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Abstract

Multilingual knowledge graphs (KGs), such as YAGO and DBpedia, represent entities in
different languages. The task of cross-lingual entity matching is to align entities in a source lan-
guage with their counterparts in target languages. In this thesis, we investigate embedding-based
approaches to encode entities from multilingual KGs into the same vector space, where equiva-
lent entities are close to each other. Specifically, we apply graph convolutional networks (GCNs)
to combine multi-aspect information of entities, including topological connections, relations, and
attributes of entities, to learn entity embeddings. To exploit the literal descriptions of entities ex-
pressed in different languages, we propose two uses of a pre-trained multilingual BERT model
to bridge cross-lingual gaps. We further propose two strategies to integrate GCN-based and
BERT-based modules to boost performance. Extensive experiments on two benchmark datasets
demonstrate that our method significantly outperforms existing systems. We additionally intro-
duce a new dataset comprised of 15 low-resource languages and featured with unlinkable cases
to draw closer to the real-world challenges.
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Chapter 1

Introduction

A knowledge graph (KG) is a technology that stores and represents real-world knowledge with
a graph structure. Specifically, such a structure often employs Resource Description Framework
(RDF) as the data model, in which a fact is expressed in the form of (subject, predicate, object) or
(head, relation, tail), known as a triple. The constructed topology can facilitate logical reasoning
and benefit downstream natural language processing (NLP) tasks, such as question answering
[54, 82] and dialogue systems [38, 57]. Motivated by their wide range of applications, a number
of large-scale projects of KG construction have been proposed, e.g., Freebase [9], YAGO [91],
and DBpedia [8], whose data mostly are extracted from Wikipedia and WordNet [30]. Initially,
these KGs only focused on English content. However, the aforementioned knowledge sources
actually cover plenty of languages, e.g., Wikipedia has been created in 312 languages;1 hence,
these projects naturally evolved into multilingual KGs [50, 80].

Multilingual KGs typically represent knowledge as separately-structured monolingual KGs.
Such KGs are connected by inter-lingual links (ILLs) that align entities with their counterparts
in different languages, exemplified by Figure 1.1 (top). These ILLs can be used to enable mul-
tilingual data integration and further enhance the existing knowledge in KGs. For instance, the
contents documented in resource-poor languages, e.g., Inuktitut, can refer to more information
from their counterparts in resource-rich languages, e.g., English. Moreover, when the knowl-
edge originates from a certain culture, in general, the content written in the native language is
more comprehensive and accurate. Combined with the explicit semantics of the RDF data model,
multilingual KGs are especially valuable for certain cross-lingual NLP tasks, such as machine
translation [59] and cross-lingual named entity recognition [23].

1https://en.wikipedia.org/wiki/List_of_Wikipedias
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Inter-Lingual Link Missing Inter-Lingual Link

KG-English KG-Japanese

e1

e3 u2
u3

almaMater country almaMatercountry

e2

u1

English: University of Toronto Japanese: トロント大学
Attribute Value Attribute Value

Name University of Toronto 大学名 トロント大学
Type Public University 学校種別 州立
Found
Date

1827-03-15 創立年 1827

Campus Ontario キャンパ
ス

セントジョージ
（トロント）

Former
Name

King’s College 旧名 キングスカレッ
ジ

...
...

Descriptions
The University of Toronto is
a public research university in
Toronto, Ontario, Canada · · ·

トロント大学 は、オンタリ
オ州、トロントに本部を置く
カナダの州立大学である · · ·

Figure 1.1: An example fragment of two KGs (in English and Japanese) connected by an inter-
lingual link (ILL). In addition to the graph structures (top) consisting of entity nodes and typed
relation edges, KGs also provide attributes and literal descriptions of entities (bottom).

Nowadays, the work of knowledge graph completion, i.e., adding new knowledge and detect-
ing the error, heavily relies on automated systems, also known as bots. For example, in the early
years of Wikidata project, more than 90% of edits are contributed by bots, and it still exceeds
50% in recent years [75]. However, the quality management of the data massively generated by
bots has become a critical issue. In terms of multilinguality, 86% of such bots concentrate on
only one language [90], but they are not required to provide multilingual labels or descriptions
for non-native speakers’ reference. This could result in abundant duplicates in other languages
because of the difficulty in cross-lingual verification and hamper multilingual content integra-
tion, particularly when the existing facts are documented in lesser-spoken languages. Not to
mention that the efficiency of manual verification hardly catches up with the speed of such bots.
Therefore, the aim of this thesis is to propose advanced methods of automatic ILL completion.
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Precisely, the target task is called cross-lingual entity matching (also known as entity alignment
or entity resolution), which is to discover entities from different monolingual KGs that actually
refer to the same real-world entities.

Traditional methods for this task apply machine translation techniques to translate entity
labels [88]. The quality of mappings in the cross-lingual scenario largely depends on the quality
of the adopted translation systems. In addition to entity labels, existing KGs also provide multi-
aspect information of entities, including topological connections, relation types, attributes, and
literal descriptions expressed in different languages [8, 107], as shown in Figure 1.1 (bottom).
The key challenge of addressing such a task thus is how to better model and use provided multi-
aspect information of entities to bridge cross-lingual gaps and find more equivalent entities (i.e.,
ILLs).

Recently, embedding-based solutions [20, 92, 113, 105, 17] have been proposed to unify mul-
tilingual KGs into the same low-dimensional vector space where equivalent entities are close to
each other. Such methods only make use of one or two aspects of the aforementioned informa-
tion. For example, Zhu et al. [113] relied only on topological features while Sun et al. [92] and
Wang et al. [105] exploited both topological and attribute features. Chen et al. [17] proposed a
co-training algorithm to combine topological features and literal descriptions of entities. How-
ever, combining the multi-aspect information of entities (i.e., topological connections, relations,
and attributes, as well as literal descriptions) remains under-explored.

In this thesis, we extend our work [109], presenting a novel machine learning approach to
learn cross-lingual entity embeddings by using all aforementioned aspects of information in
KGs, and further introduce a new benchmark dataset to draw closer to the real-world problem.
To be specific, we propose two variants of GCN-based models, namely MAN and HMAN, which
incorporate multi-aspect features, including topological features, relation types, and attributes
into cross-lingual entity embeddings. To capture the semantic relatedness of literal descriptions,
we fine-tune the pre-trained multilingual BERT model [25] to bridge cross-lingual gaps. Fur-
thermore, we design two strategies to combine GCN-based and BERT-based modules to make
alignment decisions. The experiments on two benchmark datasets show that our method achieves
new state-of-the-art results. In addition, we create a new dataset to reflect the practical challenges
facing the limited amount of information in low-resource languages and unlinkable cases.

1.1 Problem Definition

In a multilingual knowledge graph G, we use L to denote the set of languages that G contains
and Gi = {Ei, Ri, Ai, Vi, Di} to represent the language-specific knowledge graph in language
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Li ∈ L. Ei, Ri, Ai, Vi and Di are sets of entities, relations, attributes, values of attributes, and
literal descriptions, each of which portrays one aspect of an entity. The graph Gi consists of
relation triples 〈hi, ri, ti〉 and attribute triples 〈hi, ai, vi〉 where hi, ti ∈ Ei, ri ∈ Ri, ai ∈ Ai and
vi ∈ Vi. Each entity is accompanied by a literal description, e.g., 〈hi, dhi

〉 and 〈ti, dti〉, where
dhi
, dti ∈ Di.

Given two knowledge graphs G1 and G2 expressed in source language L1 and target language
L2, respectively, there exists a set of pre-aligned ILLs I (G1,G2) = {(e, u) |e ∈ E1, u ∈ E2}
which can be considered training data. The task of cross-lingual entity matching is to discover
the missing ILLs that connect entities in G1 with their cross-lingual counterparts in G2.

1.2 Contributions

The main contributions of this thesis are summarized below:

• We propose a novel model with the following characteristics:

– To the best of our knowledge, this is the first method that employs embedding learn-
ing on all the four commonly-used aspects of information, namely topological, rela-
tion, attribute, and description, to address this task;

– We combine feedforward neural networks with GCNs to better capture the informa-
tion from the relation and attribute features;

– To match the textual information, we devise a variant of BERT which exploits pair-
wise training to significantly reduce the computational complexity from polynomial
to linear during inference.

• Our model achieves new state-of-the-art performance on two existing benchmark datasets.

• We create a new dataset that is closer to the real-world scenario of cross-lingual entity
matching. The benchmark compares the effectiveness of different methods across 15 low-
resource languages and tests the capability in NIL prediction.

1.3 Thesis Organization

The rest of this thesis is structured as follows: Chapter 2 reviews the fundamental background
and related work for understanding our task and the progress of previous solutions. Chapter 3
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introduces the details of proposed embedding models and the definition of the learning objective.
Meanwhile, we describe how to combine the knowledge learned from graph-based and textual in-
formation with the integration strategies. In Chapter 4, we first present the experimental datasets
and the evaluation metric. Then, we show the performance of the proposed methods, compared
with our baselines, and analyze the effectiveness of each individual aspect through feature ab-
lation. The best methods are further tested on the new dataset to investigate the influence of
resource limitation in different languages. Chapter 5 concludes this thesis and discusses future
work.
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Chapter 2

Background and Related Work

2.1 Knowledge Graphs

To understand the development of KGs, we first describe the emergence of Semantic Web,1 which
is considered as the next step of the World Wide Web (WWW). Sir Tim Berners-Lee [6] proposed
this idea and envisioned the Semantic Web as a web of data, where the goal is to make the
meaning in Internet data interpretable for machines. Specifically, it is a set of particular standards
that allow the data to be easily processed by machines and shared across all the members of the
network. Under the collaboration and efforts of the World Wide Web Consortium2 (W3C) as
well as numerous participants from academia and industry, a series of standards were gradually
established. The term Linked Data [7] was also coined to refer to the datasets interlinked and
built by a set of the most recommended standards.

Resource Description Framework3 is one of the standards proposed in the early stage and
became the basis of the Semantic Web. By applying this framework, knowledge representation
is organized as a directed and labeled graph. The elementary building block of an RDF graph
is a triple, whose typical format is (subject, predicate, object). Alternatively, it is also common
to express a triple as (head, relation, tail) in KG literature. Each element in the triple is either a
Uniform Resource Identifier (URI), a literal value, or a blank node. URIs are the technology bor-
rowed from the WWW, i.e., Uniform Resource Locator (URL), to enable global identification in
the Semantic Web. Although they share the same syntax,4 which leads to the same string format,

1https://www.w3.org/2001/sw/
2https://www.w3.org/
3https://www.w3.org/RDF/
4https://www.w3.org/Addressing/URL/uri-spec.html
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note that a URI is not limited to the purpose of locating a file on the WWW. An example of URIs
in DBpedia is http://dbpedia.org/resource/Bob Dylan, where http is the scheme, dbpedia.org in-
dicates the authority, and resource/Bob Dylan is the path to the target resource. In practice, to
further simplify the URIs, a namespace may be declared in advance. With the same example, the
above URI can be abbreviated as dbr:Bob Dylan after declaring the mapping of source names:
“http://dbpedia.org/resource/” = “dbr”.

To exemplify the use of an RDF triple, here we represent a fact of real-world knowledge
— Bob Dylan’s hometown is Hibbing, Minnesota — with (dbr:Bob Dylan, dbo:hometown,
dbr:Hibbing, Minnesota), where dbr:Bob Dylan and dbr:Hibbing, Minnesota are the head and
tail entities, which are the nodes in the graph, and dbo:hometown is the predicate, which is
the edge connecting the two nodes and specifying their relation. In addition, all these ele-
ments can have types, and the triple format is still applicable for expressing such information,
e.g., (dbr:Bob Dylan, rdf:type, dbo:Person) or (dbo:hometown, rdf:type, rdf:Property). How-
ever, an element of a triple is also allowed to be a literal value. For example, (dbr:Bob Dylan,
dbo:birthYear, literal(1941-01-01)) represents the fact that Bob Dylan was born in 1941, where
the object is a literal value and denoted by literal(·).

One unique advantage of RDF graphs is that we are able to straightforwardly perform in-
ference over the data represented in linked triples. By introducing RDF schema5 (RDFS) or
ontology, the meanings of predicates are defined, which then constrain how the data are inter-
preted to facilitate knowledge inference. For example, in RDFS, the pattern of the predicate
subClassOf is:

IF
?A rdfs:subClassOf ?B
AND
?x rdf:type ?A .
THEN
?x rdf:type ?B .

In plain English, if one class in A is a subclass of another class B and x is an A (in the statement,
rdf:type is a predicate describing the relationship is-a), then x is also a B. Thus, given an
example graph as illustrated in Figure 2.1, which represents the knowledge of vegetarian diet, we
can infer that, since Jen is a Vegetarian, which is a subclass of Person, Jen is a Person. Moreover,
the same example also shows that we can use OWL6 to compose ontology and achieve further

5https://www.w3.org/TR/rdf-schema/
6https://www.w3.org/TR/owl-features/
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Figure 2.1: An example knowledge graph comprised of a collection of RDF triples. The figure
is copied from Allemang & Hendler [1].

inference over the data. At the top of the graph, a node is defined by OWL (for simplicity, here
we do not explain the details of OWL syntax) and imposes the restriction of Vegetarian: eats (all)
VegetarianFood. Such a relationship lets us deduce that Marzipan is a VegetarianFood, because
it is eaten by Jen, who is a Vegetarian. Note that this was not primitively asserted in the graph
and denoted by a dotted arrow.

In 2012, Google announced its new application of the Semantic Web technology, which
served as the complement to their main service, i.e., Web Search. The term Knowledge Graph7

was then introduced as the project name. Thereafter, the success of Google’s use of graph-based
knowledge representation has drawn a lot of attention, and other Semantic Web projects also

7The term was mentioned in Google’s blog post at https://googleblog.blogspot.com/2012/05/
introducing-knowledge-graph-things-not.html
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started advertising their technologies as knowledge graphs. Despite the popularity, there is still
a lack of agreement on the definition of what a knowledge graph is. Rather, Paulheim [69] pro-
posed a set of characteristics that are useful for distinguishing whether or not a collection of
knowledge is a knowledge graph. They argued that a knowledge graph:

• mainly describes real-world entities and their interrelations, organized in a graph.

• defines possible classes and relations of entities in a schema.

• allows for potentially interrelating arbitrary entities with each other.

• covers various topical domains.

In the following, we present two representative knowledge graphs comprising our experi-
mental datasets. Along with the general introduction, we also point out their characteristics in
multilinguality, which is the core topic of this thesis.

2.1.1 DBpedia

DBpedia [50] is a popular knowledge graph, which is widely used in research projects as the
test environment or the backbone of related applications. DBpedia has been publicly available
since 2007, and its development is led by the Free University of Berlin and Leipzig University.
Their aim is to extract the structured information in Wikipedia pages, e.g., infoboxes, on top
of which they offer a standardized dataset represented as a knowledge graph. The construction
process is aided by crowd-sourcing efforts and the ontology is collectively maintained by its user
community. Due to its nature, DBpedia plays a role as the hub of knowledge graphs [28] and
contains the most owl:sameAs predicates which are responsible for interlinking the entities re-
ferring to the same thing in different KGs. Up to April 2020, the entire DBpedia dataset consists
of 21 billion RDF triples [41] and covers at least 125 languages.8 It is worth mentioning that
the infobox properties in different languages are mapped to the same one in DBpedia ontology,
e.g., author and συγγραφεαε (author in Greek) share the same identifier dbo:author, which
facilitates data merge and augmentation across languages. To promote internationalization, the
best practice for defining such multilingual infobox-to-ontology mappings is established along-
side the original DBpedia Information Extraction Framework,9 and the local communities also
organize language-specific chapters10 to support native developers and users.

8To the best of our knowledge, the latest official statistics regarding the number of languages is reported in
https://wiki.dbpedia.org/about/facts-figures.

9https://wiki.dbpedia.org/documentation
10https://wiki.dbpedia.org/Internationalization/Chapters
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2.1.2 Wikidata

Wikidata [99] is a collaboratively created knowledge graph started by Wikimedia Foundation11

from 2012. Compared with DBpedia, Wikidata is more open source-centric and allows the con-
tributors to continuously add and edit the information and schema. When users are creating or
revising a statement (of a fact) on Wikidata, they are especially encouraged to provide refer-
ences, which allow others to validate the asserted knowledge. This availability of information
provenance improves the trustworthiness of Wikidata and is the main feature that sets it apart
from other knowledge graphs. Another advantage of Wikidata is its proximity to Wikipedia,
whose user base and experience helped Wikidata became popular rapidly since its launch, and
the success also triggered Google’s decision to close down its KG service, i.e., Freebase [9], and
migrate the data to Wikidata. Recently, Tanon et al. [70] released the software to facilitate the
migration and reported their ongoing efforts. Despite the challenges, when the merger is com-
pleted, Wikidata will then be considered the largest free knowledge graph in the world. One more
remarkable characteristic of Wikidata is its unique design for multilingual data aggregation. In
particular, a centralized graph is built primitively as the backbone, in which entities and proper-
ties are language-agnostic, and then information written in different languages are “attached” to
such a unified graph, as opposed to the Wikipedia approach, i.e., each language is an independent
edition.

2.2 Graph Embedding

The ubiquity of real-world phenomena that can be represented by graphs has motivated the use of
graph analysis in many fields, e.g., protein-protein network analysis in biology [93] and friend-
ship network analysis in sociology [31]. Similarly, graph-based methods have also been de-
veloped in natural language processing for many years, and one widely used example is word
co-occurrence graphs [15]. Modeling textual information as graphs can bring new insights and
enable useful applications from the perspective of entity-entity interactions, e.g., node cluster-
ing [68], node classification [102], and link prediction [51]. To drive such applications more
effectively, graph embedding techniques are then proposed to convert graph features into a more
compatible form for machine-learning solutions. Specifically, entities and relations are repre-
sented as dense vectors in a low-dimensional vector space that encode the information from the
graphs. In these techniques, the mainstream ones are also machine learning-based and known
collectively as graph representation learning.

11https://en.wikipedia.org/wiki/Wikimedia_Foundation
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Figure 2.2: Taxonomy of graph embedding problems and techniques. The table is copied from
Cai et al. [14].

Figure 2.2 shows the taxonomy of graph embedding techniques [14], out of which two cat-
egories are included in this thesis, namely edge reconstruction and deep learning. Most of our
baseline methods use the former approach, and in contrast we explore the variants of the latter,
particularly graph convolutional networks. We briefly introduce them in the following subsec-
tions:

2.2.1 Edge Reconstruction Approach

According to the design of objective function, edge reconstruction methods are mainly divided
into two categories: (1) maximizing edge reconstruction probability (2) minimizing edge recon-
struction loss, and (2) further branches out two subcategories, namely distance-based loss and
margin-based ranking loss. In this section, we focus on the margin-based ranking loss, since all

11



Model Scoring Function

TransE [10] ||h+ r − t||1
TransR [53] ||hMr + r − tMr||22
TransH [103] ||(h− wT

r hwr) + dr − (t− wT
r twr)||22

DKRL [107] ||hd + r − td||+ ||hd + r − ts||+ ||hs + r − td||

NTN [86] uTr tanh(hTWrt+Wrhh+Wrtt+ br)

Table 2.1: Examples of edge reconstruction-based knowledge graph embedding models and the
associated scoring functions.

the baseline models as well as the newly-proposed methods in this thesis adopt this objective.

Mathematically, given a knowledge graph G which consists of a set of triples (h, r, t), where
h ,r, and t respectively denote head entity, relation, and tail entity, the margin-based ranking loss
is defined as:

O = min
∑

(h,r,t)∈G

∑
(h′,r,t′)∈G′

max{0, γ + fr(h, t)− fr(h′, t′)} (2.1)

where G′ is the set of false triples, in which h′, r, and t′ also exist in G but the triple as a
whole, i.e., (h′, r, t′), does not; fr(h, t) is a scoring function that evaluates the similarity between
entities h and t with respect to relation r. One example of the scoring functions is ||h+ r − t||1,
which captures the translation relationship in the embedding space [10]. It is worth noting that
the researchers of knowledge graph embedding largely dedicate to designing different scoring
functions, and several representative ones are shown in Table 2.1.

2.2.2 Graph Convolutional Networks

Graph convolutional networks (GCNs) [46] are variants of convolutional neural networks, which
have proven effective in capturing information from graph structures, such as dependency graphs
[34], abstract meaning representation graphs [33], and knowledge graphs [105]. In practice,
multi-layer GCNs are stacked to collect evidence from multi-hop neighbors. Formally, the l-th
GCN layer takes as input feature representations H(l−1) and outputs H(l):
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H(l) = φ
(
D̃−

1
2 ÃD̃−

1
2H(l−1)W (l)

)
(2.2)

where Ã = A + I is the adjacency matrix, I is the identity matrix, D̃ is the diagonal node
degree matrix of Ã, φ(·) is ReLU function, and W (l) represents learnable parameters in the l-th
layer. H(0) is the initial input. GCNs can iteratively update the representation of each entity via
a propagation mechanism through the graph.

To extend vanilla GCNs from non-relational graphs to knowledge graphs, Schlichtkrull et al.
[84] proposed RGCN with relation-wise parameters for capturing relation information:

H(l) = φ

(∑
r∈R

ÂrH
(l−1)W (l)

r

)
(2.3)

where r ∈ R denotes the relation; Âr and W (l)
r are relation-specific normalized adjacency matrix

and learnable parameters in l-th layers, respectively. Note that Âr can be normalized by node
degrees or other pre-defined factors, and it is an identity matrix if r indicates self-connection
relation; otherwise its diagonal is zeros.

2.3 Pre-Trained Language Models

The effectiveness of pre-trained language models (PLMs) for natural language processing has
been proven by substantial work. Such models are pre-trained with large corpora in a self-
supervised fashion and the learned representation is universal to downstream tasks. After the
fine-tuning stage, the performance on many of these tasks achieved the state of the art. Recently,
the architectures of PLMs are further advanced from shallow to deep ones, which are capable
of learning contextual word embeddings, in contrast to the previous generation, e.g., Word2vec
[55] and Glove [71], which are context-free. BERT (Bidirectional Encoder Representation from
Transformer) [25] and OpenAI GPT (Generative Pre-Training) [76] are the two most well-known
deep pre-trained language models. The former emphasizes on text understanding and is regarded
as an encoder model, and the latter rather specializes in text generation and is pre-trained by a
decoding process. Both of them adopt Transformer [97] as their architecture, whilst the main
difference is the design of attention masks. Specifically, the attention mechanism of BERT is
global and bidirectional over all the tokens, but GPT only allows leftward and unidirectional
attention for the purpose of autoregressive learning. Since we only exploit BERT in this work,
the following will be focused on its details:
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Figure 2.3: BERT input embeddings are comprised of three sets of embeddings, namely token,
segment, and position embeddings. Segment embeddings indicate the sequence a token belongs
to, and position embeddings represent the ordering information of tokens in a sentence. The
illustration is copied from Delvin et al. [25].

BERT

BERT is a Transformer-based language model, which computes token representations in parallel
and is advantageous in modeling long-range dependencies. The token representations encode the
contextual information bidirectionally, i.e., conditioning on both leftward and rightward context
tokens in all layers. Similar to GPT, it also follows a two-stage framework: unsupervised pre-
training and task-specific fine-tuning. Its input format is also carefully designed to be generic
for downstream tasks. Specifically, a special token [CLS] is always placed at the beginning of
an input sequence, and another special token [SEP] is used as a sentence-level delimiter when
an input contains multiple sentences. The input embedding of each token consists of token,
segment, and position embeddings, whose details are illustrated in Figure 2.3.

The main novelty of BERT resides in the proposed pre-training tasks: Masked Language
Model (MLM) and Next Sentence Prediction (NSP). In the MLM task, 15% of the input tokens
are randomly masked and the objective is to recover the masked ones, i.e., predicting the original
tokens by using the contextual information. Through this, the related context is embedded into
the learned token representations. In NSP, two sentences are concatenated as the input and in 50%
probability the second one actually follows the first as in the training corpus; the task objective
is to predict whether the second sentence is “real” or randomly-picked. This task is devised for
learning the relationships between sentences.

After BERT is pre-trained, we apply the knowledge and let it adapt to downstream tasks
by fine-tuning with minimal architecture changes. In detail, task-specific layers (e.g., a multi-
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layer perceptron classifier) are appended after the output of BERT, and all the parameters are
trained end-to-end with labeled data. When a task is formulated as a token-level prediction
problem (e.g., named-entity recognition), the output representation of each token is fed into the
aforementioned task-specific layers. As for sequence-level tasks (e.g., sentiment analysis), the
output representation of [CLS] is employed as the sequence representation and serves as the input
of the task-specific layers.

In addition to learning with English corpora, Multilingual BERT12 (M-BERT), a variant of
BERT pre-trained with multilingual Wikipedia text covering 104 languages, is also released, In-
terestingly, unlike traditional multilingual models, M-BERT are not explicitly pre-trained with
parallel corpora. Nonetheless, the learned representations of M-BERT still yield strong per-
formance on many downstream tasks [106]. To further understand M-BERT, Pires et al. [74]
designed probing experiments and the results suggest that M-BERT is able to perform zero-shot
cross-lingual transfer despite the low lexical overlap between source and target languages. They
hypothesized that M-BERT benefits from the shared vocabulary set across all languages and the
learned multilingual representations are capable of more than vocabulary memorization. How-
ever, recently Karthikeyan et al. [44] drew a contrary conclusion and discovered that when a
bilingual BERT is pre-trained by English and a “fake” language,13 which strictly has no vo-
cabulary overlap with the target languages, it still performs comparably on the zero-shot task.
Moreover, Artetxe et al. [3] showed that such transferability is achievable by even just swapping
the vocabulary (i.e., the token embeddings) of a monolingual BERT, which further weakens the
hypothesis.

2.4 Entity Matching

Research on knowledge graph alignment originated from the problem of entity matching in
database community. MAGELLAN [48] is one of the representative works, which is an entity
matching system equipped with a complete data pipeline, including blocking, matching, debug-
ging, and sampling. Recently, deep learning-based techniques are also introduced to this task.
For example, Ebraheem et al. [26] used recurrent neural networks to learn the embeddings and
capture both syntactic and semantic similarities between entities in the vector space. Moreover,
Mudgal et al. [60] explored the design space of neural network architectures for entity matching
and divided the problem into three categories, namely structured, textual, and dirty. However,
these systems only aim at relational data and the tables are assumed to be aligned in advance with

12https://github.com/google-research/bert/blob/master/multilingual.md
13The fake language is created by randomly shifting the characters in English Wikipedia text.
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respect to the schema. Thus, such systems cannot be directly applied to aligning KGs, which are
constructed using the RDF data model, instead of relational.

Out of the need to integrate heterogeneous knowledge graphs, the Semantic Web community
has researched entity matching for KGs and held the evaluation event14 for years, in which the
entity matching is also known as instance matching. With respect to feature granularity, Castano
et al. [16] categorize the matching techniques into value-oriented and record-oriented. The
former defines the entity similarity based on the values of attributes, where most of the work
focuses on textual values since string is the most commonly-used data type in knowledge graphs.
By contrast, the latter considers more coarse-grained (record-level) features and contains four
more subcategories, namely learning-based, similarity-based, rule-based, and context-based.

Language-wise, such an alignment problem can be separated into monolingual and cross-
lingual entity matching. For the monolingual problem, the main approaches are to match two
entities by computing string similarity of entity labels [83, 98, 62] or topological similarity of
graph structures [77, 72, 37, 5]. Additionally, Trsedya et al. [96] proposed an alignment frame-
work that also incorporates attribute values to learn the entity embeddings. To match entities
across different languages, recent studies [18, 92] learned cross-lingual entity embeddings based
on TransE [10]. Chen et al. [17] further proposed a co-training algorithm to incorporate multi-
lingual textual information by alternately learning entity and description embeddings. Moreover,
Wang et al. [105] applied GCNs with the connectivity matrix defined on relations to embed
entities from multilingual KGs into a unified low-dimensional space.

14http://oaei.ontologymatching.org/
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Chapter 3

Proposed Approach

Existing KGs [8, 91, 80] provide multi-aspect information of entities. The key challenge is how
to utilize the provided features to learn better embeddings of entities. In this section, we intro-
duce four neural models that incorporate different aspects of information as well as the learning
objective for cross-lingual entity matching. The proposed models are mainly divided into two
modules, namely GCN-based and BERT-based. The GCNs are primarily used to process the
topological, relation, and attribution features, and we further propose a hybrid variant that inte-
grates feedforward neural networks to control the noise from graph propagation. To incorporate
literal descriptions, we apply the BERT-based models and additionally devise a novel training
scheme which can largely reduce the time complexity while running inference. Finally, we in-
troduce two integration strategies to combine these two modules.

3.1 Multi-Aspect Alignment Networks

GCNs can iteratively update the representation of each entity node via a propagation mechanism
through the graph. Inspired by previous studies [110, 105], we also adopt GCNs in this work
to collect evidence from multilingual KG structures and to learn cross-lingual embeddings of
entities. The primary assumptions are: (1) equivalent entities tend to be neighbored by equivalent
entities via the same types of relations; (2) equivalent entities tend to share similar or even the
same attributes. In the following, we first discuss how we construct raw features for the three
aspects, which are then fed as inputs to our models, and use Xt, Xr, and Xa to denote the
topological, relation, and attribute features, respectively.

The topological features are designed to reflect neighborhood proximity information of enti-
ties, which can be captured by multi-layer GCNs. Following Wang et al. [105], we set the initial
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topological features to Xt = I , i.e., an identity matrix serving as index vectors, so that the GCNs
learn the topological embeddings. In addition, we also consider the relation and attribute fea-
tures. As shown in Figure 1.1, the connected relations and attributes of two equivalent entities,
e.g., “University of Toronto” (English) and “トロント大学” (Japanese), have a lot of over-
lap, which can benefit cross-lingual entity matching. Specifically, they share the same relation
types, e.g., “country” and “almaMater”, and some attributes, e.g., “foundDate” and “創立年”.
To capture relation information, Schlichtkrull et al. [84] proposed RGCN with relation-wise pa-
rameters. However, with regard to this task, existing KGs typically contain thousands of relation
types but few pre-aligned ILLs. Directly applying RGCN may introduce too many parameters
for the limited training data and thus cause overfitting. Wang et al. [105] instead simply used the
unlabeled GCNs [46] with two proposed measures (i.e., functionality and inverse functionality)
to encode the information of relations into the adjacency matrix. They also considered attributes
as input features in their architecture. However, this approach may lose information about rela-
tion types. Therefore, we regard relations and attributes of entities as bag-of-words features to
explicitly model these two aspects. Specifically, we construct count-based N-hot vectors Xr and
Xa for these two aspects of features, respectively, where the (i, j) entry is the count of the j-th
relation (attribute) for the corresponding entity ei. Note that we only consider the top-F most
frequent relations and attributes to avoid data sparsity issues. Thus, for each entity, both of its
relation and attribute features are F -dimensional vectors.

With the features constructed as above, we propose the Multi-Aspect Alignment Network
(MAN) to leverage the three aspects of information. Specifically, three l-layer GCNs take as
inputs the three aspects of features (i.e., Xt, Xr, and Xa) and produce the representations H(l)

t ,
H

(l)
r , and H(l)

a according to Equation 2.2. Finally, the multi-aspect entity embedding is:

Hm = [H
(l)
t ⊕H(l)

a ⊕H(l)
r ] (3.1)

where ⊕ denotes vector concatenation. Hm can then be used for making alignment decisions.

Such fusion through concatenation is also known as Scoring Level Fusion, which has been
proven simple but effective for capturing multi-modal semantics [13, 45, 21]. It is worth noting
that the main differences between MAN and the work of Wang et al. [105] are twofold: (1) we
use the same approach as Kipf & Welling [46] to construct the adjacency matrix, while Wang et
al. [105] designed a new connectivity matrix as the adjacency matrix for the GCNs; (2) MAN

explicitly regards the relation type features as model input, while Wang et al. [105] incorporated
such relation information into the connectivity matrix.
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Figure 3.1: Architecture overview of HMAN, where the GCNs are employed to analyze topo-
logical features and the feedforward networks are responsible for relation and attribute features.
The three aspects are fused by concatenation, and L2 normalization is applied to the final rep-
resentation. (The architecture of MAN can be derived by replacing the FC and highway layers
with GCN layers.)

3.2 Hybrid Multi-Aspect Alignment Networks

Note that MAN propagates relation and attribute information through the graph structure. How-
ever, for aligning a pair of entities, we observe that considering the relations and attributes of
neighboring entities, besides their own ones, may introduce noise. Merely focusing on relation
and attribute features of the current entity could be a better choice. Thus, we propose the Hy-
brid Multi-Aspect Alignment Network (HMAN) to better model such diverse features, shown in
Figure 3.1. Similar to MAN, we still adopt the l-th layer of a GCN to obtain topological em-
beddings H(l)

t , but exploit feedforward neural networks to obtain the embeddings of relations
and attributes. The feedforward neural networks consist of one fully-connected (FC) layer and a
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highway network layer [89]. The reason we use highway networks is consistent with the conclu-
sions of Mudgal et al. [60], who conducted a design space exploration of neural models for entity
matching and found that highway networks are generally better than FC layers in convergence
speed and effectiveness.

Formally, these feedforward neural networks are defined as:

Sf = φ(W
(1)
f Xf + b

(1)
f )

Tf = σ(W t
fSf + btf ) (3.2)

Gf = φ(W
(2)
f Sf + b

(2)
f ) · Tf + Sf · (1− Tf )

where f ∈ {r, a} and Xf refer to one specific aspect (i.e., relation or attribute) and the cor-
responding raw features, respectively, W (1,2,t)

f and b(1,2,t)f are model parameters, φ(·) is ReLU
function, and σ(·) is sigmoid function. Accordingly, we obtain the hybrid multi-aspect entity
embedding Hy = [H

(l)
t ⊕ Gr ⊕ Ga], to which `2 normalization is further applied. It is worth

noting that we can also derive the illustration of MAN by replacing the FC and highway layers
in Figure 3.1 with GCN layers.

3.3 PointwiseBERT

Existing multilingual KGs [8, 61, 80] also provide literal descriptions of entities expressed in
different languages and contain detailed semantic information about the entities. The key ob-
servation is that literal descriptions of equivalent entities are semantically close to each other.
However, it is non-trivial to directly measure the semantic relatedness of two entities’ descrip-
tions, since they are expressed in different languages.

As mentioned in Section 2.3, BERT [25] has advanced the state-of-the-art in various NLP
tasks and its multilingual variant, i.e., M-BERT, also yields strong performance. The spirit of
M-BERT in the multilingual scenario is to project words or sentences from different languages
into the same semantic space. This aligns well with our objective — bridging gaps between
descriptions written in different languages. Therefore, we include M-BERT into our framework
for cross-lingual entity matching.

The most straightforward BERT-based approach is to formulate our task as a text matching
task. For two entities e1 and e2 from two KGs in L1 and L2, denoting source language and target
language, respectively, their textual descriptions are d1 and d2, consisting of word sequences in
two languages. The model takes as inputs [CLS] d1 [SEP] d2 [SEP], where [CLS] is the special
classification token, from which the final hidden state is used as the sequence representation,
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Figure 3.2: Architecture overview of POINTWISEBERT, which is basically the vanilla approach
of BERT for classifying a pair of sentences. Cross entropy is applied as the loss.

and [SEP] is the special token for separating token sequences, and produces the probability of
classifying the pair as equivalent entities. The probability is then used to rank all candidate
entity pairs, i.e., ranking score. We denote this vanilla approach as POINTWISEBERT, shown in
Figure 3.2, in contrast to the novel method proposed in Section 3.4, i.e., PAIRWISEBERT.

Nonetheless, this approach is computationally expensive, since for each entity we need to
consider all candidate entities in the target language, and under this scheme full ranking is prac-
tically intractable because of the significant cost of BERT inference. One feasible solution,
inspired by Shi et al. [85], is to reduce the search space for each entity with a reranking strategy
(see Section 3.6).

3.4 PairwiseBERT

Due to the heavy computational cost of POINTWISEBERT, semantic matching between all entity
pairs is very expensive. Instead of producing ranking scores for description pairs, we propose
PAIRWISEBERT to encode the entity literal descriptions as cross-lingual textual embeddings,
where distances between entity pairs can be directly measured using these embeddings.

The PAIRWISEBERT model consists of two components, each of which takes as input the
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Figure 3.3: Architecture overview of PAIRWISEBERT, where a BERT is reused for both source
and target sentences and Equation 3.3 is applied as the loss.

description of one entity (from the source or target language), as depicted in Figure 3.3. Specif-
ically, the input is designed as [CLS] d1(d2) [SEP], which is then fed into PAIRWISEBERT for
contextual encoding. We select the hidden state of [CLS] as the textual embedding of the entity
description for training and inference.

3.5 Model Objective

To address our task, we follow the edge reconstruction approach mentioned in Section 2.2 to
learn the entity embeddings for entity matching. During the training phase, the goal is to embed
cross-lingual entities into the same low-dimensional vector space where equivalent entities are
close to each other. Mathematically, given two knowledge graphs, G1 and G2, and a set of pre-
aligned entity pairs I (G1,G2) as training data, our model is trained to minimize the margin-based
ranking loss defined as:

J =
∑

(e1,e2)∈I

∑
(e

′
1,e

′
2)∈I

′

[ρ(he1 , he2) + β − ρ(he′1 , he′2)]+ (3.3)

where [x]+ = max{0, x}, he is the vector representation of entity e, I ′ denotes the set of negative
entity alignment pairs constructed by corrupting the gold pair (e1, e2) ∈ I . In specific, we replace
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e1 or e2 with a randomly-chosen entity in E1 or E2. ρ(x, y) is the `1 distance function, and β > 0
is the margin hyperparameter separating positive and negative pairs.

Note that this objective function is not applied to POINTWISEBERT, which is a standard
classifier and outputs a similarity score of an entity pair, as opposed to entity embeddings. We
just follow Devlin et al. [25] and optimize this model with cross entropy loss.

3.6 Integration Strategies

Up to here, we have introduced the two modules that separately collect evidence from knowledge
graph structures and the literal descriptions of entities, based on GCNs and M-BERT, respec-
tively. In this section, we present two strategies to integrate these two modules to further boost
performance:

Reranking

As mentioned in Section 3.3, the POINTWISEBERT model takes as input the concatenation of two
descriptions for each candidate–entity pair, where conceptually we must process every possible
pair in the training set. Such a setting would lead to a prohibitive computational cost

One way to reduce the cost of POINTWISEBERT is to ignore candidate pairs that are unlikely
to be aligned. Rao et al. [79] showed that uncertainty-based sampling can provide extra im-
provements in ranking. Following this idea, the GCN-based models (i.e., MAN and HMAN) are
used to generate a candidate pool whose size is much smaller than the entire universe of entities.
Specifically, GCN-based models provide top-q candidates of target entities for each source entity
(where q is a hyperparameter). Then, the POINTWISEBERT model produces a ranking score for
each candidate–entity pair in the pool to further rerank the candidates. However, the weakness
of such a reranking strategy is that performance is bounded by the quality of (potentially limited)
candidates produced by MAN or HMAN.

Weighted Concatenation

With the textual embeddings learned by PAIRWISEBERT denoted as HB and graph embeddings
denoted as HG, a simple way to combine the two modules is by weighted concatenation:

HC = τ ·HG ⊕ (1− τ) ·HB (3.4)
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whereHG is the graph embeddings learned by either MAN or HMAN, and τ is a factor to balance
the contribution of each source (where τ is a hyperparameter).

3.7 Ranking-Based Entity Matching

After we obtain the embeddings of entities, we leverage `1 distance to measure the distance
between candidate–entity pairs. A small distance reflects a high probability for an entity pair to
be aligned as equivalent entities. To implement the reranking strategy, we select the target entities
that have the smallest distances to a source entity in the vector space learned by MAN or HMAN

as its candidates. For weighted concatenation, we employ the `1 distance of the representations
of a pair derived from the concatenated embedding, i.e., HC , as the ranking score.
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Chapter 4

Experimental Results

4.1 Datasets and Settings

To evaluate our methods, we use the same benchmark datasets as in the previous work [92, 105],
namely DBP15K and DBP100K. In addition, we further create a new dataset, referred to as
XEM15, to simulate the extensive real-world challenges in cross-lingual entity matching. The
details are as follows:

4.1.1 DBP15K and DBP100K

Table 4.1 outlines the statistics of DBP15K and DBP100K datasets, which contain 15,000 and
100,000 ILLs, respectively. Both are divided into three subsets: Chinese-English (ZH-EN),
Japanese-English (JA-EN), and French-English (FR-EN). Following Wang et al. [105], we adopt
the same split settings, where 30% of the ILLs are used as training and the remaining 70% for
evaluation.

In all our experiments, we employ two-layer GCNs and the top 1000 (i.e., F=1000) most fre-
quent relation types and attributes are included to build the N -hot feature vectors. For the MAN

model, we set the dimensionality of topological, relation, and attribute embeddings to 200, 100,
and 100, respectively. When training HMAN, the hyperparameters are dependent on the dataset
sizes due to GPU memory limitations. For DBP15K, we set the dimensionality of topological
embeddings, relation embeddings, and attribute embeddings to 200, 100, and 100, respectively.
For DBP100K, the dimensionalities are set to 100, 50, and 50, respectively. We adopt SGD to
update parameters and the numbers of epochs are set to 2,000 and 50,000 for MAN and HMAN,

25



Datasets
DBP15K

Entities Rel. Attr. Rel.triples Attr.triples

ZH-EN
Chinese 66,469 2,830 8,113 153,929 379,684
English 98,125 2,317 7,173 237,674 567,755

JA-EN
Japanese 65,744 2,043 5,882 164,373 354,619
English 95,680 2,096 6,066 233,319 497,230

FR-EN
French 66,858 1,379 4,547 192,191 528,665
English 105,889 2,209 6,422 278,590 576,543

Datasets
DBP100K

Entities Rel. Attr. Rel.triples Attr.triples

ZH-EN
Chinese 106,517 4,431 16,152 329,890 1,404,615
English 185,022 3,519 14,459 453,248 1,902,725

JA-EN
Japanese 117,836 2,888 12,305 413,558 1,474,721
English 118,570 2,631 13,238 494,087 1,738,803

FR-EN
French 105,724 1,775 8,029 409,399 1,361,509
English 107,231 2,504 13,170 513,382 1,957,813

Table 4.1: Statistics of DBP15K and DBP100K. Rel. and Attr. stand for relations and attributes,
respectively.

respectively. The margin β in the loss function is set to 3. The balance factor τ is determined by
grid search, which shows that the best performance lies in the range from 0.8 to 0.7. For simplic-
ity, τ is set to 0.8 in all associated experiments. Multilingual BERT-base models with 768 hidden
units are used in POINTWISEBERT and PAIRWISEBERT. We additionally append one more FC
layer to the representation of [CLS] and reduce the dimensionality to 300. Both BERT models
are fine-tuned using Adam optimizer.

4.1.2 XEM15

The current datasets for cross-lingual entity matching tend to ignore the situation that, given a
source entity, the counterpart in the target language may not even exist, which is fairly common
in the real-world practice. Such datasets essentially assumed a nearly perfect world that all the
entities are already built in the multilingual KGs and merely part of ILLs are missing. However,
this assumption would hinder the development of related techniques, particularly the capability
of predicting the absence of correspondence, also known as NIL (not-in-list) prediction. Also,
the main motivation of cross-lingual entity matching is to augment the contents for low-resource
languages by leveraging resource-rich ones. Therefore, testing the effectiveness under the set-
tings of low-resource languages is important. However, most of the adopted languages in the
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previous datasets are widely spoken, e.g., French, Japanese, and Chinese. As a result, the asso-
ciated KGs of such languages are relatively complete and barely reflect the realistic difficulty of
low-resource languages, e.g., Tamil or Kannada.

To draw closer to the real-world scenario, we introduce a new benchmark dataset featured
with unlinkable cases and 15 low-resource languages for cross-lingual entity matching, which we
refer to as XEM15. In our definition, a language is regarded as low-resource if it is ranked lower
than 25 by the number of Wikipedia articles.1 We carefully selected the languages into XEM15
to preserve the diversity. Specifically, we first singled out three groups of languages, namely rank
26-50, 51-75, and 76-113, from each of which we then manually choose 5 languages (i.e., 15 in
total) to ensure every language uses a unique script, e.g., if Farsi is chosen, no more languages
written in Persian script are allowed. To produce the testbed KGs and pre-aligned ILLs, we
randomly sample 15K seed entities for each language from its Wikidata repository (September
2020). Only the entities that have Wikipedia sitelinks are considered as existing, and ILLs are
extracted if there are corresponding sitelinks in English; otherwise, the samples are labeled as
unlinkable cases. In other words, each low-resource language has 15K labeled examples, part of
which targets are NIL. Next, we collect their attributes and neighboring entities along with the
relations,2 including both outward and inward ones, to create the monolingual KGs. Moreover,
for simplicity, we filter out the entities created to organize Wikipedia contents, e.g., Wikimedia
category or template. The statistics of all these languages and the associated KGs are listed in
Table 4.2.

Note that the way we label unlinkable cases inevitably runs the risk of false-negative error,
i.e., an English counterpart is actually existing in Wikidata but not recognized. If these entities
are included in our dataset but the ground truth is wrongly specified as NIL, the evaluation
will be inaccurate. Therefore, from the standpoint of dataset creation, we adopt English as the
unified target language of XEM15, because it is the most co-edited language for multilingual
Wikipedians [35] and is least likely that an existing entity is overlooked. To empirically assess
the quality, we also manually verified an adequate number of NIL cases; the keywords in entity
descriptions were translated to search for the corresponding pages on English Wikipedia. Due
to the limitation in the resource of human translators, we only inspected the Cantonese KG,
in which 943 random samples out of the 3,820 NIL cases were studied. As a result, one false
negative sample was found, i.e., Q55719486, whose English sitelink resides in Q85521565 on
Wikidata. However, we further confirmed that this English counterpart (i.e., Q85521565) does
not exist in XEM15, which means in our simulated task it is still proper to regard this case as

1https://en.wikipedia.org/wiki/Wikipedia:Multilingual_statistics
2In Wikidata, the predicates are called properties and we regard the ones whose objects are entities as relations

and the others as attributes.
3The worst-case 95% confidence interval is ±10%.
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NIL. In the future, we will seek more resources and verify the other languages to better ensure
the quality of XEM15.

To facilitate comparison across different languages, we set the matching task to be unidirec-
tional, i.e., mapping from the 15 low-resource languages to English, and distinctively construct
our English KG. Specifically, all the English counterparts of the seeds sampled from the 15 low-
resource languages, i.e., the union set, are collectively configured as the English seed entities.
Then, the same approach is used to build the graph, i.e., inserting the one-hop relation/attribute
triples. In contrast to the previous datasets, where the monolingual KGs are not reused in dif-
ferent tasks of language pairs (e.g., Japanese-English and French-English are both evaluated but
each time the English KG is resampled), our English KG is shared and better serves as a stan-
dardized reference.

In this thesis, we adopt the state-of-the-art models on DBP15K and DBP100K, i.e., HMAN

and PAIRWISEBERT, to further evaluate on XEM15 and investigate how different levels of data
scarcity in low-resource languages affect the models. We follow the same data split setting as
in DBP15K (i.e., train-dev-test ratio = 27:3:70), but the dev set is kept for the use of validation,
as opposed to being merged into the training set [105]. As for the model settings, since the
scale of KGs in XEM15 is similar to DBP100K, we apply most of the same hyperparameters
to HMAN and PAIRWISEBERT except for three: first, as there are relatively fewer relation types
and attributes in this dataset, we only extract the top 300 as the features; Second, we also found
that HMAN converges faster in the preliminary tests, so the number of epochs is decreased from
50,000 to 10,000; Third, according to the optimal results from grid search, we adjust the balance
factor τ to 0.7.

4.2 Evaluation Metric

Following the previous work [10, 92, 105], Hits@k is used as the evaluation metric, which mea-
sures the proportion of correctly aligned entities ranked in the top-k candidates. The results of
DBP15K and DBP100K are reported in both directions, e.g., ZH-EN and EN-ZH.

4.3 Results

4.3.1 Comparison with Other Models

In this section, we investigate whether the proposed GCN-based and BERT-based modules can
efficiently leverage different aspects of information in multilingual KGs. DBP15K and DBP100K

28



XEM15

Language Abbr. Entities Rel. Attr. Rel.triples Attr.triples NIL%

English EN 415,264 927 4,786 1,705,731 2,088,482 -
Farsi FA 43,030 455 1,099 101,051 148,371 14.0
Korean KO 40,138 493 1,116 91,867 117,161 35.2
Armenian HY 36,870 276 175 102,107 93,892 38.4
Hebrew HE 36,541 485 1,005 102,713 176,389 21.7
Greek EL 35,470 413 640 107,580 134,868 25.5
Georgian KA 30,277 307 225 85,362 98,717 26.5
Cantonese YUE 29,895 208 81 80,185 55,345 25.5
Urdu UR 28,901 267 264 78,569 114,053 16.2
Macedonian MK 28,606 470 1,860 91,671 197,364 30.3
Bengali BN 24,916 343 716 77,973 123,245 17.0
Hindi HI 22,621 193 82 46,032 38,388 44.9
Tamil TA 22,244 245 133 52,061 38,068 37.7
Malayalam ML 21,522 250 133 59,961 81,761 22.4
Tagalog TL 20,950 131 30 51,703 29,511 12.9
Kannada KN 16,672 170 56 33,708 41,500 35.3

Table 4.2: Statistics of XEM15. Rel. and Attr. stand for relations and attributes, respectively;
NIL% indicates the percentage of absent English counterparts.

are employed as the benchmark datasets to compare with the baseline methods.

Results on Graph Embeddings

We first compare MAN and HMAN against previous systems, namely JE [37], MTransE [19],
JAPE [92], and GCN [105]. As shown in Table 4.3, MAN and HMAN consistently outperform
all baselines in all scenarios, especially HMAN. It is worth noting that, in this case, MAN and
HMAN use the same amount of information as the GCN [105], while JAPE [92] requires ex-
tra supervised labels (relations and attributes of two KGs need to be aligned in advance). The
performance improvements confirm that our model can better utilize topological, relational, and
attribute information of entities provided by KGs.

Moreover, we perform ablation studies on the two proposed models to investigate the effec-
tiveness of each component. We alternatively remove each aspect of features (i.e., topological,
relation, and attribute features) and the highway layer in HMAN, denoted as w/o TE (RE, AE, and
HW). As reported in Table 4.3, we observe that after removing relation or attribute features, the
performance of HMAN and MAN drops across all datasets. These figures prove that these two
aspects of features are useful in making alignment decisions. On the other hand, compared with
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Model
ZH→ EN EN→ ZH JA→ EN EN→ JA FR→ EN EN→ FR

@1 .@10 @50 @1 .@10 @50 @1 .@10 @50 @1 .@10 @50 @1 .@10 @50 @1 .@10 @50

DBP15K

JE 21.2 42.7 56.7 19.5 39.3 53.2 18.9 39.9 54.2 17.8 38.4 52.4 15.3 38.8 56.5 14.6 37.2 54.0
MTransE 30.8 61.4 79.1 24.7 52.4 70.4 27.8 57.4 75.9 23.7 49.9 67.9 24.4 55.5 74.4 21.2 50.6 69.9
JAPE 41.1 74.4 88.9 40.1 71.0 86.1 36.2 68.5 85.3 38.3 67.2 82.6 32.3 66.6 83.1 32.9 65.9 82.3
GCN 41.2 74.3 86.2 36.4 69.9 82.4 39.9 74.4 86.1 38.4 71.8 83.7 37.2 74.4 86.7 36.7 73.0 86.3
MAN 46.0 79.4 90.0 41.5 75.6 88.3 44.6 78.8 90.0 43.0 77.1 88.7 43.1 79.7 91.7 42.1 79.1 90.9
MAN w/o TE 21.5 55.0 79.4 20.2 53.6 78.8 15.0 44.0 69.9 14.3 44.0 70.6 10.2 34.5 59.5 10.8 35.2 60.3
MAN w/o RE 45.6 79.1 89.5 41.1 75.0 87.3 44.2 78.7 89.8 43.0 76.9 88.1 42.8 79.7 91.4 42.1 78.9 90.6
MAN w/o AE 43.7 77.1 87.8 39.2 72.9 85.5 43.2 77.6 88.4 41.2 74.9 86.6 42.9 79.6 91.0 41.5 78.9 90.5
HMAN 56.2 85.1 93.4 53.7 83.4 92.5 56.7 86.9 94.5 56.5 86.6 94.6 54.0 87.1 95.0 54.3 86.7 95.1
HMAN w/o TE 13.2 16.7 38.3 13.5 17.2 38.5 15.4 22.3 45.5 15.2 22.0 45.5 12.4 13.9 35.3 12.2 13.7 35.3
HMAN w/o RE 50.2 78.4 86.5 49.3 78.6 87.0 52.6 81.6 89.1 52.4 81.1 89.8 52.7 84.2 91.4 52.0 83.9 91.1
HMAN w/o AE 49.2 81.0 89.8 48.8 80.9 90.0 52.2 83.3 91.6 51.5 83.1 91.6 52.3 85.6 93.7 52.3 85.1 93.2
HMAN w/o HW 46.8 76.1 84.1 46.0 76.2 84.6 50.5 79.5 87.5 49.9 79.1 87.5 51.9 82.7 90.9 51.6 82.5 90.6

DBP100K

JE 1-.1 16.9 1-.1 1-.1 16.6 1-.1 1-.1 21.1 1-.1 1-.1 20.9 1-.1 1-.1 22.9 1-.1 1-.1 22.6 1-.1
MTransE 1-.1 34.3 1-.1 1-.1 29.1 1-.1 1-.1 33.9 1-.1 1-.1 27.2 1-.1 1-.1 44.8 1-.1 1-.1 39.1 1-.1
JAPE 20.2 41.2 58.3 19.6 39.4 56.0 19.4 42.1 60.5 19.1 39.4 55.9 26.2 54.6 70.5 25.9 51.3 66.9
GCN 23.1 47.5 63.8 19.2 40.3 55.4 26.4 55.1 70.0 21.9 44.4 56.6 29.2 58.4 68.7 25.7 50.5 59.8
MAN 27.2 54.2 72.8 24.7 50.2 69.0 30.0 60.4 77.3 26.6 54.4 71.2 31.6 64.0 77.3 28.8 59.3 73.4
MAN w/o TE 11.8 28.6 47.7 11.2 28.3 47.9 17.4 21.7 39.4 17.2 21.6 39.8 15.4 19.4 38.2 15.1 18.8 37.1
MAN w/o RE 26.5 53.4 72.1 23.9 49.2 67.9 29.8 60.3 77.1 26.3 53.9 70.6 31.0 63.2 76.4 28.4 58.4 72.2
MAN w/o AE 25.5 51.7 70.4 22.8 47.6 66.3 29.4 59.4 76.1 25.9 52.9 69.7 30.8 62.7 75.8 28.1 57.8 71.5
HMAN 29.8 54.6 69.5 28.7 53.3 69.0 34.3 63.3 76.1 33.8 63.0 76.7 37.5 67.7 77.7 37.6 68.1 78.5
HMAN w/o TE 16.8 20.3 39.2 17.2 21.0 39.4 13.0 11.5 27.3 13.3 11.8 28.0 10.5 13.5 11.1 10.5 13.4 11.4
HMAN w/o RE 28.0 50.3 62.3 28.2 50.6 62.9 30.3 54.9 64.8 30.2 55.9 66.9 32.8 60.3 69.1 33.3 60.9 69.8
HMAN w/o AE 25.7 46.4 57.3 25.5 64.7 57.9 29.6 55.1 66.1 29.9 56.1 67.4 32.5 59.2 67.8 32.9 59.4 68.4
HMAN w/o HW 25.2 46.0 57.9 25.2 45.9 57.9 28.6 52.6 62.2 28.5 53.0 63.0 32.8 60.9 70.0 32.9 60.2 70.3

Table 4.3: Results of using graph-based information on DBP15K and DBP100K. @1, @10, and
@50 refer to Hits@1, Hits@10, and Hits@50, respectively. Each aspect (i.e., topological, rela-
tion, and attribute features) and highway layer are individually removed to perform an ablation
study, denoted as w/o TE (RE, AE, and HW).

MAN, HMAN shows more significant performance drops, which also demonstrates that employ-
ing the feedforward networks can better categorize relation and attribute features than GCNs in
this scenario. Interestingly, looking at the two variants MAN w/o TE and HMAN w/o TE, we
can see the former achieves better results. Since MAN propagates relation and attribute fea-
tures via graph structures, it can still implicitly capture topological knowledge of entities even
after we remove the topological features. However, HMAN loses such structure knowledge when
topological features are excluded, and thus its results are worse. From these experiments, we
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English Chinese

ILL pair Casino Royale (2006 film) (3) 007大戰皇家賭場 (3)
Features starring, starring, distributor starring, starring, language
Neighbors Daniel Craig (1), Eva Green (4),

Columbia Pictures (9)
丹尼爾·克雷格 (1),伊娃·格蓮 (4),
英語 (832)

Table 4.4: Case study of the noise introduced by the propagation mechanism.

can conclude that the topological information is playing an indispensable role among the given
features.

To understand why HMAN outperforms MAN, in the following we describe a case study to
provide insights potentially explaining the performance gap. Recall that MAN collects relation
and attribute information by the propagation mechanism in GCNs where such knowledge is
exchanged through neighbors, while HMAN uses feedforward networks to capture expressive
features directly from the input feature vectors without propagation. As we discussed before, it
is not always the case that neighbors of equivalent entities share similar relations or attributes.
Propagating such features through linked entities in GCNs may introduce noise and thus harm
performance. Table 4.4 presents an example, which is a pair of entities extracted from DBP15K.
We use the number in parentheses (*) after entity names to denote the number of relation features
they have. In this case, the two entities “Casino Royale (2006 film)” in the source language
(English) and “007大戰皇家賭場” in the target language (Chinese) both have three relation
features. We notice that the propagation mechanism introduces some neighbors which are unable
to find cross-lingual counterparts from the other end, marked in red. Considering the entity “英
語” (English), a neighbor of “007大戰皇家賭場”, no counterparts can be found in the neighbors
of “Casino Royale (2006 film)”. We also observe that “英語” (English) is a pivot node in the
Chinese KG and has 832 relations, such as “語言” (Language), “官方語言” (Official Language),
and “頻道語言” (Channel Language). In this situation, propagating features from neighbors can
harm performance. In fact, the feature sets of the ILL pair already convey information that
captures their similarity (e.g., the “starring” marked in blue are shared twice). Therefore, by
directly using feedforward networks, HMAN is able to effectively capture such knowledge.

Results with Textual Embeddings

In this subsection, we discuss empirical results involving the addition of entity descriptions,
shown in Table 4.5. Applying literal descriptions of entities to conduct cross-lingual entity
matching is relatively under-explored. The recent work of Chen et al. [17] used entity de-
scriptions in their model; however, we are unable to make comparisons with their work, as we
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do not have access to their code and data. Since we employ BERT to learn textual embeddings
of descriptions, we consider systems that also use external resources, like Google Translate,4 as
our baselines. We directly take results reported by Sun et al. [92], denoted as “Translation” and
“JAPE+Translation”.

The POINTWISEBERT model is used with GCN-based models, which largely reduces the
search space, as indicated by MAN (RERANK) and HMAN (RERANK), where the difference
is that the candidate pools are given by MAN and HMAN, respectively. For DBP15K, we se-
lect top-200 candidate target entities as the candidate pool while for DBP100K, top-20 candi-
dates are selected due to its larger size. The reranking method does lead to performance gains
across all datasets, where the improvements are dependent on the quality of the candidate pools.
HMAN (RERANK) generally performs better than MAN (RERANK) since HMAN recommends
more promising candidate pools.

The PAIRWISEBERT model learns the textual embeddings that map cross-lingual descrip-
tions into the same space, which can be directly used to match entities. The results are listed
under PAIRWISEBERT in Table 4.5. We can see that it achieves good results on its own, which
also shows the efficacy of using multilingual descriptions. Moreover, such textual embeddings
can be combined with graph embeddings (learned by MAN or HMAN) by weighted concatena-
tion, as discussed in Section 3.6. The results are reported as MAN (WEIGHTED) and HMAN

(WEIGHTED), respectively. As we can see, this simple operation leads to significant improve-
ments and gives excellent results across all datasets.

4.3.2 Effect of Unlinkable Cases

We further investigate the efficacy of our models facing the possibility that the cross-lingual
counterparts are absent on XEM15. As HMAN and PAIRWISEBERT outperform the others in the
tests of DBP15K and DBP100K, we only evaluate these two models in this section. To enable
NIL prediction, the most straightforward way is to set a threshold: if the similarity score is lower
than such a threshold, the model predicts NIL. Nonetheless, as Rao et al. [78] mentioned in their
work, a uniform threshold may not be favorable in practice but determining thresholds for every
case is difficult. Therefore, we follow their approach and additionally insert a dummy entity
into KGs to represent the absence of counterparts. Given the features of the dummy entity, the
ranker can learn to predict NIL as such an “answer” is included in the ranking. For HMAN,
we only use the topological features of the dummy entity, i.e., it is treated as a self-connecting
node, and no relations or attributes are assigned. With respect to the textual information used
for PAIRWISEBERT, the string value “NIL” is provided as its description. The NIL% of each

4https://cloud.google.com/translate/

32

https://cloud.google.com/translate/


Model
ZH→ EN EN→ ZH JA→ EN EN→ JA FR→ EN EN→ FR

@1 .@10 @50 @1 .@10 @50 @1 .@10 @50 @1 .@10 @50 @1 .@10 @50 @1 .@10 @50

DBP15K

Translation∗ 55.7 67.6 74.3 40.3 54.2 62.2 74.6 84.5 89.1 61.9 72.0 77.2 1-.1 1-.1 1-.1 1-.1 1-.1 1-.1
JAPE + Translation∗ 73.0 90.4 96.6 62.7 85.2 94.2 82.8 94.6 98.3 75.9 90.7 96.0 1-.1 1-.1 1-.1 1-.1 1-.1 1-.1
PAIRWISEBERT 74.3 94.6 98.8 74.8 94.7 99.0 78.6 95.8 98.5 78.3 95.4 98.4 95.2 99.2 99.6 94.9 99.2 99.7
MAN (RERANK) 84.2 93.6 94.8 82.1 91.8 93.1 89.4 94.0 94.8 88.2 93.3 94.0 93.1 95.2 95.4 93.1 95.3 95.4
HMAN (RERANK) 86.5 95.9 96.9 85.8 94.1 95.3 89.0 96.0 97.3 89.0 96.0 97.5 95.3 97.7 97.8 95.2 97.9 98.1
MAN (WEIGHTED) 85.4 98.2 99.7 83.8 97.7 99.5 90.8 98.8 99.7 89.9 98.5 99.5 96.8 99.6 99.8 96.7 99.7 99.9
HMAN (WEIGHTED) 87.1 98.7 99.8 86.4 98.5 99.8 93.5 99.4 99.9 93.3 99.3 99.9 97.3 99.8 99.9 97.3 99.8 99.9

DBP100K

PAIRWISEBERT 65.1 85.1 92.6 66.2 85.8 92.9 67.7 86.5 93.1 67.9 86.4 93.2 93.2 97.9 98.9 93.4 98.0 98.9
MAN (RERANK) 59.5 62.1 62.2 55.9 58.2 58.2 65.5 68.2 68.4 59.9 62.1 62.3 69.7 70.4 70.5 65.5 66.2 66.2
HMAN (RERANK) 58.9 61.2 61.3 57.9 60.2 60.3 66.9 69.4 69.6 67.0 69.6 69.8 72.1 72.9 73.0 72.7 73.5 73.5
MAN (WEIGHTED) 81.4 94.9 98.2 80.5 94.1 97.7 84.3 95.4 98.3 81.5 94.2 97.6 96.2 99.3 99.7 95.7 99.1 99.6
HMAN (WEIGHTED) 81.1 94.3 97.8 80.3 94.5 97.9 85.2 96.1 98.4 84.6 96.1 98.5 96.5 99.4 99.7 96.5 99.5 99.8

Table 4.5: Results of using both graph and textual information on DBP15K and DBP100K. @1,
@10, and @50 refer to Hits@1, Hits@10, and Hits@50, respectively. ∗ indicates results are
taken from Sun et al. [92].

language is introduced as our BASELINE method, which is equivalent to predicting every sample
as NIL. The experimental results on XEM15 are displayed in Table 4.6. For simplicity, only
Hits@1 and Hits@10 are reported.

Three settings of the test are conducted: (1) Linkable: only the entities that have English
counterparts are evaluated, which is similar to the traditional settings; (2) Unlinkable: evaluating
the entities whose English counterparts are absent, i.e., NIL prediction; (3) All: the combina-
tion of (1) and (2). Overall, HMAN (WEIGHTED) is the state of the art and makes significant
improvement on top of PAIRWISEBERT, which is consistent with the previous conclusion — the
proposed strategy is able to efficiently integrate multi-aspect information. Nonetheless, as shown
in the results of (3), it is not always the case that HMAN beats BASELINE, and the main reason is
the deficient performance on the unlinkable ones. Moreover, when we look closer at the results
of (2), in some cases the performance of PAIRWISEBERT instead drops after concatenating with
HMAN, e.g., BN and HI. These results reveal that our graph-based method, i.e., the HMAN, falls
short in identifying NIL cases and a more useful modification other than adding a dummy entity
is needed, which we leave for future work.

Comparing by language, both HMAN and PAIRWISEBERT perform poorly on KN, which can
be explained by the lack of information in the Kannada KG (i.e., the least number of entities
and high NIL%). We also perform correlation analysis and it shows a moderate negative (strong
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Model BN EL FA HE HI HY KA KN KO MK ML TA TL UR YUE

Hits@1

Linkable
–PAIRWISEBERT 51.3 52.5 53.2 54.7 33.7 58.5 54.0 15.1 48.4 68.1 40.6 30.4 87.9 58.1 44.5
–HMAN 32.4 33.2 34.3 40.1 19.4 24.6 32.1 17.1 37.7 31.5 26.8 19.4 14.5 27.8 20.8
–HMAN (WEIGHTED) 70.5 70.3 71.1 73.1 53.8 72.9 74.6 30.7 68.2 80.3 60.9 52.1 88.9 76.9 57.4

Unlinkable
–PAIRWISEBERT 47.1 73.1 42.1 44.8 84.0 56.8 64.4 72.6 61.6 60.7 49.5 83.3 33.1 55.2 42.1
–HMAN 7.0 16.1 20.0 10.6 18.9 18.6 8.8 0.8 26.7 10.4 2.5 17.1 28.2 18.4 6.6
–HMAN (WEIGHTED) 46.9 80.9 60.1 60.0 71.4 70.6 75.8 75.5 73.8 75.6 54.3 68.4 62.0 59.9 51.9

All
–BASELINE 17.0 25.5 14.0 21.7 44.9 38.4 26.5 35.3 35.2 30.3 22.4 37.7 12.9 16.2 25.5
–PAIRWISEBERT 50.6 57.8 51.6 52.6 56.2 57.9 56.7 35.4 53.0 65.9 42.6 50.4 80.9 57.7 43.9
–HMAN 28.1 28.8 32.2 33.8 19.2 22.3 26.0 11.3 33.8 25.0 21.3 18.6 16.2 26.2 17.2
–HMAN (WEIGHTED) 66.5 73.0 69.5 70.3 61.7 72.0 75.0 46.5 70.2 78.9 59.4 58.3 85.5 74.1 56.0

Hits@10

Linkable
–PAIRWISEBERT 73.3 68.2 74.0 72.0 44.6 70.8 71.1 29.2 66.2 81.0 57.2 43.8 91.2 78.6 64.2
–HMAN 57.4 58.5 57.9 63.8 39.1 49.0 59.8 37.1 61.7 58.2 49.7 39.0 37.3 53.9 42.5
–HMAN (WEIGHTED) 84.3 80.1 85.0 83.9 69.8 81.9 82.6 43.5 79.5 88.1 70.4 69.6 91.8 89.3 75.7

Unlinkable
–PAIRWISEBERT 80.3 89.0 74.4 76.1 97.2 87.2 89.1 94.4 85.5 86.7 81.2 97.2 78.5 79.5 74.3
–HMAN 15.5 46.1 38.1 30.0 21.3 39.7 24.0 1.5 43.7 37.3 5.8 21.3 44.4 29.8 21.5
–HMAN (WEIGHTED) 78.7 93.4 80.2 84.5 86.6 92.2 95.7 97.2 92.3 93.4 87.9 82.0 84.4 77.3 83.5

All
–BASELINE 17.0 25.5 14.0 21.7 44.9 38.4 26.5 35.3 35.2 30.3 22.4 37.7 12.9 16.2 25.5
–PAIRWISEBERT 74.5 73.5 74.1 72.9 68.2 77.1 75.8 52.2 73.0 82.7 62.6 64.0 89.6 78.8 66.8
–HMAN 50.3 55.3 55.1 56.6 31.2 45.4 50.4 24.5 55.4 51.8 39.9 32.3 38.2 50.0 37.2
–HMAN (WEIGHTED) 83.4 83.5 84.3 84.0 77.3 85.8 86.0 62.5 84.0 89.7 74.3 74.3 90.8 87.4 77.7

Table 4.6: Results of using NIL labels and the information of low-resource languages on XEM15.
Hits@1 and Hits@10 are reported.

positive) relationship between NIL% and the performance of PAIRWISEBERT under the setting
of linkable (unlinkable), whose Pearson’s r is -0.56 (0.81). This result is as expected, since the
higher NIL%, the more difficult (easier) to predict the linkable (unlinkable) cases from the avail-
able amount of information. However, a similar pattern is not found on HMAN, which further
points out that it is unable to efficiently take advantage of more NIL labels. Rather, the perfor-
mance of HMAN highly correlates with the number of entities in a language and the Pearson’s r
achieves 0.81 while all the cases are tested, i.e., the setting (3). Such a relationship suggests that
HMAN is sensitive to the sizes of KGs, whereas it is not the case for PAIRWISEBERT.
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Chapter 5

Conclusion

In this thesis, we focus on the task of cross-lingual entity matching, which aims to discover
the mappings of equivalent entities in multilingual knowledge graphs. We proposed two GCN-
based models and two uses of multilingual BERT to investigate how to better utilize multi-aspect
information of entities provided by KGs, including topological connections, relations, attributes,
and entity descriptions. Empirical results demonstrate that our best model consistently achieves
state-of-the-art performance on the benchmark datasets. In addition, we create XEM15, a new
dataset emphasizing NIL prediction and the comparison across low-resource languages, to bring
up the real-world challenges with regard to this research direction.

In future work, we would explore alternative techniques that can leverage NIL labels more
efficiently, especially for graph-based methods. One direction is following Rao et al. [78] to
design features that encode global information for the dummy entity. However, their proposed
features are tailored for SVM, which are not directly compatible with our GCN-based model. To
apply a similar idea to graph embedding learning, we may introduce global attention [58] and
allow HMAN to learn the features from data. Another naive approach that enables propagating
global information to the dummy entity is to build auxiliary relations connecting to every entity
in the graph. Apart from the current benchmarks, we also consider extending our models to
aligning heterogeneous multilingual KGs, e.g., Wikidata and YAGO, in which the disparity in
schemas would bring new challenges. One foreseeable issue is that a supplementary component
for relation alignment might be needed. Moreover, to better ensure the quality of XEM15, we
would seek more resources, e.g., human translators speaking languages other than Cantonese,
for a more thorough verification of the NIL labels.
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Dbpedia–a large-scale, multilingual knowledge base extracted from wikipedia. Semantic
web, 6(2):167–195, 2015.

[51] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks.
Journal of the American society for information science and technology, 58(7):1019–
1031, 2007.

[52] Yankai Lin, Zhiyuan Liu, Huanbo Luan, Maosong Sun, Siwei Rao, and Song Liu. Mod-
eling relation paths for representation learning of knowledge bases. arXiv preprint
arXiv:1506.00379, 2015.

[53] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and
relation embeddings for knowledge graph completion. In Proceedings of AAAI, 2015.

[54] Denis Lukovnikov, Asja Fischer, Jens Lehmann, and Sören Auer. Neural network-based
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