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Abstract

Power and data signal cables constitute a major component of lightweight spacecraft
and satellite structures. These cables can account for up to as high as 30% of the structural
mass and hence significantly impact the structural dynamics. Until the last decade, these
cables were primarily modeled using ad hoc techniques that considered cables as non-
structural mass elements and neglected their stiffness and damping effects. However, in the
last decade, accurate modeling of cable-harnessed structures has come into the spotlight by
incorporating cable dynamics that are governed by cable’s stiffness and damping in addition
to its mass. Accuracy of these lightweight space structure models are important because
the control systems heavily rely on them for their robust performance. Hence, the primary
goal of this research is to create simple analytical models that can predict the accurate
dynamic behavior of cable-harnessed structures. The beauty of analytical models lie in
the fact that they result in low-order high-fidelity governing partial differential equations
(PDE) and hence are advantageous over the numerical methods, such as finite element
method. A reliable low-order PDE of a dynamical system ensures the robustness of the
control algorithms. Additionally, analytical models provide deeper insights into the system
due to the possibility of obtaining closed-form solutions and ease of conducting parametric
analysis.

The current research can be classified into solving the following two broad problems: 1.
modeling the damping mechanisms in cable-harnessed beam structures, 2. modeling the
accurate stiffness and inertia effects in cable-harnessed two-dimensional structures.

The first problem addresses accurate modeling of material damping in the cable-harnessed
beam system which was identified as a major gap in the present literature. The system
consists of the cables wrapped around the beam in specific periodic geometry. In the pre-
sented research, the energy loss mechanisms in the system was incorporated by using the
Kelvin-Voigt and hysteresis damping models. Applying an energy-equivalent homogeniza-
tion method, the proposed technique modeled the cable-harnessed beam as an equivalent
continuum (beam-like) structure. In order to validate the model, cable damping was first
characterized using dynamic testing methods and relevant loss factors were obtained for
both the models. In the next step, experimental modal testing was performed on the
fabricated cable-harnessed beams to obtain the modal characteristics of the system such
as natural frequencies and frequency response functions. These experimentally obtained
characteristics were compared with those using the proposed model and were found to be
in a good agreement.

The second problem constitutes the major contribution of this thesis. It is worth
mentioning that in the past, no analytical models have been developed that consider two-
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dimensional plate-like host structures to model the cable-harnessed system. Researchers
have generally considered one-dimensional beam-like host structures for modeling purpose
as it simplifies the mathematical formulation. In this research, analytical modeling based
on a homogenization approach is proposed to develop an equivalent continuum model of
cable-harnessed plates. This modeling problem is further broken down into the following
sub-problems depending on the way the cables are harnessed to the host plates: 1. cables
harnessed parallel to a plate’s edge, and 2. cables wrapped across the plate in a defined
pattern. For both these cases, separate mathematical derivations were carried out to obtain
governing PDEs that represent the dynamic behavior of these structures. The proposed
models are experimentally validated using modal testing of the fabricated cable-harnessed
plates. Comparisons of natural frequencies, mode shapes and frequency response functions
provided confidence in the correctness of the proposed model. In addition to providing
accuracy for low order control algorithms, the proposed models can be further used to
obtain optimal cable placement strategies such that the dynamic effects of the cable harness
are minimized.

v



Acknowledgements

First and foremost, I would like to thank my advisor Dr. Armaghan Salehian for
supporting my dream of pursuing a PhD in the area of vibrations. I am grateful to her
for a high-quality technical guidance and feedbacks during my entire PhD. In addition, I
acknowledge the planning skills that I have learnt during my PhD research and I give full
credit to Dr. Salehian as she consistently motivated me to make achievable short-term and
long-term plans. I’m sure the gained technical expertise in the area of structural dynamics
and meticulous planning skills will assist me in the future throughout my career.

I would like to further thank Dr. Luc Mongeau for accepting to hold the external
examiner position for my PhD defence examination. I am also thankful to my committee
members Dr. Fue Sang Lien, Dr. Sriram Narasimhan and Dr. Stewart McLachlin for
agreeing to be in my PhD committee.

I would also like to specially mention my guru Dr. Shakti Gupta at IIT Kanpur for
igniting a passion of research within me that has propelled my academic journey so far. I
am thankful to him for our regular discussions during my PhD on both professional and
personal fronts.

I’d like to further acknowledge my ex-labmates Dr. Blake Martin and Dr. Karthik
Yerrapragadha who answered my several technical questions during my PhD. They were
very kind to give a prompt response to my queries even after their graduation. I would
also like to thank Jeffrey Sixt for reading my journal manuscripts and providing editorial
feedbacks.

Last but not the least, a big shout out to my friends and family members for their
constant support and encouragement. I have had a great time at Waterloo because of
some amazing people who I have had a chance to share my apartment with. I would like
to thank my ex-roommates - Abhisek, Ajay, Nalin, Karthik, Prashanth, Rohit, Shivesh,
Souvik, and my current roommates - Abhinav, Naman and Yash. These friends have been
like a family away from home.

My research was funded by The Natural Sciences and Engineering Research Council of
Canada (NSERC) for which I’m highly grateful. I also received the International Doctoral
Student Award (IDSA) for which I convey my thanks to the University of Waterloo. I
am also thankful to the Vice-President, Academic and Provost, and Graduate Studies and
Postdoctoral Affairs (GSPA) for the Doctoral Thesis Completion Award.

vi



Dedicated to my parents

vii



Table of Contents

List of Figures xiv

List of Tables xxii

List of Symbols xxiv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Cable-Harnessed Space Structures . . . . . . . . . . . . . . . . . . . 4

1.2.2 Homogenization technique . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.3 Structural damping . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.4 Other applications of cabled structures . . . . . . . . . . . . . . . . 15

1.2.5 Standard differential equations in structural dynamics . . . . . . . . 17

1.3 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Organization of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Modeling of Damping Mechanisms in Cable-Harnessed Beam Structures 22

2.1 Mathematical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 System description and model assumptions . . . . . . . . . . . . . . 23

2.1.2 Kinetic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

viii



2.1.3 Strain energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.4 Energy lost due to damping . . . . . . . . . . . . . . . . . . . . . . 31

2.1.5 Equation of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.6 Special case: cables attached in a longitudinal pattern . . . . . . . . 37

2.2 Distributed Transfer Function Method . . . . . . . . . . . . . . . . . . . . 38

2.2.1 Formulation for the zigzag pattern . . . . . . . . . . . . . . . . . . 39

2.2.2 Formulation for the diagonal pattern . . . . . . . . . . . . . . . . . 43

2.3 Model Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.1 Comparison of FRFs . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4 Parametric Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4.1 Effect of cable radius . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4.2 Effect of beam width . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.4.3 Effect of number of fundamental elements . . . . . . . . . . . . . . 66

2.5 Comparison between the two damping models . . . . . . . . . . . . . . . . 69

2.6 Summary of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Experimental Validation of Damping Mechanisms in Cable-Harnessed
Beam Structures 75

3.1 Analytical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.1.1 Equation of motion for Kelvin-Voigt damping . . . . . . . . . . . . 76

3.1.2 Equation of motion for hysteretic damping . . . . . . . . . . . . . . 77

3.1.3 Theoretical frequency response function . . . . . . . . . . . . . . . . 78

3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2.1 Material Characterization . . . . . . . . . . . . . . . . . . . . . . . 81

3.2.2 Modal Analysis Setup . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.3 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3.1 System parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3.2 Experimental cable-harnessed and bare beam FRFs . . . . . . . . . 92

ix



3.3.3 Natural frequency comparison between cable-harnessed model and test 94

3.3.4 Damping comparison between cable-harnessed model and test . . . 96

3.4 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4 Analytical Modeling and Experimental Validation of Parallel Cable-Harnessed
Plate Structures 104

4.1 Mathematical modeling of parallel cable-harnessed plates . . . . . . . . . . 105

4.1.1 Model description and assumptions . . . . . . . . . . . . . . . . . . 105

4.1.2 Strain energy of a fundamental element . . . . . . . . . . . . . . . . 108

4.1.3 Kinetic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.1.4 Homogenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.1.5 Equation of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2 Experimental validation of parallel cable-harnessed plates . . . . . . . . . . 117

4.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.2.2 Bare plate model and test FRFs . . . . . . . . . . . . . . . . . . . . 119

4.2.3 Cabled plate model and test FRFs . . . . . . . . . . . . . . . . . . 126

4.2.4 Comparison of the cable attachment effects between the tested struc-
tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.2.5 MAC Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.2.6 Comparison between cable-harnessed beam-like and plate-like models 140

4.3 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5 Analytical Modeling of Cable-Harnessed Plates with Cables Wrapped in
a Periodic Configuration 144

5.1 Analytical modeling of periodically wrapped cable-harnessed plates . . . . 145

5.1.1 Cable strain energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.1.2 Plate strain energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.1.3 Kinetic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.1.4 Homogenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

x



5.1.5 Equation of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.2.1 Frequency response functions . . . . . . . . . . . . . . . . . . . . . 162

5.2.2 Parametric Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.3 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6 Experimental Validation of Cable-Harnessed Plates with Cables Attached
in a Periodic Configuration 190

6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.2 Bare plate model and test FRFs . . . . . . . . . . . . . . . . . . . . . . . . 194

6.3 Comparison between cabled plate model and test . . . . . . . . . . . . . . 198

6.3.1 Cabled plate model and test FRFs for zigzag pattern . . . . . . . . 198

6.3.2 MAC Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.3.3 Cabled plate model and test FRFs for diagonal pattern . . . . . . . 205

6.4 Comparison between different cable attachment patterns . . . . . . . . . . 209

6.5 Comparison of change in system dynamics for a special case . . . . . . . . 211

6.6 Comparison between cable-harnessed beam-like and plate-like models . . . 212

6.7 Summary of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7 Stability Analysis of the Analytical Models Developed for Cable-Harnessed
Plate Structures 215

7.1 Parallel Cable-Harnessed Plates . . . . . . . . . . . . . . . . . . . . . . . . 216

7.1.1 Constraints on the coefficients of the PDE of a specially orthotropic
laminated plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

7.1.2 Discussion on the coefficients of cable-harnessed plates satisfying the
stability conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

7.2 Periodically Wrapped Cable-Harnessed Plates . . . . . . . . . . . . . . . . 222

7.2.1 Stability of the PDE for the zigzag pattern . . . . . . . . . . . . . . 222

7.2.2 Stability of the PDE for the diagonal pattern . . . . . . . . . . . . 224

7.3 Summary of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

xi



8 Preliminary Study on Cable-Harnessed Cylindrical Shells 230

8.1 Preliminaries of the thin shell theory . . . . . . . . . . . . . . . . . . . . . 231

8.1.1 Equation of motion of a cylindrical shell . . . . . . . . . . . . . . . 231

8.1.2 Energy formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

8.1.3 Calculation of natural frequencies for Shear-Diaphragm boundaries 235

8.2 Analytical modeling of cable-harnessed shells . . . . . . . . . . . . . . . . . 237

8.2.1 Model Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

8.2.2 Strain Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

8.2.3 Kinetic Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

8.2.4 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . 246

8.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

8.4 Summary of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

9 Future Work and Conclusions 255

9.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

9.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

References 260

APPENDICES 270

A 271

A.1 Calculation of the length and mass of the fundamental element . . . . . . . 271

A.1.1 Zigzag pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

A.1.2 Diagonal pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

A.2 Calculation of strain energy . . . . . . . . . . . . . . . . . . . . . . . . . . 272

A.2.1 Zigzag pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

A.2.2 Diagonal pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

A.3 Rayleigh Dissipation function of the fundamental element . . . . . . . . . . 277

xii



A.3.1 Zigzag Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

A.3.2 Diagonal Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

A.4 Hamilton’s principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

A.5 Solution procedure for Kelvin-Voigt damped system . . . . . . . . . . . . . 280

A.6 Solution procedure for hysteretically damped system . . . . . . . . . . . . 282

A.7 Energy loss in one vibration cycle of a cable due to the two damping models 283

B 284

B.1 Coefficients in cable strain energy expressions . . . . . . . . . . . . . . . . 284

B.2 Coefficients in total strain energy expression of a periodically wrapped cable-
harnessed plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

B.2.1 Zigzag pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

B.2.2 Diagonal pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

xiii



List of Figures

1.1 Cable-stayed bridge with cables attached at its ends (Picture Information:
Signature Bridge, New Delhi retrieved online from [1]) . . . . . . . . . . . 2

1.2 Cable-harnessed fuel propellant tank within a spacecraft structure with ca-
bles attached at multiple locations. . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Cable harness mounting details (a) straight configuration, (b) serpentine
configuration, and (c) side view of attachment . . . . . . . . . . . . . . . . 5

1.4 Cable test setup: A standalone cable is attached at two ends and is excited
laterally using a shaker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Test Panel with cables and electronic boxes. . . . . . . . . . . . . . . . . . 8

1.6 Cabled beam test set-up; cable attached to beam with cable ties and beam
suspended for free end condition simulation . . . . . . . . . . . . . . . . . 8

1.7 Top: Cable-harnessed beam structure with a periodically wrapped pattern;
Bottom: Fundamental elements of the periodic structure. . . . . . . . . . . 9

1.8 Schematic of the cable-harnessed beam cable present at an offset to beam
centreline. Picture courtesy: Yerrapragada et al. [2] . . . . . . . . . . . . . 10

1.9 A schematic of the shape memory alloy (SMA)-reinforced beam. . . . . . . 16

1.10 Unbonded view of a three-layered regular symmetric angle ply laminate.
Picture courtesy: R. M. Jones [3] . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 (a) Schematic of a cable-harnessed beam with the zigzag pattern, (b) Fun-
damental element of the zigzag pattern . . . . . . . . . . . . . . . . . . . . 24

2.2 (a) Schematic of a cable-harnessed beam with the diagonal pattern, (b)
Fundamental element of the diagonal pattern . . . . . . . . . . . . . . . . . 25

xiv



2.3 Special case of cable-harnessed beam with cable attached in a straight line
on the top surface above the centerline (Longitudinal pattern) . . . . . . . 38

2.4 (a) Front view of a cable-harnessed beam with the zigzag wrapping pattern,
(b) Fundamental element and the sub-systems (front view) . . . . . . . . . 40

2.5 Multiple fundamental elements in the diagonal pattern of cable-harnessed
beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6 (a) Homogenization method and DTFM comparison of receptance (m/N)
FRFs for undamped and Kelvin-Voigt damped system under CF boundary
for the zigzag pattern (b) zoomed-in plots for the highest mode . . . . . 50

2.7 (a) Homogenization method and DTFM comparison of receptance (m/N)
FRFs for undamped and Kelvin-Voigt damped system under CF boundary
for the diagonal pattern (b) zoomed-in plots for the highest mode . . . . . 51

2.8 (a) Homogenization method and DTFM comparison of receptance (m/N)
FRFs for undamped and Kelvin-Voigt damped system under CF boundary
for the longitudinal pattern (b) zoomed-in plots for the highest mode . . 52

2.9 (a) Homogenization method and DTFM comparison of receptance (m/N)
FRFs for undamped and hysteretically damped system under CF bound-
ary for the zigzag pattern (b) zoomed-in plots for the highest mode . . . . 55

2.10 (a) Homogenization method and DTFM comparison of receptance (m/N)
FRFs for undamped and hysteretically damped system under CF bound-
ary for the diagonal pattern (b) zoomed-in plots for the highest mode . . 56

2.11 (a) Homogenization method and DTFM comparison of receptance (m/N)
FRFs for undamped and hysteretically damped system under CF bound-
ary for the longitudinal pattern (b) zoomed-in plots for the highest mode 57

2.12 FRF comparison to exhibit damping effects among different wrapping pat-
tern for (a) Kelvin-Voigt damped model, b = 0.03m, and (b) Hysteretically
damped model, b = 0.03m . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.13 Damping effects for variable cable radius in a Kelvin-Voigt damped sys-
tem for (a) zigzag, 3 fundamental elements, (b) diagonal, 3 fundamental
elements, (c) diagonal, 6 fundamental elements and (d) longitudinal pattern 61

2.14 Damping effects for variable cable radius in a hysteretically damped
system for (a) zigzag, 3 fundamental elements, (b) diagonal, 3 fundamental
elements, (c) diagonal, 6 fundamental elements and (d) longitudinal pattern 63

xv



2.15 Damping effects for variable beam width in a Kelvin-Voigt damped sys-
tem for (a) zigzag, 3 fundamental elements, (b) diagonal, 3 fundamental
elements, (c) diagonal, 6 fundamental elements and (d) longitudinal pattern 64

2.16 Damping effects for variable beam width in a hysteretically damped sys-
tem for (a) zigzag, 3 fundamental elements, (b) diagonal, 3 fundamental
elements, (c) diagonal, 6 fundamental elements and (d) longitudinal pattern 66

2.17 Effects of number of fundamental elements in a Kelvin-Voigt damped system
for (a) zigzag and (b) diagonal pattern . . . . . . . . . . . . . . . . . . . . 68

2.18 Effects of number of fundamental elements in a hysteretically damped sys-
tem for (a) zigzag and (b) diagonal pattern . . . . . . . . . . . . . . . . . . 69

2.19 Comparison of Receptance (m/N) FRFs for hysteretic damping and Kelvin-
Voigt damping for (a) Case-1, (b) Case-2 and (c) Case-3 . . . . . . . . . . 72

3.1 (a) Schematic of a cable-harnessed beam showing (a) zigzag pattern and (b)
longitudinal pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2 (a) Front view of Elastomer Test System with a cable sample between the
clamps, (b) close up of a cable sample C-1 clamped for testing . . . . . . . 82

3.3 (a) Experimental setup of the cable-harnessed system under base excitation,
(b) beam wrapped with cable in a zigzag pattern, (c) cable attached in a
longitudinal manner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4 Material characterization data and linear curve fit of hysteretic and Kelvin-
Voigt damping models for the four cables: (a) Cable C-1, (b) Cable C-2, (c)
Cable C-3, (d) Cable C-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.5 Comparison between model and test for the bare beams; Kelvin Voigt models
are shown for beams B-1 —B-3 in (a), (c), (e), respectively. Hysteretic
models are shown for beams B-1 —B-3 in (b), (d), (f), respectively. . . . . 90

3.6 Comparison of bare beam and cabled beam FRFs obtained from experiments
of zigzag wrapped cable-harnessed beam structures (a) Test 1, (b) Test 2,
(c) Test 3, and (d) Test 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.7 Comparison of bare beam and cabled beam FRFs obtained from experiments
of longitudinally attached cable-harnessed beam structures (a) Test 5, (b)
Test 6, and (c) Test 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xvi



3.8 Comparison of FRFs between undamped model, the two damping models
and experiments for zigzag wrapped cabled beams for (a) Test 1 and (c)
Test 2; The zoomed-in plots for the highest mode are shown on the right
side in (b) and (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.9 Comparison of FRFs between undamped model, the two damping models
and experiments for zigzag wrapped cabled beams for (a) Test 3 and (c)
Test 4; The zoomed-in plots for the highest mode are shown on the right
side in (b) and (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.10 Comparison of FRFs between undamped model, the two damping models
and experiments for longitudinally attached cabled beams for (a) Test 5, (c)
Test 6, (e) Test 7; The zoomed-in plots for the highest mode are shown on
the right side in (b), (d) and (f). . . . . . . . . . . . . . . . . . . . . . . . . 101

3.11 Comparison of the zoomed-in experimental FRFs of cable-harnessed beams
obtained from tests 4 and 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.1 (a) Schematic of the cable-harnessed plate clamped at one edge (b) Funda-
mental element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 Experimental setup (a) shaker testing setup of the structure-1, (b) Top view
of the base clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3 (a) Structure-2 clamped on the base plate, (b) Structure-3 clamped on the
base plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.4 Bare Plate FRFs for the Structure-1 (a) Test-1 (Impact), (b) Test-2 (Im-
pact), (c) Test-3 (Shaker), (d) Test-4 (Shaker) . . . . . . . . . . . . . . . . 123

4.5 Bare Plate FRFs for the Structure-2 (a) Test-1, (b) Test-2, (c) Test-3, (d)
Test-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.6 Bare Plate FRFs for the Structure-3 (a) Test-1, (b) Test-2, (c) Test-3, (d)
Test-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.7 Cabled plate FRF comparisons for the Structure-1 (a) Test-1 (Impact), (b)
Test-2 (Impact), (c) Test-3 (Shaker), (d) Test-4 (Shaker) . . . . . . . . . . 128

4.8 Zoomed-in FRF plots for the structure-1 of test-1 (a) Mode-1, (b) Mode-3
and (c) Mode-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.9 Cabled plate FRF comparisons for the Structure-2 (a) Test-1, (b) Test-2,
(c) Test-3, (d) Test-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xvii



4.10 Zoomed-in FRF plots for the structure-2 of test-1 (a) Mode-3, (b) Mode-7
and 8 (Mode-7 of bare plate and Mode-8 of cabled plate have similar mode
shapes; Mode-8 of bare plate and Mode-7 of cabled plate have similar mode
shapes), and (c) Mode-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.11 First ten mode shapes obtained for the clamped-free-free-free cabled plate
structure-2 from proposed analytical model (left) and experiments (right) . 132

4.12 Mode shapes obtained for the clamped-free-free-free bare plate structure-2
using classical plate model for (a) Mode-7 and (b) Mode-8 . . . . . . . . . 133

4.13 Cabled plate FRF comparisons for the Structure-3 (a) Test-1, (b) Test-2,
(c) Test-3, (d) Test-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.14 Zoomed-in FRF plots for the structure-3 of test-1 (a) Modes-4 and 5, (b)
Mode-7 and (c) Mode-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.15 Mode shapes obtained for the cabled-free-free-free plate structure-3 from the
proposed analytical model (left) and experiments (right) . . . . . . . . . . 136

4.16 MAC bar chart for the cabled plate structure-2 . . . . . . . . . . . . . . . 139

4.17 MAC bar chart for the cabled plate structure-3 . . . . . . . . . . . . . . . 140

4.18 FRF comparison of the proposed cabled plate model with an existing cabled
beam model of the structure-1 for Test-1 . . . . . . . . . . . . . . . . . . . 141

4.19 FRF comparison of the proposed cabled plate model with an existing cabled
beam model of the structure-2 for Test-1 . . . . . . . . . . . . . . . . . . . 142

4.20 FRF comparison of the proposed cabled plate model with an existing cabled
beam model of the structure-3 for Test-1 . . . . . . . . . . . . . . . . . . . 142

5.1 Schematic of cable-harnessed plate structure (a) Zigzag pattern, (b) Funda-
mental element of the zigzag pattern, (c) Diagonal pattern, and (d) Funda-
mental element of the diagonal pattern . . . . . . . . . . . . . . . . . . . . 147

5.2 Cable-harnessed structures with cables wrapped along the y−axis direction
(a) Zigzag pattern, (b) Diagonal pattern . . . . . . . . . . . . . . . . . . . 161

5.3 Comparison between FRFs obtained from homogenized (HOM) model and
finite element (ANSYS) model for cables harnessed along the x−axis in (a)
zigzag pattern, (b) diagonal pattern under a CFFF boundary . . . . . . . . 163

5.4 Mode shapes obtained from the homogenized model of the cable-harnessed
plate for case-1: CFFF boundary with cables harnessed along the x−axis in
a zigzag pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

xviii



5.5 Variation of (H4 +H13) as a function of wrapping angle for (a) zigzag pat-
tern, (b) diagonal pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.6 Comparison between FRFs obtained from homogenized (HOM) model and
finite element (ANSYS) model for cables harnessed along the y−axis in (a)
zigzag pattern, (b) diagonal pattern under a CFFF boundary . . . . . . . . 166

5.7 Comparison between FRFs obtained from homogenized (HOM) model and
finite element (ANSYS) model for cables harnessed along the x−axis in (a)
zigzag pattern, (b) diagonal pattern under an SSSS boundary . . . . . . . 168

5.8 Mode shapes obtained from the homogenized model of the cable-harnessed
plate for case-5: SSSS boundary with cables harnessed along the x−axis in
a zigzag pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.9 Effect of the change in cable modulus for cases 1-4 (CFFF boundary) . . . 173

5.10 Effect of the change in cable modulus for cases 5-6 (SSSS boundary) . . . . 174

5.11 Effect of the change in cable radius for cases 1-4 (CFFF boundary) . . . . 177

5.12 Effect of the change in cable radius for cases 5-6 (SSSS boundary) . . . . . 178

5.13 Effect of the change in cable density for cases 1-4 (CFFF boundary) . . . . 179

5.14 Effect of the change in cable density for cases 5-6 (SSSS boundary) . . . . 180

5.15 Effect of the change in number of fundamental elements along the wrapping
direction for cases 1-4 (CFFF boundary) . . . . . . . . . . . . . . . . . . . 182

5.16 Effect of the change in number of fundamental elements along the wrapping
direction for cases 5-6 (SSSS boundary) . . . . . . . . . . . . . . . . . . . . 183

5.17 Effect of the change in number of rows for cases 1-4 (CFFF boundary) . . 185

5.18 Effect of the change in number of rows for cases 5-6 (SSSS boundary) . . . 186

5.19 Variation of natural frequency for first five modes with a change in the
number of fundamental element (FE) along the harness direction and the
number of rows (NOR) for the zigzag pattern in x−direction under a CFFF
boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.20 Variation of natural frequency for first five modes with a change in the
number of fundamental element (FE) along the harness direction and the
number of rows (NOR) for the zigzag pattern in y−direction under a CFFF
boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

xix



6.1 Experimental setup of the clamped cable-harnessed plate under impact testing191

6.2 Zoomed-in pictures of the zigzag and diagonal pattern cable-harnessed plates
used for experimental modal testing . . . . . . . . . . . . . . . . . . . . . . 192

6.3 Bare plate FRFs comparison between test and model for test case 1. Sets I
- IV denote the FRFs for different sets of actuation and sensing locations . 194

6.4 Bare plate FRFs comparison between test and model for test case 2. Sets I
- IV denote the FRFs for different sets of actuation and sensing locations . 195

6.5 Bare plate FRFs comparison between test and model for test case 3. Sets I
- IV denote the FRFs for different sets of actuation and sensing locations . 196

6.6 Bare plate FRFs comparison between test and model for test case 4. Sets I
- IV denote the FRFs for different sets of actuation and sensing locations . 197

6.7 FRF comparisons of cabled plate test, cabled plate model, and bare plate
test for test case 1 (zigzag pattern) for different sets of actuation and sensing
locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.8 FRF comparisons of cabled plate test, cabled plate model, and bare plate
test for test case 2 (zigzag pattern) for different sets of actuation and sensing
locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.9 Mode shapes obtained from homogenized model (left) and experiments (right)
for the first five modes corresponding to Test Case 1 (Zigzag pattern with
cable harnessing along the x−direction) . . . . . . . . . . . . . . . . . . . . 202

6.10 Mode shapes obtained from homogenized model (left) and experiments (right)
for the first seven modes corresponding to Test Case 2 (Zigzag pattern with
cable harnessing along the y−direction) . . . . . . . . . . . . . . . . . . . . 203

6.11 Modal Assurance Criterion (MAC) analysis bar chart for the test case 1 . . 204

6.12 Modal Assurance Criterion (MAC) analysis bar chart for the test case 2 . . 205

6.13 FRF comparisons of cabled plate test, cabled plate model, and bare plate
test for test case 3 (diagonal pattern) for different sets of actuation and
sensing locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

6.14 FRF comparisons of cabled plate test, cabled plate model, and bare plate
test for test case 4 (diagonal pattern) for different sets of actuation and
sensing locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

xx



6.15 Comparison of % change in first five natural frequencies of cable-harnessed
plates with respect to the bare plate for test case-1 (zigzag), test case-3
(diagonal), and a parallel cabled plate model . . . . . . . . . . . . . . . . . 209

6.16 Comparison of the % change in natural frequencies for host plate with dif-
ferent dimensions (shown in Table 6.5) but with similar dimensions of the
fundamental element of the diagonal pattern . . . . . . . . . . . . . . . . . 211

6.17 FRF comparison with an equivalent cabled beam model for the zigzag pat-
tern corresponding to (a) test case 1, and (b) test case 2, for set I of sensing
and actuation location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

6.18 FRF comparison with an equivalent cabled beam model for the zigzag pat-
tern corresponding to (a)test case 3, and (b) test case 4, for set I of sensing
and actuation location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

7.1 Schematic showing natural body axis (x-y) and material axis (1-2). Image
courtesy: Jones [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.2 Four possible sample cases of cubic polynomials with positive real roots . . 226

8.1 Closed circular cylindrical shell and coordinate axis. Image courtesy: Leissa
[4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

8.2 (a) Schematic of a cable-harnessed cylindrical shell, (b) A fundamental element239

8.3 Normal compressive forces shown on cylindrical shell element due to the
taut cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

8.4 Front view of the mode shapes (1,2) obtained for the set-1 of cabled shell
from ANSYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

8.5 Percentage error in natural frequency obtained in DM theory for set-2 with
variation in n for m = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

8.6 Mode shapes for bare and cable-harnessed cylindrical shell for set-2 . . . . 253

xxi



List of Tables

2.1 Material and geometric properties of beams and cables . . . . . . . . . . . 47

2.2 Natural frequencies (in Hz) of beam harnessed with zigzag and diagonally
wrapped cables having Kelvin-Voigt damping under CF boundary; ‘Hom’
represents homogenization method . . . . . . . . . . . . . . . . . . . . . . 49

2.3 Natural frequencies (in Hz) of beam harnessed with zigzag and diagonally
wrapped cables having hysteretic damping under CF boundary; ‘Hom’ rep-
resents homogenization method . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 Geometric and material properties of the cables used for testing . . . . . . 87

3.2 Geometric and damping parameters of the three host beams used for testing 89

3.3 Different cases of cable-harnessed system tested with a clamped-free boundary 91

3.4 Comparison of natural frequencies (Hz) between experiments and model for
cable-harnessed test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1 Geometric parameters of the plates . . . . . . . . . . . . . . . . . . . . . . 120

4.2 Actuation and sensing location coordinates in meters . . . . . . . . . . . . 120

4.3 Comparison of experimental and model natural frequencies (Hz), error in
the model, for bare and cabled plate for the three structures. The % change
in model’s frequency on cable attachment is also presented. . . . . . . . . . 122

4.4 Cable geometric and material parameters . . . . . . . . . . . . . . . . . . . 126

4.5 Cable-harnessed plate test structures . . . . . . . . . . . . . . . . . . . . . 126

4.6 Actuation and sensing location for the cabled plate structure-2 . . . . . . . 127

5.1 Material and geometric properties of the cable-harnessed plate structure . . 160

xxii



5.2 Different case of cable-harnessed system . . . . . . . . . . . . . . . . . . . 160

5.3 Natural Frequencies for analytical and FEM cable-harnessed plate model
under CFFF boundary conditions (Hz) . . . . . . . . . . . . . . . . . . . . 162

5.4 Natural Frequencies for analytical and FEM cable-harnessed plate model
under SSSS boundary conditions (Hz) . . . . . . . . . . . . . . . . . . . . . 167

6.1 Details of the tested cable-harnessed plate structure cases . . . . . . . . . 193

6.2 Actuation and sensing location coordinates (in meters) of the four test cases
(coordinate system shown in Fig. 6.2) . . . . . . . . . . . . . . . . . . . . . 193

6.3 Natural frequencies of bare plate (BP) and cable-harnessed plate (CP) ob-
tained from model and test for test cases 1 and 2 corresponding to the zigzag
pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.4 Natural frequencies of bare plate (BP) and cable-harnessed plate (CP) ob-
tained from model and test for test cases 3 and 4 corresponding to the
diagonal pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

6.5 Host plate and diagonal pattern parameters considered for simulations of a
special case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

8.1 Cable-harnessed shell system parameters selected for numerical simulations 248

8.2 Natural frequencies of bare shell for set-1 . . . . . . . . . . . . . . . . . . . 248

8.3 Natural frequencies of cabled shell for set-1 . . . . . . . . . . . . . . . . . . 249

8.4 Natural frequencies obtained from ANSYS for cabled shell for set-1 . . . . 249

8.5 Natural frequencies for bare shell for set-2 . . . . . . . . . . . . . . . . . . 251

8.6 Comparison of natural frequencies of bare shell for set-2 for m = 1 and n = 1
to 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

8.7 Comparison of natural frequencies of cable-harnessed shell for set-2 . . . . 252

xxiii



List of Symbols

Chapter 2

(x, y, z) = global Cartesian coordinates

(ξ, y, z) = local Cartesian coordinates

Ab = beam cross sectional area

Ac = cable cross-sectional area

b = beam width

b̄ =
b

2
+ rc

B1, B2, B3 = strain energy coefficients for Kelvin-Voigt damped system

B∗1 = complex coefficient in strain energy of hysteretically damped system

B′1, B
′′
1 = real and imaginary parts ofB∗1 , respectively

Cb = Kelvin-Voigt coefficient of beam internal damping

Cc = Kelvin-Voigt coefficient of cable internal damping

D1 = coefficient of Rayleigh dissipation function for Kelvin-Voigt damped system

Eb = beam Youngs modulus

Ec = cable Youngs modulus

E∗b , E
′
b, E

′′
b = complex modulus, storage modulus and loss modulus of beam, respectively

E∗c , E
′
c, E

′′
c = complex modulus, storage modulus and loss modulus of cable, respectively

F (x, s) = state space matrix in DTFM

fe(ξ, t) = transverse external force on a fundamental element

G (x, κ, s) , H (x, s) = transfer functions and boundary influence functions in DTFM

h = beam thickness

xxiv



h̄ =
h

2
+ rc

Ib = beam second moment of area about y axis (Ib = bh3/12)

K1 = coefficient for the kinetic energy of the equivalent homogenized system

Le = length of the fundamental element

l = length of the beam

me = mass of the fundamental element

mnode = lumped cable mass at the end of the fundamental element for diagonal pattern

QD = non-conservative damping force

rc = cable radius

s = Laplace operator

Rb = beam Rayleigh dissipation function

Rc = cable Rayleigh dissipation function

Re = fundamental element Rayleigh dissipation function

Rtot = total Rayleigh dissipation function in cable-harnessed system

T = cable tension

Te = fundamental element kinetic energy

Ttot = kinetic energy in cable-harnessed system

Ue = fundamental element strain energy

Utot = total strain energy of cable-harnessed system

U∗ = complex strain energy

ux, uy, uz = global displacement field

Vb = 3-dimensional volumetric domain for beam within the fundamental element

Vc = 3-dimensional volumetric domain for cable within the fundamental element

w(x, t) = transverse displacement of cable-harnessed system

zc = z coordinate for the center of the cable

εij = Green-Lagrange strain tensor

εb = longitudinal normal strain in beam

εc = axial normal strain in cable

δWd = virtual work due to internal damping

xxv



γ(s) = inhomogeneity in the boundary conditions in DTFM

ηkb = beam Kelvin-Voigt damping proportionality constant

ηkc = cable Kelvin-Voigt damping proportionality constant

ηhb = beam hysteretic loss factor

ηhc = cable hysteretic loss factor

ηCH = effective hysteretic loss factor in cable-harnessed system

φ = fundamental matrix in DTFM

ρb = beam density

ρc = cable density

θ = cable wrapping angle

Θ = objective function

σb = longitudinal normal stress in beam

σc = axial normal stress in cable

κ = coordinate of the excitation location in x-direction in DTFM

Ψ (x, s) = solution vector in Laplace domain in DTFM

Chapter 3

(x, y, z) = global Cartesian coordinates

Ab = beam cross sectional area

Ac = cable cross-sectional area

b = beam width

b̄ =
b

2
+ rc

B1 = stiffness coefficient for Kelvin-Voigt damped equation

B∗1 = complex stiffness coefficient for hysteretic damped equation

B′1, B
′′
1 = real and imaginary parts ofB∗1 , respectively

Cb = Kelvin-Voigt coefficient of beam internal damping

Cc = Kelvin-Voigt coefficient of cable internal damping

xxvi



D1 = coefficient of Rayleigh dissipation function for Kelvin-Voigt damped system

Dak, Dah = air damping coefficient

Eb = beam Youngs modulus

Ec = cable Youngs modulus

E∗b , E
′
b, E

′′
b = complex modulus, storage modulus and loss modulus of beam, respectively

E∗c , E
′
c, E

′′
c = complex modulus, storage modulus and loss modulus of cable, respectively

f = frequency of excitation of the elastomer test system

gf = dimensionless acceleration factor

g = acceleration due to gravity

h = beam thickness

h̄ =
h

2
+ rc

HFRF = analytical expression of the FRF

Ib = beam second moment of area about y axis (Ib = bh3/12)

j = square root of− 1

K1 = mass per unit length of the equivalent homogenized system

K∗ = complex dynamic stiffness

K ′ = storage stiffness

Le = length of the fundamental element

lc = length of the cable clamped in the elastomer machine

n = number of cables

rc = cable radius

T = cable tension

w(x, t) = transverse displacement of cable-harnessed system

xsen = x coordinate of the sensing location

y (x, t) = transformed displacement variable

αh = air damping constant in hysteretic damping model

αk = air damping constant in Kelvin-Voigt damping model

ηkb = beam Kelvin-Voigt damping proportionality constant

ηkc = cable Kelvin-Voigt damping proportionality constant

ηhb = beam hysteretic loss factor

xxvii



ηhc = cable hysteretic loss factor

ηCH = effective hysteretic loss factor in cable-harnessed system

ρb = beam density

ρc = cable density

θ = cable wrapping angle

ωs = shaker excitation frequency

φn = nth mode shape function

βn = nth solution of the characteristic equation of a clamped-free beam

An = Mass normalized coefficient of the mode shape φn

ωn = natural frequency of the cable-harnessed system

Γn = nth temporal variable in the series solution of y(x, t)

ζk = kth modal damping ratio

µ (x, t) = a function used for transforming the displacement variable w to y

(t) = sinusoidal displacement of the elastomer test system

Ae = amplitude of the excitation in the elastomer test system

δ = delta function

Chapter 4

a = plate length (along x-direction)

Ac = cable cross-sectional area

b = plate width (along y-direction)

C1, C2 = coefficients in the total strain energy

C11, C22 = constants in the equilibrium solution S(x,y)

D = flexural rigidity of the plate

D11, D12, D66, D22 = coefficients in the equation of motion of the homogenized system

Ec = cable Youngs modulus

Ep = plate Youngs modulus

xxviii



Ek = total kinetic energy within the fundamental element

Ek,sys = total kinetic energy of the system

h = plate thickness

K1 = coefficient in the kinetic energy expression of the homogenized system

L1 = length of the fundamental element (along x-direction)

L2 = width of the fundamental element (along y-direction)

MH
x = moment per unit length of homogenized system at the edge x = a

Nx = distributive compressive load on the plate per unit length in x direction

Px = higher order stress resultant obtained at the edge x = a

rc = cable radius

S(x, y) = equilibrium solution

T = pretension in the cable

t = time

ux, uy, uz = displacement field

Ucable = strain energy of the cable within the fundamental element

Uplate = strain energy of the plate within the fundamental element

Usys = total strain energy of the system

Utot = total strain energy within a fundamental element

w(x, y, t) = transverse displacement in z-direction

w̄ (x, y, t) = variable introduced to eliminate the inhomogeneous boundary condition terms

zc = z coordinate of plate-cable interface, zc = h/2

ε
(2)
ij = second order strain tensor

εc = axial strain in cable

ρc = cable density

ρp = plate density

ν = poissons ratio

σxx = normal bending or axial stress in plate or cable per unit length, respectively

(η, ξ, z) = local coordinate system

(x, y, z) = global coordinate system

xxix



Chapter 5

Ac = cable cross-sectional area

a = plate length along the x-direction

b = plate width along the y-direction

Ci = cable strain energy coefficients for zigzag and diagonal pattern

C ′i = additional cable strain energy coefficients for diagonal pattern

C̄i = the Cable segments in the fundamental element

D = flexural rigidity of the plate

Ep = plate Youngs modulus

Ec = cable Youngs modulus

Hi = coefficients in the expression of the systems total strain energy

h = plate thickness

K1 = coefficient in the systems total kinetic energy expression

L1, L2 = planar dimensions of a fundamental element

L′1 = length variable to denote cable segment C̄1 along the η axis

m = number of fundamental elements in a pattern in each row

n = number of rows of repeating fundamental elements

Nx = uniformly distributed compressive load per unit length in the x-direction

Ny = uniformly distributed compressive load per unit length in the y-direction

Nxy = uniformly distributed shear load per unit length in the xy plane

T = cable pre-tension

Tp = plate kinetic energy within a fundamental element

Tc = cable kinetic energy within a fundamental element

Tel = total kinetic energy within a fundamental element

Tsys = total kinetic energy of the system

t = time

Uc = total cable strain energy within a fundamental element

(Uc)
C̄1 , (Uc)

C̄3 = cable strain energy in the cable segments C̄1 and C̄3

Uel = total strain energy within a fundamental element due to plate and cable

Up = strain energy due to plate within a fundamental element

xxx



U (1)
p , U (2)

p , U (3)
p = three components of plate strain energy

Usys = total strain energy of the system

ux, uy, uz = displacement field

w = transverse displacement

(x, y, z) = global coordinate system

x′, x′′ = coordinates along the cable direction

(η, ξ, z) = local coordinate system

zc = z coordinate of the plate-cabled interface

ε
(2)
ij = green-Lagrange strain tensor

εηη, εξξ, εηξ = non-zero strain tensor components in local coordinates

εx′x′ , εx′′x′′ = transformed strain along the x′, x′′ directions

εc′, εc′′ = total strain within the cable along the x′, x′′ directions

ε′x, ε
′
y, γ

′
xy = bending normal and shear strains in the plate

L = Lagrangian

ρp = plate mass density

ρc = cable mass density

θ = cable wrapping angle

ν = Poissons ratio

ωBP = natural frequency of the bare plate

ωCP = natural frequency of the cabled plate

Chapter 6

All the symbols used in this chapter were defined for Chapter 5.

xxxi



Chapter 7

Ad, Bd, Cd = coefficients in a characteristic equation fd (λ) = 0

Ac = cable cross-sectional area

D = flexural rigidity of the host plate

D11, D12, D22, D66 = coefficients of equation of motion of a parallel cable-harnessed plate

Do
11, D

o
12, D

o
22, D

o
66 = coefficients of equation of motion of a specially orthotropic laminated plate

Ec = cable Youngs modulus

E1, E2, G12 = Youngs moduli and shear modulus of an orthotropic plate

Ep = host plates Youngs modulus

fd (λ) = characteristic equation of eigenvalues obtained for system with diagonal pattern

ho = thickness of a specially orthotropic laminated plate

h = thickness of the host plate in a cable-harnessed plate

H2, H3, H4, H13 = coefficients in equation of motion for cabled plate with diagonal/zigzag pattern

H10, H11 = additional coefficients in equation of motion for diagonal pattern cabled plate

Kdiag = stiffness matrix for a diagonal pattern cabled plate system

K1 = homogenized mass per unit area of a cable-harnessed plate

L2 = width of the fundamental element of a cable-harnessed plate

Nx = distributed compressive load on the plate per unit length in x direction

(Nx)cr = maximum value of Nx

n = number of parallel cables in a parallel cable-harnessed plate

Pcr = critical buckling load

T = cable tension

Tmax = maximum tension to be applied for a stable system

Utwist = twist strain energy of the homogenized cabled plate system

w = transverse displacement

zc = zcoordinate of the plate-cable interface

ρp, ρc = mass density of the host plate and cable, respectively

ρop = mass density of a specially orthotropic laminated plate

λ = eigenvalue

θ = wrapping angle

ν = Poissons ratio of the host plate

ν12, ν21 = Poissons ratio for 1-2 axis for an orthotropic platexxxii
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Ac = cable cross-sectional area

A,B,C = undetermined coefficients in the solution of displacement vector

Ec = cable Youngs modulus

E = Youngs modulus of the cylindrical shell

h = cylindrical shell thickness

k = dimension-less constant defined as h2/(12R2)

K0, K1, K2 = coefficient in the characteristic equation of non-dimensional frequency

l = length of a cylindrical shell

L = length of the host cylinder of the cable-harnessed shell

Le = length of a fundamental element in cable-harnessed shell

[L] = a matrix differential operator

[LD−M ] = matrix differential operator for Donnell-Mushtari shell theory

[LMOD] = a modified matrix differential operator

m = axial wave number

Mx = longitudinal bending moment

M1 = homogenized mass per unit area of the cable-harnessed system

n = circumferential wave number

Nc = number of parallel cables attached on a cable-harnessed cylindrical shell

Nx = distributed compressive force acting on the shell per unit length

Px = axial membrane force

R = radius of the cylindrical shell

s = non-dimensional value of x

s̄ = non-dimensional parameter defined for x̄

t = time

T = cable tension

ui = displacement vector

(u, v, w) = components of the displacement vector ui

(ū, v̄, w̄) = displacement vector defined for a fundamental element
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U = total strain energy of a cylindrical shell with no external loading

Uc = cable strain energy within a fundamental element

Us = strain energy of a cylindrical shell within the fundamental element

Utot = total strain energy within a fundamental element of cable-harnessed system

(x, r, θ) = global coordinate system of the cylindrical shell
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(α, β) = in-plane coordinate system of a general shell element
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∇2 = Laplacian
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Chapter 1

Introduction

1.1 Motivation

Since the advent of electrical transmission, cables have played a significant role in human
evolution, especially in the last century. With applications varying from data and signal
transfer in electrical systems to load carrying structural elements in civil and marine struc-
tures, cables have become an essential part of human surroundings. Cables are generally
attached to other structures in two ways: 1. fixed at both ends, in which cables undergo
standalone motion (like guitar strings or suspended cables on bridge structures as shown in
Fig. 1.1), or 2. harnessed to a host structure such that it is attached at multiple locations
and both, cables and host structure, move together. Some examples of the second case are
the cables harnessed to spacecraft or automotive panels as shown in Fig. 1.2. Since such
panels are connected to cables at multiple locations, the panel’s dynamic characteristics
under an external excitation are sensitive to how the cables are harnessed/connected to the
structure. Hence, for lightweight spacecraft structures, it is important to accurately model
the cable dynamics. The motivation of the current work originates from the second case
and lies in the fact that the accurate dynamic models of these lightweight structures play
an important role in building robust control algorithms, which are essential for successful
space programs. The low accuracy of these dynamic models can lead to controller overshoot
which can result in failure of sensitive devices on-board. Because very few studies have
been conducted on understanding the dynamic behavior of lightweight cable-harnessed
structures, the current research work would play an important role in the aerospace indus-
try. The paucity in literature (as discussed in the following section) is evident that this
area of research has much scope for exploration.
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Figure 1.1: Cable-stayed bridge with cables attached at its ends (Picture Information:
Signature Bridge, New Delhi retrieved online from [1])

In the last five decades, the innovations in materials science have resulted in spacecraft
structures and their components with increasing stiffness to weight ratio. Decreasing the
mass of a structure without compromising on the strength has always been on a top
priority for the designer of such structures. However, as the weight of these structures
was plummeting, the increased use of data and signal transfer (for power and control
applications of the spacecraft) was increasing the weight due to the use of cables. It has
been reported that in the modern spacecraft, these cables account for 6-7% of the total
mass and can be as high as 30% for some structural components as reported in Ref. [5].
Since it is required to have the accurate dynamic models for these lightweight structures
(especially for robust control algorithms), accounting the cable dynamics plays a vital role
in deciding the system’s accuracy. Furthermore, due to the large size of space structures,
the ground testing of the assembled structure is often complicated as discussed in Ref. [6],
and hence, the accurate models of these structures are essential.

Motivated by this fact, the primary goal of this research was to develop simple analytical
models that can predict accurate dynamic characteristics of the entire cable harnessed
structure. Analytical models provide an essential tool for deconstructing the mechanisms
underlying complex structures, helps in analyzing the behavior observed in the laboratory
experiments, and making essential conclusions. Additionally, analytical models can provide
a set of mathematical relations between ‘system characteristics’ and ‘system parameters’
that provides deeper insights into the system.
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Figure 1.2: Cable-harnessed fuel propellant tank within a spacecraft structure with ca-
bles attached at multiple locations. Picture courtesy: Ardelean et al. [7]; reprinted by
permission of the American Institute of Aeronautics and Astronautics, Inc.
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1.2 Literature Review

In this section, a detailed overview of the literature related to this work has been presented.
Although, the research related to the impact of cable dynamics on the lightweight space
structures came into the spotlight in the previous decade only, the modeling approach
used in this research have been used in the past as well. This starts with a literature
survey on the dynamics of cable-harnessed space structures, followed by the works on the
homogenization approach for modeling. Later on, few works on structural damping are
presented to discuss energy loss mechanisms in distributed parameter systems. A brief
overview of studies on cable-harnessed structures, which are aimed towards applications
other than the space industry is presented. Finally, for the sake of completeness, some
relevant differential equations in structural dynamics are presented that would be referred
throughout the thesis for comparison with the proposed work.

1.2.1 Cable-Harnessed Space Structures

A series of studies carried out by the United States Air Force Research Laboratory, Space
vehicle component branch (AFRL/VSSV) reported the preliminary studies on cable har-
nessing effects, refer [8, 9, 7]. For instance, the results presented in Ref. [8] highlighted
the importance of modeling the cable dynamics that was previously ignored, as cables
were predominantly modeled using non-structural mass elements at the cable attachment
locations. In [9], the authors studied the frequency response of a free-free beam with and
without cable harness mounted in the longitudinal and serpentine configuration as shown
in Fig. 1.3. The cable harness used in this study followed the spacecraft integration stan-
dards and the cables were attached to the host beam using cable ties. It was observed that
at low frequencies, the effect of cable mass was dominant; however, at high frequencies,
cable damping played an important role. Additionally, the authors developed experimen-
tal procedures to determine the physical properties of cables in Ref. [7] for the accurate
modeling of the cable harnesses.

Using the methods described in Ref. [7], key modeling parameters of a cable under
lateral excitation were determined in Refs. [10, 11] using unique signal processing and
analysis techniques. The spacecraft cables were also reported to behave beam-like lending
credibility for using beam modeling to predict the dynamics of cable-harnessed structures.
The details of problems encountered while testing these cables have been elaborated in Ref.
[12] that includes tangents, rat holes, and dead ends. Finally, based on the testing methods,
a database of cable properties (such as the equivalent extensional modulus, damping ratios,

4



Figure 1.3: Cable harness mounting details (a) straight configuration, (b) serpentine config-
uration, and (c) side view of attachment. Picture courtesy: Goodding et al. [9]; reprinted
by permission of the American Institute of Aeronautics and Astronautics, Inc.

area moment of inertia, and shear rigidity in cables) for the finite element (FE) modeling
was developed in Ref. [13]. Once this characterization of cable properties was completed,
the research on cable dynamics branched into two streams. The first stream dealt with
modeling of standalone cables especially by characterizing the cable damping effects, as
discussed in references [14, 15, 16, 17, 18, 19, 20, 21, 22]. Whereas, the second stream was
focused on modeling and experiments of cable harness attached to a host structure, refer
[6, 5, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 2].

The next two paragraphs outlines the research conducted in the first stream. As men-
tioned earlier, damping in the cable plays a vital role in predicting the accurate dynamics of
the lightweight cabled structure. To obtain frequency-independent modal damping for flex-
ural structures, the authors in Refs. [14, 15] presented a concept of geometric rotation-based
viscous damping model in which an internal resisting shear force of a beam is proportional
to the time rate of change of the slope. The primary objective of these works was to ob-
tain models based on the Euler-Bernoulli formulation that exhibits frequency-independent
modal damping. This research was further extended in Refs. [16, 17, 18], assuming the
spacecraft wiring harness cable as a shear and Timoshenko beam model. In all these works
mentioned above, the authors modeled the standalone cables as damped beams and did
not consider the damping in a cable-harnessed structure as a whole.

The study in Ref. [19] presents an excellent review of the damping models of helical
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Figure 1.4: Cable test setup: A standalone cable is attached at two ends and is excited
laterally using a shaker. Picture courtesy: Spak et al. [22]; reprinted by permission of the
Springer Nature BV

cable behavior. The focus of this work was to examine the internal damping in the cables
and exploring various energy loss mechanisms such as inter-wire friction, variable bending
stiffness, and internal and viscoelastic dissipation. It was observed that in order to develop
a realistic cable model, the effects of friction forces, viscoelasticity, and bending stiffness
should be considered as a function of cable curvature and wire properties. Later on, this
research group investigated the dynamic response of standalone space flight cables using the
Euler-Bernoulli and Timoshenko beam models and considering proportional viscous and
time hysteresis damping mechanisms for dissipative effects [20]. Empirical investigations of
the spacecraft bundle cables to determine factors that affect the dynamics of the cables were
performed in Ref. [21]. It was emphasized that cable must remain in tension to obtain a
linear model since a slack cable would introduce nonlinearities in the system. Furthermore,
the cables’ characteristics, such as density, area, bending stiffness, and modulus of rigidity
were determined to predict the natural frequencies of the cable in Ref. [22]. The test setup
to measure these cable parameters has been shown in Fig. 1.4. Note that these works
focused on studying standalone cables without attaching them to a host structures.
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The second stream, as mentioned above, considers the effects of cables when they are
harnessed to a host structure. Related to this, the AFRL research group studied the
harnessed cables in two different ways: 1. the cables were attached to a host beam (one-
dimensional structure) in Ref. [6] similar to that shown in Fig. 1.3 (a), and 2. the cables
were attached to a host panel (two-dimensional structure) [5], similar to shown in Fig.
1.5. The cable properties summarized in Ref. [13] were used to model the cable as a shear
beam element in a FE framework. The damping in the cables was included by assigning an
experimentally determined element structural damping factor to the cable’s finite elements.
The resulting model matched very well with the experiments.

Further, the spectral element method was used to model the cable-harnessed beam
structure as a double beam model and the results were found more efficient and accurate
that the FE method [23, 24]. The authors in Ref. [25] used Distributed Transfer Function
Method (DTFM) to model the cabled beam structure. This model included shear effects,
tension and hysteretic damping for modeling the helically stranded cables. It was found to
be in a better agreement with experiments compared to the cables being modeled as non-
structural mass elements. The experimental setup of the cabled beam tested in Ref. [25]
has been shown in Fig. 1.6. Note that in the above mentioned references [6, 5, 23, 24, 25],
the authors have modeled the attached cables in a straight configuration to their respective
host structures on its one surface. However, in reality, these cables are harnessed in a very
complicated pattern and hence, to answer the question “How would the dynamics of a
structure change if the cables are wrapped around it?”, further research was conducted on
wrapped cable-harnessed structures. The current thesis also contributes to answering the
above question.

The research on the effects of a complex attachment of the cables on a host beam has
been described in various studies [26, 27, 28, 29, 30, 31, 32, 33]. It is also important to
note that these works were among the first to develop analytical solutions of the cable-
harnessed beam structures. In the initial works, the cable was modeled as a pre-tensioned
bar member that can not undergo compression [26, 27]. However, later, it was found
that the cable tension did not play any effect in the analytical model and hence, the
cable was modeled as a taut string element with a constant tension [28]. To further
increase the model accuracy, a variable tension model, and a higher-order Green-Lagrange
strain tensor was used in Ref. [29]. Additionally, pre-compression in the beam due to
cable tension was also considered while modeling. One of the major assumptions made
in these models was that the string was assumed to be in perfect contact with the beam
structures implying no-slip condition. These assumptions resulted in a linear analytical
model that was simple to analyze. The authors also studied two wrapping patterns that
were periodic in geometry and were coined as zigzag and diagonal patterns as shown
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Figure 1.5: Test Panel with cables and electronic boxes. Picture courtesy: Coombs et al.
[5]; reprinted by permission of the American Institute of Aeronautics and Astronautics,
Inc.

Figure 1.6: Cabled beam test set-up; cable attached to beam with cable ties and beam
suspended for free end condition simulation. Picture courtesy: Spak et al. [25]; reprinted
by permission of the Elsevier Science & Technology Journals
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Figure 1.7: Top: Cable-harnessed beam structure with a periodically wrapped pattern;
Bottom: Fundamental elements of the periodic structure. Picture courtesy: Martin et al.
[31]; reprinted by permission of the American Institute of Aeronautics and Astronautics,
Inc.

in Fig. 1.7. A homogenization technique was used to obtain analytical solutions to the
problem. Further, the dynamic behavior of the system was validated in ANSYS in Ref.
[31] along with a detailed discussion on parametric analysis. The experimental validation
of periodically wrapped cabled beams, using frequency response functions, was presented
in Ref. [30] for several structures wrapped in the zigzag pattern. The dynamic effects of
cables that are non-periodically wrapped around the beam for a more general case have
been studied in Ref. [33]. In this study, the Lindstedt - Poincare method was used to solve
the spatially dependent partial differential equations (PDEs) for response functions that
were also experimentally validated. However, these studies on wrapped cable-harnessed
structures did not consider damping mechanisms in their models, resulting in a major gap
in the literature. The study presented in the current work is heavily based on these works
as the author used similar model assumptions to fill the gap in the literature.

Some recently published studies also modeled cables using string theory assumptions.
The studies shown in Refs. [34, 35, 36, 2] consider coupling effects between different coor-
dinates of motion due to a straight cable harnessed at an offset to the beam centerline as
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Figure 1.8: Schematic of the cable-harnessed beam cable present at an offset to beam
centreline. Picture courtesy: Yerrapragada et al. [2]

shown in Fig. 1.8. These works also used similar model assumptions as Ref. [31] and val-
idated the results experimentally. However, the damping effects were still not considered
in these studies.

Another recent work based on the periodically wrapped cable-harnessed beam systems
deals with the optimal placement of the cables such that there is minimal impact on the
dynamics of the host structure [37]. In this work, the authors have used the formulations
developed by Martin et al. [31] and applied optimization techniques to minimize the
difference between the natural frequencies of the cabled beam and bare beam. This resulted
in the optimal number of fundamental elements for the zigzag and diagonal patterns. The
developed formulation is also experimentally validated in the paper.

This thesis is a result of conducting research on cabled structures that aims to: 1.
investigate and fill gaps present in the literature on modeling damping mechanisms, and
2. develop and formulate new analytical solutions that are more realistic to the industrial
applications. The cabled structures find a lot of applications in space and automotive
industry and hence, these models can be applied during the design phase for a accurate
model. In this effort, it was identified that modeling the damping mechanisms in previ-
ously studied works on periodically wrapped cable-harnessed beams [30, 31] was by far the
most significant gap to be filled. Since cable damping effects are difficult to characterize,
these effects were not considered in the previous works. However, it has been repeatedly
mentioned in the literature that modeling the cable damping effects is essential to predict
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the accurate dynamic behavior of the cabled structures.

Further, it should be noted that the analytical solutions in literature have been pre-
sented only for beam-like host structures. Although, plate-like two-dimensional host struc-
tures are more realistic than beam-like structures, no analytical solutions have been pre-
sented for cable-harnessed plates as per the author’s best knowledge. A few numerical
studies have been published [5, 38] that consider cables harnessed to flat panels, but no
analytical solutions were proposed in these works. Therefore, in this thesis, new PDEs
that govern the dynamics of cable-harnessed plate structures are developed, followed by
experimental validation, thereby constituting the significant contribution of this research.

1.2.2 Homogenization technique

Complicated structures are often modeled using the FE framework, in which the system
is discretized into many finite elements. However, this method becomes computationally
expensive when high accuracy is required, mainly when vibrations or buckling problems
need to be solved. Moreover, for the systems with a periodic geometry, such as lattice-
like or truss structures, the FE method does not utilize any advantage of the periodicity.
Due to these drawbacks, researchers use other methods to simplify system modeling using
periodicity conditions and obtain an equivalent continuum structure that can analyze the
complex structure efficiently. The continuum modeling techniques for repetitive lattice
structures are reviewed in Ref. [39]. There are typically three approaches, also known as
homogenization techniques, to obtain the equivalent continuum structures that are studied
in the literature:

• use of a discrete field method to obtain difference equations, which are further con-
verted to differential equations using Taylor’s series expansion (refer [40, 41, 42])

• application of multi-scale asymptotic expansion (refer [43, 44, 45])

• use of energy-equivalence method (refer [46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57])

In this thesis, the energy equivalence homogenization technique is used to obtain the
analytical models of different cable-harnessed structures. This technique has been widely
used in the past to obtain the dynamic behavior of various lattice-like systems. Some of
the applications include the modeling of net and cloth dynamics [47], gridwork dynamics
[48], a micropolar continuum [46]. In these works, the lattice structures are simplified by
modeling them as an equivalent homogenized continuum thus expressing the model as a
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partial differential equation in space and time. Similarly, this technique has been widely
used for modeling complicated truss structures as equivalent continuum beams that are
simple to solve and analyze. Note that the truss structures find significant applications in
spacecraft and satellite systems [49, 39, 51, 52, 53, 54, 55, 56, 57].

The energy-equivalence homogenization technique for modeling periodic truss struc-
tures is based on defining an equivalent continuum beam such that the latter has approx-
imately the same kinetic and strain energy upon applying the same displacement field as
in the original structure. This approximation yields accurate results when the number of
periodic fundamental elements in the structures are large in number. In this technique,
the kinetic and strain energy of the fundamental element is first calculated using the exact
displacement field. In the next step, the displacement is expanded as a Taylor’s series
to determine an approximation of total energy expressions which are then divided by the
length of fundamental element in order to obtain energy densities. These densities are
integrated over the domain to obtain the total strain and kinetic energy of the continuum
system. Further, Hamilton’s principle is applied to obtain a PDE of the homogenized
continuum in one-dimensional space and time that was initially a complex structure.

As discussed in the previous paragraphs and the past works, the energy-homogenization
technique helps to obtain simplistic analytical models of complicated systems. Hence, this
method is used in the current study to model the cable-harnessed beam-like and plate-
like structures where the cable harness generates inhomogeneity in the system. For the
cable-harnessed beam systems, this method has been used for undamped structures in the
past [31] which was also experimentally validated in Ref. [30]. However, the current work
extended the work done in Ref. [31] to model the damping mechanisms and validating it
using a numerical and experimental approach. In addition, the energy-equivalence homog-
enization technique was applied to model the dynamics of the plate-like cable-harnessed
structures for the first time which also yielded promising results.

1.2.3 Structural damping

Incorporating accurate damping models in distributed parameter systems is often a difficult
task to accomplish due to the presence of various factors contributing to energy loss. The
passive damping in the structures has been studied since the 1800s with one of the oldest
treatises on this topic by Lord Rayleigh [58] and it is still one of the mystery. Lord
Rayleigh proposed ‘dissipation function’, a quadratic function for energy dissipation rate
which remains one of the most extensively used damping mechanisms in the structures.
He proposed the idea of a ‘damping matrix’ as a linear combination of ‘stiffness matrix’
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and ‘mass matrix’ (proportional damping). This idea has further benefited many scientists
and modal analysts who wish to incorporate damping in their models. In the case of
proportionally damped systems, the procedure of modal analysis can be similarly applied
as in the case of undamped systems which provides considerable simplifications in the
modeling of damped systems.

The damping in a continuum structure can be studied by either discretization into a
lumped parameter model (represented in the form of coupled ordinary differential equa-
tions) or as a distributed parameter model (represented in the form of a PDE). The ana-
lytical models developed in the present thesis are based on distributed parameter models
because having a reliable low-order high fidelity PDE is advantageous for implementing
control algorithms. However, for a vibrating continuum, for example, a beam can have
energy loss due to several mechanisms making it difficult to model the exact loss in the
system. One of them is material (internal) damping, which is generally low for metals and
high for polymer or composite materials. Another mechanism is the external damping in
which one of the major source is the air damping (interaction of the beam with surrounding
medium). Some other sources of external damping includes the energy loss at boundaries
(if the system is not free at all its ends), or the presence of accelerometer wax/cables at-
tached to the structure (if non-contact measurement techniques are not used). Although,
few loss mechanisms can be easily quantified and included in the modeling technique, there
are always some qualitative loss mechanisms which have to be either ignored due to the
modeling complexity (like the loss at boundaries) or must be reduced (like using a laser
Doppler vibrometer instead of an accelerometer). Hence, based on the loss mechanisms,
relevant damping models are used for modeling purpose.

Different modeling techniques for lumped parameter systems that include single degree-
of-freedom systems and multiple degree-of-systems has been discussed in a dissertation by
Adhikari [59]. Since the focus of the current thesis is based on damping in the distributed
parameter system, four practical models are presented here as discussed in Ref. [60]. These
damping models were presented for a Euler-Bernoulli beam structure, however, they can
be used for any other distributed parameter system as well.

1. Viscous damping:

The PDE for the vibration of an Euler-Bernoulli beam in transverse direction with
viscous damping can be written as:

∂2

∂x2

(
EbIb(x)

∂2w(x, t)

∂x2

)
+ ρbAb

∂2w(x, t)

∂t2
+ γ

∂w(x, t)

∂t
= 0 (1.1)
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where γ is the viscous damping constant of proportionality, w(x, t) is the transverse
displacement of the beam, EbIb(x) is the spatially dependent flexural rigidity of the
beam, ρb is the constant mass density and Ab is the beam cross-sectional area. The
physical basis of including this damping is the air resistance that causes a resistance
force proportional to the velocity ∂w(x,t)

∂t
.

2. Strain-rate damping:

The PDE for the vibration of an Euler-Bernoulli beam in transverse direction with
strain-rate damping can be written as:

∂2

∂x2

(
EbIb(x)

∂2w(x, t)

∂x2

)
+ ρbAb

∂2w(x, t)

∂t2
+ βIb

∂5w(x, t)

∂x4∂t
= 0 (1.2)

where β is the strain-rate dependent damping constant. In this ‘strain-rate’ damping
model, the stress is proportional to strain as well as strain rate in the constitu-
tive relationship. This damping model is also known as viscoelastic or Kelvin-Voigt
damping model and has been later discussed in this work in mode detail.

3. Time hysteresis damping:

The PDE for the vibration of an Euler-Bernoulli beam in transverse direction with
the time hysteresis damping can be written as:

∂2

∂x2

(
EbIb(x)

∂2w(x, t)

∂x2
−
∫ 0

−r
g (s)

∂2

∂x2
w (x, t+ s)ds

)
+ ρbAb

∂2w(x, t)

∂t2
= 0 (1.3)

where the damping is introduced by assuming stress-strain relationship in which
stress is proportional to strain in addition to the past history of the strain. The
history kernel g(s) is defined as

g (s) =
α√
−s

exp (βs) (1.4)

where α and β are constants.

4. Spatial hysteresis damping:

The PDE for the vibration of an Euler-Bernoulli beam in transverse direction with
the spatial hysteresis damping can be written as:
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∂2

∂x2

(
EbIb(x)

∂2w(x, t)

∂x2
− ∂

∂x

[∫ l

0

h (x, ξ)

{
∂2w (x, t)

∂x∂t
− ∂2w (ξ, t)

∂x∂t

}
dξ

])
+ ρbAb

∂2w(x, t)

∂t2
= 0 (1.5)

where the kernel function is defined as

h (x, ξ) =
a

b
√

2 π
exp

(
−(x− ξ)2

2b2

)
(1.6)

where a and b are constants.

The spatial hysteretic damping is based on interpreting the energy lost in the beam
as resulting from differential rates of rotation of neighboring beam sections causing
internal friction.

There are several other models proposed for more complicated nonlinear damping and
non-viscously damped systems; however, the scope of the current research would include
only linear viscous, viscoelastic and hysteretic damping models.

1.2.4 Other applications of cabled structures

The cable-harnessed structures can have applications other than space structures. It was
mentioned in section 1.1 that cables are generally attached to the structures in two ways:
1) either fixed to the host at two ends, or 2) harnessed to a host structure at multiple
points.

The study of the first method was mainly discussed in the applications that include,
but are not limited to, civil or marine structures. In civil structures, the effect of cable
dynamics in cable-stayed bridges has been discussed in detail, primarily by considering
nonlinear vibrations in Refs. [61, 62, 63, 64, 65]. Moreover, for the marine structures as
well, nonlinear vibration analysis was done in the works [66, 65] where the cable is assumed
to have a tension-slack configuration. More applications of this attachment method include
the dynamics of the overhead power transmission lines where propagation of shock waves
is studied in another nonlinear model proposed in Ref. [67]. It is important to note that
these are possible applications of cabled structures where cable dynamics impact the host

15



Figure 1.9: A schematic of the shape memory alloy (SMA)-reinforced beam. Picture
courtesy: Rezaei et al. [70]. Permission to reuse this picture is pre-approved as per SAGE
publishing.

structure dynamics. However, the scope of the current study is focused on the second
method of cable attachment.

With respect to the second method, in addition to the applications on space structures,
there are other works, that are worth mentioning. One of the applications of modeling
cable-harnessed structure lies in optical fiber coupler used in telecommunications. A sim-
plified model developed in Ref. [68] presents the modeling of the substrate as a beam and
the optical fiber as a taut string. The string is connected to the substrate at multiple
points using an adhesive material, vibrating together and resulting in a coupled equation
of motion. In the present work as well, the cable is modeled as a taut string. In another
application [69], a cable is used to suppress the vibrations in a cantilever beam when at-
tached at finite locations. An interesting application caters to the structures that have
embedded shape memory alloy (SMA) wires. In Ref. [70], the SMA wires are embedded
in a clamped-clamped beam as shown in Fig. 1.9. In the formulated mathematical model,
the wires and beam are assumed to be in perfect no-slip contact. In addition, the effect of
the pre-strain of the SMA wires on the beam structure is taken into consideration. These
two assumptions are also used while modeling the cable-harnessed structures in the cur-
rent thesis. Experimental studies on the shift in dynamics of the host structure due to
embedded SMA wires was presented in Ref. [71].

There is no analytical model present in the literature that considers the cable-harnessed
structures with plates as the substrate (host). In this study, the host structures were
modeled as two-dimensional plate-like structures and cables as taut strings. The proposed
linear models are simple to analyze, have high accuracy and can be easily implemented in
control algorithms.
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1.2.5 Standard differential equations in structural dynamics

In this thesis, the equivalent continuum models are developed for cable-harnessed struc-
tures. These models are represented in form of PDEs, which are shown to have a similarity
with some standard PDEs that are studied in the field of structural dynamics. The rele-
vant PDEs are presented in this section to help in making a comparison while analyzing
the PDEs of the cable-harnessed structures in later chapters by referring to this section.
Following are the differential equations of different structures under free vibration in trans-
verse direction:

1. Euler-Bernoulli beam (undamped) [72]

EbIb
∂4w(x, t)

∂x4
+ ρbAb

∂2w(x, t)

∂t2
= 0 (1.7)

In this equation, w(x, t) represents the transverse displacement of a Euler beam. In
addition, the Young’s Modulus Eb and mass density ρb are assumed to be constant
across the length of the beam. The area of cross-section Ab is also uniform and the
Ib represents the second moment of area of the beam’s cross-section.

2. Euler-Bernoulli beam with air and Kelvin-Voigt damping [72]

EbIb
∂4w(x, t)

∂x4
+ ρbAb

∂2w(x, t)

∂t2
+ γ

∂w(x, t)

∂t
+ βIb

∂5w(x, t)

∂x4∂t
= 0 (1.8)

In this equation, in addition to the terms in Eq. 1.7, the third term represents the
viscous or air damping and the fourth term corresponds to the strain-rate damping,
also called as Kelvin-Voigt damping. γ and β are the damping constants.

3. Euler-Bernoulli beam with hysteretic damping [73]

E∗b Ib
∂4w(x, t)

∂x4
+ ρbAb

∂2w(x, t)

∂t2
= 0 (1.9)

The hysteretic damping in an Euler beam is included by using a complex Young’s
modulus E∗b . The real part of this term is called the storage modulus and corresponds
to the stiffness in the system, whereas the imaginary part is called the loss modulus
that corresponds to damping.
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4. Kirchhoff’s thin rectangular plate [74]

D

(
∂4w(x, y, t)

∂x4
+ 2

∂4w(x, y, t)

∂x2∂y2
+
∂4w(x, y, t)

∂y4

)
+ ρph

∂2w(x, y, t)

∂t2
= 0 (1.10)

This equation represents the governing motion in the transverse direction of a thin
rectangular plate. The transverse displacement at a point (x, y) within the plate at
time t is defined as w(x, y, t). D represents the flexural stiffness of the plate, ρp is
plate’s mass density, and h is the thickness.

Moreover, the first term, D ∂4w(x,y,t)
∂x4 , corresponds to the bending stiffness in the x-

direction; the second term, 2D ∂4w(x,y,t)
∂x2∂y2 corresponds to the twisting and coupled-

bending stiffness; and the third term ∂4w(x,y,t)
∂y4 corresponds to the bending stiffness in

the y-direction. Additionally, the last term represents the inertia effect in the system.

5. Specially orthotropic laminated plate [3]

Do
11

∂4w(x, y, t)

∂x4
+ 2(Do

12 + 2Do
66)
∂4w(x, y, t)

∂x2∂y2
+Do

22

∂4w(x, y, t)

∂y4
+ ρoph

∂2w(x, y, t)

∂t2
= 0

(1.11)

The Eqs. 1.11 and 1.12 are generally discussed under the umbrella of ‘mechanics
of composite materials’. A specially orthotropic lamina has principal material axes
(direction of fiber alignment) aligned with the natural body axes. In a specially
orthotopic laminated plate, there is either a single layer of a specially orthotropic
material or multiple specially orthotropic layers that are symmetrically arranged
about the laminate middle surface.

The equation 1.11 has similar derivative terms as that of Kirchhoff’s plate; however,
due to presence of fibers, the material constants are different in a specially orthotropic
laminated plate. Do

11 and Do
22 corresponds to the flexural rigidity in the x and y di-

rection, respectively. On the other hand, Do
12 and Do

22 corresponds to the stiffness in
the coupled-bending and twist motion, respectively. The subscript o is used to dif-
ferentiate these coefficients, corresponding to specially orthotropic plate, with those
developed in the current research work, As it is seen later in the Chapters 4 and 5,
the governing PDEs of the equivalent continuum structure of some cable-harnessed
structures are of same form as Eq. 1.11 and the coefficients would be used without
the subscript o.
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Figure 1.10: Unbonded view of a three-layered regular symmetric angle ply laminate.
Picture courtesy: R. M. Jones [3]

6. Symmetric angle-ply laminated plate [3]

DSAP
11

∂4w(x, y, t)

∂x4
+ 4DSAP

16

∂4w(x, y, t)

∂x3∂y
+ 2(DSAP

12 + 2DSAP
66 )

∂4w(x, y, t)

∂x2∂y2

+ 4DSAP
26

∂4w(x, y, t)

∂x∂y3
+DSAP

22

∂4w(x, y, t)

∂y4
+ ρSAPp h

∂2w(x, y, t)

∂t2
= 0

(1.12)

A symmetric angle-ply laminate falls under a sub-class of symmetric composite lami-
nates which has adjacent lamina at an angle +α and −α to the axial direction of the
laminate as shown in Fig. 1.10. Such laminates have orthotropic laminae of equal
thicknesses. In addition to the terms shown in Eq. 1.11, there are two additional
terms in the PDE of a symmetric angle-ply laminate corresponding to DSAP

16 and
DSAP

26 that represents the bend-twist coupling in the laminated plate. The govern-
ing PDE of the equivalent continuum model of a diagonal pattern cable-harnessed
structure studied in Chapter 5 was found similar to that of a symmetric angle-ply
laminated plate.

1.3 Thesis Objectives

The overall objective of this thesis is towards creating accurate analytical models for cable-
harnessed structures. To start with, the modeling technique to include damping in the
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cable-harnessed beam structures is developed for the cables wrapped in zigzag and diag-
onal manner. In order to complete the analytical model, the damping characterization
of cable material is done followed by the experimental modal testing of the fabricated
cable-harnessed beam structures for validation purpose. As a next step towards the major
contribution of the thesis, analytical modeling of the dynamics of cable-harnessed plate
structures when cables are attached in a complex wrapped pattern with a periodic fun-
damental element is developed. The numerical verification of this study is presented by
comparing the results with finite element simulations. The proposed analytical models are
also experimentally validated for multiple cable-harnessed plate structures with parallel,
zigzag and diagonal patterns.

1.4 Organization of thesis

In this section, the outline of the thesis is presented.

In Chapter 2, mathematical modeling is developed to incorporate damping mechanisms
in cable-harnessed beam structures. Two energy loss mechanisms, namely Kelvin-Voigt and
hysteretic damping models, have been considered for modeling purpose. The verification of
the model is done by comparing results with DTFM. Finally, a detailed parametric analysis
to study the effect of various system parameters on overall damping has been discussed.

In Chapter 3, the material damping in different cables were characterized to get the
best fit for Kelvin-Voigt and hysteretic damping model using the characterization curves.
The experimental modal analysis on the fabricated cable-harnessed beam setups was then
conducted, and the dynamic characteristics of the system were obtained. A comparison
with the analytical model and the relevant discussion is then presented.

In Chapter 4, an analytical modeling technique has been proposed for the cable-
harnessed plate structure with cables attached in a straight configuration parallel to each
other. Experimental validation is further presented for this model by comparing the natural
frequencies, FRFs and mode shapes of different fabricated cable-harnessed structures.

In Chapter 5, an analytical modeling technique has been proposed for the cable-
harnessed plate structure with cables attached in complex wrapping patterns. The govern-
ing equations of motion are derived for two different wrapping patterns, namely diagonal
and zigzag. The model results were analyzed using frequency response functions and
compared using FE simulations for different boundary conditions. Finally, a detailed para-
metric analysis is presented by varying system parameters and discussing their effects on
change in system dynamics.
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In Chapter 6, the modal testing experiments are conducted on the cable-harnessed
structures with cables wrapped in periodic patterns and the obtained results are used to
validate the analytical model proposed in Chapter 5. The novelty of the proposed model
is also highlighted by comparing it with an existing cable-harnessed beam model.

In Chapter 7, the stability of the governing partial differential equations obtained in
Chapters 4 and 5 for cable-harnessed plates are discussed.

In Chapter 8, a preliminary investigation on cable-harnessed cylindrical shell structure
was examined. A homogenized equivalent continuum model was developed for a structure
with multiple cables attached to a cylindrical shell in a parallel configuration. The results
obtained from the proposed analytical model are verified using FE simulations.

In Chapter 9, the major conclusions and contributions of the current thesis are pre-
sented. In addition, the future improvements and further possible developments based on
the current work has also been presented.
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Chapter 2

Modeling of Damping Mechanisms in
Cable-Harnessed Beam Structures

In this chapter, an analytical model is developed based on the mathematical formulation
of damping mechanisms in cable-harnessed beam structures1. This research work was
conducted to further build on the work of the undamped model proposed by Martin et
al. [31, 30] and fill a significant gap in the literature. The present study was conducted
by incorporating two energy loss mechanisms namely Kelvin-Voigt and hysteretic damping
models.

The chapter 2 is organized as follows: the cable-harnessed beam system is first described
and all the model assumptions are listed. To obtain the equivalent continuum model of
the structure, the expressions of kinetic energy and the strain energy are calculated for
the system that contains the contributions from both the beam and cable. As mentioned
above, to include the damping in the system, two models were considered. For the Kelvin-
Voigt damping model, to obtain the total energy loss in the system, the total Rayleigh
dissipation function was calculated. Whereas for the hysteretic damping model, the energy
loss mechanism was accounted in the expression of complex strain energy. The PDEs for the
equivalent continuum model of the structure were then obtained using the homogenization
method and Hamilton’s principle. Next, in order to present the numerical verification
for the proposed analytical model, a Distributed Transfer Function Method (DTFM) was
used. (DTFM has also been used earlier by Spak et al. [25] for modeling the damping in
the cables that are harnessed to the beam in a longitudinal configuration. However, in the

1The work presented in this chapter has been published as a research article in the ASME Journal of
Vibration and Acoustics [75].
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present work, the systems with cables that are wrapped around the beam structure are
studied.) Next, a detailed parametric analysis is presented followed by the comparisons
between the two damping models.

2.1 Mathematical modeling

The homogenization method is a useful approach that helps simplify mathematical model-
ing for structures of repeated patterns. Periodicity condition constitutes a major criterion
for the validity of this approach in dynamic modelling of structures. In this regard, the
energy-equivalence homogenization method, as discussed in the chapter 1, is one of the
most common approaches in which kinetic and strain energies and Rayleigh dissipation
functions for a fundamental repeated element are found in terms of the displacement com-
ponents evaluated at the element center. It is then assumed that for a structure with a
sufficiently large number of fundamental elements, the local effects within an element are
negligible and, therefore, the energy expressions of the fundamental element divided by
the elements length are good representatives for the energy per unit length of the entire
system. These energy per unit lengths are then used along with the Hamilton’s principle
to obtain the equations of motion for the entire system.

2.1.1 System description and model assumptions

The system consists of a uniform rectangular cross-section beam, made of homogeneous
and isotropic material, wrapped by cables in repeated patterns as shown in Figs. 2.1 and
2.2. Two wrapping patterns are considered namely zigzag and diagonal pattern, and their
respective fundamental elements are also shown in these figures. The cable is assumed to
be under a pre-tension in the equilibrium position and remains in tension during vibration.
The pre-compression in the beam element, as a result of the cable tension, has also been
accounted for. The attached cable has a circular cross-section (radius = rc) and is wrapped
around the beam structures in a periodic pattern. The length of the host beam structure is
denoted by l and that of fundamental repeated element is Le. The width and thickness of
the host beam is denoted by b and h, respectively. The local coordinate system (ξ, y, z) is
defined for the fundamental element, whereas the global coordinate system (x, y, z) caters
to the entire beam system.

The effects due to the initial twist due to the pre-tensioned wrapping has been shown
to be negligible [31] and, therefore, is ignored in the present mathematical model. Further,
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the cable is assumed to stay in perfect contact with the host beam during vibration. This
assumption enables the model to assume a single degree of freedom for both the beam and
cable structure, which makes the model simplistic in nature compared to the case when two
different degrees of freedom (DOF) are considered. Further complexity is introduced in
the two DOF model as the connection element would also have to be modeled separately.
In addition, this perfect contact assumption is reasonable because in the earlier studies
on cable-harnessed beam structures, refer [31, 30, 33], it has been seen that when the
cables are wrapped around the host beam in tension, the system dynamics observed in the
experiments can be well predicted using this modeling assumption.

b

h
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z

θ x

Le

θ
θ

θ

(a)

b

h

y

z

θ ξ

Le

Cable radius = rc

(b)

Figure 2.1: (a) Schematic of a cable-harnessed beam with the zigzag pattern, (b) Funda-
mental element of the zigzag pattern

In the presented homogenized model, Euler-Bernoulli beam assumptions are used to
model the host beam characteristics. Hence, as a starting point, a linearized displacement
field is assumed:

ux (x, z, t) = −z w′(x, t)
uy (x, z, t) = 0

uz (x, z, t) = w (x, t)

(2.1)

where w(x, t) is the transverse displacement of a coordinate x of the beam and w′

indicates the partial derivative of w with respect to x. This displacement field is then used
to find the kinetic energy, strain energy and energy lost due to damping for a fundamental
element in terms of the spatial and time derivatives for these displacement components that
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Figure 2.2: (a) Schematic of a cable-harnessed beam with the diagonal pattern, (b) Fun-
damental element of the diagonal pattern

are evaluated at the center of the fundamental element as will be shown in the following
sections.

2.1.2 Kinetic energy

Neglecting the rotary inertia, the kinetic energy of the fundamental element can be found
using the mass of the element and the transverse velocity evaluated at the center of the

element (assuming ∂w(ξ,t)
∂t

∣∣∣
ξ=Le/2

= ẇ∗) as [31]:

Te =
1

2
me (ẇ∗)2 (2.2)

where the fundamental element mass for each of the two patterns shown in Figs. 2.1
and 2.2 can be found using the detailed derivations shown in Appendix section A.1 as

me−zigzag =

(
ρbAb +

ρcAc
cos θ

)
(4b̄+ 4h̄)

tan θ

me−diagonal =

(
ρbAb +

ρcAc tan θ

b̄

[
b̄

sin θ
+ 2h̄+ b̄

])
2̄b

tan θ

(2.3)
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Here, ρb, ρc, Ab, Ac represent the beam and cable’s mass densities and cross-sectional
areas, respectively. Also, b̄ = b/2 + rc, and h̄ = h/2 + rc. The cable wrapping angle, θ, is
assumed to be constant along the length of the beam as shown in Figs. 2.1 and 2.2. Using
Eq. 2.3, the kinetic energy for each of the two fundamental elements shown in the figure
may be found as

Te−zigzag =
1

2
me−zigzag (ẇ∗)2

Te−diagonal =
1

2
me−diagonal (ẇ

∗)2
(2.4)

As shown in Appendix section A.1, the length of the fundamental element for the two
patterns can be written in terms of host beam and cable parameters, and wrapping angle
as

Le−zigzag = (4b̄+ 4h̄)/ tan θ

Le−diagonal =
2b̄

tan θ

(2.5)

Now, the kinetic energy expressions in Eq. 2.4 are used to find the kinetic energy per
unit length for the structure as follows:

Te−zigzag
Le−zigzag

=
1

2

(
ρbAb +

ρcAc
cos θ

)(
ẇ∗
)2

Te−diagonal
Le−diagonal

=
1

2

(
ρbAb +

ρcAc tan θ

b̄

[
b̄

sin θ
+ 2h̄+ b̄

]) (
ẇ∗
)2

(2.6)

It should be noted that a major assumption for the homogenization approach pertains
to these energy per unit length remaining constant along the overall length of the structure.
Therefore, using Eq. 2.6, the differential kinetic energy of the overall system can be found
as

dTzigzag =
1

2

(
ρbAb +

ρcAc
cos θ

)(
ẇ∗
)2

dx

dTdiagonal =
1

2

(
ρbAb +

ρcAc tan θ

b̄

[
b̄

sin θ
+ 2h̄+ b̄

]) (
ẇ∗
)2

dx

(2.7)

Integrating the given differential kinetic energy terms over the total length l of the
beam, the total kinetic energy of the entire cabled beam system is obtained as [31]

Ttot =

∫ l

0

1

2
K1 (ẇ)2 dx (2.8)
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where ẇ represents ∂w(x,t)
∂t

and K1 for the two patterns are given by

K1−zigzag = ρbAb +
ρcAc
cos θ

K1−diagonal = ρbAb +
ρcAc tan θ

b̄

[
b̄

sin θ
+ 2h̄+ b̄

] (2.9)

It should be noted that Eq. 2.9 represents the homogenized mass per unit length for
both the wrapping patterns. For similar wrapping angle, the diagonal pattern would have
a higher mass per unit length than the zigzag pattern.

2.1.3 Strain energy

Obtaining the strain energy of the fundamental element is another necessary step in finding
the equivalent continuum model for a structure of given repeated patterns. For this pur-
pose, similarly, the strain energy of the cable and beam within the fundamental element is
first obtained [31]. The Green-Lagrange strain tensor is used to find the strain-displacement
relationship as

εij =
1

2

ui,j + uj,i +
∑

k={x,y,z}

uk,iuk,j

where i, j = {x, y, z} (2.10)

Substituting Eq. 2.1 in 2.10, the only non-zero component of the strain tensor is,

εxx = −zw′′ + z2

2
(w′′)

2
+

1

2
(w′)

2
(2.11)

This expression denotes the longitudinal normal strain in the x-direction. However,
the net longitudinal strain in the beam within a fundamental element will be calculated
after considering the effect of pre-compression due to the string pre-tension. Assuming
T as the pre-tension in the cable, the pre-strain in the cable can be written as T/EcAc.
Also, the cable pre-tension is responsible for an initial compressive strain in the beam
given by −T cos (θ)/EbAb. Ec and Eb denote the Young’s modulus of the cable and beam,
respectively. To formulate the following equations within the fundamental element, the
local coordinate ξ corresponding to the longitudinal direction of the fundamental element
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is used. Hence, the longitudinal strain for the beam within the fundamental element during
vibrations can be written as

εb (ξ, t) = −T cos (θ)

EbAb
+ εξξ (2.12)

Similarly, the total strain in the cable comprises of the pre-tension strain and strain
during bending vibrations. The bending strain component along the cable is found using
a tensor transformation as εξξ cos2 (θ). This strain is assumed to be the same across the
cable cross-section Ac. Therefore, the total strain is evaluated at the center of the cable at
any time t as

εc (ξ, t) =
T

EcAc
+ εξξ|z=zc(ξ) cos2 (θ) (2.13)

where zc (ξ) is assumed to be the z coordinate of the center of the cable at location ξ.
Once the net strains are calculated, the next step is to calculate the total strain energy for
a fundamental element. This is defined by the sum of the individual energy components
for the beam and cable within the elements shown in Figs. 2.1 and 2.2. The strain energy
of the beam part within an arbitrary fundamental element is given as

Ue,beam =

∫∫∫
Vb

1

2
Eb (εb (ξ, t))2dV (2.14)

where Vb denotes the volume of beam fundamental element. Similarly, the strain energy
in the cable part within an arbitrary fundamental element is found as

Ue,cable =

∫∫∫
Vc

1

2
Ec (εc (ξ, t))2dV (2.15)

where Vc denotes the volume of cable fundamental element. Using Eqs. 2.11, 2.12, 2.13,
2.14, 2.15, the total strain energy for a fundamental element can be found as

Ue ≈
∫ Le

0

(
1

2

[
EbIb + EcAcz

2
c cos3 θ + Tz2

c cos θ − T cos θIb
Ab

](
∂2w

∂ξ2

)2

− Tzc cos θ
∂2w

∂ξ2
+
T 2 cos2 θ

2EbAb
+

T 2

2EcAc cos θ

)
dξ (2.16)

The approximation symbol is used because the terms higher than second-degree of
displacement w(ξ, t) and its derivatives are ignored as shown in Appendix section A.2.
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Further, the Taylor series expansion up to the second order of the displacement w(ξ, t)
about the fundamental element center is substituted in Eq. 2.16 and integrated over the
fundamental element length to obtain the total element strain energy, U e, details of which
are presented in the Appendix. The zc coordinate values for the cables center at which the
cable strain is evaluated are listed in Appendix section A.2 in Eqs. A.18 and A.25.

Ue−zigzag =
1

2

(
EbIb

(
4b̄+ 4h̄

)
tan θ

+
4EcAch̄

2 cos3 θ

tan θ

(
b̄+

h̄

3

)
+

4T h̄2 cos θ

tan θ

(
b̄+

h̄

3

)

− T cos θ
Ib
Ab

(
4b̄+ 4h̄

)
tan θ

)[
∂2w

∂ξ2

(
Le
2
, t

)]2

+
T 2Le cos2 θ

2EbAb
+

T 2Le
2EcAc cos θ

(2.17)

Ue−diagonal =
1

2

(
2b̄

tan θ

)(
EbIb + EcAch̄

2 cos3 θ + T cos θ

(
h̄2 − Ib

Ab

))[
∂2w

∂ξ2

(
Le
2
, t

)]2

− T h̄Le cos θ
∂2w

∂ξ2

(
Le
2
, t

)
+
T 2Le cos2 θ

2EbAb
+

T 2Le
2EcAc cos θ

(2.18)

On the right-hand side of both the above expressions, Le represents the fundamental
element length corresponding to the wrapping pattern. The element length from Eq. 2.5
and strain energy expressions in Eqs. 2.17 and 2.18 are then used to find the strain energy
per unit length of the structure as follows:

Ue−zigzag
Le−zigzag

=
1

2

(
EbIb + EcAch̄

2 cos3 θ

(
b̄+ h̄

3

b̄+ h̄

)

+ T cos θ

 h̄2
(
b̄+ h̄

3

)
b̄+ h̄

− Ib
Ab

)[∂2w

∂ξ2

(
Le
2
, t

)]2

+
T 2 cos2 θ

2EbAb
+

T 2

2EcAc cos θ
(2.19)

Ue−diagonal
Le−diagonal

=
1

2

(
EbIb + EcAch̄

2 cos3 θ + T cos θ

(
h̄2 − Ib

Ab

))[
∂2w

∂ξ2

(
Le
2
, t

)]2

− T h̄ cos θ
∂2w

∂ξ2

(
Le
2
, t

)
+
T 2 cos2 θ

2EbAb
+

T 2

2EcAc cos θ
(2.20)
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Similar to the kinetic energy case, these expressions are assumed to remain constant
across the entire length of the equivalent homogenized structure. This is a valid assumption
when a structure’s ratio of overall length to the fundamental element length is sufficiently
large indicating the fundamental element is sufficiently small compared to the entire struc-
ture. Using this assumption, the differential energy expressions for an equivalent continuum
model for the strain energy are found as

dU zigzag =

(
1

2

[
EbIb + EcAch̄

2 cos3 θ

(
b̄+ h̄

3

b̄+ h̄

)

+ T cos θ

 h̄2
(
b̄+ h̄

3

)
b̄+ h̄

− Ib
Ab

][∂2w

∂x2
(x, t)

]2

+
T 2 cos2 θ

2EbAb
+

T 2

2EcAc cos θ

)
dx (2.21)

dUdiagonal =

(
1

2

[
EbIb + EcAch̄

2 cos3 θ + T cos θ

(
h̄2 − Ib

Ab

)][
∂2w

∂x2
(x, t)

]2

− T h̄ cos θ
∂2w

∂x2
(x, t) +

T 2 cos2 θ

2EbAb
+

T 2

2EcAc cos θ

)
dx (2.22)

Integrating the given differential strain energy terms over the total length of the beam,
the strain energy of the entire cabled beam system is obtained as [31],

Utot =

∫ l

0

(
1

2
B1

(
∂2w

∂x2

)2

+B2
∂2w

∂x2
+B3

)
dx (2.23)

This expression represents the homogenized strain energy of an equivalent continuum
structure where, B1, B2 and B3 for each of the two patterns are given as

B1−zigzag = EbIb + EcAch̄
2 cos3 θ

(
b̄+ h̄

3

b̄+ h̄

)
+ T cos θ

 h̄2
(
b̄+ h̄

3

)
b̄+ h̄

− Ib
Ab

 (2.24a)

B2−zigzag = 0 (2.24b)

B3−zigzag =
T 2 cos2 θ

2EbAb
+

T 2

2EcAc cos θ
(2.24c)
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B1−diagonal = EbIb + EcAch̄
2 cos3 θ + T cos θ

(
h̄2 − Ib

Ab

)
(2.25a)

B2−diagonal = −T h̄ cos (θ) (2.25b)

B3−diagonal =
T 2 cos2 θ

2EbAb
+
T 2 tan θ

2 EcAcb̄

[
b̄

sin θ
+ 2h̄+ b̄

]
(2.25c)

2.1.4 Energy lost due to damping

The next step in finding an equivalent homogenized model is to incorporate the damp-
ing effects. Both Kelvin-Voigt and hysteretic damping models are used to represent the
damping effects from the cables. The damping in the host beam is also included in each
damping model.

Kelvin-Voigt damping

The stress-strain constitutive relations for the Kelvin-Voigt model can be written as

σb = Ebεb + Cbε̇b = Eb (εb + ηkbε̇b) (2.26)

σc = Ecεc + Ccε̇c = Ec (εc + ηkcε̇c) (2.27)

where σb and εb are the longitudinal normal bending stress and strain in the beam,
and σc and εc represent the axial stress and strain in the cable, respectively. Also, Cb and
Cc represent the damping coefficients in N − s/m2, and ηkb, ηkc are the proportionality
constants in s for the beam and cable damping, respectively. The overdot indicates the
derivative taken with respect to time. The Rayleigh dissipation function of the beam within
an arbitrary fundamental element can then be found using the time derivative of its strain
as [76]

Rb =

∫ Le

0

∫
Ab

1

2
Cb (ε̇b)

2dV (2.28)

On substitution of Eq. 2.12 in Eq. 2.28, the dissipation function for the beam material
in a fundamental element can be written as

Rb =

∫ Le

0

∫
Ab

1

2
Cb

(
∂

∂t

(
−T cos θ

EbAb
− z∂

2w

∂ξ2
+
z2

2

(
∂2w

∂ξ2

)2

+
1

2

(
∂w

∂ξ

)2
))2

dAdξ (2.29)
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Performing the above integration and ignoring the higher order and nonlinear terms as
shown in appendix section A.3,

Rb ≈
∫ Le

0

∫
Ab

1

2
Cbz

2

(
∂3w

∂t ∂ξ2

)2

dAdξ (2.30)

This can be further simplified as

Rb =

∫ Le

0

1

2
CbIb

(
∂3w

∂t ∂ξ2

)2

dξ (2.31)

The total energy loss rate for the fundamental element will also include the loss due to
damping in the cables within the element. As an example, this rate can be found for the
diagonal element shown in Fig. 2.2 as

Rc =

∫ Le/ cos θ

0

∫
Ac

1

2
Cc (ε̇c)

2

∣∣∣∣
z=zc(ξ)

dA dl (2.32)

Note that the cables on the side and bottom sections for this pattern do not contribute
to the energy loss for the diagonal pattern as they will not strain during bending vibrations.
Using Eq. 2.13, the dissipation function for the cable is expanded as

Rc =

∫ Le

0

[∫
Ac

[
1

2
Cc

(
∂

∂t

(
T

EcAc

+

(
−zc

∂2w

∂ξ2
+
z2
c

2

(
∂2w

∂ξ2

)2

+
1

2

(
∂w

∂ξ

)2
)

cos2 (θ)

))2]
dA

](
dξ

cos (θ)

)
(2.33)

Similarly, ignoring the higher order and nonlinear terms will result in

Rc ≈
∫ Le

0

1

2
CcAcz

2
c cos3 θ

(
∂3w

∂t ∂ξ2

)2

dξ (2.34)

It can be easily shown that the Rayleigh dissipation function for the cables within the
zigzag fundamental element results in the same expression shown above. Further details
for this derivation are presented in appendix section A.3. Finally, the Rayleigh dissipation
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function for the entire fundamental element consisting of both cable and beam components
for either the zigzag or diagonal wrapping patterns can be found as

Re = Rb +Rc =

∫ Le

0

1

2

(
CbIb + CcAcz

2
c cos3 θ

)( ∂3w

∂t ∂ξ2

)2

dξ (2.35)

Using the Taylor’s series expansion for ẇ (ξ, t) as shown in appendix section A.3, the
Rayleigh dissipation function for the fundamental element of both wrapping patterns can
be found as

Re−zigzag =
1

2

[
CbIb

(
4b̄+ 4h̄

)
tan θ

+
4CcAch̄

2 cos3 θ

tan θ

(
b̄+

h̄

3

)][
∂3w

∂t ∂ξ2

(
Le
2
, t

)]2

(2.36)

Re−diagonal =
1

2

(
2b̄

tan θ

)
[CbIb + CcAch̄

2 cos3 θ]

[
∂3w

∂t ∂ξ2

(
Le
2
, t

)]2

(2.37)

Dividing the above energy loss rate expression by the respective length of the funda-
mental element,

Re−zigzag

Le−zigzag
=

1

2

[
CbIb + CcAch̄

2 cos3 θ

(
b̄+ h̄

3

b̄+ h̄

)][
∂3w

∂t ∂ξ2

(
Le
2
, t

)]2

(2.38)

Re−diagonal

Le−diagonal
=

1

2
[CbIb + CcAch̄

2 cos3 θ]

[
∂3w

∂t ∂ξ2

(
Le
2
, t

)]2

(2.39)

On the right hand side of both the above expressions, Le represents the length of
fundamental element corresponding to the wrapping pattern.

Once again, the conditions for the periodicity and having sufficiently large number of
fundamental elements over the span of the structure are used. Hence, the ratios in Eqs.
2.38 and 2.39 are assumed constant across the entire length of the equivalent homogenized
structure and the differential of the Rayleigh dissipation function is found as

dRzigzag =
1

2

[
CbIb + CcAch̄

2 cos3 θ

(
b̄+ h̄

3

b̄+ h̄

)][
∂3w

∂t ∂x2
(x, t)

]2

dx (2.40)

dRdiagonal =
1

2
[CbIb + CcAch̄

2 cos3 θ]

[
∂3w

∂t ∂x2
(x, t)

]2

dx (2.41)
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Integrating the above expressions over the total beam length, the total dissipation
function is obtained in the following form:

Rtot =

∫ l

0

1

2
D1 (ẇ′′)

2
dx (2.42)

where, the coefficient D1 depends on the wrapping pattern and system parameters and
is found as

D1−zigzag = CbIb + CcAch̄
2 cos3 θ

(
b̄+ h̄/3

b̄+ h̄

)
(2.43)

D1−diagonal = CbIb + CcAch̄
2 cos3 θ (2.44)

Hysteretic damping

In the hysteretic damping model, the complex modulus is used to obtain the constitutive
relationship of the material. Complex modulus consists of a real and imaginary part which
represents the storage and loss modulus, respectively. It includes the information on elastic
modulus and damping [73] and is written as

E∗b = E ′b (1 + jηhb) = E ′b + jE ′′b (2.45a)

E∗c = E ′c (1 + jηhc) = E ′c + jE ′′c (2.45b)

where j =
√
−1 and the subscripts b and c denote beam and cable, respectively. The

storage and loss modulus are denoted by E ′ and E ′′, respectively. The storage modulus
relates to the material’s ability to store the energy elastically; whereas, the loss modulus
is related to the material’s ability to dissipate stress through heat. The dimensionless loss
factors, ηhb and ηhc, represent the ratios of loss modulus to storage modulus for the beam
and cable, respectively. The constitutive relationship between stress and strain is then
written as

σb (t) = E∗b εb (t) (2.46a)

σc (t) = E∗c εc (t) (2.46b)

Using the relations in Eq. 2.46, the complex strain energy within a fundamental element
of the beam and cable system is written as

U∗e,beam =

∫∫∫
Vb

1

2
E∗b (εb (ξ, t))2dV (2.47a)
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U∗e,cable =

∫∫∫
Vc

1

2
E∗c (εc (ξ, t))2dV (2.47b)

Adding these two equations and using the similar methodology to derive the total strain
energy as followed earlier in Eqs. 2.14 − 2.25, the total complex strain energy is obtained
for a hysteretically damped system as

U∗tot =

∫ l

0

(
1

2
B∗1

(
∂2w

∂x2

)2

+B2
∂2w

∂x2
+B3

)
dx (2.48)

where, B2 and B3 are the same as mentioned in Eqs. 2.24 and 2.25, and B∗1 for each of
the two patterns is given as

B∗1−zigzag = E∗b Ib + E∗cAch̄
2 cos3 θ

(
b̄+ h̄

3

b̄+ h̄

)
+ T cos θ

 h̄2
(
b̄+ h̄

3

)
b̄+ h̄

− Ib
Ab

 (2.49a)

B∗1−diagonal = E∗b Ib + E∗cAch̄
2 cos3 θ + T cos θ

(
h̄2 − Ib

Ab

)
(2.49b)

2.1.5 Equation of motion

In this section, the governing equations of motion for transverse vibrations of the cable-
harnessed beam system are derived for both damping models.

Kelvin-Voigt damping

Application of Hamilton’s principle for the damped system results in,

δ

∫ t1

t0

Ldt =

∫ t1

t0

(δTtot − δUtot + δWd) dt = 0 (2.50)

where Ttot, Utot and Wd denote the kinetic and strain energies and energy loss due
to damping, respectively and δ is the variation. The energy loss variations due to the
Kelvin-Voigt damping [77] is found using

δWd = QDδw = −∂Rtot

∂ẇ
δw (2.51)

Here, QD is the non-conservative damping force and is obtained by differentiating the
Rayleigh dissipation function with respect to velocity ẇ. Using equations 2.8, 2.23, 2.42,
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2.50, and 2.51, and applying Hamilton’s principle, the governing equation of motion for
the transverse vibrations and associated boundary conditions are found as

K1ẅ +B1w
′′′′ +D1ẇ

′′′′ = 0 (2.52)

w (x, t) = 0|x=0 or l (2.53a)

w′ (x, t) = 0|x=0 or l (2.53b)

B1w
′′ (x, t) +D1ẇ

′′ (x, t) = −B2|x=0 or l (2.53c)

B1w
′′′ (x, t) +D1ẇ

′′′ (x, t) = 0|x=0 or l (2.53d)

Further details of applying the Hamilton’s principle are shown in appendix section
A.4. It should be noted that the PDE in Eq. 2.52 resembles in form to the equation
of motion of a Euler beam with Kelvin-Voigt damping as also shown in Eq. 1.2. Hence,
the governing PDE of the cable-harnessed structure can be represented as an equivalent
Kelvin-Voigt damped Euler beam with equivalent stiffness and inertia coefficient as B1

and K1, respectively. Additionally, D1 represents the equivalent damping coefficient of the
homogenized structure.

Also, note that the coefficient B3 disappears in the equation of motion because it is a
constant term in the strain energy expressions, and on applying the variation in Hamilton’s
principle, it vanishes. The coefficient B2 disappears for the zigzag pattern, whereas it is
a non-zero constant for the diagonal pattern. Hence, for the case of diagonal pattern, the
moment boundary condition can be transformed to a homogeneous equation as described
in [31] and further solved for natural frequencies and damping ratios.

The solution procedure to obtain the frequency response function for the homogenized
Kelvin-Voigt damped system is elaborated in Appendix A.5.

Hysteretic damping

Similar to the previous case, the equations of motion for the cable-harnessed system
with hysteretic damping can be found. Here, the total strain energy U∗tot is found in Eq.
2.48 using the dynamic moduli E∗b and E∗c that also include the dissipation factors due
to damping. Therefore, the governing equation of motion for the hysteretically damped
system can be written as

K1ẅ +B∗1w
′′′′ = 0 (2.54)

where the coefficients K1 and B∗1 are evaluated for different wrapping patterns in Eq.
2.9 and Eq. 2.49, respectively. The coefficient B∗1 is also referred to as the equivalent
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complex flexural stiffness of the system [78]. It contains the information of stiffness and
damping for both the cable and beam structure.

Substituting Eq. 2.45 in Eq. 2.49, B∗1 can be written by separating real and imaginary
values as B∗1 = B′1 + jB′′1 . Therefore, the effective loss factor of the cable-harnessed system
can be written as ηCH = B′′1/B

′
1. The ηCH values for each of the zigzag and diagonal

patterns can be found as

(ηCH)zigzag =

(
E ′′b Ib +

E′′c Ach̄
2 cos3 θ(b̄+ h̄

3 )
b̄+h̄

)
(
E ′bIb +

E′cAch̄
2 cos3 θ(b̄+ h̄

3 )
b̄+h̄

+ T cos θ

(
h̄2(b̄+ h̄

3 )
b̄+h̄

− Ib
Ab

)) (2.55a)

(ηCH)diagonal =

(
E ′′b Ib+ E ′′cAch̄

2 cos3 θ
)(

E ′bIb + E ′cAch̄
2 cos3 θ + T cos θ

(
h̄2 − Ib

Ab

)) (2.55b)

These effective loss factors signify the overall hysteretic damping loss in the cable-
harnessed system. The numerator signifies the imaginary part for the equivalent complex
bending stiffness and corresponds to the overall energy loss in the structure. Conversely,
the denominator is the real part and represents the system strain energy.

It is also worth mentioning that contrary to the case of the cables moving freely as
studied in Ref. [79], the assumptions of the presented work pertain to linear models for the
cable and, therefore, the cubic nonlinearities occurring due to the mid-plane stretching are
absent in the PDE. The same assumptions are made for previous cable-harnessed structures
discussed in Refs. [25, 28, 29, 31]. Therefore, the major goal for the presented work is to
incorporate damping in the previously studied cable-harnessed structures using the same
assumptions.

The solution procedure to obtain the frequency response function for the homogenized
Kelvin-Voigt damped system is elaborated in Appendix A.6.

2.1.6 Special case: cables attached in a longitudinal pattern

In addition to the two wrapping patterns considered in the previous sections, a special
case of the longitudinal pattern shown in Fig. 2.3 is also considered in this part. In this
pattern, the cable is attached above the centerline on the top surface of the beam. The
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related coefficients of the governing equation of motion for both the damping models for
the longitudinal pattern can be easily obtained as

K1 = ρbAb + ρcAc (2.56a)

B1 = EbIb + EcAch̄
2 + T

(
h̄2 − Ib

Ab

)
(2.56b)

B2 = −T h̄ (2.56c)

B3 =
T 2

2EbAb
+

T 2

2 EcAc
(2.56d)

D1 = CbIb + CcAch̄
2 (2.56e)

B∗1 = E∗b Ib + E∗cAch̄
2 + T

(
h̄2 − Ib

Ab

)
(2.56f)

y
z

x

CableBeam

Figure 2.3: Special case of cable-harnessed beam with cable attached in a straight line on
the top surface above the centerline (Longitudinal pattern)

2.2 Distributed Transfer Function Method

In this section, the formulation for the DTFM is developed in order to verify the proposed
analytical model for the damped cable-harnessed structures with the two wrapping patterns
presented in the previous section. The DTFM was initially developed by Yang et al. [80]
to obtain the closed-form transfer functions of a one-dimensional distributed parameter
system. In short, this method transforms the systems equations in the Laplace domain
which are then cast into a matrix form. After formulating the fundamental matrix of the
system, the transfer function is evaluated.
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For a diagonal wrapping pattern, DTFM would predict an exact closed-form transfer
function as the system can be separated into multiple uniform sub-systems with a cable
lumped mass present on each sub-system node. Comparatively, for a zigzag wrapped
pattern, DTFM predicts an approximate solution of the transfer function, as the section
of cable on the beam face parallel to x−z plane introduces a non-uniformity in the system
that can not be exactly solved. The cause of this non-uniformity is the variation of the
z−coodinate of the center of cable as a function of x; hence, the transfer function for a
zigzag pattern cannot be obtained in an exact form. However, the sections of the system
where the cable is present on the beam face parallel to the x − y plane can be treated as
uniform sub-systems.

For the non-uniformly distributed parameter systems, Yang et al. [81] proposed a step-
function approximation method within the DTFM framework. For the current research,
this method is applied to obtain closed form transfer functions of zigzag and diagonal
wrapped patterns.

2.2.1 Formulation for the zigzag pattern

Figure 2.4(a) shows the front view of multiple fundamental elements of the zigzag wrapped
cable-harness beam and Fig. 2.4(b) shows a magnified single fundamental element. The
single element has been further divided into four sections/sub-systems namely S-1—S-4.
Sections S1 and S3 have the cable attached diagonally on the top and bottom surfaces of
the beam, respectively, whereas in the sections S-2 and S-4, the cable is present on the
beam face parallel to the x− z plane.

Assuming Kelvin-Voigt damping in the beam and cable, the equation of motion for the
standalone sub-systems, S-1—S-4, can be written in local coordinates as

B1w
′′′′ (ξ, t) +K1ẅ (ξ, t) +D1ẇ

′′′′ (ξ, t) = fe(ξ, t) (2.57)

where fe (ξ, t) is an external force. The PDE coefficients B1, K1, and D1 are dissim-
ilar for different sets of sub-systems. For the sub-systems, S-1 and S-3, the coefficients
are constant and are written as B1 = EbIb + EcAch̄

2 cos3 θ + T h̄2 cos θ − T cos θIb/Ab,
K1 = ρbAb + ρcAc/ cos θ, and D1 = CbIb + CcAch̄

2 cos3 θ. Since the coefficients are not a
function of ξ, the sub-systems S-1 and S-3 can be distinguished as uniformly distributed
parameter systems in the fundamental element. However, for the sub-systems S-2 and S-4,
the coefficients are listed as B1 = EbIb + EcAcz

2
c (ξ) cos3 θ + Tz2

c (ξ) cos θ − T cos θIb/Ab,
K1 = ρbAb+ρcAc/ cos θ, and D1 = CbIb+CcAcz

2
c (ξ) cos3 θ. Clearly, the coefficients B1 and
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Figure 2.4: (a) Front view of a cable-harnessed beam with the zigzag wrapping pattern,
(b) Fundamental element and the sub-systems (front view)

D1 are the function of coordinate ξ for S-2 and S-4. Also, the values of zc(ξ) for the zigzag
pattern are listed in Eq. A.18. Hence, the sub-systems S-2 and S-4 are distinguished as
non-uniformly distributed in the fundamental element.

Next, considering the cable-harnessed system composed of numerous sub-systems along
multiple fundamental elements as shown in Fig. 2.4(a), Eq. 2.57 can be written on a sub-
system level in generalized form for the global coordinate system (x, y, z). After taking the
Laplace transform, the equation can be written as

w̄′′′′ (x, s) = − K1s
2

B1 +D1s
w̄ (x, s) +

fe (x, s)

B1 +D1s
, x ∈ (0, 1) (2.58)

where w̄ (x, s), fe (x, s) are the Laplace transform of w(x, t), fe(x, t), respectively,
and s is the complex parameter. For DTFM, the domain of x is made (0, 1) by non-
dimensionalizing it over the length of the entire cable-harnessed beam. To obtain a closed-
form transfer function of the system, the above equation is represented in a matrix form
as

∂

∂x
Ψ (x, s) = F (x, s) Ψ (x, s) + ν (x, s) (2.59)
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where Ψ (x, s) = {w̄ (x, s) , w̄′ (x, s) , w̄′′ (x, s) , w̄′′′ (x, s)}T is the solution vector in Laplace

domain, and ν (x, s) =
{

0, 0, 0, fe(x,s)
B1+D1s

}T
corresponds to the force vector where {.}T is the

transpose of the vector. This representation in matrix form is similar to the state-space
representation and hence, F (x, s) is also called the state space matrix. The matrix F (x, s)
forms the core of the DTFM approach as all the properties of cable and beam are embedded
in the single matrix. F (x, s) for the current set of sub-systems is written as

F (x, s) =


0 1 0 0
0 0 1 0
0 0 0 1

− K1s2

B1+D1s
0 0 0

 (2.60)

Clearly, F (x, s) is independent of x for the sub-systems S-1 and S-3 and is a function
of x for the sub-systems S-2 and S-4 across all the fundamental elements. The boundary
conditions can also be expressed using matrix form as

M (s) Ψ (0, s) +N (s) Ψ (1, s) = γ(s), x ∈ (0, 1) (2.61)

where γ(s) represents the inhomogeneity present in the boundary conditions. M (s)
and N (s) are called the boundary condition matrices.

For the boundary value problem represented by Eq. 2.59 and Eq. 2.61, there exists a
unique solution which is represented as [80]

Ψ (x, s) =

∫ 1

0

G (x, κ, s) ν (κ, s) dκ+H (x, s) γ(s), x ∈ (0, 1) (2.62)

where

G (x, κ, s) =

{
H (x, s)M (s)φ−1 (κ, s) , κ < x
− H (x, s)N (s)φ (1, s)φ−1 (κ, s) , κ > x

}
(2.63)

and
H (x, s) = φ (x, s) [M (s) +N (s)φ (1, s)]−1 (2.64)

where φ (x, s) is the fundamental matrix of Eq. 2.59 satisfying

∂

∂x
φ (x, s) = F (x, s)φ (x, s) , φ (0, s) = I. (2.65)
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G (x, κ, s) and H (x, s) are the transfer function and boundary influence function of the
system, respectively. Also, the variables x, κ signify the sensing and actuation location,
respectively, while determining the transfer function G (x, κ, s).

The fundamental matrix φ (x, s) is the key to transfer function analysis. G (x, κ, s) and
H (x, s) are calculated once the fundamental matrix is known. It is of primary importance
to know that the exact φ (x, s) can be calculated in the closed-form for the uniformly
distributed systems or sub-systems. However, for non-uniformly distributed systems, the
exact closed form is not available in general [81]. Hence, in case of non-uniform sub-systems,
the step-function approximation method is used where the non-uniform sub-systems are
divided into a sequence of uniform sub-domains.

In Fig. 2.4(b), the non-uniform sub-system, S-2 is divided into S-2a and S-2b, and
similarly S-4 is divided into S-4a and S-4b. Since the thickness of the beam is small
compared to the width, only two sub-domains are considered to divide the non-uniform
sub-systems. It was seen that there was no major impact on the system dynamics on
further dividing these non-uniform sub-systems; however, the computational cost increased
significantly. Using the step-function approximation method, the matrix F (x, s) can be
approximated for non-uniform sub-domains as F (s) ≈ F (∆x/2, s), where ∆x is the length
of sub-domain. Once the spatially independent matrix F (s) is obtained for all the sub-
systems, the fundamental matrix φ(x, s) can be easily calculated for the cable-harnessed
beam [81]. It should be noted that the cable inertia effects are properly captured while
applying step-function approximation method. However, the stiffness effects, in general,
are marginally over-estimated due to presence of finite steps in non-uniform sub-domains.

In order to obtain transfer function for the hysteretically damped system using DTFM,
the same procedure is followed as mentioned in Eqs. 2.60 —2.65 but with the modified
F (x, s) matrix which can be obtained by taking the Laplace transform of Eq. 2.54 (after
including an external force) as

F (x, s) =


0 1 0 0
0 0 1 0
0 0 0 1

−K1s2

B∗1
0 0 0

 (2.66)

The knowledge of F (x, s) for the hysteretically damped system enables us to formulate
φ(x, s) which is further used to obtain the transfer function G (x, κ, s) for hysteretically
damped systems.
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2.2.2 Formulation for the diagonal pattern

A schematic of the front view of the diagonally wrapped cable-harnessed beam is shown in
Fig. 2.5. There are N fundamental elements in the system, also referred to as sub-systems.
Each sub-system has a diagonally passing cable on the top surface of the beam, which is
a uniformly distributed parameter system governed by the PDE mentioned in Eq. 2.57.
At the node of each sub-system, the cable section is present on a plane parallel to the
y − z plane along the three faces of the beam. This section of the cable can be assumed
as a lumped mass at the node and written as mnode = ρcAc

(
2b̄+ 4h̄

)
. Hence, the whole

system can be considered as a discretized, uniformly distributed parameter system with
equal lumped mass at each node. Using DTFM, an exact transfer function of this system
can be found. These cable elements are called lumped mass because it was assumed that
they do not undergo deformation during bending vibrations in the transverse direction
and hence there is no strain energy stored in these elements. In the following equations,
important mathematical steps to obtain the exact transfer function of the given problem
using DTFM are presented.

ξ

z

x

Sk Sk+1S1 SN

x

xk−1 xk xk+1 xN = 1

Figure 2.5: Multiple fundamental elements in the diagonal pattern of cable-harnessed beam

Since the fundamental matrix φ (x, s) is independent of boundary condition, consider
the problem

∂

∂x
Ψ (x, s) = F (x, s) Ψ (x, s) , Ψ (0, s) = %, x ∈ (0, 1) (2.67)

where % is an arbitrary complex 4 × 1 vector and F (x, s) contains the coefficients of
PDE of the system. The solution of Eq. 2.67 is of the form [81]

Ψ (x, s) = φ (x, s) % (2.68)

Divide the non-dimensional length domain (0, 1) into N sub-domains (xk−1, xk), k =
1, 2, . . . , N , where 0 = x0 < x1 < . . . < xN = 1. Clearly, in sub-domain (xk−1, xk) ∈ Sk
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(say), the distributed parameter system is uniform. Since this sub-domain is similar to the
uniform sub-domain of the zigzag pattern, the Laplace transform of homogeneous system
in Eq. 2.57 can be used. The equation for any sub-domain Sk can be written as

∂

∂x
Ψk (x, s) = Fk (s) Ψk (x, s) , x ∈ (xk−1, xk) (2.69)

where Fk(s) is a constant and can be written either from Eq. 2.60 or Eq. 2.66 for the
Kelvin-Voigt or hysteretic damping, respectively. The solution of Eq. (61) is written as
[81]

Ψk (x, s) = eFk(s)(x−xk−1)Ψk (xk−1, s) (2.70)

Next, in order to apply the displacement continuity and force balance at the node of the
sub-systems, the column matrix Ψk (x, s) is written by augmenting two column matrices
uk (x, s) and εk (x, s), named as displacement and strain vectors, respectively. In addition,
internal force vector σk (x, s) relates to the strain vector using a constitutive relation as
shown for the sub-domain Sk,

Ψk (x, s) =

(
uk (x, s)
εk(x, s)

)
, σk (x, s) = Ek (s) εk (x, s) (2.71)

The vectors are described as uk (x, s) =
{
w̄ (x, s) , w̄(1) (x, s)

}T
, and

εk (x, s) =
{
w̄(2) (x, s) , w̄(3) (x, s)

}T
, σk (x, s) = {Mb (x, s) , Vb (x, s)}T , where Mb (x, s)

and Vb (x, s) are the bending moment and shear force, respectively. Ek (s) ∈ C2×2 is the
constitutive matrix.

The subsystems Sk and Sk+1 are interconnected at the node xk. Displacement conti-
nuity and force balance at xk requires uk (xk, s) = uk+1 (xk, s) and σk (xk, s) = σk+1 (xk, s)
respectively, or equivalently using Eq. 2.71,

Ψk+1 (xk, s) = Tk (s) Ψk (xk, s) , Tk (s) ∈ C4×4 (2.72)

where

Tk(s) =


1 0 0 0
0 1 0 0
0 0 1 0

−mnodes
2/B1 0 0 1

 (2.73)

Here, the matrix Tk(s) inherits both the conditions imposing displacement continuity
and force balance. Note that the inertia of the cable elements at the node has been
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accounted for while balancing the shear force at the nodes. The boundary condition in Eq.
2.67 is satisfied by subsystem S1 i.e.

w (x, s) = eF1(s)xγ, ∀ x ∈ (0, x1) (2.74)

Hence, using Eqs. 2.70, 2.72, and 2.74, the fundamental matrix for the system can be
written as

φ (x, s) = eFk+1(s)(x−xk)Tk (s) eFk(s)(xk−xk−1) . . . T1 (s) eF1(s)x1 (2.75)

Since, the fundamental elements length is same across the beam due to periodicity,
x1 = x2 − x1 = . . . = xk − xk−1 = Le. In addition, uniformity in the fundamental element
across the structure and same lumped mass promises the following relations: F1 (s) =
F2 (s) = . . . = FN(s), and T1 (s) = T2 (s) = . . . = TN (s). Once the fundamental matrix is
obtained from Eq. 2.75, the transfer function for a diagonal pattern can be evaluated in
closed form by using Eq. 2.63 for both damping models.

In summary, for the zigzag pattern, the cable inertia effects are predicted to be exactly
the same for both the homogenization method and DTFM. The cable stiffness effects, in
general, are over-predicted in DTFM due to the use of step-function approximation method,
whereas in the homogenization method, the total strain energy of the cable segments
are accounted for and homogenized, yielding a better approximation. In contrast, for
the diagonal pattern, the cable stiffness effects are predicted to be the same for both
methods whereas the cable inertia effects are predicted differently; DTFM predicts the
exact inertial effects whereas the homogenization method assumes that the lumped mass
present on the y−z plane is averaged over the fundamental element. Since diagonal pattern
is a uniformly distributed parameter system for prediction of vibration characteristics in
transverse bending direction, DTFM is able to predict an exact frequency response in this
case.

2.3 Model Verification

In order to visualize the dynamic characteristics of a system, frequency response functions
(FRFs) are generally utilized. Using FRFs, natural frequencies of a system can be visual-
ized through its peaks. And roughly speaking, damping in the system can be interpreted
through the width of those peaks, i.e. for a highly damped systems, the FRF peaks will
be lower and broader. Further, the partial differential equations in Eq. 2.52 and 2.54 are
in standard forms for damped beam mechanisms as shown in Refs. [72] and [82], respec-
tively. Hence, the FRFs for each of the two systems can be found using the separation of
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variables method. It should be noted that for a Kelvin-Voigt damped system, the obtained
analytical form of damping ratio is frequency-dependent and given as ζn = D1ωn/(2B1)
where ωn is the nth natural frequency. Whereas, for a hysteretically damped system, the
damping ratio is frequency-independent and found as, ζn = ηCH/2.

The system parameters shown in Table 2.1 are used in this work for model verification.
To model the Kelvin-Voigt and hysteretic damping in the cables, cables with different geo-
metric and material properties are chosen that best exhibit the characteristics of respective
models. In the case of the host beam, the material damping was considered for Aluminum-
6061 in both Kelvin-Voigt and hysteretic damping models of cable-harnessed systems to
build a generalized model. The air damping is neglected in this chapter. The cable pa-
rameters chosen in this simulation study has been obtained from the realistic cables which
were used for the experiments and are detailed in the next chapter. The damping factors
shown in Table 2.1 have been obtained from the material characterization of the cables
which are also explained in the next chapter. It should be further noted that although the
effect of these cables may seem insignificant, as discussed in the next section on comparison
of FRFs, these small changes in dynamics of the space structures is of a big concern. The
accurate dynamic model help in building a robust vibration control algorithm used in the
spacecraft structures. Hence, in these studies, we model the small changes in the dynamics
of the host structure when the cables are attached and validate them using experiments in
the next chapter.

It is also worth mentioning that the pretension in the cables result in pre-compression
of the beam. Since the equivalent homogenized model considers the beam and cable as
a whole, this compression is an internal force to the system and, therefore, any buckling
analysis due to cable tension is beyond the scope of this work. In other words, upon
application of the homogenization approach to obtain a beam model with equivalent EI and
ρA for the cable-harnessed structure, the information pertaining to the buckling of the host
beam as a sub-component is lost. To be more specific, when the strain energy expressions
of beam and cable within the fundamental elements in Eqs. A.12 and A.16 are summed

up to obtain the total strain energy, the term 1
2
T cos θ

(
∂w
∂ξ

)2

vanishes, due to which the

buckling phenomenon for the host beam is no longer predicted by the homogenized model.
It should be noted that the values for the cable tension were chosen to avoid beam buckling
for the current study. It is also worth mentioning that the critical buckling load due to
an external compressive load applied to the cable-harnessed system are different than the
host beam structure and the equivalent homogenized model can predict this.
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Table 2.1: Material and geometric properties of beams and cables

Beam
width, mm 6
thickness, mm 0.97
length, m 0.25
Mass density, Kg/m3 2700
Youngs modulus, GPa 68.9
ηkb, s 1.06×10−6

ηhb 0.002

Kelvin-Voigt damped Cable
Youngs modulus, GPa 1.18
Cross sectional diameter, mm 1.2
Mass density, Kg/m3 1196
ηkc, s 1.2722× 10−4

Pretension, N 1

Hysteretically damped Cable
Storage modulus, GPa 63.93
Cross sectional diameter,mm 0.7
Mass density, kg/m3 1400
ηhc 0.035
Pretension, N 1

Wrapping pattern properties
Number of fundamental elements
for the zigzag pattern 3
Number of fundamental elements
for the diagonal pattern 3, 6
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2.3.1 Comparison of FRFs

In this section, the FRFs obtained using the equivalent homogenized model of cable-harness
beam structures and DTFM are compared. The driving point frequency response functions
are obtained for actuation and sensing locations at x = l/10 as per the global coordinate
system. This location is carefully chosen to avoid nodes for the first five modes of interest
at least. Further, the three zigzag, diagonal and longitudinal periodic patterns are used
along with two damping models, Kelvin-Voigt and hysteretic damping as shown in Figs.
2.6 —2.11. A clamped-free (CF) boundary condition has been considered in the current
study. Both damped and undamped cases are shown for comparison. In these FRFs, the
response is shown for the first six modes. The zoomed-in figures of the highest mode of
interest are also shown. Moreover, the natural frequencies from the two methods are listed
in Tables 2.2 and 2.3 for Kelvin-Voigt and hysteretic damping models, respectively, for
both wrapping patterns. The frequency data is shown for the first ten modes. In these
tables, ‘Hom’ is used as a short form to represent the homogenization method in these
tables. The FRF figures and frequency tables are shown for cable-harnessed structures
with 3 fundamental elements for the zigzag pattern and 6 fundamental elements for the
diagonal pattern in order to maintain a similar wrapping angle. This makes it easier to
compare between the two wrapping patterns.

Figures 2.6, 2.7, and 2.8 show the comparison between the FRFs obtained from the
homogenization and DTFM methods for both undamped and Kelvin-Voigt damped sys-
tems, using the system parameters in Table 2.1. Clearly, the homogenization method and
DTFM are in a very good agreement.

For the diagonal pattern shown in Fig. 2.7, the higher modal frequencies seem to be
overestimated by the homogenization method compared to the other two patterns shown in
Figs. 2.6 and 2.8. This is due to the lumped mass of the cable segment present on the plane
parallel to y−z plane in the diagonal pattern being averaged over the fundamental element
in the homogenization method. In contrast, they are modeled as an exact lumped mass in
DTFM. Due to the cables low Young’s modulus in the Kelvin-Voigt damping model, the
mass effects of this cable are dominant over the stiffness effects in predicting the system
dynamics. Hence, the lumped cable mass averaging acts as a source for the larger error
between the two methods. For the zigzag pattern in Fig. 2.6, the results are in a better
agreement because the mass per unit length in the homogenized and DTFM model is equal
for this pattern. It is also shown that the best match between all three FRFs corresponds
to the longitudinal pattern in 2.8 as both the homogenization and DTFM predict an exact
solution for this pattern. These figures additionally highlight the significance of including
damping in the models.
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Table 2.2: Natural frequencies (in Hz) of beam harnessed with zigzag and diagonally
wrapped cables having Kelvin-Voigt damping under CF boundary; ‘Hom’ represents ho-
mogenization method

Zigzag pattern (3 fundamental elements) Diagonal pattern (6 fundamental elements)

Hom DTFM
Relative error

in HOM
Hom DTFM

Relative error
in HOM

Mode
Un-

damped
Damped

Un-
damped

Damped
Un-

damped
Damped

Un-
damped

Damped
Un-

damped
Damped

Un-
damped

Damped

1 12.38 12.38 12.38 12.38 0.00% 0.00% 12.30 12.29 12.25 12.25 0.41% 0.33%
2 77.56 77.56 77.56 77.56 0.00% 0.00% 77.07 77.07 76.73 76.73 0.44% 0.44%
3 217.17 217.17 217.16 217.15 0.00% 0.01% 215.8 215.8 214.71 214.71 0.51% 0.51%
4 425.57 425.56 425.49 425.48 0.02% 0.02% 422.9 422.87 420.44 420.42 0.59% 0.58%
5 703.51 703.43 703.22 703.16 0.04% 0.04% 699.07 698.99 694.18 694.12 0.70% 0.70%
6 1050.93 1050.67 1049.61 1049.46 0.13% 0.12% 1044.29 1044.03 1032.25 1032.06 1.17% 1.16%
7 1467.82 1467.12 1469.26 1468.66 -0.10% -0.10% 1458.55 1457.84 1461.41 1460.76 -0.20% -0.20%
8 1954.50 1952.55 1954.47 1953.20 0.00% -0.03% 1941.86 1940.18 1936.10 1934.68 0.30% 0.28%
9 2510.06 2506.56 2509.87 2507.26 0.01% -0.03% 2494.21 2490.65 2483.62 2480.68 0.43% 0.40%
10 3135.41 3128.57 3134.75 3129.89 0.02% -0.04% 3115.61 3108.66 3099.58 3093.87 0.52% 0.48%

Another aspect to analyze these figures is the natural frequencies comparison between
the three different wrapping patterns. It is shown that the highest natural frequencies
correspond to the longitudinal pattern because this pattern creates the lowest mass effect
and highest stiffening effect from the cables. For the diagonal and zigzag patterns, cables
are wrapped around the beam and hence, the added cable mass due to wrapping is larger.
Whereas, the added stiffness is smaller due to the presence of a component of cable stiffness
along the longitudinal axis. Regarding the comparison of natural frequencies for the zigzag
and diagonal pattern (as also listed in Table 2.2), the zigzag pattern exhibits higher natural
frequencies for every mode. This is true for both damped and undamped models. The
reason is based on the combination of the cable’s material properties, the cable stiffness
effects, and the cable mass effects added in each pattern. As mentioned earlier, the Kelvin-
Voigt damped cable mass effects are dominant over its stiffness effects. As a result, the
zigzag pattern, which according to Eq. 2.9 has a smaller mass per unit length, tends to
exhibit higher natural frequencies compared to the diagonal pattern. It is important to
mention that the natural frequencies of these wrapping patterns highly depend on the
choice of cable material. As also seen later, in contrast to the above-mentioned case, the
diagonal pattern would have a higher natural frequency than the zigzag pattern for cable
chosen in the hysteretically damped model.

The results from the hysteretic damping model is now discussed. Figures 2.9, 2.10, and
2.11 show the comparison between FRFs obtained from the homogenization and DTFM
methods for both undamped and hysteretically damped systems under CF boundary, given
the set of system parameters in Table 2.1. Clearly, the two models, homogenized and
DTFM, are in very good agreement for both undamped and hysteretically damping system.

For the given system parameters, the zigzag pattern FRF shown in Fig. 2.9 exhibits
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(a)

(b)

Figure 2.6: (a) Homogenization method and DTFM comparison of receptance (m/N) FRFs
for undamped and Kelvin-Voigt damped system under CF boundary for the zigzag
pattern (b) zoomed-in plots for the highest mode

a larger difference between the homogenization method and DTFM amongst all three
patterns. This can also be seen from a comparison of natural frequencies in Table 2.3, where
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(a)

(b)

Figure 2.7: (a) Homogenization method and DTFM comparison of receptance (m/N) FRFs
for undamped and Kelvin-Voigt damped system under CF boundary for the diagonal
pattern (b) zoomed-in plots for the highest mode

natural frequencies for the zigzag pattern have a higher relative error in the homogenization
method. This is in contrast to the Kelvin-Voigt damping model presented earlier, where
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(a)

(b)

Figure 2.8: (a) Homogenization method and DTFM comparison of receptance (m/N) FRFs
for undamped and Kelvin-Voigt damped system under CF boundary for the longitudi-
nal pattern (b) zoomed-in plots for the highest mode

natural frequencies in the diagonal pattern showed higher error compared to the zigzag
pattern. The larger error in the zigzag pattern is due to the high cable stiffness used in
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the hysteretically damped model. Hence, the difference in stiffness predictions by DTFM
results in higher error for natural frequencies. Recall, that for the zigzag pattern, the added
cable inertia effects are predicted to be the same in both DTFM and homogenization model.
However, the cable stiffness effects are marginally over-estimated in DTFM due to the use of
the step-function approximation method. Moreover, for the homogenization method, since
the strain energy of all cable elements is considered, the cable stiffness effect is a better
approximation. This is the reason why natural frequencies predicted by the homogenization
method have a larger error for zigzag pattern. For the diagonal wrapping pattern in 2.10,
the stiffening effects are estimated to be the same by both methods, and hence the FRFs
are a better match between the two methods. This can be also seen by comparing the
natural frequencies from Table 2.3. Comparing the FRFs of different patterns in Figs.
2.9, 2.10, and 2.11, the longitudinal pattern yields the most-consistent result, as both
the homogenization and DTFM predict an exact solution for this pattern. These FRF
figures additionally highlight the significance of including damping in the models. Also,
comparisons between the two damping models for a similar set of system parameters are
presented later.

An interesting point to note from Tables 2.2 and 2.3 is that there is an abrupt change in
the trend of frequency error observed in Mode-6 for both patterns. For the CF boundary,
the Mode-6 peaks for the zigzag wrapped structure are located near the cable sections
present on the beam face parallel to the x − z plane. Recall, these sections are non-
uniformly distributed systems in DTFM. Because the beam curvature is maximum at the
modes peak, the stiffening effect predicted by DTFM is lower and hence, the Mode-6 natural
frequency is observed to be higher for the homogenization method. The frequencies for
other modes are however smaller for the homogenization method, following the reasoning
given in the previous paragraph. Similarly, for the diagonal pattern, Mode-6 peaks are
near the cable sections, which are in the plane parallel to y − z plane and assumed as
lumped mass. However, since the velocities are higher for the peaks in this case, the
homogenization method results in a greater under-estimation of the kinetic energy for this
mode. This is because the homogenization method assumes the averaging of lumped mass
over the entire fundamental element.

Also, the diagonal pattern natural frequencies predicted by both methods are higher
than the zigzag pattern for CF boundary shown in Table 2.3. This is due to the difference in
cable stiffness added in each pattern. Also, since the cable Youngs modulus is significantly
high in hysteretically damped system, the cable stiffness effects are dominant over the mass
effects in determining the system dynamics. Besides, it is seen from Eq. 2.54 that the real
part of B∗1 is the equivalent flexural stiffness for the homogenized model and according to
Eq. 2.49, the real part of B∗1 for diagonal pattern would always be larger than the zigzag
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Table 2.3: Natural frequencies (in Hz) of beam harnessed with zigzag and diagonally
wrapped cables having hysteretic damping under CF boundary; ‘Hom’ represents homog-
enization method

Zigzag pattern (3 fundamental elements) Diagonal pattern (6 fundamental elements)

Hom DTFM
Relative error

in HOM
Hom DTFM

Relative error
in HOM

Mode
Un-

damped
Damped

Un-
damped

Damped
Un-

damped
Damped

Un-
damped

Damped
Un-

damped
Damped

Un-
damped

Damped

1 14.97 14.96 15.08 15.08 -0.73% -0.80% 15.31 15.31 15.30 15.30 0.07% -0.07%
2 93.81 93.79 94.47 94.45 -0.70% -0.70% 95.98 95.95 95.85 95.83 0.14% -0.13%
3 262.68 262.62 264.32 264.28 -0.62% -0.63% 268.73 268.68 268.33 268.28 0.15% -0.15%
4 514.76 514.65 517.44 517.37 -0.52% -0.53% 526.61 526.52 525.69 525.60 0.18% -0.18%
5 850.93 850.79 853.79 853.70 -0.33% -0.34% 870.53 870.43 868.64 868.53 0.22% -0.22%
6 1271.14 1271.01 1266.43 1266.35 0.37% 0.37% 1300.42 1300.38 1295.48 1295.41 0.38% -0.38%
7 1775.40 1775.38 1803.00 1802.87 -1.53% -1.52% 1816.42 1816.44 1817.75 1817.82 -0.07% 0.08%
8 2363.70 2364.01 2384.22 2384.00 -0.86% -0.84% 2418.29 2418.75 2416.01 2416.45 0.09% -0.10%
9 3036.04 3037.27 3056.72 3055.40 -0.68% -0.59% 3105.96 3107.78 3101.86 3102.96 0.13% -0.16%
10 3792.42 3795.33 3814.18 3804.51 -0.57% -0.24% 3879.77 3883.53 3874.73 3875.98 0.13% -0.19%

pattern for a similar wrapping angle. The higher stiffening effects in the diagonal pattern
results in the higher natural frequencies as compared to a zigzag pattern.

Also, comparing the Kelvin-Voigt and hysteretically damped system, it becomes evi-
dent that the frequencies for the later are noticeably larger than the former. This is due
to the significantly higher cable Young’s modulus used for the hysteretically damped sys-
tem compared to the one that is best modeled using the Kelvin-Voigt damping model.
Moreover, the FRFs in Figs. 2.6, 2.7, and 2.8 obtained from the Kelvin-Voigt model show
an increase in modal damping ratios for higher frequencies; in comparison, the hysteretic
model exhibits a constant modal damping ratio in Figs. 2.9, 2.10, and 2.11. This is be-
cause the modal damping ratios are directly proportional to the natural frequencies in the
Kelvin-Voigt model; whereas for the hysteretic model, they are frequency-independent as
also discussed in the beginning of this section.

It should be further noted that the FRF figures show the first six modes only to avoid
the clutter in the plot. However, it has been shown in the Tables 2.2 and 2.3 that the
homogenization model has a capability of predicting the accurate natural frequencies in
the high frequency range as well.

A major advantage of using the homogenization method is the significantly reduced
computational time over the DTFM. As an example, the computations for the FRF for
the hysteretically damped zigzag cable-harnessed beam shown in Fig. 2.9 was found to
be around 2,020 times faster when comparing homogenization to the DTFM. This ratio
becomes amplified for the more complex and realistic geometries of space structures.

Further, a comparison between the three different patterns can be made by plotting
their FRFs in the same plot. To amplify the differences between various wrapping patterns
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(a)

(b)

Figure 2.9: (a) Homogenization method and DTFM comparison of receptance (m/N) FRFs
for undamped and hysteretically damped system under CF boundary for the zigzag
pattern (b) zoomed-in plots for the highest mode

for each model, a larger beam width of 0.03 m was chosen. Other system parameters used
remain the same as what was previously listed for each damping model. Also, only the CF
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(a)

(b)

Figure 2.10: (a) Homogenization method and DTFM comparison of receptance (m/N)
FRFs for undamped and hysteretically damped system under CF boundary for the di-
agonal pattern (b) zoomed-in plots for the highest mode

boundary condition is used as an example. The results are shown in Fig. 2.12. Clearly,
the longitudinal pattern exhibits higher damping as compared to the diagonal and zigzag

56



(a)

(b)

Figure 2.11: (a) Homogenization method and DTFM comparison of receptance (m/N)
FRFs for undamped and hysteretically damped system under CF boundary for the lon-
gitudinal pattern (b) zoomed-in plots for the highest mode

patterns for both damping models. This is because the effective damping induced due to
cable addition for diagonal and zigzag patterns is related to the wrapping angle over which
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the damping force from the cable is projected. Therefore, for the case of the longitudinal
pattern, the damping effects are maximized due to the zero angle with the horizontal axis.

The larger difference between frequencies for the longitudinal and other two patterns
for the given system parameters of the hysteretically damped system is due to the larger
cable Young’s modulus. This further signifies the cable stiffening effects for the longitudinal
pattern. This pattern has shown to have a larger stiffening effect compared to the other
two patterns for the out-of-plane bending frequencies [36, 2].
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(a)

(b)

Figure 2.12: FRF comparison to exhibit damping effects among different wrapping pattern
for (a) Kelvin-Voigt damped model, b = 0.03m, and (b) Hysteretically damped model,
b = 0.03m
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2.4 Parametric Analysis

In this section, the effects of several structural parameters such as cable radius, beam
width, and fundamental element number on the overall damping of the cable-harnessed
beams are discussed. This study is carried out for a CF boundary condition with x = 0
edge being clamped. The damping ratios are analytically obtained for Kelvin-Voigt model
and hysteresis model as ζn = D1ωn/(2B1) and ζn = ηCH/2, respectively. The half power
bandwidth method presented in [72] is used to estimate the modal damping ratios for the
DTFM.

Also, two different numbers of fundamental elements are chosen for the diagonal pattern
to allow a fair comparison to the zigzag system as shown in Table 2.1. One case uses to
the same number of elements for both patterns, and the other results in a similar wrapping
angle. Also, while varying one system parameter, the other parameters are held constant
as shown in the Table 2.1.

2.4.1 Effect of cable radius

Figures 2.13 and 2.14 compare the modal damping ratios for both damping models as a
function of the cable radius. The term ‘Hom’ in the legends refers to the homogenization
method. As expected, the damping ratios increase with the cable radius for all patterns
and both damping models. Also, the damping ratios increase for the higher modes of the
Kelvin-Voigt model, as they are directly proportional to the natural frequencies of the
corresponding modes as shown in the equations above.

Moreover, as the cable radius becomes large, the difference between damping ratio
estimations for the two methods increases. The difference is attributed to the averaging
assumptions within a fundamental element for the homogenization method, and its reliance
on the system periodicity. As the cables become a dominant part of the structure, the non-
homogeneity within an element increases, and this method starts to show its limitations.

Additionally, for the Kelvin-Voigt model shown in Fig. 2.13, the differences between
the two methods estimations are smallest for the fundamental modes, and increases with
the mode number. This larger difference for the higher modes is because of the smaller
number of fundamental elements per wavelength of the frequency of interest for the higher
modes.

For the diagonally wrapped Kelvin-Voigt model, the damping ratio differences are
smaller for the smaller number of fundamental elements as seen in Figs. 2.13(b) and 2.13(c).
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(a) (b)

(c) (d)

Figure 2.13: Damping effects for variable cable radius in a Kelvin-Voigt damped system
for (a) zigzag, 3 fundamental elements, (b) diagonal, 3 fundamental elements, (c) diagonal,
6 fundamental elements and (d) longitudinal pattern

Recall that the cable parameters used in the Kelvin-Voigt model had a mass-dominant ef-
fect on the host structure dynamics. Also recall that for diagonal pattern, the difference in
DTFM and homogenization method occur only due to cable inertia. Hence, when a smaller
number of fundamental elements are used in diagonal patterns, the cable inertia effects are
lower, leading to a smaller difference between the methods damping ratio predictions.

Amongst every pattern, the diagonal structure shows the greatest error between the
two models’ damping ratios; whereas the longitudinally wrapped beam demonstrates the
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smallest error due to the homogenization being an exact solution for this case. This is
directly related to the difference in natural frequencies predicted by both methods. As
explained previously for the cable properties chosen for Kelvin-Voigt material, the diagonal
patterns show higher error in frequencies due to difference in the estimation of cable inertia
effects. Since the damping ratios are proportional to frequencies in this model, their errors
are higher for the diagonal pattern.

The damping ratio comparisons for the hysteretically damped models as a function of
the cable radius are shown in Fig. 2.14. It should be noted that for the hysteretic damping
model, the modal damping ratios are constant across all modes. Therefore, only the first
modal damping ratio is considered for comparison. For the homogenization method, this
ratio is obtained using Eq. 2.55 and ζn = ηCH/2. Also, expressions similar to Eq. 2.55 are
obtained for the longitudinal pattern. Finally, the DTFM damping ratios are obtained by
using the half-power bandwidth method from the FRFs.

As shown in Fig. 2.14, the homogenized model is in very good agreement with the
DTFM for all the zigzag, diagonal and longitudinal patterns. Also, similar to the Kelvin-
Voigt model, the damping ratios increase as the cable radius increases for every pattern,
eventually reaching an asymptote for very large radii. The initial damping ratio increase
is due to the attachment of a high damping cable to the weakly-damped host structure.
However, as the cable radius becomes large, the cable becomes a dominant part of the
equivalent homogenized system. In the limiting case, the damping ratio of the system
saturates because it cannot be larger than the constant damping ratio of the hysteretically
damped cable.

Another interesting observation in these hysteretic damping plots is the presence of a
point of inflection, for which the corresponding cable radius could be numerically obtained.
Before the point of inflection, the damping in the system has a higher sensitivity to change
in cable radius. It was also observed for the diagonal pattern that when the number of
fundamental elements was decreased, the error in the homogenization method increased;
at higher cable radii this error is particularly significant.

Since the hysteretic damping ratios are independent of natural frequencies, the differ-
ence between damping ratios obtained from homogenization and DTFM in Figs. 2.14(a)
and (c) are significantly less than what is observed for the Kelvin-Voigt damping case in
Figs. 2.13(a) and (c).
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(a) (b)

(c) (d)

Figure 2.14: Damping effects for variable cable radius in a hysteretically damped system
for (a) zigzag, 3 fundamental elements, (b) diagonal, 3 fundamental elements, (c) diagonal,
6 fundamental elements and (d) longitudinal pattern

2.4.2 Effect of beam width

Figure 2.15 shows the Kelvin-Voigt modal damping ratio variations for each wrapping
pattern as a function of beam width. As shown in these figures, the overall damping
ratio decreases as the beam width increases. This is expected as the cable damping effects
diminish for a larger beam volume. Also, all figures show very good agreement between the
two methods with the best agreement shown for the longitudinal pattern. This is expected,
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(a) (b)

(c) (d)

Figure 2.15: Damping effects for variable beam width in a Kelvin-Voigt damped system
for (a) zigzag, 3 fundamental elements, (b) diagonal, 3 fundamental elements, (c) diagonal,
6 fundamental elements and (d) longitudinal pattern

as the errors associated with the homogenization assumptions for periodicity are minimal
because the average strain energy for a discretized element is exact. It is also shown that
the errors are particularly larger for zigzag and diagonal patterns for smaller beam widths.
This is because smaller widths increase the cable effects, causing the errors associated with
the pattern periodicity in the homogenization approach to increase.

It is also observed that for the zigzag pattern in Fig. 2.15(a), the damping ratios
predicted by the homogenization method are marginally lower, whereas for the diagonal
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pattern in Figs. 2.15(b) and 2.15(c), the ratios are slightly higher. This is particularly
true for smaller beam widths, and is due to the over-estimation of stiffness by the DTFM.
This leads to higher natural frequency predictions, and since damping ratios are directly
proportional to the frequencies, the ratios are higher for DTFM. Conversely, the reason
for the higher damping ratio in the diagonal pattern is the under-estimation of the cable
inertia effects by the homogenization method. This leads to higher natural frequencies and
hence higher damping ratios predicted by the homogenization method.

Additionally, the damping ratios seem to converge to a value for higher beam widths.
This is because as the beam width increases, the overall damping effects of the cables
become negligible. Mathematically, it is explained as follows: the saturation in modal
damping ratios, ζn = D1ωn/(2B1), is related to the natural frequencies of the system. Since
the governing PDE in Eq. 2.52 is similar to the Kelvin-Voigt damped beam formulation,
ωn is proportional to

√
B1/K1. For both the patterns, the values for K1 are listed in Eqs.

2.9, and that of B1 in Eqs. 2.24 and 2.25. It can be calculated that at large values of
beam width, the cable effects diminish and the values of the coefficients K1 and B1 tend to
limit ρbAb and EbIb, respectively. Since the ratio EbIb/ρbAb is independent of beam width,√
B1/K1 tends to become independent of beam width. This results in saturation of the

natural frequencies at high beam width. In addition, D1/2B1 was calculated and seen to
be independent of the beam width for wide beams; therefore, the damping ratio saturates
at large beam width as per the expression for ζn mentioned above. It should also be noted
that the modal damping ratios saturate at different values corresponding to their natural
frequencies.

Similarly, the modal damping ratios for the hysteretic damping model with respect to
the beam width are presented in Fig. 2.16. Similar to the Kelvin-Voigt model, these ratios
are found to decrease for the larger beam width as expected. Also, the longitudinal pattern
shows the best match between the two models and the zigzag shows smaller accuracy for
the smaller beam width values. The higher error for the zigzag pattern at low beam width
can again be attributed to the error in DTFM where the step-function approximation
method fails to predict the exact damping ratio when beam width becomes the same order
as beam thickness.

In addition, as the beam width increase, the contribution of the cable in the homog-
enized continuum structure starts to decrease and in the limiting cases of wide beams,
the wrapping angle becomes very large and hence, the damping contribution of the cable
becomes negligible. As a result, the beam becomes the dominant component of the homog-
enized structure and since it is a hysteretically damped material, the constant loss factor
of the beam results in a constant damping ratio for higher beam width. Mathematically,
it can be seen from Eq. 2.55 that as beam width increase, ηCH saturates for wide beams
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and the saturated value is given by loss factor of the beam ηhb = E ′′b /E
′
b = 0.002. The

corresponding saturation value of damping ratio in Fig. 2.16 is ζ = 0.1%.

(a) (b)

(c) (d)

Figure 2.16: Damping effects for variable beam width in a hysteretically damped system
for (a) zigzag, 3 fundamental elements, (b) diagonal, 3 fundamental elements, (c) diagonal,
6 fundamental elements and (d) longitudinal pattern

2.4.3 Effect of number of fundamental elements

Finally, the comparisons between the modal damping ratios for a various number of fun-
damental elements are shown in Fig. 2.17 for Kelvin-Voigt damping model. It is observed
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for both wrapping patterns that the modal damping ratios decrease as the number of fun-
damental elements increases. This is expected, as the larger number of elements results
in a tighter wrapping which further implies a larger wrapping angle, as shown in Figs. 2.1
and 2.2. This reduces the damping effects of the cables due to a smaller projection of their
damping forces along the beam length. Therefore, for a single fundamental element system,
the resultant damping will be the largest. Mathematically, this could also be understood
using the expression of Kelvin-Voigt model damping ratios, ζn = D1ωn/(2B1). Clearly,
the damping ratios depend on both the frequencies and coefficient ratio D1/B1. Since a
larger number of fundamental elements result in a larger wrapping angle, this reduces the
stiffening effects of the cables due to a smaller projection of their strain along the beam axis
resulting in smaller frequencies. Additionally, this tighter wrapping increases the overall
cable mass, further reducing these frequencies. Moreover, the ratio D1/B1 decreases with
increasing number of fundamental elements. Therefore, since both the coefficient ratio
and natural frequencies decrease for a larger number of fundamental elements, using the
equation shown above one can see that the damping ratios become smaller.

The wrapping angle for the zigzag pattern is larger than the diagonal pattern given
the same number of fundamental elements. This results in overall smaller damping for
the zigzag pattern compared to the diagonal. This tighter wrapping pattern for the zigzag
system also results in a much faster decay of the damping effects with increasing number
of elements. Hence, the modal damping ratios seem to converge faster to their final values
as shown in Fig. 2.17(a).

As expected, the higher modes exhibit larger damping ratios as well as larger errors
between the two models. This error is due to the smaller number of fundamental elements
per wavelength of the frequency of interest for the higher modes in the homogenization
method.

It is also observed for the zigzag pattern in Fig. 2.17(a) that the damping ratios pre-
dicted by the homogenization method are marginally lower. In contrast, the ratios for the
diagonal pattern in Fig. 2.17(b) are higher, particularly for a smaller number of funda-
mental elements. For fewer fundamental elements, the non-uniformly distributed sections
in the zigzag pattern would be longer and hence, DTFM predicts higher frequencies. This
leads to higher damping ratios as compared to the homogenization method. In compari-
son, the homogenization method for the diagonal pattern with few fundamental elements
yields a greater inaccuracy in predicting the cable inertia effects. This is due to lumped
cable mass being averaged over a much larger domain. As a result, under-prediction of
the system’s kinetic energy in homogenization method translates to higher frequencies and
hence, higher damping ratios.
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(a)

(b)

Figure 2.17: Effects of number of fundamental elements in a Kelvin-Voigt damped system
for (a) zigzag and (b) diagonal pattern

Similarly, the modal damping ratios for a hysteretically damped system are presented
across a range of number of fundamental elements in Fig. 2.18. Also, these figures show
that the damping ratios decrease for a larger number of elements due to larger wrapping
angles. This is further supported by Eq. 2.55. Similar to the previous cases, the two
models are in better agreement for the diagonal pattern. As well, for increasing number of
fundamental elements, the error between the homogenization method and DTFM decreases
due to the assumptions for the periodicity in the homogenization method being more valid.

It should also be noted that as the number of fundamental elements decrease, or the
ratio (Le/l) increase, the homogenization model starts to show its limitations and becomes
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(a) (b)

Figure 2.18: Effects of number of fundamental elements in a hysteretically damped system
for (a) zigzag and (b) diagonal pattern

inaccurate even for lower vibration modes. Hence, when fewer number of elements are
present, the model becomes sensitive to small variations in the length of a fundamental
element.

2.5 Comparison between the two damping models

So far, the results for the two damping models were presented and discussed separately.
It should be noted that it is difficult to use both models for the same material and hence,
a choice of model has to be made based on the material characteristics. In previous
sections, the geometric and material parameters of the cable were chosen differently. In
this section, the two damping models are compared by assuming similar geometric and
material properties of beam and cable with an aim to predict a similar damping behavior.
However, it should be noted that it is not possible to predict similar damping behavior
from both the models for a large number of modes.

To have a coherence between the two models, it is assumed that the cable energy loss
per vibration cycle is consistent for each model. Assuming a standing waveform of a cable
as A cos (kx) sin (ωt), the total energy dissipated in one cable vibration cycle (modeled as
a string) from the two damping models is calculated as (see Appendix A.7):
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WKV = π2ηkcTA
2ωk (2.76a)

WH = π2ηhcTA
2k (2.76b)

As it is assumed that this loss in energy is equal for both models, it results in the
relation ηhc = ηkcω, where ω is the frequency of vibration. This relation would not hold for
a frequency bandwidth of interest as it relates the two coefficients at only one frequency.
Hence, ηhc is considered to remain constant and ηkc is calculated such that both the models
predict similar damping behavior in the initial few modes. This exercise is divided into
three cases where ηkc is calculated in order to have the best match between the two damping
models for 1) first mode, 2) first and the second mode, 3) first three modes. To start with,
an objective function, Θ (ηkc) =

∑
i (ηhc − ηkcωi)

2 is proposed, where ωi is the ith natural
frequency of the system. This function is minimized with respect to ηkc that results in the
evaluation of ηkc for the three cases:

(ηkc)I = ηhc/(ω1) (2.77a)

(ηkc)I,II = ηhc(ω1 + ω2)/(ω2
1 + ω2

2) (2.77b)

(ηkc)I,II,III = ηhc(ω1 + ω2 + ω3)/(ω2
1 + ω2

2 + ω2
3) (2.77c)

In order to compare the damping behavior of both models, simulations are performed
using the homogenization method for a cable-harnessed structure wrapped in diagonal
pattern with 6 fundamental elements under a CF boundary. It is assumed that the beam
is undamped for this analysis and the remaining beam properties are assumed to remain
unchanged as mentioned in Table 2.1: b = 6 mm, h = 0.97 mm, l = 0.25 m, ρb =
2700 Kg/m3, Eb = 68.9 GPa. The cable properties used in the hysteretically damped sys-
tem are also chosen to be the same as mentioned in Table 2.1. Ec = 63.93×109 GPa, ρc =
1400 Kg/m3, rc = 0.35 mm, ηhc = 0.035, T = 1 N . It should be noted that the cable
chosen for the Kelvin-Voigt damping has same material and geometric properties, except
ηkc, and is determined using Eq. 2.77 for the three cases.

Figure 2.19 shows the comparison between the FRF obtained for both the damping
models. Figs. 2.19(a)-(c) are each dedicated to the three cases of similar damping behavior
for initial modes. In Case-1 shown in Fig. 2.19(a), the damping ratio is equal for the first
mode; hence, both models predict the same system response near the first mode. However,
as frequency increases, the Kelvin-Voigt model starts to predict higher damping. The
difference can be highlighted in the sixth mode where the damping ratio predicted by the
Kelvin-Voigt model is 33.6%, while the hysteretic damping model predicts the ratio as
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0.60 %. The FRFs for Case-2 are obtained by minimizing the least square error between
damping ratios of the first two modes and, hence, it is shown in Fig. 2.19(b), the models
damping are well-matched for the first two modes. With increasing frequency, however, the
error between models becomes significant. Similarly, FRFs for Case-3 (see Fig. 2.19(c)),
are obtained by minimizing the least square error between damping ratios of the first three
modes. Likewise, the models have a good match for the initial three modes. Afterwards,
the Kelvin-Voigt model starts to predict higher damping at greater frequencies and the
difference in response becomes worse. Also, it can be shown that as an attempt is made
for a good match between the larger numbers of modes, the accuracy in prediction on
damping in fundamental modes will be compromised. Hence, upon examination of the 3
cases shown above, it is seen that the best match between a smaller number of modes for the
two models results in the Kelvin-Voigt model predicting much smaller energy contribution
to the overall response for the higher modes.

After conducting this study, it is observed that the two models, although upon using the
same system parameters such as geometric and material properties and energy loss per unit
vibrations cycle, can predict an overall different damping behavior. Hence, it is important
to consider the correct damping model that corresponds to the material characteristics of
the cable and host structure, and predict accurate system dynamics. In summary, Kelvin-
Voigt damping is most suitable when higher modes exhibit more highly damped behavior.
Alternatively, for a system with fairly similar damping ratios across the fundamental modes
the hysteretic damping would be more appropriate.
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(a)

(b)

(c)

Figure 2.19: Comparison of Receptance (m/N) FRFs for hysteretic damping and Kelvin-
Voigt damping for (a) Case-1, (b) Case-2 and (c) Case-3
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2.6 Summary of the chapter

Obtaining low-order and high-fidelity dynamic models represented by simple partial dif-
ferential equations as shown in the current chapter are of great advantage in studying the
dynamic behavior of structures motivated by aerospace applications which are difficult to
be ground tested prior to their launch. One of the major aspects of these modeling ef-
forts includes the damping effects of power and signal cables on a host structure. In this
regard, an analytical method for analyzing damping in cable-harnessed beam structures
using a homogenization mathematical technique was presented. The proposed analytical
models provide simple tools for studying the dynamics of these complex structures and are
aimed at ultimately helping with the optimal cable patterns and their placements to help
minimally impact the dynamics of the major components and payloads.

The presented work used an energy-based homogenization approach to obtain an equiv-
alent damped continuum model for cable-harnessed beams. Two damping models namely,
Kelvin-Voigt and hysteretic models are used to present the energy loss in the structure.
Using the Green-Lagrange strain tensor to develop the strain energy and the Rayleigh
dissipation function for the system, the governing equations were obtained for both the
damping models. These equations were found to be similar in form to a damped Euler-
Bernoulli beam. In addition, a distributed transfer function method is used as a method
for comparison. The FRF results from the homogenization and DTFM are shown to match
very well for both damping models. A big advantage of using homogenization technique
was the significantly reduced computational time as compared to DTFM and FEM. Finally,
a parametric analysis was performed to show the effects of different structural parameters
on the overall damping behavior of the system. The findings from the analysis can be
summarized as follows:

1. With an increase in cable radius, the damping in the system monotonically increases
for Kelvin-Voigt damping model. Whereas, for the hysteretically damped model, the
damping initially increases and then it levels off.

2. With an increase in the beam width, the damping in the system decreases for both
the damping models.

3. As the number of fundamental elements increases, the damping in the system de-
creases. It was shown that for the zigzag pattern, the rate of the decrease was higher
compared to the diagonal pattern for a given number of fundamental elements.

4. Kelvin-Voigt damping model was most suitable for cable-harnessed structure when
higher modes are found to exhibit highly damped behavior.
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5. A cable-harnessed system with fairly similar damping ratio across the modes is better
modeled using the hysteretic damping model.

These findings can be applied during the design process of a cable-harnessed system
to determine the appropriate cable parameters as well as wrapping pattern to optimize
the dynamic behavior of the host structure. An optimal cable wrapping pattern can be
obtained to minimize the cable dynamic effects on the host structure. In addition to the
aerospace applications, these findings can be useful for marine and civil applications where
cables are used widely.
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Chapter 3

Experimental Validation of Damping
Mechanisms in Cable-Harnessed
Beam Structures

The analytical model of the cable-harnessed beam structures by incorporating damping
mechanism was proposed in the previous chapter. In the current chapter, an experimental
approach is used to validate the results obtained from the equivalent continuum model for
the two damping models. 1

It should be noted that only material damping was considered in the previous chapter,
however, in the current chapter, an additional air damping factor is considered. The air
damping has been included for a better accuracy in the model. Hence, the equation of mo-
tion is revisited in this chapter and an additional air damping term has been incorporated.
Also, in the modeling section, a formulation for determining frequency response function
(FRF) has been discussed for the sinusoidal base excitation of the structures.

Further, in order to conduct the experimental validation, the damping in the cables
used for fabricating cable-harnessed systems were first characterized. The characterization
yields the damping coefficients for both the damping models: Kelvin-Voigt and hysteresis.
Thereafter, the air damping and beam’s material damping constants were calculated. The
acquisition of these damping parameters is necessary for finding the unknown parameters
in the analytical model. To obtain the modal characteristics of the cable-harnessed beams,
modal testing experiments were conducted. The experiments were conducted for zigzag

1The research work presented in this chapter has been published in ASME Journal of Vibration and
Acoustics [83].
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wrapping patterns and longitudinal pattern. The obtained response functions and natural
frequencies are then compared with the model data for a successful model validation.

3.1 Analytical Model

In this section, a brief description is presented for analytical modeling of the cable-harnessed
beam structure studied comprehensively in the Chapter 2. The main reason for the re-
iteration of the model in this chapter is the inclusion of the damping term in the governing
equation of motion which was absent in the Eqs. 2.52 and 2.54. Hence, the PDEs have
an additional damping term which is briefly discussed in this section. Also, in the current
chapter, the validation is presented for the zigzag wrapped cable pattern as shown in Fig.
3.1(a) and the special case of longitudinal pattern shown in Fig. 3.1(b).
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Figure 3.1: (a) Schematic of a cable-harnessed beam showing (a) zigzag pattern and (b)
longitudinal pattern

3.1.1 Equation of motion for Kelvin-Voigt damping

The governing equation of motion (EOM) for the Kelvin-Voigt damped system can be
written as (by including the additional air damping effects in Eq. 2.52):

K1ẅ +B1w
′′′′ +D1ẇ

′′′′ +Dakẇ = 0 (3.1)
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where the coefficients for the zigzag pattern can be written as

K1 = ρbAb +
ρcAc
cos θ

(3.2a)

B1 = EbIb + EcAch̄
2 cos3 θ

(
b̄+ h̄

3

b̄+ h̄

)
+ T cos θ

 h̄2
(
b̄+ h̄

3

)
b̄+ h̄

− Ib
Ab

 (3.2b)

D1 = CbIb + CcAch̄
2 cos3 θ

(
b̄+ h̄/3

b̄+ h̄

)
(3.2c)

Dak = αk(ρbAb) (3.2d)

where αk is the air damping constant. Although air damping would be small in the
space applications, it is necessary to consider it in the current modeling because of its
contribution in the energy loss in the lab-scale experiments. It should be noted that the
viscoelastic damping coefficients are related to respective elastic modulus as Cb = ηkbEb
and Cc = ηkcEc where ηkb, ηkc are the proportionality constants in (s) for the beam and
cable damping, respectively. Also, the energy dissipation due to the air damping effect is
also considered by including a velocity proportional term, Dakẇ in the governing PDE. This
energy loss occurs due to the interaction of the beam with the surrounding air. Whereas,
the air damping effect due to attached cable is neglected in the current study. Segregating
the losses from the air damping and material damping of the cable is an arduous task,
which is another reason why the entire energy loss in the cable is assumed as the internal
(material) damping loss.

3.1.2 Equation of motion for hysteretic damping

The governing EOM for the hysteretically damped system is written as (by including air
damping in Eq. 2.54)

K1ẅ +B∗1w
′′′′ +Dahẇ = 0 (3.3)

where the air damping coefficient, Dah is assumed to be dependent only on beam
parameters. The coefficients are expanded for the zigzag pattern as

B∗1 = E∗b Ib + E∗cAch̄
2 cos3 θ

(
b̄+ h̄

3

b̄+ h̄

)
+ T cos θ

 h̄2
(
b̄+ h̄

3

)
b̄+ h̄

− Ib
Ab

 (3.4a)
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Dah = αh(ρbAb) (3.4b)

The corresponding coefficients for the longitudinal pattern can be seen from Eq. 2.56.
Further, B∗1 can be written as B∗1 = B′1 + jB′′1 where B′1 can be considered as an effective
storage modulus of the homogenized system and B′′1 as an effective loss modulus. Also, the
hysteretic damping loss factors for the beam and cable are defined as ηhb = E ′′b /E

′
b and ηhc =

E ′′c /E
′
c, respectively. These loss factors would be used later during the characterization of

hysteretic damping in beams and cables. Also, the storage modulus of beam and cable, E ′b
and E ′c used in the hysteretic damping model can be assumed to be equal to the respective
elastic modulus Eb and Ec used in the Kelvin-Voigt model [84]. These values are however
not equal in the real world because of the different tests through which they are acquired.
The storage modulus is calculated using a dynamic test in which the material oscillates
whereas to obtain the elastic modulus, the material is constantly stretched in the stress-
strain test.

It is also important to note that the air damping coefficient, Dah is considered different
from Dak. This is because of the presence of different damping mechanisms of beam
material present in each equation. In the current work, the acquisition of material damping
constants of the beam along with the air damping constants for both damping models is
based on the modal testing experiment results of the bare beam. Due to different damping
mechanisms in both the models, the obtained air damping coefficients are dissimilar and
hence are considered different for both formulations.

3.1.3 Theoretical frequency response function

Kelvin-Voigt damping

The experimental validation of the damping behavior in the system is done through
comparison of the FRFs. The experimental results, as explained later, are obtained using
modal testing by clamping the cable-harnessed beams’ left end with a fixture mounted
on an electrodynamic shaker (as described in the next section). The shaker provides the
sinusoidal excitation to the structure and sweeps through a pre-set frequency range. This
excitation results in a non-homogenous BC because the displacement of the left edge would
have a non-zero sinusoidal displacement and the BC becomes, for ωs 6= 0,

w (0, t) =
ggf
ω2
s

sin (ωst) (3.5a)

w′ (0, t) = 0 (3.5b)
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B1w
′′ (l, t) +D1ẇ

′′ (l, t) = 0 (3.5c)

B1w
′′′ (l, t) +D1ẇ

′′′ (l, t) = 0 (3.5d)

and the EOM for transverse vibrations remains the same as Eq. 3.1. In Eq. 3.5(a), g
is the acceleration due to gravity, gf is a dimensionless acceleration factor, and ωs is the
excitation frequency of shaker.

To transform the displacement BC into a homogeneous equation, a function, µ(x, t),
satisfying all the BCs is introduced similar to [30] where µ (x, t) =

(
ggf/ω

2
s

)
sin (ωst). Using

a transformation, y (x, t) = w (x, t) − µ(x, t), the governing PDE can be written in terms
of y (x, t) as:

K1ÿ +B1y
′′′′ +D1ẏ

′′′′ +Dakẏ = K1ggf sin (ωst)−
(
Dakggf
ωs

)
cos (ωst) (3.6)

and the new BCs of the transformed PDE become homogeneous as

y (0, t) = 0 (3.7a)

y′ (0, t) = 0 (3.7b)

B1y
′′ (l, t) +D1ẏ

′′ (l, t) = 0 (3.7c)

B1y
′′′ (l, t) +D1ẏ

′′′ (l, t) = 0 (3.7d)

It is important to note that since Kelvin-Voigt damping is a proportionally damped
system, the mode shapes remains identical to the undamped system. For a clamped-free
system, the mode shapes are given as [72]

φn (x) = An

{
cos (βnx)− cosh (βnx)− cos (βnl) + cosh (βnl)

sin (βnl) + sinh (βnl)
[sin (βnx)− sinh (βnx)]

}
(3.8)

where βn is the nth solution obtained from the characteristic equation of the clamped-
free system cos (βl) cosh (βl) = −1, An are the mass-normalized coefficients of the mode
shapes. Also, the undamped natural frequencies can be found using [30]

ωn = β2
n

√
B1

K1

(3.9)
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When the series solution, y (x, t) =
∑∞

n=1 φn (x) Γn (t) is substituted in Eq. 3.6 and
simplified after multiplying by φk(x) along with the orthogonality condition of the mode
shapes, we obtain

Γ̈k (t) + 2ζkωkΓ̇k (t) + ω2
kΓk (t) = ggf

(
K1

∫ l

0

φk (x) dx

)
sin (ωst)

− ggf
(
Dak

∫ l

0

φk (x) dx

)
cos (ωst)

= ggf φ̄k sin (ωst)− ggf φ̄′k cos (ωst) (3.10)

where φ̄k and φ̄′k are written as a means of simplification of the terms within the
respective brackets. Also, in this case, φ̄′k, does not imply the derivative of φ̄k. Further,
in the process of obtaining Eq. 3.10, following orthogonality conditions were used:∫ l

0

K1φk (x)φn (x) dx = δkn (3.11a)

∫ l

0

B1φk (x)φ′′′′n (x) dx = ω2
kδkn (3.11b)

Also, in the Eq. 3.10, the modal damping ratio of the system was defined as

ζk =
D1ωk
2B1

+
Dak

2K1ωk
(3.12)

Finally, evaluating the steady state solution of Eq. 3.10, the analytical expression of
the FRF for the base excitation (m/(m/s2)) can be obtained as

HFRF (xsen, ωs) =

∣∣∣∣∣∣ 1

ω2
s

+
∞∑
k=1

φk (xsen)
(
φ̄k − j φ̄′kωs

)
ω2
k + j (2 ζkωkωs)− ω2

s

∣∣∣∣∣∣ (3.13)

where j =
√
−1, and xsen is the distance of the sensing location for calculating FRF

measured from clamped end, x = 0.

Hysteretic damping
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The theoretical FRF derivation is carried out similarly for the hysteretic damping
model. The sinusoidal shaker excitation introduces a non-homogeneous term in the dis-
placement BC at the clamped end. Following the procedure analogous to the calculation of
theoretical FRF for the Kelvin-Voigt damping, the non-homogeneous terms can be removed
by introducing a function and transforming the governing PDE. Also, for the constant hys-
teretic damping model, the mode shapes remain identical to the undamped model. Using
the orthogonality of the mode shapes, the temporal equation for the hysteretic damping
model can be obtained similar to Eq. 3.10,

Γ̈k (t) +DahΓ̇k (t) +

(
1 + j

B′′1
B′1

)
ω2
kΓk (t) = ggf φ̄k sin (ωst)− ggf φ̄′k cos (ωst) (3.14)

Here, the natural frequencies are calculated using ωk = β2
k

(√
K1

B′1

)
. Further, evaluating

the steady state solution of Eq. 3.14, the analytical expression of the FRF (m/(m/s2)) is
obtained as

HFRF (xsen, ωs) =

∣∣∣∣∣∣ 1

ω2
s

+
∞∑
k=1

φk (xsen)
(
φ̄k − j φ̄′kωs

)
ω2
k + j

(
B′′1
B′1

+ Dahωs
ω2
k

)
ω2
k − ω2

s

∣∣∣∣∣∣ (3.15)

3.2 Experimental Setup

In this section, the setup for characterizing the cable damping are discussed. Then, the
experimental setup to obtain the modal characteristics of the cable-harnessed beams is
presented.

3.2.1 Material Characterization

To quantify the material damping in the cables, the dynamic characterization of cables
is done using an MTS 831 elastomer test system [85]. It is designed to measure different
dynamic properties of a material by applying an oscillating load over a frequency range.
In this study, the focus is on obtaining tan delta for the cable, which provides a means
of quantifying the material damping. Tan delta (tan δ) is a dissipation factor and can
be understood as the ratio of energy lost to energy stored. It expresses the out-of-phase
time relationship between an impact force and the resultant force that is transmitted to
the supporting body. The higher value of the tan delta would imply a larger damping
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coefficient. In addition, the elastic stiffness for the cable is also acquired to determine the
cable’s elastic modulus.

Figure 3.2 shows the elastomer test system with cable specimen clamped in it. The
cable specimen is held between the clamp fixtures with help of mini line crimps in order to
prevent cable slipping during tests. The line crimps provide better support to the cables at
the ends compared to tying a knot. A mean load of 15 N is specified in the machine which
results in the pre-tension in the cable. Further, a sinusoidal amplitude X(t) = Aesin(2πf)t
is applied in the axial direction from 10 to 400 Hz in the interval of 10 Hz increments
under amplitude Ae, where f is the excitation frequency. The amplitudes were chosen
based on each cable’s stiffness and the testing feasibility.

(a) (b)

Figure 3.2: (a) Front view of Elastomer Test System with a cable sample between the
clamps, (b) close up of a cable sample C-1 clamped for testing

The elastomer test system measures the elastic stiffness K ′ and the phase δ between
the load and displacement at a given excitation frequency. The dynamic stiffness is then
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calculated using K∗ = K ′ (1 + j tan δ). The acquisition of tan delta over the frequency
range enables the use of both Kelvin-Voigt and hysteretic damping models for the cable.
The damping constants and other material properties for these cables are shown in the
Sec. 3.3.1.

It should also be noted that the longitudinal excitation in the damping characterization
of cables was preferred over a lateral excitation method. This is because in the latter case,
the effect of air drag plays a significant role in loss mechanism. Hence, it becomes difficult
to quantify and segregate the effect of internal damping due to cable material. Whereas
in the longitudinal excitation, the air damping effects can be neglected as the motion is in
the axial direction.

3.2.2 Modal Analysis Setup

Figure 3.3 shows the experimental setup for the modal testing of the cable-harnessed beam
structure. The figure also shows the zoomed-in fabricated setup of zigzag wrapped and
longitudinally attached cable-harnessed beams. The structure is excited using the base
excitation method by clamping it on a fixture attached to Modal Shop 2075E dual purpose
electrodynamic shaker as shown in Fig. 3.3(a). The shaker is controlled by a Siemens LMS
05 Mobile SCADAS data acquisition unit. Using a Modal Shop 2050E09 power amplifier
and a PCB Piezotronics 352A24 accelerometer for the feedback control loop, a sinusoidal
base excitation of the desired acceleration profile is generated and swept in the pre-set
frequency range. It is worth mentioning that to increase the accuracy for capturing the
response near the resonance, a low sweep rate of 0.01 Hz/s was used. For the displacement
sensing on the vibrating structure, a Polytec OFV-505 laser vibrometer and Polytec OFV-
5000 controller is used. The Sine Control module of LMS TestLab is used in the PC for
measurement and analysis purposes.

Figure 3.3(b) shows the cable wrapped periodically around the beam in a zigzag pattern
and Fig. 3.3(c) shows the cable attached longitudinally to the top surface along the center-
line. The cable is under a constant pre-tension which is applied during fabrication using a
hanging mass of known weight. For fabrication of the zigzag pattern, one end of the cable
is tied to a small hole located on a corner of the beam free end, and the other cable end is
tied to a hanging mass. The cable is then carefully wrapped around the beam such that
the hanging mass remains stationary and its steady gravity force ensures a constant cable
tension during the whole wrapping process. The constant cable tension is retained after
wrapping the beam, as the other end of the cable is held between the clamps. Additionally,
in some fabricated setups, multiple cables were wrapped around the structure. This was
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done by applying tension to all the cables together which were then twisted to form a cable
bundle before wrapping. This was done to maintain the tension in all the cables because
in other case some cables might lose tension during the process of wrapping. This cable
bundle was then wrapped around the beam in the similar manner described above.

Similarly, the cable is attached longitudinally in Fig. 3.3(c), however, the process is
easier compared to wrapping. One end of the cable is tied to the hole located along the
center-line near the beam free edge and the other end is tied to the known hanging mass.
The taut cable is passed through the clamp which is tightened after ensuring that the cable
is along the beam centerline. Finally, a small square piece of reflective tape is attached at
the sensing location on these structures for an adequate laser beam reflection.
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(a)

(b) (c)

Figure 3.3: (a) Experimental setup of the cable-harnessed system under base excitation,
(b) beam wrapped with cable in a zigzag pattern, (c) cable attached in a longitudinal
manner
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3.3 Experimental validation

To validate the homogenization method, the FRFs obtained from the modal testing of the
fabricated cable-harnessed beams are compared with the two damping models. As far as
the nature of the homogenization method is concerned, there should be a consistency in
choosing a damping model that is suitable for the entire cable-harnessed system. Therefore,
the same damping model was chosen for both the substrate and cable corresponding to each
test. As previously stated, damping parameters for the beam were determined separately
for both damping models to provide a good match between the test and model for the bare
beam.

To obtain the damping constants for the host beam, an inverse approach is utilized
using the modal damping ratios from the modal tests of the unwrapped beam. For the
cables damping properties, as seen previously, a direct method that involves material char-
acterizations using an Elastomer test system is used. Since a major contribution of this
study is to investigate the damping effects of the cables on the host beam structure, any
model updating or inverse approach for the cable damping characterization would defy
the purpose of the analytical model validation. Therefore, a direct approach was used
to perform the cable damping characterization. The acquisition of the cable and beam
parameters are further explained in more details in the following section.

3.3.1 System parameters

In this sub-section, the parameters obtained from the material characterization of the cable
are firstly discussed followed by the air damping parameters from modal testing of the bare
beam. Further, the details of fabricated cable-harnessed structures for the modal testing
experiments are presented.

Cable Parameters

Recall, the storage stiffness, K ′ and tan delta were measured for the four cables using
the elastomer test system. To obtain the storage modulus of the cable, the average value of
measured storage stiffness over the frequency range of interest is calculated and transformed
using E ′c = K ′(lc/Ac), where lc is the length of the cable clamped in the elastomer machine
and Ac is the cable’s cross-sectional area.

The dynamic testing was carried out for the four cables listed in Table 3.1. Cables of
different diameters were used varying from 0.4 mm to 1.24 mm. The damping constants
for the cables are calculated based on the measured tan delta from the dynamic testing
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discussed in 3.2.1. Fig. 3.4 shows the plot of tan delta against frequency for the four cables
which is used to characterize the cable damping with both damping models. According
to the hysteretic damping model, the constant loss factor of the cable, ηhc is independent
of the frequency. Recall, it was defined as the ratio of the loss modulus to the storage
modulus. Hence, the hysteretic loss factor is equal to a constant value of tan delta i.e.
ηhc = tan δ and is obtained by calculating an average of the tan delta values in the entire
frequency bandwidth for each cable. The calculated loss factor of the cables is further
listed in Table 3.1.

The variation of tan delta in Fig. 3.4 are also interpreted such that the damping behavior
of the cable can be modeled using Kelvin-Voigt damping. For this damping model, the
dynamic modulus for the cable is written using E∗c (ω) = Ec + j Ccω. Comparing it
with the dynamic modulus obtained from the test, E∗c = E ′c (1 + j tan δ), the relations,
tan δ = Ccω/Ec and Ec = E ′c are obtained. According to this model, tan delta is a linear
function of ω. This is used to calculate Cc from Fig. 3.4 by finding the slope of the line of
best fit using the least-squares method provided the storage modulus is already calculated.
Here, it should be noted that ω is circular frequency expressed in rad/s. The Kelvin-Voigt
damping coefficient, Cc for all the four cables, is then reported in Table 3.1. Additionally,
the cable storage modulus and the mass density are also reported.

Table 3.1: Geometric and material properties of the cables used for testing

Cable Cable Name
Diameter

(mm)
ηhc Cc(Pa− s) Ec(GPa)

ρc
(Kg/m3)

C-1 Power Pro Fishing line 0.4 0.035 1,335,614.69 63.93 1400

C-2
Technifiber Xone

Tennis string
1.18 0.12 150,125.09 1.18 1196

C-3
BG 65 Titanium
Badminton string

0.73 0.14 290,986.74 3.16 1021

C-4 Volkl V-Pro 18 1.24 0.025 305,242.40 4.46 1385
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Figure 3.4: Material characterization data and linear curve fit of hysteretic and Kelvin-
Voigt damping models for the four cables: (a) Cable C-1, (b) Cable C-2, (c) Cable C-3,
(d) Cable C-4

Beam parameters and air damping coefficients

Three different beams made of Aluminum-6061 were used as host structures to study
the effects of beam parameters on the overall damping of the system. The dimensions of the
beams are listed in Table 3.2. Beam B-1 was chosen as a benchmark beam and other beams
were chosen with respect to the dimensions of this beam. For example, B-2 is a thinner
and shorter beam. The Beam B-3 was chosen to be a narrower beam as compared to B-1.
The length of these beams was chosen such that their fundamental frequencies are close

88



to each other. The material properties for the chosen beam material are: Eb = 68.9 GPa,
ρb = 2768 Kg/m3.

Table 3.2: Geometric and damping parameters of the three host beams used for testing

Kelvin-Voigt damping Hysteresis damping

Beam
Length
(cm)

Width
(mm)

Thickness
(mm)

ηkb αk ηhb αh

B-1 26 16 0.97 1.06× 10−6 1.21 0.0020 0.75
B-2 17 15.6 0.41 1.59× 10−6 1.37 0.0018 0.91
B-3 26 6 0.97 9.59× 10−7 1.00 0.0015 0.63

Although Aluminum is a weakly damped material, the damping in the beam is modeled
to increase the accuracy of the model. For both the damping models, the beam damping
parameters are chosen separately to provide a good match between the test and model for
the three bare beams. Also, separate air damping effects are included in both damping
models. In order to calculate these parameters, the modal testing of the three bare beams
listed in Table 3.2 was conducted and natural frequencies and modal damping ratios were
obtained. To predict the beam Kelvin-Voigt damping constant ηkb and corresponding air
damping constant αk, the analytical expressions of the modal damping ratios are first ob-
tained. Applying the least square error method [60] to minimize the difference between the
analytical and experimental damping ratio for the first five modes results in the damping
constants mentioned in Table 3.2. A similar exercise was performed to obtain the beam
hysteretic damping constant ηhb and the corresponding air damping constant αh.

Using the geometric and material parameters listed in Table 3.2, the analytical model
FRF for the three bare beams are compared with those obtained from the modal testing
and are shown in Fig. 3.5 for both the damping models. As expected, the FRFs from both
the damping models match very well with the test results due to the inclusion of accurately
calculated beam damping parameters.
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Figure 3.5: Comparison between model and test for the bare beams; Kelvin Voigt models
are shown for beams B-1 —B-3 in (a), (c), (e), respectively. Hysteretic models are shown
for beams B-1 —B-3 in (b), (d), (f), respectively.
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Cable harnessed beam parameters

Next, the characterized beams and cables are used to fabricate different cable-harnessed
structures listed in Table 3.3. In this study, modal testing experiments are performed on
the 7 test structures altering system parameters such as cable material, beam geometrical
properties, and/or cable wrapping patterns. The tests 1-4 have the zigzag pattern whereas
tests 5-7 have the longitudinal attached cable-harnessed beam. A clamped-free boundary
was used during the shaker excitation of each test. As well, the values of cable tension for
the cable-harnessed beams were chosen to avoid the buckling in the beam.

Table 3.3: Different cases of cable-harnessed system tested with a clamped-free boundary

Test
#

Beam2 Cable3
Number of

cables
attached

Pattern
Cable
Tension
(N)

Number of
fundamental
elements

Sensing
location,
xsen, cm

1 B-1 C-1 3 Zigzag 3 5 25.5
2 B-1 C-1 5 Zigzag 3 5 25.5
3 B-2 C-1 1 Zigzag 1 5 16.5
4 B-1 C-3 3 Zigzag 3 5 25.5
5 B-1 C-2 1 Longitudinal 3 - 25.5
6 B-1 C-4 1 Longitudinal 3 - 25.5
7 B-3 C-2 1 Longitudinal 1 - 25.8

Tests 1, 2 and 4 use beam B-1 as the host structure with the zigzag wrapping pattern
where the tests 1 and 2 have different number of cable C-1 wrapped to the host beam,
whereas the test 4 has the cables C-3 wrapped. When multiple cables are attached to the
host structure in form of a bundle, it increases the cable radius effectively. This effective
radius is considered as

√
nrc, where n is the number of cables attached [2]. This expression

can be derived after equating the total area of the attached cables to the area of a cable
bundles effective radius. The test 3 uses the beam B-2 wrapped with the cable C-1. In
this manner, different system parameters are used with an aim to validate the proposed
model of damping in periodically wrapped cable-harnessed beams.

As mentioned earlier, various material and geometrical properties for cables as well as
wrapping patterns are considered for validation purposes. However, the wrapping pattern
was chosen based on its feasibility regarding cable dimensions. For instance, the thicker
cables C2 and C4 could not be used to wrap in a zigzag pattern and therefore, only
longitudinal patterns were considered as seen for tests 5-7 in Table 3.3. Also, it would be

2Properties of the beams are listed in Table 3.2
3Properties of the cables are listed in Table 3.1
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shown later that a comparison between the effects of the two patterns can be established
between tests 4 and 5 because of the similar geometric and damping properties of the
harnessed cables on the same host beam.

3.3.2 Experimental cable-harnessed and bare beam FRFs

Figures 3.6 and 3.7 show the experimental FRFs of cabled and bare beams from all the
seven tests listed in Table 3.3. It is obvious from the comparison of the FRFs that the cable
attachment has a noticeable damping effect on all the vibration modes and hence, modeling
the damping mechanism can not be ignored. Also, in certain test cases the damping effects
due to cable attachment are very high. Amongst all the tests, a high cable damping effect
is seen in tests 2, 6 and 7. Hence, the following discussion is based on these three tests.

The cabled beam FRF in Fig. 3.6(b) corresponds to the test 2 which has zigzag wrapping
of five C-1 cables to the host beam B-1. The higher damping of cabled beam structures is
primarily attributed to the multiple cables attached to the host. Recall, the higher number
of cables effectively increases the cable radius thereby increasing the cable damping effects.
It should be noted that the damping effects are more profound in the higher vibration
modes. In addition, an increase in the natural frequency of the cabled beams resulting
from the stiffening effect due to the wrapped cables is observed. This stiffness effect was
observed and discussed in [30], however, the comparison was done with the undamped
model only. The experimental data shown here additionally highlights the importance of
modeling damping in the cabled beam structures.

The FRFs plotted for tests 6 and 7 in Figs. 3.7(b) and 3.7(c), respectively, compares
different longitudinally attached cable-harnessed beams with corresponding bare beams.
The FRFs of the cabled beams show significant damping in the system. This is in contrast
to the damping exhibited by the bare beam which has sharper peaks; hence the cable
damping becomes important while modeling the dynamic behavior of cabled beams. Since
the damping is found to be prominent at the higher modes, it becomes essential for designers
to incorporate accurate cable damping in the models for higher frequency bandwidth falling
in critical zones of the structure.

It is also interesting to see the overall mass and stiffening effects due to cable attachment
in Figs. 3.6(b), 3.7(b) and 3.7(c). This can be done by comparing the natural frequency
peaks of cabled beam against the bare beam. In Fig. 3.7(b), the natural frequencies of
the cabled beam are almost equal to that of the bare beam. This infers that the inertia
effect of cable C-4 neutralizes the added stiffening effect when attached to the host B-1.
Interestingly, when the cable C-1 is attached to the same host B-1 in test 2, as shown
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in Fig. 3.6(b), an overall cable stiffening effect is observed resulting in increase of natural
frequencies. Mathematically, this can be interpreted by comparing the two ratios:

√
B1/K1

and
√
EbIb/(ρbAb) [30]. The natural frequencies of the cabled beam and the bare beam

are directly proportional to the respective ratios. In the case of test 1, the ratio
√
B1/K1

exceeds
√
EbIb/(ρbAb) due to strong stiffening effect of cable C-1 and hence, the natural

frequencies increase. Notably, Fig. 3.7(c) shows an overall mass effect when the cable C-2
is attached to the narrower beam. This is due to the low elastic modulus of the cable C-2
resulting in a lower value of

√
B1/K1 compared to

√
EbIb/(ρbAb) for the corresponding

bare beam. Hence, the natural frequencies decrease on attaching the cable for test 7.
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Figure 3.6: Comparison of bare beam and cabled beam FRFs obtained from experiments
of zigzag wrapped cable-harnessed beam structures (a) Test 1, (b) Test 2, (c) Test 3, and
(d) Test 4
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Figure 3.7: Comparison of bare beam and cabled beam FRFs obtained from experiments
of longitudinally attached cable-harnessed beam structures (a) Test 5, (b) Test 6, and (c)
Test 7

3.3.3 Natural frequency comparison between cable-harnessed model
and test

The natural frequencies of the cable-harnessed system obtained from the 7 modal testing
experiments and corresponding analytical model are listed in Table 3.4. Details of the
test structures was presented earlier in Table 3.3. The data in Table 3.4 is presented for
the first five vibration modes for which the testing was conducted. The comparison of the
natural frequencies is important to show the capability of the analytical model in predicting
accurate mass and stiffness effects due to the cables when they are wrapped around the
structure or attached in a longitudinal pattern.
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Table 3.4: Comparison of natural frequencies (Hz) between experiments and model for
cable-harnessed test cases

Mode Number
1 2 3 4 5

Test 1
Test, ωn 12.05 74.70 210.55 413.50 681.15
Model, ωn 11.973 75.03 210.09 411.7 680.57
Error in model, % -0.64% 0.44% -0.22% -0.44% -0.09%

Test 2
Test, ωn 12.25 76.9 214.24 421.25 692.75
Model, ωn 12.2 76.47 214.13 419.62 693.66
Error in model, % -0.41% -0.56% -0.05% -0.39% 0.13%

Test 3
Test, ωn 11.30 70.05 199.40 390.35 650.90
Model, ωn 11.56 72.44 202.85 397.5 657.1
Error in model, % 2.30% 3.41% 1.73% 1.83% 0.95%

Test 4
Test, ωn 11.45 71.65 202.50 398.05 655.55
Model, ωn 11.50 72.08 201.84 395.54 653.85
Error in model, % 0.44% 0.60% -0.33% -0.63% -0.26%

Test 5
Test, ωn 11.55 71.90 202.05 395.70 653.55
Model, ωn 11.49 72.02 201.67 395.19 653.28
Error in model, % -0.52% 0.17% -0.19% -0.13% -0.04%

Test 6
Test, ωn 12.30 74.40 206.85 402.80 663.30
Model, ωn 11.78 73.83 206.75 405.15 669.74
Error in model, % -4.23% -0.77% 0.05% 0.58% 0.97%

Test 7
Test, ωn 11.45 70.40 196.05 382.10 628.95
Model, ωn 11.38 71.32 199.72 391.37 646.96
Error in model, % -0.06% 1.30% 1.87% 2.42% 2.86%

The natural frequencies obtained from the tests 1-4, listed for zigzag wrapped cabled
beams, are first discussed. The natural frequencies obtained from these tests are clearly
a good match with the homogenized model as evident from the low percentage errors in
the model frequencies. It shows that the model is fairly accurate in predicting the overall
cable mass and stiffness effects.

On a closer observation, it is seen that the tests 1, 2 and 4 have relatively smaller error
in frequencies obtained from model compared to the test 3. Recall from Table 3.3 that the
tests 1, 2 and 4 utilize the same host beam B-1, whereas the test 3 uses a thinner beam B-2.
The higher frequency errors in test 3 are attributed to the averaging assumptions within
a fundamental element for the homogenization method and its reliance on the periodicity
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of the system. As the beam thickness decreases, the non-homogeneity within an element
increases due to the cable becoming a dominant part of the structure, this method starts
to show its limitations. Moreover, at the higher frequencies, the ratio of the wavelength of
the frequency of interest to length of element decrease and as a result, the error increases
for high frequency modes.

Moreover, Table 3.4 also shows the natural frequencies for the systems with cable
longitudinally attached on the top surface of the beam corresponding to tests 5-7. For
this pattern as well, the natural frequencies show a good match between the test and the
model. Between these three tests, a fair comparison can be made between tests 5 and 7
where both the tests have same cable C-2 attached but the former has host beam B-1,
whereas the latter has B-3. Recall from Table 3.2 that the beam B-3 is narrower in width
direction compared to B-1. It is seen from Table 3.4 that although frequencies of both the
tests 5 and 7 are a good match with the model, the latter has an overall higher error in
frequencies. These errors in the test 7 are again attributed to the averaging assumptions
of the homogenization method. However in this case, the narrower beam used in this test
results in the increase of non-homogeneity within a fundamental element as the cable effects
become more influential. Additionally, the higher modes of test 6 shows a relatively larger
error in model compared to test 5. This is because of the higher density and diameter of
cable C-4 used in test 6 compared to C-2 used in test 5 (refer Table 3.1), which results in
a relatively larger non-homogeneity in the system, hence resulting in a larger error. Both
tests 5 and 6 have same host beam B-1.

3.3.4 Damping comparison between cable-harnessed model and
test

In this section, the FRFs are utilized to compare the damping between the proposed models
and test. The experimentally obtained FRFs are compared with both the undamped model
and hysteretic and Kelvin-Voigt damping models. The FRF plots for the zigzag wrapped
patterns are shown in Figs. 3.8 and 3.9, while those for the longitudinally attached cabled
beams are shown in Fig. 3.10, for a total of 7 test cases. In these figures, the FRF plots
on the left are shown for the first five modes of vibrations in the out-of-plane bending
coordinate in the z−direction. Additionally, the zoomed-in plots for the highest modes are
shown on the right-hand side for better comparisons.

The undamped model FRFs for the zigzag wrapped structure presented in Figs. 3.8
and 3.9 was previously proposed by Martin et al. in [30]. Although the undamped model
is successfully able to predict the natural frequencies accurately, it is unable to predict the
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FRF shapes due to the absence of damping in the homogenized model. To fill this gap,
the models proposed in the current study include the damping effects in the cables and
the host structure. It is clear from the FRF plots that the proposed models show a better
prediction of the system dynamics of the cable-harnessed structures.

It is seen that the FRFs obtained from the hysteretic damping model overall provide
a better match with the test results compared to the Kelvin-Voigt model for tests 1 to 4.
Kelvin-Voigt model is seen to over-predict the damping at the higher frequency modes for
these tests; whereas, it shows a good prediction of damping for the mid-frequency range.
Therefore, the damping effects of cables C-1 and C-3 are best characterized using the
hysteretic damping model.

As expected and consistent with the results in Chapter 2, a comparison of the FRFs in
Figs. 3.8(a) and 3.8(c) corresponding to tests 1 and 2 clearly show in both test and model
that as the number of wrapped cables increases, the damping in the structure increases.

Also, the relatively higher frequency errors in the natural frequencies of test 3 as seen
from Fig. 3.9(a) were explained earlier in Sec. 3.3.3. Moreover, in Fig. 3.9(b), an extra
peak due to the 1st torsional mode of the system is observed in the test FRF of the cabled-
beam system. Since the presented model does not account for vibration in the torsional
coordinate, the peak corresponding to the torsional mode is not predicted.

Figure 3.10 shows the FRFs for the longitudinally attached cabled beams for tests
5-7. For this pattern as well, the proposed damped model clearly shows a significant
improvement compared to the undamped model in matching the test results. In all the
FRFs shown in Fig. 3.10, it is also observed that the Kelvin-Voigt model is a better match
with the test results compared to the hysteretic damping model which seems to under-
estimate the damping in the structure. The reason for the better match is attributed to
the fact that the cables used in these cases, C-2 and C-4, are better-characterized using
the Kelvin-Voigt model compared to the hysteresis model.

An important comparison can be made between the damping effects exhibited in the
two patterns considered in this study, zigzag and longitudinal. For this exercise, the
comparison is made between the tests 4 and 5 conducted for the zigzag and longitudinal
cabled beam patterns, respectively. Both tests use similar host beam B-1 and the attached
cables have similar geometric and damping properties. In other words, the total diameter
and the cable damping constants ηkc and ηhc for the attached cables in these two tests are
similar and can be calculated using Tables 1 and 3. This allows for a fair comparison of the
damping properties between the two patterns. Hence, when the corresponding FRFs in
Figs. 3.9(c) and 3.10(a) are compared, it is observed that the latter, which corresponds to
the longitudinal pattern, shows a significantly higher damping both in the tests and model
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results. This interpretation becomes clearer when the zoomed-in FRF plots for the higher
modes are compared as shown in Fig. 3.11. The smaller damping in the zigzag wrapped
beam is a resultant of the wrapping angle over which the damping force from the cables
is projected. On the other hand, for the case of the longitudinal pattern, the damping
effects are maximized due to cables being along the centreline of the beam. This is in line
with the comparisons presented between model results for various wrapping patterns in
Fig. 2.12 in Chapter 2 which also shows that the longitudinally attached cable-harnessed
structures have higher damping.

In addition, the relatively higher error in the natural frequencies peaks seen in Figs.
3.10(c) and 3.10(e) compared to Fig. 3.10(a) is related to the larger non-homogeneity in
the system considered for tests 6 and 7 as explained previously in Sec. 3.3.3. Finally, the
beam width is another aspect that is considered when observing each structures damping.
As expected, narrower beams are more affected by the cable damping effects than the wider
beams as also shown and supported by the results for tests 5 and 7.
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(a) Test-1 (b) Zoomed in plot for Test-1

(c) Test-2 (d) Zoomed in plot for Test-2

Figure 3.8: Comparison of FRFs between undamped model, the two damping models and
experiments for zigzag wrapped cabled beams for (a) Test 1 and (c) Test 2; The zoomed-in
plots for the highest mode are shown on the right side in (b) and (d).
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(a) Test-3 (b) Zoomed in plot for Test-3

(c) Test-4 (d) Zoomed in plot for Test-4

Figure 3.9: Comparison of FRFs between undamped model, the two damping models and
experiments for zigzag wrapped cabled beams for (a) Test 3 and (c) Test 4; The zoomed-in
plots for the highest mode are shown on the right side in (b) and (d).

100



(a) Test-5 (b) Zoomed in plot for Test-5

(c) Test-6 (d) Zoomed in plot for Test-6

(e) Test-7 (f) Zoomed in plot for Test-7

Figure 3.10: Comparison of FRFs between undamped model, the two damping models and
experiments for longitudinally attached cabled beams for (a) Test 5, (c) Test 6, (e) Test 7;
The zoomed-in plots for the highest mode are shown on the right side in (b), (d) and (f).
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Figure 3.11: Comparison of the zoomed-in experimental FRFs of cable-harnessed beams
obtained from tests 4 and 5
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3.4 Summary of the Chapter

Following the analytical model developments based on the energy-equivalence homoge-
nization method for cable-harnessed beam structures, the experimental validations for the
proposed models are presented in this chapter. This study highlights the importance
of modeling the damping mechanisms due to cable attachments. In order to character-
ize the damping in the cables, a dynamic testing method is used to quantify the energy
loss in cables. The experimental modal testing is then performed on various fabricated
cable-harnessed beam structures using the base excitation method to obtain FRFs. The
cable-harnessed beam structure FRFs are compared to those obtained from the bare beam
and to show the importance of modeling the damping due to cable attachment which was
ignored in the previous works [30, 31]. It is shown that the homogenization method of-
fers a great tool for incorporating several damping models into a cable-harnessed systems
dynamics. The damping in the system is found to be higher when a cable is harnessed
to the beam longitudinally compared to the case when it is wrapped in a zigzag pattern.
Additionally, the system damping is found to increase on decreasing the beam width or
using a cable with higher radius.

The work presented in Chapters 2 and 3 concludes the first phase of the current re-
search which focused on creating analytical models and performing numerical and exper-
imental validations of the damping mechanisms in periodically wrapped cable-harnessed
beam structures.
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Chapter 4

Analytical Modeling and
Experimental Validation of Parallel
Cable-Harnessed Plate Structures

In this chapter, analytical modeling of the cable-harnessed plates is proposed where the
cables are attached to the plate in a parallel configuration. The proposed model is exper-
imentally validated later in the chapter. It is worth mentioning here that the analytical
models of cable-harnessed two-dimensional structures have not been developed in the past
as per the author’s best knowledge. This chapter presents the details about the successful
attempt made by the author towards modeling such structures. These cable-harnessed
plate-like structures are common in aerospace industry. Moreover, the current work would
act as a stepping stone towards the future developments and understanding of the dynamics
of complex cable-harnessed plate structures 1 2.

Since the rectangular thin plate is considered a two-dimensional structural element
during modeling, as opposed to the one-dimensional beam element, the mathematical
modeling becomes complicated for the former. This is also one of the reasons why the
previous researchers considered the effects of cables on host beams rather than plates, as
discussed in Chapter 1. However, considering a plate as a host structure helps in gaining
further insights to the dynamics of cable-harnessed system that a beam host structure is

1The analytical formulation developed in this chapter was presented in 26th International Congress of
Sound and Vibration [86].

2The detailed analysis of the formulation presented in this chapter along with the experimental valida-
tion has been accepted for publication in ASME Journal of Vibration and Acoustics [87].
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not able to provide. Also, developing the analytical models of the cable-harnessed plates
brings us one step closer to the reality because a lot of spacecraft structures are made of
panels that closely resemble thin plates.

To start with, in this chapter, a simple geometry of the cable attachment is consid-
ered that assumes multiple cables attached parallel to an edge of a rectangular plate that
are equidistant to each other. The model assumptions are then listed. Further, in order
to obtain the equation of motion, Hamilton’s principle is applied on the developed for-
mulation of strain and kinetic energy of the equivalent continuum model obtained using
energy-equivalence homogenization approach. Damping is ignored in the current work for a
simplified model. The model is validated using experimental modal testing. Three different
samples of fabricated cable-harnessed structures are used for the validation purpose. As a
measure of validation, frequency response functions, mode shapes and natural frequencies
are compared between test and model. Also, a metric known as modal assurance criterion
(MAC), that compares experimental and theoretical mode shapes, is presented for two
test cases. Finally, the proposed model is compared with an existing cable-harnessed beam
model to show the importance of the current work.

4.1 Mathematical modeling of parallel cable-harnessed

plates

In this section, the system description and underlying model assumptions are presented.
Then, the equivalent continuum model of the cable-harnessed plate is developed using an
energy-equivalence homogenization method. For the model development, the total strain
and kinetic energy expressions of the system are obtained. Finally, on applying Hamilton’s
principle, the equation of motion of the system is obtained.

4.1.1 Model description and assumptions

The structure consists of a rectangular thin plate with multiple parallel cables attached to
the top surface of the plate as shown in Fig. 4.1(a). The global coordinate system (x, y, z)
corresponds to the entire plate, while the local (η, ξ, z) corresponds to a fundamental
element. A fundamental element, as shown in Fig. 4.1(b), is defined as the building block
of the model which, if repeated in both the directions, forms the entire cable-harnessed
plate. The dimension of the plate is a× b and that of the fundamental element is L1 × L2

with similar thickness h. The dimension L2 is calculated by dividing the host plate’s width
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b by the number of cables, n, and L1 is chosen such that the ratio of L1 to L2 remains
similar as a to b.

(a) (b)

Figure 4.1: (a) Schematic of the cable-harnessed plate clamped at one edge (b) Fundamen-
tal element

As mentioned, the equivalent continuum model of the cable-harnessed plate is devel-
oped using an energy-equivalence homogenization method. This method simplifies the
mathematical model for structures with repeated patterns and provides the possibility of
a closed-form solution that provides more insights into the problem. The major criteria to
apply this method is the periodicity within the structure. Hence, the cables are assumed
to be equidistant from each other in the parallel cabled plate structure thereby forming a
periodic geometry.

In the modeling approach, the strain and kinetic energy of a fundamental element
are first calculated in terms of the displacement at the element center. These energy
expressions on division by the element area result in the areal energy densities which are a
good representative of energy per unit area of the entire structure. Once the total energy
expressions are evaluated over the entire structure, Hamilton’s principle is used to obtain
the governing equation of motion in the transverse coordinate.

The model assumptions applied towards the development of equivalent continuum struc-
tures of the cable-harnessed plate are listed as follows:

1. The host structure is assumed to be an isotropic plate and is modeled using classical
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plate theory.

2. The cable remains in perfect contact with the plate during vibrations.

3. The cable is under a pretension at the equilibrium position.

4. The axial strain in the cable at a given cross-section is assumed to be uniform.

5. Cable pretension results in the pre-compression of the plate.

Assuming a small transverse displacement w(x, y, t), the linearized displacement field
according to the classical plate theory can be written as

ux = −z w,x(x, y, t)
uy = −z w,y (x, y, t)

uz = w(x, y, t)

(4.1)

where the subscripts after the commas indicate the partial derivatives in space.

Further, the Green-Lagrange strain tensor is used to obtain the strain-displacement
relations. A higher order strain tensor is used to include the effect of cable tension in the
system dynamics as the infinitesimal strain tensor fails to include its effect. The Green
Lagrange strain tensor for rectangular component form is written as, [88]:

ε
(2)
ij =

1

2
[ui,j + uj,i + um,ium,j] , i, j = x, y, z (4.2)

Using Eqs. 4.1 and 4.2, the non-zero component of strain tensor can be obtained as

ε(2)
xx = −zw,xx +

1

2
(z2w,2xx +z2w,2xy +w,2x )

ε(2)
yy = −zw,yy +

1

2
(z2w,2xy +z2w,2yy +w,2y )

ε(2)
xy = −zw,xy +

1

2

(
z2w,xxw,xy +z2w,yy w,xy +w,xw,y

) (4.3)

Here, ε
(2)
xx , ε

(2)
yy represents the normal bending strain in the x and y direction, respec-

tively, and ε
(2)
xy is the shear strain in the x− y plane.
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4.1.2 Strain energy of a fundamental element

In order to calculate the total strain energy stored within a fundamental element, the strain
energy of both components of the fundamental element, cable and plate, is to be evaluated.
These energy expressions would be summed up to obtain the total strain energy within a
fundamental element.

Strain energy of the cable within a fundamental element

The total strain in the cable is resultant of the static strain due to cable pretension,
T/EcAc, and the resulting dynamic strain due to vibration of the plate evaluated at the
plate-cable interface,

εc =
T

EcAc
+ ε(2)

ηη

∣∣
z=zc

(4.4)

where Ec, Ac, and T are the cable’s Young’s modulus, cross-sectional area and tension,
and h is the plate thickness. zc = h/2 denotes the z coordinate of the cable-plate interface,
at which the dynamic strain is evaluated. In Eq. 4.4, the local coordinate system is used
because the strain energy expression is being evaluated for the fundamental element.

Using Eqs. 4.3 and 4.4, the cable strain energy within a fundamental element is written
and expanded as,

Ucable =

∫ L1

0

∫
Ac

1

2
Ec (εc)

2 dA dη (4.5)

=

∫ L1

0

∫
Ac

1

2
Ec

(
T

EcAc
+ ε(2)

ηη

∣∣
z=zc

)2

dA dη (4.6)

=

∫ L1

0

∫
Ac

1

2
Ec

(
T

EcAc
− zc w,ηη +

1

2
(z2
cw,

2
ηη +z2

cw,
2
ηξ +w,2η )

)2

dAdη (4.7)

This expression is further expanded and written as

Ucable =

∫ L1

0

∫
Ac

1

2
Ec

(
T 2

A2
c E

2
c

+
T w,2η
AcEc

+
w,4η
4
−

2 Tzc w,ηη
AcEc

− w,2η w,ηη zc + w,2ηη z
2
c+

T w,2ηη z
2
c

AcEc
+

1

2
w,2η w,

2
ηη z

2
c +

T w,2ηξ z
2
c

AcEc
+

1

2
w,2η w,

2
ηξ z

2
c − w,3ηη z3

c

− w,ηη w,2ηξ z3
c +

w,4ηη z
4
c

4
+

1

2
w,2ηη w,

2
ηξ z

4
c +

w,4ηξ z
4
c

4

)
dAdη (4.8)
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In this equation, because the displacements are assumed small, the terms higher than
second order in displacement and its derivatives are ignored. Also, since the displacement
is constant across the area of the cross section, integration over area can be performed.
This simplification results in

Ucable ≈
∫ L1

0

1

2
EcAc

(
T 2

A2
c E

2
c

+
T w,2η
AcEc

−
2 Tzc w,ηη

AcEc
+ w,2ηη z

2
c +

T w,2ηη z
2
c

AcEc
+
T w,2ηξ z

2
c

AcEc

)
dη

(4.9)

The term w2
ηξ also vanishes because the cable runs along the η−axis and the derivative of

displacement along the ξ axis would result in zero. Hence, the strain energy of the cable
is written as

Ucable ≈
∫ L1

0

1

2
EcAc

(
T 2

A2
c E

2
c

+
T w,2η
AcEc

−
2 Tzc w,ηη

AcEc
+ w,2ηη z

2
c +

T w,2ηη z
2
c

AcEc

)
dη (4.10)

Strain energy of the plate within a fundamental element

Further, the strain energy of the plate is calculated. Since the cable pretension results in
the compression of the plate, it is assumed that a constant distributed compressive loading
Nx (units N/m) is present normal to the ξ − z plane due to the compression induced by
multiple parallel cables. The total strain energy stored in the plate within the fundamental
element due to combined action of lateral and longitudinal forces can be written as [89]:

Uplate =
1

2hEp

∫ L2

0

∫ L1

0

N2
x dη dξ

+

∫ h
2

−h
2

∫ L2

0

∫ L1

0

(
−Nx

h

)[
−z w,ηη +

1

2

{
z2 (w,ηη )2 + z2 (w,ηξ )2 + (w,η )2} ] dη dξ dz

+
D

2

∫ L2

0

∫ L1

0

[
(w,ηη +w,ξξ )2 − 2 (1− ν)

(
w,ηη w,ξξ − (w,ηξ )2)] dη dξ (4.11)

where Ep, D, and ν are Young’s modulus, flexural rigidity, and Poisson’s ratio of the
plate, respectively. The flexural rigidity can be written in terms of the two other material
parameters as D = Eph

3/(12 (1− ν2)). In Eq. 4.11, the first integration denotes the
strain energy due to stretching of the middle plane of the plate, the second integration
shows the additional work done by compressive forces in bending the plate, and the third
integration shows the strain energy stored in the plate due to bending. In the absence of
any compressive load, the strain energy of the plate is represented by the third integration.
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Also, in the second integration, the integration over the thickness has been included because
it is assumed that the pre-compressive load is uniformly distributed over the thickness of
the plate.

The distributed compressive load can be related to the cable tension as

Nx = T/L2 (4.12)

Total strain energy within a fundamental element

The total strain energy within a fundamental element of the structure can be calculated
by summing up the strain energy of its components plate and cables. Hence, using Eqs.
4.10 and 4.11, the strain energy within a fundamental element is expressed as

Utot =

∫ L1

0

1

2
EcAc

(
T 2

E2
cA

2
c

+
Tw,2η
EcAc

−
2Tzcw,ηη
EcAc

+ z2
cw,

2
ηη +

Tz2
cw,

2
ηη

EcAc

)
dη

+
1

2hEp

∫ L2

0

∫ L1

0

N2
x dη dξ

+

∫ h
2

−h
2

∫ L2

0

∫ L1

0

(
−Nx

h

)[
−z w,ηη +

1

2

{
z2 (w,ηη )2 + z2 (w,ηξ )2 + (w,η )2} ] dη dξ dz

+
D

2

∫ L2

0

∫ L1

0

[
(w,ηη +w,ξξ )2 − 2 (1− ν)

(
w,ηη w,ξξ − (w,ηξ )2)] dη dξ (4.13)

4.1.3 Kinetic energy

Neglecting the rotary inertia, the total kinetic energy of a fundamental element of the struc-
ture can be written by integrating oven an infinitesimal element of respective components
(plate and cable) corresponding to the transverse motion as:

Ek =

∫ L1

0

∫
Ac

1

2
ρc

(
∂w

∂t

)2

dAdη +

∫ h/2

−h/2

∫ L2

0

∫ L1

0

1

2
ρp

(
∂w

∂t

)2

dηdξdz (4.14)

where ρc and ρp denote the mass density of cable and plate, respectively. Note that
the variables in the local coordinate system are used in the above integration due to the
energy being written for a fundamental element.
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4.1.4 Homogenization

In order to apply the homogenization method, the displacement of a point (η, ξ) in the fun-
damental elements is written in terms of the displacement at the center of the fundamental
element (L1/2, L2/2) using the Taylors series expansion of w(η, ξ, t) upto the second-order
as,

w (η, ξ, t) ≈

[
w

(
L1

2
,
L2

2
, t

)
+ w,η

(
L1

2
,
L2

2
, t

)(
η − L1

2

)
+ w,ξ

(
L1

2
,
L2

2
, t

)(
ξ − L2

2

)

+
1

2

(
w,ηη

(
L1

2
,
L2

2
, t

)(
η − L1

2

)2

+ 2w,ηξ

(
L1

2
,
L2

2
, t

)(
η − L1

2

)(
ξ − L2

2

)

+ w,ξξ

(
L1

2
,
L2

2
, t

)(
ξ − L2

2

)2
)]

(4.15)

Substituting Eq. 4.15 in Eq. 4.13, and integrating over respective limits yields the
homogenized strain energy over the fundamental element of the plate

Utot(t) =
1

2
EcAc

(
T 2

E2
cA

2
c

+
Tw∗,2η
EcAc

−
2Tzcw

∗,ηη
EcAc

+ z2
cw
∗,2ηη +

Tz2
cw
∗,2ηη

EcAc

)
L1 +

N2
x L1L2

2hEp

+

(
−Nx

2h

)[
h3

12
(w∗,ηη )2 +

h3

12
(w∗,ηξ )2 + h (w∗,η )2

]
L1L2

+
D

2

[
(w∗,ηη +w∗,ξξ )2 − 2 (1− ν)

(
w∗,ηη w

∗,ξξ − (w∗,ηξ )2)]L1L2 (4.16)

In this equation, ∗ denotes the variables evaluated at the center of the fundamental
element, (L1/2, L2/2). This is the total strain energy of the fundamental element, which is
just the function of time. Next, the total energy is divided by area of the element, (L1L2),
to obtain the energy density, which can be written as:

Utot
L1L2

=
EcAc
2L2

(
T 2

E2
cA

2
c

+
Tw∗,2η
EcAc

−
2Tzcw

∗,ηη
EcAc

+ z2
cw
∗,2ηη +

Tz2
cw
∗,2ηη

EcAc

)
+

N2
x

2hEp

+

(
−Nx

2h

)[
h3

12
(w∗,ηη )2 +

h3

12
(w∗,ηξ )2 + h (w∗,η )2

]
+
D

2

[
(w∗,ηη +w∗,ξξ )2 − 2 (1− ν)

(
w∗,ηη w

∗,ξξ − (w∗,ηξ )2)] (4.17)
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For a sufficiently large number of fundamental elements, this energy density is a good
representative of that of an equivalent homogenized element. On multiplying it with the
area of an infinitesimal element, dxdy, and integrating over the area of the plate results in
the total strain energy of the homogenized system

Usys =

∫ b

0

∫ a

0

1

2

{
D11w,

2
xx +D22w,

2
yy +4D66w,

2
xy +2D12w,xxw,yy−C1w,xx +C2

}
dxdy

(4.18)

where the coefficients can be expanded as

D11 =

[
D +

EcAcz
2
c

L2

+
Tz2

c

L2

− Nxh
2

12

]
,

D22 = D,

D66 =

(
1

2

)[
D (1− ν)− Nxh

2

24

]
,

D12 = νD,

C1 =
Tzc
L2

,

C2 =

[
T 2

2EcAcL2

+
N2
x

2hEp

]
.

(4.19)

Similarly, using the total kinetic energy of the system expressed in Eq. 4.14 and fol-
lowing the similar homogenization approach outlined above, the total kinetic energy in the
homogenized system is obtained as

Ek,sys =

∫ b

0

∫ a

0

1

2
K1

(
∂w

∂t

)2

dxdy (4.20)

where the homogenized aerial mass density (Units−Kg/m2) is written as

K1 = ρph+ ρcAc/L2. (4.21)

4.1.5 Equation of motion

Using the total strain and kinetic energy of the homogenized system obtained in Eqs. 4.18
and 4.20, Hamilton’s principle is further used to obtain the following governing equation
of motion:
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D11w,xxxx +2 (D12 + 2D66)w,xxyy +D22w,yyyy +K1w,tt = 0 (4.22)

where the coefficients of the EOM are expanded in terms of the system parameters in
Eqs. 4.19 and 4.21. Further, it is interesting to note that Eq. 4.22 has a similar form of par-
tial differential equation (PDE) as a specially orthotropic laminated plate [89, 3]. This was
also discussed in Section 1.2.5 when standard differential equations in structural dynamics
were presented in Chapter 1. Hence, with the application of the homogenization approach,
the cable-harnessed plate structure can be represented as an equivalent continuum plate
model that has properties similar to a specially orthotropic plate.

Also, on substituting the cable parameters, Ec = T = ρc = 0 in the coefficients of Eq.
4.22, the resulting PDE is same as the equation of motion of a bare plate. The resulting
coefficients D11 = D, D66 = D (1− ν) /2, D12 = νD, D22 = D and K1 = ρph corresponds
to the equation of motion of a homogeneous and isotropic rectangular plate, also mentioned
in Section 1.2.5.

The first term of the PDE in Eq. 4.22, D11w,xxxx, is related to the bending stiffness of
the cabled plate system in the x−direction. It should be noted that the additional terms
in the coefficient D11 in Eq. 4.19 compared to the bare plate are responsible for changing
the cable-harnessed structure’s stiffness in the x−direction. As seen from the expression
of D11, the second and third terms are the added stiffness due to the cable attachment
depending on the cable modulus, cable radius, pretension, plate thickness, and distance
between parallel cables. Similarly, the third term of the PDE, D22w,yyyy, is related to the
bending stiffness of the homogenized structure along the y−direction. From Eq. 4.19, it
is clear that there is no added cable stiffness present in the y−direction because when the
cable is attached along the x−direction, there is no contribution of cable stiffness in the
orthogonal direction. The terms D12 and D66 are responsible for the twist and coupled-
bending stiffness in the system. Additionally, K1 denotes the homogenized mass per unit
area of the system.

For the homogenized model, the boundary conditions at the four edges are obtained
as,

w,x = 0 or Mx + C1 = 0 on edges x = 0 and x = a. (4.23a)

w = 0 or Mx,x + 2Mxy,y = 0 on edges x = 0 and x = a. (4.23b)

w,y = 0 or My = 0 on edges y = 0 and y = b. (4.23c)
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w = 0 or My,y + 2Mxy,x = 0 on edges y = 0 and y = b. (4.23d)

whereMx = −(D11w,xx +D12w,yy ), My = − (D12w,xx +D22w,yy ) andMxy = −2D66w,xy.
In Eq. 4.23, the boundary conditions on the left side represents the geometric boundary
conditions, while those on the right side represents the natural boundary conditions. Al-
though the expressions Mx, My and Mxy have a similar form as the bending and twisting
moments in a specially orthotropic plate, they do not necessarily represent the exact bend-
ing and twisting moment of the equivalent cable-harnessed plate structure. Here, these
expressions have been used to write the boundary conditions in a concise form. A de-
tailed discussion of the total bending and twisting moment is presented in the following
paragraphs.

In the current work, attention is given to the CFFF (Clamped-Free-Free-Free) boundary
condition for experimental validation purpose. Using Eq. 4.23, the boundary conditions
can be specifically written for CFFF boundary with the clamped edge along x = 0 as,

w (0, y, t) = 0 and w,x (0, y, t) = 0 (4.24a)

Mx (a, y, t) + C1 = 0 and Mx,x(a, y, t) + 2Mxy,y(a, y, t) = 0 (4.24b)

My(x, 0, t) = 0 and My,y(x, 0, t) + 2Mxy,x(x, 0, t) = 0 (4.24c)

My(x, b, t) = 0 and My,y(x, b, t) + 2Mxy,x(x, b, t) = 0 (4.24d)

Equation 4.24(a) denotes the geometric boundary condition corresponding to the van-
ishing displacement and slope at the clamped end. Addition of the cable harness along the
x−direction introduces a non-homogeneous term C1 in the moment boundary condition at
x = a as shown in Eq. 4.24(b). To gain a better understanding of this boundary condition,
the stress resultants on the homogenized cabled plate system needs to be calculated as
outlined in [90].

The stress resultants on a system are calculated using the definition(
MH

x , Px
)

=

∫
Area

σxx(z, z
2)dA

where MH
x is the moment resultant representing the bending moment per unit length and

Px is a higher-order stress resultant. For the homogenized structure, the integration is
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performed across the entire cross-sectional area that includes the components due to both
the cable and plate. While obtaining the stress resultant from the cable, it should be noted
that the stress σxx is assumed to be constant over its cross-section and is equal to the value
obtained at the plate-cable interface. The homogenization method is applied in order to
obtain the stress resultants. Throughout the method, only constant terms in Px, and linear
terms in derivatives of w(x, y, t) and constant terms for MH

x are kept. The moment per
unit length of the hybrid system at the edge x = a is therefore obtained as

MH
x =

[
−
{
D +

EcAcz
2
c

L2

}
w,xx−νDw,yy

]
+ Tzc/L2 (4.25)

whereas, the higher order stress resultant is obtained as

Px = −Nxh
2

12
+
Tz2

c

L2

(4.26)

The moment MH
x is composed of two parts; one that is shown in square brackets which is

related to the bending stiffness of the homogenized system in the x−direction and another
is equal to the initial moment per unit length produced by the taut cable when the plate
is in undeformed configuration. The moment boundary condition in Eq. 4.24(b) can now
be written in terms of the total moment of the homogenized system at the free end x = a
using Eqs. 4.25 and 4.26 as

MH
x = Pxw,xx (4.27)

From this equation, it can be clearly seen that due to the presence of higher-order
stress resultants, the total bending moment do not vanish at the free end where cables
are attached. This is also in agreement with a previous study on the homogenization of
cable-harnessed beam structures [91] where the bending moment did not similarly vanish
at the free end of the beam structure due to the presence of higher-order stress resultants.

The moment boundary condition at the free edge y∗ = 0 and b, i.e. My(x, y
∗, t) = 0 in

Eqs. 4.24(c) and 4.24(d) do not have terms associated with cable because there is no cable
attached to those edges. Hence for the edges parallel to the y−axis, My denotes the total
bending moment in the y−direction which vanishes at the free end.

In order to solve the governing equation of motion, the non-homogeneous moment
boundary condition in Eq. 4.24(b) needs to be transformed to a homogeneous equation.
Hence, a steady-state solution of the form

S (x, y) =
1

2
(C11x

2 + C22y
2),
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where C11 and C22 are constants, is introduced such that the displacement w(x, y, t) is
transformed to a new variable w̄ (x, y, t) = w (x, y, t) + S(x, y). Using the equilibrium
solution S (x, y), the boundary conditions in the transformed variable w̄ (x, y, t) can be
made homogeneous. Also, due to the time-independent nature of the function S (x, y), the
natural frequencies of the system determined by the PDE in terms of w̄ (x, y, t) remain
equal to those obtained from the PDE in terms of the original variable w (x, y, t). The
transformed PDE becomes

D11w̄,xxxx +2 (D12 + 2D66) w̄,xxyy +D22w̄,yyyy +K1w̄,tt = 0 (4.28)

and the boundary conditions are transformed to

w̄ (0, y, t) = 0 and w̄,x (0, y, t) = 0 (4.29a)

M̄x(a, y, t) = 0 and M̄x,x(a, y, t) + 2M̄xy,y(a, y, t) = 0 (4.29b)

M̄y(x, 0, t) = 0 and M̄y,y(x, 0, t) + 2M̄xy,x(x, 0, t) = 0 (4.29c)

M̄y(x, b, t) = 0 and M̄y,y(x, b, t) + 2M̄xy,x(x, b, t) = 0 (4.29d)

where M̄x = −(D11w̄,xx +D12w̄,yy ), M̄y = − (D12w̄,xx +D22w̄,yy ), and M̄xy = −2D66w̄,xy.
Clearly, the above mentioned boundary conditions have become homogeneous after the
transformation.

In order to obtain the natural frequencies and the FRFs for the boundary value problem
formed by Eqs. 4.28 - 4.29, Rayleigh-Ritz (RR) method is used. For the RR method, 36
trial functions are formed using the assumed mode shape functions of clamped-free and
free-free beam to obtain the solution for the cabled plate system under CFFF boundary.

It should also be noted that the problem has been formulated for the system where
cables are parallel to the x−direction. However, if the cables are harnessed parallel to the
y−direction, appropriate modifications in the boundary conditions (clamping at an edge
parallel to x−axis and remaining edges remain free) would yield the desired result.

One of the limitations of the current model is its inability to predict the buckling in
the plate due to the compressive load applied by the cable. The reasoning is based upon
a mathematical step in the process of obtaining the homogenized model. When the strain
energies of the plate and cable within the fundamental element in Eqs. 4.10 and 4.11 are
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summed up and the homogenization principle is applied, the terms associated with w,2η
vanishes in process of obtaining total homogenized strain energy in Eq. 4.18. As a result,
the governing equation of motion does not exhibit a form similar to a plate subject to
external axial compression, and therefore, the buckling behavior is not predicted by the
model. This also implies that the cable-tension force and the pre-compression force in
the host plate are considered as internal forces in the system. Hence, caution should be
exercised to appropriately choose the cable tension values in order to avoid buckling in the
host structure prior to employment of the proposed model.

4.2 Experimental validation of parallel cable-harnessed

plates

In this section, the proposed model of the cable-harnessed plate presented in the previous
section was experimentally validated. The details of the experimental setup is first pre-
sented. Then, the FRFs of the bare plate tests are presented and compared with their
models in order to gain confidence in the host structure’s model. In the next step, the ca-
bles are attached to the host plate structures and the modal characteristics are determined.
Finally, these characteristics are compared with those obtained from the cable-harnessed
plate model to establish the validity of the model.

4.2.1 Experimental Setup

To extract the modal characteristics of cable-harnessed structures, experimental modal
testing is performed. In the series of experiments, the impact hammer testing is primarily
used, however, shaker excitation is also used for one structure as discussed later. Fig. 4.2(a)
shows the experimental setup of a structure attached to the shaker. In this case, Modal
Shop 2075 E dual-purpose electrodynamic shaker excites the structure using a stinger that
is connected to a force gauge (PCB Piezotronics 208C01) mounted on the structure. A
Modal Shop 2050E09 power amplifier is used to provide the excitation signal and the power
required to excite the structure. On the other hand, for the impact hammer tests, the plate
is excited using a PCB 086C01 impulse force hammer. The data is acquired using the LMS
SCADAS mobile data acquisition system connected to a computer. For the displacement
sensing purpose, a contact-less Polytec OFV-505 laser vibrometer is used which is operated
using a Polytec OFV-5000 vibrometer controller. LMS Testlab version 14.0 is used as a
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(a)
(b)

Figure 4.2: Experimental setup (a) shaker testing setup of the structure-1, (b) Top view
of the base clamp

computer software to control the data acquisition settings and analyze the output vibration
data.

A base clamp is fabricated to clamp the plate structure as shown in Fig. 4.2(b). The
base clamp has a sliding bar that applies the clamp boundary condition on the plate.
While clamping, this sliding bar is pressed against the plate structure under test using five
bolts. A slot is present in the base clamp to allow the cables to pass through it during the
fabrication process. The plate rests on the surface that is on right side of the slot as seen
from the top view shown in Fig. 4.2(b). This base clamp is bolted to a thick base plate
that is attached to a heavy concrete slab as also shown in Fig. 4.2(a). The fabrication of
the cable-harnessed structures is done in such a way that its testing is performed followed
by the bare plate. It is made sure that the plate clamp length remains constant throughout
these tests and hence, the clamping bolts are not disturbed between tests. Once the bare
plate tests are completed, the bare plate and clamp are removed together from the base
plate and the entire structure is moved to the work station where cables are kept in tension
using hanging masses, while the plate is kept in vertical position for the cable attachments.
A small amount of glue is applied at discrete locations for cables to remain in contact with
the plate under the applied tension. Once all the cables are attached, experiments on the
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(a) (b)

Figure 4.3: (a) Structure-2 clamped on the base plate, (b) Structure-3 clamped on the base
plate

cabled plate are conducted by clamping the system back to the base plate. Figs. 4.2(a)
and 4.3(a) show the cables harnessed to the plate parallel to the x−axis while Fig. 4.3(b)
has cables parallel to the y−axis.

4.2.2 Bare plate model and test FRFs

Three different plates are used in the experiments and are referred to as Plate-1, Plate-2,
and Plate-3 as listed in Table 4.1. The table reports the geometric properties of the three
plates. Plate-1 and Plate-2 have a similar length and width but the former is thinner.
Whereas, the Plate-3 has a smaller length and width than both Plate-1 and Plate-2. The
testing plan was developed for square plates and hence, the length and width are approxi-
mately equal. The material used for host plate specimens is the Aluminum alloy 6061 with
the following material properties: Ep = 68.9 GPa, ρp = 2768 Kg/m3, ν = 0.33.
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Table 4.1: Geometric parameters of the plates

Length, a, m Width, b, m Thickness, h, mm
Plate-1 0.269 0.271 1.26
Plate-2 0.27 0.269 1.6
Plate-3 0.198 0.202 1.2

To begin with, the experimental FRFs of the bare plates are compared to the analytical
FRFs obtained using classical plate theory. The comparison of FRFs for four sets of
actuation and sensing location is presented in Figs. 4.4 —4.6 for Plates 1-3, respectively.
The coordinates of actuation and sensing locations are mentioned in Table 4.2 which are
measured with respect to the global coordinate system defined in the modeling section. The
terms ‘Structure-1’, ‘Structure-2’, and ‘Structure-3’, also used in Table 4.2, are utilized to
denote either the bare or the cabled plate structure depending on the context of discussion.
For now, it can be interpreted from Table 4.2 that both, bare plates and cabled plate
structures, undergo testing at all four sets of actuation and sensing locations. Further
details of the cabled plate structures are presented in Section 4.2.3. Also, the actuation
and sensing locations were chosen so that they do not lie on the nodal lines of the first five
modes.

Table 4.2: Actuation and sensing location coordinates in meters

Structure-1 Structure-2 Structure-3
Serial

Number
Actuation Sensing Actuation Sensing Actuation Sensing

Test-1 (0.045,0.258) (0.040,0.255) (0.028,0.210) (0.250,0.215) (0.024,0.175) (0.182,0.185)
Test-2 (0.045,0.186) (0.045,0.186) (0.029,0.210) (0.260,0.255) (0.022,0.120) (0.182,0.181)
Test-3 (0.202,0.082) (0.190,0.259) (0.030,0.210) (0.260,0.165) (0.020,0.120) (0.185,0.120)
Test-4 (0.201,0.085) (0.211,0.082) (0.030,0.210) (0.265,0.095) (0.023,0.115) (0.180,0.075)

The test FRF presented in Figs. 4.4(a) and 4.4(b) is obtained using impact hammer
test for the bare plate of the structure-1 and is seen to match well with the analytical
model FRF. The natural frequencies, listed in Table 4.3, are also predicted accurately by
the model except for the second mode. The error in the second mode is not an important
concern because, as it is seen later in the discussion, the cable attachment does not change
the frequency of this mode substantially. For the impact test shown in Fig. 4.4(a) and
4.4(b), a few extra small spikes are observed which are not predicted by the model. In
order to see whether those spikes correspond to the structure’s mode, a shaker excitation
was used for Test 3 and Test 4 for structure-1, which resulted in very clean FRFs shown in

120



Fig. 4.4(c) and 4.4(d), respectively. The peaks observed in the test FRFs corresponded to
system’s natural frequencies as also predicted by the model and no extra spikes were seen
in shaker FRFs. Hence, the extra small spikes in the hammer results did not correspond
to the system’s structural modes.

In Figs. 4.5 and 4.6, the FRFs are obtained using impact hammer test for the bare
plate of structures-2 and 3, respectively. For both these structures, the analytical model is
able to predict the test results very well. The results are also a good match for both the
structures for all the four sets of actuation and sensing location. The natural frequencies
of the bare plate of these structures listed in Table 4.3 show a good match between test
and model. No extra spikes were seen in the FRF of these tests, therefore, shaker testing
was not conducted for these two structures. Also, for the structure-2, there is a mismatch
of FRF amplitude near the sixth mode region because the impact location was close to a
nodal line of the Mode-6.
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Table 4.3: Comparison of experimental and model natural frequencies (Hz), error in the
model, for bare and cabled plate for the three structures. The % change in model’s fre-
quency on cable attachment is also presented.

Structure
1

Mode
1

Mode
2

Mode
3

Mode
4

Mode
5

Mode
6

Mode
7

Mode
8

Mode
9

Mode
10

Bare Plate,
Test

13.75 37.50 90.25 112.75 130.25 - - - - -

Bare Plate,
Model
(BP1)

14.74 35.30 89.94 113.97 129.70 226.21 260.33* 268.04** 300.23 388.27

Model error 7.21% -5.87% -0.34% 1.08% -0.42% - - - - -
Cabled Plate,

Test
15.25 38.75 95.25 114.50 135.75 - - - - -

Cabled Plate,
Model (CP1)

15.91 35.81 96.49 114.31 134.54 228.61 267.60** 280.34* 315.77 387.96

Model error 4.32% -7.59% 1.30% -0.16% -0.89% - - - - -
(CP1-

BP1)/BP1
7.93% 1.44% 7.28% 0.30% 3.73% 1.06% -0.16%** 7.68%* 5.18% -0.08%

Structure
2

Mode
1

Mode
2

Mode
3

Mode
4

Mode
5

Mode
6

Mode
7

Mode
8

Mode
9

Mode
10

Bare Plate,
Test

19.25 45.00 113.50 147.25 163.75 289.25 328.50* 342.75** 384.50 499.25

Bare Plate,
Model
(BP1)

18.58 44.89 113.53 146.10 164.70 288.17 328.24* 344.21** 381.15 498.94

Model error -3.48% -0.24% 0.03% -0.78% 0.58% -0.37% -0.08% 0.43% -0.87% -0.06%
Cabled Plate,

Test
20.50 44.25 119.50 147.25 167.00 289.00 342.00** 347.25* 394.50 497.00

Cabled Plate,
Model (CP1)

19.76 45.37 120.33 146.23 169.24 290.60 344.27** 348.40* 395.41 496.40

Model error -3.61% 2.54% 0.70% -0.70% 1.34% 0.55% 0.66% 0.33% 0.23% -0.12%
(CP1-

BP1)/BP1
6.35% 1.07% 5.99% 0.09% 2.76% 0.84% 0.02%** 6.14%* 3.74% -0.51%

Structure
3

Mode
1

Mode
2

Mode
3

Mode
4

Mode
5

Mode
6

Mode
7

Mode
8

Mode
9

Mode
10

Bare Plate,
Test

25.00 61.75 153.50 201.75 223.00 394.50 441.50 471.00 - -

Bare Plate,
Model
(BP1)

24.89 60.84 152.39 200.63 222.10 392.12 440.07 472.94 514.46 680.55

Model error -0.44% -1.48% -0.72% -0.55% -0.41% -0.60% -0.32% 0.41% - -
Cabled Plate,

Test
24.50 60.00 151.50 212.00 218.25 394.50 434.25 479.00 - -

Cabled Plate,
Model (CP1)

24.65 60.26 151.93 211.40 220.26 395.33 436.06 489.94 530.10 699.37

Model error 0.63% 0.43% 0.29% -0.28% 0.92% 0.21% 0.42% 2.28% - -
(CP1-

BP1)/BP1
-0.94% -0.95% -0.30% 5.37% -0.83% 0.82% -0.91% 3.59% 3.04% 2.77%

* and ** are used to denote frequencies with similar mode shapes because the mode switching takes place upon cable
attachment in the structures-1 and 2 for particular modes. For instance, Mode-7 of bare plate of the structure-2 has the
same shape as Mode-8 of cabled plate and Mode-8 of the bare plate has same shape as Mode-7 of the cabled plate. For
other modes, bare plate and cabled plate have similar mode shapes for corresponding mode number.
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Figure 4.4: Bare Plate FRFs for the Structure-1 (a) Test-1 (Impact), (b) Test-2 (Impact),
(c) Test-3 (Shaker), (d) Test-4 (Shaker)
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Figure 4.5: Bare Plate FRFs for the Structure-2 (a) Test-1, (b) Test-2, (c) Test-3, (d)
Test-4
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Figure 4.6: Bare Plate FRFs for the Structure-3 (a) Test-1, (b) Test-2, (c) Test-3, (d)
Test-4
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4.2.3 Cabled plate model and test FRFs

Table 4.4 lists the parameters for the cable used in the testing of the cable-harnessed plates.
A Power Pro Super 8 Slick 80 lb break strength fishing line is used. This cable was also
used earlier in the previous works on cable-harnessed beam structures [30, 2]. The details
of the test structures fabricated for the modal testing experiments are listed in Table 4.5.
The three fabricated structures were also shown in Figs. 4.2 and 4.3. For the structure-1,
20 parallel rows of Power Pro cables are attached in a parallel configuration on Plate-1.
Each row consists of 5 cables in order to make a cable bundle. The effective radius of the
cable bundle can be written as rc

√
n, where n is the number of cables per row in a bundle

[2]. This is calculated by equating the effective area of the cable bundle to the total area
of n cables. For the structures 1 and 2, the cables are attached perpendicular to the clamp
i.e. parallel to the x−axis on plates 1 and 2, respectively. Whereas, for the structure-3,
the cables are attached to Plate-3 parallel to the clamp edge (along the y−axis). These
structures with different parameters allow for a fair comparison between the model and
test to validate the ability of the proposed analytical model.

Table 4.4: Cable geometric and material parameters

Power Pro Cable
Young’s Modulus, Ec, GPa 128
Radius, rc,mm 0.20
Density, ρc, Kg/m

3 1400

Table 4.5: Cable-harnessed plate test structures

Structure-1 Structure-2 Structure-3
Plate Plate-1 Plate-2 Plate-3
Cable Power Pro Power Pro Power Pro

Cable attachment direction
Perpendicular to
clamp edge

Perpendicular to
clamp edge

Parallel to
clamp edge

Number of parallel cable rows 20 20 10
Number of cables per row 5 5 8
Cable Tension, N 2.5 2.5 2.5

The experimental FRFs of the fabricated cabled plate structures 1-3 are compared to
those obtained from the proposed model in Figs. 4.7, 4.9, and 4.13 for four sets of different
actuation and sensing locations. While, Figs. 4.8, 4.10, and 4.14 show the zoomed-in
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Table 4.6: Actuation and sensing location for the cabled plate structure-2

Test Number Actuation Sensing
1 (0.029,0.157) (0.255,0.157)
2 (0.027,0.162) (0.099,0.196)
3 (0.028,0.157) (0.141,0.265)
4 (0.027,0.162) (0.115,0.160)

plots for certain important modes for the Test-1. In these figures, the bare plate FRF is
also presented to analyze the effect of cable attachment. The testing on the cabled plate
structures were performed for the same set of actuation and sensing locations as the bare
plates, except for the structure-2 where a new set of locations as listed in Table 4.6 were
used to obtain the cabled plate FRFs. This was done after it was found that the impact
location was very close to a nodal line for Mode-6. Since the cable attachment was already
done, the testing with a new set of actuation and sensing locations was done only for the
cabled plate. Further, the mode shapes obtained from the model and the experiments for
cabled plate of the structure-2 is shown in Fig. 4.11. The mode shapes of the structure-1
are found similar to that of the structure-2 for first ten modes according to the model and
hence, the reference to Fig. 4.11 would be used for discussion on mode shapes of structure-1
as well. Furthermore, the mode shapes of structure-3 are shown in Fig. 4.15.

Firstly, the FRF comparison shown in Fig. 4.7 for structure-1 is discussed. It is observed
that upon the attachment of the cables, the experimental FRF demonstrate a significant
change compared to the FRFs prior to the cable attachments. This can be observed by
comparing plots of ‘Test-cabled plate’ and ‘Test-bare plate’ in the figure. As well, the
cabled plate model is able to predict those changes very well and is clearly a good match
with the associated test results. Recall that the bare plate model under-estimated the
Mode-2 frequency of bare plate in Fig. 4.4; the error is carried over in the cabled plate
for the structure-1 as seen in Fig. 4.7. Also, it should be noted from Table 4.3 that this
mode is one of the least affected modes when frequencies of the bare and cabled plate
are compared. An increment of only 1.44% (0.51 Hz) is seen in Mode-2 when cables are
attached. The reason behind the small increment in this mode is related to the twisting-
like mode shape shown in Fig. 4.11, in which the bending curvature along both the axes is
not as prominent as the other modes. Therefore, due to the balance of cable stiffening and
mass effects for this mode, the difference between the frequency of bare plate and cabled
plate for this mode is not as significant.

It is seen that upon attachment of the cables for the structure-1, there is an increase in
the natural frequencies for modes 1, 3 and 5; whereas, for the second and fourth modes, the
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(a) (b)

(c) (d)

Figure 4.7: Cabled plate FRF comparisons for the Structure-1 (a) Test-1 (Impact), (b)
Test-2 (Impact), (c) Test-3 (Shaker), (d) Test-4 (Shaker)

frequencies remain almost similar to the bare plate. The zoomed-in FRF plots for the 1st,
3rd and 5th modes for the structure-1 are shown in Fig. 4.8. Clearly, the overall stiffening
effect in these modes after attaching the cables is well-predicted by the model. Regarding
the modes that are affected the most upon attaching the cables (1st, 3rd and 5th), a
similar observation is made for the structure-2. A close examination of the mode shapes
demonstrates the underlying reason behind which modes frequencies are affected the most
after adding the cables. This is explained in more detail in the following paragraphs.

As discussed earlier for the structure-1, when the testing of the bare plate was con-

128



(a) (b) (c)

Figure 4.8: Zoomed-in FRF plots for the structure-1 of test-1 (a) Mode-1, (b) Mode-3 and
(c) Mode-5

ducted, two plots were obtained each from impact hammer and shaker excitation as shown
in Fig. 4.4. The test data for the cabled plate structures are presented in a similar for-
mat where Figs. 4.7(a) and (b) correspond to the impact test, while Figs. 4.7(c) and (d)
corresponds to the shaker test.

Figure 4.9 shows the FRF comparisons between the proposed model and test results for
the cabled plate structure-2. For this structure as well, the experiment and analytical model
FRF results match very well. The model is able to predict all the frequencies with very high
accuracy as also seen in Table 4.3. With respect to the bare plate, a major increase in the
frequencies of the cabled plate is observed for Modes-1, 3 and 7. Additionally, Mode-5 and
Mode-9 frequencies also undergo a noticeable increase. The zoomed-in plots for some of the
modes that are majorly affected are also shown in Fig. 4.10. An interesting point to note
here is that upon the attachment of the cables, there is a switch between the order in which
the 7th and 8th modes appear. Hence, in Table 4.3, where the frequencies are tabulated in
increasing order, care must be taken when comparing the associated frequencies between
the bare plate and the cabled plate. In this case, the frequency for Mode-7 of the bare
plate is compared to the Mode-8 of the cabled plate, and similarly, Mode-8 of the bare
plate is compared to the Mode-7 of the cabled plate.

To better understand how the stiffening due to the cables affects various modes differ-
ently, the mode shapes for cabled plate structure-2 shown in Fig. 4.11, are discussed in
addition to the two bare plate mode shown in Fig. 4.12. The Mode-7 of the bare plate
pertains to a bending behaviour that is more prominent along the x−axis; whereas, the
Mode-8 has dominant bending curvature along the y−axis. Since the mode with bending
along the x−axis is affected more by the stiffening impact due to the cables along the
same axis, the modal frequency increase for this mode is more significant than the Mode-8
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Figure 4.9: Cabled plate FRF comparisons for the Structure-2 (a) Test-1, (b) Test-2, (c)
Test-3, (d) Test-4

resulting in its appearance at a higher frequency for the cabled plate system when com-
pared to the bare plate. This is the reason behind the two modes switching orders after
attaching the cables. This stiffening effect along the x−axis is also the reason for the more
significant increase in the frequencies for the Modes-1 and 3 compared to the other modes
for this structure.

It is clear that the analytical and experimental modes shown in Fig. 4.11 match well
for the cabled plate structure-2. As also discussed in the previous paragraph, the cable
stiffening effects are dominant for a certain mode when the mode shape has a large bending
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(a) (b) (c)

Figure 4.10: Zoomed-in FRF plots for the structure-2 of test-1 (a) Mode-3, (b) Mode-7
and 8 (Mode-7 of bare plate and Mode-8 of cabled plate have similar mode shapes; Mode-8
of bare plate and Mode-7 of cabled plate have similar mode shapes), and (c) Mode-9

curvature in the direction of the cable that ultimately results in a larger strain energy
contribution for the cable. As seen from Eq. 4.19, a major contribution of the cable strain
energy is reflected in the coefficient D11 that also depends on the cable’s Young’s modulus
and area of cross-section. In the expression of the total strain energy in Eq. 4.18, this
coefficient is multiplied with the square of bending curvature in the x−direction. Hence,
the bare plate natural frequencies for Modes-1, 3 and 7 undergo a significant increase upon
cable attachment, where the bending curvature is high in x−direction. Mode 5 and Mode
9 also possess a high bending curvature in the x−direction in different regions of the plate
but it also contains a nodal line parallel to the x−axis in the center. Hence, the curvature
becomes negligible in the region around the nodal line, resulting in the loss of cable stiffness
contribution. As a result, the stiffening effect in these modes is moderate.

Similarly, the reasoning for the modes that are minimally impacted upon cable attach-
ment for structure-2 can also be discussed. These include modes-2, 4, 6 and 8 corresponding
to the bare plate. As seen in Fig. 4.11, Mode-2 has a nodal line at the center of the plate
similar to Mode 5 and 9, however, the stiffening effect is comparatively lower. This is
because the Mode-2 has a small curvature along both axes. Compared to Mode-5 and 9,
this smaller curvature results in a low contribution of the cable strain energy towards the
total strain energy of the homogenized system resulting in a marginal increase in Mode-2
frequency. Modes 4 and 6 also have small cable stiffening effects owing to the presence of
the two nodal lines, hence the resulting overall low curvature decreases the cable stiffening
effects. Mode 8 of the bare plate that switches its order to Mode 7 of the cabled plate
is also an interesting case, as the natural frequency of the cabled plate is almost equal to
the bare plate. As seen in Fig. 4.12(b) of the supplementary material, this mode has a
high bending curvature along the y−direction, whereas, the bending curvature along the
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Figure 4.11: First ten mode shapes obtained for the clamped-free-free-free cabled plate
structure-2 from proposed analytical model (left) and experiments (right)
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(a) (b)

Figure 4.12: Mode shapes obtained for the clamped-free-free-free bare plate structure-2
using classical plate model for (a) Mode-7 and (b) Mode-8

x−direction is very small. Additionally, this mode has three nodal lines thereby reducing
the overall cable stiffening effect and producing a similar frequency as the bare plate.

The FRFs for the structure-3 are presented in Fig. 4.13 for all the four tests. In this
structure, the cables are attached to the plate parallel to the y−axis i.e. parallel to the
clamped edge. As also previously mentioned in the modeling section, this structure can
be modeled by still assuming cables along the x−axis, provided the boundary conditions
are accordingly changed in the model such that the clamped edge is now parallel to the
direction of cable attachment. As seen from Fig. 4.13, the cables attached parallel to
the clamped edge also significantly impacts the vibration modes. The zoomed-in plots of
the test-1 FRF region with significant effect on the natural frequencies are shown in Fig.
4.14. Clearly, the cabled plate model is able to predict the change in system dynamics and
matches well with the test FRFs of the cabled plate. The stiffening effect is particularly
seen in Mode-4 where the natural frequency increase by 5.37% upon cable attachment, as
seen from Table 4.3. The dominant cable stiffening effect is also observed and predicted in
Mode-8, however, the natural frequency prediction of this higher mode is over-estimated
by the model. This is because the homogenized model starts to show its limitations for
smaller number of fundamental elements. This structure has considerably smaller number
of fundamental elements, 100, compared to the structure-2 that contains 400. As the
number of the repeated fundamental elements in a structure decrease, the ratio of the
wavelength of the frequency of interest to the size of the element decrease as a result of
which the error in the frequency predictions gets higher. This explains the higher error for
the highest mode of interest for this structure compared to the structure-2.

Additionally, the zoomed-in FRFs in Figs. 4.14(a) and (b) show a decrease in frequencies
on cable attachment for Modes 5 and 7, respectively. This is because the cable inertia
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Figure 4.13: Cabled plate FRF comparisons for the Structure-3 (a) Test-1, (b) Test-2, (c)
Test-3, (d) Test-4

effects dominate over its stiffening effects for those modes. The model is able to predict
the dominant cable inertia effect in these modes. The reason for the cable stiffening
and mass effects dominance can be seen from the mode shapes shown in Fig. 4.15. This
figure shows the first eight analytical and experimental mode shapes for structure-3 which
match very well with each other. As mentioned earlier, Mode-4 exhibits an increase in its
frequency due to the cable attachment. This is clear from the fourth mode shape as the
bending curvature of the plate is predominantly along the y−direction (the direction in
which the cables are attached). This results in the significant strain energy contribution
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(a) (b) (c)

Figure 4.14: Zoomed-in FRF plots for the structure-3 of test-1 (a) Modes-4 and 5, (b)
Mode-7 and (c) Mode-8

for the cables upon bending in this direction that leads to the major stiffening effect for
Mode-4. However, in Mode-5 and Mode-7, the cable inertia effects are dominant due to
minimal contribution of cable stiffening owing to the presence of the nodal lines as well as
small curvatures in the y−direction. Therefore, the cable inertia effects become dominant
for these modes resulting in smaller frequencies compared to the bare plate system.
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Figure 4.15: Mode shapes obtained for the cabled-free-free-free plate structure-3 from the
proposed analytical model (left) and experiments (right)
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4.2.4 Comparison of the cable attachment effects between the
tested structures

A comparison of the natural frequencies and cable attachment effects between different
tested structures is discussed in the following paragraphs. First, the comparison is done
between the structures 1 and 2 which are different in terms of the host plate thickness with
the former having a thinner host plate. Since the thickness of host plate of the structure-2
is larger, all the natural frequencies of the bare plate are higher as also seen from Table 4.3.
A similar observation is made for the cabled plate when the two structures are compared.
The interesting part is the comparison of the increase in the stiffening effect upon cable
attachment. As seen from Table 4.3, except for Mode-7, all the modes show a higher
percentage increase in natural frequencies for the structure-1 compared to the structure-2.
The reason behind the high stiffening effect for the structure-1 is the thinner host plate.
As the plate thickness decreases in the homogenized model, the contribution of the cable
stiffening effects become more dominant. It should be noted that similar to the structure-2,
the modes 7 and 8 of the structure-1 also gets switched upon cable attachment according to
the model. Also, Mode-7 of the cabled plate structure-2 as seen from Fig. 4.11, which shows
bending curvature along the y−axis, has a minimal contribution of the cable stiffness and
is counter-acted by the cable inertia effects. This results in the frequencies being similar
to the bare plate, and is observed for both the structures.

The results obtained from the structures 2 and 3 can also be compared. The major
difference between the two structures is the direction of cable attachment where the former
has the cables attached parallel to the x−axis, whereas, the latter has along the y−axis.
There are a larger number of parallel rows of cables in the structure-2 but a lower number of
cables per row. Additionally, the structure-2 has a thicker and larger host plate structure.
The natural frequencies of the bare plate and cabled plate are observed to be higher for
the structure-3 for all the tested modes. This is true when similar mode shapes of both
the structures are compared. It should be noted that the mode shapes of these structures
as shown in Figs. 4.11 and 4.15 are based on increasing frequency order. On comparison,
it is seen that the mode shapes of the first six modes are similar. Whereas, the shape of
Modes-7 and 8 of cabled plate structure-3 resembles with Modes-8 and 9 of the cabled plate
structure-2, respectively. The following discussion is based on modes with similar mode
shapes. From Table 4.3, it is seen that except for Mode-4, the stiffening effect is consistently
higher for the structure-2 for the corresponding modes. For Modes-1 and 3, the structure-2
exhibits a significantly higher stiffening effect compared to the structure-3 which shows an
overall cable inertia effect. The Mode-1 and Mode-3 frequencies increase by 6.35% and
5.99%, respectively, for the structure-2, whereas, they decrease by 0.94% and 0.30% for
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the structure-3. The higher stiffness in Modes-1 and 3 in the structure-2 is attributed to
the large curvature in the x−direction that highlights the cable stiffness and increases the
overall stiffness of the system. Whereas in the structure-3, since the cables are attached
along the y−axis, the cable inertia becomes dominant over cable stiffening effects because
of the negligible bending curvature in these modes along the y−axis, resulting in reduction
of the natural frequencies compared to bare plate. In contrast, the stiffening effect of
Mode-4 is substantially larger for the structure-3 showing 5.37% increase in the frequency
upon cable attachment because the corresponding mode shape has a high bending curvature
along the y−axis. Whereas, when the cables are aligned along the x−axis in the structure-2,
the cable inertia and stiffness effects have almost equal and opposite effect on the frequency
and hence, the frequency increases by only 0.09%. Modes-2, 5 and 7 of the structure-3 are
examples of other modes which witness an overall mass effect for the structure-3. Whereas,
the corresponding Modes-2, 5 and 8 of the structure-2 exhibit an overall cable stiffening
effect.

A similar comparison can be made between the structures 1 and 3. The thickness of the
host plate in these structures is similar, however, the former has larger length and width.
As a result, the natural frequencies of structure-3 are larger for the bare plate and cabled
plate. Again, the orientation of cable attachment is different between the two structures.
It is seen that the Modes-1 and 3 exhibit a significantly higher stiffening effect for the
structure-1, whereas, Mode-4 exhibits a similar effect in the structure-3. These effects are
based on the reasoning explained in the previous paragraph. Additionally, Modes-2 and 5
show cable stiffening effect for the structure-1, but a dominant cable inertia effect for the
structure-3.

4.2.5 MAC Analysis

One of the best methods to quantitatively correlate the mode shapes obtained from experi-
ments and the analytical model is using the Modal Assurance Criterion (MAC) [92]. It is an
indicator that is mainly sensitive to the large differences in the mode shape and relatively
insensitive to small differences. The MAC values are calculated between different pairs of
mode shapes obtained from both test and model. A close match between the mode shapes
results in the value of 1, whereas inconsistent mode shapes results in 0. For the current
study, the MAC analysis is conducted for the cabled plate structures 2 and 3, for which
experimental mode shapes were extracted. The MAC is presented in a three-dimension
bar chart shown in Figs. 4.16 and 4.17 for the structures 2 and 3, respectively.

For the structure-2, MAC values along the diagonal of the chart are close to 1 for
all the 10 modes except Mode-6. Also, the MAC values are close to zero in off-diagonal
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Figure 4.16: MAC bar chart for the cabled plate structure-2

elements when different modes are correlated. The highest MAC value in the off-diagonal
elements is 0.07. During the acquisition of the mode shapes, the actuation location is kept
fixed whereas the contactless vibrometer is moved through the measurement grid in order
to capture mode shapes of the structure. The MAC value corresponding to the Mode-6
correlation is low because the actuation location coordinate (0.03, 0.215) was found close
to a nodal line which resulted in an overall smaller modal energy for the Mode-6 causing
the poor correlation. As mentioned before, the actuation location was initially decided
based on the nodal lines of the first five modes.

In the case of the structure-3, the bar chart is present for correlation of 8 tested modes in
Fig. 4.17. The minimum value of the MAC number on the diagonal element is 0.98, while
among the off-diagonal elements, the maximum value is 0.04. Clearly, the MAC values
being close to one along the diagonal and close to zero among the off-diagonal elements
indicate a strong correlation between the model and test.
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Figure 4.17: MAC bar chart for the cabled plate structure-3

4.2.6 Comparison between cable-harnessed beam-like and plate-
like models

Finally, in order to show the importance of developing an equivalent cable-harnessed plate
model as one of the major contributions of this work compared to the previously published
research on one-dimensional beam theories used for cable-harnessed beam structures, [31],
simplified assumptions are made for the structures in this section to implement beam theory
assumptions to obtain the FRFs when they are modeled as beam specimen. Mathematical
modelling techniques in [31] are used for this comparison where each plate is divided into
beam elements along the x−direction only.

Also, in order to obtain the FRFs from the cabled beam model, only the x−coordinate
for the sensing and actuation locations are considered. Figs. 4.18 - 4.20 show the compar-
ison of the presented cabled plate model with that of the cabled beam model for the three
structures. The dimensions and material properties of the host beams are considered same
as that of the plates used for the three cases. The homogenized cabled beam model is able
to incorporate the cable effects in the x−direction. Whereas, for the cables attached in the
y−direction, only the cable inertia effect is added since the beam discretization is made
along the x−axis and any information regarding the stiffening effects in the y−direction
is lost in the one-dimensional beam model. Therefore, in addition to the beam model’s
failure to predict the natural frequencies for modes with dominant curvature along the
y−axis, other modes predicted by this model are significantly underestimated due to the
lack of cable stiffening seen by the beam model, for instance in Figs. 4.19 and 4.20. As a
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Figure 4.18: FRF comparison of the proposed cabled plate model with an existing cabled
beam model of the structure-1 for Test-1

result, the cable mass effects become dominant and the frequencies are underestimated.
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Figure 4.19: FRF comparison of the proposed cabled plate model with an existing cabled
beam model of the structure-2 for Test-1

Figure 4.20: FRF comparison of the proposed cabled plate model with an existing cabled
beam model of the structure-3 for Test-1
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4.3 Summary of the Chapter

In this chapter, a novel analytical technique for modeling the cable-harnessed plate struc-
tures was presented followed by the experimental validation. Analytical models with ability
to obtain closed-form solutions are preferred due to the deep insights they provide in ad-
dition to offering great possibilities for implementations of low-order control algorithms.
The analytical formulation was developed using an energy equivalence homogenization
technique for cable-harnessed plate structures with cables attached in a parallel configu-
ration. The frequency response functions between model and modal testing experiments
were in an excellent agreement for multiple sets of sensing and actuation locations. The
experiments were conducted for three different fabricated structures under a clamped-free-
free-free boundary. Further, the mode shapes comparisons between model and test were
presented and their correlation was shown using MAC analysis.

It is shown that upon the cable attachments, stiffening effects are dominant in some
vibration modes while inertia effects in others. In other modes, the inertia and stiffening
effects are of equal importance resulting in similar frequencies for these modes compared
to the host structure when no cables are attached. The dominance of the stiffening effects
of the cables for each mode depends on their major direction of bending with respect
to the cable orientations. These observations are consistent between the model and test
further indicating the fidelity of the developed method. In addition, the importance of the
proposed model was shown by a comparison with an existing cable-harnessed beam model
which either fails to predict a majority of the natural frequencies of the system or highly
under-estimates them.
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Chapter 5

Analytical Modeling of
Cable-Harnessed Plates with Cables
Wrapped in a Periodic Configuration

In the previous chapter, the analytical modeling for the cable-harnessed plate with par-
allel configuration was proposed. Although, it was the first ever attempt in proposing an
analytical model for a cable-harnessed plate structure, the cable pattern chosen was kept
simple as a first step. In the current chapter, the cables are attached to the plate in a com-
plex manner, which results in a simple analytical model through an involved mathematical
derivation, thereby giving further insights to the dynamics of these structures which have
not been discussed in the past. Inspired from the previous works on the cable-harnessed
beams by [30, 31], two periodic cable wrapping patterns, namely diagonal and zigzag, are
utilized in the current study. Moreover, since the cables are wrapped on a plate structure,
the periodicity in two directions is utilized as opposed to only one-direction used in [30, 31].
1

The idea of wrapping the cables around the structures should be again emphasized.
Since the broad goal of the research on cable-harnessed structures is to understand the
change in system dynamics from the attached cables, wrapping the cables on a structure
provides us a different perspective altogether as how cable dynamics can affect the host
structures. The other common way that researchers study the effect of cables is by attach-
ing the cables in a straight line. Wrapping the cables around a structure is more complex

1The research work presented in this chapter has been submitted to the ASME Journal of Vibration
and Acoustics and the revisions are under review [93].
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and gives us deeper insights into a structure. Additionally, in various spacecraft and satel-
lite components, the cables are wrapped and held tightly around the host structure which
motivates us further to study the dynamics effect of wrapped cable-harnessed plates. For
example, the cables wrapped around a fuel propellent tank was earlier shown in Fig. 1.2.

The chapter is organized as follows: Firstly, the analytical model for the cable-harnessed
plate with periodically wrapped pattern is mathematically formulated. The governing
equations of motion for both the patterns are obtained. The model results are then an-
alyzed using frequency response functions and are compared using finite element (FE)
simulations. Different boundary conditions and multiple cases of patterns are chosen for
the FRF analysis. Finally, a detailed parametric analysis is presented by varying cable
parameters and pattern parameters in order to study their effects on system dynamics.

5.1 Analytical modeling of periodically wrapped cable-

harnessed plates

This section presents the system description, model assumptions, analytical formulation,
and further insights into the presented continuum model. The mathematical model is
developed using an energy-equivalence homogenization method. This method provides a
strong tool to formulate and analyze complex structures and has been successfully used to
solve various other dynamics problems in the past [49, 94, 53]. Using the periodicity con-
ditions within a structure, this method aids in obtaining a simplified mathematical model
that provides the possibility of a closed-form solution and additional insights into a problem
compared to a numerical method. In the current modeling approach, the homogenization
method is applied to a cable-harnessed structure that results in an energy-equivalent con-
tinuum model. The approach is similar to that applied in Chapter 4. For this purpose,
the strain and kinetic energy of a repeated fundamental element are first obtained. Using
these energy expressions, the areal energy densities are calculated which are assumed to
be a good representative of energy per unit area of an equivalent homogenized continuum
plate structure for a large number of fundamental elements. Using the total homogenized
strain and kinetic energy of the system, the governing EOM is obtained in the transverse
coordinate of motion.

The system consists of a thin rectangular plate with mounted cable harness wrapped
in periodic patterns as shown in Fig. 5.1. Two cable wrapping patterns namely zigzag
and diagonal are considered. A fundamental element of these patterns as shown in Figs.
5.1(b) and 5.1(d), is defined as the building block of the structure which forms the entire
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cable-harnessed plate when repeated in both the orthogonal directions. The global coor-
dinate system (x, y, z) corresponds to the entire system and the local coordinates (η, ξ, z)
corresponds to a fundamental element. The dimensions of the plate are a× b× h and that
of the fundamental elements are L1×L2×h. As also mentioned later, the plate is modeled
using classical plate theory and hence, the thickness, h, is assumed considerably smaller
than the other two dimensions. For a higher thickness plate structure, the host would
have to be modeled using a more advanced plate theory that assumes shear deformation
effects in the transverse direction, for example Mindlin plate theory. Further, the size of
the fundamental element is dependent on the number of fundamental elements in each row
(m) and the number of rows (n) which also determines the wrapping angle θ in the system.
In Figs. 5.1(a) and (c), the cables are wrapped along the x−direction in the zigzag and
diagonal pattern, respectively, with m = 3 and n = 5.

For the zigzag pattern, the wrapping angle can be obtained using the expression:

tan θ =
2L2

L1

(5.1)

Using the definition of L1 and L2, this expression can be simplified as

tan θ =
2bm

an
(5.2)

Similarly, for the diagonal pattern, the wrapping angle can be obtained using

tan θ =
L2

L1

=
bm

an
(5.3)

Hence, for the same pattern parameters i.e. number of elements per row and number of
rows, the wrapping angle in the zigzag pattern is always higher compared to the diagonal
pattern.

Further, towards the development of the continuum model, several assumptions are
made. The classical plate theory is used for modeling the thin rectangular plate and
hence, the plane stress conditions are assumed. The plate’s material is assumed to be
homogeneous and isotropic. Further, the cable is assumed to have a perfectly circular
cross-section which is under a pre-tension T in the equilibrium state of the system. The
compression and shear in the plate due to the cable pre-tension is included in the model
formulation. During the vibrations, the cable remains in perfect contact with the plate
thereby assuming a no-slip condition. Additionally, the axial strain within the cable is
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(a) (b)

(c) (d)

Figure 5.1: Schematic of cable-harnessed plate structure (a) Zigzag pattern, (b) Funda-
mental element of the zigzag pattern, (c) Diagonal pattern, and (d) Fundamental element
of the diagonal pattern

assumed to remain uniform in a given cross-section. In practice, the cables would pass the
plate through the holes, which are considered very small for this study. Hence, the change
in mass and stiffness effects due to these holes are ignored.

Similar to Chapter 4, the linear assumed displacement field can be written as:

ux = −z w,x(x, y, t)
uy = −z w,y (x, y, t)

uz = w(x, y, t)

(5.4)

where w(x, y, t) is a small transverse displacement and the subscripts after the commas
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indicate the partial derivatives in space.

The higher-order Green-Lagrange strain tensor is used to obtain the strain-displacement
relations which can be written in a rectangular component form as

ε
(2)
ij =

1

2
[ui,j + uj,i + um,ium,j] , i, j = x, y, z (5.5)

Using this definition, the non-zero component of the strain tensor can be obtained using
Eq. 5.4 as

ε(2)
xx = −z w,xx +

1

2
(z2w,2xx +z2w,2xy +w,2x )

ε(2)
yy = −z w,yy +

1

2
(z2w,2xy +z2w,2yy +w,2y )

ε(2)
xy = −z w,xy +

1

2

(
z2w,xxw,xy +z2w,yy w,xy +w,xw,y

) (5.6)

Here, ε
(2)
xx , ε

(2)
yy represents the normal bending strain in the x and y direction, respec-

tively, and ε
(2)
xy is the shear strain in the x− y plane.

5.1.1 Cable strain energy

To calculate the strain energy of the cable within a fundamental element, the cable is
classified into four straight segments as shown in Figs. 5.1(b) and 5.1(d) for both the
patterns;

1. Segment C̄1 on the top face,

2. Segment C̄2 on the rear vertical face,

3. Segment C̄3 on the bottom face,

4. Segment C̄4 on the front vertical face

Further, it should be noted that for the segments C̄2 and C̄4, which are aligned parallel to
the z−axis, no strain energy will be stored during the vibrations. This is because the plate
thickness remains constant during the vibrations and hence, the segments C̄2 and C̄4 do
not undergo any deformation. Therefore, the strain energy due to the cable is stored only
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in the segments C̄1 and C̄3. Further, it should also be noted that for a similar wrapping
angle for both the patterns and similar cable geometric and material parameters, the total
axial strain within the segment C̄1 would be equal for both the patterns. However, the
axial strain would be different for the cable segment C̄3 because the segment is aligned
at an angle with the ξ−axis for the zigzag pattern, however for the diagonal pattern, the
segment is along the ξ−axis.

The strain energy stored within the cable segment C̄1 in an arbitrary fundamental
element for both the patterns can be written as

(Uc)
C̄1 =

∫ L′1
cos θ

0

∫
Ac

1

2
Ec (εc′)

2 dA dx′

∣∣∣∣∣∣
z=zc

(5.7)

where L′1 = L1/2 for the zigzag pattern, and L′1 = L1 for the diagonal pattern. Also,
Ec is the cables Youngs modulus, Ac is the cable cross-section area, zc is the z coordinate
of the plate-cable interface location i.e. zc = h/2 and x′ denotes the local coordinate as
shown in Figs. 5.1(b) and 5.1(d).

In a dynamic state, the net axial strain εc′ within the cable is composed of two compo-
nents: first, the strain at the equilibrium state due to cable pre-tension, and second, the
dynamic strain due to the bending vibrations which results in

(Uc)
C̄1 =

∫ L′1
cos θ

0

∫
Ac

1

2
Ec

(
T

EcAc
+ εx′x′

)2

dA dx′

∣∣∣∣∣
z=zc

(5.8)

where the dynamic strain component along the x′− direction, εx′x′ , is obtained by using
the strain transformation of the in-plane strains present at the top face of the plate during
the vibrations as

εx′x′ = ε(2)
ηη cos2 θ + ε

(2)
ξξ sin2 θ + 2 ε

(2)
ηξ sin θ cos θ (5.9)

Substituting Eq. 5.9 in Eq. 5.8 and transforming the variable x′ to η, the strain energy
within the cable segment C̄1 can be written as

(Uc)
C̄1 =

∫ L′1

0

∫
Ac

1

2
Ec

(
T

EcAc
+ ε(2)

ηη cos2 θ + ε
(2)
ξξ sin2 θ + 2 ε

(2)
ηξ sin θ cos θ

)2

dA

(
dη

cos θ

)∣∣∣∣∣
z=zc

(5.10)
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Using the strain-displacement relation in Eq. 5.6 in the local coordinates and substi-
tuting in Eq. 5.10, the strain energy of the cable segment C̄1 is obtained as

(Uc)
C̄1 ≈ EcAc

2 cos θ

∫ L′1

0

[
C1 + C2 (w,ηη )2 + C3 (w,ξξ )2 + C4 (w,ηξ )2 + C5w,

2
η +C6w,

2
ξ

− C7w,ηη +C8w,ηξ −C9w,ξξ +C10w,ηη w,ηξ +C11w,ξξ w,ηξ +C12w,η w,ξ +C13w,ηη w,ξξ

]
dη

(5.11)

where the coefficients are shown in terms of system parameters in appendix section
B.1. Also, during the calculation of this energy expression, the terms higher than the
second-order of the displacement and its derivatives are ignored.

For the calculation of the strain energy of the cable segment C̄3 present on the bottom
face, the axial strain can be written for both the patterns as

εc′′ =
T

EcAc
+ εx′′x′′

∣∣∣∣
z=−zc

(5.12)

where the x′′ axis is shown in Fig. 5.1(b) for the zigzag pattern which is inclined at an
angle θ with the horizontal. On the other hand, the segment C̄3 for the diagonal pattern
is along the ξ−direction. The dynamic strain component for the two patterns is therefore
written as

Zigzag pattern :εx′′x′′ = ε(2)
ηη cos2 θ + ε

(2)
ξξ sin2 θ − 2 ε

(2)
ηξ sin θ cos θ

Diagonal pattern :εx′′x′′ = ε
(2)
ξξ

(5.13)

Substituting the Eq. 5.13 in Eq. 5.12, the axial strain energy of the segment C̄3 in
both the patterns is written as

(Uc)
C̄3

zigzag =

∫ L1

L1/2

∫
Ac

1

2
Ec

(
T

EcAc
+ ε(2)

ηη cos2 θ + ε
(2)
ξξ sin2 θ − 2 ε

(2)
ηξ sin θ cos θ

)2

dA

(
dη

cos θ

)∣∣∣∣∣
z=−zc

(5.14)
and

(Uc)
C̄3

diagonal =

∫ L2

0

∫
Ac

1

2
Ec

(
T

EcAc
+ ε

(2)
ξξ

)2

dA dξ

∣∣∣∣∣
z=−zc

(5.15)
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Expanding Eq. 5.14 results in the following expression for the zigzag pattern upon
substituting the strain-displacement relationship in the local coordinates from Eq. 5.6:

(Uc)
C̄3

zigzag ≈
EcAc
2 cos θ

∫ L1

L1/2

[
C1 + C2 (w,ηη )2 + C3 (w,ξξ )2 + C4 (w,ηξ )2 + C5w,

2
η +C6w,

2
ξ

+ C7w,ηη−C8w,ηξ +C9w,ξξ −C10w,ηη w,ηξ −C11w,ξξ w,ηξ −C12w,η w,ξ +C13w,ηη w,ξξ

]
dη

(5.16)

Similarly, the expansion of Eq. 5.15 results in

(Uc)
C̄3

diagonal ≈
EcAc

2

∫ L2

0

[
C1 + C ′3 (w,ξξ )2 + C ′4 (w,ηξ )2 + C ′6w,

2
ξ +C ′9w,ξξ

]
dξ (5.17)

In the process of evaluation of Eqs. 5.16 and 5.17, the terms higher than the second-
order of the displacement and its derivatives were ignored. As well, the coefficients in Eqs.
5.16 and 5.17 are listed in appendix section B.1.

As mentioned earlier, the total strain energy due to the cables within the fundamental
element is the summation of the energy in the segments C̄1 and C̄3. Hence, upon the sum-
mation of the Eqs. 5.11 and 5.16, the total strain energy of the zigzag pattern fundamental
element is written as follows:

(Uc)zigzag =
EcAc
2 cos θ

{∫ L1
2

0

[
C1 + C2 (w,ηη )2 + C3 (w,ξξ )2 + C4 (w,ηξ )2 + C5w,

2
η +C6w,

2
ξ

− C7w,ηη +C8w,ηξ −C9w,ξξ +C10w,ηη w,ηξ +C11w,ξξ w,ηξ +C12w,η w,ξ +C13w,ηη w,ξξ

]
dη

+

∫ L1

L1
2

[
C1 + C2 (w,ηη )2 + C3 (w,ξξ )2 + C4 (w,ηξ )2 + C5w,

2
η +C6w,

2
ξ

+C7w,ηη−C8w,ηξ +C9w,ξξ −C10w,ηη w,ηξ −C11w,ξξ w,ηξ −C12w,η w,ξ +C13w,ηη w,ξξ

]
dη

}
(5.18)

where the coefficients, C1 to C13, are expanded in appendix section B.1.

Similarly, the total strain energy stored in the cables within the fundamental element
of the diagonal pattern can be written upon the summation of Eqs. 5.11 and 5.17 as
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(coefficients listed in appendix section B.1)

(Uc)diagonal =
EcAc
2 cos θ

∫ L1

0

[
C1 + C2 (w,ηη )2 + C3 (w,ξξ )2 + C4 (w,ηξ )2 + C5w,

2
η +C6w,

2
ξ

− C7w,ηη +C8w,ηξ −C9w,ξξ +C10w,ηη w,ηξ +C11w,ξξ w,ηξ +C12w,η w,ξ +C13w,ηη w,ξξ

]
dη

+
EcAc

2

∫ L2

0

[
C1 + C ′3 (w,ξξ )2 + C ′4 (w,ηξ )2 + C ′6w,

2
ξ +C ′9w,ξξ

]
dξ (5.19)

5.1.2 Plate strain energy

The compressive loading on the plate fundamental element due to the cable pre-tension is
assumed to result in a uniformly distributed resultant loads per unit length Nx, Ny and
Nxy. This uniformity is assumed due to the presence of multiple fundamental elements.
Here, Nx and Ny are the normal compressive loads in the x and y direction, while Nxy is the
shear load in the xy plane. The sign convention of the normal loads is considered positive
for tension, hence the compressive loads Nx and Ny have a negative magnitude. These
loads are assumed to be uniformly distributed over the plate thickness and are expressed
in terms of the cable pre-tension and wrapping angle using the free body diagrams of the
standalone plate for both the patterns. Also, these loads would be different for both the
patterns and hence were derived and written separately. For the zigzag pattern, the loads
can be written as

Nx = −nT cos θ

b

Ny = −2mT sin θ

a
Nxy = 0

(5.20)

For the diagonal pattern, the loads can be written as:

Nx = −nT cos θ

b

Ny = −m (T + T sin θ)

a

Nxy = −nT sin θ

b

(5.21)
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Further, the total strain energy within a plate fundamental element (under uniform
loading) can be written by breaking it down into three components as follows [89]:

1. The strain energy due to the stretching of the middle plane of the plate:

U (1)
p =

1

2hEp

∫ L2

0

∫ L1

0

{
N2
x +N2

y − 2νNxNy + 2 (1 + ν)N2
xy

}
dη dξ (5.22)

2. The additional strain energy of the plate due to strain produced by compressive and
shear load while bending of the plate:

U (2)
p =

∫ h
2

−h
2

∫ L2

0

∫ L1

0

1

h

{
Nxε

′
x +Nyε

′
y +Nxyγ

′
xy

}
dη dξ dz (5.23)

where ε′x, ε
′
y, and γ′xy represent the normal and shear strain produced when a plate

is bent. It is worth noting that the integration over the thickness is included because
the normal compressive and the shear loads are assumed to be uniformly distributed
over the thickness of the plate. Also, in the previous equation, the strains can be
written as ε′x = ε

(2)
xx , ε′y = ε

(2)
yy , and γ′xy = 2ε

(2)
xy using Eq. 5.6.

3. The strain energy stored in plate due to the bending deformation of the plate:

U (3)
p =

D

2

∫ L2

0

∫ L1

0

[
(w,ηη +w,ξξ )2 − 2 (1− ν)

(
w,ηη w,ξξ − (w,ηξ )2)] dη dξ (5.24)

where D = Eph
3/12(1− ν2) is the flexural rigidity of the host plate. Ep, ν are the plate’s

Young’s modulus and Poisson’s ratio, respectively. Upon adding the Eqs. 5.22, 5.23, and
5.24, the total strain energy within the fundamental element of the plate results in

Up = U (1)
p + U (2)

p + U (3)
p (5.25)

Upon performing the integration over the thickness of the plate in Eq. 5.23, the total

153



strain energy in plate fundamental element is expressed as

Up =

∫ L2

0

∫ L1

0

[(
1

2hEp

(
N2
x +N2

y − 2νNxNy + 2 (1 + ν)N2
xy

))

+

(
Nx

2

(
h2

12
w,2ηη +

h2

12
w,2ηξ +w,2η

)
+
Ny

2

(
h2

12
w,2ξξ +

h2

12
w,2ηξ +w,2ξ

)
+

Nxy

(
h2

12
w,ηη w,ηξ +

h2

12
w,ξξ w,ηξ +w,η w,ξ

))
+

D

2

{
(w,ηη +w,ξξ )2 − 2 (1− ν)

(
w,ηη w,ξξ − (w,ηξ )2)} ]dη dξ (5.26)

Note that the derivatives are taken with respect to the variables of local coordinate
system because the strain energy is written for an arbitrary fundamental element.

5.1.3 Kinetic energy

Assuming the rotary inertia to be negligible, the kinetic energy of an arbitrary fundamental
element within a cable-harnessed structure can be obtained by summing up the respective
kinetic energy of the plate and cable

Tel = Tp + Tc (5.27)

where the kinetic energy within the plate fundamental element is written as

Tp =
1

2
ρph

∫ L2

0

∫ L1

0

(ẇ)2 dηdξ (5.28)

where (ẇ) = ∂w(η,ξ,t)
∂t

indicates the velocity of the plate at a location (η, ξ), and ρp denotes
the plate’s mass density. The kinetic energy of the cable within the fundamental element
would be different for both the patterns. For the zigzag pattern, the kinetic energy can be
written by summing up the kinetic energy of each segment (refer Fig. 5.1(b)) within the
fundamental element as

(Tc)zigzag =

∫ L1
2 cos θ

0

(
1

2
ρcAc

)
(ẇ)2 dx′ +

∫ h

0

(
1

2
ρcAc

)
(ẇ)2 dz

∣∣∣∣
(η,ξ)=(L1

2
,L2)

+

∫ L1
2 cos θ

0

1

2
ρcAc (ẇ)2 dx′′ +

∫ h

0

(
1

2
ρcAc

)
(ẇ)2 dz

∣∣∣∣
(η,ξ)=(L1,0)

(5.29)
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where ρc denotes the cables mass density. Also, in writing this expression, it has
been assumed that the velocity is uniform across the cross-section of the cable during the
vibrations. Similarly, the kinetic energy for the diagonal pattern is written as

(Tc)diagonal =

∫ L1
cos θ

0

(
1

2
ρcAc

)
(ẇ)2 dx′ +

∫ h

0

(
1

2
ρcAc

)
(ẇ)2 dz

∣∣∣∣
(η,ξ)=(L1,0)

+

∫ L2

0

(
1

2
ρcAc

)
(ẇ)2 dξ

∣∣∣∣
η=L1

+

∫ h

0

(
1

2
ρcAc

)
(ẇ)2 dz

∣∣∣∣
(η,ξ)=(L1,0)

(5.30)

The total kinetic energy of a fundamental element can, therefore, be calculated by
substituting Eqs. 5.28 and 5.29 in Eq. 5.27 for the zigzag pattern, and Eqs. 5.28 and 5.30
in Eq. 5.27 for the diagonal pattern.

5.1.4 Homogenization

The strain energy and the kinetic energy expressions for the cable and plate within a
fundamental element of both the patterns have been calculated in the previous sections.
In this section, the homogenization technique is used to calculate the total strain and
kinetic energy of the entire cable-harnessed system.

First, the total strain energy within the fundamental element for the cable-harnessed
plate is written by summing up the Eqs. 5.26 and 5.18 for the zigzag pattern, and Eqs.
5.26 and 5.19 for the diagonal pattern as

(Uel)zigzag = Up + (Uc)zigzag

(Uel)diagonal = Up + (Uc)diagonal
(5.31)

To homogenize the strain energy within the fundamental element, the displacement
w(η, ξ, t) is approximated by its Taylor’s series expansion about the element center (L1/2, L2/2).
The series is truncated at the second-order and can be expressed as

w (η, ξ, t) ≈

[
w∗ + w,∗η

(
η − L1

2

)
+ w,∗ξ

(
ξ − L2

2

)

+
1

2

{
w,∗ηη

(
η − L1

2

)2

+ 2w,∗ηξ

(
η − L1

2

)(
ξ − L2

2

)
+ w,∗ξξ

(
ξ − L2

2

)2
}]

(5.32)
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In this equation, the terms with the asterisk represent the displacements or its spatial
derivatives evaluated at the element center, for example, w∗ = w(L1/2, L2/2, t). Substitut-
ing Eq. 5.32 in the expanded form of Eq. 5.31, and integrating over the respective limits
of integration results in the total strain energy of the fundamental element as a function of
time. The total energy upon division by the area of the element results in the areal strain
energy density. This energy density is a good representation of the equivalent continuum
model for the cable-harnessed plate structure due to the presence of a large number of
fundamental elements. Integrating the homogenized energy density over the entire area of
the plate, the total strain energy of the system is obtained as

(Usys) =
1

2

∫ a

0

∫ b

0

(
H1 +H2w,

2
xx +H3w,

2
yy +H4w,

2
xy +H5w,

2
x +H6w,

2
y−H7w,xx +H8w,xy

−H9w,yy +H10w,xxw,xy +H11w,yy w,xy +H12w,xw,y

+H13w,xxw,yy

)
dxdy (5.33)

where the coefficients are listed in terms of the system parameters in appendix section B.2
for both the patterns.

The kinetic energy of the system is also homogenized by considering the velocity of the
fundamental element to be constant and equal to the velocity at the element center i.e.
ẇ(L1/2, L2/2, t). Hence, similar to the strain energy homogenization technique, the total
homogenized kinetic energy within a fundamental element can be calculated using Eqs.
5.27 - 5.30 for both the patterns and expressed as

Tsys =
1

2
K1

∫ b

0

∫ a

0

(ẇ)2 dxdy (5.34)

where the homogenized coefficient K1 represents mass per unit area of the system and is
obtained for both the patterns as

(K1)zigzag =

[
ρph+

ρcAc
L2 cos θ

+
2ρcAch

L1L2

]
(K1)diagonal =

[
ρph+

ρcAc
L2 cos θ

+
ρcAc
L1

+
2ρcAch

L1L2

] (5.35)

When the wrapping angle is similar for both the patterns, the homogenized mass per unit
area is higher for the diagonal pattern as seen from Eq. 5.35.
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5.1.5 Equation of motion

The total strain and kinetic energy of the system have been obtained in the previous section
for both the patterns and are represented by Eqs. 5.33 and 5.34, respectively. Further,
using Hamilton’s principle, the dynamics of the system can be determined by solving the
variational problem formulated using the Lagrangian L = Tsys−Usys. The governing EOM
for the equivalent continuum cable-harnessed plate is therefore obtained as

H2w,xxxx +H3w,yyyy + (H4 +H13)w,xxyy +H10w,xxxy +H11w,xyyy +K1ẅ = 0 (5.36)

It should be noted that the terms H10 and H11 are found to be zero for the zigzag
pattern (refer the appendix section B.2), whereas non-zero for the diagonal pattern. The
corresponding derivative terms w,xxxy and w,xyyy represent the bend-twist coupling in the
diagonal pattern. Further, Eq. 5.36 is similar in form to the EOM of a symmetric angle-
ply laminated rectangular plate as discussed in Chapter 1 in Eq. 1.12. This implies that
harnessing cables on a plate in a diagonal pattern results in a homogenized system that
would show characteristics similar to a symmetric angle-ply laminate. On the other hand,
when the coefficients H10 and H11 are zero for the zigzag pattern, the EOM is found similar
to a specially orthotropic laminate as discussed in Eq. 1.11.

Further, the terms H2 and H3 in Eq. 5.36 represent the bending stiffness of the ho-
mogenized system in the x and y direction, respectively, which includes the contribution
of both, plate and cables. H4 is the twisting stiffness, and H13 corresponds to the stiffness
of coupled-bending in the x and y direction.

It is well established that the bend-twist coupling effects are present when the shear
center and centroid of a beam cross-section do not coincide with each other [74]. A similar
concept can be applied to a plate element as well. As mentioned earlier, the additional
bend-twist coupling stiffness terms H10 and H11 are present only in the governing PDE
of the cabled plate with a diagonal pattern. This happens because the shear center of a
fundamental element of the diagonal pattern does not coincide with its centroid due to the
absence of twofold axes of symmetry. Whereas, on applying averaging assumptions in the
homogenization method for the symmetrical structure of the zigzag pattern as shown in
Fig. 5.1(b), the two points coincide. Mathematically, the disappearance of H10 and H11

for the zigzag pattern lies in the process of homogenizing the fundamental element strain
energy when the terms corresponding to C10 and C11 shown in Eq. 5.18 vanish for the top
left and bottom right of the element due to the two inclined symmetric cable segments
mounted on the opposite sides of the plate. This results in cancellation of the terms H10

and H11 for the zigzag pattern and a simpler PDE in which the bend-twist coupling in

157



absent. In case of the diagonal pattern, there is no anti-symmetric term corresponding to
C10 and C11 in the cable strain energy shown in Eq. 5.19 because the cable segments C̄1

and C̄3 are not symmetrically placed, unlike the zigzag pattern. Hence, the coefficients
do not vanish for the diagonal pattern on homogenizing the system’s total strain energy
resulting in the appearance of the bend-twist coupling.

Further, the boundary conditions for the homogenized system are obtained as

w,x = 0 or Mx +H7/2 = 0 on edges x=0 and x=a. (5.37a)

w = 0 or Mx,x + 2Mxy,y = 0 on edges x=0 and x=a. (5.37b)

w,y = 0 or My +H9/2 = 0 on edges y=0 and y=b. (5.37c)

w = 0 or My,y + 2Mxy,x = 0 on edges y=0 and y=b. (5.37d)

where

Mx = −
(
H2w,xx +

1

2
(H10w,xy +H13w,yy )

)
,

My = −
(
H3 w,yy +

1

2
(H11w,xy +H13w,xx )

)
, and

Mxy = −1

4
(H8 + 2H4w,xy +H10w,xx +H11w,yy ) .

(5.38)

In Eq. 5.37, the geometric and natural boundary conditions are present on the left and
right sides, respectively. Also, the expressions Mx, My and Mxy have a similar form as the
bending and twisting moments per unit length in a symmetric angle-ply laminated plate
for the diagonal pattern [3] where H10 and H11 do not vanish. For the zigzag pattern, the
boundary conditions are similar to that of a specially orthotropic laminate. In addition, the
Kirchhoff boundary conditions valid for a free edge of a bare plate can be easily obtained
by substituting the cable parameters to be zero in Eq. 5.37.

Further, it should be noted that since the coefficients H7 and H9 are zero for the zigzag
pattern, all the boundary conditions are homogeneous equations in Eq. 5.37. In contrast,
these coefficients do not vanish for the diagonal pattern and hence, the moment boundary
conditions, in particular, are non-homogeneous in nature. Earlier, these non-homogeneous
moment boundary conditions were obtained for the diagonally wrapped cable-harnessed
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beams studied by Martin et al. [31] and likewise, the zigzag pattern had homogeneous
equations. The reason behind the occurrence of non-homogeneous terms for the diagonal
cable-harnessed plates is the presence of the unequal components of pre-tension force due
to cable segments C̄1 and C̄3 along x or y axis for which moment is written. This produces

a non-zero moment per unit length of H7

2
= Tzc cos θ

L2
and H9

2
=
(
Tzc
L1
− Tzc sin θ

L1

)
in the

equilibrium state of the homogenized system. In the case of the zigzag pattern, the pre-
tension forces act on the opposite faces with similar magnitude and hence, the total moment
due to these forces vanishes upon applying the homogenization technique. To solve the
boundary value problem that has a non-homogeneous boundary condition, a transformation
of the displacement variable can be made to convert them to homogeneous equations as
discussed in Chapter 4.

In this chapter, attention is given to the clamped-free-free-free (CFFF) and all ends
simply supported (SSSS) boundary conditions. The solution to the governing differen-
tial equation cannot be obtained in closed-form for the diagonal pattern for any of these
boundaries due to the presence of H10 and H11 terms. Hence, the Rayleigh-Ritz method is
used to obtain the natural frequencies, mode shapes, and frequency response function. It
should be however noted that the closed-form solution for SSSS boundary is possible for
the PDE obtained for the zigzag pattern.

5.2 Results and Discussion

In this section, the dynamic effects of the added cable predicted by the analytical model
of the cable-harnessed system are discussed. As also shown in the previous chapters, these
effects can be visualized using frequency response functions (FRFs) of the system with and
without cables. In this section, the FRF results are compared with the simulation results
obtained using a commercially available FE software ANSYS. In the ANSYS model, the
plate is modeled using the 3-Dimensional 20-Node (SOLID 186) finite elements. On the
other hand, the cable is modeled using the LINK 180 elements that are uniaxial elements
with three degrees of freedom per node. The connection between the cable and plate was
established using CONTA 175 elements that assumed a bonded contact for the no-slip
condition.

The system parameters considered for the presented analysis are listed in Table 5.1. The
properties are representative of an Aluminum plate and Power Pro cables. The same host
structures and cables were also used for experiments on the parallel cable-harnessed plates
presented in Chapter 4. In the current numerical study, the results for six cases shown
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Table 5.1: Material and geometric properties of the cable-harnessed plate structure

Plate
Length (a) 0.201 m
Width (b) 0.099 m
Thickness (h) 0.0012 m
Mass density (ρp) 2768 Kg/m3

Young’s Modulus (Ep) 68.9 GPa
Poisson’s Ratio (ν) 0.33
Cable
Radius (rc) 0.55 mm
Young’s modulus (Ec) 128 GPa
Mass density (ρc) 1400 Kg/m3

Pretension (T ) 3 N

Table 5.2: Different case of cable-harnessed system

Case number Boundary conditions Cable wrapping pattern Wrapping direction
Case-1 CFFF Zigzag x−axis
Case-2 CFFF Diagonal x−axis
Case-3 CFFF Zigzag y−axis
Case-4 CFFF Diagonal y−axis
Case-5 SSSS Zigzag x−axis
Case-6 SSSS Diagonal x−axis

in Table 5.2 are presented which encompass different patterns and boundary conditions.
For the CFFF boundary conditions, the clamped edge is always along the edge x = 0.
The wrapping direction denotes the direction along which the cable is harnessed. It could
be either perpendicular to the clamped edge or parallel to it. In the former case, the
wrapping direction is the x−axis and for the latter, it is the y−axis. A schematic of
the cable-harnessed structures with wrapping along the y−axis is shown in Fig. 5.2. For
both the diagonal and zigzag pattern, the FRF analysis is done for a fixed set of pattern
parameters. For all the cases, the number of fundamental elements, m, considered in the
direction of cable alignment is 3, while the number of rows, n, is considered 5. It should
also be noted that while the number of elements and rows remain the same, the cable
wrapping angle would be different for both the patterns as shown in Eqs. 5.2 and 5.3.
When the wrapping angle is measured with respect to the wrapping direction, the angle
would be smaller for the diagonal pattern.
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(a)

(b)

Figure 5.2: Cable-harnessed structures with cables wrapped along the y−axis direction (a)
Zigzag pattern, (b) Diagonal pattern; The red lines denote the cables on the host plate
structures. The solid lines represent the cables harnessed on the top face and the dashed
lines are the cables on the bottom face of the plate.
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5.2.1 Frequency response functions

The system dynamics for different cases of cable-harnessed structures listed in Table 5.2
is presented using the FRF plots shown in Figs. 5.3, 5.6, and 5.7. For all the cases, FRF
plots are obtained by actuating at (0.1a, 0.8b) and sensing at (0.4a, 0.8b) with respect to the
defined global coordinate system. These FRFs show a comparison between the bare plate
model, cabled plate homogenized model, and cabled plate ANSYS model. The deviation of
the cabled plate FRF from the bare plate FRF shows the change in the dynamic behavior
of the system due to cable attachment. It also shows the importance of modeling the cable
dynamics in the system. Further, the mode shapes of the cabled plate structure for case-1
are shown in Fig. 5.4, whereas for case-5 are shown in Fig. 5.8. The mode shapes of cases
2-4 and case 6 were found similar to that of case-1 and case-5, respectively, and hence
are not shown explicitly. Reference of mode shapes for cases 2-4 would be Fig. 5.4 and
similarly, for case 6, the reference would be Fig. 5.8.

Discussion on FRFs for the cases 1 and 2

Firstly, the FRFs for cases 1 and 2 shown in Fig. 5.3 is discussed. For both the patterns,
the FRFs obtained from the homogenized model and ANSYS are in good agreement. This
can also be observed from the natural frequency comparison shown in Table 5.3. The
maximum error in the homogenized model for the zigzag pattern is 2.14%, whereas for the
diagonal pattern is 2.12%.

Table 5.3: Natural Frequencies for analytical and FEM cable-harnessed plate model under
CFFF boundary conditions (Hz)

Mode
ANSYS,
Case-1

HOM,
Case-1

Error
ANSYS,
Case-2

HOM,
Case-2

Error
ANSYS,
Case-3

HOM,
Case-3

Error
ANSYS,
Case-4

HOM,
Case-4

Error

1 25.754 25.96 0.81% 26.28 26.52 0.91% 26.34 26.68 1.28% 26.23 26.47 0.91%
2 109.43 111.49 1.89% 107.48 107.82 0.32% 109.27 110.20 0.85% 109.55 110.57 0.93%
3 159.92 161.41 0.93% 163.59 165.36 1.08% 163.45 165.97 1.54% 163.06 164.77 1.05%
4 356.46 363.98 2.11% 350.08 354.45 1.25% 356.75 361.64 1.37% 358.09 362.04 1.10%
5 448.21 453.20 1.11% 457.69 464.28 1.44% 457.81 465.58 1.70% 456.90 462.61 1.25%
6 680.83 694.63 2.03% 677.32 691.69 2.12% 680.54 690.43 1.45% 682.17 695.87 2.01%
7 687.47 702.15 2.14% 699.32 705.47 0.88% 689.16 703.31 2.05% 692.65 702.67 1.45%
8 880.72 892.67 1.36% 898.51 905.91 0.82% 892.47 907.30 1.66% 892.29 905.30 1.46%
9 940.03 957.62 1.87% 946.27 956.16 1.05% 941.54 956.42 1.58% 943.00 959.93 1.80%
10 1135.2 1159.09 2.10% 1138.80 1152.37 1.19% 1143.1 1169.43 2.30% 1147.90 1164.07 1.41%
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Figure 5.3: Comparison between FRFs obtained from homogenized (HOM) model and
finite element (ANSYS) model for cables harnessed along the x−axis in (a) zigzag pattern,
(b) diagonal pattern under a CFFF boundary. The natural frequency peaks of the cabled
plate exhibit a cable stiffening effect (increase in natural frequency with respect to the bare
plate). This increase is frequency peaks are well predicted by the ANSYS model of the
cabled plate

Additionally, the natural frequencies of the system are observed to increase when cables
are harnessed on the bare plate as predicted by both the homogenized and ANSYS models.
The frequencies increase because the cable stiffness effects are dominant over its mass effect.
Analyzing the first five modes for the cases 1 and 2 in Table 5.3, it is seen that the diagonal
pattern has more cable stiffening effect compared to the zigzag pattern for 1st, 3rd, and
5th mode; hence, the natural frequencies are higher for the diagonal pattern for these
modes. The reason is attributed to the smaller wrapping angle in the diagonal pattern and
dominant bending curvature of corresponding mode shapes in the x−direction as shown
in Fig. 5.4. As discussed before, the diagonal pattern has smaller wrapping angle θ as
compared to the zigzag pattern when the number of elements and the rows is the same.
When the wrapping angle gets smaller, the projection of the cable stiffness of the inclined
cable segment over the x−axis becomes larger resulting in an increased cable stiffening
effect. This is also seen from the increased homogenized stiffness in the x−direction, H2.

On the other hand, the zigzag pattern exhibits a higher cable stiffening effect for the
2nd and 4th modes. The corresponding modes have a twist and coupled bending dominant
shapes as seen from Fig. 5.4 and therefore, the homogenized stiffness coefficients (H4 +
H13) are accountable for the added cable stiffness in these modes. These coefficients vary
with the wrapping angle as (cos θ sin2 θ) since the effect of second-order terms was found
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negligible. On plotting the coefficients (H4 + H13) as a function of wrapping angle, a
maximum at θmax = tan−1

√
2 ≈ 54.7◦ was observed as shown in Fig. 5.5. In other words,

twisting stiffness of the structure can be maximized if the cables have a wrapping angle of
θmax. Further, the calculation of the wrapping angle for the zigzag and diagonal pattern
results in a value of 30.5◦ and 16.4◦, respectively. Referring Fig. 5.5, (H4 + H13) is found
larger for the zigzag pattern thereby exhibiting a higher stiffening effect for 2nd and 4th
modes.

(a) (b) (c)

(d) (e)

Figure 5.4: Mode shapes obtained from the homogenized model of the cable-harnessed
plate for case-1: CFFF boundary with cables harnessed along the x−axis in a zigzag
pattern. The first, third and fifth mode shapes have a bending dominant curvature in the
x-axis direction. The second mode is a twist/torsional shape, and the fourth mode is a
coupled bend-twist mode.
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(a) (b)

Figure 5.5: Variation of (H4 +H13) as a function of wrapping angle for (a) zigzag pattern,
(b) diagonal pattern

Discussion on FRFs for the cases 3 and 4

The FRFs for cases 3 and 4 with cable wrapping along the y−axis is shown in Fig.
5.6. For these cases, the wrapping angle is measured with respect to the y−axis (wrapping
direction). Hence, with an increase in the wrapping angle, the cable stiffening effects
would increase in the x−direction. This is in contrast to cases 1 and 2 where the increase
in wrapping angle decreased the cable stiffening in the x−direction. Therefore, the zigzag
pattern in case-3, which has a higher wrapping angle for the same number of elements
exhibits higher natural frequencies for 1st, 3rd, and 5th mode compared to the diagonal
pattern in case-4. It should be noted that the corresponding mode shapes have dominant
bending curvature in the x−direction as shown in Fig. 5.4.

Additionally, the frequencies for modes 2 and 4 are found to be higher for the diagonal
pattern (case-4) compared to the zigzag pattern (case-3). Similar to the previous cases, the
reason is attributed to their twist dominant and coupled bending mode shapes; however,
in the cases 3 and 4, the wrapping angle is 67.7◦ for the zigzag and 50.7◦ for the diagonal
pattern for the considered pattern parameters. In addition to the wrapping angle closer to
θmax, the stiffness coefficient (H4 + H13) is found higher for the diagonal pattern thereby
resulting in higher frequencies compared to the zigzag pattern. It should be noted that
in general, the higher natural frequency between the two patterns for the 2nd and 4th
mode would depend on the plates aspect ratio and the pattern parameters that decide the
wrapping angle.

Discussion on FRFs for the cases 5 and 6
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Figure 5.6: Comparison between FRFs obtained from homogenized (HOM) model and
finite element (ANSYS) model for cables harnessed along the y−axis in (a) zigzag pattern,
(b) diagonal pattern under a CFFF boundary

The discussion related to the stiffening effects in cases 1-4 had their reasoning associ-
ated with the mode shapes and hence, the boundary conditions play an important role in
determining the effects of the cable harness. Therefore, an SSSS boundary is studied in
cases 5 and 6 for both patterns with corresponding FRFs presented in Fig. 5.7 and natural
frequencies listed in Table 5.4. Clearly, the FRFs for the first six vibration modes obtained
from the homogenized model of the cabled plate match well with the ANSYS model.

For SSSS boundary, modes can be represented as (p,q) where p and q are the numbers of
half-sine waves in the x and y directions, respectively. Fig. 5.7 shows a noticeable stiffening
effect for Mode 3 (3,1) and Mode 6 (4,1) which can be seen by their increased frequency
with respect to the bare plate. The Mode (4,1) appears as the Mode 5 for a bare plate;
however, on attaching cables, the frequency of the mode increases so much that it becomes
higher than mode (2,2) for the bare plate,also highlighted in Table 5.4. In contrast to
the first five mode shapes of the CFFF boundary, the modes from SSSS boundary have a
dominant bending curvature in both x and y axis. Analytically, the added cable stiffness is
governed by the coefficients H2 and H3; where the former is responsible for adding stiffness
in the x−direction and the latter is for the y−direction. The contribution from each term
is dependent on various factors such as the mode shape (determines curvature in both the
directions), pattern parameters, and the aspect ratio of the plate (determines the wrapping
angle). As a result, the frequencies are higher in the zigzag pattern for the Modes 2 and
3, whereas, they are higher for the diagonal pattern in Modes 1, 4, 5, and 6.

For all these cases, the homogenized model is found to marginally over-predict the
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Table 5.4: Natural Frequencies for analytical and FEM cable-harnessed plate model under
SSSS boundary conditions (Hz)

Mode
number
(p,q)

ANSYS,
Case-5

HOM,
Case-5

Error
ANSYS,
Case-6

HOM,
Case-6

Error

1 (1,1) 365.76 369.78 1.10% 366.34 370.02 1.00%
2 (2,1) 590.40 597.72 1.24% 586.20 591.60 0.92%
3 (3,1) 962.06 972.36 1.07% 959.88 966.82 0.72%
4 (1,2) 1235.20 1246.58 0.92% 1248.80 1263.59 1.18%
5 (2,2)* 1461.20 1479.13 1.23% 1462.20 1480.09 1.22%
6 (4,1)* 1480.60 1494.11 0.91% 1482.90 1495.17 0.83%
7 (3,2) 1835.40 1861.43 1.42% 1813.30 1846.71 1.84%
8 (5,1) 2145.40 2163.64 0.85% 2156.10 2175.81 0.91%
9 (4,2) 2356.10 2390.88 1.48% 2341.30 2366.55 1.08%
10 (1,3) 2680.90 2706.99 0.97% 2714.70 2753.85 1.44%

*The mode 5 of the bare plate has the mode shape of the form (4,1) which switches to
mode 6 of the cabled plate. Also, mode 6 of the bare plate has the shape (2,2) and
switches to mode 5 of the cabled plate.
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frequencies compared to the FE model. It is due to the absence of the degrees of freedom
in the x and y directions that make the homogenized model inherently stiffer. However,
the significance of the homogenized model can be highlighted when compared either with
an ad hoc modeling technique which includes only cable inertia effects (that would always
decrease frequencies on attaching cables) or no cable effects whatsoever. The proposed
model shows the importance of modeling the cables stiffness and mass effects which result
in an accurate prediction of the system dynamics.
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Figure 5.7: Comparison between FRFs obtained from homogenized (HOM) model and
finite element (ANSYS) model for cables harnessed along the x−axis in (a) zigzag pattern,
(b) diagonal pattern under an SSSS boundary
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(a) (1,1) (b) (2,1) (c) (3,1)

(d) (1,2) (e) (2,2) (f) (4,1)

Figure 5.8: Mode shapes obtained from the homogenized model of the cable-harnessed plate
for case-5: SSSS boundary with cables harnessed along the x−axis in a zigzag pattern

A general comparison with the parallel cabled plate presented in Chapter 4

A comparison of the dynamic effects of the wrapped cabled plate structures can also
be done with the structures that have cables attached in parallel configuration studied in
the previous chapter. Mathematically, the governing PDE for the zigzag pattern is similar
to that for the parallel configuration (Eq. 4.22), however, the diagonal pattern has two
additional terms as discussed in the Section 5.1.5. Although the form of the PDE is similar
for the zigzag and parallel cable-harnessed plate, the contribution of the cable strain energy
is quite different. For example, when the same number of cables are harnessed along the
x−axis, the frequencies of the bending modes with dominant curvature in y−direction
in the parallel cabled plate tends to be lower. This is because the cable stiffening for
parallel cables along x−direction does not contribute to increasing bending stiffness in
the y−direction. Whereas, the system is stiffened in the y−direction for the wrapped
patterns due to the cable stiffness component of the inclined segments. Similarly, the
cable strain energy does not contribute towards the twisting and coupled-bending stiffness
corresponding to H4 and H13 in the parallel cabled plate. However, the contribution of
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cable stiffness is highlighted in these coefficients for the wrapped patterns.

Discussion on the possibility to obtain an optimal pattern such that cables
have minimal dynamic impact

It is interesting to draw a general comparison between different cable harness patterns
and how their dynamics are affected in a general engineering case compared to the bare
plate. For this comparison, a CFFF boundary condition with 20 parallel cables is chosen
for a parallel cabled plate structure, and n = 20, m = 5 for zigzag and diagonal patterns,
harnessed along the x−direction, with similar cable and host plate parameters. Also,
because the cable stiffening effect is of most concern, it is assumed that the cable mass effect
is almost negligible. Now, if a design engineer is interested in considering the least impact
on bending frequencies with y dominant modes, the parallel cabled plate should be chosen
over the wrapped patterns because there is no added cable stiffening in the y−direction
in the former. Similarly, if the least impact on twist mode frequencies is concerned, the
parallel cabled plate would still be the best choice because of the absence of any cable
segments in an inclined direction that increases the twisting stiffness. However, in the case
of bending dominant modes in the x−direction, the least impact would be observed in the
zigzag pattern because, for the same number of rows and fundamental elements, the zigzag
pattern has a higher wrapping angle and lower stiffening in the x−direction compared
to the diagonal pattern. The parallel cabled plate will have the highest stiffening effect
in the x−direction. These outcomes can change based on the host and cables material
and geometric properties, consideration of dominant cable mass effects, and boundary
conditions; however, the proposed modeling technique can provide appropriate solutions
and insights to the design engineer to choose an optimal pattern that would minimally
affect the dynamics of the system. One of the author’s works that caters to the optimal
cable placement for minimal impact on dynamics of a host beam structure can be found in
Ref. [37].

5.2.2 Parametric Analysis

In this section, the effects of cable properties and wrapping pattern parameters on the
dynamics of the cable-harnessed structure are discussed. The analysis is carried out for
the variations in cable modulus, cross-sectional radius, mass density, number of fundamen-
tal elements per unit row, and the number of rows. While analyzing the effects of each
parameter, the other parameters are held constant as listed in Table 5.1.

As the system parameters are varied, the variation of natural frequencies is different
for different modes as seen later in this section. For the CFFF boundary conditions, the
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behavior is found similar for bending dominant modes which are Modes 1, 3, and 5 for the
given system parameters. Similarly, the behavior for twist and coupled bending modes-2
and 4 are found to show similar behavior. Hence, to show the change in natural frequencies
for each mode of the cabled plate with respect to the bare plate on the same scale, a
Normalized Frequency Difference (NFD) is plotted which is defined as (ω

(i)
CP − ω

(i)
BP )/ω

(i)
BP ,

where ω
(i)
CP and ω

(i)
BP denote the natural frequencies of the ith mode of the cabled plate and

bare plate, respectively. Since ω
(i)
BP does not change on the variation of cable parameters,

the changes in NFD are essentially reflected due to ω
(i)
CP .

Effect of cable parameters

The effect of cable modulus on the system dynamics for the first five vibration modes is
shown in Fig. 5.9 for the cases 1-4. Clearly, the cabled plate’s natural frequencies increase
with the cable modulus because there is a net increase in the total strain energy of the
system on increasing cable modulus while the kinetic energy remains unaffected.

The rate of change of the NFD is not necessarily similar. When the variation of NFD
for the zigzag pattern shown in Fig. 5.9(a) is considered, the rate of increase is almost
same for all the five modes; however, for the diagonal pattern shown in Fig. 5.9(b), it is
seen that the frequencies of bending dominant modes increase at a higher rate compared to
the twist and coupled bending modes. It is attributed to the small wrapping angle of the
diagonal pattern with the x−axis resulting in a higher contribution of cable strain energy
in the bending dominant modes compared to the zigzag pattern where the contribution is
found almost similar for the first five modes.

Similar to the discussion on cases 1 and 2 on the variation of cable’s Young’s modulus
in the previous paragraph, a higher rate of increase in bending dominant frequencies is
observed for cable harnessing along the y−direction in cases 3 and 4 as well as shown in
Figs. 5.9(c) and (d). Likewise, for the SSSS boundaries presented for cases 5 and 6, the
natural frequencies are predicted to increase with cable modulus for the first five modes
for both the patterns as seen from Figs. 5.10(a) and (b). It should be noted that the
mode numbers for SSSS boundary are with respect to the bare plate and hence, Mode-5
presented for SSSS boundary parametric analysis plots represents the mode (4,1).

For both the zigzag and diagonal pattern in Figs. 5.10(a) and (b), NFD increase rate
is highest for Mode-5 and is lowest for Mode-4. In Mode-5 (4,1), the curvature of the
mode shape is dominant in the x−direction and is highest amongst the other four modes.
Since the cable is harnessed along the x−axis, the contribution of the cable strain energy
becomes largest for the mode that has the highest curvature as also seen from the total
strain energy term, H2w,

2
xx in Eq. 5.33. On the other hand, when Mode-4 is considered,

where the curvature is dominant along the y−axis, the strain energy contribution is not
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significantly high because of a large angle between the y−axis and the cable segment; hence
the additional cable stiffness in the Mode-4 through the term H3w,

2
yy is not as significant.

Additionally, the homogenized model is seen to agree well with the ANSYS results for
the smaller values of cable modulus and begin to diverge as the modulus increases. As the
cable modulus increases, it results in an increased coupling between different coordinates
of motion. Since only transverse motion is modeled in the homogenized system, it results
in errors in frequencies for higher values of cable modulus.
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(a) Zigzag pattern along x−axis
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(b) Diagonal pattern along x−axis
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(c) Zigzag pattern along y−axis
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(d) Diagonal pattern along y−axis

Figure 5.9: Effect of the change in cable modulus for cases 1-4 (CFFF boundary). Legends:
HOM Mode-1, HOM Mode-2, HOM Mode-3, HOM Mode-4, HOM Mode-

5, FE Mode-1, FE Mode-2, FE Mode-3, FE Mode-4,
FE Mode-5. As the cable’s Young’s modulus increase, there is an increase in the natural
frequency of the cable-harnessed structure. The unequal slope for different modes indicate
that the frequency of all the modes do not increase at a similar rate.
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(a) Zigzag pattern along x−axis
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(b) Diagonal pattern along x−axis

Figure 5.10: Effect of the change in cable modulus for cases 5-6 (SSSS boundary). Legends:
HOM Mode-1, HOM Mode-2, HOM Mode-3, HOM Mode-4, HOM Mode-

5, FE Mode-1, FE Mode-2, FE Mode-3, FE Mode-4,
FE Mode-5. As the cable’s Young’s modulus increase, there is an increase in the natural
frequency of the cable-harnessed structure. The unequal slope for different modes indicate
that the frequency of all the modes do not increase at a similar rate.
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To analyze the effects of cable radius on the system dynamics, NFD is plotted for both
the patterns in Figs. 5.11 and 5.12. The natural frequencies of the cabled plate in Fig.
5.11 are shown to increase on increasing the radius. This is because as the cable radius
increase, the increase is system stiffness is dominant over the increased cable mass effect.
The increase in overall stiffness can also be observed by analyzing the homogenized stiffness
coefficients H2, H3, H4, and H13 (and H10 and H11 in case of the diagonal pattern) which
are linearly dependent on the cable’s cross-sectional area for both the patterns. The model
predictions are also a good match with the corresponding ANSYS model.

For the zigzag pattern along the x−axis (Fig. 5.11(a)), the frequencies for the first
five modes increase with cable radius at a similar rate. However, for the diagonal pattern
along the x−axis (Fig. 5.11(b)), the rate of change is higher for bending dominant modes
compared to the other modes. This observation is in line with the previous discussion
on the effect of cable modulus. Since the diagonal pattern has a smaller wrapping angle
compared to the zigzag pattern, the contribution of cable stiffness in the dominant bending
modes in the x−direction is higher. This is also evident from the coefficient H2 that is
dependent on the wrapping angle by the factor of cos3 θ. Hence, bending dominant mode
frequencies increase at a higher rate in the diagonal pattern compared to the zigzag pattern
as seen from Figs. 5.11(a) and (b).

The variation of cable radius when cables are wrapped along the y−axis is shown in Figs.
5.11(c) and (d) for zigzag and diagonal pattern, respectively. For both the patterns, it is
seen that the NFD of the bending dominant modes in the x−direction shows a higher rate of
increase with cable radius compared to the other two modes. Moreover, the zigzag pattern’s
bending dominant modes’ frequencies increase at a higher rate. For the zigzag pattern,
the higher wrapping angle with the y−axis compared to the diagonal pattern for similar
pattern parameters results in a lower angle of its cable segments with the x−axis. This
results in a higher contribution of cable stiffening effects in the zigzag pattern and when
the cable radius increase, the frequencies of modes with dominant bending in x−direction
increase at a higher rate.

The variation of NFD with cable radius for the SSSS boundary is shown in Figs. 5.12(a)
and (b). As shown, the frequencies of all the modes except Mode-4 of the zigzag pattern
increase with the cable radius. As mentioned earlier, the cable radius is responsible for
both, increasing the stiffness and inertia due to the cable harness. In the case of Mode-
4 in the zigzag pattern, the added stiffness effect due to the increase in cable radius is
neutralized by the added inertia effect and hence, the frequency remains almost constant
with increasing cable radius. However, for the diagonal pattern, since the cable segment
C̄3 in the fundamental element is parallel to the y−axis, Mode-4 (with dominant curvature
along the y−axis) gets a higher contribution of cable stiffness and hence shows an increasing
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trend with cable radius. Moreover, Mode 5 is seen to increase at the highest rate for both
the patterns due to the large stiffening contribution of the cable owing to the highest
curvature along the x−axis.

Moreover, the homogenization and ANSYS results are a good match for small values
of cable radius but as the cable radius increase, the former seems to over-predict the
frequencies. This is because of the increased in-homogeneity in the system owing to the
large cable radius thereby causing the inaccuracies in the homogenization method.

Next, the variation of the cable density on the system dynamics is shown in Figs.
5.13 and 5.14 for the six cases. It is expected that on increasing the cable density, the
overall mass of the system would increase, and therefore, the natural frequencies would
also decrease. Analytically, only the homogenized coefficient K1 is affected that increases
linearly with cable density. This increases the system’s kinetic energy without affecting
the strain energy and hence, the natural frequencies of the system decrease.

It is also worth noting that the decrease in the natural frequencies occurs at the same
rate for all the modes in contrast to the other two cable parameters studied before. How-
ever, on a closer inspection, it is observed that the NFD decays at a marginally higher
rate for diagonal pattern in Fig. 5.13(b) due to a larger length of cable attached. It results
in a higher increased cable mass compared to the zigzag pattern (Fig. 5.13(a)) for simi-
lar density increment. Moreover, the trend predicted by the homogenized model matches
well with the ANSYS results; however, the homogenized model is expected to marginally
over-predict the frequencies for all the modes.
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(a) Zigzag pattern along x−axis
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(b) Diagonal pattern along x−axis
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(c) Zigzag pattern along y−axis
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(d) Diagonal pattern along y−axis

Figure 5.11: Effect of the change in cable radius for cases 1-4 (CFFF boundary). Legends:
HOM Mode-1, HOM Mode-2, HOM Mode-3, HOM Mode-4, HOM Mode-5,

FE Mode-1, FE Mode-2, FE Mode-3, FE Mode-4, FE
Mode-5
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(a) Zigzag pattern along x−axis
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(b) Diagonal pattern along x−axis

Figure 5.12: Effect of the change in cable radius for cases 5-6 (SSSS boundary). Legends:
HOM Mode-1, HOM Mode-2, HOM Mode-3, HOM Mode-4, HOM Mode-5,

FE Mode-1, FE Mode-2, FE Mode-3, FE Mode-4, FE
Mode-5
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(a) Zigzag pattern along x−axis
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(b) Diagonal pattern along x−axis
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(c) Zigzag pattern along y−axis

1000 1500 2000 2500 3000

Cable Density (Kg/m3)

2

3

4

5

6

7

8

N
or

m
al

iz
ed

 f
re

qu
en

cy
 d

if
fe

re
nc

e 
(%

)

(d) Diagonal pattern along y−axis

Figure 5.13: Effect of the change in cable density for cases 1-4 (CFFF boundary). Legends:
HOM Mode-1, HOM Mode-2, HOM Mode-3, HOM Mode-4, HOM Mode-5,

FE Mode-1, FE Mode-2, FE Mode-3, FE Mode-4, FE
Mode-5
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(a) Zigzag pattern along x−axis
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(b) Diagonal pattern along x−axis

Figure 5.14: Effect of the change in cable density for cases 5-6 (SSSS boundary). Legends:
HOM Mode-1, HOM Mode-2, HOM Mode-3, HOM Mode-4, HOM Mode-5,

FE Mode-1, FE Mode-2, FE Mode-3, FE Mode-4, FE
Mode-5
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Effect of wrapping pattern parameters

Figures 5.15 and 5.16 shows the variation of natural frequencies as a function of the
number of fundamental elements per unit row. The frequency change and the trends
estimated by the homogenized method matches well with ANSYS. It should be noted that
the number of elements is allowed to be positive integers only. Also, with an increase in
the number of elements, the wrapping angle with respect to the wrapping axis increases.

Figure 5.15(a) exhibits the variation of cabled plate frequencies for the zigzag pattern
wrapped along the x−axis. Although the cable stiffening effect is found almost similar for
the first five modes for a lower number of elements, it changes for different modes when the
number of elements is increased. For the twist and coupled-bending modes (Modes 2 and
4), the cable stiffening effect is higher compared to the bending dominant modes in the
x−direction. Also, the stiffening effect in Modes 2 and 4 increases at first and then starts
to decrease, whereas, for the bending dominant modes, the stiffening effects monotonically
decrease as the number of elements is increased. The contribution of the cable strain energy
in increasing twist stiffness is low when the cable segments have a small wrapping angle
with either x or y axis. Hence, there exists a wrapping angle at which the twisting stiffness
becomes maximum. Analytically, it is due to the presence of the term cos θ sin2 θ in the
homogenized twist and coupled-bending stiffness coefficient (H4 + H13) at θmax ≈ 54.7◦.
For the system parameters considered for the zigzag pattern, the maximum frequency for
Mode-2 occurs when the number of elements is 7 and that corresponds to a wrapping angle
of 54.05◦. This is the closest possible wrapping angle to θmax that can be attained because
the number of elements can only hold integer values. Also, the decrease in the bending
dominant modes frequencies is due to the decreased overall stiffness in the x−direction
due to the higher wrapping angles as seen from the cos3 θ dependency of the coefficient
H2. Moreover, as the number of fundamental elements increases, the cable inertia also
increases, but because the stiffness effects of the cable are dominant over its mass effects,
the dynamics is governed by the stiffness coefficients.

For the diagonal pattern, the effect of the variation of the number of fundamental
elements along the x-axis is shown in Fig. 5.15(b). Similar to the case of the zigzag
pattern, it is observed that the frequency of the bending dominant modes decreases with
an increasing number of elements due to increasing wrapping angles. On the other hand,
Modes 2 and 4 increase with the increase in the number of elements for the range shown
in the plot. As discussed later, these plots also show a maximum at a higher number of
elements that is not explicitly clear from Fig. 5.15(b). Since these discussions are dependent
on the wrapping angle, the trends in these plots could vary when the number of rows in
both patterns is changed.
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(a) Zigzag pattern along x−axis
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(b) Diagonal pattern along x−axis
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(c) Zigzag pattern along y−axis
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(d) Diagonal pattern along y−axis

Figure 5.15: Effect of the change in number of fundamental elements along the wrapping
direction for cases 1-4 (CFFF boundary). Legends: HOM Mode-1, HOM Mode-2,
HOM Mode-3, HOM Mode-4, HOM Mode-5, FE Mode-1, FE Mode-2,

FE Mode-3, FE Mode-4, FE Mode-5

For the wrapping along the y−axis, as shown in Figs. 5.15(c) and (d), the effect on
dynamics is found in contrast to the above discussion. For both the patterns, the fre-
quencies of bending dominant modes increase with the number of elements due to the
increased wrapping angle with the y−axis thereby increasing overall stiffening effect in the
x−direction. Again, this increase is because the attached cable has a dominant stiffening
effect over its mass effect. Also, for the given number of rows, the frequency of the twist
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(a) Zigzag pattern along x−axis
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(b) Diagonal pattern along x−axis

Figure 5.16: Effect of the change in number of fundamental elements along the wrapping
direction for cases 5-6 (SSSS boundary). Legends: HOM Mode-1, HOM Mode-2,
HOM Mode-3, HOM Mode-4, HOM Mode-5, FE Mode-1, FE Mode-2,

FE Mode-3, FE Mode-4, FE Mode-5

dominant mode (Mode 2) decreases at a slow rate with increasing elements. The Mode 4
frequency is found to remain almost constant with the variation in the number of elements.
The observations predicted by proposed model match well with ANSYS results.

With an increase in the number of fundamental elements, Modes-1, 2, and 4 are observed
to increase for both the patterns as shown in Fig. 5.16 with Mode-4 increasing at the
highest rate while Mode-2 at the least. Moreover, Modes 3 and 5 show a decreasing
trend for both the patterns as also estimated by ANSYS results. The highest rate of
Mode-4 (with dominant curvature along the y−axis) is attributed to the increase of cable
stiffening effects in the y−direction as the wrapping angle increases with fundamental
elements and the inclined cable segments get more aligned with the y−axis. A decreasing
trend in Modes-3 and 5 is also attributed to a similar reason. Since both these modes have
dominant bending curvature along the x−axis, the increase in wrapping angle decreases the
contribution of the cable stiffness along the x−direction, and hence, the frequencies of these
modes decrease. The rate of decay is higher for Mode-5 because of a higher curvature along
x−axis than Mode-3 and hence, a greater cable stiffening loss with an increasing number
of fundamental elements.

Figure 5.17 presents the effects of the change in the number of rows on the system
dynamics. For the wrapping along the x−axis, it is observed that increasing the number
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of rows stiffens the modes that are bending dominant along the x−axis as shown in Figs.
5.17(a) and (b). This is because the cable stiffening effects are dominant over its inertia
effects and the coefficient H2 increases as a result of the increasing number of rows (that
decreases θ). This behavior is seen for both the zigzag and diagonal patterns. In contrast,
the Mode 4 frequency remains almost constant, while the Mode-2 frequency decreases
slowly on increasing number of rows. The added contribution of the cable stiffness is
neutralized by the added cable inertia effects for Mode-4 when the rows are increased.
On the other hand, the added cable inertia effects are marginally dominant for Mode-2
when the rows are increased. This behavior is observed when the number of fundamental
elements in a row is considered small (3 in this case), but it changes on varying the number
of fundamental elements as discussed later.

Next, the effect of increasing the number of rows is discussed when the cable is wrapped
along the y−axis. The wrapping angle with respect to the y−axis decreases with the
number of rows and hence, the frequencies of the bending dominant modes in x−direction
decrease with an increase in the number of rows. This applies to both the zigzag and
diagonal patterns shown in Figs. 5.17(c) and (d). Additionally, for the zigzag pattern,
the frequencies of Modes 2 and 4 increase with the number of rows, while for the diagonal
pattern, a maximum is seen. A maximum is also seen for the zigzag pattern but at a higher
number of rows which is discussed later. The reason behind the maximum seen in Fig.
5.17(d) is related to the earlier discussion where the stiffening in the twisting and coupled
bending modes are maximized for a particular value of wrapping angle, θmax. In this case,
when the number of rows in the diagonal pattern is 7 with three fundamental elements in
each row, the wrapping angle with the y−axis becomes close to θmax.

The variation of the NFD for cases 5 and 6 for the SSSS boundary is shown in Fig.
5.18. The frequencies of the Modes 1 and 4 decrease on an increasing number of rows while
Mode 2 almost remains insensitive for both the patterns. Also, the frequencies of modes
3 and 5 are found to increase. These trends predicted by the homogenization method are
verified with the ANSYS simulations very well. The reasons behind these observations are
attributed to the decrease of wrapping angle with the number of rows. With a decrease in
wrapping angle, the cable stiffening effects become dominant along the x−direction, and
hence, the Mode-5, which has the highest bending curvature in the x−axis amongst the
first five modes, shows the highest rate of frequency increase. On the other hand, a steep
decrease in the frequency of Mode-4 and Mode-1 with cabled plate frequency becoming
less than that of the bare plate for the zigzag pattern is attributed to a large decrease in
the cable stiffening along the y−direction.

It is also observed from both Figs. 5.16 and 5.18 that when the cable stiffening effects
are prominent for modes at either high number of fundamental elements or rows, the
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frequencies diverge from the ANSYS results. This is due to the large stiffness contribution
of the inhomogeneous component of the system in particular modes thereby showing the
limitations of the homogenization approach.
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(a) Zigzag pattern along x−axis
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(b) Diagonal pattern along x−axis
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(c) Zigzag pattern along y−axis
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(d) Diagonal pattern along y−axis

Figure 5.17: Effect of the change in number of rows for cases 1-4 (CFFF boundary).
Legends: HOM Mode-1, HOM Mode-2, HOM Mode-3, HOM Mode-4,
HOM Mode-5, FE Mode-1, FE Mode-2, FE Mode-3, FE Mode-
4, FE Mode-5
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(a) Zigzag pattern along x−axis
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(b) Diagonal pattern along x−axis

Figure 5.18: Effect of the change in number of rows for cases 5-6 (SSSS boundary). Legends:
HOM Mode-1, HOM Mode-2, HOM Mode-3, HOM Mode-4, HOM Mode-5,

FE Mode-1, FE Mode-2, FE Mode-3, FE Mode-4, FE
Mode-5

The previous discussion on the effect of the pattern parameters considered the variations
of either the number of fundamental elements per unit row or the number of rows. In each
of the cases, the other parameter was held fixed. As it was noted earlier, the trends
of the natural frequencies of cabled plate modes can depend on the value of the fixed
pattern parameter. Therefore, it is important to study the variation of the frequencies as
a function of both the pattern parameters. In the following discussion, only the zigzag
pattern is considered under a CFFF boundary.

Figure 5.19 shows the plots of the variation in the first five natural frequencies as a
function of both fundamental elements per unit row and number of rows for a zigzag pattern
wrapped along the x−axis. Clearly, the modes with dominant bending in the x−direction
(Modes 1, 3, and 5) show similar trends in variation, while the twist and coupled-bending
modes (Modes 2 and 4) also have similar characteristics. The bending dominant modes
show the highest frequency at a large number of rows and a small number of fundamental
elements; for this pattern configuration, the wrapping angle is least and hence, the cable
stiffening effect is maximum.

The trend shown in Modes 2 and 4 in Fig. 5.15(a) is consistent with the observation from
Figs. 5.19(b) and (d) where a maximum is seen when fundamental elements are increased
keeping the number of rows fixed. It is however evident from these plots that the optimal
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number of elements increase as the fixed number of rows is increased. Moreover, when the
number of fixed rows is large, for example, 20, the frequency is seen to increase with the
number of elements at a much higher rate compared to that observed for a low number of
rows.

Similarly, the trend for Modes 2 and 4 shown in Fig. 5.17(a) is evident from Figs. 5.19(b)
and (d). When the number of fundamental elements is low and held fixed, the change in
frequencies is minimal for both of these modes for the varying number of rows. However,
for a higher number of elements, a local maximum is seen on the variation of the number
of rows. The reason for this behavior is attributed to a wrapping angle being smaller than
θmax when the number of fundamental elements is low. Now, when the number of rows is
increased, the wrapping angle becomes even smaller and the optimal wrapping angle is not
encountered. Whereas, for a large number of elements when the wrapping angle is higher
than θmax, the decrease of wrapping angle with an increasing number of rows results in a
maximum for an optimal number of rows.

(a) Mode-1 (b) Mode-2 (c) Mode-3

(d) Mode-4 (e) Mode-5

Figure 5.19: Variation of natural frequency for first five modes with a change in the number
of fundamental element (FE) along the harness direction and the number of rows (NOR)
for the zigzag pattern in x−direction under a CFFF boundary

Figure 5.20 shows the similar plots for the zigzag pattern but with cables wrapped along
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the y−axis. In contrast to the wrapping along the x−axis, the frequencies of the bending
dominant modes increase on increasing the number of elements per row and decreasing the
number of rows as seen from Figs. 5.20(a), (c) and (e). This is because of the increased
contribution of the cable stiffness in the x−direction due to the smaller angle between the
inclined cable segments and the x−axis. For the twist dominant modes shown in Figs.
5.20(b) and (d), when the number of fundamental elements is held constant and are small,
the natural frequencies show a local maximum with varying number of rows, as also shown
in Fig. 5.17(c) up to 11 rows. However, when the number of constantly held elements is
increased, it is seen that the natural frequencies monotonically increases for the range of
rows shown in Figs. 5.20(b) and (d).

(a) Mode-1 (b) Mode-2 (c) Mode-3

(d) Mode-4 (e) Mode-5

Figure 5.20: Variation of natural frequency for first five modes with a change in the number
of fundamental element (FE) along the harness direction and the number of rows (NOR)
for the zigzag pattern in y−direction under a CFFF boundary

On the other hand, when the number of rows is held fixed and is very small, the
frequency is seen to remain almost constant for Mode-2, whereas it increases for Mode-
4 with fundamental elements. Although, when the number of rows is slightly increased,
it is seen that the Mode-2 frequency decreases marginally and Mode-4 becomes almost
constant with the number of elements as also previously seen in Fig. 5.15(c) where the
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number of fixed rows is 3. Further, when a large number of fixed rows are considered,
both Mode-2 and Mode-4 frequencies are shown to first increase and then decrease with
the number of elements showing a maximum. This is because, for the low number of
fixed rows, the wrapping angle with respect to y−axis is larger than the optimal wrapping
angle θmax; hence, on further increasing the wrapping angle by increasing the number of
elements, the homogenized twist stiffness coefficient (H4 +H13) decreases and the critical
angle for maximum stiffness is not encountered. However, when the number of rows is
larger, the wrapping angle for a smaller number of fundamental elements is initially less
than θmax. Now, when the number of elements is increased, the maximum twist stiffness
can be observed at an optimal number of elements.

5.3 Summary of the Chapter

In this chapter, the energy equivalence homogenization technique was used to find an
analytical model for the cable-harnessed plate structures of repeated zigzag and diagonal
geometries. The proposed model was verified using a commercially available finite element
(FE) analysis software. Promising results were shown in determining the cable dynamics
effects which matched very well with those from the FEA. The governing PDEs for each
of the patterns was found and compared to the previous chapter on the parallel system
configurations. It is shown that the diagonal pattern results in the governing equation of
motion similar to a symmetric angle-ply laminated plate, whereas the zigzag pattern has
equations similar to a specially orthotropic laminated plate. It is interesting to see that
upon harnessing the plate with cables, the vibration modes are affected differently. Some
modes show major stiffening effects due to the addition of the cables and others show
inertia dominant effects or no major changes in their frequencies. This may further result
in mode switching in which the order of appearance for certain modes of given shapes
changes after the addition of the cables compared to the bare plate.

The effects of various cable parameters such as the wrapping geometry and cable mate-
rial properties have additionally been thoroughly investigated. It is shown further that the
maximum stiffening effects in the bending dominant modes are observed when the cable
wrapping angle is smallest with respect to the axis along which bending occurs. On the
other hand, the stiffening effect in the twist and coupled-bending dominant modes is max-
imum when wrapping angle is tan−1

(√
2
)

with respect to the wrapping direction. Finally,
a brief discussion on the optimal cable placement is also presented. The proposed model
can be ultimately used to help engineers with the optimal placement of these cables in
order to minimize the dynamic impacts of the harnessing cables on the host structure.
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Chapter 6

Experimental Validation of
Cable-Harnessed Plates with Cables
Attached in a Periodic Configuration

The objective of this chapter is to experimentally validate the analytical modeling tech-
nique proposed in Chapter 5 for the cable-harnessed plate with cables wrapped in periodic
configuration. For this purpose, the cable-harnessed plates are fabricated using the metallic
host plates of different sizes by wrapping the cables in both zigzag and diagonal manner.

The chapter is organized as follows: firstly, the experimental setup is described that is
used to measure the dynamic behavior of the cable-harnessed structure. In the subsequent
sections, the test and model FRFs are compared, first for the bare plate and then for the
cabled plate model. The changes in natural frequencies on cable attachment is discussed
in detail. Further, the mode shapes and MAC analysis are also presented for several ex-
periments. A comparison between different patterns, namely parallel, zigzag and diagonal,
is then presented. In the next section, a comparison of change in natural frequencies is
presented for cable-harnessed plate with different host plate dimensions but similar funda-
mental element size. Finally, the novelty of the proposed modeling technique is highlighted
by comparing it with an existing cable-harnessed beam model.
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6.1 Experimental Setup

Figure 6.1 shows the experimental setup to measure the vibration characteristics of the
cable-harnessed plate system using the impact hammer testing. The system consists of a
plate harnessed with cables in a periodic wrapping pattern that is clamped at one edge
and free at the other three edges (CFFF boundary). The system is excited using a PCB
086C01 impulse force hammer. To measure the displacement at a selected point on the
plate, a contactless Polytec OFV-505 laser vibrometer is used which is operated using a
Polytec OFV-5000 vibrometer controller. A small reflecting tape is attached at the selected
location for capturing a good quality sensing data through the reflected laser beam. Finally,
the impact and sensing data is acquired using an LMS SCADAS mobile data acquisition
system connected to a laptop. LMS Testlab version 14.0 is used as computer software to
control the data acquisition settings and analyze the output vibration data.

Figure 6.1: Experimental setup of the clamped cable-harnessed plate under impact testing

As mentioned earlier, for the experiments, both the zigzag and diagonal patterns are
considered. In this chapter, the results are presented for four test cases, the details of which
are listed in Table 6.1. For each test case, four sets of FRFs (I - IV) are presented each
with a different sensing or actuation location coordinates (in meters) listed in Table 6.2.
Also, Fig. 6.2 shows the zoomed-in pictures of the experimental setup displaying the cable-
harnessed plates corresponding to the four test cases. It should be noted that the cable can
be harnessed either along the x−axis direction or along the y−axis and hence, both the
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(a) Test case-1 (b) Test case-2

(c) Test case-3 (d) Test case-4

Figure 6.2: Zoomed-in pictures of the zigzag and diagonal pattern cable-harnessed plates
used for experimental modal testing

wrapping alignments are considered. Earlier, a detailed analysis of both the patterns and
wrapping along both directions was presented in Chapter 5. Different dimensions of the
host plates are considered in some test cases in the current chapter for validation purposes
in addition to different wrapping parameters i.e. number of fundamental elements and
number of rows. In all the structures, the host plate is made of Aluminum (Al-6061) alloy
with the following material properties: Young’s Modulus Ep = 68.9 GPa, mass density
ρp = 2768 Kg/m3, and Poisson’s ratio ν = 0.33. Also, the attached cable used for testing
is Super 8 Slick Power Pro cable, also used previously in experiments in Chapter 4, has
the following material properties: Ec = 128 GPa, ρc = 1400 Kg/m3. The cable radius is
rc = 0.20 mm, however, to enhance the effects of cables on the harnessed system, eight
fully tensioned cables are wrapped on the structure. Hence, the effective radius of the cable
becomes

√
8 ∗ (0.20 mm) = 0.56 mm [2]. The applied pre-tension in the cable is 5N .
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Table 6.1: Details of the tested cable-harnessed plate structure cases

Test
Case

Host Plate Cable wrapping pattern

Material Dimensions
Zigzag/
Diagonal

Wrapping
alignment

No.of
fundamental

elements

No. of
rows

a (m) b (m) h (mm)
1 Al-6061 0.202 0.099 1.2 Zigzag x−axis 3 5
2 Al-6061 0.143 0.197 1.2 Zigzag y−axis 3 7
3 Al-6061 0.201 0.099 1.2 Diagonal x−axis 3 5
4 Al-6061 0.2 0.136 1.2 Diagonal x−axis 3 7

Table 6.2: Actuation and sensing location coordinates (in meters) of the four test cases
(coordinate system shown in Fig. 6.2)

Test
Case

Set
Actuation
Location

Sensing
Location

1

I (0.023,0.079) (0.08,0.079)
II (0.023,0.058) (0.082,0.08)
III (0.023,0.038) (0.08,0.08)
IV (0.023,0.018) (0.08,0.08)

2

I (0.021,0.022) (0.19,0.135)
II (0.08,0.022) (0.195,0.135)
III (0.019,0.023) (0.005,0.14)
IV (0.08,0.022) (0.005,0.135)

3

I (0.023,0.079) (0.0801,0.0803)
II (0.022,0.058) (0.0801,0.0803)
III (0.022,0.039) (0.0801,0.0803)
IV (0.022,0.02) (0.0801,0.0803)

4

I (0.0235,0.115) (0.1,0.13)
II (0.023,0.095) (0.103,0.135)
III (0.023,0.075) (0.105,0.135)
IV (0.024,0.057) (0.1,0.13)
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6.2 Bare plate model and test FRFs

Figures 6.3 - 6.6 show the FRFs obtained from the impact tests of the four different bare
host plates, dimensions of which are mentioned in Table 6.1. For each case, the FRF plots
are shown for the four sets of actuation and sensing locations mentioned in Table 6.2 and
are compared with the model results of the bare plate. All the natural frequency peaks
and the anti-resonance frequencies were well-predicted by the model and hence, these host
plate parameters can be confidently used further in the cable-harnessed models. In some
FRFs, a small spike at 60 Hz is present due to the electrical noise and does not correspond
to a structural mode.
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Figure 6.3: Bare plate FRFs comparison between test and model for test case 1. Sets I -
IV denote the FRFs for different sets of actuation and sensing locations
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Figure 6.4: Bare plate FRFs comparison between test and model for test case 2. Sets I -
IV denote the FRFs for different sets of actuation and sensing locations
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Figure 6.5: Bare plate FRFs comparison between test and model for test case 3. Sets I -
IV denote the FRFs for different sets of actuation and sensing locations
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Figure 6.6: Bare plate FRFs comparison between test and model for test case 4. Sets I -
IV denote the FRFs for different sets of actuation and sensing locations
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6.3 Comparison between cabled plate model and test

In this section, experimental results are presented for the cable-harnessed plate with zigzag
and diagonal pattern. These results are presented in form of FRFs and are compared with
proposed model and bare plate test results. Mode shapes of tests 1 and 2 are presented
for both model and test. Additionally, MAC analysis for these tests is also presented.

6.3.1 Cabled plate model and test FRFs for zigzag pattern

Figures 6.7 and 6.8 show the FRF comparisons of the cable-harnessed plate wrapped in
the zigzag pattern corresponding to the test cases 1 and 2, respectively. Recall that for
the test case 1, the wrapping direction is along the x−axis, whereas for the test case 2, the
wrapping is along the y−axis. The four plots (sets I —IV) shown each in Figs. 6.7 and 6.8
correspond to the four sets of actuation and sensing locations listed earlier in Table 6.2.

The three FRFs shown in each plot of Fig. 6.7 help to deduce two important points:
First, comparison of the bare plate test FRF (black line) with the cabled plate test FRF
(green line) shows the importance of modeling the cable dynamics that can not be ignored.
Second, the cabled plate model FRF (red dotted line) obtained using the proposed tech-
nique is able to well predict the change in the systems natural frequencies upon adding the
cables.

Overall, it is evident for the Test case-1 that the cable stiffness effects are dominant over
its inertia effects, and as a result, the natural frequencies increase on harnessing cables.
Table 6.3 lists the natural frequencies predicted by the cable-harnessed model and shows
that the % increase in frequencies on harnessing cables is significant for Test case-1 in the
frequency range of interest. A similar % increase for the test results that matches well with
the model is shown. On the other hand for the Test case-2, it is seen that in addition to
some modes showing a dominant cable stiffening effect, natural frequencies of a few modes
either do not undergo a significant change or decrease on harnessing cables. The reasoning
is based on the mode shapes of the structure and is discussed in the following paragraphs.

The mode shapes corresponding to the test cases 1 and 2 are shown in Figs. 6.9 and
6.10, respectively. Clearly, the mode shapes obtained from both the homogenized model
and experiments match well with each other. It is clear from Fig. 6.9 that the Modes 1, 3,
and 5 are bending modes with a dominant curvature along the x−direction, whereas the
Modes 2 and 4 are twist and coupled-bending dominant modes. The increase in natural
frequencies in all these modes for test case-1 is due to the dominant effect of the cable
stiffness in the coefficient H2 for the bending modes, and the coefficients (H4 + H13) for
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Figure 6.7: FRF comparisons of cabled plate test, cabled plate model, and bare plate
test for test case 1 (zigzag pattern) for different sets of actuation and sensing locations.
The shift of the peaks from black to green denotes the change in natural frequencies on
harnessing cables. The green curve plotted using the proposed model is able to well predict
the changes.

the twist and coupled-bending dominant modes, over the cable inertia effect. A detailed
discussion on the coefficients was presented in the Chapter 5. Additionally, it should be
noted that since the cable segments are aligned at an angle with the horizontal x−axis, the
cable stiffness contribution in the bending dominant modes would be smaller compared to
the case when the same number of cables are harnessed parallel to the x−axis. This is
because, in the case of zigzag pattern, the effective increase in stiffness in the x−direction
would be a projection of the cable stiffness on the x−axis which would be smaller compared
to the case when the cable is harnessed parallel to the x−axis. On the other hand, for
the twist and coupled-bending dominant modes, since the added cable stiffening effect is
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Figure 6.8: FRF comparisons of cabled plate test, cabled plate model, and bare plate
test for test case 2 (zigzag pattern) for different sets of actuation and sensing locations.
The shift of the peaks from black to green denotes the change in natural frequencies on
harnessing cables. The green curve plotted using the proposed model is able to well predict
the changes. The amplitudes near the peaks are not a good match because of the absence
of damping in the model.

proportional to cos θ sin2 θ (as seen from the first-order cable effects from the coefficient
(H4 +H13)), the natural frequencies increase is higher for zigzag pattern compared to the
parallel pattern.

For the test case 2, the mode shapes in Fig. 6.10 can also be similarly categorized. Here,
the modes 1 and 4 have a dominant bending curvature in the x−direction, the modes 3
and 6 have a dominant bending in the y−direction, while the others are twist and coupled-
bending modes in the range of frequency shown in Fig. 6.8. It should be noted from Table
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Table 6.3: Natural frequencies of bare plate (BP) and cable-harnessed plate (CP) obtained
from model and test for test cases 1 and 2 corresponding to the zigzag pattern

Test case-1

Mode
Model-BP

(Hz)
Test-BP
(Hz)

% error in
model-BP

Model-CP
(Hz)

Test-CP
(Hz)

% error in
model-CP

Model
frequency
increase, %

Test
frequency
increase, %

1 24.67 24.50 0.68% 25.83 25.50 1.29% 4.71% 4.08%
2 105.81 107.00 -1.11% 111.13 113.00 -1.66% 5.03% 5.61%
3 153.51 152.75 0.50% 160.57 158.00 1.63% 4.60% 3.44%
4 345.54 347.25 -0.49% 362.69 363.50 -0.22% 4.96% 4.68%
5 431.01 428.50 0.58% 450.87 440.75 2.30% 4.61% 2.86%

Test case-2
1 49.83 50.00 -0.34% 49.59 49.00 1.20% -0.48% -2.00%
2 95.30 98.00 -2.75% 98.97 100.50 -1.52% 3.85% 2.55%
3 229.54 235.00 -2.32% 239.54 243.80 -1.75% 4.36% 3.74%
4 315.13 315.25 -0.04% 314.96 310.25 1.52% -0.06% -1.59%
5 381.11 384.75 -0.95% 387.94 386.75 0.31% 1.79% 0.52%
6 518.09 514.25 0.75% 543.84 545.50 -0.30% 4.97% 6.08%
7 581.13 582.25 -0.19% 603.83 595.75 1.36% 3.91% 2.32%

6.3 that the natural frequency of the modes 1 and 4 show a dominant cable mass effect
over the cable stiffening effect on harnessing the cables. Hence, the cabled plate frequencies
are lower than the bare plate for the model as well as the test for these modes. Because
the cable segments have a large angle with the x−axis in this case, the projection of cable
stiffening along the x−direction is very small and hence, the cable inertia effect dominates.

On the other hand, the modes 3 and 6 show a noticeable increase in natural frequency on
harnessing cables along the y−direction. These modes, with dominant bending curvature
in the y−direction, are stiffened due to a large projection of cable stiffness along the
y−axis. This increases the effective bending stiffness in the y−direction that is dominant
over the added cable inertia effect. Additionally, the modes 2, 5 and, 7, which are twist
and coupled-bending modes, are also shown to exhibit a dominant stiffening effect which
is well predicted by the model. Also, a larger error is observed in the cable-harnessed plate
model for the higher modes. It is because of the smaller number of fundamental elements
per wavelength of the frequency of interest for the higher modes.
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Figure 6.9: Mode shapes obtained from homogenized model (left) and experiments (right)
for the first five modes corresponding to Test Case 1 (Zigzag pattern with cable harnessing
along the x−direction)
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Figure 6.10: Mode shapes obtained from homogenized model (left) and experiments (right)
for the first seven modes corresponding to Test Case 2 (Zigzag pattern with cable harnessing
along the y−direction)
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6.3.2 MAC Analysis

One of the best methods to quantitatively correlate the mode shapes obtained from exper-
iments and the analytical model is using the Modal Assurance Criterion (MAC) [92]. This
was also used in Chapter 4 for the correlation of the mode shapes. Recall, it is calculated
between different pairs of mode shapes obtained from both test and model; it results in the
value of 1 when the modes are similar and 0 when modes are completely non-correlated.
For the current study, the MAC analysis is conducted for the test cases 1 and 2 for which
experimental mode shapes were obtained. The MAC is presented in a three-dimensional
bar chart shown in Figs. 6.11 and 6.12 for the test case 1 and 2, respectively. Clearly, the
MAC values being close to one along the diagonal and close to zero among the off-diagonal
elements indicate a strong correlation between the model and test.
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Figure 6.11: Modal Assurance Criterion (MAC) analysis bar chart for the test case 1
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Figure 6.12: Modal Assurance Criterion (MAC) analysis bar chart for the test case 2

6.3.3 Cabled plate model and test FRFs for diagonal pattern

The FRFs obtained from the experiments on the diagonally wrapped cable-harnessed struc-
tures are presented in Figs. 6.13 and 6.14. The corresponding natural frequencies are listed
in Table 6.4. The FRFs corresponds to the cases 3 and 4 and shown for the four sets of
actuation and sensing locations presented in Table 6.2. In both the structures studied in
this case, the cable is wrapped along the x−axis direction but on different host plates and
with a different number of cable rows as shown previously in Table 6.1. The proposed
model for the diagonal pattern is able to well predict the cable dynamics effects and hence,
matches well with the test results for both the test structures.

As seen from Fig. 6.13 and Table 6.4, the natural frequencies of the modes 1, 3, and
5 show a large increase on harnessing cables, whereas the frequencies of modes 2 and 4
increase by only a small percentage. This is because the number of fundamental elements
and number of rows chosen for the diagonal pattern results in a small wrapping angle θ
with the x−axis. Similar to the case-1 of zigzag pattern, this results in the stiffening of
the modes that have dominant bending curvature in the x−direction. However, the %
increase in frequencies is different for both the patterns as discussed later in detail. For the
test case-3, the modes 1, 3, and 5 have a bending dominant curvature in the x−direction
(similar to modes shown for test case-1 in Fig. 6.9); hence, the cable stiffening effect is
higher for these modes.

Similar to the case 3, the natural frequency of the modes 1 and 3 of the test case 4 were
also observed to increase significantly owing to a similar reason as discussed in the previous
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Table 6.4: Natural frequencies of bare plate (BP) and cable-harnessed plate (CP) obtained
from model and test for test cases 3 and 4 corresponding to the diagonal pattern

Test case-3

Mode
Model-BP

(Hz)
Test-BP
(Hz)

% error in
model-BP

Model-CP
(Hz)

Test-CP
(Hz)

% error in
model-CP

Model
frequency
increase, %

Test
frequency
increase, %

1 24.79 24.75 0.16% 26.53 27.00 -1.75% 7.01% 9.09%
2 106.11 107.25 -1.06% 107.86 108.75 -0.82% 1.65% 1.40%
3 154.28 153.50 0.51% 165.42 164.25 0.71% 7.22% 7.00%
4 346.62 348.25 -0.47% 354.57 353.50 0.30% 2.29% 1.51%
5 433.14 431.00 0.50% 464.45 448.75 3.50% 7.23% 4.12%

Test case-4
1 25.28 24.75 2.13% 27.08 27.25 -0.62% 7.14% 10.10%
2 82.34 85.00 -3.13% 83.99 86.00 -2.33% 2.01% 1.18%
3 156.82 154.50 1.50% 168.31 166.25 1.24% 7.33% 7.61%
4 280.57 281.00 -0.15% 289.06 286.75 0.81% 3.03% 2.05%

paragraph. It is noticed that different modes undergo a different change in frequencies and
that depends on the mode shape as well as the pattern parameters. This was studied in
detail in Chapter 5. In this chapter, it is clearly witnessed that these dissimilar changes
of frequencies in different modes occur in experimental results as well and are a very close
match with the model prediction.
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Figure 6.13: FRF comparisons of cabled plate test, cabled plate model, and bare plate test
for test case 3 (diagonal pattern) for different sets of actuation and sensing locations
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Figure 6.14: FRF comparisons of cabled plate test, cabled plate model, and bare plate test
for test case 4 (diagonal pattern) for different sets of actuation and sensing locations
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6.4 Comparison between different cable attachment

patterns

Next, the change in system dynamics on harnessing cables in different patterns can be
discussed by comparing the test cases-1 and 3 as shown in Fig. 6.15. The former case has
the cables wrapped in the zigzag pattern, while the latter has wrapped in the diagonal
pattern with the same number of fundamental elements and rows. Also, the host plate in
both cases has similar dimensions that allow for a fair comparison. The model data of a
cabled plate with parallel cables (discussed in Chapter 4) is also plotted for the comparison
with the two wrapping patterns. The host plate for the parallel cabled plate is similar to
that to plate-3 with 5 rows of parallel cables attached parallel to the x−axis having same
geometric and material properties as the tested cases of wrapped structures.
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Figure 6.15: Comparison of % change in first five natural frequencies of cable-harnessed
plates with respect to the bare plate for test case-1 (zigzag), test case-3 (diagonal), and a
parallel cabled plate model

For the two wrapping patterns, the % increase in frequencies predicted by the model
matches well with the test results. For the diagonal pattern, it is seen that the increase in
frequencies on harnessing cables is significantly higher for the modes 1, 3, and 5 compared
to the zigzag pattern. This is because of the higher contribution of the cable stiffening
in the bending dominant modes in the x−direction due to the smaller wrapping angle of
the inclined cable segments (with respect to the x−axis) in the diagonal pattern. On the
other hand, the modes 2 and 4 show a higher frequency increase for the zigzag pattern.
Analytically, the cable stiffening terms present in the twist and coupled-bending stiffness
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(H4 +H13) are accountable for the higher natural frequencies in the zigzag pattern. These
added cable stiffness in these coefficients is directly proportional to the term (cos θ sin2 θ)
that exhibits a maximum at a wrapping angle of 54.7◦ as also shown in Fig. 5.5 discussed
in Chapter 5. For the pattern parameters considered in this study, the wrapping angle
of zigzag pattern and diagonal pattern is approximately 30.5◦ and 16.4◦, respectively, and
as a result, the added twist and coupled-bending stiffness due to the cables is higher for
the zigzag pattern. A detailed discussion and analysis of the model corresponding to test
cases 1 and 3 was done in Chapter 5, whereas the present chapter validates the model
predictions.

The first five mode shapes for the parallel cabled plate were also found to be same
as the wrapped cabled plates considered in case-1 and case-3. Compared to the wrapped
patterns, the parallel cabled plate shows the highest % change in bending frequencies in
the x−direction. This happens because the cables are aligned along the x−axis for the
parallel cabled plate and hence, for similar number of rows, the added cable stiffening effect
is maximum; in case of the wrapped patterns, the added stiffening is due to the projection
of stiffness of inclined cable segments in the x−axis and hence, it is lower compared to
the parallel cabled plate. For the twist dominant mode, the cable attachment has almost
no effect on the natural frequency as was also observed in Chapter 4. This is because the
cable stiffening effects in this mode only becomes higher when the cable is at an angle with
the plate’s edge.

Figure 6.15 can also be analyzed with a design perspective for wrapping cables on a
plate-like structure. The length of the wrapped cable in each row is fairly similar for both
the patterns for a similar number of fundamental elements. In the cases 1 and 3, these
lengths are 0.24 m and 0.27 m, respectively for a cable row. Hence, for a given cable length,
one can select a pattern such that either specific vibration modes can be highly stiffened
or all the structural modes in a broad range of frequency can be moderately stiffened. On
the other hand, the designer can also choose an optimal cable pattern such that there is
least impact on the system dynamics of the host structure. And, in the best case scenario,
the cable modeling can be completely ignored in a structure wrapped with cables in such
optimal pattern.
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6.5 Comparison of change in system dynamics for a

special case

An interesting observation is made when the test cases 3 and 4 corresponding to the
diagonal pattern are compared. In both these cases, although the host plate dimensions
are different, the size of the fundamental element in the cabled plates is approximately the
same. Further, on a closer inspection of % increase in frequency (on cable attachment)
from Table 6.4, it can be seen that certain modes have similar shift when the two tests
are compared. This motivated me to conduct some simulations in which the dimensions of
host plate were varied while those of fundamental elements were kept fixed.

Four different host plates were used with dimensions listed in Table 6.5, all of them
with thickness 1.2 mm and made of aluminum-6061 alloy. The natural frequencies of
the bare plate was calculated for a CFFF boundary and was classified according to their
mode shape. Next, the natural frequencies of the cabled plate (with the diagonal pattern)
corresponding to these host plates were calculated with the pattern parameters shown in
Table 6.5. The same properties of the Power Pro cables were used to model the cable. It
should be noted that for all the cases listed in Table 6.5, the dimensions of the fundamental
elements would be 6.67 cm x 2 cm.

Figure 6.16: Comparison of the % change in natural frequencies for host plate with different
dimensions (shown in Table 6.5) but with similar dimensions of the fundamental element
of the diagonal pattern
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The % change in natural frequencies are presented in Fig. 6.16 for the first three dom-
inant bending modes in the x−direction (BMX-1—BMX-3), first bending dominant mode
in the y−direction (BMY-1), 1st twist dominant mode (TM-1), and 1st coupled bending
dominant mode (CB-1). It is interesting to note that the % change in bending modes
(both with dominant curvature in the x and y direction) frequencies is insensitive of the
host plate parameters when the fundamental element dimensions are held constant. On
the other hand, the twist and coupled-bending mode frequency increases as the aspect
ratio (a/b) of the host plate is decreased.

Table 6.5: Host plate and diagonal pattern parameters considered for simulations of a
special case

S. No. Length (a) Width (b) Diagonal pattern
Fundamental

elements
Rows

1 20 cm 10 cm 3 5
2 20 cm 14 cm 3 7
3 20 cm 20 cm 3 10
4 20 cm 30 cm 3 15

6.6 Comparison between cable-harnessed beam-like

and plate-like models

Finally, it is worth discussing the importance of the proposed cable-harnessed plate model
over the previously established work on the cable-harnessed beam model [31] that con-
siders the host structures as a one-dimensional beam-like structure. Hence, simplified
assumptions are made for the periodic structures in this study to implement beam theory
assumptions to obtain the FRFs when they are modeled as beam specimens. The math-
ematical modeling technique developed in [31] is used for plotting the FRFs obtained by
dividing each plate into beam segments along the x−direction and comparing it with those
obtained from the model proposed in this paper.

Figures 6.17 and 6.18 show the comparison of the cabled beam model with the test and
model results of the cabled plate for both the zigzag and diagonal patterns, respectively.
The results are shown for one set of actuation and sensing locations referred to as set I in
Table 6.2. Clearly, the cabled beam FRF is unable to predict all the natural frequencies
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Figure 6.17: FRF comparison with an equivalent cabled beam model for the zigzag pattern
corresponding to (a) test case 1, and (b) test case 2, for set I of sensing and actuation
location
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Figure 6.18: FRF comparison with an equivalent cabled beam model for the zigzag pattern
corresponding to (a)test case 3, and (b) test case 4, for set I of sensing and actuation
location
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in the range of interest. This is primarily because of the absence of the variation of
displacement along the y−axis in the homogenized beam model. Whereas, the current
model, which is based on the plate theory assumptions, is able to predict the accurate
dynamics. In Fig. 6.17(a), the modes 1, 3, and 5 have dominant bending curvature in the
x−direction and hence are predicted well by the beam model, but the other two modes
that are responsible for twist and coupled-bending behavior are missed.

Similarly, the modes in Fig. 6.17(b) that corresponds to the dominant bending curva-
ture in y−direction, along with the twist and coupled-bending modes are not predicted.
Likewise, for the diagonal patterns structures shown in Fig. 6.18, the cabled beam model
fails to predict the vibration modes that have transverse displacements varying along the
y−direction. Additionally, the cabled beam model also fails to predict the important anti-
resonance frequencies that are well predicted by the proposed model for the FRF of both
the wrapping patterns.

6.7 Summary of the chapter

In this chapter, experimental validation of the analytical model developed for the cable-
harnessed plate-like structures in Chapter 5 was conducted successfully. These structures
consist of homogeneous and isotropic rectangular host plates that are harnessed with cables
in the periodic wrapping patterns. The natural frequencies, mode shapes, and frequency
response functions were obtained for four test cases of cable-harnessed and host plate struc-
tures using the experimental modal testing. It was found that harnessing cables on the
plate structure significantly impacts the frequency of the natural vibration modes. Also,
different vibration modes exhibit a different change in natural frequency with respect to
the corresponding bare plate mode depending on the mode shape. One interesting obser-
vation was regarding the insensitivity of normalized frequency difference of the bending
dominant modes when the host plate dimensions are changed but the fundamental element
dimensions were held constant for the diagonal pattern; the torsional and coupled-bending
modes were however found sensitive. Finally, a comparison with an existing cabled beam
model exhibited the novelty of the proposed model. These observations would increase
researcher’s confidence in modeling these cable-harnessed plate-like structures and further
complex structures that include but is not limited to the non-periodic cable wrapping
patterns on the plate structures. In addition, this model can also be used for optimizing
the cable harness patterns such that the cables play a minimal role in altering the system
dynamics of the host structure.
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Chapter 7

Stability Analysis of the Analytical
Models Developed for
Cable-Harnessed Plate Structures

The major contribution of the current research includes the development of analytical
models for the cable-harnessed plate structures. The models have been presented for
cables attached to the host plate in parallel configuration in Chapter 4, and for cabled
wrapping in a periodic pattern in Chapter 5. Although, the experimental validation was
done for these proposed models, it is necessary to study the stability of the system through
the obtained governing differential equations. Hence, in this chapter, the stability analysis
of the cable-harnessed plate structures with all the attachment patterns is discussed. The
work presented in this chapter has been discussed in the manuscripts [87, 93] submitted in
the ASME Journal of Vibration and Acoustics.

The chapter is organized as follows: firstly, the stability of the cable-harnessed plate
with parallel configuration is discussed. The conditions on the coefficients of the PDE are
obtained that ensures the stability of the system and then, those conditions are discussed
for cable attached along either x or y axis. In the subsequent section, the stability con-
ditions are obtained for the coefficients of the PDEs of the cabled plate with zigzag and
diagonal pattern. A proof of those conditions being satisfied by the PDE coefficients is
then presented.
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7.1 Parallel Cable-Harnessed Plates

In this section, the stability of the governing equation of motion of the parallel cabled plate
presented in Eq. 4.22 is discussed. Because of the similar form of PDE with the specially
orthotropic laminated plate, the stability conditions are first obtained for its coefficients.
These conditions are then discussed for the PDE coefficients of the parallel cable-harnessed
plate system.

7.1.1 Constraints on the coefficients of the PDE of a specially
orthotropic laminated plate

The developed equation of motion for parallel cabled plate can be re-written from Eq. 4.22
as

D11w,xxxx +2 (D12 + 2D66)w,xxyy +D22w,yyyy +K1w,tt = 0 (7.1)

where the coefficients can be expanded in terms of system parameters as

D11 =

[
D +

Ec Ac z
2
c

L2

+
Tz2

c

L2

− Nxh
2

12

]
,

D22 = D,

D66 =

(
1

2

)[
D (1− ν)− Nxh

2

24

]
,

D12 = νD,

K1 = ρph+ ρcAc/L2.

(7.2)

Recall, that the Eq. 7.1 was compared to that of a specially orthotropic laminated
plate, the governing equation of which was shown in Eq. 1.11 and was written as

Do
11

∂4w(x, y, t)

∂x4
+2(Do

12 +2Do
66)
∂4w(x, y, t)

∂x2∂y2
+Do

22

∂4w(x, y, t)

∂y4
+ρopho

∂2w(x, y, t)

∂t2
= 0 (7.3)

For a specially orthotropic laminated plate, the PDE coefficients corresponding to the
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Figure 7.1: Schematic showing natural body axis (x-y) and material axis (1-2). Image
courtesy: Jones [3]

stiffness can be written in terms of engineering constants and the plate thickness as [3]

Do
11 =

E1h
3
o

12 (1− ν12ν21)

Do
22 =

E2h
3
o

12 (1− ν12ν21)

Do
66 =

G12h
3
o

12

Do
12 =

ν12E2h
3
o

12 (1− ν12ν21)
=

ν21E1h
3
o

12 (1− ν12ν21)

(7.4)

where Do
ij represents the coefficients of the PDE of specially orthotropic plate consisting

of a single lamina of thickness ho, E1, E2 represents Young’s moduli along the perpendicular
material axis in the plane 1− 2. G12 represents the shear modulus in the plane 1− 2. The
difference between the material and geometry axis is shown in Fig. 7.1. It should be noted
that for the specially orthotropic material, the material axis coincides with the geometry
axis. Further, νij represents the Poisson’s ratio defined as the ratio of the negative of the
strain in the j−direction to the strain in the i−direction, when the stress is applied in the
i−direction.

In order to develop mathematical stability conditions for this PDE, firstly, the positive-
definiteness of the stiffness matrix is used to obtain the following conditions on elastic and
shear moduli [3]:

E1 > 0, E2 > 0, G12 > 0 (7.5)
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Similarly, the constraints on the Poisson’s ratio are obtained as [3]

(1− ν12ν21) > 0, |ν21| <
√
E2/E1, |ν12| <

√
E1/E2 (7.6)

Using Eqs. 7.5 and 7.6, the following relations can be obtained for the coefficients of
the specially orthotropic plate listed in Eq. 7.4

Do
11 > 0, Do

22 > 0, Do
66 > 0, (Do

12)2 < Do
11D

o
22 (7.7)

These conditions are sufficient to prove the stability of the PDE of a specially orthotropic
laminated plate written in Eq. 7.3. Now, since the form of PDE is similar for a spe-
cially orthotropic laminated plate and parallel cable-harnessed plate, similar conditions
are required to be fulfilled by the coefficients of the PDE written in Eq. 7.1.

D11 > 0, D22 > 0, (D12)2 < D11D22, D66 > 0 (7.8)

7.1.2 Discussion on the coefficients of cable-harnessed plates sat-
isfying the stability conditions

In this section, the conditions listed in Eq. 7.8 are discussed, which are related to the
stability of the parallel cabled plate system.

1. D11 > 0

The first condition in Eq. 7.8 is shown to hold true for all the possible values of
system parameters. Using Eq. 7.2, the coefficient D11 can be expanded as

D11 =

[
D +

EcAcz
2
c

L2

+
Tz2

c

L2

− Nxh
2

12

]
(7.9)

where
(
D + EcAcz2

c

L2

)
is always positive because both the terms in the parenthesis

are always positive. Moreover, the term
(
Tz2

c

L2
− Nxh2

12

)
=
(
Th2

4L2
− Th2

12L2

)
= Th2

6L2
also

remains positive. Here, the value of Nx was used from Eq. 4.12.

Hence, the condition D11 > 0 always holds.

2. D22 > 0

The second condition in Eq. 7.8 also holds true because, D22 = D is always positive.

218



3. (D12)2 < D11D22

Substituting the values of the coefficients from Eq. 7.2 on both the sides and ana-
lyzing them separately:

D11D22 =

[
D +

Ec Ac z
2
c

L2

+
Tz2

c

L2

− Nxh
2

12

]
D

= D2 +D

[
Ec Ac z

2
c

L2

+
Tz2

c

L2

− Nxh
2

12

]
> D2

because D

[
Ec Ac z

2
c

L2

+
Tz2

c

L2

− Nxh
2

12

]
> 0

(7.10)

Moreover, the left hand side of the conditions can be written as

D2
12 =

(
ν2D2

)
< D2 (7.11)

because ν2 < 1 holds true for all the isotropic materials. Clearly, D2
12 < D2 andD11D22 >

D2 proves that the third condition always holds.

4. D66 > 0

For the coefficient D66 =
(

1
2

) [
D (1− ν)− Nxh2

24

]
> 0 to hold true, the first term

D(1 − ν), which is always positive, should always be greater than Nxh
2/24. Hence,

the condition Nx < 2Eph/(1 + ν) should always be true for stability. To obtain
the upper bound on Nx, the maximum value of cable tension must be calculated
to ensure the stability of the system. To calculate the maximum value of cable
tension, two types of cable attachment patterns are considered: (a) Cables attached
perpendicular to the clamped edge, (b) Cables attached parallel to the clamped edge,
as also considered in Chapter 4 for experimental purpose. Although in both these
cases, the x−axis is assumed to be along the direction of the cable attachment for
the modeling purpose.

(a) Cables attached perpendicular to the clamped edge

The compressive loading on the plate is perpendicular to the direction of the
clamped edge. In this case, the maximum value of cable tension can be re-
stricted by the critical buckling load of a cantilevered plate under a uniformly
distributed compressive loading perpendicular to the clamped edge. This can
be approximated by the critical buckling load of a cantilevered beam as:

Pcr =
π2Ep
4a2

(
bh3

12

)
(7.12)
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Since the total compressive force exerted by the cables on the plate is nT , where
n represents the number of cables, the critical tension becomes Tcr = Pcr/n.
Therefore, the maximum value of Nx can be written as

(Nx)cr =
1

nL2

π2Ep
4a2

(
bh3

12

)
(7.13)

Substituting the maximum value of Nx in the expression of D66, we get

D66 ≥
1

2

[
D (1− ν)− h2

24

(
1

nL2

)
π2Ep
4a2

(
bh3

12

)]
(7.14)

This can be further simplified and written as:

D66 ≥
Eph

3

24

[
1

1 + ν
− 0.102

(
h

a

)2
]

(7.15)

Since, for the thin plates, h� a, the condition D66 > 0 holds true for isotropic
host plate materials as seen from Eq. 7.15.

(b) Cables attached parallel to the clamped edge

The distributed compressive load now acts parallel to the clamped edge on
the opposite free edges. The maximum value of Nx can be obtained using
formulation of critical buckling load presented in [95] as

(Nx)cr = D/a2
(
207.6 + 2.03k4 − 19.08k2 − 167.08ν − 3.79νk2 + 34.193ν2

)
(7.16)

where k = a/b is the plate’s aspect ratio. Further, if it is assumed that ν = 0.33,
the above expression can be simplified as

(Nx)cr =
D

a2

(
155.85− 20.34 k2 + 2.03 k4

)
(7.17)

Now, on analyzing D66 =
(

1
2

) [
D (1− ν)− Nxh2

24

]
, it can be seen that D(1−ν) is

independent of dimensions a and b. However, the maximum value of allowable
Nx to avoid buckling depends on both a and b as shown in Eq. 7.16 and has
a biquadratic dependency on the aspect ratio (a/b). Hence, it increases upon
either increasing or decreasing the aspect ratio about its minimum point. As
a result, for cases with very small or large aspect ratios, the critical load limit
will increase tremendously leading in the term Nxh

2/24 increasing and resulting
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in negative D66 values for large tension loads. The coefficient D66 is equivalent
to the in-plane shear modulus dependent term in a specially orthotropic plate
and it being negative will result in an unstable condition. As an example, this
condition can happen for a plate with a very high aspect ratio with the longer
edge clamped and cables running parallel to the clamp edge.

Now one reasonable question is that if the tension remains below the critical
buckling then what will be the source of instability in the system arising from the
negative D66. The kind of instability happening in this case pertains to a form of
a torsional instability. This is also evident as the D66 coefficient is equivalent to
the shear modulus in a specially orthotropic plate which is related to the torsion.
Therefore, the torsional instability occurs prior to reaching critical buckling and
both conditions from Eq. 7.16 and D66 remaining positive should be used in
practice to create a stable system when considering the allowable tension values.
Hence, the maximum tension should be applied using the following formulation:

Tmax < min (T1, T2),where

T1 =
Db

a2n

(
207.6 + 2.03k4 − 19.08k2 − 167.08ν − 3.79νk2 + 34.193ν2

)
T2 =

(
2Epbh

n (1 + ν)

)
(7.18)

Regarding the stability, one can also examine the twist strain energy of the plate
as follows:

Utwist =

∫ a

0

∫ b

0

[{
−Nxh

2

24
+D (1− ν)

}
w,2xy

]
dx dy (7.19)

The term within curly brackets shown in Eq. 7.19 starts to become negative
for large tension values due to the Nx term. As a result, the system will have a
negative torsional stiffness which will lead to a torsional instability. It should be

noted that the term
(
−Nxh2

24
w,2xy

)
originates from considering the second-order

strain-displacement relation.

To summarize, the first three conditions shown in Eq. 7.8 were found to always hold.
However, care must be taken while choosing the tension values for very large or very small
aspect ratio plates such that the fourth stability condition also holds. The maximum cable
tension to ensure that this condition also holds is shown in Eq. 7.18.
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7.2 Periodically Wrapped Cable-Harnessed Plates

In this section, emphasis is given to the stability of the PDEs obtained for the periodically
wrapped cabled plates in Chapter 5. The governing equation of motion presented in Eq.
5.36 was obtained for both, zigzag and diagonal pattern. With the coefficients H10 and
H11 vanishing for the zigzag pattern, it was discussed that the form of PDE was similar to
that of the parallel cabled plate. Hence, the stability conditions developed for the parallel
cabled plate can be used for the zigzag cabled plate, however, the stability conditions for
the diagonal pattern are derived further in this section due to a new form of PDE.

7.2.1 Stability of the PDE for the zigzag pattern

Since the PDE for the zigzag pattern is similar in form to a specially orthotropic laminate
(or the parallel cabled plate), the following conditions on the coefficients of the PDE
ascertain the stability in the system:

H2 > 0, H3 > 0, H4 > 0, H2
13 < 4H2H3 (7.20)

These conditions are similar to those obtained for the parallel cabled plate in Eq. 7.8.
In order to prove the cable-harnessed plate model with zigzag pattern is stable, the four
conditions listed in Eq. 7.20 need to be satisfied by the system parameters.

Proof of stability conditions for the zigzag pattern

1. H2 > 0

This coefficient can be written from appendix section B.2.1 as:

H2 = D +
EcAcz

2
c cos3 θ

L2

+
Tz2

c cos θ

L2

+
Nxh

2

24
(7.21)

Since zc = h
2

and Nx = −n T cos θ
b

= −T cos θ
L2

, the expression of H2 can be simplified
and written as

H2 = D +
EcAch

2 cos3 θ

4 L2

+
5

24

Th2 cos θ

L2

(7.22)

All the parameters listed in this equation is greater than zero and hence, H2 > 0.

2. H3 > 0
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Using section B.2.1, the coefficient H3 is expanded as:

H3 = D +
EcAcz

2
c sin4 θ

L2 cos θ
+
Tz2

c sin2 θ

L2 cos θ
+
Nyh

2

24
(7.23)

Since zc = h
2

and Ny = −2mT sin θ
a

= −2T sin θ
L1

, the expression of H3 can be simplified
and written as

H3 = D +
EcAch

2 sin3 θ

4L2

+
Th2 sin θ

2L1

− Th2 sin θ

12L1

(7.24)

In writing the above expression, the relation tan θ = 2L2/L1 is used. H3 > 0 is
obvious from this equation.

3. H4 > 0

Expansion of H4 using section B.2.1 results in

H4 = 2D (1− ν) +
4EcAcz

2
c cos θ sin2 θ

L2

+
Tz2

c

L2 cos θ
+
Nxh

2

24
+
Nyh

2

24
(7.25)

Substituting the values of Nx and Ny in this equation, it can be simplified as

H4 = 2D (1− ν) +
EcAch

2 cos θ sin2 θ

L2

+
Th2

4 L2

(
1

cos θ
− cos θ

3

)
(7.26)

Since θ ∈ (0, π/2) and ν < 0.5, the condition H4 > 0 would always hold.

4. H2
13 < 4H2H3

On substituting the values of H2, H3, and H13 from section B.2.1 by moving all the
terms on the right-hand side (RHS), and ignoring the higher-order terms that are
originated due to considering the second-order strain displacement relation, we get:

4H2H3 −H2
13 = 4D2

(
1− ν2

)
+

4DEcAcz
2
c

L2

(
cos3 θ + sin3 θ tan θ − 2ν cos θ sin2 θ

)
(7.27)

In this equation, the first term of the RHS is always positive and the term outside the
parenthesis of the second terms is also always positive. To prove that 4H2H3−H2

13 > 0
always hold, it has to be proven that

Υ = cos3 θ + sin3 θ tan θ − 2ν cos θ sin2 θ > 0 (7.28)
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This expression can be written as

Υ = cos3 θ
{(

1 + tan2 θ
)2 − 2 (1 + ν) tan2 θ

}
(7.29)

The minimum value of Υ would be attained when ν = 0.5. Hence,

Υmin = cos3 θ
{(

1 + tan2 θ
)2 − 3 tan2 θ

}
(7.30)

Since (1 + tan2 θ)
2 − 3 tan2 θ can be written as (1− tan2 θ)

2
+ tan2 θ, it is clear that

Υmin > 0 for θ ∈ (0, π/2). This implies the condition 4H2H3−H2
13 > 0 holds for the

zigzag pattern.

In summary, all the four conditions required to prove the stability of the PDE for
the zigzag pattern are satisfied and hence, the analytical model developed for the zigzag
pattern is always stable.

7.2.2 Stability of the PDE for the diagonal pattern

In the case of diagonal pattern, due to the presence of the additional terms corresponding
to H10 and H11 in the equation of motion (Eq. 5.36), the stability conditions mentioned
in the previous section for zigzag pattern can not be used. Therefore, for the diagonal
pattern, the stability conditions are firstly derived and then it is proven that the PDE
coefficients satisfy those conditions.

Derivations of stability conditions for the diagonal pattern

To obtain the stability conditions of the homogenized model for the cable-harnessed
plate with a diagonal pattern, the positive-definiteness of the stiffness matrix is used. The
strain energy corresponding to the equation of motion (Eq. 5.36) for the diagonal pattern
can also be written in the form:

Usys,diag =
1

2

∫ a

0

∫ b

0

XTKdiagX dxdy (7.31)

where X = {w,xx w,yy w,xy }T and the stiffness matrix is written as

Kdiag =

 H2 H13/2 H10/2
H13/2 H3 H11/2
H10/2 H11/2 H4

 (7.32)
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The positive definiteness of this matrix ensures the stability of the system. This im-
plies that all three eigenvalues of this matrix should be positive real numbers. Since the
eigenvalues of a symmetric matrix are always real, the conditions need to be obtained such
that the eigenvalues are positive. To do so, the characteristic cubic equation in terms of
eigenvalue λ is obtained using |Kdiag − λ I| = 0, where |•| denotes the determinant of the
matrix within it, and I denotes the identity matrix. The characteristic equation is obtained
as

fd (λ) = λ3 + Adλ
2 +Bdλ+ Cd = 0 (7.33)

where

Ad = −(H2 +H3 +H4),

Bd = −1

4

(
H2

10 +H2
11 +H2

13

)
+H2H3 +H2H4 +H3H4, and

Cd = −H2H3H4 −
1

4
H10H11H13 +

1

4

(
H2

11H2 +H2
10H3 +H2

13H4

)
.

(7.34)

The conditions for the cubic equation shown in Eq. 7.33 to have positive roots are:

1. The roots of the equation ∂fd(λ)
∂λ

= 0 should be positive, and

2. fd (0) should be negative.

These conditions can be interpreted graphically by plotting a general cubic equation
plot (with leading coefficient as 1) and analyzing the λ’s at zero slopes along with the
y−axis intercept of the plot. Additionally, these conditions hold for different cases of
positive roots: all roots are discrete, two repeated roots, three repeated roots as shown in
Fig. 7.2. The condition 1 can be further broken down into two conditions to simplify the
calculations: the sum of the roots and the product of the roots of the quadratic equation,
∂fd(λ)
∂λ

= 0 should be positive. These conditions along with the condition 2 can be written
in terms of the PDE coefficients as

H2 +H3 +H4 > 0,

H2
10 +H2

11 +H2
13 < 4 (H2H3 +H2H4 +H3H4) , and

4H2H3H4 +H10H11H13 > H2
11H2 +H2

10H3 +H2
13H4

(7.35)
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(a) (b)

(c) (d)

Figure 7.2: Four possible sample cases of cubic polynomials with positive real roots

These are the three stability conditions that needs to be satisfied by the coefficients
of the PDE corresponding to the diagonal pattern. The proofs for each condition holding
true are outlined as follows:

Proof of stability conditions for diagonal pattern

1. H2 +H3 +H4 > 0

In order to prove this condition, the coefficients, H2, H3, and H4 are substituted
from appendix section B.2.2 for the diagonal pattern. Substituting zc = h/2 and
the values of Nx and Ny from Eq. 5.21, one can easily proove H2 > 0, H3 > 0 and
H4 > 0 similar to that done for the zigzag pattern done in the previous section. This
proves the first condition.

2. H2
10 +H2

11 +H2
13 < 4 (H2H3 +H2H4 +H3H4)

Substituting the coefficients from appendix section B.2.2 in terms of the system
parameters and after taking all the terms on the right hand side, the second condition
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can be expanded as

4 (H2H3 +H2H4 +H3H4)−
(
H2

10 +H2
11 +H2

13

)
= D2

(
20− 16ν − 4ν2

)
+
AcDEcz

2
c

L1

(
12− 8ν2

)
+

4A2
cE

2
c z

4
c cos3 θ

L1L2

+
AcDEcz

2
c cos3 θ

L2

(12− 8ν) +
16A2

cE
2
c z

4
c cos θ sin2 θ

L1L2

+
AcDEcz

2
c cos θ sin2 θ

L2

(32− 8ν) +
AcDEcz

2
c sin3 θ

L1

(12− 8ν)

+
4A2

cE
2
c z

4
c cos3 θ sin3 θ

L1L2

+
16A2

cE
2
c z

4
c cos θ sin5 θ

L1L2

− 4A2
cE

2
c z

4
c cos2 θ sin4 θ

L2
2

− 16A2
cE

2
c z

4
c sin6 θ

L2
2

(7.36)

During the simplification of Eq. 7.36, the terms originating from higher-order terms
of strain-displacement relation are ignored because of their small magnitude. Using
tan θ = L2/L1, the last four terms of this equation vanishes on simplification. The
remaining terms of this equation are positive provided θ ∈ (0, π/2) and ν < 0.5. This
proves that the PDE coefficients for the diagonal pattern satisfies the second stability
condition

3. 4H2H3H4 +H10H11H13 > H2
11H2 +H2

10H3 +H2
13H4

Similar to the previous condition, substituting the coefficients in terms of system
parameters from appendix section B.2.2 and taking all the terms on the left-hand
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side, the condition can be written as

4H2H3H4 +H10H11H13 −
(
H2

11H2 +H2
10H3 +H2

13H4

)
= 8D3 (1− ν)

(
1− ν2

)
+

8AcD
2Ecz

2
c

L1

(1− ν)

+
8AcD

2Ecz
2
c

L2

(1− ν) cos3 θ +
8A2

cDE
2
c z

4
c

L1L2

(1− ν) cos3 θ

+
16AcD

2Ecz
2
c

L2

(1− ν) cos θ sin2 θ +
16A2

cDE
2
c z

4
c

L1L2

cos θ sin2 θ

+
8AcD

2Ecz
2
c sin3 θ

L1

(1− ν) +
8A2

cDE
2
c z

4
c

L1L2

cos3 θ sin3 θ (1− ν)

− 8A2
cDE

2
c z

4
c

L2
2

cos2 θ sin4 θ (1− ν) +
16A2

cDE
2
c z

4
c

L1L2

cos θ sin5 θ

− 16A2
cDE

2
c z

4
c

L2
2

sin6 θ (7.37)

The terms originating from higher-order terms of strain-displacement relation are
ignored during the simplification of this equation. Also, the last four terms of this
equation vanish on simplification. The remaining terms are positive since θ ∈ (0, π/2)
and ν < 0.5. This proves the third stability condition.

Hence, for the coefficients of the cable-harnessed plate with the diagonal pattern, all the
three stability conditions are satisfied and the system model is found stable.

7.3 Summary of the chapter

In this chapter, the stability of the analytical models developed for the cable-harnessed
plate structures in Chapters 4 and 5 was discussed. When the system is unstable, the
response of that system can be very high (theoretically infinite) upon giving a small finite
input. Hence, it is important that the system remains stable under operating conditions.

The analytical model for cable-harnessed structure with parallel cable configuration
was found to be generally stable, however, care should be taken when the cable tension is
chosen. This is because, when the plate aspect ratios were chosen to be either very large
or very small, the system is found to become unstable at extremely high tension values
due to the occurrence of torsional instability. Additionally, for the zigzag and diagonally
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wrapped cable-harnessed structures, the system was found stable. In contrast to parallel
cabled-plates, the torsional instability did not occur in these systems due to the presence
of the cable inclined segments which increases the twisting stiffness of the structure and
avoids the instability.
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Chapter 8

Preliminary Study on
Cable-Harnessed Cylindrical Shells

In this thesis, so far, the research work focused on the accurate model development of
cable-harnessed systems that have either beams or plates as host structures. The plate
structure, although more complicated, but due to the presence of an additional dimension,
was able to provide better insights into the dynamics of the system compared to the host
beam structure. This further motivates us to look into other host structures that are more
practical and provides further insights into the dynamics of cable-harnessed systems which
have not been studied before. One such practical structure which is considered as a host
in this chapter is a thin cylindrical shell structure. Cylindrical shells are the principal
structural elements of various marine and airborne structures. For example, the fuselage
of an aircraft can be roughly modeled as a cylindrical structure. Similarly, the submarines
are also generally in the shape of a cylindrical shell. As per the author’s knowledge, no
published works are present in the literature on developing the models of cable-harnessed
shells.

The objective of this chapter is to propose the analytical models for cable-harnessed
cylindrical shells using the shell theory developed for analyzing thin closed cylindrical
shells. In this chapter, the preliminaries of the shell theories are first presented. Further,
the cable-harnessed shell is modeled by assuming the cables to be attached parallel to the
axis of the cylinder along its length. For the purpose of obtaining an analytical model,
multiple cables are attached that are equidistant. The host cylindrical shell is modeled
using Donnell-Mustari Shell theory. This chapter is an additional extension of the research
work proposed during the PhD comprehensive exam. Hence, the discussion of the proposed
model has been limited to comparing the natural frequencies with ANSYS. A more detailed
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analysis and experimental validation of the proposed model can be carried out as a future
work.

8.1 Preliminaries of the thin shell theory

A shell is defined as a three-dimensional body that is bounded by two closely spaced
surfaces. For the thin shells, the distance between the two surfaces is very small compared
to the other dimensions. A shell can be regarded as generalization of a flat plate that can
has a curvature; in other words, a flat plate is a special case of a shell with no curvature.

There are several shell theories which have been proposed in the literature. Differences
in these theories arise from slight simplifying assumptions that lead to different governing
equations. Some of the common shell theories that are studied in the literature are obtained
from Love’s Postulates (discussed later) and are attributed to Donnell [96], Mushtari [97],
Love [98], Timoshenko [89], Reissner [99], Naghdi and Berry [100], Vlasov [101], Sanders
[102], Flugge [103], Goldenveizer [104]. Some of these theories are dependent on each other
and hence, certain equations are common between them. In the present study, the theories
presented by Donnell-Mushtari are considered, mainly for its simpler formulation. At
certain stages, the comparison of this theory has been made with a more accurate Flugge
theory, which can be considered in the future for a more accurate model development.

The detailed derivations of the governing equations using the above mentioned theories
have been very well explained in a monologue by Leissa [4]. In this work, the shell theory
is first derived for a general coordinate system, which can be used for shell of any shape
(conical, cylindrical, spherical, etc.). Since the focus of the current work is based on the
cylindrical shells, some basics are presented in the following sections.

8.1.1 Equation of motion of a cylindrical shell

The classical shell theory through which the governing equations of motion of cylindrical
shell are derived are based on the following assumptions (also known as Love’s Postulates
[98]):

1. The thickness of the shell is small compared to the other dimensions.

2. The displacements and strains are very small. Mathematically, the higher-order
magnitude in the strain-displacement relations may be neglected compared to the
first-order terms.
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Figure 8.1: Closed circular cylindrical shell and coordinate axis. Image courtesy: Leissa
[4]

3. The transverse normal stress (in the thickness direction) is small compared to the
other normal stresses and may be neglected.

4. The shearing and warping of the cross section is neglected during the vibrations.
This means that the normals to the undeformed middle surface remain straight and
normal to the deformed middle surface and suffer no extension.

A schematic of a cylindrical shell is shown in Fig. 8.1 with the coordinates x and θ.
Note that the variable, θ, used in this chapter is corresponding to the cylindrical coordinate
system, and is different from the wrapping angle used in previous chapters. The length
coordinate x is replaced by a non-dimensionless length defined by

s = x/R (8.1)

where R is the cylindrical radius.

The equation of motion of the cylindrical shell can be expressed in a matrix form [4] as

[L] {ui} = {0} (8.2)

where [L] is a matrix differential operator defined differently for various shell theories, and
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{ui} is the displacement vector written as

{ui} =


u
v
w

 (8.3)

In this equation, u, v, and w are the orthogonal component in axial, circumferential, and
radial directions, respectively, as also shown in Fig. 8.1.

Commonly, the vibrations of circular cylinders are modeled using eighth order differ-
ential equation. In Eq. 8.2, the operator [L] can be treated as sum of two operators

[L] = [LD−M ] + k [LMOD] (8.4)

where [LD−M ] is the differential operator according to the Donnell-Mushtari (DM) theory
and [LMOD] is a ‘modifying’ operator which alters DM theory to yield another shell theory.
Also, k is a dimensionless constant defined by

k =
h2

12R2
(8.5)

where h is the shell thickness. Therefore, each eighth order shell theory differs from DM
theory by an operator [LMOD] which is multiplied by a constant k, which is very small for
low thickness to radius ratio.

The [L] operator for the DM theory takes the form [4]:

[LDM ] =


∂2

∂s2
+ (1−ν)

2
∂2

∂θ2 −
ρ(1−ν2)

E
R2 ∂2

∂t2
1+ν

2
∂2

∂s∂θ
ν ∂

∂s

1+ν
2

∂2

∂s∂θ
1−ν

2
∂2

∂s2
+ ∂2

∂θ2 −
ρ(1−ν2)

E
R2 ∂2

∂t2
∂
∂θ

ν ∂
∂s

∂
∂θ

1 + k∇4 +
ρ(1−ν2)

E
R2 ∂2

∂t2


(8.6)

where ∇4 = ∇2∇2 and ∇2 = ∂2

∂s2
+ ∂2

∂θ2 . E is the shell’s Young’s modulus, ν is Poisson’s
ratio and ρ is the shell’s mass density. Clearly, using Eqs. 8.6 and 8.2, three coupled
equations of motion can be obtained which govern the motion in axial, circumferential and
radial directions. Similarly, [LMOD] can be written for various cylindrical shell theories,
refer [4]. The modifying operator for Flugge shell theory can be written as

[LMOD] =

 (1−ν)
2

∂2

∂θ2 0 − ∂3

∂s3
+ (1−ν)

2
∂3

∂s ∂θ2

0 3 (1−ν)
2

∂2

∂s2
− (3−ν)

2
∂3

∂s2 ∂θ

− ∂3

∂s3
+ 1−ν

2
∂3

∂s ∂θ2 − (3−ν)
2

∂3

∂s2 ∂θ
1 + 2 ∂2

∂θ2

 (8.7)
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8.1.2 Energy formulation

In order to develop the governing equations of motion for a cable-harnessed structure, it is
necessary to obtain the strain and kinetic energy of the thin cylindrical shell. Using these
energy expressions, Hamilton’s principle can be applied to obtain the governing equations
of motion.
Strain Energy

Assuming the general shell coordinates to be α and β, where for cylindrical coordinates
α = s, and β = θ, the strain energy expression can be written as

U =

∫
V

(σαeα + σβeβ + σαβeαβ) dV (8.8)

where σα and σβ represent normal stress in α and β directions, respectively, and eα and
eβ represent the normal strain in α and β directions, respectively. Also, the terms with
subscripts αβ represents the shear counterparts. The stress-strain relationships are further
written as

σα =
E

1− ν2
(eα + νeβ)

σβ =
E

1− ν2
(eβ + νeα)

σαβ =
E

2 (1 + ν)
γαβ

(8.9)

The total strain energy by substituting Eq. 8.9 in Eq. 8.8 is obtained as

U =
E

4 (1− ν2)

∫
V

(2e2
α + 2e2

β + γ2
αβ (1− ν) + 4νeαeβ)dV (8.10)

The strain-displacement relations for the DM theory are written as [4]:

eα =
1

R

∂u

∂α
− z

R2

∂2w

∂α2

eβ =
1

1 + z
R

(
1

R

∂v

∂β
+
w

R
− z

R2

∂2w

∂β2

)
γαβ =

1

1 + z
R

(
1

R

(
∂u

∂β
+
∂v

∂α

)
+ z

(
1 +

z

2R

)(
− 2

R2

)
∂2w

∂α∂β

) (8.11)
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In this equation, the total strains, at a distance z from the mid-surface in the transverse
direction, are written using the normal strains on the mid-surface and the change in curva-
ture or twist of the mid-surface. In the next step, the relations in Eq. 8.11 are substituted
in Eq. 8.10 to obtain the total strain energy of a shell according to DM theory:

U =
Eh

2 (1− ν2)

∫ 2π

0

∫ 1

0

[IDM ] dsdθ (8.12)

where

IDM =

(
∂u

∂s
+
∂v

∂θ
+ w

)2

− 2 (1− ν)

(
∂u

∂s
w − 1

4

(
∂v

∂s
− ∂u

∂θ

)2
)

+ k

{(
∇2w

)2 − 2 (1− ν)

(
∂2w

∂s2

∂2w

∂θ2
−
(
∂2w

∂s ∂θ

)2
)}

(8.13)

It should be noted that the total energy is composed of two components. First, the mem-
brane strain energy that is due to the stretching of the mid-surface and second, due to
the bending of the shell. The bending component is shown within the curly braces in Eq.
8.13. Also, while writing this equation, the general shell variables (α, β) were replaced by
the cylindrical coordinate variables (s, θ).

Kinetic Energy

Neglecting rotary inertia and considering the velocities in all the three directions, the
kinetic energy of the shell is written as

T =
1

2
ρh

∫ 2π

0

∫ 1

0

[(
∂u

∂t

)2

+

(
∂v

∂t

)2

+

(
∂w

∂t

)2
]
R2dsdθ (8.14)

Using the strain and kinetic energy expressions obtained in Eq. 8.12 and 8.14, applying
the Hamilton’s principle, the governing equations of motion shown in Eq. 8.2 can be
developed, for which the differential operator [L] for the DM theory is shown in Eq. 8.6.

8.1.3 Calculation of natural frequencies for Shear-Diaphragm bound-
aries

In this section, the closed form and exact natural frequencies of a thin closed circular
cylinder are presented that satisfies the following boundary conditions

w = Mx = Px = v = 0 x = 0, l (8.15)
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where Mx and Px denote the bending moment and longitudinal membrane force, respec-
tively, as the shell deforms. The conditions listed in Eq. 8.15 closely approximates the
physical application where the shell is rigidly attached to a thin, flat, circular cover plate at
each end. These plates have considerable stiffnesses in their own plane, hence, constraining
the transverse displacements v and w, however, the stiffness along the x−direction is very
low. This generates negligible bending moment and longitudinal membrane forces and
hence, these boundaries are called shear diaphragm (SD-SD). These boundary conditions
have received the largest attention so far in the literature due to the fact that one can
obtain closed form solutions for the frequency and is relatively easy to analyze. Later in
this chapter, these boundary conditions would be used to study the cable-harnessed shell
structures as well.

Consider the following solution of displacements that satisfy the SD-SD boundary con-
ditions exactly

u = A cosλs cosnθ cosωt

v = B sinλs sinnθ cosωt

w = C sinλs cosnθ cosωt

(8.16)

where A, B, and C are undetermined coefficients, n is an integer, and ω is the vibration
frequency expressed in rad/s. In order to satisfy the conditions presented in Eq. 8.15
exactly, the value of λ is chosen as

λ = mπR/l where m = 1, 2, 3... (8.17)

Substituting the displacements written in Eq. 8.16 in Eqs. 8.2 and 8.6 results in three
homogeneous equations in the variables A, B, and C. In order to obtain the non-trivial
solutions of the homogeneous equations, the characteristic determinant can be obtained as
follows:

Det

 −λ2 − (1−ν)
2
n2 + ρ(1−ν2)R2ω2

E
(1+ν)

2
λn νλ

(1+ν)
2
λn − (1−ν)

2
λ2 − n2 + ρ(1−ν2)R2ω2

E
−n

−ν λ n 1 + k(λ2 + n2)2 − ρ(1−ν2)R2ω2

E


(8.18)

This characteristic determinant has been written using DM theory. The only variable
in this determinant is ω, which can be obtained in terms of system parameters, m and n
by equating the determinant to zero (which yields characteristic equation). It should be
noted that the integer m corresponds to the axial wave number as can be seen from Eq.
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8.16 where the wave in s coordinate is associated with λ, which in turn is dependent on
m as shown in Eq. 8.17. Similarly, the integer n is associated to the circumferential wave
number (associated with θ).

Further, the characteristic equation can be simplified and written as

Ω6 − (K2)Ω4 +K1Ω2 −K0 = 0 (8.19)

where Ω is dimensionless frequency parameter expressed as

Ω2 =
ρ(1− ν2)R2ω2

E
(8.20)

and the constant coefficients are written as

K2 = 1 +
1

2
(3− ν)(n2 + λ2) + k(n2 + λ2)2

K1 =
1

2
(1− ν)

[
(3 + 2ν)λ2 + n2 + (n2 + λ2)2 +

(3− ν)

(1− ν)
k(n2 + λ2)3

]
K0 =

1

2
(1− ν)

[
(1− ν2)λ4 + k(n2 + λ2)4

] (8.21)

Equation 8.19 is a cubic polynomial in Ω2 and hence, for a fixed value of λ (or m) and
n, the equation would have three roots. This implies that the shell can vibrate in any of
three distinct modes, each having same number of circumferential and longitudinal waves,
with distinct frequencies. The mode shape associated with each frequency can be classified
as primarily flexural, axial or torsional mode. The mode shape corresponding to a natural
frequency can be obtained by using the homogeneous equations in A, B and C, whose
characteristic determinant was written in Eq. 8.18.

8.2 Analytical modeling of cable-harnessed shells

In this section, mathematical modeling is presented for the cable-harnessed shell structures.
The host structure is assumed to be a thin cylinder and the cables are assumed to be
attached in a parallel configuration as shown in Fig. 8.2 (a). The cables are attached such
that they are equidistant along the circumference. The analytical model is obtained using
the energy-equivalence homogenization approach. This powerful approach was used in the
previous chapters for modeling the cable-harnessed beam and plate structures. Utilizing
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the periodicity condition, this approach is able to homogenize the system which results in
an equivalent continuum structure.

As mentioned earlier, the periodicity of the structure forms the core of the homoge-
nization approach and hence, it is important to define a fundamental element. When this
element is repeated in the domain of the structure, it yields the overall structure. The
fundamental element of the cable-harnessed system under consideration is shown in Fig.
8.2 (b). The dimensions of the host of cable-harnessed shell consist of length L, radius R,
and thickness h. On the other hand, the dimensions of the fundamental element consists
of the length Le, subtends an angle φe at the center and has the same radius R. The global
coordinate system is defined as (x, r, θ) while the local coordinate system defined for the
fundamental element is (x̄, r̄, θ̄). The number of cables attached on the cylinder are Nc.
Hence, the angle subtended at the center can be written as

φe =
2π

Nc

(8.22)

Additionally, the length of the fundamental element is defined using

Le =
L

Nc

(8.23)
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(a)

(b)

Figure 8.2: (a) Schematic of a cable-harnessed cylindrical shell, (b) A fundamental element
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8.2.1 Model Assumptions

The model assumptions applied towards the development of equivalent continuum structure
of the cable-harnessed cylindrical shells are listed as follows:

1. The host structure is assumed to be an isotropic cylindrical shell and is modeled
using classical shell theory that uses Love’s postulates.

2. The cable remains in perfect contact with the cylindrical shell during vibrations.

3. In the equilibrium position, cables are harnessed along the x−direction and under a
constant pre-tension.

4. The axial strain in the cable at a given cross-section is assumed to be uniform. This
means that all the points within the cable, at a given cross-section, are assumed to
undergo similar deformation.

5. Cable pretension results in the pre-compression of the cylindrical shell.

In the next two sections, the total strain and kinetic energy expressions of the system
are found to obtain the governing equation of motion of the homogenized system.

8.2.2 Strain Energy

In order to obtain the total strain energy of the homogenized system, the strain energy
of the fundamental element is first calculated. The fundamental element consists of two
components viz., cylindrical shell and the cable. Therefore, the strain energy expressions
for both the components are calculated individually and then summed up to calculate the
strain energy of the fundamental element.

Strain energy of the cable

The strain energy of the cable within an arbitrary fundamental element can be written
as

Uc =
1

2
Ec

∫ Le

0

∫
Ac

εc
2 dA dx̄ (8.24)

Note that x̄ is used because the differential element of cable is considered for the funda-
mental element and hence, the local coordinate is used. Since the cable is attached along
the x̄ direction, the total strain in the cable is written as the summation of the pre-strain
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in the cable and the dynamic strain induced due to the vibration of the shell. This dy-
namic strain is obtained by calculating the normal strain of the cylindrical shell at the
outer surface in the x̄ direction. This calculated strain is assumed to be constant over the
cross-section of the cable at any point x. Hence, the total strain in the cable is written as

εc =
T

EcAc
+ ex̄|z=zc (8.25)

where z is the distance of any point in the shell from the mid-surface along the radial
direction, and zc is the distance between mid-surface and plate-cable interface i.e. zc = h/2.
Now, using the strain along the x̄ direction from Eq. 8.11 (where α represents s)

ex̄|z=zc =
1

R

∂ū

∂s̄
− zc
R2

∂2w̄

∂s̄2
(8.26)

In this equation, ū = ū(s̄, θ̄, t) is the axial displacement of any point within the fundamental
element, whereas, w̄ = w̄(s̄, θ̄, t) is the transverse displacement. Also, the dimensionless
quantity s̄ = x̄/R is defined for the fundamental element. It should be noted that this
strain is similar when obtained using either DM or Flugge shell theory.

As a next step, the cable’s strain energy can be written by substituting Eqs. 8.25 and
8.26 in Eq. 8.24, and integrating over the cable’s cross sectional area as

Uc =
1

2
EcAc

∫ Le/R

0

(
T

EcAc
+

1

R

∂ū

∂s̄
− zc
R2

∂2w̄

∂s̄2

)2

ds̄ R (8.27)

The expression is expanded further and written as

Uc =
1

2
EcAcR

∫ Le/R

0

[(
T 2

E2
cA

2
c

)
+

1

R2

(
∂ū

∂s̄

)2

+
z2
c

R4

(
∂2w̄

∂s̄2

)2

− 2zc
R3

∂ū

∂s̄

∂2w̄

∂s̄2
− 2zc
R2

T

EcAc

∂2w̄

∂s̄2
+

2T

EcAcR

∂ū

∂s̄

]
ds̄ (8.28)

This is the total strain energy stored in cable within a fundamental element shown in
Fig. 8.2(b). Next, the strain energy stored in the cylindrical shell within a fundamental
element is written.

Strain energy of the cylindrical shell

Assuming that the cable tension induces an uniform compressive load on the shell
element, as shown in Fig. 8.3, the strain energy in the cylindrical shell element within an
arbitrary fundamental element can be written as

Us =

∫
Vs

(σx̄ex̄ + σθ̄eθ̄ + σx̄θ̄ex̄θ̄)dV +

∫
Vs

(
σix̄e

i
x̄

)
dV (8.29)
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(a) (b)

Figure 8.3: Normal compressive forces shown on cylindrical shell element due to the taut
cables

In this expression, the first integral is written similar to Eq. 8.8, but corresponding to
the local coordinates of the fundamental element. The second integral corresponds to the
strain energy stored in the shell due to the additional compressive loading acting along the
x̄ direction. The stress σix̄ is the constant initial stress acting in the direction of cylinder’s
length on the cross-section due to the distributed loading Nx shown in Fig. 8.3. Nx is the
compressive force acting per unit circumferential length which can be expressed in terms
of cable tension as,

Nx =
NcT

2πR
(8.30)

And, because the compressive loading is assumed to be distributed along the thickness as
well, the initial stress can be written as

σix̄ =
Nx

h
(8.31)

Moreover, in Eq. 8.29, initial normal stress in the θ̄ direction and shear stress is assumed
to be negligible due to the cable tension and is ignored while writing the strain energy.
Further, in the second integral of Eq. 8.29, the strain eix̄ is written by including a second
order displacement term in strain-displacement relation [4], in addition to the two terms
written in the first equation of Eq. 8.11. Because, the initial stresses may be large,
this second order nonlinear term is essential to be included. Also, this maintains the
homogeneity of the order of displacement derivative terms in the strain energy expression.
By including the second order term, the initial strain is written as [4]

eix̄ =
1

R

∂ū

∂s̄
− z

R2

∂2w̄

∂s̄2
+

1

2R2

(
∂w̄

∂s̄

)2

(8.32)
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Now, the strain energy written in Eq. 8.29 can be further simplified. Since, the first
integral represents the strain energy in absence of any body forces, the simplification can
be done similar to the steps carried out in Eqs. 8.8 - 8.12. The second integral in Eq. 8.29
can be simplified using Eqs. 8.31 and 8.32 as

U i
s =

∫
Vs

(
Nx

h

)(
1

R

∂ū

∂s̄
− z

R2

∂2w̄

∂s̄2
+

1

2R2

(
∂w̄

∂s̄

)2
)
dV (8.33)

Using dV = R2drdθds, and integrating over the thickness direction (radial), the above
expression is simplified as

U i
s = (Nx)

∫ 2π

0

∫ Le/R

0

[
R
∂ū

∂s̄
+

1

2

(
∂w̄

∂s̄

)2
]
ds̄ dθ̄ (8.34)

Using Eqs. 8.34 and 8.12 in Eq. 8.29, we obtain

Us =

∫ 2π

0

∫ Le/R

0
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Eh

2(1− ν2)
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∂ū

∂s̄
w̄ − 1

4

(
∂v̄

∂s̄
− ∂ū
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)]
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(8.35)

This is the total strain energy expression obtained for a compressed shell element using the
DM shell theory. The term k was defined in Eq. 8.5. In a simplified form, this equation
can be expressed as

(Us)DM =
Eh

2(1− ν2)

∫ 2π

0

∫ Le/R

0

[
IDM +

2

C
Ii

]
ds̄dθ̄ (8.36)

where IDM is same as that written in Eq. 8.13 with the bar signs over the displacements
and coordinates, while the other terms are defined as

C =
Eh

(1− ν2)

Ii = (Nx)

(
R
∂ū

∂s̄
+

1

2

(
∂w̄

∂s̄

)2
) (8.37)
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For the Flugge’s shell theory, an additional term in added in Eq. 8.36 and is expressed
as [4]

(Us)Flugge =
Eh

2(1− ν2)

∫ 2π

0

∫ Le/R

0

[
IDM +

2

C
Ii + kIFlugge

]
ds̄dθ̄ (8.38)

where
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+ w̄2 + 2w̄

∂2w̄

∂θ̄2
(8.39)

Total strain energy

In order to obtain the total energy within a fundamental element of cable-harnessed
shell, the energy components of both cable and shell would have to be added. As noted
earlier, the energy component of the cable was similar for both, DM and Flugge’s shell
theory. Hence, the total strain energy within a fundamental element according to the DM
theory can be written by summing up Eqs. 8.28 and 8.36 for the DM theory, while, Eqs.
8.28 and 8.38 for the Flugge’s theory.

(Utot)DM = (Us)DM + Uc

(Utot)Flugge = (Us)Flugge + Uc
(8.40)

As, it was mentioned earlier that the Flugge’s theory yields better approximation com-
pared to the DM theory, the strain energy expressions from both the shell theories are
presented. However, due to relative mathematical simplicity, the EOM will be derived
only for the DM theory.

Homogenization

The strain energy of the fundamental element using two shell theories have been listed
in Eq. 8.40. Now, in order to apply the homogenization principle, recall that the dis-
placements ū(s̄, θ̄, t), v̄(s̄, θ̄, t), and w̄(s̄, θ̄, t) are replaced by its Taylor’s series expansion
about the center of the fundamental element (Le/(2R), φe/2). Upon substitution, the total
strain energy in Eq. 8.40 can be obtained simply by integrating over respective limits in
space. As a next step, this expression of total energy is divided by the element’s area
yielding the energy density of an equivalent continuum shell element. Upon integration of
this energy density over the entire surface of the cylinder, the system’s total strain energy,
Usys is obtained. Due to mathematically intensive formulations, the steps involved in the
homogenization approach are not presented here.
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8.2.3 Kinetic Energy

Following the similar approach as strain energy. the kinetic energy of the fundamental
element is also obtained by summing up the respective energies of cable and shell within a
fundamental element. The kinetic energy for the cables can be written as

Tc =
1

2
ρc

∫
Vc

[(
∂ū

∂t

)2

+

(
∂v̄

∂t

)2

+

(
∂w̄

∂t

)2
]
dAdx̄ (8.41)

Since the displacement along the cross-section area is assumed to be constant, integrating
over the area results in

Tc =
1

2
ρcAcR

∫ Le/R

0

[(
∂ū

∂t

)2

+

(
∂v̄

∂t

)2

+

(
∂w̄

∂t

)2
]
ds̄ (8.42)

In this equation, the displacement x̄ was transformed to the dimensionless variable s̄. The
total kinetic energy within the fundamental element can now be written by summing the
Eq. 8.42 and 8.14 written in local coordinates

Ttot =
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2
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]
ds̄dθ̄ (8.43)

In order to obtain the total kinetic energy within the fundamental element, the Taylor’s
series expansion of the displacements about the center are substituted in Eq. 8.43 resulting
in
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)(
2π

Nc
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(8.44)

where the terms with asterisk (∗) indicates that they are evaluated at the center of the
fundamental element, s̄ = Le/(2R) and θ̄ = φe/2. Also, the relation shown in Eq. 8.22 is
used while simplifying the expression.
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Next, the energy density of the homogenized shell element is obtained by dividing the
total kinetic energy by the area of the fundamental element, Le

R
2π
Nc

. Upon multiplying it by
dθds, and integrating over the domain of entire cable-harnessed shell, the system’s total
kinetic energy can be obtained

Tsys =
1

2
M1R

2

∫ 2π

0

∫ L
R

0

[(
∂u

∂t

)2

+

(
∂v

∂t

)2

+

(
∂w

∂t

)2
]
dsdθ (8.45)

where the homogenized mass per unit area of the system, M1, is written as

M1 =
1

2

(
ρcAcNc

2πR
+ ρh

)
(8.46)

8.2.4 Equations of Motion

To obtain the governing equations of motion, the Euler-Lagrange’s equations [4] are used on
the functional invoked by the Hamilton’s principle. The calculations to obtain the equations
of motions were done using the software Mathematica. Following are the resulting equations
of motion obtained for the homogenized cable-harnessed shell (using DM theory):
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= 0 (8.47)

2M1R
2 ∂2v

∂t2
+

Eh

2 (−1 + ν2)

{
2
∂w

∂θ
+ 2

∂2v

∂θ2
+ (1 + ν)

∂2u

∂s ∂θ
+ (1− ν)

∂2v

∂s2

}
= 0 (8.48)
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= 0 (8.49)

The three equations shown above denote the coupled governing equations of motion
for an equivalent continuum model of a cable-harnessed shell. The first term in all the
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three equations represent the inertia component which includes the mass per unit area of
the homogenized shell element, defined in Eq. 8.46. The terms in the curly brackets of
Eqs. 8.47 - 8.49 essentially corresponds to the stiffness effect due to the cylindrical shell.
Furthermore, the effect of the cable stiffness is shown in the last term in parenthesis in Eqs.
8.47 and 8.49. Cable stiffness effects are not seen in Eq. 8.48 as this equation primarily
corresponds to the motion in tangential direction. Additionally the term multiplied by Nx

within the curly brackets in Eq. 8.49 is associated with the compressive effect on cylindrical
shell due to the taut cables.

In order to do some sanity checks for Eqs. 8.47 - 8.49, firstly, the dimensional analysis
was done and it was found that all terms have similar dimensions. Next, the cable param-
eters such as T, Ec, Ac, ρc were substituted as zero, and the obtained EOM was found
same as that of a bare shell (DM shell theory) as shown by Eqs. 8.2 and 8.6. It should
be noted that the equations of motion presented here corresponds to the assumption that
the host cylindrical shell has been modeled using DM shell theory. For the Flugge’s shell
theory, similar derivations can be carried out to obtain a more accurate model.

8.3 Results and Discussion

In this section, some preliminary results are presented for the cable-harnessed structure as
obtained from the developed mathematical model. In order to do so, natural frequencies
are obtained for the SD-SD boundary conditions. This was previously discussed for a
bare cylindrical shell in section 8.1.3. To calculate the frequencies, the displacements
written in Eq. 8.16 are substituted in the governing equations presented in the Eqs. 8.47 -
8.49. A similar approach outlined in section 8.1.3 is followed where solving a characteristic
determinant yields the closed-form polynomial equation in terms of natural frequency with
m and n as additional integer parameters corresponding to the axial wave number and
circumferential wave number, respectively.

Two sets of results are presented with different host shell parameters as shown in Table
8.1. As shown, four cables are attached on a circular closed cylindrical shell which are
equidistant to each other. From the axial view of the system, these cables would be 90
degrees apart. Also, the two sets of different host shell parameters have different l/R and
R/h ratios. A high value of R/h ratio with a lower value of l/R ensure a good accuracy
according to DM shell theory.

Firstly, the results for set-1 are discussed. The first five natural frequencies are pre-
sented for the bare shell in Table 8.2 from ANSYS and analytical model (following DM
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Table 8.1: Cable-harnessed shell system parameters selected for numerical simulations

Set-1 Set-2
Cylinder Cable Cylinder Cable

Length, l 15 m
Number of
cables, Nc

4 Length, l 2.5 m
Number of
cables, Nc

4

Radius, R 0.75 m
Cable
Radius, rc

10 mm Radius, R 0.5 m
Cable
Radius, rc

10 mm

Thickness, h 1.5 mm
Youngs
Modulus, Ec

128 GPa Thickness, h 1.0 mm
Youngs
Modulus, Ec

128 GPa

Youngs
Modulus,
E

68.9 GPa
Density,
ρc

1400 Kg/m3
Youngs
Modulus,
E

68.9 GPa
Density,
ρc

1400 Kg/m3

Density,
ρ

2768 Kg/m3 Tension, T 0.5 N
Density,
ρ

2768 Kg/m3 Tension, T 0.5 N

Poisson’
Ratio,
ν

0.3
Poisson’
Ratio,
ν

0.3

Table 8.2: Natural frequencies of bare shell for set-1

Mode ANSYS (Hz) Donnell-Mushtari (Hz) Error
(1,3) 5.61 6.13 9.28%
(1,2) 6.06 6.24 2.98%
(1,4) 9.53 10.08 5.76%
(2,4) 11.37 11.82 3.96%
(2,3) 11.98 12.20 1.90%

theory). In the ANSYS model, the cylindrical shell is modeled using SHELL181 element,
the cable using LINK180, and the contact is established using the CONTA175 elements.
The mathematical model of ANSYS does not have any direct connection with the analyti-
cal model established through the Eqs. 8.47-8.49. On the comparison of the two model, it
is shown that the natural frequencies are close to each other with errors in the reasonable
limits. The differences in frequencies can be attributed to the imperfect incoporation of
SD-SD boundary condition in ANSYS. While only nodal displacements can be constrained
in ANSYS, the vanishing bending moment and longitudinal membrane forces could not be
enforced in finite element domain.

Next, the natural frequencies of the cabled shell for set-1 are presented using ANSYS
and proposed analytical method in Table 8.3. The natural frequencies are presented in the
increasing order of magnitude. It should be noted that the effects of the cables on the bare
shell can be analyzed by comparing the % increase in frequency. As seen from the table,
the % increase in frequency is similar when the proposed analytical model is compared
with ANSYS. This presents a strong validation of the proposed model. The mismatch of
the bare shell’s natural frequency using the two methods is attributed to the inaccuracies
in the Donell-Mushtari shell theory. An advanced shell theory would help in decreasing
the errors in the baseline system.
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Table 8.3: Natural frequencies of cabled shell for set-1

Mode
(m,n)

ANSYS,
BS* (Hz)

ANSYS,
CS* (Hz)

% increase in
freq in ANSYS

Analytical,
BS (Hz)

Proposed,
CS (Hz)

% increase in
frequency in

analytical model
(1,3) 5.61 5.53 -1.38% 6.13 6.07 -1.06%
(1,2) 6.06 6.54 8.02% 6.24 6.77 8.43%
(1,4) 9.53 9.17 -3.74% 10.08 9.7 -3.82%
(2,4) 11.37 11.29 -0.72% 11.82 11.85 0.22%
(2,3) 11.98 12.56 4.87% 12.20 13.11 7.42%

*Abbreviations: BS Bare Shell, CS Cabled Shell

Table 8.4: Natural frequencies obtained from ANSYS for cabled shell for set-1

Mode (m,n) ANSYS (Hz) Avg. of ANSYS frequency (Hz)
(1,3) 5.53 5.53 5.53
(1,2) 5.95 7.14 6.55
(1,4) 8.87 9.48 9.18
(2,4) 11.27 11.31 11.28
(2,3) 12.56 12.56 12.56

It should be further noted that corresponding to each mode shape, ANSYS predicts
two natural frequencies. These two frequencies are similar for the bare shell, however, they
are different for the cabled shell as shown in Table 8.4. The reasoning for this behavior
can be explained on the basis of mode shapes corresponding to the frequencies. Consider
the two mode shapes for mode (1,2) obtained from ANSYS as shown in Fig. 8.4. As
mentioned, the two modes have same frequencies for a bare shell which is homogeneous
and symmetric. However, when the four cables are attached, the two mode shapes (which
are similar in shape but shifted by 45 degrees along the axis) have different contribution
of cable’s strain energy. The deformation of the cable for the mode shown in Fig. 8.4(a)
is higher compared to Fig. 8.4(b) and hence, the cable strain energy contribution in the
former would be more highlighted. On the other hand, the proposed analytical model based
on homogenization approach do not ‘see’ the cables at those locations as the cable effect
is homogenized over the circumference of the shell. Hence, the two distinct frequencies are
not obtained. Moreover, the difference in frequencies for same mode shapes, as predicted
by ANSYS, is primarily due to the inhomogeneity introduced in the system due to the
cables. This difference should decrease as the number of cables around the circumference
of the shell increase.
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(a) (b)

Figure 8.4: Front view of the mode shapes (1,2) obtained for the set-1 of cabled shell from
ANSYS

In the following paragraphs, the results obtained for set-2 are presented. Similar to
the 1st set, the natural frequencies are compared using DM shell theory and ANSYS. The
comparison in natural frequency is presented for the first ten modes as shown in Table 8.5.
The natural frequencies are arranged in the increasing order of magnitude. The R/h of the
shell in set-2 is same as that of set-1, however, the l/R ratio is lower for set-2 and hence,
the % error in natural frequencies as shown in Table 8.5 are comparatively lower in set-2.
As discussed before, for DM theory, the lower values of l/R ratios yields higher accuracy.
Also, the increasing order of frequencies in cylindrical shell do not necessarily mean that
the integers m and n would also increase in the order. As seen from the table, with the
increasing natural frequency, the increasing circumferential mode number do not follow a
set pattern.

Further, when the errors are compared, they do not seem to follow a trend with increase
in natural frequencies. However, the trend of error can be determined when the frequencies
are analyzed by varying the number n and keeping m as constant or vice versa. For a visual
interpretation, the % error shown in Table 8.5 is plotted with varying n as shown in Fig.
8.5. Clearly, as the value of n increases, the magnitude of error increase. Hence, in the
following analysis, m = 1 is held fixed and n is varied. The natural frequencies of the bare
shell corresponding to the fixed m and varying n is listed in Table 8.6.

Now, the natural frequencies of the cable-harnessed shell corresponding to set-2 are
presented. Table 8.7 shows the natural frequencies obtained using the proposed model and
ANSYS for m = 1 and n = 1 to 5. It can be seen that there is a considerable difference
between the natural frequencies of the cabled shell and bare shell. For example, for mode
(1,1), the bare shell resonates at 310 Hz, whereas cabled shell at 319 Hz according to
Homogenization method and at 323 Hz according to ANSYS. Further, a comparison of the
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Table 8.5: Natural frequencies for bare shell for set-2

Mode
Axial Mode
Number, m

Circumferential
Mode number, n

DM Theory
(Hz)

ANSYS
(Hz)

Error in
DM theory

1 1 5 34.02 34.24 -0.63%
2 1 6 38.45 39.28 -2.11%
3 1 4 40.08 40.26 -0.45%
4 1 7 48.64 50.84 -4.34%
5 1 8 62.16 66.66 -6.74%
6 1 3 63.70 63.98 -0.44%
7 2 7 68.71 71.75 -4.24%
8 2 8 73.13 78.08 -6.33%
9 2 6 74.79 76.98 -2.85%
10 1 9 78.12 86.09 -9.25%

Figure 8.5: Percentage error in natural frequency obtained in DM theory for set-2 with
variation in n for m = 1
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Table 8.6: Comparison of natural frequencies of bare shell for set-2 for m = 1 and n = 1
to 5

m n
DM Theory

(Hz)
ANSYS

(Hz)
% Error in
DM Theory

1 1 310.24 310.19 0.02%
1 2 126.41 126.63 -0.18%
1 3 63.71 63.99 -0.44%
1 4 40.08 40.27 -0.45%
1 5 34.02 34.24 -0.63%

Table 8.7: Comparison of natural frequencies of cable-harnessed shell for set-2

m n
Proposed
Model (Hz)

ANSYS-1
(Hz)

ANSYS-2
(Hz)

ANSYS
(Average of
1 and 2)

Error in
proposed model

1 1 318.96 323.27 323.62 323.445 -1.39%
1 2 141.74 121.86 155.93 138.895 2.05%
1 3 73.9 67.68 67.73 67.705 9.15%
1 4 46.09 39.77 42.9 41.335 11.50%
1 5 36.3 33.59 33.62 33.605 8.02%

mode shapes for the five modes corresponding to both bare shell and cabled shell obtained
from ANSYS are presented in Fig. 8.6.

The errors increase with the increase in the values of n. One possible way to reduce
these errors is by increasing the number of cables attached on the cylindrical shell so that
the inhomogeneity due to cable is reduced at higher values of n.
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Figure 8.6: Mode shapes for bare and cable-harnessed cylindrical shell for set-2
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8.4 Summary of the chapter

In this chapter, the analytical model for cable-harnessed cylindrical shell structure is pro-
posed. These structures are very common and find applications in aerospace and marine
industry. Creating simple and accurate dynamics models of these structures are important
because they form the basis of efficient and robust control algorithms. In this work, the
host cylindrical shell was modeled using the Donnell-Mushtari shell theory. The cables
were assumed to be attached equidistant from each other along the axis of the cylin-
der. The pre-compression in the shell due to the taut cable was also accounted for. The
coupled governing equations of motion were obtained following the application of energy-
equivalence homogenization approach. The results were presented for two different sets of
shell structures. The natural frequencies obtained from the proposed model was compared
with those obtained using ANSYS. The results show promising evidence of verification of
the homogenized model.

More accurate models based on other shell theories can be investigated further with a
scope of detailed parametric analysis. Additionally, experimental validation of these results
would help in building more confidence on the proposed model.
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Chapter 9

Future Work and Conclusions

The current chapter discusses the possible future work which can be based on the current
research. The final section of the thesis contains the concluding remarks and a list of major
contributions of the thesis.

9.1 Future Work

For the future developments and improvements in the presented research work, following
ideas can be explored and implemented:

1. An optimal cable wrapping parameter can be obtained for a cable-harnessed plate
structure such that the cable attachment has a minimal impact on the dynamics
of the host structure. This optimization scheme can highly simplify the modeling of
complicated structures such that the cable dynamics can be completely ignored while
modeling when the cable is attached in the optimal pattern on the host structure.
The work on obtaining an optimal cable geometry wrapped on a rectangular beam
has been recently published by Shilei et al. [37]. The work presented in the current
research would be further advantageous in finding an optimal geometry to minimize
cable dynamics effect when the cable is harnessed to a plate or a cylindrical shell
structures.

2. There is a lot of scope to build upon the presented analytical model of cable-harnessed
plate structures. Some of the ideas are presented as follows:
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(a) Including the damping mechanism in cable and host plate structure. This would
improve the accuracy of the frequency response functions near the resonance and
anti-resonance regions.

(b) Extending the work to model non-periodic cable geometry. This would help in
further generalizing the modeling approach of cable-harnessed plate structures.

(c) The current work on the cable-harnessed plate structure assumes thin rectan-
gular plates as the host structures and hence, Kirchhoff-Love plate theory is
utilized for modeling purposes. To model the effect of cable harness on thick
plates, shear deformation effects through the plate thickness would have to be
considered. Hence, the current modeling technique can be further extended by
modeling the host plates using Mindlin-Reissner plate theory which takes the
shear deformation into account.

3. To further analyze some interesting effects of the cable harness on two-dimensional
host structures, circular plates can be considered as hosts and cable can be assumed
to be harnessed in different patterns. One of the patterns can be the attachment of
multiple cables along the diameter. Since the mode shapes of the circular plates are
considerably different from those of rectangular plates, the effect of shift in system
dynamics on cable attachment can be very interesting to analyze.

4. To extend the preliminary work done on analytical model development of cable-
harnessed cylindrical shell, following are the directions in which this work can be
further continued:

(a) Modeling the strain energy of the cables using a higher-order strain-displacement
relationship to include the effect of cable tension in the cable’s strain energy.

(b) Modeling the host shells using more accurate theories which include but is not
limited to widely used Flugge’s shell theory. As mentioned, the presented model
using Donnell-Mushtari theory, although known for mathematical simplicity,
starts to show its limitations for short and thick cylindrical shells.

(c) Modeling the dynamics of cable-harnessed shells with cable wrapped around the
cylindrical structure. This would bring the analytical modeling of the cable-
harnessed space structure very close to practical applications and would closely
resemble the cable harnessed propellant tank structure shown in Fig. 1.2.
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9.2 Conclusions

The research presented in the current thesis is motivated by the need of the accurate
analytical models for the cable-harnessed structures that finds their applications in the
space industry. Other applications include structural components present in aerospace,
automotive and marine structures harnessed with cables.

The thesis starts by focusing on extending the research conducted by Martin et al.
[31, 30] on the cable-harnessed beam structures by incorporating the effects of material
damping in the cable harness and the host beam structure. In these previous works, damp-
ing was ignored during the model development; however, damping plays an important role
in obtaining accurate dynamic characteristics of the system. In the current work, the cable
harness was assumed to be wrapped along the beam in zigzag, diagonal, and longitudinal
pattern. An analytical model based on energy-equivalence homogenization method was
obtained for two damping models viz. Kelvin-Voigt and hysteretic damping model. The
damping in the system was analyzed using frequency response functions (FRFs) for differ-
ent boundary conditions. The FRFs were verified using the distributed transfer function
method (DTFM). This was followed by a detailed parametric analysis. The system damp-
ing was found to increase with cable radius and decrease with beam width and number of
fundamental element. The higher modes for Kelvin-Voigt damping showed higher damping
ratios whereas, the damping ratios for hysteretic damping remained constant for different
modes.

Subsequently, the material damping in the cables was characterized using an elastomer
test system. Beam’s material damping and air damping was also characterized, but using
an inverse approach where vibration data of bare beam resulted in desired damping co-
efficients. Finally, the modal testing experiments of the fabricated cable-harnessed beam
structures were conducted and the proposed analytical model was validated against the
test results for seven different cases. The comparison of FRFs between model and test
validated the changes in natural frequency and the increased damping when the cable was
harnessed on the host beam structure. Some of the important findings include that the
damping in the system increased when the cable was attached longitudinally compared to
being wrapped along the beam structure. Also, the system damping was shown to increase
on decreasing the beam width or using a cable with larger radius which was also predicted
by the model.

As a next step, and regarded as the major contribution of this thesis, analytical models
of the cable-harnessed plate structures were developed. As per the best knowledge of
the author, no analytical models have been proposed on cable-harnessed plates in the
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literature. Hence, as a stepping stone, the mathematical modeling was developed for the
cables harnessed in a straight configuration parallel to the edge of a rectangular host plate.
For the parallel cabled plates, the governing equation of motion derived for the equivalent
continuum structure was found similar to that of a specially orthotropic laminated plate.
Next, the experimental validation was performed on the fabricated structures with cables
attached parallel to either of two plate’s edges. One of the most interesting findings in this
research was regarding the the shift in natural frequencies after cables were attached. After
the cables were attached, the cable stiffening effects were found dominant in some vibration
modes (which increases the corresponding frequency), whereas, the cable inertia effects in
others (decreases the corresponding frequency). While, in some modes, the cable inertia
and stiffness effects were found to be equally dominant and the natural frequencies of the
those modes remained unaffected after the cable was attached. The shift in the dynamic
behavior after cable attachment, as observed from the experiments, was well predicted
by the proposed model. This helped in gaining the confidence in modeling technique
and motivated me to further build on this work on more complicated cable attachment
geometry.

To model a more complicated geometry, wrapping patterns were considered on the
host plate structures. Motivated by the works of Martin et al. [31], the patterns studied in
the presented work consider zigzag and diagonal wrapped geometry in a two-dimensional
framework. Although, the mathematical model became more complicated, this model
was able to provide important insights into the dynamics of cable-harnessed structures.
Firstly, it was observed that the diagonally wrapped cable-harnessed plate structure can be
modeled as symmetric angle-ply laminated plate. On the other hand, the zigzag wrapped
structure was found to be modeled as a specially orthotropic laminated plate. These
important conclusions highly simplify the mathematical modeling of the studied complex
structures. Further, similar to the parallel cabled plates, upon harnessing the plate with
cables, different vibrations modes were affected differently. Some modes showed major
stiffening effects due to the addition of the cables and others exhibited inertia dominant
effects or no major changes in their frequencies. This further resulted in mode switching
phenomenon in which the order of appearance for certain modes of given shapes changes
after the addition of the cables compared to the bare plate. The proposed analytical model
was initially verified using ANSYS simulations and later experimentally validated using
modal testing experiments for four different fabricated cable-harnessed plate structures.

The PDE for the cable-harnessed structure with parallel cable configuration was found
to be generally stable, however, it was found that care should be taken when the cable
tension is chosen. This is because, when the plate aspect ratios was chosen to be either very
large or very small, the system was found to become unstable at extremely high tension
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values due to the occurrence of torsional instability. Additionally, for the PDEs of zigzag
and diagonally wrapped cable-harnessed structures, the model was found to remain stable
with no additional constraints.

In the final part of the thesis, the analytical model for a cable-harnessed cylindrical shell
structure was proposed. The cylindrical shell was modeled using the Donnell-Mushtari
(DM) theory and the cable harness using the string theory. Comparison of the proposed
model using the DM theory for two different set of simulation parameters with ANSYS
verifies the initial attempt of model development. The change in the natural frequencies
and the mode shapes on harnessing the cables were used as the parameters for verification.
However, the accuracy of the model still needs to be improved which can be addressed in
the future works.

The contributions of the work presented in the thesis are summarized as follows:

1. Modeling the damping mechanisms in cable-harnessed beam structures

2. Analytical model development for cable-harnessed two dimensional plate-like struc-
tures

3. Application of energy-equivalence homogenization approach for predicting the dy-
namic characteristics of complex two-dimensional cable-harnessed structure

4. Development of the conditions of the differential equation coefficients required to
prove the stability of the governing PDEs of the cable-harnessed systems

5. Experimental validation of the analytical models proposed for cable-harnessed beam
structures and cable-harnessed plate structures.

6. Preliminary analytical model development of cable-harnessed cylindrical shell struc-
tures.
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Appendix A

Supplementary information on
modeling of Cable-harnessed beam
structures presented in Chapter 2

A.1 Calculation of the length and mass of the funda-

mental element

A.1.1 Zigzag pattern

The cable present within the fundamental element can be divided into four sections each
on a different face of the beam. The total length of the cable wrapped around the beam
within a fundamental element can be written as:

L
(c)
e,zigzag =

2b̄

sin θ
+

2h̄

sin θ
+

2b̄

sin θ
+

2h̄

sin θ
=

4
(
b̄+ h̄

)
sin θ

(A.1)

Hence, the mass of cable within the fundamental element becomes

m
(c)
e,zigzag = ρcAc

4
(
b̄+ h̄

)
sin θ

(A.2)

Further, the length of the beam fundamental element can be expressed in terms of wrapping
angle, and beam and cable parameters as

Le−zigzag =
2b̄

tan θ
+

2h̄

tan θ
+

2b̄

tan θ
+

2h̄

tan θ
=

4
(
b̄+ h̄

)
tan θ

(A.3)
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Hence, the total mass of the fundamental element for the zigzag pattern is written by
summing the mass of beam and cable as:

me,zigzag =

(
ρbAb

4
(
b̄+ h̄

)
tan θ

+ ρcAc
4
(
b̄+ h̄

)
sin θ

)
=

(
ρbAb +

ρcAc
cos θ

)
4
(
b̄+ h̄

)
tan θ

(A.4)

A.1.2 Diagonal pattern

Similar to the previous case, for the diagonal pattern as well, the cable can be divided into
four sections each on a different face of the beam. The total length of the cable within a
fundamental element can be written as:

L
(c)
e,diagonal =

2b̄

sin θ
+ 2h̄+ 2b̄+ 2h̄ = 2

(
b̄

sin θ
+ 2h̄+ b̄

)
(A.5)

Hence, the mass of cable within the fundamental element becomes

m
(c)
e,diagonal = 2ρcAc

(
b̄

sin θ
+ 2h̄+ b̄

)
(A.6)

The length of the beam fundamental element can be expressed in terms of wrapping angle,
and beam and cable parameters as

Le−diagonal =
2b̄

tan θ
(A.7)

Hence, the total mass of the fundamental element for the diagonal pattern is written as:

me,zigzag =

(
ρbAb

2b̄

tan θ
+ 2ρcAc

(
b̄

sin θ
+ 2h̄+ b̄

) )
=

(
ρbAb +

ρcAc tan θ

b̄

[
b̄

sin θ
+ 2h̄+ b̄

])
2̄b

tan θ

(A.8)

A.2 Calculation of strain energy

The strain energy of the beam part within an arbitrary fundamental element:

Ue,beam =

∫∫∫
Vb

1

2
Eb

(
−T cos (θ)

EbAb
− z∂

2w

∂ξ2
+
z2

2

(
∂2w

∂ξ2

)2

+
1

2

(
∂w

∂ξ

)2
)2

dA dξ (A.9)
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Ue,beam =

∫∫∫
Vb

1

2
Eb

[
1

4

(
∂w

∂ξ

)4

− z
(
∂w

∂ξ

)2
∂2w

∂ξ2
+ z2

(
∂2w

∂ξ2

)2

+
1

2
z2

(
∂w

∂ξ

)2(
∂2w

∂ξ2

)2

− z3

(
∂2w

∂ξ2

)3

+
z4

4

(
∂2w

∂ξ2

)4

− Tcos(θ)

AbEb

(
∂w

∂ξ

)2

+
2Tzcos(θ)

AbEb

∂2w

∂ξ2
− Tz2cos(θ)

AbEb

(
∂2w

∂ξ2

)2

+
T 2 cos2 θ

A2
bE

2
b

]
dA dξ (A.10)

Ue,beam ≈
∫∫∫

Vb

1

2
Eb

[
z2

(
∂2w

∂ξ2

)2

− Tcos(θ)

AbEb

(
∂w

∂ξ

)2

+
2Tzcos(θ)

AbEb

∂2w

∂ξ2

− Tz2cos(θ)

AbEb

(
∂2w

∂ξ2

)2

+
T 2 cos2 θ

A2
bE

2
b

]
dA dξ (A.11)

On performing integration over the cross-section of the beam, we obtain

Ue,beam =

∫ Le

0

{
1

2

(
EbIb −

Tcos (θ) Ib
Ab

)(
∂2w

∂ξ2

)2

− 1

2
T cos θ

(
∂w

∂ξ

)2

+
T 2 cos2 θ

2AbEb

}
dx

(A.12)

The strain energy of the cable part within an arbitrary fundamental element can be
written as:

Ue,cable =

∫ Le

0

∫
Ac

1

2
Ec

(
T

EcAc
+

(
−zc

∂2w

∂ξ2
+
z2
c

2

(
∂2w

∂ξ2

)2

+
1

2

(
∂w

∂ξ

)2
)

cos2 θ

)2

dA

(
dξ

cos θ

)
(A.13)

Expanding the square term results in

Ue,cable =

∫ Le

0

∫
Ac

1

2
Ec

[
1

4

(
∂w

∂ξ

)4

cos4 (θ)− zc
(
∂w

∂ξ

)2
∂2w

∂ξ2
cos4 (θ)

+ z2
c

(
∂2w

∂ξ2

)2

cos4 (θ) +
1

2
z2
c

(
∂w

∂ξ

)2(
∂2w

∂ξ2

)2

cos4 (θ)− z3
c

(
∂2w

∂ξ2

)3

cos4 (θ)

+
z4
c

4

(
∂2w

∂ξ2

)4

cos4 (θ) +
T 2

A2
cE

2
c

+
T

AcEc

(
∂w

∂ξ

)2

cos2 (θ)− 2Tzc
AcEc

∂2w

∂ξ2
cos2 (θ)

+
Tz2

c

AcEc

(
∂2w

∂ξ2

)2

cos2 (θ)

]
dA

(
dξ

cos θ

)
(A.14)
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On ignoring the terms higher than second order in displacement and its derivatives, the
above expression is simplified as,

Ue,cable ≈
∫ Le

0

∫
Ac

1

2
Ec

[
z2
c

(
∂2w

∂ξ2

)2

cos4 (θ) +
T 2

A2
cE

2
c

+
T

AcEc

(
∂w

∂ξ

)2

cos2 (θ)

− 2Tzc
AcEc

∂2w

∂ξ2
cos2 (θ) +

Tz2
c

AcEc

(
∂2w

∂ξ2

)2

cos2 (θ)

]
dA

(
dξ

cos θ

)
(A.15)

Performing the integration over the cable’s cross sectional area, we obtain

Ue,cable =

∫ Le

0

[
1

2

(
EcAcz

2
c cos3 (θ) + Tz2

c cos (θ)
)(∂2w

∂ξ2

)2

− Tzc cos θ
∂2w

∂ξ2

+
1

2
T cos θ

(
∂w

∂ξ

)2

+
T 2

2AcEc cos θ

]
dξ (A.16)

The total strain energy within the fundamental element is a summation of strain energy
in the beam and cable elements:

Ue = Ue,beam + Ue,cable (A.17)

The total strain energy would be different for the fundamental element for both wrap-
ping patterns. These energy expressions are calculated in the following sections:

A.2.1 Zigzag pattern

Using Fig. 2.1, the zc coordinate values of the center of the cable are used to obtain the
strain energy for the cable on each side, bottom and top sections for a zigzag element.
They can be found as,

zc (ξ) =


h̄ , 0 ≤ ξ ≤ 2b̄

tan θ
= L1

−ξ tan θ + 2b̄+ h̄ , 2b̄
tan θ
≤ ξ ≤ 2h̄+2b̄

tan θ
= L2

−h̄ , 2h̄+2b̄
tan θ

≤ ξ ≤ 4b̄+2h̄
tan θ

= L3

ξ tan θ − 4b̄− 3h̄ , 4b̄+2h̄
tan θ

≤ ξ ≤ 4h̄+4b̄
tan θ

= Le

(A.18)
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The Taylors series expansion for the displacement within the fundamental element
about the center of the fundamental element is given as:

w (ξ, t) = w

(
Le
2
, t

)
+

(
ξ − Le

2

)
∂w

∂ξ

(
Le
2
, t

)
+

1

2

(
ξ − Le

2

)2
∂2w

∂ξ2

(
Le
2
, t

)
(A.19)

Clearly, the total strain energy of the zigzag pattern can be found by calculating the
strain energy for each of the four sections as

Ue−zigzag =

∫ L1

0

dUe|zc=h̄ +

∫ L2

L1

dUe|zc=− tan θξ+2b̄+h̄ +

∫ L3

L2

dUe|zc=−h̄

+

∫ Le

L3

dUe|zc=tan θξ−4b̄−3h̄ (A.20)

Assume that the four integrals on the right hand side can be termed as U1, U2, U3 and
U4, respectively. Using Eq. 2.16, these expressions can be simplified by integrating over
their respective limits and written as (assuming w (ξ, t)|ξ=Le

2
= w∗ (t)):

U1 =
1

2

[
EbIb(L1) + (EcAc cos3 θ + T cos θ)(h̄2L1)− T cos θIb

Ab
(L1)

](
∂2w∗

∂ξ2

)2

− T h̄ cos θ
∂2w∗

∂ξ2
(L1) +

T 2 cos2 θ

2EbAb
(L1) +

T 2

2EcAc cos θ
(L1) (A.21)

U2 =
1

2

[
EbIb(−L1 + L2) +

(
EcAc cos3 θ + T cos θ

)( (
4b̄2 + 4b̄h̄+ h̄2

)
(−L1 + L2)

+

(
−L

3
1

3
+
L3

2

3

)
tan2 θ+

(
−L

2
1

2
+
L2

2

2

)(
−4b̄ tan θ − 2h̄ tan θ

))
−T cos θIb

Ab
(−L1 + L2)

](
∂2w∗

∂ξ2

)2

− T cos θ

(
− tan θ

(
−L

2
1

2
+
L2

2

2

)
+ (2b̄+ h̄) (−L1 + L2)

)
∂2w∗

∂ξ2
+
T 2 cos2 θ

2EbAb
(−L1 + L2)

+
T 2

2EcAc cos θ
(−L1 + L2) (A.22)
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U3 =
1

2

[
EbIb(−L2 + L3) + (EcAc cos3 θ + T cos θ)h̄2(−L2 + L3)

− T cos θIb
Ab

(−L2 + L3)

](
∂2w∗

∂ξ2

)2

+ T h̄ cos θ
∂2w∗

∂ξ2
(−L2 + L3) +

T 2 cos2 θ

2EbAb
(−L2 + L3)

+
T 2

2EcAc cos θ
(−L2 + L3) (A.23)

U4 =
1

2

[
EbIb(−L3 + Le) +

(
EcAc cos3 θ + T cos θ

)( (
16b̄2 + 24b̄h̄+ 9h̄2

)
(−L3 + Le)

+

(
−L

3
3

3
+
L3
e

3

)
tan2 θ+

(
−L

2
3

2
+
L2
e

2

)(
−8b̄ tan θ − 6h̄ tan θ

))
−T cos θIb

Ab
(−L3 + Le)

](
∂2w∗

∂ξ2

)2

− T cos θ

(
tan θ

(
−L

2
3

2
+
L2
e

2

)
− (4b̄+ 3h̄) (−L3 + Le)

)
∂2w∗

∂ξ2
+
T 2 cos2 θ

2EbAb
(−L3 + Le)

+
T 2

2EcAc cos θ
(−L3 + Le) (A.24)

Upon summation of Eqs. A.21 —A.24 , we get the total strain energy within the
fundamental element of zigzag pattern mentioned in Eq. 2.17.

A.2.2 Diagonal pattern

The cables on the side and bottom sections in the diagonal pattern do not contribute to
the strain energy, as the cables for those sections will not strain during bending. This is
because the width and the thickness of the beam are assumed to remain constant and do
not deform during the bending vibrations.

For the diagonal wrapping pattern, the zc coordinate values of the center of cable can
be expressed as

zc (ξ) = h̄, 0 ≤ ξ ≤ Le (A.25)

The strain energy for the fundamental element can be simply written using Eq. 2.16
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as:

Ue−diagonal =

∫ Le

0

dUe|zc=h̄

=

∫ Le

0

[
1

2

[
EbIb + EcAch̄

2 cos3 θ + T h̄2 cos θ − T cos θIb
Ab

](
∂2w∗

∂ξ2

)2

− T h̄ cos θ
∂2w∗

∂ξ2
+
T 2 cos2 θ

2EbAb
+

T 2

2EcAc cos θ

]
dξ

(A.26)

The simplification of Eq. A.26 results in the Eq. 2.18.

A.3 Rayleigh Dissipation function of the fundamental

element

Expansion of the square term in Eq. 2.29 after calculating the time derivative results in

Rb =

∫ Le

0

∫
Ab

1

2
Cb

[
z2

(
∂3w

∂t ∂ξ2

)2

+ z4

(
∂2w

∂ξ2

)2 (
∂3w

∂t ∂ξ2

)2

+

(
∂w

∂ξ

)2(
∂2w

∂t ∂ξ

)2

− 2z3

(
∂2w

∂ξ2

)(
∂3w

∂t ∂ξ2

)2

+ 2z2

(
∂w

∂ξ

)(
∂2w

∂ξ2

)(
∂2w

∂t ∂ξ

)(
∂3w

∂t ∂ξ2

)
− 2z

(
∂w

∂ξ

)(
∂3w

∂t ∂ξ2

)(
∂2w

∂t ∂ξ

)]
dAdξ (A.27)

In this expression, the higher order terms are neglected and the terms upto the second
order of polynomial in w(ξ, t) and its derivatives are kept. This truncation results in Eq.
2.30.

Similarly, Eq. 2.33 can be simplified as:

Rc =

∫ Le

0

∫
Ac

1

2
Cc

(
z2
c

(
∂3w

∂t ∂ξ2

)2

+ z4
c

(
∂2w

∂ξ2

)2 (
∂3w

∂t ∂ξ2

)2

+

(
∂w

∂ξ

)2(
∂2w

∂t ∂ξ

)2

− 2z3
c

(
∂2w

∂ξ2

)(
∂3w

∂t ∂ξ2

)2

+ 2z2
c

(
∂w

∂ξ

)(
∂2w

∂ξ2

)(
∂2w

∂t ∂ξ

)(
∂3w

∂t ∂ξ2

)
− 2zc

(
∂w

∂ξ

)(
∂3w

∂t ∂ξ2

)(
∂2w

∂t ∂ξ

) )
cos3 θdAdξ (A.28)
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An assumption similar to Eq. A.27 is taken while calculating the Rayleigh-dissipation
function for the cable to obtain Eq. 2.34. Eqs. A.27 and A.28 upon integrating over
respective cross section area, truncating higher order terms and summing together results
in total Rayleigh dissipation function, Re, presented in Eq. 2.35. Further, Re is calculated
over the entire length by expanding the Taylor’s series for the velocity ẇ (ξ, t) about the
center of the fundamental element

ẇ (ξ, t) = ẇ

(
Le
2
, t

)
+

(
ξ − Le

2

)
∂ẇ

∂ξ

(
Le
2
, t

)
+

1

2

(
ξ − Le

2

)2
∂2ẇ

∂ξ2

(
Le
2
, t

)
(A.29)

A.3.1 Zigzag Pattern

Using Eq. A.18 , the total energy loss rate of the zigzag pattern can be found by calculating
the Rayleigh dissipation function for each of the four sections as

Re−zigzag =

∫ L1

0

dRe|zc=h̄ +

∫ L2

L1

dRe|zc=− tan θξ+2b̄+h̄ +

∫ L3

L2

dRe|zc=−h̄ +∫ Le

L3

dRe|zc=tan θξ−4b̄−3h̄ (A.30)

Assume that the four integrals on the right hand side can be termed as R1, R2, R3 and
R4, respectively. Using Eq. 2.35, R1, R2, R3 and R4 can be simplified by integrating over
their respective limits and written as (assume ẇ (ξ, t)|ξ=Le

2
= ẇ∗ (t)):

R1 =
1

2

[
CbIb(L1) + (CcAc cos3 θ)(h̄2L1)

](∂2 ẇ∗

∂ξ2

)2

(A.31)

R2 =
1

2

[
CbIb(−L1 + L2) +

(
CcAc cos3 θ

)( (
4b̄2 + 4b̄h̄+ h̄2

)
(−L1 + L2)

+

(
−L

3
1

3
+
L3

2

3

)
tan2 θ +

(
−L

2
1

2
+
L2

2

2

)(
−4b̄ tan θ − 2h̄ tan θ

))](∂2 ẇ∗

∂ξ2

)2

(A.32)

R3 =
1

2

[
CbIb(−L2 + L3) + (CcAc cos3 θ)h̄2(−L2 + L3)

](∂2 ẇ∗

∂ξ2

)2

(A.33)
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R4 =
1

2

[
CbIb(−L3 + Le) +

(
CcAc cos3 θ

)( (
16b̄2 + 24b̄h̄+ 9h̄2

)
(−L3 + Le)

+

(
−L

3
3

3
+
L3
e

3

)
tan2 θ +

(
−L

2
3

2
+
L2
e

2

)(
−8b̄ tan θ − 6h̄ tan θ

))](∂2 ẇ∗

∂ξ2

)2

(A.34)

Upon summation of Eqs. A.31 —A.34, we get the total energy loss rate within the
fundamental element of zigzag pattern mentioned in Eq. 2.36.

A.3.2 Diagonal Pattern

The cables on the side and bottom sections in the diagonal pattern do not contribute to
the energy loss, as the cables for those sections will not strain during bending. Hence, the
energy in the cable is assumed to be lost from the element on the top surface only.

For the diagonal wrapping pattern, the zc coordinate values of the center of cable can
be expressed as

zc (ξ) = h̄, 0 ≤ ξ ≤ Le (A.35)

The energy dissipation rate for the fundamental element can be simply written as

Re−diagonal =

∫ Le

0

dRe|zc=h̄

=

∫ Le

0

{
1

2

[
CbIb + CcAch̄

2 cos3 θ
](∂2 ẇ∗

∂ξ2

)2
}
dξ

(A.36)

The simplification of A.36 results in Eq. 2.37.

A.4 Hamilton’s principle

Eq. 2.50 can be written as:

δ

∫ t1

to

(∫ l

0

1

2
K1 (ẇ)2 dx

)
dt− δ

∫ t1

to

(∫ l

0

(
1

2
B1

(
∂2w

∂x2

)2

+B2
∂2w

∂x2
+B3

)
dx

)
dt

−
∫ t1

to

(∫ l

0

D1

(
∂2ẇ

∂x2

)
δ

(
∂2w

∂x2

)
dx

)
dt = 0 (A.37)
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Here, the third term has been simplified using Eqs. 2.42 and 2.51. Eq. A.37 is evaluated
using integration by parts as

−
∫ t1

t0

(∫ l

0

K1ẅ δw dx

)
dt−

∫ t1

t0

(
B1
∂2w

∂x2
δ

(
∂w

∂x

)∣∣∣∣l
0

−B1
∂3w

∂x3
(δw)|l0 +

∫ l

0

B1
∂4w

∂x4
δw dx

)
dt−

∫ t1

t0

(
B2 δ

(
∂w

∂x

)∣∣∣∣l
0

)
dt−

∫ t1

t0

(
D1

∂2ẇ

∂x2
δ

(
∂w

∂x

)∣∣∣∣l
0

−D1
∂3ẇ

∂x3
(δw)|l0 +

∫ l

0

D1
∂4ẇ

∂x4
δw dx

)
dt

(A.38)

The terms can be re-organized and written as:∫ t1

t0

{∫ l

0

[
B1
∂4w

∂x4
−K

1
ẅ + D1

∂4ẇ

∂x4

]
δwdx

}
dt

+

∫ t1

t0

{∫ l

0

[
−
(
B1
∂2w

∂x2
+D1

∂2ẇ

∂x2
−B2

)
δ

(
∂w

∂x

)∣∣∣∣l
0

+

(
B1
∂3w

∂x3
+D1

∂3ẇ

∂x3

)
(δw)|l0

]
dx

}
dt

(A.39)

By setting the two expressions within the braces in each term of Eq. A.39 equal to zero,
we obtain the PDE and the boundary conditions shown in Eq. 2.52 and 2.53, respectively.

A.5 Solution procedure for Kelvin-Voigt damped sys-

tem

To evaluate the frequency response function of the homogenized cable-harnessed beam
structure with Kelvin-Voigt damping, we assume an impulse excitation at x = x0 at t = 0.
The governing equation of motion shown in Eq. 2.52 becomes

K1ẅ +B1w
′′′′ +D1ẇ

′′′′ = f0 δ(t) δ(x− x0) (A.40)

Since Kelvin-Voigt damping is a proportionally damped system, the mode shapes re-
mains identical to the undamped system. Also, the solution of the equation can be written
in a variable separable form
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w (x, t) =
∞∑
n=1

φn (x) Γn (t) (A.41)

where φn(x) is the assumed mode shape function of the beam that varies with the
boundary condition [72]. For example, the clamped-free beam mode shape can be written
as

φn (x) = An

{
cos (βnx)− cosh (βnx)− cos (βnl) + cosh (βnl)

sin (βnl) + sinh (βnl)
[sin (βnx)− sinh (βnx)]

}
(A.42)

where An are the mass normalized coefficients of the homogenized cable-harnessed
system such that the following orthogonality conditions hold:

∫ l

0

K1φk (x)φn (x) dx = δkn (A.43a)∫ l

0

B1φk (x)φ′′′′n (x) dx = ω2
kδkn (A.43b)

Now, to solve the Eq. A.40, substitute the displacement from Eq. A.41, multiply with
the kth mode shape and integrate over the domain of the homogenized beam to obtain:

Γ̈k (t) +
D1ω

2
k

B1

Γ̇k (t) + ω2
kΓk (t) = f0

(∫ l

0

φk (x) δ(x− x0)dx

)
δ(t) (A.44)

Define the modal damping ratio of the system as

ζk =
D1ωk
2B1

(A.45)

Simplifying Eq. A.44, we obtain

Γ̈k (t) + 2ζkωkΓ̇k (t) + ω2
kΓk (t) = f0φk(x0)δ(t) (A.46)

On applying the Laplace transform to this equation, we get
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s2Γk (s) + 2ζkωksΓk (s) + ω2
kΓk (s) = f0φk(x0) (A.47)

The temporal variable can hence be written as

Γk(s) =
f0φk(x0)

s2 + 2ζkωks+ ω2
k

(A.48)

In order to obtain the receptance FRF, substitute the above equation in the Laplace
transform of Eq. A.41 to obtain

FRF (x, x0, ω) =

∣∣∣∣∣
∞∑
n=1

φn(x)φ(x0)

−ω2 + j(2ζnωnω) + ω2
n

∣∣∣∣∣ (A.49)

A.6 Solution procedure for hysteretically damped sys-

tem

To evaluate the frequency response function of the homogenized cable-harnessed beam
structure with hysteresis damping, we assume an external forcing function with an impulse
excitation at x = x0 at t = 0. The governing equation of motion shown in Eq. 2.54 becomes

K1ẅ +B∗1w
′′′′ = f0 δ(t) δ(x− x0) (A.50)

Since the hysteretic (structural) damping is also a proportionally damped system [108],
the solution to the EOM can be written in a variable separable form as it was earlier
written in Eq. A.41. Hence, on substitution of this solution in Eq. A.50, we obtain

K1

∞∑
n=1

φn (x) Γ̈n (t) +B∗1

∞∑
n=1

φ′′′′n (x) Γn (t) = f0 δ(t) δ(x− x0) (A.51)

Following the similar procedure for the solution as shown in the previous section, the
above equation is multiplied by φk(x) and integrated over the length of the homogenized
beam. Using B∗1 = B′1(1 + jηCH), B′1 = B1, and Eq. A.43, the previous equation is
simplified as
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Γ̈k (t) + (1 + jηCH)ω2
kΓk (t) = f0φk(x0)δ(t) (A.52)

On applying the Laplace transform, the temporal variable is obtained as

Γk(s) =
f0φk(x0)

s2 + (1 + jηCH)ω2
k

(A.53)

The receptance FRF for the hysteretically damped system is hence written as:

FRF (x, x0, ω) =

∣∣∣∣∣
∞∑
n=1

φn(x)φn(x)

−ω2 + (1 + ηCH)ω2
n

∣∣∣∣∣ (A.54)

Here, ωn is the nth natural frequency of the undamped system.

A.7 Energy loss in one vibration cycle of a cable due

to the two damping models

For a Kelvin-Voigt model, the energy dissipated over one vibration cycle of the cable
(modeled as string) is calculated using:

WKV = ηkcT

∫ T1

0

∫ lC

0

(
∂2v

∂x∂t

)2

dxdt (A.55)

Here, T1 is the period of vibration and lC is the length of cable under tension T . Also,
v (x, t) is the displacement of the cable.

Similarly, for a hysteretically damped model, the energy dissipation is found using:

WH = (jηhc)T

∫ T1

0

∫ lC

0

(
∂v

∂x

)(
∂2v

∂x∂t

)
dxdt (A.56)

Substituting the standing waveform of a cable v (x, t) = A cos (kx) sin (ωt) in both of
these equations, we obtain Eq. 2.76 after simplification of integrals.
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Appendix B

Supplementary information on
modeling of cable-harnessed plate
structures presented in Chapter 5

B.1 Coefficients in cable strain energy expressions

The following equations are the expansion of the coefficients defined for the cable’s strain
energy written in Eqs. 5.11, 5.16, 5.15, 5.18 and 5.19:

C1 =
T 2

E2
cA

2
c

(B.1)

C2 =
Tz2

c cos2 θ

EcAc
+ z2

c cos4 θ (B.2)

C3 =
Tz2

c sin2 θ

EcAc
+ z2

c sin4 θ (B.3)

C ′3 =
Tz2

c

EcAc
+ z2

c (B.4)
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C4 =
Tz2

c

EcAc
+ 4z2

c cos2 θ sin2 θ (B.5)

C ′4 =
Tz2

c

AcEc
(B.6)

C5 =
T cos2 θ

EcAc
(B.7)

C6 =
T sin2 θ

EcAc
(B.8)

C ′6 =
T

EcAc
(B.9)

C7 =
2Tzc cos2 θ

EcAc
(B.10)

C8 =
4Tzc sin θ cos θ

EcAc
(B.11)

C9 =
2Tzc sin2 θ

EcAc
(B.12)

C ′9 =
2Tzc
AcEc

(B.13)

C10 =

(
2Tz2

c cos θ sin θ

EcAc
+ 4z2

c cos3 θ sin θ

)
(B.14)

C11 =

(
2Tz2

c cos θ sin θ

EcAc
+ 4z2

c cos θ sin3 θ

)
(B.15)

C12 =
2 T cos θ sin θ

EcAc
(B.16)

C13 = 2z2
c cos2 θ sin2 θ (B.17)

B.2 Coefficients in total strain energy expression of a

periodically wrapped cable-harnessed plate

In this following sub-sections, the coefficients shown in Eq. 5.33 are expanded in terms of
the system parameters for both the periodically wrapped patterns in cable-harnessed plate
system. As well, the coefficients in the governing equation of motion, Eq. 5.36, are also
listed.
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B.2.1 Zigzag pattern

H1 =
T 2

EcAcL2 cos θ
+

1

hEp

(
N2
x +N2

y − 2νNxNy + 2 (1 + ν)N2
xy

)
(B.18)

H2 = D +
EcAcz

2
c cos3 θ

L2

+
Tz2

c cos θ

L2

+
Nxh

2

24
(B.19)

H3 = D +
EcAcz

2
c sin4 θ

L2 cos θ
+
Tz2

c sin2 θ

L2 cos θ
+
Nyh

2

24
(B.20)

H4 = 2D (1− ν) +
4EcAcz

2
c cos θ sin2 θ

L2

+
Tz2

c

L2 cos θ
+
Nxh

2

24
+
Nyh

2

24
(B.21)

H5 =
T cos θ

L2

+Nx = 0 (B.22)

H6 =
T sin2 θ

L2 cos θ
+Ny = 0 (B.23)

H7 = 0 (B.24)

H8 = 0 (B.25)

H9 = 0 (B.26)

H10 =
Nxyh

2

6
= 0 (B.27)

H11 =
Nxyh

2

6
= 0 (B.28)

H12 = 2Nxy = 0 (B.29)

H13 = 2νD +
2EcAcz

2
c cos θ sin2 θ

L2

(B.30)

B.2.2 Diagonal pattern

H1 =
T 2

EcAc (L1 + L2 cos θ)
+

1

hEp

(
N2
x +N2

y − 2νNxNy + 2 (1 + ν)N2
xy

)
(B.31)

H2 = D +
EcAcz

2
c cos3 θ

L2

+
Tz2

c cos θ

L2

+
Nxh

2

24
(B.32)
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H3 = D + EcAc

{
1

L2 cos θ

(
Tz2

c sin θ

EcAc
+ z2

c sin4 θ

)
+

1

L1

(
Tz2

c

EcAc
+ z2

c
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+
Nyh

2

24
(B.33)

H4 = 2D (1− ν) +
4EcAcz

2
c cos θ sin2 θ

L2

+
Tz2

c

L2 cos θ
+
Nxh

2

24
+
Nyh

2
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(B.34)

H5 =
T cos θ

L2

+Nx = 0 (B.35)

H6 =
T sin2 θ

L2 cos θ
+
T

L1

+Ny = 0 (B.36)

H7 =
2Tzc cos θ

L2

(B.37)

H8 =
4Tzc sin θ

L2

(B.38)

H9 = −2Tzc sin2 θ

L2 cos θ
+

2Tzc
L1

(B.39)

H10 =
Nxyh

2

6
+

2Tz2
c sin θ

L2

+
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2
c cos2 θ sin θ

L2

(B.40)

H11 =
Nxyh

2

6
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2Tz2
c sin θ

L2

+
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2
c sin3 θ

L2

(B.41)

H12 =
2T sin θ

L2

+ 2Nxy = 0 (B.42)

H13 = 2νD +
2EcAcz

2
c cos θ sin2 θ

L2

(B.43)
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