
Dynamic Resource Provisioning and
Scheduling in SDN/NFV-Enabled

Core Networks

by

Kaige Qu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2020
© Kaige Qu 2020

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Amiya Nayak
Professor, School of Electrical Engineering & Computer Science
University of Ottawa

Supervisor: Weihua Zhuang
Professor, Department of Electrical and Computer Engineering
University of Waterloo

Internal Member: Oleg Michailovich
Associate Professor
Department of Electrical and Computer Engineering
University of Waterloo

Internal Member: Xiaodong Lin
Adjunct Associate Professor
Department of Electrical and Computer Engineering
University of Waterloo

Internal-External Member: Jun Liu
Associate Professor, Department of Applied Mathematics
University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

The service-oriented fifth-generation (5G) core networks are featured by customized
network services with differentiated quality-of-service (QoS) requirements, which can be
provisioned through network slicing enabled by the software defined networking (SDN) and
network function virtualization (NFV) paradigms. Multiple network services are embedded
in a common physical infrastructure, generating service-customized network slices. Each
network slice supports a composite service via virtual network function (VNF) chaining,
with dedicated packet processing functionality at each VNF. For a network slice with a tar-
get traffic load, the end-to-end (E2E) service delivery is enabled by VNF placement at NFV
nodes (e.g., data centers and commodity servers) and traffic routing among correspond-
ing NFV nodes, with static resource allocations. To provide continuous QoS performance
guarantee over time, it is essential to develop dynamic resource management schemes for
the embedded services experiencing traffic dynamics in different time granularities during
virtual network operation. In this thesis, we focus on processing resources and investi-
gate three research problems on dynamic processing resource provisioning and scheduling
for embedded delay-sensitive services, in presence of both large-timescale traffic statistical
changes and bursty traffic dynamics in smaller time granularities.

In problem I, we investigate a dynamic flow migration problem for multiple embedded
services, to accommodate the large-timescale changes in the average traffic rates with av-
erage E2E delay guarantee, while addressing a trade-off between load balancing and flow
migration overhead. We develop optimization problem formulations and efficient heuristic
algorithms, based on a simplified M/M/1 queueing model with Poisson traffic arrivals.
Motivated by the limitations of Poisson traffic model, in problem II, we restrict to a local
network scenario and study a dynamic VNF scaling problem based on a real-world traffic
trace with nonstationary traffic statistics in large timescale. Under the assumption that the
nonstationary traffic trace can be partitioned into non-overlapping stationary traffic seg-
ments with unknown change points in time, a change point detection driven traffic param-
eter learning and resource demand prediction scheme is proposed, based on which dynamic
VNF migration decisions are made at variable-length decision epochs via deep reinforce-
ment learning. The long-term trade-off between load balancing and migration overhead is
studied. A fractional Brownian motion (fBm) traffic model is employed for each detected
stationary traffic segment, based on properties of Gaussianity and self-similarity of the
real-world traffic. In Problem III, we focus on a sufficiently long time duration with given

v

VNF placement and stationary traffic statistics, and study a delay-aware VNF scheduling
problem to coordinate VNF scheduling for multiple services, which achieves network utility
maximization with timely throughput guarantee for each service, in presence of bursty and
unpredictable small-timescale traffic dynamics, while using a realistic state-of-the-art time
quantum (slot) for CPU processing resource scheduling among VNF software processes.
Based on the Lyapunov optimization technique, an online distributed VNF scheduling al-
gorithm is derived, which greedily schedules a VNF at each NFV node based on a weight
incorporating the backpressure-based weighted differential backlogs with the downstream
VNF, the service throughput performance indicated by virtual queue lengths, and the
packet delay.

With the proposed dynamic resource management framework, resources can be effi-
ciently and fairly allocated to the embedded services, to avoid congestion and QoS degra-
dation in the presence of traffic dynamics. This research provides some insights in dynamic
resource management for delay-sensitive services in a virtualized network environment with
CPU processing resources.

vi

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Professor Weihua Zhuang,
for her professional guidance, constant support, and invaluable suggestions throughout the
research work and preparation of this thesis. Her rigorous academic attitude and insightful
thoughts always inspire me to do in-depth thinking on my research. Her warmth encourage-
ments help me to face challenges, overcome frustration and keep going with determination.
It was my great honor to study and work under her supervision and guidance.

My sincere appreciation also goes to Professor Xuemin (Sherman) Shen for his great
support and invaluable suggestions. Many thanks for the wonderful talks by Professor
Shen on emerging research topics, research attitudes and presentation skills, which greatly
help me to enrich my knowledge and vision.

Specially, I would like to thank Professor Jun Liu, Professor Oleg Michailovich, Profes-
sor Xiaodong Lin, and the external examiner, Professor Amiya Nayak, for devoting their
invaluable time and serving on my PhD thesis examining committee. Their suggestions,
comments and valuable questions have greatly helped me to improve the quality of my
thesis.

I would like to thank my colleagues from the BBCR-SDN research sub-group: Dr.
Qiang Ye, Dr. Omar Alhussein, Si Yan, Dr. Phu Thinh Do, Dr. Junling Li, Jiayin Chen,
Dr. Weisen Shi, Dr. Peng Yang, Dr. Shan Zhang, for their inspiring suggestions, warmth
encouragement, and precious friendship. I wish to extend my appreciation to all the other
members in the BBCR group with whom I have enjoyed every moment.

Finally, I wish to thank my dearest mother, father, and brother, for their love, support
and encouragement. A special thank to my dear husband Wei for his ever-growing love,
support, and patience. It is them who make me determined to move forward and never
fear hardships on my way.

vii

Dedication

To my beloved parents, Chunfang Yao and Xiangxue Qu,
and my dearest husband, Wei Zhang.

ix

xv

xvii

xix

xxi

Table of Contents

List of Figures

List of Tables

 Acronyms

List of Symbols

1 Introduction 1

1.1 SDN/NFV-Enabled Core Networks . 1

1.1.1 NFV Infrastructure Domain . 2

1.1.2 Tenant Domain . 4

1.1.3 SDN-NFV Integration . 5

1.2 Research Objectives . 5

1.2.1 Dynamic Flow Migration for Embedded Services 7

1.2.2 Dynamic Resource Scaling for VNF over Nonstationary Traffic . . . 10

1.2.3 Delay-Aware VNF Scheduling For Network Utility Maximization . . 12

1.3 Research Contributions . 14

1.3.1 Dynamic Flow Migration for Embedded Services 15

1.3.2 Dynamic Resource Scaling for VNF over Nonstationary traffic . . . 15

xi

List of

1.3.3 Delay-Aware VNF Scheduling For Network Utility Maximization . . 17

1.4 Thesis Outline . 18

2 Dynamic Flow Migration for Embedded Services 19

2.1 System Model . 19

2.1.1 Services . 20

2.1.2 Abstraction of Virtual Resource Pool 20

2.1.3 Processing Resource Sharing . 21

2.1.4 Reconfiguration Overhead . 22

2.2 Problem Formulation . 23

2.3 Optimal MIQCP Solution . 27

2.4 Heuristic Solution . 31

2.4.1 Overview . 32

2.4.2 Redistribution of Hop Delay Bounds 34

2.4.3 Migration Decision . 37

2.4.4 Coordination with Threshold Update 37

2.4.5 Complexity Analysis . 39

2.5 Performance Evaluation . 40

2.5.1 Load Balancing and Reconfiguration Overhead Trade-off 40

2.5.2 Average End-to-End Delay Performance 41

2.5.3 Comparison between MIQCP and Heuristic Solutions 43

2.5.4 Convergence of Heuristic Algorithm 45

2.6 Summary . 46

xii

3 Dynamic Resource Scaling for VNF over Nonstationary Traffic: A Learn-
ing Approach 47

3.1 System Model . 48

3.1.1 Nonstationary Traffic Model . 48

3.2 Traffic Parameter Learning and Resource Demand Prediction 51

3.2.1 Bayesian Online Change Point Detection 51

3.2.2 Traffic Parameter Learning . 54

3.2.3 Resource Demand Prediction . 56

3.3 Deep Reinforcement Learning for Dynamic VNF Migration 57

3.3.1 VNF Migration Problem Formulation 57

3.3.2 Penalty-Aware Deep Q-Learning Algorithm 61

3.4 Performance Evaluation . 63

3.5 Summary . 72

4 Delay-Aware VNF Scheduling For Network Utility Maximization 73

4.1 System Model . 74

4.1.1 Services . 74

4.1.2 Network Model . 74

4.1.3 Queueing Model . 75

4.2 Problem Formulation . 78

4.3 Online Distributed VNF Scheduling Algorithm 83

4.4 VNF Scheduling Algorithm with Packet Rushing 88

4.4.1 Packet Rushing Analysis . 88

4.4.2 Modified VNF Scheduling Algorithm 92

4.5 Performance Evaluation . 95

4.6 Summary . 102

xiii

5 Conclusions and Future Research Directions 103

5.1 Conclusions . 103

5.2 Future Research Directions . 105

References 107

Appendix A 117

Appendix B 119

Appendix C 121

xiv

List of Figures

1.1 An extended NFV MANO architecture with SDN integration. 3

1.2 An illustration of the timescales for dynamic resource management. 7

1.3 Workflow of dynamic VNF scaling over nonstationary traffic. 16

2.1 A physical network with embedded SFCs. 20

2.2 A CPU polling scheme with two flows. 21

2.3 An illustration of flow migration and state transfer. 22

2.4 Flowchart of the heuristic algorithm for dynamic flow migration. 33

2.5 Four SFC categories based on NFV node loading factors. 35

2.6 Performance of three flow migration strategies with respect to λ(3)(k). . . . 41

2.7 Average E2E delay without flow migration. 42

2.8 Average E2E delay comparison with flow migration. 42

2.9 Costs with respect to weight ω1 in objective function, for ω2 = 2ω3. 43

2.10 Total cost with respect to the number of SFCs. 44

2.11 Running time with respect to the number of SFCs. 45

2.12 Threshold update in the heuristic algorithm, for ηU = 0.95. 46

3.1 An illustration of nonstationary traffic model in different timescales. 50

3.2 An illustration of run length growth. 52

3.3 The extracted HTTP trace trace in four days. 64

xv

3.4 Quantile-quantile (QQ) plots for different timescales. 64

3.5 Results of change point detection for a nonstationary traffic segment. . . . 65

3.6 Learned traffic parameters and predicted resource demands for daily traffic. 67

3.7 Evaluation of traffic parameter learning accuracy for daily traffic. 67

3.8 Distribution of VNF packet processing delay for both the synthesized traffic
and the real traffic. 68

3.9 QoS performance comparison between the fBm model and M/M/1 model
based resource demand prediction schemes. 69

3.10 Episodic average reward versus the episode number for the three deep Q-
learning algorithms. 70

3.11 Training loss of the evaluation Q networks. 72

3.12 Average training loss after convergence. 72

4.1 An illustration of delay-aware virtual packet processing queueing model for
service r with Hr = 3 and Mr = 6. 77

4.2 Virtual queues W (r)(τ) and F (r)(τ) for service r ∈ R. 80

4.3 Flowchart of the proposed online distributed VNF scheduling algorithm. . 84

4.4 An illustration of actual packet processing rate υ(r)
h (t) if υ(r)

h−1(t) is a constant. 90

4.5 An illustration of actual packet processing rate υ(r)
h (t) if υ(r)

h−1(t) is a decreas-
ing step function. 92

4.6 Trade-off between total utility and average total backlogs with respect to ϑ
(ρ = 3). 97

4.7 Performance comparison between the proposed and benchmark algorithms. 98

4.8 Performance comparison without and with packet rushing with the increase
of resource availability. 99

4.9 Average timely delivery ratio with different QoS constraints. 100

4.10 Performance of the proposed algorithm at different time slot length T (ρ =
2). 101

xvi

List of Tables

3.1 Traffic sets with different randomness levels 63

3.2 List of parameters in deep Q-learning . 63

3.3 Traffic parameters and resource demands of simulated fBm traffic 66

4.1 Simulation settings for virtual network topology 95

4.2 Traffic sets for VNF scheduling simulation 95

4.3 Default parameters in VNF scheduling . 96

xvii

Acronyms

5G fifth generation
BOCPD Bayesian online change point detection
CFS completely fair scheduler
CPU central processing unit
DQN deep Q-network
EMBB enhanced mobile broadband
FBm Fractional Brownian motion
GPR Gaussian process regression
GPS generalized processor sharing
HFM hybrid flow migration
HTTP Hypertext Transfer Protocol
IDS intrusion detection system
InP infrastructure provider
LBFM load balancing flow migration
LRD Long-range dependence
MANO management and orchestration
MDP Markov decision process
MIQCP mixed integer quadratically constrained programming
MMTC massive machine-type communication
MMPP Markov-modulated Poisson process
MOFM minimum overhead flow migration
NAT network address translator
NFVI NFV infrastructure
NFVO NFV orchestrator
NSO network service orchestrator

xix

List of

OS operating system
QQ quantile-quantile
RLS real time scheduler
RO resource orchestrator
SFC service function chain
SLA service level agreement
TE traffic engineering
URLLC ultra reliable low latency communication
VIM Virtualized infrastructure manager
VNF virtual network function
VNFM VNF manager
VR virtual reality

xx

List of Symbols

E Expectation over the randomness in packet arrivals, VNF scheduling, and
packet processing

L(θ) Loss function
M Big-M constant
P Probability or likelihood
1{·} The indicator function which is equal to 1 only if the condition inside the

bracket is true
A The set of service access nodes
B The set of bottleneck NFV nodes for each SFC with largest per-hop delay

along the E2E path
Ĉ(k) The estimated k-th change point in hour
CM(k) The k-th change point in the number of medium time intervals
CS(k) The k-th change point in the number of small time intervals
E The set of virtual links
Hr The set containing the index of VNFs of service r ∈ R, i.e., {1, · · · , Hr}
H(r)

1 (τ) Subset of VNFs in service r ∈ R including all the unscheduled VNFs
during time slot τ

H(r)
2 (τ) Subset of VNFs in service r ∈ R including all the scheduled VNFs with

packet rushing opportunity during time slot τ
H(r)

3 (τ) Subset of VNFs in service r ∈ R including all the scheduled VNFs without
packet rushing opportunity during time slot τ

M(r)
h Set of packet residual lifetime at VNF V

(r)
h without packet rushing

M̃(r)
h Set of packet residual lifetime at VNF V

(r)
h with packet rushing

N The set of NFV nodes in a core network
NC A set of candidate NFV nodes in a local network segment

xxi

NO The set of overloaded NFV nodes
NU The set of underloaded NFV nodes
NU,O The set of underloaded NFV nodes with SFC category II
NU,U The set of underloaded NFV nodes without SFC category II
Q(sk, ak) Q function
R The set of services
Vn A set containing the index of all VNFs placed at NFV node n ∈ N , with

(r, h) ∈ Vn denoting VNF V
(r)
h

Γ Number of time slots for VNF scheduling
∆ (Θ(τ)) A one-step conditional Lyapunov drift for time slot τ
Θ(τ) The combined queue vector at time slot τ , i.e., Θ(τ) =

[q(τ),W (τ),H(τ)]
Λ The long-term average traffic rate in packet/s for a certain VNF
Ξ An auxiliary continuous decision variable (MIQCP)
Υl Threshold for the absolute difference between the most probable run

lengths at two medium time intervals
Υd Threshold for the normalized absolute difference between the estimated

mean plus standard deviation corresponding to the most probable run
lengths

Φ(r)
1 (τ) A function for service r ∈ R in the upper bound of the conditional

Lyapunov drift-plus-penalty during time slot τ
Φ(r)

2 (τ) A function for service r ∈ R in the upper bound of the conditional
Lyapunov drift-plus-penalty during time slot τ

Ψ Covariance matrix
Ωr The maximal tolerable service downtime for SFC r ∈ R
αQ Learning rate in deep-Q learning
α̃n(k) A positive vertical delay scaling factor less than 1 which is applied to hop

delay bounds of multiple SFCs belonging to category III on NFV node
n ∈ NU,U during interval k

xxii

β̃(r)(k) A horizontal delay scaling factor larger than 1 which is applied to hop
delay bounds of SFC r in category III on NFV nodes in NU,O during
interval k

γ Discount factor
δj TD-error of transition j
ε1 A constant with 0 < ε1 � 1
ε2 Exploring probability in deep Q-learning
ε2,∆ A step size for decreasing exploration probability ε2
ε The maximum delay violation probability (or packet dropping ratio)
εr The maximum packet dropping ratio of service r ∈ R
ζ(k) Auxiliary nonnegative continuous decision variable set (MIQCP)
η(k) The maximum NFV node loading factor during interval k
ηn(k) The resource loading factor of NFV node n during interval (epoch) k
ηBn (k) Background resource loading factor of NFV node n ∈ NC at epoch k
ηrhn (k) A ratio between resources occupied by VNF V

(r)
h and resource capacity

of NFV node n during interval k
ηth The threshold for NFV node loading factor
η∆ Step size for updating ηth
ηε∆ A constant denoting the required precision of η(k) and ηth
ηU An upper limit for the maximum NFV node loading ratio without penalty
θ Weights of evaluation DQN
θ̂ Weights of target DQN
ϑ A utility importance parameter that balances the importance between

utility maximization and queue backlog reduction
ι(k) Auxiliary nonnegative continuous decision variable set (MIQCP)
λ(k) FBm traffic parameter for the k-th stationary traffic segment: mean

packet arrivals in each small time interval
λ(r)(k) The average Poisson packet arrival rate in packet/s for SFC r ∈ R during

interval k
µ Mean of packet arrivals in a medium time interval
ν Standard deviation of packet arrivals in a medium time interval

xxiii

ξ(k) Auxiliary binary decision variable set (MIQCP)
π(s) Policy
$(k) Auxiliary nonnegative continuous decision variable set (MIQCP)
ρ The resource overprovisioning ratio used in the simulations for VNF

scheduling
%(k) Auxiliary nonnegative continuous decision variable set (MIQCP)
σ(k) FBm traffic parameter for the k-th stationary traffic segment: standard

deviation of packet arrivals in each small time interval
ς(k) Auxiliary nonnegative continuous decision variable set (MIQCP)
τ Index of the τ -th VNF scheduling time slot
υ

(r)
h,max The maximum packet processing rate (in packet/s) for VNF V

(r)
h

υ
(r)
h (t) The actual packet processing rate (in packet/s) for VNF V

(r)
h at time

t ∈ [0, T] for time slot τ , where t is reset to 0 at the beginning of time
slot τ

υ
(r)
h A vector of actual packet processing rates for VNF V

(r)
h

φ(·) A strictly increasing and concave utility function of throughput
ϕ A weight for the virtual queue length W (r)(τ) in the Lyapunov function

L (Θ(τ)), i.e., ϕ = [maxr∈R ar]
[
maxr∈R,h∈Hr P

(r)
h

]
χ̄r The infinite-horizon time average expectations of χ(r)(τ) for service r ∈

R, i.e., χ̄r = limΓ→∞
1
Γ
∑Γ−1
τ=0 E

{
χ(r)(τ)

}
χ(r)(τ) An auxiliary decision variable for service r ∈ R at time slot τ in the VNF

scheduling algorithm, with χ(r)(τ) ∈ [0, A(r)
max]

ψ Covariance function
ω1, ω2, ω3 Three weighting factors to control the priority of the three objectives in

Problem I, with ω1 + ω2 + ω3 = 1
ω(C) A weighting factor in cost ck
ω(TD) A parameter controlling the relative importance of TD error and penalty

in priority pj
ω

(r)
h,U(τ) The scheduling weight for one urgent packet at VNF V

(r)
h during time

slot τ

xxiv

ω
(r)
h,N(τ) The scheduling weight for one non-urgent packet at VNF V

(r)
h during

time slot τ
ω

(r)
h (τ) The VNF scheduling weight for VNF V

(r)
h during time slot τ without

packet rushing
ω̃

(r)
h (τ) The VNF scheduling weight for VNF V

(r)
h during time slot τ with packet

rushing
A(r)(τ) The number of packets that arrive at the τ -th time slot for service r ∈ R
A(t) The cumulative packet arrivals before small time interval t
Brh
n,n′(k) The transmission resource overhead for transferring the state of VNF

V
(r)
h from NFV node n to NFV node n′ during time interval k

Br A constant related to the parameters of service r ∈ R in the upper bound
of the conditional Lyapunov drift-plus-penalty

Cn The CPU processing capacity of NFV node n ∈ N in cycle/s
Cn The CPU processing resource budget at NFV node n ∈ N in cycle per

time slot
D Delay bound in the QoS requirement
Dr The average end-to-end delay requirement for SFC r ∈ R
Drh(k) The per-hop delay requirement for VNF V

(r)
h during interval k

D
(r)
h (τ) The number of packets dropped from the queue of VNF V

(r)
h during time

slot τ
Ek The prediction error of t0 traffic samples in the k-th stationary traffic

segment
F (r)(τ) Virtual queue length for service r ∈ R at the beginning of time slot τ
G A graph representing a network of NFV nodes, edge switches, and virtual

links G = {N ∪ A, E}
H(k) Hurst parameter for the k-th stationary traffic segment
Hr The number of VNFs in service r ∈ R
Ie,1n A binary parameter to indicate whether n ∈ N ∪A is the starting point

of virtual link e ∈ E
Ie,2n A binary parameter to indicate whether n ∈ N ∪ A is the ending point

of virtual link e ∈ E

xxv

J Batch size
K Number of learning steps in an episode
Kθ Number of learning steps to replace θ̂ by θ
L (Θ(τ)) The Lyapunov function which represents a scalar metric of congestion

level in the queueing system at the beginning of time slot τ
M Size of replay memory
Mr The E2E deadline (in number of time slots) for each packet of service

r ∈ R
Nm(k) The total number of VNF migrations during interval k
Ne(k) The total number of extra virtual links for flow rerouting during interval

k

O(k) The objective function for interval k
P

(r)
h The processing density of VNF V

(r)
h in cycle/packet

P rh
n The processing density of VNF V

(r)
h at NFV node n ∈ N in cycle/bit

Pr The aggregate processing density (in cycle/packet) of service r ∈ R, i.e.,
Pr = ∑

h∈Hr P
(r)
h

Pτ An instantaneous VNF scheduling problem for time slot τ
P∞ The stochastic VNF scheduling problem with decision variables for Γ

(Γ→∞) time slots
Q

(r)
h,U(τ) The total numbers of urgent packets in the queue of VNF V

(r)
h during

time slot τ
Q

(r)
h,m(τ) The length of conceptual queue Q(r)

h,m (or the number of packets with a
residual lifetime m ∈M(r)

h at VNF V
(r)
h) at the beginning of time slot τ

R
(r)
h (τ) The number of rushing packets processed by VNF V

(r)
h during time slot

τ

R
(r)
h,m(τ) The number of rushing packets with residual lifetimem ∈ M̃(r)

h processed
by VNF V

(r)
h during time slot τ

R Processing resource demand in packet per time unit (small time interval)
R(k) Processing resource demand in packet/s of the k-th detected stationary

traffic segment

xxvi

Rn The maximum supporting processing rate (in packet/s) of NFV node n
S

(r)
h,N(τ) The number of non-urgent packets processed at VNF V (r)

h of service r ∈ R
during time slot τ

S
(r)
h,U(τ) The number of urgent packets processed at VNF V

(r)
h of service r ∈ R

during time slot τ
S

(r)
h (τ) The number of packets processed from the queue of VNF V

(r)
h during

time slot τ
S

(r)
h,m(τ) The number of packets with residual lifetimem ∈M(r)

h that are processed
at VNF V

(r)
h during time slot τ

Ŝ
(r)
h,m(τ) The number of packets with residual lifetimem ∈M(r)

h that are processed
at VNF V

(r)
h during time slot τ if VNF V

(r)
h is scheduled

S̃
(r)
h (τ) The actual number of packets processed by VNF V

(r)
h during time slot τ

with the consideration of packet rushing
S̃

(r)
h,m(τ) The actual number of packets with residual lifetime m ∈ M̃(r)

h processed
by VNF V

(r)
h during time slot τ with the consideration of packet rushing

Srhn (k) The processing rate (in packet/s) allocated to VNF V
(r)
h by NFV node n

during interval k in Problem I
T Length of a VNF scheduling time slot in second
TM Length of a medium time interval in second
TS Length of a small time interval in second
Tn The CPU polling period in NFV node n ∈ N
U

(r)
h (k) The state size (in bit) of VNF V

(r)
h in time interval k

V
(r)
h The h-th (h ∈ Hr) VNF in service r ∈ R

W The switching time overhead in a CPU polling period
W (r)(τ) Virtual queue length for service r ∈ R at the beginning of time slot τ
X(r)
n (k) Binary decision variable indicating whether SFC r traverses NFV node

n during interval k
Y

(r)
h The h-th subflow in SFC r ∈ R
Z(t) A general fractional Brownian motion (fBm)

xxvii

ak Action at decision epoch k, which is an integer denoting the VNF location
during decision epoch k, with ak = n if the VNF is placed at NFV node
n

ār The mean rate (in packet per time slot) of traffic for service r ∈ R
br The average packet size in bit for SFC r ∈ R
c An arbitrary constant value selected from interval (1,2]
ck Cost at learning step k
c(P) A constant representing the level of penalty in the cost
d A random variable denoting the VNF packet processing delay
drhn (k) The (dummy) processing delay on VNF V

(r)
h at NFV node n during time

interval k
d̄r The average E2E delay (in second) of the timely delivered packets of

service r ∈ R to the egress edge switch
e Virtual link e ∈ E
f̄r The throughput (in packet per time slot) of deadline-constrained service

r ∈ R
f(r)

1 A binary flag indicating whether SFC r traverses NFV nodes in NO
f(r)

2 A binary flag indicating whether SFC r traverses NFV nodes in NU,O
f(P)
k A binary flag indicating whether there is penalty due to resource over-

loading at learning step k
grhn,n′(k) A binary decision variable for whether the mapped NFV node for VNF

V
(r)
h changes from NFV node n to NFV node n′ during time interval k

h Index of the h-th VNF in a service
i An integer denoting the i-th medium time interval
k An integer denoting the k-th decision epoch (or interval, or learning step)

corresponding to the k-th stationary traffic segment
li A random variable denoting run length at the i-th medium time interval
m Packet residual lifetime in the number of time slots
n NFV node n
n(r)

1 The source node (edge switch) of SFC r ∈ R
n(r)

2 The destination node (edge switch) of SFC r ∈ R

xxviii

o1 Prioritization level in calculating sampling probability of transition j
o2 Level of compensation in importance sampling
pj Priority of transition j
q

(r)
h (τ) The number of packets in the packet processing queue associated with

VNF V
(r)
h at the beginning of time slot τ

r Service r ∈ R
rk Reward at learning step k
sk State at learning step k
t An integer denoting the t-th small time interval
t Time in second
t1 The transition time instant for the actual packet processing rate of a

VNF with packet rushing opportunity
t(r)
h A vector of time boundaries between the actual packet processing rates

for VNF V
(r)
h

urhn,n′(k) The (dummy) delay to transfer the state of VNF V
(r)
h from NFV node n

to NFV node n′ during interval k
v A binary variable indicating whether migrations are required
wj Weight for transition j in importance sampling
wn(k) A binary decision variable for whether switching happens at NFV node

n during interval k
xM(i) Number of packets in the i-th medium time interval
xS(t) Number of packets in the t-th small time interval
xrhn (k) A binary decision variable for whether VNF V (r)

h is mapped to NFV node
n during interval k

xrhn A binary VNF placement parameter, with xrhn = 1 if VNF V
(r)
h is placed

at NFV node n ∈ N , and xrhn = 0 otherwise
yrhnn′(k) A binary decision variable for whether subflow Y

(r)
h is mapped to an extra

virtual link between n ∈ N ∪A and n′ ∈ N ∪A during interval k
yk Target value at learning step k
z

(r)
h (τ) A binary VNF scheduling decision variable, with z(r)

h (τ) = 1 if VNF V
(r)
h

is scheduled for packet processing at the corresponding NFV node during
time slot τ and z(r)

h (τ) = 0 otherwise

xxix

Chapter 1

Introduction

1.1 SDN/NFV-Enabled Core Networks

The service-oriented fifth generation (5G) networks will support new use cases and diverse
services with multi-dimensional performance requirements [1]. There are three typical 5G
use case families: enhanced mobile broadband (eMBB), massive machine-type communi-
cation (mMTC), and ultra reliable low latency communication (uRLLC), whose disparate
performance requirements are difficult to be satisfied by the legacy one-size-fits-all net-
work architecture. Instead, network slicing is required on a per-service basis, to provide
service-level performance guarantees. Multiple network slices with diverse performance
requirements are embedded over a common physical infrastructure [2–7]. This requires
a flexible and programmable network architecture, with abstraction on both the plane
and layer dimensions [8]. Software-defined networking (SDN) brings the plane-dimension
abstraction by decoupling the data and control planes. With a global network view and
flow awareness brought by SDN, end-to-end (E2E) data delivery paths can be dynami-
cally established by configuring forwarding rules in SDN-enabled switches via southbound
protocols such as Openflow, and resources are explicitly allocated to different paths by an
SDN controller [9]. Network function virtualization (NFV) provides the layer-dimension
abstraction, by abstracting physical resources to virtual resources with a virtualization
layer and realizing service-level functionalities [8, 10]. Traditionally, service providers rely
on dedicated hardware middleboxes to realize network functions as in-path packet process-
ing units required by a service, such as intrusion detection system (IDS), network address

1

translator (NAT), firewall, 5G evolved packet core functions, cache, wireless access net-
work optimizer, transcoder, etc. The dedicated hardware middleboxes are expensive and
lack flexibility for deployment and management. NFV separates network functions from
dedicated hardware to software instances, referred to as virtual network functions (VNFs),
hosted in NFV nodes such as commodity servers and data centers. NFV enables cost-
effective VNF placement and elastic VNF capacity scaling. Several frameworks have been
proposed for SDN-NFV integration, to fully exploit their advantages and provide an inte-
grated architecture with abstractions in both the plane and layer dimensions for customized
service provisioning [8, 11]. An extended NFV management and orchestration (MANO)
architecture with SDN integration is illustrated in Fig. 1.1 and described as follows.

1.1.1 NFV Infrastructure Domain

Physical Network

A physical network consists of SDN switches and NFV nodes interconnected by physical
links. Switches forward traffic from incoming physical links to outgoing physical links.
Some switches act as edge switches for service access. NFV nodes, such as commodity
servers and data centers, have both forwarding and processing capabilities. The physical
network contains a physical resource pool, including transmission resources on physical
links and processing resources at NFV nodes. A path in the physical network, i.e., a
physical path, is composed of a series of physical links and SDN switches between two
NFV nodes or between one NFV node and one edge switch.

Virtual Resource Pool

A logical abstraction of all physical paths with pre-allocated transmission resources between
two different NFV nodes or between one NFV node and one edge switch is referred to
as a virtual link. The maximum transmission rate supported by a virtual link is the
aggregate maximum transmission rate over all its underlying physical paths. Transmission
resources on virtual links are seen as virtual resources, since the mapping between virtual
links and physical paths is transparent to service flows traversing the virtual links. With
network function virtualization, the processing resources at NFV nodes are virtualized
and distributed among several VNFs through a virtualization hypervisor. Hence, a virtual

2

Figure 1.1: An extended NFV MANO architecture with SDN integration.

resource pool containing virtual transmission and processing resources can be abstracted
from the physical resource pool, which makes both SDN switches and physical links fully
transparent to service flows. A path in the virtual resource pool, i.e., a virtual path, is
composed of a series of virtual links and NFV nodes between two edge switches.

Infrastructure SDN Controller

With SDN, packet forwarding rules are configured in SDN switches by an infrastructure
SDN controller to route traffic flows over a physical path. For virtual link provisioning, the
infrastructure SDN controller is responsible for 1) configuring forwarding rules on physical
paths associated with each virtual link, and 2) enforcing a traffic splitting ratio among
corresponding physical paths for each virtual link.

3

1.1.2 Tenant Domain

Services

A tenant such as a service provider requests network services in the form of service function
chains (SFCs). An SFC is composed of multiple VNFs in a predefined order, to fulfill a
composite service with certain processing and transmission resource demands, according
to service level agreements (SLAs) negotiated with an infrastructure provider (InP). Each
VNF supports a dedicated packet processing functionality. Hence, a network service can
provide customized packet processing functionalities in addition to the traditional trans-
mission connectivity to a class of end users. There are two levels of connectivity in an
SFC, namely, service-level and infrastructure-level. The service-level connectivity requires
that VNFs be chained in a predefined order between the source and destination nodes
(fixed at edge switches), to facilitate the E2E service delivery. The service-level connectiv-
ity is achieved by mapping an SFC to a virtual path between the source and destination
nodes. For two neighboring VNFs in an SFC, packets processed by the upstream VNF
are transmitted to the downstream VNF, generating traffic between consecutive VNFs,
i.e., inter-VNF subflows. The infrastructure-level connectivity requires that each subflow
be routed over at least one physical path, if its upstream and downstream VNFs are not
co-located. The infrastructure-level connectivity is achieved by mapping each subflow to a
virtual link which is provisioned via the infrastructure SDN controller.

Tenant SDN Controller

The tenant SDN controller configures service-level forwarding rules at edge switches and
NFV nodes to guide packets belonging to a flow traversing an SFC (i.e., an SFC flow or
a service flow) through a virtual path, thus enabling the service-level connectivity. In the
presence of traffic variations, an SFC flow can be rerouted to an alternative virtual path
via the tenant SDN controller, according to flow migration decisions made by a central
orchestrator.

4

1.1.3 SDN-NFV Integration

An NFV management and orchestration (MANO) architecture can efficiently manage the
life cycle of network functions, services, and their constituent resources in a common NFV
infrastructure (NFVI) [3]. The architecture is extended with SDN integration to realize
service function chaining [3]. The main functional blocks in the architecture and their
interactions with the tenant and infrastructure SDN controllers are introduced as follows.

1) Virtualized infrastructure manager (VIM) is responsible for managing resources in
the NFVI. Specifically, the VIM deals with resource virtualization and allocation, and
maintains the mapping between the virtual resource pool and physical resource pool. The
VIM is also in charge of virtual link provisioning via an infrastructure SDN controller;

2) VNF manager (VNFM) is in charge of the life cycle management of VNFs, including
instantiation, configuration, and scaling. In addition to VNFs serving as network service
components, the tenant SDN controller is regarded as a VNF;

3) NFV orchestrator (NFVO), which is responsible for central orchestration, contains a
resource orchestrator (RO) and a network service orchestrator (NSO). The RO is respon-
sible for orchestrating NFVI resources. For example, it determines the rerouted virtual
paths for SFC flows, including both the VNF to NFV node remapping and the consequent
subflow to virtual link remapping, as well as the processing and transmission resource scal-
ing for the services. It also determines the virtual link to physical path (re-)mapping, to
facilitate dynamic virtual link provisioning. The NSO is responsible for the life cycle man-
agement of network services, including service instantiation and dynamic network service
capacity scaling. For example, it triggers flow migration and resource scaling requests to
the RO when potential QoS violations due to traffic load fluctuations are predicted.

1.2 Research Objectives

With SDN-NFV integration, tenants (e.g., service providers) request network services ac-
cording to SLAs negotiated with the InP. The resource demands are usually static and
estimated from long-term traffic statistics and QoS requirements. The InP customizes
multiple network services over a common physical infrastructure, generating service-level
network slices (also referred to as virtual networks) [2,3,7,12]. For each service, VNFs are

5

embedded/placed at NFV nodes, and inter-VNF subflows are routed over physical paths
between the corresponding upstream and downstream VNFs. This process is referred to as
SFC embedding [13–17]. With SFC embedding, a virtual path is established for each SFC
flow in the virtual resource pool. SFC embedding at the initial network planning is based
on a target traffic load. When data traffic actually enters the network, the traffic load is
dynamic and can deviate from the target value, potentially leading to network congestion.
There can be traffic dynamics in different time granularities. For example, the traffic statis-
tics (e.g., mean and variance) can be nonstationary and experience significant changes in a
coarse time granularity, e.g., larger than 30 minutes, which are usually predictable [18–20].
Within a long time duration with stationary traffic statistics, there are traffic dynamics in
small timescales, e.g., around 1ms, which are usually highly bursty and unpredictable.

To accommodate the traffic dynamics in different time granularities, dynamic resource
management among the embedded services is necessary, to ensure efficient and fair oper-
ation of the virtual networks with continuous QoS guarantee. Otherwise, congestion can
happen, and services can experience performance degradation such as long queueing delay
or packet loss due to delay violation. Traditional resource management methods developed
for transmission-only networks cannot be directly applied in the service-oriented 5G core
networks with the dual-resource environment. The heterogeneity between the processing
and transmission resources needs to be captured.

This PhD research is to study the dynamic resource management for the embedded
services which share the processing and transmission resources in the network. We focus
on three research problems. The first two research problems focus on dynamic resource
provisioning for the embedded services to accommodate the large-timescale traffic statisti-
cal changes, while the third research problem focuses on dynamic resource scheduling for
the embedded services in the presence of the small-timescale traffic dynamics.

In the first research problem, we investigate dynamic flow migration for the embedded
services, to avoid QoS degradation due to the mismatch between traffic load and resource
availability at the initial virtual path. With flow migration, the SFC flows can migrate
to alternative virtual paths with elastic resource allocations. Since many state-dependent
VNFs are associated with locally updated states for accurate processing, the states should
be transferred to the new location if a VNF is migrated. The state transfers cost trans-
mission resource overhead and incur extra latency. How to achieve a trade-off between
load balancing and migration overhead during each flow migration is the focus of the first

6

Figure 1.2: An illustration of the timescales for dynamic resource management.

research problem. In the second research problem, we further address two more research
questions in flow migration. First, when to trigger resource scaling and possible flow migra-
tions to accommodate large-timescale traffic variations? With traffic fluctuations, a lightly
loaded NFV node can become heavily loaded in the future due to increasing background
traffic load, and vice versa. How to adapt to traffic patterns and achieve a trade-off be-
tween load balancing and migration cost in the long run is the other question. To answer
the two questions, we focus on the VNF scaling issue in a local network segment with sev-
eral candidate NFV nodes, and use a real-world nonstationary traffic trace as traffic input.
Although multiple VNFs can be deployed at a common NFV node, how to schedule the
central processing unit (CPU) processing resources among them to achieve efficient and
fair resource sharing in the presence of small-timescale traffic dynamics should be stud-
ied. Therefore, the third research problem is on the VNF scheduling within a sufficiently
long time duration, given VNF placement and stationary traffic statistics. The different
timescales for flow migration/VNF scaling and VNF scheduling are illustrated in Fig. 1.2.

1.2.1 Dynamic Flow Migration for Embedded Services

During virtual network operation, traffic for each service arrives and fluctuates over time,
possibly overloading some NFV nodes and virtual links while underloading some others
from time to time. Imbalanced load can create bottlenecks on NFV nodes or virtual links,
leading to QoS degradation and possible congestion for the affected services. To avoid QoS
violation caused by the load-resource mismatch, we should allow each SFC flow to migrate
to an alternative virtual path, to balance the load in the network.

Extensive studies have been done on traffic engineering (TE) to find paths for data
delivery from source to destination within link capacity [21,22]. A cost function, such as a

7

piece-wise linear increasing and convex function of link utilization, can be used to penalize
high link utilization near capacity. The traditional TE ensures that no packets get sent
across overloaded links, by minimizing link utilization costs. Service flow migration, i.e.,
steering SFC flows through alternative NFV nodes and virtual links, is a TE approach
for elastic SFC provisioning [23]. Similarly, the maximum loading on NFV nodes can
be minimized, to achieve load balancing over processing resources. However, traditional
TE methods cannot be directly applied due to the following reasons. First, candidate
paths for an SFC flow must traverse through NFV nodes for processing. In traditional TE
problems, a flow is a source-destination pair without a predefined sequence of intermediate
processing nodes. Second, the transfer of VNF states should be considered, since simply
rerouting in-progress flows on a state-dependent VNF to an alternative NFV node leads
to state inconsistency, causing processing inaccuracy. Some frameworks such as OpenNF
are proposed to solve the state inconsistency problem, by not only migrating packets of
the rerouted flow but also transferring the associate VNF states [24–26]. In Co-Scalar [27],
parallel state transfer is proposed for an SFC with multiple state-dependent VNFs. Instead
of sequentially transferring the states of each VNF, Co-Scalar transfers all VNF states in
parallel, thus greatly reducing latency at the cost of transmission resources. Third, the
unique properties of processing resources should be considered, such as the VNF-dependent
processing density and the switching overhead at each NFV node embedded with multiple
VNFs for CPU scheduling.

Dynamic VNF operations, including horizontal scaling, vertical scaling, and migration,
are widely employed to provide elastic processing resource provisioning [28]. We consider
both vertical scaling and migration under the assumption that the total number of VNF
instances is unchanged. Hence, the flow migration problem consists of two joint subprob-
lems, namely, 1) finding the new VNF placement at the NFV nodes and the corresponding
new subflow to virtual link remapping, and 2) processing resource scaling for the VNFs and
transmission resource scaling for the subflows. There are several studies in recent years on
dynamic SFC embedding, in which the time-varying processing and transmission resource
demands are assumed known a priori, based on which VNFs are placed at alternative NFV
nodes, and inter-VNF subflows are rerouted to different physical paths [29–31]. The QoS
requirements are expressed in such a way that the time-varying resource demands should
be satisfied without exceeding the resource capacity. In [32], both the resource capacity
and delay constraints are taken into consideration, but the load dependent queueing delay
is ignored. For QoS provisioning to delay-sensitive services, we consider the queueing delay

8

and focus on the average E2E delay requirement in the first research problem.

Many VNFs are state-dependent, and states are updated together with packet header
or payload processing, to guarantee accurate packet processing. For example, a virtual
IDS belonging to an SFC keeps track of pattern matchings for accurate attack detection in
subsequent packets. VNF states are stored and updated locally in associate VNFs. During
flow migration, the states of the migrated VNFs should be transfered to target NFV nodes
for consistency. Hence, VNF state transfers should be taken into consideration in mod-
eling the reconfiguration overhead for flow migration. Existing studies usually model the
reconfiguration overhead as a weighted number of reconfigured NFV nodes and physical
links [30], or the total revenue loss due to throughput loss within a constant service down-
time [31], or the time duration for all state transfers associated with flow migration [33].
One performance metric for migration is the maximum allowable downtime within a cer-
tain time duration [34]. Under the assumption that the time interval for flow migration
is much larger than state transfer time, we consider to minimize the total transmission
resource overhead incurred by state transfers within a maximal tolerable service downtime
in one service interruption. If the VNF states have the same size, minimizing the total
transmission resource overhead under parallel state transfer is equivalent to minimizing
the total number of state transfers, i.e., minimizing the modification to the current VNF
placement at the NFV nodes. In this case, the loads on different NFV nodes can be rather
imbalanced, with some heavily loaded and some lightly loaded, which can possibly result in
more migrations in the future. Therefore, we have another goal to minimize the maximum
NFV node loading factor to achieve load balancing. The two goals can conflict with each
other. For example, a pure load balancing solution may result in frequent VNF migrations.
With the consideration that not every two NFV nodes are directly connected by virtual
links, the number of extra virtual links required for flow rerouting should also be minimized
to reduce signaling overhead. Therefore, we should jointly consider the three objectives in
the flow migration problem.

In Problem I, we aim to develop a delay-aware flow migration scheme for the embedded
services, to guarantee the average E2E delay performance of each service, while addressing
the trade-off between load balancing and migration overhead, under resource capacity
constraints and maximal tolerable service downtime constraints, with the consideration of
the service chaining requirements and the unique properties of processing resources such
as the VNF-dependent processing density and the switching overhead.

9

1.2.2 Dynamic Resource Scaling for VNF over Nonstationary
Traffic

The processing resource demand of a VNF is dependent on both the statistics of traffic
arrivals and the QoS requirement. With changes in traffic statistics, the processing resource
demand of a VNF varies for a certain QoS requirement. In Problem II, we consider a more
stringent delay requirement than the average delay requirement. Suppose that the E2E
delay bound of a service is decomposed into per-hop delay bounds at each VNF. Then, a
probabilistic delay requirement at a VNF requires that the probability of packet processing
(including queueing) delay at a VNF exceeding a certain delay bound should not be beyond
an upper limit. Existing studies usually assume prior knowledge about the time-varying
resource demands or predict the future resource demands based on historical resource
demand information [18, 19, 31, 35]. The average traffic rate in a certain time duration is
usually considered as the resource demand [18, 19]. However, resource allocation/scaling
according to the average traffic rate is not sufficient to satisfy a stringent probabilistic delay
requirement. In Problem I, we determine the processing resource demand at different VNFs
in a service jointly to satisfy a less stringent average E2E delay requirement, under the
assumption of Poisson traffic model. In reality, the real-world traffic is more bursty than
Poisson traffic. Also, a real-world resource demand trace with inherent QoS guarantee
is difficult to obtain. Instead, a traffic trace with packet arrival information is usually
available [20]. Therefore, a resource demand prediction scheme is required, to predict the
time-varying QoS-aware resource demands following the traffic statistical changes in an
available packet arrival traffic trace. Then, VNF scaling decisions can be made, to scale
up/down the amount of resources allocated to the VNFs according to the predicted resource
demands and to update the placement of VNFs among several candidate NFV nodes. There
can be overlapping among the sets of candidate NFV nodes for different VNFs. To focus
on traffic analysis and resource demand prediction in Problem II, we consider one VNF in
a neighborhood with several candidate NFV nodes, and treat the dynamics of other VNFs
as background traffic at the NFV nodes. The dynamics of other VNFs are attributed to
dynamics in both their traffic arrivals and scaling decisions.

There are several existing studies on dynamic VNF placement and traffic routing, based
on decisions made in a proactive or reactive manner at consecutive non-overlapping decision
epochs of equal length, e.g., 30 minutes [18, 19, 31]. In Problem I, we assume Poisson
traffic model with changing packet arrival rates across different time intervals, but how

10

to determine the interval length is not addressed. The selection of interval/epoch length
is difficult and usually based on experience. If the decision epoch is too long, traffic
burstiness in different time granularities within an epoch cannot be captured, resulting in
challenges for continuous QoS guarantee; if the decision epoch is too short, decisions are
made frequently, possibly resulting in unnecessary expensive VNF migrations for temporal
short traffic bursts. A better way is to adopt adaptive epoch length according to changes
in traffic statistics (e.g., mean and variance) and resource demands, since the real-world
traffic usually exhibits nonstationary traffic characteristics across intervals with uncertain
time durations. Several change point detection algorithms, either retrospective or online,
have been developed for detecting structural breaks in a nonstationary time series [36–
38]. Online algorithms provide inference about change points as each data sample arrives,
which is more appropriate for detecting traffic statistical changes, based on which VNF
scaling decisions can be made reactively without a significant latency [37, 38]. Under the
assumption that a nonstationary traffic trace can be partitioned into consecutive stationary
traffic segments with unknown change points, the decision epochs with variable lengths
are to be identified based on change point detection. Each stationary traffic segment
corresponds to one decision epoch. Traffic arrivals of a VNF are from a service-level flow
which is an aggregation of traffic flows of different users. In core and backbone networks,
the aggregation level is high, which makes Gaussian traffic approximation work well beyond
a timescale of around 100 ms [39]. Gaussianity of a certain distribution can be checked
by quantile-quantile (QQ) plot versus a standard Gaussian distribution [40]. Fractional
Brownian motion (fBm) is a Gaussian process with properties such as self-similarity and
long-range dependence (LRD) which comply with the properties of real-world network
traffic [39, 41]. Hence, we adopt the fBm traffic model, based on which the characteristic
traffic parameters of each stationary traffic segment are learned, and the corresponding
resource demands are predicted.

At each decision epoch, a VNF scaling decision is made, which possibly requires VNF
migrations. To address the trade-off between load balancing and migration cost reduction,
we jointly consider the two objectives, by jointly minimizing the migration cost and the
maximum resource loading factor among all candidate NFV nodes. Moreover, there is a
trade-off between cost minimizations in the short term and in the long run. When a VNF
migration is required, the VNF is migrated to the current most lightly loaded NFV node for
cost minimization in the current decision epoch. However, a lightly loaded NFV node can
become heavily loaded in the future due to increasing background resource usage, resulting

11

in further migrations to avoid performance degradation. In contrast, for cost minimization
in the long run, the VNF should be migrated to an NFV node which is expected not to be
heavily loaded in the current and successive decision epochs. Reinforcement learning (RL)
provides an approach for long-run cost minimization, with the ability to capture inherent
patterns in network dynamics and to make intelligent decisions accordingly [19,42–47].

In Problem II, the objective is to develop a learning-based dynamic VNF scaling scheme,
to adaptively trigger and perform VNF migration and resource scaling decisions based
on detected traffic statistical changes in a real-world nonstationary traffic trace, while
satisfying the probabilistic delay requirement. For simplicity, we consider one VNF in
a local network segment with several NFV nodes. A traffic parameter learning scheme
is to be developed based on change point detection, to learn traffic parameters of each
detected stationary traffic segment in a real-world nonstationary traffic trace, based on
which resource demand prediction can be performed.

1.2.3 Delay-Aware VNF Scheduling For Network Utility Maxi-
mization

In Problems I and II, the VNF placement and resource allocation are adjusted based
on traffic statistical changes in large time granularities. Within a sufficiently long time
duration, e.g., an hour, with stationary traffic statistics for each service, the VNF placement
at the NFV nodes remains unchanged, and the CPU processing resource budgets at the
NFV nodes for the services are fixed. Although an NFV node can hold multiple VNFs with
resource sharing among each other, we assume that at most one VNF can be scheduled
for packet processing and occupy the CPU resources at an NFV node at a time instant.
Hence, an efficient CPU processing resource scheduling scheme executed in small timescale
is required. In Problem III, we want to determine which VNF (belonging to different
services) to schedule at each NFV node and how many packets to be processed from the
scheduled VNF, while achieving efficient and fair resource sharing among services in the
presence of small-timescale traffic dynamics.

The packet-level transmission resource scheduling schemes have been extensively inves-
tigated, such as the generalized processor sharing (GPS) scheme in which the resources
are infinitely divisible under the assumption of infinitely small time slots [12,48]. Such an
assumption is acceptable for packet-level transmission resource scheduling in a very tiny

12

timescale, e.g., ns to µs. For multiple traffic flows sharing a transmission link, each flow is
guaranteed a minimum transmission rate proportional to the assigned weight, with mul-
tiplexing gain among flows. In the worst case without multiplexing gain, the traffic flows
enjoy as if dedicated transmission links which can be scheduled simultaneously, each sup-
porting a minimum transmission rate for one flow. However, the CPU processing resource
scheduling in the NFV environment is on the software process level. Each VNF corresponds
to a software process. Once a VNF is scheduled, it occupies the CPU for a certain time
duration and a batch of packets are processed. The time granularity for process scheduling
should not be too small, to avoid frequent switching overhead between different scheduled
VNF processes, such as the CPU scheduling overhead for selecting the next process to
run and the context switching time overhead for saving and loading contexts [49]. The
minimum time quantum in some state-of-the-art operating system (OS) process schedulers
is in the 100µs to ms timescale, such as 100µs for the completely fair scheduler (CFS) and
1ms for the real time scheduler (RLS) [50]. Some OS schedulers developed for the NFV
environment can support a smaller time quantum such as 10µs, but they are still in the
initial development stage [51]. Hence, the assumption of infinitely divisibility is unrealistic
for CPU processing resources, and the GPS scheme cannot be directly applied to CPU
processing resource scheduling among co-located VNFs.

Some leading applications in the 5G and beyond era, e.g., virtual reality (VR) services,
have extreme requirements in the rate-latency-reliability space [52]. Such a strict QoS
requirement can be expressed as a high timely throughput requirement. Only packets
delivered within a hard E2E deadline are counted in the timely throughput [53–55]. Any
packets with E2E delay violation are expired and should be dropped. The packet dropping
ratio should be extremely low to guarantee a high reliability. We use throughput for such
a deadline-constrained service to represent timely throughput. With a state-of-the-art time
quantum in the timescale of 100µs to ms, the sequences for scheduling the VNFs belonging
to different services with resource sharing among each other have a significant impact on
the QoS performance of each service. For example, if we use a time quantum (or time slot)
of 1ms for VNF scheduling, all packets of a service with an E2E deadline of 10ms will be
expired if the VNFs are not scheduled within 10 time slots in an extreme case. How to
coordinate the VNF scheduling for different services sharing a group of NFV nodes with a
guarantee for the strict QoS requirements becomes more difficult as the resource sharing
among different services is more complicated. The coordination of VNF scheduling within
a service is also important, since the E2E QoS performance depends on scheduling of all

13

VNFs in the chain. If a VNF experiences congestion, it can help to relieve the congestion
situation by not scheduling the upstream VNF temporarily.

There are existing studies on delay-aware VNF scheduling, which focus on reducing
the maximum E2E delay for the sequential processing of a given traffic block at different
VNFs in each service [46, 56–59]. An inherent assumption is that the processing for a
traffic block at different VNFs in a chain has no time overlapping, inferring that the first
packet in the traffic block has to wait until the last packet finishes processing, which is
inefficient for services with a strict per-packet E2E deadline especially if the traffic block
size is big. Hence, a QoS-aware and chain-aware VNF scheduling scheme using a state-
of-the-art time quantum is required, to satisfy the strict throughput requirement of each
deadline-constrained service.

Moreover, the traffic dynamics in small time granularities such as 1ms are usually
highly bursty and unpredictable. With the unavailability of small-timescale traffic statis-
tics, a potential chain-aware VNF scheduling approach is an adaptation of the classical
backpressure algorithm which was originally developed for transmission resources and has
been proved to be throughput-optimal for delay-insensitive flows [60]. With the potential
approach, the differential backlogs in number of required CPU cycles is used as the VNF
scheduling weight [14, 61, 62]. However, for delay-sensitive services with high throughput
requirements, such a simple adaptation cannot be directly applied. Hence, we aim to de-
velop a delay-aware backpressure-based VNF scheduling policy by incorporating packet
delay and throughput performance into the VNF scheduling.

In Problem III, the objective is to develop a delay-aware VNF scheduling policy to
coordinate the VNF scheduling for different deadline-constrained services, which can be
executed in a realistic state-of-the-art VNF scheduling time quantum and at the same time
satisfies the high throughput requirements in the presence of bursty and unpredictable
small-timescale traffic dynamics.

1.3 Research Contributions

In this section, we present the research contributions for each research problem.

14

1.3.1 Dynamic Flow Migration for Embedded Services

In Chapter 2, we develop a delay-aware flow migration model for multiple delay-sensitive
services in a processing resource limited network, to guarantee the average E2E delay iso-
lation among services within maximal tolerable service downtime, while addressing the
trade-off between load balancing and migration overhead. A multi-objective mixed inte-
ger optimization problem is formulated, which minimizes a weighted summation of the
maximum NFV node loading factor, the total transmission resource overhead incurred by
state transfers, and the number of extra virtual links for flow rerouting. For delay aware-
ness, under the assumption of Poisson traffic model and prior knowledge of time-varying
packet arrival rates, the average E2E delay requirements are included in constraints based
on M/M/1 queue based delay modeling. Under the assumption of sufficient transmission
resources, we ignore the delay on virtual links. The processing resource constraints are
incorporated with the consideration of VNF dependent processing density and switching
overhead. Due to several quadratic constraints, an optimal solution to the problem is
difficult to obtain using solvers such as Gurobi [63]. We transform the original problem
into a tractable mixed integer quadratically constrained programming (MIQCP) problem.
Although the two problems are not equivalent, it is proved that there is a zero optimality
gap between them. Given an MIQCP optimum, the optimum of the original problem is
obtained through a proposed mapping algorithm. The MIQCP transformation, together
with the mapping algorithm, gives an optimal solution, but time complexity is high due
to NP-hardness of the MIQCP problem. Therefore, a low-complexity heuristic algorithm
based on redistribution of hop delay bounds is proposed to obtain a sub-optimal solution
to the original problem [64–66].

1.3.2 Dynamic Resource Scaling for VNF over Nonstationary
traffic

In Chapter 3, we use machine learning tools to develop an adaptive VNF scaling mechanism
with a real-world nonstationary traffic trace as input. We first develop a two-timescale
resource demand prediction framework, based on a change point detection scheme using
traffic samples in medium timescale (e.g., 20s) and a traffic parameter learning scheme
using traffic samples in a smaller timescale (e.g., 100ms). Then, we propose a deep-
Q learning approach for VNF migration decision, which learns the traffic pattern and

15

Figure 1.3: Workflow of dynamic VNF scaling over nonstationary traffic.

addresses the trade-off between load balancing and migration cost in the long run. The
new contributions are summarized as follows, with a workflow given in Fig. 1.3 [67].

• We first use a Bayesian online change point detection (BOCPD) algorithm to detect
statistical changes in mean and variance of the medium-timescale (e.g., 20s) time
series. The algorithm provides online estimation of a probability distribution of cur-
rent run length and the most probable mean and variance at each medium-timescale
traffic sample. A run is defined as a traffic segment with the same statistics. Then,
we use a threshold-based policy to identify deterministic change points (boundaries)
between consecutive stationary traffic segments. The employed machine learning tool
is Bayesian conjugate analysis.

• After a new change point is detected, the traffic parameters of the upcoming station-
ary traffic segment should be learned. Since the BOCPD algorithm is statistical, it
results in a latency between the real change points and the detected change points.
We exploit the latency for a look-back traffic parameter learning scheme. A number
of small-timescale (e.g., 100ms) traffic samples before the detected change point are
collected for traffic model regression. Since the core network traffic has a high ag-
gregation level, the Gaussian traffic approximation works well beyond a timescale of
around 100ms. Hence, we adopt the fractional Brownian motion (fBm) traffic model
for each stationary traffic segment to incorporate Gaussianity and other properties
of real-world core network traffic such as self-similarity and Long-range dependence
(LRD). Then, the fBm traffic parameters can be learned through training a Gaussian
process regression (GPR) model with a selected fBm covariance (kernel) function.
Afterwards, the resource demand of the upcoming stationary traffic segment for a
required QoS performance is calculated using empirical models.

16

• Change point detection provides a triggering signal for VNF scaling. Hence, the
length of a VNF scaling decision epoch is varying and depends on change point de-
tection. With the detected change points and predicted resource demands, a VNF
migration problem is formulated as a Markov decision process (MDP) with variable-
length decision epochs, to minimize the overall cost integrating imbalanced loading,
migration cost, and resource overloading penalty in the long run. A deep Q-learning
algorithm with penalty-aware prioritized experience replay is proposed to solve the
MDP, with performance gains in terms of both cost and training loss reduction com-
pared with benchmark algorithms.

1.3.3 Delay-Aware VNF Scheduling For Network Utility Maxi-
mization

In Chapter 4, a delay-aware VNF scheduling problem is studied in the presence of bursty
and unpredictable small-timescale traffic dynamics, to coordinate the VNF scheduling for
different deadline-constrained services with high throughput requirements, while using a
realistic state-of-the-art VNF scheduling time quantum. The main contributions are sum-
marized as follows.

• We use a packet delay aware queueing model for each service, by introducing virtual
packet processing queues augmented with packet delay information at each VNF,
which is the foundation for developing a delay-aware VNF scheduling algorithm.

• For efficient and fair utilization of the allocated resources at the NFV nodes, the VNF
scheduling problem is formulated as a stochastic offline problem which maximizes a
total network utility with proportional fairness among services, while stabilizing all
the VNF packet processing queues and satisfying the throughput constraints of all
the deadline-constrained services. The utility function is a strictly increasing and
concave function of throughput. The stochastic offline problem is transformed into
an online problem by decoupling the VNF scheduling decisions over time slots with
the Lyapunov optimization technique, based on which an online VNF scheduling
algorithm is derived [14, 68]. Distributed VNF scheduling decisions are made at
each NFV node for each time slot, based on the observed local status, such as the
delay-aware virtual processing queue lengths, the packet arrivals, and the service QoS
performance indicated by the lengths of some specially designed virtual queues.

17

• The VNF scheduling algorithm is developed under the assumption that a packet
processed at a VNF has to wait until the beginning of a new time slot for further
processing at downstream VNFs. Without such an assumption, a packet is allowed
to be processed by several consecutive VNFs during one time slot, which is referred
to as packet rushing. We also propose a modified VNF scheduling algorithm with
the consideration of packet rushing, and correct the queue length updates based on a
packet rushing analysis for each service given the VNF scheduling status and resource
availability.

1.4 Thesis Outline

The rest of this thesis is organized as follows. The three research problems and solutions
are presented in Chapters 2, 3, and 4, respectively.

In Chapter 2, Section 2.1 presents the system model under the consideration of Prob-
lem I. The delay-aware flow migration problem is formulated in Section 2.2. Section 2.3
presents the MIQCP problem transformation, and derives the optimality gap between the
transformed problem and the original problem. A low-complexity heuristic algorithm is
proposed in Section 2.4. Performance evaluation for both the MIQCP and heuristic solu-
tions is presented in Section 2.5, and a summary for this chapter is presented in Section
2.6. In Chapter 3, Section 3.1 presents the system model under the consideration of Prob-
lem II. The change-point-driven traffic parameter learning and resource demand prediction
schemes are proposed in Section 3.2. Section 3.3 presents the MDP formulation and the
penalty-aware deep Q-learning algorithm. Performance evaluation is given in Section 3.4,
and a summary for this chapter is presented in Section 3.5. In Chapter 4, Section 4.1
presents the system model under the consideration of Problem III. Section 4.2 presents
the VNF scheduling problem formulation and transformation, based on which an online
distributed VNF scheduling algorithm is derived in Section 4.3. Section 4.4 presents the
modified VNF scheduling algorithm with packet rushing analysis. Performance evaluation
is given in Section 4.5, and a summary for this chapter is given in Section 4.6. Finally,
concluding remarks are drawn and future research directions are discussed in Chapter 5.

18

Chapter 2

Dynamic Flow Migration for
Embedded Services

In this chaper, a dynamic flow migration problem for embedded services is studied, to meet
average E2E delay requirements with time-varying traffic. A multi-objective mixed integer
optimization problem is formulated, addressing the trade-off between load balancing and
reconfiguration overhead. The problem is transformed to a tractable MIQCP problem. It
is proved that there is no optimality gap between the two problems; hence, we can obtain
the optimum of the original problem by solving the MIQCP problem with some post-
processing. To reduce time complexity, a heuristic algorithm based on redistribution of
hop delay bounds is proposed to find an efficient solution. Numerical results are presented
to demonstrate the aforementioned trade-off, the benefit from flow migration in terms of
E2E delay guarantee, as well as the effectiveness and efficiency of the heuristic solution.

2.1 System Model

A time-slotted system is considered, with integer k denoting the k-th time interval over
which a flow migration plan remains unchanged.

19

Physical

Link

SDN-Enabled

Switch

NFV Node with

Multiple VNFs

Physical Network with

embedded SFCs

SFC 1

SFC 2

SFC 3

SDN-Enabled

Edge Switch

Figure 2.1: A physical network with embedded SFCs.

2.1.1 Services

Let R denote the set of embedded services. A service, r ∈ R, is represented in the form
of SFC. It originates from source node n(r)

1 and traverses through Hr VNFs in sequence
towards destination node n(r)

2 , with average E2E delay requirement Dr, maximal tolerable
downtime Ωr in one service interruption, average packet size br in bit, and time-varying
traffic rate λ(r)(k) in packet/s. Under the assumption that flow migration is not frequent
and the time interval is sufficiently large, traffic arrival of SFC r ∈ R during time interval
k is modeled as Poisson with rate λ(r)(k) packet/s. Under the assumption that the time
interval is much larger than maxr∈RΩr, the experienced service downtime is much shorter
than stable service operation time for any service. Let Hr= {1, · · · , Hr}, and denote the h-
th (h ∈ Hr) VNF in SFC r as V (r)

h . Let V (r)
0 and V (r)

Hr+1 be dummy VNFs in SFC r, locating
at source node n(r)

1 and destination node n(r)
2 respectively. Let V be a set containing all

VNFs belonging to different SFCs, with (r, h) ∈ V denoting the h-th VNF in SFC r. Let
A be a set of edge switches hosting all dummy VNFs. The h-th (h ∈ {0} ∪Hr) inter-VNF
subflow in SFC r, i.e., the subflow between upstream (dummy) VNF V

(r)
h and downstream

(dummy) VNF V
(r)
h+1, is denoted as Y (r)

h .

2.1.2 Abstraction of Virtual Resource Pool

Fig. 2.1 shows a physical network with three embedded SFCs in single-path routing. A
virtual resource pool is abstracted from the physical network with embedded SFCs, repre-
sented as a directed graph G= {N ∪A, E}, where N is a set of all NFV nodes, A is a set of

20

Figure 2.2: A CPU polling scheme with two flows.

edge switches hosting dummy VNFs, and E is a set of virtual links. Here, we assume that
each NFV node can hold all types of VNFs for simplicity. In reality, the supported VNF
types at each NFV node can be differentiated, and the placement for a VNF of a certain
type should be restricted to the NFV nodes which support the same type. For virtual link
e ∈ E , we use binary parameters, {Ie,1n } and {Ie,2n }, to describe its location and direction,
with Ie,1n = 1 if n ∈ N ∪A is its starting point and Ie,2n = 1 if n ∈ N ∪A is its ending point.
It is possible that G is not fully connected. Assume that there are sufficient transmission
resources in the physical network. We can increase resources on existing virtual links, and
find paths with enough resources for extra virtual links. Hence, we consider a processing
resource limited virtual resource pool.

2.1.3 Processing Resource Sharing

The processing resource capacity Cn of NFV node n ∈ N is its maximum supporting CPU
processing rate in cycle/s. For one packet/s of processing rate, the CPU resource demand
on a certain NFV node depends on many factors, including the packet size, the type of
function, the packet I/O scheme, and the virtualization technology [69–71]. We summarize
all the factors into two categories: VNF dependent, and NFV node dependent. We define
processing density of VNF V

(r)
h at NFV node n as P rh

n (in cycle/bit), which is the CPU
resource demand (in cycle/s) of VNF V

(r)
h at NFV node n for one bit/s of processing rate.

Accordingly, P rh
n br is the processing density of VNF V (r)

h at NFV node n in cycle/packet. A
CPU polling scheme is employed for resource sharing among multiple VNFs, as illustrated
in Fig. 2.2, in which two VNF processing queues are polled for service. Each queue gets
a portion of CPU resources which is linear with its allocated CPU time share in a polling
period. The polling scheme introduces CPU scheduling overhead and multi-task context

21

f1 f3 f4f2

f3

f2

①

②
State Transfers

Old Paths

New Paths

source destination

Figure 2.3: An illustration of flow migration and state transfer.

switching overhead, due to extra CPU time spent on determining the next VNF process
to run and on saving and loading contexts between every two consecutive tasks [49]. Here,
processing packets from a certain VNF processing queue is a task. The total time overhead
for switching between VNFs are referred to as the switching time overhead. The polling
period Tn and the switching time overhead W in NFV node n are constant. Under the
assumption that resources are infinitely divisible, GPS is a benchmark resource allocation
scheme to achieve QoS isolation and multiplexing gain among flows [12,72]. Without such
an assumption for CPU processing resources, we assume that there exists a practical VNF
scheduling algorithm (to be studied in Problem III) which achieves comparable performance
with GPS. Then, the two flows are guaranteed minimum processing rates (in packet/s) of
S1 = t1Cn

TnP 1
nb1

and S2 = t2Cn
TnP 2

nb2
respectively, where t1+t2+2W = Tn−tR, and tR is the residual

time share in a polling period. Define loading factor of NFV node n, denoted by ηn, as
the percentage of allocated time shares plus switching time overhead in a polling period of
NFV node n. Assume that the switching time overhead at NFV node n linear increases
with the number of VNFs placed at the NFV node if the number of VNFs is larger than 1.

2.1.4 Reconfiguration Overhead

When an SFC flow migrates at a state-dependent VNF, the VNF is remapped to an alter-
native NFV node, with the associate states transferred to the target NFV node. Fig. 2.3
illustrates the flow migration and associate state transfers, where two VNFs are remapped,
and two state transfers are triggered correspondingly. Packet processing is halted during
state transfer, incurring a service downtime. Let U (r)

h (k) (in bit) be the time-varying state
size of VNF V

(r)
h , whose value at time interval k is monitored by the SDN controller. For

a state transfer at VNF V
(r)
h , U (r)

h (k) is the product of state transfer delay and consumed
transmission resources (in bit/s) [33]. For a remapped SFC with multiple state transfers,

22

we use parallel state transfer in data plane in which all state transfers can take place si-
multaneously [27]. Then, the service downtime, which is the maximum state transfer delay
along the E2E path, is much less than that of sequential state transfer, at the cost of trans-
mission resources. Within a maximal tolerable service downtime, the total transmission
resource overhead incurred by state transfers should be minimized. We assume that the
transmission resource overhead for each state transfer is not less than Bmin = min(U(r)

h
(k))

max(Ωr) .

For a subflow, if its upsteam or downstream VNF migrates to an alternative NFV
node, the subflow should be remapped to an alternative virtual link accordingly. After
a successful remapping, transmission resources allocated to the subflow are released from
the old virtual link. However, it is possible that NFV nodes in the virtual resource pool
are not fully connected. Assume that the infrastructure SDN controller can find physical
paths with enough resources for an extra virtual link. Forwarding rule configuration along
the physical paths incurs signaling overhead between the SDN controller and SDN-enabled
switches.

Hence, the reconfiguration overhead due to flow migration is described in two parts:
the total transmission resource overhead incurred by state transfers, and the total signal-
ing overhead for configuring extra virtual links required for flow rerouting. The latter is
assumed to be linear with the total number of extra virtual links required for flow rerouting.

2.2 Problem Formulation

Consider a processing resource limited virtual resource pool. Assume that packet process-
ing time at an NFV node for an SFC is exponentially distributed [73, 74]. During time
interval k, traffic arrival of SFC r ∈ R is Poisson with rate λ(r)(k) packet/s. The rate
can be predicted at the end of time interval (k− 1) based on measurements and historical
information [19, 23]. A delay-aware flow migration problem is to 1) find the remapping
between VNFs and NFV nodes in time interval k, based on the old mapping in time in-
terval (k − 1), and 2) scale the processing resources allocated to VNFs, to satisfy average
E2E delay requirements without violating processing resource constraints. The objective
function for time interval k, O(k), is to achieve load balancing among NFV nodes, with
minimal reconfiguration overhead, given by

23

O(k) = ω1η(k) + ω2
∑

(r,h)∈V

∑
n,n′∈N

Brh
n,n′(k)
Bmin

+ ω3
∑
r∈R

∑
h∈{0}∪Hr

∑
n,n′∈N∪A

yrhnn′(k). (2.1)

In objective function (2.1), there are several decision variables for time interval k: 1)
continuous variable η(k) ∈ [0, 1] for maximum loading factor among all NFV nodes during
interval k; 2) nonnegative continuous variable set B(k) = {Brh

n,n′(k)}, with Brh
n,n′(k) being

the transmission resource overhead to transfer the state of VNF V
(r)
h from NFV node

n ∈ N during interval (k − 1) to NFV node n′ ∈ N during interval k; 3) binary variable
set y(k) = {yrhnn′(k)}, with yrhnn′(k) = 1 if subflow Y

(r)
h is mapped to an extra virtual link

between n, n′ ∈ N ∪ A during interval k, and yrhnn′(k) = 0 otherwise. Note that ω1, ω2, ω3

are tunable weights to control the priority of the three components, with ω1 +ω2 +ω3 = 1.
In the right hand side of (2.1), the first term is the cost for imbalanced loading among
NFV nodes since minimizing η(k) achieves load balancing among all the NFV nodes, the
second term is the cost for the overall normalized transmission resource overhead due to
state transfers with a normalization ratio of 1

Bmin
, the third term is the cost for extra

virtual links required by flow rerouting. The normalization makes the three components
in objective function (2.1) comparable, based on which ω1, ω2, ω3 can be selected on the
same order of magnitude. A component in (2.1) is ignored if the corresponding weight is
set to 0. If all weights are positive, all components in (2.1) are jointly optimized.

In terms of constraints, we start from node mapping constraints. Define binary decision
variable set x(k) = {xrhn (k)} for interval k, with xrhn (k) = 1 if (dummy) VNF V (r)

h is mapped
to node n ∈ N ∪ A during interval k, and xrhn (k) = 0 otherwise. As VNF V

(r)
h should be

mapped to exactly one NFV node in N , we have∑
n∈N

xrhn (k) = 1, ∀(r, h) ∈ V . (2.2)

For dummy VNFs, i.e., source and destination nodes, their physical locations are fixed and
confined by

xr0
n(r)

1
(k) = 1, r ∈ R (2.3a)

xr0n (k) = 0, r ∈ R, n ∈ N ∪A\n(r)
1 (2.3b)

xr(Hr+1)
n(r)

2
(k) = 1, r ∈ R (2.3c)

xr(Hr+1)
n (k) = 0, r ∈ R, n ∈ N ∪A\n(r)

2 . (2.3d)

24

The next constraints are related to transmission resource overhead for state transfer.
From interval (k−1) to interval k, the set representing VNF to NFV node mapping changes
from x(k − 1) = {xrhn (k − 1)} to x(k) = {xrhn (k)}, where x(k − 1) is known in interval k.
We introduce binary decision variable set g(k) = {grhn,n′(k)} for interval k, with grhn,n′(k) = 1
if the mapped NFV node for VNF V

(r)
h changes from NFV node n ∈ N during interval

(k− 1) to NFV node n′ ∈ N during interval k, and grhn,n′(k) = 0 otherwise. Hence, there is
a relationship constraint among {grhn,n′(k)} (n 6= n′), {xrhn (k − 1)} and {xrhn′ (k)}, given by

grhn,n′(k) = xrhn (k − 1)xrhn′ (k), ∀(r, h) ∈ V , ∀n ∈ N , ∀n′ ∈ N\{n}. (2.4)

Also, we have

grhn,n(k) = 0, ∀(r, h) ∈ V , ∀n ∈ N . (2.5)

According to the definition of Brh
n,n′(k), we have

0 ≤ Brh
n,n′(k) ≤ grhn,n′(k)M, ∀(r, h) ∈ V , ∀n, n′ ∈ N (2.6)

where M is a big-M constant to guarantee that Brh
n,n′(k) = 0 if grhn,n′(k) = 0. Let u(k) =

{urhn,n′(k)} be a positive continuous decision variable set for interval k, with urhn,n′(k) denoting
the (dummy) delay to transfer state of VNF V

(r)
h from NFV node n ∈ N during interval

(k − 1) to NFV node n′ ∈ N during interval k. It follows that

urhn,n′(k) = U
(r)
h (k)

Brh
n,n′(k) + ε1

, ∀(r, h) ∈ V , ∀n, n′ ∈ N (2.7)

where 0 < ε1 � 1 is a constant to avoid urhn,n′(k) being undetermined, and urhn,n′(k) is a
dummy delay only if grhn,n′(k) = 0. Moreover, urhn,n′(k) has an upper bound

0 < urhn,n′(k) ≤ grhn,n′(k)Ωr +
[
1− grhn,n′(k)

] U (r)
h (k)
ε1

, ∀(r, h) ∈ V , ∀n, n′ ∈ N . (2.8)

If grhn,n′(k) = 1, the upper bound is the corresponding maximal tolerable service downtime
Ωr; otherwise, it is

U
(r)
h

(k)
ε1

.

For constraints related to processing resource scaling, let S(k) = {Srhn (k)} be a non-
negative continuous decision variable set for interval k, with Srhn (k) being the processing

25

rate in packet/s allocated to VNF V
(r)
h by NFV node n ∈ N during interval k. It should be

lower bounded by xrhn (k)λ(r)(k) due to the queue stability requirement and upper bounded
by xrhn (k)Cn

P rhn br
due to the limited processing capacity, given by

xrhn (k)λ(r)(k) ≤ Srhn (k) ≤ xrhn (k)Cn
P rh
n br

, ∀(r, h) ∈ V , ∀n ∈ N . (2.9)

Let wn(k) be a binary decision variable with wn(k) = 1 if switching happens at NFV
node n during interval k, i.e., there are at least two VNFs mapped to NFV node n, and
wn(k) = 0 otherwise. The loading factor of NFV node n during interval k, denoted by
ηn(k), consists of two parts, with a maximum value equal η(k), which is upper bounded
by a predefined constant ηU (0 < ηU ≤ 1), given by

∑
(r,h)∈V

[
P rh
n brS

rh
n (k)

Cn
+ wn(k)xrhn (k)W

Tn

]
≤ η(k) ≤ ηU , ∀n ∈ N (2.10)

where both useful time and switching time overhead of CPU resources in a polling period
are taken into consideration. The left hand side of (2.10) is the expression for ηn(k). The
value of wn(k) is confined by an inequality constraint of∑

(r,h)∈V xrhn (k)− 1
|V|

≤ wn(k) ≤
∑

(r,h)∈V xrhn (k)
c , ∀n ∈ N (2.11)

where c is an arbitrary value from (1, 2].

Let d(k) = {drhn (k)} be a positive continuous decision variable set for interval k, with
drhn (k) denoting the average (dummy) delay on the queue associated with VNF V

(r)
h at

NFV node n. With Poisson traffic arrival and exponential packet processing time, the
processing system is an M/M/1 queue. Then, drhn (k) is given by

drhn (k) = 1
Srhn (k)− xrhn (k)λ(r)(k) + ε1

, ∀(r, h) ∈ V , ∀n ∈ N (2.12)

where drhn (k) is a dummy delay only if xrhn (k) = 0. There is an upper bound constraint for
drhn (k), explicitly showing its relationship with xrhn (k):

0 < drhn (k) ≤ xrhn (k)Dr +
[
1− xrhn (k)

] 1
ε1
, ∀(r, h) ∈ V , ∀n ∈ N . (2.13)

26

For QoS satisfaction, the average E2E delay of SFC r ∈ R should not exceed upper bound
Dr, represented as ∑

h∈Hr

∑
n∈N

xrhn (k)drhn (k) ≤ Dr, ∀r ∈ R. (2.14)

To decide whether a subflow should be mapped to an extra virtual link, we consider
two cases. In the first case, we have

yrhnn′(k) = 1−
∑
e∈E

Ie,1n Ie,2n′ xrhn (k)xr(h+1)
n′ (k), ∀r ∈ R, ∀h ∈ {0} ∪ Hr, ∀n ∈ N ∪A,

∀n′ ∈ N ∪A\{n} (2.15)

to ensure that yrhnn′(k) equal 0 if (dummy) VNF V
(r)
h and (dummy) VNF V

(r)
h+1 are mapped

to node n ∈ N ∪A and node n′ ∈ N ∪A\{n} between which a virtual link exists. In the
second case, we have

yrhnn(k) = 1− xrhn (k)xr(h+1)
n (k), ∀r ∈ R, ∀h ∈ {0} ∪ Hr, ∀n ∈ N ∪A (2.16)

to ensure that yrhnn(k) equal 0 if (dummy) VNF V
(r)
h and (dummy) VNF V

(r)
h+1 are mapped

to the same node n ∈ N ∪A.

In summary, the optimization problem is

min
η(k),B(k),y(k),x(k),g(k),
u(k),S(k),w(k),d(k)

O(k) (2.17a)

s.t. (2.2)− (2.16) (2.17b)
d(k),u(k) > 0, (2.17c)
x(k),w(k), g(k),y(k) ∈ {0, 1}. (2.17d)

Remark 1. Problem (2.17) is non-convex due to constraints (2.7), (2.10), (2.12), (2.14),
(2.15), and (2.16).

2.3 Optimal MIQCP Solution

In problem (2.17), quadratic constraints (2.10), (2.14) (2.15), and (2.16) can be transformed
to equivalent linear forms using the big-M method. Quadratic constraints (2.7) and (2.12)

27

cannot be linearized due to product terms of two continuous variables, but they can be
replaced by combinations of linear constraints and rotated quadratic cone constraints. The
new problem with transformed and replaced constraints is an MIQCP problem, which is
not equivalent to the original problem. In this section, we discuss the relationship between
the two problems.

By introducing an auxiliary nonnegative continuous decision variable set, ζ(k) = {ζn(k)},
we linearize constraint (2.10) based on the big-M method with M = |V|, given by

∑
(r,h)∈V

P rh
n brS

rh
n (k)

Cn
Tn + ζn(k)W ≤ η(k)Tn ≤ ηUTn, ∀n ∈ N (2.18a)

∑
(r,h)∈V

xrhn (k)− |V| [1− wn(k)] ≤ ζn(k) ≤
∑

(r,h)∈V
xrhn (k), ∀n ∈ N (2.18b)

0 ≤ ζn(k) ≤ |V|wn(k), ∀n ∈ N . (2.18c)

By introducing an auxiliary nonnegative continuous decision variable set, ι(k) = {ιrhn (k)},
we linearize constraint (2.14) based on the big-M method with M = 1

ε1
as

∑
h∈Hr

∑
n∈N

ιrhn (k) ≤ Dr, ∀r ∈ R (2.19a)

drhn (k)− 1
ε1

[
1− xrhn (k)

]
≤ ιrhn (k) ≤ drhn (k), ∀(r, h) ∈ V , ∀n ∈ N (2.19b)

0 ≤ ιrhn (k) ≤ 1
ε1

xrhn (k), ∀(r, h) ∈ V , ∀n ∈ N . (2.19c)

By introducing an auxiliary binary decision variable set, ξ(k) = {ξrhnn′(k)}, we get an
equivalent linear form of constraint (2.15) and constraint (2.16) for ∀r ∈ R, ∀h ∈ {0}∪Hr,
and ∀n ∈ N ∪A, given by

ξrhnn′(k) ≤ xrhn (k), ∀n′ ∈ N ∪A (2.20a)
ξrhnn′(k) ≤ xr(h+1)

n′ (k), ∀n′ ∈ N ∪A (2.20b)
ξrhnn′(k) ≥ xrhn (k) + xr(h+1)

n′ (k)− 1, ∀n′ ∈ N ∪A (2.20c)
yrhnn′(k) = 1−

∑
e∈E

Ie,1n Ie,2n′ ξ
rh
nn′(k), ∀n′ ∈ N ∪A\{n} (2.20d)

yrhnn(k) = 1− ξrhnn(k). (2.20e)

28

Proposition 1. With linearized constraints (2.18), (2.19) and (2.20), problem (2.17) can
be transformed to an MIQCP problem, if constraint (2.7) is replaced by

%rhn,n′(k) = Brh
n,n′(k) + ε1 , ∀(r, h) ∈ V , n, n′ ∈ N (2.21a)

%rhn,n′(k) ≥ ε1, ∀(r, h) ∈ V , n, n′ ∈ N (2.21b)
urhn,n′(k)%rhn,n′(k) ≥ ς

(r)
h (k)2, ∀(r, h) ∈ V , n, n′ ∈ N (2.21c)

ς
(r)
h (k) =

√
U

(r)
h (k), ∀(r, h) ∈ V (2.21d)

where %(k) = {%rhn,n′(k)} and ς(k) = {ς(r)
h (k)} are auxiliary continuous decision variable

sets, and if constraint (2.12) is replaced by

$rh
n (k) = Srhn (k)− xrhn (k)λ(r)(k) + ε1, ∀(r, h) ∈ V , ∀n ∈ N (2.22a)

$rh
n (k) ≥ ε1, ∀(r, h) ∈ V , ∀n ∈ N (2.22b)

drhn (k)$rh
n (k) ≥ Ξ2, ∀(r, h) ∈ V , ∀n ∈ N (2.22c)

Ξ = 1 (2.22d)

where $(k) = {$rh
n (k)} is an auxiliary continuous decision variable set and Ξ is an aux-

iliary continuous decision variable. The optimality gap between the two problems is zero,
i.e., an optimum of problem (2.17) is either a unique optimum or one of multiple opti-
mal solutions to the MIQCP problem. Given an MIQCP optimum (“?”), an optimum of
problem (2.17) (“∗”) can be obtained by Algorithm 1.

Proof. The fundamental difference between the MIQCP problem and problem (2.17) lies
in “≥” signs in rotated quadratic cone constraints (2.21c) and (2.22c). If both constraints
are active in an MIQCP optimum, i.e., all the “≥” signs achieve equality, the MIQCP
optimum is also an optimum of problem (2.17). Next, we discuss how the “≥” signs affect
the optimum.

First, assume that there is an inactive constraint (2.21c) in an MIQCP optimum, i.e.,
urhn,n′

?(k)
[
Brh
n,n′

?(k) + ε1
]
> U

(r)
h (k). If Brh

n,n′
?(k) = 0, it does not affect the objective value.

Thus, we consider only the case with Brh
n,n′

?(k) > 0. If Brh
n,n′

?(k) is replaced by Brh
n,n′
◦(k),

with Brh
n,n′
◦(k) < Brh

n,n′
?(k) and urhn,n′

?(k)
[
Brh
n,n′
◦(k) + ε1

]
= U

(r)
h (k), all constraints are still

satisfied. The objective value is unchanged if ω2 = 0, in which case [urhn,n′
?(k), Brh

n,n′
◦(k)] is

an optimal pair in another MIQCP optimum. Otherwise (ω2 > 0), the objective value can
be further reduced, inferring that the assumption must be false.

29

Algorithm 1: Post-processing to MIQCP optimum
1 Input: η?, B?, y?, x?, g?, u?, S?, w?, d?.
2 Initialization (∗ = ?).
3 for (r, h) ∈ V, n, n′ ∈ N do
4 if urhn,n′

?(k)%rhn,n′
?(k) > (ς(r)

h (k)?)2 and Brh
n,n′

?(k) > 0, then

Brh
n,n′
∗(k) = U

(r)
h

(k)
urh
n,n′

?(k) − ε1
5 end
6 for (r, h) ∈ V, n ∈ N do
7 if drhn

?(k)$rh
n
?(k) > (c?)2 and xrhn

?(k) == 1, then
8 if ω1 > 0, then
9 drhn

∗(k) = 1
Srhn

?(k)−xrhn
?(k)λ(r)(k)+ε1

10 end
11 if ω1 == 0, then
12 Srhn

∗(k) = 1
drhn

?(k) + xrhn
?(k)λ(r)(k)− ε1

13 end
14 end
15 end
16 if ω1 == 0, then calculate η∗(k)
17 Output: η∗, B∗, y∗, x∗, g∗, u∗, S∗, w∗, d∗.

Second, assume that there is an inactive constraint (2.22c) in an MIQCP optimum,
then drhn

?(k)
[
Srhn

?(k)− xrhn
?(k)λ(r)(k) + ε1

]
> 1. Similarly, we consider only the constraint

with xrhn
?(k) = 1. There are four cases, depending on ω1 and ηn(k).

Case 1: ω1 > 0, and NFV node n is the only one with a loading factor of η?(k)
(i.e., dominating NFV node). If Srhn

?(k) is replaced by Srhn
◦(k), with drhn

?(k)[Srhn
◦(k) −

xrhn
?(k)λ(r)(k) + ε1] = 1, all constraints are satisfied but η?(k) can be further reduced.

Hence, the assumption must be false;

Case 2: ω1 > 0 and ηn(k) < η?(k) (i.e., non-dominating NFV node). If drhn
?(k) is

replaced by drhn
◦(k), with drhn

◦(k)[Srhn
?(k) − xrhn

?(k)λ(r)(k) + ε1] = 1, all constraints are
satisfied with the objective value unchanged. Thus, [drhn

◦(k), Srhn
?(k)] is an optimal pair in

another MIQCP optimum;

30

Case 3: ω1 > 0, and there is more than one NFV node including NFV node n with
loading factor η?(k). There must be at least one of them satisfying an active constraint
(2.22c). One such NFV node is selected as the dominating NFV node, and others are seen
as non-dominating NFV nodes;

Case 4: ω1 = 0, and η(k) is not optimized. If we replace Srhn
?(k) by Srhn

◦(k), all
constraints are satisfied and the objective value is unchanged. Thus, [drhn

?(k), Srhn
◦(k)] is

an optimal pair in another MIQCP optimum.

In summary, an MIQCP optimum with inactive constraints in (2.21c) and (2.22c) can
be mapped to another MIQCP optimum with active constraints in (2.21c) and (2.22c),
without affecting other constraints and the objective value. The mapped MIQCP optimum
is also the optimum of problem (2.17). The mapping algorithm is provided in Algorithm 1.

Remark 2. The MIQCP problem is NP-hard.

Proof. To prove the NP-hardness, it is sufficient to consider a special case in which
services with Dr → ∞ are embedded in a fully-connected virtual resource pool. We also
consider zero VNF state size, zero switching time overhead, and sufficiently large processing
resource capacity for each NFV node holding all VNFs without overloading [29,31]. In such
a case, the MIQCP problem can be reduced from a multiprocessor scheduling problem [75].
The multiprocessor scheduling problem minimizes the maximum load among a number of
processors which are assigned with a number of tasks with different loads, which is proved
to be NP-hard.

2.4 Heuristic Solution

Although problem (2.17) can be solved by the optimal MIQCP solution according to Propo-
sition 1, the computational time is high due to NP-hardness of the MIQCP problem. In
this section, we propose a low-complexity modular heuristic solution to problem (2.17).
We consider only the case where all components in objective function (2.1) are jointly op-
timized, i.e., ω1, ω2, ω3 > 0. In this case, we assume that one VNF migration is penalized
more than imbalanced loading (i.e., η(k) reaching its upper bound ηU). Then, the condi-
tion of ω1ηU < ω2 should be satisfied in the worst case, if all VNF migrations incur the
same transmission resource overhead for state transfer and require no extra virtual links

31

for flow rerouting. Accordingly, in the proposed algorithm, we first minimize the number of
overloaded NFV nodes with loading factors greater than ηU , and make migration decisions
at overloaded NFV nodes, after which η(k) is equal to ηU . Afterwards, η(k) is further
reduced for load balancing. The algorithm is insensitive to ω1 but sensitive to ω2

ω3
, due to

reconfiguration overhead aware migration decisions. Therefore, it provides a sub-optimal
solution to problem (17) with ω1ηU < ω2.

2.4.1 Overview

The heuristic algorithm is to determine a migration and resource allocation plan for interval
k in the presence of predicted traffic variations (i.e., from {λ(r)(k−1)} to {λ(r)(k)}). We first
find if and where NFV node resource overloading would happen due to traffic variations,
based on three factors. The first is node mapping, denoted by {xrhn (k)}; the second is hop
(VNF) delay bounds, denoted by {Drh(k)}, with ∑

h∈Hr Drh(k) = Dr; the third is NFV
node loading factor threshold, denoted by ηth. With current node mapping and hop delay
bounds, i.e., xrhn (k) = xrhn (k − 1) and Drh(k) = ∑

n∈N xrhn (k − 1)drhn (k − 1), we calculate
NFV node loading factors with traffic rates, {λ(r)(k)}, based on the M/M/1 queueing
model. By comparing the NFV node loading factors with threshold ηth (initial value set
as ηU), a set of overloaded NFV nodes is identified as potential bottlenecks.

Reconfiguration overhead reduction

Even if potential bottlenecks are identified, it is possible that migration is not necessary.
For a given ηth value, how an E2E delay requirement is decomposed into hop delay bounds
makes a difference on the number of overloaded NFV nodes. By making hop delay bounds
less stringent on overloaded NFV nodes and more stringent on underloaded NFV nodes,
it is possible to reduce the number of overloaded NFV nodes. The basic idea is as follows.
If an SFC traverses both overloaded and underloaded NFV nodes, loading factors of the
underloaded ones are increased to ηth, by shrinking corresponding hop delay bounds, and
loading factors of the overloaded ones are decreased, by enlarging corresponding hop delay
bounds. The strategy is referred to as delay scaling. Delay scaling is performed iteratively,
until there is no SFC traversing both overloaded and underloaded NFV nodes. The iterative
delay scaling procedure with given threshold, ηth, is referred to as redistribution of hop
delay bounds.

32

Figure 2.4: Flowchart of the heuristic algorithm for dynamic flow migration.

If the number of overloaded NFV nodes is reduced to zero after redistribution of hop
delay bounds, no migration is required. Otherwise, migration is necessary to overcome
resource overloading. Migration decisions are made sequentially, i.e., only a pair of variables
in set {xrhn (k)} is updated in one migration decision, each followed by a redistribution of
hop delay bounds, until no more migration is required.

With alternate migration decision and redistribution of hop delay bounds, reconfigura-
tion overhead is greedily reduced in two ways. One is the potential reduction of overloaded
NFV nodes by redistribution of hop delay bounds. The other is consideration of reconfig-
uration overhead in migration decision.

Load balancing

If no potential bottlenecks are detected or all detected potential bottlenecks are removed
by migration and redistribution of hop delay bounds, load balancing is the only remaining
objective. NFV node loading factors are gradually balanced by iterative redistribution of
hop delay bounds with threshold updating. The threshold, ηth, is updated from binary

33

search, until it reaches sufficient precision.
More details on redistribution of hop delay bounds are given in Subsection 2.4.2, with

pseudo code presented in Algorithm 2. Migration decision is discussed in Subsection 2.4.3,
and threshold updating is discussed in Subsection 2.4.4. Finally, the heuristic algorithm is
presented in Algorithm 3, with a flowchart given in Fig. 2.4.

2.4.2 Redistribution of Hop Delay Bounds

Classification. With given threshold ηth and a given set of {Drh(k)}, the loading factor
of NFV node n ∈ N in the presence of traffic variations is calculated as

ηn(k) =
∑

(r,h)∈V

(
P rh
n brS

rh
n (k)

Cn
+ wn(k)xrhn (k)W

Tn

)
(2.23)

where wn(k) is calculated from (2.11) and Srhn (k) is given by

Srhn (k) =
(
λ(r)(k) + 1

Drh(k)

)
xrhn (k). (2.24)

Three sets of NFV nodes are identified: NO= {n ∈ N |ηn(k) > ηth} consisting of overloaded
NFV nodes, NU= {n ∈ N |ηn(k) < ηth} for underloaded NFV nodes, and NE = {n ∈
N |ηn(k) = ηth}. Let binary variable X(r)

n (k) indicate whether SFC r traverses NFV node
n during interval k, with X(r)

n (k) = 1 if ∑h∈Hr xrhn (k) > 0, and X(r)
n (k) = 0 otherwise.

Let f(r)
1 be a binary flag indicating whether SFC r traverses any overloaded NFV nodes,

with f(r)
1 = 1 if ∑n∈NO X

(r)
n (k) > 0 , and f(r)

1 = 0 otherwise. Set NU is divided into two
subsets, i.e., NU = NU,U ∪ NU,O, where NU,U = {n ∈ NU |

∑
r∈RX

(r)
n (k)f(r)

1 = 0} is a set
of underloaded NFV nodes on which no SFCs traverse other overloaded NFV nodes, and
NU,O = {n ∈ NU |

∑
r∈RX

(r)
n (k)f(r)

1 > 0} is a set of underloaded NFV nodes on which at
least one SFC traverses other overloaded NFV nodes. Let f(r)

2 be a binary flag indicating
whether SFC r traverses any NFV nodes in NU,O, with f(r)

2 = 1 if ∑n∈NU,O X
(r)
n (k) > 0,

and f(r)
2 = 0 otherwise. Accordingly, SFCs are classified into four categories: SFC category

I with f(r)
1 = 1 and f(r)

2 = 0, SFC category II with f(r)
1 = f(r)

2 = 1, SFC category III with
f(r)

1 = 0 and f(r)
2 = 1, and SFC category IV with f(r)

1 = f(r)
2 = 0, as shown in Fig. 2.5.

Update and iteration. Define two sets of delay scaling factors, vertical delay scaling
factors {α̃n(k)} and horizontal delay scaling factors {β̃(r)(k)}, with initial values of 1. A
two-step delay scaling strategy is proposed as follows.

34

Figure 2.5: Four SFC categories based on NFV node loading factors.

Step I - Delay scaling for SFC category III

Hop delay bounds for SFC category III are relaxed on NFV nodes in NU,O, to release
resources for SFC category II, by making hop delay bounds more stringent on NFV nodes
in NU,U .

First, the loading factor of NFV node n ∈ NU,U is increased to ηth, by shrinking hop
delay bounds for SFC category III on NFV node n by a positive factor, α̃n(k), less than 1,
as derived in Appendix A and given by

α̃n(k) =
∑

(r,h)∈V
P rhn br
Drh(k) xrhn (k)f(r)

2

[ηth − ηn(k)] Cn +∑
(r,h)∈V

P rhn br
Drh(k)xrhn (k)f(r)

2
. (2.25)

The preceding delay scaling, called vertical delay scaling, is applied to multiple SFCs
belonging to category III on NFV node n ∈ NU,U . Then, hop delay bounds for SFC r in
category III on NFV nodes in NU,O are relaxed by a factor, β̃(r)(k), larger than 1, given
by

β̃(r)(k) =
Dr −

∑
h∈Hr

(
Drh(k)∑n∈NU,U∪NE xrhn (k)

)
Dr −

∑
h∈Hr

(
Drh
p (k)∑n∈NU,U∪NE xrhn (k)

) (2.26)

where Drh
p (k) is the old value of Drh(k) before vertical delay scaling. The preceding delay

scaling, called horizontal delay scaling, is applied to multiple hops in an SFC affected by
vertical delay scaling. Based on (2.23), {ηn(k)} is updated.

35

Algorithm 2: Redistribution of hop delay bounds
1 Input: ηth, {xrhn (k)}, {Drh(k)}
2 Calculate {ηn(k)}, NO, NU,U , NU,O, NE, {f(r)

1 }, {f
(r)
2 }.

3 while NU,O 6= ∅ and ∑r∈R f(r)
1 > 0 do

4 {α̃n(k)} = 1; {β̃(r)(k)} = 1.
5 if in the first while loop, then
6 Vertical delay scaling at NFV nodes in NU,U .
7 Horizontal delay scaling for SFC category III at NFV nodes in NU,O.
8 Update {ηn(k)}.
9 end

10 Vertical delay scaling at NFV nodes in NU,O.
11 Horizontal delay scaling for SFC category II at NFV nodes in NO.
12 Update {ηn(k)}, NO, NU,U , NU,O, NE, {f(r)

1 }, {f
(r)
2 }.

13 end
14 Output: {Drh(k)}, {ηn(k)}, NO, NO,1, {f(r)

1 }.

Step II - Delay scaling for SFC category II

More resources available at NFV nodes in NU,O from Step I are allocated to SFC category
II. First, vertical delay scaling is applied to NFV nodes in NU,O to increase their loading
factors to ηth, through scaling hop delay bounds for SFC category II on it by a vertical
scaling factor. Then, horizontal delay scaling is applied to SFC category II, by relaxing
hop delay bounds for SFC r in category II on NFV nodes in NO by a horizontal scaling
factor. The scaling factors are similar to that in Step I, and details are omitted.

After the delay scaling procedures, NFV node loading factors, NFV node classification
and SFC categories are updated. If NU,O 6= ∅ and ∑r∈R f(r)

1 > 0, i.e., there is at least one
SFC in category II, it is possible to further reduce the number of overloaded NFV nodes
through Step II, so Step II is performed iteratively until the condition is violated. The
outputs of Algorithm 2 are shown in line 14, where NO,1 = {n ∈ NO|

∑
r∈RX

(r)
n (k) = 1}

denotes a set of overloaded NFV nodes traversed by a single SFC.

36

2.4.3 Migration Decision

When one migration is required, a migration decision procedure is to select one bottleneck
NFV node, one SFC to migrate, and one target NFV node. Migration decisions are made
greedily to reduce the reconfiguration overhead. First, a candidate bottleneck NFV node
set, B, with |B| = |R|, is determined. For an SFC, the traversed NFV node with largest
hop delay bound is selected as a candidate bottleneck. Then, bottleneck NFV node, nb, is
determined in three cases. In the first case with B ∩ NO 6= ∅, an NFV node in B ∩ NO
with the largest number of SFCs is selected, given by

nb = argmax
n∈B∩NO

∑
r∈R

X(r)
n (k). (2.27)

In the second case with B ∩ NO = ∅ and NO\NO,1 6= ∅, nb is an NFV node in NO\NO,1
with the largest loading factor,

nb = argmax
n∈NO\NO,1

ηn(k). (2.28)

In the third case with B ∩ NO = NO\NO,1 = ∅, an NFV node in B whose SFCs traverse
the largest number of overloaded NFV nodes is selected, given by

nb = argmax
n∈B

∑
r∈R

X(r)
n (k)

∑
n′∈NO

X
(r)
n′ (k)

. (2.29)

Next, an SFC to migrate from nb and a target NFV node to accommodate the migrated
SFC are jointly selected to minimize the reconfiguration overhead, i.e., the weighted sum of
normalized transmission resource overhead for state transfer and number of extra virtual
links for flow rerouting. In this way, ω2 and ω3 are considered in the heuristic algorithm.
If there are multiple choices, an SFC with the largest resource demand is migrated to the
closest target NFV node.

2.4.4 Coordination with Threshold Update

Let binary variable, v, indicate whether migration is required to overcome resource over-
loading. It is set as 0 initially and updated iteratively. Let η∆ be a step size to update ηth,

37

with initial value η∆,0 and being updated before each ηth update. A precision, ηε∆, for η∆

is set as a stop condition.

After initialization in Algorithm 3 (lines 2-3), a redistribution of hop delay bounds is
performed to check whether migration is required. Based on outputs of Algorithm 2, v,
ηth and η∆ are updated in three cases, as shown in lines 8-12.

Update for v and ηth

In the first case, there are no remaining overloaded NFV nodes, i.e., ∑r∈R f(r)
1 = 0. Then

v = 0, and ηth is reduced by a step. In the other two cases, there are still overloaded NFV
nodes but NU,O = ∅, meaning that delay scaling is not sufficient to deal with resource
overloading on NFV nodes, but either at least one migration or increasing ηth by a step
is required, depending on the ηth value. In the second case with ηth = ηU , at least one
migration is needed, i.e., v = 1, and ηth should remain ηU to check whether more migrations
are required after a migration decision is made. In the third case with ηth < ηU , no more
migrations are required since ηth has been reduced by at least one step in previous updates,
thus v = 0 and ηth is increased by a step. With the updates for v and ηth, redistribution of
hop delay bounds is performed iteratively until no more migrations are required and the
precision of η∆ reaches ηε∆.

Update for step size η∆

Step size η∆ plays a key role in guaranteeing algorithm convergence. For example, a
constant η∆ equal to ηε∆ guarantees precision but makes the algorithm slow to converge
due to a potential oscillation of ηth around its optimal value. Therefore, we employ the
following strategy to update η∆. If the outputs of Algorithm 2 fall into the second case
where a migration is required, η∆ remains a constant equal to η∆,0. After all migrations
are performed, the outputs of Algorithm 2 correspond to the first case, and ηth should be
reduced by a constant step size η∆ equal to η∆,0. Until the first time that the outputs of
Algorithm 2 fall into the third case, η∆ starts to be reduced by half before each ηth update.

38

Algorithm 3: Heuristic algorithm for problem (2.17)
1 Input: Step size η∆,0, precision ηε∆
2 Initialize: {xrhn (k)}, {Drh(k)}
3 Let: v = 0, ηth = ηU , η∆ = η∆,0

4 while v == 1 or η∆ > ηε∆ do
5 if v == 1, then
6 Update {xrhn (k)} according to the migration decision making procedure.
7 end
8 Update {Drh(k)}, {ηn(k)}, NO, NO,1, {f(r)

1 } according to Algorithm 2.
9 if ∑r∈R f(r)

1 == 0, then
10 if η∆ 6= η∆,0, then η∆ = η∆/2
11 ηth = ηth − η∆, v = 0
12 end
13 else if ηth == ηU , then v = 1
14 else η∆ = η∆/2, ηth = ηth + η∆, v = 0
15 end
16 Output: Sub-optimal solution to problem (2.17).

2.4.5 Complexity Analysis

We first analyze the time complexity of Algorithm 2. Delay scaling for SFC category
III is performed once, using at most O(∑n∈N |V|) time. Delay scaling for SFC category
II is performed iteratively until there are no new NFV nodes in NU,O or there are no
overloaded SFCs. The worst case happens when each round of delay scaling for SFC cat-
egory II transforms a single NFV node in NO to a new NFV node in NU,O, consuming
O(∑n∈NO

∑
n∈N |V|) time. Thus, the complexity of Algorithm 2 is O(∑n∈NO

∑
n∈N |V|),

upper bounded by O(|N |2|V|). The complexity of the migration decision procedure is
dominated by the selection of SFC to migrate in the third case, which requires a run-
ning time of O(|N ||R|2). In Algorithm 3, at most |V| sequential migration decisions are
performed followed by [1

η∆,0
+ log2(η∆,0

ηε∆
)] iterations of threshold updating. In each itera-

tion, hop delay bounds are readjusted. Therefore, the worst case running time of Algo-
rithm 3 is |V|[O(|N ||R|2) +O(|N |2|V|)] + [1

η∆,0
+ log2(η∆,0

ηε∆
)]O(|N |2|V|), which is simplified

to O(|N |2|V|2) when |R|2 < |N ||V|.

39

2.5 Performance Evaluation

In this section, simulation results are presented to evaluate the MIQCP and heuristic
solutions for the delay-aware flow migration problem. Two time intervals are considered:
(k − 1) and k, representing the current and next time intervals respectively. We use two
mesh networks with 64 NFV nodes and 256 NFV nodes to represent the virtual resource
pool. Virtual links exist only between neighboring NFV nodes. In the 64-node network, we
consider fixed SFC mapping for time interval (k− 1), with three SFCs initially mapped to
the virtual resource pool. Specifically, SFC 3 shares two NFV nodes with SFC 1 and one
of them also with SFC 2. In the 256-node network, we consider different numbers of SFCs,
with [3, 5] VNFs in each one, randomly distributed in the network during time interval
(k − 1). We set a ratio of 0.01 between the switching time and the CPU polling period.
The upper bound, ηU , for η(k), is 0.95. The average E2E delay requirement for each SFC is
0.02 s, and the maximal tolerable service downtime is 0.005 s. For VNF states, the size is a
constant, equal to 10 bytes, thus requiring at least a transmission rate Bmin of 16 kbit/s for
a state transfer. Under the simulation setup, the total normalized transmission resource
overhead for state transfer is equal to the total number of migrations. For the weights,
we set ω2 = 2ω3. Then, ω1 <

2
3ηU+2 = 0.4123 should be satisfied to penalize migration

more than imbalanced loading. In this case, 0.4123 is the worst-case boundary for ω1, to
guarantee the penalization preference if ω1 is less than the boundary. We implement both
the MIQCP and heuristic solutions in python. We use NetworkX to simulate the network
scenario, and Gurobi python interface to solve the MIQCP problem.

2.5.1 Load Balancing and Reconfiguration Overhead Trade-off

We use the 64-node network with three SFCs to evaluate the performance of the MIQCP
solution with varying traffic load under three sets of weights in (2.1), and investigate the
trade-off between load balancing and reconfiguration overhead. For traffic load during
interval k, we have λ(1)(k) = 600 packet/s, λ(2)(k) = 200 packet/s, and vary λ(3)(k) from
200 packet/s to 740 packet/s. Beyond 740 packet/s, the problem becomes infeasible due to
processing resource constraints and average E2E delay constraints. Performance metrics
are the maximum NFV node loading factor, η(k), the number of migrations, Nm(k), and the
number of extra virtual links, Ne(k), for flow rerouting. We explore three sets of weights.
For {ω1, ω2, ω3} = {1, 0, 0}, the reconfiguration overhead is not optimized but load

40

200 300 400 500 600 700

Packet Arrival Rate of SFC-3 (packet/s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(k
)

0

1

2

3

4

5

6

7

8

9

10

11

N
m

(k
)

o
r

N
e
(k

)

(k)

N
m

(k)

N
e
(k)

(a) LBFM strategy

200 300 400 500 600 700

Packet Arrival Rate of SFC-3 (packet/s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(k
)

0

1

2

3

4

5

6

7

8

9

10

11

N
m

(k
)

o
r

N
e
(k

)

(k)

N
m

(k)

N
e
(k)

(b) MOFM strategy

200 300 400 500 600 700

Packet Arrival Rate of SFC-3 (packet/s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(k
)

0

1

2

3

4

5

6

7

8

9

10

11

N
m

(k
)

o
r

N
e
(k

)

(k)

N
m

(k)

N
e
(k)

(c) HFM strategy

Figure 2.6: Performance of three flow migration strategies with respect to λ(3)(k).

balancing is the focus, corresponding to a load balancing flow migration (LBFM) strategy.
For {ω1, ω2, ω3} = {0, 2

3 ,
1
3}, η(k) is not optimized but reconfiguration overhead reduction is

emphasized, corresponding to a minimum overhead flow migration (MOFM) strategy. For
{ω1, ω2, ω3} = {0.4, 0.4, 0.2}, both load balancing and reconfiguration overhead reduction
are important, corresponding to a hybrid flow migration (HFM) strategy. Fig. 2.6 shows
performance of three strategies with the increase of λ(3)(k), for ηU = 0.95.

LBFM strategy: It is observed that η(k) is dominated by SFC 1 when λ(3)(k) is
relatively small, showing a flat trend first, but turns to be dominated by SFC 3 with the
increase of λ(3)(k). Both Nm(k) and Ne(k) are high and vary with the traffic load, since
they are not optimized. SFCs separate from each other even at a relatively low traffic load
to balance traffic loads in the virtual resource pool.

MOFM strategy: Both Nm(k) and Ne(k) show a step-wise increasing trend with the
increase of λ(3)(k). However, η(k) is fixed at ηU , since it is not optimized.

HFM strategy: A trade-off among performance metrics is observed. With the increase
of λ(3)(k), η(k) drops sharply when Nm(k) or Ne(k) is increased by 1. When Nm(k) and
Ne(k) stay stable, η(k) shows either a linear increasing or a flat trend. Compared with
LBFM and MOFM strategies, HFM strategy approaches to the lower bounds of Nm(k)
and Ne(k) determined by the MOFM strategy, while keeping η(k) at a medium level.

2.5.2 Average End-to-End Delay Performance

We carry out packet-level simulations using network simulator OMNeT++ to evaluate
average E2E delay of SFC 3 with and without flow migration, under the same network and

41

200 225 250 275 300 325 350 375 400 425

Average Packet Arrival Rate (packet/s)

0

0.02

0.04

0.06

0.08

0.1

E
2

E
 d

e
la

y
 (

s
)

Poisson

Figure 2.7: Average E2E delay without flow
migration.

200 300 400 500 600 700
Average Packet Arrival Rate (packet/s)

0.00

0.01

0.02

0.03

0.04

E2
E
de

la
y
(s
)

Poisson
MMPP-1.2-0.8

MMPP-1.4-0.6
MMPP-1.6-0.4

Figure 2.8: Average E2E delay comparison
with flow migration.

SFC settings as in Subsection 2.5.1. For average traffic rates, we set λ(1)(k) = λ(2)(k) = 200
packet/s and increase λ(3)(k) from 200 packet/s. To verify the effectiveness and accuracy
of our flow migration model in the presence of traffic burstiness, not only Poisson but also
Markov-modulated Poisson process (MMPP) packet arrivals are simulated. For each traffic
arrival pattern, we collect sufficient packet delay information to estimate the average E2E
delay. We use a two-state MMPP model with same transition rate between states and
an average rate of λ(3)(k). We use “MMPP-q1-q2” to represent the MMPP traffic model,
where q1 and q2 are ratios between state-dependent rates and λ(3)(k), with q1 + q2 = 2.
For example, for “MMPP-1.6-0.4” traffic model with λ(3)(k) = 500 packet/s, the state-
dependent rates are 800 packet/s and 200 packet/s respectively.

Fig. 2.7 shows the average E2E delay without flow migration, in which a flat trend
is observed, followed by an exponential increasing trend, for Poisson traffic arrival with
increasing rate from 200 packet/s to 425 packet/s. The flat trend corresponds to feasible
traffic rates for E2E delay guarantee with local processing resource scaling. Beyond 360
packet/s, local resources are not sufficient, resulting in an exponential increase of E2E
delay. Fig. 2.8 shows the average E2E delay with flow migration. We observe that the E2E
delay requirement is satisfied for Poisson traffic with rate in [200, 700] packet/s, inferring
that more traffic can be accommodated from services which originally share some NFV
nodes on their E2E paths, with joint flow migration and processing resource scaling. At
a certain average rate, the E2E delay performance degrades with more traffic burstiness.

42

0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91

Weight
1

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

V
a

lu
e

 0.4123

Worst-case boundary for
1

MIQCP: (k)

Heuristic: (k)

MIQCP: Reconfiguration overhead

Heuristic: Reconfiguration overhead

MIQCP: Total cost

Heuristic: Total cost

Figure 2.9: Costs with respect to weight ω1 in objective function, for ω2 = 2ω3.

However, even “MMPP-1.6-0.4” for average rate in [400, 700] packet/s with flow migration
performs much better than Poisson traffic arrival for average rate larger than 360 packet/s
without flow migration, indicating that our flow migration model can accommodate some
traffic burstiness without a significant degradation on E2E delay.

2.5.3 Comparison between MIQCP and Heuristic Solutions

Cost sensitivity to different weights

Under the 64-node network setup with three SFCs, we compare the MIQCP and heuristic
solutions in terms of their cost sensitivity to different weights in (2.1). With ω2 = 2ω3 and
ω1 + ω2 + ω3 = 1, three cost metrics including the maximum NFV node loading factor,
η(k), the reconfiguration overhead, 2Nm(k) + Ne(k), and the total cost, ω1η(k) + (1 −
ω1)(2Nm(k) + Ne(k)), are evaluated. The first two costs are partial costs. Although the
heuristic solution is in principle insensitive to ω1, we use the same definition of total cost
for a fair comparison. The three cost metrics with respect to ω1 for both the MIQCP and
heuristic solutions are given in Fig. 2.9. In both solutions, the total cost approaches to the
reconfiguration overhead, for ω1 close to 0, and approaches to the maximum NFV node
loading factor, for ω1 close to 1. For the heuristic solution, we observe constant partial

43

0

5

10

15

20

25

30

10 15 20 25 30 35 40 45

T
o

ta
l

c
o

st

Number of SFCs

MIQCP Heuristic

Figure 2.10: Total cost with respect to the number of SFCs.

costs with respect to ω1, which is consistent with the design principle. For the MIQCP
solution, both partial costs show a stable trend for small and medium values of ω1 in a
range larger than the theoretical worst-case range (0, 0.4123). For large values of ω1, the
reconfiguration overhead of the MIQCP solution increases with ω1, while the maximum
NFV node loading factor decreases with ω1, since much more penalization is placed on
imbalanced loading than migrations.

Cost efficiency and time efficiency

We use a 256-node mesh network to compare the cost and time efficiency between the
MIQCP and heuristic solutions. The comparison is performed with fixed weights in (2.1),
under the condition of ω1ηU < ω2. Specifically, we have {ω1, ω2, ω3} = {0.4, 0.4, 0.2}.
Eight groups of experiments are implemented with 10, 15, 20, 25, 30, 35, 40 and 45 SFCs
respectively. The total cost and running time for each group are evaluated at different
traffic rates from 200 to 740 packet/s. In each experiment, all SFCs have the same traffic
rate, denoted by λ(k). The initial step size, η∆,0, and the precision, ηε∆, are set to 0.1 and
0.0001 respectively. Fig. 2.10 shows the average total cost with respect to the number of
SFCs (|R|). It shows that the total cost obtained from both solutions increases with |R|.
Adding more SFCs tends to increase the number of overloaded NFV nodes, especially when
the traffic rate is high and the added SFCs share some NFV nodes with others. Hence, more
migrations tend to be triggered with more SFCs added, incurring more cost. Fig. 2.11 shows

44

Figure 2.11: Running time with respect to the number of SFCs.

the average running time with respect to |R|. We see an almost exponential increasing
trend for the running time of the MIQCP solution. In contrast, the time complexity of the
heuristic solution is much less, with a less significant increasing trend.

2.5.4 Convergence of Heuristic Algorithm

To evaluate convergence of the proposed heuristic algorithm, we plot the updating process
of the threshold ηth, in the 45-SFC experiments with different traffic rates λ(k), as shown
in Fig. 2.12, in which η(k) is the maximum NFV node loading factor after convergence. On
each threshold updating curve corresponding to a specific traffic rate, we see that ηth first
remains ηU due to several sequential migration decisions at the beginning and then drops
with the initial step size of 0.1 until a turning point at the lower bound. After the turning
point, the step size is reduced by half with each iteration until it is below the required
precision 0.0001. With the increase of traffic rate to 500 packet/s, more migrations happen
to gradually decouple the SFCs from each other, and more extra virtual links are observed.
When the traffic rate grows larger than 500 packet/s, all SFCs are completely decoupled,
with no resource sharing on NFV nodes, thus Nm(k) and Ne(k) are stabilized but η(k)
increases. When the traffic rate is smaller than 500 packet/s, η(k) is close to ηU , while less
migrations and extra virtual links are observed, showing a trade-off between load balancing
and reconfiguration overhead.

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Running Time (s)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

th (k) = 200, N
m

(k) = 4, N
e
(k) = 4, (k) = 0.93417

(k) = 300, N
m

(k) = 11, N
e
(k) = 5, (k) = 0.92604

(k) = 400, N
m

(k) = 34, N
e
(k) = 25, (k) = 0.93861

(k) = 500, N
m

(k) = 52, N
e
(k) = 37, (k) = 0.70000

(k) = 600, N
m

(k) = 52, N
e
(k) = 37, (k) = 0.80000

(k) = 700, N
m

(k) = 52, N
e
(k) = 37, (k) = 0.90000

Figure 2.12: Threshold update in the heuristic algorithm, for ηU = 0.95.

2.6 Summary

In this chapter, we study a delay-aware flow migration problem for embedded services with
average E2E delay requirements. A mixed integer optimization problem is formulated to
address the trade-off between load balancing and reconfiguration overhead. The problem
is non-convex and difficult to solve using optimization solvers. Hence, we reformulate
a tractable MIQCP problem based on which the optimum of the original problem can
be obtained. Numerical results show that the proposed model accommodates more traffic
from services, in comparison with an SFC configuration without flow migrations. Moreover,
a flow migration strategy with similar priority in load balancing and migration reduction
achieves medium load balancing, as compared with flow migration strategies with a priority
on either goal. Nevertheless, it achieves approximately as good performance in terms of the
reconfiguration overhead as a flow migration strategy which aims at migration reduction.
This result indicates the benefit of joint consideration of the two goals. A performance
comparison between the MIQCP and low-complexity heuristic solutions demonstrates the
effectiveness and time efficiency of the heuristic solution.

46

Chapter 3

Dynamic Resource Scaling for VNF
over Nonstationary Traffic: A
Learning Approach

In this chapter, the VNF scalability issue is studied to meet the QoS requirement in the
presence of nonstationary traffic, through joint VNF migration and resource scaling. A
traffic parameter learning method based on change point detection and Gaussian process
regression (GPR) is proposed, to learn traffic parameters in an fBm traffic model for each
stationary traffic segment within a nonstationary traffic trace. Then, the time-varying VNF
resource demand is predicted from the learned traffic parameters based on an fBm resource
provisioning model. With the detected change points and predicted resource demands, a
VNF migration problem is formulated as an MDP with variable-length decision epochs, to
maximize the long-term reward integrating load balancing, migration cost, and resource
overloading penalty. A penalty-aware deep Q-learning algorithm is proposed to incorporate
awareness of resource overloading penalty, with improved performance over benchmarks in
terms of training loss reduction and cumulative reward maximization.

47

3.1 System Model

We consider one VNF in a VNF chain, with an incoming subflow from its upstream VNF,
and an outgoing subflow towards its downstream VNF. For packet processing at the VNF, it
is required that the delay violation probability should not exceed an upper limit, i.e., P(d >
D) ≤ ε, where d is a random variable denoting the experienced VNF packet processing
(including queueing) delay, D is the delay bound, and ε is the maximum delay violation
probability. The VNF can be placed at an NFV node in a candidate setNC . The considered
VNF is initially placed at NFV node n0 ∈ NC .

3.1.1 Nonstationary Traffic Model

Multi-timescale time series

Traffic arrivals at the VNF can be represented as a time series, with each traffic sample
being the number of packet arrivals in non-overlapping, successive time intervals. We
consider traffic arrivals in different timescales, including a medium timescale with interval
length (in second) equal TM (e.g., 20 s), and a small timescale with interval length (in
second) equal TS (e.g., 0.1 s). Let xM denote the time series in medium timescale, given
by

xM = [xM(0), xM(1), · · · , xM(i), · · ·] (3.1)

where i (≥ 0) is an index for the medium time interval and xM(i) is the i-th traffic sample
in medium timescale, representing the number of packet arrivals in the i-th medium time
interval. A series of traffic samples between medium time intervals i and i′ (inclusive) is
given by

xM [i : i′] = [xM(i), xM(i+ 1), · · · , xM(i′ − 1), xM(i′)] , i′ > i. (3.2)

Similarly, a small-timescale time series is represented as

xS = [xS(0), xS(1), · · · , xS(t), · · ·] (3.3)

where t (≥ 0) is an index for the small time interval and xS(t) is the t-th traffic sample in
small timescale. Let xS[t : t′] denote a series of traffic samples between small time intervals

48

t and t′ (inclusive), given by

xS[t : t′] = [xS(t), xS(t+ 1), · · · , xS(t′ − 1), xS(t′)] , t′ > t. (3.4)

Let A(t) denote the cumulative number of packet arrivals before small time interval t, given
by

A(t) =
{ ∑t

t′=1 xS(t′ − 1), t ≥ 1
0, t = 0. (3.5)

Letting Λ be the long-term average traffic rate in packet/s, the following relationship holds:

Λ = lim
i′→∞

1
i′

i′∑
i=0

xM(i)
TM

= lim
t′→∞

1
t′

t′∑
t=0

xS(t)
TS

(3.6)

where xM (i)
TM

and xS(t)
TS

are average traffic rates (in packet/s) in the i-th medium time interval
and the t-th small time interval, respectively. Assume that TM is multiples of TS. As
illustrated in Fig. 3.1, a medium-timescale time series can be mapped to a small-timescale
time series within the same time duration, represented as

xM [i : i′]⇒ xS

[
iTM
TS

:
(

(i′+1)TM
TS

− 1
)]

. (3.7)

Stationary traffic segments with unknown change points

The real-world network traffic usually exhibits nonstationarity [76]. Here, we consider
nonstationary traffic arrivals for the VNF, as illustrated in Fig. 3.1. Assume that the
nonstationary traffic time series can be partitioned into non-overlapping stationary traffic
segments with unknown change points in time. Between two neighboring change points,
traffic statistics such as mean and variance do not change. Let integer k (≥ 0) indicate the
k-th stationary traffic segment. Consider that the change points can be located by a change
point detection algorithm based on traffic statistical changes in the medium-timescale
time series. Let CM(k) be the index of the k-th change point in medium timescale, i.e.,
xM(CM(k)) is the first traffic sample (in medium-timescale) of the k-th stationary traffic
segment. We have CM(0) = 0 to indicate the beginning of the timeline. Correspondingly,
the k-th change point in small timescale, CS(k), is given by

CS(k) = CM(k)TM
TS

. (3.8)

49

Medium

timescale:

20s

Small

timescale:

100ms

Real change points Detected change points

Figure 3.1: An illustration of nonstationary traffic model in different timescales.

Factional Brownian motion for a stationary traffic segment

A standard fBm process {Zs(t), t= 0,1,· · ·} is a centered Gaussian process with Zs(0) = 0
and covariance function

ψZs(t1, t2) = 1
2
(
t2H1 + t2H2 − |t1 − t2|2H

)
(3.9)

where H ∈ (0, 1) is Hurst parameter [41]. For H ∈ [0.5, 1), the fBm process is both
self-similar and LRD. A general fBm process {Z(t), t = 0, 1, · · · }, denoting the cumulative
number of packet arrivals before the t-th time unit in a stationary traffic time series, is
represented by

Z(t) = λt+ σZs(t) (3.10)

where λ = E(Z(t)
t

) is the mean of packet arrivals in a time unit, σ is the standard deviation
of packet arrivals in a time unit [41]. Here, a time unit corresponds to a small time interval.
The covariance function of Z(t) is given by

ψZ(t1, t2) = σ2

2
(
t2H1 + t2H2 − |t1 − t2|2H

)
. (3.11)

50

The fBm traffic model is adopted for a stationary traffic segment. For the k-th station-
ary traffic segment, we consider a shifted discrete timeline in small timescale, ṫ, starting
at the beginning of the k-th stationary traffic segment, with ṫ = t − CS(k). Then, we
have ẋS(ṫ) = xS(t− CS(k)), representing the number of packets arrived in the ṫ-th shifted
small time interval. The cumulative number of packet arrivals in the k-th stationary traffic
segment before ṫ is modeled as an fBm process with traffic parameters {λ(k), σ(k), H(k)},
given by

Ȧk(ṫ)=
{∑ṫ

ṫ′=1 ẋS(ṫ′ − 1), 1 ≤ ṫ ≤ CS(k + 1)− CS(k)− 1
0, ṫ = 0. (3.12)

3.2 Traffic Parameter Learning and Resource Demand
Prediction

Since traffic statistics change across different stationary traffic segments, the amount of
processing resources allocated to the VNF for probabilistic QoS guarantee, i.e., P(d >

D) ≤ ε, should be dynamically adjusted. Here, a change-point-driven traffic parameter
learning and resource demand prediction scheme is proposed, to predict resource demands
from learned fBm traffic parameters of stationary traffic segments between detected change
points. It provides a triggering signal for dynamic VNF migration to be discussed in
Section 3.3.

3.2.1 Bayesian Online Change Point Detection

The Bayesian online change point detection (BOCPD) algorithm was first introduced
in [37]. Central to the BOCPD algorithm is the run length denoted by l. A run is defined
as a traffic segment with the same statistics. Online inference about the run length is per-
formed at every time step, given a conditional prior distribution over the run length and an
underlying predictive model. We use the BOCPD algorithm to detect statistical changes
in mean and variance of the nonstationary medium-timescale time series xM , under the
assumption that the medium-timescale traffic samples are from i.i.d Gaussian distribution
N (µ, ν2), with unknown (and perhaps changing) mean µ and standard deviation ν. A time
step in the BOCPD algorithm corresponds to a medium time interval. Note that the i.i.d

51

Figure 3.2: An illustration of run length growth.

Gaussian assumption is used to detect change points. For traffic parameter learning, we
do not rely on such an assumption.

The run length at the i-th time step, denoted by li, represents the number of traffic
samples before the i-th traffic sample, xM(i), within the same run. The run length li is a
random variable taking values from {0, 1, · · · , i}, as illustrated in Fig. 3.2. From time step
(i− 1) to i, the run length either increases by 1 or resets to 0. For notation simplification,
we omit the subscript M denoting the medium timescale, and use xi to denote xM [0 : i].
We also use x(l)

i to denote xM [(i− li) : i], which is a time series in the same run before the
(i+ 1)-th traffic sample, given the run length li at time step i.

The joint probability of run length and observed time series at time step i, i.e., P(li,xi),
is updated recursively from the joint probability at the previous time step, i.e., P(li−1,xi−1),
for i≥1, given by

i-th iteration︷ ︸︸ ︷
P(li,xi) =

∑
li−1

P(li|li−1)︸ ︷︷ ︸
conditional prior on run length

P(xi|li−1,x
(l)
i−1)︸ ︷︷ ︸

predictive model

(i−1)-th iteration︷ ︸︸ ︷
P(li−1,xi−1) . (3.13)

With initialization P(l0 = 0, x0) = 1, for any observed value of x0, the joint probability
represents a relative likelihood. The underlying condition for (3.13) is that run length li
is independent of xi, given li−1. The conditional prior on run length, i.e., P(li|li−1), is a
probability mass distribution with two outcomes, i.e., li = li−1 + 1 and li = 0, as given
in Appendix B. The predictive model, i.e., P(xi|li−1,x

(l)
i−1), evaluates the probability that

52

xi belongs to the same run as x(l)
i−1 (i.e., xM [(i − 1 − li−1) : (i − 1)]), given li−1. With

a Gaussian-Inverse-Gamma prior on the unknown mean, µ, and variance, ν2, of the i.i.d
Gaussian distribution, the predictive model is described by a student-t distribution with
mean µ(l)

i−1 and standard deviation ν
(l)
i−1, as given in Appendix B. For each possible value

of li−1, both µ
(l)
i−1 and ν

(l)
i−1 take different values. Through normalization, the posterior

distribution of run length, P(li|xi), is given by

P(li = i′|xi) = P(li = i′,xi)∑i
li=0 P(li|xi)

, ∀i′ = 0, 1, · · · , i. (3.14)

For traffic parameter learning and resource demand prediction, deterministic change points
are required. Define the most probable run length at time step i as

l̂i = argmaxli={0,··· ,i}P(li|xi). (3.15)

The mean and standard deviation of the student-t predictive model corresponding to the
most probable run length at time step i, i.e., l̂i, is seen as the estimated mean and standard
deviation of the nonstationary medium-timescale time series at time step i, denoted by
µ

(l̂i)
i and ν(l̂i)

i respectively. Time step i is identified as a change point if the following two
conditions are satisfied. First, the gap between the most probable run lengths at time steps
(i− 1) and i, i.e., l̂i−1 and l̂i, is larger than a threshold Υl, given by

l̂i−1 − l̂i > Υl; (3.16)

Second, the normalized absolute difference between the estimated mean plus standard
deviation at time step i and (i− 1) is beyond a predefined threshold Υd, given by∣∣∣∣(µ(l̂i)

i + ν
(l̂i)
i

)
−
(
µ

(l̂i−1)
i−1 +ν(l̂i−1)

i−1

)∣∣∣∣
µ

(l̂i−1)
i−1 + ν

(l̂i−1)
i−1

> Υd. (3.17)

The k-th detected change point, denoted by ĈM(k), is an estimated value of the real change
point CM(k), i.e., the index of the first medium-timescale traffic sample in the k-th station-
ary traffic segment. The BOCPD algorithm has a linear space and time complexity per
time-step in the number of medium-timescale traffic samples after the previously detected
change point [37]. The stochastic BOCPD method results in a latency between CM(k) and
ĈM(k), as illustrated in Fig. 3.1, in which the real and detected change points are indicated
by the black and red vertical lines, respectively. The latency cannot be avoided since it is
inherent to the BOCPD algorithm. We exploit the latency for a look-back traffic parameter
learning.

53

3.2.2 Traffic Parameter Learning

Let i0 be a small integer1 such that (i0 − 1) medium-timescale traffic samples before the
ĈM(k)-th one belong to the k-th stationary traffic segment. The i0 medium-timescale traffic
samples including the ĈM(k)-th one correspond to i0TM

TS
small-timescale traffic samples

within the same time duration, given by

xM [(ĈM(k)−i0 +1) : ĈM(k)]⇒ xS

[
(ĈM(k)−i0 +1)TM

TS
:
(

(ĈM(k)+1)TM
TS

−1
)]

= xS

[
ĈS(k) :

(
ĈS(k) + i0TM

TS
− 1

)] (3.18)

where ĈS(k) = (ĈM (k)−i0+1)TM
TS

is the estimated k-th change point in small timescale. The
i0TM
TS

traffic samples are used to learn fBm traffic parameters of the k-th stationary traf-
fic segment. Compared with a look-ahead counterpart, the look-back mechanism avoids
another latency after the detected change point, for collecting sufficient traffic samples.

We consider a modified shifted discrete timeline, t̃, with t̃ = t− ĈS(k), for the k-th sta-
tionary traffic segment. Correspondingly, we have x̃S(t̃) = xS(t− ĈS(k)), representing the
number of packets arrived in the t̃-th modified shifted small time interval. The cumulative
number of packet arrivals in the k-th stationary traffic segment before t̃, is given by

Ãk(t̃) =
{∑t̃

t̃′=1 x̃S(t̃′ − 1), 1 ≤ t̃ ≤ ĈS(k + 1)− ĈS(k)− 1
0, t̃ = 0. (3.19)

We use {Ãk(t̃), 0 ≤ t̃ ≤ i0TM
TS
− 1} to learn fBm traffic parameters of the k-th stationary

traffic segment. Consider the following Gaussian process regression (GPR) model

Ãk(t̃) ∼ GP(λ(k)t̃, ψk(t̃1, t̃2)) (3.20)

where λ(k)t̃ is the mean function and ψk(t̃1, t̃2) is the fBm covariance function given by

ψk(t̃1, t̃2) = σ2(k)
2

(
t̃

2H(k)
1 + t̃

2H(k)
2 − |t̃1 − t̃2|2H(k)

)
. (3.21)

The fBm traffic parameters {λ(k),σ(k),H(k)} are referred to as hyper-parameters in the
GPR framework [40, 77]. Let tk = [0, 1, · · · , (i0TM

TS
− 1)] be training inputs and Ak =

1The value of i0 should be smaller than the minimum value of the most probable run lengths at any
detected change points.

54

[Ãk(0), Ãk(1), · · · , Ãk(i0TMTS − 1)] be training outputs. Then, we have the following joint
Gaussian distribution

Ak ∼ N (λ(k)tk,Ψk) (3.22)

where Ψk is a i0TM
TS

-by- i0TM
TS

covariance matrix, with Ψk(i, j) = ψk(i, j). The GPR model is
trained, i.e., the hyper-parameters are learned, by maximizing the following log-marginal
likelihood function with a gradient optimizer

logP(Ak | tk; {λ(k), σ(k), H(k)}) =

−1
2

[
(Ak − λ(k)tk)T Ψ−1

k (Ak − λ(k)tk) + log |Ψk|+
i0TM
TS

log 2π
]
.

(3.23)

For the GPR-based traffic parameter learning with i0TM
TS

traffic samples, it has O(i0TM
TS

3)
time complexity and O(i0TM

TS

2) space complexity due to the inversion of a covariance matrix
in (3.23) [78]. Such a complexity is feasible on a desktop computer for dataset sizes up to
a few thousands. There are sparse approximation algorithms to reduce the complexity of
Gaussian process regression [78].

To evaluate the learning accuracy, one-step-ahead predictions for t0 subsequent small
time intervals are performed using the trained GPR model. The one-step-ahead prediction
at time t̃ (i0TM

TS
− 1 ≤ t̃ ≤ i0TM

TS
+ t0 − 2) is to predict Ãk(t̃∗), given t̃∗ = t̃ + 1 and a set of

observed data D = (t,A) with t = [0, 1, · · · , t̃] and A = [Ãk(0), Ãk(1), · · · , Ãk(t̃)]). The
GPR gives a Gaussian posterior distribution of Ãk(t̃∗) conditioned on t̃∗ and D, as

P(Ãk(t̃∗)|t̃∗,D) ∼ N (µGP;k(t̃∗), σ2
GP;k(t̃∗)) (3.24)

with {
µGP;k(t̃∗) = ψk(t, t̃∗)T (Ψ)−1A
σ2
GP;k(t̃∗) = ψk(t̃∗, t̃∗)−ψk(t, t̃∗)T (Ψ)−1ψk(t, t̃∗).

(3.25)

In (3.25), ψk(t, t̃∗) is a (t̃+ 1)-by-1 vector with the j-th component equal to ψk(j, t̃∗), and
Ψ is a (t̃+ 1)-by-(t̃+ 1) covariance matrix with Ψ(j, j′) = ψk(j, j′). The mean, µGP;k(t̃∗),
is taken as a point estimate for the prediction output, and the variance, σ2

GP;k(t̃∗), provides
an uncertainty measure for the point estimate. With the predictive distribution for Ãk(t̃∗),
the traffic sample in time interval t̃∗, i.e., x̃S(t̃∗), is predicted as

ˆ̃xS(t̃∗) = µGP;k(t̃∗)−Ãk(t̃∗−1). (3.26)

55

The prediction error of the t0 traffic samples in the k-th stationary traffic segment, Ek,
is defined as the normalized root-mean-squared deviation between the t0 predicted traffic
samples and the corresponding ground truth, given by

Ek =

√√√√∑ i0TM
TS

+t0−1

t̃∗= i0TM
TS

(
ˆ̃xS(t̃∗)− x̃S(t̃∗)

)2

(xmaxS − xminS)
√
t0

.
(3.27)

The normalization constant is the scale of small-timescale traffic samples, i.e., (xmaxS −xminS).
A smaller Ek value indicates a higher learning accuracy for traffic parameters.

3.2.3 Resource Demand Prediction

With the learned fBm traffic parameters, the resource demand of the k-th stationary traffic
segment can be predicted. Consider an fBm traffic input with parameters {λ, σ,H} to an
infinite buffer, with a constant service rate of R packets per small time interval. The buffer
overflow probability, i.e., the probability that queue length q is beyond a threshold qB, is
approximately given by [41,79]

P(q > qB) ' exp
(
− inf

t≥0

[qB + (R− λ)t]2
2σ2t2H

)
(3.28)

which has been shown accurate even for a small value of qB by simulation studies. Corre-
spondingly, the delay violation probability can be approximated by

P(dS > DS) ' exp
(
− inf

t≥0

[RDS + (R− λ)t]2
2σ2t2H

)
(3.29)

where dS = d
TS

is the random VNF packet processing delay in number of small time
intervals, and DS = D

TS
is the corresponding delay bound. To provide probabilistic QoS

guarantee (i.e., P(dS > DS) ≤ ε) to the VNF with minimum resources, we should find

min {R | ∀t≥0, [RDS + (R−λ)t]2 ≥ (−2 log ε)σ2t2H} (3.30)

which leads to

Rmin = sup
t≥0

λt+
√
−2 log εσtH
t+ DS

. (3.31)

56

The value of t achieving the supremum can be obtained by setting the derivative of Rmin
with respect to t to zero, i.e.,

√
−2 log εσDSHt

H−1 +
√
−2 log εσ(H − 1)tH + λDS

(t+ DS)2 = 0. (3.32)

With the fBm resource provisioning model given in (3.31), the predicted resource demand
(in packet/s) of the k-th stationary traffic segment, denoted by R(k), is calculated from
the learned fBm traffic parameters, i.e., {λ(k), σ(k), H(k)}, the QoS requirement, and the
small time interval length, i.e., TS.

3.3 Deep Reinforcement Learning for Dynamic VNF
Migration

The BOCPD algorithm locates the prior-unknown change points of the nonstationary
traffic, which determines the boundaries between consecutive stationary traffic segments.
They are also boundaries between consecutive decision epochs (with variable lengths) for
VNF scaling and necessary VNF migrations. The length of decision epoch k is equal to
(ĈM(k+1)−ĈM(k))TM . Once change point ĈM(k) is detected, the resource demand R(k) of
the upcoming k-th stationary traffic segment is predicted, based on which a VNF migration
decision is made.

3.3.1 VNF Migration Problem Formulation

For VNF migration, we jointly consider the migration cost and load balancing. Let {ank , n ∈
NC} be a binary variable set, with ank = 1 if the VNF is placed at NFV node n during
the k-th decision epoch, and ank = 0 otherwise. Let ak (0 ≤ ak ≤ |NC | − 1) be an integer
denoting the VNF location during decision epoch k, with ak = n if the VNF is placed at
NFV node n. The relationship between {ank} and ak is given by

ank =
{

1, if ak = n

0, otherwise. (3.33)

Define the background resource loading factor of NFV node n during decision epoch k,
denoted by ηBn (k), as the average ratio between the amount of processing resources (in

57

packet/s) allocated to background traffic at NFV node n during decision epoch k and the
processing resource capacity Rn (in packet/s) of NFV node n. The resource loading factor
of NFV node n during decision epoch k, denoted by ηn(k), is dependent on both ηBn (k)
and VNF placement, given by

ηn(k) = ηBn (k) + ankR(k)
Rn

. (3.34)

The cost for imbalanced loading during decision epoch k is defined as the maximum resource
loading factor among all NFV nodes in NC , given by

c
(1)
k = max

n∈NC
ηn(k), (3.35)

since minimizing c(1)
k achieves load balancing among all the candidate NFV nodes. Assume

that each VNF migration incurs the same migration cost. Then, we can use the total
number of migrations to denote the total migration cost, given by

c
(2)
k =

{ ∑
n∈NC

∑
n′∈NC\n ank−1an′k , if k > 0

0, if k = 0 (3.36)

where ank−1 is a known value at decision epoch k (> 0). In the single VNF scenario, we have
c

(2)
k = 1 for k > 0 if the VNF placement changes from decision epoch (k − 1) to decision
epoch k, and c(2)

k = 0 otherwise. The total cost is a weighted combination of the two costs,
given by

ck = ω(C)c
(1)
k + (1− ω(C))c(2)

k (3.37)

where ω(C) is a weighting factor in (0, 1). In stepwise optimization for cost minimization in
the short term, total cost ck is minimized at each decision epoch k, subject to processing
resource capacity constraints at the NFV nodes, i.e., the resource loading factors of all NFV
nodes should not exceed 1. For cost minimization in the long run, the VNF migration
problem can be formulated as an MDP, with the state, action, and reward defined as
follows:

• State − At decision epoch k, the state is composed of four parts: the k-th change
point, the predicted resource demand of the k-th stationary traffic segment, the back-
ground resource loading factors of all candidate NFV nodes during decision epoch k,

58

and the previous VNF placement ak−1. Thus, the state for decision epoch k is repre-
sented as sk = [Ĉ(k),R(k), {ηBn (k)}, ak−1]. Here, Ĉ(k) is a real number representing
the k-th estimated change point in hour, given by

Ĉ(k) = ĈM(k)TM
3600 mod 24 (3.38)

where the modulo operation limits Ĉ(k) in [0, 24);

• Action − The action at decision epoch k is the new VNF placement, i.e., ak. We use
ak instead of {ank} as the action to limit the dimensionality of action space;

• Reward − In an unconstrained MDP, the violation of resource capacity constraints
is penalized by an extra term in reward. Hence, the reward for decision epoch k is

rk = −
(
ck + c(P)f(P)

k

)
(3.39)

where ck is the total cost for VNF migration at decision epoch k as given in (3.37), f(P)
k

is a binary flag indicating whether there is penalty due to resource overloading, and
c(P) is a constant representing the level of penalty. Assume that resource overloading
is only due to improper VNF placement, i.e., the background traffic does not overload
the NFV nodes (ηBn (k) < 1). Then, the penalty flag is defined as where

f(P)
k =

{
1, c

(1)
k > ηU

0, otherwise
(3.40)

where ηU (0 < ηU ≤ 1) is an upper limit for the maximum resource loading factor
without penalty. In practice, we select ηU as a number close to but smaller than 1,
e.g., ηU = 0.95, to penalize loading factors close to 1, with the consideration that the
penalty cannot be completely avoided in a learning-based solution due to exploration.
Moreover, if the predicted resource demand is very large, it is possible that there is
no feasible VNF placement without resource overloading. A potential solution is to
throttle the traffic when resource overloading is foreseen to happen. Here, we assume
that the VNF placement without resource overloading is always feasible and do not
consider traffic throttling.

59

Algorithm 4: Penalty-aware deep Q-learning
1 Initialize: Evaluation and target DQNs with random weights, set learning

parameters as listed in Table 3.2.
2 for each episode do
3 Initialize VNF placement at NFV node n0.
4 for each learning step (decision epoch) do
5 Observe current state sk, select an action ak according to the ε-greedy

policy in (3.42).
6 Execute action ak, collect reward rk and penalty flag f(P)

k , and see the next
state sk+1.

7 Store transition (sk, ak, rk, f(P)
k , sk+1) into replay memory, with initial

priority pk = maxj<k pj.
8 for J iterations do
9 Sample a transition (sj, aj, rj, f(P)

j , sj+1) with probability P(j).
10 Compute importance-sampling weight wj.
11 Compute target value yj and TD error δj.
12 Update transition priority pj.
13 Perform a gradient descent, i.e., θ ← θ + αQ (wjδj)∇θQ(sj, aj).
14 end
15 Decrease the exploration probability ε2 by a step ε2,∆, if ε2 > εmin2 .
16 Every Kθ steps, set θ̂ = θ.
17 end
18 end
19 Output: Trained evaluation and target DQNs.

60

3.3.2 Penalty-Aware Deep Q-Learning Algorithm

We solve the MDP by an RL approach, when transition probabilities among states are
unavailable. Consider an episodic task, in which an RL agent interacts with the VNF
migration environment in a sequence of episodes, with a finite number of learning steps
in each episode. Here, a learning step corresponds to a decision epoch, and an episode
corresponds to a time duration such as one day, one week, or one month. At the beginning
of an episode, the VNF placement is initialized at NFV node n0. Within an episode, an
agent observes state sk and takes action ak at the beginning of decision epoch k. At the
end of decision epoch k, the agent receives reward rk, and sees new state sk+1. The goal is
to find a policy, π(s), mapping a state to an action, to maximize the expected cumulative
(episodic) discounted reward E(∑K−1

k=0 γ
krk), where K is the number of variable-length

decision epochs in an episode, and γ ∈ (0, 1] is the discount factor. In Q-learning [42], a
state-action value function Q(sk, ak) is defined as

Q(sk, ak) = E
[
K−1∑
k′=k

γk
′−krk′ |sk, ak

]
(3.41)

The Q-learning is an off-policy algorithm adopting the ε-greedy policy

π(sk) =

 argmax
a

Q(sk, a), with probability (1− ε2)
random action, with probability ε2

(3.42)

where ε2 is the exploration probability. We use a gradually decreasing ε2 from 1 to a mini-
mum value εmin2 , with a step size ε2,∆, to transit smoothly from exploration to exploitation.

The formulated MDP is featured by a high-dimensional combinational state space and
a low-dimensional discrete action space. To tackle the curse of dimensionality, deep Q-
learning adopts two deep Q-networks (DQNs) with the same neural network structure as
Q function approximators, i.e., evaluation DQN (Q) with weights θ and target DQN (Q̂)
with slowly updated weights θ̂ [80]. EveryKθ learning steps, θ̂ is replaced by θ. The policy
in (3.42) is based on evaluation DQN, which is trained by minimizing a loss function L(θ),
given by

L(θ) = E
[
(yk −Q(sk, ak;θ))2

]
(3.43)

through gradient descent on θ, where yk is a target value estimated by target DQN:

yk = rk + γmax
a
Q̂(sk+1, a; θ̂). (3.44)

61

If an episode terminates at the k-th learning step, yk is set as rk. A gradient descent on θ
is performed by

θ ← θ − 1
2αQ∇θL(θ) = θ + αQδk∇θQ(sk, ak) (3.45)

where αQ is the learning rate, and δk = yk−Q(sk, ak;θ) is the temporal-difference (TD)
error.

Experience replay is introduced in deep Q-learning for stable convergence [80]. At each
learning step, θ is updated with a mini-batch (size equal J of experiences (sj, aj, rj, sj+1)
uniformly sampled from a replay memory. Experience replay breaks the temporal corre-
lation among experiences, and liberates RL agents from learning with transitions in the
same order as they appear. Prioritized experience replay achieves more learning efficiency
through further liberating RL agents from considering transitions in the same frequency
as they appear [81, 82]. It assigns a priority, pj, for transition j sampled from the replay
memory, which is the magnitude of TD error δj plus a very small value ε1. The sampling
probability of transition j is

P(j) =
po1
j∑M

j=1 p
o1
j

(3.46)

where M is the size of replay memory and o1 determines the level of prioritization.

In the VNF migration problem, it is desired that the deep Q-learning algorithm con-
verges to a solution without resource overloading penalty in the whole episode. However,
such experiences are rare at the early learning stage with a lot of exploration, especially if
an episode contains a large number of transitions. To learn more from such rare desired
experiences, we extend the prioritized experience replay technique to consider penalty-
awareness. Among the original prioritized transitions with high absolute TD errors, we
place more priority on those transitions with zero penalty, given by

pj = ω(TD)|δj|+ (1− ω(TD))(1− f(P)
j) + ε1 (3.47)

where ω(TD) ∈ [0, 1] is a parameter controlling the relative importance of TD error and
penalty avoidance, and 0 < ε1 � 1 is a very small constant. In practice, we select ω(TD)

close to 1, e.g., 0.99, to incorporate penalty-awareness without significant degradation on
convergence speed. Correspondingly, at every learning step, the penalty flag, f(P)

j in (3.40),
is recorded, and a five-tuple transition (sj, aj, rj, f(P)

j , sj+1) instead of the original four-tuple

62

Table 3.1: Traffic sets with different randomness levels

Traffic set Change points Resource demands

1 Detected Predicted
2 Detected ± [0, 0.1] hour Predicted
3 Detected Predicted ± [0%, 5%]
4 Detected ± [0, 0.1] hour Predicted ± [0%, 5%]

Table 3.2: List of parameters in deep Q-learning

αQ Learning rate 10−6

γ Discount factor 0.9
εmin2 Minimum exploration probability 0.01
ε2,∆ Step size of exploration probability 5× 10−6

Kθ Number of steps to replace θ̂ by θ 200
M Memory size 2000
J Batch size 200

ω(TD) Weight in the priority 0.99

transition, (sj, aj, rj, sj+1), is stored in the replay memory, for priority calculation based
on (3.47). A deep Q-learning algorithm with penalty-aware prioritized experience replay
is presented in Algorithm 4. The prioritization leads to a loss of diversity, which can be
corrected with an importance-sampling weight wj, given by [82]

wj = (B · P(j))−o2 /max
j′

(wj′) (3.48)

where o2 controls the level of compensation. The TD error δj is replaced by a weighted TD
error wjδj in a gradient descent step with transition j, as given in line 13 of Algorithm 4.

3.4 Performance Evaluation

We use a real-world backbone traffic trace from the MAWI working group of the WIDE
project for performance evaluation, which provides packet-level information collected from
Internet backbone links [20]. We select two most recent 48-hour-long traces collected

63

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

Time (hour)

0

2

4

6

8

10

12

14

T
ra

ff
ic

 r
a

te
 (

p
a

c
k
e

t/
s
)

10
4

Figure 3.3: The extracted HTTP trace
trace in four days.

Figure 3.4: Quantile-quantile (QQ) plots
for different timescales.

from the transit link of WIDE backbone connecting the upstream ISP. The specific days
are 2018/05/09, 2018/05/10, 2019/04/09, and 2019/04/10. We extract the Hypertext
Transfer Protocol (HTTP) traffic from port 443 as an aggregate service flow, and select
TS = 0.1 s and TM = 20 s as the lengths of small and medium time intervals, respectively.
Fig. 3.3 shows the four-day HTTP traffic trace in small timescale, which exhibits a daily
periodic traffic pattern. The quantile-quantile (QQ) plots for the distribution of centered
normalized number of packet arrivals (with mean equal to 0 and standard deviation equal
to 1) in different timescales (within the same stationary traffic segment) versus a standard
Gaussian distribution are presented in Fig. 3.4. It shows that the traffic distributions in
both small and medium timescales are approximately Gaussian with heavy tails. The traffic
distribution in a tiny timescale (1 ms) is more bursty and completely not Gaussian due to
insufficient aggregation of packet arrivals in each tiny time interval. The two thresholds
in change point detection, i.e., Υl and Υd, are set as 10 and 5%, respectively. We select
i0 = 4 to have 800 small-timescale traffic samples in each stationary traffic segment for
traffic parameter learning, which gives high computation efficiency while achieving a good
accuracy. For each daily traffic trace, change points are detected, and resource demands
are predicted for the identified stationary traffic segments. There are 25, 20, 26, and 24
detected change points in the four daily traffic traces, respectively. The accuracy of traffic
parameter learning is evaluated with t0 = 1000 small-timescale traffic samples.

64

0 50 100 150 200 250 300 350 400

Number of samples in medium timescale

0

1

2

3

4

5

p
a

c
k
e

t/
s

10
4

0

50

100

150

200

250

300

350

400

M
o

s
t

p
ro

b
a

b
le

 r
u

n
 l
e

n
g

th

Figure 3.5: Results of change point detection for a nonstationary traffic segment.

For dynamic VNF migration, we consider one VNF initially placed at NFV node n0,
with another five candidate NFV nodes located in its neighborhood. All NFV nodes have
the same processing capacity Rn = 125000 packet/s. The background resource loading
factor of each NFV node varies between 10% and 90%, in different patterns with peaks
at different time in a day. We set weighting factor ω(C) = 0.6 and penalty level c(P) = 5.
For deep Q-learning, an episode corresponds to one week, to have sufficient learning steps
(decision epochs) with periodic dynamics in both change points and resource demands
within an episode. The weekly traffic in one episode is artificially composited by daily
traffic of the four days in random order, with different randomness levels in both change
points and resource demands, as described in Table 3.1. The randomness level (in hour)
around change points follows a uniform distribution in [0, 0.1], and the randomness level
around resource demands follows a uniform distribution in [0%, 5%]. We use a DQN
structure with one hidden layer of 20 neurons and Relu as the activation function, with
important learning parameters summarized in Table 3.2.

Fig. 3.5 shows results of change point detection for a nonstationary traffic segment in
8000 s, corresponding to 400 medium time intervals. A zigzag trend is observed for the
most probable run length. The detected change points are indicated by gray vertical lines.
Online estimation of mean and standard deviation in a student-t distribution corresponding
to the most probable run length at each time step (in medium timescale) is a byproduct of

65

Table 3.3: Traffic parameters and resource demands of simulated fBm traffic

Group
Simulated Estimated (Benchmark) Estimated (Proposed)

λ σ H R0.01 λ̄ σ̄ H̄ R0.01 λ̄ σ̄ H̄ R0.01 E

1 800 200 0.7 1429.6 797.9 216.3 0.698 1490.9 795.4 218.8 0.693 1501.4 0.1507

2 800 200 0.8 1403.4 804.4 191.4 0.796 1378.2 798.6 198.6 0.793 1397.8 0.1373

3 800 200 0.9 1422.5 801.3 182.4 0.894 1363.1 798.8 210.6 0.893 1453.2 0.1246

4 900 300 0.7 1895.7 898.5 325.6 0.697 1997.1 895.8 327.3 0.693 2008.3 0.1489

5 900 300 0.8 1836.4 896.9 287.5 0.796 1791.4 895.3 296.4 0.792 1822.0 0.1380

6 900 300 0.9 1848.7 899.6 271.8 0.895 1752.1 898.9 310.8 0.891 1879.0 0.1218

change point detection. It is observed that both statistics are stable between the detected
change points. We see that both conditions in (3.16) and (3.17) are satisfied for the two
detected change points, i.e., the most probable run length drops by more than Υl, and
the change in mean plus standard deviation is sufficiently large. We also observe that the
change points are detected after the occurrence of statistical changes, which verifies the
effectiveness of the look-back traffic parameter learning.

To evaluate the accuracy of the proposed traffic parameter learning method, we simu-
late six groups of fBm traffic traces in discrete time with different traffic parameters and
resource demands, as given in Table 3.3. The simulated fBm traffic is generated following
a wavelet-based algorithm [83]. The length of a time unit is not specified. The resource
demand to satisfy the QoS requirement P(d > 0.01 time units) ≤ 0.01 is denoted by R0.01.
For each group of fBm traffic, 200 sample paths are generated, with 1000 traffic samples
in each sample path. The traffic parameters of each sample path are estimated by the first
800 traffic samples using both the proposed learning method and a classical benchmark
method. In the benchmark method, the mean and variance are estimated by the sample
mean and variance, and the Hurst parameter is estimated separately using a wavelet-based
approach [83]. In the proposed learning method, the three parameters are learned together,
reaching a compromise among them to maximize the log-marginal likelihood function given
in (3.23). The results of both methods are given in Table 3.3. It is observed that the mean
and Hurst parameter given by both methods are close to the simulated parameters, but the
standard deviation is not as accurate. However, the level of underestimation given by the
learning method is much lower than that given by the benchmark method. The accuracy
of traffic parameter learning is also evaluated by the average prediction error, E, for the

66

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hour)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

p
a

c
k
e

t/
s

10
5

Traffic rate (100ms timescale)

Demand for P(d>10ms)<0.1

Demand for P(d>10ms)<0.01

Demand for P(d>10ms)<0.001

 of fBm traffic

 of fBm traffic

H of fBm traffic

Change points

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

H
u

rs
t

p
a

ra
m

e
te

r

Figure 3.6: Learned traffic parameters and predicted resource demands for daily traffic.

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hour)

0

4%

8%

12%

16%

20%

P
re

d
ic

ti
o

n
 e

rr
o

r

Prediction error

Change points

Figure 3.7: Evaluation of traffic parameter learning accuracy for daily traffic.

last 200 traffic samples in each sample path, as given in Table 3.3.

Fig. 3.6 shows results of the proposed change-point-driven traffic parameter learning and
resource demand prediction scheme for a real-world daily traffic trace. The detected change
points identify different stationary traffic segments. For each stationary traffic segment,
the three learned fBm traffic parameters {λ(k), σ(k), H(k)} are plotted. We observe that
the Hurst parameter is within [0.5, 1), indicating self-similarity and LRD of the traffic. The
predicted resource demands for the identified stationary traffic segments are given, for QoS
requirements P(d > 10ms) ≤ ε with ε = 0.1, 0.01, and 0.001. As expected, the resource
demand increases when ε decreases. The average prediction error evaluated by t0 = 1000
traffic samples in each identified stationary traffic segment is plotted in Fig. 3.7. It can

67

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Delay (s)

0.5

0.6

0.7

0.8

0.9

1

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n
 f
u
n
c
ti
o
n

R
0.1

 (Synthesized traffic)

R
0.01

 (Synthesized traffic)

R
0.001

 (Synthesized traffic)

R
0.1

 (Real traffic)

R
0.01

 (Real traffic)

R
0.001

 (Real traffic)

(a) D = 10 ms

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Delay (s)

0.5

0.6

0.7

0.8

0.9

1

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n
 f
u
n
c
ti
o
n

R
0.1

 (Synthesized traffic)

R
0.01

 (Synthesized traffic)

R
0.001

 (Synthesized traffic)

R
0.1

 (Real traffic)

R
0.01

 (Real traffic)

R
0.001

 (Real traffic)

(b) D = 50 ms

Figure 3.8: Distribution of VNF packet processing delay for both the synthesized traffic
and the real traffic.

be seen that the average prediction errors for the real-world traffic trace is comparable to
that of the simulated fBm traffic traces given in Table 3.3.

To evaluate QoS performance of the proposed resource demand prediction scheme,
we conduct packet-level simulations using the python Simpy package, to gather sufficient
packet delay information for a smooth characterization of the VNF packet processing delay
distribution, with a 60s-long stationary traffic segment from the real-world traffic trace as
the VNF traffic input. Different amount of resources are allocated to the VNF according
to the predicted resource demands for different QoS requirements. For simplicity, we use
Rε to represent the predicted resource demand for a probabilistic delay guarantee, i.e.,
P(d > D) ≤ ε. Since traffic parameter learning is performed in 0.1 s timescale, traffic
burstiness in time granularities smaller than 0.1 s cannot be captured. Hence, we use
both the real packet arrival trace and a less-bursty synthesized packet arrival trace for
QoS evaluation. In the synthesized packet arrival trace, the numbers of packet arrivals in
0.1 s timescale are the same as the real packet arrival trace, but the packet inter-arrival
time within each 0.1 s time interval follows an exponential distribution. Fig. 3.8 shows
the distribution of VNF packet processing delay for both traffic traces. Two groups of
delay requirements with different delay bounds, i.e., D = 10 ms and D = 50 ms, are used
for QoS evaluation. In each group, ε is set as 0.1, 0.01, and 0.001. For the same QoS
requirement, the amount of resources allocated for both traffic are the same. However, the
delay performance of the synthesized traffic is better than that of the real traffic, due to

68

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Delay (s)

0

0.2

0.4

0.6

0.8

1

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n
 f
u
n
c
ti
o
n

R
0.1

 (M/M/1)

R
0.01

 (M/M/1)

R
0.001

 (M/M/1)

R
0.1

 (fBm)

R
0.01

 (fBm)

R
0.001

 (fBm)

Figure 3.9: QoS performance comparison between the fBm model and M/M/1 model based
resource demand prediction schemes.

less traffic burstiness in time granularities smaller than 0.1 s. For the synthesized traffic,
the delay violation probability is within the corresponding upper limits. For the real traffic,
the delay violation probability occasionally exceeds the required upper limit, especially for
the stringent QoS requirements such as P(d > 10ms) ≤ 0.001, due to traffic burstiness in
time granularities below 0.1 s.

In addition, we compare the QoS performance between the proposed fBm model based
resource demand prediction scheme and a benchmark M/M/1 model based counterpart.
Both methods use the learned traffic parameters for resource demand prediction. In the
proposed scheme, the resource demand is predicted from all three learned traffic parame-
ters, i.e., {λ, σ,H}, based on the fBm resource provisioning model given by (3.31). In the
benchmark scheme, the resource demand is predicted from the first learned traffic param-
eter, i.e., λ, based on an M/M/1 resource provisioning model. For an M/M/1 queue with
arrival rate λ (in packet/s) and service rate R (in packet/s), the delay violation probability
is P(d > D) = e−(R−λ)D [84]. Hence, the minimum amount of resources (in packet/s) to
guarantee the QoS requirement P(d > D) ≤ ε is Rmin = λ − log ε

D . Fig. 3.9 shows the
VNF packet delay distribution with the real packet arrivals and with different amount of
resources allocated to the VNF, based on predicted resource demands given by the two
models. A gap is observed between the delay performance of the two models. The proposed
model, with the ability to capture the bursty nature of traffic, gives a better estimation of
resource demands.

69

0 2000 4000 6000 8000

Number of episodes

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4
E

p
is

o
d
ic

 a
v
e
ra

g
e
 r

e
w

a
rd

Stepwise optimization
DQN (with penalty)
DQN (without penalty)

(a) DQN

0 2000 4000 6000 8000

Number of episodes

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

E
p
is

o
d
ic

 a
v
e
ra

g
e
 r

e
w

a
rd

Stepwise optimization
P-DQN (with penalty)
P-DQN (without penalty)

5000 6000 7000 8000
-0.7

-0.65
-0.6

-0.55
-0.5

(b) P-DQN

0 2000 4000 6000 8000

Number of episodes

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

E
p
is

o
d
ic

 a
v
e
ra

g
e
 r

e
w

a
rd

Stepwise optimization
PP-DQN (with penalty)
PP-DQN (without penalty)

5000 6000 7000 8000
-0.7

-0.65
-0.6

-0.55
-0.5

(c) PP-DQN

Figure 3.10: Episodic average reward versus the episode number for the three deep Q-
learning algorithms.

70

The performance of the proposed deep Q-learning algorithm with penalty-aware priori-
tized experience replay (PP-DQN) is compared with two benchmark algorithms, i.e., deep
Q learning with uniformly sampled experience replay (DQN), and deep Q-learning with
prioritized experience relay (P-DQN). All three deep Q-learning algorithms are compared
with a common benchmark, i.e., stepwise optimization. The comparison is performed us-
ing traffic set 1 in Table 3.1. Fig. 3.10 shows the evolution of episodic average reward
with respect to the number of episodes during the learning process, using the three deep
Q-learning algorithms. Both the full reward including penalty and the partial reward
without penalty are plotted, with a gap indicating the penalty. It is observed that DQN
converges to a poor solution which is worse than the stepwise optimization benchmark
in terms of episodic average reward. The penalty is high, inferring that the DQN does
not learn a solution to minimize the resource overloading penalty in the long run. Both
the P-DQN and PP-DQN algorithms take advantages of the prioritized experience replay
for convergence to solutions that outperform the stepwise optimization benchmark in most
time after convergence. It demonstrates that both P-DQN and PP-DQN after convergence
can capture the daily and weekly traffic patterns (in both change points and resource de-
mands) and background resource loading patterns at the candidate NFV nodes, and make
intelligent VNF migration decisions accordingly. In contrast, when a VNF migration is
required, the stepwise optimization benchmark favors VNF migration to a lightly loaded
NFV node in the current decision epoch, which can be heavily loaded in the following
decision epochs. As illustrated in Fig. 3.10(b) and Fig. 3.10(c), the proposed PP-DQN
achieves slightly more gain in terms of penalty suppression compared with P-DQN. The
episodic average rewards (with penalty) of P-DQN and PP-DQN after convergence are
−0.5502 and −0.5408 respectively.

Fig. 3.11 shows that the training loss of PP-DQN as defined in (3.43) converges faster to
a smaller value. We also examined the learning curve of PP-DQN with ω(TD) = 0.5, which
gives an average training loss of 0.0155 after convergence, demonstrating the benefit of
reducing weight ω(TD) on further loss reduction. However, the benefit on additional reward
improvement is not significant. To evaluate generalization of the proposed algorithm to
similar traffic sets with different randomness, we compare the average training loss of both
P-DQN and PP-DQN after convergence in Fig. 3.12, using four traffic sets with different
randomness levels in change points and resource demands, as in Table 3.1. With more
randomness especially in resource demand, the average training loss of both P-DQN and
PP-DQN increases. However, the PP-DQN outperforms P-DQN for all the traffic sets.

71

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of learning steps 10
5

0

2

4

6

8

10

12

14

16

18

20

T
ra

in
in

g
 l
o

s
s

P-DQN
PP-DQN

6 7 8 9 10 11 12 13 14

10
5

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

Figure 3.11: Training loss of the evaluation
Q networks.

Traffic set 1 Traffic set 2 Traffic set 3 Traffic set 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

A
v
e

ra
g

e
 t

ra
in

in
g

 l
o

s
s

P-DQN
PP-DQN

Figure 3.12: Average training loss after con-
vergence.

3.5 Summary

In this chapter, we study a dynamic VNF scaling problem in a local network scenario
with several candidate NFV nodes, to guarantee probabilistic delay performance in the
presence of real-world traffic with nonstationary characteristics. A change-point-driven
traffic parameter learning and resource demand prediction scheme is proposed, based on
which dynamic VNF migration decisions are made at variable-length decision epochs using
a penalty-aware deep Q-learning algorithm. An fBm traffic model is employed for each
identified stationary traffic segment, based on properties of Gaussianity and self-similarity
of the real-world traffic. The proposed traffic parameter learning method achieves a bet-
ter accuracy than a benchmark method for the simulated fBm traffic, benefiting from a
compromise among the three traffic parameters. The traffic parameter learning accuracy
is also demonstrated by the average prediction error with the trained GPR models. For
the proposed resource demand prediction scheme, packet-level simulations show occasional
QoS violation for a bursty real-world packet arrival trace especially for the stringent QoS
requirements, and QoS satisfaction for a synthesized packet arrival trace with less traffic
burstiness. The proposed penalty-aware deep Q-learning algorithm achieves performance
gains in terms of both training loss reduction and episodic average reward maximization.

72

Chapter 4

Delay-Aware VNF Scheduling For
Network Utility Maximization

In this chapter, a delay-aware VNF scheduling problem is studied in the presence of small-
timescale traffic dynamics, to achieve network utility maximization with minimum through-
put guarantee for each deadline-constrained service, while using a realistic time quantum
in the 100µs to ms granularity for CPU resource scheduling. Based on the Lyapunov
optimization technique [85], an online distributed VNF scheduling algorithm is derived,
which greedily schedules a VNF at each NFV node based on a weight incorporating the
backpressure-based weighted differential backlogs, the throughput performance, and the
packet delay. Simulation results demonstrate an

[
O(1

ϑ
),O(ϑ)

]
utility-backlog trade-off

with utility importance parameter ϑ. The proposed VNF scheduling algorithm using a
realistic time quantum achieves a comparable performance with a generalized processor
sharing (GPS) scheme under the assumption of infinitely divisible resources. We also eval-
uate the impact of packet rushing (i.e., packet processing by multiple consecutive VNFs in
one time slot) on VNF scheduling performance, based on a packet rushing analysis.

73

4.1 System Model

4.1.1 Services

Consider multiple services in a time-slotted system where time is partitioned into equal-
length time slots indexed by τ . The time slot length is T in second. Each service is in
the form of VNF chain, originating from an ingress edge switch and traversing through a
sequence of VNFs towards an egress edge switch. Let R denote the set of services. Let Hr

be the number of VNFs in service r ∈ R, and let Hr = {1, · · · , Hr} be a set containing
the index of VNFs of service r ∈ R. Denote the h-th (h ∈ Hr) VNF in SFC r ∈ R as
V

(r)
h . Under the assumption of same virtualization platform at the NFV nodes, let P (r)

h

denote the processing density of VNF V
(r)
h at any NFV nodes in cycle/packet, which is the

CPU resource demand (in cycle/s) of VNF V
(r)
h for one packet/s of processing rate [62,64].

We assume that the exogenous packet arrivals for each service occur only at the ingress
edge switch. The arrival process is stationary and ergodic with mean rate ār (in packet
per time slot) for service r ∈ R. Let A(r)(τ) denote the number of packets that arrive at
the τ -th time slot for service r ∈ R, which is highly dynamic and unpredictable. Assume
that A(r)(τ) is upper bounded by a finite maximum value A(r)

max for service r ∈ R. The
QoS requirement of service r ∈ R is represented by two parameters, Mr and εr, where Mr

is the E2E deadline (in time slots) for each packet of service r ∈ R, and εr specifies the
maximum packet dropping ratio of service r ∈ R. For a deadline-constrained service, a
packet becomes useless once the E2E delay is violated and should be dropped. For service
r ∈ R, only the timely delivered packets to the egress edge switch within E2E deadline Mr

are counted in the throughput, denoted by f̄r (in packet per time slot), which should be
at least ār(1− εr) to satisfy the QoS requirement.

4.1.2 Network Model

We consider a core network with a set N of NFV nodes interconnected by virtual links. The
CPU processing resource budget at NFV node n ∈ N is Cn in cycle per time slot. Assume
that there are sufficient transmission resources in the network for virtual link provisioning
to enable communications among the NFV nodes. The services in set R are embedded
in the network with VNF placement at NFV nodes and traffic routing over virtual links.
Here, we consider fixed VNF placement and traffic routing. Let xrhn be a binary parameter,

74

with xrhn = 1 if VNF V
(r)
h is placed at NFV node n ∈ N , and xrhn = 0 otherwise. Let

Vn= {(r, h)|r ∈ R, h ∈ Hr, xrhn = 1} be a set containing the index of all VNFs placed
at NFV node n ∈ N , with (r, h) ∈ Vn denoting VNF V

(r)
h . Let z(r)

h (τ) be a binary VNF
scheduling decision variable, with z(r)

h (τ) = 1 if VNF V (r)
h is scheduled for packet processing

at the corresponding NFV node during time slot τ and z(r)
h (τ) = 0 otherwise.

4.1.3 Queueing Model

Assumptions

Under the assumption that the virtual link delay is negligible, all packets processed by
VNF V

(r)
h during time slot τ can arrive at the downstream VNF V

(r)
h+1 for h ∈ Hr\{Hr}

or at the egress edge switch for h = Hr before the beginning of time slot τ + 1. Existing
studies usually assume that a packet can be processed by at most one VNF in a chain
during one time slot (i.e., no packet rushing) [62]. We first develop a VNF scheduling
algorithm relying on the assumption of no packet rushing, and then propose a modified
VNF scheduling algorithm with packet rushing.

Physical packet processing queues

NFV node n ∈ N maintains a separate packet processing queue for each VNF in set Vn.
Let q(r)

h (τ) denote the number of packets in the queue associated with VNF V
(r)
h at the

beginning of time slot τ . Let S(r)
h (τ) and D(r)

h (τ) be the number of packets processed and
dropped from the queue of VNF V

(r)
h during time slot τ , respectively. Then, the queue

length of VNF V
(r)
h at the beginning of time slot τ + 1, i.e., q(r)

h (τ + 1), is updated as

q
(r)
h (τ + 1) =

[
q

(r)
h (τ)− S(r)

h (τ)−D(r)
h (τ)

]+
+ S

(r)
h−1(τ)1{h > 1}+ A(r)(τ)1{h = 1},

∀r ∈ R, ∀h ∈ Hr (4.1)

where 1{·} is the indicator function, equal to 1 only if the condition inside the bracket is
true and 0 otherwise.

75

Delay-aware virtual packet processing queues

For service r ∈ R, a new packet admitted to the first VNF V
(r)

1 in the chain has a zero
packet delay. The delay (in number of time slots) of a packet is increased by 1, for each
time slot. If a packet of service r ∈ R cannot be successfully delivered to the egress edge
switch before the E2E deadline of Mr, it is expired and dropped. Under the assumption
of no packet rushing, the delay of any packets at VNF V

(r)
h is larger than or equal to h− 1

time slots, i.e., the residual packet lifetime does not exceed Mr − h+ 1 time slots at VNF
V

(r)
h . Also, since there are Hr − h downstream VNFs after VNF V

(r)
h , a packet with a

residual lifetime less than Hr − h + 1 time slots at VNF V
(r)
h cannot successfully reach

the egress edge switch before expiry even if the packet does not wait at all downstream
VNFs. To avoid resource inefficiency for processing such packets at the downstream VNFs,
a packet with a residual lifetime of Hr−h+ 1 time slots during a certain time slot at VNF
V

(r)
h is dropped if it is not processed before the end of the time slot. Hence, all the existing

packets at VNF V
(r)
h during any time slot have a residual lifetime m ∈ M(r)

h , whereM(r)
h

is a set given by

M(r)
h = {Hr − h+ 1, · · · ,Mr − h+ 1}, ∀r ∈ R, h ∈ Hr. (4.2)

At VNF V (r)
h , all the packets with residual lifetime m = Hr−h+1 are referred to as urgent

packets, and other packets with residual lifetime m ∈ M(r)
h \{Hr − h + 1} are non-urgent

packets.

For VNF V
(r)
h of service r ∈ R, there are |M(r)

h | delay-aware virtual packet processing
queues, denoted by {Q(r)

h,m, ∀m ∈ M
(r)
h }, each of which corresponds to a residual packet

lifetime of m ∈ M(r)
h . A packet is virtually associated with a virtual packet processing

queue according to its residual lifetime. For a service with 3 VNFs in the chain and
a packet E2E deadline of 6 in time slot, each VNF is associated with |M(r)

h | = 4 virtual
packet processing queues, as illustrated in Fig. 4.1. Let Q(r)

h,m(τ) be the length of queue Q(r)
h,m

(i.e., the number of packets with residual lifetime m ∈M(r)
h at VNF V (r)

h) at the beginning
of time slot τ , with q

(r)
h (τ) = ∑

m∈M(r)
h

Q
(r)
h,m(τ). Let S(r)

h,m(τ) be the number of packets
with residual lifetime m ∈ M(r)

h that are processed at VNF V
(r)
h during time slot τ , with

S
(r)
h (τ) = ∑

m∈M(r)
h

S
(r)
h,m(τ). Then, all the packets in queue Q(r)

h,m (m ∈M(r)
h \{Hr − h+ 1})

during time slot τ have a residual lifetime of m−1 at the beginning of time slot τ+1, which
is equivalent to 1) transferring S(r)

h,m(τ) packets from queue Q(r)
h,m to queue Q(r)

h+1,m−1 at the

76

Figure 4.1: An illustration of delay-aware virtual packet processing queueing model for
service r with Hr = 3 and Mr = 6.

next VNF (if h < Hr) and 2) transferring the remaining
[
Q

(r)
h,m(τ)− S(r)

h,m(τ)
]+

packets
from queue Q(r)

h,m to queue Q(r)
h,m−1 at the same VNF during time slot τ . Taking the first

VNF in Fig. 4.1 as an example, the new arrived packets with a full residual lifetime of
6 are all associated with virtual packet processing queue Q(r)

1,6. After one time slot, the
processed packets at queue Q(r)

1,6 are transferred to queue Q(r)
2,5 at the second VNF, with the

residual lifetime decreased by 1. The remaining unprocessed packets are all transferred to
a lower-layer queue Q(r)

1,5 at the first VNF corresponding to a packet residual lifetime minus
1. The number of packets dropped from VNF V

(r)
h during time slot τ , i.e., D(r)

h (τ), is equal
to the number of unprocessed urgent packets at VNF V

(r)
h , represented by

D
(r)
h (τ) =

[
Q

(r)
h,Hr−h+1(τ)− S(r)

h,Hr−h+1(τ)
]+
, ∀r ∈ R, ∀h ∈ Hr. (4.3)

Accordingly, the queueing dynamics of the delay-aware virtual packet processing queues
of service r ∈ R are updated as

Q
(r)
1,Mr

(τ + 1) = A(r)(τ), ∀r ∈ R

77

Q
(r)
1,m(τ + 1) =

[
Q

(r)
1,m+1(τ)− S(r)

1,m+1(τ)
]+
, ∀r ∈ R, ∀m ∈M(r)

1 \{Mr}

Q
(r)
h,Mr−h+1(τ + 1) = S

(r)
h−1,Mr−h+2(τ), ∀r ∈ R, ∀h ∈ Hr\{1}

Q
(r)
h,m(τ + 1) =

[
Q

(r)
h,m+1(τ)− S(r)

h,m+1(τ)
]+

+ S
(r)
h−1,m+1(τ), ∀r ∈ R, ∀h ∈ Hr\{1},

∀m ∈M(r)
h \{Mr − h+ 1}

(4.4)

which combines the evolution for both the physical packet processing queue lengths in (4.1)
and the packet delay. The average E2E delay (in second) of the timely delivered packets
of service r ∈ R to the egress edge switch, denoted by d̄r, is calculated as

d̄r =
∑

m∈M(r)
Hr

(Mr −m+ 1)T
limΓ→∞

1
Γ
∑Γ−1
τ=0 E

{
S

(r)
Hr,m(τ)

}
∑
m∈M(r)

Hr

limΓ→∞
1
Γ
∑Γ−1
τ=0 E

{
S

(r)
Hr,m(τ)

}
 , ∀r ∈ R (4.5)

where T is the time slot length in second, Γ is the total number of time slots, and E
denotes expectation over the randomness in packet arrivals, VNF scheduling, and packet
processing.

4.2 Problem Formulation

To meet the QoS requirements of all the deadline-constrained services, we investigate a
delay-aware VNF scheduling problem, to determine which VNF to schedule at each NFV
node at each time slot τ , i.e., z(τ) = {z(r)

h (τ), ∀r, ∀h}, and how many packets of each delay
to be processed from the VNFs at each time slot τ , i.e., S(τ) = {S(r)

h,m(τ), ∀r, ∀h, ∀m},
while maximizing a fairness-aware total network utility with throughput guarantee for
each service.

The throughput of a deadline-constrained service is a timely throughput, since only the
timely delivered packets to the egress edge switch within E2E deadline Mr are counted in
the throughput, and other packets are dropped once the E2E delay is violated. Hence, the
throughput of deadline-constrained service r ∈ R, denoted by f̄r, is given by

f̄r = lim
Γ→∞

1
Γ

Γ−1∑
τ=0

E

A(r)(τ)−
∑
h∈Hr

D
(r)
h (τ)

 , ∀r ∈ R (4.6)

78

under the mean rate stable condition for all the physical packet processing queues, repre-
sented by [85]

lim
Γ→∞

E
{∑

r∈R
∑
h∈Hr q

(r)
h (Γ)

}
Γ = 0. (4.7)

To satisfy the QoS requirement, the throughput of service r ∈ R should satisfy

f̄r ≥ ār(1− εr), ∀r ∈ R. (4.8)

At each NFV node, at most one VNF can be scheduled during time slot τ , represented
by ∑

(r,h)∈Vn
z

(r)
h (τ) = 1, ∀n ∈ N . (4.9)

Only packets of the scheduled VNF can be processed, and the total number of CPU cycles
consumed for processing packets by the scheduled VNF during a time slot should not
exceed the allocated processing resources at the corresponding NFV node, given by

0 ≤ P
(r)
h

∑
m∈M(r)

h

S
(r)
h,m(τ) ≤ z

(r)
h (τ)

∑
n∈N

xrhn Cn, ∀r ∈ R, ∀h ∈ Hr. (4.10)

Moreover, the number of packets with residual lifetime m ∈ M(r)
h that are processed at

VNF V (r)
h during time slot τ should not exceed the corresponding virtual packet processing

queue length, given by

0 ≤ S
(r)
h,m(τ) ≤ Q

(r)
h,m(τ), ∀r ∈ R, ∀h ∈ Hr, ∀m ∈M(r)

h . (4.11)

We consider a strictly increasing and concave utility function φ(·) of throughput with
proportional fairness among services in terms of processing resources, given by

φ(f̄r) = log
(
Prf̄r

)
(4.12)

where Pr = ∑
h∈Hr P

(r)
h is the aggregate processing density (in cycle/packet) of service

r ∈ R. In (4.12), the throughput in packet per time slot of service r ∈ R (i.e., f̄r) is
weighted by Pr, to represent the total throughput in cycle per time slot at all VNFs of

79

Figure 4.2: Virtual queues W (r)(τ) and F (r)(τ) for service r ∈ R.

the service. Then, the VNF scheduling problem is formulated as a stochastic optimization
problem, given by

P∞ : max
{z(τ),S(τ),∀τ}

∑
r∈R

φ(f̄r)

s.t. (4.7), (4.8), (4.9), (4.10), (4.11)
(4.13)

where the objective function and constraints (4.7)-(4.8) involve infinite-horizon expecta-
tions, and constraints (4.9)-(4.11) are instantaneous constraints for each time slot.

Problem transformation using Lyapunov optimization

By introducing auxiliary decision variables χ(τ) = {χ(r)(τ) ∈ [0, A(r)
max], ∀r ∈ R} for time

slot τ , problem P∞ is transformed to

P′∞ : max
{z(τ),S(τ),χ(τ),∀τ}

lim
Γ→∞

1
Γ

Γ−1∑
τ=0

E
{∑
r∈R

φ
(
χ(r)(τ)

)}
(4.14a)

s.t. (4.7), (4.8), (4.9), (4.10), (4.11) (4.14b)
χ̄r ≤ f̄r, ∀r ∈ R (4.14c)

where χ̄r= limΓ→∞
1
Γ
∑Γ−1
τ=0 E

{
χ(r)(τ)

}
is the infinite-horizon time average expectations of

χ(r)(τ) for service r ∈ R. Problem P′∞ is equivalent to problem P∞ [62, 85].
To handle the stochastic inequality constraints (4.8) and (4.14c), problem P′∞ re-

quires further transformation through introducing equivalent virtual queue stability con-
straints [85]. Introduce two virtual queues for service r ∈ R, i.e., W (r)(τ) and F (r)(τ), as
illustrated in Fig. 4.2, with queue length evolution equations given by

W (r)(τ + 1) =
W (r)(τ)− A(r)(τ)−

∑
h∈Hr

S
(r)
h,U(τ)

+

+ ār (1− εr) +
∑
h∈Hr

Q
(r)
h,U(τ) (4.15)

80

F (r)(τ + 1) =
F (r)(τ)− A(r)(τ)−

∑
h∈Hr

S
(r)
h,U(τ)

+

+ χ(r)(τ) +
∑
h∈Hr

Q
(r)
h,U(τ) (4.16)

where Q(r)
h,U(τ) and S

(r)
h,U(τ) are the total and processed numbers of urgent packets in the

queue of VNF V
(r)
h during time slot τ respectively. Without packet rushing, we have

Q
(r)
h,U(τ) = Q

(r)
h,Hr−h+1(τ) and S

(r)
h,U(τ) = S

(r)
h,Hr−h+1(τ). Specifically, from (4.15) we ob-

tain W (r)(Γ)−W (r)(0)
Γ + 1

Γ
∑Γ−1
τ=0 A

(r)(τ) ≥ ār (1− εr) + 1
Γ
∑Γ−1
τ=0

∑
h∈Hr D

(r)
h (τ) where D(r)

h (τ) =
Q

(r)
h,U(τ)− S(r)

h,U(τ). Taking expectations of both sides with Γ→∞ and using W (r)(0) = 0,
we obtain limΓ→∞

E{W (r)(Γ)}
Γ + f̄r ≥ ār (1− εr). Then, the mean rate stability of virtual

queue W (r)(τ), represented by limΓ→∞
E{W (r)(Γ)}

Γ = 0, guarantees the stochastic constraint
of f̄r ≥ ār (1− εr) for service r ∈ R. Similarly, the mean rate stability of virtual queue
F (r)(τ) enforces the constraint of χ̄r ≤ f̄r for service r ∈ R. Then, problem P′∞ is further
transformed to

P′′∞ : max
{z(τ),S(τ),χ(τ),∀τ}

lim
Γ→∞

1
Γ

Γ−1∑
τ=0

E
{∑
r∈R

φ
(
χ(r)(τ)

)}
(4.17a)

s.t. (4.7), (4.9), (4.10), (4.11) (4.17b)

lim
Γ→∞

E{W (r)(Γ)}
Γ = lim

Γ→∞

E{F (r)(Γ)}
Γ = 0, ∀r ∈ R. (4.17c)

Let q(τ) = {q(r)
h (τ), ∀r, ∀h}, F (τ) = {F (r)(τ), ∀r} and W (τ) = {W (r)(τ), ∀r} be the

physical and virtual queue vectors at time slot τ . Let Θ(τ)= [q(τ),W (τ),F (τ)] be the
combined queue vector at time slot τ . Without loss of generality, assume that all queue
buffers are infinite and all queues are initially empty at τ = 0. Define Lyapunov function
L (Θ(τ)) as a scalar metric of congestion level in the queueing system, given by

L (Θ(τ)) = 1
2

∑
r∈R

∑
h∈Hr

[
P

(r)
h q

(r)
h (τ)

]2
+
∑
r∈R

[
PrF

(r)(τ)
]2

+
∑
r∈R

[
ϕ
W (r)(τ)
ār

]2
 . (4.18)

Note that the delay-aware virtual packet processing queue lengths {Q(r)
h,m(τ), ∀r, ∀h, ∀m}

are not directly included in the Lyapunov function, since the stability of physical packet
processing queues infer the stability of delay-aware virtual packet processing queues. How-
ever, the urgent packet queue lengths are implicitly incorporated via virtual queuesW (r)(τ)
and F (r)(τ) according to (4.15) and (4.16). In (4.18), q(r)

h (τ) is weighted by the process-
ing density P

(r)
h of VNF V

(r)
h , to represent a processing queue backlog in the number

81

of required CPU cycles. The virtual queue length F (r)(τ) is weighted by the aggre-
gate processing density Pr of service r ∈ R, since the throughput of different services
are weighted by the individual aggregate processing densities in the total network util-
ity according to (4.12). The virtual queue length W (r)(τ) is normalized by the average
number of packet arrivals in each time slot, i.e., ār, and then rescaled using a weight
ϕ= [maxr∈R ār]

[
maxr∈R,h∈Hr P

(r)
h

]
, to place equal importance on the throughput guaran-

tee for each service regardless of their packet arrival rates and processing densities. A
simplified Lyapunov function L (Θ(τ)) = 1

2

{∑
r∈R

∑
h∈Hr

[
P

(r)
h q

(r)
h (τ)

]2}
which is unaware

of the virtual queue congestion levels corresponds to a classical backpressure algorithm
adapted for processing resources. To keep the physical and virtual queues stable by persis-
tently pushing the Lyapunov function L (Θ(τ)) towards a lower congestion level, a one-step
conditional Lyapunov drift ∆ (Θ(τ)) is introduced, given by

∆ (Θ(τ)) = E {L (Θ(τ + 1))− L (Θ(τ)) |Θ(τ)} . (4.19)

Based on the Lyapunov optimization theory, we can decouple the decision variables of
problem P′′∞ over time slots and achieve asymptotically optimal total utility with queue
stability, by solving an instantaneous problem for each time slot [85–88]. At time slot
τ , the upper bound of a conditional Lyapunov drift-plus-penalty (or drift-minus-utility)
term defined as ∆ (Θ(τ)) − ϑE

{∑
r∈R φ(χ(r)(τ))|Θ(τ)

}
is minimized, subject to all the

instantaneous constraints (4.9)-(4.11). Here, ϑ (> 0) is a utility importance parameter
that balances the importance between utility maximization and queue backlog reduction.
The upper bound of the conditional Lyapunov drift-plus-penalty is given in Lemma 1.

Lemma 1. Regardless of the randomness in packet arrivals and VNF scheduling decisions,
the conditional Lyapunov drift-plus-penalty at time slot τ , has an upper bound, given by

∆ (Θ(τ))− ϑE
{∑
r∈R

φ
(
χ(r)(τ)

)
|Θ(τ)

}

≤
∑
r∈R

Br +
∑
r∈R

E
{[(

P
(r)
1

)2
q

(r)
1 (τ)−

(
ϕ

ār

)2
W (r)(τ)− (Pr)2 F (r)(τ)

]
A(r)(τ)|Θ(τ)

}

+
∑
r∈R

E

ϕ2 (1− εr)
ār

W (r)(τ) +
[(

ϕ

ār

)2
W (r)(τ) + (Pr)2 F (r)(τ)

] ∑
h∈Hr

Q
(r)
h,U(τ)|Θ(τ)


−
∑
r∈R

E
{

Φ(r)
1 (τ)|Θ(τ)

}
−
∑
r∈R

E
{

Φ(r)
2 (τ)|Θ(τ)

}
(4.20)

82

where Br is a constant given in Appendix C, and Φ(r)
1 (τ), Φ(r)

2 (τ) are given by

Φ(r)
1 (τ) = ϑ · φ

(
χ(r)(τ)

)
− (Pr)2

F (r)(τ) +
∑
h∈Hr

Q
(r)
h,U(τ)

χ(r)(τ), ∀r ∈ R (4.21)

Φ(r)
2 (τ) =

∑
h∈Hr

(
P

(r)
h

)2
q

(r)
h (τ)

[
S

(r)
h (τ)− S(r)

h−1(τ)1{h > 1}
]

+
∑
h∈Hr

[(
ϕ

ār

)2
W (r)(τ) + (Pr)2 F (r)(τ)−

(
P

(r)
h

)2
q

(r)
h (τ)

]
S

(r)
h,U(τ), ∀r ∈ R.

(4.22)

Proof : See Appendix C.

Since only the last two terms of the upper bound in (4.20) are related to the decision
variables, we can formulate an instantaneous problem at time slot τ as

Pτ : max
z(τ),S(τ),χ(τ)

∑
r∈R

E
{

Φ(r)
1 (τ)|Θ(τ)

}
+
∑
r∈R

E
{

Φ(r)
2 (τ)|Θ(τ)

}
s.t. 0 ≤ χ(r)(τ) ≤ A(r)

max, ∀r ∈ R
(4.9), (4.10), (4.11).

(4.23)

4.3 Online Distributed VNF Scheduling Algorithm

At time slot τ , we have two groups of decision variables which are separable in both the
objective function and constraints of the instantaneous problem Pτ . One group is χ(τ),
and the other group is z(τ) and S(τ). Thus, problem Pτ is equivalent to two sub-problems,
given by

Pτ,1 : max
χ(τ)

∑
r∈R

E
{

Φ(r)
1 (τ)|Θ(τ)

}
s.t. 0 ≤ χ(r)(τ) ≤ A(r)

max, ∀r ∈ R
(4.24)

and

Pτ,2 : max
z(τ),S(τ)

∑
r∈R

E
{

Φ(r)
2 (τ)|Θ(τ)

}
s.t. (4.9), (4.10), (4.11).

(4.25)

83

Figure 4.3: Flowchart of the proposed online distributed VNF scheduling algorithm.

Using the concept of opportunistically maximizing an expectation, the objective function of
sub-problems Pτ,1 and Pτ,2 can be maximized by maximizing ∑r∈RΦ(r)

1 (τ) or ∑r∈RΦ(r)
2 (τ)

given the observed values of Θ(τ) under the corresponding constraints [85]. We design an
online distributed VNF scheduling algorithm to solve sub-problems Pτ,1 and Pτ,2 for each
time slot, with a flowchart given in Fig. 4.3.

Auxiliary variable decision

Both the objective function and constraint of sub-problem Pτ,1 are separable among ser-
vices. Hence, the problem can be further decomposed into service-level sub-problems which
determine the auxiliary variable individually for each service. For service r ∈ R, since only
virtual queue length F (r)(τ) and urgent packet queue lengths {Q(r)

h,U(τ), ∀h ∈ Hr} among
Θ(τ) appear in Φ(r)

1 (τ), the optimal value of χ(r)(τ) can be derived by observing F (r)(τ)
and {Q(r)

h,U(τ), ∀h ∈ Hr}, and solving an optimization problem given by

P(r)
τ,1 : max

χ(r)(τ)
ϑ · φ(χ(r)(τ))− (Pr)2

F (r)(τ) +
∑
h∈Hr

Q
(r)
h,U(τ)

χ(r)(τ)

s.t. 0 ≤ χ(r)(τ) ≤ A(r)
max.

(4.26)

84

The optimal solution of problem P(r)
τ,1, denoted by χ(r)∗(τ), is derived by differentiating the

objective function with respect to χ(r)(τ), and is given by

χ(r)∗(τ) =


A(r)
max, if (Pr)2

[
F (r)(τ) +∑

h∈Hr Q
(r)
h,U(τ)

]
≤ ϑ

A
(r)
max

ϑ

(Pr)2
[
F (r)(τ)+

∑
h∈Hr

Q
(r)
h,U(τ)

] , otherwise.

(4.27)

VNF scheduling and packet processing

Let S(r)
h,N(τ) denote the number of non-urgent packets processed at VNF V

(r)
h of service

r ∈ R during time slot τ , with S(r)
h (τ) = S

(r)
h,N(τ) + S

(r)
h,U(τ). Then, we can rewrite Φ(r)

2 (τ)
in (4.22) as

Φ(r)
2 (τ) =

∑
h∈Hr

[
ω

(r)
h,U(τ)S(r)

h,U(τ) + ω
(r)
h,N(τ)S(r)

h,N(τ)
]
, ∀r ∈ R (4.28)

where ω(r)
h,U(τ) and ω(r)

h,N(τ) are the adaptive scheduling weights for one urgent packet and
for one non-urgent packet at VNF V

(r)
h during time slot τ respectively, given by

ω
(r)
h,U(τ) =

(
ϕ

ār

)2
W (r)(τ) + (Pr)2 F (r)(τ)−

(
P

(r)
h+1

)2
q

(r)
h+1(τ) (4.29)

ω
(r)
h,N(τ) =

(
P

(r)
h

)2
q

(r)
h (τ)−

(
P

(r)
h+1

)2
q

(r)
h+1(τ). (4.30)

Here, we overuse P (r)
h+1 and q

(r)
h+1, with P

(r)
Hr+1 ≡ q

(r)
Hr+1 ≡ 0 for h = Hr. The scheduling weight

for one urgent packet at VNF V
(r)
h , i.e., ω(r)

h,U(τ), corresponds to the difference between the
weighted virtual queue lengths of service r ∈ R and the weighted physical packet processing
queue length at downstream VNF V

(r)
h+1, while the scheduling weight for one non-urgent

packet at VNF V (r)
h , i.e., ω(r)

h,N(τ), corresponds to the weighted differential backlogs between
VNF V

(r)
h and downstream VNF V

(r)
h+1. Through such a differentiation between urgent

and non-urgent packets, packet urgency and throughput performance are incorporated
in VNF scheduling beyond the classical backpressure scheduling policy. A temporary
greater congestion level in the virtual queues indicates less satisfaction or even violation
of the service throughput requirement, resulting in a larger scheduling weight for each
urgent packet in (4.29). A greater congestion level at the downstream VNF discourages

85

packet processing at the upstream VNF to avoid further worsening the congestion situation,
through reducing the packet scheduling weights for both urgent and non-urgent packets
at the upstream VNF. For the classical backpressure algorithm adapted for processing
resources, no differentiation is considered between urgent and non-urgent packets, and all
packets are treated as non-urgent packets with the same scheduling weight in (4.30).

The VNF scheduling and packet processing decisions of different services are cou-
pled through the processing resource budget constraints at the NFV nodes. We rewrite∑
r∈RΦ(r)

2 (τ) as a summation over the NFV nodes, given by∑
r∈R

Φ(r)
2 (τ) =

∑
n∈N

∑
(r,h)∈Vn

[
ω

(r)
h,U(τ)S(r)

h,U(τ) + ω
(r)
h,N(τ)S(r)

h,N(τ)
]
. (4.31)

Since both the objective function and constraints of sub-problem Pτ,2 are separable among
the NFV nodes, the problem is further decomposed into NFV node level sub-problems,
given by

P(n)
τ,2 : max

{z(r)
h

(τ),S(r)
h,m

(τ),∀(r,h)∈Vn,∀m∈M(r)
h
}

∑
(r,h)∈Vn

[
ω

(r)
h,U(τ)S(r)

h,U(τ) + ω
(r)
h,N(τ)S(r)

h,N(τ)
]

s.t. (4.9), (4.10), (4.11) for n ∈ N
(4.32)

for NFV node n ∈ N . Let z(r)
h

∗
(τ) be the optimal binary scheduling decision variable for

VNF V
(r)
h during time slot τ . The number of packets processed at VNF V

(r)
h during time

slot τ is S(r)
h (τ) = z

(r)
h

∗
(τ) · min

(
Q

(r)
h (τ),

⌊∑
n∈N xrhn Cn

P
(r)
h

⌋)
which satisfies constraints (4.9)-

(4.11) and maximizes the objective function in (4.32). For VNF V
(r)
h , the urgent packets

with residual lifetime m = Hr − h + 1 have the highest priority to be processed, followed
by the non-urgent packets whose priority decreases in ascending order of residual lifetime,
corresponding to a first-come-first-serve (FCFS) prioritization principle. Let Ŝ(r)

h,m(τ) be
the number of packets with residual lifetime m ∈ M(r)

h that are processed at VNF V
(r)
h

during time slot τ if VNF V
(r)
h is scheduled, given by

Ŝ
(r)
h,m(τ) =


Q

(r)
h,m(τ), if m < m0

min
(
Q

(r)
h (τ),

⌊∑
n∈N xrhn Cn

P
(r)
h

⌋)
−∑m<m0 Q

(r)
h,m(τ), if m = m0

0, otherwise
(4.33)

where m0 ∈M(r)
h satisfies∑

m≤m0

Q
(r)
h,m(τ) ≥ min

(
Q

(r)
h (τ),

⌊∑
n∈N xrhn Cn
P

(r)
h

⌋)
>

∑
m<m0

Q
(r)
h,m(τ). (4.34)

86

Define a VNF scheduling weight ω(r)
h (τ) for VNF V

(r)
h during time slot τ , given by

ω
(r)
h (τ) = ω

(r)
h,U(τ)Ŝ(r)

h,Hr−h+1(τ) + ω
(r)
h,N(τ)

∑
m>Hr−h+1

Ŝ
(r)
h,m(τ), ∀r ∈ R, h ∈ Hr (4.35)

which is a summation of the total packet scheduling weights for all the urgent and non-
urgent packets that are processed at VNF V

(r)
h if VNF V

(r)
h is scheduled during time slot

τ , where the per-packet scheduling weights for each urgent packet and each non-urgent
packet are given in (4.29) and (4.30) respectively. For the classical backpressure algorithm
adapted for processing resources without packet urgency awareness, the VNF scheduling
weight for VNF V

(r)
h at time slot τ is simplified as ω(r)

h,N(τ) min
(
Q

(r)
h (τ),

⌊∑
n∈N xrhn Cn

P
(r)
h

⌋)
.

Then, the VNF with the largest VNF scheduling weight is greedily scheduled at each NFV
node, and the optimal solutions for problem P(n)

τ,2 associated with NFV node n ∈ N are
given by

z
(r)
h

∗
(τ) = 1{(r, h) = arg max

(r,h)∈Vn
ω

(r)
h (τ)}, ∀(r, h) ∈ Vn (4.36)

S
(r)
h,m

∗
(τ) = z

(r)
h

∗
(τ)Ŝ(r)

h,m(τ), ∀(r, h) ∈ Vn, ∀m ∈M(r)
h . (4.37)

For a service, a temporal throughput degradation below the minimum requirement results
in a higher congestion level in the virtual queues and more urgent packets in the packet
processing queues, which in turn increases the VNF scheduling weights for all VNFs in
the service. In this way, the VNFs have more chances to be scheduled, leading to an
improvement in the throughput.

Queue updates

Combining all the decisions for time slot τ , the queue backlogs for time slot τ +1 including
the physical packet processing queue lengths, {q(r)

h (τ + 1), ∀r, h}, the virtual packet pro-
cessing queue lengths, {Q(r)

h,m(τ + 1), ∀r, h,m}, and the service-level virtual queue lengths,
{W (r)(τ + 1), F (r)(τ + 1), ∀r}, are updated according to (4.1), (4.4), (4.15) and (4.16).

Performance optimality

The proposed online VNF scheduling algorithm achieves O(1
ϑ
) near-optimal total util-

ity, with the optimality gap decreasing with ϑ, and results in linearly increasing total

87

queue backlogs with the increase of ϑ, demonstrating an
[
O(1

ϑ
),O(ϑ)

]
utility-backlog trade-

off [85].

4.4 VNF Scheduling Algorithm with Packet Rushing

Consider an extreme case under the assumption of no packet rushing. For a service with
Hr VNFs in the chain, a packet experiences at least an E2E delay of HrT even if there is
no packet queueing at all the VNFs, where T is the time slot length. Such a delay overhead
is referred to as the worst-case E2E delay overhead, which is non-negligible for a realistic
time slot length such as 1ms and a short E2E delay such as 10ms. However, if packet
rushing is allowed, when a scheduled VNF V

(r)
h (h > 1) is unsaturated for time slot τ , i.e.,

there are residual CPU cycles before the end of the time slot after all the packets in its
queue are processed, corresponding to the condition of S(r)

h (τ) = Q
(r)
h (τ) <

⌊∑
n∈N xrhn Cn

P
(r)
h

⌋
,

some packets processed by upstream VNF V
(r)
h−1 during time slot τ can be further processed

by VNF V
(r)
h using the residual CPU cycles during the same time slot, hence enhancing

resource utilization and reducing packet E2E delay. Such extra packets processed by VNF
V

(r)
h are referred to as rushing packets for VNF V

(r)
h . The packets which are originally

in the queue are referred to as non-rushing packets. The number of non-rushing packets
processed at VNF V

(r)
h during time slot τ is S(r)

h (τ). Since it is possible that a packet
can be processed by several consecutive VNFs during one time slot, the rushing packets
processed by VNF V

(r)
h can include both rushing and non-rushing packets processed by

upstream VNF V
(r)
h−1.

4.4.1 Packet Rushing Analysis

Assume that the VNF scheduling variables, i.e., {z(r)
h (τ), ∀h ∈ Hr}, and the number of

non-rushing packets processed at each VNF, i.e., {S(r)
h (τ), ∀h ∈ Hr}, are given for service

r ∈ R during time slot τ . We analyze the number of rushing packets processed by each
VNF of service r ∈ R during time slot τ , denoted by R(r)

h (τ) for VNF V
(r)
h . The VNFs of

service r ∈ R are classified into three subsets for time slot τ , given by

H(r)
1 (τ) = {h ∈ Hr|z(r)

h (τ) = 0}, r ∈ R (4.38)

88

H(r)
2 (τ) = {h ∈ Hr\{1}|z(r)

h (τ) = 1, z(r)
h−1(τ) = 1, S(r)

h (τ) <
⌊∑

n∈N xrhn Cn
P

(r)
h

⌋
}, r ∈ R

(4.39)
H(r)

3 (τ) = Hr\
(
H(r)

1 (τ) ∪H(r)
2 (τ)

)
, r ∈ R. (4.40)

For service r ∈ R, subset H(r)
1 (τ) includes all the unscheduled VNFs during time slot τ ,

subset H(r)
2 (τ) includes all the scheduled VNFs where there is packet rushing opportunity,

i.e., the scheduled unsaturated VNFs whose upstream VNF is also scheduled, and subset
H(r)

3 (τ) includes all the scheduled VNFs where there is no packet rushing. Intuitively, the
overall packet rushing opportunity is higher, if we have more VNFs in subset H(r)

2 (τ) with
more residual resources. Let S̃(r)

h (τ) be the actual number of packets processed by VNF
V

(r)
h during time slot τ with the consideration of packet rushing, given by

S̃
(r)
h (τ) = S

(r)
h (τ) + R

(r)
h (τ), ∀r ∈ R, h ∈ Hr. (4.41)

We have S̃(r)
h (τ) = S

(r)
h (τ), ∀h ∈ H(r)

1 (τ) ∪ H(r)
3 (τ) and S̃(r)

h (τ) ≥ S
(r)
h (τ), ∀h ∈ H(r)

2 (τ) for
service r ∈ R during time slot τ .

We consider a finite timeline, t ∈ [0, T] starting at the beginning of time slot τ and
ending at the end of time slot τ , where T is the time slot length in second. Assume that
the scheduled VNFs during time slot τ start to process the first packet in their queues at
time instant t = 0. Let υ(r)

h,max denote the maximum packet processing rate (in packet/s)
for VNF V

(r)
h , given by

υ
(r)
h,max =

∑
n∈N xrhn Cn
P

(r)
h T

, ∀r ∈ R, ∀h ∈ Hr. (4.42)

For VNF V
(r)
h in subset H(r)

2 (τ), there are S(r)
h (τ) non-rushing packets being processed

first in the maximum packet processing rate υ(r)
h,max. Then, the rushing packets from the

upstream VNF V
(r)
h−1 start to be processed at VNF V

(r)
h . However, the actual processing

rate for the rushing packets depend on the packet processing rate of either VNF V
(r)
h or

VNF V
(r)
h−1 in different conditions. Let υ(r)

h (t) denote the actual packet processing rate (in
packet/s) for VNF V

(r)
h at time t ∈ [0, T], with υ

(r)
h (0) = υ

(r)
h,max. There are three cases

for υ(r)
h (t), depending on the relationships among υ(r)

h,max, υ
(r)
h−1(t), S(r)

h (τ) and T . Fig. 4.4
and Fig. 4.5 illustrate the three cases for υ(r)

h (t), with υ(r)
h−1(t) being either a constant or a

decreasing step function with t, respectively.

89

Figure 4.4: An illustration of actual packet processing rate υ(r)
h (t) if υ(r)

h−1(t) is a constant.

• Case 1: If VNF V
(r)
h cannot process packets faster than VNF V

(r)
h−1 within time

duration T , i.e., υ(r)
h,max ≤ mint∈[0,T] υ

(r)
h−1(t), we have υ(r)

h (t) = υ
(r)
h,max, ∀t ∈ [0, T], as

illustrated in Fig. 4.4(a) and Fig. 4.5(a).

• Case 2: Under the condition that υ(r)
h,max > mint∈[0,T] υ

(r)
h−1(t), if the number of packets

processed by VNF V
(r)
h in the maximum processing rate υ(r)

h,max within time duration
T does not exceed the number of packets processed by VNF V (r)

h−1 within time duration
T by more than S(r)

h (τ), i.e., υ(r)
h,maxT −

∫ T
0 υ

(r)
h−1(t)dt ≤ S

(r)
h (τ), the actual processing

rate for both the non-rushing and rushing packets at VNF V
(r)
h is equal to υ(r)

h,max

within time duration T , as illustrated in Fig. 4.4(b) and Fig. 4.5(b).

• Case 3: Under the condition that υ(r)
h,max > mint∈[0,T] υ

(r)
h−1(t), if VNF V

(r)
h can pro-

cess more packets than VNF V
(r)
h−1 by S(r)

h (τ) at a certain time instant t1 < T , i.e.,
υ

(r)
h,maxt1 −

∫ t1
0 υ

(r)
h−1(t)dt = S

(r)
h (τ), the actual packet processing rate for VNF V

(r)
h is

equal to that of the upstream VNF V
(r)
h−1 after time t1, as illustrated in Fig. 4.4(c)

and Fig. 4.5(c). We refer to time instant t1 as transition time instant.

We see that the actual packet processing rate υ(r)
h (t) is either a constant or a decreasing

step function with t, no matter υ(r)
h−1(t) is a constant or a decreasing step function with t.

The number of rushing packets processed by VNF V
(r)
h in subset H(r)

2 (τ) during time slot
τ , i.e., R(r)

h (τ), is limited by the actual number of packets processed by the upstream VNF
V

(r)
h−1 during time slot τ and the maximum number of extra packets that VNF V

(r)
h can

process in the actual packet processing rate υ(r)
h (t) within time duration T , represented by

R
(r)
h (τ) = min

(
S̃

(r)
h−1(τ),

∫ T

0
υ

(r)
h (t)dt− S(r)

h (τ)
)
. (4.43)

90

Algorithm 5: Packet rushing analysis for service r ∈ R during time slot τ
1 Input: {S(r)

h (τ), h ∈ Hr}, sets H(r)
1 (τ), H(r)

2 (τ), H(r)
3 (τ).

2 Initialize: {R(r)
h (τ) = 0, h ∈ Hr}.

3 for h = 1, · · · , Hr do
4 if h ∈ H(r)

3 (τ), then
5 υ

(r)
h = υ

(r)
h,max, t(r)

h = [0, T]ᵀ.
6 end
7 if h ∈ H(r)

2 (τ) then
8 if υ(r)

h,max ≤ min
(
υ

(r)
h−1

)
then

9 υ
(r)
h = υ

(r)
h,max, t(r)

h = [0, T]ᵀ.
10 else
11 if υ(r)

h,maxT − υ
(r)
h−1

ᵀ
·
(
t(r)
h−1

[
2 : |t(r)

h−1|
]
− t(r)

h−1

[
1 : |υ(r)

h−1|
])
≤ S

(r)
h (τ) then

12 υ
(r)
h = υ

(r)
h,max, t(r)

h = [0, T]ᵀ.
13 else
14 δ =

(
υ

(r)
h,maxe|υ(r)

h−1|
− υ(r)

h−1

)
◦
(
t(r)
h−1

[
2 : |t(r)

h−1|
]
− t(r)

h−1

[
1 : |υ(r)

h−1|
])
.

15 Find j0 with ∑j≤j0 δ(j) > S
(r)
h (τ) ≥ ∑j<j0 δ(j).

16 Calculate transition time instant t1 = t(r)
h−1(j0 + 1)−

∑
j≤j0

δ(j)−S(r)
h

(τ)

υ
(r)
h,max

−υ(r)
h−1(j0)

.

17 υ
(r)
h =

[
υ

(r)
h,max,υ

(r)
h−1

[
j0 : |υ(r)

h−1|
]ᵀ]ᵀ

.

18 t(r)
h =

[
0, t1, t(r)

h−1

[
j0 + 1 : |t(r)

h−1|
]ᵀ]ᵀ

.
19 end
20 end
21 R

(r)
h (τ) = min

(
S̃

(r)
h−1(τ),

⌊
υ

(r)
h

ᵀ
·
(
t(r)
h

[
2 : |t(r)

h |
]
− t(r)

h

[
1 : |υ(r)

h |
])⌋
− S(r)

h (τ)
)
.

22 end
23 Calculate S̃(r)

h (τ) according to (4.41).
24 end
25 Output: {R(r)

h (τ), h ∈ Hr}, {S̃(r)
h (τ), h ∈ Hr}.

91

Figure 4.5: An illustration of actual packet processing rate υ(r)
h (t) if υ(r)

h−1(t) is a decreasing
step function.

For service r ∈ R, packet rushing analysis is performed iteratively for VNFs from
source to destination, with a procedure given in Algorithm 5. In the algorithm, we use two
vectors, υ(r)

h and t(r)
h , to represent function υ(r)

h (t), t ∈ [0, T]. Let υ(r)
h be a vector of actual

packet processing rates for VNF V
(r)
h , e.g., υ(r)

h = [100, 80, 60]ᵀ, and let t(r)
h be a vector

of time boundaries between the actual packet processing rates, e.g., t(r)
h = [0, T2 ,

3T
4 , T]ᵀ,

where superscript ᵀ denotes the transpose operator. The dimension of vector t(r)
h is larger

than that of vector υ(r)
h by 1, i.e., |t(r)

h | = |υ
(r)
h | + 1. The relationship between υ(r)

h (t) and
the two vectors is given by

υ
(r)
h (t) = υ

(r)
h (j), if t(r)

h (j) ≤ t < t(r)
h (j + 1) (4.44)

where j is the index of the j-th (j ≤ |υ(r)
h |) element in vector υ(r)

h or t(r)
h . Then, we have∫ T

0
υ

(r)
h (t)dt = υ

(r)
h

ᵀ
·
(
t(r)
h

[
2 : |t(r)

h |
]
− t(r)

h

[
1 : |υ(r)

h |
])
. (4.45)

In Algorithm 5, lines 7-8 correspond to Case 1 for υ(r)
h (t) of VNF V

(r)
h in subset H(r)

2 (τ),
lines 10-11 correspond to Case 2, and lines 12-17 correspond to Case 3. In line 13, e|υ(r)

h−1|
is

a vector of length |υ(r)
h−1| with every element equal to 1, and ◦ represents the element-wise

product operation between two vectors. Index j0 in line 14 is the smallest index satisfying
υ

(r)
h,maxt

(r)
h−1(j0 + 1)−

∫ t(r)
h−1(j0+1)

0 υ
(r)
h−1(t)dt > S

(r)
h (τ).

4.4.2 Modified VNF Scheduling Algorithm

By taking advantage of packet rushing, a packet with residual lifetime 1 ≤ m < Hr−h+ 1
at VNF V

(r)
h has opportunity to be successfully delivered before expiry, and a packet with

92

m = Mr at VNF V
(r)

1 has opportunity to rush through all the VNFs in a service to the
egress edge switch in one time slot. Hence, the set of packet residual lifetime at VNF V

(r)
h ,

denoted by M̃(r)
h , is modified to

M̃(r)
h = {1, · · · ,Mr}, ∀r ∈ R, h ∈ Hr. (4.46)

However, in the worst case, a packet with residual lifetime 1 ≤ m < Hr − h + 1 at VNF
V

(r)
h cannot be timely delivered if there is no packet rushing opportunity. As discussed in

Subsection 4.4.1, whether packet rushing can happen at a certain VNF or not during a
given time slot is unknown until the VNF scheduling and packet processing decisions for
the time slot are given. Hence, the VNF scheduling algorithm makes worst-case decisions
under the assumption of no packet rushing in each time slot, and determines the number
of non-rushing packets processed at each VNF. In the worst case, all the packets with
residual lifetime of 1 ≤ m ≤ Hr − h + 1 at VNF V

(r)
h are urgent packets since they

will be eventually dropped without any packet rushing opportunity if not processed in
the current time slot, and other packets are non-urgent packets. Accordingly, we have
Q

(r)
h,U(τ) = ∑Hr−h+1

m=1 Q
(r)
h,m(τ) and S(r)

h,U(τ) = ∑Hr−h+1
m=1 S

(r)
h,m(τ).

The modified VNF scheduling algorithm is derived based on the worst-case Lyapunov
drift-plus-penalty, in which the physical and virtual queue lengths are updated according to
(4.1), (4.15) and (4.16) with the new definitions of Q(r)

h,U(τ) and S(r)
h,U(τ). We use D(r)

h (τ) =
Q

(r)
h,U(τ) − S(r)

h,U(τ) as the worst-case number of dropped packets at VNF V
(r)
h in (4.1). In

the modified algorithm, the auxiliary variable decision is the same as that without packet
rushing, except for using the new definition of Q(r)

h,U(τ). For VNF scheduling and packet
processing, we consider an FCFS prioritization principle for the packets with different
residual lifetime at the scheduled VNFs. If VNF V

(r)
h is scheduled, the number of non-

rushing packets with residual lifetime m ∈ M̃(r)
h that are processed at VNF V

(r)
h during

time slot τ , i.e., Ŝ(r)
h,m(τ), is given by (4.33) where m0 ∈ M̃(r)

h satisfies (4.34). Then, the
optimal VNF scheduling and packet processing decisions are made based on a modified
VNF scheduling weight, ω̃(r)

h (τ), given by

ω̃
(r)
h (τ) = ω

(r)
h,U(τ)

Hr−h+1∑
m=1

Ŝ
(r)
h,m(τ) + ω

(r)
h,N(τ)

∑
m>Hr−h+1

Ŝ
(r)
h,m(τ), ∀r ∈ R, h ∈ Hr. (4.47)

93

Correct queue updates

After all decisions for time slot τ are made using the modified VNF scheduling algorithm,
packet rushing analysis is performed for each service. Although the modified algorithm
is derived based on the worst-case queue length updates, the true queue lengths can be
updated at the end of time slot τ . The true physical queue length evolution equations are

q
(r)
h (τ + 1) =

[
q

(r)
h (τ)− S(r)

h (τ)−D(r)
h (τ)

]+
+
[
S̃

(r)
h−1(τ)−R(r)

h (τ)
]
1{h > 1},

+ A(r)(τ)1{h = 1}, ∀r ∈ R, ∀h ∈ Hr (4.48)

where D(r)
h (τ) is updated as D(r)

h (τ) =
[
Q

(r)
h,1(τ)− S(r)

h,1(τ)
]+

, since only the packets with
residual lifetime m = 1 are actually dropped at VNF V

(r)
h if they are not processed.

Correspondingly, the true virtual queue length evolution equations in (4.15) and (4.16) are
updated with Q

(r)
h,U(τ) = Q

(r)
h,1(τ) and S

(r)
h,U(τ) = S

(r)
h,1(τ). Let R(r)

h,m(τ) and S̃
(r)
h,m(τ) be the

number of rushing packets with residual lifetime m ∈ M̃(r)
h and the actual total number

of packets with residual lifetime m ∈ M̃(r)
h that are processed at VNF V

(r)
h during time

slot τ respectively, with S̃(r)
h,m(τ) = S

(r)
h,m(τ) + R

(r)
h,m(τ). For VNF V

(r)
h with R(r)

h (τ) = 0, we
have R(r)

h,m(τ) = 0 and S̃
(r)
h,m(τ) = S

(r)
h,m(τ) for ∀m ∈ M̃(r)

h . For VNF V
(r)
h with R

(r)
h (τ) =∑

m∈M̃(r)
h

R
(r)
h,m(τ) > 0, the rushing packets arrive at VNF V

(r)
h in ascending order of packet

residual lifetime. Thus, R(r)
h,m(τ) is given by

R
(r)
h,m(τ) =


S̃

(r)
h−1,m(τ), if 1 ≤ m < m1

R
(r)
h (τ)−∑m<m1 S̃

(r)
h−1,m(τ), if m = m1

0, otherwise
(4.49)

where m1 ∈ M̃(r)
h satisfies ∑m1

m=1 S̃
(r)
h−1,m(τ) ≥ R

(r)
h (τ) > ∑

m<m1 S̃
(r)
h−1,m(τ). With packet

rushing, the queueing dynamics of the delay-aware virtual packet processing queues are
updated as

Q
(r)
1,Mr

(τ + 1) = A(r)(τ), ∀r ∈ R

Q
(r)
1,m(τ + 1) =

[
Q

(r)
1,m+1(τ)− S(r)

1,m+1(τ)
]+
, ∀r ∈ R, ∀m ∈ M̃(r)

1 \{Mr}

Q
(r)
h,Mr

(τ + 1) = 0, ∀r ∈ R, ∀h ∈ Hr\{1}
Q

(r)
h,Mr−1(τ + 1) = S̃

(r)
h−1,Mr

(τ)−R(r)
h,Mr

(τ), ∀r ∈ R, ∀h ∈ Hr\{1}

94

Table 4.1: Simulation settings for virtual network topology

Topology Services

1
Service 1: n1 → n2 → n3 → n7; Service 2: n4 → n1 → n7 → n2
Service 3: n8 → n5 → n2 → n6; Service 4: n3 → n9 → n6 → n1
Service 5: n5 → n6 → n4 → n3; Service 6: n9 → n7 → n8 → n2

2 All services: n1 → n2 → n3 → n4

Table 4.2: Traffic sets for VNF scheduling simulation

Set Service 1 Service 2 Service 3 Service 4 Service 5 Service 6

1 Trace 1 (1) Trace 2 (1) Trace 3 (1) Trace 4 (1) Trace 5 (1) Trace 6 (1)
2 Trace 1 (1) Trace 1 (4) Trace 2 (1) Trace 2 (4) Trace 3 (1) Trace 3 (4)

Q
(r)
h,m(τ + 1) =

[
Q

(r)
h,m+1(τ)− S(r)

h,m+1(τ)
]+

+ [S̃(r)
h−1,m+1(τ)−R(r)

h,m+1(τ)], ∀r ∈ R, ∀h ∈ Hr\{1},
∀m ∈ M̃(r)

h \{Mr − 1,Mr}. (4.50)

4.5 Performance Evaluation

We consider two virtual network topologies, both with 6 services of given VNF placement
at NFV nodes, as shown in Table 4.1, where ni denotes the i-th NFV node. The services in
topology 1 traverse through different virtual paths in a network of 9 NFV nodes, while all
the services in topology 2 share a common virtual path through 4 NFV nodes. The packet
E2E deadline of each service is set as 10ms. We assume that the maximum packet dropping
ratios for different services are the same, denoted by ε. By default, ε is set as 10−3. We
use 6 real-world stationary traffic traces with packet timestamp information [20, 67]. The
average packet arrival rates of the 6 traffic traces are 17915, 25627, 33038, 51182, 47810,
67912 in packet/s respectively. We consider two traffic sets for the services, as given in
Table 4.2, where the number inside the bracket indicates the processing density in kilo-
cycle per packet (i.e., Kcpp). For example, in traffic set 1, we use traffic trace 1 for service
1, with a processing density of 1Kcpp for each VNF in the service [50]. In traffic set 1, the

95

Table 4.3: Default parameters in VNF scheduling

Mr Packet E2E deadline 10ms
T Time slot length 1ms
ε Maximum packet dropping ratio 10−3

P
(r)
h Processing density 1Kcpp
ϑ Utility importance parameter 105

Γ Total number of time slots 105

services have different traffic traces and the same processing density. In traffic set 2, each
traffic trace is used for two services with different processing densities. We use topology 1
and traffic set 1 as the default simulation setting. The time slot length T is set as 1ms by
default. The total processing resource budget (in cycle per time slot) at NFV node n ∈ N
is proportional to the average processing resource demand of all the VNFs placed at the
NFV node, given by

Cn = ρ
∑

(r,h)∈Vn
ārP

(r)
h , ∀n ∈ N (4.51)

where ρ is referred to as the resource overprovisioning ratio. The utility importance param-
eter, ϑ, is set as 105 by default. With a certain simulation setting, let the VNF scheduling
algorithm run for Γ = 105 time slots. The performance metrics such as the throughput f̄r
in (4.6) and the average E2E delay d̄r in (4.5) are calculated based on the average over
the Γ time slots. All the default parameters for performance evaluation are summarized in
Table 4.3.

We first evaluate the performance of the proposed basic VNF scheduling algorithm
without packet rushing. The utility-backlog trade-off is investigated by increasing the
utility importance parameter ϑ from 1 to 200000. The resource overprovisioning ratio is
set as ρ = 3. We also examine the impact of QoS constraints on the utility-backlog trade-
off, by setting ε = 10−3, 0.5, 0.8, 1 to represent different levels of relaxation on the QoS
constraints. For ε = 1, it corresponds to a utility maximization problem without explicit
QoS constraints for each service. Fig. 4.6(a) shows the total utility with the increase of
ϑ at different values of ε. In the figure, the “x% utility” represents the total utility when
the timely delivery ratio of each service is x%. With the increase of ϑ, the total utility
with ε = 10−3 is stable, which is slightly beyond the 99% utility but does not reach the

96

(a) Total utility

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
5

1000

1500

2000

2500

3000

3500

4000

4500

A
v
e

ra
g

e
 t

o
ta

l
b

a
c
k
lo

g
s -3

0 0.4 0.8 1.2 1.6 2

10
5

5.8

5.81

5.82

10
5

(b) Average total backlogs

Figure 4.6: Trade-off between total utility and average total backlogs with respect to ϑ

(ρ = 3).

99.9% utility, inferring that a resource overprovisioning ratio of ρ = 3 is not sufficient for
such a strict QoS requirement without packet rushing under the given simulation settings.
With a relaxed QoS constraint, i.e., ε ∈ {0.5, 0.8, 1}, the total utility gradually increases
and gets closer to the 99% utility with the increase of ϑ. We notice that the achieved total
utility without explicit QoS constraints (i.e., ε = 1) at ϑ = 1 is close to the 95% utility.
However, for each value of ε, we see an linear increase in the average total backlogs (i.e.,
average of the total actual and virtual queue lengths over time slots) with the increase of
ϑ in Fig. 4.6(b), demonstrating an

[
O(1

ϑ
),O(ϑ)

]
utility-backlog trade-off with the increase

of ϑ. We also observe that more utility is achieved with a more strict QoS constraint for a
certain value of ϑ, at a cost of a greater congestion level. The average total backlogs with
ε = 10−3 is even two orders of magnitude higher than that with relaxed QoS constraints,
since the QoS constraint violation with ε = 10−3 results in unstable virtual queue W (r)(τ)
with consistently increasing virtual queue length over time. With a smaller value of ε,
the virtual queue length W (r)(τ) grows more aggressively with the same number of packet
dropping due to the term ār (1− εr) in (4.15), thus imposing more scheduling weight on
the urgent packets according to (4.29). In this way, packet urgency plays a more important
role in VNF scheduling, resulting in less packet droppings due to expiry.

Fig. 4.7 illustrates the performance comparison between the proposed VNF scheduling
algorithm and two benchmark algorithms (without packet rushing) in terms of the individ-

97

Figure 4.7: Performance comparison between the proposed and benchmark algorithms.

ual timely delivery ratios of different services. We use a simulation setting with topology
2 and traffic set 2, to evaluate the impact of packet arrival rate and processing density on
the individual performance of each service with the increase of resource availability. The
“GPS-Average” benchmark algorithm corresponds to a GPS resource allocation scheme un-
der the unrealistic assumption of infinitely divisible resources, where VNF V

(r)
h enjoys as if

a dedicated virtual CPU with a minimum processing rate of ρārP (r)
h in cycle per time slot.

The virtual CPUs can be scheduled simultaneously at each NFV node, with multiplexing
among each other. We see that the timely delivery ratios of services with the same traffic
trace and different processing densities overlap with each other, and the timely delivery
ratios of services with different traffic traces are close to each other. The “Backpressure-
P” benchmark algorithm corresponds to the classical backpressure algorithm adapted for
processing resources, in which the differential backlogs in number of required CPU cycles
is used as the VNF scheduling weight, and no virtual queues are introduced for individual
throughput guarantee. We see a significant performance degradation for low-density and
low-rate services. However, the proposed algorithm takes equal importance of the QoS
requirement of each service, and achieves similar timely delivery ratios for each service,
regardless of the difference in the packet arrival rate and processing density. Moreover, the
performance of the proposed algorithm is comparable to that of the “GPS-Average” algo-
rithm, although the proposed algorithm operates in a time-slotted manner with T = 1ms
under the constraint that at most one VNF can be scheduled at each NFV node during a
time slot.

Next, we evaluate how packet rushing can affect the performance of VNF scheduling.
Fig. 4.8 shows comparison of three performance metrics between the basic VNF scheduling

98

(a) Total throughput (packet/s)

1 1.5 2 2.5 3
5

6

7

8

9

10

A
v
e

ra
g

e
 E

2
E

 d
e

la
y
 (

m
s
)

Basic
Rush

(b) Average E2E delay (ms)

1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

16

A
v
e

ra
g

e
 t

o
ta

l
b

a
c
k
lo

g
s

10
6

Basic
Rush

2 2.5 3
5

6

7

10
5

(c) Average total backlogs

Figure 4.8: Performance comparison without and with packet rushing with the increase of
resource availability.

algorithm without packet rushing and the modified VNF scheduling algorithm with packet
rushing (denoted by “Basic” and “Rush” respectively), including the total throughput (in
packet/s) of all services, the average E2E delay of different services, and the average total
backlogs. We see an improvement in all the three performance metrics with the increase
of resource availability (indicated by ρ) in both cases without and with packet rushing. As
illustrated in Fig. 4.8(a), more packets are timely delivered to the egress edge switch within
E2E deadline by taking advantage of packet rushing when there are sufficient resources in
the network, i.e., when ρ is greater than a certain value around 1.2. The total throughput
achieved by the basic and modified algorithms approach 99% and 99.9% of the maximum
value at a resource overprovisioning ratio around 2.1, respectively. However, the strict QoS
requirement with ε = 10−3 is difficult to be satisfied without packet rushing, even with
further increase of ρ beyond 2.1. We also observe that the modified algorithm with packet
rushing cannot outperform the basic algorithm in terms of the total throughput when the
resources are limited, e.g., ρ = 1. The reason is that the resources allocated to the packets
with residual lifetime 1 ≤ m < Hr−h+ 1 at VNF V

(r)
h have high chances to be eventually

wasted due to limited packet rushing opportunity at low resource availability, since such
packets can be successfully delivered only by taking advantage of packet rushing. Fig. 4.8(b)
shows that the average E2E delay of the services is reduced with packet rushing. With the
increase of ρ, the gap between the average E2E delay achieved by the basic and modified
algorithms increases to around 1ms. Fig. 4.8(c) shows that the average total backlogs are
reduced with more resources, and the reduction is more significant with packet rushing.

99

=1.8 =1.9 =2 =3
95

96

97

98

99

100

T
im

e
ly

 d
e
liv

e
ry

 r
a
ti
o
 (

%
)

Figure 4.9: Average timely delivery ratio with different QoS constraints.

With the increase of ρ, the QoS performance gradually approaches the QoS requirement
as illustrated in Fig. 4.8(a), resulting in a reduced congestion level in the virtual queues.
Since packet rushing enhances the QoS performance if resources are sufficient, the virtual
queues become even less congested with packet rushing. The physical packet processing
queues also become less congested with packet rushing, since the packets can reach the
egress edge switch faster on average.

Fig. 4.9 shows the average timely delivery ratio of different services with different QoS
constraints (ε = 10−1, 10−2, 10−3) at given values of ρ for both cases without and with
packet rushing. With the same QoS constraint, we observe an improvement in the average
timely delivery ratio with the increase of ρ and with packet rushing, which is consistent
with the results shown in Fig. 4.8. With packet rushing, the difference between the achieved
average timely delivery ratios with different QoS constraints at a certain value of ρ is less
significant, since a large portion of urgent packets that should have been dropped under
the worst-case assumption of no packet rushing can rush to the egress edge switch before
expiry, and the achieved average timely delivery ratio approaches 1 at the given values of
ρ regardless of the QoS constraint.

To see the impact of time slot length (T) on VNF scheduling performance, we evaluate
four performance metrics (including the total throughput, the average total backlogs, the
average E2E delay, and the number of context switches per second) at ρ = 2, by increasing
the time slot length T from 0.1ms to 1.3ms. As illustrated in Fig. 4.10(a), when the
algorithm operates with an extremely small time slot length, e.g., 0.1ms, almost no packets
are dropped due to E2E delay violation, resulting in a total throughput approaching 100%

100

(a) Total throughput (packet/s)

0.1 0.3 0.5 0.7 0.9 1.1 1.3
0

2

4

6

8

A
v
e

ra
g

e
 t

o
ta

l
b

a
c
k
lo

g
s

10
6

Basic
Rush

(b) Average total backlogs

0.1 0.3 0.5 0.7 0.9 1.1 1.3

0

1

2

3

4

5

6

7

8

A
v
e

ra
g

e
 E

2
E

 d
e

la
y
 (

m
s
)

Worst-case E2E
delay overhead

Basic
Rush

(c) Average E2E delay (ms)

0.1 0.3 0.5 0.7 0.9 1.1 1.3
0

1

2

3

4

5

6

7

8

N
u
m

b
e
r

o
f
c
o
n
te

x
t
s
w

it
c
h
e
s 10

4

Basic

Rush

(d) No. of context switches per second

Figure 4.10: Performance of the proposed algorithm at different time slot length T (ρ = 2).

101

of the maximum value. The total throughput remains high until T increases to around
0.7ms, and then degrades significantly with further increase of T . Even if packet rushing
is allowed, the QoS violation is significant if T is too large. Correspondingly, the average
total backlogs first increase very slowly and then increase sharply due to significant QoS
degradation with the increase of T , as illustrated in Fig. 4.10(b). With the increase of T , the
worst-case E2E delay overhead, i.e., HrT for service r ∈ R, becomes more significant, which
cannot be fully compensated by the delay reduction benefit from packet rushing, resulting
in an almost linear increasing trend in the average E2E delay for both cases without
and with packet rushing, as illustrated in Fig. 4.10(c). The former three performance
metrics are all improved with finer granularity of time slot length, at a cost of more
switching overhead per second which is nearly inversely proportional to T , as illustrated
in Fig. 4.10(d). Hence, the time slot length should not be too small to avoid significant
switching overhead. Moreover, if T is too small, the assumption of negligible transmission
and propagation delay over the virtual links between consecutive VNFs is non-realistic,
and the complexity of the VNF scheduling algorithm grows due to increased size of the
packet residual lifetime set at VNF V

(r)
h , i.e., |M(r)

h | or |M̃
(r)
h |.

4.6 Summary

In this chapter, we study a delay-aware VNF scheduling problem for deadline-constrained
services in a network slicing scenario, to achieve utility maximization in the presence of
small-timescale traffic dynamics, while satisfying the throughput requirement of each ser-
vice. An online distributed VNF scheduling algorithm is proposed for both without and
with packet rushing, based on a delay-aware virtual queueing model. The differential back-
logs, throughput performance and packet urgency are taken into consideration for VNF
scheduling. Simulation results demonstrate an

[
O(1

ϑ
),O(ϑ)

]
utility-backlog trade-off with

utility importance parameter ϑ. The effectiveness of virtual queues is verified through a
significant QoS performance gap between the proposed algorithm and the “Backpressure-
P” benchmark. Even though the proposed algorithm operates in a time granularity of
100µs to ms, the performance gap with a GPS scheme under the assumption of infinitely
divisible resources is not significant. A performance improvement is observed with packet
rushing at a sufficiently high resource availability especially in terms of average E2E delay,
and the impact of time slot length on VNF scheduling performance is also evaluated.

102

Chapter 5

Conclusions and Future Research
Directions

5.1 Conclusions

The objective of this PhD research is to develop a dynamic resource management framework
for embedded services in an SDN/NFV-enabled core network, with the consideration of
the unique properties of CPU processing resources in a virtualized network environment,
to achieve consistent QoS performance in terms of E2E delay satisfaction and throughput
guarantee, by adapting to the network traffic dynamics in different time granularities.

We first develop a delay-aware flow migration model for embedded services with aver-
age E2E delay requirements based on a simplified Poisson traffic assumption. The average
packet arrival rate of the Poisson traffic is assumed stable within a time interval and varies
across different time intervals. A mixed integer optimization problem is formulated, to
balance between two conflicting objectives of load balancing and reconfiguration overhead
reduction, under processing resource capacity constraints, average E2E delay constraints,
and maximal tolerable service downtime constraints. Two solutions are proposed for the
optimization problem, including an optimal MIQCP solution and a low-complexity heuris-
tic solution. With flow migration, more traffic from the services can be accommodated
with average E2E delay guarantee. Numerical results demonstrate that the proposed flow
migration model achieves medium level load balancing without a significant compromise on

103

reconfiguration overhead. The heuristic solution achieves performance comparable with the
optimal MIQCP solution in terms of total cost minimization, with significant improvement
on time efficiency.

In the second research problem, we remove the oversimplified Poisson traffic assumption,
and investigate when and how to trigger resource scaling and possible flow migrations in
a local network segment. A more strict probabilistic delay requirement is considered in
developing a QoS-aware resource demand prediction scheme. We use traffic samples of
a real-world nonstationary traffic trace in both a medium timescale (20s in simulation)
and a smaller timescale (100ms in simulation) for resource demand prediction, based on a
change point detection scheme and a GPR-based fBm traffic parameter learning scheme.
Packet-level simulations demonstrate the effectiveness of the resource demand prediction
scheme in terms of capturing the traffic burstiness in timescales larger than 100ms. QoS
satisfaction is observed for a synthesized packet arrival trace with traffic burstiness only
in timescales larger than 100ms, while occasional QoS violation is observed for the real-
world packet arrival trace with traffic burstiness in even smaller time granularities such
as 1ms, especially for the more stringent QoS requirements. The outputs of resource
demand prediction, including both the detected change points in time and the predicted
resource demands, are applied to a dynamic VNF migration learning module based on
a proposed penalty-aware deep Q-learning algorithm. Through reinforcement learning,
the patterns in the traffic trace can be captured and VNF migration decisions can be
made adaptively to achieve a trade-off among load balancing, migration cost reduction,
and resource overloading penalty suppression in the long run. The decision epoch length
is time-varying, corresponding to the time duration of each detected stationary traffic
segment. Numerical results show that the proposed deep Q-learning algorithm achieves
more training loss reduction and more penalty suppression compared with the benchmarks.

In the third research problem, we focus on a sufficiently long time duration with
given VNF placement and stationary traffic statistics, and investigate a delay-aware VNF
scheduling problem for deadline-constrained services with strict throughput requirements,
to achieve total network utility maximization with traffic dynamics in even smaller time
granularities (e.g., 100µs-1ms). To incorporate packet delay awareness, we use a delay-
aware virtual packet processing queueing model. We also replace service throughput re-
quirements by equivalent virtual queue stability requirements for each service. Based on
Lyapunov optimization, an online distributed VNF scheduling algorithm is derived, which
greedily minimizes a Lyapunov drift-plus-penalty in each time slot. The proposed algorithm

104

can be executed in a time slotted manner with a realistic state-of-the-art time slot length
(e.g., 100µs-1ms) for CPU resource scheduling. At each NFV node, a VNF with the max-
imum VNF scheduling weight is scheduled. The scheduling weight for a VNF incorporates
the weighted differential backlogs with the downstream VNF, the virtual queue lengths
indicating the current throughput performance, and the number of urgent and non-urgent
packets. The proposed algorithm achieves asymptotically optimal total network utility
with the increase of utility importance parameter, at the cost of linearly increasing average
total backlogs. The effectiveness of virtual queues is verified through a significant through-
put improvement achieved by the proposed algorithm compared with the “Backpressure-P”
benchmark. Also, the proposed time-slotted VNF scheduling algorithm achieves a com-
parable performance with a GPS benchmark scheme under the unrealistic assumption of
infinitely divisible CPU processing resources. To enhance resource efficiency, we consider
that a packet can be processed at multiple VNFs within one time slot, which is referred to
as packet rushing. A packet processed by more than one VNF in a time slot is referred to as
a rushing packet. We propose a modified VNF scheduling algorithm with packet rushing,
and derive a packet rushing analysis to analyze the number of rushing packets that can
be additionally processed at each VNF if packet rushing is allowed, based on which the
true queue length updates can be corrected. With packet rushing, we observe performance
improvements especially in the average E2E delay.

5.2 Future Research Directions

This PhD research can be extended in several directions.

In the proposed learning-based VNF migration scheme, the QoS provisioning and the
cost minimization are addressed separately. The QoS provisioning is achieved by first pre-
dicting a QoS-aware resource demand and then allocating resources accordingly. The cost
minimization is achieved by deep Q-learning based VNF migration decision. However,
due to the traffic burstiness in finer time granularities than the small time interval (e.g.,
100µs) under consideration in the resource demand prediction framework, QoS violation
occasionally happens especially for a very stringent QoS requirement. To provide better
QoS provisioning, a potential approach is to explicitly incorporate the measured QoS per-
formance metric as a feedback in the MDP state and make decisions accordingly to achieve
QoS satisfaction in the long run. In this case, a new MDP formulation with both resource

105

capacity constraints and QoS constraints should be investigated. The simplest way to
deal with constrained MDP is reward shaping, i.e., creating a new reward as a weighted
combination of the original reward and the constraint violation penalties, as done in the
proposed penalty-aware deep Q-learning approach. However, the weights in the shaped
reward are typically difficult to adjust during the training process especially when the
MDP model is complex with a high-dimensional state and action space and when there are
multiple constraints. A potential approach to deal with constrained MDP is to apply the
primal-dual method in RL, in which the weights of the constraint violation penalties are
dual variables which can be updated and learned together with the VNF migration policy
which corresponds to primal variables.

The VNF migration learning agent is developed for a single VNF in a local neighbor-
hood, in which the dynamics of other VNFs are treated as background traffic at the NFV
nodes. In a multi-service scenario, we should have multiple such learning agents working
independently at each VNF belonging to different services, which may produce subopti-
mal VNF migration decisions in terms of an overall cost. A direct extension of the MDP
formulation with multiple VNFs may cause the curse of dimensionality issue. Multi-agent
or distributed RL is a potential approach to simultaneously making decisions at multiple
VNFs towards a common objective, while keeping the state and action space at each learn-
ing agent small. Considering multiple VNFs will facilitate exploiting the multiplexing gain
among VNFs and improve resource utilization.

The dynamic processing (computing) resource management solutions developed in this
PhD research for dealing with traffic dynamics in core networks can be extended to radio
access networks with mobile edge computing. The coordination among different types
of resources (e.g., communication, computing, and caching resources) at the mobile edge
should be investigated, and new issues in the wireless networks should be addressed, such
as mobility, channel dynamics, and interference.

106

References

[1] I. Vision, “Framework and overall objectives of the future development of IMT for
2020 and beyond,” International Telecommunication Union (ITU), Document, Radio-
communication Study Groups, 2015.

[2] W. Zhuang, Q. Ye, F. Lyu, N. Cheng, and J. Ren, “SDN/NFV-empowered future IoV
with enhanced communication, computing, and caching,” Proc. IEEE, vol. 108, no. 2,
pp. 274–291, Feb. 2020.

[3] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz, J. Lorca, and
J. Folgueira, “Network slicing for 5G with SDN/NFV: Concepts, architectures, and
challenges,” IEEE Commun. Mag., vol. 55, no. 5, pp. 80–87, May 2017.

[4] X. Li, P. Djukic, and H. Zhang, “Zoning for hierarchical network optimization in
software defined networks,” in Proc. IEEE NOMS, May 2014, pp. 1–8.

[5] N. Zhang, S. Zhang, P. Yang, O. Alhussein, W. Zhuang, and X. Shen, “Software
defined space-air-ground integrated vehicular networks: Challenges and solutions,”
IEEE Commun. Mag., vol. 55, no. 7, pp. 101–109, July 2017.

[6] J. G. Herrera and J. F. Botero, “Resource allocation in NFV: A comprehensive survey,”
IEEE Trans. Netw. Service Manag., vol. 13, no. 3, pp. 518–532, Sept. 2016.

[7] V.-G. Nguyen, A. Brunstrom, K.-J. Grinnemo, and J. Taheri, “SDN/NFV-based mo-
bile packet core network architectures: A survey,” IEEE Commun. Surveys Tuts.,
vol. 19, no. 3, pp. 1567–1602, third quarter 2017.

107

[8] Q. Duan, N. Ansari, and M. Toy, “Software-defined network virtualization: an archi-
tectural framework for integrating SDN and NFV for service provisioning in future
networks,” IEEE Netw., vol. 30, no. 5, pp. 10–16, Sept. 2016.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “Openflow: Enabling innovation in campus networks,”
ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69–74, Apr.
2008.

[10] C. Lorenz, D. Hock, J. Scherer, R. Durner, W. Kellerer, S. Gebert, N. Gray, T. Zinner,
and P. Tran-Gia, “An SDN/NFV-enabled enterprise network architecture offering fine-
grained security policy enforcement,” IEEE Commun. Mag., vol. 55, no. 3, pp. 217–
223, Mar. 2017.

[11] ETSI NFV ISG, “NFV-EVE005: SDN usage in NFV architectural framework,” Oct.
2015.

[12] Q. Ye, J. Li, K. Qu, W. Zhuang, X. Shen, and X. Li, “End-to-end quality of service
in 5G networks – Examining the effectiveness of a network slicing framework,” IEEE
Veh. Technol. Mag., vol. 13, no. 2, pp. 65–74, June 2018.

[13] O. Alhussein, P. T. Do, Q. Ye, J. Li, W. Shi, W. Zhuang, X. Shen, X. Li, and J. Rao,
“A virtual network customization framework for multicast services in NFV-enabled
core networks,” IEEE J. Select. Areas Commun., vol. 38, no. 6, pp. 1025–1039, June
2020.

[14] X. Chen, W. Ni, I. B. Collings, X. Wang, and S. Xu, “Automated function placement
and online optimization of network functions virtualization,” IEEE Trans. Commun.,
vol. 67, no. 2, pp. 1225–1237, Feb. 2019.

[15] Z. Xu, W. Liang, M. Huang, M. Jia, S. Guo, and A. Galis, “Efficient NFV-enabled
multicasting in SDNs,” IEEE Trans. Commun., vol. 67, no. 3, pp. 2052–2070, Mar.
2019.

[16] D. Li, P. Hong, K. Xue et al., “Virtual network function placement considering resource
optimization and SFC requests in cloud datacenter,” IEEE Trans. Trans. Parallel
Distrib. Syst., vol. 29, no. 7, pp. 1664–1677, 2018.

108

[17] Q. Ye, W. Zhuang, X. Li, and J. Rao, “End-to-end delay modeling for embedded VNF
chains in 5G core networks,” IEEE Internet of Things J., vol. 6, no. 1, pp. 692–704,
Feb. 2019.

[18] X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive VNF scaling and flow routing with
proactive demand prediction,” in Proc. IEEE INFOCOM’18, Apr. 2018, pp. 486–494.

[19] Z. Luo, C. Wu, Z. Li, and W. Zhou, “Scaling geo-distributed network function chains:
A prediction and learning framework,” IEEE J. Select. Areas Commun., vol. 37, no. 8,
pp. 1838–1850, Aug. 2019.

[20] “MAWI Working Group Traffic Archive,” http://mawi.wide.ad.jp/mawi/, 2020, [On-
line; accessed 17-December-2020].

[21] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing OSPF weights,”
in Proc. IEEE INFOCOM, June 2000, pp. 519–528.

[22] J. Rexford, “Route optimization in IP networks,” Handbook of Optimization in
Telecommunications, pp. 679–700, 2006.

[23] H. Tang, D. Zhou, and D. Chen, “Dynamic network function instance scaling based on
traffic forecasting and VNF placement in operator data centers,” IEEE Trans. Parallel
Distrib. Syst., vol. 30, no. 3, pp. 530–543, Mar. 2019.

[24] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid, S. Das, and
A. Akella, “OpenNF: Enabling innovation in network function control,” in Proc. ACM
SIGCOMM, Aug. 2014, pp. 163–174.

[25] M. Peuster and H. Karl, “E-state: Distributed state management in elastic network
function deployments,” in Proc. NetSoft, June 2016, pp. 6–10.

[26] L. Nobach, I. Rimac, V. Hilt, and D. Hausheer, “Statelet-based efficient and seamless
NFV state transfer,” IEEE Trans. Netw. Service Manag., vol. 14, no. 4, pp. 964–977,
Dec. 2017.

[27] B. Zhang, P. Zhang, Y. Zhao, Y. Wang, X. Luo, and Y. Jin, “Co-scaler: Cooperative
scaling of software-defined NFV service function chain,” in Proc. IEEE Conf. Network
Function Virtualization and Software Defined Networks, Nov. 2016, pp. 33–38.

109

http://mawi.wide.ad.jp/mawi/

[28] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and R. Boutaba, “Elastic
virtual network function placement,” in Proc. IEEE CloudNet, Oct. 2015, pp. 255–260.

[29] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, “On dynamic service function chain
deployment and readjustment,” IEEE Trans. Netw. Service Manag., vol. 14, no. 3,
pp. 543–553, Sept. 2017.

[30] W. Rankothge, F. Le, A. Russo, and J. Lobo, “Optimizing resource allocation for
virtualized network functions in a cloud center using genetic algorithms,” IEEE Trans.
Netw. Service Manag., vol. 14, no. 2, pp. 343–356, June 2017.

[31] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca, “An approach for service function
chain routing and virtual function network instance migration in network function
virtualization architectures,” IEEE/ACM Trans. Netw., vol. 25, no. 4, pp. 2008–2025,
Aug. 2017.

[32] L. Guo, J. Pang, and A. Walid, “Dynamic service function chaining in SDN-enabled
networks with middleboxes,” in Proc. IEEE ICNP, Nov. 2016, pp. 1–10.

[33] J. Xia, D. Pang, Z. Cai, M. Xu, and G. Hu, “Reasonably migrating virtual machine in
NFV-featured networks,” in Proc. IEEE Conf. Computer and Information Technology,
Dec. 2016, pp. 361–366.

[34] F. Zhang, G. Liu, X. Fu, and R. Yahyapour, “A survey on virtual machine migration:
Challenges, techniques, and open issues,” IEEE Commun. Surveys Tuts., vol. 20, no. 2,
pp. 1206–1243, second quarter 2018.

[35] S. Dräxler, H. Karl, and Z. Á. Mann, “JASPER: Joint optimization of scaling, place-
ment, and routing of virtual network services,” IEEE Trans. Netw. Service Manag.,
vol. 15, no. 3, pp. 946–960, June 2018.

[36] S. Liu, M. Yamada, N. Collier, and M. Sugiyama, “Change-point detection in time-
series data by relative density-ratio estimation,” Neural Networks, vol. 43, pp. 72–83,
July 2013.

[37] R. P. Adams and D. J. MacKay, “Bayesian online changepoint detection,” University
of Cambridge, Cambridge, U.K., Tech. Rep., 2007.

110

[38] G. Comert and A. Bezuglov, “An online change-point-based model for traffic param-
eter prediction,” IEEE Trans. Intell. Transport. Syst., vol. 14, no. 3, pp. 1360–1369,
Sep. 2013.

[39] C. Fraleigh, F. Tobagi, and C. Diot, “Provisioning IP backbone networks to support
latency sensitive traffic,” in Proc. IEEE INFOCOM’03, Apr. 2003, pp. 1871–1879.

[40] J. Kim and G. Hwang, “Adaptive bandwidth allocation based on sample path pre-
diction with Gaussian process regression,” IEEE Trans. Wireless Commun., vol. 18,
no. 10, pp. 4983–4996, Oct. 2019.

[41] Y. Cheng, W. Zhuang, and L. Wang, “Calculation of loss probability in a finite size
partitioned buffer for quantitative assured service,” IEEE Trans. Commun., vol. 55,
no. 9, pp. 1757–1771, Aug. 2007.

[42] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge,
MA: MIT Press, 2011.

[43] S. Chinchali, P. Hu, T. Chu, M. Sharma, M. Bansal, R. Misra, M. Pavone, and
S. Katti, “Cellular network traffic scheduling with deep reinforcement learning,” in
Proc. AAAI’18, Feb. 2018.

[44] J. Wang, L. Zhao, J. Liu, and N. Kato, “Smart resource allocation for mobile edge
computing: A deep reinforcement learning approach,” IEEE Trans. Emerg. Topics
Comput., to appear, doi: 10.1109/TETC.2019.2902661.

[45] H. Li, K. Ota, and M. Dong, “Learning IoT in edge: Deep learning for the Internet of
things with edge computing,” IEEE netw., vol. 32, no. 1, pp. 96–101, Jan.-Feb. 2018.

[46] J. Li, W. Shi, N. Zhang, and X. Shen, “Delay-aware VNF scheduling: A reinforcement
learning approach with variable action set,” IEEE Trans. Cogn. Commun. Netw., 2020,
to appear, doi: 10.1109/TCCN.2020.2988908.

[47] J. Liu, H. Guo, J. Xiong, N. Kato, J. Zhang, and Y. Zhang, “Smart and resilient
EV charging in SDN-enhanced vehicular edge computing networks,” IEEE J. Select.
Areas Commun., vol. 38, no. 1, pp. 217–228, Jan. 2020.

111

[48] Q. Ye, W. Zhuang, X. Li, and J. Rao, “End-to-end delay modeling for embedded VNF
chains in 5G core networks,” IEEE Internet Things J., vol. 6, no. 1, pp. 692–704, Feb.
2019.

[49] P. Emmerich, D. Raumer, S. Gallenmüller, F. Wohlfart, and G. Carle, “Throughput
and latency of virtual switching with Open vSwitch: A quantitative analysis,” Journal
of Network and Systems Management, vol. 26, no. 2, pp. 314–338, Apr. 2018.

[50] S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan, T. Wood
et al., “NFVnice: Dynamic backpressure and scheduling for NFV service chains,”
IEEE/ACM Trans. Netw., vol. 28, no. 2, pp. 639–652, Apr. 2020.

[51] S. R. Chowdhury, T. Bai, R. Boutaba, J. François et al., “UNiS: A user-space non-
intrusive workflow-aware virtual network function scheduler,” in 2018 14th Interna-
tional Conf. on Network and Service Management (CNSM), 2018, pp. 152–160.

[52] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications,
trends, technologies, and open research problems,” IEEE netw., vol. 34, no. 3, pp.
134–142, May/June 2020.

[53] H. Deng, T. Zhao, and I.-H. Hou, “Online routing and scheduling with capacity re-
dundancy for timely delivery guarantees in multihop networks,” IEEE/ACM Trans.
Netw., vol. 27, no. 3, pp. 1258–1271, June 2019.

[54] R. Singh and P. Kumar, “Throughput optimal decentralized scheduling of multihop
networks with end-to-end deadline constraints: Unreliable links,” IEEE Trans. Au-
tomat. Contr., vol. 64, no. 1, pp. 127–142, Jan. 2019.

[55] R. Li and A. Eryilmaz, “Scheduling for end-to-end deadline-constrained traffic with
reliability requirements in multihop networks,” IEEE/ACM Trans. Netw., vol. 20,
no. 5, pp. 1649–1662, Oct. 2012.

[56] L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling and resource optimization
with network function virtualization,” IEEE Trans. Commun., vol. 64, no. 9, pp.
3746–3758, 2016.

[57] S. Yang, F. Li, R. Yahyapour, and X. Fu, “Delay-sensitive and availability-aware
virtual network function scheduling for NFV,” IEEE Trans. Serv. Comput., to appear,
doi: 10.1109/TSC.2019.2927339.

112

[58] Y. Zhang, F. He, T. Sato, and E. Oki, “Network service scheduling with resource
sharing and preemption,” IEEE Trans. Netw. Service Manag., vol. 17, no. 2, pp.
764–778, June 2020.

[59] H. Alameddine, M. H. K. Tushar, and C. Assi, “Scheduling of low latency ser-
vices in softwarized networks,” IEEE Trans. Cloud Comput., to appear, doi:
10.1109/TCC.2019.2907949.

[60] L. Bui, R. Srikant, and A. Stolyar, “Novel architectures and algorithms for delay
reduction in back-pressure scheduling and routing,” in Proc. IEEE INFOCOM’09,
2009, pp. 2936–2940.

[61] H. Feng, J. Llorca, A. M. Tulino, and A. F. Molisch, “Optimal dynamic cloud network
control,” IEEE/ACM Trans. Netw., vol. 26, no. 5, pp. 2118–2131, Oct. 2018.

[62] L. Gu, D. Zeng, S. Tao, S. Guo, H. Jin, A. Y. Zomaya, and W. Zhuang, “Fairness-
aware dynamic rate control and flow scheduling for network utility maximization in
network service chain,” IEEE J. Select. Areas Commun., vol. 37, no. 5, pp. 1059–1071,
May 2019.

[63] “Gurobi Optimizer Reference Manual,” https://www.gurobi.com/documentation/9.
1/refman/constraints.html, 2018, [Online; accessed 17-December-2020].

[64] K. Qu, W. Zhuang, Q. Ye, X. Shen, X. Li, and J. Rao, “Dynamic flow migration for
embedded services in SDN/NFV-enabled 5G core networks,” IEEE Trans. Commun.,
vol. 68, no. 4, pp. 2394–2408, Apr. 2020.

[65] ——, “Traffic engineering for service-oriented 5G networks with SDN-NFV integra-
tion,” IEEE Netw., vol. 34, no. 4, pp. 234–241, July/Aug. 2020.

[66] K. Qu, W. Zhuang, Q. Ye, X. Shen, X. Li, and J. Rao, “Delay-aware flow migration
for embedded services in 5G core networks,” in Proc. IEEE ICC, May 2019, pp. 1–6.

[67] K. Qu, W. Zhuang, Q. Ye, X. Shen, X. Li, and J. Rao, “Dynamic resource scaling for
VNF over nonstationary traffic: A learning approach,” IEEE Trans. Cogn. Commun.
Netw., to appear, doi: 10.1109/TCCN.2020.3018157.

113

https://www.gurobi.com/documentation/9.1/refman/constraints.html
https://www.gurobi.com/documentation/9.1/refman/constraints.html

[68] Y. Mao, J. Zhang, S. Song, and K. B. Letaief, “Stochastic joint radio and compu-
tational resource management for multi-user mobile-edge computing systems,” IEEE
Trans. Wirel. Commun., vol. 16, no. 9, pp. 5994–6009, Sep 2017.

[69] M. Shin, S. Chong, and I. Rhee, “Dual-resource TCP/AQM for processing-constrained
networks,” IEEE/ACM Trans. Netw., vol. 16, no. 2, pp. 435–449, Apr. 2008.

[70] L. Rizzo, M. Carbone, and G. Catalli, “Transparent acceleration of software packet
forwarding using Netmap,” in Proc. IEEE INFOCOM, Mar. 2012, pp. 2471–2479.

[71] S. Garzarella, G. Lettieri, and L. Rizzo, “Virtual device passthrough for high speed
VM networking,” in Proc. 11th ACM/IEEE Symp. Architectures for Networking and
Communications Systems, May 2015, pp. 99–110.

[72] Q. Ye, W. Zhuang, X. Li, and J. Rao, “End-to-end delay modeling for embedded VNF
chains in 5G core networks,” IEEE Internet of Things J., vol. 6, no. 1, pp. 692–704,
Feb. 2019.

[73] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A. Chan, “Optimal
virtual network function placement in multi-cloud service function chaining architec-
ture,” Computer Communications, vol. 102, pp. 1–16, Apr. 2017.

[74] F. Ben Jemaa, G. Pujolle, and M. Pariente, “Analytical models for QoS-driven VNF
placement and provisioning in wireless carrier cloud,” in Proc. 19th ACM International
Conf. on Modeling, Analysis and Simulation of Wireless and Mobile Systems, Nov.
2016, pp. 148–155.

[75] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness. New York: wh freeman, 1978.

[76] B. Krithikaivasan, Y. Zeng, K. Deka, and D. Medhi, “ARCH-based traffic forecasting
and dynamic bandwidth provisioning for periodically measured nonstationary traffic,”
IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 683–696, June 2007.

[77] A. Bayati, V. Asghari, K. Nguyen, and M. Cheriet, “Gaussian process regression
based traffic modeling and prediction in high-speed networks,” in Proc. IEEE GLOBE-
COM’16, Dec. 2016, pp. 1–7.

114

[78] C. K. Williams and C. E. Rasmussen, Gaussian Processes for Machine Learning. MIT
press Cambridge, MA, 2006, vol. 2, no. 3.

[79] H. S. Kim and N. B. Shroff, “Loss probability calculations and asymptotic analysis
for finite buffer multiplexers,” IEEE/ACM Trans. Netw., vol. 9, no. 6, pp. 755–768,
Dec. 2001.

[80] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[81] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang, “Experience-
driven networking: A deep reinforcement learning based approach,” in Proc. IEEE
INFOCOM’18, Apr. 2018, pp. 1871–1879.

[82] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” in
Proc. ICLR’16, May 2016, pp. 1–7.

[83] P. Abry and F. Sellan, “The wavelet-based synthesis for fractional Brownian motion
proposed by F. Sellan and Y. Meyer: Remarks and fast implementation,” Applied and
Computational Harmonic Analysis, vol. 3, no. 4, pp. 377–383, Oct. 1996.

[84] H. Kobayashi and B. L. Mark, System Modeling and Analysis: Foundations of System
Performance Evaluation. Pearson Education India, 2009.

[85] M. Neely, Stochastic network optimization with application to communication and
queueing systems. Morgan & Claypool Publishers, 2010.

[86] P. Lu, Q. Sun, K. Wu, and Z. Zhu, “Distributed online hybrid cloud management for
profit-driven multimedia cloud computing,” IEEE Trans. Multimedia, vol. 17, no. 8,
pp. 1297–1308, 2015.

[87] Z. Zhou, F. Liu, R. Zou, J. Liu, H. Xu, and H. Jin, “Carbon-aware online control of
geo-distributed cloud services,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 9, pp.
2506–2519, 2015.

[88] S. Li, Y. Zhou, L. Jiao, X. Yan, X. Wang et al., “Towards operational cost minimiza-
tion in hybrid clouds for dynamic resource provisioning with delay-aware optimiza-
tion,” IEEE Trans. Service Comput., vol. 8, no. 3, pp. 398–409, 2015.

115

[89] K. P. Murphy, “Conjugate bayesian analysis of the gaussian distribution,” University
of British Columbia, Vancouver, Canada, Tech. Rep., 2007.

[90] C. M. Bishop, Pattern Recognition and Machine Learning. New York, NY, U.S.A.:
Springer, 2006.

116

Appendix A

Derivation of α̃n(k)

Let ηrhn (k) denote a ratio between resources occupied by VNF V
(r)
h and resource capacity

of NFV node n, given by

ηrhn (k) = P rh
n br
Cn

(
λ(r)(k) + 1

Drh(k)

)
xrhn (k). (A1)

VNF set V is divided into two subsets, i.e., V = V1 ∪ V2, where V1 = {(r, h) ∈ V |xrhn (k) =
f

(r)
2 = 1} is a set of VNFs belonging to SFC category III on NFV node n, and V2 is a set of
all other VNFs. Vertical delay scaling is applied to only VNFs in V1. Before delay scaling,
resource usage at NFV node n is composed of three parts, given by

ηn(k) =
∑

(r,h)∈V1∪V2

ηrhn (k) +
∑

(r,h)∈V1∪V2

wn(k)xrhn (k)W
Tn

. (A2)

The ratio of resources occupied by VNFs in V1 before vertical delay scaling is given by

∑
(r,h)∈V1

ηrhn (k) =
∑

(r,h)∈V1

P rh
n br
Cn

(
λ(r)(k) + 1

Drh(k)

)
. (A3)

For a vertical delay scaling by a positive coefficient α̃n(k) to increase loading factor of NFV
node n from ηn(k) to ηth, we have the following relationship among parameters, given by

ηth −
∑

(r,h)∈V2

ηrhn (k)−
∑

(r,h)∈V1∪V2

wn(k)xrhn (k)W
Tn

=
∑

(r,h)∈V1

P rh
n br
Cn

(
λ(r)(k) + 1

α̃n(k)Drh(k)

)
.

(A4)

117

Subtracting (A3) from (A4) and arranging items, we obtain

α̃n(k) =
∑

(r,h)∈V1
P rhn br
Drh(k)

[ηth − ηn(k)] Cn +∑
(r,h)∈V1

P rhn br
Drh(k)

(A5)

which is equivalent to (2.25).

118

Appendix B

Bayesian Online Change Point Detection

Under the assumption of a priori geometric inter-arrivals of change points, the conditional
prior probability distribution over the run length, denoted by P(li|li−1), is given by

P(li|li−1) =


1− (1/l̄), if li = li−1 + 1
1/l̄, if li = 0
0, otherwise

(B1)

where l̄ is the prior average run length. We set l̄ = 3600
TM

in simulation, corresponding to
one hour in time duration. The conditional prior has nonzero mass at only two outcomes,
i.e., the run length either grows by 1, or resets to 0. Accordingly, there are two branches
for P(li,xi), given by

i-th iteration︷ ︸︸ ︷
P(li,xi) =


(
1− 1

l̄

)
P
(
xi|li−1,x

(l)
i−1

)
P (li−1,xi−1) , if li = li−1 + 1

1
l̄

∑i−1
li−1=0 P

(
xi|li−1,x

(l)
i−1

)
P (li−1,xi−1), if li = 0.

(B2)

The predictive model P(xi|li−1,x
(l)
i−1) evaluates the probability that xi belongs to the same

run as x(l)
i−1, given run length li−1. Under the i.i.d Gaussian assumption with unknown

mean µ and variance ν2, a Normal-Inverse-Gamma prior is placed on µ and ν2, given by

P(µ, ν2) ∼ N
(
µ|µ0,

ν2

κ0

)
IG

(
ν2|α0, β0

)
(B3)

where {µ0, κ0, α0, β0} are prior parameters. Conjugate Bayesian analysis [89, 90] gives a
Normal-Inverse-Gamma posterior on µ and ν2 given x(l)

i−1, represented as

P(µ,ν2|x(L)
i−1)∼N

µ|µ(L)
i−1,

ν2

κ
(L)
i−1

IG(ν2|α(L)
i−1, β

(L)
i−1

)
(B4)

119

where {µ(l)
i−1, κ

(l)
i−1, α

(l)
i−1, β

(l)
i−1} are referred to as sufficient statistics corresponding to x(l)

i−1.
Each possible value of run length li−1 corresponds to a group of sufficient statistics. The
posterior predictive distribution for xi given li−1 and x(l)

i−1, i.e., P(xi|li−1,x
(l)
i−1), is described

by a student-t distribution, represented as

P(xi|li−1,x
(l)
i−1)∼ t2α(l)

i−1

xi|µ(l)
i−1,

β
(l)
i−1(κ(l)

i−1+1)
κ

(l)
i−1α

(l)
i−1

 (B5)

where µ(l)
i−1 is the mean, 2α(l)

i−1 is the degrees of freedom, and β
(l)
i−1(κ(l)

i−1+1)
κ

(l)
i−1α

(l)
i−1

is the scale. The

standard deviation of the student-t distribution, denoted by ν(l)
i−1, is given by

ν
(l)
i−1 =

√√√√√β
(l)
i−1

(
κ

(l)
i−1 + 1

)
κ

(l)
i−1

(
α

(l)
i−1 − 1

) . (B6)

After new observation xi is available, sufficient statistics corresponding to x(l)
i for ∀li > 0

are updated as

µ
(l)
i = κ

(l)
i−1µ

(l)
i−1 + xi

κ
(l)
i−1 + 1

(B7a)

κ
(l)
i = κ

(l)
i−1 + 1 (B7b)

α
(l)
i = α

(l)
i−1 + 1

2 (B7c)

β
(l)
i = β

(l)
i−1 +

κ
(l)
i−1

(
xi − µ(l)

i−1

)2

2
(
κ

(l)
i−1 + 1

) . (B7d)

For li = 0, the sufficient statistics are updated from the prior parameters of the Normal-
Inverse-Gamma distribution.

120

Appendix C

Proof of Lemma 1

Let Cmax be the maximum processing resource budget (in cycle per time slot) among all
the NFV nodes in set N , and let Pmin be the minimum processing density (in cycle/packet)
among all VNFs. We have S(r)

h,m(τ) ≤ S
(r)
h (τ) ≤ Cmax

Pmin
= Smax, D(r)

h (τ) ≤ Q
(r)
h,U(τ) ≤ A(r)

max

and χ(r)(τ) ≤ A(r)
max. Based on the inequality ([a− b]+ + c)2 ≤ a2 + b2 + c2 − 2a(b− c) for

∀a, b, c ≥ 0, we can obtain from the queue update equations (4.1), (4.15) and (4.16) that
∑
h∈Hr

[
P

(r)
h q

(r)
h (τ + 1)

]2
≤

∑
h∈Hr

[
P

(r)
h q

(r)
h (τ)

]2
− 2

∑
h∈Hr

(P (r)
h)2q

(r)
h (τ)

[
S

(r)
h (τ)− S(r)

h,U(τ)− S(r)
h−1(τ)1{h > 1} − A(r)(τ)1{h = 1}

]
+
∑
h∈Hr

(P (r)
h)2

[
S

(r)
h (τ) +D

(r)
h (τ)

]2
+
∑
h∈Hr

(P (r)
h)2

[
S

(r)
h−1(τ)1{h > 1}+ A(r)(τ)1{h = 1}

]2
︸ ︷︷ ︸

≤B(r)
1

(C1)

W (r)(τ + 1)2 ≤ W (r)(τ)2 − 2W (r)(τ)
A(r)(τ) +

∑
h∈Hr

S
(r)
h,U(τ)−

∑
h∈Hr

Q
(r)
h,U(τ)− ār (1− εr)


+
A(r)(τ) +

∑
h∈Hr

S
(r)
h,U(τ)

2

+
 ∑
h∈Hr

Q
(r)
h,U(τ)

2

+ (ār)2 (1− εr)2 + 2ār (1− εr)
∑
h∈Hr

Q
(r)
h,U(τ)

︸ ︷︷ ︸
≤B(r)

2

(C2)

121

F (r)(τ + 1)2 ≤ F (r)(τ)2 − 2F (r)(τ)
A(r)(τ) +

∑
h∈Hr

S
(r)
h,U(τ)−

∑
h∈Hr

Q
(r)
h,U(τ)− χ(r)(τ)


+
A(r)(τ) +

∑
h∈Hr

S
(r)
h,U(τ)

2

+
 ∑
h∈Hr

Q
(r)
h,U(τ)

2

+ χ(r)(τ)2

︸ ︷︷ ︸
≤B(r)

3

+2χ(r)(τ)
∑
h∈Hr

Q
(r)
h,U(τ) (C3)

for service r ∈ R, where B(r)
1 , B(r)

2 and B(r)
3 are constants given by

B(r)
1 = (P (r)

max)2
[
Hr

(
Smax + A(r)

max

)2
+ (Hr − 1)(Smax)2 + (A(r)

max)2
]

B(r)
2 = (A(r)

max +HrSmax)2 + (HrA
(r)
max)2 + (ār)2 (1− εr)2 + 2ār (1− εr)HrA

(r)
max

B(r)
3 = (A(r)

max +HrSmax)2 + (HrA
(r)
max)2 + (A(r)

max)2. (C4)

Using the inequalities in (C1), (C2) and (C3), we can obtain that

∆ (Θ(τ))− ϑE
{∑
r∈R

φ(χ(r)(τ))|Θ(τ)
}
≤
∑
r∈R

Br

−
∑
r∈R

E

 ∑
h∈Hr

(
P

(r)
h

)2
q

(r)
h (τ)

[
S

(r)
h (τ)− S(r)

h,U(τ)− S(r)
h−1(τ)1{h > 1} − A(r)(τ)1{h = 1}

]
|Θ(τ)


−
∑
r∈R

E


(
ϕ

ār

)2
W (r)(τ)

A(r)(τ) +
∑
h∈Hr

S
(r)
h,U(τ)−

∑
h∈Hr

Q
(r)
h,U(τ)− ār (1− εr)

 |Θ(τ)


−
∑
r∈R

E

(Pr)2 F (r)(τ)
A(r)(τ) +

∑
h∈Hr

S
(r)
h,U(τ)−

∑
h∈Hr

Q
(r)
h,U(τ)− χ(r)(τ)

 |Θ(τ)


+
∑
r∈R

E

(Pr)2 χ(r)(τ)
∑
h∈Hr

Q
(r)
h,U(τ)|Θ(τ)

− ϑE
{∑
r∈R

φ(χ(r)(τ))|Θ(τ)
}

(C5)

where

Br = 1
2

[
B(r)

1 +
(
ϕ

ār

)2
B(r)

2 + (Pr)2 B(r)
3

]
. (C6)

The inequality in (C5) can be rewritten as (4.20) under constraint (4.11).

122

	List of Figures
	List of Tables
	List of Acronyms
	List of Symbols
	Introduction
	SDN/NFV-Enabled Core Networks
	NFV Infrastructure Domain
	Tenant Domain
	SDN-NFV Integration

	Research Objectives
	Dynamic Flow Migration for Embedded Services
	Dynamic Resource Scaling for VNF over Nonstationary Traffic
	Delay-Aware VNF Scheduling For Network Utility Maximization

	Research Contributions
	Dynamic Flow Migration for Embedded Services
	Dynamic Resource Scaling for VNF over Nonstationary traffic
	Delay-Aware VNF Scheduling For Network Utility Maximization

	Thesis Outline

	Dynamic Flow Migration for Embedded Services
	System Model
	Services
	Abstraction of Virtual Resource Pool
	Processing Resource Sharing
	Reconfiguration Overhead

	Problem Formulation
	Optimal MIQCP Solution
	Heuristic Solution
	Overview
	Redistribution of Hop Delay Bounds
	Migration Decision
	Coordination with Threshold Update
	Complexity Analysis

	Performance Evaluation
	Load Balancing and Reconfiguration Overhead Trade-off
	Average End-to-End Delay Performance
	Comparison between MIQCP and Heuristic Solutions
	Convergence of Heuristic Algorithm

	Summary

	Dynamic Resource Scaling for VNF over Nonstationary Traffic: A Learning Approach
	System Model
	Nonstationary Traffic Model

	Traffic Parameter Learning and Resource Demand Prediction
	Bayesian Online Change Point Detection
	Traffic Parameter Learning
	Resource Demand Prediction

	Deep Reinforcement Learning for Dynamic VNF Migration
	VNF Migration Problem Formulation
	Penalty-Aware Deep Q-Learning Algorithm

	Performance Evaluation
	Summary

	Delay-Aware VNF Scheduling For Network Utility Maximization
	System Model
	Services
	Network Model
	Queueing Model

	Problem Formulation
	Online Distributed VNF Scheduling Algorithm
	VNF Scheduling Algorithm with Packet Rushing
	Packet Rushing Analysis
	Modified VNF Scheduling Algorithm

	Performance Evaluation
	Summary

	Conclusions and Future Research Directions
	Conclusions
	Future Research Directions

	References
	Appendix A
	Appendix B
	Appendix C

