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Abstract

Matrix-variate regression models are useful for featuring data with a matrix structure,
such as brain imaging data. However, those methods do not apply to data with measure-
ment error or misclasscification. While mismeasurement is an inevitable issue in the data
collecting process, little research has been available to handle matrix-variate regression
with mismeasurement. In this thesis, we explore several important problems concerning
matrix-variate regression with error-contaminated data.

In Chapter 1, we provide a brief introduction for matrix-variate data and review relevant
topics including logistic regression analysis, measurement error/misclassification mecha-
nisms, regularization methods, and Bayesian inference procedures.

In Chapter 2, we discuss matrix-variate logistic regression for handling error-contaminated
data. Measurement error in covariates has been extensively studied in many conventional
regression settings where covariate information is typically expressed in a vector form.
However, there has been little work on error-prone matrix-variate data which commonly
arise from studies with imaging, spatial-temporal structures. We particularly focus on
matrix-variate logistic measurement error models. We examine the biases induced from
the naive analysis which ignores measurement error. Two measurement error correction
methods are developed to adjust for measurement error effects. The proposed methods are
justified both theoretically and empirically. We analyze a data set arising from a study
examining electroencephalography (EEG) correlates of genetic predisposition to alcoholism
with the proposed methods.

In Chapter 3, we consider a problem complement to that in Chapter 2. Instead of
examining mismeasurement in covariates, here we study mismeasurement in binary re-
sponses. We particularly investigate the response misclassification effects on the matrix-
variate logistic regression model. Matrix-variate logistic regression is useful in facilitating
the relationship between the binary response and matrix-variates which arise commonly
from medical imaging research. However, such a model is impaired by the presence of the
response misclassification. It is imperative to account for misclassification effects when em-
ploying matrix-variate logistic regression to handle such data. In this chapter, we develop
two inferential methods which account for misclassification effects. The first method is an
imputation method which replaces the response variable with an observed and unbiased
pseudo-response variable in the estimation procedure. The second method is derived from
the likelihood function for the observed response surrogate. Our development is carried out
for two settings where misclassification rates are either known or estimated from validation
data. The proposed methods are justified both theoretically and empirically. We analyze
the breast cancer Wisconsin prognostic data with the proposed methods.
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Chapter 4 is a continuation and extension of Chapter 3. We consider regularized matrix-
variate logistic regression with response misclassification, where matrix-variate data may
assume a sparsity structure. With a limited sample size, the presence of a large number
of redundant parameters entails the difficulty of estimation. In this chapter, we develop
inferential methods which account for misclassification effects in combination with the
inclusion of penalty functions to deal with the sparsity of matrix-variate data. We examine
the biases induced from the naive analysis which ignores the response misclassification. Our
development is carried out for two settings where misclassification rates are either known or
estimated from validation data. The proposed methods are justified both theoretically and
empirically. We analyze the breast cancer Wisconsin prognostic data with the proposed
methods.

In Chapter 5, we shift our attention to the Bayesian framework. We consider applying
Bayesian analysis to matrix-variate logistic regression. We propose a Bayesian algorithm
to estimate the matrix-variate parameters element-wisely in combination with the use of
horse-shore shrinkage prior. We investigate the influence on parameter estimation when
ignoring the response misclassification and propose an algorithm to accommodate the ef-
fects of response misclassification. The performance of the proposed method is evaluated
through numerical studies. We analyze the Lee Silverman voice treatment (LSVT) Com-
panion data with the proposed method.

Finally, Chapter 6 summarizes the thesis work and presents some future work.
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Chapter 1

Introduction

In this thesis, we focus on topics concerning matrix-variate regression with measurement
error from both frequentist and Bayesian aspects. Matrix-variate regression is a useful
modelling method for analyzing data with a matrix structure, such as brain imaging data.
This model assumes that the elements from the same row or column share the same effect.
Many researchers proposed various modeling methods based on generalized linear regres-
sion (e.g; Hung and Wang 2013; Li 2014) or Bayesian modelling methods (Carvalho and
West 2007; Guhaniyogi et al. 2017). However, those methods do not apply to data with
measurement error or misclasscification, an issue which is inevitable in the data collecting
process. Li (2014) discussed some issues on this topic from the frequentist viewpoint. But
it lacks a solid theoretical support. To fill in this incomplete research area, we investigate
the influence of measurement error in matrix-variates and the response misclassification on
parameter estimation procedures and propose valid inference models.

Another problem of our interest concerns variable selection with matrix-variate regres-
sion. The structure of the matrix-variate data is complex, and the sparsity assumption
usually needs to be added to the data. Some existing works considered to include a
penalty function to the matrix-variate regression model to conduct inferences (Hung and
Wang 2013; Zhou et al. 2013), but the influence of measurement error or misclassification
on inferential procedures has not been investigated. In this thesis, we consider the matrix-
variate logistic regression model with penalty functions where the response misclassification
is accounted for.

Besides the frequentist viewpoint, Bayesian methods can provide useful procedures to
model matrix-variate data. With Bayesian methods (Wei and Ghosal 2020), the parameters
of the matrix-variate can be obtained by dropping the assumption that each row and



column share the same effect. A shrunk prior can be imposed on the row and column
parameters element-wisely to conduct inferences. However, no work has been available to
accommodate measurement error or misclassification effects under such settings. Motivated
by this, we consider a Bayesian method based on logistic regression with matrix-variate
data and response misclassification.

To better understand our development in the following chapters, in this chapter, we
review relevant topics. The remainder is organized as follows. In Section 1.1, we introduce
basic notation for describing matrix-variate data. In Section 1.2, we introduce logistic re-
gression analysis from both the frequentist and Bayesian aspects. In Section 1.3, we explain
the measurement error/misclassificaiton mechanisms and present the basics for correcting
measurement error/misclassificaiton. In Sections 1.4 and 1.5, we discuss commonly used
regularization methods for frequentist and Bayesian procedures.

1.1 Matrix-Variate Data

For k =1,...,n, let 3 be a (p + 1) x ¢ dimension matrix, where x;; is the ith row and
the jth column element in zy for i = 1,...,(p+ 1) and j = 1,...,q. We name covariate
data which has the structure like x, as matriz-variate data. In applications, biomedical
data, such as Electroencephalography (EEG) data and anatomical magnetic resonance
imaging (MRI), exhibit a natural matrix structure. Traditional modelling methods, such
as generalized linear regression (GLM), by vectorizing matrix data, may not be feasible for
handling this kind of data due to the complex data structure and computation burdens.
The assumption that each row or column shares the same effects is often imposed (Kolda
and Bader 2009; Li et al. 2010) for dimension reduction.

To see this, considering the GLM, one may model the matrix-variate data as

9() = Y0 + (xx, B) + 7] 2 (1.1)

where pp = P(Y) = 1|z, 2), g(-) is the link function, vy is a scalar, v, is a p, x 1 vector
parameter, B is a (p + 1) X ¢ matrix, and (zy, B) = (vec(zy,), vec(B)) = > i Bijnij-

Using model (1.1), we have to estimate (p + 1) X ¢ + p, + 1 parameters, which are
usually large relative to the usual sample size. The rank-1 matrix decomposition of B, say,
B = aTf, separates the matrix-variate coefficients into two vectors of covariates, where «
is the (p + 1)-dimensional row coefficients and § is the g-dimensional column coefficients.
Under this rank-1 matrix decomposition, the number of matrix-variate parameters needed
to be estimated decreases from (p+1) x ¢ to p+¢+1. The model by Hung and Wang (2013)

2



used this idea to fit a logistic regression model with an additional constraint that one of
the elements in « is set as 1 to overcome the nonidentifiability issue related to the rank-1
matrix decomposition. Zhou et al. (2013) proposed a more general case using the GLM
with penalty functions based on a rank-R parafac decomposition where the covariate data
2 is a tensor, where the rank-R parafac decomposition of B is B = Zil a™ o g o)
and ) for r = 1, ..., R are column vectors, a'”) o 8(") is the outer product of o™ and B,
and R is a positive integer. Zhou and Li (2014) formulated a spectral regularization for
matrix-variate regression, which minimizes a function combining a function of the singular
values of B and the loss function of the negative log-likelihood based on the GLM. Recently,
Guhaniyogi et al. (2017) proposed a tensor regression method with Bayesian analysis under
the rank-R parafac decomposition, where shrinkage priors were assigned to a™ and g
under the sparsity assumption on B.

1.2 Logistic Regression Analysis

As claimed by Walker and Duncan (1967), the logistic regression model, initially proposed
by Cox (1958) to estimate the probability of an event as a function of independent vari-
ables, has been widely used for binary responses related to disease classification, risk factor
selection, and other aims. In this section, the model is reviewed from the frequentist and
Bayesian aspects.

1.2.1 Logistic Regression Analysis

For k£ = 1,...,n, let Y} be the independent binary response labeled as 1 with an event
occurring or 0 otherwise. Given the vector-covariates, zi, the logistic model is

logit{ P(Y = 1|z)} = Bo + Blzk (1.2)
for k = 1,...,n, where 3 is the scalar parameter, and (3, is a p, x 1 vector of parameters.
Let 8 = (Bo, B1)T and z = (27, ..., 2T)T.

An important concept related to the logistic regression model is the odds ratio which
is easy to interpret. The odds of the event occurring is

P(Yk = 1|Zk)

= Py = 1)) P )




Then the odds ratio for a unit change in a specific covariate j, zx;, with other covariates
kept fixed, is exp(B,;) for j =1,..., p..

With high dimensional data, the penalized logistic regression model is often employed
(Lokhorst 1999; Shevade and Keerthi 2003; Lukas Meier and Biithlmann 2008).

1.2.2 Bayesian Logistic Regression Analysis

Bayesian analysis is another useful tool in statistical analysis. As discussed by O’Brien
and Dunson (2004), Bayesian approaches have two main advantages over quasi-likelihood
and likelihood-based frequentist methods. First, based on the Markov chain Monte Carlo
(MCMC) algorithms, the large MCMC iterations can overcome the small sample limitation
by using the exact posterior. Secondly, Bayesian methods can impose additional informa-
tion into estimation processes by using an informative prior distribution. With Bayesian
analysis, a prior probability density function (pdf) is assigned to :

5 ~ ﬂ-(ﬁ’[O)a

where Iy denotes the initial information, and 7(5]/y) can be non-informative or informative.
Combining with the logistic regression model, the posterior distribution p(8|D(Iy,Y)) is

p(B|D(Io, Y)) = em(Bl1o)£(B]Y), (1.3)

where D(Iy,Y) contains the prior information as well as the sample information, ¢(8]Y) is
the likelihood function derived from the logistic regression model, with Y = (Y7, ..., Y,,)T,
and c is the normalizing constant with the form

ot = [ w5

Under model (1.2), (1.3) generally does not have a closed form. Thus, Zellner and Rossi
(1984) proposed to estimate model (1.2) with the help of a normal approximation to (1.3).
To evaluate ¢, they used the importance sampling procedure. A variety of MCMC methods
were developed for the Bayesian estimation of the logistic regression model, such as Gibbs
sampling or independent Metropolis-Hastings (MH) sampling methods (Zeger and Karim
1991; Gamerman 1997; Rossi et al. 2005), in combination with an approximation to (1.3).

Meanwhile, the data augmentation methods that facilitate Gibbs sampling (Holmes and
Held 2006; Gramacy and Polson 2012; Polson et al. 2013) can avoid the approximation



procedure to (1.3). The data augmentation methods for the logistic regression model
were extended from the simple latent-variable method of Albert and Chib (1993), who
introduced n latent variables, W = (wq, ..., w,)T, where wy ~ N(By + Iz, 1), such that
Y, = 1if wpy > 0 and Y, = 0 otherwise. Then the posterior density of g given W, Y,
and z is distributed as a multivariate normal distribution, where 8 can be sampled using
the Gibbs sampler easily. The Bayesian inference for logistic models using Pélya—Gamma
latent variables (Polson et al. 2013) is perhaps the most efficient method, compared to
other data augmentation methods. The Pdlya—Gamma approach is close to that of the
independent MH, whereas the MH jumping distribution needs to be chosen carefully for
simple logistic regression models with abundant data and no hierarchical structures.

1.3 Measurement Error/Misclassification

In practice, imprecise measurements, or mismeasurements, often exist in data collection
procedures with different reasons (Yi and Cook 2005; Carroll et al. 2006). They usually
generate new inference problems and need to be corrected for conducting valid inferences.
In this section, we review some measurement error models for continuous covariates and
misclassification models for univariate binary responses. For k = 1,...,n, let x; be the p,-
dimensional true continuous covariate, and let X} be its the surrogate, or observed value.
Let z; be the p.-dimensional true covariate which is precisely measured. We let Y} denote
the true binary response, taking value 0 or 1, and let Y;* denote its surrogate or observed
response. Let h(-) and h(:|-) denote the true marginal and conditional probability density
or mass functions for the random variables indicated by the corresponding arguments,
respectively; in the following development, we may loosely use upper case letters for some
of their arguments though ideally, lower case letters should be used for clarity.

1.3.1 Modelling Measurement Error in Continuous Variables

First, we describe the measurement error/misclassification mechanisms. Given the true
covariates {xy, 2}, if Y3 and X} are conditionally independent, i.e.,

h(Yk‘X,:, Tk, Zk) = h(Yk\:ck, Zk),

then we call the measurement error process a nondifferential measurement error mechanism
or a nondifferential misclassification mechanism (if zy, is discrete). This mechanism implies
that the surrogate X} has no information on inference about the response process if the



true covariates are given (Yi 2017, Section 2.4). To do inferences, we may factorize the
joint distribution h(Y%, zk, X}, 21) as

h(Y, xr, X5, 21) = h(Yiley, Xi, z) h(@n, Xie, 2) = h(Yelwr, 2) bz, X5, 21)-
To describe the measurement error process, we can further factorize h(xy, X}, ;) as
h(%k, X;:, Zk) = h(XZ‘iIZ’k, Zk)h(l'k, Zk)

or

In contrast to the nondifferential error mechanism, if
h(Yk‘X;, Tk, Zk) 7é h(Yk|Ik, Zk),

then the mechanism is called a differential measurement error mechanism or a differ-
ential misclassification mechanism (if xj is discrete). This mechanism usually arises
from retrospective studies, such as case-control studies. In this case, we may decompose
h(Yi, i, X[, 2x) as

h(Ye, zi, Xi., 2) = MXE Y, 0r, 21) M(Ye|zr, 26) R, 21).
This decomposition allows us to express our interested h(Yy|zg, zx) explicitly, which can

be modelled by standard modelling techniques.

In the following, we introduce two widely used measurement error models for scenarios
with nondifferential measurement error mechanism, a mechanism that has been mostly
considered in the literature of measurement error models (Fuller 1987; Carroll et al. 2006;
Yi 2017):

o C(Classical Additive Error Model

With the feature that the observed covariate X; is more variable than the true
covariate xy, the model is
X =z + ey,

where the error term ey is assumed to be independent of x;, and the e, have mean
zero and covariance matrix, say ..

o Berkson Model



Viewing that the true observation z; as fluctuating around the surrogate X, we

consider the model
T :X,;k—i—ek, (14)

where the error term ey is assumed to be independent of X}, and the e; have mean
zero and covaraince matrix, say ..

Model (1.4) indicates that the true covariate zj is more variable than the surrogate
X;. For example in radiation epidemiology, the radiation dose is prescribed for a
patient but the actually absorbed dose by the patient is unknown and varies around
the prescribed dose.

When the error covariance matrix ¥, is unknown, replicates or validation samples are
often needed to estimate the error covariance matrix. In the following, we introduce two
kinds of data sets discussed by Yi (2017, Section 2.4).

e Validation Subsample

We let M denote the index set of subjects who are in the main study. Let D be
the data set that collects different types of measurements, say D = {W} : k € V},
where V is the set of subjects indices, and Wy, may be {Yy, zg, X}, 2} or {zg, X[, 2}
When V is a subset of M with W = {Y},, xx, X}, 2.}, D is called an internal validation
subsample; when V and M are disjoint, D is called an external validation subsample
where W), may only contain {xy, X, 2 }.

e Repeated Measurements

In practice, the surrogate measurements may be measured a couple of times such that
Wi may have a form {Xj,} or {Y, X}, }, where X, is the jth repeated measurement
of z; for k =1, ...,n, and ny is an integer larger than 1.

Investigating the measurement error effects has attracted attention long ago (Wald
1940; Madansky 1959). General strategies of handing measurement error include likelihood-
based correction methods (Lindsay 1982; Stefanski and Carroll 1987; Yi et al. 2015), unbi-
ased estimating functions methods (Prentice 1982; Wang and Pepe 2000; Freedman et al.
2004; Yi et al. 2012), and methods of correcting naive estimators (Stefanski and Carroll
1985; Cook and Stefanski 1994; Yi and Reid 2010). More references on different topics can
be found in Fuller (1987), Carroll et al. (2006) and Yi (2017).



1.3.2 Modelling Misclassification in Univariate Binary Response

We assume that Y} is modeled through a binary regression model within the class of
generalized linear models. Let 2z, be the p, x 1 dimensional precisely measured covariates.
The relationship between the response and covariate variables can be featured by the
conditional mean response given covariates, p, = E(Yx|2x), through various link functions
(McCullagh and Nelder 1989, p.31).

To model the response misclassification process, we let
TOl(Zk) = P(Yk* = HYk = 0, Zk) and Tlo(Zk) = P(Yk* = O‘Yk = 1,Zk)

be the conditional misclassification probabilities, given the covariates z,. The sensitivity
of the measurement Y,* is given by 1 — 70(2x), and the specificity of the measurement Y,*
is1— TOl(Zk)-

As discussed by Neuhaus (1999) and Yi (2017, Section 8.2), under the condition that
the misclassification probabilities are constants, ignoring the response misclassification in
the analysis has the same effects as misspecifiying the link function in the analysis for
generalized linear models. When the misclassification probabilities are associated with the
covariates, the model for P(Y} = 1|z;) may not be in the family of the generalized linear

model (Neuhaus 1999).

1.4 Regularization Methods

High dimensional data analysis is a challenging problem because of the computation burden
and the complexity of data structures. Under the sparsity assumption that only a few
important covariates are non-zeros in the model, various regularization methods have been
proposed to overcome these difficulties. A general form of regularization methods under
the likelihood method, based on the penalty function p,(+), is given by

((B3) +Zm(ﬁj) (1.5)

where £(-) is the log-likelihood function derived from a model, j; is the jth component of
the ¢ x 1 unknown vector parameter 3, and A is the tuning parameter.

The following are commonly used penalty functions:



Least absolute shrinkage and selection operator (LASSO) (Tibshirani 1996):

p(Bj) = AlBjl-

Smoothly clipped absolute deviation (SCAD) penalty (Fan and Li 2001):

(@A, — [¢])

(€)= M H(IC] < M) + S BRG] > M) fsign(€),

where the sign function sign(¢) = —1,0 and 1 when ¢ < 0,= 0 and > 0, respectively;
a is a constant larger than 2; and I(+) is the indicator function.

Elastic net (Zou and Hastie 2005):

p(B;) = MlIB;| + X35

Adaptive LASSO (Zou 2006):

p(ﬁj) = )\wi|ﬁj|,

where w; is a weight.

The LASSO method with the ¢; penalty function imposed on the regression coefficients
does both continuous shrinkage and automatic variable selection simultaneously. However,
as discussed by Zou and Hastie (2005), due to the nature of the convex optimization
problem, the LASSO method can only select at most n variables if p > n. Moreover, the
LASSO method tends to select one of a group of variables which are highly correlated
with each other. To overcome these problems, they proposed the elastic net method which
combines the ¢, and ¢ penalties together to select groups of correlated variables. Later,
Zou (2006) proposed the adaptive LASSO method to fix a problem that in some scenarios,
the LASSO selection cannot be consistent. Unlike the traditional regularization methods,
the SCAD method (Fan and Li 2001) is based on the non-convex penalty functions and
possesses the oracle properties.

The regularization methods can be naturally employed under matrix-variate or tensor
regression models after different data decomposition processes are implemented. Zhou and
Li (2014) proposed regularized matrix regression for the response in the exponential family
by penalizing the spectrum of the matrix parameters. Hung and Wang (2013) and Zhou
et al. (2013) added penalty functions to the models for matrix-variate data and tensor



data, respectively, based on the rank-R decomposition of the parameters, which has the
form

R p+1
(0, 8)+ > plad”) +ZZP B,
r=1 i=1 r=1 j=1

Z(T) is the 7th component of (™ fori = 1, ..., p+1,

where matrix-variate B = Zle aop) o

6](-7") is the jth component of ) for j =1,...,q, and R is a positive integer.

1.5 Bayesian Variable Selection Methods

Unlike regularization methods, Bayesian variable selection methods address the parameter
selection procedure by assigning shrinkage prior to the parameters. These priors have the
ability to shrink small coefficients towards zero while minimizing shrinkage of large coeffi-
cients. The first type of these priors is the point-mass prior which combines a probability at
zero and a non-zero continuous distribution, such as the spike-and-slab prior (George and
McCulloch 1993; Ishwaran and Rao 2005) which mixes two normal distributions with one
highly concentrated at zero. For example, a popular version of the spike-and-slab model
(George and McCulloch 1993) is

Biltj ~ (1= ¥;)N(0,07) + ¢;N(0,¢367),

where (3; is the jth component of a ¢ X 1 vector parameter 3, ¢; is a constant, 67 and 5]2-
are hyper-parameters, 1, is a latent variable with value 0 or 1, and

When ¢; = 0 and 67 is assigned to be small, 3;|¢; ~ N(0,67) and 3, can be estimated as
zero. When 1; = 1 and ¢; is assigned to be large, then a non-zero 3; can be selected in
the final model.

Compared to the spike-and-slab prior, Bayesian LASSO (Park and Casella 2008), which
uses a double exponential prior distribution on coefficients, and it has good performance for
high dimensional models with the sparsity assumption. Park and Casella (2008) considered
a conditional Laplace prior for S with the form

(8]0?) fxmjwcﬁ ’

T EQ



where )\ is the tuning parameter, and o2 is the hyper-parameter.

Another type of Bayesian shrinkage priors uses continuous densities which have a good
performance on parameters shrinkage, such as the horseshoe prior (Carvalho et al. 2010)
and the Dirichlet-Laplace (DL) prior (Bhattacharya et al. 2015). This type of prior can be
written as a global-local scale mixture of Gaussian distributions:

BJNN(07>‘]CL)7 A]'\'Jfa an~4g,

where for j =1, ..., ¢, \; is the local scale which follows a distribution f, and a is the global
scale which follows a distribution g.

A few papers address convergence results on Bayesian variable selection methods beyond
the linear regression model, such as adaptive density regression (Shen and Ghosal 2016)
and logistic regression (Atchadé 2017; Wei and Ghosal 2020). Under the logistic regression
model, the horseshoe prior has the best performance than the point-mass prior, the DL
prior, Bayesian LASSO, and non-informative priors (Wei and Ghosal 2020). With tensor
data, a multiway Dirichlet generalized double Pareto prior (Guhaniyogi et al. 2017) was
recently proposed for the generalized linear regression setting, and it performed well under
the Gaussian assumption for the response variable.

1.6 Thesis Topics and the Outline

While many inference methods have been developed to handle various problems concerning
matrix-variate regression or measurement error models, interesting research problems re-
main unexplored. This thesis investigates several important problems which are described
as follows. This thesis contains six chapters with the last chapter concluding the thesis
and the appendix including additional materials for Chapters 2-5. The remaining chapters
are organized as follows.

Chapter 2: Matrix-Variate Logistic Regression with Measurement
Error

The logistic regression model has been widely used to handle data with binary responses,
where the logit link function is used to feature the relationship between the response
probability and a vector of associated covariates. With the advent of the new technology of
collecting complex-featured data (e.g., electroencephalography(EEG) imaging data which
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involve both channel and temporal information), conventional logistic regression models
become inadequate to facilitate the dependence of the binary outcome on covariates in a
matrix form. Driven by this, matrix-variate logistic regression models were proposed to
cover a broader scope of problems than that of the usual logistic regression model. Such
models are useful for analyzing brain imaging data which commonly contain a matrix-
variate or a tensor structure (e.g., Hung and Wang 2013; Zhou et al. 2013; Li et al. 2018).

While matrix-variate logistic regression models are useful for dealing with brain imaging
data, its application hinges on the critical assumption that the variables are precisely
measured. Such an assumption is commonly violated in pre-processed imaging data due
to various reasons related to cardiac and respiratory activities. Even through scientists
attempt to apply different methods to process the data, measurement error in the variables
cannot be completely eliminated (Sobel and Lindquist 2014). It has been well understood
that measurement error in the variables can seriously bias the inference results derived from
the logistic regression model, and many methods have been developed to correct for the
measurement error effects accordingly (e.g., Stefanski and Carroll 1985; Gleser 1996; Cook
and Stefanski 1994; Buzas and Stefanski 1996). However, little work on matrix-variate
logistic regression with measurement error has been available although in an unpublished
PhD thesis, Li (2014) discussed some issues on this topic in an ad hoc way.

It is unclear how measurement error in the matrix-variate may affect inference results.
In the presence of measurement error, it is imperative to develop valid inference proce-
dures to accommodate measurement error effects in a rigorous manner. In Chapter 2, we
target these problems and explore matrix-variate logistic regression models with covariate
measurement error. We investigate the asymptotic bias induced from the naive analysis
which ignores measurement error, and then develop two methods to correct for the biases
of the naive analysis by making or not making a distribution assumption for the measure-
ment error model. To the best of our knowledge, this is the first research which provides a
rigorous study on matrix-variate logistic regression with covariate measurement error with
the theoretical results carefully established. The work in this chapter has been wrapped
up as a research article, Fang and Yi (2020b), and has been accepted by Biometrika.

Chapter 3: Imputation and Likelihood Methods for Matrix-Variate
Logistic Regression with Response Misclassification
In contrast to the challenges presented by error-contaminated covariates discussed in Chap-

ter 2, response misclassification impairs inference procedures derived from the matrix-
variate logistic regression model as well. In the conventional regression context, bias anal-

12



ysis of response mismeasurements has attracted extensive attention, and many methods of
accommodating mismeasurement effects have been developed (e.g., Stefanski and Carroll
1985; Albert et al. 1997; Neuhaus 1999; Neuhaus 2002; Chen et al. 2011; Li 2014; Yi 2017,
Chapter 8) However, matrix-variate logistic regression with response error has not received
much attention though real data do often possess such features.

Driven by the paucity of such research, in Chapter 3, we study matrix-variate logistic
regression with response misclassification. We develop two inferential methods to account
for misclassification effects. The first method is an imputation method which replaces the
response variable with an unbiased pseudo-response variable, derived from the observed
surrogate response measurement, in the estimation procedure. The second method is
derived from the likelihood function for the observed response surrogate. Our development
is carried out for two settings to address misclassification effects: misclassification rates are
either known or estimated from the validation subsample information. The validity of our
methods is justified by the establishment of theoretical results. The work in this chapter
has been wrapped up as a research paper, Fang and Yi (2020a), that has been invited for
a revision by The Canadian Journal of Statistics.

Chapter 4: Regularized Matrix-Variate Logistic Regression with
Response Misclassification

As introduced in Chapter 3, usual logistic regression has been generalized to accommodate
covariates with matrix structures which arise commonly from biomedical research concern-
ing cancer classification and brain imaging analysis (e.g., Zhou et al. 2013; Hung and Wang
2013; Zhang et al. 2014). Meanwhile, matrix-variates usually haves the sparsity property
and penalty terms are commonly added to estimation procedures for variable selection
(e.g., Zhang et al. 2014).

Although we examine the effects of response misclassification on matrix-variate logis-
tic regression and propose valid methods in Chapter 3 to correct for the biases of the
naive analysis, the sparsity property is not considered there. Though penalized estimation
procedures are commonly used in regression analysis, only a few settings incorporate mea-
surement error (e.g., Ma and Li 2010; Yi et al. 2015). With misclassification in response
variables, there has been no work to study error effects under the matrix-variate logistic
regression model.

Motivated by the paucity of such research, in Chapter 4, we extend the work in Chapter
3 to further study regularized matrix-variate logistic regression with response misclassifi-
cation. Our development is carried out for two settings where misclassification rates are
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either known or estimated from a validation subsample. The validity of our methods is
justified by the establishment of theoretical results. This project has been wrapped up as
a paper and submitted to a journal for publication (Fang and Yi 2020c).

Chapter 5: Bayesian Analysis for Matrix-Variate Logistic Regres-
sion with/without Response Misclassification

For statistical models such as linear regression, high dimensional data analysis is challenging
due to the computational burden and intrinsic complex data structures. Bayesian variable
selection procedures have the advantage of addressing the parameter selection uncertainty
automatically by using a prior, such as the spike-and-slab prior (George and McCulloch
1993; Ishwaran and Rao 2005), horseshoe prior (Carvalho et al. 2010), and Dirichlet-
Laplace (DL) prior (Bhattacharya et al. 2015). For logistic regression, the Bayesian infer-
ence has long been considered as a hard problem due to the lack of closed forms of posterior
densities of the model parameters. One useful Bayesian inference method is based on the
normal approximation to the posterior density of the parameter of interest (Zellner and
Rossi 1984; Zeger and Karim 1991; Gamerman 1997; Rossi et al. 2005), which however, has
much computational burden. Data augmentation methods that facilitate Gibbs sampling
(Holmes and Held 2006; Gramacy and Polson 2012; Polson et al. 2013) offer an effective
alternative.

As introduced in Chapter 4, matrix-variate data has a complex matrix structure and
often contains many unimportant components. The Bayesian variable selection procedure
is an efficient way to handle such problems. A multiway Dirichlet generalized double Pareto
prior (Guhaniyogi et al. 2017) was recently proposed for tensor-variate data with the Gaus-
sian assumption. An interesting problem is to investigate the influence on the parameter
estimation of imprecisely measured binary responses with matrix-variate regression models
under the Bayesian framework. Although there has some works on investigating the effects
of mismeasured covariates (Richardson and Gilks 1993; Dellaportas and Stephens 1993;
Gustafson 2003) or binary response misclassification under conventional binary regression
settings (Paulino et al. 2003; Gustafson 2003; McInturff et al. 2004; Gerlach and Stamey
2007), Bayesian matrix-variate logistic regression with response misclassification has not
been explored.

Motivated by this, in Chapter 5, we propose a Bayesian inference procedure using
the horseshoe prior under matrix-variate logistic regression with the help of augmented
data from the Pdélya-Gamma distribution. We develop an algorithm to accommodate
the influence of binary response misclassification on the Bayesian estimation procedure.
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Numerical studies are conducted to evaluate the performance of the proposed method.
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Chapter 2

Matrix-Variate Logistic Regression
with Measurement Error

In this chapter, we investigate how measurement error in the matrix-variate affects the pa-
rameter inference, and explore matrix-variate logistic regression models with measurement
error. The remainder is organized as follows. In Section 2.1, we introduce the matrix-
variate logistic regression model and the estimation method for the error-free context. In
Section 2.2, we conduct the bias analysis of the naive analysis which ignores measurement
error present in matrix-variate logistic regression. In Section 2.3, we develop two inference
methods to adjust for measurement error effects by capitalizing on the bias analysis in
Section 2.2. In Section 2.4, we conduct simulation studies to assess the performance of the
methods developed in Section 2.4 as well as to demonstrate the biased effects of the naive
analysis. We also present an application to a EEG data set.

2.1 Notation and Framework

2.1.1 Matrix-Variate Logistic Regression Model

For subject k with & = 1, ..., n, let Y}, be the binary response variable with value 1 for having
a disease and 0 otherwise, let z; = [zj](p+1)xq e the associated (p + 1) x ¢ covariate
matrix where xy;; is the observation at row ¢ and column j for subject k, and let z; be the
associated p, x 1 covariate vector for subject k. In this paper for subject k = 1, ..., n, 2} and
2 are treated as fixed measurements in the sense that their distributions are unspecified.
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Matrix-variate regression is useful for handling data with a matrix structure when the
data in the same rows are perceived to share the same effects, and the data in same
columns share the same effects. For instance, EEG data involve measurements associated
with multiple channels and different time points. Using a matrix, say a (p+ 1) X ¢ matrix
x, for subject k, is most natural and informative to represent EEG measurements for a
subject. If we use the conventional regression to study the effects of a combination of a
specific channel and a time point on a disease, we would first convert the matrix into a
vector by stacking the columns of z, from left to right to form a column vector vec(zy),
and then fit a regression model:

lOglt{P(Yk =1 ’ Ik)} =<, B >, (21)

where B is the matrix-structured coefficients, and < zy, B >= vec(zy)"vec(B) = 3, ; By, ij,
with vec(B) representing the vectoring form of B and B;; standing for element (¢, j) of B.
As pointed out by Hung and Wang (2013), this modeling scheme introduces (p + 1) x ¢
parameters which can be too large to handle. In addition, limited sample sizes in many
problems hinder us from estimating a large number of parameters. Vectorization not only
introduces the model a huge number of parameters to estimate but also destroys the natural
matrix structure which can be quite informative.

To overcome these issues, we consider the matrix-variate logistic regression model:
logit{ P(Yy, = 1 | x, z)} = aTap 8 + 7T 2z, (2.2)

where a is a (p+ 1) x 1 parameter vector, 3 is a ¢ X 1 parameter vector, and ~y is a p, X 1
parameter vector. To distinguish « and (3, we call them the row parameter and the column
parameter, respectively. Note that since no intercept is included in model (2.2), z; can
be understood as a centered matrix, given by zq = xx — T, where T = (1/n) Y ,_, x; or
alternatively, we include 1 as the first element of z;. In the following development, we take
x) to be a centered version z., when using model (2.2).

By rank-1 Canonical Polyadic Decomposition (CP-decomposition)(Kolda and Bader
2009), parameters o and 5 in model (2.2) are related to B in model (2.1): B = ao /3, where
o denotes the outer product of two column vectors. We note that the CP-decomposition
of B is not unique. In other words, B is not identifiable since for any constant ¢ # 0,
B = (c7'a) o (¢B). To overcome nonidentifiability issues, constraints are often imposed
on the parameter space so that certain values are inadmissible. A convention is to set
the first element of o to be 1 (e.g., Hung and Wang 2013), which is also adopted in our
development unless stated otherwise. However, for ease of exposition, we still use a to
denote the subvector of the rest p-dimensional real parameters, and let § = (aT, 57,~47)7
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denote the vector of parameters of interest with dimension d = p + q + p..

Our model (2.2) generalizes the matrix-variate logistic model (2.1) discussed by Hung
and Wang (2013). Model (2.2) is more flexible in featuring the dependence of the binary
outcome on covariates which include both a matrix form and a vector form. Parameters
in model (2.2) are interpretive in terms of odds ratios. Let «; be the ith element of «, for
i =2,..,p+1; let 8; be the jth element of 3 for j =1, ..., ¢; and let ; be the /th element
of yforl =1,...,p,. Given i and j, let (i, 7) represent the matrix identical to xz except
that the element (7,7) of (4, j) is set to be z;; + 1. Then «;f; represents the log odds
ratio, loglodds{Zx(7, j)}/odds(zx)], where odds(A) = pr(Y = 1| A, z)/pr(Y =0 | A, z)

with A = Zx(i, j) or x;. Parameters -, can be interpreted in a similar manner.

2.1.2 Estimation of Model Parameters

Estimation of @ is carried out using the maximum likelihood method with the constraint
on « discussed in Section 2.1 imposed. Typically, this can be done using the block relazing
algorithm described by Zhou et al. (2013). Let

n

lo(a, B,77) = (1/n) Z (Vi Tz + v72) — log{1 + exp(aTzyf +77zk) }]. (2.3)
k=1

be 1/n times log-likelihood function contributed from the sample which is derived from
model (2.2).

Instead of maximizing (2.3) with respect to «, /3, v simultaneously, we take three steps,
or called three blocks, to obtain the estimates of «, 3, 7, separately. Shown in Table 2.1, in
each block the likelihood function £, («, 3, ) is maximized with respect to one parameter
with other two parameters fixed at the values of the previous iteration, where we use
slightly different notation such as £, (a|8®,7®) to emphasize that ¢,(c, 3,7) is treated as
a function of a with 8 and v fixed at ) and ¥y, respectively. Any optimization procedure
may be applied for this purpose. Zhou et al. (2013) commented that this algorithm works
well for generalized linear models, including logistic models with canonical link functions.
Multiple initial values for a and $ may be tried to obtain the global maximum values.
We suggest to randomly generate initial values of a and S from the uniform distribution
U(0,1) and simply set the initial value of ~ as 0.
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Table 2.1: Block relaxation algorithm for maximizing ¢, («, 3, 7)

Initialize v = 0, set o® and ) as values generated from the uniform
distribution U(0,1), and fix the first element of a(?) as 1.
Repeat for t =0,1,2, ...
Block 1. a1 = argmax ((a|5®),v®)
Block 2. ﬁ(t"'l = argmaxﬁé(ﬁ’a(“‘l)’ f),(t))
Block 3. ’y(t+1) = argmaxvg(rﬂa(“‘l)’ 5(t+1)>
until
10, (D) B0 ~O) — ¢ (at+) BEHD A0+ < ¢
where € is a pre-specified positive value showing the tolerance level.

)
)
)

2.2 Bias Analysis

2.2.1 Additive Matrix-Variates Measurement Error Model

In applications, measurements of variables are often subject to error. We consider settings
where 2z, is precisely measured but xj is error-contaminated. Suppose that the precise
measurement of xj is unavailable but repeated surrogate measurements for z, X; ., are
observed for r = 1, ..., my, where my, is a positive integer which may or may not depend on
k. Assume that

X;T =T+ Ekr, (24)

where Ej, is a (p+1) x ¢ matrix of random noise with mean zero and is independent of Y} and
{zk, z.}. The independence of E, of {Y}, zk, 2} implies the nondifferential measurement
error mechanism (Carroll et al. 2006, p.36; Yi 2017, p.50). That is, conditional on the true
covariates {wy, 2z}, X}, is independent of Y}, suggesting that the surrogate measurements
X}, have no predictive value for the outcome variable Y;, when x; and zj are controlled.

For k = 1,..,n, and r = 1,...,my, let vec(E},) represents a (p + 1)g-dimensional
vectorized version of Fy,., and let {2y be the covariance matrix of vec(Ej,), i.e., Qy =
E{vec(Ejy,)vec(Ey)T}. Let X7, = (1/my) > X; and By = (1/my) > %, Ej,. Then
X, = xx + By, and the mean and variance of vec(X},) are vec(zy) and Q/my, re-
spectively. For k = 1,...,n, define centered surrogate measurements X;: X; = X; L —
(1/n) >, Xi,. Equivalently, let Uy = Epy—F and xo), = 2,—&, where E = (1/n) Y ), Ej.
and T = (1/n) > }_; x4 Then

where vec(Uy) has mean zero and covarariance matrix {(n—2)/(nmy,)+(1/n?) > 5_, 1/mi}Q0.
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For ease of exposition, we assume the number of replicates for each subject to be the same,
i.e., my =m for k =1,...,n, where m is a positive integer. Let m. = mn/(n — 1), then the
covarariance matrix of vec(Uy) is E{vec(Uy)vec(Ug)T} = Qo/me.

2.2.2 Naive Analysis

When matrix-variates are subject to measurement error, naively using the logistic regres-
sion model (2.2) with z;, replaced by X; yields the model

logit{ P(Yy =1 | X;,z)} = &« T X 8" + 7"z, (2.6)
where o*, 3*, and v* are the parameters which may differ from the corresponding parameter
in (2.2). Let 6* = (T, B*T, 4*T)T.

Estimation of 8* may proceed by mimicking the maximum likelihood method. That is,
we maximize the log likelihood function derived from (2.6),

G(67) = (1/n) ) Vi@ TXE5" + 797 T2) —log{l + exp(aTX;5" +77T2)} (2.7)
k=1

with respect to 0% and let §* = (&*T, 3*T,4*T)T denote the estimator of §*. While (2.7) is
similar to (2.3) in the function form, the meaning of #* in (2.7) is not the same as that of

0 in (2.3).
Under regularity conditions (e.g., White 1982), 6* solves

S:.(0%) = 0, (2.8)
where
o (Sl n (CLXGB
Su(07) = 28 = | Spa(07) | = (1/n) XpTar | {Ye —pe(07 X))} (2.9)
00 I
St .(07) k=1 2,

Cy = [0,, I,]7, 0, is the p x 1 vector of zeros, I, is the p X p identity matrix, and py(6*; X}) =
P(Y, = 1| X}, z) which equals, by (2.6),

exp (' TX; B° + 7" Tz)

0" X)) = :
il 2 1+ exp(*TX; B + 7*Tz)

(2.10)
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the dependence on z is suppressed in the notation pg(6*; X;) for ease of exposition. In
Appendix A.3, we show the following result.

Theorem 2.1 Assume that Conditions (C.1), (C.3), (C.4) in Appendiz A.1 hold and that
min(m,n) — oco. Then )

6" — 0 =o0,(1).

While Theorem 2.1 shows that 6* is a consistent estimator of  under certain situations,
this result does not suggest that the naive method of ignoring measurement error is a valid
and practical procedure in applications. The requirement min(m,n) — oo in Theorem 2.1
essentially says that measurement error in matrix-variates virtually becomes null because
the covariance matrix for vec(Uy) in (2.5) approaches a zero matrix. In such an instance, it
is not surprising that the estimator 6* would be a consistent estimator for 8. As Theorem
2.1 establishes the asymptotic difference of 6* — 0 when both m and n approach infinity,
to complement this result, it is interesting to examine for given m and n, what quantities
would dominate the difference 6* — 6. Such an exploration allows us to develop estimators
of correcting for measurement error effects for settings with a given m, and thus establish
their asymptotic distributions if only n approaches infinity. In the next subsection, we
explore this problem.

2.2.3 Refined Expressions for Bias

Let v1x(-) = pe(-){1 — pe(-)} and vak() = pe(-){1 — pe(-)H{1 — 2pi(-)} where pi(-) is
defined by (2.10). Define S, = n'/200,(c, 3,7)/00, where £,(c, 3,7) is given by (2.3).
Motivated by Stefanski and Carroll (1985, p.1339), we consider the following terms, each
corresponding to parameter «, [ or 7:

Jan1=—(1/2n) Z ClzepBvec(afT)T(Qo/me)va i (0; Ter),

k=1
Jan1 = —(1/2n) Z zl avec(afST)T(Qo/me)vek(0; Tek),
k=1
Jana = —(1/n) YOIl x (Qo/me)vr (B xer),
k=1
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n

Joma = —(1/n) Y Ta(Q/me)vr 1(0; zcr),

k=1
Jyn =—(1/2n) x Z zevec(aBT)T(Qo/me)va 1 (0; Ter),
k=1
where Il, = [Bilpr1y Belpsr)y -+ Belpen] isa (p+1) x {(p+1)¢} matrix, and Il is a

g X {(p + 1)q} block matrix with aT being the diagonal block vectors and zero elsewhere.
Let Ja,n = Ja,n,l + Jamg, ng = Jﬁ’n,l‘i_Jﬁyn’Q, and Jn(é’) = (J&n, J%,n? J;n)T. Write Hn<9) =
—0%0,,(0)/00007.

Theorem 2.2 Under Conditions (C.1)-(C.3), and (C.6) in Appendiz A.1, we have that

0* — 0 = (1/nY*)H; 1 (0)S,(0) + H; ' (0)J,(0)vec(aST) + o,{max(1/m, 1/n*?)}.  (2.11)

Expression (2.11) shows that the asymptotic bias of 6* involves the terms pertinent to
H,.(0), Sn(0), J,.(0) as well as the values of n and m. Stefanski and Carroll (1985, Theorem
1) showed that under regularity conditions, H,, Y ?(0)S,(0) asymptotically follows a normal
distribution with mean zero and an identity covariance matrix, and hence, yielding that
H-1(0)S,,(#) in (2.11) has an asymptotic normal distribution with mean zero and covariance
matrix 71(6), where I(6) = E{H,(0)}. Consequently, (2.11) implies that with m of an
order O(y/n), n'/2{0* — 6 — H*(0)J,,(0)vec(afT)} has an asymptotic normal distribution
with mean zero and covariance matrix I71(6) as n — oo.

The proof of Theorem 2.2 begins with applying the first-order Taylor series expansion
to S (0*) = 0 around 0 with X and z; fixed:

0" = 0+ H:7(0)S5(0) + o, {max(1/m, 1/n"/?)}, (2.12)

where S} () is determined by (2.9) with 6* replaced by 6, and H}(0) = —0S?(0)/007. The
details are given in Appendix A.6.

(2.12) expresses the relationship between 0* and 6 using the surrogate observations X a
for k = 1,...n, together with the covariate z; and the response variable Y;. To obtain
(2.11) expressed in terms of the true covariate x;, we need only to examine S}(#) and
H? () using their counterparts based on the true covariates ., together with {z, Yi},

which is summarized in the following lemmas whose proofs are placed in Appendices A .4
and A.5.
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Lemma 1 Let Z,(0) = (1/n'/?)S,,(0)+J,(0)vec(a3T) which depends on the true covariates
T as well as {zg, Yi}. Under Conditions (C.1) and (C.3) in Appendiz A.1, we have that

S* () = Zn(0) + o, {max(1/m, 1/n"/?)}. (2.13)
Lemma 2 Under Conditions (C.1)-(C.3) in Appendiz A.1, we have that as min(m,n) —

oo,

H (6) = Ha(0) + 0,(1). (2.14)

2.3 Corrections for Measurement Error Effects

In this section, we describe two methods of correcting for measurement error effects on
parameter estimation.

2.3.1 Moment-Based Correction Method

Noticing that (1/n'/?)H-*(6)S, () approaches 0 in probability as n — oo as discussed
earlier, we are motivated by Theorem 2.2 to consider

~ ~ A~

0F = 0% — H1(0%)J,, (0" )vec(a*5°T), (2.15)

c

where J,,(6*) and Aﬂn(é*) correspond to J,(0) and H,(0) with z, 6 and Qo, respectively,
replaced by X, 0" and 2 for £ = 1,...,n, with ) representing an estimator of {};. In
Appendix A.7, we show the following asymptotic properties of §.

Theorem 2.3 Suppose that Conditions (C.1)-(C.3) and (C.5)-(C.6) in Appendiz A.1

hold. Assume that as n — oo,
n'2(Q — Q) = 0,(1). (2.16)
Then as n — oo,
(a) 6; == 6;

(b) nt/2(0* — 6) -5 N(0,171(0)).
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The consistency of é’c" requires the consistency assumption (2.16) for the estimator Q of
the covariance matrix 2. With the replicates X;,. following model (2.4), a y/n-consistent
covariance estimator is given by:

= | 303 {vec(x,) — vecl i ) Hveel X) — veel KE )| [ ntm =0 217

k=1 r=1

the proof is presented in Appendix A.8.

2.3.2 Sufficient Statistic Correction Method

Except for the requirement of zero mean of Fj, and the additive structure (2.4), the
construction of the estimator é: has the advantage of not requiring the specification of the
full distribution for Ej,.. However, when p and/or ¢ are large, the calculation of é: may
be time-consuming due to the involvement of the large dimensional covariance matrix {2,
and the resulting estimator may not be accurate due to a small sample size n relative to
the dimension {(p + 1)q} x {(p + 1)q} of Q. Driven by these issues, we explore another
estimator which capitalizes on imposing the normality distributional form of E,.

Specifically, for £ = 1,...,n and r = 1,...,m, we assume that FEj, follows a matrix
normal distribution with Ei, ~ M N (0(41)xq; R, C), where MN(-, -, ) represents a matrix
normal distribution, R represents the (p + 1) X (p + 1) row covariance matrix, and C
stands for the g x ¢ column covariance matrix, respectively (Hoff 2011). Equivalently,
vec(Epr) ~ Npi1yg(vec(0gpi1)xq), C0), where Qy = C' ® R, where ® denotes the Kronecker
product (Dutilleu 1999). By (2.5), the observed matrix-variate X} follows a matrix normal
distribution as well, i.e., vec(X}) ~ Npi1)q(vec(zer), Qo/me), where k =1, ..., n.

Under the assumption that Ej, is independent of Yy and {zy, zx} for k = 1,..n, we
have that given {x, zi}, the joint distribution of Y, and X; can be written as

fY,X*(}/]m)(]1< | JCCk,Zk,e*) = fY(Yk ‘ Xz7xck7zk79*) X fX*(AXP];k | xck72k>
= fy(Ye | @er, 25, 0) X fxor (X | Zer),

where fy(Yg | ek, 2k, 0) is determined by (2.2) and fx«(X} | cx) is determined by (2.5).

(2.18)

With 6 treated as a given constant and x., regarded as an unknown parameter, using
the formulation (2.18), we derive sufficient statistics for the x, given by

Ay =Xp+ Yy —1/2)Rapf™C/my; (2.19)
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the details are included in Appendix A.9. The availability of such sufficient statistics allows
us to find a conditional probability to carry out inference about # in the absence of the
Zek- To be specific, given Ay and 2z, the conditional probability of Y} is

P(Yy = 1] Ay, 2z) = exp[(na, +7"2) — log{1 +exp(n, +7"21)}], (2.20)

where 7y, = aTA.B. Working with the conditional distribution (2.20) yields the likelihood

score equation
T

S Vi P(Yi=1] A )} (Af;ie)) —0, (2:21)

k=1
where A(0) = (BTALC,, aTAR)T.

Although the derivation of (2.21) is conceptually straightforward with the availability
of the conditional probability (2.20), equation (2.21) cannot be directly used for finding a
consistent estimator since it may produce multiple solutions which are not necessarily all
consistent, as pointed out by Stefanski and Carroll (1985, p.1341). As an alternative, we
maximize (2 3) with z, replaced by A, and obtain an estimator of #, denoted as 6%, where
Ak is determined by (2.19) with R, C, «, 8 replaced by R, C, &* and 5%, respectlvely, with
Rand C being the estimators of R and C,| i.e.,

Ay = X+ gi/me, (2.22)

with g, = (Y, — 1/2)Ra*f™C for k =1,...,n

To obtain the estimator é:, we need to estimate the unknown row and column covari-
ance matrices R and C, which can be done using the flip-flop algorithm (Dutilleu 1999).
This algorithm basically applies maximum likelihood estimation to estimate R and C one
at a time iteratively to yield y/n—consistent estimators, where the matrix normality as-
sumption is typically imposed on FEj,. to allow for manageable computation. Furthermore,
we comment that the normality assumption for Fj, is needed in the derivation of the es-
timator é: This assumption enables us to work out sufficient statistics (2.19) for the .,
as shown in Appendix A.9. In Appendix A.10, we show that following theorem.

Theorem 2.4 Suppose that Conditions (C.1)-(C.53) and (C.5)-(C.6) in Appendzx A.1
hold. Assume that as n — oo, n'/2(C'®@ R — Q) = O,(1) and S llgell* = O,(n).
Then we have that

0* = 0+ (1/n'/*)H; 1 (0)S,(0) + op{max(1/m, 1/n/?)}, (2.23)
and hence, with m of order O(y/n), the following results:
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(a) 0F 2= 0 as n — oo;
(b) n'/2(0* — 6) —2 N(0,171(6)) as n — .

Theorems 2.3 and 2.4 show that both é: and é;" are consistent and have an asymptotic
normal distribution. The results offer us two estimators of # under different assumptions
of the measurement error model. Estimator é;‘ is more robust than é;‘ since it does not
require the normality assumption for the measurement error term FEj,.. Theorem 2.4 also
offers a rigorous justification of the validity of é; which was heuristically derived by Li’s
PhD thesis work.

2.4 Numerical Studies

2.4.1 Simulation Design

We now evaluate the performance of the proposed methods under different settings via
simulation studies where we consider settings with p + 1 = ¢, denoted as p, for ease of
exposition. We also demonstrate the impacts of the naive analysis which ignores measure-
ment error. The sample size is set as n = 1000 when p, = 5, 10 or 20, and n = 2000 when
pe. = 20. We consider the case with m = 2, 5 or 10. Five hundred simulations are run for
each setting.

For k£ = 1,...,n, we simulate p, X p, matrix-variate data, xj, from the matrix normal
distribution M N(0,021,,,1,,), where o2 is set as 1.0. The z; covariates are independently
generated from the standard normal distribution. For k = 1,...,n, the binary response
Y} is randomly generated from the Bernoulli distribution with the probability P(Y, =
1| @ek, 25 0, B,7y) = exp(aTaeS + vzx) /{1 + exp(aTxe S + v2x)}, where v = 0.5. When
pr =5, weset @« = (0.5,1,—1,—1,1)T and § = (1,0.5,1, —1,—1)T; when p, = 10, we take
a=(051,-1x1},1 x1))T and 8 = (1,0.5,1,—1,—1,1,0.5,1, —1,—1)T; when p, = 20,
we take o = (0.5,1,—0.5 x 1],0.5 x 1}, —0.5 x 1],0.5 x 1])T and 8 = (0.5 x 11, —0.5 x
17,05 x 11, -0.5 x 17,0.5 x 11, -0.5 x 11,0.5 x 11, -0.5 x 11)7, where 1, represents a
d x 1 unit vector. For k = 1,...,n, repeated surrogate measurements X, are generated
from model (3.1), where the Ej, are independently generated from the matrix normal
distribution, M N(0,0%I,,,1I,,) for r = 1,...,m. We let o = 0.25,0.5,0.75 to feature small,
moderate and large measurement error, which lead to the signal-to-noise ratio o2/c? for
each covariate component to be 16, 4, and 1.778, respectively.
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We estimate the model parameters o and (§ using different methods. The first analysis
is to use the naive approach which fits the data with model (2.7) using the block relaxation
algorithm indicated in Table 2.1. To correct for measurement error effects, we conduct two
analyses, respectively, called Methods 1 and 2, by using (2.15) and the estimator based on
(2.23), respectively.

To use these methods, the covariance matrix €y for the measurement error model needs
to be estimated. Since the sample size is not large enough relative to the dimension of
the covaraince matrix, the sample covariance matrix €2 may be poorly estimated and may
not be invertible. To obtain a stable covaraince estimator of €y, we apply the method of
Ledoit and Wolf (2004) which uses a linear combination of the sample covariance matrix
Q) and the identity matrix [, to obtain an adjusted covariance matrix Qr.

Specifically, for a given £k = 1,..,n and a given r = 1,...,m, we first vectorize the
p, matrix X; to create a p? x 1 column vector vec(X},). Next, we define a p2 x M
matrix, X, by arranging the vectors vec(Xy,) as its columns according to the order
from vec(X7;) to vec(X?, ), where M = nm. Then, we calculate the sample covariance
matrix Q = M "Xy X], and ry = tr(Q];x)/pi, where tr(-) is the trace of a matrix.
Furthermore, we calculate d2, = || — ry1,,||* and C2, = min(b%,,d?,), where b2, =
(1/M)ySSM |z (22T — Q)2 with || - || being the Frobenius Norm, and ! represents the
1th column of X, for 1 = 1,..., M. Finally, we consider the linear combination Qp =
a2+ (1 —a)1,, of Q and the identity matrix I,  with a given by C2,/d2,. Such € is a v/n-
consistent covariance estimator (Ledoit and Wolf 2004, Theorem 3.4); its calculation can
be realized using a Matlab function available at http://www.econ.uzh.ch/en/people/
faculty/wolf/publications.html#9.

2.4.2 Simulation Results

We summarize the simulation results in the terms of the finite sample relative biases in
percent (bias%), empirical standard errors (ESE), model-based asymptotic standard errors
(ASE), and mean squared errors (MSE) as well as the coverage rates in percent (CR%) for
95% confidence intervals. Here bias% is defined as the ratio of the difference between the
true parameter value and the average of the estimates obtained from all simulation runs to
the true parameter value; ESE is defined to be the sample standard error of the estimates
obtained from all simulation runs; MSE represents the average of the squared differences
between the estimates and the true parameter value obtained from all simulation runs;
ASE is calculated as the square root of the average of all the estimates of the asymptotic
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variance in all the simulation runs; CR% is the coverage rate for 95% confidence intervals
for all the simulations.

Table 2.2 includes the results for the row and column effects for the cases with matrix-
variate with small, moderate and severe measurement error when p, = 5 where only the
results for ay, ay, B1, B, and v are included to save space. Complete results for this case
are placed in Tables A.1-A.2 in Appendices. It is seen that measurement error effects on
estimating the row parameters a are not as striking as those for estimating, the column
parameters § and the covariate parameters, v. The performance of the naive method is
influenced dramatically by the degree of measurement error. The naive method produces
noticeable finite sample biases and the bias increases as the degree of measurement error
increases. On the other hand, Methods 1 and 2 significantly improve the performance
of the naive method, and the improvement is clearly noticeable for cases with not severe
measurement, error or a good number of replicates. Mean squared errors of the naive
estimators are higher than those of the proposed methods, especially when measurement
errors is not minor. Not surprisingly, the performance of the proposed methods deteriorates
as measurement error becomes substantial, especially in combination with decreasing the
number of replicates. This phenomenon is clearly indicated by the coverage rates of 95%
confidence intervals.

In Tables A.3-A.10 and A.13-A.14 in Appendices, we respectively report the simulation
results for the cases with p, = 10 and p, = 20. We observe patterns similar to those for the
case p, = 5, but the magnitudes of the finite sample biases and standard errors are larger
than those with p, = 5. As p, becomes larger, the performance of the three methods tends
to be more sensitive to the increase of measurement error and the number of replicates.
Unsurprisingly, with a given sample size, the performance of the three methods deteriorates
as p, increases. With a given p,, the two proposed methods tend to produce more accurate
results as the sample size increases, which is evident from the results in Table A.10 and
Table A.14 for p, = 20 and n = 1000 and 2000, respectively.

2.4.3 Sensitivity Analysis of the Proposed Methods

In Sections 2.4.1-2.4.2, we conduct simulations to (1) demonstrate that the naive analysis
ignoring the feature of measurement error can lead to seriously biased results, and (2)
confirm the good performance of the two proposed methods. Our assessment is carried out
for the case where surrogate measurements are generated from model (2.4) with the error
term FEj, assumed to be normal, an assumption that is required by Method 2. Now we
further assess how sensitive the performance of Method 2 is to the violation of the normality
assumption for Fj,.. In comparison, we also report results obtained from Method 1.
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Specifically, we conduct a simulation study where Ey, is generated from a matrix t-
distribution, Ex, ~ T'(v, W, R,C'). Here T'(-,-,-,-) represents a matrix t-distribution, W is
the p, X p, location matrix, R and C respectively represent the p, X p, row scale and the
Pz X P column scale matrices, and v is the degrees of freedom. This matrix ¢-distribution
yields that Qy = (C®R)/(v—2) for v > 2. We consider the setting W = 0,, ., C = 0*I,,,
and R = I, together with p, = 5 and v = 3, where 0,,«,, is the p, X p, zero matrix.
Other settings for simulating data are the same as those in Section 2.4.1. We apply the
naive approach and the two proposed methods to analyze the simulated data.

The simulation results are reported in Tables A.11-A.12 in Appendices to save space.
It is clear that the naive method still produces biased results with patterns similar to
those observed in Section 2.4.2. Method 1 is not sensitive to the change of the distribution
of measurement error and its performance under the current setting is similar to that
in the setting of Section 2.4.1. However, the performance of Method 2 greatly decays.
The estimates of the row parameters a have large finite sample biases when the number of
replicates is small. For the column parameters 3 and vector covariate parameters v, Method
2 provides a lot larger finite sample biases than Method 1, especially when measurement
error is large with a small number of replicates. Such findings are not surprising, because
Method 2 is derived based on the model assumption (2.4) with the measurement error
following a matrix normal distribution.

In summary, the naive method yields biased results when measurement error is not mild.
Thus, it is imperative to accommodate measurement error effects in order to carry out valid
inferences. The simulation studies confirm that the proposed methods significantly improve
the performance of the naive method, and their performance is reasonably satisfactory for
various settings. As described in Section 4, Method 1 is more robust than Method 2 since
it does not impose a distributional assumption on the error terms FEj,.. In applications,
Method 1 is generally recommended if we are not certain about the feasibility of a normally
distributed measurement error assumption.

2.4.4 Data Analysis

We apply the two correction methods, in contrast to the naive approach, to analyze the
EEG imaging data which are available at the UCI Machine Learning Repository website
(http://archive.ics.uci.edu/ml/datasets/EEG+Database). The EEG data include
the measurements of 122 subjects who were selected from those exposed to one stimulus
experiment. During this experiment, the voltage values were recorded from 64 channels
of electrodes at 256 time points (in one second). Those 122 subjects are differentiated by
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being in the alcoholic group with 77 patients or the control group with 45 patients. The
research interest was to make classification between the alcoholic group and the control
group based on voltage values which are subject to measurement error over times and
channels.

For k =1,...,122, let Y} be the binary response variable for subject k, with 1 for being
in the alcoholic group and 0 for being in the control group; the matrix-variate of subject k,
denoted as X;*, is a 256 x 64 matrix with each entry representing the mean voltage value
of r replicates for the corresponding time point and channel, where r = 1,...,my, and m;
is the number of replicates for subject k, ranging from 7 to 60 with an average 45.

Without considering issues of measurement error, Hung and Wang (2013) applied the
matrix-variate logistic regression model (2.2) to fit the EEG data set which includes 256 +
64 + 1 = 321 parameters. This modeling greatly reduces the number of parameters which
would be 256 x 64 + 1 = 16285 if using model (2.1).

While using model (2.2) can significantly reduce the dimension of parameters compared
to using model (2.1), we still cannot directly employ model (2.2) to fit the data here because
the sample size is 122, smaller than the dimension of the model parameters. As a result,
we have to first reduce the dimension of the matrix-variate X;* before fitting the model
(2.2).

Motivated by the simulation findings that the response model parameters can be well es-
timated when the sample size is 10 times larger than the number of parameters, here we re-
duce the initial 256 x 64 matrix-variate X}* to a 5 x5 matrix-variate X}, for k = 1, ..., 122 us-
ing the two-directional two-dimensional principal component analysis ((2D)?PCA) method
of Zhang and Zhou (2005).

We assume that X} is an observed version of the true matrix-variate X; and they
are linked by (2.4) with the measurement error covariance matrix {2y estimated using the
method of Ledoit and Wolf (2004), as described in Section 2.4.1, where p, is taken as 5, and
the sample variance matrix () is obtained using vec(X) across all the subjects using the
total M = 5486 replicates of n = 122 subjects; this is needed for obtaining the estimator
(2.15). The flip-flop algorithm is applied to X; to find the row and column matrices, R
and C for the sufficient statistics correction method given by (2.22). Consistent with Hung
and Wang (2013), we set the second row parameter as 1 because the second row of X} has

the highest correlation with the response.

Table 2.3 reports the estimation results for the EEG data by fitting the model (2.2) with
the 5 x 5 matrix-variate X}, using the two methods described in Sections 2.3.1 and 2.3.2,
together with the naive method which ignores measurement errors. The two correction
methods output very similar results. While the estimates for the channel parameters
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(i.e., row parameters) produced from the naive analysis are noticeably different from those
obtained from the two correction methods, the estimates for the time points (i.e., column
parameters) yielded from the naive method are quite similar to those given by the two
correction methods. All the three methods reveal the same evidence for the column and
row parameters. For the column parameters, time points one, two, three and four are
detected to be significant. For the row parameters, the third channel has a significant
effect on distinguishing the alcoholic and nonalcoholic status. Finally, we report that the
computation times for Methods 1 and 2 are 0.409 and 0.386 seconds, respectively, using a
PC equipped with 2.6 GHz Intel Core i5 CPU and 16 GB RAM.
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Table 2.3: Analysis results for the EEG data using the three methods

Parameter Naive Method Method 1 Method 2
Est. SE 95% CI Est. SE 95% CI Est. SE 95% CI

Channel 1 -0.006 0.136  (-0.273, 0.261) -0.018 0.157  (-0.327, 0.290) -0.014 0.128  (-0.266, 0.237)
Channel 3 1.601 0.553  (0.518 , 2.684) 1.395 0.666  (0.090, 2.700) 1.389 0.500  (0.409, 2.369)
Channel 4 0.761 0.583 (-0.383, 1.904) 0.817 0.671  (-0.498, 2.131) 0.821 0.556  (-0.269, 1.910)
Channel 5 0.163  0.560 (-0.934 , 1.260) 0.430 0.657  (-0.856, 1.717) 0.449 0.549  (-0.627, 1.525)
Time-point 1  0.004 0.002 (0.001 , 0.008) 0.005 0.002  (0.001, 0.009) 0.005 0.002  (0.001, 0.009)
Time-point 2 -0.013 0.003 (-0.018, -0.008) -0.014 0.003 (-0.019, -0.008) -0.014 0.003 (-0.019, -0.008)
Time-point 3 0.020 0.006  (0.009, 0.031) 0.023 0.007  (0.009, 0.036) 0.023 0.007  (0.010, 0.036)
Time-point 4 0.010 0.005  (0.001, 0.019) 0.011 0.005  (0.001, 0.020) 0.011 0.005  (0.001, 0.021)
Time-point 5 0.002 0.005 (-0.008, 0.012) 0.003 0.005 (-0.007, 0.013) 0.003 0.006 (-0.008, 0.014)
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Chapter 3

Imputation and Likelihood Methods
for Matrix-Variate Logistic
Regression with Response
Misclassification

In this chapter, we target on investigating how response misclassification in the matrix-
variate logistic regression affects the parameter inference, and propose imputation and like-
lihood methods to reduce the response misclassification effects. The remainder is organized
as follows. In Section 3.1, we present the response model and introduce the misclassifica-
tion process for binary response. In Section 3.2, we propose an important method using an
unbiased surrogate for the true response. In Section 3.3, we explore the likelihood method
based on the observed data. In Section 3.4, we conduct simulation studies to assess the
performance of the methods developed in Sections 3.3-3.4 as well as to demonstrate the
misclassification effects on the naive analysis which ignores the response misclassification.
The proposed methods are also applied to analyze a breast cancer data set.

3.1 Notation and Framework

For subject k with £ = 1,...,n, Y, xx and z, are defined in the same way as those in
Section 2.1.1. Let ux = P(Yy = 1|z, zx). We consider the model

logit pur = vo + o728 + V1 2k, (3.1)
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where 7y is the intercept term and ~; is a p, x 1 parameter vector. Write v = (yo,7{)7.
Model (3.1) differs slightly from model (2.2) in that we explicitly spell out the intercept
term here.

As discussed in Section 2.1.1, parameters o and § are not identifiable because they are
pertinent to a rank-1 CP-decomposition which is not unique. To overcome nonidentifiabil-
ity issues, we use the same way as in Chapter 2 to set the first element of a to be 1; but
here we write o = (1, g, ..., apy1)T = (1,4T)7. Let 6 = (&7, 57,~7)7, which is the vector of
parameters of interest.

Estimation of # can be carried out using the likelihood method. For k = 1,....n, the
log-likelihood function contributed from subject k is

((0;Ye) = Ye(ho + aTex + 7{2) —log{l + exp(ro + @B +7{z)},  (3.2)

where the dependence on z and zj, is suppressed in the notation ¢(0;Yy). Let U(0;Y}) =
00(0;Y},)/00 be the score function, and we write U (0;Yy) = {U{,.(0), U3,.(0), U3, (0)}7, where
Uri(0) = 00(0;Yy) /0, Ugy(0) = 04(0;Yy) /08, and Usy(0) = 0¢(0;Y%) /0.

Under regularity conditions, a consistent estimator of # can be obtained by solving
> UB:Y:) =0 (3.3)
k=1

for 6. Using the block relaxing algorithm in Table 2.1, we solve (3.3) iteratively for &, (8
and v while keeping other components fixed.

In applications, the response Y, may be subject to misclassification, and a surrogate
response, Y,*, is observed, where k = 1,...,n. For i,j = 0,1, let 7;; = P(Y," = j|Y), =
i, Tk, z;) be the probability that the observed response is 7 when the true response is i,
where the dependence on z;, and z;, is suppressed in the notation 7y;.

To facilitate the dependence of the 73,; on the covariates, we consider the logistic models
logit ko1 = L} ¢o,

and
logit 711 = Li¢1, (3.4)

where ¢y and ¢; are the vectors of associated regression parameters, and Ly is a vector of
covariates that reflects various misclassification mechanisms. Let ¢ = (¢, #])T. Ly may be
specified as various forms to feature different misclassification processes. In some cases, Ly,

35



is taken as the entire vector covariate zj; in the extreme case, L is taken as the constant 1
to express that the misclassification is independent of the covariates: 740, = expit(¢g) and
Tk11 = expit(¢y), where expit(u) = exp(u)/{1 + exp(u)} and ¢y and ¢, are scalar.

3.2 Imputation Method

3.2.1 Estimating Equations with Known Misclassification Prob-
abilities
Define

*
Yk — Tko1

Ye = (3.5)

Thil — Thol
where 7410 = 1 — 711. It is easily seen that E(YS|Yy, vk, 2x) = Yi, ie., Y is an unbiased
surrogate for Yy, as called by Chen et al. (2014).

Let Uf,(0) = 00(0;Y,S) /0, Us,(0) = 00(0;Y,S) /08, and Us,(0) = 04(8;Y,S)/07. Define
U(0;Yy) = {U(0), Ui (0), Ugi (0)}T. Then

E{U(0;Y)|Ye, wr, 21} = U(0; Vi),

suggesting that U¢(¢; Y)¢) is an unbiased estimating function of §. When ¢ is known, solving
> U0:YE) =0 (3.6)
k=1

for 0 gives a consistent estimator, say éc, for 6, provided regularity conditions.

Let -
_ 0U(d]8.7)

Mlck(&|/877> a&.r )
C ~ aUC /6 &77
MQk(ﬁ|a7’7> = 2k8<5£. )7
. oUs (113, 9
c ~ 3 7047
MSk(’y’CY?B) = Ska’yT .

Using the block relaxation algorithm, we solve (3.6) via the Fisher Scoring algorithm. At
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iteration (¢ + 1), we iteratively update &, § and v in each block by

L+l _ gttlr Z t+1,r‘6t t) -1 i e (~t+1,r t ot
» Y 1x\& |5 Y ) ;
k=1
5t+1,r+1 _ BH_LT _ { Z Bt-‘rl 7“| ~t+1 t }1{ zn: U20k</6t+1,7"
AL L { Z AL |G gLy } { Z UE, (y117) Gt ﬁt-i—l)}

for r = 0,1,2,..., where &', 3" and 7' represent the estimates of &, § and ~ at iteration
t, respectively. Let 6y be the true value of . In Appendix B.2, we show the following
asymptotic result of 6.

att vt)},

Theorem 3.1 Assume Conditions (C.1)-(C.2) in Appendiz B.1. Then as n — oo,
V(0 = 60) == N(O, TSI,

where
. = E{oU(0y;Y)/007} and . = E{U(00; Y\ )UT(60; Y,S) }-

To carry out inference such as constructing confidence intervals, we use the asymptotic
distribution in Theorem 3.1 by replacing I'. and Y. with their consistent estimates

U(6; YY)
n Z o007

respectively, thus, yielding a consistent estimator of the asymptotic covariance matrix of
0., given by T'; 5 J[0T

. 1 — . .
d¥,.=— U0, Y UT(0 Y,
an nz ( UT( i)

k=1

0=0,

3.2.2 Estimating Equations with Unknown Misclassification Prob-
abilities
In Section 3.2.1, we solve (3.6) by assuming that the misclassification parameter ¢ is known.

However, the misclassification parameters are usually unknown in practice. In this case,
a two-stage estimation procedure can be applied to estimate 6 and ¢, where an unbiased
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estimating function for ¢ is constructed in addition to (3.6). Often a validation subsample
is needed for estimation of the misclassification parameters (Roy et al. 2005). Here, we
describe an inferential procedure by incorporating estimation of the misclassification pa-
rameters when an internal validation subsample is available (Chen et al. 2011; Chen et al.
2014).

For k = 1,...,n, let J; be the indicator variable of the kth subject such that when
0r = 1, the kth subject is included in validation subsample and J, = 0 otherwise. Then

n
Po = Y O0x/n is the proportion of the subjects that are included in the validation subsample.
k=1

For k =1,....,n, let Hy be the indicator variable I(Y;* # Y}) for the kth subject, taking
value 1 if Y* # Y}, and 0 otherwise. Thus, Hy = 1 is equivalent to either “Y,* =1, Y, =07
or Y, =0, Y, =17. For ease of notation, for y; =0, 1, we let

lro(yr) = log{mggr x (1= m01) "~}
denote the logarithm of the conditional probability P(Y;" = y;|Yy = 0) and let
U (i) = log{mb x (1 — 7o)~}

denote the logarithm of the conditional probability P(Y;" = y;|Yy = 1).

Define Sy(¢) = (0ro(y;)/0P) 9 (0lk1 (yi)/Op)¥*, which can be used to estimate ¢ using
the measurements in the validation subsample. Now we describe a two-stage estimation
procedure for estimation of ¢ and 6.

Stage 1. Applying Si(¢) to the validation subsample and solving
> 0kSk(¢) =0 (3.7)
k=1

for ¢ gives an estimate, say ¢EU, of ¢.
Stage 2. Replace ¢ with ¢, in (3.6) and solve it for 6 using the block relaxation algorithm.

This two-stage estimation procedure can be expressed as a single procedure for ease
of establishing the asymptotic results of the resulting estimator. Let n = (¢7,07)7. Then

solving
~ (UC(0.0: Y)Y _
> (Taslr) =0 @8

k=1
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for n gives a consistent estimator, denoted 7, = (A]}, éqT) )T, for n, provided regularity condi-
tions.

Applying the first-order Taylor series approximation to the estimating functions in (3.8)
around 1), the true value of 7, we can establish Theorem 3.2 as follows. The details are
included in Appendix B.3.

Theorem 3.2 Assume that Conditions (C.1)-(C.4) in Appendiz B.1 hold and that p, ap-
proaches a positive constant as n — oo. Then as n — 0o,

Vi, — 0p) —= N(0,T;'5,[[;17),
where ¥, = E{Q4(00, ¢0)2. (60, ¢0)}, and
Vb, 60) = U (6, 603 Yi0) — B{OU“ (60, 603 i) /00 }

< [B{5 x 8Sk(¢0)/8¢}]_1 % {81Sk(60)}-

where

Asn — oo, the matrix 3, can be consistently estimated by 3 = % > Qk(év, q&,)@%(é)v, )},
k=1

A A AN rrerd A e 1 = 0UC(0, ¢; YY)

(0, dv) = U(On, 00 YY) — {EZ o6

k=1 =i

¢>=<Z>UH_ X {0kSk(¢u)}-

e

k=1

3.3 Likelihood Method

3.3.1 Inference Method with Known Misclassification Probabil-
ities

The second method of estimation of the parameters is based on the observed likelihood

function. Let uj = P(Y," = 1|xy, z;) be the conditional mean for the surrogate response

Y, given {xy, 2z, }. As discussed in Yi (2017, Chapter 8), the conditional probability p} of
the observed measurement Y,*, given {xy, z;}, is linked with the conditional probability /i
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of the true response Yy, given {xy, z; }, through

e = Tror + (1 — Thor — Th1o) i (3.9)

If the parameters for the misclassification probabilities are known, then the maximum
likelihood estimator, say 6, of # can be obtained by maximizing the log-likelihood for the

observed data ) ¢°(0;Y}) with respect to 6, where for k =1, ..., n,
=1

(0;Yy") = Yilog py, + (1 — Yi)log (1 — pug.), (3.10)
and  is determined by (3.9) in combination with (3.1) and (3.4).

Under regularity conditions, 6 can be equivalently obtained by solving the
> Uto;vy) =0, (3.11)
k=1

where U°(6:Y;") = {US1(0), USL(0), USE(0)} with US,(6) = 06°(6: ¥, /0, U3,(6) = 06°(0,
Y,5)/05, and U3,.(0) = 00°(0;Y;r) /0.

Likelihood theory shows that as n — oo,
V(0 — 6o) = N(0,57),

provided regularity conditions, where ¥ = E{—0U°(6y;Y;")/007}, which can be consis-
tently estimated by n=' S U°(0; Y )UT(0; Yy).
k=1

3.3.2 Inference Method with Unknown Misclassification Proba-
bilities

In this subsection, we consider using an internal validation sample to estimate the pa-

rameter vector ¢ associated with the misclassification model (3.4). The inference about

n, defined in Section 3.2.2, can be carried out based on the likelihood function for the
observed data, given by

Li(n) = { H f(ykyyZ|$k>Zk)}{ H f(yZ|$k,Zk)},

Sp=1 5, =0
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where the contributions of the subjects in the validation sample are reflected by the
model f(yx, yi|xk, 2x) for the conditional distribution of {Yj, Y} given {xy, 2}, deter-
mined by (3.1), (3.4) and (3.9); and the subjects in the main study contribute via the
model f(yi|xg, zx), determined by (3.9). More specifically, L9(n) is given by

Lo = { [T b - ml‘yk{am(yz)}yk{ako@z)}l—yﬂ}

=1

X H{Nk )Y,

=0

(3.12)

where for [ = 0 and 1, ag(y;) = P(Y,f = yi|Ye = |, Xk, z), given by

* _ * 1_ * *
aro(Yp) = T (1 = Tro1) ' ™% and ag (y5;) = 10 (1 — Tho) %

Maximizing (3.12) with respect to n leads to the maximum likelihood estimator for 7.
Although directly maximizing (3.12) can provide a statistically efficient estimator for 7,
the procedure may be computationally difficult to implement. Alternatively, we describe
a two-stage estimation procedure which is computationally easier to implement, especially
under the matrix-variate setting.

The two-stage algorithm treats 6 and ¢ different. At the first stage, we employ (3.7)
to obtain the estimate of ¢ using a validation subsample. At the second stage, estimation
of 0 is carried out by solving > 7, U2(n) = 0, or equivalently,

S U miy) + Y Us(nup) =0 (3.13)

Sp=1 5, =0

for 6 with ¢ replaced by the estimate obtained from the first stage, where Ug(n) =
0 Y, 9 . Ve—up \ (0m
Olog(L2) /06, Up(ns Vi) = { ezt b (%8 ) and Us o vi) = { 22 | (55 ).
This two-stage estimation procedure can be expressed as a single procedure for ease of
establishing the asymptotic results of the resulting estimator. Solving

~ (U(: Vi, Vi) _
;( 5k5k?¢) >_0 (3.14)

for n gives a consistent estimator, denoted 7j,, = (ng QT) , for n, provided regularity

v Y ov

conditions. The asymptotic property of 6,, can be established similarly to Theorem 3.2
and is presented in Theorem 3.3 as follows.
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Theorem 3.3 Assume that Conditions (C.1)-(C.4) in Appendiz B.1 hold and that p, ap-
proaches a positive constant as n — oo. Then

V(0 — 0) =25 N(0,T5'S,,[0517) as n — oo,

where T', = E{OU2(n; Yy, Y¥)/007}, 3o = E{Q0oi (60, 00)2,. (60, Po)}, and

Qur(0o, 60) = Us(no) — B{ 0Uz (o) /00 }

< [B{6: x 05 (00) /8¢H1 « {5:Sk(60)}-

Asn — oo, ¥, and I', can be consistently estimated by

n . ) R ) R . . 1 n
k=1 Qok(Oops 00)2, (000, ¢y) and T, = n ;

8U3<n7 qu Yk;*)

27—0 =
oLl

3
n="ov

S|

respectively, where

n

aUS(W Yk7 Yk*) }
k=1 8¢ n:ﬁov

) {li%ﬁz(@‘q&:qﬁv}_l X {0Sk(60)}-

n
k=1

o ) Lol
on(90v7¢v) = Ug(nov;YMYk) - {ﬁ

3.4 Numerical Studies

3.4.1 Simulation Designs

In this subsection, different simulations are designed to evaluate the performance of the
proposed methods as well as the impacts of small, moderate and large degrees of response
misclassification on parameter estimation, where we consider settings with p + 1 = g,
denoted p, for ease of exposition, and the sample size n = 1000.

Specifically, p, x p, matrix-variate data, xp, are simulated from the matrix-normal
distribution MN(0, I,,,, I,,) for k = 1,...,n, where p, = 5. For the vector-covariate z,
we consider two cases: (1) the z; are continuous and independently generated from the
standard normal distribution; (2) the z; are binary and independently generated from the
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Bernoulli distribution with P(z; = 1) = 0.5. To easily differentiate these two types of z,
we use 21, and 29, to express the covariate in these two cases, repectively.

For k = 1,...,n, the binary response Y} is randomly generated from the Bernoulli
distribution with the probability

exp(vo + aTzf + Y121)
1+ exp(yo + aTzi B+ v121)’

where vy = log 2, 1 = 0.5, « = (0,1,0,0.5,0.5)T, and 5 = (0.5, —0.5,0,0.5,0)7.

The misclassification rates are determined by (3.4) and we consider five settings. In the
first four settings, we let Ly = 1 and 791 = 710 for simplicity where 7,01 and 7319 are set
as 2.5%, 5%, 10% and 20%, respectively, to reflect increasing degrees of misclassification.
For these settings, the response Y} are generated from (3.15) with z set as zy,. In the fifth
setting, we take Ly = (1, z91)7 together with ¢y = (—3,0.5)T and ¢; = (3,0.5)T in (3.4) to
generate 7y and 7,19. When 29, = 0, 7401 and 7319 are roughly 5%; when 291, = 1, 7301 and
Tr1o are roughly 7.5%.

For k = 1,...,n, the observed response, Y;*, is independently obtained using (3.4) as
specified as one of the five settings with the designed misclassification rates. To apply the
proposed methods to fit the data, we consider two scenarios. In Scenario 1, we take the
misclassification rates as known and fit the data using the methods described in Sections
3.2.1 and 3.3.1. In Scenario 2, we apply the methods in Sections 3.2.2 and 3.3.2 by taking
the misclassification rates as unknown and estimated from an internal validation sample.
To investigate the effect of different sizes of the internal validation data, we randomly take
30% or 60% of the data as an internal validation sample.

3.4.2 Simulation Results

Tables 3.1-3.5 present the results for the estimators of o,  and v where finite sample biases
in percent (bias%), empirical standard errors (ESE), model-based asymptotic standard
errors (ASE), and coverage rates (CR) for 95% confidence intervals are reported.

For the row effects a, the imputation methods and the likelihood methods give similar
estimate results to those obtained from the naive method, regardless of the degrees of mis-
classification or the size of internal validation data. However, for the column effects 5 and
the vector-covariate effects v, we observe that biases resulted from the naive method are
much larger than those obtained from the proposed methods even when the misclassifica-
tion degree is small. The performance of estimators from the naive method becomes worse
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as the degree of misclassification increases. On the other hand, the imputation methods
and the likelihood methods significantly improve the performance of the naive method.
Furthermore, the likelihood methods outperform the imputation methods, although the
performance of the imputation methods is fairly satisfactory under various settings. The
likelihood methods are more efficient than the imputation methods and tend to be less
affected by the size of the validation sample or the degree of misclassification than the
imputation methods.

In summary, the naive method produces considerably biased results when misclassi-
fication exists in the response variables, suggesting that it is imperative to account for
the misclassification effects in statistical inference when facing misclassification problems.
The simulation studies confirm that the proposed methods significantly improve the per-
formance of the naive method and satisfactorily accommodate the effects induced from
the response misclassification. The likelihood methods have better performance than the
imputation methods. It also confirms that when misclassification rates are unknown, the
more the internal validation data, the better the results.

Finally, we comment that to improve the accuracy of estimation results for a given
dimension of xp and zj, increasing the sample size is typically helpful, as noticed by a
referee. In our numerical explorations, we found that for the settings considered in this
section, reducing the sample size to a small value (such as 200) can generate unstable
results with more nonconverging estimates.

3.4.3 Sensitivity Study

To investigate the robustness of the proposed methods in Sections 3.2.1 and 3.3.1, we
conduct the following two simulation studies. In Simulation 1, we generate the Y} using
(3.15) with z; set as zy, and the Y," using (3.4) with L, = 1, yielding that 740, and 7419
are common for k = 1,...,n; let 79 and 779 denote them, respectively. We consider one
of the two settings to generate the surrogate responses: (1) 701 = 5% and 1190 = 10%; (2)
To1 = 10% and 719 = 5%. We apply the methods in Sections 3.2.1 and 3.3.1 by mis-taking
Tor and 719 as 191 = 10 = 2.5%, 7.5% or 10% to fit the data.

In Simulation 2, we generate the Y}, from (3.15) with zj set as z9, and the Y,* from
(3.4) with Ly = (1, 20)7, ¢o = (—3,0.5)T, and ¢ = (1.5,0.5)T. However, we fit the data
using the methods in Sections 3.2.1 and 3.3.1 with 7491 and 7319 misspecified as one of the
settings: (1) mwo1 = 10% and 710 = 15%; (2) Tro1 = 5% and 7310 = 10%, for all k = 1,...,n.

The results are reported in Tables 3.6-3.8. For estimation of the row and column effects,
our proposed methods still perform better than the naive method under the misspecification
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of the misclassification rates we consider here. However, for estimation of the vector effect,
v, our methods may perform better than the naive method only when the misspecified
misclassification rates are not severe.

3.4.4 Analysis of the Breast Cancer Wisconsin Prognostic Data

We apply the proposed methods, in contrast to the naive approach, to analyze the breast
cancer Wisconsin prognostic imaging data which are available at the UCI Machine Learn-
ing Repository website (https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+
Wisconsin+(Prognostic)). The data set contains 198 breast cancer patients whose cases
exhibit invasive breast cancer but no evidence of distant metastases at the time of di-
agnosis. Ten real features, Radius, Texture, Perimeter, Area, Smoothness, Compactness,
Concavity, Concave Points, Symmetry and Fractal Dimension, of the cell nucleus in the
digitized image of a fine needle aspirate (FNA) of breast mass of each subject were taken
as the row effects. For each feature, the Mean, Standard Error, and Worst (mean of the
three smallest values) were computed for the cell nucleus in each breast mass image and
treated as the column effects. Besides those measurements, the tumor size for each subject
is available.

Those subjects are divided into the recurrent group of 47 patients and the nonrecurrent
group of 151 patients. A patient is classified to be in the recurrent group if the disease
is observed at some subsequent time to the tumor excision; and the nonrecurrent group
includes patients whose cancer has not observed to recur, or may never recur. There is a
possibility that the patients may be misclassified due to incorrect diagnosis for the recurrent
group or the unknown recurring time for the nonrecurrent group patients (Mangasarian
et al. 1995). Here we are interested in using the observed but error-prone data to study how
risk factors may be associated with the true status of being in the recurrent or nonrecurrent
group, which is postulated by model (3.1).

For k = 1,..,198, let Y;* be the observed binary response variable for subject k, with
value 1 for being in the recurrent group and 0 for being in the nonrecurrent group. The
matrix-variate of the subject k, denoted as xy, is a 10 x 3 matrix with entry (i, j) represent-
ing the value of the jth characteristic of the ith feature, where i =1,...,10 and j = 1,2, 3.
The breast tumor size of the subject k is denoted as z;. Consistent with the notation in
Section 3.1, we let 719 denote the rate of misclassifying a subject who actually is in the
recurrent group into the observed nonrecurrent group as 7y, and let 79; denote the rate
of misclassifying a subject who actually is in the nonrecurrent group into the observed
recurrent group.
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Since our proposed methods require the knowledge of the misclassification mechanism
but there are no validation data available, we conduct sensitivity analysis by examining
the impacts of different misclassification probabilities on the estimation of the model pa-
rameters. In particular, we consider two possible scenarios. In the first scenario, we take
To1 = 0, reflecting no misclassification in the recurrent group, and set 79 = 1%, 3%, or 5%
to feature increasing misclassification cases. In the second scenario, we set 79; = 1% and
let T10 = 1%, 3%, or 5%.

Tables 3.9-3.11 report the estimation results for the breast cancer Wisconsin data ob-
tained from the naive analysis by using (3.3) with Y} replaced by Y;*, the imputation
method (3.6), and the likelihood method (3.11). For the row effects &, all analyses show
that Radius has the highest negative effect and Perimeter has the highest positive effect.
For the column effects, all the methods show that Mean has the highest positive effect and
Worst has the highest negative effect. However, only the intercept term is statistically
significant under 5% significant level. As the misclassification rate increases, the size of
the effect as well as the standard errors from the proposed methods increases.

To conclude, we point out that caution should be taken when interpreting the results
here. As noted in Section 3.4.2, a small sample size does not ensure reliable estimation
results as the asymptotic results do not come into the play. The analysis here can be more
regarded as an illustration of the utility of the proposed methods than taken as a sound
revealing of new scientific findings for such a study.
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Table 3.9: Analysis of the breast cancer Wisconsin prognostic data without accounting for
misclassification effects

Parameter Est. SE 95% CI

Radius 4790 3778 (-12.195, 2.614)
Texture -0.122  0.115  (-0.348, 0.104)
Perimeter 3.909 3.951 (-3.835, 11.654)
Smoothness 0.242 0.233  (-0.214, 0.698)
Compactness 0.073 0.273  (-0.463, 0.609)
Concavity 0.372 0.293  (-0.945, 0.202)
Concave Points 0.117 0.251  (-0.376, 0.610)
Symmetry -0.041 0.119  (-0.276, 0.193)
Fractal Dimension -0.411 0.266  (-0.933, 0.111)
Mean 3.089 1791  (-0.422, 6.599)
SE 0.276  0.388  (-0.484, 1.037)
Worst -0.773  0.660  (-2.066, 0.520)
Tumor Size 0.267 0.167  (-0.060, 0.594)
Intercept -1.371  0.205 (-1.772, -0.969)
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Table 3.10: Sensitivity analyses of the first scenario (791 = 0) of the breast cancer Wisconsin
prognostic data with different degrees of 71y accommodated

Parameter Imputation Method Likelihood Method
Est. SE 95% CI Est. SE 95% CI

Scenario (i): assuming 719 = 1%
Radius -4.740 3.728 (-12.048, 2.567) -5.128  4.273  (-13.504, 3.247)
Texture -0.121 0.114  (-0.344, 0.102) -0.137  0.133 (-0.397, 0.124)
Perimeter 3.855 3.808 (-3.785, 11.496) 4.273  4.454  (-4.456, 13.003)
Smoothness 0.237 0.229  (-0.212, 0.687) 0.268 0.271 (-0.263, 0.798)
Compactness 0.074 0.227  (-0.457, 0.603) 0.064  0.286 (-0.496, 0.624)
Concavity -0.368 0.289  (-0.934, 0.199) -0.395  0.342 (-1.066, 0.276)
Concave Points 0.119 0.249  (-0.370, 0.608) 0.111  0.290  (-0.457, 0.678)
Symmetry -0.041 0.118  (-0.273, 0.190) -0.041 0.122  (-0.280, 0.197)
Fractal Dimension -0.407 0.263  (-0.923, 0.109) -0.432  0.333 (-1.086, 0.220)
Mean 3.139 1.817  (-0.422, 6.701) 3.025  2.153 (-1.196, 7.245)
SE 0.280 0.392  (-0.490, 1.049) 0.286  0.428 (-0.553, 1.125)
Worst -0.788 0.671  (-2.103, 0.528) -0.748  0.742 (-2.203, 0.707)
Tumor Size 0.268 0.168 (-0.061,0.597)  0.277 0.171  (-0.062, 0.609)
Intercept -1.357 0.206 (-1.760, -0.954) -1.442  0.215  (-1.863, -1.021)

Scenario (ii): assuming 719 = 3%
Radius -4.636  3.627 (-11.745, 2.472) -5.993  5.394  (-16.565, 4.579)
Texture -0.118 0.111  (-0.335, 0.099) -0.179  0.180 (-0.532, 0.174)
Perimeter 3.743  3.791 (-3.686, 11.173) 5.207  5.650 (-5.867, 16.280)
Smoothness 0.229 0.223  (-0.208, 0.666) 0.338  0.358 (-0.364, 1.040)
Compactness 0.075 0.264  (-0.443, 0.593) 0.048  0.335 (-0.608, 0.704)
Concavity -0.360 0.282  (-0.913, 0.194) -0.459 0.421 (-1.285, 0.367)
Concave Points 0.122 0.245  (-0.358, 0.603) 0.094 0.322 (-0.538, 0.7250)
Symmetry -0.041 0.115  (-0.267, 0.185) -0.042  0.145 (-0.327, 0.242)
Fractal Dimension -0.399 0.256  (-0.902, 0.103) -0.425 0.430  (-1.331, 0.336)
Mean 3.248 1.873  (-0.423, 6.920) 2.862 2.273 (-1.593, 7.317)
SE 0.286 0.403  (-0.504, 1.076) 0.304 0.446 (-0.570, 1.177)
Worst -0.820 0.696  (-2.183, 0.544) -0.689  0.728 (-2.117, 0.739)
Tumor Size 0.271 0.171  (-0.063, 0.606) 0.292  0.265 (-0.066, 0.650)
Intercept 1320 0.207  (-1.735,-0.923)  -1.617 0.183  (-2.135, -1.098)

Scenario (iii): assuming 119 = 5%
Radius -4.528 3.523  (-11.433,2.376) -7.410 7.631 (-22.368, 7.548)
Texture -0.116 0.108  (-0.327, 0.095) -0.255  0.283 (-0.810, 0.230)
Perimeter 3.627 3.679 (-3.854, 10.839) 6.734  8.047 (-9.038, 22.507)
Smoothness 0.220 0.216  (-0.204, 0.644) 0.455  0.537 (-0.598, 1.508)
Compactness 0.077 0.258  (-0.429, 0.582) 0.031  0.405 (-0.763, 0.826)
Concavity -0.351 0.276  (-0.891, 0.189) -0.570  0.590 (-1.726, 0.586)
Concave Points 0.126  0.241  (-0.346, 0.597) 0.074  0.380 (-0.671, 0.820)
Symmetry -0.040 0.112  (-0.260, 0.180) -0.048 0.1876  (-0.414, 0.318)
Fractal Dimension -0.250 0.545  (-0.881, 0.098) -0.617  0.623 (-1.839, 0.605)
Mean 3.367 1.936  (-0.426, 7.161) 2.617  2.463 (-2.211, 7.445)
SE 0.293 0414 (-0.519, 1.106) 0.310  0.460 (-0.593, 1.212)
Worst -0.855 0.723  (-2.272, 0.562) -0.609 0.716 (-2.012, 0.794)
Tumor Size 0.275 0.173  (-0.065, 0.614) 0.320 0.198 (-0.068, 0.708)
Intercept -1.301  0.209 (-1.709, -0.892) -1.866  0.363  (-2.579, -1.154)
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Table 3.11: Sensitivity analyses of the second scenario (191 = 1%) of the breast cancer
Wisconsin prognostic data with different degrees of 717 accommodated

Parameter Imputation Method Likelihood Method
Est. SE 95% CI Est. SE 95% CI

Scenario (i): assuming 79 = 1%
Radius -4.963 3.973 (-12.751, 2.825) -4.796  3.884 (-12.409, 2.817)
Texture 0126 0120 (0361, 0.109)  -0.122 0.118  (-0.354, 0.110)
Perimeter 4.094 4.158 (-4.056, 12.243) 3.918 4.041 (-4.003, 11.839)
Smoothness 0.255 0.244  (-0.224, 0.733) 0.244 0243 (-0.233, 0.721)
Compactness 0.068 0.282  (-0.486, 0.621) 0.071 0.267  (-0.451, 0.594)
Concavity -0.385 0.303  (-0.979, 0.210) -0.370  0.317  (-0.991, 0.251)
Concave Points 0.112 0.254  (-0.386, 0.610) 0.113 0.278  (-0.432, 0.657)
Symmetry -0.041 0.123  (-0.282, 0.201) -0.041 0.113  (-0.263, 0.182)
Fractal Dimension -0.421 0.279  (-0.967, 0.125) -0.410 0.305  (-1.008, 0.188)
Mean 3.167 1.882  (-0.523, 6.856) 3.097 2.118  (-1.055, 7.249)
SE 0.290 0408 (-0.509, 1.089) 0279 0423  (-0.551, 1.109)
Worst -0.787 0.681  (-2.122, 0.548) -0.775 0.753  (-2.251, 0.701)
Tumor Size 0.277 0.173  (-0.062, 0.616) 0.270 0.169  (-0.061, 0.600)
Intercept -1.426  0.222 (-1.860, -0.991) -1.357 0.199 (-1.748, -0.966)

Scenario (ii): assuming 719 = 3%
Radius 4.856 3.867 (-12435,2.722)  -4.806 3.887 (-12.424, 2.812)
Texture -0.123  0.117  (-0.352, 0.105) -0.120 0.118  (-0.352, 0.112)
Perimeter 3.980 4.044 (-3.947, 11.906) 3.933 4.046 (-3.997, 11.864)
Smoothness 0.246 0.237  (-0.219, 0.710) 0.248 0246  (-0.234, 0.729)
Compactness 0.069 0.276  (-0.472, 0.610) 0.068 0.268  (-0.458, 0.594)
Concavity -0.376  0.296  (-0.956, 0.204) -0.367 0.317  (-0.987, 0.254)
Concave Points 0115 0.250  (-0.374, 0.605)  0.104 0278  (-0.442, 0.649)
Symmetry 20.040 0120 (-0.276,0.196)  -0.039 0.113  (-0.260, 0.183)
Fractal Dimension -0.413 0.271  (-0.945, 0.119) -0.409 0.306  (-1.009, 0.191)
Mean 3.276  1.940  (-0.527, 7.080) 3.117  2.140  (-1.077, 7.311)
SE 0.297 0418 (-0.523, 1.117) 0.284 0.429  (-0.558, 1.125)
Worst 0.818 0706 (2201, 0.565)  -0.778 0.759  (-2.267, 0.710)
Tumor Size 0.280 0.176  (-0.065, 0.624) 0.276 0.172  (-0.062, 0.613)
Intercept -1.398 0.223 (-1.835, -0.961) -1.329 0.200 (-1.722, -0.937)

Scenario (iii): assuming 719 = 5%
Radius -4.746  3.757 (-12.111, 2.618) -4.814 3.885 (-12.430, 2.801)
Texture -0.121 0.113  (-0.343, 0.102) -0.118 0.118  (-0.349, 0.113)
Perimeter 3.861 3.928 (-3.837, 11.559) 3.947 4.047 (-3.985, 11.879)
Smoothness 0.236  0.230  (-0.215, 0.687) 0.251 0.247  (-0.234, 0.736)
Compactness 0.071 0269  (-0.457, 0.598) 0.065 0.270  (-0.465, 0.594)
Concavity 20.367 0280 (-0.933,0.199)  -0.363 0.316  (-0.983, 0.257)
Concave Points 0.119 0.245 (-0.361, 0.599) 0.094 0279  (-0.453, 0.641)
Symmetry -0.039 0.117  (-0.269, 0.190) -0.037 0.113 (-0.258, 0.184
Fractal Dimension -0.405 0.264  (-0.923, 0.113) -0.408 0.307  (-1.009, 0.193)
Mean 3396 2005 (-0.534,7.326)  3.141 2.164  (-1.101, 7.383)
SE 0.305 0.430  (-0.538, 1.148) 0.289 0.436  (-0.565, 1.143)
Worst -0.853 0.733  (-2.289, 0.583) -0.783 0.767  (-2.285, 0.720)
Tumor Size 0.283 0.179  (-0.067, 0.633) 0.283 0.176  (-0.063, 0.628)
Intercept -1.370 0.225 (-1.810, -0.929) -1.301 0.202 (-1.696, -0.906)
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Chapter 4

Regularized Matrix-Variate Logistic
Regression with Response
Misclassification

Chapter 4 is a continuation and extension of Chapter 3. In this chapter, we consider regu-
larized matrix-variate logistic regression with response misclassification. The remainder is
organized as follows. In Section 4.1, we propose the first set of methods based on regular-
ized unbiased estimating functions, and establish the asymptotic results for the resulting
estimators. In Section 4.2, we develop the second set of methods which employ regularized
observed likelihood functions. In Section 4.3, we conduct simulation studies to assess the
performance of the proposed methods. We also present an application to the breast cancer
Wisconsin prognostic data discussed in Section 3.4.4.

Specifically, the notation and model setup are the same as those in Chapter 3. The
only difference is that the covariates contained in xp may be unimportant in explaining
the mean response. We are interested in carrying out variable selection to exclude those
irrelevant covariates in inferential procedures.
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4.1 Regularized Estimation Equations Method

4.1.1 With Known Misclassification Probabilities

Refer to Chapter 3, the method based in model (3.1) applies when the dimensions of z
and z are small or when z and z do not include unimportant covariates. In settings with
unimportant covariates, it is imperative to perform variable selection when estimating the
model parameters. Let p,, (-) denote the penalty function with the tuning parameter A,
which often depends on n, where the argument of p, (-) is a scalar. For ease of expo-
sition, we let py, (&), pa,(5) and py,(y) represent the vectors {py,(a), ..., pr, (p+1)}7,
{r, (B1), s D, (Bg) 3T and {pa, (70), Pr, (71)5 oy Pa, (9. ) 1T, respectively, by using a vector
as the argument of p,  (-) to avoid possible confusion with p, () having a scalar argument.
Here we propose the penalized estimating equations method by solving a modified version
of (3.6) using the unbiased surrogate Y;¢ defined in (3.5):

o (U5 (6:7) = 14, (@)
Usi(0:Y9) = 9. (8) | =0, (4.1

k=1 \Us,(0:Yy) — P, (7)
where p) (&), p}, (8) and p} (7) represent the first derivative of py, (&), pa, (3) and py, (7),
respectively.

Following Ma and Li (2010), we choose the SCAD penalty as the penalty function with
the derivative function

(@ — IC]) .
() = M 1(IC] < ) + S BRG] > M) fsign(€), (4:2)
where I(-) is the indicator function, sign(¢) = —1,0 and 1 when ¢ < 0,= 0 and > 0,

respectively, and a is a constant larger than 2 with a recommended value a = 3.7.

To establish the asymptotic results for the resulting estimators, we let

an, = max{|p}, (|6jo])| : ;0 # 0} (4.3)

and
b, = max{|p"y, (|00])] : 0;0 # 0}, (4.4)

where 6 is the jth component of §y. In Appendix C.2 we show the following theorem.
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Theorem 4.1 Assume Conditions (C.1)-(C.3) in Appendiz C.1. If a, and b, tend to 0
as m — 0o, then, there exists a solution to (4.1), 0., such that

10 = 80l = Oy = +a.),

where ||Al| denotes the Euclidean norm if A is a vector.

This result shows the dependence of the convergence rate of 6. on the tuning parameter \,
as well as the penalty function. To obtain a y/n—consistent estimator, it suffices to take a
small tuning parameter so that a, = O(\/iﬁ)

Next, we discuss the oracle property for 6. whose proof is included in Appendix C.4.
Write ao = (&}, af1)7, Bo = (Bl Bli)Ts and 70 = (7, )T so that elements in &,
B, and v, are all not zero, and elements of &y, O], and ~f, are all zero. Write
0o = (6},,0%,)7, where 61y = (G}, 810, Vi)™ and 0o = (&g, Bios Mo)T-  Similar nota-
tion is defined for § = (6],0]))T with 6; = (&f,B],7 )T and O0n = (&7}, B, 1y)T- De-
note the dimension of &fy, Af, and v, as di,, dig and d;,, respectively, and the di-
mension of &y, B, and v, as dasa, dog and dy, respectively. Let d, = din + d2a,
dg = dig + dop, and d,, = dy + da, which are all assumed to be fixed. Let Ug, ;(6;Y))
denote the first di, components of Uf,(0;Yy), let Ugs1(6;Y)) denote the first dig com-
ponents of Ug, (0;Yy), and let Ug. 1(0;Y)’) denote the first dy, components of Ug, (6;Y).
Let Ug, 11(6; Yy) denote the last do, components of Uf, (6;Y)), let Ugy 1(0; YY) denote the
last dyp components of Ug (0;Y), and let Ug, 1;(0;Yy’) denote the last dy, components of
Ug(0;Yy). Write Ug,(0:Yy) = {U;;,I(Sykc)aUlnga,I(‘g%YkC%Uig,I(eS Yio)}T and Ugy(0;Yy) =
{UkaunG YY), Ughn(0:Y50), Ul n(6; Y0) }T.

Let
9o = {1\, (Q10), .-, P, (Ca100) } T,
95 = {p/An (ﬁlo)a ---aP&n(ﬁdlﬁo)}T,
gy = {0, (110)s -, P, (Var,0) 1T,
Yo = diag{p”x, (q10), s " r, (¥dy.0) }
¥ = diag{p"x,(B10), -, D" x, (Bais0) }
and

Xy = diag{p”,\n (710), ...,p";m (WMO)}-

Write gg = (91, 95, 97) and ¥y = diag(Xa, X, 2,). With the SCAD penalty, ga, 95, 9y, Za;
Y3 and X, become zero when A, is sufficiently small.
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Theorem 4.2 Let 0, = (GEI,HA i1)T denote a \/n—consistent solution of (4.1), where O =

(c:vljl, 6071,7071, )T and fey = (A7 i BCTJI,'?;H)T which correspond to the subvectors of 01y and
0o, respectively. Under Conditions (C.1)-(C.4) in Appendiz C.1, if

hmmfhmmf\/_p/\ (0) = oo, (4.5)

n—oo  f—0t

then with the probability tending to one, the following results hold:
(a) éc,H =0;

(b) as n — oo,
Vn (90,1 — b — FU(QIO)_lge) <N (0,Ty(610) " Sy (610)Tu(610)'7)

where Ty () = B {W} — % and Su(60) = ELUE (610; YU (6103 Y}

Theorem 4.2(a) shows that the proposed method can correctly identify the significant row
and column parameters as well as the vector covariate effects with the unimportant param-
eters excluded. That is, the resulting estimator possesses the oracle property. Theorem
4.2(b) establishes the asymptotic distribution for the estimators of the parameters corre-
sponding to the important covariates, which offers the basis for performing inferences.

Finally, we comment that solving (4.1) can be implemented by modifying the block
relaxation algorithm, by adding the penalty functions to (3.6) (e.g., Zhang et al. 2014). In
implementing (4.1), it is critical to select a suitable value of the tuning parameter \,. We
now describe an algorithm for selecting an optimal tuning parameter within a given set of

candidates. Let )
oL (0;Yy) }

Ie = E{ 00007

be the Fisher information matrix of the likelihood function (3.2). Define the degree of
freedom for the selected model to be

DF, = trace{Ip(Iy + X9) '}

To emphasize the dependence of \,, we let éc()\n) denote the estimate of 8. Since Y}, is
unavailable, we approximate Iz by

1 Z 002(0; YY)
D000
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and approximate DFy by DFA = trace{IF(IF + Zg) 11, where Yy is the estimate of 3y
with 6 g1ven by 0 o(An). Let figy denote the value of gy with 6 specified as 0 (An) and

63 =1 Z Y€ — figa|?. Similar to Wang et al. (2007), we define an objective function

BIC(A,) = logé? + DFylog(n)/n. (4.6)

Then the optimal tuning parameter, denoted A}, is selected as the one that minimizes
BIC(),), and the corresponding estimate 6.(Af), denoted 6., is taken as the estimate of
parameter 6.

4.1.2 With Unknown Misclassification Probabilities

The procedure described in Section 4.1.1 applies if the misclassification parameter ¢ is
known. In applications, the values of the misclassification parameters are usually unknown
and they need to be estimated from additional data sources. In this section, we consider
the case with an internal validation subsample available (e.g., Chen et al. 2011, 2014)
and describe the inferential procedure by incorporating estimation of the misclassification
parameters. Thus, we write UZ(0;Y)) in Section 4.1.1 as Uf(0, ¢; Y)S) to emphasis that ¢
is unknown parameter in these estimation equations. We apply the two-stage estimation
procedure described in Section 3.2.2, ¢, is obtained by solving (3.7).

 Next, solve (4.1) for 6 with ¢ replaced by ggv using the block relaxation algorithm. Let
0, denote the resulting estimator for 6. Analogous to the estimator described in Section
4.1.1, the estimator 6, is consistent and possesses the oracle property, shown as follows.

Theorem 4.3 Assume Conditions (C.1)-(C.6) in Appendiz C.1 hold and that p, ap-
proaches a positive constant as n — oo. If a, and b, tend to 0 as n — oo, then, there
exists a solution of (4.1) combined with (3.7), 0, such that

16, — 6]| = op(% ta,).

The proof of the theorem is outlined in Appendix C.5. This theorem shows that, similarly
to 60, the convergence rate of 0, depends on the tuning parameter A, as well as the choice
of a penalty function. Taking a small tuning parameter to ensure a,, = O( —) can yield a

\/n—consistent estimator of 6.
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Let Ug,1(0,0; YY), Ugs1(0, ¢; YY) and U 1(0, ¢;Y)) denote the first dy,, the first dyg
and the first dy, components of Uf, (6, ¢;Y)S), Us,. (0, ¢; Y,S) and U, (6, ¢; Y)S), respectively.
Let Ug,1i(0, 9;:Yy), Ugsn(0, ;YY) and Ug, 11(0, ¢;Yy) denote the last da,, the last dag
and the first dy, components of Uf, (6, ¢;Y)S), Us,. (0, ¢; Y,S) and U, (6, ¢; Y)S), respectively.
Write U§,1(8>¢§ Yy) = {U,:;I(Q,qb; Yi9), Uls,g,l(‘ga ¢ Yy), {/;3,1(9: QS;}A/kC)}T and UIS,AH(Q»?b?YkC) ~
{Ug;’H(G, ¢; Yy, U;L,Il(a ¢; Yy), U§§,1(97 ;YY) )T Let 0, = (911;,1’ 95,11)T7 where 0,1 = (5‘5,17 5J,Ia
Yor, )T and fp1r = (&7 11, AZ,H, 4.11)T which correspond to the subvectors of 619 and 6y, re-
spectively.

Theorem 4.4 Assume Conditions (C.1)-(C.6) in Appendiz C.1 hold and that p, ap-
proaches a positive constant as n — oo, if

lim inf lim inf v/np),_(6) = oo, (4.7)
—0+ "

n—o0 0

then with the probability tending to one, the following results hold:

(a) év,II =0;
(b) asn — oo,
d

Vn (év,l — 61p — L'uo (6o, Cbo)_lge) — N (0, Ty (6o, ¢o) ™ Suw (610, do)Tue (Bo, ¢0) ~'7)

oUE ;(019,00;Y:¢ *C c *C c
where Tus (0, 60) = B { G020 k53 S0 (6ho, 60) = E{ULS (0, 603 YU (Bro, 60: Y1)}

and
Ui (010, 003 Yy) = Uy 1(010, do; Yy)—

(3 a0 us¥)/00) % {2360 x 0516006} x (st

The proof of Theorem 4.4 is outlined in Appendix C.6. Theorem 4.4(a) shows that
the oracle property is retained for év, just like that of 0. established in Theorem 4.2(a).
Theorem 4.4(b) establishes that the estimator HAM has the asymptotic normal distribution,
similar to that of the estimator éc,l reported in Theorem 4.2(a). However, the asymptotic
covariance of 6,1 differs from that of f,; the inclusion of the second term in U 15010, Po; Yy7)
reflects the variability induced from estimation of ¢.
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4.2 Regularized Likelihood Method

4.2.1 Inference Method with Known Misclassification Probabil-
ities
We now consider an alternative method to estimate the parameter using the observed like-

lihood function. Here we assume that the parameters for the misclassification probabilities
are known and develop an estimation method for #. An estimator, say 6, of # can be

obtained by maximizing the penalized log-likelihood ) €2(0;Y;) — npa, (6), where p,,, (0)
k=1

is a penalized function with a tuning parameter \,. For k = 1,...,n, the log-likelihood for
the observed data contributed from subject k is

00, YY) = Yiloguy + (1 = Yy)log(1 — pg), (4.8)

where 1 is determined by (3.9) in combination with (3.1) and (3.4).

Under regularity conditions, g can be equivalently obtained by solving

n (UR(0: YY) =), (@)

Uz (0:Y7) — . (8) | =0. (4.9)
k=1 \U3,(0;Y;") —p\ (7)

where Uj, (6; Y1) = 06;(0;Y,7) /0, Uy, (0; Y1) = 06(0; Y1) /0B, Ugi(0;Yy) = 06:(6;Yy) /0.

Let UR(0;Yyr) = {UL(0; YY), Usi (0; Y), Ugi (6; Vi) }T. Let Ul?a,l(e; Yy, UIS,B,I(Q; Yy') and
Uy, 1(0;Yy") denote the first di,, the first dis and the first dy, components of Uy, (6;Yy),
U, (0;Yy) and Ug.(0;Yy), respectively. Write Ugy(0;Y)") = {Ug1(0;Yy), U1 (0; YY),
U,:;I(H;Y,c*)}T. Let 0 = (éIT,HAITI)T where 0; = (&IT, AIT,’yIT)T and Oy = (O:zITI,BITI,:yITI)T corre-
sponding to the subvectors of 0;g and 6y, respectively. Adapting the proofs of Fan and Li
(2001), We establish the following asympotitic results.

Theorem 4.5 If the Conditions (C.1)-(C.5) in Appendiz C.1 hold, and a,, and by, tend to
0 as n — oo, then, there exists a solution to (4.9), 0, such that

10— b0l = 0, (7= + ).

Theorem 4.5 suggests that the estimator 0 has similarity to f. in that choosing a small
tuning parameter to ensure a,, = O(\/iﬁ) can make 6 be a y/n—consistent estimator of 6.
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Theorem 4.6 Under Conditions (C.1)-(C.6) in Appendiz C.1, if

lim inf lim inf v/np),_(6) = oo,
—0t "

n—o00 0

then with the probability tending to one, the following results hold:

(a) éH = 0,

(b) asn — oo,
Vit (= 0 = Tybgs) = N (0,T3230GNT)

where ¥ = —E{OUZ(b10; Y)7)/007} and T'yo = =X — %y,

Theorem 4.6 shows that like for the estimating equation method described in Section
4.1.1, the oracle property is retained by the likelihood based method. Although both
éc,I and él have asymptotic normal distributions after certain transformations, shown in
Theorems 4.2(b) and 4.6(b), their asymptotic covariance matrices are different, suggesting
that they differ in efficiency, which is confirmed from the simulation studies in Section 4.3.

4.2.2 Inference Method with Unknown Misclassification Proba-
bilities
In this subsection we extend the development in Section 4.2.1 to accommodating settings

where misclassification probabilities are unknown. We consider the same setting as Section
4.1.2 where a random internal validation subsample is available.

The inference about 7, defined in Section 4.1.2, can be carried out based on the likeli-
hood function for the observed data, given by (3.12). Correspondingly, the log-likelihood
function with penalty terms is

£50n) = | 32 Yilog(u) + (1= Vi) log(1 = ux) + Yiclog { (awa (¥ } + (1 - Yi) log {ano(¥7)}]
Sp=1

+{ ZY log(u) + (1= Vi) loa(1 — 1)} — 7, (0), (4.10)
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The log-likelihood score equation for @ can be derived using (4.10),

STug) =D Ui + > Ust(n Yy) =0, (4.11)
k=1

0=1 =0
where v p
— Uk Lok
{25225} %)
Uik 1) pi(1 = pi) I\ 007
and

s = (i (),

Then estimation of the parameter n can be carried out by a two-stage procedure. At
the first stage, we employ (3.7) to obtain the estimate of ¢ using the validation subsample.
At the second stage, estimation of @ is carried out by solving

> U () — np), (0) =0 (4.12)
k=1

for 6, where UZ"(n) is defined in (4.11), with ¢ replaced by the estimate for ¢ obtained
from the first stage. Let 0,, denote the resultant estimator of . Asymptotic properties of
0,, can be established following the same arguments as for Theorems 4.3 and 4.4 but with
different technical details.

Theorem 4.7 Assume Conditions (C.1)-(C.5) in Appendiz C.1 hold and that p, ap-
proaches a positive constant as n — oo. If a, and b, tends to 0 as n — oo, then, there
exists a solution to (4.12), 0,,, such that

160 — 60|l = O +%)

( 1
p \/ﬁ
To show the oracle property of éw, let U,S;”I(Q,gb) denote the first d;, components

of Ug®(n), let Ugs (0, ¢) denote the components from (do + 1) to (do + dig) of Ug¥(n),
and let UgY1(0, ¢) denote the components from (dg + 1) to (ds + di,) of Ug®(n). Write

Ug,?i(ev ib) = {UISZTI(Qv (b): Ul?;:rl(ea ¢)>Ug§}(6>¢)}T Let évo = (@IoI?évoII)T? where évO,I =
(075071, Blo,p %O,I, )T and O,o11 = (dlo’ﬂ, 550’11, ﬁo’H)T which correspond to the subvectors of

O19 and 6Oy, respectively.
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Theorem 4.8 Assume Conditions (C.1)-(C.6) in Appendiz C.1 hold and that p, ap-
proaches a positive constant as n — oo, if

lim inf lim inf \/np), () = oo,

n—oo =0+

then with the probability tending to one, the following results hold:

(a) évo,H = Oa

(b) as n — oo,
Vn (évo,l — b1 — I'gor (010, 9250)_199) 4N (0, Tyor (610, do) ™ Suer (A10, ¢o) Cuev (A10, d0) ') -

oUY; (010,96 *OU *0V
where D'yov (6o, o) = E {%} — X, Byer(bho, ¢o) = E{ULT (610, Do) Up T (bhos o) },

and

W} y E{(%kSk(%)

5 B xS}

U3 (610, 60) = UL (610, o) — E{

4.3 Numerical Studies

In this section, we design different simulations to evaluate the performance of the proposed
methods, in addition to assessing the impact of various degrees of response misclassification
on parameter estimation. We consider settings with p + 1 = ¢, denoted as p, for ease of
exposition. The sample size is set as n = 1000. Five hundred simulations are run for each
setting.

For k = 1,...,n, we simulate xy, z; and Y} using the same design as those in Section
3.4.1, but set p, to be 5 or 10. When p, = 5, we consider the same values of o and [ as
those in Section 3.4.1; when p, = 10, we take « = (0,1,0,0.5,0,—0.5,0,0.5,0,0.5)T and
B =(0.5,-0.5,0,0.5,0,0,—0.5,0,0.5,0)7. The surrogate responses Y;* are generated from
model (3.4) with L, set to be constant 1. We set 791 = 719 = 2.5%, 5.0%, or 10.0% to fea-
ture increasing misclassification rates. We estimate the model parameters «, § and ~ using
six methods. The two naive methods (called “Naive 17 and “Naive 2”) discard the differ-
ence between the Y,* and the Y} and fit data with model (3.1) using the block relaxation
algorithm. Naive 1 employs (4.1) by replacing U5, (0; Yy') with Uy, (6;Yy') for j = 1,2, 3 and
Naive 2 implements (3.3) with the Y} replaced by Y;*. To correct for the misclassification
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effects, we conduct the two regularized estimation equation methods described in Sections
4.1.1 and 4.1.2 (respectively called Methods 1 and 2) and the regularized likelihood meth-
ods described in Sections 4.2.1 and 4.2.2 (respectively called Methods 3 and 4). For the
methods in Sections 4.1.2 and 4.2.2, we take the internal validation sample to include 30%
or 60% randomly selected subjects from the initial sample. Finally, we use the simulated
true values of Yy, z; and z; to fit model (3.1), and we call this the “Reference” method.

4.3.1 Simulation Results

Table 4.1 presents the results obtained from Naive 1 and Methods 1-4 for the settings with
p: = 5 (case 1) and p, = 10 (case 2), where we report the differences for the specificity
and sensitivity obtained from each of Naive 1 and Methods 1-4 minus those obtained from
the reference method for the row and column parameters. The specificity is defined as the
average of those proportions of zero coefficients that are correctly estimated to be zeros
in those 500 simulations; the sensitivity is the average of those proportion of non-zero
coefficients that are estimated to be non-zeros in those 500 simulations. It is interesting
that Naive method 1 works reasonably well and produces comparable results to those
obtained from Methods 1-4, suggesting that misclassification effects do not seem profound
in shrinking unimportant coefficients or retaining parameters. All the methods yield fairly
close values for the specificity and almost identical values for the sensitivity. As the degree
of misclassification increases, the performance of all the methods tends to deteriorate.
Method 3 seems to slightly outperform Method 1, and Method 4 tends to perform better
than Method 1.

Furthermore, we report the simulation results for the estimators obtained from the
two naive methods and Methods 1-4 in the terms of the finite sample biases in percent
(bias%), empirical standard errors (ESE), model-based asymptotic standard errors (ASE),
and coverage rates in percent (CR%) for 95% confidence intervals. The results for p, =5
are displayed in Tables 4.2-4.4, and the results for p, = 10 are displayed in Tables 4.5-4.7.

Regarding estimation of the row coefficients «, all the methods yield similar results,
regardless of the degrees of the misclassification or the size of internal validation data.
However, for the column parameter § and the vector-covariate parameter v, these methods
perform differently. When misclassification is minor, the two naive methods do not seem to
produce noticeably biased results. However, as the degree of misclassification increases, the
two naive methods yield considerable biases. Methods 1-4 all improve the results obtained
from the two naive methods. Method 3 tends to be more efficient than Method 1, and
Method 4 is more efficient than Method 2, which agrees with the expectation because
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Methods 3 and 4 are likelihood-based. Unsurprisingly, the performance of Methods 1-4
would deteriorate as misclassification becomes more substantial. Furthermore, we observe
that Methods 1-4 perform better for p, = 5 than for p, = 10.

In summary, although response misclassification may not show serious effects on vari-
able selection in our simulation studies, estimation results can be seriously biased if re-
sponse misclassification is ignored in inferential procedures. The proposed methods sig-
nificantly improve the performance of the naive methods and effectively account for the
effects of response misclassification.

4.3.2 Analysis of the Breast Cancer Wisconsin Prognostic Data

We apply the proposed methods, in contrast to the naive approach, to analyze the breast
cancer Wisconsin imaging data which we introduced in Chapter 3.

Tables 4.8 and 4.9 report the estimation results for the breast cancer Wisconsin prog-
nostic data by fitting model (3.1) using the two naive methods as well as Methods 1 and 3.
While there is no obvious pattern between the point estimates for the two naive methods,
unsurprisingly, Naive method 1 yields smaller standard errors than Naive method 2. Ra-
dius, Perimeter, Concavity and Fractal Dimension are all found to be significant by Naive
method 1 but not by Naive method 2. The two methods with misclassification effects ac-
counted for yield very close point estimates, whereas the associated standard errors differ
noticeably. Method 3 seems to involve more variability and tends to be less stable than
Method 1. The evidence shown from Method 3 may vary with different degrees of misclas-
sification. But Method 1 reveals the same evidence of the significance or insignificance for
all the covariates, regardless of the misclassification rate.
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Table 4.1: The specificity and sensitivity for row and column effects

Parameters

Model

Specif.  Sensit. Specif.  Sensit.

Specif.  Sensit.

Tol = Ti0 = 25% To1 = T10 = 5%

Tolr = T10 — 10%

Case 1: p, =5
Reference Method: « 0.785 1.000
Reference Method: 0.898 1.000
Naive Method -0.034  0.000 -0.077  0.000 -0.142  0.000
Method 1 -0.033  0.000 -0.070  0.000 -0.136  0.000
Method 2 with 60% internal validation -0.030  0.000 -0.069  0.000 -0.133  0.000
@ Method 2 with 30% internal validation -0.032  0.000 -0.070  0.000 -0.141  0.000
Method 3 -0.023  0.000 -0.038  0.000 -0.052  0.000
Method 4 with 60% internal validation -0.011 0.000 -0.019 0.000 -0.020  0.000
Method 4 with 30% internal validation -0.016  0.000 -0.025  0.000 -0.025  0.000
Naive Method 0.002 0.000 0.007 0.000 0.015  0.000
Method 1 -0.028  0.000 -0.071  0.000 -0.129  0.000
Method 2 with 60% internal validation -0.024  0.000 -0.073  0.000 -0.136  0.000
B Method 2 with 30% internal validation -0.026  0.000 -0.074  0.000 -0.132  0.000
Method 3 -0.025  0.000 -0.032  0.000 -0.047  0.000
Method 4 with 60% internal validation -0.006  0.000 -0.011 0.000 -0.009  0.000
Method 4 with 30% internal validation -0.018  0.000 -0.019  0.000 -0.023  0.000
Case 2: p, =10
Reference Method: « 0.838 1.000
Reference Method: 3 0.913 1.000
Naive Method -0.021  0.000 -0.066  0.000 -0.151  0.000
Method 1 -0.018  0.000 -0.069  0.000 -0.152  0.000
Method 2 with 60% internal validation -0.018  0.000 -0.069  0.000 -0.152  0.000
o Method 2 with 30% internal validation -0.016  0.000 -0.068  0.000 -0.152  0.000
Method 3 -0.026  0.000 -0.070  0.000 -0.143  0.000
Method 4 with 60% internal validation -0.002  0.000 -0.014  0.000 -0.037  0.000
Method 4 with 30% internal validation -0.013  0.000 -0.046  0.000 -0.079  0.000
Naive Method 0.014  0.000 0.017 0.000 0.024  0.000
Method 1 -0.022  0.000 -0.052  0.000 -0.137  0.000
Method 2 with 60% internal validation -0.023  0.000 -0.053  0.000 -0.135  0.000
B Method 2 with 30% internal validation -0.024  0.000 -0.058 0.000 -0.135  0.000
Method 3 -0.020  0.000 -0.050  0.000 -0.126  0.000
Method 4 with 60% internal validation -0.006  0.000 -0.022 0.000 -0.036  0.000
Method 4 with 30% internal validation -0.014  0.000 -0.030  0.000 -0.079  0.000

The entries for the naive method 1 and Methods 1-4
method. Negative value means the method preforms worse result than reference model.

are the difference between those method
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Table 4.9: Sensitivity analyses of the breast cancer Wisconsin data

Method 1 Method 3
Parameter Est.  SE 95% CI Est.  SE 95% CI

Scenario (i): assuming 719 = 1%
Radius -4.534 0.351 (-5.222, -3.846) -4.555 5.008  (-14.370, 5.260)
Texture -0.049 0.032  (-0.112, 0.014) -0.052  0.320 (-0.680, 0.576)
Perimeter 3.714  0.327 (3.073, 4.354) 3.735 5237 (-6.529, 13.999)
Smoothness 0.266 0.143  (-0.015, 0.547) 0.266  0.253 (-0.229, 0.761)
Compactness 0.000 0.000  (-0.000, 0.000) 0.000  0.000 (-0.000, 0.000)
Concavity -0.312  0.149 (-0.603, -0.021) -0.312  0.363 (-1.024, 0.400)
Concave Points 0.000 0.000  (-0.000, 0.000) 0.000  0.000 (-0.000, 0.000)
Symmetry 0.000 0.000  (-0.000, 0.000) 0.000 0.000 (-0.000, 0.000)
Fractal Dimension -0.340 0.124 (-0.583, -0.096) -0.341 0.410 (-1.146, 0.463)
Mean 3.518 1.006 (1.546, 5.489) 3.503 3.928  (-4.196, 11.202)
SE 0.317 0.302 (-0.276, 0.910) 0.317  0.563 (-0.785, 1.420)
Worst -0.828 0.421 (-1.653, -0.002) -0.825  1.247 (-3.269, 1.619)
Tumor Size 0.272  0.167  (-0.054, 0.599) 0.274 0.170 (-0.059, 0.608)
Intercept -1.344 0.196 (-1.729, -0.959) -1.345 0.202 (-1.740, -0.950)

Scenario (2): assuming 719 = 3%
Radius -4.499 0.366 (-5.218, -3.781) -4.566 0.578  (-5.699, -3.432)
Texture -0.050 0.033  (-0.116, 0.015) -0.056  0.376 (-0.794, 0.681)
Perimeter 3.677 0.343  (3.004, 4.350) 3.745  0.551 (2.665, 4.824)
Smoothness 0.262 0.142  (-0.016, 0.540) 0.264 0.163 (-0.055, 0.584)
Compactness 0.000 0.000  (-0.000, 0.000) 0.000  0.000 (-0.000, 0.000)
Concavity -0.307 0.147 (-0.596, -0.019) -0.308 0.193 (-0.686, 0.070)
Concave Points 0.000 0.000  (-0.000, 0.000) 0.000  0.000 (-0.000, 0.000)
Symmetry 0.000 0.000 (-0.000, 0.000) 0.000  0.000 (-0.000, 0.000)
Fractal Dimension -0.336 0.122 (-0.576, -0.096) -0.342  0.124 (-0.585, 0.099)
Mean 3.595  1.021 (1.594, 5.597) 3.540 1.275 (1.040, 6.039)
SE 0.324 0.308 (-0.280, 0.929) 0.324 0.351 (-0.363, 1.011)
Worst -0.847 0.428 (-1.686, -0.008) -0.835 0.467 (-1.751, 0.081)
Tumor Size 0.276 0.169  (-0.056, 0.608) 0.283 0.176 (-0.062, 0.627)
Intercept -1.317 0.198 (-1.706, -0.929) -1.318 0.201  (-1.712, -0.925)

Scenario (iii): assuming 719 = 5%
Radius -4.464 0.366 (-5.183, -3.746) -4.531 0.334  (-5.187, -3.876)
Texture -0.052 0.033 (-0.118, 0.013) -0.053 0.141 (-0.330, 0.225)
Perimeter 3.640 0.343  (2.968, 4.313) 3.707  0.303 (3.113, 4.301)
Smoothness 0.258 0.142  (-0.020, 0.535) 0.262  0.027 (0.210, 0.314)
Compactness 0.000 0.000  (-0.000, 0.000) 0.000  0.000 (-0.000, 0.000)
Concavity -0.302 0.147 (-0.591, -0.014) -0.303 0.037  (-0.376, -0.230)
Concave Points 0.000 0.000  (-0.000, 0.000) 0.000  0.000 (-0.000, 0.000)
Symmetry 0.000 0.000 (-0.000,0.000)  0.000 0.000  (-0.000, 0.000)
Fractal Dimension -0.332 0.122 (-0.572, -0.092) -0.339  0.015  (-0.369, -0.309)
Mean 3.677  1.021 (1.676, 5.679) 3.609 1.626 (0.422, 6.797)
SE 0.332 0.308 (-0.273, 0.937) 0.326  0.123 (0.085, 0.567)
Worst -0.867 0.428 (-1.706, -0.028) -0.850 0.218  (-1.277, -0.422)
Tumor Size 0.280 0.169 (-0.052, 0.612) 0.291 0.031 (0.230, 0.351)
Intercept 1280 0.198 (-1.678,-0.901)  -1.289 0.040  (-1.368, -1.210)

Entries of 95% CI with the form 0.000 are positive and very close to zero; entries with
the from -0.000 are negative and very close to zero.
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Chapter 5

Bayesian Analysis for Matrix-Variate
Logistic Regression with/without
Response Misclassification

In this chapter, we propose a Bayesian inference procedure to the matrix-variate logis-
tic regression using horseshoe prior under matrix-variate logistic regression with the help
of augmented data from Pdlya-Gamma distribution. Meanwhile, we develop a Bayesian
estimation procedure with missclassification on response. The remainder is organized as
follows. In Section 5.1, we introduce the model setup related to model (2.1). In Section
5.2, we propose the Bayesian inference method for the error-free context. In Section 5.3, we
develop the Bayesian estimation procedure with missclassification on response. In Section
5.4, we conduct simulation studies to assess the performance of the methods developed
in Sections 5.2 and 5.3, as well as to demonstrate the biased effects of ignoring response
missclassification. We also present an application to a LSVT data set in Section 5.5.

5.1 Matrix-variate Logistic Regression Model

For subject k with k& = 1,...,n, Y} is defined in the same way as in Section 2.1.1. Write
Y = (Y1,...,Y,)T. Let @, = [z445]pxq be the associated p x g covariate matrix where xy;; is
the observation at row ¢ and column j for subject k.

Employing an assumed rank-R parafac decomposition (Guhaniyogi et al. 2017) to B in
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model (2.1) gives
R

B=3 aopm), (5.1)

r=1

where o denotes the outer product, o™ is a p x 1 row parameter vector, ) is a ¢ x 1
column parameter vector, and R is the positive integer so that B cannot be written as a
sum of less than R outer products (Zhou et al. 2013).

With (5.1), model (2.1) becomes

R
logit P(Yy = 1|zg) = <xk, Za(’”) o B(r)> : (5.2)
r=1

When a rank-1 (i.e., R = 1) parafac decomposition is applied to B, model (5.2) reduces
to the matrix-variate logistic regression model (2.2) with v = 0, the model considered by
Hung and Wang (2013).

Finally, we comment that in model (5.2), the coefficients ") and 3(") are not identifiable
for r = 1,..., R. For instance, respectively scaling o and ") by any nonzero constant
¢ and its reciprocal 1/c makes (5.2) hold. However, if our interest focuses on B itself,
nonidentifiability of the coefficients o™ and 5 does not pose a concern, especially in the
context of Bayesian analysis, as discussed by Guhaniyogi et al. (2017).

5.2 Bayesian Inference Procedure

We are interested in inference about 5B in model (2.1) via the formulation model (5.2)
through a Bayesian approach. We denote the conditional probability density function
(p.d.f.) of the response variable Y3, given 4, as py; e, (Yk, Tk B,7) or py, for simplicity, i.e.,

_exp(< oy, B >)
Pr=17 exp(< zy, B >)’ (5:3)

In this subsection, we describe a Bayesian approach based on a family of Pélya-Gamma
distributions (Polson et al. 2013), where the Gibbs sampler procedure is used, together with
the specification of the prior distribution for parameters o™ and S in model (5.2) for
r=1,.., R.

Let (o) and 7(8) denote the prior densities for () and 3", respectively, and write
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the posterior densities of o™ and 5", given the observed data {Y, 2}, as (" |Y, z; 87, B_,)
and w(BM|Y, ;" B_,), respectively, where B_, = {B' : 1 #r} forr =1, ..., R.

With the prior densities for o(”), 30 and model (2.1) together with (5.1), the posterior
density for B, given the data, is possible to construct, at least in principle. However,
the actual calculation of the posterior density is not trivial due to the lack of its closed
form; even with the application of approximations, such as the Markov chain Monte Carlo
(MCMC) method, this can be computationally difficult. To get around these issues, Polson
et al. (2013) developed a data augmentation algorithm for logistic regression which is simple
and fast to implement. The idea is to introduce an independent random variable, say W,
as an intermediate tool to form a Pdlya-Gamma distribution, then the posterior densities
of o and 3, given the data and W, have a normal distribution which is easy to handle.

5.2.1 Pdéblya-Gamma Distribution with Logistic Regression

Here we describe the connection between the Pélya-Gamma distribution and the logistic
regression model. A random variable U follows a Pdlya-Gamma distribution, PG(1,¢) for
¢ > 0, if it has the density function

Flule) = cosh (5 ) exp (5ol

where g(u) is given by

e R (2k +1) (2k +1)°
o) = S O e { P ),

with I(g ) (u) defined as 1 for 0 < u < oo and 0 otherwise (Biane et al. 2001).

Next, we make a connection of the Pélya-Gamma Distribution with model (5.2) via
(2.1) and (5.1). Let Wy, ...,W,, be independent of each other and of the Y}, each having a
Pélya-Gamma distribution with W, ~ PG(1, ¢) where ¢, = | < xy, B > | with covariates
x, fixed. Then the joint probability density function for W = (Wy,..W,,)7, f(w|B), indexed

by B, is given by [[,_, f(wk|c).

Using the intermediate variables Wy, we augment the observed data {Y, 2} with W and
construct the augmented posterior densities for the parameters by combining model (5.2)
with the priors of o™ and B(") which are straightforward to analyze (Tanner and Wong
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1987). For example, given the covariates, the posterior density for a( is determined by

(@Y, z; 87, B_,) :/ (@, w|Y, z; 87, B, )duw,

+
where

{IT, P0G = 5B} f(wlB)r(a®)| B, 5)
(V7))

(o™, w|Y,z; 37 B_,) (5.4)

with ¢({Y, z}) being the normalizing constant.

In the appendix, we show that the augmented posterior distribution for the coefficients
for o) is

(@Y, @, w; B0, B.,) o { T[] P(YVe = sl B)}f (w]B)r (2|89, B-,),  (5.5)
k=1

which is a multivariate normal distribution if the prior distribution for o is speci-
fied as a normal distribution (Choi and Hobert 2013), let m,(w) and >,(w) denote
the mean and covariance matrix of the posterior normal distribution of a”). Thus, the
Bayesian inference can proceed with sampling from f(w|B), 7(a™|Y,z,w; 5", B_,) and
m(BM|Y, 2, w; o), B_,) iteratively.

5.2.2 Prior Specification

Guhaniyogi et al. (2017) discussed an adequate global-local shrinkage prior distribution for
a and B, which typically suits high dimensional linear regression models. However,
under the logistic regression, the horseshoe shrinkage prior performs better, suggested by
Wei and Ghosal (2020). Thus, in our framework, we employ the horseshoe shrinkage priors
for (™ and ) marginally to deal with the sparsity problem.

Assuming that the az(»T) and 53(.7") are conditionally independent, for r = 1,.... R, i =
1,....,p,7=1,...,q,and | = 1, ..., p,, we specify the priors as:
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B g @)~ N0, X5 0);

) ~ CT(0,1); ] (5.6)
5;@) ~ C7(0,1);

m(a) ~ C7(0,1);

where C7(0,1) is the half-Cauchy distribution, and hyperparameter a > 0 controls the
global shrinkage.

5.2.3 Computation of Posterior

The details of the posterior distribution of each parameter are included in Appendix D.
Here we describe estimation procedures using the MCMC algorithm with Gibbs sampling,
which consist of three blocks. At iteration (¢ 4 1):

Block 1. Sample the hyperparameters A,, Ag, A, and a using slice sampling based on

the algorithm from of Polson et al. (2014). Here we provide the steps for obtaining
A\ (/\(t+1) /\(t+1)) ® .

atn = Am e A given a fixed rank 7 and A (,:

Step 1:  sample “a§*>|¢agf'> uniformly from interval <0, W), where @/}agr) — ﬁ;

NG

(?“)7(15))

Step 2:  sample (¢agr)|ua£r>, o, from the exponential density Exp(ﬁ), truncated

17ua(7‘)
to have a zero probability outside the interval (O i ),

T
Step 3:  transform back to )\(t(t)l) using P o ; )\(Btﬂ) and )\E,Hl) are generated using the
same process as )\gfl).

Block 2. Generate the random variables W7, ..., W,, independently using
Wk ~ P G(l, Ck)

and write the sampled value as w® = (wg), o wg)).
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Block 3. Given BY) sample the coefficients o™ and B(") by three steps:

—T)

Step 1:  sample oV from N {m o (w®), Z 0 (w®)}, where

M) (w(t)) = Y (w(t))x(t)T>y(w(t))a

1
Ea(r)(w(t)) { ﬁ(r-I;Q< ) (B()r) +E(t+1) } )

50 = (@B, 2, OO,y = (g1, )T, y(w®) = y— 11, — w0 (W),
o (W) = {(< 21, B >l (< 2,89 )P} 1, is an n x 1 unit
Vectror, Q(w®) = diag(w®) and ¥ t:r)l = dzag{( t“ Jqt+1))2}

Step 2:  sample BTV from Ny {mgw (w"), Lg0) (w ())}, where

Mo (W) = Bgon (W) "y (w®),

-1
t+1), t+1 t+1),—1
Em(’w(t)):{xi(r)) O(w <t>)x((r>>+z<ﬁm) } ’

35(()?:)1) _ (x‘{a(r),(t—i-l)’ ---7351104( )(t—i—l))T and Zﬁt(fl _ dzag{( (t+1 t+1))2};

The MCMC samples are generated by repeating the three blocks many times after
discarding the early generated samples for a certain burn-in period.

5.3 Bayesian Estimation Procedure with Missclassifi-
cation on Response

In applications, the true response Y for £ = 1, ..., n may be subject to misclassification, and
a surrogate response, Y,", is observed. Let Oy be an indicator variable for the kth subject
such that O, = 1 if Y;f = Y, and O = 0 otherwise. We denote Y* = (Y}*,...,Y,")T and
O = (0O1,...,0)7. Let p = P(Of = 1Yy = yx) be the probability of observing Y}, correctly,
which is assumed to known for now. The variables Oy, Y,", and the true response, Y}, are
connected via

Yi= O x Y + (1= 0g) x (1= Y7). (5.7)
The conditional distribution of Oy is given by

*

1 .
P(Ox =1|B,Y p) = op X Pt X (1 — )t (5.8)
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where Cp = p x pi* x (1 — p)™ + (1= p) x pp % x (1 — p)¥¥ is the normalization
constant. Then Oy can be sampled based on a binomial distribution with the probability
(5.8).

To carry out inference about B using the surrogate measurements Y,*, we modify the
procedure in Section 5.2.3, by bridging Y,* and Y. To be specific, this posterior density,
denoted P(B|p, Y*, O), can be derived from (2.1), (5.7) and the Bayesian hierarchical model
of Rekaya et al. (2001):

P(B|p, Y*, O) - HT(B) % le(ﬁlfOk)Y§+Ok(1*Yk*) « (1 _pk)17(17(%)Yk"fO/g(lfY]:)7 (59)
k=1

where py, is given by (5.3), TL.(B) = [T {1, (o] ) HI I =, 7-(5})} denotes the product
of the prior distributions for the o™ and 5", and 7 represents the set of hyper-parameters
that are suppressed in the notation 7-(af) and 7, (35).

Then we modify the algorithm described in Section 5.2.3 by replacing its Block 2 with:

Block 2*. Given BY | z;, Y;* and p,
Step 1: generate the random variables W7, ..., W,, independently using
Wk ~ PG(l, Ck)

and let w = (wy, ..., w,) denote the sampled values.

Step 2: generate Oy from the Bernoulli distribution with the probability (5.8), and then
recover Yy based on (5.7). Let Y)® denote the resulting value which is used for
the implementation of Block 3 in Section 5.2.3, where Y}, is replaced by Y,°.

5.4 Simulation Studies

In this subsection, various simulations are designed to evaluate the performance of the
proposed methods, together with the impacts of different degrees of misclassification on
parameter estimation. We consider settings with p = ¢, and denote this to be p, for ease
of exposition. We consider the case with the sample size n = 1000 or n = 2000. Matrix-
variate data, xy, from the matrix-normal distribution M N(0, I,,,, I,,), for k = 1,...,n,
where p, is taken as 5 or 20.
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Figure 5.1: Designed B with p, = 5 (left) and 10 (right). The vertical bar labeled with
Beta represents the corresponding values of different color in the figure.

For the parameter B, we design it as a rank-1 or rank-2 matrix. In details, let B, ;
denote the 7th row and the jth column element of B. For p, = 5 cases, we set B to be
a rank-2 matrix-variate where By, Ba 4, B33, Bsa, Baa to be 1 and other entries of B to
be 0; for p, = 20 cases, we consider two different ranks: (1) for the case with a rank-1
matrix-variate, we set Bs s, B3 3, Big16 to be 1, Bs 16, Bis5 to be -1, and other entries of B
to be 0; (2) for the case with a rank-2 matrix-variate, we set Bs 5, B1o,10, B33, Bis 16 to be 1,
Bs.16, Bis5 to be -1, and the rest entries of B to be 0. Figure 5.1 displays the designed B of
the cases with p, = 5 and 10, where blue and red squares show negative and positive values
in the range [—1, 1], respectively. For k = 1,...,n, the binary response Y} is independently
generated from the Bernoulli distribution with the probability (5.3).

We evaluate the accuracy of the estimates in the terms of the Lo-error:

p q
IB—Bl=,|> > (Biy—Biy)?

i=1 j=1

where B represents the estimated posterior mean of B. We also monitor the coverage of
95% and 90% credible intervals. We compare the variable selection performance using the
average proportion of including zero effects (FP) and the average proportion of excluding
non-zero effects (FN), where the covariate is excluded if zero is covered by its 95% credible
interval.
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5.4.1 Simulation Studies without Misclassification

In this subsection, we evaluate the performance of the procedure proposed in Section 5.2.3
where the precisely measured outcome Y} is available, and call this method as “Method
17. In the implementation of Method 1, when fitting the data, the rank of B is set as
that for generating the data. We apply the LASSO method as a reference method and
call it “LASSO”. After the burn-in period consisting of 1,000 Markov chain Monte Carlo
(MCMC) iterations, we generate 5,000 posterior samples and save the samples of model
parameters at every 5 iterations to reduce autocorrelation between the samples. Table 1
records the results for the cases with p, = 5. Method 1 outperforms the LASSO method.

To also investigate the effect of a potentially misspecified rank, when fitting the simu-
lated data with the case p, = 20, we consider two methods by setting the rank of B to be 1
or 2, and call the resulting method “True Rp-Fit Rr”, where Rr represents the true rank
of coefficients of B, and Ry represents the user specified rank when fitting the data. The
results are presented in Tables 3-4, showing that Method 1 provides better performance
than the LASSO method in both correctly specified or misspecified rank situations. Com-
paring Tables 3 and 4, as we expected, True 1-Fit 1 and True 2-Fit 2 yield better results
than those obtained in the presence of rank misspecification. With rank misspecification
involved, True 1-Fit 2 outperforms True 2-Fit 1, suggesting that engaging a lower rank to
estimate a higher rank of B has worse performance than the opposite way.

To reduce the risk of rank misspecification, we recommend to use the LASSO method
as a start to first decide a suitable rank of the matrix-variate and then apply our proposed
methods. A.1 and A.2 in Figures 5.2-5.6 give the estimated posterior means of model
parameters using Method 1 and the LASSO, showing the same patterns as we observed
from Tables 5.1-5.3.

5.4.2 Simulation Studies with Misclassification

In this subsection, we evaluate the performance of the procedure proposed in Section 5.3
where only the surrogate response, Y), of Y} is available, and we call this “Method 27.
We consider three misclassification situations with p = 0.95, 0.90 or 0.85, to reflect an
increasing degree of misclassification in Y, where p is defined in Section 5.3. We are
interested in not only the misclassification effects, but also the effects of potential rank
misspecification. Thus, when fitting the simulated data with the case p, = 20, we consider
“True Rp-Fit Rp”, where Ry = 1,2 and Rp = 1,2 as well. The LASSO method is also
applied as a reference method.
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The simulation results for the case p, = 5 with different p are summarized in Table 5.2.
For comparison, we also present in this table the results obtained from naively applying the
LASSO method and Method 1 by ignoring the response misclassification, denoted “LASSO-
naive” and “Method-1-naive”, respectively. We observe that the two naive methods provide
biased results, and the LASSO-naive method performs worse than Method-1-naive does.
Method 2 yields reasonable results. Tables 3-4 report the simulation results for the case
with p, = 20, showing similar patterns observed for the case with p, = 5. For the influence
of rank misspecification of B, we find that Method 2 shows similar patterns as observed
in Section 5.4.1. Misclassification effects do not seem dramatic in shrinking unimportant
coefficients or retaining parameters.

In Figures 5.2-5.6, we report the estimated posterior means of B using the LASSO-
naive, Method-1-naive, and Method 2 with different values for p. These figures show
similar results to those of Tables 5.2-5.4. Figures 2-4 are obtained B with the correctly
specified rank of B, and they show that Method 2 (in Column 3) provides the most precise
B under different p settings (in Rows B-D). Two naive methods (in Columns 1-2) display
biased estimates with lighter red or blue squares. All the methods correctly select the
non-zero B;; when the rank of B is correctly specified. Figures 5.5-5.6 summarize the
results when the rank of B is misspecified for p, = 20. Method 2 still provides the less
biased B compared to the two naive methods. Especially, in Figure 5.6, although Method
2 cannot find Bjg 10 like the LASSO-naive method, it provides the most precise estimates
of the selected B, ;. That is the reason we suggest using the LASSO method to investigate
the rank of B first when B has a large dimension.

5.5 Data Analysis of LSVT Data

In this subsection, we apply the proposed method, in contrast to the LASSO approach, to
analyze a subset of the Lee Silverman voice treatment (LSVT) Companion data, available
at the UCI Machine Learning Repository website: https://archive.ics.uci.edu/ml/
datasets/LSVT+Voice+Rehabilitation. The study investigates the potential of using
sustained vowel phonations for Parkinson’s diseased (PD) patients whose voice is classified
as “acceptable” or “unacceptable” during an in-person rehabilitation treatment. Each
subject is originally instructed to produce phonations categorized into one of the nine
combinations of pitch and amplitude, where the pitch is defined as “comfortable”, “high”
and “low”; and the amplitude is considered to be “acceptable”, “too loud”, or “too soft”.
The data set contains a total of 126 phonations for the 14 subjects, where each subject
contributes nine phonations. The details of the study can be found in Tsanas et al. (2013).
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The study processes the speech signals and extracts the features of 126 phonations into
two groups of features which are suitably displayed in matrix form. Specifically, in the
analysis of Tsanas et al. (2013), the first group of features is formed wavelet measures
where 17 wavelet coefficients are calculated for a 10 level wavelet decomposition of the
fundamental frequency time series (FO0), resulting in a vector-covariate with 170 attributes.
The second group of the features uses the dysphonia measures, jitter and shimmer, resulting
in three features quantifying F0O, the pitch deviations, and the amplitude deviations. Given
that 13 characteristics of the three features are calculated, Tsanas et al. (2013) created a
vector-covariate of 39 attributes for their analysis. However, such an approach of reporting
data obscures the inherent relations among the features and characteristics. It is more
reasonable to display the measurements in the first group as a matriz-variate with 10
levels and 17 features treated as rows and columns, respectively, and the measurements in
the second group as a matriz-variate with 13 characteristics and 3 features treated as rows
and columns, respectively.

A phonation is assessed by the LSVT clinicians to be acceptable (setting Y = 1) or
unacceptable (setting Y = 0), where the assessment largely depends on the experience of
a rater. Thus, there is a possibility that phonations may be misclassified due to no solid
criteria can be applied for the assessment. For k = 1,..,126, let Y,* denote the observed
value for the true binary variable for phonation k, with value 1 for being in the acceptable
group and 0 otherwise. The matrix-variate of phonation k, for the features in group 1,
denoted as x,(cl), is a 10 x 17 matrix with entry (4,7) representing the value of the jth
wavelet coefficient of the ith level, where ¢ = 1,...,10 and j = 1,..,17; for the features in
group 2, denoted as x,(f), is a 13 x 3 matrix with entry (7, j) representing the value of the
jth feature of the ith characteristic, where: = 1,...,13 and j = 1, .., 3. Correspondingly, we
let BM and B® denote the parameters for x,(:) and x,(f), respectively. Consistent with the
notation in Section 5.3, we let p denote the probability of assessing a phonation correctly.

While it is interesting to understand the possible impacts of misclassification on the
analysis, there is no information on the degree of misclassification in this data set. Con-
sequently, we conduct sensitivity analyses by specifying different magnitudes of misclassi-
fication probabilities. In particular, we take p = 0.95, 0.90, or 0.85 to feature increasing
degrees of misclassification.

Figure 5.7 shows the point estimators of B and B® using the LASSO method. Figures
5.8 and 5.9 show the lower and upper bounds of 95% Credible Interval (CI) and estimated
posterior means for BY and B® by applying Methods 1 and 2 described in Section 5.
For (M there is no significant ng) selected for all the proposed methods, but the LASSO

method selects two variables. For 2, Bé?l), Bfl), Bg, Bg)g, Bé?g, Bﬁ)ﬁ Bg?g are selected as
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significant parameters by Method 1. However, no characteristic of feature F0 is selected,
three characteristics of the pitch deviation and three more characteristics of the amplitude
deviation are selected in the model by the LASSO method. As the misclassification rate
increases, the magnitude of the posterior means of the model parameters increases, and
the 95% CIs become wider.
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Table 5.1: Model performance for p, = 5 without misclassifiction

Table 5.2: Model performance for p, = 5 with misclassifiction

Model LASSO Method 1
L, error 2.368(0.168) 0.361(0.078)
95% Coverage 93.6%
90% Coverage 88.6%
FP 0.476(0.065)  0.040(0.054)
FN 0(0) 0(0)

Numbers in (-) represents standard error.

p=0.95 p = 0.90 p =085
Model LASSO-naive Method-1-naive =~ Method 2 LASSO-naive Method-1-naive ~ Method 2 LASSO-naive Method-1-naive ~ Method 2
L, error 2.190(0.169)  0.585(0.099)  0.368(0.068)  2.109(0.209)  0.912(0.099)  0.543(0.137) 2.08 1.178(0.091)  0.679(0.195)
95% Coverage 25.4% 96.2% 0.4% 93.8% 0.0% 92.6%
90% Coverage 16.7% 92.3% 0.1% 87.9% 0.0% 87%

FP 0.423(0.175) 0.040(0.053)  0.027(0.042) 0.399(0.170) 0.044(0.058)  0.050(0.060) 0.375(0.164) 0.043(0.052)  0.052(0.057)

FN 0(0) 0(0)

0(0) 0(0) 0(0) 0(0)

0(0) 0(0)

0(0)

Numbers in (-) represents standard error.
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Table 5.3: Model performance for correctly specified rank when p, = 20

True 1-Fit 1 True 2-Fit 2
Without Misclassification
LASSO Method 1 Method 2 LASSO Method 1 Method 2
Lo error 2.332(1.022)  0.378(0.050) 2.630(0.999)  0.565(0.053)
95% Coverage 94.2 91.6
90% Coverage 89.2 86.0
FP 0.059(0.030)  0.011(0.009) 0.078(0.036)  0.017(0.009)
FN 0(0) 0(0) 0(0) 0(0)
With Misclassification
LASSO-naive Method-1-naive =~ Method 2 LASSO-naive Method-1-naive ~ Method 2

p=0.95
Lo error 2.238(0.732)  0.538(0.0668)  0.461(0.066)  2.502(0.679)  0.711(0.067)  0.732(0.099)
95% Coverage 6.3 92.9 6.6 83.5
90% Coverage 3.6 86.5 3.5 74.1
FP 0.050(0.029)  0.011(0.009)  0.012(0.009)  0.064(0.032)  0.016(0.009)  0.018(0.009)
FN 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

p=0.90
Lo error 2.169(0.520)  0.801(0.070)  0.565(0.100)  2.415(0.462)  0.999(0.070)  1.008(0.197)
95% Coverage 0 90 0 67.4
90% Coverage 0 83 0 56.5
FP 0.047(0.029) 0.012(0.100) 0.012(0.011) 0.057(0.030) 0.017(0.010) 0.020(0.011)
FN 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

p=0.85
Lo error 2.116(0.356)  1.034(0.066)  0.717(0.148)  2.353(0.304)  1.259(0.066)  1.858(0.790)
95% Coverage 0 87 0 41.3
90% Coverage 0 80.6 0 32
FP 0.043(0.028)  0.012(0.010)  0.015(0.012)  0.050(0.029)  0.017(0.010)  0.027(0.018)
FN 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Numbers in (-) represents standard error.
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Table 5.4: Model performance for mis-specified rank when p, = 20

True 1-Fit 2 True 2-Fit 1
Without Misclassification
LASSO Method 1 Method 2 LASSO Method 1 Method 2
Ly error 2.333(1.024)  0.497(0.068) 2.630(0.999)  1.101(0.023)
95% Coverage 87.2 24.2
90% Coverage 79 16
FP 0.060(0.031) 0.012(0.01) 0.078(0.036)  0.0125(0.010)
FN 0(0) 0(0) 0(0) 0(0)
With Misclassification
LASSO-naive Method-1-naive Method 2 LASSO Method-1-naive ~ Method 2

p=10.95
Ly error 2.238(0.732)  0.564(0.063)  0.666(0.106)  2.502(0.679)  1.222(0.0395)  1.118(0.030)
95% Coverage 19.2 70.8 0 43.1
90% Coverage 11.9 58.8 0 34.1
FP 0.050(0.029) 0.013(0.010)  0.0146(0.012) 0.064(0.032)  0.013(0.010)  0.013(0.010)
FN 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

p=0.90
Ly error 2.169(0.520)  0.803(0.071)  0.956(0.197)  2.415(0.462)  1.367(0.045)  1.145(0.035)
95% Coverage 0 474 0 57.8
90% Coverage 0 35.3 0 48.8
FP 0.047(0.029) 0.013(0.011) 0.018(0.015) 0.057(0.030)  0.012(0.010)  0.013(0.010)
FN 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

p=0.85
Ly error 2.116(0.356) 1.032(0.065) 1.925(0.875) 2.353(0.304)  1.512(0.048)  1.191(0.044)
95% Coverage 0 19.4 0 67.2
90% Coverage 0 12.1 0 61.7
FP 0.043(0.028) 0.012(0.010) 0.029(0.024) 0.050(0.029)  0.013(0.010)  0.014(0.011)
FN 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Numbers in (-) represents standard error.
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Figure 5.2: The estimated posterior means of model parameters for p, = 5: Columns 1-3
record the results obtained from Method-1-naive, the LASSO-naive method and Method
2, respectively. Row A displays the results for the case with no misclassification, and Rows
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Figure 5.3: The estimated posterior means of model parameters for p, = 20 using True
1-Fit 1: Columns 1-3 record the results obtained from Method-1-naive, the LASSO-naive
method and Method 2, respectively. Row A displays the results for the case with no
misclassification, and Rows B, C and D summarize the results for p = 0.95, 0.90 and 0.85,
respectively.
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Figure 5.5: The estimated posterior means of model parameters for p, = 20 using True
1-Fit 2:Columns 1-3 record the results obtained from Method-1-naive, the LASSO-naive
method and Method 2, respectively. Row A displays the results for the case with no
misclassification, and Rows B, C and D summarize the results for p = 0.95, 0.90 and 0.85,
respectively.
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Figure 5.6: The estimated posterior means of model parameters for p, = 20 using True
2-Fit 1: Columns 1-3 record the results obtained from Method-1-naive, the LASSO-naive
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respectively.

Row A displays the results for the case with no
misclassification, and Rows B, C and D summarize the results for p = 0.95, 0.90 and 0.85,
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Chapter 6

Summary and Future Work

In this chapter, we present a summary for the previous chapters, together with discussions
on possible future work or extensions.

Chapter 2:

Matrix-variate logistic regression models are useful in handling complex-structured
covariates which commonly arise from imaging data. However, these models cannot
be directly used when the number of model parameters is larger then the sample
size. Furthermore, little discussion is available for using such models to analyze
error-contaminated matrix-variate data. It is even unclear the impact would be if
measurement, error effects were ignored in such a setting. In Chapter 2, we study
this important problem and develop two valid inference methods for accommodating
measurement error effects in matrix-variate logistic regression. These two methods
are developed under different distributional assumptions of the measurement error
model; one makes a normality assumption for the measurement error while the other
makes no assumptions. We establish theoretical results for the proposed methods
and numerical studies demonstrate satisfactory finite sample performance.

In Chapter 2, we apply the (2D)?PCA method (Zhang and Zhou 2005) to solve
the inestimable problem where the sample size is smaller than the number of param-
eters; this method seems easier to implement than other matrix dimension reduction
methods, such as generalized low rank approximations of matrices (GLRAM) (Ye
2005) and 2DPCA (Yang et al. 2004). Other dimension reduction methods can be
considered as well prior to using the methods developed in Sections 2.3.1 and 2.3.2.
For instance, one may consider to add a penalty function to the likelihood (2.3) in
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combination with the adjustment for the measurement error effects, and then em-
ploy the penalized likelihood function to reduce the dimension of the covariates. It
would be interesting to explore this method in depth with some technical details here
modified accordingly.

Chapter 3:

Vector-Matrix-variate logistic regression models are useful in characterizing the rela-
tionship between binary responses and matrix-expressed covariates as well as vector-
expressed covariates. However, inference based on such models is challenged by the
presence of response misclassification. In Chapter 3, we propose two valid methods,
the imputation and likelihood methods to accommodate response misclassification
effects in matrix-variate logistic regression. These two methods are developed for
two settings where the misclassification rates are known or estimated from valida-
tion data. We establish theoretical results for the proposed methods and conduct
numerical studies which demonstrate satisfactory finite sample performance of the
methods.

In Chapter 3, we impose a constraint on the row effects to deal with the model
identifiability problem, which allows us to focus on explaining the row and column
effects separately. It is interesting to consider other types of constraint to express
the effects of different combinations of row and column directly.

Chapter 4:

Regularized Matrix-variate logistic regression models are useful in characterizing the
relationship between binary responses and matrix-expressed covariates, which com-
monly have sparsity property, as well as vector-expressed covariates. However, infer-
ence based on such models is challenged by the presence of response misclassification.
In Chapter 4, we propose two valid methods, the imputation and likelihood methods
to accommodate response misclassification effects in matrix-variate logistic regression
combined with the SCAD penalty function. These two methods are developed for
two settings where the misclassification rates are either known or estimated from val-
idation data. We establish theoretical results for the proposed methods and conduct
numerical studies which demonstrate satisfactory finite sample performance of the
methods.

In Chapter 4, we still impose a constraint on the row effects to deal with the model
identifiability problem. It is interesting to applying different inference methods to
express the effects of different combinations of row and column directly. This is an
ongoing project we are working with based on the Bayesian analysis. Moreover, we
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also add the SCAD penalty in the estimation procedure to deal with the sparsity
property. Other penalty functions can be added as well to deal with this property.

Chapter 5:

Matrix-variate logistic regression models are newly emerging tools that are useful in
featuring the relationship between binary responses and covariates in a matrix form
as we shown in previous chapters. However, it is challenging due to the computational
burden and intrinsic complex data structures under frequentist frame. In Chapter
5, we propose a Bayesian estimation procedure to analyze data that are facilitated
by matrix-variate logistic regression. Furthermore, a modified Bayesian estimation
procedure is proposed to deal with data with response misclassification. Numerical
studies demonstrate satisfactory finite sample performance of the proposed methods.

The development in Chapter 5 focuses on the implementation procedures cou-
pled with numerical studies. It is useful to develop rigorous theoretical results for
the methods, which is a future project. Another interesting problem is to explore
Bayesian methods to handle measurement error existing in matrix covariates; a sim-
ilar problem is investigated by Fang and Yi (2020b) who focused on the frequentist
framework.
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APPENDICES

In this part, we report supplementary materials associated with Chapters 2-5, including
regularity conditions, the proofs of the theoretical results, additional numerical results, and
details of calculations.

112



Appendix A

Additional Materials for Chapter 2

A.1 Regularity Conditions

(C.1)  a) sup,{(1/n) > o4, [Ivec(ze)||*} < 00, maxicren||Ter|| = o{max(m, v/n)};
b) sup,{(1/n) 3k, [lvec(z)lI*} < oo, maxi<cp<nl| 2kl = o{max(m, v/n)} ;

where ||A|| denotes the Frobenius norm if A is a matrix and the Euclidean norm if
A is a vector, and m is the number of replicates defined in the end of Section 2.3.1.

(C.2) ki lzerll = o(n?) and 374, [l2¢]|* = o(n?).
(C.3) E{vec(E)} =0 and E{||vec(E,)||*™"} < oo for some constant x > 0.
(C.4) Let

n

Gn(07) = (1/n) > Vil Taer ™ + v T2p) — log{1 + exp(a TwesB* +7°T2)}. (A1)
k=1

Assume that there exists a real-valued function G(-) such that for any € > 0

sup |G,(6%) — G(0*)| — 0 in probability as n — oo;
0*co

sup  G(0") < G(6),

0*:d(0*,0)>¢

where d(a, b) is the distance function in a Euclidean space, say, R?, defined as d(a, b) =
la — b]| for a,b € R
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(C.5) There exist a positive definite matrix M; and constants § > 0 and 0 < Ny < oo, such
that H,(0*) > M; whenever n > Ny and ||0* — 6|| < §, where the operation > is the
Loewner order, i.e., for two matrices A and B, if A— B is semi-positive definite, then
we write A > B.

(C.6) Define )
X1(6)

2k

1 (6°) = ( ) Ve — pel0% XD},

where X} (0) = (37X;TC;,aTX;)T. Assume that the second derivative of Si(6*) with
respect to 0* exists and that the entries of S} (6*) are uniformly bounded by a random
variable which may be a function of X; and zj, say My(X}, z;), in a neighborhood
of #. In addition, E{My(X}, zx)} <ooforall k=1,...n

Remark 1: In Condition (C.1) will be used to prove the approximation form of S (), the
consistency of H (), and Theorem 2.4. Condition (C.2) is used to prove the consistency
of H*(f) in Appendix A.5 and Theorem 2.4 in Appendix A.10. Condition (C.4), also
made by van der Varrt (1998, Theorem 5.7) and Zhou et al. (2013, Theorem 1), is used
to show the consistency of the naive estimator 6*. This assumption can be regarded
as an analogue of Condition (C.1) required by Stefanski and Carroll (1985, p.1337) for
logistic regression where only vector-covariates are involved. van der Varrt (1998, p.46)
discussed a set of sufficient conditions, including the compactness of the parameter space,
that make Condition (C.4) hold. Condition (C.5) is a regularity condition that is needed
for the establishment of the asymptotic normal distribution for Hy, / *(0)L,(0) (Stefanski
and Carroll 1985, p.1338). Condition (C.6) guarantees that the reminder terms of the
Taylor series expansion (A.26) of S;(6*) in Appendix A.6 are bounded and ignorable when
deriving the equation (2.12).

Condition (C.3) characterizes that measurement error cannot be arbitrarily large and
must be bounded. This assumption immediately implies that E{vec(Ux)} = 0,

(1/n) z:llecH2 Op(1/m) and (1/n) ZIIUkH = 0y(1/m''?). (A.2)

Conditions (C.1)-(C.5) are made in the same spirit of Stefanski and Carroll (1985),
but these assumptions generalize the requirements for settings with vector-form covariates
to accommodating problems with both vector-form covariates and matrix-form covariates.
One may notice that the proofs of our results share the same ideas of Stefanski and Carroll
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(1985) to certain extent. For instance, modifications of Lemmas 5.1 and 5.2 in Stefanski
and Carroll (1985) are used in our proofs to show the relationships between S*(6) and
Z,(0) and between H’(f) and H,(#). However, our derivations are a lot more technically
involved where a key challenge is to figure out how to split a and 8 in order to establish
the results for a and [ separately. The presence of matrix-form covariates considerably
complicates the derivations of new theoretical results.

A.2 Approximations of p;(f; X;) and its Functions

Here we derive the first and second order Taylor expansions of pi(6; X)) or its function to
be used to find the approximation of S’ (#) in Appendix A.4. To this end, we adapt the
derivations for Lemma 5.2 of Stefanski and Carroll (1985).

Let n(X}) = o™X} 8 + vz, and n(xer) = aTzef + 772, with the dependece on z
suppressed in the symbols n(X}) and n(ze). By (2.5), X; = 2, +Ug and E(U,) = 0. Now
we write pg(0; X;) as pp{n(X})} and pr(0;zcx) as pr{n(zek)}, and consider the following
four approximations.

1°. Given z and zj as well as a realization of X}/, we derive the first-order Taylor series
expansion of pg{n(X})} around n(z.):

pedn(X)} = pedn(zan)} + o (e Hn(X5) = (o)}, (A.3)

where 1(zre) = QoS + VT2, With 21 “between” X} and w in the sense that ||z —
Xill < N1 X5 — el and [|zre — ]| < ([ X5 — 2al]-

By definition of py(-) and n(-), and n(zke¢) = N(xek) + 0,(1), we write (A.3) as

prAn(X5)} =prdn(@e) } + pedn(wre, 21) H1 — pein(zre) H X (T XE8 — aTze )
=pidn(er) } + prAn(@re) H1 — peln(zege)}] x vee(afT)Tvee( Xy — zer) - (A4)
=pr{n(xex) } + via{n(Tre)} X vec(aBT)vec(Uy),

where we use the fact that aTAb = vec(abT)Tvec(A) for a p x ¢ matrix A, a p X 1 vector a
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and g x 1 vector b, and vy x(-) = pr(-){1 — pr(-)}, as defined in Section 2.3.

2°. Similarly, the first-order Taylor series expansion of pr{n(A;)} around n(z;), where A,
is defined in (2.22), is

pi{n(Ar)} =pr{n(ze)} + vec(aBT) {vec(Uy) + vec(gr) Yore{n(Are) /me}, (A.5)

where 1(Age) = aTAgef + T2, with Ay “between” A, and z., in the sense that
[Ake = Apll < [[Ap — zekll and [[Ape — zer| < [|Ak — zerl]-

Then, taking the differece of (A.4) and (A.5), we obtain that

Ipk(8, X7) — pi(8, Ay)|

— |[vectapmyTvee(Ty) [vradn(ane)} = vin(Ane)}]

—vec(gr)Tvec(aBT v p{n(Axe)/me
< |[vectasmyrvee(O) [virin(ene)} — veln(de}]||  (a6)
+ [|vectgTvec(am o {n(Ane) }m,

< ||vee(asmyrvec(T)| + [[vee(gi)vec(asT) /m.

9

where the last step is due to the boundedness of vy x(+) in [0, 1].

3°. The first-order Taylor series expansion of pi{n(X;)}[1 — pe{n(X;)}] around n(z.):
Pedn(X0) 1 — pe{n(X5)}]
= pr{n(wer) H1 — pe{n(er) }+
5o (el 1 = (o)) x n(X7) ~ nlaa))

Tek =Tk ¢o
= v1{n(zer)} + vop{n(zre,)} X vec(afT)vec(Uy),

(A7)

where vo (+) = pr(-){1 —pr(-) }{1 —2pk(-)}, as defined in Section 2.3, and x ¢, is “between”
X and ¢, in the sense that ||zge, — Xi|| < | X§ — 2|l and ||z e, — Terl] < | X} — Terl]-

We comment that (A.7) differs from the expression obtained from directly plugging
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(A.4) into pe{n(X{)H1 — pe{n(X})}], and the former expression is simpler the latter case.

4°. The first-order Taylor series expansion of p{n(Ag)}1 — pe{n(Ax)}] around n(ze):

pr{n(Aw)H1 — pe{(Ap)}]

= pr{n(wer) Y1 — prdn(er) }+

0

m <pk{7]<xck>}{l - pk{”(xck>}]>

= vp{n(@e) } + v2r{n(Are2)} x vec(afT){vec(Uy) + vec(gr)T/me},

X {U(Ak) — n(Ter) } (A8)

Tep=0k,e2

where Ay ¢ is “between” A, and 7. in the sense that | Ak e — X5 < HAk — Zek|| and
[Ake2 — ekl < [|Ak — @]

5°. Furthermore, we derive the second-order Taylor series expansion of pi{n(X})} around
(e ): @
peAn(Xg)} =pr{n(zer)} + pi {n(@er) } x {n(Xg) — n(ze)}

+ o Dlane)} x n(X3) — n(ra))?
=pi{n(zex)} + vec(aBT)vec(Uk)vrp{n(wre;)}
+ %vec(aﬁT)Tvec(Uk)UQ,k{n<xk,§3)}vec(Ukyvec(agT),

(A.9)

where xj¢, is “between” X; and z. in the sense that ||zge, — Xj|| < [| X} — 2| and
[0k e5 = Terll < I XF = zen]-

A.3 Proof of Theorem 1

In contrast to (2.7), we consider function (A.1) in Appendix A.1 which is identical to (2.7)
with X replaced by x.
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Let
R,1=10(0") — Gn(0")

1 n
“n Z (Vi TXiB* — & Twe,8%) — log{l + exp(a*TX} " + 7Tz}
k=1
+ log{1 + exp(Twe 8 + 7 T2) }] -

Since X} = wx+Uy, and E(Uy) = 0, then by Conditions (C.1), (C.3) and the Weak Law
of Large Numbers (WLLN), X} — z in probability as m — oco. Thus, by the Continuous
Mapping Theorem, as min(n,m) — 0o, R,1 = 0,(1). That is, £} (6*) — G,(0") = 0,(1).
Then, by Condition (C.4), Theorem 1 of Zhou et al. (2013) and Theorem 5.7 of van der
Varrt (1998), 6* is converges to 6 in probability as min(m,n) — co.

A.4 Proof of Lemma 2.1

To show (2.13), we examine each term at a time by the following three parts.
Part I: Show that S ,(0) = -=Zon + (Jan,1 + Jam,2)vec(afT) + op{max (L, \/iﬁ)}

vn
By (2.9),
Sz,n<9) = Tn,a,l + Tn,a,27

where

1 & I~
Tn,a,l - E Z ngckﬁ{y;c - pk(ea Xl:)} and T?’L,Oz,? = E Z CgUkﬁ{Yk - pk’(ea XI:()}

k=1 k=1

We now separately derive the approximation of T, ,; and T, 42 as follows.

1. Show that T, ., = \/LﬁZa,n + Jon,1vec(afT) + Op{ max (%7 \/Lﬁ)}

By (A.9), we write T), o1 as sum of individual terms each with one particular feature:

1 1
Tn,a,l = Sa,n + _nQa,n,l + Ja,n,lvec(aﬁT) + Da,n,l + Ra,n,l; (AlO)

Vit
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1
Sa,n - ﬁ — Cchkﬂ{Yk - Pk(‘97 Xck)};
1 — _
Qant = ——— Clapvec(afT)vec(Uy)vy i (6; er);
Vi
__n - T o ) .
Jan1 = —3 Claepvec(afT)T—uvg 1 (0; Ter);
k=1 Me
N ~— _ _ Q
Dani = -3 ; ClrypS [Vec(aﬁT)T{Vec(Uk)vec(Uk)T - EOC}VQC(O[/BT>/UQ’]€(6; :cck)};
Roni = —g Clae [Vec(&ﬁT)Tvec(Uk)Vec(ﬁk)Tvec(aBT){vzk(ﬁ; They) — Vo k(0 xck)}]
k=1

Now we examine each term of (A.8) separately by the following three steps to show that
the approximation form of 7}, 51 is

1
NG

Step1: Show that Qn ., = 0,(1).

1 1
Tha1= San + Janivec(afT) + op{ max (E’ —) }

For Qu.n,1, we modify the discussion of the (), 1, term in Lemma 5.2 of Stefanski and
Carroll (1985, p.1347) and obtain that Q, 1 has mean zero, and
1 _
Var(Qan1) = — Z Var{C] z.Lvec(afST)vec(Uy)v1 1(0; xer) }
n
k=1

] — _
- ﬁzvik(e;xck) X |CTIIZ < |1B]17 x [[vec(aBT)T]1? x |lza]l? x Var{vec(Uy)}
k=1

] — _
= EZ ICTIIP x |BI17 x [[vec(aBT)TIP X [Jae||” X [|Uk|”
k=1

IN

1 — 1 e—
ICTI? < [|1B]1? x [[vec(a8T)T||* x EZ |e]| % EZ T |?
k=1 k=1

where the third step comes from that vy ;(6; z,) is bounded between [0, 1], and the last
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step is because that

1 — 1l e -
;ZHfﬂckHzXEZHUkHQ Z!IﬂfckH2 !UkHQJr—ZZchkHQ x || U]
k=1 k=1

k=1 j#k

According to Condition (C.1) and the derivation of Condition C.3, we have £ 37" [|zc|?
=0(1) and =377 |Uk|? = Op(2). As a result, Var(Qan1) = 0p(1) as min(m,n) — oo,
thus Qan1 = 0p(1) and \%Qa,n,l = op(\/iﬁ).

Step2: Show that D, , = o, ().

To examine D, ,, 1, we adapt the derivations of the D,,; in Lemma 5.2 of Stefanski and
Carroll (1985, p.1347) and obtain that

n n
Damall = [CH < 181 % [vee(aBT)T X [lvzx(0; zer) || x 52 (|

k=1
0
X Hvec(Uk)vec(Uk)T — HO
1 n _ _ 1/2
< Constant x —( Z e ) % (=3 Imevee(Uivee(T)T = Qu2) ™
k=1
(A1)

By (A.1), 2370, lzel* = O(1), and by the Markov Inequality, we have that for any
scalar € > 0,

g B lmevee(Ti)vee(T)T - 2}

ne

1 - - )
_ <
P{n ; Imevec(Ty)vee(Ty)T — Qo2 > e} <

(A.12)

Now for the numerator of the right-hand-side of (A.12), we have that, by the definition
of Uk,
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E{Hmcvec(Uk)mc(Uk)T - QOH2}

i m i i vec(FEy,) m i ilvec(Ekr) T

- F O { Zvec(Ekr) S - }{ Zvec(Ekr) A== - } — Qo
- m i i vec(Ey,)

- m(n — 1)E { ZVGC(EM) - n }

2

{ m Zn: f:VGC(EkT)}T m

_o (VP \_,
_0P<mm> p(l)

as min(m,n) — oo, where in the second last step we use the fact that

i i vec(Ey,)

m m o> vee(Eg )y T (n—1)
E E,)— ==t E,)— ==t N )
{;vec( ) - }{;vec( ) " " 0
Thus, by (A.12),
1 - -
P{— Z |mevec(Uy)vec(Up)T — Qo|* > e} = 0,(1)
"=
as min(m, n) — oco. Thus (A.11) implies that D, 1 = op(%).
Step3: Show that R, . = o0,(L).
To examine Ry, ,, 1, we first note that ve{-} is defined in Section 2.2.3 with px(-) € [0, 1],
it is readily to show that vs;{-} has the maximum value \1/—83 and the minimum value —‘1/—83,
Le., vai(-) € [—‘1/—83, *1/—85] Thus, |vek(0; Tre,) — V2k6(0; 2er)| < 1 because of the boundedness

of vgx(+). Then we obtain that
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IRamall < gz ||ngckﬁ{vec(aﬁT)TveC(Uk)vec(Uk)TveC(aﬁT)}
k=1
X ’U2,k(93 UUk,gg) - U2,k(9; xck)‘”

< § D [[CT s {vec(a ) vec( T vec( D) vee(a ) |
k=1

< gHCJH < 181 % D llzell x {vec(asT)Tvee(T)}?

k=1
1 — =
< = T = _ { T\T (
< HC H><|!6H>< ; max chkuxng vee(affT)Tvee ZE
1 n m 2
——ZZEm)}
n
k=1 r=1

< %HCJH x ||8]| x 21)2 X 0<l> X % {veC(aBT)Tvec<rzlEkr

(n

2>}

k=1 r=1

—ufd)

where Condition (C.1) is used in the second last step, and the last step comes from that

—Z{vec afm) vec(ZEkT——ZZEkr>} = O,(1).

Finally, applying the results of Steps 1-3 to (A.10), we obtain that

Tho1 = %Smn + Janavec(afT) + op{ max (%, %) } (A.13)

2. Show that T, .2 = Jonevec(afT) + o,{max (m’ f)}

By (A.4), we write T, 42 as the sum of individual terms each with one particular
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feature:

1
Tn7a,2 = _%Qa,nﬁ + Ja,n,QveC(aBT) + Da,n,2 + Ra,n,Qa (A14)
where
Qa2 = ZC UrB{Yr — pe(0; ze1) };
an2 — __ZC H _Ulk 9 xck)
Dono=—— C’tTHa vec(Uy)vec(Uy)" — & V1 £(0; g ) vee(apT);
n < .
1 & _ _
Rane = - Z CH1, [vee(Uy)vec(Ug){v1 4(0; xrg) — v1,5(6; zer) vec(aBT)];
k=1
and I, = [B1lpy1) Bolprry - Belp+n] isa (p+1) x {(p+ 1)¢} matrix.

Now we examine each term of (A.14) separately to show that the approximation form
of T}, a2 18

T2 = Janavec(afT) + op{ max (%, %) } (A.15)
Like Qq.n1 discussed in the preceding Step 1, Qa2 has mean zero and Var(Qanz2) =
0p(1) as min(m, n) — oo, thus Qq n2 = 0y(1). To examine Dy, ,, 2, we adapt the derivations
of Doy in (A.11) to obtain that Dy, 2 = 0,(1) as min(m,n) — oco. To examine R, 2,
we note that both vy ,{n(xre)} and vy g {n(ze)} are in [0, 1], thus yielding that their dif-
ference is bounded. Similar to the derivation of R, 1, we obtain that R, .2 = 0,(1) as
min(m,n) — oo. Thus, applying these results of Qun2, Dan2 and Ra o to (A.14), we
obtain (A.15).

Finally, combining (A.13) and (A.15) gives

$10(0) = Zan(0) + 0, { max (% %) J
1

- %Sa,n + Jam,1 + Janz2)vec(afT) + Op{ max (% L) }
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Part II: Show that
1

1 1
. _ T L
Sia(0) = \/ﬁZﬁ,n + (Jan1 + Jgn2)vec(afT) + Op{ max (m, \/ﬁ> }

By (2.9),
S5n(0) = Topg1 + Topgo,
where
1 n 1 n 3
Analogous to Part I, we separately examine T, g, and T, 32 and obtain that

$5(0) = Zn(0) + 0, { max (% %) J

1 o (A.17)
- %Sﬁ,n + (Jpn1 + Jgn2)vec(afT) + Op{ ax <E’ %) }’

where
1 n
Spn = —= Z riyo{ye — pr(0; 7er) },
Vi
n\ T o
Jgni1 = —3 Zxckavec(aﬁ ) Evg,k(G;ka),
k=1 ¢
Lo~ Q
Jgmo=—— Z Hg—w1 ,(6; xer),
ni=me
and
ot
aT

T
gx{(p+1)q}

Part II1: Show that S, (0) = \/LEZ’YJI + Jy nvec(afT) + op,{max (L, \/iﬁ)}

124



By (2.9) and (A.8),

5:,0) = Z10(0) + 0 mox (- )

1
= —=S,, + Jyvec(afT) + op{ max <

vn

(A.18)
v )b
where

1 n
Son=—7=Y 2:{Ye — pe(0; zcx)},
J = —Eizkvec(aﬁT)T&w k(0 zer).
" 2 k=1 Mme o

Combining (2.9), (A.16), (A.17) and (A.18) yields the approximation of S¥(6) as

Sr(0) =7Zn(0) + op{ max (%, %) }

A.5 Proof of Lemma 2.2

To examine H’(6), which is defined for (2.12), we first write it in a block matrix with
each block submatrix corresponding to one type of parameters, and we examine each block
submatrix one at a time. To be precise, we write

* A HZ,B,n(9> HZﬁ,'y,n<0)
H"”)“(Hz;m(m He () )

Y7,
where i} .
a,B,n — 8(0?, BT) )
\ 0{S5,,(0),55,(0)}7
Ha,@,’y,n<0) = 8")/T )
\ 0{s7,(0)}
H 0 (0) = =2
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Similarly write H, () (defined for (2.14)) as

ey Ha,ﬂ,nw) Haﬁ,%n(e)
H"(G)“(H;Ww) Hypn(8) )

where O Zan(0). Zs (O}
HO&WBW(Q) = mg(d'l"a ﬂﬁ{; ’
O{Zan(0),Z5,(0)}7
Haﬁ»%n(e) = { 7 <8)’YTB’ ( >} )
o7 ,,(0
H%%n(e) = { g,yT( )}

In the following three parts, we show that each entry of H (0) differs from the corre-
sponding part of H,(#) with a small magnitude.

Part I: Show that H} 5, (0) — Hapn(0) = 0,(1) as min(m,n) — oo.
The difference between H, 5, (¢) and H, 5,(0), we write it as the sum of three terms
so we can look at one term at a time:

Hz,ﬁm(0> - Ha,ﬁ,n(‘g) = Ha,ﬂ,n,l + Ha,ﬁ,n,Q + Ha,ﬂ,n,Sv

where H, g1 includes entries depended only on pi(6; X)) and Uk(G) = (BTULCy, aTU}),
H, g2 includes entries depended on pi(6; X}), pr(0; x;) and Tk (6), and Hy g3 contains
the rest terms. The details of the three terms are given and examined as follows.

1. Show that H,p, = 0,(1).

Let Zex(0) = (B72,Cy, aTzq)T and X7 (0) = (BTX;TCy,aTX;)T. The term Hy 5,1 is
defined as

1 - * " * v * ~ ~
Hapni = n Z o1k (0; X)X (0) X5 (6) — 25,,(0)Zer(0) 1,
k=1
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which by (2.5), equals

S ousl8 XDTLOT6) + > 006 XTFO)7a0) + TO)T(0))

2 A.19 + A.20.

Then following the derivation regrading Condition (C.3) in Remark, we have that by
Ul,k(') c [0, ]_L

AT 1~ -
|A-19] < = ST ITHOTO) < = S 1076
k=1 k=1

1 — _ _
= EZ(H/@THZ X NUl? % |CI” + [l [|* < |UF]1?)
k=1

-0.(3)
= 0p(1)

as min(m,n) — oo, where the second last step is due to (A.2).

A.20 has same structure as Q, 1 in Appendix A.4 and we use the similar steps to
derive A.18 = 0,(1) as min(m,n) — oco. Thus, Hy g1 = 0,(1), as min(m,n) — oco.

2. Show that H,p,2 = 0,(1).
The term H, g5 2 is defined as

1< . .
Y > w1 k0; X5) — 01605 2ok ) 2T, (0)Fr (6)
k=1

Using (A.7), we obtain that

1O - T~
Hapns =~ > vec(aBT)Tvec(Up)vak(6; wr,e,) 0, (0) Fer (0). (A.21)
k=1

By the boundedness of vg () which we showed in Appendix A.4, Conditions (C.1),
(C.2) and (C.3) together with Lemma 5.1 in Stefanski and Carroll (1985), we have that
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1 < o
IA21)) < = > [[vec(aBT) vee(Uy) £l (6) ek (0)
k=1
1« -
= ||vec(aBT)T|| x - Z lvec(Uy) x (BTxl,Cr x Claef + aTzep X x|
k=1
1 < -
< [lvec(aBD)7TI < 18I < IGHI* x = [lvee(Ta) | x [zl
k=1

1 — _
+ [[vec(afm)T|| x [lorf|® x EZ [vec(Up) || X [|@erll®
k=1

= op(1),

when min(m, n) — oco. Thus, Hy 5,2 = 0,(1), as min(m,n) — oo.

3. Show that H,p., 5 = 0,(1).
H, 5,n,3 contains the rest terms of HY, 5. (0) — Ha p,,(0) that are not included in He g1

or Hygno. It is
0 A.22
Hapns = (A.23 0 ) :

1 n
A.22 =~ > CTXHYs — p(0: X7)} = Claa{Ye — pr(0: )}
k=1

where

and

I~ \
A.23 = - ZXkTC't{Yk —pe(0; X))} — 2l Ce{ Y — pi(0; xe) }-

k=1

Plugging (A.4) into A.22, we obtain that

1 < _
A.22 = - Z Clzp{vec(afT)vec(Uy)v1 i (0; Tre) }

k=1
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Then

1 — _
|A.22|| = [[A.21]| = || — ﬁZngck{vec(ozﬂT)Tvec(Uk)vl’k(H;xk’§)||
k=1

1 — _
< ||CF| x |lvec(aBT)]| x 52 |Zerl| X |[vec(Uy)l|.
k=1

By Conditions (C.2) and (C.3), when min(n, m) — oo, Hy gn3 = 0p(1).
Finally, Combining the results of Hy g1, Ha gn2 and Hy g 3, we conclude that

H;B’n(é’) —Hao () = 0,(1) as min(m,n) — oo.

Part II: Show that H; . (0) — Hapyn(0) = 0,(1) as min(m,n) — oo.

First, we write

* Ha, n
Hia(6) = Bosn(®) = (777

to indicate the two subvectors corresponding to o and 3, where

I o 1<
Hon = —— > CTUBuLk(0; X7) + - > ClaaBoop(0; X7)2]

k=1 k=1

and

I~ .- 1
Hgn = - g aTUgvy (0, X)) + - E aTxeve k(05 X)) 20 2 A.24 + A.25.
k=1 k=1

We observe that H, -, and Hg, ,, have a similar structure, thus we examine H, , ,, only
here. Hg ., can be examined via the same techniques.
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By Conditions (C.1), (C.3) and the boundedness of vy ;(6; X}), we have

1 — _
|A.22] < EZ |CIU B
k=1

n

1

< 18l x Gl > = S Il < 12E)
k=1
1 < 1/2 1 <& 1/2
< U8l el < (= S IT2) < (5 D2 11E7)
k=1 k=1

<81 x 161 % 0,( =) x 011 = o,(1).

where the second step and the third step are due to the Cauchy—-Schwarz inequality, and
the second last step is due to (A.2).
Plugging the (A.4) into A.25, we obtain that

1 ¢ -
A.25 = - Zvec(aﬁT)Tvec(Uk)pk(Q; Tre) {1 — pe(0; 24.6) Y2 Clz 01 B2].
k=1

Then by the boundedness of py(6; T ){1 — pr(6; zcx) }?, we obtain that

] — _
|A.25]] < Col[vec(afT)T|| x [|B]| x [|C| x - > " Ilvec(Ti)[| x flzell x (1271
k=1

] — _
< Collvec(aBT)T|| x [|B] x |Ct]| x - > IIvec(Ug) || x max([lzell, [I2]])*,
k=1

where Cy is a bound of pg(60; zex ) {1—pr(0; zr,) }?, and the first step is due to the Cauchy—Schwarz
inequality.

Condition (C.1) implies that >, max(||lze|l, |21]])> = O(n), and Condition (C.2)
implies that max;<g<,{max(||ze||, [|21])?} is o(n). Thus, by Lemma 5.1 of Stefanski and

Carroll (1985), A.25 is 0,(1). Thus, Hy ,, = 0p(1). Similarly, we can show that Hg ., =
0p(1). As a result,

H 5,0 (0) = Haprn(f) = 0,(1) as min(m,n) — oc.
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Part III: Show that H.  (0)— H,,.,(0) = 0,(1) as min(m,n) — oo.

Vs
By the definitions of HY _ , (¢) and H, ,,(¢), we obtain that
* * 1 o *
H: . ,(0) —H: ,(0) = - > ork(8; 23) — v1k(0; wer) 22 (A.26)
k=1

Similar to the steps for obtaining (A.21), by plugging (A.7) into (A.26), the boundedness
of vy 4(+), and Conditions (C.1), (C.2) and (C.3) together with Lemma 5.1 in Stefanski and
Carroll (1985), we obtain that

H: . (0)—H:_  (0)=o0,(1) as min(m,n) — oo.

’y?’y’n 'Y7’Y7n

Finally, combining the results of Parts I-11I, we obtain that

Hy(0) — H,,(0) = 0,(1) as min(m,n) — oco.

A.6 Proof of (2.12)

We applied the first-order Taylor series expansion to S:(é*) around 60, with X} and z
given, and obtain that

~

Sy(0) —Hy (0)(6" —0) +e, =0,

where e, is the reminder term, given by:
d
! FLolbn) 50 1o
=502 a0 (0 — 000 —0)) (A.27)

with the vector 6, = (&],, BT, 7,)T “between” 0* and 6 in the sense that ||0,,]| is between
|6*|| and ||6]|, #; and 6, are the ith and jth elements in 6, respectively, and d is the
dimension of 6.
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Similar to Parts I-III in Appendix A.4 which express S%(#) as the sum of two terms

based on ., and Uy, here we apply the same process to obtain that

S (6,) { gpk WFZXﬁMmh%wwmm»

T _1 N
Cgmckﬁm Ct (Ekr " ; EkT) "
Ap(0n) = T3 and B (0 ) = (B — * i Ei)an,

2 k=1
0
Thus, differentiating (A.28) and taking sums gives that
Zd:2828*(9 m) _ _sz:zd: A (O ){yr — pr(0m; X5) }
— £ 00,0; 00,00,
i=1 j=1 J k=1 i=1 j=1 J

n

1

k=1 r=1 <=1 j=1

By Condition (C.6), we obtain that for 7,5 = 1,...,d,

l Xn: 8Ak<8m){yk - pk(em; XID} _ Op(l)

00,00;
and
1 = = 0B (0){yi — P03 X3)}
- E =0,(1 my/n
mn £~ £~ 00,00; o(1) = m\/_ Ol )
Thus,

>3 T < 0,V + 0 v

due to the triangle inequality and fixed d.
Combining this with §* — = 0p(1), we obtain, by (A.27), that

len| < op{max(1/m, 1/n1/2)}

132

" = OB (0) {yn — pr(0 X))
T ZZZ 00,00, -

(A.28)



Thus, (2.12) follows.

A.7 Proof of Theorem 2.3

First, we consider the terms of J,, (6*) which is defined in (2.15), and show that as min(m, n) —

” Jaem — Jam = 0, (%) (A.29)
e =T = op<%), (A.30)
and
Jye = Jom = 0p(%>: (A.31)

where jan, j,@n and j@*,n correspond to Jq ., Jg, and J,, with xy, 6 and €y replaced

by X7, 6* and €, respectively. Here we show (A.29). The proof of (A.30) and (A.31) is
similar.

By definition,

Ja,n = Ja,n,l + Ja,n,2 and Jd*,n - Jd*,n,l + Jd*,n,Q-

We need only to prove that jd*,n,l —Jan1 = 0p (%) : the proof of jd*,ng —Jan2 =o0p (%)

carries through in a similar manner.
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Indeed,

n

A

Jormt = Jomt = —(1/2n) Y CTX; Bvec(a” B T)T(Q/me)va 1 (67 k)

k=1

- {—(1/271) Z Clxefvec(afBT)T(Qo/me)va k (0, xck)}

k=1

= —(1/2n) Z ngckﬁvec(éz*ff*T)T(Q/mc)vgk(é*; Tek)
k=1

_ { —(1/2n) Z Claepfvec(afT)T(Qo/me)va ke (0; er) }

— (1/2n) Y CTUBvec(&"BT)T(Q/me)var(0%; zer)

k=1

= —(1/2n) Y ClaaBvec(@”BT)T(Q/me)var(0%; zer)
k=1

+(1/2n) Z ClzepBvec(afT)T(Qo/me)va k(6; Ter) + 0, (%)

k=1

1 “ R . .
= —{ —(1/2n) Z Clzepfvec(@* B T) Qs 1 (0% k)
k=1

Me

(A.32)

m
k=1

+(1/2n) i Claepfvec(afT) Qv k(6 :L‘Ck)} + 0, (l)

where the second step is due to model (2.5); the last term in the third step is of order
Op (%) using the same technique of showing the order of (.1 in Step 1 of Appendix

A.4. By Theorem 2.1 and that ) is a /n-consistent estimator of €, (A.32) yields that
jd*,n,l - Ja,n,l = Op <mLC> + Op (%) = 0p (%)
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Secondly, combining (2.15) with (2.11) gives that

~

o

- =

“1(0%)J (6" )vec(a*3*T)

H1(0)S,(0) + H. 1 (0)J,,()vec(afT) — H ' (6%)J, (68" )vec(a*B*T)

n

0 —
0+

(A.33)
ron{mex (1 72) )
0pq Max ( —, —
vy m Y \/ﬁ 9
where the relevant quantities are defined in Section 2.2.

By Theorem 2.1 and the assumption in Theorem 2.3 that Q) is a \/n-consistent estimator
of Qp, we obtain that by the Continuous Mapping Theorem, vec(& *B*T) — vec(afT) in
probability and H'(6*) — H;'(0) = 0p(1) as min(m,n) — oo. Therefore, combining these

n

results with (A.29), (A.30) and (A.31), we can express (A.33) as

6 =6+ %Hnl(e)sn(e) + 0,{ max (% %) L (A.34)

Finally, Stefanski and Carroll (1985) showed that under Conditions (C.1) and (C.5),
H," 2((9)8,1(9) has the asymptotic normal distribution whose mean is zero and covari-
ance matrix is the identity matrix. Thus, by (A.34), we obtain Theorem 2.3(a). Ap-
plying Slutsky’s theorem to (A.34) gives Theorem 2.3(b), where the asymptotic covari-
ance of /n(0F — ) is determined by that of H>'(6)S,(#), which equals I~*(6),where
I(6) = E{H,(0)}.

A.8 Proof of the Consistency for (2.17)

We prove that (2.17) is a y/n-consistent, covariance estimator for €. Indeed, we write (2.17)

as
n m

Q=

S|

— vee( X, ) Hvee(X},) - vee(Xi, ),

and let
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By the definition of X}, and X}, , we obtain that

* \ * 1 -
vec(Xy,) — vee(X, ) = vec <Ekr - Zl EkT> :

By = (ml_ 5 Y E {Vec <Ek - %Z Ek> vec <Ek - %Z Ek> }

E {vec (Ey.)vec (Ey.)"} — 2F {vec (% Z Ekr> vec (Ekr)T}
(s ()

+ E < vec EZE"”’ vec EZE’”

E {vec (Ey.) vec (Ey.)"} — %E {vec (E,) vec (Ey.)"}

r=1
_ 2 iE{Vec (Ey;) vec (Ex)"} + iE ivec(E yvece (Ey,)T
m 4 j T m2 kr kr
J#r r=1
1 m m
+ ﬁE {Z Zvec (E},) vec (Ekj)T}
=1 jr
1 2 1
<m—1>;( T

(A.35)
where the third step is due to the independence assumption of Ej, and Ej; for r # j,
together with E{vec(Ej,)} = 0 and the definition of 2.

By Condition (C.3), var(Q) exists. Let 65, and og;; denote the (i,7) element of
QO and Qo, respectively. Then by (A.35) and the Central limit theorem, as n — oo,
Vn(E 3y 6kij — 0045) converges in distribution to a normal distribution for any (i, )
element for (. Thus, we have V(E 30 Gk — 00,45) = Op(1) for any (4, ) element for
Q. Writing these in the matrix form gives that LD Q. — Qo = 0,(1//n).
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A.9 Derivation of A,

Here we derive why Ay = X{ + (yx — 1/2)RafB7C/m,, discussed in Section 2.3.2, is a
sufficient statistic for x.,. The derivations start with working out the joint distribution of
Y}, and X; using the model setup in Section 2.2.1 and 2.3.2. Then we work out the joint
distribution of Y, and Aj in order to derive the conditional distribution of Y} given A,
and {Zck, zx}. The details are presented in three parts.

Part I: Find fyx-(Yi, X; | ), the joint distribution of Y, and X, given
{Tek, 28}

We treat 6 = (aT, 7,4T)7T as given. We rewrite (2.2) as
Fy (Y | @er, 21) = ha(zer) X exp{Yi(aTweeB +v"21) }, (A.36)

where Ny (Ter, 2) = {1 + exp(aT@eS +yT24) L
The probability density function (2.5) of X}, given x¢ is rewritten as
fx+ (X} | Zek) = constant x exp [ — %tr{C’_l(X;: — 2e)TRN(X} — 2er) }]

m (A.37)
= hy(zer) X exp {tr(m.C™'X;TR " xer) — ftr(C’_lXZTR_lX;)},

where hy(ze,) = constant x exp{—31tr(C~ 'zl R zq)}.

Combining (A.36) and (A.37), we write the joint distribution of Y, and Xj, given
{xcka Zk}? as

Sy xs (Y, X5 | wen) = ha(@er, 1) X exp{Yi(aTzef +772x)}

A.38
x exp {tr(m.C ' X, TR 'aq,) — %tﬂCilXi:TRile:)}? ( )

where hg(xek, 2x) = h1(Tek, 2k) X ho(Ter).

Part II: Find fy A(yi, Ak | Tek, 21), the joint probability density/mass function
for Y, and A,.

In the following we want to work out the joint distribution of Yy, and Ay, given {zcx, 21 },
using (A.38). Because Y is binary, our discussion here is slightly different from the setting
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of Stefanski and Carroll (1987, p.4) who applied the variable transformation method to find
the joint distribution of continuous variables Y, and Ag. We consider the joint cumulative
distribution function of {Y%, X}, given {zc, 2 }. For any (v, ),

1
prYi =y, A < 0| {za, 2}) = pr(Yi = 9, Xi + (e — 5 ) RafTC fme <3 | {aan, 21}

. 1
— pr<Y,C =y, X; <0— (yk — §>RQBTC’/mC | {xek, zk}>
6_(yk_%)RaBTC/mc
_ / fyxe (0 7] ek 20)

—0o0

(A.39)
where the integrand is determined by (A.38).

Thus, the joint probability density/mass function for Y} and Ay is given by the deriva-
tive of (A.39) with respect to . That is,

fY,A(yk, Ay | Tk, Zk) = fY,X*{yk,Ak - (yk - %)RaﬁTC/mc | Lk, Zk}

d 1
. _ _ T
< a2 (o= 3)RapC finc}
1
= fY,x*{ym Ap — <yk - §)RaﬁTC/mc | Tk Zk}
= h3(Tek, 2) X exp{Yi(a xS + 7 21) } (A.40)
1
X exp [tr{C’_l(chk —yrRafSTC + ERaﬁTC)TR_la:Ck}
1
— étr{C_l(chk — yrRafTC
1

Me

+ %RaﬁTC)TR‘l(Ak — yuRafTC/m+ 5——RafT0)}]

where we purposefully use upper case letters in the arguments to emphasize the random
variables to which the distribution corresponds, and the last step comes from plugging in
(A.38).

Part III: Show that A, can be treated as a sufficient statistic of .

To simplify (A.40), we individually examine each term using the following matrix or
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vector identities:

tr(faTze) = vec(afBT)Tvec(zer) = aTxerf;
tr(Ba’ Ay) = vec(afT)Tvec(Ar) = aTAyf;
tr(C'ALaBTC) = tr(CCT'ATafT) = tr(AfafT) = aTAyB;

which are obtained from direct calculations and the fact that tr(AB) = tr(BA) for two
square matrice A and B which have the same dimension.

The first term of (A.40) is simplified as
{0 (mey — YiRafTO)R o] + Str{C (RafTC) R )
= tr(m.C ' AL R we — ViBaTxey) + %tr(ﬁoﬁa:ck) (A.41)
= tr(m.C AR 'xe) — Vi B + %Oﬂxck@,

and the second term of (A.40) becomes

1

me

%tr{C‘l(chk — Y;RafBC + %RaﬂTC)TR‘l(Ak ~YiRafC/m. + 5 —Raf'C)}

_ %tr[(;—l{ch; _Vi(CBaTR) + %(CﬁaTR)}R‘I(Ak ~YiRaBTC/m, + 2; Raf™C)]
= %tr{(mCC’_lALR_l — YifaT + %6&T>(Ak — Yy Rap™C'/m, + 2; Rap™C)}

1

= Qtr(mCC’_lALR_lAk - YkﬂoﬂAk - YkC_IAZOéﬁTC
1 1
_ TAT

+ 2604 s .

BaTRafTC + %clA;aﬁTC)

1 _ _ 1
= étr(mcc 1A£R 1Ak-+ 4mc

1
BaTRafTC) — YiaTAxf + é(xTAkﬁ,

(A.42)
where we use the fact that Y;? =Y}, for the binary variable Y} taking value 0 or 1.
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Then plugging (A.41) and (A.42) into (A.40) gives

1 1
Sy a(Yis Mg | e, 20) = hg(wer, 2) X exp { — §tr(mccflA£RflAk + 1 paTRafSTC)

1 1
+Yi.aTALS — §aTAkﬁ + §oﬂxck5 + tr(mCC”lAZR’lxck)
— YiaTzg + Yia Tz 3} x exp(YiyTzy)
= ha(Ag, Tek, 2) X exp(YeaTArB) x exp(YeyT2k)

L BaTRagTC)

M

1
x exp { — §tr(mCC’_1AZR_1Ak5 + 1

+ tr(mcC’lAzRflxck)}

= hy(Ag, Te, 21) ¥ exp {Yi(aTALSB +772) },
(A.43)
where hy(Ag, Tek, 21) = ha(A, Tek, 21) X exp{—5tr(m.C T ALRT ALS + - BaTRafTC) +
mCC_lA;R_lxck — %QTAkﬁ + %oﬂxckﬁ}.
Noting that (A.43) can be expressed as the product of two functions each involving Y
or Ay alone, together with other variables, we obtain the conditional distribution of Y
given Ay as well as {zc, 21},

pr(Yie = yk | Ak, ek, 2k) = € X exp{yr(aTArS + 77 21) }, (A.44)
where
B 1
ha(Ag, ek, 21){1 + exp(aTASB +vT2) }

Non-involvement of x. in the right-hand side of (A.40) shows that A can be treated as
a sufficient statistic of xy.

¢

Remark:

The preceding derivations basically focus on verifying the “sufficiency” for Aj which
is given before hand. In contrast, a simple way to find a sufficient statistic of x. by
directly applying the Factorization Theorem to the joint distribution (A.38). Specifically,
by treating x.; as an unknown parameter and 6 as a given constant, we write (A.38) as
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fyixs(Ye, Xp|zer) o exp{Yi(aTzmxf)} X exp{tr(mcC”lX;:TR’l:cck}
= exp[tr{(YzaBT + m R ' X; O )Ty}

1 T
oo [{ (Lasrc ) 0} ]

implying that mLYkRaBTC + X; is a sufficient statistic for x.,. Write A} = mLYkRozﬁTC' +
e c c

Note that the difference between A} and Ay is a constant, indicating the equivalence of
them. While A} may be used in the same way as Ay, in Section 2.3.2 to derive a consistent
estimator of 6, in our development we choose to use Ay = X+ (Yy —1/2)RafTC/m,; this
quantity can be regarded as “symmetric” around the surrogated measurement X; because
the centered version Yj, — 1/2 for the binary variable Y} is either 1/2 or —1/2. In addition,
Ay shares similarity to the sufficient statistics considered by Stefanski and Carroll (1985).

A.10 Proof of Theorem 2.4

Corresponding to S* () and H*(6) in (2.12), we let S,(0, A;) = (S (0, Ay,
Sggm(ﬁ,ﬁk),sgz’n(@, AT and H, ,(0, A;) be S (6) and H(6), respectively, with X} re-
placed by Ay, where Ay, is defined by (2.22). To show Theorem 2.4, we examine S, (60, A)
and H,, (6, Ax) separately in the following two parts using similar techniques to those in
Appendix A.4 and A.5.

Part I: Show that S,(0,A;) = =5,(0) + o,{max (£, =)}
Since Sar .. (60, Ag), Sge (0, Ay) and Ss (6, Ay) have similar structures, here we provide
only the examination of S&:,H(Q, Ak), the rest two terms can be shown similarly.

By the definition of S,(6, A;) and (2.9) as well as (2.22), we have that
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. ] — . .
Sazn(0, Ak) = — > CTAWB{Y: — pu(0: M)}
k=1
1 ¢ .
= Z Cf (XZ + gk/mc>ﬁ{Yk — p(0; Ar)}
k=1

1 n
= ZCtT (XZ + gk/mc)ﬁ{yk —pr(0; X5) + pi(0; X)) — pi(0; Ag)}
k=1

285 ,(0) + Wy + Wy + W,

where by (2.5), we set

1 < - A
Wor = — > CT (U + gi/me) B{pu(0: X5) — pu(6: An)
k=1

1 n
Waz = = > ClauB{Ye — piu(0: X} /me,
k=1

and

1 & A
Wois = = 3 Claab{pn(0: X7) — pa(0; A}
k=1

To examine Sax (0, Ak), it sufficies to check W1, W,2 and W3 individually. In the
following, we examine W1, W,,2 and W,3 separately and show they are of order o,(1/m).
Before doing so, we introduce two expressions.

Replacing X with z., in W2, we define

n

1

k=1

and we define

1 n
by = —= 37 CFrayfivec(ge) Tvee(af)or (0; 2ex) e

k=1
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By the fact that §* — 0 = 0,(1), and n'/2(C' ® R — Q) = O,(1), we obtain that
by = 2377 [ (11— 2% = pu(0: 000} RBTCB e+ 0,(1)
k=1
= L5t (= 2) 35 = a6 )} MaSvec(a7) /e + 0,1,
k=1
and
by =~ 53" T (e — L) veclBagnC)vec(a Ty ) e + 0,1

k=1

= L3 T (e — 5 ) veelaBT) Qovec(apTvus(6: zek) me + 0,(1),

k=1

where II,, is defined in (A.14).

Furthermore, using J, 1 and J, 2, which are defined in Section 2.2.3, with by and bs,
we obtain that

by = %; ana% [(yk - %)‘{Yk — pr(; xckz)}] vec(afT) — Janavec(afT)
+ Janavec(afT) + o0,(1)
= %;Cgﬂai{yﬁ = Yipi(0; wer) — %Yk + %pk(e; xck)}vec(aﬁT)
— Janavec(affT) + Janavec(afT) + o,(1) (A.46)
-2 Xn:CtTHa& [Yk{l — (B za)} — (Vi — el 7))
gyt Me 2

— vy (6, xck)] vee(afST) — Janavec(afT) + o0,(1)
= —Janavec(afT) 4+ 0,(1)

where the last step is due to F(Yy|zek, 2x) = pr(6; xer), and
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1 Q 1
b3 = — ; ngckﬂvec(aﬂT)TEivec(aﬁT) (yk — §>Ul,k(0; Tek)

+ Jamavec(afT) — Janivec(aBT) + o,(1)

_ 1 - T T T% T 1 )
— n;@ TepBvec(afT) mcvec(aﬁ )(yk 2)U1,k(9,xck)

— gz ClaepBvec(afT)T(Qo/me)vak(0; xer) — Janavec(aBT) 4 0,(1)

N5 ) 1 (A.47)
= > ngckﬁvec(aﬁT)Tﬁovec(aﬁT) [(yk — §>Ul,k(9; Tek)
k=1 ¢

- Ul,k(e; xck){pk(ea wck) - %}:| - Ja,n,lvec(aﬁT) + Op<1)

1 & Q
= —— E C’Ja:ckﬁvec(ozﬁT)T—ovec(ozﬁT){Yk — pk(ﬁ;xck)}vl,k(e; Tek)
n & Me

— Janavec(afT) + o0,(1)
= —Jam1vec(afT) + o,(1),

where the third step is because of the definition vy x(-), given in Section 2.2.3, and the last
step is due to E(Yi|Tek, 2k) = pr(0; Tek)-

Now we examine W,,5, W,3 and W,,; by the following three steps:
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Step1: Show that || W,s — bs|| = 0,(L).

L
m

1 ]
[Waa = ball = ||~ 37 Clodpn(b:0) = pel0: X)) /e
k=1

1 n
< O 050 = 0 XD >
1 n
< el ; [P (0; wer) — pi(05 X7)| % [l
<

1 n
.
ICT % = ol
k=1
1 1 1/2
< —||CT|| x (— 2)
< 1F < (G, 2 e

=0(2),

where the second step is due to the Cauchy—Schwarz inequality; and the fourth step is be-
cause that between py(0; z.) and pi(6; X;) the absolute value of the difference is bounded
between [0, 1]; and the fifth step is due to the Cauchy-Schwarz inequality; and the last
step is due to the assumption that >, |lgx]|* = Op(n), and the definition m, = 22

n—1"
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Step2: Show that || W,s — bs| = 0,(L).

L
m

W — ball = || 3 T [ {003 X0) — 103 D)}
k=1

+ vec(gg) Tvec(aBT)vy 1 (6; :Eck)/mc]

1< . A
<NCTI 181 %~ D el < w8 X5) — a0 A
k=1

FCTI N8 % — D el x ||vec(ge)vee(@BTyuru(; zex) /me

k=1

1 . A
<NCTI < BI % = D ekl  Hlpw(0: X5) — pa(6: A
k=1

Y

1 n
FICTI 181 % — D el  ||vec(ge)vec(asT) fme
k=1

where the last second step is due to the Cauchy—Schwarz inequality, and the last step by
that vy () is bounded by 0 and 1.

Then plugging (A.6) into (A.48), we obtain that

1 — _
(A.48) < 2| CE| < [IB]] x [lvec(aBT)| x ~ > {laerll x vee(@)ll} + llzerll * [lvec(ge)ll/me}
k=1

1 — _
= 2G> BN > lIvec(asT)] < ~ > (el x [[vec(T) |1}
k=1

1 n
+2[|CI < I8N [[vee(asT)| x EZ {llzeill < [lvec(g)ll/me}.
k=1

(A.49)
By Conditions (C.2) and (C.3), the first term of (A.49) is 0,(%); by Condition (C.2),
definition of m., and the assumption Y ,_, [lgxl|*> = O,(n), the second term of (A.49) is
0p(£). As a result, we obtain that ||[W,3 — bs|| = o,(

1
—).
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Step3: Show that W,; = op( L )

m

Wl = |2 3007 (00 + ) mut0: X0) — meto: 01
k=1

me

<1 10 | 2 37 (00 + 2 s (out6: X0) — et B

k=1 ¢

T 81 [ 3 (B 25) ¢ (vecaB™y veel D) [oa(6: 1) — w105 v
k=1 €

<NCT > 1811 % ||+ 3 Divec(asyTvec(Ti)  [vns(6;71.0) — vas(6: Mg |
k=1

— vee(gu) vec(a ") /m, )

N |G/ % WLL;CHVGC(O‘W)H X i {HveC(Uk)H X HVGC(gk)H

k=1

010 26) = v1x(03 D) || } + ICTI X 18] ¢ [lvec(as]|

X li {M + Hvec(Uk)H X %%k)}

X

n m2
k=1 c

_ 1 —
< NCTI < 18I x Ivee(an) x maxdzyc, |0l % ||~ 37 0100 2e) = v1(0: Are)|
k=1

+CE < 18] x [[vee(aBT) | % %i {M +2Hvec((7k)H X L(gk)}

m? Me
) O”(%)’ (A.50)

where the second step and the fourth step are due to the Cauchy—Schwarz inequality, the
third step is due to plug in the difference between (A.4) and (A.5); in fifth step, we apply

the facts that max;<p<,||Us| = Op(\/im) and %2221 U1 k(05 ) — v14(0; Age) = 0,(1); in
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last step using (A.2) and >}, ||gx||* = O,(n) again, we obtain that (A.47) = op(#).
Thus, using the results in Steps 1-3 and by (A.45), we obtain that

A . 11
Séx;‘,n(@; Ak) = Sa,n(e) + b2 + b3 + Op{ max (E, %> }
1 1 1
= %Sa,n + (Jana + Jan2)vec(afT) + by + bs + op{ max (E’ ﬁ> }
1 1 1
= —=Sentop{ max (1 =) |
where in the second step, we plug in (A.16) to instead of S}, , (#) directly, and third step is
due to (A.45) and (A.47).

Part II: Show that H, (0, A,) — H,(0) = 0,(1).
Similar to the treatment of H* () in Appendix A.5, we write H, ,(6, A) as

A Ha ns(e Ak) Ha ns(a Ak)
H A2 Bim,s\Vy & Brym,s\Ys £
n,s(ea k) (HT (07Ak) H%%n75<9, Ak)

af,y,n,s
so that each element is identical to the corresponding part of H? (0) with X} replaced by
AV
To show that H, ,(6, Ay) — H,(#) = 0,(1), it suffices to show that
Hopns(0, Ar) — Hagn(0) = 0,(1), (A.51)

as well as Hogyms (0, Ar) —Hapyms(0) = 0,(1) and He, . o (0, Ap) —H,, . o(8) = 0,(1). Here
we show only (A.51) using same techniques in Appendix A.6; the other two expressions

can be shown similarly.

Let . .
N a{ség,n(ea Ak’)a SA* n(97 Ak)}T
Hn’d: (97 Ak) = adTﬂs,
and . .
A M{Sazn(0,Ax),Ss. , (0, Ag)}T
Hn,é;‘ (9,Ak) == 85T ’
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and let
NZan(0),Z5n(0)}7

Hp o (0, zer) = e
and
Hoo(6,0r) = 3{Zaﬂn<98>»;a,n<9>}j
Then
Hasns(0,80) = (Buss (0,80 B, (0. 00))
and

Ha,ﬂ,n<97 'rck) = (Hn,a(‘ga xck) Hn,ﬁ(ea xck)) .

To compare Hawg,n,s(G,Ak) and H, 5,,(0,zcx), it suffices to compare Hn,az(G,Ak) and
H, (0, ze) and to compare H, 5. (0, Ay) and H,, 5(0, z.x) separately. Due to the similarity

in comparison, we examine only the difference between H, 4+ (0, Ak) and H,, (0, z) here.

We now write

Hn,&; (97 Ak) - Hn,a(ea xck) = Hs,a,l(g) + Hs,a,Z(G) + Hs,a,3(9)7 <A52)
where
1< A A A
Hyat(0) = — > {(CTAW)TCTALS — (Claak B)Claee Jun (6 M),
k=1
RS T TOT A
Hs,m?(e) - E Z(Ct xckﬁ) Ct 'Ickﬁ X Ul,k(g; Ak) - Ul,k<0; wck)] s
k=1

Hs,a,3(9) = (Opxp % 2 [CTAk{Yk - pk(e; Ak)} - CTIEck{Yk - sz(e; xck)}D )
k=1
where 0,5, represents the p X p zero matrix.

In the following three steps, we show that all the terms in (A.52) are 0,(1) as max(m,n) —
0.
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Step1: Show that ||H;, ;(0)| = 0,(1) when min(m, n) — oco.

s 237 ({07 (s O )8} 0 (e 4 T+ 22) 3

M

— (CToekB) Claes ]
A kz [(crap)'ci (O 2) 5+ {3 (00 + )5} Cloas
+ {Cg (Uk + i—iBig)ﬂ}TCg (Uk + —) ] H
< ZheiP < 11 x 32 {loeel ¢ (1000 + |2

k=1 ¢

)

] — _ - gr ||?
<2 CT|I2 < IB]1* < = k]l X Tkl + 10|17 + || ==
n A me

)+ 1T+ || 2
m

1 x || 2
mC

2 1< 2 1 & 1/2
T2 2 2 2
TP < 1817 (EZr\xcku) x (5;”%”)
2 1< 1/2
+ 2P < 81 x (- Zmu) (=D llgel?)
¢ k=1

where the first step is due to the definition of Ay and the boundedness of v1x(+) which is
between [0, 1]; and the last two steps are due to the Cauchy—Schwarz inequality. By Con-
ditions (C.2), (C.3), (A.2) and Y., |lgx]|* = O,(n), we obtain that ||Hs.1(0)|] = 0,(1)

when min(m, n) — oo.

Step2: Show that || H;, 2(0)| = 0,(1) as min(m,n) — oo.
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Plugging (A.8) into Hy 4 2(6), we obtain that
15N T TOT T ] T
IHoa2(@) = | D (CToakB)TCFresd x va.(65 Ara) x vec(afT)T{ vee(Ti) + vec(gi)T/m. |
k=1

1 — _ g
< NICTIE x 1812  fivee(@pn)T x >~ (11Tl + || £

) Nzl
1 -
= ICTI? < NI x livec(@BT)Tl < = S 10k x llzes
k=1

X [lzeel®

1 « g
FCTIE X B x lvec(asn)Tl x — >~ || £
n/kzl me
1~ -
< IICTIR X 1811  [Ivee(@B™)ll x = S 1Tk x
k=1
vec(afST)T
+ (o < 11 < APy (o, el
1< 12 1 &
(=D lael®) ¢ (2D o)
n n
k=1 k=1
(A.53)

where the second step is due to the boundedness of py(-) and ve i (+), and the Cauchy—Schwarz
inequality; and the last step is because of the Cauchy—Schwarz inequality. By Conditions
(C.2), (C.3) and Lemma 5.1 in Stefanski and Carroll (1985), the first product term of (A.53)
is 0,(1) as min(m,n) — oo. Using Conditions (C.1), (C.2) and >_,_, |lgrl|* = Op(n), the
second product term of (A.53) is 0,(1) as min(m,n) — oco. Thus, ||Hs.2(8)|| = 0p(1) as
min(m,n) — oo.

1/2
Y

Step3: Show that ||H;, 5(0)|| = 0,(1).
Since, in Appendix A.5, we obtain ||A.22]] = 0,(1), as a result, we have that

1 ¢ 1<
o Z ClradYe — pr(0;zer)} = - ZC’JX,’;{Yk — pe(0; X5)} + 0p(1). (A.54)

k=1 k=1
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Plugging (A.54) into H, 3(6), we obtain that

H,o3(0) = ( pxp % [CTAk{Yk — (05 Ax)} = Claa{ Vi — pi(6; xck)}])

.

1 i [CTAYE ~ pul6: A} - TN~ i XD} ] 4 0y(1))
= (Opxp Ms+o

p(1)

where by plugging (A.4) and (A.5) into (A.55), we obtain that

1 A A
M= [CJAk{Yk — pi(0; M)} — CTX{Y: — pi(6; X5)}
k=1

1 & _
= > T Xjvec(apT)Tvec(Uy) [v15(0; 2re) — vrk(0; Are)]

k=1

1 n
— ZCtTX,jvec(aﬁT)Tvec(gk)vl,k(ﬁ; Agg)

men £

LS Clavectad vec(n)n 6 ug) — —— 3 ClandVi = 6 )
el 42 B e 1= ’

By Condition (C.3), the first term of Mj is 0,(1); and the last term of M, is 0,(1) is due
to E(Yi|Tek, 2x) = pr(0; ). Now it remains to examine the middle term of M;. Let

1 n
As = — T T\T 0 A
men ;Ct grvec(aBT)Tvec(gi)vr k(05 Ake)
and
1 n
B, = “mon ; Cl Xivec(afT)Tvec(gr)v1 k(05 Ak g).
Then,

tQkVeC(aﬁT)TVeC(gk)Ul k(05 Ay, g) H

Z g,

< NCEI < flvee(asT)T]| %

C
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By the assumption that Y ,_, ||gx[|> = Op(n) and the boundedness of vy ,(+), we obtain
that || As|| = 0,(1) as min(m,n) — oo.

Similarly,

1B = |

(afT)Tvec(gr)v1 k(0 Age) H

< (1071 % Ivec(as) | fme) x (= ZHXkH) (Y ae)”

By Conditions (C.2) and (C.3) in Appendix A.1, we know that = >~)" | [lzet]|* = O(1), and
L5 i 1Uk|1? = 0,(1) when min(m, n) — oco. Consequently,

1 < . 1/2 1< _ _ 1/2
(SDDUXE2) T < (5Dl + 2l < 100+ 1042) ™ = 0,(1).
k=1 k=1

By the assumption Y ,_, [lgrl|*> = O,(n), we obtain that [|Bs]| = o0,(1). As a result,
|Hs.0.3(0)|| = 0,(1) when min(m, n) — oco.

Combining the results of Steps 1-3, we obtain that H, 4+ (6, Ar) = Hpo(0, 2a) = 0,(1).
H

n3(0,2cr) = 0p(1).
These two results show (A.51), and thus by the comments after (A.51), we obtain that

Following the same steps as Steps 1-3, we obtain that H B*( )

H,.(0,Ay) — H,(0) = 0,(1).

Finally, using the results we showed in Part I and Part II and following the same steps
in Appendix A.7, we can show Theorem 2.4(a) by Conditions (C.1), (C.5), the Continuous
Mapping Theorem and the asymptotic normal distribution of Hy, "/ ?(0)S,(0) (Stefanski and
Carroll, 1985). Theorem 2.4(b) is obtained by applying Slutsky’s theorem.
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A.11 Additional Simulation Results for Sections 2.4.1-
2.4.2

The following tables record simulation results for different settings described in Section
2.4.

e Table A.1 records the simulation results for the row effects with p, = 5, Ej,. generated
from the matrix normal distribution, and n = 1000;

e Table A.2 records the simulation results for the column effects and covariate effects
with p, = 5, E}, generated from the matrix normal distribution, and n = 1000;

e Table A.3 records the simulation results for the row effects with p, = 10, 0 = 0.25,
E}, generated from the matrix normal distribution, and n = 1000;

e Table A.4 records the simulation results for the row effects with p, = 10, o = 0.5,
E}, generated from the matrix normal distribution, and n = 1000;

e Table A.5 records the simulation results for the row effects with p, = 10, o = 0.75,
E}, generated from the matrix normal distribution, and n = 1000;

e Table A.6 records the simulation results for the column effects and covariate effects
with p, = 10, ¢ = 0.25, Fj, generated from the matrix normal distribution, and
n = 1000;

e Table A.7 records the simulation results for the column effects and covariate effects
with p, = 10, ¢ = 0.5, Ej,. generated from the matrix normal distribution, and
n = 1000;

e Table A.8 records the simulation results for the column effects and covariate effects
with p, = 10, 0 = 0.75, Ej, generated from the matrix normal distribution, and
n = 1000;

e Table A.9 records the simulation results for the row effects with p, = 20, Ej, gener-
ated from matrix normal distribution, and n = 1000;

e Table A.10 records the simulation results for the column effects and covariate effects
with p, = 20, E), generated from matrix normal distribution, and n = 1000;

e Table A.11 records the simulation results for the row effects with p, = 5, and Ej,
generated from the matrix t-distribution;
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e Table A.12 records the simulation results for the column effects and covariate effects
with p, = 5, and E}, generated from the matrix t-distribution;

e Table A.13 records the simulation results for the row effects with p, = 20, E,
generated from the matrix normal distribution, and n = 2000;

e Table A.14 records the simulation results for the column effects and covariate effects
with p, = 20, E}), generated from the matrix normal distribution, and n = 2000;
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Table A.2: Simulation results for the column parameters and covariate parameters with

Pz = 9, Ey,. is generated from the matrix normal distribution, and n = 1000
Naive Estimator Method 1 Estimator Method 2 Estimator
Bias% ESE ASE CR% MSE Bias%¢ ESE ASE CR% MSE Bias% ESE ASE CR% MSE

Parameter o m

2 -9.082 0.089 0.086 76.0 0.016 1.021  0.107 0.104 94.3 0.012 1.345 0.108 0.097 93.0 0.012

025 5 -2.766 0.098 0.092 89.5 0.010 2.016 0.106 0.100 93.0 0.012 2.090 0.106 0.097 91.8 0.012

10 -0.656 0.098 0.093 94.0 0.010 1.866 0.103 0.097 93.8 0.011 1.891  0.103 0.096 93.0 0.011

2 -30.079 0.071 0.070 2.4  0.095 -8.581 0.106 0.108 83.8 0.019 -7.138  0.111 0.094 80.0 0.017

B 0.5 5 -14.297 0.087 0.082 53.8 0.028 -0.299 0.112 0.107 93.6 0.013 0.305 0.114 0.098 90.0 0.013
10 -7.178 0.093 0.088 80.6 0.014 1.318  0.108 0.102 94.8 0.012 1.553  0.109 0.097 93.4 0.012

2 -48.331 0.057 0.056 0.0 0.237 -24.022 0.095 0.096 29.6 0.067 -22.216 0.102 0.081  27.8 0.060

075 5 -27.863 0.075 0.071 4.0 0.083 -7.012 0.111 0.107 87.0 0.017 -5.632  0.116 0.094 82.6 0.017

10 -16.210 0.085 0.080 49.8 0.033 -1.343 0.111 0.106 93.6 0.013 -0.605 0.114 0.096 90.4 0.013

2 -9.744 0.062 0.061 84.8 0.006 0.259  0.072 0.070 95.3 0.005 0.591  0.072 0.068 94.0 0.005

025 5 -3.367 0.068 0.064 90.5 0.005 1.397  0.072 0.068 91.8 0.005 1.479  0.073 0.067 91.5 0.005

10 -1.050 0.069 0.065 94.3 0.005 1.466  0.071 0.067 95.3 0.005 1.491  0.071 0.067 95.0 0.005

2 -30.756 0.051 0.052 17.8 0.026 -9.485 0.071 0.072 874 0.007 -8.020 0.074 0.067 86.2 0.007

Bs 05 © -15.170 0.061 0.059 72.0 0.010 -1.251  0.076 0.072 91.2 0.006 -0.573  0.077 0.068 89.2 0.006
10 -7.738 0.064 0.062 86.0 0.006 0.728 0.073 0.070 95.2 0.005 0.964 0.073 0.068 94.8 0.005

2 -48.876 0.043 0.043 0.0 0.062 -24.866 0.066 0.065 50.6 0.020 -23.071 0.071 0.060 472 0.018

0.75 5 -28.757 0.055 0.052 23.0 0.024 -8.107 0.076 0.071 88.6 0.007 -6.552  0.080 0.067 85.2 0.007

10 -16.656 0.059 0.058 67.0 0.010 -1.807 0.075 0.072 93.2 0.006 -1.068 0.077 0.067 91.2 0.006

2 -8872 0.091 0.086 748 0.016 1.295 0.109 0.104 94.0 0.012 1.628 0.110 0.097 92.8 0.012

025 5 -2.564 0.099 0.092 90.0 0.010 2246 0.108 0.100 93.3 0.012 2322 0.108 0.097 925 0.012

10 -0.361 0.101 0.093 925 0.010 2176 0.105 0.097 93.3 0.011 2.202  0.106 0.096 92.8 0.011

2 -29.961 0.070 0.070 2.6  0.095 -8.350  0.105 0.108 83.0 0.018 -6.855 0.111 0.094 81.0 0.017

By 05 © -14.260 0.087 0.082 56.4 0.028 -0.197  0.113 0.107 93.8 0.013 0.416 0.115 0.098 90.6 0.013
10 -6.912  0.093 0.088 842 0.014 1.632  0.109 0.102 94.2 0.012 1.861  0.110 0.097 92.8 0.012

2 -48.355 0.056 0.057 0.0 0.237 -23.991 0.094 0.099 304 0.066 -22.143 0.101 0.082 27.6 0.059

075 5 -27.939 0.075 0.071 3.2 0.084 -6.981 0.112 0.107 88.2 0.018 -5.577 0.118 0.094 822 0.017

10 -15.961 0.086 0.081 47.6 0.033 -0.992  0.113 0.108 93.6 0.013 -0.274  0.115 0.098 924 0.013

2 -8910 0.085 0.086 76.8 0.015 1.228 0.101 0.103 97.3 0.011 1.559  0.102 0.097 95.8 0.011

025 5 -2.595 0.093 0.091 93.0 0.009 2192 0.101 0.099 948 0.011 2272 0.101 0.096 93.8 0.011

10 -0.472  0.094 0.093 93.5 0.009 2.061  0.098 0.097 95.0 0.010 2.078 0.099 0.096 94.8 0.010

2 -29.879 0.068 0.070 1.8 0.094 -8.249 0.101 0.108 84.2 0.017 -6.769 0.106 0.094 81.4 0.016

By 05 © -14119 0.086 0.082 55.6 0.027 -0.097  0.110 0.106 93.6 0.012 0.545 0.112 0.097 90.2 0.013
10 -7.024 0.091 0.088 828 0.013 1463 0.105 0.102 94.4 0.011 1.697 0.106 0.097 92.6 0.011

2 -48.241 0.054 0.056 0.0 0.236 -23.813 0.090 0.098 30.4 0.065 -21.962  0.096 0.083 26.8 0.058

0.75 5 -27.700 0.076 0.070 4.0 0.082 -6.787 0.112 0.104 86.8 0.017 -5.339 0.116 0.091 82.8 0.016

10 -16.030 0.084 0.079 45.8 0.033 -1.153  0.110 0.105 92.8 0.012 -0.438 0.111 0.095 90.0 0.012

2 -9.053 0.091 0.086 76.3 0.016 1.099 0.108 0.103 93.0 0.011 1435 0.109 0.097 91.0 0.012

025 5 -2.578 0.097 0.092 90.0 0.010 2.227 0.106 0.100 95.5 0.011 2.294  0.106 0.097 94.0 0.012

10 -0.552 0.098 0.093 93.3 0.009 1.977  0.102 0.098 94.0 0.011 2.001  0.102 0.096 94.0 0.011

2 -30.188 0.070 0.070 2.6  0.096 -8.621 0.105 0.108 83.4 0.018 -7.101  0.110 0.094 80.2 0.017

Bs 05 © -14.281 0.087 0.082 542 0.028 -0.239  0.112 0.107 934 0.013 0.369 0.114 0.098 91.2 0.013
10 -7.259 0.091 0.088 812 0.014 1.254  0.106 0.102 94.8 0.011 1.481  0.107 0.097 92.6 0.012

2 -48.523 0.056 0.056 0.0 0.239 -24.226  0.093 0.096 26.2 0.067 -22.379 0.100 0.081 24.2  0.060

075 5 -27.888 0.076 0.071 4.4 0.084 -6.986 0.113 0.107 87.6 0.018 -5.598 0.118 0.094 83.8 0.017

10 -16.300 0.084 0.081 442 0.034 -1.398  0.109 0.108 94.6 0.012 -0.680 0.111 0.097 91.6 0.012

2 -5.747 0.110 0.109 94.3 0.013 1.877 0.121 0.121 95.8 0.015 2.285 0.122 0.120 95.0 0.015

025 5 -L171 0.114 0.113 94.3 0.013 2454 0119 0.118 93.8 0.014 2.555 0.119 0.117 93.5 0.014

10 0.363 0.115 0.114 945 0.013 2277 0.118 0.117 93,5 0.013 2306 0.118 0.116 93.5 0.013

2 -20.889 0.099 0.099 80.2 0.021 -5.330  0.124 0.127 95.6 0.016 -3.505 0.129 0.125 944 0.017

5 05 5 -9.686 0.106 0.107 91.0 0.014 0.655 0.121 0.123 95.0 0.015 1.363 0.123 0.122 944 0.015
10 -4.921 0.109 0.110 94.4 0.012 1.381  0.117 0.120 94.2 0.014 1.603 0.118 0.119 94.0 0.014

2 -33.506 0.089 0.090 53.0 0.036 —16.2155 ).118 0.127  91.0 0.021 -14.352  0.126 0.123 90.2 0.021

075 5 -19.413 0.099 0.100 83.6 0.019 -4.445770.123  0.126 94.4 0.016 -2.740  0.127 0.124 93.8 0.016

—
o

-11.602 0.104 0.106 91.6 0.014 -0.771  0.120 0.124 94.6 0.014 -0.082  0.120 0.122 94.0 0.015
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Table A.9: Simulation results for the row parameters with p, = 20, E}, is generated from

matrix normal distribution, and n = 1000
Naive Estimator Method 1 Estimator Method 2 Estimator
Bias% ESE ASE CR% MSE Bias% ESE ASE CR% MSE Bias% ESE ASE CR% MSE

Parameter o m

2 0.002 0.065 0.065 93.6 0.004 -0.006 0.067 0.064 92.8 0.005 -0.026 0.067 0.063 93.2 0.004

025 95 -0.203 0.064 0.062 92.0 0.004 -0.183 0.065 0.061 92.0 0.004 -0.199 0.065 0.061 91.6 0.004

10 -0.299 0.064 0.061 93.8 0.004 -0.288 0.064 0.060 93.8 0.004 -0.298 0.064 0.060 93.8 0.004

2 0377 0.076 0.076 93.4 0.006 0.295 0.082 0.073 91.0 0.007 0.463 0.079 0.073 91.0 0.006

@ 0.5 5 -0.180 0.069 0.067 93.6 0.005 -0.194 0.073 0.066 91.0 0.005 -0.144 0.072 0.065 90.0 0.005
10 -0.369 0.067 0.064 93.6 0.004 -0.372  0.068 0.063 92.6 0.005 -0.388 0.068 0.062 92.4 0.005

2 0.741 0.089 0.090 94.8 0.008 0.661 0.099 0.084 89.8 0.010 0.927 0.094 0.083 89.8 0.009

0.75 5 -0.068 0.077 0.075 93.6 0.006 -0.181 0.084 0.072 89.2 0.007 -0.030 0.083 0.072 89.8 0.007

10 -0.405 0.071 0.068 93.8 0.005 -0.470 0.074 0.067 91.4 0.006 -0.436 0.073 0.066 91.2 0.005

2 0.666 0.067 0.065 954 0.004 0.622 0.068 0.064 94.8 0.005 0.630 0.068 0.063 94.0 0.005

025 5 0864 0.066 0.062 944 0.004 0.832 0.066 0.061 93.8 0.004 0.863 0.066 0.061 93.4 0.004

10 0.777 0.065 0.061 92.8 0.004 0.772  0.065 0.060 92.4 0.004 0.779  0.065 0.060 92.2 0.004

2 0772 0.079 0.076 94.8 0.006 0.668 0.083 0.073 92.2 0.007 0.847 0.083 0.072 91.4 0.007

as 05 o 1173 0.072 0.067 93.8 0.005 1.080 0.075 0.066 91.4 0.006 1.203 0.076 0.066 90.8 0.006
10 0.875 0.069 0.064 92.8 0.005 0.862 0.071 0.063 92.2 0.005 0.883 0.071 0.062 91.4 0.005

2 0.906 0.096 0.090 94.0 0.009 0.490 0.103 0.084 89.4 0.011 1.070  0.101 0.082 89.2 0.010

075 5 1545 0.080 0.075 93.8 0.007 1.459 0.088 0.072 90.0 0.008 1.579 0.087 0.072 89.4 0.008

10 0974 0.073 0.068 92.8 0.005 0.897 0.078 0.067 90.2 0.006 0.978 0.078 0.066 89.6 0.006

2 -0.437 0.066 0.065 94.2 0.004 -0.440 0.067 0.064 93.6 0.005 -0.382 0.067 0.063 93.6 0.005

025 o5 -0.031 0.064 0.062 92.6 0.004 0.003 0.065 0.061 92.0 0.004 0.050 0.065 0.061 91.0 0.004

10 -0.366 0.062 0.061 93.6 0.004 -0.362  0.062 0.061 93.8 0.004 -0.343  0.062 0.060 93.8 0.004

2 -0.489 0.076 0.076 93.8 0.006 -0.590 0.081 0.073 91.2 0.007 -0.507 0.081 0.072 91.2 0.007

s 0.5 o 0.203 0.070 0.067 92.6 0.005 0.345 0.073 0.066 91.2 0.005 0.447 0.073 0.066 90.6 0.005
10 -0.367 0.064 0.064 94.0 0.004 -0.343  0.065 0.063 93.4 0.004 -0.294 0.065 0.063 93.4 0.004

2 -0.38 0.091 0.090 93.6 0.008 -0.773  0.098 0.084 89.6 0.010 -0.636  0.098 0.082 90.2 0.010

075 5 0398 0.077 0.075 92.8 0.006 0.679 0.084 0.072 90.2 0.007 0.717 0.084 0.072 88.6 0.007

10 -0.377 0.068 0.068 94.4 0.005 -0.294 0.071 0.067 92.8 0.005 -0.225 0.071 0.066 92.4 0.005

2 0.249 0.068 0.065 93.0 0.005 0.184 0.069 0.063 91.6 0.005 0.105 0.069 0.063 91.8 0.005

025 5 0474 0.066 0.062 932 0.004 0.526  0.066 0.062 92.8 0.004 0.490 0.066 0.061 92.8 0.004

10 0.505 0.065 0.061 93.8 0.004 0.524 0.065 0.061 93.6 0.004 0.496 0.065 0.061 93.4 0.004

2 -0.051 0.081 0.076 94.2 0.006 -0.483 0.085 0.073 90.6 0.007 -0.486 0.084 0.072 89.6 0.007

iy 0.5 o 0401 0.072 0.068 93.0 0.005 0.463 0.074 0.066 91.8 0.005 0.415 0.074 0.066 91.0 0.005
10 0.581 0.068 0.064 94.0 0.005 0.617 0.069 0.063 93.0 0.005 0.509 0.068 0.063 92.4 0.005

2 -0.232 0.096 0.090 92.4 0.009 -0.984 0.105 0.084 88.0 0.011 -0.821 0.102 0.082 87.0 0.010

075 5 0356 0.080 0.075 93.0 0.006 0.429 0.085 0.072 88.8 0.007 0.336  0.084 0.072 89.4 0.007

10 0.698 0.073 0.068 93.8 0.005 0.682 0.075 0.067 90.8 0.006 0.503 0.074 0.066 91.2 0.006
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Table A.10: Simulation results for the column parameters and covariate parameters
pe = 20, Ey, is generated from matrix normal distribution, and n = 1000

with

Parameter

a

m

Naive Estimator

Method 1 Estimator

Method 2 Estimator

Bias% ESE ASE CR% MSE Bias% ESE ASE CR% MSE Bias% ESE ASE CR% MSE

2 -5.318 0.068 0.065 89.4 0.005 11.888 0.090 0.085 93.2 0.012 13.599 0.095 0.080 87.6 0.014

025 5 4042 0.074 0.070 94.4 0.006 12.894 0.086 0.080 90.0 0.012 13.225 0.086 0.077 87.8 0.012

10 8187 0.077 0.072 91.8 0.008 13.122  0.084 0.078 88.6 0.011 13.189 0.084 0.076 87.8 0.011

2 -32.826 0.052 0.051 13.2 0.030 -4.330  0.085 0.085 92.6 0.008 1.835 0.100 0.080 88.8 0.010

B 05 5 -13.194 0.064 0.061 754 0.008 8.560 0.090 0.086 95.2 0.010 11.434 0.095 0.081 88.8 0.012
10 -2.197 0.070 0.066 92.4 0.005 12.799 0.089 0.084 89.8 0.012 13.935 0.092 0.079 86.6 0.013

2 -52.880 0.042 0.041 0.0 0.072 -25.355  0.073 0.073 542 0.021 -19.527 0.087 0.069 58.6 0.017

075 5 -30.474 0.056 0.052 20.8 0.026 -2.713  0.088 0.086 91.2 0.008 2.820 0.098 0.080 89.0 0.010

10 -14.951 0.062 0.060 70.6 0.009 8.347 0.090 0.088 94.8 0.010 11.715 0.098 0.081 87.0 0.013

2 -6.380 0.070 0.065 88.4 0.006 10.599 0.093 0.084 91.6 0.011 12.269 0.097 0.080 88.0 0.013

025 5 2891 0.074 0.070 93.4 0.006 11.604 0.085 0.079 90.4 0.011 11.913 0.086 0.077 87.8 0.011

10 6.492 0.076 0.072 92.6 0.007 11.308 0.083 0.077 90.2 0.010 11.365 0.083 0.076 88.6 0.010

2 -33.324 0.054 0.051 14.0 0.031 -4.973  0.090 0.085 89.2 0.009 1.437  0.107 0.081 86.2 0.012

By 05 © -13.841 0.064 0.061 73.8 0.009 7.740  0.089 0.086 944 0.009 10.451  0.095 0.080 89.0 0.012
10 -3.777 0.069 0.066 91.8 0.005 10.830 0.087 0.083 92.0 0.010 11.898 0.090 0.079 88.0 0.012

2 -53.136 0.043 0.041 0.0 0.072 -25.644 0.077 0.073 52.6 0.022 -19.221  0.095 0.069 59.2  0.018

0.75 5 -30.787 0.054 0.052 20.0 0.027 -3.091  0.086 0.086 93.4 0.008 2215 0.097 0.080 89.0 0.010

10 -16.325 0.061 0.060 68.2 0.010 6.393  0.087 0.087 95.8 0.009 9.594  0.096 0.081 89.4 0.011

2 -5482 0.069 0.065 89.2 0.006 11.856 0.092 0.085 91.8 0.012 13.478 0.096 0.080 86.8 0.014

025 5 3.740 0.072 0.070 93.6 0.006 12.599 0.083 0.080 90.6 0.011 12.899 0.084 0.077 884 0.011

10 7.642 0.076 0.073 91.8 0.007 12,559 0.082 0.078 89.2 0.011 12.609 0.082 0.076 88.4 0.011

2 -32.966 0.054 0.051 15.0 0.030 -4.212° 0.090 0.086 90.2 0.009 1.946  0.108 0.081 87.2 0.012

Bis 05 © -13.472 0.062 0.061 748 0.008 8.308 0.086 0.087 95.4 0.009 11.191  0.092 0.081 89.4 0.012
10 -2.843 0.069 0.067 93.0 0.005 12.067 0.088 0.084 91.8 0.011 13.156  0.090 0.080 87.2 0.013

2 -53.059 0.043 0.041 0.2 0.072 -25.376  0.077 0.074 524 0.022 -19.330  0.095 0.069 58.6 0.018

0.75 5 -30.767 0.053 0.052 16.8 0.026 -3.101  0.083 0.085 92.8 0.007 2.634 0.095 0.080 91.0 0.009

10 -15.689 0.062 0.060 68.4 0.010 7.400  0.090 0.088 944 0.009 10.690 0.097 0.082 89.4 0.012

2 -2.627 0.141 0.128 92.0 0.020 11.683 0.170 0.153 92.2  0.032 13.283 0.176 0.152 90.6 0.035

025 5 5026 0.147 0.134 93.2 0.022 12,518 0.162 0.146 924 0.030 12.766  0.162 0.145 914 0.030

10 8488 0.152 0.136 92.0 0.025 12.661 0.161 0.143 91.0 0.030 12.690 0.161 0.142 90.8 0.030

2 -24.324 0.117 0.110 78.6 0.028 -1.557 0.166 0.158 93.8 0.027 4.628 0.192 0.163 91.6 0.038

5 05 © -9.146 0.131 0.123 93.6 0.019 8.871 0.167 0.156 93.4 0.030 11.595 0.176 0.156 91.2 0.034
10 -0.090 0.144 0.129 928 0.021 12.340  0.169 0.151 92.0 0.032 13.367 0.172 0.150 91.0 0.034

2 -39.361 0.100 0.097 48.6 0.049 -18.064 0.148 0.149 89.0 0.030 -11.826  0.177 0.155 89.2  0.035

075 5 -22.959 0.116 0.111 80.2 0.027 -0.878 0.161 0.157 96.2 0.026 4.557 0.180 0.162 93.0 0.033

10 -10.420 0.133 0.121 90.6  0.020 8.353 0.172 0.157 93.2 0.031 11.517 0.181 0.157 91.2 0.036
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Table A.11: Simulation results for the row parameters with p, = 5 and E,, is generated
from the matrix t-distribution

Naive Estimator Method 1 Estimator Method 2 Estimator
Bias% ESE ASE CR% MSE Bias% ESE ASE CR% MSE Bias%  ESE ASE  CR% MSE

Parameter o m

2 0.800 0.063 0.063 95.2 0.004 0.851 0.064 0.062 94.4 0.004 -57.518 6.518 106.238 93.8  42.570

025 5 0977 0.061 0.060 94.6 0.004 0.964 0.061 0.060 94.6 0.004 0933 0.061 0.060 942  0.004

10 0.908 0.061 0.059 93.4 0.004 0.887 0.061 0.059 93.6 0.004 0.925 0.062 0.059 936  0.004

2 0.834 0.071 0.072 96.2 0.005 0.892  0.083 0.069 91.8 0.007 -10.776  1.328  0.367 924 1.767

a 05 5 1110 0.065 0.064 958 0.004 1.027 0.066 0.063 93.6 0.004 -10.047  1.234  7.733  93.0 1.525
10 0961 0.064 0.062 94.4 0.004 0.876 0.064 0.061 94.4 0.004 -8.662  1.064 0237  94.0 1.135

2 1.266 0.083 0.086 96.4 0.007 1.640 0.139 0.109 86.8 0.019 -80.595 6.507  75.014  90.0  42.508

075 5 1.285 0.071 0.071 94.8 0.005 1.097 0.074 0.068 924 0.006 -17.377 1580  27.154  92.0  2.503

10 1.066 0.068 0.065 94.6 0.005 0.887 0.070 0.063 93.4 0.005 6.977  0.683 0490 93.2  0.468

2 0451 0.082 0.079 92.8 0.007 0.356 0.082 0.078 92.2  0.007 -32.012  7.242  117.808 92.0  52.547

025 5 0348 0.077 0.076 94.6 0.006 0.339 0.077 0.076 95.0 0.006 0.341  0.077  0.075 944  0.006

10 0.280 0.077 0.075 93.8 0.006 0.278 0.077 0.075 93.8 0.006 0.253  0.077  0.075  93.8  0.006

2 0.642 0.095 0.093 93.2 0.009 0.274 0.106 0.088 89.8 0.011 -6.398  1.555  0.441  90.8 2421

as 05 5 0401 0.081 0.082 946 0.007 0.331 0.082 0.080 95.0 0.007 -14.692  3.354 21.097 942 11.274
10 0.236  0.080 0.078 93.6 0.006 0.220 0.081 0.077 92.8 0.006 -3.376  0.803  0.187 922 0.647

2 0919 0.111 0.110 93.8 0.012 0.095 0.175 0.118 87.2 0.031 -44.541  7.075 83.471 89.2  50.255

0.75 5 0.565 0.088 0.089 94.8 0.008 0.391 0.091 0.086 93.6 0.008 -37.394  6.355 108.463 91.6  40.530

10 0.212 0.085 0.082 93.2 0.007 0.160 0.086 0.080 91.8 0.007 2201 0470 0.335 920 0.221

2 0297 0.082 0.079 93.4 0.007 0.249 0.084 0.078 93.6 0.007 -40.525  9.128  148.741 93.4  83.490

025 5 0231 0.078 0.076 93.6 0.006 0.219 0.079 0.075 94.0 0.006 0.185  0.079  0.075  93.8  0.006

10 0.208 0.078 0.075 92.8 0.006 0.214 0.078 0.075 93.0 0.006 0.276  0.080  0.075  92.6  0.006

2 0464 0.092 0.092 95.0 0.009 0.261 0.115 0.088 92.0 0.013 -3.865 0.990  0.286  91.0  0.982

ay 05 5 0287 0.08 0.081 93.6 0.007 0.221 0.085 0.079 93.6 0.007 -3.914 0934 5783  93.0 0.873
10 0.184 0.081 0.078 93.4 0.007 0.200 0.082 0.077 93.0 0.007 -14.752 3333 0.725  92.0 11.129

2 0.621 0.106 0.109 964 0.011 -0.013  0.209 0.139 87.8 0.044 -48.374  7.884  94.127 894  62.395

075 5 0401 0.091 0.089 942 0.008 0.226 0.096 0.086 91.6 0.009 -23.895 5.121 94935 922  26.283

10 0.194 0.085 0.082 92.8 0.007 0.207  0.089 0.080 92.2 0.008 21.815 4.841 3370 914 23482

2 0.525 0.081 0.080 96.4 0.007 0.463 0.082 0.078 94.4 0.007 -13.274  3.069  49.558  95.0  9.437

025 5 0395 0.076 0.076 96.2 0.006 0.404 0.076 0.076 96.2 0.006 0.426  0.076  0.075  96.0  0.006

10 0.331 0.075 0.075 95.8 0.006 0.334 0.075 0.075 954 0.006 0.319  0.075  0.075 954  0.006

2 0.692 0.096 0.094 954 0.009 0.503 0.120 0.088 90.6 0.014 2.029 0348 0.146 90.8  0.121

as 05 5 0483 0.081 0.081 954 0.007 0.512 0.083 0.080 94.6 0.007 -19.266 4.424  28.006 93.6 19.613
10 0.330 0.078 0.078 95.8 0.006 0.333 0.078 0.077 95.0 0.006 2.758  0.555  0.155  94.6  0.308

2 0.738 0.112 0.112 95.2 0.013 0.155 0.245 0.148 87.8 0.060 -38.500  7.562 94497  88.8  57.327

075 5 0.639 0.089 0.089 96.0 0.008 0.698 0.096 0.086 93.0 0.009 -74.278 13.108 231923 93.0 172.360

10 0.390 0.083 0.082 95.0 0.007 0.397 0.083 0.080 93.8 0.007 3.302  0.674 0493 928  0.455
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Table A.12: Simulation results for the column parameters and covariate parameters with

P = 5, and Ej, is generated from the matrix ¢-distribution

Naive Estimator Method 1 Estimator Method 2 Estimator
Bias% ESE ASE CR% MSE Bias% ESE ASE CR% MSE Bias% ESE ASE CR% MSE
2 -7.712  0.097 0.089 814 0.015 2.657 0.114 0.109 93.6 0.014 4197 0.299 12.283 89.8 0.091

025 5 -1.664 0.098 0.093 924 0.010 3.164 0.106 0.101  93.2 0.012 3.362  0.106 0.098 92.6 0.012
10 0.610 0.099 0.094 93.4 0.010 3.164  0.103 0.098 93.8 0.012 3.305  0.105 0.097 934 0.012

2 -27.410 0.084 0.077 94  0.082 -4.163  0.128 0.147  90.8 0.018 -1.953  0.353 0.111 83.6 0.125
B 0.5 5 -13.034 0.089 0.084 63.1 0.025 1.224  0.113 0.110 944 0.013 1.824 0.125 0.101 90.2 0.016
10 -5.924 0.093 0.089 85.8 0.012 2.708 0.108 0.104 944 0.012 2.691  0.134 0.098 92.0 0.019

2 -44.550 0.071 0.067 0.2  0.203 -15.745 0.189 13.524 66.9 0.060 -16.907 0.194 0.145  53.9 0.066
0.75 5 -26.147 0.078 0.075 9.0 0.075 -4.423 0.115 0.117  90.6 0.015 -3.833  0.136  0.102 85.8 0.020
10 -14.652 0.086 0.082 53.7 0.029 0.662 0.114 0.110 94.4 0.013 1.228 0.128 0.100 90.2 0.016

2 -8190 0.061 0.062 87.4 0.005 1.998 0.071 0.072 94.0 0.005 3.399  0.134 4437 928 0.018
025 5 -2173 0.063 0.065 944 0.004 2.582  0.067 0.069 954 0.005 2.767  0.067 0.068 94.8 0.005
10 0.109 0.064 0.066 94.6 0.004 2.642  0.066 0.068 95.0 0.005 2.748  0.066 0.067 94.8 0.005

2 -27.621 0.055 0.055 30.9 0.022 -4.760  0.080 0.085 90.6 0.007 0.344 0.441 0.075 88.8 0.194
Bs 05 5 -13.387 0.058 0.060 78.0 0.008 0.663 0.072 0.074 96.2 0.005 1.196  0.076 0.070  93.2 0.006
10 -6.280 0.061 0.063 89.8 0.005 2.304  0.069 0.070  95.2  0.005 2.369  0.074 0.068 94.6  0.006

Parameter o m

2 -44.606 0.048 0.048 0.8 0.052 -16.581 0.091 4.349 747 0.015 -16.567 0.126  0.091  67.5 0.023

0.75 5 -26.308 0.053 0.055 32.5 0.020 -4.911  0.075 0.077  92.6 0.006 -4.184 0.084 0.072  90.2 0.008

10 -14.895 0.058 0.059 72.5 0.009 0.351  0.074 0.073 946 0.005 0.885  0.078 0.069 932 0.006

2 -8125 0.093 0.089 81.2 0.015 2215 0.110 0.108 95.0 0.013 3.043  0.193 7.308 92.0 0.038

025 5 -1.990 0.096 0.092 93.0 0.010 2.806 0.103 0.100 94.6 0.011 3.031  0.103 0.098 93.0 0.011

10 0.250  0.099 0.094 94.0 0.010 2.784 0.103 0.098 93.8 0.011 2943  0.106 0.097 922 0.012

2 -27.809 0.079 0.076 7.8 0.084 -4.622  0.120 0.131  89.8 0.016 -4.177 0.135 0.109  85.2 0.020

By 0.5 5 -13.294 0.085 0.084 60.3 0.025 0.856  0.107 0.110 954 0.011 1484 0.119 0.101  91.6 0.014
10 -6.295 0.094 0.089 84.8 0.013 2.263  0.108 0.103 94.8 0.012 2239  0.143 0.098 92.0 0.021

2 -44.931 0.066 0.066 0.0 0.206 -16.508 0.135 7.287  65.7 0.045 -18.277 0.156  0.129  50.5 0.058

075 5 -26.303 0.076 0.075 84 0.075 -4.733  0.109 0.117  92.0 0.014 -4.035 0.132 0.103 864 0.019

10 -15.017 0.087 0.082 51.1 0.030 0.162  0.113 0.109  95.0 0.013 0.866  0.129 0.099 90.0 0.017

2 -7.965 0.089 0.089 81.2 0.014 2.366  0.105 0.109 96.2 0.012 3126 0.174 6.468  92.8 0.031

025 5 -2.015 0.091 0.092 932 0.009 2.766  0.099 0.100 96.0 0.011 3.003  0.098 0.098 94.8 0.011

10 0.405 0.094 0.094 958 0.009 2.957  0.098 0.098 96.6 0.010 3.109  0.100 0.097 95.8 0.011

2 -27.664 0.077 0.076 7.0 0.082 -4.530  0.119 0.148 91.2 0.016 -6.099  0.400 0.108 85.8 0.163

By 05 5 -13.444 0.081 0.084 60.3 0.025 0.609 0.104 0.109 96.6 0.011 1.262 0.114 0.100 93.8 0.013
10 -6.063 0.089 0.089 86.0 0.012 2.583  0.105 0.104 97.2 0.012 2462  0.146  0.099 95.0 0.022

2 -44.797 0.066 0.067 0.2  0.205 -16.167 0.181 13.330 65.5 0.059 -18.528 0.193 0.127  50.3  0.072

0.75 5 -26.525 0.072 0.075 6.6 0.076 -5.175  0.106 0.116  92.2  0.014 -4.451 0.126 0.103 88.8 0.018

10 -14.757 0.084 0.082 52.7 0.029 0.596 0.114 0.110 97.0 0.013 1.191  0.127 0.100 934 0.016

2 -7.912 0.091 0.089 824 0.015 2.465 0.106 0.108 954 0.012 3.795  0.250  9.859  92.8 0.064

025 5 -1.691 0.094 0.093 944 0.009 3.136  0.101 0.101  94.6 0.011 3.409  0.102 0.098 93.2 0.012

10 0.577  0.095 0.094 95.4 0.009 3.144  0.100 0.099 95.0 0.011 3.253  0.101 0.097 942 0.011

2 -27.650 0.080 0.076 7.0 0.083 -4.411 0121 0.134 91.0 0.017 -2.982  0.262 0.112 84.8 0.070

Bs 0.5 o -13.066 0.084 0.084 61.7 0.024 1.165 0.107 0.110 954 0.011 1915 0.124 0.102 922 0.016
10 -5.942  0.091 0.089 86.0 0.012 2.747 0.105 0.104 95.0 0.012 2790  0.122  0.099 92.6 0.016

2 -44.794 0.068 0.066 0.0  0.205 -16.168 0.147 9.086  65.9 0.048 -17.895 0.166 0.118  51.3  0.059

075 5 -26.134 0.075 0.076 9.8 0.074 -4.449  0.108 0.117 924 0.014 -3.751  0.134 0.110 88.8 0.019

10 -14.687 0.085 0.082 54.5 0.029 0.735 0.113 0.110 94.0 0.013 1.277  0.126 0.100 90.6 0.016

2 -5.858 0.112 0.110 92.6 0.013 1.638 0.122 0.122 952 0.015 2.940 0.165 5.709 934 0.028

025 5 -1.226 0.112 0.113 942 0.013 2335  0.116 0.118 946 0.014 2.520  0.117 0.118  94.2 0.014

10 0814 0.114 0.114 944 0.013 2.718 0.117 0.117 944 0.014 2793 0.117 0.116 944 0.014

2 -20.298 0.103 0.100 81.4 0.021 -4.354 0129 0.134 940 0.017 -3.651  0.139 0.130 91.6 0.020

5 05 o5 -9.749 0.105 0.107 914 0.013 0.474 0.119 0.124 95.0 0.014 1.092  0.120 0.123 948 0.014
10 -3.979 0.111 0.111 93.6 0.013 2393 0.120 0.121 944 0.015 2.635 0.120 0.119 942 0.015

2 -32.267 0.095 0.091 55.5 0.035 -13.815 0.131  3.989 914 0.022 -14.373  0.144 0.154  88.0 0.026

075 5 -19.159 0.099 0.101 83.8 0.019 -4.042  0.120 0.129 95.0 0.015 -3.225 0.123 0.168 944 0.015

10 -10.350 0.107 0.106 91.4 0.014 0.751  0.124 0.125 95.0 0.015 1438 0.126 0.123  94.0 0.016

167



Table A.13: Simulation results for the row parameters with p, = 20, E}, is generated from

the matrix normal distribution, and n = 2000
Naive Estimator Method 1 Estimator Method 2 Estimator
Bias% ESE ASE CR% MSE Bias% ESE ASE CR% MSE Bias% ESE ASE CR% MSE

Parameter o m

2 0.113 0.047 0.046 93.6 0.002 0.182 0.048 0.045 93.6 0.002 0.157 0.047 0.045 93.6 0.002

025 o5 -0.027 0.044 0.044 932 0.002 -0.005 0.045 0.043 92.8 0.002 0.000 0.045 0.043 92.4 0.002

10 -0.076 0.045 0.043 93.4 0.002 -0.064 0.045 0.043 93.2 0.002 -0.073 0.045 0.043 93.0 0.002

2 0301 0.054 0.054 94.2 0.003 0.421 0.058 0.052 90.8 0.003 0.441 0.058 0.051 91.8 0.003

@ 0.5 5 -0.004 0.048 0.047 93.6 0.002 0.027  0.050 0.047 924 0.002 0.091 0.050 0.046 92.4 0.002
10 -0.077 0.047 0.045 93.4 0.002 -0.057 0.048 0.045 92.8 0.002 -0.096 0.048 0.044 93.2 0.002

2 0419 0.063 0.064 94.8 0.004 0.522  0.070 0.059 89.0 0.005 0.707  0.069 0.058 90.2 0.005

075 5 0.033 0.053 0.053 934 0.003 0.014 0.057 0.051 91.2 0.003 0.155 0.057 0.051 92.0 0.003

10 -0.056 0.051 0.048 92.8 0.003 -0.071  0.053 0.047 91.2 0.003 -0.146  0.052 0.047 91.2 0.003

2 0.222 0.047 0.046 94.8 0.002 0.090 0.048 0.045 94.0 0.002 0.084 0.049 0.045 93.0 0.002

025 5 0.074 0.045 0.044 94.0 0.002 0.032 0.045 0.043 93.6 0.002 0.030 0.045 0.043 93.4 0.002

10 -0.120 0.044 0.043 93.6 0.002 -0.148 0.044 0.043 93.6 0.002 -0.142  0.044 0.043 93.4 0.002

2 0.633 0.055 0.054 954 0.003 0.336  0.060 0.052 91.6 0.004 0.318 0.060 0.052 90.4 0.004

as 0.5 5 0266 0.049 0.048 94.6 0.002 0.189 0.050 0.047 92.8 0.002 0.152  0.050 0.046 92.2 0.003
10 -0.144 0.046 0.045 93.8 0.002 -0.239 0.046 0.045 93.2 0.002 -0.220 0.047 0.044 93.0 0.002

2 1.012 0.064 0.064 952 0.004 0.598 0.071 0.060 89.2 0.005 0.621 0.071 0.058 89.6 0.005

075 5 0462 0.054 0.053 93.8 0.003 0.410 0.057 0.051 91.8 0.003 0.365 0.057 0.051 91.6 0.003

10 -0.121 0.049 0.048 94.6 0.002 -0.271 0.050 0.047 92.6 0.003 -0.240  0.050 0.047 92.2  0.003

2 0.153 0.048 0.046 93.0 0.002 0.160 0.048 0.045 93.6 0.002 0.140  0.048 0.045 93.6 0.002

025 o5 0.032 0.045 0.044 944 0.002 0.051 0.045 0.043 94.2 0.002 0.045 0.045 0.043 94.2 0.002

10 -0.247 0.045 0.043 93.6 0.002 -0.245 0.045 0.043 93.4 0.002 -0.246  0.045 0.043 93.4 0.002

2 0.304 0.057 0.054 922 0.003 0.331  0.059 0.052 91.0 0.004 0.254 0.058 0.051 91.6 0.003

s 0.5 5 -0.024 0.048 0.048 93.8 0.002 0.018 0.049 0.047 92.8 0.002 0.019 0.049 0.046 93.2 0.002
10 -0.514 0.047 0.045 93.8 0.002 -0.545 0.048 0.045 93.2 0.002 -0.540 0.048 0.044 92.8 0.002

2 0452 0.068 0.064 92.0 0.005 0.426  0.073 0.059 88.2 0.005 0.497 0.070 0.058 90.2 0.005

075 5 -0.086 0.054 0.053 93.6 0.003 -0.070 0.056 0.051 91.4 0.003 0.013 0.055 0.051 92.0 0.003

10 -0.711 0.050 0.048 95.0 0.003 -0.834 0.052 0.047 92.0 0.003 -0.817 0.052 0.047 91.6 0.003

2 0.242 0.044 0.046 94.8 0.002 0.139 0.045 0.045 94.8 0.002 0.155 0.045 0.045 94.6 0.002

025 95 0290 0.044 0.044 948 0.002 0.276  0.044 0.044 94.0 0.002 0272 0.044 0.043 94.0 0.002

10 0.152 0.043 0.043 954 0.002 0.149 0.043 0.043 95.6 0.002 0.145 0.043 0.043 95.6 0.002

2 0495 0.051 0.054 96.2 0.003 0.287 0.055 0.052 94.4 0.003 0.296 0.054 0.052 93.4 0.003

iy 0.5 5 0511 0.048 0.048 93.6 0.002 0.436  0.049 0.047 93.0 0.002 0.446 0.049 0.046 93.0 0.002
10 0.187 0.045 0.045 95.2 0.002 0.172  0.046 0.045 94.8 0.002 0.150 0.046 0.044 94.4 0.002

2 0.704 0.060 0.064 96.4 0.004 0.556  0.066 0.060 93.6 0.004 0.561 0.064 0.058 92.8 0.004

075 5 0.794 0.054 0.053 93.8 0.003 0.621 0.057 0.051 91.8 0.003 0.677 0.056 0.051 91.8 0.003

10 0.229 0.049 0.048 95.0 0.002 0.163  0.050 0.047 93.6 0.002 0.133 0.050 0.047 94.4 0.002
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Table A.14: Simulation results for the column parameters and covariate parameters with

pe = 20, Ey, is generated from the matrix normal distribution, and n = 2000
Naive Estimator Method 1 Estimator Method 2 Estimator
Bias% ESE ASE CR% MSE Bias%t ESE ASE CR% MSE Bias%t ESE ASE CR% MSE

Parameter o m

2 -10.595 0.042 0.043 742 0.005 3.374  0.052 0.053 95.2 0.003 4.240  0.053 0.051 91.8 0.003

025 5 -1.839 0.048 0.046 93.4 0.002 5265 0.054 0.051 92.8 0.004 5466  0.054 0.050 91.4 0.004

10 1.417 0.047 0.047 952 0.002 5.272  0.050 0.050 93.0 0.003 5.335 0.050 0.049 92.6 0.003

2 -35970 0.034 0.034 0.2 0.034 -11.690 0.052 0.053 77.0 0.006 -8.514  0.056 0.049 80.0 0.005

B 05 5 ~-17.336 0.042 0.041 43.6 0.009 0.944  0.057 0.054 94.6 0.003 2.555 0.059 0.051 91.6 0.004
10 -7.845 0.044 0.044 81.2 0.003 4.151  0.052 0.053 94.4 0.003 4.822  0.053 0.050 93.0 0.003

2 -54.839 0.029 0.028 0.0 0.076 -30.599 0.048 0.046 14.2 0.026 -27.578 0.052 0.043 16.8 0.022

075 5 -33.423 0.036 0.035 1.6 0.029 -9.366  0.055 0.054 80.8 0.005 -6.271  0.059 0.050 83.2 0.004

10 -19.378 0.039 0.040 324 0.011 -0.190  0.053 0.054 96.0 0.003 1.683 0.056 0.051 93.8 0.003

2 -9.698 0.046 0.043 748 0.004 4378 0.056 0.054 924 0.004 5.233  0.057 0.051 90.0 0.004

025 5 -1.327 0.049 0.046 93.4 0.002 5.800 0.054 0.051 92.8 0.004 6.006 0.055 0.050 91.2 0.004

10 2.022  0.050 0.047 94.6 0.003 5.899  0.053 0.050 91.8 0.004 5961 0.053 0.049 91.2 0.004

2 -35.004 0.036 0.035 1.4 0.032 -10.349 0.055 0.054 78.4 0.006 -7.291  0.060 0.050 80.2 0.005

By 05 © -16.922 0.044 0.041 43.6 0.009 1.417  0.058 0.055 94.2 0.003 3.022  0.059 0.051 91.6 0.004
10 -7.287 0.047 0.044 83.8 0.003 4.777  0.056 0.053 94.0 0.004 5452 0.057 0.051 91.0 0.004

2 -53.947 0.029 0.028 0.0 0.074 -29.202  0.049 0.047 146 0.024 -26.254 0.053 0.043 18.8 0.020

075 5 -33.083 0.038 0.035 0.8 0.029 -8.926  0.056 0.054 81.8 0.005 -5.870  0.060 0.050 82.8 0.004

10 -18.885 0.042 0.040 36.2 0.011 0.398  0.057 0.054 94.4 0.003 2.294  0.059 0.0561 92.2 0.004

2 -10.403 0.042 0.043 724 0.004 3.574 0.053 0.053 95.6 0.003 4373 0.054 0.051 93.0 0.003

025 5 -1.981 0.044 0.046 94.8 0.002 5.063 0.049 0.051 95.6 0.003 5244 0.049 0.050 93.6 0.003

10 1.421 0.046 0.047 95.6 0.002 5.260 0.049 0.050 95.0 0.003 5.313  0.049 0.049 94.0 0.003

2 -35.660 0.033 0.035 0.0 0.033 -11.242 0.052 0.053 77.0 0.006 -8.275  0.056 0.050 79.6 0.005

Bis 05 © -17.452 0.038 0.041 43.0 0.009 0.647 0.051 0.054 96.4 0.003 2.161  0.053 0.051 95.2 0.003
10 -7.761 0.043 0.044 82.6 0.003 4190  0.052 0.053 95.8 0.003 4.840  0.053 0.051 92.2 0.003

2 -54.537 0.027 0.028 0.0 0.075 -30.127 0.047 0.047 15.6 0.025 -27.181 0.051 0.043 19.8 0.021

075 5 -33.454 0.033 0.035 0.6 0.029 -9.587 0.050 0.054 82.2 0.005 -6.682  0.053 0.050 84.8 0.004

10 -19.223 0.040 0.040 33.0 0.011 -0.105 0.054 0.054 94.4 0.003 1.740  0.057 0.051 91.6 0.003

2 -6.621 0.090 0.086 92.4 0.009 4834 0.103 0.100 92.6 0.011 5.540  0.105 0.099 92.0 0.012

025 5 0133 0.097 0.089 92.4 0.009 5936 0.104 0.096 91.6 0.012 6.122  0.104 0.095 91.0 0.012

10 3.142  0.098 0.091 92.6 0.010 6.347 0.101 0.094 924 0.011 6.404 0.102 0.094 91.8 0.011

2 -26.726 0.076 0.075 56.6 0.024 -7.680 0.102 0.103 94.0 0.012 -4.815 0.109 0.103 93.2 0.012

5 05 © -12416 0.090 0.083 85.6 0.012 2.209  0.109 0.101 924 0.012 3.783 0.113 0.101 904 0.013
10 -4.370  0.094 0.087 92.2 0.009 5.557 0.106 0.099 924 0.012 6.217  0.107 0.098 91.2 0.012

2 -40.955 0.066 0.067 14.2 0.046 -22.922 0.093 0.098 77.6 0.022 -19.894 0.101 0.098 79.2 0.020

075 5 -25.012 0.082 0.076 61.6 0.022 -6.290 0.109 0.103 924 0.013 -3.041  0.117 0.103 90.6 0.014

10 -13.691 0.088 0.082 84.0 0.013 1.926 0.108 0.102 93.8 0.012 3.868 0.113 0.101 924 0.013
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Appendix B

Technical Components for Chapter 3

B.1 Regularity Conditions

The following standard regularity conditions are required for the establishment of the
asymptotic results for the estimators described in Chapter 3.

(C.1) The expectations of the first derivative of U¢(0;Y,S), U°(0;Y;") and UZ(n) with respect
to 6 exist and are not singular at 6.

(C.2) The second derivatives of U¢(0;Y), U°(0;Y;*) and U2(n) with respect to 6 exist and
are continuous and bounded in a neighborhood of 6.

(C.3) The expectation of the first derivative of §;Sy(¢) with respect to ¢ exists and is not
singular at ¢y.

(C.4) The second derivatives of U°(6;Y,") and US(n) with respect to ¢ exist and are con-
tinuous and bounded in a neighborhood of ¢y.

170



B.2 Proof of Theorem 3.1

Noting that 6, is the solution of (3.6), ie., >, UC(éC;Y,f) = 0, we apply the first-order
k=1

Taylor series expansion to the equation around_QO:

1 ¢ A
= — ) U“(0:Yy)
Vi

NI By LT TR S

k=1
+ 0p(v/1l0 = 6ol)-

By Condition (C.2) and the Central Limit Theorem, we have that

1 < . o d
%ZU(GO;YMHN(O,EC) as n — 0o, (B.2)
k=1
thus, \/Lﬁ I; U¢(6p; Y,S) = O,(1), where X. = E{U(0y; Y,$)U(6p; Y,¢)T}. By Condition (C.1)
and the Law of Large Numbers, we obtain that

oU(0o; YY)
_Z oT k) P

> [ B.
50 ¢ as N — 00, (B.3)

thus, z QO — 0,(1), where T'. = E{OU(6; Y)/00T}. Then (B.1) shows that
a0t p k

Op(1) + Op(1) x V1|0 = 00|l + 0p(v/nl|0 — Bo]|) = O,(1), (B.4)

implying that [0, — 6o]| is of order Op(\/iﬁ).
Combining (B.1), (B.2) and (B.3), then by the Slutsky’s Theorem, we obtain that

V(. — 0y) =2 N(0,T.E.(I';1)7) as n — oo.
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B.3 Proof of Theorem 3.2.

Noting that 7, = (¢I,67)7 is the solution of (3.8), we apply the first-order Taylor series

v v

expansion around 7y to (3.8) with 7 replaced by 7,:

-1

i ( b, - @0) L 30U (B0, 60;Yi)/067 Z OU*(00, do: i) /06T
v — o 0 w 22 0k X 05(60) /007 (B.5)

\/—Z< 55?92@% )> + 0p(1).

By Conditions (C.1)-(C.4), applying the Central Limit Theorem to the right-hand-side of
(B.5) leads to the asymptotic distribution of /n(7, — no) as

V(i — o) =2+ N0, T3 (00) S (10) [T (10)]7) as e — o0,
where

E{OU(00, o; YE) 00T} E{OU(0y, do; Yi)/0HT}
Ly (o) = ( 0 E{6: x 0S(¢0)/06T} )

UC(HOa ¢0, ch) UC(907 ¢07 Yvkc) T
by =F )
v{t) { ("o ) (7 b
Since 6 is of primary interest, we explicitly express the asymptotic distribution of the
estimator 0, by calculating the product of the corresponding block matrices:

and

V0, — 0) = N(0, TS, 11T as n — oo,

where ', = E{%}, Y = E{Qr (00, $0)Q2(bo, p0)T} and

Qi(bo, do) = U (6o, do; Yy) — E{@UC(HO, ¢0;ch)/3¢}
< [B{06,51(0) /8¢H_1 % {64Sk(do)}-
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Appendix C

Technical Components for Chapter 4

C.1 Regularity Conditions

(C.1) Assume that A\, — 0, a,, = O(\/iﬁ) and b, — 0 as n — oo.

(C.2) The expectations of QUE(0;Y,S) /00, 0UL(0;Y,) /06 and QU (n)/0n exist and are not
singular at 6.

(C.3) Q*UL(0;Y¥)/00007, D2UL(0;Yyr)/0000T and 9*U®(n)/OndnT exist and are continuous
and bounded in a neighborhood of 6.

(C.4) The variance-covariance matrices of Ug((0;Yy"), Upy(0;Yy) and Ugy(n) are positive
definite at 6.

(C.5) The expectations of 9{6Sk(p)}/0p, OUL(0;Y)/0¢ and UL’ (n)/0¢ exist and are
not singular at ¢.

(C.6) 92{01.S1(0)}/0pDPT, D*UL(0;Yy)/0pDpT and O2ULY (n)/0pd¢T exist and are continu-

ous and bounded in a neighborhood of ¢y.
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C.2 Proof of Theorem 4.1

Here, we show that given Conditions (C.1)-(C.5), there exists a solution to (4.1), 0, such
that ||, — 6] = Op(\/iﬁ + a,), if a, and b, tend to 0 as n — co. We adapt the techniques

of Ma and Li (2010) to do this.
Define

= {5 )

-1
e ei) = nuge: ). and 4, (60) = T, 0)

Write a,, = \/Lﬁ + a, and Ug(0) = US(0;Y,S). Then we consider

% S 61(0) — vd,, (6) = 0. (1)

To show Theorem 4.1, it suffices to show that 0. is a solution for (C.1) that satisfies
|6 — 60|l = O,(a,) by the Brouwer fixed-point theorem.

Given Conditions (C.1) and (C.5), for any 6 with ||§ — 6| = Ca,, for some positive
constant C', we apply the first-order Taylor-series expansion to left-hand-side of (C.1)
around 0y and obtain that

% S 6i(0) — Vi, (6)

= 5 2600~ Vi 0 ©2)
7 2 g 0+ ()~ VA 90,190 () _ )1+ 0,(1))

By Condition (C.5), we have that

a0 — o {230 2O 6 gy 1 10,1

" QU (0) (C:3)

= Vil — 601 { > L0 — 0 {1+ 0,(1))

— a0 — GolP{1 + 0p(1)},
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where the second step is due to the definition of ¢;(-) and the last step is due to the
definition of J; and the law of large numbers.

Furthermore, we have that

0 -0 { T 0 - 001+, 1)
= (0= 00)"V/nTapy, (00)(0 = Bo){1 + 0,(1)} (C.4)

= (0 = 00)"V/nO(b,) (0 — Oo){1 + 0,(1)}
= 0,(v/n]|0 — 60|,

where the first step is due to the definition of ¢} (), the second step is due to Condition
(C.5) and the definition of b, and the last step is from Condition (C.1).

Then combining (C.2), (C.3) and (C.4), we obtain that for § with ||0 — 0| = Ca,
1 n
_ T) _— * _ /
00 { 7 D0 Vi, )

(- w{% > 6i(60) — Vg, (60) |+ Vll0 = 6ol + 0,(1)} + 0, (vl — o]l

= (0 — 6p)7 x Constant + v/nC%a? + 0,(v/nl|f — 6%
= 0,(Cay,) + V/nC?a2 + 0,(v/nC?a?).
(C.5)
As long as C'is large enough, the second term in (C.5) dominates the first and third terms
in (C.5). Thus, for any € > 0, as long as C' is large enough, we have

Pl -0 { =3 6i0) - Vg, @)} > 0] 21—

where [|6 — 0y|| = Cav,,. By the Brouwer fixed-point theorm, with probability at least 1 — e,
there exists at least one solution, 6, for (C.1) that satisfies ||0. — 6y|| = Op(cw,).
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C.3 Lemma 4.1 and the Proof.

Lemma 4.1. Let U5(0) = Z Ui (0; YY), where U (0;Y)) is defined in Section 4.1. If

the conditions in Theorem 4 1 hold, then with the probability tending to one, for any 0
satisfying ||0 — 0o = (\/iﬁ), we have that O = 0 are the solutions to U5(0) = 0, where

On = (&, B, )T is subvector of 0 defined in Section 4.1.
Let dyp = (do + dg + d,) and dyg = (dog + dog + da,). For j =1,...,doy, Uﬁj(e) denote

the jth equation in Ufj(#) and let 6y; denote the jth component of 6y. Then applying the
first-order Taylor series expansion to Ufj;(6) — np) (f11;) around 6o, we obtain that

dy
oUf
UICIj(9> - np/,\n<9113 UHJ (6o) + Z égk (Ox — Oro)

do dg 92 *
0 UII] 9
—0 0, — 0,0) — np, (1651:])si Q1.
;lzl 00,00, ko) (6 10) npAn(| 1] )sign(fn;),
(C.6)

where 6* lies between 6 and 8.

Now we examine the terms on the right hand side of (C.6) using the assumption that

|0 — 6p]] = O(\/Lﬁ) The first term has order O,(y/n) by Condition (C.4), the second

term has order O,(y/n) due to Condition (C.6), and the third term has order O,(y/n) by
Condition (C.5). Hence (C.6) becomes

Uti;(0) — np, (Or;) = —vn{v/np\, (|6u;])sign(0m;) + O,(1)}.

By Condition (C.1), A, is sufficiently small, a,, = O(\/Lﬁ) when n is large enough, then
Vnpl, (|0;]) = oo by Condition (4.5). Thus the sign of Ufj;(6) — np) (0n;) is decided by
the negative of sign(f;). By the continuity of U, (0) —np), (fh1;), we obtain that it is zero
at 9Hj =0.
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C.4 Proof of Theorem 4.2

Theorem 4.2(a) comes from Lemma 4.1 immediately. To show Theorem 4.2(b), let Uf(6r)
denote the ) Ug{0;Y)’}, where Ug {0; Y} is defined in Section 4.1. Then we we apply
k=1

the Taylor series expansion to
0= Ulc(éc,l) - np//\n,1<éc,l>>

and obtain that

~ ~

OUf (o) 4 op(n)}(ed — O10) — ngg — n{Xp + 0,(1)}(6r — O1o)

007

UL (0yo; Y€ .
= Ui (bho) +n {E {%} - 29} (O — b1o)

—n {E{w} - 29} x [E{w} — Ze}_lgﬁop(ﬁ)

0 = Ut (61o) + {

001 007

AU (610; YiE) . AU (0ro; Y,°) -
%} - 29] Bt — 10 — {E{%} - 29} 9o

= Uf(0) +n {E {

+0,(v/n)

where in the first step, the first two terms and the last two terms, respectively, come

~ ~

from the Taylor series expansion of Uf(f.1) and of np’/\ml(ec,l) with gy and ¥y defined after
Theorem 1.

Consequently,
A GUC 0 ,YC —1
\/E[9c,1—9w— {E{%ﬂ}_zg} 99]
OUE (610 V¢ o
o _n—1/2 |:E {%} — 29:| UIC(QIO) + Op(l)v

and Theorem 4.2(b) thus follows from the central limit theorem together with Condition
(C.6).
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C.5 Proof of Theorem 4.3.

We show Theorem 4.3 using similar techniques in Appendix C.2. Let n = (07, ¢7)7. Com-
bining (4.1) and (3.7), this two-stage estimation procedure can be expressed as a single
procedure for ease of establishing the asymptotic results of the resulting estimator, 7,.

Solvin
| N
2 2’“( o ore oy | =0 (©7)

- OrSk(9)

gives a consistent estimator for n, say 7, = (é},, gﬁl)T, provided regularity conditions. Then,
we obtain

-1

V(B — ) = —/n B{ U (60, 60: Y{) = 14, (6) } + 0,(1)

> {3U§(Ggg Qfo; Yk?)} o

where 3 = diag{p}_(@),px (8),pr. (1)},
U0, ;YY) = Up(0, ¢; ) —

{ ZaUk Y/} [{Zakxask 06} x (BuSk(o)}.

Now we denote

go = [ 0T 1 and g (0) = urh, (0),

and define
1 (0) = Jo x Ug“(0, ¢; Yy,

where we treat ¢ as fixed. Denote «,, = \/iﬁ + a,.

Then to prove Theorem 4.3, it suffices to show that
1 < ,
NG > oi(0) — Vg, (6) = 0. (C.8)
k=1
has a solution, 6, that satisfies [|6, — 8o = Op(an,).
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For any 6 with ||§ — 6y|| = Ca, for some positive constant C, given Conditions (C.1)
and (C.5), we apply the first-order Taylor series expansion to (C.7) around 6y and obtain
that

% S 6(0) — vads, (9)

- % S 6i(60) — v/nd,, (60) (C.9)

94y, (6h)
0

965 (0 2020~ 60){1 + op(1)}-

v e e IR

By Condition (C.5), we have that

Vit = 60 { S P 0 - )1 +.0,(1)

= v — ooy 5 3 TN (g )1+ 0,(1))

n

(0 — BT [E{GU’:C(Q&%?“; N o] Ay aU’:c(?e’jbo; 56— a0 {1+ 0,(1)

- \/EHQ — 90"2{1 +0,(1)}.

(C.10)
Furthermore, we have that
0 3\ 0
0oy {2 -1+ 0,03
= (6 — 60)"V/nJapy,, (60) (0 — 00){1 + 0,(1)} (C.11)

= (0 = 00)"V/nO(b,) (6 — 0o){1 + 0,(1)}
= 0,(v/n]|0 — 6oI")
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Then combining (C.9), (C.10) and (C.11), we obtain that
1 n
0 —6))"{—= E o (0) — /ngh, (0
( 0){\/ﬁk:1 k() )\n()}

(0= 00T L3 615 (0) — Vi (80)} + VA9 — Bol(1 + 0p(1)} + oy (VA0 — o]
NG

= (0 — 0p)T x Constant + v/nC?%a2 + 0,(v/n||0 — 6o|?)

= 0,(Ca,) + /nC?a?2 + 0,(v/nC?*a2).
(C.12)
As long as C is large enough, the second terms in (C.12) dominates the first and third terms
in (C.12). Thus, for any ¢ > 0, as long as C is large enough, the probability of (C.12)
larger than zero is at least 1 — . By the Brouwer fixed-point theorem, with probability at
least 1 — ¢, there exists at least one solution, , for (C.7) that satisfies ||0, — 0, = Op(aw).

C.6 Proof of Theorem 4.4

Lemma 4.2 Let Ufi(0,¢) denote Y Ugy{0, ¢; Y}, where Ug {0, ¢; Y’} is defined before
k=1

Theorem 4.4 in Section 4.2. If the conditions in Theorem 4.4 hold, then with the probability

tending to one, for any 0 satisfying ||6 —6o|| = O(\/iﬁ), we have that Oy = 0 are the solutions

to U§(0,¢) = 0.

The proof is similar to that of Lemma 4.1 in Appendix C.3 with Uf;(0) replaced by
UICIj(gv ¢)

Theorem 4.4(a) comes from Lemma 4.2 immediately. Then, similar to the proof of
Theorem 4.2(b) in Appendix D, based on Condition (C.6), we apply the Taylor series

expansion to 0 = ) Ug (010, ¢o; Yy7) — P\, 1(1) to obtain the Theorem 4.4(b).
k=1
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Appendix D

Technical Components for Chapter 5

D.1 Full Conditional Distribution of Hyperparame-
ters

As we defined in (5.6), the prior distribution for hyperparameters, \,,, Ag;, A, and a are
half-Cauchy distribution. It suffices to show the full conditional distribution of A,, only,
and all full conditional distribution of other hyperparameters can be derived using same
techniques:

T(Aa, |, 8,7, a) = m(Aq, |, a)
X T(Ag;) X (| Aa;, @)
2 1 o?
X T <P )

The density function of 7(Ay,|c, 5,7,a) cannot be identified as any known distribution.
Thus, Slice-sampling algorithm (Polson et al. 2014) is used to generate \,, as we present
in Section 5.2.3.
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D.2 Full Conditional Distribution of a(”)

As we claimed in (5.5), the full conditional distribution of a(") is

n

r(@w, 37, B, 1, 2}) o { [] P(Ye = el B) }f (w]B)m(a 57, B,)

k=1

OCE{ exp(< zp, B >)yk>}cosh(| < xp,B > |)

1+ exp(< o, B > 2

< B >
<o { - S BV 00y a)
- < g, B >
=2""1(« al )|>\a(r), Hexp {yk <xp,B>)— xk#
(< 2,8 >)? wk}
2
1 - 1
x exp{ — §a(T)TZ;(1T)a(T) + ; (yk: - §>Q(T)T$k5(”
()T, B2

— #wk — oz(T)Txkﬁ(")< <, B_, > )wk}

1 - r 1 r r

= exp [— §a(r)TZa<1r>a( ) — 504( )Tx;<r>Q(w)xﬁ<r>a( )
1 ")
+ 50 {y — §1n — ngr(w)}a ]

1 r — r T
= exp [ 5 al )T{ ﬁ(T)Q(w)xﬁ(r) + 2a<1T)}a( ) + xﬁ(r)y(w)a( )}

(D.1)
where the third step is from the fact that cosh(u) = 1;%;’((3;), Tgr) = (2180, ..., 2, BNT,
Y= (Y1, yn)T, y(w) =y — %ln —xp_ (), zg_(w) ={(< x1,B_, >)wy, ..., (< xp, B_, >
Jwn}T, 1, is an n x 1 unit vector, Q(w) = diag(w) and X, = diag(\?,a*). We can

observe that (D.1) is the kernel of a multivariate normal with mean m,, (w) and covariance
Yo (w) such that

M (W) = Vg (W) g y(w),
Satr () = {al Qw)aze + 30 }

-1
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D.3 Full Conditional Distribution of 5"
The full conditional distribution of 8 is
(87w, o, {Y, 2}) o { H P(Yy = ye|B) } f (w]B)r (8|, B_,)

" Yk < 5, B >
. H{ exp(< xy, B >) }COSh<| T, |)
P 1+ exp(< zp, B >) 2

(< Lk, B >) W

X exp{ - }ww(r)um,a)

2
—n T - < - ’% >
= 27"1(5" Ag0, a) HeXP {yk(< o, B >) = kT
k=1
(< L, ‘B >)2wk}
: (D.2)
1 A LN WG "
o exp{ = 580 B0+ 37 (= 5 )T
k=1
(r)71 (r))2
_ %wk - a””mﬂ”( <z, B > >w’“}
1 - r 1 r "
= exp [_ Qﬁ(T)szlaﬁ( = 55( ]y QUw) 40 87
1
+ a:a<r>{?/ - 51” B xB"‘(w)}B(T)]

1
= exp | = 5807{aT Qw)age + Tk} + za0y(w) 80

where 2,0 = (2], .., 2Ta)T, and Sy, = diag()\%(r)az). We can observe that (D.2) is
the kernel of a multivariate normal with mean mgq) (w) and covariance X4 (w) such that

Mae (W) = Lo (W) 2,0 y(w),
Ygm (w) = {$L<T>Q(w)%<ﬂ + Zg&»}

-1
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