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Abstract

Black Holes are possibly the most enigmatic objects in our Universe. From their de-
tection in gravitational waves upon their mergers, to their snapshot eating at the centres
of galaxies, black hole astrophysics has undergone an observational renaissance in the past
4 years. Nevertheless, they remain active playgrounds for strong gravity and quantum
effects, where novel aspects of the elusive theory of quantum gravity may be hard at work.
In this thesis, we provide an overview of the strong motivations for why “Quantum Black
Holes” may be radically different from their classical counterparts in Einstein’s General
Relativity. We then discuss the observational signatures of quantum black holes, focusing
on gravitational wave echoes as smoking guns for quantum horizons (or exotic compact
objects), which have led to significant recent excitement and activity. We review the
theoretical underpinning of gravitational wave echoes and build up realistic templates for
further data analysis. Finally, we discuss the future theoretical and observational landscape
for unraveling the “Quantum Black Holes in the Sky”.
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Chapter 1

Introduction

Black holes (BHs) are very interesting “stars” in the Universe where both strong gravity
and macroscopic quantum behavior are expected to coexist. Classical BHs in General Rel-
ativity (GR) have been thought to have only three hairs, i.e., mass, angular momentum,
and charge, making observational predictions for BHs relatively easy [155, 88] (compared to
other astrophysical compact objects). For astrophysical BHs, due to the effect of ambient
plasma, this charge is vanishingly small, leaving us with effectively two hairs for isolated
black holes, with small accretion rates. In other words, finding conclusive deviations from
standard predictions of these 2-parameter models, may be interpreted as fingerprints of a
quantum theory of gravity or other possible deviations from GR. For example, the quasi-
normal modes (QNMs) of spinning BHs, which have been widely-studied over the past few
decades (a subject often referred to as BH spectroscopy), only depend on the mass and spin
of the Kerr BH (e.g., [164]). The ringdown of the perturbations of the BH is regarded as a
superposition of these QNMs, and thus can be used to test the accuracy of GR predictions
and no-hair theorem (e.g., see [154]). As a result, precise detection of QNMs from the
ringdown phase (from BH mergers or formation) in gravitational wave (GW) observations
may enable us to test the classical and quantum modifications to GR (e.g., [276, 277, 64]).

A concrete path towards this goal is paved through the study of “GW echoes”, a
smoking gun for near-horizon modifications of GR which are motivated from the resolutions
of the proposed resolutions to the BH information paradox and dark energy problems
[39, 232]. The list of these models include wormholes [81], gravastars [195], fuzzballs [174],
2-2 holes [152], Aether Holes [232], Firewalls [39] and the Planckian correction in the
dispersion relation of gravitational field [209, 211].

The possibility of observing GW echoes was first proposed shortly after the first de-
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tection of GWs by LIGO [81, 82, 85], which has led to several observational searches
[28, 268, 99, 282, 203, 22, 244, 150, 45, 30, 31]. Tentative evidence for and/or detection
of these echoes can be seen in the results reported by different groups [28, 99, 282, 203,
22, 244, 268, 150] from O1 and O2 LIGO observations of binary BH and neutron star
mergers, but the origin and the statistical significance of these signals remain controversial
[282, 45, 30, 31, 244], motivating further investigation.

Given their uncertain theoretical and observational status, GW echoes are gathering
much attention from those who are interested in the observational signatures of quantum
gravity, and the field remains full of excitement, controversy and confusion. In the thesis,
I summarize our contribution to this area, from its motivation to its models, and into its
future outlook.

The thesis is organized as follows: In this chapter, we provide basis feature of BHs,
setting stage for the motivation to investigate the quantum signatures from BHs. In Chap-
ter 2, we discuss theoretical models of quantum BHs to motivate our echoes analysis. In
Chapter 3, we discuss how to predict the GW echoes from spinning Quantum BHs with
any reflectivity. Chapter 4 and 5 study a specific physical model – the Boltzmann reflec-
tivity [211, 281] for quantum BHs and its echoes. In Chapter 6, we provide a novel Hybrid
method for studying echoes with more realistic nonlinear initial condition, while Chapter
7 we discuss the future prospects for advancement in theoretical and observational studies
of quantum BHs.

Throughout the thesis, we use the following notations:

Symbol Description
a spin parameter
ā non-dimensional spin parameter (a/(GM))
c speed of light
~ Planck constant
kB Boltzmann constant
G gravitational constant
MPl Planck mass
EPl Planck energy
lPl Planck length
M mass of a BH or QBH
M� solar mass (1.988× 1030 kg)
rg Schwarzschild radius
TH Hawking temperature

2



Furthermore, unless noted otherwise, we use the natural Planck units with ~ = c = 1 =
G = 1.

1.1 Classical BHs

Schwarzschild and Kerr spacetimes are solutions of general relativity giving the spacetime
configurations of BHs, which are the most dense objects in our universe. In some regions,
matter accumulates and attracts more matter with its gravity which is classically always
attractive. At the end, the force is so strong that even the light cannot escape from those
regions, where then BHs form.

The first and most important feature (the definition of BHs) is the formation of horizon.
Inside the (event) horizon, all the light cones are directed into the singularity, and nothing
can escape, unless it could travel faster than the speed of light. Therefore, horizons stand
as the causal boundaries of BHs in Einstein’s theory of Relativity.

Realistic BHs in the sky have different hairs (mass, spin and charge), and their dynamics
share more complicated structure, thus, have different kinds of horizons. To list some of
them, event horizons are defined as the boundaries where no light can escape to the infinite
future. However, for a dynamically evolving BH, event horizons are teleological, i.e. we
cannot predict them until we have the entire history of the spacetime. Apparent horizons,
however, are predictable at a specific time without knowing the future. Any surface has
two null normal vectors and if expansion of both of them are negative, the surface is called
“trapped”. Apparent horizons are the outermost of all the trapped surfaces, which is why
they are also known as the “marginally outer trapped surface”.

Here is a simple example to distinguish these two horizons — we start with a Schwarzschild
BH at time t1, now the event and apparent horizons coincide at the Schwarzschild radius.
We throw a spherical null shell into the BH and let it cool down at t2. This process is
perfectly described by Vaidya metric [228]. The apparent horizon changes immediately
when the shell falls into the BH but the event horizon starts to expand earlier, even before
the shell reaches it. It is because that after throwing the shell, the gravity of BH increases.
Thus it is harder for light to escape from the BH to infinity. In other words, particles
might be doomed to fall into a singularity, even before they had a chance to meet the
infalling gravitating matter that is responsible for their fate. Therefore, the event horizon
is modified earlier than the apparent horizon. While this result is counter-intuitive, it is a
result of the formal definition of the event horizons, which requires the information about
the entire history of spacetime, in particular, the future!
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Beyond the horizons, another intriguing trait of BHs is the curvature singularity, which
sits at the centre of the BHs. Horizons can also be singular, but usually only coordinate
singularities and (in classical General Relativity) removable by changing to a proper coor-
dinate system. However, the singularities inside the BHs are where the general relativity
breaks down and so far we do not have any good physics to describe them. We cannot
chase the information lost into these singularities (using standard physics), which leads to
the information paradox (more on this later).

Back in November 1784, John Michell, an English clergyman, advanced the idea that
light might not be able to escape from a very massive object (at a fixed density). For
example, light cannot escape from the surface of a star with the density of the sun, if
it was 500 times bigger than the sun. Albert Einstein, later in 1915, developed general
relativity. Soon after this, Karl Schwarzschild solved the Einstein vacuum field equation
under spherical symmetry with a singular mass at the center, which was the first solution
for BHs, the Schwarzschild metric.

While 20th century saw a golden age of general relativity with blooming of dozens of
different BH solutions, the existence of BHs was not directly confirmed until one century
later in 2015. LIGO-Virgo collaboration reported unprecedented detection of GWs from the
binary BH merger events [13, 12, 15, 14, 21, 18, 19, 17]. Numerical relativity is consistent
with LIGO data at least up to quite near the horizon range. But the detection has not
confirmed the existence of the horizons. We will discuss in this thesis how the detection
opens a window for searching for quantum nature of the BHs beyond the general relativity.

1.1.1 Schwarzschild spacetime

The Schwarzschild spacetime was the first exact solution in the Einstein theory of general
relativity. It models a static gravitational field outside a mass which has spherical symme-
try, zero charge and rotation. Karl Schwarzschild[252] found this solution in 1915, and four
months later, Johannes Droste[112] published a more concrete study on this independently.
The metric in the Schwarzschild coordinate is:

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2, (1.1)

where M is the mass of the centre object, 2M is Schwarzschild radius and dΩ2 = dθ2 +
sin2 θdφ2 is the metric on a 2-sphere. The metric describes gravitational field outside any
spherical object without charges. If the radius of the central object is smaller than the
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Schwarzschild radius, the object is then too dense to be stable, and will go through a
gravitational collapse and form a Schwarzschild BH.

Later in 1923, G.D.Birkhoff[65] proved that any spherically symmetric solution of the
vacuum Einstein field equation must be static and asymptotically flat. Hence, Schwarzschild
metric is the only solution in the case. For any static solution, the event horizon always
coincides with the apparent horizon. In general relativity, Schwarzschild coordinate is sin-
gular at the horizon. However, as stated above, this is only a coordinate artifact. That
is to say, a free falling observer feels no drama going through the horizon. It takes the
observer a finite amount of proper time but infinite coordinate time. Particularly, we can
remove the singularity by a proper coordinate transformation.

In contrast, origin r = 0 is intrinsic curvature singularity. Scalar curvature is infinite
and general relativity is no longer valid at this point.

1.1.2 Kerr spacetime

The Kerr spacetime [160], discovered by Roy Kerr, is a realistic generalization of the
Schwarzschild spacetime. It describes the gravitational field of an empty spacetime outside
a rotating object. The spacetime is stationary and has axial symmetry. The metric in the
Boyer-Lindquist coordinate is:

ds2 = −
(

1− 2Mr

ρ2

)
dt2 +

ρ2

∆
dr2 + ρ2dθ2 (1.2)

+

(
r2 + a2 +

2Mra2

ρ2
sin2 θ

)
sin2 θdφ2 − 4Mra sin2 θ

ρ2
dtdφ, (1.3)

= −ρ
2∆

Σ
dt2 +

Σ

ρ2
sin2 θ(dφ− ωdt)2 +

ρ2

∆
dr2 + ρ2dθ2, (1.4)

where a = J/M , ρ2 = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2, Σ = (r2 + a2)2 − a2∆ sin2 θ and
ω = −gtφ/gφφ = 2Mar/Σ. The Cartesian coordinates can be defined as

x =
√
r2 + a2 sin θ cosφ, y =

√
r2 + a2 sin θ sinφ, z = r cos θ. (1.5)

There are two singularities easily reading from the coordinate where the grr and gtt vanish.
The first one gives r± = M ±

√
M2 − a2 corresponding to the horizon analog to the

Schwarzschild metric. The larger root r+ = M +
√
M2 − a2 is the event horizon, while the

other root is inner apparent horizon.
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The second singularity is related to an interesting effect in the Kerr spacetime called
frame-dragging effect: When reaching close to the Kerr BHs, the observers even with
zero angular momentum (ZAMOs) will co-rotate with the BHs because of the swirling of
spacetime from the rotating body. We assume that uα is the four-velocity of ZAMOs,
and from the conservation of angular momentum gφtṫ + gφφφ̇ = 0, where an overdot is
differentiation with respect to the proper time of the observers τ . Thus, dφ/dt = −gtφ/gφφ.
Because of this frame-dragging effect, there is a region of spacetime where static observers
cannot exist, no matter how much external force is applied. This region is known as the
“ergosphere” r ≤ M +

√
M2 − a2 cos2 θ. The rotation also leads to another interesting

feature, called “superradiance”. That is, we can extract energy from scattering waves off
the Kerr BHs.

Finally, the Kerr spacetime also possesses a curvature singularity at the origin ρ2 =
r2 + a2 cos2 θ. However, in contrast to Schwarzschild case, this singularity can be avoided
since it is a ring at r = 0 and θ = π/2, where z = 0 and x2 + y2 = a2. In principle,
observers can go through the ring without hitting the singularity. However, it is widely
believed that the inner horizon, r− in Kerr spacetime is subject to an instability which
would make the analytic extension of Kerr metric beyond r− unphysical [229].

1.1.3 Blue-shift near horizon

As shown in the metric, different observers have different proper time. Hence, in the
general relativity, the clocks at a gravitational field tick in a different speed in a different
spacetime point. This is the blue(red)-shift effect, and it is extremely strong close to the
dense object, especially near horizon.

Assuming static clocks in the Schwarzschild spacetime ds2 = −dτ 2 = −(1−2M/ro)dt
2,

where τ is the proper (clock) time of an observer at distance ro. Hence, t is the proper
time of an observer at infinity. The shifted wavelength λo measured by observers at ro
compared to observers at infinite is

λo
λ∞

=
dτ

dt
=

(
1− 2M

ro

)1/2

. (1.6)

1.1.4 Thermodynamics of Semi-classical BH

Jacob Bekenstein and Stephen Hawking first proposed that the entropy of BHs is related to
the area of their event horizons divided by the Planck area [56, 58, 59, 124, 144]. Further-
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more, in 1974, Stephen Hawking showed that rather than being totally black, BHs emit
thermal radiation at the Hawking temperature, TH = κ/2π, where κ is the surface gravity
at the horizon [141, 142, 140]. This then lead to the celebrated Bekenstein-Hawking en-
tropy formula SBH = A/4 [124, 144], where A is the area of the event horizon. However, the
nature of microstates of BHs that are enumerated by this entropy remains so far unknown.
String theory associates it with higher dimensional fuzzball solutions, as discussed later
in Sec. 2.5. Loop quantum gravity relates the quantum geometries of the horizon to the
microstates [240]. Both these approaches can give the right Bekenstein-Hawking entropy,
given specific assumptions and idealizations.

Interestingly, not only the entropy exists for the BHs, but also Brandon Carter, Stephen
Hawking and James Bardeen [54] discovered the four laws of BH thermality analogous to
the four laws of thermodynamics. The latter is presented in the parentheses.

• The zeroth law: A stationary BH has constant surface gravity κ. (A thermal
equilibrium system has a constant temperature TH.)

• The first law: A small change of mass for a stationary BH is related to the changes
in the horizon area A, the angular momentum J, and the electric charge Q: dM =
κ
8π
dA+ΩdJ+ΦdQ, where Ω is the angular velocity and Φ is the electrostatic potential

(Energy conservation: dE = TdS − PdV − µdN).

• The second law: The area of event horizon A never decreases in general relativity
(The entropy of isolated systems never decreases).

• The third law: BHs with a zero surface gravity cannot be achieved (Matter in a
zero temperature cannot be reached).

1.2 Membrane Paradigm

As mentioned above, in classical general relativity, freely falling observers experience no
drama as they cross the event BH horizons, at least not until they reach the singularity
inside the BH. However, to a distant and static observer outside a BH, any infalling objects
are frozen at the horizons due to the blue-shift effect. Hence, the BH interior can be
regarded as an irrelevant region for the static observers. Based on this complementary
picture near horizon, in 1986, Kip S. Thorne, Richard H. Price and Douglas A. Macdonald
published the idea of membrane paradigm [264]. They use a classically radiating membrane
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to model the BHs, which is motivated as a useful tool to study physics outside BHs without
involving any obscure behavior within BH interior.

Here we provide a simple calculation motivated by membrane paradigm for relating
viscosity and reflectivity. We introduce a spherical membrane located infinitesimally out-
side the Schwarzschild radius, or the would-be horizon of QBHs. When the membrane is
sufficiently thin, one can use the Israel junction condition to nicely embed the membrane
in the Schwarzschild spacetime. The condition is

(K(+)fab −K(+)
ab )− (K(−)fab −K(−)

ab ) = 8πTab, (1.7)

where fab is the induced metric of the membrane, K
(±)
ab is the extrinsic curvatures on its

two sides, and Tab is its stress tensor. The infalling observer will cross the horizon and enter
the BH interior without possibility of seeing the membrane. However the static observer
outside the BH can remove irrelevant interior region from the remaining spacetime inside
the membrane. Assuming reflection symmetry K+

ab = −K−ab, the Israel junction condition
on the membrane becomes

K(+)fab −K(+)
ab = 4πTab, (1.8)

where the stress tensor Tab is no longer zero but has contribution from the extrinsic cur-
vature on the membrane.

Modifying Einstein gravity which revises the structure of BHs can provide a modified
structure of the thin-shell membrane. We start by perturbing the Schwarzschild space-
time, whose metric is gSch

µν . Within Regge-Wheeler formalism [237], the axial axisymmetric
perturbation gµν = gSch

µν (r) + δgµν(r, θ, t) take the form:

δgtφ = εe−iωth0(r)y(θ), (1.9)

δgrφ = εe−iωth1(r)y(θ), (1.10)

where other δgµν components vanish, and ε � 1 controls the order of perturbation. The
membrane stands at r = r0 + εR(t, θ), where r0 is its unperturbed position. We apply the
Israel junction conditions Kab −Kfab = −4πTab to Brown-York stress tensor as defined in
[156]. The indexes µ, ν run over (t, r, θ, φ) in the 4d spacetime, while a, b run over (t, θ, φ)
on the 3d membrane. We further assume that Tab is the energy stress tensor of a viscous
fluid:

Tab = [ρ0 + ερ1(t, θ)]uaub + [p0 + εp1(t, θ)− ζΘ]γab − 2ησab, (1.11)

σab =
1

2
(ua;cγ

c
b + ub;cγ

c
a −Θγab), (1.12)

γab ≡ hab + uaub, Θ ≡ ua;a, (1.13)

8



where ρ0 and p0 (ρ1 and p1) are background (perturbation on) membrane density and
pressure, and ua, η and ζ are fluid velocity, shear viscosity, and bulk viscosity, respectively.
Plugging Eqs. (1.9-1.13) into the the Israel junction condition, we find in the zeroth order
in ε:

ρ0(r0) = −
√
f(r0)

4πr0

, (1.14)

p0(r0) =

√
f(r0)(g(r0) + r0g

′(r0))

8πr0g(r0)
, (1.15)

where g(r0) = (1− 2M/r0)1/2 and f(r0) = 1− 2M/r0. Assuming uφ = 0, θφ component of
Israel junction condition gives in next order of ε:

ωh1(r) = −8iπη[h1(r) + (r − rg)h′1(r)]. (1.16)

We can further use ψω = 1/r (1− 2M/r)h1(r) and the tortoise coordinate x = r +
2M log[r/(2M)− 1] to rewrite Eq. (1.16) as

ωψω = 16iπη
∂ψω
∂x

. (1.17)

For the classical BHs with a purely ingoing boundary condition ψω ∝ e−iωx at the
horizon, Eq. (1.17) gives η = 1/16π, which is consistent with the standard membrane
paradigm. If instead we assume there is no longer horizon but a reflective surface with
ψω = Aoute

iωx + Aine
−iωx, Eq. (1.17) gives:

Aout

Ain

=
1− 16πη

1 + 16πη
e−2iωx. (1.18)

Which relates the reflectivity of the membrane to the viscosity of the surface fluid.

1.3 Dawn of Gravitational Wave Astronomy

From 2015 onwards, the LIGO/Virgo collaboration reported unprecedented GW observa-
tions from binary BH merger events [13, 12, 15, 14, 21, 18, 19, 17]. It is the first time that
humankind can detect GWs after one century of the Einstein’s general theory of gravity. In
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2017, Rainer Weiss, Kip Thorne and Barry C. Barish won the Nobel Prize in Physics “for
decisive contributions to the LIGO detector and the observation of Gravitational Waves”.

Gravitational wave detectors are designed and improved for detecting any distorted
spacetime by accelerated mass since 1960. LIGO/Virgo collaboration has the most sensi-
tive detections based on laser interferometry. Gravitational wave will affect the distance
between two free mass, which is then catched by the interferometry. By template from nu-
merical relativity, they can reconstruct the waveform. Along this thesis, we will introduce
modified theory of gravity which gives a different theoretical template for waveform, to be
search in the data.

The first and most prominent binary BH merger signal seen by LIGO, GW150914,
matches well with predictions of numerical relativity simulations that settle into Kerr
metric, but contrary to original claims, it could not confirm the existence of the event
horizons [81]. However, it opened a new front to test general relativity in strong gravity
regime and Kerr-like spacetimes (e.g., Quantum BHs) from modified gravity, which is the
main topic of this thesis.

This is the dawn of GW astronomy, and we stand at the threshold of a new age. We
are detecting even more compact binary merger events with a better sensitivity from the
O3 run of LIGO/Virgo. Future experiments such as Einstein Telescope, Cosmic Explorer,
and LISA are expected to improve this by orders of magnitude. More studies on the echo-
emission mechanism as well as observational strategies will be crucial for taking advantage
of these new observations, to shed light on the nature of quantum BHs. It is our point of
view that the best bet is on a sustained synergy between theory and observation, relying
on well-motivated theoretical models (such as the Boltzmann reflectivity, aether holes, 2-2
holes, or fuzzballs, discussed in this review) to provide concrete templates for data analysis,
which in turn could be used to pin down the correct theory underlying quantum BHs. With
some luck, this has the potential to revolutionize our understanding of fundamental physics
and quantum gravity.

1.4 Quantum Gravity and Equivalence Principle

The Einstein’s general theory of relativity is classical. However, in the Einstein field equa-
tion Gµν = 8πGTµν , the classical spacetime geometry is related to stress energy tensor of
quantum matter. For decades, scientist have tried to reconcile this inconsistency by embed-
ding general relativity (or its generalizations) within some quantum mechanical framework,
i.e. quantum gravity.
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Conventional approach to quantizing Einstein gravity fails because it is not renormaliz-
able. This implies that making predictions for observables, such as scattering cross-sections,
requires knowledge of infinitely many parameters at high energies, leading to loss of predic-
tivity. In the modern language, general relativity could at best be an effective field theory,
and requires UV-completion beyond a cutoff near (or below) Planck energy (e.g., [111]).

Most proposals for this UV-completion involve replacing spacetime geometry with a
more fundamental degree of freedom, such as strings (string theory) [230], discrete spins
(loop quantum gravity) [44], spacetime atoms (causal sets) [68], or tetra-hydra (causal
dynamical triangulation) [41]. More exotic possibilities include Asymptotic Safety [202],
Quadratic Gravity [151], and Fakeon approach [42] that introduce a non-perturbative or
non-traditional quantization schemes for 4d geometry. Yet another possibility is to modify
the symmetry structure of General Relativity in the UV, as is proposed in Lorentz-violating
(or Horava-Lifshitz) quantum gravity [153].

While proponents of these various proposals (with varying degrees of popularity) have
claimed limited success in empirical explanations of some natural phenomena, it should be
fair to say that none can objectively pass muster of predicitivity. As such, for now, the
greatest successes of these proposals remain in the realm of Mathematics.

Due to this lack of concrete predictivity, the EFT estimates (discussed above) are
instead commonly used to argue that the quantum gravitational effects should only show
up at Planck scale ∼ 10−35 m or 1028 eV, which is far from anything accessible by current
experiments. However, such arguments miss the possibilities of non-perturbative effects
(such as phase transitions) which depend on a more comprehensive understanding of the
full phase space of the specific quantum gravity proposal.

For example, it has been shown that the non-perturbative quantum gravitational effects
may lead to Planck-scale modifications of the classical BH horizons [186]. Proposed models
like gravastars [195], fuzzballs [174, 175, 187, 188, 193], aether BHs [232], and firewalls
[70, 40] amongst others [51, 159, 127, 89] all drastically alter the standard structure of the
BH stretched horizons with a non-classical surface. Soon after the first reported detection
of gravitational waves, [81] discerned that Planck-length structure modification around
horizons leads to a similar waveform as in classical GR, but followed by later repeating
signal — echoes — in the ringdown from the reflective surface that replaces the classical
horizon. This discovery equals a new road leading to Rome — quantum nature of gravity
— and has sparked off a novel area of modeling and searching for signatures from Quantum
BHs. The next chapter will discuss the quantum theories of BH models and possible road
maps to probe them, inspired by the detection of binary BH merger events in gravitational
waves.
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Chapter 2

Quantum Black Holes

2.1 Evaporation of BHs and the Information Paradox

It was already recognized by Stephen Hawking in the 1970s that the evaporation of a BH
leads to an apparent breakdown of the unitarity of quantum mechanics. Here, we will
briefly review this problem, which is known as the BH information loss paradox [143].
In the context of quantum field theory in curved spacetime, the energy flux out of a
BH horizon is obtained by specifying a proper vacuum state and fixing the (classical)
background spacetime. However, a radiating BH must lose its mass in time, and so fixing
the background is valid only for a much shorter timescale than the evaporation timescale.
One can roughly estimate the lifetime of a BH as follows: The energy expectation value
of a Hawking particle is of the order of the Hawking temperature TH ≡ (8πM)−1, which
would be emitted over the timescale of t ∼ M . Then we can estimate the luminosity of
the BH as

dM

dt
∼ −TH

M
∼ −(M2)−1, (2.1)

and this gives its lifetime tlife
tlife ∼M3. (2.2)

To be consistent with the result of a more rigorous calculation (see e.g. [117]), we need a
factor of about 105 in (2.2)

tlife ' 105M3 ∼ 1075

(
M

M�

)3

[sec], (2.3)
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which is much much longer than the cosmic age of ∼ 4 × 1017 [sec] for astrophysical BHs
whose mass are &M�. It may be true that BHs evaporate due to the Hawking radiation,
at least, until reaching the Planck mass. However, the gravitational curvature near the
horizon eventually reaches the Planckian scale and the classical picture of background
gravitational field would break down. As such, the possibility of leaving a “remnant”
after the evaporation has been discussed (see e.g. [38, 48, 125, 33]), but the most natural
possibility would be that only Hawking radiation is left after the completion of the BH
evaporation.

If the Hawking evaporation just leaves the “thermal” radiation afterwards, one can
immediately understand why the evaporation process is paradoxical. Let us suppose that
a pure quantum state collapses into a BH and it radiates Hawking quanta until the BH
evaporates. If the final state is a thermal mixed state, the evaporation is a process which
transforms a pure to mixed state. Therefore, if the final state of any BH is a completely
thermal state, one can say that the evaporation process is a non-unitary process. The
information loss paradox can be also explained from the geometric aspect using the Penrose
diagram. In quantum mechanics, the time-evolution of a quantum state is described by a
unitary operator, Û , that maps an initial quantum state |in〉 on a past Cauchy surface Σi

into a final quantum state |f〉 on a future Cauchy surface Σf. Since the unitary operator
gives a reversible process, one can also obtain the initial state from the final state as

|in〉 = Û † |f〉 . (2.4)

Although this is true in a flat space, the argument is very controversial in the existence
of an evaporating BH. Assuming a gravitational collapse forms a horizon and singularity,
then it eventually evaporates, leaving behind a thermal radiation, the Penrose diagram
describing the whole process is given by Fig. 2.1. Let us consider three quantum states:
an initial quantum state |in〉 on Σi, an intermediate quantum state |mid〉 on Σm, and a final
state |f〉 on Σf, where Σi, Σm, and Σf are the Cauchy surfaces and Σm intersects the future
horizon H+ and so one can split it into the exterior and interior regions as Σm ≡ Σext∪Σint

(see Fig. 2.1).

The final quantum state |f〉 is determined by information on the exterior part of the
intermediate Cauchy surface Σext rather than that on the whole intermediate Cauchy sur-
face Σm, which leads to the information loss paradox. To see this in more detail, let us
consider an initial pure quantum state

|in〉 =
∑
i

cin
i |ψi〉 , (2.5)
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Figure 2.1: The Penrose diagram describing an evaporating BH.

where
{
cin
i

}
is an initial vector in the Hilbert space. The intermediate state is still a pure

state due to the unitary evolution of |in〉

|mid〉 = Û |in〉 =
∑
i,j

ci,j |ψi〉int ⊗ |ψj〉ext , (2.6)

the time-evolution from Σm to Σf is non-unitary, provided that the final state on Σf is
obtained by the unitary evolution of the exterior intermediate state. The density matrix of
the exterior intermediate state, denoted by ρ̂ext, is obtained by tracing over all the internal
basis states:

ρ̂ext =
∑
k

〈ψk|int |mid〉 〈mid|ψk〉int =
∑
k,j,j′

ck,jc
∗
k,j′ |ψj〉ext 〈ψj′|ext . (2.7)

The resulting density matrix, (2.7), is independent of the interior orthogonal basis
{
|ψj〉int

}
due to the tracing operation. Therefore, the loss of the interior information results in a
non-unitary evolution and an initial quantum state evolves to a mixed state after the BH
evaporation.
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2.2 BH complementarity

The BH complementarity has been one of the leading proposals for the retrieval of BH
information, which was first put forth by by Susskind, Thorlacius, and Uglum [260]. Ac-
cording to a distant observer, due to the infinite redshift at a BH horizon, the Hawking
radiation involves modes of transplanckian frequency whose energy can be arbitrarily large
in the vicinity of the horizon. In the BH complementarity proposal, the energetic modes
form the membrane, which can absorb, thermalize, and reemit information, on the BH
horizon. They argue that such a picture regarding the retrieval of BH information by the
stretched horizon is consistent with the following three plausible postulates:

Postulate 1 (unitarity)— According to a distant observer, the formation of a BH and
the evaporation process can be described by the standard quantum theory. There exists a
unitary S-matrix which describes a process from infalling matter to outgoing non-thermal
radiation.

Postulate 2 (semi-classical equations)— Outside the stretched horizon of a massive BH,
physics can be approximately described by a set of semi-classical field equations.

Postulate 3 (degrees of freedom)— For a distant observer, the number of microscopic
states of a BH can be estimated by expS(M), where the exponent S(M) is the Beksntein-
Hawking entropy.

On the other hand, it has been presumed that a freely infalling observer would not
observe anything special when passing through the horizon due to the equivalence prin-
ciple. In this sense, there are two totally different and seemingly inconsistent scenarios
that co-exist in the BH complementarity. However, the contradiction arises only when at-
tempting to compare the experiments performed inside and outside horizon, which might
be impossible due to a backreaction of the high-energy modes near the stretched horizon
[259].

2.3 Firewalls

In 2012, Almheiri, Marolf, Polchinski and Sully (AMPS) argued [40] that the Postulates 1-3
in the BH complementarity and the Equivalence principle of GR are mutually inconsistent
for an old BH [218, 219, 220], provided that the monogamy of entanglement is satisfied.
Then they argued that the “most conservative” resolution is a violation of the equivalence
principle near the BH and its horizon should be replaced by high-energetic quanta, so called
“firewall”, to avoid the inconsistency. Before introducing the original firewall argument in
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more detail, let us review a theorem in quantum information theory, the monogamy of
entanglement. Let us consider three independent quantum systems, A, B, and C. The
strong subadditivity relation of entropy is given by

SAB + SBC ≥ SB + SABC . (2.8)

If A and B is fully entangled, we have

SAB = 0 and SABC = SC . (2.9)

Then the strong subadditivity relation reduces to

SB + SC − SBC ≤ 0. (2.10)

Since the left hand side in (2.10) is the mutual information of B and C, denoted by IBC ,
and it is a non-negative quantity, (2.10) reduces to

IBC = SB + SC − SBC = 0, (2.11)

which means that the quantum system B cannot fully correlate with C when B and A are
fully entangled mutually. Therefore, any quantum system cannot fully entangle with other
two quantum systems simultaneously. This is the monogamy of entanglement that is an
essential theorem in the firewall argument.

Let us consider an old BH, whose origin is a gravitational collapse of a pure state,
with early Hawking particles A, late Hawking particle B, and infalling particle inside the
horizon C. In order for the final state of the BH to be pure state, A and B should be
fully entangled mutually, that is a necessary condition for the Postulate 1. On the other
hand, created pair particles , B and C, are also fully entangled according to the quantum
field theory in classical background (Postulate 2). That is, imposing the Postulate 1 and
2 inevitably results in that B is fully and simultaneously entangled with both A and C,
which obviously contradicts with the monogamy of entanglement. In order to avoid this
contradiction, AMPS argued that there is no interior of BHs and the horizons should
be replaced by energetic boundaries that the entanglement of Hawking pairs are broken.
They called these boundaries “firewalls”. According to this proposal, any object falling
into a BH would burn up at the firewall, which contradicts the equivalence principle (in
vacuum) and replaces the BH complementarity proposal. Although there are some updates
of this proposal, based on ER=EPR conjecture [39, 222, 180, 258, 69], backreaction due
to gravitational shockwaves [286], and quantum decohenrence of Hawking pair due to the
interior tidal force [208]), they do remain speculative, and at the level of toy models.
However, on general grounds, if quantum effects lead to such an energetic wall at the
stretched horizon, it could contribute to the reflectivity of BH which may be observable by
merger events leading to the formation of BHs.
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2.4 Gravastars

The gravitational vacuum condensate star (gravastar) was proposed as a final state of grav-
itational collapse by Mazur and Mottola [195]. According to the proposal, the resulting
state of gravitational collapse is a cold compact object whose interior is a de Sitter conden-
sate, which is separated from the outside black hole spacetime by a null surface. In this
state, there is no singularity (with the exception of the null boundary) and no event horizon,
which avoids the BH information loss paradox. Such gravitational condensation could be
caused by quantum backreaction at the Schwarzschild horizon r = rg even for an arbitrarily
large-mass collapsing object. One might wonder why the backreaction can lead to such a
drastic effect for any mass since the tidal force which acts on an infalling test body can be
arbitrarily weak for an arbitrarily large mass at the Schwarzschild radius. The argument is
that considering a photon with asymptotic frequency ω near the Schwarzschild radius, the
(infinite) blue-shift effect by which the local energy is enhanced as ~ω/

√
1− rg/r, could

lead to a drastic effect at the Schwarzschild radius. This is unavoidable since any object is
immersed in quantum vacuum fluctuations and virtual particles always exist around them.
From this argument, the gravitational condensation has been expected to take place at the
final stage of gravitational collapse. The authors in [195] also estimate the entropy on the
surface of gravastar by starting with a simplified vacuum condenstate model which consists
of three different equations of state

0 ≤ r < r1, ρ = −p, (2.12)

r1 < r < r1 + δr, ρ = p, (2.13)

r1 + δr < r, ρ = p = 0, (2.14)

where r1 is the radius of interior region and δr is the thickness of the thin-shell of the gravas-
tar. Then the obtained entropy of the shell was found out to be S ∼ 1057gkB (M/M�)3/2,
where g is a dimensionless constant. Recently, the derivation of gravastar-like configuration
was performed by Carballo-Rubio [79]. He derived the semi-classical Tolman-Oppenheimer-
Volkoff (TOV) equation by taking into account the polarization of quantum vacuum and
solved it to obtain the exact solution of an equilibrium stellar configuration. It also has
its de Sitter interior and thin-shell near the Schwarzschild radius, which is consistent with
the original gravastar proposal [195].

From the observational point of view, the shadows of a gravastar was investigated in
[243] where they argue the shadows of a BH and gravastar could be distinguishable. In
addition, tests of gravastar with GW observations have been discussed in e.g. [221, 82, 99].
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2.5 Fuzzballs

Samir D. Mathur has proposed fuzzballs [187] as description of true microstates of the
quantum BHs from string theory. A fuzzball state has the BH mass inside a horizon-sized
region and a smooth (but higher-dimensional) geometry. Here are some crucial features of
the conjecture:

1. Different fuzzball geometries represent different microstates of the quantum BH —
fuzzball. Application the AdS/CFT duality [181] suggests that the counting of the
microstates is consistent with the Bekenstein-Hawking entropy.

2. Fuzzballs do not possess horizons. Instead, they end with smooth ”caps” near where
the horizons would have been. Every microstate has almost the same geometry out-
side the would-be horizon matching the classical BH picture for the outside observers.
But the microstates differ from each other near the would-be horizons.

3. Fuzzball solves the information paradox by removing the horizon and singularity. The
horizon is replaced by fuzzy matter and no longer vacuum. The particles created near
the would-be horizon now have access to the information of fuzzball interior. More-
over, the higher-dimensional spacetime ends smoothly around the would-be horizon
and is singularity-free. The infalling particles at the low frequencies interact with
the “fuzz” for a relatively long time scale, while high frequency ones excite the mi-
crostates and lose their energy the same as in the classical BHs case. Hence, the
traditional horizons only show up effectively from the point of view of an outside
observers, over relatively short time scale .M log(M).

How do these higher dimensional “microstates” with the smooth and horizonless ge-
ometries looks like? Applying Kaluza-Klein reduction of non-supersymmetric microstates
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of the D1-D5-KK system [132]. the metric in 4D is

ds2
4 = − f2√

AD
(dt+ c1c5ω)2 +

√
AD[dr

2

∆
+ dθ2 + ∆

f2
sin2 θdϕ2] (2.15)

∆ = r2 − r2
0, (2.16)

f 2 = ∆ + r2
0n

2 sin2 θ, (2.17)

A = f 2 + 2p[(r − r0) + n2r0(1 + cos θ)], (2.18)

B = f 2 + 2 r0(r−r0)(n2−1)
p−r0(1+n2)

[(r − r0) + n2r0(1− cos θ)], (2.19)

C = 2
r0
√
r0(r+r0)n(n2−1)

p−r0(1+n2)
[(r − r0) + (p+ r0)(1− cos θ)], (2.20)

G = Af2−C2

B2 , (2.21)

D = Bc2
1c

2
5 − f 2(c2

1s
2
5 + s2

1c
2
5) + Gf2

A
s2

1s
2
5, (2.22)

J2 =
r30p(r+r0)n2(n2−1)2

p−r0(1+n2)
, (2.23)

ω2 = 2J sin2 θ(r−r0)
f2

dϕ, (2.24)

where parameters c1, c5, s1, s5, r0, n and p are related to the mass, angular momentum
and charges of the solution.

This specific reduced 4D fuzzball solution has an associated 4D effective fluid near
the would-be horizon. The anisotropic pressure of the fluid is crucial to the horizonless
geometry[279].

2.6 Aether Holes and Dark Energy

In 2009, Prescod-Weinstein, Afshordi, and Balogh [233] studied the spherically symmetric
solutions of the Gravitational Aether proposal for solving the old cosmological constant
problem [34, 46]. Surprisingly, they showed that if one sets Planck-scale boundary condi-
tions for aether near the horizons of stellar mass BHs, its pressure will match the observed
pressure of dark energy at infinity.

In the Gravitational Aether proposal [34, 46], the modified Einstein field equation is
given by

1

8πG′
Gµν = Tµν −

1

4
Tααgµν + T ′µν , (2.25)

T ′µν = p′(u′µu
′
ν + gµν), (2.26)
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where G′ = 4/3GN , and then energy-momentum tensor of aether is assumed to be a perfect
fluid with stress-energy tensor T ′µν without energy density. Here, quantum vacuum energy
decouples from the gravity, as only the traceless part of the matter energy-momentum
tensor appears on the right-hand side of the field equations. It can be shown that the
Bianchi identity and energy-momentum conservation completely fix the dynamics, and thus
the theory has no additional free parameters, or dynamical degrees of freedom, compared
to General Relativity.

The modified Schwarzschild metric is the vacuum solution with spherical symmetry in
modified equations, and identical to a traditional equations sourced by the aether perfect
fluid. Far away from the would-be horizon but close enough to the origin (2M � r �
|p0|−1/2), the solution has the form

ds2 = −(1 + 4πp0r
2)dt2 + dr2 + r2dΩ2 (2.27)

which can be compared to the de Sitter metric

ds2 = −(1− 8

3
πρΛr

2)dt2 + (1− 8

3
πρΛr

2)−1dr2 + r2dΩ2 (2.28)

We see that assuming p0 = −2/3ρΛ, the gtt’s agree with each other. Therefore, the
Newtonian observers (for 2M � r � |p0|−1/2) will experience the same acceleration as in
the de-Sitter metric with the cosmological constant. However, on larger scales, one has to
take into account the effects of multiple black holes and other matter in the Universe. The
Planckian boundary conditions at the (would-be) horizon relates the pressure of the aether
to the mass of the astrophysical BHs, −p0 ∼ M−3 [233]. In particular, the BH masses
within the range 10 M� − 100 M�, which correspond to the most astrophysical BHs in
galaxies, yield aether pressures comparable to the pressure of Dark Energy, inferred from
cosmic acceleration. Moreover, Ricci scalar is inversely proportional to gtt, so the event
horizon where gtt = 0 has a curvature singularity, which is reminiscent of the firewall and
fuzzball proposals discussed above.

In particular, the fuzzball paradigm is a good approach to remove the singularity. On
the one hand, fuzzball gives an extra anisotropic matter field similar to the aether theory,
which stands as a good evidence that quantum effects can modify the Einstein field equation
with extra sources of 4d energy-momentum like aether. Furthermore, fuzzball is a regular
and horizonless geometry, which might indicate the singularity is removable in the full
quantum picture of BHs.
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2.7 2-2 holes

In general relativity, gravitational collapse of ordinary matter will always leads to singular-
ities behind trapping horizons [227]. In [152], Holdom and Ren revisited this problem with
the asymptotically free quadratic gravity, which could be regarded as a UV completion of
general relativity [152]. The quantum quadratic gravity (QQG), whose action is given by

SQQG =

∫
d4x
√−g

(
1

2
M2R− 1

2f 2
2

CµναβC
µναβ +

1

3f 2
0

R2

)
, (2.29)

is famously known to be not only asymptotically free, but also perturbatively renormaliz-
able [257, 275, 121, 47]. However, it suffers from a spin-2 ghost due to the higher derivative
terms, which is commonly regarded as a pathology of the theory. In [152], it is proposed
that the ghost may not be problematic when M is sufficiently small, so that the poles in
the perturbative propagators fall into the non-perturbative regime, and the perturbative
analysis of ghosts is not reliable. Then it is conjectured [151] that the full graviton propa-
gator in the IR, when M . ΛQQG, the spin-2 ghost pole is absent in an analogy with the
quantum chromodynamics (QCD) where the gluon propagator, describing off-shell gluons,
also does not have a pole. Here ΛQQG is a certain critical value in QQG, analogous to con-
finment scale ΛQCD in QCD. Based on this conjecture, the asymptotically free quadratic
action in (2.29) may involve small quadratic corrections at super-Planckian scale, and so
the super-Planckian gravity might be governed by the classical action

SCQG =
1

16π

∫
d4x
√−g

(
M2

PlR− αCµναβCµναβ + βR2
)
. (2.30)

Since gravitational collapse would involve the super-Planckian energy scale, applying the
classical action (2.30) to such a situation is interesting from a point of view of the quantum
gravitational phenomenology. Then the authors in [152] found a solution of horizonless
compact object, so-called 2-2 hole, in the classical quadratic gravity. 2-2 holes have an
interior with a shrinking volume and a timelike curvature singularity at the origin. It
also has a thin-shell configuration, leading to non-zero reflectivity at the would-be horizon,
which may cause the emission of GW echoes [99]. Recently, 2-2 holes sourced by thermal
gases were also investigated in [149, 238].

2.8 Non-violent Unitarization

A separate class of possible approaches to the BH information paradox involves a violation
Postulate 2 in BH complementarity, i.e. non-locality of field equations well outside the
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stretched horizon, which is dubbed as “nonviolent unitarization” by Steve Giddings [128].
Such a possibility would allow for transfer of information outside horizon around the Page
time (e.g., [52, 53]), but could also lead to large scale observable deviations from general
relativistic predictions in GW and electromagnetic signals [129]. However, it is not clear
whether this non-locality is only limited to BH neighborhoods, and if not, how it could
affect precision experimental/observational tests in other contexts. Moreover, in contrast
to GW echoes that we shall discuss next, it is hard to provide concrete predictions for
astrophysical observations in the nonviolent unitarization scenarios.
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Chapter 3

Black Hole Echology

3.1 Introduction

As discussed in early chapters, motivated by the BH information paradox and cosmological
constant problems, it has been suggested that non-perturbative quantum gravitational
effects may lead to Planck-scale modifications of BH horizons. Proposals to solve the
BH information paradox include gravastars [195], fuzzballs [174, 175, 187, 188, 193], and
firewalls [70, 40], amongst others [51, 159]. These QBHs all modify the standard structure
of BH horizons, and should form by Page time ∼ M3, but can emerge as early as the
“scrambling time” ∼M logM [145, 253].

Recent detections of gravitational waves from binary BH mergers by the LIGO-Virgo
collaboration [13, 12, 127, 15, 14, 21, 18, 19, 17] provide a way to test the structure around
the horizon scale. Shortly after LIGO’s first detection, GW150914, [81, 82] argued that
introducing a wall to replace horizon might yield a similar ringdown waveform as GR BHs,
but produce delayed echoes (see [84, 83] for a review) in the gravitational wave signal.
Using a phenomenological template by truncating the GR merger waveforms, [29] carried
out the first search for echoes and claimed a 2.5σ tentative evidence for them in the the
first three (candidate) events in the LIGO public data (but see [45, 282] and [30] for a
critique/rebuttal).

An independent search [99], using a different methodology, has recently found evidence
for echoes in each of LIGO’s merger events (with the notable exception of GW150914)
at ∼ 3σ significance level. However, we should note that the echoes reported in [29]
and [99] are for different events, even though they are both broadly consistent with the
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hypothesis of near-horizon Planck-scale structure. In particular, [30, 282] fail to find echoes
in GW151226, which has the most significant evidence for echoes in [99], suggesting that
the two methods capture different parts of the echo waveform.

Most recently, [?] claim a tentative detection of (lower harmonics of) echoes, at 4.2σ
level, from a “black hole” remnant in the aftermath GW170817 binary neutron star merger.

While one may consider other phenomenological echo templates (e.g., [185]), more
realistic templates for fitting data may be found by solving (linearized) Einstein equations
with modified boundary conditions near the horizon. Along this direction, most studies
have at that time focused on Schwarzschild BHs (e.g., [81, 82, 235, 183, 277, 276]). In this
chapter, we extend this to Kerr metric as realistic BHs have spin. [197] also presented
echo templates by modelling the reflectivity of the angular momentum barrier in the Kerr
spacetime. We, however, model the propagation in the full spacetime which provides a
more realistic treatment at lower frequencies.

Another related work at that time is [76] which studies the echoes of scalar Gaussian
wavepackets in Kerr-like wormholes. In contrast, we study generic propagation in Kerr
spacetime, with arbitrary boundary conditions, which can be applied not only to scalar
fields (s=0), but also massless Dirac (s = ±1/2), electromagnetic (s = ±1), or gravitational
(s = ±2) fields. Interestingly (but not surprisingly), we come to some similar conclusions,
e.g., i) Spinning QBHs give rise to unstable modes which, however, do not affect the
echoes till very late times (depending on whether the initial frequency range is within the
superradiance regime). ii) It is hard to make a model-independent prediction for the first
echo.

A related phenomenological issue that arises when we replace the horizon with a wall is
the emergence of superradiant instability for horizonless ergoregions [122, 86, 102]. While
this might suggest long-term instability of spinning QBHs, which may be in conflict with
astrophysical spin measurements for BHs [198], it was suggested by [177] that an absorption
rate of the wall as small as 0.4% is sufficient to quench the instability completely.

We organize this chapter as follows: Sec 3.2 provides the linear Einstein equations and
boundary conditions used. Instead of normal boundary condition with no outgoing wave
on the horizon, we put a wall standing just outside the would-be horizon. The reflection
rate of the wall depends on the specific model of quantum BHs. Sec 3.3 presents echo
solutions for different positions of a perfect wall and time-delays of a geometric formula
given in [29], while Sec 3.4 discusses how superradiance of Kerr geometry is manifested
in echo templates. In Sec 3.5, we provide an analytic fit to the echo templates, based on
solutions in Sec 3.3. We explore a soft wall with frequency-dependent reflection, as well
as nonlinear corrections to initial conditions in Sec 3.6 for a more realistic picture. In
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Table 3.1: Corresponding field ψ for different spin weight s in Master equation, where
ρ−1 = −(r − ia cos θ).

s 0 -1/2, 1/2 -1, 1 -2, 2
ψ Φ χ0, ρ

−1χ1 φ0, ρ
−2φ2 Ψ0, ρ

−4Ψ4

Sec 3.7, we briefly discusses ergoregion instability developed in the presence of a perfect
wall. While in principle the instability is significant at high spins, we show that these
instabilities do not affect the first several echoes of typical binary merger events. Finally,
Sec 3.8 concludes our work.

For concreteness, we use the best fit properties and waveforms resulting from the
GW150914 merger event, provided by the LIGO-Virgo collaboration [13, 12] 1. In par-
ticular, the detector frame mass and reduced spin parameter of the remnant used for the
echo calculation are Mfin = 67.6 M� and a = 0.67. Echo templates for other final masses
can be found by rescaling our analytic templates, as long as the dimensionless binary
properties are not too different from those of GW150914.

3.2 Propagation and Boundary Conditions in Kerr

spacetime

We study the propagation of gravitational waves using linearized Einstein equations in
Kerr geometry which describes the spacetime of a spinning BH. In order to model a QBH,
we simply replace the Kerr event horizon with a wall, where boundary conditions for
linear perturbations are modified. The initial condition here is an incoming wavepacket
hin from infinity, and we calculate the outgoing wavepacket hout by solving the linear
Einstein equations. As usual, we use the Newman-Penrose (NP) Formalism which greatly
simplifies perturbation in Kerr metric, reducing to only a single master equation (known as
the Teukolsky equation) which describes propagation of all scalar (s = 0), massless Dirac
(s = ±1/2), electromagnetic (s = ±1) and gravitational (s = ±2) fields (see [262] for
details):

1https://losc.ligo.org/events/GW150914/
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[
(r2 + a2)2

∆
− a2 sin2 θ

]
∂2ψ

∂t2
+
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∆

∂2ψ

∂t∂ϕ
+

(
a2

∆
− 1

sin2 θ

)
∂2ψ

∂ϕ2

−∆−s
∂

∂r

(
∆s+1∂ψ

∂r

)
− 1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
− 2s

[
a(r −M)

∆
+
i cos θ

sin2 θ

]
∂ψ

∂ϕ

−2s

[
M(r2 − a2)

∆
− r − ia cos θ

]
∂ψ

∂t
+ (s2 cos2 θ − s)ψ = 0, (3.1)

where the field ψ for each spin weight s corresponds to NP quantities presented in Table
3.1. The Teukolsky equation (3.1) is separable in coordinates in the frequency domain
and can be decomposed into 4 ODEs. Furthermore, the symmetries in time and azimuth,
allows for Fourier space decomposition in t and ϕ:

ψ =
1

2π

∫
dωei(−ωt+mϕ)S[θ]R[r], (3.2)

∆−s
d

dr

(
∆s+1dR

dr

)
+

[
K2 − 2is(r −M)K

∆
+ 4isωr − λ

]
R = 0, (3.3)

1

sin θ

d

dθ

(
sin

dS

dθ

)
=

−
(
a2ω2 cos2 θ − m2

sin2 θ
− 2aωs cos θ − 2ms cos θ

sin2 θ
− s2 cot2 θ + s+ Aslm

)
S, (3.4)

where K = (r2+a2)ω−am and λ = Aslm+a2ω2−2amω. The solution for the angular mode
is spin-weighted spheroidal harmonic (full discussion can be found in [61]). We solve the
radial mode numerically based on [71], with publicly available Mathematica code, which
was developed to study superradiance in Kerr metric 2. Eq 3.3 has the following asymptotic
solutions ((see [262] for details)):

R = T ∆−se−ikhr
∗

+Oeikhr∗ , r → r+, (3.5)

R = I e
−iωr∗

r
+R e

iωr∗

r2s+1
, r →∞, (3.6)

where r∗ is tortoise coordinate (defined as r∗ =
∫

(r2+a2)/(r2−2Mr+a2)dr that approaches
-∞ at horizon), kh = ω − am/(2Mr+) and r+ = M +

√
M2 − a2. Here T and O are the

reflective and transimissive amplitude near horizon, while I and R are ones at infinity.

2https://centra.tecnico.ulisboa.pt/network/grit/files/amplification-factors/
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In classical General Relativity, everything that reaches the horizon will fall into the BH,
and thus theres is no outgoing wave at r → r+, i.e. O = 0. However, for QBHs we assume
that quantum gravity effects replace the horizon with (partially) reflective wall standing
the order of Planck length proper distance outside the (would-be) horizon. We shall assume
that this modifies the boundary condition, so that the wall reflects the incoming energy
flux (see [197] for definition of energy near horizon) with a rate R but does not change the
phase:

|O|2 = Rwall

∣∣∣∣CD
∣∣∣∣s/2 |T |2, arg[T ∆−se−ikhr

∗
] = arg[Oeikhr∗ ] r → rwall, (3.7)

C = B
{
−36a2ω2 + 36amω + [λ+ (s+ 1)s− 2]2

}
+ {2[λ+ (s+ 1)s]− 1}

×
(
96a2ω2 − 48amω

)
+ 144ω2

(
M2 − a2

)
, (3.8)

B = [λ+ s(s+ 1)]2 + 4maω − 4a2ω2, (3.9)

D = 256k2
h(2Mr+)8[k2

h +
4(M2 − a2)

(4Mr+)2
]2[k2

h +
16(M2 − a2)

(4Mr+)2
]. (3.10)

Rwall = 1 would correspond to a perfectly reflective wall, but the actual reflectivity and
phase change depend on the specific quantum gravity model for QBHs. In the rest of the
paper, we will present solutions to these equations with different choices of the reflectivity
and discuss the important properties of solutions, such as echo templates, time-delays and
superradiant instability.

3.3 Making Echoes

Realistic predictions for Echo waveforms requires nonlinear simulations of the mergers of
binary QBHs in full general relativity. As a consistent covariant formulation for dynamics
of QBHs is yet non-existent, we have to rely on approximate methods to produce realistic
echo templates. In order to do this using linear theory, we instead custom-design an
ingoing wavepacket ĥin at infinity, so that the outgoing waveform matches the LIGO best-
fit template ĥLIGO (without a wall). The higher frequencies will go across the barrier and
fall into BH, as shown in Fig 3.1 (left), while the lower frequencies are reflected. We thus
assume

ĥLIGO(ω) = RBH(ω)ĥin(ω), (3.11)
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Figure 3.1: BHs and QBHs with an ingoing wavepacket. For BHs, angular momentum bar-
rier reflects low frequency modes but higher frequencies cross the barrier and fall through
the horizon. For QBHs with a wall standing the order of Planck length proper distance out-
side the (would-be) horizon, modes with intermediate frequencies can be trapped between
the wall and the angular momentum barrier, slowly leaking out as repeating echoes.
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Figure 3.2: Echoes with different wall positions. Changing the positions of wall doesn’t
influence the shape of echoes a lot, but when putting wall closer to the would-be horizon
and away from angular momentum barrier, the time-delay becomes bigger.
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where RBH(ω) is the reflectivity of the Kerr angular momentum barrier. For an QBH,
however, we have one more barrier near the would-be horizon as shown in Fig 3.1 (right).
Wavepackets with intermediate frequencies can now be trapped between two barriers and
leak slowly every time when they hit the angular momentum barrier. Therefore, QBHs
would have a similar ringdown waveform as classical BHs, but they are followed by delayed
slowly decaying echoes.

ĥout(ω) = RQBH(ω)ĥin(ω) = RQBH(ω)
ĥLIGO(ω)

RBH(ω)
fcutoff(ω),

(3.12)

where fcutoff(ω) is a low-pass filter introduced to suppress numerical noise at high frequen-
cies, as the reflectivity of the Kerr angular momentum barrier RBH(ω), in the denominator,
vanishes at high frequencies. Luckily, high frequencies leak out quickly in the first echo,
and have small effect on the subsequent echoes. Our choice of fcutoff does not affect the
second and later echoes, but it changes the first echo slightly by cutting the high frequency
noise:

ĥout,fin = ĥoutfcutoff, (3.13)

fcutoff = exp

[
−1

2

(
2πf(Hz)−299.495

1347.73

)16
]
, (3.14)

where ω = 2πf .

We note here that the drawback assuming ingoing wave scattering at the barrier is
that the real initial condition is actually highly nonlinear. That’s why later we include
estimation with pure outgoing wave inside barrier, which is still not ideal. At the end,
we introduce hybrid method at Chapter. 6 and numerical simulations(ongoing but not
included in the thesis) to deal with the highly nonlinear initial condition.

With the equations and boundary conditions given in the last section, we can numeri-
cally solve for RBH and RQBH as a function of frequency. We use LIGO event GW150914
with a = 0.67, M = 62 M� and z = 0.09. The mass is measured in the source frame and
the finial mass used in our calculation is the mass in the detector frame Mfin = (1 + z)M .
The waveform is dominated by the (l,m) = (2, 2) mode, which we shall focus on for the
rest of the paper 3

The time dependence of the waveform can then be obtained by Fourier transforming
ĥout(ω), and is shown in Fig 3.2. We see that changing the position of the wall changes

3Given the symmetries of Eqs. (3.3-3.4), we can easily extend the solution to m = −2 case using
Rslm[ω] = R∗sl−m[−ω].
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the time-delay between the echoes, but does not affect the individual echo waveforms
significantly (as long as the wall is close the would-be horizon). As we see in Fig. 3.1, in
the geometric optics approximation, the time delay between echoes, ∆techo,geom is given by
the travel time from the angular momentum barrier to the wall and back [29]:

∆techo,geom = 2r∗|rbarrierrwall
= 2

∫ rbarrier

rwall

dr
r2 + a2M2

r2 − 2Mr + a2M2

= 2rbarrier − 2rwall + 2
r2

+ + a2M2

r+ − r−
ln
rbarrier − r+

rwall − r+

−2
r2
− + a2M2

r+ − r−
ln
rbarrier − r+

rwall − r−
. (3.15)

This can be well approximated by the following fitting function:

∆techo,geom = 2
r2

+ + a2M2

r+ − r−
ln

M

rwall − r+

+MG(a), (3.16)

G(a) ' 0.335

a2 − 1
+ 4.77 + 7.42(a2 − 1) + 4.69(a2 − 1)2,

(3.17)

rwall − r+ =

√
1− a2d2

wall

4M(1 +
√

1− a2)
, (3.18)

where we find the fit of G(a) for the angular momentum barrier of l = m = 2 mode, while
dwall is the proper distance from the wall to the would-be horizon. The latter is expected
to be comparable to Planck length for QBHs of quantum gravitational nature, but ∆techo

only depends on the exact value of dwall logarithmically (see Fig. 3.2).

The echoes in both time and frequency domain for the LIGO event GW150914 are
shown in Fig. 3.3 and 3.4 with perfect wall standing a Planck length proper distance
outside the (would-be) horizon. Here, we show the Amplitude Spectral Density (ASD),
which is the square root of the power spectral density. The latter is the average of the
square of the fast Fourier transforms of the model. In the next section, we will study the
structure of the echo in the frequency domain and present how superradiance affect the
structure of echo.

3.4 Superradiance

Scattering off Kerr BH can lead to superradiance of modes with frequency 0 < ω < mΩH,
which can extract energy from a spinning background [234]. Adding a (partially) reflective
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Figure 3.3: Predicted echoes for LIGO event GW150914 in the time domain with different
resolution, assuming a prefect wall at a Planck length proper distance outside the horizon
.
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Figure 3.4: Predicted echoes for LIGO event GW150914 in the frequency domains, as-
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wall near horizon could turn this amplification to an instability, since modes trapped
between the wall and the angular momentum barrier can extract the spin energy repeatedly
[122, 86]. In this section, we study this effect for the echoes in frequency domains.

There is an odd looking spike in Fig. 3.4 frequency domain around 183 Hz (see top panel
in Fig. 3.5 for a zoom-in). Indeed, this is exactly the threshold frequency for the superra-
diance. This is demonstrated in the middle panel of Fig. 3.5, which shows the scattering
amplification with the horizon, perfect wall and soft wall around that frequency. The verti-
cal axis is the relative energy, extracted from around black hole by scattered gravitational
waves. The blue dashed line shows superradiance slowly turning off with increasing the fre-
quency, and we confirm that it ends exactly at frequency fmax = am/[2π(r2

++a2)] = 183 Hz,
for m = 2 as shown in the plot. In contrast, superradiance by soft wall (grey and thin
curve) occurs at resonance peaks, corresponding to the ergoregion trapped mode (for more
details, see Appendix 3.7 ). Since superradiance ends at 183Hz, the resonance peaks shift
the direction, which is the reason we have an odd spike in the Fig. 3.4 and 3.5 top panel.

The perfect wall (the red thick curve) in Fig. 3.5 middle panel is a constant zero without
any resonance peaks, since a perfect reflective wall kills superradiance, as all the energy
that goes in, comes out eventually (see Appendix 3.7 for a subtlety in this argument).
However, the odd spike structure remain in the amplitudes, as shown in Fig. 3.5 bottom
panel, where we change the vertical axis to real part of outgoing to ingoing wave at infinity.
We still see the sign flip in resonance structure at 183 Hz.

In the next section, we study the echo templates resulting from solving the linearized
Einstein equations, which improves the simplistic geometric picture in Fig. 3.1.

3.5 Minimal Echo templates

Now that we have numerical predictions for echoes, we would like to provide simple fitting
functions that could be used for quick visualization and data-fitting purposes. We call
these fitting functions, templates. In order to find our templates, we define echoes in
the time domain by the regions that surround the peaks of |h(t)| and exceed a limit:
ln [|h(t)|/|h|max,n] > −1,−1.5 or −2. |h|max,n is the height of the nth peak of |h(t)|, which
we call the nth echo. Then we fit the nth echo to a complex Gaussian

hn(t) = exp[Ψn(t) + IΦn(t)], (3.19)

Ψn(t) = a0 + a1t+ a2t
2, (3.20)

Φn(t) = b0 + b1t, (3.21)
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Figure 3.5: Superradiance in frequency domain for BHs and QBHs.
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Table 3.2: Some physical quantities of a single echo defined by the five parameters from
the gaussian echo template (Eq. 3.20)

width center peak amplitude

time
√
−1/(2a2) −a1/2a2 exp[a0 − a2

1/4a2]

frequency
√−2a2/(2π) b1/(2π) exp[a0 − a2

1/4a2 − 1/2 log[2
√
a2

2]]
overall phase b0 − b1a1/(2a2)

Table 3.3: Best fit gaussian echo template quantities (see Table 3.2 and Fig. 3.7) , for
our minimal model of GW150914
peak amplitude in time / strain 2.91× 10−19/n1.32

width in time / msec 4.29 + 0.883n
correction to ∆techo,geom / msec 1.52 + 1.71/(1 + n)
peak frequency / Hz 177 + 102/n0.3

Overall phase −7.26 + 27.1n0.945 + 22.6n

where a0, a1, a2, b0 and b1 are real numbers. This form is same as fitting the nth echo to
A exp[(t− t0)2/(2σ2)], where A and t0 are complex, while the width σ is real.

As an example, Fig 3.6 compares the numerical solutions and gaussian fits for the 2nd,
10th, and 30th echoes, with time origin shifted to center of each echo, and fitting the region
with ln [|h(t)|/|h|max,n] > −1.5.

Within this approximation, there are five real parameters for every echo that quantify
its amplitude, width and center, both in time and frequency domain, as well as the overall
phase at the center of the echo, as shown in Table 3.2.

Table 3.3 provides the best fit parameters of our echo templates for all echoes, based
on the LIGO event GW150914 and averaging over the best fit functions with different echo
domains ln [|h(t)|/|h|max,n] > −1,−1.5 or −2.

The best fits for each echo domain is also provided in Fig. 3.7. For correction to
∆techo,geom, we define time-delay as ∆tn = tn − tn−1. For all other plots, first echo is not
included since it is very sensitive to the properties of the wall, as well as nonlinear effects
from early stage of merger (see details in Sec. 5.5). The top three panels in Fig. 3.7 show
the time domain properties as a function of the echo number. Starting from the left, peak
echo amplitudes in time are all well fit by decaying power laws([100] argue that the decay
of echoes at early stages is polynomial). Middle are the width of the echoes, becoming
wider for later echoes in the time domains, as the high frequency modes leak out more
quickly. The top right panel gives correction to ∆techo,geom (3.16), while the bottom left
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ln [|h(t)|/|h|max,n] > −1.5. We see that as high frequency modes leak out faster, later
echoes decay in amplitude and become wider in time domain, and high frequency is cut in
the frequency domain.
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panel shows the decay of the mean echo frequency. The bottom middle and right provide
overall phase at tcenter and the residuals of the best fit for the phase. We only show the
residuals for the phase, as the numerical error for the phase is relatively big.

To visualize the quality of the template to fit data, Fig. 3.8 shows the SNRtemp/SNRmodel,
where SNRmodel is the predicted signal-to-noise ratio for our numerical solution of echoes
(assuming white noise), while SNRtemp is a reduced value, if we use our Gaussian approx-
imations of Fig. 3.6 (gray circles in Fig. 3.8). Using a second fit for how properties (i.e.
width, center and amplitude) of Ψn(t) = log |hn(t)| depend on n (Table 3.3) further reduces
SNRtemp (red triangles in Fig. 3.8). We notice that the quality of Gaussian fit drops for
later echoes, which could be either due to build-up of numerical error or systematic devia-
tions from a single gaussian fit. The secondary fit for Ψn vs n further reduces SNR as the
width in time and time delay, shown as Fig. 3.7, do not have a simple behavior. However,
the power law fit to the peak amplitude in time ∝ n−4/3 is surprisingly good. Also, as we
discussed before, since the shapes of first few echoes are much more dependent on the initial
conditions, it might be better to use independent Gaussians to fit them in data. Finding
a reasonable fit for phase information Φn vs n proves even more challenging, as a small
change in phase leads to a significant change in echo profiles. Fortunately, model-agnostic
searches (e.g., [99]) based on cross-correlating different detectors can be done independent
of the phase information.

3.6 Beyond the minimal model

While our minimal model for echoes has only one free parameter (wall distance to the
horizon, dwall) in addition to those of GR, the reality can be more complicated. Here, we
explore the two main deviations expected from the minimal model due to nonlinear effects
in GR and quantum gravity.

3.6.1 Nonlinear Mergers Effects

Our assumption of a custom-designed incoming wavepacket, as a placeholder for black
hole binary merger, is almost certainly too naive to provide a realistic echo template,
as it misses the nonlinear nature of the merger. While numerical simulations can now
provide realistic waveforms for black hole mergers in GR, a covariant formulation of QBHs
that could produce realistic echo waveforms is currently missing. However, we can get an
idea about the extent of nonlinear corrections to linear results by noticing that the Kerr
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Figure 3.7: Best fit gaussian template parameters (for ln [|h(t)|/|h|max,n] > −1,−1.5 or
−2), in our minimal model of LIGO event GW150914, showing second and later echoes.
The top three panels are in the time domains. Starting from left, peak amplitudes of echos
in time are well fit by power laws. Middle panel is the width of the echoes, which become
wider in time, as the high frequencies leak out more quickly. For the same reason, the
peak frequency (bottom left) also decays with time. The top right panel gives corrections
to ∆techo,geom (Eq. 3.16). Finally, the bottom middle and right provide the overall phase
at tcenter of each echo and the residuals of the best fit. This is the only plots we show the
residuals since the numerical error for the phase is relatively big.
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Figure 3.8: SNRtemp compared to SNRmodel, showing the quality of gaussian templates.
.

background for Teukolsky equation (3.1) is dynamical during the merger event, and thus
the frequencies can be shifted by O(30%), between the ingoing and outgoing waves at
merger 6 . We shall explore the extent of this effect on echoes by introducing a blueshift
parameter s, in the ingoing linear initial conditions:

ĥLIGO,shifted[f ] = ĥLIGO[f/s]. (3.22)

As shown in Fig. 3.9, redshifted (blueshifted) initial conditions give echoes which
damp more slowly (quickly), since low frequencies leak more slowly through the angular
momentum barrier. This also dramatically changes the amplitude of first few echoes.
Blueshift parameter s can be a free parameters for data fitting purposes.

The effect is clearer if we compared SNR of echoes to first echo, as shown in Fig. 3.10.
SNR2

n is SNR2 of our numerical solution of nth echo and we trimmed a single echo with
ln [|h(t)|/|h|max,n] > −1.5. We assume white gaussian noise σω = 1 so that

SNR2
n =

∑
ω

|ĥn,ω|2
σω2

=
∑

t

|hn|2. (3.23)

(3.24)

6For example, the best-fit for the dominant quasinormal mode frequency for GW150914 is 10-20% offset
from the linear theory predictions for the best-fit Kerr metric (Fig. 5 in [16]).
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Figure 3.9: Echoes predicted for GW150914, expected for redshifted (blueshifted) initial
conditions with respect to our minimal model. We see that lower frequency initial condi-
tions lead to lower amplitude, but more persistent, echoes as they cannot penetrate the
angular momentum barrier efficiently.
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Table 3.4: Same as Table 3.3, but contrasting with redshifted/blueshifted initial condi-
tions, fitted within ln [|h(t)|/|h|max,n] > −1.5.

blueshift factor s 0.8 1 1.2

peak amplitude in time / strain 5.91× 10−20/n1.14 2.92× 10−19/n1.33 5.31× 10−19/n1.54

width in time / msec 3.91 + 0.678n 5.5 + 0.808n 9.48 + 0.711n

correction to ∆techo,geom/ msec −47.8− 57.0/(1 + n) 15.4 + 1.64/(1 + n) 76.2 + 60.4/(1 + n)

peak frequency / Hz 227 + 95.2/n0.3 175 + 104/n0.3 144 + 97.8/n0.3

Overall phase −3.06 + 30.2n0.945 − 25.9n −6.65 + 28.5n0.945 − 23.8n −12.7 + 35.2n0.945 − 29.4n

Fig 3.10 (right panel) shows that later echoes contain more (less) information in red-
shifted (blueshifted) templates, since they decay more slowly (quickly). The left panel also
shows the relative SNR of 1st echo compared to the trimmed main event in our model.
The fact that this number can change by more than 1.5 orders of magnitude suggests that
the amplitude of 1st echo is very sensitive to the nonlinear merger physics and cannot be
reliably predicted. [137] simulates a binary black hole merger and finds the ratio of the
energy falling into the black hole to the energy out is around 1:1, which can be used as a
normalization of amplitude of echoes.

Table 3.4 and Fig. 3.11 compare the best fit echo parameters for different blueshift
factors. We see in the left panels that the blueshifted initial condition (s = 1.2) has a
transient excess in amplitude that decays quickly and falls in line the minimal model. In
contrast, the redshifted model (s = 0.8) has a significantly smaller but more persistent
amplitude. Surprisingly, the middle panels show that the redshifted echoes remain nar-
rower in time. Even more puzzling is that the redshifted initial conditions have higher
frequency echoes as shown in Fig. 3.11 the bottom left panel. This is due to the fact that
the echo peak frequency depends on the slope (and not the amplitude) of the spectral den-
sity ĥout(ω) = RQBH(ω)ĥLIGO(ω)fcutoff(ω)/RBH(ω) from Eqn. 3.12, which involve several
complicated components. As we see in the middle panel of Fig. (3.9), this slope is not
monotonic which leads to the counterintuitive behavior, even though the amplitude of the
redshifted model is smaller compared to the blueshifted.

3.6.2 Soft Wall

Motivated by quantum models of black holes, the wall must at least partially absorb the
energy incident on the wall [29]. For example, in fuzzball models [193] high energy particles
(with ~ω � kTH, where TH is the Hawking temperature) excite the fuzzball microstates
and thus will be absorbed by the wall. On the other hand, particles with ~ω ≤ kTH may
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Figure 3.10: Signal-to-noise ratios(SNR) and energy for blueshifted echoes compared with
the first echo. We see that there is more (less) information in subsequent echoes for lower
(higher) frequency initial conditions. Furthermore, the amplitude of first echo is hard
to predict and can change by more than 1.5 orders of magnitude.We also list SNRs and
energy for blueshifted first echoes compared with the event. Since we assume white noise
to calculate the SNR in time domain, we trim the merger template at around 0.076 seconds
before the peak (similar to the LIGO noise whitening for GW150914 template).
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Figure 3.11: Same is Fig. (3.7), but using the different blueshift factors s (Eq. 3.22) for
echo initial conditions (fitted for ln [|h(t)|/|h|max,n] > −1.5). We see that redshifted initial
conditions yield weaker, but more persistent echoes (see text for details).
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be (at least partially) reflected (but see [136] for recent counter-arguments). Ringdown
phase of mergers of two BHs is in the intermediate range (∼ 100 Hz for GW150914).
Therefore, a realistic quantum gravity model for the echoes is expected to involve a soft
wall. For example, frequency of electromagnetic emissions from accretion into BHs is much
higher, which is expected to be absorbed by the wall [72, 73]. However, possible loopholes
that could lead to astrophysical observables from quantum effects have been exploited in
[226, 36].

A wall that absorbs high frequency modes will dramatically decrease the amplitude
of the first echo, since these modes leak out quickly every time the wavepacket hits the
angular momentum barrier. Therefore, the first echo contains most of the high frequency
modes which, as shown in the top left panel in Fig 3.14, would be absorbed for a soft wall.

Of course, the actual frequency-dependent reflection of the wall depends on the specific
quantum theory of black holes. We explore a phenomenological model for the wall with a
Gaussian-like energy reflection rate

Rwall(ω) ' exp

[
−
(
α
ω

TH

)q]
, (3.25)

where TH = r2
+ − a2/[4πr+(r2

+ + a2)] is the Hawking temperature for Kerr BH. While
smooth Rwall’s, such as gaussian or Boltzmann reflectivity (q = 2 or 1, respectively) may
appear natural, they do tend to essentially wipe out the echoes, unless α � 1, which is
inconsistent with the tentative echoes found in [29]. In contrast, a sharper function with,
e.g., q = 12 then can damp the first echo, but not significantly influence later echoes, as
shown in Fig 3.13 7. We can also compare these reflectivity functions with that of the
angular momentum barrier of the Kerr BH, for the same spin and mass, as shown in Fig
3.12, which provides another motivation for sharper Rwall’s.

Table 3.5 and Fig. 3.14 compare the template for the perfect and soft walls, similar to
Figs. (3.7) and (3.11). We see in the top left panel that, due to absorption of high frequency
modes, the power law fit to the amplitudes could be extended to first echo for the soft walls.
More generally, echoes decay faster for a softer wall. As echoes for a wall with Rwall =
exp[−(0.06ω/TH)8] decay too fast, we only focus on the Rwall = exp[−(0.055ω/TH)12] case
in subsequent panels of Fig. 3.14, and provide numerical fits for echo properties in Table
3.5. With this choice, the evolution of echo properties is similar to those in Figs. (3.7)
and (3.11), with the notable difference that peak frequency decays more rapidly as the soft
wall absorbs high frequencies.

7Fig 3.13 also shows that if the wall absorbs too much, the late echoes will stop decaying. This is due
to superradiant instability which we shall discuss in the next section.
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Rwall=Exp[-(0.055
2π f
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2π f
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Figure 3.12: Comparison of soft wall reflectivity coefficients that we use, with that of the
Kerr angular momentum barrier [197]. The thin and dashed lines are the two reflectivity
rates used in Fig 3.13.

Table 3.5: Same as Table 3.3, but contrasting perfect (Rwall = 1) and soft (Rwall =
exp[−(0.055 ω

TH
)12]) walls, fitted within ln [|h(t)|/|h|max,n] > −1.5.

wall type perfect soft
peak amplitude in time / strain 2.78× 10−19/n1.31 2.33× 10−19/n1.36

width in time / msec 5.5 + 0.808n 8.17 + 0.659n
correction to ∆techo,geom msec 15.4 + 1.64/(1 + n) 14.3 + 1.52/(1 + n)
peak frequency / Hz 175 + 104/n0.3 177 + 96.8/n0.3

Overall phase −6.65 + 28.5n0.945 − 23.8n −5.2 + 26.8n0.945 − 22.6n
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Figure 3.13: Echoes for GW15014, for soft vs. perfect walls. The top (gray) curve
assumes a perfect wall/mirror, while the lower curves show soft walls with different energy
reflectivity coefficients.
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Figure 3.14: Same is Fig. (3.7), comparing walls with different energy reflectivity co-
efficients (fitted for ln [|h(t)|/|h|max,n] > −1.5). We see that echo amplitudes and peak
frequencies decay more quickly for softer walls (see text for details).
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Table 3.6: Integrals of superradiance profiles in Fig.3.15, up to the superradiance threshold
for different wall positions δ, or absorption Rwall. We see that the integrated superradiance
appears to have a universal value, independent of wall presence or properties. The same
is likely to be the case of the perfect wall (last row), but cannot be resolved numerically
due to infinitely sharp resonance structure.

δ = 0.05 0.015 0.0005
Rwall = 0 0.2202 0.2202 0.2202

0.2 0.2226 0.2226 0.2225
0.4 0.2246 0.2246 0.2243
0.6 0.2260 0.226r 0.2256
0.8 0.2223 0.2276 0.2190

1 0.0000 0.0000 0.0000

3.7 Ergoregion Instability

In this section, we further discuss the emergence of superradiance and ergoregion instability
in QBHs.

Fig 3.15 shows the superradiance in the frequency domain. The resonance peaks are
signal of superradiance 8, and these peaks become sharper with increasing the reflectivity of
wall. However, the curve for perfect wallRwall = 1 doesn’t show any peaks in the plot, which
is not intuitive. So we integrate the plots over superradiance range for different reflectivity
of the wall, shown as Table 3.6. The area is roughly conserved for all soft walls and equal
to the area of a classical BH. Hence,we conclude that when approaching Rwall = 1, we still
have the superradiance and thus the peaks, but only at discrete frequencies. The zero of
both Fig. 3.15 and Table 3.6 are just because of finite resolution in the frequency domain,
and we are not able to see the infinitely sharp resonances when approaching Rwall → 1.

Fig 3.16 shows that resonance superradiant peaks disappear as a → 0, while Fig 3.17
shows that they shift when we shift the position of the wall, as expected.

Note that, even in the absence of dissipation, there could still be instabilities that man-
ifest themselves as the poles of the amplification in the upper complex plane of frequency
space. Indeed, ergoregion instability was predicted in [122] in the absence of horizons
and/or dissipation.

However, we do not see any significant growth, at least in the first 50 echoes we predict

8For simplicity, we present results with scalar mode (l,m, s) = (2, 2, 0), but we have confirmed the same
results for gravitational waves.

49



Rwall
0

.2

.4

.6

.8

1

0 100 200 300 400

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

f/Hz

E
ou
t

E
in

-
1

Figure 3.15: Superradiance by a spinning ECO/BH with a = 0.99 and M = 67.6M�,
assuming different wall reflection coefficients Rwall, with wall position rwall = rh(1 + δ), δ =
0.05. For simplicity, we present results with scalar mode (l,m, s) = (2, 2, 0), but we have
confirmed the same results for gravitational waves. The horizontal axis is frequency, while
the vertical axis is the relative energy extracted from ECO/BH. Rwall = 0 is the classical
BH (with no reflection on horizon), showing a smooth response with superradiance at low
frequencies. A soft wall with 0 < Rwall < 1 shows several peaks, corresponding to the
resonance frequencies of the cavity formed by the wall and the angular momentum barrier,
which amplify superradiance. A perfect reflective wall kills superradiance by definition, as
all the energy that goes in, comes out eventually.
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Figure 3.16: Same as Fig. 3.15, but with a = 0. We see that superradiance, and
superradiant resonance peaks disappear as spin goes to zero.
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Figure 3.17: Same as Fig. 3.15, but with different wall positions (fixing Rwall=0.4). We
see that this shifts the resonance frequencies.
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Figure 3.18: Occurrence of ergoregion instability in later echoes in QBHs with higher spin
(near extremal Kerr).

for GW150914 in Fig. 3.3. This can be understood by noticing that, as shown in Fig
3.7, the echoes are dominated by frequencies f & 210 Hz, but superradiance happens at
f < mΩH ' 180 Hz for this event. Hence, the instability does not take over until peak
frequency drops below this limit.

We can increase the spin to see the superradiant instability develop faster, as shown
in Fig 3.18. For spin a = 0.80, the echoes stop decaying at some point and for a = 0.99,
they start to increase. While this example does demonstrate the appearance of ergoregion
instability, it should be treated as a toy model, as the initial wavepacket was designed to
reproduce the merger/ringdown template LIGO event GW150914 with a = 0.67.

As we mentioned in Sec. 5.1, whether or not ergoregion instability acts in nature
depends on the wall absorption properties [177]. Indeed, observation of astrophysical black
holes at significant spins [198] does suggest that the instability must be suppressed.
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3.8 Conclusions

We have provided realistic templates for echoes of BH mergers by numerically solving the
linearized Einstein equation (or Teukolsky equation) in Kerr spacetime with boundary
conditions at a Planck length proper distance outside the (would-be) event horizon. We
obtain analytic approximations for the echo waveforms and time-delays, and explore their
dependence on the softness of the wall (or frequency-dependence of the reflection rate), as
well as nonlinear effects during merger event. These analytic templates should be useful
in echo searches in current and future gravitational wave data. Finally, we studied the
occurrence of superradiant instability and showed that it has negligible effect, for the first
few dozen echoes of in typical BH mergers such as GW150914.

Let us close with some open questions and future directions:

• The strain is dominated by mode l = 2,m = ±2. We only show mode m = 2 here
and solution of m = −2 can easily be found by Rslm[ω] = R∗sl−m[−ω]. More realistic
templates should combine all other modes by appropriate weight.

• We cannot provide a reliable waveform for the first echo as it is too sensitive to the ad
hoc cutoff function (3.14) that we use to set up our initial conditions. This highlights
the need for a covariant numerical implementation of QBHs within a dynamical
spacetime, which could provide realistic nonlinear initial conditions for echoes.

• Another big uncertainty is the expected softness of the wall. While this is ultimately a
question for the quantum models of black holes, it highlights the need for a covariant
and causal description of the wall dynamics. It might be possible to describe this
dynamics in terms of the properties of a surface (2+1d) fluid and Israel junction
conditions (e.g., see [248]).

• The computation of the echo phase beyond ∼ 20 echoes is limited by numerical
precision and frequency resolution. This can be improved in the future, by either
brute force or novel numerical/analytic methods.
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Chapter 4

Boltzmann Reflectivity

In this chapter, we discuss another possible universal quantity – surface reflectivity of
quantum BHs– and show that from independent aspects of detailed balance, the fluctuation-
dissipation theorem, and CP-symmetry of the BH final state – the reflectivity is given by
the thermal Boltzmann factor. We then briefly discuss the physical implications for the
late-time ringdown of gravitational waves from a spinning quantum BHs, as well as for
ergoregion stability and viscosity in the membrane paradigm.

4.1 Boltzmann reflectivity from Detailed Balance

From a quantum mechanical point of view, we can consider an isolated BH as an excited
multilevel quantum system (e.g., a giant atom), which de-excites by emitting Hawking
radiation. We will now show that gravitational waves (GWs) infalling into a BH must be
reflected near the horizon with the Boltzmann factor R = exp (−~ω/(kTH)), where ω is
the near-horizon frequency, and TH is the Hawking temperature.

Let us suppose that ingoing (large amplitude and low-frequency) GWs, of which the
spectral energy density is denoted by ρ(ω), can stimulate the BH in a perturbative manner,
and excite the quantum system from state 1 to state 2, where E2 − E1 = ~ω > 0 1. The
reflectivity of the BH can be characterized by the Einstein coefficients for spontaneous
emission, stimulated emission, and absorption, denoted by A21(ω), B21(ω), and B12(ω),

1Note that this derivation only applies to ~ω > 0, as real photons/gravitons have positive energy. If a
further assumption of time-reversal symmetry in the horizon-frame is made, we can switch ω → |ω|.
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respectively [114]. The net rate of transition from state 1 to state 2 is given by:

R1→2 −R2→1 = B12n1ρ− A21n2 −B21n2ρ, (4.1)

where R1→2 (R2→1) is rate of transition from state 1 to 2 (2 to 1). The detailed balance
condition R1→2 = R2→1 would guarantee that the BH remains in thermal equilibrium with
a blackbody radiation ρ(ω) given by:

ρBB(ω) =
2~ω3

πc3
[
exp

(
~ω
kTH

)
− 1
] , (4.2)

with n2/n1 = exp (~ω/(kTH)) 2. The equilibrium constrains Einstein coefficients asB12(ω) =
B21(ω) = πc3A21(ω)/(2~ω3) [114].

Now, imagine a classical incident GW with a much bigger energy flux than Hawking
radiation, i.e. ρ(ω) � ρBB(ω). In this limit, we can ignore spontaneous emission (or
Hawking radiation, i.e. 2nd term on the RHS of Eq. 4.1), to find the reflectivity of the
membrane 3

R =
B21(ω)n2ρ(ω)

B12(ω)n1ρ(ω)
=
n2

n1

= exp

(
− ~ω
kTH

)
. (4.3)

In other words, the slow decay of the quantum BH via Hawking radiation is stimulated
by incident GWs for ~ω . kTH, leading to O(1) reflectivity (see Fig. 4.1). In contrast,
in the opposite limit of geometric optics, ~ω � kTH, the quantum BHs are indeed black,
consistent with the fuzzball complementarity conjecture [193, 96].

For the sake of brevity, in the remainder of this chapter we shall use natural units with
~ = k = c = 1 and we define rg ≡ 2GM where M is the mass of the BH.

4.2 Boltzmann reflection and CP-symmetry.

We here briefly show that the Boltzmann reflectivity is equivalent to the CP-symmetry of
the BH state. Let us consider a mixture of ingoing and outgoing plane waves in Rindler

2While there could be many other energy levels in the quantum system, they will not be involved in the
detailed balance condition for these two states, as long as long as their energy gaps do not match E2−E1.
W should note that detailed balance is a stronger condition than balance as we we assume transition from
any state to any other state is balanced, while “balance” would only require net transition to any state to
vanish. For N states, the former leads to N(N − 1)/2 conditions, while the latter is only N conditions.

3Motivated by the quantization of BH area, Cardoso et al. [80] discussed the reflectivity of quantum
black holes to calculate the echo GWs. The reflection rate they used, however, differs from the Boltzmann
reflection rate we derived in (4.3). This is because they assume that the reflection rate is given by B21(ω).
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Stimulated emission/ EchoesStimulated emission/ Echoes

Incident radiation Incident radiation

Spontaneous emission/ Hawking radiation

Spontaneous emission/ Hawking radiation

Figure 4.1: Analogy between spontaneous emission and Hawking radiation for isolated
BHs, in contrast to stimulated emission caused by incident radiation, that could lead to
echoes (see text; note that, for this cartoon we ignore the angular momentum barrier).

metric (4.12):
ψ(x, t) = Aine

−iω(t+x) + Aoute
−iω(t−x). (4.4)

ψ(x, t) can be rewritten in the Minkowski coordinates which are related to the Rindler
coordinates as

T = κ−1eκx sinhκt,X = κ−1eκx coshκt, (4.5)

where κ is the surface gravity of a BH, and then we have

ψ(x, t) = Ain[κ(T +X)]−iω/κ + Aoute
−πω/κ[κ(T −X)]iω/κ. (4.6)

Imposing the CP-symmetry, ψ(T,X) = ψ∗(T,−X), one has the following conditions for
the coefficients

Ain = e−πω/κA∗out, (4.7)

Aout = eπω/κA∗in. (4.8)
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This again leads to the Boltzmann reflectivity ofR ≡ |Aout/Ain|2 = e−ω/TH once we properly
treat branch-cut 4.

Note that this analysis could have been equivalently done in terms of Kruskal/Schwarzschild
coordinates. X → −X antipodal identification of Kruskal metric is known as a RP 3 topo-
logical geon [173]. While this spacetime is classically indistinguishable from a BH outside
the event horizon, outside quantum measurements can potentially distinguish the two, as
the quantum states have different analytic structures [199]. However, forming an RP 3

geon from e.g., stellar collapse requires a non-perturbative change of topology, which can
(in principle) happen through quantum tunneling [192].

4.3 Boltzmann reflectivity and Fluctuation-Dissipation

theorem

Although the previous two derivations, based on the detailed balance and CP-symmetry,
give the Boltzmann reflectivity, they remain ambiguous about the sign of frequency, or the
phase of the reflected amplitude. We then next consider a more concrete model motivated
by the possible dissipative effects near a BH horizon, which uniquely determines both the
amplitude and the phase of reflectivity.

Classical linear perturbations in BH spacetimes obey the equation [237, 288][
d2

dx2
+ ω2 − V`(x)

]
ψω(x) = 0, (4.9)

where V`(x) is the angular momentum barrier located outside the horizon and ` is a angular
harmonic number. The asymptotic behavior of the (quasinormal) mode function of GWs
in the Schwarzschild BH background is

lim
x→±∞

ψω = e±iωx. (4.10)

However, we know that quantum effects near BH horizon lead to a thermal behavior
at temperature TH. According to fluctuation-dissipation theorem [166], this should mod-
ify the classical field equations via additional fluctuation and dissipation terms, resulting
from interaction with quantum/thermal fields. Therefore, we shall posit that Eq. (4.9) is
modified to:

4Mathematically, one finds R = exp(±ω/TH), depending on the choice of branch-cut. However, only
one choice is physically sensible (and consistent with detailed balance and fluctuation-dissipation theorem).
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[
−iγΩ(x)

EPl

d2

dx2
+

d2

dx2
+ ω2 − V (x)

]
ψω(x) = ξω(x), (4.11)

where ξω is a stochastic fluctuation field, while γ is a dimensionless dissipation parameter,
Ω(x) ≡ ω/

√
|g00(x)| is the blueshifted (or proper) frequency, and EPl is Planck energy.

The form of the dissipation term (which is similar to viscous dissipation for sound waves
[169]5) is expected from the fact that gravitational coupling constant is given by Ω/EPl.
Therefore, dissipation terms coming from gravitational interactions must be suppressed by
this factor. In other words, only when the blueshift effect is so intense that the proper
frequency is comparable to the Planck energy (i.e. near horizon), Ω ∼ EPl, the dispersion
relation is drastically modified 6.

Moreover, the membrane paradigm [264, 156], the fluctuating geometry around a BH
[223, 55] and the minimal length uncertainty principle [74] lead to the dissipative effects
near the apparent horizon. From the point of view of the phenomenology of quantum
gravity, constraints on the spacetime viscosity, ν, was also discussed by adding the viscous
term of the Navier-Stokes equation, −i(4/3)νΩ∇2 [170], as we did in (4.11). Of course, in
lieu of a theory of quantum gravity, there is no clear guiding principle to add dissipation to
the dispersion relation, but our choice follows naturally if one follows the analogy between
viscous fluids and quantum spacetime.

According to fluctuation-dissipation theorem, the balance of fluctuation ξω and dissi-
pation should lead to a thermal spectrum for the field ψω [166]. Otherwise, for classical
fluctuations, ω2|ψω| � |ξω|, far from the horizon, Ω � EPl, we recover the classical Eq.
(4.9).

Let us calculate the mode function near the horizon where the blueshift effect is most
significant 7. In the near-horizon limit, the exterior metric can be approximated as Rindler

ds2 = e2κx(−dt2 + dx2) + dy2 + dz2, (4.12)

5The dispersion relation for sound waves that dissipate via fluid (kinematic) viscosity ν is:
(4ν/3)∇2∂tp+ c2s∇2p− ∂2t p = 0.

6One might wonder if the perturbative approach can be valid even when the Planck energy is involved
in (4.11). Since the gravitational blue shift does not enhance the amplitude of the incoming GWs, but
just increases its frequency, using the wave equation (4.11) is still valid. Furthermore, in the near-horizon
regime, the backreaction of transverse traceless GWs can be quantified using the GW stress tensor Tµν ∝
∂µh

αβ∂νhαβ , which remains finite in the locally flat coordinates, as derivatives are only non-vanishing
in the longitudinal direction. Whether there could be nonlinear effects at higher orders is an interesting
question that we defer to future work.

7We shall focus on large amplitude perturbations, and thus ignore the fluctuation term ξω.
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Figure 4.2: (a) The mode function ψω(x) with the Regge-Wheeler potential, for which the
ingoing boundary condition is imposed in the near-horizon limit as in the classical BHs.
(b) The mode function ψω(x) with the Regge-Wheeler potential and the dissipation term
added in (4.11). We take γ = 10 and κ = (2rg)

−1. In both (a) and (b) we take ` = 2,
s = −2, and rgω = 0.8. Solid and dashed lines show <[ψω] and =[ψω], respectively.

where κ = 2πTH is the surface gravity. The modified wave function (4.11) has an analytic
solution near the horizon

lim
x→−∞

ψω(x) = 2F1

[
−iω
κ
, i
ω

κ
, 1,−iEPle

κx

γω

]
, (4.13)

where 2F1(a, b, c, z) is the hypergeometric function. In the limit of x → −∞, this mode
function is constant. The physical meaning of this boundary condition is that the energy
flux carried by the ingoing GWs cannot penetrate the horizon, and is either absorbed or
reflected. In this sense, this boundary condition is consistent with the picture according to
a distant observer in the context of BH complementarity [260] or the membrane paradigm
[264, 106], in which there is virtually no BH interior to propagate into. In the range
of − log [EPl/(γω)] � κx � −1, the function can be expressed by the superposition of
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outgoing and ingoing modes

ψω = eπ|ω|/(2κ)Ae−iωx + e−π|ω|/(2κ)A∗eiωx, (4.14)

A ≡

(
γω
EPl

)iω/κ
Γ(−2iω/κ)

Γ(−iω/κ)Γ(1− iω/κ)
. (4.15)

Therefore, we again recover the Boltzmann reflectivity (4.3):

R =

∣∣∣∣e−π|ω|/(2κ)A∗

eπ|ω|/(2κ)A

∣∣∣∣2 = e−|ω|/TH . (4.16)

Remarkably, the flux reflectivity R is independent of the dissipation parameter γ in
Eq. (4.11), even though the approximate position of the reflection xecho (where γΩ ∼ EPl),
and hence echo time delays [209], does depend on it 8:

∆techo = 2|xecho| = 2κ−1 ln [EPl/(γω)] . (4.17)

4.4 GW Echoes and absence of ergoregion instability.

A non-vansihing horizon reflectivity will lead to echoes from the ringdown of a perturbed
BH (e.g., [81, 82, 197, 280, 78, 209]). Indeed, tentative (albeit controversial) evidence for
these echoes have been claimed in the literature [28, 99, 22]. Here we outline the basic
features of GW echoes from Boltzmann reflectivity, while next chapter examines these
predictions and implications for BH quasinormal modes in more detail [281]. We further
show that (consistent with current observational bounds [49]), ergoregion instability is not
expected for spinning BHs, due to imperfect reflectivity.

In order to investigate how the dissipation term change the ringdown GWs propagating
from a spinning quantum BH, we start with the Sasaki-Nakamura (SN) equation [249]
including the dissipation term. Although there is no unique choice of wave equation around
a Kerr BH, we here choose the SN equation that describes the wave propagation in the co-
rotating coordinates, and so there is no time-asymmetry due to the rotation of background
spacetime. As such, the only terms that break time-asymmetry are dissipative terms near
horizon, where propagation is governed by near-horizon Rindler geometry, and is fully fixed
by surface gravity κ = 2πTH.

8Note that since we can only derive the phase of reflectivity from our Equation (4.11), its derivation is
more model-dependent than that of Boltzmann reflectivity for the energy.
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In the near-horizon limit, one can obtain the mode function (as we did before) by
satisfying the no-flux condition (ψω(x) = const. for x → −∞), yielding the Boltzmann
reflectivity of Eq. (4.16) ( see the Appendix A ).

An example of a full waveform 9 can be obtained by starting with a Gaussian wavepacket

ψ(x, 0) = exp

[
−(x− xc)2

σ2
− ix

σh

]
, ψ̇(x, 0) = 0, (4.18)

where a dot denotes the derivative with respect to t, σ and σ−1
h characterize the width

and mean wavenumber of the wavepacket, while xc is its initial position. Fig. 4.3 shows
numerical integration of Eq. (A.1) to find the GW strain amplitude seen by a distant
observer. In addition to the original ringdown, as expected, we see echoes with a time-
delay given by Eq. (4.17), with a spin-dependent amplitude. In particular, in the extremal
limit a → 1 for fixed initial conditions, echoes are highly suppressed (and delayed), since
TH → 0, and thus the reflectivity is exponentially suppressed except for a narrow range
around ω∞ = mΩH (see Fig. 4.4). This is enough to suppress ergoregion instability, even
for a rapidly spinning BH [176].

4.5 Conclusions.

We have provided three independent derivations for a Boltzmann reflectivity of quantum
BH horizons, R = e−ω/TH , based on

1. Thermodynamic detailed balance,

2. CP-symmetry, or RP 3 topology, of extended BH spacetime, and

3. Fluctuation-dissipation theorem.

Therefore, although a concrete picture of microscopic structure of a quantum BH is still
missing, macroscopic properties such as entropy, temperature, and now, its energy flux
reflectivity, may be independent of the details.

Assuming this universal property of the quantum BHs, we numerically investigated the
GW echoes and showed that the echo is strongly suppressed, and delayed, for a rapidly

9Since we calculate the waveform by solving the SN equation, which reduces to the Regge-Wheeler
equation in the limit of a→ 0, our waveform corresponds to axial perturbations of a black hole.
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spinning BH, 0 < 1 − a � 1, due to the decrease of its Hawking temperature. This
leads to the absence of the ergoregion instability since the frequency dependence of the
Boltzmann reflectivity is sharply peaked around ω∞ ' mΩH ± TH and is exponentially
suppressed outside this range. Finally, we discussed the implication for the fluid viscosity
in the membrane paradigm, finding that it should vanish at low frequencies.

The synergy of our three, seemingly independent, derivations all leading to a Boltzmann
reflectivity may help us draw a clearer picture of what a quantum black hole might look
like (as long as we assume validity of linear perturbation theory):

The central assumption underlying our key result, Eq. (4.3), is that black holes are
not classical spacetimes, but rather quantum objects, obeying standard rules of unitary
quantum mechanics and thermodynamics. For one, this implies that they cannot be per-
fectly absorbing, as it would violate unitarity. Furthermore, as typical de-excitation of BH
state leads to emission of Hawking photons/gravitons, it is reasonable to assume that typ-
ical absorption happens at similar frequencies, and thus photons/gravitons at much lower
frequencies, ~ω � kTH cannot excite local membrane degrees of freedom. As such, they
should be reflected, which is exactly what is predicted by Boltzmann reflectivity (4.3). In
other words, quantum BHs must be “optically thin” at ~ω � kTH.

The latter point is further underscored by the fluctuation-dissipation derivation, as
lower frequency waves are reflected farther away from the horizon, where gravity is weaker.
It also suggests that this universality might be a low-energy property, as higher powers of
Ω/EPl can modify the dispersion relation at higher frequencies [209]. However, this may
not be a significant correction since reflectivity is already highly suppressed for ~ω & kTH.

Finally, the equivalence of the CP-symmetry, or RP 3 topology, of the BH spacetime
with Boltzmann reflectivity suggests that a drastic transition from classical to quantum
BHs is necessary. This is clearly not something that would emerge from e.g. classical
collapse of a star, and requires a change of topology through non-perturbative quantum
tunneling, similar to what is advocated in the fuzzball proposal [192]. Therefore, even
though we rely on perturbation theory outside stretched horizon in our analysis, from a
global perspective, a non-perturbative transition is necessary to take a classical BH to a
quantum BH spacetime.

Let us end by noting that, as we discuss in next chapter [281], our concrete predictions
for GW echoes from quantum BHs are imminently testable using current and upcoming
GW observations. May we suggest that we hold other proposals for quantum black holes
to the same standard?
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Chapter 5

Echoes from Boltzmann Reflectivity

5.1 Introduction

In the frequency dependence of the Boltzmann reflectivity last chapter, we study this
question assuming that BHs are quantum systems that follow standard rules of quantum
mechanics and thermodynamics [211]. There, we found that independent arguments based
on thermodynamic detailed balance, fluctuation-dissipation theorem, and CP-symmetry
of the extended BH spacetime, remarkably all lead to a universal Boltzmann energy flux
reflectivity:

Eout

Ein

= exp

(
− ~|ω̃|
kBTH

)
, (5.1)

where ω̃ is the horizon-frame frequency and TH is the Hawking temperature. Here we
investigate the quasinormal modes (QNMs) of these quantum BHs, and show how their
excitation can be related to QNMs of classical BHs. This result can be used to make pre-
dictions for GW echoes from quantum BHs, which we verify using numerical and analytic
calculations. We further study the detectability of these echoes, and show that ergoregion
instability is suppressed, consistent with astrophysical [198] and GW observations [49].

We organize this chapter as follows: Sec. 5.2 calculates the QNMs from a Boltzmann
boundary condition analytically, using the tools developed in [176]. Next, Sec. 5.3 presents
echoes in the time domain both numerically and analytically, and confirms the QNMs
calculated in Sec.5.2 with numerical results. Also the importance of the initial condition is
manifested in the time domain. Then, in Sec. 5.4, we discuss how the ergoregion instability
is quenched, and draw conclusions in Sec. 5.5.

If not specified, ω̃ is the near horizon frequency while ω is the frequency at infinity.
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5.2 Quasinormal modes

In this section, we investigate the QNMs based on the fluctuation-dissipation theorem for
quantum BHs, that we introduced in the last chapter. We use two analytic methods: the
geometric optics approximation, or the asymptotic matching method based on [176], which
both yield the same analytic formula.

We introduce Detweiler’s function [109]

sXlm = ∆s/2(r2 + a2)1/2

[
αsRlm + β∆s+1dsRlm

dr

]
, (5.2)

where α and β are radial functions and the different choices of them influence the V (r, ω)
in Eq. (5.3). Specifically, we focus on Sasaki-Nakamura (SN) equation in this chapter
(the explicit form of the functions α and β is given in [254]) . The radial master equation
becomes a simple non-singular wave equation with two independent asymptotic solutions
X+
s and X−s , where we omit indices l and m:

d2sXlm
dx2

− V (r, ω)sXlm = 0, (5.3)

X+
s =

{
B+e

−iω̃x, x→ −∞
e+iωx + A+e

−iωx, x→∞ (5.4)

X−s =

{
e+iω̃x + A−e

−iω̃x, x→ −∞
B−e

+iωx, x→∞ (5.5)

where x is the tortoise coordinate (defined as x =
∫

(r2+a2)/(r2−2Mr+a2)dr, approaching
-∞ at horizon), while ω̃ = ω−am/(2Mr+) and r+ = M+

√
M2 − a2. The potential V (r, ω)

can be found in [176].

Now, we apply the fluctuation-dissipation theorem [211]. With the modified Einstein
equation from the theorem 1, the boundary condition obtained for the asymptotic solution
X−s near horizon is fixed by Eq. (5.1):

A− = R−1
wall = e

+ ω̃
2TH (γ|ω̃|)

iω̃
πTH , (5.6)

where γ was the free parameter that quantified dissipation in the fluctuation-dissipation
theorem. We further assume that the imaginary part of frequency is much smaller than
its real part, thus

A− ' e
+
|ω̃|
2TH

+ iω̃
πTH

ln(γ|ω̃|)
. (5.7)

1Here we ignore the potential term since we only need to consider the near horizon range for calculating
reactivity of the wall, which is far away from angular potential barrier
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We can compare this result to [176] with a Neumann boundary condition, dX−s /dx =
0, at r0 = r+(1 + ε): They find A− = e2iω̃x0 , with x0 = x(r0). We can thus identify

(γω̃)iω̃/(πTH) = e2iω̃x0 or

x0 ≡
ln(γ|ω̃|)

2πTH

, (5.8)

as the effective position of the reflecting wall. In the following focus on γ ∼ 1 in Planck
units. Moreover, as discussed above, the energy flux reflectivity of the wall is exactly given
by a Boltzmann factor e−|ω̃|/TH .

Since the effective position of the wall changes very slowly as the ln(ω̃) (for ω̃ � 1
in Planck units), it can be translated to an approximately constant time delay between
subsequent echoes:

∆techo ≡ 2|x0| = −
ln(γ|ω̃|)
πTH

. (5.9)

Let us now find the QNMs for the quantum BH. Fig. 3.1 shows the geometric “optics”
picture for the echology, which is valid as long as |ω̃| � |x0|−1. In this limit, following
[183], we can obtain the quantum BH response by using RBH and TBH(R∗BH and T ∗BH), the
reflectivity and transmissvity of classical BHs’ angular momentum barrier with an ingoing
(outgoing) wavepacket from outside (inside):(

hout

hin

)
outside

= RBH +
∑∞

n=1 |TBH|2Rwall
nR
∗(n−1)
BH

= RBH + |TBH|2Rwall

1−RwallR
∗
BH
, (5.10)(

hout

hin

)
inside

= T ∗BH +
∑∞

n=1 T
∗
BHRwall

nR∗nBH

= T ∗BH +
T ∗BHR

∗
BHRwall

1−RwallR
∗
BH
. (5.11)

The first term of each equation is the initial observed event as in Fig. 5.1, which is the
same for classical BHs and quantum BHs. The subsequent terms in Eqs. (5.10) and
(5.11) represent the first echo, second echo, etc., which can be summed as a geometric
series. The QNMs are poles of the response function, or the zero’s of the denominator,
1 − RwallR

∗
BHe

−2iω̃x0 = 0, where Rwall = e−|ω̃|/(2TH) for our quantum BHs. Near ω̃ ' 0,
we have the least-damped modes, which we shall focus on next. We numerically confirm
R∗BH ' ±1 for |ω̃| � TH, where plus (minus) is for s = −1 (s = 0,−2), corresponding to
axial perturbations of a black hole. Hence, ω̃q for QNMs satisfy:

67



e
−2iω̃x0− |ω̃|TH = ±1, (5.12)

ω̃n = qπ
2x0

[
1− sgn(q)×i

4x0TH

]
, (5.13)

where q = 2n + 1 for s = 0,−2, and q = 2n for s = −1, with n ∈ Z. We arrive at the
same result via the asymptotic matching method used in [176]. Since we prove that the
ratio of outgoing and ingoing waves of solution of Eq. (3.3) (denoted as C1/C2 in [176])
is proportional to A−1

− , just simply multiplying the extra Boltzmann reflectivity by Eqs.
(A9) and (A13) in [176] recovers Eq. (5.12), hence the QNMs.

Let us note that, here we approximated the final stage of nonlinear binary merger event
as a scattering problem of a final black hole with wave from inside or outside. Intuitively,
the outside source might be activated first by the binary merger event. However, with
the data and our linear model it is not clear how these two signals actually combine to
produce the main event and echoes due to highly nonlinear initial conditions. Hence, in this
work, we consider pure inside/outside condition independently. As the signal sent in from
outside decays quickly, its inclusion cannot affect the morphology of the echo templates
significantly, and can only impact the relative amplitude of echoes to the main merger
event.

5.3 Real time Echoes

QNMs are crucial to the structure of echoes in the real time. Our analytic derivation of
QNMs, in Sec. 5.2 above, is only valid for |ω̃| � TH, but might be sufficient to encode
information for the real time echoes since the least-damped mode is in the same range.
In this section, we calculate the echoes numerically in the geometric optics limit (Eqs.
(5.10) and (5.11)), and analytically from the QNMs found in Sec 5.2, confirming that two
calculations are consistent.

5.3.1 Numerical Echoes from geometric optics approximation

While the realistic behavior of echoes should come from the nonlinear evolution, starting
with two inspiraling BHs, we can imitate this by linear initial conditions with a wavepacket
hitting the angular momentum barrier, from inside or outside, producing exactly the same
ringdown waveform as in the LIGO template for GW150914, denoted as hLIGO. We can
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Figure 5.1: Real time echoes from the geometric optics approximation, and γ ∼ 1 (in
Planck units). By construction, the first burst is exactly the same as in the LIGO template
for GW150914 (only with strain rescaled for comparison with the analytic solution in Fig.
5.4). Purple (orange) is for the initial wavepacket coming from outside (inside). Note that
our calculation uses linear perturbation theory and does not capture the nonlinear physics
during inspiral and merger phases.

then use Eqs. (5.10) and (5.11) to predict echo waveform, using linear initial conditions
and geometric optics limit, in frequency space:

hout = hLIGO (1 +Kecho) , (5.14)

Rwall = exp

(
− |ω̃|

2TH

)
e−2iω̃x0 , (5.15)

K(outside)
echo =

|TBH|2
RBH

Rwall

1−RwallR∗BH

, (5.16)

K(inside)
echo =

R∗BHRwall

1−RwallR∗BH

, (5.17)

Reflectivity and transmissivity of classical BHs can be found numerically by solving the
Teukolsky equation2. Fig. 5.1 shows the prediction for real-time echo waveforms, by Fourier

2Here, we use the numerical solutions from Conklin:2017lwb [99].
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transforming Eq. (5.15). By construction, the first burst has the exact same waveform as
the LIGO template for GW150914 (note that we rescale the strain for later comparison
with analytic result in Fig. 5.4). The outside initial condition produces smaller echoes
than the inside since reflection rate of BH is near 1 around the main frequency (around

ω̃ ∼ 0, where Rwall ∼ 1), and the transmission is around 0. Hence, K(outside)
echo is much smaller

than K(inside)
echo , and so are the echoes. Another feature is that the echoes become broader

over time, as they become more sharply peaked in frequency, around ω ' 2ΩH .

5.3.2 On the accuracy of the geometric optics approximation

Let us now discuss the validity of the geometric optics approximation (Figure 3.1 and
Equations 5.10-5.11). Since the calculation of RBH assumes plane waves at x0 → −∞, the
geometric optics approximation may fail at low frequencies, where ω̃|x0| ∼ 1. We numeri-
cally integrate the full SN equation with the inclusion of the dissipative term proposed in
[211] and the boundary condition of lim

x→−∞
ψ

(regular)
ω̃ (x)→ 1. Then we calculate the Fourier

mode of GWs, h
(N)
out , which is given by

hSN
out(ω) =

∫
dx′

S(ω, x′)ψ
(regular)
ω̃ (x′)

WBH

, (5.18)

where S(ω, x′) is the source term and WBH is the Wronskian of ψ
(regular)
ω̃ and a purely

outgoing solution at x → ∞, ψ
(outgoing)
ω̃ . Assuming a simple source term of S = δ(x − xs)

at xs � x0, Eq. (5.18) reduces to

hSN
out(ω) =

1

2iωAin

, (5.19)

and the Fourier mode based on the geometric optics approximation hGO
out is given by

hGO
out (ω) =

e−iω̃xs

2iω
T ∗BH

(
1 +K(inside)

echo

)
. (5.20)

In Fig. 5.2, we plot transfer functions, 1/|Ain|/T ∗BH and |1 + K(inside)
echo |, for comparison.

Although one finds small deviation between them, both are almost consistent at high
frequency.
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5.3.3 On the γ-dependence of echo spectrum

Although γ does not change the reflectivity of the would-be horizon, it does change the
time-interval of echoes, ∆techo, and so the peak frequencies in the spectrum of echo GWs
are useful to put constraint on the value of γ from the observations. The dissipative effect
becomes dominant when the blue-shifted frequency Ω reaches the energy of EPl/γ. To give
a few examples, we calculate the spectra of echo GWs by implementing the inverse Fourier
transform of (5.14) in the cases of γ = 1 and 103 (Fig, 5.3), for which the relevant energy
scales are the Planck and Grand Unified Theory scales, respectively. Here we plug the
ringdown spectrum [63] into hLIGO in (5.14) to obtain Fig. 5.3. Therefore, one can see only
the ringdown spectrum (black dashed line in Fig. 5.3) when γ = 0 that is the GR limit.

5.3.4 Analytic Echoes from QNMs

QNMs are the pure outgoing solution as X−s in Sec 5.2. Hence, we should also be able to
recover the numerical real-time echo solution with the analytic QNMs calculated in Sec
5.2. We assume that the solution is a sum over QNMs:

hout(t) '
∞∑

n=−∞

Bne
−i(ω̃n+ a

Mr+
)t
, (5.21)

where Bn’s are the complex amplitudes of the QNMs, and we use l = m = 2 for the
dominant QNMs.

For event GW150914, the classical ringdown is well-modelled by a single dominant
QNM (or a Lorentzian template) with ω∗ ' 1470− i250 rad/s [16]:

hLorentz(t) = Θ(t)e−iω∗t =
1

2iπ

∫
e−iωt

ω − ω∗
dω

' 1

2ix0

∫
1

ω̃n + a
Mr+
− ω∗

e
−i(ω̃n+ a

Mr+
)t
dn, (5.22)

where we used Eq. (5.13) to approximate ω̃n, and ignored the imaginary part of ω̃n
3.

Now, comparing Eq. (5.21) and Eq. (5.22), we notice that the dominant QNM of the
classical BH can be simply written as the sum over the QNMs of the quantum BH, by

3Note that
∣∣=ω̃
<ω̃
∣∣ = − π

2 ln(γ|ω̃|) � 1
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replacing
∫
dn→∑

n:

hout(t) '
∞∑

n=−∞

e
−i(ω̃n+ a

Mr+
)t

2ix0

(
ω̃n + a

Mr+
− ω∗

) , (5.23)

In other words, we assume that, in the x0 → −∞ limit, the classical and quantum BHs
have identical waveforms. However, for finite x0, if we ignore the imaginary part of ω̃n’s,
all QNMs have a common period of ∆techo = 2|x0|, leading to periodic echoes after this
time. However, the fact that =ω̃ < 0 implies that subsequent echoes will decay.

Fig. 5.4 compares the analytic prediction from Eq. (5.23) with the numerical result
from (Fourier transform of) Eq. (5.15), for a wavepacket coming from inside the barrier
(which is expected to be expandable in terms of quantum BH QNMs). The red dashed
curve is the analytic solution, which matches very well with the orange curve from the
numerical calculation. They both decay as 1/t at the beginning (first ∼ 20 echoes), but
then start to fall off exponentially. Note that we rescale the amplitude of LIGO template
for GW150914 in the numerical calculation, to match the first echoes in both numerical
and analytic solutions 4.

It is easy to understand this behavior analytically. Since only modes with |ω̃| . TH

survive for many echoes, the denominator of Eq. (5.23) is approximately constant, and can
be factored out of the sum. The rest of the sum can be decomposed into two geometric
series, and has a closed form:

hout(t) '
ie
− iat
Mr+ cos

(
πt

2x0

)
sinh

(
πt

8x20TH

)
2x0

(
a

Mr+
− ω∗

) [
cos
(
πt
x0

)
− cosh

(
πt

4x20TH

)] , (5.24)

At the peak of the k-th echo t = k × ∆techo, corresponding to the echo, the cosines
becomes ±1 and thus the echo amplitudes can be further simplified:

|hout(t = k ×∆techo)| ∝ 1

sinh
(

πt
8x20TH

) , (5.25)

which indeed, as we see in Fig. 5.4, transitions from 1/t to exponential decay after:

ktran ∼
8x2

0TH

π × 2|x0|
= −2 ln(γ|ω̃|)

π2
' 19, (5.26)

4Hence, if we rescale them to have the same initial event, then the numerical echoes are larger than
analytic. This is due to the fact that in the analytic Lorentzian template, we only use a single QNM of
the classical BH, but we use the full LIGO template in the numerical solution.
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echoes, for γω̃ = O(102) rad/s. Heuristically, we can see that summing over many QNMs
is responsible for the early power-law decay. However, since higher QNMs leak faster, the
late-time behavior for k & 20 is dominated by the least-damped QNM, which would decay
exponentially.

We can also look at the behavior around the peak of each echo, for k � ktran:

hout(t) ∝
∑
k

(−1)kke
− iat
Mr+

(t− k∆techo)2 +
(

∆techo
π

)2
(

k
ktran

)2 . (5.27)

In other words, the amplitude of the first ∼ 20 echoes can be well-approximated by a
Lorentzian function in time, where the ratio of echo width σecho to echo spacing ∆techo is
given by:

σecho

∆techo

=
1

π

(
k

ktran

)
. (5.28)

We see that the echoes are sharper initially, but start to merge for k ∼ ktan, which is where
we effectively transition to a single damped QNM.

This behavior can be seen in Fig. 6.24, where we plot the 1st, 5th and 15th echo,
individually. Again, we see that the amplitude decays as 1/k for for the k-th echo, while
its width grows as k. Here, we slightly shift the numerical solution to match the phases
around the peaks, since it is hard to predict phases correctly due to rapid oscillations, and
uncertainty on the start point of the echo templates, due to the nonlinear nature of the
merger event.

Given the accuracy of the Lorentzian model in capturing echo properties, we can apply it
to different spins, starting with their fundamental (n = 1) classical QNM for s = −2, l = 2
and m = 2 from the public source [11], fixing the mass to 67 M�. We see in Fig. 5.6
that quantum BHs with higher spins have longer ∆techo, and slightly higher amplitudes
(normalized to their classical QNM amplitude), while they all show a similar power law
decay at the early times.

5.3.5 On detectability of Boltzmann echoes

To get a sense of the detectability of our Boltzmann echoes from a quantum BH, we
study the signal to noise ratios (SNRs) of the echoes that we obtain from GR template of
GW150914, and compare it to that of the binary black hole merger event. Here, SNR2 ≡∑

f |ĥf |2/σf
2, where ĥf is strain in the frequency domain, and σf is the detection noise of

73



LIGO. Fig. 5.7 shows the strains in the frequency domain. Comparing the LIGO noise
[4] curves with the echoes illustrates that they stand out of the noise around 100 Hz to
300 Hz, and reach the biggest amplitude at ω̃ ∼ 0, where Boltzmann reflectivity reaches a
maximum.

Using LIGO noise (combining Hanford and Livingston detectors), we calculate the
expected ratio SNRechoes/SNRevent, which is shown in Fig. 5.8. Here we red(blue)shift the
LIGO BH template as in Fig. 5.7 to compare SNRs with different effective masses. The
ratio peaks around 85 M�, close to the GW150914 event final mass of 67 M�.

Some words of caution are in order: First, we should remind the reader that all the
calculations presented here use linear perturbation theory, while the initial conditions of
binary black hole mergers are clearly non-linear. This uncertainty in initial conditions can
be seen by the difference in the amplitude at t→ 0 between the Lorentzian and numerical
model in Fig. 5.4: The ratio of 1st echo to main event peak is 0.44 for the numerical
model, while it is 0.13 for the Lorentzian model. This factor of ∼ 3 difference reflects the
uncertainty that arises from (lack of) proper nonlinear modeling of the initial conditions.
We expect that a more realistic prescription would use a smoother cutoff of the ringdown
phase (instead of the Heaviside function, in the Lorentzian profile, e.g., [29]), and thus
would lead to an en echo amplitude in-between these two extremes.

Another point is that, any echo model would have additional free parameters, such as
γ or echo phases, which need to be fitted for, and effectively reduce the significance of
echoes, if one properly accounts for the look-elsewhere effects.

5.4 Ergoregion Instability?

Potential ergoregion instability has been a concern for the models of exotic compact objects
(ECOs), since a perfectly reflective wall with the angular barrier potential catching the
modes in the superradiance frequency range might lead to instability for all the spinning
ECOs [177, 176], in contradiction with observations [198, 49]. However, the quantum BHs
that follow the fluctuation-dissipation theorem do not suffer from this instability since the
superradiance is highly suppressed because of the Boltzmann reflectivity. This is illustrated
in Fig. 5.9: the top panel is the standard superradiance for BHs and the bottom plots
reflectivity of quantum BHs (for one reflection), which never exceeds 1 for different spins.
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5.5 Conclusion

In the last chapter[211], we advanced independent arguments for why classical horizons
must be replaced with stretched horizons with Boltzmann reflectivity for quantum BHs,
which are only perfectly absorbent for frequencies much bigger than that of Hawking pho-
ton. Using the concrete boundary conditions that result from the fluctuation-dissipation
theorem, we analyzed the QNMs of quantum BHs analytically, and confirmed that the
resulting predictions are consistent with numerical real-time echoes (in linear perturbation
theory), that result from mergers of binary BHs. The echo waveforms are computed, both
from geometric optics approximation and a sum over QNMs (which has a closed analytic
form).

Considering the uncertainty in modeling the nonlinear initial conditions of Boltzmann
echoes and LIGO noise properties, we predict that the SNR for first (all) echo(es) is 13-44%
(24-82%) of the SNR for the main binary merger event.

Finally, we argue that with the efficient absorption from the Boltzmann factor, ergore-
gion instability is suppressed for all spins.
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Figure 5.2: The expected ratio of outgoing GW amplitude (including both main event and
echoes) to that of the main event |hout/hLIGO| for a = 0.8 based on the geometric optics
approximation (black dashed line) and the numerical integration of the SN equation (red
line; see Sec. 5.3.2). Blue dashed lines show the real parts of the QNMs derived analytically
in (5.13).
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Figure 5.3: Amplitude spectral densities of ringdown+ echo GWs in the case of a = 0.7.
The peak frequencies depend on the value of γ. We here take M = 67.6M� and ā = 0.7.
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Figure 5.4: The real-time echoes from the geometric optics approximation applied to GR
template for GW150914 (same as orange curve in Fig. 5.1), compared to the Lorentzian
analytic approximation of QNMs. Note that the amplitude of the GR template is rescaled
to make the first echoes match. The echoes initially decay as 1/t, as many QNMs contribute
to echoes. However, after∼ 20 echoes, only the least-damped QNM survives and thus strain
starts to decay exponentially.
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Figure 5.5: The single real time echoes from the numerical geometric optics approximation
(applied to LIGO template), as well as the analytic Lorentzian model. The amplitudes
match well, while phases are hard to predict due to rapid oscillation over long time. we
shift the numerical solution for each echo to match the phases around the peak.
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Figure 5.6: The real time echoes from the Lorentzian model for different spins with the
same mass as GW150914, and γ ∼ 1. Similar to Fig. 5.4, we see that they all decay as
power laws at the early times.

80



L1 Noise

H1 Noise

LIGO BH Template

Echoes

1st Echo

5th Echo

15th Echo

10 20 50 100 200 500
1.×10-24

5.×10-24

1.×10-23

5.×10-23

1.×10-22

5.×10-22

1.×10-21

f/Hz

S
tr
ai
n*

f
/H
z1

/2

Figure 5.7: The echoes in the frequency domain compared to LIGO Hanford and Liv-
ingston noise around GW150914. Amplitude for the main, as well as expectation for the
first, fifth, fifteenth, and all the echoes are shown. All the echo signals center at ω̃ ' 0 or
ω ' a/(Mr+) as expected. Note that echo amplitudes would be lower by a factor of ∼ 3,
if we instead use the Lorentzian model in Fig. 5.4, and (approximately) fix the main event
amplitude.
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Figure 5.8: SNR of echoes over main event with the shifted mass (using GW150914 but
shifting the data to effectively change the mass). Note that this ratio would be lower by a
factor of ∼ 3, if we instead used the Lorentzian model in Fig. 5.4.
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suppressed by the Boltzmann factor.
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Chapter 6

Hybrid Method

As we discusses in the previous chapters, the echoes are very sensitive to the initial condi-
tion. However, the condition is nonlinear in the real world with two black holes merging
with each other. The next step, in the chapter, is to encode some nonlinear information
into the echo analysis via hybrid method. Hybrid method is first developed in [200, 201].
We will extend it to Quantum BHs both with old hybrid method and a new hybrid green
function method in this chapter.

6.1 Dividing the Binary BH collision spacetime into

two regions

We decompose the entire, binary BH collision space time into two regions: the weak-
perturbation region (region I) and the strong-perturbation region (region II). Note that a
large part of the weak-perturbation region is still considered “strong gravity”.

It can be argued that from the waveform at future null infinity, we should be able
to reconstruct the space-time geometry for region I. There is, of course, the issue that
probably the Kerr geometry should have an evolving mass M and spin a. For the moment,
let us just ignore these changes, and use M and a of the final black hole. This will be a
limitation for this approach.

Let me also emphasize that the validity of such a division is not proven mathematically,
but can be verified from numerical simulations.
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Suppose we have a spherical shell, in the Boyer-Lindquist coordinate system, defined
by the equation t = T (r). We can embed region I in a full Kerr spacetime, with region I as
defined by t > T (r), and region II, as replaced by t < T (r) region of the Kerr spacetime.
We shall denote the world sheet of the shell by ΣSF.

From now on, we shall only deal with this full Kerr spacetime. We need to keep in mind
that the region II here is not the true strong-perturbation region, but what is necessary to
make sure perturbations in region I matches the true BBH spacetime.

6.2 Kerr Spacetime

The value of ψ4 (or Zerilli functionX, which we might also choose to use in the Schwarzschild
case), in the region II, can be fully determined by the waveform at future null infinity, as
well as the absence of incoming waves from the past null infinity.

Let us take ψ4 for example. Suppose ψ4 at future null infinity is given by −ω2h(ω).
Here implicitly let us consider l = m = 2, and ignore the mixing between spherical and
spheroidal harmonics.

6.2.1 Solution in Region I and Continuation to Region II

Let us define the up-mode homogeneous solution R∞ω of the Teukolsky equation

R∞ω (r) ∼


r3D∞ω e

iωr∗ , r → +∞

Dout
ω eikr∗ + ∆2Din

ω e
−ikr∗

(6.1)

where k = ω −mΩ+. These D coefficients are available from standard BH perturbation
literature.

In order to match our waveform at infinity with the actually numerically computed
one, we simply need to impose

ψ4 = −ω
2h(ω)

D∞ω
R∞ω (6.2)

Here the value of ψ4 exists for both t > T (r) and t < T (r). In region I, this corresponds
to the actual BBH space-time, while in region II, this is analogous to an image space-time.
If we get close to the horizon, we have

ψ4 ∼ −
[
ω2D

out
ω

D∞ω
h(ω)

]
eikr∗ −

[
ω2D

in
ω

D∞ω
h(ω)

]
∆2e−ikr∗ (6.3)
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Figure 6.1: Waveform at future null infinity can be used to construct a solution of ψ4 in
region I, and continued to region II.

Here, the first term is one that goes up from the past horizon, while the second one it wave
that travel toward the future horizon.

Since the past horizon lies completely within region II, this first term, which represents
a wave that merges from the past horizon, exists only to drive the perturbation in region
one. The second term exists partially in region I. It is this portion of the wave that will
represent wave that travels toward the future horizon of the final black hole.

One can convert this into ψ0, by multiplying the relevant coefficient Sω in the frequency
domain:

ψHH
0 (r∗) = −Sωω2D

in
ω

D∞ω
h(ω)e−ikr∗ (6.4)

We can convert this into the “time”-domain, where time is advanced time v.

Let us first ignore the need to window this ψ0 to exclude the region II portion. Suppose
at rp∗, we simply feed this entirely into the out-going ψ4 which emerges from the past
horizon, with reflectivity Rω, we will get a first echo of

hECO = Sω
Din
ω

Dout
ω

e−2ikr∗ph(ω) (6.5)
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Here the filtering out of region I can either be done with transforming into the time
domain and then back, or simply applying a frequency-domain integral. We do note that
the transition can be “abrupt”.

6.2.2 Data on Boundary ΣSF between Region I and Region II

Let us propose a second approach, where we construct the wave in region I by applying a
source term on the trajectory, imposing

LTR = F (r)eiωT (r) (6.6)

Here the RHS corresponds to the T/∆2 in the original Teukolsky equation.

In this way, we can write

Rω(r) =
1

WT

[
R∞ω (r)

∫ r

2M

RH
ω (r′)F (r′)eiωT (r′)dr′

+RH
ω (r)

∫ +∞

r

R∞ω (r′)F (r′)eiωT (r′)dr′
]

(6.7)

Here the first term is waveform at future null infinity, and second term is waveform at
future horizon. This can be a new way to generate ψ+∞

4 by posing data on the shell ΣSF

For near the future null infinity, defining

u = t− r∗ (6.8)

we can write
ψ+∞

4 (u)

r3
=

∫ +∞

2M

dr′G(u, r′)F (r′) (6.9)

with

G(u, r′) ≡
∫ +∞

−∞

dω

2π

D∞ω R
H
ω (r′)eiω[T (r′)−u]

WT (ω)
(6.10)

This can in principle be inverted to obtain, from ψ∞4 the data F (r) on the shell. This can
then lead to wave that goes toward the future horizon.
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6.3 Taking the Schwarzschild Special Case

In the Schwarzschild radial in-fall case, we can investigate the above approach more in a
simple case. We can use the Zerilli function Z, which has better analytical properties near
infinity and horizon.

Our ΣSF will just be spheres that contain the particle’s trajectory. We can first compute
wave at future null infinity, obtain Z, both on ΣSF and on the past horizon, and see how
they behave. We can then evaluate Z on the Σv’s shown in the figure, and see whether
there is a qualitative difference when v becomes less than the critial v0 at which particle
plunges into the future horizon.

For the Zerilli function, we have

Z∞ω =


eiωr∗ , r∗ → +∞

Bout
ω eiωr∗ +Bin

ω e
−iωr∗ r∗ → −∞

(6.11)

and

ZH
ω =


Aout
ω eiωr∗ + Ain

ω e
−iωr∗ , r∗ → +∞

e−iωr∗ r∗ → −∞
(6.12)

We also have
Bout
ω = Ain

ω , Bin
ω = −Āout

ω , (6.13)

and
WRW = 2iωAin

ω (6.14)

From waveform at infinity h∞ω , we directly obtain Zerilli function in the entire region I
as Z∞ω h

∞
ω , hence, near the horizon

hHω = Bin
ω h
∞
ω = −Āout

ω h∞ω (6.15)

As it turns out, Āout
ω ∼ ω−3 at low frequencies, but if we write

Āout
ω = (−iω)−3M(ω) (6.16)

then M has a very simple shape both in time and frequency domain. In this way, we can
write

hHω = (−iω)−3M(ω)h∞ω (6.17)
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Figure 6.2: Plot of M(t) for a Schwarzschild black hole.

Here we need to be careful with the “time” variables associated with hH and h∞; because
we have eiωr∗ multiplying h∞ and e−iωr∗ multiplying hH , we the “time” is v for hH and u
for h∞.

Even though the ω3 on the denominator seems to emphasize low-frequency components,
we can still use this formula to obtain the region I portion of h∞, by resorting to the fact
that all perturbation should die down at the end. We can first define

hM(t) ≡
∫ +∞

−∞
M(t− t′)h∞(t′)dt′ , (6.18)

and then start out at t→∞ and work our way backwards, we will be able to write

hH(v) =

∫ +∞

v

dt1

∫ +∞

t1

dt2

∫ +∞

t2

dt3h
M(t3) (6.19)

In the frequency domain, we shall denote the portion of wave we want as [hHω ]v>v0 .

We can seem from there that the M function, does not have much features at all,
especially at the location of quasi-normal modes. This is because it comes from Aout

ω . We
recall the relation that

|Aout
ω |2 − |Ain

ω |2 = 1 (6.20)

and also the fact that
Ain
ω = 0 , ω = ωQNM

lmn . (6.21)

In the Schwarzschild case, the functionM seems rather well-behaved as a kernel; there-
fore I speculate that in the Kerr case it will look rather similar. For the up-going wave, we
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will have the issue that it will start rather abruptly, at v = v0 However, this will be taken
care of by R, which will smooth out the start in the reflected wave.

Given [hHω ]v>v0 , we will get a reflected wave of

1

Ain
ω

Rω[hHω ]v>v0 (6.22)

this will be followed by more waves, of the form

h(n)
ω =

(
−Ā

out
ω

Ain
ω

Rω

)n
1

Ain
ω

Rω[hHω ]v>v0 , n = 0, 1, 2, . . . (6.23)

Here, we might be somewhat worried about the triple integral in defining hH ; in fact, if
we apply Eq. (6.19) to any numerical waveform, it will lead to huge errors. However, this
can be solved by carefully looking at Eq. (6.24). We note that both Ain and Aout scale as
∼ ω3 at low frequencies. This way, we can take a triple derivative of hH , and write

h(n)
ω =

(
−Ā

out
ω

Ain
ω

Rω

)n
1

(−iω)3Ain
ω

Rω[hMω ]v>v0 , n = 0, 1, 2, . . . (6.24)

It is easy to verify that both hMω and 1/[(−iω)3Ain
ω ] are well-behaved in the time domain.

6.4 Outlook

Following the methodologies discussed above, we are able to generate the echoes in Schwarzschild
case. And we have verified in classical BH case, this hybrid green function method gives
exactly same waveform in region I as the original hybrid method in [200, 201]. But our
new hybrid green function method can by applied to Kerr metric, which will be our next
step, while the old one is hard since it is not easy to separate the two regions in Kerr case.

In addition, we extend old hybrid method into quantum BHs case with an extra damp-
ing term. It can automatically generate echoes with whole spacetime numerical solution.
We are comparing the result with the one generated in the new hybrid green function
method to study if it can verify the geometrical optic approximation we have before.
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Chapter 7

Future Prospects and Conclusion

7.1 Towards Synergistic Statistical Methodologies

As we summarized in the previous chapters, the past fours years have witnessed hundreds
of theoretical studies focusing on model-building for echoes, as well as dozens of observa-
tional searches and statistical methodologies. However, in spite of remarkable progress on
both fronts, the theoretical and observational tracks have largely developed independently,
due to the lack of good echoes template and noise of detections. However, it appears that
both tracks have become mature enough, so much so that the time is ripe for a syner-
gistic convergence. For example, Bayesian methods developed in [203, 171] applied to a
superposition of QNMs of quantum BHs (as outlined in [281]) would put coherent methods
developed by [99, 31] on more sound statistical and physical footings. The analogy will be
with helio- or astro-seismology, where modeling a dense spectrum of QNM frequencies can
be used to infer the int-renal structure of the compact objects [210].

The real challenge will be in allowing enough freedom in our best physical models, in
order to capture all the remaining theoretical uncertainties, but not any more!

7.2 Echoes in Numerical Relativity

Most studies of echoes have so far focused on the linear perturbation theory around the
final BH for simplicity, but in reality the mergers start with the highly nonlinear binary
BH inspiral. Hence, we need a covariant numerical implementation of binary quantum
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BHs within a highly-nonlinear dynamical spacetime to fully address the entire dynamics,
especially the initial conditions. There are several possible approaches borrowed from nu-
merical relativity which can be modified to either include the quantum boundary condition
or the full dynamics of binary quantum BHs.

For instance, the effective one body (EOB) formalism [77, 104] is a concrete strategy
which only needs to solve ordinary differential equations rather than to perform the costly
3d numerical relativity simulations. It uses higher-order post-Newtonian expansion in
a resummed form (different from the usual the Taylor-expansion), to include the non-
perturbative result using a conservative description of binary BHs dynamics, radiation-
reaction and emitted GW waveform. One possible approach, that is currently underway,
is to capture the nonlinear effects in echoes by modifying the boundary condition in the
EOB codes to implement the quantum BH dynamics.

Another route is to directly modify numerical relativity codes that have successfully
produced waveforms for BBH merger events. A concrete strategy could be incorporating
the mock fuzzball energy-momentum tensor [24] as a source for Einstein equations, directly
into the numerical relativity codes. If the fuzzball “fluid” manages to stay just outside the
apparent BH horizons in a dynamical setting, then it can potentially generate echoes in a
fully nonlinear numerical simulation of quantum BBH merger.

Recently, [207, 206] presented the first numerical simulation of BBH mergers in Chern-
Simon gravity. They start with the modified action and predict the dynamics order by
order. It is possible that a similar iterative approach can be applied to model boundary
conditions at apparent horizons, or evolution of mock fuzzballs by adding modified matter
term into second order after the classical simulation.

7.3 Quantum Gravity, Holography, and Echoes

As we discussed above, any modification of event horizons that could lead to echoes should
be a non-perturbative modification of general relativity, and can only be fully captured
by a non-perturbative description of quantum gravity. A possible example of this is the
fuzzball program in string theory (See detail in Chapter 2). But more generally, what can
non-perturbative approaches to quantum gravity tell us about BH echoes?

One of our greatest insights into the dynamics of quantum gravity has come from the
Holographic Principle, that extending Bekenstein-Hawking area law for entropy of BHs
[58], suggests the entire dynamics of a quantum gravitational system should be captured
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on its boundary. The most concrete realization of this principle was proposed by Juan Mal-
dacena [181], in the form a conjectured duality between quantum gravity in Anti-de Sitter
(AdS) spacetime and a Conformal field theory (CFT), commonly known as AdS/CFT cor-
respondence or conjecture. It proposes that CFT in spacetime of d-1 dimension, at the
asymptotic boundary of an AdS spacetime is mathematically equivalent to string theory
(or quantum gravity) within the bulk AdS in d dimension. This topic has been extremely
fruitful over the past two decades, offering many synergies between seemingly disparate
notions in geometry and quantum information. For example, the Ryu-Takayanagi conjec-
ture [242] relates the entanglement entropy of boundary CFTs with the areas of extremal
surfaces in the bulk AdS, generalizing the notion of Bekenstein-Hawking BH entropy to
arbitrary geometries.

An intriguing connection between AdS/CFT and echoes is the appearance of echo times:

∆techo = tscrambling =
ln(SBH)

2πTH

, (7.1)

as “scrambling time”, in the AdS/CFT literature [253]. Here, SBH and TH are the entropy
and temperature of the BH respectively. The scrambling time refers to the time it takes to
destroy quantum entanglements in a chaotic system, while BHs (and their CFT duals) are
conjectured to be fast scramblers, i.e. the most efficient in destroying entanglement (e.g.,
[179]). Interestingly, Saraswat and Afshordi [245] have recently shown that the scrambling
time (computed using Ryu-Takayanagi conjecture in a dynamical setting) is identical to
the Planckian echo times, for generic charged AdS BHs. Could this imply that echoes
could be a generic property of (possibly a certain class of) quantum chaotic systems?

Another possible connection could come in the form of the fluid-gravity correspondence,
e.g., in the context of membrane paradigm discussed in Sec. 1.2. For example, in [211],
we have argued that Boltzmann reflectivity of GW echoes, implies that viscosity of the
boundary fluid should vanish at small frequencies ~ω � kT . One may also speculate that
other holographic manifestations of BH echoes may appear in the Kerr/CFT conjecture
[93], Braneworld BHs [110], or as Regge poles of the boundary plasma in AdS/CFT.

7.4 Einstein Telescope, Cosmic Explorer

The Einstein Telescope (ET) [236] and Cosmic Explore (CE) [113] are the third-generation
ground based GW detectors. The ET consists of three underground detectors with three
arms 10 kilometers long and CE will be realized with two arms 40 kilometers long, which
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are 10 times longer than Advanced LIGO’s. These next-generation GW detectors might
allow us to observe some Planckian signatures from quantum BHs such as GW echoes from
merger events leading to a remnant BH. We plot the spectra of GW echoes and ringdown
with the sensitivity curves of Advanced LIGO, ET, and CE in FIG. 7.1. The detection of
GW echoes with the third generation GW observatories are discussed in [185, 261, 178],
and it may be possible to distinguish ECOs with |R| . 0.3 from BHs with at 2σ level
when SNR ∼ 100 in ringdown, which would be possible for the third-generation GW
detectors. The relative error on the reflectivity of would-be horizon is also investigated
in [185, 261, 178], and the relative error for measurement of reflectivity in ground-based
detectors is approximately given by∣∣∣∣ ∆R

1−R

∣∣∣∣ ' 0.5×
(

8

ρringdown

)
, (7.2)

where M = 30M�, ρringdown is the SNR in the ringdown phase, while the distance between
the top of the angular momentum barrier and the would-be horizon is assumed to be longer
than 50M in the tortoise coordinate. For comparison, we note that the loudest detected
BBH event, GW150914, has ρringdown ' 8.

The detectability of GW echoes from failed supernovae, leading to the formation of
BHs, with the third-generation GW observatories is also discussed in [210]. Calculating
the SNR of GW spectrum consisting of echo and ringdown, ρringdown+echo, in the Boltzmann
reflectivity model, the horizon distance Dh, defined as the distance where ρringdown+echo = 8,
is estimated.

For this analysis, [210] generalize Boltzmann reflectivity to:

R = exp

[ −~ω
kTQH

]
, (7.3)

in terms of a quantum horizon temperature TQH, which in general can be different from TH.

Given the optimistic case in the Boltzmann reflectivity model, TH/TQH = e15(ā−1) (with
marginal ergoregion stability), the horizon distance can be estimated as Dh ∼ 10 Mpc
for the Advanced LIGO at design sensitybity and Dh ∼ 100 Mpc for the third-generation
detectors such as ET and CE. Therefore, the authors in [210] argue that the searching for
GW echoes, sourced by failed supernovae within our Galaxy and nearby galaxies, may be
possible. However, in the case of TQH = TH, the horizon distance is less than or comparable
with 10 Mpc and so the echo search with failed supernovae would be restricted to within
the Local Group. For the comparison, the strain amplitude of GW echoes in TQH/TH = 1
and TQH/TH = e15(ā−1) are shown1 in FIG. 7.2.

1We here assume that the energy fraction of ringdown phase is εrd = 6×10−7 although it highly depends
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Figure 7.1: Spectra of ringdown and echo phases with the reflectivity of |R| = 0.99, 0.9,
0.6, and 0.3. We set Do = 40 Mpc, ā = 0.1, ` = m = 2, M = 4M�, θ = 20◦, and
εrd = 0.1%.

7.5 LISA

The Laser Interferometer Space Antena (LISA) is planned to be the first GW observa-
tory in space. It will have three satellites separated by millions of kilometers and their
orbits maintain near-equilateral triangular formation. LISA might enable us to reach high-
precision detection of ringdown in SNR ∼ O(103), which puts stronger constraints on the
reflectivity of BHs [261, 178].

Recently, a novel proposal to discriminate BH horizons based on the tidal heating
was proposed in [107, 108]. One of the main targets of the LISA mission is precision
measurements of extreme-mass-ratio inspirals (EMRIs), in which the tidal heating could
be important. The (partial) absorption of ECOs or BHs plays the role of dissipation at
the surface, by which tides back-react on the orbital trajectory. It is argued that this tidal
heating is responsible for a large dephasing between the orbits of a BH and ECO. This
dephasing accumulates over the timescale of months and the accumulation speed is faster

on the detail of nonlinear gravitational collapse.
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Figure 7.2: Spectra of ringdown and echo phases in the Boltzmann reflectivity model with
ā = 0.1, εrd = 6 × 10−7, M = 2.4M�, θ = 90◦, and Do = 1 Mpc. Here we also assume
γ = 10−10, TH/TQH = 1 (left) and TH/TQH = 1.37× 10−6 (right).

for a higher spin. The authors in [108] also found a proportionality relation between the
dephasing δφ and energy reflectivity |R|2.

In order to make use of this scheme to put strong constraints on the reflectivity of
ECOs, one has to obtain accurate EMRI waveforms by properly taking into account the
tidal heating for orbiting objects, which may decrease systematic errors in data analysis.

Not only the tidal heating, but also the tidal deformability contributes to the GW
Fourier phase and it can be characterized by the tidal Love number k. The Love number
of ECO of mass M may scale as 1/| log δ|, where δ ≡ r0 − rh, with rh is the BH horizon
radius of mass M and r0 is the radius of the ECO. So the k − δ relation is

δ = rhe
−1/k, (7.4)

and assuming this relation, one can infer the near-horizon structure characterized by δ
from the measurement of the Love number k. For instance, if the Love number of the
order of k ∼ 10−2 is measured by LISA from a supermassive BH binary signal, leading to
the formation of a BH of M ∼ 106M�, it yields the resolution of δ ∼ lPl.

However, the authors in [32] point out that the statistical and quantum mechanical
uncertainties in measurements of near-horizon lead to some difficulty to measure δ precisely.
The former one comes from the fact that the statistical uncertainty in δ is proportional
to 1/k, and the inferred value of k, where the inferred value of δ is comparable with its
statistical uncertainty, is around k ∼ 0.2. Therefore, any inferred value of δ, derived from
k that is smaller than ∼ 0.2, would be dominated by the statistical uncertainty. The latter
one comes from the uncertainty principle in quantum mechanics. Once precisely measuring
δ ∼ lPl, it may lead to the uncertainty in the mass of the ECO, which then leads to the
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uncertainty in the binding energy. This results in the uncertainty in the orbital and GW
frequencies, which means that one cannot measure δ precisely if it is much shorter than
lPl.

7.6 Pulsar Timing Arrays

Following their first discovery in 1968 [146], over 2000 pulsars have now been detected by
radio telescopes across the world. The pulsars’ intrinsic properties, as well as propagation
effects in the interstellar medium, can influence the arrival times of pulsar pulses. There-
fore, pulsar timing arrays (PTA) can be used as a detection tool for BH binaries [147],
and thus, might be used to detect singatures of echoes from quantum BHs. In particular,
millisecond pulsars stand out for their unparalleled stability (comparable to atomic clocks!)
without being subject to starquakes and accretion. To give an explicit example, we show
the spectrum of GW echoes predicted by the Boltzmann reflectivity model [211, 281] with
the sensitivity curve of International Pulsar Timing Array (IPTA) and Square Kilometre
Array (SKA) (FIG. 7.3). The lower curve in Fig. [146] is for a 3 × 109M� BH merger
at Do = 1 Gpc. Given that this mass is comparable to that of M87 supermassive BH,
located at 16 Mpc, we expect ∼ 2 × 105 of such BHs at < Gpc. Assuming that each BH
merges once every Hubble time ∼ 1010 years, and that echoes last for 20 years (from simple
mass scaling), the chances of detecting such a loud event with PTAs at any time is 0.1%.
However, fainter events will be more prevalent as their number increases as SNR−3/2 from
volume scaling. Furthermore, increase in supermassive BH merger activity observed at
high redshifts shall boost this statistics.

PTAs are anticipated to detect the low frequency GW signal from supermassive BBH
within the next few years [147]. We expect that the first GW detection will be a stochastic
background of supermassive BH binaries. With any luck, this shall lead to new insights
into the nature of quantum BHs and gravity.

7.7 Final Word

In this thesis, we provided a comprehensive overview of the theoretical motivations for
why quantum black holes in our universe may have different observable properties, in
contrast to their classical counterparts in Einstein’s theory of general relativity. The most
prominent and potentially observable smoking gun for these quantum black holes comes in
the form of gravitational wave echoes, which have been the subject of intense theoretical
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Figure 7.3: Spectra of GW echoes in the Boltzmann reflectivity model with ā = 0.6,
` = m = 2, Do = 1 Gpc, and γ = 1. The gray line shows the case of M = 3 × 109M�,
εrd = 0.005, TH/TQH = 0.1 and the black line shows one for M = 8 × 109M�, εrd = 0.01,
TH/TQH = 0.05. We also plot the PSD for the IPTA (blue) and SKA (red).

and observational scrutiny over the past few years. We provided a concise account of
theoretical predictions. We closed the thesis by our vision of the future of “Quantum
Black Holes in the Sky”, via a synergy of statistical methodology, quantum gravity, and
numerical relativity, and in light of the next generation of gravitational wave observatories.

While this thesis focuses on the gravitational wave echoes, as arguably the most concrete
and promising signature of quantum black holes, other possible observable signatures can
be (and should be) explored. For example, interactions of photons or neutrinos with
near-horizon quantum structure could lead to signatures in radio images in Event Horizon
Telescope observations [241], or ultra high energy neutrinos in Ice Cube observatory [36],
respectively. However, these signals will be suppressed if Boltzmann reflectivity is assumed,
as they have ~ω � kTH. Another alternative to echoes may come through non-localities in
non-violent unitarization, which would be observable far from the horizon (see Sec. 2.8).
However, it is arguably difficult to pin down concrete predictions in this scenario.

To conclude, the world of Quantum Black Holes remains a wide open and largely
uncharted territory, spanning from the dark corners of obscure mathematical structures
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to the nitty-gritty details of gravitational wave detector noise. It also holds the promise
to crack the century-old puzzle of quantum gravity, and yet be imminently testable in
the next few years. Therefore, the study of “Quantum Black Holes in the Sky” remains
extremely exciting, active, and confusing, and is bound to provide us with new surprises
in the new decade, and beyond.
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[79] Raúl Carballo-Rubio. Stellar equilibrium in semiclassical gravity. Phys. Rev. Lett.,
120(6):061102, 2018.

[80] Vitor Cardoso, Valentino F. Foit, and Matthew Kleban. Gravitational wave echoes
from black hole area quantization. 2019.

[81] Vitor Cardoso, Edgardo Franzin, and Paolo Pani. Is the gravitational-wave ringdown
a probe of the event horizon? Phys. Rev. Lett., 116(17):171101, 2016. [Erratum:
Phys. Rev. Lett.117,no.8,089902(2016)].

[82] Vitor Cardoso, Seth Hopper, Caio F. B. Macedo, Carlos Palenzuela, and Paolo Pani.
Gravitational-wave signatures of exotic compact objects and of quantum corrections
at the horizon scale. Phys. Rev., D94(8):084031, 2016.

[83] Vitor Cardoso and Paolo Pani. Tests for the existence of horizons through gravita-
tional wave echoes. Nat. Astron., 1:586–591, 2017.

[84] Vitor Cardoso and Paolo Pani. The observational evidence for horizons: from echoes
to precision gravitational-wave physics. 2017.

[85] Vitor Cardoso and Paolo Pani. Testing the nature of dark compact objects: a status
report. Living Rev. Rel., 22(1):4, 2019.

[86] Vitor Cardoso, Paolo Pani, Mariano Cadoni, and Marco Cavaglia. Ergoregion insta-
bility of ultracompact astrophysical objects. Phys. Rev., D77:124044, 2008.

[87] Steven Carlip and Claudio Teitelboim. The Off-shell black hole. Class. Quant. Grav.,
12:1699–1704, 1995.

[88] B. Carter. Axisymmetric Black Hole Has Only Two Degrees of Freedom. Phys. Rev.
Lett., 26(6):331–333, Feb 1971.

[89] Roberto Casadio and Roldao da Rocha. Stability of the graviton Bose–Einstein
condensate in the brane-world. Phys. Lett., B763:434–438, 2016.

106



[90] Roberto Casadio, Piero Nicolini, and Roldao da Rocha. Generalised uncertainty
principle Hawking fermions from minimally geometric deformed black holes. Class.
Quant. Grav., 35(18):185001, 2018.
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Appendix A

Derivation of e−|ω̃|/T from the
modified dispersion relation

Here we show the details of the derivation of e−|ω̃|/T in the Kerr spacetime by starting with
the analytic solution of the modified SN equation. The absolute value of the frequency is
very important since the ergoregion instability can be induced if the reflectivity was given
by e−ω̃/T . Let us start with the modified SN equation:(

−iγ|ω̃|
F̃
√
δ(r)EPl

d2

dx2
+

d2

dx2
−F d

dx
− U

)
ψω̃ = 0, (A.1)

in tortoise coordinate:

x ≡
∫
dr
r2 + a2

r2δ(r)

= r +
rgr+

r+ − r−
ln
r − r+

rg
− rgr−
r+ − r−

ln
r − r−
rg

,

(A.2)

where a ≡ GMā is the spin parameter, r± ≡ GM ±
√

(GM)2 − a2, the forms of F and

U can be found in [249], and F̃
√
δ(r) is the blue shift factor of Kerr spacetime derived in
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[205]

F̃ ≡
√

r2(r2 + a2 cos2 θ)

(r2 + a2)(r2 + a2 cos2 θ) + a2rgr sin2 θ
,

× a2(r2 + a2) cos2 θ + r2(r2 + a2 + rga
2 sin2 θ/r)

(r2 + a2)(r2 + a2 cos2 θ)
,

(A.3)

δ1/2 ≡
√

1− rg/r + a2/r2, (A.4)

For spinning BHs, with the Hawking temperature is

T ≡ κ+

2π
=

1

2πrg

( √
1− ā2

1 +
√

1− ā2

)
, (A.5)

where κ+ is the surface gravity at the outer horizon r = r+, while the horizon-frame
frequency ω̃ is related to the frequency seen by the distant observer ω via

ω̃ = ω −mΩH, ΩH =
ā

(1 +
√

1− ā2)rg
. (A.6)

Here, ΩH is the angular velocity of the horizon, and m is the azimuthal angular momentum
number (=2 for dominant mode of BH ringdown perturbations).

In the near horizon limit (x→ −∞), the blue-shift factor reduces to

lim
x→−∞

F̃ (r, θ)
√
δ = F̃ (r = r+, θ)Ce

κ+x, (A.7)

where C has the form of

C ≡ exp

[
1

2

√
1− ā2

r2
+/r

2
g + ā2/4

(
−r+/rg +

r2
−/r

2
g + ā2/4

2
√

1− ā2
log (1− ā2)

)
+

1

2
log
√

1− ā2 − log(r+/rg)

]
,

(A.8)
and the SN equation reduces to the following form:(

−i γ|ω̃|
CF̃EPl

e−κ+x
d2

dx2
+

d2

dx2
− ω̃2

)
ψω̃ = 0. (A.9)

The solution of (A.9) which satisfies the aforementioned boundary condition is

lim
x→−∞

ψω̃ = 2F1

[
−i ω̃
κ+

, i
ω̃

κ+

, 1,−iCF̃EPle
κ+x

γ|ω̃|

]
, (A.10)
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and one can read that in the intermediate region, −κ−1
+ log

[
CF̃EPl/(γ|ω̃|)

]
� x � −rg,

ψω̃ can be expressed as the superposition of outgoing and ingoing modes

ψω̃ =

{
eπω̃/(2κ+)A+e

−iω̃x + e−πω̃/(2κ+)A∗+e
iω̃x for ω̃ > 0,

e−πω̃/(2κ+)A−e
−iω̃x + eπω̃/(2κ+)A∗−e

iω̃x for ω̃ < 0,
(A.11)

where A± has the form of

A± ≡
Γ(−2iω̃/κ+)

Γ(−iω̃/κ+)Γ(1− iω̃/κ+)
eiω̃xecho , (A.12)

with xecho =
1

κ+

log

[
γ|ω̃|

CF̃ (θ)EPl

]
. (A.13)

Therefore, the energy reflectivity is given by

R =


∣∣∣ e−πω̃/(2κ+)A∗+
eπω̃/(2κ+)A+

∣∣∣2 = e−2πω̃/κ+ for ω̃ > 0,∣∣∣ eπω̃/(2κ+)A∗−
e−πω̃/(2κ+)A−

∣∣∣2 = e2πω̃/κ+ for ω̃ < 0,
(A.14)

where we used |A∗±/A±| = 1, and finally we obtain R = e−|ω̃|/T .

Let us note that, in deriving Equation (A.9) from (A.1) in the near-horizon limit, we
have ignored the angular momentum barrier terms F d

dx
−U , which are exponentially sup-

pressed near horizon and are negligible as long as |xecho| ∼ κ−1
+ ln [EPl/(γ|ω̃|)] � κ−1

+ .
Given that Astrophysical gravitational wave frequencies are ∼ 102 Hz, while Planck fre-
quency/energy is 1043 Hz, this means that our derivation of Boltzmann reflectivity is in-
dependent of the exact value of γ, as long as γ � 1041. Furthermore, the trans-Planckian
frequency is involved at x = xecho when γ . 1, in which the semi-classical treatment might
break down and so the range of γ would be restricted to γ & 1 to avoid this. Therefore,
our calculation may only be valid for

1 . γ � 1041. (A.15)

We should also remark on the θ-dependence of the blue-shift factor F̃ . The θ-dependence
implies that the separability of the Teukolsky equation with our modification term breaks
down. However, as is shown in FIG. A.1, F̃ only has a small angular variation and appears
inside the log in xecho (see Eq. A.13). The effect on ∆techo is < 0.1%, and thus can be
safely ignored. We note, however, that the full problem of the separability of the modified
wave equation may be more complicated and our argument is only approximately valid in
the specific case.
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Figure A.1: Plot of F̃ (r = r+, θ) for various values of spin.
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