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Abstract

When measles was rampant, suffering apparent, and relief desired, the prospect of vaccination
was received with open arms by a grateful public. But it worked too well, and opinions slowly
diverged; scientists saw aggregate health as proof of the efficacy of intervention, while some of
the lay public wondered “But do we really need this vaccine, though? I don’t see sick people...”
Spurious 1998 research linking the MMR vaccine to autism was published and our dreams of
eradication evaporated; the diseases were back to stay. The spread of vaccine disinformation
through social networks is immediately apparent and easily exploited, even more so due to the
strong assortativity of social networks (both online and face-to-face). Therein lies the focus of
this thesis; we investigate different measures of spatial grouping as early warnings signals (EWS)
of epidemics through the simulation of social and contact networks and the use of various statis-
tical and graph theoretical tools. Using an agent-based model coupling a binary voting dynamic
with an SIRVp model of infection, we simulate a vaccine preventable disease. Each week, agents
are given the opportunity to change opinion to that of a friend, while having potentially disease-
spreading interactions with many people. The first study confirms that changes in trend of the
Moran’s I, Geary’s C and mutual information statistics give early warnings of the critical tran-
sitions representing both vaccine crises and epidemics. This is independent of the strength of
an injunctive social norm, though through change point testing we confirm that these warnings
come closer to vaccine crises as the norm becomes stronger. We find also that the observable
distance between vaccine crisis and epidemic spread decreases as the norm strengthens. Con-
firmation of these results for other different models boosts our confidence in our results. Our
second study shows that graph theoretical changes in incidences of opinion-based communities
and echo chambers coincide reliably with outbreaks. Clustering, network modularity and the rate
of opinion change also provide EWS of both vaccine crises and epidemics in the population. Due
to the immense size and traffic of current social networks, only portions of interactions can be
observed at any one time, and therefore our third study tests previously effective signals against
an incorporation of vaccine hesitance and network sampling. We find that these identified tools
remain good EWS, though experiencing penalties on effectiveness dependent on the sampling
rate of the population. In sum, our work provides easily employable tools to predict important
negative epidemiological events using readily available data, the best-performing of which is the
entropy-based mutual information statistic. Given current and expected events, we believe that
this thesis makes a solid contribution to the sparse EWS literature for coupled disease-behaviour
systems, as well as providing tools that can be used to inform policy decisions surrounding the
mitigation of human folly and critical infection events.
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Chapter 1

Introduction

Large-scale infectious disease events are extremely detrimental to the region of the outbreak,
as well as causing extensive economic and infrastructural damage [355]. The desire to avoid
these gross impacts creates the interest in (and need for) tools that can use readily available
information to predict their occurrence. This motivates our research into finding early warning
signals (EWS) of an epidemic. Warning signals (both spatial and temporal) are statistically
significant, recognisable and characteristic behaviours known to accompany critical transitions in
dynamical systems; those preceding the transition are called early warning signals [484].

Currently, the world is in the grips of a new plague: most frequently called “Coronavirus” in
social and popular media, COVID-19 (the disease caused by the SARS-CoV-2 virus) has taken
on a life of its own, causing mass sickness, death and public health crises while also inspiring
global panic, paranoia, conspiracy theories, racism, comedy sketches and memes. First identified
in December 2019 in Wuhan, a city in the Chinese province of Hubei, the SARS-CoV-2 virus
was first thought to have originated in bats (a known source of betacoronaviruses) [494, 19].
Soon, cases of infection were found that could not be traced to any known index cases [329].
Inevitably, the virus soon made its way across Asia, Europe and the Americas, leaving thousands
of deaths in its wake. The World Health Organisation (WHO) deemed the outbreak as “a public
health emergency of international concern” on 30 January 2020 [10], and publicly declared it a
“pandemic” (a disease with global prevalence) on 11 March 2020 [418, 135].

Criticism of the actions of the WHO, pervasive tracking efforts by multiple public health systems
and world organisations, large-scale preventative measures and policy interventions [407, 520, 8],
intense media scrutiny [375, 581, 214] and data emerging from those countries hardest hit (at
the time) by casualty (such as Iran, South Korea, the People’s Republic of China and Italy)
[131, 564, 411, 47, 279] offer an unprecedented view into the social impacts, decision making,
policy deployment and the gargantuan expense involved in having to employ scalable interventions
like population-wide lockdowns, once early efforts at containment have failed.
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One aspect of disease control mentioned frequently is vaccination. Currently there are many
clinical trials of vaccines attempting to prevent COVID-19 infection through various avenues
[326, 186], many expected to be successful, with companies pre-emptively increasing production
capacity to supply the necessary number of doses [544, 538, 346], and countries vying to obtain
control over distribution in a concept called “vaccine nationalism” [513, 323]. In the absence of
a vaccine, physical distancing guidelines have been encouraged and enforced, leading to protests
against the perceived wrongs of confinement [172, 233]. One cause of concern directly related to
this thesis is the alliance forged by coronavirus protesters and anti-vaccination activists [32, 260].

In what were previously seen as separate causes, there lie some similarities such as conspiracy
theories and resistance to measures thought of as excessively restrictive and/or harmful, with
some media outlets outlining coronavirus vaccine conspiracies and resistance formed while vac-
cine hopefuls are still in trial [292, 449]. During the distribution of any resulting vaccine, we can
therefore well expect staunch resistance and an increased spread of disinformation. Thereby, we
can safely predict that social network mining and large-scale data gathering will see increased
attention and aggressive pursuit, alongside (increased) investment in the development of surveil-
lance and warning systems by government agencies and non-profit organisations alike.

1.1 Canonical approaches in infectious disease modelling

Various studies employ different mathematical frameworks to model and analyse the transmission
of infectious disease. A large majority of these leverage knowledge and observation of the disease
process to subdivide it progression into stages called compartments.

1.1.1 Compartmental models: 1760 – ????

Compartmental modelling of disease spread forms the backbone of current research in mathe-
matical epidemiology. This approach partitions the population into compartments representing
different stages of the disease process. The first recorded instance of compartmentalisation1 was
done by Daniel Bernoulli in 17662, used to model the effect of vaccination on the spread of small-
pox [60, 161, 29]. This model broke the population into the compartments S (susceptible) and I

1the process of modelling where a population is divided into groups of individuals with different stages of
progression of the disease.

2This is not directly asserted in [29], but rather inferred from the language used. The common assertion that
this model is first is acknowledged in [161] and [225], though not discussed in either article. However, [225] is
careful to state that Bernoulli is not considered to be the first mathematical epidemiologist (in the commonly
understood sense); an example would be his contemporary Jean le Rond d’Alembert [161]. Bernoulli’s research was
primarily motivated by the sale of life insurance (annuities) [60, 161], while d’Alembert’s approach is rooted in risk
aversion and optimisation [435, 26]. [225] comments on the decidedly political and economic tone of Bernoulli’s
approach, although that can be said of both scientists, who used both economic and moral arguments. The major
difference between the two models is Bernoulli’s assumption of the independence of age and the probability of
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Compartment Interpretation

C a carrier of the disease

E the agent has been exposed to the pathogen

I infected with the disease and infectious (can pass the disease to others)

M has maternally-derived immunity derived from the mother’s antibodies

R recovered from the disease, or removed

S susceptible to infection

V vaccinated (immune the disease during the vaccine’s effective period)

Table 1.1: Convention for naming the compartments in compartmental epidemiological models.
The disease process used is represented by a chain of characters; for example, a model process
with susceptible, infected and recovered compartments is labelled ‘SIR’. Examples of such models
are shown in Fig. 1.1c

.

(immune), and treated the relationship between age and susceptibility (for an endemic infection
with a small mortality rate) [161]. Since then, many compartmental models have been employed
in epidemiological research, many of them centred around threshold effects in diseases spreading
through SIR, SIS (Fig. 1.1a), MSIR and SIRS epidemic models on various network structures
[291]; the names of the compartments are given in Table 1.1.

As a simple example of model construction, the process of the measles disease is sometimes mod-
elled by an SEIR model [266], where each agent rotates through four distinct stages of the disease
(called compartments). Some agents are initially susceptible to infection (compartment S), while
those agents who have been exposed to the disease (infected) pass through two compartments (as
shown in Fig. 1.1c): the exposed compartment (E) represents the period where the agent is not
yet infectious. Agents exit this stage upon becoming infectious, which is sometimes considered
roughly coincident with the onset of symptoms (such as a characteristic rash), and is so treated
as a characteristic 10-14 latency period in simplified models [266, 440], though this is not strictly
correct. The agent enters the infectious compartment (I) in the second stage of infection (also
called the morbid stage) when the measles rash appears, where they remain for 5-8 days [440, 266]
(this represents a simplification, since a person exposed to the measles pathogen is deemed in-
fectious anywhere from 2 to 4 days before the onset of symptoms). The agent then enters the
recovered compartment (R) after the course of infection [266], where they have gained natural
active immunity.

death, in contrast to d’Alembert’s inclusion of marginal utility and time discounting [475, 532]. These early works
on probability are given much more prominence in economic theory and the origin of probability theory, than in
epidemiology.
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S (susceptible) I (infected)

(a) SI model, sometimes used to model herpes, or
any other disease from which there is no recovery.

S (susceptible) I (infected)

(b) SIS model, sometimes used to model gonor-
rhea [255] and meningitis [483].

S (susceptible) E (exposed) I (infected) R (recovered)
β σ γ

ξ

(c) SEIR model, sometimes used to model the Ebola [464, 158] and Influenza A [180] diseases.

S (susceptible) E (exposed) I (infected)

C (carrier)

R (recovered)

(d) SEIRC models (such as the one shown above) can be used to model the chikungunya [178] and foot-
and-mouth [354] diseases.

Figure 1.1: Schematics of four different compartmental disease models used in mathematical
epidemiology. In (c), β represents the rate at susceptible agents are exposed to the infection
(transmission rate or force of infection), σ represents the rate at which latent agents become
infected (incubation rate), γ the rate at which ill agents recover from illness (incubation rate)
and ξ represents the rate at which agents lose their immunity and become susceptible once again
(waning rate).
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1.1.2 Emergent phenomena and agent-based modelling

Agent-based models (ABMs) allow us to explore the complex phenomena caused by the interaction
of agents, which are heterogeneous computational units with individual properties that follow
well-defined rules) [136]. Such agents interact with each other and some surrounding environment
(constraints, structures and parameter faced by all agents of the simulation) [266, 149, 73] through
time-structured agent-agent contacts and community [479, 559, 159, 276]. As such, the complexity
of ABMs allow us to capture and measure many deterministic elements of the spreading process at
once, such as spread within cohorts, age dependence, the effect of socioeconomic status, as well as
identifying target demographics for intervention (looking at shared characteristics) [265, 137, 267].

ABMs have been used to model diseases such as influenza [208, 159, 23, 322], human papillo-
mavirus [438, 227, 252, 92], West Nile virus [75, 331], Ebola [499, 266, 542, 276], plague [320, 560]
and others [559], sometimes with the intent of testing strategies for preventing or mitigating out-
breaks and the associated problems caused [357, 559, 2, 558, 89, 107, 98]. We use the agent-based
simulation paradigm to model heterogeneous mixing among individuals with different opinions
and states of health, as well as to impose a random (Erdős-Rényi, ER) network structure on each
of the disease and communication networks; not only does this bottom-up modelling approach
allow the capture of elusive analytically intractable dynamics not captured by differential equa-
tion models [466, 430, 193, 73, 157], but also allows us to view the individual trajectory of each
agent [215, 472, 73, 107] and track the movement of agents and interactions in dynamic models
[157, 28, 433, 169].

Through agent-agent interactions, an ABM will have an inherent connectivity structure among
the group of agents (population) represented. Since we are modelling infection spread, we define
effective contact as any contact between agents that allows for infection of a susceptible indi-
vidual (such as a cough, sneeze, kiss, shared needle, unprotected sex, interaction with a pet,
etc.), depending on the routes of transmission of the disease being modelled. Visually, this is
represented by a graph such as Fig. 1.2, where nodes (green squares) represent the agents, and
edges (black solid lines) represent some contact between the two agents it connects. An infection
process on networks can be cast as site (or bond) percolation processes [285]. In site percolation,
individuals (agents) are represented by sites (squares in Fig. 1.2); a site is considered occupied if
the corresponding agent is infected, and empty otherwise. Meanwhile, the disease spreads along
the bonds (edges in Fig. 1.2) again representing effective contacts made between two agents.

1.1.3 How about a well-mixed ABM?

In general disease modelling, one common simplification is to assume a well-mixed population,
in which every susceptible individual has effective contact with every infected agent in (a well-
specified subgroup of) the population. This methodology plays a large part in Ch. 5’s model
of COVID-19 infection and disease transmission; within the context of agent-based modelling,
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Figure 1.2: Example of the contact network created by an ABM. Each square represents an agent
(individual) in the model, and each edge represents an effective contact between two agents.
Green squares are susceptible to the disease, and red squares are infected with the disease.

it is most often titled random mixing or complete mixing, as in [213, 104, 534]. In a spatially
extended system, any area in which agents are well-mixed presents a clique, a group of agents
whose induced subgraph is a complete graph Kn (that is, all agents are pairwise connected) with
no other agent in the network connected to all the agents in the group [295]. Many ABMs feature
clique formation through the progression of model dynamics; Sec. 1.2 presents many examples of
this phenomenon through percolation, for example. However, when included as a design feature,
random mixing usually only takes place in a small region (or multiple small regions) of the network
modelled.

In the model outlined in Ch. 5, categorically aged agents (either adults or children) are grouped
into households with overall size distribution similar to that of 2016 Statistics Canada census
data [96]. Within each household, all agents have effective physical interaction with each other,
thereby making each household a clique. As dictated by parameter values, children and adults
are enrolled in a sole educational institution, where they interact in assigned classrooms, but also
randomly mix in hallways, bathrooms, parking lots and pickup areas, and other such communal
areas. In this way, each classroom (and the institution in general) can also be treated as a clique.
A simplified example of such a network is shown in Fig. 1.3, where five central mutually connected
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Figure 1.3: Representation of the graph structure of an ABM featuring random mixing within
specified cliques. The agents of the model are represented by brown nodes, all of whom interact
with every other agent within their enclosing (dashed) polygon. Solid edges between polygons
represent the links between cliques by which information is shared.

polygons represent classrooms within which agents (brown nodes) mix randomly. Polygons out-
side the central cluster represent households of interacting agents, some of whom house school
attendees. Further details of the model are outline in Ch. 5, but we can see that random mixing
is not necessarily a simplifying assumption, nor is it necessarily an emergent phenomenon caused
by assortativity.
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1.1.4 Behaviour and graph theory

Contemporary disease spread drives the provision and consumption of information related to
vaccination and other public health interventions. If a vaccine–preventable disease is uncommon,
more time is available to examine the benefits and perceived costs of the vaccine [403, 268]. Un-
fortunately, low disease visibility steeply discounts the benefit of vaccination, and fears of vaccine
adverse effects go uncontested. This leads to underestimation of the risks of the disease due to its
perceived low prevalence or mortality rate, and adoption of an anti–vaccination sentiment based
on irrational and ill-informed analyses [248, 405, 474, 413]. Also tied to low disease prevalence
is the overestimation of health detriments of vaccination [413, 362, 505], and the occurrence of
vaccine scares [254, 43, 212].

These mistaken beliefs about vaccination can also stem from the consumption of information
from dubious sources [403]. For example, sensationalisation of vaccine adverse effects can lead to
significant overestimation of the danger involved and rampant anti-vaccination sentiment [574,
205]. There are also the prospects of mistaken scientific validity and false consensus [150, 226, 109].
As expected, these ideas persist long after disproof; sometimes, even retraction takes a long
time [257, 258, 378, 528, 402].

Interpersonal communication and connectivity are also an important channel of information
spread, even more so than media consumption [9, 568]. As information diffuses through a popu-
lation, it becomes tainted by the personal biases of those spreading it. This is partly due to the
psychological theory of reinforcement, which claims a preference for information conforming to
views already held in the avoidance of cognitive dissonance [280]. As such, distinct groups based
on shared sentiment tend to form in all social interactions [124, 356, 88, 356]; this development
of ideological factions is becoming more pronounced as the creation, travel and consumption of
media and information becomes easier [198, 176, 48].

Existing within these groups, echo chambers are subgroups in which each node has only neigh-
bours with the same attribute (a rigorous definition is given in Sec. 3.2.2). In models of deci-
sion/sentiment based on the flow of information and near-neighbour interaction, echo chambers
serve as regions of self-reinforcement of sentiment due to the inherent “insulation” of members
from exposure to opposite opinion and the ease of information flow [216]. They epitomise the
adage “birds of a feather flock together” and are fixtures in social networks such as Twitter and
Facebook [155].

Salathé et al. confirmed that belief is more important to disease spread than the simple avail-
ability of vaccines, with the influence (on the dynamics) exerted by groups of like-minded people
becoming more pronounced as vaccine coverage approaches the herd-immunity level3 [478]. A

3Herd immunity refers the disappearance of a disease from a population with sufficiently high vaccination rate;
that is, not everyone need be vaccinated. The unvaccinated are insulated from the disease by the rest of the
population.
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similar study by Fu et al. shows that an adaptive imitation dynamic for vaccination can lead to a
catastrophic drop in overall vaccination rates (even below the optimal personal level), as vaccine
cost crosses a critical threshold [209].

The models of information and communication presented so far are relatively simple, using adop-
tion or discrete degrees of bias to ‘incorporate’ new information into current beliefs. However,
using a sentiment-incorporation rule based on Dempster-Shafer theory4 showed that the report-
ing rates of events in disease and vaccination affected vaccine uptake, while information decay
influences the average time taken to vaccinate [567]. Information decay and fidelity is also a major
factor in information dissemination and has been demonstrated in social networks (for example,
the evolution and spread of memes) on Facebook [7].

In the scope of this project, two network structures are used for the social network: the ran-
dom graph and the small world network. Random graphs are used in many studies of social
interaction[388], and are easily described: the Erdős-Rényi graph (ER, [177]) G(N, p) is a graph
of N nodes constructed by connecting each newly added node to every node already present with
probability p. Despite their frequent exploitation, many authors have pointed out shortcomings
of the random graph construct that decrease its ‘realism’ and applicability to empirical study
[388].

Many studies have however established that empirical networks have highly skewed degree distri-
butions (due to assortative mixing), among other properties such as a high degree of clustering
and small average path length. These properties occur in the small world network model pro-
posed by Watts and Strogatz [551]. In this construction, the network WS(N,K, β) with size N ,
mean degree K and rewiring probability β is made by first building a ring lattice, where each
new node is connected to K

2 neighbouring nodes on each side. Then, each node is visited and
each edge between it and its left neighbours is rewired to some random node with probability β;
this random rewiring drastically reduces the average path length and diameter of the network.

Varying the parameter β allows variance of the network properties between a ring lattice β = 0

and an approximation of the ER graph G
(
N, K

N−1

)
when β = 1. This static model is the second

network structure used in this thesis (Ch. 4).

1.2 Critical transition and the “epidemic”

In general, epidemiological literature approaches the study and incidence of epidemics in a great
variety of ways; in this thesis, we focus on the phenomena surrounding critical transitions. These

4The Dempster–Schafer theory of belief functions is based on Bayesian subjective probability and provides for
calculation of the level of belief in a premise (given the belief in a related principle), as well as giving a rule for
reliably combining those beliefs so the evidence of belief may be taken from other disjoint sets [70, 576, 348].
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critical transitions occur when some small change in (one of the parameters of) a physical system
causes an abrupt change from one state to another as some critical point is passed [486, 484].
Epidemics can be seen as special cases of critical transitions in the general health of a population
[165, 81]. More specifically, [165] casts the recurrence of vaccine-preventable disease as a result of
a critical transition in which a change in vaccine uptake bolsters the infection spreading process
to some lasting point of sustained transmission.

Critical transitions in epidemiological models have long been related to phase transitions in statis-
tical mechanics [431]. Phase refers any state of a system with distinct macroscopic characteristic
characteristics in which changes in properties are continuous (and is usually characterised by the
value of an order parameter), while phase transition occurs when the free energy of the physical
system (or one of its derivatives) develops a singularity [431, 573, 247]. For instance, one of the
well-known conditions for epidemic spread of the disease is that the basic reproductive ratio must
exceed one R0 > 1 (the epidemic threshold, seen in Fig. 1.4a) [24]. This is similar to the water
phase transitions, in which critical temperatures and pressures must be passed to give the solid,
liquid and gas phases (Fig. 1.4b) [501].

Another perspective involves percolation. Many studies have modelled disease as network perco-
lations [285, 540, 387, 369, 386, 481, 363], where an epidemic occurs when a percolation threshold
is passed and a giant connected component appears [365, 492]. That is, when the size of the
largest cluster of susceptible agents “becomes comparable” to the size of the population [369],
or more specifically, the size of the component varies with the size of the model (population)
[247, 286, 352]. Another more concrete yet equivalent statement of an epidemic is given by [386]
as

“Epidemics are defined as outbreaks that affect a non-zero fraction of the population
in the limit of large system size.”

This speaks to the threshold behaviour treated in Def. 3 in that this is when the proportion
p of susceptible agents in the model passes some calculable percolation threshold pc [369, 281]
(in many sources, it is outlined as a condition conducive to epidemic spread, with any remaining
interpretation left to the reader). This demonstrates the physical concepts of scale invariance and
correlation length divergence that accompany a second-order phase transition in physical systems
[432]. [486] indicates that such a continuous phase change may be due to the heterogeneity and
relative low connectivity.

Despite the comfort offered by this definition, it relies on the (manipulation of the) property of
network size, an oft-seen theme in this research. Many following research papers (especially those
featuring computational models) obtaining results from ABMs speak of “epidemic spread” while
giving no clear description of what the term ‘epidemic’ means within context despite arguable
necessity, a phenomenon well noted in [414]. Based on the descriptions of graphs presented in
these papers and references in their discussion sections, the author can only conclude that the
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(a) Final size of an epidemic with respect to the
basic reproduction R0. (b) Phase change diagram of water (shown with

respect to pressure and temperature).

Figure 1.4: Comparing the epidemic threshold and the phase transitions of water.
(a) “Epidemic phase transition. Final size of an epidemic as a function of its basic reproductive
ratio R0, for a susceptible-infected-recovered (SIR) model with a homogeneous network structure,
with a number of connections (k) of 4 for each individual. Transmission rate β varies between
0 and 3 with recovery rate γ = 1, resulting in R0 ranging between 0 and 3. The line depicts the
analytical results whereas the red dots show the results from stochastic simulations with a popu-
lation size of 104. The epidemic does not occur for R0 < 1, whereas the final size increases as a
function of R0 for values higher than 1. The analytical results and the simulations are in good
agreement.” [179]
(b) author of the original work: Cmglee / CC BY-SA (https://creativecommons.org/
licenses/by-sa/3.0)

word ‘epidemic’ in this sense (independent of network size) is a loose idea of ‘disease explosion’ in
a large group of susceptible agents, as opposed to the ‘slow burn’ seen in populations where most
of the population is in some way immune to the infection. These ideas of speed and spreading
rate partially inspire the description given in Def. 1.2.

Figure 1.5 shows a graphic representation of an epidemic. A blue foreground bar chart shows
the trend in the proportion of infected individuals in the population over time, with a grey-
shaded region representing a family of curves generated by some EBM of the infection process.
The pink-shaded regions show the areas of the trend that would be termed as epidemics in the
loose sense: the lead up to a peak region in the infection trend of the model. In comparison,
the homogeneous-mixing assumption made in EBMs is (in this simple sense) equivalent to a
spreading process unfolding on a complete network, a contact network in which each agent has
effective contact with every other agent in the population. This is precisely the methodology
used in Ch. 5, in which we treat the subnetwork of school attendees as being complete, with each
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Figure 1.5: A contrived representation of a family of curves giving the proportion of infected
agents (grey shaded area), with the true trend given by the blue bar chart. Pink-shaded regions
represent what would be termed an ‘epidemic’; that is, a region of the trend indicating fast growth
of infection in the population being modelled.

agent having effective contact with everyone else during common area interactions.

Here, we can define an epidemic as a large infection spreading process distinct in size from any
established endemic infection rate [290, 200, 493, 287], or as a bifurcation [486, 91, 334, 108, 30, 13]
ending in an endemic regime [414], both confined to a well-defined region being investigated. For
our purposes, the characteristics of an epidemic will be as follows:

1. the transmission and/or acquisition of a common (strain of the) disease occurs through
effective agent-to-agent contacts or some other common vector [200, 287],

2. the time taken for a sudden wave of infection to weaken is small relative to the length of
time needed to establish either endemicity or absence of the same disease in the region
specified [414],

3. there exist thresholds in the dynamic for either network and compartment size [41, 384,
282, 222, 526], household reproduction number [437], transmissibility [369], average neigh-
bourhood size [455] or behavioural changes [565, 360, 477],

4. the spread of the disease is limited only by the number of susceptible agents on the network;
given that the transmissibility of the disease exceeds some threshold value, the infection dies
only due to the (near-complete) depletion of the pool of susceptible agents (rather than lack
of transmission) [290, 200, 55],

5. the peak number of agents infected during the spread is on the order of the size of the
population under study [437],
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Figure 1.6: Plots of the number of new COVID-19 cases per day for Canada and Kenya, from
January to September 2020.

6. the spreading rate of the infection is superlinear (due to the positive feedback loops formed
by interactions between infected and susceptible agents) [113, 290, 333]. Alternately, the
velocity of the epidemic can be measured by established methods given in existing literature
[535, 120, 121].

A more rigorous treatment of epidemics (and their definition) is given by various sources [290, 414],
while Fig. 1.6 shows a typical epi curve: the number of new COVID-19 infections per day in
Canada and Kenya between January and September 2020 spread through community infection
[417].

The approach of these critical transitions can be typically accompanied by many characteristic
phenomena such as flickering [484, 549], critical slowing down [484, 486], critical speeding up
[531, 457, 76], skewness [484], autocorrelation [139, 138], variance [138, 301] and others [486]. In
this thesis, we focus on EWS resulting from critical slowing down, which occurs when a system
takes progressively longer to recover from a small perturbation (due to weakened stability of the
current system equilibrium) as some critical point is approached [80]. Specifically exploiting the
network structure of the models outlined in Sec. 1.3, we will focus on spatial indicators.

1.3 A coupled behaviour-infection model

We use an ABM in Chs. 2, 3 and 4 to model heterogeneous mixing among individuals with
different opinions and states of health, as well as to impose an ER network structure on each of
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the disease and communication networks; not only does this bottom-up modelling approach allow
the capture of elusive analytically intractable dynamics not captured by differential equation
models [466, 430, 193, 73, 157], but also allows us to view the individual natural history of each
agent [215, 472, 73, 107] and track the movement of agents and interactions in dynamic models
[157, 28, 433, 169].

We model a multilayer network where each layer is given an identical undirected ER random
graph with size N and mean node degree 〈dn〉. Each agent n can be described by a pair of states;
for instance, each agent is assigned the joint state (Vs, Vp) at the start of the simulation with
probability α (they are a pro-vaccine vaccinated agent), else they are initialised with joint state
(N,S) (an anti-vaccine susceptible agent) with probability 1− α.

The social process follows anNVs dynamic (Fig. 1.7b), representing pro- (Vs) and anti-vaccine (N)
opinion for each agent n. ξ represents the probability of any agent switching opinion randomly
in each week and Pn(N → Vs) represents the probability of switching from anti-vaccine opinion
to pro-vaccine opinion (N → Vs) upon interaction with a disagreeing neighbour. We introduce
an imitation dynamic by having each agent n compare its opinion with a single randomly chosen
social contact (a neighbouring agent on the social layer) each week; n then changes its vaccination
opinion only if there is disagreement (the agent and the neighbour have different vaccine opinions).
This change of opinion depends on the perceived risk of vaccine adverse effects κ (“perceived
vaccine risk”) and In (the number of infected physical neighbours of n) according to the rules

Pn(N → Vs) =
1

1 + exp
(
−UN→Vsn

) ,
Pn(Vs → N) =

1

1 + exp
(
−UVs→Nn

) , (1.1)

where the indices UN→Vsn and UVs→Nn in (1.1) are utility functions defined as

UN→Vsn = −σ
(
dNn − dVsn

dn

)
− (κ− In) ,

UVs→Nn = −σ
(
dVsn − dNn

dn

)
+ (κ− In) .

(1.2)

Here, σ represents the strength of an injunctive social norm to maintain the current opinion
(referred to as “social norm”), while d∗n represents the number of neighbours of n with opinion ∗
and dn represents the total number of social contacts of n.

The epidemiological dynamics (which we term ‘infection dynamics’) follow an SIRVp process
(Fig. 1.7a), in which an agent n can progress through each of four disease compartments: S
(susceptible), I (symptomatically infectious/infected), R (recovered) and Vp (vaccinated). Every
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S I R Vp

1− (1− p)In + ι

(1− α) · µ

Pn(N → Vs) + α · µ

(1− α) · µ

(1− α) · µ

α · µ

α · µ α · µ(1− α) · µ

(a) Schematic of the infection dynamics of the model. Effective contacts occur between susceptible S and
infected I agents with probability p per time step (1 week). Upon deciding to vaccinate (with probability
Pn(N → Vs)), a susceptible agent n becomes physically vaccinated (S → Vp). Infection lasts ` = 2 weeks
after which agents recover (I → R). Upon death (with probability µ per week), an agent is “rebirthed”
with either vaccinated (probability α · µ) or susceptible (probability (1− α) · µ) status.

N Vs

Pn(N → Vs) + α · µ+ ξ

Pn(Vs → N) + (1− α) · µ+ ξ

(1− α) · µ α · µ

(b) Representation of the opinion dynamics of the model. Per time step, each agent switches between
pro- (Vs) and anti-vaccine (N) opinion with probabilities Pn(N → Vs) and Pn(Vs → N) respectively upon
interaction with a dissenting neighbour. α gives the probability of being birthed with pro-vaccine opinion
Vs.

Figure 1.7: Diagrams showing the physical (a) and social (b) dynamics of model V1.

week (i.e. in each time step), each susceptible agent n interacts with all its physical neighbours;
each effective interaction carries the probability p of infection (S → I), so that each susceptible
agent faces the total probability 1 − (1 − p)In of infection in a single week. The duration of the
illness is ` weeks (with no impact on mortality), after which n gains lifelong natural immunity
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(I → R).

Alternately, if a susceptible agent n adopts a pro-vaccine opinion, they are immediately vaccinated
(S → Vp) and gain lifelong artificial immunity. We also assume that only susceptible agents are
vaccinated. Thus, individual agents may change their opinion about vaccination multiple times
in their life (N → Vs → N), but once they are vaccinated they may not become unvaccinated
(S → Vp). This in turn creates an asymmetry between disease dynamics and social dynamics
that will have implications for the model predictions.

Each agent n has probability µ of dying each week, upon which they are replaced by a new pro-
vaccine vaccinated agent (Vs, Vp) with probability α, or an anti-vaccine susceptible agent (N,S)
with probability 1− α, keeping the same physical and social contacts as the agent they replaced
(so that the network is static). Case importation is accounted for by infecting a randomly selected
proportion ι of susceptible agents at the start of each week, and noise is introduced to the model
by changing the vaccine opinions of a randomly selected proportion ξ of the entire population
weekly.

At the start of the simulation, some susceptible agent is randomly selected as an index patient and
infected; subsequent disease spread is governed solely by environment and agent-agent interaction.
Figure 1.8 gives a flowchart demonstrating the flow of agents through the different phases of the
model occurring every time step (for most of the processes). Processes in yellow boxes occur only
once throughout the realisation while processes in red boxes denote loops, where the instruction
is repeated for all agents in the network. Blue diamonds represent true/false decisions, and grey
boxes represent choices. The steps are:

1. The realisation is initialised with a ratio α of the agents assigned social state Vs and physical
state Vp (i.e., vaccinated pro-vaccine agents), and the remainder assigned the physical state
S and social state N (i.e., susceptible anti-vaccine agents). Both layers of the network are
given identical random network structure, so that each agent’s social contacts are also their
physical contacts and vice versa.

2. A single susceptible agent is chosen as the index patient of the disease, and infected (S → I).

3. Every susceptible agent in the network interacts with all of its physical neighbours, and
every such contact carries probability p of infection spread. Since the agent n has In many
physical contacts, n’s total probability of infection in a single time step will be 1− (1−p)In .

4. Every time step, each agent n in the network compares opinion with some random social
neighbour a, with opinion change only if they disagree (different social states). If they do
disagree, then agent n will adopt a’s vaccine opinion with probability Pn, and is immediately
vaccinated if susceptible and changing to a pro-vaccine opinion. The next agent in the
network is selected, and the loop is repeated until there are no more agents to be considered.
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Figure 1.8: Implementation of the model dynamics used for each stochastic realisation. Red
blocks represent loops run for each node in the network per time step. Yellow blocks are executed
only once per realisation. Blue diamonds represent binary decisions, and grey boxes represent
simple instructions.
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5. In each time step, every agent faces probability µ of death, at which they are instantly
replaced by either a vaccinated pro-vaccine agent (joint state (Vs, Vp)) with probability α,
or a susceptible anti-vaccine agent (N,S).

6. Then if the realisation has converged, it ends and the state of the system is output for each
time step run; else, it progresses to the next time step.

7. The first process of every subsequent time step is case importation, where proportion ι of
susceptible agents is infected before the infection process is repeated in the simulation.

Table 1.2 lists the variables and notation used in Chs. 2, 3, and 4.

State Description

S susceptible to infection

I infected and infectious

R recovered from illness, immune until death

Vp vaccinated, immune until death

N has an anti-vaccine stance

Vs has a pro-vaccine opinion

Notation Description

In number of infected neighbours

Pn(λ→ ρ) probability of switching sentiment from λ to ρ, given in (1.1)

dn number of neighbours of n

dλn number of neighbours of n with sentiment λ

Uλ→ρn utility of switching from sentiment λ to ρ, given in (1.2)

[λ] proportion of agents with vaccine opinion λ at some time step τ〈
λ
〉

mean value of [λ] over all realisations

[λ, ρ] number of edges between agents with vaccine opinions λ and ρ〈
λ, ρ
〉

mean value of [λ, ρ] over all realisations

Table 1.2: Table of all variables appearing in Chs. 2, 3, and 4.

Since all the models used in this thesis feature undirected networks; [λ, ρ] = [ρ, λ] for sentiments
λ and ρ. Table 1.3 gives a list of the parameters used in all the models of Ch. 2. All networks
were created using the Stanford Network Analysis Project (SNAP) library (for C++) [89].
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Parameter Description Unit

N number of agents constant

ι case importation rate wk−1

p disease infectivity constant

ξ∗ probability of randomly changing sentiment wk−1

σ strength of the social norm constant

κ perceived risk of vaccine adverse events constant

T length of each realisation of parameter values constant

α initial ratio of pro-vaccine vaccinated agents constant

` duration of the infection constant

µ birth/death rate wk−1

Table 1.3: Table of all parameters appearing in Chs. 2, 3 and 4.

1.4 Equilibrium and stopping criteria

We specify that any realisation of parameter values has reached a (computational) equilibrium
when the output variables of the simulation over the last 500 time steps all have a standard
deviation of 0.05% of their respective maximum values.

In the models used in this thesis, the output variables (called model variables) are each of
〈
Vs
〉

(number of pro-vaccine agents),
〈
N
〉

(number of anti-vaccine agents),
〈
S
〉

(susceptible agents),〈
I
〉

(infected agents),
〈
R
〉

(recovered agents),
〈
Vp
〉

(vaccinated agents),
〈
N,N

〉
(links between

anti-vaccine agents),
〈
N,Vs

〉
(dissimilar joins) and

〈
Vs, Vs

〉
(links between pro-vaccine agents).

Our model intrinsically satisfies conditions (1), (2), (4), (5) and (6) of the definition in Sec. 1.2.

1.5 Change point testing

Some previous studies proffer EWS of disease spread without attempting to rigorously verify two
snuck premises: 1) the EWS give (computationally recognisable) warning signals, and 2) these
signal points precede some well-defined turning point in the model dynamics; instead, visual
heuristic analysis5 is used. Besides our calculations of estimates of the transition values in the
model dynamics, we employ change point detection tests in an attempt to (programmatically)

5such rudimentary checks are usually referred to as ‘eyeballing’, but the author would instead like to propose
the use of the somewhat more sciencey-sounding technical phrase visual heuristic analysis (VHA).
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identify and establish times at which warnings are given by the EWS, and a method of comparison
of the length of forewarning that we can reasonably expect from these EWS.

The change point detection tests used in this study are the standard normal homogeneity test
(SNHT), Lanzante test, Pettitt test and the Buishand range test; stemming from climatological
studies, all test the null hypothesis of homogeneity against the alternative hypothesis of change at
one or more identifiable points. Importantly, these four curated tests also allow for the estimation
of a location of the change point in the series, unlike other tests such as the von Neumann’s ratio
test.

The Lanzante, Pettitt and Buishand range tests are all non-parametric (they make no assumption
of the underlying distribution of the data) and they test the null hypothesis H0 of no shift of the
central tendency of the time series tested. Though Pettitt’s test is held as the most commonly
used change point detection test [270, 319, 441, 90] and it was used in Chs. 2 and 3 (also used
for comparison of results in Ch. 4, though not shown), we chose to primarily feature other tests
due to inconsistencies and difficulties with lead distance results (and even the presence of κ-series
change points) obtained from the Pettitt tests. Exploration as to exactly why these difficulties
arose was considered to be beyond the scope of this project; nonetheless, the optimal application
of these change point tests to the generated κ-series remains of interest to the author.

The SNHT compares the standardised ratios of the observations of the first n values of the series
with the mean of all other observations, and tests the null hypothesis of a N (0, 1) distribution of
these ratios against the alternate hypothesis of a shift in the location of the distribution to some
N (µ, 1) [14, 426].

1.6 Objectives

The objective of this thesis is to identify a class of dependable early warning signals of vaccine
crises and epidemic events in coupled disease–behaviour models of paediatric infectious diseases.
In working towards this, there are two sets of research questions.

First, can we find a class of statistical tools to predict critical transitions in coupled behaviour-
infection models? If so, can we expect these tools to be of general use? If not, can we formulate
criteria for choosing suitable early warning signals based on recognisable properties of the system
in question? Additionally, how do the various EWS compare with each other? Here, we formulate
an idealised model of childhood disease, and establish the response of some proposed tools.

Secondly, having found (and/or formulated) these warning signals, do the EWS fail in any rea-
sonably foreseeable contexts? If so, can these weaknesses in the proposed tools be overcome? We
will use a combination of parameter searches, changing network structures, and gradually varied
network properties to probe for “breaking points” of the remaining tools. This will aid us in
understanding how these early warning signals should be properly applied.
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1.7 Outline

In line with our objectives, the thesis will proceed as follows. Our first study (Ch. 2) will introduce
the first set of early warning signal (EWS) we will explore. Epidemic events and convergence will
be defined, and used throughout the remainder of the thesis. Simulations run on variations of the
ABM outlined in Sec. 1.3 (named V1, V2 and V3) will show that mutual information, join counts
statistics, Moran’s I and Geary’s C can act as EWS of the system. The method of application of
the change point tests used will be tested, with the resulting method applied to the the model
data. Lead distances of each EWS will allow comparison among the EWS, and between the EWS
and raw model outputs. We will demonstrate that Moran’s I and Geary’s C are simple linear
combinations of join counts.

Our second study (Ch. 3) will add community and neighbourhood structure, the probability of
having an infected neighbour, opinion network clustering coefficient and modularity score to the
list of EWS. The concepts of community and echo chamber will be clearly defined. Simulations
run on model V1 (from Ch. 2) will show that these newly introduced tools are also stable EWS
of the transitions of the model dynamics. The new EWS will be compared via change point tests.

The third study in this thesis (Ch. 4) will add new EWS (network diameter and triad census) to
the group. A new ABM (named V4) will be introduced that features a changed network structure,
the inclusion of vaccine hesitance and data gathering through sampling. To accommodate the
changes brought by V4, key EWS measurements will be redefined. Simulation data from V4 will
be used to compare the results to the previous studies (Chs. 2, 3), and the effects of the changes
in the model on the performance of the EWS will be explored.

Our fourth study (Ch. 5) models the transmission of COVID-19 in childcare centres and primary
schools in Ontario. Recent literature on the transmission of COVID-19 will be discussed at
length. Simulations run on a model population of households and a single school will investigate
the number of produced infections in a combination of reopening scenarios varying classroom size,
classroom arrangement and cohorting. The location with greatest infections and the number of
student-days lost due to classroom closure will be investigated, with sensitivity analysis given in
App. 5.

Finally, Ch. 6 will collate the results of the studies and discuss the successes and limitations of
the the research. Findings will be contextualised using existing literature in the field, and broader
implications discussed.
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Chapter 2

Spatial aggregation can indicate
regime shifts

Abstract

The resurgence of infectious diseases due to vaccine refusal has highlighted the role of interactions
between infection dynamics and the spread of vaccine opinion on social networks. Shifts between
infection elimination and outbreak regimes often occur through tipping points. It is known that
tipping points can be predicted by early warning signals (EWS) based on characteristic dynamics
near the critical transition, but the study of EWS in coupled behaviour-infection models has
received little attention. Here, we test several EWS indicators measuring spatial coherence and
autocorrelation for their ability to predict a critical transition corresponding to disease outbreaks
and vaccine refusal in a multiplex network model. The model couples paediatric infectious dis-
ease spread through a contact network to binary opinion dynamics of vaccine opinion on a social
network. Through change point detection, we find that mutual information and join count in-
dicators provided the best EWS. We also show the paediatric infectious disease natural history
generates a discrepancy between population-level vaccine opinions and vaccine immunity status,
such that transitions in the social network may occur before epidemiological transitions. These
results suggest that monitoring social media for EWS of paediatric infectious disease outbreaks
using these spatial indicators could be successful.

Material in this chapter is based on the publication:
Phillips, B., Anand, M. & Bauch, C.T. Spatial early warning signals of social and epidemiological tipping points in
a coupled behaviour-disease network. Sci Rep 10, 7611 (2020). https://doi.org/10.1038/s41598-020-63849-0.
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2.1 Introduction

Resurgences of vaccine-preventable diseases can severely stress public health systems [561], inter-
rupt tourism and public services [31] and decrease GDP [34] through the huge costs of large-scale
interventions [231, 350, 366]. Some of these events have been driven by falling vaccination rates
due to vaccine refusal [443], for example the persistence of endemic polio in countries such as Nige-
ria [105, 469, 156]. Intentional undervaccination may be attributed to complacency [245, 408] and
the spread of anti-vaccine sentiment facilitated by media coverage and its sensationalisation of
true adverse vaccine effects [574], misstatement of the cause of illnesses [205], the spread of ru-
mours and false information [533, 506] and the effect of social norms [508]. False reporting of
adverse effects can also be reinforced simply by the expectation of such side effects [504].

These phenomena illustrate how the social diffusion of information is heavily responsible for the
trajectory of infection spread through its ability to alter individual behaviour. Much work has
modelled opinion dynamics for different applications [502, 269, 487], where choice is modelled
by stochastic differential equations [147], voter models [332, 143], Markov chains [152], near-
neighbour averaging [207], majority opinion models [210, 298], impact models [401] and flocking
models [330]. The combination of these frameworks with network structure has revealed much
about the occurrence of opinion cascades [271, 284, 229] and forecasting opinions [147, 289].
Models coupling behavioural dynamics and spreading processes have yielded useful results, such
as the ability to predict the risk of illness of an individual [132], reasonable predictions of influenza
transmission patterns [83, 436], price dynamics [468], infection outbreaks [274] and predictions of
climate change [52].

Opinion propagation can be intuitively represented by diffusion of information through social net-
works [125, 565, 360]. Similarly, infection spread is often conceptualised as spreading through a
physical contact network [281]. An increasing number of models explores the dynamics of n-layer
multiplex networks, where each layer represents a different aspect of the dynamics of a single
coupled system. For instance, a growing body of work studies coupled behaviour-infection dy-
namics on 2-layer multiplex networks, where social dynamics propagate through a social layer and
infection dynamics propagate through an infection layer [44, 17, 566, 584, 274]. In these cases,
the theory of phase transitions in spatially structured systems is important; for instance, epi-
demic regimes have previously been modelled as the outcome of phase transitions in physical sys-
tems [272, 570, 288, 262, 364, 452, 249, 165, 173, 313]. Generally, a phase transition occurs when
a physical system moves from one state to an alternate state [385]; the point at which this transi-
tion occurs is called a critical point. First-order transitions occur when any macroscopic variable
varies discontinuously (for example, a jump between vaccinated and non-vaccinated regimes in an
infection model), while second-order transitions occur when a macroscopic variable varies contin-
uously [195, 170]. These second-order transitions are also called critical transitions [404, 234] and
have seen much interest in the epidemiology literature [165, 484, 485, 486, 415, 416, 173, 164, 302].

Systems approaching these critical transitions sometimes display characteristic spatial or temporal
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behaviours called early warning signals (EWS) that can help to predict coming epidemic infection
outbreaks and other events [301]. EWS can be defined as statistically significant, recognisable,
characteristic behaviours known to precede critical transition in dynamical systems [81, 484, 485];
some are manifestations of critical slowing down, where the relaxation time (the time taken by
the system to return to an equilibrium state after a small perturbation) increases as a critical
point is approached [484, 415]. Critical slowing down can be shown to precede both first- and
second-order transitions (as well as other types) [485, 562, 517, 144, 484] and is accompanied by
the divergence of correlation length in a physical system [144].

A variety of statistics have been used to study early warning signals in spatially extended sys-
tems. For instance, temporal correlation [138, 312, 415, 471, 164, 484, 49, 162, 46] and spatial
correlation [139, 163, 274, 484, 420, 283] have been found to precede transitions in spreading
processes, including infection processes. Other metrics have been applied to spin systems: each
site in a lattice may be in one of two possible states and the probability that a site is in a given
state depends partly on the state of neighbouring sites. The spin model has also been applied to
opinion dynamics; a simple voter model with binary opinion dynamics is analogous to a physical
spin system, where particles represent agents and positive and negative spins represent two types
of opinions [523]. Consensus formation can then be seen as a second-order phase transition to
an ordered (magnetic) state, where all spins are aligned; in this regime, knowledge of the opinion
of a single agent gives the opinion of all other agents in the system [377]. Since the transition
in finite networks is smooth [67, 68], the typical distance over which the opinions of two agents
agree increases smoothly; this is analogous to a smooth increase in the correlation length of a
physical system [579].

Continuing the metaphor of spin systems, the disordered system takes the form of a spin glass
above the critical temperature, where there is no particular alignment of the spins of the parti-
cles. In a spatial opinion model, this describes a state where opinions between neighbours are
generally uncorrelated [545]. On a static network, this state should produce a larger number of
edges between dissimilar neighbours as compared to that of consensus regimes. This leads to a
prediction about the join count statistics of the network, where the numbers of edges between
like neighbours are compared to the number between dislike neighbours as a test of geographical
distribution [371, 196]. This is arguably the most natural (and well-defined) measure for graphs
presenting binary data [196]. The statistic saw early use in the 1940s-50s [300, 220, 371] and
is currently used for spatial analysis [196], although it has only recently appeared in the early
warning signals literature (to the authors’ best knowledge).

The necessity of infection surveillance and early warning signals for outbreaks has been discussed
in multiple contexts, from epidemic alleviation to bioterrorism [409, 199, 119, 422, 548, 571, 379,
510, 381]. Approaches include tracking migration patterns of disease vectors [194], animal deaths
[374], patterns in time series of reported cases [541], monitoring online news sources [206, 85] and
searches [456, 182, 264], “bet-hedging” [130] and analysing large data sets derived from social
networks [253, 132, 500, 12, 480]. Some tools proposed so far were found to be impractical [253],
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while others failed [325] and some have succeeded [57]. Some studies have estimated the benefits
of early (and targeted) intervention to be large [184, 557, 353, 341, 509], though others caution
against dependence on such predictive approaches [256]. Such potential mitigation of unnec-
essary expense motivates our interest in finding dependable tools to be used as early warning
signals which remain easily computable on large high-resolution data sets. Furthermore, the
study of early warning signals in coupled behaviour-infection systems in general (and in two-
layer behaviour-infection multiplex networks in particular) has received relatively little attention
[425, 274], suggesting a significant gap in the literature.

Our objective is to evaluate and compare the relative merits of the mutual information, Moran’s
I, Geary’s C and join count statistics as EWS of the occurrence of epidemics and changes in
aggregate opinion on a coupled behaviour-infection network model. We use three differently
parametrised models (V1, V2 and V3) coupling a binary vaccination opinion dynamic to an SIRV
epidemic process. The resulting trends in the EWS for model V2 will be explored in Secs. 2.3
and 2.4, with V1 and V3 presented in App. A.2.

The outline of this study is as follows: Sec. 2.2 will present the EWS and their derivations and
give the details of the model used. Section 2.3 will analyse the trends in the warning signals and
Sec. 2.4 will present a review of the study and any shortcomings of our approach, with further
results pertinent to the study presented in App. A.

2.2 Methods

We assume an acute, self-limiting infection that confers lifelong natural immunity upon recovery
and for which a vaccine is readily available. Similar premises have been used to represent the
natural history of many paediatric infectious diseases such as measles [42, 43]. In particular, we
assume an SIRVp natural history consisting of four mutually exclusive epidemiological states.
Agents are initially susceptible to infection (S). Upon infection, the agent enters the infected
state (S → I), which we treat as a combination of the latent, ill and infectious periods [21].
Upon clearing the infection, agents enter the recovered state with lifelong immunity (I → R);
additionally, susceptible agents may be vaccinated and so enter the vaccinated state (S → Vp)
[543].

We also include injunctive social norms (i.e. peer pressure) as well as a risk of vaccination
that captures both economic costs and the fear of perceived adverse vaccine effects [413]. As in
some models [274], we include a noise parameter ξ to account for noise [69] with the simplifying
assumption of perfect vaccination [516] (reversion from the recovered state to the susceptible only
through agent death). During simulation, each time step represents a single week. Models V1,
V2 and V3 all use the multiplex model dynamics laid out in Sec. 1.3.
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2.2.1 Early warning signals

Mutual information (M) is defined as

M(X ,Y) =
∑
x∈X

∑
y∈Y

P(x, y) · log2

(
P(x, y)

P(x) · P(y)

)
, (2.1)

where x and y are discrete random variables; x takes value on the set X = {x1, x2, x3, . . .}
and y on set Y = {y1, y2, y3, . . .}, with P a joint probability mass function of X and Y [237].
Mutual information is an entropy-based quantification of the “shared information” of two random
variables quantifying how knowledge of one decreases the uncertainty of the other and vice versa
[74]. Mutual information peaks at the critical temperature of spin systems during second-order
transitions and has been widely used in detecting phase transitions [511, 25]; an advantage of this
statistic is its ability to quantify non-linear dependence unlike Moran’s I and covariance, which
only account for linear dependence.

Join counts quantify the degree of clustering by giving the number of adjacencies between agents
of different types. We divide the population into two attributive classes, with Vs the compartment
of pro-vaccine agents and N the compartment of anti-vaccine agents. Let [Ψ,Ω] be the number
of social interactions between agents with vaccine opinions Ψ and Ω; then [N,N ] represents
the number of nearest-neighbour interactions between anti-vaccine agents, [Vs, Vs] the number of
interactions between pro-vaccine agents and [N,Vs] the number of interactions between pro- and
anti-vaccine agents. These can be written as

[N,Vs] =
1

2

∑
j,k

ωjk(xj − xk)2 ,

[N,N ] =
1

2

∑
j,k

ωjk(1− xj)(1− xk) ,

[Vs, Vs] =
1

2

∑
j,k

ωjkxjxk ,

(2.2)

where ωj,k = 1 if agents j and k are social neighbours and ωj,k = 0 otherwise (ω is the adjacency
matrix of the social network); xn represents the opinion score of agent k, defined as

xk =

{
1, k ∈ Vs (xn has a pro-vaccine opinion)

0, else
. (2.3)

In an opinion model, clustering is manifested by agents consistently having a higher number
of like-minded neighbours than expected based on the global prevalence of the opinion; join
counts are then used to test the null hypothesis of positive correlation [201]. Join counts are
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used in many fields as a categorical test of spatial autocorrelation, including ecology [453] and
geographical information systems [22]. In all parameter realisations here, the number of joins
are counted näıvely rather than calculated. Joins between like-minded agents (e.g. [N,N ] and
[Vs, Vs] joins) will be called similar joins and edges between disagreeing neighbours (e.g. [N,Vs] )
will be called dissimilar joins.

The Moran’s I coefficient I quantifies spatial correlation and is defined

I =
D

W
·
∑

j,k ωjk(xj − x)(xk − x)∑
j(xj − x)2

, (2.4)

where the number of edges W is given as W =
∑

j,k ωjk, D is the size of the network and

x = 1
D

∑
j xj represents the mean opinion score of the population [196]. Used as a global statistic,

Moran’s I gives the degree of correlation between the values of neighbouring patches (agents and
their social neighbours); here, the numerical value of the vaccine opinion is the same as described
in (2.3). Algebraic manipulation of (2.4) using (2.3) gives

I =
D

W
· 2 · [Vs, Vs]− 2x · (2 [Vs, Vs] + [N,Vs]) +W · x2

(1− 2x) · [Vs] +D · x2 , (2.5)

(full derivation given in App. A.1); we can then consider Moran’s I as a measure derived from
the linear combination of join counts. Positive values signify spatial correlation, with negative
values signifying anti-correlation.

The Geary’s C coefficient C is yet another measure of spatial correlation based on the cross-
product (like Moran’s I) [196], but unlike Moran’s I it accounts for the difference in opinion
between two neighbours [221]. It is given as

C =
D − 1

W

∑
j,k ωjk(xj − xk)2∑

j(xj − x)2
. (2.6)

Lower values show spatial correlation and large values represent anticorrelation. Like Moran’s I
(2.5), Geary’s C can also be expressed as a a linear combination of join counts

C =
D − 1

W

2 · [N,V ]

(1− 2x) · [V ] +D · x2 ; (2.7)

this expression is also derived in App. A.1.

2.2.2 Parametrisation

The birth/death rate in the model was set at µ = 2.4× 10−4, giving each agent a mean life
expectancy of 80 years. The network size D = 40000 was chosen to represent a small town
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where each agent n has effective physical contact with
〈
dn
〉

= 30 neighbours per week, where
an effective contact is defined as any interaction between agents that allows for infection and/or
communication of opinion. The case importation ratio ι = 2.5× 10−5 was added to provide
periodic impulses of infection as a test of resilience in endemic disease regimes. Here, an ensemble
of 100 simulations using parameters κ = 0, σ = 0 and α = 0.05 returned the values

〈
S
〉
,
〈
R
〉
<

0.05 at equilibrium (defined in Sec. 1.2), where
〈
Ψ
〉

represents the mean number of agents with
(social or epidemiological) state Ψ, averaged over all realisations of that combination of parameter
values.

The infectivity p = 0.2 was chosen to reflect the basic reproductive ratio basic reproductive ratio
of a measles infection commonly estimated from empirical data [238]; effective physical contacts
occur in the simulation once per week during the period of infection. The probability of randomly
switching opinion ξ1 = 1× 10−4 was included as a source of noise. We found that the parameter
ranges for perceived vaccine risk κ ∈ [−1, 1] and social norm σ ∈ [0, 3] were sufficiently broad to
capture transitions in both social (Fig. 2.1a) and infection dynamics (Fig. 2.1b), as well as the
corresponding trends in the mutual information (Fig. 2.1c) and dissimilar join count (Fig. 2.1d)
statistics.

The contours in each panel of Fig. 2.1 show the obvious correspondence between transitions in
the social (Fig. 2.1a) and infection (Fig. 2.1b) dynamics of the model, and substantial changes
in
〈
M
〉

and
〈
N,N

〉
; here, the dissimilar join count

〈
N,Vs

〉
(Fig. 2.1d) and mutual informa-

tion M (Fig. 2.1c) increase while the perceived vaccine risk κ and social norm σ parameters
increase towards their respective (pre-transition) threshold values. These trends are generally
asymmetric about both transitions; this can be seen in Fig. 2.3, where post-transition trends do
not exhibit similarly detectable warnings (if any). This parametrisation applies to model V2.
The corresponding parametrisations and contour plots of models V1 and V3, as well as their
post-transition trends are presented in App. A.2.

2.3 Results

Due to the low initial vaccine coverage α = 0.05, all realisations demonstrated an initial epidemic
period over the first 6 weeks, as shown in Figs. 2.2a-c. After this period, the dynamics settled
down to a quasi-equilibrium state characterised by fluctuations around a mean value that is the
focus of our study – the following subsections are grouped by major findings of the model. The
term model variables refers to the outputs

〈
S
〉
,
〈
I
〉
,
〈
R
〉
,
〈
Vp
〉
,
〈
N
〉

and
〈
Vs
〉
.
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(a)
〈
Vs
〉

(proportion of pro-vaccine agents) (b)
〈
Vp
〉

(mean vaccine coverage)

(c)
〈
M
〉

(mutual information) (d)
〈
N,Vs

〉
(dissimilar join count)

Figure 2.1: Contour plots of the region (σ, κ) ∈ [0, 2.4]×[−1, 0.2] of the parameter plane, capturing
the transition dynamics of both the social and infection dynamics averaged over 20 realisations of
each set of parameters; σ represents the strength of the social norm and κ the perceived vaccine
risk.

2.3.1 Population vaccine immunity status can differ from aggregate vaccine
opinion

Because only susceptible individuals are vaccinated and individuals cannot become ‘unvaccinated’
(but may change their opinion about the vaccine over their lifetime), the population-averaged
vaccine opinion is not equal to the population-averaged vaccine immunity status, even at the
quasi-equilibrium state. With no social pressure (σ = 0), a small increase in perceived vaccine
risk κ → 0.03125 pushes the system to endemic infection and anti-vaccine consensus (Fig. 2.2d)
despite a high vaccination rate (Fig. 2.2g). Towards an explanation, if an agent n is newly birthed
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(a) [I]τ≤6, with κ = 0.03125. (b) [I]τ≤6, with κ = 0. (c) [I]τ≤6, with κ = −0.03125.

(d) [Vs], κ = 0.03125. (e) [Vs], κ = 0. (f) [Vs], κ = −0.03125.

(g) [Vp], κ = 0.03125. (h) [Vp], κ = 0. (i) [Vp], κ = −0.03125.

Figure 2.2: Time series demonstrating high sensitivity of the social dynamics to small changes
(both positive and negative) in perceived vaccine risk κ when the strength of the social norm
σ = 0. All panels show the results of 100 realisations of respective parameter combinations. τ
represents the number of time steps (where a time step represents a week).

into this regime, the probability of having an infected neighbour vanishes (〈In〉 → 0), so that

Pn(N → Vs) = Pn(Vs → N) ≈ 1

2
, (2.8)

similar to (1.1), with the agents’ probability of being vaccinated over their lifetime as

0.05 + 0.95
80∑
m=1

1

2

(
1− 1

2

)m−1

≈ 1 , (2.9)

under the assumptions that the average agent with anti-vaccine opinion is almost certain to
interact with a disagreeing neighbour. A similar calculation explains the phenomenon of high
vaccination rates (Fig. 2.2h) despite a mixed consensus (Fig. 2.2e) when perceived vaccine risk
becomes neutral (κ → 0). A vaccine then perceived as beneficial (κ → −0.03125) intuitively
results in a high vaccination rate (Fig. 2.2i) and pro-vaccine consensus (Fig. 2.2f); in both these
regimes, the infection survives only through case importation. In the absence of social norms and
perceived vaccine risk, the population’s aggregate vaccine opinion may not be a good indicator of
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(a) Social dynamics
〈
Vs
〉
,
〈
N
〉

and infection dynamics
〈
R
〉
,
〈
Vp
〉
.

(b) Join counts:
〈
N,N

〉
,
〈
N,Vs

〉
,
〈
Vs, Vs

〉
.

(c) Dissimilar join count
〈
N,Vs

〉
.

Figure 2.3: Trends of the equilibrium values of some EWS approaching the transitions of the social
and infection dynamics Ks and Kp (marked by dashed and dotted vertical lines respectively),
demonstrating the signals given by each tool with respect to the perceived vaccine risk κ. The
intervals in each panel represent one standard deviation of the mean equilibrium value in each
stochastic realisation of the model. Social norm σ = 0 for all panels on the left and σ = 0.25 for
all panels on the right.

its vaccine immunity profile (and vice versa); (1.2) shows that the probability of changing opinion
depends only on In when social norm σ = 0. In this region, the pattern of infection spread will
be determined by the initial conditions of the infection dynamics; slight changes in perceived
vaccine risk κ will push the network towards either of the consensuses, with minimal effect on the
high vaccination rate (Fig. 2.2g). This phenomenon is shared by models V1 and V3, as shown in
App. A.2.1.

2.3.2 EWS trends identify approaching transitions in both social and infection
layers

The trends in both model dynamics and the proposed EWS are shown in Figs. 2.3 and 2.4,
with σ = 0 (panels on the left) and σ = 0.25 (panels on the right). The dotted vertical line in
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(a) Mutual information
〈
M
〉
.

(b) Moran’s I
〈
I
〉
.

(c) Geary’s C
〈
C
〉
.

Figure 2.4: Trends of some of the EWS’ equilibrium values approaching the transitions of the so-
cial and infection dynamics Ks and Kp (marked by dashed and dotted vertical lines respectively),
demonstrating the signals given by each tool with respect to the perceived vaccine risk κ. The
intervals in each panel represent one standard deviation of the mean equilibrium value in each
stochastic realisation of the model. Social norm σ = 0 for all panels on the left and σ = 0.25 for
all panels on the right.

all panels of Figs. 2.3 (as well as Fig. 2.4) represents the transition in the social dynamics Ks,
defined as the smallest κ value at which

〈
Vs
〉
≈
〈
N
〉

(the mean number of pro-vaccine agents
equals the number of anti-vaccine agents); the dashed vertical line represents the transition in the
infection dynamics Kp, similarly defined as the earliest κ value at which

〈
R
〉
≈
〈
Vp
〉
. Multiple

infection and social transitions were found for some parameter combinations; these trends and
the attendant behaviours of the EWS for models V1 and V3 can be seen in App. A.2.3. We
also note that the equilibrium values of EWS and model variables were averaged over 15 − 20
realisations of all parameter combinations.

In Figs. 2.3 and 2.4, all EWS show recognisable trends preceding both transitions for both so-
cial norm values σ = 0 (panels on the left) and σ = 0.25 (panels on the right); for instance
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〈
N,N

〉
(Fig. 2.3b),

〈
N,Vs

〉
(Fig. 2.3c),

〈
C
〉

(Fig. 2.4c) and
〈
I
〉

(Fig. 2.4b) increase sharply pre-
cedingKs with all but

〈
N,Vs

〉
approaching some maximum value precedingKp, while

〈
Vs, Vs

〉
and〈

M
〉

sharply decrease and approach some minimum value before Ks and Kp respectively. Mu-
tual information

〈
M
〉

(Fig. 2.4a) in particular shows clear changes in trend well before the social
transition Ks occurs. Though

〈
N,Vs

〉
(Fig. 2.3c) shows a similar rising-falling pattern for both

σ = 0, 0.25, its maximum value with σ = 0.25 is much lower than that for σ = 0.

For σ = 0.25, the mean of the Geary’s C
〈
C
〉

(Fig. 2.4c) shows almost no change, though its
envelope broadens post-transition; we see this as a failure of the EWS (no forewarning given).
Similar observations hold for model V1 (App. A.2.2), with the failure of the Geary’s C coefficient
C shown clearly in Figs. A.5l and A.6l. As stated in Sec. 2.2, the pre- and post-transition trends
of the EWS do not generally resemble each other; asymmetry of the EWS about Ks can be seen
Figs. 2.3, A.5 and A.6, showing that (in general) less of a warning is given (if any) when the
κ-series is reversed. This is explicitly demonstrated in Figs. A.16 and A.15, where skewness γ1 is
used to quantify asymmetry of the trend of each EWS.

We can then say that all proposed EWS other than Geary’s C (
〈
C
〉
) give appreciable signals

approaching Ks and Kp when σ = 0.25 (the right panels of Figs. 2.3 and 2.4). Ks precedes
Kp (Fig. 2.3a), showing that a shift in consensus will always precede a crisis in vaccination
coverage in this model. Also shown is a marked decrease in Kp −Ks (the gap between the two
transitions Ks and Kp, which we call the intertransition distance) as the social norm strengthens
(for example, σ → 0.25 in the right panels of Figs. 2.3 and 2.4). The generalisation of these
trends to all tested values of σ is confirmed in Fig. 2.5a, where Kp −Ks is everywhere positive,
though the distance between Ks and Kp vanishes with increasing σ; the inset of Fig. 2.5a shows
the location of Ks (blue) and Kp (red) with respect to σ, so that Kp−Ks (purple) gives the width
of the area between the two curves in the inset graph at each σ. Other disparate models of the
infection display largely similar concave decreases in the intertransition distance, suggesting that
this behaviour arises generally from the model dynamics rather than in some specific subspace of
the parameter space (see App. A.2.2).

2.3.3 Stronger social norms result in decreased lead distance for all EWS

The findings of the preceding subsection are intuitive, as vaccination depends more heavily on
individual vaccination opinion than the number of infected neighbouring agents in (1.2), so that
the opinion dynamics exert more influence than any feedback effect occurring in the infection
dynamics. However, the vanishing intertransition distance Kp − Ks presents a problem if we
depend on predictions of Ks to enact interventions avoiding the collapse of the system to a non-
vaccinated regime (i.e. avoiding Kp). For social norms of increasing strength, we can therefore
look at the trend in the lead distance Ks − ΠΨ, where ΠΨ represents some κ value at which we
can assert that a signal occurs in some sequence Ψ of κ values; since we’ve established that Ks
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(a) Demonstration of the shrinking intertransition distance Kp−Ks (purple), with the inset graph
showing the estimated locations of Ks (blue) and Kp (red).

(b) Under the Lanzante change point test, the lead distance of each EWS (Lanσ{WS}) varies sub-
stantially with the strength of the social norm σ; trends corresponding to each EWS are represented
by the different colours in the legend; the bar chart on the right gives the percentage of σ values
for which each individual EWS gave the maximum lead distance.

(c) Panel showing the variance of lead distances (Lanσ{S/I}) of the model variables with social
norm σ, with the bar chart on the right giving the percentage of times each model variable gave
the maximum lead distance of all variables (over all values of sigma).

Figure 2.5: Figure showing the decreasing trend of the intertransition gap Kp−Ks, as well as the
variation of the lead distances of EWS and model variables obtained by applying the Lanzante
change-point test to their respective κ-series.

precedes Kp everywhere, then necessarily any warning of a social transition also warns of the
following infection transition, so the quantity Kp −ΠΨ is not discussed here.
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One way for us to quantify this lead distance is to use a change point detection test to find κ values
at which the two classes EWS (denoted WS) and model variables (denoted S/I) give signals (i.e.
display statistically significant changes in trend/behaviour). Here, the Lanzante test [319] from
the trend [454] package in R is applied to various sequences of equilibrium κ values to find change
points of EWS (Lanσ{WS}, Fig. 2.5b) and model variables (Lanσ{S/I}, Fig. 2.5c) respectively.
(In other words, we computed the change test on the mean of all stochastic realisations at each
parameter value combination, rather than computing the change test on each individual time
series and then taking the average.) Further discussion of the method of application of this and
other change point detection tests to series of κ values can be found in App. A.2.4. Failure
of a warning signal or model variable Ψ occurs when the warning given comes after the social
transition, so that Ks < Lanσ

{〈
Ψ
〉}

, where Lanσ
{〈

Ψ
〉}

represents the change point obtained
from the Lanzante test.

We denote the lead distance Leadσ[
〈
Ψ
〉
] of some EWS Ψ at social norm σ with (Lanzante test)

change points as
Leadσ

[〈
Ψ
〉]

= KM − Lanσ
{〈

Ψ
〉}

; (2.10)

looking at the trend in the lead distances Leadσ
[〈

WS
〉]

(Fig. 2.5b), the positivity of some curves
shows that some of the proposed EWS do indeed give early warnings of coming transitions (largely
for σ ≤ 1.875). Failures of

〈
N,Vs

〉
and

〈
M
〉

occur in the range 1.875 ≤ σ ≤ 2.125, while all
other tests give valid warning signals everywhere σ < 2.5; model variables

〈
R
〉

and
〈
Vp
〉

fail in
the range 1.65 ≤ σ ≤ 2.125 (Fig. 2.5c). The failure of all the tests after σ = 2.5 likely results
from insufficient length of the EWS’ κ-series; the inset of Fig. 2.5a shows that Ks → −1 as σ
increases. Figure 2.5c is largely similar, showing failure of all the signals around σ = 2.5 (as in
Fig. 2.5b). In line with our focus on social dynamics as a predictor,

〈
Vs
〉

appears to be the best
performing signal of all the model variables; as was reasonably expected,

〈
I
〉

appears to perform
badly, since its role as a transitory compartment means that it never “gathers” sufficient agents
over the course of each realisation to give a true indication of the state of the system (other than
indicating the presence or absence of endemic infection).

Since the perceived risk of vaccination κ ≥ −1 in this study, our method of detecting the change
point will not accurately predict a change point Π∗ close to −1. Since no one warning signal gives
the highest lead distance for any large contiguous range of σ values, there is unfortunately no
single objective way to choose a “strongest” signal; they are all suitable tools to predict coming
crises in aggregate opinion and vaccination dynamics. However, it is worth noting that mutual
information

〈
M
〉

and the dissimilar join count
〈
N,Vs

〉
perform better than the other indicators;

Fig. 2.5b shows that mutual information
〈
M
〉

give the largest lead distance measured for 45% of
tested social norm σ values, and

〈
Vs, Vs

〉
and

〈
N,Vs

〉
both give the largest lead distance for 32%

σ values (multiple EWS showed an identical lead distance for some values of σ). Lead distances of
all EWS for all three models under other various change point tests are discussed in App. A.2.4.
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2.3.4 There’s no single best EWS per σ value

We can compare the EWS by quantifying their tendencies to give maximum and minimum lead
distances. This is shown in Fig. 2.6, where green bars represent the ratio of tested σ values for
which the EWS gave the largest lead distance of all the EWS and red bars represent the ratio for
which the EWS gave the lowest lead distance.

Mutual information
〈
M
〉

gave the largest lead distance for 50% of σ values (Fig. 2.6a), with
the next best EWS (in order) being the dissimilar join count

〈
N,Vs

〉
(with 41% maxima of the

EWS) and the pro-vaccine similar join count
〈
Vs, Vs

〉
(32% maxima of the EWS). Both gave the

minimum lead distances for 14% of σ values, the lowest ratios of the lot. Geary’s C
〈
C
〉

was also
one of the worst of the EWS, giving the lowest lead distance for 36% of σ values.

Also of interest is whether the performance of any EWS depended on the range of σ values;
dependence would be indicated by a discernible pattern in the colours of the squares in any row
of Fig. 2.6b, which categorises the lead distance of each EWS by σ value. The length of an EWS’
green bar (maximum lead distances) in Fig. 2.6a represents the proportion of green tiles in the
EWS’ row of Fig. 2.6b; the same relationship hold between the red bars of Fig. 2.6a and red
tiles in Fig. 2.6b. There is no such discernible pattern of either green (EWS maxima) of red
(EWS minima) squares for any EWS. Grey squares represent neutral values (neither maximum
nor minimum) and yellow squares signify equal warning among all EWS. The seeming lack of
pattern in Fig. 2.6b shows that any notion of best performance of any EWS cannot be described
by a specific subset of σ values. Similar analysis of models V1 and V2 under various change point
tests can be found in App. A.2.7, as well as further argument for why the anti-vaccine similar
join count

〈
N,N

〉
and Geary’s C

〈
C
〉

statistics should not be used for the models investigated.

2.3.5 EWS can provide better forewarning than trends in model variables

One final question is whether the proposed EWS (mutual information, Moran’s I, Geary’s C,
join counts) give earlier warnings than simply monitoring trends in model variables (such as
the number of infections or pro-vaccine agents, using a change point test for prediction in both
cases). There are many ways to quantify this, including maximin comparison (finding the larger
of minimum values of classes WS and S/I) and maximax comparison (finding the larger of the
maxima of each class) at each σ.

To compare the minima of the EWS and model variable lead distances, we define χLan
min as

χLan
min = min

σ

(
Leadσ

[〈
WS
〉])
−min

σ

(
Leadσ

[〈
S/I
〉])

, (2.11)

and we specify a tolerance εLan
min to be 1% of the total range of χLan

min

εLan
min =

∣∣∣∣∣max
(
χLan

min

)
−min

(
χLan

min

)
100

∣∣∣∣∣ . (2.12)

36



(a) The proportion of tested σ values for which each respective EWS gave the largest (green bar) and
smallest (red bar) lead distance.

(b) Grid showing the relative performance of each EWS with the Lanzante change point test. Green tiles
denote the σ values for which the EWS gave the highest lead distance, red tiles represent the smallest lead
distance, grey tiles represent lead distances that are neither maxima nor minima and yellow shows where
all EWS gave the same lead distances. Black tiles represent failed warnings (negative lead distances) and
white tiles represent undefined values.

Figure 2.6: Mutual information
〈
M
〉

is the best EWS in (a), giving the largest lead distance
of all EWS for 50% of σ values; the dissimilar join count is second best 41%, with both giving
the smallest lead distances for only 14% of σ values. (b) shows that there is no pattern in EWS
performance.

Hence, if χLan
min > εLan

min, then the EWS is outperforming simple monitoring of trends (model
variables).

The blue curve in Fig. 2.7 compares the minima of the EWS (WS) and model variable (S/I)
classes (maximin comparison), showing the σ values for which the worst-performing (least lead
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Figure 2.7: Graph of the trends of χLan
min (blue) and χLan

max (red) with respect to the value of the
social norm σ, allowing us to do maximin and maximax comparisons of the two classes of warning
signals (WS and model variables S/I). The green-shaded region shows where χLan

∗ > 0 and the
red-shaded region shows where χLan

∗ < 0. The inset table shows the percentage of σ values for
which χLan

∗ > εLan
∗ (pos: EWS works better),

∣∣χLan
∗
∣∣ ≤ εLan

∗ (zero: both approaches work equally
well) and χLan

∗ < −εLan
∗ (neg : monitoring simple trends works better). (blue curve, row 1 of

inset table) Positive values (green-shaded region) of χLan
min occur at the σ (social norm) values

where the worst-performing (least lead distance) EWS still gives higher lead distance than the
worst-performing model variable. (red curve, row 2 of inset table) Similar to above, positive
values of χLan

max occur (in the red-shaded region) when the EWS perform absolutely better than
the model variables.

distance) EWS minσ
(
Leadσ

[〈
WS
〉])

is either better, equal or worse than the worst-performing

model variable minσ
(
Leadσ

[〈
S/I
〉])

. Points in the green-shaded region represent σ values where
the EWS’ performance is at worst still better than that of the model variables.

The EWS outperformed simple monitoring of trends in variables for 45.4% of the tested σ values;
maximin comparison shows that EWS are at worst still better predictors than the model variables
for a large number of σ values, with the two classes performing equally badly in 18.2% of the σ
values. Performance of the EWS and the model variables in this test was considered comparable
or equal if the difference between the two minimum lead distances fell under the tolerance εm, so
that

∣∣χLan
min

∣∣ ≤ εLan
min; performance was equal for 18.2% of tested σ values, showing that the added

computation of the EWS does not always yield a benefit. Otherwise, the points and portion of
the blue curve falling in the red-shaded region of Fig. 2.7 represents values of σ where the model
variables outperformed the EWS (that is, the minimum lead distance of the model variables
exceeded the minimum lead distance of the EWS); this occurred for 36.4% of tested σ values.

The second part of the comparison (Fig. 2.7, red curve) is between the maxima of the lead
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distances; as above, we define the comparison variable χLan
min and tolerance εLan

max as

χLan
max = max

σ

(
Leadσ

[〈
WS
〉])
−max

σ

(
Leadσ

[〈
S/I
〉])

, εLan
max =

∣∣∣∣∣max
(
χLan

max

)
−min

(
χLan

max

)
100

∣∣∣∣∣ .
(2.13)

The green-shaded portion of Fig. 2.7 also shows the σ values where the EWS outperformed the
model variables here, in that the maximum lead distance given by the EWS exceed that given by
the model variables

(
χLan

max > εLan
max

)
; points falling within the red-shaded area of Fig. 2.7 show for

which σ values the model variables outperform the EWS. From the second row of the inset table
in Fig. 2.7, the two maxima are considered equal

(∣∣χLan
max

∣∣ < εLan
max

)
for 63.6% of tested σ values,

while the EWS outperformed the model variables
(
χLan

max > εLan
max

)
for only 13.7% of σ values.

This shows that the EWS’ lead distances are at least equal to those of the model variables for
around 63.6% of σ values and are absolutely larger for 77.3% of σ values, demonstrating that
though monitoring the model variables (both social and infection dynamics) is itself valuable, the
EWS offer better performance (using the Lanzante change point test). In both (blue and red)
curves of Fig. 2.7, there is no apparent pattern to the positivity/negativity of χLan

min and χLan
max.

These comparisons are given for other tests and models in App. A.2.4.

2.4 Discussion

Here we studied a range of early warning signals for critical transitions in a coupled behaviour-
infection model of paediatric infectious diseases. We compared the indicators to one another and
the approach of simply monitoring trends in model variables. We found that the performance of
the indicators was variable depending on model parameters, but the mutual information statistic
and the dissimilar join count showed consistently high pre-transition lead distances over various
strengths of the social norm σ, many times giving the highest lead distances of all the EWS.
Through maximin and maximax comparisons, we found that using EWS provide more advance
warning than simply monitoring trends in model variables in a clear majority of cases.

We note that join counts have the additional advantage of easy computability, since they require
only counting pairs of a given type. This contrasts with other more computationally intensive
indicators (such as autocorrelation) which require making decisions about whether to study lag-1
or higher order lags, as well as choosing parameter values governing computation of residuals.
Moran’s I was also shown to predict the approach of transitions, although perhaps this find-
ing is trivial considering that it is a linear combination of similar and dissimilar join counts.
Its predictive power was not as strong as many of the other indicators such as join counts and
mutual information, hence the added complexity of its calculation may not justify its use. Po-
tential downfalls of the mutual information statistic include its computational complexity and
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the availability of a suitable data set pairing the personal health of each agent with their social
activity.

Under an increase in the perceived vaccine risk κ the model exhibited an earlier critical transition
in the social layer than in the infection layer (especially for low social norms σ). We also showed
that a population may have relatively high vaccine coverage despite a low pro-vaccine opinion.
This discrepancy between social and infection dynamics is due to the paediatric infectious disease
natural history we assumed in the model. Unlike influenza, where revaccination must occur
seasonally, an individual who receives a sufficient number of measles or chickenpox vaccine doses
generally has lifelong immunity and therefore the opinion towards the vaccine can decline well
before the level of vaccine immunity does. (Individuals can change their opinion but never become
‘unvaccinated’.) This asymmetry between population opinion and vaccine immunity status in the
model is reflected in several real-world populations. For instance, a recent survey in France [373]
indicates that only two in three residents agreed that vaccines are safe [536] while the vaccine
coverage rates for measles and HepB3 (the third does of the Hepatitis B vaccine) were both 90%
amongst children [37, 36], with a 96% rate of DPT inoculation [35]. The implication of this
asymmetry is that monitoring social media networks for changes in opinion using early warning
signals like mutual information might provide advance warning of outbreak hot-spots.

The distance between the change point in the EWS indicators and the critical transition in the
social dynamics decreases as the social norm grows stronger, as does the distance between the
transitions in social and infection dynamics of the model. Given the relative scale of the social
norm and perceived vaccine risk parameter values used, stronger social norms decrease the time
interval between birth and vaccination decision (the vaccination rate converges to its equilibrium
value in fewer time steps than in other regimes); feedback between this and the infection incidence
in the network (which affects the number of infected neighbours in each agent’s neighbourhood)
alters the probability function controlling the vaccination decisions, effecting faster alignment of
majority opinion and vaccination coverage.

This study only lays the foundation for the investigation of spatial EWS for such coupled-
behaviour systems. There is much work to be done and many questions answered before they can
be meaningfully applied to empirical data. For instance, we assumed that the network was static.
This simplifying assumption could be relaxed in future work by using an evolving social dynamic
in which agents are allowed to form or break links with new agents based on their node degree [395]
or vaccine opinion and associated social pressures [187, 394], mimicking assortative/disassortative
link formation on social networks.

Likewise, triadic closures could be allowed to capture clustering [263, 185]. The rate of interaction
between agents was also assumed fixed in our model (relative to the speed of other dynamics,
such as the birth/death interval and the length of illness). A valid extension of the model would
be a variable rate of communication between agents, since the rate of communication has been
shown to influence the rate and efficiency of opinion formation [434]. A further avenue of research
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would explore interventions to turn populations away from critical transitions. This could answer
research questions such as: How far in advance must we act to prevent a social or infection
critical transition and does this change our interpretation of the EWS? If we assume that any of
the EWS can be used for monitoring, how would this change in trend alter the reliability of the
EWS? Finally, the phenomenon of vaccine hesitancy (in contrast to clear anti-vaccine opinion) is
both widespread [496, 344, 166] and dangerous [506]; any substantial change to social dynamics
effected by the inclusion of vaccine hesitancy to this binary model may alter the responses of the
EWS since they all depend on the balance of pro-/anti-vaccine sentiment in the neighbourhood
of each agent. This robustness of the EWS indicators the inclusion of vaccine hesitancy would
be of particular interest.

Many researchers and public health bodies are drawing attention to global resurgences of vaccine-
preventable illness and speaking to the vast efforts and multiple approaches taken to mitigating
outbreaks. A few of these approaches have focused on human behaviour and opinion dynamics,
either by directly tracking aggregate vaccine opinion, or monitoring alerts and media reports.
Our work demonstrates the potential uses of early warning systems of critical transitions in
preventative epidemiology. In particular, our work provides proof-of-concept for the idea of
monitoring social networks for early warning signals of both social and epidemiological shifts,
and also suggests several EWS indicators that might work well for this purpose.
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Chapter 3

Community structure predicts social
shifts

Abstract

Sudden shifts in population health and vaccination rates occur as the underlying dynamics of
some epidemiological models go through a critical point; literature shows that this phenomenon
is sometimes foreshadowed by early warning signals (EWS). We investigate different structural
measures of a network as candidate EWS of infectious disease outbreaks and significant changes in
aggregate vaccine sentiment. We construct a multiplex disease model coupling infectious disease
spread and social contact dynamics. We find that the number and mean size of echo chambers
of pro- and anti-vaccine agents predict critical transitions in the infection dynamics, as with the
communities on the social network. The graph modularity measure also gives early warnings,
though the global clustering coefficient shows no significant pre-outbreak changes. Four change-
point tests applied to series of the EWS show decreasing efficacy of the measures as social norms
strengthen. This shows that many graph-theoretic measures of social network connectivity can
be used to predict approaching critical changes in vaccine uptake and aggregate health in various
populations, thereby providing valuable tools for improving public health.

3.1 Introduction

Low vaccine rates stemming from vaccine refusal [443] result in outbreaks of vaccine-preventable
diseases in some populations [105, 469]. The high costs of intervention and treatment incurred
by public health systems [231, 350] motivate us to find tools warning of epidemics. The con-
nection between social network activity and health issues in populations has long been exploited
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by researchers [461, 88, 115, 116, 181], especially relating to disease spread [478, 584, 17, 208],
with the assertion that firm understanding of social network structure is important to the imple-
mentation of effective policy interventions [244]. For example, vaccination decisions sometimes
depend on communication and information diffusion in media [574, 533, 506]; as such, patterns
of communication in social networks yield warning signals such as increased spatial autocorrela-
tion [163, 274, 420].

Through assortative mixing, densely connected groups of members are formed in a social network
with sparse connectivity between said groups; these groups are called communities, and greatly
influence any dynamic process on the network [224, 123, 317, 33, 58, 218, 376, 370, 116, 115, 203,
95]. Specifically, studying the formation and growth of communities on social networks allows for
the discovery of non-obvious interrelationships [317, 572, 530]. Strongly connected components
on social networks have been used as a proxy for community structure [328] as well as other
structures and definitions [465, 315, 134], with different benchmarks used to compare the efficacy
of different methods of detection [224, 126, 140, 316, 314, 315, 419].

Communities where every member shares the same opinion are called opinion clusters [370, 478,
244] or opinion based communities [106] and are a fixture of online social networks, a direct
result of assortative mixing [106, 61, 62, 154]. Different methods of propagation of opinion
have been studied in the literature: for example, neighbourhood sampling [554, 100], summation
and averaging [251, 207, 99], estimation [349] and population-level interaction [211, 553]. In
communication models where sentiment change is driven primarily by exposure to news sources
and contrasting views from neighbours, communities can support the reinforcement of sentiments
already held [537]. For example, in a model where each node has a numerical strength of opinion
ranging from 0 to 1 with nodes only able to influence each other if the difference between their
opinions falls below a threshold, higher values of this threshold exacerbate the formation of large
opinion clusters [244, 370].

Echo chambers, described as well connected groups of people promoting and reinforcing the same
bias [154, 463, 155, 490], have recently come under media scrutiny since these groups can facilitate
vaccine scares [490], support political candidates [106], lead to skewed evaluation of objective fact
and decreased accuracy of opinion [337]. Furthermore, some studies indicate that in some cases
these homogeneous subnetworks may reinforce bias [518, 488], in some part due to avoidance
of cognitive dissonance [307, 219]. Given that interaction between dislike agents in a network
can sometimes correct false beliefs [497, 240], these echo chambers may be seen as drivers of
polarisation [519]. This is especially since much anti-vaccine content is shared without thought of
its veracity [16, 294, 308, 383, 64, 65], with Facebook anti-vaccine groups serving the dual purpose
of opinion-reinforcing echo chamber and “fake news” source in a time where a large number of
people draw on social media sites for their health information [111, 84, 277, 462, 303, 489, 63].

In the same vein, much work has focused on the modularity of social networks. Modularity
is a graph theoretic measure of the segregation of a graph [391]; a high degree of modularity
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may indicate increasing segregation of a network into clusters [128], with other work showing
that modularity is not a “direct measure of polarisation” [239]. With some governing dynamic,
modularity is a “essentially rooted at the stability of its corresponding social system”, with stable
networks containing one large community and unstable networks showing modularity driven by
polarisation [569]. The global clustering coefficient (GCC) works in a similar way; by describing
the number of triangles in the network, it is an important measure of graph structure [351].
A high clustering coefficient is accompanied by the small world phenomenon of short average
inter-node distance [525] which facilitates efficient information spread on social networks through
redundancy [103, 102, 338]. This clustering also facilitates mutual communication between nodes,
where effective communication between disagreeing persons can lead to change of opinion [106].

The occurrence of opinion change within opinion-based communities has seen much attention in
political studies, with some work asserting the ability of the ‘wisdom of the crowd’ to overcome
bias [54], while other work shows that group phenomena reinforce the opinions held [521, 337, 380].
Others have argued that a commonly held belief within a community can still become more
accurate even as the homogeneity of the group increases [53, 273]. This leads to our interest in
the rate of opinion change in the network as yet another potential indicator of dynamical regime
change.

As mentioned in Ch. 2, systems moving from one polarised state to another undergo phase
transition through a sole critical point [385]. Called critical transitions, they sometimes result
in a demonstration of characteristic system behaviours such as critical slowing down [484, 415].
These events give us easily recognisable ‘hints’ of approaching transitions called early warning
signals [81, 484, 485]. Here, we apply Ch. 2’s methodology to a new set of prospective EWS.

We show that trends in all of the measurements described above (modularity, global clustering
coefficient, census and sizes of communities and echo chambers) provide early warning signals of
epidemic and vaccine crisis events for a coupled disease-behaviour model of childhood disease.
We use a binary vaccine opinion dynamic and an SIRVp disease process occurring on a random
network to model a childhood infectious disease. By quantifying and comparing their perfor-
mance, we find that trends in the sizes of anti-vaccine communities were the best-performing
signals, with the modularity and clustering coefficients of communities also performing well. All
in all, we verify that changes to fundamental graph structure driven solely by opinion dynamics
are good predictors of disease events and aggregate sentiment towards vaccination.

This chapter is organised as follows: in Sec. 3.2, we will describe the disease-behaviour model
used in the study and a description of the warning signals used. Section 3.3 will show the
change in trends of the signals with respect to perceived risk of adverse vaccine effects and the
social pressure of an injunctive norm, as well as a quantification of the warning provided by each
measure through the use of the Standard Normal Homogeneity change point test (SNHT). We
will elaborate on the limitations of the measures used and the implication of the results in the
Sec. 3.4.
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3.2 Methods

3.2.1 The model

For simulation, we use an agent-based model identical to that described in Sec. 1.3. A perfectly
effective vaccine with no effect on mortality is immediately available to susceptible agents upon
gaining pro-vaccine status S → Vp. As shown in Fig. 1.7a, the disease follows the SIRVp model;
each agent physically interacts with all their neighbours per time step. If a susceptible agent
becomes infected S → I (with probability 1 − (1 − p)In , where In represents the number of
infected neighbours of the agent n and p = 0.2 the probability of infection), they become both
ill and infectious for ` = 2 time steps (each time step represents a week); recovery I → R and
vaccination S → Vp are both permanent. Injunctive social norms 0 ≤ σ ≤ 2 and a perceived
vaccine risk of −0.4 ≤ κ ≤ 0.2 represent peer pressure and adverse vaccine effects respectively
[413].

Figure 1.7 features a binary social (opinion) dynamic, where agents demonstrate either pro-vaccine
Vs or anti-vaccine N sentiment. Change of sentiment occurs through imitation of neighbours,
where a randomly chosen neighbour is sampled each time step; an effective interaction with a
disagreeing neighbour (with different sentiment than the agent sampling) prompts a reevaluation
and change of sentiment with probability Pn(N → Vs) for anti-vaccine agents and Pn(Vs → N)
for pro-vaccine agents. Any susceptible agent that adopts pro-vaccine sentiment (N → Vs)
is immediately vaccinated (S → Vp); for agent n, these changes in sentiment depend on the
perceived vaccine risk κ and neighbours In:

Pn(N → Vs) :=
1

1 + exp
(
−UN→Vsn

) ,
Pn(Vs → N) :=

1

1 + exp
(
−UVs→Nn

) . (3.1)

Indices UN→Vsn and UVs→Nn in (3.1) are utility functions defined as

UN→Vsn := −σ
(
dNn − dVsn
Qn

)
− (κ− In) ,

UVs→Nn := −σ
(
dVsn − dNn
Qn

)
+ (κ− In) ,

(3.2)

where d∗n represents the number of neighbours of n with sentiment ∗, with dn representing the
total number of neighbours.
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3.2.2 Early warning signals

Four of the six EWS explored in this paper are related to the detection of community structure
in networks; the global clustering coefficient, echo chambers, opinion-based communities and
modularity score are all important tools that enable biological modelling [391]. The topological
phenomenon of community refers not to a single central construct, but rather a general notion of
variation in connection density. Communities in social networks are vaguely defined in the litera-
ture as groups with the following basic property: members of the community are more connected
to each other than with non-members [465]. Vagueness in science usually leads to artistic licence
and the specific treatment of context and purpose; by the above definition, communities can then
be alternately conceptualised in different areas and studies as modules, clusters, groups and so
on [550]. Such refinements then lead to tighter and more technical definitions.

Here, we conceptualise topological communities as (connected) components on the network. Com-
ponents in undirected networks are maximal disjoint groups of agents such that there is a path
between every pair of agents in the group. [539, 174]. Even more specifically, the concept of a
giant connected component (GCC) describes a component that contains a “significant fraction
of all the nodes” [174, 141]. The role of components (both non-giant and giant) in spreading
processes can be conceptualised as such: where some infection can be spread from person to per-
son, GCCs are formed by historical person-to-person contacts (as opposed to current contacts)
[174, 51]. Practical indirect analysis and exploitation of this component structure in policy design
and epidemiological intervention is facilitated through contact tracing [118, 117, 141].

Recent political upheaval has thrust the phenomenon of the echo chamber into social conscious-
ness and modern parlance, with many lay articles arguing for and against their existence [311,
473, 167, 232, 87, 145, 470, 235, 398, 202, 467, 235, 259, 491, 512, 439], though many articles do
not directly define the concept before exploiting it [77, 124, 578, 223]. There exist different defi-
nitions of echo chambers in literature; also called tribes [583, 582, 148] (sometimes sardonically.
in popular media), they can be described either as a community where at least some percentage
of the members hold a particular sentiment [40, 127], or else a subset of community members
overwhelmingly likely to restrict their neighbourhood communication to contacts with shared
opinion [243, 397]. As such, echo chambers are usually conceptualised as closed subsystems of so-
cial networks containing members with a single orientation [537, 40], and are therefore considered
synonymous with homophily and strongly associated with the quick spread of misinformation
[168, 153, 361], polarisation and the insulation and reinforcement of belief despite their veracity
[124, 537, 583]. One example is the concept of the ‘filter bubble’, detailing the biased filtering of
information unfortunately created by personalisation algorithms [86, 198, 427, 171].

Given the described ubiquity on social networks and their importance in information diffusion
(and therefore decision making) [168, 153, 361, 151], we test whether observations of the size
and number of communities Z∗ and echo chambers J∗ give early warnings of approaching vaccine
scares and crises, as well as falls in vaccination rates. We retrieve the echo chambers J∗ by first
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Figure 3.1: Community structure of pro-vaccine agents on a small network; red nodes represent
anti-vaccine agents (N) and green nodes represent pro-vaccine (Vs) agents. The four grey convex
hulls (one of which is a single node) represent pro-vaccine components and the yellow convex hull
highlights the lone pro-vaccine echo chamber.

listing the agents in the network with the desired vaccine opinion; the members of the network
are then sorted into two primary classes. The peripheral members maintain links with at least
one disagreeing neighbour and core members only maintain links with agreeing neighbours (these
are direct analogies of the boundary and interior of a topological space respectively). We then
characterise echo chambers as communities of core members. This can be seen in Fig. 3.1, which
presents a small dense network of pro- and anti-vaccine agents. Connected groups of pro-vaccine
agents are indicated as pro-vaccine communities by the four grey convex hulls, one of which
is a single node; the nodes captured in the grey areas are the peripheral members mentioned
above. Within the largest community, there are only two agents which have no disagreeing
neighbours; these are the core members. Since they are connected to each other, they form a
single subcommunity which we refer to as an echo chamber.

Clustering has been shown to greatly facilitate the spread of such phenomena as political extrem-
ism [151] and infectious disease [479]. Specifically, clustering refers to the propensity of connection
between two persons if they have a mutual friend [389]. As an indicator of this organisation, the
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global clustering coefficient indicates the prevalence of clusters, dense highly-connected groups of
nodes in a graph [412]. This done by finding the density of triplets on the network. An open
triplet is a group of three nodes connected by 2 edges, while a closed triplet is a group of three
nodes joined by three unique edges (also called triangles for this reason). The global clustering
coefficient (C∗) is then calculated as

C∗ =

∑
T∆∑
T∧
, (3.3)

where
∑
T∆ represents the number of closed triplets and

∑
T∧ represents the number of open

triplets [551]. The value of the coefficient is bounded 0 ≤ C∗ ≤ 1. In metaphor with percolation
theory literature, the clustering coefficient of subnetworks formed by holders of either sentiment
could potentially act as an indicator of organisation that enhances the reinforcement of sentiment
and the effect of any social norm.

The modularity measure is similar to the global clustering coefficient as a measure of organisation;
highly modular networks possess many modules, which feature dense interconnectivity between
nodes similar in some way and sparse connectivity between dislike nodes. Specifically, this mea-
sures the correlation between the probability of connection of two nodes and their membership
of the same module [71]. The modularity score is calculated as follows [393]; let an undirected
network be divided into two disjoint groups Λ and Ξ, with each node n given the score

si =

{
1 j ∈ Λ

−1 j ∈ Ξ
, (3.4)

with an adjacency matrix A of the network, so that Aij gives the number of edges between nodes
i and j. Let k∗ represent the degree of node ∗, so that

m =
1

2

∑
i

ki (3.5)

gives the number of edges in the network and the expected number of edges between nodes i and
j is

kikj
2m

. (3.6)

The network modularity (Q) is then given as

Q =
1

4m

∑
i,j

(
Aij −

kikj
2m

)
sisj . (3.7)

In the model investigated, vaccination occurs only through the first adoption of pro-vaccine
opinion N → Vs (Sec. 3.2.1); as such, the number of changes of opinion Θ∗ undertaken by agents
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of either opinion can conceivably describe both the social and infection dynamics of the model and
thereby yield warning signals of sudden transitions. Moreover, (3.2) shows that the probability of
switching sentiment is sensitive to the number of infected agents in the individual neighbourhood;
this dependance makes it highly likely that the probability of having an infected neighbour Γ∗ is
correlated not only with vaccine coverage both also with the rate of change of opinion throughout
the length of each simulation.

3.2.3 Parameters and time series

Both (infection and social) layers of the network have an Erdős-Rényi random network structure

G (10000, 0.003) ;

network size D = 10000 and mean degree
〈
dn
〉

= 30 were chosen for alignment with studies of
similar coupled behaviour-infection models [274, 445], as well as for computational tractability.
Each simulation starts with proportion α = 0.25 of vaccinated pro-vaccine agents (states rep-
resented by pair (Vs, Vp)), with all others being susceptible anti-vaccine agents (pairs (N,S)).
The probability of death per time step is µ, so that α · µ gives the probability of reset with
initial state Vp and (1 − α) · µ the probability of reset with initial state S. ξ = 1× 10−4 repre-
sents the probability of switching sentiment randomly. Noise parameter ξ = 0.0001 represents
unsystematic fluctuations commonly seen in empirical studies [110, 301, 69]. The birth/death
probability µ = 2.4× 10−4 affords an average life span of 80 years to each agent [97]. The case
importation rate ι = 2.5× 10−5 of susceptible agents adds periodic impulses of infection as a test
of resilience in non-endemic disease regimes. A complete list of variable notation and values is
given in Tabs. 1.2 and 1.3.

Ensemble size was set at 20 for most parameter combinations used. Figure 3.2 shows nine time
series from the infection and social dynamics for a succession of perceived vaccine risks κ; all time
series taken over all realisations showed an initial epidemic spread (defined in Sec. 1.2, examples
in Figs. 3.2(a-c)), with subsequent decrease as the pool of susceptible agents is consumed. Noted
is that Figs. 3.2d (κ = 0.03125) and 3.2e (κ = 0) both show almost perfect vaccine rates

〈
Vp
〉

over 49 realisations of the parameter values, while the corresponding social pro-vaccine consensus
shown in Fig. 3.2g collapses as the perceived vaccine risk κ decreases into Fig. 3.2e. Finally,
Figs. 3.2f and 3.2i (κ = −0.03125) show a median vaccination rate [Vp] ≈ 0.5 with corresponding
anti-vaccine consensus [Vs] ≈ 0 respectively. Taken all together, these trends show that simple
observation of the social dynamics may not allow for predictions of the infection dynamics and
vice versa (as shown in Ch. 2). This is due to the permanence of the vaccine; an agent can change
their vaccine opinion throughout their lifetime, but they cannot become ‘unvaccinated’ should
their stances change.

The chosen parameter space (κ, σ) ∈ [−1, 1]× [0, 3] was sufficiently broad to capture transitions
in both the infection (Fig. 3.3a) and social (Fig. 3.3b) dynamics. The contours in each panel of

49



(a) [I]τ≤6, with κ = −0.03125. (b) [I]τ≤6, with κ = 0. (c) [I]τ≤6, with κ = 0.03125.

(d) [Vp], with κ = −0.03125 (e) [Vp], with κ = 0. (f) [Vp], with κ = 0.03125.

(g) [Vs], with κ = −0.03125. (h) [Vs], with κ = 0. (i) [Vs], with κ = 0.03125.

Figure 3.2: Example time series (49 realisations each) of social (d-f) and infection (g-i) dynamics
of the model for social norm σ = 0, where time τ is measured in weeks (one time step is a week).
Row (a-c) shows the initial epidemic spread of the disease over the first 6 time steps of each
realisation. The changes in trend of [Vs] with increasing perceived vaccination risk κ in (g,h)
compared to the corresponding graphs of [Vs] (d,e) show that the infection dynamics may not be
a predictor of the social dynamics and vice versa.

Fig. 3.3 show the obvious correspondence between social (Ks) and infection (Kp) transitions and
substantial changes in the clustering coefficient of the pro-vaccine subnetwork

〈
CVs
〉

(Fig. 3.3c)
and the mean size of anti-vaccine communities

〈
|ZN |

〉
(Fig. 3.3d).

3.3 Results

We again define the infection transition Kp as the value of perceived vaccine risk κ value at which
the mean number of recovered agents in the model surpasses that of the vaccinated agents and
vice versa, so that

〈
Vp
〉
≈
〈
R
〉
; in Fig. 3.4, Kp is represented by the dashed vertical line marking

the approximate intersection of the curves giving
〈
Vp
〉

and
〈
R
〉
. Similarly, the social transition

Ks is the κ value at which one of
〈
N
〉

(number of anti-vaccine agents) and
〈
Vs
〉

(number of
pro-vaccine agents) surpasses the other so that

〈
Vs
〉
≈
〈
N
〉
; this is marked by the dotted vertical

line in Fig. 3.4 showing the approximate intersection of
〈
Vs
〉

and
〈
N
〉
.
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(a)
〈
Vs
〉
. (b)

〈
Vp
〉
.

(c)
〈
CVs

〉
.

(d)
〈
|ZN |

〉
Figure 3.3: Contour plots of the region (σ, κ) ∈ [0, 3]× [−1, 1] of the parameter plane, capturing
the transition dynamics of both the social and infection dynamics; σ represents the strength of
injunctive social norms and κ the perceived health risk of the vaccine. The probability of infection
is p = 0.2, with

〈
|ZN |

〉
the mean size of anti-vaccine communities and

〈
CVs
〉

the clustering
coefficient of the subnetwork of pro-vaccine agents.

Figure 3.4: Changes in trend in the κ-series of output variables
〈
R
〉
,
〈
Vp
〉
,
〈
N
〉
,
〈
Vs
〉

predict
both the social Ks (dotted vertical line) and infection Kp (dashed vertical line) transitions.
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As in Ch. 2, the distance between the two transitions (i.e. Kp −Ks) is called the intertransition
distance; as with similar models, we find that this intertransition distance decreases with increas-
ing strength of the social norm σ. This is explicitly demonstrated by Fig 3.4, where an increase
in the social norm from σ = 0 (Fig. 3.4, left) to σ = 0.5 (Fig. 3.4, right) brings the two vertical
lines (representing transitions Ks and Kp respectively) together.

Figure 3.5: Graph showing the decreasing trend in the intertransition distance Kp − Ks. The
inset graph shows the κ values at which the infection Kp (red) and Ks (blue) transitions occur.
The decrease in this distance (irrespective of the individual values of Ks/Kp) potentially changes
our interpretation of the EWS.

Figure 3.5 gives a full picture of the intertransition distance over the investigated parameter
range 0 ≤ σ ≤ 2.2; its decreasing trend with strengthening social norm σ is shown by the purple
curve, with the inset panel showing the locations of the social Ks (blue) and infection Kp (red)
transitions. The positivity of the graph tells us that Ks < Kp for all strengths of the social
norm σ ≤ 2.5, so that the social transition always precedes the disease transition. Since physical
vaccination is driven primarily by changes in sentiment, this is to be expected; strengthening
social norms increases the alignment of behaviour and vaccine uptake, resulting in decreasing
intertransition distance Kp − Ks. Warning signals can potentially indicate both transitions, or
maybe only one of the two; this subtlety is lost with shrinking intertransition distance and so
may impact the predictive power of any early warning signal tested.

3.3.1 Group size and census predict the social transition

Figure 3.6 shows the trends in the means of the numbers and sizes of communities and echo
chambers (both pro- and anti-vaccine) at equilibrium. As for the number of echo chambers〈
#J∗

〉
(Fig. 3.6d), there is not much resemblance to the trend of the mean number of connected

components
〈
#Z∗

〉
(Fig. 3.6b); this is partly due to the low occurrence of echo chambers in

this network. For σ = 0 (Fig 3.6d, left), there is no warning given by the mean number of
pro-vaccine echo chambers

〈
#JV

〉
≈ 0, whereas the mean number of anti-vaccine echo chambers〈

#JN
〉

increases before Ks, reaching a maximum between the two transitions and reaching zero
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(a) Mean community size;
〈
|ZN |

〉
(anti-vaccine),

〈
|ZV |

〉
(pro-vaccine).

(b) Mean number of communities; #ZN (anti-vaccine), #ZV (pro-vaccine).

(c) Mean echo chamber size;
〈
|JN |

〉
(anti-vaccine),

〈
|JV |

〉
(pro-vaccine).

(d) Mean number of echo chambers;
〈
#JN

〉
(anti-vaccine),

〈
#JV

〉
(pro-vaccine).

Figure 3.6: Trends of some measures of connectivity of the social network with respect to the
perceived risk of vaccination κ. Vertical dashed and dotted lines representing the infection (Kp)
and social (Ks) transitions (respectively) help to illustrate changes in the trends as transitions
are approached. The strength of the social norm is σ = 0 for panels on the left and σ = 0.5 for
panels on the right.

value approaching Kp. At first glance, the change in trend as the social norm strengthens to
σ = 0.5 (Fig 3.6d, right) seems substantial.

Another view of the social dynamics involves analysing pairs of graphs. For example, Figs. 3.6a
and 3.6b (σ = 0) together show the existence of a large community of pro-vaccine agents; for
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κ = −0.25, there is a single community of pro-vaccine agents with size ≈ 9966.56,〈
|ZV |

〉
= 9966.56, #ZV = 1,

and a few triads of anti-vaccine agents
(〈
|ZN |

〉
≈ 3.09, #ZN ≈ 19.5

)
. This indicates the existence

of one large pro-vaccine component interspersed with small triads of anti-vaccine agents. However,
when perceived vaccine risk increases to κ = 0.25, there is a single anti-vaccine community of mean
size 9992.8

(〈
|ZN |

〉
≈ 9992.83, #ZN ≈ 1

)
with a few individual pro-vaccine agents (

〈
|ZV |

〉
=

1.82,
〈
#ZV

〉
= 4.34). These observations hold for the stronger social norm σ = 0.5 in Figs. 3.6a

and 3.6b.

Intuitively, a similar pattern holds for the formation and erosion of echo chambers seen in
Figs. 3.6c and 3.6d (σ = 0), and 3.6c and 3.6d (σ = 0.5). The scenario

〈
Vs
〉
∼
〈
N
〉

(for small
κ) necessarily leads to the creation of a large community of pro-vaccine agents and thereby a
large echo chamber; conversely,

〈
Vs
〉
≈ 1 will result in small dispersed components of pro-vaccine

agents with a small or empty interior, resulting in a very low number of echo chambers.

We use the Standard Normal Homogeneity Test (SNHT) from the trend package in R [454] to
find a change point (SNHTσ

{〈
Ψ
〉}

) in Ψ, the κ-series of each EWS for each strength of the social
norm σ; the distance between the transition Ks and the change point is called the lead distance.
Each panel of Fig. 3.7 gives the trends of lead distance

Leadσ
[〈

Ψ
〉]

= Ks − SNHTσ

{〈
Ψ
〉}

(3.8)

of each EWS Ψ on the left, and a bar chart on the right showing the number of σ values for which
each EWS gave the highest lead distance measured; positive trends indicate that the warning
precedes the social transition. Each panel of Fig. 3.7 shows that most of the EWS shown give
positive lead distances for σ ≤ 2.875, and that most lead distances decrease as social norm σ
strengthens.

Figures 3.7b and 3.7c expose all measurements of anti-vaccine echo chambers JN as bad per-
formers, along with the size of the smallest anti-vaccine community

〈
min(|ZN |)

〉
(Fig. 3.7a),

the number of pro-vaccine communities
〈
#ZV

〉
(Fig. 3.7c) and the number of pro-vaccine echo

chambers
〈
#JV

〉
(Fig. 3.7c); they all give very little warning of the social transition Ks for all

strengths of the social norm σ, as well as giving the best warning (of all the EWS) for only
≈ 9% of the tested range of the social norm σ. They all demonstrate significantly lower lead
distances than those of the other EWS, giving the highest lead distance of all EWS for only 9%
of σ values (as compared to ≥ 30% for other EWS shown in Fig. 3.7). The performance of these
EWS under different change point detection tests is shown in Figs. B.1-B.3. As social norm σ
increases, pressure on each agent to conform to surrounding opinion becomes the main driver
of self-organisation of the social dynamics. Since it also increases the speed of this transition
between these opposing organised states, lead distances Leadσ

[〈
Ψ
〉]

of EWS Ψ will decrease as
the social norm σ increases.
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(a) Communities: mean size of the largest
〈
max(|ZV |)

〉
and smallest

〈
min(|ZV |)

〉
pro-vaccine communities,

and the largest
〈
max(|ZN |)

〉
smallest

〈
min(|ZN |)

〉
anti-vaccine communities, with the mean sizes

〈
|ZN |

〉
and

〈
|ZV |

〉
.

(b) Echo chambers: mean size of the largest
〈
max|JV |

〉
and smallest

〈
min|JV |

〉
pro-vaccine echo chambers,

and of the largest
〈
max|JN |

〉
and smallest

〈
min|JN |

〉
echo chambers, with the mean sizes

〈
|JV |

〉
and

〈
#JN

〉
.

(c) Mean numbers of groups: pro-vaccine #ZV and anti-vaccine #ZN communities, and pro-vaccine
〈
#JV

〉
and anti-vaccine

〈
#JN

〉
echo chambers.

Figure 3.7: Trends in the lead distance Leadσ
[
Ψ
]

for each EWS Ψ’s κ-series with respect to the
strength of the social norm σ. The bar chart on the right of each panel shows the percentage of
σ values for which the measured EWS gave the largest lead distance of all the EWS tested.

3.3.2 Clustering and uncertainty also provide early warnings

Figure 3.8 shows the trends in other EWS with respect to the social norm σ; modularity of the
social network

〈
Q∗
〉
, the global clustering coefficient

〈
C∗
〉
, number of sentiment changes

〈
Θ∗
〉

and
the probability of having an infected neighbour

〈
Γ∗
〉
. Graph modularity

〈
Q∗
〉

and the number of
sentiment changes

〈
Θ∗
〉

give appreciable warning signals both transitions in Fig. 3.8, given their
noticeable changes in trend approaching Ks (dotted vertical line) and Kp (dashed vertical line).
However, the likelihood of having an infected neighbour

〈
Γ∗
〉

only predicts the disease transition
when σ = 0; the probability of having an infected neighbour for both pro-vaccine

〈
ΓV
〉

and anti-
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(a) Network modularity.
〈
QN
〉

(anti-vaccine),
〈
QV
〉

(pro-vaccine),
〈
QΣ

〉
(total).

(b) Changes of opinion.
〈
ΘN

〉
(anti-vaccine),

〈
ΘV

〉
(pro-vaccine),

〈
ΘΣ

〉
(total).

(c) Probability of infected neighbours.
〈
ΓN
〉

(anti-vaccine),
〈
ΓV
〉

(pro-vaccine).

(d) Clustering coefficient.
〈
CN
〉

(anti-vaccine),
〈
CV
〉

(pro-vaccine),
〈
CΣ

〉
(total).

(e) Clustering coefficient (no ribbon).
〈
CN
〉

(anti-vaccine),
〈
CV
〉

(pro-vaccine),
〈
CΣ

〉
(total).

Figure 3.8: Trends of connectivity measures with respect to perceived vaccine risk κ. Vertical
dashed and dotted lines represent the disease (Kp) and social (Ks) transitions (respectively). (e)
shows the trends of the clustering coefficient without any indications of the standard deviation
of the mean, for clarity. Social norm σ = 0 for the panels on the left, and σ = 0.5 for panels on
the right.
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vaccine
〈
ΓN
〉

in Fig. 3.8c (for social norm σ = 0) only show substantial visible changes in trend
approaching the disease transition Kp, unlike its uneventful approach to the social transition Ks.

This behaviour disappears when social norm σ → 0.5 (Fig. 3.8c, right) due to the shrinking
intertransition distance Kp −Ks; lead distances Kp − SNHTσ

{〈
Γ∗
〉}

of both probabilities
〈
ΓN
〉

and
〈
ΓV
〉

for σ = 0 and σ = 0.5 are similar (0.95 and 0.98 respectively), showing that the distances
between the warnings and the transitions Kp are similar in both cases. As σ increases to 0.5,
Ks ‘moves closer’ to Kp; this suggests that any warning of Ks occurs incidentally, rather than
being directly caused by the model dynamics. This is intuitive; any measure of the probability of
having an infected neighbour is an observation of the infection dynamics, therefore an assumption
of some direct relationship between

〈
Γ∗
〉

and Kp is natural.

In Figs. 3.8d, the trends of the global clustering coefficient
〈
C∗
〉

are dwarfed by their standard
deviations; Figs. 3.8e shows the trend without indicating the standard deviation of the mean, for
clarity. In Figs. 3.8d and 3.8e, the respective clustering coefficients of the subnetworks formed by
only anti-vaccine (

〈
CN
〉
) and pro-vaccine (

〈
CV
〉
) agents both show changes in trend approaching

both Ks and Kp. The global clustering coefficient of the entire social network
〈
CΣ

〉
holds constant

value ≈ 0.03, leading it to have the second-worst performance of all the EWS tested (Fig. 3.10).

Figure 3.9 shows the trends in lead distances of the remaining EWS. For all the EWS in Fig.
3.9, we can see that lead distance decreases with strengthening social norm σ, with all the EWS
eventually failing (giving negative lead distances, so that warnings follow Ks - these are useless);
modularity scores for the subnetworks formed by pro-vaccine

〈
QV
〉

(Fig. 3.9a) and anti-vaccine〈
QN
〉

(Fig. 3.9a) agents give useful warnings for all social norms σ ≤ 2.40625, while both the
number of opinion changes

〈
Θ∗
〉

(Fig. 3.9b) and the probability of having an infected neighbour
Leadσ

[〈
Γ∗
〉]

give useful signals for σ ≤ 2.90625. As stated, the global clustering coefficient of

the entire social network
〈
CΣ

〉
(Fig. 3.9d) was undefined for most σ and negative for quite a

few others, resulting in the worst performance of all the EWS tested and giving the highest lead
distance for only 4% of the total range of the social norm σ. The subnetworks generated by
pro-vaccine agents gave often unsubstantial though positive leads Leadσ

[〈
CV
〉]

(Fig. 3.9d), while
the subnetworks formed by anti-vaccine agents (Fig. 3.9a) gave very little lead distance over most
of the range of σ. The performances of these EWS under different change point detection tests
are shown in Figs. B.5-B.7.

3.3.3 Finding the best and the worst EWS

We compare the EWS by finding the proportion of σ values for which each EWS gives the largest
warning; this is shown in Fig. 3.10. We specify a good warning as one that gives the highest lead
distance of all warnings for a single σ value and a bad warning as one that gives either a minimal,
negative or undefined lead distance. For many σ values, the largest and smallest lead distances
were not unique, so that the ratios on neither side sum to 100%.
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(a) Network modularity score of pro- and anti-vaccine sub-networks.

(b) Number of sentiment changes experienced by pro- and anti-vaccine agents.

(c) Probability of a pro- and anti-vaccine agents having an infected neighbour.

(d) Global clustering coefficient of pro- and anti-vaccine sub-networks.

Figure 3.9: Trends in the lead distances of the remaining EWS with respect to the strength of
the social norm σ. Compared to the other metrics shown here, the global clustering coefficient
Leadσ

[〈
C∗
〉]

performs badly.

Comparison of the panels of Fig. 3.10 gives a notion of ‘dependability’; were a restricted set of
EWS to be employed, we would prefer good EWS (ones that give the largest lead distances) that
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Figure 3.10: The proportions of social norm σ values for which each EWS gives the greatest
(green) and least (red) warnings (biggest and smallest lead distances), corresponding to the
charts shown in each panel of Figs. 3.7 and 3.9.

59



aren’t also bad (giving the smallest lead distances). Some of the foremost EWS best satisfying
this criterion are the counts of all different opinion changes

〈
Θ∗
〉

and the mean size of anti-vaccine
communities

〈
|ZN |

〉
(30% best, 15% worst). The best performers are the modularity scores of

the opinion subnetworks
〈
QV
〉
, being the best EWS for 32% of σ values, with 18% bad warnings.

Conversely, Fig. 3.10 suggests that the numbers of echo chambers
〈
#J∗

〉
both bring up the rear,

providing good warnings for only 1% of σ values while giving bad warnings for 98% of social norm
σ values tested.

Overall, all observations of the sizes of anti -vaccine echo chambers |JN | on the network are poor
EWS. Conversely, the sizes of pro-vaccine echo chambers |JV | perform generally well (≥ 26%
best, 15% worst). Also, the mean and maximum sizes of anti-vaccine communities (

〈
|ZN |

〉
and〈

max(|ZN |)
〉

respectively) give two of the highest ratios of best warnings (both 30%) and not many
bad warnings (≤ 15%), but observations of the minimum size

〈
min(|ZN |)

〉
give only 1% good

warnings and 52% bad warnings. The global clustering coefficient
〈
C∗
〉

performed particularly
badly as an EWS, with ≤ 4% best and 35%− 80% worst warnings.

Another observation made from Fig. 3.10 would be the relationship between the percentages of
good and bad warnings; they are actually strongly anti-correlated, with a coefficient of −0.77.
The previously shown behaviours of the lead distances eliminate the possibility of an EWS that
densely alternates between good and bad warnings, but some EWS do neither; for example, the
total modularity of the network

〈
QΣ

〉
is trivially neither good (0%) nor bad (0%) by virtue of

being everywhere undefined. Nontrivially, the clustering coefficient of the anti-vaccine subnetwork〈
CN
〉

gives intermediate warnings (neither good nor bad) for 60% of social norm strengths σ.
Therefore, no choice need be made between minimising the percentage of bad warnings and
maximising the percentage of good warnings; both strategies yield largely identical results.

Figure 3.11 shows the performance of each EWS per social norm value σ. Red tiles show where
the EWS gave the smallest positive lead distance of all its peers, while green tiles represent the
σ values for which the EWS gave the largest lead distance. Yellow columns show where all EWS
gave equal lead distances and black tiles represent failed warnings (either undefined or negative
lead distances). Therefore, the relative length of an EWS’ red bar in Fig. 3.10 represents the
percentage of that EWS’ red tiles in its row in Fig. 3.11; the same correspondence holds between
the length of an EWS’ green bar in Fig. 3.10 and the percentage of green tiles in the related row
in Fig. 3.11.

The main insight provided by Fig. 3.11 deals with patterns of performance; for instance, the
overwhelming red colouration of the rows corresponding to the mean number of pro-vaccine
communities and anti-vaccine echo chambers (

〈
#ZV

〉
,
〈
#JN

〉
respectively) and all EWS related

to anti-vaccine echo chambers JN show that these EWS are quantitatively the worst of the
group. Also, there is no detectable pattern in performance visible on the grid; in other words,
the effectiveness of the EWS cannot be broken down by ranges of σ value. For higher values
of the social norm σ ≥ 2.625, the prevalence of yellow columns provides the observation that
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Figure 3.11: Grid showing the relative performance of each EWS. Green tiles denote the σ values
for which the EWS gave the highest lead distance, red tiles represent the smallest lead distance,
grey tiles represent lead distances that are neither maxima nor minima and yellow tiles show
where all EWS gave the same lead distances. Black squares represent failed warnings (negative
lead distances) and white tiles represent undefined values (no lead distance).

performance seems not to vary as much among the EWS as it does for smaller σ values, but
nothing else is immediately apparent.

For social norms σ = 2.90625 and σ = 3, none of the EWS give valid warnings; lead distances are
all negative, except for the total clustering coefficient

〈
CΣ

〉
, the number of opinion changes by

anti-vaccine agents
〈
ΘN

〉
and the network’s total modularity score

〈
QΣ

〉
which are undefined. This

confirms behaviour seen for large σ in Figs. 3.7 and 3.9; indeed,
〈
CΣ

〉
is undefined for most social

norms σ because of the disconnection in the social network. Total modularity
〈
QΣ

〉
is everywhere

undefined (row of white tiles) for this reason.

3.4 Discussion

In this paper, we tested the use and effectiveness of different network measures as early warning
signals (EWS) of sudden transitions in the social and infection dynamics of a multiplex model of
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disease. For the parameter values used, we found that observations of the mean and maximum
sizes of anti-vaccine communities appear to be the most effective EWS of all tested, unlike the
size of the smallest anti-vaccine community (though it does give warnings signals); trends in the
global clustering coefficient of the subnetworks formed by pro- and anti-vaccine agents respec-
tively also marked these events, as well as the number of both respective communities and echo
chambers preceding both transitions. This reflects the breakup of connected components on a
network preceding a critical transition, an observation well supported by literature on percolation
thresholds in random graphs.

A phenomenon of particular interest in this study was the formation and breakup of pro- and anti-
vaccine echo chambers; we found that all observations of the sizes of pro-vaccine echo chambers
(maximum, minimum and mean) performed well as warning signals, while observations of the
sizes of anti -vaccine echo chambers performed poorly compared to other EWS. The modularity
measure of the social network and the rate of opinion changes also warn of transitions of the
social and disease transitions, representing changes in aggregate vaccine opinion and vaccine
uptake crises respectively. As a direct observation of the infection dynamics of the model, the
probability of having an infected neighbour (for both pro- and anti-vaccine agents) performed
well as an EWS of vaccine crisis.

Through our proposal and study of effective graph connectivity measures, this study comple-
ments others in the field of early warning signals. A potential limitation to the study is our strict
definition of an echo chamber; it remains to be seen whether different descriptions such as those
featured in other studies of social media networks will result in a more effective or dependable
EWS. Also, the graph connectivity measures seem suitable for tracking the dynamics of an evolv-
ing network; the inclusion of preferential link formation in the dynamics, as well as social and
‘on the ground’ interventions for different strengths of the social norm, present other interesting
avenues of research. Finally, the inclusion of directionality of communication in the network may
render the model more realistic [577, 309, 56, 382].

Together with other markers of spatial correlation and aggregation, the graph connectivity mea-
sures presented here contribute to the set of tools allowing us to leverage the ubiquity of social
media involvement and the resulting data sets in the pursuit of adaptive strategies for maintaining
public health.
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Chapter 4

Spatial EWS are robust to delay and
network sampling

Abstract

The ubiquity of hesitance sometimes defies social pressure, especially when individuals are re-
quired to make health-care decisions they deem momentous. In epidemiology, such intervention
hesitance can both initiate and prolong infectious disease outbreaks, especially when paired with
vaccine denial. Previous literature has yielded effective early warning signals (EWS) of disease
outbreak and vaccine crisis for coupled behaviour-infection systems; these EWS arise from charac-
teristic phenomena undergone by model dynamics during critical transition(s). In this study, we
investigate the resilience of these EWS to the incorporation of a destructive delay to vaccination
decisions. Simulations were conducted on a static small world network, using a model coupling
an SIRVp infection model with a social dynamic resembling a voting game with abstention. We
find that some of the EWS tested retain their efficacy despite fundamental differences in model
behaviour. We also find that these EWS (both pair- and cluster-based) can be reliably used
while observing as little as 60% of the total network with relatively small loss of accuracy. These
findings not only show the resilience of these EWS, but also allow for potential expansion of use
cases and reduction in computational resource requirements.

4.1 Introduction

When faced with important decisions, individuals combine values and the beliefs they hold as a
guide to the action required [197]; common barriers to decision making are ‘information overload’,
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unclear conception for the context of the decision, the importance of time constraints, perceived
lack of the requisite knowledge and cognitive biases [197]. These barriers can lead individuals to
‘put off’ making a decision on an issue, which is disadvantageous in time-sensitive circumstances.
Indecision around vaccination decisions is called vaccine hesitancy and is quite common, being
reported by more than 90% of the world’s nations over the period 2015–2017 [318].

Vaccine hesitancy was defined by the Strategic Advisory Group of Experts on Immunization
(SAGE) as “delay in acceptance or refusal of vaccination despite availability of vaccination ser-
vices.” and states that “Vaccine hesitancy is complex and context specific, varying across time,
place and vaccine. It is influenced by factors such as complacency, convenience and confidence.”
[410] The SAGE working group also identified vaccine hesitancy as “being present when vaccine
acceptance in a specific setting is lower that would be expected, given the availability of vac-
cination services.” The group then goes on to give a range of potential determinants for this
hesitancy; the three categories are ‘contextual influences’, ‘individual and group influences’ and
‘vaccine/vaccination-specific issues’ [410].

In the context of this thesis, the major determinants of the dynamics of the models used so
far (in Chs. 2 and 3) fall into this categorisation: the social norm (σ) is considered by the
group as a group influence and the effect of the perceived adverse effect of the vaccine (κ) is
considered a ‘vaccination-specific issue’. A more apt view interprets these two parameters as
potentially encapsulating all of the reasons outlined by the working group in these two categories.
The intentional simplicity of the (binary vote) models of social communication used in models
V1, V2 and V3 precluded the treatment of more complex identified factors such as culture,
religion and socio-economics. While useful as a guide, this view of hesitance is fundamentally
phenomenological (not surprising, given the function and aims of the working group) and therefore
is not directly applicable to our model; instead, we account for vaccine hesitance by adding a
new decision category (hesitance) to the social dynamic used in Chs. 2 and 3, resulting in a
ternary model. To our best knowledge, a similar evolving vaccine hesitance dynamic has not
been previously added to an agent-based model in such an explicit way; one peripheral study
features a preset level of vaccine hesitance in its model [93].

This account of vaccine hesitance exploits the framework of ternary voting games. Ternary voting
games (TVGs) are generalisations of simpler voter models that add a third choice, referred to as
‘abstention’ [188, 429]; a tripartition is a map T from the set N of all agents to the decision set
{−1, 0,+1} (the truth values of the vaccination decisions available). In this case −1 represents
anti-vaccine sentiment, 0 represents vaccine hesitance and +1 represents a pro-vaccine opinion.
Our previous studies in Chs. 2 and 3 used the Erdős-Rényi (ER) random graph model G(N, p)
[177]; this network structure is a common choice for opinion dynamic modelling [59, 524, 575, 110,
342], but has noted shortcomings [388]. Empirical studies have found that human social networks
feature a high degree of clustering [5, 224], short path length and diameter [6], large connected
components [304, 82], and highly skewed power-law degree distribution [183, 39, 305, 5, 79, 442]
due to the existence of hubs, though these properties may change as the network evolves [297, 367].
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While the ER model is not considered to have these features (even after tuning the probability
p) [392], the attraction of the model is its exact solvability and the critical phenomena stemming
from its construction [336, 343, 3].

These properties of high local clustering and small diameter are called small world properties and
the networks that feature the are referred to as small world networks [367]; many studies show
that these networks closely model social networks [4] such as those of scientific research collab-
oration [390], professional acting [18] and the world-wide web [5]. One construction frequently
used in modelling opinion dynamics is the Watts-Strogatz model WS(N,K, β), which is also
referred to by some studies as ‘the small world network’; in that way, the phrase ‘small world’
refers both to graphs featuring small world properties (which can be random or scale-free) and
specifically Watts-Strogatz networks themselves [388]. Scale-free networks feature a power-law
degree distribution [367], are also used in social network simulation studies due to their perceived
enhanced realism and similarity to empirical networks such as neural networks [79], power grids
[442] and other networks [183, 39, 305, 5] (preferential attachment models can evolve, whereas
the Watts-Strogatz construction is inherently static [388]). Scale-free networks do not generally
have small world properties [1].

Data mined from online social networks is used in many ways, including notification of contempo-
rary events [476, 444] and investigation of human behaviour and mood [339, 527, 556, 278, 368],
a concept at the core of this thesis. However, the curation of social network data poses many
problems. For one, the sheer size of current ever-growing social networks (such as Twitter) results
in unfathomably huge data sets [450, 191, 552]. This makes sampling virtually unavoidable in
social network analysis, and even then still poses huge computational challenges [450]. Many
studies explore sampling technique for large social networks [450, 451, 27, 38], with the intention
of representing the entire network somewhat closely [66, 94, 192, 539].

Here, we introduce vaccine hesitance to the social dynamics of the model V1 through the addition
of the H (hesitant) category/opinion, We also use a small world network of comparable size to
those used in some previous studies for the purposes of comparison. Finally, we observe various
randomly selected portions of the network and, via simulation, we gather early warning signal
(EWS) from these portions. In Sec. 4.2, we concretely outline the changed social dynamics and
give redefinitions of dynamics transition points and lead distance. Sec. 4.3 will present the results
of simulation and lead distance analysis and finally Sec. 4.4 will summarise the relevance and
context of the results, as well as outline potential limitations of the study.

4.2 Methods

As with Chs. 2 and 3, we assume the SIRVp natural disease history shown in Fig. 1.7a. How-
ever, our novel inclusion of vaccine hesitance to the previous dynamics gives us the NHVs social
dynamics of model V4, shown in Fig. 4.1.

65



4.2.1 Model V4

There are two major departures from the NVs models (V1, V2 and V3) of Chs. 2 and 3: the first is
the use of a small world network structure, and the second is that agents can no longer transition
directly between the two extreme Vs (pro-vaccine) and N (anti-vaccine) opinions, but rather will
first adopt a hesitant stance H before complete transition. These hesitant agents (H) can be
influenced by both pro-vaccine and anti-vaccine social contacts while not themselves influencing
the decisions of others, since their neutrality does not contribute to the effective strength of the
surrounding social norm σ. Intuitively, hesitance does not inspire vaccination ( 6→Vp).

In each week, each agent n compares her opinion with some randomly chosen social contact a.
Again, n can possibly reevaluate and change her opinion if agent a disagrees; the interaction of
two extreme opinions may result in hesitance (→ H), while an hesitant agent will transition to
a’s stance. For example, if a pro-vaccine (Vs) agent communicates with an anti-vaccine (N) agent
and starts to doubt her current beliefs, she will become hesitant (Vs → H); in this state, she is
vulnerable to whomever she communicates with next. She could encounter the same (or other)
anti-vaccine agent and be convinced to switch (Vs → H → N , over both weeks), or she could
encounter a pro-vaccine agent and return to her previous supportive opinion (Vs → H → Vs,
over both weeks). Alternately, she will not reevaluate her opinion if she communicates with an
hesitant (H) agent, no matter her current opinion.

These new social dynamics are shown in Fig. 4.1. It can be said that the introduction of hesitance
does not fundamentally change the structure (and function) of the infection model; from the
point-of-view of infection spread, hesitant agents appear as anti-vaccine agents, in that neither
of them vaccinate. Opinion changes inspired by interaction are not deterministic; we define the
probabilities Pn of opinion change for an agent n in the style of (1.1):

Pn(a→ b) =
1

1 + exp (−Ua→bn )
, (4.1)

where a, b ∈ {N,H, Vs}, a 6= b are vaccine opinions. The indices Ua→bn depend on the perceived
risk of vaccine adverse effects (perceived vaccine risk) κ and the number of infected physical
contacts In of agent n as:

UN→Hn = UH→Vsn = −σ
(
dNn − dVsn

dn

)
− (κ− In) , (4.2)

UVs→Hn = UH→Nn = −σ
(
dVsn − dNn

dn

)
+ (κ− In) . (4.3)

The strength of an injunctive social norm is represented by σ (as in Chs. 2 and 3) and it acts
to preserve the opinion currently held by the node; dn and d∗n respectively represent the total
number of social contacts of agent n and the number of social contacts with the opinion ∗.
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N H Vs

Pn (N → H) +

ξ + (1− α)µ

Pn (H → Vs) +

αξ + αµ

Pn (Vs → H) +

ξ + (1− α)µ

Pn (H → N) +

(1− α)ξ

α · µ

(1− α) · µ

α · µ

Figure 4.1: Representation of the opinion dynamics of model V4. In each time step, each agent
may switch opinion from a to b with probability Pn(a → b) upon interaction with a dissenting
neighbour. ξ represents the noise parameter (that is, the probability of randomly switching
opinion), while α is the probability of entering the simulation as a vaccinated pro-vaccine agent
(Vs, Vp) and µ the probability of death/replacement.

The infection dynamics of this model are almost exactly those outlined in Sec. 1.3, except that
agents may be assigned epidemiological state H with probability 1 − α, rather than state N as
was done before (where α is the probability of entering the simulation as a pro-vaccine vaccinated
agent). Therefore, Item 5 of the description given in Sec. 1.3 would here read

...
5. In each time step, every agent faces probability µ of death, at which they are instantly

replaced by either a vaccinated pro-vaccine agent (joint state (Vs, Vp)) with probability α,
or a susceptible hesitant agent (H,S).
...

The flow of a single week is shown in Fig. 4.2, a flow diagram documenting the path of an agent n
through the different phases of the model in each time step. Processes in yellow boxes occur only
once throughout the realisation while processes in red boxes denote loops, with their instructions
repeated for all agents. True/False tests and decisions are denoted by blue diamonds and grey
boxes represent choices.
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Figure 4.2: Implementation of the model dynamics used for each stochastic realisation.
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4.2.2 Parametrisation

As with the previous studies in Chs. 2 and 3, the average life span of an agent in each simulation
was set at 80 years, with µ = 2.5× 10−4. A small world network WS(p = 10−3, D = 10000) was
used to model agent connectivity in this study (in contrast to the previous random networks),
with size D = 10000 and agents having

〈
dn
〉

= 30 neighbours each. A ratio ι = 1× 10−4 of
susceptible cases were imported in each time step to provide periodic pulses of infection.

For the purposes of comparison, we retained the infection rate p = 0.2, with the probability of
any agent randomly changing opinion kept at value ξ = 1× 10−4. With this new model (V4), we
found that the ranges σ ∈ [0, 2.5] for the social norm and κ ∈ [−1, 1] for the perceived vaccine
risk allowed us to capture the transitions of the model, as shown in Fig. 4.3. As a further test
of the efficacy and resilience of the EWS, we also compute each EWS by sampling proportion
β ∈ {0.6, 0.8, 1} of the (agents in the social) network.

(a)
〈
H
〉

(hesitant agents). (b)
〈
N
〉

(anti-vaccine agents). (c)
〈
Vs
〉

(pro-vaccine agents).

(d)
〈
Vp
〉

(vaccinated agents). (e)
〈
I
〉

(infected agents). (f)
〈
S
〉

(susceptible agents).

Figure 4.3: Heat map plots showing the ensemble means of model variables with respect to the
social norm σ and the perceived vaccine risk κ. All agents were observed (β = 1).

An important feature of the model is its bistability, as demonstrated in Fig. 4.4; each point in
each panel represents the mean value of the last 500 observations in the realisation, the criteria
for which are outlined in Sec. 1.2. Fig. 4.4b justifies our choice of investigating a low initial
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population of pro-vaccine agents (α = 0.25), since we see that (generally) populations with a
high initial proportion of pro-vaccine agents retain that proportion despite increasing risks of
adverse vaccine effects. Our testing of EWS requires epidemic events and vaccine crises, so we
judge higher initial proportions of pro-vaccine agents α to be inappropriate. However, our future
discussion of clustering and triadic closure (Sec. 4.2.4) hints at α being an order parameter of
the system controlling convergence in high risk (κ) consensus regimes, similar to a percolation
threshold in our family of models.

This behaviour is also seen in model V3 (Fig. 4.4d) which also shows “stickiness” of the prevalence
of vaccinated agents

〈
Vp
〉
; for lower initial pro-vaccine populations (α → 0), intermediate per-

ceived vaccine risks κ show model bistability before the establishment of either consensus regime
|κ| → 1, while higher initial pro-vaccine populations α→ 1 survive this patch of instability intact.
However, this behaviour is not seen for the number of susceptible agents

〈
S
〉

in either model V3
(Fig. 4.4d) or V4 (Fig, 4.4c), where the dynamics show instability both pre- and post-transition
for all initial pro-vaccine population sizes αN .

4.2.3 Reconsideration of critical point estimates and lead distance

In Ch. 2.3, the transition point in the social dynamics Ks was defined as the first κ value at which
the anti-vaccine and pro-vaccine curves crossed; that is, the κ for which

〈
N
〉
∼
〈
Vs
〉
. Model V4’s

inclusion of vaccine hesitance necessitates a change in this calculation; in Sec. 4.2, we remarked
that hesitant agents appeared as anti-vaccine agents from the point-of-view of infection spread,
since neither vaccinate. We reinforce this idea by defining the social transition (point) Kβ

s as the
κ value at which 〈

V β
s

〉
∼
〈
Nβ
〉

+
〈
Hβ
〉
, (4.4)

where
〈
Ψβ
〉

represents the mean proportion of agents with opinion/epidemiological state Ψ in a
random sample of a proportion β of all agents. For example,

〈
V 0.4
s

〉
represents the proportion of

pro-vaccine agents found in random sample of 40% of agents (in the social network), averaged
over an ensemble of 20 independent realisations. For brevity, observations of the entire network
will not be given a superscript, so that the true proportion of recovered agents on the network is
written 〈

R
〉 (

=
〈
R1
〉)
.

Figure 4.5 shows the intertransition distance K1
p −K1

s for the model V4. Two stark differences
from the trends in intertransition distance shown for models V1–3 (Fig. A.7) are that the distance
actually increases with σ and is negative when 1.1 ≤ σ ≤ 1.15. This shows that the infection
outbreak actually preceded the vaccine crisis, but only by a small margin |K1

p −K1
s | ≈ 0.0002;

however, given that these calculations used data resulting from multiple different realisations, we
find it difficult to dismiss this phenomenon as a simple numerical artefact. These trends for other
values of β are shown in Fig. C.1.
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(a) Model V4, final number of recovered agents.

(b) Model V4, final number of vaccinated agents.

(c) Model V4, final number of susceptible agents.

(d) Model V3, final numbers of susceptible and vaccinated agents.

Figure 4.4: The total dynamics of models V3 and V4 shows bistability about the perceived vaccine
risk κ = 0 for all parameter values tested.
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Figure 4.5: Unsteady trend of the intertransition distance Kp−Ks (purple), with the inset graph
showing the estimated locations of K1

s (red) and K1
p (blue).

Intuitively, this is probably not completely due to the change in network structure (though that
possibility cannot be completely dismissed), but mostly from our account of vaccine hesitance. By
altering the social dynamics (not exerting social influence and delaying effective opinion change)
while leaving infection dynamics virtually unchanged, hesitance changes the coupling of the social
and infection dynamics. The link between the two dynamics revolves around the change to pro-
vaccine stance (which results in vaccination), as shown by Fig. 4.2. Here, infection outbreak occurs
not only through anti-vaccine consensus, but now also through widespread vaccine hesitance in
the population.

(The opinion f) Vaccine hesitancy (H) was also cast in the role of an intermediate state between
the two extreme pro- (Vs) and anti-vaccine (N) opinions and therefore acts to ‘slow down’ the
social dynamics and delay the transition K1

s . Earlier graphs of the intertransition trend (Figs. 2.5a
and 3.5) show that Kp −Ks does not decrease smoothly; any consistent delay of Ks may result
in briefly negative values, as well as much smaller intertransition distance in general. This is
shown clearly by a comparison between Figs. 4.5 and 2.5a (model V2, no vaccine hesitance); the
introduction of vaccine hesitance has compressed the median value of K1

p − K1
s by (roughly) a

factor of 10. The trends in the number of pro- (Vs) and anti-vaccine (N) shown in both panels
of Fig. 4.6 are superficially similar to those of previous models (Figs. 2.3a and 3.4), though the
post-K1

p variation of the numbers of recovered (R) and vaccinated (Vp) agents is not familiar.

A final potential side effect of our introduction of hesitance to the social dynamics would be
the complete disappearance of extreme (non-hesitant) opinions in consensus regimes, since it is
now much more difficult to transition to an unpopular view. Since agents must now become
hesitant and twice randomly choose a dissenting neighbour before completely switching opinion,
any N → Vs (or Vs → N) transition will take two weeks (two time steps, twice as long as in
models V1-3), during the second of which the agent in question is much more likely to be drawn
back to her previous position. One can well imagine that hesitant agents in a consensus regime
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Figure 4.6: Trends of model variables of the social and infection dynamics for σ = 0 (left) and
σ = 0.25 (right). Hesitance persists in the simulation across all strengths of the social norm σ.

in this model (V4) would have been identified instead as dissenting agents in previous models
(V1-3). This may be manifested by the disappearance (undefinedness) of any trends sensitive to
the total number of pro- or anti-vaccine agents in consensus regimes (|κ| ≈ 1); an example is the
probability of a pro-vaccine agent having an infected neighbour (

〈
ΓV
〉
), shown in Fig. 4.11b.

Figure 4.7: Estimated locations of the social and infection transitions Kβ
s and Kβ

p drift as the
proportion of agents randomly sampled β changes.

We found that estimates of the transition points of both model dynamics obtained by sampling
the agents of the network changed according to the size β of the sample, as shown in Fig. 4.7.
Two perspectives can be defended here:

1. Estimates of K1
s and K1

p gathered from the entire network (β = 1) constitute a ground

truth of the system, while the transition locations Kβ
s and Kβ

p gathered from subsets of the
network are useful for comparison.

2. In a scenario where the entire network cannot be observed, the estimated transitions Kβ
s

and Kβ
p are the only data possessed and so viewed as being the “real” transitions, though

potentially specious.

This question is important to the calculation and interpretation of the lead distance K − Π∗;
which is the true transition K in either dynamic? To avoid this ambiguity in this study, in cases
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where the network is being sampled (β < 1), the transition locations will be taken as

Ks = min
(
K1
s ,K

β
s

)
, Kp = min

(
K1
p ,K

β
p

)
, (4.5)

by which we just use the earlier transition for lead distance calculations. We think that testing
the ability of the EWS to predict the earlier transition in both dynamics is a better approach
than making some consistent choice.

Finally, our main interest lies in predicting the first transition to occur independent of transition
order. Since Fig. 4.5 shows that the social and infection transitions Kβ

s and Kβ
p do not occur

in predictable order, lead distances are calculated here as the distance between the change point
predicted by the change point detection test used and the earlier of the two transitions KM ,
where

KM = min(Ks,Kp) . (4.6)

Here, we use the standard normal homogeneity test (SNHT) to get change points SNHTσ

{〈
Ψ
〉}

for some EWS Ψ. We define a λ-network as the subnetwork (of the total social dynamics) formed
by the set of agents with opinion λ. We then denote the lead distance of some EWS Ψ gathered
from the λ-network formed by a random sample of proportion β of agents at social norm value σ
as

Leadσ
[
Ψβ
λ

]
= KM − SNHT{

〈
Ψβ
λ

〉
}. (4.7)

For each value of the social norm σ, we will calculate which EWS give the largest lead distance and
which give the smallest lead distance. Therefore, each EWS will have two attached percentages:
the LLT denotes the proportion of values of the social norm σ for which the EWS gave the largest
lead distance of all the EWS and the ULT will denote the proportion of social norm values σ
for which the EWS in question gave undesirable lead distances, which refers to undefined lead
distances, failures (negative lead distances) and minima (the smallest lead distances of all EWS).
The effect of network sampling (performance penalty) on the lead distances of each EWS Pen will
be quantified by taking the mean absolute (σ point-wise) difference between the lead distances of
the EWS gathered from the entire network and from some simple random sample of proportion β
of the network as a percentage of the mean lead distance. For example, the penalty of sampling
proportion β = 0.8 of the network for the mutual information EWS

〈
M
〉

will be written

Pen
[
M0.8

]
= 100 ·

〈 ∣∣Leadσ
[
M
]
− Leadσ

[
M0.8

]∣∣ 〉〈
Leadσ

[
M
]〉 (4.8)

these results are also shown in Tabs. 4.1, 4.2, 4.3, 4.4 and 4.5.

4.2.4 Early warning signals: new and old

In this study, we reintroduce the following EWS:
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Sec. 2.2: Mutual information (M), join counts ([∗, ∗]),
Sec. 3.2.2: Opinion communities (Z∗), echo chambers (J∗), global clustering coefficient (C∗),

probability of having an infected neighbour (Γ∗), rate of opinion fluctuation (Θ∗),

and we omitted the following EWS:

Sec. 2.2: Geary’s C (C), Moran’s I (I),
Sec. 3.2.2: Network modularity (Q).

The above EWS candidates were excluded because Moran’s I was found to be a linear combination
of join counts (App. A.1) and Geary’s C was found to be undependable (App. A.2.7 and Sec. 3.3
respectively). We include graph diameter and the number of (opinion-based) triads (described
below) as candidate EWS.

Graph diameter is the length of the greatest geodesic between two vertices of a graph, otherwise
stated as the maximum eccentricity of a vertex. Let G be a graph with vertex set V and a metric
d. The eccentricity ε(u) of a vertex u ∈ V is the greatest distance between u and all other vertices

ε(u) = max
a∈V

d(u, a). (4.9)

The diameter Ω∗ is then the maximum eccentricity of the graph’s vertices, so that

Ω∗ = max
u∈V

ε(u)

(
= max

u,a∈V
d(u, a)

)
. (4.10)

In this study, let Ψ be one of the vaccine opinions featured in the social (NHVs) dynamics. Then
we define the diameter of the Ψ community to be the greatest eccentricity of all agents with
opinion Ψ:

ΩΨ = max
u,a∈Ψ

d(u, a). (4.11)

Triadic closure is a feature of social networks [580], and expresses the propensity of the formation
of ‘triangles’ of agents; my friend’s friends are likely to become my friends as well, or alternately
that two individuals are likely to be themselves friendly if they have a common friend [230].
The observation of this network feature, called triad census, counts the number of triads formed
from potential triads; in the description of the calculation of the global clustering coefficient in
Sec. 3.2.2, these were called TΛ (the number of open triangles) and T∆ (the number of closed
triangles) respectively. In most studies, triad prevalence shows interconnection and homophily;
here, the number of opinion triads instead speaks directly to the action of the social norm and
nearest-neighbour influence.

In most (sociological) studies focused on the establishment of ties between actors, potential triads
appear as open triangles; triads are eventually completed when the two unconnected individuals
involved decide to acquaint themselves. This closure process however must be thought of differ-
ently because of the static nature of the network and our focus on individual opinion. Agents
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Figure 4.8: Diagram showing the analogue of triadic closure occurring in model V4. Raj initially
distrusts the MMR vaccine, but conversations with Ann and Ivo convince him of its benefit and
safety, after which he adopts their opinion, thereby closing the triangle.

in model V4 are free to choose their own opinions but not their contacts (those are fixed); our
problem is more akin to vertex colouring. A potential triad within this context is then a dyad -
a neighbouring pair with the same vaccine opinion. Triadic closure occurs when the two agreeing
nodes ‘convince’ the third agent to share their opinion as well, as shown in Fig. 4.8.

On the static social network shown in Fig. 4.8, the parents Ivo, Ann and Raj are Facebook
friends that communicate regularly. Ivo and Ann are pro-vaccine (represented by a green hue)
and actively encourage fellow parents to have their children vaccinated. Raj distrusts the MMR
vaccine suggested by his family doctor and is hesitant (represented by grey hue). The social
dynamics of model V4 specify that Raj doesn’t assert an opinion in his weekly chats with Ann
and Ivo, but receives information from them (represented by directed edges reaching Raj), while
Ann and Ivo exchange ideas civilly (joined by a solid edge). The function of the social norm σ
(social pressure) acts on Raj during his chats with the gang and eventually he is convinced to
have his daughter vaccinated (represented by green hue and solid edges joining the three since
they now agree). This is the triad closure driven by the social norm; we denote the triad census
for a vaccine opinion ∗ as ∆∗.

We remark then that the triad count is related to the similar join counts [H,H], [N,N ] and
[Vs, Vs], though the relationship is not direct and not subject to the same interpretation. This
is shown in Fig. 4.9, where panels (4.9a, 4.9b) together demonstrate an increase in the similar
join count [N,N ] without a rise in the number of triads, and panels (4.9b, 4.9c) show a different
number of triads with the same join count [N,N ] = 2. While all three panels represent homophily,
the long-term survival of a dissimilar opinion within social groups (such as H in Fig. 4.9a and Vs
in Fig. 4.9b) suggests a weak or ineffective social norm σ.

76



N N

H

NN

N N

H

NN

(a) [N,N ]=2, ∆N = 0.

N

N

Vs

N
N

N

N

N

N

N

Vs

N
N

N

(b) [N,N ]=6, ∆N = 0.

N
N

N

N
N

N
N

N

N
N

(c) [N,N ]=6, ∆N = 2.

Figure 4.9: Illustration of the tenuous relationship between the join count and the triad census.

4.3 Results

For model V4, the initial vaccine coverage α = 0.25 ensured that all realisations showed epidemic
spread (Sec 1.2) over the first 6 weeks (time steps) of each realisation, as shown in Fig. 4.10a-c.

Similar to the models of Chs. 2 (Figs. 2.2, A.2 and A.1) and 3 (Fig. 3.2), dynamics are highly
sensitive to changes in perceived vaccine risk κ in the absence of social norm σ = 0. Fig. 4.10
shows that a steadily lessening perceived vaccine risk κ will bring the population from anti-
vaccine consensus (Fig. 4.10d) to pro-vaccine consensus (Fig. 4.10f). Unlike previous results
however (esp. in Ch. 2.3), vaccine uptake does not remain unchanged, as can be seen also in
Fig. 4.10; [Vp] increases with κ, growing from ≈ 0.45 (Fig. 4.10g) to ≈ 0.9 (Fig. 4.10i). This
heavily foreshadows a change in the relationship between the social and infection transitions Ks

and Kp, confirmed in Fig. 4.5.

4.3.1 Non-connectivity-based EWS retain their efficacy

In Fig. 4.11a, changes in the trend of the mutual information statistic
〈
M
〉

predict the social
K1
s (dotted vertical line) and infection K1

p (dashed vertical line) transitions for both values of
the social norm σ = 0 (left) and σ = 0.25 (right). Similar to the previous models investigated
(Figs. 2.4a, A.5 and A.6),

〈
M
〉

increases to a maximum before K1
s and then falls to a post-

transition minimum value.

The total number of opinion changes
〈
ΘΣ

〉
shows a similar trend (to

〈
M
〉
) around the transi-

tion(s) in Fig. 4.11c, with a fast increase to some pre-K1
s maximum value, decreasing through the

transition to a post-K1
p minimum value. The probabilities of having an infected neighbour

〈
Γ∗
〉
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(a) [I]τ≤6, with κ = 0.00625. (b) [I]τ≤6, with κ = 0. (c) [I]τ≤6, with κ = −0.0125.

(d) [Vs], with κ = 0.05. (e) [Vs], with κ = 0. (f) [Vs], with κ = −0.025.

(g) [Vp], with κ = 0.05. (h) [Vp], with κ = 0. (i) [Vp], with κ = −0.025.

Figure 4.10: Time series demonstrating the sensitivity of system dynamics to small changes in
perceived vaccine risk κ in the absence of a social norm (σ = 0). Time in week (time steps) is
given by τ .

also predict the transitions, though the (changes in the) trends are not as clear as the previous
EWS. For example, Fig. 4.11b shows that the probability of an anti-vaccine agent having an
infected neighbour rises before the social transition K1

s for σ = 0 (left). However, the curve only
begins shortly before κ = −0.05 (due to initial NaN values caused by the absence of anti-vaccine
agents); similarly, the probability

〈
ΓV
〉

is only periodically defined immediately after the transi-
tion K1

p . The probability of a hesitant agent having an infected neighbour
〈
ΓH
〉

remains defined
throughout the simulation due to the constant persistence of hesitant agents, shown in Fig. 4.6.

Figure 4.12 shows the lead distances of the probabilities of having an infected neighbour (
〈
Γ∗
〉
,

Fig. 4.12b) and the numbers of committed opinion changes (
〈
Θ∗
〉

Fig. 4.12c) under the SNHT.
Also shown in Fig. 4.12a are the lead distances of the mutual information statistic

〈
M
〉

under
the Lanzante, Pettitt, Buishand range and standard normal homogeneity tests.

Lead distances for the mutual information statistic are relatively high under the SNHT, ranging
from 0.73 to 0.91 (Fig. 4.12a); sampling does not affect the lead distance much, since 0.52 <
Leadσ

[
M0.8

]
< 0.89 (Fig. C.2b) and 0.57 < Leadσ

[
M0.6

]
< 0.91 (Fig. C.2a) represent small

decreases with no marked change in the (admittedly jagged) appearance of the trend. The
average lead distance of the mutual information dropped 11% when sampling 80% of the network
(β = 0.8) and 9% when sampling 60% of the network (β = 0.6); see Tab. 4.1. An initial LLT of
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(a) Trend of the mutual information statistic
〈
M
〉
.

(b) Probability of hesitant (
〈
ΓH
〉
), pro-vaccine (

〈
ΓN
〉
) and anti-vaccine (

〈
ΓV
〉
) agents of having an infected

neighbour.

(c) Number of opinion changes committed by hesitant (
〈
ΘH

〉
), anti-vaccine (

〈
ΘN

〉
and pro-vaccine (

〈
ΘV

〉
)

agents, and the total number of changes
〈
ΘΣ

〉
.

Figure 4.11: Changes in the trends of the κ-series of the mutual information statistic
〈
M
〉
,

the probabilities of having an infected neighbour
〈
Γ∗
〉

and the numbers of opinion changes
〈
Θ∗
〉

predict transitions in the infection (K1
p , dashed vertical line) and social (K1

s , dotted vertical black
line) dynamics for both social norms σ = 0 (left panels) and σ = 0.25 (right panels).

33% (Fig. C.2c) dropped to 14% for β = 0.6 and 10% for β = 0.8.

The numbers of opinion changes
〈
Θ∗
〉

also perform well under the SNHT (Fig. 4.12c); the total
number

〈
ΘΣ

〉
and the number committed by pro-vaccine agents

〈
ΘV

〉
both have an LLT of 19%,

with
〈
ΘH

〉
having an LLT of 10%. Again, lead distances don’t change drastically when the network

is sampled instead; 0.63 < Leadσ
[
Θ∗
]
< 0.98, while 0.73 < Leadσ

[
Θ∗

0.6
]
< 0.92 (Fig. C.2f) and

0.58 < Leadσ
[
Θ∗

0.8
]
< 0.83 (Fig. C.2g);

〈
ΘH

〉
retains ≥ 10% LLT for all sampling proportions

β, while
〈
ΘΣ

〉
and

〈
ΘN

〉
both lose ground to other EWS (due to shifts in performance due to

sampling). Penalties are similar, with the average lead distance declining 13% when sampling
80% of the network, and 9% when β = 60% of the network is sampled (Tab. 4.1).

Finally, the probability of having an infected neighbour
〈
Γ∗
〉

gave wildly varying lead distances
(Fig. 4.12b), with a 5% LLT for both hesitant and pro-vaccine agents. In this way, there seemed to
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(a) Lead distances of the mutual information statistic
〈
M
〉

under the Lanzante, Pettitt, Buishand range
and standard normal homogeneity tests.

(b) Probabilities of hesitant (
〈
ΓH
〉
), pro- (

〈
ΓV
〉
) and anti-vaccine (

〈
ΓN
〉
) agents having an infected neigh-

bour.

(c) Opinion changes committed by pro-vaccine (Vs), anti-vaccine (N) and hesitant (H) agents.

Figure 4.12: Lead distances of non-connectivity-based EWS explored in the study, obtained by
applying the SNHT. Bar charts on the right of the panels show the proportion of σ values for
which each test gave the largest lead distance of all EWS tested.

be no immediately visible consistent change caused to the trend of Leadσ
[
Γ∗

β
]

as the sampling
proportion β was varied (Figs. C.2d and C.2e). However, the average lead distance of

〈
ΓV
〉

dropped ≥ 60% upon sampling, with
〈
ΓH
〉

suffering a similar fate (Tab. 4.1).

4.3.2 Group formation remains a strong EWS

Chapter 3 saw group structure and bonding on the network declared a strong family of EWS,
and Figs. 4.13, 4.14, 4.15 and 4.18 show that the same holds in model V4 despite our changes to
the social dynamic and the network structure.

Intuitively, the transition between pro-vaccine (κ ≈ −1) and anti-vaccine (κ ≈ 1) regimes causes
the break-up of massive pro-vaccine communities (Fig. 4.13a) and the establishment of ever larger
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Penalty (%) Lead Distance (κ)
EWS β

Minimum Mean Maximum Minimum Mean Maximum

0.4 0 12.63 40.51 0.39 0.76 0.89
0.6 0 8.94 33.15 0.57 0.81 0.92
0.8 0.49 11.27 36.34 0.58 0.75 0.86

M

1 NA NA NA 0.73 0.85 0.92

0.4 0 11.97 34.79 0.7 0.83 0.95
0.6 0 8.65 19.33 0.73 0.83 0.92
0.8 0.51 9.82 30.41 0.58 0.75 0.86

〈
ΘH

〉
1 NA NA NA 0.64 0.81 0.92

0.4 0 8.96 22.57 0.7 0.82 0.95
0.6 0 8.78 30.1 0.73 0.82 0.92
0.8 0.5 12.95 44.64 0.58 0.74 0.86

〈
ΘΣ

〉
1 NA NA NA 0.7 0.83 0.98

0.4 0 8.96 22.57 0.7 0.82 0.95
0.6 0 8.78 30.1 0.73 0.82 0.92
0.8 0.5 12.77 44.64 0.58 0.74 0.86

〈
ΘV

〉
1 NA NA NA 0.7 0.83 0.98

0.4 12.06 68.52 245.16 0 0.29 0.76
0.6 0 71.48 241.14 0.01 0.3 0.79
0.8 1.34 75.98 261.91 0.12 0.27 0.7

〈
ΓH

〉
1 NA NA NA 0.13 0.31 0.98

0.4 13.19 70.29 153.01 0.01 0.52 0.95
0.6 5.28 64.13 146.42 0.06 0.52 0.98
0.8 0.88 61.08 171.92 0.14 0.49 0.86

〈
ΓV

〉
1 NA NA NA 0.19 0.47 0.95

Table 4.1: Lead distances and sampling penalties for mutual information
〈
M
〉
, the probability

of having an infected neighbour
〈
Γ∗
〉

and opinion changes
〈
Θ∗
〉

under the SNHT with respect
to the sampling proportion β. A green-shaded row indicates that the EWS has mean sampling
penalties less than 25% for all sample proportions.

anti-vaccine communities (Fig. 4.13b) as the perceived vaccine risk κ moves through the social
and infection transition points K1

s and K1
p respectively. As was mentioned in Ch. 3, this formation

and dissolution of community structure (and echo chambers, in Fig. 4.14) can be seen both as a
cause and a necessary result of changing aggregate opinion for large |κ|, given that the underlying
network is static; agents are not yet free to ‘move around’ in ways that resist dissolution. The
only resistance in consensus regimes is through the preservation of individual opinion and, if
an agent’s neighbour happens to achieve the same, then they will be counted as a group. The
importance of connectivity measure lies in the region around the transitions K∗, where aggregate
opinion doesn’t necessarily determine group settlement.

Small pockets of hesitant agents persist at most perceived vaccine risk values κ and experience
quick growth as a transition K∗ is approached. The rough symmetry of the trends in |ZH |
(Fig. 4.13c) is to be expected from the intermediate role played by the stance H in the social
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(a) Sizes of pro-vaccine communities.

(b) Sizes of anti-vaccine communities.

(c) Sizes of communities of hesitant agents.

(d) Numbers of different types of opinion communities on the network.

Figure 4.13: Sudden changes in trend of the sizes (|Z∗|) and numbers (#Z∗) of opinion com-
munities with respect to the social norm σ strongly signal upcoming transitions in the model
dynamics. Social norm σ = 0 for panels on the left and σ = 0.25 for panels on the right.

dynamics. Figure 4.13d shows a consistently higher number of hesitant communities (#ZH) than
other types, but the other panels of Fig. 4.13 show that the sizes of these communities are far
smaller. This confirms the low level of persistence of opinion H shown in Fig. 4.6 for all values
of perceived vaccine risk κ.

The trends of the sizes and numbers of echo chambers in Fig. 4.14 are broadly similar to those
of the sizes and numbers of communities in Fig. 4.13, and so they also give clear warnings
approaching the transition. The large sizes of pro-vaccine (|JV |) and anti-vaccine (|JN |) echo
chambers in consensus regimes (|κ| ≈ 1) represent the size of a single giant component made of
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(a) Sizes of pro-vaccine echo chambers.

(b) Sizes of anti-vaccine echo chambers.

(c) Sizes of echo chambers of hesitant agents

(d) Numbers of different types of echo chambers on the network.

Figure 4.14: Changes in the sizes (|J∗|) and numbers (
〈
#J∗

〉
) of echo chambers in the network

warn of the transitions K1
s and K1

p . Social norm σ = 0 for the panels on the left and σ = 0.25
for panels on the right.

interior agents of the large opinion component on the network. Figure 4.14d shows a low number
of all types of echo chambers on the network; this is alternately due to the existence of a single
large opinion community in a consensus regime, or scattered opinion close to a transition. Fig. 3.1
shows how moderately sized communities can possibly host only small echo chambers (if any at
all), as a consequence of the restrictive definition given in Sec. 3.2.

One other observation is the universal absence of echo chambers of hesitant agents (Fig. 4.14c). As
stated in the Methods (Sec. 4.2), hesitant agents do not exert any influence over their contacts
(shown by the absence of a dHn term in (4.2)). Since this neighbour interaction is the major
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(a) The proportions of all join counts on the network.

(b) The proportion of
〈
N,Vs

〉
dissimilar joins.

(c) The proportions of joins involving hesitant agents.

Figure 4.15: Trends in the join count statistics of the network also give clear warnings of ap-
proaching social and infection transitions. Social norm σ = 0 for panels on the left and σ = 0.25
for panels on the right.

driver of grouping in consensus regimes, any collection of hesitant agents is quickly invaded and
extremised without this strong imitation dynamic. Such echo chambers may appear briefly over
the time evolution of the realisation, but do not persist to equilibrium.

Finally, Fig. 4.15 shows the trends of the join count statistics of the social dynamics. Clearly,
they all give clear warnings of the transitions K∗. As is expected, Fig. 4.15a shows that consensus
regimes are dominated by similar joins between agents with the prevalent opinion. The pro/anti
dissimilar join count

〈
N,Vs

〉
(Fig. 4.15b) still strongly signals the upcoming social and infection

transitions via a roughly symmetric steep pre-transition increase with the achievement of a maxi-
mum close to the transition. The proportion of joins involving hesitant agents

〈
H, ∗

〉
(Fig. 4.15c)

also behaves similarly to
〈
N,Vs

〉
. As with the previously mentioned sizes (|ZH |, Fig. 4.13c) and

numbers (#ZH , Fig. 4.13d) of hesitant communities, hesitancy’s role in the social dynamics leads
to the expected rising-falling trend roughly symmetric about the transitions K∗.

Figure 4.16 shows the trends in the lead distances yielded by some of the connectivity-based
EWS under the SNHT, with respect to the social norm σ. The strongest performers of the mean
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(a) Lead distances of the mean sizes of opinion communities.

(b) Lead distances of the mean sizes of opinion echo chambers.

(c) Lead distances yielded by the numbers of communities and chambers on the network.

(d) Trends in the lead distances of the various join count statistics. Bar charts on the right give the
percentage of social norm σ values for which the EWS gave the largest lead distance of all EWS.

Figure 4.16: Trends of the lead distances of connectivity-based EWS under the SNHT with respect
to the social norm σ. Bar charts on the right of the panels show the proportion of σ values for
which each test gave the largest lead distance of all EWS tested. Quite a few indicators perform
poorly, with near-zero lead distances.
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community sizes |Z∗| are those of the anti-vaccine (|ZN |) and pro-vaccine (|ZV |) communities in
Fig. 4.16a, with LLT 10% and 24% respectively. EWS related to chambers of hesitant agents
(|JH | and

〈
#JH

〉
) do not perform well, while the

〈
H,Vs

〉
dissimilar join count performs the best

of all the join counts (Fig. 4.16d), with LLT 24%. The poorest-performing EWS were mostly
connected to anti-vaccine sentiment; the sizes and number of anti-vaccine echo chambers |JN | and〈
#JN

〉
, and the anti-vaccine similar join count

〈
N,N

〉
all yielded consistently low lead distances

and LLT under the SNHT.

Changing the size β ·N of the random sample slightly alters the performance of the EWS here.
For instance, the mean sizes of the various opinion communities

〈
|Z∗|

〉
all have LLT 10% when

β < 1 (Figs. C.3a and C.3b). Though the total range of lead distances was not affected (0 <
Leadσ

[
|Z∗| β

]
< 1 for all β),

〈
|ZH |

〉
and

〈
|ZN |

〉
saw greatly lowered lead distances when β = 0.6

(Fig. C.3a) and β = 0.8 (Fig. C.3b); for example, the mean lead distance Leadσ
[
|ZN |

]
falls by

72% when only 60% of the network is sampled, and average lead distance Leadσ
[
|ZH |

]
drops

30% when 80 of the network is used (Tab. 4.2).

Penalty (%) Lead Distance (κ)
EWS β

Minimum Mean Maximum Minimum Mean Maximum

0.4 4.28 21.91 47.12 0.45 0.71 0.95
0.6 0 22.93 55.69 0.29 0.6 0.95
0.8 3.71 35.06 81.68 0.14 0.53 0.89

〈
|ZH |

〉
1 NA NA NA 0.51 0.73 0.95

0.4 0 42.08 114.35 0 0.03 0.09
0.6 0 19.31 72.77 0.01 0.06 0.12
0.8 6.91 63.54 97.04 -0.05 0.02 0.12

|JN |

1 NA NA NA 0.01 0.06 0.12

0.4 0 35.31 124.3 0.14 0.57 0.95
0.6 0 57.94 138.61 0.04 0.51 0.98
0.8 6.23 57.32 145.57 0 0.54 0.92

〈
|ZN |

〉
1 NA NA NA 0.04 0.57 0.98

0.4 0 20.22 65.87 0.46 0.74 0.95
0.6 0 27.77 116.62 0.1 0.66 0.95
0.8 0.59 28.29 111.57 0.14 0.64 0.92

〈
|JV |

〉
1 NA NA NA 0.19 0.7 0.92

0.4 0 13.47 52.2 0.45 0.74 0.92
0.6 3.78 13.33 56.74 0.48 0.79 0.92
0.8 0.5 10.9 41.1 0.55 0.77 0.92

〈
|ZV |

〉
1 NA NA NA 0.67 0.83 0.98

Table 4.2: Lead distances and sampling penalties of the mean sizes of opinion communities
〈
|Z∗|

〉
and echo chambers

〈
|J∗|
〉

for different sampling proportions β, using the SNHT. A green-shaded
row indicates that the EWS has mean sampling penalties less than 25% for all sample proportions.

The lead distance trends of the mean sizes of echo chambers Leadσ
[
|J∗|β

]
were not greatly affected

as β was changed, except that the lead distances Leadσ
[
|JV |0.8

]
saw greater fluctuation for larger
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values of the social norm σ (in Fig. C.3d) than with other sampling proportions β (Figs. 4.16b
and C.3c). All

〈
|JV |

〉
are heavily affected by sampling, as seen in Tab. 4.2; for instance, the

average lead distance given by the average size of pro-vaccine communities falls by 27% when
only 60% of the network is sampled (i.e., Pen

[∣∣J0.6
V

∣∣] = 24.5). Leadσ
[
|JN |0.8

]
is undefined for

σ < 1.25 (Fig. C.3d), unlike its low value with other values of β (Figs. C.3c).

Penalty (%) Lead Distance (κ)
EWS β

Minimum Mean Maximum Minimum Mean Maximum

0.60 0.00 70.33 159.86 0.04 0.49 0.98
0.80 0.94 60.56 175.72 -0.00 0.47 0.92

〈
#ZN

〉
1.00 0.04 0.60 0.98

0.60 0.00 114.02 299.30 -0.01 0.02 0.06
0.80 -19.76 -229.29 -652.12 -0.08 -0.02 0.04

〈
#ZV

〉
1.00 -0.01 0.03 0.07

0.60 0.00 12.37 58.68 0.42 0.75 0.95
0.80 0.61 15.25 46.54 0.49 0.73 0.86

〈
#ZH

〉
1.00 0.64 0.81 0.95

0.60 0.00 22.61 77.30 0.01 0.06 0.12
0.80 46.07 241.03 330.88 -0.05 0.02 0.06

〈
#JN

〉
1.00 0.01 0.06 0.12

0.60 5.24 38.41 100.69 0.06 0.60 0.95
0.80 1.01 54.04 144.90 0.07 0.44 0.92

〈
#JV

〉
1.00 0.19 0.51 0.82

Table 4.3: Lead distances and sampling penalties of the numbers of opinion communities
〈
#Z∗

〉
and echo chambers

〈
#J∗

〉
for different sampling proportions β, using the SNHT. A green-shaded

row indicates that the EWS has mean sampling penalties less than 25% for all sample proportions.

The lead distances of the numbers of opinion communities and echo chambers maintain their wide
range for all values of β (Figs. C.3e and C.3f), with the number of communities of hesitant agents
#ZH maintaining high median lead distance for both sampling proportions β. Of this group, the
number of hesitant communities sustained the lowest sampling penalties, as seen in Tab. 4.3; the
smallest dip in performance occurred for the number of H communities

(
Pen

[
#J0.8

H

]
= 15.25%

)
,

occurring when 80% of the network was sampled.

The lead distances of the join counts show less variation for smaller values of the social norm σ
when the network is sampled (Fig. C.3g and C.3h) than for the ‘true’ values (Fig. 4.16d). As
expected, varying β has changed the respective LLT of the EWS. For each sampling proportion,
the hesitant-pro-vaccine join count

〈
H,Vs

〉
is the best performing join count, matched by

〈
H,N

〉
and

〈
N,Vs

〉
on the sampled network (Fig. C.3g and C.3h). The two join counts least affected by

sampling are
〈
H,Vs

〉
and

〈
Vs, Vs

〉
, both losing less than 20% of their average lead distances when
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Penalty (%) Lead Distance (κ)
EWS β

Minimum Mean Maximum Minimum Mean Maximum

0.4 0 34.38 102.4 0.04 0.59 0.92
0.6 4.27 38.52 96.42 0.06 0.48 0.86
0.8 3.7 29.99 81.35 0.14 0.6 0.92

〈
H,H

〉
1 NA NA NA 0.51 0.73 0.95

0.4 35.96 228.31 338.01 0.73 0.86 0.95
0.6 11.99 207.19 335.61 0.57 0.8 0.95
0.8 10.39 199.92 313.23 0.61 0.77 0.89

〈
H,N

〉
1 NA NA NA 0.04 0.26 0.79

0.4 0 9.01 34.04 0.73 0.86 0.95
0.6 0 13.33 41.61 0.57 0.8 0.95
0.8 3.28 10.59 41.1 0.61 0.77 0.89

〈
H,Vs

〉
1 NA NA NA 0.67 0.83 0.98

0.4 0 40.59 114.35 0 0.04 0.09
0.6 0 21.29 72.77 0.01 0.06 0.12
0.8 6.91 63.54 97.04 -0.05 0.02 0.12

〈
N,N

〉
1 NA NA NA 0.01 0.06 0.12

0.4 5.24 47.65 147.9 0.73 0.86 0.95
0.6 0 41.66 142.66 0.57 0.8 0.95
0.8 4.55 38.39 122.37 0.61 0.77 0.89

〈
N,Vs

〉
1 NA NA NA 0.04 0.6 0.98

0.4 0 19.99 82.58 0.06 0.68 0.89
0.6 0 11.94 50.17 0.42 0.78 0.98
0.8 3.35 18.88 61.23 0.42 0.68 0.83

〈
Vs, Vs

〉
1 NA NA NA 0.61 0.81 0.95

Table 4.4: Lead distances and sampling penalties of the join count statistics
〈
∗, ∗
〉

for different
sampling proportions β, using the SNHT. A green-shaded row indicates that the EWS has mean
sampling penalties less than 25% for all sample proportions.

the network was sampled; Pen
[〈
H,Vs

〉β]
< 34% and Pen

[〈
Vs, Vs

〉β]
< 20% in Tab. 4.4.

4.3.3 Clustering and distance metrics predict the transitions K∗

The final three EWS investigated here are the number of triads formed
〈
∆∗
〉
, as well as the

global clustering coefficients
〈
C∗
〉

and the graph diameters
〈
Ω∗
〉

of each opinion network (the
sub-networks formed by agents holding a specific opinion). The κ-series of each of these EWS
are shown in Fig. 4.17b; the panels of the diagram show that some of these EWS are undefined
for extreme values of κ. This happens in consensus regimes, where are are simply not enough
agents for successful calculation of the statistic. Some of the triad censuses

〈
∆∗
〉

(Fig. 4.17b) are
good indicators of the transitions K∗, with clearly visible pre-transition trends for both values of
the social norm σ = 0 (left) and σ = 0.25 (right).
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(a) Clustering coefficient of the various opinion networks.

(b) Number of opinion triads on the network.

(c) Diameters of the various opinion networks.

Figure 4.17: Values of the global clustering coefficient
〈
C∗
〉
, triad census

〈
∆∗
〉

and opinion network
diameter

〈
Ω∗
〉

with respect to the perceived vaccine risk κ. Social norm σ = 0 for the panels on
the left and σ = 0.25 for the panels on the right.

As was mentioned before, the opinion network diameters are sometimes undefined; for example,
the diameter of the N -network

〈
ΩN

〉
is undefined for smaller extreme perceived vaccine risks

of κ ≈ −1 (Fig. 4.17c). This is because κ = −1 is the pro-vaccine consensus regime, where
the small (if nonzero) number of scattered anti-vaccine agents forms a(n) (almost) maximally
disconnected network with trivial diameter. The diameter of the H-network is always defined
due to the aforementioned equilibrium persistence of hesitant agents for all values of the social
norm σ and the grouping also seen in Fig. 4.13c. There is also a corresponding pre-transition rise
in the diameter of the Hnetwork as more agents experience hesitance on their way to the vaccine
opinion achieving dominance.

Predictably, the increase of the social norm in Fig. 4.17c from σ = 0 (left) to σ = 0.25 (right)
extends the interval of definition of

〈
ΩV

〉
and

〈
ΩN

〉
, suggesting that increased social pressure

to maintain current opinion prolongs the survival of unpopular opinion (stronger reinforcement
from like-minded contacts allows agents to ‘dig in’).

Figure 4.17a shows the trends of the κ-series of the clustering coefficients of the opinion networks.
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For both values of the social norm (σ = 0 for the left panel, σ = 0.25 for the right panel), the
clustering coefficient of the H-network rises and falls symmetrically pre- and post-transition,
while the networks supporting the prevalent opinion in consensus regimes predictably have large
coefficients. For instance, the clustering coefficient of the Vs-network

〈
CV
〉

is high during the
pro-vaccine consensus regime κ ≈ −1 and decreases post-transition. and predictably

〈
CN
〉

shows
an opposing pattern.

(a) Lead distances given by the clustering coefficients of the various opinion networks.

(b) Lead distances given by the numbers of opinion triads.

(c) Lead distances of the diameters of the various opinion networks.

Figure 4.18: Trends in the lead distances given by other connectivity-based EWS investigated
using the SNHT.

Surprisingly, these EWS perform relatively badly under the SNHT; an example is the cluster-
ing coefficients

〈
C∗
〉

(Fig. 4.18). The only EWS that give the largest lead distance for any σ
values both measure hesitant groups:

〈
ΩH

〉
(the diameter of the H network, Fig. 4.18c) and〈

CH
〉

(the clustering coefficient of the H network, Fig. 4.18a). Lead distances of the number
of opinion triads SNHTσ{

〈
∆∗
〉
} vary wildly (Fig. 4.18b), with the number of anti-vaccine triads〈

∆N

〉
giving consistently low lead distances. The sub-network of hesitant agents gives the highest

lead distances SNHTσ{
〈
CβH
〉
} of all clustering coefficients for all sampling proportions β, with

LLT 5% with β < 1 (Figs. C.4a and C.4b). For all proportions β, the clustering coefficient of the
anti-vaccine network is the least effective EWS.
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Otherwise, the trends in the lead distances of the triad censuses all show high variability with
respect to the social norm σ (Figs. C.4c and C.4c). Other than changes to the LLT (resulting from
the achievement of a single maximum), changes to the sample proportion β also don’t greatly

affect the trends of network diameter lead distances Leadσ
[〈

Ω
〉β
∗
]

(Figs. C.4e and C.4e). The
EWS here least affected by network sampling are the mean number of anti-vaccine triads (closed
triangles) on the network (

〈
∆N

〉
) and the clustering coefficient of the anti-vaccine subnetwork

(
〈
CN
〉
); both EWS show the same lead distances and sampling penalties in Tab 4.5.

4.3.4 Mutual information, crowned yet again

In sum, we find that mutual information
〈
M
〉

and the number of changes of opinion
〈
Θ∗
〉

(Tab.4.1), the mean sizes of pro-vaccine communities
〈
|ZV |

〉
(Tab. 4.2), the number of com-

munities of hesitant agents
〈
#ZH

〉
(Tab. 4.3) and the number of interactions among pro-vaccine

agents
〈
Vs, Vs

〉
and between hesitant and pro-vaccine agents

〈
H,Vs

〉
(Tab. 4.4) give similar lead

distances despite sampling, unlike other EWS tested. A breakdown of the performance of each
EWS with respect to the social norm σ is shown in Fig. 4.19, where the goodness of the lead
distance is represented by the colour of the corresponding tile. Green tiles show the location of a
good warning, which occurs when the EWS gives the largest lead distance of all the EWS; red tiles
show when the EWS gave the minimum positive lead distance of all EWS. Black tiles represent
failures (negative lead distances), white tiles represent missing or undefined values, yellow tiles
indicate social norm σ values for which all EWS gave the same lead distance and grey tiles signify
intermediate lead distances (defined values that are neither maximum nor minimum).

Side-by-side bar charts in Fig. 4.20 summarise the grid diagram (Fig. 4.19) by directly showing
the ratios of ‘good’ and ‘bad’ warnings from each EWS. Specifically, the length of green bars on
the right of Fig. 4.20 show the proportion of social norms σ for which the EWS gave good warnings
(the greatest lead distance of all EWS for that σ value), and so corresponds to the proportion of
green tiles in the EWS’ row in the grid (Fig. 4.19). Similarly, the length of the red bars on the
right of Fig. 4.20 corresponds to the proportion of bad warnings, which are minimum positive
values (red grid tiles), failures (negative lead distances, black grid tiles) and undefined values
(white grid tiles). Figure 4.20 also reveals the mutual information statistic

〈
M
〉

to be the best
performer, with no bad warnings and 33% of its warnings being good (i.e., the best of all EWS).
The next best EWS were the (minimum, mean and maximum) sizes of pro-vaccine communities
|ZV |; however, the number of pro-vaccine communities #ZV and others give bad warnings over
all σ tested, with negative lead distances at σ = 0.25 and undefined everywhere else (Fig. 4.19).
When sampling 60% of the network (β = 60%), the goodness of the mutual information EWS
(
〈
M
〉
) is matched by the number of communities of hesitant agents ZH (Fig. C.5b).

Other successful easily-computable EWS are the join counts with pro-vaccine agents: Fig. 4.19
shows that

〈
N,Vs

〉
(LLT 14% good),

〈
Vs, Vs

〉
(LLT 14%) and

〈
H,Vs

〉
(LLT 24%) all perform
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Figure 4.19: Grid comparing the performance of each EWS at each value of the social norm σ
under the SNHT. Green tiles represent maximum lead distances (of all EWS), grey tiles rep-
resent intermediate lead distances, red tiles represent minimum positive lead distances (of all
EWS), white tiles represent missing/undefined values, black tiles represent failures (negative lead
distances) and yellow tiles indicate that all EWS gave the same lead distance.
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Figure 4.20: Side-by-side bar charts comparing the relative performance of each EWS under
the SNHT. Green bars give the proportion of σ values for which the EWS gave the maximum
lead distance of all EWS and the red bars give the proportion for which the lead distances were
minima, failures or undefined.
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well, with no bad warnings given under the SNHT. With a sampling proportion of 80%, the join
counts

〈
N,Vs

〉
,
〈
H,Vs

〉
and

〈
H,N

〉
take the lead, all with the same LLT of 24%, with

〈
Vs, Vs

〉
as

fourth-best (with an LLT of 19%). This shows that the reliability of the join counts could be
expected. All the EWS tracking echo chambers of hesitant agents JH yielded all bad warnings
for all σ values; this is not surprising given the consistently low number of hesitant agents on
the network. Anti-vaccine echo chambers JN also offered no good warnings under the SNHT;
both these results hold for all sample proportions β (Figs. C.5 and C.6). The other three EWS
with undefined lead distances for all social norms are all related to the anti-vaccine community;
the number of opinion changes

〈
ΘN

〉
, the opinion network diameter

〈
ΩN

〉
and the probability of

having an infected neighbour
〈
ΓN
〉

appear as completely white rows in Fig. 4.19. This holds also
when the EWS are gathered from random samples of the network, as can be seen in Figs. C.5
and C.6.

4.4 Discussion

In this study, we took early warning signals (EWS) shown to be effective in previous studies of
coupled behaviour-infection models and tested their robustness in three ways. By changing the
structure of the interaction network, introducing vaccine hesitance to the social dynamics and
retrieving the EWS from incomplete samples of the network, we found that most of the EWS
used retained their efficacy even in the face of these three challenges. Specifically, the mutual
information and join count statistics were overall the best performing EWS, as tested using the
standard normal homogeneity test (SNHT).

The introduction of hesitance to the model first required a slightly different method of estimating
the location of the social transition. With this, and the change to a small world network, we
notice that the two transitions no longer occur in predictable order; infection outbreak actually
precedes vaccination crisis on a small area of the parameter space. Also, the distance between
the two transitions does not decrease uniformly as the social norm strengthens, as with previous
studies. Instead, that gap varies over the parameter space. In Chs. 2 and 3, we interpreted
this intertransition distance as allowable reaction time; it seems now that this metaphor is either
insufficient, or perhaps that the behaviour of this new model is such that any warning should result
in immediate intervention. We realise that such a bleak interpretation as the latter may inspire
doubts of the veracity of the model, but the preliminary results shown during parameterisation
confirm the correctness of the dynamics and matched other models studied. This also resulted in
the re-specification of the lead distance as the distance between the warning given by the EWS
and the first transition seen on the network, since we think the EWS are best tested against the
worse-case scenario.

This study looked at the re-use of mutual information, join counts, communities, probability
of illness, and connectivity metrics as EWS; other tools contraindicated, found ineffective or
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redundant in previous studies were excluded to reduce the time taken for simulation and analysis.
Parameters chosen during model calibration provided initial run results similar to previous models
used, which was considered favourable to model comparison.

Non-connectivity-based EWS such as the mutual information statistic remained effective, showing
significant change in trend before the transition and high lead distances during change point
testing. There are also many more opinion changes occurring around the transitions in the model
dynamics (intermediate values of perceived vaccine risk), which is testament to an active social
norm (despite its strength) relative to the perceived vaccine risk. In the anti-vaccine consensus
regime, the low number of hesitant individuals were not very likely to have had an infected
neighbour; this is intuitive, since the precariousness of the hesitant opinion in this model suggests
that an infected neighbour would weigh heavily on the decision to adopt pro-vaccine stance,
though this measure ultimately proved not as effective an EWS as the others.

The propagation of opinion communities and echo chambers was also shown to be a strong
EWS, in some cases giving high lead distances. As was expected, the shift from pro-vaccine
to anti-vaccine consensus saw the breakup and disappearance of pro-vaccine communities and
echo chambers, and the establishment and expansion of anti-vaccine groups. Pockets of hesitance
appeared around transition, to be quickly eroded in either consensus regime due to the social
norm to change opinion. These pockets however were not of sufficient size to feature a significant
number of echo chambers of hesitant agents, and indeed the model dynamics discourage this. Join
count statistics again showed themselves in a positive light, with clear changes in trend around
transitions in the dynamics. The number of joins involving hesitant agents spike around the
transitions; due to the static nature of the network, this is possibly simply due to the heightened
presence of hesitant agents.

Shown later, the degree of clustering and the triad census present in the corresponding opinion
communities follow largely similar patters of increase and decrease; this is intuitive, since the
changes in connectivity quantified by these various metrics are uniform. The one exception is the
measurements of the diameters of the pro-vaccine and anti-vaccine groups; the abruptness of the
shrinking of these groups appears to depend on the strength of the social norm.

In addition, we established that the EWS are generally resilient to partial information; that is, ob-
servation of portions of the network. Lead distances of many of the EWS remain acceptable when
even a randomly chosen proportion as small as 60% was gathered, though there are unavoidably
performance penalties for omitting almost half the data necessary to establish the initial figures.
In sum, we believe that the results of this study both complement and contribute to past and
contemporary literature surrounding the behaviour of coupled behaviour-infection models and
the use of EWS. Particularly poignant is our establishment of the resilience and reliability of
these tools to changes in context and available data, since this instills faith in results and various
types of deployment of the tools, as well as potentially allaying any concerns dealing with compu-
tational expense or data sparseness, especially concerning a tool as data- and resource-intensive
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as mutual information.

We are entirely cognisant of the numerous lingering limitations to our coupled model. These
intentional limitations were deemed appropriate to our desire of generating preliminary findings,
triaging the pool of EWS candidates, and increasing the complexity of the model only incre-
mentally (a common concern and widely regarded best-practice in our field of computational
epidemiology). Some of these limitations are the staticity of the network, the constant rate of
neighbour communication and our investigation of the model at equilibrium (rather than focusing
on time evolution), all of which are shown to influence model dynamics and the employment of
EWS. Despite these, our results constitute a valid contribution to the study of EWS and out-
breaks of infectious disease, especially given the recent recurrence of many vaccine-preventable
illnesses and the current dire need of coherent frameworks providing warning of vaccine crisis and
epidemic events.
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Penalty (%) Lead Distance (κ)
EWS β

Minimum Mean Maximum Minimum Mean Maximum

〈
∆H

〉 0.4 3.34 88.85 210.67 0 0.5 0.98
0.6 0 78.98 188.93 0.04 0.4 0.98
0.8 2.23 77.55 179.46 0 0.29 0.92
1 NA NA NA 0.04 0.37 0.76

〈
∆N

〉 0.4 0 40.59 114.35 0 0.04 0.09
0.6 0 21.29 72.77 0.01 0.06 0.12
0.8 6.91 63.54 97.04 -0.05 0.02 0.12
1 NA NA NA 0.01 0.06 0.12

〈
∆V

〉 0.4 0 35.8 114.15 0.06 0.73 0.98
0.6 5.14 41.53 98.73 0.06 0.53 0.86
0.8 0.68 26.8 128.89 0.07 0.48 0.8
1 NA NA NA 0.19 0.61 0.92

〈
∆Σ

〉 0.4 0 39.16 143.35 0.06 0.59 0.92
0.6 5.23 40.91 131.84 0.1 0.5 0.92
0.8 0.7 29.2 131.14 0.14 0.53 0.8
1 NA NA NA 0.19 0.6 0.92

〈
ΩH

〉 0.4 2.29 67.56 168.32 0.01 0.34 0.82
0.6 17.18 70.01 138.55 0.04 0.38 0.82
0.8 4.96 54.43 154.96 0.04 0.42 0.92
1 NA NA NA 0.1 0.55 0.95

〈
ΩV

〉 0.4 2.73 127.21 421.08 0 0.19 0.95
0.6 0 96.22 317.18 -0.01 0.2 0.92
0.8 11.85 132.29 438.41 -0.05 0.16 0.64
1 NA NA NA -0.01 0.23 0.98

〈
CΣ

〉 0.4 18.17 95.41 256.14 0.04 0.41 0.92
0.6 0 60.38 174.39 0.04 0.28 0.86
0.8 10.29 74.13 221.01 0.06 0.3 0.89
1 NA NA NA 0.04 0.34 0.82

〈
CH

〉 0.4 0 89.56 186.84 0.01 0.49 0.89
0.6 7.72 79.41 179.12 0.01 0.4 0.95
0.8 9.78 90.64 232.13 -0.05 0.29 0.92
1 NA NA NA 0.04 0.4 0.98

〈
CN

〉 0.4 0 40.59 114.35 0 0.04 0.09
0.6 0 21.29 72.77 0.01 0.06 0.12
0.8 6.91 63.54 97.04 -0.05 0.02 0.12
1 NA NA NA 0.01 0.06 0.12

〈
CV

〉 0.4 3.45 137.99 486.99 0 0.19 0.92
0.6 0 93.42 486.99 -0.01 0.13 0.92
0.8 9.21 124.89 437.48 -0.05 0.14 0.89
1 NA NA NA 0.01 0.18 0.89

Table 4.5: Lead distances and sampling penalties of the opinion network diameter
〈
Ω∗
〉
, triad

census
〈
∆∗
〉

and global clustering coefficient
〈
C∗
〉

for different sampling proportions β using the
SNHT. A green-shaded row indicates that the EWS has mean sampling penalties less than 25%
for all sample proportions.
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Chapter 5

Model-based projections for
COVID-19 outbreak size and class
closures in Ontario

Abstract

The disruption of professional childcare has emerged as a substantial collateral consequence of the
public health precautions related to the current COVID-19 pandemic. Increasingly, it is becoming
clear that childcare centres must be (at least partially) operational in order to further mitigate
the socially debilitating challenges related to pandemic induced closures. However, proposals
to safely reopen childcare while limiting COVID-19 outbreaks remain understudied, and there
is a pressing need for evidence-based scrutiny of the plans that are being proposed. Thus, in
order to support safe childcare reopening procedures, the present study employed an agent-
based modelling approach to generate predictions surrounding risk of SARS-CoV-2 transmission
and student-days lost within a hypothetical childcare centre. Based on existing proposals for
childcare centre and school reopening in Ontario, Canada, six distinct room configurations were
evaluated that varied in terms of child-to-educator ratio (15:2, 8:2, 7:3), and family clustering
(siblings together vs. random assignment). We also evaluated a primary school setting (30:1,
15:1 and 8:1) including cohorts that alternate weekly. High versus low transmission rates were
also contrasted, keeping with the putative benefit of infection control measures within centres,
yielding many distinct scenarios. In the childcare scenarios, grouping siblings significantly reduced

Material in this chapter is based on the publication:
Model-based projections for COVID-19 outbreak size and student-days lost to closure in Ontario childcare
centres and primary schools. Brendon Phillips, Dillon Browne, Madhur Anand, Chris Bauch. medRxiv
2020.08.07.20170407. https://doi.org/10.1101/2020.08.07.20170407.
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outbreak size and student-days lost. We identify an intensification cascade specific to classroom
outbreaks of respiratory viruses with presymptomatic infection. In both childcare and primary
school settings, each doubling of class size from 8 to 15 to 30 more than doubled the outbreak size
and student-days lost, by factors of 2-5, respectively 2.5-4.5, depending on the scenario. Across
scenarios, having less students per class and grouping siblings together almost always results in
significantly lower peaks for number of active infected and infectious cases in the institution.
Importantly, the total student-days lost to classroom closure were between 5 and 8 times higher
in the 15:2 ratios than for 8:2 or 7:3. These results suggest that current proposals for childcare
reopening could be enhanced for safety by considering lower ratios and sibling groupings.

5.1 Introduction

As nations around the world grapple with the psychosocial, civic, and economic ramifications
of social distancing guidelines, the critical need for widely-available Early Childhood Education
(or colloquially, “childcare”) services have, once again, reached the top of policy agendas [122,
459]. Whether arguments are centred on human capital (i.e., “children benefit from high-quality,
licensed educational environments, and have the right to access such care”) or the economy
(i.e., “parents need childcare in order to work, and the economy needs workers to thrive”), the
conclusion is largely the same: childcare centres are re-opening, at least in some capacity, and this
is taking place before a vaccine or herd immunity can mitigate potential spread of SARS-CoV-2
(the virus that causes COVID-19). Outbreaks of COVID-19 in emergency childcare centres and
schools have already been observed [515], causing great concern as governments struggle to balance
“flattening the curve” and preventing second waves with other pandemic-related sequelae, such
as the mental well-being of children and families, access to education and economic disruption.

Governments and childcare providers are tirelessly planning the operations of centres, with great
efforts made to follow public health guidelines for reducing SARS-CoV-2 contagion [359]. How-
ever, these guidelines, which will result in significantly altered operational configurations of child-
care centres and substantial cost increases, have yet to be rigorously examined. Moreover, discus-
sions of childcare are presently eclipsed by general discussion of “school” reopening [114]. That
being said, for many parents, the viability of the school day emerges from before- and after-school
programming that ensures adequate coverage throughout parents’ work schedules. Yet, reopen-
ing plans often fail to mention the critical interplay between school and childcare, even though
many childcare centres operate within local schools [498]. Consequently, a model that compre-
hensively examines the multifaceted considerations surrounding childcare operations may help
to inform policy and planning. As such, the purpose of the present investigation is to develop
an agent-based model (ABM) that explores and elucidates the multiple interacting factors that
could impact potential SARS-CoV-2 spread in school-based childcare centres.

In Ontario, Canada (the authors’ jurisdiction), childcare centres were permitted to reopen on
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June 12, 2020, provided centres limit groupings (e.g., classrooms) to a maximum of 10 individ-
uals (educators and children, inclusive) [406]. Additionally, all centres had to come up with
a plan for daily screening of incoming persons, thorough cleaning of rooms before and during
operations, removal of toys that pose risk of spreading germs, allowing only essential visitors,
physical distancing at pick-up and drop-off, and a contingency plan for responding should anyone
be exposed to the virus (e.g., closing a classroom or centre for a period of time). Further school-
specific recommendations have been recently outlined by The Toronto Hospital for Sick Children
[498], which include specific guidelines for screening, hand hygiene, physical distancing, cleaning,
ventilation, and masking. While this influential report has become the guiding framework for
school reopening in Ontario, there remains no discussion of childcare operations in relation to
SARS-CoV-2 spread. Guidelines for primary schools call for either full re-opening, with up to 30
students per classroom attending every day, or with cohorts of 15 students attending in alternate
weeks.

Simulation models of infectious disease spread have been widely applied during the COVID-19
pandemic, as in previous pandemics [424, 45]. Modelling is used to determine how quickly the
pathogen can spread [428], how easily it may be contained [204], and the relative effectiveness of
different containment strategies [327, 190]. Sensitivity analysis is crucial to assess whether model
predictions are robust to uncertainties in data [112], which is particularly important during a pan-
demic caused by a novel emerging pathogen like SARS-CoV-2. ABMs are particularly well-suited
to situations where a highly granular description of the population is desirable and where random
effects (stochasticity) are important. Such models have been previously applied in both pandemic
and non-pandemic situations [306, 299, 555], and such is our choice of modelling methodology in
the present work focusing on SARS-CoV-2 transmission in schools and households. Our objective
was to use our ABM to project the impact of student-to-educator (or in the case of childcare
centres, child-to-educator) ratios and sibling grouping strategies on outbreaks of COVID-19 and
student-days lost to classroom closure in a hypothetical childcare centre and primary school.

Below, the modelling approach, results, and interpretation of the present modelling exercise are
described. In Sec. 5.2.2, the rationale and parametrisation of the model are specified in detail.
In Sec. 5.3, the performance of the model under different assumptions is showcased. We start
with analyzing the childcare centre setting and end with the primary school setting. Lastly, the
discussion will provide a review and interpretation of this study, including any limitations and
future suggestions for research.
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5.2 The model

5.2.1 Overview

A detailed description of the model structure, assumptions and Parametrisation appears in
Sec. 5.2.2. We developed an ABM of SARS-CoV-2 transmission in a population structured
into households and classrooms, as might represent a childcare setting or a small primary school
(Fig. 5.1). Individuals were categorised into either child or adult, and contacts between these
groups were parametersed based on contact matrices estimated for the Canadian setting.

Figure 5.1: Schematic representation of the model population. Blue squares with ‘A’ represent
adults, green squares with ‘T’ represent educators, and yellow circles represent children. Grey
rectangles represent houses and the school is represented at the bottom of the figure. Numbers
exemplify possible assignments of children in households to classrooms.

Household sizes were determined from Canadian demographic data. Classroom sizes and student-
educator ratios were determined according to the scenario being studied. For the childcare setting
we analysed student-educator ratios of 8:2 and 7:3, giving a maximum class size of 10 representa-
tive of the smaller enrolment at schools. We also analysed a student-educator ratio 15:2, giving a
total class size of 17. Along with class size, we also consider class composition. Individuals may
spread the infection to their household members each day, so effective contacts and interaction in
the classroom may result in qualitatively different spreading patterns. As such, children in this
model can be assigned to classrooms either randomly (RA) or by grouping siblings (or otherwise
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cohabiting students) together (ST) in an attempt to reduce SARS-CoV-2 transmission. For the
primary school setting, we considered student-educator ratios of 8:1, 15:1, and 30:1, all with ran-
dom allocation. For the 8:1 and 15:1 ratios we also considered scenarios where cohorts of 8 or 15
students attending the same classroom but in alternating weeks. These scenarios were labelled
8(A):1 and 15(A):1. In the primary school setting, we considered the higher student-educator
ratio 30:1 as an example of larger class size. Some plans considered in reopening Ontario educa-
tional institutions divides this larger class size into two alternating cohorts of 15 students each
with a single shared educator; we call this scenario 15(A):1. Rotation occurs each week, so that
one cohort engages with online material while the other receives face-to-face instruction for 5
days, after which the cohorts exchange roles. The student-educator ratios 8:1 and 8(A):1 were
also included for comparison to smaller class sizes. For primary schools we considered only the
RA allocation.

S E P

I

A

R
λ∗ δ

σ · η

σ · (1− η) γA

γI

Figure 5.2: Diagram showing the SEPAIR infection progression for each agent in the simulation
(see Tab. 5.2 for definitions of parameters).

SARS-CoV-2 could be transmitted in households, classrooms or in common areas of the school,
all of which were treated as homogeneously mixing on account of evidence for aerosolised routes of
transmission [482]. Individuals were also subject to a constant background risk of infection from
other sources, such as shopping centres. Figure 5.2 shows the progression of the illness experienced
by each individual in the model. In each day, susceptible (S) individuals exposed to the disease
via community spread or interaction with infectious individuals (those with disease statuses P , A
and I) become exposed (E), while previously exposed agents become presymptomatic (P ) with
probability δ. Presymptomatic agents develop an infection in each day with probability δ, where
they can either become symptomatically infected (I) with probability η or asymptomatically
infected (A) with probability 1 − η. If a symptomatic individual appears in a classroom, that
classroom is closed for 14 days (in the case of alternating cohorts for primary schools, we assumed
both cohorts are closed). Other classrooms in the same school may remain open. Asymptomatic
students and educators return at the end of this period while symptomatic students and educators
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remain at home and symptomatic educators are replaced by substitutes.

Children are less affected by the SARS-CoV-2 virus than adults, and account for a smaller pro-
portion of COVID-19 cases [340]. However, the role of children in SARS-CoV-2 transmission
is still debated, and existing epidemiological evidence is limited by lack of empirical studies in
school settings, which have been closed for much of 2020. Other studies show that children shed
a similar amount of virus to adults [275]. To account for this ambiguity, we used contact matrices
drawn from populations under ‘business as usual’ circumstances as a proxy of what contact rates
would look like under a full reopening of schools and workplaces [458], but but we considered both
a high transmission rate scenario and a low transmission rate scenario. The low transmission rate
scenario represented either reduced transmission rates in children, and/or highly effective infec-
tion control through consistent use of high-effectiveness masks, social distancing, and disinfection
protocols (see Sec. 5.2.2 for details). In total the permutations on student-educator ratios, trans-
mission rate assumptions, siblings versus non-sibling groupings, and alternating cohorts yielded
22 scenarios (Table 5.1).

A detailed description of the model structure, assumptions and parametrisation appears in
Sec. 5.2.2. We developed an ABM of SARS-CoV-2 transmission in a population structured
by households and classrooms, as might represent a childcare setting or a small primary school
(Fig. 5.1). Individuals were categorically aged as either child or adult, and contacts between
these groups were parametrised based on contact matrices estimated for the Canadian setting.
Household sizes were determined from Canadian demographic data. Classroom sizes and student-
educator ratios were determined according to the scenario being studied. For the childcare setting
we analysed student-educator ratios of 8:2 and 7:3, giving a maximum class size of 10 representa-
tive of the smaller enrolment at schools. We also analysed a student-educator ratio 15:2, giving a
total class size of 17. Along with class size, we also consider class composition. Individuals may
spread the infection to their household members each day, so effective contacts and interaction in
the classroom may result in qualitatively different spreading patterns. As such, children in this
model can be assigned to classrooms either randomly (RA) or by grouping siblings (or otherwise
cohabiting students) together (ST) in an attempt to reduce SARS-CoV-2 transmission. For the
primary school setting, we considered student-educator ratios of 8:1, 15:1, and 30:1, all with the
random allocation. For the 8:1 and 15:1 ratios we also considered scenarios where cohorts of 8 or
15 students attending the same classroom but in alternating weeks. These scenarios were labelled
8(A):1 and 15(A):1. In the primary school setting, we considered the higher student-educator
ratio 30:1 as an example of larger class size. Some plans considered in reopening Ontario educa-
tional institutions divides this larger class size into two alternating cohorts of 15 students each
with a single shared educator; we call this scenario 15(A):1. Rotation occurs each week, so that
one cohort engages with online material while the other receives face-to-face instruction for 5
days, after which the cohorts exchange roles. The student-educator ratios 8:1 and 8(A):1 were
also included for comparison to smaller class sizes. For primary schools we considered only the
RA allocation.
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SARS-CoV-2 can be transmitted in households, classrooms or in common areas of the school, all
of which were treated as homogeneously mixing on account of evidence for aerosolised routes of
transmission [482]. Individuals were also subject to a constant background risk of infection from
other sources, such as shopping centres. Figure 5.2 shows the progression of the illness experienced
by each individual in the model. In each day, susceptible (S) individuals exposed to the disease
via community spread or interaction with infectious individuals (those with disease statuses P , A
and I) become exposed (E), while previously exposed agents become presymptomatic (P ) with
probability σ. Presymptomatic agents develop an infection each day with probability σ, where
they can either become symptomatically infected (I) with probability η or asymptomatically
infected (A) with probability 1−η. If a symptomatic case appears in a classroom, that classroom
is closed for 14 days (in the case of alternating cohorts for primary schools, we assumed tha
tindividuals in both cohorts are kept at home). Other classrooms in the same school remain
open. Asymptomatic students and educators return at the end of this period while symptomatic
students and educators remain at home and symptomatic educators are replaced by substitutes.

Children are less affected by the SARS-CoV-2 virus than adults, and account for a smaller
proportion of COVID-19 cases [340]. However, the role of children in SARS-CoV-2 transmission
is still debated, and existing epidemiological evidence is limited by lack of empirical studies in
school settings, which have been closed for much of 2020. Other studies show that children shed
a similar amount of virus to adults [275]. To account for this ambiguity, we used contact matrices
drawn from populations under ‘business as usual’ circumstances as a proxy of what contact rates
would look like under a full reopening of schools and workplaces [458], but we considered both a
high and a low transmission rate scenario. The low transmission rate scenario represented either
reduced transmission rates in children, and/or highly effective infection control through consistent
use of high-effectiveness masks, social distancing, and disinfection protocols (see Sec. 5.2.2 for
details). In total the permutations on student-educator ratios, transmission rate assumptions,
siblings versus non-sibling groupings, and alternating cohorts yielded 22 scenarios (Table 5.1).

5.2.2 Materials and methods

Population structure

There are N households in the population, and a single educational institution (either a school or
a school, dependent on scenarios to be introduced later) with M rooms and a maximum capacity
dependent on the scenario being tested. Effective contacts between individuals occur within each
household, as well as rooms and common areas (entrances, bathrooms, hallways, etc.) of the
institution. All groups of individuals (households and rooms) in the model are assumed to be
well-mixed.

Each individual (agent) in the model is assigned an age, household, room in the childcare facility
and an epidemiological status. Age is categorical, so that every individual is either considered
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Childcare centre

High transmission

15:2 student to educator ratio
siblings together (ST)
random allocation (RA)

8:2 student to educator ratio
siblings together
random allocation

7:3 student to educator ratio
siblings together
random allocation

Low transmission

15:2 student to educator ratio
siblings together
random allocation

8:2 student to educator ratio
siblings together
random allocation

7:3 student to educator ratio
siblings together
random allocation

Primary school

High transmission

8:1 student to educator ratio random allocation
8:1 student to educator ratio, alternating
cohorts

random allocation

15:1 student to educator ratio random allocation
15:1 student to educator ratio, alternating
cohorts

random allocation

30:1 student to educator ratio random allocation

Low transmission

8:1 student to educator ratio random allocation
8:1 student to educator ratio, alternating
cohorts

random allocation

15:1 student to educator ratio random allocation
15:1 student to educator ratio, alternating
cohorts

random allocation

30:1 student to educator ratio random allocation

Table 5.1: Twenty-two scenarios evaluated based on different assumptions about transmission
probabilities, educator-student ratios, and student allocation.

a child (C) or an adult (A). Epidemiological status is divided into stages in the progression of
the disease; agents can either be susceptible (S), exposed to the disease (E), presymptomatic
(an initial asymptomatic infections period P ), symptomatically infected (I), asymptomatically
infected (A) or removed/recovered (R), as shown in Fig. 5.2.

In the model, some children in the population are enrolled as students in the institution and
assigned a classroom based on assumed scenarios of classroom occupancy while some adults are
assigned educator/caretaker roles in these classroom (again dependent on the occupancy scenario
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being tested). Allocations are made such that there is only one educator per household and that
children do not attend the same institution as a educator in the household (if there is one), and
vice versa.

Interaction and disease progression

The basic unit of time of the model is a single day, over which each attendee (of the institution)
spends time at both home and at the institution. The first interactions of each day are established
within each household, where all members of the household interact with each other. An asymp-
tomatically infectious individual of age i will transmit the disease to a susceptible housemate
with the age j with probability βHij , while symptomatically infectious members will self-isolate
(not interact with housemates) for a period of 14 days.

The second set of interpersonal interactions occur within the institution. Individuals (both stu-
dents and educators) in each room interact with each other, where an infectious individual of age
i transmits the disease to some susceptible individual of age j with probability βCij . To signify
common areas within the building (such as hallways, bathrooms and entrances), each individual
will then interact with every other individual in the institution. There, an infectious individual
of age j will infect a susceptible individual of age i with probability βOij .

To simulate community transmission (for example, public transport, coffee shops and other
sources of infection not explicitly modelled here), each susceptible school attendee is infected
with probability λS . Susceptible individuals not attending the institution in some capacity are
infected at rate λN , where λN > λS to compensate for those consistent effective interactions
outside of the institution that are neglected by the model (such as workplace interactions among
essential workers and members of the public).

Figure 5.2 shows the progression of the illness experienced by each individual in the model. In
each day, susceptible (S) individuals exposed to the disease via community spread or interac-
tion with infectious individuals (those with disease statuses P , A and I) become exposed (E),
while previously exposed agents become presymptomatic (P ) with probability δ. Presymptomatic
agents develop an infection in each day with probability σ, where they can either become symp-
tomatically infected (I) with probability η or asymptomatically infected (A) with probability
1− η.

The capacity of the sole educational institution in the model is divided evenly between 5 rooms,
with class size and student-educator ratio governed by one of three basic scenarios: seven students
and three educators per room (7:3), eight students and two educators per room (8:2), and fifteen
students and two educators per room (15:2). Classroom allocations for children can be either
randomised or grouped by household (siblings are put in the same class).

Symptomatically infected agents (I) are removed from the simulation after 1 day (status R)
with probability γI , upon which they self-isolate for 14 days, and therefore no longer pose a
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risk to susceptible individuals. Asymptomatically infected agents (A) remain infectious but are
presumed able to maintain regular effective contact with other individuals in the population due
to their lack of noticeable symptoms; they recover during this period (status R) with probability
γA. Disease statuses are updated at the end of each day, after which the cycles of interaction and
infection reoccur the next day.

The actions of symptomatic (status I) agents depend on age and role. Individuals that become
symptomatic maintain a regular schedule for 1 day following initial infection (including effective
interaction within the institution, if attending), after which they serve a mandatory 14-day isola-
tion period at home during which they interaction with no one (including other members of their
household). On the second day after the individual’s development of symptoms, their infection
is considered a disease outbreak centred in their assigned room, triggering the closure of that
room for 14 days. All individuals assigned to that room are sent home, where they self-isolate
for 14 days due to presumed exposure to the disease. Symptomatically infected children are not
replaced, and simply return to their assigned classroom upon recovery. At the time of classroom
reopening, any symptomatic educator is replaced by a substitute for the duration of their self-
isolation, at the end of which they reprise their previous role in the institution; the selection of a
substitute is made under previous constraints on educator selection (one educator per household.
with no one chosen from households hosting any children currently enrolled in the institution).

Parametrisation

The parameter values are given in Tab. 5.2. The sizes of households in the simulation were
determined from 2016 Statistics Canada census data on the distribution of family sizes [96].
We note that Statistics Canada data only report family sizes of 1, 2 or 3 children: the relative
proportions for 3+ children were obtained by assuming that 65% of families of 3+ children had
3 children, 25% had 4 children, 10% had 5 children, and none had more than 5 children. Each
educator was assumed to be a member of a household that did not have children attending
the school. Again using census data, we assumed that 36% of educators live in homes with
no children, where an individual lives alone with probability 0.282, while households hosting
3, 4, 5, 6, and seven adults occur with probability 0.345, 0.152, 0.138, 0.055, 0.021 and 0.009
respectively. Others live with ≥ 1 children in households following the size and composition
distribution depending on the number of adults in the household. For single-parent households,
a household with a single child occurs with probability 0.169, and households with 2, 3, 4 and
5 children occur with probabilities 0.079, 0.019, 0.007 and 0.003 respectively. With two-parent
households, those probabilities become 0.284, 0.307, 0.086, 0.033 and 0.012.

The age-specific transmission rates in households are given by the matrix:[
βH1,1 βH1,2
βH2,1 βH2,2

]
≡ βH

[
cH1,1 cH1,2
cH2,1 cH2,2

]
, (5.1)
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Parameter Probability Baseline Value Source

η symptomatic infection 0.6 (adults) TBD
0.4 (children) TBD

δ progression, E → P 0.5/day [400, 529]
σ progression, P → I, A 0.5/day [400, 529]
γI progression, I → R 1.0/day [400, 529]
γA progression, A→ R 0.25/day [400, 529]
βHij household transmission 0.109 [296], calibrated

βCij classroom transmission βC = αCβ
H , [296], assumption

βOij common area transmission βO = αOβ
C , [296, 458], assumption

ξ sibling attending same centre 0.8 assumption

Parameter Meaning Value Source

cHij household contact matrix ... [458]

cCij room contact matrix ... [458]

αC = 0.75
αO = 0.0025

λi infection rate due to other sources 1.16× 10−4/day [460], estimated
Rinit initial proportion with immunity 0.1 assumption
o proportion of childless educators 0.36 [96], assumption

household size distributions [96]

Table 5.2: Parameter definitions, baseline values and literature sources.

where cHij gives the number of contacts per day reported between individuals of ages i and j

estimated from data [458] and the baseline transmission rate βH is calibrated. To estimate cHij
from the data in Ref. [458], we used the non-physical contacts of age class 0-9 years and 25-44
years of age with themselves and one another in Canadian households. Based on a meta-analysis,
the secondary attack rate of SARS-CoV-2 appears to be approximately 15% on average in both
Asian and Western households [296]. Hence, we calibrated βH such that a given susceptible
person had a 15% chance of being infected by a single infected person in their own household
over the duration of their infection averaged across all scenarios tested. As such, age specific
transmission is given by the matrix

βH ·
[
0.5378 0.3916
0.3632 0.3335

]
. (5.2)

To determine λS we used case notification data from Ontario during lockdown, when schools,
workplaces, and schools were closed [460]. During this period, Ontario reported approximately 200
cases per day. The Ontario population size is 14.6 million, so this corresponds to a daily infection
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probability of 1.37×10−5 per person. However, cases are under-ascertained by a significant factor
in many countries [310] – we assumed an under-ascertainment factor of 8.45, meaning there are
actually 8.45 times more cases than reported in Ontario, giving rise to λS = 1.16× 10−4 per day;
λN was set to 2λS .

The age-specific transmission rates in the school rooms are given by the matrix[
βC1,1 βC1,2
βC2,1 βC2,2

]
≡ βC

[
cC1,1 cC1,2
cC2,1 cC2,2

]
≡ βC

[
1.2356 0.0588
0.1176 0.0451

]
, (5.3)

where cCij is the number of contacts per day reported between age i and j estimated from data [458].

To estimate cCij from the data in [458], we used the non-physical contacts of age classes 0–9 years
and 20–54 years of age, with themselves and one another, in Canadian schools. Epidemiological
data on secondary attack rates in childcare settings are rare, since schools and schools were closed
early in the outbreak in most areas. We note that contacts in families are qualitatively similar in
nature and duration to contacts in schools with small group sizes, although contacts are generally
more dispersed among the larger groups in rooms than among the smaller groups in households.
On the other hand, rooms may represent equally favourable conditions for aerosol transmission,
as opposed to close contact. Hence, we assumed that βC = αCβ

H , with a baseline value of
αC = 0.75 based on more dispersed contacts expected in the larger room group, although we
varied this assumption in sensitivity analysis.

To determine βO we assumed that βO = αOβ
C where αO � 1 to account for the fact that

students spend less time in common areas than in their rooms. To estimate αO, we note that
βO is the probability that a given infected person transmits the infection to a given susceptible
person. If students and staff have a probability p per hour of visiting a common area, then their
chance of meeting a given other student/staff in the same area in that area is p2. We assumed
that p = 0.05 and thus αO = 0.0025. The age-specific contact matrix for βO was the same as
that used for βC (5.3).

Model Initialisation

Upon population generation, each agent is initially susceptible (S). Individuals are assigned to
households as described previously, and children are assigned to rooms either randomly or by
household. We assume that parents in households with more than one child will decide to enrol
their children in the same institution for convenience with probability ξ = 80%, so that each
additional child in multi-child households will have probability 1− ξ of not being assigned to the
institution being modelled.

Households hosting educators are generated separately. As above, we assume that 36% of educa-
tors live in adult-only houses, while the other educators live in houses with children, both house-
hold sizes following the distributions outlined in Sec. 5.2.2. The number of educator households
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is twice that required to fully supply the school due to the replacement process for symptomatic
educators outlined in Sec. 5.2.2. Initially, a proportion of all susceptible agents Rinit is marked
as removed/recovered (R) to account for immunity caused by previous infection moving through
the population. A single randomly chosen school attendee is chosen as a primary case and is
made presymptomatic (P ) to introduce a source of infection to the model. All simulations are
run until there are no more potentially infectious (E, P , I, A) individuals left in the population
and the institution is at full capacity. All results were averaged over 2000 trials.

Estimating βH

Agents in the simulation were divided into two classes: “children” (ages 0−9) and “adults” (ages
25− 44). Available data on contact rates[458] was stratified into age categories of width 5 years
starting at age 0 (0− 5. 5− 9, 10− 14, etc.). The mean number of contacts per day cHij for each
class we considered (shown in (5.2)) was estimated by taking the mean of the contact rates of all
age classes fitting within our presumed age ranges for children and adults.

Figure 5.3: Plot showing the probability of infection stemming from single infection in the house-
hold with respect to the value of the contact rate coefficient βH . The shaded region represents
one standard deviation of ensemble values obtained for each value of βH .

For βH calibration, we created populations by generating a sufficient number of households to fill
the institution in each of the three tested scenarios; 15:2, 8:2 and 7:3. In each household, a single
randomly chosen individual was infected (each member with equal probability) by assigning them
a presymptomatic disease status P ; all other members were marked as susceptible (disease status
S). In each day of the simulation, each member of each household was allowed to interact with the
infected member, becoming exposed to the disease with probability given in (5.2). Upon exposure,
they were assigned disease status E. At the beginning of each subsequent day, presymptomatic
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individuals proceeded to infected statuses I and A, and infected agents were allowed to recover as
dictated by Fig. 5.2 and Tab. 5.2. This cycle of interaction and recovery within each household
was allowed to continue until all infected individuals were recovered from illness.

We did not allow exposed agents (status E) to progress to an infectious stage (I or A) since
we were interested in finding out how many infections within the household would result from a
single infected household member, as opposed to added secondary infections in later days. At the
end of each trial, the specific probability of infection (πn) in each household Hn was calculated by
dividing the number of exposed agents in the household (En) by the size of the household |Hn|
less 1 (accounting for the member initially infected). Single occupant households (|Hn| = 1) were
excluded from the calculation. The total probability of infection π was then taken as the mean
of all πn, so that

π =
1

D

∑
n

πn =
1

D

∑
|Hn|≥2

En
|Hn| − 1

, (5.4)

where D represents the total number of multiple occupancy households in the simulation. This
modified disease simulation was run for 2000 trials each of different prospective values of βH

ranging from 0 to 0.21. The means of all corresponding final estimates of the infection rate were
taken per value of βH , and the value corresponding to a infection rate of 15% was interpolated
as shown in Fig. 5.3.

5.3 Results

5.3.1 Initial stages of the outbreak

The time evolution of the outbreaks are illustrated in Fig. 5.4, which shows the proportion
of actively infected school attendees (both children and educators) per day in twelve childcare
centres scenarios. Many of the scenarios tend to produce a well-defined outbreak curve close
to the start of the simulation, even with classroom closure protocols in place. However, the
outbreaks are more strongly household-driven for the 7:3 and 8:2 ratios than the 15:2 ratio; this
is apparent in the weekly waves superimposed on the overall epidemic curve more strongly in
the 15:2 scenarios, on account of the impact of weekends. The 15:2 ratio also tends to generate
earlier, more intense outbreaks, while 7:3 and 8:2 scenarios produce fewer infections that are more
sporadically distributed throughout the simulated time horizon. In the case of high transmission,
the maximum mean level of exposure (E) is 4.97% in the 15:2 RA configuration 18 days into the
the simulation, on average, with peak 3.03% presymptomatic (P ) and 1.64% asymptomatic (A)
attendees at days 12 and 19 respectively. Meanwhile, peak mean exposure in scenario 7:3 ST
occurs on day 2, with 1.9% attendees exposed to the disease, with presymptomatic cases never
exceeding that of the start of any simulation.
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Figure 5.4: Time series of the proportions of exposed (E), presymptomatic (P ), asymptomatic
(A) and infected (I) individuals in the simulation for each reopening scenario. The ensemble
means are represented by solid lines, while the respected shaded ribbons show one standard
deviation of the results.

Table 5.3 summarises the information from the figures, showing the days until the 30-day peak
of each proportion of active infections in the centres. Here we can see that active infections
peak far earlier with the ST allocation than with the RA allocation for both high (α = 0.75)
and low (α = 0.25) transmission rates in most cases, and have either equal or smaller peaks for
most maximum proportions corresponding to the RA allocation independent of student-educator
ratio. In the case of high transmission, peak proportions decrease with the number of students
per class in half of the tested scenarios (statuses P and I with RA allocation, and status E).
In the low transmission case, there is a reversal in trend, with peak proportions increasing with
decreasing number of exposed (E) and presymptomatic (P ) students per class. There is no
obvious relationship between peak days for infected (I) and asymptomatic (A) individuals in the
high transmission case, nor for asymptomatic (A) individuals in the low transmission case. In
all cases (save status A in the low transmission scenario and statuses P , E and I in the high
transmission scenario, all with ST allocation), peak proportions decreased consistently with the
number of students per classroom. In sum, having fewer students per classroom and grouping
siblings together almost always results significantly lower peaks number of active infected and
infectious cases in the school. Peaks may also occur sooner in the ST allocation. This may reflect
household members spending more time together than under the RA allocation, resulting in a
more rapid start to the outbreak even if the number of peak cases is more restricted under the
ST allocation.
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Peak Time Maximum
(
×10−4

)
αC Status Allocation 15:2 8:2 7:3 15:2 8:2 7:3

0.75

P
RA 12 0 0 304 200 200
ST 4 0 0 193 200 199

E
RA 18 3 3 497 252 204
ST 3 3 2 336 227 195

I
RA 12 2 2 49 37 35
ST 4 2 2 30 34 37

A
RA 19 5 5 165 198 111
ST 5 5 4 82 113 103

αC Status Allocation 15:2 8:2 7:3 15:2 8:2 7:3

0.25

P
RA 0 0 0 118 200 200
ST 0 0 0 118 200 201

E
RA 4 3 5 96 113 128
ST 2 2 3 96 105 117

I
RA 2 2 2 19 27 21
ST 2 2 2 19 30 21

A
RA 5 4 5 69 111 100
ST 5 5 5 62 102 102

Table 5.3: Times at which the mean proportions of presymptomatic (P ), exposed (E), symp-
tomatically infected (I) and asymptomatically infected (A) school attendees peak during the first
30 days of simulation with secondary spread with respect to each of the scenarios tested, and the
corresponding peak number of cases.

The basic reproductive ratio R0 is the average number of secondary infections produced by a
single infected person in an otherwise susceptible population [20]. When there is pre-existing
immunity, as we suppose here, we study the effective reproduction number Re - the average
number of secondary infections produced by a single infected person in a population with some
pre-existing immunity. Figure 5.5 shows the estimated Re and mean population size (school plus
all associated households) over the course of each simulation, computed by tracking the number
of secondary infections produced by a single primary case. The Re values measured from the
simulation range from 1.5 to 3 on average, depending on the scenario. These Re values are
generally lower than the typical range of R0 values between 2 to 3 reported in the literature [335].
This is the expected relationship, not only because of pre-existing immunity, but also because
the Re values in our simulation capture transmission only in schools and workplaces, while the
R0 values in the literature are measured for SARS-CoV-2 transmission in all settings, including
workplaces and other sources of community spread.

There is little correlation between mean population size (Fig. 5.5, line), number of households
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Figure 5.5: Bar chart showing the effective reproduction number Re in the entire population
(with error bars denoting one standard deviation) and a line plot showing the mean population
size. Both low and high transmission scenarios are shown.

(not shown) and the corresponding Re estimate (Fig. 5.5, bars), leaving only the number of
children per classroom responsible for the gross increasing trend in Re in both high (α = 0.75)
and low (α = 0.25) transmission scenarios. Equation 5.3 shows that child-child contact within
the classroom occurs at least 2 times more often than any other type of contact; given that the
majority of the attendees of the school are children, we can expect Re to depend on the number
of children enrolled in the school.

Figure 5.6: Diagram showing the proportion of trials without secondary spread (curve), and the
time taken to produce the first secondary infection (bar chart), both sorted by scenario.

This is further demonstrated by the bar charts of Fig. 5.6, which show the distribution of times
between the primary infection case and the first secondary infection. The scenarios with the
highest ratio of children to educators (15:2) show the quickest start of the outbreak in both
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high and low transmission cases, with RA having the highest proportion of trials where the first
secondary infection occurred within a single day in the high transmission case. In comparison,
scenario 7:3 RA showed the slowest average initial spread in the high transmission case, while the
low transmission case sees low rates for both 8:2 and 7:3. Configuration ST (except for ratio 7:3)
frequently results in faster secondary spread over the first two days (even in the first 2 weeks).

5.3.2 Outbreak duration

Each individual simulation ends when all classes are at full capacity and there are no active
infections in the population; aside from community infection, this marks the momentary halt
of SARS-CoV-2 spread. From this, we get a description of the duration of the first outbreak.
(There could well be a second outbreak sparked by some community infection among individuals
who remain susceptible at the end of the first outbreak). Box plots in Fig. 5.7 show that the
15:2 ratio in both RA and ST allocations gives a median outbreak duration at least as large as
all other scenarios (for both low and high transmission cases). Another general observation is
that classroom allocation (RA vs. ST) doesn’t change the distribution of outbreak duration for
student-educator ratios 8:2 and 7:3 as drastically as it does for 15:2, whereas ST allocation results
in lower median duration (24 vs 43 for RA allocation) and significantly lower maximum duration
for the 15:2 ratio (61 vs. 88 for RA allocation without outliers) in the high transmission case.

Figure 5.7: Box plots depicting the distribution of simulation durations for each scenario. Taken
together with the stopping criteria of the simulations, these describe the duration of the outbreak.
Red dots represent the arithmetic mean of the data.

This is mirrored in the low transmission case as well. A possible explanation lies in the number
of students per classroom. The child-child contact rate (5.3) is far higher than any other contact
rate, implying that the classroom is the site of greatest infection spread (demonstrated in Fig. 5.9).
ST allocation differs from RA allocation in its containment of disease transfer from the classroom
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to a comparatively limited number of households. This effect (the difference between ST and RA)
is amplified with the addition of each new student to the classroom, so that while the difference
between 7:3 and 8:2 may be small (only 1 student added), the effect becomes far exaggerated
when the student number is effectively doubled (15 students vs. 7 or 8).

Figure 5.8: Time series detailing the trends in the mean proportions of current school attendees in
each stage of disease progression. Shaded ribbons around each curve show one standard deviation
of the averaged time series. Only trials showing secondary spread were included in the ensemble
means shown.

The evolution of the numbers of susceptible (S) and recovered/removed (R) school attendees
provides additional information on the course of the outbreak, since they represent the terminal
states of the infection process in each individual by the end of the outbreak. Figure 5.8 shows the
proportion of susceptible and recovered current school attendees (who have not been sent home
due to classroom outbreaks). As with all results so far, the 15:2 RA scenario most efficiently
facilitates disease spread through the school in both high and low transmission cases, with the
proportion of recovered attendees (R) overtaking the number of never-infected attendees (status
S) on day 34 in the case of high transmission (α = 0.75). Performance between 8:2 and 7:3 with
ST allocation is similar for both transmission rates, though all scenarios show smaller variation
over trials featuring lower infection transmission. As shown in Fig. 5.7, scenario 15:2 RA gave the
longest average simulation time in the high transmission scenario; this is also reflected in Fig. 5.4,
where the longest outbreak lasted 134 days.

5.3.3 Outbreak size and classroom closure

Figure 5.9 shows the mean number of infections in each location in all scenarios, as well as
the total number of infections in each scenario (the ‘outbreak size’). As expected, many more
infections occur in the high transmission scenario (α = 0.75), and the error bars of the plot show
greater standard deviation of the results than in the low transmission (α = 0.25) scenario. But for
each location and regardless of the transmission rate scenario, the number of infections increases
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Figure 5.9: The mean number of infections occurring among all school attendees in each location
over time for each scenario. The height of each bar gives the ensemble mean and its standard
deviation is represented by error bars.

rapidly with the number of children in the classroom in each room allocation. The 15:2 ratio
is universally the worst allocation across all possible scenarios. However, the difference between
the outbreak size in different scenarios decreases as the transmissibility of the virus drops (so to
speak, the gap been between the 15:2 RA and 15:2 ST scenarios decreases as α decreases, and
so with other student-educator ratios). When the transmission rate is high, the relatively larger
variety (by household) and prevalence of child-child interactions has a multiplicative effect on the
number of effective transmissions in the classroom. Lower transmissibility thereby decreases the
classroom infection rates relative to the household transmission rates.

Figure 5.10: Box plots showing the number of student days lost over the course of the simulation
due to class closure upon the detection of an outbreak. Red text boxes show the mean and
standard deviation of total closure durations.

The numbers of student-days lost due to classroom closure are given in Fig. 5.10, according to
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scenario. (The number of student-days lost is the number of days of closure times the number
of students who would otherwise have been able to continue attending.) In all scenarios, the
15:2 student-educator ratio is quantitatively the worst strategy examined by almost an order of
magnitude, resulting in the highest possible number of student-days lost. RA allocation shows
worse performance than ST in all scenarios. Both the low (α = 0.25) and high (α = 0.75)
transmissibility scenarios favour the 7:3 student-educator ratio and ST allocation, with a lower
number of student-days lost. The poor performance of 15:2 ratio occurs because it suffers from
a multiplicative effect: larger class sizes are more likely to be the origin of outbreak, and when
the outbreak starts, more children are affected when the classroom is shut down. Moreover, since
it’s possible for a student or educator to be infected during a 14-day closure, not all attendees
necessarily return to class upon reopening; sick educators are replaced with substitutes. As such,
these class closures results in otherwise healthy students missing potentially additional school
days beyond the 14-day closure period. The 15:2 strategy suffers particularly from this effect,
since transmission is facilitated when more students are in a classroom.

Figure 5.11: Bar chart showing the number of days for which some number of rooms in the school
were closed due to disease outbreak. Scenarios are represented by different colours; the height of
each bar gives the relevant ensemble mean with its standard deviation represented by error bars.

Naturally, a high incidence of COVID-19 cases will result in multiple room closures; one way to
see this is to look at the number and duration of room closures, both shown in Fig. 5.11. In
all scenarios, schools spent (on average) more days with one closed classroom than any other
number. We can also observe a difference in RA and ST allocations for the 7:3 ratio: with both
high and low transmission rate (α = 0.25 and α = 0.75 respectively), RA allocation results in a
higher number of class closures.
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5.3.4 Primary school settings

The primary school setting shows the same cascade of intensifying outbreaks and rapidly mounting
student-days of closure as class sizes increase (Fig. 5.12). This effect occurs in both childcare
centres and primary schools because firstly, in a larger classroom it is more likely that a student
tests positive for COVID-19. Secondly, when the classroom closes as a result, more students are
affected by the closure. Thirdly, because COVID-19 is characterised by presymptomatic infection
and aerosol dispersal, there is more infection in larger classrooms before the closure is enacted.
Introducing more children into the classroom increases the effective reproductive ratio (Re) for
both low and high rates of transmission, while cohorting/alternation has little effect (Fig. 5.12C),
and similar strategies (that is, differing by only 1 student or educator per class, or by alternation)
give similar reproductive ratios Re (compare to Fig. 5.5).

Figure 5.12: Further effects of varying class size when cohorting is introduced. (A) Bar chart
showing the total number of infections produced in each location in the model over the time of
the simulation. (B) Bar chartsshowing the number of student days lost due to outbreak-induced
classroom shutdowns. (C) Bar chart showing the effective reproduction number Re in the entire
population, with a line plot showing the mean population size. Both low and high transmission
scenarios are shown. In each panel, error bars denote a single standard deviation of the data
plotted.

There is little difference between numbers of lost student days between the similar scenarios
8:1 and 8(A):1, as well as as 15:1 and 15(A):1 (Fig. 5.12B). Since the shutdown of a classroom
affects both cohorts, there will be very little difference in virus spread between scenarios allotting
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the same number of students per classroom. This effect is also seen in Fig. 5.12A. Comparison
of Fig. 5.9 and Fig. 5.12A show similar distributions of outbreak size for all student-teacher
ratios, signifying that cohorting does not significantly change the results of structured interactions
featured in the model. The true benefit of cohorting arises in the consideration of class sizes, given
the desire for contact time with all enrolled students. Comparison of Fig. 5.10 and Fig. 5.12B
shows that the similar scenarios 15:2 RA, 15:1 RA and 15(A):1 RA all result in a comparable
number of lost student-days in both low and high transmission scenarios, as do the scenarios 8:2
RA, 8:1 RA and 8(A):1 RA.

Higher student-educator ratios facilitate faster disease spread through the school than smaller ones
(Fig. 5.13). One major difference is the weekly fluctuation of the infection status curves visible in
the cohorted scenarios 8(A):1 and 15(A):1. These fluctuations correspond to the rotation of the
student cohorts through the school term. Transitions between majority susceptible and recovered
regimes is delayed (high transmission) or prevented (low transmission) by cohorting; we see that
alternating strategies result in better aggregate infection outcomes, even when classroom capacity
is held constant. Scenario 15(A):1 also results in shorter mean and median outbreak lengths in
the entire population in both low and high transmission cases (Fig. 5.14).

Figure 5.13: Time series showing the trends in the mean proportions of current school attendees in
each stage of disease progression. Shaded ribbons around each curve show one standard deviation
of the averaged time series. Only trials showing secondary disease spread were included in the
ensemble means shown.

5.3.5 Sensitivity Analysis

We conducted a sensitivity analysis on βH , βC , λ and Rinit (see D). We found that variation
in rates of household and classroom interaction and infection (βH and βC) and the number
of individuals initially recovered (Rinit) greatly impact SARS-CoV-2 transmission, but did not
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Figure 5.14: Box plots depicting the distribution of simulation durations for each scenario, de-
scribing the length of the outbreak. Red dots represent the arithmetic mean of the data.

change the relative performances of the 22 scenarios. The greatest influence on outcomes remain
the scheme of allocation of students to classrooms (RA or ST), the number of students per
class (15, 8 or 7), and whether the transmission rate in the classrooms is low or high (αC).
Other important factors include classroom closure upon identification of a symptomatic case and
the interaction patterns of asymptomatic infected individuals in the household upon classroom
closure (i.e. whether they continue to interact in close contact, as would be necessary for younger
children, or whether children are old enough to effectively self-isolate). Our baseline assumption
was to assume asymptomatic infected individuals who are sent home due to closure of a classroom
are able to self-isolate. This assumption is conservative, since inability to self-isolate under these
circumstances would result in higher projected outbreak sizes.

5.4 Discussion

We developed and simulated an ABM of SARS-CoV-2 transmission in childcare centre and pri-
mary school settings for the purposes of informing reopening policies. The model was configured
to capture SARS-CoV-2 transmission in a local school building, since many childcare centres
operate across several classrooms within schools. These services are an essential bridge for many
parents who are unable to drop off or pick up children around school hours due to work. Our
findings suggest that variability in class size (i.e., number of children in a class) and class com-
position (i.e., sibling groupings versus random assignment) influence the nature of SARS-CoV-2
transmission within the childcare context. Specifically, a 7:3 student-to-educator ratio that used
sibling groupings yielded the lowest rates of transmission, while a 15:2 ratio consistently per-
formed far worse. Findings for the primary school ratios show a similar acceleration of negative
impacts with increasing class size. Findings from our simulations are sobering, as educators in
the province lobbied for a 15 student cap on classrooms in Summer 2020. Our study suggests
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that classes of this size pose a tangible risk for COVID-19 outbreaks, and that lower ratios would
better offset infection and school closures. While school reopening guidelines [498], public health
agencies [396], and public petitions [514] have called for smaller class sizes, governments appear
to be following some recommendations in reopening plans while ignoring others.

This accelerating effect of increasing classroom sizes occurs because of three factors working in
concert. Firstly, a larger class means that a student is more likely to test positive for COVID-
19 at some point. Secondly, when a larger class is closed as a result, it affects more students.
Third, presymptomatic transmission and higher densities of students ensure that more children
become infected before classroom closure is enacted, resulting in larger outbreak sizes due to
more cases both before the closure, and after the closure as the infection continues to spread in
households. This particular mechanism is specific to institutional outbreaks for infectious diseases
with presymptomatic transmission worsened by aerosol transmission routes [482].

Policies related to childcare and traditional school reopening have not been well integrated [160].
In Ontario, childcare classrooms were capped at a maximum of 10 occupants, overall (hence the
8:2 and 7:3 ratios in the present study) [406]. Conversely, procedures for traditional “school”
classrooms have been given the go-ahead for 15 children (hence the 15:2 ratio). While allowable
class sizes will differ somewhat as a function of child age and jurisdiction, it seems likely that
early childhood and elementary school classes may actually surpass these numbers in Ontario. Our
findings demonstrate that the 15:2 ratio represents a significantly higher risk, not only for SARS-
CoV-2 spread, but for school closures. In one scenario (15:2 random assignment), the modelled
outbreak lasted for 105 days. Given that childcare and schools are often operating within the
same physical location, this policy discrepancy is questionable. Based on our simulations, a lower
ratio (7:3) is indicated. Moreover, it appears that this configuration could be enhanced through
the utilization of sibling groupings.

Our modelling approach was informative in terms of identifying the location of SARS-CoV-2
transmission. There has been conflicting evidence on classroom based transmission of SARS-
CoV-2 [250, 495]. The present study suggests that classrooms and households yield much higher
rates of infection than common areas. Thus, initiatives to reduce inter-classroom contact in com-
mon areas (such as staggering start times, utilizing multiple entrances, and sanitizing surfaces in
building foyers) may only produce a modest benefit for reducing spread. Conversely, our simula-
tions demonstrated a marked benefit associated with lower child-to-educator ratios in classrooms.
Notably, these benefits were observed in both high transmission settings (e.g., at the start of the
pandemic, before social distancing), and low transmission settings (e.g., where masking, hygiene,
and social distancing had been put in place, as will be the case in reopened childcare and school).
Other investigators have proposed intermittent occupancy and enhanced ventilation as potential
measures for reducing classroom (indoor) transmission amongst children [358].

An examination of student days missed due to classroom closure further elucidates the favoura-
bility of smaller class size and sibling grouping as a preventative measure. In this analysis, the
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worst configuration was the 15:2 random assignment ratio. Again, this was observed in both high
transmission and low transmission environments. In the most unfavourable scenario (15:2 RA),
there were cumulatively 387 and 267 student days lost in high versus low transmission settings,
respectively. Conversely, in the best scenario (7:3, siblings together), there were only 47 and 40
student days lost. Thus, our simulations suggest that the lower ratios and sibling groupings offer
a safeguard against highly disruptive classroom closures [50, 546]. Given this, a proactive and
preventative approach incorporating realistic levels of reduced class time would be better than a
reactive strategy that yields unpredictable closure events due to outbreaks.

Several policy and procedural recommendations have emerged from this modelling exercise. First,
it is recommended that childcare and school settings, alike, consider lowering student-to-educator
ratios. Commensurate with the present findings, a 7:3 ratio (10 individuals per class including
both children and adults) outperforms a 15:2 ratio on key metrics. Second, there also appears to
be benefit associated with sibling groupings. Thus, a siblings-together configuration should be
considered. Third, the majority of transmission occurred in the classroom. As such, it is impor-
tant for reopening plans to consider social distancing and hygiene procedures within classrooms
- a recommendation that may only be feasible with fewer children in the classroom. It is unlikely
that classrooms with 15 or more children will afford children the necessary space to socially dis-
tance. Finally, in the primary school setting, significant benefits accrue for 15(A):1 relative to the
30:1 student-educator ratio, and thus decision-makers should reconsider the conventional model
of putting 30 students in classrooms every day in favour of cohorts of 15 students alternating
weekly.

Finally, the present study has a number of limitations that should be considered. While it is be-
coming increasingly clear that COVID-19 risk varies as a function of social determinants of health
(e.g., socioeconomic status, race, ethnicity, immigration status, neighbourhood risk), along with
opportunities for social distancing [503], the present study did not take these considerations into
account. Future simulation studies might consider how these social determinants intersect with
childcare and school configurations. Additionally, this study was primarily concerned with SARS-
CoV-2 infection and student days lost. That being said, there are many important outcomes to
consider in relation to children’s developmental health in the pandemic. Longitudinal studies con-
sidering children’s learning and mental health outcomes in relation to new childcare and school
configurations are strongly indicated [547].
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Chapter 6

Conclusion

In the introduction, we stated our intention to “identify a class of dependable early warning
signals [EWS] for coupled disease–infection models of paediatric diseases”, further specifying
our desire to classify, evaluate and compare these EWS. Through computational modelling and
statistical analysis, three of the studies detailed in this thesis have established two broad classes
of spatial EWS that can be used to predict transitions in the dynamics of both small and large
coupled disease-behaviour network models. We established that increases in spatial coherence
and aggregation on networks of various structures was indicative of both pending vaccine crises
and widespread disease outbreaks in this family of models. We also saw that the interpretation
of these warning signals depends heavily on underlying characteristics of the model (especially
the function of the included social norm), but that objective EWS performance is robust to noisy
dynamics, change in network size and structure, decoupling of dynamics and simple random
sampling.

Initial survey

Our first task was to curate a set of established early warning signals for consideration. Despite
its heavy basis in graph and network theory, the interdisciplinarity of this work is first seen in
the varied origins of the EWS presented: mutual information (Chs. 2, 4) is a tool featured in
ecology, finance and statistical physics, and Moran’s I and Geary’s C (Chs. 2, 4) were developed
for use with geographical information systems. Join count statistics are used in many fields for
correlogram-like point pattern analysis of categorical data but, to our best knowledge, saw little
(if any) previous application to the analysis of discrete opinion models. Community detection
represents a vast literature in both the fields of social network analysis and graph theory, while
percolation theory describes critical phenomena in graph connectivity; from these areas we get
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the important notions of community and group formation (Chs 3, 4). Given that our chosen
models (and our research questions) sit in the intersection of all these fields, this wide range of
adaptable tools and available theory strongly bolstered our confidence in the ultimate utility of
a multi-faceted approach.

First study

Reflection on the novelty research question prompted us to develop a simplistic model of the paired
dynamics; our parametrised coupling of a SIRVp (paediatric disease) compartmental model with
binary opinion dynamics yielded the organic vaccine crises and disease outbreaks we required,
yet was simple enough to allow for the establishment of baseline results for the EWS (facilitating
comparison with later studies). Some previous studies remarked on the lack of a definition of
epidemics applicable to computer simulation (and broader disease modelling); after literature
review, we formulated such a definition, as well as simulation convergence criteria. Though
minimal compared to the scope of this thesis, these too represent unique contributions to the
literature of our field. Through analysing generated data sets in this first study, we confirmed
that noticeable changes in opinion clustering and the synchrony of model dynamics accompanied
critical transitions in both model dynamics. Through varying some parameters of the model, we
also confirm that these warnings are eventually robust to noise (in the form of random opinion
changes), network size and initial aggregate opinion.

Another question we set ourselves initially surrounds comparisons between EWS. As was previ-
ously remarked, our desire is to characterise warning behaviour objectively rather than depend on
eyesight; this prompted trend analysis and our use of change point detection tests, usually used in
the analysis of climatological time series. We feature the results of the Lanzante and the standard
normal homogeneity (SNHT) tests throughout the thesis, with two other tests (the Pettitt and
Buishand range tests) used strictly for comparison. Application of the two primary change point
tests to data series taken at network equilibrium reveal (in many instances) well-defined loca-
tions in EWS data series where changes in trend occur. Since the series being tested in all cases
were taken from a succession of instances at equilibrium (rather than time series usually used in
change point analysis), we interpret the change points yielded by these tests as a confirmation of
warnings given by the EWS, as well as a way to quantify the gross movement of the model to-
wards transition. Our use of these change point tests also verified that monitoring the candidate
EWS is, in most cases, a better strategy than näıvely monitoring the state of the network. This
finding’s independence of the strength of the model’s social norm (or indeed any other prominent
dynamic model characteristic) prompted our omission of this particular comparison from further
studies.
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Second Study

With this augmented methodology, our second study confirms that changes in the community
structure of the simulated social network occurred ‘sufficiently far’ before the critical transitions of
the model to yield dependable warning signals of transition. Also, the list of candidate EWS was
expanded by measuring the fluctuation of aggregate sentiment, the health of one’s neighbours and
the Watts-Strogatz clustering coefficient of similar-opinion networks; these were also confirmed
as viable EWS. These results were then taken to comprise a stable basis for comparison, since
the third study tests robustness of the EWS to targeted changes in the model. At this stage,
we made the decision to discard three candidate EWS used in the work so far: both Moran’s I
and Geary’s C (Ch. 2) were confirmed to be linear combinations of join count statistics, and so
their further inclusion was seen as duplication. Geary’s C (Ch. 3) and the Getis-Ord G coefficient
(Ch. 3, not shown) were discarded due to undependable performance.

Third Study

In the third study, we tested the resilience of the EWS by introducing vaccine hesitance (seen
as a delay in the social dynamics) as a separate opinion unenforced by social norm. We also
changed the underlying graph structure of the social network from a random graph to that of a
network with small world properties, and retrieved the warning signals from random samples of
the network (of various sizes). These were seen as ‘real life’ tests for the EWS, similar to those
outlined in the social network analysis literature. We also added opinion network diameter and
the number of triads on the network as new candidate EWS, and limited change point analysis to
using only the SNHT. On the entire network, most EWS performed as well as expected, including
the join count and mutual information statistics. As quantified by lead distance, there was a slight
decrease in performance when the network was sampled for all EWS.

In sum, we’ve found that mutual information, join count statistics, network diameter, triad
census, global clustering coefficient, Moran’s I, the sizes and numbers of opinion communities
and echo chambers, the number of changes of opinion, opinion network modularity score and
the probability of having an infected social contact all give strong warning signals of impending
critical transitions in coupled disease-behaviour models such as ours. Of the previous mentioned
EWS, mutual information, join count statistics and the numbers of instances of opinion stand
out as the strongest, though ultimately their perceived performance depends on the change point
test used to gather their respective lead distances (as can be seen in all three studies in the thesis,
different change point tests will net different results).

As for failure of the EWS, all three studies showed occasional failure of all the tools; the locations
of these failures (undefined change points in the EWS data series, or a negative lead distance) of
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course depended on the change point test used. Perfection was in no way expected; rather we con-
cerned ourselves with trying to identify patterns of failure with respect to the social norm. There
was no immediately detectable consistent relationship between EWS failure and the strength of
the social norm present in any instance; then, the intentional simplicity of our model allows us to
dismiss the possibility. Some EWS perform well and others don’t, and our results do not allow
us to draw any further conclusions on failure of the EWS on this class of simple model; we feel
this is best left to a targeted study conducted with a more realistic model.

The results of the third study give us reasonable confidence as to the general strength of these
EWS, but establishing suitability for general use requires further study. Previously, we spoke to
the simplicity of the model (by design). For this thesis, we weighed two methodologies: use a
simple model and obtain incremental results that can be built on, or follow literature with more
complex models and obtain results that, while still useful and interesting of their own right, are
somewhat isolated. Clearly we thought the first approach would make for a better contribution to
the literature of our topic, and therefore carried that through. However, for directions of future
work in establishing these EWS, we look to current literature in the broader sphere of empirical
social network analysis.

Fourth Study

Our study on the infection dynamics of COVID-19 produced concrete suggestions for mitigation
of infection spread, striking a different tone to the other studies’ focus on early warnings of
critical transition. Through the use of a comparatively simpler ABM, we found that in the cases
of both low and high transmission rates, the reduction of class size was (in every scenario) vital
to stemming the spread of the disease to the entire network, and especially within the school.
More importantly, we can cast this fundamental result in the light of our unifying theme: spatial
correlation and connection density facilitates the spread of infection and is therefore useful in
predicting spread. This study presented a case where overt manipulation of the connectivity
structure was possible, and served to tangentially reinforce the major findings of this thesis not
from the point-of-view of early warning signals, but through the underlying principles of location
and connectivity.

Limitations and Future Directions

The two foremost restrictive properties of our network are that neighbourhoods are static and
identical across dynamics; that is, an individual has the same social (media) contacts as physi-
cal contacts, both of which are immutable. This is clearly unrealistic in both ways; the author
himself has even done collaborative musical performances with individuals in other countries who
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he has never met in person, and encountered many people on public transit who he will never
speak to (even before the imposition of these current physical distancing guidelines necessitated
by the COVID-19 pandemic). Our physical and social neighbourhoods are not identical, and the
loosening of this restriction is the author’s primary concern for future studies. Also, commu-
nicative neighbourhoods are rarely static, and so an evolving network (featuring variable rates
of communication and dynamic link formation predicated on opinion dynamics) must be consid-
ered; humanity’s huge online presence presents the perfect opportunity for monitoring patterns
of information exchange and aggregation in large networks, as shown in [129]. The first study
in this thesis included simulations run on a network of size N = 7502 (called model V3); the
success of the EWS used with this version of the model leads us to believe that the EWS will be
insensitive to scale, though we expect computational expense will need to be accounted for.

Other essential tests of the application and deployment of the EWS (and their subsequent use
in policy design) would be their performance in ‘real time’; this is the true purpose of change
point detection tests, whereas our previous uses were simply confirmatory (with populations at
equilibrium). We propose that future studies not only confirm that these EWS give explicit
temporal warnings (through some optimal application of change-point tests at each time step),
but also the effect of intervention when such a warning signal is received. This is the temporal
analogue of our previous (equilibrium) conception of lead distance, and gives new meaning to the
previously posed question “how much time do we have to react?”

The effects of interventions themselves (quarantine, mandatory vaccination, etc) can be studied
with such an extended model, but that is outside of the scope of this work. As regards that
proposal, observation and evaluation of the EWS investigated in this thesis does not alter the
dynamics of the model in any way (as currently conceived), so we cannot reasonably expect the
efficacy of any given intervention to be tied to either the EWS monitored or the change point
test used.

Summation

In epidemiology, a combination of disease emergence and resurgence and anti-vaccine sentiment
proliferation has led to widespread distrust of public health authorities in many countries and far-
reaching resistance to healthcare best practices. The boundless efforts of a great many scientists,
medical practitioners and politicians has resulted in a large body of work attempting to catalogue
the numerous motivations and drivers of vaccine resistance and epidemic events. Unfortunately,
the unique ‘perfect storm’ of circumstances exemplified by the current COVID-19 epidemic has
exposed multiple disastrous weaknesses in many areas of pandemic preparedness and vaccination
policy1.

1indeed, if and when a vaccine is brought to public availability; anti-lockdown protests gathered up anti-vaccine
messaging as soon as medical trials of vaccines were announced [522, 324, 507, 32, 72, 217, 421].
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Mitigative approaches requiring public cooperation need careful investigation and testing be-
fore implementation [423], else an ensuing decline in public trust will lead to non-compliance
and resistance possibly quelled only by the destruction wrought by the event itself. An exam-
ple is the suggested widespread use of (non-medical) facial coverings in the current COVID-19
pandemic; ‘expert’ opinion and public health directive varies across the board due to differing
interpretations of context and evidence [78, 261, 293, 189, 345, 246]. This, coupled with complete
retraction and reversals of official statements made only days or weeks previously can lead to
public outcry, frustration and distrust of national public health systems and officers[372, 448];
some experts assert that the driving force behind adoption and the creation of a strong social
norm was ultimately fear [11, 563, 228], which can’t be consistently planned for. This is only a
contemporary repeat of situations we have faced in the past, including numerous vaccine scares
[399, 142, 321, 241, 242, 133, 236].

The intended use of early warning signals is to dependably (and consistently) inform the en-
actment of mitigative policies. As outlined above, everyone concerned needs to have strong
confidence in the timing and extent of measures. While basic, the results we present in this thesis
mark an important contribution to the literature on early warning signals for complex adaptive
systems.
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[79] Valentino Braitenberg and Almut Schüz. Anatomy of the cortex: statistics and geometry,
volume 18. Springer Science & Business Media, 2013.

[80] Tobias Brett, Marco Ajelli, Quan-Hui Liu, Mary G Krauland, John J Grefenstette,
Willem G van Panhuis, Alessandro Vespignani, John M Drake, and Pejman Rohani. Detect-
ing critical slowing down in high-dimensional epidemiological systems. PLoS computational
biology, 16(3):e1007679, 2020.

[81] Tobias S. Brett, John M. Drake, and Pejman Rohani. Anticipating the emergence of infec-
tious diseases. Journal of the Royal Society Interface, 14(132):20170115, 7 2017.

[82] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Rajagopalan,
Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph structure in the web. Computer
networks, 33(1-6):309–320, 2000.

136



[83] David A. Broniatowski, Michael J. Paul, and Mark Dredze. National and local influenza
surveillance through twitter: An analysis of the 2012-2013 influenza epidemic. PLOS ONE,
8(12), 12 2013.

[84] Jo Brown, Amanda J Broderick, and Nick Lee. Word of mouth communication within online
communities: Conceptualizing the online social network. Journal of interactive marketing,
21(3):2–20, 2007.

[85] John S Brownstein, Clark C Freifeld, and Lawrence C Madoff. Digital disease detec-
tion—harnessing the web for public health surveillance. New England Journal of Medicine,
360(21):2153–2157, 2009.

[86] Axel Bruns. Echo chamber? what echo chamber? reviewing the evidence, 2017. Accessed
17 February 2020.

[87] Axel Bruns. Filter bubbles and echo chambers: Debunking the myths, Jul 2020.

[88] Emily K. Brunson. The impact of social networks on parents’ vaccination decisions. pedi-
atrics, 131(5), 2013.

[89] David L Buckeridge, Christian Jauvin, Anya Okhmatovskaia, and Aman D Verma. Sim-
ulation analysis platform (snap): a tool for evaluation of public health surveillance and
disease control strategies. In AMIA Annual Symposium Proceedings, volume 2011, page
161. American Medical Informatics Association, 2011.

[90] T. A. Buishand. Tests for detecting a shift in the mean of hydrolgical time series. Journal
of Hydrology, 73:51–69, 1984.

[91] Bruno Buonomo. A note on the direction of the transcritical bifurcation in epidemic models.
Nonlinear Anal Model Control, 20:38–55, 2015.

[92] Emily A. Burger, Nicole G. Campos, Stephen Sy, Catherine Regan, and Jane J. Kim. Health
and economic benefits of single-dose hpv vaccination in a gavi-eligible country. Vaccine,
36(32):4823–4829, 2018.

[93] Alison M Buttenheim, Sarah T Cherng, and David A Asch. Provider dismissal policies and
clustering of vaccine-hesitant families: an agent-based modeling approach. Human vaccines
& immunotherapeutics, 9(8):1819–1824, 2013.

[94] Barbara Caci, Maurizio Cardaci, and Marco E Tabacchi. Facebook as a small world: a
topological hypothesis. Social Network Analysis and Mining, 2(2):163–167, 2012.

[95] John T Cacioppo, James H Fowler, and Nicholas A Christakis. Alone in the crowd: the
structure and spread of loneliness in a large social network. Journal of personality and
social psychology, 97(6):977, 2009.

137



[96] Statistics Canada. Statistics canada 2016 census. https://www12.statcan.gc.ca/census-
recensement/2016/dp-pd/prof/details/page.cfm.

[97] Statistics Canada. Table 39-10-0007-01 life expectancy and other elements of the life table,
canada and provinces, 2019.

[98] Kathleen M Carley, Douglas B Fridsma, Elizabeth Casman, Alex Yahja, Neal Altman, Li-
Chiou Chen, Boris Kaminsky, and Démian Nave. Biowar: scalable agent-based model of
bioattacks. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and
Humans, 36(2):252–265, 2006.

[99] Dorwin Cartwright and Frank Harary. Structural balance: a generalization of heider’s
theory. Psychological review, 63(5):277, 1956.

[100] Claudio Castellano, Santo Fortunato, and Vittorio Loreto. Statistical physics of social
dynamics. Review of Modern Physics, 81:591–646, 5 2009.

[101] CDC. Vaccine glossary of terms, Jul 2020.
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[118] Stéphan Clémençon, Hector De Arazoza, Fabrice Rossi, and Viet Chi Tran. A statistical
network analysis of the hiv/aids epidemics in cuba. Social Network Analysis and Mining,
5(1):58, 2015.

[119] Bruce W. Clements. Bioterrorism, chapter 2, pages 27–63. Elsevier, 2009.

[120] A.D. Cliff, P. Haggett, and J.K Ord. Spatial Aspects of Influenza Eidemics. Routledge
Hegan & Paul, 2 1997.

[121] Andres Cliff and Peter Haggett. Methods for the Measurement of Epidemic Velocity from
Time-Series Data. International Journal of Epidemiology, 11(1):82–89, 03 1982.

139



[122] Lucie Cluver, Jamie M Lachman, Lorraine Sherr, Inge Wessels, Etienne Krug, Sabine Rako-
tomalala, Stephen Blight, Susan Hillis, Gretchen Bachmand, Ohad Green, et al. Parenting
in a time of covid-19. The Lancet, 2020.

[123] Richard Colbaugh and Kristin Glass. Predictive analysis for social diffusion: The role of
network communities. arXiv preprint arXiv:0912.5242, 2009.

[124] Elanor Colleoni, Alessandro Rozza, and Adam Arvidsson. Echo chamber or public sphere?
Predicting political orientation and measuring political homophily in Twitter using big
data. Journal of Communication, 64:317–332, 2014.

[125] Shannon Collinson, Kamran Khan, and Jane M. Hefferman. The effects of media reports
on disease spread and important public health measurements. PlOS ONE, 10(11):e0141423,
2015.

[126] Anne Condon and Richard M Karp. Algorithms for graph partitioning on the planted
partition model. Random Structures & Algorithms, 18(2):116–140, 2001.
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number of covid-19 is higher compared to sars coronavirus. Journal of travel medicine,
2020.
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A.1 I (Moran’s I) and C (Geary’s C) in terms of join counts

We support our previous assertion that the Moran’s I (I) and Geary’s C (C) coefficients are linear
combinations of join counts. For this proof, we assume an undirected network where nodes have
two states: pro-vaccine (Vs - score 1), and anti-vaccine (N - score 0), also given in (2.3). Then
we have that

xnk = xk ∀n ∈ N, (A.1)

where xk represents the score of the kth agent. ω is the adjacency matrix of the network, so that
ωj,k = 1 if agents j and k are social neighbours, and ωj,k = 0 otherwise. Using the expression for
I given in (2.4) as

I =
N

W
·
∑

j,k ωjk(xj − x)(xk − x)∑
j(xj − x)2

, (A.2)

we can derive the expression in (2.5) by first expanding the numerator of (A.2) as∑
j,k

ωjk(xj − x)(xk − x) =
∑
j,k

ωjk
(
xj · xk − (xj + xk) · x+ x2

)
, (A.3)

=
∑
j,k

ωjkxj · xk −
∑
j,k

ωjk(xj + xk) · x+
∑
j,k

ωjkx
2 , (A.4)

=
∑
j,k

ωjkxj · xk︸ ︷︷ ︸
(I)

−2 · x ·
∑
j,k

ωjkxk +
∑
j,k

ωjkx
2 , (A.5)

(I) xj · xk is nonzero when both xj , xk 6= 0, so then j, k ∈ Vs;
∑
j,k

ωjkxj · xk = 2 · [Vs, Vs].

= 2 · [Vs, Vs]− 2 · x ·
∑
j,k

ωjkxk︸ ︷︷ ︸
(II)

+
∑
j,k

ωjkx
2 , (A.6)

(II) ωj,kxk has value when k ∈ Vs and agent j is any neighbour, so that
∑

j,k ωjkxk considers the

number of neighbours of each vaccinator, and
∑
j,k

ωjkxk = 2 · [Vs, Vs] + [N,Vs].

= 2 · [Vs, Vs]− 2 · x
(

2 · [Vs, Vs] + [N,Vs]
)

+ x2 ·
∑
j,k

ωjk︸ ︷︷ ︸
(III)

, (A.7)
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(III)
∑

j,k ωjk counts the number of adjacencies between all agent pairs j and k, so that
∑
j,k

ωjk =

W , where W gives twice the number of unique undirected edges of the network.

= 2 · [Vs, Vs]− 2 · x
(

2 · [Vs, Vs] + [N,Vs]
)

+W · x2 . (A.8)

For the denominator of (A.2), we have∑
j

(xj − x)2 =
∑
j

x2
j − 2xj · x+ x2 , (A.9)

=
∑
j

x2
j − 2

∑
j

xj · x+
∑
j

x2 , (A.10)

=
∑
j

xj − 2 · x
∑
j

xj︸ ︷︷ ︸
(IV)

+x2
∑
j︸︷︷︸

(V)

, (A.11)

(IV) xj has value only when j ∈ Vs, so that
∑
j

xj = [Vs] gives the number of pro-vaccine agents.

(V)
∑
j

sums every node in the network, so that we get the number of nodes in the network;∑
j

= N .

= [Vs]− 2x · [Vs] +Nx2 , (A.12)

= (1− 2x) · [Vs] +Nx2 , (A.13)

= γ · [Vs] +N · x2 , (A.14)

where
γ = 1− 2x . (A.15)

Therefore, the full expression of Moran’s I is written

I =
N

W
· 2 · [Vs, Vs]− 2x · (2 · [Vs, Vs] + [N,Vs]) +W · x2

γ · [Vs] +N · x2 , (A.16)

which can be seen as a linear combination of join counts

I =
N

(γ · [Vs] +N · x2) ·W

(
(2− 4x) · [Vs, Vs]− 2x · [N,Vs] +W · x2

)
. (A.17)
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Using the expression for the Geary’s C statistic C given in (2.6) as

C =
N − 1

W

(VI)︷ ︸︸ ︷∑
j,k ωjk(xj − xk)2∑

j(xj − x)2
, (A.18)

we can identify the numerator (VI) with the expression given for [N,Vs] in (2.2), so that∑
j,k

ωjk(xj − xk)2 = 2 · [N,Vs] . (A.19)

Since the denominator of (VI) is identical to that of (A.2), the entire expression for C can be
written as

C =
N − 1

W

2 · [N,Vs]
γ · [Vs] +N · x2 . (A.20)
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A.2 Comparisons of models V1, V2 and V3

A.2.1 Model parameters

We use three disparate models V1, V2 and V3 to investigate these EWS, with their respective
parameter values and ranges shown in Tab. A.1. Section 2.3 (Results) gives the results for model
V2, and here we compare the results of the other models V1 and V3.

Parameter Interpretation V1 V2 V3

N number of agents 10000 40000 562500

ι
case importation

2.5× 10−4 1× 10−5 2.5× 10−5

(proportion of susceptibles)

p infectivity 0.2, 0.8 0.2, 0.8 0.8

ξ∗ random sentiment change ξ1 = 1× 10−4 10−4 ≤ ξ52 ≤ 0.1

〈dn〉 mean neighbourhood size 30 50

σ strength of social norm 0 ≤ σ ≤ 3 0 ≤ σ ≤ 6

κ
perceived risk of

−1 ≤ κ ≤ 1 −2 ≤ κ ≤ 6
adverse vaccine effects

T length of each realisation
10000 ≤ T ≤ 40000

11000
and until equilibrium

α initial pro-vaccine proportion 0.05, 0.95

` duration of illness 2 weeks (time steps)

µ birth/death rate 2.4× 10−4

Table A.1: A table of the baseline parameter values used for each simulation. N represents the
number of agents in the simulation, ξ1 represents the probability of random sentiment switch per
time step, and ξ52 represents the probability of randomly switching sentiment once per year (52
time steps).

Models V1 and V3 were parametrised in the way outlined in Section 2.3 (Results): κ = 0, σ = 0
and α = 0.05 give the result

〈
R
〉
< 0.05 at equilibrium (defined in Section 1.2). The uniform

birth/death rate µ = 2.5× 10−4 was chosen to give an average life expectancy of 80 years, and a
duration of illness ` = 2 was chosen since the length of the infectious period. Different sizes N were
chosen to allow for a sensitivity analysis, given that the three models present major differences in
infectivity (p), mean neighbourhood size (

〈
dn
〉
, hence the number of effective contacts per week)
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and noise (ξ1 and ξ52), as can be seen in Tab. A.1.

All the transitions shown occur for almost identical values of the social norm σ, suggesting that
variance of the noise parameter ξ52 has minimal effect over the dynamics of V3. The dynamics of
model V2 was shown to be sensitive to slight change in the perceived vaccine risk κ when σ = 0
(Fig. 2.2). Models V1 (Fig. A.2) and V3 (Fig. A.1) feature similar instabilities to model V2.

For model V3, Fig. A.1 shows that a slight increase in κ from 0 (Fig. A.1(b,e)) to 0.01 (Fig. A.1(a,d))
pushes the system to an anti-vaccine consensus when ξ52 = 1× 10−4, while a decrease to −0.01
(Fig. A.1(c,f)) gives a shift to the opposite pro-vaccine consensus. The similarity in behaviour
(trends in the time series) between the panels of Figs. A.1(a-f) (ξ52 = 1× 10−4), A.1(g-l)
(ξ52 = 1× 10−3) and A.1(m-r) (ξ52 = 1× 10−2) show that increasing the noise present in the
model doesn’t affect this sensitivity. Similar observations hold for model V1 (Fig. A.2) for both
infectivities p = 0.2 (A.2(a-f)) and p = 0.8 (A.2(g-l)), where slight changes to the perceived
vaccine risk κ result in either anti-vaccine (A.2(a,g)) or pro-vaccine (A.2(c,i)) consensus. One
difference between models V2 and V3 is the phenomena of Fig. A.2(d,j), where the increase in p
from 0.2 to 0.8 has negatively affected the physical vaccination rate; increasing the infection rate
from p = 0.2 to p = 0.8 takes [Vp] from 0.85 (A.1d) to 0.5 (A.1j).

We stated in Section 2.3 (Results) that the parameter ranges κ ∈ [−1, 1], σ ∈ [0, 3] sufficiently
captured transitions in both dynamics as well as the behaviours of the EWS; this is shown for
model V2 in Fig. A.3, for models V1 and V3 in Fig. A.4.
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(a) ξ52 = 1× 10−4, κ = 0.01 (b) ξ52 = 1× 10−4, κ = 0 (c) ξ52 = 1× 10−4, κ = −0.01

(d) ξ52 = 1× 10−4, κ = 0.01 (e) ξ52 = 1× 10−4, κ = 0 (f) ξ52 = 1× 10−4, κ = −0.01

(g) ξ52 = 1× 10−3, κ = 0.005 (h) ξ52 = 1× 10−3, κ = 0 (i) ξ52 = 1× 10−3, κ = −0.005

(j) ξ52 = 1× 10−3, κ = 0.005 (k) ξ52 = 1× 10−3, κ = 0 (l) ξ52 = 1× 10−3, κ = −0.005

(m) ξ52 = 1× 10−2, κ = 0.02 (n) ξ52 = 1× 10−2, κ = 0 (o) ξ52 = 1× 10−2, κ = −0.02

(p) ξ52 = 1× 10−2, κ = 0.02 (q) ξ52 = 1× 10−2, κ = 0 (r) ξ52 = 1× 10−2, κ = −0.02

Figure A.1: With no social norm (σ = 0), varying noise parameter ξ52 does not affect model V3
when the perceived vaccine risk κ is close to zero. These time series demonstrate the sensitivity of
the social dynamics of model V3 to small changes in is κ for various values of ξ52. [Vp] represents
the number of vaccinated agents in each time step, and [Vs] gives the number of pro-vaccine
agents.
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(a) p = 0.2, κ = 0.03125 (b) p = 0.2, κ = 0 (c) p = 0.2, κ = −0.03125

(d) p = 0.2, κ = 0.03125 (e) p = 0.2, κ = 0 (f) p = 0.2, κ = −0.03125

(g) p = 0.8, κ = 0.03125 (h) p = 0.8, κ = 0 (i) p = 0.8, κ = −0.03125

(j) p = 0.8, κ = 0.03125 (k) p = 0.8, κ = 0 (l) p = 0.8, κ = −0.03125

Figure A.2: In the absence of a social norm (σ = 0), increasing the infectivity of the disease
does not alter the sensitivity of the social dynamics of model V1 (similar to models V2 and
V3), but does change the vaccination rate when κ becomes positive. [Vp] represents the number
of vaccinated agents in each time step, and [Vs] gives the number of pro-vaccine agents. Each
panel presents time series from 20 realisations of the Trends of the EWS’ equilibrium parameter
combination.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure A.3: Contour plots of the subregion (κ, σ) ∈ [−1, 0.2]× [0, 2.4] of the parameter space of
model V2, showing correspondence between the values of

〈
Vs
〉

and
〈
Vp
〉
, and the proposed EWS.

(a)
〈
Vs
〉
. (b)

〈
Vp
〉
. (c) M. (d)

〈
N,N

〉
. (e)

〈
N,Vs

〉
. (f)

〈
Vs, Vs

〉
. (g)

〈
I
〉
. (h)

〈
C
〉
.
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(a)
〈
Vp
〉

(b)
〈
Vs
〉

(c)
〈
Vp
〉

(d)
〈
Vs
〉

(e)
〈
Vp
〉

(f)
〈
Vs
〉

(g)
〈
Vp
〉

(h)
〈
Vs
〉

(i)
〈
Vp
〉

(j)
〈
Vs
〉

Figure A.4: Contour plots of
〈
Vp
〉

and
〈
Vs
〉

for the models V1 (a-b) and V3 (c-j) showing that
the investigated parameter regions capture the transitions Ks and Kp. (a-b) model V1, p = 0.8.
(c-d) ξ52 = 0.1. (e-f) ξ52 = 0.01. (g-h) ξ52 = 0.001. (i-j) ξ52 = 0.0001.

187



A.2.2 Intertransition distance Kp −Ks

(a) Social dynamics
〈
Vs
〉
,
〈
N
〉

and physical dynamics
〈
R
〉
,
〈
Vp
〉
.

(b) Join counts:
〈
N,N

〉
,
〈
N,Vs

〉
,
〈
Vs, Vs

〉
.

(c)
〈
N,Vs

〉
alone.

(d) Mutual information
〈
M
〉
.

(e) Moran’s I
〈
I
〉
.

(f) Geary’s C
〈
C
〉

Figure A.5: Trends of the EWS’ equilibrium values in model V1 with infectivity p = 0.2 ap-
proaching the transitions of the social and physical dynamics Ks and Kp (marked by the first
and second black lines) respectively, demonstrating the signals given by each tool with respect to
the perceived vaccine cost κ. The intervals in each panel represent one standard deviation of the
mean equilibrium value in each stochastic realisation of the model.
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(a) Social dynamics
〈
Vs
〉
,
〈
N
〉

and physical dynamics
〈
R
〉
,
〈
Vp
〉
.

(b) Join counts:
〈
N,N

〉
,
〈
N,Vs

〉
,
〈
Vs, Vs

〉
.

(c)
〈
N,Vs

〉
alone.

(d) Mutual information
〈
M
〉
.

(e) Moran’s I
〈
I
〉
.

(f) Geary’s C
〈
C
〉
.

Figure A.6: Demonstration of the trends of the EWS of model V1 with infectivity p = 0.8
approaching the transitions of the social and physical dynamics Ks and Kp (marked by the first
and second black lines) respectively, demonstrating the signals given by each tool with respect to
the perceived vaccine cost κ. The intervals in each panel represent one standard deviation of the
mean equilibrium value in each stochastic realisation of the model.
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Models V1 and V3 demonstrate a vanishing intertransition distance similar to model V 2 in
Fig. A.7, where the distance between the dotted and dashed vertical lines (representing Ks and
Kp) in Fig. 2.3a, left decreases as the social norm gets stronger in Fig. 2.3a, right; this shrinking
distance between the two vertical lines can also be seen in Figs. A.5 and A.6 by comparing the
first and second columns. The independence of these trends in the intertransition distance to the
difference in the three models was expected; they follow immediately from previous discussions
in which few substantive differences were seen. Since this is then a property of the dynamics
themselves, any discussion about the interpretation and validity of the EWS will be largely
identical among the three models.
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(a) V1, p = 0.2.

(b) V1, p = 0.8.

(c) V3, ξ52 = 0.1.

(d) V3, ξ52 = 0.01.

(e) V3, ξ52 = 0.001.

(f) V3, ξ52 = 1× 10−4.

Figure A.7: Demonstration of the vanishing intertransition distance Kp − Ks (purple) for all
models, with inset graphs showing the estimated locations of Ks (insets, blue) and Ks (insets,
red).
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A.2.3 Multiple definable transitions Ks and Kp

A difficulty with the interpretation of Fig. 2.5a (and all panels of Fig. A.7) is the case where
there are multiple social (Ks) and physical (Kp) transitions. The definitions of Ks and Kp given
in Section 2.3 (Results) rely on finding the earliest κ value where

〈
Vs
〉
∼
〈
N
〉

and
〈
Vp
〉
∼
〈
R
〉

respectively. For model V2, this problem occurs in the range σ ≥ 1 (Fig. A.8). Of particular
interest are the trends in the proposed EWS; for V2 the behaviour of

〈
M
〉

(mutual information)
in this range is shown in column (B) of figure Fig. A.8. There is still a change in trend approaching
the transitions Ks and Kp (which occur almost simultaneously), as shown in Fig. 2.5a (Kp ∼ Ks

when σ > 1); since both the warnings from the EWS and the definitions of Ks and Kp depend
on the lowest κ values, the EWS still give early warning signals despite this.

Figure A.10m details the number of transitions in the physical (#Kp, red) and social (#Ks, blue)
dynamics per value of the social norm σ; the height of each bar represents the total number of
transitions for the corresponding value of the social norm σ, and the length of each coloured
portion of the bar represents the number of transitions of that type. For example, there are 23
definable transitions when σ = 1.875; 15 are social transitions (the length of the red portion of
that bar), and the remaining 8 transitions occur in the physical dynamics (23−15 = 8). For model
V2, multiple transition (#K∗ > 1) occurs in the region σ > 1. However, our description of a
transition also counts occurrences where the two opposing curves merely touch each other (as best
as can be determined from an ensemble of stochastic realisations, rather than the result of some
rigorous analysis), thereby possibly inflating the value of the number of meaningful transitions
producing changes in the vaccination rate or aggregate sentiment.

A similar observation can be made with model V1 in the range σ > 0.5 (Fig. A.9); the trends of the
dissimilar join count

〈
N,Vs

〉
(column B) still demonstrate statistically significant change before

either transition despite the irregularity of the trends shown (as compared to those occurring in
the region σ ≥ 0.75). Fig. A.9(i-j) show a marked increase in the intertransition distance (the gap
between the two horizontal lines), also shown by the sudden change in trend shown in Fig. A.7a
in the range 2 < σ < 2.125. This represents a region of the parameter space of model V1 where
the physical transition Kp lagged the social transition Ks far more than expected due to the
occurrence of a social transition without an accompanying physical transition. This assertion is
supported by Fig. A.9m, where the bar chart detailing the numbers of transitions shows that
there are many more social transitions than physical transitions (#Ks > #Kp). Previously,
even though there were multiple transitions Ks and Kp, the first social transition was always a
reliable predictor of the first physical transition; here, there are multiple social transitions before
the first physical transition is seen; this presents a different opportunity for the misjudgement
of the proximity of a vaccine crisis, since this may lead to a large lead distance in parameter
regions presenting otherwise smaller lead distances. For example, if we expect a vaccine crisis
to follow soon after a shift in aggregate sentiment, then a detected social transition may lead to
time-sensitive preparations for a vaccine crisis that occurs far later than expected.
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A B

(a) σ = 1.125 (b) σ = 1.125

(c) σ = 1.5. (d) σ = 1.5.

(e) σ = 1.625. (f) σ = 1.625.

(g) σ = 1.75 (h) σ = 1.75

(i) σ = 1.875. (j) σ = 1.875.

(k) σ = 2.125. (l) σ = 2.125.

Figure A.8: For model V2, multiple potential transitions Ks and Kp can be identified for σ > 1,
introducing the opportunity for false warnings unless the earliest possible transition is chosen (in
either dynamic), as was done in the main text. This region features erratic behaviour of

〈
M
〉

in
regions featuring multiple physical and social transitions. The vertical dotted and dashed vertical
lines give the locations of Ks and Kp respectively.
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A B

(a) σ = 1.1.59375 (b) σ = 1.1.59375

(c) σ = 1.8125. (d) σ = 1.8125.

(e) σ = 1.96875. (f) σ = 1.96875.

(g) σ = 2.03125 (h) σ = 2.03125

(i) σ = 2.125. (j) σ = 2.125.

(k) σ = 2.375. (l) σ = 2.375.

Figure A.9: Similar to model V2 (Fig. A.8), multiple social (#Ks > 1) and physical (#Kp > 1)
transitions occur in realisations of model V1 (p = 0.2) at σ ≥ 0.75, again providing opportunities
for false warnings. Erratic behaviour of

〈
N,Vs

〉
occurs in regions featuring multiple physical and

social transitions. (i-j) present an instance of multiple social transitions occurring before the first
physical transition, presenting an opportunity for the misjudgement of the proximity of a vaccine
crisis. The dotted and dashed vertical lines give the location of Ks and Kp respectively.
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(a) Model V1.

(b) Model V2.

Figure A.10: Bar chart showing the number of physical (#Kp, red) and social (#Ks, blue)
transitions with respect to the value of σ.

In sum, all the values of Ks and Kp estimated in this study may not represent the earliest definable
transition in the dynamics, but rather the first definable transition within the range −1 ≤ κ ≤ 1.
As will be shown in App. A.2, different models (specifically different values of N) show a wider
range of transitions of the values Ks and Kp.
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A.2.4 Change point testing and warnings of the EWS

Since 15 − 20 realisations were run for each unique tuple of parameter values, averaged time
series were made by finding the mean of all time series at each time step t. For each value of σ,
a corresponding κ-series was formed by assembling the means of the last 500 time steps of each
averaged time series for each value of κ. Per value of σ, each change point test was applied to the
κ-series as follows: the series for each EWS was ordered in increasing values of κ, and the change
point test was applied to successively longer segments of the sequence (of length at least 3, starting
from the first value κ = −1) until a predicted change point B∗ was returned with a certainty
p < 0.05. Four change point tests were used: the Buishand test[90], the Pettitt test[347, 441], the
Lanzante test[319] (used in the main text), and the Standard Normal Homogeneity test[14, 15]
(hereon referred to as the SNHT ).

This method can be justified by the various panels of Fig. A.11, which show how the warnings of
each EWS depend on the length of the κ-series of values the test was applied to. For example,
the purple line and points in panel Fig. A.11l show the warning given by the

〈
N,N

〉
count under

the SNHT test for model V2. Starting (in all instances) from
〈
Vs
〉
κ=−1

, applying the SNHT to
a series of length 4 gives a statistically insignificant result (p ≈ 0.8); there is a corresponding
purple filled point at n = 4 on the x-axis, and the same explanation holds for 4 ≤ n ≤ 7. For
n = 8 on the x-axis (representing a sequence of length 8), we see the first statistically significant
result under the SNHT (p = 0.02), represented by the start of the purple line.

As progressively longer sequences of
〈
Vs
〉
κ≥−1

are used (n ↑), the SNHT continues to give predic-

tions with p values under the 0.05 threshold of significance (as evidenced by the continuation of
the line in Fig. A.11l, rather than the sudden appearance of filled points), though SNHTσ

{〈
Ψ
〉}

itself is increasing. Interestingly, as n → 30, SNHTσ

{〈
Ψ
〉}

approaches the value of Ks, and the
other lead distances (BRσ{Ψ} in red, Lanσ{Ψ} in blue and Petσ{Ψ} in green) also show the same
increasing trend in the final moments before the arrival of Ks; all panels of Fig. A.11 end at
n = 32, since this is when the end point of the κ-series used for each change point test reaches or
passes Ks (there is little use here for predictions of Ks given after the transition has occurred).

For model V2, comparing the panels of column C of Fig. A.11 shows that the
〈
N,N

〉
and〈

N,Vs
〉

counts (Figs. A.11l and o respectively) give the earliest significant warnings under the
SNHT (as seen from the early start of the solid purple lines representing SNHTσ

{〈
Ψ
〉}

). Con-
versely, the latest warnings come from

〈
Vs, Vs

〉
(Fig. A.11r) under all four change point tests,

since the earliest significant result occurs at n = 18. This seems to be due to the relative value of
the join counts;

〈
Vs, Vs

〉
= O(N2) while

〈
N,N

〉
and

〈
N,Vs

〉
are both small before Ks, so that the

establishment of a trend on
〈
N,N

〉
and

〈
N,Vs

〉
will be “more noticeable” than that for

〈
Vs, Vs

〉
.

While the signals of the join counts
〈
N,N

〉
,
〈
N,Vs

〉
and

〈
Vs, Vs

〉
increase under all change point

tests as Ks is approached (Fig. A.11(j-r)),
〈
C
〉
;
〈
I
〉

and
〈
M
〉

remain relatively stable as more
terms in the κ-series are added to the test (Fig. A.11(a-i)). Our interpretation of this difference
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A B C

Figure A.11: Trends of the predicted warnings of the EWS with respect to the length of the κ-
series used. Within each panel, solid lines are estimated change points with p < 0.05 (significant),
while insignificant estimates (p ≥ 0.05) are represented by filled points. Ks is indicated by a blue
dashed horizontal line in each panel. (column A) model V1 with p = 0.2. (column B) model V1
with p = 0.8. (column C) model V2. (a-c) the application of the change point tests to the κ-series
for Geary’s C

〈
C
〉
. (d-f) Mutual information

〈
M
〉
. (g-i) Moran’s I

〈
I
〉
. (j-l) Anti-vaccine similar

join count
〈
N,N

〉
. (m-o) Dissimilar join count

〈
N,Vs

〉
. (p-r) Pro-vaccine similar join count〈

Vs, Vs
〉

.
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is neither positive or negative, since a stable prediction inspires trust in the result, whereas the
establishment of an increasing trend in the warnings of the join counts seems a better indicator of
the proximity of Ks than the estimate given by the test (this is a case where the initial value and
trends of the result are both useful). Since this increase in the warnings of

〈
N,N

〉
,
〈
N,Vs

〉
and〈

Vs, Vs
〉

(Fig. A.11(j-r)) persists under all the change point tests used, this trend can be seen
as a property of the κ-series of the join counts and hence the join counts themselves as EWS
rather than a spurious observation. A similar analysis holds for model V1 in columns (A) and
(B) of Fig. A.11, where again

〈
N,N

〉
and

〈
N,Vs

〉
give the earliest warnings of the approach of

Ks (Fig. A.11(j,m)) for p = 0.2 and (A.11(k,n)) for p = 0.8.

Measurements of the lead distance for transitions Ks under the Lanzante test are shown in Figs.
2.5(c-d); here, we show the lead distances given by other change point tests used on the EWS
for model V2. Comparing the panels of Figs. A.12, A.13 and A.14, all EWS retain their validity
under the various tests, except for the consistent failure of the EWS at higher values of σ for
both models (V1 and V2) previously attributed to insufficient range of κ as σ increased. Of all
the EWS, the performance of

〈
Vs, Vs

〉
and

〈
C
〉

vary the most with respect to the test used for
both V1 and V2. For instance, under the SNHT (Fig. A.12g),

〈
C
〉

is the only failure of all the
EWS, with a negative lead distance in the range 1.75 ≤ σ ≤ 2.5 (i.e. the warning occurs post-
transition). Also of note is that for model V2, the Lanzante test (Fig. A.12(c-d)) not only gives
the highest maximum lead distances for all the EWS, but also yields a consistently larger average
lead distance than the other change point tests. It appears that the Lanzante test provides the
largest lead distances in the range σ < 2 for V2.

Similar observations cannot be made for model V1, however; important differences in Fig.s A.13
and A.14 are that

〈
Vs, Vs

〉
is also now inconsistent (along with

〈
C
〉
), with earlier failure than in

model V2 at σ = 1.21875 as well as σ > 1.90625 when p = 0.2. This can possibly be attributed
to behaviours due to the different parameter values of the models, and or the finer resolution of
σ values in model V1 as compared to model V2; values of σ increase in increments of 0.03125 in
model V1, whereas the finest increment of σ is 0.125 in model V2. Similar to model V2,

〈
I
〉

and〈
N,Vs

〉
perform well under all the change tests with relatively high lead distances when p = 0.2,

but
〈
N,N

〉
now also gives a lead distance comparable to the two previous EWS. Finally, there

is not as much variation in maximum lead distance per EWS for model V1 as there is for model
V2; maximum lead distances for the best EWS (

〈
M
〉
,
〈
N,Vs

〉
and

〈
Vs, Vs

〉
) are all around 1.

198



A
B

(a
)

B
u

is
h

an
d

ra
n

ge
te

st
ap

p
li

ed
to

th
e

E
W

S
.

(b
)

B
u

is
h

a
n

d
ra

n
g
e

te
st

a
p

p
li

ed
to

m
o
d

el
va

ri
a
b

le
s.

(c
)

L
an

za
n
te

te
st

ap
p

li
ed

to
th

e
E

W
S

.
(d

)
L

a
n

za
n
te

te
st

a
p

p
li

ed
to

m
o
d

el
va

ri
a
b

le
s.

(e
)

P
et

ti
tt

te
st

ap
p

li
ed

to
th

e
E

W
S

.
(f

)
P

et
ti

tt
te

st
a
p

p
li

ed
to

m
o
d

el
va

ri
a
b

le
s.

(g
)

S
N

H
T

ap
p

li
ed

to
th

e
E

W
S
.

(h
)

S
N

H
T

a
p

p
li
ed

to
m

o
d

el
va

ri
a
b

le
s.

F
ig

u
re

A
.1

2
:

T
h

e
le

a
d

d
is

ta
n

ce
s

gi
ve

n
b
y

d
iff

er
en

t
ch

an
ge

p
oi

n
t

d
et

ec
ti

on
te

st
s

fo
r

m
o
d

el
V

2.
T

h
e

p
an

el
s

of
(c

o
lu

m
n

A
)

gi
v
e

th
e

re
su

lt
s

o
f

th
e

te
st

s
ap

p
li

ed
to

th
e

ea
rl

y
w

ar
n

in
g

si
gn

al
s

(E
W

S
),

an
d

(c
o
lu

m
n

B
)

fo
r

th
e

m
o
d

el
d

y
n

a
m

ic
s.

(a
-b

)
B

u
is

h
a
n

d
ra

n
g
e

te
st

.
(c

-d
)

L
an

za
n
te

te
st

.
(e

-f
)

P
et

ti
tt

te
st

.
(g

-h
)

S
ta

n
d

ar
d

n
o
rm

al
h

om
o
ge

n
ei

ty
te

st
.

199



A
B

(a
)

B
u

is
h

an
d

ra
n
g
e

ap
p

li
ed

to
th

e
E

W
S

.
(b

)
B

u
is

h
a
n

d
ra

n
g
e

te
st

a
p

p
li

ed
to

m
o
d

el
va

ri
a
b

le
s

(c
)

L
an

za
n
te

te
st

ap
p

li
ed

to
th

e
E

W
S

.
(d

)
L

a
n

za
n
te

te
st

a
p

p
li

ed
to

m
o
d

el
va

ri
a
b

le
s.

(e
)

P
et

ti
tt

te
st

ap
p

li
ed

to
th

e
E

W
S

.
(f

)
P

et
ti

tt
a
p

p
li

ed
to

m
o
d

el
va

ri
a
b

le
s.

(g
)

S
N

H
T

ap
p

li
ed

to
th

e
E

W
S
.

(h
)

S
N

H
T

a
p

p
li
ed

to
m

o
d

el
va

ri
a
b

le
s.

F
ig

u
re

A
.1

3:
T

h
e

le
a
d

d
is

ta
n

ce
s

gi
ve

n
b
y

d
iff

er
en

t
ch

an
ge

p
oi

n
t

d
et

ec
ti

on
te

st
s

fo
r

m
o
d

el
V

1,
w

it
h

in
fe

ct
iv

it
y

p
=

0
.2

.
S

im
il

ar
to

F
ig

.
A

.1
2,

th
e

p
an

el
s

of
c
o
lu

m
n

A
gi

ve
th

e
re

su
lt

s
of

th
e

te
st

s
ap

p
li

ed
to

th
e

ea
rl

y
w

ar
n

in
g

si
gn

a
ls

(W
S

),
an

d
c
o
lu

m
n

B
fo

r
th

e
m

o
d

el
d

y
n

am
ic

s.
(a

-b
)

B
u

is
h

an
d

ra
n

ge
te

st
.

(c
-d

)
L

an
za

n
te

te
st

.
(e

-f
)

P
et

ti
tt

te
st

.
(g

-h
)

S
ta

n
d

a
rd

n
or

m
al

h
om

og
en

ei
ty

te
st

.

200



A
B

(a
)

B
u

is
h

an
d

ra
n

ge
te

st
ap

p
li

ed
to

th
e

E
W

S
.

(b
)

B
u

is
h

a
n

d
ra

n
g
e

te
st

a
p

p
li

ed
to

m
o
d

el
va

ri
a
b

le
s.

(c
)

L
an

za
n
te

te
st

ap
p

li
ed

to
th

e
E

W
S

.
(d

)
L

a
n

za
n
te

te
st

a
p

p
li

ed
to

m
o
d

el
va

ri
a
b

le
s.

(e
)

P
et

ti
tt

te
st

ap
p

li
ed

to
th

e
E

W
S

.
(f

)
P

et
ti

tt
te

st
a
p

p
li

ed
to

m
o
d

el
va

ri
a
b

le
s.

(g
)

S
N

H
T

ap
p

li
ed

to
th

e
E

W
S
.

(h
)

S
N

H
T

a
p

p
li
ed

to
m

o
d

el
va

ri
a
b

le
s.

F
ig

u
re

A
.1

4:
T

h
e

le
a
d

d
is

ta
n

ce
s

gi
ve

n
b
y

d
iff

er
en

t
ch

an
ge

p
oi

n
t

d
et

ec
ti

on
te

st
s

fo
r

m
o
d

el
V

1,
w

it
h

in
fe

ct
iv

it
y

p
=

0
.8

.
S

im
il

ar
to

F
ig

.
A

.1
3,

th
e

p
an

el
s

of
c
o
lu

m
n

A
gi

ve
th

e
re

su
lt

s
of

th
e

te
st

s
ap

p
li

ed
to

th
e

ea
rl

y
w

ar
n

in
g

si
gn

a
ls

(W
S

),
an

d
c
o
lu

m
n

B
fo

r
th

e
m

o
d

el
d

y
n

am
ic

s.
(a

-b
)

B
u

is
h

an
d

ra
n

ge
te

st
.

(c
-d

)
L

an
za

n
te

te
st

.
(e

-f
)

P
et

ti
tt

te
st

.
(g

-h
)

S
ta

n
d

a
rd

n
or

m
al

h
om

og
en

ei
ty

te
st

.

201



A.2.5 Reversibility of the κ-series of the EWS

Figure A.15(column A) plots the skewness γ1 of each trend with respect to the intertransition
distance Kp − Ks (column B) plots the skewness γ1 against the strength of the social norm σ;
(column B) suggests a relationship between the skewness γ1 and the social norm σ, though it may
not be causative. As an example of skewness in the case of a weaker social norm σ ≈ 0, trends
in the mutual information

〈
M
〉

(Fig. A.15b), Moran’s I
〈
I
〉

(Fig. A.15d) and Geary’s C
〈
C
〉

(Fig. A.15e) are symmetric (i.e., small γ1) for small σ. As σ increases however, the direction of κ
becomes vital to the calculation and interpretation of warning signals; for example, (Fig. A.15j)
shows a clear change in the skewness of the dissimilar join count

〈
N,Vs

〉
as σ → 0.25. This

change is visible moving between Figs. 2.3e (σ = 0) and 2.3f (σ = 0.25), where the trend becomes
more left-skewed.

Figure A.16 shows the skewness of the κ-series of the EWS with respect to the social norm
σ for models V1 with p = 0.2 (Fig. A.16(column A)), p = 0.8 (Fig. A.16(column B)) and
V2 (Fig. A.16(column C)). This quantification of the change of the shape of the κ-series with
increasing σ suggests a concern of directionality in the application and interpretation of the EWS;
there is no hint that these EWS would be of comparable effectiveness if the model had dynamics
such that the derived κ-series were reversed.
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A B

(a) V2, Mutual information. (b) V1, Mutual information.

(c) V2, Moran’s I. (d) V1, Moran’s I.

(e) V2, Geary’s C. (f) V1, Geary’s C

(g) V2, anti-vaccine similar join count. (h) V1, anti-vaccine similar join count.

(i) V2, dissimilar join count. (j) V1, dissimilar join count.

(k) V2, pro-vaccine similar join count. (l) V1, pro-vaccine similar join count.

Figure A.15: The skewness of the EWS’ trends varies more consistently with the strength of the
social norm σ (column B) than with the intertransition distance Kp −Ks (column A) for model
V2. κ series such as those shown in Figs. 2.3 , A.8 and A.9 are generally asymmetric about both
Ks and Kp. 203



A B C

(a) V1, with p = 0.2. (b) V1, with p = 0.8. (c) V2, with p = 0.2.

(d) V1, with p = 0.2. (e) V1, with p = 0.8. (f) V2, with p = 0.2.

(g) V1, with p = 0.2. (h) V1, with p = 0.8. (i) V2, with p = 0.2.

(j) V1, with p = 0.2. (k) V1, with p = 0.8. (l) V2, with p = 0.2.

(m) V1, with p = 0.2. (n) V1, with p = 0.8. (o) V2, with p = 0.2.

(p) V1, with p = 0.2. (q) V1, with p = 0.8. (r) V2, with p = 0.2.

Figure A.16: Trends of the skewness γ1 of the κ-series with respect to the strength of the social
norm σ for models V1 with p = 0.2 (column A), p = 0.8 (column B) and V2 (column C). (a-c)
give the skew of

〈
C
〉
, (d-f)

〈
I
〉
, (g-i)

〈
M
〉
, (j-l)

〈
N,N

〉
, (m-o)

〈
N,Vs

〉
, (p-r)

〈
Vs, Vs

〉
.
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A.2.6 Further comparisons of the EWS’ performance

We use the same definitions and measures of performance χ∗min maximin and χ∗max (maximax)
given in Section 2.3 (Results). Fig. 2.7 shows the results of maximax and maximin comparisons of
the performances of the EWS and S/I classes of signals using the Lanzante change point detection
test for model V2. Figure A.17 shows this comparison using all various change point detection
tests (Buishand, Lanzante, Pettitt and Standard normal homogeneity tests), and Fig. A.18 makes
these comparisons for model V1. Points falling in the green-shaded regions represent σ values
at which either the best-performing (largest lead distance) EWS outperforms all model vari-
ables (χ∗max > ε∗max), or where the worst-performing EWS still outperforms the worst-performing
variable (χ∗min > ε∗min). Points in the red-shaded region represent the reverse.

Both Fig. A.17 and Fig. A.18 show equal performance of the EWS and the model variables in
both maximin and maximax comparisons, though all panels of Fig. A.18 together show many
more instances of equal maximum lead distances (|χ∗max| < ε∗max, red points and curve) among
the two classes in model V1 than in V2 Fig. A.17. Also important is the changes in area of the
green- and red-shaded regions among the panels of Fig. A.18 and Fig. A.17; for instance, a large
green-shaded region (such as in Fig. A.18g) shows that the maximum lead distance of the EWS
is much larger than that of the model variables for those σ values for which the EWS perform
better.
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(a) Buishand range change point test.

(b) Lanzante change point test.

(c) Pettitt change point test.

(d) Standard normal homogeneity test.

Figure A.17: Comparisons of the performance of EWS (WS) and model dynamics (S/I) for
model V2 with respect to four change point detection tests. In each panel, χ∗min is represented by
a blue curve through blue points, and χ∗max by a red curve through red points. The green-shaded
region represents the region where either the worst-performing EWS (that is, giving the smallest
lead distance) still outperforms with worst-performing model variable (χ∗min > ε∗min) under the
specific change point test, or where the best-performing EWS outperforms the best-performing
model variable (χ∗max > ε∗max). The inset table gives the ratios of social norm σ values for which
χ∗∗ < −ε∗∗ (neg), |χ∗∗| < ε∗∗ (zero) and χ∗∗ > ε∗∗ (pos).
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Figure A.18: Similar to Fig. A.17, we show comparisons of the performance of EWS (WS) and
model dynamics (S/I) for model V1 with respect to four change point detection tests: (a,e)
Buishand range test (BR). (b,f) Lanzante test (Lan). (c,g) Pettitt test (Pet). (d,h) Standard
normal homogeneity test (SNHT). (a-d) infectivity p = 0.2, (e-h) infectivity p = 0.8. In each
panel, χ∗min is represented by a blue curve through blue points, and χ∗max by a red curve through
red points. The green-shaded region represents the region where either the worst-performing
EWS (that is, giving the smallest lead distance) still outperforms with worst-performing model
variable (χ∗min > ε∗min) under the specific change point test, or where the best-performing EWS
outperforms the best-performing model variable. The inset table gives the ratios of social norm
σ values for which χ∗∗ < −ε∗∗ (neg), |χ∗∗| < ε∗∗ (zero) and χ∗∗ > ε∗∗ (pos).
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A.2.7 EWS performance per σ value

In Sec. 2.3, the EWS’ performance under the Lanzante test (for model V1) was compared by
examining the proportion of social norm σ values for which each EWS gave the greatest or
smallest lead distances of all EWS. Here we do the same for other change point tests.

Figure A.19 shows the performance of each EWS tested under each of the Lanzante (Fig. A.19b),
Pettitt (Fig. A.19c), Buishand range (Fig. A.19d) and the SNHT (Fig. A.19a) change point
tests. As can be seen by comparing the different length of the bars corresponding to each EWS,
performance varies depending on the change point test used. For instance, mutual information〈
M
〉

gives the most maxima (largest lead distances, green bar) under the SNHT (Fig. A.19a, 59%)
than it does under the Pettitt test (Fig. A.19c, 55%), say; however it gives its smallest proportion
of minima (smallest lead distances, red bar) under the Pettitt test than the SNHT. Across all
panels of Fig. A.19, the anti-vaccine similar join count

〈
N,Vs

〉
shows the worst performance, with

its ratio of maxima (green bar) peaking under the SNHT test (Fig. A.19a, 23%), with the least
ratio of minima (red bar) occurring under the Pettitt test (Fig. A.19a, 14%).

Figure A.20 compares the proportions of maxima (largest lead distances) and minima (smallest
lead distances) for all the EWS of model V1 for different change point tests. As was noted in
Fig. A.19, performance varies quite a bit between EWS depending on the test. Generally, the
dissimilar join count

〈
N,Vs

〉
appears to be the strongest-performing EWS, with consistently high

proportions of maxima (green bars) and low proportions of minima (red bars) across all change
point tests and infectivities shown in Fig. A.20.

Figure A.21 represents the performance of each EWS at each σ value, and allows us to see whether
good or bad performance of each EWS can be restricted to any specific subset of σ values. These
grid diagrams are related to the panels of Fig. A.19 as follows; per EWS and change point test,
the length of the green bar in the relevant panel of Fig. A.19 gives the proportion of green
tiles appearing in the relevant row of a panel in Fig. A.21; the same relationship holds for the
proportion of minima (red bars) in the panels of Fig. A.19 and the proportion of red tiles in the
relevant row of Fig. A.19. Similar to the observations made in Sec. 2.3, there seems to be no
emergent pattern in σ values for which either maxima or minima occur for each EWS. The most
appropriate description of each EWS seems to be the overall proportion of maxima and minima.

Again, this time for model V1 (Fig. A.22), there is no pattern in each EWS’ row of any panel
suggesting that any EWS is best used on a specific subset of σ values. The only new information
gained here deals with the nature of lead distances given; for example, we can observe that the
Geary’s C

〈
C
〉

EWS performs badly for σ ≥ 1.5 under the SNHT (Fig. A.22a(left)), Pettitt
(Fig. A.22b(left)) and Buishand range (Fig. A.22d(left)) change point tests.
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(a) Standard normal homogeneity test.

(b) Lanzante test.

(c) Pettitt test.

(d) Buishand range test.

Figure A.19: Bar charts showing the ratios of σ values for which each EWS gave the largest
(green bars) and smallest (red bars) lead distance of all EWS for model V2.
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(a) Standard normal homogeneity test.

(b) Pettitt test.

(c) Lanzante test.

(d) Buishand range test.

Figure A.21: Grid plots showing the relative performance of each EWS with respect to the value
of the social norm σ for model V2. Green tiles represent a maximum for the EWS (i.e., it gives
the largest lead distance of all the EWS), red tiles represent a minimum (that is, the smallest lead
distance of all EWS), yellow tiles indicate that all EWS have the same value, grey tiles represent
neutral lead distances (neither maximum nor minimum). Black tiles represent failed warnings
(negative lead distances), and white tiles represent indeterminate values.
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Model EWS
〈
M
〉 〈

C
〉 〈

I
〉 〈

N,N
〉 〈

N,Vs
〉 〈

Vs, Vs
〉

SNHT +41 -13 -13 -22 +27 +27
Lan +36 -13 -27 -27 +27 +18
Pet +46 -22 -4 -64 +55 +45

V2

BR +36 +4 +18 -32 +14 +4

SNHT +36 -16 -12 -55 +28 +26
Pet +38 -20 -10 -61 +56 +54
Lan +35 -15 -6 -49 +36 +45

V1
p = 0.2

BR +32 -10 -19 -61 +37 +25

SNHT +48 -14 -15 -65 +52 +41
Pet +40 -26 -15 -45 +52 +66
Lan +40 -26 -15 -65 +67 +78

V1
p = 0.8

BR +41 -28 -18 -66 +48 +48

Table A.2: Table showing the differences of the proportions of maxima and minima for each
EWS, with respect to model and change point test. Green-highlighted cells represent the change
point detection test giving the best performance of each EWS. Choices of best EWS were not
made when all results were negative.

A.2.8 A grand comparison

Taking only the general performance of the EWS into account, a metric can be derived from
Figs. A.19 and A.20 by simply subtracting the proportion of minima from the proportion of
maxima for each EWS, per change point test and model. The resulting differences can be seen in
Tab A.2. Green-highlighted cells serve to indicate the change point detection test corresponding
to the best performance of the EWS. Where an EWS has equal scores under different tests,
preference is given to the test that resulted in less minima (instances of smallest lead distance).
Note that ‘best tests’ were not chosen for for the anti-vaccine similar join count

〈
N,N

〉
in all

models because all scores were negative; this signals fallibility of this EWS, and therefore we
discourage its use. This is also the reason why a best test was not chosen for Geary’s C

〈
C
〉

and Moran’s I
〈
I
〉

for model V1. The poor performance of the anti-vaccine similar join count
continues the theme of the Results (2.3), whereas the confinement of the validity of Geary’s C
and Moran’s I to the larger model V1 gives us pause as related to future use.
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A.3 Summation

In sum, the analysis and comparison of the results of these models allow the conclusion that the
behaviours of the EWS are largely independent of the the parameters that differed between the
models. Our main results were the reconfirmation of

〈
N,Vs

〉
and mutual as the leading EWS

of the study through their high lead distances, a new attention paid to the use of
〈
N,N

〉
as an

indicator of transition in V1, and the confirmation of vanishing intertransition distance inherent
to the model (a cause for concern, as stated in Sec. 2.4 (Discussion)). However, it appears that
individual lead distance of each EWS is subject to the size of the network, the change point
detection tests used (each pros and cons [175]), and the (method of) application of these tests
for determining the exact location of the first warning given by each EWS.
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Appendix B

Community structure predicts social
shifts

B.1 Lead distance plots

The figures in this section show the lead distances given by various EWS with respect to the
social norm σ with different disease infectivities p and the four different change point tests. In all
figures: panels (a) represent the standard normal homogeneity test (SNHT), panels (b) represent
the Lanzante test, panels (c) the Pettitt test and panels (d) the Buishand range test. Left panels
give results for disease infectivity p = 0.2, while panels on the right represent infectivity p = 0.8.
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B.2 EWS performance grid plots

All the figures in this section are grids showing the relative performance of each EWS with
various change point detection tests and disease infectivities. Green tiles denote the social norm
(σ) values for which the EWS gave the highest lead distance, red tiles represent the smallest
lead distance, grey tiles represent lead distances that are neither maxima nor minima and yellow
tiles show where all EWS gave the same lead distances. Black squares represent failed warnings
(negative lead distances) and white tiles represent undefined values (no lead distance). In all
figures in this section, panels (a) represents the infectivity p = 0.2 and panels (b) represent the
infectivity p = 0.8.
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(a) Infectivity p = 0.2.

(b) Infectivity p = 0.8.

Figure B.8: Performance of each EWS per σ value with the SNHT.
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(a) Infectivity p = 0.2.

(b) Infectivity p = 0.8.

Figure B.9: Performance of each EWS per σ value with the Lanzante test.
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(a) Infectivity p = 0.2.

(b) Infectivity p = 0.8.

Figure B.10: Performance of each EWS per σ value with the Pettitt test.
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(a) Infectivity p = 0.2.

(b) Infectivity p = 0.8.

Figure B.11: Performance of each EWS per σ value with the Buishand range test.
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B.3 EWS performance bar charts

Grid showing the absolute and relative performance of each EWS. Green tiles denote the social
norm σ values for which the EWS gave the highest lead distance, red tiles represent the smallest
lead distance, grey tiles represent lead distances that are neither maxima nor minima and yellow
tiles show where all EWS gave the same lead distances. Black squares represent failed warnings
(negative lead distances) and white tiles represent undefined values (no lead distance). In all
figures in this section, panels (a) represents the infectivity p = 0.2 and panels (b) represent the
infectivity p = 0.8.
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Appendix C

Spatial EWS are robust to delay and
network sampling
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Appendix D

Model-based projections for
COVID-19 outbreak size

D.1 Sensitivity Analysis

D.1.1 Varying α0 and BH

The parameter βH represents the rate of interaction in the household, and thereby regulates
the spread of the disease. For each value of α0, increasing the rate of interaction in the home
βH increases the number of infections produces for both RA (Supplementary Fig. D.1) and ST
(Supplementary Fig. D.2) allocation. In most scenarios (7:3 RA being one of the exceptions),
varying α0 (for constant βH) produces a small increase in the number of infections produced
throughout the simulation. The rate of increase also depends on the number of children in the
classroom; for the scenario 31:1 RA, increasing βH from 0.0545 to its baseline value 0.109 almost
triples the number of total infections.

D.1.2 Varying α0 and Rinit

The parameter Rinit refers to the proportion of individuals we presume are recovered from some
previous period of infection spread, while α0 is responsible for the rate of infection in common
areas relative to the infection rate in the classroom. All other parameters are set to the baseline
values given in Supplementary Tab. 5.2. These parameters were varied together by 50% in either
direction. In Supplementary Figs. D.3 and D.4, increasing values of Rinit lower both the means
and standard deviations of the total number of infections for each value of α0. Also, for each
value of Rinit, the total number of infections produced increases with α0 . This shows opposing
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Figure D.1: Results of varying the parameters βH and α0 by (50% each) on the total number of
produced infections for RA allocation. Error bars denote a single standard deviation of the data
used, and boxed text shows the corresponding mean and standard deviation.
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Figure D.2: Results of varying the parameters βH and α0 by (50% each) on the total number of
produced infections for ST allocation. Error bars denote a single standard deviation of the data
used, and boxed text shows the corresponding mean and standard deviation.
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interaction between increasing common area infection and increasing initial recovery rate; one
increases infection and the other lowers it (respectively).

D.1.3 Varying α0 and λi

From Tab. 5.2, parameter λi varies the amount of community infection in the model (infection
due to other sources not modelled, such as public transport); be reminded that we assumed that
the rate of community infection is effectively twice the baseline value for those individuals in the
model not attending the school.

For each value of α0 in Supplementary Fig. D.6, the total number of infections produced in the
simulation increases with λ in each scenario with random allocation (RA), and also with grouping
by household (ST, Supplementary Fig. D.5). For each λ, there is no consistent relationship
between the numbers of infections and the value of α0. This result is intuitive; though the
effect is not pronounced, increasing the rate of community infection increases the total number
of infections in each tested scenario.
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Figure D.3: Results of varying the parameters Rinit and α0 by (50% each) on the total number
of infections for ST allocation. Text in boxes denotes the mean and standard deviation of the
data corresponding to the parameters and error bars denote a single standard deviation of the
data used.
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Figure D.4: Results of varying the parameters Rinit and α0 by (50% each) on the total number
of infections for RA allocation. Text in boxes denotes the mean and standard deviation of the
data corresponding to the parameters and error bars denote a single standard deviation of the
data used.
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Figure D.5: Results of varying the parameters λi and α0 by (50% each) on the total number of
infections for ST allocation. Text in boxes denotes the mean and standard deviation of the data
corresponding to the parameters and error bars denote a single standard deviation of the data
used.
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Figure D.6: Results of varying the parameters λi and α0 by (50% each) on the total number of
infections for ST allocation. Text in boxes denotes the mean and standard deviation of the data
corresponding to the parameters and error bars denote a single standard deviation of the data
used.
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Glossary

Agent-based model (ABM) A computational model of a process where discrete units with
individual attributes (called agents) are allowed to interact with each other and some en-
compassing environment within certain imposed requirements. Unlike EBMs, ABMs are
perceived as being more ‘realistic’ due to the elimination of the well-mixing and homo-
geneity assumptions. However, due to their complexity, these models usually don’t allow
closed-form solutions, instead yielding approximations of key statistics.

Assortative mixing A pattern of connection on a network in which agents choose to connect
to other agents with a shared characteristic (in this case, identical vaccine opinion).

Basic reproductive ratio Denoted R0, this represents the expected number of infections di-
rectly resulting from initial infected case in a population of susceptible individuals in the
absence of public health intervention. Also called the basic reproductive number.

Bistability The existence of two stable equilibria in a dynamical system.

Case importation The process by which infectious cases arrive in the studied region from
elsewhere.

Change point A member of a set of definable points in a time series, stochastic process or other
ordered sequence of values at which the probability distribution changes significantly.

Change point detection test These are statistical tests used to find change points in time
series or ordered series of values. In this thesis, we use the Lanzante, Pettitt, Buishand
range tests (Chs. 2 and 3) and SNHT (Ch. 4). We also restrict investigation to the first
change point found in a κ-series.

Cohort A group of students that will have face-to-face teaching and online classes in alternating
weeks.

Community An interconnected group of like-minded agents, here treated as a connected com-
ponent of agreeing agents in the network.
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Community spread The spread of infection in a region without known contact with some
infected person.

Contact tracing The process of identifying and tracking individuals who have been exposed to
an infected case, usually with the aim of slowing or preventing further infection and disease
transmission.

Core Describes an agent in an opinion community whose neighbours all share their opinion. A
group of core agents is mainly referred to as an echo chamber.

Correlation length The length over which two microscopic variables are related on a thermo-
dynamic system. Specifically, let x and y be two lattice sites and s(x) and s(y) be their spins
(respectively). Correlation length is given by the term 〈s(x) · s(y)〉, giving the ‘strength’ of
the correlation between the spins at sites x and y.

COVID-19 A disease caused by the SARS-CoV-2 coronavirus. Commonly called simply coron-
avirus, it was first identified in December 2019 in China and has since spread to all countries
around the world.

Critical point The point at which a physical system undergoes a second-order phase transition.

Critical slowing down The phenomenon by which the relaxation time (the time taken by the
system to return to equilibrium after some small perturbation) increases as a ccritical point
is approached.

Critical transition A (sudden) transition when a physical system undergoes a second-order
phase transition around a critical point.

Early warning signal (EWS) A statistically significant, recognisable and characteristic be-
haviour known to precede critical transition in dynamical systems.

Echo chamber Generally defined as a well connected groups of people promoting and reinforcing
the same bias, or alternately, a closed subnetwork within a larger structure. In Ch. 3, it
refers to a set of mutually connected agents with only like-minded neighbours. Also called
a tribe. Demonstrated in Fig. 3.1.

Effective contact An interaction between agents that allows for interaction and/or communi-
cation of a vaccine opinion.

Effective interaction See effective contact.

Effective reproduction number The actual number of secondary infections produced by some
primary case. Represented by Re.
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Epidemic A loosely defined term referring to a rapidly spreading infection. Discussed at length
and defined in Sec. 1.2.

Equation-based model (EBM) A system of deterministic (ordinary and/or partial) differen-
tial equations used to model the spread of disease in some population. The simplicity of
the models sometimes allows for the derivation of exact symbolic results such as the basic
reproductive ration R0. However, such models inherently carry heavy assumptions such as
homogeneity (individuals are assumed to be identical).

Equilibrium In this thesis, we state that a simulation as reached (computational) equilibrium
when the model’s output variables over the last 500 time steps have a standard deviation
of less than 0.05% of their respective maximum values. Stated in Sec. 1.4.

Erdős-Rényi An algorithm for the construction of random graphs G(N, p) where an edge is
connected between each distinct pair of nodes in the graph with probability p. The value
of p controls the number of connected components of the graph; the formation of the graph
is similar to a bond percolation of the complete graph KN .

Filter bubble The isolation and reinforcement of ideas stemming from the personalisation of
results given by algorithms and online search engines.

Geary’s C A measure of spatial correlation using the difference in opinion score between con-
nected agents.

Global clustering coefficient (GCC) A graph-theoretic measure of clustering describing the
number of closed triplets in the network.

Graph diameter The longest distance between two vertices present in a graph, or equivalently
the maximum eccentricity of the vertices of all the nodes in a graph.

Hub A massively popular node, disproportionately likely to be connected to a large number of
nodes, usually not reciprocally.

Intertransition distance The gap Kp−Ks, there Ks and Kp represent transition points in the
social and infection dynamics respectively.

Join count The number of connections between patches (locations) of different types in a spatial
system. Usually the patches are placed into two attributive classes, generally termed black
(B) and white (W ). The number of black-white joins will be denoted [B,W ], for example.
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Lead distance The gap Ks − ΠΨ, where ΠΨ represents some κ value at which we can assert
that a signal occurs in some sequence Ψ of κ values (usually a change point obtained from
some change point detection test). Defined in Ch. 2 as Ks − Lanσ{Ψ} and in Chs. 3 and 4
as Ks − SNHTσ{

〈
Ψ
〉
}.

Maximax The strategy of choosing the ‘best of the best’ option. In this case, a maximax decision
would be max (max(λ)), where λ = K∗ −ΠΨ is some lead distance.

Maximin The strategy of choosing the ‘best of the worst’ option. In this case, a maximin
decision would be max (min(λ)), where λ = K∗ −ΠΨ is some lead distance.

Meme A piece of information that is spread from person to person within a culture [146].
On social media, this term usually refers to an image, usually with superimposed, non–
informative text.

Model variables A model variable is any of the outputs
〈
S
〉

(mean number of susceptible
agents),

〈
I
〉

(mean number of infected/infectious agents),
〈
R
〉

(recovered agents),
〈
Vp
〉

(vaccinated agents),
〈
N
〉

(anti-vaccine agents),
〈
H
〉

(vaccine hesitant agents) and
〈
Vs
〉

(pro-vaccine agents).

Modularity A graph-theoretic quantification of the degree of segmentation present in a network.
Denoted Q.

Moran’s I A quantification of spatial correlation measuring the correlation between values of
adjacent sites/locations in a spatial structure. Denoted I.

Mutual Information An entropy-based quantification of the ‘shared information’ between two
processes. Specifically, it measures the increase in certainty gained about one process by
monitoring another. Denoted M.

Network Alternately a system of interacting individuals or the structure of such interconnec-
tivity. Usually represented as a graph, where the agents in the population are represented
as nodes and edges represent any effective contact between agents in the model dynamics.

Performance penalty A quantification Pen of the effect of network sampling on the perfor-
mance of EWS with respect to the proportion β of the network sampled.

Peripheral Describes an agent in an opinion community that is connected to at least one neigh-
bour with a differing opinion.

Phase transition The process by which a physical system moves from one stable state to an-
other. Phase transitions can either be discontinuous (first-order) or continuous (second-
order) depending on the dynamics of the model studied.
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Preferential attachment A process by which some attribute is distributed among a set of
individuals according to the amount already accrued individually. In networks, this is the
process by which new agents added to the network are more likely to become connected to
other agents with already large neighbourhood sizes.

Random assignment (RA) The classroom assortment strategy where classes are filled ran-
domly (with no concern for the students’ family groups).

Realisation A single instance of a simulation with a specific set of parameter values, with the
collection of all realisations called an ensemble. Most results presented in this thesis are
ensemble means, representing the average of the results given by all realisations run with
the desired set of parameter values. Our ensemble sizes range from 20 to 50 (so that most
data points presented here are the means of at least 20 values).

Scale-free network A theoretical model of a preferentially attached network whose degree dis-
tribution (asymptotically) follows a power law.

Second-order Second-order phase transitions occur when some microscopic variable of the sys-
tem varies continuously (with a discontinuous second derivative), unlike first-order transi-
tions where a microscopic variable varies discontinuously (discontinuous first derivative).

Secondary attack rate The probability of an infected case occurring within some specific group
(such as a family unit).

Siblings together (ST) The classroom assortment strategy where student are assigned to class-
rooms in a way that keeps siblings together (as far as possible).

Small world A theoretical network structure characterised by high degrees of local clustering
and small diameter. More rigorously, the expected network distance between two nodes L
varies with the logarithm of the network size D, so that L ∝ lnN . Also referred to as a
small world network.

Triad A pairwise connected group of three (3) agents (triplet, K3) with the same opinion.

Triad census A count of the connected opinion triads of agents in the (social) network.

Triadic closure The process of creating a triad from a dyad by connecting the two unconnected
members. Demonstrated in Fig. 4.8.

Vaccine “A suspension of live (usually attenuated) or inactivated microorganisms (e.g. bacteria
or viruses) or fractions thereof administered to induce immunity and prevent infectious
diseases and their sequelae.” [101]
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Vaccine hesitancy “... delay in acceptance or refusal of vaccination despite availability of
vaccination services.” [410]

Watts-Strogatz An algorithm for the construction of random graphs WS(N,K, β), where a
ring lattice is first constructed by joining each node to its K

2 left and right neighbours.
Each edge connecting each node to its right neighbours is then rewired with probability β
without edge duplication. The produced graphs feature small world properties such as a
high degree of clustering and small average path lengths. β = 0 gives a ring lattice, while
β = 1 gives an Erdős-Rényi graph.
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