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Abstract

With the rise of artificial intelligence and machine learning, it is highly desired to find

a more efficient neural network architecture for real-life applications. In this paper we

propose a novel convolution neural network (CNN) architecture known as triple-pool net-

work (TP-Net), to achieve light-weight training and classification processes. We will firstly

provide a comprehensive review on the state-of-the-art, and give a detailed description on

the proposed TP-Net.

To verify its efficiency, extensive experiments are conducted to compare its performance

in terms of training time, error rate (or accuracy), and CPU load in flops, to a number

of recently reported CNN architectures, where a well-known publicly available datesets,

including CIFAR 10/100, German traffic signs, and SVHN.

The network is designed for a convolution neural network(CNN) and can be read-

ily used for image classification or even light weight authentication. We have carefully

designed the network to address the gradient vanishing problem that persists in several

larger neural network architectures and also addressed the problem of feature loss while

reducing dimensions in the pooling layer.
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Chapter 1

Introduction

1.1 Problem Statement

With the rise of machine learning and artificial intelligence at the forefront, the constant

need of technology and the newer ways to find an efficient network that can be deployed

in a small scale system remains to be a tedious task as of date. Much of the state of

the art networks focuses on the fact of accuracy when as failing to reduce the size of the

parameters of the network. An ever evolving light weight neural network that can take on

the tasks of the bigger challenge and to compete with the large networks while maintaining

the accuracy still remains to be a great area of research.

1.2 Work Proposed

In this thesis we will explore the possibility of the domain of convolutionl neural network

and how we successfully tackled the challenge of designing a light weight network that

has the capability of being used in a mobile app or such system due to it using minimum

memory usage which in turn can open up a new world of possibilities. In addition to that

we have subsequently proved that to build a light-weight network there are several factors
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that have to be taken into consideration as well such as-FLOPs(Floating Operation), Size

of the network, number of parameters etc.

To make it an even comparison between the networks mentioned in our experiments

we have kept the apparatus used for the simulations for all the networks to be the same.

The network mainly consists of three sub-parts and also we explore the advantages of

how important pooling is in a neural network architecture. Many research have found out

and mitigated the vanishing gradient problem by using a globally connected architecture.

Here we will explore such a architecture but also maintaining a max and average pooling in

the consecutive layers after the convolution layer to address feature loss during dimensional

reduction. Our novel architecture introduces a three pooling system and afterwards we

will see how it manages to reduce not only the training time but also manages to use

less resources, meanwhile converging faster with better accuracy, also using less number of

parameters.

The thesis consists of 5 chapters in total. The current chapter introduces us about the

problem statement and the work proposed. It is followed by Chapter 2 which talks about

the prior research work done in the field and Chapter 3 talks about the proposed Triple

Pool Network in full details. Chapter 4 explains us about the experiments done in the

various fields and the following analysis made based on the experiments. The last chapter

guides us through the future scopes and conclusion.
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Chapter 2

Literature Review

Since Hinton[23] proposed a deep convolution network architecture on ImageNet compe-

tition in 2012, convolution neural network has gone on to make a revolution in the last

decade in the image classification and recognition sector. Deep neural networks are known

to extract rich features from raw pixel image data and achieves great performance in the

classification sector.

While deep networks as shown in Fig 2.1 have commendable performances in classifi-

cation tasks a challenge yet remains to deploy them in embedded systems and small hand

held devices. Szegedy [44] came up with a network named Inception where he conducted

several experiments and reduced the computational burden of the network architecture.

Howard et al.[19] came up with MobileNet which further improved on the research and

developed a network that was able to be deployed for mobile and embedded vision ap-

plications. With the increased research of neural networks, more focus always remained

towards building a optimized network that reduces the computational burden.

There are several methods that were studied as well in order to avoid overfitting of

the model at the same time. For example dropout[41] or dropconnect[50] which turns

off certain neurons by using a certain probability during the training phase. Moreover,

techniques like Batch Normalization[20] and Weight Normalization[37] enables the use of

higher learning rates and reduces the dependability of careful initialization in the primary

stages of designing the model.
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Figure 2.1: A typical CNN Structure

Our proposed novel architecture not only explores the scope of a lightweight and fast

efficient network but meanwhile could prove to be a game changer in the greater prospect

due to the fact that it is less computation expensive and requires less training time. We

have already implemented the architecture on standard data-sets such as Cifar-10/100[24],

MNIST[26], SVHN[31] and we achieved state of the art accuracy in the German Traffic

Dataset[18].

The architecture achieves similar performances compared to the existing state of the

art networks such as VGG[40], Inception[44] and other networks but meanwhile using less

number of parameters and reduced training times to match the performance. Even with

the revolution in the image classification sector some networks have a huge training time

and is computationally expensive so it remains still a challenge to integrate it with mobile

systems.

Ever since the development of the neural network architectures, activation functions

were found to play an important part in terms of convergence speeds and accuracy. Linear

Rectified activation Function (RELU)[1] is such a type of activation function that helps

to boost CNN performances resulting in faster convergence compared to other activation

functions such as tanh[25], sigmoid[48].
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2.1 Exploring Different Neural Network Architectures

2.1.1 VGG

This work demonstrated by Simonyan et al. [40] focused on investigating the effect of the

depth of convolutional networks on the accuracy for large scale image recognition tasks.

Simonyan [40] demonstrated different experiments on depth-wise convolution and found

that it has a significant effect on the increase in accuracy for image classification tasks.

The proposed VGG network as shown in Fig 2.2 secured the first and second place in the

ImageNet Challenge in 2014 submission across numerous teams. Same preprocessing steps

were performed to maintain a fair evaluation in their experiments and a image size of fixed

RGB 224x224 was used as input in the network.

Figure 2.2: VGG Architecture

The following Fig [2.1] represents the proposed VGG architecture where all the image

dimensions of the depth-wise convolution are marked.
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2.1.2 Inception

Although deep convolution network are successful in most of the image classification tasks,

a challenge yet remained to introduce its usability in terms of mobile vision tasks and big

data. Szegedy et al.[44] demonstrated in his work how to dig deeper towards a network

that can be computationally less expensive and uses less resource in order to increase the

efficiency. Szegedy[44] explored ways in developing neural networks that aim at utilization

the added computation as efficiently as possible by using suitable factorized convolutions

and aggresive regularizations.

Figure 2.3: Inception v3 Architecture

Fig 2.3 denotes a Inception architecture where skip connections are explored in com-

parison to depthwise convolutions as well. Hence, as a results the authors are able to bring

down the number of parameters required for the network to a reasonable margin.

6



Figure 2.4: Globally Connected Network

2.1.3 GC NET

Deep neural networks although have impressive performance in terms of classification task

can however, be subject to the information being lost in the last few layers as more number

of layers accumulate. Zhi Chen et al.[9] demonstrated a approach that mitigated the issue

by designing a globally connected network that mitigates to solve the problems of feature

being lost from the intermediate layers to the last layers. Moreover, they also tried to solve

the gradient vanishing problem as well.

Fig 2.4 demonstrates the architecture of a Deep-Global Connected Network. Zhi[9]

also designed a activation function, namely GRELU (generalized multi-piecewise ReLU

activation function) that has the capability to approximate more complex and flexible

functions and has the capability to match the performance of the state of the art current

activation functions.

2.1.4 Network in Networks

Min et al.[28] proposed a novel structure called Network in Network as demonstrated in

Fig 2.5 which enhanced the discriminability for local patches within the receptive field. In

a conventional neural network structure is always more based on linear filters and then
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Figure 2.5: NIN Structure

followed by a activation function but NIN on the other hand was based on micro neural

network with more complex strictures which is able to extract data from the receptive

fields.

The NIN structure explored the possibility of stacking different layers as well, followed

by a global average pooling layer.

Min[28] explores multi layer perceptrons because of its compatibility with convolution

neural networks and also for the fact that it can be used for the purpose of re-use [4].

fn
i,j,kn = max(wn

knf
n−1
i,j + bkn , 0) (2.1)

Here, n represents the nuber of layers in the multi layer perceptron, w represents the

weight of the neurons and x represents the input.

One of the main contributions of the paper was to employ a strategy called global aver-

age pooling which is able to replace the traditional fully connected layer in the traditional

CNN structure. The last convolution layer in a traditional architecture are usually vector-

ized and fed into the fully connected layer then followed by a softmax logistic regression

layer [15] [58]. The main idea behind using global average pooling was to take advantage

of each of the average of the feature map and directly feeding the resulting vector into the

softmax layer, in order to generate one feature map for each corresponding category for

classification purposes.
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2.1.5 Resnet 50

Figure 2.6: Architecture Comparisons of Resnet vs VGG and Feedforward Neural Networks

Kaiming et al.[17] demonstrated that a residual learning framework is able to ease the

training of deep neural networks substantially than those traditional deep neural networks.

As the neural network architecture as shown in Fig 2.6 gets more deeper the gradient

vanishing/exploding problem stil persists which creates problems in the convergence of the

network. One other problem that also exits is that with the network depth increasing the

accuracy also starts to get saturated at the same time and also degrades rapidly. Although

this problem is not a result of overfitting but simply stacking more layers cam result in an

higher error rate as stated in [16][42].
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Chapter 3

Triple Pool Network

The Triple Pool Network or the TP Net is a neural network architecture that is designed for

image classification and recognition purposes to be used in a convolution neural network

or other networks for similar tasks.

One of the most important phases of a neural network architecture is the pooling layer

as it is responsible for dimensional reduction of features in a data-set. So, keeping that

in mind we designed a novel architecture that consists of three types of pooling: max,

average and global. We were inspired by the work of GC net and in particularly after

reading this paper it motivated us to find an even better solution of addressing the same

tasks in the imaging sector by using more lightweight structures. The main goal of all

these architectures is to minimize the error rates in an image classification or similar tasks.

There has been significant research done on such architectures in the past such as

VGG-16, Resnet, Inception but most of these architectures have several layers and consists

of huge number of parameters. Even though they rank up to a greater accuracy rate in

classification rates however, the problem of implementing them in real life tasks remain a

challenge due to the computational inefficiency of these architectures. In 2019 the GC Net

addressed the issue by obtaining similar results but using a smaller number of parameters

compared to its predecessors.

Inspired by the GC net, there were some future scopes in the paper that mentioned that
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Figure 3.1: TP Net Architecture

as the structure is lightweight It can potentially be used in real life mobile applications but

however in the paper they did not address the issue whether the architecture is feasible to

implement in real life.

So, in our research we designed the TP net, not only ranking up in terms of accuracy

compared to the previous networks in the time-frame but also the we reduced the number

of parameters on the architecture itself to match the performances. Fig 3.1 illustrates the

design of our TP Net Model. However, it is not the only advantage of our network, our

network requires less training time per epoch compared to even other lightweight networks

and at the same time a smaller number of convolution layers. So, in order to prove that

we did a similar experiment to calculate the number of FLOPS (Floating point operation

11



per second).

In order to conduct such an experiment, we need to keep some of the conditions the

same to make sure it was a fair test. So, our apparatus or the hardware, the GPU used to

conduct the experiment was same for the comparison of the networks as it plays a vital role.

So, at the end we found a that not only our network ranks up to the accuracy and error

rate mark but at the mean time it converges more fast compared to other conventional

networks, meanwhile also taking very less time during the training of each epoch. To add

to that the flop comparison made so much sense and it was really visible that how much

our network outperformed the other ones in terms of computational memory usage.

Therefore, it can be implied that the network is now proven to be applied in real

life mobile applications even if needed for better and faster performances. Now coming

back to the theoretical aspect of the network, its triple pool meaning the three types of

pooling has its advantages in their own unique ways. The max pooling network overcomes

the issues if there are more variances in the data-set it takes the maximum value while

doing dimensional reduction. On the other hand, the average pooling tries to make a fair

comparison if there is less variance in the data-set and considers most of the values while

doing dimensional reduction.

On the other hand, the global pooling decreases the dimension rapidly and turns the 3d

data into a 2d shape and hence saves up on computational cost. The main reason behind

using the triple pool was that the cons of the other pooling types could be overcome by

the pros of another. When conducting our experiments our theory was proven to be in the

right track when we found significantly important findings from our experimental analysis.

For the smaller data-sets we implied a bias within the activation function to get more

proper results and for larger data-sets we deployed batch normalization within our archi-

tecture to achieve the desired performances while maintaining all the other parameters.

We have reached state of the art results in the German Traffic data-set and almost a very

negligible error rate on the MNIST data-set and also however for the larger data-sets such

as SVHN and CIFAR-10, we managed to match the performances of the other networks in

terms of accuracy while reducing the parameters and also making our architecture more

computationally less expensive.
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Figure 3.2: Advantages of Multiple Pooling

3.1 Theory

3.1.1 Gradient Vanishing Problem

Yj = f(
∑
i

Wi,jXi) (3.1)

Considering a simple neural network where F is the activation function and W is the weight

and X is the input, y is the output. Moving forward from here the back-propagation

equation for the network becomes:

∂

∂Wi,j

=
∂E

∂Yj
.
∂Yj
∂Wi,j

(3.2)

Since F’ will be close to zero for larger and as well as small inputs, the gradient as the

layer progresses and goes deep into the network might be very small. Hence, as a result

the gradient vanishing problem can arise. So, to mitigate this issue, we have introduced

a careful global connection between each layer to the last layer so that this problem does
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not exist. Moreover, the first layer is connected to the last layer through global average

pooling to ensure that rich features from the top layers are extracted into the last layers

for classification tasks.

Although mixed pooling have been employed in the past[57] to reduce computational

burden, but the gradient vanishing problem still persisted and it does effect the results in

the long run. But, in our new designed system, we carefully extracted rich hierarchical

features from every convolution layer by deploying both max pooling and average pooling

but in a new strategy. While after the max pooling, the new features went onto the next

convolution layer, the average pooling was deployed in a different way, where the features

extracted from each layer were concatenated and fed into the last layer concurrently. As

a results, the rich hierarchical features from both the types of pooling were taken into

consideration and as Fig 3.2 demonstrates, disadvantages of one type of the pooling where

it missed some features were overcome by the other pooling layer. Furthermore, the smooth

connection between the interconnected layers ensured that gradient vanishing or exploding

problem would not persist within the last layers as the layer went deep and at the same

time reducing the size of the model due to the pooling layers ensured a lightweight yet

powerful network was designed.

3.1.2 FLOPs

There are a few factors that determine the success of the neural network design.

• Data-set size

• Model design

• Computational cost

Due to the modern dataset size that demands to be larger in size, the demand for

powerful processors and GPUs are constantly on the rise. In order to mitigate this issues

scientists constantly try to design more efficient and powerful hardware systems to sig-

nificantly reduce the training time. But on the other hand in order to tackle this issue,
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designing a better efficient neural network architecture can prove to be pivotal as it can

address this problems[14].

Convolution layer FLOPs can be calculated by the following:

FLOPs = Sw.Sh.Xd−1.Xd.kw.kh (3.3)

Sw refers to spatial width of the kernel, Sh refers to the spatial height of the kernel, Xd

refers to the spatial depth of the current layer, Xd-1 refers to the previous layer depth and

kw,kh refers to the kernel width and the kernel height. In order to calculate the FLOPs for

our model and the models in comparison, we have used the built in function of FLOPs in

keras to make an even comparison between our models.

In order to maintain the capabilities of the cutting edge processors, neural network

models need to be significantly smaller in order to be accommodated in mobile phone

applications. While VGG-16, a dense neural network requires 15.8 GFLOPs of compute

per image and 552 MB of model size, mobile models on the other hand have a relatively

limited FLOPs around the 600m and a model size of 5 MB [38]. And for more significant

operations such as always wake on screen or facial recongnition an ideal size of the model

should have a relatively smaller FLOPs of 60m or less.

3.2 Activation Function

Inside a neural as Fig 3.3 illustrates, network inputs are fed into the neurons of the input

layer and each neuron is subject to a subsequent weight and multiplying the weight an the

input gives us the concurrent output for that neuron, which in turn is transferred to the

next layer.

Out =

i,j∑
0

Wj ∗Xi +Bb (3.4)

Activation function serves as a critical role in between the input for the current layer

and the output that is transferring into the next layer. Activation functions can range from
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Figure 3.3: Typical Neural Network Structure

being just a simple step function to a more complex non-linear function which can help tp

learn complex data and compute and learn any function and helps in providing accurate

predictions.

Fig 3.4 shows the comparison between 4 non linear activation functions that are used

in a common neural network setup. We can clearly see that some of the activation function

is bounded between 0 and 1, where some exhibit a behaviour of not showing anything for

negative values of x. On the other hand more complex and later functions such as elu can

enable us in learning critical features when the value of x is tending towards more negative.

3.2.1 Sigmoid

Θ (x) =
1

1 + e−x
(3.5)

Sigmoid[39] or logistic activation function is bounded between a value of 0 to 1. One

of the facts is that it prevents the jumps in output values and ensures a smooth gradient

and return helps in clear predictions.

But some of the limitations of sigmoid can be a vanishing gradient problem for very

high or loww values of x, where it exhibits behaviours of showing no changes to the pre-
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Figure 3.4: Different Activation Functions

diction for such values. On a more larger prospect it in turn can disable the network from

learning further or is too slow in converging to a global minima and can turn out to be

computationally more expensive.

3.2.2 Tanh

e2x − 1

e2x + 1
(3.6)

Compared to its predecessor, tanh[45] provides the flexibility in making it easier for

model inputs to be more robust when it is near negative, neutral or for positive values.

But its limitation is still very similar to the sigmoid function as well.
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3.2.3 ReLu (Rectified Linear Unit)

f(x) =

x, if x ≥ 0

0, otherwise
(3.7)

ReLu[49] on the other hand provides the network in being computationally more ef-

ficient and allows the network to diverge more quickly. But one of the disadvantages of

this widely used function is that when the inputs approach zero or negative, the gradi-

ent vanishing problem still exists and there are problems when the network is performing

back-propagation.

3.2.4 eLu (Exponential Linear Unit)

f(x) =

x, if x ≥ 0

α(ex − 1), otherwise
(3.8)

eLu[12] on the other hand similar to its predecessor relu, helps in enabling the network

to converge faster and is also less computationally expensive. But its main advantage lies

on the fact that since it has a value in the negative region it helps the network to learn for

values that are negative and in return can help to mitigate the vanishing gradient problem.

3.2.5 Design of the Network

Our main design of the architecture was motivated from the design of the GC NET ar-

chitecture where the author mitigated the vanishing gradient and also the interconnection

between the layer issue. Our structure improves on the fact that as a triple pooling strat-

egy is deployed, the max and the average pooling addresses the vanishing gradient problem

while decreasing the dimension of the extracted features.
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3.2.6 Size

The size of the network plays an important role when the model is to be deployed in a

embedded system or for real time tasks. If the size of the network is too large then more

computational resources will need to be allocated for performing tasks which is the scenario

that should be avoided.
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3.3 Channel Authentication

Figure 3.5: PHY-layer authenticationin edge computing scenarios

Open transmission media can be subject to various threats of attack and security is

always of vital importance in the wireless communication sector. Among the security

protocols, user authentication is a critical role in ensuring the legitimate use of network

resources as Fig 3.5 suggests. More traditional based methods like cryptography based

security can result in higher arithmetic operations from the sender and receiver sides. In

such circumstances it can lead to more hardware complexity and consumption of power

in the battery powered sector of Internet of things (IoT) devices where it is highly not

recommendable due to the limited resources wireless terminals with limited storage and

computing power.

The rich characteristics of physical-layer (PHY-layer) channel state information (CSI)

of wireless links have been taken as a signature to authenticate the senders. Compared to

its predecessor, the cyptography method, PHY-layer authentication is more lightweiht in

nature and reduces the computational burden. Moreover, PHY-layer authentication can

significantly achieve a trade-off between the level of security and latency requirements[27].

The spatial decorrelation property of the PHY-layer characteristics are exploited and
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applied in a stochastic model manner. Some of these PHY-layer characteristics include re-

ceived signal strength (RSS)[59], CSI [54][47], channel phase response[53], channel impulse

response [29], and hardware fingerprints as well. For the user authentication purpose a

binary hypothesis test(schotastic model) is used to make decisions based on the PHY char-

acteristics and predefined threshold. Although, the accuracy of some of these approaches is

highly reliant on the test threshold values that is hard to obtain in a practical environment

setup.

Figure 3.6: The framework of TP-Net based PHY-layer authentication scheme

For PHY-layer authentication scenarios machine learning models have been proved to

be a reliable source and employed by numerous research initiatives [29]-[51] . The study in

[6] uses the k-means algorithm to detect both spoofing attack and Sybil attack based on the

RSS of different transmitters. The support vector machine (SVM) classification is adopted

to identify the radio frequency fingerprinting (RFF) of sensor nodes in IoT [56]. L. Xiao

et al.[55] introduced a spoofing detection scheme that leverages a reinforcement learning

process to accomplish the PHY-layer authentication. X. Wang et al. [52] used a deep neural

network to accomplish the indoor positioning via CSI, which showed a remarkable effect

compared with some other existing methods in two representative indoor environments.

N. Wang et al. [51] proposed a PHY-layer authentication scheme based on ML to detect
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spoofing attack. Chatterjee et al. used a ML model to enhance the IoT security [6].

The above schemes, although being claimed effective in the considered scenarios, used

conventional ML models with a large number of layers and parameters, leading to signifi-

cant computation time and power consumption. They are not suitable for edge computing

where some nodes are subject to stringent limitation on power consumption, computation,

and storage. For a ML model to be applied under the scenario of edge computing, the effi-

ciency of such ML model can not be just measured by ML metric, we should also consider

the required resources to perform model training and prediction simultaneously.

It is clear that an efficient ML model with resources consideration for the PHY-layer

authentication mechanism in edge computing systems is of great importance. The pa-

per investigates a ML-based PHY-layer authentication scheme, called TP-CNN-PHA, for

lightweight message authentication in edge computing systems. The proposed TPCNN-

PHA scheme incorporates with a ML model containing a novel CNN architecture, namely

Triple Pool Network (TP-Net), which is uniquely featured by using three pooling schemes,

i.e., max pooling, average pooling, and global average pooling (GAP). We train the TP-Net

by using the channel data from a Rayleigh model as well as our testbed built on Universal

Software Radio Peripheral (USRP) [5]-[7], respectively, where extensive simulation is con-

ducted to verify the proposed TP-CNN-PHA scheme and compare with its counterparts.
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3.4 COVID Chest Xray

(a) COVID-19 Chest Xray (b) Pneumonia dataset Xray

Figure 3.7: Covid-19 Analysis Dataset

One of the most interesting dataset that is open for public research is the Chest Xray image

dataset as shown in Fig 3.7. Image processing and machine learning is constantly deployed

in the sector of medical imaging and one of the important sectors is the classification of

correctly labeled images to match performances with modern medical equipments.

The Chest Xray-image dataset [22] consists of 5,862 X-ray images (JPEG) into three

categories, Viral Pneumonia, Bacterial Pneumonia and Normal patients. The Chest Xray

images (anterior-posterior) were a series of images selected from cohorts of patients from

Guangzhou Women and Children’s Medical Center, Guangzhou.

All images that are part of the dataset is screened for quality control, where low resolu-

tion or low quality images were removed in order for efficient analysis. Before the dataset

was made public it was graded by two expert physicians and cleared the data-set for quality

assurance for training in AI systems.

On the other hand, given the state of the current pandemic, much research is deployed

into this image processing field to enable AI systems to help find ways in image processing

for COVID-19 patients. While there are many public datasets available for other chest
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X-ray images, a readily available dataset was always lacking for the COVID-19 research

purposes.

Joseph et. al[10] designed a dataset of collecting COVID-19 chest xray images from

COVID-19 patients in order to help AI based appraoches to dig deep into the research of

predicting and understanding the infection that entails the current pandemic.

Ever since, much research has been conducted in this field[13] [30] to enable image

processing to play any sort of role in finding any patterns or trends in the Xray images of

patients from the data.
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Chapter 4

Results and Analysis

For our experiment part, we have simulated the performance of the TP net on several

standard data-sets and compared its performances with powerful and modern state of the

art neural network architectures.

4.1 Experimental Setup

For our experiments we used the server hph8.eng.uwaterloo.ca =. In order to make a fair

comparison it is important that all our experiments are done using the same experimental

setup. The specifications of the server are outlined in Table 4.1

The connection towards hph8 server was established using a local MacBook machine

that runs on MacOS Catalina 10.15 consisting of a 2.3 GHz Quad-Core Intel i5 processor,

8 GB Ram DDR3 and Intel Iris Graphics 655. The design of the network is mainly built

based on the programming language python[36]. Python[36] serves as the basis of numerous

scientific computing, software development etc. Python is the go to language for these types

of tasks mainly owing to the fact if uts rapid growth of popularity and the accessibility

to many open source libraries. Within python many data manipulation libraries such as

keras[21], pandas[35] serve as the basic foundation of data preprocessing tasks.
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Table 4.1: hph8 Server Specifications

Parameter Specifications

CPU Model Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz

RAM 16 GB

Graphics Card NVIDIA GeForce RTX 2080 Ti

Harddisk 500GB

Table 4.2: Packages Used and its concurrent versions

Package Version

Python 3.7

Keras 2.3.1

Tensorflow 2.0

Pandas 0.23.4

Numpy 1.17.3

Anaconda 1.9.2

Jupyter Notebook 0.34.9

Numpy helps in the pixel level manipulation of the raw image and can help in substantial

tasks like slicing, stacking etc. Keras on the other hand is a API designed for python and

is considered to be one of the most used deep learning framework for designing neural

network architectures. Built on top of Tensorflow 2.0[46], keras also enables the usage of

large clusters of GPU to enable efficient training of the neural network model. Moreover

all the versions of the packages used are outlined in Table 4.2.

For efficient coding purposes we relied on the integrated developer environment(IDE)

called Anaconda[2] and used one of its package, namely Jupyter Notebook[32]. Jupyter

notebook helps in the development of open source software and services for interactive
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computing supporting a range of programming languages. JupyterLab is a interactive

web-based development environment for Jupyter notebooks. The main purpose of using

JupyterLab is that it helps to write plugins more easily and can add new components and

integrate with existing ones.
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4.2 Image Classification

4.2.1 German Traffic Dataset

Figure 4.1: German Traffic Dataset

The German Traffic Dataset consists of 50000 30x30 colour images spanning over more

than 40 classes in total, a sample is shown in Fig 4.1. It can be used for multi classification

problems. A large and real lifelike database that consists of real reliable ground truth data

due to semi automatic annotations.

We have conducted several experiments on this dataset keeping the GPU and all other

computational resources constant in order to make a fair comparison when we are com-

paring metrics like training time. As training on different platforms for different networks

will lead an unfair comparison.
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Figure 4.2: Training Accuracy Graph comparison

Furthermore, one of the motivation behind focusing on this dataset is that real time

autonomous vehicle research is on the rise and different techniques are going under research

to come to a optimum solution. When we trained our dataset we have reached exceptional

results, that too in a very short span of time during the training process as shown in Fig

4.2. To add to that we have managed to significantly reduce both the training time and

also the number of parameters which can have a significant impact and open possibilities

of such a light weight network being deployed in real time applications.

The training and testing loss as both demonstrated in Table 4.3 outlines the reuslts

from our experiments. Overall, in the span of 20 epochs the loss significantly decreased

the number of epochs increased suggesting that there is no overfitting in the network. The

testing accuracy comparisons can be visualized in Fig 4.3.
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Table 4.3: Training and Testing Loss

Network Training Loss Testing Loss

Conv 7 Layers 1.6 8.2

Resnet 50 37 39

Triple Pool Net 0.6 12

GC Net 8.4 16.2

Figure 4.3: Testing Accuracy Graph comparison

We have subsequently added categorical cross-entropy [11] as the loss function in this

case in order to reach a global minima. As we can see from the table, our model outperforms

all the other state of the art neural network architectures in terms of training loss indicating

that our model is furthermore optimized and can mitigate the issue of over-fitting as well.
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Table 4.4: Training and Testing Accuracies

Network Training Accuracy Testing Accuracy

Conv 7 Layers 99.5 98.3

Resnet 50 85.5 83.8

Triple Pool Net 99.8 98.8

GC Net 97.9 96.2

Table 4.5: FLOPs Comparisons

Network FLOPs in Millions

Conv 7 Layers 57.8

Resnet 50 416

Triple Pool Net 4

GC Net 20

Training and Testing The training Accuracy over the span of our training increased

and reached a steady rate of 99.8% which indicates that the network is learning very well

and reaching satisfactory results. In addition to that it also reached upto a 98.8% in the

testing accuracy in our validation set which is very promising for performances in image

recognition tasks in a very wide multi class setup in such a challenging image classification

task as Table 4.4 states. Compared to state of the art network that we simulated in our

lab most of the network either converges too slow and rankings in terms of accuracy and

error rate are not superior compared to our designed networks.

FLOPs One of the most important aspects of our network is the number of floating point

operation it uses. It is visible from Table 4.5 that the number of FLOPs it uses is only 4m

to match the performances of the other networks indicating not only that our network is
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Table 4.6: Parameter Comparisons

Network Parameters

Conv 7 Layers 3.8

Resnet 50 25

Triple Pool Net 0.279

GC Net 0.291

optimized but most significantly it is computationally less expensive and can lead to small

hand held mobile phone applications and in real time applications for small such devices.

Most of the state of the art network fails in this sector as training and validating a model

requires huge amount of resources and increases the computational burden and makes the

task of deploying it in a small handheld device or small applications a very challenging and

tedious task.

Parameters One of the most crucial areas of improvement is the use of less number of

parameters while designing our model. A challenging aspect is to reduce the size of the

model without sacrificing any aspect of the accuracy and error rate. A Resnet which is a

widely established model consists of 25 million parameters in the model. Compared to such

state of the art models, our model only uses 0.279 million parameters which statistically

suggests that our model only uses 1.1% of the parameters compared to a Resnet model

which can be visible in Table 4.6. Such a significant improvement of about 98% more

efficiency to match the same accuracy level is an astonishing improvement yet in itself. It

opens the door of the possibility of a lighweight architecture that is fast yet reliable.

Moreover, one of the motivation behind focusing on this dataset is that real time au-

tonomous vehicle research is on the rise and different techniques are going under research

to come to a optimum solution. When we trained our dataset we have reached exceptional

results, that too in a very short span of time during the training process. To add to that

we have managed to significantly reduce both the training time and also the number of
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Table 4.7: Training Time Comparisons

Network Training Time

Conv 7 Layers 23 s

Resnet 50 84 s

Triple Pool Net 14 s

GC Net 23 s

parameters which can have a significant impact and open possibilities of such a light weight

network being deployed in real time applications.

Training Time The training times are compared between several state of the art neural

network architectures, Table 4.7, where TP net was trained in the fastest time possible and

converging with seemingly impressive results. In order to determine a fair comparison of

the training time we trained some networks in the same experimental setup. Our network

was able to train each epoch in about 14 seconds which suggests a significant improvement

compared to even some state of the art lightweight architectures such as the GC Net itself.

Table 4.8: Size of the Models

Network Size (mb)

Conv-7 46.3

TP Net 3.4

GC Net 3.6

In the long run when training for huge models, it helps the researcher to train in a

short span of time while achieving significantly comparable results to other networks.

While training the model, in order to compare the size of the trained models. We saved

the trained models in our hard-drive and also compare the results. Our overall model was
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very compact and gives the opportunity to be deployed in small devices and embedded

systems due to its minimalist size as Table 4.8 illustrates.
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4.2.2 CIFAR-10

.

Figure 4.4: CIFAR-10 Dataset

CIFAR-10 is a realistic dataset containing 60000 images, 32x32 RGB images in 10

classes where there are almost 6000 images per class. A sample of the dataset is shown in

Fig 4.4.

The dataset is divided into 50000 images for training and 10000 for testing.

From the experimental analysis, as shown in Table 4.9 it was possible to conclude that

a typical TP Net with 5 layers can outperform even the sophisticated GC Net with 8 layers.

An error rate of 9.8% proves that TP nets opens a real wide of possibilities as it is a light

weight network we have also compared it with heavy network architectures like the Resnet

110 or 1001 which uses huge resources and also has more training time but at the end the

accuracy remains somewhat similar.

For our choice of activation function which plays a vital role we have opted towards

chosing ’elu’ because it provides significant advantages over other available function as

talked about before in the TP-net section.

Keeping all the improvements in mind from the previous section we directly compared

the error rate on this dataset which is also very challenging. All the experiments were done

without any prior transfer learning and all the networks were trained from scratch in our
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Table 4.9: Error Rate and Parameter Comparison

Network Error Rate Parameters

GC Net (6 layers) 12.55 0.11

TP Net (5 layers) 9.20 0.9

TP Net

(5 layer non-aug)

10.6 0.6

GC Net

(6 layers)

10.4 0.61

GC Net

(8 layers)

9.38 0.91

Resnet 110 13.63 1.7

Resnet 1001 10.56 10.2

lab in order to determine the best results. Same preprocessing strategies were used across

all the simulations and mostly normalization, batch preprocessing were used.

Moreover, the same activation function and same optimizers were used to ensure that

the results we got from our simulations are fairly consistent and make it more clear about

the advantages of our network.
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4.2.3 CIFAR 100

Figure 4.5: CIFAR 100 Dataset across 100 classes

Spanning across 100 classes and with about 600 images per class, it still remains as one

of the most hardest dataset to train a network in till date as Fig 4.5 demonstrates. The

training set consists of 50000 images and the testing set consists of 10000 images. One of

the most challenging aspects is the number of classes and also very few images that are

there for training.

Table 4.10: Error Rate and Parameter Comparison

Network Error Rate Parameters (million)

Resnet 50 44.74 24

Network in Network 35.74 1

TP Net

(4 layer)

33.23 0.994

We did not employ any transfer learning to this dataset as well and trained the networks

from scratch itself. Results can be improved significantly by using the transfer learning

technique but we opted for training all the networks in order to setup a fair comparison.
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We achieved a significant error rate of 33.23% which is a improved result compared to some

of the networks we tested it against with as Table 4.10 suggests.

Again, same preprocessing technique were applied across all the network. In addition to

that ’adam’ was used as the optimizer and also ’elu’ was our choice of activation function.
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4.2.4 MNIST

Figure 4.6: MNIST DATASET Images

The MNIST database consists of handwritten digits that has a training set of 60,000

examples, and a corresponding test set of 10,000 examples. It is a database of grey-scale

images of 28x28 pixels.It is one of the most standard datasets to test machine learning

algorithms on. An example of the MNIST dataset is outlined in Fig 4.11.

Table 4.11: Validation Accuracy and Parameter Comparison

Network Validation Accuracy Parameters

TP Net 98.91 62,000

LeNet 98.87 182,000

CNN-2 98.86 180,000

MNIST is the starting data-set for any machine learning models. Is is a very compact

handwritten digit challenge with 10 classes. In our experimental setup we tried to match

the validation accuracy of the models and as the results suggest that even though all the
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three networks ranked to the same validation accuracy but the number of parameters our

network used to match the performance was significantly low compared to other models,

referring to Table 4.11.
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4.3 Channel Authentication

Figure 4.7: The authentication rate under different numbers of wireless nodes with channel SNR as 2dB.

(a)The authentication rate of 2 wireless nodes. (b)The authentication rate of 4 wireless nodes. (c)The

authentication rate of 6 wireless nodes. (d)The authentication rate of 8 wireless nodes.

For the development of TP-CNN-PHA which we talked about in our earlier chapter

rigorous experiments were conducted and compared with other methods like traditional

CNN architectures,GC-NET and VGG as well. One set of experiments are conducted using

the Rayleigh simulation data from the National Key Laboratory of Science and Technology

China, for CNN training and testing.

The TP net is implemented with 4 convolution layers with 16 and 32 feature maps

respectively. Global average pooling is applied to the initial first layer to extract a rich set

of features alongside the different layers for the input to the soft-max layer for classification.

Meanwhile, the conventional CNN is modelled with 2 convolution layers which is named

CNN-2 and consists of 8 and 16 feature maps and the activation function applied is relu

as it provides better results in this case.

GC net on the other hand is composed of 3 convolution layers with 3x3 filters and 64

feature maps correspondingly. GAP(Global Average Pooling) is applied to the output of

each convolution layer as the original GC net design and hence we also employed GRELU

as the activation function as stated in the original research work of the model.

A miniature version of the VGG was designed using 7 layers stacked on bottom of each
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other with 64,128,256 feature maps respectively. Here VGG-7 employs elu as the activation

function which yields the best results for this model.

Furthermore, adaptive moment estimation (Adam) is used for training which is an

accelerated gradient algorithm used for optimization of the network.

The performance metric that was mainly focused on this experiment is the AucRate

which entitles the probability of correctly identifying whether a node is legitimate or not

receiving an authentication request.

AucRate =
TP + TN

TP + TN + FP + FN
(4.1)

Here TP is the number of true malicious nodes being detected and TN represennts the

number of legitimate nodes being correctly detected, whereas false positive (FP) referes

to the number of legitimate nodes classified as malicious and (FN) False negative is the

number of malicious nodes that are not detected.

Fig 4.7 shows the results of authentication rate under different nmber of wireless nodes

with the channel noise to signal ration (SNR) as 2dB. It is clear and evident that compared

to its counterparts VGG-7, GC net and CNN-2 TP net yields the most promising results

and even such advantage remains when the number of nodes are increased.
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4.4 COVID Analysis using Machine Learning

Figure 4.8: Chest Xray Image Dataset

The Chest Xray image dataset as shown in Fig 4.8 consists of images of 224x224 size

spanning across three classes. The classes are Normal, Bacterial Pneumonia, Viral Pneu-

monia. There are around 5863 images across all the dataset. The main challenges lie

in undermining the classification task for such a dataset as the image quality sometimes

is compromised and can play a vital role in terms of accuracy. However, deep learning

networks play a substantial role in classification tasks.

We created a comprehensive dataset combining Chest X-ray dataset from pneumonia

patients and also COVID-19 Xray images from the dataset described at [10]. This helped

us to have a comparison between different classes and also at the same time helped us to

have a dataset that contains much more images for training purposes. So, overfitting is

a possible issue that can be overcome also by increasing the data-set size so the machine

learning model can generalize well.

The small yet powerful TP Net yields much more promising results in the initial stages

as Table 4.12 suggests. All the networks have been trained without any prior transfer

learning. Although much of research is being conducted just a preliminary start point for

the scope of research into this field yields satisfactory results.
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Table 4.12: Covid-19 Chest Xray Image Results

Network Error Rate(%) Parameters(Million)

Resnet 50 20.95 24

TP Net 7.7 0.918

GC Net 15 1.1

In addition to that not only there was room for improvement in the error rate but

as well our light-weight network also performed better in terms of less parameters which

significantly reduces computational burden, which gives more scope for research into the

model itself.
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Chapter 5

Conclusion and Future Scopes

We have introduced TP Net which is a Triple Pooling Network, a lightweight compact CNN

architecture. TP net has been tested in the image classification sector as well as fields in

physical layer authentication as well which makes it more multidisciplinary. We have

mitigated the issue of gradient vanishing problem with the design of our network. During

our development of the model, we also ensured that our model uses less coomputational

resources and has the potential to be deployed in embedded systems or small hand-held

devices.

One of the most promising fields we have went into is the COVID-19 Chest Xray using

image classification of patients. As the data set is now limited, and is growing everyday, we

plan in the future to test the system using a wide database as well. As well as implementing

heatmap visualizations that can help the user to identify potential patterns in the images.

Moreover, to add to that we are currently conducting research in the adversarial network

field where CNN architecture seems to suffer from sticker attacks and also some gradient

attacks in the architecture.

We aim to in the future make the neural network architecture more robust in open

world challenges by introducing some defense mechanisms against these attacks so that our

network is able to generalize well under challenging circumstances. And in the future we

also plan to deploy and test its peformance in a real time embedded system for measuring

performance metrics. With so much scope and possibility of this new designed network
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we aim to continue our research and further develop the network so that it can have some

implications in the real world once deployed.
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