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Abstract 

Mg alloys find widespread applications in transportation industries especially in cars and trucks because of 

their edges in light-weight design, which can greatly help improve the fuel efficiency and decrease the 

greenhouse gas emissions of vehicles. However, Mg alloys’ high susceptibility to corrosion limit their 

penetration in automotive applications. Surface coating is one of the most effective and economic ways to 

protect Mg alloys from corrosion and thus one major aim of this thesis comes to identify a robust and cost-

effective surface coating system for Mg alloys. As most Mg automotive components are subjected to 

corrosion and cyclic load simultaneously, another focus of this work is the development of corrosion fatigue 

model suitable for Mg alloys.  

First, after reviewing various surface treatment methods available for Mg alloys in literature Mn-P 

conversion coating was chosen to treat cast Mg alloy AZ31B for corrosion protection and surface protection. 

The conversion coating process was optimized by studying the effects of processing parameters such as 

solution temperature, pH value, processing time, and chemical composition of the coating bath on the 

surface morphology, thickness, microstructure, and corrosion behavior of the Mn-P coating using 

SEM/EDS and electrochemical testing methods. Based on the results of optimization experiments, a new 

two-stage conversion coating process was developed to obtain thick and crack-free Mn-P conversion 

coating on Mg alloys with excellent coating quality. Results of salt spray corrosion test and electrochemical 

test showed that the conversion coating deposited from this two-stage process had a better corrosion 

performance than that produced from a single coating process. To attain further corrosion protectiveness, a 

top polymer painting was applied on Mg alloy pretreated via a variety of surface treatment techniques (i.e. 

Mn-P conversion coating, chromate conversion coating (CCC), and micro-arc oxide coating (MAO)). In 

this study, extrusion/forged AZ80 and ZK60 alloys were used as the substrates for evaluating the efficacy 

of various coating systems. Corrosion tests of the Mg alloys with and without scribes in the salt spray 

chamber (ASTM B117) were used to characterize the coating properties. The results indicated that the 

MAO-powder coating system could provide the best corrosion performance for the ZK60 alloy without a 

scribe while CCC-powder coating system could provide the best corrosion performance for the ZK60 alloy 

with a scribe. 

Next, more attention was placed to the work on modeling of corrosion fatigue behavior of Mg alloys.  A 

process interaction model is proposed to be used to describe the corrosion fatigue crack growth life, 

assuming that corrosion fatigue is an interaction process between pure fatigue and stress corrosion cracking. 

In this model, corrosion fatigue crack propagation is divided into three parts: i) when stress intensity factor 

K is smaller than KISCC, no stress corrosion cracking occurs, and corrosion fatigue crack propagation rates 

are only contributed by fatigue described by modified Kujawski’s model, in which two correlating 

parameters were introduced to explain the interactive effects of corrosion and cyclic loading on the 
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material’s properties and the driving force ; ii) When K exceeds KISCC, stress corrosion cracking starts to 

kick in and join with modified fatigue to enhance corrosion fatigue crack growth rates; iii) With stress 

intensity factor K further increasing to a certain value where stress corrosion cracking is  being independent 

to K, the effect of corrosion on the driving force of fatigue crack propagation can be neglected while the 

influence of corrosion on material properties still exists. Data of fatigue in vacuum and stress corrosion 

cracking for materials such as 4340 steel, 7075-T651, and Titanium alloy Ti-6Al-4V are used to validate 

this model and good agreements are obtained between the predictive corrosion fatigue crack growth rates 

and practical experiment results. 
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Chapter 1 Introduction 
Known as the green metal of 21st century, magnesium (Mg) and its alloys are becoming widely recognized 

as increasingly important materials in automobile industry, electronic components and aircrafts, etc. Despite 

the many excellent properties that Mg alloys possess such as high strength/density ratio and good dimension 

stability, these materials exhibit inferior corrosion performances when in contact with aqueous environment 

and other metals. This has become one of the major obstacles preventing widespread applications of Mg 

alloys. This chapter places an emphasis on answering these questions: why choose magnesium and what 

are the major challenges magnesium alloys are facing for automotive applications (thesis motivation)? What 

are the causes of these issues, how serious they are, and what are the possible solutions (problem statement)? 

What challenges do we plan to address in this work and what are the specific techniques and approaches 

that we are going to use (thesis objectives and methodology)?  

1.1 Technical background and research motivation 

Magnesium alloys are considered to be an excellent choice for engineering applications where weight is a 

critical design element. For automotive applications, according to the United States Automotive Materials 

Partnership (USAMP), it was estimated that 500 lbs of steel and 130 lbs of aluminum per vehicle will have 

been replaced by 350 lbs of magnesium alloys by this year. That is an overall weight reduction of 15%, 

which will lead to 9%-12% fuel savings and a significant drop in gas emissions [1]. Moreover, the 

improvement of the vehicle’s handling and turning capabilities and reduction in vibration and overall noise 

could be achieved through the use of magnesium alloys. Besides, magnesium alloys’ advantages in the 

recyclability and the castability greatly reduce the cost of the material. All of these make magnesium alloys 

highly competitive to aluminum and steel alloys in applications for the automobile industry [2-6]. 

However, Mg alloys are very susceptible to corrosion in humid environments especially the environments 

containing chloride ions even though a partially protective film forms on the surface of Mg alloys. The 

corrosion potential of Mg in a NaCl solution is the least noble among all engineering metals. A lot of 

research attention has been attracted to investigations on corrosion mechanisms of Mg alloys and 

approaches to improve corrosion resistance of Mg alloys. Among the various corrosion mitigation strategies, 

surface coating is considered one of the most effective and economic ways to prevent corrosion of Mg 

alloys. It provides a physical barrier between the corrosive environments and the Mg alloy substrate, and/or 

can considerably increase the polarization resistance of the alloy substrate and hence retard its corrosion 

significantly. Commonly used coating methods included anodizing, plating, chemical conversion, powder 

coating, electro-coat, vapor deposition and cold spraying. 
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 A lot of research works on Mg corrosion focused on circumstances where mechanical load is not involved, 

and most of the protective coatings developed are for load-free applications. In real service conditions, 

especially for automobiles, structures and components are commonly exposed to both cyclic mechanical 

loading and corrosive environment (e.g water, salt, and road debris), which may lead to the occurrence of 

premature break down or failure of the material, a phenomena termed corrosion fatigue. According to 

NACE/ASTM G193 standard, corrosion fatigue is defined as the process wherein a metal fractures 

prematurely under conditions of simultaneous corrosion and repeated cyclic loading at lower stress levels 

or fewer cycles than what would be required to cause fatigue of that metal in the absence of the corrosive 

environment. Considering a scenario of pure mechanical fatigue, the evaluation criterion of material 

resistance to fatigue is the fatigue limit (σc) or fatigue strength, expressed by the stress amplitude below 

which the material will endure an infinite number of cycles or at least a number of determined cycles such 

as 1.0×107. Mg alloys show good fatigue strength in the air. Once they are exposed to an aggressive 

environment, however, their fatigue strength will be significantly reduced due to the interaction of cyclic 

load and corrosion. Corrosion fatigue can cause much worse damages than merely fatigue or corrosion or 

even the summation of fatigue and corrosion, because corrosion and fatigue can mutually promote each 

other. For example, corrosion pits easily resulted from electrochemical reactions on the Mg alloy surface 

can act as a stress raiser and hence facilitate the fatigue crack initiation; and hydrogen generated from 

corrosion reactions may diffuse into the Mg alloy and embrittle the material. In turn, cyclic loading could 

also increase the corrosion rate by changing the local electrochemical environments such as lowering the 

local pH value at the crack tip via solution refreshing or backflow during the repeated crack open/closure. 

Additionally, Mg alloys have hexagonal close packed (HCP) crystal structure and limited slip systems, and 

thus their fatigue damage mechanisms are different from those of steels and Al alloys which have body-

centered cubic (BCC) or face-centered cubic (FCC) crystal structures. All the above make the understanding 

of corrosion fatigue of Mg alloys a far from simple task.  

1.2 Problem statement and scope of work 

Due to the inferior corrosion resistance of Mg and its alloys, plenty of work has been done on development 

of corrosion resistant coatings for protection of Mg alloys in various environments [7-13]. And the stress 

corrosion cracking (SCC) and corrosion fatigue of Mg and its alloys are also under active investigations. 

Nevertheless, little work has been seen in literature investigating the corrosion fatigue performances of Mg 

alloys with protective coatings. It is still not fully understood how factors such as the types of coatings, 

coating qualities, and various coating processing procedures influence the corrosion fatigue properties of 

the coated Mg alloys. And there is a lack of understanding on how surface coatings on Mg alloys interact 

with the corrosive environment and cyclic load in determining the fatigue life of the materials. These critical 
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issues need to be addressed to ensure safe and economic utilization of Mg alloys in real industrial 

applications.  

Besides experimental investigations, computational modeling is a powerful tool that can be used to study 

the behavior of a complex system.  Modeling of corrosion fatigue behavior of the coated Mg alloys can 

assist in safety assessment of engineering structures and allow better component design minimizing the risk 

of corrosion fatigue damage. The corrosion fatigue life of a material or structure includes two parts: 

corrosion fatigue crack initiation (CFCI) time and corrosion fatigue crack propagation (CFCP) time. In 

order to model the total corrosion fatigue life of coated Mg alloys, how the coating influences the CFCI life 

and CFCP life needs to be understood first.  

In order to quantify the effects of surface coating on corrosion fatigue life of Mg alloys, fully understanding 

of the corrosion mechanism and corrosion performances of coated Mg alloys are needed. In the present 

study, permanganate phosphate (Mn-P) conversion coating is chosen as a model coating for investigating 

the corrosion and corrosion fatigue behavior of coated Mg alloys. Chemical conversion coatings are 

characterized by its good corrosion resistance, low-cost and easy implementation and thus are extensively 

utilized for surface pretreatment of metals in automotive industry. Chromate conversion coating is well-

recognized for its excellent corrosion resistance, but it has been prohibited due to the adverse environmental 

impact of the highly toxic Cr6+ used in the process. Mn-P conversion coating is opted in this study as it is 

considered one of the most promising alternative coatings to the chromate conversion coating. In this work, 

coating process was optimized to obtain dense protective Mn-P conversion coating on Mg alloys and the 

corrosion mechanism and corrosion behavior of the coated and uncoated Mg alloys were investigated. 

Surface coating apparently is expected to increase the CFCI life, but the actual effect very much depends 

on the mechanical properties and capability of the coating to maintain its integrity and protectiveness under 

the cyclic loading. For example, if the surface coating is very brittle like anodized coating or has internal 

net cracks like chromate conversion coating, the effect of the surface coating on CFCI may be very mild or 

even negligible. Modelling of CFCI life can be obtained by calculating the corrosion pit growth rate. A few 

CFCI models are reported in literature, most of which are established by simulating the pit growth behavior. 

However, verification of the CFCI model using experimental data can be very tricky and complicated 

because of the complex pit growth behavior and the difficulty in distinguishing the boundary between CFCI 

and CFCP. Besides, research work on the effect of cyclic loading on the pit growth behavior is rare. In this 

work, experimental investigations were done to study the corrosion behavior of Mg alloys with various 

coatings, so as to better understand and quantify the effect of surface coating on CFCI process 

The effect of surface coating on CFCP behavior remains unclear because it seems that surface coating tends 

to influence the stage of CFCI rather than CFCP, but the fact is that the corrosion pit in the coating may act 
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as a stress raiser and increase the CFCP rate. Modeling of CFCP life of coated Mg alloys can be realized 

by calculating the CFCP rate. The previous CFCP models in literature, such as the superposition model and 

the competition model, stated that the CFCP rate was closely related to pure mechanical fatigue, SCC, and 

the interaction of these two processes. However, those models were initially developed for structural steels 

and aluminum alloys that are only susceptible to SCC at high stress intensities. As to Mg alloys, they are 

generally more susceptible to SCC. Some susceptibility indexes such as Ith (defined as the ratio of threshold 

stress for SCC in the corrosive environment to that in the air) were used to characterize the tendency of Mg 

alloys. Even in distilled water, for some Mg alloys, the value of Ith can be reduced to approximately 0.6 

[14]. More facts on SCC of Mg alloys will be discussed in the next chapter. Therefore, the previous models 

cannot be used directly to describe the corrosion fatigue behavior of Mg alloys. A new model with the 

ability to predict the CFCP behavior of Mg alloys is therefore necessary.  

1.3 Research objectives and methodology 

The overall objectives of this research include identification of a robust surface coating for the investigation 

of  corrosion and corrosion fatigue behavior of magnesium alloys and computational modelling of corrosion 

fatigue behavior for the coated Mg alloys. Mg alloys treated with various types of laboratory synthesized 

and industrial coatings will be evaluated for corrosion and corrosion fatigue performances in order to 

understand the effects of surface coatings and coating processes on the corrosion performances and 

corrosion fatigue life of Mg alloys. One major goal of the study is to identify a robust and cost-effective 

surface coating for the corrosion protection of fatigue-critical automotive components such as suspension 

arm made of Mg alloys. 

To achieve the above research goal, the following objectives are planned and conducted:  

1- Identify a robust surface coating for Mg. In the first stage of the study, Mg alloy AZ31B was treated 

with Mn-P conversion coatings in laboratory. The coating process was optimized in order to 

produce Mn-P coatings of high quality. The effects of processing parameters such as solution 

temperature, pH value, processing time, and chemical composition of the coating bath on the 

surface morphology, thickness, microstructure, and corrosion behavior of the Mn-P coating were 

investigated using SEM and electrochemical testing methods. A new two-stage process was 

developed in order to obtained thick and crack-free Mn-P conversion coatings on Mg alloys.  

2- Characterize the effect of commercially available top coatings on corrosion and corrosion fatigue 

of Mg alloys. In the second stage, the candidate Mg alloys were treated with various commercially 

available surface coatings commonly used in automotive industry. The corrosion and corrosion 

fatigue performances of the Mg alloys with surface coatings (including the Mn-P coating) were 

evaluated using advanced electrochemical testing techniques (i.e. open circuit potential test, 
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potentiodynamic polarization, and electrochemical impedance measurement), salt spray corrosion 

testing, and rotating-bending fatigue testing in a NaCl solution. The corrosion degradation and 

corrosion fatigue fracture mechanisms of the coated and uncoated Mg alloys have been studied 

systematically. The effect of cyclic loading on the corrosion behavior of coated Mg alloys and the 

effects of surface coating on the corrosion fatigue behavior of Mg alloys were investigated using 

customized corrosion fatigue testing. 

3- Develop a corrosion fatigue model capable of accounting for corrosion and fatigue interaction. At 

the same time, as the crucial part of the study, a CFCP model for Mg alloys based on previous 

CFCP models for other metals such as Al, Ti, and steel alloys will be established. In the prediction 

of corrosion fatigue life, both CFCI life and CFCP life are to be described explicitly for coated Mg 

alloys. Especially, for the CFCP model, it is divided into three stages: i) when the stress intensity 

factor K is lower than KISCC below which stress corrosion cracking does not occur, the only 

contribution to the CFCP comes from the mechanical fatigue. The corrosion fatigue process in this 

region can be described in terms of crack growth rate given by Kujawski’s equation valid at 

different stress ratios da/dN=Cf (βΔK1-α𝐾𝑚𝑎𝑥
𝛼 )θm

f, where the parameters θ and β represent the effect 

of corrosion on the material properties “mf” and the crack propagation driving force ΔK1-α𝐾𝑚𝑎𝑥
𝛼 for 

fatigue, respectively; ii) When K exceeds KISCC, stress corrosion cracking starts joining with the 

mechanical fatigue in accelerating the corrosion crack growth by an integration of stress corrosion 

cracking velocity, 2∫ Cscc(βK)ndt
1
f⁄

𝑡0
, in which t0 is the beginning time of stress corrosion cracking; 

iii) When the stress intensity factor K further increases to the level above which stress corrosion 

cracking becomes independent of K, the effect of corrosion on the driving force on fatigue crack 

propagation can be neglected whereas the influence of corrosion on material properties will still 

remain. Experimental data on CFCP and SCC of Al, Ti, and steel alloys from literature will be used 

to validate the model.  

1.4 Thesis outline 

This thesis consists of 7 chapters with the following contents. 

Chapter 1, current chapters, describes the research motivation, goals, and objectives. 

Chapter 2 provides a literature review including corrosion mechanism and corrosion protection methods of 

Mg alloys, corrosion fatigue crack initiation and corrosion fatigue crack propagation models for metals. 

Chapter 3 outlines the detailed information on the investigated materials, specimen characteristics and 

preparation, as well as the procedure of surface coating treatments. Also, the experimental techniques and 
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equipment to characterize the microstructure, corrosion, and corrosion fatigue performance of the coated 

and uncoated samples are presented in this chapter. 

Chapter 4 gives the effects of the solution pH, immersion time, and bath temperature on the microstructure, 

corrosion behavior of the Mn-P coating. A two-stage conversion process to obtain a thick and crack-free 

Mn-P coating is developed, and the coating is also characterized in this chapter. 

Chapter 5 involves the evaluation of several corrosion protection methods on the Mg alloy ZK60 and AZ80. 

An E-coat and a powder coating are both used as a topcoat for the conversion coating and micro-arc 

oxidation coating. Cross-section microstructure, coat thickness, and corrosion performance of these coat 

systems are characterized and compared in this chapter.   

Chapter 6 contains a detailed description of the proposed corrosion fatigue crack propagation model based 

on the existing models. A verification for this model is obtained by using experimental data from Al alloys, 

Ti alloys, and steel alloys from literature. 

Chapter 7 summarizes the conclusions of the work in chapter 4-6 and provides recommendations for the 

future work. 
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Chapter 2 Literature review 

2.1 Introduction - magnesium alloys 

The growing environmental issues due to serious greenhouse gas emissions necessitate the light weight 

design of automotive components [2-6], considering the fact that every 10% reduction in vehicle weight 

leads to a 7% enhancement in fuel economy [3][7]. Magnesium alloys are considered to be alternatives to 

steel and aluminum alloys to achieve this goal because of their high specific strength and low density and 

thus are increasingly utilized in the automotive, aerospace and electronics industries, etc. Table 2-1 gives a 

comparison of properties of magnesium alloys and other metals. From the point view of engineering design, 

Mg alloys may not be the best choice due to their low elastic modulus. However, for the weight-light 

applications, it can be seen that magnesium alloys with a density of 1.74-1.95 g/cm3, about 2/3 that of Al 

and 1/4 that of Fe, have an evident edge as compared to other engineering metals. For example, by replacing 

a front engine cradle made of a cast aluminum alloy with a magnesium alloy, the weight could be reduced 

from 15.8 kg to 10.3 kg [3]. 

Table 2-1 Comparison of Properties of Mg alloys, Al alloys, Ti alloys, and steels [8] 

Metals 
Density 

(g/cm3) 

Young’s 

modulus 

(GPa) 

Yield 

strength 

(MPa) 

Tensile 

strength 

(MPa) 

Fracture 

toughness 

(MPa·√m) 

Environmental 

resistance in 

salt water 

Mg alloys 1.74-1.95 42-47 70-400 185-475 12-18 D 

Al alloys 2.5-2.9 68-82 30-500 58-550 22-35 B 

Ti alloys 4.4-4.8 98-120 250-1245 300-1625 14-120 A 

Stainless 

steel 
7.6-8.1 189-210 170-1000 480-2240 62-280 A 

Carbon steel 7.8-7.9 200-217 250-1155 345-1640 12-200 C 

 
Since Mg alloy was first applied to the Beetle model by Volkswagen, many R&D efforts for Mg alloys 

have been made by worldwide automobile companies such as Fiat and Volkswagen to reduce the weight of 

motor vehicles. Although Mg alloys have been used increasingly for various applications, problems related 

to their low cold workability and inferior corrosion properties restrict their further applications. 

2.2 Corrosion and corrosion mechanism of Mg alloys 

2.2.1 Review on corrosion of magnesium alloys 

Low corrosion resistance of magnesium and its alloys has significantly limited their applications in 

automobile industry, especially when they are exposed to aqueous solutions containing aggressive species 

such as chlorides. Partly protective Mg(OH)2 film formed on specimen surface apparently cannot prevent 

magnesium alloys from being attacked by corrosive solution. The high activity of magnesium and its alloys 

can be clearly seen from the E-pH diagram of pure Mg in water, as presented in Figure 2-1 [13]. This diagram 

could be simply divided into four regions: Corrosion Area (Area 1), Passivity Area (Area 2), Immunity 
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Area (Area 3), and an area between Corrosion area and Immunity area (Area 4). It is concluded that pure 

magnesium tends to be corroded in most of areas except in that small Immunity Area.  

 
Figure 2-1 E-pH diagram of Mg in pure water [13] 

For magnesium and its alloys, there is a very strange and typical manifestation related to hydrogen evolution 

in corrosion process, namely negative difference effect (NDE) [15]. Figure 2-2 could be used to describe 

this strange phenomenon in Mg corrosion process. With an electrode gradually polarized in anodic direction, 

hydrogen evolution rate is expected to decrease, and cathodic reaction will cease at some certain potential. 

However, in the case of magnesium, the hydrogen evolution rate increase with anodic polarization. Some 

literature has demonstrated the existence of the NDE. For example, Song et al. [16] found that hydrogen 

evolution rates of both MEZ and AZ91 are higher when polarized to +0.5mA/cm2 compared to those at 

their corrosion potential. The most common explanation of NDE is based on a monovalent magnesium ions 

(Mg+) theory proposed by Petty et al. [17]. The sequential reactions are presented as follows: 

              Mg→Mg+ + e-                                                              2-1 

        2Mg+ + 2H2O→2Mg2++2OH-+H2                                                2-2 

The reaction (2-1) is an anodic reaction, and Mg+ ions are strong reducing agents in the reaction. When the 

magnesium electrode is polarized in anodic direction, the rate of reaction (2-1) increases and thus produces 
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more and more reductants (i.e. Mg+ ions), which then increase the hydrogen evolution rate and perfectly 

explain the phenomenon NDE. 

 
Figure 2-2 A schematic illustration of the dependence of the H2 evolution rate from a polarized magnesium [15] 

In most cases, the corrosion type of Mg alloys is localized corrosion such as galvanic corrosion and pitting 

corrosion [15-24]. In galvanic corrosion as shown in Figure 2-3, the Mg α-matrix acting as an anode due to 

its low corrosion potential readily form galvanic couples with the β phase or other intermetallic compounds 

that act as cathodes. The general corrosion reaction is: 

Overall reaction:    Mg + 2H2O→Mg (OH) 2 + H2                               2-3 

Anodic reaction:    Mg→Mg2+ + 2e-                                                    2-4 

 Cathodic reaction:  2H2O + 2e-→2OH-+ H2                                          2-5 

As can be seen from above reactions, corrosion of Mg alloys is always accompanied by hydrogen evolution.  
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Figure 2-3 Schematic of galvanic corrosion in Mg alloys 

Another common form of localized corrosion is pitting. It is in particular related to passivating alloys or 

alloys with protective coatings in an aggressive environment containing Cl-, SO4
2-, Br-, etc. The preferential 

adsorption of halide ions to oxygen and water molecules on the surface of Mg alloys followed by the 

penetration of ions through the oxide film or the coatings encourages the degradation of Mg alloys. Pitting 

corrosion is more dangerous as the pits are usually covered by corrosion products and may act as stress 

concentration sites to initiate fatigue [20]. Consequently, the fatigue strength of Mg alloys in an aggressive 

environment decreases significantly.  

2.2.2 Stress corrosion cracking 

Stress corrosion cracking (SCC) often takes place in a component or structure by a combination of sustained 

mechanical loading and an aggressive environment. Mg and its alloys possess high susceptibility to SCC, 

especially the wrought magnesium alloys [25]. A lot of papers investigated the mechanism of SCC of 

magnesium alloys. It has been reported that this type of environment assisted cracking is generally ascribed 

either to preferential anodic dissolution under stress conditions or hydrogen induced embrittlement at the 

crack tip [26]. SCC due to anodic dissolution is usually a continuous process and it is an intergranular 

fracture, which is always related to some chemical heterogeneity along the grain boundaries that provide 

an electrochemically active path for the corrosion process to occur. Whereas SCC caused by hydrogen 

induced embrittlement is a discontinuous process and normally characterized as a transgranular fracture 

[27-29]. Hydrogen generated from cathodic reaction can diffuse into the Mg alloys [30] and decrease the 

material’s ductility after the rupture of the passive film on the Mg surface. Transgranular SCC shows a 

brittle cleavage-like morphology and it occurs more often for Mg alloys [31]. 

Intermetallic compound particles 

Network of intermetallic compound 

 (e.g. Beta phase) 
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Experimental evidence has shown that the crack velocity of SCC mainly depends on the value of stress 

intensity factor, as presented in the Figure 2-4. It can be seen that there is a threshold stress intensity factor, 

KISCC, below which the crack growth rate is small enough to be neglected. Apparently, KISCC can be used 

for the structural design. When the stress intensity factor exceeds this critical value, the crack velocity 

quickly increases until a plateau region is reached, during which the crack velocity is K-independent. With 

the stress intensity factor further increasing, the crack velocity will again accelerate until failure. It should 

be noted that the last region is not necessarily observed for some magnesium alloys [25]. 

 
Figure 2-4 A schematic diagram of stress-corrosion crack growth rate, da/dt, as a function of stress intensity factor K 

[32]. 

2.2.3 Corrosion fatigue of Mg alloys 

Compared to the pure corrosion problem, the inferior corrosion fatigue property is actually recognized as a 

bigger challenge to the extensive application of Mg alloys now [32]. Under the combined interactions of 

external chemical environment and cyclic loading, corrosion fatigue can lead to much unexpected cracking 

behavior and failures of engineering structures [33]. Compared with other metallic engineering materials, 

Mg alloys are far less studied for corrosion fatigue behavior but rather extensively studied for corrosion 

performances due to their high susceptibility to corrosion. 

The fatigue life and fatigue strength of Mg alloys in corrosive environments are significantly reduced 

considering those in the air as a reference. A systematic corrosion fatigue study on magnesium alloys 

including die-cast AZ91D, AM50 and extruded AZ31, AM50, AZ80, ZK60 in NaCl-based solutions and a 

Na2B4O7 solution saturated with Mg(OH)2 was done by Eliezer et al. [34]. Results showed that the fatigue 
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life of all the alloys was longer in air than that in NaCl-based solutions (Figure 2-5). Unigovski et al. [35] 

also carried out corrosion fatigue test on extruded AZ31, AM50, and ZK60 alloys in air, NaCl-based and 

borate solutions and obtained similar results.  

The reasons for the reduced fatigue properties can be two folds. Take the fatigue life as an example. As the 

total fatigue life consists of fatigue crack initiation life and fatigue crack propagation life, the reduced 

fatigue life in a corrosive environment includes the reduced CFCI life and CFCP life. On one hand, in 

general, fatigue crack initiation of Mg alloys without corrosion attack at room temperature is related to slip 

at preferred orientations and the existence of micropores. However, when in aggressive environments, many 

papers reported that the fatigue initiation is closely related to the corrosion pits formed on the specimen 

surface. Nan [36] studied the corrosion fatigue behavior of AZ31 alloy in 3% NaCl solution and concluded 

that life in low stress region is determined by the corrosion pit grow behavior. Bhuiyan et al. [37] 

investigated the corrosion fatigue process of extruded AZ61 alloy under three different environments: 80% 

relative humidity, 5 wt% NaCl solution and 5wt% CaCl2 solution. Their results suggested that NaCl 

environment enhances pit formation and growth more than CaCl2 environment due to its high Cl- 

concentration and low pH value. On the other hand, the reduced corrosion fatigue life can be also resulted 

from the accelerated fatigue crack propagation rate. The fatigue properties of Mg alloys may be deteriorated 

after the involvement of corrosion. Stephens et al [38] studied the fatigue behavior of Mg alloy AZ91 in 

both air and 3.5% NaCl environment and determined the material constants in the well-known fatigue crack 

propagation Paris’ equation (da/dN=C(ΔK)m), as presented in Table 2-2. It can be easily deduced that the 

Mg alloy in the corrosive environment has a higher fatigue crack propagation rate. Other researchers [39-

41] also reported the loss of ductility of Mg alloys in tensile tests and cleavage fracture surfaces after 

immersing specimens in an aqueous solution. That is to say, hydrogen is generated from the electrochemical 

reactions on the Mg surface during immersion and could diffuse into the specimen. The hydrogen embrittles 

the Mg alloy and hence assists the crack growth.   

The improvement of corrosion resistance is beneficial to improve the fatigue life of Mg alloys in the 

aggressive environments. Wittke et al [42] reported that the fatigue strength of the alloy Mg-4Al-2Ba-2Ca 

in the NaCl environment can be greatly enhanced by decreasing its corrosion rate. Significant efforts have 

been spared to find a way to reduce the corrosion rate of Mg alloys.  
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Figure 2-5 S-N curves of extruded ZK60, AM50, AZ31 alloys in air and 3.5% NaCl solution saturated with 

Mg(OH)2 [34]. 

Table 2-2  Constant amplitude fatigue crack growth properties (Unit m: MPa·√𝑚 and C: m/cycle) [38] 

 Air environment Corrosion environment 

C (stress ratio R=0.05) 2.4×10-10 5.2×10-10 

m (stress ratio R=0.05) 3.7 4.7 

C (stress ratio R=0.5) 1.1×10-9 2.2×10-10 

m (stress ratio R=0.5) 3.2 7.0 

2.3 Corrosion protection strategies for Mg alloys 

Materials in this section appeared in a journal paper by wang et al. [43]. A coating system is typically 

needed to achieve a class A (Class A in automotive industry refers to the glossy, smooth appearance that is 

required for readily visible, outer surfaces of automobiles) quality of surface finish on Mg parts, as shown 

in Figure 2-6 [44].  In the coating system, the first layer is the surface treatment (i.e. the chemical conversion 

coating or anodizing, etc.), aiming at removing the mill and pressing oils and improving corrosion resistance 

and paint adhesion property. The second layer, a precursor such as E-coat, is applied to further enhance 

corrosion resistance and to improve the ability against mechanical damage, followed by the final topcoat 

consisting of a base coat and a clear coat to ensure the stability of the coating system and provide cosmetic 

appearance. In this work, surface coatings consisting of only the first layer (chemical conversion coating or 

MAO) and the second layer (E-coat or powder coating), with no final topcoat (i.e. base coat + clear coat) 

were investigated.  
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Figure 2-6 Typical coating system for surface finish of Mg die-castings in class A quality [44] 

In most cases, prior to the application of the surface treatment, Mg components must go through a cleaning 

process and an activation process, as shown in Figure 2-7. The cleaning process includes mechanical 

cleaning methods (e.g. grinding, polishing) and chemical cleaning approaches (e.g. alkaline degreasing, 

organic solvent cleaning), which together macroscopically and microscopically remove most of the oils, 

lubricants, dirt, oxide or hydroxide layers arising from previous manufacturing or forming processes 

respectively. Then, the activation process (usually an acidic pickling for Mg alloys) is used to further 

provide a homogenous and oxide free Mg surface for the subsequent surface treatment. Detailed 

information regarding surface preparation prior to coating has been described by Höche, D., etc. [45] and 

standard procedures to prepare the Mg alloy surfaces can be found from Standard ATSM D 2651 and the 

International Magnesium Association. 

 
Figure 2-7 Schematic procedure of surface processing 

As for the surface coating, various methods have been developed for Mg alloys. Based on the data from 

web of science using corresponding key words such as “surface coating AND magnesium”, the number of 

publications for different surface coatings since 1990 have been illustrated in Figure 2-8. It appears that 

anodizing & micro-arc oxidation (MAO), chemical conversion coating, and chemical vapor deposition 

attract considerable researcher attention. Further, ion implantation, organic coating, and plating (include 

electroless plating and electrochemical plating) account for a large portion of those publications as well. In 

addition, according to a review on corrosion protection of Mg alloys based on patents [46], chemical 

conversion coating, anodizing, plating, and organic coating were represented as the most widely used 

methods to improve the corrosion resistance of Mg alloys. Therefore, the emphasis of the next section will 

be placed on these four types of coatings and their applications in automotive. Other processes like the 

vapor-based deposition, and some emerging techniques such as cold spray will also be briefly introduced.  
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Figure 2-8 Number of publications of different surface coatings on Mg alloys since 1990 

2.3.1 Chemical conversion coating 

Chemical conversion coating is one of the most widely adopted surface treatments in industries due to its 

low cost, good corrosion resistance and simple operation procedures [47]. By simply immersing the 

substrate into a conversion bath, an adherent, insoluble, crystalline or amorphous layer can be produced to 

provide corrosion resistance and good paint adhesion to Mg alloys. The most common conversion coating 

used on Mg alloys in automotive industry had been a chromate treatment (e.g. dichromate, chrome 

manganese, the chrome pickle) [48]. Cr-based conversion coatings could provide high levels of corrosion 

protection, abrasive resistance, good paint adhesion and self-healing capability, but nowadays their use is 

strongly limited because of the main drawback represented by the toxicity issue. Therefore, a number of 

non-chromate chemical conversion coatings have been developed to substitute the Cr-based conversion 

coating; for instance, phosphate based coating [49-51], stannate coating [53], fluorozincate/fluorotitanate 

coating[54-55], Ti/Zr coating [56] and rare earth coating [57-58]. A comparison of these chemical 

conversion coatings is presented in Table 2-3. Among them, phosphate based coatings (mainly Mn-P and 

Zn-P), fluoride based coatings (F/Ti, F/Zr), and Ti-Zr coatings seem to be the most promising options in 

automotive industry, which can be demonstrated through some commercial products as presented in Table 

2-4. All of them are chrome-free, environmentally friendly, and can provide excellent paint adhesion and 

corrosion protection.  

At present, one of the most widely used pretreatments in automotive industries is Zn phosphating, as 

reviewed in Ref. [59]. Since this phosphate solution is acidic (pH=3.0-3.5), Mg parts will be highly 

dissolved when entering the bath. Moreover, in contrast to an alkaline cleaning process for steel and Al 

components, Mg alloys require an acidic cleaning. Thus, the current way to address this issue is separately 

treating single Mg pieces before they are assembled to the vehicle. From Table 2-3, phosphate based coatings 
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(mainly Mn-P), conversion coatings based on Ti-, Zr or Ti/Zr seem to be the most promising options for 

Mg parts in automotive industry, which can be demonstrated from the current commercial products as 

presented in Table 2-4. The conversion coatings based on Ti-, Zr or Ti/Zr are relatively new and are 

developed to replace phosphate-based coatings. Because in addition to cause some environmental problems 

such as eutrophication in lakes, phosphate baths can generate massive sludge containing metal ions. These 

problems are solved now by conversion coatings based on Ti-, Zr or Ti/Zr due to the use of free of phosphate 

compound baths with a tiny amount of ionic species [60][61]. At this time, these conversion coating are 

already commercialized in the surface treatment of Al alloys and some steels, but there is only a few data 

with respect to Mg alloys [61][62]. 

As for the conversion coatings applied to corrosion protection of Mg automotive components, it has been 

reported that a conversion coating with brand name Henkel Alodine 5200 was used to protect the Mg 

instrument panel from pitting on the sport car 2005 Ford GT [63]. The corrosion protection of Mg lifegate 

on the 2010 Lincoln MKT also included the Alodine 5200 sub-micron thick chemical conversion coating 

[64]. A Cr-free conversion coating based on Ti/Zr has been used on the Mg doors of the Ford Contour 

vehicle [64]. Another example used the combination of MagPass-Coat and a 200 μm polyester powder 

coating to protect the inlet pipe of the Audi W 12 Mg (AZ91) cylinder engine [65]. Also, Meridian 

Technologies applied a conversion coating base on chrome-free patented fluorozincates and fluorotitanates 

to a front end carrier [64]. Additionally, in a Canada-China-USA collaborative R&D project aiming at 

developing comprehensive application technology suitable for Mg alloy in the front end where corrosion is 

a major concern, researchers from Institute of Metal Research (IMR) developed an environmentally friendly 

and corrosion resistant conversion coating from a Mn-based phosphate bath [66]. This coating has the 

characteristics of simple process, long life of bath solution, low cost and high bonding strength to the car 

body. Moreover, this coating has attained industrialization level and has already been used in the Mg alloy 

hood shield by FAW, as shown in Figure 2-9. 

Table 2-3 Summary of mechanism of coating process, advantages and disadvantages for each conversion coating 

[47, 49-50, 52-54, 67-69] 

Coating Mechanism of coating process Advantages Disadvantages 

Chromate 

coating 

The substrate is oxidized by oxidizing agent Cr2O7
2- , which 

causes an increase in pH at the liquid-alloy interface. Thus, 

soluble hexagonal Cr6+ is reduced to insoluble Cr2O3 

deposited on the Mg surface. A self-healing ability is given 

by trapping hexagonal Cr into the coating. 

Excellent corrosion 

resistance; good 

abrasion resistance; self-

healing capability and 

mature process 

High toxicity due to 

hexagonal Cr; 

Instable at high 

temperature (>60℃) 
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Phosphate 

coating 

Oxidizing agent and acidified phosphate solution (PO4
3-) in 

the conversion solution cause the dissolution of the substrate, 

resulting in a rise in pH and metal ions concentration, thus 

leading to the precipitation of insoluble metal phosphate on 

the Mg alloys surface. 

Environmentally 

friendly; comparable 

corrosion resistance to 

chromate coating; good 

adhesive property 

Network cracks 

Stannate 

coating 

Oxidization of the Mg substrate favors the nucleation and 

growth of hemispherical magnesium stannate particles 

(MgSnO3) initially at the cathodic sites and then to the whole 

surface, with a porous under-layer made of magnesium 

hydroxide. 

Environmentally 

acceptable; good 

corrosion resistance 

Long time and high 

temperature 

treatment; thin 

coating (1-5 μm). 

Fluoride-

based 

coating 

The acidic fluoride solution (F-) oxidizes the metallic 

substrate to form a porous Mg(OH)2 layer and simultaneously 

F ions are incorporated into this layer by substituting the OH- 

or by forming insoluble MgF2. 

Reasonable corrosion 

resistance; good 

adhesive property 

Long time treatment 

and large 

consumption of HF. 

Rare earth 

coating 

The acidic rare earth salts solution (Ce3+/Ce4+ or La3+)   firstly 

dissolves the air-formed oxide film and the substrate, leading 

to a rise in local pH , then followed by a precipitation of rare 

earth hydroxide or oxide on the porous layer containing 

Mg(OH)2/Al(OH)3. 

Excellent corrosion 

resistance; 

environmentally 

friendly 

Long time treatment, 

Increased instability 

of the coating with 

time elapsing and 

expensive. 

 

 
Figure 2-9 IMR phosphate conversion coating used on Mg alloy hood shield by FAW [66] 

Table 2-4 Commercial conversion coatings on Mg alloys 

Coating Manufacturer Characteristics and applications 

Alodine 5200 [70] Henkel A chrome-free passivation specifically formulated for treating Al, Mg, 

Ti alloys. It provides excellent base for bonding of adhesives and 

organic coating and can be applied by spray or immersion 

Magpass-Coat[71] AHC 

Oberflachentechnik 

A chrome-free conversion coating suitable for all Mg-based material. 

It is electrically conductive and withstands high temperature exposure 

(No effect subjected to 90ºC for 6 months) 

Gardobond X4729[72] Chemetall A chrome-free, eco-friendly conversion composite coating based on 

zirconium and titanium for Al and Mg alloys. It offers excellent paint 

adhesion and corrosion protection. It is an easy-to-handle and low-

maintenance process.  

Oxsilane 0611[73] Chemetall It is used as stand-alone protection or paint pretreatment and used only 

in aerospace and military industries 

Metalast TCP-HF[74] Chemeon surface 

technology 

It is a trivalent chromium conversion coating as well as a sealer for 

anodized Al, Mg and Zn alloys. It offers excellent paint adhesion and 

corrosion protection. 

Surtec 650[75] SurTec A chromate-free passivation for Mg and Al alloys. Can be used as post 

treatment of anodic coating and can be applied by spray, immersion and 

wipe application 
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Interlox 5707[76] Atotech Zr-based coating. Free of P, Cr, Zn, Ni and Co. It can operate at room 

temperature and produces little to no sludge. It allows for automated 

control and can be used for multi-materials. 

Zircobond 4200[77] PPG Zr-based coating. It is designed to replace Zinc-phosphate 

pretreatment. The process can be installed into existing lines without 

changing the process flow. 

 

Chemical conversion coating has the ability to prevent Mg dissolution in the subsequent organic coating or 

top coating process and also can protect the Mg components during transport and storage. However, the 

corrosion protection provided by this type of coating is very limited because chemical conversion coating 

is generally too thin and too weak, making it easily damaged during assembly. For example, the thickness 

of Magpass-Coat is typically less than 1μm [71]. Besides, the quality of the surface treatment is very 

sensitive to the previous cleaning process, activation process, and conversion bath parameters such as pH, 

immersion time or temperature. Additionally, it is difficult to produce a conversion coating which is defect-

free and uniform. Therefore, there remains a strong demand for developing more robust, chromate-free 

conversion coatings, especially involving self-healing capability.  

2.3.2 Anodizing coating 

Anodizing is a widely used strategy to produce a thick, hard, stable and ceramic-like coating which can 

offer excellent corrosion protection on Mg parts [78]. The anodizing coating usually has a porous 

morphology and a cellular structure as shown in Figure 2-10, through which corrosive species can penetrate 

into the Mg substrate. Thus, it is very necessary to seal the anodized film to achieve enough corrosion 

resistance. The porous nature of anodizing makes it an excellent paint base in the vehicle coating line, and 

cosmetic finish can also be obtained. In addition, the anodizing layer can provide excellent wear resistance, 

which therefore makes Mg components less likely to be damaged during assembly than conversion coating. 

Essentially, anodizing is an oxidation reaction in the aqueous solution which can be technically 

accomplished by two different conditions: voltage controlled or current controlled. Different voltage or 

current regions result in different coating formation processes such as sparking, micro-arcing anodizing at 

high voltages. Conventional commercial anodizing treatments using relatively low voltage such as DOW 

17 and HAE [71] can provide superior anticorrosion property on Mg alloys, but their anodizing baths 

include chromates and/or HF and thus they are now restricted to industry use. New anodizing processes 

called micro-arc oxidation (MAO) or plasma electrolytic oxidation (PEO) [79], which are much less 

hazardous, have been developed for Mg alloys. MAO employs higher voltage than conventional anodizing 

such that micro discharges occur, and the resulting plasma modifies the surface structure of Mg alloys. This 

MAO process can produce thicker layer with higher corrosion and abrasion resistance as well as improved 

temperature and load capacity compared with the DOW 17 and HAE heat process.  
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Figure 2-10 A typical microstructure of an anodizing coating formed on AZ91D in a silicate-containing solution 

[80] 

At present, anodizing has been successfully used in the Al alloys for many years. However, it is more 

complicated when this technique is applied to magnesium alloys. For example, it requires much higher 

voltage to anodize Mg alloys than Al alloys. Besides, the microstructure of the anodizing coating formed 

on Mg alloys is irregularly porous whereas it is regular for Al alloys. Some industrial anodizing processes 

developed for Mg alloys are summarized in Table 4. These commercial anodizing films have already been 

applied in Mg automotive components such as gearbox housing, wheel rim, engine blocks, door inners, 

suspension parts, intake manifolds, cradles, pistons, etc. An example of Tagnite coating in protection of a 

Mg oil pump housing is shown in Figure 2-11[81]. Also, in a case of a hybrid-electric Ford Focus, an Al 

part used to house the power distribution unit was replaced by a Mg one, in which the Mg surface was 

protected with a Tagnite anodizing coat [64]. 

There is no question that the anodizing coating can offer a better corrosion resistance, wear resistance and 

paint adhesion property than conversion coatings. However, anodizing coatings suffer some challenges. 

For example, the electrochemical inhomogeneity due to the phase separation in magnesium alloys makes it 

difficult to produce an adherent and uniform coating. Besides, the fatigue strength of magnesium alloys 

modified by this surface treatment is evidently decreased. Furthermore, anodizing has environmental issues 

and is more expensive due to the large consumption of electricity. 
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Table 2-5 Some industrial anodizing process developed for magnesium alloys [80, 82, 83] 

Anodizing 

process 
Manufacturer Description Characteristics 

SST 

Hours 

DOW 17 Dow chemical The first anodizing coating for 

magnesium alloys; produced at 

voltage below 100V in a solution 

containing dichromate, ammonium 

acid fluoride and phosphoric acid at 

pH 5 above 70 °F. 

The coating thickness ranges from 5μm to 

75μm; the color varies between light and 

dark green depending on coating 

thickness; the composition mainly 

consists of MgF2, NaMgF3, 

Mgx+y/2Ox(OH)y and a small amount of 

Cr2O3. 

48 

HAE Pitman-Dunn 

Laboratories 

The electrolyte contains potassium 

permanganate, potassium fluoride, 

trisodium phosphate, potassium 

hydroxide and aluminum hydroxide; 

applied with alternative current and 

voltage below 125V at pH 14 and a 

temperature between 20-30℃. 

The coating thickness ranges from 5μm to 

75μm; the color varies between light tan 

and dark brown depending on coating 

thickness. 

48 

Anomag Magnesium 

Technology Ltd 

It is a non-sparking process; the 

anodizing bath contains ammonia, 

sodium ammonium phosphate, 

without chromate and fluoride. 

The thickness varies from 5μm to 25μm; 

a wide range of colors can be obtained. 

300 

Magoxid AHC 

Oberflache-

ntechnic 

Obtained in a solution containing 

borate or sulfate, phosphate and 

fluoride or chloride at pH 5-11 

buffed by amines at a DC current 

preferably with a voltage up to 

400V. 

The thickness varies from 15μm to 25μm; 

the color of the coating normally varies 

between white to light gray, sometimes 

black can be obtained; the coating mainly 

contains MgO, Mg(OH)2, MgF2, 

MgAl2O4. 

500 

Tagnite Technology 

Application 

Group 

Produced in an alkaline aqueous 

solution containing hydroxide, 

fluoride and silicate species with no 

chromium or other heavy metals; 

operated at voltages exceeding 300V 

DC and a temperature between 4-

15℃. 

The thickness ranges from 2.5μm to 

22.5μm; the coating is white and mainly 

consists of hard magnesium oxide with 

minor hard fused silicates. 

400 

Keronite Keronite Performed with a bipolar pulsed 

electrical current using a specific 

wave form in a proprietary, chrome 

and ammonia-free, low 

concentration alkaline electrolyte at 

a temperature between 20 ℃ and 

50℃. 

The thickness ranges from 20 to 80μm; 

the layer is mainly composed of spinel 

(MgAl2O4) together with SiO2 and SiP. 

600 

MgC Henkel Plasma electrolytic ceramic 

deposition process using 

pretreatment tanks; no information 

available on operation conditions. 

Coating thickness ranges from 2-6μm; 

Ceramic black coating comprised of Mg 

compounds. 

200-

500 

Alodine 

EC2[53] 

Henkel Operated at voltage ranges from 

300-450V for time duration of 1-5 

minutes and a temperature of 15-

50℃. 

Coating thickness ranges from 2-15 μm; 

Electro-ceramic coating comprised of Ti 

dioxide; compatible with most typical 

paint finishes and liquid paint systems; 

fewer steps, faster process and reduced 

processing costs compared to traditional 

methods. 

N/A 
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Figure 2-11 Mg oil pump housing with Tagnite coating: Tagnite with paint (left); Tagnite alone (right) [81] 

2.3.3 Electrochemical plating 

Apart from chemical conversion coating and anodizing, electrochemical plating has achieved commercial 

importance on Mg alloys not only because of the improved corrosion and wear resistance but also the 

metallic coatings deposited on Mg part surfaces offer beautiful appearance, good solderability, electrical 

and thermal conductivity. Electrochemical plating is a reduction process, in which the dissolved metal ions 

in the bath are reduced to their metallic form and deposited on the surface of the part. Unfortunately, high 

chemical activity makes plating of Mg alloys very difficult. Only Ni and Zn can be directly electroplated 

on Mg alloys. A suitable undercoating pretreatment is necessary to prevent the Mg surface from oxidation. 

At present, zinc immersion and direct electroless nickel plating are widely used pretreatments in Mg alloys 

[67, 84-85].  

Electrochemical plating is generally classified as either electroplating process [85] or electroless plating 

process [86] depending on the different driving forces for the reduction process. An external force such as 

voltage is necessary for an electroplating process and a chemical reducing agent for an electroless plating 

process. As with the electroplating, different metallic coatings such as Ni, Zn, Cr, Cu, Ag, and Au have 

been applied to Mg alloys according to specific applications. For example, Cu is always used as a base layer 

to ensure good adhesion in multiple-plate electroplating; Ni is used to improve the corrosion resistance; Ag 

is used for anti-fretting purposes; and both Ag and Au are sometimes used to provide electrical conductivity 

and optical reflectance. Instead of a single metallic layer, multilayered metal coatings are commonly used 

on Mg components. Cu/Ni/Cr coatings are conventionally applied to some indoor and mild outdoor Mg 

components in automotive applications. For example, a Cu/Ni/Cr coating with Zn immersion pretreatment 

was reported to be used in the Mg interior panel of Porsche Cayenne [85]. Some other examples of plated 

Mg components in automotive industry have also been presented in Figure 2-12 [86]. Another multilayered 
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Ni/Au coating for Mg alloys is mainly utilized in the aerospace field. As for the electroless plating, Ni-P is 

the most common process. By immersing the parts into an aqueous solution, a uniform thickness film can 

be produced on even an irregular surface. Generally, due to limited corrosion protection, electroless Ni-P 

plating after sealing tends to be applied in mild industries such as computer and electronic (3C) industries 

[67]. 

Nevertheless, electrochemical plating still has some challenges in the application of Mg alloys. Besides 

magnesium’s high susceptibility to corrosion, the intermetallic compounds, such as MgxAly, distribute 

along grain boundaries, making it especially difficult to uniformly plate magnesium alloys. Moreover, that 

different Mg alloys require different pretreatments makes the plating process more complicated. 

Additionally, as the noble metallic coatings have a big electrochemical potential with respect to Mg alloy, 

galvanic corrosion can easily occur if the plating has pores. Other problems such as the large consumption 

of electricity and difficulty in coating complex shapes in electroplating and, for electroless plating the short 

bath life, also limit their application.  
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Figure 2-12 Examples of plated Mg components: (a) Top cover of Mg alloy AZ91D engine using direct electroless 

Ni-P plating followed by Cu/Ni/Cr plating (b) Back cover of Mg alloy AZ91D engine using Zn immersion followed 

by Cu/Ni/Cr plating (c) Motorcycle wheel hub of Mg alloy AM60 using Zn immersion followed by Ni plating and 

Cu/Ni/Cr electroplating (d) Interior panel of Porsche Cayenne using Zn immersion followed by Cu/Ni/Cr plating 

[86] 

2.3.4 Organic coating 

Organic coating, which plays a significant role in improving corrosion resistance, wear property and 

decoration, is commonly used as a topcoat in a normal coating system for Mg alloys [67]. Resin (e.g. epoxy, 

vinyl, acrylic polyurethane) is the main composition of an organic coating. A typical organic coating is 

composed of a binder, pigments, and additives such as dryers, stabilizing agents, corrosion inhibitors. Prior 

to organic coating, an appropriate surface preparation is critical because of poor adhesion strength. Not only 

does organic coating require the surfaces of Mg alloys to be free of contaminants, smut and oxides, but the 

water and air in the defects must be removed as well. From Hu’s review [87] on the progress of organic 

coating for Mg alloys, organic coatings can be formed by several techniques such as painting, powder 

coating, electrophoretic coating (E-coating), sol-gel coating and plasma polymerization. Table 2-6  

summarizes a description of these techniques and their corresponding advantages and disadvantages. 
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Table 2-6 Summary of formation process description, advantages and disadvantages for each organic coating [87] 

Organic coating Description Advantages Disadvantages 

Painting Paint typically consists of resin, 

solvent, pigment and additives. 

One of the most important steps to 

paint magnesium alloys is to 

choose an alkali-resistant primer 

(resin) such as acrylic, polyvinyl 

butyral, polyurethane, vinly epoxy 

or baked phenolic. The painting 

film is usually formed by 

evaporation of the solvent or by 

some chemical reactions. 

Flexibility; little restriction on 

the shape of substrate. 

Use organic solvent; 

multistep 

Powder coating The thermoplastic powders are 

deposited by techniques such as 

electrostatic powder spraying or 

flame spraying to the Mg substrate 

and then heated to fuse the polymer 

together in a uniform, pinhole-free 

film. 

Use no solvents, environment 

friendly; low hazards of 

flammability/toxicity and energy 

consumption; obtained in a single 

operation; almost 100% powder 

utilization 

The powder stored in 

pulverized form requiring 

very dry; difficulty in 

obtaining thin coating; 

difficult to coat recessed 

areas; high process 

temperature 

E-coating The electrophoretic coating (E-

coating) is obtained by a 

precipitation of charged particles in 

a liquid on the charged substrate 

surface under an electric field. 

Short formation time; high 

coating material utilization; 

automatic processing; simple 

apparatus; even coating 

thickness; no requirement for 

binder burnout 

Complicated electrical 

control and bath solution 

maintenance; roughness of 

substrate obvious 

Sol-gel coating The formation of a sol-gel coating 

is accomplished through gelation 

of a colloidal suspension which 

involves hydrolysis, condensation 

polymerization of monomers to 

form particles, followed by 

agglomeration of the polymer 

structures and a heat treatment. 

Process temperature is low; being 

possible to form coatings on 

complex shapes and to produce 

thin films; waste-free and 

excludes the stage of washing 

Lengthy process flow; 

phase separation during 

curing; limited thickness; 

crackability due to stresses 

developing during drying 

and thermal treatment 

 

Currently, powder coating and E-coating are the two most popular organic coatings used in the corrosion 

protection of Mg components in the automotive industry [88]. Powder coating has been reported as the best 

top coating for corrosion protection of Mg alloys because it provides better general and galvanic corrosion 

resistance than E-coating [88]. Conversely, other researchers argue that E-coating of Mg has more 

advantages than powder coating, such as lower cost, no line-of-sight limitations, and the capability of 

coating complex parts [89]. Some commercially available products for powder coating (e.g. from ProTech, 

Akzo/Interpon and DuPont) and for E-coating (e.g. from PPG, BASF, and DuPont) have both been reported 

to be used in protection of Mg automotive parts [90]. For instance, the Mg instrumental panel of the sport 

car 2005 Ford GT was first pretreated by Henkel Alodine 5200 conversion coating, then followed by a 

Protech epoxy urethane powder coating [64]. Figure 2-13 also shows an application example of powder 

coating in certain Mg engine parts [91]. 
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Figure 2-13 Mg engine parts using powder coating which shows perfect appearance and excellent protection [91] 

Similar to other coatings, some challenges also appear in the deposition of organic coating on Mg alloys. 

First, a uniform, defect-free organic coating is difficult to be produced on Mg surface without careful 

surface preparations. Even so, an additional layer of polymer or other powder coating on top of that is still 

necessary. Thus, it is necessary to apply multiple layers of these coatings to achieve sufficient corrosion 

performance. Besides, there are still some environmental issues because of the used solvent in these coating 

processes.   

2.3.5 Other process 

Other surface technologies such as layered double hydroxides (LDHs), cold spray, thermal spray, physical 

vapor deposition (PVD), chemical vapor deposition (CVD), and laser surface coating have been also 

applied to improve the corrosion resistance of Mg alloys [48, 67, 92], but few of them achieved commercial 

applications in automotive industry. LDHs with a tunable brucite structure are essentially a class of anionic 

clays (e.g, NO3−, PO4
3−, CO3

2− [93-97]. Their unique layered structures regarded as nano-canpsules are 

capable of storing and releasing corrosion inhibitors, which allow researchers to develop more functional 

coatings. Besides, LDHs can be used to replace the conventional sealing strategies to seal the anodized film. 

However, so far this surface technology is mainly developed for medical application, more research is 

needed to extend their application. Cold spray is an emerging technique to coat and repair a wide range of 

industrial components [98-99]. It was initially aimed towards the aerospace industry because it can provide 

much harder, thicker coatings compared to other available coatings. However, with this technology moving 

forward, there is a high potential of its commercialization in the automotive industry. The conventional 

thermal spray processes such as flame spraying, arc spraying, and plasma spraying requires heating sprayed 

particles into molten metal droplets. In contrast, cold spray is a process of applying coatings by exposing 

the substrate to a high velocity (300-1200m/s) powder particles which are accelerated by a supersonic jet 

of compressed gas such nitrogen, helium, air or a mixture of them at a temperature well below the melting 
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temperature of the material, i.e. forming coatings from particles in the solid state. In this way, it mitigates 

or even eliminates the deleterious effects of high temperature oxidation, phase transformation, residual 

stresses, porosity and other problems resulting from the thermal spray approaches [100]. The plastic 

behavior of both particle materials and the substrate is closely related to the formation of the cold sprayed 

coating. When high velocity particles impact with the substrate, severe plastic deformation of the particles 

occurs. At the same time, significant penning effect due to the impact of particles on substrate surface 

induces deformation of the substrate. Consequently, the interfacial deformation and localized heat between 

sprayed particles and the substrate contributes to forming a good adhesive coating by mechanical 

interlocking and metallurgical bonding. It is recommended that the material with more plastic than the 

substrate should be used.  

To date, pure Al, aluminum alloys, aluminum alloys blended with Al2O3 have been used to coat various 

Mg alloys by cold spray technique [101-104]. Result shows that cold sprayed coatings can significantly 

improve the corrosion resistance of Mg alloys, which show their promising application in corrosion 

protection of magnesium alloys. However, as an emerging technique, cold spray is still mainly in research 

and development stage, more coating performance data needs to be collected.  

2.4 Literature review on modeling of corrosion fatigue life 

Corrosion fatigue has become one of the most important engineering research area since the observations 

of damage in the Royal Navy’s paravane towing cables during World War I [32]. The synergistic effect of 

the corrosive environment and cyclic loading can lead to early fatigue crack initiation and enhanced fatigue 

crack growth rates and thus early failure of structures and components. It is important to understand the 

essence of the interaction of material-loading-environment system so that an appropriate damage design 

could be achieved to meet the practical in-service requirements. It is well known that a corrosion fatigue 

process can be split into two stages: crack initiation and crack propagation, and so is the modeling of 

corrosion fatigue life. 

2.4.1  Modeling of Corrosion fatigue crack initiation (CFCI) life 

The influence of corrosion on crack initiation is generally more than on crack propagation.  Corrosion pits 

are considered as the nucleation sites of fatigue crack. Acting as geometrical discontinuities, corrosion pits 

can cause stress concentration and eventually lead to an earlier crack initiation [105]. To model the pitting-

induced CFCI life, problems such as the evolution of pit size, pit-to-crack transition, etc. have to be 

addressed to characterize the corrosion fatigue initiation process. 

2.4.1.1  The evolution of pit size  

It can be clearly seen from Figure 2-14 that how the corrosion pit evolves and the crack initiates and 

propagates from corrosion pit [106]. A small corrosion pit first initiated from a weak section in the matrix 
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(Figure 2-14 (a)) and quickly grew up to a critical pit with larger depth and length (Figure 2-14 (b)). Then, 

under the combined effect of corrosion environment and stress conditions, some secondary pits were formed 

at the bottom of the first pit, which further increased the extent of stress concentration. Consequently, the 

crack readily developed from the bottom or the mouth of the pit (Figure 2-14(c)(d)). After the crack 

nucleated from the pit, it started with a stage of small crack propagation (Figure 2-14(e) (f)), followed by a 

long crack propagation (Figure 2-14(g)) when the crack reached a critical length. For predicting the CFCI 

life, it is necessary to make the quantitative evaluation of pitting growth behavior. To date, extensive studies 

have been conducted on the pit size development and some models have been proposed to predict the 

evolving pit. The models developed by some researchers [107] [108]suggested that the pit growth was taken 

to be only controlled by corrosion and elapsed time, giving a similar power law curve (𝑎 = 𝛼𝑡𝐵, where a 

represents pit depth, α and B are experimentally determined constants). Kondo [109] proposed a 

deterministic model based on two different low-alloy steel to predict the corrosion pit size with taking into 

account the effect of cyclic stress in the pitting corrosion process. It was found that the effect of stress on 

pit growth rate was prone to be evident at high stress levels. The aspect ratio used to define the shape of the 

pit (defined as the ratio of pit radius (c) to pit depth (a)) remained constant during pit development. 

Corrosion pit growth could be formulated as 2c ∝ 𝑡
1
3⁄ . Ishihara [110] studied the effect of stress amplitude 

and stress cyclic frequency on the corrosion pit growth behavior using aluminum alloys 2024-T3 and found 

that the corrosion pit depth (μm) can be expressed by the equation of 𝑎 = 2.34 × 1.014𝜎𝑎𝑡𝐵. 
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Figure 2-14 Corrosion fatigue crack initiation and propagation process in association with corrosion pit, 228 MPa, 

3% NaCl aqueous solution (318 K): (a) 4.95×106, (b) 5.45 ×106, (c) 5.48×106, (d) 5.485×106, (e) 5.495×106, (f) 

5.515×106 and (g) 5.55×106 cycles [106] 

Further, based on Kondo’s model, Harlow and Wei [112] proposed a model using Faraday’s law by 

assuming a hemispherical pit growing at constant volumetric rate from initial pit radius a0.  The pit growth 

rate (with volume  2πa
3

3⁄ ) could be given as follows: 

𝑑𝑉

𝑑𝑡
= 2𝜋𝑎2

𝑑𝑎

𝑑𝑡
=

𝑀𝐼𝑃

𝑛𝐹𝜌
=

𝑀𝐼𝑃0

𝑛𝐹𝜌
𝑒𝑥𝑝⁡(−

∆𝐻

𝑅𝑇
)                                                 2-6                                               

By a simple integration of equation (2-6) to be given by: 

 𝑡 =
2𝜋𝑛𝐹𝜌

3𝑀𝐼𝑝0
(𝑎3 − 𝑎0

3)𝑒𝑥𝑝⁡(
∆𝐻

𝑅𝑇
)                                                    2-7 

Where the pitting current Ip in equation (2-6) normally refers to the galvanic current that is generated 

between the intermetallic compounds and matrix of the alloy. It can be expressed in terms of the pitting 

current coefficient Ip0, the activation energy ΔH of the base alloy, and the temperature T in which the process 

takes place according to the Arrhenius law [111]. a is the pit radius at time t, M is the molecular weight of 

the metal, F is Faraday constant and ρ is the density of the metal, and R is the universal gas constant. Then, 

Sriraman and Mao, etc. [113] [114] made some modifications on the base of the Wei’s model, such as by 
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considering the shape of pit to be semi-ellipsoidal and incorporating the effect of stress into pit corrosion 

fatigue process by inferring the result of the Ishihara’s model. The pit growth behavior can be expressed as: 

𝑐 = (
3𝐶𝑝

2𝜋𝜆2
)
1
3⁄ 𝑡

1
3⁄ ⁡𝐶𝜎𝑎                                                              2-8 

Where Cp =
MIP0

nFρ
exp⁡(−

∆H

RT
), λ is the aspect ratio, C is a constant and σa is the stress amplitude. In this 

research, the Sriraman’s model was adopted to determine the CFCI life. The critical problem is the 

determination of the critical pit depth above which the crack would start to initiate.  

2.4.1.2 Pit-to-crack transition 

Based on above knowledge, it is known that pit-to-crack transition was one of the most important issues in 

the prediction of CFCI life. Likewise, several mechanisms and corresponding models have been proposed 

to explain the pit-to-crack transition. One of them is based on fracture mechanics [110-115]. A pit is usually 

considered to be an equivalent surface crack in this model. It is deemed that there is a critical pit size in 

which the local mechanical condition is exactly met for the onset of crack growth. That is when the stress 

intensity factor of the pit reaches the threshold stress intensity factor of fatigue crack propagation ((ΔK)pit

≧(ΔK)th). On the other hand, Kondo [105] believed that whether fatigue crack initiates depends on the 

relationship between the crack growth rate and pit growth rate. Only when the crack growth rate exceeds 

the pit growth rate the crack begins to initiate ((dc/dt)crack≧(da/dt)pit). The models based on fracture 

mechanics may be useful in practical application but in short of elaborating the interaction of pitting 

evolution and fatigue.  Another mechanism is based on continuum damage mechanics (CDM) [116][117], 

in which the pit was assumed to be a notch. In this model, the pit-to-crack transition condition was similar 

to the critical pit size model. The difference is that the fatigue crack initiation is considered to be determined 

by the stress distributed over a finite volume ahead of the pit named as a process zone rather than by the 

maximum stress around the pit. Therefore, the fatigue notch sensitivity factor (Kf) was used to replace stress 

concentration factor (Kt) to calculate the pit-to-crack transition condition. Although the models based on 

CDM have edges in accounting for the synergistic effect of corrosion and fatigue, there are too many 

parameters and the model process was far from complex.  

In this research, a theory based on Neuber’s rule [118] is attempted to analyze the pit-to-crack transition 

process. By assuming the pit to be a notch at the transition point, corrosion fatigue crack will be initiated at 

the bottom of the pit when maximum applied strength exceeds the theoretical material strength.  

𝐾𝑡𝑆 ≥ √𝐸𝜎𝑒𝜀𝑒                                                                  2-9 
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Where Kt is the stress concentration factor, which is a function of the geometry of the pit. S is the applied 

stress. E is Young’ modulus. σe is the fracture strength and εe is the ductility. The critical pit depth can be 

determined from the stress concentration factor at the pit-to-crack transition point. 

Fatigue crack would readily nucleate from the pit with maximum stress concentration factor [119].  

Pidaparti, et al. [120] studied the stress distribution around corrosion pits using finite element analysis and 

found that the stress was firstly increased by 80% within 30 min corrosion and then the increment of stress 

just changed about 6% from 30 min to 60 min corrosion and finally reach a plateau. Cerit [121] also 

investigated the stress concentration of corrosion pit with assumption of the pit being semi-elliptical based 

on the finite element analysis. It was concluded that the aspect ratio of corrosion pit was an important factor 

deciding stress concentration factor value and could be estimated by an empirical equation as follows: 

𝐾𝑡 =
1+6.6𝜆

1+2𝜆
                                                                          2-10                                                                

Where λ is the aspect ratio of corrosion pit. According to the finite element analysis, the maximum stress 

should appear at the bottom or slightly below the mouth of corrosion pit. Cerit [121] further studied the 

effect of secondary pit formed at the primary pit on stress concentration. It was found that the stress 

distribution was completely changed and the overall stress concentration was much larger than that of a 

single primary pit. Based on Cerit’s work, Zhao et al. [122] emphasized their study on the quantitative 

measurement of stress concentration having a secondary pit formed at the bottom of a primary pit. By 

considering these two pits separately as a single pit, the stress concentration of the compound pit was 

estimated by: 

𝐾𝑡 = 𝐾𝑡1 × 𝐾𝑡2
0.95                                                                2-11                                                  

Where Kt1 is stress concentration factor of the primary pit and Kt2 is stress concentration of the secondary 

pit 

2.4.2 Modeling of corrosion fatigue crack propagation (CFCP) life  

Modeling of corrosion fatigue crack propagation becomes more complex due to the synergistic effect of 

aggressive environment and cyclic loading compared to that of pure fatigue. To date, there are three major 

corrosion fatigue models and their extended versions reported in literature: 

2.4.2.1  Superposition model 

The superposition model was first developed by Wei et al. [123-125] who suggested that the crack growth 

rate in an aggressive environment is a summation of three components: 

(
𝑑𝑎

𝑑𝑁
)𝑒 = (

𝑑𝑎

𝑑𝑁
)𝑓 + (

𝑑𝑎

𝑑𝑁
)𝑐𝑓 + (

𝑑𝑎

𝑑𝑁
)𝑠𝑐𝑐                                             2-12                                
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Where (da dN⁄ )f represents the crack growth rate in an inert environment (pure fatigue term); (da dN⁄ )cf is 

the crack growth rate of a cycle-dependent corrosion fatigue process and (da dN⁄ )scc corresponds to the 

sustained load crack growth rate at K levels above KISCC (threshold stress intensity factor in stress corrosion 

cracking), which can be expressed by ∫
𝑑𝑎

𝑑𝑡
𝑑𝑡

𝑇

0
, where da/dt is the crack growth rate related to stress 

intensity factor and T is the cyclic period [126]. Kim [127] applied this superposition model into the 

prediction of corrosion fatigue life in aluminum alloys by considering the mechanism of corrosion fatigue 

to be hydrogen induced embrittlement. However, it was recognized that determination of the second term 

(da dN⁄ )pcf of equation (5) was extremely difficult [127][128].  

2.4.2.2  Competition model 

According to Austen [129], two different corrosion fatigue crack propagation behavior below and above 

the threshold stress intensity (KISCC) for stress corrosion was discovered. The corrosion fatigue behavior, 

therefore, could be divided into three types, as presented in Figure 2-15. True corrosion fatigue (Figure 

2-15 (a)) is characterized by the synergistic effect of corrosion and cyclic loading; stress corrosion fatigue 

(Figure 2-15 (b)) only occurs when stress intensity factor range exceeds KISCC. Figure 2-15 (c) implies that 

true corrosion fatigue and stress corrosion fatigue can occur concurrently in some situations. Based on 

above knowledge, Austen [129] proposed that the process of fatigue and stress corrosion fatigue are 

mutually competitive and the crack growth is determined by the process that has a faster growth rate at 

prevailing ΔK: 

(
𝑑𝑎

𝑑𝑁
)𝑒 = 𝑀𝑎𝑥⁡{(

𝑑𝑎

𝑑𝑁
)
𝑓
, (

𝑑𝑎

𝑑𝑁
)
𝑠𝑐𝑐
}                                                  2-13 

This model proved not to be appropriate at low stress intensities and showed difficulty in predicting the 

CFCG rate at low frequencies [130]. Main reason was found to be the effect of the process interaction.  

 
Figure 2-15 Basic types of corrosion fatigue crack growth behavior: (a) true corrosion fatigue; (b) stress corrosion 

fatigue; (c) the combination of true corrosion fatigue and stress corrosion fatigue [129] 
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2.4.2.3  Process interaction model 

Rhodes [130]  stated that corrosion fatigue is an interaction process between pure fatigue crack propagation 

and stress corrosion cracking. The effects of fatigue crack propagation and stress corrosion cracking are 

added together but each process is modified by the other to account for the process interaction: 

(
𝑑𝑎

𝑑𝑁
)𝑒 = 𝐶(∆𝐾𝑒𝑓𝑓)

𝑚 + ∫ 𝐴𝛾𝐾𝑒𝑓𝑓
𝛼 𝑑𝑡

1
𝑓⁄

0
                                           2-14 

Where Keff is the effective stress intensity factor adjusted to explain the effect of environment on fatigue 

and γ is used to account for the effect of cyclic loading on stress corrosion rate. C, m are material constants. 

A and α are coefficients originating from the relationship between K and Keff. This “process interaction 

model” appears to be able to give better correlation with experimental results than either superposition 

model or competition model. As the significance of stress corrosion cracking is emphasized in this model 

and the studied magnesium alloys in this paper are highly susceptible to the corrosive environment, it is 

appropriate to model the corrosion fatigue crack propagation behavior of magnesium alloys based on the 

“process interaction model”. However, this model over emphasized the significance of the SCC in the whole 

crack propagation process and not considered the effect of SCC in unloading portion.  

Overall, from the CFCP models published in literature, the corrosion fatigue crack propagation process 

should be closely related to fatigue and stress corrosion cracking but the interaction between them was not 

explicitly explained. To narrow down this gap, a new corrosion fatigue crack propagation model is proposed 

and will be detailed discussed in chapter 6. 
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Chapter 3 Materials and experimental methods 

This chapter is on materials and methods. It mainly includes information on the materials, specimen 

preparation, and characterization, as well as the procedure of conversion coating treatment. In addition, this 

chapter provides detailed information regarding the experimental techniques and equipment to characterize 

the microstructure, corrosion and corrosion fatigue performances of coated and uncoated samples. 

3.1  Materials 

The Mg alloys used in this research include a direct chill cast alloy AZ31B, a commercial extruded alloy 

AZ80, and a commercial extruded alloy ZK60. As-cast AZ31B with the dimensions of Ф300 mm×500 

mm, and as-extruded AZ80, and as-extruded ZK 60 with the dimensions of Ф63.5 mm×65 mm were all 

provided by Magnesium Elektron North America. The chemical composition of these alloys is given in 

Table 3-1. 

Table 3-1 Chemical composition of Mg alloys used in this investigation (wt.%) 

Alloy Al Zn Mn Si Cu Zr Others Mg 

AZ31B 2.9 0.76 0.25 0.01 <0.03 / <0.30 Balance 

AZ80 8.4 0.48 0.20 0.026 0.0026 / <0.30 Balance 

ZK60 / 5.8 / / / 0.61 <0.30 Balance 

The first part of this research focuses on the surface corrosion protection of Mg alloys, and thus the flat 

specimen geometry was used. In order to optimize the conversion coating process parameters, as-cast 

AZ31B was utilized as the base substrate in this part of the research. Flat coupons with the dimensions of 

50mm×25mm×3mm ( Figure 3-1(b)) were machined from the as-cast billet as present in Figure 3-1(a). 

These coupons were first mechanically ground up to 800 grit emery sandpaper with ethanol, followed by 

ultrasonic degreasing in acetone. Then they were stored for subsequent coating treatment after rinsing in 

ethanol and drying in dry air stream.  

The developed surface corrosion protection methods were further studied on an actual component. A lower 

control arm forged from Mg extrusion was the component used. A control arm is a vital part of the front 

suspension in a vehicle. A Mg control arm, as a potential replacement of the current Al one, for the sake of 

light-weight design was employed in this part of the study. As-extruded AZ80 [131] and ZK60 [132] billets 

were forged into the shape of a control arm as presented in Figure 3-1(c) under 250℃ at a rate of 20 mm/sec. 

Flat coupons with the same dimensions as the cast alloy coupons (Figure 3-1(b)) were cut from the control 

arm for the subsequent corrosion research stage, in which the optimal conversion coatings plus a top powder 
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coating are applied to the coupons to investigate the overall corrosion performances of the extrusion-forged 

control arm.  

To characterize the fatigue behavior of uncoated and coated Mg alloys, different specimen geometry was 

adopted for fatigue testing as presented in Figure 3-1(d), based on the American Society for Testing and 

Materials (ASTM) standard, ASTM E8/E8M [133]. The cylindrical fatigue specimen was as well cut from 

the as-cast billet and the control arm at the Machine Shop of the University of Waterloo. 

 

  

Figure 3-1 Illustration of the original billet and component used for machining test coupons and dimensions of 

coupons: (a) cast billet (the rectangular area shows an example of  the flat specimen cut from the billet); (b) flat 

coupon for screening tests; (c) extrusion-forged front lower control arm; and (d) cylindrical specimen for fatigue 

tests 

3.2 Coating treatment 

Phosphate permanganate (Mn-P) conversion coating and chromate conversion coating (CCC) were selected 

based on literature to treat AZ31B. Electrophoretic coating (E-coating) and powder coating were both used 

as a topcoat in the coat system.  

3.2.1 Phosphate permanganate conversion coating 

Conversion coating treatment was conducted in the corrosion lab of CanmetMATERIALS. Potassium 

permanganate (KMnO4 15g/L), potassium dihydrogen phosphate (KH2PO4 3g/L), manganese sulfate 

(MnSO4 4g/L) and ethylenediaminetetraacetic acid, namely EDTA (C10H16N2O8 1g/L) were used to prepare 

the aqueous conversion bath. This recipe was modified from Ref.[51] by replacing manganese nitrate 

(Mn(NO3)2) with MnSO4 for the free Mn2+ and adding a tiny of EDTA which plays an important role in 

(c) (d) 

unit:mm 
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facilitating the formation of corrosion resistant oxides [134]. The effect of each processing parameter on 

coating resistance was studied. To figure out the optimal processing parameters, an orthogonal testing 

matrix was quite necessary to reduce the number of tests. The experiment design is presented in Table 3-2. 

Table 3-2 Description of Mn-P based conversion coating process 

Process reference 

number 

Bath pH value Immersion time (s) Bath temperature (ºC) 

1 1.8 45, 70, 90, 180, 600 Room temperature (RT) 

2 1.8, 2.3, 2.8 90 RT 

3 1.8, 2.0, 2.5, 3.0 180 RT 

4 3.0 600 RT, 50, 75 

The following reviews the detailed steps of producing a Mn-P coating on Mg alloy coupons.   

(1) Dissolution of the conversion bath constituents and heat treatment 

Chemical constituents (no order required) were firstly dissolved in de-ionized water on a Cole-Parmer 

magnetic stirring hot plate (Figure 3-2), and then the conversion solution in a beaker was heated to a targeted 

temperature (20℃, 50℃, 75℃). Graduated cylinder and mass scale were used to measure the amount of 

water and chemical reagents needed, respectively.  
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Figure 3-2 Mn-P conversion process on a magnetic stirrer with a heat plate 

(2) Adjustment of pH value of the conversion solution. 

After stabilization of the bath temperature, the pH value of the conversion solution needed to be adjusted 

to a targeted level by adding potassium hydroxide (KOH) or nitric acid (HNO3). A pH reader was used to 

determine the pH value of the prepared solution.  

(3)  Chemical conversion processing  

Flat coupons of Mg alloy AZ31B were immersed in the solution for a certain period of time and then were 

immediately washed by water and dried by air stream. Coated samples should be stored in a drying oven 

for subsequent testing. After the coating process, the conversion solution was transferred to a disposal bottle 

and marked carefully. 

3.2.2 Chromate conversion coating 

This coating process is very similar to that of Mn-P coating except that the bath solution was prepared by 

using manganese(Ⅱ) sulfate monohydrate (MnSO4·H2O 50g/L), magnesium sulfate (MgSO4 50g/L), and 

sodium chromate dehydrate (Na2Cr2O7 100g/L) [135][136]. It is worth noticing that the disposal of this bath 

solution should be carefully performed because of the toxicity of chromate. 

3.2.3 Top coating 

The E-coating process was performed by a local company MetoKote in Cambridge, Ontario, Canada. As 

explained in Chapter 2, E-coating as a ‘wet’ process typically involves immersing the sample into a bath 
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solution consisting of epoxy resin, painting assisted by an electric field, and a step of curing in an oven to 

promote more uniform distribution of the coating. In contrast, powder coating is a “dry” process in which 

a spray gun is usually used to apply the dry powder consisting of chemicals such as epoxy resin and some 

curing agents onto the Mg surface. Curing in an oven is also necessary to finalize the coating. In this 

research, powder coating was provided by the company JP Powder Coating Inc in Kitchener, Ontario, 

Canada. Two types of powder coatings were obtained via being cured under a high temperature (P1) and a 

low temperature (P2). The specific treatment parameters are proprietary and not given here. Figure 3-3 

shows the images of flat coupons and cylindrical specimens with an E-coat.  

   
Figure 3-3 Typical flat coupons and cylindrical fatigue specimens with an E-coat 

3.3 Experimental Methods 

After coatings were deposited on the Mg ally specimen surface, the following analysis and tests were 

conducted to characterize the surface morphology, corrosion performance, and corrosion fatigue property: 

3.3.1 Microstructural characterization  

The surface morphology, microstructure and chemical composition of the conversion coating were 

characterized using Philips XL30 SFEG SEM in the secondary electron (SE) mode as presented in Figure 

3-4(a) at CanmetMATERIALS, Hamilton, Canada. The composition of the surface and cross-section of the 

coatings were analyzed by Energy Dispersive Spectrometry (EDS) mapping incorporated into the SEM. 

EDS was performed at 20 keV. Additionally, the composition of the corrosion product of the Mg alloy 

coupons post corrosion testing was investigated by x-ray Diffraction (XRD) using Cu-Kα radiation with a 

Bruker-D8 Discover equipped with advanced 2D-detector as presented in Figure 3-4(b) at the University 

of Waterloo. 
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Figure 3-4 (a) Scanning electron microscopy and (b) Bruker D8-Discover XRD machine 

3.3.2 Electrochemical testing 

Advanced electrochemical testing techniques including potentiodynamic polarization and electrochemical 

impedance spectroscopy (EIS) measurements were performed to study the corrosion behavior of the 

uncoated and coated Mg alloy coupons. The electrochemical tests were all conducted in a 3.5% sodium 

chloride (NaCl) aqueous solution using a potentiostat/galvanostat electrochemical system (Solartron SI 

1287 and 1255B as seen in Figure 3-5) at room temperature. A traditional three-electrode setup was adopted 

with the Mg alloy specimen acting as working electrode, a platinum gauze as counter electrode, and an 

Ag/AgCl electrode in a saturated KCl solution as reference. The exposed surface area of the specimen was 

about 1 cm2. 

Prior to the polarization scan and EIS measurement, each sample was immersed in the testing solution for 

30min to reach a steady open circuit potential (EOCP). The potentiodynamic polarization measurement was 

then conducted by sweeping the potential from -200mV to +500mV with respect to the EOCP at a scan rate 

of 1 mV/s and a Tafel plot was obtained after the electrochemical measurement, as can be seen from a 

typical Tafel polarization diagram [137] in Figure 3-6 (a). For Mg alloys, the cathodic branch is related to 

hydrogen evolution (see Eq.2-5) and the anodic branch is related to Mg alloys’ dissolution (see Eq.2-4). 

While for Mg alloys with a surface coating, the anodic branch generally reveals the features regarding on 

the corrosion resistance of the surface coating. Corrosion current density (icorr) can be acquired by an 

extrapolation of the cathodic or anodic Tafel slop back to Ecorr. Figure 3-6 (b) [137] shows the polarization 

diagram for a passivable system with anodic and cathodic branches. At potentials higher than Ecorr, 

corrosion rate or the current density increases until the passivation potential (Epp), where the active-passive 

transition occurs. Above the Epp, it is the passive zone in which the current density is maintained at a steady 

(a) (b) 
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and low value. When the applied potential reaches a point where the current density increases again, pitting 

corrosion or breakdown of the film occurs. This potential is defined as pitting potential (Ep). 

The EIS measurement was conducted using a frequency response analyzer (FRA) and the spectrum was 

recorded in the frequency range of 10 mHz – 100 kHz at an open circuit potential with a sinusoidal 

perturbation amplitude of 10mV. The impedance data was displayed as a Bode plot.  

All the experimental data were presented in the form of the average± the standard deviation of three 

measurements.  

 

Figure 3-5 The Solartron Analytical 1287A potentiostat/galvanostat and Solartron 1255B frequency response 

analyzer use for electrochemical testing 
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(a)                                                                         (b) 

Figure 3-6 (a) Typical cathodic and anodic Tafel polarization diagram; (b) Hypothetical polarization diagram for a 

passivable system with anodic and cathodic branches [137] 

3.3.3 Salt fog/spray chamber corrosion test 

The salt spray chamber test was performed at the corrosion lab of CanmetMATERIALS, and two types of 

chamber corrosion tests were used in this research. One is based on the standard ASTM B117 [138], which 

is a static corrosion test. This test was conducted in a chamber as presented in Figure 3-7, containing 5.0 

wt. % NaCl fog with the temperature maintained at 36˚C and the solution pH maintained between 6.5 and 

7.2. For characterizing coated Mg alloys, the scribe test based on standard ASTM D1654 [139] was 

conducted and the scribed coated specimens were exposed to the corrosive continuous salt fog environment 

given by ASTM standard B117. The lengthwise scribe line with a width of 0.5μm was obtained via a 

specialized scribing tool. The other chamber corrosion test is based on the standard SAE J2334 [140], which 

is a cyclic corrosion test. One cycle of this test includes first 6 hours of wet exposure under 100% relative 

humility (RH) at 50℃, followed by15 minutes of salt spraying consisting of 0.5%NaCl, 0.1%CaCl2, 

0.075%NaHCO3 at 23-25℃, and then 17 hours and 45 minutes of air drying under 50% RH at 50℃.  

In each test, the coupons were placed in the corrosion chamber at an angle of 15˚-30˚ from the vertical 

direction. Two samples were taken out each time at desired time point to characterize the corrosion kinetics 

of the specimens. After the salt fog or spray testing, a chromate solution was used to clean the tested 

coupons and the corrosion products obtained from the surface of coupons were analyzed by XRD. To 

calculate the weight loss, the weight of each bare or coated sample was recorded prior to and post the 

corrosion test after removing the corrosion products. For the scribed coated sample, the scribe width should 
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be measured from at least six points around the corrosion area and recorded to determine the average rust 

creepage (c) following the equation below: 

                                                                 𝑐 =
𝑤𝑐−𝑤

2
                                                                                  2-15 

where w represents the width of the original scribe prior to the chamber corrosion test and 𝑤𝑐 is the mean 

overall width of the corrosion zone post the chamber corrosion test.  

 

Figure 3-7 The chamber for corrosion test 

3.3.4 Characterization of corrosion pits 

In order to further investigate the corrosion behavior of the coated sample, the specimen from the chamber 

corrosion test above was cleaned and prepared for characterizing the corrosion pits using a 3D laser 

profilometer as seen in Figure 3-8 in the corrosion lab of CanmetMATERIALS. The rectangular coupon 

surface was divided into four equal areas, from which 20 corrosion pits were selected to determine the 

average corrosion pit depth. 
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Figure 3-8 3D optical profilometer for charactering the corrosion pit 

3.3.5 Fatigue and corrosion fatigue test 

The R.R.Moore machine, recognized as the standard facility for rotating beam fatigue test, was used to 

perform the fatigue and corrosion fatigue tests on straight shank specimens, incorporating the equipment 

bringing in a corrosive environment, as shown in Figure 3-9. The machine is based on the rotating beam 

principle. The specimen functions as a simple beam symmetrically loaded at two points. When rotated a 

full revolution, the specimen would pass through a full reversal of compression and tension. During testing, 

the specimen’s surface is subjected to the greatest amount of stress and hence this type of fatigue testing is 

especially useful for determining fatigue properties of surface coatings. Additionally, an easy-to-read digital 

cycle counter is able to provide an accurate display of completed cycles. By applying different loads to the 

tested specimen, different numbers of cycles to failure will be generated and so is the S-N curve.  

The fatigue test was conducted at different stress amplitudes ranging from 60 MPa to 200 MPa. Test 

frequency was between 60-100 Hz. For the corrosion fatigue test, the specimens were tested at various 

stress amplitudes between 40 and 140 MPa. A corrosive environment can be achieved by dripping a salt 

solution (generally 3.5% NaCl) down onto the specimen gauge surface through a tube from a large container 

which had a controlling valve to control the solution flow rate during the fatigue testing, as can be seen in 

the designed salt chamber in Figure 3-9(b) [141]. The solution would be recycled by another tank 

underneath the fatigue machine. The drop speed that flowed over the gauge section of the specimen was 

maintained at roughly 40 ml/min during the test. To reveal the effect of the corrosive medium on the fatigue 

performance of the specimen, a fixed frequency of 30 Hz was used for all fatigue and corrosion fatigue 
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tests. A test terminates whenever a specimen breaks or when it reaches the run-out limit of 10 million cycles. 

Two specimens were tested for each stress amplitude to give an average of the test results. 

 

Figure 3-9 (a) An Instron Rotating-bending test machine and (b) the device designed for introduction of the 

corrosive medium during corrosion fatigue test 
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Chapter 4 Fabrication of corrosion protective surface coating on 

AZ31B  

To fulfill the objectives of this research, a corrosion protective surface coating was first deposited on the 

Mg alloys. Mn-P conversion coating is a pretty promising candidate for the replacement of chromate 

conversion coating for surface preparation and corrosion protection of Mg alloys owing to the similarity of 

permanganate to chromate. In this chapter, with no variation in the chemical composition of the coating 

bath, and the effects of coating processing parameters including the solution pH, immersion time, and bath 

temperature were investigated. Based on these results, a two-stage conversion coating process was 

developed to obtain a high-quality Mn-P coating. 

4.1 Processing parameters-microstructure-corrosion performance relationship of the Mn-P 

coating 

As reviewed in literature [51][142][143], the formation of the Mn-P conversion coating may include the 

following several stages: 

At first, when the AZ31 alloy is immersed into the bath solution, the loose oxide film formed on the surface 

of the substrate (Mg and Al are both highly active and easily oxidized in the air)  is preferentially dissolved 

according to reactions (4-1) and (4-2), leading to the substrate exposed to the bath solution.  

                                                       𝑀𝑔𝑂 + 2𝐻+ → 𝑀𝑔2+ +𝐻2𝑂                                                             4-1 

                                                      𝐴𝑙2𝑂3 + 6𝐻+ → 2𝐴𝑙+ + 3𝐻2𝑂                                                            4-2 

Then, the Mg begins to dissolve in the solution and hydrogen evolution occurs through reaction (4-3). The 

deletion of H+ by reactions (4-1) to (4-3) causes a pH increase at the Mg coupon and solution interface. 

Consequently, the excess of Mg2+ and OH- will immediately precipitate in the form of Mg(OH)2 through 

reaction (4-4) as the first layer of the coating.  

                                                      𝑀𝑔 + 2𝐻+ → 𝑀𝑔2+ +𝐻2 ↑                                                                 4-3 

                                                      𝑀𝑔2+ + 2𝑂𝐻− → 𝑀𝑔(𝑂𝐻)2 ↓                                                            4-4 

Next, the continuous consumption of H+ accompanied by hydrogen evolution facilitates the precipitation 

of insoluble manganese oxide (MnO2) and insoluble manganese phosphate (Mn3(PO4)2) through reactions 

(4-5) and (4-6) on top of the Mg(OH)2 film. Dehydration of the coating in the subsequent drying process 

results in the transition of Mg(OH)2 to MgO and thus network cracks are usually observed. In the end, the 

Mn-P conversion coating would mainly contain phases such as MnO2, MgO, Mn3(PO4)2, Mg(OH)2. The 

processing parameters play a key role in controlling the coating thickness, compactness and compositions 
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proportion, so a systematical experimental study on the effects of processing parameters on the 

microstructure and corrosion performance of the Mn-P coating is carried out.  

                                                      2MnO4
− + 3Mn2+ + 2H2O → 5MnO2 ↓ +4H

+                                    4-5 

                                                  4𝑀𝑛2+ + 3𝐻2𝑃𝑂4
− → 𝑀𝑛𝐻𝑃𝑂4 +𝑀𝑛3(𝑃𝑂4)2 ↓ +5𝐻

+                        4-6 

4.1.1 The effects of immersion time  

Figure 4-1 shows the effect of the immersion time on the coating morphology of coupons treated in a bath 

at pH value of 1.8 under room temperature. It can be clearly seen from the optical images of the coated 

samples (Figure 4-1 (a, c, e, g, i)) that a golden-yellow layer started to form on the alloy surface after 45 s. 

With the increase in the immersion treatment time, the color of the coating became darker and darker and 

even a black coating was obtained after 600 s. Furthermore, the adhesion property of the coating became 

unacceptable when the immersion time went beyond 180 s as the coating layer could be wiped off easily. 

From the SEM images, we can see that after 45 s (Figure 4-1 (b)), the substrate was coated with a thin layer 

while some cast defects and second phase particles containing elements Mg, Al and Zn (Figure 4-1 (k)) 

remained uncovered. Besides, a few shallow cracks appeared in the coating. With the immersion time 

increased to 70 s, the coating became thicker as almost all the cast defects which appeared in Figure 4-1(b) 

were almost not found in Figure 4-1(d). From the EDX result (Figure 4-1(m)) for Area 1 in Figure 4-1(f), 

the produced coatings were mainly composed of elements Mg, O, Mn, and P, which corresponded to the 

Mn3(PO4)2, Mg(OH)2 according to reactions (4-4) to (4-6). Meanwhile, some white compounds containing 

Mn, Mg, O (Figure 4-1 (l)) which are likely the mixtures of MnO2 and MgO started to precipitate along the 

shallow cracks. MnO2 and MgO are both insoluble in the aqueous solution and thus they could  prevent the 

outside corrosive species from penetrating through these shallow cracks and reaching the Mg substrate [51]. 

At 90 s of the immersion time, wider cracks (Figure 4-1 (f)) formed in the coating, which would reduce the 

corrosion resistance of the coating. After 90 s, cracking issue became more severe and the adhesion property 

of the coating was deteriorated, as shown in Figure 4-1 (h, j).  
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Figure 4-1 The optical (a, c, e, g, i) and SEM (b, d, f, h, j) images (1000x) of the Mn-P coated AZ31B alloy samples 

obtained after various immersion time in a solution at pH 1.8 under room temperature: (a)(b) 45 s; (c)(d) 70 s; (e)(f) 

90 s; (g)(h) 180 s; (i)(j) 600 s.(k)(l)(m): The EDS results for corresponding spot1, spot2, and area1 in (b)(d)(f) 

Potentiodynamic polarization test was then performed on coated Mg alloy coupons to investigate the effect 

of immersion time on the corrosion performance of the coating. The corrosion potential and corrosion 

current can be obtained from the polarization curve. Corrosion potential (Ecorr) is defined as a potential at 

which the anodic reaction rate equals the cathodic reaction rate and thus no net current flow occurs; It 

generally gives a corrosion tendency of a given material and can be measured from the potential difference 

between a reference electrode and the surface of a metal [144]. Corrosion current is the dissolution current 

at Ecorr; It is proportional to the corrosion rate. A smaller corrosion current indicates a lower corrosion rate 

and better corrosion resistance. As can be seen from Figure 4-2, the corrosion potential of all the coated 

samples shifted towards more noble direction and lower corrosion current was seen for all coated samples 

compared to the bare substrate, showing improved corrosion resistance resulted from the coating. The 

change of corrosion potential of the coated samples was not monotonous with the increase of immersion 

time. For instance, the corrosion potential of the sample coated for 45 s was -1.389 V in contrast to -1.486 

V for the bare substrate. When the immersion time increased to 70 s, the corrosion potential of the coated 

alloy became more noble (-1.287 V). However, after 70 s, the corrosion potential of the coated alloy started 

to decrease (became more negative) with the further extension of immersion time. Therefore, the 

potentiodynamic polarization results show that the sample treated for 70 s exhibited the best corrosion 

resistance among all coated samples. When the immersion time exceeded 180 s, thicker coatings were 

obtained but with more defects and cracks, which led to lower corrosion resistance and more negative 

corrosion potential. The results are consistent with the microstructural analysis above (Figure 4-1). 

In summary, with the increasing immersion time, the coating grew thicker and more corrosion resistant. 

Simultaneously, the content of corrosion resistant precipitates containing MnO2 and MgO in the coating 

(m) 
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increased as well. However, when the treatment time was too long, the corrosion resistance of the coated 

samples would decrease due to the formation of large cracks in the coating. The formation of cracks is 

caused by the tensile stress developed in the coating due to volume contraction during the subsequent drying 

process. Larger volume contraction for the case of a thicker coating resulted in more residual tensile stress 

in the surface coating [82]. Therefore, an optimum conversion treatment time exists for a given bath under 

certain pH and temperature conditions. In the above case, where the sample was treated in a solution with 

pH 1.8 at room temperature, the optimum immersion time is no more than 90 s. 

 
Figure 4-2 Polarization curves for the bare and coated AZ31B samples treated after various time periods in the 

coating bath at pH 1.8 under room temperature. 

4.1.2  The effects of pH value 

Bath pH is reported to significantly influence the surface morphology and thickness of the Mn-P coating. 

This is mostly related to the reaction rate promoted or retarded by H+ concentrations in the bath solution. 

To investigate the effects of pH on the microstructure and corrosion property of the Mn-P coating, AZ31B 

alloy specimens were treated at three pH values (1.8, 2.3, and 2.8) for 90 s and at four pH values (1.8, 2.0, 

2.5, and 3.0) for 3 min.  Figure 4-3 presents the surface morphology of the coated AZ31B alloy obtained at 

various pH values with an immersion time of 90 s. As can be seen from the SEM images, at  bath pH 1.8, 

a crystalline surface coating was deposited on the surface of the AZ31 alloys but many cracks in the coating 

were seen on the sample surface (Figure 4-3(a)). Dehydration in the dry process causes the shrinkage of the 

coating volume, which induces internal tensile stresses and thus generate a number of cracks. Surface cracks 

are detrimental to the coating because they would allow the outside corrosion species to penetrate into the 

substrate [51]. However, if a thick coating was formed, it is still possible that the cracks only existed on the 

outer layer of the coating and may not penetrate through the entire thickness of the coating. For the sample 
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treated at pH 2.3, surface grooves of the substrate and second phase precipitates from casting were still 

visible on the sample surface, indicating that the coating was very thin (Figure 4-3 (b)). However, no 

cracking was seen in the coating, which was different from the commonly seen features of Mn-P coatings 

published in literature. In addition, there was no white compounds found in the coating like those appeared 

in the coating treated at bath pH 1.8.  With the bath pH increased to 2.8, more apparent abrasion grooves 

were observed on the sample surface, which suggested that 90 s was too short to form a thick enough and 

corrosion resistant coating layer on the sample surface. This was also confirmed by the results of 

potentiodynamic polarization tests, as presented in Figure 4-4. It can be seen that even though there existed 

a few wide cracks, the coating obtained at bath pH 1.8 showed a higher corrosion potential and lower 

corrosion current than the other two coatings obtained at higher pH values, which manifested the 

importance of the coating thickness. In contrast, the samples treated in the solution with pH 2.3 and pH 2.8 

had similar corrosion potentials and corrosion currents. Their corrosion potentials are only slightly higher 

and corrosion currents slightly lower than those of the bare substrate, which can be attributed to the small 

thickness of the coatings (i.e. a very thin coating layer). The bath solution with a low pH value would 

provide a higher concentrations of hydrogen ions for accelerating the reaction (4-3) to produce a larger 

amount of Mg2+ than a bath solution with a low pH value under the same immersion time. In this way, more 

content of Mg(OH)2 would be generated in the conversion coating. Meanwhile, with plenty of hydrogen 

ions deleted, more content of MnO2 and Mn3(PO4)2 are acquired through the reactions (4-5) and (4-6). This 

explains why a low pH value generally increases the thickness of the Mn-P coating.   
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Figure 4-3 SEM images of the surface morphology of the coatings obtained at various pH values  and 90 s of 

immersion time: (a) pH 1.8; (b) pH 2.3; and (c) pH 2.8 

 
Figure 4-4 Potentiodynamic polarization curves for the bare AZ31B and coated samples obtained at various pH 

values and 90 s of immersion time under room temperature 

Figure 4-5 and Figure 4-6 give the results of the SEM surface analysis and polarization test for the samples 

coated for 3 min (180 s) at various pH values (1.8, 2.0, 2.5, and 3.0). A similar trend like that for the above 

mentioned 90 s of immersion time on the coating microstructure was observed: thick coatings with severe 

cracking were obtained at low pH values while thin coatings with few or no cracks were obtained at high 

pH values. The coating generated at pH 3.0 showed the highest corrosion resistance compared to other 

coatings obtained at lower pH values (Figure 4-6), which probably can be ascribed to its improved 

compactness and higher coating thickness when the immersion time was relatively long (3 min). It is 

interesting to note that the sample obtained at pH 2.0 exhibited better corrosion resistance than that treated 

at pH 2.5. This might indicate that for the enhancement of corrosion resistance the role of coating thickness 
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can outweigh that of coating compactness, since the specimen treated at pH 2.0 had a thicker coating but 

with more cracks than the specimen treated at pH 2.5. 

In summary, the effects of bath pH on the coating include: (1) a thick Mn-P coating can be formed on the 

surface of Mg alloy AZ31B in a very short duration if treated in a low-pH bath (below 2.0) while it requires 

much more time to produce a relatively thick coating layer if treated in a high-pH bath (above 3.0); (2) the 

coating obtained in a low-pH bath tends to have wide cracks and low compactness while the coating built 

in a high-pH bath tends to be dense and have no significant cracks; (3) the integrity (i.e. extent of cracking), 

thickness and compactness of the coating are the main characteristics that determine its corrosion resistance.  

 

  

  
Figure 4-5 The SEM images of surface morphology of the coatings obtained at various pH values with immersion 

time of 3 min: (a) 1.8; (b) 2.0; (c) 2.5; and (d) 3.0 

(b) 

(c) (d) 

(a) 
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Figure 4-6 Potentiodynamic polarization curves for the bare AZ31B and coated samples treated at various pH values 

with immersion time of 3 min under room temperature 

4.1.3  The effects of temperature 

To study the effects of bath temperature on the performance of the Mn-P coating, AZ31B alloy samples 

were coated under three different temperatures (20, 50, and 75 ℃), at pH 3.0 and immersion time of 10 

min. The results of the coating microstructure analysis and potentiodynamic polarization tests are given in 

Figure 4-7 and Figure 4-8, respectively. It can be clearly seen from Figure 4-7 that higher bath temperature 

damaged the coating. At 20 ℃, a continuous coating with only shallow cracks formed on the sample surface. 

In contrast, as the solution temperature increased to 50℃, a few large cracks appeared in the coating that 

became the passageways for corrosive ions to penetrate the coating. Furthermore, when the temperature 

went up to 75℃, cracking in the coating became much more severe. However, the coating thickness seemed 

to also increase with the rising temperature. As reactions (4-5) and (4-6) are endothermic, higher 

temperature accelerated this process and hence improved the coating thickness.  

The results of the potentiodynamic polarization tests to some extent validated this hypothesis. As can be 

seen from the Figure 4-8, the coating obtained at room temperature displayed the highest corrosion potential 

and lowest corrosion current owing to its dense and crack-free microstructure, which was in accordance 

with the expectation. The corrosion current of the coating obtained at 75 ℃ with large cracks was lower 

than that of the coating obtained at 50 ℃ with much smaller cracks. 
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Figure 4-7 The SEM images of surface morphology of coatings obtained under various temperatures at bath pH 3.0 

and immersion time of 10 min: (a) room temperature; (b) 50℃; and (c) 75 ℃ 

To sum up, the increase in immersion time and bath temperature both led to an increase in the coating 

thickness, which means enhancement in corrosion resistance. However, serious cracks in the coating were 

also induced during drying process with the rising coating thickness. Therefore, a compromise between the 

coating thickness and coating quality, especially the extent of cracking, is needed to identify the optimum 

bath temperature. Note that since the increase in immersion time and bath temperature both promote the 

growth of thick coatings there may exist more than one set of optimal coating processing conditions. In 

other words, similar coating thickness and quality can be achieved via the combination of a shorter 

immersion time with a higher bath temperature or a longer immersion time with a lower bath temperature. 

However, experimental trials have shown that it is quite difficult to achieve the fine balance between various 

factors and produce high quality corrosion protective Mn-P conversion coatings via a one-bath/one-stage 

process.    

 

(a) (b) 

(c) 
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Figure 4-8 Potentiodynamic plarization curves for the bare and coated AZ31B samples treated under various 

temperatures at pH 3.0 and immersion time of 10 min 

4.2 A novel two-stage conversion process 

4.2.1 The model of a novel two-stage conversion process 

Based on the above research results, a two-stage conversion coating process was proposed to deposit the 

Mn-P coating with large thickness, high compactness, and less cracks on the surface of Mg alloy AZ31B. 

The procedure of this conversion coating process is described as follows: (a) immerse the bare alloy first 

into a low-pH bath (1.8 for this study) for 65-75 s (Low pH treatment), in which process the bare alloy 

would be covered by a layer of Mn-P coating with high thickness and a few large cracks; (b) then, after 

washing in pure water, put the same sample into another solution with high pH value (3.0 for this study) 

for 10 min (High pH treatment). In the 2nd bath treatment, another thin and dense coating will be deposited 

on top of the thick coating formed in the first step. These two steps are both processed at room temperature. 

Through this two-stage conversion process, a thick Mn-P coating with few large cracks and good 

compactness is expected to be formed on the surface of Mg alloy AZ31B, as illustrated in Figure 4-9. The 

following section is going to present the characterization results of the coating produced via this two-stage 

conversion process 
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Figure 4-9 Schematic forming procedure of the Mn-P coating obtained by a two-stage conversion coating process: 

(a) the bare Mg alloy after cleaning pretreatments; (b) after Low pH treatment (LP coating); and (c) after High pH 

treatment (HP coating). 

4.2.2 Characterization of the two-stage conversion coating 

Figure 4-10 shows the SEM images of the surface morphology of the bare and coated AZ31B specimens 

treated via the two-stage conversion coating process. Images of the two coatings obtained via a low pH 

treatment only (Figure 4-10 (b)) and a high pH treatment only (Figure 4-10 (c)) are also presented for 

comparison. In general, all the coatings displayed very similar surface morphology with networks of 

shallow cracks except that some cracks in the two-stage coating was slightly wider (Figure 4-10 (d)). EDS 

analysis data (Table 4-1) suggested that the second phase particles in the AZ31B Mg alloy were oxidized 

after the conversion coating process, as shown in the Table 4-1. And it can be seen from Figure 4-10 that 

more oxidized second phase particles were seen in the coating from the high pH treatment (HP coating)  

than in the coating from the low pH bath (LP coating). The fact that the second phase particles can be seen 

on the coating surface indicates that the coating was quite thin. The most interesting aspect of the EDS 

results is that some manganese oxides were also detected in the two-stage conversion coating (spot D in 

Figure 3-10d). Manganese oxides (MnO/MnO2) are generally more corrosion resistant than MgO and Al2O3 

[51]. Therefore, this two-stage conversion coating process has the potential to produce Mn-P coating of 

enhanced corrosion resistance, as compared to a single-stage conversion coating process. Additionally, the 

thickness of each type of coating could be evaluated from the weight gain of the coated samples, as 

presented in Figure 4-11. It is distinctly demonstrated that the two-stage conversion coating had the highest 

thickness and the HP coating film was the thinnest, indicating that the two-stage conversion coating process 

can be used to grow thick and corrosion resistant Mn-P coating on Mg alloys. 

 

(c) 

Thick and 

dense coating 
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Figure 4-10 The SEM images of surface morphology of the (a) bare alloy and coatings obtained via the (b) low pH 

treatment (LP coating), (c) high pH treatment (HP coating), and (d) two-stage conversion treatment. 

Table 4-1 Chemical composition (atm.%)of the compounds indicated in Figure 4-10 

Spot Mg Al Zn Mn O 

A 90.65 6.88 2.47 / / 

B 90.50 3.69 3.81 / 2.00 

C 67.64 19.01 12.18 / 1.16 

D 50.45 9.45 2.31 25.04 9.79 

 

(a) (b) 

(c) (d) 
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Figure 4-11 Weight gain of the samples after being treated by various conversion coating processes 

4.2.3 Electrochemical test 

Figure 4-12 shows the potentiodynamic polarization curves of the various conversion coated AZ31B 

specimens in 3.5 wt.% NaCl solution. As can be seen in the figure, the polarization curves of the conversion 

coated specimens shifted toward the lower current direction (left) significantly compared to that of the bare 

alloy, indicating that both the anodic and cathodic reactions were inhibited and hence the corrosion 

resistance of the AZ31B was effectively improved by the conversion coating. Moreover, it can be observed 

that a passive region (where a low corrosion current density was achieved between the active oxidation 

region and the breakdown potential Ebreak) occurred in the anodic polarization branch of the coated samples. 

Once the applied potential became more positive than the breakdown potential Ebreak, the corrosion current 

density increased rapidly. Among all coated samples, the HP coating exhibited the largest passive region. 

From the polarization test results we can see that the HP coating and two-stage coating showed similar 

corrosion behavior, and both were more corrosion resistant than the LP coating.  

Electrochemical impedance spectroscopy (EIS) was then used to further study the corrosion resistance of 

the coated samples. As can be clearly observed from the Bode plots (Figure 4-13) of various conversion 

coatings and the bare alloy, the two-stage conversion coating exhibited the highest impedance values in the 

low frequency range. The impedance is a measure of the ability of a circuit to resist the flow of electrical 

current. Electrochemical impedance is measured by applying a small AC potential excitation to an 

electrochemical cell and then measuring the current through the cell. The Randles cell, consisting of a 

solution resistance Rs, a double layer capacitor Cdl, and a charge transfer Rct or polarization resistance Rp, 

is one of the most common cell models that are used to represent an electrochemical system [142]. Figure 

4-14 shows the equivalent circuit simulation of the bode plot for the two-stage conversion coating. Rc and 
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Qc represent the coating resistance and capacitance, respectively. Higher impedance in the low frequency 

range suggests a higher charge transfer or polarization resistance, and thus better corrosion resistance. 

Therefore, from the EIS point view, the two-stage conversion coating shows the best corrosion resistance.  

 
Figure 4-12 Potentiodynamic polarization curves of the bare alloy and various conversion coated samples 

 
Figure 4-13 EIS data in the form of Bode plots for the bare alloy and various conversion coated samples 
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Figure 4-14 Equivalent circuit model for the simulation of the bode plot of the two-stage conversion coating 

4.2.4 Salt spray test 

To characterize long-term corrosion performances of the coated specimens, salt spray chamber test 

according to SAE J2334 standard [140] was conducted for up to 168 hrs. By visual examination of the 

conversion coated and the bare alloy samples as shown in Figure 4-15, we observed that after 96 hours of 

test the main corrosion mode for the bare alloy specimen was general corrosion, while only some corrosion 

pits were seen on the surface of LP coated and HP coated samples. In particular, only several small corrosion 

pits were found on the surface of the two-stage conversion coated specimen after 96 hours. Furthermore, 

as the testing duration went up to 168 h, much worse general corrosion occurred on the bare alloy and 

corrosion pitting on the LP coated and HP coated coupons became more severe with an increased number 

of pits. In contrast, the corrosion of the two-stage conversion coated coupon did not deteriorate so much 

with the increasing testing time. The average corrosion pit depth for the bare alloy and various coated 

samples were presented in Figure 4-16. Again, it can be clearly seen that the two-stage conversion coating 

had the least corrosion pit depth at almost every testing time point as compared to the other two coatings. 

With dense microstructure and a larger thickness, the two-stage conversion coating is more resistant to 

breaking down caused by the penetration of corrosive species to the substrate. Interestingly, from the 

perspective of corrosion pit depth, the bare alloy seems to exhibit similar good performance to the two-

stage conversion coating. This may attribute to the uniform oxidized film formed on the surface of the bare 

alloy during the corrosion. If corrosion pits can act as a stress raiser to initiate the corrosion fatigue crack 

propagation, it seems that there may be no big difference in the corrosion fatigue crack initiation time and 

corrosion fatigue life between the bare alloy and the two-stage conversion coated alloy sample. Thus, in 

order to enhance the corrosion fatigue life of the Mg alloy, it is necessary to use a topcoat on the conversion 

coating to provide further corrosion protection. In addition, the corrosion products that covered the 

corrosion pits were analyzed using XRD and it turned out that most of them was Mg(OH)2, as seen in Figure 

4-17. Considering the chemical composition of the surface coating, this product may arise from the coating 

or the corrosion of the Mg substrate or both. No peaks for phases such as Mn3(PO4)2 or metal oxides were 

found in the XRD data of corrosion products. This may be attributed to the low content of elements P and 

Mn, as shown in Figure 4-1 (m).  
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Figure 4-15 Optical images post salt spray test of the bare alloy and various conversion coated samples: (a)(b) bare 

alloy; (c)(d) LP coating; (e)(f) HP coating; (g)(h) Two-stage coating. (a)(c)(e)(g): tested for 96 hours; (b)(d)(f)(h): 

tested for 168 hours. 

(c) (d) 

(e) (f) 

(g) (h) 

(b) (a) 
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Figure 4-16 The results of corrosion pit depth measurement for the bare alloy and various conversion coated 

samples. Coating1: LP coating; Coating2: HP coating. 

 

 
Figure 4-17 XRD diffraction pattern for the corrosion products from the AZ31B sample after salt spray testing 

4.2.5 Corrosion fatigue test 

Corrosion fatigue test results for various coated samples in 3.5% NaCl are shown in Figure 4-18. The fatigue 

test result of bare AZ31B in air was also included for comparison. It can be seen that the effects of E-coat 

and Mn-P+E-coat on the fatigue life of the Mg alloy specimens in the corrosive environment became 

increasingly evident with the decreasing stress amplitude using  the S-N curve of the bare alloy as a baseline. 

This means that the stress factor dominates the corrosion fatigue life and the effect of the corrosion factor 

is insignificant in the high stress region. While in the low stress region (below 80 MPa), corrosion plays an 

important role in determining the fatigue life of the metal. Good corrosion protection can significantly 

improve the fatigue life of the Mg alloy in the corrosive environment. Because only one valid set of data is 
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available for Mn-P coating (limitation of available samples), the effect of Mn-P coating plus E-coat cannot 

be clarified here. But it can be deduced that this two-stage conversion coating plus E-coat significantly 

improved the fatigue life of AZ31B in 3.5% NaCl solution. Lastly, it can be noted that even with the 

protection of surface coatings, the fatigue life of AZ31B in 3.5% NaCl under most of the stress levels was 

still not as good as that of the bare alloy in air. This is probably due to certain reasons such as the mismatch 

of mechanical strength and other properties between the coating and the alloy, the weak adhesion of the 

coating, and insufficient protection against corrosion in the salt solution provided by the surface coatings. 

Overall, from the results of the electrochemical tests, salt spray chamber tests, and corrosion fatigue tests, 

it can be concluded that the two-stage conversion coating process was able to provide a thick and dense 

coating for the AZ31B Mg alloy with better corrosion resistance than the coatings obtained via a single 

conversion coating process (LP coating and HP coating).  

 
Figure 4-18 Corrosion fatigue test results in 3.5% NaCl for various coated AZ31B and fatigue test data for the bare 

AZ31B specimens 

4.2.6 Summary 

A two-stage conversion coating process, namely, the treatment in a low pH solution followed by an 

immediate treatment in a high pH solution, was developed to deposit a thick and dense protective surface 

coating on Mg alloy AZ31B. Results of the SEM analysis, electrochemical testing, and salt spray chamber 

tests exhibited that the two-stage conversion coating had better corrosion performances than either of the 

two types of single-stage conversion coating (LP and HP coatings). 
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Chapter 5 Evaluation of corrosion protection methods 

One of the objectives of this research is to produce a robust coating system on the Mg alloys for corrosion 

protection [43]. A topcoat, as a part of a typical coating system, is almost always necessary to achieve a 

high-quality surface finish of Mg parts. E-coating and powder coating were both brought into this research 

to investigate their effectiveness on protection of the Mg alloys. In addition to the Mn-P conversion coating 

developed in this work, the chromate conversion coating and micro-arc oxidation (MAO) coating that were 

studied by another student Yuna Xue [146] in our group were also introduced in this chapter for assessing 

the efficacy of various corrosion protection methods for different Mg alloys. Table 5-1 listed all the 

investigated base materials and corresponding coating system. Salt spray test and scribe test were used to 

characterize their corrosion performance and SEM/EDS for the cross-section microstructure. The weight 

loss of each sample from salt spray tests was also measured. 

Table 5-1 The investigated base material and corresponding coating system for corrosion performance evaluation 

Base material Surface treatment Topcoat 

AZ31B C*1 

None E-coating 

Mn-P E-coating 

AZ80 C 

None E-coating 

Mn-P E-coating 

ZK60 EF*2 CCC Powder coating1 (P1) 

ZK60 EF MAO Powder coating2 (P2) 

AZ80 EF MAO Powder coating2 

Notes: *1 C: cast alloy, *2 EF: extrusion/forged at 250℃ 

The corrosion properties of the three investigated Mg alloys were studied by Yuna Xue [147] in our group. 

As she explained, a amount of Al content in AZ80 leads to the formation of a continuous network β‐phase 

(Mg17Al12) along the boundaries of α-matrix grains that can act as a corrosion barrier, which make it more 

corrosion resistant than AZ31. Similarly, a continuous network of β‐phase (MgZn2) is formed in the α-

matrix of ZK60, which can as well server as a corrosion shelter. Moreover, the electrode potential of MgZn2 

is higher than that of Mg17Al12, so ZK60 shows better corrosion performance than AZ80. Briefly, the 

corrosion resistance increases in the order of ZK60>AZ80>AZ31.   
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5.1 The coating system with E-coating as a topcoat 

E-coating as a topcoat is commonly used for surface finish of Mg parts in vehicles. This cost-effective 

surface technique capable of coating complex components attracted our first attention. Considering the 

availability of E-coating facilities and expertise, we sought help from a local company, MetoKote 

(Cambridge, Ontario) for applying E-coating on our Mg alloy specimens. Figure 5-1 gives an example of 

the cross-sectional microstructure of the E-coating on the MAO coated AZ31B alloy [146][148]. It can be 

evidently seen that the coating system comprised of an underlayer of MAO coating and a top E-coating. 

The thickness of the E-coating was about 27 μm.  

 
Figure 5-1 SEM image of cross-sectional microstructure of the E-coating (E-painting) on the MAO coated 

AZ31[148] 

The Mn-P conversion coating process developed on AZ31B alloy was utilized to treat AZ80 alloy [149]. 

For comparison, the base material with the E-coating alone was also tested. Figure 5-2 shows the optical 

images of the Mg alloys specimens with various coatings (AZ31B+E-coating, AZ31B+Mn-P+E-coating, 

AZ80+E-coating, and AZ80+Mn-P+E-coating) prior to and post the scribe test and  salt fog (5.0% NaCl) 

corrosion test (ASTM B117) for 7 days. The E-coating were uniformly deposited on all the substrates with 

or without Mn-P conversion coating (Figure 5-2(a-d)). However, after testing for 7 days in the salt fog, with 

corrosion initiated from both the scribe line and the edge of the samples, all the samples corroded to varying 

degrees (Figure 5-2(e-h)). The scribe line exposed the substrates underneath the protective coatings to the 

corrosive medium, thus corrosion propagated easily around the scribe line. The edges of the sample were 

also weak areas susceptible to corrosion initiation because it is difficult to obtain uniform coatings in these 

locations. Specifically, the AZ31B+E-coating specimen (Figure 5-2(e)) exhibited the most severe corrosion 

among all tested samples with most of the coating peeled off around the scribed line. This clearly indicated 

that without the surface treatment/preparation of the Mg alloy via a conversion coating the adhesive bonding 

between the AZ31B alloy and E-coating is rather weak, and thus insufficient corrosion protection is attained. 

When the Mn-P conversion coating was applied on the Mg alloy as an underlayer, the adhesion of the E-

coating to the substrate was  improved significantly and a much better corrosion resistance was seen (Figure 



66 

 

5-2(f)). The test results on AZ80 alloy (Figure 5-2(h)(g)) further confirmed the necessity of a surface pre-

treatment such as the conversion coating or MAO coating prior to the E-coating process to ensure strong 

adhesion of the topcoat and robust protection against corrosion. It is worth noting that the high surface 

roughness of the Mn-P conversion coating with shallow cracks (Figure 4-10) is beneficial for mechanical 

anchoring of the topcoat and thus would enhance the bonding the E-coat to the alloy. In addition, the 

corrosion properties of the Mg alloy substrate also play an important role in determining the corrosion 

performances of coated specimens. The coated AZ80 alloy specimens (Figure 5-2(g)(h)) apparently showed 

better corrosion performance than their corresponding AZ31B specimens with the same coating system 

(Figure 5-2(e)(f)). This is because AZ80 alloy has a much higher content of Al and thus a large amount of 

β-phase. Despite the fact that β-phase can act as s local cathode and increase the corrosion rate of the Mg 

alloy, it can also function as a corrosion barrier if the α-matrix is largely covered by the β-phase [150][151]. 

AZ80 alloy with the Mn-P conversion coating plus an E-coating showed the best corrosion performance 

among all tested specimens.  

Overall, the corrosion performances of coated Mg alloys are determined by combined effects of various 

factors including the corrosion susceptibility of the substrate, robustness and protectiveness of the surface 

coating, and the adhesion strength of the coating to the substrate. AZ80 shows high corrosion resistance 

than AZ31B alloy. The application of the Mn-P conversion coating not only provides moderate corrosion 

protection of the Mg alloy substrates, but also prepares the metal surface for strong adhesive bonding of the 

E-coating. However, the Mn-P coating does not have self-healing nature [47][67], as has the chromate 

conversion coating, which leads to easy propagation of corrosion along the coating/substrate interface once 

the coating system is damaged (i.e. scribed through). The E-coating indeed provides fairly good corrosion 

protection and satisfactory surface aesthetics, but considerable corrosion was still seen on the coated Mg 

alloys post 7-day salt fog corrosion test (Figure 5-2). Therefore, in the next stage, chromate conversion 

coating with self-healing ability and high corrosion resistant MAO coating plus the powder coating as 

topcoat were applied to the forged AZ80 and ZK60 alloys.   

                                   

(a) (b) (c) (d) 
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Figure 5-2 Optical images of coated Mg alloy coupons (a-d) prior to and (e-h) post the scribe and 7-day salt fog 

corrosion test: (a)(e) AZ31B+E-coating, (b)(f) AZ31B+Mn-P+E-coating, (c)(g) AZ80+E-coating, and (d)(h) 

AZ80+Mn-P+E-coating. 

5.2 The coating system with powder coating as a topcoat 

Figure 5-3 gives the SEM images of the cross-sectional microstructure of the CCC coated ZK60, MAO 

coated ZK60, and MAO coated AZ80 with a topcoat of powder coating (It is noteworthy to mention that 

no CCC coated AZ80 specimen is presented because the CCC processing developed for ZK60 did not work 

for AZ80 alloy). It can be clearly seen that the coating system consisting of two dense and uniform layers 

were formed on all three Mg alloys. The EDS analysis data (Figure 5-3(d)) for point 1 (CCC on ZK60) in 

Figure 5-3(a) revealed that the CCC layer was mainly composed of elements Mg, O, Cr, and Mn. Similarly, 

the elemental composition of the MAO coating investigated in this research is mainly Si, F, O, and Mg, as 

shown in the EDS analysis results (Figure 5-3(e)) of the points 2 and 3 in Figure 5-3(b)(c).  Further analysis 

for possible phases in these undercoats could be found previous literature and in Yuna Xue’s work [148].  

On the other hand, the sole EDX analysis for these undercoats are to ensure that the coat system is indeed 

composed of two layers and the undercoats (i.e. CCC and MAO) were not removed during the subsequent 

powder coating process. The average thickness of the powder coating in Figure 5-3(a), (b), (c) are 53.8μm, 

48.7μm, and 63.2μm, respectively. They are roughly two times thicker than that of the E-coating. The 

thickness of the CCC, P1, and P2 are 10.2μm, 12.8μm, and 9.0μm, respectively. 

(e) (f) (g) (h) 
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Figure 5-3 SEM images of cross-sectional microstructure of the (a) CCC coated ZK60, (b) MAO coated ZK60, and 

(c) MAO coated AZ80 with a topcoat of powder coating; and EDS results for the selected areas: (d) point 1 and (e) 

points 2 and 3. 
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Salt spray test as per SAE J2334 standard was conducted to characterize the corrosion performances of the 

three Mg alloys with different coatings. Figure 5-4 shows the optical images of the coated coupons that 

were tested for 7, 14, 21, 28, 35, 42, 63, and 77 days. At each time point, two repetitive specimens of each 

type were taken out of the salt spray chamber for observation and weight loss measurement. As can be seen 

from Figure 5-4(a1) (b1) (c1), after 7 days of salt spray test all the coated sample surfaces remained intact. 

After 14 days of salt spray, there was still no signs of corrosion on all the three alloy samples  (Figure 

5-4(a2) (b2) (c2)). As the test duration increased to 21 or even 28 days, only very limited localized corrosion 

occurred at the edges of the sample (Figure 5-4(b3) and Figure 5-4(a4)). When the test time extended to 35 

days, we could see severe corrosion occurred on one of the two repetitive samples around the hole (needed 

for hanging the coupon during powder coating process) sealed by the plasticine, while the other specimen 

did not corrode so badly (Figure 5-4(a5) (b5) (c5)). The severe corrosion was likely caused by the bad 

sealing of the plasticine and could not represent the efficacy of the protective coating. Similar results were 

also seen in the samples tested for 42 days (Figure 5-4(a6) (b6) (c6)). Due to the shortage of specimens, no 

CCC coated ZK 60 specimens were tested beyond 42 days. For the MAO coated ZK60 and AZ80 specimens 

with powder coating, almost no corrosion was seen even after 77 days of salt spray testing, especially on 

the coated AZ80 coupons (Figure 5-4(b7)(c7)(b8)(c8)). The weight loss of the Mg alloy coupons per cubic 

centimeter as a function of the exposure time to salt spray is given in Figure 5-5. Generally, all the three 

types of samples showed no weight loss within the first 21 days and then some but still pretty low weight 

loss beyond 21 days, which is consistent with the results of the visual inspections. Specifically, the highest 

weight loss for the CCC coated ZK60, MAO coated ZK60, and MAO coated AZ80 with powder coating 

was 0.64 mg/cm2 (after 35 days), 0.08 mg/cm2 (after 28 days), and 0.6 mg/cm2 (after 42 days), respectively. 

The results of the weight loss measurement indicated that the MAO coated ZK60 alloy with powder 

coating2 has the best corrosion performance.  

           

(a1) (b1) (c1) 
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Figure 5-4  Optical images of the coated samples after salt spray test for 7 days: (a1)(b1)(c1); 14 days: (a2)(b2)(c2); 

21 days: (a3)(b3)(c3); 28 days: (a4)(b4)(c4); 35 days: (a5)(b5)(c5); 42 days: (a6)(b6)(c6); 63 days: (b7)(c7); and 77 

(c6) 

(b7) (c7) 

(b8) (c8) 
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days: (b8)(c8). (a1-a6) CCC coated ZK60 with powder coating1; (b1-b8) MAO coated ZK60 with powder coating2; 

(c1-c8) MAO coated AZ80 with powder coating2. 

 

 
Figure 5-5 Weight loss as a function of exposure time for the three types of coated Mg alloy samples 

To further characterize the adhesive property and protectiveness of the powder coating, a 0.5 mm wide 

scribe line was carved in the central of each sample according to standard ASTM D1654. This method uses 

corrosion creepage perpendicular to the scribe line as a quantitative measurement of corrosion performance. 

The less corrosion creep on either side of the scribe, the higher the corrosion resistance or better corrosion 

performance. Figure 5-6 shows the optical images of the scribed coupons exposed to 5% NaCl fog (ASTM 

B117) for 7, 14, 21, 28, and 35 days. It can be clearly seen in Figure 5-6(a1) (b1) (c1) that no general 

corrosion and no rust creepage along the scribe line occurred after testing for 7 days, which is much better 

than those samples with E-coating in Figure 5-2. This can be attributed to the stronger adhesion of the 

powder coating to the CCC and MAO coating, more robust powder coating with larger thickness, as well 

as the better corrosion resistance of the forged ZK60 and AZ80 substrates. When test duration goes up to 

14 days, slight corrosion can be seen in localized areas, and the scribe line grew wider due to corrosion 

creepage (Figure 5-6(a2) (b2) (c2)). After 21 days of testing, the coated coupons started to show corrosion 

propagated much further from the scribe line while the width of the scribe line had little change (Figure 

5-6(a3) (b3) (c3)). When the test time reached 28 days, the corrosion creepage on MAO coated ZK60 and 

AZ80 coupons with powder coating expanded to much larger areas and became even worse after testing 

for 35 days. In contrast, the CCC coated ZK60 coupons with powder coating showed much less corrosion 

creepage and better corrosion performance than the other two types of coated coupons (MAO coated ZK60 

and AZ80 coupons with powder coating) at almost all test time points. This is probably related to the 
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excellent self-healing ability of CCC [67], which would prevent the penetration of the corrosive species 

and inhibit the growth of rust creepage at the scribe line. 

Overall, E-coat as a topcoat is not as effective as a powder coating in the case of the pretreated Mg alloys 

for corrosion protection. The best corrosion performance without a scribe was provided by the MAO-

powder coating system on the ZK60 alloy while CCC-powder coating system could provide the best 

corrosion performance for the ZK60 alloy with a scribe. Corrosion fatigue tests were conducted by Yuna 

Xue for various coating systems with E-coat as a topcoat. It was found that the coating systems involving 

a MAO coating showed a poor corrosion fatigue resistance because of the ceramic brittle structure. More 

corrosion fatigue tests on other coating systems with powder coating as a topcoat needs to be further 

conducted.  
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Figure 5-6 Optical images of the coated samples after the scribe and salt spray test for 7 days: (a1)(b1)(c1); 14 days: 

(a2)(b2)(c2); 21 days: (a3)(b3)(c3); 28 days: (a4)(b4)(c4); 35 days: (a5)(b5)(c5). (a1-a5) CCC coated ZK60 with 

powder coating1; (b1-b5) MAO coated ZK60 with powder coating2; (c1-c5) MAO coated AZ80 with powder 

coating2. 
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Chapter 6 Developed corrosion fatigue crack propagation model for 

metals 

Experimental study on corrosion fatigue sometimes can be significantly time-consuming and needs well-

designed experiments and specific facilities. In contrast, computational modelling can be a very convenient 

and efficient tool for understanding and simulating the corrosion fatigue behavior. Therefore, after 

identification of robust surface coating systems for the Mg alloys, the computational modelling of corrosion 

fatigue behavior of the coated Mg alloys has become the focus of the investigation. Currently, most of the 

experimental study of the corrosion fatigue of Mg alloys in literature involves rotating bending tests which 

produce data such a S-N curve and fatigue strength in certain corrosive environments. These data are not 

useful for the verification of computational model of the complex corrosion fatigue crack propagation 

behavior under different environmental and stress conditions. In fact, experimental investigation on the 

corrosion fatigue crack propagation of the coated Mg alloys is scarce. On one hand, Mg alloys are highly 

sensitive to the corrosive environment, which lead to the poor experiment reproducibility and scatter of 

experimental data. Thus, a large number of tests are required. Some tests such as the fracture toughness test 

as per ASTM standard E399-17 even require a sample thickness that is beyond the size of all available Mg 

specimens in this project. On the other hand, the existing standard testing methods are only meant for 

characterizing uncoated metal and thus new experimental procedures (i.e. new surface preparation process, 

new sample geometry, and new protocol to create pre-cracked samples etc.) are to be developed in order to 

effectively characterize the corrosion fatigue behavior of coated Mg alloys. To this end, the computational 

modelling approach was adopted and a reliable model to explain the corrosion fatigue crack propagation 

behavior of Mg alloys will be first theoretically discussed in this chapter. 

Environmentally assisted fatigue cracking, or corrosion fatigue, has been recognized as one of the major 

causes for failure of various metallic engineering materials. The synergistic effect of the corrosive 

environment and fluctuated loading can lead to early fatigue crack initiation and enhanced FCG rate, and 

thus early fracture of structures and components. Considerable efforts have been made to quantitatively 

characterize and understand the mechanisms for corrosion fatigue for prediction of service life, design, and 

fatigue strength enhancements [32, 123-124, 152]. However, because of the complexity resulted from 

interaction in the material-cyclic loading-environment system, an accurate and reliable prediction of CFCP 

life still remains as a challenge.  

6.1 The unified two-parameter driving force for corrosion fatigue crack propagation  

An overview of the current literature suggests that the CFCG rate for a given material is influenced by three 

types of variables: mechanical variables (e.g. stress intensity factor range ΔK, maximum stress intensity 

Kmax, stress ratio R, loading frequency f) [153], environmental variables (e.g. corrosive species, pH, 
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corrosion potential) [154-155], geometrical variables (e.g. crack size, crack geometry) [156]. Interactions 

between cyclic loading and environment make CFCG rate depend not only on the elastic-plastic stress-

strain state ahead of the crack tip but also on the electrochemical reactions at the crack tip [157]. As such 

CFCG involves a combination of a mechanical driving force and an electrochemical driving force.  

It is customary to take FCG in an inert environment (termed as pure fatigue) as a reference to analyze CFCG 

[158]. In the analysis of fatigue, stress intensity factor range ΔK has usually been considered as its 

mechanical driving force, obeying Paris and Erdogan [159] CGR model: 

                                                     
𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚                                                                                         6-1 

Where C and m are material constants. To account for mean stress effect, Elber [160] was amongst the first 

researchers to propose the concept of crack closure to account for load ratio effect and used the effective 

stress intensity factor range ΔKeff as the driving force for FCG： 

                                                ∆𝐾𝑒𝑓𝑓 = 𝐾𝑚𝑎𝑥 − 𝐾𝑜𝑝                                                                                 6-2 

Where Kmax and Kop correspond to the stress intensity factor calculated for the maximum load and the crack 

opening load, respectively. Then Kujawski [161][162] found that the effect of crack closure were greatly 

overestimated and a partial crack closure model should be used to address the stress ratio effect. In the 

partial crack closure model. The effective stress intensity range was modified to: 

∆𝐾𝑒𝑓𝑓 = 𝐾𝑚𝑎𝑥 − 𝐾𝑜𝑝 [1 + (
2

𝜋
− 1)𝑔]                                                       6-3 

𝑔 = 𝑒𝑥𝑝⁡[1 −
𝐾𝑚𝑎𝑥

𝐾𝑚𝑎𝑥,𝑡ℎ
]                                                                                 6-4 

Where 𝐾𝑚𝑎𝑥,𝑡ℎ is the maximum stress intensity factor at threshold for a given R-ratio. However, many 

evidences suggested that this is not an easily applicable method and it required some experimental 

calibrations [162-165]. For example, the crack opening stress highly depends on the measurement location 

relative to crack tip and technique employed. Despite the fact that these crack-closure-based models can 

explain phenomenon such as crack growth delays and arrests after overloads, the load ratio effect, or the 

variable amplitude effect, there are still challenges in their applications [166-169]. On the other hand, other 

researchers have argued that the crack closure has limited effect on the fatigue crack propagation process 

since the closure takes place behind the crack tip [170-171]. Walker [172] proposed an effective stress 

involving the applied stress amplitude, Δ𝜎, and the maximum applied stress, σmax, to predict the load ratio 

effect on fatigue crack propagation and fatigue life. 

                                                     𝜎̅ = ∆𝜎𝑝𝜎𝑚𝑎𝑥
1−𝑝

                                                                                        6-5 
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The above equation can be modified to the following form of effective stress intensity factor 𝐾: 

                                                     𝐾̅ = ∆𝐾𝑝𝐾𝑚𝑎𝑥
1−𝑝

                                                                                       6-6 

Where 0≤p≤1 is considered as a material parameter and it may depend on material and environment. Daniel 

Kujawski [166] proposed a similar equation to equation (6-6) but only considering the tensile part in one 

load cycle.  

 
𝑑𝑎

𝑑𝑁
= 𝐶((∆𝐾+)1−𝑝𝐾𝑚𝑎𝑥

𝑝
)𝑚                                                                    6-7 

The significance of Kmax on fatigue crack propagation was introduced by Sadananda [173] using a 

dislocation model. Furthermore, a unified approach  was proposed by considering both ΔK and Kmax as the 

driving forces along with their corresponding thresholds ΔKth and Kmax,th which must be exceeded 

simultaneously for FCG to occur [174-177]. It was reported that this unified approach was able to correlate 

fairly well the FCG under threshold condition and at the low and intermediate stress intensities for stress 

ratios ranging from -1.0 to 1.0 [166, 174-177].  

The two-parameter driving force approach has been further extended to describe the environment assisted 

FCG [177]. The basis for this extension is best described by the diagram shown in Figure 6-1. The diagram 

shows how the changes in each of the two parameters influences the FCG rate. As depicted by the figure, 

every L-shaped curve represents one FCG rate in terms of ΔK and Kmax on both pure fatigue and corrosion 

fatigue condition. There are limiting threshold values for each of the parameters: ΔK* and Kmax
∗ , for each 

crack growth rate. Lower limiting values are generally needed to reach the same crack growth rate for 

corrosion fatigue in comparison with the pure fatigue, which shows the detrimental effect of environment 

on FCG behavior. The figure also shows that the parameter ΔK predominantly contributes to the pure cyclic 

damage that is associated with dislocation reversibility [179]. The reduction in ΔK* is therefore attributed 

to the degree of restricted slip reversibility controlled by the influence of environment reactions on the 

emergent slip steps [180]. Correspondingly, Kmax is the governing parameter in the static damage due to 

environment. The reduction in Kmax
∗  is because the maximum applied force required to break atomic bonds 

is lowered due to environment interactions [181]. Therefore, while the electrochemical driving force 

contributed from environment cannot be directly quantified, the effect of environment on FCG can be 

expressed through Kmax. A Unigrow model proposed by Glinka et al. [182][183] supports this idea. This 

model is based on a physical analysis of the elastic-plastic stress-strain history at the crack tip and thus 

gives a basic understanding of fatigue crack initiation and growth. More importantly, the obtained FCG 

expression was rather analogous to the previous two parameter driving force approach and could be also 

expanded to deal with CFCP. However, this model cannot account for the obvious frequency/time involved 

in CFCG. 
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Figure 6-1 The ΔK-Kmax plot for the pure fatigue and the corrosion effect on fatigue behavior [154] 

In this chapter, we propose a CFCP model based on the process interaction between FCG and SCC and the 

two-parameter driving force while accounting for the load ratio and frequency effects. Groups of FCG rate 

in vacuum, SCC velocity in 3.5 wt % NaCl solution, and CFCG rate in 3.5 wt % NaCl solution collected 

from several metallic materials will then be used to verify the effectiveness of this model. 

6.2 Proposed Model  

6.2.1 Corrosion fatigue crack propagation mechanisms 

It is generally accepted that micro-cracks are nucleated from soft slip bands induced by cyclic loading [184]. 

The crack then propagates as a consequence of alternate plastic blunting in the loading part of the fatigue 

cycle followed by re-sharpening of the crack tip in the unloading part, as suggested by Laird [185]. In the 

aggressive environment, however, chemical reactions at the crack tip further complicates the mechanism 

of FCG. Two mainstream mechanisms on which a number of CFCG models were established have been 

brought forward to account for the accelerated crack growth. These are stress-assisted anodic dissolution 

(SAD) and hydrogen embrittlement (HE). For example, Wang [186] proposed a fracture model to predict 

CFCP was based on SAD mechanism. This model assumes that crack growth increment in every load cycle 

comprises two parts: one caused by mechanical damage and the other one due to corrosion dissolution of a 

metal at the crack tip. While the effect of HE on crack growth was acknowledged, but it was not considered 

in model [187]. In a superposition-based model Kim and Manning [127] used HE together with mechanical 

force to establish their crack propagation model. In their model, it is assumed that Hydrogen atoms produced 

by chemical reactions diffuse into the bulk material and accumulate at inhomogeneity ahead of the crack 

tip zone. The crack is then advance at an arbitrary hydrogen penetration distance when the accumulated 
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damage reaches a critical value. However, it appears that there is no firm agreement evidence on which 

mechanism played a more dominant role in CFCG in any material-environment combinations [32][187]. 

Nevertheless, it can be reasonably hypothesized that the corrosive environment accelerates FCG by both 

SAD and HE mechanisms while their contribution varies in different material-environment system. 

Based on above discussion and and Laird’s plastic blunting-re-sharpening process [185], we propose a new 

model for CFCG. The fundamentals of this model are layed out in Figure 6-2. Several characteristic points 

on the loading and unloading reversals in one load cycle of stress- time curve is considered in Figure 6-2 

(i) are selected to elucidate the CFCG. For comparison purposes, crack advancement due to a pure SCC 

Figure 6-2 (ii) and a pure fatigue Figure 6-2 (iii) in one load cycle are presented as well.  

At the starting point a when no or small loads are applied to the crack body, the crack tip radius is small. 

As stress increases to point b, a large number of slips are activated which result in the separation of the 

material and the blunting of the crack tip. During this stage, hydrogen atoms produced by chemical reactions 

diffuse into the material and pile up to replace metal atoms ahead of the crack tip. This can reduce the 

cohesive strength and the surface energy required to create new crack surfaces [29][188], thereby 

accelerating the blunting process by HE.  Noting that the parameter m in equation (6-1) indicates the 

resistance of the material to fatigue crack, a parameter θ (Eq. 6-9) is proposed in the new model to represent 

the deleterious effect of corrosion on the material properties. SCC does not occur at this stage because the 

stress level does not exceed the critical value KISCC [189].  

When stress increases from point b to point c, the crack continuously advances, and the crack tip radius 

becomes larger. At this time, SAD starts joining with fatigue to contribute to the CFCP. Moreover, SAD at 

the crack tip leads to higher stress concentration [190], i.e. higher actual stress intensity at the crack tip. 

This was experimentally supported by smaller crack tip blunting angle in the corrosive environment 

compared to those in the air and/or in vacuum [191]. The effect of SAD on FCG, in the proposed new 

model, is represented by the enhanced actual stress intensities which is modified by proposed parameter β 

(Eq. 6-9) in the proposed model.  

After point c above which SCC velocity remains constant, the fatigue crack propagates faster, and the crack 

tip radius further increases until stress reaches point d. When it comes to the unloading part, the slip 

direction is reversed, making the newly created crack faces crushed into the plane of crack and regenerate 

a sharp crack again. Simultaneously, stress-assisted dissolution occurring at the tip of the blunted crack 

makes the crack tip much sharper, which accelerates the re-sharpening process as well. Therefore, although 

the crack does not propagate mechanically in the unloading part, SCC still helps advance the crack until the 

stress level is decreased to point f (similar to point b) below which SCC does not occur. As a result, the 

total crack increment per cycle will be consisted of two parts:  
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                                               ∆𝑎𝑡𝑜𝑡 = ∆𝑎𝑐𝑓 + ∆𝑎𝑆𝐶𝐶𝑓                                                                              6-8 

Where ∆𝑎𝑐𝑓 is the crack advancement per cycle from fatigue assisted by corrosion, and ∆𝑎𝑆𝐶𝐶𝑓  is the crack 

increment per cycle from SCC assisted by cyclic load. 
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(i) Characteristic points on loading and unloading reversals of a typical load cycle  

 
(ii) Crack advancement due to pure SCC occurring in one load cycle 

 
(iii) Crack advancement due to pure fatigue in one load cycle 

 
(iv) Crack advancement due to corrosion fatigue in one load cycle 

Figure 6-2 CFCP mechanism 
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6.2.2 Description of the proposed model 

The role of SCC in every load cycle on the whole CFCP has been explicitly characterized in the light of 

different crack growth stages as indicated in Figure 6-2. A two parameter driving force, ΔK and Kmax, 

inspired by earlier models [166][182], is used to describe the CFCP. In other words, CFCP rate can be 

expressed as a function of ΔK and Kmax, as oppose to the only driving force ΔK considered in Paris’ equation 

for FCG [158]. The role of corrosion on CFCG is two-fold: direct contribution through SCC; and indirect 

contribution by accelerating FCG through material properties degradation. Therefore, a three-stage CFCG 

is proposed as follows and as depicted by Figure 6-3:  

Stage I: before βKmax<KISCC (Figure 6-3 (a) for t<to) below which SCC does not occur. In this stage fatigue 

is the only contributor to CFCG. However, due to the presence of corrosive environment, the FCG relation 

is modified by corrosion, as illustrated by region I in Figure 6-3(b), to the following relation:  

                                 (
da

dN
)cf= Cf(β × Kmax

1−p × ∆Kp)𝜃𝑚𝑓                                                                         6-9 

Where β and θ are parameters representing the effect of corrosion on the crack tip driving force and on the 

material property mf in FCG, respectively. Cf and mf are material constants in FCG, and p is in Walker’s 

parameter accounting for stress ratio [172].  

Stage II: when KISCC≤βKmax<Kpl (Figure 6-3(a) for to<t<t1), SCC starts joining FCG to contribute to the 

CFCG, as shown by the region II in Figure 6-3(b): 

              (
𝑑𝑎

𝑑𝑁
)𝑐𝑓= Cf(βKmax

1−p∆Kp)𝜃𝑚𝑓+2∫ 𝐶𝑠𝑐𝑐(𝛽𝐾)𝑛𝑑𝑡
1
𝑓⁄

𝑡0
                                                              6-10 

Where t0 is set to the time when βKmax starts exceeding KISCC in one load cycle(Figure 6-3a). 𝐶𝑠𝑐𝑐 and n are 

material constants associated with SCC.  

Stage III: when βKmax ≥Kpl (Figure 6-3(a) for t>t1) above which SCC velocity is independent of stress 

intensity. The effect of corrosion on the driving force disappears while the influence of corrosion on 

degradation of material properties remains, as illustrated by the region III in Figure 6-3(b): 

            (
𝑑𝑎

𝑑𝑁
)𝑐𝑓= Cf(βKmax

1−p∆Kp)𝜃𝑚𝑓+2∫ 𝐶𝑠𝑐𝑐(𝛽𝐾)𝑛𝑑𝑡
𝑡1
𝑡0

+ 2∫ 𝑣𝑝𝑙𝑑𝑡
1
𝑓⁄

𝑡1
                                          6-11 

Where t1 is set to the time when βKmax starts exceeding Kpl in one load cycle (Figure 6-3(a)). 𝑣𝑝𝑙 is the 

constant SCC velocity in the plateau region III shown in Figure 6-3(b). 
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Figure 6-3 Description of CFCP model: (a) applied load history (stress intensity factor K); (b) the SCC velocity vs K 

curve; (c) the FCG rate in inert and corrosive environment vs ΔK curves. 

6.2.3 Determination of correlation parameters in the proposed model 

Apart from the usual constant employed in FCG: Cf, mf, and p readily calculated through the curve fitting 

of FCG data in an inert environment [166]; and SCC parameters: CSCC and n obtained by a similar 

experimental curve fitting using SCC data [169]; there are four other parameters introduced by proposed 

model: correlation parameters β and θ, and time constants t0 and t1. Determination of these four parameters 

β, θ, t0 and t1 alongside Walker’s parameter p are discussed in the followings. 

6.2.3.1 Determination of p  

For one arbitrary FCG rate at different R-ratios in an inert environment such as vacuum, the effective 

driving force ( Kmax
1−𝑝∆K𝑝) should be the same [169]. As an example and for the case of AISI 4340 steel 

[192], FCG rates at two R-ratios of R1=0.1 and R2=0.9 against stress intensity range are shown in Figure 

6-4. By drawing a random horizontal line that intersects these two curves, one gets two points that have the 

same crack growth rate but with different stress intensity ranges (Figure 6-4). Therefore,  

(a) 

(b) (c) 
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                                            𝐾𝑚𝑎𝑥1
1−𝑝

∆𝐾1
𝑝
= 𝐾𝑚𝑎𝑥2

1−𝑝
∆𝐾2

𝑝
                                                                             6-12 

Using the relation ∆K = (1 − R)Kmax,  a typical value for pi can be obtain from the following relation: 

                                                 𝑝𝑖 = 1 −
𝑙𝑜𝑔

∆𝐾1
∆𝐾2

𝑙𝑜𝑔
1−𝑅1
1−𝑅2

                                                                                       6-13 

By repeating this process, a series of p values can be obtained and hence an average value can be finally 

determined as p=
∑ 𝑝𝑖
𝑞
𝑖=1

𝑞
⁡,⁡q is the number of trials.  

 

 
Figure 6-4 FCGR for AISI 4340 at R=0.1 and R=0.9 [188]. Example used to show determination of the parameter p. 

6.2.3.2 Determination of time constants t0, t1  

To illustrate the determination of time constant t0 and t1, let’s consider an example of a load history K vs t 

given by a sinusoidal function that can be expressed as: 

                                 𝐾 =
𝐾𝑚𝑎𝑥+𝐾𝑚𝑖𝑛

2
+

∆𝐾

2
𝑠𝑖𝑛 (2𝜋𝑓𝑡 −

𝜋

2
)                                                                      6-14 

Where f is the cyclic frequency. Setting K to KISCC into the above equation and solving for t, t0 can be 

obtained (Figure 6-3(a)): 

                                𝑡0 = [
𝜋

2
+ 𝑎𝑟𝑐𝑠𝑖𝑛 (

2𝐾𝐼𝑆𝐶𝐶

𝛽∆𝐾
−

1+𝑅

1−𝑅
)] /(2𝜋𝑓)                                                                6-15 

Similarly, t1 is determined by setting K in equation (6-14) to 𝐾𝑝𝑙: 

                               𝑡1 = [
𝜋

2
+ 𝑎𝑟𝑐𝑠𝑖𝑛 (

2𝐾𝑝𝑙

𝛽∆𝐾
−

1+𝑅

1−𝑅
)] /(2𝜋𝑓)                                                                   6-16 
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6.2.3.3 Determination of correlation parameters β, θ 

Parameters β and θ are obtained in an iterative manner. One set of corrosion fatigue experimental results is 

required. First a value of 1.00 is set to β and θ (i.e., no corrosion effect) in equations (6-9) for region I 

(similar procedure is repeated for regions II and III) to come up with a predicted FCGR (da/dN) pre in 

region I. This value is the compare to the actual corrosion fatigue results to calculate the standard error:  

                                               Standard error =
√∑  (

𝑑𝑎

𝑑𝑁𝑝𝑟𝑒
−
𝑑𝑎

𝑑𝑁𝑎𝑐𝑡𝑢𝑎𝑙
)2

𝜂
                       6-17 

Where 𝜂 is the number of data points selected for standard error calculation. Using a desirable increment 

(e.g., 0.01), the new values of β, θ are used in equation (6-9) to obtain a new standard error. Specifically, 

we first fix the value of θ to 1.00, and then substitute different set values of β, increasing from 1.00 to 2.00 

with an increment step of 0.01 (i.e. plug (θ, β) values of (1.00, 1.00), (1.00, 1.01), (1.00, 1.02), …. (1.00, 

2.00),) into equations (6-9) to (6-16). A series of predicted CFCG rates for each pair of (β, θ) are obtained 

and then used to calculate the ‘standard error’ using equation (6-17). Then this process is repeated with 

different θ values varying from 1.00 to 2.00 with an increment step of 0.01. This procedure is continued 

until the standard error become less than a designated convergence value (e.g., 10-3). 

In general, β and θ are both in the range of 1 to 2, therefore the values are obtained relatively quickly. The 

parameter β and θ in each region may be different and they mainly depend on the material-environment 

system.  

6.3 Numerical examples for verification of the proposed model 

FCG data in vacuum and corresponding SCC data for five different alloys are used to validate the proposed 

CFCG model. These examples include alloys most commonly used as structures. They include two types 

of 4340 steel with different yield strength, 300M steel, Titanium alloy Ti-6Al-4V and Aluminum alloy 

7075-T651. In what follows, the same parameter β and θ are used for each stage of CFCP. 

6.3.1 CFCG prediction in AISI 4340 steel (𝜎𝑦 = 1503𝑀𝑃𝑎) 

The fatigue data in vacuum for AISI 4340 steel (σy = 1503MPa) was taken from [192] and the corrosion 

fatigue data and SCC data in 3.5% NaCl were taken from Ref [193]. Corrosion fatigue tests were conducted 

at a loading frequency 10Hz and at stress ratios 0.1 and 0.5. Figure 6-5 shows the test results and the 

corresponding predictive results using the proposed model as a function of the applied stress intensity range. 

At stress ratio R=0.1, as can be seen in Figure 6-5(a), the proposed model prediction shows fairly good 

agreement with experimental results, especially at high stress intensity ranges. Moreover, for R=0.5, the 

proposed model almost precisely predicts the actual CFCG rates. The parameter β and θ in the proposed 
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model for this steel in 3.5%NaCl were found to be 1.15 and 1.17, respectively. All the values of other 

parameters are presented in Table 6-1. 

 

  
Figure 6-5Experimental CFCG rates of AISI 4340 steel (𝜎𝑦 = 1503𝑀𝑃𝑎) in 3.5% NaCl [193] and model prediction 

Table 6-1 Values of the fitted experimental parameters in the corrosion fatigue model for each material 

Material 

Cf 

(m/cycle)/(MPa·

√𝑚)m
f 

mf p 
CSCC 

(m/s)/(MPa·√𝑚)n 
n β θ 

AISI 4340 steel  

(𝜎𝑦 = 1503𝑀𝑃𝑎) 
10-13.70 4.60 

p=0.027*ΔKeff+ 

0.0765 
10-30.33 17.45 1.15 1.17 

AISI 4340 steel  

(𝜎𝑦 = 1669𝑀𝑃𝑎) 
10-13.70 4.60 

p=0.027*ΔKeff+ 

0.0765 
10-8.82 9.21 1.5 1.05 

300M steel 10-12.55 3.83 - 10-48.92 32.36 1.2 1.07 

Ti-6Al-4V 10-11.74 3.65 0.294 10-20 8.78 1.05 1.21 

7075-T651 10-13.74 6.17 - 10-11.9 2.75 1.12 1.01 

6.3.2 CFCG prediction in 4340 steel (𝜎𝑦 = 1669𝑀𝑃𝑎) 

The fatigue data in vacuum and in 3.5% NaCl for 4340 steel (σy = 1669MPa) and SCC data in 3.5% NaCl 

were all collected from in Ref [192]. In this case, corrosion fatigue tests were performed with a frequency 

of 10 Hz at stress ratios 0.1 and 0.9 in 3.5% NaCl solution. Figure 6-6 shows the test CFCG rates and the 

corresponding predictive results using the proposed model as a function of the applied stress intensity range 

∆K. Similarly, when R=0.1, the proposed model gives very good consistent results with the observed CFCG 

rate. In the case of R=0.9, good predictive results were also obtained by the proposed model except for 

slight discrepancies at the low ∆K, comparing with the actual CFCG rate. The values of the fitted parameters 

in the proposed model for the 4340 steel (σy = 1669MPa) in 3.5%NaCl are presented in Table 6-1. 
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Figure 6-6 Experimental CFCG rates of AISI 4340 steel (𝜎𝑦 = 1669𝑀𝑃𝑎) in 3.5% NaCl [189] and model 

prediction 

6.3.3 CFCG prediction in 300M steel 

The fatigue data in vacuum and in 3.5% NaCl and SCC data in 3.5% NaCl for 300M steel used for validation 

of the proposed model were also collected from in Ref [192]. Similarly, corrosion fatigue tests were 

performed with a frequency of 10 Hz at stress ratios 0.1 and 0.9 in 3.5% NaCl environment. Figure 6-7 

shows the test CFCG rates and the corresponding predictive results using the proposed model as a function 

of the applied stress intensity range ∆K. At both two stress ratios, the proposed model gives fairly good 

correlations to the experimental data except that the underestimation of CFCG rates at relatively low applied 

stress intensity ranges. This may be due to the use of the same parameter β and θ in three regions. The 

values of the fitted parameters in the proposed model for 300M steel in 3.5%NaCl are presented in Table 

6-1. 

  
Figure 6-7 Experimental CFCG rates of 300M steel in 3.5% NaCl [192] and model prediction 
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6.3.4 CFCG prediction in Titanium alloy Ti-6Al-4V 

The fatigue data in vacuum and in 3.5% NaCl and SCC data in 3.5% NaCl for Titanium alloy Ti-6Al-4V 

used for validation of the proposed model were obtained from in Ref [194]. Corrosion fatigue tests were 

performed with a stress ratio of 0.1 at frequencies 1Hz, 5Hz and 10Hz in 3.5% NaCl environment. Figure 

6-8 shows the test CFCG rates and the corresponding predictive results using the proposed model as a 

function of the applied stress intensity range ∆K. When frequency f=1 Hz, the proposed model appears to 

be applicable at high stress intensity ranges. When f=5Hz and 10Hz, the proposed model shows fairly good 

agreement with the test data. Besides, the inappropriate use of the same β and θ in three regions can be 

clearly seen from the proposed model predictions in the case of f=5Hz and 10Hz. The values of the fitted 

parameters in the proposed model for Titanium alloy Ti-6Al-4V in 3.5%NaCl are presented in Table 6-1. 

  

 
Figure 6-8 Experimental CFCG rates of Titanium alloy Ti-6Al-4V in 3.5% NaCl [194] and model prediction 

6.3.5 CFCG prediction in Al alloy 7075-T651 

The fatigue data in vacuum and in 3.5% NaCl and SCC data in 3.5% NaCl for Al alloy 7075-T651used for 

validation of the proposed model came from the Ref [195-196]. Corrosion fatigue tests were performed 
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with a frequency of 10Hz at stress ratios 0.1 and 0.5 in 3.5% NaCl environment. Figure 6-9 shows the test 

CFCG rates and the corresponding predictive results using the proposed model as a function of the applied 

stress intensity range ∆K. In this alloy, the proposed model did not effectively provide the good predictions 

except for the high level of ∆K.  The use of the same β and θ in three regions and low SCC velocities may 

be the reason for the underestimation. The values of the fitted parameters in the proposed model for Al 

alloy 7075-T651 in 3.5%NaCl are presented in Table 6-1.  

 
Figure 6-9 Experimental CFCG rates of Aluminum alloy 7075-T651 in 3.5% NaCl [195] and model prediction 

6.4 Discussion 

Two interacting processes including pure fatigue and SCC are assumed to happen simultaneously in the 

fatigue crack propagation of a metal in aqueous environments. In this model the interaction effect is 

considered by taking the FCG rate in an inert environment as a reference, the environmental contribution 

to the fatigue crack propagation rate is considered in terms of both changes in the crack tip driving force 

and the crack growth rate for a given applied stress, as expressed by equations (6-9) to (6-11). In this model, 

the two-parameter driving force approach was used to describe the environment-assisted FCG. It can be 

seen that the equation (6-9) is indeed expressed in terms of the driving forces ΔK and Kmax. Since the 

characteristic time t0 and t1 in the second term of equation (6-10) and (6-11) are able to be represented by 

ΔK and Kmax, the equation (6-10) and (6-11) can be converted into expressions (6-18) and (6-19) below in 

terms of ΔK and Kmax as well, which again supported the basic assumption of the two parameter driving 

force approach. 

         (
𝑑𝑎

𝑑𝑁
)𝑐𝑓 = 𝐶𝑓(𝛽𝐾𝑚𝑎𝑥

1−𝑝
∆𝐾𝑃)𝜃𝑚𝑓 + 2∫

CSCC

πf∆K

(βK)n

√1−(
2K−Kmax−Kmin

∆K
)2
𝑑𝐾

1/𝑓

[
𝜋

2
+arcsin(

2KISCC
β∆K

−
1+R

1−R
)]/(2πf)

          6-18      
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(
𝑑𝑎

𝑑𝑁
)𝑐𝑓 = 𝐶𝑓(𝛽𝐾𝑚𝑎𝑥

1−𝑝
∆𝐾𝑃)𝜃𝑚𝑓 + 2∫

CSCC

πf∆K

(βK)n

√1−(
2K−Kmax−Kmin

∆K
)2
𝑑𝐾

[
𝜋

2
+𝑎𝑟𝑐𝑠𝑖𝑛(

2𝐾𝑝𝑙

𝛽∆𝐾
−
1+𝑅

1−𝑅
)]/(2𝜋𝑓)

[
𝜋

2
+arcsin(

2KISCC
β∆K

−
1+R

1−R
)]/(2πf)

+

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡2 ∫
𝑣𝑝𝑙

πf∆K

1

√1−(
2K−Kmax−Kmin

∆K
)2
𝑑𝐾

1/𝑓

[
𝜋

2
+𝑎𝑟𝑐𝑠𝑖𝑛(

2𝐾𝑝𝑙

𝛽∆𝐾
−
1+𝑅

1−𝑅
)]/(2𝜋𝑓)

                                                6-19 

One of the most important capabilities of CFCG models is the ability to account for the characteristic 

phenomenon of environment-assisted FCG such as frequency and R-ratio effects [197][198]. The proposed 

new model is not only able to incorporate the influence of load ratio using the two-parameter approach, but 

it can also account for the frequency effect through the integration of crack velocity in every load cycle. 

Moreover, the effect of waveform on CFCG [199] can be considered as well in this model since SCC 

velocity varies with stress intensity factor and is integrated stage-by-stage, as can be seen in equation (6-

10) and (6-11). 

The correlation parameter β introduced into the model represents the effect of stress corrosion on the crack 

tip driving force for FCG. The crack tip driving force was enhanced by stress-assisted dissolution and thus 

increases the FCG rate, which generally makes the value of parameter β greater than 1.0, or empirically in 

the range of 1.0 to 2.0. It should be noted that all the discussion here are based on fatigue crack propagation 

in an inert environment. On the other hand, parameter θ is characterizing the degraded material property by 

the corrosive environment. The exponent mf represents the ability of a metal to resist fatigue crack 

propagation, the lower its value, the higher its resistant ability. Therefore, the value of θ should be greater 

than 1.0 in the corrosive environment. The magnitude of both parameters β and θ actually depends on the 

susceptibility of the metallic material to the corrosive environment. For example, the effect of environment 

on FCG rate was reduced, as can be found from the nearly overlapped da/dN vs ΔK curves in the corrosive 

environment and in air at high stress intensities [192]. This means that the parameter β or θ may vary in 

different stages of CFCP. Also, as we can see from the verification results above, the predictions of the 

proposed model near thresholds are mostly below the test data. One of the reasons may lie in the use of 

same values of the parameter β and θ in the three different regions. Another reason is that we neglect the 

role of short crack propagation at the very early stage of the whole crack growth in the proposed model 

since this process is very short for Mg alloys but that’s probably not the case for other engineering metals.   

The threshold stress intensity range ΔKth for FCG and the threshold stress intensity KISCC for SCC are key 

parameters for material design. ΔKth is normally defined as the critical value below which there is no fatigue 

crack advancement. In practical condition, however, it is mostly obtained when the FCG rate exceeds          

10-10m/cycle [199]. Many experiments have demonstrated that ΔKth values are generally higher in vacuum 

than in the corrosive environment [192][193]. The formulation for the proposed model also follows this 
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observation. At threshold point, we know that CFCG rate (10-10m/cycle in this case) can be basically 

determined by below equation:  

                                10−10 =Cf(𝛽∆𝐾𝑡ℎ,𝑐𝑜𝑟𝑟𝑜
𝑝

Kmax
1−p)𝜃𝑚𝑓                                                                      6-20 

Assuming that the FCG rate at threshold point in an inert environment can be determined by Paris equation, 

                                10−10 =Cf(∆𝐾𝑡ℎ,𝑖𝑛𝑒𝑟𝑡)
𝑚𝑓                                                                                          6-21 

Where ∆𝐾𝑡ℎ,𝑐𝑜𝑟𝑟𝑜 is the threshold stress intensity range in the corrosive environment and ∆𝐾𝑡ℎ,𝑖𝑛𝑒𝑟𝑡 is the 

threshold value in an inert environment. Combing equation (6-20) and equation (6-21) yields 

                          (𝛽∆𝐾𝑡ℎ−𝑐𝑜𝑟𝑟𝑜
𝑝

Kmax
1−p)𝜃𝑚𝑓 = (∆𝐾𝑡ℎ−𝑖𝑛𝑒𝑟𝑡)

𝑚𝑓                                                              6-22 

Noting that 𝐾𝑚𝑎𝑥 = 
∆𝐾

1−𝑅
, we have 

               ∆𝐾𝑡ℎ−𝑐𝑜𝑟𝑟𝑜 =
∆𝐾

𝑡ℎ−𝑖𝑛𝑒𝑟𝑡

1
𝜃 (1−𝑅)1−𝑝

𝛽
  or  

∆𝐾𝑡ℎ−𝑐𝑜𝑟𝑟𝑜

∆𝐾𝑡ℎ−𝑖𝑛𝑒𝑟𝑡
=

∆𝐾
𝑡ℎ−𝑖𝑛𝑒𝑟𝑡

1
𝜃
−1

(1−𝑅)1−𝑝

𝛽
                                         6-23 

Because the parameter β>1, (1 − 𝑅)1−𝑝˂1 and ∆𝐾
𝑡ℎ−𝑖𝑛𝑒𝑟𝑡

1

𝜃
−1

˂1, we have  

                                    ∆𝐾𝑡ℎ,𝑐𝑜𝑟𝑟𝑜<⁡∆𝐾𝑡ℎ,𝑖𝑛𝑒𝑟𝑡⁡                                                                                           6-24 

Therefore, we can conclude that based on the proposed model fatigue crack propagation occurs earlier in 

the corrosive environment than in an inert environment. The same analysis may be also applied to the KISCC. 

Crack velocity and threshold stress KISCC in SCC are highly sensitive to the effective strain rate at the crack 

tip [201]. Limited attention has been paid to the effect of cyclic loading on the KISCC. However, in the 

proposed model this effect is accounted for and it is apparent that a lower threshold stress 
𝐾𝐼𝑆𝐶𝐶

𝛽⁄  , termed 

as the effective threshold Keff-ISCC, is needed to initiate SCC.   

6.4.1 Comparison with classical CFCG models 

Figure 6-10 gives a comparison of the proposed model (for the case of 4340 steel example above with 

results shown in Figure 6-5) with two other classical models, superposition and competition models, with 

experiment results from Ref [193]. The experimental data was obtained from a fatigue test for 4340 steel 

in 3.5% NaCl solution at an R-ratio of 0.1 and a frequency of 10 Hz. It is clearly seen that the superposition 

model, the competition model, and the proposed model can all correlate well with the experimental results 

at high stress intensities, specifically after ΔK exceed the threshold value (around 10 MPa·√m) for the 

occurrence of SCC. This is because CFCG rates predicted in this range in all three models were contributed 

by the dominant SCC rate. The small difference in these predictions at high stress intensities is due to the 
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different considerations of SCC. For example, the competition model uses (
𝑑𝑎

𝑑𝑁
)𝑐𝑓=(da/dN)SCC at this stage 

while in the proposed model (
𝑑𝑎

𝑑𝑁
)𝑐𝑓 is expressed in terms of 𝛽𝑛(

da

dN
)𝑆𝐶𝐶 in equation (6-10). At low stress 

intensities, the competition model and the superposition model give the same predictive results, which show 

good correlations with experimental data for the earlier part. However, these two classical models both 

overestimated the threshold stress intensity range ΔKth for fatigue crack propagation. In contrast, the 

proposed model gives a very good prediction in the ΔKth and the trend of (
𝑑𝑎

𝑑𝑁
)𝑐𝑓⁡vs ΔK curve but slightly 

underestimates the CFCG rates at this stage. Before KISCC where SCC does not occur, the superposition 

model and the competition model use the FCG rate in air to represent the CFCG rate here. As a result, the 

ΔKth is overestimated. The corrosive environment seems to show no big influence on the FCG rate in 

comparison with the FCG rate in air as shown in Ref [128], thus these two classical CFCG models give 

good predictions in the linear regions. However, in the proposed model, CFCG rates at low stress intensities 

are determined from the reference data of FCG rate in an inert environment. This indeed will lead to some 

underestimations if the effect of corrosion on FCG rates is not considered. On the other hand, the 

phenomenon of short crack behavior [202] at the very beginning of crack propagation can also increase the 

inaccuracies and complexities of modeling on CFCP. The proposed model is based on the linear elastic 

fracture mechanism (LEFM) theory, which does not apply to short crack behavior as the size of the crack 

is comparable to the plastic zone.  

 
Figure 6-10 Experimental results and CFCG rates predicted by the proposed model and three other models 
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Chapter 7 Conclusions, Contributions, and Future work 

7.1 Conclusions 

This thesis investigated the surface coating for corrosion protection of Mg alloys and proposed a corrosion 

fatigue crack propagation model to predict the corrosion fatigue crack growth rate. Through this research, 

the following conclusions were drawn at the end of each chapter and are reiterated below: 

• The effects of conversion process parameters on the coating microstructure and corrosion 

performance were examined: i) The coating grew thicker and more corrosion resistant with the 

increasing immersion time, but when the treatment time was too long, the corrosion resistance of 

the coated samples would decrease due to the appearance of large cracks in the coating; ii) a thick 

Mn-P coating can be formed on the surface of Mg alloy AZ31B in a very short duration if treated 

in a low-pH bath (below 2.0) while it requires much more time to produce a relatively thick coating 

layer if treated in a high-pH bath (above 3.0).  The coating obtained in a low-pH bath tends to has 

wide cracks and low compactness while the coating built in a high-pH bath tends to be dense and 

has no significant cracks; iii) Increasing the bath temperature is able to enhance the coating 

thickness, but serious cracks were also gradually induced in the coating with the rising temperature.   

• A two-stage conversion process was developed based on the examination of the effects of 

conversion process parameters. The two-stage conversion process includes a treatment in a low pH 

solution and then an immediate treatment in a high pH solution; A thick and dense protective 

surface coating was found to be deposited on the surface of Mg alloy AZ31B. Experimental results 

showed that the two-stage conversion coating exhibited better corrosion performances than either 

of the single conversion coatings.  

• E-coat and powder coating were used as a topcoat for various coated Mg alloys. The Mn-P 

conversion coating improved not only the corrosion resistance of Mg alloys, but the adhesion 

between the substrate and E-coating; Powder coating shows better corrosion performance than E-

coating; MAO coated ZK60 with powder coating showed the best corrosion performance among 

all the investigated coat system; The CCC coated ZK60 shows better performance in the scribe test 

due to the self-healing ability of CCC; The ability of coated Mg alloys to resist against general 

corrosion largely depends on the corrosion susceptibility of the substrate, surface coating strategies, 

and the adhesive bonding between them. 

• A new process interaction model along with a CFCP mechanism are presented to account for 

fatigue crack propagation of a metal in the corrosive environment. This model assumes that that 

CFCG is an interactive process between pure fatigue and SCC. The FCG rates in an inert 
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environment are taken as a baseline and are combined with SCC to explain the CFCP rate; The role 

of SCC in every stages of a load cycle on the whole CFCP was explicitly accounted for accordingly 

using the SCC velocity curve. A two-parameter driving force (i.e. ΔK for FCG and Kmax for SCC) 

inspired by previous models was employed to describe the CFCP.  

• Five types of materials including two 4340 steels with different yield strength, 300M steel, 7075-

T651, and titanium alloy Ti-6Al-4V have been used to verify the new model. Considering the 

scatter nature of corrosion fatigue data, it is found that good agreements can be obtained between 

the experiment data and the predictive results. However, due to the complexity of corrosion fatigue, 

more research is still needed to further improve the predictions.    

7.2 Contributions 

• A new process interaction model is proposed for the prediction of corrosion fatigue crack 

propagation rate in metals. The significance of stress corrosion cracking in contributing the fatigue 

crack propagation is explicitly considered stage-by-stage in the crack velocity curve of SCC. 

• The effects of processing parameters on the corrosion behavior of AZ31 is systematically studied 

by using an orthogonal experimental plan. It is found that bath pH value, immersion time, and bath 

temperature become the three important factors in controlling the quality of the Mn-P conversion 

coating, especially the former two parameters. A two-stage conversion process is developed to 

produce a thick, dense and compact coating on AZ31.  

• A two-layer corrosion protection strategy for forged AZ80, and ZK60 Mg alloys of a lower control 

arm were successfully evaluated and shown to significantly improve corrosion properties.  

• Two journal papers have been published, and one is ready to be submitted. 

7.3 Recommended and Future Work 

Considering the long-term objective of predicting the corrosion fatigue life for the coated Mg alloys, the 

following work is recommended for next steps: 

• The effect of surface coating on the corrosion fatigue crack initiation should be investigated. To 

complete the prediction of the whole corrosion fatigue life, the corrosion pit growth behavior, 

including the evolution of the corrosion pit size and shape at certain fatigue cycle, which has been 

reviewed in chapter 1 to model the corrosion fatigue crack initiation, need to be characterized on 

the coated Mg alloys; The effect of stress level (different Δσ, R-ration and σmax) on the corrosion 

pit growth needs to be studied. Specifically, a designed corrosion salt spray test under cyclic loading 

would be recommended to collect such data.   
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• Stress corrosion cracking test for the uncoated Mg alloy should be conducted. The measurements 

of the threshold stress intensity factor (KISSC) and the crack velocity as a function of stress intensity 

factor (da/dt vs K) for the investigated Mg alloy need to be done to predict the corrosion fatigue 

crack propagation rate by combining with the fatigue data in an inert environment.  

• Fatigue crack propagation test in air at a high frequency needs to be conducted to provide/simulate 

the fatigue data in an inert environment; In this test, at least two R-ratios should be used to 

determine the material constant Cf and mf.  In order to determine the correlating parameters β and 

θ and validate the corrosion fatigue crack propagation model, corrosion fatigue crack propagation 

tests for the Mg alloy at least two different R-ratios and two different frequencies need to be 

performed. 
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