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Abstract

This thesis consists of two parts: quantum compression and quantum learning theory.
A common theme between these problems is that we study them through the lens of
information theory.

We first study the task of visible compression of an ensemble of quantum states with
entanglement assistance in the one-shot setting. The protocols achieving the best compres-
sion use many more qubits of shared entanglement than the number of qubits in the states
in the ensemble. Other compression protocols, with potentially higher communication cost,
have entanglement cost bounded by the number of qubits in the given states. This moti-
vates the question as to whether entanglement is truly necessary for compression, and if so,
how much of it is needed. We show that an ensemble given by Jain, Radhakrishnan, and
Sen (ICALP’03) cannot be compressed by more than a constant number of qubits without
shared entanglement, while in the presence of shared entanglement, the communication
cost of compression can be arbitrarily smaller than the entanglement cost.

Next, we study the task of quantum state redistribution, the most general version of
compression of quantum states. We design a protocol for this task with communication
cost in terms of a measure of distance from quantum Markov chains. More precisely,
the distance is defined in terms of quantum max-relative entropy and quantum hypothesis
testing entropy. Our result is the first to connect quantum state redistribution and Markov
chains and gives an operational interpretation for a possible one-shot analogue of quantum
conditional mutual information. The communication cost of our protocol is lower than
all previously known ones and asymptotically achieves the well-known rate of quantum
conditional mutual information.

In the last part, we focus on quantum algorithms for learning Boolean functions us-
ing quantum examples. We consider two commonly studied models of learning, namely,
quantum PAC learning and quantum agnostic learning. We reproduce the optimal lower
bounds by Arunachalam and de Wolf (JMLR’18) for the sample complexity of either of
these models using information theory and spectral analysis. Our proofs are simpler than
the previous ones and the techniques can be possibly extended to similar scenarios.
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Chapter 1

Introduction

1.1 Overview

Information theory is the field of studying the quantification, storage, and communication
of information, founded in the 20-th century by Claude Shannon. In his seminal paper “A
Mathematical Theory of Communication” [84], Shannon introduced the notion of entropy
that is a measure of uncertainty in a source of data, and invented a framework for quanti-
fying information. Using this framework, Shannon single-handedly formalized the optimal
rate in lossless source coding as well as channel coding. Information theory has found
applications in different fields, from physics, computer science, and electrical engineering
to linguistics, neurobiology, and even musical composition.

Since the revelation of the idea of quantum computing in the last decades of the 20-
th century, the notions of information theory have been widely extended to the quantum
framework and utilized in studying quantum communication and computation. In 1995,
Schumacher [81] derived the quantum analogue of the Shannon noiseless source coding,
showing that the asymptotic rate for compressing a source of pure quantum states is
captured by the von Neumann entropy of the average state, the quantum counterpart
of Shannon entropy. Source compression (coding) can be considered as a distributed task
between two parties, Alice and Bob, where Alice is given a data (a description of a quantum
state) from the source (an ensemble of quantum states). Alice wants to send a compressed
state to Bob, via a noiseless quantum channel, so that Bob can “approximately” reproduce
Alice’s input. Schumacher assumed that the source produces pure states and there is no
initial quantum correlation between two parties. A more general scenario is when the states
can be any mixed quantum state and parties may have access to initially shared entangled
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states. This task is known in the literature as visible quantum compression or remote
state preparation (if only noise-less classical channels are available) and has been studied
extensively in both asymptotic [54, 23, 25, 66, 50, 24, 18, 17], and one-shot [58, 16] settings.
As opposed to visible compression, blind compression [54] is the task in which the data
given to Alice is a specimen of a quantum state from the ensemble rather than a description
of the state. The most general quantum compression scenario is the task of quantum state
redistribution [69, 38] in which the correlation of the quantum states with the environment
as well as local registers of the parties are required to be preserved while transferring the
input to Bob with minimal communication. This task is tightly related to the quantum
information cost of interactive communication protocols and holds an important place in
deriving a direct sum theorem for bounded-round quantum communication complexity [89].

Another field that has benefited from information theory is the computational learning
theory , founded in the early 1980s by Leslie Valiant [91]. The main goal in this field is to
mathematically understand and analyze practically successful machine learning algorithms,
like deep learning and other heuristic methods. Information theory has been proved to be a
powerful tool for analyzing and investigating the power and limitations of machine learning
algorithms(see, e.g., Refs. [10, 45, 80, 12]). Recently, there has also been an increased
interest in studying the intersection of (classical) learning theory and quantum computing,
called quantum learning theory . Quantum machine learning investigates the power of
quantum physics in improving machine learning algorithms, as well as the application
of machine learning algorithms in quantum computing (see Refs. [11, 39] for a complete
survey).

This thesis consists of two main parts. In Part I, we focus on quantum compression.
We study the resources required for the tasks of visible quantum compression and quan-
tum state redistribution. In Part II, using quantum information theory, we analyze the
limitations of quantum algorithms for learning Boolean functions.

1.1.1 Visible quantum compression

First, we revisit the task of visible compression of an ensemble of quantum states with
entanglement assistance in the one-shot setting. The protocols achieving the best com-
pression use many more qubits of shared entanglement than the number of qubits in the
states in the ensemble. Other compression protocols, with potentially larger communica-
tion cost, have entanglement cost bounded by the number of qubits in the given states.
This motivates the question as to whether entanglement is truly necessary for compression,
and if so, how much of it is needed.
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In Chapter 2, we show that an ensemble of the form designed by Jain, Radhakrishnan,
and Sen [60] is incompressible by more than a constant number of qubits without shared
entanglement, even when constant error is allowed. Moreover, in the presence of shared
entanglement, the communication cost of compression can be arbitrarily smaller than the
entanglement cost. The ensemble can also be used to show the impossibility of reducing, via
compression, the shared entanglement used in two-party protocols for computing Boolean
functions.

1.1.2 Quantum state redistribution

In quantum state redistribution, there is a pure quantum state |ψ〉RABC distributed between
parties, Alice, Bob, and the environment, called Referee. In this scenario, Register A is
held with Alice, register B is held with Bob, register C is the one to be transmitted
from Alice to Bob, and register R is the one that purifies registers ABC and is held with
Referee. While being well understood in the asymptotic and i.i.d. setting [69, 38] (with
the communication rate equal to the quantum conditional mutual information), an explicit
near-optimal expression for the communication cost of this task in the one-shot setting is
not known. Some achievable one-shot rates are given in Refs. [27, 36, 8], however, they
are known to be not optimal for specific pure quantum states. Besides the important role
of state redistribution in quantum communication complexity, an explicit expression for
communication cost of one-shot state redistribution would result in an operational one-shot
interpretation of quantum conditional mutual information.

In Chapter 3, we show a new achievable bound inspired by a representation of quantum
conditional mutual information in terms of the minimum relative entropy distance from
quantum Markov extensions of the original state. Our bound is tighter than the previously
known bounds and, as opposed to those, achieves the near-optimal classical bound of
Ref. [6] for the case that ψRBC is classical. Our key technique is a reduction procedure using
embezzling quantum states that allows us to use the protocol of Ref. [8] as a subroutine.

1.1.3 Learning Boolean functions

In the last chapter of this thesis, we study two models of learning Boolean functions: the
probably approximately correct (PAC) model [91] and the agnostic model [63]. Consider a
Boolean function f and an unknown distribution D over bit strings of length n. In the
PAC model, the learner receives a sequence of labelled examples (x1, f(x1)), (x2, f(x2)), . . .
where x1, x2, . . . are random bit strings independently and identically distributed according
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to distribution D. The learner’s goal is to learn the function f with high probability, in a
sense that given a random input x ∈ {0, 1}n according to the unknown distribution D, the
learner should be able to predict f(x) with high probability. In reality, the examples could
be possibly noisy. The agnostic model is a more realistic model addressing this problem.
In this model, there is no underlying function, but instead labelled samples (x, l) are drawn
according to an unknown distribution D over {0, 1}n+1, and the goal is to find a function
(from a specific class of functions) predicting the data with minimum possible error. In
the quantum setting, the learner receives quantum examples and has access to quantum
computers for computing the corresponding function f . A quantum example is usually
defined as the superposition of all possible labelled examples weighted according to the
distribution D [31].

In any of the above-mentioned scenarios, the main quantity of interest is the sample
complexity that is the minimum number of examples required to learn a specific class
of function. It is well-known that the quantum and classical sample complexity of PAC
learning and agnostic learning is characterized by a combinatorial parameter called VC di-
mension [29, 47, 94, 85]. In Ref. [12], Arunachalam and de Wolf reproved the optimal lower
bounds in the classical learning models via an information-theoretic approach. However,
they claimed that the information-theoretic argument is not sufficient for proving tight
lower bounds in the quantum setting and used more complicated techniques to achieve
this goal.

In Chapter 4, contrary to the claim in Ref. [12], we derive optimal lower bounds on
quantum PAC sample complexity and quantum agnostic sample complexity using only
information-theoretic arguments and spectral analysis. Our proof is simpler than the pre-
viously known ones and may be applied to other similar scenarios.

1.2 Preliminaries

1.2.1 Mathematical notation and background

For a positive integer d, we denote the set {0, 1, . . . , d} as Nd and the set {1, . . . , d} as [d].
Let r ≥ 1 be a positive integer. The Hamming weight of a string u ∈ Nr

d is the number
of non-zero symbols in the string and we denote it as |u|. For u ∈ Nr

d and x ∈ {0, 1}r,
the sub-string of u corresponding to the non-zero bits of x is denoted by ux. We define
the parity signature of a string u ∈ Nr

d as a function ps : Nr
d → {0, 1}d such that the i-th

bit of ps(u) is the parity of the number of times i occurs in the string u. As an example,
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consider d = r = 4 and a = (0, 1, 1, 2). Then, ps(a) = (0, 1, 0, 0). We denote the number of
strings in the set [d]r with parity signature b ∈ {0, 1}d as nr,b. Note that nr,b only depends
on |b|, not the actual value of b. For an integer h ∈ Nl, we also use nr,h for the number of
strings in [d]r that have the same parity signature with Hamming weight h.

We denote random variables with capital letters, like X, Y and Z. For a random
variable X, the Shannon entropy of X is defined as

H(X) :=
∑
x

p(x) log2

1

p(x)
,

where p is the distribution corresponding to X. For jointly distributed random variables X
and Y , the conditional entropy of X given Y is defined as

H(X|Y ) :=
∑
y

Pr[Y = y] H(X|Y = y)

=
∑
y

Pr[Y = y]
∑
x

Pr[X = x |Y = y] log2

1

Pr[X = x |Y = y]
.

By definition, the conditional (Shannon) entropy is a non-negative quantity. Moreover, the
Shannon entropy satisfies the following chain rule :

H(XY ) = H(X) + H(Y |X) .

Suppose X and Y are two random variables with the same sample space such that Pr[X 6=
Y ] ≤ ε for ε ∈ [0, 1]. The Fano inequality [40] bounds the conditional entropy of Xgiven Y
as

H(X|Y ) ≤ H(ε) + ε log2(|X | − 1) , (1.1)

where X is the support of X, and |X | denotes its size and H(ε) := ε log2
1
ε

+(1− ε) log2
1

1−ε .

Let X1, X2, . . . , Xn be n independent random variables over {0, 1} and X denote their
sum, i.e., X =

∑n
i=1Xi. Let µ be the expected value of X. The Chernoff bound implies

that the distribution corresponding to X is concentrated around µ. In particular, for δ ≥ 0,
we have

Pr[X ≥ (1 + δ)µ] ≤ exp

(
− δ2µ

2 + δ

)
. (1.2)

The above equation is also known as the multiplicative Chernoff bound in the literature. In
the case that Xi are all Bernoulli random variables with EXi = p, X is a random variable
distributed according to the binomial distribution B(n, p) with µ = pn, and we have

Pr

[
X ≥ 3

2
pn

]
=

n∑
r=d3pn/2e

(
n

r

)
pr(1− p)n−r ≤ exp

(
−pn

10

)
. (1.3)
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For the special case p = 1/2, a tighter bound is

Pr[X ≤ k] = Pr[X ≥ n− k] =
k∑
r=0

(
n
r

)
2n

≤ 2−(1−H(k/n))n ∀k < n

2
. (1.4)

A simple proof of this inequality can be found in Ref. [42, Lemma 16.19, page 427].

We denote (finite dimensional) Hilbert spaces either by capital script letters like H
and K, or as Cm where m is the dimension. We denote the dimension of a Hilbert space
corresponding to a register X as |X|. We use the Dirac notation, i.e., “ket” and “bra”,
for unit vectors and their adjoints, respectively. We denote the set of all unit vectors in
a Hilbert space H by Sphere(H). For a Hilbert space H := CS for some non-empty finite
set S, we call {|x〉 : x ∈ S} its canonical basis.

A subset N of Sphere(H) is called ε-dense if for every vector |u〉 ∈ Sphere(H), there
exists a vector in the set N at Euclidean distance at most ε from |u〉. Such a set is also called
an “ε-net” in the literature. The following proposition states that every finite dimensional
Hilbert space has a relatively small ε-dense set.

Lemma 1.1 ([71], Lemma 13.1.1, Chapter 13). Let ε ∈ (0, 1], and m be a positive integer.

The Hilbert space Cm has an ε-dense set N of size |N | ≤
(

4
ε

)2m
.

A slightly better bound
(
1 + 2

ε

)2m
on the size of an ε-dense set is given in Ref. [73,

Lemma 2.6].

We denote the set of all linear operators on Hilbert space H by L(H), the set of all
positive semi-definite operators by Pos(H), and the set of all unitary operators by U(H).
The identity operator on H is denoted by 1H. We denote the operator norm (Schatten ∞
norm) of an operator M ∈ L(H) by ‖M‖, the Frobenius norm (Schatten 2 norm) by ‖M‖F,

and the trace norm (Schatten 1 norm) by ‖M‖tr. Recall that ‖M‖tr := Tr
√
M∗M is

the sum of the singular values of M , ‖M‖ is the largest singular value, and ‖M‖F :=√
Tr(M∗M) is the `2-norm of the singular values with multiplicity. All of these norms are

invariant under composition with a unitary operator.

Consider random unitary operators chosen according to the Haar measure η on U(H),
where H is a finite dimensional Hilbert space. The Haar measure is the unique unitarily
invariant probability measure over U(H).

Let f : U(H) → R be a continuous function. Suppose f is κ-Lipschitz, i.e., for all
unitary operators U, V ∈ U(H), we have

|f(U)− f(V )| ≤ κ ‖U − V ‖F ,
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for some κ ≥ 0. If κ is small enough as compared to the dimension of H, with high
probability, the random variable f(U) is close to its expectation, where U ∈ U(H) is a
Haar-random unitary operator. This concentration of measure property is formalized by
the following theorem, which is a special case of Theorem 5.17 in Ref. [72].

Theorem 1.2 ([72], Theorem 5.17, page 159). Let η be the Haar measure on U(H),
where H is a Hilbert space with finite dimension m, and let U ∈ U(H) be a random unitary
operator chosen according to η. For every function f : U(H)→ R that is κ-Lipschitz with
respect to the Frobenius norm (with κ > 0), and every positive real number t, we have

η
(
{U ∈ U(H) : f(U)− E [f(U)] ≥ t}

)
≤ exp

(
−(m− 2)t2

24κ2

)
.

1.2.2 Quantum information notation and background

For a thorough introduction to basics of quantum information, we refer the reader to the
book by Watrous [96]. In this section, We briefly review the notation and some results
used in this thesis.

We denote physical quantum systems (“registers”) with capital letters, like X, Y and Z.
The state space corresponding to a register is a finite-dimensional Hilbert space. We denote
the set of all quantum states (or “density operators”) overH by D(H). We denote quantum
states or sub-normalized states (positive semi-definite operators with trace at most 1) by
lowercase Greek letters like ρ, σ. We use notation such as ρX to indicate that register X is
in state ρ, and may omit the superscript when the register is clear from the context. We
say a register is classical if its state is diagonal in the canonical basis of the corresponding
Hilbert space. A classical register corresponds to a random variable whose probability
distribution is determined by the diagonal entries of the state of the register. For a non-
trivial register B, we say ρXB is a classical-quantum state if X is classical in ρXB. We say
a unitary operator UAB ∈ U(HA ⊗ HB) is read-only on register A if it is block-diagonal
in the canonical basis of HA, i.e., UAB =

∑
a |a〉〈a|A ⊗ UB

a where each UB
a is a unitary

operator.

For registers B and B′ with Hilbert space H, the swap operator of B and B′, denoted
by SWAPB�B′ , is defined as

SWAPB�B′

(
|v〉B ⊗ |u〉B′

)
= |u〉B ⊗ |v〉B′

for every |u〉, |v〉 ∈ H. For a state of the form ρAB ⊗ τB′ , the swap operator SWAPB�B′

transforms ρAB ⊗ τB′ to the state σABB
′

in which registers AB′ are decoupled from reg-
ister B, σAB

′
= ρAB and σB = τB

′
. To make the correlation between registers clear, we
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sometimes change the order of registers, and denote SWAPB�B′
(
ρAB ⊗ τB′

)
SWAPB�B′

as ρAB
′ ⊗ τB.

A positive semi-definite operator M ∈ Pos(H) is called a measurement operator or
POVM operator if M ≤ 1. We usually denote quantum channels (also known as quantum
operations), i.e., completely positive trace-preserving linear maps from the space of linear
operators on a Hilbert space to another such space, by capital Greek letters like Ψ. The
partial trace over a Hilbert space K is denoted as TrK. We say ρAB is an extension of σA

if TrB[ρAB] = σA. A purification of a quantum state ρ is an extension of ρ with rank one.

The fidelity between two sub-normalized states ρ and σ is defined as

F(ρ, σ) := Tr
√√

ρ σ
√
ρ+

√
(1− Tr(ρ))(1− Tr(σ)) .

Fidelity can be used to define a useful metric called the purified distance [46, 87] between
sub-normalized states:

P(ρ, σ) :=
√

1− F(ρ, σ)2 .

For a quantum state ρ ∈ D(H) and ε ∈ [0, 1], we define

Bε(ρ) := {ρ̃ ∈ D(H) : P(ρ, ρ̃) ≤ ε}

as the ball of quantum states that are within purified distance ε of ρ. Note that in some
works, the states in the set Bε(ρ) are allowed to be sub-normalized. But here, we require
the states in the ball to have trace equal to one.

Theorem 1.3 (Uhlmann [90]). Let ρA, σA ∈ D(HA). Suppose |ξ〉AB, |θ〉AB ∈ D(HA⊗HB)
are arbitrary purifications of ρA and σA, respectively. Then, there exists some unitary
operator V B ∈ U(HB) such that

P
(
|ξ〉AB,

(
1⊗ V B

)
|θ〉AB

)
= P(ρA, σA) .

The trace distance between quantum states is induced by the trace norm. The following
property is well known (see, e.g., Ref. [96, Theorem 3.4, page 128]).

Theorem 1.4 (Holevo-Helstrom [52, 53]). For any pair of quantum states ρ, σ ∈ D(H),

‖ρ− σ‖tr = 2 max { |Tr(Mρ)− Tr(Mσ)| : M is a measurement operator on H} .

Lemma 1.5 (Gentle Measurement [97, 77]). Let ε ∈ [0, 1], ρ ∈ D(H) and Π ∈ Pos(H) be
a measurement operator, i.e., Π ≤ 1, such that Tr[Πρ] ≥ 1− ε. Then,∥∥∥∥ ΠρΠ

Tr[Πρ]
− ρ
∥∥∥∥

tr

≤ 2
√
ε .
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Purified distance and trace distance are related to each other as follows (see, e.g.,
Ref. [96, Theorem 3.33, page 161]):

Theorem 1.6 (Fuchs and van de Graaf Inequalities [43]). For any pair of quantum
states ρ, σ ∈ D(H),

1−
√

1− P(ρ, σ)2 ≤ 1

2
‖ρ− σ‖tr ≤ P(ρ, σ) .

Unless specified, we take the base of the logarithm function to be 2.

Let ρ ∈ D(H) be a quantum state of a register A over Hilbert space H. The von
Neumann entropy of ρ is denoted by S(A)ρ or S(ρ), and defined as

S(ρ) := −Tr (ρ log ρ) .

This coincides with the Shannon entropy of the spectrum of ρ. The min-entropy of ρ is
defined as

Smin(ρ) := − log ‖ρ‖ .

The relative entropy of two quantum states ρ, σ ∈ D(H) is defined as

S(ρ‖σ) := Tr (ρ log ρ− ρ log σ) ,

when supp(ρ) ⊆ supp(σ), and is ∞ otherwise. The max-relative entropy of ρ with respect
to σ is defined as

Dmax(ρ‖σ) := min{λ : ρ ≤ 2λσ} ,

when supp(ρ) ⊆ supp(σ), and is ∞ otherwise. The following proposition bounds purified
distance in terms of max-relative entropy. It is a special case of the monotonicity of minimal
quantum α-Rényi divergence in α (see e.g., [86, Corollary 4.2, page 56]).

Proposition 1.7. Let H be a Hilbert space, and let ρ, σ ∈ D(H) be quantum states over H.
It holds that

P(ρ, σ) ≤
√

1− 2−Dmax(ρ‖σ) .

The above property also implies the Pinsker inequality. For ε ∈ [0, 1], the ε-smooth
max-relative entopy of ρ with respect to σ is defined as

Dε
max(ρ‖σ) := min

ρ′∈Bε(ρ)
Dmax(ρ′‖σ) .

9



For ε ∈ [0, 1], the ε-hypothesis testing relative entropy of ρ with respect to σ is defined as

Dε
H (ρ‖σ) := sup

0≤Π≤1,Tr(Πρ)≥1−ε
log

(
1

Tr(Πσ)

)
.

Smooth max-relative entropy and hypothesis relative entropy both converges to relative
entropy in the asymptotic and i.i.d. setting. The following proposition gives upper and
lower bounds tight up to second order terms for the convergence of these quantities for
finite n.

Theorem 1.8 ([88],[67]). Let ε ∈ (0, 1), n be an integer and ρ, σ ∈ D(H) be quantum

states. Define V(ρ‖σ) = Tr(ρ(log ρ− log σ)2)− (D(ρ‖σ))2 and ϕ(x) =
∫ x
−∞

exp(−x2/2)√
2π

dx. It
holds that

Dε
max

(
ρ⊗n‖σ⊗n

)
= nD(ρ‖σ)−

√
nV(ρ‖σ)ϕ−1(ε) + O(log n) , (1.5)

and
Dε

H

(
ρ⊗n‖σ⊗n

)
= nD(ρ‖σ) +

√
nV(ρ‖σ)ϕ−1(ε) + O(log n) . (1.6)

We also need the following proposition due to Anshu, Berta, Jain and Tomamichel [2,
Theorem 2].The original statement involves a minimization over all σB on both sides of
the inequality, but the proof works for any σB.

Theorem 1.9 ([2], Theorem 2). Let ε, δ ∈ (0, 1) such that 0 ≤ 2ε + δ ≤ 1. Consider
quantum states σB ∈ D(HB) and ρAB ∈ D(HA ⊗HB). We have

inf
ρ∈B2ε+δ(ρAB)

ρA=ρA

Dmax

(
ρAB‖ρA ⊗ σB

)
≤ Dε

max

(
ρAB‖ρA ⊗ σB

)
+ log

8 + δ2

δ2
. (1.7)

For ε ∈ [0, 1] and ρAB ∈ D
(
HA ⊗HB

)
, the conditional ε-smooth min-entropy of regis-

ter A conditioned on register B is defined as

Sεmin(A |B)ρ := − min
σB∈D(HB)

Dε
max

(
ρAB‖1⊗ σB

)
,

and the ε-smooth max-entropy of register A conditioned on register B as

Sεmax(A |B)ρ := −Sεmin(A |C)ρ ,

where ρABC ∈ D
(
HA ⊗HB ⊗HC

)
is a purification of ρAB.
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For a quantum state ρAB ∈ D(HA⊗HB), the mutual information of A and B is defined
as

I(A : B)ρ := S
(
ρAB‖ρA ⊗ ρB

)
.

When the state is clear from the context, the subscript ρ may be omitted from the notation.
When ρ is a classical-quantum state, i.e., ρAB =

∑
a p(a)|a〉〈a|A ⊗ ρBa with p being a

probability distribution, {|a〉} the canonical orthonormal basis for HA, and ρBa ∈ D(HB),
we have

I(A : B) =
∑
a

p(a) S(ρBa ‖ρB) .

The mutual information of A and B is monotonic under the application of local quantum
channels [95]. In particular, for a quantum channel Ψ : L(B)→ L(B′), we have

I(A : B)ρ ≥ I(A : B′)(1⊗Ψ)(ρ) , (1.8)

which is also known as Data Processing Inequality . Suppose that registers A,B,C are in
joint (tripartite) state ρABC ∈ D(HA ⊗ HB ⊗ HC). The conditional mutual information
of A and B given C is defined as

I(A : B |C) := I(AC : B)− I(C : B) .

When ρABC is a tensor product of the states ρAB and ρC , we have

I(A : B |C) = I(AC : B) = I(A : B) .

For any state ρAB ∈ D(HA ⊗ HB), the max-information register B has about regis-
ter A [26] is defined as

Imax(A : B)ρ := min
σ∈D(K)

Dmax

(
ρAB ‖ ρA ⊗ σB

)
.

For a parameter ε ∈ [0, 1], the smooth max-information register B has about register A is
defined as

Iεmax(A : B)ρ := min
ρ̃∈Bε(ρ)

Imax(A : B)ρ̃ .
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Part I

Quantum Compression
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Chapter 2

Entanglement cost of compression of
quantum ensembles

1

2.1 Visible compression

Compression of quantum states is a fundamental task in information processing. In the
simplest setting, we have two spatially separated parties, commonly called Alice and Bob,
who can communicate with each other by exchanging quantum states. They have in mind
an ensemble of m-dimensional quantum states

((p(x), ρx) : x ∈ S, ρx ∈ D(Cm)) , (2.1)

where S is some non-empty finite set, and p is a probability distribution over S. Alice gets
an input x ∈ S with probability p(x), and would like to send a message, i.e., a quantum
state σx ∈ D(Cd) to Bob so that he can recover the state ρx, or even an approximation to
it. Since the input x completely specifies the corresponding state ρx, this variant of the
task is called visible compression. The communication cost of the protocol is log d, the
length of the message in qubits. Their goal is to accomplish this with as short a message
as possible, i.e., to minimize the dimension d. A central question in quantum information
theory is whether there is a simple characterization of the optimal communication cost in
terms of the “information content” of the ensemble.

An additional resource that Alice and Bob may use in compression is a shared entangled
state. In other words, the two parties may start with their qubits initialized to a fixed pure

1The work presented in this Chapter was previously published in Quantum, under the Creative Com-
mons Attribution 4.0 International (CC BY 4.0) license. [15]
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quantum state independent of the input received by Alice. The local quantum operations
performed for compression and decompression then also involve the respective parts of the
shared state. This is depicted in Figure 2.1, and the protocol (or channel) is said to be with
shared entanglement or entanglement assisted . As we may expect, the communication cost
may decrease due to the availability of this additional resource. The entanglement cost of
a protocol is the minimal dimension of the support of either party’s share of the initial
state (measured in qubits) required to achieve some communication cost. (We discuss the
notion of entanglement cost in detail in Section 2.4.) We would also like to characterize
the entanglement cost in this setting, in addition to the communication cost.

Figure 2.1: A one-message protocol for compression of quantum states, with shared entan-
glement. The register Ain holds the input given to Alice, and EA contains Alice’s workspace
and her part of the initial shared state (the shared entanglement). The register EB contains
Bob’s workspace and his part of the initial shared state. The compression is implemented
by the isometry U , and the register M contains the compressed state and is sent as the
message. The decompression is implemented by the isometry V . Bob’s output is contained
in the register Bout.

Compression problems similar to the one above have been studied extensively in quan-
tum information theory, both in the one-shot setting (the one we described above), and in
the asymptotic setting (where the sender’s input consists of multiple samples picked inde-
pendently from the same distribution). The problem has been studied in early works such
as Ref. [21] in the setting of quantum communication without shared entanglement. It is
known as remote state preparation when allowed one-way communication over a classical
channel with shared entanglement. We refer the reader to Ref. [16, Table I] for a summary
of the work on remote state preparation; we describe the most relevant results—in the
one-shot setting—below.

Other tasks in the literature that come close to the one above are state splitting (see,
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e.g., Ref. [26]), and that of channel simulation in the context of the Quantum Reverse
Shannon Theorem [22, 26]. State splitting is the time reversal [37] of state merging [55, 56],
and was called the “fully quantum reverse Shannon protocol” in Ref. [37]. We explain the
connection to state splitting in detail in Section 2.2.2.

In both state splitting and channel simulation, the protocol is required to be “coherent”
in specific ways. In particular, in compressing an ensemble of states as in Eq. (2.1), at the
end of the protocol, Bob would be required to hold an approximation to the state ρx and
Alice a purification of this state. In contrast to these tasks, we do not require that the
compression protocol maintain such coherence. More precisely, the registers containing
a purification of the output state may be shared by Alice and Bob. Such compression
protocols are more relevant in the context of two-party communication protocols studied
in complexity theory, especially in the context of direct sum and direct product results (see
e.g., Refs. [60, 62, 89] and the references therein). In communication complexity, a typical
goal is to compute a bi-variate Boolean function when the inputs are distributed between
two parties. The parties communicate with each other, alternating messages with local
computation, and at the end, one party produces the output of the protocol from the part
of the final state in her possession. As a result, the output of the protocol does not depend
on the part of the state held by the other party (i.e., on the purification of her part of the
final joint state). A compression scheme for the final state then need only focus on the
part being measured for the output.

2.1.1 Entanglement cost of compression

Jain, Radhakrishnan, and Sen [61, 62] gave a one-shot protocol for compressing an en-
semble of states as in Eq. (2.1), and bounded its communication cost by O(I(A : B)τ/ε

3),
where I(A : B)τ is the mutual information between registers A and B in the quantum
state τAB := 1

n

∑
x∈[n] |x〉〈x|A ⊗ ρBx , and ε is the average approximation error (cf. Sec-

tion 2.2.2 for a precise definition of average error). Using a more refined application of
their technique, Bab Hadiashar, Nayak, and Renner [16] tightly characterized the com-
munication cost of the task in terms of the smooth max-information, a one-shot entropic
analogue of mutual information. Their results are stated for entanglement-assisted classical
channels and use purified distance to quantify the approximation, but translate immedi-
ately to the setting here through the use of superdense coding [96, Section 6.3.1] and the
Fuchs and van de Graaf Inequalities (Theorem 1.6). The upper bound so obtained is

1

2
Iε/
√

2
max (A : B)τ + O(log log(1/ε)) .
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This is slightly better than that derived from protocols for state splitting in terms of the
approximation error; it has an additive term of O(log log 1

ε
) for average error ε versus the

additive term of O(log 1
ε
) in Ref. [4, Corollary 5]. However, both these protocols use shared

entanglement that may be much longer than the message itself, namely O(k(log 1
ε
) logm)

qubits and O((1 + 1/ε2) log2(m/ε)) qubits, respectively, where log2 k = I(A : B)τ , and m is
the dimension of the states in the ensemble. On the other hand, earlier protocols for state
splitting [26, Lemma 3.5], with potentially larger communication cost, have entanglement
cost bounded by logm. Since sharing entanglement also entails some communication, in
addition to the preparation and storage of a potentially delicate high dimensional state,
this motivates the question as to whether shared entanglement is truly necessary for com-
pression, and if so, how much of it is needed.

For the more restrictive task of state splitting, it follows from the proof of the converse
bound for one-shot entanglement consumption due to Berta, Christandl, and Touchette [27,
Proposition 10] that the sum of the communication and entanglement costs is at least the
min-entropy Smin(ρ) of the ensemble average state ρ :=

∑
x p(x)ρx. (Although the proof

is written assuming that the shared state consists of EPR pairs and some ancilla and an
auxiliary error parameter, it may be modified to give a bound when an arbitrary state is
shared and the auxiliary error is 0.) In this chapter, we show that there are ensembles for
which the min-entropy bound equals the number of qubits in the states, and the bound
holds up to an additive constant even with the more general compression protocols we
allow.

Theorem 2.1. Let ε ∈ (0, 1), and k ∈ N with k ≥ 6/(1− ε). For sufficiently large m ∈ N
depending on k and ε and sufficiently large n ∈ N depending on k,m, and ε, there exists
an ensemble

((
1
n
, ρx
)

: x ∈ [n], ρx ∈ D(Cm)
)
, such that

(i) I(A : B)τ = Imax(A : B)τ = log2 k, where τ := 1
n

∑
x∈[n] |x〉〈x|A ⊗ ρBx ;

(ii) there is a one-way protocol with shared entanglement for the visible compression of the
ensemble with average error ε/2 and with communication cost 1

2
log k + O(log log 1

ε
);

and

(iii) the sum of communication and entanglement costs of any one-way protocol with
shared entanglement for visible compression of the ensemble, with average-error at
most ε/2, is at least

logm− 3 log
1

1− ε
−O(1) .

In particular, the theorem implies that in the absence of shared entanglement, the
ensemble may only be compressed by a constant number of qubits (independent of m),
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even if constant average error ε
2
< 1/2 is allowed. Note also that the straightforward

protocol that prepares and sends the state ρx on input x has sum of entanglement and
communication costs equal to logm. So the lower bound in the theorem is optimal up to
an additive universal constant term for constant ε ∈ (0, 1).

Proposition 2.5 and Corollary 2.6 in Section 2.3 contain more precise statements of the
results stated in the theorem. As we explain in that section, I(A : B)τ may be interpreted
as the “information content” of the ensemble; it is the quantum information cost [89] of
the protocol in which Alice simply prepares the state ρx on input x and sends the state to
Bob.

The compression task we study is a relaxation of oblivious (or blind) compression, in
which the input to Alice is the state ρx, rather than x. It is also a relaxation of state
splitting (more generally, of state redistribution [69, 38, 100]), and channel simulation. So
the lower bound in Theorem 2.1(ii) holds for these tasks as well.

The ensemble mentioned in Theorem 2.1 is obtained via the probabilistic method, and
is of a form devised by Jain, Radhakrishnan, and Sen [60]. They showed the incompress-
ibility of such an ensemble when the decompression operation is unitary (i.e., via protocols
as in Figure 2.1 in which the register B1 is trivial). We adapt their proof method to
protocols which allow a general quantum channel for decompression. A key step here is
a technical lemma (Lemma 2.3 in Section 2.3) which allows us to reason about general
quantum channels, and also yields a tighter lower bound on the sum of communication
and entanglement costs.

2.1.2 Implications and related work

Jain et al. [61, 62], also used the same kind of ensemble as in Theorem 2.1 to design
a two-party one-way communication protocol with shared entanglement for the Equality
function. They showed that the initial shared state in the protocol cannot be replaced
by one with polynomially smaller dimension in a “black-box fashion” (i.e., when the local
operations of the two parties are not modified). Theorem 2.1 implies a similar impossibility
result for protocols in which the sender and receiver can deviate from the original protocol
arbitrarily, but they try to approximate the receiver’s state in the original protocol after
the message is sent. The impossibility holds even when the dimension of the initial shared
entangled state is reduced only by a constant factor.

A remarkable property of the ensemble posited by Theorem 2.1 is that the communica-
tion cost of compression (with shared entanglement) may be arbitrarily smaller than the
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entanglement cost. For constant error the communication cost is within an additive con-
stant of the quantum information cost [89] of the protocol that simply prepares and sends
the state. As a consequence, we infer that the quantum information cost of a protocol may
be arbitrarily smaller than the communication cost of any protocol without shared entan-
glement for compressing its messages. Anshu, Touchette, Yao, and Yu [9] had previously
proven a similar separation when the compression protocol is allowed to use shared entan-
glement. However, their separation is exponential: they exhibited an interactive protocol
for a Boolean function with quantum information cost that is exponentially smaller than
the communication cost of any interactive quantum protocol that computes the function.
(Observe that a protocol for compressing the final state of the original protocol may also
be used to compute the function.) In contrast to that protocol, the one we present is
compressible to its quantum information cost, but requires an arbitrarily larger amount of
shared entanglement to do so.

In another related work, Liu, Perry, Zhu, Koh, and Aaronson [68] show that one-way
protocols cannot be compressed to their quantum information cost without using shared
entanglement. They consider a certain one-way protocol in which Alice gets an n-bit
input, Bob gets an m-bit input, with m ∈ o(n). The protocol has quantum informa-
tion cost O(nm−2 logm). They show that the protocol cannot be compressed by a one-
way protocol without shared entanglement into a message of length o(log n) with error at
most (n + 1)−m. Thus the separation is limited, and only holds for exponentially small
error (in the length of the inputs).

It is believed that the communication in any interactive quantum protocol which has a
constant number of rounds and computes a function of classical inputs may be compressed,
with constant error, to an amount proportional to the quantum information cost of the
protocol. For one-way protocols such a result was shown by Jain, Radhakrishnan, and
Sen [61, 62]. This was later re-proven by Anshu, Jain, Mukhopadhyay, Shayeghi, and
Yao [5] using different techniques. A similar result for protocols with a larger constant
number of rounds of communication was claimed by Touchette [89], but the proof has
an error. The compression protocols achieving quantum information cost all rely on the
presence of shared entanglement. Theorem 2.1 shows that even for the simplest protocols,
such compression is not possible in the absence of shared entanglement. Moreover, it shows
that the entanglement cost may be necessarily within an additive constant of the length
of the message to be compressed, even when the quantum information cost is arbitrarily
smaller than the message length.

In a recent independent work, Khanian and Winter [17] analyse the communication and
entanglement costs of a variant of compression in the asymptotic setting. They study pure
state ensembles with quantum side information in the form of pure states. In the case of vis-
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ible compression with shared entanglement, they show that the asymptotic (per-instance)
communication cost is at least 1

2
S(ρ), i.e., half the entropy of the ensemble average state ρ.

So this cost may be at most a factor of 1/2 smaller than that of compression without shared
entanglement. Moreover, the asymptotic sum of communication and entanglement costs
is at least the entropy S(ρ). Thus the kind of separation we show does not hold for pure
states even in the asymptotic setting.

Organization. The rest of this chapter is organized as follows. In Section 2.2, we review
basic concepts of quantum communication and compression. In section 2.3, we prove the
main result and discuss its implications.

2.2 Preliminaries

2.2.1 Quantum communication protocols

We first describe a two-party quantum communication protocol informally and then give a
formal definition for the special case of interest to us. We refer the reader to, e.g., Ref. [89]
for a formal definition of the general case.

In a two-party quantum communication protocol, there are two parties, Alice and Bob,
each of whom may get some input in registers designated for this purpose. Alice and Bob’s
inputs may be entangled with each other, and also with a “reference” system, which purifies
it. Alice and Bob’s goal is to accomplish an information processing task by communicating
with each other.

Each party possesses some “work” (or “private”) qubits (or registers) in addition to
the input registers. The work qubits are initialized to a fixed pure state in tensor product
with the input state. This fixed state may be entangled across the work registers of Alice
and Bob, and may be used as a computational resource. In this case, we say the protocol
or the channel is with shared entanglement or with entanglement assistance. If the fixed
state is a tensor product state across Alice and Bob’s registers, we say it is a protocol or
channel without shared entanglement or simply unassisted .

The protocol proceeds in some number of “rounds”. In each round, the sender applies
an isometry to the qubits in her possession, and sends a sub-register (the message) to the
other party. The length of the message (in qubits) is the base 2 logarithm of the dimension
of the message register. After the last round, the recipient of the last message applies an
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isometry to his registers. The output of the protocol is the state of a pair of designated
registers of the two parties at the end.

We are often interested in minimizing the total length of the messages over all the
rounds, i.e., the communication cost (or complexity) of the protocol. The idea is to accom-
plish the task at hand with minimum communication. In protocols with shared entangle-
ment, we are also interested in the amount of shared entanglement needed in the protocol,
i.e., the minimum dimension of the support of the initial state of either party’s work space.
This latter quantity, measured in number of qubits, is called the entanglement cost of the
protocol.

In this chapter, we study only one-way protocols, i.e., protocols with one round, and
therefore one message, (say) from Alice to Bob. We describe these more formally here.
Alice and Bob initially hold registers AinEA and BinEB, respectively. The input regis-
ters AinBin are initialized to some state ρAinBin whose purification is held in register R
with a third party, called Referee. Alice and Bob’s work registers EA and EB are initial-
ized to a pure state |φ〉EAEB , which may be entangled across the partition EAEB. The
local operations in the protocol are specified by two isometries U and V . The isometry U
acts on registers AinEA and maps them to registers AoutA1M . The isometry V acts on
registers BinEBM and maps them to registers B1Bout. First, Alice applies U to the reg-
isters Ain and EA and sends the register M to Bob. Then, Bob applies V on his initial
registers BinEB and the message M . The output of the protocol is the state of Alice
and Bob’s registers AoutBout. The communication cost of this protocol is log |M | and the
entanglement cost is the logarithm of the Schmidt rank of the state |φ〉 across the parti-
tion EAEB. We say it is a protocol with shared entanglement if the Schmidt rank of |φ〉 is
more than 1, and say that it is without shared entanglement otherwise. Such protocols are
also called entanglement-assisted and unassisted , respectively, in the literature.

We say that the input is “classical” when there are non-empty finite sets SA, SB (the
sets of classical inputs) such that the Hilbert spaces corresponding to the input registers
are CSA ,CSB , respectively, and the initial joint quantum state in the input registers AinBin

is diagonal in the canonical basis {|x〉|y〉 : x ∈ SA, y ∈ SB}. In the case that the inputs to
Alice and Bob are classical, we assume without loss of generality that the input registers Ain

and Bin are “read-only”, i.e., the isometries U and V are of the form
∑

x∈SA
|x〉〈x|Ain⊗UEA

x

and
∑

y∈SB
|y〉〈y|Bin ⊗ V MEB

y , where SA, SB are sets as above. A one-way protocol in which
Alice gets a classical input and Bob does not have any input is depicted in Figure 2.1.

Let Π be a one-way quantum protocol (with or without shared entanglement) with a
single message from Alice to Bob, in which Alice gets a classical input and Bob does not
have any input. The register R with Referee purifies Alice’s input so that the joint state
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is |ρ〉RAin :=
∑

x∈SA

√
p(x)|xx〉RAin , where p(x) is a probability distribution over the input

set SA; see Fig. 2.2 for an illustration. Let M be the quantum register corresponding to
the message in Π. The quantum information cost (or quantum information complexity) of
the protocol Π is defined as

QIC(Π) :=
1

2
I(R : M |EB) ,

where the registers are in the state immediately after Alice sends the message register M
to Bob. This expression simplifies to I(R : MEB) as the registers R,EB are in a tensor
product state at this point. It is intended to measure the information Bob gains about
Alice’s input from the message. This notion requires a nuanced definition for protocols
with more general inputs and with multiple rounds of communication. As it is not central
to our work, we refer the reader to Ref. [89] for the definition for general protocols.

Figure 2.2: A one-way quantum communication protocol in which Bob has no input. The
register Ain holds the input given to Alice, register R purifies Alice’s input, and EA contains
Alice’s workspace and her part of the possible shared entanglement. The register EB

contains Bob’s workspace and his part of the possible shared entanglement. For a protocol
without shared entanglement, the state |φ〉AinBin is a product state. The isometry U is the
operation performed by Alice, the register M corresponds to the message. The isometry V
is the operation performed by Bob. Bob’s output is contained in the register Bout.
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2.2.2 Compression of quantum states

We study one-way protocols for non-oblivious or visible compression of quantum states,
which is typical for tasks of this nature (see, e.g., Ref. [4]). The protocol may be with
or without shared entanglement. Suppose we wish to compress states chosen from an
ensemble ((p(x), ρx) : x ∈ S) for some finite set S, where p is a probability distribution
over S and ρx ∈ D(H). The ensemble is known to both parties. The sender, say Alice, is
given a classical input x ∈ S chosen according to the distribution p. Alice and Bob execute
a one-way protocol with a message from Alice to Bob in order to prepare an approximation
of ρx on Bob’s side. Following the notation from Section 2.2.1, we interpret the state of the
message register M of this protocol as a compression of ρx. Suppose the state of the output
register Bout is ρ̃x. We say that the average error of the compression protocol is ε ∈ [0, 2]
if the output state ρ̃x is ε-close in trace distance to the ideal state ρx on average over the
inputs x: ∑

x

p(x) ‖ρx − ρ̃x‖tr ≤ ε .

It is sometimes desirable to express the error in terms of the purified distance. For simplic-
ity, we state error bounds in terms of trace distance; we may express the bounds in terms
of purified distance via Theorem 1.6.

Note that a protocol for visible compression without shared entanglement may be char-
acterized by a sequence of quantum states (σx : x ∈ S) and a quantum channel Ψ. We let σx
be the state of the message register M sent by Alice to Bob on input x. We define Ψ as the
channel resulting from the application of the isometry V followed by the tracing out of the
register B1. The average error of the protocol is then

∑
x p(x) ‖ρx −Ψ(σx)‖tr. Conversely,

any choice of states (σx : x ∈ S, σx ∈ D(K)) and quantum channel Ψ : L(K) → L(H) for
some Hilbert space K defines a valid visible compression protocol.

An essentially equivalent formulation of the task of visible compression is the following
(with the notation from Section 2.2.1). Consider the state τ over the registers RXA1C:

τ :=
∑
x∈S

√
p(x)|x〉R|x〉X |φx〉A1C ,

where |φx〉A1C is a purification of ρx, register R is held by Referee, and registers XA1C
together constitute Alice’s input register Ain. Alice and Bob both know the full description
of τ . Their goal is to run a one-way quantum communication protocol with a message from
Alice to Bob, with or without shared entanglement, such that at the end, the state τ̃ of
registers RBout is close to τRC :∥∥τ̃RBout − τRC

∥∥
tr
≤ ε .
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The difference from state splitting is that for a fixed state |x〉 of register R, the purification
of the state in register Bout may be shared arbitrarily between Alice and Bob (while in
state splitting, it is required to be held by Alice, in register A1). A protocol for state
splitting can thus be used for this task, and conversely lower bounds on communication or
entanglement costs derived for the above task applies to state splitting as well.

2.3 The main result

In this section, we prove Theorem 2.1, the main result of this chapter.

2.3.1 Two useful lemmas

We begin with two lemmas that we need for the result. The first allows us to focus
on a finite number of subspaces of a finite dimensional Hilbert space, in the context of
measurements. For an operator M ∈ L(H), and a subspace A of H, define the semi-norm

‖M‖A := max
|w〉 ∈ Sphere(A)

|〈w|M |w〉| .

Lemma 2.2 ([60], Lemma 6). Let d and q be positive integers with q ≥ d, δ > 0 be a real
number, and H be an q-dimensional Hilbert space. There exists a set T of subspaces of H
of dimension at most d such that

1. |T| ≤
(

8
√
d
δ

)2qd

, and

2. for every d-dimensional subspace A ⊆ H, there is a subspace B ∈ T such that for
every measurement operator M ∈ Pos(H),∣∣∣ ‖M‖A − ‖M‖B ∣∣∣ ≤ δ .

The set T in the lemma is obtained as follows. We fix an ε-dense subset S of Sphere(H)
for a suitably small value of ε, as given by Lemma 1.1. For any d-dimensional subspace A,
we consider an orthonormal basis, and the d vectors in S closest to the respective elements
in the basis. We include in T the subspace B spanned by the d vectors from S so obtained.

By a uniformly random subspace of dimension ` of an m-dimensional Hilbert space H,
with ` ≤ m, we mean the image of a fixed `-dimensional subspace under a Haar-random
unitary operator on H.
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The next lemma is similar to Lemma 7 from Ref. [60], and is stronger in several respects.
It enables the generalization of the incompressibility result in Ref. [60] that we prove, and
helps us derive tighter bounds for compression. Informally, the lemma states that every
state in a “small enough” subspace of a bipartite space has, with high probability, a small
projection onto a “small enough” random subspace of one part.

Lemma 2.3. Let m, d, `, and p be positive integers such that ` ≤ m. Let W be a
fixed d-dimensional subspace of Cm ⊗ Cp. Let Z be a uniformly random subspace of Cm

of dimension `, and M be the orthogonal projection operator onto Z. Then for any real
number α > 2, there is a real number α1 > 0 that depends only on α such that

Pr

[
‖M ⊗ 1Cp‖W ≥

α`

m

]
≤ exp

(
−α1`

2(m− 2)

m2

)
,

provided

(α− 2)2`2(m− 2) ≥ (4× 384)dm2 ln

(
8m

α`

)
.

We may take α1 := (α−2)2

768
in the above statement.

Proof: The subspace W is isomorphic to Cd as it is d-dimensional. By Lemma 1.1, there

is a set N with |N | ≤
(

8m
α`

)2d
that is a α`

2m
-dense set of Sphere(W).

Note that for any two vectors |u〉, |v〉 ∈ Sphere(Cm ⊗ Cp), we have

|〈u|(M ⊗ 1)|u〉 − 〈v|(M ⊗ 1)|v〉| = |Tr ((M ⊗ 1)|u〉〈u| − (M ⊗ 1)|v〉〈v|)|

≤ 1

2
‖|u〉〈u| − |v〉〈v|‖tr (by Theorem 1.4)

≤ 1

2
‖(|u〉 − |v〉)〈v|‖tr +

1

2
‖|u〉(〈u| − 〈v|)‖tr

= ‖|u〉‖ ‖|u〉 − |v〉‖ = ‖|u〉 − |v〉‖ .

This implies that if ‖M ⊗ 1Cp‖W ≥
α`
m

, there is a vector |v〉 ∈ N such that

〈v|(M ⊗ 1)|v〉 ≥ α`
2m

.

By the Union Bound, we get

Pr

[
‖M ⊗ 1Cp‖W ≥

α`

m

]
≤ |N | × max

|v〉∈N
Pr

[
〈v|(M ⊗ 1)|v〉 ≥ α`

2m

]
. (2.2)
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Consider any fixed vector |v〉 ∈ N and let P ∈ Pos(Cm) be a fixed orthogonal projection
of rank `. Consider the function f : U(Cm)→ R defined as

f(U) := 〈v| (UPU∗ ⊗ 1Cp) |v〉 .

For any U,W ∈ U(Cm), we have

|f(U)− f(W )| =
∣∣∣Tr
[

((UPU∗ −WPW ∗)⊗ 1) |v〉〈v|
]∣∣∣

≤ ‖UPU∗ −WPW ∗‖
≤ ‖UPU∗ −WPU∗‖+ ‖WPU∗ −WPW ∗‖
≤ ‖U −W‖+ ‖U∗ −W ∗‖
≤ 2 ‖U −W‖F , (2.3)

where the second last inequality holds since operator norm is sub-multiplicative, i.e.,
for linear operators A and B, we have ‖AB‖ ≤ ‖A‖ ‖B‖, and the last inequality holds
since ‖A‖ = ‖A∗‖ for every linear operator A. Eq. (2.3) implies that f is 2-Lipschitz.

Let U ∈ U(Cm) be a Haar-random unitary operation. The expectation of f(U) is:

E[f(U)] = 〈v|
(

E[UPU ∗]⊗ 1
)
|v〉

= 〈v|
(
`

1
m
⊗ 1

)
|v〉

=
`

m
.

Since UPU ∗ and M have the same distribution, by Theorem 1.2 we get

Pr

[
〈v| (M ⊗ 1) |v〉 ≥ α`

2m

]
= Pr

[
〈v| (UPU ∗ ⊗ 1) |v〉 ≥ α`

2m

]
≤ exp

(
−(m− 2)(α− 2)2`2

384m2

)
.

By Eq. (2.2), we get

Pr

[
‖M ⊗ 1Cp‖W ≥

α`

m

]
≤

(
8m

α`

)2d

exp

(
−(m− 2)(α− 2)2`2

384m2

)
≤ exp

(
−(m− 2)(α− 2)2`2

768m2

)
,

provided that m, `, d, and α satisfy the stated condition.
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2.3.2 The ensemble and its compressibility

We study an ensemble of the same form as in Ref. [60]. For positive integers n,m, k such
that k divides m and n, let Bi = (|bi1〉, |bi2〉, . . . , |bim〉) be a suitably chosen orthonormal
basis for Cm, for each i ∈

[
n
k

]
. Let (Bij : j ∈ [k]) be a partition of Bi into k equal size

sets. Define ρij := k
m

∑
|v〉∈Bij |v〉〈v|. We show that there is a choice of bases such that the

ensemble ((
1
n
, ρij
)

: i ∈
[n
k

]
, j ∈ [k]

)
(2.4)

cannot be compressed significantly in the absence of shared entanglement. The following
theorem, which we prove along the same lines as Theorem 5 in Ref. [60], contains the crux
of the argument.

Theorem 2.4. Let β ∈ (0, 1), and ε ∈ (0, 1). Let k,m, n, d be positive integers such that k
divides m and n. There exists an ensemble of n quantum states (ρij) of the form in Eq. (2.4)
such that for any sequence of quantum states

(
σij : σij ∈ D(Cd), i ∈

[
n
k

]
, j ∈ [k]

)
, and for

all quantum channels Ψ : L(Cd)→ L(Cm), we have∣∣∣ {(i, j) : ‖ρij −Ψ(σij)‖tr > ε
} ∣∣∣ > βn , (2.5)

when

k ≥ 4

1− ε
,

m > max

{
3

γ
ln

(
e

1− β

)
,

3

γ
ln k, 2 +

d

γ
ln

(
16

1− ε

)}
, and

n >
6kd2m

γ(1− β)
ln

(
16
√
d

ε

)
,

where γ := (1−ε)2
8×768

.

Proof: We use the probabilistic method to show the existence of an ensemble with the
claimed property. In particular, we show that for an ensemble of the form in Eq. (2.1)
chosen at random, Eq. (2.5) holds with non-zero probability. We first derive a simpler
property that suffices.

For i ∈
[
n
k

]
and j ∈ [k], let τij ∈ D(Cm) be m-dimensional quantum states and Mij be

the orthogonal projection onto the support of τij. By Theorem 1.4, the condition∣∣∣Tr (Mijτij)− Tr (MijΨ(σij))
∣∣∣ >

ε

2
(2.6)
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implies that ‖τij −Ψ(σij)‖tr > ε. Since Tr(Mijτij) = 1, Eq. (2.6) is equivalent to

Tr (MijΨ(σij)) < 1− ε

2
. (2.7)

Consider the following Stinespring representation [96, Corollary 2.27, Sec. 2.2] of the
quantum channel Ψ : L(Cd) → L(Cm) in terms of a unitary operation U ∈ U(A ⊗ B ⊗ C)
and a fixed pure state |0̄〉 ∈ B ⊗ C, with A = Cd,B = C = Cm:

Ψ(ω) = TrA⊗B

[
U(ω ⊗ |0̄〉〈0̄|)U∗

]
∀ω ∈ L(Cd) .

So we have

Tr (MijΨ(σij)) = Tr
(
Mij TrA⊗B

[
U(σij ⊗ |0̄〉〈0̄|)U∗

])
= Tr

(
(Mij ⊗ 1A⊗B)U(σij ⊗ |0̄〉〈0̄|)U∗

)
,

and Eq. (2.7) is equivalent to

Tr
(

(Mij ⊗ 1A⊗B)U(σij ⊗ |0̄〉〈0̄|)U∗
)

< 1− ε

2
. (2.8)

For a fixed unitary operator U , for any i, j, the state U(σij⊗|0̄〉〈0̄|)U∗ belongs to D(X )
where X := U(A⊗|0̄〉) is a fixed d-dimensional subspace of A⊗B⊗C. Thus, the expression
on the left in Eq. (2.8) is bounded by ‖Mij ⊗ 1A⊗B‖X for every i, j. So it suffices to exhibit
an ensemble such that for all d-dimensional subspaces W ⊆ A⊗ B ⊗ C,∣∣∣ {(i, j) : ‖Mij ⊗ 1A⊗B‖W < 1− ε

2

} ∣∣∣ > βn .

By Lemma 2.2, for any δ = ε/2, there is a collection T of subspaces of A ⊗ B ⊗ C of
dimension at most d, such that size |T| ≤ (16

√
d/ε)2d2m2

, and for all subspaces W as
above, there is a subspace Y ∈ T such that for all i, j,∣∣∣ ‖Mij ⊗ 1A⊗B‖W − ‖Mij ⊗ 1A⊗B‖Y

∣∣∣ ≤ ε

2
.

So, it suffices to produce an ensemble such that for all subspaces Y ∈ T,∣∣∣ {(i, j) : ‖Mij ⊗ 1A⊗B‖Y < 1− ε
} ∣∣∣ > βn . (2.9)
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We pick bases Bi independently and uniformly at random, i.e., for each i, indepen-
dently pick a Haar-random unitary operator on Cm, and let Bi be the basis defined by its
columns. Partition Bi into k sets (Bij : j ∈ [k]) of equal size. We then define an ensemble
of the form in Eq. (2.4) with ρij := k

m

∑
|v〉∈Bij

|v〉〈v|, and the corresponding projection op-

erators Mij :=
∑
|v〉∈Bij

|v〉〈v|. We show that with non-zero probability, the operators Mij

satisfy Eq. (2.9) for all Y ∈ T, by bounding the probability of the complementary event.

Suppose the operators Mij do not satisfy Eq. (2.9) for some subspace Y ∈ T. Then∣∣∣ {(i, j) : ‖Mij ⊗ 1A⊗B‖Y < 1− ε
} ∣∣∣ ≤ βn . (2.10)

Equivalently, there are at least (1 − β)n pairs i, j such that ‖Mij ⊗ 1‖Y ≥ 1 − ε. In
particular, there are at least (1 − β)n/k indices i such that there is at least one j ∈ [k]
with ‖Mij ⊗ 1‖Y ≥ 1 − ε. For convenience, by Ei(Y) we denote the event that there is

some j ∈ [k] with ‖Mij ⊗ 1‖Y ≥ 1−ε, and by I(Y), we denote the subset of indices i ∈
[
n
k

]
such that Ei(Y) occurs.

Let q := d(1− β)n
k
e. By the above reasoning, it suffices to bound the probability that

for some subspace Y ∈ T, the subset I(Y) has at least q indices.

By Lemma 2.3, for a fixed subspace Y and pair i, j,

Pr
[
‖Mij ⊗ 1‖Y ≥ 1− ε

]
≤ exp

(
−((1− ε)k − 2)2(m− 2)

768k2

)
≤ exp(−γm) ,

with γ := (1−ε)2
8×768

, when (1− ε)k ≥ 4 and

m− 2 ≥ (16× 384)d

(1− ε)2
ln

(
8

1− ε

)
.

So by the Union Bound

Pr
[
Ei(Y)

]
≤ k exp(−γm) ,

and by the Union Bound and the independence of Mij for distinct indices i,

Pr
[
|I(Y)| ≥ q

]
≤

(
n
k

q

)
× (k exp(−γm))q .
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Finally, we get

Pr
[
∃Y ∈ T : Eq. (2.10) holds

]
≤ |T| ×max

Y∈T
Pr
[
|I(Y)| ≥ q

]
≤

(
16
√
d

ε

)2d2m2 (
n
k

q

)
(k exp(−γm))q

< 1 ,

when m > max
{

3
γ

ln
(

e
1−β

)
, 3
γ

ln k
}

, and

γ(1− β)n > 6kd2m ln

(
16
√
d

ε

)
.

This proves the theorem.

Note that the above proof considers an arbitrary choice of states σij and quantum
channel Ψ after the ensemble is chosen randomly. Together, the sequence (σij) and the
channel Ψ constitute a compression protocol. The proof shows that no matter how (σij)
and Ψ are chosen, the error due to the corresponding compression protocol is large if the
dimension d is much smaller than m (provided n is chosen properly).

2.3.3 Application to entanglement cost

Consider a one-way protocol Π in which with probability 1/n, Alice gets input (i, j),
prepares state ρij as in an ensemble given by Theorem 2.4, and sends it to Bob. The
ensemble average ρ is the completely mixed state 1

m
over Cm. By construction, S(ρij‖ρ)

equals log k, and therefore QIC(Π) = 1
2

log k. In fact, we have Dmax(ρij‖ρ) = log k.
Theorem I.1(1) of Ref. [16] gives us a protocol for the visible compression of any such
ensemble of states using classical communication and shared entanglement, with error ε.
The communication cost of this protocol is

Iε/
√

2
max (A : B)τ + O(log log(1/ε)) ,

where τAB := 1
n

∑
ij |ij〉〈ij|A ⊗ ρBij and we have used Theorem 1.6 to translate between

purified and trace distance. This expression is bounded from above by log k+ O(log log 1
ε
),

since Dmax(ρij‖ρ) (and therefore Imax(A : B)τ ) equals log k. Using superdense coding [96,
Section 6.3.1], we get a bound on the quantum communication cost of compressing the
ensemble with entanglement assistance.
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Proposition 2.5. For any positive integers k,m, n such that k divides m and n, and
error parameter ε > 0, any ensemble of n equally likely quantum states in D(Cm) of the
form in Eq. (2.4) there is a one-shot one-way protocol with shared entanglement for
compressing the states with quantum communication at most

1
2

log k + O(log log 1
ε
) ,

with average error at most ε in trace distance.

This bound is an additive term of O(log log 1
ε
) more than QIC(Π). Theorem I.1(1) in

Ref. [16] also gives a lower bound of (1/2) I
√
ε

max(A : B)τ on the communication cost, which is
at least (1/2) log k−2 for ε ≤ 1/81 (see Proposition A.1 in the appendix). So for constant ε,
the upper bound in Proposition 2.5 is close to optimal as a function of k. It is slightly better
than those obtained from protocols for state splitting (see, e.g., Ref. [4, Corollary 5]), which
have an additive term of order log 1

ε
. However, the protocol from Ref. [16] has entanglement

cost of order k(log 1
ε
) logm, which is exponential in the communication cost, while the

protocol for state splitting with the least known communication cost [4, Corollary 5] has
entanglement cost of order (1 + 1/ε2) log(m/ε).

Next we consider how small the entanglement cost of the visible compression of an en-
semble (ρij) given by Theorem 2.4 may be. By choosing the parameters in the statement of
Theorem 2.4 appropriately, we get the following lower bound on the sum of communication
and entanglement costs of any compression protocol.

Corollary 2.6. There exist universal constants c1, c2, c3 > 0 such that for any ε ∈ (0, 1) and
any positive integers k,m, n with k ≥ 6/(1−ε), m and n divisible by k, m ≥ c1(ln k)/(1−ε)2,
and

n ≥ c3

(1− ε)2
km3 ln

16
√
m

ε
,

there is an ensemble of n equally likely quantum states in D(Cm) of the form in Eq. (2.4)
for which any (one-shot) one-way protocol for compressing the states with average error at
most ε

2
, the sum of the communication and entanglement costs is at least

logm− 2 log
1

1− ε
− log ln

16

1− ε
− c2 . (2.11)

In particular, the entanglement cost of any such protocol with optimal communication cost
is at least

logm− 1

2
log k −O

(
log

1

1− ε

)
−O(1) ,

and the communication cost of any such protocol without entanglement is at least the
bound given in Eq. (2.11).
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Proof: We invoke Theorem 2.4 with ε ∈ (0, 1), β = 1/2 and k,m, n satisfying the con-
ditions stated in the corollary. Then γ as in Theorem 2.4 equals (1 − ε)2/(8 × 768). We
take c1 := (24 × 768) + 1, so that m > (3/γ) ln k. Since k ≥ 6/(1 − ε), we have k > 6 >
2e = e/(1 − β), and m > (3/γ) ln(e/(1 − β)). We take c3 := (6 × 2 × 8 × 768) + 1 so
that n > (6km3/γ(1− β)) ln(16

√
m/ε).

Now we consider an ensemble (ρij) given by Theorem 2.4. Let Π′ be any one-way pro-
tocol, possibly with shared entanglement, for the visible compression of the ensemble (ρij)
with average error at most ε/2. Following the notation from Section 2.2.1, suppose that
Bob holds registers MEB just after he receives the message M from Alice in Π′. If the
entanglement cost of Π′ is e, we may assume that the register EB may be partitioned
into sub-registers E1BE2B with |E1B| = e, and that the state of register EB is of the
form ω⊗|0〉〈0|, where E1B is in state ω and E2B in state |0〉〈0|, and |0〉 is a pure state. (We
may achieve this by applying a suitable isometry to register EB.)

Let d := |ME1B|, so that the sum of the communication and entanglement costs of Π′

is log d, and let σij be the state of the registers ME1B with Bob when Alice is given
input (i, j). If d ≥ m, the bound in Eq. (2.11) holds, so consider the case when d < m.
Then the choice of n above implies that n > (6kd2m/γ(1− β)) ln(16

√
d/ε).

Since the average error of Π′ is at most ε/2, by the Markov Inequality we have∣∣∣ {(i, j) : ‖ρij −Ψ(σij)‖tr > ε
} ∣∣∣ <

n

2
= βn ,

where Ψ is the quantum channel corresponding to Bob’s decompression operation in Π′.
Theorem 2.4 then implies that

2 +
d

γ
ln

(
16

1− ε

)
≥ m .

Since m− 2 ≥ m/2, this gives us the bound stated in Eq. (2.11) with c2 := log(16× 768).

Note that the parameter m may be chosen arbitrarily larger than k, provided the num-
ber of states n in the ensemble is chosen large enough. Thus, we see that there are ensem-
bles with m-dimensional states for which communication-optimal compression protocols
with shared entanglement and with constant average error, say 1/4, have entanglement
cost almost as large as logm. In particular, the number of qubits of shared entangle-
ment needed may be arbitrarily larger than the quantum information cost of the original
protocol. We also see that in the absence of shared entanglement, there are ensembles
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with m-dimensional states that cannot be compressed to states with dimension smaller
than cm with average error less than 1/4, where c is a universal positive constant. In
particular, the optimally compressed message may be arbitrarily longer than the quantum
information cost of the protocol Π.

Corollary 2.6 shows that the number of qubits of shared entanglement used by protocol
with the smallest known communication cost, due to Anshu and Jain [4, Corollary 5], is
optimal up to a constant multiplicative factor and an additive log k term (for constant
error in compression). The lower bound on entanglement cost given in the corollary may
be achieved by protocols derived from those for state splitting, up to an additive term
of 1

2
log k + O(1), again for constant error (see, e.g., Ref. [26, Lemma 3.3]). However, the

communication cost of these protocols may not be optimal.

The probabilistic construction in the results above gives us ensembles with a number
of states n that is polynomial in m and k. Note that in the compression protocol Π′,
Alice may send the input (i, j) as her message, in which case the message register has
dimension n. Similarly, she may send the state ρij itself, and this has dimension m.
So in order to study how much compression is truly possible (i.e., how much smaller the
dimension of the message register may be as compared with m), we have to study ensembles
with n ≥ m states, and compression protocols with message registers with dimension at
most m. Further, consider any protocol Γ (similar to Π) in which Alice receives a random
input x out of n possibilities according to some distribution, prepares a state ωx and sends
it to Bob. The quantum information cost of such a protocol Γ is at most 1

2
log n. So

the polynomial dependence of n on the dimension of the states in the ensemble (m in the
construction above) and the exponential dependence of n on the quantum information cost
of the corresponding protocol (1

2
log k in the construction) is inevitable.

2.4 Concluding remarks

In this chapter, we revisited one-shot compression of an ensemble of quantum states. We
proved that there are ensembles which cannot be compressed by more than a few qubits
in the absence of shared entanglement, when allowed constant error. In the presence of
shared entanglement, the ensemble can be compressed to many fewer qubits. However,
the entanglement cost may not be smaller than the number of qubits being compressed by
more than a constant, for constant error. Since we study compression protocols that are
allowed to make some error, the bounds we establish are robust to perturbations to the
shared entangled state that are sufficiently small relative to the error.
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Entanglement and quantum communication are distinct resources in the context of
information processing. Sharing entanglement involves the generation, distribution, and
storage of a state that is independent of the input for the task at hand. Communication
also involves the same steps, but may be dynamic, i.e., may depend on the input and the
prior history of the communication protocol. Consequently, any physical implementation
of these resources is likely to incur different costs for these steps. In this chapter, we
focused on the cost of distributing quantum states, and as a first stab, assumed that the
cost of distribution for shared entanglement or for communication is proportional to the
number of qubits involved. Formally, this corresponds to the notion of smooth 0-Rényi
entropy . The motivation for this focus comes largely from the area of communication
complexity [65], in which the interaction between multiple processors takes centre stage, but
shared entanglement is often taken for granted. Our result shows that entanglement plays
a crucial role in important communication tasks and highlights the need for considering
entanglement cost in addition to communication cost.

A question of interest, from a theoretical perspective, is the degree or strength of en-
tanglement required for different information processing tasks. Several different measures
of entanglement have been studied in the literature, depending on the context. Smooth 0-
Rényi entropy is a very coarse measure in this respect, as it may be the same for states
that are regarded as having widely different degrees of entanglement. A natural question
is whether results such as the ones we derived also hold for other definitions of entangle-
ment cost that capture the degree of entanglement more satisfactorily. We conjecture that
analogous results hold also for other measures, and leave this to future work.

Many other questions surrounding compression remain open. For instance, we do not
have tight characterizations for the entanglement cost of one-shot state redistribution. Even
lesser is known for the one-shot compression of interactive quantum protocols. Progress
on these questions might hold the key to resolving important questions in communication
complexity as well.
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Chapter 3

Quantum state redistribution

3.1 Introduction

Quantum state redistribution is a communication task between two parties, Alice and
Bob, defined as follows: Initially, a pure quantum state |ψ〉RABC (known to both Alice and
Bob) is shared between Alice (AC), Bob (B) and Referee (R). The goal is to transmit
the register C to Bob using a protocol involving only Alice and Bob, in a way that all
correlations, including those with Referee, are not affected; see figure 3.1 for an illustration
of state redistribution. In this chapter, we assume that Alice and Bob have access to an
arbitrary shared entangled state as well as unlimited local computational power.

State redistribution is a generalization of the well-studied task of state merging and
its time reversal, state splitting, in which registers A and B are trivial, respectively. The
communication cost of state merging and splitting is known to be characterized asymptot-
ically by I(R : C) [56], given many independent and identically distributed (i.i.d.) copies
of |ψ〉. If instead, parties have access to only one copy of the state |ψ〉 (one-shot setting),
the quantity which captures the cost is the smooth max-information the register C has
about the register R [26, 3]. For state redistribution, the asymptotic i.i.d. communication
cost is captured by the conditional mutual information I(R : C |B); however, the optimal
communication cost in the one-shot setting remains an open problem. In this chapter, we
present a protocol for one-shot quantum state redistribution whose communication cost is
lower than the cost of all previously known protocols. Our result is the first one connecting
quantum state redistribution and Markov chains, and can be interpreted as an operational
interpretation for a possible one-shot analogue of quantum conditional mutual information.
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Figure 3.1: An illustration of quantum state redistribution

3.1.1 Previous works

Quantum state redistribution was first introduced by Luo and Devetak [69] who showed
that 1

2
I(R : C |B)ψ qubits of communication are necessary to attain this task in the asymp-

totic i.i.d. setting. Later, Yard and Devetak [38, 100] showed that this rate is also achievable
and the conditional mutual information I(R : C |B) captures the optimal asymptotic cost
of state redistribution. Clearly, an optimal state merging protocol can be used to redis-
tribute a state |ψ〉RABC with asymptotic rate I(RA : C) assuming registers RA are with
Referee. This protocol is not optimal, though, as I(R : C |B) = I(R : C |A) can be
much smaller than I(RA : C) for specific states. However, Oppenheim [78] and Ye, Bai
and Wang [101], independently, showed that an optimal protocol for redistribution can be
derived by combining two state merging protocols.

In the one-shot setting, where parties have access to only one copy of the state, Berta,
Christandl and Touchette [27] and Datta, Hsieh and Oppenheim [36], independently ob-
tained the following upper bound on the communication cost of state redistribution with
error ε:

1

2

[
Sεmax(C |B)ψ − Sεmin(C |BR)ψ

]
+ O (log(1/ε)) (3.1)

They used the aforementioned idea of combining state merging protocols. However, unlike
the asymptotic setting, the resulting bound is not optimal. In particular, for trivial regis-
ter B, there exists a quantum state for which Iεmax(R : C) is much smaller than Eq. (3.1).
Later, Anshu, Devabathiani and Jain [3] characterized the optimal cost of one-shot quan-
tum state redistribution by the following expression:

Qε
|ψ〉RABC :=

1

2
inf

T,σT ,UBCT
Iεmax(RB : CT )κ ,
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where UBCT ∈ U(BCT ), σT ∈ D(T ) subject to(
1R ⊗ UBCT

)
κRBCT

(
1R ⊗ UBCT

)† ∈ Bε(ψRBC ⊗ σT )

κRB = ψRB .

In the above definition, the size of the register T may be arbitrarily large. As a result, the
given program does not give much information about the structure of an optimal protocol.

The best previously known one-shot protocol for quantum state redistribution is due
to Anshu, Jain and Warsi [8]. Using convex-split and position-based decoding techniques,
they designed a protocol for state redistribution with error at most 9ε and communication
cost

1

2
inf
σC

inf
ψ′∈Bε(ψRBC)

(
Dmax

(
ψ′RBC‖ψ′RB ⊗ σC

)
−Dε2

H

(
ψ′BC‖ψ′B ⊗ σC

))
+ log

1

ε2
. (3.2)

Although this cost is lower than the quantity in Eq. (3.1) (See Ref. [8], Theorem 4), it is
still sub-optimal. In particular, when R is trivial, the cost in Eq. (3.2) can be as large
as 1

2
log |C| while there is a zero cost protocol for redistributing state |ψ〉ABC in which

Alice and Bob simply share |ψ〉ABC , (A) with Alice and (BC) with Bob, as the initial
entanglement.

A near-optimal bound on the one-shot rate for a classical version of this task was only
recently provided by Anshu, Jain and Warsi [6], where the rate was shown to be

Dε
max(PXY Z‖QXY Z) + O

(
log

1

ε

)
, (3.3)

where registers XZ are with Alice, register Y is with Bob, PXY Z is the joint distribution
of XY Z, Z is the random variable to be redistributed and QXY Z is the Markov chain given
by the distribution QXY Z(xyz) := PX|Y (x)PY (y)PZ|Y (z).

3.1.2 Quantum Markov states

A tripartite quantum state σRBC ∈ D(HRBC) is called a quantum Markov state if there
exists a quantum operation Λ : L

(
HB
)
→ L

(
HBC

)
such that (1 ⊗ Λ)(σRB) = σRBC ,

equivalently, if I(R : C |B) = 0. This definition coincides with the notion of Markov
chains for classical registers. Classical registers Y XM form a Markov chain in this order
(denoted as Y−X−M) if registers Y and M are independent given X. Hayden, Josza, Petz,
and Winter [51] showed that an analogous property holds for quantum Markov states. In
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particular, they showed that a state σRBC ∈ D(HR ⊗HB ⊗HC) is a Markov state if and
only if there is a decomposition of the space HB into a direct sum of tensor products as

HB =
⊕
j

HBRj ⊗HBCj , (3.4)

such that

σRBC =
⊕
j

p(j)σ
RBRj
j ⊗ σB

C
j C

j , (3.5)

where σ
RBRj
j ∈ D

(
HR ⊗HBRj

)
, σ

BCj C

j ∈ D
(
HBCj ⊗HC

)
and p is a probability distribution.

For a state φRBC , we say that σRBC is a Markov extension of φRB if σRB = φRB

and σRBC is a quantum Markov state. We denote the set of all Markov extensions of φRB

by QMCφR−B−C . Note that QMCφR−B−C is non-empty, as we may take σRBC := φRB ⊗ φC .

For a Markov extension σ ∈ QMCφR−B−C , let Πσ
j be the orthogonal projection operator

onto the j-th subspace of the register B given by the decomposition corresponding to the
Markov state σ as described above. In other words, Πσ

j is the projection onto the Hilbert

space HBRj ⊗HBCj in Eq. (3.4). For a quantum state φRBC , we define

MEε,φR−B−C :=
{
σ ∈ QMCφR−B−C

∣∣∣ for all j, σ
BCj C

j ∈ Bε
(

TrBRj

[
(Πσ

j ⊗ 1)φBC(Πσ
j ⊗ 1)

])}
.

Informally, this is the subset of Markov extensions σ of φ such that the restrictions of σ
and φ to the j-th subspace in the decomposition of σ agree well on the registers BC

j C.

Again, the state σRBC := φRB ⊗ φC belongs to MEε,φR−B−C for every ε ≥ 0, so the set is
non-empty.

3.1.3 Our result

In Eq. (3.2), for a fixed ψ′RBC , the minimization is over the extensions of ψ′RB of the product
form ψ′RB ⊗ σC . Notice that such product states satisfy I(R : C |B) = 0, and hence, are
Markov states . In this chapter, we derive an achievability bound similar to Eq. (3.2) for
the one-shot communication cost of state redistribution where the minimization is instead
over the larger subset MEε,ψ

′

R−B−C of Markov extensions of ψ′RB. A simplified version of
our result is stated in the following theorem. A more detailed statement is presented in
Section 3.3, Theorem 3.9.
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Theorem 3.1. For any pure quantum state |ψ〉RABC, the quantum communication cost of
redistributing the register C from Alice (who initially holds AC) to Bob (who initially holds
B) with error 10

√
ε is at most

1

2
inf

ψ′∈Bε(ψRBC)
inf

σRBC∈ME
ε2/4,ψ′
R−B−C

[
Dmax

(
ψ′RBC‖σRBC

)
−Dε

H

(
ψ′BC‖σBC

)]
+ log

1

ε
+ 1 .

The difference between minimizing over the set MEε,ψ
′

R−B−C versus QMCR−B−C appears
to be minor. We believe the above result can be stated in terms of a minimization over all
of QMCR−B−C . Note that σC := ψ′C is a nearly optimal solution for Eq. (3.2) as discussed

in Ref. [34], and the product state ψ′RB ⊗ ψ′C is a Markov state in the set MEε,ψ
′

R−B−C . So,
our bound in Theorem 3.1 is tighter than Eq. (3.2) in the sense that the minimization is
over a larger set. The protocol we design also recovers the near-optimal classical result in
Ref. [6] when ψRBC is classical. Moreover, if register R is trivial, our protocol achieves the
optimal cost of zero qubits of communication by choosing σBC := ψ′BC , whereas the cost
of the protocol in Ref. [8], stated in Eq. (3.2), may be as large as (1/2) log |C|.

3.1.4 Motivations and implications

The connection between conditional mutual information and Markov chains has led to a
rich body of results in classical computer science and information theory. It is well known
that for any tripartite distribution PRBC ,

I(R : C |B)P = min
QRBC ∈ MCR−B−C

D
(
PRBC

∥∥QRBC
)
,

where MCR−B−C is the set of Markov distributions Q, i.e., those that satisfy I(R : C |B)Q =
0. In fact, one can choose a distribution Q achieving the minimum above with QRB = PRB

and QBC = PBC . In the quantum case, the above identity fails drastically. For an example
presented in Ref. [33] (see also Ref. [57, Section VI]), the right-hand side is a constant,
whereas the left-hand side approaches zero as the system size increases. Given this, it is
natural to ask if there is an extension of the classical identity to the quantum case. This
is shown to be true in a sense that for any tripartite quantum state ψRBC , it holds that

I(R : C|B)ψ = min
σRBC∈QMCR−B−C

(
D
(
ψRBC‖σRBC

)
−D

(
ψBC‖σBC

))
. (3.6)

This is implicitly proved in [28, Lemma 1]; we provide a proof in Appendix A for com-
pleteness. The difference between the quantum and the classical expressions can now be
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understood as follows. For the classical case, the closest Markov chain Q to a distribution P
(in relative entropy) satisfies the aforementioned relations QRB = PRB and QBC = PBC .
Thus, the second relative entropy term vanishes in Eq. (3.6). In quantum case, due to
monogamy of entanglement we cannot in general ensure that σBC = ρBC . Thus, the rela-
tive entropy distance to Markov chains can be bounded away from the conditional mutual
information.

Theorem 3.1 proves a one-shot analogue of Eq. (3.6). This is achieved in an opera-
tional manner, by showing that a one-shot analogue of the right-hand side in Eq. (3.6) is
the achievable communication cost in quantum state redistribution of |ψ〉RABC , a purifica-
tion of ψRBC . Our bound also satisfies some desirable properties for a one-shot analogue
of I(R : C |B) including non-negativity and monotonicity under local operations applied
to register R. However, it is not clear whether it is also monotone under local quantum
operations applied to register C.

In addition, the protocol we design is reversible. So, to redistribute C from Alice to
Bob, Alice and Bob can instead run the time-reversal of the protocol in which register C
is initially with Bob and he wants to send it to Alice. This implies the following corollary.

Corollary 3.2. For any pure quantum state |ψ〉RABC, the quantum communication cost
of redistributing the register C from Alice (who initially holds AC) to Bob (who initially
holds B) with error 10

√
ε is at most the minimum of

1

2
inf

ψ′∈Bε(ψRBC)
inf

σRBC∈ME
ε2/4,ψ′
R−B−C

[
Dmax

(
ψ′RBC‖σRBC

)
−Dε

H

(
ψ′BC‖σBC

)]
+ log

1

ε
+ 1

and

1

2
inf

ψ′∈Bε(ψRAC)
inf

σRAC∈ME
ε2/4,ψ′
R−A−C

[
Dmax

(
ψ′RAC‖σRAC

)
−Dε

H

(
ψ′AC‖σAC

)]
+ log

1

ε
+ 1 .

Recall that quantum conditional mutual information satisfies the duality property
that I(R : C |B) = I(R : C |A) for a pure state |ψ〉RABC . The bound in the above
corollary satisfies this property as well as non-negativity and monotonicity under local
quantum operations applied to R.

The other motivation for studying state redistribution comes from the communication
complexity setting. An important open problem in communication complexity is the direct
sum problem which studies whether computing n copies of a Boolean function simulta-
neously requires as much communication as computing each independently. It has been

39



shown that direct sum holds for one-way [60] and bounded-round [30] randomized com-
munication complexity as well as one-way quantum communication complexity [61, 62, 5].
Although it is known that direct sum does not hold if there is no restriction on the num-
ber of rounds in both classical [44] and quantum [9] settings, it is believed that a direct
sum result must hold for quantum communication complexity when there are a constant
number of rounds. A promising approach to prove this is to compress the communication
in an interactive protocol to its information content . In fact, Braverman and Rao [30]
showed that the problem of one-shot compression of interactive protocols is equivalent to
the direct sum problem.

In an interactive protocol, parties know the description of their average joint state (aver-
aged over all possible inputs) in each round of communication. Hence, the communication
in each round can be compressed by performing quantum state redistribution. Inspired by
this idea and the asymptotic cost of quantum state redistribution, Touchette [89] proposed a
notion of quantum information complexity inspired by the asymptotic cost of state redistri-
bution, and showed that a quantum state redistribution protocol with cost O(I(R : C |B))
suffices to derive a direct sum theorem for bounded-round quantum communication com-
plexity. He also claimed such a direct sum result by bounding the cost in Eq. (3.1) in terms
of I(R : C |B), but the proof has an error.

Although our protocol achieves a one-shot analogue of conditional mutual informa-
tion in the sense described earlier, it is not clear whether the communication cost of our
protocol is O(I(R : C |B)). We believe that the techniques used here shed light on a
better understanding of quantum state redistribution and possibly leads to a near-optimal
protocol.

3.1.5 Techniques

The protocol we design is most easily understood by considering a folklore protocol for
redistributing quantum Markov states. In the case that ψRBC is a Markov state, its purifi-
cation |ψ〉RABC can be transformed through local isometry operators VA : A → ARJ ′AC

and VB : B → BRJBC as follows:

VA ⊗ VB|ψ〉RABC =
∑
j

√
p(j)|ψj〉RA

RBR ⊗ |jj〉JJ ′ ⊗ |ψj〉A
CBCC . (3.7)

The existence of isometry operators VA and VB is a consequence of the special structure
of quantum Markov states explained in Section 3.1.2, Eq. (3.5). Note that after the above
transformation, conditioned on registers J and J ′, systems RARBR are decoupled from
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Figure 3.2: An illustration of the zero-cost protocol for redistributing Markov states. Left:
Registers RARBRJJ ′ACCBC are in the state given in Eq. (3.7) and registers E and E ′

contain Alice and Bob’s share of an embezzling state, respectively. Middle: Using em-
bezzling registers, Alice and Bob jointly embezzled out registers ACCBC via local unitary
operations. Right: Using embezzling registers, conditioned on J and J ′, Alice and Bob
embezzled in |ψj〉A

CCBC such that registers C and BC are with Bob and register AC is with
Alice. This step also only contain local unitary operations and no communication.

systems ACCBC . So using the embezzling technique due to van Dam and Hayden [92],
conditioned on J and J ′, Alice and Bob can first embezzle-out systems ACCBC and then
embezzle-in the same systems such that at the end the global state is close to the state in
Eq. (3.7) and system C is with Bob. This protocol incurs no communication; see Fig. 3.2
for an illustration.

The protocol we design is a more sophisticated version of the above protocol. The
key technique underlying our protocol is a reduction procedure using embezzling quantum
states, that allows us to use a protocol due to Anshu, Jain, and Warsi [8] as a subroutine.
Let σRBC be a quantum Markov extension of ψRB. The reduction is a unitary procedure
which decouples C from RB when applied to σRBC , while preserving ψRB when applied
to ψRBC .

To elaborate further, consider the special case where ψRBC is the GHZ state

1√
d

d∑
j=1

|j〉R|j〉B|j〉C .

In this case, the closest Markov extension σRBC of ψRB is 1
d

∑d
j=1 |j〉〈j|R⊗|j〉〈j|B⊗|j〉〈j|C . A

naive way to decouple register C from registers RB in σRBC is to coherently erase register C
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conditioned on register B. However, the same operation applied to ψRBC changes ψRB.
To overcome this problem, first, we coherently measure register B by adding a maximally
entangled state |Φ〉TT ′ and making another “copy” of |j〉B in ΦT . The copying is done
by applying a distinct Heisenberg-Weyl operator to the state ΦT , for each j ∈ [d]. This
operation measures register B in ψRBC , keeps σRBC unchanged, and and leaves ΦT in
tensor product with registers RB in both ψ and σ. Then, conditioned on register B, we
can coherently erase register C in σRBC ; this operation applied to ψ does not change the
state ψRB.

For a general state ψRBC with quantum Markov extension σRBC , the isometry opera-
tor VB can be used to transform σRBC to the classical-quantum state∑

j

p(j)σRB
R

j ⊗ |j〉〈j|J ⊗ σBCCj .

However, we encounter an additional issue here: for a given j, σB
CC

j does not necessarily

have a flat spectrum. So we first flatten each σB
CC

j through a unitary procedure. This
task can be achieved via the technique of coherent flattening via embezzlement due to
Anshu and Jain [4]. After flattening, the dimension of the support of systems BCC no
more depends on j and so the states in registers BCC can be all rotated to a flat state
over a fixed subspace. Hence, BCC gets decoupled from RBRJ in the state σ. Finally, to
keep ψRB unchanged, we regenerate the system BC via a standard embezzling technique
similar to the protocol in Fig. 3.2.

Organization The rest of this chapter is organized as follows. In Section 3.2, we review
the notions and techniques required for the proof of the main theorem. In Section 3.3, we
state our result formally in Theorem 3.3 and prove it. Then, in Section 3.4, we discuss the
optimality of the derived bound in the asymptotic i.i.d. setting. Finally, we summarize our
result and explain some interesting open questions in Section 3.5.

3.2 Preliminaries

3.2.1 Quantum state redistribution

Consider a pure state |ψ〉RABC shared between Referee (R), Alice (AC) and Bob (B).
In an ε-error quantum state redistribution protocol, Alice and Bob share an entangled
state |θ〉EAEB , register EA with Alice and register EB with Bob. Alice applies an encoding
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operation E : L(HACEA) → L(HAQ), and sends the register Q to Bob. Then, Bob ap-
plies a decoding operation D : L(HQBEB) → L(HBC). The output of the protocol is the
state φRABC with the property that P(ψRABC , φRABC) ≤ ε, and the communication cost of
the protocol is log |Q|.

To derive the upper bound in Theorem 3.1, we use an existing protocol due to Anshu,
Jain and Warsi [8] which we call the AJW protocol in the sequel. The bound is derived
by combining the AJW protocol with a decoupling technique via embezzling described in
Section 3.2.2.

AJW protocol

The AJW protocol is based on two powerful and remarkable techniques, convex-split lemma
(introduced in Ref. [3]) and position-based decoding (introduced in Ref. [7]).

Let n be an integer, ρAB ∈ D(HAB) and σB ∈ D(HB). Consider the quantum
state τAB1...Bn derived by adding n−1 independent copies of σB in tensor product with ρAB

and swapping j-th copy of σB with ρB for uniformly random j ∈ [n− 1]. In particular, we
define

τAB1B2...Bn :=
1

n

n∑
j=1

ρABj ⊗ σB1 ⊗ · · · ⊗ σBj−1 ⊗ σBj+1 ⊗ · · · ⊗ σBn , (3.8)

on n+1 registers A,B1, B2, . . . , Bn, where ρABj⊗σB1⊗· · ·⊗σBj−1⊗σBj+1⊗· · ·⊗σBn denotes
the state SWAPB1�Bj

(
ρAB1 ⊗ σB2 ⊗ · · · ⊗ σBj ⊗ · · · ⊗ σBn

)
SWAP†B1�Bj

as explained in

Section 1.2.2. The convex-split lemma states that the state τAB1...Bn is almost indistin-
guishable from the product state ρA ⊗ (σB)⊗n, provided that n is large enough.

Lemma 3.3 (Convex-split lemma [3]). Let ρAB ∈ D(HAB) and σB ∈ D(HB) be quantum

states with Dmax(ρAB‖ρA ⊗ σB) = k for some finite number k. Let δ > 0 and n = d2k

δ
e.

For the state τAB1...Bn defined in Eq. (3.8), we have

P
(
τAB1...Bn , τA ⊗ σB1 ⊗ · · · ⊗ σBn

)
≤

√
δ . (3.9)

The above lemma provides the condition under which the correlation in between regis-
ters A and B in ρ is lost in a certain convex combination of quantum states. A dual problem
is to find conditions sufficient for identifying the location of the desired correlation in a
convex combination. This task is achievable via position-based decoding technique using
quantum hypothesis testing.
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Lemma 3.4 (Position-based decoding [7]). Let ε > 0, and ρAB ∈ D(HAB) and σB ∈ D(HB)
be quantum states such that supp(ρB) ⊆ supp(σB). Let n := dε 2DεH(ρAB‖ρA⊗σB)e, and for
every j ∈ [n],

τAB1...Bn
j := ρABj ⊗ σB1 ⊗ · · · ⊗ σBj−1 ⊗ σBj+1 ⊗ · · · ⊗ σBn .

There exists a set of POVM operators {Λj : j ∈ [n+ 1]} on registers AB1B2 . . . Bn such
that

n+1∑
j=1

Λj = 1

and for all j ∈ [n],
Tr
[
Λjτ

AB1...Bn
j

]
≥ 1− 6ε .

The above statement is slightly different from the one in Ref. [7] because of a minor
difference in defining quantum hypothesis testing relative entropy.

Let |ψ〉RABC be the quantum state shared between Alice (AC), Bob (B) and Referee
(R), and ψ′RBC ∈ Bε(ψRBC). The AJW protocol works as follows.

AJW protocol: Alice and Bob initially share m = d2β/ε2e copies of a purification |σ〉LC
of σC where β = Dmax

(
ψ′RBC‖ψ′RB ⊗ σC

)
.So their global state is

|ψ〉RABC ⊗ |σ〉L1C1 ⊗ . . .⊗ |σ〉LmCm .

Let b be the smallest integer such that log b ≥ Dε2

H (ψ′BC‖ψ′B⊗σC)− log 1
ε2

. By performing
a proper unitary operator, Alice transforms the global state into a state close to the state

1

m

m∑
j=1

|bj/bc〉J1|j (mod b)〉J2|0〉Lj |ψ〉RABCj ⊗ |σ〉L1C1 ⊗ . . .⊗ |σ〉Lj−1Cj−1 ⊗ |σ〉Lj+1Cj+1

⊗ . . .⊗ |σ〉LnCn . (3.10)

This is possible due to the Uhlmann theorem, the convex-split lemma and the choice of m.
Alice sends register J1 to Bob with communication cost at most 1/2(logm − log b) using
superdense coding. Then, for each j2 ≤ b, Bob swaps registers Cj2 and Cj2+bj1 , conditioned
on J1 = j1. At this point, registers RBC1 . . . Cb are in a state close to

1

b

b∑
j2=1

ψRBCj2 ⊗ σC1 ⊗ . . .⊗ σCj2−1 ⊗ σCj2+1 ⊗ . . .⊗ σCb . (3.11)

44



Then, Bob uses position-based decoding to determine the index j2 for which register Cj2
is correlated with registers RB. This is possible by the choice of b. Since the state
over registers RBCj2 is close to ψRBC and it is independent of the state over regis-
ters C1 . . . Cj2−1, Cj2+1, . . . , Cb, the register purifying registers RBCj2 is with Alice and
she can transform it to the register A such that the final state over registers RABCj2 is
close to ψRABC .

The following theorem states the communication cost and the error in the final state
of the above protocol.

Theorem 3.5 ([8]). Let ε ∈ (0, 1), and |ψ〉RABC be a pure quantum state shared be-
tween Referee (R), Alice (AC) and Bob (B). There exists an entanglement-assisted one-
way protocol operated by Alice and Bob which starts in the state |ψ〉RABC, and outputs a
state φRABC ∈ B9ε(ψRABC), and the number of qubits communicated by Alice and Bob is
upper bounded by

1

2
inf
σC

inf
ψ′∈Bε(ψRBC)

(
Dmax

(
ψ′RBC‖ψ′RB ⊗ σC

)
−Dε2

H

(
ψ′BC‖ψ′B ⊗ σC

))
+ log

1

ε2
.

For a complete proof (including correctness and error analysis), see the proof of Theo-
rem 1 in Ref. [8].

3.2.2 Decoupling classical-quantum states via embezzlement

Embezzlement refers to a process introduced by van Dam and Hayden [92] in which any
bipartite quantum state, possibly entangled, can be produced from a bipartite catalyst,
called the embezzling quantum state, using only local unitary operations. For an integer n
and registers D and D′ with |D| = |D′| ≥ n, the embezzling state is defined as

|ξ〉DD′ :=
1√
S(n)

n∑
i=1

1√
i
|i〉D|i〉D′ , (3.12)

where S(n) :=
∑n

i=1
1
i
. Van Dam and Hayden showed that for every bipartite state |φ〉AB

with Schmidt rank m, there exists local isometries VA : HD → HDA and VB : HD′ → HD′B

such that
P((VA ⊗ VB)|ξ〉, |ξ〉 ⊗ |φ〉) ≤ δ , (3.13)

provided that n ≥ m2/δ2 . Therefore, by using n large enough, any accuracy in embezzle-
ment can be achieved.
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For a fixed a ≤ n, a close variant of the above embezzling state is defined as

|ξa:n〉DD
′

:=
1√

S(a, n)

n∑
i=a

1√
i
|i〉D|i〉D′ . (3.14)

Using these states, Lemma 3.6 achieves the embezzling of the uniform distribution where
the closeness is guaranteed in max-relative entropy.

Lemma 3.6 ([4]). Let δ ∈ (0, 1
15

), and a, b, n ∈ Z be positive integers such that a ≥ b
and n ≥ a1/δ. Let D and E be registers with |D| ≥ n and |E| ≥ b. Let Wb be a unitary
operation that acts as

Wb|i〉D|0〉E = |bi/bc〉D|i (mod b)〉E ∀i ∈ {0, . . . |D| − 1} , (3.15)

and Πb ∈ Pos
(
HDE

)
be the projection operator onto the support of Wb

(
ξDa:n ⊗ |0〉〈0|E

)
W †
b .

It holds that
Wb

(
ξDa:n ⊗ |0〉〈0|E

)
W †
b ≤ (1 + 15δ) ξD1:n ⊗ µEb , (3.16)

and
Πb

(
ξD1:n ⊗ µEb

)
Πb ≤ 2 ·Wb

(
ξDa:n ⊗ |0〉〈0|E

)
W †
b . (3.17)

where µEb = 1
b

∑b−1
e=0 |e〉〈e|.

The proof of Eq. (3.16) is due to Anshu and Jain [4, Claim 1], and Eq. (3.17) follows
from a similar argument. For completeness, we provide a proof for Lemma 3.6 below.
Proof: Let Wb be a unitary operator satisfying Eq. (3.15). We have

Wb

(
ξDa:n ⊗ |0〉〈0|E

)
W †
b =

1

S(a, n)

n∑
i=1

1

i
Wb

(
|i〉〈i|D ⊗ |0〉〈0|E

)
W †
b

=
1

S(a, n)

n∑
i=1

1

i
|bi/bc〉〈bi/bc|D ⊗ |i (mod b)〉〈i (mod b)|E

=
1

S(a, n)

bn
b
c∑

i′=ba
b
c

min{b−1,n−i′b}∑
e=0

1

bi′ + e
|i′〉〈i′|D ⊗ |e〉〈e|E (3.18)

≤ 1

S(a, n)

bn
b
c∑

i′=ba
b
c

b−1∑
e=0

1

bi′
|i′〉〈i′|D ⊗ |e〉〈e|E

≤ S(1, n)

S(a, n)
ξD1:n ⊗ µEb . (3.19)
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In Ref. [70], it is shown that
∣∣S(a, n)− log n

a

∣∣ ≤ 4. Since n ≥ a1/δ, we have

S(1, n)

S(a, n)
≤ log n+ 4

log n− log a− 4
≤ 1 + 4δ

1− 5δ
≤ 1 + 15δ . (3.20)

Now, Eq. (3.19) and Eq. (3.20) together imply Eq. (3.16). It remains to prove Eq. (3.17).
Let Πb ∈ Pos

(
HDE

)
be the projection operator onto the support of Wb

(
ξDa:n ⊗ |0〉〈0|E

)
W †
b .

Eq. (3.18) implies that

Πb =

bn
b
c∑

i′=ba
b
c

min{b−1,n−i′b}∑
e=0

|i′〉〈i′|D ⊗ |e〉〈e|E .

Thus,

Πb

(
ξD1:n ⊗ µEb

)
Πb =

1

S(1, n)

bn
b
c∑

i′=ba
b
c

min{b−1,n−i′b}∑
e=0

1

bi′
|i′〉〈i′|D ⊗ |e〉〈e|E

≤ 1

S(1, n)

bn
b
c∑

i′=ba
b
c

min{b−1,n−i′b}∑
e=0

2

bi′ + e
|i′〉〈i′|D ⊗ |e〉〈e|E

=
2 · S(a, n)

S(1, n)
Wb

(
ξDa:n ⊗ |0〉〈0|E

)
W †
b (by Eq. (3.16))

≤ 2 ·Wb

(
ξDa:n ⊗ |0〉〈0|E

)
W †
b ,

where the first inequality holds since bi′ + e ≤ 2 bi′ for i′ ≥ 1 and 0 ≤ e ≤ b − 1, and the
second inequality holds since S(a, n) ≤ S(1, n).

As a corollary of the above lemma, Anshu and Jain [4] showed that the embezzling
state ξDa:n can be used almost catalytically to flatten any quantum state using unitary
operations.

Corollary 3.7 ([4], Eq. (6)). Let ρ ∈ D(HC) be a quantum state with spectral decomposi-

tion ρC =
∑

c q(c)|vc〉〈vc|C. Let δ ∈ (0, 1
15

) and γ ∈ (0, 1) such that |C|
γ

is an integer and

all eigenvalues q(c) are integer multiples of γ
|C| . Let a := |C|

γ
maxc q(c), n = a1/δ, and D

and E be quantum registers with |D| ≥ n and |E| = a. Let W ∈ U(HCED) be the unitary
operator defined as

W :=
∑
c

|vc〉〈vc|C ⊗Wb(c)
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and Π ∈ Pos(HCED) be the projection operator defined as

Π :=
∑
c

|vc〉〈vc|C ⊗ Πb(c) ,

where Wb(c) and Πb(c) are the operators defined in Lemma 3.6 with b(c) := q(c)|C|
γ

. Then,
we have

W
(
ρC ⊗ |0〉〈0|E ⊗ ξDa:n

)
W † ≤ (1 + 15δ) ρCE ⊗ ξD1:n (3.21)

and
Π
(
ρCE ⊗ ξD1:n

)
Π ≤ 2 ·W

(
ρC ⊗ |0〉〈0|E ⊗ ξDa:n

)
W † , (3.22)

where ρCE := γ
|C|
∑

c |vc〉〈vc|C ⊗
∑b(c)−1

e=0 |e〉〈e|E is an extension of ρC with flat spectrum.

The proof of Eq. (3.21) is provided in Ref. [4, Eq. (6)], and Eq. (3.22) follows from a
Eq. (3.17). For completeness, we provide a proof for Corollary 3.7 below.

Proof: Let W be the unitary operator defined in the statement of the corollary . We have

W
(
ρC ⊗ |0〉〈0|E ⊗ ξDa:n

)
W †

=
∑
c

q(c)|vc〉〈vc|C ⊗Wb(c)

(
|0〉〈0|E ⊗ ξDa:n

)
W †
b(c)

≤ (1 + 15δ)
∑
c

q(c)|vc〉〈vc|C ⊗
γ

q(c)|C|

b(c)−1∑
e=0

|e〉〈e|E ⊗ ξDa:n

= (1 + 15δ) ρCE ⊗ ξDa:n ,

where the inequality follows from Lemma 3.6. So, it remains to prove Eq. (3.22). Let Π
be the projection operator defined in the statement of the corollary. We have

Π
(
ρCE ⊗ ξD1:n

)
Π =

γ

|C|
∑
c

b(c)|vc〉〈vc|C ⊗ Πb(c)

(
µEb(c) ⊗ ξDa:n

)
Πb(c)

≤ 2
∑
c

q(c)|vc〉〈vc|C ⊗Wb(c)

(
|0〉〈0|E ⊗ ξDa:n

)
W †
b(c)

= 2 ·W
(
ρC ⊗ |0〉〈0|E ⊗ ξDa:n

)
W † ,

where the inequality is a consequence of Lemma 3.6.

We use the above flattening procedure to decouple the quantum register in a classical-
quantum state.
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Corollary 3.8. Consider a classical-quantum state ρJC =
∑

j p(j)|j〉〈j|J ⊗ ρCj , where p is

a probability distribution and ρCj ∈ D
(
HC
)
. Let δ ∈ (0, 1

15
) and γ ∈ (0, 1) such that a := |C|

γ

is an integer and eigenvalues of all ρCj are integer multiples of γ
|C| . Let n = a1/δ, D and E

be quantum registers with |D| ≥ n and |E| = a. Then, there exists a unitary operator U ∈
U(HJCED), read-only on register J , and a projection operator Π̃ ∈ Pos(HJCED) such that

U
(
ρJC ⊗ |0〉〈0|E ⊗ ξDa:n

)
U † ≤ (1 + 15δ) ρJ ⊗ νCE ⊗ ξD1:n , (3.23)

Π̃
(
ρJ ⊗ νCE ⊗ ξD1:n

)
Π̃ ≤ 2 · U

(
ρJC ⊗ |0〉〈0|E ⊗ ξDa:n

)
U † , (3.24)

and
Tr
[
Π̃U

(
ρJC ⊗ |0〉〈0|E ⊗ ξDa:n

)
U †
]

= 1 , (3.25)

where νCE = 1
a

∑a−1
s=0 |s〉〈s|CE.

Proof: Notice that integers a and n and registers D and E satisfy required properties
in Corollary 3.7. For each j, let W (j) be the unitary operator given by Corollary 3.7 for
flattening ρCj =

∑
c qj(c)|vj,c〉〈vj,c|. Hence, we can flatten all ρCj simultaneously using the

unitary operator U1 =
∑

j |j〉〈j| ⊗W (j), and we get

U1

(
ρJC ⊗ |0〉〈0|E ⊗ ξDa:n

)
U †1 ≤ (1 + 15δ)

∑
j

p(j)|j〉〈j|J ⊗ ρCEj ⊗ ξD1:n ,

where ρCEj = γ
|C|
∑

c |vj,c〉〈vj,c|C⊗
∑qj(c)|C|/γ

e=0 |e〉〈e|E is an extension of ρC with flat spectrum.

For each j, the support of ρCj has dimension
∑

c qj(c)
|C|
γ

= a, which is independent of j.

Hence, there exists a unitary operator V (j) mapping ρCEj to νCE. Define the unitary

operator U2 :=
∑

j |j〉〈j| ⊗ V (j) on registers JCE. Then, the unitary operator U := U2U1

satisfies Eq. (3.23).

Now, for each j, let Π(j) ∈ Pos(HCED) be the projection operator given by Corollary 3.7.
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Define Π′ :=
∑

j |j〉〈j| ⊗ Π(j) and Π̃ := U2Π′U †2 . We have

Π̃
(
ρJ ⊗ νCE ⊗ ξD1:n

)
Π̃ = U2Π′U †2

(
ρJ ⊗ νCE ⊗ ξD1:n

)
U2Π′U †2

= U2Π′

(∑
j

p(j)|j〉〈j|J ⊗ ρCEj ⊗ ξD1:n

)
Π′U †2

= U2

(∑
j

p(j)|j〉〈j|J ⊗ Π(j)
(
ρCEj ⊗ ξD1:n

)
Π(j)

)
U †2

≤ 2 · U2

(∑
j

p(j)|j〉〈j|J ⊗W (j)
(
ρCj ⊗ |0〉〈0|E ⊗ ξDa:n

)
W (j)†

)
U †2

= 2 · U2U1

(∑
j

p(j)|j〉〈j|J ⊗ ρCj ⊗ |0〉〈0|E ⊗ ξDa:n

)
U †1U

†
2

= 2 · U
(
ρJC ⊗ |0〉〈0|E ⊗ ξDa:n

)
U † ,

where the inequality follows from Corollary 3.7, Eq. (3.22).

Moreover, by the construction in Lemma 3.6 and Corollary 3.7, for each j, the op-

erator Π(j) is the projection operator onto the support of W (j)
(
ρCj ⊗ |0〉〈0|E ⊗ ξDa:n

)
W (j)†.

Hence, we have

Tr
[
Π̃U

(
ρJC ⊗ |0〉〈0|E ⊗ ξDa:n

)
U †
]

= Tr
[
Π′U1

(
ρJC ⊗ |0〉〈0|E ⊗ ξDa:n

)
U †1

]
=

∑
j

p(j)Tr
[
Π(j)W (j)

(
ρCj ⊗ |0〉〈0|E ⊗ ξDa:n

)
W (j)†

]
= 1 .

This completes the proof.

Remark: In the above corollary, there is an implicit assumption that the eigenvalues of ρCj
are rational. However, we can assume without loss of generality that this is always the
case since the set of rational numbers is dense and the error due to this assumption can
be made arbitrarily close to zero.

3.3 Main result

In this section, we prove our main result.
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Theorem 3.9. Let |ψ〉RABC be a pure quantum state shared between Referee (R), Al-
ice (AC) and Bob (B). For every ε1, ε2 ∈ (0, 1) satisfying ε1 + 9ε2 ≤ 1, there exists
an entanglement-assisted one-way protocol operated by Alice and Bob which starts in the
state |ψ〉RABC, and outputs a state φRABC ∈ Bε1+9ε2(ψRABC) where registers A, BC and R
are held by Alice, Bob and Referee, respectively. The communication cost of this protocol
is upper bounded by

1

2
inf

ψ′∈Bε1 (ψRBC)
inf

σ∈ME
ε42/4,ψ

′
R−B−C

[
Dmax

(
ψ′
RBC‖ σRBC

)
−D

ε22
H

(
ψ′
BC‖ σBC

)]
+log

1

ε22
+1 . (3.26)

Proof: Fix ψ′RBC ∈ Bε1(ψRBC) and σRBC ∈ ME
ε42/4,ψ

′

R−B−C . As explained in Section 3.1.2,

there exists a decomposition of register B as HB =
⊕

jH
BRj ⊗HBCj such that

ψ′
RB

= σRB =
⊕
j

p(j)ψ′
RBRj
j ⊗ ψ′B

C
j

j , (3.27)

and

σRBC =
⊕
j

p(j)σ
RBRj
j ⊗ σB

C
j C

j , (3.28)

where σ
RBRj
j = ψ′

RBRj
j , σ

BCj C

j ∈ Bε
4
2/4
(

TrBRj

(
(Πj ⊗ 1)ψ′BC(Πj ⊗ 1)

))
and Πj is the projec-

tion operator over the j-th subspace of register B. If σRBC = ψ′RB ⊗ ψ′C , Alice and Bob
can redistribute ψRABC with error 9ε2 > 0 and communication cost bounded by Eq. (3.26)
using the AJW protocol as explained in Theorem 3.5. However, in general, σRBC is not
necessarily a product state. In that case, our broad strategy is to let Alice and Bob trans-
form ψ′RBC through a local unitary procedure which maps σRBC to a product state. Then,
they can use the AJW protocol to redistribute this new state. Before achieving this, Alice
and Bob will perform some pre-processing on their shared state, as follows.

i. Viewing σRBC as a classical-quantum state: Let BR and BC be two registers
with

∣∣BR
∣∣ = maxj

∣∣BR
j

∣∣ and
∣∣BC

∣∣ = maxj
∣∣BC

j

∣∣. By Eq. (3.28), there exists an isometry

operator Ui : HB → HBRJBC which takes σRBC to the state σRB
RJBCC

1 defined as

σRB
RJBCC

1 :=
∑
j

p(j)σRB
R

j ⊗ |j〉〈j|J ⊗ σBCCj . (3.29)
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Let |ψ′〉RABC be a purification of ψ′RBC satisfying P(|ψ〉RABC , |ψ′〉RABC) ≤ ε1, as guaran-
teed by the Uhlmann theorem. Define

|ψ1〉RAB
RJBCC := Ui|ψ′〉RABC =

∑
j,j′

|j〉〈j′|J ⊗ ψRABRBCCj,j′ .

ii. Transferring BC from Bob to Alice without communication: Recall that
register J is classical in ψRB

RJBC

1 and conditioned on J , RBR and BC are decoupled, that
is

ψRB
RJBC

1 = σRB
RJBC

1 =
∑
j

p(j)σRB
R

j ⊗ |j〉〈j|J ⊗ σBCj .

This implies that I(RBR : BC | J)ψ1 = 0. So, Alice and Bob can use the folklore protocol
for redistributing quantum Markov states explained in Fig. 3.2 and transfer BC to Alice,
as follows:

Since Alice holds registers AC, she can prepare the following purification of ψRB
RJBC

1 :

|ψ′1〉RB
RJJ ′BCGH =

∑
j

√
p(j)|σj〉RB

RG ⊗ |j, j〉JJ ′ ⊗ |σj〉B
CH ,

where registers J ′GH are held by Alice. Let δ1 ∈ (0, 1), n1 :=
∣∣BCH

∣∣2/δ21 , and D1, D
′
1

be registers with |D1| = |D′1| = n1. Conditioned on register J , Alice and Bob use the
embezzling state |ξ〉D1D′1 (as defined in Eq. (3.12)) and the inverse of the van Dam-Hayden

protocol [92] to embezzle out |σj〉B
CH in superposition and obtain a state ψ̃1 such that

P

(
ψ̃
RBRGJJ ′D1D′1
1 ,

∑
j

√
p(j)|σj〉RB

RG ⊗ |j, j〉JJ ′ ⊗ |ξ〉D1D′1

)
≤ δ1 .

Finally, conditioned on register J , Alice locally generates |σj〉B
CH in superposition with

registers BCH on her side, and applies an Uhlmann unitary operator to her registers in
order to prepare the purification |ψ1〉RAB

RJBCC . Let Uii,A and Uii,B denote the overall
unitary operators applied by Alice and Bob, respectively, in this step. After applying Uii,A

and Uii,B, the global state is |ψ2〉 satisfying

P
(
ψ
RABRJBCCD1D′1
2 , |ψ1〉〈ψ1|RAB

RJBCC ⊗ |ξ〉〈ξ|D1D′1

)
≤ δ1 ,

where registers ABCC are with Alice, registers BRJ are with Bob and register R is with
Referee. Thus, the problem reduces to the case where the global state is |ψ1〉 and the
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register BC belongs to Alice, up to a purified distance δ1. We will now assume that this is
indeed the case and later, we will account for the inaccuracy introduced by this assumption
in the error analysis of our protocol, using the data processing inequality.

Suppose the global state is |ψ1〉RAB
RJBCC such that registers ABCC, BRJ and R are

held by Alice, Bob and Referee, respectively, and Alice wants to transfer BCC to Bob. To
achieve this, we introduce a two-step unitary procedure which decouples registers RBRJ
and BCC in σRB

RJBCC
1 while keeping the state of registers RBRJ unchanged. This opera-

tion transforms σ1 to a product state and allows us to use the AJW protocol as a subroutine
to achieve the redistribution.

To decouple RBRJ from BCC in σ1, we use embezzlement and the unitary operator,
given by Corollary 3.8. This unitary operator acts on registers JBCC and is read-only
on register J . However, since register J is not classical in ψRB

RJBCC
1 , it may disturb the

marginal state ψRB
RJ

1 . This issue can be resolved by first coherently measuring register J
using an additional maximally entangled state. This operation transforms ψRB

RJBCC
1 to a

classical-quantum state, classical in register J , while keeps σRB
RJBCC

1 intact. The following
two steps contain the detailed construction of these two unitary procedures.

1. Coherent measurement of register J: Let F be a register with |F | = |J |,
and {|f〉}|F |−1

f=0 be a basis for HF . For a, b ∈ {0, . . . , |F | − 1}, let Pa,b ∈ U
(
HF
)

be the

Heisenberg-Weyl operator defined as Pa,b :=
∑

f exp
(

2πifb
|F |

)
|f + a〉〈f |F . Let U1 ∈ U(HJF )

be a unitary operator defined as U1 :=
∑

j |j〉〈j|J ⊗ P F
j,0. Define

|κ1〉RAB
RJBCCFF ′ := U1

(
|ψ1〉RAB

RJBCC ⊗ |Φ〉FF ′
)
,

and

τRB
RJBCCF

1 := U1

(
σRB

RJBCC
1 ⊗ 1F

|F |

)
U †1 , (3.30)

where |Φ〉FF ′ is the maximally entangled state over registers F and F ′. Notice that the
set of Heisenberg-Weyl operators is closed under multiplication and each Pa,b is traceless
unless a = b = 0. Therefore, the unitary operator U1 acts trivially on σ1 while it measures
register J in ψRB

RJBCC
1 coherently. In particular,

τRB
RJBCCF

1 = σRB
RJBCC

1 ⊗ 1F

|F |
, (3.31)

and
κRB

RJBCC
1 =

∑
j

|j〉〈j|J ⊗ ψRBRBCCj,j . (3.32)
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2. Decoupling registers BCC from RBRJ in τ1: By Eqs. (3.29) and (3.31), register J
is classical in τRB

RJBCC
1 and conditioned on J , registers RBR are decoupled from BCC.

Hence, we can decouple registers BCC from registers RBRJ in τ1 using embezzling states
and applying the unitary operator given in Corollary 3.8.

For γ2 ∈ (0, 1) chosen as in Corollary 3.8, let a2 = |BCC|/γ2, n2 = a
1/δ22
2 , D2, D′2

and E2 be quantum registers with |D2| = |D′2| ≥ n2 and |E2| = a2. By Corollary 3.8, there
exists a unitary operator U2 ∈ U(HJBCCE2D2), read-only on register J , and a projection

operator Π̃ ∈ Pos(HJBCCE2D2) such that

Dmax

(
U2

(
τRB

RJBCC
1 ⊗ |0〉〈0|E2 ⊗ ξD2

a2:n2

)
U †2

∥∥∥ τRB
RJ

1 ⊗ νBCCE2
2 ⊗ ξD2

1:n2

)
≤ log(1 + 15δ2

2) , (3.33)

Π̃
(
τB

RJ
1 ⊗ νBCCE2

2 ⊗ ξD2
1:n2

)
Π̃ ≤ 2 · U2

(
τRB

RJBCC
1 ⊗ |0〉〈0|E2 ⊗ ξD2

a2:n2

)
U †2 , (3.34)

and
Tr
[
Π̃U2

(
τRB

RJBCC
1 ⊗ |0〉〈0|E2 ⊗ ξD2

a2:n2

)
U †2

]
= 1 , (3.35)

where νB
CCE1

2 = 1
a2

∑a2
r=1 |r〉〈r|B

CCE2 . Define

τRB
RJBCCE2D2

2 := U2

(
τRB

RJBCC
1 ⊗ |0〉〈0|E2 ⊗ ξD2

a2:n2

)
U †2 ,

and

|κ2〉RAB
RJBCCE2D2D′2FF

′
:= U2

(
|κ1〉RAB

RJBCC ⊗ |0〉E2 ⊗ |ξa2:n2〉D2D′2

)
.

Note that by construction, U2 is read-only on register J and since J is classical in the
state κRB

RJBCC
1 , the unitary operator U2 keeps κRB

RJ
1 intact. So, we have

κRB
RJ

2 = κRB
RJ

1 = ψRB
RJ

1 . (3.36)

Moreover, by Eq. (3.33), τ2 is close to a product state in max-relative entropy and therefore,
we can claim the following statement, proved towards the end.

Claim 3.10. For the state κ2 defined above, we have

Dmax

(
κRB

RJBCCE2D2F
2

∥∥∥ κRB
RJ

2 ⊗ νBCCE2
2 ⊗ ξD2

1:n2
⊗ 1F

|F |

)
≤ Dmax

(
ψ′
RBC‖ σRBC

)
+ 5δ2 (3.37)
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and

D
ε22
H

(
κB

RJBCCE2D2F
2

∥∥∥ κB
RJ

2 ⊗ νBCCE2
2 ⊗ ξD2

1:n2
⊗ 1F

|F |

)
≥ D

ε42/4
H

(
ψ′
BC‖ σBC

)
− 1 .

(3.38)

Using the claim, we proceed as follows. Let

β := Dmax

(
ψ′RBC‖ σRBC

)
+ 5δ2 ,

and S and T be quantum registers such that |S| = |T | =
∣∣BCCE2D2

∣∣. Let |η〉ST be a

purification of νB
CCE2

2 ⊗ ξD2
1:n2
⊗ 1F

|F | such that ηT = νB
CCE2

2 ⊗ ξD2
1:n2
⊗ 1F

|F | .

To redistribute registers BCC in the state ψ1 with the desired cost, Claim 3.10 suggests
that it would be sufficient for parties to transform their joint state ψ1 to κ2 through the
unitary operators U2U1, then use the AJW protocol to redistribute registers BCCE2D2F ,
and finally, transform back κ2 to the state ψ1 by applying U−1

1 U−1
2 . However, in order

to apply U2U1, one needs to have access to all the registers J,BC , and C, but initially
registers BCC are with Alice and register J is with Bob. This problem can be resolved
using the Uhlmann theorem. Recall that κRB

RJ
2 = ψRB

RJ
1 as mentioned in Eq. (3.36).

Therefore, there exists an Uhlmann isometry V : HABCC → HACBCE2D2D′2FF
′

such that

V |ψ1〉RAB
RJBCC = |κ2〉RAB

RJBCCE2D2D′2FF
′
. (3.39)

Notice that V only acts on registers ABCC which are initially with Alice and so Alice can
apply the isometry V locally to transform ψ1 to κ2.

Now, we have all the ingredients for the protocol and we proceed to construct the
protocol as follows:

The protocol. In order to redistribute |ψ〉RABC , Alice and Bob run the following proto-
col.

1. Initially, Alice and Bob start in the state |ψ〉RABC and share quantum states |ξ′〉X′X ,

|ξa2:n2〉D
′
2D2 and m := d2β

ε22
e copies of the state |η〉ST . Hence, the initial joint quantum

state of Referee, Alice and Bob is

|ψ〉RABC ⊗ |ξ〉D′1D1 ⊗ |ξa2:n2〉D
′
2D2

m⊗
i=1

|η〉SiTi ,

such that register R is held by Referee, registers (ACS1 . . . SmD
′
1D
′
2) are held by

Alice and registers (BT1 . . . TmD1D2) are held by Bob.
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2. Bob prepares ancilla qubits |0〉E1 and applies the isometry Uii,BUi on his registers,
and Alice applies the isometry V Uii,A on her registers. Hence, their joint state
transforms into a quantum state, say ω, which has purified distance at most δ1

from |κ2〉RAB
RJBCCE2D2D′2FF

′
such that registers (ABCCD′1E2D2D

′
2FF

′) are with
Alice, registers (BRJBCE1D1) are with Bob and register (R) is with Referee.

3. Running the protocol given by Theorem 3.5, parties redistribute their registers as-
suming their joint state is |κ2〉RAB

RJBCCE2D2D′2FF
′

and using the shared entangled
state

⊗m
i=1 |η〉SiTi , and end up in the state ω̂RAB

RJBCCE2D2D′2FF
′

such that regis-
ter (R) is held with Referee, (AD′2F

′) are held with Alice and (BRJBCCE2D2F ) are
held with Bob.

4. Bob applies the operator (U2U1Ui)
−1 on registers BRJBCCE2D2F .

5. The final state is obtained in registers RABC.

According to Theorem 3.5, the communication cost of this protocol is

1

2

[
Dmax

(
κRB

RJBCCE2D2F
2

∥∥∥ κRB
RJ

2 ⊗ νBCCE2
2 ⊗ ξD2

1:n2
⊗ 1F

|F |

)
− D

ε22
H

(
κB

RJBCCE2D2F
2

∥∥∥ κB
RJ

2 ⊗ νBCCE2
2 ⊗ ξD2

1:n2
⊗ 1F

|F |

)]
+ log

1

ε22

which is at most

1

2

[
Dmax

(
ψ′
RBC‖ σRBC

)
−D

ε42/4
H

(
ψ′
BC‖ σBC

)]
+ 2.5 δ2 + log

1

ε22
+ 1 ,

by Claim 3.10.
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Correctness of the protocol. Let φ be the final joint state of parties in the above
protocol. We have

P
(
φRABC , ψRABC

)
≤ P

(
φRABC , ψ′RABC

)
+ P

(
ψ′RABC , ψRABC

)
≤ P

(
φRABCE2D2D′2FF

′
, ψ′

RABC ⊗ |0〉〈0|E2 ⊗ ξD2D′2
a2:n2

⊗ |Φ〉〈Φ|FF ′
)

+ ε1

≤ P
(
ω̂RAB

RJBCCE2D2D′2FF
′
, κ

RABRJBCCE2D2D′2FF
′

2

)
+ ε1

≤ P
(
ω̂RAB

RJBCCE2D2D′2FF
′
, ωRAB

RJBCCE2D2D′2FF
′
)

+ P
(
ωRAB

RJBCCE2D2D′2FF
′
, κ

RABRJBCCE2D2D′2FF
′

2

)
+ ε1

≤ ε1 + 9ε2 + δ1 .

where the second and third inequalities follows from monotonicity of purified distance
under quantum operations and the last inequality holds since ω̂ ∈ B9ε2(ω) by Theorem 3.5,
and ω ∈ Bδ1(κ2).

By construction of embezzling states, we can choose δ1 and δ2 arbitrarily small by al-
lowing arbitrary large shared entanglement between Alice and Bob. Hence, the statement
of the theorem follows.

It only remains to prove Claim 3.10.

Proof of Claim 3.10: Consider the states and operators defined in the proof of Theo-
rem 3.9. Since register J is classical in both κRB

RJBCC
1 and τRB

RJBCC
1 and U2 is read-only

on J , we have that κRB
RJ

2 = τRB
RJ

2 = τRB
RJ

1 , and κJB
CCE2D2

2 ∈ Bε
4
2/4
(
τJB

CCE2D2
2

)
. There-

fore, we get

Dmax

(
κRB

RJBCCE2D2F
2

∥∥∥ κRB
RJ

2 ⊗ νBCCE2
2 ⊗ ξD2

1:n2
⊗ 1F

|F |

)
≤ Dmax

(
κRB

RJBCCE2D2F
2

∥∥∥ τRB
RJBCCE2D2

2 ⊗ 1F

|F |

)
+ Dmax

(
τRB

RJBCCE2D2
2

∥∥∥ τRB
RJ

2 ⊗ νBCCE2
2 ⊗ ξD2

1:n2

)
≤ Dmax

(
ψ′
RBC‖ σRBC

)
+ log(1 + 15δ2

2) ,

where the last inequality is a consequence of Eq. (3.33) and the fact that κRB
RJBCCE2D2F

2

and τRB
RJBCCE2D2F

2 are unitary transformations of ψ′RBC and σRBC , respectively. The
above equation implies Eq. (3.37) since log2(1 + 15x2) ≤ 5x for all x ≥ 0.
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In the rest of the proof, we show that

D
ε22
H

(
κB

RJBCCE2D2F
2

∥∥∥ κB
RJ

2 ⊗ νBCCE2
2 ⊗ ξD2

1:n2
⊗ 1F

|F |

)
≥ D

ε42/4
H

(
κB

RJBCCE2D2F
2

∥∥∥ τB
RJBCCE2D2

2 ⊗ 1F

|F |

)
− 1 . (3.40)

Then, Eq. (3.38) follows since κRB
RJBCCE2D2F

2 and τRB
RJBCCE2D2F

2 are unitary transforma-

tions of ψ′RBC and σRBC , respectively. Let λ := D
ε42/4
H

(
κB

RJBCCE2D2F
2

∥∥∥ τB
RJBCCE2D2F

2

)
,

and Π′ be the POVM operator achieving λ, i.e.,

Tr
[
Π′κB

RJBCCE2D2F
2

]
≥ 1− ε42

4
(3.41)

and

Tr

[
Π′
(
τB

RJBCCE2D2
2 ⊗ 1F

|F |

)]
= 2−λ . (3.42)

Recall that κB
RJ

2 = τB
RJ

2 = τB
RJ

1 . So, Eq. (3.34) implies that

Π̃
(
κB

RJ
2 ⊗ νBCCE2

2 ⊗ ξD2
1:n2

)
Π̃ ≤ 2 · τBRJBCCE2D2

2 . (3.43)

Since σRBC ∈ MEε,ψ
′

R−B−C , the state κJB
CCE2D2

2 is (ε42/4)-close to τJB
CCE2D2

2 in purified
distance. This implies that

Tr
[
Π̃κB

RJBCCE2D2F
2

]
≥ Tr

[
Π̃τB

RJBCCE2D2F
2

]
− ε42

4
= 1− ε42

4
, (3.44)

using Theorem 1.4, Theorem 1.6 and Eq. (3.35). So, the Gentle Measurement lemma,
Lemma 1.5, implies that∥∥∥∥∥∥ Π̃κB

RJBCCE2D2F
2 Π̃

Tr
[
Π̃κB

RJBCCE2D2F
2

] − κBRJBCCE2D2F
2

∥∥∥∥∥∥
tr

≤ ε22 .

Define the POVM operator Π := Π̃Π′Π̃. By Eq. (3.10) and Eq. (3.44), we have

Tr
[
ΠκB

RJBCCE2D2F
2

]
= Tr

[
Π′Π̃κB

RJBCCE2D2F
2 Π̃

]
≥

(
1− ε42

4

)(
Tr
[
Π′κB

RJBCCE2D2F
2

]
− ε22

2

)
(By Theorem 1.4)

≥ 1− ε22 ,
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and by Eq. (3.43), we get

Tr

[
Π

(
κB

RJ
2 ⊗ νBCCE2

2 ⊗ ξD2
1:n2
⊗ 1F

|F |

)]
≤ 2 · Tr

[
Π′
(
τB

RJBCCE2D2
2 ⊗ 1F

|F |

)]
= 2−λ+1 ,

which imply Eq. (3.40), as desired.

3.4 Asymptotic and i.i.d. analysis

Suppose that the state |ψ〉RnAnBnCn = (|ψ〉RABC)⊗n is shared between Referee (Rn), Al-
ice (AnCn) and Bob (Bn) where Rn, An, Bn and Cn denote n-fold tensor product of
registers R, A, B and C, respectively. Let ε := ε1 = ε42/4. By Theorem 3.9 and choos-
ing σR

nBnCn = ψ′R
nBn⊗ψCn , there exists an entanglement-assisted one-way protocol which

outputs a state φR
nAnBnCn ∈ B14ε1/4(ψR

nAnBnCn) with communication cost Q(n, ε) at most

1

2
inf

ψ′∈Bε(ψRnBnCn )

[
Dmax

(
ψ′
RnBnCn‖ ψ′RnBn ⊗ ψCn

)
−Dε

H

(
ψ′
BnCn‖ ψ′Bn ⊗ ψCn

)]
+ log

1

2
√
ε

≤ 1

2
inf

ψ′∈Bε(ψRnBnCn )

ψ′R
nBn=ψR

nBn

[
Dmax

(
ψ′
RnBnCn‖ ψRnBn ⊗ ψCn

)
−Dε

H

(
ψ′
BnCn‖ ψBn ⊗ ψCn

)]
+ log

1

2
√
ε

≤ 1

2
inf

ψ′∈Bε(ψRnBnCn )

ψ′R
nBn=ψR

nBn

[
Dmax

(
ψ′
RnBnCn‖ ψRnBn ⊗ ψCn

)
−D2ε

H

(
ψB

nCn‖ ψBn ⊗ ψCn
)]

+ log
1

2
√
ε

≤ 1

2

[
Dε/3

max

(
ψR

nBnCn‖ ψRnBn ⊗ ψCn
)
−D2ε

H

(
ψB

nCn‖ ψBn ⊗ ψCn
)]

+ log
1

2
√
ε

+ log
72 + ε2

ε2
,

where the first inequality follows from Eq. (3.26), the third inequality follows from the
definition of Hypothesis testing entropy, and the last inequality follows from Theorem 1.9
for the choice of ε, δ ← ε/3, ρAB ← ψR

nBnCn , ρA ← ψR
nBn and σB ← ψC

n
. Therefore,
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using Theorem 1.8, the asymptotic communication rate of redistributing n copies of a pure
state |ψ〉RABC is

lim
n→∞

1

n
Q(n, ε) ≤ 1

2
I(R : C |B)ψ . (3.45)

3.5 Conclusion and outlook

In this chapter, we revisited the task of one-shot quantum state redistribution, and intro-
duced a new protocol achieving this task with communication cost

1

2
min

ψ′∈Bε(ψRBC)
min

σRBC∈ME
ε2/4,ψ′
R−B−C

[
Dmax

(
ψ′RBC‖σRBC

)
−Dε

H

(
ψ′BC‖σBC

)]
+ log

1

ε
+ 1 , (3.46)

with error parameter ε. Our result is the first to operationally connect one-shot quantum
state redistribution and quantum Markov chains and provides an operational interpretation
for a one-shot representation of quantum conditional mutual information as explained in
Sec 3.1. In the special case where ψRBC is a quantum Markov chain, our protocol leads to
near-zero communication which was not known for the previous protocols. Moreover, the
communication cost of our protocol is lower than all previously known one-shot protocols
and we show that it achieves the optimal cost of I(R : C |B) in the asymptotic i.i.d. setting.
Our protocol also achieves the near-optimal result of Ref. [6] for the case that ψRBC is
classical.

A question of interest is whether the communication cost of our one-shot protocol can
be bounded with I(R : C |B). In the quantum communication complexity setting, such a
bound would imply the possibility of compressing the communication of bounded-round
quantum protocols to their information content which also results in a direct-sum theorem
for bounded-round quantum communication complexity [89].

Another question that we have not addressed in this thesis is whether our bound is
optimal. In other words, it is interesting to find out if it is possible to show that the same
quantity is also a lower bound for the communication cost of quantum state redistribution.
There have been several lower bounds in the literature for the communication cost of
entanglement-assisted quantum state redistribution including the ones in Ref. [27] and
Ref. [64]. However, it is not clear if our bound achieves any of them.
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Part II

Quantum Learning Theory

61



Chapter 4

Optimal quantum bounds for
learning Boolean functions

4.1 Introduction

Learning Boolean functions has been studied widely in the theoretical machine learn-
ing. In this framework, a concept class C is a subset of the set of all Boolean func-
tions f : {0, 1}n → {0, 1}. A rigorous definition of learning a concept class was firstly
developed by Leslie Valiant [91] who introduced the notion of probably approximately
correct (PAC) learning. An (ε, δ)-PAC learner is a learning algorithm which for every
target concept c ∈ C and distribution D over {0, 1}n, given some i.i.d. random labelled
examples , with probability at least 1 − δ, outputs an ε-approximation h of c ∈ C such
that Prx∼D[h(x) 6= c(x)] ≤ ε. For a concept c ∈ C and distribution D, a labelled exam-
ple is a random pair (x, c(x)) where x is distributed according to distribution D. Later,
Bshouty and Jackson [31] extended the notion of PAC learning to the quantum setting. For
a target concept c ∈ C and distribution D, they defined a quantum example as a superposi-
tion of labelled examples (x, c(x)) weighted according to the distribution D. Then, a PAC
quantum learner is a quantum learning algorithm which with high probability, outputs an
approximation of the concept c given some quantum examples.

In reality, the labelled examples may be noisy or there may not be necessarily an
underlying target concept at all. A more realistic model is the agnostic learning which was
introduced by Haussler [49], and Kearns, Schapire and Sellie [63]. In the agnostic model,
examples are random pairs (x, l) ∈ {0, 1}n×{0, 1} distributed according to a distribution D
over {0, 1}n+1, and the goal is to find a concept in a specific concept class C with minimum
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error . In this framework, the error of a concept c ∈ C with respect to D is defined
as errD = Pr(x,l)∼D[c(x) 6= l]. An (ε, δ)-agnostic learner is a learning algorithm which for
every distribution D, with probability at least 1 − δ, outputs a concept c ∈ C with error
at most an additive ε worse than the lowest possible error. Similar to the PAC model,
the agnostic model can be extended to the quantum setting where a quantum example
for a distribution D is defined as the superposition of all pairs (x, l) ∈ {0, 1}n+1 weighted
according to the distribution D.

In any of the above models, the goal is to find “efficient” learners. Here, we are in-
terested in the measure of sample complexity which is the minimum number of examples
required to learn any concept in a concept class C. Besides ε and δ, the sample complexity
of C depends on a combinatorial parameter called theVC dimension of C. The VC dimen-
sion of a concept class C is the size of the largest subset S ⊆ {0, 1}n which can be labelled
with all 2|S| possible bit strings of length |S| by concepts from C. The notions of sample
complexity and VC dimension are defined formally in Section 4.2.

In a series of works [29, 47], it has been shown that the (ε, δ)-PAC (classical) sample
complexity of a concept class with VC dimension d is

Θ

(
d

ε
+

log(1/δ)

ε

)
. (4.1)

For the agnostic model, the (ε, δ)-agnostic (classical) sample complexity is

Θ

(
d

ε2
+

log(1/δ)

ε2

)
. (4.2)

The lower bound was shown by Vapnik and Chervonenkis [94] and Talagrand [85] showed
that this bound is indeed achievable.

Although quantum learning of a concept class can be more efficient than classical learn-
ing in certain scenarios (see e.g. Ref. [31] and Ref. [82]), PAC quantum sample complexity
and agnostic quantum sample complexity cannot be better than their classical counter-
parts by more than a constant factor. In particular, Eq. (4.1) and Eq. (4.2) also hold
for (ε, δ)-PAC quantum sample complexity and (ε, δ)-agnostic quantum sample complex-
ity , respectively. The upper bounds are carried over directly from the classical bounds
since a (classical) labelled example can be derived by measuring a quantum example. The
lower bounds are due to Arunachalam and de Wolf [12] who used two different proof ap-
proaches. First, they used a simple information-theoretic approach to reprove the classical
lower bounds in Eq. (4.1) and Eq. (4.2), and similar bounds for quantum sample complex-
ities, but smaller by a factor of log(d/ε). They claimed that the log(d/ε) is inherent in
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the information-theoretic proof, and to remove the log(d/ε) factor, they presented a much
more complicated proof via analysis of quantum state identification and Fourier analysis.

In this chapter, we show that, as opposed to the claim in Ref. [12], the information-
theoretic approach can be used to derive the optimal lower bound for both PAC quantum
sample complexity and agnostic quantum sample complexity. Our proof is much simpler
than the state identification based proof in Ref. [12] and the same technique potentially
can be applied to derive optimal bounds in other related problems.

4.1.1 Proof techniques

Our proof is built up on the information theoretic proof in Ref. [12] which consisted of three
steps. In the first step, they showed that, at the end of the learning process, the informa-
tion obtained by a PAC (or agnostic) learner about the target concept (or minimal-error
concept) is Ω(d). In the second step, they showed that this information is upper bounded
by the entropy of the average of a copy of the quantum example for different possible con-
cepts multiplied by the sample complexity t of the learner, using the subadditivity property
of entropy. By bounding the entropy of this averaged state in the third step, they showed
that the information is O(Tε log(d/ε)). These steps together implies the Ω( d

ε log(d/ε)
) bound

for the sample complexity t.

It turns out that the second step, i.e., the use of subadditivity, is the origin of the sub-
optimality in their proof. In our proof, we combine steps two and three and use spectral
analysis and concentration of measure bounds in order to derive a tighter upper bound on
the information obtained by the learner. We also improve the constants in the Ω(d) lower
bound by using the well-known Fano’s inequality, and therefore, we succeed to obtain the
optimal lower bound for both PAC and agnostic quantum learning.

4.2 Quantum learning theory

We refer the readers to the book [83] for an introduction to machine learning theory and
the survey [11] for an introduction to quantum learning theory. Here, we briefly review the
notation related to the PAC model and agnostic model that we require in this chapter.

In this work, we study learning Boolean functions over n-dimensional cube. We refer
to a Boolean function c : {0, 1}n → {0, 1} as a concept . We can also think of a concept
as a bit-string in {0, 1}N for N := 2n which contains the value of c over all possible n-bit
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strings. A concept class is a subset C ⊆ {0, 1}N of Boolean functions. For a concept c, we
refer to c(x) as the label of x ∈ {0, 1}n, and the tuple (x, c(x)) as a labelled example.

A crucial combinatorial quantity in learning Boolean functions is the VC dimension
of a concept class which was introduced by Vapnik and Chervonenkis [93]. We say a
set S = {s1, . . . , sd} ⊆ {0, 1}n is shattered by a concept class C if for every a ∈ {0, 1}d,
there exists a concept c ∈ C such that (c(s1), . . . , c(sd)) = a. The VC dimension of C is
the size of the largest set shattered by C, and we denote it as VC-dim(C).

PAC model

Consider a concept class C ⊆ {0, 1}N . The PAC (probably approximately correct) model for
learning concepts was introduced in the classical setting by Valiant [91] and was extended
to the quantum setting by Bshouty and Jackson [31]. In the quantum PAC model, a
learning algorithm is given a quantum PAC example oracle QPEX(c,D) for an unknown
concept c ∈ C and an unknown distribution D over {0, 1}n. The oracle QPEX(c,D) has
no inputs; when invoked, it outputs a superposition of labelled examples of c distributed
according to distribution D, namely,∑

x∈{0,1}n

√
D(x) |x, c(x)〉 .

This is one possible generalization of classical random examples to the quantum setting.
Although such quantum examples may be difficult to generate and store, many quantum
learning applications involve data that are naturally provided as coherent quantum states.

We say a Boolean function h, commonly called a hypothesis , is an ε-approximation of c
with respect to distribution D, if

Pr
x∼D

[h(x) 6= c(x)] ≤ ε . (4.3)

Given access to QPEX(c,D) oracle, the goal of a quantum PAC learner is to find an ε-
approximation hypothesis h of c with high success probability.

Definition 4.1. For ε, δ ∈ [0, 1], we say an algorithm A is an (ε, δ)-PAC quantum learner
for concept class C if for every c ∈ C and distribution D, given access to QPEX(c,D), with
probability at least 1− δ, A outputs a hypothesis h ∈ {0, 1}N which is an ε-approximation
of c
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The sample complexity of a quantum learner A is the maximum number of times A

invokes the oracle QPEX(c,D) for any concept c ∈ C and any distribution D over {0, 1}n.
The (ε, δ)-PAC quantum sample complexity of a concept class C is the minimum sample
complexity of a (ε, δ)-PAC quantum learner for C.

Agnostic model

In the PAC model, it is assumed that examples are generated perfectly according to some
unknown concept c ∈ C. The agnostic model is a more realistic model where examples cor-
respond to random labelled pairs (x, l) distributed according to an unknown distribution D
over {0, 1}n+1, not necessarily derived from a specific concept c ∈ C. This model was in-
troduced in the classical setting by Haussler [49], and Kearn, Schapire, and Sellie [63] and
was first studied in the quantum setting by Arunachalam and de Wolf [12]. In the agnostic
model, the learning algorithm has access to an agnostic quantum oracle QAEX(D) for an
unknown distribution D over {0, 1}n+1. When invoked, the oracle QAEX(D) outputs the
superposition ∑

(x,l)∈{0,1}n+1

√
D(x, l) |x, l〉 .

The error of a hypothesis h ∈ {0, 1}N under distribution D is defined as

errD(h) := Pr
(x,l)∼D

[h(x) 6= l] . (4.4)

For a concept class C, the minimal error achievable is defined as

optD(C) := min
c∈C

errD(c)

Given access to a QAEX(D) oracle, the goal of quantum agnostic learner is to find a
hypothesis h ∈ C with error not “much larger” than optD(C).

Definition 4.2. For ε, δ ∈ [0, 1], we say a learning algorithm A is an (ε, δ)-agnostic quan-
tum learner for C if for every distribution D, given access to QAEX(D), with probability
at least 1− δ, A outputs a hypothesis h ∈ C such that errD(h) ≤ optD(C) + ε.

Similar to the PAC model, we define the sample complexity of a quantum learner A

as the maximum number of times A invokes the oracle QAEX(D) for any distribution D
over {0, 1}n+1. The (ε, δ)-agnostic quantum sample complexity of a concept class C is the
minimum sample complexity of an (ε, δ)-agnostic quantum learner for C.
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4.3 A lower bound on sample complexity of PAC lear-

ning

Let C be a concept class with VC-dim(C) = d and D be a distribution over n-bit strings.
In this section, we use information-theoretic arguments to show that, for ε ∈ (0, 1/4)
and δ ∈ (0, 1/2), the (ε, δ)-PAC quantum sample complexity of C is

Ω

(
d

ε
+

log(1/δ)

ε

)
.

The above bound contains two parts, one depends on the VC dimension and the other one
is independent of the VC dimension. The VC-independent part was shown by Atici and
Servadio [14], and for completeness, we provide their proof in Lemma 4.1.

Lemma 4.1. Let C be a non-trivial concept class. For every δ ∈ (0, 1/2) and ε ∈ (0, 1/4),
an (ε, δ)-PAC quantum learner for C has quantum sample complexity at least Ω

(
1
ε

log 1
δ

)
.

Proof: Since C is non-trivial, there exists concepts c1, c2 ∈ C and inputs x1, x2 ∈ {0, 1}n
such that c1(x1) = c2(x1) and c1(x2) 6= c2(x2). Consider the distribution D defined as
follows:

D(x1) = 1− 2ε and D(x2) = 2ε .

Let |ψi〉 :=
√

1− 2ε|x1, ci(x1)〉 +
√

2ε|x2, ci(x2)〉 for i ∈ {1, 2}. Under this distribution,
no hypothesis can simultaneously ε-approximates c1 and c2. So, an (ε, δ)-PAC quantum
learner for C can be used to distinguish |ψ1〉⊗t from |ψ2〉⊗t with success probability at
least 1− δ, where t is the sample complexity of the learner. On the other hand, by Holevo-
Helstrom theorem (see e.g. Ref. [96, Theorem 3.4]), |ψ1〉⊗t and |ψ2〉⊗t are distinguishable

with probability at most 1
2

+ 1
2

√
1− |〈ψ1|ψ2〉t|2. So, we have 〈ψ1|ψ2〉t ≤ 2

√
δ(1− δ).

Since 〈ψ1|ψ2〉 = 1− 2ε, it follows that t = Ω
(

1
ε

log(1/δ)
)
.

Now, we are ready to prove the VC-dependent part of the lower bound.

Theorem 4.2. Let n ≥ 2, d ≥ 2512, N = 2n and C ⊆ {0, 1}N be a concept class
with VC-dim(C) = d + 1. For ε ∈ (0, 1/4) and δ ∈ (0, 1/2), every (ε, δ)-PAC quantum
learner for C has sample complexity Ω(d/ε).

Proof: Suppose there is an (ε, δ)-PAC quantum learner A for C with quantum sample
complexity t. Let S = {s0, . . . , sd} ⊆ {0, 1}n be a set of size VC-dim(C) = d+ 1 shattered
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by the concept class C. Let D be a probability distribution over the set {0, 1}n such
that D(s0) = 1−4ε, and D(si) = 4ε/d for i ∈ [d]. Since D is only supported over the set S,
in the rest of the proof, we write i instead of si for the sake of brevity. Since x = 0 has the
largest weight in distribution D, concepts with equal value at x = 0 are hard to be identified
by a learner. So we consider a set of concepts defined as follows. For each a ∈ {0, 1}d,
let ca ∈ C be a concept such that ca(0) = 0 and ca(i) = ai for all i ∈ [d]. Such a concept
exists in C since the set S is shattered by the concept class C. The PAC quantum example
for ca according to D is written as |ψa〉 =

√
1− 4ε|0, 0〉+

√
4ε/d

∑d
i=1 |i, ai〉. Let ρa denote

the state corresponding to t copies of the example |ψa〉〈ψa| and let ρAB1...Bt be the following
classical-quantum state

ρAB1...Bt :=
1

2d

∑
a∈{0,1}d

|a〉〈a|A ⊗ ρB1...Bt
a =

1

2d

∑
a∈{0,1}d

|a〉〈a| ⊗ |ψa〉〈ψa|⊗t . (4.5)

Let B := B1 . . . Bt. First, we show that I(A : B)ρ ≥ Ω(d) using the hypothesis that C, and
therefore, its subset {ca : a ∈ {0, 1}d}, is (ε, δ)-PAC quantum learnable using t quantum
examples. Then, we show that I(A : B)ρ ≥ Ω(d) implies that t is Ω(d/ε).

Suppose the learner A is given t quantum examples in the state ρBa . Let E be the a
binary random variable corresponding to the event that A outputs a desirable hypothesis,
i.e., a hypothesis f ∈ {0, 1}N satisfying Pri∼D [f(si) 6= ca(si)] ≤ ε. The event E occurs with
probability at least 1− δ. Let F be the random variable corresponding to the output of A.
Using the data processing inequality (DPI) and the chain rule for mutual information, we
have

I(A : B) ≥ H(A)− H(A |F )

≥ H(A)− H(AE |F )

= H(A)− H(A |FE)− H(E |F ) (by chain rule for H(AE |F ))

≥ H(A)− H(A |FE)− H(E)

= H(A)− Pr [E = 0] H(A |F,E = 0)− Pr [E = 1] H(A |F,E = 1)− H(E) ,

where the second inequality follows from the fact that Shannon entropy is monotonic under
taking marginals, and the third inequality holds since conditioning on classical registers
does not increase the entropy. Note that H(A |F,E = 1) ≤ H(A) ≤ d and Pr [E = 0] ≥ δ.
Also, given E = 1, the probability that F is equal to A is at least 1 − ε. So, the Fano
inequality implies that

I(A : B) ≥ d− δd− H(ε)− εd− H(δ) ≥ 1

4
d− 2 , (4.6)
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where the last inequality follows from the assumption that ε ≤ 1/4 and δ ≤ 1/2.

Now assume t < d/ε; otherwise, we are done. Suppose t = νd/ε for some ν ∈ (0, 1).
(Note that t = 0 is not possible.) We show that there are positive universal constants α, d0

such that if ν < α and d ≥ d0, the mutual information I(A : B) violates Eq. (4.6).

Notice that ρAB and ρA have the same spectrum. Hence, I(A : B)ρ = S(B)ρ with

ρB =
1

2d

∑
a∈{0,1}d

|ψa〉〈ψa|⊗t =
1

2d

∑
a∈{0,1}d

∑
u,v∈Ntd

√
D(u)D(v) |u〉〈v|I ⊗ |au〉〈av|L ,

(4.7)
where register B is partitioned into registers I and L, storing indices and labels, respec-
tively. Let σB be the quantum state after applying Hadamard operator H⊗t on register L,
i.e.,

σB :=
1

2d

∑
a∈{0,1}d

∑
u,v∈Ntd

√
D(u)D(v) |u〉〈v|I ⊗H⊗t|au〉〈av|LH⊗t

=
1

2t2d

∑
u,v∈Ntd

√
D(u)D(v) |u〉〈v|I ⊗

∑
a∈{0,1}d

∑
x,y∈{0,1}t

(−1)x·au+y·av |x〉〈y|L .

For fixed x, y ∈ {0, 1}d and u, v ∈ Nt
d, we have∑

a∈{0,1}d
(−1)x·au+y·av =

{
2d if ps(ux) = ps(vy) ,

0 otherwise.

where ps : Nt
d → {0, 1}d is the parity signature function defined in Section 1.2.1. So, we

get

σB =
1

2t

∑
x,y∈{0,1}t

∑
u,v∈Ntd

ps(ux)=ps(vy)

√
D(u)D(v) |u〉〈v|I ⊗ |x〉〈y|L

=
1

2t

∑
b∈{0,1}d

 ∑
x∈{0,1}t

∑
u∈Ntd

ps(ux)=b

√
D(u) |u〉I |x〉L


 ∑
y∈{0,1}t

∑
v∈Ntd

ps(vy)=b

√
D(v) 〈v|I〈y|L

 .

For each b ∈ {0, 1}d, let

|φb〉 :=
∑

x∈{0,1}t

∑
u∈Ntd

ps(ux)=b

√
D(u) |u〉|x〉 .
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Note that for each x ∈ {0, 1}t and u ∈ Nt
d, the value of ps(ux) is unique. So, 〈φb|φb′〉 = 0

for distinct d-bit strings b and b′. Moreover, for each b ∈ {0, 1}d, |φb〉 is an eigenvector
of σB with corresponding eigenvalue

λb :=
1

2t

∑
x∈{0,1}t

∑
u∈Ntd

ps(ux)=b

D(u)

=
1

2t

∑
x∈{0,1}t

∑
u∈N|x|d
ps(u)=b

D(u)

=
t∑

r=0

(
t
r

)
2t

∑
u∈Nrd

ps(u)=b

(1− 4ε)r−|u|
(

4ε

d

)|u|

=
t∑

r=0

(
t
r

)
2t

r∑
l=0

(
r

l

)
(1− 4ε)r−l

(
4ε

d

)l
nl,|b| ,

where nl,|b| denotes the number of strings in [d]l that have the same parity signature with
Hamming weight |b| (see Section 1.2.1). Note that the eigenvalue λb only depends on |b|.
Thus, its multiplicity is

(
d
h

)
. In the rest of the proof, we write λh instead of λb for a string b

with Hamming weight h.

Since the Hadamard operator is unitary, we have S(B)ρ = S(B)σ and therefore,

S(B)ρ =
d∑

h=0

(
d

h

)
λh log

1

λh

≤ log d+
d∑

h=0

(
d

h

)
λh log

(
d

h

)
(since

∑d
h=0

(
d
h

)
λh = 1)

= log d+
t∑

r=0

(
t
r

)
2t

d∑
h=0

pr(h) log

(
d

h

)
, (4.8)

where

pr(h) :=

(
d

h

) r∑
l=0

(
r

l

)
(1− 4ε)r−l

(
4ε
d

)l
nl,h .

For each r, pr is a probability distribution over Nd to be described shortly. So, pr(h)
(
t
r

)
/2t

forms a probability distribution over r ∈ Nt and h ∈ Nd. In the rest of the proof, we use
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concentration of measure to bound S(B)ρ. In particular, we first use the concentration
of the binomial distribution over r ∈ Nt around t/2 to bound the terms with r ≤ t/4
or r ≥ 3t/4. We then bound the mean of the distribution pr(h) by 8εr, which is bounded
by 6νd for r ∈ [t/4, 3t/4]. Finally, we use the concentration of pr around its mean to bound
the terms corresponding to h ≥ 7νd.

For an integer m ∈ [t], let X be a random string in Nm
d chosen according to the distribu-

tion D⊗m, and Zj be the binary random variable corresponding to the parity of the number
of occurrences of the symbol j ∈ [d] in X. Hence, Z :=

∑
j Zj is the random variable corre-

sponding to the Hamming weight of the parity signature of X, and pm(h) is the probability
that the parity signature of X has Hamming weight h. In other words, pm(h) = Pr[Z = h].
For a fixed symbol j ∈ [d], the parity of the number of occurrences of j in X is even with
probability α0 and is odd with probability α1 where α0 + α1 = 1 and

α0 − α1 =
r∑

w=0

(−1)w
(
r

w

)(
4ε

d

)w (
1− 4ε

d

)r−w
=

(
1− 8ε

d

)m
.

Therefore, the expected value of Zj equals E [Zj] = α1 = 1
2

(
1−

(
1− 8ε

d

)m)
. Moreover,

linearity of expectation implies that

E [Z] =
d∑
j=1

E [Zj] =
d

2

(
1−

(
1− 8ε

d

)m)
≤ d

2

(
1−

(
1

4

) 8εm
d

)
≤ 8εm ,

(4.9)
where the inequalities follow from the fact that 1 − 2x ≤ 1

4x
≤ 1 − x for all x ∈ [0, 1/2].

Since pm(h) = 0 for h > m, we have

d∑
h=0

pm(h) log

(
d

h

)
≤ max

0≤h≤m
log

(
d

h

)
≤ dH

(
min

{
1

2
,
m

d

})
.

This implies that

t/4∑
r=0

(
t
r

)
2t

d∑
h=0

pr(h) log

(
d

h

)
+

t∑
r=3t/4

(
t
r

)
2t

d∑
h=0

pr(h) log

(
d

h

)
≤ 2 · 2−(1−H(1/4))t · H

(
min

{
1

2
,
ν

ε

})
· d (By Eq. (1.4))

≤ 2 ε

(1− H(1/4))ν
H

(
min

{
1

2
,
ν

ε

})
(since x2−x ≤ 1 ∀x ≥ 0 )

≤ max

{
3 H(4ν)

ν
,

4

1− H(1/4)

}
. (4.10)
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The last inequality holds since H(x)/x is a non-increasing function of x and ε ≤ 1/4. So it
remains to bound the terms in Eq. (4.8) with r ∈ [t/4, 3t/4].

For r ∈ [t/4, 3t/4], let X and Z be the random variables defined above with m = r. By
Eq. (4.9), we have E [Z] ≤ 6νd, and therefore, we have

3t/4∑
r=t/4

(
t
r

)
2t

d∑
h=0

pr(h) log

(
d

h

)
≤ dH(7ν) +

3t/4∑
r=t/4

(
t
r

)
2t

d∑
h=7νd

pr(h) log

(
d

h

)
(4.11)

since log
(
d
h

)
≤ dH(7ν) for h ≤ 7νd. Notice that the Hamming weight of X is at least as

large as the Hamming weight of its parity signature, and has mean value E|X| = 4εr ≤ 3νd
for r ∈ [t/4, 3t/4]. Hence, the multiplicative Chernoff bound implies that

d∑
h=7νd

pr(h) ≤ Pr[ |X| ≥ 7νd ] ≤ exp(−νd) . (4.12)

Combining Eqs. (4.8), (4.10), (4.11) and (4.12), and using the fact that x e−x ≤ 0.5
for x ≥ 0 and ε ≤ 1/4, we get

I(A : B)ρ ≤ log d+ dH(7ν) + d exp(−νd) + max

{
3 H(4ν)

ν
,

4

(1− H(1/4))

}
≤ log d+ dH(7ν) +

1

2ν
+ max

{
3 H(4ν)

ν
,

4

1− H(1/4)

}
<

d

4
− 2 ,

for ν = 0.0023 and d ≥ 2512.

4.4 A lower bound on sample complexity of agnostic

learning

In this section, we show that the method used in Section 4.3 can also be utilized to
bound agnostic quantum sample complexity. In particular, let C be a concept class
with VC-dim(C) = d and D be a distribution over n-bit strings. We use information-
theoretic arguments to show that, for ε ∈ (0, 1/4) and δ ∈ (0, 1/2), the (ε, δ)-agnostic
quantum sample complexity of C is

Ω

(
d

ε2
+

log(1/δ)

ε2

)
.
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Similar to the PAC model, the lower bound contains two parts, one depends on the VC
dimension and the other one is independent of the VC dimension. For completeness, we
provide the proof of the VC-independent part, due to Arunachalam and de Wolf [12], in
the following lemma.

Lemma 4.3. Let C be a non-trivial concept class. For every δ ∈ (0, 1/2), ε ∈ (0, 1/4),
an (ε, δ)-agnostic quantum learner for C has quantum sample complexity at least Ω( 1

ε2
log 1

δ
).

Proof: For a non-trivial C, there exists two concepts c1, c2 ∈ C and an input x ∈ {0, 1}n
such that c1(x) 6= c2(x). Define distributions D+ and D− as follows:

D±(x, c1(x)) =
1± 2ε

2
and D±(x, c2(x)) =

1∓ 2ε

2
.

Let |ψ±〉 :=
√

(1± 2ε)/2 |x, c1(x)〉+
√

(1∓ 2ε)/2 |x, c2(x)〉 be the outputs of agnostic quan-
tum oracles QAEX(D±). Under these distributions, optD±(C) = (1− 2ε)/2 and no hy-
pothesis can simultaneously have error at most ε larger than optD+

(C) and optD−(C). So,
an (ε, δ)-agnostic quantum learner for C can be used to distinguish |ψ+〉⊗t from |ψ−〉⊗t
with probability at least 1 − δ, where t is the sample complexity of the learner. As in
Lemma 4.1, we can conclude that 〈ψ+|ψ−〉t ≤ 2

√
δ(1− δ) while 〈ψ+|ψ−〉 =

√
1− 4ε2.

This implies that t = Ω
(

1
ε2

log 1
δ

)
.

Next, we prove the VC-dependent part of the lower bound using the same approach as
in the proof of Theorem 4.2.

Theorem 4.4. Let n ≥ 2, d ≥ 2884, N = 2n and C ⊆ {0, 1}N be a concept class
with VC-dim(C) = d. For ε ∈ (0, 1/4) and δ ∈ (0, 1/2), every (ε, δ)-agnostic quantum
learner for C has sample complexity Ω(d/ε2).

Proof: Suppose there is an (ε, δ)-agnostic quantum learner A for C using t quantum
examples. Let S = {s1, . . . , sd} ⊆ {0, 1}n be a set of size d shattered by the concept
class C. For a ∈ {0, 1}d, let ca ∈ C be a concept such that ca(si) = ai for all i ∈ [d], and Da

be a distribution over {0, 1}n×{0, 1} such that Da(si, l) =
(
1 + (−1)ai+l4ε

)
/2d for i ∈ [d]

and l ∈ {0, 1}, and Da(x, l) = 0 otherwise. Since distributions Da are only supported over
the set S × {0, 1}, in the rest of the proof, we use i and si interchangeably for the sake of
brevity. Similar to Theorem 4.2, we define

ρAB1...Bt :=
1

2d

∑
a∈{0,1}d

|a〉〈a|A ⊗ ρB1...Bt
a =

1

2d

∑
a∈{0,1}d

|a〉〈a| ⊗ |ψa〉〈ψa|⊗t , (4.13)
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where |ψa〉 :=
∑d

i=1

∑1
l=0

√
Da(i, l)|i, l〉 is the agnostic quantum example for ca according

to distribution Da. Suppose the learner A is given t quantum examples in the state ρBa .
With probability at least 1− δ, A outputs a hypothesis ha ∈ {0, 1}N such that errDa(ha) is
at most optDa(C) + ε. By construction, ca is the minimal-error concept from C with respect
to the distribution Da and ha has additional error Pri∼Da [ha(si) 6= ca(si)]·4ε. Therefore, we
can conclude that Pri∼Da [ha(si) 6= ca(si)] ≤ 1/4. Using the same argument as in Eq. (4.6),
we get

I(A : B)ρ ≥ (1− δ − 1/4) d− H(δ)− H(1/4) ≥ d

4
− 2 . (4.14)

Now assume t < d/(1−
√

1− 16ε2); otherwise, we are done. Suppose t = νd/(1−
√

1− 16ε2)
for some ν ∈ (0, 1). (Note that t = 0 is not possible.) We show that there are positive
universal constants α, d0 such that if ν < α and d ≥ d0, the mutual information I(A : B)
violates Eq. (4.14).

Notice that I(A : B)ρ = S(B)ρ with

ρB =
1

2d

∑
a∈{0,1}d

∑
u,v∈[d]t

∑
l,k∈{0,1}t

√
Da(u, l)Da(v, k) |u〉〈v|I ⊗ |l〉〈k|L , (4.15)

where register B is partitioned into registers I and L, storing indices and labels, respec-
tively. We define

σB :=
(
1L ⊗H⊗t

)
ρB
(
1L ⊗H⊗t

)
=

1

2d2t

∑
u,v∈[d]t

|u〉〈v|I ⊗
∑

l,k∈{0,1}t
x,y∈{0,1}t

∑
a∈{0,1}d

(−1)x·l+y·k
√
Da(u, l)Da(v, k) |x〉〈y|L .

By definition of Da,
√
Da(j, 0) + (−1)y

√
Da(j, 1) = (−1)yaj√

2d

(√
1 + 4ε+ (−1)y

√
1− 4ε

)
for

every j ∈ [d] and y ∈ {0, 1}. So, we have

∑
l,k∈{0,1}t

∑
a∈{0,1}d

(−1)x·l+y·k
√
Da(u, l)Da(v, k) =

{
2dβxβy if ps(ux) = ps(vy)

0 otherwise
,
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where βx := 1
(2d)t/2

(√
1 + 4ε−

√
1− 4ε

)|x| (√
1 + 4ε+

√
1− 4ε

)t−|x|
. This implies that

σB =
1

2t

∑
x,y∈{0,1}t

βxβy
∑

u,v∈[d]t

ps(ux)=ps(vy)

|u〉〈v|I ⊗ |x〉〈y|L

=
1

2t

∑
b∈{0,1}d

 ∑
x∈{0,1}t

βx
∑
u∈Ntd

ps(ux)=b

|u〉I |x〉L


 ∑
y∈{0,1}t

βy
∑
v∈Ntd

ps(vy)=b

〈v|I〈y|L

 .

For each b ∈ {0, 1}d, let

|φb〉 :=
∑

x∈{0,1}t
βx

∑
u∈[d]t

ps(ux)=b

|u〉|x〉 .

For each x ∈ {0, 1}t and u ∈ Nt
d, the value of ps(ux) is unique, and so 〈φb|φb′〉 = 0 for

distinct d-bit strings b and b′. Moreover, for each b ∈ {0, 1}d, |φb〉 is an eigenvector of σB

with corresponding eigenvalue

λb :=
∑

x∈{0,1}t

∑
u∈[d]t

ps(ux)=b

1

2t
β2
x (4.16)

=
∑

x∈{0,1}t

dt−|x|

2t
β2
x · n|x|,|b| (4.17)

=
∑

x∈{0,1}t

1

2td|x|
n|x|,|b|

(
1−
√

1− 16ε2
)|x| (

1 +
√

1− 16ε2
)t−|x|

(4.18)

=
1

2t

t∑
r=0

(
t

r

)
nr,|b|
dr

(
1−
√

1− 16ε2
)r (

1 +
√

1− 16ε2
)t−r

. (4.19)

Notice that the eigenvalue λb only depends on |b|. Thus its multiplicity is
(
d
h

)
, and we

write λh instead of λb for a string b with Hamming weight h. Since the Hadamard operator
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is unitary, we have S(B)ρ = S(B)σ and therefore, we have

S(B)ρ ≤
d∑

h=0

(
d

h

)
λh log

(
d

h

)
+ log d

=
t∑

r=0

(
t

r

)(
1−
√

1− 16ε2

2

)r (
1 +
√

1− 16ε2

2

)t−r d∑
h=0

(
d

h

)
nr,h
dr

log

(
d

h

)
+ log d . (4.20)

Let p := 1−
√

1−16ε2

2
. The term

(
t
r

)
pr(1−p)t−r corresponds to the binomial distribution B(p, t)

over r ∈ Nt. In the rest of the proof, we use the concentration of measure to bound S(B)ρ.
In particular, we use the concentration of B(p, t) around r = pt to bound the terms with r ≥
3pt/2. Then, we use the fact that 3pt/2 < d/2 to bound the terms corresponding to r <
3pt/2.

We partition the interval 0 ≤ r ≤ t into two intervals, 0 ≤ r < 3pt/2 and 3pt/2 ≤ r ≤ t.
For r ≥ 3pt/2, since the binomial distribution B(t, p) is concentrated around r = pt,
Eq. (1.3) implies that

t∑
r= 3pt

2

(
t

r

)
pr (1− p)t−r

d∑
h=0

(
d

h

)
nr,h
dr

log

(
d

h

)
≤ d exp

(
− pt

10

)
. (4.21)

Note that the Hamming weight of the parity signature of a string of length r can be at
most r, i.e., nr,h = 0 if h > r. Moreover, log

(
d
h

)
is an increasing function of h for h ≤ d/2.

Hence, for each r ≤ d
2
,

d∑
h=0

(
d

h

)
nr,h
dr

log

(
d

h

)
=

r∑
h=0

(
d

h

)
nr,h
dr

log

(
d

h

)
≤ log

(
d

r

)
.

Since 3pt/2 = 3νd/4 < d/2, the above equation implies that

3pt
2∑

r=0

(
t

r

)
pr (1− p)t−r

d∑
h=0

(
d

h

)
nr,h
dr

log

(
d

h

)
≤ log

(
d

3ν
4
d

)
. (4.22)

Combining Eqs. (4.20), (4.21) and (4.22), since x e−x ≤ 0.4 for x ≥ 0 and log
(
n
k

)
≤ H(k/n)n
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for k ∈ [0, n], we get

I(A : B)ρ ≤ log d+ log

(
d

3ν
4
d

)
+ d exp

(
− pt

10

)
≤ log d+ H

(
3ν

4

)
d+

8

ν

<
d

4
− 2 ,

where the last inequality holds for ν = 0.025 and d ≥ 2884.

4.5 Conclusion and outlook

In this chapter, we considered two commonly studied models for learning Boolean functions:
PAC learning and agnostic learning. We used an information-theoretic approach to show
that classical PAC learners and classical agnostic learners are as powerful as quantum
PAC learners and quantum agnostic learners, respectively. A similar result was previously
proved in Ref. [12] using a quantum state identification argument and Fourier analysis.
However, their proof is more complicated than the one we provide. Also, we believe that
our method can possibly result in optimal bounds for similar scenarios like learning noisy
quantum samples [45, 12] and the quantum coupon collector [13] problem.
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Appendix A

Proofs of some claims

Here, we include the proofs of some statements from the main body of the thesis.

Proposition A.1. Let (ρij) be an ensemble of the form in Eq. (2.4), and let the state τAB

be defined as 1
n

∑
ij |ij〉〈ij|A ⊗ ρBij. For any ζ ∈ [0, 1/8), we have

Iζmax(A : B)τ ≥ log k − log

(
3− 12ζ

1− 8ζ

)
.

Proof: As shown in Ref. [16, Proposition II.5], there is a classical-quantum state τ ′ within
purified distance ζ of τ such that Iζmax(A : B)τ = Imax(A : B)τ ′ . Let τ ′ :=

∑
ij qij|ij〉〈ij|⊗ρ̃ij.

By Proposition 1.6, we have

‖τ − τ ′‖tr ≤ 2ζ . (A.1)

Let ξ := 2ζ. By monotonicity of trace distance under measurements [96, Proposition 3.5],
we further get ∑

ij

|qij − pij| ≤ ξ .

If qij > 3/2n or qij < 1/2n, we have |qij − pij| > 1/2n. So for at least (1− 2ξ)n pairs (i, j),
we have 1/2n ≤ qij ≤ 3/2n, and we call such pairs (i, j) typical .

Eq. (A.1) may be written as∑
ij

‖qij ρ̃ij − pijρij‖tr ≤ ξ ,
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so, by monotonicity of trace distance,∑
ij

∑
|v〉∈Bij

∣∣∣∣qij〈v|ρ̃ij|v〉 − k

nm

∣∣∣∣ ≤ ξ ,

where Bij is as in the definition of the ensemble (ρij). In particular,∑
typical ij

∑
|v〉∈Bij

∣∣∣∣qij〈v|ρ̃ij|v〉 − k

nm

∣∣∣∣ ≤ ξ . (A.2)

There are at least (1 − 2ξ)n/k indices i ∈ [n/k] such that there is a typical pair (i, j) for
some j ∈ [k]. Let S be the set of such indices i. Let η ∈ (0, 1). If for all indices i ∈ S,
there are less than (1− η)m pairs (j, v) with (i, j) typical, |v〉 ∈ Bij, and

k

2nm
≤ qij〈v|ρ̃ij|v〉 ≤ 3k

2nm
, (A.3)

then we would have∑
typical ij

∑
|v〉∈Bij

∣∣∣∣qij〈v|ρ̃ij|v〉 − k

nm

∣∣∣∣ > (1− 2ξ)
n

k
× ηm× k

2nm
= (1− 2ξ)

η

2
.

Taking η := 2ξ/(1 − 2ξ), we see that this is in contradiction with Eq. (A.2). So there is
an index i ∈ S such that there are at least (1− η)m pairs (j, v) with j ∈ [k] and |v〉 ∈ Bij

such that (i, j) is typical, and (i, j, v) satisfy Eq. (A.3). Denote such an index i by i0, and
let

T :=
{

(j, v) : j ∈ [k], |v〉 ∈ Bi0j, (i0, j) typical , (i, j, v) satisfy Eq. (A.3)
}
.

We have that for all the pairs (j, v) ∈ T ,

k

2nm
≤ qi0j〈v|ρ̃i0j|v〉 ≤ 3

2n
〈v|ρ̃i0j|v〉 ,

so that
k

3m
≤ 〈v|ρ̃i0j|v〉 . (A.4)

Let σ ∈ D(Cm) be a state that achieves Imax(A : B)τ ′ , and let λ denote this max-
information. For typical pairs (i, j), since qij > 0, we have ρ̃ij ≤ 2λσ. By Eq. (A.4), we
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also have k/3m ≤ 2λ〈v|σ|v〉 for all pairs (j, v) ∈ T . Summing up over all pairs (j, v) ∈ T ,
we get (1− η)k/3 ≤ 2λ, as the sets Bi0j are a partition of an orthonormal basis, and σ has
trace at most 1. So λ ≥ log k − log(3/(1− η)).

Next, we provide a proof of Eq. (3.6) from Section 3.1, formally stated in Lemma A.2.
For the sake of clarity, in the proof below, we suppress tensor products with the identity
in expressions involving sums or products of quantum states over different sequences of
registers. For example, we write ωXY + τY Z to represent the sum ωXY ⊗ 1Z + 1X ⊗ τY Z ,
and ωXY τY Z to represent the product

(
ωXY ⊗1Z

)(
1X⊗τY Z

)
. All the expressions involving

entropy and mutual information are with respect to the state ψ.

Lemma A.2. For any tripartite quantum state ψRBC, and any quantum Markov exten-
sion σRBC ∈ QMCψR−B−C, it holds that

I(R : C|B)ψ = D
(
ψRBC‖σRBC

)
−D

(
ψBC‖σBC

)
.

The proof of this lemma is implicit in Ref. [28, Lemma 1], but we provide a proof here
for completeness.

Proof: Consider any quantum Markov chain σRBC satisfying σRB = ψRB. From Equation
3.5, we have

log σRBC =
⊕
j

(
log
(
p(j)σ

RBRj
j

)
+ log σ

BCj C

j

)
,

and similarly,

log σBC =
⊕
j

(
log
(
p(j)σ

BRj
j

)
+ log σ

BCj C

j

)
.

Thus, we can evaluate

D
(
ψRBC‖σRBC

)
−D

(
ψBC‖σBC

)
= Tr

(
ψRBC logψRBC

)
− Tr

(
ψRBC log σRBC

)
− Tr

(
ψBC logψBC

)
+ Tr

(
ψBC log σBC

)
= S(BC)− S(RBC)−

∑
j

Tr
(
ψRBC log

(
p(j)σ

RBRj
j

))
−
∑
j

Tr
(
ψRBC log σ

BCj C

j

)
+
∑
j

Tr
(
ψBC log

(
p(j)σ

BRj
j

))
+
∑
j

Tr
(
ψBC log σ

BCj C

j

)
.
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Since Tr
(
ψRBC log σ

BCj C

j

)
= Tr

(
ψBC log σ

BCj C

j

)
, the above equation can be simplified to

obtain

D
(
ψRBC‖σRBC

)
−D

(
ψBC‖σBC

)
= S(BC)− S(RBC)−

∑
j

Tr
(
ψRBC log

(
p(j)σ

RBRj
j

))
+
∑
j

Tr
(
ψBC log

(
p(j)σ

BRj
j

))
= S(BC)− S(RBC)− Tr

(
ψRBC log

(⊕
j

p(j)σ
RBRj
j

))

+ Tr

(
ψBC log

(⊕
j

p(j)σ
BRj
j

))

= S(BC)− S(RBC)− Tr

(
ψRBC log

⊕
j

(
p(j)σ

RBRj
j ⊗ σB

C
j

j

))

+ Tr

(
ψBC log

⊕
j

(
p(j)σ

BRj
j ⊗ σB

C
j

j

))
,

where the last equality above follows by noting that

Tr
(
ψRBC log σ

BCj
j

)
= Tr

(
ψBC log σ

BCj
j

)
.

Since ψRB = σRB, we get that

D
(
ψRBC‖σRBC

)
−D

(
ψBC‖σBC

)
= S(BC)− S(RBC)− Tr

(
ψRBC log σRB

)
+ Tr

(
ψBC log σB

)
= S(BC)− S(RBC)− Tr

(
ψRB logψRB

)
+ Tr

(
ψB logψB

)
= S(BC)− S(RBC) + S(RB)− S(B)

= I(R : C |B) .

This completes the proof.

Next, we restate Theorem 1.9 and provide a proof for it. The proof is reproduced from
Ref. [2] verbatim for completeness. In the following proof, for two (possibly sub-normalized)
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states ρ, σ ∈ D(H), we define

F(ρ, σ) := Tr
[∣∣√ρ√σ∣∣] .

Theorem A.3 ([2], Theorem 2). Let ε, δ ∈ (0, 1) such that 0 ≤ 2ε + δ ≤ 1. Consider
quantum states σB ∈ D(HB) and ρAB ∈ D(HA ⊗HB). We have

inf
ρ′∈B2ε+δ(ρAB)

ρ′A=ρA

Dmax

(
ρ′AB‖ρA ⊗ σB

)
≤ Dε

max

(
ρAB‖ρA ⊗ σB

)
+ log

8 + δ2

δ2
. (A.5)

Proof: Let ρ̃AB ∈ D(HAB) be the optimizer on the right-hand side of Eq. (A.5). Moreover,
for some γ > 0, let

ΠA
γ :=

{
1

γ
ρ̃A − ρA

}
+

and ρAB := ΠA
γ ρ̃

ABΠA
γ ,

where {X}+ denotes the projection operator onto the positive part of any Hermitian op-

erator X. Let V A be the unitary operator from the polar decomposition of ρA
1
2ρA

1
2 such

that

F
(
ρA, ρA

)
= Tr

[∣∣∣∣ρA 1
2ρA

1
2

∣∣∣∣] = Tr

(
ρA

1
2ρA

1
2V A

)
.

For γ = δ2

8
, define the bipartite quantum state

ρ̂AB := ρA
1
2 V A ρA

−1
2 ρAB ρA

−1
2 V A† ρA

1
2︸ ︷︷ ︸

=:τAB

+

(
ρA

1
2

(
1A − V AΠA

γ V
A†
)
ρA

1
2

)
⊗ σB︸ ︷︷ ︸

=:σAB

,

which by inspection has ρ̂A = ρA. We calculate

ρ̂AB ≤
∥∥∥∥(ρA ⊗ σB)−1

2 ρ̃AB
(
ρA ⊗ σB

)−1
2

∥∥∥∥(ρA 1
2 V A ρA

−1
2 ΠA

γ ρ
AΠA

γ ρ
A−

1
2 V A ρA

1
2

)
⊗ σB

+

(
ρA

1
2

(
1A − V AΠA

γ V
A†
)
ρA

1
2

)
⊗ σB ,

and by definition of ΠA
γ , we have ΠA

γ ρ
AΠA

γ ≤ 8
δ2

as well as 1A − PA
γ ≤ 1A leading to

ρ̂AB ≤
(

8

δ2
·
∥∥∥∥(ρA ⊗ σB)−1

2 ρ̃AB
(
ρA ⊗ σB

)−1
2

∥∥∥∥+ 1

)
· ρA ⊗ σB .
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Using that Dmax

(
ρ̃AB‖ρA ⊗ σB

)
≥ 0, we get

8

δ2
·
∥∥∥∥(ρA ⊗ σB)−1

2 ρ̃AB
(
ρA ⊗ σB

)−1
2

∥∥∥∥+ 1 ≤ 8 + δ2

δ2

∥∥∥∥(ρA ⊗ σB)−1
2 ρ̃AB

(
ρA ⊗ σB

)−1
2

∥∥∥∥ .

Hence, the claim follows as soon as we establish that ρ̂AB is close enough to ρAB in purified
distance. Now, notice that Tr[σAB] = 1 − Tr[τAB] and hence the states τAB := τAB

Tr[τAB ]

and σAB := σAB

Tr[1−τAB ]
are normalized. We can then write

ρ̂AB = Tr[τAB] · τAB + (1− Tr[τAB]) · σAB .

Since the fidelity F
2
(ρ, σ) is concave in each argument (this follows from the operator

concavity of the logarithm), we can estimate

F
2
(ρ̂AB, ρAB) ≥ Tr[τAB] · F2(τAB, ρAB) + (1− Tr[τAB]) · F2

(σAB, ρAB)

≥ Tr[τAB] · F2
(τAB, ρAB)

= F
2
(τAB, ρAB) . (A.6)

By the triangle inequality for the purified distance, we get for the quantity of interest

P(ρ̂AB, ρAB) ≤ P(ρ̂AB, ρAB) + P(ρAB, ρAB) , (A.7)

and since ρ̂AB is normalized, we get for the first term on the right-hand side that

P(ρ̂AB, ρAB) =

√
1− F

2
(ρ̂AB, ρAB) .

We continue with

F
2
(ρ̂AB, ρAB) ≥ F

2
(τAB, ρAB) ≥ F

2
(τABC , ρABC) ,

where the first step is Eq. (A.6) and the second step follows since the fidelity is monotone
under partial trace (this holds for general non-negative operators) together with choos-
ing τABC as an extension of τAB and ρABC as an extension of ρAB. We choose the purifi-
cation of ρAB on ABC defined through the pure state

|ρ〉ABC := ρA
1
2 |Φ〉A:BC ,

where |Φ〉A:BC denotes the non-normalized maximally entangled pure state vector in the
“cut” A : BC (on the subspace on A spanned by the projector ΠA

γ ). Furthermore, we take
the purification of τAB on ABC given by

|τ〉ABC := ρA
1
2 V A ρA

1
2 |ρ〉ABC
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which is fine since

τAB = TrC
[
|τ〉〈τ |ABC

]
= ρA

1
2 V A ρA

−1
2 ρAB ρA

−1
2 V A† ρA

1
2 .

We calculate

F
2
(τABC , ρABC) =

∣∣〈ρABC |τABC〉∣∣2 =
∣∣∣〈ΦA:BC |ρA

1
2 |τABC〉

∣∣∣2
=

∣∣∣〈ΦA:BC |ρA
1
2ρA

1
2V AΠA

δ |ΦA:BC〉
∣∣∣2 =

∣∣∣Tr
[
ρA

1
2ρA

1
2V AΠA

δ

]∣∣∣2
=

∣∣∣Tr
[
ΠA
δ ρ

A
1
2ρA

1
2V A

]∣∣∣2 =
∣∣∣Tr
[
ρA

1
2ρA

1
2V A

]∣∣∣2
= F

2
(ρA, ρA) = F2(ρA, ρA) .

Hence, together with Eq. (A.7), we arrive at

P(ρ̂AB, ρAB) ≤ P(ρA, ρA) + P(ρAB, ρAB) ≤ 2 · P(ρAB, ρAB) , (A.8)

where the last step follows from the monotonicity of the purified distance under partial
trace. Using again the triangle inequality for the purified distance, we then bound

P(ρAB, ρAB) ≤ P(ρAB, ρ̃AB) + P(ρ̃AB, ρAB)

≤ P(ΠA
γ ρ̃

ABΠA
γ , ρ̃

AB) + ε

≤
√

2 · Tr
[
(1A − ΠA

γ )ρ̃AB
]

+ ε

≤
√

2 · δ
2

8
+ ε =

δ

2
+ ε .

Together with Eq. (A.8), we conclude that P( ˆρAB, ρAB) ≤ 2ε+ δ.
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