wavelet domain to represent the source where the steerable

pyramid decomposition [125] with six orientations is used. The distortion model is obtained

by attenuating the source model and adding Gaussian noise to it. The task of image fi-

delity measurement is then accomplished by determining the mutual information between

respective wavelet subbands of the reference and distorted images represented through the

source and distortion models respectively. The final IFC fidelity or quality score is obtained

by summing the mutual information for all subbands. Using the IFC as a base, the FR

IQA method called Visual Information Fidelity (VIF) was proposed in [113]. Like IFC,

the VIF uses a NSS [123] based GSM model [124] in the wavelet domain to model the

source and uses the same steerable pyramid decomposition [125]. VIF also uses a similar

distortion model as the IFC. However, VIF introduces an HVS model in the wavelet do-

main to incorporate the uncertainty that is introduced by the HVS channel as it processes

the visual signal. VIF models the HVS channel through a stationary, zero mean, additive

white Gaussian noise model. VIF then defines two types of information: 1) The reference

image information represents the information in the reference image and is defined as the
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mutual information between the input and output of the HVS channel without the distor-

tion channel. 2) The test image information is the information in the distorted image and

is defined as the mutual information between the input of the distortion channel and the

output of the HVS channel, where these two channels are in series (distortion channel fol-

lowed by the HVS channel). VIF is then defined as the ratio of the test image information

to the reference image information (for all subbands). The designers of VIF [113] provide

a pixel domain version of VIF, called VIFP which is computationally simpler. Although

the implementation details of VIFP have not been provided in [113], some information and

its implementation code can be found at [114]. While VIF [113] uses a vector GSM im-

plementation, VIFP [114] uses a scalar GSM implementation and is multi-scale in nature.

A low-complexity wavelet-domain version of VIF, called the DWT-VIF has been proposed

in [97]. To reduce the computational complexity, DWT-VIF adopts a one-level decomposi-

tion using the Haar wavelet instead of the over-complete steerable pyramid decomposition

as in VIF. This allowed the use of a scalar GSM model in DWT-VIF instead of the vector

GSM model that was required in VIF. DWT-VIF computes quality scores separately be-

tween approximation subbands and edge maps extracted from the detail subbands of the

reference and distorted images being compared. A linear combination of the approxima-

tion and edge similarity scores gives the final DWT-VIF quality score. The designers of

DWT-VIF [97] provide a similar method called VIF-DWT in [93].

Since natural images are known to possess sparse structures, sparsity based approaches

to IQA can also be placed under the NSS category. A sparse coding based FR IQA method

for color images called Sparse Feature Fidelity (SFF) is proposed in [109]. SFF computes

the fidelity of the distorted image with respect to the reference image by using two sub-

tasks, feature similarity and luminance correlation. A universal feature detector is trained

once on a set of natural images using independent component analysis (ICA) and then used

to transform a given image into a sparse coefficient vector. The reference and distorted

images are first split into corresponding patches and only those patches are selected for

further processing which display suprathreshold distortions. Next, the feature detector

is applied to the selected reference and distorted image patches to extract sparse feature

vectors. The feature vectors of the reference image are used to determine a visual threshold

to identify visually important patches. This process of patch and feature vector selection
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is done to incorporate the HVS properties of visual attention and visual thresholding [116,

117]. Once features have been selected from the reference and distorted images, similarity

between them is determined. Separately, correlation between the mean values of selected

image patches from the reference and distorted images is used to represent luminance

correlation. Finally, the feature similarity and luminance correlation values are linearly

combined to yield the final SFF quality score. Another sparsity based FR IQA method

for color images called sparse representation based image Quality index with Adaptive

Sub-Dictionaries (QASD) has recently been proposed in [107]. QASD utilizes a universal

overcomplete dictionary, which is trained by using natural images, to extract sparse features

which are the primary features being used for quality assessment. First, QASD utilizes the

universal overcomplete dictionary to extract sparse coefficients from blocks of the reference

image. Next, it adaptively forms sub-dictionaries for respective image blocks by using only

the basis vectors obtained in the sparse representation of the reference image. The sparse

representation of the distorted image blocks is then obtained only by using the respective

sub-dictionaries. This ensures that the same set of basis vectors are used in the sparse

representation of both the reference and distorted images, therefore ensuring meaningful

comparison for IQA. Using the sparse representations, feature maps are generated for the

reference and distorted images which are then compared for similarity. It is mentioned

in [107] that weak distortions have limited influence on sparse representations, therefore,

supplementary features are employed to capture the effect of such distortions. Three

supplementary features are used which include image gradient, color and luminance. The

RGB color image is first converted to the YCbCr color space, which is followed by image

gradient similarity computation in the Y channel and color similarity computation in the

chroma channels. Luminance similarity is determined as in SFF [109]. The sparse feature

maps are used to generate a weighting map, which is used in the weighted pooling of the

sparse feature similarity map, gradient similarity map, and chroma similarity map. The

final QASD quality score is obtained as a weighted product of the various similarity maps.

Mixed Strategy based Methods

Some other design philosophies have also been used for the task of FR IQA, which use

an overlap of different strategies. The Most Apparent Distortion (MAD) [26] method,
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assumes that the HVS adopts two different strategies to determine image quality: 1) For

high quality images with only near-threshold distortions, MAD uses a detection based

strategy. A spatial domain local visual mask, based on the CSF, luminance and contrast

masking, is used to find regions in which the near-threshold distortions are considered

as visible. Image quality of the distorted image with respect to the reference is then

estimated in the identified regions through the mean squared error. 2) For low quality

images with clearly suprathreshold distortions, MAD uses an appearance based strategy.

A log-Gabor filter bank is used to decompose the reference and distorted images into

coefficients, with greater weight given to coarser scales. Image quality is determined as the

absolute difference between low level statistics including the mean, variance, skewness and

kurtosis, of the weighted coefficients. Based on the amount of distortion, the detection and

appearance quality scores are then combined through a weighted geometric mean to give

the final MAD score.

An FR IQA method (ADM) was proposed in [94] which uses a wavelet domain decou-

pling algorithm for impairment separation and then evaluates detail losses and additive

impairments. It simulates the HVS by incorporating the CSF and contrast masking char-

acteristics of the HVS. Detail loss, defined as the loss of useful visual information, is

computed after the decoupling process as the ratio of the Minkowski sum of the restored

image to that of the original image. Additive impairment, defined as redundant visual

information due to the influence of distortions, is computed as the Minkowski sum of the

additive impairment image obtained after the decoupling process. The detail loss and ad-

ditive impairment quality scores are then adaptively combined such that more weight is

given to the detail loss based score for low quality images.

The Detail Virtual Cognitive Model (DVICOM) [96] combines two separate metrics

that measure the perceptual impact of detail losses and spurious details. Using the images

being compared and Least Squares decomposition, DVICOM breaks down the gradient

field of the distorted image into two components, a prediction of the gradient field of the

original image and an unpredictable gradient residual. Detail loss is then determined by the

attenuation of the predicted gradient, measured through the loss of positional information.

The gradient residual is used to measure the spurious detail component as the ratio of

the original gradient energy and the residual gradient energy. These two components are
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considered as coordinates of a 2D space and mapping is done to a DMOS estimate by

using a parametric function that has been trained on experimental data. In addition to

the standard version of DVICOM, a computationally faster version has also been provided

by its inventors, which we refer to as DVICOM F.

2.3.2 FR Fusion based Image Quality Assessment

It is evident from Sections 2.4 and 2.5 that state-of-the-art FR IQA methods achieve

good correlation with human perception of quality (where the weighted average SRCC

of top performing FR methods is around 0.86 on nine subject-rated databases), while

there is significant room for improvement in the performance of general-purpose NR IQA

methods (where the top performing NR method has a weighted average SRCC of around

0.61 on the same set of data). However, it has been observed in the past [73] and we

shall demonstrate later in this thesis as well that the performance of state-of-the-art FR

methods fluctuates across different IQA databases that have different sets of distortions.

The question is: How to achieve objective IQA that has stable, robust, and perceptually

well-correlated performance across different distortion types? Researchers have tried to

answer this question by combining or fusing the results from different FR IQA methods

together, in the hope that the deficiencies of one method will be covered by another method

in the combination set. Such FR fusion methods can be classified into three categories:

1) Empirical fusion methods, 2) Learning based fusion methods, and 3) Rank aggregation

based fusion methods. In this work we evaluate the performance of seven FR fusion based

methods which are listed in Table 2.4 along with information about whether they operate on

grayscale or color images, year of publication, and number and names of the IQA databases

that they were tested on. A brief description of these methods and their categories follows.

Empirical Fusion

In this rather simple approach, the results from two or more FR IQA methods are combined

through a weighted product procedure. The weights assigned to different FR methods are

obtained by optimizing on some subject-rated database.
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Table 2.4: Information about seven FR Fusion based methods under performance evalua-

tion.

FR Fusion Color/
Year

No. of Test
Single Distortion Test Databases Used

Multiple Distortion

Method Gray Databases Test Databases Used

CISI [126] Color 2012 7 A57 CSIQ IVC LIVE R2 MICT TID2008 WIQ None

CM3 [127] Gray 2014 1 None LIVE MD

CM4 [127] Gray 2014 1 None LIVE MD

CNNM [128] Color 2015 1 TID2013 None

HFSIMc [129] Color 2012 7 A57 CSIQ IVC LIVE R2 MICT TID2008 WIQ None

MMF [130]
Gray/

2013 6 A57 CSIQ IVC LIVE R2 MICT TID2008 None
Color

RAS [41]
Gray/

2014 3 CSIQ LIVE R2 TID2008 None
Color

The Hybrid Feature Similarity (HFSIMc) index [129] combines results from two feature

similarity based FR methods, FSIMc [14] and RFSIM [108], in the following manner:

HFSIMc = (RFSIM)a · (FSIMc)b (2.9)

where the exponent values of a = 0.4 and b = 3.5 have been optimized on the TID2008

database [25].

The Combined Image Similarity Index (CISI) [126] combines results from three FR

methods, FSIMc [14], MSSSIM [4] and VIF [113], as follows:

CISI = (MSSSIM)a · (VIF)b · (FSIMc)c (2.10)

where the exponent values of a = 0.5, b = 0.3, and c = 5, have been optimized on the

TID2008 database [25].

Two combined metrics designed for multiply distorted images are proposed in [127].

They are called CM3 and CM4, and are respectively defined as:

CM3 = (IFC)0.34 · (NQM)2.4 · (VSNR)−0.3 (2.11)

CM4 = (IFC)0.2 · (NQM)2.9 · (VSNR)−0.54 · (VIF)0.5 (2.12)
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where IFC [101], NQM [103], VSNR [75], and VIF [113] are FR methods, and the exponent

values have been optimized on the LIVE MD database [31].

Although some other FR fusion based methods that follow the weighted product ap-

proach have been proposed, such as the CQM [131] and the EHIS [132], we will use the

above-mentioned four methods as representatives of this category.

Learning based Fusion

A general-purpose learning based FR fusion approach called Multi-Method Fusion (MMF)

was first proposed in [133] and then further refined in [130]. Given an annotated training

dataset, MMF selects a subset of FR IQA methods from a larger pool, and then uses

support vector regression (SVR) to learn a model that is a non-linear combination of the

methods being fused. Defining similar distortion types as a context, two kinds of fusion

methods are constructed: 1) Context-Free (CF) MMF is independent of distortion type

where regression is done at the level of the entire training set. 2) Context-Dependent

(CD) MMF takes distortion type into account and performs regression within each group

of similar distortions. In the published version of MMF [130], the pool of FR IQA methods

is composed of 10 methods which include: MSSSIM [4], SSIM [111], VIF [113], VSNR [75],

NQM [103], PSNR-HVS [105], IFC [101], PSNR, FSIM [14], and MAD [26]. However, it is

noted that any other FR method pool can be used for MMF construction. To ensure a level

playing field, scores from different FR methods are linearly rescaled to the range of [0, 1], as

per the recommendations in [134], before learning a combination model through SVR. For

CD-MMF, Support Vector Machine (SVM) is used to learn a classification algorithm to

automatically determine the context of a given image. To accomplish this, the distortions

in known IQA databases are divided into five groups based on similarity among distortions

and five spatial domain features are used to learn the classification algorithm. With the

context determined, FR method fusion is carried out through an SVR based model which

may involve a different set of FR methods for each context. To determine the best possible

set of FR methods to be fused, for both CF-MMF and CD-MMF exhaustive search becomes

infeasible if the FR method pool is large. Two algorithms are proposed in [130] for FR

method selection: 1) Sequential Forward Method Selection (SFMS) uses PLCC as the
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objective function and starts with a single FR method that has the highest PLCC with

respect to the training subjective data. It then combines this method with every other

FR method in the pool one at a time and trains the MMF model, where the method that

gives the highest PLCC is selected as the second FR method. This process is repeated

sequentially until all the FR methods in the pool have been exhausted. The number of FR

methods being combined is then selected based on computational complexity requirements.

2) Biggest Index Ranking Difference (BIRD) selects FR methods that are most dissimilar to

each other in order to have an FR set that works well for a wide variety of distortions. The

number of FR methods to be fused for a particular training dataset is determined based

on a formula that balances performance and complexity. For example, the fusion count is

estimated to be six for the TID2008 database [25] while using the SFMS algorithm, and

the following methods are selected: FSIM [14], VIF [113], IFC [101], MAD [26], PSNR-

HVS [105], and MSSSIM [4]. This combination will be used later in this work while

evaluating the performance of MMF where we have restricted ourselves to CF-MMF. We

will also use three other pools for FR method selection, details of which are provided in

Section 2.4.3.

A neural networks based general-purpose supervised FR fusion based approach called

Combined Neural Network Metric (CNNM) was proposed in [128]. As input, CNNM takes

the scores from six FR IQA methods without any pre-processing and gives a combined

quality score at its output. In order to select FR methods for fusion, 27 different methods

were analyzed on the 24 different types of distortions in the TID2013 database [19]. Based

on results from this analysis and the evaluation done in [135], six FR methods were chosen

such that they reliably cover the distortions in TID2013 between them. The selected FR

methods include VIF [113], PSNR-HVS [105], PSNR-HMAc [104], FSIMc [14], SFF [109],

and SRSIM [110]. A 4-layer cascade-forward backprop neural network with 10, 10, and 20,

neurons in hidden layers was used with training being done on the TID2013 database [19]

using MATLAB. The TID2013 database has 3,000 images, of which 1,500 were used for

training while the remainder were used for later analysis. During training itself, MATLAB

used 500 of the 1,500 images for training, while 500 were used for validation and 500 for

testing.
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Rank Aggregation based Fusion

The FR fusion methods discussed above require training with respect to subject-rated

databases. The empirical fusion approaches need such databases to optimize exponent

values while the learning based fusion approaches need them to learn the combination

model. These approaches often suffer from overfitting problems, as will be demonstrated

in Section 2.4. On the other hand, a training-free fusion approach could potentially alleviate

these issues.

A recently proposed framework called Blind Learning of Image quality using Synthetic

Scores (BLISS) [41] replaces human opinion scores with synthetic quality scores that act

as ground truth data. Such synthetic quality scores are generated by using a training-free

FR fusion method which involves two steps: 1) Generation of consensus ranking through

unsupervised rank aggregation, and 2) Score adjustment of a base FR method based on the

consensus ranking. Since different FR measures have different score ranges, their outcomes

cannot be combined by averaging their values. Instead rank aggregation is used as an

alternative. Given a set of test images and their associated scores assigned by a number

of FR methods, a consensus ranking is first obtained by using the unsupervised rank

aggregation method called Reciprocal Rank Fusion (RRF) [23], which was first developed

for combining document rankings from multiple information retrieval systems. The RRF

score of an image Ii is defined as [23,41]:

RRFscore(Ii) =
J∑
j=1

1

k + rj(i)
(2.13)

where J is the number of FR methods being combined, rj(i) is the rank given by the

j-th FR method to the image Ii, and k = 60 is a constant that counters the impact of

high rankings by outliers. The value of the constant k was determined through a pilot

investigation in [23].

It is mentioned in [41] that RRF values cannot be directly used as quality scores since

they indicate the quality of an image relative to other images in the dataset. Instead, a

quality measure is obtained by adjusting the scores of a base FR method with respect to
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the consensus ranking obtained through RRF. While generating the final synthetic quality

scores, the mean squared error between the combined scores and the base FR scores is

minimized and a penalty is applied when there is an inconsistency with respect to the

consensus ranking. The entire process of FR method fusion and synthetic score generation

is training-free. In this work we will call the FR fusion approach proposed in [41] as RRF

based Adjusted Scores (RAS). In [41], five FR methods are used in fusion which include

GMSD [99], VIF [113], FSIM [14], FSIMc [14], and IWSSIM [13]. Two combinations are

adopted, where the first fuses all five FR methods while the second one excludes VIF. We

shall respectively call them as RAS B1 and RAS B2 in this work and will evaluate their

performance in addition to several other RAS fusion combinations in Section 2.4.

2.3.3 No-Reference Image Quality Assessment

No-Reference (NR) IQA methods evaluate the quality of a distorted image in the ab-

sence of any reference information [11], and thus they are also referred to as blind IQA

(BIQA) methods. By its very nature, BIQA is a difficult task and early efforts were made

towards the design of NR IQA methods for specific distortions, such as for blur [136],

JPEG compression [137], JPEG2000 compression [138]. However, with advances in domain-

knowledge, technology and with the availability of subject-rated IQA databases, several

general-purpose NR methods have been designed in the last decade that work with a

number of distortions. Contemporary NR IQA methods are usually classified into two

categories [3]: 1) Opinion-Aware (OA) methods which are trained on distorted images

whose quality has been rated by human subjects, and 2) Opinion-Unaware (OU) methods

(also referred to as Opinion-Free) which do not train on human-rated distorted images. In

this work we evaluate the performance of 14 NR IQA methods (8 OA and 6 OU) which

are listed in Table 2.5 along with information about whether they operate on grayscale

or color images, year of publication, and number and names of the IQA databases that

they were tested on. Although this is not an exhaustive list, we selected NR methods for

a good representation of various BIQA design philosophies in addition to computational

time constraints. A brief description of the NR IQA methods being evaluated in this work

is given next.
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Table 2.5: Information about 14 NR IQA methods under performance evaluation.

NR Method
Color/

Year
No. of Test

Single Distortion Test Databases Used
Multiple Distortion

Gray Databases Test Databases Used

BIQI [139] Gray 2010 1 LIVE R2 None

BRISQUE [140] Gray 2012 2 LIVE R2 TID2008 None

CORNIA [141] Gray 2012 2 LIVE R2 TID2008 None

dipIQ [36] Gray 2017 4b CSIQ LIVE R2 TID2013 None

GWHGLBP [142] Gray 2016 2 None LIVE MD MDID2013

HOSA [143] Gray 2016 10a CSIQ LIVE R2 MICT TID2013 LIVE MD

ILNIQE [144] Color 2015 4 CSIQ LIVE R2 TID2013 LIVE MD

LPSI [145] Gray 2015 2 LIVE R2 TID2008 None

MEON [146] Color 2018 4b CSIQ LIVE R2 TID2013 None

NIQE [3] Gray 2013 1 LIVE R2 None

NRSL [147] Gray 2016 7c CSIQ LIVE R2 TID2013 LIVE MD

QAC [35] Gray 2013 3 CSIQ LIVE R2 TID2008 None

SISBLIM [32] Color 2014 7 CSIQ IVC LIVE R2 MICT TID2008 LIVE MD MDID2013

WaDIQaM-NR [148] Color 2018 4d CSIQ LIVE R2 TID2013 None
aHOSA was also tested on two authentic distortion databases: CID2013 [78], LIVE WC [79]; one database of screen content images: SIQAD [84];

and on two document image databases: Newspaper database [86], Document Image Quality database [85].
bdipIQ and MEON are also tested on the Waterloo Exploration database [21] which is a single distortion database that does not have subject

rated quality scores.
cNRSL was also tested on three authentic distortion databases: BID [77], CID2013 [78], LIVE WC [79].
dWaDIQaM-NR was also tested on one authentic distortion database: LIVE WC [79].

Opinion-Aware NR Methods

OA NR methods can be further classified into two categories based on whether handcrafted

or learned features are used.

In the handcrafted features based approach, features that correlate well with image

quality, such as NSS based statistical parameters representing the empirical distributions

of image coefficients in either the spatial or some transform domain, are extracted from

the distorted images. Next, these feature vectors and associated image subjective ratings

are used to train a model by using machine learning techniques such as SVR [149]. In

the testing phase, the OA NR method extracts features from the test image and uses the

learned quality model to map them to a quality score. The Blind Image Quality Index

(BIQI) [139] is a pioneering general-purpose NR IQA method based on the premise that

different distortions affect the natural scene statistics (NSS) of images in a specific manner.

BIQI uses the Daubechies 9/7 wavelet basis [150] to decompose an image into three-scales

and three-orientations. The Generalized Gaussian Distribution (GGD) is then used to rep-

resent the coefficients of each subband. GGD parameters are estimated using the approach
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proposed in [151] and form a feature vector to represent the image. BIQI then follows a

two-step process to determine image quality. First, the feature vector is used to determine

the presence of various distortions. Since BIQI is trained on the LIVE R2 database [24,42],

its published version uses a distortion set of JPEG compression, JPEG2000 compression,

white noise, Gaussian blur, and fast fading, since these distortions are present in LIVE

R2. In the training phase, BIQI uses SVM [149] to learn the classification model which

assigns probability scores to various distortions based on their perceived magnitude. In

the second step, the same feature vector is used for quality score assignment for each

distortion category. In the training phase SVR [149] is used to learn a regression based

model. The final BIQI quality score is then determined as a probability-weighted sum of

the quality scores for various distortions. The Blind/Referenceless Image Spatial Quality

Evaluator (BRISQUE) [140] is an NSS based NR method that operates in the spatial do-

main. BRISQUE operates on locally normalized luminance values which are termed as

Mean Subtracted Contrast Normalized (MSCN) coefficients. A benefit of this normaliza-

tion process is that it leads to relatively decorrelated neighboring coefficients as compared

to non-normalized pixel values. NSS features are extracted from the models of the MSCN

coefficients and their pairwise products. The GGD is used to fit the empirical MSCN

distributions, where the procedure proposed in [151] is used to estimate GGD parameters

which form one set of features. The relationships between neighboring pixels are modeled

through the pairwise products of neighboring MSCN coefficients along four orientations.

The Asymmetric Generalized Gaussian Distribution (AGGD) [152] is used to fit the empir-

ical distributions of these pairwise products and the estimated fitting parameters lead to

another set of features. To incorporate multiscale operation, BRISQUE extracts features

at two scales. It is shown in [140] that distortions affect these NSS features such that

they occupy different regions in the GGD and AGGD parameter spaces, thereby providing

an opportunity to learn quality models. BRISQUE uses SVR [153] to learn a model to

map features to a quality score and uses the LIVE R2 database [24, 42] for training. The

degradation of structural features has been used in the design of OA NR methods, such

as the Gradient-Weighted Histogram of Local Binary Pattern calculated on the Gradient

map (GWHGLBP) [142] which has been designed for multiply distorted images. First, the

gradient map of a distorted image is obtained through the Prewitt filter. Structural infor-
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mation is extracted from the gradient map by applying the Local Binary Pattern (LBP)

operator [154] leading to GLBP codes. It is claimed that these codes are affected in unique

ways by different distortions, making them effective features for IQA. Contrast information

is incorporated with structural information by accumulating the gradient magnitude of pix-

els that have the same GLBP pattern, thereby leading to a histogram of gradient-weighted

GLBP codes which forms the feature space. Feature extraction is done at two scales and

SVR is used to learn a mapping from this feature space to quality scores. In this work, we

have used the version of GWHGLBP that has been trained on the LIVE MD database [31].

The No-Reference quality assessment using statistical Structural and Luminance features

(NRSL) [147] is an OA NR method that uses both structural and luminance based features.

NRSL begins by performing local contrast normalization as a means to reduce redundancy

in a manner similar to [140]. The LBP operator [154] is locally applied to the contrast

normalized image to obtain the LBP code of each pixel. These codes are then used to

build a structural histogram. Separately a luminance histogram is built from the absolute

magnitudes of the contrast normalized image. The structural and luminance histograms

represent the feature space of NRSL, and feature extraction is done at three scales. SVR

is then used to learn a mapping from the feature space to quality scores. In this work, we

have used the version of NRSL that has been trained on the LIVE R2 database [24,42].

The handcrafted features based approach is designed around features that have been

selected based on domain knowledge. An alternative approach is to automatically learn

features which are then used in the training process along with subjective ratings to de-

sign OA NR models. A pioneering method following this approach is called Codebook

Representation for No-reference Image quality Assessment (CORNIA) [141], which uses

unsupervised feature learning. CORNIA extracts a number of local descriptors by ran-

domly sampling patches from an image, which are normalized and whitened before being

used as local features. K-means clustering is performed on local features belonging to

unlabeled training images to construct a visual codebook which is also normalized. Soft-

assignment coding is performed on local descriptors by using the visual codebook which

leads to a coefficient matrix that is converted to a fixed-length feature vector through max-

pooling. In the publicly released version of CORNIA, the CSIQ database [26] is used for

codebook construction and SVR with a linear kernel is used to learn a mapping from the
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feature vector to quality scores, where the LIVE R2 database [24, 42] has been used for

model training. Compared to CORNIA, which uses low order statistics and a large code-

book composed of 10,000 codewords, a recent OA NR method called High Order Statistics

Aggregation (HOSA) [143] also utilizes higher order statistics and a much smaller code-

book composed of only 100 codewords. HOSA extracts local features in a manner similar

to CORNIA [141] and also uses K-means clustering for codebook construction. However,

in addition to calculating the mean of each cluster, higher order statistics including covari-

ance and coskewness of each cluster are also calculated. A quality aware representation of

an image is obtained through soft weighted differences of image statistics, including high

order statistics. SVR with a linear kernel is used to learn a mapping from the feature space

to quality scores. In the publicly available version of HOSA, the codebook is constructed

by using the CSIQ database [26], while the LIVE R2 database [24, 42] is used for model

training.

Recently, deep neural networks (DNN) based approaches (mostly convolutional neural

network (CNN) based), have been used to learn features and quality models. An end-

to-end optimized DNN based approach is proposed in [148] that is capable of performing

both FR and NR quality assessment, and built upon an earlier version [155]. The CNN

used in [148] is based on the VGG network [156] and has ten convolutional layers, five

pooling layers for feature extraction, and two fully connected layers for regression. Since

CNNs require large training data and quality annotated IQA datasets are quite small,

the size of the training set is augmented by randomly sampling multiple patches from each

training image, which are assigned the same quality label as the parent image. The network

takes image patches of size 32 × 32 pixels as input. Rectified Linear Unit (ReLU) [157]

is used as the activation function. To perform IQA, an image is divided into 32 × 32

sized patches and local quality scores are pooled into a global image quality score either

by simple or weighted average. The latter functionality aims to pool local quality scores

based on the principles of visual saliency and is incorporated by adding a second branch

that runs parallel to the quality regression branch of the network. This additional branch

gives patchwise weights that are then used in pooling. For our tests we have selected the

weighted average version of the NR approach proposed in [148] which is called Weighted

Average Deep Image Quality Measure for NR IQA (WaDIQaM-NR) that is trained on the
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LIVE R2 database [24, 42]. The Multi-task End-to-end Optimized deep neural Network

(MEON) [146] is another recent DNN based approach. MEON breaks the IQA task into

two subtasks that are performed by respective sub-networks: 1) Distortion identification,

and 2) Quality score prediction. Instead of using ReLU [157], MEON uses the bio-inspired

generalized divisive normalization (GDN) transform [122] as the activation function which

allows for a reduction of model parameters. The two sub-networks in MEON share the

early layers, specifically four stages are shared where each stage consists of a convolutional,

GDN, and maxpooling layers. Thereafter, sub-network 1 which is responsible for distortion

identification and has two fully connected layers with a GDN layer in between, produces a

probability vector to identify the likelihood of each distortion. Sub-network 2 which itself

has two dedicated fully connected layers with a GDN layer in between, is responsible for

quality prediction and produces a score vector containing quality scores corresponding to

each distortion. The probability vector from sub-network 1 is fed into sub-network 2 where

it is combined with the score vector to give a final quality score in terms of a scalar value,

thereby giving the network a causal structure. Due to its multi-task nature, MEON is able

to break the training phase into two steps. The loss function of subtask 1 is minimized

in the initial pre-training step. Since training for distortion type identification does not

require subject-rated data, MEON is able to train the shared layers and sub-network 1 on

a large amount of data in the pre-training step. In the second training step, the entire

network is joint optimized in an end-to-end manner by using a subject-rated database. In

its publicly available version, MEON used the LIVE R2 database [24, 42] for performing

joint optimization. Although a number of other deep learning based approaches have

been proposed recently [38,39,158–168], in this work we have evaluated the performance of

WaDIQaM-NR [148,155] and MEON [146] as only their author-trained models are publicly

available.

Opinion-Unaware NR Methods

OU NR methods may be training-free or they may require some form of training that does

not involve subject-rated images.

The Natural Image Quality Evaluator (NIQE) [3] is a pioneering general-purpose OU
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NR method. Like BRISQUE [140] (discussed in the previous sub-section), NIQE operates

at two scales in the spatial domain by converting an image into MSCN coefficients, uses the

GGD to fit the empirical distribution of these coefficients, uses the AGGD to fit the empir-

ical distribution of pairwise coefficient products, and uses the estimated GGD and AGGD

parameters as NSS features. However, unlike BRISQUE, NIQE does not use these features

in conjunction with subject-rated distorted images to train a quality model. Instead, NIQE

uses the features obtained from a distorted image to fit a multivariate Gaussian (MVG)

model whose distance from a universally learned MVG model of pristine natural images

is regarded as a measure of quality. Although some training is required to obtain the

MVG model representing pristine natural images, no training is necessary with respect to

quality annotated distorted images which is what makes NIQE an OU NR method. The

Integrated Local Natural Image Quality Evaluator (ILNIQE) index [144] further builds

upon the approach taken in NIQE. In addition to the two NSS features employed in NIQE

(statistics of MSCN coefficients and their pairwise products), three additional NSS fea-

tures are included. Information about structural degradations is incorporated by including

image gradient features that include image gradient components through empirical fitting

parameters of a GGD and gradient magnitude through the empirical fitting parameters

of a Weibull distribution. To capture the selective response of neurons in the visual cor-

tex to stimulus orientation and frequency, multi-scale multi-orientation filter responses are

obtained through log-Gabor filters. NSS features are then extracted from response maps

through GGD fitting and another round of gradient statistics extraction. ILNIQE also

includes color based NSS features which are obtained by first taking the RGB color image

to the logarithmic scale and then converting it to an opponent color space. A Gaussian

model is then used to empirically fit the coefficient distributions in the opponent color

space, thereby providing another set of NSS features. Like NIQE, ILNIQE determines the

quality of a distorted image by measuring the distance between the MVG fit of its NSS

features and the universal MVG model of pristine natural images. However, instead of us-

ing a single MVG model for the distorted image, image quality is determined at the patch

level and then pooling is done to obtain a final quality score. ILNIQE also uses princi-

pal component analysis (PCA) to reduce correlation between features and for dimensional

reduction.
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The Quality Aware Clustering (QAC) method [35] takes an alternative approach to

OU NR design. QAC partitions an image into a set of overlapping patches which are first

divided into groups based on similar quality and then patches with similar local structures

are clustered together. The local features are extracted through the application of a high

pass filter. A set of centroids are learned for each quality group and form a codebook

which is used to determine the quality of each patch. QAC has the capability to give a

local quality map as well as an overall quality score. Although during its development QAC

needs to divide image patches into groups based on quality, it does not use subject-rated

databases to accomplish this. Instead it builds a new database starting from 10 source

images from the Berkeley Segmentation database [169], and uses the FR IQA method

FSIM [14] to annotate patch quality which is normalized through a percentile pooling

procedure. Although QAC training does involve working with distorted images, it is still

an OU NR method since it does not train against subject-rated distorted images. A quality-

discriminable image pair (DIP) based recent OU NR method called DIP inferred quality

(dipIQ) index [36] uses DIPs for training. First a new dataset is constructed that has 840

source and 16,800 distorted images (which include Gaussian noise, Gaussian blur, JPEG

and JPEG2000 compression). A DIP generation engine is constructed which uses three

FR IQA methods, GMSD [99], MSSSIM [4], and VIF [113], to annotate distorted image

quality. Each candidate image pair is assigned with a non-negative T value equivalent

to the smallest score difference of the FR models. A raised-cosine function is used to

quantify the quality discriminability uncertainty level based on T values. 80 million DIPs

are produced using this DIP generation engine. Using these DIPs with their associated

uncertainty levels and CORNIA features [141] as base features for image representation,

RankNet [170] which is a neural network based pairwise learning-to-rank algorithm, is

employed to learn an OU NR model.

Some OU NR methods take a training-free approach. The Six-Step Blind Metric (SIS-

BLIM) [32], which is itself an improved version of FISBLIM [171], has been developed for

singly and multiply distorted images and operates by determining the individual and joint

impact of different distortions. It first uses the approach in [172] to estimate the amount of

noise in a distorted image and then denoises the image by using the BM3D method [173].

The estimates of blur and JPEG quality are determined from the denoised image by using
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the methods proposed in [136] and [137] respectively. To take into account the interac-

tion between different distortions and the masking effect due to image content, a model

based on the free energy theory [174] is used to quantify the joint effects. Finally, the

SISBLIM score is obtained as a linear combination of weighted quality estimates of noise,

blur, JPEG compression and joint effects. The Local Pattern Statistics Index (LPSI) [145]

is another recent training-free OU NR method that utilizes the LBP operator [154]. To

reduce computational complexity, LPSI uses only four neighbors of each image pixel to

compute LBP codes, which leads to six distinct binary patterns. Based on analysis, LPSI

picks the locally weighted statistic associated with one of these six binary patterns as a

quality measure since it offers the best discriminant ability to distinguish most distortions

from pristine natural images.

2.4 Performance Analysis of FR and Fused FR Meth-

ods

2.4.1 Evaluation Criteria

Prediction Accuracy

The Pearson Linear Correlation Coefficient (PLCC) is used as a measure of a method’s

prediction accuracy [72]. Since the scores produced by objective IQA methods are usually

not linear with respect to subjective ratings, a nonlinear regression step is necessary before

the computation of PLCC. We do this by adopting the five-parameter modified logistic

function used in [24]:

P (Q) = β1

[
1

2
− 1

1 + e{β2(Q−β3)}

]
+ β4Q+ β5 (2.14)

where Q denotes the objective quality scores directly from an IQA method, P denotes

the IQA scores after the regression step, and β1, β2, β3, β4, and β5 are model parameters

that are found numerically in MATLAB to maximize the correlation between subjective

60



and objective scores. Given a database with its subjective scores denoted by S, the PLCC

value of an IQA method is then calculated as:

PLCC(P, S) =

∑N
i=1(Pi − P̄ ) · (Si − S̄)√∑N

i=1(Pi − P̄ )2 ·
∑N

i=1(Si − S̄)2

(2.15)

where Pi and Si are respectively the values in the vectors P and S for the image i, P̄ and

S̄ are respectively the mean values of vectors P and S, while N is the number of images

in the database.

Prediction Monotonicity

The Spearman Rank-order Correlation Coefficient (SRCC) is used as a measure of a

method’s prediction monotonicity [72]. SRCC is a non-parametric rank-order based corre-

lation metric and does not require the preceding nonlinear mapping step. The SRCC value

of an IQA method on a database with N images is calculated as:

SRCC(Q,S) = 1−

[
6
∑N

i=1 di
2

N(N2 − 1)

]
(2.16)

where di is the difference between the i-th image’s ranks in the objective (Q) and sub-

jective (S) scores. Another rank-order based method, Kendall’s Rank-order Correlation

Coefficient (KRCC), is found to be highly consistent with the SRCC measure and provides

minimal additional information, and thus is not included in the current work.

Statistical Significance Testing

Conclusions drawn about the performance of IQA methods based on PLCC and SRCC

values can only be considered universal if testing is done on the entire population of con-

cerned data, which in this case is the space of all possible natural images and their distorted

versions. Since this is not possible and subject-rated IQA databases can only be regarded

as sparse random samples from this enormous population, hypothesis testing is performed
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to ascertain whether the drawn inferences on a given sample size are statistically signif-

icant at a particular confidence level. The term statistical significance signifies whether

the difference in the performance of one IQA method with respect to another, on a set

of sample points, is purely due to chance or due to some genuine underlying effect [175].

Generalizations about the difference in method performance can only be made in the latter

case at the stated confidence level.

In the field of IQA, statistical significance testing is usually carried out on model predic-

tion residuals. Given the objective scores of different IQA methods to be compared, they

are converted to prediction residuals by first mapping them to the MOS/DMOS range of

the database being used for testing by using the nonlinear mapping procedure explained for

PLCC calculation earlier in this section, and then subtracting the actual subjective scores

from these predicted subjective scores. In this work we use the one-sided (left-tailed) two-

sample F -test [175] to statistically compare the performance of any two given IQA methods

at the 5% significance level (95% confidence). The null hypothesis is that the data in the

two residual vectors comes from normal distributions with the same variance, making them

statistically indistinguishable. The alternative hypothesis is that the data in the residual

vectors comes from normal distributions with different variances, making them statistically

distinguishable. The test statistic is the ratio of the variances of the two residual vectors.

Given the number of residuals and the confidence level, a critical threshold is determined.

If the value of the test statistic is smaller than the critical threshold, then this indicates a

failure to reject the null hypothesis. By performing the one-sided test twice with the order

of the methods swapped, we were able to determine if their performance is statistically in-

distinguishable or whether one method performed better than the other. In the statistical

significance testing tables that follow, a “1”, “ ”, or “0” mean that the method in the row

is statistically (with 95% confidence) better, indistinguishable, or worse than the method

in the column, respectively. Since the tests assume the Gaussianity of prediction residuals,

we use a simple kurtosis based check for Gaussianity as in [24]. If the kurtosis of prediction

residuals of an IQA method is between 2 and 4, then they are accepted for the Gaussianity

assumption.
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2.4.2 Performance of FR Methods on Individual Databases

We tested the 43 FR methods discussed in Section 2.3.1 and given in Table 2.3, on each

of the nine subject-rated IQA databases mentioned in Table 2.2, of which five are single

distortion datasets discussed in Section 2.2.1 and four are multiple distortion datasets dis-

cussed in Section 2.2.2. Since the single distortion database CIDIQ [5] contains subjective

scores at two viewing distances, testing was done separately for each case and results are

mentioned under the headings of CIDIQ50 and CIDIQ100 for the viewing distances of 50

cm and 100 cm, respectively. For each database, testing was done on the entire dataset,

that is, all distortions were considered. The test results are given in Table 2.6 in terms of

PLCC and in Table 2.7 in terms of SRCC.

2.4.3 Selection of FR Methods for Fusion in Fused FR Methods

We described seven fusion based FR methods in Section 2.3.2 and listed them in Table 2.4.

The four methods belonging to the empirical fusion category (HFSIMc [129], CISI [126],

CM3 [127], and CM4 [127]) combine specific FR methods and hence do not need to select

methods from a large pool. The authors of the learning based fusion method CNNM [128]

provide a pre-trained model that combines six FR methods, and we use the same selection

and order for CNNM.

Although the authors of the rank aggregation based fusion method RAS [41] (discussed

in Section 2.3.2) provide a selection of methods to be fused, we believe that a more extensive

search needs to be done to select FR methods for fusion, especially if the resulting scores

are to be used as alternative ground truth for annotating large datasets. We begin by

identifying a pool of FR methods to be combined in RAS [41]. Since RAS [41] not only

combines FR methods but then adjusts the score of a base FR method with respect to the

consensus ranking, an exhaustive search would require testing all possible combinations

for each FR method being used as the base method. Given that we are considering 43

FR methods (Table 2.3), this would require testing more than 189 trillion combinations,

which is computationally infeasible. To reduce the computational load, we make three sets

of 15 FR methods each based on time constraints and thus test 245,760 combinations in

63



Table 2.6: Test results of 43 FR methods on nine subject-rated IQA databases in terms of

PLCC. All distortions in each dataset were considered.
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AD DWT 0.9384 0.3624 0.8163 0.8692 0.4100 0.5379 0.6010 0.7159 0.8501 0.8506

ADM 0.9360 0.8355 0.9285 0.9182 0.7791 0.8196 0.8349 0.6428 0.9062 0.9060

CID MS 0.9159 0.8362 0.8732 0.9375 0.8364 0.8171 0.8414 0.6183 0.8917 0.8961

CID SS 0.9279 0.8038 0.9079 0.9357 0.8534 0.7806 0.8617 0.6258 0.8822 0.8750

DSS 0.9618 0.8530 0.9612 0.9259 0.7715 0.8267 0.8733 0.8168 0.9023 0.8973

DVICOM 0.9734 0.8194 0.9179 0.9144 0.8035 0.8018 0.8919 0.8161 0.8873 0.8773

DVICOM F 0.9735 0.8194 0.9191 0.9170 0.8037 0.8001 0.8916 0.8097 0.8858 0.8797

DWT VIF 0.9658 0.7406 0.9009 0.8901 0.6952 0.5516 0.8941 0.7212 0.8716 0.8393

ESSIM 0.9566 0.8645 0.9224 0.9094 0.7953 0.8255 0.8451 0.6953 0.8861 0.9081

FSIM 0.9597 0.8589 0.9120 0.9185 0.7410 0.8265 0.8969 0.6474 0.8933 0.9037

FSIMc 0.9613 0.8769 0.9191 0.9329 0.7583 0.8410 0.8998 0.6412 0.8965 0.9039

GMSD 0.9603 0.8590 0.9541 0.9176 0.7387 0.7585 0.8776 0.8309 0.8808 0.8685

GSIM 0.9512 0.8464 0.8964 0.9155 0.7700 0.8342 0.8352 0.6647 0.8808 0.9072

IFC 0.9268 0.1737 0.8366 0.8614 0.5479 0.1724 0.9162 0.6279 0.9058 0.7990

IW PSNR 0.9329 0.5984 0.8024 0.9212 0.6273 0.7200 0.6951 0.7649 0.8284 0.8771

IWSSIM 0.9522 0.8319 0.9144 0.9191 0.8476 0.8698 0.8983 0.8513 0.9109 0.9056

MAD 0.9675 0.8464 0.9500 0.9053 0.7809 0.8411 0.7552 0.7471 0.8948 0.8985

MCSD 0.9675 0.8648 0.9560 0.9217 0.7532 0.7727 0.8637 0.8275 0.8847 0.8787

MSSSIM 0.9489 0.8329 0.8991 0.9232 0.8180 0.8039 0.8419 0.7273 0.8747 0.8805

NQM 0.9129 0.6794 0.7200 0.9429 0.4879 0.6712 0.6170 0.3946 0.9086 0.7931

PSNR 0.8723 0.6775 0.7512 0.8321 0.6232 0.6814 0.6091 0.5564 0.7398 0.6806

PSNR DWT 0.9301 0.6921 0.7631 0.8902 0.5792 0.6722 0.6393 0.5725 0.8630 0.8186

PSNR HAc 0.9164 0.8418 0.9017 0.8759 0.7408 0.7624 0.7436 0.6768 0.7851 0.7322

PSNR HA 0.9130 0.8511 0.8592 0.8697 0.6913 0.7292 0.7269 0.6825 0.8004 0.8093

PSNR HMAc 0.9295 0.8329 0.8672 0.8977 0.7314 0.7896 0.7655 0.7255 0.8090 0.7560

PSNR HMA 0.9249 0.8275 0.8342 0.8951 0.6831 0.7459 0.7437 0.7296 0.8192 0.8512

PSNR HVS 0.9134 0.7031 0.7808 0.8843 0.6346 0.7073 0.6764 0.6813 0.7996 0.8085

PSNR HVSM 0.9251 0.6709 0.7725 0.8841 0.6303 0.7042 0.6814 0.7281 0.8182 0.8506

QASD 0.9574 0.8897 0.9481 0.9253 0.7257 0.8116 0.8063 0.6312 0.8966 0.8827

RFSIM 0.9386 0.8329 0.9164 0.8904 0.6943 0.7621 0.7084 0.4738 0.8713 0.8200

SFF 0.9632 0.8706 0.9643 0.7761 0.7834 0.7721 0.8590 0.7952 0.8893 0.8904

SNR 0.8616 0.6498 0.7414 0.8228 0.6374 0.6888 0.6474 0.4264 0.7283 0.6414

SRSIM 0.9555 0.8664 0.9244 0.9022 0.7066 0.8147 0.8685 0.6401 0.8883 0.8928

SSIM 0.9449 0.7895 0.8612 0.9144 0.7674 0.8230 0.8457 0.5249 0.8915 0.8623

SSIM DWT 0.9559 0.7799 0.9050 0.8955 0.8405 0.7821 0.8810 0.7624 0.8913 0.8594

UQI 0.8984 0.6427 0.8294 0.7981 0.6078 0.4980 0.8277 0.5318 0.8540 0.7723

VIF 0.9604 0.7720 0.9278 0.8938 0.7267 0.6415 0.9367 0.8376 0.9030 0.8736

VIF DWT 0.9657 0.7657 0.9123 0.8969 0.7259 0.5845 0.9031 0.7531 0.8839 0.8653

VIF P 0.9596 0.7529 0.9044 0.8921 0.7073 0.5629 0.8827 0.7589 0.8712 0.8126

VSI 0.9482 0.9000 0.9279 0.9320 0.7226 0.8240 0.8703 0.5512 0.8789 0.8749

VSNR 0.9236 0.7138 0.7355 0.8794 0.6261 0.7424 0.6805 0.3775 0.8309 0.8037

WSNR 0.9144 0.6031 0.7337 0.8468 0.5752 0.6766 0.5889 0.6853 0.8185 0.7942

WSSI 0.9549 0.7698 0.9001 0.9072 0.8406 0.7691 0.8785 0.7543 0.8843 0.8551
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Table 2.7: Test results of 43 FR methods on nine subject-rated IQA databases in terms of

SRCC. All distortions in each dataset were considered.
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AD DWT 0.9412 0.5967 0.8029 0.8628 0.5522 0.6244 0.6027 0.7750 0.8040 0.7810

ADM 0.9460 0.7874 0.9333 0.9138 0.7794 0.8185 0.8186 0.6248 0.8815 0.8490

CID MS 0.9103 0.8314 0.8789 0.9366 0.8350 0.8062 0.8330 0.6168 0.8608 0.8778

CID SS 0.9270 0.7879 0.9116 0.9304 0.8528 0.7789 0.8535 0.6236 0.8408 0.8208

DSS 0.9616 0.7921 0.9555 0.9272 0.7755 0.8246 0.8658 0.8078 0.8714 0.8759

DVICOM 0.9750 0.7598 0.9181 0.9155 0.8034 0.7903 0.8840 0.8168 0.8672 0.8374

DVICOM F 0.9748 0.7606 0.9226 0.9181 0.8028 0.7909 0.8837 0.8104 0.8642 0.8411

DWT VIF 0.9671 0.6093 0.8909 0.8833 0.6909 0.5434 0.8836 0.7229 0.8269 0.7921

ESSIM 0.9597 0.8035 0.9325 0.9075 0.7968 0.8253 0.8250 0.6966 0.8517 0.8682

FSIM 0.9634 0.8015 0.9242 0.9178 0.7438 0.8149 0.8872 0.5817 0.8635 0.8585

FSIMc 0.9645 0.8510 0.9309 0.9323 0.7608 0.8285 0.8904 0.5806 0.8666 0.8613

GMSD 0.9603 0.8044 0.9570 0.9177 0.7427 0.7675 0.8613 0.8283 0.8448 0.8210

GSIM 0.9561 0.7946 0.9107 0.9121 0.7709 0.8299 0.8137 0.6637 0.8454 0.8485

IFC 0.9259 0.5389 0.7671 0.8570 0.4929 0.3427 0.9119 0.6861 0.8839 0.7807

IW PSNR 0.9328 0.6913 0.8310 0.9166 0.6013 0.7137 0.6719 0.7816 0.7572 0.8178

IWSSIM 0.9567 0.7779 0.9212 0.9163 0.8484 0.8564 0.8911 0.8551 0.8836 0.8588

MAD 0.9669 0.7807 0.9466 0.9061 0.7815 0.8391 0.7249 0.7507 0.8646 0.8643

MCSD 0.9668 0.8089 0.9592 0.9224 0.7562 0.7808 0.8451 0.8269 0.8517 0.8370

MSSSIM 0.9513 0.7859 0.9132 0.9227 0.8196 0.7988 0.8296 0.7238 0.8363 0.8274

NQM 0.9093 0.6465 0.7411 0.9436 0.4694 0.6323 0.5827 0.4016 0.8999 0.7460

PSNR 0.8756 0.6394 0.8057 0.8246 0.6254 0.6701 0.5784 0.5604 0.6771 0.6136

PSNR DWT 0.9325 0.6426 0.8052 0.8819 0.5401 0.6419 0.6070 0.5797 0.8206 0.7385

PSNR HAc 0.9216 0.8187 0.9261 0.8702 0.7430 0.7684 0.7240 0.6724 0.7112 0.6789

PSNR HA 0.9192 0.7792 0.9147 0.8610 0.6875 0.7295 0.7055 0.6785 0.7146 0.7284

PSNR HMAc 0.9338 0.8128 0.9121 0.8907 0.7278 0.7877 0.7461 0.7249 0.7403 0.7114

PSNR HMA 0.9298 0.7568 0.8997 0.8847 0.6634 0.7388 0.7239 0.7281 0.7423 0.7625

PSNR HVS 0.9186 0.6533 0.8294 0.8781 0.6313 0.7011 0.6490 0.6779 0.7126 0.7278

PSNR HVSM 0.9295 0.6246 0.8221 0.8756 0.6122 0.6969 0.6559 0.7273 0.7410 0.7619

QASD 0.9629 0.8674 0.9530 0.9231 0.7307 0.8079 0.7778 0.6687 0.8766 0.8315

RFSIM 0.9434 0.7743 0.9291 0.8871 0.6795 0.7450 0.6766 0.4151 0.8330 0.7756

SFF 0.9649 0.8513 0.9627 0.7738 0.7834 0.7689 0.8396 0.8005 0.8700 0.8535

SNR 0.8650 0.6127 0.7994 0.8101 0.6358 0.6709 0.6278 0.4383 0.6135 0.5767

SRSIM 0.9620 0.8076 0.9317 0.9021 0.7087 0.7966 0.8521 0.6238 0.8666 0.8350

SSIM 0.9479 0.7417 0.8755 0.9112 0.7697 0.8094 0.8328 0.4873 0.8604 0.7966

SSIM DWT 0.9603 0.7093 0.9111 0.8877 0.8410 0.7815 0.8690 0.7650 0.8587 0.7929

UQI 0.8941 0.5507 0.8098 0.7984 0.5937 0.4743 0.8183 0.5334 0.8149 0.7311

VIF 0.9636 0.6769 0.9194 0.8866 0.7203 0.6257 0.9306 0.8444 0.8823 0.8381

VIF DWT 0.9681 0.6439 0.9020 0.8930 0.7224 0.5826 0.8943 0.7553 0.8479 0.8243

VIF P 0.9618 0.6101 0.8807 0.8919 0.7029 0.5471 0.8770 0.7594 0.8367 0.7711

VSI 0.9524 0.8965 0.9422 0.9317 0.7213 0.8106 0.8569 0.5700 0.8414 0.8269

VSNR 0.9279 0.6817 0.8108 0.8741 0.6145 0.7200 0.6594 0.3923 0.7719 0.7420

WSNR 0.9158 0.5782 0.7729 0.8381 0.5600 0.6542 0.5428 0.6998 0.7611 0.7243

WSSI 0.9586 0.6937 0.9075 0.9004 0.8411 0.7705 0.8690 0.7479 0.8494 0.7866
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Table 2.8: RAS exhaustive search set composition.

S. No. Fast Set Medium Set Full Set

1 ADM ADM ADM

2 DSS CID MS CID MS

3 ESSIM DSS DSS

4 FSIM DVICOM F DVICOM

5 FSIMc ESSIM ESSIM

6 GMSD FSIMc FSIMc

7 GSIM GMSD GMSD

8 IWSSIM GSIM IWSSIM

9 MCSD IWSSIM MAD

10 MSSSIM MCSD MCSD

11 SFF MSSSIM QASD

12 SRSIM SFF SFF

13 SSIM DWT SRSIM SRSIM

14 VIF DWT VIF DWT VIF

15 VSI VSI VSI

each case for a total of 737,280 tests. The sets were formed subject to the following three

conditions for a color test image of size 1024× 1024: 1) The first set, called the Fast Set,

only contains top performing FR methods that require less than 1.5 seconds to determine

the quality of the test image. 2) The second set, called the Medium Set, contains top

performing FR methods that take less than 2.7 seconds to determine the quality of the

test image. 3) The final set, called the Full Set, has no time constraints. The FR methods

in each of the three sets for the RAS exhaustive search are given in Table 2.8. Based on

weighted average SRCC, top performing FR method combinations were selected in each

set.

Instead of just computing the weighted average SRCC across all nine subject-rated

databases, we compute weighted average SRCC for three categories: 1) Across all databases,

2) Across only the five single distortion databases, and 3) Across only the four multiple

distortion databases. This was done to more thoroughly analyze how the performance of

RAS varies for these different conditions. Within each category, all distorted images of the

constituent databases were considered. These three categories were considered for each

of the three sets of FR methods (Table 2.8), leading to a total of nine possibilities. The

top performing combinations obtained in the exhaustive search for all these possibilities

are given in Table 2.9, where each distinct combination is assigned a unique name (RAS1
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to RAS7). The following observations can be made: 1) Although combinations of up to

15 FR methods were tested, the top performing combinations only include two to four

FR methods in the fusion process. Thus, the notion of the more the better is not valid

when it comes to fusion based FR methods. 2) The methods in each combination usually

follow different design philosophies. While RAS4 and RAS5 differ in the base FR method,

they combine the same three FR methods that include CID MS [95] which follows a mul-

tiscale similarity based approach with emphasis on color features, SFF [109] which follows

a sparsity based approach, and VSI [15] which follows a similarity based approach that

incorporates visual saliency based weighted pooling. RAS2 combines a similarity based ap-

proach (VSI) with a sparsity based approach (SFF). RAS3 combines two similarity based

approaches, DSS [16] (similarity in the DCT domain) and IWSSIM [13] (multiscale sim-

ilarity measure that employs information content weighting in the pooling stage), with

VIF DWT [93] which follows a NSS based approach to IQA. RAS6 builds on RAS3 by

adding CID MS [95] to the combination which emphasizes on color based similarity. It

is thus evident that RAS prefers combining different IQA design philosophies, such that

they complement each other. The deficiencies in one design philosophy with regard to a

particular distortion may be addressed by the strengths of another design approach. 3)

RAS favors color based FR methods. All FR methods combined in RAS1, RAS2, RAS4,

and RAS5, are color based, while RAS6 and RAS7 combine both color and grayscale based

methods. Only RAS3 combines exclusively grayscale based methods.

Table 2.9: RAS exhaustive search outcome for each search set and database category.

Search
Database Category

Individual FR Methods included in Fusion Base FR Name Given

Set Method 1 Method 2 Method 3 Method 4 Method in this Work

Fast

All Databases FSIMc SFF VSI – SFF RAS1

Single Distortion Databases SFF VSI – – VSI RAS2

Multiple Distortion Databases DSS IWSSIM VIF DWT – DSS RAS3

Medium

All Databasesa CID MS SFF VSI – CID MS RAS4

Single Distortion Databasesb CID MS SFF VSI – VSI RAS5

Multiple Distortion Databases CID MS DSS IWSSIM VIF DWT DSS RAS6

Full

All Databasesa CID MS SFF VSI – CID MS RAS4

Single Distortion Databasesb CID MS SFF VSI – VSI RAS5

Multiple Distortion Databases CID MS DSS VIF – VIF RAS7
aExhaustive Search for the All Databases category leads to the same outcome for the Medium and Full Sets (RAS4).
bExhaustive Search for the Single Distortion Databases category leads to the same outcome for the Medium and

Full Sets (RAS5).
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As stated earlier, for the learning based fusion method MMF [130] (discussed in Section

2.3.2) we test its context free version called CF-MMF. Since MMF follows a supervised

learning based approach using SVR, different sets of FR methods can be combined. For

this work, we select the version of CF-MMF recommended for the TID2008 database

[25] through the SFMS strategy in [130], where it is computed that for this dataset, six

FR methods should be combined. For the said version of CF-MMF [130], the six FR

methods that are part of the fusion process are: FSIM [14], VIF [113], IFC [101], MAD

[26], PSNR HVS [105], and MSSSIM [4]. Since a pre-trained version of this model is not

available, we follow the approach in [130] and train the model ourselves through SVR with

a radial basis function (RBF). Instead of the TID2008 database [25], we use its enhanced

version TID2013 [19], and the above-mentioned six FR methods to learn a fusion model.

Half of the TID2013 dataset is used for training, half for validation, and grid search is

employed to ascertain optimal SVR parameters. We refer the corresponding model as

MMF1.

To provide a more thorough comparison of MMF [130] with RAS [41], we train three

other CF-MMF models, one each for the three FR method pools identified for RAS in

Table 2.8. As computed in [130] six FR methods should be combined for the TID2008

database [25], and we follow this recommendation for TID2013 [19] as well. We use the

SFMS strategy [130] to identify the methods to be fused for each of the three FR method

pools (Table 2.8) and built the following three CF-MMF models: 1) MMF2 developed on

the Fast Set combines VSI [15], ADM [94], VIF DWT [93], MCSD [102], IWSSIM [13],

and SFF [109]. 2) MMF3 developed on the Medium Set combines VSI [15], ADM [94],

VIF DWT [93], CID MS [95], GMSD [99], and SRSIM [110]. 3) MMF4 developed on

the Full Set combines VSI [15], ADM [94], CID MS [95], MCSD [102], GMSD [99], and

IWSSIM [13]. Training for each of these MMF models was done in a manner similar to

MMF1 and data scaling was applied where necessary as recommended in [130]. In each

case, eight FR methods were combined but performance gain beyond the combination of

six methods was negligible, and hence we combine six methods in the final models. Since

the combinations in the four CF-MMF methods are not being used in the seven RAS

methods discussed earlier, to provide another comparison point between RAS and MMF,

we construct four additional RAS models that use the same FR method combinations
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as in each of the CF-MMF models. Specifically, RAS MMF1, RAS MMF2, RAS MMF3,

and RAS MMF4, use the RAS technique [41] to fuse the FR methods that are selected for

combination in MMF1, MMF2, MMF3, and MMF4, respectively. For these additional RAS

methods, the base FR method was selected as the first one identified by the SFMS strategy.

The details of all the fusion based methods whose performance is being evaluated in this

work, including the various versions of RAS and MMF, are given in Table 2.10. RAS B1

and RAS B2 are the versions of RAS discussed in [41]. Although overall, we are evaluating

the performance of seven different fused FR techniques, it can be noted from Table 2.10

that we are considering four different versions of MMF and 13 different versions of RAS.

Thus, in total, 22 fused FR methods are being evaluated in this work.

Table 2.10: Fused FR methods information table.

Fused FR Methods Individual FR Methods included in Fusion
Notes

Method Fused Method 1 Method 2 Method 3 Method 4 Method 5 Method 6

CISI 3 MSSSIM VIF FSIMc – – – –

CM3 3 IFC NQM VSNR – – – –

CM4 4 IFC NQM VSNR VIF – – –

CNNM 6 FSIMc PSNR HMAc PSNR HVS SFF SRSIM VIF –

HFSIMc 2 RFSIM FSIMc – – – – –

MMF1 6 FSIM IFC MAD MSSSIM PSNR HVS VIF Selection

MMF2 6 VSI ADM VIF DWT MCSD IWSSIM SFF Method:

MMF3 6 VSI ADM VIF DWT CID MS GMSD SRSIM SFMS

MMF4 6 VSI ADM CID MS MCSD GMSD IWSSIM

RAS B1 5 FSIM FSIMc GMSD IWSSIM VIF – GMSD

RAS B2 4 FSIM FSIMc GMSD IWSSIM – – GMSD

RAS MMF1 6 FSIM IFC MAD MSSSIM PSNR HVS VIF FSIM

RAS MMF2 6 VSI ADM VIF DWT MCSD IWSSIM SFF VSI

RAS MMF3 6 VSI ADM VIF DWT CID MS GMSD SRSIM VSI

RAS MMF4 6 VSI ADM CID MS MCSD GMSD IWSSIM Base VSI

RAS1 3 FSIMc SFF VSI – – – FR SFF

RAS2 2 SFF VSI – – – – VSI

RAS3 3 DSS IWSSIM VIF DWT – – – DSS

RAS4 3 SFF CID MS VSI – – – CID MS

RAS5 3 SFF CID MS VSI – – – VSI

RAS6 4 DSS IWSSIM CID MS VIF DWT – – DSS

RAS7 3 CID MS DSS VIF – – – VIF
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2.4.4 Performance of Fused FR Methods on Individual Databases

We tested the performance of the 22 fused FR methods mentioned in Table 2.10 on each

of the nine subject-rated databases mentioned in Table 2.2 (CIDIQ database [5] at two

viewing distances). The test results are given in Table 2.11 in terms of PLCC and in Table

2.12 in terms of SRCC. Testing was done on all distortion types included in each dataset.

Table 2.11: Test results of 22 Fused FR methods on nine subject-rated IQA databases in

terms of PLCC. All distortions in each dataset were considered.
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CISI 0.9625 0.8575 0.9364 0.9289 0.8239 0.8193 0.9220 0.7095 0.9032 0.9007

CM3 0.8337 0.6058 0.6870 0.9435 0.6383 0.7238 0.6362 0.4604 0.8718 0.8062

CM4 0.8072 0.5891 0.6597 0.9432 0.6238 0.7086 0.6128 0.5622 0.8422 0.8219

CNNM 0.8892 0.9338 0.9007 0.8741 0.6439 0.6548 0.8328 0.6378 0.8249 0.7665

HFSIMc 0.9579 0.8635 0.9304 0.9211 0.7365 0.8120 0.8357 0.5242 0.8918 0.8893

MMF1 0.8561 0.9504 0.9202 0.8624 0.7326 0.7572 0.8185 0.6736 0.8523 0.8075

MMF2 0.8887 0.9512 0.9120 0.8608 0.6437 0.5736 0.8416 0.6056 0.8678 0.7964

MMF3 0.8831 0.9516 0.9274 0.8463 0.6186 0.6962 0.8692 0.7012 0.8241 0.8047

MMF4 0.8818 0.9532 0.9394 0.8681 0.6392 0.7131 0.8751 0.5785 0.7911 0.8391

RAS B1 0.9683 0.8582 0.9539 0.9241 0.8255 0.8299 0.9177 0.7991 0.8980 0.9030

RAS B2 0.9647 0.8701 0.9408 0.9255 0.7905 0.8350 0.9030 0.7730 0.8958 0.9041

RAS MMF1 0.9696 0.8273 0.9622 0.9284 0.8521 0.8097 0.9059 0.7850 0.9034 0.9108

RAS MMF2 0.9662 0.8596 0.9604 0.9200 0.8502 0.8436 0.9059 0.7643 0.8990 0.9084

RAS MMF3 0.9638 0.8616 0.9568 0.9384 0.8569 0.8646 0.9104 0.7080 0.9015 0.9121

RAS MMF4 0.9620 0.8815 0.9420 0.9409 0.8412 0.8719 0.9039 0.7620 0.9023 0.9187

RAS1 0.9659 0.8958 0.9567 0.9008 0.7995 0.8427 0.8958 0.7160 0.8945 0.9006

RAS2 0.9617 0.9003 0.9514 0.8930 0.7983 0.8387 0.8873 0.7100 0.8896 0.8897

RAS3 0.9701 0.8423 0.9660 0.9266 0.8583 0.8313 0.9262 0.8424 0.9111 0.9111

RAS4 0.9590 0.8912 0.9348 0.9383 0.8555 0.8739 0.8986 0.7173 0.9108 0.9167

RAS5 0.9588 0.8980 0.9406 0.9313 0.8462 0.8713 0.8999 0.7119 0.9048 0.9124

RAS6 0.9682 0.8488 0.9640 0.9408 0.8832 0.8585 0.9294 0.8181 0.9150 0.9202

RAS7 0.9687 0.8320 0.9670 0.9393 0.8788 0.8428 0.9434 0.8189 0.9144 0.9167

2.4.5 Overall Performance

Since we are evaluating the performance of IQA methods on nine different databases, a

measure of overall performance is necessary. We provide this measure by computing the
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Table 2.12: Test results of 22 Fused FR methods on nine subject-rated IQA databases in

terms of SRCC. All distortions in each dataset were considered.
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CISI 0.9680 0.8150 0.9425 0.9270 0.8231 0.8063 0.9135 0.6920 0.8740 0.8612

CM3 0.9207 0.7136 0.8073 0.9450 0.6452 0.7659 0.7114 0.5055 0.9206 0.7733

CM4 0.9316 0.7195 0.8247 0.9441 0.6417 0.7686 0.7661 0.6209 0.9224 0.7891

CNNM 0.8928 0.9201 0.8850 0.8763 0.6270 0.6451 0.8218 0.6720 0.8048 0.7260

HFSIMc 0.9610 0.8228 0.9423 0.9205 0.7315 0.7982 0.8202 0.5075 0.8624 0.8453

MMF1 0.8741 0.9409 0.9043 0.8594 0.7241 0.7379 0.8084 0.6799 0.8085 0.7703

MMF2 0.8907 0.9436 0.8910 0.8448 0.5720 0.5318 0.8196 0.6111 0.8533 0.7785

MMF3 0.8947 0.9455 0.9303 0.8345 0.6286 0.6517 0.8580 0.6606 0.7253 0.7265

MMF4 0.8852 0.9452 0.9438 0.8685 0.5990 0.6422 0.8596 0.6004 0.7533 0.8123

RAS B1 0.9690 0.8034 0.9563 0.9223 0.8252 0.8312 0.9089 0.8013 0.8688 0.8595

RAS B2 0.9653 0.8116 0.9464 0.9235 0.7917 0.8319 0.8932 0.7741 0.8654 0.8580

RAS MMF1 0.9717 0.7355 0.9607 0.9268 0.8536 0.8133 0.8984 0.7923 0.8756 0.8720

RAS MMF2 0.9689 0.8158 0.9642 0.9185 0.8490 0.8392 0.8952 0.7686 0.8714 0.8635

RAS MMF3 0.9663 0.8195 0.9610 0.9383 0.8573 0.8583 0.9010 0.7132 0.8733 0.8699

RAS MMF4 0.9642 0.8350 0.9493 0.9404 0.8430 0.8662 0.8953 0.7698 0.8730 0.8763

RAS1 0.9672 0.8756 0.9602 0.8958 0.7986 0.8375 0.8857 0.7205 0.8675 0.8593

RAS2 0.9637 0.8876 0.9591 0.8902 0.7975 0.8313 0.8759 0.7164 0.8589 0.8473

RAS3 0.9712 0.7794 0.9625 0.9261 0.8575 0.8271 0.9204 0.8455 0.8842 0.8796

RAS4 0.9590 0.8819 0.9422 0.9395 0.8562 0.8638 0.8913 0.7230 0.8836 0.8914

RAS5 0.9599 0.8864 0.9471 0.9313 0.8471 0.8632 0.8920 0.7168 0.8770 0.8822

RAS6 0.9680 0.7930 0.9603 0.9405 0.8840 0.8532 0.9250 0.8214 0.8867 0.8954

RAS7 0.9687 0.7724 0.9606 0.9388 0.8788 0.8363 0.9397 0.8250 0.8886 0.8986

weighted average PLCC and SRCC values for each IQA method over different databases

(as in [13]). The weight assigned to a database depends on its size in terms of the number

of distorted images. The weighted average PLCC and SRCC for an IQA method over

different databases are computed as:

PLCCWA =

∑D
i=1 ni · PLCCi∑D

i=1 ni
(2.17)

SRCCWA =

∑D
i=1 ni · SRCCi∑D

i=1 ni
(2.18)

where PLCCi and SRCCi are respectively the PLCC and SRCC values of the IQA method
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for database i, ni is the number of images in database i, and D is the number of databases

being considered. Although we are using nine IQA databases in this work (five singly

distorted and four multiply distorted), since the singly distorted database CIDIQ [5] pro-

vides MOS at two viewing distances, it will be regarded as two datasets. We compute

weighted average PLCC and SRCC for three cases: 1) All databases (D = 10), 2) Only

single distortion databases (D = 6), and 3) Only multiple distortion databases (D = 4).

Information about the number of distorted images in each dataset is provided in Table 2.2.

All distorted images in each database, regardless of distortion type, have been used for the

computation of PLCC and SRCC values.

While determining the overall performance, we consider the 43 individual FR methods

(Table 2.3) and the 22 fused FR methods (Table 2.10) together, in order to observe if fused

FR methods offer any benefits over individual methods, and if so, then by how much. Table

2.13 depicts the overall performance of the 65 methods in terms of weighted average PLCC

and SRCC, where parts 1, 2, and 3 of the table correspond to the cases of all databases,

single distortion databases, and multiple distortion databases, respectively. Within each

case, the methods have been sorted in the descending order with respect to the weighted

average PLCC and SRCC values. Therefore, the best performing methods for each case

are towards the top of the table, while methods at the bottom of the table have the worst

performance for that case. The names of the fused FR methods are mentioned in bold, in

order to distinguish them from the individual FR methods.

2.4.6 Statistical Significance Testing

We carried out statistical significance testing in accordance with the description given in

Section 2.4.1. First, a Kurtosis based check for Gaussianity was performed on the prediction

residuals of all 65 individual and fused FR methods on all the datasets. The outcome of

this test is presented in Table 2.14, where a “1” means that the kurtosis of the residuals

is between 2 and 4, while a “0” means that it is outside of this range. The prediction

residuals are assumed to be Gaussian in the former case, while they are not in the latter.

While doing this test, all distorted images within each dataset were considered. It can

be seen from Table 2.14 that the kurtosis based assumption of Gaussianity of prediction
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Table 2.13: Weighted Average PLCC and SRCC values of individual and fused FR meth-

ods. Fused FR Methods are highlighted in bold.

Part 1: All Databases Part 2: Single Distortion Databases Part 3: Multiple Distortion Databases

FR Method PLCC FR Method SRCC FR Method PLCC FR Method SRCC FR Method PLCC FR Method SRCC

RAS5 0.8985 RAS4 0.8907 RAS5 0.9054 RAS5 0.9003 RAS7 0.9199 RAS7 0.9106

RAS6 0.8979 RAS5 0.8903 RAS4 0.9034 RAS4 0.8992 RAS6 0.9136 RAS6 0.9016

RAS4 0.8977 RAS1 0.8783 RAS MMF4 0.8988 RAS2 0.8909 RAS3 0.9117 RAS3 0.8976

RAS MMF4 0.8967 RAS2 0.8777 RAS1 0.8969 RAS1 0.8872 VIF 0.9064 VIF 0.8925

RAS7 0.8935 RAS MMF4 0.8771 RAS2 0.8965 VSI 0.8847 RAS B1 0.8990 RAS B1 0.8801

RAS MMF3 0.8912 RAS6 0.8761 RAS MMF3 0.8925 RAS MMF4 0.8783 IWSSIM 0.8970 IWSSIM 0.8785

RAS3 0.8911 RAS MMF3 0.8724 RAS6 0.8905 MMF1 0.8773 RAS MMF1 0.8942 RAS MMF1 0.8778

RAS1 0.8908 RAS7 0.8710 RAS MMF2 0.8879 QASD 0.8741 RAS MMF4 0.8925 RAS MMF4 0.8745

RAS MMF2 0.8888 RAS MMF2 0.8690 VSI 0.8855 RAS MMF3 0.8735 CISI 0.8921 RAS4 0.8728

RAS B1 0.8881 RAS3 0.8665 MMF1 0.8848 FSIMc 0.8700 RAS MMF2 0.8908 CISI 0.8723

RAS2 0.8879 RAS B1 0.8653 RAS B2 0.8832 RAS MMF2 0.8680 RAS B2 0.8887 RAS MMF2 0.8710

RAS B2 0.8850 CISI 0.8634 QASD 0.8830 MMF3 0.8641 RAS MMF3 0.8885 RAS MMF3 0.8701

CISI 0.8831 VSI 0.8631 RAS B1 0.8830 RAS6 0.8640 RAS4 0.8859 RAS5 0.8693

IWSSIM 0.8787 FSIMc 0.8628 RAS3 0.8813 MMF4 0.8634 RAS5 0.8841 RAS B2 0.8684

RAS MMF1 0.8786 RAS B2 0.8607 RAS7 0.8810 CISI 0.8592 DVICOM 0.8799 DVICOM 0.8634

FSIMc 0.8785 IWSSIM 0.8559 FSIMc 0.8809 RAS B1 0.8583 DVICOM F 0.8794 DVICOM F 0.8631

DSS 0.8757 SFF 0.8527 CISI 0.8788 SFF 0.8572 RAS1 0.8781 DSS 0.8630

VSI 0.8707 DSS 0.8520 MMF4 0.8777 RAS B2 0.8570 DSS 0.8774 RAS1 0.8596

MCSD 0.8705 QASD 0.8482 ESSIM 0.8754 CID MS 0.8536 VIF DWT 0.8757 VIF DWT 0.8564

FSIM 0.8687 MMF1 0.8479 DSS 0.8749 RAS7 0.8523 FSIMc 0.8735 IFC 0.8530

ESSIM 0.8674 MCSD 0.8464 MCSD 0.8724 RAS3 0.8517 FSIM 0.8721 RAS2 0.8500

GMSD 0.8671 RAS MMF1 0.8452 MAD 0.8719 HFSIMc 0.8509 GMSD 0.8710 FSIMc 0.8479

SFF 0.8658 MMF4 0.8449 RAS MMF1 0.8712 ESSIM 0.8493 RAS2 0.8698 GMSD 0.8458

DVICOM 0.8631 CID MS 0.8445 IWSSIM 0.8700 CNNM 0.8490 MCSD 0.8666 FSIM 0.8452

DVICOM F 0.8631 GMSD 0.8433 MMF3 0.8697 MCSD 0.8484 SSIM DWT 0.8650 SFF 0.8433

QASD 0.8625 FSIM 0.8430 HFSIMc 0.8696 DSS 0.8467 SFF 0.8643 MCSD 0.8422

SRSIM 0.8616 ESSIM 0.8418 FSIM 0.8671 IWSSIM 0.8452 WSSI 0.8608 SSIM DWT 0.8385

MMF4 0.8602 DVICOM F 0.8394 SFF 0.8665 GMSD 0.8421 DWT VIF 0.8598 DWT VIF 0.8368

MMF1 0.8593 MMF3 0.8392 SRSIM 0.8654 FSIM 0.8419 IFC 0.8567 WSSI 0.8338

MMF3 0.8569 DVICOM 0.8387 GMSD 0.8653 MAD 0.8413 SRSIM 0.8535 VIF P 0.8336

GSIM 0.8553 SRSIM 0.8347 GSIM 0.8619 GSIM 0.8401 VIF P 0.8514 SRSIM 0.8264

HFSIMc 0.8550 HFSIMc 0.8345 CNNM 0.8595 MMF2 0.8399 ESSIM 0.8506 ESSIM 0.8259

MSSSIM 0.8537 CID SS 0.8325 MMF2 0.8592 MSSSIM 0.8386 MSSSIM 0.8440 CID MS 0.8253

ADM 0.8536 MSSSIM 0.8323 ADM 0.8590 SRSIM 0.8386 CID SS 0.8434 CID SS 0.8200

MAD 0.8516 ADM 0.8308 MSSSIM 0.8583 CID SS 0.8385 ADM 0.8423 MSSSIM 0.8191

CID MS 0.8511 GSIM 0.8307 CID MS 0.8570 ADM 0.8384 GSIM 0.8414 VSI 0.8177

CID SS 0.8452 CNNM 0.8270 DVICOM F 0.8553 PSNR HAc 0.8361 VSI 0.8395 ADM 0.8149

SSIM DWT 0.8436 MMF2 0.8248 DVICOM 0.8551 PSNR HMAc 0.8352 CID MS 0.8386 GSIM 0.8111

MMF2 0.8434 MAD 0.8220 CID SS 0.8460 RAS MMF1 0.8297 MMF3 0.8298 MMF4 0.8060

CNNM 0.8389 SSIM DWT 0.8137 PSNR HAc 0.8425 DVICOM F 0.8281 HFSIMc 0.8243 HFSIMc 0.7999

VIF 0.8388 WSSI 0.8069 RFSIM 0.8393 DVICOM 0.8270 MMF4 0.8236 QASD 0.7936

WSSI 0.8384 SSIM 0.8029 PSNR HMAc 0.8391 RFSIM 0.8112 SSIM 0.8230 MMF2 0.7930

SSIM 0.8271 PSNR HMAc 0.8028 SSIM DWT 0.8335 SSIM 0.8080 QASD 0.8195 SSIM 0.7923

VIF DWT 0.8220 VIF 0.8024 PSNR HA 0.8315 PSNR HA 0.8057 MMF2 0.8100 MMF3 0.7868

PSNR HMAc 0.8153 PSNR HAc 0.7942 SSIM 0.8290 SSIM DWT 0.8020 MAD 0.8089 MMF1 0.7859

PSNR HAc 0.8094 VIF DWT 0.7768 WSSI 0.8278 PSNR HMA 0.7952 MMF1 0.8057 MAD 0.7812

PSNR HMA 0.8080 PSNR HMA 0.7762 PSNR HMA 0.8219 WSSI 0.7941 CNNM 0.7955 CNNM 0.7808

PSNR HA 0.8061 CM4 0.7758 VIF 0.8066 CM4 0.7743 UQI 0.7875 CM4 0.7791

VIF P 0.8059 PSNR HA 0.7747 VIF DWT 0.7965 CM3 0.7682 PSNR HMA 0.7789 UQI 0.7673

RFSIM 0.8055 RFSIM 0.7740 VIF P 0.7843 VIF 0.7596 PSNR HMAc 0.7653 PSNR HMA 0.7363

DWT VIF 0.8032 CM3 0.7575 DWT VIF 0.7763 IW PSNR 0.7501 IW PSNR 0.7652 CM3 0.7350

PSNR HVS 0.7402 DWT VIF 0.7531 VSNR 0.7492 VSNR 0.7410 PSNR HA 0.7527 PSNR HMAc 0.7347

PSNR HVSM 0.7364 VIF P 0.7526 PSNR HVS 0.7467 VIF DWT 0.7390 PSNR HVSM 0.7466 IW PSNR 0.7306

VSNR 0.7335 IW PSNR 0.7438 PSNR DWT 0.7323 PSNR HVS 0.7295 PSNR HAc 0.7399 PSNR HA 0.7095

IW PSNR 0.7263 VSNR 0.7174 PSNR HVSM 0.7315 VIF P 0.7142 RFSIM 0.7343 PSNR HAc 0.7060

PSNR DWT 0.7244 PSNR HVS 0.7136 PSNR 0.7180 PSNR HVSM 0.7141 PSNR HVS 0.7264 PSNR HVSM 0.7010

UQI 0.7226 PSNR HVSM 0.7099 NQM 0.7136 DWT VIF 0.7134 AD DWT 0.7087 RFSIM 0.6958

NQM 0.7022 PSNR DWT 0.6944 IW PSNR 0.7078 PSNR DWT 0.7076 PSNR DWT 0.7076 AD DWT 0.6924

PSNR 0.6927 IFC 0.6924 SNR 0.7043 PSNR 0.7066 VSNR 0.7003 PSNR HVS 0.6801

CM3 0.6893 AD DWT 0.6875 UQI 0.6918 NQM 0.6949 CM3 0.6927 VSNR 0.6677

WSNR 0.6820 UQI 0.6829 CM3 0.6876 SNR 0.6923 CM4 0.6908 PSNR DWT 0.6665

SNR 0.6819 NQM 0.6801 WSNR 0.6824 AD DWT 0.6852 WSNR 0.6813 NQM 0.6488

CM4 0.6768 PSNR 0.6720 CM4 0.6701 WSNR 0.6717 NQM 0.6782 WSNR 0.6341

AD DWT 0.6054 SNR 0.6606 AD DWT 0.5563 UQI 0.6428 PSNR 0.6396 PSNR 0.5992

IFC 0.5789 WSNR 0.6596 IFC 0.4470 IFC 0.6161 SNR 0.6347 SNR 0.5938
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residuals holds in most cases (around 82% cases). Next, the prediction residuals of all

methods were compared by making all possible pairs of individual and fused FR methods,

and carrying out hypothesis testing through the one-sided (left-tailed) two-sample F -test

at 95% confidence (see Section 2.4.1).

Table 2.15 provides the outcome of statistical significance testing for 16 of the 22 fused

FR methods. These methods include all four methods belonging to the empirical fusion

category (HFSIMc [129], CISI [126], CM3 [127], and CM4 [127]). We include both methods

of the learning based fusion category (CNNM [128] and MMF [130, 133]). As discussed

in Section 2.4.3, we tested four versions of MMF. Here, we include the top three MMF

versions that have the highest weighted average PLCC for the All Databases case (see Table

2.13). These versions are MMF1, MMF3, and MMF4. Of the 13 versions of RAS [41],

which belongs to the rank aggregation based fusion category, we selected the following eight

versions: Among the seven RAS versions found through the exhaustive search procedure

in Section 2.4.3 and listed in Table 2.9, the top four RAS versions that have the highest

weighted average PLCC for the All Databases case (see Table 2.13) were selected. These

versions include RAS4, RAS5, RAS6, and RAS7. The three RAS versions corresponding

to the MMF versions included above were also selected (RAS MMF1, RAS MMF3, and

RAS MMF4). Finally, RAS B1, which is one of the original RAS versions in [41] is included

as well.

Table 2.16 provides the outcome of statistical significance testing for 14 of the 43 indi-

vidual FR methods. These methods were selected by analyzing the weighted average PLCC

of the All Databases case in Table 2.13 and picking the top performing methods such that:

A) The overall top four methods are selected which include IWSSIM [13], FSIMc [14],

DSS [16], and VSI [15], all of which are structural similarity based approaches. B) There

is representation from each of the four categories of individual FR methods discussed in

Section 2.3.1. PSNR is selected from the error based methods category. In addition to the

four top performing methods (IWSSIM, FSIMc, DSS, and VSI), three additional methods,

CID MS [95], ESSIM [98], and GMSD [99] are selected from the structural similarity based

methods category. VIF [113], SFF [109], and QASD [107] represent the NSS based methods

category. Finally, ADM [94], MAD [26], and DVICOM F [96], represent the mixed strategy

based methods category. To help statistically compare individual FR methods with fused
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Table 2.14: Kurtosis based check for Gaussianity of prediction residuals of individual/fused

FR Methods. Fused FR Methods are highlighted in bold.
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RAS5 1 1 0 1 1 1 1 1 1 1

RAS6 1 1 1 1 1 1 1 1 1 1

RAS4 1 1 1 1 1 1 1 1 1 1

RAS MMF4 0 0 0 1 1 1 1 1 1 1

RAS7 1 1 1 1 1 1 0 1 1 1

RAS MMF3 1 0 0 1 1 1 0 1 1 1

RAS3 1 1 1 1 1 1 1 1 1 1

RAS1 0 1 0 1 1 1 1 1 1 1

RAS MMF2 1 0 0 1 1 1 1 1 1 1

RAS B1 0 1 1 1 1 1 1 1 1 1

RAS2 1 1 0 1 1 1 1 1 1 1

RAS B2 0 0 1 1 1 1 1 1 1 1

CISI 1 1 0 1 1 1 1 1 1 1

IWSSIM 0 0 1 1 1 1 1 1 1 1

RAS MMF1 1 0 1 1 0 1 1 1 1 1

FSIMc 0 0 0 1 1 1 1 1 1 1

DSS 0 0 1 0 1 0 1 1 1 0

VSI 1 0 0 1 1 1 1 1 1 1

MCSD 0 0 0 1 1 0 1 1 1 0

FSIM 0 0 1 1 1 1 1 1 1 1

ESSIM 0 0 0 1 1 1 1 1 1 1

GMSD 0 0 0 1 1 0 1 1 1 0

SFF 1 1 0 1 1 1 0 1 1 1
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AD DWT 0 1 0 1 1 1 1 1 1 1

IFC 1 1 1 1 1 1 1 1 1 1

75



T
ab

le
2.

15
:

S
ta

ti
st

ic
al

si
gn

ifi
ca

n
ce

te
st

in
g

re
su

lt
s

of
fu

se
d

F
R

m
et

h
o
d
s

b
as

ed
on

p
re

d
ic

ti
on

re
si

d
u
al

s.
E

ac
h

en
tr

y
is

a
co

d
ew

or
d

co
m

p
os

ed
of

te
n

sy
m

b
ol

s,
w

h
er

e
ea

ch
sy

m
b

ol
re

p
re

se
n
ts

th
e

te
st

ou
tc

om
e

fo
r

on
e

IQ
A

d
at

ab
as

e.
T

h
e

sy
m

b
ol

lo
ca

ti
on

w
it

h
in

a
co

d
ew

or
d

re
p
re

se
n
ts

IQ
A

d
at

ab
as

es
in

th
e

fo
ll
ow

in
g

or
d
er

:
[L

IV
E

R
2,

T
ID

20
13

,
C

S
IQ

,
V

C
L

F
E

R
,
C

ID
IQ

50
,
C

ID
IQ

10
0,

M
D

ID
,
M

D
ID

20
13

,
L

IV
E

M
D

,
M

D
IV

L
].

A
“1

”
m

ea
n
s

th
at

th
e

m
et

h
o
d

in
th

e
ro

w
,

fo
r

a
p
ar

ti
cu

la
r

d
at

ab
as

e,
is

st
at

is
ti

ca
ll
y

b
et

te
r

th
an

th
e

m
et

h
o
d

in
th

e
co

lu
m

n
,

a
“0

”
m

ea
n
s

th
at

it
is

st
at

is
ti

ca
ll
y

w
or

se
,

w
h
il
e

a
“

”
m

ea
n
s

th
at

it
is

st
at

is
ti

ca
ll
y

in
d
is

ti
n
gu

is
h
ab

le
.

T
es

ti
n
g

w
as

d
on

e
at

th
e

5%
si

gn
ifi

ca
n
ce

le
ve

l
(9

5%
co

n
fi
d
en

ce
).

R
A

S
5

R
A

S
6

R
A

S
4

R
A

S
M

M
F

4
R

A
S

7
R

A
S

M
M

F
3

R
A

S
B

1
C

IS
I

R
A

S
M

M
F

1
M

M
F

4
M

M
F

1
M

M
F

3
H

F
S

IM
c

C
N

N
M

C
M

3
C

M
4

R
A

S
5

0
1
0
0
0

0
0

1
1

0
0
1
0

0
1
0
0

0
1
0

0
0
1
0

1
0
0

1
1
0

0
1
0

1
0

1
0

1
1
1
1
1
1
1

1
0
1
1
1
1
1

1
1

1
0
1
1
1
1
1

1
1

1
1

1
1
1
1

1
1
0
1
1
1
1
1
1
1
1

1
1
1
0
1
1
1
1
1
1

1
1
1
0
1
1
1
1
1
1

R
A

S
6

1
0
1
1
1

1
1

1
0
1

1
1
1

1
0
1

1
1
1

1
0

1
0
1

1
1
1

1
1
1
1
1

1
1

1
1
1
1
1
1
1

1
1

1
1
1
1

1
0
1
1
1
1
1
1
1
1

1
0
1
1
1
1
1
1
1
1

1
0
1
1
1
1
1
1
1
1

1
0
1
1
1
1
1
1
1
1

1
0
1
1
1
1
1
1
1
1

1
1
1

1
1
1
1
1
1

1
1
1

1
1
1
1
1
1

R
A

S
4

0
0
1
0

0
0
0

1
0

0
1
0

0
1
0
0

0
1
0

0
0
1
0
1
1
1
0
0

1
1

1
1
0

1
0
1
0
1

1
0

1
0

1
1
1
1
1
1
1

1
0
1
1
1
1
1

1
1

1
0

1
1
1
1

1
1

1
1
1
1
1
1
1
1

1
0
1
1
1
1
1
1
1
1

1
1
1

1
1
1
1
1
1

1
1
1

1
1
1
1
1
1

R
A

S
M

M
F

4
0

1
0
1
0

0
0
0

0
1

0
1
0

0
1
0
0

1
0

0
1
0
1

1
0

1
1

1
1
0

1
0
1
0
1

1
1
0

1
1
1
1
1
1
1

1
0
1
1
1
1
1
1
1
1

1
0
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
0
1
1
1
1
1
1
1
1

1
1
1

1
1
1
1
1
1

1
1
1

1
1
1
1
1
1

R
A

S
7

1
0
1

1
0
1
1

0
1

1
0
1

1
0
1
1

1
0
1

1
0
1
1

1
0
1

1
0
1
1

0
1
1
1

1
1
1

1
0
1
1
1
1
1
1

1
1
1
1
1
1

1
0
1
1
1
1
1
1
1
1

1
0
1
1
1
1
1
1
1
1

1
0
1
1
1
1
1
1
1
1

1
0
1
1
1
1
1
1
1
1

1
0
1
1
1
1
1
1
1
1

1
1
1

1
1
1
1
1
1

1
1
1

1
1
1
1
1
1

R
A

S
M

M
F

3
1
0
1

1
0
1
0

0
0
0

1
0
1

1
0
1

0
1
0

0
1
0
0

0
1
1
1

0
1

1
1
0

0
1
0
1

1
0

1
0
1
1
1
1
1
1
1
1

1
0
1
1
1
1
1

1
1

1
0
1
1
1
1
1

1
1

1
1
1
1
1
1
1

1
1
0
1
1
1
1
1

1
1

1
1
1

1
1
1
1
1
1

1
1
1

1
1
1
1
1
1

R
A

S
B

1
1
0
1

0
1
1

0
0
0
0
0

0
0

1
0
1
0
0
0
1
1

0
1
0
1
0

0
1

0
1
0
0
0

0
0
0

1
0
0
0

1
1

1
1

1
0

0
1

1
0
1
1
1
1
1
1
1
1

1
0
1
1
1
1
1
1
1
1

1
0
1
1
1
1
1
1
1
1

1
1

1
1
1

1
1
0
1
1
1
1
1
1
1
1

1
1
1
0
1
1
1
1
1
1

1
1
1
0
1
1
1
1
1
1

C
IS

I
0

0
1

0
0
0
0
0
0
0

0
0

0
0
1

0
0

0
0
1

0
0
1
0
0
0
0
0
0

0
0

0
0
1

0
0

0
0
1
0

0
1
0

1
0

1
1
1
1
1
1
1

1
0
1
1
1
1
1

1
1

1
0
1
1
1
1
1

1
1

1
1
1

1
0
1
1
1
1
1

1
1

1
1
1
0
1
1
1
1
1
1

1
1
1
0
1
1
1
1
1
1

R
A

S
M

M
F

1
1
0
1

0
1

0
0
0
0
0

1
0
1
0

0
1

1
0
1
0

0
0
0
0
0
0

1
0
1
0

0
1

0
1

1
0

1
0
1

1
0
1

1
0
1
1
1
1
1
1
1
1

1
0
1
1
1
1
1
1
1
1

1
0
1
1
1
1
1
1
1
1

1
0
1

1
1
1

1
1
0
1
1
1
1
1
1
1
1

1
1
1
0
1
1
1
1
1
1

1
1
1
0
1
1
1
1
1
1

M
M

F
4

0
1

0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0

0
1

0
0
0
0
0
0
0

0
1

0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0

0
1

0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0

1
1

0
0
1
0
0
1

1
1

0
1

0
1
1
0
0
0
1

0
0

1
1

1
1

0
1

1
1
1
0

1
1
1

1
1
1
0

1
0

M
M

F
1

0
1
0
0
0
0
0

0
0

0
1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0

0
0

0
1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0

0
0

0
1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0

0
0

0
1
0
0
0
0
0
0
0
0

0
0

1
1
0
1
1
0

0
1
1
0

1
0
1
0
0

0
0
1
0
0

0
1
1

1
1

1
1

1
1
1
0
1

1
1
1

1
1
1
0
1
1
1
1

M
M

F
3

0
1
0
0
0
0
0

0
0

0
1
0
0
0
0
0
0
0
0

0
1

0
0
0
0

0
0

0
1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0

0
0

0
1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0

0
0

0
1
0
0
0
0
0
0
0
0

0
0

1
0

1
0
0
1

0
0
1

0
0
0
1
1
0
0

1
1
0

1
1

1
1
1
0

1
1
1

1
1
1
0

1
1

H
F

S
IM

c
0
0

0
0
0
0

0
0
1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0

0
0

0
0

0
0

0
0

0
1
0

0
0
0

0
1
0
0
1
1
1
0

1
1

1
0
1
1

1
1
0
1
1

1
0

1
1
1
0
0
1
1

1
0
1
1
1
1

0
1
1

1
1
1
0
1
1
1

1
1

1
1
1
0
1
1
1

1
1

C
N

N
M

0
1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0

0
0

0
1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0

0
0

0
1
0
0
0
0
0
0
0
0

0
0

0
0

1
0

1
0
0

0
0

0
0

0
0
1

0
0

0
1
0
0
0
0

1
0
0

1
1
1
0

0
1
1
1
0

1
1
1
0

0
1

0

C
M

3
0
0
0
1
0
0
0
0
0
0

0
0
0

0
0
0
0
0
0

0
0
0

0
0
0
0
0
0

0
0
0

0
0
0
0
0
0

0
0
0

0
0
0
0
0
0

0
0
0

0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0

0
0
0
1

0
0
0

0
0
0
1
0

0
0
0

0
0
0
1

0
0
0

0
0
0
1
0
0
0

0
0

0
0
0
1

1
0
0
0
1

1
0

C
M

4
0
0
0
1
0
0
0
0
0
0

0
0
0

0
0
0
0
0
0

0
0
0

0
0
0
0
0
0

0
0
0

0
0
0
0
0
0

0
0
0

0
0
0
0
0
0

0
0
0

0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0

0
0
0
1

0
1

0
0
0
1
0
0
0
0

0
0
0
1

0
0

0
0
0
1
0
0
0

0
0

0
0
0
1

1
0

1
0

1

76



T
ab

le
2.

16
:

S
ta

ti
st

ic
al

si
gn

ifi
ca

n
ce

te
st

in
g

re
su

lt
s

of
in

d
iv

id
u
a
l

F
R

m
et

h
o
d
s

b
as

ed
on

p
re

d
ic

ti
on

re
si

d
u
al

s.

E
ac

h
en

tr
y

is
a

co
d
ew

or
d

co
m

p
os

ed
of

te
n

sy
m

b
ol

s,
w

h
er

e
ea

ch
sy

m
b

ol
re

p
re

se
n
ts

th
e

te
st

ou
tc

om
e

fo
r

on
e

IQ
A

d
at

ab
as

e.
T

h
e

sy
m

b
ol

lo
ca

ti
on

w
it

h
in

a
co

d
ew

or
d

re
p
re

se
n
ts

IQ
A

d
at

ab
as

es
in

th
e

fo
ll
ow

in
g

or
d
er

:

[L
IV

E
R

2,
T

ID
20

13
,
C

S
IQ

,
V

C
L

F
E

R
,
C

ID
IQ

50
,
C

ID
IQ

10
0,

M
D

ID
,
M

D
ID

20
13

,
L

IV
E

M
D

,
M

D
IV

L
].

A
“1

”

m
ea

n
s

th
at

th
e

m
et

h
o
d

in
th

e
ro

w
,

fo
r

a
p
ar

ti
cu

la
r

d
at

ab
as

e,
is

st
at

is
ti

ca
ll
y

b
et

te
r

th
an

th
e

m
et

h
o
d

in
th

e

co
lu

m
n
,

a
“0

”
m

ea
n
s

th
at

it
is

st
at

is
ti

ca
ll
y

w
or

se
,

w
h
il
e

a
“

”
m

ea
n
s

th
at

it
is

st
at

is
ti

ca
ll
y

in
d
is

ti
n
gu

is
h
ab

le
.

T
es

ti
n
g

w
as

d
on

e
at

th
e

5%
si

gn
ifi

ca
n
ce

le
ve

l
(9

5%
co

n
fi
d
en

ce
).

F
u
se

d
F

R
M

et
h
o
d
s

R
A

S
6

an
d

M
M

F
1

ar
e

in
cl

u
d
ed

fo
r

co
m

p
ar

is
on

an
d

ar
e

h
ig

h
li
gh

te
d

in
b

ol
d
.

R
A
S
6

IW
S

S
IM

F
S

IM
c

D
S

S
V

S
I

E
S

S
IM

G
M

S
D

S
F

F
D

V
IC

O
M

F
Q

A
S

D
M

M
F
1

A
D

M
M

A
D

C
ID

M
S

V
IF

P
S

N
R

R
A
S
6

1
1
1
1
1

1
0

1
1
0
1

1
1
1
1
1

1
1
1
1
1

1
1
0
1

1
1
1
1
1
1

1
0
1
1
1
1
1
1
1
1

1
0
1
1
1
1
1

1
1

1
0

1
1
1
1

1
1

0
1
1
1
1
1
1

1
1

1
0
1
1
1
1
1
1
1
1

1
0
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

1
1
1
1

1
1
1
1

1
1
1

1
1
1
1
1
1

1
1
1
1
1
1
0

1
1
1
1
1
1
1
1
1
1
1

IW
S

S
IM

0
0
0
0
0

0
1

0
0
0

0
1
1

1
0
0
0

1
1
1
1

0
0
0
1
1
1
1
1
1

0
1
1
1
1
1

0
0
0

1
1
1

1
1

0
0
0
1
1
1
1
1
1
1

0
1

1
1

1
1
1

0
0

1
1
1
1

1
1
0

1
1
1
1
1
1
1

1
0

1
1
1
1

0
0
0
1
1
1
1
1
1

1
1
0

1
1
1
1

0
1
0
1
1
1
0

1
1
1
1
1
1
1
1
1
1
1

F
S

IM
c

0
1
0

0
0
0
0
0

1
1

1
0
0

0
1
0

1
0

1
0

1
1

1
1
0

1
1
0
1

1
1
0

1
0
1

1
1
0

1
0
1

1
0
1

0
1

0
0

1
1

1
1
0

1
1
1

1
1

1
1
0
1

1
0
1
0
1

1
0

1
1
1

0
1
1

1
1

1
0
0

1
1
1
1
1
1
1
1

1
1

D
S

S
0

0
0
0
0

0
1
1
1

0
0
0
0

0
1

0
1

1
0
1

1
1
1
1

1
0
1
1

1
1

1
1

1
1

0
1

1
1

0
1
1

0
1
0

1
0
1

1
1
1

1
1
0
1
1
1
1
1
1
1
1

1
1
1

1
1

0
1
1

1
1

1
1
1
0
0

1
1

1
1
1
1
1
0

1
1
1
1
1
1
1
1
1
1
1

V
S

I
0
1
0

0
0
0
0
0
0

1
1
1
0
0
0
0
0
0

0
1

0
0

0
1
0

0
0
0
0

0
1

1
0

1
0

0
0
1
0
1

1
0

0
1
0
1
0
1

0
0

0
1

1
0

0
0

0
1
0

1
1
0

1
1
1
0
1
1

1
1

1
0

1
0
0

0
1
0
1
0

1
0

0
1
1
1

0
1

0
0
1

1
1
0
0
0

1
1
1
1
1
1
1

1
1

E
S

S
IM

0
1
0
0
0
0
0
0
0
0

1
0
0
0
0
0

0
0
1

0
0
1
0
0

0
0

1
0

0
1

0
1

1
0

1
1
0
0

1
0

0
1

1
0
0

1
0
1

0
0

1
0
0
0
1

1
1

1
0

1
1
1
1

1
1

1
1

0
0
1
0

1
1
1
1
0
0

1
1
1
1
0
0

1
1
1
1
1
1
1
1
1
1
1

G
M

S
D

0
1
0
0
0
0
0

0
0

1
1
1

0
0
0

0
0

0
1
0

0
0
1

0
0

0
0
0

1
0
1
0

0
1

1
0
0
1
1

0
0
0
1
0

1
0

0
1
1

0
0
0

0
1

0
1
1

1
0
1
1

1
1
1
1

1
1
1

0
0
1
1
0
0

0
1

0
0
1
1

0
1
1
1
0
0
0
1
1

0
1
1
1

1
0

0
1
1
1
1
1
1
1
1
1
1

S
F

F
0
1

0
0
0
0

0
0

1
1
1
0
0
0
0
0
0
0

1
0

0
0
1

0
1

0
0
0

1
0
1
0
1
0

1
1

1
1
0

0
1
1

0
1
1
0
1

0
1

0
1
1
0

0
1
0
1
0
1
0
1
1

1
0
1
0
1

1
1
1
1

1
1
1
0

0
1
1
0
0

0
1
1
0

0
1
1

1
1
1
0
0
0
1
1

1
1
0
1
1
0
0

1
1
1
1
0
1
1
1
1
1
1

D
V

IC
O

M
F

1
0
0
0
0
0
0

0
0

1
0

0
0

0
0
0

1
0

0
1
0

1
0

1
0
0

1
0
1

0
1
0

0
1

1
1

1
0

1
1

0
1
0
0

1
1
1

1
0
0
1

1
1
0
0

1
1
1

1
0

1
1
1
1
1
1
1

1
0
0

1
1
0
0

1
0
0

0
1
1

0
1
0
1
0
0

1
1

0
1
1

1
1
1
0

1
1
1
1
1
1
1
1
1
1

Q
A

S
D

0
1
0
0
0
0
0
0
0
0

1
1

0
0
0
0

0
1
1

0
0

0
1
0

0
0
0

0
1
0
1

0
1
1
1
0

0
0

1
0

1
0
0

0
1
0
1
0
1
0
0

0
1
1

0
0
0

1
0
1
1

1
1
1

1
1
1

0
0

0
0
1

1
0
0
1
0

0
1
1
1
0
0

0
1
1
1

1
0
0

1
1
1
1
1
1
1

1
1

M
M

F
1

0
1
0
0
0
0
0
0
0
0

0
1

0
0
0
0
0
0
0

0
1

0
0
0

0
0

0
1
0
0
0
0
0
0
0
0

0
1

0
0
0
1
0
0

0
1

0
0
0
0

0
0

0
1
0
0

0
0
0
0

0
1
0
1
0

0
0
0
0

0
1

0
0
0
0
0
0
0

0
1
0
0

0
0
0

0
1

0
0
0
0

0
0

0
1
0
0
0
0
1
0
0
0

0
1
1
0
0
0
0

0
0

0
1

0
1
0
0
0
0

1
1
1
1
1
1
1
1
1

A
D

M
0
0
0
0
0
0
0
0

0
0

1
0
0
0
0

0
0
1
0

0
0
0
0

0
0

0
0

0
1

0
1
1

0
0

1
0
0
0

1
1
0
0
1
1

0
0
0
1

1
0
0
1
1

0
1
1

0
0
1
1

0
0
0

1
1

1
1
0

1
1
1
1

1
1

0
0
0

1
0

1
1
0
0

0
1

1
1
1
0
0

1
1
1
1
1
1
1
1

1
1

M
A

D
0
0
0

0
0
0
0

1
1
1
0
0
0
0
0
0

1
0
1
0

0
1

1
0
0

0
0

1
0
1
0
1

0
1

1
1
0
1

0
1
0

1
1
0
0

1
1
0
0
1

1
0
0

0
1
1

1
0
0

1
1
0

0
1
1
0
1

1
1
0
1
1
1
1
0
1
1
1

1
1
1

0
1

1
1
0
0
1
0
1

1
1
1

1
1
0
0

1
1
1
1
1
1
1
1
1
1
1

C
ID

M
S

0
0
0

0
0
0
0
0
0

0
0
1

0
0
0
0

0
0
0

1
0
0

0
0
0
1
1

0
0

0
0
0

1
0

1
0
0
0
1
1

0
0
0
1
1
1
0
0

1
0
0
0
1
1
1
0
0

0
1
0
1
1

0
0

1
0
0
0
1
1

1
1
0
0
1
1
1
1

1
1

0
0
1
1

0
0
1
1
0
1
0

0
1
0
1
1
1
0
0

1
1
1
1
1
1
1
1

1
1

V
IF

0
0
0
0
0
0
1

0
1
0
1
0
0
0
1

0
0

0
0
1
1

0
0
0
0
0
0
1

0
1
0

0
0
1
1
1

0
0
0
0
1
1

0
0
0
0

0
1

1
0
0
1
0
0
1
1

0
0
0

0
0
0
1

0
0
0

0
1
1

1
0

1
0
1
1
1
1

1
0

0
0
0
1
1

0
0
0
0

0
0
1
1

0
1
0
1
0
0
0
1
1

0
1
1
1
1
1

1
1
1
1

P
S

N
R

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0

0
0
0
0
0

0
0
0
0

77



ones, two fused FR methods are also included in Table 2.16. These include MMF1 and

RAS6, as representatives of learning based and rank aggregation based fusion, respectively.

Each entry in Tables 2.15 and 2.16 is a codeword composed of ten symbols. Each symbol

represents the outcome of statistical significance testing for one IQA database. The location

of the symbol in the codeword represents specific IQA databases in the following order,

from left to right: LIVE R2, TID2013, CSIQ, VCLFER, CIDIQ at viewing distance of

50 cm (CIDIQ50), CIDIQ at viewing distance of 100 cm (CIDIQ100), MDID, MDID2013,

LIVE MD, and MDIVL. Each symbol can take one of three possibilities, a “1”, “ ”, or

“0” meaning that the method in the row is statistically (with 95% confidence) better,

indistinguishable, or worse than the method in the column respectively, for a particular

database. The order of methods in Tables 2.15 and 2.16 is based on their order in the

weighted average PLCC portion of the All Databases case in Table 2.13.

2.4.7 Computational Complexity

The computational complexity of all 43 FR IQA methods under test was evaluated in terms

of their execution time to determine the quality of a 1024 × 1024 color image on a Lenovo

laptop computer with a 2.4GHz Intel Core i7-4700MQ processor, 12GB of RAM, Samsung

850 EVO Solid State Drive, and Windows 10 Home operating system. The execution times

of all FR methods are given in Table 2.17, where methods have been sorted in ascending

order with respect to execution time. Since PSNR is the fastest method, we also provide

the execution time relative to PSNR for convenience in comparison.

2.4.8 Analysis and Discussion

Based on the results obtained in the previous sub-sections and in particular on Table

2.13 (Overall performance) and Tables 2.15 and 2.16 (Statistical Significance Testing), the

following observations can be made.
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Table 2.17: Execution time of individual FR methods for a test image. Methods are sorted

in ascending order with respect to the execution time.

FR Method
Execution Time Execution Time

(Seconds) (Relative to PSNR)

PSNR 0.0044 s 1.00

SNR 0.0107 s 2.43

GMSD 0.0293 s 6.66

SRSIM 0.0309 s 7.02

SSIM 0.0462 s 10.50

MCSD 0.0475 s 10.80

GSIM 0.0510 s 11.59

RFSIM 0.0578 s 13.14

ESSIM 0.1230 s 27.95

UQI 0.1652 s 37.55

MSSSIM 0.1958 s 44.50

WSNR 0.2002 s 45.50

SFF 0.2173 s 49.39

DSS 0.2196 s 49.91

WSSI 0.2402 s 54.59

VIF DWT 0.2527 s 57.43

VIF P 0.2546 s 57.86

VSI 0.2727 s 61.98

DWT VIF 0.2851 s 64.80

FSIM 0.3210 s 72.95

FSIMc 0.3210 s 72.95

VSNR 0.3861 s 87.75

SSIM DWT 0.4473 s 101.66

ADM 0.5897 s 134.02

PSNR DWT 0.6578 s 149.50

AD DWT 0.7790 s 177.05

NQM 0.9878 s 224.50

IW PSNR 1.4777 s 335.84

IWSSIM 1.5670 s 356.14

PSNR HVS 2.2685 s 515.57

PSNR HVSM 2.2685 s 515.57

DVICOM F 2.3753 s 539.84

CID SS 2.7699 s 629.52

QASD 2.9208 s 663.82

CID MS 3.1687 s 720.16

PSNR HA 3.2619 s 741.34

PSNR HMA 3.2619 s 741.34

VIF 4.5277 s 1029.02

IFC 4.5797 s 1040.84

MAD 5.4482 s 1238.23

DVICOM 6.9084 s 1570.09

PSNR HAc 9.7606 s 2218.32

PSNR HMAc 9.7606 s 2218.32
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Individual FR Methods

Considering the top ten methods in each category and for each evaluation criterion in Table

2.13, it can be seen that most top performing methods, especially for the all databases and

single distortion databases categories, belong to the structural similarity based class of

FR methods. These methods include IWSSIM [13], FSIMc/FSIM [14], DSS [16], VSI

[15], GMSD [99], MCSD [102], ESSIM [98], and CID MS [95]. For these categories, the

sparsity based NSS methods QASD [107] and SFF [109], and the mixed strategy based

methods DVICOM [96] and MAD [26] also do well. For the multiple distortion databases

category, the NSS methods VIF [113] and VIF DWT [93], and the mixed strategy based

method DVICOM/DVICOM F [96], do well in addition to the structural similarity based

approaches. It can be observed from Table 2.13 that error based FR methods do not offer

competitive performance against other IQA design philosophies. From Table 2.13 it can

be seen that overall: 1) For the all databases case, IWSSIM [13] is the top performing

method in terms of weighted average PLCC, while VSI [15] is the top performer in terms

of weighted average SRCC, 2) For the single distortion databases case, VSI [15] is the top

performing method both in terms of weighted average PLCC and SRCC, and 3) For the

multiple distortion databases case, VIF [113] is the top performer both in terms of weighted

average PLCC and SRCC.

While using weighted average PLCC and SRCC is one way to determine overall perfor-

mance, it has the drawback of favoring larger databases. Thus, in our case, the TID2013

database [19] is given the largest weight since it has the most images, while the MDID2013

database [32] is given the smallest weight. This is done even though both these databases

contain entirely different distortion processes, where TID2013 contains images afflicted

with a single distortion, while MDID2013 has images that have undergone three kinds of

distortions. It is thus unfair to develop an opinion solely on the basis of weighted av-

erage PLCC and SRCC. Another way to compare methods and to determine which one

is performing better than others, is to observe the statistical significance testing tables.

From Table 2.16, we can observe that IWSSIM [13] is statistically better than most other

methods on most of the databases. This shows that IWSSIM is a robust method that does

well across different kinds of distortion types. The FR methods DSS [16] and FSIMc [14]
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follow IWSSIM in performance and do quite well when statistically compared to other FR

methods.

Fused FR Methods

For all three cases of all databases, single distortion databases, and multiple distortion

databases, it is clear from Table 2.13 that the rank aggregation based FR fusion technique

RAS [41] significantly outperforms all other FR fusion techniques, in terms of both weighted

average PLCC and SRCC. The same conclusion can be comprehensively drawn from Table

2.15, where it can be seen that RAS based methods are statistically superior than all other

fusion based methods for the vast majority of datasets. Among the 13 RAS methods,

it can be observed from Table 2.15 that statistically, RAS6 is overall the top performer,

followed closely by RAS7. It can also be observed that RAS methods selected through the

exhaustive search procedure described in Section 2.4.3, especially those belonging to the

medium and full sets (Table 2.8) such as RAS6 and RAS7 respectively, perform better than

the FR methods combination described in the original RAS work [41], thereby highlighting

the importance of finding the set of FR methods to be fused through a more structured

approach.

The two learning based fusion approaches, MMF [130] and CNNM [128] do not appear

to be competitive when compared to the rank aggregation based approach, as can be seen

from Table 2.13. It can be observed from Table 2.15 that the different MMF approaches

(MMF1, MMF3, and MMF4) and CNNM perform better than the different RAS methods

only on the TID2013 database [19]. However, as described in Section 2.3.2, the MMF

methods and CNNM, are all trained on this very database, and hence comparing these

methods with other approaches on TID2013 is unreliable and unfair. On all other datasets,

the MMF methods and CNNM are statistically outperformed by the RAS methods, which

shows that learning based fusion approaches suffer from model overfitting issues. Since

the four RAS methods RAS MMF1, RAS MMF2, RAS MMF3, and RAS MMF4 combine

the same set of individual FR methods as the four MMF methods MMF1, MMF2, MMF3,

and MMF4, respectively (see Table 2.10), the two FR fusion approaches can be directly

compared. Since the TID2013 database was used to train the four MMF methods and it
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contributes the largest weight to the weighted average PLCC and SRCC computation, we

avoid using these evaluation criteria. Instead we statistically compare these methods by

using Table 2.15, where it can be seen that the MMF based methods are outperformed

by their RAS counterparts on all datasets except TID2013. This again highlights the

superiority of the rank aggregation based fusion, which does not involve any training, and

hence does not suffer from model overfitting issues. By contrast, the learning based fusion

approaches, even when they use one of the largest subject-rated dataset for training, suffer

from overfitting issues because the number of distorted images per distortion type are quite

small even in the TID2013 database [19] (only 125 images per distortion type).

The empirical fusion based methods CM3 and CM4 [127], described in Section 2.3.2

and given in Equations 2.11 and 2.12 respectively, perform inadequately, even for multiply

distorted content for which they are designed, as is evident from Part 3 of Table 2.13. This

is because of the choice of FR methods that are being fused in CM3 and CM4, especially

IFC [101], NQM [103], and VSNR [75], and the way in which exponent values are obtained

on a single database (LIVE MD [31]). It can be observed from Tables 2.6 and 2.7 that while

IFC, NQM, and VSNR, perform quite well on the LIVE MD database, their performance

is lacking on other IQA datasets. This is further substantiated from Table 2.13 in terms of

weighted average PLCC and SRCC. However, since the exponent values in Equations 2.11

and 2.12 are only optimized on LIVE MD database, CM3 and CM4 are highly database

dependent. Thus, they perform well only on a few datasets (VCLFER [54] and LIVE

MD [31]), while their performance on other datasets is inferior as can be observed in Tables

2.11 and 2.12. This highlights the pitfalls of: 1) the empirical fusion based approach which

is rather ad hoc, 2) the selection of FR methods to be fused on the basis of a single dataset,

and 3) the use of a single dataset for parameter tuning. It can be observed from Tables 2.13

and 2.15 that the empirical fusion based methods HFSIMc [129] and CISI [126], described

in Section 2.3.2 and given in Equations 2.9 and 2.10 respectively, perform better than CM3

and CM4. CISI also performs better than HFSIMc. Both these methods, especially CISI,

perform statistically better than the learning based fusion methods (MMF and CNNM)

as can be observed from Table 2.15. This performance gain is because HFSIMc and CISI,

especially the latter, fuse FR methods that perform well across most databases individually

as well. However, even these empirical fusion methods cannot outperform rank aggregation
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based fusion methods.

Individual and Fused FR Methods

When individual and fused FR methods are considered together, the following observations

can be made: 1) The rank aggregation based fusion methods (RAS) [41] outperform the

best individual FR methods, as can be seen from Table 2.13. This is also evident from

Table 2.16 where it is clear that RAS6 performs statistically better than the top performing

FR methods on a majority of databases. Although statistical significance testing results for

other RAS methods in comparison with individual FR methods have not been provided due

to space constraints, they are also found to be statistically superior. 2) The learning based

fusion methods, MMF [130] and CNNM [128], are outperformed by the best individual

FR methods on datasets that are not involved in training these fusion methods. This can

be seen from Table 2.13 in terms of weighted average PLCC and SRCC, and also from

Table 2.16 for MMF1 in terms of statistical significance testing (statistical analysis for

MMF2, MMF3, MMF4, and CNNM yielded similar conclusions). 3). Of the four empirical

fusion methods, CM3 [127], CM4 [127], and HFSIMc [129], are outperformed by the best

individual FR methods as can be observed from Table 2.13 in terms of weighted average

PLCC and SRCC. The only exception is the empirical fusion method CISI [126], which

performs at par with or better than top performing individual FR methods.

It can therefore be concluded that learning based fusion (MMF and CNNM) and em-

pirical fusion techniques (CM3, CM4, HFSIMc), do not generalize very well when tested

across a wide variety of IQA datasets, thereby revealing that they suffer from model over-

fitting and training database dependency issues. Such drawbacks make them less robust

to handle unseen data, where they are outperformed by the best individual FR methods.

On the other hand, the rank aggregation based fusion methods (RAS), perform better

than other fusion techniques, but more importantly, they outperform the best individual

FR methods across the entire range of IQA datasets used. Since these methods are com-

pletely training-free, they do not suffer from model overfitting and database dependence

issues, making them truly robust. While it can be seen from Tables 2.6 and 2.7 that the

performance of even the top performing FR methods varies, sometimes widely, across dif-
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ferent IQA datasets, Tables 2.11 and 2.12 show that such performance variation across

different datasets is less pronounced for RAS based methods. It can be concluded that by

aggregating the ranks generated from various top performing FR IQA methods, the defi-

ciencies of some methods in the combination are compensated by the strengths of other

constituents. These characteristics of rank aggregation based fusion methods make them

ideal candidates to annotate large-scale IQA datasets in place of subject ratings. While

opinions provided by humans will continue to be the ultimate benchmark when it comes to

annotating IQA databases, as we discussed earlier, it is quite impossible to obtain human

opinions in adequate numbers for very large-scale datasets. Here, rank aggregation based

fusion methods can be used to annotate such large datasets in place of human opinion

scores instead of choosing one or the other individual FR method.

2.5 Performance Analysis of NR Methods

To analyze the performance of NR IQA methods, we use the same evaluation criteria

as described in Section 2.4.1, and compute the evaluation metrics for two types of data.

First, like the performance analysis of FR and fused FR methods in Section 2.4, all images

within a database are considered, that is, all distortion types are taken into account while

calculating PLCC, SRCC, and performing statistical significance testing. This will be

referred to as the all distortions category. Second, evaluation metrics are calculated for a

subset of distortion types in each dataset, which we shall refer to as the subset distortions

category. For single distortion databases (LIVE R2 [24], TID2013 [19], CSIQ [26], VCLFER

[54], and CIDIQ [5]), we constitute a subset of images belonging to four common distortion

types: 1) Noise, 2) Gaussian Blur, 3) JPEG compression, and 4) JPEG2000 compression. It

should be noted that the noisy images in the CIDIQ database [5] are afflicted with Poisson

noise, while they are afflicted with additive white Gaussian noise in the other four single

distortion datasets. However, for the purposes of the subset performance analysis, we do

not make a distinction between the two. For multiply distorted databases, we constitute

subsets of images by separately calculating evaluation metrics for individual distortion

combinations (where possible). This means that we separately consider the Blur-JPEG

and Blur-Noise combinations in the LIVE MD database [31], and the Blur-JPEG and
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Noise-JPEG combinations in the MDIVL database [34]. Since the MDID2013 database [32]

contains only one distortion combination, while the MDID database [33] has many possible

distortion combinations due to the random choice of distortions at different stages, the

images in these two datasets cannot be split into subsets, and hence the entire datasets

will be considered for the subset case as well. The rationale for conducting performance

analysis for a subset of distortion types, especially for single distortion databases, stems

from the fact that most training-based OA NR models are trained for the above-mentioned

common distortion types that are found in almost all single distortion datasets. Thus,

these subsets of distortions provide a more fair ground for comparison of these methods.

However, we also consider the case of all distortions in each database and do not retrain

these NR models on individual databases but use the original versions from the authors,

in order to more rigorously test NR methods, as the ultimate goal of NR or blind IQA

methods is to be robust to unseen data. The gap in performance for these two cases should

highlight future research directions as well.

2.5.1 Performance of NR Methods

We tested the 14 NR methods discussed in Section 2.3.3 and given in Table 2.5, on each of

the nine subject-rated IQA databases mentioned in Table 2.2. Testing was done separately

for the two viewing distances in the CIDIQ database [5], where labels of CIDIQ50 and

CIDIQ100 correspond to the viewing distances of 50 cm and 100 cm, respectively. For

all databases, the test results for the all distortions case are given in Table 2.18 in terms

of PLCC and in Table 2.19 in terms of SRCC. The test results for the subset distortions

case are given in Tables 2.20 and 2.21 in terms of PLCC and SRCC respectively. While

considering Tables 2.18, 2.19, 2.20, and 2.21, it should be noted that the OA NR methods

BIQI [139], BRISQUE [140], NRSL [147], CORNIA [141], HOSA [143], WaDIQaM-NR

[148], and MEON [146] are trained on the LIVE R2 database [24,42], and GWHGLBP [142]

is trained on the LIVE MD database [31]. Thus, comparing these OA NR methods with

other approaches on these respective databases is unreliable and unfair.

The overall performance of the 14 NR methods was determined by using the same

approach as in Section 2.4.5. The weighted average PLCC and SRCC were computed for
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Table 2.18: PLCC of 14 NR methods on nine subject-rated IQA databases. All distortions

in each dataset were considered.
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BIQI 0.9224 0.4489 0.6796 0.6106 0.3542 0.2563 0.6372 0.0169 0.7389 0.6215

BRISQUE 0.9671 0.4747 0.7006 0.8209 0.2924 0.3257 0.4558 0.1403 0.6045 0.6516

CORNIA 0.9665 0.5715 0.7325 0.8366 0.4496 0.1991 0.7907 0.6935 0.8679 0.8277

dipIQ 0.9348 0.4774 0.7787 0.8942 0.5208 0.2498 0.6738 0.4355 0.7669 0.7627

GWHGLBP 0.8079 0.4973 0.7002 0.6427 0.3653 0.2978 0.7035 0.7430 0.9663 0.5737

HOSA 0.9991 0.5481 0.7240 0.8496 0.4969 0.3761 0.6521 0.2513 0.6768 0.7167

ILNIQE 0.7061 0.5090 0.8024 0.7289 0.2768 0.3003 0.7053 0.5146 0.8923 0.6303

LPSI 0.8280 0.4892 0.7216 0.6020 0.4037 0.3981 0.4336 0.0999 0.5464 0.5715

MEON 0.9389 0.4946 0.7804 0.9221 0.4306 0.3854 0.5168 0.2430 0.2339 0.5722

NIQE 0.9052 0.4001 0.7170 0.8040 0.3703 0.2708 0.6728 0.5571 0.8387 0.5688

NRSL 0.9815 0.5345 0.7413 0.8905 0.4672 0.3069 0.6502 0.3088 0.4829 0.6794

QAC 0.8625 0.4371 0.7067 0.7615 0.3573 0.2856 0.6043 0.4240 0.4145 0.5713

SISBLIM 0.8077 0.3961 0.6945 0.7574 0.4782 0.4532 0.6700 0.8123 0.8948 0.5724

WaDIQaM-NR 0.9341 0.4707 0.7372 0.7862 0.4133 0.3481 0.4215 0.1371 0.2897 0.5213

Table 2.19: SRCC of 14 NR methods on nine subject-rated IQA databases. All distortions

in each dataset were considered.
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BIQI 0.9198 0.3935 0.6186 0.6170 0.3433 0.2353 0.6276 0.0077 0.5556 0.5711

BRISQUE 0.9654 0.3672 0.5563 0.8130 0.3640 0.2496 0.4035 0.2209 0.5018 0.6647

CORNIA 0.9681 0.4288 0.6534 0.8354 0.3727 0.2071 0.7918 0.7055 0.8340 0.8336

dipIQ 0.9378 0.4377 0.5266 0.8957 0.4135 0.2100 0.6612 0.4153 0.6678 0.7131

GWHGLBP 0.7410 0.3844 0.5773 0.6243 0.3337 0.2412 0.7032 0.7555 0.9698 0.5841

HOSA 0.9990 0.4705 0.5925 0.8574 0.4494 0.3248 0.6412 0.2993 0.6393 0.7399

ILNIQE 0.8975 0.4939 0.8144 0.7391 0.2997 0.3127 0.6900 0.5148 0.8778 0.6238

LPSI 0.8181 0.3949 0.5303 0.5865 0.2060 0.1411 0.0306 0.0168 0.2717 0.5736

MEON 0.9409 0.3750 0.7248 0.9215 0.4101 0.2497 0.4861 0.2980 0.1917 0.5466

NIQE 0.9073 0.3132 0.6271 0.8126 0.3458 0.2212 0.6523 0.5451 0.7738 0.5713

NRSL 0.9796 0.4277 0.6750 0.8930 0.4249 0.2894 0.6458 0.4088 0.4145 0.6047

QAC 0.8683 0.3722 0.4900 0.7686 0.3196 0.1944 0.3239 0.2272 0.3579 0.5524

SISBLIM 0.7741 0.3177 0.6603 0.7622 0.4435 0.4098 0.6554 0.8089 0.8770 0.5375

WaDIQaM-NR 0.9417 0.4393 0.6388 0.7524 0.3588 0.2235 0.4040 0.1316 0.2379 0.5614
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Table 2.20: PLCC of 14 NR methods on nine subject-rated IQA databases. A subset of

distortions in each dataset were considered.
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BIQI 0.9534 0.7565 0.7968 0.6106 0.4797 0.4900 0.6372 0.0169 0.7743 0.6634 0.7398 0.6035

BRISQUE 0.9760 0.8399 0.9196 0.8209 0.5257 0.3906 0.4558 0.1403 0.8663 0.4596 0.8249 0.6511

CORNIA 0.9715 0.8824 0.9135 0.8366 0.5900 0.5477 0.7907 0.6935 0.8774 0.8723 0.9419 0.7900

dipIQ 0.9559 0.8879 0.9479 0.8942 0.7433 0.6472 0.6738 0.4355 0.8235 0.7897 0.8311 0.7882

GWHGLBP 0.8088 0.7675 0.7839 0.6427 0.5196 0.5345 0.7035 0.7430 0.9677 0.9684 0.7745 0.4943

HOSA 0.9992 0.8858 0.9360 0.8496 0.6504 0.6283 0.6521 0.2513 0.8968 0.6728 0.9005 0.7022

ILNIQE 0.7031 0.8491 0.8143 0.7289 0.3127 0.3892 0.7053 0.5146 0.9048 0.8968 0.8293 0.5759

LPSI 0.8440 0.8114 0.8657 0.6020 0.5509 0.6289 0.4336 0.0999 0.8820 0.1182 0.7959 0.5075

MEON 0.9907 0.8940 0.9334 0.9221 0.6495 0.6379 0.5168 0.2430 0.0995 0.3881 0.3875 0.7405

NIQE 0.9162 0.8091 0.8876 0.8040 0.4694 0.4338 0.6728 0.5571 0.9099 0.8481 0.7996 0.4507

NRSL 0.9887 0.9108 0.9058 0.8905 0.4216 0.4500 0.6502 0.3088 0.3283 0.6263 0.6418 0.7334

QAC 0.8777 0.8051 0.8736 0.7615 0.4512 0.5068 0.6043 0.4240 0.5378 0.6722 0.6765 0.6090

SISBLIM 0.8220 0.7309 0.7967 0.7574 0.5792 0.6741 0.6700 0.8123 0.9030 0.8913 0.8056 0.4871

WaDIQaM-NR 0.9302 0.8983 0.8577 0.7862 0.4600 0.5530 0.4215 0.1371 0.6842 0.4379 0.6415 0.5231

Table 2.21: SRCC of 14 NR methods on nine subject-rated IQA databases. A subset of

distortions in each dataset were considered.
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BIQI 0.9528 0.7763 0.7972 0.6170 0.4976 0.4849 0.6276 0.0077 0.6542 0.4902 0.6591 0.5302

BRISQUE 0.9757 0.8401 0.8992 0.8130 0.4727 0.4771 0.4035 0.2209 0.7923 0.2991 0.7385 0.6612

CORNIA 0.9732 0.8727 0.8987 0.8354 0.5740 0.5053 0.7918 0.7055 0.8278 0.8523 0.9254 0.8027

dipIQ 0.9574 0.8720 0.9290 0.8957 0.7460 0.6433 0.6612 0.4153 0.6979 0.7391 0.6512 0.7730

GWHGLBP 0.7447 0.6538 0.6728 0.6243 0.4768 0.4454 0.7032 0.7555 0.9640 0.9751 0.7584 0.4502

HOSA 0.9991 0.8681 0.9111 0.8574 0.6677 0.6236 0.6412 0.2993 0.8437 0.5357 0.8789 0.7150

ILNIQE 0.9153 0.8417 0.8802 0.7391 0.3669 0.4248 0.6900 0.5148 0.8915 0.8821 0.7915 0.5797

LPSI 0.8333 0.7046 0.7711 0.5865 0.3382 0.3949 0.0306 0.0168 0.8387 0.0012 0.7348 0.4692

MEON 0.9906 0.9012 0.9300 0.9215 0.6421 0.5830 0.4861 0.2980 0.0476 0.3257 0.3255 0.7397

NIQE 0.9168 0.7972 0.8710 0.8126 0.4703 0.4180 0.6523 0.5451 0.8713 0.7938 0.7625 0.4510

NRSL 0.9880 0.8965 0.8874 0.8930 0.5732 0.5564 0.6458 0.4088 0.2634 0.5991 0.4684 0.7125

QAC 0.8857 0.8055 0.8415 0.7686 0.4450 0.4566 0.3239 0.2272 0.3959 0.4707 0.5537 0.5282

SISBLIM 0.7835 0.7703 0.8059 0.7622 0.5565 0.6314 0.6554 0.8089 0.8746 0.8782 0.7584 0.3320

WaDIQaM-NR 0.9399 0.8646 0.8636 0.7524 0.4777 0.4691 0.4040 0.1316 0.5012 0.2502 0.6121 0.4830
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three cases: 1) All databases, 2) Only single distortion databases, and 3) Only multiple

distortion databases. Table 2.22 depicts the overall performance of the 14 NR methods for

all distortions in terms of weighted average PLCC and SRCC, where parts 1, 2, and 3 of

the table correspond to the cases of all databases, single distortion databases, and multiple

distortion databases, respectively. Within each case, the methods have been sorted in the

descending order with respect to the weighted average PLCC and SRCC values, where the

best performing methods can be found towards the top of the table. Table 2.23 provides

the results for subset distortions. In both Tables 2.22 and 2.23 we are including results for

the FR methods IWSSIM [13] and PSNR for quick comparison. For a thorough comparison

of the overall performance of NR methods with that of individual and fused FR methods,

these tables should be compared with Table 2.13.

Table 2.22: Weighted Average PLCC and SRCC values of NR methods for all distortions.

FR Methods IWSSIM and PSNR are included for comparison and are highlighted in bold.

Part 1: All Databases Part 2: Single Distortion Databases Part 3: Multiple Distortion Databases

NR Method PLCC NR Method SRCC NR Method PLCC NR Method SRCC NR Method PLCC NR Method SRCC

IWSSIM∗ 0.8787 IWSSIM∗ 0.8559 IWSSIM∗ 0.8700 IWSSIM∗ 0.8452 IWSSIM∗ 0.8970 IWSSIM∗ 0.8785

PSNR∗ 0.6927 PSNR∗ 0.6720 PSNR∗ 0.7180 PSNR∗ 0.7066 CORNIA 0.8006 CORNIA 0.7990

CORNIA 0.6713 CORNIA 0.6147 HOSA 0.6266 ILNIQE 0.5651 GWHGLBP 0.7143 GWHGLBP 0.7184

HOSA 0.6275 ILNIQE 0.6031 NRSL 0.6136 HOSA 0.5641 ILNIQE 0.6945 ILNIQE 0.6830

dipIQ 0.6181 HOSA 0.5851 CORNIA 0.6099 NRSL 0.5499 SISBLIM 0.6937 SISBLIM 0.6749

NRSL 0.6085 dipIQ 0.5620 MEON 0.6026 CORNIA 0.5272 dipIQ 0.6838 dipIQ 0.6491

GWHGLBP 0.5949 NRSL 0.5589 dipIQ 0.5869 MEON 0.5245 NIQE 0.6597 NIQE 0.6392

ILNIQE 0.5919 SISBLIM 0.5408 WaDIQaM-NR 0.5683 dipIQ 0.5207 PSNR∗ 0.6396 HOSA 0.6292

SISBLIM 0.5821 GWHGLBP 0.5377 BRISQUE 0.5571 WaDIQaM-NR 0.5203 HOSA 0.6296 PSNR∗ 0.5992

NIQE 0.5642 NIQE 0.5181 LPSI 0.5509 BRISQUE 0.4877 NRSL 0.5977 NRSL 0.5780

MEON 0.5570 BIQI 0.5007 ILNIQE 0.5432 BIQI 0.4824 BIQI 0.5837 BIQI 0.5394

BIQI 0.5397 MEON 0.4969 GWHGLBP 0.5382 SISBLIM 0.4770 QAC 0.5503 BRISQUE 0.4614

BRISQUE 0.5360 BRISQUE 0.4792 SISBLIM 0.5291 NIQE 0.4606 BRISQUE 0.4915 MEON 0.4387

QAC 0.5338 WaDIQaM-NR 0.4782 QAC 0.5259 QAC 0.4556 MEON 0.4610 WaDIQaM-NR 0.3896

LPSI 0.5179 QAC 0.4292 NIQE 0.5189 GWHGLBP 0.4518 LPSI 0.4483 QAC 0.3736

WaDIQaM-NR 0.5131 LPSI 0.3558 BIQI 0.5188 LPSI 0.4325 WaDIQaM-NR 0.3970 LPSI 0.1943
∗FR Methods included for comparison.

Statistical significance testing was conducted in the same manner as described in Sec-

tions 2.4.1 and 2.4.6. The outcome of the kurtosis based check for Gaussianity of prediction

residuals is presented in Table 2.24 where a “1” means that the kurtosis of the residuals

is between 2 and 4, and they can be assumed to be Gaussian distributed, while a “0”

means that the kurtosis of residuals is not between 2 and 4, and they are assumed to be

non-Gaussian. Each entry in the table may be composed of more than one symbol, and
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Table 2.23: Weighted Average PLCC and SRCC values of NR methods for subset distor-

tions. FR Methods IWSSIM and PSNR are included for comparison and are in bold.

Part 1: All Databases Part 2: Single Distortion Databases Part 3: Multiple Distortion Databases

NR Method PLCC NR Method SRCC NR Method PLCC NR Method SRCC NR Method PLCC NR Method SRCC

IWSSIM∗ 0.9116 IWSSIM∗ 0.9002 IWSSIM∗ 0.9226 IWSSIM∗ 0.9179 IWSSIM∗ 0.9004 IWSSIM∗ 0.8820

CORNIA 0.8088 CORNIA 0.8007 dipIQ 0.8584 dipIQ 0.8527 CORNIA 0.8096 CORNIA 0.8062

dipIQ 0.7805 dipIQ 0.7562 MEON 0.8535 MEON 0.8449 GWHGLBP 0.7269 GWHGLBP 0.7208

HOSA 0.7534 HOSA 0.7438 HOSA 0.8407 HOSA 0.8364 ILNIQE 0.7110 ILNIQE 0.6974

SISBLIM 0.7227 ILNIQE 0.7078 CORNIA 0.8080 NRSL 0.8171 SISBLIM 0.7093 SISBLIM 0.6733

PSNR∗ 0.7148 PSNR∗ 0.7048 NRSL 0.7855 PSNR∗ 0.8054 dipIQ 0.7005 dipIQ 0.6571

NIQE 0.7093 SISBLIM 0.7008 PSNR∗ 0.7836 CORNIA 0.7954 NIQE 0.6763 NIQE 0.6537

GWHGLBP 0.7073 NRSL 0.6996 BRISQUE 0.7689 BRISQUE 0.7685 HOSA 0.6639 HOSA 0.6488

NRSL 0.6937 NIQE 0.6954 WaDIQaM-NR 0.7653 WaDIQaM-NR 0.7477 PSNR∗ 0.6441 PSNR∗ 0.6015

ILNIQE 0.6801 GWHGLBP 0.6672 NIQE 0.7415 NIQE 0.7360 NRSL 0.5996 NRSL 0.5790

QAC 0.6637 MEON 0.6441 SISBLIM 0.7359 SISBLIM 0.7276 QAC 0.5944 BIQI 0.5464

MEON 0.6609 BIQI 0.6272 QAC 0.7312 QAC 0.7200 BIQI 0.5918 BRISQUE 0.4756

BIQI 0.6466 BRISQUE 0.6239 LPSI 0.7284 ILNIQE 0.7179 BRISQUE 0.5193 MEON 0.4379

BRISQUE 0.6457 WaDIQaM-NR 0.5786 BIQI 0.6999 BIQI 0.7059 MEON 0.4632 WaDIQaM-NR 0.4051

WaDIQaM-NR 0.6096 QAC 0.5529 GWHGLBP 0.6882 LPSI 0.6252 LPSI 0.4586 QAC 0.3815

LPSI 0.5953 LPSI 0.4254 ILNIQE 0.6501 GWHGLBP 0.6150 WaDIQaM-NR 0.4498 LPSI 0.2203
∗FR Methods included for comparison.

Table 2.24: Kurtosis based check for Gaussianity of prediction residuals of NR Methods,

for all and subset distortions. FR Methods IWSSIM and PSNR are in bold.
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IWSSIM∗ 01 01 11 1 10 11 1 1 111 111

PSNR∗ 11 00 11 1 11 11 1 1 111 111

CORNIA 01 11 11 1 11 11 1 1 111 101

HOSA 01 10 11 0 11 11 1 1 111 111

dipIQ 01 11 11 1 11 11 1 1 111 111

NRSL 00 11 10 1 11 11 1 1 111 110

GWHGLBP 11 11 11 1 11 11 1 1 110 111

ILNIQE 11 00 00 1 11 11 1 1 111 101

SISBLIM 00 11 11 1 11 11 1 1 111 101

NIQE 11 11 11 0 11 11 1 1 111 101

MEON 00 11 10 1 11 11 1 1 111 111

BIQI 00 10 11 1 11 11 1 1 111 101

BRISQUE 01 10 10 0 11 11 1 1 111 101

QAC 01 10 10 1 11 11 1 1 111 111

LPSI 11 11 11 1 11 11 1 1 111 111

WaDIQaM-NR 01 11 10 0 11 11 1 1 111 111
∗FR Methods included for comparison.
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depicts the outcome of the check for either the all or subset (SS) distortions cases. Specif-

ically, the order of symbols within each table entry is as follows: LIVE R2 (All, SS),

TID2013 (All, SS), CSIQ (All, SS), VCLFER (All), CIDIQ50 (All, SS), CIDIQ100 (All,

SS), MDID (All), MDID2013 (All), LIVE MD (All, Blur-JPEG, Blur-Noise), MDIVL (All,

Blur-JPEG, Noise-JPEG). It can be observed from Table 2.24 that the kurtosis based as-

sumption of Gaussianity holds in around 85% of cases. The prediction residuals of all NR

methods were compared by carrying out hypothesis testing through the one-sided (left-

tailed) two-sample F -test at 95% confidence (as in Section 2.4.6). Tables 2.25 and 2.26

provide the outcome of the statistical significance testing for the all distortions and subset

distortions cases, respectively. For details of how to interpret the tables, refer to Section

2.4.6, and to the captions of Tables 2.25 and 2.26.

As in Section 2.4.7, the computational complexity of all 14 NR IQA methods under test

was evaluated in terms of their execution time to determine the quality of a 1024 × 1024

color image on a Lenovo laptop computer with a 2.4GHz Intel Core i7-4700MQ processor,

12GB of RAM, Samsung 850 EVO Solid State Drive, and Windows 10 Home operating

system. The execution times of all NR methods are given in Table 2.27, where methods

have been sorted in ascending order with respect to execution time. As before, we provide

the execution time of NR methods relative to the FR method PSNR for convenience in

comparison with Table 2.17. Apart from the 14 NR methods being evaluated in this work,

we have included the execution times of seven other well-known NR IQA methods in Table

2.27, which include: BLIINDS2 [176], DIIVINE [177], FRIQUEE [178,179], Jet-LBP [180],

MS-LQAF [181], NFERM [182], and TCLT [183]. We have not evaluated the performance

of these methods because they take an excessive amount of time to estimate the quality of

an image, and are infeasible for large-scale or real-time use. It should also be noted that

while WaDIQaM-NR [148] takes a lot of time to determine the quality of the test image

on the CPU (10.1277 seconds), it runs considerably faster when executed on the GPU. For

reference, on another machine, WaDIQaM-NR ran around 40 times faster on the GPU as

compared to the CPU.
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Table 2.27: Execution Time of NR methods on a test image. Methods are sorted in

ascending order with respect to the execution time. FR Method PSNR is included for

comparison and is highlighted in bold.

NR Method
Execution Time Execution Time

(Seconds) (Relative to PSNR)

PSNR∗ 0.0044 s 1.00

LPSI 0.0827 s 18.80

MEON 0.2348 s 53.36

QAC 0.2811 s 63.89

HOSA 0.3312 s 75.27

NRSLa 0.3895 s 88.52

GWHGLBPa 0.3945 s 89.66

NIQE 0.4558 s 103.59

BRISQUE 0.4641 s 105.48

BIQI 1.2045 s 273.75

dipIQ 2.8367 s 644.70

Jet-LBPa,b,c 3.1004 s 704.64

CORNIA 3.6154 s 821.68

ILNIQE 4.0060 s 910.45

SISBLIM 5.3890 s 1224.77

TCLTc 7.8548 s 1785.18

WaDIQaM-NR 10.1277 s 2301.75

MS-LQAFa,c 36.9052 s 8387.55

DIIVINEc 38.2215 s 8686.70

BLIINDS2c 94.6167 s 21503.80

FRIQUEEc 109.1559 s 24808.16

NFERMc 128.8809 s 29291.11
∗FR Method included for comparison.
aFeature extraction time only.
bThe performance of Jet-LBP was not evaluated as SVR

model parameters are not available.
cThe performance of these methods was not evaluated

due to their large computation times.

2.5.2 Analysis and Discussion

It can be observed from Tables 2.22 and 2.23 that in terms of weighted average PLCC

and SRCC, the NR method CORNIA [141] outperforms other NR methods, sometimes

by a clear margin, for the cases of all databases and multiple distortion databases in both

the all distortions and subset distortions categories. In case of single distortion databases,

HOSA [143] does well for the all distortions category, while dipIQ [36] and MEON [146]
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do well in the subset distortions category. Since the OA NR methods are trained on

databases that are constituents in the weighted average PLCC and SRCC computation,

as described in Section 2.3.3, these results should be considered in conjunction with the

statistical significance testing outcome. From Tables 2.25 and 2.26, it can be respectively

observed that for both the categories of all distortions and subset distortions, the NR

methods CORNIA [141], HOSA [143], and dipIQ [36], perform better than most other

methods on most databases. CORNIA and HOSA are OA NR methods that first learn

image features and then a quality model, while dipIQ is an OU NR method that utilizes

millions of DIPs and a learning-to-rank algorithm to learn the quality model. However,

HOSA itself can be regarded as a modified version of CORNIA, while dipIQ uses CORNIA

features at its base. This shows that CORNIA features [141] are quite effective when it

comes to blind IQA.

The following observations can be made about various NR design philosophies: 1) The

OA NR methods that use handcrafted features (BIQI [139], BRISQUE [140], GWHGLBP

[142], and NRSL [147]), do not show robust cross-dataset performance. While they may

perform better on one class of data, such as single distortion or multiple distortion datasets,

their performance degrades considerably on another class of data. This shows that such

models suffer from model overfitting and database dependency issues, and also that truly

general-purpose handcrafted features for perceptual IQA remain lacking. 2) OA NR tech-

niques that utilize unsupervised feature learning, such as CORNIA [141] and HOSA [143],

demonstrate relatively robust performance. For example, even though these methods are

trained on singly distorted content, they perform relatively well on multiply distorted

databases, which is somewhat surprising. 3) Among OA NR methods that employ deep

learning, MEON [146] performs better than WaDIQaM-NR [148]. This may be because

MEON uses two sub-tasks to perform IQA, where a large amount of data is used to pre-

train the distortion identification aspect of the network. However, unlike CORNIA and

HOSA, these methods do not perform adequately on multiply distorted content, even

though they are trained on individual distortion types that make up the multiple distor-

tion combinations. This further highlights the difficulties encountered while doing IQA for

multiply distorted content and while training deep learning models on small-scale datasets.

4) dipIQ [36] performs better than most NR methods. In addition to using CORNIA fea-
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tures, dipIQ utilizes a novel training process which does not use human annotated data

for training. Instead, it alleviates the issue of small-scale subject-rated datasets by using

millions of DIPs, generated by using FR IQA methods, to train the model. This approach

highlights the advantages of utilizing techniques that use large-scale datasets which em-

ploy alternative annotation techniques. 5) The performance of OU NR methods (NIQE [3],

ILNIQE [144], QAC [35], SISBLIM [32], and LPSI [145]) shows considerable room for im-

provement, which also highlights the difficult nature of the OU NR IQA problem. 6) While

many training-based NR methods are usually trained and tested on each database sepa-

rately, which often leads to high PLCC and SRCC numbers, we believe that cross-dataset

testing is crucial to the performance analysis of NR methods. 7) While NR methods such

as CORNIA and dipIQ may be relatively better in quality prediction performance com-

pared to other methods, they have a large execution time, as can be seen from Table 2.27.

This implies that such methods are infeasible for real time usage. 8) We have included the

FR IQA methods IWSSIM [13] and PSNR for comparison in the tables of this section, and

it can be seen that the performance of all NR IQA methods is still a considerable distance

away from top performing FR methods such as the IWSSIM, a disparity which is even

more pronounced in the all distortions case. Even the perceptually inaccurate PSNR out-

performs many NR methods, especially for the all distortions case. The above-mentioned

observations highlight the significant room for improvement that exists in the area of NR

IQA, both in terms of quality prediction performance and execution time.

2.6 Summary

In this chapter, we carried out an extensive review and performance evaluation study of

the field of IQA. In all, we evaluated the performance of 43 FR, seven fused FR and 14 NR

IQA methods. If the 22 different versions of the seven fused FR methods are considered

separately, then this means that we evaluated 79 IQA methods. In order to ensure the

diversity of test data, we used nine subject-rated IQA datasets, five of which are composed

of singly distorted content, while four contain multiply distorted content. To the best of

our knowledge, this is so far the largest study of its kind, and hopefully will plug the gap

that previously existed with regard to the lack of such surveys in the area of image quality
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assessment.

In summary, this chapter has the following findings: 1) Among the individual FR meth-

ods, structural similarity based methods IWSSIM [13], FSIMc [14], DSS [16], and VSI [15],

are the top performers. 2) The empirical (HFSIMc [129], CM3 [127], CM4 [127]) and

learning based (MMF [130], CNNM [128]) fusion approaches are not only outperformed

by rank aggregation based fusion approach RAS [41], but also by top performing indi-

vidual FR methods, thereby implying that existing empirical and learning based fusion

methods do not offer clear advantages over individual FR methods. 3) However, the rank

aggregation based fusion approach RAS [41] not only comprehensively outperforms other

fusion approaches but also top performing individual FR methods. Its training-free nature

and robust cross-dataset performance make it highly promising as a means to annotate

very large-scale IQA datasets in the future. 4) Among NR methods, we have found COR-

NIA [141], HOSA [143], and dipIQ [36], to perform better than other methods. 5) While

the perceptual quality prediction performance of FR methods has matured quite well, the

performance of NR methods, both in terms of perceptual quality prediction accuracy and

computational complexity is still a long distance away from top performing FR methods.

This chapter not only highlights the current state-of-the-art in the field of IQA of

2D natural images, but also the challenges that IQA researchers need to address, espe-

cially in the area of BIQA. As discussed in Section 2.5.2, the top performing NR models

CORNIA [141], HOSA [143], and dipIQ [36] utilize CORNIA features which are learned

automatically in an unsupervised manner, thereby highlighting the strength of learned

against handcrafted features. DNN based models have enjoyed a lot of success in other

areas of computer vision and image processing [17], which is largely due to the availability

of very large-scale annotated datasets such as ImageNet [18]. On the other hand, DNN

based BIQA models, such as the ones evaluated in this chapter (WaDIQaM-NR [148] and

MEON [146]) show a lot of room for improvement. These and other DNN based IQA

models identified in Section 2.3.3 train on the available small-scale IQA datasets (with

hundreds or a few thousands of images) and may try to increase training data size by

data augmentation, but achieved only limited success. The design of very large-scale an-

notated IQA datasets is an open problem [184]. The real challenge is that it is impossible

to perform subjective tests to annotate such very large-scale datasets, thus the use of al-
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ternative data annotation techniques is highly desirable. One important discovery of the

work in this chapter is that rank aggregation based training-free FR fusion methods offer

good promise of robust perceptual quality prediction performance when tested across a

wide range of available subject-rated datasets. Thus, very large-scale simulated distortion

datasets, with millions of images, may be developed where distortions are added in a con-

tent adaptive manner. Such datasets can then be synthetically annotated by using rank

aggregation based FR fusion methods. DNN models can then be trained by utilizing such

new datasets. This research direction deserves deeper investigation and will be the focus

of the next chapter in this thesis.
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Chapter 3

Addressing the Data Challenge

Visual content has come to play a central role in our lives and new content is being

generated at an exponential rate. Image quality assessment (IQA) models, especially blind

IQA (BIQA) models, have thus gained prime importance. However, in the literature,

the enormous space of all possible natural images is usually represented by a handful

of small-scale annotated IQA datasets, which are used to train and test BIQA models.

This has imposed serious limitations on the development of robust and accurate deep

neural networks (DNN) based BIQA methods as such models typically require an enormous

amount of training data. It is difficult, if not impossible, to create large-scale human-

rated IQA databases, composed of millions of images, due to the constraints of subjective

testing. While considerable efforts have been made to enhance the performance of DNN

based BIQA methods by focusing on the modeling aspect, efforts to address the scarcity

of labeled IQA data remain surprisingly missing. To address this data challenge, we first

construct a very large-scale dataset named the Waterloo Exploration-II database, which

in its current state contains 3,570 pristine reference images and around 3.45 million singly

and multiply distorted images created from them. Next, we develop a novel mechanism

that synthetically assigns highly accurate perceptual quality labels to the distorted images,

thereby allowing for the development of DNN based IQA models. To validate the utility

of our very large-scale database and the synthetic quality annotation process, we construct

a DNN based BIQA model called EONSS and train it on the Waterloo Exploration-II
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database. We extensively test EONSS on nine subject-rated IQA databases without any

retraining or fine-tuning, and compare it with state-of-the-art BIQA methods. Our tests,

that include a variety of evaluation criteria, reveal that EONSS, even with its simple

network architecture, is able to outperform the very best of methods in the BIQA field,

including DNN based BIQA models, and is much faster than other BIQA methods. This

demonstrates the effectiveness of our approach to address the data challenge in the area of

IQA by creating a new very large-scale IQA database with synthetically annotated quality

labels for DNN based IQA model training.

3.1 Introduction

IQA can be classified into subjective and objective quality assessment (QA), and objective

QA algorithms can be further categorized into Full-Reference (FR), Reduced-Reference

(RR), and No-Reference (NR) or Blind IQA (BIQA) methods, as elaborated in Chapter

2. In the last two decades, significant progress has been made in the development of FR

IQA algorithms. Many state-of-the-art FR methods (such as but not limited to [13–16])

are training-free and their predictions correlate well with human perception of quality

while evaluating images afflicted with common distortion types. This is evident when

they are tested on a wide variety of subject-rated datasets as was comprehensively shown

in Chapter 2. Although the performance of FR methods has matured quite well, their

practical application remains limited because in real-world media delivery systems, access

to pristine reference images is either extremely rare or altogether nonexistent especially

at the end-user level. In such practical scenarios, NR IQA or BIQA is the only feasible

option. While a lot of work has also been done on the development of BIQA methods,

significant room for improvement exists to further enhance their performance as was shown

in Chapter 2 and in an earlier study [185]. This is understandable as BIQA is a much more

difficult task owing to lack of access to the reference image.

While a few recent BIQA methods are either training-free [32, 145] or require training

only to learn a universal model of pristine images [3,144], a large number of BIQA methods

try to alleviate the constraints posed by lack of access to the reference image by employing

99



machine learning algorithms where training is done against human-annotated distorted

content. Most training-based BIQA methods extract features from the distorted image

and use standard regression methods such as SVR [149, 153] in conjunction with subject-

rated data to learn a quality model. These features are either domain knowledge based

handcrafted features [139,140,142,147,176,177,179,182,186] or learned features [141,143].

We showed in Chapter 2 that BIQA models that employ learned features (such as [36,141,

143]) offer better general-purpose performance compared to those that use handcrafted

features. Since data-driven end-to-end optimized deep neural networks (DNNs) combine

the tasks of learning goal-oriented features and regression, they have great potential to

outperform the traditional two-stage approach where feature extraction and regression

are optimized independently, but not jointly. A prerequisite requirement for using such

deep networks is to have an adequately large set of training data. This is because such

networks have hundreds of thousands, if not millions of parameters, and an insufficient

amount of training data leads to overfitting, thereby degrading the generalizability of the

trained model to unseen data. While a number of DNN based BIQA models have been

proposed recently [187], they all encounter a significant hurdle: the lack of large-scale

perceptually annotated training data [184, 187]. Since obtaining large-scale subject-rated

data (hundreds of thousands to millions of quality annotated images) is difficult, if not

impossible, contemporary DNN based BIQA models focus on data augmentation techniques

to enhance the size of the small-scale annotated IQA data that is available [184, 187].

However, even with data augmentation, the size of the training data remains limited, and

such augmentation techniques lead to their own issues. When tested on unseen data, the

performance of DNN based BIQA models remains inadequate (as we showed in Chapter 2

for [146,148]).

In this chapter, we focus on the fundamental problem plaguing the development of

high performance DNN based BIQA models, that is, the lack of large-scale training data.

Through the development of a very large-scale synthetically annotated IQA dataset, we

show that the performance of a DNN model with a simple architecture, when tested on

wide-ranging subject-rated unseen data, can be elevated so much so that it not only out-

performs recent DNN based BIQA models but also the very state-of-the-art in BIQA.

The rest of the chapter is organized as follows. The data challenge in the area of IQA is
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discussed in Section 3.2 along with the contributions of this chapter. In Section 3.3 we

discuss the construction of a very large-scale IQA dataset. In Section 3.4 a novel technique

to synthetically annotate this dataset with perceptual quality ratings is presented and its

performance is evaluated. Section 3.5 discusses the construction of a simple DNN based

BIQA model that trains on the newly developed very large-scale IQA dataset along with

extensive performance evaluation of this model on subject-rated IQA datasets in a variety

of scenarios to demonstrate the effectiveness of our approach to elevate model performance

by addressing the data challenge. The practical applications of the work done in this

chapter are discussed in Section 3.6 while Section 3.7 concludes it.

3.2 The Data Challenge

3.2.1 DNNs in Visual Recognition: A Case Study

The application of DNNs has led to tremendous progress in the area of visual recogni-

tion, thus it is important to ascertain the reasons for this success. Like machine learning

based BIQA, methods in visual recognition are composed of two important components,

the model and the data used to train the model. While a lot of work has been done on

the modeling component of the visual recognition task, a little more than ten years ago

researchers started to focus on the data component of this task [18, 188]. While the Tiny

Image dataset [188] has around 80 million loosely labeled low-resolution images, the Ima-

geNet database [18,189] is composed of more than 14 million more precisely labeled higher

resolution images and has led to many breakthroughs in visual recognition. The images in

ImageNet populate close to 22,000 [189] synonym sets (synsets) of the WordNet [190,191]

hierarchy with an average of 650 images per synset. For the image classification task, Im-

ageNet first obtains images by crawling the Internet through synset specific search queries

to several image search engines. Next, it engages human subjects, through the online

crowdsourcing platform Amazon Mechanical Turk [80], to verify that images have been

associated with the correct labels regardless of any distortions that may be present. Al-

though it is not an easy task to ask human subjects to verify the labels associated with

millions of images, it is still manageable because: 1) Subjects are not being asked to label
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an image from scratch, instead they are required to verify if an image contains an object

associated with the given label. This simplifies the task. 2) The verification requires binary

answers (Yes/No). 3) Each image can be treated as an independent entity. 4) Votes from

only a few subjects are sufficient to verify the label of each image. Higher levels of the

hierarchy are usually easier to verify and require votes from just a few subjects (much less

than five), while deeper levels of the hierarchy may require votes from more subjects (five

to ten) [18]. 5) Viewing conditions and devices do not impact the authenticity of label

verification by subjects, and hence crowdsourcing can be conveniently used.

The annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [17] ran

from 2010 to 2017 and was composed of subsets of ImageNet images for the purposes of

algorithm training, validation, and testing. ILSVRC tasks included image classification,

object localization, and object detection. With the availability of a large-scale dataset such

as ImageNet along with computationally powerful GPUs coming of age, the stage was set

for the development of effective DNN based visual recognition models. While the first two

years of ILSVRC did not see DNN based entries, a significant turning point was observed

in ILSVRC 2012, when a deep convolutional neural network (CNN) based model [192],

with 60 million parameters, comprehensively won both the classification and localization

challenges in terms of the top-5 error rate [17]. The margin with which [192] outperformed

other models in the 2012 challenge had such an impact that submissions to the ILSVRCs

in the subsequent years were predominantly deep CNN based. Since 2012, deep CNN

based models have won the various ILSVRCs in terms of top-5 error rate for the image

classification and object localization tasks, and in terms of mean average precision for

the object detection task [17]. Thus, the development of high performance, generalizable

and robust deep CNN based visual recognition models such as [156, 192–196] has become

possible due to the ImageNet database [18] and the ILSVRC [17].

Finally, it is pertinent to mention that some other datasets in the area of visual recog-

nition, such as the PASCAL VOC datasets [197], Caltech 101 dataset [198], and Caltech

256 dataset [199], that have between 9,000 to 31,000 images in 20 to 256 object classes,

are considered small-scale and training DNN models from scratch on these datasets is

considered infeasible due to overfitting concerns [156].
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3.2.2 DNNs in BIQA: The Data Challenge

Small Scale of IQA Datasets

Compared to annotating datasets for visual recognition tasks such as ImageNet [18], ob-

taining subjective ratings of image quality is an altogether different and much more complex

scenario because: 1) Subjects need to provide their opinion of an image’s quality, which is

a rather abstract concept and requires substantial critical thinking on the subject’s part.

2) The quality scale is not binary, instead it either has a number of discrete levels (five or

more) or is continuous. 3) A subject’s opinion of quality needs to be calibrated before the

experiment, so that they have a rough idea about the range of quality to expect. While

subjects are asked to treat each image independently during the experiment, they still

need to provide ratings relative to the quality range introduced to them. 4) To ensure

reliability, it is recommended that at least 15 subjects rate each image in the subjective

experiment [70]. 5) It is suggested that a test session should last no longer than 30-minutes

to avoid fatigue effects and that participating subjects be screened for visual acuity and

color vision [70]. 6) Viewing conditions play a crucial role in the appearance of visual con-

tent, and hence on its quality. Therefore, viewing conditions such as display luminance,

background luminance, room illumination, observation angle, viewing distance, play an

important role in subjective tests and need to be set according to established norms [70].

Considering the above-mentioned constraints, it is much more difficult, if not impos-

sible, to carry out subjective testing for IQA datasets composed of millions of images,

even with crowdsourcing. To-date IQA datasets consist of hundreds or a few thousands of

distorted images. A summary of contemporary subject-rated IQA databases of 2D natural

images is given in Table 3.1. IQA datasets are classified either as simulated or authen-

tic distortion databases, depending upon whether distortions were simulated on a set of

pristine reference images or if they were captured directly in the real-world environment,

respectively. Simulated distortions datasets can further be classified into either singly or

multiply distorted databases, where each distorted image is afflicted by a single distortion in

the former case or by multiple simultaneous distortions in the latter. Among simulated dis-

tortion datasets, the multiply distorted ones are more accurate representations of practical

content since visual content almost always undergoes multiple distortions in the real-world.
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Table 3.1: Summary of contemporary subject-rated IQA databases.

Database

Category
Database

Published

Year

No. of No. of No. of No. of Images per Subjective

Reference Distorted Distortion Distortion Distortion Data

Images Images Types Levels Type Type

Simulated

Distortions

(Singly

Distorted)

A57 [75] 2007 3 54 6 3 9 DMOS

CIDIQ [5] 2014 23 690 6 5 115 MOS

CSIQ [26] 2010 30 866 6 4 to 5 116 to 150 DMOS

IVC [30] 2005 10 185 4 5 20 to 50 MOS

KADID-10K [22] 2019 81 10,125 25 5 405 DMOS

LIVE R2 [24] 2006 29 779 5 Up to 5 145 to 175 DMOS

MICT-Toyama [29] 2008 14 168 2 6 84 MOS

PDSP-HDDS [20] 2018 250 12,000 10 4 to 5 1,000 to 1,250 MOS

TID2008 [25] 2008 25 1,700 17 4 100 MOS

TID2013 [19] 2013 25 3,000 24 5 125 MOS

VCLFER [54] 2012 23 552 4 6 138 MOS

Simulated

Distortions

(Multiply

Distorted)

LIVE MD [31] 2012 15 405 5 3 45 to 135 DMOS

MDID2013 [32] 2014 12 324 1 3 324 DMOS

MDID [33] 2017 20 1,600 1 to 4 4 N/A MOS

MDIVL [34] 2017 10 750 2 4 to 10 350 to 400 MOS

Authentic

Distortions

BID [77] 2011 N/A 585 5 N/A 57 to 204 MOS

CID2013 [78] 2015 N/A 480 12 to 14 N/A N/A MOS

KonIQ-10K [81] 2018 N/A 10,073 N/A N/A N/A MOS

LIVE Challenge [79] 2016 N/A 1162 N/A N/A N/A MOS

From Table 3.1 it can be seen that the largest singly distorted simulated distortion dataset,

the recently released PDSP-HDDS [20], has only 12,000 distorted images, while the largest

multiply distorted dataset, MDID [33], has only 1,600 distorted images. Among authentic

distortion databases, the recently released KonIQ-10K [81], has only 10,073 distorted im-

ages. As is evident from recent surveys of DNN based BIQA models [184, 187], datasets

such as LIVE R2 [24], LIVE MD [31], LIVE Challenge [79], CSIQ [26], and TID2013 [19]

are used to train such models. The largest dataset among them is the singly distorted

database TID2013 [19] which has only 3,000 distorted images. From Table 3.1, it can be

observed that each dataset has only a limited number of images per distortion type. The

number of images per distortion type per level of distortion is even smaller. For exam-

ple, for singly distorted datasets, this is usually equal to the number of pristine images

in the dataset. It can also be observed from Table 3.1 that simulated distortion datasets

have a very limited amount of pristine reference content. The PDSP-HDDS [20] has 250

reference images, however it is itself an outlier as all other datasets have less than 100

reference images (usually 10 to 30). Since these pristine reference images are supposed to
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be representatives of the enormous space of all possible natural images, contemporary IQA

datasets do rather inadequately in terms of overall content variation. These shortcomings

of subject-rated IQA datasets create enormous hurdles in the development of generalizable

and robust DNN based BIQA methods. Recently two large-scale singly distorted datasets

have been constructed. These include the Waterloo Exploration-I dataset [21], which has

4,744 reference and 94,880 distorted images, and the KADIS-700k dataset [22], which has

140,000 reference and 700,000 distorted images. However, they cannot be used to train

DNN based BIQA models as their distorted content has not been annotated with percep-

tual quality labels. Thus, the issue of large-scale annotated IQA data is an open problem

which needs to be resolved.

Current Strategies to Deal with Lack of Data

Contemporary DNN based BIQA models employ a number of data augmentation tech-

niques to deal with the issue of small-scale training data.

A widely used technique adopted by DNN based BIQA methods to increase the size

of the training set is to extract multiple fixed size small patches from each labeled image

[38,39, 148,155,158,160–163,165,167,168,200]. While a popular patch size is 32× 32 [38,

39,148,155,158,160–163,200], larger sized patches have also been employed [165,167,168].

Since local patch-level quality labels are not available in IQA databases, the global image-

level quality score is usually applied to each patch extracted from an image. Due to

the influence of distortions and the visual attention property of the HVS, some regions

of an image might seem perceptually more relevant to a human subject while assigning

global quality scores [116, 117]. An image might be assigned a low quality score, yet

patches extracted from it might receive high quality scores when viewed independently.

Thus, the assignment of the global quality score to local patches extracted from an image

leads to a significant label noise problem. The method in [38, 39] tries to address this

problem by splitting model training into two steps. In the first step, an FR method

(FSIM [14]) was used to assign a quality score to each local patch, and a CNN was pre-

trained using this patch-level data. In the second step, the model was fine-tuned on

subject-rated datasets. Similar to [39], the method in [168] also follows a two-step training
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process, however, instead of using FR methods to label local patches, it uses the exponent

difference function to generate objective error maps for these patches, which are then

used as intermediate training targets. The model is fine-tuned on subject-rated datasets.

The method in [148, 155] tries to alleviate the label noise problem by weighted-average

patch quality aggregation. It estimates the quality of 32 × 32 image patches and also

determines the relative weight of each patch to account for its contribution in the global

quality of the parent image. Patch weight estimation is carried out by adding a parallel

branch to the patch quality regression layers, and the whole network is optimized in an

end-to-end manner. In [162], an image is segmented and the Prewitt operator is used to

generate the gradient map through which patch weights are determined. The quality of

each image patch is predicted by a CNN and the global image quality is computed through

a weighted average of patch qualities. Even with the adoption of the patch-based data

augmentation technique, the volume of training data remains limited given the small-scale

of IQA datasets. While a recent method [200] tries to further increase the training data

size by using various combinations of distorted and their corresponding reference image

patches, to generate patch pairs which are used for CNN training, the overall amount of

training data still remains limited. The very small amount of reference content and the

label noise issue further impacts the utility of this data augmentation technique.

Some methods [39, 146, 166, 168] increase the size of the training data by horizontally

flipping the images or image patches, and use the quality label assigned to the parent image.

Other kinds of geometric transformations cannot be applied in the area of IQA as they

can significantly impact the perceptual quality of an image [184]. In addition to horizontal

flipping, the method in [146] creates additional training samples by changing the saturation

and contrast of images as long as these changes do not impact their perceptual quality.

Given the small-scale of IQA datasets, this data augmentation technique also leads to a

limited expansion of training data and suffers from the limited nature of reference content.

Since very large-scale annotated databases are available in the area of visual recognition,

some BIQA methods utilize DNNs that have been pre-trained for the visual recognition

task. In [165], the Caffe network [195] that has been pre-trained on the ImageNet [18] and

Places [201] visual recognition databases is used in two ways: 1) As a feature extractor,

where SVR and IQA databases are used to map these features to perceived quality scores;
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2) As an initialization, where the network is fine-tuned with respect to IQA databases.

In [164], the VGG network [156], that has been pre-trained on the ImageNet [18] database

for the object recognition task, is used where feature vectors are extracted from different

layers of the network and form a multi-level representation of the image. Next, IQA

databases are used along with SVR to learn a mapping from each feature vector to a

quality score. A global quality score for an image is then computed as the average of

quality scores predicted by different network layers. Instead of predicting a single quality

score, the method in [167] predicts the quality distribution of a given image using CNNs.

The output of the CNN model is in terms of probabilistic quality representation (PQR)

vectors that are then mapped to scalar quality scores using SVR. Of the three CNNs used

in [167], two are deep CNNs (AlexNet and ResNet50) that have been pre-trained for the

image classification task on the ImageNet database [18]. These deep CNNs are then fine-

tuned by using subject-rated IQA databases. Although features extracted from a DNN

that has been trained for a particular visual recognition task, such as image classification,

are known to be effective generic features for other visual recognition tasks [202,203], their

use in an altogether different area, such as IQA, is open to doubt [187].

Some DNN based BIQA methods adopt a multi-task strategy to deal with the lack of

quality-annotated training data. The work in [160] is a pioneering effort in this direction,

where image quality and distortion type are simultaneously estimated. It is demonstrated

in [160] that such a multi-task approach allows for a reduction in the model’s learnable

parameters without loss in model performance. The method in [146] uses the multi-task

approach of distortion identification and quality prediction, however in a causal manner.

It splits these two tasks between two sub-networks such that their early layers are shared.

Sub-network 1, which identifies distortion type through a probability vector is fed into

sub-network 2, which predicts image quality. Since a large amount of labeled data can be

generated for the distortion identification task without the need for human annotations,

840 pristine images are degraded at five distortion levels for different distortion types

in [146] to generate a large amount of training data, which is used to pre-train sub-network

1 along with the shared layers of the overall network. The entire network is subsequently

joint optimized using subject-rated data. The method in [204] utilizes two deep CNNs to

separately deal with the scenarios of synthetically (simulated distortions) and authentically
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distorted images. For synthetic distortions, the distortion type and level information is used

for pre-training, where the training set includes 852,891 distorted images that have been

obtained by using 9 distortion types to degrade 21,869 pristine images at various distortion

levels. For authentic distortions, the CNN VGG-16 [156], that has been pre-trained on the

ImageNet database [18] for the image classification task, is used. The feature sets from the

two CNNs are transformed into one representation set through bilinear pooling. The entire

network is fine-tuned on subject-rated IQA datasets. In these methods, especially [146,204],

the use of multi-task learning, where distortion identification is carried out in addition

to quality score prediction, has the benefit of enabling the training process to be split

into pre-training and joint optimization stages. Labels for distortion identification do not

require human annotation, and thus a large amount of data can be generated for the pre-

training step. However, such an approach does not take into account the impact of content

variations. Distortions of the same type and magnitude can lead to drastically different

perceived quality results for two different contents. This is a fundamental limitation of

such multi-task learning based approaches for data augmentation.

Since deep models require a large amount of training data due to the high-dimensional

nature of images as model inputs, some techniques (such as [159]) use low-dimensional

representations of images, by using NSS [123] features extracted from the images, as inputs

to the model. While this reduces the training size requirements of training data, such

models are unable to realize the full potential of DNNs since end-to-end learning is lacking.

While a lot of efforts have been made to construct DNN based BIQA methods that

focus on the modeling part of the problem and try to alleviate the lack of training data by

using data augmentation and multi-task learning techniques (as described above), efforts to

address the fundamental problem of lack of large-scale quality-annotated IQA databases

remain surprisingly missing. In this chapter we focus on addressing this fundamental

problem plaguing the development of robust and generalizable DNN based BIQA models.

Specifically, we make the following three novel contributions: 1) We construct the largest

IQA dataset to-date, called the Waterloo Exploration-II database, which has 3,570 pristine

and more than 3.45 million distorted images (including both singly and multiply distorted

content). 2) Since annotating so many images through subjective testing is not possible,

we devise a novel synthetic quality benchmark generation mechanism that annotates the

108



images with perceptually oriented quality ratings. Our tests on a wide range of available

subject-rated IQA datasets show that this mechanism leads to quality annotations that are

highly correlated with human perception of quality, and thus they can be used as alterna-

tives to human quality ratings. 3) To show the advantage of the large-scale synthetically

annotated Waterloo Exploration-II database, and thus the strength of our approach to

resolve the data challenge in IQA, we develop a DNN based BIQA model called EONSS

and train it using the Waterloo Exploration-II dataset. Although EONSS has a simple

architecture, we show that when tested across a wide range of available subject-rated IQA

datasets, it not only comprehensively outperforms other DNN based BIQA models with

more complex architectures that use data augmentation, but it also outperforms the very

state-of-the-art in BIQA, thereby highlighting the significance of our approach to overcome

the data challenge encountered when constructing DNN based BIQA models.

3.3 Waterloo Exploration-II Database Construction

The Waterloo Exploration-II database is a simulated distortions dataset which starts with

a set of pristine reference images and simulates both singly and multiply distorted images

at various distortion levels.

3.3.1 Reference Content

The pristine or reference content in an IQA database is representative of the enormous

space of all possible natural images. As is evident from Table 3.1, contemporary IQA

databases have only a small number of reference images, which can be regarded as a very

sparse and inadequate representation of this enormous space. To ensure wide coverage of

image content, we include 3,570 reference images in the Waterloo Exploration-II database,

which we take from the Waterloo Exploration-I database [21]. To ensure images that

are representatives of what humans see in their daily lives, the creators of the Waterloo

Exploration-I database [21] use 196 keywords to search the Internet for images which

broadly belong to seven categories (human, animal, plant, landscape, cityscape, still-life,
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and transportation) and obtain an initial set of 200,000 images. Next, they manually

view each image and remove those that have any visible distortions, leading to a filtered

set of 7,000 images. Finally, they carry out another round of filtering where they view

each remaining image by zooming in multiple times and remove any images with visible

compression distortions leaving 4,744 high quality natural images that become the reference

image set of the Waterloo Exploration-I database [21]. For the Waterloo Exploration-II

database, we start with the 7,000 images that were obtained after the first round of filtering

while obtaining the Waterloo Exploration-I database reference image set. Using a similar

manual procedure of viewing each of these images multiple times and zooming in, we

carry out another round of filtering and select 3,570 pristine quality images as our pristine

reference image set.

While the usual practice is to describe the variety of reference content by using sub-

jective terms, a few quantitative descriptors have also been used to describe such content,

such as image spatial information (SI) which is indicative of edge energy in an image, and

colorfulness (CF) which represents the variety and intensity of colors in an image [88]. The

2D SI versus CF space has been used to represent and compare the diversity of source

content in different IQA databases [88]. Three different SI measures were compared in [89]

and it was found that a mean based SI measure (SImean) has the highest correlation with

compression based image complexity measures. We use SImean [89] and a computationally

efficient CF measure [90] to plot the reference image content of the Waterloo Exploration-II

database in the SI versus CF space, as shown in Fig. 3.1, where the blue outer boundary

marks the convex hull and the area inside is marked yellow. Fig. 3.1 suggests a comprehen-

sively improved content representation in the Waterloo Exploration-II database in terms

of both diversity and density in comparison with nine well-known IQA databases, whose

SI versus CF plots are shown in Fig. 2.1 of Chapter 2.

3.3.2 Distorted Content

An ideal simulated distortions IQA dataset should be diverse in terms of distortion types

and levels. The goal is to simulate varying degrees of distortions so that the perceptual

quality scale is uniformly sampled, which ensures that objective IQA methods are tested
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Figure 3.1: Spatial Information (SIMean) versus Colorfulness (CF ) plot of the reference

images of the Waterloo Exploration-II database. The blue lines represent the convex hull.

(and trained) across the quality spectrum. Distortions also need to be realistic, and thus

multiply distorted content takes precedence over singly distorted images. Existing sim-

ulated distortion datasets, as summarized in Table 3.1, have the following shortcomings

apart from their small-scale nature: 1) Most of them are singly distorted. 2) Usually 4 to

6 distortion levels per distortion type are used, which does not allow for a dense sampling

of the perceptual quality scale. 3) Existing multiply distorted datasets usually have 3 to

4 distortion levels per distortion type per stage, leading to a sparse multiply distorted

image set which is inadequate for learning how two or more different (or same) distortions

interact with each other (this point will be further elaborated in Chapter 4). 4) Distorted

content in most IQA datasets is not uniformly distributed across the quality spectrum

as demonstrated in Chapter 2, which is because fixed distortion parameters are used to

generate each distortion type. While this is a convenient approach, it does not adapt to

the impact of content variations on the perceptual appearance of distortions. Since it is

known that many objective IQA methods find it more difficult to evaluate better quality

images compared to lower quality ones [19], effective representation of the entire quality
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scale, especially the higher quality region is necessary. To address the above-mentioned

shortcomings of existing IQA datasets, we generate the distorted content of the Waterloo

Exploration-II database in the following manner.

Content Adaptive Distortion Thresholds

To ensure uniform coverage of the entire quality spectrum, we use content adaptive dis-

tortion parameters instead of fixed ones. For its first version, we choose the following four

base distortions for the Waterloo Exploration-II database: 1) Gaussian white noise, 2)

Gaussian blur, 3) JPEG compression, and 4) JPEG2000 compression. We use one of the

most advanced FR quality-of-experience (QoE) measures called SSIMplus [61], to identify

distortion parameters that correspond to a particular level of distortion for each reference

image. SSIMplus predicts the quality of images on a scale of 0-100 where 100 corresponds

to the best while 0 corresponds to the worst quality. A significant advantage of using

SSIMplus is that its quality scale was calibrated to be linear with respect to perceptual

quality, which means that the loss of quality associated with x SSIMplus points has the

same perceptual significance regardless of the starting point on the quality scale, allowing

for a division of the quality scale into uniformly spaced intervals. To densely sample the

quality spectrum, we choose to have 17 distortion levels for the four base distortion types.

These distortion levels, their target SSIMplus scores, and quality categories are depicted in

Table 3.2, where it can be seen that we do not go below the SSIMplus score of 20 as the re-

sulting images are severely distorted and do not make a useful contribution to the dataset.

For each reference image of the Waterloo Exploration-II database, we use different distor-

tion parameters to create 15,000, 10,000, 101, and 20,000 distorted images for the base

distortions of Gaussian white noise, Gaussian blur, JPEG compression, and JPEG2000

compression, respectively. Finally, distortion parameters for each base distortion that lead

to SSIMplus scores closest to the target scores of the 17 distortion levels (see Table 3.2)

are selected for subsequent database generation. Thus, each of the 3,570 reference images

in the Waterloo Exploration-II database has its own set of distortion parameters for each

of the four base distortion types.
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Table 3.2: Distortion Levels and Target SSIMplus Scores.

Distortion
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 – – – –

Level

Target
100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0

SSIM+

Quality
Excellent Good Fair Poor Bad

Category

Table 3.3: Composition of the Waterloo Exploration-II database.

Reference Images Stage-1 Distorted Images Stage-2 Distorted Images

(Pristine Quality) (Singly Distorted) (Multiply Distorted)

Number of
Distortion

Number of Distortion Number of

Images Images Combination Images

3,570

Blur 39,270
Blur-JPEG 667,590

Blur-Noise 667,590

JPEG 39,270 JPEG-JPEG 667,590

Noise 39,270
Noise-JPEG 667,590

Noise-JP2K 667,590

Total 117,810 Total 3,337,950

Overall 3,455,760 Distorted Images

Dense Singly and Multiply Distorted Content

To better mimic real-world distortions, we construct the Waterloo Exploration-II database

in two stages to include both singly and multiply distorted content, with emphasis on the

latter. Table 3.3 outlines the composition of the database.

Stage-1 contains singly distorted images belonging to three distortion types:

1. Gaussian white noise

2. Gaussian blur

3. JPEG compression

Images for each of the three single distortion types mentioned above are obtained by

distorting the reference images using their respective content adaptive distortion parame-

ters belonging to Levels 1 to 11, as depicted in Table 3.2. Thus, the 11 Stage-1 distortion
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levels correspond to the SSIMplus [61] quality range of 50 to 100, which is representative

of fair to excellent perceptual quality. We restrict ourselves to the top half of the per-

ceptual quality spectrum as distorted images in the earlier part of the media distribution

pipelines are expected to be in this quality range. This leads to 39,270 singly distorted

images for each single distortion category for a total of 117,810 singly distorted images.

We have restricted ourselves to just three distortion types for Stage-1 because even they

lead to a final dataset consisting of more than 3.45 million distorted images (see Table 3.3),

thereby creating significant storage requirements and enhanced time for training machine

learning based models. Thus, we have selected distortion types that are most commonly

found in IQA literature. Since earlier training-based BIQA models are trained and tested

on images of such distortion types, choosing them also provides a fair ground for compar-

ison. However, the inclusion of just three distortion types at Stage-1 remains a limitation

of the current work and a more diverse set of distortion types should be included in the

future. For example, while thermal noise is approximated as additive white Gaussian noise

(AWGN), the noise distribution of real-world camera sensors is better represented by the

Poisson distribution [205, 206]. Thus, future releases of the dataset should include a more

diverse set of Stage-1 distortion types representing more noise types, blur types, contrast

distortions, color distortions, transmission errors, and so on.

Stage-2 contains multiply distorted images belonging to five distortion combinations.

Since images taken in the real-world are quite often afflicted with noise (due to limitations

of the camera sensor and lighting conditions) and/or blur (due to movement of the photog-

rapher/target or limitations of the camera sensor) and are then almost always stored with

some form of compression, we choose compression as the second distortion stage in four

of the five cases. The distortion combinations are given below along with justifications for

selecting them:

1. Gaussian blur followed by JPEG compression (Blur-JPEG) to mimic storing a blurry

image through JPEG compression.

2. Gaussian blur followed by Gaussian white noise (Blur-Noise) to mimic different image

capture scenarios. For example, capturing a photograph when the camera is moving

and lighting conditions are inadequate.
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3. JPEG compression followed by JPEG compression (JPEG-JPEG) to mimic multiple

levels of compression. For example, a picture taken by a cell phone camera is usually

stored after JPEG compression and may undergo another round of compression if it

is uploaded to a social media platform.

4. Gaussian white noise followed by JPEG compression (Noise-JPEG) to mimic storing

a noisy image through JPEG compression.

5. Gaussian white noise followed by JPEG2000 compression (Noise-JP2K) to mimic

storing a noisy image through JPEG2000 compression.

Stage-2 multiply distorted images are obtained by starting from the respective Stage-1

singly distorted images and distorting them by using the content adaptive distortion pa-

rameters of the parent reference image belonging to Levels 1 to 17, as depicted in Table

3.2, where it can be seen that this covers SSIMplus quality range of 20 to 100, which is

representative of bad to excellent perceptual quality. Thus, the first distortion in multiply

distorted images belongs to the fair to excellent quality range and the subsequent distor-

tion belongs to the entire meaningful quality spectrum (bad to excellent). Each of the

five multiple distortion combinations has 667,590 images for a total of 3,337,950 multiply

distorted images. Overall, the Waterloo Exploration-II database has 3,455,760 singly and

multiply distorted images, which we annotate with synthetic perceptual quality ratings

(explained in Section 3.4), making it by far the largest annotated dataset in IQA. As noted

earlier for singly distorted Stage-1 images, having multiply distorted images belonging to

only five distortion combinations can be considered as a limitation of the current work,

and a more diverse set of multiply distorted images should be considered in the future.

This can be done by having more combinations in a two-stage distortion pipeline, or by

afflicting images with more than two distortions to mimic practical scenarios in an even

better manner. For example, an image with blur and noise stored after compression.

Distorted Content Analysis

To observe how well the Waterloo Exploration-II database covers the perceptual quality

spectrum, we plot the synthetic quality benchmark (SQB) histogram of the dataset in
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Fig. 3.2. The generation of these synthetic quality labels will be explained in Section

3.4. The SQB has a quality range of 0 to 100, where 100 is representative of the best

while 0 represents the worst quality. It can be seen from Fig. 3.2 that the Waterloo

Exploration-II database has more than at least 10,000 annotated images for each integer

quality value above 10, thereby ensuring adequate representation of each quality value. It

can also be seen that the quality range of 50 to 100 has the most images, which ensures

that the higher quality range, which is difficult to assess for objective IQA methods [19],

is adequately represented.

Figure 3.2: SQB histogram of the Waterloo Exploration-II database.

To see how well the Waterloo Exploration-II database covers the quality spectrum in

comparison with other well-known IQA datasets, we compute the SQB values of all the dis-

torted images in the Waterloo Exploration-II database and nine well-known IQA datasets,

and provide the corresponding boxplots in Fig. 3.3, where the range of distortions in dif-

ferent databases can be directly compared. By observing these boxplots, it becomes clear

that while most contemporary IQA datasets tend to favor either the higher or lower end

of the quality spectrum, the Waterloo Exploration-II database offers a better spread and

more balanced coverage, with the highest concentration at the practically most common

mid-to-high quality range.
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Figure 3.3: SQB box plot of the Waterloo Exploration-II (Wat. Exp. II) database in

comparison with nine well-known IQA datasets. The top and bottom edges of the blue

boxes represent the 75th and 25th percentiles, respectively. The red line represents the

median (50th percentile). The top and bottom black lines represent the extreme data

points while the outliers are represented by red + symbols.

3.4 Synthetic Quality Benchmark

3.4.1 Background and Extensive Review

As discussed in 3.2.2, it is not possible to annotate large-scale IQA datasets through human

observers, and thus the assignment of perceptual quality annotations through alternative

means is necessary. Given that the area of FR IQA has matured quite well (as shown in

Chapter 2), one possible alternative is to replace subjective ratings with scores from reliable

FR methods. In fact, a number of works in IQA literature have already taken this route.

During its training phase, the BIQA method QAC [35] uses the FR method FSIM [14] to

annotate image patches with quality scores based on which subsequent grouping is done.

The BLISS framework [41] proposes a way to convert opinion-aware BIQA methods into

opinion-unaware ones. It first fuses five FR methods (FSIM [14], FSIMc [14], GMSD [99],
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IWSSIM [13], and VIF [113]) to generate synthetic scores for a dataset composed of 100

reference and 3,200 distorted images. It then uses these synthetic scores to retrain a

BIQA method CORNIA [141] which was previously trained through subjective ratings.

The BIQA method dipIQ [36] uses three FR methods (GMSD [99], MSSSIM [4], and

VIF [113]) to generate 80-million quality-discriminable image pairs (DIPs) from a dataset

that has 840 reference and 16,800 distorted images, which are then used to learn a blind

quality model. A recent BIQA method called Multiply and Singly distorted Image Quality

Estimator (MUSIQUE) [37] uses the FR method VIF [113] in its training stage to find a

relationship between estimated distortion parameters and VIF quality scores. The BIQA

method in [38,39] uses FR methods (FSIMc [14], GMSD [99], SSIM [111], and VSI [15]) to

derive local scores of 32× 32 patches and then pre-trains a CNN using these patches with

corresponding FR scores. The model is then fine-tuned on a subject-rated dataset. In [40],

the FR method MSSSIM [4] is used to annotate four large-scale databases of singly and

multiply distorted images, the largest of which is composed of around 2 million images.

While the above-mentioned works demonstrate that FR scores may be used in place of

subjective ratings, their choices of FR methods are rather ad hoc and deeper justification

and analysis are lacking. The following questions arise when using FR scores for annotat-

ing large-scale IQA datasets as alternatives to subjective ratings: 1) Which FR method

or methods can be reliably used? 2) Can fused FR methods, which combine the results of

multiple FR methods, offer any further advantages over individual ones? We comprehen-

sively answered these questions in Chapter 2, where we carried out the largest performance

evaluation study to-date in IQA literature, as a prerequisite requirement of this chapter.

In Chapter 2, we compared the performance of 43 FR and seven fused FR methods (22

versions) on nine subject-rated IQA databases (five singly and four multiply distorted) to

ensure the diversity of test data. Our results indicated the following: 1) Among individual

FR methods, the structural similarity based methods IWSSIM [13], FSIMc [14], VSI [15],

and DSS [16], outperform others. 2) However, the performance of even the best individual

FR methods varies, at times widely, across different IQA datasets, a point which has ear-

lier been noted in [73]. This puts into question the robustness of individual FR methods,

especially when using them as alternatives to human annotations. 3) Among FR fusion

methods, learning based fusion methods such as MMF [130] and CNNM [128], and empir-
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ical fusion methods such as HFSIMc [129], CM3 [127], and CM4 [127], are outperformed

by the best individual FR methods and thus do not offer any advantages. 4) However, the

FR fusion method which we called RRF [23] based Adjusted Scores (RAS) in Chapter 2, is

found to outperform not only the other fusion based methods, but more importantly, the

best individual FR methods. In the literature of IQA, RAS was originally proposed as part

of the BLISS framework in [41] and uses a rank aggregation based fusion strategy [23], but

no deeper analysis, reasoning or empirical justification was provided. 5) The performance

of RAS is found to be more stable across different IQA datasets relative to individual FR

methods. Thus, the training-free rank aggregation based fusion strategy [23] is a strong

candidate for synthetically annotating large-scale IQA datasets.

3.4.2 Synthetic Quality Benchmark Generation

At the core of the rank aggregation based fusion strategy is the training-free Reciprocal

Rank Fusion (RRF) algorithm [23], which was first developed to combine document rank-

ings from multiple information retrieval systems in an unsupervised manner. For a given

set of test images and their associated quality scores as assigned by different FR IQA

methods, a consensus ranking can be obtained in terms of RRF as follows [23]:

RRFscore(Ii) =
J∑
j=1

1

k + rj(i)
(3.1)

where J is the number of FR methods being fused, rj(i) is the rank given by the j-th FR

method to the image Ii, RRFscore(Ii) is the RRF score of image Ii, and k is a stabilization

constant. RRF was first used in IQA as part of the BLISS framework [41], which replaces

human opinion scores with synthetic quality scores that act as ground truth data to train

BIQA methods. The BLISS framework [41] produces synthetic quality scores in two steps

for a given set of images: 1) Generation of a consensus ranking score through RRF [23], and

2) Since the ranking score is a measure of quality relative to other images and cannot be

considered an independent quality measure, the scores of a base FR method are adjusted

based on the consensus ranking, which then act as synthetic quality scores. The latter step
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is required because the BLISS framework operates in the absence of subject-rated datasets.

The choice of FR methods to combine in [41] is ad hoc. To test the rank aggregation based

fusion of FR methods more thoroughly, we performed an exhaustive search by testing

737,280 different combinations of 2 to 15 FR methods, and finalized 13 versions of RAS in

Chapter 2. Among them, RAS6 was found to be the top performer and will be used as a

basis for the generation of our synthetic data annotation, as explained next.
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Figure 3.4: Synthetic Quality Benchmark (SQB) generation procedure.

To generate the Synthetic Quality Benchmark (SQB) for the very large-scale Waterloo

Exploration-II database, we use RRF [23] to fuse the same four FR methods as in RAS6 (see

Table 3.4: Individual database and concatenated column vector sizes for SQB generation.

S.
Database

Subject Database Column Concatenated Column

No. Rated Vector Size Vector Size

1 DR IQA V1 No 32912×1

3530595x1

2 DR IQA V2 No 32912×1

3 Waterloo Exp.-II No 3455760×1

4 LIVE R2 [24] Yes 779×1

5 TID2013 [19] Yes 3000×1

6 CSIQ [26] Yes 866×1

7 VCLFER [54] Yes 552×1

8 CIDIQ [5] Yes 690×1

9 MDID [33] Yes 1600×1

10 MDID2013 [32] Yes 324×1

11 LIVE MD [31] Yes 450×1

12 MDIVL [34] Yes 750×1
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Chapter 2), that is, IWSSIM [13], DSS [16], CID MS [95], and VIF DWT [93]. However,

unlike RAS (BLISS framework [41]), we do not adjust the score of a base FR method

to generate the synthetic quality scores. Instead, we use the novel framework shown in

Fig. 3.4 to generate the SQB. First, we acquire the scores of the above-mentioned four

FR methods for 12 databases mentioned in Table 3.4. These include nine subject-rated

datasets (serial number 4 to 12) which have been described earlier in Section 2.2 and in

Tables 2.2 and 3.1, and three large datasets which include the Waterloo Exploration-II

database, and two other datasets called DR IQA V1 and DR IQA V2, which have been

developed in a manner similar to the Waterloo Exploration-II database. These latter two

datasets will be used in Chapter 4 and will be discussed more in detail there. For each

dataset, we obtain scores for each FR method in terms of database-wide column vectors,

which are all then concatenated into one large column vector of size 3530595×1 for each FR

method, as depicted in Table 3.4. Next, RRF is used to fuse the four large column vectors,

through Equation 3.1, resulting in an RRF vector which contains the consensus ranking.

Since the RRF process involves sorting the constituents of individual vectors being fused,

this results in punctuating the scores of the three large unannotated databases with scores

of the nine databases that do have human annotations of quality. This is done without

subjects rating the images of the three large databases, and meanwhile allows us to evaluate

the performance of SQB compared to actual human annotations in Section 3.4.3. The RRF

vector is normalized as follows:

RRFnormalized =
RRFscore

max(RRFscore)
(3.2)

As discussed earlier, the outcome of the RRF step leads to a quality rating for an image

relative to other images. To be considered independently, the ratings from the consensus

RRF ranking can be mapped to a subjective quality scale by using a subset of RRF scores

for which subjective quality scores are available. Since the MDID database [33] has uniform

representation from different parts of the quality spectrum (as discussed in Chapter 2), we

choose it to learn this mapping through a five-parameter modified logistic function [24]:
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S(R) = β1

[
1

2
− 1

1 + e{β2(R−β3)}

]
+ β4R + β5 (3.3)

where R denotes the RRF scores of the MDID database that have been extracted from the

overall normalized RRF vector, S denotes the predicted MDID subjective quality scores,

and β1, β2, β3, β4, and β5 are mapping coefficients that are found numerically to maximize

the correlation between MDID subjective quality scores and its RRF scores. Since the

MDID RRF scores punctuate the overall RRF vector in a regular manner, the MDID

mapping coefficients are then used to map the entire RRF vector to the MDID subjective

quality scale (0 to 8) by again using Equation 3.3. These quality scores, denoted by Q, are

then rescaled to the 0 to 100 range as:

SQB = 100× Q−min(Q)

max(Q−min(Q))
(3.4)

Equation 3.4 results in the concatenated Synthetic Quality Benchmark (SQB) vector

for all databases involved, and ensures that the rescaling process does not disturb the

distribution of the quality scores. Finally, the SQB vectors for individual databases are

extracted from the overall SQB vector.

It is mentioned in [23] that the constant k in Equation 3.1 counters the impact of high

rankings by outliers and its value was set at 60 through a pilot investigation. This value

of the constant k was also used in the BLISS framework [41]. While the value of k may

not be critical when the number of data points is small, we believe that it takes on a more

significant role when the number of objects to be ranked is large. In our case, with around

3.53 million images, a small value of k = 60 leads to weights assigned to rank 1 and to rank

3,530,595 that differ by several orders of magnitude. Thus, some ranks are more favored

than others and a level playing field is absent. We believe that in order to rank a large

number of objects, the value of the constant k should be proportionately higher. To test

this hypothesis, we carry out an empirical study where the value of k was progressively

increased in terms of order of magnitude, and the overall SQB vector was recomputed each

time. The SQB scores for each of the nine subject-rated databases mentioned in Table 3.4

were extracted for each value of k. For each database we compute the SRCC of the SQB
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Figure 3.5: Weighted average SRCC of SQB with respect to subjective scores of the nine

subject-rated databases (see Table 3.4) for different values of the RRF constant k.

with respect to the respective subjective scores. The weighted average SRCC values for

the nine subject-rated databases for various values of k are depicted in Fig. 3.5, where it

can be seen that our hypothesis is indeed correct. Given that we have around 3.53 million

images for which RRF is being computed, the weighted average SRCC starts increasing as

k goes beyond 104 and keeps on increasing until k attains a value of around 107 beyond

which it remains constant. We believe that further increase of the value of k does not lead

to further SRCC gain as the weights assigned to all the ranks remain within the same order

of magnitude. Through our empirical investigation, we have found that for 3.53 million

images, the weighted average SRCC does not increase beyond k = 8× 106, and hence this

value of k has been used in this work.
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3.4.3 SQB Performance

Databases and Methods used for Comparison

To comprehensively test the perceptual quality prediction performance of SQB, we test it

on the nine subject-rated IQA databases that were made part of the SQB computation

process as discussed in the previous section. Five of these databases include singly distorted

content and include LIVE R2 [24], TID2013 [19], CSIQ [26], VCLFER [54], and CIDIQ [5],

while four contain multiply distorted content and include MDID [33], MDID2013 [32],

LIVE MD [31], and MDIVL [34]. It should be noted that the CIDIQ database [5] contains

subject-ratings at two viewing distances, that of 50 cm and 100 cm, for all its images.

We shall refer to results for these two sets of subjective data as CIDIQ50 and CIDIQ100,

respectively. The main features of these databases are given in Table 3.1, while more details

can be found in Chapter 2 or in their respective papers.

For a thorough comparison, we tested the performance of other state-of-the-art meth-

ods, including two fused and 14 individual FR methods, on the above-mentioned datasets.

The fused FR methods include the rank aggregation based fusion method RAS6 which was

the overall top performer in the performance evaluation survey that we performed in Chap-

ter 2, and uses the approach described in [41]. We also include the learning based fusion

method MMF [130] in our comparison. The 14 individual FR methods are top performers

in the performance evaluation study of Chapter 2 and belong to three state-of-the-art FR

design philosophies. Among them, eight methods belong to the structural similarity based

design philosophy and include CID MS [95], DSS [16], ESSIM [98], FSIMc [14], GMSD [99],

IWSSIM [13], MCSD [102], and VSI [15], four are natural scene statistics (NSS) based and

include QASD [107], SFF [109], VIF [113], and VIF DWT [93], and two belong to the

mixed strategy based design philosophy and include DVICOM [96] and MAD [26]. We also

include the error based method PSNR for legacy purposes.

Evaluation Criteria

We use five evaluation criteria to evaluate the performance of methods under test. For

assessing prediction accuracy, we use the Pearson Linear Correlation Coefficient (PLCC)

124



[72]. The scores generated by objective IQA methods are usually not linear with respect

to subjective ratings. Thus, a nonlinear mapping step is required before the computation

of PLCC. To do this, we adopt the five-parameter modified logistic function used in [24]

and given in Equation 3.3. PLCC is then computed at the database-level between the

subjective scores and the objective scores after passing through the nonlinear mapping

step. We assess prediction monotonicity by using the Spearman Rank-order Correlation

Coefficient (SRCC) [72]. SRCC is a non-parametric rank-order based correlation measure.

It does not require the preceding nonlinear mapping step. The absolute value of both

PLCC and SRCC lies in the 0 to 1 range. A better objective IQA method should have

higher PLCC and SRCC values with respect to subjective scores, where a value of 1

would indicate perfect perceptual performance. Since we are using nine different IQA

databases for performance evaluation (ten if the two viewing distance of CIDIQ database

are considered separately) and PLCC/SRCC values are at the individual database-level,

trying to make conclusions about the overall performance becomes cumbersome and a

measure of aggregate performance is required. We provide this measure by calculating

the weighted average (WA) PLCC and WA SRCC values for each IQA method across

all databases (as in [13] and in Chapter 2). The total number of distorted images in

a database defines the weight assigned to it in the weighted average computation. The

CIDIQ database [5] is considered twice in this calculation due to its evaluations being

at two viewing distances. Finally, we perform statistical significance testing (hypothesis

testing) to draw statistically sound and generalizable inferences about the performance

of an IQA method compared to another. We carried out these tests on the prediction

residuals of different methods for each database. These residuals were obtained by first

mapping the IQA method outcomes to subjective scores by using the nonlinear mapping

approach described above for PLCC calculation, and then subtracting these predictions

from the actual subjective scores. We use the one-sided (left-tailed) two-sample F -test [175]

to statistically compare the performance of two IQA methods with each other at the 5%

significance level (95% confidence) for each of the IQA databases. By carrying out this test

twice, with the order of the methods reversed, we were able to determine if the method

performance was statistically indistinguishable or if one method performed better than

another. Since these tests assume the Gaussianity of residuals, we used a simple kurtosis
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based check for Gaussianity (as in [24]), where Gaussianity is assumed if the kurtosis of the

residuals is between 2 and 4. The databases and evaluation criteria used in this chapter

are the same as in Chapter 2, thus results in this chapter can be directly compared with

other methods discussed there. For a more detailed description of these evaluation criteria,

refer to Section 2.4.1 of Chapter 2.

SQB Performance Evaluation

Since the very-large scale Waterloo Exploration-II database does not have subjective rat-

ings, it is not possible to evaluate the performance of its SQB annotation scores directly.

The reason why we concatenated the objective score vectors, belonging to the nine subject-

rated IQA datasets, of the FR methods being fused in SQB computation, with those of the

Waterloo Exploration-II, DR IQA V1, and DR IQA V2 databases, is that it allowed us to

punctuate data without subject ratings with data that does have these ratings. Thus, in

the overall SQB vector, the SQB scores for the nine subject-rated datasets act as regularly

distributed samples. Since these samples also have subjective scores available, this allows

us to comprehensively test the performance of SQB.

The perceptual quality prediction performance, of all methods under test for the nine

IQA datasets, in terms of PLCC is given in Table 3.5. As mentioned earlier, the CIDIQ

database [5] is considered as two datasets since it has subjective ratings at two viewing

distances. For each IQA database, all of its constituent distortions were included for test-

ing. The weighted average PLCC is provided in the rightmost column of Table 3.5 and is

used to sort the methods in the descending order. Thus, the best performing methods are

towards the top of the table. The names of the fused FR methods are mentioned in bold,

to distinguish them from the individual FR methods. Similarly, Table 3.6 provides the per-

ceptual quality prediction performance of all methods under test in terms of SRCC. Again,

all distortions in each dataset were considered. The weighted average SRCC is provided

in the rightmost column of Table 3.6 and methods have been sorted in the descending

order with respect to these values. The results of statistical significance testing of SQB

relative to the 17 other methods are shown in Table 3.7, where a “1”, “–”, or “0” means

that the perceptual quality prediction performance of SQB is better, indistinguishable, or
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Table 3.5: Test results of SQB, 2 fused FR, 14 state-of-the-art FR methods, and PSNR,

on nine subject-rated IQA databases in terms of PLCC. All distortions in each dataset

were considered. The Weighted Average PLCC (WA PLCC) is provided in the rightmost

column and methods are sorted in descending order with respect to WA PLCC. Fused FR

methods are highlighted in bold.
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SQB (Proposed) 0.9612 0.8917 0.9596 0.9408 0.8745 0.8742 0.9293 0.8152 0.9144 0.9126 0.9100

RAS6 [41] 0.9682 0.8488 0.9640 0.9408 0.8832 0.8585 0.9294 0.8181 0.9150 0.9202 0.8979

IWSSIM [13] 0.9522 0.8319 0.9144 0.9191 0.8476 0.8698 0.8983 0.8513 0.9109 0.9056 0.8787

FSIMc [14] 0.9613 0.8769 0.9191 0.9329 0.7583 0.8410 0.8998 0.6429 0.8965 0.9039 0.8786

DSS [16] 0.9618 0.8530 0.9612 0.9259 0.7715 0.8267 0.8733 0.8168 0.9023 0.8973 0.8757

VSI [15] 0.9482 0.9000 0.9279 0.9320 0.7226 0.8240 0.8703 0.5732 0.8789 0.8749 0.8714

MCSD [102] 0.9675 0.8648 0.9560 0.9217 0.7532 0.7727 0.8637 0.8281 0.8847 0.8787 0.8705

GMSD [99] 0.9603 0.8590 0.9541 0.9176 0.7387 0.7585 0.8776 0.8336 0.8808 0.8685 0.8672

ESSIM [98] 0.9566 0.8645 0.9224 0.9094 0.7953 0.8256 0.8451 0.6648 0.8861 0.9081 0.8664

SFF [109] 0.9632 0.8706 0.9643 0.7761 0.7834 0.7721 0.8590 0.7952 0.8893 0.8904 0.8658

QASD [107] 0.9574 0.8897 0.9481 0.9253 0.7257 0.8116 0.8063 0.6698 0.8966 0.8827 0.8638

DVICOM [96] 0.9734 0.8194 0.9191 0.9144 0.8035 0.8018 0.8919 0.8161 0.8873 0.8773 0.8632

MMF [130] 0.8561 0.9504 0.9262 0.8624 0.7326 0.7572 0.8185 0.6788 0.8523 0.8075 0.8600

CID MS [95] 0.9159 0.8362 0.8732 0.9375 0.8364 0.8171 0.8414 0.6155 0.8917 0.8961 0.8510

MAD [26] 0.9675 0.8267 0.9502 0.9053 0.7809 0.8541 0.7552 0.7471 0.8944 0.8985 0.8464

VIF [113] 0.9604 0.7720 0.9278 0.8938 0.7267 0.6415 0.9367 0.8376 0.9030 0.8736 0.8388

VIF DWT [93] 0.9657 0.7657 0.9123 0.8969 0.7259 0.5845 0.9031 0.7264 0.8839 0.8653 0.8211

PSNR 0.8723 0.7017 0.8000 0.8321 0.6302 0.6808 0.6164 0.5647 0.7398 0.6806 0.7065

worse, respectively, than that of the method in the row for a given database (with 95%

confidence). We preceded the statistical significance testing with a kurtosis based check

for Gaussianity of prediction residuals of all methods under test on all datasets (described

earlier in this section) and found that the assumption of Gaussianity holds in around 79%

cases.

It can be clearly seen from Tables 3.5 and 3.6 that SQB is the top performer in terms

of both WA PLCC and WA SRCC. From Table 3.7, it can be observed that for the

170 method-database combinations, SQB performs statistically better than the best of all

other methods in around 74% cases, while its performance is statistically indistinguishable

or inferior than other methods in around 19% and 6% cases, respectively. This is no small
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Table 3.6: Test results of SQB, 2 fused FR, 14 state-of-the-art FR methods, and PSNR,

on nine subject-rated IQA databases in terms of SRCC. All distortions in each dataset

were considered. The Weighted Average SRCC (WA SRCC) is provided in the rightmost

column and methods are sorted in descending order with respect to WA SRCC. Fused FR

methods are highlighted in bold.
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SQB (Proposed) 0.9665 0.8749 0.9542 0.9421 0.8760 0.8651 0.9252 0.8045 0.8857 0.8845 0.8997

RAS6 [41] 0.9680 0.7930 0.9603 0.9405 0.8840 0.8532 0.9250 0.8214 0.8867 0.8954 0.8761

VSI [15] 0.9524 0.8965 0.9422 0.9317 0.7213 0.8106 0.8569 0.5700 0.8414 0.8269 0.8631

FSIMc [14] 0.9645 0.8510 0.9309 0.9323 0.7608 0.8285 0.8904 0.5806 0.8666 0.8613 0.8628

IWSSIM [13] 0.9567 0.7779 0.9212 0.9163 0.8484 0.8564 0.8911 0.8551 0.8836 0.8588 0.8559

SFF [109] 0.9649 0.8513 0.9627 0.7738 0.7834 0.7689 0.8396 0.8005 0.8700 0.8535 0.8527

DSS [16] 0.9616 0.7921 0.9555 0.9272 0.7755 0.8246 0.8658 0.8078 0.8714 0.8759 0.8520

QASD [107] 0.9629 0.8674 0.9530 0.9231 0.7307 0.8079 0.7778 0.6687 0.8766 0.8315 0.8482

MMF [130] 0.8741 0.9409 0.9043 0.8594 0.7241 0.7379 0.8084 0.6799 0.8085 0.7703 0.8479

MCSD [102] 0.9668 0.8089 0.9592 0.9224 0.7562 0.7808 0.8451 0.8269 0.8517 0.8370 0.8464

CID MS [95] 0.9103 0.8314 0.8789 0.9366 0.8350 0.8062 0.8330 0.6168 0.8608 0.8778 0.8445

GMSD [99] 0.9603 0.8044 0.9570 0.9177 0.7427 0.7675 0.8613 0.8283 0.8448 0.8210 0.8433

ESSIM [98] 0.9597 0.8035 0.9325 0.9075 0.7968 0.8253 0.8250 0.6966 0.8517 0.8682 0.8418

DVICOM [96] 0.9750 0.7598 0.9181 0.9155 0.8034 0.7903 0.8840 0.8168 0.8672 0.8374 0.8387

MAD [26] 0.9669 0.7807 0.9466 0.9061 0.7815 0.8391 0.7249 0.7507 0.8646 0.8643 0.8220

VIF [113] 0.9636 0.6769 0.9194 0.8866 0.7203 0.6257 0.9306 0.8444 0.8823 0.8381 0.8024

VIF DWT [93] 0.9681 0.6439 0.9020 0.8930 0.7224 0.5826 0.8943 0.7553 0.8479 0.8243 0.7768

PSNR 0.8756 0.6394 0.8057 0.8246 0.6254 0.6701 0.5784 0.5604 0.6771 0.6136 0.6720

achievement given that all other methods included in the comparison, apart from PSNR,

are considered state-of-the-art in FR and fused FR IQA. While RAS6 was the top performer

in the comprehensive performance evaluation study in Chapter 2, it did not perform as well

on the TID2013 database [19], as can be seen from its PLCC and SRCC values in Tables 3.5

and 3.6, respectively. With 3,000 distorted images and as many as 24 different distortion

types, TID2013 can be considered as one of the largest and most diverse subject-rated

IQA databases, making it quite challenging. It is clear from Tables 3.5 and 3.6 that SQB

performs quite well on the TID2013 database, when compared to other methods. From

Table 3.7, it can be seen that on the TID2013 database SQB is outperformed only by the

fused FR method MMF [130] and the FR method VSI [15]. MMF is a learning-based fusion
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Table 3.7: Statistical significance testing of SQB through the F-Test with respect to fused

and individual FR methods on different IQA databases. A “1” means that SQB perfor-

mance is statistically better than the method in the row, a “0” means that it is statistically

worse, while a “–” means that it is statistically indistinguishable. Testing was done at the

5% significance level (95% confidence). Fused FR methods are highlighted in bold.
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CID MS [95] 1 1 1 – 1 1 1 1 1 1

DSS [16] – 1 – 1 1 1 1 – – 1

DVICOM [96] 0 1 1 1 1 1 1 – 1 1

ESSIM [98] – 1 1 1 1 1 1 1 1 –

FSIMc [14] – 1 1 – 1 1 1 1 1 –

GMSD [99] – 1 1 1 1 1 1 – 1 1

IWSSIM [13] 1 1 1 1 1 – 1 0 – –

MAD [26] 0 1 1 1 1 1 1 1 1 1

MCSD [102] 0 1 – 1 1 1 1 – 1 1

MMF [130] 1 0 1 1 1 1 1 1 1 1

PSNR 1 1 1 1 1 1 1 1 1 1

QASD [107] – – 1 1 1 1 1 1 1 1

RAS6 [41] 0 1 0 – – – – – – –

SFF [109] – 1 0 1 1 1 1 – 1 1

VIF [113] – 1 1 1 1 1 0 – – 1

VIF DWT [93] 0 1 1 1 1 1 1 1 1 1

VSI [15] 1 0 1 – 1 1 1 1 1 1

method and we trained it on the TID2013 database. Thus, it is unfair to compare other

methods with MMF on TID2013. While VSI outperforms SQB on TID2013, SQB performs

better than VSI on almost all other datasets. We believe that the performance gain of SQB

on the TID2013 database, especially when compared to RAS6, is explained by the way we

have selected the constant k in the RRF [23] computation (Equation 3.1), as explained in

Section 3.4.2. From Table 3.7, we can see that SQB is outperformed by RAS6 on the LIVE

R2 [24] and CSIQ [26] databases. Tables 3.5 and 3.6 show that RAS6 outperforms SQB

only slightly in terms of PLCC and SRCC, respectively, on these datasets. Given that the

TID2013 dataset is much more diverse, in terms of distortions, when compared to LIVE

R2 and CSIQ, we believe that this performance compromise is justified. From Table 3.7,

it can be seen that some individual FR methods statistically outperform SQB on at most
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Figure 3.6: PLCC of SQB and selected FR methods for different IQA databases.

a single dataset, but are outperformed by SQB on almost all other datasets. For example,

while IWSSIM [13] outperforms SQB on MDID2013 database [32], it is outperformed by

SQB on six other datasets (Table 3.7), sometimes quite significantly, such as on TID2013

database [19] (Tables 3.5 and 3.6). In fact, all state-of-the-art individual FR methods

perform inconsistently across different IQA datasets, where they perform well on some

datasets but not on others. This behavior can be seen in Fig. 3.6, where the PLCC of SQB

and some state-of-the-art FR methods is plotted for different datasets. These FR methods

include IWSSIM [13], FSIMc [14], DSS [16], and VSI [15], which were found to be the top

performers in our comprehensive study of Chapter 2, out of a total of 43 FR methods.

We have also included the FR methods CID MS [95] and VIF DWT [93] in Fig. 3.6 as

they, together with IWSSIM and DSS, are fused together in SQB. From Fig. 3.6, it can

be seen that the six individual FR methods encounter wide swings in performance across
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different datasets which differ from each other in terms of their constituent distortions

and content. Thus, the performance of these FR methods cannot be regarded as stable,

which goes against their use as alternatives to human annotations for large-scale datasets.

However, Fig. 3.6 also shows that the performance variations are much less pronounced

for SQB across all datasets. Hence, the performance of SQB can be regarded as stable

regardless of the distortions that afflict the images that it evaluates, thereby making it a

much more suitable candidate to replace human annotations for labeling large-scale IQA

datasets. We believe that SQB displays this superior performance relative to individual

state-of-the-art FR methods because: 1) It uses a rank aggregation based fusion approach,

RRF [23], that is unsupervised and training-free, which makes it robust to unseen data,

and 2) The deficiencies of some FR methods being fused through RRF, for particular

distortions, are supplemented by the strengths of other FR methods for those distortions,

and thus the fused combination achieves stable performance for all distortions that usually

afflict visual content. It is pertinent to mention here that the four FR methods being fused

in SQB have not been randomly selected, but through an exhaustive search that included

evaluating 737,280 FR fusion combinations in Chapter 2.

3.5 EONSS - A DNN Based BIQA Model

To test the validity of our hypothesis that a large-scale annotated training database will

enhance the performance of DNN based BIQA models and to validate our SQB approach

of synthetically annotating such a database, as described in Section 3.4, we build a DNN

based BIQA model called End-to-end Optimized deep neural Network using Synthetic

Scores (EONSS). It should be noted that EONSS aims to provide a transparent common

testing platform on which the impact of training data on the performance of DNNs can

be assessed, and thus special or sophisticated designs of DNN architectures are avoided

that may complicate the interplay between training data and network architecture on

their contributions to the overall performance. While we train EONSS on the Waterloo

Exploration-II database, we test it on nine subject-rated IQA datasets. It should be noted

that there is no overlap between the training and testing data. This allows us to not

only rigorously test EONSS on unseen human-rated data but also to make comparisons
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with other BIQA methods on such data. This also enables us to show the strength of our

synthetic quality annotation process.

3.5.1 Network Architecture and Implementation Details
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Figure 3.7: The architecture of the EONSS network for the BIQA task. We adopt the

style and convention of [6] and denote the parameterization of the convolutional layer as:

Conv | kernel height× kernel width | input channel× output channel | stride | padding.

The architecture of the EONSS network is illustrated in Fig. 3.7. The network takes

a 235 × 235 RGB color image patch as input and predicts its quality in terms of a scalar

value. With a few exceptions, most DNN based BIQA methods that have been proposed

so far, use a smaller input patch size of 32×32, as discussed in Section 3.2.2. On the other

hand, patches of larger size, such as 235 × 235, contain visually more meaningful content

than smaller patches and can better represent the parent image, thereby reducing the label

noise problem. Since earlier DNN based BIQA methods train on small-scale subject-rated

datasets, they use a smaller input patch size, as a larger patch size would dramatically

reduce the overall number of patches available for training. However, our model does not

suffer from this issue since the Waterloo Exploration-II database has a sufficiently large

number of training images. As can be seen from Fig. 3.7, the EONSS network consists of

six stages of processing. The first four stages each contain a convolutional, a generalized

divisive normalization (GDN) [122], and a max-pooling layer. The purpose of these four

stages is to map the 235× 235× 3 raw pixels from the image space to a lower-dimensional
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feature space where the impact of distortions on image quality can be more easily quantified

in a perceptually aware manner. In the first four stages, the network reduces the spatial

dimension through the use of convolution with stride 2× 2 and employs 2× 2 max-pooling

after each GDN layer to select neurons with the highest local response. The last two stages,

which consist of two fully connected layers and a GDN transform layer in between, map

the extracted features to a single quality score. Before being sent to the last two fully

connected layers, the spatial size of the features is reduced to 1× 1, so that the number of

weights in the fully connected layers is considerably reduced. Instead of using ReLU [157],

we use GDN [122] as the activation function after the convolution layers in the first five

stages of the network to add non-linearity to the model. While ReLU [157] is widely used

as the activation function in CNNs, it suffers from strong higher-order dependencies, thus

requiring a much larger network to achieve good performance for a given task [6]. We utilize

a bio-inspired normalization transform, GDN [122], as the activation function because it

helps decorrelate the high-dimensional features by using a joint nonlinear gain control

mechanism, thereby enabling a much smaller network to achieve competitive performance.

The GDN transform has been previously used effectively in image compression [6] and has

also been used in a DNN based BIQA model [146]. We define the loss function as the

negative of PLCC. The advantages of choosing PLCC over MAE or MSE are [207]: 1)

The range of predictions is no longer restricted to the range of targets, since it is known

that the range of subjective quality scores could be set arbitrarily and does not have any

physical meaning. 2) It automatically normalizes the loss to the range [-1, 1], which gives

more stability and flexibility to the training process. 3) PLCC is differentiable and is a

frequently used evaluation criteria in the area of perceptual IQA. To empirically verify

that our choice of PLCC as the loss function is valid, we also trained EONSS with MSE

as the loss function. By using the nine subject-rated datasets (all distortions), mentioned

in Section 3.4.3, and the WA SRCC evaluation criteria, also mentioned in Section 3.4.3,

we found that the WA SRCC of EONSS relative to subjective data is 0.6183 and 0.6509

when using MSE and PLCC as loss functions, respectively. This clearly demonstrates the

superiority of using PLCC as the loss function for EONSS.

To train the EONSS model, we randomly split the Waterloo Exploration-II database

into training, validation and testing sets that consist of 60%, 20% and 20% of the dataset,
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respectively. Since the network accepts images of size 235×235×3, for the sake of speeding

up the training phase, we randomly sample one 235× 235 patch from each training image

if its dimensions are larger. This does not prevent us from creating a sufficiently large pool

of training data given the very large-scale nature of the Waterloo Exploration-II database.

This also allows us to obtain a batch of image patches that have greater diversity, thereby

helping to prevent model overfitting. Since the 235× 235 patch size can cover a relatively

large area of the original image, thereby containing perceptually meaningful content, we

assign the SQB quality score of the original image as the image quality label of the sampled

patch. During the validation and testing phases, we consider the entire image instead of

just one patch from it. Thus, for images with larger dimensions, we sample 235 × 235

patches from the original image with a stride of 128× 128 in an overlapping manner, and

consider the average of the predicted quality scores of all patches as the predicted quality

of the original image. This ensures a more rigorous validation process and also that all

parts of an image are considered while testing. We initialize the weights of the convolution

layers by following the approach in [208] and use Adam [209] for optimization. The training

batch size is chosen to be 50 and the image patches in each batch are randomly sampled

from the training set only. We start with a learning rate of 0.001 which is decreased by

a factor of 10 after every two epochs. Other parameters of Adam [209] are set as default.

The model performance, in terms of PLCC and SRCC, is tested on the validation set after

each epoch and we stop training after 10 epochs when the performance on the validation

set reaches a plateau. Finally, the model after 10 epochs of training, is applied to the

testing set.

When compared to many recent DNN based BIQA models, discussed in Section 3.2.2,

it can be seen that EONSS uses a relatively simple network architecture. We have favored

simplicity because our focus is not on the design of DNN architectures, but instead on the

impact of training data on this task. While it will become apparent in Section 3.5.2 that

EONSS outperforms the very state-of-the-art in BIQA, our primary goal of constructing it,

is to validate our approach of using synthetically annotated very-large scale IQA datasets

for DNN model training.
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3.5.2 EONSS Performance Evaluation

To analyze the performance of EONSS and other BIQA methods, we use the same set of

test datasets as mentioned in Section 3.4.3, which includes five singly and four multiply dis-

torted subject-rated IQA databases. We also use the same evaluation criteria as described

in Section 3.4.3. However, we compute the evaluation metrics for two categories of data: 1)

The all distortions category includes all distorted images within each test dataset, that is,

all distortion types are considered while computing PLCC, SRCC, and performing statis-

tical significance testing. 2) The subset distortions category includes a subset of distortion

types in each dataset for which evaluation metrics are calculated. For singly distorted IQA

datasets (LIVE R2 [24], TID2013 [19], CSIQ [26], VCLFER [54], and CIDIQ [5]), images

belonging to the following four common distortion types form the subset: 1) Noise, 2)

Gaussian Blur, 3) JPEG compression, and 4) JPEG2000 compression. Although Poisson

noise is used in the CIDIQ database [5] and additive white Gaussian noise is used in the

other four singly distorted datasets, we do not make a distinction between the two for the

purpose of subset performance evaluation. For multiply distorted datasets, subsets of dis-

torted images are formed by separately considering individual distortion combinations (if

possible). Thus, we separately consider the Blur-JPEG and Blur-Noise combinations in the

LIVE MD database [31], and the Blur-JPEG and Noise-JPEG combinations in the MDIVL

database [34]. Since images in the MDID [33] and MDID2013 [32] databases cannot be

split into subsets, the entire datasets are considered for the subset case as well.

The motivation for conducting performance evaluation on the subset distortions cate-

gory of IQA datasets, especially for singly distorted datasets, stems from the fact that most

training-based opinion-aware BIQA methods are trained for the above-mentioned common

distortion types that are present in almost all singly distorted datasets. Therefore, these

subsets of distortions provide a fair ground for comparison. However, the ultimate goal of

NR or blind IQA methods is to be robust to unseen data, thus, the all distortions category

of IQA datasets, allows for more rigorous testing of BIQA methods. Any gap in perfor-

mance for these two categories of test data would highlight directions for future research.

We do not retrain BIQA methods on individual datasets but use the original versions, that

is EONSS trained on the Waterloo Exploration-II database and author-trained versions of

135



other BIQA methods, again to ensure rigorous testing.

Performance Comparison with State-of-the-Art BIQA Methods

In addition to evaluating the performance of EONSS, we also tested the performance of 14

other state-of-the-art BIQA methods on the test data so that we can situate EONSS relative

to the best in the field. Among them, eight methods belong to the opinion-aware (OA)

BIQA category and include BIQI [139], BRISQUE [140], CORNIA [141], GWHGLBP [142],

HOSA [143], MEON [146], NRSL [147], and WaDIQaM-NR [148], while six methods belong

to the opinion-unaware (OU) category and include dipIQ [36], ILNIQE [144], LPSI [145],

NIQE [3], QAC [35], and SISBLIM [32]. It should be noted that among these methods,

MEON [146] and WaDIQaM-NR [148] are DNN based BIQA methods. While a number

of other deep learning based BIQA methods have recently been proposed, as discussed in

Section 3.2.2, we have tested the performance of MEON [146] and WaDIQaM-NR [148]

as their author-trained models are publicly available. As an additional comparison point,

in subsequent analysis we also include results for FR methods IWSSIM [13] and PSNR in

order to compare the performance of EONSS and other BIQA methods with a state-of-

the-art (IWSSIM) and legacy (PSNR) FR method.

For all datasets, the test results for the all distortions category are given in Tables 3.8

and 3.9 in terms of PLCC and SRCC, respectively. The test results for the subset distortions

category are given in Tables 3.10 and 3.11 in terms of PLCC and SRCC, respectively. In

each of these tables, the weighted average (WA) PLCC/SRCC values are provided in the

rightmost column and the methods have been sorted in descending order with respect to

these values. The results of statistical significance testing of EONSS relative to the two

FR and 14 BIQA methods for both the all distortions and subset distortions categories

are provided in Table 3.12, where a “1”, “–”, or “0” means that the perceptual quality

prediction performance of EONSS is better, indistinguishable, or worse, respectively, than

that of the method in the row for a given database (with 95% confidence). Each entry in

the table may be composed of more than one symbol, each of which represents the outcome

of the test for either the all distortions and subset distortions categories, as explained in the

table caption. We preceded the statistical significance testing with a kurtosis based check
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Table 3.8: PLCC of EONSS in comparison with 2 FR and 14 NR methods on nine subject-

rated IQA databases. All distortions in each test dataset were considered. The Weighted

Average PLCC (WA PLCC) is provided in the rightmost column and methods are sorted

in descending order with respect to it. FR methods are highlighted in bold.
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IWSSIM [13] 0.9522 0.8319 0.9144 0.9191 0.8476 0.8698 0.8983 0.8513 0.9109 0.9056 0.8787

PSNR 0.8723 0.7017 0.8000 0.8321 0.6302 0.6808 0.6164 0.5647 0.7398 0.6806 0.7065

EONSS 0.9244 0.5442 0.7660 0.9120 0.5798 0.4821 0.8374 0.3020 0.8437 0.8744 0.6933

CORNIA [141] 0.9665 0.5729 0.7593 0.8366 0.4496 0.3530 0.8074 0.6935 0.8679 0.8277 0.6878

ILNIQE [144] 0.9022 0.5883 0.8538 0.7289 0.3124 0.3390 0.7245 0.5146 0.8923 0.6303 0.6452

HOSA [143] 0.9991 0.5521 0.7560 0.8496 0.4969 0.3761 0.6590 0.2513 0.6768 0.7167 0.6328

dipIQ [36] 0.9348 0.4774 0.7720 0.8942 0.5223 0.3889 0.6789 0.4376 0.7669 0.7627 0.6284

NRSL [147] 0.9815 0.5338 0.7456 0.8905 0.4672 0.4034 0.6566 0.3088 0.5183 0.6794 0.6182

SISBLIM [32] 0.8077 0.4805 0.7378 0.7574 0.4909 0.4671 0.6321 0.8135 0.8948 0.5723 0.6077

GWHGLBP [142] 0.8079 0.4982 0.7104 0.6427 0.3653 0.2978 0.7108 0.7443 0.9655 0.5966 0.5991

BIQI [139] 0.9224 0.4678 0.6916 0.6106 0.3596 0.2661 0.6763 0.3369 0.7389 0.6215 0.5648

NIQE [3] 0.9052 0.4001 0.7188 0.8040 0.3703 0.2708 0.6728 0.5634 0.8387 0.5688 0.5646

MEON [146] 0.9389 0.4919 0.7865 0.9221 0.4774 0.3854 0.5250 0.2430 0.2684 0.5722 0.5630

WaDIQaM-NR [148] 0.9341 0.5712 0.6882 0.7862 0.4133 0.3481 0.4631 0.1371 0.2685 0.5214 0.5457

BRISQUE [140] 0.9671 0.4747 0.7006 0.8208 0.4155 0.3257 0.4450 0.1403 0.6045 0.6517 0.5429

QAC [35] 0.8625 0.4371 0.7067 0.7615 0.3573 0.2856 0.6043 0.4240 0.4145 0.5713 0.5338

LPSI [145] 0.8280 0.4892 0.7216 0.6020 0.4037 0.3981 0.4335 0.1765 0.5464 0.5715 0.5204

for Gaussianity of prediction residuals of all methods under test on all datasets (described

in Section 3.4.3) and found that the assumption of Gaussianity holds in around 89% cases

in the all distortions category and in around 83% cases in the subset distortions category,

thereby allowing us to use the F -test.

From the above-mentioned tables, the following observations can be made: 1) Tables

3.8 and 3.9 reveal that EONSS outperforms all other state-of-the-art BIQA methods in

the all distortions category, both in terms of WA PLCC and WA SRCC. 2) Similarly, in

the subset distortions category, which can be considered a more fair ground for compari-

son as stated earlier, Tables 3.10 and 3.11 show that EONSS considerably outperforms all

other BIQA methods both in terms of WA PLCC and WA SRCC. 3) Table 3.12 shows

that for the 160 method-database combinations of the all distortions category, EONSS

performs statistically better than other methods in around 62% cases, while its perfor-
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Table 3.9: SRCC of EONSS in comparison with 2 FR and 14 NR methods on nine subject-

rated IQA databases. All distortions in each test dataset were considered. The Weighted

Average SRCC (WA SRCC) is provided in the rightmost column and methods are sorted

in descending order with respect to it. FR methods are highlighted in bold.
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IWSSIM [13] 0.9567 0.7779 0.9212 0.9163 0.8484 0.8564 0.8911 0.8551 0.8836 0.8588 0.8559

PSNR 0.8756 0.6394 0.8057 0.8246 0.6254 0.6701 0.5784 0.5604 0.6771 0.6136 0.6720

EONSS 0.9267 0.5045 0.6774 0.9063 0.4991 0.3448 0.8297 0.2874 0.7260 0.8833 0.6509

CORNIA [141] 0.9681 0.4288 0.6534 0.8354 0.3727 0.2071 0.7918 0.7055 0.8340 0.8336 0.6147

ILNIQE [144] 0.8975 0.4939 0.8144 0.7391 0.2997 0.3127 0.6900 0.5148 0.8778 0.6238 0.6031

HOSA [143] 0.9990 0.4705 0.5925 0.8574 0.4494 0.3248 0.6412 0.2993 0.6393 0.7399 0.5851

dipIQ [36] 0.9378 0.4377 0.5266 0.8957 0.4135 0.2100 0.6612 0.4153 0.6678 0.7131 0.5620

NRSL [147] 0.9796 0.4277 0.6750 0.8930 0.4249 0.2894 0.6458 0.4088 0.4145 0.6047 0.5589

SISBLIM [32] 0.7741 0.3177 0.6603 0.7622 0.4435 0.4098 0.6554 0.8089 0.8770 0.5375 0.5408

GWHGLBP [142] 0.7410 0.3844 0.5773 0.6243 0.3337 0.2412 0.7032 0.7555 0.9698 0.5841 0.5377

NIQE [3] 0.9073 0.3132 0.6271 0.8126 0.3458 0.2212 0.6523 0.5451 0.7738 0.5713 0.5181

BIQI [139] 0.9198 0.3935 0.6186 0.6170 0.3433 0.2353 0.6276 0.0077 0.5556 0.5711 0.5007

MEON [146] 0.9409 0.3750 0.7248 0.9215 0.4101 0.2497 0.4861 0.2980 0.1917 0.5466 0.4969

BRISQUE [140] 0.9654 0.3672 0.5563 0.8130 0.3640 0.2496 0.4035 0.2209 0.5018 0.6647 0.4792

WaDIQaM-NR [148] 0.9417 0.4393 0.6388 0.7524 0.3588 0.2235 0.4040 0.1316 0.2379 0.5614 0.4782

QAC [35] 0.8683 0.3722 0.4900 0.7686 0.3196 0.1944 0.3239 0.2272 0.3579 0.5524 0.4292

LPSI [145] 0.8181 0.3949 0.5303 0.5865 0.2060 0.1411 0.0306 0.0168 0.2717 0.5736 0.3558

mance is statistically indistinguishable or inferior than other methods in around 19% and

19% cases, respectively. Similarly, for the 192 method-database combinations of the subset

distortions category, EONSS performs statistically better than other methods in around

67% cases, while its performance is statistically indistinguishable or inferior than other

methods in around 13% and 20% cases, respectively. This again demonstrates the su-

periority of EONSS when compared to the very state-of-the-art in the BIQA field. 4)

While considering Tables 3.8, 3.9, 3.10, 3.11, and 3.12, it should be noted that the OA

BIQA methods BIQI [139], BRISQUE [140], NRSL [147], CORNIA [141], HOSA [143],

WaDIQaM-NR [148], and MEON [146] are trained on the LIVE R2 database [24], and

GWHGLBP [142] is trained on the LIVE MD database [31]. Thus, comparing these OA

BIQA methods with other approaches on these respective databases is unreliable and un-

fair to those other methods. Disregarding the results of these methods on the said datasets
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Table 3.10: PLCC of EONSS in comparison with 2 FR and 14 NR methods on nine subject-

rated IQA databases. A subset of distortions in each test dataset were considered. The

Weighted Average PLCC (WA PLCC) is provided in the rightmost column and methods

are sorted in descending order with respect to it. FR methods are highlighted in bold.
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IWSSIM [13] 0.9556 0.9407 0.9655 0.9191 0.8745 0.8536 0.8983 0.8513 0.9164 0.9117 0.9269 0.9101 0.9116

EONSS 0.9462 0.8751 0.9291 0.9120 0.7973 0.8082 0.8374 0.3020 0.8622 0.8337 0.9232 0.8918 0.8430

CORNIA [141] 0.9715 0.8868 0.9257 0.8366 0.5898 0.5480 0.8074 0.6935 0.8774 0.8723 0.9419 0.7900 0.8145

dipIQ [36] 0.9559 0.8879 0.9481 0.8942 0.7475 0.6706 0.6789 0.4376 0.8235 0.7895 0.8311 0.7882 0.7839

HOSA [143] 0.9992 0.8901 0.9384 0.8496 0.6774 0.6597 0.6590 0.2513 0.8968 0.6728 0.9005 0.7022 0.7600

ILNIQE [144] 0.9164 0.8576 0.9070 0.7289 0.3860 0.4598 0.7245 0.5146 0.9048 0.8968 0.8293 0.5759 0.7263

PSNR 0.8699 0.8912 0.9079 0.8321 0.6532 0.5560 0.6164 0.5647 0.7409 0.7751 0.7143 0.6645 0.7241

NRSL [147] 0.9887 0.9153 0.9133 0.8905 0.6236 0.6145 0.6566 0.3088 0.3516 0.6263 0.6418 0.7334 0.7239

SISBLIM [32] 0.8220 0.7896 0.7967 0.7574 0.5899 0.6844 0.6321 0.8135 0.9030 0.8913 0.8056 0.4871 0.7194

NIQE [3] 0.9162 0.8091 0.8767 0.8040 0.4994 0.4712 0.6728 0.5634 0.9099 0.8481 0.7996 0.4507 0.7135

GWHGLBP [142] 0.8088 0.7675 0.8052 0.6427 0.5196 0.5347 0.7108 0.7443 0.9677 0.9684 0.7745 0.4943 0.7113

BIQI [139] 0.9534 0.7772 0.8224 0.6106 0.4957 0.5164 0.6763 0.3369 0.7743 0.7404 0.7398 0.6035 0.6827

MEON [146] 0.9907 0.9053 0.9423 0.9221 0.6620 0.6510 0.5250 0.2430 0.2675 0.4927 0.3875 0.7405 0.6763

QAC [35] 0.8777 0.8051 0.8736 0.7615 0.4512 0.5068 0.6043 0.4240 0.5378 0.6722 0.6765 0.6090 0.6637

BRISQUE [140] 0.9760 0.8659 0.9239 0.8208 0.5257 0.5421 0.4450 0.1403 0.8663 0.4594 0.8249 0.6511 0.6564

WaDIQaM-NR [148] 0.9302 0.8994 0.8860 0.7862 0.5137 0.5530 0.4631 0.1371 0.6842 0.3921 0.6415 0.5231 0.6251

LPSI [145] 0.8440 0.8114 0.8657 0.6020 0.5508 0.6289 0.4335 0.1765 0.8820 0.1182 0.7959 0.5075 0.5991

further increases the demonstrated superiority of EONSS. It is also pertinent to mention

that the nine subject-rated IQA datasets have only been used to test EONSS, without

any retraining or fine-tuning. 5) Even though EONSS has been trained on the Waterloo

Exploration-II dataset, which predominantly consists of multiply distorted images, it per-

forms well on even the singly distorted test datasets. This is explained by the wide density

of distorted images in the Waterloo Exploration-II dataset, which includes 117,810 singly

distorted images and a large number of multiply distorted images that have a small amount

of stage-1 distortion, thereby allowing the DNN model to learn effectively for the single

distortion scenario. 6) It can be clearly seen that EONSS comprehensively outperforms the

two other DNN based models, MEON [146] and WaDIQaM-NR [148], statistically and in

terms of WA PLCC, WA SRCC, for both the all and subset distortions categories. Since,

MEON [146] and WaDIQaM-NR [148], are trained on a small-scale singly distorted dataset

(LIVE R2 [24]), they do not perform well on multiply distorted datasets, which is not the
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Table 3.11: SRCC of EONSS in comparison with 2 FR and 14 NR methods on nine subject-

rated IQA databases. A subset of distortions in each test dataset were considered. The

Weighted Average SRCC (WA SRCC) is provided in the rightmost column and methods

are sorted in descending order with respect to it. FR methods are highlighted in bold.
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IWSSIM [13] 0.9616 0.9262 0.9603 0.9163 0.8755 0.8374 0.8911 0.8551 0.8700 0.8933 0.8778 0.8713 0.9002

EONSS 0.9499 0.8446 0.8969 0.9063 0.7885 0.7553 0.8297 0.2874 0.7348 0.7331 0.8754 0.9085 0.8205

CORNIA [141] 0.9732 0.8727 0.8987 0.8354 0.5740 0.5053 0.7918 0.7055 0.8278 0.8523 0.9254 0.8027 0.8007

dipIQ [36] 0.9574 0.8720 0.9290 0.8957 0.7460 0.6433 0.6612 0.4153 0.6979 0.7391 0.6512 0.7730 0.7562

HOSA [143] 0.9991 0.8681 0.9111 0.8574 0.6677 0.6236 0.6412 0.2993 0.8437 0.5357 0.8789 0.7150 0.7438

ILNIQE [144] 0.9153 0.8417 0.8802 0.7391 0.3669 0.4248 0.6900 0.5148 0.8915 0.8821 0.7915 0.5797 0.7078

PSNR 0.8731 0.9073 0.9218 0.8246 0.6553 0.5763 0.5784 0.5604 0.6621 0.7088 0.6572 0.5841 0.7048

SISBLIM [32] 0.7835 0.7703 0.8059 0.7622 0.5565 0.6314 0.6554 0.8089 0.8746 0.8782 0.7584 0.3320 0.7008

NRSL [147] 0.9880 0.8965 0.8874 0.8930 0.5732 0.5564 0.6458 0.4088 0.2634 0.5991 0.4684 0.7125 0.6996

NIQE [3] 0.9168 0.7972 0.8710 0.8126 0.4703 0.4180 0.6523 0.5451 0.8713 0.7938 0.7625 0.4510 0.6954

GWHGLBP [142] 0.7447 0.6538 0.6728 0.6243 0.4768 0.4454 0.7032 0.7555 0.9640 0.9751 0.7584 0.4502 0.6672

MEON [146] 0.9906 0.9012 0.9300 0.9215 0.6421 0.5830 0.4861 0.2980 0.0476 0.3257 0.3255 0.7397 0.6441

BIQI [139] 0.9528 0.7763 0.7972 0.6170 0.4976 0.4849 0.6276 0.0077 0.6542 0.4902 0.6591 0.5302 0.6272

BRISQUE [140] 0.9757 0.8401 0.8992 0.8130 0.4727 0.4771 0.4035 0.2209 0.7923 0.2991 0.7385 0.6612 0.6239

WaDIQaM-NR [148] 0.9399 0.8646 0.8636 0.7524 0.4777 0.4691 0.4040 0.1316 0.5012 0.2502 0.6121 0.4830 0.5786

QAC [35] 0.8857 0.8055 0.8415 0.7686 0.4450 0.4566 0.3239 0.2272 0.3959 0.4707 0.5537 0.5282 0.5529

LPSI [145] 0.8333 0.7046 0.7711 0.5865 0.3382 0.3949 0.0306 0.0168 0.8387 0.0012 0.7348 0.4692 0.4254

case with EONSS. By using MEON [146] as an example, we show in the next sub-section,

that the performance of pre-existing DNN based BIQA models can indeed be elevated by

retraining on the Waterloo Exploration-II database. 7) While the performance of EONSS

is a considerable distance away from the state-of-the-art FR method IWSSIM [13] in the all

distortions category (Tables 3.8 and 3.9), its performance is relatively closer to IWSSIM in

the subset distortions category (Tables 3.10 and 3.11). Since the Waterloo Exploration-II

database does not have the wide-ranging distortions of the all distortions category, this

shows that it is possible for a DNN based BIQA method to approach FR performance for

distortion types for which sufficient annotated training data is available. This is no small

achievement for a BIQA method, given that it has no access to the reference image.

We evaluated the computational complexity of all IQA methods under test in terms

of their execution time to determine the quality of a 1024 × 1024 test color image on a

desktop computer with a 3.5 GHz Intel Core i7-7800X processor, 16 GB of RAM, NVIDIA

140



Table 3.12: Statistical significance testing of EONSS through the F-Test with respect

to 2 FR and 14 NR methods on different IQA databases, for All and subset (SS ) dis-

tortions. The order of symbols within each entry is as follows: LIVE R2 (All, SS),

TID2013 (All, SS), CSIQ (All, SS), VCLFER (All), CIDIQ50 (All, SS), CIDIQ100 (All,

SS), MDID (All), MDID2013 (All), LIVE MD (All, Blur-JPEG, Blur-Noise), MDIVL (All,

Blur-JPEG, Noise-JPEG). A “1” means that EONSS performance is statistically better

than the method in the row, a “0” means that it is statistically worse, while a “–” means

that it is statistically indistinguishable. Testing was done at the 5% significance level (95%

confidence). Methods are listed in alphabetical order and FR methods are in bold.
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BIQI [139] –0 11 11 1 11 11 1 – 111 111

BRISQUE [140] 00 1– 1– 1 11 11 1 – 1–1 111

CORNIA [141] 00 – – – – 1 11 11 1 0 0–0 101

dipIQ [36] 00 1– –0 1 –1 –1 1 – 11– 111

GWHGLBP [142] 11 11 11 1 11 11 1 0 000 111

HOSA [143] 00 – – –0 1 11 –1 1 – 101 111

ILNIQE [144] 11 0– 01 1 11 11 1 0 000 111

IWSSIM [13] 00 00 00 – 00 00 0 0 000 0–0

LPSI [145] 11 11 11 1 11 –1 1 – 1–1 111

MEON [146] 00 10 –0 – 11 –1 1 1 111 111

NIQE [3] 11 11 11 1 11 11 1 0 –0– 111

NRSL [147] 00 –0 –1 1 11 –1 1 – 111 111

PSNR 11 0– 01 1 –1 01 1 0 111 111

QAC [35] 11 11 11 1 11 11 1 – 111 111

SISBLIM [32] 11 11 –1 1 11 –1 1 0 000 111

WaDIQaM-NR [148] 01 –0 11 1 11 11 1 – 111 111

GeForce GTX 1050Ti GPU, and Ubuntu 18.04 operating system. The execution times

of all methods are given in Table 3.13, where methods have been sorted in ascending

order with respect to execution time. Since the FR PSNR is the fastest method, we also

provide the execution time relative to PSNR for ease in comparison. The time for DNN

based methods, EONSS, MEON [146], and WaDIQaM-NR [148], was evaluated both on

the GPU and CPU, while that of all other methods was evaluated on the CPU only. It

should be noted that the execution time of some other well-known BIQA methods including
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Table 3.13: Execution Time of FR and NR methods on a test image. Methods are sorted

in ascending order with respect to the execution time. FR methods are highlighted in bold.

FR/NR Method
Processing Execution Time Execution Time

Unit (Seconds) Relative to PSNR

PSNR CPU 0.0013 1.00

LPSI [145] CPU 0.0397 30.54

EONSS GPU 0.0604 46.46

EONSS CPU 0.0817 62.85

MEON [146] CPU 0.0819 63.00

MEON [146] GPU 0.0876 67.38

HOSA [143] CPU 0.1309 100.69

QAC [35] CPU 0.1357 104.38

NRSL1 [147] CPU 0.1421 109.31

GWHGLBP1 [142] CPU 0.1469 113.00

WaDIQaM-NR [148] GPU 0.1549 119.15

BRISQUE [140] CPU 0.1823 140.23

NIQE [3] CPU 0.2941 226.23

BIQI [139] CPU 0.4634 356.46

IWSSIM [13] CPU 0.6067 466.69

dipIQ [36] CPU 1.6592 1276.31

CORNIA [141] CPU 2.0304 1561.85

SISBLIM [32] CPU 2.2005 1692.69

ILNIQE [144] CPU 2.5227 1940.54

WaDIQaM-NR [148] CPU 6.2818 4832.15
1Feature extraction time only.

BLIINDS2 [176], DIIVINE [177], FRIQUEE [179], MS-LQAF [181], NFERM [182], and

TCLT [183], is even more than that of ILNIQE [144], making them infeasible for large-scale

or real-time use, which is why we have not included them in our analysis. It can be seen

from Table 3.13 that the execution time of EONSS is approximately 20 to 30 times faster

than competitive BIQA methods, such as CORNIA [141], dipIQ [36], ILNIQE [144], and

SISBLIM [32]. Thus when Tables 3.8, 3.9, 3.10, 3.11, and 3.12 are considered in conjunction

with Table 3.13, it becomes clear that EONSS not only outperforms the very best methods

in the BIQA field in terms of perceptual quality prediction accuracy on unseen test data,

but that it is also the fastest among them by a wide margin, making it an excellent choice

for practical applications.
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Table 3.14: PLCC and SRCC values for EONSS, EON L, MEONSS, and MEON when

tested on nine subject-rated IQA databases. All distortions in each test dataset were

considered. The Weighted Average PLCC/SRCC are provided in the rightmost column

and methods are sorted in descending order with respect to them.
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PLCC

EONSS 0.9244 0.5442 0.7660 0.9120 0.5798 0.4821 0.8374 0.3020 0.8437 0.8744 0.6933

MEONSS 0.8975 0.4270 0.7359 0.9079 0.4459 0.3218 0.6916 0.2855 0.7885 0.9012 0.6059

MEON 0.9389 0.4919 0.7865 0.9221 0.4774 0.3854 0.5250 0.2430 0.2684 0.5722 0.5630

EON L 0.8586 0.3772 0.6214 0.7557 0.2758 0.1942 0.6293 0.1865 0.4963 0.4238 0.4833

SRCC

EONSS 0.9267 0.5045 0.6774 0.9063 0.4991 0.3448 0.8297 0.2874 0.7260 0.8833 0.6509

MEONSS 0.9060 0.3796 0.6547 0.9087 0.3768 0.1748 0.6985 0.2709 0.6211 0.8918 0.5615

MEON 0.9409 0.3750 0.7248 0.9215 0.4101 0.2497 0.4861 0.2980 0.1917 0.5466 0.4969

EON L 0.8636 0.2464 0.5284 0.7456 0.2245 0.1395 0.5453 0.1343 0.3670 0.3643 0.4006

Waterloo Exploration-II versus a Contemporary IQA Dataset: Impact on DNN

performance

The superior performance of EONSS, as demonstrated in the previous sub-section, can be

directly attributed to the large-scale Waterloo Exploration-II database. We demonstrate

this point more explicitly in this section by comparing the following four models: 1) EONSS

that has been trained on the Waterloo Exploration-II database, 2) We retrain the DNN

architecture employed by EONSS (as described in Section 3.5.1) on the small-scale subject-

rated LIVE R2 database [24] and call this model EON L. 3) As another comparison point,

we consider MEON [146] trained on LIVE R2 database [24]. 4) We retrain the MEON

DNN on the Waterloo Exploration-II database and call it MEONSS. Tables 3.14 and 3.15

show the results for the all and subset distortions categories, respectively, both in terms of

WA PLCC and WA SRCC, where we have sorted methods in the descending order with

respect to their WA PLCC/SRCC values.

It is clear from Tables 3.14 and 3.15 that EONSS massively outperforms EON L in

terms of WA PLCC and WA SRCC, both in the all and subset distortions categories. The

only difference between EONSS and EON L is the training data used (both use exactly the

same DNN). Thus, the enormous superiority of EONSS when compared to EON L can only
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Table 3.15: PLCC and SRCC values for EONSS, EON L, MEONSS, and MEON when

tested on nine subject-rated IQA databases. A subset of distortions in each test dataset

were considered. The Weighted Average PLCC/SRCC are provided in the rightmost col-

umn and methods are sorted in descending order with respect to them.
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PLCC

EONSS 0.9462 0.8751 0.9291 0.9120 0.7973 0.8082 0.8374 0.3020 0.8622 0.8337 0.9232 0.8918 0.8430

MEONSS 0.9213 0.8255 0.9125 0.9079 0.6307 0.5836 0.6916 0.2855 0.8019 0.7911 0.9104 0.9333 0.7668

MEON 0.9907 0.9053 0.9423 0.9221 0.6620 0.6510 0.5250 0.2430 0.2675 0.4927 0.3875 0.7405 0.6763

EON L 0.8769 0.8006 0.7562 0.7557 0.3551 0.3854 0.6293 0.1865 0.5556 0.5342 0.5663 0.3602 0.6039

SRCC

EONSS 0.9499 0.8446 0.8969 0.9063 0.7885 0.7553 0.8297 0.2874 0.7348 0.7331 0.8754 0.9085 0.8205

MEONSS 0.9280 0.8151 0.9095 0.9087 0.6199 0.5428 0.6985 0.2709 0.5756 0.6722 0.8437 0.9365 0.7479

MEON 0.9906 0.9012 0.9300 0.9215 0.6421 0.5830 0.4861 0.2980 0.0476 0.3257 0.3255 0.7397 0.6441

EON L 0.8882 0.7822 0.7706 0.7456 0.3274 0.3495 0.5453 0.1343 0.4309 0.3074 0.3928 0.2620 0.5472

be attributed to the large-scale synthetically-annotated training data that it utilizes, that

is, the Waterloo Exploration-II database, which allows the DNN to learn a robust quality

model. From Tables 3.14 and 3.15 it is also clear that MEONSS outperforms MEON in

terms of WA PLCC and WA SRCC, both in the all and subset distortions categories.

Again, the only difference between MEONSS and MEON is the training data (both use

exactly the same DNN). This again demonstrates the superiority of using the Waterloo

Exploration-II database for BIQA model training.

From Tables 3.14 and 3.15 we can also make the following three observations: 1) It

is evident that the margin with which MEONSS outperforms MEON is smaller than the

one with which EONSS outperforms EON L. 2) It is clear that although both EONSS and

MEONSS are trained on the very large-scale Waterloo Exploration-II database, EONSS

significantly outperforms MEONSS in terms of WA PLCC and WA SRCC, both in the all

and subset distortions categories. 3) However, it can also be seen that although both EON L

and MEON are trained on the small-scale LIVE R2 database [24], MEON significantly

outperforms EON L in terms of WA PLCC and WA SRCC, both in the all and subset

distortions categories. This is a significant finding as it shows that the choice of DNN

network architecture for the BIQA task is strongly impacted by the amount of available
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quality annotated training data. As we have discussed before, MEON [146] takes a multi-

task approach and utilizes two sub-networks, where sub-network 1 performs the task of

distortion type identification for which a large amount of non-quality annotated training

data is made available, and sub-network 2 performs quality prediction using the results

from sub-network 1. On the other hand, EONSS takes a single task approach of quality

prediction and hence its network is simpler compared to MEON. Our results show that

the multi-task DNN model (MEON) performs better when only a small amount of quality

annotated training data is available (MEON outperforms EON L), while the single-task

DNN model (EONSS) performs much better when a very large amount of quality annotated

training data is present (EONSS outperforms MEONSS). This shows that even a simple

single-task network architecture is able to learn an effective quality model in a truly end-

to-end manner given the availability of a large amount of quality annotated training data,

thereby establishing the strength of the large-scale Waterloo Exploration-II database.

While considering model performance on individual datasets in Tables 3.14 and 3.15,

it can be seen that MEON performs better than EONSS and MEONSS on the singly dis-

torted subject-rated databases LIVE R2 [24], TID2013 [19], CSIQ [26], and VCLFER [54],

especially in the subset distortions category. Since MEON is trained on LIVE R2, it is

unfair to compare other models with MEON on this dataset. It is pertinent to mention

that the distortion type distributions, for the subset distortions category, of the TID2013,

CSIQ, and VCLFER databases are similar to that of LIVE R2. Thus, MEON also per-

forms well on these datasets. However, Waterloo Exploration-II, which is a predominantly

multiply distorted dataset and is used to train EONSS and MEONSS, has very different

distortion type distributions compared to these singly distorted subject-rated datasets. It

should also be noted that the reference content of LIVE R2 and TID2013 databases has a

partial overlap. Thus, it is not completely fair to compare the performance of EONSS and

MEONSS with MEON on LIVE R2, TID2013, CSIQ, and VCLFER, as these datasets are

biased in favor of MEON. However, even then the performance of EONSS and MEONSS is

satisfactory and in most cases not that far behind that of MEON on these singly distorted

subject-rated datasets. Further, EONSS performs better than MEON on the TID2013

database in the difficult all distortions category, while it significantly outperforms MEON

on the singly distorted CIDIQ database [5] and the multiply distorted datasets MDID [33],
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LIVE MD [31], and MDIVL [34]. This shows that the alignment of the content and distor-

tion type distributions becomes a crucial factor when training with small-scale datasets.

On the other hand, using a very large-scale dataset for training mitigates the impact of

such distribution misalignment between the training and testing data, thereby leading to

more robust models.

Impact of Training Dataset Size on EONSS Performance

While it is difficult to determine how large the training dataset size should be to learn

effective DNN based BIQA models, we try to answer this question empirically. Specifically,

we consider four subsets of the Waterloo Exploration-II database which contain 1%, 5%,

10%, and 20% reference images of the original dataset along with their respective distorted

versions. Next, we retrain EONSS on these dataset subsets and call the trained versions

EONSS 1, EONSS 5, EONSS 10, and EONSS 20, respectively. While training, we further

split each subset into training, validation, and testing sets which are composed of 60%,

20%, and 20% of subset images, respectively. Tables 3.16 and 3.17 show the results for

the all and subset distortions categories, respectively, both in terms of WA PLCC and

WA SRCC. We have repeated the results for EONSS in these tables, which utilizes 100%

of the Waterloo Exploration-II database for its training, validation, and testing. It can

be observed from these tables that the model performance increases dramatically from

EONSS 1 to EONSS 5 for both the all and subset distortions categories. Substantial

performance increase is further seen from EONSS 5 to EONSS 20 for the subset distortions

category, which we believe is a more accurate category to consider for these experiments

given that training and testing distortion types are more closely aligned. For both the all

and subset distortions categories further performance gain can be seen from EONSS 20 to

EONSS (that uses the entire dataset for training, validation, and testing), however it is

not by a wide margin. While definitive conclusions are hard to make, it can be said that

using more than 20% of the Waterloo Exploration-II database may be a bit redundant. It

should be noted that 20% of the dataset still includes a substantial amount of annotated

data (691,152 distorted images). However, for future dataset releases, this indicates that

instead of having such a large amount of images per distortion type, images belonging to

a more diverse set of distortion types should be considered.
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Table 3.16: PLCC and SRCC values for various versions of EONSS trained on different

subsets of the Waterloo Exploration-II database and tested on nine subject-rated IQA

databases. All distortions in each test dataset were considered. The Weighted Average

PLCC/SRCC are provided in the rightmost column and methods are sorted in descending

order with respect to them.
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PLCC

EONSS 0.9244 0.5442 0.7660 0.9120 0.5798 0.4821 0.8374 0.3020 0.8437 0.8744 0.6933

EONSS 20 0.9231 0.5637 0.7678 0.9050 0.5800 0.4629 0.8014 0.2346 0.8330 0.8749 0.6890

EONSS 10 0.9146 0.5788 0.8112 0.8809 0.4723 0.4081 0.7701 0.5231 0.8089 0.8538 0.6856

EONSS 5 0.8972 0.5807 0.7775 0.8839 0.4359 0.3693 0.7634 0.2867 0.7922 0.8699 0.6681

EONSS 1 0.7637 0.5026 0.7438 0.6292 0.2608 0.2608 0.5662 0.0570 0.6038 0.6988 0.5334

SRCC

EONSS 0.9267 0.5045 0.6774 0.9063 0.4991 0.3448 0.8297 0.2874 0.7260 0.8833 0.6509

EONSS 20 0.9214 0.5165 0.6651 0.9053 0.5097 0.3530 0.7919 0.2163 0.7278 0.8736 0.6451

EONSS 10 0.9107 0.5232 0.7260 0.8879 0.4395 0.3314 0.7615 0.4050 0.6923 0.8495 0.6420

EONSS 5 0.8895 0.5407 0.6794 0.8899 0.4094 0.3057 0.7544 0.2622 0.6907 0.8724 0.6335

EONSS 1 0.7373 0.4377 0.6600 0.6432 0.2426 0.2164 0.5163 0.0268 0.5289 0.6899 0.4866

Table 3.17: PLCC and SRCC values for various versions of EONSS trained on different

subsets of the Waterloo Exploration-II database and tested on nine subject-rated IQA

databases. A subset of distortions in each test dataset were considered. The Weighted

Average PLCC/SRCC are provided in the rightmost column and methods are sorted in

descending order with respect to them.
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PLCC

EONSS 0.9462 0.8751 0.9291 0.9120 0.7973 0.8082 0.8374 0.3020 0.8622 0.8337 0.9232 0.8918 0.8430

EONSS 20 0.9403 0.8705 0.9244 0.9050 0.7899 0.7925 0.8014 0.2346 0.8753 0.7971 0.9116 0.8882 0.8250

EONSS 10 0.9385 0.8687 0.9264 0.8809 0.6121 0.6421 0.7701 0.5231 0.8301 0.7963 0.8685 0.8719 0.8007

EONSS 5 0.9117 0.8515 0.9146 0.8839 0.5641 0.5904 0.7634 0.2867 0.8297 0.7717 0.9100 0.8719 0.7762

EONSS 1 0.8038 0.7663 0.8037 0.6292 0.2450 0.3184 0.5662 0.0570 0.6429 0.5981 0.7439 0.6957 0.5883

SRCC

EONSS 0.9499 0.8446 0.8969 0.9063 0.7885 0.7553 0.8297 0.2874 0.7348 0.7331 0.8754 0.9085 0.8205

EONSS 20 0.9402 0.8411 0.8875 0.9053 0.7749 0.7331 0.7919 0.2163 0.7839 0.6893 0.8655 0.8907 0.8010

EONSS 10 0.9385 0.8258 0.8871 0.8879 0.6112 0.6115 0.7615 0.4050 0.7020 0.6949 0.8257 0.8800 0.7737

EONSS 5 0.9070 0.8049 0.8635 0.8899 0.5664 0.5569 0.7544 0.2622 0.7236 0.6657 0.8711 0.8803 0.7528

EONSS 1 0.7803 0.6809 0.7306 0.6432 0.2677 0.2811 0.5163 0.0268 0.5545 0.5157 0.6809 0.7137 0.5498
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3.6 Practical Application

The practical applications of the work done in this chapter are as follows:

� Since EONSS has outperformed the very state-of-the-art in BIQA, both in terms of

perceptual quality prediction and speed, it can be used in real-world scenarios that

require BIQA, as long as the expected distortion types have an overlap with what

EONSS has been trained for, i.e., the distortions found in the Waterloo Exploration-II

database.

� As mentioned in Section 3.5, EONSS has a relatively simple architecture since our

focus was to investigate the impact of data on DNN performance in BIQA. Since

we are publicly releasing the Waterloo Exploration-II database, more sophisticated

DNN based IQA models (FR, RR, or NR) can be developed and trained on this

dataset with the aim to perform better than the performance baseline established by

EONSS.

� The alternative quality annotation mechanism developed in this chapter, SQB, can

be used to annotate any number of new IQA datasets which can be even larger than

the Waterloo Exploration-II database, thereby leading to even more diverse datasets

for training machine learning based IQA models.

3.7 Summary

Although DNN based models have led to tremendous progress in the area of visual recogni-

tion, such breakthroughs have not been witnessed thus far in the area of DNN based BIQA

models, mainly due to the lack of large-scale annotated training data in the IQA field.

Researchers have tried to address this issue by relying on data augmentation and primar-

ily focusing on the design of DNN architectures and training methods, but have achieved

only limited success. Perhaps the biggest contribution of the current work is to show that

the quality and quantity of the training data plays an even more important role in the

success of DNN approaches. In this chapter we have developed the largest IQA dataset
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to-date, called the Waterloo Exploration-II database, which has 3,570 pristine reference

and around 3.45 million, singly and multiply, distorted images. Since it is not possible to

quality-annotate such a large number of images through subjective experiments, we have

developed a novel alternative mechanism, based on reciprocal rank fusion, to syntheti-

cally assign quality labels to the images of this dataset. Extensive tests on subject-rated

datasets, reveal that these synthetic quality benchmark labels are highly accurate in per-

ceptual quality prediction and perform better than the very best of FR IQA methods. To

demonstrate the validity of our approach, we have developed a new DNN based BIQA

model called EONSS, which is trained on the Waterloo Exploration-II database and tested

on nine subject-rated IQA datasets without any retraining or fine-tuning.

We have comprehensively demonstrated in Section 3.5.2 that EONSS not only outper-

forms other methods, that are regarded as the very state-of-the-art in BIQA, in terms

of perceptual quality prediction performance, but is also the fastest among them by a

wide margin. These characteristics make EONSS the very best in the field of blind image

quality assessment as it exists today. As discussed in Section 3.5.1, EONSS has a rela-

tively simple network architecture, when compared to other DNN based BIQA methods,

such as MEON [146], WaDIQaM-NR [148], and other methods discussed in Section 3.2.2.

Therefore, the success of EONSS can be attributed to the synthetically labeled Waterloo

Exploration-II database, whose enormity and content-diversity has provided sufficient data

to the DNN to learn a robust BIQA model in a truly end-to-end manner. The overall high

performance of EONSS, especially on the subset distortion category, shows that it does not

suffer from overfitting issues compared to other BIQA methods. Since we have trained

EONSS on the synthetically annotated Waterloo Exploration-II database, and have used

the nine subject-rated datasets only for testing, this also validates the effectiveness of our

synthetic annotation approach for labeling very large-scale IQA datasets.
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Chapter 4

Degraded Reference Image Quality

Assessment

In practical media distribution systems, visual content usually undergoes multiple stages

of quality degradations along the delivery chain between the source and destination. In

addition to the final version, a number of earlier degraded versions of such content are

available as it passes through the distribution system, however, the pristine original version

is seldom available. The inaccessibility to the pristine quality version of visual content

renders the full-reference (FR) and reduced-reference (RR) image quality assessment (IQA)

methods infeasible for practical application. While no-reference (NR) or BIQA methods are

readily applicable at the final destination, these methods have not yet reached a robust level

of performance. While the availability of additional degraded versions of visual content

may be beneficial to the task of IQA of the final distorted images, none of the major

IQA paradigms (FR, RR, NR) have the capability to utilize this additional information.

Thus, practically applicable IQA models are still lacking. In this chapter, we analyze the

performance of contemporary FR and NR methods in evaluating the quality of multiply

distorted content. Next, we make one of the first attempts to comprehensively study the

behavior of five different multiple distortion combinations in a two-stage distortion pipeline.

We use the insights thus gained to introduce a major new paradigm which we call degraded-

reference (DR) IQA and develop first-of-their-kind IQA models that estimate the quality of
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Figure 4.1: General framework of FR, RR and NR IQA.

the final distorted images by incorporating information from earlier degraded references. To

aid in our development of such models, we also develop two new DR IQA databases that are

used for model parameter estimation, and for model training and validation. These datasets

have more than 30,000, mostly multiply distorted, images each, and we annotate them

with the synthetic quality benchmark (SQB) developed in the previous chapter. Extensive

performance evaluation of the DR IQA models reveals that they perform significantly

better than contemporary FR and NR methods when applied in a multiple distortions

environment.

4.1 Introduction

Objective IQA methods aim to predict the quality of images perceived by human eyes.

As defined in earlier chapters, depending upon the accessibility to the pristine reference

content, they are traditionally classified into full-reference (FR), reduced-reference (RR)

and no-reference (NR) or BIQA methods [11,12], as illustrated in Figure 4.1. These three

different categories of objective IQA methods essentially constitute three major paradigms

in which contemporary image and video quality assessment research is ongoing. However,

each of them has certain limitations:
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� Full-Reference quality assessment algorithms need access to a pristine reference image

in order to compute the quality score of distorted content. This has two drawbacks:

1. In practice, perfect-quality pristine reference images may not exist because all

digital images captured from the real world are affected by sensor noise. Even if

a digital camera sensor of exceptionally high quality is used, a number of other

factors such as exposure conditions, stability of camera platform, etc., may not

be perfect.

2. Even if we regard a high quality image with an acceptable amount of distortion

as a “pristine” reference, access to such content may be limited in practical image

distribution systems. Such images typically have very large data rate, which

restricts their transmission over various networks, effectively limiting access to

them.

� Although reduced-reference quality assessment algorithms only require some features

from the reference image, access to the pristine reference image is still needed in order

to extract those reference features. Moreover, additional cost such as an error-free

ancillary channel needs to be paid to transmit the RR features. This also restricts

the use of reduced-reference quality assessment algorithms.

� No-reference quality assessment algorithms do not suffer from the limitations of full-

reference or reduced-reference algorithms since they do not need access to pristine ref-

erence content. However, their performance does not match that of the full-reference

algorithms (as shown in Chapter 2). In addition, no-reference methods cannot check

the fidelity against the original signals. As a result, a high-score of no-reference

models cannot ensure the authenticity of the image data.

In the literature, the development of FR, RR, and NR IQA algorithms usually follows

the general framework depicted in Fig. 4.1, that is, they are usually tested and at times

trained on image databases of different distortion types, but typically, each distorted image

has undergone a single stage of distortion. This is in clear contrast to real-world visual

content distribution scenarios, as illustrated in Figure 4.2, where visual content may have
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undergone multiple stages of distortions before reaching the target consumer devices, cast-

ing major challenges for the single distortion IQA framework of Fig. 4.1. Some examples

are given as follows:

� Most consumer cameras and camcorders, including mobile phone cameras, store cap-

tured content using lossy compression standards such as JPEG and H.264/MPEG-4.

When these images and videos are uploaded to a social networking website or a video-

sharing website, they usually undergo another round of compression. For example:

– YouTube recommends that 1080p videos having a standard frame rate (24, 25

and 30 frames per second) should have a bit rate of 8 Mbps if they are to be

uploaded to YouTube [210]. In practice, this is often not satisfied. Moving for-

ward, YouTube decodes and then transcodes such videos into a set of derivative

video streams of different bandwidths and resolutions for onward delivery to

viewers. This essentially means multiple levels of compression.

– A similar example applies to images as well. It is known that Facebook com-

presses images if the file size is above a threshold [211]. Thus, a JPEG com-

pressed image that is uploaded to Facebook may undergo further compression.

� A content producer or provider may send compressed content to a video distributor,

who may subsequently compress the content again before transmitting to end users.

� An image or video maybe contaminated by noise or blur during acquisition because

of different factors such as the limitation of the digital camera sensor [206], the
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lack of sufficient exposure conditions, inadequate lighting, motion of photographer

or object being photographed, etc. The camera will store this content in compressed

form which may be followed by further compression during its distribution. This

essentially means noise contamination followed by compression or blur followed by

compression.

� Compressed medical images provide another example of content afflicted by multiple

distortion stages. It is known that magnetic resonance (MR) images are affected by

noise that has a Rician probability density function (PDF) [212], low-dose computed

tomography (CT) images are affected by noise that has a Gaussian PDF [213], and

Ultrasound images are affected by speckle noise [214]. With the rapid increase in the

resolution and volume of medical images and with the emergence of tele-medicine, it

is now desirable to reduce the data rate of medical images by lossy image compression

as long as it does not affect the diagnostic quality [215,216]. This leads to a distortion

combination of noise followed by lossy compression.

� Compressed astronomical images provide yet another example of noise followed by

lossy compression since astronomical images are contaminated by noise [217].

From the above discussion it can be seen that even if we start with a pristine reference

image, it may be affected by multiple stages of distortions by the time it reaches the

end user. The distortions at different stages may be similar or different giving rise to

a number of distortion combinations. The requirement for IQA methods that deal with

multiple simultaneous distortions is not new (for example, see [218]), however, designing

such IQA methods is quite challenging since the interactions of different distortions need

to be accounted for. Thus, IQA for images with multiple simultaneous distortions has

been a major challenge that future research needs to address [219]. As discussed earlier, in

practical media delivery systems, access to pristine reference images is either extremely rare

or altogether nonexistent, especially at the end user level. This, coupled with the multiple

distortion nature of such systems, makes the use of FR and RR IQA infeasible. While NR

IQA methods can be used to determine the quality of the final distorted image, most NR

methods are trained and tested on subject-rated databases that have images with a single

stage of distortion (see Section 2.3.3). Although there have been recent advances in the

154



design of NR IQA methods to handle multiply distorted images using some new databases,

such progress remains limited in scope. SISBLIM [32] is a training-free metric designed for

singly and multiply distorted images through the fusion of estimates of noise, blur, JPEG

compression, and joint effects. BoWSF [220] selects features sensitive to different distortion

types, which are encoded through a Bag-of-Words model and mapped to a quality score.

LQAF [221] uses SVR to map features such as phase congruency, gradient magnitude, gray

level gradient co-occurrence matrix and the contrast sensitivity function to quality scores.

An enhanced and multi-scale version of LQAF, called MS-LQAF is proposed in [181].

The training-based GWHGLBP [142] uses the gradient-weighted histogram of the local

binary pattern (LBP) generated on the gradient map of the distorted image to capture the

effects of multiple distortions. Jet-LBP [180] uses color Gaussian jets to generate feature

maps from a distorted image. The LBP is applied to these feature maps to ascertain the

effect of multiple distortions, leading to a weighted histogram which is mapped to quality

scores through SVR. MUSIQUE [37] handles multiply distorted images and operates by

performing distortion identification followed by distortion parameter estimation and score

generation. However, due to their fundamental design philosophy, a major limitation of

NR IQA algorithms is that they are incapable of incorporating various versions of an image

as it progresses through the media delivery chain in the quality assessment task, even if

such additional information is available.

With regard to the framework for practical media distribution systems depicted in Fig.

4.2, the question is: How should the available information about distorted images at mid-

stages be best utilized to ascertain the quality of the final multiply distorted image in the

absence of the pristine reference? A pioneering work in this direction is the corrupted-

reference (CR) IQA scheme laid out in the context of an image restoration problem [205,

222, 223]. The quality of the denoised image with respect to an absent pristine reference

image is estimated by using a Gaussian or Poisson noise contaminated corrupted reference

image. However, CR IQA does not apply when determining the quality of a general

final distorted image, outside of the restoration context. The recently developed two-step

quality assessment (2stepQA) scheme [1, 2] is directly relevant to the practical quality

assessment framework of Fig. 4.2. It is developed for images that have been afflicted

with two distortions, where the second distortion is compression. 2stepQA operates in the
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absence of pristine reference images but assumes that both stage-1 (distorted reference)

and stage-2 (final compressed) images are available. It uses an FR method to determine

the quality of the final compressed image with respect to the non-compressed yet distorted

reference image. The quality of the distorted reference image is itself determined through

the use of an NR method. The FR and NR quality scores are then combined as a weighted

product. The publicly released version of 2stepQA is as follows:

Q2stepQA = MSSSIM ·
(

1− NIQE

α

)
(4.1)

where the FR score is obtained by using MSSSIM [4] (i.e., QFR = MSSSIM), and the

NR score is obtained by using NIQE [3] and rescaled so that it is in the same range as

MSSSIM (i.e., QNR = 1− NIQE
α

, where α = 100 is used). Apart from this publicly released

version of 2stepQA, other combinations of NR (NIQE [3], BRISQUE [140], CORNIA [141],

PQR [167]) and FR (PSNR, MSSSIM [4], FSIM [14], VSI [15]) methods are also evaluated

in [2] on the LIVE Wild Compressed Picture Quality Database. While 2stepQA [1,2] is a

pioneering work to access the quality of a multiply distorted compressed image given its

earlier distorted reference, it does not take into account how different distortions behave in

conjunction with each other and is a rather ad hoc combination of an NR and FR method.

In this chapter, we make one of the first attempts to develop IQA models that evaluate

the quality of multiply distorted images by taking into account how different distortions

interact with each other. We start by restricting ourselves to two stages of distortion. Thus,

a pristine reference image will lead to a degraded reference image after passing through

stage-1 distortion and a degraded reference image will lead to a final distorted image after

passing through stage-2 distortion. We discussed earlier that access to pristine reference

images is limited in practice. Therefore, in a practical two-stage distortion scenario, the

task of image quality assessment may be defined as follows:

Definition 1 Degraded-reference image quality assessment - Determining the quality of a

final distorted image given access to a degraded reference image, but with no access to the

pristine reference image.
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The above-mentioned definition leads to a degraded reference image quality assessment

(DR IQA) framework, which we believe is the fourth major paradigm in IQA research, the

other three being FR, RR, and NR IQA.

4.2 Baseline Performance Evaluation

Before moving on to the development of DR IQA models, we first evaluate the performance

of some FR and NR methods, and the 2stepQA [1, 2] model on multiply distorted images

in the next section. This will establish a baseline against which the performance of DR

IQA models, developed later in this chapter, will be evaluated.

4.2.1 Databases, Methods and Criteria used for Comparison

In this sub-section, we define the IQA databases and evaluation criteria that will be used

to not only evaluate the performance of baseline methods in this section, but will also be

used to evaluate the performance of DR IQA methods built later in this chapter.

Databases

We will use the following four IQA databases for performance evaluation:

1. The Waterloo Exploration-II (Waterloo Exp-II) database that we constructed

and described in detail in Chapter 3 (see Section 3.3). From Table 3.3 it can be seen

that this dataset has 3,570 pristine, 39,270 singly distorted images each for Blur,

JPEG compression, and Noise, and 667,590 multiply distorted images each for the

distortion combinations of Blur-JPEG, Blur-Noise, JPEG-JPEG, Noise-JPEG, and

Noise-JPEG2000. The singly distorted images can essentially be regarded as degraded

references while the multiply distorted images can be regarded as final distorted

images in a 2-stage distortion process. As noted in Chapter 3, it is not possible

to acquire annotations for such a large dataset from human subjects, and thus the
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quality labels for this dataset, which we called synthetic quality benchmark (SQB),

have been generated by fusing the results from four state-of-the-art FR methods.

The SQB generation process has been described in detail in Section 3.4.2.

2. The recently released LIVE Wild Compressed (LIVE WCmp) database [1, 2,

224] is composed of 400 images. It starts with 80 authentically distorted images

that it takes from the LIVE Wild Challenge database [79] (for the definition of

authentically distorted images, see Section 2.2.3), which can be regarded as degraded

references. Each of the 80 authentically distorted images are further compressed using

JPEG compression at four fixed compression levels regardless of content, leading to

a total of 320 final distorted images. Subjective testing was carried out by using the

single stimulus methodology [70] and each subject participated in two 30-minute test

sessions. After undergoing a training session, subjects rated the quality of test images

by moving a slider on a continuous scale that had been marked with five adjectives:

Bad, Poor, Fair, Good, and Excellent (from left to right). Numerical quality scores

in the range of 1 to 100 were sampled from the location of the slider for each test

image. Subjective scores were then computed for each test image in the form of MOS

according to the procedures outlined in [70,225]. It should be noted that this dataset

does not have pristine reference images.

3. The LIVE Multiply Distorted (LIVE MD) database [31,66] has been described

earlier in Section 2.2.2 and in Table 2.2. Suffice it to say that this database consists

of 15 pristine reference images, 45 singly distorted images each for Blur, JPEG Com-

pression and Noise, and 135 multiply distorted images each for the distortion combi-

nations of Blur-JPEG and Blur-Noise. For our analysis, we will consider the singly

distorted Blur images as degraded references and the multiply distorted Blur-JPEG

and Blur-Noise images as the final distorted images. LIVE MD provides subjective

ratings for all its images in the form of DMOS.

4. The Multiple Distorted IVL (MDIVL) database [34, 68, 69] has been described

earlier in Section 2.2.2 and in Table 2.2, where we note that it consists of 10 pristine

reference and 750 multiply distorted images of which 350 belong to the Blur-JPEG

combination while 400 belong to the Noise-JPEG combination. In both these combi-
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nations, the second distortion is JPEG compression. Since the MDIVL database does

not contain any singly distorted images, this limitation apparently makes it infeasible

to include it in our analysis. However, we note that the 350 Blur-JPEG images are

obtained by first distorting the pristine references at seven levels of Gaussian blur

and then further distorting these singly distorted images at five levels of JPEG com-

pression. Similarly, the 400 Noise-JPEG images are obtained by first distorting the

pristine references at ten levels of Gaussian noise and then further distorting these

singly distorted images at four levels of JPEG compression. In both the Blur-JPEG

and Noise-JPEG combinations, the distortion level leading to the least compression

utilizes the MATLAB JPEG compression quality factor of 100 at which compression

artifacts are perceptually unapparent. Thus, we can regard 70 out of 350 Blur-JPEG

images as singly distorted Blur images, and 100 out of 400 Noise-JPEG images as

singly distorted Noise images, thereby providing us with degraded references and

final distorted images. This enables the use of the MDIVL database in our analysis.

MDIVL provides subjective ratings for all its images in the form of MOS.

We believe that the above-mentioned four datasets allow us to: 1) Test the performance

of different models on a very large amount of data by utilizing the synthetically annotated

Waterloo Exploration-II dataset, and 2) Test the performance of different models with

respect to human-rated datasets (LIVE Wild Compressed, LIVE MD, MDIVL). These are

also the only datasets that provide both singly distorted degraded references and their

respective multiply distorted final distorted images. Although two other IQA datasets, the

MDID database [33] and the MDID2013 database [32], contain multiply distorted images,

they do not provide degraded references and hence cannot be used. We will also describe

the construction of two other datasets later in this chapter, which are designed on the

pattern of the very large-scale Waterloo Exploration-II dataset, albeit at a smaller scale.

In terms of content, these datasets do not have any overlap with the four testing databases

mentioned above, and will only be used for model development in the subsequent sections,

not for testing.
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Methods used for Comparison

Even though the FR methods IWSSIM [13], DSS [16], CID MS [95], and VIF DWT [93]

were found to perform well in Section 2.4 (especially IWSSIM and DSS) we do not include

them in our baseline performance analysis here as they are part of the SQB used to annotate

the quality of images in the Waterloo Exploration-II database which is one of the testing

datasets. Outside of these methods, we choose FSIMc [14] as our main FR method since

it outperforms most other FR methods as can be seen in Section 2.4. We also analyze

the performance of the FR method MSSSIM [4] as it is used as the FR component in the

2stepQA model [2]. Among NR methods, we evaluate the performance of CORNIA [141]

and dipIQ [36] as they were found to be the top performers in Section 2.5. We also analyze

the performance of the NR method NIQE [3] as it is used as the NR component in the

2stepQA model [2]. Finally, we evaluate the performance of the 2stepQA model [1, 2] as

well.

Evaluation Criteria

We use the Pearson Linear Correlation Coefficient (PLCC) and the Spearman Rank-order

Correlation Coefficient (SRCC) as measures of a model’s prediction accuracy and prediction

monotonicity, respectively [72]. Both PLCC and SRCC are computed between a model’s

predicted quality scores for dataset images and their MOS/DMOS/SQB values. PLCC

is computed after a nonlinear mapping step whereas SRCC is computed directly. These

evaluation criteria have been described in detail in Section 2.4.1. The computation of

PLCC and SRCC is done at the level of the entire dataset and also for each distortion

combination contained within a dataset. Thus, for the Waterloo Exp-II database, PLCC

and SRCC are computed for the distortion combinations of Blur-JPEG (B-JPG), Blur-

Noise (B-N), JPEG-JPEG (JPG-JPG), Noise-JPEG (N-JPG), Noise-JPEG2000 (N-JP2),

and for the entire dataset (All Data). Additionally, where possible, to allow for better

comparisons with [1, 2], we combine images belonging to distortion combinations where

the final distortion is JPEG compression, i.e., Noise-JPEG, Blur-JPEG, and JPEG-JPEG

and call this subset of multiply distorted images as Noise/Blur/JPEG-JPEG (NBJ-JPG).

160



4.2.2 Performance of FR Methods

FR IQA methods require the availability of a reference image in order to give a quality

score to a distorted image. In a two-stage distortion scenario, where a pristine reference

leads to a degraded reference which further leads to a final distorted image, and given that

FR methods can only compare two images at a time, there are two possibilities when it

comes to determining the quality of the final distorted image by using FR methods:

1. Use FR methods to determine the quality of the final distorted image with respect

to the pristine reference. The quality estimate thus obtained can be regarded as

the absolute quality of the final distorted image as comparison is being made with

the pristine reference. However, as discussed earlier, practically pristine references

do not exist or are unavailable and thus such absolute quality estimates of the final

distorted image are not feasible.

2. Another possibility is to use FR methods to ascertain the relative quality of the

final distorted image with respect to the degraded reference. Such a comparison is

possible owing to the availability of degraded references, however, it does not lead to

an absolute quality estimate since comparison with pristine references is missing.

The premise of DR IQA is that we do not have ready access to the pristine reference

image and thus the absolute quality of the final distorted image cannot be determined

directly. A straightforward method is to use the relative quality of the final distorted

image with respect to the degraded reference as a predictor of its absolute quality. We

regard this approach as the first baseline model and it is depicted in Fig. 4.3. To evaluate

the performance of this baseline model, we use FR methods FSIMc [14] and MSSSIM [4] to

compute the quality of the final distorted images in the Waterloo Exp-II, LIVE MD [31],

MDIVL [34], and LIVE WCmp [2] databases with respect to their degraded references.

These relative quality scores of the final distorted images are then compared with their

respective SQB values (in case of the Waterloo Exp-II database) or with their respective

MOS/DMOS values (in case of the LIVE MD, MDIVL, and LIVE WCmp databases)

through the computation of PLCC and SRCC. The results are given in Table 4.1. However,
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Figure 4.3: Baseline Model 1: Applying FR IQA methods between the degraded reference

and final distorted images.

Table 4.1: Performance of FR methods when used to determine the quality of final distorted

images with respect to degraded references and using it as the final quality measure.

Database
Correlation FR Distortion Combination

Metric Method B-JPG B-N JPG-JPG N-JPG N-JP2 NBJ-JPG All Data

Waterloo

Exp-IIa

PLCC
FSIMc 0.8436 0.8826 0.8276 0.8280 0.8223 0.7980 0.7926

MSSSIM 0.8567 0.9473 0.8340 0.8809 0.8039 0.7498 0.7425

SRCC
FSIMc 0.8442 0.8843 0.7544 0.8195 0.8154 0.7964 0.7816

MSSSIM 0.8561 0.9481 0.7467 0.8803 0.7972 0.7579 0.7293

LIVE

MDb

PLCC
FSIMc 0.2256 0.3882 – – – – 0.3045

MSSSIM 0.2366 0.4270 – – – – 0.2254

SRCC
FSIMc 0.1923 0.3336 – – – – 0.2446

MSSSIM 0.1370 0.3671 – – – – 0.2076

MDIVLb

PLCC
FSIMc 0.5207 – – 0.8111 – – 0.6238

MSSSIM 0.4984 – – 0.8770 – – 0.5985

SRCC
FSIMc 0.4870 – – 0.8243 – – 0.6316

MSSSIM 0.4619 – – 0.8781 – – 0.5698

LIVE

WCmpb,c

PLCC
FSIMc – – – – – – 0.9030

MSSSIM – – – – – – 0.8498

SRCC
FSIMc – – – – – – 0.9024

MSSSIM – – – – – – 0.8469
aPLCC and SRCC are computed with respect to SQB.
bPLCC and SRCC are computed with respect to MOS/DMOS.
cThe LIVE WCmp database has images that have authentic distortions followed by JPEG compression.

Therefore, its PLCC and SRCC values cannot be placed in a particular distortion combination.
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Table 4.2: Performance of FR methods when used to determine the quality of final distorted

images with respect to pristine references.

Database
Correlation FR Distortion Combination

Metric Method B-JPG B-N JPG-JPG N-JPG N-JP2 NBJ-JPG All Data

Waterloo

Exp-IIa

PLCC
FSIMc 0.9153 0.8990 0.9157 0.8932 0.9077 0.9110 0.9094

MSSSIM 0.9363 0.9804 0.9470 0.8980 0.8989 0.9178 0.9043

SRCC
FSIMc 0.9120 0.8956 0.9119 0.8878 0.9065 0.9076 0.9080

MSSSIM 0.9366 0.9809 0.9488 0.8906 0.9100 0.9204 0.9126

LIVE

MDb

PLCC
FSIMc 0.7563 0.7884 – – – – 0.7690

MSSSIM 0.7074 0.7738 – – – – 0.6990

SRCC
FSIMc 0.7066 0.7850 – – – – 0.7517

MSSSIM 0.6844 0.7614 – – – – 0.6941

MDIVLb

PLCC
FSIMc 0.8909 – – 0.9193 – – 0.8874

MSSSIM 0.8370 – – 0.8996 – – 0.8645

SRCC
FSIMc 0.8402 – – 0.8765 – – 0.8354

MSSSIM 0.7978 – – 0.8175 – – 0.8041
aPLCC and SRCC are computed with respect to SQB.
bPLCC and SRCC are computed with respect to MOS/DMOS.

these results cannot be considered independently as they are for the relative quality scenario

whereas FR methods require the reference image to be of pristine quality. Thus, it is hard to

pinpoint, solely by looking at Table 4.1, whether any loss of performance is due to the nature

of the baseline model (Fig. 4.3) or due to any issues within the FR methods themselves.

To alleviate this issue, we also use the above-mentioned FR methods to compute the

absolute quality scores of the final distorted images with respect to their pristine references

for each database and present the PLCC and SRCC results in Table 4.2 which is a true

representation of the performance of these FR methods when used to determine the quality

of multiply distorted images. Since the LIVE WCmp database does not have pristine

references, absolute quality scores for its final distorted images cannot be computed and

hence it is not present in Table 4.2. When Tables 4.1 and 4.2 are considered together,

it can be observed that the first baseline model, based on the relative FR quality scores

between the final distorted and degraded reference images, is not a good predictor of the

absolute FR quality scores between the final distorted and pristine reference images. This

is apparent for all individual distortion combinations, for the NBJ-JPG case (Waterloo

Exp-II database), and for the entire dataset case, for the Waterloo Exp-II, LIVE MD, and

MDIVL databases (the only exception being the SRCC value of MDIVL for the N-JPG
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Figure 4.4: Baseline Model 2: Applying NR IQA methods directly to final distorted images.

case). The loss in performance is at times quite significant, for example, for the entire

LIVE MD database and its two distortion combinations, for the entire MDIVL database

and its B-JPG distortion combination, for the entire Waterloo Exp-II database and its B-

JPG, JPG-JPG, N-JPG (only for FSIMc), N-JP2, and NBJ-JPG distortion combinations.

Thus, it can be concluded that the first baseline model depicted in Fig. 4.3 is not a good

predictor of the quality of multiply distorted images.

4.2.3 Performance of NR Methods

A simple counterargument to the entire premise of DR IQA is why not simply use NR

IQA methods to predict the quality of the final distorted images directly. Many NR IQA

algorithms exist currently and they do not need any reference image to calculate the qual-

ity score for a given distorted image. Thus, we consider the use of NR IQA methods as

our second baseline model as depicted in Fig. 4.4. To evaluate the performance of this

baseline model, we use NR methods CORNIA [141], dipIQ [36], and NIQE [3] to directly

compute the quality of the final distorted images in the Waterloo Exp-II, LIVE MD [31],

MDIVL [34], and LIVE WCmp [2] databases. Table 4.3 depicts the PLCC and SRCC

values computed between these NR predicted quality scores and the SQB (Waterloo Exp-

II database) or MOS/DMOS (LIVE MD, MDIVL, LIVE WCmp databases) values of the
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Table 4.3: Performance of NR methods when used to determine the quality of final distorted

images and using it as the final quality measure.

Database
Correlation NR Distortion Combination

Metric Method B-JPG B-N JPG-JPG N-JPG N-JP2 NBJ-JPG All Data

Waterloo

Exp-IIa

PLCC

CORNIA 0.8918 0.6205 0.7512 0.7832 0.6943 0.8172 0.7553

dipIQ 0.8522 0.9414 0.8790 0.8462 0.8380 0.8422 0.8532

NIQE 0.7741 0.8941 0.7084 0.6368 0.6913 0.7030 0.7137

SRCC

CORNIA 0.8955 0.5940 0.7539 0.7826 0.7131 0.8101 0.7576

dipIQ 0.8508 0.9443 0.8786 0.8403 0.8549 0.8437 0.8516

NIQE 0.7670 0.8939 0.6978 0.6150 0.6975 0.6890 0.6891

LIVE

MDb

PLCC

CORNIA 0.7141 0.8144 – – – – 0.7360

dipIQ 0.5238 0.6603 – – – – 0.5531

NIQE 0.7677 0.6670 – – – – 0.5802

SRCC

CORNIA 0.6897 0.7997 – – – – 0.7278

dipIQ 0.4823 0.5706 – – – – 0.4548

NIQE 0.7487 0.6359 – – – – 0.5512

MDIVLb

PLCC

CORNIA 0.9331 – – 0.7748 – – 0.7963

dipIQ 0.8298 – – 0.8074 – – 0.7514

NIQE 0.7910 – – 0.5357 – – 0.5731

SRCC

CORNIA 0.9202 – – 0.8101 – – 0.8157

dipIQ 0.6561 – – 0.8393 – – 0.7423

NIQE 0.7558 – – 0.5791 – – 0.5946

LIVE

WCmpb,c

PLCC

CORNIA – – – – – – 0.8424

dipIQ – – – – – – 0.7978

NIQE – – – – – – 0.8314

SRCC

CORNIA – – – – – – 0.8471

dipIQ – – – – – – 0.7868

NIQE – – – – – – 0.8327
aPLCC and SRCC are computed with respect to SQB.
bPLCC and SRCC are computed with respect to MOS/DMOS.
cThe LIVE WCmp database has images that have authentic distortions followed by JPEG compression.

Therefore, its PLCC and SRCC values cannot be placed in a particular distortion combination.

final distorted images. The following observations can be made: 1) The performance of all

three NR methods being tested shows significant room for improvement when it comes to

evaluating the quality of multiply distorted images. While there are exceptions, for exam-

ple, CORNIA performs well for the B-JPG case of Waterloo Exp-II and MDIVL databases,

NIQE performs well for the B-N case of the Waterloo Exp-II database, and both COR-

NIA and NIQE perform satisfactorily on the LIVE WCmp database, these NR methods

perform unsatisfactorily for other distortion combinations and for the entire dataset case

of the Waterloo Exp-II, LIVE MD and MDIVL databases. Such inconsistencies indicate
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that these methods do not offer reliable performance. 2) It can be seen from Table 4.3

that dipIQ performs rather well across all distortion combinations and for the entire data

case of the Waterloo Exp-II database. However, it should be noted that the SQB quality

labels of images in the Waterloo Exp-II database were generated through a rank-based

method (RRF [23]) while dipIQ [36] also uses a rank-based algorithm (RankNet [170]).

Thus, the Waterloo Exp-II database may not lead to a completely unbiased evaluation of

dipIQ and other datasets should also be considered for its performance evaluation. 3) A

comparison of Table 4.3 with Table 4.1 shows that the NR based baseline model performs

better than the FR based baseline model on the entire LIVE MD database and both its

distortion combinations, and also on the entire MDIVL database and its B-JPG distortion

combination. However, the FR based baseline model does better than the NR based base-

line model in case of the LIVE WCmp database and the N-JPG distortion combination

of the MDIVL database. For the Waterloo Exp-II database, the FR based baseline model

performs better on the JPG-JPG, N-JPG and N-JP2 distortion combinations and on the

entire dataset, while the NR based baseline model performs better on the B-JPG (except

NIQE), B-N (except CORNIA) and the NBJ-JPG (except NIQE) distortion combinations.

4) A comparison of Table 4.3 with Table 4.2 shows that the NR based baseline model

cannot outperform the FR based absolute quality scores between the final distorted and

pristine reference images on the Waterloo Exp-II database. On the LIVE MD database,

CORNIA and NIQE offer performance comparable to the FR based absolute quality scores

for the B-JPG distortion combination. For the B-N combination and the all data case of

the LIVE MD database and for both distortion combinations and the all data case of the

MDIVL database, the NR based baseline model cannot outperform the FR based absolute

quality scores with the exception of CORNIA which either performs better or in a compa-

rable manner. From the above discussion, it can be concluded that the NR based baseline

model, depicted in Fig. 4.4, does not offer robust performance while evaluating the quality

of multiply distorted images. This can be attributed to the difficult nature of the NR IQA

design philosophy, where the quality of an image has to be determined without the help of

any side information, which is why NR IQA is also referred to as blind IQA. The case of

multiply distorted images further complicates the NR IQA task.
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Table 4.4: Performance of the LIVE 2stepQA model [1, 2]. NIQE [3] is used to determine

the quality of the degraded reference and MSSSIM [4] is used to determine the quality of

the final distorted image with respect to the degraded reference.

Database
Correlation Distortion Combination

Metric B-JPG B-N JPG-JPG N-JPG N-JP2 NBJ-JPG All Data

Waterloo

Exp-IIa
PLCC 0.9340 0.9696 0.8951 0.8420 0.7213 0.7709 0.7140

SRCC 0.9337 0.9708 0.8669 0.8342 0.7162 0.7797 0.7274

LIVE

MDb

PLCC 0.7746 0.6730 – – – – 0.6500

SRCC 0.7530 0.5356 – – – – 0.5318

MDIVLb PLCC 0.8697 – – 0.7964 – – 0.8149

SRCC 0.8539 – – 0.7685 – – 0.7713

LIVE

WCmpb,c

PLCC – – – – – – 0.9229

SRCC – – – – – – 0.9246
aPLCC and SRCC are computed with respect to SQB.
bPLCC and SRCC are computed with respect to MOS/DMOS.
cThe LIVE WCmp database has images that have authentic distortions followed by JPEG compression.

Therefore, its PLCC and SRCC values cannot be placed in a particular distortion combination.

4.2.4 Performance of the 2stepQA Model

Since the 2stepQA [1,2] (discussed in Section 4.1) is the only model that utilizes the qual-

ity information about the degraded reference while determining the quality of a multiply

distorted image, establishing its performance on our test datasets as a third baseline is

essential so that the performance of DR IQA models developed later in this chapter can

be compared with it. We also compare the performance of 2stepQA with that of the first

and second baseline models discussed in Sections 4.2.2 and 4.2.3, respectively.

As discussed earlier, 2stepQA evaluates the NR score of a degraded reference image

by using NIQE [3] and the relative FR score of the final distorted image with respect

to the degraded reference by using MSSSIM [4], and then combines these two scores as

given in Equation 4.1. We apply the 2stepQA approach to determine the quality of the final

distorted images of the Waterloo Exp-II, LIVE MD [31], MDIVL [34], and LIVE WCmp [2]

databases. Table 4.4 depicts the PLCC and SRCC values computed between these 2stepQA

model predicted quality scores and the SQB (Waterloo Exp-II database) or MOS/DMOS

(LIVE MD, MDIVL, LIVE WCmp databases) values of the final distorted images. The

following observations can be made: 1) The 2stepQA model performs well on the B-JPG, B-
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N, and JPG-JPG cases of the Waterloo Exp-II database, on the B-JPG case of the MDIVL

database, and on the LIVE WCmp database. It also performs satisfactorily on the N-JPG

combination of the Waterloo Exp-II database. However, it does not perform well on the

N-JP2, NBJ-JPG, and the all data cases of the Waterloo Exp-II database. It also does not

perform well on the entire LIVE MD database and its distortion combinations, and on the

N-JPG and all data cases of the MDIVL database. 2) When Table 4.4 is compared with

Table 4.1, it can be seen that the 2stepQA model is unable to perform better than the FR

based baseline model on the Waterloo Exp-II database for the cases of N-JPG (MSSSIM

performs better), N-JP2, NBJ-JPG (FSIMc performs better), and the all data case, and

on the MDIVL database for the case of N-JPG. However, it performs better than the FR

based baseline model in all other cases. 3) When Table 4.4 is compared with Table 4.3,

it can be seen that while the 2stepQA model performs better than the NR based baseline

model for quite a number of cases, it is itself outperformed by NR models on some cases,

such as by CORNIA on the NBJ-JPG and all data cases of the Waterloo Exp-II database,

by CORNIA on the B-N and all data cases of the LIVE MD database, by CORNIA on the

B-JPG case and by dipIQ on the N-JPG case of the MDIVL database. It should be noted

that we are not comparing the performance of dipIQ with 2stepQA on the Waterloo Exp-II

database as this dataset may favor the former. 4) When Table 4.4 is compared with Table

4.2, it can be observed that 2stepQA is only able to perform better than the FR based

absolute quality scores on the B-JPG cases of the LIVE MD and MDIVL databases. For all

other cases, the 2stepQA model is outperformed by the FR based absolute quality scores,

sometimes quite significantly. It can be concluded from the above analysis that while the

2stepQA model performs adequately for some distortion combinations (B-JPG, B-N, JPG-

JPG), its performance remains lacking in other distortion combinations (N-JPG, N-JP2,

NBJ-JPG, all data) and there is substantial room for improvement, which highlights the

need for further research in the area of IQA of multiply distorted images.

4.3 Degraded Reference IQA: A New Paradigm

Research on the development of IQA models for multiply distorted images has thus far

almost exclusively focused on the formation of NR models, as discussed in Section 4.1.
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Given the framework of practical media distribution systems, as depicted in Fig. 4.2,

earlier degraded versions of a final distorted image maybe available for the task of quality

assessment of the final image. For example, at an encoder, both the input and output

images are available for the task of quality assessment of the output image. However, due

to their design philosophy, NR methods are unable to use this additional information about

the final distorted image. Thus, the area of image quality assessment of a final distorted

image, that takes into account its earlier degraded versions, is quite new. The only known

work in this area is the development of the 2stepQA model [1,2], whose performance shows

significant room for further development as evident from Section 4.2.4. Our aim in this

chapter is to make a first attempt to comprehensively explore this new area.

Given the diverse nature of this topic and the lack of substantial research in it thus far,

the first questions that arise are: Where should we start? How many stages of distortions

should be considered? What kind of distortions should be considered? We answer these

questions as follows:

� While practical images and videos may undergo many stages of distortions between

the source and the end user, we begin by considering only two stages of distortions

between the original source and the final destination. Since the interaction of even

two simultaneous distortions has not been studied in depth so far, we believe this

to be a logical starting point. Thus, an original source will generate a Pristine

Reference (PR) image which will undergo stage-1 distortion and lead to a Degraded

Reference (DR) image, which will itself undergo stage-2 distortion and lead to the

Final Distorted (FD) image.

� As discussed in Section 2.2.3, IQA data can either be composed of authentic or simu-

lated distortions. As the names imply, the former kind of distortions are captured in

the real world whereas the latter are added to source content in a controlled manner,

i.e., the distortion process is known. Intuitively, research on IQA models for multiply

distorted content should focus on authentically distorted images as they are multiply

distorted by their very nature. However, given the diverse nature of authentic dis-

tortions and the lack of understanding of how even well-known simulated distortions
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behave in conjunction with each other, we restrict ourselves to simulated distor-

tion content. Specifically, we consider Gaussian noise, Gaussian blur, and JPEG

compression to be stage-1 distortions, and Gaussian Noise, JPEG compression, and

JPEG2000 compression to be stage-2 distortions. The multiply distorted images that

we deal with include the following five distortion combinations: 1) Blur-JPEG (B-

JPG), 2) Blur-Noise (B-N), 3) JPEG-JPEG (JPG-JPG), 4) Noise-JPEG (N-JPG),

and 5) Noise-JPEG2000 (N-JP2). These distortion combinations have already been

introduced in the Waterloo Exp-II database in Section 3.3, where justifications for

the choice of distortion types for singly distorted images and distortion combina-

tions for multiply distorted images have been provided in Section 3.3.2. While these

multiple distortion combinations are able to represent various multiple distortion sce-

narios discussed in Section 4.1, we believe that an even more diverse set of distortion

combinations should be considered in the future.

The task of degraded reference (DR) IQA is to determine the quality of the FD image

given access to the DR image but without accessing the PR image. For now, to facilitate

multiple distortions behavior analysis, let us assume that the PR image is also available.

Thus, in a two-stage distortion pipeline, three kinds of images exist, i.e., PR, DR, and FD.

Among the three major IQA frameworks (FR, RR, and NR), the performance of FR IQA

is well established (see Chapter 2). Since FR methods can only evaluate the quality of a

distorted image with respect to a reference image (i.e., only two images can be compared

through FR IQA at a time), three kinds of FR comparisons are possible in a two-stage

distortion pipeline. Two of these comparisons involve the pristine reference and thus, they

will lead to absolute quality scores with respect to the PR image, as given in Equations

4.2 and 4.3:

ASDR = FR(IPR, IDR), (4.2)

ASFD = FR(IPR, IFD), (4.3)

where IPR is the pristine reference image, IDR is the degraded reference image, IFD is the

final distorted image, FR can be any state-of-the-art full-reference method, ASDR is the
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absolute score of the DR image with respect to the PR image, and ASFD is the absolute

score of the FD image with respect to the PR image. The third possible FR comparison

is between the DR and FD images. Since this comparison does not involve the pristine

reference, the quality scores generated as a result cannot be regarded as absolute quality

scores. Instead, they can only be regarded as relative scores. This comparison is given in

Equation 4.4:

RSFD = FR(IDR, IFD), (4.4)

where IPR, IDR, IFD, and FR have already been defined above, and RSFD is the relative

score of the FD image with respect to the DR image.

Ideally, in a two-stage distortion pipeline, ASFD is the score that would lead to the best

estimate of the quality of the FD image when using FR IQA. However, in the absence of

the PR image, only RSFD can be obtained. In Section 4.2.2, we considered RSFD as our

first FR based baseline model and have already evaluated its performance (see Table 4.1).

We have also evaluated the performance of ASFD in Section 4.2.2 (see Table 4.2), where

we observed that RSFD is not a good predictor of ASFD. We will elaborate this in more

detail in the next subsection.

4.3.1 Multiple Distortions Behavior Analysis

To observe how different distortions interact with each other and why RSFD is not a

good predictor of ASFD, let us first visually examine how two distortions belonging to

fixed distortion levels interact with each other. We use the Barbara image as our pristine

test image and distort it using various stage-1 distortions at distortion level-7 to create

degraded references which are then further distorted using various stage-2 distortions at

distortion level-11 to create the final distorted images. For a detailed discussion of what

these distortion levels mean, refer to Section 3.3.2 and to Table 3.2. To highlight the

impact of various distortions on each other and on image content, we utilize the quality

map feature of the FR method SSIM [111]. SSIM uses a sliding window approach across

the images that it compares and a local SSIM index is computed pixel by pixel. This
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results in an SSIM index map or quality map, where dark regions signify loss of quality

while bright regions represent better quality. We also use the FR method FSIMc [14] to

compute image-level ASDR, ASFD, and RSFD scores. By using these tools, the following

five examples are generated:

1. Blur-JPEG (Fig. 4.5): The PR Barbara image of Fig. 4.5 (a) is distorted at

Gaussian blur level-7 to generate the DR image of Fig. 4.5 (b), which is then further

distorted at JPEG compression level-11 to generate the FD image of Fig. 4.5 (c).

The quality map of the DR image with respect to the PR image is shown in Fig. 4.5

(d), while the quality maps of the FD image with respect to the DR and PR images

are shown in Figures 4.5 (e) and 4.5 (f), respectively.

2. Blur-Noise (Fig. 4.6): The PR Barbara image of Fig. 4.6 (a) is distorted at

Gaussian blur level-7 to generate the DR image of Fig. 4.6 (b), which is then further

distorted at Gaussian noise level-11 to generate the FD image of Fig. 4.6 (c). The

quality map of the DR image with respect to the PR image is shown in Fig. 4.6 (d),

while the quality maps of the FD image with respect to the DR and PR images are

shown in Figures 4.6 (e) and 4.6 (f), respectively.

3. JPEG-JPEG (Fig. 4.7): The PR Barbara image of Fig. 4.7 (a) is distorted at

JPEG compression level-7 to generate the DR image of Fig. 4.7 (b), which is then

further distorted at JPEG compression level-11 to generate the FD image of Fig. 4.7

(c). The quality map of the DR image with respect to the PR image is shown in

Fig. 4.7 (d), while the quality maps of the FD image with respect to the DR and PR

images are shown in Figures 4.7 (e) and 4.7 (f), respectively.

4. Noise-JPEG (Fig. 4.8): The PR Barbara image of Fig. 4.8 (a) is distorted at

Gaussian noise level-7 to generate the DR image of Fig. 4.8 (b), which is then

further distorted at JPEG compression level-11 to generate the FD image of Fig. 4.8

(c). The quality map of the DR image with respect to the PR image is shown in

Fig. 4.8 (d), while the quality maps of the FD image with respect to the DR and PR

images are shown in Figures 4.8 (e) and 4.8 (f), respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: Example of the Blur-JPEG distortion combination. (a) Pristine reference

Barbara image. (b) Degraded reference Barbara image obtained by contaminating the

image in (a) with Gaussian blur (level 7). (c) Final distorted Barbara image obtained by

compressing the image in (b) by using JPEG compression (level 11). (d) Absolute quality

map of the degraded reference image in (b) with respect to the pristine reference image

in (a). (e) Relative quality map of the final distorted image in (c) with respect to the

degraded reference image in (b). (f) Absolute quality map of the final distorted image in

(c) with respect to the pristine reference image in (a).
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: Example of the Blur-Noise distortion combination. (a) Pristine reference

Barbara image. (b) Degraded reference Barbara image obtained by contaminating the

image in (a) with Gaussian blur (level 7). (c) Final distorted Barbara image obtained by

contaminating the image in (b) with white Gaussian noise (level 11). (d) Absolute quality

map of the degraded reference image in (b) with respect to the pristine reference image

in (a). (e) Relative quality map of the final distorted image in (c) with respect to the

degraded reference image in (b). (f) Absolute quality map of the final distorted image in

(c) with respect to the pristine reference image in (a).
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(a) (b) (c)

(d) (e) (f)

Figure 4.7: Example of the JPEG-JPEG distortion combination. (a) Pristine reference

Barbara image. (b) Degraded reference Barbara image obtained by compressing the image

in (a) by using JPEG compression (level 7). (c) Final distorted Barbara image obtained by

compressing the image in (b) by using JPEG compression (level 11). (d) Absolute quality

map of the degraded reference image in (b) with respect to the pristine reference image

in (a). (e) Relative quality map of the final distorted image in (c) with respect to the

degraded reference image in (b). (f) Absolute quality map of the final distorted image in

(c) with respect to the pristine reference image in (a).
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: Example of the Noise-JPEG distortion combination. (a) Pristine reference

Barbara image. (b) Degraded reference Barbara image obtained by contaminating the

image in (a) with white Gaussian noise (level 7). (c) Final distorted Barbara image obtained

by compressing the image in (b) by using JPEG compression (level 11). (d) Absolute

quality map of the degraded reference image in (b) with respect to the pristine reference

image in (a). (e) Relative quality map of the final distorted image in (c) with respect to

the degraded reference image in (b). (f) Absolute quality map of the final distorted image

in (c) with respect to the pristine reference image in (a).
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: Example of the Noise-JPEG2000 distortion combination. (a) Pristine reference

Barbara image. (b) Degraded reference Barbara image obtained by contaminating the

image in (a) with white Gaussian noise (level 7). (c) Final distorted Barbara image obtained

by compressing the image in (b) by using JPEG2000 compression (level 11). (d) Absolute

quality map of the degraded reference image in (b) with respect to the pristine reference

image in (a). (e) Relative quality map of the final distorted image in (c) with respect to

the degraded reference image in (b). (f) Absolute quality map of the final distorted image

in (c) with respect to the pristine reference image in (a).
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Table 4.5: FSIMc ASDR, RSFD, and ASFD scores for the examples in Figures 4.5, 4.6, 4.7,

4.8, and 4.9.

Distortion FSIMc ASDR FSIMc RSFD FSIMc ASFD

Combination Between Score Between Score Between Score

Blur-JPEG Fig. 4.5 (a) & (b) 0.9495 Fig. 4.5 (b) & (c) 0.9253 Fig. 4.5 (a) & (c) 0.8815

Blur-Noise Fig. 4.6 (a) & (b) 0.9495 Fig. 4.6 (b) & (c) 0.8646 Fig. 4.6 (a) & (c) 0.8570

JPEG-JPEG Fig. 4.7 (a) & (b) 0.9525 Fig. 4.7 (b) & (c) 0.9538 Fig. 4.7 (a) & (c) 0.9066

Noise-JPEG Fig. 4.8 (a) & (b) 0.9311 Fig. 4.8 (b) & (c) 0.8969 Fig. 4.8 (a) & (c) 0.9016

Noise-JPEG2000 Fig. 4.9 (a) & (b) 0.9311 Fig. 4.9 (b) & (c) 0.8907 Fig. 4.9 (a) & (c) 0.9148

5. Noise-JPEG2000 (Fig. 4.9): The PR Barbara image of Fig. 4.9 (a) is distorted

at Gaussian noise level-7 to generate the DR image of Fig. 4.9 (b), which is then

further distorted at JPEG2000 compression level-11 to generate the FD image of Fig.

4.9 (c). The quality map of the DR image with respect to the PR image is shown

in Fig. 4.9 (d), while the quality maps of the FD image with respect to the DR and

PR images are shown in Figures 4.9 (e) and 4.9 (f), respectively.

The FSIMc [14] image-level ASDR, ASFD, and RSFD scores for the above-mentioned

examples are given in Table 4.5. From Figures 4.5 to 4.9 and from Table 4.5, the following

observations can be made: 1) For all five distortion combinations, the relative quality maps

of the FD images with respect to their DR images are always different when compared to

their respective absolute quality maps which are generated between the FD images and

their PR images. This visually shows why RSFD is not a good predictor of ASFD. Since

FR methods can only compare two images at a time, they consider one of these images as

having pristine quality and compute the quality of the other distorted image with respect

to the perfect reference, regardless of whether the reference is itself of degraded quality.

Thus, when used in a standalone manner, FR methods are only effective when the PR

image is available, which is a major limitation of the FR IQA paradigm. 2) When the

relative quality maps of the FD images with respect to their DR images for the cases of

Blur-JPEG, Blur-Noise, and JPEG-JPEG shown in Figures 4.5 (e), 4.6 (e), and 4.7 (e),

respectively, are compared with their respective absolute quality maps (i.e., quality maps

of the FD images with respect to their PR images) shown in Figures 4.5 (f), 4.6 (f), and 4.7

(f), it can be seen that the relative quality maps are lighter compared to their respective
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absolute quality maps. This indicates that for these particular distortion combinations,

RSFD over-estimates ASFD. This behavior can also be observed from Table 4.5 for the cases

of Blur-JPEG, Blur-Noise, and JPEG-JPEG, where the RSFD FSIMc scores are higher than

their respective ASFD scores (where a higher FSIMc score is indicative of better quality). 3)

However, the opposite can be observed for the cases of Noise-JPEG and Noise-JPEG2000,

where their relative quality maps shown in Figures 4.8 (e) and 4.9 (e), respectively, are

darker when compared to their respective absolute quality maps shown in Figures 4.8

(f) and 4.9 (f). This indicates that for these particular distortion combinations RSFD

under-estimates ASFD. This behavior can also be observed from Table 4.5 for the cases

of Noise-JPEG and Noise-JPEG2000, where the RSFD FSIMc scores are lower than the

respective ASFD scores (where a smaller FSIMc score is indicative of lower quality). 4) For

the cases of Blur-JPEG, Blur-Noise, and JPEG-JPEG shown in Figures 4.5, 4.6, and 4.7,

respectively, it seems that the absolute quality map of the FD image is a linear combination

of the absolute quality map of the DR image and the relative quality map of the FD image,

indicating that the individual distortions making up these distortion combinations impact

the content rather independently. 5) However, this cannot be said for the cases of Noise-

JPEG and Noise-JPEG2000 shown in Figures 4.8 and 4.9, respectively, indicating that the

individual distortions making up these distortion combinations impact the content in a

joint manner.

While the distorted images and quality maps of Figures 4.5 to 4.9 have given valuable

insights into the behavior of multiple distortions, the observations made for these images

are only illustrative and may not generalize since the above analysis has only been carried

out for one pristine reference image and at a fixed stage-1 and stage-2 distortion level.

To study the behavior of multiple distortions in a more general manner, multiple pristine

contents need to be analyzed for a wide range of stage-1 and stage-2 distortion levels. To do

this, we select four well-known pristine reference images from different IQA datasets that

not only depict very different scenes, but also vary widely in terms of spatial information

(SI) and colorfulness (CF). For the definition and meaning of SI and CF, refer to Section

2.2.4. The four pristine reference images are: 1) Ocean depicted in 4.10 (a) is an outdoor

image showing a natural landscape and has low SI and CF. 2) Buildings depicted in 4.10

(b) is an outdoor image showing various buildings with a natural background and has high
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(a) (b)

(c) (d)

Figure 4.10: Pristine reference images being used for multiple distortions behavior analysis.

(a) Ocean (Low spatial information (SI) and colorfulness (CF)). (b) Buildings (High SI

and low CF). (c) Barbara (Mid-level SI and CF). (d) Mandrill (High SI and CF).

SI but low CF. 3) Barbara depicted in 4.10 (c) is an indoor image of a woman surrounded

by furniture and has mid-level SI and CF. The earlier analysis carried out on the basis of

Figures 4.5 to 4.9 and Table 4.5 also utilized this pristine reference image. 4) Mandrill
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depicted in 4.10 (d) is the close-up image of an animal’s face and has high SI and CF.

Utilizing images with a wide range of SI and CF would allow for observing the impact of

different multiple distortions in a comprehensive manner by factoring in any masking effect

that the content itself might have.

To create distorted images, we determine 17 content adaptive distortion thresholds

corresponding to target quality levels depicted in Table 3.2 for the distortions of Gaussian

noise, Gaussian blur, JPEG compression, and JPEG2000 compression, by following the

same procedure as described earlier in Section 3.3.2. Among these 17 distortion levels, level-

1 corresponds to minimum distortion whereas level-17 corresponds to highest distortion.

Next, for the distortion types of Gaussian noise, Gaussian blur, and JPEG compression,

we use their first 11 distortion levels to distort each of the four PR images into 11 stage-1

distorted or DR images that cover the top half of the quality spectrum. Multiply distorted

images belonging to five distortion combinations are then created by distorting: 1) each

blur DR image at 17 levels of JPEG compression to create 187 Blur-JPEG FD images for

each PR, 2) each blur DR image at 17 levels of Gaussian noise to create 187 Blur-Noise FD

images for each PR, 3) each JPEG compressed DR image at 17 levels of JPEG compression

to create 187 JPEG-JPEG FD images for each PR, 4) each noise DR image at 17 levels of

JPEG compression to create 187 Noise-JPEG FD images for each PR, and 5) each noise

DR image at 17 levels of JPEG2000 compression to create 187 Noise-JPEG2000 FD images

for each PR. Thus, for each PR image and for each distortion combination, there are 11

DR images and thus 11 ASDR quality scores. For each DR image, there are 17 FD images

leading to a total of 187 FD images for each PR image in each distortion combination and

thus there are 187 RSFD and ASFD scores (for each ASDR score, there are 17 RSFD and

ASFD scores). In the analysis that follows, we use FSIMc [14] to compute the ASDR, RSFD,

and ASFD scores.

To thoroughly analyze the behavior of different distortion combinations, we plot ASFD

versus RSFD scores for each of the four PR images and for each distortion combination.

These plots for the Blur-JPEG distortion combination are shown in Fig. 4.11. For each PR

image, there are 11 different curves, each of which corresponds to one of the 11 ASDR scores.

The 17 different points on each curve represent the RSFD and ASFD scores corresponding to

one particular ASDR score. The dotted lines in Fig. 4.11 represent the ASDR scores for the
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(d) Image: Mandrill

Figure 4.11: Blur-JPEG plots of ASFD versus RSFD for every stage-1 (ASDR) distortion

level corresponding to four pristine reference images. Dotted lines represent ASDR scores.
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Figure 4.12: Blur-Noise plots of ASFD versus RSFD for every stage-1 (ASDR) distortion

level corresponding to four pristine reference images. Dotted lines represent ASDR scores.
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Figure 4.13: JPEG-JPEG plots of ASFD versus RSFD for every stage-1 (ASDR) distortion

level corresponding to four pristine reference images. Dotted lines represent ASDR scores.
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Figure 4.14: Noise-JPEG plots of ASFD versus RSFD for every stage-1 (ASDR) distortion

level corresponding to four pristine reference images. Dotted lines represent ASDR scores.
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Figure 4.15: Noise-JPEG2000 plots of ASFD versus RSFD for every stage-1 (ASDR) dis-

tortion level corresponding to four pristine reference images. Dotted lines represent ASDR

scores.
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(a) (b) (c)

(d) (e) (f)

Figure 4.16: Another example of the Noise-JPEG2000 distortion combination where the

final distorted image quality is better than the degraded reference. (a) Pristine reference

Barbara image. (b) Degraded reference Barbara image obtained by contaminating the

image in (a) with white Gaussian noise (level 11). (c) Final distorted Barbara image

obtained by compressing the image in (b) by using JPEG2000 compression (level 6). (d)

Absolute quality map of the degraded reference image in (b) with respect to the pristine

reference image in (a). (e) Relative quality map of the final distorted image in (c) with

respect to the degraded reference image in (b). (f) Absolute quality map of the final

distorted image in (c) with respect to the pristine reference image in (a).
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11 different DR images. Plots for the Blur-Noise, JPEG-JPEG, Noise-JPEG, and Noise-

JPEG2000 distortion combinations are similarly constructed and are depicted in Figures

4.12, 4.13, 4.14, and 4.15, respectively. The following observations can be made:

� For all five distortion combinations, Figures 4.11 to 4.15 show that:

– At minimum stage-1 distortion, i.e., at ASDR ' 1, ASFD ' RSFD. This can

be seen by observing Stage-1 Level-1 (S1-L1) curves in all these figures. The

DR image at S1-L1 is as good as the PR image because S1-L1 has almost no

distortion.

– As the stage-1 distortion increases, the prediction from RSFD to ASFD becomes

more unreliable.

– It can also be seen that ASFD ' ASDR at minimum stage-2 distortion (Stage-2

Level-1). This is not surprising since at S2-L1, stage-2 is not adding any further

distortion to the DR image.

� The plots of the Blur-JPEG and JPEG-JPEG distortion combinations depicted in

Figures 4.11 and 4.13, respectively, show that:

– As stage-1 distortion increases, the curves move away from the S1-L1 curve. All

such curves are below the S1-L1 curve, meaning that RSFD is assigning relatively

higher quality scores to the FD images compared to the absolute ASFD scores.

– The curve representing Stage-1 Level-11 (S1-L11) distortion, which is the max-

imum stage-1 distortion, is furthest from the S1-L1 curve.

– The ASFD versus RSFD curves for all ASDR scores depict a linear behavior and

are almost parallel to each other. This behavior is especially true for the Blur-

JPEG case, but can also be roughly seen in the JPEG-JPEG case. This indicates

that the constituent distortions in these combinations behave independent of

each other and do not lead to complex joint effects.

� The plots for the Blur-Noise distortion combination depicted in Fig. 4.12 show

that they also follow the behavior discussed for the Blur-JPEG and JPEG-JPEG
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combinations above, with one major difference. As the level of stage-2 distortions

increases, the ASFD versus RSFD curves for all ASDR scores begin to converge. This

shows that for the Blur-Noise case, as the magnitude of the stage-2 distortion, i.e.,

Gaussian noise, increases, it overshadows the stage-1 distortion (Gaussian blur), to

become the dominant distortion.

� The plots for the Noise-JPEG and Noise-JPEG2000 distortion combinations depicted

in Figures 4.14 and 4.15, respectively, show that:

– The ASFD versus RSFD curves begin exhibiting nonlinear behavior as stage-1

distortion level increases (i.e., as ASDR scores decrease) and are also not parallel

to each other. Such behavior is especially true for the Noise-JPEG2000 case.

This points to significant joint effects of the two constituent distortions in the

combination.

– It can be seen that as stage-1 distortion levels increase, some portion of the

ASFD versus RSFD curves go above their respective ASDR scores, i.e., an over-

shoot takes place. This behavior is most apparent in the low to mid-level stage-2

distortion levels segment of the ASFD versus RSFD curves corresponding to mid

to high level stage-1 distortion levels. While this behavior can be seen in both

the Noise-JPEG and Noise-JPEG2000 plots, it is much more pronounced in

the latter case. It can also be observed from Figures 4.14 and 4.15, that once

the curves drop below their respective ASDR scores, they follow a rather linear

pattern. The overshoot phenomenon above ASDR score levels for some ASFD

versus RSFD curves indicates that the corresponding FD images have better

perceptual quality than their respective DR images, which is a surprising find-

ing. JPEG compression is known to cause blurring and blocking artifacts, while

JPEG2000 compression is known to cause blurring and ringing artifacts. When

these compression techniques are applied to noisy degraded references, the com-

pression induced blurring has a denoising effect. For certain combinations of

stage-1 noise and stage-2 JPEG/JPEG2000 compression levels, this denoising

effect may be such that it reduces the amount of noise while producing per-

ceptually low amount of compression artifacts, thereby making the perceptual
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quality of the FD image better than that of the DR image from which it is

derived. However, when the amount of compression becomes too high, the com-

pression artifacts overrun the benefit of noise removal and the curves dip below

the ASDR values.

– We visually demonstrate the above point in Fig. 4.16, where the PR Barbara

image of Fig. 4.16 (a) is distorted at Gaussian noise level-11 to generate the DR

image of Fig. 4.16 (b), which is then further distorted at JPEG2000 compression

level-6 to generate the FD image of Fig. 4.16 (c). The quality map of the

DR image with respect to the PR image is shown in Fig. 4.16 (d), while the

quality maps of the FD image with respect to the DR and PR images are

shown in Figures 4.16 (e) and 4.16 (f), respectively. The ASDR FSIMc score

of the DR image is 0.8802, while the RSFD and ASFD FSIMc scores of the FD

image are 0.8997 and 0.9221, respectively. This clearly shows that the stage-1

and stage-2 distortion levels for this example are such that the FD image has

better perceptual quality than the DR image. The absolute quality map of

the FD image, shown in Fig. 4.16 (f) further attests to this denoising effect of

compression following noise. The FD image in this example can also be located

on the ASFD versus RSFD curve corresponding to the Stage-1 Level-11 (S1-L11)

in Fig. 4.15 (c), where it is the sixth point from the right on the curve, and lies

above the corresponding ASDR score.

– For the Blur-JPEG and JPEG-JPEG cases, we noted earlier that the ASFD ver-

sus RSFD curves follow a linear behavior and a curve corresponding to a higher

stage-1 distortion is always below a curve corresponding to a lower stage-1 dis-

tortion for all stage-2 distortion levels. However, in the case of Noise-JPEG2000

and to some extent also for Noise-JPEG, we note that the relationship between

ASFD and RSFD is not linear and a curve corresponding to a higher stage-1 dis-

tortion is not always below a curve corresponding to a lower stage-1 distortion.

It can be observed from Figures 4.14 and 4.15 for both Noise-JPEG and Noise-

JPEG2000 (especially for the latter) that at low stage-2 distortions (towards

the right side of the plots), a curve corresponding to a higher stage-1 distortion

is below a curve corresponding to a lower stage-1 distortion, however, as stage-
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2 distortion levels increase, a point comes when a crossover takes place. This

is again due to the denoising effect that compression has on noisy degraded

references. For a certain range of stage-2 distortion levels, the application of

compression actually improves the perceptual quality of the noisy degraded ref-

erence images. Images corresponding to higher stage-1 distortion levels have

more noise and they benefit more from the additional denoising effect of higher

stage-2 distortion levels which leads to their respective ASFD versus RSFD curves

crossing above curves that correspond to lower stage-1 distortion levels.

� The above discussion has revealed that among the five distortion combinations being

analyzed, the constituent distortions in Noise-JPEG and Noise-JPEG2000 lead to

complex joint effects. Thus, creating DR IQA models for these combinations will be

most challenging, as we shall see later in this chapter.

� While we have presented the above analysis by using only four PR images, similar

analysis on hundreds of PR images was carried out and it led to similar observations,

indicating that the above-mentioned observations can be generalized.

4.3.2 DR IQA Framework

It was discussed at the beginning of Section 4.3, that three images exist at different locations

of a two-stage distortion pipeline. These include the PR image at the original source, the

DR image at the output of the first distortion stage, and the FD image at the output of

the second distortion stage. For the purposes of DR IQA, the DR and FD images are

considered available for the task of quality assessment of the FD image. Based on the

availability of the PR image, the following two DR IQA frameworks are possible.

DR IQA Framework: Scenario 1

In this first scenario, we assume that the PR image is available early on in the media

distribution system and it is possible to ascertain the quality of the DR image with respect

to the PR image by using an FR method. We have already defined such an absolute
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Figure 4.17: General framework of Degraded Reference (DR) IQA Scenario 1 models.

quality score as ASDR in Equation 4.2. It is important to note that Scenario 1 is practically

applicable only when ASDR is pre-computed at the first distortion stage that leads to the

DR image and is then transmitted with the DR image to the second distortion stage. This

is because we cannot assume the availability of the PR image at subsequent stages of the

media delivery system. For example, Scenario 1 may be implemented in practical image

distribution systems that involve two compression stages, though additional protocols need

to be used to transfer ASDR scores as side information, thus requiring minor changes to the

distribution system. Since the DR and FD images are available at the second distortion

stage, an FR method can be used to determine the relative quality of the FD image with

respect to the DR image, which we defined as RSFD in Equation 4.4. We had also defined

ASFD in Equation 4.3 as the absolute FR quality score between the PR and FD images. In

this first scenario, the goal of DR IQA is to predict ASFD by using both ASDR and RSFD,

i.e.,

ÂSFD = f(ASDR,RSFD), (4.5)
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Figure 4.18: General framework of the practical DR IQA Scenario 2 models.

where ÂSFD is the estimated or predicted value of ASFD. The general framework of the

Scenario 1 based DR IQA models is shown in Fig. 4.17.

DR IQA Framework: Scenario 2

As discussed earlier in this chapter, in practical media distribution systems, the PR images

are not accessible. In fact, we had defined DR IQA to be a paradigm that ascertains the

quality of the FD image by only utilizing the DR image as it does not have access to the

PR image. Thus, in this more practical second scenario, the FR computed score of the

DR image with respect to PR, i.e., ASDR is not available. However, since the DR image is

available, its quality may be estimated by using an NR IQA algorithm. i.e.,

ÂSDR = NR(IDR), (4.6)

where IDR is the degraded reference image, NR is a trusted NR IQA method, and ÂSDR is

the quality of the DR image as estimated by the NR method. The relative quality score of
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the FD image with respect to the DR image, i.e., RSFD can still be determined by using

an FR method. Thus, in this second scenario, the goal of DR IQA is to predict ASFD by

using the NR predicted ÂSDR and RSFD, i.e.,

ÃSFD = f(ÂSDR,RSFD), (4.7)

where ÃSFD is the estimated or predicted value of ASFD when DR IQA uses the NR-

predicted value of ASDR, i.e., ÂSDR. The general framework of the Scenario 2 based DR

IQA models is shown in Fig. 4.18.

While the application of Scenario 1 based DR IQA framework requires making minor

changes to the media distribution system, no such changes are required for applying Sce-

nario 2 to such systems. All that is required is to add probes at the second distortion

stage to sample the DR and FD images. Such ease of implementation makes the Scenario

2 based DR IQA framework readily applicable to pre-existing media distribution systems.

We will use both Scenario 1 and Scenario 2 based DR IQA frameworks to develop DR

IQA models in Section 4.5.

4.4 DR IQA Databases Construction

The Waterloo Exp-II database, constructed earlier in Chapter 3 (Section 3.3) has 3,570

pristine reference images, 39,270 singly distorted images each for noise, blur and JPEG

compression, and 667,590 multiply distorted images each for the distortion combinations

of Blur-JPEG, Blur-Noise, JPEG-JPEG, Noise-JPEG, and Noise-JPEG2000. The singly

distorted and multiply distorted images in this dataset are essentially the degraded refer-

ences and final distorted images in a two-stage distortion pipeline. Therefore, the Waterloo

Exp-II database can be used for the purpose of DR IQA model development and testing.

While the enormous size of this dataset proves highly beneficial in the development of DNN

based models, as we discussed in Chapter 3, other machine learning tools such as SVR [149]

running on regular CPU based computers take a lot of time to learn models when they use
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such a large amount of training data. Instead of extracting smaller subsets from the Water-

loo Exp-II dataset, we construct two new relatively small-scale datasets for the purpose of

DR IQA model development which we shall release publicly to the research community at

large as these will aid in learning models using tools such as SVR. We call these databases

DR IQA database Version 1 (V1) and DR IQA database Version 2 (V2). The purpose for

developing two such datasets is that one can be used for model training, while the other

can be used for model validation if a machine learning based training process is used. The

much larger Waterloo Exp-II dataset can then be used for model testing. We ensure that

DR IQA database V1, DR IQA database V2, and the Waterloo Exp-II dataset do not

have any overlap in content, thereby providing completely disjoint sets of data for model

training, validation, and testing. To ensure that the dataset construction process for the

two new DR IQA datasets is exactly the same as the Waterloo Exp-II database so that

the latter can be used for model testing, we construct these datasets by following the same

procedure as earlier described in Section 3.3 for the Waterloo Exp-II database. We only

briefly describe the construction of the DR IQA datasets in the following two subsections.

For a detailed description of the dataset construction mechanism, refer to Section 3.3.

4.4.1 Reference Content

A total of 68 pristine quality reference images were taken from the following sources: IQA

databases CSIQ [26, 63], IVC [30], LIVE R2 [24, 42], TID2013 [19, 62], Toyoma [29] and

some pristine images were extracted from raw videos available at CDVL [226]. These

images were divided into two disjoint groups of 34 images each, with one group forming

the pristine image set of DR IQA database V1 and the other forming the pristine image set

of DR IQA database V2. To quantitatively describe the reference image content, we plot it

in the 2D SI versus CF space [88], as was done earlier in Chapters 2 and 3. For a detailed

description of the SI versus CF space and its use for reference content analysis, refer to

Sections 2.2.4 and 3.3.1. The SI versus CF plots of the reference image content of DR IQA

databases V1 and V2 are shown in Figures 4.19 (a) and 4.19 (b), respectively. The plots

in Fig. 4.19 can be directly compared with those of nine subject-rated IQA datasets given

in Fig. 2.1, as all of them have the same scale. It can be seen that the reference content
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coverage in the DR IQA databases V1 and V2 is at a level similar to what is found in most

IQA datasets. A comparison Fig. 4.19 with Fig. 3.1 again demonstrates the enormity of

reference content in the Waterloo Exp-II database.

(a) DR IQA Database V1 (b) DR IQA Database V2

Figure 4.19: Spatial Information (SIMean) versus Colorfulness (CF ) plots of the reference

images of DR IQA databases V1 and V2. The blue lines represent the convex hull.

4.4.2 Distorted Content and Quality Annotation

It was discussed in Chapters 2 and 3 that most IQA datasets do not cover the entire

quality spectrum adequately which is because they use fixed distortion parameters to create

simulated distorted content thereby neglecting the masking effects of the content itself. To

address this issue, we had used content adaptive distortion thresholds while creating the

Waterloo Exp-II database, as described in Section 3.3.2. We take the same approach to

generate the distorted content for the two DR IQA databases. First, we use a wide range of

distortion parameters to create 15,000 Gaussian noise images, 10,000 Gaussian blur images,

101 JPEG compressed images, and 20,000 JPEG2000 compressed images for each pristine

reference image of the DR IQA databases. Next, we compute the FR SSIMplus [61] scores
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for all these distorted images and determine distortion parameters for each distortion type

that lead to SSIMplus scores closest to the target scores for 17 distortion levels as listed in

Table 3.2. This leads to content adaptive distortion parameters for each pristine reference

image for each of the four base distortion types.

To align the DR IQA databases with the Waterloo Exploration-II database, we include

the same distortion types in the former as in the latter. Details about the distortion

types in the Waterloo Exploration-II database, along with their limitations, have been

provided in Section 3.3.2. Thus, we include singly distorted degraded reference images in

the DR IQA databases belonging to the three distortion categories of Gaussian white noise,

Gaussian blur, and JPEG compression. We also want to restrict the degraded references in

the fair to excellent perceptual quality range to better mimic practical media distribution

systems. To accomplish this, we distort the pristine reference images with the above-

mentioned distortion types by using their respective content adaptive distortion parameters

belonging to only distortion Levels 1 to 11 (see Table 3.2). This leads to the creation of

374 degraded references each for noise, blur and JPEG compression in each of the two

DR IQA databases. Next, we create multiply distorted images or final distorted images

by distorting the DR images and create five distortion combinations. Specifically, for each

DR IQA database, each blur DR image is distorted at 17 levels of JPEG compression and

17 levels of Gaussian noise, by using the parent PR image’s content adaptive distortion

parameters, to create 6,358 Blur-JPEG and 6,358 Blur-Noise FD images. Similarly 6,358

JPEG-JPEG FD images are generated by distorting each JPEG DR image at 17 levels

of JPEG compression. Finally, we distort each noise DR image at 17 levels of JPEG

compression and 17 levels of JPEG2000 compression to generate 6,358 Noise-JPEG and

6,358 Noise-JPEG2000 FD images for each DR IQA database. By using all 17 levels of

distortion to create the FD images, we ensure that they belong to the entire bad to excellent

quality spectrum. Table 4.6 outlines the composition of the two DR IQA databases.

A major limitation of contemporary IQA datasets of multiply distorted content, such

as LIVE MD [31], MDIVL [34], MDID [33], MDID2013 [32], and LIVE WCmp [2], is that

they do not offer sufficient levels of distortion per distortion stage. For example, LIVE

MD [31] offers only three levels of distortion per distortion stage. Such sparse nature

of these datasets makes it difficult to analyze how different constituent distortions in a
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Table 4.6: Composition of DR IQA databases V1 and V2.

Reference Images Stage-1 Distorted Images Stage-2 Distorted Images

in each Database in each Database in each Database

(Pristine Quality) (Singly Distorted DRs) (Multiply Distorted FDs)

Number of
Distortion

Number of Distortion Number of

Images Images Combination Images

34

Blur 374
Blur-JPEG 6,358

Blur-Noise 6,358

JPEG 374 JPEG-JPEG 6,358

Noise 374
Noise-JPEG 6,358

Noise-JP2K 6,358

Total 1,122 Total 31,790

Overall 32,912 Distorted Images in each Database

(a) DR IQA Database V1 (b) DR IQA Database V2

Figure 4.20: SQB histograms of the DR IQA databases V1 and V2.

multiply distorted image are jointly effecting the image content. By having 11 stage-1 and

17 stage-2 distortion levels, we have ensured that both the DR IQA databases (and also the

Waterloo Exp-II database) have adequate density of distortion levels per distortion stage.

This has allowed us to comprehensively study the behavior of different multiple distortion

combinations, as we have already demonstrated in Section 4.3.1 where the ASFD versus

RSFD plots of Figures 4.11 to 4.15 proved invaluable in our multiple distortions behavior
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analysis. All the PR, DR, and FD images used to generate these plots are part of either

DR IQA database V1 or DR IQA database V2. Contemporary multiply distorted IQA

datasets mentioned above do not allow for such comprehensive analysis, highlighting the

need for the creation of DR IQA databases V1 and V2. Not only do these new datasets

allow for comprehensive analysis, they have also allowed us to design and train effective

DR IQA models as we shall see later in this chapter.

While DR IQA databases V1 and V2 are much smaller in scale than the Waterloo Exp-II

database, with 32,912 distorted images each, they are still much larger than all subject-

rated IQA datasets listed in Table 3.1. Conducting subjective testing for two datasets with

a total of 65,824 distorted images is extremely difficult. Therefore, we annotate DR IQA

databases V1 and V2 with the synthetic quality benchmark (SQB) that was developed in

Section 3.4 for the Waterloo Exp-II database. In fact, the SQB labels for all distorted

images in the Waterloo Exp-II database, DR IQA database V1, DR IQA database V2,

and nine other subject-rated datasets were generated together (see Section 3.4.2 and Table

3.4). To observe how well the DR IQA databases V1 and V2 cover the perceptual quality

spectrum, we plot their SQB histograms in Fig. 4.20. The SQB has a quality range of

0 to 100, where 100 is representative of the best while 0 represents the worst quality. It

can be seen from Fig. 4.20 that both DR IQA databases have more than at least 100

annotated images for each integer quality value above 10, thereby providing satisfactory

representation of each quality value. It can also be seen that the quality range of 50 to 100

has the most images, thereby ensuring that the higher quality range, which is difficult to

assess for objective IQA methods [19], is sufficiently represented.

4.5 DR IQA Model Design

In this section, we will develop three DR IQA models. The first two are parametric

models based on empirical observations of distortion behaviors, and the third is based on

learning through SVR. For convenience, we name them Model 1, Model 2, and Model 3,

respectively. Each model has 35 parameter settings corresponding to the combination of

seven distortion combinations (including one for the all distortion combination case) and
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five different ASDR/ÂSDR and RSFD combinations depending upon the choice of FR/NR

method for ASDR/ÂSDR and the choice of FR method for RSFD.

4.5.1 Distortion Behavior based Model 1

Model 1 for DR IQA Framework Scenario 1

We begin by considering Scenario 1 of the DR IQA framework (see Section 4.3.2 and Fig.

4.17) where the PR image is considered available in addition to the DR and FD images.

Thus, it is possible to compute ASDR given by Equation 4.2 and RSFD given by Equation

4.4 by using FR methods. We choose to use FSIMc [14] as it was found to be one of the

best performing methods in our comprehensive review of FR methods in Chapter 2 and is

also not a part of the SQB generation mechanism. The sample ASFD versus RSFD plots

for the five major distortion combinations that utilize FSIMc have already been shown in

Figures 4.11 to 4.15. Our goal is to predict ASFD by utilizing the FSIMc computed ASDR

and RSFD scores, as stated in Equation 4.5. In this and the next subsection, we use DR

IQA databases V1 and V2 in a combined manner, i.e., they are considered as one dataset.

They will be considered separately in Section 4.5.3.

Initially, let us consider the case of the Blur-JPEG distortion combination for which

ASFD versus RSFD plots for four test PR images are shown in Fig. 4.11. Observing the

individual curves in the plots of Fig. 4.11, we can see that they follow a rather linear

pattern. Similar behavior is observed in the ASFD versus RSFD plots of all images of DR

IQA databases V1 and V2. Therefore, we use a simple linear model to approximate each

curve:

ÂSFD = m · RSFD + (1− ASDR) (4.8)

where ÂSFD is the predicted value of ASFD and m is the slope parameter. This model has

only one coefficient that needs to be estimated. We applied this model to all the 11 ASFD

versus RSFD curves corresponding to each of the 68 pristine reference images in DR IQA

databases V1 and V2 for the case of Blur-JPEG, and optimized the value of coefficient m
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Figure 4.21: Blur-JPEG scatter plot of coefficient m versus ASDR for the entire DR IQA

databases V1 and V2.

in each case by using MATLAB. We plot the 748 estimations of coefficient m versus ASDR

for both DR IQA databases V1 and V2, as shown in Figure 4.21. The important finding

here is that the behavior of coefficient m with respect to ASDR is highly linear in nature.

Thus m can be considered as a function of ASDR and approximated well by a simple linear

model:

m̂ = P1 · ASDR + P2 (4.9)

where m̂ is the predicted value of coefficient m, P1 is the slope coefficient and P2 is the

intercept coefficient. By using this linear model, we estimate the two coefficients P1 and

P2 for both DR IQA databases V1 and V2 in a combined manner. We can then rewrite
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Equation 4.8 as follows:

ÂSFD = m̂ · RSFD + (1− ASDR) (4.10)

where we have replaced the coefficient m by its predicted value m̂. Plugging in Equation

4.9, we obtain:

ÂSFD = (P1 · ASDR + P2) · RSFD + (1− ASDR)

ÂSFD = P1 · ASDR · RSFD + P2 · RSFD − ASDR + 1 (4.11)

Equation 4.11 represents a quality model for the prediction of ASFD given that ASDR

and RSFD scores from an FR method are available along with estimated values of coeffi-

cients P1 and P2. We will refer to this equation as Model 1. The vital point to note here

is that by following a 2-tier modeling approach, we were able to narrow down the number

of parameters to be estimated to just two (P1 and P2) for the entire dataset. Thus, if P1

and P2 are known, then Model 1 can be used as a quality prediction model in the realm of

degraded reference image quality assessment. This Scenario 1 based DR IQA model will

be later referred to as FSIMc-FSIMc as it uses FSIMc to compute both ASDR and RSFD

scores.

While the model of Equation 4.11 has been developed for the distortion combination of

Blur-JPEG, it can also be used for other distortion combinations. By observing the ASFD

versus RSFD plots for the Blur-Noise and JPEG-JPEG distortion combinations, depicted

respectively in Figures 4.12 and 4.13, it can be seen that the individual curves in these

plots also follow a linear pattern. Thus, each curve can be approximated by using the

simple linear model of Equation 4.8. The 748 estimations of coefficient m versus ASDR,

for both DR IQA databases V1 and V2, are plotted in Fig. 4.22 (a) and in Fig. 4.22 (b)

for the combinations of Blur-Noise and JPEG-JPEG, respectively. Like the Blur-JPEG

case (Fig. 4.21), the behavior of coefficient m is linear with respect to ASDR for both the

Blur-Noise and JPEG-JPEG combinations and it can be approximated by the linear model
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(b) JPEG-JPEG

Figure 4.22: Scatter plots of coefficient m versus ASDR for the entire DR IQA databases

V1 and V2 for the distortion combinations of: (a) Blur-Noise, and (b) JPEG-JPEG. The

same scale as Fig. 4.21 is used to enable direct comparison.

of Equation 4.9, which again leads to the DR IQA model of Equation 4.11, albeit with

parameters P1 and P2 specific to each distortion combination.

The ASFD versus RSFD plots for the distortion combinations of Noise-JPEG and Noise-

JPEG2000, depicted respectively in Figures 4.14 and 4.15, differ from those of the Blur-

JPEG, Blur-Noise, and JPEG-JPEG combinations. These differences have been discussed

earlier in Section 4.3.1. Suffice it to say that the curves in the ASFD versus RSFD plots

for Noise-JPEG and Noise-JPEG2000 do not follow a completely linear pattern. A simple

2-tier linear model, based on Equation 4.8, leads to higher approximation errors for the

cases of Noise-JPEG and Noise-JPEG2000. Using a cubic polynomial based 2-tier model

achieves good individual approximations, but we need to estimate four coefficients for

each individual ASFD versus RSFD curve. These coefficients vary significantly across image

content and this limits the generalization capability of such a model.

Careful inspection of the trend followed by the ASFD versus RSFD curves in the case of

Noise-JPEG2000 (Fig. 4.15) shows that they are composed of two distinct regions. In the
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(b) Noise-JPEG2000

Figure 4.23: Scatter plots of coefficient m versus ASDR for the entire DR IQA databases

V1 and V2 for the distortion combinations of: (a) Noise-JPEG, and (b) Noise-JPEG2000.

The same scale as Figures 4.21 and 4.22 is used to enable direct comparison.

first region, the curve is either around ASDR or overshoots it and later comes back to it.

This region starts from the minimum stage-2 distortion level and extends to a higher stage-2

distortion level depending upon the stage-1 distortion level. In the second region, the curve

departs the ASDR value and follows a linear pattern which is approximately parallel to the

diagonal. This region starts from some lower to mid-level stage-2 distortion and extends

up to the maximum stage-2 distortion level. The trend followed by the ASFD versus RSFD

curves in the case of Noise-JPEG (Fig. 4.14) is similar to that of Noise-JPEG2000, except

that these curves do not overshoot ASDR by as much as the Noise-JPEG2000 case.

Therefore, we opt to use a piecewise linear model composed of two pieces which lie in

the first and second regions, respectively. We approximate each curve in the ASFD ver-

sus RSFD plots of the Noise-JPEG and Noise-JPEG2000 combinations by using the linear

model of Equation 4.8. The 748 estimations of coefficient m versus ASDR, for both DR IQA

databases V1 and V2, are plotted in Fig. 4.23 (a) and Fig. 4.23 (b) for the combinations of

Noise-JPEG and Noise-JPEG2000, respectively. The behavior of coefficient m with respect

204



to ASDR can be approximated by the linear model of Equation 4.9 for both Noise-JPEG

and Noise-JPEG2000, where more error will be incurred for the latter case. This will again

lead to the DR IQA model of Equation 4.11, with coefficients P1 and P2 specific to each

distortion combination. However, this is not the final step for the cases of Noise-JPEG and

Noise-JPEG2000. The 2-tier model embodied by Equation 4.11 is applicable to the second

region only. For the first region, we directly use ASDR to predict ASFD. A straightforward

approach to combine the prediction models for these two regions is as follows:

if ÂSFD > ASDR then

ÂSFD ← ASDR

else

ÂSFD ← ÂSFD

end if

This simple solution allows us to implement a piecewise linear version of Model 1 for

the cases of Noise-JPEG and Noise-JPEG2000. It will not be able to cater to the overshoot

above ASDR observed in the ASFD versus RSFD curves of Noise-JPEG and Noise-JPEG2000,

and thus will not perform as well as it can for the other three distortion combinations. Since

the ASFD versus RSFD curves for the cases of Blur-JPEG, Blur-Noise, and JPEG-JPEG

do not exhibit the overshoot above ASDR, we can apply this modified Model 1 to these

distortion combinations as well since it will always stay in the linear mode of the second

region for these combinations. This further simplifies the application of Model 1 to different

distortion combinations.

Apart from developing Model 1 for the five distortion combinations separately, we also

develop this model for two other cases: 1) For NBJ-JPG, where the distortion combinations

of Noise-JPEG, Blur-JPEG, and JPEG-JPEG are considered together. This distortion

combination is being considered so that comparisons can be made with 2stepQA [1, 2],

which is designed for the case where the second distortion stage is JPEG compression. 2)

For the all distortions case where all five distortion combinations are considered together.

The 2-tier modified piecewise linear model based on Equation 4.11 is developed for both

these distortion combinations as well.
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Model 1 for DR IQA Framework Scenario 2

In practice, the Scenario 1 based DR IQA framework is not applicable when PR images

are unavailable and thus FSIMc generated ASDR scores cannot be computed. Instead,

only the DR and FD images are available, which means that an FR method can only

be used to generate RSFD scores. Thus, only Scenario 2 of the DR IQA framework (see

Section 4.3.2 and Fig. 4.18) is applicable where an NR method is used to compute an

estimation of ASDR, i.e., ÂSDR, which together with the FR computed RSFD, can be

used to predict ASFD, as stated in Equation 4.7. We use three NR IQA algorithms,

CORNIA [141], dipIQ [36], and NIQE [3] to predict the quality of DR images, i.e., ÂSDR.

CORNIA and dipIQ are selected as they were found to be the top performers in our

comprehensive performance evaluation of NR methods in Chapter 2. We also use NIQE as

it has been used in the 2stepQA model [1, 2]. We develop three separate Scenario 2 based

DR IQA Model 1 versions by using ÂSDR from CORNIA, dipIQ, and NIQE, and RSFD from

the FR method FSIMc [14], thereby leading to the following ÂSDR-RSFD combinations:

CORNIA-FSIMc, dipIQ-FSIMc, and NIQE-FSIMc. We also develop a fourth ÂSDR-RSFD

combination that uses the FR method MSSSIM [4] with NIQE, i.e., NIQE-MSSSIM, to

make direct comparisons with 2stepQA [1,2] as it also combines NIQE and MSSSIM.

Instead of completely redeveloping Model 1 (given in Equation 4.11) for the Scenario

2 based DR IQA framework, we learn a nonlinear mapping from CORNIA, dipIQ, and

NIQE to FSIMc for the CORNIA-FSIMc, dipIQ-FSIMc, and NIQE-FSIMc combinations

respectively. We also learn a nonlinear mapping from NIQE to MSSSIM for the NIQE-

MSSSIM combination. We adopt the five-parameter modified logistic function used in [24]

and given in Equation 4.12 to perform the nonlinear mapping from NR to FR scores.

F (N) = β1

[
1

2
− 1

1 + e{β2(N−β3)}

]
+ β4N + β5 (4.12)

where N denotes the NR (CORNIA, dipIQ, or NIQE) computed quality scores, F denotes

the FR (FSIMc or MSSSIM) predicted scores after the mapping step, and β1, β2, β3,

β4, and β5 are mapping coefficients that are found numerically in MATLAB to maximize

the correlation between FR and NR scores. These mapping coefficients are determined,
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by utilizing both DR IQA databases V1 and V2 in a combined manner, for the stage-1

distortions of Gaussian noise, Gaussian blur, JPEG compression, and all three of them

considered together. Not only are these coefficients used during the model development

phase, they are also utilized later in the testing phase when the Waterloo Exp-II, LIVE

WCmp [2], LIVE MD [31], and MDIVL [34] databases are used to evaluate the performance

of the DR IQA models (i.e., they are not determined again for the testing databases). The

NR-predicted and FR-mapped ÂSDR is given to Model 1 of Equation 4.11 which becomes:

ÃSFD = P1 · ÂSDR · RSFD + P2 · RSFD − ÂSDR + 1 (4.13)

where ÃSFD is the predicted value of ASFD when Model 1 uses an NR-predicted value of

ASDR, i.e., ÂSDR.

In all, 35 parameter settings of Model 1 are developed. This is because we have five

different ASDR/ÂSDR and RSFD combinations which are:

1. Scenario 1: FSIMc-FSIMc

2. Scenario 2: CORNIA-FSIMc

3. Scenario 2: dipIQ-FSIMc

4. Scenario 2: NIQE-FSIMc

5. Scenario 2: NIQE-MSSSIM

For each of the above ASDR/ÂSDR and RSFD combinations, we develop models for seven

multiple distortion combinations which are:

1. Blur-JPEG

2. Blur-Noise

3. JPEG-JPEG
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4. Noise-JPEG

5. Noise-JPEG2000

6. Noise/Blur/JPEG-JPEG

7. All five individual distortion combinations considered together

We will evaluate the performance of all parameter settings developed under the umbrella

of Model 1 in Section 4.6.

4.5.2 Distortion Behavior based Model 2

We had developed Model 1 in Section 4.5.1 in light of the observations and insights gained

through the multiple distortions behavior analysis of Section 4.3.1. Model 1 uses a 2-tier

modeling approach to predict ASFD. Motivated by the polynomial form of Model 1, we

also develop a direct six-parameter polynomial model, called Model 2, given by Equation

4.14 for DR IQA framework Scenario 1.

ÂSFD = a · ASDR
2 + b · RSFD

2 + c · ASDR + d · RSFD + e · ASDR · RSFD + f, (4.14)

where a, b, c, d, e and f are model coefficients, ÂSFD is the predicted value of ASFD and we

assume that ASDR is being computed by an FR method. Model coefficients are estimated

directly by using MATLAB and using both DR IQA databases V1 and V2 in a combined

manner. It can be seen that Model 2 reduces to Model 1 when: a = 0, b = 0, c = −1,

d = P2, e = P1 and f = 1.

For the case of DR IQA framework Scenario 2, when NR methods are used to predict

ASDR, i.e., they provide ÂSDR, Model 2 takes the form:

ÃSFD = a · ÂSDR

2
+ b · RSFD

2 + c · ÂSDR + d · RSFD + e · ÂSDR · RSFD + f, (4.15)
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where ÃSFD is the predicted value of ASFD when ÂSDR is used by Model 2. The NR

(CORNIA, dipIQ, NIQE) predicted DR image quality scores are mapped to respective FR

(FSIMc or MSSSIM) scores by using the nonlinear mapping function of Equation 4.12, as

described in Section 4.5.1.

Since there are five different ASDR/ÂSDR and RSFD combinations, each with its own

set of seven distortion combinations, 35 different parameter settings are developed under

the umbrella of Model 2. For details of these combinations, refer to Section 4.5.1.

4.5.3 SVR based Model 3

In addition to the empirical distortion behavior based Models 1 and 2, we use Support

Vector Regression (SVR) [149,153], to automatically learn the quality prediction functions

of Equations 4.5 and 4.7 for DR IQA framework Scenarios 1 and 2, respectively. We refer

to the model so developed as Model 3, which is again an umbrella for 35 different SVR-

based models depending upon the five different ASDR/ÂSDR and RSFD combinations each

with its own set of seven distortion combinations. Since distortion behavior based DR

IQA modeling, presented in Sections 4.5.1 and 4.5.2, has not been done before, we develop

SVR-based models to create an additional reference point to see whether the distortion

behavior based models are performing well or if better models can be learned by using

machine learning tools. These models will also act as DR IQA models in their own right.

We develop Model 3 by using nu-SVR that employs the radial basis function (RBF)

kernel [134, 153, 227] and four control parameters which include gamma, cost, nu, and

epsilon [134, 227]. For each of the 35 models, the predictors are the FR FSIMc/MSSSIM

RSFD scores and either the FR FSIMc ASDR scores or the NR CORNIA/dipIQ/NIQE ÂSDR

scores. The training targets are the ASFD scores given by the SQB of the FD images.

We use DR IQA database V1 for model training and DR IQA database V2 for model

validation. The finalized models are later tested on the Waterloo Exp-II, LIVE MD [31],

MDIVL [34], and LIVE WCmp [2] databases (see Section 4.6). Before model training, we

ensure that the data has been scaled properly as recommended in [134]. During training,

we determine the best possible SVR control parameters for a particular model through

an extensive grid search by training the model on DR IQA database V1 hundreds and
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at times thousands of times using different combinations of control parameters, and then

selecting the parameters that lead to the best model performance, both in terms of PLCC

and SRCC, on the validation data (i.e., DR IQA database V2). Since model training by

using a large grid is quite time consuming, we use a two-tier grid search. First a coarse-level

grid search is performed that identifies the region of the grid that should be focused on.

This is followed by a fine-level grid search to finalize the SVR parameters. The finalized

SVR control parameters are used to train the final model on DR IQA database V1.

4.6 Performance Evaluation of DR IQA Models

We evaluate the performance of the DR IQA models by using the same test databases

and evaluation criteria as were used for baseline performance evaluation in Section 4.2 and

described in Section 4.2.1. The test datasets, which include the Waterloo Exp-II, LIVE

MD [31], MDIVL [34], and LIVE WCmp [2], have no overlap with the datasets used for

model development in Section 4.5 (i.e., DR IQA databases V1 and V2). The performance

of DR IQA Models 1, 2, and 3, in terms of PLCC and SRCC, is given in Tables 4.7, 4.8,

and 4.9, respectively. The PLCC and SRCC values are computed by considering model

outcomes against SQB for the Waterloo Exp-II database and against MOS/DMOS for the

LIVE MD, MDIVL, and LIVE WCmp databases.

4.6.1 Comparison with Baseline Models

Comparison with FR-based Baseline Models

The performance of the FR based baseline models, depicted in Fig. 4.3, was discussed in

Section 4.2.2 and specifically presented in Table 4.1. When this table is compared with

Tables 4.7, 4.8, and 4.9, it can be observed that DR IQA Models 1, 2, and 3 (and their

underlying models) outperform the FR based baseline models on all four test datasets. The

gains in performance exhibited by the DR IQA models are mostly quite comprehensive.

For example, the performance of the FR based baseline models is quite poor on both the

constituent distortion combinations of the LIVE MD database and on this dataset as a
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Table 4.7: Performance of Distortion Behavior based DR IQA Model 1.

Database
Correlation Predictors Distortion Combination and Model Type

Metric S1 S2 B-JPG B-N JPG-JPG N-JPG N-JP2 NBJ-JPG All Data

Waterloo

Exp-IIa

PLCC

FSIMc FSIMc 0.9117 0.9104 0.9221 0.8699 0.8583 0.8593 0.8270

CORNIA FSIMc 0.9077 0.9208 0.9101 0.8553 0.8344 0.8562 0.8278

dipIQ FSIMc 0.9071 0.9207 0.9227 0.9012 0.8627 0.8688 0.8360

NIQE FSIMc 0.8904 0.9129 0.8879 0.8634 0.8389 0.8415 0.8182

NIQE MSSSIM 0.9304 0.9681 0.9174 0.8724 0.8103 0.7604 0.7552

SRCC

FSIMc FSIMc 0.9084 0.9086 0.9166 0.8661 0.8615 0.8705 0.8281

CORNIA FSIMc 0.9057 0.9207 0.8922 0.8486 0.8225 0.8607 0.8225

dipIQ FSIMc 0.9059 0.9205 0.9117 0.9009 0.8650 0.8799 0.8360

NIQE FSIMc 0.8889 0.9130 0.8622 0.8555 0.8250 0.8481 0.8133

NIQE MSSSIM 0.9302 0.9689 0.8837 0.8585 0.7629 0.7692 0.7323

LIVE

MDb

PLCC

FSIMc FSIMc 0.7573 0.8079 – – – – 0.7491

CORNIA FSIMc 0.7793 0.7026 – – – – 0.7789

dipIQ FSIMc 0.7795 0.7707 – – – – 0.7597

NIQE FSIMc 0.7828 0.7097 – – – – 0.7521

NIQE MSSSIM 0.7763 0.6767 – – – – 0.6994

SRCC

FSIMc FSIMc 0.7062 0.7994 – – – – 0.7201

CORNIA FSIMc 0.7605 0.6013 – – – – 0.7688

dipIQ FSIMc 0.7293 0.7004 – – – – 0.7024

NIQE FSIMc 0.7642 0.6176 – – – – 0.7591

NIQE MSSSIM 0.7571 0.5445 – – – – 0.6249

MDIVLb,c

PLCC

FSIMc FSIMc 0.8958 – – 0.9202 – 0.9046 0.9010

CORNIA FSIMc 0.9186 – – 0.8537 – 0.8960 0.8906

dipIQ FSIMc 0.9157 – – 0.9012 – 0.9067 0.9030

NIQE FSIMc 0.8594 – – 0.7808 – 0.8381 0.8272

NIQE MSSSIM 0.8521 – – 0.7475 – 0.8203 0.8030

SRCC

FSIMc FSIMc 0.8427 – – 0.8864 – 0.8606 0.8546

CORNIA FSIMc 0.8939 – – 0.8597 – 0.8933 0.8941

dipIQ FSIMc 0.8937 – – 0.8568 – 0.8834 0.8701

NIQE FSIMc 0.8401 – – 0.7514 – 0.8290 0.8155

NIQE MSSSIM 0.8322 – – 0.6997 – 0.7659 0.7450

LIVE

WCmpb,d

PLCC

CORNIA FSIMc 0.9097 0.9151 0.9096 0.9151 0.9058 0.9141 0.9162

dipIQ FSIMc 0.9081 0.9080 0.9081 0.9065 0.9002 0.9080 0.9072

NIQE FSIMc 0.9278 0.9291 0.9278 0.9228 0.9012 0.9292 0.9259

NIQE MSSSIM 0.9261 0.9262 0.9260 0.9063 0.8796 0.8893 0.8594

SRCC

CORNIA FSIMc 0.9151 0.9181 0.9149 0.9170 0.9070 0.9178 0.9186

dipIQ FSIMc 0.9098 0.9094 0.9098 0.9060 0.8997 0.9096 0.9073

NIQE FSIMc 0.9284 0.9295 0.9285 0.9238 0.9015 0.9295 0.9264

NIQE MSSSIM 0.9284 0.9283 0.9282 0.9083 0.8822 0.8929 0.8639
aPLCC and SRCC are computed with respect to SQB. bPLCC and SRCC are computed with respect to MOS/DMOS.
c The NBJ-JPG and All Data Model 1 versions are applied to the entire MDIVL database.
dThe LIVE WCmp database has images that have authentic distortions followed by JPEG compression. Therefore, its images

cannot be placed into particular distortion combinations. The various Model 1 versions, trained for the seven distortion

combinations, are applied to the entire dataset and results have been reported in respective columns accordingly.
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Table 4.8: Performance of Distortion Behavior based DR IQA Model 2.

Database
Correlation Predictors Distortion Combination and Model Type

Metric S1 S2 B-JPG B-N JPG-JPG N-JPG N-JP2 NBJ-JPG All Data

Waterloo

Exp-IIa

PLCC

FSIMc FSIMc 0.9135 0.9003 0.9206 0.8751 0.8857 0.8567 0.8296

CORNIA FSIMc 0.9090 0.9117 0.9085 0.8654 0.8432 0.8550 0.8288

dipIQ FSIMc 0.9078 0.9116 0.9228 0.9075 0.8751 0.8685 0.8416

NIQE FSIMc 0.8911 0.9042 0.8854 0.8723 0.8606 0.8414 0.8248

NIQE MSSSIM 0.9336 0.9686 0.9182 0.8726 0.8490 0.8132 0.7980

SRCC

FSIMc FSIMc 0.9104 0.8975 0.9157 0.8701 0.8685 0.8680 0.8279

CORNIA FSIMc 0.9075 0.9115 0.8897 0.8581 0.8369 0.8580 0.8225

dipIQ FSIMc 0.9067 0.9112 0.9116 0.9077 0.8737 0.8791 0.8393

NIQE FSIMc 0.8898 0.9046 0.8563 0.8613 0.8525 0.8468 0.8173

NIQE MSSSIM 0.9343 0.9693 0.8837 0.8432 0.8357 0.8152 0.7850

LIVE

MDb

PLCC

FSIMc FSIMc 0.7575 0.7911 – – – – 0.7628

CORNIA FSIMc 0.7745 0.7679 – – – – 0.7901

dipIQ FSIMc 0.7797 0.7963 – – – – 0.7772

NIQE FSIMc 0.7825 0.7736 – – – – 0.7615

NIQE MSSSIM 0.7071 0.7089 – – – – 0.6347

SRCC

FSIMc FSIMc 0.7069 0.7865 – – – – 0.7376

CORNIA FSIMc 0.7546 0.7162 – – – – 0.7795

dipIQ FSIMc 0.7294 0.7625 – – – – 0.7351

NIQE FSIMc 0.7646 0.7338 – – – – 0.7378

NIQE MSSSIM 0.6761 0.6176 – – – – 0.387

MDIVLb,c

PLCC

FSIMc FSIMc 0.8970 – – 0.9221 – 0.9008 0.8990

CORNIA FSIMc 0.9147 – – 0.8793 – 0.8953 0.8958

dipIQ FSIMc 0.9164 – – 0.9076 – 0.8906 0.8863

NIQE FSIMc 0.8586 – – 0.7988 – 0.8202 0.8167

NIQE MSSSIM 0.8572 – – 0.7633 – 0.7874 0.7550

SRCC

FSIMc FSIMc 0.8464 – – 0.8889 – 0.8486 0.8426

CORNIA FSIMc 0.8894 – – 0.8882 – 0.8873 0.8889

dipIQ FSIMc 0.8946 – – 0.8691 – 0.8642 0.8613

NIQE FSIMc 0.8396 – – 0.7802 – 0.8035 0.8023

NIQE MSSSIM 0.8413 – – 0.7143 – 0.7595 0.7239

LIVE

WCmpb,d

PLCC

CORNIA FSIMc 0.9084 0.9109 0.9093 0.9122 0.9035 0.9141 0.9140

dipIQ FSIMc 0.9081 0.9079 0.9081 0.9058 0.9058 0.9079 0.9077

NIQE FSIMc 0.9277 0.9271 0.9265 0.9201 0.9100 0.9255 0.9233

NIQE MSSSIM 0.9255 0.9258 0.9242 0.9067 0.8886 0.9187 0.9134

SRCC

CORNIA FSIMc 0.9139 0.9145 0.9143 0.9121 0.9026 0.9168 0.9154

dipIQ FSIMc 0.9097 0.9093 0.9095 0.9055 0.9056 0.9092 0.9087

NIQE FSIMc 0.9286 0.9264 0.9266 0.9182 0.9063 0.9247 0.9214

NIQE MSSSIM 0.9275 0.9279 0.9258 0.9052 0.8880 0.9190 0.9148
aPLCC and SRCC are computed with respect to SQB. bPLCC and SRCC are computed with respect to MOS/DMOS.
c The NBJ-JPG and All Data Model 2 versions are applied to the entire MDIVL database.
dThe LIVE WCmp database has images that have authentic distortions followed by JPEG compression. Therefore, its images

cannot be placed into particular distortion combinations. The various Model 2 versions, trained for the seven distortion

combinations, are applied to the entire dataset and results have been reported in respective columns accordingly.
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Table 4.9: Performance of SVR based DR IQA Model 3.

Database
Correlation Predictors Distortion Combination and Model Type

Metric S1 S2 B-JPG B-N JPG-JPG N-JPG N-JP2 NBJ-JPG All Data

Waterloo

Exp-IIa

PLCC

FSIMc FSIMc 0.9287 0.9104 0.9195 0.8877 0.9074 0.8629 0.8416

CORNIA FSIMc 0.9215 0.9180 0.9062 0.8547 0.8449 0.8643 0.8389

dipIQ FSIMc 0.9228 0.9195 0.9224 0.9112 0.8825 0.8690 0.8448

NIQE FSIMc 0.9017 0.9089 0.8853 0.8809 0.8660 0.8422 0.8317

NIQE MSSSIM 0.9383 0.9671 0.9159 0.9327 0.8746 0.8172 0.7952

SRCC

FSIMc FSIMc 0.9286 0.9079 0.9155 0.8794 0.8957 0.8753 0.8389

CORNIA FSIMc 0.9228 0.9181 0.8861 0.8511 0.8386 0.8734 0.8391

dipIQ FSIMc 0.9252 0.9194 0.9109 0.9118 0.8809 0.8800 0.8434

NIQE FSIMc 0.9038 0.9095 0.8558 0.8712 0.8601 0.8474 0.8230

NIQE MSSSIM 0.9387 0.9689 0.8815 0.9276 0.8670 0.8255 0.7852

LIVE

MDb

PLCC

FSIM FSIMc 0.7539 0.8082 – – – – 0.7329

CORNIA FSIMc 0.7769 0.8175 – – – – 0.7032

dipIQ FSIMc 0.7371 0.7791 – – – – 0.7839

NIQE FSIMc 0.7712 0.7641 – – – – 0.7602

NIQE MSSSIM 0.7349 0.7270 – – – – 0.6468

SRCC

FSIMc FSIMc 0.7154 0.7983 – – – – 0.7015

CORNIA FSIMc 0.7613 0.8022 – – – – 0.6533

dipIQ FSIMc 0.6890 0.7105 – – – – 0.7545

NIQE FSIMc 0.7478 0.7229 – – – – 0.7427

NIQE MSSSIM 0.7110 0.6575 – – – – 0.4111

MDIVLb,c

PLCC

FSIMc FSIMc 0.8975 – – 0.9227 – 0.9063 0.9048

CORNIA FSIMc 0.9397 – – 0.8767 – 0.9085 0.9001

dipIQ FSIMc 0.9203 – – 0.9052 – 0.8999 0.8950

NIQE FSIMc 0.8578 – – 0.8182 – 0.8296 0.8046

NIQE MSSSIM 0.8671 – – 0.8161 – 0.7737 0.7799

SRCC

FSIMc FSIMc 0.8266 – – 0.9020 – 0.8758 0.8671

CORNIA FSIMc 0.9145 – – 0.8871 – 0.9020 0.8910

dipIQ FSIMc 0.8731 – – 0.8776 – 0.8759 0.8726

NIQE FSIMc 0.8295 – – 0.8048 – 0.8211 0.7872

NIQE MSSSIM 0.8537 – – 0.8092 – 0.7239 0.7247

LIVE

WCmpb,d

PLCC

CORNIA FSIMc 0.9117 0.9156 0.9166 0.9087 0.9023 0.9166 0.9133

dipIQ FSIMc 0.9086 0.9083 0.9065 0.9010 0.9010 0.9067 0.9069

NIQE FSIMc 0.9239 0.9237 0.9207 0.9169 0.9056 0.9176 0.9202

NIQE MSSSIM 0.9247 0.9217 0.9188 0.8609 0.8514 0.9152 0.9131

SRCC

CORNIA FSIMc 0.9150 0.9182 0.9184 0.9087 0.9000 0.9156 0.9145

dipIQ FSIMc 0.9104 0.9098 0.9059 0.8939 0.8941 0.9061 0.9045

NIQE FSIMc 0.9220 0.9219 0.9159 0.9155 0.9005 0.9143 0.9184

NIQE MSSSIM 0.9246 0.9235 0.9158 0.8622 0.8546 0.9126 0.9120
aPLCC and SRCC are computed with respect to SQB. bPLCC and SRCC are computed with respect to MOS/DMOS.
c The NBJ-JPG and All Data Model 3 versions are applied to the entire MDIVL database.
dThe LIVE WCmp database has images that have authentic distortions followed by JPEG compression. Therefore, its images

cannot be placed into particular distortion combinations. The various Model 3 versions, trained for the seven distortion

combinations, are applied to the entire dataset and results have been reported in respective columns accordingly.

213



whole, and also on the B-JPG combination of the MDIVL database and on this dataset

as a whole. However, the DR IQA models perform well on these datasets, exhibiting

tremendous gains compared to the baseline. The only exceptions are the cases of B-N and

N-JPG in the Waterloo Exp-II database and the case of N-JPG in the MDIVL database,

where the MSSSIM based baseline models do better than some DR IQA models, yet it

cannot outperform all of them. The superior performance of the DR IQA models relative

to the FR based baseline of Fig. 4.3 demonstrates the shortcomings of the FR paradigm

in the absence of PR images at the final destination and at the same time it establishes

the superiority of the DR IQA framework for this case, especially its Scenario 2 (see Fig.

4.18).

In Section 4.2.2, we had also evaluated the performance of FR methods when they are

used to determine the absolute quality scores of FD images with respect to their PR images

(see Table 4.2). Essentially, we had determined ASFD scores using FR methods. Given

that the performance of FR methods is well established when PR images are available,

and that it is the goal of the DR IQA methods to predict ASFD, it is vital to compare

how well the DR IQA models do against FR computed ASFD scores. By comparing Tables

4.7, 4.8, and 4.9 with Table 4.2, we can make the following observations: 1) Generally,

DR IQA Models 1, 2, and 3, perform better than FR predicted ASFD on the B-JPG and

B-N combinations of the LIVE MD database, while performing at par with its all data

case. 2) The DR IQA models also perform at par with the FR predicted ASFD for the B-

JPG, N-JPG, and all data cases of the MDIVL database, where some DR IQA models also

outperform the FR methods. 3) On the B-JPG, B-N, JPG-JPG, and N-JPG, combinations

of the Waterloo Exp-II database, DR IQA Models 1, 2, and 3, mostly perform at par with

the FR predicted ASFD scores. The performance demonstrated by the DR IQA models

in points 1, 2, and 3 so far, relative to FR-predicted ASFD, is no small achievement given

that FR performance is usually considered as an upper bound in IQA if FR methods have

access to the PR images (which is the case here). 4) While the DR IQA Models 1, 2, and 3,

perform satisfactorily on the N-JP2, NBJ-JPG, and all data cases of the Waterloo Exp-II

database, they do not approach the superior performance exhibited by the FR-predicted

ASFD. This highlights the difficult nature of the N-JP2 case, as can be seen in the distortion

behavior plot of Fig. 4.15. It also highlights the difficult nature of the NBJ-JPG and all

214



data cases, where multiple distortion combinations are considered together, making the

task of IQA all the more difficult. It should be noted that this analysis is not possible for

the LIVE WCmp database as it lacks PR images and FR-predicted ASFD scores cannot be

determined. However, DR IQA Models 1, 2, and 3 perform quite well on this database as

can be seen from Tables 4.7, 4.8, and 4.9, respectively.

Comparison with NR-based Baseline Models

The performance of the NR based baseline models, depicted in Fig. 4.4, was discussed in

Section 4.2.3 and specifically presented in Table 4.3. When this table is compared with

Tables 4.7, 4.8, and 4.9, it can be observed that most underlying models of DR IQA Mod-

els 1, 2, and 3 comprehensively outperform the NR based baseline models on all four test

datasets. While there are some exceptions, for example, CORNIA [141] does well on the

B-N and B-JPG cases of the LIVE MD and MDIVL databases, respectively, it does inade-

quately on other distortion combinations and datasets. On the other hand, most DR IQA

models offer good stable performance across the wide ranging test data. While dipIQ [36]

performs quite well across the Waterloo Exp-II dataset, as we noted in Section 4.2.3, this

dataset is favored towards dipIQ because both dipIQ and SQB (used to annotate the Wa-

terloo Exp-II database) follow a ranking based design philosophy. Even then, the DR IQA

models perform better than dipIQ, with the exception of the all data case of the Waterloo

Exp-II database. As discussed earlier, a simple counterargument to the very premise of

developing DR IQA as a new paradigm is that NR methods should be used to directly

evaluate the quality of the FD images. Here, by demonstrating the superiority of DR IQA

based methods over the NR based baseline models, we have shown that if additional infor-

mation is available in the form of DR images, then incorporating such information in the

task of quality assessment of FD images can lead to much better performance instead of us-

ing NR methods directly on FD images. The superior performance of DR IQA framework

Scenario 2 based models, compared to the NR based baseline models, has also shown that

in the absence of PR images, NR methods can be effectively used to compute ÂSDR scores

for DR images, which together with the FR-computed RSFD scores between the DR and

FD images, can lead to effective DR IQA models, again highlighting the utility of using
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additional information provided by DR images even if it is through their NR-predicted

quality.

Comparison with 2stepQA Baseline Model

The performance of the 2stepQA model [1,2] was discussed in Section 4.2.4 and specifically

presented in Table 4.4. We regard 2stepQA as another baseline model, in fact it is the

most relevant baseline model since it utilizes both the DR and FD images to perform the

quality assessment of FD images. By comparing Table 4.4 with Tables 4.7, 4.8, and 4.9,

the following observations can be made: 1) Since 2stepQA uses NIQE to estimate the

quality of DR images, MSSSIM to estimate the quality of the FD image with respect to

the DR image, and then combines them to yield the final quality score, we included the

NIQE-MSSSIM combination in DR IQA Models 1, 2, and 3, for direct comparison. It can

be seen that DR IQA Models 1, 2, and 3, that utilize NIQE and MSSSIM, perform better

than 2stepQA on the JPG-JPG, N-JPG, N-JP2, and all data cases of the Waterloo Exp-

II database while performing at par with it for the other three distortion combinations.

The NIQE-MSSSIM based DR IQA models perform better than 2stepQA on the LIVE

MD database while the opposite is true for the MDIVL database. Finally, the said DR

IQA models perform at par with 2stepQA on the LIVE WCmp database, which is quite

surprising since the DR images of this dataset are authentically distorted whereas the DR

images in the training datasets of the DR IQA models have only noise, blur or JPEG

compression. Even then, the DR IQA models do a fine job on this database. 2) When

2stepQA is compared with the NIQE-FSIMc version of the DR IQA Models 1, 2, and 3, it

can be seen that the DR IQA models perform a bit better on the LIVE WCmp database, a

bit worse on the B-JPG and N-JPG combinations of MDIVL but they perform better than

2stepQA over the entire MDIVL database, and better than 2stepQA on the LIVE MD

database. On the Waterloo Exp-II database, the 2stepQA model performs better on the

B-JPG, B-N, and the JPG-JPG combinations, but it is comprehensively outperformed by

the DR IQA models on the N-JP2, NBJ-JPG, and all data combinations, while also being

slightly outperformed on the N-JPG combination. 3) However, the most important finding

here is that the CORNIA-FSIMc and dipIQ-FSIMc based DR IQA Models 1, 2, and 3,

comprehensively outperform 2stepQA in many distortion combinations and datasets (with

216



the exception of a few cases). For example, 2stepQA does poorly for the most difficult

all data case of Waterloo Exp-II, LIVE MD, and MDIVL databases. By contrast, the DR

IQA based models do quite well in this case and comprehensively outperform 2stepQA.

We can attribute the overall better performance of the DR IQA based models over the

2stepQA model to two factors: 1) The modeling approach taken in 2stepQA is rather ad

hoc, where an NR and FR method have been arbitrarily combined, whereas the DR IQA

models have either been developed based on empirical study of the behavior of multiple

simultaneous distortions or through SVR (which also incorporates distortion behavior in

the training process). 2) The choice of NR and FR methods to be combined is important.

Since CORNIA [141] and dipIQ [36] perform better than NIQE [3], some DR models that

utilize CORNIA and dipIQ perform better than those that use NIQE.

Validation of using SQB based Training Data

Finally, the superior performance of the DR IQA models with respect to both the FR and

NR based baselines, and relative to the 2stepQA model also validates the use of our SQB

annotated training/validation datasets, i.e., DR IQA databases V1 and V2. Since these

datasets do not have subjective ratings, they have been annotated by the automatically

generated synthetic quality benchmark (SQB) scores described in Section 3.4. By testing

the DR IQA models on LIVE MD [31], MDIVL [34], and LIVE WCmp [2], which are

subject-rated datasets, and finding them to perform better than the baselines, we have

again shown the validity of using SQB as an alternative IQA data annotation mechanism.

4.6.2 Inter-Model Comparisons

We perform three kinds of inter-model comparisons: 1) Approach-based comparisons, 2)

DR IQA framework-based comparisons, and 3) Distortion combination-based comparisons.

Approach-based Comparisons

First, we compare the three fundamental DR IQA modeling approaches developed in Sec-

tions 4.5.1, 4.5.2, and 4.5.3, and referred to as Model 1, 2, and 3, respectively. Each
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approach has 35 underlying models and they will be considered in a corresponding man-

ner. The simplest of these approaches is Model 1 (Section 4.5.1) which was developed

by directly observing the multiple distortion behavior plots exemplified by Figures 4.11

to 4.15 and led to the development of simple two-parameter models. Model 2 (Section

4.5.2) is also distortion behavior based and follows directly from Model 1. It consists of

six-parameter based models. The most complex of the three models is Model 3 (Section

4.5.3) which used a sophisticated machine learning tool (SVR) to automatically learn DR

IQA models and its development was also computationally expensive.

Intuitively, one would expect that Model 3 will excel in performance compared to Mod-

els 1 and 2, because it uses SVR to automatically learn quality models. However, as a

comparison of Tables 4.7, 4.8, and 4.9 shows, this is not necessarily the case. Generally, all

three modeling approaches offer quite similar performance. The following can be observed:

1) On the Waterloo Exp-2 database, Model 1 offers the best performance for the B-N and

JPG-JPG combinations, while Model 3 performs the best in the other five distortion com-

binations. This is expected, especially in the case of the N-JPG and N-JP2 combinations

as their distortion behavior plots were the most complex (see Fig. 4.14 and 4.15 respec-

tively) and the piecewise linear nature of Model 1 with its inability to model the overshoot

phenomenon witnessed for these combinations meant that it incurred approximation errors

for these combinations. For N-JPG and N-JP2 Model 2 performs better than Model 1, as

can be expected as the former is capable of approximating the nonlinear nature of these

distortions. However, surprisingly, the performance of all three models is quite close for

the most complex distortion combinations of NBJ-JPG and all data. 2) On the LIVE MD

database [31], all three modeling approaches offer more or less similar performance on the

B-JPG combination. Models 2 and 3 offer similar performance on the B-N combination

while Model 1 lags behind in this case. All three models offer mixed performance for the

all data case of this database. 3) On the MDIVL database [34], Model 3 performs better

on the individual distortion combinations while Model 1 performs better in the difficult

NBJ-JPG and all data cases. 4) On the LIVE WCmp database [2], Model 1 offers the

best performance, followed by Model 2, and then by Model 3. This is a significant finding

because the DR images of the LIVE WCmp database are authentically distorted, and such

distortions are not found in the training data. Thus, by performing better than SVR-based
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Model 3, Models 1 and 2 show that they have better generalization ability.

While we have mentioned one model or another as offering better performance than the

others in the above analysis, Tables 4.7, 4.8, and 4.9 show that although one model may

not perform better than another, it also does not lag far behind in performance, with the

only exception being the performance of Model 1 on the B-N combination of LIVE MD.

Since Model 3 uses SVR, which is a sophisticated machine learning tool, to automatically

learn quality models, the fact that Models 1 and 2 not only perform at par with Model

3, but they even outperform Model 3 in quite a number of cases establishes the validity

of our distortion behavior based approach to develop DR IQA models. The simplicity of

Models 1 and 2, especially the former since it is just a two-parameter model, adds to the

overall strength of the distortion behavior based modeling approach.

DR IQA Framework-based Comparisons

Depending upon the choice of FR/NR methods used for ASDR/ÂSDR and the choice of

FR methods used for RSFD, five different combinations are possible. These are mentioned

in the format of ASDR/ÂSDR-RSFD as: 1) FSIMc-FSIMc, 2) CORNIA-FSIMc, 3) dipIQ-

FSIMc, 4) NIQE-FSIMc, and 5) NIQE-MSSSIM. Of these five, the first belongs to DR IQA

framework Scenario 1 which considers the PR image to be available for ASDR computation,

while the rest belong to the more practical Scenario 2 where the PR image is considered

unavailable.

Since, FR methods outperform NR ones and are more reliable, it is natural to think that

the Scenario 1 combination of FSIMc-FSIMc should outperform Scenario 2 based methods

because it uses an FR method to determine both ASDR and RSFD. However, by observing

Tables 4.7, 4.8, and 4.9 for Models 1, 2, and 3, respectively, we can see that this is not the

case as in most cases Scenario 2 based DR IQA models perform at par with the Scenario 1

based FSIMc-FSIMc, and in some cases they even outperform it. This is a very important

finding as it demonstrates that the more practical Scenario 2 based DR IQA models, that

work in the absence of the PR image, are able to perform as well as the Scenario 1 based

model which uses the PR image. Thus, the lack of having access to the PR image does not

constrain the performance of DR IQA models, as long as appropriate NR and FR methods
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are used to compute ÂSDR and RSFD, respectively. This highlights that DR IQA models

can be applied to practical multiple distortions based media distribution systems, such as

the one shown in Fig. 4.2, and have the promise to yield good performance, which cannot

be said for FR methods because of lack of access to the PR images and for NR methods

due to their performance issues.

Distortion Combination-based Comparisons

In our current work, we are dealing with the following seven multiple distortion combi-

nations: 1) B-JPG, 2) B-N, 3) JPG-JPG, 4) N-JPG, 5) N-JP2, 6) NBJ-JPG, and 7) the

first five distortion combinations together (the all data case). Tables 4.7, 4.8, and 4.9,

respectively show that DR IQA Models 1, 2, and 3, perform quite consistently across the

LIVE MD [31], MDIVL [34], and LIVE WCmp [2] databases. These datasets also do

not have all seven of the above-mentioned distortion combinations. Thus, for the distor-

tion combination-based analysis, we will focus on the Waterloo Exp-II database which

has all the distortion combinations. It can be seen from the respective tables that DR

IQA Models 1, 2, and 3, perform quite well for the B-JPG, B-N, and JPG-JPG distortion

combinations. Figures 4.11, 4.12, and 4.13, show that the distortion behavior for these

multiple distortion cases is quite straightforward and hence it can be modeled effectively.

The above-mentioned tables show that for the cases of N-JPG, N-JP2, NBJ-JPG, and all

data, the performance of DR IQA Models 1, 2, and 3, is satisfactory when considered

independently but is lowered quite considerably when considered in comparison with the

cases of B-JPG, B-N, and JPG-JPG. This is understandable because as Figures 4.14 and

4.15 show, the distortion behavior for the cases of N-JPG and N-JP2 is nonlinear in nature

and thus more difficult to capture. It not only makes the development of DR IQA models

for N-JPG and N-JP2 difficult, but also hardens the task of model development for the

NBJ-JPG and all data cases (which include these combinations). The fact that SVR based

Model 3 can also not do much better than Models 1 and 2, shows the difficult nature of

model development for these cases. This area is therefore calling for future research to

come up with innovative means to enhance the performance of DR IQA models for these

difficult distortion combinations.
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4.7 Practical Application

The DR IQA paradigm has its roots in the practical limitations of the contemporary

paradigms of FR/RR/NR IQA. Although this new paradigm can be regarded as being

in its infancy and the models developed in this chapter are one of the first attempts to

explore it, nevertheless, they are practically applicable even in their current form. Among

the different practical multiple distortion scenarios discussed in Section 4.1, many involve

images that are first afflicted by noise and/or blur due to imperfect capture conditions

followed by compression due to storage or media distribution requirements. For example,

social media platforms such as Facebook or video sharing platforms such as YouTube

compress content which may be contaminated by distortions such as noise or blur. Thus,

the distortion combination specific DR IQA models developed for the cases of B-JPG,

JPG-JPG, and N-JPG can be deployed if it is known that the second distortion is JPEG

compression and information is available about the first distortion. However, in a more

realistic scenario, information about the first distortion may not be available. In such

a case the NBJ-JPG DR IQA model can be applied. Since the DR IQA models have

outperformed the NR IQA based baseline models, which are the only other practically

feasible options in the absence of the pristine images, the DR IQA models can enhance the

perceptual quality prediction capabilities of media distribution chains that currently rely

on NR IQA models. As noted in Section 4.6, Scenario 2 based DR IQA models perform as

well as Scenario 1 based models, and we know from Section 4.3.2 that they do not require

any modifications in the media delivery chains. Thus, Scenario 2 based DR IQA models

can be readily deployed in currently functioning media delivery systems.

4.8 Summary

In this chapter, we attempt to tackle the challenging practical problem of IQA of images

undergoing multiple stages of distortions where earlier degraded versions of the final dis-

torted visual content are also available. We demonstrate that FR methods are unable to

perform well in such a setting because pristine reference images are generally not available

and NR methods suffer from performance issues. To study this challenging area, we con-
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duct a first-of-its-kind comprehensive multiple distortions behavior analysis specifically for

the case of a two-stage distortion pipeline where five different practically prevalent simul-

taneous distortion combinations are considered. Next, we introduce a new IQA paradigm,

which we call degraded reference (DR) IQA, that is applicable to the real-world visual con-

tent distribution systems for which FR methods are inapplicable and NR methods struggle

for performance. Specifically, we introduce two DR IQA framework scenarios, where the

pristine reference images are considered available in the first and unavailable in the sec-

ond. We also construct two new DR IQA databases (V1 and V2) that are composed of

pristine references, singly distorted degraded references, and final distorted images with

multiple distortions. Overall, these databases have more than 30,000 images each and use

the SQB mechanism (developed in Chapter 3) for quality annotation. By using the lessons

learned from the multiple distortions behavior analysis and the DR IQA databases, we

are able to develop two novel DR IQA modeling approaches that evaluate the quality of a

final distorted image by also utilizing the degraded references. We also develop SVR-based

models as an additional comparison point to determine the efficacy of our distortion be-

havior based DR IQA models. We extensively test the performance of the DR IQA models

and also some baseline models on four multiply distorted databases, which include the

Waterloo Exp-II database and the subject-rated LIVE MD [31], MDIVL [34], and LIVE

WCmp [2] databases. These test databases have no overlap with the DR IQA databases V1

and V2 used for model development. This testing demonstrates the superior performance

of DR IQA models when compared with existing FR and NR IQA paradigms, thereby

establishing DR IQA as a major IQA paradigm in its own right.

222



Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we have endeavored to address two major challenges affecting the develop-

ment of practically applicable IQA algorithms: 1) The shortage of large-scale annotated

data, and 2) The design of IQA algorithms for multiply distorted content in the presence

of degraded references.

Until now, only small-scale annotated datasets exist in IQA due to the constraints of

subjective testing. Thus, machine learning based models trained on such limited data suffer

from overfitting issues and cannot be generalized. This also means that the true potential

of approaches such as deep neural networks, which require large-scale training data, has not

been harnessed in developing IQA models, especially BIQA models. Researchers have tried

to enhance the performance of DNN based BIQA methods by focusing on the modeling

part and relying on data augmentation, but have achieved only limited success. Efforts to

fill the void of large-scale annotated training data have remained missing thus far.

To address the data shortage challenge, we construct the very large-scale Waterloo

Exploration-II database. This dataset consists of 3,570 pristine and around 3.45 million

distorted images, making it the largest IQA database. The distorted content is created in

two stages, where the first stage distorts the pristine reference images using three distortion
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types at 11 distortion levels leading to singly distorted content. The second stage distorts

the singly distorted content using three distortion types at 17 distortion levels leading to

five multiply distorted combinations. We adopt content adaptive distortion parameters

to ensure that the masking effect of content is taken into account, so that the dataset

has images covering the entire quality spectrum. To annotate this dataset, we develop

a synthetic quality benchmark (SQB) mechanism that automatically assigns perceptual

quality labels to images. SQB uses reciprocal rank fusion (RRF) [23] to fuse four state-of-

the-art FR methods in a training-free manner. It then uses mapping coefficients derived

from a subject-rated database to map the outcome of RRF to a perceptually meaningful

scale. Extensive tests reveal that SQB outperforms state-of-the-art individual and fused FR

methods, thus justifying its use as an alternative of subjective testing to annotate IQA data.

To test the validity of our approach, we train a DNN based BIQA method, called EONSS,

on the SQB-annotated Waterloo Exploration-II database. Extensive testing reveals that

EONSS not only comprehensively outperforms existing DNN based BIQA methods but that

it also performs better than the very state-of-the-art in BIQA, both in terms of prediction

performance and computation time. Chapter 3 discusses our approach to address the data

shortage challenge in detail.

As a prerequisite requirement of developing SQB, we conducted a comprehensive perfor-

mance evaluation survey of state-of-the-art individual and fused FR methods. We evaluated

the performance of 43 FR and seven fused FR (22 versions) methods on nine subject-rated

databases including both singly and multiply distorted datasets. Among the fused FR

methods evaluated was RAS [41] that relies on RRF [23]. To extensively evaluate RAS,

we performed an exhaustive search that included testing 737,280 FR fusion combinations.

This comprehensive review showed that the RRF based RAS outperforms all other indi-

vidual and fused FR methods, thus, allowing us to identify the RRF [23] as a basis for our

SQB mechanism and also the four FR methods to fuse. We also evaluated the performance

of 14 NR methods in this review. To-date this is the largest performance evaluation survey

carried out in the area of IQA and is discussed in detail in Chapter 2.

In practical media distribution systems, visual content undergoes a number of degrada-

tions between the source and the final destination, making it multiply distorted. Access to

the pristine reference version of such content is either extremely rare or altogether nonexis-
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tent, which makes the application of FR and RR IQA paradigms infeasible. Contemporary

research efforts are focused on using NR IQA or BIQA methods to evaluate the quality

of multiply distorted images, but have shown limited success due to the difficult nature of

the NR IQA paradigm. Apart from the final multiply distorted images, access to its earlier

degraded versions, which we called degraded references, is also usually available in media

delivery systems and may prove to be beneficial for the task of quality assessment of the

final content. However, due to their respective design philosophies, the three major IQA

paradigms are unable to use this additional information.

To address this multi-stage distortion challenge, where degraded references are also

available, we propose a new IQA paradigm called degraded reference (DR) IQA. The

goal of DR IQA is to evaluate the quality of the final multiply distorted images by also

considering their degraded references, but in the absence of pristine references at the end

user level. We consider two scenarios for the DR IQA framework, where the pristine

references are considered available in the early part of the media distribution system in

the first scenario, while absolutely no access to such images is available in the second

scenario. For the first time in IQA, we study the behavior of five combinations of multiple

simultaneous distortions in detail, which include: 1) Blur-JPEG, 2) Blur-Noise, 3) JPEG-

JPEG, 4) Noise-JPEG, and 5) Noise-JPEG2000. We construct two datasets, called DR IQA

databases V1 and V2, for the development of DR IQA models. These datasets are formed

on the same pattern as the Waterloo Exploration-II database and are annotated by using

SQB. The singly distorted content in these datasets constitutes the degraded references.

By considering the lessons learned from the multiple distortions behavior analysis and

using the DR IQA databases, we develop two novel DR IQA models with 35 parameter

settings each, where both DR IQA framework scenarios are considered. We also develop

an SVR-based DR IQA model to give us an additional reference point. Extensive testing

of the DR IQA models and some baseline models, on an independent set of test datasets,

reveals the superior performance of the DR IQA models. The significant performance

gains with respect to using NR IQA methods to directly evaluate the quality of final

distorted images, amply demonstrates that the use of additional information, available in

the form of degraded references, has a highly beneficial impact on enhancing the perceptual

quality prediction performance of IQA models, thereby establishing DR IQA as a new IQA
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paradigm in its own right. Chapter 4 discusses our work on DR IQA in detail.

5.2 Future Work

The work presented in this thesis can be regarded as establishing the foundations of two

new research directions in IQA, and can be expanded in many different ways.

Large-scale IQA Database of Even Higher Diversity: Tables 3.8 and 3.9 show

that the weighted average PLCC and SRCC of EONSS on nine subject-rated databases

is 0.6933 and 0.6509, respectively for the all distortions category, while Tables 3.10 and

3.11 show that these values increase to 0.8430 and 0.8205, respectively for the subset

distortions category. Thus, there is a significant gap in EONSS performance between these

two categories. As noted earlier, the distortions contained in the subset distortions category

are more aligned with those in the Waterloo Exploration-II database, which is used to train

EONSS. However, the all distortions category includes many distortions that are not part

of this database (refer to Section 3.5.2 and Table 2.2 to see a list of distortions that are

in the test set but not contained in the Waterloo Exploration-II database). Since, EONSS

performs remarkably well for the subset distortions category, even though it is a BIQA

method, we conclude that the drop in EONSS performance in the all distortions category

can be attributed to the absence of many distortion types in the Waterloo Exploration-II

database, and if this gap is filled, then the performance of EONSS, and any other DNN

based IQA models trained on this dataset, should go up. Thus, Waterloo Exploration-II

database should be extended and diversified by including a host of distortion types not

found in the current version. This process can begin by including distortion types that are

found in available subject-rated datasets (see Table 2.2 for a list of such distortions), so that

the same test set as in Tables 3.8 and 3.9 can be used, thereby enabling direct comparisons

between the current and subsequent versions of EONSS. Since Waterloo Exploration-II

database primarily includes multiply distorted images, the new dataset should include a

large number of either singly distorted images belonging to diverse distortion types or

multiply distorted images where the first distortion can belong to a new distortion type

followed by JPEG compression. We believe that such a new dataset would lead to even
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more powerful DNN-based IQA models.

DNN-based FR IQA: In this thesis, we trained the DNN-based BIQA method

EONSS on the Waterloo Exploration-II database as a means of validating our approach

to address the data shortage challenge in IQA. Extensive tests revealed that EONSS out-

performs the very state-of-the-art in BIQA, both in terms of perceptual quality prediction

performance and execution time. Since, the Waterloo Exploration-II database has both

pristine reference and distorted images, it can be used to train FR-based DNN models.

While a few such models exist in the IQA literature, they have also been trained on small-

scale IQA databases and suffer from the associated issues. Thus, it will be interesting to

see how well an FR-based DNN model, trained on the large-scale Waterloo Exploration-II

database, performs with respect to the very state-of-the-art in FR IQA, such as IWS-

SIM [13] (which was found to be one of the best FR methods in Chapter 2).

Unified Framework for FR/DR/NR IQA: FR and NR IQA are independent

paradigms that are unable to adapt based on the availability of additional information

about a distorted image. Not only is DR IQA a major new paradigm, it also provides

an opportunity to unify the major paradigms of IQA into one larger framework. Given a

singly or multiply distorted image and its pristine or degraded reference, such a framework

should assess the quality of the reference image and it should operate as an FR method if

the quality of the reference is found to be pristine, operate as an NR method if the quality

of the reference is found to be so distorted that it is of no help or if the reference image

is missing, and operate as a DR method if the reference image is distorted but still useful

for the task of quality assessment of the final distorted image. It should be noted that

the idea for a unified framework for different IQA paradigms has been proposed earlier in

the context of RR IQA [11], where the RR method could operate as an FR, RR, or NR

method given the data rate available to transmit RR features. Yet, not much work has

been done on such a framework, which can be attributed to the lack of powerful learning

tools in the past. However, with the availability of computational resources and large-scale

annotated training data, learning such an adaptable framework becomes a feasible task.

One potential approach is end-to-end learning utilizing DNNs. Given the availability of

the large-scale Waterloo Exploration-II database, which has degraded references of varying

quality, it is possible to train such a DNN-based model to accomplish this task. We believe
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that the practical applicability of such models makes this an exciting research direction.

Further Development of two-stage DR IQA: Tables 4.7, 4.8, and 4.9, show that

the DR IQA models developed for a two-stage distortion pipeline in this thesis do con-

siderably well for the B-JPG, B-N, and JPG-JPG distortion combinations. While their

performance is satisfactory for the more difficult N-JPG, N-JP2, NBJ-JPG, and all data

cases, there is significant room for improvement, especially for the all data case. Since

we have employed both distortion behavior based and SVR-based approaches to combine

ASDR/ÂSDR and RSFD scores generated by different IQA methods, alternative DR IQA

design philosophies that not only use objective quality scores of the degraded reference

and final distorted images, but also additional features need to be investigated. Future

DR IQA models are desired to be general-purpose, i.e., not specific to a particular dis-

tortion combination, but applicable to a wide variety of multiple distortion combinations.

One possibility is to use NSS [123] based features as earlier works that developed wavelet-

domain based NSS models for RR IQA [121, 228] have shown that different distortion

types affect the wavelet coefficient distributions in uniquely different manners, thereby af-

fording an opportunity for IQA. Similarly, in [140], it was shown that NSS-based MSCN

coefficients are also uniquely affected by different distortion types. However, these earlier

studies have focused on the single distortion case, and the impact of multiple distortions

on NSS features has not been studied in detail. Thus, future studies should investigate the

impact of multiple distortions on NSS features and develop new general-purpose DR IQA

models that either rely solely on NSS features or are a hybrid of NSS features and objec-

tive scores of the degraded reference and final distorted images. Another possibility is to

learn general-purpose DR IQA models in a truly end-to-end manner by employing DNNs.

The large-scale Waterloo Exploration-II database developed in this work can provide an

adequate amount of training data for such an endeavor.

Development of DR IQA for Other Application Scenarios: It has been discussed

in Section 4.3 that since the interaction of even two simultaneous distortions has not been

analyzed in depth, a logical point to start work on DR IQA is with a two-stage distortion

pipeline and simulated distortion images, which is what has been done in this thesis and

we have established a baseline against which future models can be compared. However, in

practical media distribution systems, images may undergo more than two distortion stages
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and even the source image may be authentically distorted. Thus, future DR IQA models

should be able to handle images undergoing more than two distortion stages. It has been

shown in this thesis that, in a two-stage distortion pipeline, using the DR image is beneficial

in determining the quality of an FD image. However, in a distortion pipeline consisting

of more than two stages, multiple DR images may be available. Thus, the construction of

DR IQA models that make use of multiple DR images needs to explored so that it can be

determined if using multiple DR images is beneficial to determine the quality of the FD

image. The case of the source image being authentically distorted should also be explored

further. While we showed that the DR models developed in this thesis perform well on the

LIVE Wild Compressed database [2], which consists of authentically distorted DR images,

further work needs to be done as this is a small-scale dataset (80 DR and 320 FD images).

Construction of a Large-Scale VQA Database: The work in this thesis has focused

on image quality assessment (IQA). Similar approaches may be extended to video quality

assessment (VQA). The subjective testing of videos takes even more time than such testing

of images, which means that contemporary annotated VQA databases are even smaller

in size than their IQA counterparts. The availability of large-scale VQA datasets will

enhance the development of machine learning based models in that area, much like the

Waterloo Exploration-II database has positively impacted the creation of DNN based IQA

methods. Thus, a new large-scale VQA database, with thousands of pristine and hundreds

of thousands of both singly and multiply distorted videos, belonging to a diverse set of

distortion types, should be constructed. It can then be synthetically annotated much like

SQB is used to annotate the Waterloo Exploration-II database. As a first step, the SQB

version developed in this thesis can be applied in a frame-by-frame manner to videos and the

average SQB value of all video frames can be used to annotate it. Since SQB in its current

shape will only be able to cater to the spatial aspect of video, its video-specific versions

should be developed that also take into account the temporal aspect. The development

of such a synthetically annotated dataset would enable the development of powerful DNN

based VQA models, especially blind VQA models, whose availability is highly desirable

given the very high global usage of videos [8].

Degraded Reference Video Quality Assessment (DR VQA): The DR IQA

paradigm developed in this thesis is directly extendable to DR VQA. In practical video
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distribution systems, such as streaming media platforms, multiple rounds of distortions

are commonplace. This usually involves an original content which is either pristine (in

case of high end production houses) or afflicted with noise, blur, compression, or color dis-

tortions (in case of amateur video), undergoing subsequent rounds of compression during

distribution. Thus, DR VQA focusing on distortion combinations of Noise-Compression,

Blur-Compression, and Compression-Compression, can be pursued. With a number of

video coding methods available, different kinds of compression techniques can lead to even

more practically occurring multiple distortion combinations. Development of practically

applicable DR VQA models can lead to the distribution of video at defined quality thresh-

olds in a bandwidth efficient manner.
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