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Abstract

In the last decade, many old and new results in combinatorics have been shown using
the theory of quantum integrable systems from particle physics. The key to solving such
problems is the derivation of an underlying Yang-Baxter equation. In this thesis, we explore
some of the results in this area, focusing on two proofs due to Zinn-Justin in [37]. The first
is a proof of Knutson, Tao and Woodward’s puzzle rule [18] which states that Littlewood-
Richardson coefficients count the number of tilings of an equilateral triangle with three
different types of tiles. The second result concerns Knutson and Tao’s product rule for
two factorial Schur functions [17]. We present an extension of Zinn-Justin’s constructions
to Grothendieck polynomials [35] and close with an overview of integrable vertex models.
The purpose of this thesis is to make “combinatorics and integrability” more accessible to
the general mathematician and illustrate the power and elegance of these ideas.
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Chapter 1

Introduction

In this thesis, we explore combinatorial proofs inspired by quantum integrability. The idea
is to use combinatorial objects as models of physical systems which have an “integrabil-
ity condition” known as the Yang-Baxter equation. Applying the Yang-Baxter equation
reduces the complexity of many proofs involving unwieldy combinatorial objects. Inte-
grability has been applied to many problems involving polynomials from combinatorics,
representation theory and algebraic geometry such as Schur polynomials, factorial or dou-
ble Schur polynomials and Grothendieck polynomials. Many of these results are from the

last decade and combinatorics and integrability appears to be an area of growing interest
6, 7, 11, 12, 28, 35, 33].

We focus mainly on puzzles. In 2003, Knutson, Tao and Woodward introduced puzzles
(KTW-puzzles) as a tool to compute the Schubert calculus of the Grassmannian [18].
A KTW-puzzle is an equilateral triangle filled with three different tiles. Three Young
diagrams (\, i, v) may be read off the boundary and the number of puzzles (of a particular
size) with that boundary is given by the Littlewood-Richardson coefficient cfw. This fact
is known as the puzzle rule. In the same year, Knutson and Tao showed a product rule
for factorial Schur functions in [17] using MS-puzzles, named after Molev and Sagan who
showed an earlier formulation in [27]. Zinn-Justin was able to reprove both of these results
from integrability [37].

Proving the puzzle rule involves a simple two-dimensional model of a system of fermions.
Particles are allowed to move to different energy levels in discrete time steps according to
certain transfer matrices. Repeatedly applying a transfer matrix reveals an implicit triangle
representing a KTW-puzzle (see Figure 4.4). Applying a different pair of transfer matrices
returns supersymmetric Schur functions. The Yang-Baxter equation of Theorem 4.7.2



shows these transfer matrices commute and this allows us to exploit a supersymmetric
Schur function identity to prove the result.

Constructions from the proof of the puzzle rule are then repurposed to address facto-
rial Schur functions. A large puzzle represents the multiplication of two factorial Schur
functions and applying the same Yang-Baxter equation as before transforms this puzzle
into the desired expansion; this is succinctly summarized by the picture in Figure 5.4. As
an original contribution, we use these constructions to show a neat identity for factorial
Schur functions in Proposition 5.4.1.

We show the above proofs in full with some key differences. We take a more direct
approach and only cover what is needed to prove the desired theorems whereas Zinn-
Justin proves larger generalizations. For example, Zinn-Justin proves 81 identities for
general transfer matrices; we cut down on the number of transfer matrices and try to
streamline their definitions. We also minimize use of the shift operator. In [37], transfer
matrices lay down rows of tiles and then shift them a half unit left or right to ensure
elements read off of rows are in the same space. We avoid this where possible and instead
alternate between two spaces JFy and F; which correspond to even and odd-numbered rows.
In the case of the product of factorial Schur functions, Zinn-Justin gives a second proof
which we omit. We also define factorial Schur functions where the second set of variables
is infinite as opposed to finite (a more standard definition) as we find it simplifies certain
statements.

The structure of this thesis is as follows. In Chapter 2, we introduce basic terminology
and Schur polynomials along with two generalizations: the supersymmetric and factorial
Schur polynomials. In Chapter 3, we give an overview of the physical theory and language
used in subsequent chapters. We explain our use of Dirac notation, fermions, the Yang-
Baxter equation and Fock space. In Chapter 4, we present Zinn-Justin’s proof of the puzzle
rule in detail. We give a tiling model, define transfer matrices and prove the Yang-Baxter
equation. In Chapter 5, we give Zinn-Justin’s proof of the product rule for factorial Schur
functions and prove our identity. Finally, in Chapter 6 we explore more recent research
in integrability and combinatorics. Littlewood-Richardson coefficients for Grothendieck
polynomials are found by modifying the previous constructions. We also discuss the rela-
tionship between puzzles and integrable vertex models, closing with an overview of some
results in this area.



Chapter 2

Schur Polynomials and
Generalizations

In this chapter, we introduce Schur polynomials and two of their generalizations. Schur
polynomials are an important Z-basis for the ring of symmetric polynomials. They have
well known applications to representation theory where they are characters of irreducible
polynomial representations of GL,(C). They are also relevant to the representation the-
ory of the symmetric group S,,; irreducible characters of S,, appear as coefficients in the
expansion of Schur polynomials in terms of the power sum basis. Schur polynomials are
also important in algebraic geometry where they represent Schubert classes.

2.1 Preliminaries

We denote an integer partition A in multiple ways. We may say A = (A,..., ) for
positive integers A\ > --- > \; and we may use exponential notation where A = n{* .- - n*
for positive integers e, ..., e, and n; < --- < ng. If A is a partition of n, we say A - n and
say it has size |A\| = n. Each integer A; in A = (Ay,..., \;) is a part of A and the number
of parts in \ is its length, denoted ¢(A\) = k. The width of partition is the size of its
largest part, A;. We say a partition p is contained within A and write p C X if pu; < \;
for all 7. We allow an empty partition of size 0, denoted by &.

A Young diagram is a visual representation of a partition using rows of boxes to
represent parts. We use the English convention where rows weakly decrease from top to
bottom. We identify partitions and their Young diagrams, treating them interchangeably.



For concrete examples, we may draw the Young diagram inline: for example, (3,3,1) =
132 = QEE If & C A, the skew diagram \/p is obtained by removing the boxes of p
from the diagram of \: for example, if A\ = EEFD and g =, then \/p = | ™. A Young
diagram with no boxes removed is said to have straight shape. A horizontal strip is a
skew diagram with at most one box in each column. Similarly, a vertical strip is a skew
diagram with at most one box in each row. In the previous example A/u is a horizontal
strip, but not a vertical strip.

For a Young diagram A\, the conjugate diagram ) is obtained by reflecting along the
main diagonal: for example, if A = @:‘, then \ = EEE The n X m rectangle is the Young
diagram with n rows of size m, which we denote by (L] = m". If A C [, its complement
within [J is the diagram of [J/\ rotated 180 degrees, denoted A: for example, if A = T

and (J = HH, then A = .

A semistandard Young tableau is a Young diagram where each box is assigned a
positive integer entry. The entries must weakly increase across rows from left to right and
strictly increase down columns. We denote the set of all semistandard Young tableau of
shape A by SSYT(\).

Example 2.1.1. The following tableau is in SSYT (H):

4

We denote a box in a Young diagram or tableau with an ordered pair o = (4, j) where
i is the row number and j is the column number. Rows and columns start at 1 read from
top to bottom and left to right. If « is a box in a Young diagram A and T is a Young
tableau of shape A\, we say a € A\, @ € T and denote the entry of box a in T by T'(«).
In Example 2.1.1, T(2,3) = 6. Let x = (21, ...,x,). Each semistandard Young tableau is
assigned a monomial

XT = H xT(a)

aeT

where z7(,) = 0 if T(«) > n. In words, x” = 0 if the maximum entry in 7T is larger than

n, otherwise it is the product of each variable x; to the power of the number of times i

appears as an entry in 7. In Example 2.1.1, x! = x123232226. The Schur polynomial



sx(x) is the sum of all monomials x where "€ SSYT(\). We write

sx(x) = sa(xy, ..., x,) = Z x7.

TESSYT(N)

This definition can be extended to infinitely many variables x = (21, 9,...) in which
case sy(x) is called the Schur function. We only consider Schur polynomials and their
generalizations in finitely many variables, but all definitions and facts proved or stated in
this thesis extend to the infinite variable case.

A polynomial f(x) is is symmetric if f(z1,...,2,) = f(Z,q),- .., Tom) forall o € S,,.
The set of all such polynomials form a ring A,,, called the ring of symmetric polynomials
in n independent variables. This is also denoted by Z[z, ..., z,]", meaning the set of all
polynomials over Z fixed by S,,. The set of Schur polynomials in n variables is one of
several known bases for A,, and hence the product of two Schur polynomials is expressible
as a linear combination of Schur polynomials. The Littlewood-Richardson coefficients
are nonnegative integers cf , depending only on A, y and v such that

5.(3)3,(x) = 37 & s, ().

v

Lastly, we give an algorithm to generate Young tableaux which will reappear in a
different form in Section 4.5. Let T € SSYT(A) have maximum entry n. A box « with
entry n in 1" cannot have boxes below it and no box in the same column as « can have
entry n. If a box is to the right of «, it must contain entry n. Thus, all the boxes o € T’
for which T'(a) = n are contained in a horizontal strip A/\™ for some A™ C \. With this
observation, we can recursively compute all tableau in SSYT(A) with maximum entry n.
First, let © = n. In every possible way, fill boxes in the diagram A with entry 7 so that there
exists A such that A\/A(®) is a horizontal strip and recursively apply this algorithm to A,
filling with entry ¢ — 1. Terminate after filling with entry 1 and return all the tableau that
were entirely filled. An example is given below.

Example 2.1.2. We compute all semistandard Young tableaux on A = H? with maximum
entry n = 3. Each row in step ¢ represents all possible ways of filling a tableau from step
t + 1 with entry ¢ according to the algorithm. Step ¢ = 3 initializes by filling a diagram
that has no entries. The algorithm should return the highlighted tableaux.



_a. | | 3] 3]
1—3._,3,_
_ . | | 2] 2]
1—2._,2,_
| 2] |2]2]
3 BB
3] 3]
2]
3] 2[3]
3 B
1. | | 1] 1]
zfl._,i,_
| 1) [T
2 2 B
2] 2]
I Y
2] 1]2]
2] 2]
| 1 [T
3 B B
2] 1]2]
1 -
2[2]
i)
3] 3]
I Y
3] 1[3]
2] 2]
3] 1[3]
1 -
2[3]
3]

Note that if we fill A with vertical strips rather than horizontal strips, keeping the rest
of the algorithm the same, it will generate tableaux which weakly increase down columns



and strictly increase across rows. Reflecting along the main diagonal, we see these are all
semistandard Young tableau on the conjugate partition \.

2.2 Supersymmetric Schur polynomials

Supersymmetric polynomials were first introduced by Metropolis, Nicoletti and Rota in
[22] where they were called bisymmetric. Supersymmetric Schur polynomials are general-
izations of Schur polynomials to two sets of variables. They were introduced by Berel and
Regev in [1] where they called them Hook Schur functions due to their definition in terms
of what are known as hook tableaux. Supersymmetric Schur functions have applications to
Lie superalgebras which are Zs-graded Lie algebras satisfying certain Lie bracket axioms;
a characterization can be found in [15]. In the early 1970s, physicists began to show inter-
est in Lie superalgebras for their applications to supersymmetric gauge theory. A review
of this history can be found in [10]. Supersymmetric Schur polynomials are irreducible
characters of certain polynomial representations of the Lie superalgebra gl(m/n), which
is a generalization of the Lie group gl(n). This is analogous to the relationship between
Schur polynomials and gl(n); more on this topic is in [1, 13, 31]. A thorough account of
supersymmetric Schur polynomials can be found in a PhD thesis by Moens in [24].

A doubly symmetric polynomial is symmetric in two sets of variables. If x =
(x1,...,2p) and y = (y1,...,Yn), then the doubly symmetric polynomial f(x/y) =
f(xe, ..., 2m/y1, ..., yn) is in the ting Z[z1, ..., T, Y1, - - -, Yu) ™5 which is to say it sat-
isfies f(x/y) = f(%o(1)s - -+ To(m)/Yr1), - - - » Yr(n)) for all permutations o € Sy, and 7 € S,,.
A polynomial f(x/y) satisfies the cancellation property if setting x,, = t and y,, = —t is
the same as setting x,, = y, = 0. The ring of supersymmetric polynomials on z and y,
denoted A,,/,, is the set of doubly symmetric polynomials in Z[z1, ..., Tp, Y1, - - -, Yp) o™ 5"
that satisfy the cancellation property. As one might expect, supersymmetric Schur poly-
nomials are a Z-basis for A, /,,.

Example 2.2.1. The following function is in Ag;:
f(@1,22/y1) = 2F + 2122 + 25 + T1y1 + Totn

Note that setting x5 = t and y; = —t yields z%, which is the same as setting x5 = 3, = 0.
This function is actually the supersymmetric Schur function sg(z1, x2/y1).

A supertableau, also called a bitableau, is a filling of a Young diagram with two
sets of positive integers; the integers in one set are marked with the prime symbol to

7



distinguish them. If the supertableau has shape A, the non-primed integers are arranged
in a semistandard Young tableau in a subdiagram g C A and the primed integers give a
semistandard Young tableau on A /1. We denote the set of all supertableau of shape A by
SSSYT(A). A supertableau S is assigned a weight (x/y)® where the x variables count the
non-primed integers and the y variables count the primed integers. As before, (x/y)° = 0
if it has a non-primed entry above m or primed entry over n.

Example 2.2.2. The following supertableau has weight (x/y)° = x12323249%y5Y3.

1212|1012
S=1231]2]3
4 112

The supersymmetric Schur polynomial s,(x/y) is defined as

Sx(X/y) = sal@1y s T /Y1y -y Yn) = Z (x/y)°.

SESSSYT(N)

These are clearly generalizations of Schur polynomials since, setting y; = --- = y, = 0,
the above formula reduces to a sum over semistandard Young tableau and we get the
Schur polynomial sy(x). There are many equivalent definitions of supersymmetric Schur
polynomials; from [1, p.152], they may also be written as a sum of involving Littlewood-
Richardson coefficients, which we state as a theorem.

Theorem 2.2.3. The supersymmetric Schur polynomial sx(x/y) may be written as the
following summation

s\(x/y) = ch,su(X)sa(y)

where cz\w are the Littlewood-Richardson coefficients. Moreover, these are the unique con-

stants satisfying this equation.

We emphasize that the Littlewood-Richardson coefficients are the unique constants
satisfying this equation, as this is key to the proof of the puzzle rule in Chapter 4. Lastly,
note that all supertableaux of shape A can be found with an algorithm like in Example 2.1.2
where, for each p C A, we fill the boxes in A/u with vertical strips of primed integers and
then fill the remaining boxes in p with horizontal strips of regular integers.



Figure 2.1: A semistandard Young tableau of weight (x1 —y1)(x2—y1) (23 —ys) (x4 —y2) (24—
Y6) (x4 — y7)(%6 — Ys)-

2.3 Factorial Schur polynomials

Factorial Schur polynomials are another generalization of Schur polynomials to two sets of
variables. A less general form was first described by Biedenharn and Louck in [4] which
was then generalized to the modern definition by Macdonald in [21]. Factorial Schur
polynomials represent what are known as equivariant Schubert classes as shown in [23].

Let x = (z1,...,2,) and y = (y1,92,...). For a box a = (4,j) in a Young diagram A,
the content of « is its column minus row number, denoted c¢(a) = j —i. The factorial
Schur polynomial is defined as follows:

S)\(X‘y) = S/\(mla"'axk‘yhy2'--) = Z H(xT(a) _yT(a)+c(a)>-
TESSYT(N) a€A
where each tableau T has maximum entry k. An example of a tableau and its weight
assigned in this summation is given in Figure 2.1. Note that despite y having infinite size,
these are still polynomials since the tableaux in the summation have maximum entry k.

Factorial Schur polynomials are not doubly symmetric like supersymmetric Schur
polynomials, but they are symmetric in the first set of variables. As before, setting
y1 = y2 = - -+ = 0 reduces the above formula to the Schur polynomial s, (x).

Remark 2.3.1. The factorial Schur polynomials get their name from the original less
general case. As explained in [25], the modern polynomial has the following determinantal
formula:

_ det[(2;|y) x+h—i)1<ij<h
s,\(X|Y) = Hi<j<xi — xj)

where (z2|y)m = (z —91) - - - (2 — Ym). The original polynomial studied by Biedenharn and
Louck in [4] had one set of variables and was denoted ¢,(x). Specifically, t, = sx(x]y)
where y; =0,y = 1,...,y, =n — 1, so in terms of the above formula, we have

£a(x) = det[()x+r—i]1<i <k

Hi<j (xl - xj)



where (z2),, is the falling factorial z(z —1)---(z = m + 1).

Remark 2.3.2. Factorial Schur polynomials are closely related to the double Schur poly-
nomials which have a similar definition. As before, we let x = (x1,...,x), but y = (v;)iez
is a doubly infinite set of variables. A reverse semistandard Young tableau is a Young
diagram filled with positive integers which decrease weakly across rows and strictly decrease
down columns. Denoting the set of all reverse semistandard Young tableaux of shape \ as
RSSYT(\), the double Schur polynomial on A is

aEx )= Y [T@re = vre cw)

TERSSYT()) a€A

where the maximum entry in each tableau is k.

Double Schur polynomials can be obtained from factorial Schur polynomials by sub-
stituting the second set of variables with reversed and shifted indices. Specifically, if
2i = Yp—_ir1 for i € Z, then s)(x||y) = sa(x|z) [26]. For this reason, some authors address
double Schur polynomials, which have some geometric significance, through factorial Schur
polynomials since the latter have a more natural combinatorial definition. Zinn-Justin takes
this approach in the paper central to this thesis [37].

Let x = (21,...,21),y = (Y1,Y2,...) and z = (21, 2, ...). The product of two factorial
Schur polynomials with the same first set of variables s)(x|y)s,(x|z) can be written as
a summation of factorial Schur polynomials on x and y with (polynomial) coefficients
. (y;i2) € Zlyr,ya, ..., 21, 22,...]. These coefficients are computed with combinatorial
objects known as MS-puzzles which we define in Section 5.2; we may expand to product as

S)\( S,U« X’y ZC)‘# y;z 31/ X’y>

This was first expressed with “unbarred” tableaux in [27] which was then rephrased by
Knutson and Tao in terms of MS-puzzles [18]. This equation is restated as Theorem 5.3.1
in Chapter 5 where we ultimately present Zinn-Justin’s proof from [37].
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Chapter 3

Physics Background

In this chapter, we explain the physical language, notation and theory used in the pro-
ceeding chapters. We avoid delving into too much detail as we are mostly interested in the
origins of the pictures in Chapter 4.

3.1 Dirac notation

Keeping with the physics literature, we use Dirac notation, also called bra-ket notation.
Let H be a complex Hilbert space with a countable orthonormal basis B and an inner
product (-,-) : H x H — H x H defined by (g, f) = 0y, for f,g € B. Let f,g € B
throughout. We define the “bra-ket” (g|f) = (g, f). We index a “bra” (:| or “ket” |-)
with a basis element like (g| or |f). We can have linear combinations of kets over C and
a linear operator A : H — H can act on an element |f) where Af = >, -ayh if and
only if A|f) =3, czanlh) for a5, € C. We think of “closing the bra-ket” with a bra (g| as
coefficient extraction, which is to say (g|A|f) = a, where A is as before. This perspective
is all that is needed for our purposes.

3.2 Fermions

A fermion is a particle with a half-odd integer spin. Elementary particles such as quarks
and electrons are fermions, but they may also be composite particles made of multiple
elementary particles. Fermions satisfy the Pauli exclusion principle, meaning no two

11



can have the exact same state at the same time in a quantum system. The state of a
fermion can consist of various numbers such as energy level, angular momentum and spin,
but we will only concern ourselves with energy level and assume other values are equal.

In particle physics, solutions to the Dirac equation permit the existence of fermions
at arbitrary negative energy levels. Particles tend to move down energy levels, so having
infinite negative positions allows them to move down arbitrarily, which conflicts with the
observed behaviour of fermions. A possible solution is to assume that there is a vacuum
state in which every negative energy level is occupied by a fermion; this prevents indefinite
descents since no two fermions can occupy the same state. This infinite set of fermions at
negative energy levels is known as the Dirac sea.

We work with a simple two-dimensional fermionic model of energy level over time which
assumes a Dirac sea. We represent basis states in the system pictorially as number lines
with dots on every half-odd integer. A black dot at position k € Z+ % represents a particle
with energy level k£ and white dots represent holes. The basis state with all negative energy
levels occupied and no other particles is called the vacuum state, denoted |&):

2) = ... 4_._._._.{,0_0_0_0_%

Each basis state must have all sites to the left of some point occupied by particles and
all sites to the right of some point occupied by holes; in the diagrams, all dots have the
same colour beyond an ellipsis. To transition between states, it is conventional to define
creation and annihilation operators 1} and 1)y, for each k € Z + % Informally, one can
think of these operators as attempting to insert or remove a particle from position & in the
diagram of a basis state. We may associate every basis state to a composition of finitely
many creation and annihilation operators with indices increasing left to right applied to
the vacuum state as in the following example:

¢_%¢_%¢gwgw’é|®> = e 4—o—o—o—o+o—o—o—o—w ce

The operators must also satisfy the following anti-commutation relations:

[¢;7¢j]+ = 5i,j7 [¢::¢;]+ = [@bi,@bj]_;,_ =0

where [a,b]; = ab+ ba. One fact implied by the anti-commutation relations is that, if a
basis state |f) has a particle with energy level k, then ¢%|f) = 0; similarly, ¢x|f) = 0 if
|f) has a hole at position k. Otherwise, a creation or annihilation operator applied to | f)
returns a new basis state with a particle inserted or removed from position k, multiplied
by a sign +1 determined by the anti-commutation relations.

12



Let F be the Hilbert space over C with the above basis state and inner product given
by (g|f) = 04,5 for basis states |f), |g) € F. To model changes over time, we evolve states
of F in discrete time steps using transfer matrices. A transfer matrix T : F — F is
just an operator returning a weighted sum of basis states. They may also be given an
argument x called a spectral parameter which affects the weights assigned to the basis
states. That is, for a basis state |f) € F,

T(2)|f) = ) wy(x)lg)

lgyeF

where w,(z) may, for instance, be a polynomial in z. In Chapter 4, we define the specific
rules our transfer matrices use. A physical interpretation of the weights w,(x) is that they
are the probability amplitude (essentially square root of probability) of state |f) collapsing
into state |g) after a discrete time step.

Creation and annihilation operators are not needed beyond this point and we only con-
sider the number lines going forward. In general, the operator defining the time evolution
of a physical system is called the Hamiltonian. In the physics literature, the models we
consider are called “free fermionic” because they have a Hamiltonian that is quadratic in
the creation and annihilation operators. In [14], Schur functions are derived from a system
with a state space like F using a Hamiltonian operator. A more modern approach, which
our notation above is taken from is found in [36]. This is the inspiration for the proof
in Chapter 4 which uses transfer matrices that decompose this Hamiltonian; specifically,
chaining n transfer matrices together generates Schur polynomials in n variables.

3.3 Fock space

To model infinite identical particles, physicists use a construction called Fock space.
Formally, if H is a complex Hilbert space representing the state space of a system with one
particle in it, then the Fock space F(H) is the following completion:

FH) =EPH"=CoOHOHOH) -
n=0

In the literature, symmetric tensors are used to represent bosons and antisymmetric tensors
are used to represent fermions. The symmetrization of the tensors makes the particles
indistinguishable so as to simulate identical particles. This construction allows one to talk
about infinite particle states, but we will only be concerned with particles in a finite region.

13
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Figure 3.1: Hlustration of the braid relation.

The number lines in the previous section can be thought of as elements in a Fock space

F(H) where H is spanned by the two elements {e, 0} where e is a fermion and o is a

hole. Basis states in this model can be thought of as “infinite” tensors @), ., 1 zx where
2

xy € {o,0}.

3.4 The Yang-Baxter equation and quantum integra-
bility

The Yang-Baxter equation appears frequently in physics as a condition which allows a
system to be solved; several examples from physics can be found in [16, 30]. Let V' be a
vector space. We say a matrix R: V ® V — V ® V satisfies the Yang-Baxter equation
if

IeR)(ReDI®R) = RD)IQR)(RI).

The Yang-Baxter equation is illustrated by the braid relation as in Figure 3.1. After
twisting two strings at a time as shown, the two “braids” can be deformed into each other
without any twists and so they are equivalent.

An R-matrix can also be given a spectral parameter. In this case, the parameter-
dependent Yang-Baxter equations are given by

I®R())(R(z) @ DI @ R(y)) = (R(y) @ DI @ R(2))(R(z) @ T).



The parameter z is often dependent on x +y and for this reason it is common to write z as
x + y in the equation above (possibly redefining R). This is the case in the Yang-Baxter
equation of Theorem 4.7.2.

Lastly, the systems we consider are said to be quantum integrable. There is not
a universally accepted definition of quantum integrability; see the discussion in [8, 9].
However, a sufficient condition for quantum integrability is that the system satisfies the
Yang-Baxter equation. This is also the notion of quantum integrability that appears to
be common in combinatorics research. We defer to the opinion of Karanth, Richmond
and Schmidt in [16]: “we emphasize that the Yang-Baxter equation is an integrability
condition. If it is satisfied, the model in question is integrable in the sense understood by
all physicists.”
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Chapter 4

The Puzzle Rule

In this chapter, we present Zinn-Justin’s proof [37] of Knutson, Tao and Woodward’s puzzle
rule [18]. This is the largest chapter where we introduce most of the constructions. We
build a two-dimensional fermionic model of energy level over time. Tiles are decorated
so that they trace out the paths fermions take as they jump to different energy levels
in discrete time steps. We encode different types of behaviour with transfer matrices so
that they give us Schur functions and supersymmetric Schur functions in Lemma 4.6.2.
Applying the Yang-Baxter equation in Theorem 4.7.2 to two composed transfer matrices
“unzips” them, showing they commute, which gives the proof.

4.1 Knutson-Tao-Woodward puzzles

A Knutson-Tao-Woodward puzzle (KTW-puzzle) is a filling of an equilateral triangle
with the tiles in Figure 4.1. The triangle has integer side length n and each tile has unit
side length. Tiles may be rotated, but not reflected and the edges of adjacent tiles must
have matching labels. In the literature, 0 is often used in place of — and 1 in place of +,
but we use the notation of Zinn-Justin in [37].

We call a string of + and — signs a d-string. Every +-string S has an associated
Young diagram which we denote by A(S). To produce A(S), simply draw a lattice path
P from the origin in Z? taking one step North for every — and one step East for every
+ in the order given by S. If P contains k North steps, enclose it within [ = (n — k)*.
Then the top left region enclosed by P and [ is the desired Young diagram in the English
convention. An example is shown in Figure 4.2.

16
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Figure 4.2: Computing A(— —++ —+ —++) =HF.

Given a KTW-puzzle, the labels along each side are read off (each from left to right) to
give a +-string. Let the side strings (B, L, R) be the triple of strings read off the bottom,
left and right sides respectively. The triple (A(B), A(L), A(R)) is called the boundary.

We say the side strings are homogeneous if they all have the same number of + and
— signs. We can see the following lemma in the upcoming proof of the puzzle rule, but
give a short, elegant argument from [18] here.

Lemma 4.1.1. The side strings of a KTW-puzzle must be homogeneous.

Proof. For each tile, draw a unit vector pointing outwards perpendicular to each edge

containing a + as follows:
g

o a4

The sum of the vectors around each tile is zero and hence the sum of all the vectors in
a KTW-puzzle must be zero. If two adjacent tiles meet at edges labelled with a +, the
vectors attached to those edges point in opposite directions and sum to zero, so all internal

17



vectors cancel. The only remaining vectors on the sides of the puzzle must also sum to
zero, which is only possible if each side string has the same number of + signs. O]

We can now state the puzzle rule for computing Littlewood-Richardson coefficients,
originally proved by Knutson, Tao and Woodward.

Theorem 4.1.2 (Knutson, Tao, Woodward [18]). The number of KTW-puzzles of side
length n with homogeneous side strings and boundary (X, u,v) is the Littlewood- Richardson
coefficient CZ\W'

Example 4.1.3. Taking the filling in Figure 4.1, we have the boundary (\, i, v) = (,H, ).

The Littlewood-Richardson coefficient C;\W is equal to 1, so this is the only KTW-puzzle

with this boundary and side length 4:

4.2 Tiling the plane

We now turn Zinn-Justin’s proof of the puzzle rule from [37]. We introduce the new tiles
in Figure 4.3 and note that the o and f tiles give all the rotations of the original tiles in
Figure 4.1 if the [ tiles are joined along the dotted lines. We address the ~ tiles later. We
say the tile is of upper type if it is in the top row and lower type if it is in the bottom
row. The two new symbols 0 and 0 ensure that 8 and 7 tiles form a rhombus with one
possible matching tile along a dotted edge. Throughout, we hide the dashed edges that
meet between adjacent tiles.

In Figure 4.4, we show how KTW-puzzles emerge. The picture is a filling of the upper
half-plane using only the o and S tiles with no fj sitting on the horizontal axis. We also
assume that all coloured lines to the left of some integer N_ are and all coloured
lines to the right of some integer N, are red. The green lines can only move left and the
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Figure 4.3: The new tiles.
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Figure 4.4: Tiling the upper-half plane with the o and f tiles.

red lines can only move right, so each green line will eventually be to the left of each red
line. After all crossings take place, there is only one way to continue tiling upward and
coloured lines follow a fixed trajectory. The equilateral triangle with the interval [N_, N, ]|
as its base contains a KTW-puzzle. The Young diagrams p and v can be read horizontally
off the top where green lines correspond to North moves and red lines correspond to East
moves. Our goal is to show that the number of such tilings of the upper half-plane where
(A, p, v) emerge as shown is the Littlewood-Richardson coefficient ¢, ,.
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Figure 4.5: Basis elements |f) € Fy and |g) € G;. Here, N_(f) = —3 and N, (f) = 3.

4.3 The Fock spaces F and ¢

We consider horizontal cross-sections below every row of the tiled upper-half plane and
draw them as number lines with red and green dots on integers or half-odd integers. These
are basis states of a Fock space similar to that of Section 3.2, though we have two types
of particles (green and red). We assume discrete time and think of the cross-sections as
different points in time. The decorations of the tiles trace out the paths particles take
as they jump to different energy levels. This model is fermionic since no two particles
can occupy the same site at the same time. To be precise, we describe these states with
functions.

Let Gy and G; be complex Hilbert spaces spanned by basis elements |f) indexed by
functions f : Z+ 5 — {—1,0,1} in the case of Gy and f : Z — {—1,0,1} in the case of G;.
For these functions, we also require that there exist integers N_ and N, where f(i) = —1
for i < N_ and f(i) =1 for i > N,. Define N_(f) and N, (f) as the largest and smallest
such integers respectively. Define G = Gy ® G; and let F C G be the Hilbert subspace with
basis elements |f) where f(i) # 0 for all 7 in the domain of f. Similarly, let F = F, & Fy
where Fy C Gy and F; C G;.

We define the inner product on G as the bra-ket (f|g) = d;, for basis elements | f), |g) €
G. We define a vacuum state in Gy as |@) where @ : Z + 3 — {—1,1} is simply the sign
function restricted to Z + % We do not define a vacuum state for G;.

As mentioned, we will represent basis elements in G with number lines as in Figure 4.5
where a green, white or red dot at position ¢ indicates that f(i) is —1, 0 or 1 respectively.
For a basis element |f) € G, diagrams are assumed to contain the interval [N_(f), N+ (f)],
so that there is no ambiguity. We will refer to these pictures rather than their underlying
functions when possible.

We assign a charge ¢(f) to a basis element |f) € G where green dots contribute —1,
red dots contribute 1 and white dots contribute 0. Precisely, the formula for charge is

c(f) = Y _(f(i) —sign(i))

i
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Figure 4.6: A zero charge basis element |\) € Fy and its associated Young diagram .

where the sum is over all i in the domain of f. The emptiness number e(f) is the
number of white dots in |f) or e(f) = #{i | f(i) = 0}.

Note that there is a bijection between zero charge basis elements in Fy and Young
diagrams. If |f) € Fo is a zero charge basis element, simply take the +-string given by
| f) within the interval [N_(f), N4 (f)]. That is, if a = N_(f) + 3, b= N.(f) — 3 and S
is the £-string sign(f(a))sign(f(a + 1)) ---sign(f(b)), then the associated Young diagram
is A(S). The main diagonal of the Young diagram will always be centred above 0 in the
number line when drawn as in Figure 4.6. If a zero charge basis element |f) € F is
associated to a Young diagram A, we denote |f) by |A\) and also define N_(\) = N_(f)
and N1 (A) = No.(f).

We define the shift operator, denoted S, which shifts all the dots in |f) € F one step
to the right. That is, if f'(: + 1) = f(i), then |f’) = S|f). We also define the combine
operator LI : Fo ® Fo — Go; if |f) = |g) U |h) for basis elements |g), |h) € Fo, then

L J3e)—1) ifi<o0
f(l)_{%(h(i)wtl) iti>0.

In words, |g) LI |h) turns all red dots in |g) and green dots in |h) into white dots and then
concatenates everything to the left of 0 in |g) with everything to the right of 0 in |h).
Extend U linearly and, for k& > 0, define Ll so that |g) Uy |h) = (S™|g)) U (S*|h)). For
notational convenience, we allow the combine operator to act on the indexing functions
within kets so that

lg) Uk |h) = |g Uy h).

Lastly, note that L, is injective if we restrict its domain to the subset of Fy x Fy
consisting of pairs of basis elements |g), |h) where k& > max(N,(g), —N_(h)); this is only
circumstance where we use L.
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Figure 4.7: The element |g) is obtainable from |f) following T.

Example 4.3.1. We apply L3 to two basis elements in Fy.

4.4 The transfer matrix T

The elements in G capture the state space of some toy physical system. We model the
evolution of this system over time with transfer matrices that represent a discrete time
step. Throughout, we define transfer matrices for basis elements in G and extend linearly.

We define T : G — G, which evolves elements using the o and § tiles in Figure 4.3. For
a basis element |f) € G, place a row of o and [ tiles on the diagram of | f) so that coloured
lines in the tiles match the dots on the diagram. The edges between tiles must also match,
of course. Treating the top of this row as a new diagram yields an element |g) € G and we
say |g) is obtainable from |f) following T. An example is given in Figure 4.7. It is only
possible to construct elements obtainable from |f) in one way; thus, T|f) is the sum of all
basis elements obtainable from |f) and we have

1 if |g) is obtainable from |f) following T

0 otherwise.

(9IT|f) = {

Note that a row of tiles must move coloured lines a half-odd integer to the left or right,
so T sends elements in Gy to G; and elements in G; to Gy. Following the paths that lines
take after repeated applications of T produces images as in Figure 4.4, reading from the
bottom to top. Note that the rules force green lines to move at least a half-step left and
red lines to move at least a half-step right after each row of tiles and so eventually all the
green lines will be to the left of the red lines; we formalize this with a lemma.
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Lemma 4.4.1. For a basis element |f) € Foy, let p = max(N4(f), —N_(f)). Then there
exist unique nonnegative integer coefficients 6;,} such that for all k > p

TH[f) =) &, lg Ui h)
g,h

where the summation is over all basis elements |g), |h) € Fo with p > max(Ny(g), —N_(h)).

Proof. Tf (d|T?"|f) # 0 for a basis element |d), then |d) € Gy and all its green dots are to
the left of 0, all red dots are to the right of 0 and thus |d) = |gL, k) for some basis elements
lg),|h) € Fo. If we restrict to elements where p > max(N,(g), —N_(h)), then there is a
unique pair (g, h) where |d) = |g U, h). For k > p, we have

T|f) = TP Y e lg Uy )

gh
Co.nl9 =k
gh
where the summation is restricted as in the lemma. O]
Next, in the above lemma, if |f) = |\) € Fy is a zero charge basis element, we can

write T?*|)\) as a sum of other zero charge basis elements.

Lemma 4.4.2. Let p = max(Ny(\),—N_(\)) for a zero charge basis element |\) € Fy.

Then there exist unique nonnegative integer coefficients Efw, such that for all k > p

T\ = &, U v)
v

where the summation is over all zero charge basis elements |u),|v) € Fo with p >
max(N, (), —N_(v)).

Proof. Consider a basis element |d) € Gy where (d|T?|)\) # 0. From Lemma 4.4.1, we get
that |d) = |g Ug h) where |g) and |h) are basis elements in Fy. We must prove |g) and |h)
have zero charge. Note that T pushes the coloured dots outside the interval [N_(f), N;(f)]
outwards half a step, clearing space for one white dot without adding or destroying any
coloured dots. Thus, T preserves charge, but increases the emptiness number by 1 and

therefore, ¢(d) = 0 and e(d) = 2k.
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Since |d) = |g U h) has zero charge and 2k white dots, it must have k& white dots on
either side of 0. The white dots to the left of 0 correspond to k red dots in |g) to the left
of k. Since Ni(g) < k, all dots to the right of k in |g) are red. Since |g) has no white
dots, if it has ¢ green dots in the interval [0, k], it must then have ¢ red dots pushed to the
interval (—oo,0] and thus |g) has zero charge (it has the same number of red dots to the
left of 0 as green dots to the right of 0). Similarly for |h). O

Theorem 4.4.3. If each coefficient 62’1, m Lemma 4.4.2 is equal to the Littlewood-
Richardson coefficient cl’),y, the puzzle rule is true.

Proof. For a zero charge basis element |[A\) € Fy, let p = max(Ny(A), N_(\)). Then
Lemma 4.4.2 says there are Eﬁ’y different ways of tiling the plane with the o and S tiles
starting from |A) and ending with |p U, v) for zero charge basis elements |u), |v). As
illustrated in Figure 4.4, the lines encoding the Young diagrams p and v also exit the left
and right sides of the triangle, following a fixed trajectory. These Young diagrams are read
left to right in the same way as in the puzzle rule. Thus, é;\w count puzzles with boundary

(A, g, v) and the puzzle rule is true if ¢, , = ¢, . O

4.5 The transfer matrices T.(z) and T.(z)

Since we want Littlewood-Richardson coefficients to come out of this picture, it is natural
to expect Schur polynomials emerge as well. To this end, we define two new transfer
matrices, To(z) : G — G. Both matrices have their own rules for which elements are
obtainable from a basis element |f) € G:

T_(z) rules T () rules

e Place a row of «,  and tiles e Place a row of a, 8 and =4 tiles
on the diagram of |f) so that edges on the diagram of |f) so that edges
match. match.

e At the boundaries, all tiles must e At the boundaries, all tiles must
move all lines one half-step to the move all lines one half-step to the
right. That is, there are only left. That is, there are only tiles
tiles sufficiently to the left and oy sufficiently to the left and ~, tiles
tiles sufficiently to the right. sufficiently to the right.
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Figure 4.8: The element |g) is obtainable from |f) following T (z).

In Figure 4.8, we show a possible evolution for T, (x). As before, the output of these
matrices applied to a basis element |f) € G is a sum over elements obtainable from |f)
following the respective rules, but the terms are weighted by a spectral parameter x. Note
that oy and 3, tiles come in pairs when following T (x). For ay tiles, there will possibly
be a sequence of 5_ tiles between each pair. Similarly, a_ and _ tiles come in pairs when
following T_(z). Each element obtainable from |f) is weighted by the number of these
pairs:

T_(x) weights T, (x) weights
e Let w_(f,g) be the number of pairs of e Let w(f,g) bethe number of pairs of
and B_ tiles used in the evolution o and B tiles used in the evolution
from |f) to |g) following T_(x). from |f) to |g) following T4 ().
e If |g) is obtainable from |f) following e If |g) is obtainable from |f) following
T_(x), then (g|T_(z)|f) = a9 T (x), then (g| Ty (2)[f) = a9,

Example 4.5.1. We apply T, (z) to an element in Gj.

+x e o000 b e o e e e---
T, (z) osoooloe e oo ... = f7° oo oo b o e e ee---
+x o000 e b e e o0 e e
+ 72 o—o—o—o—e b e o e ee---
+I3 ooO—O—O—(#—O—O—O—H"'

We slightly modify these matrices to get Schur polynomials. Abusing notation, define

T+($) = 81/2T+($)
T_(z) = S7V?T_(x).

That is, T (z) applies T, (x) and shifts all the dots one half-step to the right and T_(z)
applies T_(x) and shifts all the dots one half-step to the left. The reason we make this
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Figure 4.9: An evolution of a zero charge basis element |\) € F following T (z) and its
corresponding evolution following T ().

change is to view T () as a map from Fy to F,. We compare T, (z) and T, (z) in
Figure 4.9.

Consider placing a row of tiles following 'i‘+(x) Since the boundaries must only consist
of a_ and v, tiles, the half step to the right makes the boundary lines go straight up.
The remaining dots within the boundaries are just permuted and thus ’i‘+(az) preserves
charge and emptiness number. If we restrict the domain of T () to F, then o, and
[_ tiles cannot be used in the evolution. As mentioned, a, tiles come in pairs and the
leftmost vy of upper type must be to the right of a 3y of lower type. This is not possible
since | f) has no white dots and T, (x) preserves emptiness number. There is no _ since
a sequence of #_ tiles must end with an o, tile. Therefore, the evolution can only use
a_, B4 and ~y; tiles. Similarly, T_(z) only uses a, S and v_ tiles when restricted to F.

Using these facts, we describe T4 (z)|# in words:

T_(x)|# rules T, ()| 7 rules

° dots may stay in their cur- e Red dots may stay in their current
rent position or cross any number of position or cross any number of con-
consecutive red dots immediately to secutive dots immediately to
their left. their right.

e Red dots may stay in their current ° dots may stay in their current
position or move one step to the position or move one step to the left.
right. e No two dots may occupy the same po-

e No two dots may occupy the same po- sition at the same time.

sition at the same time.

The number of crossings in the evolution from |f) to |g) is the number of times two
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Figure 4.10: An element |\') obtainable from X following T (z). The evolution removes
the horizontal strip given by the grey boxes, leaving the Young diagram ).

lines cross in our visualizations; in Figure 4.9, there are three crossings. When applying
T.(z) to a basis element |f) € Fy, the number of crossings is counted by w4 (f,g) since
the weighted a4 tiles are not used in Fy.

4.6 Deriving Schur polynomials

For a zero charge basis element |\) € Fp, note what following T, (z) is doing to the
underlying Young diagram A: it removes a horizontal strip. Green dots cross some number
of consecutive red dots to the left, which corresponds to removing a strip as in Figure 4.10.
If there are ¢ crossings in the evolution of |A) to |\') following T (x) then there are X’
has ¢ fewer boxes and (X|T4 (z)|\) = z¢. If we apply T4 (z;) for 1 < i < n in descending
order, this is analogous to running the algorithm given in Section 2.1, only keeping track
of entries used in tableaux with monomials multiplied by Young diagrams that represent
the unfilled portion of the diagram. We give an example which essentially runs the same
computation as in Example 2.1.1.
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Example 4.6.1. Computing so; (1, x2, 3):

@\HTJr )| = Q\HTJr Y(FP) + z3]m) + z3]8) + 23]0))

= <®|T+(x1)(raﬂ> + 32|m) + 728) + 2305)
+ x3|m) + 2ox3|0) + T313| D)
+ x3|H) + xomws|o)
+a3]0) + 2223|2))
= (2|(|B) + z1]m) + 211B) + =7|0)
+ To|m) + 2129|0) + 2i19|D)
+ m2|H) + z172|0)
+ 25|8) + 2125|2)
+ x3)m) + 2123]0) + 2113 D)
+ zox3|0) + T w073|D)
+ z313|D)
+ 23|8) + z123]0)
+ wox3|0) + T w073|D)
+ 25[0) + w123 2)
+ 2213|9))
= I’%Z‘g + x%xz + xlxg + 2212973 + x1x§ + x2x§

= 821(551,96271173)-

Similarly, T_ (x) removes vertical strips so we get the Schur polynomial for the transpose
of the underlying Young diagram. The supersymmetric Schur polynomials are obtained by
removing vertical strips and then horizontal. We have the following lemma.
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Lemma 4.6.2. Let x = (1,...,2,) andy = (y1,...,Yn). Then
= (@ [[ T+ (=),
i=1
= <@|HT—($¢)|A>,

sx(x/y) = Q‘HT-F T H T (y:)|A)-

Proof. The result follows from the previous remarks. We can use T (z) in place of T4 (z)
in the third equation since the shift operators commute with the transfer matrices and
cancel out. ]

We make a note before one more important lemma. If we restrict T_(z) to elements
with only green and white dots, it acts just as T_(z)|# only where white dots behave as
red. This is because ’i‘_(x) also counts «a_ tiles and, restricted to white and green dots, it
only uses a_, [y and ~_ tiles. As stated before, ’i‘_(x)|]: only uses ay, f_ and ~y_ tiles.
Adding some dotted lines that represent the paths of white dots, we see the bijection:

. A ¥ /0\ + Lo o /+X+ " Lo
o e
- Bo V- B vy v

Similarly, restricting T (z) to red and white dots acts just as T (z)|+ only where white
dots behave as green.

Lemma 4.6.3. For two zero charge basis elements |p),|v) € Fo, let k >
max (N (), —N_(v)). Then

(@ U 2| T T (o) [T T ()l U v) = 5000533

=1 i=1
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Proof. From the commutativity of the shift operator, convert the matrices to their tilde
versions. Applying []1, 'i‘,(yl) to |pu Uy v) makes the red lines coming from |v) on the
right all go straight up. From the above remarks, applying []\_, T, (z;) should evolve the
red lines so that they contribute s,(x). On the left, the green lines from |u) are evolved
independently by []7_, T_ (y;) and then go straight up after [];_, T+(aji), so this evolution
contributes s;(y). O

4.7 The Yang-Baxter equation

Consider the rhombi in Figure 4.11. The rhombi in each column may use the o and S tiles
in any combination but we only allow one type of v tile in each orientation. The rhombi
that use the o and g tiles are assigned weight 1 and the ~ tiles are assigned weight x.
Rhombi of orientation // may contain 7_ tiles, orientation \_\ may contain 7, tiles

and orientation <> may contain 7, tiles. Rhombi in each row are rotations of each other
(after redecorating with lines). Notice that rhombi in orientation \ \ use the same tiles
as T, (z) and T_(x) uses tiles from orientation // . The transfer matrices we consider
do not use the 7y tiles, but we include these to prove a more general Yang-Baxter equation
for future use.

We consider all combinations of rhombi in Figure 4.11 arranged into hexagons where the
labels of the exterior edges are fixed. It is convenient to depict the sum of all such rhombi
with thick-edged rhombi arranged into hexagons. A spectral parameter is put inside each
rhombus to indicate the weight given to the ~ tile. When multiple shapes are put together,
the internal edges are summed over while the outer edges are fixed. If it is not possible
to combine the rhombi to get the exterior edges, the hexagon has weight 0. We illustrate
with a few examples.

Example 4.7.1. There is only one possible hexagon in most cases. There is only one
rhombus in orientation /_/ which has a + on its bottom edges and so we have

+ + + +
+ - + - + - + -
= = = = .
- + - + - + - +
+ + + +

In the next case, the weight is zero since we reach a point where no rhombus of orientation
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Figure 4.11: Weights assigned to all possible rhombi.
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// will fit in the bottom right:

Lastly, one can compute:

+ + + +
y = o+ o+ S =x+y+ 2.
+ + + + + + + +

In general, we have the following theorem, which we later show is the Yang-Baxter
equation.

Theorem 4.7.2. If x+y+2z = 0, then for every sequence of external edges (a,b,c,d, e, f) €
{—,+,0}°, we have

e e

f d  f d

a c a c
b b

Proof. 1f both sides of the equation only involve « and ( tiles, then equality holds since
each orientation allows o and [ tiles in every combination; both sides of the equation have
weight 1 in this case.

Also note that, if the equation holds for some set of external edges, it holds for any
cyclic permutation of those edges. All rotations of each rhombus (ignoring decorations)
are contained in Figure 4.11 and the three rhombi with nontrivial weight are rotations of
each other. Thus, a 120 degree rotation of the edges amounts to permuting the weights.
For instance, the filling in Example 4.7.1 has weight x; the filling with the same outer
edges rotated 120 degrees counterclockwise has weight z. Also, rotating the edge labels
180 degrees amounts to swapping the left and right hand side of the equation since the
tiles with nontrivial weight are invariant under 180 degree rotation. All rotations can then
be obtained from 120 and 180 degree rotations.
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The only hexagons left to check are those with external edges that allow v tiles.
Up to cyclic rotation, the external edge sequences can only be (—,+,—, — +,—),
(—,+,+,—,+,+) and (+, —, +, —, +, —). The first two sequences are invariant under 180
degree rotations and thus equality holds from our previous remarks. For the last sequence,
as shown in the third computation of Example 4.7.1, the left hand side has value x4y + z.
However, there is no hexagon with the same external edges when computing the right hand
side; therefore, if x 4+ y 4+ z = 0, the theorem holds. n

Theorem 4.7.2 gives a Yang-Baxter equation if we think of rhombi as matrices that
map pairs of edges to other pairs. Let V' be the complex vector space spanned by labelled
edges of the unit triangle, {\+ ,\ ,\o |, + = o +/ ~/, o}. We think of each rhombus in
Figure 4.11 as a map from V® V to V ® V that takes the bottom edges to the top edges,
multiplying by the weight given in the table. For example, the last rhombus of orientation

maps = ® ¥ toz( + ® =) and other simple tensors to zero. If we denote the maps
of each rhombus as Ry (x), Ra(x), ..., Rso(z), then R(z) = Ry(z) + Ra(x) + - - - + Ryo ().
We show R/(x) satisfies the classical Yang-Baxter equation.

Corollary 4.7.3. If x +y + 2 =0, then
I®R())(R(z) @I @ R(y)) = (R(y) @ DI @ R(2))(R(z) @ T).
Proof. Consider applying (I ® R(z))(R(z) ® I)(I ® R(y)) to the three bottom edges of

a hexagon. We ignore the tensor symbol and glue the edges together to illustrate the
hexagon. For a,b,c € {—,+,0}, we have

IoR(@)RE) @DISRE) N, /o = (@RE@)RE) @D S ] N\ fo b
= (I®R(z Z ‘b

a

b

M@ (
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M@ (

= R(y) @ DI R(2)R(z) ®T) \ , /.

where indices in the summations go over all values in {—,+,0} and the second last line
follows from Theorem 4.7.2. O]

4.8 Commutativity of transfer matrices

To complete the proof of the puzzle rule, we need to show that the transfer matrices
commute. Specifically, we have the following theorem.

Theorem 4.8.1. The matriz T commutes with the matrices T4(x).

Proof. We decompose transfer matrices into the rhombi given in Figure 4.11 so that we
can apply the Yang-Baxter equation. First consider (g|T|f) for basis elements |f), |g) € G.
Since T only uses the o and S tiles, we can decompose it into an infinite row of rhombi of
orientation \\ or // as long as we set the weight of the 7 tile to 0. We choose \_\ and

decompose T into several copies of @ Then we have

g1 g2 g3 94

T R A\

B {1 if |g) is obtainable from |f) following T

0 otherwise.

The labels f; and g; are determined by the signs that f and g respectively assign (—,
+ or 0). Here the row of rhombi simply acts an indicator function that returns 1 if |g) is
obtainable from |f) and 0 otherwise. Now consider (g|T_(z)|f). Since T_(z) includes ~_
tiles, we must decompose into rhombi of orientation /_/ . Since T_(z) assigns 7_ tiles a

weight of 1, we use the rhombus 5 and account for the weight of the o and [_ tiles
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separately. That is

TR R AVAVAVAY A

zv-19) if |g) is obtainable from |f) following T_(x)
1o otherwise.

Again, the row of rhombi is just an indicator function. We consider (g|TT_(z)|f) by

stacking these diagrams together, however, accounting for the weight of T (x) requires

a few tricks. Consider two rows of tiles placed by TT_(z) on top of the diagram of |f).

Sufficiently far to the left, there must only be _%_ pieces and sufficiently far to the
+ +

+

right, there must only be +%+ pieces. Both of these boundary regions have weight 1
+ +

+
and thus the nontrivial weight comes from the finite region between them. Now consider
the portion of this region due to T_(x). Since we can ignore the boundaries, for a basis
element |h) € G, we have

h1 ho hik—1  hg
R e AVAY Ay AV AV
f1 f2 fe—1 Tk

where the labels f; and h; are determined by f and h respectively. Note that, due to the
pieces on the boundary, any green lines passing through this finite region must stay within
it. Let G be the number of such lines. Also note that all the green lines enter and exit the
row using pairs of a_, f_ or 7_ tiles. Since z*~("" counts all the a_ and SB_ pairs, if we
divide by 2%, we will cancel the weights of all those tiles and only count the v_ tiles with

1. Setting y = 271, we have
hi  hz hg—1  hy
vy/y v/ y/+
o @iy = LULL L
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Putting the matrices together, we have

yOOITT (@)1 f) = Y2 3N NONONT
/Y /)Y v,y /+
f1 f2 T fe—1 Tk

Now we multiply on the left by @, setting 2 = —y. The only rhombus that can fit on

the left is '/ \ which has weight 1; consequently, multiplication by this rhombus does

- +

not affect weight. We now apply the Yang-Baxter equation to “unzip” the matrices:

g9

COITT @)1 = GYNIN NN
- y/y v,y /+

f1 f2 U fe—1  fr

_ Y)Y

-\N0\O

fi f2
= y“(g|T_(2)T|f).

Therefore, (g|T_(z)T|f) = (g|TT_(x)|f) and T commutes with T_(z). We can show T
commutes with T () in a similar way. This time consider (g|T, (z)T|f) and let R be the

k-1 9k
y/vy +
0\O +

fk—1  fk

number of red lines within in the finite region enclosed by infinite sequences of _%_

+

and _@_ pieces. Then we have
+ +

+
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gk—1 9k

YRl T, ()T f) = M%

ge—1 9k

=y (ngT+($)|f>

and T commutes with T (z). O

One can also prove that that T (z) commutes with T_(y), though we will not need
this fact. We are now ready to prove the puzzle rule.

4.9 Completing the proof

Letx = (z1,...,2,),y = (Y1,--.,¥yn) and |\) € Fy. We begin with the equation established
in Lemma 4.6.2:

n n

s\(x/y) = (| ][] T+ (@) HT—(yz')P\)-

i=1

Note that only |@ LI, @) is obtainable from |@) after applying T?*. In other words, (& L
&|T? = (@|. We use this fact and set k > max(N, (), —=N_(\)).

n

$3(¢/y) = (0 2T [ T lo) [T T- (V).

=1 =1

Applying commutativity of transfer matrices from Theorem 4.8.1, we have

sx(x/y) = (@ U @| [[ T () [ T- () TN,

i=1 i=1
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Applying Lemma 4.4.2, we get the linear combination

X/y Zcuugl—lkglnTJr L H *(yl)‘:u’l—lky>

=1

where k > max(N,(u), —N_(v)). Applying Lemma 4.6.3, we have
sa(x/y) = Z (y)-

Now applying Theorem 2.2.3, the Littlewood-Richardson coefficients uniquely satisfy this

equation, so 62’1, = cﬁﬂ, and hence from Theorem 4.4.3, the puzzle rule is true. O
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Chapter 5

The Product of two Factorial Schur
Polynomaials

In this chapter, we consider the product of two factorial Schur polynomials with the same
first set of variables. Molev and Sagan prove a product rule for these polynomials in [27]
and Knutson and Tao reformulate the structure coefficients in the summation in terms
of MS-puzzles in [17]. In this chapter, we show Zinn-Justin’s proof which repurposes
the constructions in Chapter 4 to build factorial Schur polynomials and MS-puzzles [37].
Gluing puzzles together and applying the Yang-Baxter equation of Theorem 4.7.2 yields
an elegant combinatorial proof of Knutson and Tao’s result.

5.1 Factorial puzzles

We assign spectral parameters to thick-edged rhombi using dashed arrows as follows:
# X A/
L7 T NN (-
, \ e
x x z oy

The dashed arrows must intersect two parallel edges and we only use arrows entering at
60 degree angles as above. Each dashed arrow is labelled with a variable and, when they
cross within a rhombus, they assign a spectral parameter equal to the clockwise difference
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Figure 5.1: Factorial puzzle representing sy(x1, ..., Z|y1, ¥z, - - .).

of their associated variables. That is, if the head of an arrow y is 60 degrees clockwise of
the head of an arrow z, the rhombus is assigned the spectral parameter z — y. Rotating
the rhombi and arrows does not change the spectral parameter assigned.

Let x = (z1,...,2%), ¥ = (Y1,%2,...) and [ = (n — k)* for a positive integers n and
k. For A C [, we define factorial puzzles as in Figure 5.1. Previously, we referred to
puzzles as particular fillings of objects like these, but now we refer to the whole objects (the
sum of all fillings) themselves as “puzzles.” We only partially draw the dashed arrows and
they are assumed to travel in straight lines through the rhombi like in the right hand side
of Figure 5.1. If dashed arrows labelled by x; and y; cross within a rhombus, it is assigned
the spectral parameter x; —y;. A filling of this shape must have a green line incident to an
edge labelled solid green. Blank edges must have no lines incident to them. Edges labelled
with half-coloured dots can be either green or blank depending on the Young diagram
assigned to that side. The Young diagram A\ is encoded using lattice paths within [ as
before where green corresponds to a North step and blank corresponds to an East step.

Note that this is equivalent to fixing a — on each edge with a green dot, a + on blank
edges on left or right sides, and a 0 for each blank edge on the top side, so there is no
ambiguity in how to use the old labels based this new system. Also note that it is important
that A\ is contained within [] so that A can fit on the left side and also use k£ green dots;
the k£ green lines coming from the bottom side exist at these sites.

To see that these are indeed factorial Schur polynomials, first note that only the a_,
Bo and ~v_ tiles can occur within a factorial puzzle since they do not contain red lines. We
add dotted lines to these tiles in such a way that crossings occur on ~y_ tiles:
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Each filling of a factorial puzzle corresponds to a unique semistandard Young tableau
as shown in Figure 5.2. After reflecting, rotating and straightening the filling, we place
boxes on each crossing, labelled with its row number. Green lines intersect boxes that
correspond to one row of the tableau and dotted lines intersect boxes that correspond to a
column. These objects are in bijection with semistandard Young tableaux with maximum
entry k. Recall the definition of a factorial Schur polynomial:

sx(x]y) = Z H(iﬁT(a) - yT(a)Jrc(a))

TESSYT(N) a€X

where each tableau 7" has maximum entry k. From the above correspondence, we can sum
over fillings of factorial puzzles instead of semistandard Young tableaux. We show each
filling has the correct weight using the correspondence between the bottom two pictures in
Figure 5.2.

Each box a = (4, 7) in the tableau corresponds to a crossing in a filling which is assigned
a weight of x, — vy, for some a,b. We have that a = T'(«) as desired since boxes in T" are
assigned entry a if they come from the row marked by z, in the centre image. We wish to
show that b = T'(a) + ¢(a) = a + j —i. Note that the dotted line beginning in column y;
in the centre image intersects the boxes corresponding to column j of the tableau. Then
b = j +d where d is the number of diagonal steps the dotted line takes before reaching the
box in column y,. Also, the dotted line must take ¢ vertical steps before reaching the row
x, in the centre image since « is in row ¢ of the tableau. Therefore, a = i + d and hence
b=j+a—1i=T(a)+ c(a) as desired.

5.2 MS-puzzles

Zinn-Justin defines the MS-puzzle from Knutson and Tao [17] as in Figure 5.3 where the
top right edge has a sequence of k white dots followed by n — k red dots read left to right.
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Figure 5.2: A filling of a factorial puzzle contributing to s (21
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T5|y1, Y2, - . .) where A =

?. This filling has weight (x1—y1)(xe—y1) (z3—11)(T5—y2) (X2 —y3) (T4—ys) (T2 —ya) (X5 —Ys)-
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Figure 5.3: An MS-puzzle of weight c§ ,(y1,...,¥s;21,...,25) and a filling of weight (y5 —
Zl).

The other three edges encode Young diagrams. Fory = (y1,...,9n), 2 = (21,...,2,) and
A, i, v C [, the weight assigned to these puzzles is denoted cK#(y; z). Also, v and p must
use k green dots and A must use n — k red dots. Note that we can arbitrarily increase the
size of an MS-puzzle without changing its weight. We illustrate this with a filling of weight
(ys — z1) where we increase its size by one:
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Increasing the size by one adds the leftmost red line to each filling, but this red line has
no impact on the weight of the filling since, starting from the South West side, it must
move horizontally k times to reach the leftmost red site on the North East side. This red
line can then be deleted and the puzzle contracted by one unit. For this reason, we define
Y2, 2,22, 000) = X (Y- Yn 21, -+, 2n) Where n s as large as it needs to be
for the MS-puzzle to be defined. Next, we will need the following important lemma.

Lemma 5.2.1. Ify = (y1, ..., Yn), ¥ = (Yns - - y1) and A\, C O, then c)‘\z"u(y; (?) =0xz
where [i 1s the complement of p within 1.

Proof. First, note that the rhombi along the middle horizontal are assigned a spectral
parameter of 0. If a red and green line cross in an “X” shape (if a 7 tile is used) along
the middle horizontal, then the filling has weight zero. Thus, every site along the middle
horizontal must be occupied by a single green or red line, not both.

For every red line exiting a site in the middle horizontal, there are r red lines and ¢
green lines to its right. It must move diagonally up r times and move horizontal g times
to reach the correct site on the North East wall. It can only make a horizontal move when
it meets a green line, so it does so for every green line it meets. Therefore, all the green
lines starting in the North East wall must move straight diagonally down to the middle
horizontal.

Since [ is on the South East wall, it must have k green dots followed by n — k white
dots reading from right to left. Reflecting the puzzle vertically and noting the symmetry
of the tiles, it follows from the previous paragraph that the red lines in the bottom half
of a filling must go diagonally straight up to the right from the South West wall to the
middle horizontal.

The middle horizontal encodes ;¢ when read from left to right since the green dots on
the North West wall encode p and follow a straight path to the middle horizontal. It must
also encode A\ when read from right to left. The complement diagram within [] is what
one gets when reading in the reverse order and thus p = X if and only if there is a valid
filling and hence cf ,(y; ?) = 0 - ]

5.3 The product

With the constructions above, we can prove the product rule for two factorial Schur poly-
nomials with the same first set of variables.
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Figure 5.4: Product of two factorial Schur polynomials when n = 5,k = 3.

Theorem 5.3.1. Let x = (z1,...,2%), Y = (Y1,Y2,...) and z = (z1, 22, ...). Then we have

sa(x[z)s, (xly) = > & L (yiz)s. (x]y).

v

Proof. We use finitely many variables so that we can work with puzzles. Set y =
(Y1,---,yn) and z = (21,...,2,) where n > A\ + 1 + k. We later explain why this
choice of n is sufficiently large. We assume A, u C [1 since both sides are zero otherwise.

The proof is now just a matter of proving the equivalence of the puzzles shown in
Figure 5.4 and reading off each side. In each puzzle, the top and bottom sides have length
k and are entirely filled with green dots. The top right side is length n and has n — k
consecutive red dots read from right to left. The bottom right side is length 2n and has k
consecutive green dots read from right to left. The Young diagrams A, u C [] are encoded
with n — k red dots and k green respectively. The dashed arrows entering the bottom are
labelled with the variables x1, ..., x; from left to right. Reading bottom to top, the arrows

45



exiting the bottom left side are labelled with zq,..., 2, and the arrows entering the top
left side are labelled y1, ..., Yn, Zn, - - -, 21

Note that the dashed arrows are assumed to bend at 120 degree angles when they meet
a rthombus of a new orientation. In this way, the following hexagon is in the centre:

Observe that the unit hexagon in the centre has spectral parameters that sum to zero
and thus we can apply the Yang-Baxter equation of Theorem 4.7.2:

Repeatedly applying the Yang-Baxter equation outwards from the centre, we see the
left hand side in Figure 5.4 is equal to the right hand side. We now show that both sides
represent the desired quantities. As visual aids, we give example fillings belonging to both
sides of the equality in Figure 5.5 and Figure 5.6. We only draw the coloured lines and
indicate weighted tiles, splitting each filling into five regions.

Consider Figure 5.5, a filling contributing to the left hand side of Figure 5.4. There
is a unique way to fill regions A and B which contributes weight 1. The green lines in A
are forced to travel diagonally up and to the left and then red lines must move straight
horizontally right into region B where they can only travel diagonally, up and to the right.
Next, we recognize region C' as the MS-puzzle C/‘\_T',Y(Z; Z) for some Young diagram ~. Then
from Lemma 5.2.1, we have v = X and thus the North West side of C'is \ read from right
to left and C has one filling of weight 1. Region D is the factorial puzzle s)(x|z) only
rotated 180 degrees. Lastly, E is the factorial puzzle s,(x|y) only with the order of the x
variables reversed. However, since factorial Schur polynomials are symmetric in the first
set of variables, it is unchanged and the left hand side is the product s)(x|z)s,(x]y).

Consider Figure 5.6, a filling contributing to the right hand side of Figure 5.4. If green
lines from D pass directly into E without entering regions A or C', there is a unique way
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Figure 5.5: A filling of weight (x; — y2)(x3 — y1)(21 — 21)(23 — 22) contributing to the left
hand side of Figure 5.4 when A =y =H.
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Figure 5.6: A filling of weight (y; — 22)(x1 — y2)(x3 — y1) (23 — y2) contributing to the right
hand side of Figure 5.4 when A =y =H.

to fill regions A, B and C|, contributing weight 1. We argue that setting n > Ay + p; + k
ensures the green lines in D behave this way. Number the sites along the North West
side of D from left to right so that the rightmost green dot is at position k£ + p1. From
this position, a green line may take h horizontal steps to the right and end up at position
h + p1 + k on the South East side of D. Therefore, n > h + u + k.

On the South West side of D, red lines beginning at sites with no blank sites to their
left must take a horizontal step each time they cross a green line to ensure they reach the
correct site on the North East side. The remaining red lines contribute to the width of A
and so there are A\; of them. Therefore, h < A\; and hence we must have n > Ay + p; + k
to ensure green lines in D enter directly into . Then the region enclosed by D is the MS-
puzzle cf , (y;z) for a variable v encoded on its South East side. Also, the region enclosed
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Figure 5.7: A factorial puzzle representing (—1)":\|si(:1:1, e TEY, Y2, - ).

by E' is the factorial puzzle s, (x|y). Since internal edges are summed over, we have

sa(x[y)su(x]z) = > &, (v;2)s,(x]y).

v

5.4 An identity

We have a small original contribution after some experimentation with the factorial puzzles.
We introduce the puzzles in Figure 5.7 which are simply the factorial puzzles of Figure 5.1
reflected horizontally, changing green lines to red. Due to the symmetry of the red and
green decorations under horizontal reflection, this puzzle gives a factorial Schur polynomial
with a few differences. The dashed arrows are now on opposite sides of the rhombi in this
puzzle and thus contribute the opposite sign as they would in a standard factorial puzzle.
Also, green dots correspond to a — and white dots correspond to a + in factorial puzzles
whereas red dots correspond to a + and white dots correspond to a — in these puzzles.
If all the signs in a +-string are flipped to the opposite sign, the new string encodes the
conjugate of the complement of the original Young diagram. Thus, if A is on the side of the
puzzle in Figure 5.7, it gives a factorial puzzle on A. Putting this all together, these puzzles

represent (—1)":\‘3;\(561, ey TrlY1, Yo, . . .). With this fact and the other constructions of this
chapter, we show the following identity.

Proposition 5.4.1. Let x; = (z1,...,70), ¥ = (Y1, ¥2,...) and 1 = (n — k)* for positive
integers n, k and {. Then we have

> (=) (xuly) 55 (xnrly) = 0.

ACO
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1
T3 T2 T1

Figure 5.8: Illustration of Proposition 5.4.1 when n =5,k = 2.

Proof. As in the previous section, we glue puzzles together and apply the Yang-Baxter
equation of Theorem 4.7.2 to show the equality in Figure 5.8. The top and bottom of the
hexagon have length max(n, n— k) and the sides have length n. Understanding this picture
completes the proof. We show a filling contributing to the left hand side and attempt of
filling the right hand side (which cannot be done).

We first consider the puzzle on the left hand side. In any filling, the red lines entering
the bottom left region from below will exit that region on the right, encoding some Young
diagram A C [ indicated. Then, by Lemma 5.2.1, the green lines entering the top left
region from above must form the Young diagram A\ as indicated. For each A C [1, the top
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left region contributes s)(xx|y) and the bottom left contributes (—1)|’l\‘si(xn,k]y). Thus,
the left hand side is

Y (=) Msa(ealy)sz (xn-ly),

ACO

which is equivalent to the left hand side of Proposition 5.4.1.

Moving onto the right hand side, we see that green lines can only move diagonally down
and to the right from the top. Similarly, the red lines can only move diagonally up and
to the right from the bottom. Red and green lines must clash in the middle, but ~, tiles

are only allowed in the regions of orientation <> , so there is no such filling and the right
hand side has weight 0. O]
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Chapter 6

Further Applications

In this chapter, we give an overview of more current research related to the results and
techniques of the previous chapters. We first detail product rules for Grothendieck poly-
nomials found by Wheeler and Zinn-Justin [35] where they used the same approach as in
Chapter 5. Next, we show how all the previous results can be thought of integrable vertex
models and give a brief exposition on results in this area.

6.1 The product of two Grothendieck polynomials

As before, let [1 = (n — k)* for positive integers n and k. Grothendieck polynomials were
first introduced by Lascoux and Schiitzenberger in [20]; they are indexed by permutations
o € Sy, but we only consider a certain subset which can be indexed by Young diagrams A C
[]. These are polynomial representatives in the K-theory of the Grassmannian. Wheeler
and Zinn-Justin find Littlewood-Richardson coefficients for Grothendieck polynomials and
double Grothendieck polynomials, along with their respective duals in [35]. They modify
the approach of Chapter 5 to determine Littlewood-Richardson coefficients in terms of
puzzles, showing the technique has general applicability. The results concerning the dual
double Grothendieck polynomials are new; others were previously shown in [5, 29, 32].

The authors calculate double Grothendieck polynomials using puzzles with the same
structure as factorial puzzles. The same tiles from Figure 4.3 are used in addition to a new
tile which only appears in the upright orientation:

A

0
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Assign the rhombi the following weights:

AT .~ AV A i~ A T
TOVRVO BTV TD N |

l—2z -1
Q@Q@@Q@@@Q@

Thick-edged rhombi are defined as before with these new weights and are assigned spectral
parameters with dashed arrows, only with a division sign instead of subtraction:

Q-0

Let x = (x1,...,2%), Yy = (y1,-..,yn) and A C 1. The double Grothendieck polyno-
mials (left) and their duals (right) are given by the following puzzles:

yn**
x
y y2~
1 -7 7*
35k 3Ck 1

The standard Grothendieck Polynomials and their duals are then given by G*(x) =
GMx;1,...,1) and Gy\(x) = Gi(x;1,...,1). Next, the following Yang-Baxter equation
holds for edge labels (a,b, ¢, d, e, f) € {—,+,0}:
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Puzzles are glued together again to construct the following equality when, for instance
n=>5k=3:

Reading this picture gives the following identity:

> k262G () = Y A (t:y)Ga(x 2) G (x;y)

v v

where the coefficients ¢)’7(t;y) are determined by diamond puzzles which are generaliza-
tions of MS-puzzles with some slight variations.

Through various specializations, this identity allows proof of several product rules for
Grothendieck polynomials. For example, taking the specialization A = = @,t = ?, one

can show

GA(x%2)Gu(xy) = > r(2y)Go(x;y).

v

In total, the authors find Littlewood-Richardson coefficients determined by the
puzzles ¢\ (t;y) for several products, which we list for completeness: G*(x)G*(x),

GA(X)Gu(x), GMxy)GH(x:y), GA(xy)Gu(x:y), Ga(x:2)Gu(xy), GMNx;y)GH(xY)
and G)\(x;y)G,(x; ?)
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6.2 Vertex models

A vertex model is a tool from statistical mechanics that can model, for instance, ice or
crystal structures on a lattice where edges represent bonds and vertices represent particles.
Many results in combinatorics and integrability are shown through vertex models rather
than puzzles. In fact, all the previous puzzles can be viewed as summations over states in
vertex models called partition functions.

6.2.1 Puzzles as vertex models

We consider the six-vertex model where each vertex has four edges labelled by two
incoming and outgoing arrows. There are thus (;l) = 6 possible vertices, hence the name.
Vertex models may be within a fixed boundary or be given a different topology (for instance,
torus or cylinder) by identifying boundaries. Each vertex v is assigned a weight called a
Boltzmann weight B,(z,) with a spectral parameter x, which may depend on v. A
filling of a lattice with these vertices is called a state. The partition function of a vertex
model is given by

z=73 1IBux)

V veV

where the summation is over all states V' of the vertex model. Below, we have each vertex
in a six-vertex model where we associate a familiar looking tile and specify a Boltzmann

o

Ly 1 1 1 1 0

We let the spectral parameter x, depend on the coordinate of v in the vertex model. A
model with the weights above may be called a “five-vertex model” since one of the vertices
has weight zero. Consider filling a k x n lattice with the above vertices (of nonzero weight)
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with incoming arrows along the left and right boundaries, outgoing arrows along the top
boundary and a Young diagram A C [] along the bottom boundary. We show a possible
filling using the vertices and tiles:

A= A =B

The right hand side is simply the same image as in the middle of the bijection in Figure 5.2.
From here, it is straightforward assign spectral parameters to each coordinate in the lattice
to get Schur functions, factorial Schur functions or Grothendieck polynomials as we have
shown previously. These models are therefore integrable and have an underlying Yang-
Baxter equation.

6.2.2 Alternating sign matrices

With the appropriate boundary conditions, six-vertex models count a number of combi-
natorial objects such as fully packed loops, domino tilings and alternating sign matrices
[11, 36]. Alternating sign matrices (ASMs) are square matrices with entries in {—1,0,1}
where each row and column sum to 1 and the nonzero entries alternate along columns and
rows. For example, a size 4 ASM is given by

00 1 O
10 -1 1
00 1 O
01 0 O

ASMs are in bijection with states of n x n six-vertex models where the top and bottom
boundaries point outward and the side boundaries point inward. To get an ASM from a
state in the vertex model, replace each vertex with the following integer in place:
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From this bijection, we can set the Boltzmann weight of every vertex to 1 and the parti-
tion function counts the number of ASMs of size n. Kuperberg computes this partition
functlon with the help of a Yang-Baxter equation, showing the number of ASMs of size n

is TT= i’;’f,j), [19].

6.2.3 Cauchy identities

Let x = (z1,...,2,) and y = (Y1,...,¥n). The Cauchy identity is important in sym-
metric function theory and states

Y amam) = [ —

1 — 2y,
1<i,j<n i

Some generalizations of Cauchy identities are found using integrable vertex models.
Wheeler, Betea and Zinn-Justin have contributions in a series of papers on Cauchy iden-
tities for Hall-Littlewood polynomials derived from a six-vertex model in [2; 3, 34]. We
display a result of Motegi and Sakai who use a five-vertex model to find a Cauchy identity
for B-Grothendieck polynomials [28].

The B-Grothendieck polynomials G*(x;3) and G (x;3) are deformations of the
Grothendieck polynomials and their duals given in the previous section. They are given
by the following determinantal formulas:

det[ Aitn— Z(1 + B82;) i<ij<n
[Lic;(zi —uy)

det[z] Aitn— ‘(1 + Bz; DT <n
[L;(@i —y)) '

Setting 3 = —1 yields G*(x) = G*(x; —1) and G,(x) = G(x; —1); further, setting 3 = 0,
one recovers the Schur functions G*(x;0) = G (x;0) = sx(x). They show

_ o T (1B M 1
XA:GA(X’@GA(Y’B)_H(W> 11 T

— X
i=1 1<ij<n iYi

GMNx; B) =

Gi(x;8) =

Setting 8 = 0 neatly reveals the Cauchy identity for Schur polynomials.
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6.2.4 Other results

Buciumas and Scrimshaw derive double Grothendieck polynomials indexed by vexillary
(2143-avoiding) permutations as partition functions of a six-vertex model [6]. They show
these Grothendieck polynomials are equal to flagged factorial Grothendieck polynomials
and also derive a determinantal formulas for double Schubert polynomials corresponding
to vexillary permutations.

Wheeler and Zinn-Justin use an R-matrix coming from a six-vertex model to show new
combinatorial formulas for Hall polynomials and generalized inverse Kostka polynomials
[33]. Bump, McNamara and Nakasuji use integrability to study the product of factorial
Schur functions and ¢-deformed Weyl denominators (some function of ¢) [7]. Specializing
t to 0, —1 or oo recovers three known definitions of factorial Schur functions. They are
also able to show that the factorial Schur functions s)(x|y) are asymptotically symmetric
in the second set of variables y using their Yang-Baxter equation.

Di Francesco and Guitter use a twenty-vertex model to address various enumeration
problems such as “quarter-turn symmetric domino tilings.” They show partition functions
are equivalent to the number of tilings in some known problems and conjecture that one
of their partition functions counts the number of domino tilings of a certain triangle [12].
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