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Abstract

Matrix-variate regression models are useful for featuring data with a matrix structure,
such as brain imaging data. However, those methods do not apply to data with measure-
ment error or misclasscification. While mismeasurement is an inevitable issue in the data
collecting process, little research has been available to handle matrix-variate regression
with mismeasurement. In this thesis, we explore several important problems concerning
matrix-variate regression with error-contaminated data.

In Chapter 1, we provide a brief introduction for matrix-variate data and review relevant
topics including logistic regression analysis, measurement error/misclassification mecha-
nisms, regularization methods, and Bayesian inference procedures.

In Chapter 2, we discuss matrix-variate logistic regression for handling error-contaminated
data. Measurement error in covariates has been extensively studied in many conventional
regression settings where covariate information is typically expressed in a vector form.
However, there has been little work on error-prone matrix-variate data which commonly
arise from studies with imaging, spatial-temporal structures. We particularly focus on
matrix-variate logistic measurement error models. We examine the biases induced from
the naive analysis which ignores measurement error. Two measurement error correction
methods are developed to adjust for measurement error effects. The proposed methods are
justified both theoretically and empirically. We analyze a data set arising from a study
examining electroencephalography(EEG) correlates of genetic predisposition to alcoholism
with the proposed methods.

In Chapter 3, we consider a problem complement to that in Chapter 2. Instead of
examining mismeasurement in covariates, here we study mismeasurement in binary re-
sponses. We particularly investigate the response misclassification effects on the matrix-
variate logistic regression model. Matrix-variate logistic regression is useful in facilitating
the relationship between the binary response and matrix-variates which arise commonly
from medical imaging research. However, such a model is impaired by the presence of the
response misclassification. It is imperative to account for misclassification effects when em-
ploying matrix-variate logistic regression to handle such data. In this chapter, we develop
two inferential methods which account for misclassification effects. The first method is an
imputation method which replaces the response variable with an observed and unbiased
pseudo-response variable in the estimation procedure. The second method is derived from
the likelihood function for the observed response surrogate. Our development is carried out
for two settings where misclassification rates are either known or estimated from validation
data. The proposed methods are justified both theoretically and empirically. We analyze
the breast cancer Wisconsin prognostic data with the proposed methods.
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Chapter 4 is a continuation and extension of Chapter 3. We consider regularized matrix-
variate logistic regression with response misclassification, where matrix-variate data may
assume a sparsity structure. With a limited sample size, the presence of a large number
of redundant parameters entails the difficulty of estimation. In this chapter, we develop
inferential methods which account for misclassification effects in combination with the
inclusion of penalty functions to deal with the sparsity of matrix-variate data. We examine
the biases induced from the naive analysis which ignores the response misclassification. Our
development is carried out for two settings where misclassification rates are either known or
estimated from validation data. The proposed methods are justified both theoretically and
empirically. We analyze the breast cancer Wisconsin prognostic data with the proposed
methods.

In Chapter 5, we shift our attention to the Bayesian framework. We consider applying
Bayesian analysis to matrix-variate logistic regression. We propose a Bayesian algorithm
to estimate the matrix-variate parameters element-wisely in combination with the use of
horse-shore shrinkage prior. We investigate the influence on parameter estimation when
ignoring the response misclassification and propose an algorithm to accommodate the ef-
fects of response misclassification. The performance of the proposed method is evaluated
through numerical studies. We analyze the Lee Silverman voice treatment (LSVT) Com-
panion data with the proposed method.

Finally, Chapter 6 summarizes the thesis work and presents some future work.
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Chapter 1

Introduction

In this thesis, we focus on topics concerning matrix-variate regression with measurement
error from both frequentist and Bayesian aspects. Matrix-variate regression is a useful
modelling method for analyzing data with a matrix structure, such as brain imaging data.
This model assumes that the elements from the same row or column share the same effect.
Many researchers proposed various modeling methods based on generalized linear regres-
sion (e.g; Hung and Wang 2013; Li 2014) or Bayesian modelling methods (Carvalho and
West 2007; Guhaniyogi et al. 2017). However, those methods do not apply to data with
measurement error or misclasscification, an issue which is inevitable in the data collecting
process. Li (2014) discussed some issues on this topic from the frequentist viewpoint. But
it lacks a solid theoretical support. To fill in this incomplete research area, we investigate
the influence of measurement error in matrix-variates and the response misclassification on
parameter estimation procedures and propose valid inference models.

Another problem of our interest concerns variable selection with matrix-variate regres-
sion. The structure of the matrix-variate data is complex, and the sparsity assumption
usually needs to be added to the data. Some existing works considered to include a
penalty function to the matrix-variate regression model to conduct inferences (Hung and
Wang 2013; Zhou et al. 2013), but the influence of measurement error or misclassification
on inferential procedures has not been investigated. In this thesis, we consider the matrix-
variate logistic regression model with penalty functions where the response misclassification
is accounted for.

Besides the frequentist viewpoint, Bayesian methods can provide useful procedures to
model matrix-variate data. With Bayesian methods (Wei and Ghosal 2020), the parameters
of the matrix-variate can be obtained by dropping the assumption that each row and
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column share the same effect. A shrunk prior can be imposed on the row and column
parameters element-wisely to conduct inferences. However, no work has been available to
accommodate measurement error or misclassification effects under such settings. Motivated
by this, we consider a Bayesian method based on logistic regression with matrix-variate
data and response misclassification.

To better understand our development in the following chapters, in this chapter, we
review relevant topics. The remainder is organized as follows. In Section 1.1, we introduce
basic notation for describing matrix-variate data. In Section 1.2, we introduce logistic re-
gression analysis from both the frequentist and Bayesian aspects. In Section 1.3, we explain
the measurement error/misclassificaiton mechanisms and present the basics for correcting
measurement error/misclassificaiton. In Sections 1.4 and 1.5, we discuss commonly used
regularization methods for frequentist and Bayesian procedures.

1.1 Matrix-Variate Data

For k = 1, ..., n, let xk be a (p + 1) × q dimension matrix, where xk,ij is the ith row and
the jth column element in xk for i = 1, ..., (p + 1) and j = 1, ..., q. We name covariate
data which has the structure like xk as matrix-variate data. In applications, biomedical
data, such as Electroencephalography (EEG) data and anatomical magnetic resonance
imaging (MRI), exhibit a natural matrix structure. Traditional modelling methods, such
as generalized linear regression (GLM), by vectorizing matrix data, may not be feasible for
handling this kind of data due to the complex data structure and computation burdens.
The assumption that each row or column shares the same effects is often imposed (Kolda
and Bader 2009; Li et al. 2010) for dimension reduction.

To see this, considering the GLM, one may model the matrix-variate data as

g(µk) = γ0 +
〈
xk,B

〉
+ γᵀ1zk (1.1)

where µk = P (Yk = 1|xk, zk), g(·) is the link function, γ0 is a scalar, γ1 is a pz × 1 vector
parameter, B is a (p+ 1)× q matrix, and

〈
xk,B

〉
= 〈vec(xk), vec(B)〉 =

∑
i,j Bijxk,ij.

Using model (1.1), we have to estimate (p + 1) × q + pz + 1 parameters, which are
usually large relative to the usual sample size. The rank-1 matrix decomposition of B, say,
B = αᵀβ, separates the matrix-variate coefficients into two vectors of covariates, where α
is the (p + 1)-dimensional row coefficients and β is the q-dimensional column coefficients.
Under this rank-1 matrix decomposition, the number of matrix-variate parameters needed
to be estimated decreases from (p+1)×q to p+q+1. The model by Hung and Wang (2013)
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used this idea to fit a logistic regression model with an additional constraint that one of
the elements in α is set as 1 to overcome the nonidentifiability issue related to the rank-1
matrix decomposition. Zhou et al. (2013) proposed a more general case using the GLM
with penalty functions based on a rank-R parafac decomposition where the covariate data
xk is a tensor, where the rank-R parafac decomposition of B is B =

∑R
r=1 α

(r) ◦ β(r), α(r)

and β(r) for r = 1, ..., R are column vectors, α(r) ◦β(r) is the outer product of α(r) and β(r),
and R is a positive integer. Zhou and Li (2014) formulated a spectral regularization for
matrix-variate regression, which minimizes a function combining a function of the singular
values of B and the loss function of the negative log-likelihood based on the GLM. Recently,
Guhaniyogi et al. (2017) proposed a tensor regression method with Bayesian analysis under
the rank-R parafac decomposition, where shrinkage priors were assigned to α(r) and β(r)

under the sparsity assumption on B.

1.2 Logistic Regression Analysis

As claimed by Walker and Duncan (1967), the logistic regression model, initially proposed
by Cox (1958) to estimate the probability of an event as a function of independent vari-
ables, has been widely used for binary responses related to disease classification, risk factor
selection, and other aims. In this section, the model is reviewed from the frequentist and
Bayesian aspects.

1.2.1 Logistic Regression Analysis

For k = 1, ..., n, let Yk be the independent binary response labeled as 1 with an event
occurring or 0 otherwise. Given the vector-covariates, zk, the logistic model is

logit{P (Yk = 1|zk)} = β0 + βᵀ
z zk (1.2)

for k = 1, ..., n, where β0 is the scalar parameter, and βz is a pz × 1 vector of parameters.
Let β = (β0, β

ᵀ
z )ᵀ and z = (zᵀ1 , ..., z

ᵀ
n)ᵀ.

An important concept related to the logistic regression model is the odds ratio which
is easy to interpret. The odds of the event occurring is

P (Yk = 1|zk)
1− P (Yk = 1|zk)

= exp(β0 + βᵀ
z zk).
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Then the odds ratio for a unit change in a specific covariate j, zkj, with other covariates
kept fixed, is exp(βzj) for j = 1, ..., pz.

With high dimensional data, the penalized logistic regression model is often employed
(Lokhorst 1999; Shevade and Keerthi 2003; Lukas Meier and Bühlmann 2008).

1.2.2 Bayesian Logistic Regression Analysis

Bayesian analysis is another useful tool in statistical analysis. As discussed by O’Brien
and Dunson (2004), Bayesian approaches have two main advantages over quasi-likelihood
and likelihood-based frequentist methods. First, based on the Markov chain Monte Carlo
(MCMC) algorithms, the large MCMC iterations can overcome the small sample limitation
by using the exact posterior. Secondly, Bayesian methods can impose additional informa-
tion into estimation processes by using an informative prior distribution. With Bayesian
analysis, a prior probability density function (pdf) is assigned to β:

β ∼ π(β|I0),

where I0 denotes the initial information, and π(β|I0) can be non-informative or informative.
Combining with the logistic regression model, the posterior distribution p(β|D(I0,Y)) is

p(β|D(I0,Y)) = cπ(β|I0)`(β|Y), (1.3)

where D(I0,Y) contains the prior information as well as the sample information, `(β|Y) is
the likelihood function derived from the logistic regression model, with Y = (Y1, ..., Yn)ᵀ,
and c is the normalizing constant with the form

c−1 =

∫
π(β|I0)`(β|Y)dβ.

Under model (1.2), (1.3) generally does not have a closed form. Thus, Zellner and Rossi
(1984) proposed to estimate model (1.2) with the help of a normal approximation to (1.3).
To evaluate c, they used the importance sampling procedure. A variety of MCMC methods
were developed for the Bayesian estimation of the logistic regression model, such as Gibbs
sampling or independent Metropolis-Hastings (MH) sampling methods (Zeger and Karim
1991; Gamerman 1997; Rossi et al. 2005), in combination with an approximation to (1.3).

Meanwhile, the data augmentation methods that facilitate Gibbs sampling (Holmes and
Held 2006; Gramacy and Polson 2012; Polson et al. 2013) can avoid the approximation
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procedure to (1.3). The data augmentation methods for the logistic regression model
were extended from the simple latent-variable method of Albert and Chib (1993), who
introduced n latent variables, W = (w1, ..., wn)ᵀ, where wk ∼ N(β0 + βᵀ

z zk, 1), such that
Yk = 1 if wk > 0 and Yk = 0 otherwise. Then the posterior density of β given W , Y,
and z is distributed as a multivariate normal distribution, where β can be sampled using
the Gibbs sampler easily. The Bayesian inference for logistic models using Pólya–Gamma
latent variables (Polson et al. 2013) is perhaps the most efficient method, compared to
other data augmentation methods. The Pólya–Gamma approach is close to that of the
independent MH, whereas the MH jumping distribution needs to be chosen carefully for
simple logistic regression models with abundant data and no hierarchical structures.

1.3 Measurement Error/Misclassification

In practice, imprecise measurements, or mismeasurements, often exist in data collection
procedures with different reasons (Yi and Cook 2005; Carroll et al. 2006). They usually
generate new inference problems and need to be corrected for conducting valid inferences.
In this section, we review some measurement error models for continuous covariates and
misclassification models for univariate binary responses. For k = 1, ..., n, let xk be the px-
dimensional true continuous covariate, and let X∗k be its the surrogate, or observed value.
Let zk be the pz-dimensional true covariate which is precisely measured. We let Yk denote
the true binary response, taking value 0 or 1, and let Y ∗k denote its surrogate or observed
response. Let h(·) and h(·|·) denote the true marginal and conditional probability density
or mass functions for the random variables indicated by the corresponding arguments,
respectively; in the following development, we may loosely use upper case letters for some
of their arguments though ideally, lower case letters should be used for clarity.

1.3.1 Modelling Measurement Error in Continuous Variables

First, we describe the measurement error/misclassification mechanisms. Given the true
covariates {xk, zk}, if Yk and X∗k are conditionally independent, i.e.,

h(Yk|X∗k , xk, zk) = h(Yk|xk, zk),

then we call the measurement error process a nondifferential measurement error mechanism
or a nondifferential misclassification mechanism (if xk is discrete). This mechanism implies
that the surrogate X∗k has no information on inference about the response process if the
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true covariates are given (Yi 2017, Section 2.4). To do inferences, we may factorize the
joint distribution h(Yk, xk, X

∗
k , zk) as

h(Yk, xk, X
∗
k , zk) = h(Yk|xk, X∗k , zk)h(xk, X

∗
K , zk) = h(Yk|xk, zk)h(xk, X

∗
k , zk).

To describe the measurement error process, we can further factorize h(xk, X
∗
k , zk) as

h(xk, X
∗
k , zk) = h(X∗k |xk, zk)h(xk, zk)

or
h(xk, X

∗
k , zk) = h(xk|X∗k , zk)h(X∗k , zk).

In contrast to the nondifferential error mechanism, if

h(Yk|X∗k , xk, zk) 6= h(Yk|xk, zk),

then the mechanism is called a differential measurement error mechanism or a differ-
ential misclassification mechanism (if xk is discrete). This mechanism usually arises
from retrospective studies, such as case-control studies. In this case, we may decompose
h(Yk, xk, X

∗
k , zk) as

h(Yk, xk, X
∗
k , zk) = h(X∗k |Yk, xk, zk)h(Yk|xk, zk)h(xk, zk).

This decomposition allows us to express our interested h(Yk|xk, zk) explicitly, which can
be modelled by standard modelling techniques.

In the following, we introduce two widely used measurement error models for scenarios
with nondifferential measurement error mechanism, a mechanism that has been mostly
considered in the literature of measurement error models (Fuller 1987; Carroll et al. 2006;
Yi 2017):

• Classical Additive Error Model

With the feature that the observed covariate X∗k is more variable than the true
covariate xk, the model is

X∗k = xk + ek,

where the error term ek is assumed to be independent of xk, and the ek have mean
zero and covariance matrix, say Σe.

• Berkson Model
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Viewing that the true observation xk as fluctuating around the surrogate X∗k , we
consider the model

xk = X∗k + ek, (1.4)

where the error term ek is assumed to be independent of X∗k , and the ek have mean
zero and covaraince matrix, say Σe.

Model (1.4) indicates that the true covariate xk is more variable than the surrogate
X∗k . For example in radiation epidemiology, the radiation dose is prescribed for a
patient but the actually absorbed dose by the patient is unknown and varies around
the prescribed dose.

When the error covariance matrix Σe is unknown, replicates or validation samples are
often needed to estimate the error covariance matrix. In the following, we introduce two
kinds of data sets discussed by Yi (2017, Section 2.4).

• Validation Subsample

We let M denote the index set of subjects who are in the main study. Let D be
the data set that collects different types of measurements, say D = {Wk : k ∈ V},
where V is the set of subjects indices, and Wk may be {Yk, xk, X∗k , zk} or {xk, X∗k , zk}.
When V is a subset ofM with W = {Yk, xk, X∗k , zk}, D is called an internal validation
subsample; when V andM are disjoint, D is called an external validation subsample
where Wk may only contain {xk, X∗k , zk}.

• Repeated Measurements

In practice, the surrogate measurements may be measured a couple of times such that
Wk may have a form {X∗kj} or {Yk, X∗kj}, where X∗kj is the jth repeated measurement
of xk for k = 1, ..., nk and nk is an integer larger than 1.

Investigating the measurement error effects has attracted attention long ago (Wald
1940; Madansky 1959). General strategies of handing measurement error include likelihood-
based correction methods (Lindsay 1982; Stefanski and Carroll 1987; Yi et al. 2015), unbi-
ased estimating functions methods (Prentice 1982; Wang and Pepe 2000; Freedman et al.
2004; Yi et al. 2012), and methods of correcting naive estimators (Stefanski and Carroll
1985; Cook and Stefanski 1994; Yi and Reid 2010). More references on different topics can
be found in Fuller (1987), Carroll et al. (2006) and Yi (2017).
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1.3.2 Modelling Misclassification in Univariate Binary Response

We assume that Yk is modeled through a binary regression model within the class of
generalized linear models. Let zk be the pz × 1 dimensional precisely measured covariates.
The relationship between the response and covariate variables can be featured by the
conditional mean response given covariates, µk = E(Yk|zk), through various link functions
(McCullagh and Nelder 1989, p.31).

To model the response misclassification process, we let

τ01(zk) = P (Y ∗k = 1|Yk = 0, zk) and τ10(zk) = P (Y ∗k = 0|Yk = 1, zk)

be the conditional misclassification probabilities, given the covariates zk. The sensitivity
of the measurement Y ∗k is given by 1− τ10(zk), and the specificity of the measurement Y ∗k
is 1− τ01(zk).

As discussed by Neuhaus (1999) and Yi (2017, Section 8.2), under the condition that
the misclassification probabilities are constants, ignoring the response misclassification in
the analysis has the same effects as misspecifiying the link function in the analysis for
generalized linear models. When the misclassification probabilities are associated with the
covariates, the model for P (Y ∗k = 1|zk) may not be in the family of the generalized linear
model (Neuhaus 1999).

1.4 Regularization Methods

High dimensional data analysis is a challenging problem because of the computation burden
and the complexity of data structures. Under the sparsity assumption that only a few
important covariates are non-zeros in the model, various regularization methods have been
proposed to overcome these difficulties. A general form of regularization methods under
the likelihood method, based on the penalty function pλ(·), is given by

`(β) +

q∑
j=1

pλ(βj) (1.5)

where `(·) is the log-likelihood function derived from a model, βj is the jth component of
the q × 1 unknown vector parameter β, and λ is the tuning parameter.

The following are commonly used penalty functions:
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• Least absolute shrinkage and selection operator (LASSO) (Tibshirani 1996):

p(βj) = λ|βj|.

• Smoothly clipped absolute deviation (SCAD) penalty (Fan and Li 2001):

p′λn(ζ) = λn

{
I(|ζ| ≤ λn) +

(aλn − |ζ|)+

(a− 1)λn
I(|ζ| > λn)

}
sign(ζ),

where the sign function sign(ζ) = −1, 0 and 1 when ζ < 0,= 0 and > 0, respectively;
a is a constant larger than 2; and I(·) is the indicator function.

• Elastic net (Zou and Hastie 2005):

p(βj) = λ1|βj|+ λ2β
2
j .

• Adaptive LASSO (Zou 2006):

p(βj) = λwi|βj|,

where wi is a weight.

The LASSO method with the `1 penalty function imposed on the regression coefficients
does both continuous shrinkage and automatic variable selection simultaneously. However,
as discussed by Zou and Hastie (2005), due to the nature of the convex optimization
problem, the LASSO method can only select at most n variables if p > n. Moreover, the
LASSO method tends to select one of a group of variables which are highly correlated
with each other. To overcome these problems, they proposed the elastic net method which
combines the `1 and `2 penalties together to select groups of correlated variables. Later,
Zou (2006) proposed the adaptive LASSO method to fix a problem that in some scenarios,
the LASSO selection cannot be consistent. Unlike the traditional regularization methods,
the SCAD method (Fan and Li 2001) is based on the non-convex penalty functions and
possesses the oracle properties.

The regularization methods can be naturally employed under matrix-variate or tensor
regression models after different data decomposition processes are implemented. Zhou and
Li (2014) proposed regularized matrix regression for the response in the exponential family
by penalizing the spectrum of the matrix parameters. Hung and Wang (2013) and Zhou
et al. (2013) added penalty functions to the models for matrix-variate data and tensor
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data, respectively, based on the rank-R decomposition of the parameters, which has the
form

`(γ, α, β) +
R∑
r=1

p+1∑
i=1

p(α
(r)
i ) +

R∑
r=1

q∑
j=1

p(β
(r)
j ),

where matrix-variate B =
∑R

r=1 α
(r)◦β(r), α

(r)
i is the ith component of α(r) for i = 1, ..., p+1,

β
(r)
j is the jth component of β(r) for j = 1, ..., q, and R is a positive integer.

1.5 Bayesian Variable Selection Methods

Unlike regularization methods, Bayesian variable selection methods address the parameter
selection procedure by assigning shrinkage prior to the parameters. These priors have the
ability to shrink small coefficients towards zero while minimizing shrinkage of large coeffi-
cients. The first type of these priors is the point-mass prior which combines a probability at
zero and a non-zero continuous distribution, such as the spike-and-slab prior (George and
McCulloch 1993; Ishwaran and Rao 2005) which mixes two normal distributions with one
highly concentrated at zero. For example, a popular version of the spike-and-slab model
(George and McCulloch 1993) is

βj|ψj ∼ (1− ψj)N(0, δ2
l ) + ψjN(0, c2

jδ
2
j ),

where βj is the jth component of a q × 1 vector parameter β, cj is a constant, δ2
l and δ2

j

are hyper-parameters, ψj is a latent variable with value 0 or 1, and

P (ψj = 1) = 1− P (ψj = 0) = pj.

When ψj = 0 and δ2
l is assigned to be small, βj|ψj ∼ N(0, δ2

l ) and βj can be estimated as
zero. When ψj = 1 and cj is assigned to be large, then a non-zero βj can be selected in
the final model.

Compared to the spike-and-slab prior, Bayesian LASSO (Park and Casella 2008), which
uses a double exponential prior distribution on coefficients, and it has good performance for
high dimensional models with the sparsity assumption. Park and Casella (2008) considered
a conditional Laplace prior for β with the form

π(β|σ2) =

q∏
j=1

λ

2
√
σ2
e−λ|βj |/

√
σ2
,
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where λ is the tuning parameter, and σ2 is the hyper-parameter.

Another type of Bayesian shrinkage priors uses continuous densities which have a good
performance on parameters shrinkage, such as the horseshoe prior (Carvalho et al. 2010)
and the Dirichlet-Laplace (DL) prior (Bhattacharya et al. 2015). This type of prior can be
written as a global-local scale mixture of Gaussian distributions:

βj ∼ N(0, λja), λj ∼ f, a ∼ g,

where for j = 1, ..., q, λj is the local scale which follows a distribution f , and a is the global
scale which follows a distribution g.

A few papers address convergence results on Bayesian variable selection methods beyond
the linear regression model, such as adaptive density regression (Shen and Ghosál 2016)
and logistic regression (Atchadé 2017; Wei and Ghosal 2020). Under the logistic regression
model, the horseshoe prior has the best performance than the point-mass prior, the DL
prior, Bayesian LASSO, and non-informative priors (Wei and Ghosal 2020). With tensor
data, a multiway Dirichlet generalized double Pareto prior (Guhaniyogi et al. 2017) was
recently proposed for the generalized linear regression setting, and it performed well under
the Gaussian assumption for the response variable.

1.6 Thesis Topics and the Outline

While many inference methods have been developed to handle various problems concerning
matrix-variate regression or measurement error models, interesting research problems re-
main unexplored. This thesis investigates several important problems which are described
as follows. This thesis contains six chapters with the last chapter concluding the thesis
and the appendix including additional materials for Chapters 2-5. The remaining chapters
are organized as follows.

Chapter 2: Matrix-Variate Logistic Regression with Measurement
Error

The logistic regression model has been widely used to handle data with binary responses,
where the logit link function is used to feature the relationship between the response
probability and a vector of associated covariates. With the advent of the new technology of
collecting complex-featured data (e.g., electroencephalography(EEG) imaging data which
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involve both channel and temporal information), conventional logistic regression models
become inadequate to facilitate the dependence of the binary outcome on covariates in a
matrix form. Driven by this, matrix-variate logistic regression models were proposed to
cover a broader scope of problems than that of the usual logistic regression model. Such
models are useful for analyzing brain imaging data which commonly contain a matrix-
variate or a tensor structure (e.g., Hung and Wang 2013; Zhou et al. 2013; Li et al. 2018).

While matrix-variate logistic regression models are useful for dealing with brain imaging
data, its application hinges on the critical assumption that the variables are precisely
measured. Such an assumption is commonly violated in pre-processed imaging data due
to various reasons related to cardiac and respiratory activities. Even through scientists
attempt to apply different methods to process the data, measurement error in the variables
cannot be completely eliminated (Sobel and Lindquist 2014). It has been well understood
that measurement error in the variables can seriously bias the inference results derived from
the logistic regression model, and many methods have been developed to correct for the
measurement error effects accordingly (e.g., Stefanski and Carroll 1985; Gleser 1996; Cook
and Stefanski 1994; Buzas and Stefanski 1996). However, little work on matrix-variate
logistic regression with measurement error has been available although in an unpublished
PhD thesis, Li (2014) discussed some issues on this topic in an ad hoc way.

It is unclear how measurement error in the matrix-variate may affect inference results.
In the presence of measurement error, it is imperative to develop valid inference proce-
dures to accommodate measurement error effects in a rigorous manner. In Chapter 2, we
target these problems and explore matrix-variate logistic regression models with covariate
measurement error. We investigate the asymptotic bias induced from the naive analysis
which ignores measurement error, and then develop two methods to correct for the biases
of the naive analysis by making or not making a distribution assumption for the measure-
ment error model. To the best of our knowledge, this is the first research which provides a
rigorous study on matrix-variate logistic regression with covariate measurement error with
the theoretical results carefully established. The work in this chapter has been wrapped
up as a research article, Fang and Yi (2020b), and has been accepted by Biometrika.

Chapter 3: Imputation and Likelihood Methods for Matrix-Variate
Logistic Regression with Response Misclassification

In contrast to the challenges presented by error-contaminated covariates discussed in Chap-
ter 2, response misclassification impairs inference procedures derived from the matrix-
variate logistic regression model as well. In the conventional regression context, bias anal-
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ysis of response mismeasurements has attracted extensive attention, and many methods of
accommodating mismeasurement effects have been developed (e.g., Stefanski and Carroll
1985; Albert et al. 1997; Neuhaus 1999; Neuhaus 2002; Chen et al. 2011; Li 2014; Yi 2017,
Chapter 8) However, matrix-variate logistic regression with response error has not received
much attention though real data do often possess such features.

Driven by the paucity of such research, in Chapter 3, we study matrix-variate logistic
regression with response misclassification. We develop two inferential methods to account
for misclassification effects. The first method is an imputation method which replaces the
response variable with an unbiased pseudo-response variable, derived from the observed
surrogate response measurement, in the estimation procedure. The second method is
derived from the likelihood function for the observed response surrogate. Our development
is carried out for two settings to address misclassification effects: misclassification rates are
either known or estimated from the validation subsample information. The validity of our
methods is justified by the establishment of theoretical results. The work in this chapter
has been wrapped up as a research paper, Fang and Yi (2020a), that has been invited for
a revision by The Canadian Journal of Statistics.

Chapter 4: Regularized Matrix-Variate Logistic Regression with
Response Misclassification

As introduced in Chapter 3, usual logistic regression has been generalized to accommodate
covariates with matrix structures which arise commonly from biomedical research concern-
ing cancer classification and brain imaging analysis (e.g., Zhou et al. 2013; Hung and Wang
2013; Zhang et al. 2014). Meanwhile, matrix-variates usually haves the sparsity property
and penalty terms are commonly added to estimation procedures for variable selection
(e.g., Zhang et al. 2014).

Although we examine the effects of response misclassification on matrix-variate logis-
tic regression and propose valid methods in Chapter 3 to correct for the biases of the
naive analysis, the sparsity property is not considered there. Though penalized estimation
procedures are commonly used in regression analysis, only a few settings incorporate mea-
surement error (e.g., Ma and Li 2010; Yi et al. 2015). With misclassification in response
variables, there has been no work to study error effects under the matrix-variate logistic
regression model.

Motivated by the paucity of such research, in Chapter 4, we extend the work in Chapter
3 to further study regularized matrix-variate logistic regression with response misclassifi-
cation. Our development is carried out for two settings where misclassification rates are
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either known or estimated from a validation subsample. The validity of our methods is
justified by the establishment of theoretical results. This project has been wrapped up as
a paper and submitted to a journal for publication (Fang and Yi 2020c).

Chapter 5: Bayesian Analysis for Matrix-Variate Logistic Regres-
sion with/without Response Misclassification

For statistical models such as linear regression, high dimensional data analysis is challenging
due to the computational burden and intrinsic complex data structures. Bayesian variable
selection procedures have the advantage of addressing the parameter selection uncertainty
automatically by using a prior, such as the spike-and-slab prior (George and McCulloch
1993; Ishwaran and Rao 2005), horseshoe prior (Carvalho et al. 2010), and Dirichlet-
Laplace (DL) prior (Bhattacharya et al. 2015). For logistic regression, the Bayesian infer-
ence has long been considered as a hard problem due to the lack of closed forms of posterior
densities of the model parameters. One useful Bayesian inference method is based on the
normal approximation to the posterior density of the parameter of interest (Zellner and
Rossi 1984; Zeger and Karim 1991; Gamerman 1997; Rossi et al. 2005), which however, has
much computational burden. Data augmentation methods that facilitate Gibbs sampling
(Holmes and Held 2006; Gramacy and Polson 2012; Polson et al. 2013) offer an effective
alternative.

As introduced in Chapter 4, matrix-variate data has a complex matrix structure and
often contains many unimportant components. The Bayesian variable selection procedure
is an efficient way to handle such problems. A multiway Dirichlet generalized double Pareto
prior (Guhaniyogi et al. 2017) was recently proposed for tensor-variate data with the Gaus-
sian assumption. An interesting problem is to investigate the influence on the parameter
estimation of imprecisely measured binary responses with matrix-variate regression models
under the Bayesian framework. Although there has some works on investigating the effects
of mismeasured covariates (Richardson and Gilks 1993; Dellaportas and Stephens 1993;
Gustafson 2003) or binary response misclassification under conventional binary regression
settings (Paulino et al. 2003; Gustafson 2003; McInturff et al. 2004; Gerlach and Stamey
2007), Bayesian matrix-variate logistic regression with response misclassification has not
been explored.

Motivated by this, in Chapter 5, we propose a Bayesian inference procedure using
the horseshoe prior under matrix-variate logistic regression with the help of augmented
data from the Pólya-Gamma distribution. We develop an algorithm to accommodate
the influence of binary response misclassification on the Bayesian estimation procedure.
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Numerical studies are conducted to evaluate the performance of the proposed method.
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Chapter 2

Matrix-Variate Logistic Regression
with Measurement Error

In this chapter, we investigate how measurement error in the matrix-variate affects the pa-
rameter inference, and explore matrix-variate logistic regression models with measurement
error. The remainder is organized as follows. In Section 2.1, we introduce the matrix-
variate logistic regression model and the estimation method for the error-free context. In
Section 2.2, we conduct the bias analysis of the naive analysis which ignores measurement
error present in matrix-variate logistic regression. In Section 2.3, we develop two inference
methods to adjust for measurement error effects by capitalizing on the bias analysis in
Section 2.2. In Section 2.4, we conduct simulation studies to assess the performance of the
methods developed in Section 2.4 as well as to demonstrate the biased effects of the naive
analysis. We also present an application to a EEG data set.

2.1 Notation and Framework

2.1.1 Matrix-Variate Logistic Regression Model

For subject k with k = 1, ..., n, let Yk be the binary response variable with value 1 for having
a disease and 0 otherwise, let xk = [xk,ij](p+1)×q be the associated (p + 1) × q covariate
matrix where xk,ij is the observation at row i and column j for subject k, and let zk be the
associated pz×1 covariate vector for subject k. In this paper for subject k = 1, ..., n, xk and
zk are treated as fixed measurements in the sense that their distributions are unspecified.
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Matrix-variate regression is useful for handling data with a matrix structure when the
data in the same rows are perceived to share the same effects, and the data in same
columns share the same effects. For instance, EEG data involve measurements associated
with multiple channels and different time points. Using a matrix, say a (p+ 1)× q matrix
xk for subject k, is most natural and informative to represent EEG measurements for a
subject. If we use the conventional regression to study the effects of a combination of a
specific channel and a time point on a disease, we would first convert the matrix into a
vector by stacking the columns of xk from left to right to form a column vector vec(xk),
and then fit a regression model:

logit{P (Yk = 1 | xk)} =< xk,B >, (2.1)

where B is the matrix-structured coefficients, and< xk,B >= vec(xk)
ᵀvec(B) =

∑
i,j Bijxk,ij,

with vec(B) representing the vectoring form of B and Bij standing for element (i, j) of B.
As pointed out by Hung and Wang (2013), this modeling scheme introduces (p + 1) × q
parameters which can be too large to handle. In addition, limited sample sizes in many
problems hinder us from estimating a large number of parameters. Vectorization not only
introduces the model a huge number of parameters to estimate but also destroys the natural
matrix structure which can be quite informative.

To overcome these issues, we consider the matrix-variate logistic regression model:

logit{P (Yk = 1 | xk, zk)} = αᵀxkβ + γᵀzk, (2.2)

where α is a (p+ 1)× 1 parameter vector, β is a q × 1 parameter vector, and γ is a pz × 1
parameter vector. To distinguish α and β, we call them the row parameter and the column
parameter, respectively. Note that since no intercept is included in model (2.2), xk can
be understood as a centered matrix, given by xck = xk − x̄, where x̄ = (1/n)

∑n
k=1 xk; or

alternatively, we include 1 as the first element of zk. In the following development, we take
xk to be a centered version xck when using model (2.2).

By rank-1 Canonical Polyadic Decomposition (CP-decomposition)(Kolda and Bader
2009), parameters α and β in model (2.2) are related to B in model (2.1): B = α◦β, where
◦ denotes the outer product of two column vectors. We note that the CP-decomposition
of B is not unique. In other words, B is not identifiable since for any constant c 6= 0,
B = (c−1α) ◦ (cβ). To overcome nonidentifiability issues, constraints are often imposed
on the parameter space so that certain values are inadmissible. A convention is to set
the first element of α to be 1 (e.g., Hung and Wang 2013), which is also adopted in our
development unless stated otherwise. However, for ease of exposition, we still use α to
denote the subvector of the rest p-dimensional real parameters, and let θ = (αᵀ, βᵀ, γᵀ)ᵀ
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denote the vector of parameters of interest with dimension d = p+ q + pz.

Our model (2.2) generalizes the matrix-variate logistic model (2.1) discussed by Hung
and Wang (2013). Model (2.2) is more flexible in featuring the dependence of the binary
outcome on covariates which include both a matrix form and a vector form. Parameters
in model (2.2) are interpretive in terms of odds ratios. Let αi be the ith element of α, for
i = 2, ..., p+ 1; let βj be the jth element of β for j = 1, ..., q; and let γl be the lth element
of γ for l = 1, ..., pz. Given i and j, let x̃k(i, j) represent the matrix identical to xk except
that the element (i, j) of x̃k(i, j) is set to be xk,ij + 1. Then αiβj represents the log odds
ratio, log[odds{x̃k(i, j)}/odds(xk)], where odds(A) = pr(Y = 1 | A, zk)/pr(Y = 0 | A, zk)
with A = x̃k(i, j) or xk. Parameters γl can be interpreted in a similar manner.

2.1.2 Estimation of Model Parameters

Estimation of θ is carried out using the maximum likelihood method with the constraint
on α discussed in Section 2.1 imposed. Typically, this can be done using the block relaxing
algorithm described by Zhou et al. (2013). Let

`n(α, β, γ) = (1/n)
n∑
k=1

[
Yk(α

ᵀxkβ + γᵀzk)− log{1 + exp(αᵀxkβ + γᵀzk)}
]
. (2.3)

be 1/n times log-likelihood function contributed from the sample which is derived from
model (2.2).

Instead of maximizing (2.3) with respect to α, β, γ simultaneously, we take three steps,
or called three blocks, to obtain the estimates of α, β, γ, separately. Shown in Table 2.1, in
each block the likelihood function `n(α, β, γ) is maximized with respect to one parameter
with other two parameters fixed at the values of the previous iteration, where we use
slightly different notation such as `n(α|β(t), γ(t)) to emphasize that `n(α, β, γ) is treated as
a function of α with β and γ fixed at β(t) and γ(t), respectively. Any optimization procedure
may be applied for this purpose. Zhou et al. (2013) commented that this algorithm works
well for generalized linear models, including logistic models with canonical link functions.
Multiple initial values for α and β may be tried to obtain the global maximum values.
We suggest to randomly generate initial values of α and β from the uniform distribution
U(0, 1) and simply set the initial value of γ as 0.
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Table 2.1: Block relaxation algorithm for maximizing `n(α, β, γ)

Initialize γ(0) = 0, set α(0) and β(0) as values generated from the uniform
distribution U(0, 1), and fix the first element of α(0) as 1.
Repeat for t = 0, 1, 2, ...

Block 1. α(t+1) = argmaxα`(α|β(t), γ(t))
Block 2. β(t+1) = argmaxβ`(β|α(t+1), γ(t))
Block 3. γ(t+1) = argmaxγ`(γ|α(t+1), β(t+1))

until
|`n(α(t), β(t), γ(t))− `n(α(t+1), β(t+1), γ(t+1))| < ε,
where ε is a pre-specified positive value showing the tolerance level.

2.2 Bias Analysis

2.2.1 Additive Matrix-Variates Measurement Error Model

In applications, measurements of variables are often subject to error. We consider settings
where zk is precisely measured but xk is error-contaminated. Suppose that the precise
measurement of xk is unavailable but repeated surrogate measurements for xk, X

∗
kr, are

observed for r = 1, ...,mk, where mk is a positive integer which may or may not depend on
k. Assume that

X∗kr = xk + Ekr, (2.4)

where Ekr is a (p+1)×q matrix of random noise with mean zero and is independent of Yk and
{xk, zk}. The independence of Ekr of {Yk, xk, zk} implies the nondifferential measurement
error mechanism (Carroll et al. 2006, p.36; Yi 2017, p.50). That is, conditional on the true
covariates {xk, zk}, X∗kr is independent of Yk, suggesting that the surrogate measurements
X∗kr have no predictive value for the outcome variable Yk when xk and zk are controlled.

For k = 1, ..., n, and r = 1, ...,mk, let vec(Ekr) represents a (p + 1)q-dimensional
vectorized version of Ekr, and let Ω0 be the covariance matrix of vec(Ekr), i.e., Ω0 =
E{vec(Ekr)vec(Ekr)

ᵀ}. Let X̄∗k+ = (1/mk)
∑mk

r=1 X
∗
kr and Ēk+ = (1/mk)

∑mk
r=1Ekr. Then

X̄∗k+ = xk + Ēk+, and the mean and variance of vec(X̄∗k+) are vec(xk) and Ω0/mk, re-
spectively. For k = 1, ..., n, define centered surrogate measurements X∗k : X∗k = X̄∗k+ −
(1/n)

∑n
k=1 X̄

∗
k+. Equivalently, let Ūk = Ēk+−Ē and xck = xk−x̄, where Ē = (1/n)

∑n
k=1 Ēk+

and x̄ = (1/n)
∑n

k=1 xk. Then
X∗k = xck + Ūk, (2.5)

where vec(Ūk) has mean zero and covarariance matrix {(n−2)/(nmk)+(1/n2)
∑n

k=1 1/mk}Ω0.
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For ease of exposition, we assume the number of replicates for each subject to be the same,
i.e., mk = m for k = 1, ..., n, where m is a positive integer. Let mc = mn/(n− 1), then the
covarariance matrix of vec(Ūk) is E{vec(Ūk)vec(Ūk)

ᵀ} = Ω0/mc.

2.2.2 Naive Analysis

When matrix-variates are subject to measurement error, naively using the logistic regres-
sion model (2.2) with xk replaced by X∗k yields the model

logit{P (Yk = 1 | X∗k , zk)} = α∗ᵀX∗kβ
∗ + γ∗ᵀzk, (2.6)

where α∗, β∗, and γ∗ are the parameters which may differ from the corresponding parameter
in (2.2). Let θ∗ = (α∗ᵀ, β∗ᵀ, γ∗ᵀ)ᵀ.

Estimation of θ∗ may proceed by mimicking the maximum likelihood method. That is,
we maximize the log likelihood function derived from (2.6),

`∗n(θ∗) = (1/n)
n∑
k=1

Yk(α
∗ᵀX∗kβ

∗ + γ∗ᵀzk)− log{1 + exp(α∗ᵀX∗kβ
∗ + γ∗ᵀzk)} (2.7)

with respect to θ∗ and let θ̂∗ = (α̂∗ᵀ, β̂∗ᵀ, γ̂∗ᵀ)ᵀ denote the estimator of θ∗. While (2.7) is
similar to (2.3) in the function form, the meaning of θ∗ in (2.7) is not the same as that of
θ in (2.3).

Under regularity conditions (e.g., White 1982), θ̂∗ solves

S∗n(θ̂∗) = 0, (2.8)

where

S∗n(θ∗) =
∂`∗n
∂θ∗

,

S∗α,n(θ∗)
S∗β,n(θ∗)
S∗γ,n(θ∗)

 = (1/n)
n∑
k=1

Cᵀ
tX
∗
kβ
∗

X∗ᵀk α
∗

zk

 {Yk − pk(θ∗;X∗k)}, (2.9)

Ct = [0p, Ip]
ᵀ, 0p is the p×1 vector of zeros, Ip is the p×p identity matrix, and pk(θ

∗;X∗k) =
P (Yk = 1 | X∗k , zk) which equals, by (2.6),

pk(θ
∗;X∗k) =

exp(α∗ᵀX∗kβ
∗ + γ∗ᵀzk)

1 + exp(α∗ᵀX∗kβ
∗ + γ∗ᵀzk)

; (2.10)
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the dependence on zk is suppressed in the notation pk(θ
∗;X∗k) for ease of exposition. In

Appendix A.3, we show the following result.

Theorem 2.1 Assume that Conditions (C.1), (C.3), (C.4) in Appendix A.1 hold and that
min(m,n)→∞. Then

θ̂∗ − θ = op(1).

While Theorem 2.1 shows that θ̂∗ is a consistent estimator of θ under certain situations,
this result does not suggest that the naive method of ignoring measurement error is a valid
and practical procedure in applications. The requirement min(m,n)→∞ in Theorem 2.1
essentially says that measurement error in matrix-variates virtually becomes null because
the covariance matrix for vec(Ūk) in (2.5) approaches a zero matrix. In such an instance, it
is not surprising that the estimator θ̂∗ would be a consistent estimator for θ. As Theorem
2.1 establishes the asymptotic difference of θ̂∗ − θ when both m and n approach infinity,
to complement this result, it is interesting to examine for given m and n, what quantities
would dominate the difference θ̂∗− θ. Such an exploration allows us to develop estimators
of correcting for measurement error effects for settings with a given m, and thus establish
their asymptotic distributions if only n approaches infinity. In the next subsection, we
explore this problem.

2.2.3 Refined Expressions for Bias

Let v1,k(·) = pk(·){1 − pk(·)} and v2,k(·) = pk(·){1 − pk(·)}{1 − 2pk(·)} where pk(·) is
defined by (2.10). Define Sn = n1/2∂`n(α, β, γ)/∂θ, where `n(α, β, γ) is given by (2.3).
Motivated by Stefanski and Carroll (1985, p.1339), we consider the following terms, each
corresponding to parameter α, β or γ:

Jα,n,1 = −(1/2n)
n∑
k=1

Cᵀ
t xckβvec(αβᵀ)ᵀ(Ω0/mc)v2,k(θ;xck),

Jβ,n,1 = −(1/2n)
n∑
k=1

xᵀckαvec(αβᵀ)ᵀ(Ω0/mc)v2,k(θ;xck),

Jα,n,2 = −(1/n)
n∑
k=1

Cᵀ
t Πα × (Ω0/mc)v1,k(θ;xck),
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Jβ,n,2 = −(1/n)
n∑
k=1

Πβ(Ω0/mc)v1,k(θ;xck),

Jγ,n = −(1/2n)×
n∑
k=1

zkvec(αβᵀ)ᵀ(Ω0/mc)v2,k(θ;xck),

where Πα =
[
β1I(p+1) β2I(p+1) · · · βqI(p+1)

]
is a (p+ 1)×{(p+ 1)q} matrix, and Πβ is a

q × {(p + 1)q} block matrix with αᵀ being the diagonal block vectors and zero elsewhere.
Let Jα,n = Jα,n,1 + Jα,n,2, Jβ,n = Jβ,n,1+Jβ,n,2, and Jn(θ) = (Jᵀ

α,n, J
ᵀ
β,n, J

ᵀ
γ,n)ᵀ. Write Hn(θ) =

−∂2`n(θ)/∂θ∂θᵀ.

Theorem 2.2 Under Conditions (C.1)-(C.3), and (C.6) in Appendix A.1, we have that

θ̂∗ − θ = (1/n1/2)H−1
n (θ)Sn(θ) + H−1

n (θ)Jn(θ)vec(αβᵀ) + op{max(1/m, 1/n1/2)}. (2.11)

Expression (2.11) shows that the asymptotic bias of θ̂∗ involves the terms pertinent to
Hn(θ), Sn(θ), Jn(θ) as well as the values of n and m. Stefanski and Carroll (1985, Theorem

1) showed that under regularity conditions, H
−1/2
n (θ)Sn(θ) asymptotically follows a normal

distribution with mean zero and an identity covariance matrix, and hence, yielding that
H−1
n (θ)Sn(θ) in (2.11) has an asymptotic normal distribution with mean zero and covariance

matrix I−1(θ), where I(θ) = E{Hn(θ)}. Consequently, (2.11) implies that with m of an
order O(

√
n), n1/2{θ̂∗ − θ − H−1

n (θ)Jn(θ)vec(αβᵀ)} has an asymptotic normal distribution
with mean zero and covariance matrix I−1(θ) as n→∞.

The proof of Theorem 2.2 begins with applying the first-order Taylor series expansion
to S∗n(θ̂∗) = 0 around θ with X∗k and zk fixed:

θ̂∗ = θ + H∗−1
n (θ)S∗n(θ) + op{max(1/m, 1/n1/2)}, (2.12)

where S∗n(θ) is determined by (2.9) with θ∗ replaced by θ, and H∗n(θ) = −∂S∗n(θ)/∂θᵀ. The
details are given in Appendix A.6.

(2.12) expresses the relationship between θ̂∗ and θ using the surrogate observations X∗k
for k = 1, ...n, together with the covariate zk and the response variable Yk. To obtain
(2.11) expressed in terms of the true covariate xck, we need only to examine S∗n(θ) and
H∗n(θ) using their counterparts based on the true covariates xck together with {zk, Yk},
which is summarized in the following lemmas whose proofs are placed in Appendices A.4
and A.5.
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Lemma 1 Let Zn(θ) = (1/n1/2)Sn(θ)+Jn(θ)vec(αβᵀ) which depends on the true covariates
xck as well as {zk, Yk}. Under Conditions (C.1) and (C.3) in Appendix A.1, we have that

S∗n(θ) = Zn(θ) + op{max(1/m, 1/n1/2)}. (2.13)

Lemma 2 Under Conditions (C.1)-(C.3) in Appendix A.1, we have that as min(m,n)→
∞,

H∗n(θ) = Hn(θ) + op(1). (2.14)

2.3 Corrections for Measurement Error Effects

In this section, we describe two methods of correcting for measurement error effects on
parameter estimation.

2.3.1 Moment-Based Correction Method

Noticing that (1/n1/2)H−1
n (θ)Sn(θ) approaches 0 in probability as n → ∞ as discussed

earlier, we are motivated by Theorem 2.2 to consider

θ̂∗c = θ̂∗ − Ĥ−1
n (θ̂∗)Ĵn(θ̂∗)vec(α̂∗β̂∗ᵀ), (2.15)

where Ĵn(θ̂∗) and Ĥn(θ̂∗) correspond to Jn(θ) and Hn(θ) with xck, θ and Ω0, respectively,
replaced by X∗k , θ̂∗ and Ω̂ for k = 1, ..., n, with Ω̂ representing an estimator of Ω0. In

Appendix A.7, we show the following asymptotic properties of θ̂∗c .

Theorem 2.3 Suppose that Conditions (C.1)-(C.3) and (C.5)-(C.6) in Appendix A.1
hold. Assume that as n→∞,

n1/2(Ω̂− Ω0) = Op(1). (2.16)

Then as n→∞,

(a) θ̂∗c
p−−→ θ;

(b) n1/2(θ̂∗c − θ)
d−−→ N(0, I−1(θ)).
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The consistency of θ̂∗c requires the consistency assumption (2.16) for the estimator Ω̂ of
the covariance matrix Ω0. With the replicates X∗kr following model (2.4), a

√
n-consistent

covariance estimator is given by:

Ω̂ =

[ n∑
k=1

m∑
r=1

{vec(X∗kr)− vec(X̄∗k+)}{vec(X∗kr)− vec(X̄∗k+)}ᵀ
]/
{n(m− 1)}; (2.17)

the proof is presented in Appendix A.8.

2.3.2 Sufficient Statistic Correction Method

Except for the requirement of zero mean of Ekr and the additive structure (2.4), the
construction of the estimator θ̂∗c has the advantage of not requiring the specification of the
full distribution for Ekr. However, when p and/or q are large, the calculation of θ̂∗c may
be time-consuming due to the involvement of the large dimensional covariance matrix Ω0,
and the resulting estimator may not be accurate due to a small sample size n relative to
the dimension {(p + 1)q} × {(p + 1)q} of Ω0. Driven by these issues, we explore another
estimator which capitalizes on imposing the normality distributional form of Ekr.

Specifically, for k = 1, ..., n and r = 1, ...,m, we assume that Ekr follows a matrix
normal distribution with Ekr ∼MN(0(p+1)×q, R, C), where MN(·, ·, ·) represents a matrix
normal distribution, R represents the (p + 1) × (p + 1) row covariance matrix, and C
stands for the q × q column covariance matrix, respectively (Hoff 2011). Equivalently,
vec(Ekr) ∼ N(p+1)q(vec(0(p+1)×q),Ω0), where Ω0 = C ⊗ R, where ⊗ denotes the Kronecker
product (Dutilleu 1999). By (2.5), the observed matrix-variate X∗k follows a matrix normal
distribution as well, i.e., vec(X∗k) ∼ N(p+1)q(vec(xck),Ω0/mc), where k = 1, ..., n.

Under the assumption that Ekr is independent of Yk and {xk, zk} for k = 1, ...n, we
have that given {xck, zk}, the joint distribution of Yk and X∗k can be written as

fY,X∗(Yk, X
∗
k | xck, zk, θ

∗) = fY(Yk | X∗k , xck, zk, θ
∗)× fX∗(X

∗
k | xck, zk)

= fY(Yk | xck, zk, θ)× fX∗(X
∗
k | xck),

(2.18)

where fY(Yk | xck, zk, θ) is determined by (2.2) and fX∗(X
∗
k | xck) is determined by (2.5).

With θ treated as a given constant and xck regarded as an unknown parameter, using
the formulation (2.18), we derive sufficient statistics for the xck, given by

∆k = X∗k + (Yk − 1/2)RαβᵀC/mc; (2.19)
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the details are included in Appendix A.9. The availability of such sufficient statistics allows
us to find a conditional probability to carry out inference about θ in the absence of the
xck. To be specific, given ∆k and zk, the conditional probability of Yk is

P (Yk = 1 | ∆k, zk) = exp[(η∗∆k
+ γᵀzk)− log{1 + exp(η∗∆k

+ γᵀzk)}], (2.20)

where η∗∆k
= αᵀ∆kβ. Working with the conditional distribution (2.20) yields the likelihood

score equation
n∑
k=1

{Yk − P (Yk = 1 | ∆k, zk)}
(

∆̃ᵀ
k(θ)
zk

)
= 0, (2.21)

where ∆̃k(θ) = (βᵀ∆ᵀ
kCt, α

ᵀ∆k)
ᵀ.

Although the derivation of (2.21) is conceptually straightforward with the availability
of the conditional probability (2.20), equation (2.21) cannot be directly used for finding a
consistent estimator since it may produce multiple solutions which are not necessarily all
consistent, as pointed out by Stefanski and Carroll (1985, p.1341). As an alternative, we
maximize (2.3) with xk replaced by ∆̂k and obtain an estimator of θ, denoted as θ̂∗s , where
∆̂k is determined by (2.19) with R, C, α, β replaced by R̂, Ĉ, α̂∗ and β̂∗, respectively, with
R̂ and Ĉ being the estimators of R and C, i.e.,

∆̂k = X∗k + gk/mc, (2.22)

with gk = (Yk − 1/2)R̂α̂∗β̂ᵀ∗Ĉ for k = 1, ..., n.

To obtain the estimator θ̂∗s , we need to estimate the unknown row and column covari-
ance matrices R and C, which can be done using the flip-flop algorithm (Dutilleu 1999).
This algorithm basically applies maximum likelihood estimation to estimate R and C one
at a time iteratively to yield

√
n−consistent estimators, where the matrix normality as-

sumption is typically imposed on Ekr to allow for manageable computation. Furthermore,
we comment that the normality assumption for Ekr is needed in the derivation of the es-
timator θ̂∗s . This assumption enables us to work out sufficient statistics (2.19) for the xck,
as shown in Appendix A.9. In Appendix A.10, we show that following theorem.

Theorem 2.4 Suppose that Conditions (C.1)-(C.3) and (C.5)-(C.6) in Appendix A.1
hold. Assume that as n → ∞, n1/2(Ĉ ⊗ R̂ − Ω0) = Op(1) and

∑n
k=1 ‖gk‖2 = Op(n).

Then we have that

θ̂∗s = θ + (1/n1/2)H−1
n (θ)Sn(θ) + op{max(1/m, 1/n1/2)}, (2.23)

and hence, with m of order O(
√
n), the following results:
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(a) θ̂∗s
p−−→ θ as n→∞;

(b) n1/2(θ̂∗s − θ)
d−−→ N(0, I−1(θ)) as n→∞.

Theorems 2.3 and 2.4 show that both θ̂∗c and θ̂∗s are consistent and have an asymptotic
normal distribution. The results offer us two estimators of θ under different assumptions
of the measurement error model. Estimator θ̂∗c is more robust than θ̂∗s since it does not
require the normality assumption for the measurement error term Ekr. Theorem 2.4 also
offers a rigorous justification of the validity of θ̂∗s which was heuristically derived by Li’s
PhD thesis work.

2.4 Numerical Studies

2.4.1 Simulation Design

We now evaluate the performance of the proposed methods under different settings via
simulation studies where we consider settings with p + 1 = q, denoted as px for ease of
exposition. We also demonstrate the impacts of the naive analysis which ignores measure-
ment error. The sample size is set as n = 1000 when px = 5, 10 or 20, and n = 2000 when
px = 20. We consider the case with m = 2, 5 or 10. Five hundred simulations are run for
each setting.

For k = 1, ..., n, we simulate px × px matrix-variate data, xk, from the matrix normal
distribution MN(0, σ2

xIpx , Ipx), where σ2
x is set as 1.0. The zk covariates are independently

generated from the standard normal distribution. For k = 1, ..., n, the binary response
Yk is randomly generated from the Bernoulli distribution with the probability P (Yk =
1 | xck, zk;α, β, γ) = exp(αᵀxckβ + γzk)/{1 + exp(αᵀxckβ + γzk)}, where γ = 0.5. When
px = 5, we set α = (0.5, 1,−1,−1, 1)ᵀ and β = (1, 0.5, 1,−1,−1)ᵀ; when px = 10, we take
α = (0.5, 1,−1 × 1ᵀ

4, 1 × 1ᵀ
4)ᵀ and β = (1, 0.5, 1,−1,−1, 1, 0.5, 1,−1,−1)ᵀ; when px = 20,

we take α = (0.5, 1,−0.5 × 1ᵀ
4, 0.5 × 1ᵀ

6,−0.5 × 1ᵀ
4, 0.5 × 1ᵀ

4)ᵀ and β = (0.5 × 1ᵀ
3,−0.5 ×

1ᵀ
2, 0.5 × 1ᵀ

3,−0.5 × 1ᵀ
2, 0.5 × 1ᵀ

3,−0.5 × 1ᵀ
2, 0.5 × 1ᵀ

3,−0.5 × 1ᵀ
2)ᵀ, where 1d represents a

d × 1 unit vector. For k = 1, ..., n, repeated surrogate measurements X∗kr are generated
from model (3.1), where the Ekr are independently generated from the matrix normal
distribution, MN(0, σ2Ipx , Ipx) for r = 1, ...,m. We let σ = 0.25, 0.5, 0.75 to feature small,
moderate and large measurement error, which lead to the signal-to-noise ratio σ2

x/σ
2 for

each covariate component to be 16, 4, and 1.778, respectively.
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We estimate the model parameters α and β using different methods. The first analysis
is to use the naive approach which fits the data with model (2.7) using the block relaxation
algorithm indicated in Table 2.1. To correct for measurement error effects, we conduct two
analyses, respectively, called Methods 1 and 2, by using (2.15) and the estimator based on
(2.23), respectively.

To use these methods, the covariance matrix Ω0 for the measurement error model needs
to be estimated. Since the sample size is not large enough relative to the dimension of
the covaraince matrix, the sample covariance matrix Ω̂ may be poorly estimated and may
not be invertible. To obtain a stable covaraince estimator of Ω0, we apply the method of
Ledoit and Wolf (2004) which uses a linear combination of the sample covariance matrix
Ω̂ and the identity matrix Ipx to obtain an adjusted covariance matrix Ω̂L.

Specifically, for a given k = 1, .., n and a given r = 1, ...,m, we first vectorize the
px matrix X∗kr to create a p2

x × 1 column vector vec(X∗kr). Next, we define a p2
x × M

matrix, XM , by arranging the vectors vec(X∗kr) as its columns according to the order
from vec(X∗11) to vec(X∗nm), where M = nm. Then, we calculate the sample covariance
matrix Ω̂ = M−1XMX

ᵀ
M and rM = tr(Ω̂Iᵀpx)/p

2
x, where tr(·) is the trace of a matrix.

Furthermore, we calculate d2
M = ‖Ω̂ − rMIpx‖2 and C2

M = min(b̄2
M , d

2
M), where b̄2

M =

(1/M)
∑M

i=1 ‖xM.i (xM.i )ᵀ − Ω̂‖2 with ‖ · ‖ being the Frobenius Norm, and xM.i represents the

ith column of XM for i = 1, ...,M . Finally, we consider the linear combination Ω̂L =
aΩ̂+(1−a)Ipx of Ω̂ and the identity matrix Ipx with a given by C2

M/d
2
M . Such Ω̂L is a

√
n-

consistent covariance estimator (Ledoit and Wolf 2004, Theorem 3.4); its calculation can
be realized using a Matlab function available at http://www.econ.uzh.ch/en/people/

faculty/wolf/publications.html#9.

2.4.2 Simulation Results

We summarize the simulation results in the terms of the finite sample relative biases in
percent (bias%), empirical standard errors (ESE), model-based asymptotic standard errors
(ASE), and mean squared errors (MSE) as well as the coverage rates in percent (CR%) for
95% confidence intervals. Here bias% is defined as the ratio of the difference between the
true parameter value and the average of the estimates obtained from all simulation runs to
the true parameter value; ESE is defined to be the sample standard error of the estimates
obtained from all simulation runs; MSE represents the average of the squared differences
between the estimates and the true parameter value obtained from all simulation runs;
ASE is calculated as the square root of the average of all the estimates of the asymptotic
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variance in all the simulation runs; CR% is the coverage rate for 95% confidence intervals
for all the simulations.

Table 2.2 includes the results for the row and column effects for the cases with matrix-
variate with small, moderate and severe measurement error when px = 5 where only the
results for α1, α4, β1, β5, and γ are included to save space. Complete results for this case
are placed in Tables A.1-A.2 in Appendices. It is seen that measurement error effects on
estimating the row parameters α are not as striking as those for estimating, the column
parameters β and the covariate parameters, γ. The performance of the naive method is
influenced dramatically by the degree of measurement error. The naive method produces
noticeable finite sample biases and the bias increases as the degree of measurement error
increases. On the other hand, Methods 1 and 2 significantly improve the performance
of the naive method, and the improvement is clearly noticeable for cases with not severe
measurement error or a good number of replicates. Mean squared errors of the naive
estimators are higher than those of the proposed methods, especially when measurement
errors is not minor. Not surprisingly, the performance of the proposed methods deteriorates
as measurement error becomes substantial, especially in combination with decreasing the
number of replicates. This phenomenon is clearly indicated by the coverage rates of 95%
confidence intervals.

In Tables A.3-A.10 and A.13-A.14 in Appendices, we respectively report the simulation
results for the cases with px = 10 and px = 20. We observe patterns similar to those for the
case px = 5, but the magnitudes of the finite sample biases and standard errors are larger
than those with px = 5. As px becomes larger, the performance of the three methods tends
to be more sensitive to the increase of measurement error and the number of replicates.
Unsurprisingly, with a given sample size, the performance of the three methods deteriorates
as px increases. With a given px, the two proposed methods tend to produce more accurate
results as the sample size increases, which is evident from the results in Table A.10 and
Table A.14 for px = 20 and n = 1000 and 2000, respectively.

2.4.3 Sensitivity Analysis of the Proposed Methods

In Sections 2.4.1-2.4.2, we conduct simulations to (1) demonstrate that the naive analysis
ignoring the feature of measurement error can lead to seriously biased results, and (2)
confirm the good performance of the two proposed methods. Our assessment is carried out
for the case where surrogate measurements are generated from model (2.4) with the error
term Ekr assumed to be normal, an assumption that is required by Method 2. Now we
further assess how sensitive the performance of Method 2 is to the violation of the normality
assumption for Ekr. In comparison, we also report results obtained from Method 1.
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Specifically, we conduct a simulation study where Ekr is generated from a matrix t-
distribution, Ekr ∼ T (ν,W,R,C). Here T (·, ·, ·, ·) represents a matrix t-distribution, W is
the px × px location matrix, R and C respectively represent the px × px row scale and the
px × px column scale matrices, and ν is the degrees of freedom. This matrix t-distribution
yields that Ω0 = (C⊗R)/(ν−2) for ν > 2. We consider the setting W = 0px×px , C = σ2Ipx ,
and R = Ipx together with px = 5 and ν = 3, where 0px×px is the px × px zero matrix.
Other settings for simulating data are the same as those in Section 2.4.1. We apply the
naive approach and the two proposed methods to analyze the simulated data.

The simulation results are reported in Tables A.11-A.12 in Appendices to save space.
It is clear that the naive method still produces biased results with patterns similar to
those observed in Section 2.4.2. Method 1 is not sensitive to the change of the distribution
of measurement error and its performance under the current setting is similar to that
in the setting of Section 2.4.1. However, the performance of Method 2 greatly decays.
The estimates of the row parameters α have large finite sample biases when the number of
replicates is small. For the column parameters β and vector covariate parameters γ, Method
2 provides a lot larger finite sample biases than Method 1, especially when measurement
error is large with a small number of replicates. Such findings are not surprising, because
Method 2 is derived based on the model assumption (2.4) with the measurement error
following a matrix normal distribution.

In summary, the naive method yields biased results when measurement error is not mild.
Thus, it is imperative to accommodate measurement error effects in order to carry out valid
inferences. The simulation studies confirm that the proposed methods significantly improve
the performance of the naive method, and their performance is reasonably satisfactory for
various settings. As described in Section 4, Method 1 is more robust than Method 2 since
it does not impose a distributional assumption on the error terms Ekr. In applications,
Method 1 is generally recommended if we are not certain about the feasibility of a normally
distributed measurement error assumption.

2.4.4 Data Analysis

We apply the two correction methods, in contrast to the naive approach, to analyze the
EEG imaging data which are available at the UCI Machine Learning Repository website
(http://archive.ics.uci.edu/ml/datasets/EEG+Database). The EEG data include
the measurements of 122 subjects who were selected from those exposed to one stimulus
experiment. During this experiment, the voltage values were recorded from 64 channels
of electrodes at 256 time points (in one second). Those 122 subjects are differentiated by
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being in the alcoholic group with 77 patients or the control group with 45 patients. The
research interest was to make classification between the alcoholic group and the control
group based on voltage values which are subject to measurement error over times and
channels.

For k = 1, ..., 122, let Yk be the binary response variable for subject k, with 1 for being
in the alcoholic group and 0 for being in the control group; the matrix-variate of subject k,
denoted as X∗∗k , is a 256 × 64 matrix with each entry representing the mean voltage value
of r replicates for the corresponding time point and channel, where r = 1, ...,mk, and mk

is the number of replicates for subject k, ranging from 7 to 60 with an average 45.

Without considering issues of measurement error, Hung and Wang (2013) applied the
matrix-variate logistic regression model (2.2) to fit the EEG data set which includes 256 +
64 + 1 = 321 parameters. This modeling greatly reduces the number of parameters which
would be 256× 64 + 1 = 16285 if using model (2.1).

While using model (2.2) can significantly reduce the dimension of parameters compared
to using model (2.1), we still cannot directly employ model (2.2) to fit the data here because
the sample size is 122, smaller than the dimension of the model parameters. As a result,
we have to first reduce the dimension of the matrix-variate X∗∗k before fitting the model
(2.2).

Motivated by the simulation findings that the response model parameters can be well es-
timated when the sample size is 10 times larger than the number of parameters, here we re-
duce the initial 256×64 matrix-variate X∗∗k to a 5×5 matrix-variate X∗k for k = 1, ..., 122 us-
ing the two-directional two-dimensional principal component analysis ((2D)2PCA) method
of Zhang and Zhou (2005).

We assume that X∗k is an observed version of the true matrix-variate Xk and they
are linked by (2.4) with the measurement error covariance matrix Ω0 estimated using the
method of Ledoit and Wolf (2004), as described in Section 2.4.1, where px is taken as 5, and
the sample variance matrix Ω̂ is obtained using vec(X∗k) across all the subjects using the
total M = 5486 replicates of n = 122 subjects; this is needed for obtaining the estimator
(2.15). The flip-flop algorithm is applied to X∗k to find the row and column matrices, R̂
and Ĉ for the sufficient statistics correction method given by (2.22). Consistent with Hung
and Wang (2013), we set the second row parameter as 1 because the second row of X∗k has
the highest correlation with the response.

Table 2.3 reports the estimation results for the EEG data by fitting the model (2.2) with
the 5 × 5 matrix-variate X∗k using the two methods described in Sections 2.3.1 and 2.3.2,
together with the naive method which ignores measurement errors. The two correction
methods output very similar results. While the estimates for the channel parameters
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(i.e., row parameters) produced from the naive analysis are noticeably different from those
obtained from the two correction methods, the estimates for the time points (i.e., column
parameters) yielded from the naive method are quite similar to those given by the two
correction methods. All the three methods reveal the same evidence for the column and
row parameters. For the column parameters, time points one, two, three and four are
detected to be significant. For the row parameters, the third channel has a significant
effect on distinguishing the alcoholic and nonalcoholic status. Finally, we report that the
computation times for Methods 1 and 2 are 0.409 and 0.386 seconds, respectively, using a
PC equipped with 2.6 GHz Intel Core i5 CPU and 16 GB RAM.
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Table 2.3: Analysis results for the EEG data using the three methods

Parameter Naive Method Method 1 Method 2
Est. SE 95% CI Est. SE 95% CI Est. SE 95% CI

Channel 1 -0.006 0.136 (-0.273, 0.261) -0.018 0.157 (-0.327, 0.290) -0.014 0.128 (-0.266, 0.237)
Channel 3 1.601 0.553 (0.518 , 2.684) 1.395 0.666 (0.090, 2.700) 1.389 0.500 (0.409, 2.369)
Channel 4 0.761 0.583 (-0.383 , 1.904) 0.817 0.671 (-0.498, 2.131) 0.821 0.556 (-0.269, 1.910)
Channel 5 0.163 0.560 (-0.934 , 1.260) 0.430 0.657 (-0.856, 1.717) 0.449 0.549 (-0.627, 1.525)
Time-point 1 0.004 0.002 (0.001 , 0.008) 0.005 0.002 (0.001, 0.009) 0.005 0.002 (0.001, 0.009)
Time-point 2 -0.013 0.003 (-0.018, -0.008) -0.014 0.003 (-0.019, -0.008) -0.014 0.003 (-0.019, -0.008)
Time-point 3 0.020 0.006 (0.009, 0.031) 0.023 0.007 (0.009, 0.036) 0.023 0.007 (0.010, 0.036)
Time-point 4 0.010 0.005 (0.001, 0.019) 0.011 0.005 (0.001, 0.020) 0.011 0.005 (0.001, 0.021)
Time-point 5 0.002 0.005 (-0.008, 0.012) 0.003 0.005 (-0.007, 0.013) 0.003 0.006 (-0.008, 0.014)
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Chapter 3

Imputation and Likelihood Methods
for Matrix-Variate Logistic
Regression with Response
Misclassification

In this chapter, we target on investigating how response misclassification in the matrix-
variate logistic regression affects the parameter inference, and propose imputation and like-
lihood methods to reduce the response misclassification effects. The remainder is organized
as follows. In Section 3.1, we present the response model and introduce the misclassifica-
tion process for binary response. In Section 3.2, we propose an important method using an
unbiased surrogate for the true response. In Section 3.3, we explore the likelihood method
based on the observed data. In Section 3.4, we conduct simulation studies to assess the
performance of the methods developed in Sections 3.3-3.4 as well as to demonstrate the
misclassification effects on the naive analysis which ignores the response misclassification.
The proposed methods are also applied to analyze a breast cancer data set.

3.1 Notation and Framework

For subject k with k = 1, ..., n, Yk, xk and zk are defined in the same way as those in
Section 2.1.1. Let µk = P (Yk = 1|xk, zk). We consider the model

logit µk = γ0 + αᵀxkβ + γᵀ1zk, (3.1)
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where γ0 is the intercept term and γ1 is a pz × 1 parameter vector. Write γ = (γ0, γ
ᵀ
1)ᵀ.

Model (3.1) differs slightly from model (2.2) in that we explicitly spell out the intercept
term here.

As discussed in Section 2.1.1, parameters α and β are not identifiable because they are
pertinent to a rank-1 CP-decomposition which is not unique. To overcome nonidentifiabil-
ity issues, we use the same way as in Chapter 2 to set the first element of α to be 1; but
here we write α = (1, α2, ..., αp+1)ᵀ = (1, α̃ᵀ)ᵀ. Let θ = (α̃ᵀ, βᵀ, γᵀ)ᵀ, which is the vector of
parameters of interest.

Estimation of θ can be carried out using the likelihood method. For k = 1, ..., n, the
log-likelihood function contributed from subject k is

`(θ;Yk) = Yk(γ0 + αᵀxkβ + γᵀ1zk)− log{1 + exp(γ0 + αᵀxkβ + γᵀ1zk)}, (3.2)

where the dependence on zk and xk is suppressed in the notation `(θ;Yk). Let U(θ;Yk) =
∂`(θ;Yk)/∂θ be the score function, and we write U(θ;Yk) = {Uᵀ

1k(θ), U
ᵀ
2k(θ), U

ᵀ
3k(θ)}ᵀ, where

U1k(θ) = ∂`(θ;Yk)/∂α̃, U2k(θ) = ∂`(θ;Yk)/∂β, and U3k(θ) = ∂`(θ;Yk)/∂γ.

Under regularity conditions, a consistent estimator of θ can be obtained by solving

n∑
k=1

U(θ;Yk) = 0 (3.3)

for θ. Using the block relaxing algorithm in Table 2.1, we solve (3.3) iteratively for α̃, β
and γ while keeping other components fixed.

In applications, the response Yk may be subject to misclassification, and a surrogate
response, Y ∗k , is observed, where k = 1, ..., n. For i, j = 0, 1, let τkij = P (Y ∗k = j|Yk =
i, xk, zk) be the probability that the observed response is j when the true response is i,
where the dependence on xk and zk is suppressed in the notation τkij.

To facilitate the dependence of the τkij on the covariates, we consider the logistic models

logit.τk01 = Lᵀ
kφ0,

and
logit.τk11 = Lᵀ

kφ1, (3.4)

where φ0 and φ1 are the vectors of associated regression parameters, and Lk is a vector of
covariates that reflects various misclassification mechanisms. Let φ = (φᵀ

0, φ
ᵀ
1)ᵀ. Lk may be

specified as various forms to feature different misclassification processes. In some cases, Lk
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is taken as the entire vector covariate zk; in the extreme case, Lk is taken as the constant 1
to express that the misclassification is independent of the covariates: τk01 = expit(φ0) and
τk11 = expit(φ1), where expit(u) = exp(u)/{1 + exp(u)} and φ0 and φ1 are scalar.

3.2 Imputation Method

3.2.1 Estimating Equations with Known Misclassification Prob-
abilities

Define

Y c
k =

Y ∗k − τk01

τk11 − τk01

, (3.5)

where τk10 = 1 − τk11. It is easily seen that E(Y c
k |Yk, xk, zk) = Yk, i.e., Y c

k is an unbiased
surrogate for Yk, as called by Chen et al. (2014).

Let U c
1k(θ) = ∂`(θ;Y c

k )/∂α̃, U c
2k(θ) = ∂`(θ;Y c

k )/∂β, and U c
3k(θ) = ∂`(θ;Y c

k )/∂γ. Define
U c(θ;Y c

k ) = {U cᵀ
1k(θ), U cᵀ

2k(θ), U cᵀ
3k(θ)}ᵀ. Then

E{U c(θ;Y c
k )|Yk, xk, zk} = U(θ;Yk),

suggesting that U c(θ;Y c
k ) is an unbiased estimating function of θ. When φ is known, solving

n∑
k=1

U c(θ;Y c
k ) = 0 (3.6)

for θ gives a consistent estimator, say θ̂c, for θ, provided regularity conditions.

Let

M c
1k(α̃|β, γ) =

∂U c
1k(α̃|β, γ)

∂α̃ᵀ
,

M c
2k(β|α̃, γ) =

∂U c
2k(β|α̃, γ)

∂βᵀ
,

and

M c
3k(γ|α̃, β) =

∂U c
3k(γ|α̃, β)

∂γᵀ
.

Using the block relaxation algorithm, we solve (3.6) via the Fisher Scoring algorithm. At
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iteration (t+ 1), we iteratively update α̃, β and γ in each block by

α̃t+1,r+1 = α̃t+1,r −
{ n∑
k=1

M c
1k(α̃

t+1,r|βt, γt)
}−1{ n∑

k=1

U c
1k(α̃

t+1,r|βt, γt)
}
,

βt+1,r+1 = βt+1,r −
{ n∑
k=1

M c
2k(β

t+1,r|α̃t+1, γt)
}−1{ n∑

k=1

U c
2k(β

t+1,r|α̃t+1, γt)
}
,

γt+1,r+1 = γt+1,r −
{ n∑
k=1

M c
3k(γ

t+1,r|α̃t+1, βt+1)
}−1{ n∑

k=1

U c
3k(γ

t+1,r|α̃t+1, βt+1)
}
,

for r = 0, 1, 2, ..., where α̃t, βt and γt represent the estimates of α̃, β and γ at iteration
t, respectively. Let θ0 be the true value of θ. In Appendix B.2, we show the following
asymptotic result of θ̂c.

Theorem 3.1 Assume Conditions (C.1)-(C.2) in Appendix B.1. Then as n→∞,

√
n(θ̂c − θ0)

d−−→ N(0,Γ−1
c Σc[Γ

−1
c ]ᵀ),

where
Γc = E{∂U c(θ0;Y c

k )/∂θᵀ} and Σc = E{U c(θ0;Y c
k )U cᵀ(θ0;Y c

k )}.

To carry out inference such as constructing confidence intervals, we use the asymptotic
distribution in Theorem 3.1 by replacing Γc and Σc with their consistent estimates

Γ̂c =
1

n

n∑
k=1

∂U c(θ;Y c
k )

∂θᵀ

∣∣∣
θ=θ̂c

and Σ̂c =
1

n

n∑
k=1

U c(θ̂c;Y
c
k )U cᵀ(θ̂c;Y

c
k )

respectively, thus, yielding a consistent estimator of the asymptotic covariance matrix of
θ̂c, given by Γ̂−1

c Σ̂c[Γ̂
−1
c ]ᵀ.

3.2.2 Estimating Equations with Unknown Misclassification Prob-
abilities

In Section 3.2.1, we solve (3.6) by assuming that the misclassification parameter φ is known.
However, the misclassification parameters are usually unknown in practice. In this case,
a two-stage estimation procedure can be applied to estimate θ and φ, where an unbiased
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estimating function for φ is constructed in addition to (3.6). Often a validation subsample
is needed for estimation of the misclassification parameters (Roy et al. 2005). Here, we
describe an inferential procedure by incorporating estimation of the misclassification pa-
rameters when an internal validation subsample is available (Chen et al. 2011; Chen et al.
2014).

For k = 1, ..., n, let δk be the indicator variable of the kth subject such that when
δk = 1, the kth subject is included in validation subsample and δk = 0 otherwise. Then

pv =
n∑
k=1

δk/n is the proportion of the subjects that are included in the validation subsample.

For k = 1, ...., n, let Hk be the indicator variable I(Y ∗k 6= Yk) for the kth subject, taking
value 1 if Y ∗k 6= Yk and 0 otherwise. Thus, Hk = 1 is equivalent to either “Y ∗k = 1, Yk = 0”
or “Y ∗k = 0, Yk = 1”. For ease of notation, for y∗k = 0, 1, we let

`k0(y∗k) = log{τHkk01 × (1− τk01)(1−Hk)}

denote the logarithm of the conditional probability P (Y ∗k = y∗k|Yk = 0) and let

`k1(y∗k) = log{τHkk10 × (1− τk10)(1−Hk)}

denote the logarithm of the conditional probability P (Y ∗k = y∗k|Yk = 1).

Define Sk(φ) = (∂`k0(y∗k)/∂φ)1−yk(∂`k1(y∗k)/∂φ)yk , which can be used to estimate φ using
the measurements in the validation subsample. Now we describe a two-stage estimation
procedure for estimation of φ and θ.

Stage 1. Applying Sk(φ) to the validation subsample and solving

n∑
k=1

δkSk(φ) = 0 (3.7)

for φ gives an estimate, say φ̂v, of φ.

Stage 2. Replace φ with φ̂v in (3.6) and solve it for θ using the block relaxation algorithm.

This two-stage estimation procedure can be expressed as a single procedure for ease
of establishing the asymptotic results of the resulting estimator. Let η = (φᵀ, θᵀ)ᵀ. Then
solving

n∑
k=1

(
U c(θ, φ;Y c

k )
δkSk(φ)

)
= 0 (3.8)
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for η gives a consistent estimator, denoted η̂v = (φ̂ᵀ
v, θ̂

ᵀ
v)

ᵀ, for η, provided regularity condi-
tions.

Applying the first-order Taylor series approximation to the estimating functions in (3.8)
around η0, the true value of η, we can establish Theorem 3.2 as follows. The details are
included in Appendix B.3.

Theorem 3.2 Assume that Conditions (C.1)-(C.4) in Appendix B.1 hold and that pv ap-
proaches a positive constant as n→∞. Then as n→∞,

√
n(θ̂v − θ0)

d−−→ N(0,Γ−1
c Στ [Γ

−1
c ]ᵀ),

where Στ = E{Ωk(θ0, φ0)Ωᵀ
k(θ0, φ0)}, and

Ωk(θ0, φ0) = U c(θ0, φ0;Y c
k )− E

{
∂U c(θ0, φ0;Y c

k )/∂φ
}

×
[
E
{
δk × ∂Sk(φ0)/∂φ

}]−1

× {δkSk(φ0)}.

As n→∞, the matrix Στ can be consistently estimated by Σ̂τ = 1
n

n∑
k=1

Ω̂k(θ̂v, φ̂v)Ω̂
ᵀ
k(θ̂v, φ̂v)},

where

Ω̂k(θ̂v, φ̂v) = U c(θ̂v, φ̂v;Y
c
k )−

{ 1

n

n∑
k=1

∂U c(θ, φ;Y c
k )

∂φ

∣∣∣
η=η̂v

}
×
[ 1

n

{ n∑
k=1

∂δkSk(φ̂v)

∂φ

∣∣∣
φ=φ̂v

}]−1

× {δkSk(φ̂v)}.

3.3 Likelihood Method

3.3.1 Inference Method with Known Misclassification Probabil-
ities

The second method of estimation of the parameters is based on the observed likelihood
function. Let µ∗k = P (Y ∗k = 1|xk, zk) be the conditional mean for the surrogate response
Y ∗k , given {xk, zk}. As discussed in Yi (2017, Chapter 8), the conditional probability µ∗k of
the observed measurement Y ∗k , given {xk, zk}, is linked with the conditional probability µk
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of the true response Yk, given {xk, zk}, through

µ∗k = τk01 + (1− τk01 − τk10)µk. (3.9)

If the parameters for the misclassification probabilities are known, then the maximum
likelihood estimator, say θ̂, of θ can be obtained by maximizing the log-likelihood for the

observed data
n∑
k=1

`o(θ;Y ∗k ) with respect to θ, where for k = 1, ..., n,

`o(θ;Y ∗k ) = Y ∗k log.µ∗k + (1− Y ∗k )log(1− µ∗k), (3.10)

and µ∗k is determined by (3.9) in combination with (3.1) and (3.4).

Under regularity conditions, θ̂ can be equivalently obtained by solving the

n∑
k=1

U o(θ;Y ∗k ) = 0, (3.11)

where U o(θ;Y ∗k ) = {U oᵀ
1k (θ), U oᵀ

2k (θ), U oᵀ
3k (θ)}ᵀ with U o

1k(θ) = ∂`o(θ;Y ∗k )/∂α̃, U o
2k(θ) = ∂`o(θ;

Y ∗k )/∂β, and U o
3k(θ) = ∂`o(θ;Y ∗k )/∂γ.

Likelihood theory shows that as n→∞,

√
n(θ̂ − θ0)

d−−→ N(0,Σ−1),

provided regularity conditions, where Σ = E{−∂U o(θ0;Y ∗k )/∂θᵀ}, which can be consis-

tently estimated by n−1
n∑
k=1

U o(θ̂;Y ∗k )U oᵀ(θ̂;Y ∗k ).

3.3.2 Inference Method with Unknown Misclassification Proba-
bilities

In this subsection, we consider using an internal validation sample to estimate the pa-
rameter vector φ associated with the misclassification model (3.4). The inference about
η, defined in Section 3.2.2, can be carried out based on the likelihood function for the
observed data, given by

Lov(η) =
{ ∏
δk=1

f(yk, y
∗
k|xk, zk)

}{ ∏
δk=0

f(y∗k|xk, zk)
}
,
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where the contributions of the subjects in the validation sample are reflected by the
model f(yk, y

∗
k|xk, zk) for the conditional distribution of {Yk, Y ∗k } given {xk, zk}, deter-

mined by (3.1), (3.4) and (3.9); and the subjects in the main study contribute via the
model f(y∗k|xk, zk), determined by (3.9). More specifically, Lov(η) is given by

Lov(η) =
{ ∏
δk=1

[
µykk (1− µk)1−yk{ak1(y∗k)}yk{ak0(y∗k)}1−yk

]}
×
∏
δk=0

{µ∗y
∗
k

k (1− µ∗k)1−y∗k},
(3.12)

where for l = 0 and 1, akl(y
∗
k) = P (Y ∗k = y∗k|Yk = l, Xk, zk), given by

ak0(y∗k) = τ
y∗k
k01(1− τk01)1−y∗k and ak1(y∗k) = τ

1−y∗k
k10 (1− τk10)y

∗
k .

Maximizing (3.12) with respect to η leads to the maximum likelihood estimator for η.
Although directly maximizing (3.12) can provide a statistically efficient estimator for η,
the procedure may be computationally difficult to implement. Alternatively, we describe
a two-stage estimation procedure which is computationally easier to implement, especially
under the matrix-variate setting.

The two-stage algorithm treats θ and φ different. At the first stage, we employ (3.7)
to obtain the estimate of φ using a validation subsample. At the second stage, estimation
of θ is carried out by solving

∑n
k=1 U

o
v (η) = 0, or equivalently,∑

δk=1

U o
1 (η; yk) +

∑
δk=0

U o
2 (η; y∗k) = 0 (3.13)

for θ with φ replaced by the estimate obtained from the first stage, where U o
v (η) =

∂ log(Lov)/∂θ, U
o
1 (η;Yk) =

{
Yk−µk
µi(1−µi)

}(
∂µk
∂θᵀ

)
, and U o

2 (η;Y ∗k ) =
{

Y ∗k −µ
∗
k

µ∗i (1−µ∗i )

}(
∂µ∗k
∂θᵀ

)
.

This two-stage estimation procedure can be expressed as a single procedure for ease of
establishing the asymptotic results of the resulting estimator. Solving

n∑
k=1

(
U o
v (η;Yk, Y

∗
k )

δkSk(φ)

)
= 0 (3.14)

for η gives a consistent estimator, denoted η̂ov = (φ̂ᵀ
v, θ̂

ᵀ
ov)

ᵀ, for η, provided regularity
conditions. The asymptotic property of θ̂ov can be established similarly to Theorem 3.2
and is presented in Theorem 3.3 as follows.
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Theorem 3.3 Assume that Conditions (C.1)-(C.4) in Appendix B.1 hold and that pv ap-
proaches a positive constant as n→∞. Then

√
n(θ̂ov − θ0)

d−−→ N(0,Γ−1
o Στo[Γ

−1
o ]ᵀ) as n→∞,

where Γo = E{∂U o
v (η;Yk, Y

∗
k )/∂θᵀ}, Στo = E{Ωok(θ0, φ0)Ωᵀ

ok(θ0, φ0)}, and

Ωok(θ0, φ0) = U o
v (η0)− E

{
∂U o

v (η0)/∂φ
}

×
[
E
{
δk × ∂Sk(φ0)/∂φ

}]−1

× {δkSk(φ0)}.

As n→∞, Στo and Γo can be consistently estimated by

Σ̂τo =
1

n

n∑
k=1

Ω̂ok(θ̂ov, φ̂v)Ω̂
ᵀ
ok(θ̂ov, φ̂v) and Γ̂o =

1

n

n∑
k=1

∂U o
v (η;Yk, Y

∗
k )

∂θᵀ

∣∣∣
η=η̂ov

,

respectively, where

Ω̂ok(θ̂ov, φ̂v) = U o
v (η̂ov;Yk, Y

∗
k )−

{ 1

n

n∑
k=1

∂U o
v (η;Yk, Y

∗
k )

∂φ

∣∣∣
η=η̂ov

}
×
{ 1

n

n∑
k=1

∂δkSk(φ)

∂φ

∣∣∣
φ=φ̂v

}−1

× {δkSk(φ̂v)}.

3.4 Numerical Studies

3.4.1 Simulation Designs

In this subsection, different simulations are designed to evaluate the performance of the
proposed methods as well as the impacts of small, moderate and large degrees of response
misclassification on parameter estimation, where we consider settings with p + 1 = q,
denoted px for ease of exposition, and the sample size n = 1000.

Specifically, px × px matrix-variate data, xk, are simulated from the matrix-normal
distribution MN(0, Ipx , Ipx) for k = 1, ..., n, where px = 5. For the vector-covariate zk,
we consider two cases: (1) the zk are continuous and independently generated from the
standard normal distribution; (2) the zk are binary and independently generated from the
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Bernoulli distribution with P (zk = 1) = 0.5. To easily differentiate these two types of zk,
we use z1k and z2k to express the covariate in these two cases, repectively.

For k = 1, ..., n, the binary response Yk is randomly generated from the Bernoulli
distribution with the probability

P (Yk = 1|xk, zk) =
exp(γ0 + αᵀxkβ + γ1zk)

1 + exp(γ0 + αᵀxkβ + γ1zk)
, (3.15)

where γ0 = log 2, γ1 = 0.5, α = (0, 1, 0, 0.5, 0.5)ᵀ, and β = (0.5,−0.5, 0, 0.5, 0)ᵀ.

The misclassification rates are determined by (3.4) and we consider five settings. In the
first four settings, we let Lk = 1 and τk01 = τk10 for simplicity where τk01 and τk10 are set
as 2.5%, 5%, 10% and 20%, respectively, to reflect increasing degrees of misclassification.
For these settings, the response Yk are generated from (3.15) with zk set as z1k. In the fifth
setting, we take Lk = (1, z2k)

ᵀ together with φ0 = (−3, 0.5)ᵀ and φ1 = (3, 0.5)ᵀ in (3.4) to
generate τk01 and τk10. When z2k = 0, τk01 and τk10 are roughly 5%; when z2k = 1, τk01 and
τk10 are roughly 7.5%.

For k = 1, ..., n, the observed response, Y ∗k , is independently obtained using (3.4) as
specified as one of the five settings with the designed misclassification rates. To apply the
proposed methods to fit the data, we consider two scenarios. In Scenario 1, we take the
misclassification rates as known and fit the data using the methods described in Sections
3.2.1 and 3.3.1. In Scenario 2, we apply the methods in Sections 3.2.2 and 3.3.2 by taking
the misclassification rates as unknown and estimated from an internal validation sample.
To investigate the effect of different sizes of the internal validation data, we randomly take
30% or 60% of the data as an internal validation sample.

3.4.2 Simulation Results

Tables 3.1-3.5 present the results for the estimators of α, β and γ where finite sample biases
in percent (bias%), empirical standard errors (ESE), model-based asymptotic standard
errors (ASE), and coverage rates (CR) for 95% confidence intervals are reported.

For the row effects α, the imputation methods and the likelihood methods give similar
estimate results to those obtained from the naive method, regardless of the degrees of mis-
classification or the size of internal validation data. However, for the column effects β and
the vector-covariate effects γ, we observe that biases resulted from the naive method are
much larger than those obtained from the proposed methods even when the misclassifica-
tion degree is small. The performance of estimators from the naive method becomes worse
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as the degree of misclassification increases. On the other hand, the imputation methods
and the likelihood methods significantly improve the performance of the naive method.
Furthermore, the likelihood methods outperform the imputation methods, although the
performance of the imputation methods is fairly satisfactory under various settings. The
likelihood methods are more efficient than the imputation methods and tend to be less
affected by the size of the validation sample or the degree of misclassification than the
imputation methods.

In summary, the naive method produces considerably biased results when misclassi-
fication exists in the response variables, suggesting that it is imperative to account for
the misclassification effects in statistical inference when facing misclassification problems.
The simulation studies confirm that the proposed methods significantly improve the per-
formance of the naive method and satisfactorily accommodate the effects induced from
the response misclassification. The likelihood methods have better performance than the
imputation methods. It also confirms that when misclassification rates are unknown, the
more the internal validation data, the better the results.

Finally, we comment that to improve the accuracy of estimation results for a given
dimension of xk and zk, increasing the sample size is typically helpful, as noticed by a
referee. In our numerical explorations, we found that for the settings considered in this
section, reducing the sample size to a small value (such as 200) can generate unstable
results with more nonconverging estimates.

3.4.3 Sensitivity Study

To investigate the robustness of the proposed methods in Sections 3.2.1 and 3.3.1, we
conduct the following two simulation studies. In Simulation 1, we generate the Yk using
(3.15) with zk set as z1k and the Y ∗k using (3.4) with Lk = 1, yielding that τk01 and τk10

are common for k = 1, ..., n; let τ01 and τ10 denote them, respectively. We consider one
of the two settings to generate the surrogate responses: (1) τ01 = 5% and τ10 = 10%; (2)
τ01 = 10% and τ10 = 5%. We apply the methods in Sections 3.2.1 and 3.3.1 by mis-taking
τ01 and τ10 as τ01 = τ10 = 2.5%, 7.5% or 10% to fit the data.

In Simulation 2, we generate the Yk from (3.15) with zk set as z2k and the Y ∗k from
(3.4) with Lk = (1, z2k)

ᵀ, φ0 = (−3, 0.5)ᵀ, and φ1 = (1.5, 0.5)ᵀ. However, we fit the data
using the methods in Sections 3.2.1 and 3.3.1 with τk01 and τk10 misspecified as one of the
settings: (1) τk01 = 10% and τk10 = 15%; (2) τk01 = 5% and τk10 = 10%, for all k = 1, ..., n.

The results are reported in Tables 3.6-3.8. For estimation of the row and column effects,
our proposed methods still perform better than the naive method under the misspecification
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of the misclassification rates we consider here. However, for estimation of the vector effect,
γ, our methods may perform better than the naive method only when the misspecified
misclassification rates are not severe.

3.4.4 Analysis of the Breast Cancer Wisconsin Prognostic Data

We apply the proposed methods, in contrast to the naive approach, to analyze the breast
cancer Wisconsin prognostic imaging data which are available at the UCI Machine Learn-
ing Repository website (https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+
Wisconsin+(Prognostic)). The data set contains 198 breast cancer patients whose cases
exhibit invasive breast cancer but no evidence of distant metastases at the time of di-
agnosis. Ten real features, Radius, Texture, Perimeter, Area, Smoothness, Compactness,
Concavity, Concave Points, Symmetry and Fractal Dimension, of the cell nucleus in the
digitized image of a fine needle aspirate (FNA) of breast mass of each subject were taken
as the row effects. For each feature, the Mean, Standard Error, and Worst (mean of the
three smallest values) were computed for the cell nucleus in each breast mass image and
treated as the column effects. Besides those measurements, the tumor size for each subject
is available.

Those subjects are divided into the recurrent group of 47 patients and the nonrecurrent
group of 151 patients. A patient is classified to be in the recurrent group if the disease
is observed at some subsequent time to the tumor excision; and the nonrecurrent group
includes patients whose cancer has not observed to recur, or may never recur. There is a
possibility that the patients may be misclassified due to incorrect diagnosis for the recurrent
group or the unknown recurring time for the nonrecurrent group patients (Mangasarian
et al. 1995). Here we are interested in using the observed but error-prone data to study how
risk factors may be associated with the true status of being in the recurrent or nonrecurrent
group, which is postulated by model (3.1).

For k = 1, .., 198, let Y ∗k be the observed binary response variable for subject k, with
value 1 for being in the recurrent group and 0 for being in the nonrecurrent group. The
matrix-variate of the subject k, denoted as xk, is a 10×3 matrix with entry (i, j) represent-
ing the value of the jth characteristic of the ith feature, where i = 1, ..., 10 and j = 1, 2, 3.
The breast tumor size of the subject k is denoted as zk. Consistent with the notation in
Section 3.1, we let τ10 denote the rate of misclassifying a subject who actually is in the
recurrent group into the observed nonrecurrent group as τ10, and let τ01 denote the rate
of misclassifying a subject who actually is in the nonrecurrent group into the observed
recurrent group.
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Since our proposed methods require the knowledge of the misclassification mechanism
but there are no validation data available, we conduct sensitivity analysis by examining
the impacts of different misclassification probabilities on the estimation of the model pa-
rameters. In particular, we consider two possible scenarios. In the first scenario, we take
τ01 = 0, reflecting no misclassification in the recurrent group, and set τ10 = 1%, 3%, or 5%
to feature increasing misclassification cases. In the second scenario, we set τ01 = 1% and
let τ10 = 1%, 3%, or 5%.

Tables 3.9-3.11 report the estimation results for the breast cancer Wisconsin data ob-
tained from the naive analysis by using (3.3) with Yk replaced by Y ∗k , the imputation
method (3.6), and the likelihood method (3.11). For the row effects α̃, all analyses show
that Radius has the highest negative effect and Perimeter has the highest positive effect.
For the column effects, all the methods show that Mean has the highest positive effect and
Worst has the highest negative effect. However, only the intercept term is statistically
significant under 5% significant level. As the misclassification rate increases, the size of
the effect as well as the standard errors from the proposed methods increases.

To conclude, we point out that caution should be taken when interpreting the results
here. As noted in Section 3.4.2, a small sample size does not ensure reliable estimation
results as the asymptotic results do not come into the play. The analysis here can be more
regarded as an illustration of the utility of the proposed methods than taken as a sound
revealing of new scientific findings for such a study.
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Table 3.9: Analysis of the breast cancer Wisconsin prognostic data without accounting for
misclassification effects

Parameter Est. SE 95% CI
Radius -4.790 3.778 (-12.195, 2.614)
Texture -0.122 0.115 (-0.348, 0.104)
Perimeter 3.909 3.951 (-3.835, 11.654)
Smoothness 0.242 0.233 (-0.214, 0.698)
Compactness 0.073 0.273 (-0.463, 0.609)
Concavity -0.372 0.293 (-0.945, 0.202)
Concave Points 0.117 0.251 (-0.376, 0.610)
Symmetry -0.041 0.119 (-0.276, 0.193)
Fractal Dimension -0.411 0.266 (-0.933, 0.111)
Mean 3.089 1.791 (-0.422, 6.599)
SE 0.276 0.388 (-0.484, 1.037)
Worst -0.773 0.660 (-2.066, 0.520)
Tumor Size 0.267 0.167 (-0.060, 0.594)
Intercept -1.371 0.205 (-1.772, -0.969)
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Table 3.10: Sensitivity analyses of the first scenario (τ01 = 0) of the breast cancer Wisconsin
prognostic data with different degrees of τ10 accommodated

Parameter Imputation Method Likelihood Method
Est. SE 95% CI Est. SE 95% CI

Scenario (i): assuming τ10 = 1%
Radius -4.740 3.728 (-12.048, 2.567) -5.128 4.273 (-13.504, 3.247)
Texture -0.121 0.114 (-0.344, 0.102) -0.137 0.133 (-0.397, 0.124)
Perimeter 3.855 3.898 (-3.785, 11.496) 4.273 4.454 (-4.456, 13.003)
Smoothness 0.237 0.229 (-0.212, 0.687) 0.268 0.271 (-0.263, 0.798)
Compactness 0.074 0.227 (-0.457, 0.603) 0.064 0.286 (-0.496, 0.624)
Concavity -0.368 0.289 (-0.934, 0.199) -0.395 0.342 (-1.066, 0.276)
Concave Points 0.119 0.249 (-0.370, 0.608) 0.111 0.290 (-0.457, 0.678)
Symmetry -0.041 0.118 (-0.273, 0.190) -0.041 0.122 (-0.280, 0.197)
Fractal Dimension -0.407 0.263 (-0.923, 0.109) -0.432 0.333 (-1.086, 0.220)
Mean 3.139 1.817 (-0.422, 6.701) 3.025 2.153 (-1.196, 7.245)
SE 0.280 0.392 (-0.490, 1.049) 0.286 0.428 (-0.553, 1.125)
Worst -0.788 0.671 (-2.103, 0.528) -0.748 0.742 (-2.203, 0.707)
Tumor Size 0.268 0.168 (-0.061, 0.597) 0.277 0.171 (-0.062, 0.609)
Intercept -1.357 0.206 (-1.760, -0.954) -1.442 0.215 (-1.863, -1.021)

Scenario (ii): assuming τ10 = 3%
Radius -4.636 3.627 (-11.745, 2.472) -5.993 5.394 (-16.565, 4.579)
Texture -0.118 0.111 (-0.335, 0.099) -0.179 0.180 (-0.532, 0.174)
Perimeter 3.743 3.791 (-3.686, 11.173) 5.207 5.650 (-5.867, 16.280)
Smoothness 0.229 0.223 (-0.208, 0.666) 0.338 0.358 (-0.364, 1.040)
Compactness 0.075 0.264 (-0.443, 0.593) 0.048 0.335 (-0.608, 0.704)
Concavity -0.360 0.282 (-0.913, 0.194) -0.459 0.421 (-1.285, 0.367)
Concave Points 0.122 0.245 (-0.358, 0.603) 0.094 0.322 (-0.538, 0.7250)
Symmetry -0.041 0.115 (-0.267, 0.185) -0.042 0.145 (-0.327, 0.242)
Fractal Dimension -0.399 0.256 (-0.902, 0.103) -0.425 0.430 (-1.331, 0.336)
Mean 3.248 1.873 (-0.423, 6.920) 2.862 2.273 (-1.593, 7.317)
SE 0.286 0.403 (-0.504, 1.076) 0.304 0.446 (-0.570, 1.177)
Worst -0.820 0.696 (-2.183, 0.544) -0.689 0.728 (-2.117, 0.739)
Tumor Size 0.271 0.171 (-0.063, 0.606) 0.292 0.265 (-0.066, 0.650)
Intercept -1.329 0.207 (-1.735, -0.923) -1.617 0.183 (-2.135, -1.098)

Scenario (iii): assuming τ10 = 5%
Radius -4.528 3.523 (-11.433,2.376) -7.410 7.631 (-22.368, 7.548)
Texture -0.116 0.108 (-0.327, 0.095) -0.255 0.283 (-0.810, 0.230)
Perimeter 3.627 3.679 (-3.854, 10.839) 6.734 8.047 (-9.038, 22.507)
Smoothness 0.220 0.216 (-0.204, 0.644) 0.455 0.537 (-0.598, 1.508)
Compactness 0.077 0.258 (-0.429, 0.582) 0.031 0.405 (-0.763, 0.826)
Concavity -0.351 0.276 (-0.891, 0.189) -0.570 0.590 (-1.726, 0.586)
Concave Points 0.126 0.241 (-0.346, 0.597) 0.074 0.380 (-0.671, 0.820)
Symmetry -0.040 0.112 (-0.260, 0.180) -0.048 0.1876 (-0.414, 0.318)
Fractal Dimension -0.250 0.545 (-0.881, 0.098) -0.617 0.623 (-1.839, 0.605)
Mean 3.367 1.936 (-0.426, 7.161) 2.617 2.463 (-2.211, 7.445)
SE 0.293 0.414 (-0.519, 1.106) 0.310 0.460 (-0.593, 1.212)
Worst -0.855 0.723 (-2.272, 0.562) -0.609 0.716 (-2.012, 0.794)
Tumor Size 0.275 0.173 (-0.065, 0.614) 0.320 0.198 (-0.068, 0.708)
Intercept -1.301 0.209 (-1.709, -0.892) -1.866 0.363 (-2.579, -1.154)
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Table 3.11: Sensitivity analyses of the second scenario (τ01 = 1%) of the breast cancer
Wisconsin prognostic data with different degrees of τ10 accommodated

Parameter Imputation Method Likelihood Method
Est. SE 95% CI Est. SE 95% CI

Scenario (i): assuming τ10 = 1%
Radius -4.963 3.973 (-12.751, 2.825) -4.796 3.884 (-12.409, 2.817)
Texture -0.126 0.120 (-0.361, 0.109) -0.122 0.118 (-0.354, 0.110)
Perimeter 4.094 4.158 (-4.056, 12.243) 3.918 4.041 (-4.003, 11.839)
Smoothness 0.255 0.244 (-0.224, 0.733) 0.244 0.243 (-0.233, 0.721)
Compactness 0.068 0.282 (-0.486, 0.621) 0.071 0.267 (-0.451, 0.594)
Concavity -0.385 0.303 (-0.979, 0.210) -0.370 0.317 (-0.991, 0.251)
Concave Points 0.112 0.254 (-0.386, 0.610) 0.113 0.278 (-0.432, 0.657)
Symmetry -0.041 0.123 (-0.282, 0.201) -0.041 0.113 (-0.263, 0.182)
Fractal Dimension -0.421 0.279 (-0.967, 0.125) -0.410 0.305 (-1.008, 0.188)
Mean 3.167 1.882 (-0.523, 6.856) 3.097 2.118 (-1.055, 7.249)
SE 0.290 0.408 (-0.509, 1.089) 0.279 0.423 (-0.551, 1.109)
Worst -0.787 0.681 (-2.122, 0.548) -0.775 0.753 (-2.251, 0.701)
Tumor Size 0.277 0.173 (-0.062, 0.616) 0.270 0.169 (-0.061, 0.600)
Intercept -1.426 0.222 (-1.860, -0.991) -1.357 0.199 (-1.748, -0.966)

Scenario (ii): assuming τ10 = 3%
Radius -4.856 3.867 (-12.435, 2.722) -4.806 3.887 (-12.424, 2.812)
Texture -0.123 0.117 (-0.352, 0.105) -0.120 0.118 (-0.352, 0.112)
Perimeter 3.980 4.044 (-3.947, 11.906) 3.933 4.046 (-3.997, 11.864)
Smoothness 0.246 0.237 (-0.219, 0.710) 0.248 0.246 (-0.234, 0.729)
Compactness 0.069 0.276 (-0.472, 0.610) 0.068 0.268 (-0.458, 0.594)
Concavity -0.376 0.296 (-0.956, 0.204) -0.367 0.317 (-0.987, 0.254)
Concave Points 0.115 0.250 (-0.374, 0.605) 0.104 0.278 (-0.442, 0.649)
Symmetry -0.040 0.120 (-0.276, 0.196) -0.039 0.113 (-0.260, 0.183)
Fractal Dimension -0.413 0.271 (-0.945, 0.119) -0.409 0.306 (-1.009, 0.191)
Mean 3.276 1.940 (-0.527, 7.080) 3.117 2.140 (-1.077, 7.311)
SE 0.297 0.418 (-0.523, 1.117) 0.284 0.429 (-0.558, 1.125)
Worst -0.818 0.706 (-2.201, 0.565) -0.778 0.759 (-2.267, 0.710)
Tumor Size 0.280 0.176 (-0.065, 0.624) 0.276 0.172 (-0.062, 0.613)
Intercept -1.398 0.223 (-1.835, -0.961) -1.329 0.200 (-1.722, -0.937)

Scenario (iii): assuming τ10 = 5%
Radius -4.746 3.757 (-12.111, 2.618) -4.814 3.885 (-12.430, 2.801)
Texture -0.121 0.113 (-0.343, 0.102) -0.118 0.118 (-0.349, 0.113)
Perimeter 3.861 3.928 (-3.837, 11.559) 3.947 4.047 (-3.985, 11.879)
Smoothness 0.236 0.230 (-0.215, 0.687) 0.251 0.247 (-0.234, 0.736)
Compactness 0.071 0.269 (-0.457, 0.598) 0.065 0.270 (-0.465, 0.594)
Concavity -0.367 0.289 (-0.933, 0.199) -0.363 0.316 (-0.983, 0.257)
Concave Points 0.119 0.245 (-0.361, 0.599) 0.094 0.279 (-0.453, 0.641)
Symmetry -0.039 0.117 (-0.269, 0.190) -0.037 0.113 (-0.258, 0.184
Fractal Dimension -0.405 0.264 (-0.923, 0.113) -0.408 0.307 (-1.009, 0.193)
Mean 3.396 2.005 (-0.534, 7.326) 3.141 2.164 (-1.101, 7.383)
SE 0.305 0.430 (-0.538, 1.148) 0.289 0.436 (-0.565, 1.143)
Worst -0.853 0.733 (-2.289, 0.583) -0.783 0.767 (-2.285, 0.720)
Tumor Size 0.283 0.179 (-0.067, 0.633) 0.283 0.176 (-0.063, 0.628)
Intercept -1.370 0.225 (-1.810, -0.929) -1.301 0.202 (-1.696, -0.906)
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Chapter 4

Regularized Matrix-Variate Logistic
Regression with Response
Misclassification

Chapter 4 is a continuation and extension of Chapter 3. In this chapter, we consider regu-
larized matrix-variate logistic regression with response misclassification. The remainder is
organized as follows. In Section 4.1, we propose the first set of methods based on regular-
ized unbiased estimating functions, and establish the asymptotic results for the resulting
estimators. In Section 4.2, we develop the second set of methods which employ regularized
observed likelihood functions. In Section 4.3, we conduct simulation studies to assess the
performance of the proposed methods. We also present an application to the breast cancer
Wisconsin prognostic data discussed in Section 3.4.4.

Specifically, the notation and model setup are the same as those in Chapter 3. The
only difference is that the covariates contained in xk may be unimportant in explaining
the mean response. We are interested in carrying out variable selection to exclude those
irrelevant covariates in inferential procedures.
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4.1 Regularized Estimation Equations Method

4.1.1 With Known Misclassification Probabilities

Refer to Chapter 3, the method based in model (3.1) applies when the dimensions of x
and z are small or when x and z do not include unimportant covariates. In settings with
unimportant covariates, it is imperative to perform variable selection when estimating the
model parameters. Let pλn(·) denote the penalty function with the tuning parameter λn
which often depends on n, where the argument of pλn(·) is a scalar. For ease of expo-
sition, we let pλn(α̃), pλn(β) and pλn(γ) represent the vectors {pλn(α2), ..., pλn(αp+1)}ᵀ,
{pλn(β1), ..., pλn(βq)}ᵀ and {pλn(γ0), pλn(γ1), ..., pλn(γpz)}ᵀ, respectively, by using a vector
as the argument of pλn(·) to avoid possible confusion with pλn(·) having a scalar argument.
Here we propose the penalized estimating equations method by solving a modified version
of (3.6) using the unbiased surrogate Y c

k defined in (3.5):

n∑
k=1

U c
1k(θ;Y

c
k )− p′λn(α̃)

U c
2k(θ;Y

c
k )− p′λn(β)

U c
3k(θ;Y

c
k )− p′λn(γ)

 = 0, (4.1)

where p′λn(α̃), p′λn(β) and p′λn(γ) represent the first derivative of pλn(α̃), pλn(β) and pλn(γ),
respectively.

Following Ma and Li (2010), we choose the SCAD penalty as the penalty function with
the derivative function

p′λn(ζ) = λn

{
I(|ζ| ≤ λn) +

(aλn − |ζ|)+

(a− 1)λn
I(|ζ| > λn)

}
sign(ζ), (4.2)

where I(·) is the indicator function, sign(ζ) = −1, 0 and 1 when ζ < 0,= 0 and > 0,
respectively, and a is a constant larger than 2 with a recommended value a = 3.7.

To establish the asymptotic results for the resulting estimators, we let

an = max{|p′λn(|θj0|)| : θj0 6= 0} (4.3)

and
bn = max{|p′′λn(|θj0|)| : θj0 6= 0}, (4.4)

where θj0 is the jth component of θ0. In Appendix C.2 we show the following theorem.
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Theorem 4.1 Assume Conditions (C.1)-(C.3) in Appendix C.1. If an and bn tend to 0
as n→∞, then, there exists a solution to (4.1), θ̂c, such that

‖θ̂c − θ0‖ = Op

( 1√
n

+ an

)
,

where ‖A‖ denotes the Euclidean norm if A is a vector.

This result shows the dependence of the convergence rate of θ̂c on the tuning parameter λn
as well as the penalty function. To obtain a

√
n−consistent estimator, it suffices to take a

small tuning parameter so that an = O( 1√
n
).

Next, we discuss the oracle property for θ̂c whose proof is included in Appendix C.4.
Write α̃0 = (α̃ᵀ

I0, α̃
ᵀ
II0)ᵀ, β0 = (βᵀ

I0, β
ᵀ
II0)ᵀ, and γ0 = (γᵀI0, γ

ᵀ
II0)ᵀ so that elements in α̃ᵀ

I0,
βᵀ

I0 and γᵀI0 are all not zero, and elements of α̃ᵀ
II0, βᵀ

II0 and γᵀII0 are all zero. Write
θ0 = (θᵀI0, θ

ᵀ
II0)ᵀ, where θI0 = (α̃ᵀ

I0, β
ᵀ
I0, γ

T
I0)ᵀ and θII0 = (α̃ᵀ

II0, β
ᵀ
II0, γ

ᵀ
II0)ᵀ. Similar nota-

tion is defined for θ = (θᵀI , θ
ᵀ
II)

ᵀ with θI = (α̃ᵀ
I , β

ᵀ
I , γ

T
I )ᵀ and θII = (α̃ᵀ

II, β
ᵀ
II, γ

ᵀ
II)

ᵀ. De-
note the dimension of α̃ᵀ

I0, βᵀ
I0 and γᵀI0 as d1α, d1β and d1γ, respectively, and the di-

mension of α̃ᵀ
II0, βᵀ

II0 and γᵀII0 as d2α, d2β and d2γ respectively. Let dα = d1α + d2α,
dβ = d1β + d2β, and dγ = d1γ + d2γ, which are all assumed to be fixed. Let U c

kα,I(θ;Y
c
k )

denote the first d1α components of U c
1k(θ;Y

c
k ), let U c

kβ,I(θ;Y
c
k ) denote the first d1β com-

ponents of U c
2k(θ;Y

c
k ), and let U c

kγ,I(θ;Y
c
k ) denote the first d1γ components of U c

3k(θ;Y
c
k ).

Let U c
kα,II(θ;Y

c
k ) denote the last d2α components of U c

1k(θ;Y
c
k ), let U c

kβ,II(θ;Y
c
k ) denote the

last d2β components of U c
2k(θ;Y

c
k ), and let U c

kγ,II(θ;Y
c
k ) denote the last d2γ components of

U c
3k(θ;Y

c
k ). Write U c

k,I(θ;Y
c
k ) = {U cᵀ

kα,I(;Y
c
k ), U cᵀ

kβ,I(θ;Y
c
k ), U cᵀ

kγ,I(θ;Y
c
k )}ᵀ and U c

k,II(θ;Y
c
k ) =

{U cᵀ
kα,II(;Y

c
k ), U cᵀ

kβ,II(θ;Y
c
k ), U cᵀ

kγ,II(θ;Y
c
k )}ᵀ.

Let
gα = {p′λn(α̃10), ..., p′λn(α̃d1α0)}ᵀ,

gβ = {p′λn(β10), ..., p′λn(βd1β0)}ᵀ,

gγ = {p′λn(γ10), ..., p′λn(γd1γ0)}ᵀ,

Σα = diag{p′′λn(α̃10), ..., p′′λn(α̃d1α0)},

Σβ = diag{p′′λn(β10), ..., p′′λn(βd1β0)},

and
Σγ = diag{p′′λn(γ10), ..., p′′λn(γd1γ0)}.

Write gθ = (gᵀα, g
ᵀ
β, g

ᵀ
γ) and Σθ = diag(Σα,Σβ,Σγ). With the SCAD penalty, gα, gβ, gγ, Σα,

Σβ and Σγ become zero when λn is sufficiently small.
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Theorem 4.2 Let θ̂c = (θ̂ᵀc,I, θ̂
ᵀ
c,II)

ᵀ denote a
√
n−consistent solution of (4.1), where θ̂c,I =

(ˆ̃αᵀ
c,I, β̂

ᵀ
c,I, γ̂

ᵀ
c,I, )

ᵀ and θ̂c,II = (ˆ̃αᵀ
c,II, β̂

ᵀ
c,II , γ̂

ᵀ
c,II)

ᵀ which correspond to the subvectors of θI0 and
θII0, respectively. Under Conditions (C.1)-(C.4) in Appendix C.1, if

lim inf
n→∞

lim inf
θ→0+

√
np′λn(θ) =∞, (4.5)

then with the probability tending to one, the following results hold:

(a) θ̂c,II = 0;

(b) as n→∞,

√
n
(
θ̂c,I − θI0 − ΓU(θI0)−1gθ

)
d−−→ N

(
0,ΓU(θI0)−1ΣU(θI0)ΓU(θI0)−1ᵀ

)
,

where ΓU(θI0) = E
{
∂Uck,I(θI0;Y ck )

∂θᵀ

}
− Σθ and ΣU(θI0) = E{U c

k,I(θI0;Y c
k )U cᵀ

k,I(θI0;Y c
k )}.

Theorem 4.2(a) shows that the proposed method can correctly identify the significant row
and column parameters as well as the vector covariate effects with the unimportant param-
eters excluded. That is, the resulting estimator possesses the oracle property. Theorem
4.2(b) establishes the asymptotic distribution for the estimators of the parameters corre-
sponding to the important covariates, which offers the basis for performing inferences.

Finally, we comment that solving (4.1) can be implemented by modifying the block
relaxation algorithm, by adding the penalty functions to (3.6) (e.g., Zhang et al. 2014). In
implementing (4.1), it is critical to select a suitable value of the tuning parameter λn. We
now describe an algorithm for selecting an optimal tuning parameter within a given set of
candidates. Let

IF = E
{
− ∂`2

k(θ;Yk)

∂θ∂θᵀ

}
be the Fisher information matrix of the likelihood function (3.2). Define the degree of
freedom for the selected model to be

DFλ = trace{IF(IF + Σθ)
−1}.

To emphasize the dependence of λn, we let θ̂c(λn) denote the estimate of θ. Since Yk is
unavailable, we approximate IF by

ÎF = − 1

n

n∑
k=1

∂`2
k(θ;Y

c
k )

∂θ∂θᵀ

∣∣∣
θ=θ̂c(λn)
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and approximate DFλ by D̂Fλ = trace{ÎF(ÎF + Σ̂θ)
−1}, where Σ̂θ is the estimate of Σθ

with θ given by θ̂c(λn). Let µ̂kλ denote the value of µkλ with θ specified as θ̂c(λn) and

σ̂2
λ = 1

n

n∑
k=1

|Y c
k − µ̂kλ|2. Similar to Wang et al. (2007), we define an objective function

BIC(λn) = logσ̂2
λ + D̂Fλlog(n)/n. (4.6)

Then the optimal tuning parameter, denoted λ∗n, is selected as the one that minimizes
BIC(λn), and the corresponding estimate θ̂c(λ

∗
n), denoted θ̂c, is taken as the estimate of

parameter θ.

4.1.2 With Unknown Misclassification Probabilities

The procedure described in Section 4.1.1 applies if the misclassification parameter φ is
known. In applications, the values of the misclassification parameters are usually unknown
and they need to be estimated from additional data sources. In this section, we consider
the case with an internal validation subsample available (e.g., Chen et al. 2011, 2014)
and describe the inferential procedure by incorporating estimation of the misclassification
parameters. Thus, we write U c

k(θ;Y
c
k ) in Section 4.1.1 as U c

k(θ, φ;Y c
k ) to emphasis that φ

is unknown parameter in these estimation equations. We apply the two-stage estimation
procedure described in Section 3.2.2, φ̂v is obtained by solving (3.7).

Next, solve (4.1) for θ with φ replaced by φ̂v using the block relaxation algorithm. Let
θ̂v denote the resulting estimator for θ. Analogous to the estimator described in Section
4.1.1, the estimator θ̂v is consistent and possesses the oracle property, shown as follows.

Theorem 4.3 Assume Conditions (C.1)-(C.6) in Appendix C.1 hold and that pv ap-
proaches a positive constant as n → ∞. If an and bn tend to 0 as n → ∞, then, there
exists a solution of (4.1) combined with (3.7), θ̂v, such that

‖θ̂v − θ0‖ = Op

( 1√
n

+ an

)
.

The proof of the theorem is outlined in Appendix C.5. This theorem shows that, similarly
to θ̂c, the convergence rate of θ̂v depends on the tuning parameter λn as well as the choice
of a penalty function. Taking a small tuning parameter to ensure an = O( 1√

n
) can yield a√

n−consistent estimator of θ0.
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Let U c
kα,I(θ, φ;Y c

k ), U c
kβ,I(θ, φ;Y c

k ) and U c
kγ,I(θ, φ;Y c

k ) denote the first d1α, the first d1β

and the first d1γ components of U c
1k(θ, φ;Y c

k ), U c
2k(θ, φ;Y c

k ) and U c
3k(θ, φ;Y c

k ), respectively.
Let U c

kα,II(θ, φ;Y c
k ), U c

kβ,II(θ, φ;Y c
k ) and U c

kγ,II(θ, φ;Y c
k ) denote the last d2α, the last d2β

and the first d2γ components of U c
1k(θ, φ;Y c

k ), U c
2k(θ, φ;Y c

k ) and U c
3k(θ, φ;Y c

k ), respectively.
Write U c

k,I(θ, φ;Y c
k ) = {U cᵀ

kα,I(θ, φ;Y c
k ), U cᵀ

kβ,I(θ, φ;Y c
k ), U cᵀ

kγ,I(θ, φ;Y c
k )}ᵀ and U c

k,II(θ, φ;Y c
k ) =

{U cᵀ
kα,II(θ, φ;Y c

k ), U cᵀ
kβ,II(θ, φ;Y c

k ), U cᵀ
kγ,I(θ, φ;Y c

k )}ᵀ. Let θ̂v = (θ̂ᵀv,I, θ̂
ᵀ
v,II)

ᵀ, where θ̂v,I = (ˆ̃αᵀ
v,I, β̂

ᵀ
v,I,

γ̂ᵀv,I, )
ᵀ and θ̂v,II = (ˆ̃αᵀ

v,II, β̂
ᵀ
v,II, γ̂

ᵀ
v,II)

ᵀ which correspond to the subvectors of θI0 and θII0, re-
spectively.

Theorem 4.4 Assume Conditions (C.1)-(C.6) in Appendix C.1 hold and that pv ap-
proaches a positive constant as n→∞, if

lim inf
n→∞

lim inf
θ→0+

√
np′λn(θ) =∞, (4.7)

then with the probability tending to one, the following results hold:

(a) θ̂v,II = 0;

(b) as n→∞,

√
n
(
θ̂v,I − θI0 − ΓUv(θ0, φ0)−1gθ

)
d−−→ N

(
0,ΓUv(θ0, φ0)−1ΣUv(θI0, φ0)ΓUv(θ0, φ0)−1ᵀ

)
,

where ΓUv(θ0, φ0) = E
{
∂Uck,I(θI0,φ0;Y ck )

∂θᵀ

}
−Σθ, ΣUv(θI0, φ0) = E{U∗ck,I(θI0, φ0;Y c

k )U∗cᵀk,I (θI0, φ0;Y c
k )}

and

U∗ck,I(θI0, φ0;Y c
k ) = U c

k,I(θI0, φ0;Y c
k )−{ 1

n

n∑
k=1

∂U c
k,I(θI0, φ0;Y c

k )/∂φ
}
×
{ 1

n

n∑
k=1

δk × ∂Sk(φ0)/∂φ
}−1

× {δkSk(φ0)}.

The proof of Theorem 4.4 is outlined in Appendix C.6. Theorem 4.4(a) shows that
the oracle property is retained for θ̂v, just like that of θ̂c established in Theorem 4.2(a).
Theorem 4.4(b) establishes that the estimator θ̂v,I has the asymptotic normal distribution,

similar to that of the estimator θ̂c,I reported in Theorem 4.2(a). However, the asymptotic

covariance of θ̂v,I differs from that of θ̂c,I; the inclusion of the second term in U∗ck,I(θI0, φ0;Y c
k )

reflects the variability induced from estimation of φ.
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4.2 Regularized Likelihood Method

4.2.1 Inference Method with Known Misclassification Probabil-
ities

We now consider an alternative method to estimate the parameter using the observed like-
lihood function. Here we assume that the parameters for the misclassification probabilities
are known and develop an estimation method for θ. An estimator, say θ̂, of θ can be

obtained by maximizing the penalized log-likelihood
n∑
k=1

`ok(θ;Y
∗
k )− npλn(θ), where pλn(θ)

is a penalized function with a tuning parameter λn. For k = 1, ..., n, the log-likelihood for
the observed data contributed from subject k is

`ok(θ;Y
∗
k ) = Y ∗k logµ∗k + (1− Y ∗k )log(1− µ∗k), (4.8)

where µ∗k is determined by (3.9) in combination with (3.1) and (3.4).

Under regularity conditions, θ̂ can be equivalently obtained by solving

n∑
k=1

U o
1k(θ;Y

∗
k )− p′λn(α̃)

U o
2k(θ;Y

∗
k )− p′λn(β)

U o
3k(θ;Y

∗
k )− p′λn(γ)

 = 0. (4.9)

where U o
1k(θ;Y

∗
k ) = ∂`ok(θ;Y

∗
k )/∂α̃, U o

2k(θ;Y
∗
k ) = ∂`ok(θ;Y

∗
k )/∂β, U o

3k(θ;Y
∗
k ) = ∂`ok(θ;Y

∗
k )/∂γ.

Let U o
k (θ;Y ∗k ) = {U oᵀ

1k (θ;Y ∗k ), U oᵀ
2k (θ;Y ∗k ), U oᵀ

3k (θ;Y ∗k )}ᵀ. Let U o
kα,I(θ;Y

∗
k ), U o

kβ,I(θ;Y
∗
k ) and

U o
kγ,I(θ;Y

∗
k ) denote the first d1α, the first d1β and the first d1γ components of U o

1k(θ;Y
∗
k ),

U o
2k(θ;Y

∗
k ) and U o

3k(θ;Y
∗
k ), respectively. Write U o

k,I(θ;Y
∗
k ) = {U oᵀ

kα,I(θ;Y
∗
k ), U oᵀ

kβ,I(θ;Y
∗
k ),

U oᵀ
kγ,I(θ;Y

∗
k )}ᵀ. Let θ̂ = (θ̂ᵀI , θ̂

ᵀ
II)

ᵀ where θ̂I = (ˆ̃αᵀ
I , β̂

ᵀ
I , γ̂

ᵀ
I )ᵀ and θ̂II = (ˆ̃αᵀ

II, β̂
ᵀ
II, γ̂

ᵀ
II)

ᵀ corre-
sponding to the subvectors of θI0 and θII0, respectively. Adapting the proofs of Fan and Li
(2001), We establish the following asympotitic results.

Theorem 4.5 If the Conditions (C.1)-(C.5) in Appendix C.1 hold, and an and bn tend to
0 as n→∞, then, there exists a solution to (4.9), θ̂, such that

‖θ̂ − θ0‖ = Op

( 1√
n

+ an

)
.

Theorem 4.5 suggests that the estimator θ̂ has similarity to θ̂c in that choosing a small
tuning parameter to ensure an = O( 1√

n
) can make θ̂ be a

√
n−consistent estimator of θ.
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Theorem 4.6 Under Conditions (C.1)-(C.6) in Appendix C.1, if

lim inf
n→∞

lim inf
θ→0+

√
np′λn(θ) =∞,

then with the probability tending to one, the following results hold:

(a) θ̂II = 0;

(b) as n→∞,
√
n
(
θ̂I − θI0 − Γ−1

Uogθ

)
d−−→ N

(
0,Γ−1

UoΣΓ−1ᵀ
Uo

)
,

where Σ = −E{∂U o
k,I(θI0;Y ∗k )/∂θᵀ} and ΓUo = −Σ− Σθ.

Theorem 4.6 shows that like for the estimating equation method described in Section
4.1.1, the oracle property is retained by the likelihood based method. Although both
θ̂c,I and θ̂I have asymptotic normal distributions after certain transformations, shown in
Theorems 4.2(b) and 4.6(b), their asymptotic covariance matrices are different, suggesting
that they differ in efficiency, which is confirmed from the simulation studies in Section 4.3.

4.2.2 Inference Method with Unknown Misclassification Proba-
bilities

In this subsection we extend the development in Section 4.2.1 to accommodating settings
where misclassification probabilities are unknown. We consider the same setting as Section
4.1.2 where a random internal validation subsample is available.

The inference about η, defined in Section 4.1.2, can be carried out based on the likeli-
hood function for the observed data, given by (3.12). Correspondingly, the log-likelihood
function with penalty terms is

`ov(η) =
[∑
δk=1

Yk log(µk) + (1−Yk) log(1−µk) +Yk log
{

(ak1(Y ∗k )
}

+ (1−Yk) log
{
ak0(Y ∗k )

}]

+
{∑
δk=0

Y ∗k log(µ∗k) + (1− Y ∗k ) log(1− µ∗k)
}
− npλn(θ), (4.10)
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The log-likelihood score equation for θ can be derived using (4.10),

n∑
k=1

U ov
k (η) =

∑
δk=1

U ov
1k (η;Yk) +

∑
δk=0

U ov
2k (η;Y ∗k ) = 0, (4.11)

where

U ov
1k (η;Yk) =

{ Yk − µk
µi(1− µi)

}(∂µk
∂θᵀ

)
and

U ov
2k (η;Y ∗k ) =

{ Y ∗k − µ∗k
µ∗i (1− µ∗i )

}(∂µ∗k
∂θᵀ

)
.

Then estimation of the parameter η can be carried out by a two-stage procedure. At
the first stage, we employ (3.7) to obtain the estimate of φ using the validation subsample.
At the second stage, estimation of θ is carried out by solving

n∑
k=1

U ov
k (η)− np′λn(θ) = 0 (4.12)

for θ, where U ov
k (η) is defined in (4.11), with φ replaced by the estimate for φ obtained

from the first stage. Let θ̂vo denote the resultant estimator of θ. Asymptotic properties of
θ̂vo can be established following the same arguments as for Theorems 4.3 and 4.4 but with
different technical details.

Theorem 4.7 Assume Conditions (C.1)-(C.5) in Appendix C.1 hold and that pv ap-
proaches a positive constant as n → ∞. If an and bn tends to 0 as n → ∞, then, there
exists a solution to (4.12), θ̂vo, such that

‖θ̂vo − θ0‖ = Op

( 1√
n

+ an

)
.

To show the oracle property of θ̂vo, let U ov
kα,I(θ, φ) denote the first d1α components

of U ov
k (η), let U ov

kβ,I(θ, φ) denote the components from (dα + 1) to (dα + d1β) of U ov
k (η),

and let U ov
kγ,I(θ, φ) denote the components from (dβ + 1) to (dβ + d1γ) of U ov

k (η). Write

U ov
k,I(θ, φ) = {U ovᵀ

kα,I(θ, φ), U ovᵀ
kβ,I(θ, φ), U ovᵀ

kγ,I(θ, φ)}ᵀ. Let θ̂vo = (θ̂ᵀvo,I, θ̂
ᵀ
vo,II)

ᵀ, where θ̂vo,I =

(ˆ̃αᵀ
vo,I, β̂

ᵀ
vo,I, γ̂

ᵀ
vo,I, )

ᵀ and θ̂vo,II = (ˆ̃αᵀ
vo,II, β̂

ᵀ
vo,II, γ̂

ᵀ
vo,II)

ᵀ which correspond to the subvectors of
θI0 and θII0, respectively.
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Theorem 4.8 Assume Conditions (C.1)-(C.6) in Appendix C.1 hold and that pv ap-
proaches a positive constant as n→∞, if

lim inf
n→∞

lim inf
θ→0+

√
np′λn(θ) =∞,

then with the probability tending to one, the following results hold:

(a) θ̂vo,II = 0;

(b) as n→∞,

√
n
(
θ̂vo,I − θI0 − ΓUov(θI0, φ0)−1gθ

)
d−−→ N

(
0,ΓUov(θI0, φ0)−1ΣUov(θI0, φ0)ΓUov(θI0, φ0)−1ᵀ

)
.

where ΓUov(θI0, φ0) = E
{
∂Uovk,I(θI0,φ0)

∂θᵀ

}
− Σθ, ΣUov(θI0, φ0) = E{U∗ovk,I (θI0, φ0)U∗ovᵀk,I (θI0, φ0)},

and

U∗ovk,I (θI0, φ0) = U ov
k,I(θI0, φ0)− E

{∂U ov
k,I(θI0, φ0)

∂φ

}
× E

{∂δkSk(φ0)

∂φ

}−1

× {δkSk(φ0)}.

4.3 Numerical Studies

In this section, we design different simulations to evaluate the performance of the proposed
methods, in addition to assessing the impact of various degrees of response misclassification
on parameter estimation. We consider settings with p + 1 = q, denoted as px for ease of
exposition. The sample size is set as n = 1000. Five hundred simulations are run for each
setting.

For k = 1, ..., n, we simulate xk, zk and Yk using the same design as those in Section
3.4.1, but set px to be 5 or 10. When px = 5, we consider the same values of α and β as
those in Section 3.4.1; when px = 10, we take α = (0, 1, 0, 0.5, 0,−0.5, 0, 0.5, 0, 0.5)ᵀ and
β = (0.5,−0.5, 0, 0.5, 0, 0,−0.5, 0, 0.5, 0)ᵀ. The surrogate responses Y ∗k are generated from
model (3.4) with Lk set to be constant 1. We set τ01 = τ10 = 2.5%, 5.0%, or 10.0% to fea-
ture increasing misclassification rates. We estimate the model parameters α, β and γ using
six methods. The two naive methods (called “Naive 1” and “Naive 2”) discard the differ-
ence between the Y ∗k and the Yk and fit data with model (3.1) using the block relaxation
algorithm. Naive 1 employs (4.1) by replacing U c

jk(θ;Y
c
k ) with Ujk(θ;Y

∗
k ) for j = 1, 2, 3 and

Naive 2 implements (3.3) with the Yk replaced by Y ∗k . To correct for the misclassification
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effects, we conduct the two regularized estimation equation methods described in Sections
4.1.1 and 4.1.2 (respectively called Methods 1 and 2) and the regularized likelihood meth-
ods described in Sections 4.2.1 and 4.2.2 (respectively called Methods 3 and 4). For the
methods in Sections 4.1.2 and 4.2.2, we take the internal validation sample to include 30%
or 60% randomly selected subjects from the initial sample. Finally, we use the simulated
true values of Yk, xk and zk to fit model (3.1), and we call this the “Reference” method.

4.3.1 Simulation Results

Table 4.1 presents the results obtained from Naive 1 and Methods 1-4 for the settings with
px = 5 (case 1) and px = 10 (case 2), where we report the differences for the specificity
and sensitivity obtained from each of Naive 1 and Methods 1-4 minus those obtained from
the reference method for the row and column parameters. The specificity is defined as the
average of those proportions of zero coefficients that are correctly estimated to be zeros
in those 500 simulations; the sensitivity is the average of those proportion of non-zero
coefficients that are estimated to be non-zeros in those 500 simulations. It is interesting
that Naive method 1 works reasonably well and produces comparable results to those
obtained from Methods 1-4, suggesting that misclassification effects do not seem profound
in shrinking unimportant coefficients or retaining parameters. All the methods yield fairly
close values for the specificity and almost identical values for the sensitivity. As the degree
of misclassification increases, the performance of all the methods tends to deteriorate.
Method 3 seems to slightly outperform Method 1, and Method 4 tends to perform better
than Method 1.

Furthermore, we report the simulation results for the estimators obtained from the
two naive methods and Methods 1-4 in the terms of the finite sample biases in percent
(bias%), empirical standard errors (ESE), model-based asymptotic standard errors (ASE),
and coverage rates in percent (CR%) for 95% confidence intervals. The results for px = 5
are displayed in Tables 4.2-4.4, and the results for px = 10 are displayed in Tables 4.5-4.7.

Regarding estimation of the row coefficients α, all the methods yield similar results,
regardless of the degrees of the misclassification or the size of internal validation data.
However, for the column parameter β and the vector-covariate parameter γ, these methods
perform differently. When misclassification is minor, the two naive methods do not seem to
produce noticeably biased results. However, as the degree of misclassification increases, the
two naive methods yield considerable biases. Methods 1-4 all improve the results obtained
from the two naive methods. Method 3 tends to be more efficient than Method 1, and
Method 4 is more efficient than Method 2, which agrees with the expectation because
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Methods 3 and 4 are likelihood-based. Unsurprisingly, the performance of Methods 1-4
would deteriorate as misclassification becomes more substantial. Furthermore, we observe
that Methods 1-4 perform better for px = 5 than for px = 10.

In summary, although response misclassification may not show serious effects on vari-
able selection in our simulation studies, estimation results can be seriously biased if re-
sponse misclassification is ignored in inferential procedures. The proposed methods sig-
nificantly improve the performance of the naive methods and effectively account for the
effects of response misclassification.

4.3.2 Analysis of the Breast Cancer Wisconsin Prognostic Data

We apply the proposed methods, in contrast to the naive approach, to analyze the breast
cancer Wisconsin imaging data which we introduced in Chapter 3.

Tables 4.8 and 4.9 report the estimation results for the breast cancer Wisconsin prog-
nostic data by fitting model (3.1) using the two naive methods as well as Methods 1 and 3.
While there is no obvious pattern between the point estimates for the two naive methods,
unsurprisingly, Naive method 1 yields smaller standard errors than Naive method 2. Ra-
dius, Perimeter, Concavity and Fractal Dimension are all found to be significant by Naive
method 1 but not by Naive method 2. The two methods with misclassification effects ac-
counted for yield very close point estimates, whereas the associated standard errors differ
noticeably. Method 3 seems to involve more variability and tends to be less stable than
Method 1. The evidence shown from Method 3 may vary with different degrees of misclas-
sification. But Method 1 reveals the same evidence of the significance or insignificance for
all the covariates, regardless of the misclassification rate.
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Table 4.1: The specificity and sensitivity for row and column effects

Parameters Model Specif. Sensit. Specif. Sensit. Specif. Sensit.

τ01 = τ10 = 2.5% τ01 = τ10 = 5% τ01 = τ10 = 10%

Case 1: px = 5

Reference Method: α 0.785 1.000
Reference Method: β 0.898 1.000

α

Näıve Method -0.034 0.000 -0.077 0.000 -0.142 0.000

Method 1 -0.033 0.000 -0.070 0.000 -0.136 0.000

Method 2 with 60% internal validation -0.030 0.000 -0.069 0.000 -0.133 0.000

Method 2 with 30% internal validation -0.032 0.000 -0.070 0.000 -0.141 0.000

Method 3 -0.023 0.000 -0.038 0.000 -0.052 0.000

Method 4 with 60% internal validation -0.011 0.000 -0.019 0.000 -0.020 0.000

Method 4 with 30% internal validation -0.016 0.000 -0.025 0.000 -0.025 0.000

β

Näıve Method 0.002 0.000 0.007 0.000 0.015 0.000

Method 1 -0.028 0.000 -0.071 0.000 -0.129 0.000

Method 2 with 60% internal validation -0.024 0.000 -0.073 0.000 -0.136 0.000

Method 2 with 30% internal validation -0.026 0.000 -0.074 0.000 -0.132 0.000

Method 3 -0.025 0.000 -0.032 0.000 -0.047 0.000

Method 4 with 60% internal validation -0.006 0.000 -0.011 0.000 -0.009 0.000

Method 4 with 30% internal validation -0.018 0.000 -0.019 0.000 -0.023 0.000

Case 2: px = 10

Reference Method: α 0.838 1.000
Reference Method: β 0.913 1.000

α

Näıve Method -0.021 0.000 -0.066 0.000 -0.151 0.000

Method 1 -0.018 0.000 -0.069 0.000 -0.152 0.000

Method 2 with 60% internal validation -0.018 0.000 -0.069 0.000 -0.152 0.000

Method 2 with 30% internal validation -0.016 0.000 -0.068 0.000 -0.152 0.000

Method 3 -0.026 0.000 -0.070 0.000 -0.143 0.000

Method 4 with 60% internal validation -0.002 0.000 -0.014 0.000 -0.037 0.000

Method 4 with 30% internal validation -0.013 0.000 -0.046 0.000 -0.079 0.000

β

Näıve Method 0.014 0.000 0.017 0.000 0.024 0.000

Method 1 -0.022 0.000 -0.052 0.000 -0.137 0.000

Method 2 with 60% internal validation -0.023 0.000 -0.053 0.000 -0.135 0.000

Method 2 with 30% internal validation -0.024 0.000 -0.058 0.000 -0.135 0.000

Method 3 -0.020 0.000 -0.050 0.000 -0.126 0.000

Method 4 with 60% internal validation -0.006 0.000 -0.022 0.000 -0.036 0.000

Method 4 with 30% internal validation -0.014 0.000 -0.030 0.000 -0.079 0.000

The entries for the naive method 1 and Methods 1-4 are the difference between those method with reference
method. Negative value means the method preforms worse result than reference model.
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Table 4.9: Sensitivity analyses of the breast cancer Wisconsin data

Parameter
Method 1 Method 3

Est. SE 95% CI Est. SE 95% CI

Scenario (i): assuming τ10 = 1%

Radius -4.534 0.351 (-5.222, -3.846) -4.555 5.008 (-14.370, 5.260)
Texture -0.049 0.032 (-0.112, 0.014) -0.052 0.320 (-0.680, 0.576)
Perimeter 3.714 0.327 (3.073, 4.354) 3.735 5.237 (-6.529, 13.999)
Smoothness 0.266 0.143 (-0.015, 0.547) 0.266 0.253 (-0.229, 0.761)
Compactness 0.000 0.000 (-0.000, 0.000) 0.000 0.000 (-0.000, 0.000)
Concavity -0.312 0.149 (-0.603, -0.021) -0.312 0.363 (-1.024, 0.400)
Concave Points 0.000 0.000 (-0.000, 0.000) 0.000 0.000 (-0.000, 0.000)
Symmetry 0.000 0.000 (-0.000, 0.000) 0.000 0.000 (-0.000, 0.000)
Fractal Dimension -0.340 0.124 (-0.583, -0.096) -0.341 0.410 (-1.146, 0.463)
Mean 3.518 1.006 (1.546, 5.489) 3.503 3.928 (-4.196, 11.202)
SE 0.317 0.302 (-0.276, 0.910) 0.317 0.563 (-0.785, 1.420)
Worst -0.828 0.421 (-1.653, -0.002) -0.825 1.247 (-3.269, 1.619)
Tumor Size 0.272 0.167 (-0.054, 0.599) 0.274 0.170 (-0.059, 0.608)
Intercept -1.344 0.196 (-1.729, -0.959) -1.345 0.202 (-1.740, -0.950)

Scenario (2): assuming τ10 = 3%

Radius -4.499 0.366 (-5.218, -3.781) -4.566 0.578 (-5.699, -3.432)
Texture -0.050 0.033 (-0.116, 0.015) -0.056 0.376 (-0.794, 0.681)
Perimeter 3.677 0.343 (3.004, 4.350) 3.745 0.551 (2.665, 4.824)
Smoothness 0.262 0.142 (-0.016, 0.540) 0.264 0.163 (-0.055, 0.584)
Compactness 0.000 0.000 (-0.000, 0.000) 0.000 0.000 (-0.000, 0.000)
Concavity -0.307 0.147 (-0.596, -0.019) -0.308 0.193 (-0.686, 0.070)
Concave Points 0.000 0.000 (-0.000, 0.000) 0.000 0.000 (-0.000, 0.000)
Symmetry 0.000 0.000 (-0.000, 0.000) 0.000 0.000 (-0.000, 0.000)
Fractal Dimension -0.336 0.122 (-0.576, -0.096) -0.342 0.124 (-0.585, 0.099)
Mean 3.595 1.021 (1.594, 5.597) 3.540 1.275 (1.040, 6.039)
SE 0.324 0.308 (-0.280, 0.929) 0.324 0.351 (-0.363, 1.011)
Worst -0.847 0.428 (-1.686, -0.008) -0.835 0.467 (-1.751, 0.081)
Tumor Size 0.276 0.169 (-0.056, 0.608) 0.283 0.176 (-0.062, 0.627)
Intercept -1.317 0.198 (-1.706, -0.929) -1.318 0.201 (-1.712, -0.925)

Scenario (iii): assuming τ10 = 5%

Radius -4.464 0.366 (-5.183, -3.746) -4.531 0.334 (-5.187, -3.876)
Texture -0.052 0.033 (-0.118, 0.013) -0.053 0.141 (-0.330, 0.225)
Perimeter 3.640 0.343 (2.968, 4.313) 3.707 0.303 (3.113, 4.301)
Smoothness 0.258 0.142 (-0.020, 0.535) 0.262 0.027 (0.210, 0.314)
Compactness 0.000 0.000 (-0.000, 0.000) 0.000 0.000 (-0.000, 0.000)
Concavity -0.302 0.147 (-0.591, -0.014) -0.303 0.037 (-0.376, -0.230)
Concave Points 0.000 0.000 (-0.000, 0.000) 0.000 0.000 (-0.000, 0.000)
Symmetry 0.000 0.000 (-0.000, 0.000) 0.000 0.000 (-0.000, 0.000)
Fractal Dimension -0.332 0.122 (-0.572, -0.092) -0.339 0.015 (-0.369, -0.309)
Mean 3.677 1.021 (1.676, 5.679) 3.609 1.626 (0.422, 6.797)
SE 0.332 0.308 (-0.273, 0.937) 0.326 0.123 (0.085, 0.567)
Worst -0.867 0.428 (-1.706, -0.028) -0.850 0.218 (-1.277, -0.422)
Tumor Size 0.280 0.169 (-0.052, 0.612) 0.291 0.031 (0.230, 0.351)
Intercept -1.289 0.198 (-1.678, -0.901) -1.289 0.040 (-1.368, -1.210)

Entries of 95% CI with the form 0.000 are positive and very close to zero; entries with
the from -0.000 are negative and very close to zero.
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Chapter 5

Bayesian Analysis for Matrix-Variate
Logistic Regression with/without
Response Misclassification

In this chapter, we propose a Bayesian inference procedure to the matrix-variate logis-
tic regression using horseshoe prior under matrix-variate logistic regression with the help
of augmented data from Pólya-Gamma distribution. Meanwhile, we develop a Bayesian
estimation procedure with missclassification on response. The remainder is organized as
follows. In Section 5.1, we introduce the model setup related to model (2.1). In Section
5.2, we propose the Bayesian inference method for the error-free context. In Section 5.3, we
develop the Bayesian estimation procedure with missclassification on response. In Section
5.4, we conduct simulation studies to assess the performance of the methods developed
in Sections 5.2 and 5.3, as well as to demonstrate the biased effects of ignoring response
missclassification. We also present an application to a LSVT data set in Section 5.5.

5.1 Matrix-variate Logistic Regression Model

For subject k with k = 1, ..., n, Yk is defined in the same way as in Section 2.1.1. Write
Y = (Y1, ..., Yn)ᵀ. Let xk = [xk,ij]p×q be the associated p× q covariate matrix where xk,ij is
the observation at row i and column j for subject k.

Employing an assumed rank-R parafac decomposition (Guhaniyogi et al. 2017) to B in

79



model (2.1) gives

B =
R∑
r=1

α(r) ◦ β(r), (5.1)

where ◦ denotes the outer product, α(r) is a p × 1 row parameter vector, β(r) is a q × 1
column parameter vector, and R is the positive integer so that B cannot be written as a
sum of less than R outer products (Zhou et al. 2013).

With (5.1), model (2.1) becomes

logitP (Yk = 1|xk) = .

〈
xk,

R∑
r=1

α(r) ◦ β(r)

〉
. (5.2)

When a rank-1 (i.e., R = 1) parafac decomposition is applied to B, model (5.2) reduces
to the matrix-variate logistic regression model (2.2) with γ = 0, the model considered by
Hung and Wang (2013).

Finally, we comment that in model (5.2), the coefficients α(r) and β(r) are not identifiable
for r = 1, ..., R. For instance, respectively scaling α(r) and β(r) by any nonzero constant
c and its reciprocal 1/c makes (5.2) hold. However, if our interest focuses on B itself,
nonidentifiability of the coefficients α(r) and β(r) does not pose a concern, especially in the
context of Bayesian analysis, as discussed by Guhaniyogi et al. (2017).

5.2 Bayesian Inference Procedure

We are interested in inference about B in model (2.1) via the formulation model (5.2)
through a Bayesian approach. We denote the conditional probability density function
(p.d.f.) of the response variable Yk, given xk, as pYk|xk(yk, xk;B, γ) or pk for simplicity, i.e.,

pk =
exp(< xk,B >)

1 + exp(< xk,B >)
. (5.3)

In this subsection, we describe a Bayesian approach based on a family of Pólya-Gamma
distributions (Polson et al. 2013), where the Gibbs sampler procedure is used, together with
the specification of the prior distribution for parameters α(r) and β(r) in model (5.2) for
r = 1, ..., R.

Let π(α(r)) and π(β(r)) denote the prior densities for α(r) and β(r), respectively, and write
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the posterior densities of α(r) and β(r), given the observed data {Y, x}, as π(α(r)|Y, x; β(r),B−r)
and π(β(r)|Y, x;α(r),B−r), respectively, where B−r = {Bl : l 6= r} for r = 1, ..., R.

With the prior densities for α(r), β(r) and model (2.1) together with (5.1), the posterior
density for B, given the data, is possible to construct, at least in principle. However,
the actual calculation of the posterior density is not trivial due to the lack of its closed
form; even with the application of approximations, such as the Markov chain Monte Carlo
(MCMC) method, this can be computationally difficult. To get around these issues, Polson
et al. (2013) developed a data augmentation algorithm for logistic regression which is simple
and fast to implement. The idea is to introduce an independent random variable, say W ,
as an intermediate tool to form a Pólya-Gamma distribution, then the posterior densities
of α and β, given the data and W , have a normal distribution which is easy to handle.

5.2.1 Pólya-Gamma Distribution with Logistic Regression

Here we describe the connection between the Pólya-Gamma distribution and the logistic
regression model. A random variable U follows a Pólya-Gamma distribution, PG(1, c) for
c ≥ 0, if it has the density function

f(u|c) = cosh
(1

2

)
exp

(
− c2u

2

)
g(u),

where g(u) is given by

g(u) =
∞∑
k=0

(−1)k
(2k + 1)√

2πu3
exp

{
−(2k + 1)2

8u

}
I(0,∞)(u),

with I(0,∞)(u) defined as 1 for 0 < u <∞ and 0 otherwise (Biane et al. 2001).

Next, we make a connection of the Pólya-Gamma Distribution with model (5.2) via
(2.1) and (5.1). Let W1, ...,Wn be independent of each other and of the Yk, each having a
Pólya-Gamma distribution with Wk ∼ PG(1, ck) where ck = | < xk,B > | with covariates
xk fixed. Then the joint probability density function for W = (W1, ...Wn)ᵀ, f(w|B), indexed
by B, is given by

∏n
k=1 f(wk|ck).

Using the intermediate variables Wk, we augment the observed data {Y, x} with W and
construct the augmented posterior densities for the parameters by combining model (5.2)
with the priors of α(r) and β(r), which are straightforward to analyze (Tanner and Wong

81



1987). For example, given the covariates, the posterior density for α(r) is determined by

π(α(r)|Y, x; β(r),B−r) =

∫
Rn+

π(α(r), w|Y, x; β(r),B−r)dw,

where

π(α(r), w|Y, x; β(r),B−r) =
{
∏n

k=1 P (Yk = yk|B)}f(w|B)π(α(r)|B−r, β(r))

c({Y, x})
(5.4)

with c({Y, x}) being the normalizing constant.

In the appendix, we show that the augmented posterior distribution for the coefficients
for α(r) is

π(α(r)|Y, x, w; β(r),B−r) ∝
{ n∏
k=1

P (Yk = yk|B)
}
f(w|B)π(α(r)|β(r),B−r), (5.5)

which is a multivariate normal distribution if the prior distribution for α(r) is speci-
fied as a normal distribution (Choi and Hobert 2013), let mα(w) and Σα(w) denote
the mean and covariance matrix of the posterior normal distribution of α(r). Thus, the
Bayesian inference can proceed with sampling from f(w|B), π(α(r)|Y, x, w; β(r),B−r) and
π(β(r)|Y, x, w;α(r),B−r) iteratively.

5.2.2 Prior Specification

Guhaniyogi et al. (2017) discussed an adequate global-local shrinkage prior distribution for
α(r) and β(r), which typically suits high dimensional linear regression models. However,
under the logistic regression, the horseshoe shrinkage prior performs better, suggested by
Wei and Ghosal (2020). Thus, in our framework, we employ the horseshoe shrinkage priors
for α(r) and β(r) marginally to deal with the sparsity problem.

Assuming that the α
(r)
i and β

(r)
j are conditionally independent, for r = 1, ..., R, i =

1, ..., p, j = 1, ..., q, and l = 1, ..., pz, we specify the priors as:
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π(α
(r)
i |λα(r)

i
, a) ∼ N(0, λ2

α
(r)
i

a2);

π(β
(r)
j |λβ(r)

j
, a) ∼ N(0, λ2

β
(r)
j

a2);

π(λ
α
(r)
i

) ∼ C+(0, 1);

π(λ
β
(r)
j

) ∼ C+(0, 1);

π(a) ∼ C+(0, 1);

(5.6)

where C+(0, 1) is the half-Cauchy distribution, and hyperparameter a > 0 controls the
global shrinkage.

5.2.3 Computation of Posterior

The details of the posterior distribution of each parameter are included in Appendix D.
Here we describe estimation procedures using the MCMC algorithm with Gibbs sampling,
which consist of three blocks. At iteration (t+ 1):

Block 1. Sample the hyperparameters λα, λβ, λγ and a using slice sampling based on
the algorithm from of Polson et al. (2014). Here we provide the steps for obtaining

λ
(t+1)

α(r) = (λ
(t+1)

α
(r)
1

, ..., λ
(t+1)

α
(r)
p

), given a fixed rank r and λ
(t)

α(r) :

Step 1: sample u
α
(r)
i
|ψ
α
(r)
i

uniformly from interval
(

0, 1
1+ψ

α
(r)
i

)
, where ψ

α
(r)
i

= 1

(λ
(t)

α
(r)
i

)2
,

Step 2: sample (ψ
α
(r)
i
|u
α
(r)
i
, α

(r),(t)
i ) from the exponential density Exp( 2

α
(r),(t)
i

), truncated

to have a zero probability outside the interval
(

0,
1−u

α
(r)
i

u
α
(r)
i

)
,

Step 3: transform back to λ
(t+1)

α
(r)
i

using ψ
α
(r)
i

; λ
(t+1)
β and λ

(t+1)
γ are generated using the

same process as λ
(t+1)
αi .

Block 2. Generate the random variables W1, ...,Wn independently using

Wk ∼ PG(1, ck)

....... and write the sampled value as w(t) = (w
(t)
1 , ..., w

(t)
n ).
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Block 3. Given B(t)
−r, sample the coefficients α(r) and β(r) by three steps:

Step 1: sample α(r),(t+1) from Np{mα(r)(w(t)),Σα(r)(w(t))}, where

mα(r)(w(t)) = Σα(r)(w(t))x
(t)

β(r)y(w(t)),

Σα(r)(w(t)) =
{
x

(t)ᵀ
β(r)Ω(w(t))x

(t)

β(r) + Σ
(t+1),−1

α(r)

}−1

,

x
(t)

β(r) = (x1β
(r),(t), ..., xnβ

(r),(t))ᵀ, y = (y1, ..., yn)ᵀ, y(w(t)) = y− 1
2
1n− xB(t)−r(w

(t)),

xB(t)−r
(w(t)) = {(< x1,B

(t)
−r >)w

(t)
1 , ..., (< xn,B

(t)
−r >)w

(t)
n }ᵀ, 1n is an n × 1 unit

vector, Ω(w(t)) = diag(w(t)) and Σ
(t+1)

α(r) = diag{(λ(t+1)

α(r) a
(t+1))2};

Step 2: sample β(r),(t+1) from Nq{mβ(r)(w(t)),Σβ(r)(w(t))}, where

mβ(r)(w(t)) = Σβ(r)(w(t))x
(t+1)

α(r) y(w(t)),

Σβ(r)(w(t)) =
{
x

(t+1),ᵀ
α(r) Ω(w(t))x

(t+1)

α(r) + Σ
(t+1),−1

β(r)

}−1

,

x
(t+1)

α(r) = (xᵀ1α
(r),(t+1), ..., xᵀnα

(r),(t+1))ᵀ, and Σ
(t+1))

β(r) = diag{(λ(t+1)

β(r) a
(t+1))2};

The MCMC samples are generated by repeating the three blocks many times after
discarding the early generated samples for a certain burn-in period.

5.3 Bayesian Estimation Procedure with Missclassifi-

cation on Response

In applications, the true response Yk for k = 1, ..., n may be subject to misclassification, and
a surrogate response, Y ∗k , is observed. Let Ok be an indicator variable for the kth subject
such that Ok = 1 if Y ∗k = Yk and Ok = 0 otherwise. We denote Y∗ = (Y ∗1 , ..., Y

∗
n )ᵀ and

O = (O1, ..., Ok)
ᵀ. Let ρ = P (Ok = 1|Yk = yk) be the probability of observing Yk correctly,

which is assumed to known for now. The variables Ok, Y
∗
k , and the true response, Yk are

connected via
Yk = Ok × Y ∗k + (1−Ok)× (1− Y ∗k ). (5.7)

The conditional distribution of Ok is given by

P (Ok = 1|B, Y ∗k , ρ) =
1

Ck
ρ× pY

∗
k
k × (1− pk)1−Y ∗k (5.8)
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where Ck = ρ × pY
∗
k
k × (1 − pk)1−Y ∗k + (1 − ρ) × p1−Y ∗k

k × (1 − pk)Y
∗
k is the normalization

constant. Then Ok can be sampled based on a binomial distribution with the probability
(5.8).

To carry out inference about B using the surrogate measurements Y ∗k , we modify the
procedure in Section 5.2.3, by bridging Y ∗k and Yk. To be specific, this posterior density,
denoted P (B|ρ,Y∗,O), can be derived from (2.1), (5.7) and the Bayesian hierarchical model
of Rekaya et al. (2001):

P (B|ρ,Y∗,O) ∝ Πτ (B)×
n∏
k=1

p
(1−Ok)Y ∗k +Ok(1−Y ∗k )

k × (1− pk)1−(1−Ok)Y ∗k −Ok(1−Y ∗k ), (5.9)

where pk is given by (5.3), Πτ (B) =
∏R

r=1{
∏p

i=1 πτ (α
r
i )}{

∏q
j=1 πτ (β

r
j )} denotes the product

of the prior distributions for the α(r) and β(r), and τ represents the set of hyper-parameters
that are suppressed in the notation πτ (α

r
i ) and πτ (β

r
j ).

Then we modify the algorithm described in Section 5.2.3 by replacing its Block 2 with:

Block 2*. Given B(t), xk, Y
∗
k and ρ,

Step 1: generate the random variables W1, ...,Wn independently using

Wk ∼ PG(1, ck)

and let w = (w1, ..., wn) denote the sampled values.

Step 2: generate Ok from the Bernoulli distribution with the probability (5.8), and then
recover Yk based on (5.7). Let Y s

k denote the resulting value which is used for
the implementation of Block 3 in Section 5.2.3, where Yk is replaced by Y s

k .

5.4 Simulation Studies

In this subsection, various simulations are designed to evaluate the performance of the
proposed methods, together with the impacts of different degrees of misclassification on
parameter estimation. We consider settings with p = q, and denote this to be px for ease
of exposition. We consider the case with the sample size n = 1000 or n = 2000. Matrix-
variate data, xk, from the matrix-normal distribution MN(0, Ipx , Ipx), for k = 1, ..., n,
where px is taken as 5 or 20.
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Figure 5.1: Designed B with px = 5 (left) and 10 (right). The vertical bar labeled with
Beta represents the corresponding values of different color in the figure.

For the parameter B, we design it as a rank-1 or rank-2 matrix. In details, let Bi,j
denote the ith row and the jth column element of B. For px = 5 cases, we set B to be
a rank-2 matrix-variate where B2,2,B2,4,B3,3,B4,2,B4,4 to be 1 and other entries of B to
be 0; for px = 20 cases, we consider two different ranks: (1) for the case with a rank-1
matrix-variate, we set B5,5,B3,3,B16,16 to be 1, B5,16,B15,5 to be -1, and other entries of B
to be 0; (2) for the case with a rank-2 matrix-variate, we set B5,5,B10,10,B3,3,B16,16 to be 1,
B5,16,B15,5 to be -1, and the rest entries of B to be 0. Figure 5.1 displays the designed B of
the cases with px = 5 and 10, where blue and red squares show negative and positive values
in the range [−1, 1], respectively. For k = 1, ..., n, the binary response Yk is independently
generated from the Bernoulli distribution with the probability (5.3).

We evaluate the accuracy of the estimates in the terms of the L2-error:

‖B − B̂‖ =

√√√√ p∑
i=1

q∑
j=1

(Bi,j − B̂i,j)2 ,

where B̂ represents the estimated posterior mean of B. We also monitor the coverage of
95% and 90% credible intervals. We compare the variable selection performance using the
average proportion of including zero effects (FP) and the average proportion of excluding
non-zero effects (FN), where the covariate is excluded if zero is covered by its 95% credible
interval.
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5.4.1 Simulation Studies without Misclassification

In this subsection, we evaluate the performance of the procedure proposed in Section 5.2.3
where the precisely measured outcome Yk is available, and call this method as “Method
1”. In the implementation of Method 1, when fitting the data, the rank of B is set as
that for generating the data. We apply the LASSO method as a reference method and
call it “LASSO”. After the burn-in period consisting of 1,000 Markov chain Monte Carlo
(MCMC) iterations, we generate 5,000 posterior samples and save the samples of model
parameters at every 5 iterations to reduce autocorrelation between the samples. Table 1
records the results for the cases with px = 5. Method 1 outperforms the LASSO method.

To also investigate the effect of a potentially misspecified rank, when fitting the simu-
lated data with the case px = 20, we consider two methods by setting the rank of B to be 1
or 2, and call the resulting method “True RT -Fit RF”, where RT represents the true rank
of coefficients of B, and RF represents the user specified rank when fitting the data. The
results are presented in Tables 3-4, showing that Method 1 provides better performance
than the LASSO method in both correctly specified or misspecified rank situations. Com-
paring Tables 3 and 4, as we expected, True 1-Fit 1 and True 2-Fit 2 yield better results
than those obtained in the presence of rank misspecification. With rank misspecification
involved, True 1-Fit 2 outperforms True 2-Fit 1, suggesting that engaging a lower rank to
estimate a higher rank of B has worse performance than the opposite way.

To reduce the risk of rank misspecification, we recommend to use the LASSO method
as a start to first decide a suitable rank of the matrix-variate and then apply our proposed
methods. A.1 and A.2 in Figures 5.2-5.6 give the estimated posterior means of model
parameters using Method 1 and the LASSO, showing the same patterns as we observed
from Tables 5.1-5.3.

5.4.2 Simulation Studies with Misclassification

In this subsection, we evaluate the performance of the procedure proposed in Section 5.3
where only the surrogate response, Y ∗k , of Yk is available, and we call this “Method 2”.
We consider three misclassification situations with ρ = 0.95, 0.90 or 0.85, to reflect an
increasing degree of misclassification in Yk, where ρ is defined in Section 5.3. We are
interested in not only the misclassification effects, but also the effects of potential rank
misspecification. Thus, when fitting the simulated data with the case px = 20, we consider
“True RT -Fit RF”, where RT = 1, 2 and RF = 1, 2 as well. The LASSO method is also
applied as a reference method.
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The simulation results for the case px = 5 with different ρ are summarized in Table 5.2.
For comparison, we also present in this table the results obtained from naively applying the
LASSO method and Method 1 by ignoring the response misclassification, denoted “LASSO-
naive” and “Method-1-naive”, respectively. We observe that the two naive methods provide
biased results, and the LASSO-naive method performs worse than Method-1-naive does.
Method 2 yields reasonable results. Tables 3-4 report the simulation results for the case
with px = 20, showing similar patterns observed for the case with px = 5. For the influence
of rank misspecification of B, we find that Method 2 shows similar patterns as observed
in Section 5.4.1. Misclassification effects do not seem dramatic in shrinking unimportant
coefficients or retaining parameters.

In Figures 5.2-5.6, we report the estimated posterior means of B using the LASSO-
naive, Method-1-naive, and Method 2 with different values for ρ. These figures show
similar results to those of Tables 5.2-5.4. Figures 2-4 are obtained B̂ with the correctly
specified rank of B, and they show that Method 2 (in Column 3) provides the most precise
B̂ under different ρ settings (in Rows B-D). Two naive methods (in Columns 1-2) display
biased estimates with lighter red or blue squares. All the methods correctly select the
non-zero Bi,j when the rank of B is correctly specified. Figures 5.5-5.6 summarize the
results when the rank of B is misspecified for px = 20. Method 2 still provides the less
biased B̂ compared to the two naive methods. Especially, in Figure 5.6, although Method
2 cannot find B10,10 like the LASSO-naive method, it provides the most precise estimates
of the selected Bi,j. That is the reason we suggest using the LASSO method to investigate
the rank of B first when B has a large dimension.

5.5 Data Analysis of LSVT Data

In this subsection, we apply the proposed method, in contrast to the LASSO approach, to
analyze a subset of the Lee Silverman voice treatment (LSVT) Companion data, available
at the UCI Machine Learning Repository website: https://archive.ics.uci.edu/ml/

datasets/LSVT+Voice+Rehabilitation. The study investigates the potential of using
sustained vowel phonations for Parkinson’s diseased (PD) patients whose voice is classified
as “acceptable” or “unacceptable” during an in-person rehabilitation treatment. Each
subject is originally instructed to produce phonations categorized into one of the nine
combinations of pitch and amplitude, where the pitch is defined as “comfortable”, “high”
and “low”; and the amplitude is considered to be “acceptable”, “too loud”, or “too soft”.
The data set contains a total of 126 phonations for the 14 subjects, where each subject
contributes nine phonations. The details of the study can be found in Tsanas et al. (2013).
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The study processes the speech signals and extracts the features of 126 phonations into
two groups of features which are suitably displayed in matrix form. Specifically, in the
analysis of Tsanas et al. (2013), the first group of features is formed wavelet measures
where 17 wavelet coefficients are calculated for a 10 level wavelet decomposition of the
fundamental frequency time series (F0), resulting in a vector-covariate with 170 attributes.
The second group of the features uses the dysphonia measures, jitter and shimmer, resulting
in three features quantifying F0, the pitch deviations, and the amplitude deviations. Given
that 13 characteristics of the three features are calculated, Tsanas et al. (2013) created a
vector-covariate of 39 attributes for their analysis. However, such an approach of reporting
data obscures the inherent relations among the features and characteristics. It is more
reasonable to display the measurements in the first group as a matrix-variate with 10
levels and 17 features treated as rows and columns, respectively, and the measurements in
the second group as a matrix-variate with 13 characteristics and 3 features treated as rows
and columns, respectively.

A phonation is assessed by the LSVT clinicians to be acceptable (setting Y = 1) or
unacceptable (setting Y = 0), where the assessment largely depends on the experience of
a rater. Thus, there is a possibility that phonations may be misclassified due to no solid
criteria can be applied for the assessment. For k = 1, .., 126, let Y ∗k denote the observed
value for the true binary variable for phonation k, with value 1 for being in the acceptable
group and 0 otherwise. The matrix-variate of phonation k, for the features in group 1,
denoted as x

(1)
k , is a 10 × 17 matrix with entry (i, j) representing the value of the jth

wavelet coefficient of the ith level, where i = 1, ..., 10 and j = 1, .., 17; for the features in
group 2, denoted as x

(2)
k , is a 13× 3 matrix with entry (i, j) representing the value of the

jth feature of the ith characteristic, where i = 1, ..., 13 and j = 1, .., 3. Correspondingly, we
let B(1) and B(2) denote the parameters for x

(1)
k and x

(2)
k , respectively. Consistent with the

notation in Section 5.3, we let ρ denote the probability of assessing a phonation correctly.

While it is interesting to understand the possible impacts of misclassification on the
analysis, there is no information on the degree of misclassification in this data set. Con-
sequently, we conduct sensitivity analyses by specifying different magnitudes of misclassi-
fication probabilities. In particular, we take ρ = 0.95, 0.90, or 0.85 to feature increasing
degrees of misclassification.

Figure 5.7 shows the point estimators of B(1) and B(2) using the LASSO method. Figures
5.8 and 5.9 show the lower and upper bounds of 95% Credible Interval (CI) and estimated
posterior means for B(1) and B(2) by applying Methods 1 and 2 described in Section 5.
For x(1), there is no significant B(1)

i,j selected for all the proposed methods, but the LASSO

method selects two variables. For x(2), B(2)
3,1, B(2)

4,1, B(2)
4,2, B(2)

12,2, B(2)
5,3, B(2)

11,3 B
(2)
12,3 are selected as
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significant parameters by Method 1. However, no characteristic of feature F0 is selected,
three characteristics of the pitch deviation and three more characteristics of the amplitude
deviation are selected in the model by the LASSO method. As the misclassification rate
increases, the magnitude of the posterior means of the model parameters increases, and
the 95% CIs become wider.
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Table 5.1: Model performance for px = 5 without misclassifiction
Model LASSO Method 1

L2 error 2.368(0.168) 0.361(0.078)

95% Coverage 93.6%

90% Coverage 88.6%

FP 0.476(0.065) 0.040(0.054)

FN 0(0) 0(0)

Numbers in (·) represents standard error.

Table 5.2: Model performance for px = 5 with misclassifiction

Model
ρ = 0.95 ρ = 0.90 ρ = 0.85

LASSO-naive Method-1-naive Method 2 LASSO-naive Method-1-naive Method 2 LASSO-naive Method-1-naive Method 2

L2 error 2.190(0.169) 0.585(0.099) 0.368(0.068) 2.109(0.209) 0.912(0.099) 0.543(0.137) 2.08 1.178(0.091) 0.679(0.195)

95% Coverage 25.4% 96.2% 0.4% 93.8% 0.0% 92.6%

90% Coverage 16.7% 92.3% 0.1% 87.9% 0.0% 87%

FP 0.423(0.175) 0.040(0.053) 0.027(0.042) 0.399(0.170) 0.044(0.058) 0.050(0.060) 0.375(0.164) 0.043(0.052) 0.052(0.057)

FN 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Numbers in (·) represents standard error.
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Table 5.3: Model performance for correctly specified rank when px = 20

True 1-Fit 1 True 2-Fit 2

Without Misclassification

LASSO Method 1 Method 2 LASSO Method 1 Method 2

L2 error 2.332(1.022) 0.378(0.050) 2.630(0.999) 0.565(0.053)

95% Coverage 94.2 91.6

90% Coverage 89.2 86.0

FP 0.059(0.030) 0.011(0.009) 0.078(0.036) 0.017(0.009)

FN 0(0) 0(0) 0(0) 0(0)

With Misclassification

LASSO-naive Method-1-naive Method 2 LASSO-naive Method-1-naive Method 2

ρ = 0.95

L2 error 2.238(0.732) 0.538(0.0668) 0.461(0.066) 2.502(0.679) 0.711(0.067) 0.732(0.099)

95% Coverage 6.3 92.9 6.6 83.5

90% Coverage 3.6 86.5 3.5 74.1

FP 0.050(0.029) 0.011(0.009) 0.012(0.009) 0.064(0.032) 0.016(0.009) 0.018(0.009)

FN 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

ρ = 0.90

L2 error 2.169(0.520) 0.801(0.070) 0.565(0.100) 2.415(0.462) 0.999(0.070) 1.008(0.197)

95% Coverage 0 90 0 67.4

90% Coverage 0 83 0 56.5

FP 0.047(0.029) 0.012(0.100) 0.012(0.011) 0.057(0.030) 0.017(0.010) 0.020(0.011)

FN 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

ρ = 0.85

L2 error 2.116(0.356) 1.034(0.066) 0.717(0.148) 2.353(0.304) 1.259(0.066) 1.858(0.790)

95% Coverage 0 87 0 41.3

90% Coverage 0 80.6 0 32

FP 0.043(0.028) 0.012(0.010) 0.015(0.012) 0.050(0.029) 0.017(0.010) 0.027(0.018)

FN 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Numbers in (·) represents standard error.
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Table 5.4: Model performance for mis-specified rank when px = 20

True 1-Fit 2 True 2-Fit 1

Without Misclassification

LASSO Method 1 Method 2 LASSO Method 1 Method 2

L2 error 2.333(1.024) 0.497(0.068) 2.630(0.999) 1.101(0.023)

95% Coverage 87.2 24.2

90% Coverage 79 16

FP 0.060(0.031) 0.012(0.01) 0.078(0.036) 0.0125(0.010)

FN 0(0) 0(0) 0(0) 0(0)

With Misclassification

LASSO-naive Method-1-naive Method 2 LASSO Method-1-naive Method 2

ρ = 0.95

L2 error 2.238(0.732) 0.564(0.063) 0.666(0.106) 2.502(0.679) 1.222(0.0395) 1.118(0.030)

95% Coverage 19.2 70.8 0 43.1

90% Coverage 11.9 58.8 0 34.1

FP 0.050(0.029) 0.013(0.010) 0.0146(0.012) 0.064(0.032) 0.013(0.010) 0.013(0.010)

FN 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

ρ = 0.90

L2 error 2.169(0.520) 0.803(0.071) 0.956(0.197) 2.415(0.462) 1.367(0.045) 1.145(0.035)

95% Coverage 0 47.4 0 57.8

90% Coverage 0 35.3 0 48.8

FP 0.047(0.029) 0.013(0.011) 0.018(0.015) 0.057(0.030) 0.012(0.010) 0.013(0.010)

FN 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

ρ = 0.85

L2 error 2.116(0.356) 1.032(0.065) 1.925(0.875) 2.353(0.304) 1.512(0.048) 1.191(0.044)

95% Coverage 0 19.4 0 67.2

90% Coverage 0 12.1 0 61.7

FP 0.043(0.028) 0.012(0.010) 0.029(0.024) 0.050(0.029) 0.013(0.010) 0.014(0.011)

FN 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Numbers in (·) represents standard error.
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Figure 5.2: The estimated posterior means of model parameters for px = 5: Columns 1-3
record the results obtained from Method-1-naive, the LASSO-naive method and Method
2, respectively. Row A displays the results for the case with no misclassification, and Rows
B, C and D summarize the results for ρ = 0.95, 0.90 and 0.85, respectively.
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Figure 5.3: The estimated posterior means of model parameters for px = 20 using True
1-Fit 1: Columns 1-3 record the results obtained from Method-1-naive, the LASSO-naive
method and Method 2, respectively. Row A displays the results for the case with no
misclassification, and Rows B, C and D summarize the results for ρ = 0.95, 0.90 and 0.85,
respectively.
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Figure 5.4: The estimated posterior means of model parameters for px = 20 using True
2-Fit 2:Columns 1-3 record the results obtained from Method-1-naive, the LASSO-naive
method and Method 2, respectively. Row A displays the results for the case with no
misclassification, and Rows B, C and D summarize the results for ρ = 0.95, 0.90 and 0.85,
respectively.
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Figure 5.5: The estimated posterior means of model parameters for px = 20 using True
1-Fit 2:Columns 1-3 record the results obtained from Method-1-naive, the LASSO-naive
method and Method 2, respectively. Row A displays the results for the case with no
misclassification, and Rows B, C and D summarize the results for ρ = 0.95, 0.90 and 0.85,
respectively.
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Figure 5.6: The estimated posterior means of model parameters for px = 20 using True
2-Fit 1: Columns 1-3 record the results obtained from Method-1-naive, the LASSO-naive
method and Method 2, respectively. Row A displays the results for the case with no
misclassification, and Rows B, C and D summarize the results for ρ = 0.95, 0.90 and 0.85,
respectively.
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Figure 5.7: The point estimates of model parameters for B(1) in (A) and B(2) in (B) using
the LASSO method.

99



1) Method 1 2) Method 2 with ρ = 0.95

3) Method 2 with ρ = 0.90 4) Method 2 with ρ = 0.85

Figure 5.8: Estimation results for B(1): in each sub-figure, (A) shows the 2.5% posterior
quantiles of B(1), (B) shows the estimated posterior means of B(1), and (C) shows the 97.5%
posterior quantiles of B(1).
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1) Method 1 2) Method 2 with ρ = 0.95

3) Method 2 with ρ = 0.90 4) Method 2 with ρ = 0.85

Figure 5.9: Estimation results for B(2): in each sub-figure, (A) shows the 2.5% posterior
quantiles of B(2), (B) shows the estimated posterior means of B(2), and (C) shows the 97.5%
posterior quantiles of B(2).
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Chapter 6

Summary and Future Work

In this chapter, we present a summary for the previous chapters, together with discussions
on possible future work or extensions.

Chapter 2:

Matrix-variate logistic regression models are useful in handling complex-structured
covariates which commonly arise from imaging data. However, these models cannot
be directly used when the number of model parameters is larger then the sample
size. Furthermore, little discussion is available for using such models to analyze
error-contaminated matrix-variate data. It is even unclear the impact would be if
measurement error effects were ignored in such a setting. In Chapter 2, we study
this important problem and develop two valid inference methods for accommodating
measurement error effects in matrix-variate logistic regression. These two methods
are developed under different distributional assumptions of the measurement error
model; one makes a normality assumption for the measurement error while the other
makes no assumptions. We establish theoretical results for the proposed methods
and numerical studies demonstrate satisfactory finite sample performance.

aaaIn Chapter 2, we apply the (2D)2PCA method (Zhang and Zhou 2005) to solve
the inestimable problem where the sample size is smaller than the number of param-
eters; this method seems easier to implement than other matrix dimension reduction
methods, such as generalized low rank approximations of matrices (GLRAM) (Ye
2005) and 2DPCA (Yang et al. 2004). Other dimension reduction methods can be
considered as well prior to using the methods developed in Sections 2.3.1 and 2.3.2.
For instance, one may consider to add a penalty function to the likelihood (2.3) in
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combination with the adjustment for the measurement error effects, and then em-
ploy the penalized likelihood function to reduce the dimension of the covariates. It
would be interesting to explore this method in depth with some technical details here
modified accordingly.

Chapter 3:

Vector-Matrix-variate logistic regression models are useful in characterizing the rela-
tionship between binary responses and matrix-expressed covariates as well as vector-
expressed covariates. However, inference based on such models is challenged by the
presence of response misclassification. In Chapter 3, we propose two valid methods,
the imputation and likelihood methods to accommodate response misclassification
effects in matrix-variate logistic regression. These two methods are developed for
two settings where the misclassification rates are known or estimated from valida-
tion data. We establish theoretical results for the proposed methods and conduct
numerical studies which demonstrate satisfactory finite sample performance of the
methods.

aaaIn Chapter 3, we impose a constraint on the row effects to deal with the model
identifiability problem, which allows us to focus on explaining the row and column
effects separately. It is interesting to consider other types of constraint to express
the effects of different combinations of row and column directly.

Chapter 4:

Regularized Matrix-variate logistic regression models are useful in characterizing the
relationship between binary responses and matrix-expressed covariates, which com-
monly have sparsity property, as well as vector-expressed covariates. However, infer-
ence based on such models is challenged by the presence of response misclassification.
In Chapter 4, we propose two valid methods, the imputation and likelihood methods
to accommodate response misclassification effects in matrix-variate logistic regression
combined with the SCAD penalty function. These two methods are developed for
two settings where the misclassification rates are either known or estimated from val-
idation data. We establish theoretical results for the proposed methods and conduct
numerical studies which demonstrate satisfactory finite sample performance of the
methods.

aaaIn Chapter 4, we still impose a constraint on the row effects to deal with the model
identifiability problem. It is interesting to applying different inference methods to
express the effects of different combinations of row and column directly. This is an
ongoing project we are working with based on the Bayesian analysis. Moreover, we
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also add the SCAD penalty in the estimation procedure to deal with the sparsity
property. Other penalty functions can be added as well to deal with this property.

Chapter 5:

Matrix-variate logistic regression models are newly emerging tools that are useful in
featuring the relationship between binary responses and covariates in a matrix form
as we shown in previous chapters. However, it is challenging due to the computational
burden and intrinsic complex data structures under frequentist frame. In Chapter
5, we propose a Bayesian estimation procedure to analyze data that are facilitated
by matrix-variate logistic regression. Furthermore, a modified Bayesian estimation
procedure is proposed to deal with data with response misclassification. Numerical
studies demonstrate satisfactory finite sample performance of the proposed methods.

aaaThe development in Chapter 5 focuses on the implementation procedures cou-
pled with numerical studies. It is useful to develop rigorous theoretical results for
the methods, which is a future project. Another interesting problem is to explore
Bayesian methods to handle measurement error existing in matrix covariates; a sim-
ilar problem is investigated by Fang and Yi (2020b) who focused on the frequentist
framework.
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APPENDICES

In this part, we report supplementary materials associated with Chapters 2-5, including
regularity conditions, the proofs of the theoretical results, additional numerical results, and
details of calculations.
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Appendix A

Additional Materials for Chapter 2

A.1 Regularity Conditions

(C.1) a) supn{(1/n)
∑n

k=1 ‖vec(xck)‖2} <∞, max1≤k≤n‖xck‖ = o{max(m,
√
n)};

b) supn{(1/n)
∑n

k=1 ‖vec(zk)‖2} <∞, max1≤k≤n‖zk‖ = o{max(m,
√
n)} ;

where ‖A‖ denotes the Frobenius norm if A is a matrix and the Euclidean norm if
A is a vector, and m is the number of replicates defined in the end of Section 2.3.1.

(C.2)
∑n

k=1 ‖xck‖2 = o(n2) and
∑n

k=1 ‖zk‖2 = o(n2).

(C.3) E{vec(Ekr)} = 0 and E{‖vec(Ekr)‖2+κ} <∞ for some constant κ > 0.

(C.4) Let

Gn(θ∗) = (1/n)
n∑
k=1

Yk(α
∗ᵀxckβ

∗ + γ∗ᵀzk)− log{1 + exp(α∗ᵀxckβ
∗ + γ∗ᵀzk)}. (A.1)

Assume that there exists a real-valued function G(·) such that for any ε > 0

sup
θ∗∈Θ
|Gn(θ∗)−G(θ∗)| → 0 in probability as n→∞;

sup
θ∗:d(θ∗,θ)≥ε

G(θ∗) < G(θ),

where d(a, b) is the distance function in a Euclidean space, say, Rd, defined as d(a, b) =
‖a− b‖ for a, b ∈ Rd.
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(C.5) There exist a positive definite matrix M1 and constants δ > 0 and 0 < N0 <∞, such
that Hn(θ∗) ≥M1 whenever n ≥ N0 and ‖θ∗ − θ‖ ≤ δ, where the operation ≥ is the
Loewner order, i.e., for two matrices A and B, if A−B is semi-positive definite, then
we write A ≥ B.

(C.6) Define

S∗k(θ
∗) =

(
X̃∗ᵀk (θ∗)
zk

)
{Yk − pk(θ∗;X∗k)},

where X̃∗k(θ) = (βᵀX∗ᵀk Ct, α
ᵀX∗k)ᵀ. Assume that the second derivative of S∗k(θ

∗) with
respect to θ∗ exists and that the entries of S∗k(θ

∗) are uniformly bounded by a random
variable which may be a function of X∗k and zk, say M2(X∗k , zk), in a neighborhood
of θ. In addition, E{M2(X∗k , zk)} <∞ for all k = 1, ..., n.

Remark 1: In Condition (C.1) will be used to prove the approximation form of S∗n(θ), the
consistency of H∗n(θ), and Theorem 2.4. Condition (C.2) is used to prove the consistency
of H∗n(θ) in Appendix A.5 and Theorem 2.4 in Appendix A.10. Condition (C.4), also
made by van der Varrt (1998, Theorem 5.7) and Zhou et al. (2013, Theorem 1), is used
to show the consistency of the naive estimator θ̂∗. This assumption can be regarded
as an analogue of Condition (C.1) required by Stefanski and Carroll (1985, p.1337) for
logistic regression where only vector-covariates are involved. van der Varrt (1998, p.46)
discussed a set of sufficient conditions, including the compactness of the parameter space,
that make Condition (C.4) hold. Condition (C.5) is a regularity condition that is needed

for the establishment of the asymptotic normal distribution for H
−1/2
n (θ)Ln(θ) (Stefanski

and Carroll 1985, p.1338). Condition (C.6) guarantees that the reminder terms of the
Taylor series expansion (A.26) of S∗k(θ

∗) in Appendix A.6 are bounded and ignorable when
deriving the equation (2.12).

Condition (C.3) characterizes that measurement error cannot be arbitrarily large and
must be bounded. This assumption immediately implies that E{vec(Ūk)} = 0,

(1/n)
n∑
k=1

‖Ūk‖2 = Op(1/m) and (1/n)
n∑
k=1

‖Ūk‖ = Op(1/m
1/2). (A.2)

Conditions (C.1)-(C.5) are made in the same spirit of Stefanski and Carroll (1985),
but these assumptions generalize the requirements for settings with vector-form covariates
to accommodating problems with both vector-form covariates and matrix-form covariates.
One may notice that the proofs of our results share the same ideas of Stefanski and Carroll
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(1985) to certain extent. For instance, modifications of Lemmas 5.1 and 5.2 in Stefanski
and Carroll (1985) are used in our proofs to show the relationships between S∗n(θ) and
Zn(θ) and between H∗n(θ) and Hn(θ). However, our derivations are a lot more technically
involved where a key challenge is to figure out how to split α and β in order to establish
the results for α and β separately. The presence of matrix-form covariates considerably
complicates the derivations of new theoretical results.

A.2 Approximations of pk(θ;X∗k) and its Functions

Here we derive the first and second order Taylor expansions of pk(θ;X
∗
k) or its function to

be used to find the approximation of S∗n(θ) in Appendix A.4. To this end, we adapt the
derivations for Lemma 5.2 of Stefanski and Carroll (1985).

Let η(X∗k) = αᵀX∗kβ + γᵀzk and η(xck) = αᵀxckβ + γᵀzk with the dependece on zk
suppressed in the symbols η(X∗k) and η(xck). By (2.5), X∗k = xck+ Ūk and E(Ūk) = 0. Now
we write pk(θ;X

∗
k) as pk{η(X∗k)} and pk(θ;xck) as pk{η(xck)}, and consider the following

four approximations.

1◦. Given xck and zk as well as a realization of X∗k , we derive the first-order Taylor series
expansion of pk{η(X∗k)} around η(xck):

pk{η(X∗k)} = pk{η(xck)}+ p
(1)
k {η(xk,ξ)}{η(X∗k)− η(xck)}, (A.3)

where η(xk,ξ) = αᵀxk,ξβ + γᵀzk with xk,ξ “between” X∗k and xck in the sense that ‖xk,ξ −
X∗k‖ ≤ ‖X∗k − xck‖ and ‖xk,ξ − xck‖ ≤ ‖X∗k − xck‖.

By definition of pk(·) and η(·), and η(xk,ξ) = η(xck) + op(1), we write (A.3) as

pk{η(X∗k)} =pk{η(xck)}+ pk{η(xk,ξ, zk)}[1− pk{η(xk,ξ)}]× (αᵀX∗kβ − αᵀxckβ)

=pk{η(xck)}+ pk{η(xk,ξ)}[1− pk{η(xk,ξ)}]× vec(αβᵀ)ᵀvec(X∗k − xck)

=pk{η(xck)}+ v1,k{η(xk,ξ)} × vec(αβᵀ)ᵀvec(Ūk),

(A.4)

where we use the fact that aᵀAb = vec(abᵀ)ᵀvec(A) for a p× q matrix A, a p× 1 vector a
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and q × 1 vector b, and v1,k(·) = pk(·){1− pk(·)}, as defined in Section 2.3.

2◦. Similarly, the first-order Taylor series expansion of pk{η(∆̂k)} around η(xck), where ∆̂k

is defined in (2.22), is

pk{η(∆̂k)} =pk{η(xck)}+ vec(αβᵀ)ᵀ{vec(Ūk) + vec(gk)
ᵀ}v1,k{η(∆k,ξ)/mc}, (A.5)

where η(∆k,ξ) = αᵀ∆k,ξβ + γᵀzk with ∆k,ξ “between” ∆̂k and xck in the sense that

‖∆k,ξ − ∆̂k‖ ≤ ‖∆̂k − xck‖ and ‖∆k,ξ − xck‖ ≤ ‖∆̂k − xck‖.

Then, taking the differece of (A.4) and (A.5), we obtain that

‖pk(θ,X∗k)− pk(θ, ∆̂k)‖ =
∥∥∥vec(αβᵀ)ᵀvec(Ūk)

[
v1,k{η(xk,ξ)} − v1,k{η(∆k,ξ)}

]
−vec(gk)

ᵀvec(αβᵀ)v1,k{η(∆k,ξ)/mc

∥∥∥
≤
∥∥∥vec(αβᵀ)ᵀvec(Ūk)

[
v1,k{η(xk,ξ)} − v1,k{η(∆k,ξ)}

]∥∥∥
+
∥∥∥vec(gk)

ᵀvec(αβᵀ)v1,k{η(∆k,ξ)}/mc

∥∥∥
≤
∥∥∥vec(αβᵀ)ᵀvec(Ūk)

∥∥∥+
∥∥∥vec(gk)

ᵀvec(αβᵀ)/mc

∥∥∥,
(A.6)

where the last step is due to the boundedness of v1,k(·) in [0, 1].

3◦. The first-order Taylor series expansion of pk{η(X∗k)}[1− pk{η(X∗k)}] around η(xck):

pk{η(X∗k)}[1− pk{η(X∗k)}]
= pk{η(xck)}[1− pk{η(xck)}]+

∂

∂η(xck)

(
pk{η(xck)}[1− pk{η(xck)}]

)∣∣∣
xck=xk,ξ2

× {η(X∗k)− η(xck)}

= v1,k{η(xck)}+ v2,k{η(xk,ξ2)} × vec(αβᵀ)ᵀvec(Ūk),

(A.7)

where v2,k(·) = pk(·){1−pk(·)}{1−2pk(·)}, as defined in Section 2.3, and xk,ξ2 is “between”
X∗k and xck in the sense that ‖xk,ξ2 −X∗k‖ ≤ ‖X∗k − xck‖ and ‖xk,ξ2 − xck‖ ≤ ‖X∗k − xck‖.

We comment that (A.7) differs from the expression obtained from directly plugging
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(A.4) into pk{η(X∗k)}[1− pk{η(X∗k)}], and the former expression is simpler the latter case.

4◦. The first-order Taylor series expansion of pk{η(∆̂k)}[1− pk{η(∆̂k)}] around η(xck):

pk{η(∆̂k)}[1− pk{(∆̂k)}]
= pk{η(xck)}[1− pk{η(xck)}]+

∂

∂η(xck)

(
pk{η(xck)}[1− pk{η(xck)}]

)∣∣∣
xck=∆k,ξ2

× {η(∆̂k)− η(xck)}

= v1,k{η(xck)}+ v2,k{η(∆k,ξ2)} × vec(αβᵀ)ᵀ{vec(Ūk) + vec(gk)
ᵀ/mc},

(A.8)

where ∆k,ξ2 is “between” ∆̂k and xck in the sense that ‖∆k,ξ2 − X∗k‖ ≤ ‖∆̂k − xck‖ and

‖∆k,ξ2 − xck‖ ≤ ‖∆̂k − xck‖.

5◦. Furthermore, we derive the second-order Taylor series expansion of pk{η(X∗k)} around
η(xck):

pk{η(X∗k)} =pk{η(xck)}+ p
(1)
k {η(xck)} × {η(X∗k)− η(xck)}

+
1

2!
p

(2)
k {η(xk,ξ3)} × {η(X∗k)− η(xck)}2

=pk{η(xck)}+ vec(αβᵀ)ᵀvec(Ūk)v1,k{η(xk,ξ3)}

+
1

2
vec(αβᵀ)ᵀvec(Ūk)v2,k{η(xk,ξ3)}vec(Ūk)

ᵀvec(αβᵀ),

(A.9)

where xk,ξ3 is “between” X∗k and xck in the sense that ‖xk,ξ3 − X∗k‖ ≤ ‖X∗k − xck‖ and
‖xk,ξ3 − xck‖ ≤ ‖X∗k − xck‖.

A.3 Proof of Theorem 1

In contrast to (2.7), we consider function (A.1) in Appendix A.1 which is identical to (2.7)
with X∗k replaced by xck.
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Let

Rn,1 = `∗n(θ∗)−Gn(θ∗)

=
1

n

n∑
k=1

[
Yk(α

∗ᵀX∗kβ
∗ − α∗ᵀxckβ

∗)− log{1 + exp(α∗ᵀX∗kβ
∗ + γ∗ᵀzk)}

+ log{1 + exp(α∗ᵀxckβ
∗ + γ∗ᵀzk)}

]
.

Since X∗k = xck+Ūk, and E(Ūk) = 0, then by Conditions (C.1), (C.3) and the Weak Law
of Large Numbers (WLLN), X∗k → xck in probability as m→∞. Thus, by the Continuous
Mapping Theorem, as min(n,m) → ∞, Rn,1 = op(1). That is, `∗n(θ∗) − Gn(θ∗) = op(1).
Then, by Condition (C.4), Theorem 1 of Zhou et al. (2013) and Theorem 5.7 of van der
Varrt (1998), θ̂∗ is converges to θ in probability as min(m,n)→∞.

A.4 Proof of Lemma 2.1

To show (2.13), we examine each term at a time by the following three parts.
Part I: Show that S ∗α,n(θ) = 1√

n
Zα,n + (Jα,n,1 + Jα,n,2 )vec(αβᵀ) + op{max

(
1
m
, 1√

n

)
}.

By (2.9),
S∗α,n(θ) = Tn,α,1 + Tn,α,2,

where

Tn,α,1 =
1

n

n∑
k=1

Cᵀ
t xckβ{Yk − pk(θ;X∗k)} and Tn,α,2 =

1

n

n∑
k=1

Cᵀ
t Ūkβ{Yk − pk(θ;X∗k)}.

We now separately derive the approximation of Tn,α,1 and Tn,α,2 as follows.
1. Show that Tn,α,1 = 1√

n
Zα,n + Jα,n,1vec(αβᵀ) + op

{
max

(
1
m
, 1√

n

)}
.

By (A.9), we write Tn,α,1 as sum of individual terms each with one particular feature:

Tn,α,1 =
1√
n

Sα,n +
1√
n

Qα,n,1 + Jα,n,1vec(αβᵀ) + Dα,n,1 + Rα,n,1, (A.10)
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where

Sα,n =
1√
n

n∑
k=1

Cᵀ
t xckβ{Yk − pk(θ; xck)};

Qα,n,1 = − 1√
n

n∑
k=1

Cᵀ
t xckβvec(αβᵀ)ᵀvec(Ūk)v1,k(θ;xck);

Jα,n,1 = −n
2

n∑
k=1

Cᵀ
t xckβvec(αβᵀ)ᵀ

Ω0

mc

v2,k(θ;xck);

Dα,n,1 = −n
2

n∑
k=1

Cᵀ
t xckβ

[
vec(αβᵀ)ᵀ

{
vec(Ūk)vec(Ūk)

ᵀ − Ω0

mc

}
vec(αβᵀ)v2,k(θ;xck)

]
;

Rα,n,1 = −n
2

n∑
k=1

Cᵀ
t xckβ

[
vec(αβᵀ)ᵀvec(Ūk)vec(Ūk)

ᵀvec(αβᵀ){v2,k(θ;xk,ξ3)− v2,k(θ;xck)}
]
.

Now we examine each term of (A.8) separately by the following three steps to show that
the approximation form of Tn,α,1 is

Tn,α,1 =
1√
n

Sα,n + Jα,n,1vec(αβᵀ) + op

{
max

( 1

m
,

1√
n

)}
.

Step1: Show that Qα,n,1 = op(1 ).

For Qα,n,1, we modify the discussion of the Qn,1,σ term in Lemma 5.2 of Stefanski and
Carroll (1985, p.1347) and obtain that Qα,n,1 has mean zero, and

V ar(Qα,n,1) =
1

n2

n∑
k=1

V ar{Cᵀ
t xckβvec(αβᵀ)ᵀvec(Ūk)v1,k(θ;xck)}

=
1

n2

n∑
k=1

v2
1,k(θ;xck)× ‖Cᵀ

t ‖2 × ‖β‖2 × ‖vec(αβᵀ)ᵀ‖2 × ‖xck‖2 × V ar{vec(Ūk)}

≤ 1

n2

n∑
k=1

‖Cᵀ
t ‖2 × ‖β‖2 × ‖vec(αβᵀ)ᵀ‖2 × ‖xck‖2 × ‖Ūk‖2

≤ ‖Cᵀ
t ‖2 × ‖β‖2 × ‖vec(αβᵀ)ᵀ‖2 × 1

n

n∑
k=1

‖xck‖2 × 1

n

n∑
k=1

‖Ūk‖2

where the third step comes from that v1,k(θ;xck) is bounded between [0, 1], and the last
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step is because that

1

n

n∑
k=1

‖xck‖2 × 1

n

n∑
k=1

‖Ūk‖2 =
1

n2

n∑
k=1

‖xck‖2 × ‖Ūk‖2 +
1

n2

n∑
k=1

n∑
j 6=k

‖xck‖2 × ‖Ūj‖2.

According to Condition (C.1) and the derivation of Condition C.3, we have 1
n

∑n
k=1 ‖xck‖2

= O(1) and 1
n

∑n
k=1 ‖Ūk‖2 = Op(

1
m

). As a result, V ar(Qα,n,1) = op(1) as min(m,n)→∞,
thus Qα,n,1 = op(1) and 1√

n
Qα,n,1 = op(

1√
n
).

Step2: Show that Dα,n,1 = op

(
1
m

)
.

To examine Dα,n,1, we adapt the derivations of the Dn,1 in Lemma 5.2 of Stefanski and
Carroll (1985, p.1347) and obtain that

‖Dα,n,1‖ = ‖Cᵀ
t ‖ × ‖β‖ × ‖vec(αβᵀ)ᵀ‖ × ‖v2,k(θ;xck)‖ ×

n

2

n∑
k=1

‖xck‖

×
∥∥∥vec(Ūk)vec(Ūk)

ᵀ − Ω0

mc

∥∥∥
≤ Constant× 1

mc

( 1

n

n∑
k=1

‖xck‖2
)1/2

×
( 1

n

n∑
k=1

‖mcvec(Ūk)vec(Ūk)
ᵀ − Ω0‖2

)1/2

.

(A.11)
By (A.1), 1

n

∑n
k=1 ‖xck‖2 = O(1), and by the Markov Inequality, we have that for any

scalar ε > 0,

P
{ 1

n

n∑
k=1

‖mcvec(Ūk)vec(Ūk)
ᵀ − Ω0‖2 > ε

}
≤

n∑
k=1

E
{
‖mcvec(Ūk)vec(Ūk)

ᵀ − Ω0‖2
}

nε
.

(A.12)

Now for the numerator of the right-hand-side of (A.12), we have that, by the definition
of Ūk,
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E
{
‖mcvec(Ūk)vec(Ūk)

ᵀ − Ω0‖2
}

= E

∥∥∥∥∥ n

m(n− 1)

{
m∑
r=1

vec(Ekr)−

n∑
k=1

m∑
r=1

vec(Ekr)

n

}{
m∑
r=1

vec(Ekr)−

n∑
k=1

m∑
r=1

vec(Ekr)

n

}ᵀ

− Ω0

∥∥∥∥∥
2

=

√
n

m(n− 1)
E

[∥∥∥∥∥
{

m∑
r=1

vec(Ekr)−

n∑
k=1

m∑
r=1

vec(Ekr)

n

}

×

{
m∑
r=1

vec(Ekr)−

n∑
k=1

m∑
r=1

vec(Ekr)

n

}ᵀ

− m(n− 1)

n
Ω0

∥∥∥∥∥
2]

= Op

( √
n

√
m
√

(n− 1)

)
= op(1)

as min(m,n)→∞, where in the second last step we use the fact that

E

[{
m∑
r=1

vec(Ekr)−

n∑
k=1

m∑
r=1

vec(Ekr)

n

}{
m∑
r=1

vec(Ekr)−

n∑
k=1

m∑
r=1

vec(Ekr)

n

}ᵀ

−m(n− 1)

n
Ω0

]
= 0.

Thus, by (A.12),

P
{ 1

n

n∑
k=1

‖mcvec(Ūk)vec(Ūk)
ᵀ − Ω0‖2 > ε

}
= op(1)

as min(m,n)→∞. Thus (A.11) implies that Dα,n,1 = op(
1
m

).

Step3: Show that Rα,n,1 = op( 1
m

).

To examine Rα,n,1, we first note that v2,k{·} is defined in Section 2.2.3 with pk(·) ∈ [0, 1],

it is readily to show that v2,k{·} has the maximum value
√

3
18

and the minimum value −
√

3
18

,

i.e., v2,k(·) ∈ [−
√

3
18
,
√

3
18

]. Thus, |v2,k(θ;xk,ξ3)− v2,k(θ;xck)| < 1 because of the boundedness
of v2,k(·). Then we obtain that
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‖Rα,n,1‖ ≤
n

2

n∑
k=1

∥∥Cᵀ
t xckβ{vec(αβᵀ)ᵀvec(Ūk)vec(Ūk)

ᵀvec(αβᵀ)}

× |v2,k(θ;xk,ξ3)− v2,k(θ;xck)|
∥∥

≤ n

2

n∑
k=1

∥∥Cᵀ
t xckβ{vec(αβᵀ)ᵀvec(Ūk)vec(Ūk)

ᵀvec(αβᵀ)}‖

≤ n

2
‖Cᵀ

t ‖ × ‖β‖ ×
n∑
k=1

‖xck‖ × {vec(αβᵀ)ᵀvec(Ūk)}2

≤ 1

2
‖Cᵀ

t ‖ × ‖β‖ ×
1

m2
c

max
1≤k≤n

‖xck‖ ×
1

n

n∑
k=1

{
vec(αβᵀ)ᵀvec

( m∑
r=1

Ekr

− 1

n

n∑
k=1

m∑
r=1

Ekr

)}2

≤ 1

2
‖Cᵀ

t ‖ × ‖β‖ ×
n2

(n− 1)2
× o
( 1

m

)
× 1

n

n∑
k=1

{
vec(αβᵀ)ᵀvec

( m∑
r=1

Ekr

− 1

n

n∑
k=1

m∑
r=1

Ekr

)}2

= op

( 1

m

)
,

where Condition (C.1) is used in the second last step, and the last step comes from that

1

n

n∑
k=1

{
vec(αβᵀ)ᵀvec

( m∑
r=1

Ekr −
1

n

n∑
k=1

m∑
r=1

Ekr

)}2

= Op(1).

Finally, applying the results of Steps 1-3 to (A.10), we obtain that

Tn,α,1 =
1√
n

Sα,n + Jα,n,1vec(αβᵀ) + op

{
max

( 1

m
,

1√
n

)}
. (A.13)

2. Show that Tn,α,2 = Jα,n,2vec(αβᵀ) + op{max
(
1
m
, 1√

n

)
}.

By (A.4), we write Tn,α,2 as the sum of individual terms each with one particular
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feature:

Tn,α,2 = − 1√
n

Qα,n,2 + Jα,n,2vec(αβᵀ) + Dα,n,2 + Rα,n,2, (A.14)

where

Qα,n,2 =
1√
n

n∑
k=1

Cᵀ
t Ūkβ{Yk − pk(θ;xck)};

Jα,n,2 = − 1

n

n∑
k=1

Cᵀ
t Πα

Ω0

mc

v1,k(θ;xck);

Dα,n,2 = − 1

n

n∑
k=1

Cᵀ
t Πα

{
vec(Ūk)vec(Ūk)

T − Ω0

mc

}
v1,k(θ;xck)vec(αβᵀ);

Rα,n,2 = − 1

n

n∑
k=1

Cᵀ
t Πα[vec(Ūk)vec(Ūk)

ᵀ{v1,k(θ;xk,ξ)− v1,k(θ;xck)}vec(αβᵀ)];

and Πα =
[
β1I(p+1) β2I(p+1) · · · βqI(p+1)

]
is a (p+ 1)× {(p+ 1)q} matrix.

Now we examine each term of (A.14) separately to show that the approximation form
of Tn,α,2 is

Tn,α,2 = Jα,n,2vec(αβᵀ) + op

{
max

( 1

m
,

1√
n

)}
. (A.15)

Like Qα,n,1 discussed in the preceding Step 1, Qα,n,2 has mean zero and V ar(Qα,n,2) =
op(1) as min(m,n)→∞, thus Qα,n,2 = op(1). To examine Dα,n,2, we adapt the derivations
of Dα,n,1 in (A.11) to obtain that Dα,n,2 = op(1) as min(m,n) → ∞. To examine Rα,n,2,
we note that both v1,k{η(xk,ξ)} and v1,k{η(xck)} are in [0, 1], thus yielding that their dif-
ference is bounded. Similar to the derivation of Rα,n,1, we obtain that Rα,n,2 = op(1) as
min(m,n) → ∞. Thus, applying these results of Qα,n,2, Dα,n,2 and Rα,n,2 to (A.14), we
obtain (A.15).

Finally, combining (A.13) and (A.15) gives

S∗α,n(θ) = Zα,n(θ) + op

{
max

( 1

m
,

1√
n

)}
=

1√
n

Sα,n + (Jα,n,1 + Jα,n,2)vec(αβᵀ) + op

{
max

( 1

m
,

1√
n

)}
.

(A.16)
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Part II: Show that

S ∗β,n(θ) =
1√
n

Zβ,n + (Jβ,n,1 + Jβ,n,2 )vec(αβᵀ) + op

{
max

( 1

m
,

1√
n

)}
.

By (2.9),
S∗β,n(θ) = Tn,β,1 + Tn,β,2,

where

Tn,β,1 =
1

n

n∑
k=1

xᵀckα{Yk − pk(θ;X
∗
k)} and Tn,β,2 =

1

n

n∑
k=1

Ūkα{Yk − pk(θ;X∗k)},

Analogous to Part I, we separately examine Tn,β,1 and Tn,β,2 and obtain that

S∗β,n(θ) = Zβ,n(θ) + op

{
max

( 1

m
,

1√
n

)}
=

1√
n

Sβ,n + (Jβ,n,1 + Jβ,n,2)vec(αβᵀ) + op

{
max

( 1

m
,

1√
n

)}
,

(A.17)

where

Sβ,n =
1√
n

n∑
k=1

xᵀckα{yk − pk(θ;xck)},

Jβ,n,1 = −n
2

n∑
k=1

xᵀckαvec(αβᵀ)ᵀ
Ω0

mc

v2,k(θ;xck),

Jβ,n,2 = − 1

n

n∑
k=1

Πβ
Ω0

mc

v1,k(θ;xck),

and

Πβ =


αᵀ

αᵀ

. . .

αᵀ


q×{(p+1)q}

.

Part III: Show that S ∗γ,n(θ) = 1√
n

Zγ,n + Jγ,nvec(αβᵀ) + op{max
(
1
m
, 1√

n

)
}.
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By (2.9) and (A.8),

S∗γ,n(θ) = Zγ,n(θ) + op

{
max

( 1

m
,

1√
n

)}
=

1√
n

Sγ,n + Jγ,nvec(αβᵀ) + op

{
max

( 1

m
,

1√
n

)}
,

(A.18)

where

Sγ,n =
1√
n

n∑
k=1

zk{Yk − pk(θ;xck)},

Jγ,n = −n
2

n∑
k=1

zkvec(αβᵀ)ᵀ
Ω0

mc

v2,k(θ;xck).

Combining (2.9), (A.16), (A.17) and (A.18) yields the approximation of S∗n(θ) as

S∗n(θ) = Zn(θ) + op

{
max

( 1

m
,

1√
n

)}
.

A.5 Proof of Lemma 2.2

To examine H∗n(θ), which is defined for (2.12), we first write it in a block matrix with
each block submatrix corresponding to one type of parameters, and we examine each block
submatrix one at a time. To be precise, we write

H∗n(θ) , −
(

H∗α,β,n(θ) H∗αβ,γ,n(θ)
H∗ᵀαβ,γ,n(θ) H∗γ,γ,n(θ)

)
,

where

H∗α,β,n(θ) =
∂{S∗α,n(θ), S∗β,n(θ)}ᵀ

∂(α̃ᵀ, βᵀ)
,

H∗αβ,γ,n(θ) =
∂{S∗α,n(θ), S∗β,n(θ)}ᵀ

∂γT
,

H∗γ,γ,n(θ) =
∂{S∗γ,n(θ)}

∂γT
.
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Similarly write Hn(θ) (defined for (2.14)) as

Hn(θ) , −
(

Hα,β,n(θ) Hαβ,γ,n(θ)
Hᵀ
αβ,γ,n(θ) Hγ,γ,n(θ)

)
,

where

Hα,β,n(θ) =
∂{Zα,n(θ),Zβ,n(θ)}ᵀ

∂(α̃ᵀ, βᵀ)
,

Hαβ,γ,n(θ) =
∂{Zα,n(θ),Zβ,n(θ)}ᵀ

∂γT
,

Hγ,γ,n(θ) =
∂{Zγ,n(θ)}

∂γT
.

In the following three parts, we show that each entry of H∗n(θ) differs from the corre-
sponding part of Hn(θ) with a small magnitude.

Part I: Show that H ∗α,β,n(θ)− Hα,β,n(θ) = op(1 ) as min(m,n)→∞.

The difference between H∗α,β,n(θ) and Hα,β,n(θ), we write it as the sum of three terms
so we can look at one term at a time:

H∗α,β,n(θ)− Hα,β,n(θ) = Hα,β,n,1 + Hα,β,n,2 + Hα,β,n,3,

where Hα,β,n,1 includes entries depended only on pk(θ;X
∗
k) and Ũk(θ) = (βᵀŪkCt, α

ᵀŪᵀ
k ),

Hα,β,n,2 includes entries depended on pk(θ;X
∗
k), pk(θ;x

∗
k) and x̃ck(θ), and Hα,β,n,3 contains

the rest terms. The details of the three terms are given and examined as follows.

1. Show that Hα,β,n,1 = op(1 ).

Let x̃ck(θ) = (βᵀxᵀckCt, α
ᵀxck)

ᵀ and X̃∗k(θ) = (βᵀX∗ᵀk Ct, α
ᵀX∗k)ᵀ. The term Hα,β,n,1 is

defined as

Hα,β,n,1 =
1

n

n∑
k=1

v1,k(θ;X
∗
k){X̃∗ᵀk (θ)X̃∗k(θ)− x̃ᵀck(θ)x̃ck(θ)},
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which by (2.5), equals

1

n

n∑
k=1

v1,k(θ;X
∗
k)Ũᵀ

k (θ)Ũk(θ) +
1

n

n∑
k=1

v1,k(θ;X
∗
k){Ũᵀ

k (θ)x̃ck(θ) + x̃ᵀck(θ)Ũk(θ)}

∆
= A.19 + A.20.

Then following the derivation regrading Condition (C.3) in Remark, we have that by
v1,k(·) ∈ [0, 1],

‖A.19‖ ≤ 1

n

n∑
k=1

‖Ũᵀ
k (θ)Ũk(θ)‖ ≤

1

n

n∑
k=1

‖Ũᵀ
k (θ)‖2

≤ 1

n

n∑
k=1

(‖βᵀ‖2 × ‖Ūk‖2 × ‖Ct‖2 + ‖αᵀ‖2 × ‖Ūᵀ
k‖

2)

= Op

( 1

m

)
= op(1)

as min(m,n)→∞, where the second last step is due to (A.2).

A.20 has same structure as Qα,n,1 in Appendix A.4 and we use the similar steps to
derive A.18 = op(1) as min(m,n)→∞. Thus, Hα,β,n,1 = op(1), as min(m,n)→∞.

2. Show that Hα,β,n,2 = op(1 ).

The term Hα,β,n,2 is defined as

Hα,β,n,2 =
1

n

n∑
k=1

[v1,k(θ;X
∗
k)− v1,k(θ;xck)]x̃

ᵀ
ck(θ)x̃ck(θ)

Using (A.7), we obtain that

Hα,β,n,2 =
1

n

n∑
k=1

vec(αβᵀ)ᵀvec(Ūk)v2,k(θ;xk,ξ2)x̃
ᵀ
ck(θ)x̃ck(θ). (A.21)

By the boundedness of v2,k(·) which we showed in Appendix A.4, Conditions (C.1),
(C.2) and (C.3) together with Lemma 5.1 in Stefanski and Carroll (1985), we have that
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‖A.21‖ ≤ 1

n

n∑
k=1

‖vec(αβᵀ)ᵀvec(Ūk)x̃
ᵀ
ck(θ)x̃ck(θ)‖

= ‖vec(αβᵀ)ᵀ‖ × 1

n

n∑
k=1

‖vec(Ūk)× (βᵀxᵀckCt × C
ᵀ
t xckβ + αᵀxck × xᵀckα)‖

≤ ‖vec(αβᵀ)ᵀ‖ × ‖β‖2 × ‖Ct‖2 × 1

n

n∑
k=1

‖vec(Ūk)‖ × ‖xck‖2

+ ‖vec(αβᵀ)ᵀ‖ × ‖α‖2 × 1

n

n∑
k=1

‖vec(Ūk)‖ × ‖xck‖2

= op(1),

when min(m,n)→∞. Thus, Hα,β,n,2 = op(1), as min(m,n)→∞.

3. Show that Hα,β,n,3 = op(1 ).

Hα,β,n,3 contains the rest terms of H∗α,β,n(θ)−Hα,β,n(θ) that are not included in Hα,β,n,1

or Hα,β,n,2. It is

Hα,β,n,3 =

(
0 A.22

A.23 0

)
,

where

A.22 =
1

n

n∑
k=1

Cᵀ
tX
∗
k{Yk − pk(θ;X∗k)} − Cᵀ

t xck{Yk − pk(θ;xck)}

and

A.23 =
1

n

n∑
k=1

X∗ᵀk Ct{Yk − pk(θ;X
∗
k)} − xᵀckCt{Yk − pk(θ;xck)}.

Plugging (A.4) into A.22, we obtain that

A.22 = − 1

n

n∑
k=1

Cᵀ
t xck{vec(αβᵀ)ᵀvec(Ūk)v1,k(θ;xk,ξ)}
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Then

‖A.22‖ = ‖A.21‖ = ‖ − 1

n

n∑
k=1

Cᵀ
t xck{vec(αβᵀ)ᵀvec(Ūk)v1,k(θ;xk,ξ)‖

≤ ‖Cᵀ
t ‖ × ‖vec(αβᵀ)‖ × 1

n

n∑
k=1

‖xck‖ × ‖vec(Ūk)‖.

By Conditions (C.2) and (C.3), when min(n,m)→∞, Hα,β,n,3 = op(1).

Finally, Combining the results of Hα,β,n,1, Hα,β,n,2 and Hα,β,n,3, we conclude that

H∗α,β,n(θ)− Hα,β,n(θ) = op(1) as min(m,n)→∞.

Part II: Show that H ∗αβ,γ,n(θ)− Hαβ,γ,n(θ) = op(1 ) as min(m,n)→∞.

First, we write

H∗αβ,γ,n(θ)− Hαβ,γ,n(θ) =

(
Hα,γ,n

Hβ,γ,n

)
to indicate the two subvectors corresponding to α and β, where

Hα,γ,n = − 1

n

n∑
k=1

Cᵀ
t Ūkβv1,k(θ;X

∗
k) +

1

n

n∑
k=1

Cᵀ
t xckβv2,k(θ;X

∗
k)zᵀk

and

Hβ,γ,n = − 1

n

n∑
k=1

αᵀŪkv1,k(θ;X
∗
k) +

1

n

n∑
k=1

αᵀxckv2,k(θ;X
∗
k)zᵀk

∆
= A.24 + A.25.

We observe that Hα,γ,n and Hβ,γ,n have a similar structure, thus we examine Hα,γ,n only
here. Hβ,γ,n can be examined via the same techniques.
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By Conditions (C.1), (C.3) and the boundedness of v1,k(θ;X
∗
k), we have

‖A.22‖ ≤ 1

n

n∑
k=1

‖Cᵀ
t Ū

ᵀ
kβz

ᵀ
k‖

≤ ‖β‖ × ‖Ct‖ ×
1

n

n∑
k=1

(‖Ūk‖ × ‖zᵀk‖)

≤ ‖β‖ × ‖Ct‖ ×
( 1

n

n∑
k=1

‖Ūk‖2
)1/2

×
( 1

n

n∑
k=1

‖zᵀk‖
2
)1/2

≤ ‖β‖ × ‖Ct‖ ×Op

( 1√
m

)
×O(1) = op(1),

where the second step and the third step are due to the Cauchy–Schwarz inequality, and
the second last step is due to (A.2).

Plugging the (A.4) into A.25, we obtain that

A.25 =
1

n

n∑
k=1

vec(αβᵀ)ᵀvec(Ūk)pk(θ;xk,ξ){1− pk(θ;xk,ξ)}2Cᵀ
t xckβz

ᵀ
k .

Then by the boundedness of pk(θ;xck){1− pk(θ;xck)}2, we obtain that

‖A.25‖ ≤ C0‖vec(αβᵀ)ᵀ‖ × ‖β‖ × ‖Ct‖ ×
1

n

n∑
k=1

‖vec(Ūk)‖ × ‖xck‖ × ‖zᵀk‖

≤ C0‖vec(αβᵀ)ᵀ‖ × ‖β‖ × ‖Ct‖ ×
1

n

n∑
k=1

‖vec(Ūk)‖ ×max(‖xck‖, ‖zᵀk‖)
2,

where C0 is a bound of pk(θ;xck){1−pk(θ;xck)}2, and the first step is due to the Cauchy–Schwarz
inequality.

Condition (C.1) implies that
∑n

k=1 max(‖xck‖, ‖zᵀk‖)2 = O(n), and Condition (C.2)
implies that max1≤k≤n{max(‖xck‖, ‖zᵀk‖)2} is o(n). Thus, by Lemma 5.1 of Stefanski and
Carroll (1985), A.25 is op(1). Thus, Hα,γ,n = op(1). Similarly, we can show that Hβ,γ,n =
op(1). As a result,

H∗αβ,γ,n(θ)− Hαβ,γ,n(θ) = op(1) as min(m,n)→∞.
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Part III: Show that H ∗γ,γ,n(θ)− Hγ,γ,n(θ) = op(1 ) as min(m,n)→∞.

By the definitions of H∗γ,γ,n(θ) and Hγ,γ,n(θ), we obtain that

H∗γ,γ,n(θ)− H∗γ,γ,n(θ) = − 1

n

n∑
k=1

[v1,k(θ;x
∗
k)− v1,k(θ;xck)]zkz

ᵀ
k . (A.26)

Similar to the steps for obtaining (A.21), by plugging (A.7) into (A.26), the boundedness
of v2,k(·), and Conditions (C.1), (C.2) and (C.3) together with Lemma 5.1 in Stefanski and
Carroll (1985), we obtain that

H∗γ,γ,n(θ)− H∗γ,γ,n(θ) = op(1) as min(m,n)→∞.

Finally, combining the results of Parts I-III, we obtain that

H∗n(θ)− Hn(θ) = op(1) as min(m,n)→∞.

A.6 Proof of (2.12)

We applied the first-order Taylor series expansion to S∗n(θ̂∗) around θ, with X∗k and zk
given, and obtain that

S∗n(θ)− H∗n(θ)(θ̂∗ − θ) + en = 0,

where en is the reminder term, given by:

en =
1

2!

d∑
i=1

d∑
j=1

∂2Zn(θm)

∂θi∂θj
(θ̂∗i − θi)(θ̂∗j − θj) (A.27)

with the vector θm = (α̃ᵀ
m, β

ᵀ
m, γ

ᵀ
m)ᵀ “between” θ̂∗ and θ in the sense that ‖θm‖ is between

‖θ̂∗‖ and ‖θ‖, θi and θj are the ith and jth elements in θ, respectively, and d is the
dimension of θ.
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Similar to Parts I-III in Appendix A.4 which express S∗n(θ) as the sum of two terms
based on xck and Ūk, here we apply the same process to obtain that

S∗n(θm) =
1√
n

{ 1√
n

n∑
k=1

Ak(θm) +
1

m
√
n

n∑
k=1

m∑
r=1

Bkr(θm)
}
{yk − pk(θm;X∗k)} (A.28)

where

Ak(θm) =

Cᵀ
t xckβm
xᵀckαm
zk

 and Bkr(θm) =


Cᵀ
t (Ekr − 1

n

n∑
k=1

Ekr)βm

(Ekr − 1
n

n∑
k=1

Ekr)αm

0

 .

Thus, differentiating (A.28) and taking sums gives that

d∑
i=1

d∑
j=1

∂2S∗n(θm)

∂θiθj
=

1

n

n∑
k=1

d∑
i=1

d∑
j=1

∂Ak(θm){yk − pk(θm;X∗k)}
∂θi∂θj

+
1

mn

n∑
k=1

m∑
r=1

d∑
i=1

d∑
j=1

∂Bkr(θm){yk − pk(θm;X∗k)}
∂θi∂θj

.

By Condition (C.6), we obtain that for i, j = 1, ..., d,

1

n

n∑
k=1

∂Ak(θm){yk − pk(θm;X∗k)}
∂θi∂θj

= Op(1) =
1√
n

Op(
√
n)

and
1

mn

n∑
k=1

m∑
r=1

∂Bkr(θm){yk − pk(θm;X∗k)}
∂θi∂θj

= Op(1) =
1

m
√
n

Op(m
√
n).

Thus, ∣∣∣ d∑
i=1

d∑
j=1

∂2S∗n(θm)

∂θi∂θj

∣∣∣ ≤ 1√
n

Op(
√
n) +

1

m
√
n

Op(m
√
n)

due to the triangle inequality and fixed d.

Combining this with θ̂∗ − θ = op(1), we obtain, by (A.27), that

|en| ≤ op{max(1/m, 1/n1/2)}.
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Thus, (2.12) follows.

A.7 Proof of Theorem 2.3

First, we consider the terms of Ĵn(θ̂∗) which is defined in (2.15), and show that as min(m,n)→
∞,

Ĵα̂∗,n − Jα,n = op

( 1

m

)
, (A.29)

Ĵβ̂∗,n − Jβ,n = op

( 1

m

)
, (A.30)

and

Ĵγ̂∗,n − Jγ,n = op

( 1

m

)
, (A.31)

where Ĵα̂∗,n, Ĵβ̂∗,n and Ĵγ̂∗,n correspond to Jα,n, Jβ,n and Jγ,n with xck, θ and Ω0 replaced

by X∗k , θ̂∗ and Ω̂, respectively. Here we show (A.29). The proof of (A.30) and (A.31) is
similar.

By definition,

Jα,n = Jα,n,1 + Jα,n,2 and Ĵα̂∗,n = Ĵα̂∗,n,1 + Ĵα̂∗,n,2.

We need only to prove that Ĵα̂∗,n,1−Jα,n,1 = op

(
1
m

)
; the proof of Ĵα̂∗,n,2−Jα,n,2 = op

(
1
m

)
carries through in a similar manner.
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Indeed,

Ĵα̂∗,n,1 − Jα,n,1 = −(1/2n)
n∑
k=1

Cᵀ
tX
∗
kβvec(α̂∗β̂∗ᵀ)ᵀ(Ω̂/mc)v2,k(θ̂

∗;xck)

−

{
−(1/2n)

n∑
k=1

Cᵀ
t xckβvec(αβᵀ)ᵀ(Ω0/mc)v2,k(θ;xck)

}

= −(1/2n)
n∑
k=1

Cᵀ
t xckβvec(α̂∗β̂∗ᵀ)ᵀ(Ω̂/mc)v2,k(θ̂

∗;xck)

−

{
−(1/2n)

n∑
k=1

Cᵀ
t xckβvec(αβᵀ)ᵀ(Ω0/mc)v2,k(θ;xck)

}

− (1/2n)
n∑
k=1

Cᵀ
t Ūkβvec(α̂∗β̂∗ᵀ)ᵀ(Ω̂/mc)v2,k(θ̂

∗;xck)

= −(1/2n)
n∑
k=1

Cᵀ
t xckβvec(α̂∗β̂∗ᵀ)ᵀ(Ω̂/mc)v2,k(θ̂

∗;xck)

+ (1/2n)
n∑
k=1

Cᵀ
t xckβvec(αβᵀ)ᵀ(Ω0/mc)v2,k(θ;xck) + op

(
1

m

)

Ĵα̂∗,n,1 − Jα,n,1sdfss =
1

mc

{
− (1/2n)

n∑
k=1

Cᵀ
t xckβvec(α̂∗β̂∗ᵀ)ᵀΩ̂v2,k(θ̂

∗;xck)

+ (1/2n)
n∑
k=1

Cᵀ
t xckβvec(αβᵀ)ᵀΩ0v2,k(θ;xck)

}
+ op

(
1

m

) (A.32)

where the second step is due to model (2.5); the last term in the third step is of order
op
(

1
m

)
using the same technique of showing the order of Qα,n,1 in Step 1 of Appendix

A.4. By Theorem 2.1 and that Ω̂ is a
√
n-consistent estimator of Ω0, (A.32) yields that

Ĵα̂∗,n,1 − Jα,n,1 = op

(
1
mc

)
+ op

(
1
m

)
= op

(
1
m

)
.
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Secondly, combining (2.15) with (2.11) gives that

θ̂∗c = θ̂∗ − Ĥ−1
n (θ̂∗)Ĵn(θ̂∗)vec(α̂∗β̂∗ᵀ)

= θ +
1√
n

H−1
n (θ)Sn(θ) + H−1

n (θ)Jn(θ)vec(αβᵀ)− Ĥ−1
n (θ̂∗)Ĵn(θ̂∗)vec(α̂∗β̂∗ᵀ)

+ op

{
max

( 1

m
,

1√
n

)}
,

(A.33)

where the relevant quantities are defined in Section 2.2.

By Theorem 2.1 and the assumption in Theorem 2.3 that Ω̂ is a
√
n-consistent estimator

of Ω0, we obtain that by the Continuous Mapping Theorem, vec(α̂∗β̂∗ᵀ) → vec(αβᵀ) in
probability and Ĥ−1

n (θ̂∗)−H−1
n (θ) = op(1) as min(m,n)→∞. Therefore, combining these

results with (A.29), (A.30) and (A.31), we can express (A.33) as

θ̂∗c = θ +
1√
n

H−1
n (θ)Sn(θ) + op

{
max

( 1

m
,

1√
n

)}
. (A.34)

Finally, Stefanski and Carroll (1985) showed that under Conditions (C.1) and (C.5),

H
−1/2
n (θ)Sn(θ) has the asymptotic normal distribution whose mean is zero and covari-

ance matrix is the identity matrix. Thus, by (A.34), we obtain Theorem 2.3(a). Ap-
plying Slutsky’s theorem to (A.34) gives Theorem 2.3(b), where the asymptotic covari-
ance of

√
n(θ̂∗c − θ) is determined by that of H−1

n (θ)Sn(θ), which equals I−1(θ),where
I(θ) = E{Hn(θ)}.

A.8 Proof of the Consistency for (2.17)

We prove that (2.17) is a
√
n-consistent covariance estimator for Ω̂. Indeed, we write (2.17)

as

Ω̂ =
1

n

n∑
k=1

1

(m− 1)

m∑
r=1

{vec(X∗kr)− vec(X̄∗k+)}{vec(X∗kr)− vec(X̄∗k+)}ᵀ,

and let

Ω̂k =
1

(m− 1)

m∑
r=1

{vec(X∗kr)− vec(X̄∗k+)}{vec(X∗kr)− vec(X̄∗k+)}ᵀ.
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By the definition of X∗kr and X̄∗k+, we obtain that

vec(X∗kr)− vec(X̄∗k+) = vec

(
Ekr −

1

m

m∑
r=1

Ekr

)
.

Thus,

E(Ω̂k) =
1

(m− 1)

m∑
r=1

E

{
vec

(
Ekr −

1

m

m∑
r=1

Ekr

)
vec

(
Ekr −

1

m

m∑
r=1

Ekr

)ᵀ}

=
1

(m− 1)

m∑
r=1

[
E {vec (Ekr) vec (Ekr)

ᵀ} − 2E

{
vec

(
1

m

m∑
r=1

Ekr

)
vec (Ekr)

ᵀ

}

+ E

{
vec

(
1

m

m∑
r=1

Ekr

)
vec

(
1

m

m∑
r=1

Ekr

)ᵀ}]

=
1

(m− 1)

m∑
r=1

[
E {vec (Ekr) vec (Ekr)

ᵀ} − 2

m
E {vec (Ekr) vec (Ekr)

ᵀ}

− 2

m

m∑
j 6=r

E {vec (Ekj) vec (Ekr)
ᵀ}+

1

m2
E

{
m∑
r=1

vec (Ekr) vec (Ekr)
ᵀ

}

+
1

m2
E

{
m∑
r=1

m∑
j 6=r

vec (Ekr) vec (Ekj)
ᵀ

}]

=
1

(m− 1)

m∑
r=1

(
Ω0 −

2

m
Ω0 +

1

m
Ω0

)
= Ω0,

(A.35)
where the third step is due to the independence assumption of Ekr and Ekj for r 6= j,
together with E{vec(Ekr)} = 0 and the definition of Ω0.

By Condition (C.3), var(Ω̂k) exists. Let σ̂k,ij and σ0,ij denote the (i, j) element of

Ω̂k and Ω0, respectively. Then by (A.35) and the Central limit theorem, as n → ∞,√
n( 1

n

∑n
k=1 σ̂k,ij − σ0,ij) converges in distribution to a normal distribution for any (i, j)

element for Ω̂k. Thus, we have
√
n( 1

n

∑n
k=1 σ̂k,ij − σ0,ij) = Op(1) for any (i, j) element for

Ω̂k. Writing these in the matrix form gives that 1
n

∑n
k=1 Ω̂k − Ω0 = Op(1/

√
n).
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A.9 Derivation of ∆k

Here we derive why ∆k = X∗k + (yk − 1/2)RαβᵀC/mc, discussed in Section 2.3.2, is a
sufficient statistic for xck. The derivations start with working out the joint distribution of
Yk and X∗k using the model setup in Section 2.2.1 and 2.3.2. Then we work out the joint
distribution of Yk and ∆k in order to derive the conditional distribution of Yk given ∆k

and {xck, zk}. The details are presented in three parts.

Part I: Find fY,X∗(Yk, X
∗
k | xck), the joint distribution of Yk and X∗k, given

{xck, zk}.
We treat θ = (αᵀ, βᵀ, γᵀ)ᵀ as given. We rewrite (2.2) as

fY(Yk | xck, zk) = h1(xck)× exp{Yk(αᵀxckβ + γᵀzk)}, (A.36)

where h1(xck, zk) = {1 + exp(αᵀxckβ + γᵀzk)}−1.

The probability density function (2.5) of X∗k , given xck is rewritten as

fX∗(X
∗
k | xck) = constant× exp

[
− mc

2
tr{C−1(X∗k − xck)

ᵀR−1(X∗k − xck)}
]

= h2(xck)× exp
{

tr(mcC
−1X∗ᵀk R

−1xck)−
mc

2
tr(C−1X∗ᵀk R

−1X∗k)
}
,

(A.37)

where h2(xck) = constant× exp{−1
2
tr(C−1xᵀckR

−1xck)}.
Combining (A.36) and (A.37), we write the joint distribution of Yk and X∗k , given

{xck, zk}, as

fY,X∗(Yk, X
∗
k | xck) = h3(xck, zk)× exp{Yk(αᵀxckβ + γᵀzk)}

× exp
{

tr(mcC
−1X∗ᵀk R

−1xck)−
mc

2
tr(C−1X∗ᵀk R

−1X∗k)
}
,

(A.38)

where h3(xck, zk) = h1(xck, zk)× h2(xck).

Part II: Find fY,∆(yk,∆k | xck, zk), the joint probability density/mass function
for Yk and ∆k.

In the following we want to work out the joint distribution of Yk and ∆k, given {xck, zk},
using (A.38). Because Yk is binary, our discussion here is slightly different from the setting
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of Stefanski and Carroll (1987, p.4) who applied the variable transformation method to find
the joint distribution of continuous variables Yk and ∆k. We consider the joint cumulative
distribution function of {Yk, X∗k}, given {xck, zk}. For any (y, δ),

pr(Yk = y,∆k ≤ δ | {xck, zk}) = pr
(
Yk = y,X∗k +

(
yk −

1

2

)
RαβᵀC

/
mc ≤ δ | {xck, zk}

)
= pr

(
Yk = y,X∗k ≤ δ −

(
yk −

1

2

)
RαβᵀC

/
mc | {xck, zk}

)
=

∫ δ−(yk− 1
2

)RαβᵀC/mc

−∞
fY,X∗(y, x

∗
k| xck, zk)dx

∗
k,

(A.39)
where the integrand is determined by (A.38).

Thus, the joint probability density/mass function for Yk and ∆k is given by the deriva-
tive of (A.39) with respect to δ. That is,

fY,∆(yk,∆k | xck, zk) = fY,X∗

{
yk,∆k −

(
yk −

1

2

)
RαβᵀC

/
mc | xck, zk

}
× d

d∆k

{
∆k −

(
yk −

1

2

)
RαβᵀC

/
mc

}
= fY,X∗

{
yk,∆k −

(
yk −

1

2

)
RαβᵀC

/
mc | xck, zk

}
= h3(xck, zk)× exp{Yk(αᵀxckβ + γᵀzk)}

× exp
[
tr{C−1(mc∆k − ykRαβᵀC +

1

2
RαβᵀC)ᵀR−1xck}

− 1

2
tr{C−1(mc∆k − ykRαβᵀC

+
1

2
RαβᵀC)ᵀR−1(∆k − ykRαβᵀC/mc +

1

2mc

RαβᵀC)}
]

(A.40)

where we purposefully use upper case letters in the arguments to emphasize the random
variables to which the distribution corresponds, and the last step comes from plugging in
(A.38).

Part III: Show that ∆k can be treated as a sufficient statistic of xck.

To simplify (A.40), we individually examine each term using the following matrix or
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vector identities:

tr(βαᵀxck) = vec(αβᵀ)ᵀvec(xck) = αᵀxckβ;

tr(βαT∆k) = vec(αβᵀ)ᵀvec(∆k) = αᵀ∆kβ;

tr(C−1∆ᵀ
kαβ

ᵀC) = tr(CC−1∆ᵀ
kαβ

ᵀ) = tr(∆ᵀ
kαβ

ᵀ) = αᵀ∆kβ;

which are obtained from direct calculations and the fact that tr(AB) = tr(BA) for two
square matrice A and B which have the same dimension.

The first term of (A.40) is simplified as

tr[C−1(mc∆k − YkRαβᵀC)ᵀR−1xck] +
1

2
tr{C−1(RαβᵀC)ᵀR−1xck}

= tr(mcC
−1∆ᵀ

kR
−1xck − Ykβαᵀxck) +

1

2
tr(βαᵀxck)

= tr(mcC
−1∆ᵀ

kR
−1xck)− Ykαᵀxckβ +

1

2
αᵀxckβ,

(A.41)

and the second term of (A.40) becomes

1

2
tr{C−1(mc∆k − YkRαβᵀC +

1

2
RαβᵀC)ᵀR−1(∆k − YkRαβᵀC/mc +

1

2mc

RαβᵀC)}

=
1

2
tr[C−1{mc∆

ᵀ
k − Yk(Cβα

ᵀR) +
1

2
(CβαᵀR)}R−1(∆k − YkRαβᵀC/mc +

1

2mc

RαβᵀC)]

=
1

2
tr{(mcC

−1∆ᵀ
kR
−1 − Ykβαᵀ +

1

2
βαᵀ)(∆k − YkRαβᵀC/mc +

1

2mc

RαβᵀC)}

=
1

2
tr(mcC

−1∆ᵀ
kR
−1∆k − Ykβαᵀ∆k − YkC−1∆ᵀ

kαβ
ᵀC

+
1

2
βαᵀ∆ᵀ

k +
1

4mc

βαᵀRαβᵀC +
1

2
C−1∆ᵀ

kαβ
ᵀC)

=
1

2
tr(mcC

−1∆ᵀ
kR
−1∆k +

1

4mc

βαᵀRαβᵀC)− Ykαᵀ∆kβ +
1

2
αᵀ∆kβ,

(A.42)
where we use the fact that Y 2

k = Yk for the binary variable Yk taking value 0 or 1.
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Then plugging (A.41) and (A.42) into (A.40) gives

fY,∆(Yk,∆k | xck, zk) = h3(xck, zk)× exp
{
− 1

2
tr(mcC

−1∆ᵀ
kR
−1∆k +

1

4mc

βαᵀRαβᵀC)

+ Ykα
ᵀ∆kβ −

1

2
αᵀ∆kβ +

1

2
αᵀxckβ + tr(mcC

−1∆ᵀ
kR
−1xck)

− Ykαᵀxckβ + Ykα
ᵀxckβ

}
× exp(Ykγ

ᵀzk)

= h4(∆k, xck, zk)× exp(Ykα
ᵀ∆kβ)× exp(Ykγ

ᵀzk)

× exp
{
− 1

2
tr(mcC

−1∆ᵀ
kR
−1∆kβ +

1

4mc

βαᵀRαβᵀC)

+ tr(mcC
−1∆ᵀ

kR
−1xck)

}
= h4(∆k, xck, zk)× exp

{
Yk(α

ᵀ∆kβ + γᵀzk)
}
,

(A.43)
where h4(∆k, xck, zk) = h3(∆k, xck, zk)× exp{−1

2
tr(mcC

−1∆ᵀ
kR
−1∆kβ + 1

4mc
βαᵀRαβᵀC) +

mcC
−1∆ᵀ

kR
−1xck − 1

2
αᵀ∆kβ + 1

2
αᵀxckβ}.

Noting that (A.43) can be expressed as the product of two functions each involving Yk
or ∆k alone, together with other variables, we obtain the conditional distribution of Yk
given ∆k as well as {xck, zk},

pr(Yk = yk | ∆k, xck, zk) = C× exp{yk(αᵀ∆kβ + γᵀzk)}, (A.44)

where

C =
1

h4(∆k, xck, zk){1 + exp(αᵀ∆kβ + γᵀzk)}
.

Non-involvement of xck in the right-hand side of (A.40) shows that ∆k can be treated as
a sufficient statistic of xck.

Remark:

The preceding derivations basically focus on verifying the “sufficiency” for ∆k which
is given before hand. In contrast, a simple way to find a sufficient statistic of xck by
directly applying the Factorization Theorem to the joint distribution (A.38). Specifically,
by treating xck as an unknown parameter and θ as a given constant, we write (A.38) as
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fY,X∗(Yk, X
∗
k |xck) ∝ exp{Yk(αᵀxckβ)} × exp{tr(mcC

−1X∗ᵀk R
−1xck}

= exp[tr{(Ykαβᵀ +mcR
−1X∗kC

−1)ᵀxck}]

= exp

[
tr

[{
R−1

(
1

mc

YkRαβ
ᵀC +X∗k

)
C−1

}ᵀ]
xck

]
,

implying that 1
mc
YkRαβ

ᵀC+X∗k is a sufficient statistic for xck. Write ∆∗k = 1
mc
YkRαβ

ᵀC+
X∗k .

Note that the difference between ∆∗k and ∆k is a constant, indicating the equivalence of
them. While ∆∗k may be used in the same way as ∆k in Section 2.3.2 to derive a consistent
estimator of θ, in our development we choose to use ∆k = X∗k + (Yk−1/2)RαβᵀC/mc; this
quantity can be regarded as “symmetric” around the surrogated measurement X∗k because
the centered version Yk− 1/2 for the binary variable Yk is either 1/2 or −1/2. In addition,
∆k shares similarity to the sufficient statistics considered by Stefanski and Carroll (1985).

A.10 Proof of Theorem 2.4

Corresponding to S∗n(θ) and H∗n(θ) in (2.12), we let Sn(θ, ∆̂k) = (Sᵀ
α̂∗s ,n

(θ, ∆̂k),

Sᵀ

β̂∗s ,n
(θ, ∆̂k), S

ᵀ
γ̂∗s ,n

(θ, ∆̂k))
ᵀ and Hn,s(θ, ∆̂k) be S∗n(θ) and H∗n(θ), respectively, with X∗k re-

placed by ∆̂k, where ∆̂k is defined by (2.22). To show Theorem 2.4, we examine Sn(θ, ∆̂k)
and Hn,s(θ, ∆̂k) separately in the following two parts using similar techniques to those in
Appendix A.4 and A.5.

Part I: Show that Sn(θ, ∆̂k) = 1√
n

Sn(θ) + op{max
(
1
m
, 1√

n

)
}.

Since Sα̂∗s ,n(θ, ∆̂k), Sβ̂∗s ,n(θ, ∆̂k) and Sγ̂∗s ,n(θ, ∆̂k) have similar structures, here we provide

only the examination of Sα̂∗s ,n(θ, ∆̂k); the rest two terms can be shown similarly.

By the definition of Sn(θ, ∆̂k) and (2.9) as well as (2.22), we have that

141



Sα̂∗s ,n(θ, ∆̂k) =
1

n

n∑
k=1

Cᵀ
t ∆̂kβ{Yk − pk(θ; ∆̂k)}

=
1

n

n∑
k=1

Cᵀ
t

(
X∗k + gk/mc

)
β{Yk − pk(θ; ∆̂k)}

=
1

n

n∑
k=1

Cᵀ
t

(
X∗k + gk/mc

)
β{Yk − pk(θ;X∗k) + pk(θ;X

∗
k)− pk(θ; ∆̂k)}

∆
= S∗α,n(θ) + Wn1 + Wn2 + Wn3,

(A.45)

where by (2.5), we set

Wn1 =
1

n

n∑
k=1

Cᵀ
t (Ūk + gk/mc)β{pk(θ;X∗k)− pk(θ; ∆̂k)},

Wn2 =
1

n

n∑
k=1

Cᵀ
t gkβ{Yk − pk(θ;X∗k)}/mc,

and

Wn3 =
1

n

n∑
k=1

Cᵀ
t xckβ{pk(θ;X∗k)− pk(θ; ∆̂k)}.

To examine Sα̂∗s ,n(θ, ∆̂k), it sufficies to check Wn1, Wn2 and Wn3 individually. In the
following, we examine Wn1, Wn2 and Wn3 separately and show they are of order op(1/m).
Before doing so, we introduce two expressions.

Replacing X∗k with xck in Wn2, we define

b2 =
1

n

n∑
k=1

Cᵀ
t {Yk − pk(θ;xck)}gkβ/mc,

and we define

b3 = − 1

n

n∑
k=1

Cᵀ
t xckβvec(gk)

ᵀvec(αβᵀ)v1,k(θ;xck)/mc.
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By the fact that θ̂∗ − θ = op(1), and n1/2(Ĉ ⊗ R̂− Ω0) = Op(1), we obtain that

b2 =
1

n

n∑
k=1

Cᵀ
t

[(
yk −

1

2

)
{Yk − pk(θ;xck)}

]
RαβᵀCβ/mc + op(1)

=
1

n

n∑
k=1

Cᵀ
t

[(
yk −

1

2

)
{Yk − pk(θ;xck)}

]
ΠαΩ0vec(αβᵀ)/mc + op(1),

and

b3 = − 1

n

n∑
k=1

Cᵀ
t xckβ

(
yk −

1

2

)
vec(RαβᵀC)ᵀvec(αβᵀ)v1,k(θ;xck)/mc + op(1)

= − 1

n

n∑
k=1

Cᵀ
t xckβ

(
yk −

1

2

)
vec(αβᵀ)ᵀΩ0vec(αβᵀ)v1,k(θ;xck)/mc + op(1),

where Πα is defined in (A.14).

Furthermore, using Jα,n,1 and Jα,n,2, which are defined in Section 2.2.3, with b2 and b3,
we obtain that

b2 =
1

n

n∑
k=1

Cᵀ
t Πα

Ω0

mc

[(
yk −

1

2

)
{Yk − pk(θ;xck)}

]
vec(αβᵀ)− Jα,n,2vec(αβᵀ)

+ Jα,n,2vec(αβᵀ) + op(1)

=
1

n

n∑
k=1

Cᵀ
t Πα

Ω0

mc

{
Y 2
k − Ykpk(θ;xck)−

1

2
Yk +

1

2
pk(θ;xck)

}
vec(αβᵀ)

− Jα,n,2vec(αβᵀ) + Jα,n,2vec(αβᵀ) + op(1)

=
1

n

n∑
k=1

Cᵀ
t Πα

Ω0

mc

[
Yk{1− pk(θ;xck)} −

1

2
{Yk − pk(θ;xck)}

− v1,k(θ;xck)
]
vec(αβᵀ)− Jα,n,2vec(αβᵀ) + op(1)

= −Jα,n,2vec(αβᵀ) + op(1)

(A.46)

where the last step is due to E(Yk|xck, zk) = pk(θ;xck), and
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b3 = − 1

n

n∑
k=1

Cᵀ
t xckβvec(αβᵀ)ᵀ

Ω0

mc

vec(αβᵀ)
(
yk −

1

2

)
v1,k(θ;xck)

+ Jα,n,1vec(αβᵀ)− Jα,n,1vec(αβᵀ) + op(1)

= − 1

n

n∑
k=1

Cᵀ
t xckβvec(αβᵀ)ᵀ

Ω0

mc

vec(αβᵀ)
(
yk −

1

2

)
v1,k(θ;xck)

− n

2

n∑
k=1

Cᵀ
t xckβvec(αβᵀ)ᵀ(Ω0/mc)v2,k(θ;xck)− Jα,n,1vec(αβᵀ) + op(1)

= − 1

n

n∑
k=1

Cᵀ
t xckβvec(αβᵀ)ᵀ

Ω0

mc

vec(αβᵀ)
[(
yk −

1

2

)
v1,k(θ;xck)

− v1,k(θ;xck)
{
pk(θ;xck)−

1

2

}]
− Jα,n,1vec(αβᵀ) + op(1)

= − 1

n

n∑
k=1

Cᵀ
t xckβvec(αβᵀ)ᵀ

Ω0

mc

vec(αβᵀ)
{
Yk − pk(θ;xck)

}
v1,k(θ;xck)

− Jα,n,1vec(αβᵀ) + op(1)

= −Jα,n,1vec(αβᵀ) + op(1),

(A.47)

where the third step is because of the definition v1,k(·), given in Section 2.2.3, and the last
step is due to E(Yk|xck, zk) = pk(θ;xck).

Now we examine Wn2, Wn3 and Wn1 by the following three steps:
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Step1: Show that ‖Wn2 − b2‖ = op

(
1
m

)
.

‖Wn2 − b2‖ =
∥∥∥ 1

n

n∑
k=1

Cᵀ
t gk{pk(θ;xck)− pk(θ;X∗k)}/mc

∥∥∥
≤ 1

mcn
‖Cᵀ

t ‖
n∑
k=1

∥∥pk(θ;xck)− pk(θ;X∗k)
∥∥× ‖gk‖

≤ 1

mcn
‖Cᵀ

t ‖
n∑
k=1

∣∣pk(θ;xck)− pk(θ;X∗k)
∣∣× ‖gk‖

≤ ‖Cᵀ
t ‖ ×

1

mcn

n∑
k=1

‖gk‖

≤ 1

mc

‖Cᵀ
t ‖ ×

( 1

n

n∑
k=1

‖gk‖2
)1/2

= op

( 1

m

)
,

where the second step is due to the Cauchy–Schwarz inequality; and the fourth step is be-
cause that between pk(θ;xck) and pk(θ;X

∗
k) the absolute value of the difference is bounded

between [0, 1]; and the fifth step is due to the Cauchy–Schwarz inequality; and the last
step is due to the assumption that

∑n
k=1 ‖gk‖2 = Op(n), and the definition mc = nm

n−1
.
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Step2: Show that ‖Wn3 − b3‖ = op

(
1
m

)
.

‖Wn3 − b3‖ =
∥∥∥ 1

n

n∑
k=1

Cᵀ
t xckβ

[
{pk(θ;X∗k)− pk(θ; ∆̂k)}

+ vec(gk)
ᵀvec(αβᵀ)v1,k(θ;xck)/mc

]∥∥∥
≤ ‖Cᵀ

t ‖ × ‖β‖ ×
1

n

n∑
k=1

‖xck‖ × ‖pk(θ;X∗k)− pk(θ; ∆̂k)‖

+ ‖Cᵀ
t ‖ × ‖β‖ ×

1

n

n∑
k=1

‖xck‖ ×
∥∥∥vec(gk)

ᵀvec(αβᵀ)v1,k(θ;xck)/mc

∥∥∥
≤ ‖Cᵀ

t ‖ × ‖β‖ ×
1

n

n∑
k=1

‖xck‖ × ‖pk(θ;X∗k)− pk(θ; ∆̂k)‖

+ ‖Cᵀ
t ‖ × ‖β‖ ×

1

n

n∑
k=1

‖xck‖ ×
∥∥∥vec(gk)

ᵀvec(αβᵀ)/mc

∥∥∥,

(A.48)

where the last second step is due to the Cauchy–Schwarz inequality, and the last step by
that v1,k(·) is bounded by 0 and 1.

Then plugging (A.6) into (A.48), we obtain that

(A.48) ≤ 2‖Cᵀ
t ‖ × ‖β‖ × ‖vec(αβᵀ)‖ × 1

n

n∑
k=1

{‖xck‖ × ‖vec(Ūk)‖}+ ‖xck‖ × ‖vec(gk)‖/mc}

= 2‖Cᵀ
t ‖ × ‖β‖ × ‖vec(αβᵀ)‖ × 1

n

n∑
k=1

{‖xck‖ × ‖vec(Ūk)‖}

+ 2‖Cᵀ
t ‖ × ‖β‖ × ‖vec(αβᵀ)‖ × 1

n

n∑
k=1

{
‖xck‖ × ‖vec(gk)‖/mc

}
.

(A.49)
By Conditions (C.2) and (C.3), the first term of (A.49) is op

(
1
m

)
; by Condition (C.2),

definition of mc, and the assumption
∑n

k=1 ‖gk‖2 = Op(n), the second term of (A.49) is
op
(

1
m

)
. As a result, we obtain that ‖Wn3 − b3‖ = op

(
1
m

)
.
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Step3: Show that Wn1 = op

(
1
m

)
.

‖Wn1‖ =
∥∥∥ 1

n

n∑
k=1

Cᵀ
t

(
Ūk +

gk
mc

)
β{pk(θ;X∗k)− pk(θ; ∆̂k)}

∥∥∥
≤ ‖Cᵀ

t ‖ × ‖β‖ ×
∥∥∥ 1

n

n∑
k=1

(
Ūk +

gk
mc

)
× {pk(θ;X∗k)− pk(θ; ∆̂k)}

∥∥∥
= ‖Cᵀ

t ‖ × ‖β‖ ×
∥∥∥ 1

n

n∑
k=1

(
Ūk +

gk
mc

)
×
(

vec(αβᵀ)ᵀvec(Ūk)
[
v1,k(θ;xk,ξ)− v1,k(θ; ∆k,ξ)

]
− vec(gk)

ᵀvec(αβᵀ)/mc

)∥∥∥
≤ ‖Cᵀ

t ‖ × ‖β‖ ×
∥∥∥ 1

n

n∑
k=1

Ūkvec(αβᵀ)ᵀvec(Ūk)×
[
v1,k(θ;xk,ξ)− v1,k(θ; ∆k,ξ)

]∥∥∥
+
‖Cᵀ

t ‖ × ‖β‖ × ‖vec(αβᵀ)‖
nmc

×
n∑
k=1

{∥∥∥vec(Ūk)
∥∥∥× ∥∥∥vec(gk)

∥∥∥
×
∥∥∥v1,k(θ;xk,ξ)− v1,k(θ; ∆k,ξ)

∥∥∥}+ ‖Cᵀ
t ‖ × ‖β‖ × ‖vec(αβᵀ)‖

× 1

n

n∑
k=1

{∥∥∥vec(gk)
∥∥∥2

m2
c

+
∥∥∥vec(Ūk)

∥∥∥×
∥∥∥vec(gk)

∥∥∥
mc

}

≤ ‖Cᵀ
t ‖ × ‖β‖ × ‖vec(αβᵀ)‖ ×max2

1≤k≤n‖Ūk‖ ×
∥∥∥ 1

n

n∑
k=1

v1,k(θ;xk,ξ)− v1,k(θ; ∆k,ξ)
∥∥∥

+ ‖Cᵀ
t ‖ × ‖β‖ × ‖vec(αβᵀ)‖ × 1

n

n∑
k=1

{∥∥∥vec(gk)
∥∥∥2

m2
c

+ 2
∥∥∥vec(Ūk)

∥∥∥×
∥∥∥vec(gk)

∥∥∥
mc

}
= op

( 1

m

)
,

(A.50)
where the second step and the fourth step are due to the Cauchy–Schwarz inequality, the
third step is due to plug in the difference between (A.4) and (A.5); in fifth step, we apply
the facts that max1≤k≤n‖Ūk‖ = Op(

1√
m

) and 1
n

∑n
k=1 v1,k(θ;xk,ξ)− v1,k(θ; ∆k,ξ) = op(1); in
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last step using (A.2) and
∑n

k=1 ‖gk‖2 = Op(n) again, we obtain that (A.47) = op
(

1
m

)
.

Thus, using the results in Steps 1-3 and by (A.45), we obtain that

Sα̂∗s ,n(θ, ∆̂k) = S∗α,n(θ) + b2 + b3 + op

{
max

( 1

m
,

1√
n

)}
=

1√
n

Sα,n + (Jα,n,1 + Jα,n,2)vec(αβᵀ) + b2 + b3 + op

{
max

( 1

m
,

1√
n

)}
=

1√
n

Sα,n + op

{
max

( 1

m
,

1√
n

)}
,

where in the second step, we plug in (A.16) to instead of S∗α,n(θ) directly, and third step is
due to (A.45) and (A.47).

Part II: Show that Hn,s(θ, ∆̂k)− Hn(θ) = op(1 ).

Similar to the treatment of H∗n(θ) in Appendix A.5, we write Hn,s(θ, ∆̂k) as

Hn,s(θ, ∆̂k) , −

(
Hα,β,n,s(θ, ∆̂k) Hαβ,γ,n,s(θ, ∆̂k)

Hᵀ
αβ,γ,n,s(θ, ∆̂k) Hγ,γ,n,s(θ, ∆̂k)

)

so that each element is identical to the corresponding part of H∗n(θ) with X∗k replaced by
∆̂k.

To show that Hn,s(θ, ∆̂k)− Hn(θ) = op(1), it suffices to show that

Hα,β,n,s(θ, ∆̂k)− Hα,β,n(θ) = op(1), (A.51)

as well as Hαβ,γ,n,s(θ, ∆̂k)−Hαβ,γ,n,s(θ) = op(1) and Hγ,γ,n,s(θ, ∆̂k)−Hγ,γ,n,s(θ) = op(1). Here
we show only (A.51) using same techniques in Appendix A.6; the other two expressions
can be shown similarly.

Let

Hn,α̂∗s(θ, ∆̂k) =
∂{Sα̂∗s ,n(θ, ∆̂k), Sβ̂∗s ,n(θ, ∆̂k)}ᵀ

∂α̃ᵀ

and

Hn,β̂∗s
(θ, ∆̂k) =

∂{Sα̂∗s ,n(θ, ∆̂k), Sβ̂∗s ,n(θ, ∆̂k)}ᵀ

∂βᵀ
,
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and let

Hn,α(θ, xck) =
∂{Zα,n(θ),Zβ,n(θ)}ᵀ

∂α̃ᵀ

and

Hn,β(θ, xck) =
∂{Zα,n(θ),Zβ,n(θ)}ᵀ

∂βᵀ
.

Then
Hα,β,n,s(θ, ∆̂k) =

(
Hn,α̂∗s(θ, ∆̂k) Hn,β̂∗s

(θ, ∆̂k)
)

and
Hα,β,n(θ, xck) =

(
Hn,α(θ, xck) Hn,β(θ, xck)

)
.

To compare Hα,β,n,s(θ, ∆̂k) and Hα,β,n(θ, xck), it suffices to compare Hn,α̂∗s(θ, ∆̂k) and

Hn,α(θ, xck) and to compare Hn,β̂∗s
(θ, ∆̂k) and Hn,β(θ, xck) separately. Due to the similarity

in comparison, we examine only the difference between Hn,α̂∗s(θ, ∆̂k) and Hn,α(θ, xck) here.

We now write

Hn,α̂∗s(θ, ∆̂k)− Hn,α(θ, xck) = Hs,α,1(θ) + Hs,α,2(θ) + Hs,α,3(θ), (A.52)

where

Hs,α,1(θ) =
1

n

n∑
k=1

{
(Cᵀ

t ∆̂kβ)ᵀCᵀ
t ∆̂kβ − (Cᵀ

t xckβ)ᵀCᵀ
t xckβ

}
v1,k(θ; ∆̂k),

Hs,α,2(θ) =
1

n

n∑
k=1

(Cᵀ
t xckβ)ᵀCᵀ

t xckβ × v1,k(θ; ∆̂k)− v1,k(θ;xck)
]
,

Hs,α,3(θ) =

(
0p×p

1
n

n∑
k=1

[
Cᵀ∆̂k{Yk − pk(θ; ∆̂k)} − Cᵀxck{Yk − pk(θ;xck)}

])
,

where 0p×p represents the p× p zero matrix.

In the following three steps, we show that all the terms in (A.52) are op(1) as max(m,n)→
∞.
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Step1: Show that ‖Hs,α,1 (θ)‖ = op(1 ) when min(m, n)→∞.

‖Hs,α,1(θ)‖ ≤
∥∥∥ 1

n

n∑
k=1

[{
Cᵀ
t

(
xck + Ūk +

gk
mc

)
β
}ᵀ
Cᵀ
t

(
xck + Ūk +

gk
mc

)
β

− (Cᵀ
t xckβ)ᵀCᵀ

t xckβ
]∥∥∥

=
∥∥∥ 1

n

n∑
k=1

[(
Cᵀ
t xckβ

)ᵀ
Cᵀ
t

(
Ūk +

gk
mc

)
β +

{
Cᵀ
t

(
Ūk +

gk
mc

)
β
}ᵀ
Cᵀ
t xckβ

+
{
Cᵀ
t

(
Ūk +

gk
mc

Big)β
}ᵀ
Cᵀ
t

(
Ūk +

gk
mc

)
β
]∥∥∥

≤ 2

n
‖Cᵀ

t ‖2 × ‖β‖2 ×
n∑
k=1

{
‖xck‖ ×

(
‖Ūk‖+

∥∥∥ gk
mc

∥∥∥)+ ‖Ūk‖2 +
∥∥∥ gk
mc

∥∥∥2

+ ‖Ūk‖ ×
∥∥∥ gk
mc

∥∥∥}
≤ 2‖Cᵀ

t ‖2 × ‖β‖2 × 1

n

n∑
k=1

(
‖xck‖ × ‖Ūk‖+ ‖Ūk‖2 +

∥∥∥ gk
mc

∥∥∥2)
+

2

mc

‖Cᵀ
t ‖2 × ‖β‖2 ×

( 1

n

n∑
k=1

‖xck‖2
)1/2

×
( 1

n

n∑
k=1

‖gk‖2
)1/2

+
2

mc

‖Cᵀ
t ‖2 × ‖β‖2 ×

( 1

n

n∑
k=1

‖Ūk‖2
)1/2

×
( 1

n

n∑
k=1

‖gk‖2
)1/2

,

where the first step is due to the definition of ∆̂k and the boundedness of v1,k(·) which is
between [0, 1]; and the last two steps are due to the Cauchy–Schwarz inequality. By Con-
ditions (C.2), (C.3), (A.2) and

∑n
k=1 ‖gk‖2 = Op(n), we obtain that ‖Hs,α,1(θ)‖ = op(1)

when min(m,n)→∞.

Step2: Show that ‖Hs,α,2 (θ)‖ = op(1 ) as min(m,n)→∞.
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Plugging (A.8) into Hs,α,2(θ), we obtain that

‖Hs,α,2(θ)‖ =
∥∥∥ 1

n

n∑
k=1

(Cᵀ
t xckβ)ᵀCᵀ

t xckβ × v2,k(θ; ∆k,ξ2)× vec(αβᵀ)ᵀ
{

vec(Ūk) + vec(gk)
ᵀ/mc

}∥∥∥
≤ ‖Cᵀ

t ‖2 × ‖β‖2 × ‖vec(αβᵀ)ᵀ‖ × 1

n

n∑
k=1

(
‖Ūk‖+

∥∥∥ gk
mc

∥∥∥)× ‖xck‖2

= ‖Cᵀ
t ‖2 × ‖β‖2 × ‖vec(αβᵀ)ᵀ‖ × 1

n

n∑
k=1

‖Ūk‖ × ‖xck‖2

+ ‖Cᵀ
t ‖2 × ‖β‖2 × ‖vec(αβᵀ)ᵀ‖ × 1

n

n∑
k=1

∥∥∥ gk
mc

∥∥∥× ‖xck‖2

≤ ‖Cᵀ
t ‖2 × ‖β‖2 × ‖vec(αβᵀ)ᵀ‖ × 1

n

n∑
k=1

‖Ūk‖ × ‖xck‖2

+
(
‖Cᵀ

t ‖2 × ‖β‖2 × ‖vec(αβᵀ)ᵀ‖
mc

)
(max1≤k≤n‖xck‖)

×
( 1

n

n∑
k=1

‖xck‖2
)1/2

×
( 1

n

n∑
k=1

‖gk‖2
)1/2

,

(A.53)
where the second step is due to the boundedness of pk(·) and v2,k(·), and the Cauchy–Schwarz
inequality; and the last step is because of the Cauchy–Schwarz inequality. By Conditions
(C.2), (C.3) and Lemma 5.1 in Stefanski and Carroll (1985), the first product term of (A.53)
is op(1) as min(m,n) → ∞. Using Conditions (C.1), (C.2) and

∑n
k=1 ‖gk‖2 = Op(n), the

second product term of (A.53) is op(1) as min(m,n) → ∞. Thus, ‖Hs,α,2(θ)‖ = op(1) as
min(m,n)→∞.

Step3: Show that ‖Hs,α,3 (θ)‖ = op(1 ).

Since, in Appendix A.5, we obtain ‖A.22‖ = op(1), as a result, we have that

1

n

n∑
k=1

Cᵀ
t xck{Yk − pk(θ;xck)} =

1

n

n∑
k=1

Cᵀ
tX
∗
k{Yk − pk(θ;X∗k)}+ op(1). (A.54)
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Plugging (A.54) into Hs,α,3(θ), we obtain that

Hs,α,3(θ) =

(
0p×p

1
n

n∑
k=1

[
Cᵀ
t ∆̂k{Yk − pk(θ; ∆̂k)} − Cᵀ

t xck{Yk − pk(θ;xck)}
])

=

(
0p×p

1
n

n∑
k=1

[
Cᵀ
t ∆̂k{Yk − pk(θ; ∆̂k)} − Cᵀ

tX
∗
k{Yk − pk(θ;X∗k)}

]
+ op(1)

)
=
(
0p×p Ms + op(1)

)
,

(A.55)
where by plugging (A.4) and (A.5) into (A.55), we obtain that

Ms =
1

n

n∑
k=1

[
Cᵀ
t ∆̂k{Yk − pk(θ; ∆̂k)} − Cᵀ

tX
∗
k{Yk − pk(θ;X∗k)}

]
=

1

n

n∑
k=1

Cᵀ
tX
∗
kvec(αβᵀ)ᵀvec(Ūk)[v1,k(θ;xk,ξ)− v1,k(θ; ∆k,ξ)]

− 1

mcn

n∑
k=1

Cᵀ
tX
∗
kvec(αβᵀ)ᵀvec(gk)v1,k(θ; ∆k,ξ)

− 1

mcn

n∑
k=1

Cᵀ
t gkvec(αβᵀ)ᵀvec(gk)v1,k(θ; ∆k,ξ)−

1

mcn

n∑
k=1

Cᵀ
t gk{Yk − pk(θ;xck)}.

By Condition (C.3), the first term of Ms is op(1); and the last term of Ms is op(1) is due
to E(Yk|xck, zk) = pk(θ;xck). Now it remains to examine the middle term of Ms. Let

As = − 1

mcn

n∑
k=1

Cᵀ
t gkvec(αβᵀ)ᵀvec(gk)v1,k(θ; ∆k,ξ)

and

Bs = − 1

mcn

n∑
k=1

Cᵀ
tX
∗
kvec(αβᵀ)ᵀvec(gk)v1,k(θ; ∆k,ξ).

Then,

‖As‖ =
∥∥∥− 1

mcn

n∑
k=1

Cᵀ
t gkvec(αβᵀ)ᵀvec(gk)v1,k(θ; ∆k,ξ)

∥∥∥
≤ ‖Cᵀ

t ‖ × ‖vec(αβᵀ)ᵀ‖ × 1

mcn

n∑
k=1

‖gk‖2,
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By the assumption that
∑n

k=1 ‖gk‖2 = Op(n) and the boundedness of v1,k(·), we obtain
that ‖As‖ = op(1) as min(m,n)→∞.

Similarly,

‖Bs‖ =
∥∥∥− 1

mcn

n∑
k=1

Cᵀ
tX
∗
kvec(αβᵀ)ᵀvec(gk)v1,k(θ; ∆k,ξ)

∥∥∥
≤ (‖Cᵀ

t ‖ × ‖vec(αβᵀ)ᵀ‖/mc)×
( 1

n

n∑
k=1

‖X∗k‖2
)1/2( 1

n

n∑
k=1

‖gk‖2
)1/2

.

By Conditions (C.2) and (C.3) in Appendix A.1, we know that 1
n

∑n
k=1 ‖xck‖2 = O(1), and

1
n

∑n
k=1 ‖Ūk‖2 = op(1) when min(m,n)→∞. Consequently,

( 1

n

n∑
k=1

‖X∗k‖2
)1/2

≤
( 1

n

n∑
k=1

‖xck‖2 + 2‖xck‖ × ‖Ūk‖+ ‖Ūk‖2
)1/2

= Op(1).

By the assumption
∑n

k=1 ‖gk‖2 = Op(n), we obtain that ‖Bs‖ = op(1). As a result,
‖Hs,α,3(θ)‖ = op(1) when min(m,n)→∞.

Combining the results of Steps 1-3, we obtain that Hn,α̂∗s(θ, ∆̂k)−Hn,α(θ, xck) = op(1).

Following the same steps as Steps 1-3, we obtain that Hn,β̂∗s
(θ, ∆̂k)− Hn,β(θ, xck) = op(1).

These two results show (A.51), and thus by the comments after (A.51), we obtain that

Hn,s(θ, ∆̂k)− Hn(θ) = op(1).

Finally, using the results we showed in Part I and Part II and following the same steps
in Appendix A.7, we can show Theorem 2.4(a) by Conditions (C.1), (C.5), the Continuous

Mapping Theorem and the asymptotic normal distribution of H
−1/2
n (θ)Sn(θ) (Stefanski and

Carroll, 1985). Theorem 2.4(b) is obtained by applying Slutsky’s theorem.
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A.11 Additional Simulation Results for Sections 2.4.1-

2.4.2

The following tables record simulation results for different settings described in Section
2.4.

• Table A.1 records the simulation results for the row effects with px = 5, Ekr generated
from the matrix normal distribution, and n = 1000;

• Table A.2 records the simulation results for the column effects and covariate effects
with px = 5, Ekr generated from the matrix normal distribution, and n = 1000;

• Table A.3 records the simulation results for the row effects with px = 10, σ = 0.25,
Ekr generated from the matrix normal distribution, and n = 1000;

• Table A.4 records the simulation results for the row effects with px = 10, σ = 0.5,
Ekr generated from the matrix normal distribution, and n = 1000;

• Table A.5 records the simulation results for the row effects with px = 10, σ = 0.75,
Ekr generated from the matrix normal distribution, and n = 1000;

• Table A.6 records the simulation results for the column effects and covariate effects
with px = 10, σ = 0.25, Ekr generated from the matrix normal distribution, and
n = 1000;

• Table A.7 records the simulation results for the column effects and covariate effects
with px = 10, σ = 0.5, Ekr generated from the matrix normal distribution, and
n = 1000;

• Table A.8 records the simulation results for the column effects and covariate effects
with px = 10, σ = 0.75, Ekr generated from the matrix normal distribution, and
n = 1000;

• Table A.9 records the simulation results for the row effects with px = 20, Ekr gener-
ated from matrix normal distribution, and n = 1000;

• Table A.10 records the simulation results for the column effects and covariate effects
with px = 20, Ekr generated from matrix normal distribution, and n = 1000;

• Table A.11 records the simulation results for the row effects with px = 5, and Ekr
generated from the matrix t-distribution;
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• Table A.12 records the simulation results for the column effects and covariate effects
with px = 5, and Ekr generated from the matrix t-distribution;

• Table A.13 records the simulation results for the row effects with px = 20, Ekr
generated from the matrix normal distribution, and n = 2000;

• Table A.14 records the simulation results for the column effects and covariate effects
with px = 20, Ekr generated from the matrix normal distribution, and n = 2000;
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Table A.2: Simulation results for the column parameters and covariate parameters with
px = 5, Ekr is generated from the matrix normal distribution, and n = 1000

Parameter σ m
Näıve Estimator Method 1 Estimator Method 2 Estimator

Bias% ESE ASE CR% MSE Bias% ESE ASE CR% MSE Bias% ESE ASE CR% MSE

β1

0.25

2 -9.082 0.089 0.086 76.0 0.016 1.021 0.107 0.104 94.3 0.012 1.345 0.108 0.097 93.0 0.012
5 -2.766 0.098 0.092 89.5 0.010 2.016 0.106 0.100 93.0 0.012 2.090 0.106 0.097 91.8 0.012
10 -0.656 0.098 0.093 94.0 0.010 1.866 0.103 0.097 93.8 0.011 1.891 0.103 0.096 93.0 0.011

0.5

2 -30.079 0.071 0.070 2.4 0.095 -8.581 0.106 0.108 83.8 0.019 -7.138 0.111 0.094 80.0 0.017
5 -14.297 0.087 0.082 53.8 0.028 -0.299 0.112 0.107 93.6 0.013 0.305 0.114 0.098 90.0 0.013
10 -7.178 0.093 0.088 80.6 0.014 1.318 0.108 0.102 94.8 0.012 1.553 0.109 0.097 93.4 0.012

0.75

2 -48.331 0.057 0.056 0.0 0.237 -24.022 0.095 0.096 29.6 0.067 -22.216 0.102 0.081 27.8 0.060
5 -27.863 0.075 0.071 4.0 0.083 -7.012 0.111 0.107 87.0 0.017 -5.632 0.116 0.094 82.6 0.017
10 -16.210 0.085 0.080 49.8 0.033 -1.343 0.111 0.106 93.6 0.013 -0.605 0.114 0.096 90.4 0.013

β2

0.25

2 -9.744 0.062 0.061 84.8 0.006 0.259 0.072 0.070 95.3 0.005 0.591 0.072 0.068 94.0 0.005
5 -3.367 0.068 0.064 90.5 0.005 1.397 0.072 0.068 91.8 0.005 1.479 0.073 0.067 91.5 0.005
10 -1.050 0.069 0.065 94.3 0.005 1.466 0.071 0.067 95.3 0.005 1.491 0.071 0.067 95.0 0.005

0.5

2 -30.756 0.051 0.052 17.8 0.026 -9.485 0.071 0.072 87.4 0.007 -8.020 0.074 0.067 86.2 0.007
5 -15.170 0.061 0.059 72.0 0.010 -1.251 0.076 0.072 91.2 0.006 -0.573 0.077 0.068 89.2 0.006
10 -7.738 0.064 0.062 86.0 0.006 0.728 0.073 0.070 95.2 0.005 0.964 0.073 0.068 94.8 0.005

0.75

2 -48.876 0.043 0.043 0.0 0.062 -24.866 0.066 0.065 50.6 0.020 -23.071 0.071 0.060 47.2 0.018
5 -28.757 0.055 0.052 23.0 0.024 -8.107 0.076 0.071 88.6 0.007 -6.552 0.080 0.067 85.2 0.007
10 -16.656 0.059 0.058 67.0 0.010 -1.807 0.075 0.072 93.2 0.006 -1.068 0.077 0.067 91.2 0.006

β3

0.25

2 -8.872 0.091 0.086 74.8 0.016 1.295 0.109 0.104 94.0 0.012 1.628 0.110 0.097 92.8 0.012
5 -2.564 0.099 0.092 90.0 0.010 2.246 0.108 0.100 93.3 0.012 2.322 0.108 0.097 92.5 0.012
10 -0.361 0.101 0.093 92.5 0.010 2.176 0.105 0.097 93.3 0.011 2.202 0.106 0.096 92.8 0.011

0.5

2 -29.961 0.070 0.070 2.6 0.095 -8.350 0.105 0.108 83.0 0.018 -6.855 0.111 0.094 81.0 0.017
5 -14.260 0.087 0.082 56.4 0.028 -0.197 0.113 0.107 93.8 0.013 0.416 0.115 0.098 90.6 0.013
10 -6.912 0.093 0.088 84.2 0.014 1.632 0.109 0.102 94.2 0.012 1.861 0.110 0.097 92.8 0.012

0.75

2 -48.355 0.056 0.057 0.0 0.237 -23.991 0.094 0.099 30.4 0.066 -22.143 0.101 0.082 27.6 0.059
5 -27.939 0.075 0.071 3.2 0.084 -6.981 0.112 0.107 88.2 0.018 -5.577 0.118 0.094 82.2 0.017
10 -15.961 0.086 0.081 47.6 0.033 -0.992 0.113 0.108 93.6 0.013 -0.274 0.115 0.098 92.4 0.013

β4

0.25

2 -8.910 0.085 0.086 76.8 0.015 1.228 0.101 0.103 97.3 0.011 1.559 0.102 0.097 95.8 0.011
5 -2.595 0.093 0.091 93.0 0.009 2.192 0.101 0.099 94.8 0.011 2.272 0.101 0.096 93.8 0.011
10 -0.472 0.094 0.093 93.5 0.009 2.051 0.098 0.097 95.0 0.010 2.078 0.099 0.096 94.8 0.010

0.5

2 -29.879 0.068 0.070 1.8 0.094 -8.249 0.101 0.108 84.2 0.017 -6.769 0.106 0.094 81.4 0.016
5 -14.119 0.086 0.082 55.6 0.027 -0.097 0.110 0.106 93.6 0.012 0.545 0.112 0.097 90.2 0.013
10 -7.024 0.091 0.088 82.8 0.013 1.463 0.105 0.102 94.4 0.011 1.697 0.106 0.097 92.6 0.011

0.75

2 -48.241 0.054 0.056 0.0 0.236 -23.813 0.090 0.098 30.4 0.065 -21.962 0.096 0.083 26.8 0.058
5 -27.700 0.076 0.070 4.0 0.082 -6.787 0.112 0.104 86.8 0.017 -5.339 0.116 0.091 82.8 0.016
10 -16.030 0.084 0.079 45.8 0.033 -1.153 0.110 0.105 92.8 0.012 -0.438 0.111 0.095 90.0 0.012

β5

0.25

2 -9.053 0.091 0.086 76.3 0.016 1.099 0.108 0.103 93.0 0.011 1.435 0.109 0.097 91.0 0.012
5 -2.578 0.097 0.092 90.0 0.010 2.227 0.106 0.100 95.5 0.011 2.294 0.106 0.097 94.0 0.012
10 -0.552 0.098 0.093 93.3 0.009 1.977 0.102 0.098 94.0 0.011 2.001 0.102 0.096 94.0 0.011

0.5

2 -30.188 0.070 0.070 2.6 0.096 -8.621 0.105 0.108 83.4 0.018 -7.101 0.110 0.094 80.2 0.017
5 -14.281 0.087 0.082 54.2 0.028 -0.239 0.112 0.107 93.4 0.013 0.369 0.114 0.098 91.2 0.013
10 -7.259 0.091 0.088 81.2 0.014 1.254 0.106 0.102 94.8 0.011 1.481 0.107 0.097 92.6 0.012

0.75

2 -48.523 0.056 0.056 0.0 0.239 -24.226 0.093 0.096 26.2 0.067 -22.379 0.100 0.081 24.2 0.060
5 -27.888 0.076 0.071 4.4 0.084 -6.986 0.113 0.107 87.6 0.018 -5.598 0.118 0.094 83.8 0.017
10 -16.300 0.084 0.081 44.2 0.034 -1.398 0.109 0.108 94.6 0.012 -0.680 0.111 0.097 91.6 0.012

γ

0.25

2 -5.747 0.110 0.109 94.3 0.013 1.877 0.121 0.121 95.8 0.015 2.285 0.122 0.120 95.0 0.015
5 -1.171 0.114 0.113 94.3 0.013 2.454 0.119 0.118 93.8 0.014 2.555 0.119 0.117 93.5 0.014
10 0.363 0.115 0.114 94.5 0.013 2.277 0.118 0.117 93.5 0.013 2.306 0.118 0.116 93.5 0.013

0.5

2 -20.889 0.099 0.099 80.2 0.021 -5.330 0.124 0.127 95.6 0.016 -3.505 0.129 0.125 94.4 0.017
5 -9.686 0.106 0.107 91.0 0.014 0.655 0.121 0.123 95.0 0.015 1.363 0.123 0.122 94.4 0.015
10 -4.921 0.109 0.110 94.4 0.012 1.381 0.117 0.120 94.2 0.014 1.603 0.118 0.119 94.0 0.014

0.75

2 -33.506 0.089 0.090 53.0 0.036 -16.864 0.118 0.127 91.0 0.021 -14.352 0.126 0.123 90.2 0.021
5 -19.413 0.099 0.100 83.6 0.019 -4.445 0.123 0.126 94.4 0.016 -2.740 0.127 0.124 93.8 0.016
10 -11.602 0.104 0.106 91.6 0.014 -0.771 0.120 0.124 94.6 0.014 -0.082 0.120 0.122 94.0 0.015

157



T
ab

le
A

.3
:

S
im

u
la

ti
on

re
su

lt
s

fo
r

th
e

ro
w

p
ar

am
et

er
s

w
it

h
p x

=
10

,
σ

=
0.

25
,
E
k
r

ge
n
er

at
ed

is
fr

om
th

e
m

at
ri

x
n
or

m
al

d
is

tr
ib

u
ti

on
,

an
d
n

=
10

00

P
ar

am
et

er
m

N
äı
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Table A.9: Simulation results for the row parameters with px = 20, Ekr is generated from
matrix normal distribution, and n = 1000

Parameter σ m
Näıve Estimator Method 1 Estimator Method 2 Estimator

Bias% ESE ASE CR% MSE Bias% ESE ASE CR% MSE Bias% ESE ASE CR% MSE

α1

0.25

2 0.002 0.065 0.065 93.6 0.004 -0.006 0.067 0.064 92.8 0.005 -0.026 0.067 0.063 93.2 0.004
5 -0.203 0.064 0.062 92.0 0.004 -0.183 0.065 0.061 92.0 0.004 -0.199 0.065 0.061 91.6 0.004
10 -0.299 0.064 0.061 93.8 0.004 -0.288 0.064 0.060 93.8 0.004 -0.298 0.064 0.060 93.8 0.004

0.5

2 0.377 0.076 0.076 93.4 0.006 0.295 0.082 0.073 91.0 0.007 0.463 0.079 0.073 91.0 0.006
5 -0.180 0.069 0.067 93.6 0.005 -0.194 0.073 0.066 91.0 0.005 -0.144 0.072 0.065 90.0 0.005
10 -0.369 0.067 0.064 93.6 0.004 -0.372 0.068 0.063 92.6 0.005 -0.388 0.068 0.062 92.4 0.005

0.75

2 0.741 0.089 0.090 94.8 0.008 0.661 0.099 0.084 89.8 0.010 0.927 0.094 0.083 89.8 0.009
5 -0.068 0.077 0.075 93.6 0.006 -0.181 0.084 0.072 89.2 0.007 -0.030 0.083 0.072 89.8 0.007
10 -0.405 0.071 0.068 93.8 0.005 -0.470 0.074 0.067 91.4 0.006 -0.436 0.073 0.066 91.2 0.005

α5

0.25

2 0.666 0.067 0.065 95.4 0.004 0.622 0.068 0.064 94.8 0.005 0.630 0.068 0.063 94.0 0.005
5 0.864 0.066 0.062 94.4 0.004 0.832 0.066 0.061 93.8 0.004 0.863 0.066 0.061 93.4 0.004
10 0.777 0.065 0.061 92.8 0.004 0.772 0.065 0.060 92.4 0.004 0.779 0.065 0.060 92.2 0.004

0.5

2 0.772 0.079 0.076 94.8 0.006 0.668 0.083 0.073 92.2 0.007 0.847 0.083 0.072 91.4 0.007
5 1.173 0.072 0.067 93.8 0.005 1.080 0.075 0.066 91.4 0.006 1.203 0.076 0.066 90.8 0.006
10 0.875 0.069 0.064 92.8 0.005 0.862 0.071 0.063 92.2 0.005 0.883 0.071 0.062 91.4 0.005

0.75

2 0.906 0.096 0.090 94.0 0.009 0.490 0.103 0.084 89.4 0.011 1.070 0.101 0.082 89.2 0.010
5 1.545 0.080 0.075 93.8 0.007 1.459 0.088 0.072 90.0 0.008 1.579 0.087 0.072 89.4 0.008
10 0.974 0.073 0.068 92.8 0.005 0.897 0.078 0.067 90.2 0.006 0.978 0.078 0.066 89.6 0.006

α15

0.25

2 -0.437 0.066 0.065 94.2 0.004 -0.440 0.067 0.064 93.6 0.005 -0.382 0.067 0.063 93.6 0.005
5 -0.031 0.064 0.062 92.6 0.004 0.003 0.065 0.061 92.0 0.004 0.050 0.065 0.061 91.0 0.004
10 -0.366 0.062 0.061 93.6 0.004 -0.362 0.062 0.061 93.8 0.004 -0.343 0.062 0.060 93.8 0.004

0.5

2 -0.489 0.076 0.076 93.8 0.006 -0.590 0.081 0.073 91.2 0.007 -0.507 0.081 0.072 91.2 0.007
5 0.203 0.070 0.067 92.6 0.005 0.345 0.073 0.066 91.2 0.005 0.447 0.073 0.066 90.6 0.005
10 -0.367 0.064 0.064 94.0 0.004 -0.343 0.065 0.063 93.4 0.004 -0.294 0.065 0.063 93.4 0.004

0.75

2 -0.386 0.091 0.090 93.6 0.008 -0.773 0.098 0.084 89.6 0.010 -0.636 0.098 0.082 90.2 0.010
5 0.398 0.077 0.075 92.8 0.006 0.679 0.084 0.072 90.2 0.007 0.717 0.084 0.072 88.6 0.007
10 -0.377 0.068 0.068 94.4 0.005 -0.294 0.071 0.067 92.8 0.005 -0.225 0.071 0.066 92.4 0.005

α17

0.25

2 0.249 0.068 0.065 93.0 0.005 0.184 0.069 0.063 91.6 0.005 0.105 0.069 0.063 91.8 0.005
5 0.474 0.066 0.062 93.2 0.004 0.526 0.066 0.062 92.8 0.004 0.490 0.066 0.061 92.8 0.004
10 0.505 0.065 0.061 93.8 0.004 0.524 0.065 0.061 93.6 0.004 0.496 0.065 0.061 93.4 0.004

0.5

2 -0.051 0.081 0.076 94.2 0.006 -0.483 0.085 0.073 90.6 0.007 -0.486 0.084 0.072 89.6 0.007
5 0.401 0.072 0.068 93.0 0.005 0.463 0.074 0.066 91.8 0.005 0.415 0.074 0.066 91.0 0.005
10 0.581 0.068 0.064 94.0 0.005 0.617 0.069 0.063 93.0 0.005 0.509 0.068 0.063 92.4 0.005

0.75

2 -0.232 0.096 0.090 92.4 0.009 -0.984 0.105 0.084 88.0 0.011 -0.821 0.102 0.082 87.0 0.010
5 0.356 0.080 0.075 93.0 0.006 0.429 0.085 0.072 88.8 0.007 0.336 0.084 0.072 89.4 0.007
10 0.698 0.073 0.068 93.8 0.005 0.682 0.075 0.067 90.8 0.006 0.503 0.074 0.066 91.2 0.006
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Table A.10: Simulation results for the column parameters and covariate parameters with
px = 20, Ekr is generated from matrix normal distribution, and n = 1000

Parameter σ m
Näıve Estimator Method 1 Estimator Method 2 Estimator

Bias% ESE ASE CR% MSE Bias% ESE ASE CR% MSE Bias% ESE ASE CR% MSE

β1

0.25

2 -5.318 0.068 0.065 89.4 0.005 11.888 0.090 0.085 93.2 0.012 13.599 0.095 0.080 87.6 0.014
5 4.042 0.074 0.070 94.4 0.006 12.894 0.086 0.080 90.0 0.012 13.225 0.086 0.077 87.8 0.012
10 8.187 0.077 0.072 91.8 0.008 13.122 0.084 0.078 88.6 0.011 13.189 0.084 0.076 87.8 0.011

0.5

2 -32.826 0.052 0.051 13.2 0.030 -4.330 0.085 0.085 92.6 0.008 1.835 0.100 0.080 88.8 0.010
5 -13.194 0.064 0.061 75.4 0.008 8.560 0.090 0.086 95.2 0.010 11.434 0.095 0.081 88.8 0.012
10 -2.197 0.070 0.066 92.4 0.005 12.799 0.089 0.084 89.8 0.012 13.935 0.092 0.079 86.6 0.013

0.75

2 -52.880 0.042 0.041 0.0 0.072 -25.355 0.073 0.073 54.2 0.021 -19.527 0.087 0.069 58.6 0.017
5 -30.474 0.056 0.052 20.8 0.026 -2.713 0.088 0.086 91.2 0.008 2.820 0.098 0.080 89.0 0.010
10 -14.951 0.062 0.060 70.6 0.009 8.347 0.090 0.088 94.8 0.010 11.715 0.098 0.081 87.0 0.013

β7

0.25

2 -6.380 0.070 0.065 88.4 0.006 10.599 0.093 0.084 91.6 0.011 12.269 0.097 0.080 88.0 0.013
5 2.891 0.074 0.070 93.4 0.006 11.604 0.085 0.079 90.4 0.011 11.913 0.086 0.077 87.8 0.011
10 6.492 0.076 0.072 92.6 0.007 11.308 0.083 0.077 90.2 0.010 11.365 0.083 0.076 88.6 0.010

0.5

2 -33.324 0.054 0.051 14.0 0.031 -4.973 0.090 0.085 89.2 0.009 1.437 0.107 0.081 86.2 0.012
5 -13.841 0.064 0.061 73.8 0.009 7.740 0.089 0.086 94.4 0.009 10.451 0.095 0.080 89.0 0.012
10 -3.777 0.069 0.066 91.8 0.005 10.830 0.087 0.083 92.0 0.010 11.898 0.090 0.079 88.0 0.012

0.75

2 -53.136 0.043 0.041 0.0 0.072 -25.644 0.077 0.073 52.6 0.022 -19.221 0.095 0.069 59.2 0.018
5 -30.787 0.054 0.052 20.0 0.027 -3.091 0.086 0.086 93.4 0.008 2.215 0.097 0.080 89.0 0.010
10 -16.325 0.061 0.060 68.2 0.010 6.393 0.087 0.087 95.8 0.009 9.594 0.096 0.081 89.4 0.011

β18

0.25

2 -5.482 0.069 0.065 89.2 0.006 11.856 0.092 0.085 91.8 0.012 13.478 0.096 0.080 86.8 0.014
5 3.740 0.072 0.070 93.6 0.006 12.599 0.083 0.080 90.6 0.011 12.899 0.084 0.077 88.4 0.011
10 7.642 0.076 0.073 91.8 0.007 12.559 0.082 0.078 89.2 0.011 12.609 0.082 0.076 88.4 0.011

0.5

2 -32.966 0.054 0.051 15.0 0.030 -4.212 0.090 0.086 90.2 0.009 1.946 0.108 0.081 87.2 0.012
5 -13.472 0.062 0.061 74.8 0.008 8.308 0.086 0.087 95.4 0.009 11.191 0.092 0.081 89.4 0.012
10 -2.843 0.069 0.067 93.0 0.005 12.067 0.088 0.084 91.8 0.011 13.156 0.090 0.080 87.2 0.013

0.75

2 -53.059 0.043 0.041 0.2 0.072 -25.376 0.077 0.074 52.4 0.022 -19.330 0.095 0.069 58.6 0.018
5 -30.767 0.053 0.052 16.8 0.026 -3.101 0.083 0.085 92.8 0.007 2.634 0.095 0.080 91.0 0.009
10 -15.689 0.062 0.060 68.4 0.010 7.400 0.090 0.088 94.4 0.009 10.690 0.097 0.082 89.4 0.012

γ

0.25

2 -2.627 0.141 0.128 92.0 0.020 11.683 0.170 0.153 92.2 0.032 13.283 0.176 0.152 90.6 0.035
5 5.026 0.147 0.134 93.2 0.022 12.518 0.162 0.146 92.4 0.030 12.766 0.162 0.145 91.4 0.030
10 8.488 0.152 0.136 92.0 0.025 12.661 0.161 0.143 91.0 0.030 12.690 0.161 0.142 90.8 0.030

0.5

2 -24.324 0.117 0.110 78.6 0.028 -1.557 0.166 0.158 93.8 0.027 4.628 0.192 0.163 91.6 0.038
5 -9.146 0.131 0.123 93.6 0.019 8.871 0.167 0.156 93.4 0.030 11.595 0.176 0.156 91.2 0.034
10 -0.090 0.144 0.129 92.8 0.021 12.340 0.169 0.151 92.0 0.032 13.367 0.172 0.150 91.0 0.034

0.75

2 -39.361 0.100 0.097 48.6 0.049 -18.064 0.148 0.149 89.0 0.030 -11.826 0.177 0.155 89.2 0.035
5 -22.959 0.116 0.111 80.2 0.027 -0.878 0.161 0.157 96.2 0.026 4.557 0.180 0.162 93.0 0.033
10 -10.420 0.133 0.121 90.6 0.020 8.353 0.172 0.157 93.2 0.031 11.517 0.181 0.157 91.2 0.036
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Table A.11: Simulation results for the row parameters with px = 5 and Ekr is generated
from the matrix t-distribution

Parameter σ m
Näıve Estimator Method 1 Estimator Method 2 Estimator

Bias% ESE ASE CR% MSE Bias% ESE ASE CR% MSE Bias% ESE ASE CR% MSE

α1

0.25

2 0.800 0.063 0.063 95.2 0.004 0.851 0.064 0.062 94.4 0.004 -57.518 6.518 106.238 93.8 42.570
5 0.977 0.061 0.060 94.6 0.004 0.964 0.061 0.060 94.6 0.004 0.933 0.061 0.060 94.2 0.004
10 0.908 0.061 0.059 93.4 0.004 0.887 0.061 0.059 93.6 0.004 0.925 0.062 0.059 93.6 0.004

0.5

2 0.834 0.071 0.072 96.2 0.005 0.892 0.083 0.069 91.8 0.007 -10.776 1.328 0.367 92.4 1.767
5 1.110 0.065 0.064 95.8 0.004 1.027 0.066 0.063 93.6 0.004 -10.047 1.234 7.733 93.0 1.525
10 0.961 0.064 0.062 94.4 0.004 0.876 0.064 0.061 94.4 0.004 -8.662 1.064 0.237 94.0 1.135

0.75

2 1.266 0.083 0.086 96.4 0.007 1.640 0.139 0.109 86.8 0.019 -80.595 6.507 75.014 90.0 42.508
5 1.285 0.071 0.071 94.8 0.005 1.097 0.074 0.068 92.4 0.006 -17.377 1.580 27.154 92.0 2.503
10 1.066 0.068 0.065 94.6 0.005 0.887 0.070 0.063 93.4 0.005 6.977 0.683 0.490 93.2 0.468

α3

0.25

2 0.451 0.082 0.079 92.8 0.007 0.356 0.082 0.078 92.2 0.007 -32.012 7.242 117.808 92.0 52.547
5 0.348 0.077 0.076 94.6 0.006 0.339 0.077 0.076 95.0 0.006 0.341 0.077 0.075 94.4 0.006
10 0.280 0.077 0.075 93.8 0.006 0.278 0.077 0.075 93.8 0.006 0.253 0.077 0.075 93.8 0.006

0.5

2 0.642 0.095 0.093 93.2 0.009 0.274 0.106 0.088 89.8 0.011 -6.398 1.555 0.441 90.8 2.421
5 0.401 0.081 0.082 94.6 0.007 0.331 0.082 0.080 95.0 0.007 -14.692 3.354 21.097 94.2 11.274
10 0.236 0.080 0.078 93.6 0.006 0.220 0.081 0.077 92.8 0.006 -3.376 0.803 0.187 92.2 0.647

0.75

2 0.919 0.111 0.110 93.8 0.012 0.095 0.175 0.118 87.2 0.031 -44.541 7.075 83.471 89.2 50.255
5 0.565 0.088 0.089 94.8 0.008 0.391 0.091 0.086 93.6 0.008 -37.394 6.355 108.463 91.6 40.530
10 0.212 0.085 0.082 93.2 0.007 0.160 0.086 0.080 91.8 0.007 2.201 0.470 0.335 92.0 0.221

α4

0.25

2 0.297 0.082 0.079 93.4 0.007 0.249 0.084 0.078 93.6 0.007 -40.525 9.128 148.741 93.4 83.490
5 0.231 0.078 0.076 93.6 0.006 0.219 0.079 0.075 94.0 0.006 0.185 0.079 0.075 93.8 0.006
10 0.208 0.078 0.075 92.8 0.006 0.214 0.078 0.075 93.0 0.006 0.276 0.080 0.075 92.6 0.006

0.5

2 0.464 0.092 0.092 95.0 0.009 0.261 0.115 0.088 92.0 0.013 -3.865 0.990 0.286 91.0 0.982
5 0.287 0.083 0.081 93.6 0.007 0.221 0.085 0.079 93.6 0.007 -3.914 0.934 5.783 93.0 0.873
10 0.184 0.081 0.078 93.4 0.007 0.200 0.082 0.077 93.0 0.007 -14.752 3.333 0.725 92.0 11.129

0.75

2 0.621 0.106 0.109 96.4 0.011 -0.013 0.209 0.139 87.8 0.044 -48.374 7.884 94.127 89.4 62.395
5 0.401 0.091 0.089 94.2 0.008 0.226 0.096 0.086 91.6 0.009 -23.895 5.121 94.935 92.2 26.283
10 0.194 0.085 0.082 92.8 0.007 0.207 0.089 0.080 92.2 0.008 21.815 4.841 3.370 91.4 23.482

α5

0.25

2 0.525 0.081 0.080 96.4 0.007 0.463 0.082 0.078 94.4 0.007 -13.274 3.069 49.558 95.0 9.437
5 0.395 0.076 0.076 96.2 0.006 0.404 0.076 0.076 96.2 0.006 0.426 0.076 0.075 96.0 0.006
10 0.331 0.075 0.075 95.8 0.006 0.334 0.075 0.075 95.4 0.006 0.319 0.075 0.075 95.4 0.006

0.5

2 0.692 0.096 0.094 95.4 0.009 0.503 0.120 0.088 90.6 0.014 2.029 0.348 0.146 90.8 0.121
5 0.483 0.081 0.081 95.4 0.007 0.512 0.083 0.080 94.6 0.007 -19.266 4.424 28.006 93.6 19.613
10 0.330 0.078 0.078 95.8 0.006 0.333 0.078 0.077 95.0 0.006 2.758 0.555 0.155 94.6 0.308

0.75

2 0.738 0.112 0.112 95.2 0.013 0.155 0.245 0.148 87.8 0.060 -38.500 7.562 94.497 88.8 57.327
5 0.639 0.089 0.089 96.0 0.008 0.698 0.096 0.086 93.0 0.009 -74.278 13.108 231.923 93.0 172.360
10 0.390 0.083 0.082 95.0 0.007 0.397 0.083 0.080 93.8 0.007 3.302 0.674 0.493 92.8 0.455
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Table A.12: Simulation results for the column parameters and covariate parameters with
px = 5, and Ekr is generated from the matrix t-distribution

Parameter σ m
Näıve Estimator Method 1 Estimator Method 2 Estimator

Bias% ESE ASE CR% MSE Bias% ESE ASE CR% MSE Bias% ESE ASE CR% MSE

β1

0.25

2 -7.712 0.097 0.089 81.4 0.015 2.657 0.114 0.109 93.6 0.014 4.197 0.299 12.283 89.8 0.091
5 -1.664 0.098 0.093 92.4 0.010 3.164 0.106 0.101 93.2 0.012 3.362 0.106 0.098 92.6 0.012
10 0.610 0.099 0.094 93.4 0.010 3.164 0.103 0.098 93.8 0.012 3.305 0.105 0.097 93.4 0.012

0.5

2 -27.410 0.084 0.077 9.4 0.082 -4.163 0.128 0.147 90.8 0.018 -1.953 0.353 0.111 83.6 0.125
5 -13.034 0.089 0.084 63.1 0.025 1.224 0.113 0.110 94.4 0.013 1.824 0.125 0.101 90.2 0.016
10 -5.924 0.093 0.089 85.8 0.012 2.708 0.108 0.104 94.4 0.012 2.691 0.134 0.098 92.0 0.019

0.75

2 -44.550 0.071 0.067 0.2 0.203 -15.745 0.189 13.524 66.9 0.060 -16.907 0.194 0.145 53.9 0.066
5 -26.147 0.078 0.075 9.0 0.075 -4.423 0.115 0.117 90.6 0.015 -3.833 0.136 0.102 85.8 0.020
10 -14.652 0.086 0.082 53.7 0.029 0.662 0.114 0.110 94.4 0.013 1.228 0.128 0.100 90.2 0.016

β2

0.25

2 -8.190 0.061 0.062 87.4 0.005 1.998 0.071 0.072 94.0 0.005 3.399 0.134 4.437 92.8 0.018
5 -2.173 0.063 0.065 94.4 0.004 2.582 0.067 0.069 95.4 0.005 2.767 0.067 0.068 94.8 0.005
10 0.109 0.064 0.066 94.6 0.004 2.642 0.066 0.068 95.0 0.005 2.748 0.066 0.067 94.8 0.005

0.5

2 -27.621 0.055 0.055 30.9 0.022 -4.760 0.080 0.085 90.6 0.007 0.344 0.441 0.075 88.8 0.194
5 -13.387 0.058 0.060 78.0 0.008 0.663 0.072 0.074 96.2 0.005 1.196 0.076 0.070 93.2 0.006
10 -6.280 0.061 0.063 89.8 0.005 2.304 0.069 0.070 95.2 0.005 2.369 0.074 0.068 94.6 0.006

0.75

2 -44.606 0.048 0.048 0.8 0.052 -16.581 0.091 4.349 74.7 0.015 -16.567 0.126 0.091 67.5 0.023
5 -26.308 0.053 0.055 32.5 0.020 -4.911 0.075 0.077 92.6 0.006 -4.184 0.084 0.072 90.2 0.008
10 -14.895 0.058 0.059 72.5 0.009 0.351 0.074 0.073 94.6 0.005 0.885 0.078 0.069 93.2 0.006

β3

0.25

2 -8.125 0.093 0.089 81.2 0.015 2.215 0.110 0.108 95.0 0.013 3.043 0.193 7.308 92.0 0.038
5 -1.990 0.096 0.092 93.0 0.010 2.806 0.103 0.100 94.6 0.011 3.031 0.103 0.098 93.0 0.011
10 0.250 0.099 0.094 94.0 0.010 2.784 0.103 0.098 93.8 0.011 2.943 0.106 0.097 92.2 0.012

0.5

2 -27.809 0.079 0.076 7.8 0.084 -4.622 0.120 0.131 89.8 0.016 -4.177 0.135 0.109 85.2 0.020
5 -13.294 0.085 0.084 60.3 0.025 0.856 0.107 0.110 95.4 0.011 1.484 0.119 0.101 91.6 0.014
10 -6.295 0.094 0.089 84.8 0.013 2.263 0.108 0.103 94.8 0.012 2.239 0.143 0.098 92.0 0.021

0.75

2 -44.931 0.066 0.066 0.0 0.206 -16.508 0.135 7.287 65.7 0.045 -18.277 0.156 0.129 50.5 0.058
5 -26.303 0.076 0.075 8.4 0.075 -4.733 0.109 0.117 92.0 0.014 -4.035 0.132 0.103 86.4 0.019
10 -15.017 0.087 0.082 51.1 0.030 0.162 0.113 0.109 95.0 0.013 0.866 0.129 0.099 90.0 0.017

β4

0.25

2 -7.965 0.089 0.089 81.2 0.014 2.366 0.105 0.109 96.2 0.012 3.126 0.174 6.468 92.8 0.031
5 -2.015 0.091 0.092 93.2 0.009 2.766 0.099 0.100 96.0 0.011 3.003 0.098 0.098 94.8 0.011
10 0.405 0.094 0.094 95.8 0.009 2.957 0.098 0.098 96.6 0.010 3.109 0.100 0.097 95.8 0.011

0.5

2 -27.664 0.077 0.076 7.0 0.082 -4.530 0.119 0.148 91.2 0.016 -6.099 0.400 0.108 85.8 0.163
5 -13.444 0.081 0.084 60.3 0.025 0.609 0.104 0.109 96.6 0.011 1.262 0.114 0.100 93.8 0.013
10 -6.063 0.089 0.089 86.0 0.012 2.583 0.105 0.104 97.2 0.012 2.462 0.146 0.099 95.0 0.022

0.75

2 -44.797 0.066 0.067 0.2 0.205 -16.167 0.181 13.330 65.5 0.059 -18.528 0.193 0.127 50.3 0.072
5 -26.525 0.072 0.075 6.6 0.076 -5.175 0.106 0.116 92.2 0.014 -4.451 0.126 0.103 88.8 0.018
10 -14.757 0.084 0.082 52.7 0.029 0.596 0.114 0.110 97.0 0.013 1.191 0.127 0.100 93.4 0.016

β5

0.25

2 -7.912 0.091 0.089 82.4 0.015 2.465 0.106 0.108 95.4 0.012 3.795 0.250 9.859 92.8 0.064
5 -1.691 0.094 0.093 94.4 0.009 3.136 0.101 0.101 94.6 0.011 3.409 0.102 0.098 93.2 0.012
10 0.577 0.095 0.094 95.4 0.009 3.144 0.100 0.099 95.0 0.011 3.253 0.101 0.097 94.2 0.011

0.5

2 -27.650 0.080 0.076 7.0 0.083 -4.411 0.121 0.134 91.0 0.017 -2.982 0.262 0.112 84.8 0.070
5 -13.066 0.084 0.084 61.7 0.024 1.165 0.107 0.110 95.4 0.011 1.915 0.124 0.102 92.2 0.016
10 -5.942 0.091 0.089 86.0 0.012 2.747 0.105 0.104 95.0 0.012 2.790 0.122 0.099 92.6 0.016

0.75

2 -44.794 0.068 0.066 0.0 0.205 -16.168 0.147 9.086 65.9 0.048 -17.895 0.166 0.118 51.3 0.059
5 -26.134 0.075 0.076 9.8 0.074 -4.449 0.108 0.117 92.4 0.014 -3.751 0.134 0.110 88.8 0.019
10 -14.687 0.085 0.082 54.5 0.029 0.735 0.113 0.110 94.0 0.013 1.277 0.126 0.100 90.6 0.016

γ

0.25

2 -5.858 0.112 0.110 92.6 0.013 1.638 0.122 0.122 95.2 0.015 2.940 0.165 5.709 93.4 0.028
5 -1.226 0.112 0.113 94.2 0.013 2.335 0.116 0.118 94.6 0.014 2.520 0.117 0.118 94.2 0.014
10 0.814 0.114 0.114 94.4 0.013 2.718 0.117 0.117 94.4 0.014 2.793 0.117 0.116 94.4 0.014

0.5

2 -20.298 0.103 0.100 81.4 0.021 -4.354 0.129 0.134 94.0 0.017 -3.651 0.139 0.130 91.6 0.020
5 -9.749 0.105 0.107 91.4 0.013 0.474 0.119 0.124 95.0 0.014 1.092 0.120 0.123 94.8 0.014
10 -3.979 0.111 0.111 93.6 0.013 2.393 0.120 0.121 94.4 0.015 2.635 0.120 0.119 94.2 0.015

0.75

2 -32.267 0.095 0.091 55.5 0.035 -13.815 0.131 3.989 91.4 0.022 -14.373 0.144 0.154 88.0 0.026
5 -19.159 0.099 0.101 83.8 0.019 -4.042 0.120 0.129 95.0 0.015 -3.225 0.123 0.168 94.4 0.015
10 -10.350 0.107 0.106 91.4 0.014 0.751 0.124 0.125 95.0 0.015 1.438 0.126 0.123 94.0 0.016

167



Table A.13: Simulation results for the row parameters with px = 20, Ekr is generated from
the matrix normal distribution, and n = 2000

Parameter σ m
Näıve Estimator Method 1 Estimator Method 2 Estimator

Bias% ESE ASE CR% MSE Bias% ESE ASE CR% MSE Bias% ESE ASE CR% MSE

α1

0.25

2 0.113 0.047 0.046 93.6 0.002 0.182 0.048 0.045 93.6 0.002 0.157 0.047 0.045 93.6 0.002
5 -0.027 0.044 0.044 93.2 0.002 -0.005 0.045 0.043 92.8 0.002 0.000 0.045 0.043 92.4 0.002
10 -0.076 0.045 0.043 93.4 0.002 -0.064 0.045 0.043 93.2 0.002 -0.073 0.045 0.043 93.0 0.002

0.5

2 0.301 0.054 0.054 94.2 0.003 0.421 0.058 0.052 90.8 0.003 0.441 0.058 0.051 91.8 0.003
5 -0.004 0.048 0.047 93.6 0.002 0.027 0.050 0.047 92.4 0.002 0.091 0.050 0.046 92.4 0.002
10 -0.077 0.047 0.045 93.4 0.002 -0.057 0.048 0.045 92.8 0.002 -0.096 0.048 0.044 93.2 0.002

0.75

2 0.419 0.063 0.064 94.8 0.004 0.522 0.070 0.059 89.0 0.005 0.707 0.069 0.058 90.2 0.005
5 0.033 0.053 0.053 93.4 0.003 0.014 0.057 0.051 91.2 0.003 0.155 0.057 0.051 92.0 0.003
10 -0.056 0.051 0.048 92.8 0.003 -0.071 0.053 0.047 91.2 0.003 -0.146 0.052 0.047 91.2 0.003

α5

0.25

2 0.222 0.047 0.046 94.8 0.002 0.090 0.048 0.045 94.0 0.002 0.084 0.049 0.045 93.0 0.002
5 0.074 0.045 0.044 94.0 0.002 0.032 0.045 0.043 93.6 0.002 0.030 0.045 0.043 93.4 0.002
10 -0.120 0.044 0.043 93.6 0.002 -0.148 0.044 0.043 93.6 0.002 -0.142 0.044 0.043 93.4 0.002

0.5

2 0.633 0.055 0.054 95.4 0.003 0.336 0.060 0.052 91.6 0.004 0.318 0.060 0.052 90.4 0.004
5 0.266 0.049 0.048 94.6 0.002 0.189 0.050 0.047 92.8 0.002 0.152 0.050 0.046 92.2 0.003
10 -0.144 0.046 0.045 93.8 0.002 -0.239 0.046 0.045 93.2 0.002 -0.220 0.047 0.044 93.0 0.002

0.75

2 1.012 0.064 0.064 95.2 0.004 0.598 0.071 0.060 89.2 0.005 0.621 0.071 0.058 89.6 0.005
5 0.462 0.054 0.053 93.8 0.003 0.410 0.057 0.051 91.8 0.003 0.365 0.057 0.051 91.6 0.003
10 -0.121 0.049 0.048 94.6 0.002 -0.271 0.050 0.047 92.6 0.003 -0.240 0.050 0.047 92.2 0.003

α15

0.25

2 0.153 0.048 0.046 93.0 0.002 0.160 0.048 0.045 93.6 0.002 0.140 0.048 0.045 93.6 0.002
5 0.032 0.045 0.044 94.4 0.002 0.051 0.045 0.043 94.2 0.002 0.045 0.045 0.043 94.2 0.002
10 -0.247 0.045 0.043 93.6 0.002 -0.245 0.045 0.043 93.4 0.002 -0.246 0.045 0.043 93.4 0.002

0.5

2 0.304 0.057 0.054 92.2 0.003 0.331 0.059 0.052 91.0 0.004 0.254 0.058 0.051 91.6 0.003
5 -0.024 0.048 0.048 93.8 0.002 0.018 0.049 0.047 92.8 0.002 0.019 0.049 0.046 93.2 0.002
10 -0.514 0.047 0.045 93.8 0.002 -0.545 0.048 0.045 93.2 0.002 -0.540 0.048 0.044 92.8 0.002

0.75

2 0.452 0.068 0.064 92.0 0.005 0.426 0.073 0.059 88.2 0.005 0.497 0.070 0.058 90.2 0.005
5 -0.086 0.054 0.053 93.6 0.003 -0.070 0.056 0.051 91.4 0.003 0.013 0.055 0.051 92.0 0.003
10 -0.711 0.050 0.048 95.0 0.003 -0.834 0.052 0.047 92.0 0.003 -0.817 0.052 0.047 91.6 0.003

α17

0.25

2 0.242 0.044 0.046 94.8 0.002 0.139 0.045 0.045 94.8 0.002 0.155 0.045 0.045 94.6 0.002
5 0.290 0.044 0.044 94.8 0.002 0.276 0.044 0.044 94.0 0.002 0.272 0.044 0.043 94.0 0.002
10 0.152 0.043 0.043 95.4 0.002 0.149 0.043 0.043 95.6 0.002 0.145 0.043 0.043 95.6 0.002

0.5

2 0.495 0.051 0.054 96.2 0.003 0.287 0.055 0.052 94.4 0.003 0.296 0.054 0.052 93.4 0.003
5 0.511 0.048 0.048 93.6 0.002 0.436 0.049 0.047 93.0 0.002 0.446 0.049 0.046 93.0 0.002
10 0.187 0.045 0.045 95.2 0.002 0.172 0.046 0.045 94.8 0.002 0.150 0.046 0.044 94.4 0.002

0.75

2 0.704 0.060 0.064 96.4 0.004 0.556 0.066 0.060 93.6 0.004 0.561 0.064 0.058 92.8 0.004
5 0.794 0.054 0.053 93.8 0.003 0.621 0.057 0.051 91.8 0.003 0.677 0.056 0.051 91.8 0.003
10 0.229 0.049 0.048 95.0 0.002 0.163 0.050 0.047 93.6 0.002 0.133 0.050 0.047 94.4 0.002
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Table A.14: Simulation results for the column parameters and covariate parameters with
px = 20, Ekr is generated from the matrix normal distribution, and n = 2000

Parameter σ m
Näıve Estimator Method 1 Estimator Method 2 Estimator

Bias% ESE ASE CR% MSE Bias% ESE ASE CR% MSE Bias% ESE ASE CR% MSE

β1

0.25

2 -10.595 0.042 0.043 74.2 0.005 3.374 0.052 0.053 95.2 0.003 4.240 0.053 0.051 91.8 0.003
5 -1.839 0.048 0.046 93.4 0.002 5.265 0.054 0.051 92.8 0.004 5.466 0.054 0.050 91.4 0.004
10 1.417 0.047 0.047 95.2 0.002 5.272 0.050 0.050 93.0 0.003 5.335 0.050 0.049 92.6 0.003

0.5

2 -35.970 0.034 0.034 0.2 0.034 -11.690 0.052 0.053 77.0 0.006 -8.514 0.056 0.049 80.0 0.005
5 -17.336 0.042 0.041 43.6 0.009 0.944 0.057 0.054 94.6 0.003 2.555 0.059 0.051 91.6 0.004
10 -7.845 0.044 0.044 81.2 0.003 4.151 0.052 0.053 94.4 0.003 4.822 0.053 0.050 93.0 0.003

0.75

2 -54.839 0.029 0.028 0.0 0.076 -30.599 0.048 0.046 14.2 0.026 -27.578 0.052 0.043 16.8 0.022
5 -33.423 0.036 0.035 1.6 0.029 -9.366 0.055 0.054 80.8 0.005 -6.271 0.059 0.050 83.2 0.004
10 -19.378 0.039 0.040 32.4 0.011 -0.190 0.053 0.054 96.0 0.003 1.683 0.056 0.051 93.8 0.003

β7

0.25

2 -9.698 0.046 0.043 74.8 0.004 4.378 0.056 0.054 92.4 0.004 5.233 0.057 0.051 90.0 0.004
5 -1.327 0.049 0.046 93.4 0.002 5.800 0.054 0.051 92.8 0.004 6.006 0.055 0.050 91.2 0.004
10 2.022 0.050 0.047 94.6 0.003 5.899 0.053 0.050 91.8 0.004 5.961 0.053 0.049 91.2 0.004

0.5

2 -35.004 0.036 0.035 1.4 0.032 -10.349 0.055 0.054 78.4 0.006 -7.291 0.060 0.050 80.2 0.005
5 -16.922 0.044 0.041 43.6 0.009 1.417 0.058 0.055 94.2 0.003 3.022 0.059 0.051 91.6 0.004
10 -7.287 0.047 0.044 83.8 0.003 4.777 0.056 0.053 94.0 0.004 5.452 0.057 0.051 91.0 0.004

0.75

2 -53.947 0.029 0.028 0.0 0.074 -29.202 0.049 0.047 14.6 0.024 -26.254 0.053 0.043 18.8 0.020
5 -33.083 0.038 0.035 0.8 0.029 -8.926 0.056 0.054 81.8 0.005 -5.870 0.060 0.050 82.8 0.004
10 -18.885 0.042 0.040 36.2 0.011 0.398 0.057 0.054 94.4 0.003 2.294 0.059 0.051 92.2 0.004

β18

0.25

2 -10.403 0.042 0.043 72.4 0.004 3.574 0.053 0.053 95.6 0.003 4.373 0.054 0.051 93.0 0.003
5 -1.981 0.044 0.046 94.8 0.002 5.063 0.049 0.051 95.6 0.003 5.244 0.049 0.050 93.6 0.003
10 1.421 0.046 0.047 95.6 0.002 5.260 0.049 0.050 95.0 0.003 5.313 0.049 0.049 94.0 0.003

0.5

2 -35.660 0.033 0.035 0.0 0.033 -11.242 0.052 0.053 77.0 0.006 -8.275 0.056 0.050 79.6 0.005
5 -17.452 0.038 0.041 43.0 0.009 0.647 0.051 0.054 96.4 0.003 2.161 0.053 0.051 95.2 0.003
10 -7.761 0.043 0.044 82.6 0.003 4.190 0.052 0.053 95.8 0.003 4.840 0.053 0.051 92.2 0.003

0.75

2 -54.537 0.027 0.028 0.0 0.075 -30.127 0.047 0.047 15.6 0.025 -27.181 0.051 0.043 19.8 0.021
5 -33.454 0.033 0.035 0.6 0.029 -9.587 0.050 0.054 82.2 0.005 -6.682 0.053 0.050 84.8 0.004
10 -19.223 0.040 0.040 33.0 0.011 -0.105 0.054 0.054 94.4 0.003 1.740 0.057 0.051 91.6 0.003

γ

0.25

2 -6.621 0.090 0.086 92.4 0.009 4.834 0.103 0.100 92.6 0.011 5.540 0.105 0.099 92.0 0.012
5 0.133 0.097 0.089 92.4 0.009 5.936 0.104 0.096 91.6 0.012 6.122 0.104 0.095 91.0 0.012
10 3.142 0.098 0.091 92.6 0.010 6.347 0.101 0.094 92.4 0.011 6.404 0.102 0.094 91.8 0.011

0.5

2 -26.726 0.076 0.075 56.6 0.024 -7.680 0.102 0.103 94.0 0.012 -4.815 0.109 0.103 93.2 0.012
5 -12.416 0.090 0.083 85.6 0.012 2.209 0.109 0.101 92.4 0.012 3.783 0.113 0.101 90.4 0.013
10 -4.370 0.094 0.087 92.2 0.009 5.557 0.106 0.099 92.4 0.012 6.217 0.107 0.098 91.2 0.012

0.75

2 -40.955 0.066 0.067 14.2 0.046 -22.922 0.093 0.098 77.6 0.022 -19.894 0.101 0.098 79.2 0.020
5 -25.012 0.082 0.076 61.6 0.022 -6.290 0.109 0.103 92.4 0.013 -3.041 0.117 0.103 90.6 0.014
10 -13.691 0.088 0.082 84.0 0.013 1.926 0.108 0.102 93.8 0.012 3.868 0.113 0.101 92.4 0.013
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Appendix B

Technical Components for Chapter 3

B.1 Regularity Conditions

The following standard regularity conditions are required for the establishment of the
asymptotic results for the estimators described in Chapter 3.

(C.1) The expectations of the first derivative of U c(θ;Y c
k ), U o(θ;Y ∗k ) and U o

v (η) with respect
to θ exist and are not singular at θ0.

(C.2) The second derivatives of U c(θ;Y c
k ), U o(θ;Y ∗k ) and U o

v (η) with respect to θ exist and
are continuous and bounded in a neighborhood of θ0.

(C.3) The expectation of the first derivative of δkSk(φ) with respect to φ exists and is not
singular at φ0.

(C.4) The second derivatives of U o(θ;Y ∗k ) and U o
v (η) with respect to φ exist and are con-

tinuous and bounded in a neighborhood of φ0.
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B.2 Proof of Theorem 3.1

Noting that θ̂c is the solution of (3.6), i.e.,
n∑
k=1

U c(θ̂c;Y
c
k ) = 0, we apply the first-order

Taylor series expansion to the equation around θ0:

0 =
1√
n

n∑
k=1

U c(θ̂c;Y
c
k )

=
1√
n

n∑
k=1

U c(θ0;Y c
k ) +

{ 1

n

n∑
k=1

∂U c(θ0;Y c
k )

∂θᵀ

}{√
n(θ̂c − θ0)

}
+ op(

√
n‖θ̂c − θ0‖).

(B.1)

By Condition (C.2) and the Central Limit Theorem, we have that

1√
n

n∑
k=1

U c(θ0;Y c
k )

d−−→ N(0,Σc) as n→∞, (B.2)

thus, 1√
n

n∑
k=1

U c(θ0;Y c
k ) = Op(1), where Σc = E{U c(θ0;Y c

k )U c(θ0;Y c
k )ᵀ}. By Condition (C.1)

and the Law of Large Numbers, we obtain that

1

n

n∑
k=1

∂U c(θ0;Y c
k )

∂θᵀ
p−−→ Γc as n→∞, (B.3)

thus, 1
n

n∑
k=1

∂Uc(θ0;Y ck )

∂θᵀ
= Op(1), where Γc = E{∂U c(θ0;Y c

k )/∂θᵀ}. Then (B.1) shows that

Op(1) +Op(1)×
√
n‖θ̂c − θ0‖+ op(

√
n‖θ̂c − θ0‖) = Op(1), (B.4)

implying that ‖θ̂c − θ0‖ is of order Op(
1√
n
).

Combining (B.1), (B.2) and (B.3), then by the Slutsky’s Theorem, we obtain that

√
n(θ̂c − θ0)

d−−→ N(0,ΓcΣc(Γ
−1
c )ᵀ) as n→∞.
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B.3 Proof of Theorem 3.2.

Noting that η̂v = (φ̂ᵀ
v, θ̂

ᵀ
v)

ᵀ is the solution of (3.8), we apply the first-order Taylor series
expansion around η0 to (3.8) with η replaced by η̂v:

√
n

(
θ̂v − θ0

φ̂v − φ0

)
= −


1
n

n∑
k=1

∂U c(θ0, φ0;Y c
k )/∂θᵀ 1

n

n∑
k=1

∂U c(θ0, φ0;Y c
k )/∂φᵀ

0 1
n

n∑
k=1

δk × ∂Sk(φ0)/∂φᵀ


−1

× 1√
n

n∑
k=1

(
U c(θ0, φ0;Y c

k )
δkSk(φ0)

)
+ op(1).

(B.5)

By Conditions (C.1)-(C.4), applying the Central Limit Theorem to the right-hand-side of
(B.5) leads to the asymptotic distribution of

√
n(η̂v − η0) as

√
n(η̂v − η0)

d−−→ N(0,Γ−1
U (η0)ΣU(η0)[Γ−1

U (η0)]ᵀ) as n→∞,

where

ΓU(η0) =

(
E{∂U c(θ0, φ0;Y c

k )/∂θᵀ} E{∂U c(θ0, φ0;Y c
k )/∂φᵀ}

0 E{δk × ∂Sk(φ0)/∂φᵀ}

)
and

ΣU(η0) = E

{(
U c(θ0, φ0;Y c

k )
δkSk(φ0)

)(
U c(θ0, φ0;Y c

k )
δkSk(φ0)

)ᵀ
}
.

Since θ is of primary interest, we explicitly express the asymptotic distribution of the
estimator θ̂v by calculating the product of the corresponding block matrices:

√
n(θ̂v − θ0)

d−−→ N(0,Γ−1
c Στ [Γ

−1
c ]ᵀ) as n→∞,

where Γc = E
{
∂Uc(θ0,φ0;Y ck )

∂θᵀ

}
, Στ = E{Ωk(θ0, φ0)Ωk(θ0, φ0)ᵀ} and

Ωk(θ0, φ0) = U c(θ0, φ0;Y c
k )− E

{
∂U c(θ0, φ0;Y c

k )/∂φ
}

×
[
E
{
∂δkSk(φ0)/∂φ

}]−1

× {δkSk(φ0)}.
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Appendix C

Technical Components for Chapter 4

C.1 Regularity Conditions

(C.1) Assume that λn → 0, an = O( 1√
n
) and bn → 0 as n→∞.

(C.2) The expectations of ∂U c
k(θ;Y

c
k )/∂θ, ∂U o

k (θ;Y ∗k )/∂θ and ∂U ov
k (η)/∂η exist and are not

singular at θ0.

(C.3) ∂2U c
k(θ;Y

c
k )/∂θ∂θᵀ, ∂2U o

k (θ;Y ∗k )/∂θ∂θᵀ and ∂2U ov
k (η)/∂η∂ηᵀ exist and are continuous

and bounded in a neighborhood of θ0.

(C.4) The variance-covariance matrices of U c
k,I(θ;Y

c
k ), U o

k,I(θ;Y
∗
k ) and U ov

k,I(η) are positive
definite at θ0.

(C.5) The expectations of ∂{δkSk(φ)}/∂φ, ∂U o
k (θ;Y ∗k )/∂φ and ∂U ov

k (η)/∂φ exist and are
not singular at φ0.

(C.6) ∂2{δkSk(φ)}/∂φ∂φᵀ, ∂2U o
k (θ;Y ∗k )/∂φ∂φᵀ and ∂2U ov

k (η)/∂φ∂φᵀ exist and are continu-
ous and bounded in a neighborhood of φ0.
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C.2 Proof of Theorem 4.1

Here, we show that given Conditions (C.1)-(C.5), there exists a solution to (4.1), θ̂c, such
that ‖θ̂c − θ0‖ = Op(

1√
n

+ an), if an and bn tend to 0 as n→∞. We adapt the techniques

of Ma and Li (2010) to do this.

Define

J1 =
[
E
{∂U c

k(θ;Y
c
k )

∂θᵀ

}∣∣∣
θ0

]−1

, φ∗k(θ) = J1U
c
k(θ;Y

c
k ), and q′λn(θ) = J1p

′
λn(θ).

Write αn = 1√
n

+ an and U c
k(θ) = U c

k(θ;Y
c
k ). Then we consider

1√
n

n∑
k=1

φ∗k(θ)−
√
nq′λn(θ) = 0. (C.1)

To show Theorem 4.1, it suffices to show that θ̂c is a solution for (C.1) that satisfies
‖θ̂c − θ0‖ = Op(αn) by the Brouwer fixed-point theorem.

Given Conditions (C.1) and (C.5), for any θ with ‖θ − θ0‖ = Cαn for some positive
constant C, we apply the first-order Taylor-series expansion to left-hand-side of (C.1)
around θ0 and obtain that

1√
n

n∑
k=1

φ∗k(θ)−
√
nq′λn(θ)

=
1√
n

n∑
k=1

φ∗k(θ0)−
√
nq′λn(θ0)

+
1√
n

n∑
k=1

∂φ∗k(θ0)

∂θᵀ
(θ − θ0){1 + op(1)} −

√
n
∂q′λn(θ0)

∂θᵀ
(θ − θ0){1 + op(1)},

(C.2)

By Condition (C.5), we have that

√
n(θ − θ0)ᵀ

{ 1

n

n∑
k=1

∂φ∗k(θ0)

∂θᵀ

}
(θ − θ0){1 + op(1)}

=
√
n(θ − θ0)ᵀJ1

{ 1

n

n∑
k=1

∂U c
k(θ0)

∂θᵀ

}
(θ − θ0){1 + op(1)}

=
√
n‖θ − θ0‖2{1 + op(1)},

(C.3)
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where the second step is due to the definition of φ∗k(·) and the last step is due to the
definition of J1 and the law of large numbers.

Furthermore, we have that

(θ − θ0)ᵀ
√
n

{
∂q′λn(θ0)

∂θᵀ

}
(θ − θ0){1 + op(1)}

= (θ − θ0)ᵀ
√
nJ1p

′′

λn(θ0)(θ − θ0){1 + op(1)}
= (θ − θ0)ᵀ

√
nO(bn)(θ − θ0){1 + op(1)}

= op(
√
n‖θ − θ0‖2),

(C.4)

where the first step is due to the definition of q′λn(θ), the second step is due to Condition
(C.5) and the definition of bn, and the last step is from Condition (C.1).

Then combining (C.2), (C.3) and (C.4), we obtain that for θ with ‖θ − θ0‖ = Cαn,

(θ − θ0)ᵀ
{ 1√

n

n∑
k=1

φ∗k(θ)−
√
nq′λn(θ)

}
= (θ − θ0)ᵀ

{ 1√
n

n∑
k=1

φ∗k(θ0)−
√
nq′λn(θ0)

}
+
√
n‖θ − θ0‖2{1 + op(1)}+ op(

√
n‖θ − θ0‖2)

= (θ − θ0)ᵀ × Constant +
√
nC2α2

n + op(
√
n‖θ − θ0‖2)

= Op(Cαn) +
√
nC2α2

n + op(
√
nC2α2

n).
(C.5)

As long as C is large enough, the second term in (C.5) dominates the first and third terms
in (C.5). Thus, for any ε > 0, as long as C is large enough, we have

P
[
(θ − θ0)ᵀ

{ 1√
n

n∑
k=1

φ∗k(θ)−
√
nq′λn(θ)

}
> 0
]
≥ 1− ε,

where ‖θ− θ0‖ = Cαn. By the Brouwer fixed-point theorm, with probability at least 1− ε,
there exists at least one solution, θ̂c for (C.1) that satisfies ‖θ̂c − θ0‖ = Op(αn).
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C.3 Lemma 4.1 and the Proof.

Lemma 4.1. Let U c
II(θ) =

n∑
k=1

U c
k,II(θ;Y

c
k ), where U c

k,II(θ;Y
c
k ) is defined in Section 4.1. If

the conditions in Theorem 4.1 hold, then with the probability tending to one, for any θ
satisfying ‖θ − θ0‖ = O( 1√

n
), we have that θII = 0 are the solutions to U c

II(θ) = 0, where

θII = (α̃ᵀ
II, β

ᵀ
II, γ

ᵀ
II)

ᵀ is subvector of θ defined in Section 4.1.

Let dθ = (dα + dβ + dγ) and d2θ = (d2α + d2β + d2γ). For j = 1, ..., d2θ, U
c
IIj(θ) denote

the jth equation in U c
II(θ) and let θIIj denote the jth component of θII. Then applying the

first-order Taylor series expansion to U c
IIj(θ)− np′λn(θIIj) around θII0, we obtain that

U c
IIj(θ)− np′λn(θIIj) = U c

IIj(θ0) +

dθ∑
k=1

∂U c
IIj(θ)

∂θk
(θk − θk0)

+
1

2

dθ∑
k=1

dθ∑
l=1

∂2U c
IIj(θ

∗)

∂θk∂θl
(θk − θk0)(θl − θl0)− np′λn(|θIIj|)sign(θIIj),

(C.6)
where θ∗ lies between θ and θ0.

Now we examine the terms on the right hand side of (C.6) using the assumption that
‖θ − θ0‖ = O( 1√

n
). The first term has order Op(

√
n) by Condition (C.4), the second

term has order Op(
√
n) due to Condition (C.6), and the third term has order Op(

√
n) by

Condition (C.5). Hence (C.6) becomes

U c
IIj(θ)− np′λn(θIIj) = −

√
n{
√
np′λn(|θIIj|)sign(θIIj) +Op(1)}.

By Condition (C.1), λn is sufficiently small, an = O( 1√
n
) when n is large enough, then√

np′λn(|θIIj|) = ∞ by Condition (4.5). Thus the sign of U c
IIj(θ) − np′λn(θIIj) is decided by

the negative of sign(θIIj). By the continuity of U c
IIj(θ)−np′λn(θIIj), we obtain that it is zero

at θIIj = 0.
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C.4 Proof of Theorem 4.2

Theorem 4.2(a) comes from Lemma 4.1 immediately. To show Theorem 4.2(b), let U c
I (θI)

denote the
n∑
k=1

U c
k,I{θ;Y c

k }, where U c
k,I{θ;Y c

k } is defined in Section 4.1. Then we we apply

the Taylor series expansion to

0 = U c
I (θ̂c,I)− np′λn,I(θ̂c,I),

and obtain that

0 = U c
I (θI0) +

{∂U c
I (θI0)

∂θᵀI
+ op(n)

}
(θ̂cI − θI0)− ngθ − n{Σθ + op(1)}(θ̂cI − θI0)

= U c
I (θI0) + n

[
E

{
∂U c

k,I(θI0;Y c
k )

∂θᵀ

}
− Σθ

]
(θ̂cI − θI0)

− n
[
E

{
∂U c

k,I(θI0;Y c
k )

∂θᵀ

}
− Σθ

]
×
[
E

{
∂U c

k,I(θI0;Y c
k )

∂θᵀ

}
− Σθ

]−1

gθ + op(
√
n)

= U c
I (θI0) + n

[
E

{
∂U c

k,I(θI0;Y c
k )

∂θᵀ

}
− Σθ

][
θ̂cI − θI0 −

[
E

{
∂U c

k,I(θI0;Y c
k )

∂θᵀ

}
− Σθ

]−1

gθ

]
+ op(

√
n)

where in the first step, the first two terms and the last two terms, respectively, come
from the Taylor series expansion of U c

I (θ̂c,I) and of np′λn,I(θ̂c,I) with gθ and Σθ defined after
Theorem 1.

Consequently,

√
n

[
θ̂c,I − θI0 −

[
E

{
∂U c

k,I(θI0;Y c
k )

∂θᵀ

}
− Σθ

]−1

gθ

]

= −n−1/2

[
E

{
∂U c

k,I(θI0;Y c
k )

∂θᵀ

}
− Σθ

]−1

U c
I (θI0) + op(1),

and Theorem 4.2(b) thus follows from the central limit theorem together with Condition
(C.6).
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C.5 Proof of Theorem 4.3.

We show Theorem 4.3 using similar techniques in Appendix C.2. Let η = (θᵀ, φᵀ)ᵀ. Com-
bining (4.1) and (3.7), this two-stage estimation procedure can be expressed as a single
procedure for ease of establishing the asymptotic results of the resulting estimator, η̂v.
Solving

n∑
k=1


U c

1k(θ, φ;Y c
k )− np′λn(α̃)

U c
2k(θ, φ;Y c

k )− np′λn(β)
U c

3k(θ, φ;Y c
k )− np′λn(γ)

δkSk(φ)

 = 0, (C.7)

gives a consistent estimator for η, say η̂v = (θ̂ᵀv , φ̂
ᵀ
v)

ᵀ, provided regularity conditions. Then,
we obtain

√
n(θ̂v − θ0) = −

√
n

[
E
{∂U c

k(θ0, φ0;Y c
k )

∂θᵀ

}
− Σ∗θ

]−1

E
{
U∗ck (θ0, φ0;Y c

k )− p′λn(θ)
}

+ op(1),

where Σ∗θ = diag{p′′λn(α̃), p
′′

λn
(β), p

′′

λn
(γ)},

U∗ck (θ, φ;Y c
k ) = U c

k(θ, φ;Y c
k )−{ 1

n

n∑
k=1

∂U c
k(θ, φ;Y c

k )/∂φ
}
×
[ 1

n

{ n∑
k=1

δk × ∂Sk(φ)/∂φ
}]−1

× {δkSk(φ)}.

Now we denote

J2 =
[
E
{∂U∗ck (θ0, φ0;Y c

k )

∂θᵀ

}
− Σ∗θ

]−1

and q′λn(θ) = J2p
′
λn(θ),

and define
φ∗ck (θ) = J2 × U∗ck (θ, φ;Y c

k ),

where we treat φ as fixed. Denote αn = 1√
n

+ an.

Then to prove Theorem 4.3, it suffices to show that

1√
n

n∑
k=1

φ∗ck (θ)−
√
nq′λn(θ) = 0. (C.8)

has a solution, θ̂v that satisfies ‖θ̂v − θ0‖ = Op(αn).
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For any θ with ‖θ − θ0‖ = Cαn for some positive constant C, given Conditions (C.1)
and (C.5), we apply the first-order Taylor series expansion to (C.7) around θ0 and obtain
that

1√
n

n∑
k=1

φ∗ck (θ)−
√
nq′λn(θ)

=
1√
n

n∑
k=1

φ∗ck (θ0)−
√
nq′λn(θ0)

+
1√
n

n∑
k=1

∂φ∗ck (θ0)

∂θᵀ
(θ − θ0){1 + op(1)} −

√
n
∂q′λn(θ0)

∂θᵀ
(θ − θ0){1 + op(1)}.

(C.9)

By Condition (C.5), we have that

√
n(θ − θ0)ᵀ

{ 1

n

n∑
k=1

∂φ∗ck (θ0)

∂θᵀ

}
(θ − θ0){1 + op(1)}

=
√
n(θ − θ0)ᵀJ2

{ 1

n

n∑
k=1

∂U∗ck (θ0, φ0;Y c
k )

∂θᵀ

}
(θ − θ0){1 + op(1)}

=
√
n(θ − θ0)ᵀ

[
E
{∂U∗ck (θ0, φ0;Y c

k )

∂θᵀ

}
+ op(1)

]−1{ 1

n

n∑
k=1

∂U∗ck (θ0, φ0;Yk)

∂θᵀ

}
(θ − θ0){1 + op(1)}

=
√
n‖θ − θ0‖2{1 + op(1)}.

(C.10)
Furthermore, we have that

(θ − θ0)ᵀ
√
n

{
∂q′λn(θ0)

∂θᵀ

}
(θ − θ0){1 + op(1)}

= (θ − θ0)ᵀ
√
nJ2p

′′

λn(θ0)(θ − θ0){1 + op(1)}
= (θ − θ0)ᵀ

√
nO(bn)(θ − θ0){1 + op(1)}

= op(
√
n‖θ − θ0‖2)

(C.11)
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Then combining (C.9), (C.10) and (C.11), we obtain that

(θ − θ0)ᵀ
{ 1√

n

n∑
k=1

φ∗ck (θ)−
√
nq′λn(θ)

}
= (θ − θ0)ᵀ

{ 1√
n

n∑
k=1

φ∗ck (θ0)−
√
nq′λn(θ0)

}
+
√
n‖θ − θ0‖2{1 + op(1)}+ op(

√
n‖θ − θ0‖2)

= (θ − θ0)ᵀ × Constant +
√
nC2α2

n + op(
√
n‖θ − θ0‖2)

= Op(Cαn) +
√
nC2α2

n + op(
√
nC2α2

n).
(C.12)

As long as C is large enough, the second terms in (C.12) dominates the first and third terms
in (C.12). Thus, for any ε > 0, as long as C is large enough, the probability of (C.12)
larger than zero is at least 1− ε. By the Brouwer fixed-point theorem, with probability at
least 1− ε, there exists at least one solution, θ̂v for (C.7) that satisfies ‖θ̂v− θ0‖ = Op(αn).

C.6 Proof of Theorem 4.4

Lemma 4.2 Let U c
II(θ, φ) denote

n∑
k=1

U c
k,II{θ, φ;Y c

k }, where U c
k,II{θ, φ;Y c

k } is defined before

Theorem 4.4 in Section 4.2. If the conditions in Theorem 4.4 hold, then with the probability
tending to one, for any θ satisfying ‖θ−θ0‖ = O( 1√

n
), we have that θII = 0 are the solutions

to U c
II(θ, φ) = 0.

The proof is similar to that of Lemma 4.1 in Appendix C.3 with U c
IIj(θ) replaced by

U c
IIj(θ, φ).

Theorem 4.4(a) comes from Lemma 4.2 immediately. Then, similar to the proof of
Theorem 4.2(b) in Appendix D, based on Condition (C.6), we apply the Taylor series

expansion to 0 =
n∑
k=1

U c
k,I(θI0, φ0;Y c

k )− p′λn,I(θI) to obtain the Theorem 4.4(b).
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Appendix D

Technical Components for Chapter 5

D.1 Full Conditional Distribution of Hyperparame-

ters

As we defined in (5.6), the prior distribution for hyperparameters, λαi , λβi , λγi and a are
half-Cauchy distribution. It suffices to show the full conditional distribution of λγi only,
and all full conditional distribution of other hyperparameters can be derived using same
techniques:

π(λαi |α, β, γ, a) = π(λαi |αi, a)

∝ π(λαi)× π(αi|λαi , a)

∝ 2

π

1

1 + λ2
αi

× exp(− α2
i

2λ2
αi
a2

).

The density function of π(λαi |α, β, γ, a) cannot be identified as any known distribution.
Thus, Slice-sampling algorithm (Polson et al. 2014) is used to generate λαi as we present
in Section 5.2.3.
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D.2 Full Conditional Distribution of α(r)

As we claimed in (5.5), the full conditional distribution of α(r) is

π(α(r)|w, β(r),B−r, {Y, x}) ∝
{ n∏
k=1

P (Yk = yk|B)
}
f(w|B)π(α(r)|β(r),B−r)

∝
n∏
k=1

{ exp(< xk,B >)yk

1 + exp(< xk,B >)

}
cosh

( | < xk,B > |
2

)
× exp

{
− (< xk,B >)2wk

2

}
π(α(r)|λα(r) , a)

= 2−nπ(α(r)|λα(r) , a)
n∏
k=1

exp
{
yk(< xk,B >)− < xk,B >

2

− (< xk,B >)2wk
2

}
∝ exp

{
− 1

2
α(r)ᵀΣ−1

α(r)α
(r) +

n∑
k=1

(
yk −

1

2

)
α(r)ᵀxkβ

(r)

− (α(r)ᵀxkβ
(r))2

2
wk − α(r)ᵀxkβ

(r)
(
< xk,B−r >

)
wk

}
= exp

[
− 1

2
α(r)ᵀΣ−1

α(r)α
(r) − 1

2
α(r)ᵀxᵀ

β(r)Ω(w)xβ(r)α(r)

+ xβ(r)

{
y − 1

2
1n − xB−r(w)

}
α(r)
]

= exp
[
− 1

2
α(r)ᵀ

{
xᵀ
β(r)Ω(w)xβ(r) + Σ−1

α(r)

}
α(r) + xβ(r)y(w)α(r)

]
(D.1)

where the third step is from the fact that cosh(u) = 1+exp(2u)
2 exp(u)

, xβ(r) = (x1β
(r), ..., xnβ

(r))ᵀ,

y = (y1, ..., yn)ᵀ, y(w) = y− 1
2
1n−xB−r(w), xB−r(w) = {(< x1,B−r >)w1, ..., (< xn,B−r >

)wn}ᵀ, 1n is an n × 1 unit vector, Ω(w) = diag(w) and Σα(r) = diag(λ2
α(r)a

2). We can
observe that (D.1) is the kernel of a multivariate normal with mean mα(r)(w) and covariance
Σα(r)(w) such that

mα(r)(w) = Σα(r)(w)xβ(r)y(w),

Σα(r)(w) =
{
xᵀ
β(r)Ω(w)xβ(r) + Σ−1

α(r)

}−1

.
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D.3 Full Conditional Distribution of β(r)

The full conditional distribution of β(r) is

π(β(r)|w, α, {Y, x}) ∝
{ n∏
k=1

P (Yk = yk|B)
}
f(w|B)π(β(r)|α(r),B−r)

∝
n∏
k=1

{ exp(< xk,B >)yk

1 + exp(< xk,B >)

}
cosh

( | < xk,B > |
2

)
× exp

{
− (< xk,B >)2wk

2

}
π(β(r)|λβ(r) , a)

= 2−nπ(β(r)|λβ(r) , a)
n∏
k=1

exp
{
yk(< xk,B >)− < xk,B >

2

− (< xk,B >)2wk
2

}
∝ exp

{
− 1

2
β(r)ᵀΣ−1

β(r)β
(r) +

n∑
k=1

(
yk −

1

2

)
α(r)ᵀxkβ

(r)

− (α(r)ᵀxkβ
(r))2

2
wk − α(r)ᵀxkβ

(r)
(
< xk,B−r >

)
wk

}
= exp

[
− 1

2
β(r)ᵀΣ−1

β(r)β
(r) − 1

2
β(r)ᵀxᵀ

α(r)Ω(w)xα(r)β(r)

+ xα(r)

{
y − 1

2
1n − xB−r(w)

}
β(r)
]

= exp
[
− 1

2
β(r)ᵀ

{
xᵀ
α(r)Ω(w)xα(r) + Σ−1

β(r)

}
β(r) + xα(r)y(w)β(r)

]

(D.2)

where xα(r) = (xᵀ1α
(r), ..., xᵀnα

(r))ᵀ, and Σβ(r) = diag(λ2
β(r)a

2). We can observe that (D.2) is

the kernel of a multivariate normal with mean mβ(r)(w) and covariance Σβ(r)(w) such that

mβ(r)(w) = Σβ(r)(w)xα(r)y(w),

Σβ(r)(w) =
{
xᵀ
α(r)Ω(w)xα(r) + Σ−1

β(r)

}−1

.
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