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Abstract

Mueller matrix polarimetry is the examination of how a sample transforms the polar-
ization state of light. This requires probing the sample with input light of a variety of
generated polarization states and analyzing the resulting output states, using a total of at
least sixteen irradiance measurements. This allows one to calculate the Mueller matrix,
which provides insight into the microstructure of the sample. In imaging applications this
can yield additional contrast between different types of materials. Examination of the
human retina has the potential to reveal not only ocular conditions, but also neurological
disorders due to the fact that the retina is made up of neural tissue. Deposits of amyloid-(
in the brain are a standard biomarker for Alzheimer’s disease. Similar deposits have been
identified in the retina. By studying ez vivo human retinae, members of Campbell Labs
have shown that these deposits can be imaged label-free using Mueller matrix polarimetry,
and that their number correlates with the severity of Alzheimer’s disease as assessed using
brain pathology post-mortem. Imaging these deposits in the living eye using in vivo retinal
polarimetry could provide an affordable and noninvasive biomarker for Alzheimer’s disease,
aiding in diagnosis.

This thesis uses a “double pass model” to describe in vivo retinal polarimetry: it is
assumed that light passes through the ocular tissue (i.e. the cornea, lens, and upper layers
of the retina) before reflecting within the retina, and traversing polarimetrically similar
tissue in the opposite direction. This model implies a particular mathematical structure
for the Mueller matrix in in vivo retinal polarimetry. This thesis proposes ways in which
this mathematical structure can be used advantageously when measuring and interpreting
double pass Mueller matrices. While other authors have used the double pass model for
in vivo retinal polarimetry, it is believed that this thesis is the first work to examine its
implications without also making assumptions about the polarimetric properties of the
ocular tissue.

Following other authors, this thesis first describes the reciprocity theorem which relates
a Mueller matrix for opposite paths through a sample, and uses it to apply the double pass
model to Mueller matrices. It is shown that double pass Mueller matrices have fewer degrees
of freedom than ordinary Mueller matrices. This allows double pass Mueller matrices to
be calculated from as few as ten irradiance measurements. Several designs are developed
for the generating and analyzing branches of a polarimeter, capable of measuring double
pass Mueller matrices in ten measurements while being optimized for the best possible error
performance. These are found using a novel extension of standard polarimeter optimization
techniques that allows them to take into account the aforementioned restrictions on double
pass Mueller matrices. These designs could be used to improve the speed of an in vivo
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retinal polarimeter used for Alzheimer’s disease diagnosis, reducing patient discomfort
and eye movement during the measurement. Next, the double pass Mueller matrix is
compared to the corresponding single pass Mueller matrix for transmission once through
the ocular tissue. New methods are found to calculate possible single pass polarimetric
properties from the double pass Mueller matrix. This may provide additional insight into
the microstructure of the sample and yield results that are more similar to the transmission
properties of retinal amyloid deposits previously measured ez vivo.

This thesis proposes new methods for measuring and interpreting Mueller matrices
measured in ¢n vivo retinal polarimetry assuming the double pass model. These methods
could be applied in order to improve a future instrument for Alzheimer’s disease diagnosis
through observation of retinal amyloid deposits.
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Chapter 1

Introduction

Electromagnetic waves, including visible light, have a fundamental property known as
polarization [19]. The polarization state of light carries a lot of information, but is usually
imperceptible to the human eye'. Similar to how the colour of an object is determined by
how it reflects, transmits, or absorbs different wavelengths of visible light [5%], objects can
also be classified by how they alter the polarization state of light. A Mueller Matrix (MM)
is a set of sixteen numbers that describes the effect an object has on the polarization state of
incident light. MM polarimetry is the measurement of MMs, by probing the object with a
variety of different polarization states and measuring the resulting output states [10]. This
requires at least sixteen irradiance measurements [10]. MMs can be interpreted in terms
of polarimetric properties such as retardance, diattenuation, and depolarization, which are
indicative of the microstructural features of the sample [77]. These properties have been
used successfully in biological studies to distinguish between normal and diseased tissue

[7 ’ ) ) ]

Examination of the human retina is used for diagnosis of a wide range of different ocular
conditions [10, |. In addition, the retina is an embryological extension of the central
nervous system, that can be easily imaged due to the transparency of ocular tissue [92].
For this reason, there has been significant attention to the possibility of using the retina

to diagnose neurological diseases [34, 92]. Alzheimer’s Disease (AD) is a neurodegenera-
tive disease that is the most common form of dementia, and in the U.S. in 2019 it affected
approximately 5.8 million people [11]. It may be diagnosed based on cognitive tests and at-

tempts to rule out other causes of dementia, but this does not always reliably predict brain

IThere are some rare situations in which humans can discern the difference between polarization states;
e.g. [111, , ]



pathology [I1]. A biomarker is an objectively measurable “indicator of normal biological
processes, pathogenic processes or pharmacological response to a therapeutic intervention”
[12]. Biomarkers are important to provide a more reliable diagnosis for AD, and to allow
researchers to assess the effectiveness of drug trials [92]. Brain biomarkers of AD are well
established but expensive and invasive to assess in vivo [92].

A standard brain biomarker of AD, amyloid-S protein in the form of deposits, has
also been identified in the retina [35, 75]. In recent years, a project of Campbell Labs
(with which the author is affiliated) has been to study ez vivo retinae with matched brain
pathology [35, 43, 45, 67]. Deposits were discovered in the retinae that fluoresced when
stained with Thioflavin-S, an amyloid dye [35]. Tt was found that these could also be imaged
without dyes using MM polarimetry, and that their number correlated with the severity of
AD diagnosis from brain pathology [13, 15]. The primary cause of their visibility is linear
retardance, likely due to the fibrillar nature of amyloid, but there are also other significant
polarimetric signals [65]. Polarimetric data has been collected of over one thousand deposits
at Campbell Labs. These deposits are a promising candidate for a retinal biomarker of
AD. However, these were ex vivo retinal polarimetry measurements, studying the light that
was transmitted through isolated retinae. Future work is planned to be in vivo in order to
realize the diagnostic potential of this method. Due to the anatomy of the eye, in in vivo
retinal polarimetry light must pass through the cornea, pupil, lens, and upper layers of the
retina, before being reflected and traversing each of those structures again in the opposite
direction. This is a different measurement than past ex vivo images of retinal amyloid
deposits, not only due to the polarimetric effects of the cornea and lens [32, 30, ], but
also because of the change from a transmission to a reflection geometry.

A number of instruments have been used in the past for in vivo retinal polarimetry. The
Carl Zeiss Meditec (formerly Laser Diagnostics) GDx and GDx-VCC were commercially
available instruments used for glaucoma diagnosis through assessment of the thickness

of the Retinal Nerve Fiber Layer (RNFL) [140, : ]. They were also applied in
many different studies aimed at understanding how retinal structure changes in different
conditions (e.g. [51, 71, 99, 123]). These instruments were partial polarimeters, meaning

that they could not determine the full MM. Rather, they relied on the assumption that both
the anterior segment (consisting of the cornea and lens together) and the retina each acted
as a linear retarder, while also accounting for an isotropic depolarization term [73, 74, |.
Additionally, they used what this thesis will define as the double pass model: that the beam
transmits through the ocular tissue before experiencing an idealized reflection within the
retina, after which it traverses polarimetrically similar tissue in the reverse direction [24, (4,
, 74, |. There are two main advantages to this kind of partial polarimeter approach.
Firstly, it allows for a simpler polarimeter design due to not requiring measurement of the



full MM. Secondly, under these assumptions the interpretation of the polarimetric results
is straightforward, and the linear retardance from a single pass through the RNFL can be
calculated and used to estimate its thickness [73, 74, 1412].

However, this approach is unable to measure diattenuation or non-isotropic depolar-
ization, and will be in error when these polarimetric properties are present [25, 20, ].

While diattenuation is usually small in the human eye [25, 28, |, depolarization varies
and may increase in older eyes [22, 30, 20, |. Additionally, retinal amyloid deposits
measured ez vivo show some diattenuation and depolarization [0, |. Other research
groups have produced full MM in vivo retinal polarimeters which are able to measure any
combination of polarimetric properties [27, 21, 29, 49, 72, 79, , ]. This comes at the

cost of increased complexity of the instrument and/or increased total measurement time.

This thesis proposes using the double pass model, without any other assumptions about
the polarimetric properties of the retina (or retinal amyloid deposits), as the basis for a new
type of partial in vivo retinal polarimetry. The double pass model alone implies a specific
mathematical structure for the MM that is measured in in wvivo retinal polarimetry. It
will be shown that any double pass MM is restricted to have only ten degrees of freedom
rather than sixteen. While the term “double pass” is often used to describe measurements
in the eye (e.g. [7, 27, 21, 28, 108]), to the best of the author’s knowledge this thesis is the
first work to propose using the restrictions on the MM that are implied by the double pass
model for partial in vivo retinal polarimetry. This approach has several benefits for the
application of detecting retinal amyloid deposits in vivo as a biomarker for AD diagnosis.
A double pass MM can be determined from as few as ten measurements, while still being
sensitive to diattenuation and depolarization as well as retardance. This may decrease the
time required for each patient, reducing patient discomfort and the number of disruptions
such as blinks, involuntary eye movements [3%], and tear film drying [62]. Additionally, the
double pass model relates the transmission properties of the retina and amyloid deposits,
which have been measured ex vivo by Campbell Labs, with the full in vivo MM. This aids
in the interpretation of the in vivo MM.

Chapter 2 outlines the important background concepts of polarization, Jones and
Mueller matrices, and polarimetry. Chapter 3 describes the double pass model and the
mathematical structure of double pass MMs. It is shown that double pass MMs have a
property called reciprocal invariance, which is due to the symmetry of the double pass
model upon switching the incident and reflected beam. As well, a polarization ray tracing
model is used to provide additional support for the claim that the MM measured in in vivo
retinal polarimetry should be Reciprocal Invariant (RI).

Chapter 4 shows how to choose which generating and analyzing polarization states to



use for a partial polarimeter assuming the MM is RI. These states are optimized based
on the objective of reducing the impact of experimental errors on the measured MM.
The methodology used in this chapter is related to other author’s work in the field of
polarimeter optimization (e.g. [125, , |) but has novel elements. Several example
optimized polarimeter designs are found which can determine a double pass MM in as few
as ten measurements. A simulation is used to examine the performance of these designs
and compare them to a conventional full MM polarimeter design. These designs could be
used for faster measurement of double pass MMs in in vivo retinal polarimetry.

Chapter 5 examines the relationship between a double pass MM and its corresponding
single pass MM (that is, the MM for transmission once through the ocular tissue). It is
shown how to calculate possible single pass polarimetric properties from the double pass
MM. These may provide more direct information about the microstructural features of the
ocular tissue than the double pass polarimetric properties do. Chapter 5 also highlights
how some of the information in the single pass MM is inaccessible in double pass. This has
implications for studies of the transmission ex vivo retinal data currently being collected

by Campbell Labs.

This thesis demonstrates the potential advantages of partial in vivo retinal polarimetry
based on the double pass model without any assumptions about the polarimetric properties
of ocular tissue. As well, methodologies are developed for the practical tasks of optimizing
such a polarimeter and interpreting the resulting MMs. This work could be used by a
future instrument identifying retinal amyloid deposits in vivo for AD diagnosis.



Chapter 2

Background

2.1 Polarization of Light

2.1.1 Electromagnetic Waves

In vacuum, Maxwell’s equations involving the electric (E) and magnetic (B) fields can be
used to derive the vector wave equations

O’E

VZE — GUIMUW =0 (21)
0°B

VZB - EOMOW =0. (22)

where €, is the vacuum permittivity and pg is the vacuum permeability. Consider plane
wave solutions for E; i.e., those for which E is constant on every plane perpendicular to
some unit vector n. This implies that E can be written as a function of r - n and ¢ only.
Combining this assumption with that of separable time dependence,

E(r,t) = Bye'kr=+b (2.3)

where Eg is a constant (generally complex) vector, w is the frequency, and k = n,/fpeow.
Using the Maxwell equations it can be shown that Egy - k = 0, that is, harmonic plane
waves are transverse.

Define unit vectors t; and t, such that t; X t3 = n. Eq can be described in terms of
its scalar projections onto t; and ty:

EO = Efl f-’l —+ E{?2 {]2 = aleiélfl + a2€i62£2 (24)



where ;. = Eq - ’Ei, and a; and ¢; are real, for ¢ = 1, 2.

Because of the Lorentz force equation
F=qE+vxB) [00],

where F is the force on a point charge, ¢ is the charge, and v is the velocity, complex E
or B would imply complex forces, which would be unphysical. Due to the linearity of the
equations involved, one can always construct a real solution using E,.., = %(E + E*) =
R(E). However, during intermediate calculations it is often convenient to work with the
complex versions, understanding that E,., can be produced at the end of the calculation
if needed.

2.1.2 The Polarization Ellipse

The vector nature of the complex amplitude Eg leads to a large variety of behaviour,
beyond what is possible for scalar waves. The orientation of Eg is time-independent, but
this is not true of R(E). Considering the final expression for the electric field

E = E; /&% = (g€t + apety)e T, (2.5)

The corresponding real electric field is given by

1 . .
E o= §(a1 cos(k - r — wt + 01)t; + agcos(k - r — wt + §2)ts). (2.6)
Defining the components of E,., with respect to t; and ty as 2 = E,.y - t; and
Yy = E,cq - to, they are related through an ellipse equation:
alaysin®(6y — 1) = a30® + aly® — 2a1a0wy cos(da — &) [53]. (2.7)
This implies that the tip of the vector E,.,; always lies on an ellipse, the shape of which
is determined by ai, as, and 6o — ;. The exact position of E,., on this ellipse depends

on the phase argument k - r — wt. This is known as the polarization ellipse [19, 53, 58]. If
09 — 01 = nw for integer n, then it follows from equation 2.7 that

0= (asx — aly)2 =



so the ellipse collapses into a straight line passing through the origin. In this case the wave
is said to be linearly polarized [19]. If 65 — &) = nm + 7/2 and a; = as,

2 _ 2 2
a)=z"+y

so the ellipse reduces to a circle and the wave is said to be circularly polarized [19]. In all
other cases, the wave at r is said to be elliptically polarized [19]. For circular and elliptical
polarization, one can distinguish the direction in which E,., traces out the ellipse. If,
with increasing t, E,.,; traces the ellipse in anti-clockwise direction in the (fl, ’Eg) plane the
polarization is called right handed; otherwise, it is called left handed [11].

The choice of t; and t, is not unique. However, with respect to a new basis t} and t}
obeying t} x t, = n, linear polarization will remain linear, circular polarization will remain
circular, and handedness will be preserved.

2.1.3 Jones Vectors and Stokes Vectors

The polarization state of a wave at a given point can be written as a 2 x 1 vector

. [ ae”
= o | 23)
known as a Jones vector [53]. Note that this definition assumes a particular choice of t;
and tg.

Jones vectors are a useful theoretical tool, but cannot be directly measured. This is
because the temporal frequencies of visible light are extremely rapid in comparison to the
response time of a typical detector [53, 58], meaning E is not measured directly. Detectors
instead measure the irradiance, which is the average energy deposited in the detector
per unit area per unit time [10, 53]. Typically, it is assumed that E is sufficiently close
to a plane wave that the irradiance is constant spatially across the relevant portion of
the detector. Then irradiance is proportional to (|E[?) [58], where (f(r,t)) represents
the average of f over the measurement time. The Stokes parameters represent a set of
irradiance measurements from which the polarization ellipse of a plane wave can be inferred.
These are

so = (a} +a3) (2.9)
s1=(a} — a3) (2.10)
So = (2a1az cos(de — 61)) (2.11)
s3 = (2a1agsin(de — 61))  [06]. (2.12)



The Stokes parameter sy is the irradiance of the wave. The component s; = +1
for linearly polarized light aligned with the t; or t; directions respectively. The next
component ss = +1 for linearly polarized light aligned with the t1 +to or t; — to directions.
Lastly, s3 = %1 for right or left-handed circularly polarized light. If a1, as, and 5 — &; are
constant across the pixel size and measurement time, and these parameters obey

58 = s+ 85+ sa. (2.13)

The Stokes parameters can be arranged into a 4x1 Stokes vector

50
S1
52
53

(2.14)

n
Il

Stokes vectors have the advantage of being directly measurable quantities (irradiances) and
can also describe partially polarized light, discussed in the next section. For every Jones
vector j, there is a corresponding Stokes vector s equal to

s=L{(j®j) [ (2.15)
where
10 0 1
10 0 -1
=101 1 0o |
0 ¢« — 0

* is the complex conjugate, and ® is the Kronecker product [60].

2.1.4 Unpolarized and Partially Polarized Light

The monochromatic plane waves treated so far exist at all points r in space and ¢ in time.
This would not be the case for a real wave. For any physical wave, a source started emitting
the wave at some point in time and will stop emitting it at a later time, and so the wave
is actually a wave pulse [19, 58]. It can still be described by the sum of 2.5 for a range of
frequencies w. For a long enough wave pulse, the range of frequencies will be narrow and
the wave is called quasimonochromatic [55].



A nonlaser light source will in fact emit wave pulses at random, overlapping with one
another such that the light emission appears continuous [58, |. This leads to fluctuations
in time of the polarization parameters a1, as, 01, and d5, causing the shape and handedness
of the polarization ellipse to vary with time. If it varies slowly enough to be constant
over the measurement time, then the Stokes parameters will still obey equation 2.13. If
however they are not constant during the measurement time, restriction 2.13 is no longer
true, although the Stokes parameters must always obey the inequality

se>st+s3+s [0 (2.16)

If s3 + s34 s2 = 0, the light is said to be unpolarized [58]. Fully polarized light on the
other hand is light for which s? + s3 + s3 = s2, and partially polarized light lies between
these two extremes.

If ai/ay and 07 — o stay constant in time, then the Jones vector can be written as a
scalar multiplied by a time independent vector:

) 01
j = a(t)e® { dac . } . (2.17)

This wave is fully polarized despite the time dependence, because the associated Stokes
parameters obey 2.13. It can be shown that the shape and handedness of the polarization
ellipse are constant, although the amplitude and phase may fluctuate. However, the time
dependence will matter once again if two such waves are added together. Even if both
are of the form 2.17, the sum may or not be, depending on the relationships between the
two time dependent prefactors. The different possibilities are described by the concepts of
coherent and incoherent superposition of waves [53].

2.1.5 Coherence

Consider the sum of two plane waves E,.; and E/_ ;0 E,cot sum = Ereas +EL.; = R(IE+E),

with their complex fields each described by 2.5 and having the same k and w. The Jones
vector of the sum is

, i8c1 ‘t) ridt,
. — s i5(t) (1€ a'( i(8'(t)—5(t)) | 1€ ‘ 21
Joum = J+3 = alt)e ({ o€ ] * a(t) ‘ al,eic ' (2.18)

If the factor



is constant over the measurement time, then jg,,, has the form of 2.17 and the wave is fully
polarized. The two waves are said to be coherent [58]. As an example, consider a single
wave that is split into two components that travel along different paths. The polarization
state of each wave will change in different ways along its path. If the two paths then come
back together and the waves are recombined, and if the total path length that each has
travelled is similar enough, then the two waves will add coherently.

If 6] — §; is not constant over the measurement time, consider the Stokes parameter

S0,um = (@1 + @ + 2aya] cos(] — 1) + a3 + a5’ + 2aza, cos(5, — )

= S0 + Sy + (2a1a] cos(0] — 1) + 2azas cos(dy — d2)) .

If 0] — 0; for i = 1,2 varies at random during the measurement time then the interference

term
(2a1a) cos(d] — 61) + 2asay cos(0y — d2))

averages to zero. In this case, the two waves are said to add incoherently [53]. By con-
sidering the other Stokes parameters, it can be shown that in this case the Stokes vector
Ssum = S + §'. Therefore, while adding Jones vectors represents coherent sum of plane
waves, adding Stokes vectors represents incoherent sum [53]. In the intermediate case in
which §] — §; varies in time but the interference terms do not vanish, the two waves are
partially coherent. They can be split into fully coherent components that are added as
Jones vectors and fully incoherent components that are added as Stokes vectors [53].

2.2 Light in Matter

2.2.1 Electromagnetic Waves in Matter

The wave equations that were the starting point of the previous section were only strictly
valid in vacuum. In matter, the complicated distribution of charges within atoms and
molecules makes the microscopic Maxwell equations impractical to use [66]. The macro-
scopic Maxwell equations can be introduced by taking the spatial average over small vol-
umes (of the order ~ 10~2'm? [66]), smoothing out these microscopic fluctuations. In
addition to the electric and magnetic fields, these equations involve the additional fields
D and H [19, 66]. Different types of materials are characterized by different constitutive
relations which identify the relationship between (D, H) and (E,B) [19]. These constitu-
tive relations lead to different behaviors of elecromagnetic waves in those materials. A few
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important examples of constitutive relations will be discussed in this section, to show how
these materials modify the polarization state of light.

In the case of a linear, nonmagnetic, isotropic material,

D =¢E (2.19)
1
H=—B (2.20)
Ho
where € is a scalar known as the dielectric constant [19]. Assuming that there are no

charges or currents, it can be shown that

0B
ot?

This is identical to the wave equation in the previous section, with the substitution ¢g — €.
Waves of the form of 2.3 propagate just as they would in the vacuum, but at a different
speed. An absorbing isotropic medium can be represented using a complex €, which results
in an exponential decaying factor in the amplitude of the wave [19]. Light can propagate
through this type of material without altering the shape of its polarization ellipse [11].

V2E — eup =0 [11]. (2.21)

A second important example is that of a linear, nonmagnetic, electrically anisotropic
material, for which

D = ¢E (2.22)
H-'B (2.23)
Ho
(S 0 0
e=U" | 0 ¢ 0| U (2.24)
0 0 ey

where € is the 3 x 3 dielectric tensor, 7' means transpose, and U is a real orthogonal! matrix
[19, 41]. In this form, the strength of the response of the material depends on the direction
of E [19]. U is a change-of-basis matrix into a new coordinate system z’, 3/, 2/, known
as the principle coordinates of the material [19]. Wave propagation in such a material is
significantly more complicated than in a vacuum. Assuming plane wave harmonic solutions
it can be shown that for a given wave normal n, the only plane waves that can propagate
in the medium are those that are linearly polarized along one of two orthogonal directions
[19, 11]. Each direction has a different effective dielectric constant, determining the speed

IThat is, a matrix for which U” U = UU” =1, where I is the identity matrix.
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at which the wave travels and how much it is absorbed. The difference in speeds means
that at an interface, Snell’s law will cause the each wave to refract in different directions
[19]. As well, in general the waves are not transverse, that is, E is not perpendicular to n.
A consequence of this is that the energy of the wave proceeds in a different direction than

n [19, 58]. This “ray vector” direction is also different between the two possible linearly
polarized waves [19].

Consider the situation in which a plane wave in vacuum passes through a slab of an
anisotropic material. Combining the requirements of Snell’s law for entry into the medium
with those of the Maxwell equations for propagation within the medium, there are in
general two linearly polarized states that are permissible [19]. The incident plane wave,
whatever its polarization, can be written as a coherent sum of these two states [53]. These
two waves propagate through the medium, and then upon exiting can in general be added
coherently to obtain again a single waves [53]. Within the medium, each travels at a
different speed and is absorbed at a different rate. The difference in speeds means that
there is a phase difference between the two waves that accumulates as they traverse the
slab. The total phase difference is known as linear retardance, and the polarization of the
wave that travelled fastest is known as the linear fast azis [39]. The amount of retardance
per unit thickness is known as the birefringence [19]. The phase difference affects the
degree to which the component waves add destructively or constructively upon exiting the
medium, and therefore changes the polarization ellipse of the output wave.

If the two component waves are absorbed at different rates, this is known as linear
dichroism. Linear diattenuation is a measure of the total difference between the absorp-
tion of the two waves, while the polarization that is absorbed less is known as the linear
diattenuation orientation [39]. Like retardance, this also changes the polarization ellipse
as the wave propagates through the medium. Reflections at the interface between two
materials can also cause retardance and diattenuation [53], even though the materials may
not be birefringent or dichroic.

Next, a chiral material can be described using the constitutive relations

D = ¢(E + AV x E) (2.25)
B = u(H+ BV x H) [16, 77]. (2.26)

In this type of media, the permitted plane waves are those with left and right handed
circular polarization states [11, 77]. Similar to the effect anisotropic materials have on linear
polarization states, chiral materials can impose phase differences between left and right
handed circularly polarized light (circular birefringence) and/or absorb one preferentially
(circular dichroism) [39]. This will also have the effect of changing the polarization ellipse
as a wave propagates through the material.
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For each of these types of materials, the change in polarization ellipse due to propagation
can be represented using the Jones calculus [05]. If the incident wave is represented by
a Jones vector jy, then transmission through the material has the effect of transforming
this into a different Jones vector joyr. These can always be related to one another by a
complex 2 x 2 Jones matriz:

jour =Jjin  [11, 53, 58] (2.27)

The Jones matrix can be used to predict the output Jones vector given any input Jones
vector. Any process in which the input and output fields are linearly related, and both
have a well defined Jones vector, can be represented using a Jones matrix [53]. The con-
cepts of retardance and diattenuation can be extended to describe the phase difference and
absorption difference between elliptical states of polarization. In fact, any 2 x 2 complex
matrix is a valid Jones matrix and its effects can always be understood as a combination
of retardance and diattenuation [, 53]. While these concepts have been introduced by
considering transmission through birefringent and dichroic materials, retardance and di-
attenuation can be caused by other processes, such as the Fresnel equations for reflection
and transmission at an interface [66]. Jones matrices for various types of retarders and
diattenuators can be found in standard textbooks; e.g. [53, 58].

Linear diattenuation and linear retardance are indicators of the anisotropy of the sam-
ple. While they were defined by considering the dielectric tensor (indicating anisotropy
on the molecular level), they can also occur due to anisotropy on larger scales [70, 91].
For example, linear retardance and linear retardance fast axis have been used to visualize
the thickness and orientation of bundles of fibres in biological tissue [19, 50, 57, 70, .
Likewise, circular diattenuation and circular retardance are indicators of the chirality of
the sample. They can be used to test for the presence of chiral molecules, such as glucose

[18, 107].

2.2.2 Non-depolarizing Mueller Matrices

Similar to the Jones matrix, the Mueller matriz (MM) represents transformations between
input and output Stokes vectors. Starting from equation 2.27 and using equation 2.15 to
convert both Jones vectors to Stokes vectors, it can be shown that

SouTr = E(J & J*)£71S1N [ ]
The real 4 x 4 matrix

M;=LJ®I)L 53] (2.28)
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is a non-depolarizing MM. “Non-depolarizing” refers the the fact that given a fully polarized
s;n, the output Stokes vector sopyr will always also be fully polarized. In subsection 2.2.3,
it will be shown that MMs can also describe processes that introduce depolarization into
the output Stokes vector. This is not possible using Jones matrices, and is the reason why
MMs are often preferred for the study of biological tissues [I, 57] and particularly retinal
amyloid deposits [15, ]. A product of MMs M j M ;; is equivalent to a system in which
light experiences first M 1, and then M ;5 [53].

The concepts of diattenuation and retardance can also be represented using MMs. A
diattenuator MM, which has diattenuation but no retardance, can be written (using matrix
block notation) as

1 1 D7
Mp=-——
b 1+D[D mD:| (2.29)
1-V1-D? '
mp =+1- D+ TDDT
where D is a 3 x 1 vector known as the diattenuation vector? [39, 53, 83]. Lower case mp is

the lower right 3 x 3 submatrix of Mp. It is symmetric, and has the property mp D = D.
The matrix Mp is specified entirely by the diattenuation vector D.

Any diattenuator has two eigenpolarizations for which the shape of the polarization
ellipse is unchanged by Mp [83]. For an anisotropic material with the constitutive re-
lations 2.22, these are the two linear polarization states that are permitted inside the
material, as described in the previous subsection. The Stokes vectors of the two eigenpo-
larizations are given by [1, D]” and [1, —D]” respectively:

Mp (1, D|T = T,0.[1, D]T (2.30)

Mp [1, =D]T = T,n[1, —D]T (2.31)

where T),4. and T,,;, are scalars with T},,.. > T)uin > 0, indicating that one eigenpolariza-
tion is transmitted more strongly than the other [39, 83]. The diattenuation magnitude
ID| = D is bounded by zero and one and is related to the difference in transmittance
between the eigenpolarizations:

Tmaz’ - Tmin

= ) 2.32
Tmax+Tmin [ ] ( 3)

2D shares a symbol with the displacement vector in the macroscopic Maxwell equations. From this
point on in the thesis, D will always refer to diattenuation vector.

14



Equation 2.29 is normalized such that 7T,,,, = 1. The diattenuation vector D indicates
both the eigenpolarizations of the diattenuator and the difference in transmittance between
those eigenpolarizations.

D can be separated into three scalar components:

Dy
D= | Ds (2.33)
D¢

which represent horizontal diattenuation, forty-five degree diattenuation and circular di-
attenuation respectively [$3]. The first two components can instead be represented by a

linear diattenuation magnitude,
Dy = /D% + D% [127] (2.34)

and linear diattenuation orientation®

Dy = (1/2)arctan2(Dys, Dg) [127]. (2.35)
Dy, and Dy are indicative of the strength and orientation of the optical anisotropy of the
sample respectively.

Note that diattenuators also exhibit polarizance, which is the property of turning inci-
dent unpolarized light into partially or fully polarized light [53]. The polarizance vector P
of any MM M is defined as

d[1, P]f =M]1, 0, 0, 0]" (2.36)
for some scalar ¢. Any diattenuator Mp has P = D. A polarizer (or partial polarizer)
with zero retardance is the same as a diattenuator, given by equation 2.29.

In turn, a retarder with zero diattenuation can be written

MREH I?;] 53] (2.37)

where 0 is the 3 x 1 zero vector. Mathematically, mp is a 3D proper rotation matrix in the
space of the last three Stokes parameters [s1, s2, s3] [53]. In order to be a rotation matrix,
mp must obey

mpmp =1
det(mp) = +1.

3arctan2(Y, X) is the four quadrant arctangent function, which is equal to arctan(Y/X) if X is positive,
and arctan(Y/X) + = if it is negative [39].
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mp can be specified entirely by a rotation axis R and an angular rotation distance R [53].
Together these make up the retardance vector R = RR [33]. The 3x 1 vector R completely
specifies M g. Physically speaking, the direction R gives the two eigenpolarizations of Mg,
(1, R]” and [1, —R]”. A wave with Stokes vector [1, R]” is advanced in phase relative to a
wave with Stokes vector [1, —R]”, hence R is known as the fast axis [23]. The magnitude
of the retardance vector R is the retardance, i.e. the phase difference between the two
waves [33].

R can be written in terms of three components
Ry

R=| Ru [83]
Rc

which can be calculated using®

B trace(mpg) — 1
R = arccos ( 5 >
Ry = al (mpg(2,3) —mg(3,2))
T 9gn R BT 3. (2.38)
R45 = QSinR(mR(g’ 1) - mR(L 3))
Re = 5= (mp(1,2) - ma(2,1))

Similar to the diattenuation, these components represent horizontal, forty-five degree, and
circular retardance respectively. Define the linear retardance R, = \/R% + R3; and linear
fast axis 6 = (1/2)arctan2(Rys, Ryr) [127]. A linear retarder is a retarder for which R¢e = 0,

and can always be written as
1 o”
M_r(Ry,0) = l 0 myz(R.,0) ]

my (R, 0) =

cos?(26) + cos(Rp)sin?(20) (1 — cos(Ry)) cos(26) sin(20) — sin(Ry) sin(26)
(1 —cos(Ryp)) cos(20)sin(26)  cos(Ry) cos?(20) +sin?(20)  cos(20)sin(Ry) | [39].
sin(Ry,) sin(20) — cos(260) sin(Ry,) cos(Ry)
(2.39)

4Strictly speaking, equations 2.38 fail for R = 0 or R = 7 [53]. In the R = 7 case, other equations can
be derived to determine the three components Ry, Rys5, and Reo. If R =0, then Mg = 1.

16



Note that Rc = 0 implies that the eigenpolarizations [1, R]T and [1, —R]T both represent
linearly polarized light.

A circular retarder on the other hand has circularly polarized eigenpolarizations. This
implies R;, = 0, and

1 0 0
0 cos(Re) sin(Re)
0 —sin(R¢) cos(Re)
0 0 0

Mcr(Re) = [53]. (2.40)

_ o O O

A retarder with Ry # 0 and Ro # 0 is known as an elliptical retarder, and has elliptically
polarized eigenpolarizations.

Because of the periodic nature of waves, a retardance of 27 radians has no effect on
the polarization state of a wave. This leads to an ambiguity in the retardance vector: the
vectors

R = RR — (R+ 2m)R (2.41)
neus
all give the same MM Mp [39]. Equations 2.38 return the unique retardance vector for

which 0 < R < 7.

Any non-depolarizing MM can constructed (up to a scalar constant) by multiplying
together Mp and My [53, 83]. Non-depolarizing MMs are always equivalent to a Jones
matrix [53]. They are more convenient than Jones matrices for some types of analyses due
to their connection with Stokes vectors, which are more directly measurable than Jones
vectors [10]. However, one can also consider depolarizing MMs, which may output partially
or unpolarized Stokes vectors even given fully polarized input. This type of process cannot
be represented with Jones matrices [53].

2.2.3 Depolarizing Mueller Matrices

Depolarizing MMs are those that can output partially polarized or unpolarized light for
fully polarized input light [53]. This occurs when the beam that is recorded at the detector
is made up of two or more incoherent components spyr; that have experienced different po-
larimetric effects [53]. These components could be contributions from different light paths
through the optical system, due to scattering, multiple reflections, or spatial heterogeneity
of the sample [53]. For polychromatic light, they could be different spectral components
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that experience different polarimetric effects as a consequence of dispersion [53]. The total
Stokes vector at the detector can be written

Sour = E PiSOUT,i

1

sour; = My, siy - [D3].

where p; are scalar values indicating the strength of the contribution soyr;, and M, are
non-depolarizing MMs that represent the polarimetric effects experienced by that compo-
nent of the beam. Then the total output Stokes vector is related to the input Stokes vector
via

Sour = Z piM sy =
i

M= My [, (2.42)

M defined by equation 2.42 has in general sixteen degrees of freedom, and can cause
retardance, diattenuation, and polarizance in addition to depolarization. This equation
defines what it means to be a MM: every valid MM is either non-depolarizing or is equal
to a weighted sum of non-depolarizing MMs [12, 53], as in equation 2.42. 4 X 4 matrices
that cannot be written in this form are not MMs at all [12, 53].

An example of a MM that contains only depolarization is the diagonal matrix

1 0 0 O

{0 e 0 0
Ma=149 9 ¢ o0 [33] (2.43)

0 0 0 e3
0<ep,eez <1. (2.44)

If e, = e5 = e3 = 0, then M, is a total depolarizer and always outputs unpolarized light
regardless of the input polarization.

The strength of a depolarizer can be assessed using its depolarization power A:

trace(abs(Ma)) — 1

A=1- . [83].

(2.45)

A ranges from zero for nondepolarizing MMs to one for a total depolarizer.
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2.3 Polarimetry

2.3.1 Mueller Matrix-Measuring Devices

MM polarimetry (usually shortened to “polarimetry” in this thesis) is the process of mea-
suring the MM of a sample. Once the MM is determined, it is known how the sample will
transform any Stokes vector. The MM provides detailed information about the sample that
can be used for testing optical elements [1358], determining the dielectric tensor under some
assumptions [13, 11], and improving contrast between different types of samples, including
biological tissue [29, 11, 57].

The operation of a MM polarimeter is governed by the polarimetric measurement equa-
tion, which will be derived in this section, following the derivation by by Chipman [10].
Other approaches for calculating the MM exist (e.g. [29, , |) but are less general.

A MM polarimeter must be equipped with both a Polarization State Generator (PSG)
and a Polarization State Analyzer (PSA). These are sequences of optical elements with
the ability to modulate their polarimetric properties. One simple PSG design consists of a
horizontal linear polarizer (equation 2.29 with D = [1, 0, 0]7) followed by a Quarter Wave
Plate (QWP) (equation 2.39 with Ry = «/2) [1, 29]. The linear fast axis direction g
can be varied by rotating the QWP. The MMs of these two components can be multiplied
together to obtain the net MM of the PSG:

1 1 0 0

Moc — 1 cos?(20c.;) cos?(20c.;) 0 0
PSGi— 5 c08(20¢;) sin(20g,:) cos(20¢,)sin(20¢,;) 0 0
sin(26¢;) sin(26¢;) 00

The subscript ¢ has been introduced to represent the fact that 6. ; may change for each of

7 irradiance measurements. The same optical elements in the reverse order can be used for
the PSA [29], giving

1 cos®(204;) cos(204;)sin(204,;) —sin(204;)
L |1 cos?(204;) cos(204;)sin(204;) —sin(204;)
0

0
0 0 0

The PSG is situated before the sample, while the PSA is placed after the sample. The
net MM of the entire polarimeter during measurement ¢ is therefore Mpga;, M Mpgg i,
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where M is the MM of the sample itself. Then, the ¢th irradiance measurement I; is given
by

Ii =cC [17 07 07 O] MPSA,'L' MMPSG,i [17 07 07 O]T
= csii Mg (2.46)
where, in the case of the rotating QWP design,
sci = (1/2) [1, cos*(20c.:), cos(20c.) sin(20a.,), sin(20¢.,)]" (2.47)
sai = (1/2)[1, cos?*(204,), cos(204,;)sin(204,), —sin(204,)]" . (2.48)

Equation 2.46 assumes that that the light generated by the source, prior to reaching the
PSG, is unpolarized. Likewise, it assumes that after the PSA, the detector measures irra-
diance without any polarization bias. These assumptions may not be completely accurate,
but it can be shown that equation 2.46 holds regardless if the first element of the PSG and
the last element of the PSA are both polarizers. The scalar constant ¢ depends on many
factors such as the intensity of illumination, sensitivity of the detector, losses within the
instrument, and so on. Equation 2.46 can be rewritten in the form

I =W!IM [10] (2.49)
where

W, = c(s4, ®sa,i) (2.50)

is known as the ith measurement vector and M is the Mueller vector consisting of rows of
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M stacked into a 16 x 1 vector; i.e.

W N =W -

<
Il

(2.51)
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Equation 2.49 relates an irradiance measurement to a linear combination of Mueller
matrix elements, with coefficients that are given by W;. If n irradiance measurements are
made, these can be grouped into a single matrix equation

I=WM [10] (2.52)
I=[I, I, ..., I,)" (2.53)
W= W, W, .., W, (2.54)

W has dimensions nx 16 and is known as the measurement matriz. It can be constructed
if the MMs of the PSG and PSA are known for all n measurements. The constant c¢ is
not usually known, and furthermore is a dimensionful quantity with the same units as I.
The final MM is usually normalized to remove the influence of ¢ [53]. Equation 2.52 is the
polarimetric measurement equation [0, 125] and is useful for understanding many different
aspects of MM polarimetry. Primarily, it is used for the purpose of calculating the MM,
by solving the equation

Ipsr = W Mpsr (2.55)

for Mpgsr [40]. Ipsr is the estimated irradiance; it differs from the idealized irradiance I
due to errors in the PSG, PSA, and detector. This leads to an estimated Mueller vector
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1\7IEST that may differ from the true Mueller vector of the sample. Calculating 1\7IEST
requires that W is invertible. If n < 16, then no inverse exists and there are an infinite
number of possible 1\7_[EST that can satisfy equation 2.52. If n = 16, then W is square so
unless it is singular it has an inverse and a unique M psT can be calculated. If n > 16,
then the system of equations is overdetermined. Due to the error in fEST, it is very likely
that the system will be inconsistent- that is, there will be no M est that perfectly satisfies
equation 2.55. In this case, the pseudoinverse of W given by

W= W'w)'w’ (2.56)

is used in place of the regular inverse [10, ]. The pseudoinverse has the property that
the Mueller vector estimate Mgsr = W Iggr = (WTW)"! WT Iggr minimizes the
quantity

”fEST — WMEST”2

where || - |2 is the Euclidean vector norm:

n

K]l = (D a(i)?)* =x"% (2.57)

i=1
for any n x 1 vector X [102].

In conclusion, at least sixteen measurements are necessary in order to fully determine
the MM. Each of these measurements is described by a PSG state s, and a PSA state
sa;. The PSG and the PSA each have a range of states available to it, depending on the
optical elements it consists of and their modulation method. Polarimeter optimization (e.g.
[4, 81, , , ]) is the process of choosing the n PSG and PSA state combinations
to use for the n irradiance measurements, in order to decrease the error M — Mggr.
For a rotating QWP polarimeter design, this amounts to choosing the angles (6, 04,).
Optimization guarantees firstly that W7 W is nonsingular, allowing calculation of the
pseudoinverse or inverse. Additionally, it maximizes the resilience of the polarimeter to
experimental errors. This topic will be discussed in more detail in chapter 4.

2.3.2 Interpretation of Mueller Matrices

Once a MM is measured, a number of different techniques exist for calculating polarimetric
properties such as diattenuation, retardance, and depolarization. These give insight into
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the physical structure of the sample, and in imaging applications can provide additional
contrast, such as between retinal amyloid deposits and the background retina [05].

One method of extracting these properties that is popular for the study of many mate-
rials including biological tissues (e.g. [13, 50, , 119]) is the Lu-Chipman decomposition
[83]. This is an example of a serial decomposition [53], meaning that it interprets the
sample as a sequence of discrete elements, each of which have easy to understand polari-
metric properties. The Lu-Chipman decomposition writes the MM as the product of a
diattenuator, a retarder, and a depolarizer:

M:C/MAPMRMD [ ] (258)

The scalar ¢’ is usually ignored due to M being normalized. While Map is generally
referred to as a depolarizer MM, it contains both depolarization and polarizance. It has
the form

(2.59)

1 or
Map = { }

Pap map

where map is a 3 X 3 symmetric matrix, and Pap is the depolarizer-polarizance vector
[33].

Combining the expressions for the three component matrices 2.29, 2.37, and 2.59,

M:CMAPMRMD (260)

_c 1 DT
1+D|P m

P =Pap+mapmpD

2.61
mEPApDT+mAmemD. ( )

The diattenuation D can be read directly off the first row of M, allowing one to calculate
mp using 2.29. Likewise, the P and m can be read from M. Lu and Chipman developed
an algorithm for using equations 2.61 and D, mp, P, and m in order to determine the
remaining unknowns Pap, map, and mpg [83]. These components can be assembled using
equations 2.29, 2.37, and 2.59 in order to obtain the matrices M p, Mg, and M p such that
M = ¢ Map Mg Mp. The retardance R is then calculated by applying equations 2.38 to
Mg, and the depolarization power A is calculated applying equation 2.45 to Map. This
technique results in two different but related polarizance vectors P and Pap.

23



Chapter 3

Reciprocal Invariance and In Vivo
Retinal Polarimetry

3.1 Introduction

In in vivo retinal polarimetry, incident light passes through the cornea, pupil, and lens prior
to reaching the retina. Light reflects at some depth in the retina before passing through
those same structures in the reverse direction and reaching the detector. Some previous
authors have used a double pass model to describe the interaction of the eye with polarized
light, so called because the beam must pass twice through ocular tissue [24, 26, 64, 74, .
This model assigns a specific mathematical structure to the MM, namely, that it is the
product (right to left) of individual MMs of the cornea, lens, and upper layers of the retina,
followed by the MM of the reflection, followed by the MMs of the upper retina, lens, and
cornea for light traversing in the opposite direction. To the best of the author’s knowledge,
this has always been combined with the assumption that each of the cornea, lens, and
retina is either polarimetrically inert, acts as a linear retarder, or acts as a linear retarder

times an isotropic depolarizer!.

While the retinal amyloid deposits studied by Campbell Labs have strong linear retar-
dance [08, |, for future in vivo measurements it is preferred not to ignore their other
polarimetric properties. However, it was observed that even without assuming that the
retina (or retinal deposit) acts as a linear retarder, the double pass model implies a set of
restrictions on the total MM. These restrictions stem from the fact that if the direction of

!That is, a depolarizer of the form M;x = diag(1,e,e,e) for 0 <e < 1.
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light propagation is reversed (or equivalently, if the source and detector are switched) then
the beam will pass through the same structures in the same order as before. A MM that
is unchanged upon reversal of the direction of light propagation is known in this thesis as
reciprocal invariant. The purpose of this chapter is to define the double pass model and
reciprocal invariance in terms of MMs, and to justify why these concepts are applicable to
in vivo retinal polarimetry.

Section 3.2 discusses the Helmholtz reciprocity theorem, its representation using Jones
and Mueller matrices, and the concept of reciprocal invariance. These concepts are not
novel, but are helpful for understanding the remainder of this thesis. Section 3.3 applies
them to in vivo retinal polarimetry. The reciprocity theorem is used to write an expression
for a double pass MM in terms of the single pass MM for transmission once through ocular
tissue, similar to previous work by Bueno [21]. It is observed that regardless of the form
of the single pass MM, the double pass MM must be RI. In addition to the double pass
model, a new ray tracing model is used to reinforce the claim that the MM measured by
in viwo retinal polarimetry should be RI, and to identify some of the conditions necessary
for this claim to be accurate. The idea that the MM should be RI, and the relationship
between single and double pass polarimetry properties implied by the double pass model,
are fundamental to subsequent chapters of this thesis.

3.2 The Reciprocity Theorem

The Helmholtz reciprocity theorem describes how an optical system behaves when the
direction of light propagation through the system is reversed. The original statement of the
reciprocity theorem for vector waves was given by Helmholtz in 1867 (English translation
by J. P. C. Southall):

Suppose light proceeds by any path whatever from a point A to another point
B, undergoing any number of reflections or refractions en route.... Now suppose
that a certain amount of light J leaving the point A in the given direction is
polarised in the plane a;, and that of this light the amount K arrives at the
point B polarised in the plane by; then it can be proved that, when the light
returns over the same path, and the quantity of light J polarised in the plane
b, proceeds from the point B, the amount of this light that arrives at the point
A polarised in the plane a; will be equal to K.

Apparently the above proposition is true no matter what happens to the light
in the way of single or double refraction, reflection, absorption, ordinary dis-
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persion, and diffraction, provided there is no change of its refrangibility, and
provided it does not traverse any magnetic medium that affects the position of
the plane of polarisation, as Faraday found to be the case. [131]

As an example, imagine that between points A and B there is a slab of an isotropic,
absorbing material. The reciprocity theorem states that light will be attenuated by an equal
amount if it travels from A to B as if it travels from B to A. Note that the reciprocity
theorem is different from the concept of time reversal [6, 104]: the time reversed wave
travelling from B to A would be amplified, not absorbed, which is unphysical. When the
polarization state changes between A and B, the behaviour implied by the reciprocity
theorem is more complicated. Later in this section, it will be seen that the reciprocity
theorem leads to a relationship between the Jones and Mueller matrices for propagation
from A to B and those for propagation from B to A.

Helmholtz stated his theorem without giving any proof? [134]. A less general reciprocity
theorem has been shown rigorously in scattering theory by Saxon [114] and de Hoop [11],
and appears in light scattering textbooks (e.g. [10, 76]). To summarize their result,

suppose that there is an object embedded in an otherwise uniform, isotropic, nonabsorbing
medium. A plane wave propagating through the medium will be disturbed or scattered
by the object or scatterer. It can be shown that far enough away from the scatterer, the
total wave is given by the sum of the original plane wave with a spherical wave emitting
from the scatterer [66, 70]. Let A and B be two points that are both a large distance
R from the scatterer. Let E4 be a plane wave of arbitrary polarization that approaches
the scatterer from the direction of point A, evaluated at point A. Let Eg be the resulting
scattered spherical wave evaluated at point B. Likewise, let E’; be a plane wave of arbitrary
polarization that approaches the scatterer from the direction of point B evaluated at point

B, and E/; be the resulting scattered spherical wave evaluated at point A. Saxon [I11] and
de Hoop [11] use Maxwell’s equations to derive
E,-E, =Eg E}. (3.1)

Equation 3.1 is a mathematical statement of Helmholtz’s reciprocity theorem, with the
following modifications: equation 3.1 implies also that the phase accumulated for the trip
from A to B is the same as that for the trip from B to A, it allows the incident plane
waves to be elliptically polarized, and it is so far restricted to single scattering. The proof of

2In fact, he claimed that “anybody who is at all familiar with the laws of optics can easily prove it for
himself” [134]. Proofs that the author has found (e.g. [54, 114]) seem fairly involved and are less general
than Helmholtz’s original statement, so it is unclear what proof Helmholtz had in mind.

26



equation 3.1 requires several assumptions about the constitutive relations of the scatterer
(see section 2.2) [70, |. These assumptions apply to the linear isotropic, anisotropic,
and chiral materials described in section 2.2 [11]. They fail for nonlinear materials and
gyrotropic materials in the presence of an external magnetic field [11, 44]. Tt will be
assumed in this thesis that matter in the eye obeys the necessary conditions.

Next, equation 3.1 can be written in terms of Jones matrices. The result is well known
[53, , ], but the details of the derivation are provided here in order to make explicit
the coordinate system choices involved. E, is a plane wave travelling in the k direction,
where k is a unit vector pointing from point A towards the scatterer. Let (tl, to, k) be a
righthanded orthonormal set of unit vectors, so that one can write’ E4 = E ¢ t,+E Ats to,
and express its polarization state using the Jones vector

e
EA, to

At point A, the spherical wave E/, is approximated by a plane wave traveling in the —k
direction. If one wishes to always write Jones vectors in terms of right handed coordinate
systems, it is necessary to write E/, in terms of a different basis than E4. A convenient
choice is to use (t;, —ts, —k). Then E/, can be written in terms of the components E/, =
E,/ax,t}%l + E,/4, _£2(_£2). The Jones vector of E/y with respect to this basis is

/
o EA t1
Ja =

A —to

Using these Jones vectors, the left side of equation 3.1 can be rewritten as

~

Eq-E) = (B, ot +Eyq,t0) - (E,lcx,flfl + B g, (-t2))
_EAt]_E/ EA,{?QE/ _

A, —t2
E .
- [ Ey t1 Ey t2 ] o5
AR [
. 1 0 .
A A (3:2)

i(kR—wt)

3A time dependent phase term e’ has been dropped for simplicity, because these terms cancel

from equation 3.1.
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The same coordinate convention can be applied at point B to describe the plane wave
E’; and the spherical wave Ep, resulting in the equation

. 1 .
B Ep=ib |, | s (33)
0 -1
Finally, because the scatterer is linear, incident and scattered Jones vectors can be

related to one another using Jones matrices:

is=JaBja
.]IA = JBHAj/B- (35)

Jap and Jg_, 4 depend on the makeup and orientation of the scatterer, as well as the rel-
ative positions of A and B. They could have any amounts of retardance and diattenuation,
but it will be shown that they must be related to each other in a specific way. Assembling
equations 3.1, 3.2, 3.3, 3.4, and 3.5,

. 1 0 . . 1 0 .
o ] seats =it [ O 6 (3.

The polarization states of the two plane waves are arbitrary, so equation 3.6 holds for any
combination of complex vectors j4 and jz. Therefore, it follows that

1 0 1 0
Lo S f =i o 4]
1 0 1 0
JB%A:{O _JJLB{O _1}. (3.7)

The final result 3.7 is the reciprocity theorem for Jones matrices [53, , 131]. It can
be extended to non-depolarizing MMs using equation 2.28, resulting in

M, poa = XM7,  5X (3.8)
10 0 0
o1 0 o0
00 0 1

Equations 3.7 and 3.8 depend on the convention used to represent Jones vectors of
waves travelling in opposite directions. If a wave travelling in the k direction uses the basis
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(t1, to, R), then it was chosen to use (t;, —tg, —1A<) for a wave travelling in the —k direc-
tion. It can be shown that the choice (—f:l, to, —lA<) leads to the same Mueller reciprocity
equation 3.8. Another option is to use the left-handed basis (ty, to, —R) for the second
wave, representing both waves using the same coordinate frame. This leads to a different

form of the Jones and Mueller reciprocity equations, used by some authors:

Jpsa= JE,41—>B [ ) ]
Mpoa=QMY, ,Q [2]

100 0

o010 0

Q=1|, 01 o (3.10)
000 -1

The difference in coordinate system choices has no impact of the physical meaning of
reciprocity, but can be a source of confusion. This topic is discussed further in Appendix C.

Equations 3.7 and 3.8 are commonly used in situations other than single scattering
(e.g. [1D, 24,20, 65, 104]). Schonhofer and Kuball have derived equation 3.8 directly using
the language of quantum mechanics, with minimal assumptions about the optical system
[115]. As well, many types of light-matter interactions can be described using the coherent
sum, incoherent sum, or product of single scattering matrices. Accordingly, Greffet and
Nieto-Vesperinas have proven the reciprocity theorem for reflections from flat surfaces
[>1]. Chandrasekhar has shown the reciprocity of diffuse reflections and transmission [36].
For a wave that propagates from A to B through an optical system while experiencing
any sequence of reflection, transmission, or scattering, the total MM is the product of
individual MMs representing each process. By applying the reciprocity theorem to each
MM in the product, the MM for propagation from B to A is

Mp .= XM] ;X (3.11)

Likewise, as described in section 2.2.3, any MM is the weighted sum of nondepolarizing
MMs. Applying 3.11 to each of these component matrices, it follows that 3.11 holds true
for all MMs, even those that contain depolarization [53].

These reciprocity equations describe how the Jones or Mueller matrix changes when
the direction of light propagation is reversed, which will be referred to as motion reversal.
Equivalently, if the MM is measured using a source at point A and a detector at point
B, they allow one to calculate the MM that would be measured if the locations of the
source and the detector were switched. Some optical systems are symmetric upon motion
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reversal. This is the case if the system is symmetric upon reflection through the plane that
bisects the line between A and B [131]. It follows that for such a system,

MB—>A = MA—>B =M
M=XM"X [41, 131, 118]. (3.12)

MMs that obey equation 3.12 will be referred to in this thesis as reciprocal invariant® (RI).
Unlike time reversal symmetry, this does not preclude the existence of absorption in M.
It states that a wave generated at A and detected at B will experience the same MM as
a wave generated at B and detected at A%. The simplest example of this is when point
A and B coincide, and the output light returns along the same path as the incident light.
The MM in this case is known as a backscattering MM [11, 91, 118].

Equation 3.12 is equivalent to six linear relationships between the off diagonal elements

of M:

0=M(2,1) — M(1,2)
0=M(3,1) + M(1,3)
0=M(4,1) — M(1,4)
0=M(3,2)+M(2,3) (3.13)
0=M(4,2) — M(2,4)
0= M(4,3) + M(3,4)

Suppose M is written as the sum of non-depolarizing component MMs (perhaps repre-
senting different paths through the system, multiple scattering, etc.). If each of these
components individually satisfies equation 3.12, then it can be shown that the total MM
will obey not only the six restrictions 3.13, but also the trace condition

0=M(1,1) — M(2,2) + M(3,3) — M(4,4) [11, 91]. (3.14)

MMs that obey only equations 3.13 will be called ten parameter RI MMs, while those that
also obey equation 3.14 will be called nine parameter RI MMs. Many of the results in this
thesis apply to both types, and in these contexts “RI MM” will be used without specifying
nine or ten parameter.

4To clarify this terminology, an optical system for which any MM and its motion reversed version are
related by equation 3.11 is known as reciprocal [76]. A MM that is equal to its motion reversed version,
and for which the optical system is reciprocal, is reciprocal invariant.

5Time reversal symmetry would instead state that the two are inverses, which is impossible if the
medium is absorbing, or when the energy of the incident wave is split into more than one output wave.
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3.3 Modelling In Vivo Retinal Polarimetry

The reciprocity theorem and the concept of reciprocal invariance are useful for modelling in
viwo retinal polarimetry. It will be assumed that the instrument used for this is a Confocal
Scanning Laser Opthalmoscope (¢SLO) [136] equipped with a PSG and PSA (e.g. [29]). In
this imaging modality, light of a known polarization state is focused by the optics of the eye
onto a finite spot on the retina. This light is reflected, scattered, or absorbed by structures
within the eye. Some of it exits through the pupil, passes through the PSA and reaches
the detector. In order to reduce the amount of multiply scattered light, the detector only
accepts light that originated from a small part of the retina, which should overlap with
the illumination spot [136]. Then both the illumination spot and the detected spot are
scanned over the retina in order to generate a 2D image. This process is then repeated
with different PSG and PSA configurations, until enough images have been collected to
calculate a pixel-by-pixel MM for each point on the retina.

The double pass model is based on the observation that the beam transmits through the
cornea, lens, and the upper layers of the retina, before reflecting and passing through the
same layers of the retina, the lens, and the cornea in the opposite direction. It is assumed
either that the input and output cones of light coincide in space, or that polarimetric
properties of the ocular tissue vary slowly enough spatially that any difference between the
two can be ignored. The total MM is then assumed to be the product of MMs representing
each of these stages, resulting in

M = XM/, XM, Msp
MSP = Mretina Mlens Mcornea'

The reciprocity theorem has been used to write the MM of the second pass through ocular
structures on the way out of the eye. This sort of model has been used commonly in in vivo
retinal polarimetry [24, 26, 64, 74, ]. However, to the author’s knowledge, it has always
been used in conjunction with additional assumptions about the polarimetric properties
of the retina. In the present analysis, Mgp is instead permitted to be any MM. Following
these previous authors (i.e. [24, 20, 64, 74, ]), assume that the reflection matrix M,
acts as a perfect reflector, which in the current coordinate system conventions is given by

10 0 0

o1 0 o0
M=Y=|00 1 o 39, 53)]. (3.15)

00 0 -1
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Using this expression,
M = XML, XY Mgp. (3.16)
Equation 3.16 is the double pass model. Observe that

XM'X =X (XML, XY Mgp)' X
= XML, YT X" Mgp X' X
= XML, XY Mgp =M.

Therefore, the double pass model implies that® M = XM X is ten parameter RI (it
does not guarantee that M obeys the trace condition 3.14, so M may or may not be nine
parameter RI). This result is due to the fact that the double pass model has motion-
reversal symmetry: it was assumed that the input and output beams traverse identical
tissue, therefore they can be switched without changing the MM.

The same result can be obtained by modelling the total irradiance at the detector as
the sum (coherent or incoherent) of a finite number of individual rays that have returned
from the eye. Each ray is assumed to have a well-defined Jones vector that is transformed
as it traverses different optical elements and ocular structures. This technique is inspired
by the polarization ray tracing that has been used to study polarization aberrations of
optical systems [37, 38, 90], as well as backscattering from large particles [20]. Tt also bears
similarity to a much more detailed model used by Huang and Knighton [03] to examine
scattering from the RNFL. The current section ignores important effects such as diffraction
and the optical aberrations of the human eye [17, |. Despite these shortcomings, this
polarization ray tracing approach provides a useful picture of how reciprocal invariance
may manifest in wn vivo retinal polarimetry, complementary to the double pass model.

Figure 3.1 shows a schematic of the human eye, illuminated by the ¢SLO at a fixed
scanning position. The central ray in the diagram is exactly backscattered, returning
along exactly the same path as it came down. However another ray path is shown, which
approaches the retina in the direction n, is scattered or reflected in the retina at position x,
and travels away from the retina in the direction —n’. The example ray is singly scattered,
but the arguments presented in this section apply to multiple scattering as well. Even
for a fixed scanning position there are a collection of nearby locations x that contribute

6Note that the exact expression depends on the relationship between the coordinates used to express the
input and output Stokes vectors, as discussed in the previous section. If the same coordinates are used for
both input and output Stokes vectors, then the double pass model has the form M = Q Mgp QMgp. This
is the expression used by Bueno [24]. This version of the double pass model implies that M = Q M7T Q.
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Retina

Figure 3.1: The human eye and a possible ray path for an in vivo retinal polarimetry
experiment.

to the measurement. The directions n and —n’ are not necessarily related by the law
of reflection, and for a fixed n and x there are permitted to be many different output
rays that represent the field scattered in all directions. For example, there is also a ray
that approaches the retina in the n direction but returns along the central ray path. The
Jones vector associated with each ray is transformed as it transmits through different
structures in the eye, and scatters at the location x. This can be represented by a Jones
matrix’” J(—n’, x, n). This Jones matrix accounts for the polarimetric effects on the ray
of transmitting through the cornea, lens, and upper retina, as well as scattering at x. The
scalar amplitude and phase of this matrix are important- for example, if the retina only
scatters a small amount of light in the —n’ direction, the associated Jones matrix will
have small entries. It is assumed that prior to entering the eye, each ray has the same
Jones vector j;,, up to a scalar multiplier. Label this scalar multiplier as ag(x, n) which
specifies the amplitude of the input ray segment uniquely defined by coordinates (x, n),
prior to it entering the eye. This function accounts for the size of the entrance pupil and
any variations in amplitude across the entrance pupil. Additionally, introduce the function
as(—n', x), which represents the sensitivity of the detector to the output ray segment
uniquely defined by (—n’, x). This function accounts for the size of the exit pupil, the size
and angular acceptance of the detector, and any variation in detector response for off-axis
rays.

"Multiply scattered rays could be notated as J(—1’, x,,, ..., Xo fi) for any number of scattering locations
Xq, ---, Xp. The argument in the following paragraph applies to these paths but single scattering is used as
the example for simplicity.
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The effective Jones vector at the PSA due to any individual ray is equal to

jout(_ﬁ/7 X, ﬁ) = CL(,‘(X, ﬁ) (IA(—fl/, X) J(_ﬁ/7 X, ﬁ)jzn
Consider the sum of this ray with the ray that travels in the opposite path, approaching the
retina in the n’ direction and leaving it in the —n direction. The Jones matrix experienced
by this ray can be related to the Jones matrix of the original ray using the reciprocity
theorem 3.7:

J(—h, x, &) = H N } J(—#', x, )T [é Y }

Under the current approximations, it will be shown that the total MM is RI if the instru-
ment measures each ray and its opposite ray with equal sensitivity. This requirement can
be expressed mathematically as a4(—n, x) = ag(x, n). This assumption requires symme-
try between the illumination and detection branches of the instrument. It implies that the
entrance and exit pupils are equal, and also that if there is nonuniform illumination over
the entrance pupil, then the rays passing through the exit pupil are also detected with a
matching nonuniform sensitivity.

A ray and its opposite have identical total path length, and so are expected to add
coherently. Then the sum of their Jones vectors at the PSA is given by

J(~1, x, ﬁ’)) Jin- (3.17)
Using the assumption of the last paragraph, ag(x, n)as(—1', x) = ag(x, n’) as(—n, x).
From equation 3.17, it can be seen that the two Jones vectors j;, and jo.(n <= n’,x) are
related through the Jones matrix

It can be observed that

T 0T e w10
J(an,x)—{O _1}J(an,x) [0 _1}

This shows that J(n <» n’,x) is an RI Jones matrix, that is, the non-depolarizing MM
calculated from J(n <= n’,x) using equation 2.28 is RI. It was implicitly assumed that
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n # n’, because otherwise equation 3.17 is double counting the same ray. However, rays
for which n = n’ are exactly backscattered rays and so are also described by RI Jones
matrices.

At the detector, some rays are expected to add coherently, such as those due to single
scattering from the same location x, or multiple scattering paths of the same path length.
This means that they add as Jones vectors. The Jones matrix relating j;, to the total
Jones vector for such a collection of rays is the sum of the effective Jones matrices for each
ray [53]. This sum can be grouped into backscattering rays for which n = n’, which are
RI, and path plus opposite path pairs, which are together also RI as found in the previous
paragraph. Therefore, the total Jones matrix for that collection of rays is the sum of RI
Jones matrices and it follows that it must be RI itself. This Jones matrix can then be
written as a RI MM using equation 2.28.

These collections of rays will be then assumed to add incoherently with one another,
such as single scattering from different locations and multiple scattering paths of different
path lengths. Therefore, they add rather as Stokes vectors. The MM relating s;, to the
total Stokes vector is the sum of the MMs for each Stokes vector in the sum. These
individual MMs are all non-depolarizing and RI, because each is associated with a single
RI Jones matrix. It follows that the total MM, which may be depolarizing, is also RI.
Unlike the double pass model 3.16, this model also implies that the MM should obey the
trace condition 3.14 because every component non-depolarizing MM is RI (see section 3.2).
Future chapters will therefore consider both the possibilities that the MM does or does not
obey the trace condition.

The reciprocal invariance of the MM in this ray tracing model is the result not only of
the presence of backscattered rays that return exactly along their incident path, but also of
the balance between every non-backscattered ray and its opposite path ray. It was required
to assume that the illumination and detection branches of the instrument are symmetric,
or mathematically speaking a4(—n, x) = ag(x, n). Additionally, it was assumed that
the rays could be grouped into collections of rays that were completely mutually coherent
(adding as Jones matrices), and completely incoherent with all other rays outside the group
(adding as MMs). This is an approximation, and describing complicated partial coherence
behaviour is beyond the scope of this thesis. Lastly, this polarization ray tracing approach
is also of limited validity, especially within the eye where the effects of diffraction are
significant [17]. However, it shows some of the conditions under which the total MM from
in vivo retinal polarimetry is RI.

Past experimental in vivo retinal polarimetry measurements were examined to see if
the resulting MM was RI as predicted by the current section. For many publications
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this was impossible to tell because of assumptions made in that paper about the MM

(e.g. [34, 18, ], or because not enough of the MM was included in the paper (e.g.
[26, 33, 31, 28, 49, 72, ). Bueno has reported a numerical 3 x 3 MM submatrix
measured using a partial in vivo retinal polarimeter [25]. The result is consistent within

the reported errors with M = Q M” Q, which is the expression for reciprocal invariance if
the input and output Stokes vectors are represented in the same coordinate system. Note
that a MM obeying M = Q M7 Q has the general form

M(1,1)  M(1,2) M(1,3) M(1,4)
M M(1,2)  M(2,2) M(2,3) M(2,4)
| M(1,3)  M(2,3)  M(3,3) M(3,4)
Bueno [21, 22, 23] and Bueno and Artal [27] have published sets of sixteen MM images of

the eye. The instrument used in each paper did not scan the incident beam, but instead had
a CCD camera array that captured an image for a fixed beam location. This design may
have less symmetry between the illumination and detection branches of the instrument than
the scanning design modelled in this section. While it is difficult to tell from MM images,
their results seem to be approximately RI with M = QM? Q. However a noticeable
deviation from reciprocal invariance can be observed in the M(4,1) element, which is not
similar to —M (1,4). Bueno noted that the results from this instrument were not “totally
symmetric”, by which it was meant that M (i, j)* # M(j,4)? [23]. Lastly, Twietmeyer
[127] and Twietmeyer et al. [126] have also published full sets of sixteen MM images,
measured using a scanning in vivo retinal polarimeter. Several off-diagonal elements show
the expected RI relationships, but others, specifically M (4,1) and M (3,2), do not.

There could be several reasons for the disagreement between these published MMs and
the prediction of reciprocal invariance. One possibility is the presence of experimental
errors, which may obscure the underlying RI behaviour of the MM. More likely however is
that the discrepancies are due to a lack of symmetry between the illumination and detection
branches of these instruments, leading to non-RI components of the measured MM. For a
future n vivo retinal polarimeter for detecting amyloid deposits, it may be beneficial to
maximize this symmetry so that the MM is more exactly RI. The advantages of this are
that it allows the MM to be calculated from a reduced number of measurements, as will be
explained in chapter 4. As well, it means that the MM can be interpreted through the lens
of the double pass model, which will be explored in chapter 5. Future work should test
this idea experimentally to confirm if it is beneficial for the purpose of identifying retinal
amyloid deposits.

36



3.4 Conclusion

This chapter has introduced and explained two important ideas about the mathematical
structure of the MM that is measured in in vivo retinal polarimetry. The first is that the
MM should be RI, obeying a set of linear relationships between MM elements. As will be
seen in Chapter 4, this has major implications for how to most efficiently measure these
MMs. The second is the double pass model, which relates the MM to the single pass MM
for transmission through the structures of the eye. This idea aids in the interpretation of
the MM, and is the baseline for the discussions of Chapter 5.
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Chapter 4

Measurement of Reciprocal Invariant
Mueller Matrices

4.1 Introduction

As described in section 2.3.1, determining a general MM requires at least sixteen indepen-
dent irradiance measurements [10]. In a real polarimeter, these are subject to experimental
error. The way in which error propagates into the final MM estimate strongly depends on
the choice of PSG and PSA states for each measurement [125]. Polarimeter optimization
(e.g. [4, 81, , , , , 139]), is the process of choosing which PSG and PSA states
to use, usually on the basis of making the estimated MM more resistant to error. Error
performance can be further improved by increasing the number of measurements [120), ],
but this increases the total time required to determine the MM.

Partial MM polarimeters are those that cannot determine a general MM [10, ,

]. These may provide enough information to completely determine some polarimetry
properties of the sample, or to determine the entire MM if it is assumed to have a particular
form [25, 40, 73, 82, 113]. Partial MM polarimeters may have simpler PSG and PSA designs
than full MM polarimeters, and/or use fewer than sixteen total measurements [25, 112, 130].
Additionally, if the form of the MM is well known, restricting the measured MM to fit that
form may remove deviations due to error.

For in vivo retinal polarimetry, speed is a priority in order to reduce discomfort for the
patient as well as disruptions such as blinks, involuntary eye movements [$5], and tear film
drying [62]. Based on section 3.3, this chapter proposes novel partial polarimeter designs
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that utilize the assumption of reciprocal invariance! in order to determine all sixteen MM
elements from as few as nine or ten measurements.

To accomplish this, the first objective is to efficiently solve the linear system of equa-
tions consisting of the RI symmetry restrictions 3.13 (and possibly 3.14) combined with
the polarimetric measurement equation 2.52. This problem has been considered for nine

parameter RI MMs by Arteaga and Ossikovski [9, 96]. Their approach assumes a po-
larimeter that completely determines either nine [96] or twelve [9] MM elements. Tyo et
al. state that symmetry restrictions on an MM (such as equations 3.13) can be treated
in the same way as additional measurements [130], however it is shown in section 4.2 that

this can lead to a non-RI MM estimate if the system is overdetermined. In section 4.2, a
method is demonstrated that allows for the calculation of the MM using any number of
measurements (over the minimum of nine or ten) and any kind of polarimeter. Late in
the development of this thesis, it was observed that an equivalent method has been used
before by Hayman et al. for polarimetric lidar [55].

The second objective is to decide which PSG and PSA states to use for measuring
RI MMs. Section 4.3 shows derivations for polarimeter optimization metrics used for full
polarimeters, based especially on the work of Twietmeyer and Chipman [125] and Zallat
et al. [139]. Then, a novel extension of these metrics to partial polarimeters is shown. The
new metrics can be minimized in order to choose the PSG and PSA states that will give
the best error performance for determining RI MMs.

This method was developed based on existing methods for full MM polarimeters [51,

, |. A few other works have treated the optimization of partial MM polarimeters.
Savenkov [112, ] has discussed the optimization of polarimeters that fully determine
some number of rows or columns of the MM. Tyo et al. [130] and Anna et al. [5] have
described techniques for optimizing a partial polarimeter for a specific classification or dis-
crimination task. Alenin and Tyo [2, 3] have extensively analyzed the design of some types
of partial polarimeters. The method in this chapter, which was developed independently of
these references, has the advantages of simplicity and applicability to any type of PSG and
PSA. Additionally, it is based on reducing the total error in the RI MM, rather than having
to define a specific classification or discrimination task. Finally, the suggestion by Tyo et
al. [130] that symmetry relations are treated as if they were additional measurements is
considered in section 4.3, but is found to create ambiguities in the optimization metrics
used in this chapter.

Sections 4.4 and 4.5 apply the methods of section 4.3 to find several rotating QWP par-

1Both nine and ten parameter RI MMs are considered throughout. Separate designs are shown for each
case.
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tial polarimeter designs capable of measuring RI MMs in fewer than sixteen measurements.
Each design consists of a sequence of angles for both QWPs in the polarimeter. These are
chosen based both on error performance and on other practical considerations for in vivo
retinal polarimetry, such as the time required to rotate the QWPs. A simulation is used to
compare the performance of each design in the presence of errors, using standard sixteen
measurement full polarimeter QWP designs as a baseline.

The sets of QWP angles obtained in this chapter, and the equations developed in
section 4.2, can be used directly to measure RI MMs in as few as nine or ten measurements.
For a future in vivo retinal polarimeter intended to detect amyloid-£ in the retina, it may
be decided to use other modulating elements than rotating QWPs, or a different number
of measurements. In that case, the methodology exhibited in this chapter should serve as
a template for how to choose the PSG and PSA states for each measurement.

4.2 The Polarimetric Measurement Equation and Re-
ciprocal Invariance

As derived in section 2.3.1, typical Mueller matrix measuring devices involving n measure-
ments are governed by the polarimetric measurement equation

I=WM (4.1)

where I is a n x 1 vector containing the measured irradiance data, M is the MM reshaped
into a 16 x 1 Mueller vector (equation 2.51), and W is a n x 16 matrix relating the two
[10]. Arrows have been added to vectors in order to prevent confusion between matrix and
vector forms of I and M. Each row of W is constructed from the elements of the MMs of
the PSG and PSA during the corresponding measurement (equation 2.50). Vector equation
4.1 is the same as n scalar equations, all of which are linear in elements of M. For M to
be determined, n must be at least 16. The reciprocal invariance restrictions 3.13 and 3.14
are likewise scalar equations and are linear in elements of M. They can be represented by
a matrix equation analogous to equation 2.52:

0=W,M (4.2)

where W,. is a matrix encoding the restrictions on RI MMs. W, is of dimension a x 16
where a = 7 or a = 6 for nine or ten parameter RI MMs respectively. This is because for ten
parameter RI MMs there are six linear relationships between MM elements (equations 3.13)
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while nine parameter RI MMs obey also a seventh restriction (equation 3.14). By inspection
of equations 3.13 and 3.14, an expression for W,. in the nine parameter case can be obtained:

1 000 0O -1 00 0O01O0 0 0 0 —1]
60100 -1 0 OO0 0O0O0O 0O 0 0 0
0010 0 0 00 1000 0 0 0 0
W,=(00 01 o 0 00 O0O0O0OO0O -1 0 0 O (4.3)
0000 0O 0 10 0100 0O 0 0 0
0000 0O 0 01 0O0O0O 0 -1 0 0
| 00 00 0 0 00 0001 0 0 1 0 |

The ten parameter case can be obtained by dropping the first row of W,., which corresponds
to the trace condition 3.14. However, in either case, W, is not unique. The matrix
W! = BW,, where B is any nonsingular a x a matrix, imposes the same restrictions on
M.

One way to incorporate this symmetry information into the measurement equatlon 4.1
is by appending the rows of W, to W, and correspondingly the zero vector 0 to I:

[H:{B%VVT}M (4.4)

This scheme treats the restrictions on RI MMs as though they were additional mea-
surements, which is what was suggested by Tyo et al. [130]. The estimated Mueller vector
can be reconstructed using

-1 =
- | W Igst
Mpgsr = [ BW, } [ g } . (4.5)

The elements of W are dimensionful quantities, and as seen in section 2.3.1 contain the
unknown scalar factor ¢. This causes a problem regarding the relative scaling of W and
W... If an experiment uses exactly the minimum number of measurements (i.e. n+a = 16),
then this problem has no effect on the calculation of M gst (although it will be seen in
section 4.3 that it causes ambiguities in the optimization of the polarimeter). However,
if n+a > 16 the pseudoinverse must be used to calculate Mpgry [10], as discussed in
section 2.3.1. The system of equations is overdetermined in this case, and it will usually be
inconsistent due to errors in I gst- In general there will be no M est that perfectly satisfies
equation 4.4, but the use of the pseudoinverse returns M pgr that minimizes the quantity

175 - [ o, | Btesels 1102 (46
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where ||-||2 is the Euclidean vector norm defined in equation 2.57. Minimizing this quantity
does not guarantee that W, Mggr = 6, that is, the estimated Mueller vector may not be
perfectly RI. Furthermore, M ggr will depend on the choice of B.

A different approach will be proposed that always returns the same estimate M EST,
and guarantees that 1\7IEST is always RI. This method rewrites equation 4.1 in terms of
the nine (or ten) dimensional space of RI MMs, rather than the sixteen dimensional space
of general MMs. The null space of W,. is the set of vectors M that satisfy equation 4.2
[61], meaning it is the space of RI Mueller vectors. Because equations 3.13 and 3.14 are
linearly independent, the dimension of the row space of W,. is a and so the dimension of
the null space is b = 16 — a [01]. Therefore any vector in the null space of W, i.e. any
RI 1\7[, can be built from a linear combination of b basis vectors. This is expressed by the
equation M = zf{, where R is an arbitrary real b x 1 vector? and z is a 16 x b matrix, the
columns of which are a set of basis vectors for the null space of W,. In MATLAB, z can
be calculated using the built-in command z = null(Wr) [39]. R is a reparameterization
of M under the assumption of reciprocal invariance, with z being the set of instructions
on how to return from R to MM elements. Combining this with equation 4.1,

— Wi R (4.7)

where Wg; = W z is the n >< b reciprocal invariant measurement matriz. To obtain MEST,
first calculate REST =Wy, T BsT, using the pseudoinverse? W = (z W™ Wz) ! z' WT
(see equation 2.56). Due to the reduced dimensions of W g, Compared to W, this requ1res

a minimum of nine or ten measurements instead of sixteen. Then take M EST = Z REST
This estimate is RI, because by definition, W, z = 0:

Wr MEST = Wr Z REST

Like W,., the matrix z is not unique. The matrix zZ = zC, where C is any b x
b nonsingular matrix, is an equally valid representation of the null space of W,. The

2This R is unrelated to the retardance vector R defined in section 2.2.2.
3If Wgy is square (n = b), then this expression is the same as normal inverse.
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estimated Mueller vector calculated using z’ instead of z is given by

EsT =72 ﬁ'/EST
=2 Wi} Ipsr
=7 (Z"WI'Wz) ' 2T W T er
=zC(CTz"WIwzC) ' Cclz" w?h Lpsr
=zCC (2" WIWz) 1 (CT) ' CT 2" W T
=z(z' W Wz) 1zl W7 Lesr
= ZW&}fEST

= Mpggr.

Therefore, all possible versions of z give the same reconstructed MM.

4.3 Polarimeter Optimization Metrics

As introduced in section 2.3.1, the performance of a polarimeter in the presence of errors

can be improved through polarimeter optimization (e.g. [1, 81, , , 139]). Typically,
the measurement matrix W (1)) is written as a function of some number of parameters ¥ =
[t1, 19, .00y, | Which represent modifiable aspects the PSG and PSA [139]. For example, in

the rotating QWP polarimeter described in section 2.3.1, these could be the QWP angles
Oc,; and 04, for each of the n measurements. Polarimeter optimization metrics are scalar
functions of W that characterize how resistant the polarimeter is to error. The parameters
1 are chosen in such a way as to maximize or minimize an optimization metric. This
section will provide a mathematical treatment of errors in polarimetry, and derive a few
optimization metrics, mostly following the work of Twietmeyer and Chipman [125]. Then,
these results will be extended for the first time to the modified polarimetric measurement
equation 4.7.

Error in a polarimetry experiment can arise due to errors in the PSG and PSA, and
errors in the irradiance measurements*. Suppose that the MMs of the PSG and PSA are
differ slightly from their idealized values during some or all of the n measurements, such
that the true measurement matrix of the polarimeter is W + dW. Let the nonsubscripted

4Tt will be assumed that computational errors due to calculating the inverse or pseudoinverse are small
relative to these sources of error.
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symbols I=WM represent the idealized system in the presence of zero errors. The true
irradiance that reaches the detector differs from I because of the error ¢W:

fDetector = (W + 5W) 1\_2[ (48)
=T+ WM. (4.9)

Tﬁhe detector does not perfectly record fpetedor, but is assumed to contain an additive error
oI:

fEST = fDetector + 5f (410)

= WM +0WM + 0L (4.11)

The experimenter only has access to Izs7 and the idealized measurement matrix W. These
are used to calculate the Mueller vector estimate, given by

Mgsr = W Igsr (4.12)
—M+W (WM +46) — (4.13)
M = W~ (§W M + 6I), (4.14)

where 6M = M EST — M is the error in the estimated Mueller vector. This is the same
expression found by Twietmeyer and Chipman [125], but it differs from that of Zallat et al.
[139], who used Mpggr = (W + 0W) 1 I5gr instead of equation 4.12. This assumes that
(W + 6W)~! is known by the experimenter (and hence can be used to calculate Mpggr),
while in the above analysis it was assumed that only W is known. The assumption of
Zallat et al. is appropriate if calibration is performed to obtain (W 4+ dW), and/or if 'W

is due primarily to computational errors when calculating the inverse or pseudoinverse of

The single value decomposition of W can be used to understand how errors propagate

into M [110, ]. Any W can be decomposed into the product W = USV?T where U
and V are orthogonal n x n and 16 x 16 matrices respectively, while S is n x 16 and has the
property S(i,7) = 0 for i # j [01]. The diagonal entries S(i,7) are known as the singular
values of W [(1]. Inserting this decomposition into the idealized equation 4.1,

U'T=SVIM —
I'=SM =—
I'(i) = S(i,i) M’ (i)
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where ¢ < min(n, 16), and I' = UTT and M’ = VTM are the irradiance and Mueller vectors
expressed in new bases. As noted by Twietmeyer and Chipman [125], elements M/ (1) for
which S(i,7) = 0 or ¢ > n represent linear combinations of MM elements to which the
polarimeter is “blind”. The reconstructed MM is undetermined, because any amount of
M’ (i) could be added to or subtracted from the estimated Mueller vector to find a new
estimate that also obeys equation 2.55. Therefore, to determine the full MM, W must
have sixteen nonzero singular values. If S(7,4) is small, then the corresponding irradiance
signal I (¢) will be small relative to the error terms in 4.11. This suggests that the best
error performance can be found by maximizing the sizes of the singular values of W.

This simple argument aids in the understanding of several optimization metrics based
on the singular values of W:
max{S(i,7) : i < df}
min{S(4,7) : i < df}

[61, ] (4.15)

Ro =

) of X 1/2
£ = <Z W) [109, 139]. (4.16)

i=1

where df = 16 is the number of degrees of freedom of M. Each of these optimization metrics
is intended to be minimized to guarantee good error performance of the polarimeter. It can
be shown that multiplying W by a positive scalar has no impact on ks, but the new & is
divided by that scalar. This does not change the locations of minima of £, so the resulting
optimized designs are unaffected.

ko is known as the condition number based on the L, matrix norm?®

Al = max {|AX]|s - [[X[l2 = 1} [52] (4.17)

for any 7 x 7 matrix A. Using equation 4.14 and the properties of the Ly matrix norm [52],
it can be shown that

ko = [[WH[, WL, [129] (4.18)
oM W o1
M| WAL, T,
®Notice the distinction between the vector norm || - ||2 and the matrix norm |||,
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A similar upper bound involving ke was found by Zallat et al. [139], which differs trivially
from relation 4.19 due to the different assumptions discussed above. In either case, min-
imizing k9 lowers an upper bound on the relative error in the Mueller vector, compared
to the experimental errors W and o1 Considering equation 4.15, minimizing ko requires
maximizing the lowest singular value. Therefore, ks is representative of the “worst case
scenario” error in the polarimeter. It is not however the best indicator of average error.
For example, increasing the largest singular value improves the error performance of the
polarimeter overall, but results in a higher or “worse” value of k,.

On the other hand, £ considers all of the singular values of W. It is related to the equally
weighted variance as defined by Sabatke et al. [110] and Zallat et al. [139]. A concrete
justification for £ as an optimization metric (following Sabatke et al. [110]) can be given
under the assumptions that W is negligible and the expected value is E(SI617) = oI
[110]. This is the case if the irradiance error dI is uncorrelated between measurements and
has variance o for every measurement [110, 130]. Then, the expected value of ||dM||3 is
given by

E(||6M|2) = E(6T" (W H)T W1 61) (4.20)
= trace((W )T W E(5T6T"))
= o*trace(WH)T W1,

using the cyclical property of the trace. It can be shown that
trace(W )T W) =¢2 [110] (4.21)
SO
E(|6M]3) = o°¢”. (4.22)

Under these conditions, £ is proportional to the expected value of the normed error in
MEggr. Compared to ko, which indicates worst case error, minimizing & reduces the average
error in the experiment.

A polarimeter design that is optimal for measuring general MMs is not necessarily
optimal for measuring RI MMs. Additionally, both ko and & approach oo for a polarimeter
using fewer than sixteen measurements. In order to incorporate symmetry information
into these optimization metrics, the symmetry restrictions W,. could be treated as if they
were additional measurements, by calculating the singular values of

[ va\éfr ] (4.23)
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instead of those of W. Then, new versions of ko and & could be calculated. However, these
singular values depend on the relative scaling between W and W,.. This is an unphysical
ambiguity that would lead to multiple different “optimized” designs, as there is no clear
way to know how to choose B.

A better alternative is to use the modified measurement equation 4.7, and apply the
singular value decomposition to Wgr;y = Ug; Sk Vgl instead of W. The metrics ks gr,
&gy can be calculated using

(4.24)

B of . 1/2
§rr = (Z W) (4.25)

where df = 9 or df = 10 for nine or ten parameter MMs respectively. Because of the
parallelism between equations 4.7 and 4.1, the above error analysis can all be repeated
while replacing W with Wg; and M with R This assumes that the true Mueller vector
is RI; that is, that it can be written M = zR for some R. In the presence of errors oI and
OWgr (= dW z), it can be shown that

SR = W5 (60Wpg R + 6I) (4.26)
using an identical proof as that leading to equation 4.14. Similarly, it follows that
oR W 0T
IRl _ Wil 9Tl .
IR IWrilll, — |T).
E(|[0R]3) = 0°¢k (4.28)

where equation 4.28 is true under the same assumptions as equation 4.22.

Equations 4.27 and 4.28 both involve the error in f{, not M. However,
Mpsr = zRpsr =
M+ M =zR +z/R — (4.29)
SM = z/R. (4.30)
The Euclidean norm of 6M is given by
[6M||, = V éMT §M (4.31)
— V6RT 27 z0R. (4.32)
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Recall that z is not uniquely defined, but its columns must form a basis for the space of
RI MMs (section 4.2). If it is now required that the columns form an orthonormal basis,
then z7z = I and ||6M[, = [[6R|s. Such a choice must be possible because z is full
rank [01]. This is favorable because it means that the optimization metrics ko gy and gy
guarantee the best error performance not just of R but also of M. Additionally, it implies
that ||[Wgsll, = [[W]|l, and [|[0W g/, = [[0W]||,. Using these results in equations 4.27
and 4.28,

oM ISWII, . 1I5T2
=—— < Ko,RI + (4.33)
M| W, 1.
E(||M]}3) = 0, (4.34)

assuming the true Mueller vector is RI, and where equation 4.34 as before assumes that
dW =0 and F(6I0I") =L

There is more than one orthonormal basis z that could be used. For a given z, all other
options can be written z' = z C where C is an orthogonal matrix. However, this choice
has no impact on the final optimized designs. This can be seen by considering

7= WgiC
= Ug; Skr VEI C

1T
= UgrrSrr Vi1,

because the product of two orthogonal matrices is itself orthogonal. The last line of this
is a valid singular value decomposition of W', and the singular values of any matrix are
unique [61]. Therefore the singular values of W', are the same as those of Wgy. k2 gr and
&gy are both calculated from the singular values of the RI measurement matrix, so they
will be the same regardless of which orthonormal basis is used for z. In summary, K2 gy
and £ry are both measures of the amount of error in a RI Mueller vector, when calculated
using the approach described in section 4.2.

The methodology described in this chapter so far is applicable not only to RI MMs,
but also in any situation in which there are constraints on the MM that can be written as

0=W,M (4.35)

for some W,.. For example, for independent scattering from a cloud of particles which have
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a plane of symmetry and are randomly oriented, the MM has the form

aq b1 0 0
bl a9 0 0
0 0 a5 b (4.36)
0 0 —bg Qy
for parameters ay, as, as, a4, by, and by [131]. Every such MM obeys equation 4.35 with
[0 1 0 0 -1 0 0 O 0 00O 00 0 0]
0 010 0O 000 0 00O 0 00O
0 001 0O 000 0 00O 0 00O
0000 0O 010 00O0OO OOODO
10 0 0O 0 0 01 0 00O 00 00
W, = 0 00O 0 00O 10 00 0 00O (4.37)
0 00O 0O 00O 01 00 0 00O
0 00O 0O 0 00 0 001 0010
0000 0O 000 00OO0OO0O 1O0O00O0
| 00 0 0 0 000 00 00 010 0]

This matrix can be used to calculate a 16 x 6 orthonormal basis z and a modified mea-
surement matrix analogous to Wgy.

4.4 Methods

The procedure of sections 4.2 and 4.3 was applied in order to find optimized PSG and PSA
designs for determination of RI MMs with a rotating QWP polarimeter (section 2.3.1).
These designs are applicable to in wvivo retinal polarimetry assuming the double pass
model. Optimization amounts to choosing the angles of the QWPs for each irradiance
measurement. However, depending on the type of motors used to rotate the QWPs, the
scanning method used to image the retina, the detector, and the data collection procedure,
there may be many other practical considerations beyond sheer error performance (see e.g.
[33, , ]). These design elements may differ between different instruments, and a de-
tailed analysis of them is beyond the scope of this thesis. For the purposes of this chapter,
it was assumed that the time required to rotate the QWPs between each measurement is a
non-negligible contribution to the total data acquisition time. Additionally, it was assumed
that it would be favorable for the QWPs to rotate in one direction only. This reduces the
potential for backlash in some motor systems. Finally, some designs were made under the
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assumption that only one QWP should rotate at a time. This simplifies the control of the
motors and minimizes the total number of rotations necessary during data acquisition. All
three of these assumptions are true of the ex vivo retinal polarimeter currently used by
Campbell Labs. Sections 4.4.1 and 4.4.2 show how these restrictions can be incorporated
into the optimization process. Section 4.4.3 describes the numerical optimization itself,
while section 4.4.4 describes simulations used to test the final designs.

For a future in wvivo retinal polarimeter, there may be other practical considerations
that are unforeseen by this chapter. As well, the PSG and PSA may consist of different
optical elements than a rotating QWP and fixed linear polarizer. The methodology of
this section could be adapted to choose PSG and PSA states that are practical while also
having good error performance.

4.4.1 Parameterization of the Reciprocal Invariant Measurement
Matrix

First, it is necessary to write W as a function of the QWP angles. As described in
subsection 2.3.1, the regular measurement matrix W consists of n rows each having the
form

W, = c(sa,; ®say). (2.50)

It was chosen to set ¢ = 1. In general, sy, and s¢; could take unique values for every
measurement ¢. For a rotating QWP polarimeter design,

sci = (1/2) [1, cos*(20¢.:), cos(20c) sin(20a.,), sin(20¢.,)]" (2.47)
sai = (1/2)[1, cos?*(204,), cos(204,)sin(204,), —sin(204,)]" . (2.48)

Define the vectors

Oc = [0c,1, 0,2, .06, (4.38)
04 =041, 0a2,..04,], (4.39)
which characterize the sequence of n positions for each QWP. It is assumed for simplicity

that the irradiance measurements are taken in increasing order in ¢. The most general
choice is to assign a unique parameter to every angle:

Oc = [Yn, Vo, .90

4.40
BA = [¢n+17 7ﬂn—}-Z; -'-wZnL ( )
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resulting in 2n total parameters. The RI measurement matrix can be constructed as a
function of 1p:

This “2n” design is the most general parameterization of the QWP angles, because it allows
every angle to be chosen independently without restriction.

Other designs were obtained using different parameterizations of the angles 84 and 6 4.
For example, consider a ten measurement “alternating” design with

¥’ = [sort(ep(1 : 5), sort(eh(6 : 11)]
OG = [¢i’¢17¢§7wéuwé7¢é7wiv¢i7¢g7¢g] (442)
HA = [wéhwlﬁw/?awéawéawévwéawioawioawilL

where the sort function places its arguments in ascending order. This parameterization
has the properties that both QWPs only rotate in the positive theta direction, and that
only one of them rotates at a time. These restrictions mean that the optimization metrics
may be higher for this design than for a “2n” design with the same number of measure-
ments. However, they may make it preferable for a real in vivo retinal polarimeter. Similar
“alternating” parameterizations were used for n = 9,12 and will be written explicitly in
section 4.5.

A common pattern in MM polarimetry is for the PSG to have ¢ unique states while
the PSA has p different states, and then to measure the irradiance for all pg combinations
of states [29, 81, , , ]. This will be referred to in this thesis as a “p by ¢” design.
For a sixteen measurement polarimeter with p = ¢ = 4, this can be expressed through the
parameterization

OG = [%,wl»wlﬂﬁlﬂﬂm%ﬂbﬂﬂzaw&¢3>¢3,¢3,¢4,¢47¢4,¢4]
OA = [¢1a¢27¢3>¢47¢4,¢3,¢27¢17¢1,¢27¢3;¢4,¢47¢37¢27¢1]~

When optimizing the ordinary measurement matrix W, this type of design has several
advantages, including that it allows the PSG and PSA to be optimized separately [125].
However, Appendix A demonstrates that this property does not extend to Wg;. Ad-
ditionally, it shows that no “p by ¢” design is capable of measuring an RI MM in the
minimum number of measurements. Therefore, designs of other, more complicated forms
are necessary, such as 4.40 and 4.42.

(4.43)

When the results are presented in section 4.5, each design will be labelled explicitly
with the parameterization of 84 and 04 that was used.
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4.4.2 Additional Optimization Objectives

The distance the QWPs must rotate between each measurement contributes to the total
time necessary to determine the MM. It was observed that when optimizing using &gy
alone, there could be many sets of angles that gave similar minima. A secondary metric
that characterizes the distance the QWPs must rotate was used to steer the result towards
designs that are faster to operate in practice. When both wave plates move simultaneously
(such as for the “2n” design 4.40), it is expected that the larger movement is the rate
limiting factor. Therefore, a metric w was calculated as the sum of the largest angular
distance in radians moved between each irradiance measurement. When faster designs were
desired, a hybrid metric £g; + aw was minimized. The weighting factor « is somewhat
arbitrary, but a small value a = 0.25 was chosen such that the contribution from &gy is
strongly emphasized. £g; tended to be 6 — 10x larger than 0.25w for the designs that will
be shown in section 4.5.

As mentioned before, blinks and involuntary eye movements [38, | can disrupt in
viwo retinal polarimetry. Twietmeyer et al. reported having to occasionally drop individual
irradiance measurements from consideration due to these factors [126]. In practice, it may

be possible for the instrument operator to check for these defects in the measured data
immediately, so that the affected images can be retaken. However, a valuable degree of
flexibility would be provided by a design that performs well even if an individual irradiance
measurement is unusable. This requires that the polarimeter uses more than the minimum
number of measurements.

Dropping a measurement from consideration amounts to removing a row from Wg;.
All of the optimization metrics that have been considered can be applied to the reduced
W g/, although their values will depend on which row was removed. Therefore a new metric
Err(—1) was calculated by taking the average gy for the n different ways of dropping one
row from Wg;. Similarly, gr(—2) is the average over the n(n—1)/2 ways of dropping two
measurements from Wgy, and so on. k(i) were defined in the same way. These metrics
characterize the resilience of the polarimeter to discarded irradiance measurements. To
generate designs that had good performance when a single measurement is dropped, the
hybrid metric {gr + 0.25g(—1) + 0.25w was used as the optimization objective. The
weighting factor 0.25 was chosen semi-arbitrarily, but in the future it could be fine-tuned
based on how frequently dropped measurements occur in practice.

In section 4.5, each design will be labeled with the metric that was optimized. Op-
timization using different metrics results in designs that reflect different combinations of
priorities.
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4.4.3 Numerical Optimization

Optimization of W g, was performed in MATLAB [89]. For each design, W (%)) was con-
structed using equations 2.50, 2.47, 2.48, and a specific parameterization of the QWP
angles (e.g. equations 4.40, 4.42, 4.43). For nine parameter® RI MMs, the matrix W, given
by definition 4.3 was used. For ten parameter RI MMs, the first row of W, (corresponding
to the trace condition 3.14) was dropped. A matrix z obeying z’z = I was obtained using
the command z = null(Wr) [89]. This allowed Wg;(1p) = W(ep)z to be written as a
function of the parameters 0. A function was written to calculate the optimization metric
for each design, whether it was kg g, {gr, or a hybrid metric involving w or g;(—1). The
MATLAB function 1sqnonlin [39] was used to find a local minimum of the optimization
metric, with each parameter ¢/ having a randomized starting point. The function was run
between 10% and 10 times (depending on the design) with new randomized starting points
for each trial. The set of parameters corresponding to the lowest minimum among all trials
was chosen. The exact settings varied between designs, and were adjusted based on the
feedback provided by lsgnonlin to ensure that local minima were being reached.

4.4.4 Simulation

Lastly, simulations were used to compare the performance of these PSG and PSA designs
in the presence of experimental errors. A set of 30000 nine parameter RI MMs, and a
second set of the same number of ten parameter RI MMs, were randomly generated using
the method described in Appendix B.2. For each polarimeter design Wg; and for each
MM in the relevant set, the “true” measurement matrix W + dW was generated assuming
a small amount of random rotational error in the QWPs. Each position 85 and 6, was
taken to have an error term 66 taken from a zero mean normal distribution with standard
deviation 0.5°. When the angle of a QWP remained fixed between two measurements, 66
remained fixed as well.

The resulting measurement matrix was used to calculate the simulated irradiance at
the detector fDetector using equation 4.9. Because of the scaling of the set of MMs (Ap-
pendix B.2), the irradiance values all lay between zero and one half. Then each element of
the irradiance error 61 was taken independently from a normal distribution with zero mean
and standard deviation 0.005. The reconstructed Mueller vectors 1\7IEST were calculated

6“Nine parameter” refers to the number of degrees of freedom of this type of RI MMs, not to the
number of parameters 1) in the design.
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using
MEST =Z WI_%} fEST- (444)

As well, a standard filtering procedure was applied to check if each Mpgr was a valid
Mueller vector, and replace unphysical M gsT With a nearby physical version (see [10, 12,

| for more details on this process). It can be shown that this preserves the reciprocal
invariance of an MM (including the trace condition 3.14) so the final M psT Was always
perfectly RI. For each 1\7[, the relative error

[6M[l2  [[Mgsr — M2

——- = 4 (4.45)
M| |||

was recorded. This value was then averaged across across all 3 x 10* MMs in the simulation.

For designs using more than the minimum number of measurements, additional values of
mean{||0M]||5/||M]|ls} were simulated in the case that one, two, or three of the irradiance
measurements prove to be unusable. This was done for each MM in the simulation by
randomly discarding the appropriate number of elements from fEST, and discarding the
associated rows of W before calculating W g;.

The value of mean{||dM||s/[|M||s} depends significantly on the amount and types of
errors included in W and f, as well as the properties of the set of MMs (Appendix B.2).
The simulations in this chapter are intended as a mode of comparison between different
sets of angles for the PSG and PSA, and not as an absolute predictor of the level of error in
a real in vivo retinal polarimeter. The resulting values of mean{||6M]||»/[|M||s} are similar
to those found to identity matrix images taken by the ez wvivo retinal polarimeter used
currently by Campbell Labs.

4.5 Results

To provide a point of comparison for the novel designs that will be shown in this section,
a full sixteen measurement “4 by 4”7 design was optimized without assuming reciprocal
invariance. To accomplish this, W was optimized instead of W g, using £ as the objective
metric. Additionally, a simulation was performed as described in section 4.4.4, but the
ordinary measurement equation 4.12 was used to generate the MM estimate instead of
RI equation 4.44. The resulting metrics and the QWP angles are shown in Table 4.1,
under “Four by Four Design 17. Sets of angles for rotating wave plate polarimeters have
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already been reported by several authors [1, , , , 139]. The optimized design is in

agreement with the result of Zallat et al. [139], and is close to designs listed by Ambirajan
and Look [1] and Vaughn and Hoover [133]. Very similar angles have been found for wave
plates with higher than quarter wave retardance by Sabatke et al. [109] and Tyo [128].

This provides a validation of the optimization code used by the present author, and will
also be used for comparison with the RI designs optimized later in this section. A second
design (“Four by Four Design 2”), proposed by Ambirajan and Look [1], is also shown in
Table 4.1 alongside its optimization metrics and simulation results. This set of angles was
not obtained by the optimization procedure, but was analyzed for comparison because it
is the angle set currently used by Campbell Labs for ex vivo retinal polarimetry.

For clarity, the parameters ¥ = [¢1, 19, 13, 4] are written using only their numeral
subscripts in Table 4.1. The metric w gives the total angular distance that both QWPs
must move during the sequence of positions specified by 85 and 6 4. The simulation was
performed for both nine parameter and ten parameter MM data sets. The nine parameter
sample group consistently gave lower relative error mean{||6M||,/[|M||2} throughout this
section. This difference is indicative only of the different statistical properties of the two
generated sets of matrices, due to the fact that different methods are necessary to randomly
generate nine and ten parameter RI MMs (see Appendix B.2).

Next, table 4.2 shows two designs that use the assumption that the sample MMs are ten
parameter RI to determine them in ten measurements. For the first of these, labelled “2n
Design Ascending, Fast” each QWP angle for each measurement was chosen independently,
resulting in twenty parameters. However, the angles were constrained such that each QWP
could only rotate in the positive ¢ direction. Additionally, it was optimized by minimizing
the objective function £g; + 0.25w, in order to reduce the distance the QWPs must rotate.
Recall that when both QWPs move between two measurements, w only counts the larger
movement. Another “2n Design” (not shown) was optimized without these constraints, and
achieved only marginally better error performance at the cost of requiring large back and
forth movements for both QWPs, which could significantly increase the total measurement
time. This demonstrates that the inclusion of a secondary objective such as w can result
in much more practical optimized designs.

A second design, labelled “Alternating Design”, used these constraints in addition to
the requirement that only one QWP move at a time. As can be seen in table 4.2, this
comes at a modest cost to the error performance of the polarimeter, as well as an increase
in the metric w. Therefore the first design can be expected to perform better in terms of
both speed and accuracy, if the polarimeter is capable of rotating both QWPs at the same
time.
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H Design

Properties

Four by
Four
Design 1

Assumptions
Measurements
Objective

None
16

£

P
0
0.

8
{]‘7 ]" Y 27 2’ 27 37 37 37 3’ 47 47 47 4}
3,2

Y Y 71717273’47473727 1}

Rg

£

w

20.60
9.04 rad (= 518.0°)

mean{||51\71||2/||1\71||2}

Nine Param. RI Sample | Ten Param. RI Sample

0.096 0.102

Four by
Four
Design 2

Assumptions
Measurements

None

(1
Oc
04

R2

§

w

21.65
9.16 rad (= 525.0°)

mean{[|0M][» /|| M|}

Nine Param. RI Sample | Ten Param. RI Sample

0.100 0.106

Table 4.1: Examples of sixteen measurement polarimeter designs and their corresponding

metrics.
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When applied to the ten parameter RI MM sample set, the ten measurement designs
have a simulated relative error mean{||0M]||s/||M[l2} = 0.103 and 0.109, while the sixteen
measurement designs in table 4.1 have 0.102 and 0.106 respectively. Therefore, the designs
shown in table 4.2 are capable of measuring ten parameter RI MMs with comparable
accuracy to standard sixteen measurement designs, despite only having ten measurements.
The reasons for this are twofold. Firstly, they were optimized using &gy instead of &, which
means that the found angles are specialized for covering the space of RI MMs. Secondly,
the reconstructed MMs was generated using equation 4.7 instead of equation 4.1, which
forces them to be RI and thus removes non-RI errors. Therefore, this result relies on the
sample MMs being RI. Naturally, a sixteen measurement design that uses the assumption
of reciprocal invariance could achieve better error performance in these simulations that
any of the designs in tables 4.1 and 4.2.

Finally, the total angular distance w is significantly lower for the ten measurement
designs than for the sixteen measurement designs, reflecting a decrease in the waiting time
between measurements. This is in addition to the time savings due to only capturing ten
images instead of sixteen.

Table 4.3 shows the same two types of designs, this time optimized to measure nine
parameter RI MMs in nine measurements. The resulting designs similarly outperform the
standard sixteen measurement designs when applied to nine parameter RI MMs, having
lower relative error mean{||0M]||s/||M|2} and total movement distance w.

Lastly, other designs were tested that use more than the minimum number of measure-
ments. This improves the error performance of the polarimeter, and it also means that
it is possible to calculate the MM even if a measurement has to be discarded due to eye
movement or blinking.

Two twelve measurement designs are presented in table 4.4, for nine and ten parameter
RI designs respectively. The expected values of all metrics are given when zero, one, two,
and three measurements are dropped. These designs were optimized under the constraints
that each QWP rotate only in the positive theta direction, and that only one QWP rotates
at a time. The objective {gr 4+ 0.25&z;(—1) 4+ 0.25w was minimized so that the polarimeter
would perform well even if one measurement is dropped. If more images are unusable
however, the accuracy falls drastically. For ten parameter RI MMs, the -3 column is
indeterminate due to having fewer than the minimum number of measurements. The -3
column of the nine parameter design highlights the importance of polarimeter optimization:
the Wgr used to calculate this column involve the same number of measurements as the
designs in table 4.3, but perform dramatically worse in the presence of error.

There are far more designs that can be obtained involving different numbers of measure-
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H Design \ Properties H

2n Design Assumptions | Ten Parameter Reciprocal Invariance
Ascending, Measurements | 10
Fast Objective | gy + 0.25w

| {1-20} = {-154.1°, -120.1°, -77.7°, -64.1°, -
58.8°, -45.0°, -40.1°, -7.1°, 45.2°, 86.7°, -155.1°,
-148.3°, -102.3°, -70.3°, -33.7°, 45.0°, 84.9°,
100.3°, 134.8°, 136.6°}

0c | {1,2,3,4,56,7,8,9, 10}

0, | {11, 12, 13, 14, 15, 16, 17, 18, 19, 20}
Ko RI 11.57

Err | 20.89

w | 6.87 rad (= 393.9°)

Ten Param. RI Sample

mean{||0M||5/|| M|} | 0.103

Alternating Assumptions | Ten Parameter Reciprocal Invariance
Design Measurements | 10
Objective | &gy + 0.25w
P | {1-11} = {-56.5°, 47.7°, 110.0°, 141.9°, 167.4°,

-117.8°, -49.3°, -9.8°, 24.0°, 96.0°, 144.7°}

O0c | {1,1,2,2,3,3,4,4,5,5}

0,|{6,7,7,8,38,9, 9,10, 10, 11}
Ko RI 13.13

Err | 22.47

w | 8.49 rad (= 486.3°)

Ten Param. RI Sample

mean{||0M||o/||M[2} | 0.109

Table 4.2: Optimized designs for ten measurement determination of ten parameter RI
MMs.
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H Design

|

Properties

2n Design Assumptions | Nine Parameter Reciprocal Invariance
Ascending, Measurements | 9
Fast Objective | gy + 0.25w
1 | {1-18} = {-140.8°, -140.0°, -140.0°, -101.9°, -
101.9°,-74.6°, -35.3°, 5.4°,49.5°, -138.3°, -98.9°,
-37.6°, 7.0°, 42.6°, 45.3°, 45.3°, 80.4°, 112.5°‘}
O0c | {1,2,3,4,56,7,8,9}
0, | {10, 11, 12, 13, 14, 15, 16, 17, 18}
K9 RI 10.43
Err | 19.55
w | 5.80 rad (= 332.4°)
Nine Param. RI Sample
mean{||[0M]||2/||M]|2} | 0.095
Alternating Assumptions | Nine Parameter Reciprocal Invariance
Design Measurements | 9
Objective | &gy + 0.25w
¥ | {1-10} = {-117.9°, -87.2°, -44.1°, 45.0°, 129.7°,
-89.5°, -33.3°, -1.5°, 26.0°, 57.1°}
0c | {1,1,2,2,3,3,4,4, 5}
0, 1{6,7,7,8,8,9,9, 10, 10}
R RI 10.73
Err | 20.47
w | 6.88 rad (= 394.2°)

mean{||51\7[||2/||1\7[||2}

Nine Param. RI Sample

0.098

Table 4.3: Optimized designs for nine measurement determination of nine parameter RI

MMs.
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H Design Properties
Extra Assumptions | Ten Parameter Reciprocal Invariance
Measure- Measurements | 12
ments Ten | {1-13} = {-128.6°, -73.4°, -42.7°, -3.9°, 122.0°,
Parameter 157.3°, -230.2°, -195.2°, -140.9°, -86.4°, -38.0°,
111.7°, 153.3°}
0| {1,1,2,2,3,3,4,4,5,5,6, 6}
0,147,8,8,9,9, 10, 10, 11, 11, 12, 12, 13}
w | 11.68 rad (= 669.4°)
(0) & (2) (3)
ko | 11.22 18.33 50.70 00
&1 19.07 24.81 58.29 00
Ten Param. RI Sample
mean{||6M||,/||M];} | 0.092  0.118  0.239 | n/a
Extra Assumptions | Nine Parameter Reciprocal Invariance
Measure- Measurements | 12
ments | {1-13} = {-134.0°, -48.7°, -6.0°, -44.7°, -95.6°,
Nine 138.2°, -145.1°, -121.4°, -84.0°, -58.4°, -31.9°, -
Parameter 7.0°, 28.9°}
0c|{1,1,2,2,3,3,4,4,5,5,6, 6}
04 1|47,8,8,9,9, 10, 10, 11, 11, 12, 12, 13}
w | 7.79 rad (= 446.1°)
(0) (] (2) (3)
ko,rr | 10.64 13.65 71.19 1242.2
Err | 17.01 20.04 81.39 1359.2
Nine Param. RI Sample
mean{||6M||,/||M]|,} | 0.081 [ 0.094 [ 0.282 | 3.244

Table 4.4: Optimized designs for twelve measurement determination of reciprocal invariant
Mueller matrices, considering the possibility of dropped measurements.
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ments, different parameterization of wave plate angles, and different weighting of optimiza-
tion objectives. The presented designs were chosen to represent an assortment of possible
priorities for in vivo retinal polarimeter design, and demonstrate how those priorities may
be incorporated into the optimization process.

4.6 Conclusion

In this section, optimal sets of angles have been reported for a rotating QWP partial po-
larimeter that measures RI MMs. These designs could be of practical use for a polarimeter
making in vivo measurements of the human retina. Using simulations, it has been shown
that if the sample is truly RI, a nine or ten measurement partial polarimeter can obtain
similar error performance to a sixteen measurement full polarimeter that does not use the
assumption of reciprocal invariance.

The analysis was based on a novel extension of existing full polarimeter optimization
methods to partial polarimeters in the presence of symmetries. The methodology used in
this chapter could be applied when the PSG and PSA consist of different optical elements
than linear polarizers and QWPs, and for different symmetries than reciprocal invariance.
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Chapter 5

Interpretation of Double Pass
Mueller Matrices

5.1 Introduction

Once a set of MMs have been measured in an in vivo retinal polarimetry experiment, they
must be interpreted in order to give insight into the nature of the sample. The double pass
model described in chapter 3 writes the MM as a product

Mpp = X M5, XY Mgp (3.16)

where Mgp is the single pass MM, and X = diag(1, 1, —1, 1) and Y = diag(1, 1, —1, —1)
as defined in chapter 3'. It will be assumed that the MM measured in in vivo retinal
polarimetry has this form, which is a stronger assumption than simply taking the MM to
be RI as in the previous chapter. In the model, Mgp is representative of the properties of
the cornea, lens, and retina in transmission?. Mpp is called the double pass MM, because
it arises from two passes through the structures of the eye. Mpp can be interpreted by

Ydiag(a, b, ¢, d) refers to the 4 x 4 matrix with elements a, b, ¢, and d along the diagonal, and with all
other entries equal to zero.

2A few methods exist for isolating the MM of the retina, known as anterior segment compensation
[74, , , ]. These methods assume that the cornea and lens together act as a linear retarder
which is uniform with scanning position, and also require an assumption about the MM of part of the
retinal image. In the idealized case of perfect anterior segment compensation, Mgp in equation 3.16 would
represent the retina alone. More realistically, Mgp is always influenced by the cornea and lens, but this
influence may be decreased using anterior segment compensation.
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using the Lu-Chipman decomposition to extract polarimetric properties such as retardance,
diattenuation, and depolarization [33] (see section 2.3.2). However, these properties are
influenced by the reflection geometry of the model. Double pass polarimetry values are
not equal to what would be measured for the same ocular structures in transmission. For
example, it is possible for the double pass MM to have nonzero circular retardance even
if the single pass MM contains no circular retardance, and vice versa. Therefore, it is
important to understand the relationship between the single pass polarimetric properties,
obtained from Mgp, and the double pass properties obtained from M pp. This is especially
relevant to the AD diagnosis project of Campbell Labs, because polarimetric data for
retinal amyloid deposits has so far been collected in single pass transmission ez vivo retinal
measurements, while future in vivo measurements will be double pass.

A number of authors have analyzed the properties of some MMs in double pass. In
the field of in vivo retinal polarimetry, Hunter et al. [64], Bueno [24], and Knighton et al.
[741] have each described cases in which Mgp is a sequence of linear retarders. Bueno also
examined linear diattenuators in double pass, as well as the combination of a horizontal
linear polarizer followed by a QWP oriented at 45° (which is essentially a circular polarizer)
[24]. The behaviour of a circular polarizer in double pass was also shown by Azzam [13].
Lara discussed features of linear polarizers, circular retarders, and depolarization produced
by scattering in double pass [$0]. Vansteenkiste et al. and Wolfe and Chipman have
described what happens to an elliptical retarder in double pass [132, 138]. Schénhofer and
Kuball discussed samples with weak, non-depolarizing polarimetric properties in double
pass [115]. Sheppard et al. derived equations relating the “c-vectors” of non-depolarizing
single and double pass MMs, which contain information about retardance and diattenuation

[117].

This chapter endeavors to show the relationship between single and double pass polari-
metric properties as assessed using the Lu-Chipman decomposition, for general Mgp con-
taining any amounts of retardance, diattenuation, and depolarization. This is attempted
first algebraically and later using simulated Mpp. A particular focus is placed on the
inverse problem of inferring Mgp from Mpp (the forwards problem of calculating Mpp
from Mgp is trivial using equation 3.16). However M pp is RI and so has fewer degrees of
freedom than Mgp, meaning some of the polarimetry information in Mgp must “cancel
out” and become unavailable in double pass. There is therefore more than one single pass
MM Mgp that corresponds to any given M pp. This chapter shows how to calculate a full
or partial set of solutions for Mgp in some conditions, and considers the range of single
pass polarimetric properties that can lead to the same M pp. This aids in the interpreta-
tion of Mpp and also identifies which single pass polarimetric properties can be reliably
inferred from Mpp. Compared to the work of previous authors, these efforts are believed

63



to be unique in their focus on the inverse problem of inferring the Lu-Chipman form of
MSP from MDP-

Subsections 5.2.1 and 5.2.2 treat the relationship between Mpp and Mgp when Mgp is
a retarder or is non-depolarizing (i.e. may contain both retardance and diattenuation but
no depolarization) respectively. While the goal of this chapter is to address this relationship
for general Mgp with any combination of polarimetric properties, these simpler cases are
more tractable and lead to conclusions that can be extended to general Mgp. It is shown
in both situations how to calculate all possible M gp that correspond to a given double pass
MM. Sets of polarimetric properties that lead to the same double pass MM are visualized
in 3D space. This study shows the ambiguity in Mgp and specifies which information
“cancels out” in double pass. In contrast to the work of Sheppard et al. [I17], this is
done using polarimetric properties as given by Lu-Chipman decomposition, rather than
c-vectors. The derivation in subsection 5.2.2 is independent of the results of Sheppard
et al. [117], and provides a different perspective on the relationship between single and
double pass non-depolarizing MMs. Most importantly, using the Lu-Chipman approach
facilitates the extension of the results to the case of general, depolarizing Mgp. This is
done in subsection 5.2.3, showing that several of the conclusions of subsections 5.2.1 and
5.2.2 apply even when depolarization is present.

The relationship between single and double pass MMs in the presence of depolarization
is more complex, and it was not found how to calculate all possible Mgp for a given M pp.
Section 5.3 and Appendix E instead develop a “double pass decomposition” that finds a
set of possible Mgp, by assuming that the depolarization matrix is diagonal. Ossikovski et
al. have stated that many important types of depolarizing media can be written in terms
of diagonal depolarization matrices [97]. This new decomposition is an adaptation of the
symmetric decomposition of Ossikovski [95]. This provides a novel way of interpreting a
depolarizing M pp by calculating possible single pass polarimetric properties.

The double pass decomposition can be applied to any RI MM, not only to double pass
MMs. The measurement equations described in chapter 4 are guaranteed to return RI
MNMs. It is conceivable that, due to experimental errors or a failure of the double pass model
to represent the sample, the experimental RI MM may not be mathematically consistent
with the double pass model. The double pass decomposition algorithm can detect such
cases. Applied to experimental RI MMs obtained from in vivo retinal polarimetry, it could
be used as a test of the validity of the double pass model 3.16.

Finally, in section 5.4 simulations are used to compare single and double pass polari-
metric properties, as assessed using Lu-Chipman decomposition. These simulations are
also used to test methods of predicting single pass properties from the double pass MM.
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The work of this chapter has several applications to the work of the Campbell Labs
Alzheimer’s diagnosis project. It highlights which single pass polarimetry properties can
be reliably inferred from M pp, and which cannot. This is important for other lab members
analyzing ex vivo retinal MMs in transmission (e.g. [100]), so that their work can be based
on polarimetric properties that are accessible to in vivo retinal polarimetry. Applied to a RI
MM measured in in vivo retinal polarimetry, the novel double pass decomposition can test
if it is mathematically consistent with the double pass model, and provide possible single
pass polarimetric properties. This may be used alongside or instead of the Lu-Chipman
decomposition of Mpp to better understand the results of in vivo retinal polarimetry.

5.2 Algebraic Relationships Between Single and Dou-
ble Pass Mueller Matrices

This section explores algebraically the relationship between the Lu-Chipman decomposed
forms of the double pass and single pass MMs. However, the double pass MM defined by
equation 3.16 uses a different coordinate frame for the input and output Stokes vectors
as a consequence of the conventions used in section 3.2. Several authors suggest that in
reflection-type measurements, the same coordinate frame should be used for both input
and output Stokes vectors [24, 78, ]. This choice does not appear to be universal (see
e.g. [17] and its use as an example in [53]). Representing the input and output Stokes
vectors in the same coordinate frame gives a new MM

MDPIYMDP. (51)

Mpp and M pp in general have very different Lu-Chipman properties. Appendix C provides
an explicit argument for why the Lu-Chipman decomposition of M pp is expected to provide
more physically meaningful values than that of Mpp.

Incorporating this coordinate change into the double pass model,
Mpp=XML, XY Mgsp =
Mpp =Y XML, XY Mgp
= QMJ, QMgp. (5.2)

In this section, the relationship between the polarimetric properties of Mgp and Mpp is
investigated algebraically. This is done for three types of single pass MMs of increasing
generality. Subsection 5.2.1 is focused on retarders. Several of the results are well known
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in the literature [24, 11, , ], but to the author’s knowledge it has not been shown
explicitly before how to calculate all possible retarder Mgp that give the same Mpp.

This result is applied in subsection 5.2.2 (augmented by Appendix D) which finds every
possible non-depolarizing Mgp corresponding to a non-depolarizing Mpp. This is done
while applying the Lu-Chipman decomposition to both Mgp and Mpp. The set of possible
single pass polarimetric properties that lead to the same Mpp are visualized in 3D space.
The results can be summarized as a set of transformations of Mgp that can be performed
without altering Mpp.

These results are partially extended to general Mgp (including any amounts of retar-
dance, diattenuation, and depolarization) in subsection 5.2.3. However, the problem of
finding all possible Mgp in this case is too complex for this thesis. Sections 5.3 and 5.4
will further address the relationship between single and double pass MMs in the presence
of depolarization using other methods.

5.2.1 Retarder Mueller Matrices in Double Pass

It is well known that if the sample is a linear retarder, its retardance doubles in double pass
[24, 49, 74, T8, ]. Mathematically, this can be seen by inserting Mgp = Mr(RyL,0)
(equation 2.39) into equation 5.2, from which it follows that Mpp = Mpr(2R;,6). On the
other hand, an ordinary® c1rcular retarder cancels itself out in double pass [11, 80, ].
The reflection MM Y reverses the handedness of incident light, and so the effects of the first
pass are reversed by the second. Accordingly, using Mgp = Mogr(R¢), equation 5.2 results
in Mpp = I. Lastly, as noted by Vansteenkiste et al. [132], any half wave linear retarder
will contribute a full wave of retardance in double pass. A full wave of retardance has no
effect on an input Stokes vector: Mpp = Mpg(27,6) = I. Mathematically speaking, a
half wave linear retarder will cancel itself out in double pass, just like a circular retarder.

In the most general case, if Mgp is an elliptical retarder, then it is always possible to
write it as the product of a linear retarder and a circular retarder:

MSP = MR(RH7 R45; RC)
= Mcr(Ro)Mpr(R,0')  [36, 65].

3Faraday rotation is circular retardance that occurs in gyrotropic media in an external magnetic field
[11, 87]. Faraday rotators disobey the reciprocity theorem 3.11 and so have different properties in double
pass than other types of circular retarders, such as a medium consisting of chiral molecules [41]. In this
thesis it is assumed that all single pass MMs are related to their direction-reversed versions by equation 3.11.
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The inner circular retarder will cancel in double pass, resulting in Mpp = Mpg(2R/,#").
Therefore, regardless of the amount of circular retardance in Mgp, Mpp will be a linear
retarder. However, generally R, # R}, 0 # ¢, and Rc # R(.. Instead, they are related by
the set of equations?

" = 2arccos (\/%% sin®(R/2) + COSz(R/Z)) [50]

;. 2cos?(R/2) B (5.3)
R = sign(R¢) arccos (—COSQ(R/L/Q) 1
y_ . Be
0 =0+ 1

where as usual

R=\/R} + R%.

In the following sections it will be important to distinguish between the retardance param-
eters that treat Mg as a single elliptical retarder (equations 2.38), and those that treat
it as a compound retarder consisting of a linear retarder followed by a circular retarder
(equations 5.3). Primed R}, ¢, and Ry, will always refer to the compound version, while
the unprimed versions are the ordinary retardance parameters.

Recall from section 2.2 that there are multiple values of retardance that can give the
same retardance matrix. Equations 2.38 always return a value that is in the range 0 < R <
7. Likewise, equation 5.3 implies that R} < m, so the true double pass retardance is 2R} <
2m. However, the retardance Ry pp that is calculated from Mpp using equations 2.38 is
always in the range 0 < Ry pp < m. It can be shown that the single pass (R}, ') and
double pass (Rr pp,0pp) are related by

R/L <7T/2 — RL,DPZQR/L and QDPZQ,

5.4
R/L>7T/2 - RL,DPI27T—2RIL and QDPIQ/—TF/Q. ( )

These results can be used to find all possible retarder Mgp given a retarder Mpp. Tt
has already been shown that M pp must be a linear retarder. Inverting the inequalities 5.4,

“The expressions for R/, and ¢ given here have been altered from those found in [36]. The expression
for R{. is equivalent apart from the addition of the sign function, which assures the correct handedness.
The correctness of equations 5.3 was confirmed algebraically and numerically using Matlab.
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all possible retarder Mgp can be written

Msp = Meor(Re) Mor(RL pp/2,00p) (5.5)
or

Msp = Mcgr(Re) Mpr(m — Rrpp/2,0pp + 7/2) (5.6)

for 0 < R < .

Because a circular retarder cancels itself out in double pass, any Mgp can be left
multiplied by any circular retarder without changing Mpp. For a Mgp of the form of
equation 5.5, clearly all other Mgp obeying equation 5.5 can be calculated through left
multiplication by a circular retarder. A halfwave linear retarder My r also cancels itself
out in double pass. A halfwave linear retarder with azimuth « can be written

1 0 0 0 ]
0 cosda sinda 0
Miir(a) = 0 sinda —cosda O [39] (5.7)
| 0 0 0 -1
! 0 0 0 (1 0 0 0
| 0 cosd4a —sinda 0 01 0 0 (5.8)
| 0 sinda  cosda O 00 -1 0 ’
| 0 0 0 1 00 0 -1

The action of the Y on a linear retarder was analyzed algebraically using MATLAB, and it
was found that

My rr(o) Meg(Re) Mor(Rrpr/2,0pp)

=Mcr(4) Y Meg(Re) Mir(RLpp/2,0pp)
=Mcr(4a) Y Mcr(Ry) (YY) Mpr(RLpp/2,0pp)
=Mcr(4a) Meor(—Rp) Mcog(40) Mpg(m — Ry, 0 + 7/2)
=Mc¢r(4a — R, +40) Mygr(m — R, 0 + 7/2).

That is, left multiplying equation 5.5 by a half wave linear retarder gives a new Mgp
with a form equivalent to equation 5.6. Similarly, it can be shown that left multiplying
equation 5.6 by a half wave linear retarder gives a new Mgp with a form equivalent to
equation 5.5. Therefore, given any retarder Mgp, all other possible single pass retarders
that lead to the same Mpp are related to Mgp through left multiplication by either a
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circular retarder or a half wave linear retarder. Therefore equations 5.5 and 5.6 can be
summarized as

Msp = Mer/arr Mir(Rr.pp/2,0pp) (5.10)

where Mcg/prr is any circular retarder or half wave linear retarder. Explicitly,

QM QMsp = QMrr(RLpr/2,0pp) Mg urQMcer/air Mor(RLpp/2,0pp)
= QM_r(RLpp/2,00P)" QQQMEg) g QMer/urr)MLr(RLpp/2,0pp)
= QM_r(Rrppr/2,0pp)" QMLr(RLppP/2,00P)
= M_.r(Rr.pp,0pp) = Mpp.

When Mgp is treated as a general or elliptical retarder, the solutions 5.10 permit a
wide range of possible retardance vectors R. For example, figure 5.1 shows every possible
R corresponding to the randomly generated double pass retarder MM

1 0 0 0

0 09489 0.1405 0.2825
0 0.1405 0.6136 —0.7770
0 —0.2825 0.7770 0.5625

Mpp = (5.11)

The red line in figure 5.1 is the set of solutions following equation 5.5, while the blue line
is the set following equation 5.6. Equation 5.5 with R, = 0 gives the minimum retardance
possible in order to explain Mpp, while the maximum retardance is always 7.

5.2.2 Non-depolarizing Mueller Matrices in Double Pass

Next, allow Mgp and Mpp to have some diattenuation as well as retardance, but no
depolarization. As in subsection 5.2.1, there will be multiple possible solutions for the
single pass MM. The Lu-Chipman decomposition of any non-depolarizing MM is

M = CMRMD
where ¢ is a scalar constant with 0 < ¢ <1 [83]. Starting with equation 5.2 and decom-
posing both Mpp and Mgp in this way,’
CDPMR,DPM;DDP :C2QM£M£QMRMD (512)

5Tt is possible for a depolarizing single pass matrix Mgp to lead to a non-depolarizing Mpp. Such
cases are ignored for simplicity.
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Figure 5.1: Possible locations of the single pass retardance vector R for the randomly
generated double pass retarder MM 5.11, with a reference sphere of radius 7.
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Using equations 2.37 and 2.29,

_— Cpp 1 DT
Mpp = — 2 Dp 5.13
br 14+ Dpp [ mpgppDpp mpgppmp pp } ( )
c? 1—|—DquD DT+DqumD
= g T T T (5.14)
(1+D)?2| qD+qmpm;D qDD" +qmjm,mp
m, = my qmpg. (5.15)

Because q is a diagonal matrix and m% = mgl, equation 5.15 provides an eigen decom-

position of m, [60]. Therefore, m, has two distinct eigenvalues, £1. The —1 eigenvalue
has a multiplicity of one, and the associated eigenvector v is given by the last row of mg:
v=mk |0, 0, 1]7. The +1 eigenvalue has a multiplicity of two, and so is associated with
a two dimensional eigenspace. Because mp is orthogonal, this eigenspace is the plane or-
thogonal to v. Consider first the case in which D is parallel to v. Then, m;D = —D.
Applying this to equation 5.14, it follows that

(1 - D) {1 o7 1

Mo —
PP= "1+ D) |0 gqmfqmg

(5.16)
that is, the diattenuation only affects the overall transmission of the double pass matrix,
which is otherwise the same as a retarder in double pass. Generally, ¢ is not known and
may be influenced by the illumination and gain settings of the polarimeter (see section 2.3),
so it is not feasible to use the overall transmission to calculate D. Equation 5.16 also shows
that the assumption that D is parallel to v is inconsistent unless Dpp = 0.

If the single pass Mgp has zero retardance, then D is parallel to v if and only if Mgp
is a circular diattenuator. Therefore, equation 5.16 shows that a circular diattenuator,
multiplied by a scalar, will cancel itself out in double pass:

1+|D0’ T 1+|DC|
I= —M —M 5.17
1 0 0 D¢
1 0 +/1—D? 0 0
Mop(Dp) = ———— ¢
cp(Dc) 1+[Dc| | © 0 VI=DZ 0

D¢ 0 0 1

If instead D is perpendicular to v, then m;D = +D. It will be shown that this
assumption uniquely determines the diattenuation vector, which will be called the principal
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diattenuation vector and labelled D,. Later it will be proved that D, is related in a simple
way to the double pass diattenuation vector, and D, is the minimum possible single pass
diattenuation, hence the name principal. Likewise ¢ = ¢, is uniquely determined, but the
retardance can take a range of possible values. Inserting m,D,, = +D,, into equation 5.14,

— c 1+ D2 oD7
M — 4 P p 5.18
PP~ (1+D,? | 2aD, qm,((1-D)I+2D,D]) (>1%)
Comparing the (1, 1) element of 5.18 with equation 5.13,
A(1+ D?
cor _ 51+ D) (5.19)

1+ Dpp (1+D,)%"

Comparing (1,2 : 4) elements of equations 5.18 and 5.13 and applying equation 5.19,

cpp 2c2
PP =2 D —
1+ Dpp "7 (14D, "
2
Dpp=—+-D.,. 5.20
oP =1 pat (5.20)

Equation 5.20 shows how single and double pass diattenuation, as calculated using the Lu-
Chipman decomposition, may be related to each other. For a weak single pass diattenuator
(Df) ~ 0), the diattenuation magnitude is approximately doubled in double pass. For a
strong single pass diattenuator (Di ~ 1), the diattenuation magnitudes are approximately
the same. However, this is only strictly true under the assumption that D, is perpendicular
to v.

Equation 5.20 shows that Dpp and D,, are parallel, and are related by a positive scalar.
In order to obtain D, as a function of Dpp, write D, = aDpp for a yet unknown positive
scalar a. Squaring both sides of equation 5.20 and plugging this in,
2 _ 4a’D? N
PP (14 a?D}p)?
0= Dhpa'+ (2D}p —4)a* +1 =
2 _ 2—D%p+2y/1—-D3%,

a
1

(5.21)

where the quadratic equation has been used to solve for . The magnitude of the diatten-
uation vector must always be between zero and one, so 1 > D2 = a*D7,p and 1 > D7,p.
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Therefore,

1>ad’D%p =

1> 52 —
DP

Dyp>14+4/1-D%, =

1>D3p>144/1-D%,

This inequality can only be satisfied by taking the negative-signed solution for a. Finally,
it follows that

2:2_D%P_2 1_D%)P
D}y

0T
- Dh
1—+/1- D2
e (5.22)
bp
1—+/1-D?
_ DPDy b (5.23)

' Dpp

a

D

The positive square root was taken because equation 5.20 implies that a is positive. a is
uniquely determined by 5.22 and so D, is uniquely determined. a is exactly the factor that
appears in the definition of the diattenuation matrix (equation 2.29): mpp = /1 — D% 1+
aD D ng P

Considering equation 5.19 and using D, = aDpp, it can be shown that ¢, = \/cpp.
Next, using the principal diattenuation vector and comparing equations 5.13 and 5.18, the
lower right 3 x 3 submatrix of Mpp is given by

2

cpp ‘p 2 T
= 1-D:I1+2D,D -
1+DDPmR,DP mp pp § +Dp)2qmq(( ,)1+2D, D)
(1 + Di)mgl)p mppp =qm, ((1 — D;)]I + 2Dp Dg) -
(1 + (ZQD%P>1’HR7DP mppp = qmy ((1 — dzD%P)]I + QOJQDDP Dgp) —
(2a)mRvamD7Dp=qmq (2a\/1_D2DPH+2a2DDPD£P) >
MmprppMp pp =qM,Mp,, (5.24)
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where the identities 1 + a?D%p = 2a and 1 — a®>D%, = 2a+/1 — D%, can be proved using
equation 5.22. Assuming Dpp # 1, mp pp is invertible, and

mppp =qmy

= qmﬂqma.

This is the 3 x 3 submatrix of a retarder in double pass, which was analyzed in subsec-
tion 5.2.1. This permits a range of different mg. Let the principle retardance matrix mpg,
be the version with the minimum possible retardance, which is obtained by simply halving
the retardance of mp pp. It also follows from subsection 5.2.1 that mp pp has zero circular
retardance. This is a conclusion about Mpp itself that is independent of the assumption
that D is perpendicular to v: all nondepolarizing, double pass MMs have zero circular
retardance.

If Dpp =1, then it follows from 5.23 that D, = Dpp. Equation 5.24 reduces to
qDDp = qmq DDP‘ (525)

This does not uniquely define m,. The Lu-Chipman decomposition of Mpp also relies on
mp pp being invertible [53, 83]. If Dpp = 1, then any mpg pp such that mg pp Dpp =
qDpp is valid®. This equation is identical in form to equation 5.25, with qm, replaced
by mp pp, and both matrices must be orthogonal with a determinant of +1. Therefore,
mppp and qm, are both constrained to the same range of possible values. One can
optionally choose them to be equal, in continuity with the Dpp # 1 case described above.
When Dpp = 1, Lu and Chipman have shown how to find mg pp having the minimum
possible retardance [33]. This retardance, which must be linear, can then be halved to
obtain the minimum possible single pass retardance R,,.

Given any non-depolarizing Mpp, these results can be used to calculate a possible
single pass matrix M,,. First, perform the Lu-Chipman decomposition of Mpp to obtain
cpp, Dpp, and Rpp. Then, let the single pass vectors be given by D, = aDpp (or D, =0
if Dpp = 0) and R, = Rpp/2, and take ¢, = \/cpp. Then M, = ¢,Mg Mp_ is a valid
single pass matrix obeying Mpp = QMZQM,,. M,, has the unique property that its
diattenuation and retardance vectors are both parallel to the corresponding double pass
diattenuation and retardance vectors.

Now that one possible single pass MM can be determined, others may be found by
left multiplying it by a MM that cancels out in double pass. It has been shown that the

6 Assuming, as always in this subsection, that Mpp is non-depolarizing.

74



matrices Mog/prr and (1+ |Dg|)/(1 — |Dg|)Mep(Dy) all have this property. Therefore,
the MM

1+]D’|

Msp =
— | Dg|

———~Mcr/urr Mep(Dg) Mg, Mp, (5.26)

for —1 < Di, < 1 also obeys Mppr=Q ML, QMjgp. Equation 5.26 can be rewritten as

1+ |Dg
MSP Cpl }D/ }MCR/HLRMRP (M MCD(Dc) MR )MDP
1+ D¢,
=¢p ‘|D ||MCR/HLRMR (CBMRB MDB)
= CMR MD
1+ | D¢
C=CBGT I \DC| (5.27)
Mg = Mcr/nLr Mg, Mg, (5.28)
Mp =Mp,
where the Lu-Chipman decomposition has been used to rewrite
Mg = (Mp Mep(Dp) Mg,) Mp, (5.29)

= CRB MRB MDB'

Mp and Mp give the retardance and diattenuation of the new single pass MM. My differs
from Mg, both by the usual left multiplication by Mcgr/prr and by right multiplication
by Mg, . It is possible to obtain an expression for Mg, in terms of D, Ry, and D,,, but
this is not necessary or particularly illuminating. On the other hand, it is simple to show

that the new diattenuation is
D= D’C, /1 — D]%\Afp +D, (5.30)

where v, = mp, [0,0,1]". Because Mg # Mg,, it can be the case that v, # V so the
subscript is necessary. Note that D, is perpendicular to v, by definition. Rewriting this
in terms of a new parameter d = Dg/1 — D2,

D=dv,+D, (5.31)

—ﬂ/l—D§<d<,/1—D§.
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This derivation assumes that Mgp has the particular form of 5.26. In Appendix D it
is shown that every possible Mgp can be written in this way. Therefore equation 5.31
gives all possible single pass diattenuation vectors such that Mpp = Q ML, QMgp. The
parameter d can be freely chosen as long as it obeys the inequality, so there is one de-
gree of freedom in selecting D. This result expresses D as the sum of two perpendicular
components: one of which (D,) is parallel to the double pass diattenuation Dpp, and
the other of which (dv,) cancels out and has no impact on Mpp. Equation 5.31 is the
equation of a straight line, in the direction v, and passing through the point D,. Also,
D? = d* + D2 > D2, proving that the principal diattenuation vector gives the minimum
possible value of diattenuation.

The work of this subsection can be applied as a simple algorithm capable of finding
every possible non-depolarizing single pass MM corresponding to a given non-depolarizing
double pass MM. Then use the Lu-Chipman decomposition of Mpp to calculate Dpp as
well as Mg pp. Calculate the principal single pass retardance matrix Mg, by halving the
retardance of Mg pp. Use this to find v, = m% [0,0,1]". Calculate the principal single
pass diattenuation vector D, = aDpp, and then calculate D using 5.31, selecting any value
of d that obeys the inequality. Calculate

Ma = QMIDI QMDP MBl

It can be shown using 5.13 that M, = 2QM% QMg and ¢ = \/M,(1,1). Therefore the
matrix M, /c? is a double pass retarder, so the linear retardance Ry, and fast axis 6, can
be calculated using 2.38. Finally, the single pass retarder MM can be calculated as either
MR = MCR<R/C) MLR(RLa/27 Ha) or as MR = MCR(R/C) MLR(ﬂ' — RLa/Q, Ga + 7T/2), for
any 0 < R, < 2m. Then Mgp = cMrMp is a valid single pass MM corresponding to
MDP‘

As an example, 20000 possible non-depolarizing Mgp were found for the randomly
generated non-depolarizing double pass MM

0.4813  0.3025 —0.1233 —0.3383
0.3025  0.1898 —0.1564 —0.2036
—0.1233 —0.1564 0.0046  0.0338

0.3383  0.2036 —0.0338 —0.2868

Mpp = (5.32)

This was done by randomly selecting 10000 d and Ry, and calculating two possible Mgp
for each using Mr = Meg(Rp) Mor(m— Rra/2,0,+7/2) and Mg = Mcg(Ry) Mpg(m —
Rra/2,0, + 7/2). It was confirmed that all of the resulting Mgp gave the same double
pass MM 5.32 when inserted into equation 5.2. Figure 5.2 shows the resulting single pass

76



Figure 5.2: Possible D and the principal diattenuation vector D, for the randomly gener-
ated nondepolarizing double pass MM 5.32 shown with a reference unit sphere.

diattenuation vectors D represented as points in 3D space, alongside a unit sphere. These
points are represented by a blue color gradient, where the darkest part of the gradient
corresponds to d — —,/1 — D2 while the lightest part corresponds to d — +,/1 — D2. At
either of these extremes, |D¢| — 1 and so according to equation 5.27, ¢ — oo. Therefore
while these values provide valid Mgp, for real experimental data it values of D closer to
the center are more likely. Shown in red is the principal diattenuation vector D,,, which
corresponds to d = 0 and lies exactly in the middle of the line.

Figure 5.3a shows the set of possible single pass retardance vectors R in a reference
sphere of radius 7. Two branches are shown depending on if it was chosen that (R}, 0') =
(Rra/2,0,) or (R;,0) = (7 — Rpa/2,0, + 7/2). Once again, each is represented by a
color gradient where the darkest part of the gradient corresponds to d — —,/1 — D2 while
the lightest part corresponds to d — +,/1 — D2. The principal retardance vector R, is
also shown in red. Right multiplication by Mg, (equation 5.28) leads to a wider range of
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possible R than were present in figure 5.1 for the case of a retarder Mpp.

Figure 5.3b shows the linear retardance parameters (Ry, 20) of each single pass MM
in a polar plot, where the conventions are the same as in 5.3a. Geometrically, this is the
projection of the points in figure 5.3a onto the equatorial plane. It can be seen that a large
range of values of Ry, and # are possible, some of which are very different from the principal
retardance R, (in red) which was calculated by halving the double pass linear retardance.
Figure 5.3c shows instead the compound linear retardance parameters (R}, 20') of each
single pass MM, calculated using equations 5.3. This is the same as the set of R such
that R, = Rc = 0. Geometrically, this is the intersection of the shape in figure 5.3a with
the equatorial plane. The range of possible values is reduced compared to the ordinary
retardance parameters Ry and 6, but there is still a variety of possibilities. It can also be
seen clearly on this plot that R, does not necessarily give the minimum possible retardance
magnitude, because there are other points that come nearer to the origin.

This same procedure was run for several other randomly generated non-depolarizing
RI MMs. The possible diattenuation vectors were observed to be qualitatively very similar
to those shown in figure 5.2. The retardance vectors however showed a variety of different
qualitative behaviours. Figures 5.4a, 5.4b and 5.4c show an example for which the mag-
nitude of the double pass retardance was small, while the double pass diattenuation was
significant. The corresponding single pass retardance values have an especially large range
of possibilities.

Figures 5.5a, 5.5b, and 5.5¢ show the result if the magnitude of the double pass diat-
tenuation is small. R} and @' are confined to a narrow range of values, which are similar
to the case of a double pass retarder as discussed in subsection 5.2.1.

These results give insight into how single and double pass MMs are related when zero
depolarization is present. The double pass MM is insufficient to fully determine the single
pass polarimetry properties of the sample. Uncertainty in the single pass MM arises due
to three sources: firstly, circular retardance Ry, that cancels out in double pass; secondly, a
diattenuation component bv, that cancels out in double pass (equation 5.31); and thirdly,
the two options (R},¢') and (m — R},0" + m/2) depending on if the physical double pass
retardance exceeds w. These ambiguities are summarized by the statement that given one
possible non-depolarizing Mgp, all other non-depolarizing MY are given by

, _ 1+1[Dg

sp = 1 Mcr/uLr Meop Msp (5.33)
1—[Dg

where Mg/ R is a circular retarder or half wave linear retarder, while M¢p is a circular
diattenuator with diattenuation Dy. While a given non-depolarizing double pass MM
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b) Polar plot of possible (R, 20) pairs. c¢) Polar plot of possible (R, 20') pairs.
L

Figure 5.3: Range of single pass retardance values R, Ry, 0, R}, and 6’ that are possible
for the randomly generated nondepolarizing double pass MM 5.32. The legend applies to
all three figures.
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(a) Possible R shown in 3D space.
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b) Polar plot of possible (Ry, 26) pairs. ¢) Polar plot of possible (R, 20') pairs.
( p p p p p 7. 20') p

Figure 5.4: Range of single pass retardance values R, Ry, 6, R}, and ¢ that are possi-
ble for a randomly generated nondepolarizing double pass matrix with small double pass
retardance and significant double pass diattenuation.
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(a) Possible R shown in 3D space.

90 90

3 3

2 2
1

@
180 0 180 0
é
270 270
(b) Polar plot of possible (Ry, 26) pairs. (c) Polar plot of possible (R, 20") pairs.

Figure 5.5: Range of single pass retardance values R, Ry, 6, R}, and ¢’ that are possi-
ble for a randomly generated nondepolarizing double pass matrix with small double pass
diattenuation.
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could have a large variety of possible single pass properties, many of these options may
be unlikely for the physical sample. For example, if the sample is known to contain only
small amounts of diattenuation and circular retardance, then the true single pass D and
R will be close to the principal values D, and R,. The same result can be shown if there
are significant amounts of diattenuation but D and R are linear and parallel, as is the case
for a linear anisotropic material governed by the constitutive relation 2.22. For these types
of samples, the Lu-Chipman decomposition of the double pass MM gives results that are
consistent with the single pass polarization properties of the sample. This is because of
the close relationship between the principal vectors D, and R, and the double pass vectors
Dpp and Rpp calculated from Mpp.

Sheppard et al. have presented equations relating the double pass and single pass c-
vector elements [117]. These elements contain information corresponding to diattenuation
and retardance, while treating the sample as a uniform medium. They discuss assumptions
about the single pass c-vectors that allow these equations to be solved. They find that if
one c-vector element is assumed to be zero, the other three can be determined. As well,
they show that if the medium is known to have low retardance and low diattenuation, then
the linear components of both properties can be calculated, while the circular components
are indeterminate. These assumptions are different than the ones discussed in the previous
paragraph. Writing the single and double pass MMs using the Lu-Chipman decomposition
has led to a simple interpretation of which polarimetric properties cancel out in double pass,
and allowed for the visualization of possible single pass properties in the figures presented
in this subsection. As well, it allows for the results to be partially extended to depolarizing
double pass MMs, which will be discussed in the following subsection.

5.2.3 General Mueller Matrices in Double Pass

Finally, consider the case in which the single pass MM is allowed to have any combination
of properties, including depolarization. Using the Lu-Chipman decomposition, any MM
can be written

MSP :CMAPMRMD (258)

as discussed in section 2.3.2 [83]. Mgp can be left multiplied by a circular retarder, half
wave linear retarder, or circular diattenuator without altering Mpp. Considering the
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retarders,
M/SP = MCR/HLR Mgp = ¢ MCR/HLR Map MrMp
=c (MCR/HLR Map MgR/HLR) Mcr/mrr MrMp
= cMyp (Mcr/rrr Mg) Mp. (5.34)

M) p = Mcr/arr Map MgR/HLR is a depolarization matrix with the same depolarization
power as Map, so equation 5.34 is the Lu-Chipman decomposition of MY,. The new
retardance matrix Mcgr/grr MR can have a range of retardance vectors, such as those
visualized previously in figure 5.1. This shows that the results of subsection 5.2.1 are
relevant to general MMs in double pass as well. In particular, it means that the compound
circular retardance R of My cannot be determined from Mpp regardless of the amount
of diattenuation and depolarization present in Mgp, and the compound linear retardance
(R, 0') is always indistinguishable from (7 — R}, 0" + 7/2). However, there are two
important ways in which the findings of subsection 5.2.1 do not generalize. Firstly, the
relationship between Mz and Mp pp may differ from what it was in subsection 5.2.1-
that is, linear retardance may not be exactly doubled in double pass. Secondly, there
are other possible single pass retardance matrices besides Mcr/mrr Mg, because of left
multiplication by M¢p and other unknown ambiguities.

The effects of left multiplication by M p can be understood most easily by considering
the “reverse decomposition” of Mgp, which was developed by Ossikovski [97]:

MSP = CMP MRT% MAD [ s ] (535)
_| 1 Dip
Map = { 0 man ] [53, 97] (5.36)
1 1 P7
Mp=— ) )
P 1+P[P \/7P2H+1_WPPT [53, 97] (5.37)

Mp is a diattenuator matrix, but using the polarizance vector of Mgp, P = Mgp(2: 4, 1)
rather than the diattenuation vector DT = Mgp(1,2 : 4) (equation 2.61). Map has zero
retardance and zero polarizance, but may include nonzero diattenuation Dap [53]. Its
submatrix map is symmetric [53]. The retardance matrix Mg, is not exactly equal
to the Lu-Chipman retardance Mg [R. Ossikovski, personal communication, September
7 2020]. The difference between the two matrices approaches zero in the limit of zero

depolarization in Mgp.
The product
1+[Dg|
Mcp(Dy)MpM
1 _ |_D | CD( C) P R’r‘ev
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is a non-depolarizing MM that can be “reverse decomposed” as ¢ M MYy . Therefore
the effect of left multiplication by a circular diattenuator is

L+ 1De]
spP — 1—’D ’
=M, M, Map.

Mp Mg,., Map

It can be shown that writing P = [Py, Pss, Po|”,

1
= 1+ D, PC[V 1 = D@Py, \/1 = D&Pss, (Di + Fo)]". (5.38)
c

P’ = M{p(2:4,1) is the polarizance vector of My, so equation 5.38 shows how polarizance
can be altered without changing the double pass MM. This requires also replacing the
reverse retardance Mg, ,, with a new retarder M, . which has an impact on the Lu-
Chipman retardance matrix Mp.

In this section, it has been shown how to find multiple single pass MMs that corre-
spond to the same double pass MM. For non-depolarizing MMs, it was possible to find all
corresponding single pass MMs. This has highlighted how some single pass polarimetric
properties, particularly circular retardance and polarizance, can be altered significantly
without changing the double pass MM. This implies that these properties cannot be in-
ferred reliably from the double pass MM.

5.3 Double Pass Decomposition

The problem of finding every possible Mgp corresponding to a general Mpp is complex,
and is left as an avenue for future work. Instead, a novel method is developed for finding
a subset of all Mgp. The starting point of this analysis is the symmetric decomposition
developed by Ossikovski [95, 53]. Using their algorithm, any MM (whether it is RI or not)
can be written as the product

M = Mps Mgrs Ma1/r1 Mgt Mpy (5.39)

where My, 7 has one of two different forms, depending on if M is a so-called “type I" MM
or “type II” MM [53]. Equation 5.39 resembles the double pass model, with the depolarizer
Mg taking the place of the reflection matrix. A simpler algorithm developed by Otsuki
[98] assumes that Mpg; = Mpge is a horizontal linear retarder, while Mp; = Mp, is a
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horizontal linear diattenuator. However, not all double pass MMs can be decomposed
using Otsuki’s method, while Ossikovski’s algorithm can be applied to any MM.

In Appendix E it is shown that if M is RI and type I, the algorithm of Ossikovski can
be modified to give

M = (X M%, X) (X Z) Mp (5.40)
Mgsp = Ma MrMp

where M, is diagonal and where Z has the form Z = diag(1, +1, £1, £1). This decom-
position replaces the mirror matrix Y with X Z. The details of the algorithm are provided
in Appendix E, and there are found to be twenty-four different pairs (Mgp, Z) that can
satisfy equation 5.40. It has been assumed that M is type I, according to the definitions
in [53]. Type II MMs are rare and only occur when the length of an auxiliary vector is
exactly equal to one (see Appendix E).

There are several features of 5.40 that need to be discussed. Firstly, the algorithm
described in Appendix E has been designed to start with M, and not M. This is an
arbitrary choice; it could be modified to allow starting with M instead, and the single
pass matrix Mgp would be the same in either case. Secondly, this method fails if M is
non-depolarizing. In that case, the single pass matrix can be determined as described in
section 5.2.2. Thirdly, this approach finds single pass matrices under the assumption that
M is diagonal. There could be other possible single pass matrices with non-diagonal M p
of the form 2.59, so only a subset of possible Mgp is found using this method. Ossikovski
et al. have stated that “a number of important depolarizing media seem to be expressible
in terms of diagonal depolarization matrices” [97], so this subset may be especially likely
to match the true physical single pass MM.

Finally, the decomposition 5.40 only matches the regular double pass model 3.16 if
X Z =Y. This requires that Z = diag(1, +1, +1, —1). In Appendix E, it is shown that
for any M, in all twenty-four different pairs (Mgp, Z) that satisfy equation 5.40, Z must
have the same number of negative entries on the diagonal. Therefore, there are four distinct
cases depending on if Z contains zero, one, two, or three negative entries.

If Z has one negative entry, it can be shown that eight out of the twenty-four possible de-
compositions will have the correct form such that X Z = Y. This means that there are eight
possible single pass MMs Mgp that obey the double pass model M = X M%, XY Mgp.
Using the results of Appendix E, it can be shown that all eight possible diattenuation
matrices Mp are the same. All eight depolarization matrices Mo have the same diagonal
entries, but permuted in different ways. Depolarization power A is invariant to the order
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of the diagonal elements of Ma:

_ trace(Ma) — 1

A=1 ; [33].

(2.45)

Therefore all eight Mgp have the same A. The eight retardance matrices My differ by
permuting their middle two rows, or by inverting the sign of any of the last three rows, while
maintaining det(Mpg) = +1 (see Appendix E). They will have very different retardance
vectors. However, it can be shown that they are all related to one another through left
multiplication by a circular retarder or by a half wave linear retarder. These are the
same single pass retarder ambiguities that were discussed in subsection 5.2.1. Based on
the results of that section, if equations 5.3 are used to calculate the compound linear
retardance (R},0') for one of the possible Mg, then all of the other possibilities must
either have compound linear retardance of (R},6) or (m — R},0 + m/2). Therefore, if
Z has exactly one negative entry, then this algorithm can be used to calculate uniquely
defined values of single pass diattenuation, depolarization power, and two complementary
values of compound linear retardance.

If however M is type II, or if it is found that Z contains zero, two, or three negative
entries, then this algorithm fails to find any single pass MMs that fit the double pass
model M = XML, XY Mgp. There are two potential explanations for this. The first
is that every possible single pass MM Mgp satisfying this equation has a non-diagonal
Map. In simulations that will be described in the following section, 60000 double pass
MDMs were calculated using randomly generated single pass MMs with non-diagonal Map.
For all 60000 double pass MMs, the double pass decomposition was successful in finding
Mgp with diagonal depolarization matrices. In other words, every double pass MM in the
simulation proved to be type I and had Z with exactly one negative entry. This suggests
that in most if not all cases, Mpp can be written using a single pass MM Mgp with a
diagonal depolarization matrix. An algebraic proof is necessary to determine if this is true
of all double pass MMs, which is left to future work.

The second potential explanation is that there are no matrices Mgp satisfying M =
X MZLp XY Mgp; that is, M is not a double pass MM. It is easy to show that there are RI
MMs that cannot be written as double pass MMs; for example the double pass model 3.16
implies that det(Mpp) > 0, but it is possible to find examples of RI MMs that have
negative determinant. Additionally, there are some positive determinant RI MMs that are
also not mathematically consistent with the double pass model. This latter type may be
difficult to identify. The double pass decomposition could be therefore used as a test of the
validity of the double pass model for describing M. If a large number of pixel-by-pixel MMs
measured by in vivo retinal polarimetry prove to have Z with zero, two, or three negative
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entries, it would suggest that the double pass model is inaccurate for that measurement.
In principle this deviation from the double pass model could be caused by experimental
errors such as detector noise. However, there is reason to think that experimental errors
should be unlikely to change the number of negative entries of Z. As part of the algorithm
described in Appendix E, three scalar values —1 < aq, as, ag < 1 are calculated from M.
These are used to calculate Z and M using

1 0 0 0
0 ] 0 0
Ma = E.
2 0 0 las] 0 (E:5)
| 0 0 0 las]
[ 1 0 0 0
_ | 0 sign(a;) 0 0
Z=1y 0 sign(as) 0 (E-6)
0 0 0 sign(ag)

Unless the single pass depolarization is very high, aq, as, and as must also be far from
zero (whether positive or negative). So, assuming that a small experimental error in M
leads also to small errors in ay, as, and ag, it is unlikely that one of them will change sign.
Therefore the number of negative entries of Z is a strong indicator whether a RI MM is
consistent with the double pass model.

Finally, if the experimental MM is inconsistent with the double pass model, it might
be explainable using a modified double pass model. For example, Qi et al suggest that if
a sample is made up of scatterers with sizes on the order of the wavelength of the incident
light or larger, the reflection matrix will take a form similar to X instead of Y [105]. If this
is the case for the reflection that occurs deep in the retina in in vivo retinal polarimetry,
then Z would have zero diagonal entries. The double pass decomposition could then be
used to calculate single pass MMs within a modified double pass model with X replacing
Y. Therefore the double pass decomposition described in this section and in Appendix E
may be able to probe the nature of the reflection that occurs in the retina.

5.4 Simulations

In subsection 5.2.2, the relationship between single and double pass polarimetric properties
of non-depolarizing MMs was fully explored algebraically. Subsection 5.2.3 showed several
ways in which depolarizing single pass MMs can be altered without affecting the double
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pass MM, but did not explicitly show the connection between single and double pass
values. To supplement this, this section uses simulations to compare single and double pass
properties calculated by the Lu-Chipman decomposition in the presence of depolarization.
Then, the same simulations will be used to assess different strategies of inferring single
pass Lu-Chipman properties from the double pass MM. In particular, the “double pass
decomposition” will be compared to methods that start instead with the Lu-Chipman
decomposition of the double pass MM.

A set of 30000 single pass MMs Mgp were randomly generated, as described in Ap-
pendix B.1. This was done in such a way that the diattenuation and retardance vectors
D and R had nearly uniformly distributed magnitudes (in the ranges (0, 1) and (0, 7)
respectively), and uniformly distributed orientations in 3D space. Depolarization power
A of this set was approximately normally distributed with mean 0.42 and standard de-
viation 0.15 (see figure B.1). The depolarization matrices of the single pass MMs were
non-diagonal, having the form of Map (equation 2.59). Then, the double pass matrices
Mpp were calculated using equation 5.2. The Lu-Chipman decomposition was applied to
both MSP and MDP-

Figure 5.6 shows six scatter plots depicting the diattenuation vector D and polar-
izance vector P (equation 2.61). In each plot, the horizontal axis is the single pass value,
while the vertical axis is the double pass value. The left column contains a plot each for
the linear diattenuation, circular diattenuation, and linear diattenuation orientation (see
equations 2.33, 2.34 and 2.35), which together completely determine D. In each case there
is an approximately linear relationship between the single and double pass values, with a
slope close to one. The right column shows analogous plots for the polarizance P, i.e.

Py
P — P45
Pc

P = \/PEI+P425

Py = (1/2)arctan2(Pys, P ).

The single and double pass polarizance are evidently much less similar to one another than
the diattenuation. In particular, circular polarizance is nearly uncorrelated between the
two MMs. This is in agreement with the equation 5.38 found in section 5.2.3, which shows
how the single pass polarizance can be altered without changing the double pass MM.

Figure 5.7 shows scatter plots relating the single and double pass retardance and de-
polarization power. Figure 5.7a shows the ordinary linear retardance Ry, as well as the
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Figure 5.6: Relationship between and single and double pass diattenuation and polarizance
as calculated using Lu-Chipman direction.
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Figure 5.7: Relationship between and single and double pass retardance and depolarization
power as calculated using Lu-Chipman direction.

line
y=2z, 0<x<m/2

5.41
y=2r—2z, 7w/2<z<m. (5.41)

Equation 5.41 is the relationship between single and double pass Rj if Mgp is a linear
retarder (subsection 5.2.1). In these simulations, which include the effects of circular
retardance, diattenuation, and depolarization in addition to linear retardance, a general
behaviour similar to 5.41 is still discernible. In contrast to the non-depolarizing case, a
depolarizing M pp can have a small amount of circular retardance, as shown by figure 5.7b.
However, this circular retardance appears to be unrelated to the single pass value. This
is in agreement with section 5.2.3, which showed that R{ cannot be inferred from Mpp.
Lastly, figure 5.7d shows that the double pass depolarization power is frequently much
larger than the single pass value.

Next, these simulations can describe a situation (such as in vivo retinal polarimetry)
in which one wishes to predict single pass Lu-Chipman properties from the measured
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double pass MM. One approach is to start with the double pass Lu-Chipman properties.
Based on figures 5.6a, 5.6¢c, and 5.6e, Dy, pp, Dcpp, and 0p pp each approximate their
corresponding single pass values”. Polarizance and circular retardance are excluded from
this discussion, because of the lack of a clear relationship between single and double pass
values in figures 5.6b, 5.6d, 5.6f, and 5.7b. In many studies, single pass linear retardance
Ry, is estimated by dividing the double pass linear retardance by two [19, 71, 78, ].
Figure 5.7a shows that for some samples this may be inaccurate, particularly if R, > 7/2.
As discussed in section 5.2.3, the single pass retardance matrix can be left multiplied by
any circular retarder or halfwave linear retarder without altering Mpp, making R;, and 6
difficult to predict. However, a different measure of single pass linear retardance can be
defined as follows:

) 5.42
ks (m =R, 0 +7/2) if R, >r/2 (5.42)

0 if R, <m/2
(R, o) = {( 1 0) L </
where R} and 6’ are the compound linear retardance and linear retardance fast axis defined
in equations 5.3. It follows from section 5.2.1 that R;_ and 6. are unaffected by left
multiplication by any circular retarder or halfwave linear retarder. Therefore, (R _, 6..)
can be predicted much more reliably from the double pass model than (Ry, #), and will be
used instead for the remaining comparisons. It will be found that (Rpp/2,0pp) is a better
predictor of this modified single pass linear retardance definition than it is of (Ry, 0).

Lastly, figure 5.7d shows that single and double pass depolarization power are dissim-
ilar. Typically, the double pass depolarization power App is calculated using the three
cigenvalues (ey, e, e3) of the depolarizing submatrix ma,, p:

e1+eo+e3

App=1-— 3 (5.43)
It was observed that for a diagonal depolarizer Mgp = Maj,
Mpp =Mappr = QML QM, = M3. (5.44)

Based on this squared relationship, it was postulated that the modified depolarization
power

DP =

’ _1_\/a+\/;—2+\/e—3 (5.45)

"One could generate linear (or higher order) fits for each of figures 5.6a, 5.6c, and 5.6e, using the
resulting parameters in order to optimally predict D from Dpp. However this would risk overfitting, and
the results may depend on the properties of the MMs used in the simulation. The line y = z is used
instead for simplicity, because it evidently provides a reasonable fit for each of figures 5.6a, 5.6¢, and 5.6e.

91



should show a more linear correspondence to the single pass depolarization power than
ADP-

In addition, the double pass decomposition algorithm described in Appendix E was
applied to Mpp to extract a new set of predicted single pass polarimetric properties, la-
belled with the subscript SY M (in reference to the double pass decomposition algorithm
being based on the symmetric decomposition of Ossikovski [95]). This returns a possible
Msp sy am under the condition that Ma gy s is diagonal, which may differ from the “true”
single pass Mgp. Dgyy and Agyys were calculated as normal from the Mp gy and
M sy m provided by the decomposition. Linear retardance and linear fast axis were cal-
culated from Mp gy s in the same way as for the true single pass values, in order to make
them invariant to left multiplication by a circular retarder or linear half wave retarder.
The resulting values are labelled (R _ gy s, 0% syar)-

The same set of 30000 single pass and corresponding double pass MMs was used to
compare the true single pass polarimetric properties with values calculated from Mpp. The
right column of figure 5.8 shows scatter plots relating Dgy s to the true single pass values
D. The left column shows for comparison the same plots with the Lu-Chipman calculated
vector Dpp instead of Dgy s (identical to figures 5.6a, 5.6¢, and 5.6e). A more quantitative
analysis of these results will be presented later in this section, but from figure 5.8, it is
clear that Dgyjs tends to correspond more closely with the “true” single pass values D
than Dpp. This is especially the case for larger diattenuation magnitudes.

Figure 5.9 shows the same type of comparison for linear retardance, linear retardance
fast axis, and depolarization power. Figures 5.9a and 5.9¢ show that (Ry pp/2, Opp) are
more similar to the modified linear retardance values (R} _, #_) than they are to (Rp,0)
(compare to figures 5.7a and 5.7¢). Figures 5.9b and 5.9d show that the values extracted
using the double pass decomposition, (R} ¢y, 0% syar), are slightly better predictors of
the true single pass value than (R pp/2, Opp). This will be confirmed quantitatively in
the following paragraph. Finally, figure 5.9e compares the modified depolarization power
A’ p with the single pass value A. Compared to figure 5.7d which used the ordinary double
pass depolarization power App, this modification has brought points closer to the y =
line. However, A’ still tends to overestimate the true single pass A. Figure 5.9f on the
other hand shows that using the double pass decomposition allows for a more accurate
prediction of A, with the majority of points lying close to the line y = x.

The twelve plots in figures 5.8 and 5.9 were assessed quantitatively based on their
similarity to the line y = z. For each point (x;, v;), the vertical distance from the line
y = x was calculated as ; = y; — x;. This is the difference between the true single pass
value (z;) of that polarimetric property and the value calculated from Mpp (y;). For each
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Figure 5.8: Comparison of the true single pass diattenuation with that calculated from
Mpp using the Lu-Chipman decomposition and double pass decomposition.
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Figure 5.9: Comparison of the true single pass linear retardance, linear retardance fast
axis, and depolarization power with that predicted from Mpp using the Lu-Chipman
decomposition and double pass decomposition.
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Polarimetric Properties ) )

Single Pass \ DP \ SYM DP \ SYM DP \ SYM
Dy, Dypp | Drsym | 0.0431 | 0.0062 | 0.0870 | 0.0405
D¢ Depp | Desya || 0.0004 | 0.0002 || 0.0861 | 0.0514
0p Op.pp Op.sym || -0.0006 | -0.0012 || 0.2396 | 0.2138
R _ Rppp/2 | R syp || 00018 | 0.0015 || 0.0544 | 0.0407
6. Opp L sy 0.0010 | 0.0008 || 0.2131 | 0.1763
A Alyp Agsym 0.0856 | 0.0058 || 0.1285 | 0.0170

Table 5.1: Table showing the similarities between polarimetric properties calculated from
general single pass and corresponding double pass MMs.

plot, two metrics were calculated:

5= Z % (5.46)
o = Z %2 (5.47)

7

4 is the mean of §; while 0 is the square root of the variance about 0 [56]. & indicates how
much y; tends to over or underestimate x;, while 4 is characteristic of the size of the error.
Table 5.1 shows the results for all twelve of the plots in figures 5.8 and 5.9. Columns labelled
DP are for polarimetric properties calculated from Mpp using Lu-Chipman decomposition,
with the modifications described earlier in this section. Columns labelled SY M are for
polarimetric properties calculated using the double pass decomposition. Note that 6p,
R’ _, 0, and the properties they are compared to are all recorded in radians. 6, and 6.
are both 7 periodic, which was taken into account by calculating §; using

6; =mod(y; — x; + /2, ™) — /2
in order to give values of §; in the range (—7n/2, 7/2).

Generally, table 5.1 confirms that for this set of single pass MMs, polarimetric properties
calculated using the double pass decomposition are better predictors of the true single
pass values than those calculated using the Lu-Chipman decomposition of Mpp. The
difference between the two is most dramatic for depolarization power A, which tends to
be overestimated by A’ p.

However, this result is dependent on the statistical properties of the set of single pass
MMs. The set used in these simulations so far was designed to have a wide range of
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Polarimetric Properties 0 )

Single Pass \ DP \ SYM DP \ SYM DP \ SYM
Dy, Dy pp Dy sya || 0.0286 | 0.0191 || 0.0502 | 0.0510
D¢ Decpp Dec sya || -0.0001 | -0.0004 || 0.0456 | 0.0588
Op Op.pp Op,sym || -0.0028 | 0.0001 || 0.4337 | 0.4496

T Ry pp/2 T<.syy || 0.0010 | 0.0010 || 0.0332 | 0.0333
6. Opp L sy 0.0010 | 0.0010 | 0.1479 | 0.1490
A Alyp Agy p 0.0085 | 0.0053 | 0.0139 | 0.0129

Table 5.2: Table showing the similarities between polarimetric properties calculated from
weakly diattenuating and polarizing single pass and corresponding double pass MMs.

polarimetric properties (see Appendix B), and not necessarily to be realistic to single
pass MMs of the retina and amyloid deposits. It can be observed from figure 5.8 that
the double pass decomposition performs best for large values of diattenuation. However,
retinal amyloid deposits measured ex wvivo are typically weakly diattenuating [08] and
previous in vivo ocular measurements have shown low (but non-negligible) amounts of
diattenuation [28, ]. Therefore, as described in Appendix B, a second set of 30000
single pass MMs was randomly generated, this time restricting the magnitudes of the single
pass diattenuation D and depolarizer-polarizance Pap to be in the range [0,0.2] (while in
the original set they were in the range [0,1]). The results of this simulation are shown in
table 5.2. Under these conditions, the Lu-Chipman decomposition of Mpp and the double
pass decomposition have very similar results for linear retardance, linear retardance fast
axis, and depolarization power. As a corollary, this indicates that the tendency of A, to
overestimate A in the first simulation (see figure 5.9e and table 5.1) was due to the presence
of high amounts of diattenuation. Neither approach provides a good estimate of the single
pass diattenuation, but the Lu-Chipman decomposition of Mpp performs slightly better.

These simulations compare the interpretive power of the Lu-Chipman decomposition
of Mpp and the double pass decomposition developed in section 5.3, as assessed by how
closely the polarimetric properties they extract resemble the true single pass values. The
double pass decomposition has large advantages when the sample may be strongly diat-
tenuating, but these disappear under conditions that are more realistic for in vivo retinal
polarimetry. Still, the double pass decomposition is appealing for its ability to explicitly
extract a possible single pass MM from Mpp, and as discussed in section 5.3 it can test
whether an experimental MM is consistent with the double pass model. As well, it may
be useful for other non-retinal samples that fit a double pass model (e.g. [13, 11, 138]).
A next step would be to compare the results of the two decompositions when applied to

96



experimental results from in vivo retinal polarimetry.

5.5 Conclusion

This chapter has explored the relationship between single and double pass polarimetric
properties. In section 5.2, it was demonstrated that a single pass MM can be left multiplied
by the MM of a circular retarder, half wave linear retarder, or a scaled circular diattenuator
without altering the double pass MM. When no depolarization is present, it was shown how
to calculate the “principal” single pass MM from the Lu-Chipman decomposition of the
double pass MM, which has the property that single pass retardance and diattenuation are
parallel to double pass retardance and diattenuation. All other possible single pass non-
depolarizing MMs can be determined through transformations of the principal MM. Sets of
single pass retardance and diattenuation vectors that corresponded to the same double pass
MM were visualized in 3D space, showing the plurality of possible single pass properties.
The effects of these transformations on depolarizing MMs were also considered, leading
to results which show the ambiguity of the single pass circular polarizance and circular
retardance.

The “double pass decomposition” was developed in section 5.3, which allows a single
pass MM to be inferred from the double pass MM even when depolarization is present.
Applied to experimental RI MMs measured in in vivo retinal polarimetry, this method
could also be a test of the validity of the double pass model, and probe the nature of the
reflection occurring in the retina. Section 5.4 used simulations to test the similarity of single
and double pass polarimetric properties. These confirmed the lack of a correlation between
single and double pass values of circular polarizance and circular retardance. Simulations
were also used to compare the relative merits of the double pass decomposition and the Lu-
Chipman decomposition as methods of interpreting the double pass MM. The double pass
decomposition was found to have major advantages when it was possible for the sample to
have large amounts of diattenuation. These results are useful both for the current ex vivo
work of Campbell Labs, in order to identify polarimetric properties that are accessible in
double pass, and for future in vivo work, in order to interpret double pass MMs.
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Chapter 6

Discussion

This thesis has proposed a partial polarimetry approach to in vivo measurements of the
human retina, which could be used for AD diagnosis. This approach is based on the double
pass model without additional assumptions about the polarimetric properties of the retina
or of retinal amyloid deposits. It has been shown how to use the mathematical structure
implied by the double pass model advantageously for measuring and interpreting double
pass MMs.

Chapter 3, following the work of previous authors, described the reciprocity theorem
and used it to express the double pass model in terms of MMs. This provided two results:
firstly, it indicated that double pass MMs are RI, meaning they obey a set of linear restric-
tions between MM elements. Secondly, it explicitly relates single pass MMs and double
pass MMs. Additionally, a polarization ray tracing model was introduced in order to pro-
vide additional support for the notion that the MM measured in in vivo retinal polarimetry
should be RI. It was noted that past MMs measured by full in vivo retinal polarimeters
were partially non-RI. This was postulated to be due to a lack of symmetry between the
input and output branches of those instruments, meaning that the strict applicability of
the double pass model might vary between instruments.

Chapter 4 made use of the fact that RI MMs have fewer degrees of freedom than or-
dinary MMs. This reduces the minimum number of measurements necessary to determine
the MM from sixteen to nine or ten, depending on the type of reciprocal invariance. It was
shown how to incorporate the restrictions on RI MMs into the polarimetric measurement
equation. This approach can be used to reconstruct a RI MM from a set of only nine or
ten irradiance measurements. Additionally, a novel technique was developed for optimizing
the error performance of a partial polarimeter for measuring RI MMs. The technique was
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demonstrated by finding several designs for a PSG and PSA that each consisted of a linear
polarizer and rotating QWP, using as few as nine or ten measurements. Using a simula-
tion, these designs were shown to have comparable error performance to a standard sixteen
measurement full polarimeter design. The reduction in the number of necessary measure-
ments can allow for faster determination of the MM, which is particularly important for
the application of finding retinal amyloid in vivo. These designs were also able to account
for practical considerations like the time required to rotate the QWPs, and the possibility
of dropped measurements due to blinks or eye movement. In total, six new PSG and PSA
designs were listed, which used different numbers of measurements or prioritized different
objectives. These designs could be used for faster measurement of double pass MMs in
the retina in vivo. The methodology demonstrated in chapter 4 could also be applied for
optimizing PSGs and PSAs made up of different optical components than a linear polarizer
and rotating QWP. As well, it could be used to optimize partial polarimeters for measuring
MMs with other symmetries besides reciprocal invariance, which could be useful outside
the field of in vivo retinal polarimetry.

Chapter 5 has considered the relationship between single and double pass polarimetric
properties. It was shown that for a given double pass MM, there is a large set of possible
corresponding single pass MMs. In the case where no depolarization is present, an algo-
rithm was developed that can find every possible single pass MM. Several transformations
were found that can be performed on the single pass MM without altering the double pass
MM: left multiplication by a circular retarder, linear half-wave retarder, or scaled circular
diattenuator. By applying these transformations to depolarizing single pass MMs, it was
shown that single pass circular retardance and circular polarizance can take a wide range of
values for any individual double pass MM. Next, the double pass decomposition algorithm
was developed, which is a novel adaptation of the existing symmetric decomposition of Os-
sikovski [95]. This algorithm returns possible single pass polarimetric properties for double
pass MMs that contain depolarization. Using a simulation, the double pass decomposition
was compared to the Lu-Chipman decomposition in terms of their ability to predict the
true single pass polarimetric properties from a double pass MM. For MMs with significant
amounts of diattenuation, it was found that the double pass decomposition returned val-
ues of linear retardance, diattenuation, and depolarization that were more similar to the
true single pass values than those based on the Lu-Chipman decomposition. The double
pass decomposition provides a new way of interpreting double pass MMs which may give
additional insight into the microstructural features of the sample.

These ideas could be applied in a future in vivo retinal polarimeter imaging retinal
amyloid deposits for the purpose of AD diagnosis.

99



References

1]

Sanaz Alali and Alex Vitkin. Polarized light imaging in biomedicine: emerging
Mueller matrix methodologies for bulk tissue assessment. Journal of Biomedical
Optics, 20(6):1-9, mar 2015. 1, 14

Andrey S Alenin and J. Scott Tyo. Structured decomposition design of partial Mueller
matrix polarimeters. Journal of the Optical Society of America A, 32(7):1302, jul
2015. 39

Andrey S Alenin and J. Scott Tyo. Design of channeled partial Mueller matrix
polarimeters. Journal of the Optical Society of America A, 33(6):1060, jun 2016. 39

Amrit Ambirajan. Optimum angles for a polarimeter: part 1. Optical Engineering,
34(6):1651, 1995. 19, 22, 38, 43, 55

Guillaume Anna, Francois Goudail, and Daniel Dolfi. Optimal discrimination of
multiple regions with an active polarimetric imager. Optics Express, 19(25):25367—
25378, 2011. 39

N P Armitage. Constraints on Jones transmission matrices from time-reversal in-
variance and discrete spatial symmetries. Phys. Rev. B, 90(3):35135, jul 2014. 26

Pablo Artal, Ignacio Iglesias, Norberto Lopez-Gil, and Daniel G Green. Double-pass
measurements of the retinal-image quality with unequal entrance and exit pupil sizes
and the reversibility of the eye’s optical system. Journal of the Optical Society of
America A, 12(10):2358-2366, 1995. 3

Oriol Arteaga and Adolf Canillas. Analytic inversion of the Mueller-Jones polariza-
tion matrices for homogeneous media. Opt. Lett., 35(4):559-561, feb 2010. 13

100



[9]

[10]

[11]

[12]

[13]

[14]

[19]

[20]

Oriol Arteaga and Razvigor Ossikovski. Complete Mueller matrix from a partial po-
larimetry experiment: the 12-element case. Journal of the Optical Society of America
A, 36(3):416, mar 2019. 39

James Arvo. Fast random rotation matrices. In Graphics Gems III (IBM Version),
pages 117-120. Elsevier Science, Burlington :, 1992. 119

Alzheimer’s Association. 2019 Alzheimer’s disease facts and figures. Alzheimer’s €
Dementia, 15(3):321-387, 2019. 1, 2

Arthur J Atkinson, Wayne A Colburn, Victor G DeGruttola, David L. DeMets, Gre-
gory J Downing, Daniel F Hoth, John A Oates, Carl C Peck, Robert T Schooley,
Bert A Spilker, Janet Woodcock, and Scott L. Zeger. Biomarkers and surrogate end-
points: Preferred definitions and conceptual framework. Clinical pharmacology and

therapeutics, 69(3):89-95, 2001. 2

R M A Azzam. Return-path ellipsometry and a novel normal-incidence null ellip-
someter (NINE). Optica Acta: International Journal of Optics, 24(10):1039-1049,
1977. 19, 63, 96

Neil A Beaudry, Yanming Zhao, and Russell Chipman. Dielectric tensor measurement
from a single Mueller matrix image. J. Opt. Soc. Am. A, 24(3):814-824, mar 2007.
19

Rajendra Bhandari. Reciprocity constraints on the matrix of reflection from optically
anisotropic surfaces. J. Opt. Soc. Am. A, 26(11):2368-2372, nov 2009. 29

Valérie Biousse, Beau B Bruce, and Nancy J Newman. Ophthalmoscopy in the 21st
century: the 2017 H. Houston Merritt Lecture. Neurology, 90(4):167-175, 2018. 1

C Bohley and T Scharf. Polarization of light reflected by cholesteric blue phases.
Journal of Optics A: Pure and Applied Optics, 6(3):S7T7-S80, 2004. 65

Anmole S Bolla and Ronny Priefer. Blood glucose monitoring- an overview of current
and future non-invasive devices. Diabetes € Metabolic Syndrome: Clinical Research
€9 Reviews, 14(5):739-751, 2020. 13

M. Born and E. Wolf. Principles of Optics 7th edition. Cambridge University Press,
1999. 1, 6, 7, 8, 10, 11, 12

Anatoli Borovoi, Alexander Konoshonkin, and Natalia Kustova. Backscattering reci-
procity for large particles. Opt. Lett., 38(9):1485-1487, may 2013. 29, 32

101



[21]

[22]

23]

[24]

[25]

[20]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Juan M Bueno. Measurement of parameters of polarization in the living human eye
using imaging polarimetry. Vision Research, 40(28):3791-3799, 2000. 3, 36

Juan M Bueno. Depolarization effects in the human eye. Vision Research,
41(21):2687-2696, 2001. 3, 36

Juan M Bueno. Indices of linear polarization for an optical system. Journal of Optics
A: Pure and Applied Optics, 3(6):470-476, oct 2001. 36

Juan M Bueno. Reversibilidad optica en polarizacion: aplicaciéon al ojo humano.
Revista Digital Puntez, (152), 2001. 2, 24, 25, 29, 31, 32, 63, 65, 66, 123

Juan M Bueno. Polarimetry in the human eye using an imaging linear polariscope.
Journal of Optics A: Pure and Applied Optics, 4(5):553-561, 2002. 3, 36, 38

Juan M Bueno. The influence of depolarization and corneal birefringence on ocular
polarization. Journal of Optics A: Pure and Applied Optics, 6(3):591-S99, feb 2004.
3,24, 31, 36

Juan M Bueno and Pablo Artal. Double-pass imaging polarimetry in the human eye.
Opt. Lett., 24(1):64-66, jan 1999. 3, 36

Juan M Bueno and Pablo Artal. Average double-pass ocular diattenuation using
foveal fixation. Journal of Modern Optics, 55(4-5):849-859, feb 2008. 3, 36, 96

Juan M Bueno and Melanie C W Campbell. Confocal scanning laser ophthalmoscopy
improvement by use of Mueller-matrix polarimetry. Opt. Lett., 27(10):830-832, may
2002. 3, 19, 31, 51, 115

Juan M Bueno and Melanie C W Campbell. Polarization properties of the in vitro old
human crystalline lens. Ophthalmic and Physiological Optics, 23(2):109-118, 2003.
2,3

Juan M Bueno, Jennifer J Hunter, Christopher J Cookson, Marsha L Kisilak, and
Melanie C W Campbell. Improved scanning laser fundus imaging using polarimetry.
Journal of the Optical Society of America A, 24(5):1337-1348, 2007. 36

Juan M Bueno and Jaroslaw Jaronski. Spatially resolved polarization properties for
in vitro corneas. Ophthalmic and Physiological Optics, 21(5):384-392, sep 2001. 2

Juan M Bueno and Brian Vohnsen. Polarimetric high-resolution confocal scanning
laser ophthalmoscope. Vision Research, 45(28):3526 — 3534, 2005. 36, 49, 124

102



[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Stephen A Burns, Ann E Elsner, Mariane B Mellem-Kairala, and Ruthanne B Sim-
mons. Improved contrast of subretinal structures using polarization analysis. Inves-
tigative Ophthalmology € Visual Science, 44(9):4061-4068, sep 2003. 36

M C W Campbell, L J F Gowing, Y Choi, and Z Leonenko. Imaging of amyloid-beta
deposits in the postmortem retina in Alzheimer’s disease. Investigative Ophthalmol-
ogy & Visual Science, 51(13):5778, apr 2010. 2

Subrahmanyan Chandrasekhar. Radiative transfer. Dover Publications, New York,
1960. 29

Russell A Chipman. Polarization analysis of optical systems. Optical Engineering,
28(2):90 — 99, 1989. 32

Russell A Chipman. Mechanics of polarization ray tracing. Optical Engineering,
34(6):1636 — 1645, 1995. 32

Russell A Chipman. Mueller matrices. In Michael Bass and Virendra N. Mahajan,
editors, Handbook of Optics Volume I, chapter 14. McGraw Hill, New York, 3 edition,
2010. 12, 14, 16, 17, 31, 68, 119, 120, 124

Russell A Chipman. Polarimetry. In Michael Bass and Virendra N. Mahajan, editors,
Handbook of Optics Volume I, chapter 15. McGraw Hill, New York, 3 edition, 2010.
1, 7,17, 19, 20, 21, 22, 38, 40, 41, 54

Shane Cloude. Polarisation: Applications in Remote Sensing. Oxford University
Press, feb 2010. 7, 11, 12, 13, 19, 27, 30, 66, 96

Shane R Cloude. Conditions for the physical realisability of matrix operators in
polarimetry. In Russell A Chipman, editor, Polarization Considerations for Optical
Systems II, volume 1166, pages 177 — 187. SPIE, 1990. 18, 54, 118, 120

Frank Corapi, Melanie C W Campbell, Laura Emptage, Rachel Redekop, Monika
Kitor, Veronica Hirsch-Reinshagen, Robin Hsiung, and Ian Mackenzie. Correlation

between amyloid beta deposits in ex vivo retinas and severity of Alzheimer’s brain
pathology. Investigative Ophthalmology & Visual Science, 59(9):1582, jul 2018. 2, 23

A T de Hoop. A reciprocity theorem for the electromagnetic field scattered by an
obstacle. Applied Scientific Research, Section B, 8(1):135-140, 1960. 26, 27

103



[45]

David DeVries, Melanie C W Campbell, Laura Emptage, Chris Cookson, Marsha
Kisilak, Francisco J Avila, Juan M Bueno, Rachel Redekop, and Matthew Wilson.
Polarization properties of amyloid beta deposits in ex vivo human retinas from those

with Alzheimer’s disease differ from surrounding retina. Investigative Ophthalmology
€ Visual Science, 56(7):2385, jun 2015. 2, 14

Adrian Doicu, Thomas Wriedt, and Yuri A Eremin. Light scattering by systems of
particles: null-field method with discrete sources: theory and programs, volume 124.
Springer, 2006. 12, 26

William J Donnelly and Austin Roorda. Optimal pupil size in the human eye for
axial resolution. J. Opt. Soc. Am. A, 20(11):2010-2015, nov 2003. 32, 35

Andreas W Dreher and Klaus Reiter. Scanning laser polarimetry of the retinal nerve
fiber layer. In Dennis H Goldstein and Russell A Chipman, editors, Polarization
Analysis and Measurement, volume 1746, pages 34 — 41. SPIE, 1992. 36

Andreas W Dreher, Klaus Reiter, and Robert N Weinreb. Spatially resolved birefrin-
gence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer. Appl.
Opt., 31(19):3730-3735, jul 1992. 3, 13, 36, 66, 91

Matthieu Dubreuil, Philippe Babilotte, Loic Martin, David Sevrain, Sylvain Rivet,
Yann Le Grand, Guy Le Brun, Bruno Turlin, and Bernard Le Jeune. Mueller matrix
polarimetry for improved liver fibrosis diagnosis. Opt. Lett., 37(6):1061-1063, mar
2012. 1, 13, 23

Ann E Elsner, Anke Weber, Michael C Cheney, Dean A VanNasdale, and Masahiro
Miura. Imaging polarimetry in patients with neovascular age-related macular degen-
eration. J. Opt. Soc. Am. A, 24(5):1468-1480, may 2007. 2

William Ford. Chapter 7 - Vector and Matrix Norms, 2014. 45

José J. Gil Pérez and Razvigor Ossikovski. Polarized Light and the Mueller Matrix
Approach. CRC Press, jul 2017. 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 21, 23, 27,
28, 29, 31, 35, 54, 65, 74, 83, 84, 85, 118, 120, 121, 122, 127, 131, 132, 133, 134, 135

Jean-Jacques Greffet and Manuel Nieto-Vesperinas. Field theory for generalized bidi-
rectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchhoff’s
law. Journal of the Optical Society of America A, 15(10):2735-2744, 1998. 26, 29

104



[55]

[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Matthew Hayman, Scott Spuler, Bruce Morley, and Joseph VanAndel. Polarization
lidar operation for measuring backscatter phase matrices of oriented scatterers. Opt.
Express, 20(28):29553-29567, dec 2012. 39

William Lee Hays. Statistics. Holt, Rinehart, and Winston, New York, 1988. 95

Honghui He, Ran Liao, Nan Zeng, Pengcheng Li, Zhenhua Chen, Xi Liu, and Hui
Ma. Mueller matrix polarimetry-An emerging new tool for characterizing the mi-
crostructural feature of complex biological specimen, 2019. 1, 13, 14, 19

Eugene Hecht. Optics; 5th ed. Pearson, Boston, MA, jul 2015. 1, 6, 7, 8, 9, 10, 12,
13

Christian Heinrich, Jean Rehbinder, and Jihad Zallat. Revisiting the generalized
polar decomposition of Mueller matrices. J. Opt. Soc. Am. A, 37(8):1327-1339, aug
2020. 120

Roger A. Horn and Charles R. Johnson. Topics in Matriz Analysis. Cambridge
University Press, apr 1991. 8, 71, 115, 116, 133

Roger A Horn and Charles R Johnson. Matriz analysis. Cambridge university press,
2012. 42, 44, 45, 48, 116, 119

Jinxin Huang and Jannick P Rolland. Imaging Techniques for the Visualization and
Evaluation of Tear Film Dynamics, pages 373-385. Springer International Publish-
ing, Cham, 2019. 3, 38

Xiang-Run Huang and Robert W Knighton. Theoretical model of the polarization
properties of the retinal nerve fiber layer in reflection. Appl. Opt., 42(28):5726-5736,
oct 2003. 32

David G Hunter, Julie C Sandruck, Soma Sau, Saurabh N Patel, and David L. Guyton.
Mathematical modeling of retinal birefringence scanning. Journal of the Optical
Society of America A, 16(9):2103-2111, 1999. 2, 24, 31, 63

Henry Hurwitz and R Clark Jones. A new calculus for the treatment of optical
systems II. proof of three general equivalence theorems. J. Opt. Soc. Am., 31(7):493~
499, jul 1941. 13, 29, 66

John David Jackson. Jackson - Classical Electrodynamics. Wiley, 1962. 6, 7, 10, 13,
26

105



[67]

[73]

[74]

[75]

Tao Jin, Laura Emptage, David DeVries, and Melanie C W Campbell. Mapping the
birefringence of amyloid deposits found in retinas in association with Alzheimer’s
disease. In Frontiers in Optics 2016, page FTh5D.4. Optical Society of America,
2016. 2

Jin, Tao. Polarimetric and birefringence analysis of presumed amyloid-beta deposits
in the retina in association with Alzheimer’s disease, 2018. 2, 3, 23, 24, 96

R Clark Jones. A new calculus for the treatment of optical systems I. description and
discussion of the calculus. Journal of the Optical Society of America, 31(7):488-493,
1941. 29

Nate J Kemp, Haitham N Zaatari, Jesung Park, H Grady Rylander III, and
Thomas E Milner. Form-biattenuance in fibrous tissues measured with polarization-
sensitive optical coherence tomography (PS-OCT). Opt. Express, 13(12):4611-4628,
jun 2005. 13

Hélene Kergoat, Marie-Jeanne Kergoat, Lisette Justino, Howard Chertkow, Alain
Robillard, and Howard Bergman. An evaluation of the retinal nerve fiber layer
thickness by scanning laser polarimetry in individuals with dementia of the Alzheimer
type. Acta Ophthalmologica Scandinavica, 79(2):187-191, 2001. 2

H B klein Brink and G J van Blokland. Birefringence of the human foveal area
assessed in vivo with Mueller-matrix ellipsometry. J. Opt. Soc. Am. A, 5(1):49-57,
jan 1988. 3, 36

Robert W Knighton and Xiang-Run Huang. Analytical methods for scanning laser
polarimetry. Opt. Ezpress, 10(21):1179-1189, oct 2002. 2, 3, 38

Robert W Knighton, Xiang-Run Huang, and David S Greenfield. Analytical model
of scanning laser polarimetry for retinal nerve fiber layer assessment. Investigative
Ophthalmology € Visual Science, 43(2):383-392, jan 2002. 2, 3, 24, 31, 62, 63, 66, 91

Yosef Koronyo, David Biggs, Ernesto Barron, David S Boyer, Joel A Pearlman,
William J Au, Shawn J Kile, Austin Blanco, Dieu-Trang Fuchs, Adeel Ashfaq, Sally
Frautschy, Gregory M Cole, Carol A Miller, David R Hinton, Steven R Verdooner,
Keith L Black, and Maya Koronyo-Hamaoui. Retinal amyloid pathology and proof-
of-concept imaging trial in Alzheimer’s disease. JCI insight, 2(16):€93621, aug 2017.
2

106



[76]

[77]

(78]

[79]

[30]

[81]

[82]

[83]

[84]

[85]

[36]

Gerhard Kristensson. Scattering of electromagnetic waves by obstacles. Electromag-
netics and radar. The Institution of Engineering and Technology, Stevenage, 2016.
26, 27, 30

Akhlesh Lakhtakia, Vijay K Varadan, and Vasundara V Varadan. Time-harmonic
electromagnetic fields in chiral media, volume 335. Springer, 1989. 12

David Lara and Chris Dainty. Double-pass axially resolved confocal Mueller matrix
imaging polarimetry. Opt. Lett., 30(21):2879-2881, nov 2005. 65, 66, 91, 123

David Lara and Carl Paterson. High-resolution confocal full polarimeter for the living
human retina. Investigative Ophthalmology & Visual Science, 53(14):3090, 2012. 3

David Lara Saucedo. Three-dimensional complete polarisation sensitive imaging us-
g a confocal Mueller matrixz polarimeter. PhD thesis, Imperial College London,
2005. 63, 66

D Layden, M F G Wood, and I A Vitkin. Optimum selection of input polarization
states in determining the sample Mueller matrix: a dual photoelastic polarimeter
approach. Opt. Express, 20(18):20466-20481, aug 2012. 22, 38, 39, 43, 51, 115, 116

Xiaobo Li, Haofeng Hu, Lan Wu, and Tiegen Liu. Optimization of instrument matrix
for Mueller matrix ellipsometry based on partial elements analysis of the Mueller
matrix. Opt. Ezpress, 25(16):18872-18884, aug 2017. 38

Shih-Yau Lu and Russell A Chipman. Interpretation of Mueller matrices based on
polar decomposition. Journal of the Optical Society of America A, 13(5):1106, may
1996. 14, 15, 16, 17, 18, 23, 63, 69, 74, 82, 86, 119, 120, 131

lan J C MacCormick, Gabriela Czanner, and Brian Faragher. Developing reti-
nal biomarkers of neurological disease: an analytical perspective. Biomarkers in
Medicine, 9(7):691-701, 2015. 1

C Macias-Romero and P Torok. Eigenvalue calibration methods for polarimetry.
Journal of the European Optical Society - Rapid publications, 7(0), 2012. 116

S Manhas, M K Swami, P Buddhiwant, N Ghosh, P K Gupta, and K Singh. Mueller
matrix approach for determination of optical rotation in chiral turbid media in
backscattering geometry. Opt. Ezpress, 14(1):190-202, jan 2006. 66, 67

107



[87]

Mario Martinelli and Paolo Martelli. Polarization, mirrors, and reciprocity: bire-
fringence and its compensation in optical retracing circuits. Adv. Opt. Photon.,
9(1):129-168, mar 2017. 66

Susana Martinez-Conde, Stephen L Macknik, and David H Hubel. The role of fix-
ational eye movements in visual perception. Nature reviews neuroscience, 5(3):229—
240, 2004. 3, 38, 52

MATLAB. 9.8.0.1823502 (R2020a). The MathWorks Inc., Natick, Massachusetts,
2020. 15, 42, 53

James P McGuire and Russell A Chipman. Diffraction image formation in optical
systems with polarization aberrations. I: Formulation and example. J. Opt. Soc. Am.
A, 7(9):1614-1626, sep 1990. 32

Michael I Mishchenko, Joop W Hovenier, and Larry D Travis. Light scattering by
nonspherical particles: theory, measurements, and applications. Atoms, Molecules,
Lasers, 2000. 30

Christine T O Nguyen, Flora Hui, Jason Charng, Shajan Velaedan, Anna K van Ko-
everden, Jeremiah K H Lim, Zheng He, Vickie H' Y Wong, Algis J Vingrys, Bang V
Bui, and Magnus Ivarsson. Retinal biomarkers provide “insight” into cortical phar-
macology and disease. Pharmacology ¢ Therapeutics, 175:151 — 177, 2017. 1, 2

H D Noble and R A Chipman. Mueller matrix roots algorithm and computational
considerations. Opt. Express, 20(1):17-31, jan 2012. 118

R Oldenbourg and T Ruiz. Birefringence of macromolecules. Wiener’s theory re-
visited, with applications to DNA and tobacco mosaic virus. Biophysical Journal,
56(1):195 — 205, 1989. 13

Razvigor Ossikovski. Analysis of depolarizing Mueller matrices through a symmetric
decomposition. Journal of the Optical Society of America A, 26(5):1109, may 2009.
64, 84, 92, 99, 121, 131

Razvigor Ossikovski and Oriol Arteaga. Complete Mueller matrix from a partial
polarimetry experiment: the nine-element case. Journal of the Optical Society of
America A, 36(3):403, mar 2019. 39

Razvigor Ossikovski, Antonello De Martino, and Steve Guyot. Forward and reverse
product decompositions of depolarizing Mueller matrices. Opt. Lett., 32(6):689-691,
mar 2007. 64, 83, 85

108



(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

107]

Soichi Otsuki. Symmetry relationships for multiple scattering of polarized light in
turbid spherical samples: theory and a Monte Carlo simulation. J. Opt. Soc. Am.
A, 33(2):258-269, feb 2016. 84

Joel A Papay and Ann E Elsner. Near-infrared polarimetric imaging and changes
associated with normative aging. J. Opt. Soc. Am. A, 35(9):1487-1495, sep 2018. 2

Bernhard C E Pelz, Christian Weschenmoser, Stefan Goelz, Joerg P Fischer, Rein-
hard O W Burk, and Josef F Bille. In-vivo measurement of the retinal birefringence

with regard to corneal effects using an electro-optical ellipsometer. In Proc.SPIFE,
volume 2930, dec 1996. 3, 24, 31, 36, 62

Angelo Pierangelo, Sandeep Manhas, Abdelali Benali, Clément Fallet, Jean-Laurent
Totobenazara, Maria Rosaria Antonelli, Tatiana Novikova, Brice Gayet, Antonello De
Martino, and Pierre Validire. Multispectral Mueller polarimetric imaging detecting
residual cancer and cancer regression after neoadjuvant treatment for colorectal car-
cinomas. Journal of Biomedical Optics, 18(4):1-10, 2013. 1, 23

M Planitz. Inconsistent systems of linear equations. The Mathematical Gazette,
63(425):181, 1979. 22, 41

Jason Porter, Antonio Guirao, lan G Cox, and David R Williams. Monochromatic
aberrations of the human eye in a large population. J. Opt. Soc. Am. A, 18(8):1793—
1803, aug 2001. 32

R J Potton. Reciprocity in optics. Reports on Progress in Physics, 67(5):717-754,
2004. 26, 29

Ji Qi, Honghui He, Hui Ma, and Daniel S Elson. Extended polar decomposition
method of Mueller matrices for turbid media in reflection geometry. Opt. Lett.,
42(20):4048-4051, oct 2017. 65, 87, 123

Yunyi Qiu, Tao Jin, Erik Mason, and Melanie C W Campbell. Predicting thioflavin
fluorescence of retinal amyloid deposits associated with Alzheimer’s disease from
their polarimetric properties. Translational Vision Science € Technology, 9(2):47,
aug 2020. 3, 14, 24, 65

R Rawer, W Stork, and K-D Miiller-Glaser. Polarimetric methods for measurement of
intra ocular glucose concentration. Biomedizinische Technik/Biomedical Engineering,

47(s1a):186-188, 2002. 13

109



108

[109]

[110]

[111]

[112]

113]

[114]

[115]

[116]

[117]

[118]

Austin John Roorda. Double pass reflections in the human eye. PhD thesis, Univer-
sity of Waterloo, 1996. 3

D S Sabatke, M R Descour, E L Dereniak, W C Sweatt, S A Kemme, and G S
Phipps. Optimization of retardance for a complete Stokes polarimeter. Optics Letters,
25(11):802, jun 2000. 45, 55

Derek S Sabatke, Ann M Locke, Michael R Descour, William C Sweatt, John Phillips
Garcia, Eustace L Dereniak, Shanalyn A Kemme, and Gary S Phipps. Figures of

merit for complete Stokes polarimeter optimization. In Proc.SPIFE, volume 4133, nov
2000. 44, 46

Dusan Sarenac, Connor Kapahi, Andrew E Silva, David G Cory, Ivar Taminiau,
Benjamin Thompson, and Dmitry A Pushin. Direct discrimination of structured
light by humans. Proceedings of the National Academy of Sciences, 117(26):14682—
14687, 2020. 1

Sergey N Savenkov. Optimization and structuring of the instrument matrix for po-
larimetric measurements. Optical Engineering, 41(5):965, 2002. 38, 39

Sergey N Savenkov. Analysis of generalized polarimetric measurement equation. In
Joseph A Shaw and J Scott Tyo, editors, Polarization Science and Remote Sensing
111, volume 6682, pages 347 — 358. SPIE, 2007. 38, 39

David S Saxon. Tensor scattering matrix for the electromagnetic field. Physical
Review, 100(6):1771-1775, dec 1955. 26, 27

Alfred Schonhofer and Hans Georg Kuball. Symmetry properties of the Mueller
matrix. Chemical Physics, 115(2):159-167, 1987. 28, 29, 63

Zdenék Sekera. Scattering matrices and reciprocity relationships for various repre-
sentations of the state of polarization. Journal of the Optical Society of America,
56(12):1732, dec 1966. 27, 28

Colin J R Sheppard, Artemi Bendandi, Aymeric Le Gratiet, and Alberto Diaspro.
Polarization in reflectance imaging. J. Opt. Soc. Am. A, 37(3):491-500, mar 2020.
63, 64, 82

Colin J R Sheppard, Artemi Bendandi, Aymeric Le Gratiet, and Alberto Diaspro.
Eigenvalues of the coherency matrix for exact backscattering. Journal of the Optical
Society of America A, 36(9):1540, sep 2019. 30

110



[119]

[120]

[121]

[122]

[123]

[124]

[125]

126

[127]

[128]

Prashant Shukla and Asima Pradhan. Mueller decomposition images for cervical
tissue: Potential for discriminating normal and dysplastic states. Opt. Ezxpress,
17(3):1600-1609, feb 2009. 1, 23

Matthew H Smith. Optimization of a dual-rotating-retarder Mueller matrix po-
larimeter. Appl. Opt., 41(13):2488-2493, may 2002. 38

A Stanworth and E J Naylor. Polarized light studies of the cornea. Journal of
Ezperimental Biology, 30(2):160, jun 1953. 2

Homayoun Tabandeh and Morton F Goldberg. The Retina in Systemic Disease: A
Color Manual of Ophthalmoscopy. Thieme, 2009. 1

Hirokazu Takahashi, Tomomi Goto, Takuhei Shoji, Masaki Tanito, Masami Park,
and Etsuo Chihara. Diabetes-associated retinal nerve fiber damage evaluated with

scanning laser polarimetry. American Journal of Ophthalmology, 142(1):88 — 94,
2006. 2

Shelby E Temple, Juliette E McGregor, Camilla Miles, Laura Graham, Josie Miller,
Jordan Buck, Nicholas E Scott-Samuel, and Nicholas W Roberts. Perceiving po-
larization with the naked eye: characterization of human polarization sensitivity.
Proceedings of the Royal Society B: Biological Sciences, 282(1811):20150338, 2015. 1

K M Twietmeyer and R A Chipman. Optimization of Mueller matrix polarimeters
in the presence of error sources. Optics Ezpress, 16(15):11589, jul 2008. 4, 21, 22,
38, 39, 43, 44, 45, 51, 115, 116

K M Twietmeyer, R A Chipman, A E Elsner, Y Zhao, and D VanNasdale.
Mueller matrix retinal imager with optimized polarization conditions. Opt. Fxpress,
16(26):21339-21354, dec 2008. 3, 36, 49, 52, 96, 124

Karen Marie Twietmeyer. GDz-MM: An Imaging Mueller Matrixz Retinal Polarime-
ter. PhD thesis, University of Arizona, 2007. 15, 16, 36

J Scott Tyo. Considerations in polarimeter design. In David B Chenault, Michael J
Duggin, Walter G Egan, Dennis H Goldstein, Walter G Egan, and Michael J Duggin,
editors, Polarization Analysis, Measurement, and Remote Sensing III, volume 4133,
pages 65—74. International Society for Optics and Photonics, SPIE, 2000. 19, 22, 51,
55, 115

111



[129]

[130]

[131]

[132]

[133)]

[134]
[135]

[136]

[137]

[138]

[139]

[140]

J Scott Tyo. Extending optimization to active Mueller polarimeters. In Proc.SPIFE,
volume 4819, sep 2002. 38, 43, 51, 115

J. Scott Tyo, Zhipeng Wang, Sergio J. Johnson, and Brian G. Hoover. Design and
optimization of partial Mueller matrix polarimeters. Applied Optics, 49(12):2326—
2333, apr 2010. 4, 38, 39, 41, 46

H C van de Hulst. Light scattering by small particles. Dover books on physics. Dover,
New York, NY, 1981. 9, 27, 28, 30, 49

N Vansteenkiste, P Vignolo, and A Aspect. Optical reversibility theorems for polar-
ization: application to remote control of polarization. Journal of the Optical Society
of America A, 10(10):2240-2245, 1993. 29, 63, 66

Israel J Vaughn and Brian G Hoover. Noise reduction in a laser polarimeter based
on discrete waveplate rotations. Opt. Express, 16(3):2091-2108, feb 2008. 38, 55

Hermann von Helmholtz. Helmholtz’s treatise on physiological optics, 1927. 26

Talbot H Waterman and Kenneth W Horch. Mechanism of polarized light perception.
Science, 154(3748):467-475, 1966. 1

Robert H Webb, George W Hughes, and Francois C Delori. Confocal scanning laser
ophthalmoscope. Appl. Opt., 26(8):1492-1499, apr 1987. 31, 49, 124

Robert N Weinreb, Andreas W Dreher, Anne Coleman, Harry Quigley, Blake Shaw,
and Klaus Reiter. Histopathologic validation of Fourier-ellipsometry measurements
of retinal nerve fiber layer thickness. Archives of Ophthalmology, 108(4):557-560, apr
1990. 19

Justin E Wolfe and Russell A Chipman. Polarimetric characterization of liquid-
crystal-on-silicon panels. Appl. Opt., 45(8):1688-1703, mar 2006. 19, 63, 66, 91, 96,
123

J Zallat, Ainouz S, and M Ph Stoll. Optimal configurations for imaging polarimeters:
impact of image noise and systematic errors. Journal of Optics A: Pure and Applied
Optics, 8(9):807-814, jul 2006. 4, 22, 38, 39, 43, 44, 45, 46, 51, 55, 115

Linda M Zangwiil, Christopher Bowd, and Robert N Weinreb. Evaluating the optic
disc and retinal nerve fiber layer in glaucoma II: optical image analysis. Seminars in
Ophthalmology, 15(4):206-220, jan 2000. 2

112



[141]

[142]

[143]

Q Zhou. Retinal scanning laser polarimetry and methods to compensate for corneal
birefringence. Bulletin de la Societe belge d’ophtalmologie, (302):89-106, 2006. 62

Qienyuan Zhou, Jerry Reed, Ryan W Betts, Peter Karl Trost, Pak-Wai Lo, Charles
Wallace, Richard H Bienias, Guoqgiang Li, Ross Winnick, William A Papworth, and
Michael Sinai. Detection of glaucomatous retinal nerve fiber layer damage by scan-
ning laser polarimetry with variable corneal compensation. In Fabrice Manns, Per G
Soderberg, and Arthur Ho, editors, Ophthalmic Technologies XIII, volume 4951,
pages 32 — 41. SPIE, 2003. 2, 3, 13, 36, 62

Qienyuan Zhou and Robert N Weinreb. Individualized compensation of anterior
segment birefringence during scanning laser polarimetry. Investigative Ophthalmology
& Visual Science, 43(7):2221-2228, jul 2002. 2

113



APPENDICES

114



Appendix A

Kronecker Factorization of the
Measurement Matrix

Section 4.3 described how in order to optimize the PSG and PSA, it is necessary first to
write the measurement matrix W = W(4)) as a function of parameters 1) that describe
how the PSG and PSA can be modified. Subsection 4.4.1 defined a “p by ¢” polarimeter
design as one for which the PSG has ¢ unique states while the PSA has p different states,
and the irradiance is measured for all pg combinations of states [29, 81, , , ).
This greatly reduces the number of parameters that need to be optimized in W. Under
these conditions, the measurement matrix itself can be written as the Kronecker product

W=G"®A (A1)
where G and A are 4 X ¢ and p X 4 matrices respectively [125]. G depends only on the
PSG states, while A depends only on the PSA states [125]. Due to the properties of the
Kronecker product, the measurement equation 4.1 can be simplified into the form

I=AMG, (A.2)
where I is the irradiance vector I reshaped into a matrix of dimension p x ¢ [60]. This
expression is widely used and has several popular advantages over the more general equa-
tion 4.1 [29, 81, , , 139]. Tt can be shown that

R2(W) = £2(G) ra(A)  [127)] (A.3)

where ky(G) and ko(A) are obtained by using the singular values of G or A instead of
those of W in equation 4.15, and using df = 4. Similarly, using the properties of the
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Kronecker product and singular value decomposition [60]

§(W) =¢£(G)E(A). (A.4)

Therefore, minimizing the optimization metrics of G and A separately will give the same
results as minimizing the optimization metrics of W. This simplifies the optimization
process. Equation A.2 is fundamental to the eigenvalue calibration method [$5] as well as
a geometrical interpretation of optimization results [31, |. Despite how frequently this
form is used, it is still an assumption: for n measurements, the PSG and PSA could each
have n unique states, and then W may not be Kronecker factorizable. However, in the
case of the full polarimeter rotating QWP design with n = 16, the author has found that
optimizing all 2n = 32 angles separately using & gives the same result as optimizing while
assuming a four by four design.

Next, it was considered if similar simplifications could be found for the modified mea-
surement equation 4.7. To the best of the author’s knowledge, this analysis is novel. In
general, even if W is Kronecker factorizable (equation A.1), Wx; may not be. The Kro-
necker factorizability of Wg; would be guaranteed if the matrix z can be written in the
form z = E ® F where E and F are matrices of appropriate dimensions:

WR] = Wz
=(GT®AE®F) (A.5)
= (GTE)® (AF) [60].

This last equation would allow for the PSG and PSA to be optimized separately, and po-
tentially for the eigenvalue calibration method to be extended to RI MMs. However, it was
found that no such decomposition exists for any of the possible versions of z (even without
the requirement that z’z = I). Equation A.6 requires that E and F are multiplication
compatible with GT and A, which implies that they are of dimension 4 x r and 4 x s
respectively for whole numbers 7 and s. As well, recall that z is 16 x a and rank(z) = a
where a = 9,10 for nine and ten parameter RI MMs. The equation z = E ® F requires
that rs = a and rank(E)rank(F) = a [60]. The rank of a matrix cannot be larger than its
smallest dimension [(1], so additionally rank(E) < min{4,r} and rank(F) < min{4, s}.

For ten parameter RI MMs, it can be shown by exhaustion that there are no whole
numbers r and s that can simultaneously satisfy all of these restrictions. This means that
z is not Kronecker factorizable and W g; cannot be written as in equation A.6. For nine
parameter RI MMs, the restrictions can be satisfied if E and F are both 4 x 3. However, a
proof by contradiction was found that shows that z is still not Kronecker factorizable: take
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a known z with z7z = I. Every other possible version of z can be written as z’ = zC with
det(C) # 0. Suppose there exist 4 x 3 matrices E, F and C such that E® F =z’ = zC.
Then z'(E ® F) = C. This matrix was analyzed algebraically using MATLAB, using
twenty-four independent variables to represent the entries of E and F. It was found that
det(z’ (E® F)) = 0 for all 4 x 3 matrices E and F. Therefore C is singular, which is a
contradiction. This implies that no version of z is Kronecker factorizable!. As a result,
there is no analog to equation A.2 for RI MMs, and the PSG and PSA must be optimized
simultaneously.

The same arguments lead to the conclusion that no “p by ¢” polarimeter can possibly
measure RI MMs using the minimum number of measurements. For ten parameter RI MMs,
it can be shown that five by two and ten by one designs lead to an Wpg; of insufficient
rank, so it will not have an inverse. For nine parameter RI MMs, the only option is a three
by three design. In the previous paragraph, it was shown that det(z” (E ® F)) = 0 for all
4 x 3 matrices E and F. This implies that

det(Wg;) = det((G' @ A)z) (A7)
= det(z” (AT ® G)) (A.8)
=0 (A.9)

because for a three by three design, AT and G are both 4 x 3 matrices. Therefore, for any
three by three design W gy has no inverse and cannot be used to determine M.

While “p by ¢” designs are convenient options for full polarimeters because of the fact
that they allow the PSG and PSA to be optimized separately, it has been shown that this
feature does not extend to Wg;. As well, it has been shown that “p by ¢” designs cannot
determine RI MMs in the minimum number of measurements. Therefore, the designs found
in chapter 4 use different parameterizations of W ().

!Thanks to Dr. Ignacio Ojeda for an interesting correspondence that contributed to the development
of this proof by contradiction.
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Appendix B

Random Generation of Mueller
Matrices

At several points in this thesis, simulations have been performed using example MMs. The
results of these tests naturally depend on the properties of the example set. It was decided
to use randomly generated MMs in order to be able to easily adjust the distributions of
polarimetric properties of the set.

One method that has been used by Noble and Chipman [93] is to simply randomly
generate real 4 x 4 matrices and throw out those that are not valid MMs (the criterion
for a matrix to be a valid MM (also called a physical or physically realizable MM) can be
found in [12, 53]). The odds can be improved somewhat by setting M (1,1) = 1 and forcing
the other fifteen elements to be in the range [—1,1]. This method is computationally
costly: Noble and Chipman found that of a set of 10° matrices generated in this way,
only 76,336 were physical MMs [93]. The methods used in this thesis are based instead
on the idea of inverting one of the decompositions described in section 2.3.2. This can
be far less computationally expensive, and also allows one to control the distributions of
some polarimetric properties of the generated MMs. After these methods were developed,
Heinrich et al. published a paper that used randomly generated MMs produced by inverting
the Lu-Chipman decomposition, similar to what is done in Appendix B.1.
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B.1 Methodology for Section 5.4

In section 5.4, MMs were generated using a method based on the Lu-Chipman decompo-
sition

M:CMAPMRMD. (258)
Unit vectors with arbitrary orientation can be generated using

D = [2cos(2mx1)\/22(1 — @), 2sin(27my)\/22(1 — ), 220 — 17 (B.1)

where x; and 9 are random variables each taken from a uniform distribution over the
interval [0,1] [10]. A set of D generated in this way will be uniformly distributed over
the surface of the unit sphere [10]. The diattenuation magnitude D was also taken from a
uniform distribution over the interval [0,1]. The resulting diattenuation vector D = DD
was not uniformly distributed by volume, which would have required higher values of D to
be produced more often. It was considered to be preferable to have a uniformly distributed
diattenuation magnitude D. Mp can be calculated from D using equation 2.29.

The retardance fast axis R was generated the exact same way as D. The retardance
magnitude R was taken from a uniform distribution over [0, 7], after which Mg could be
calculated from R = RR using expressions found in [39].

In the depolarizer matrix

Map—| b O (2.59)

AP Parp map |’ '
Pap is a polarizance vector and so must have Pap < 1, while map must be symmetric
[83]. These constraints are not enough to guarantee that Map is physically realizable.
Therefore it will be necessary to throw out some of the MMs that are generated using this

method, keeping only those that are physical.

Because map is symmetric, it has an eigendecomposition of the form
—mZ &
map = mp iag(e, ez, €3) Mp,

where mp, is a real-valued matrix with mp, mf = Iy and det(mp,) = +1 [01]. mp,
is nothing other than a retarder matrix, so Ra and mpg, can be generated in exactly the
same way as R and mpg.

There is a subtlety related to the signs of the three eigenvalues (e, €2, €3). If M
has positive determinant, the polar decomposition always returns map having all positive
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eigenvalues [33]. However, there is a very small proportion of depolarizing MMs that
have negative determinant [39], which implies that one (or all three) of the eigenvalues of
mp p must be negative. Different authors suggest different procedures in this case [53, 83],
and it has been suggested that the Lu-Chipman decomposition should not be used at all
for negative determinant MMs [39]. While it would have been possible to generate these
MMs, it was unknown in what proportion to include them relative to positive determinant
MMs. Because of their rarity it was expected that they would have very little impact
on the averages that were reported in section 5.4. Therefore, only positive determinant
MMs were generated. The recent paper by Heinrich et al. [59] uses a similar approach to
generating MMs but includes those with negative determinant.

The orientation of the depolarizer-polarizance vector, Pap, was generated in the same
way as the diattenuation and retardance orientations. The only remaining parameters
necessary to determine the MM are ey, es, e3, and Pap. These were generated using

=y, i=1,2,3 (B.2)
Pap =y (B.3)

where vy, y2, y3, and y, are random variables each taken from a uniform distribution over
the interval [0, 1]. The extra parameter A > 0 was introduced as a convenient way to adjust
the average amount of depolarization in the generated matrices. Initially with A = 1, it
was found that depolarization power A (equation 2.45) tended to be very high for physical
MMs that were generated. Figure B.1 shows the histograms for A when two different
values of A were used. Based on these observations, A = 0.5 was used for the matrices
generated in section 5.4.

The resulting Map, Mg, and Mp were multiplied together to obtain the single pass
Mgp. The scalar constant ¢ would have had no impact on any of the results in section 5.4,
so it was set equal to one. A set of 2 x 10° Mgp were generated this way. Then, these
were checked using Cloude’s criterion [12, 53] and all unphysical matrices were discared.
This resulted in a set of ~ 35000 physical MMs, of which 30000 were selected at random.
These MMs had nearly uniformly distributed D and R, uniformly oriented D and R, and
A distributed as in the red curve in figure B.1.

Later in section 5.4, a second set was generated with the goal of showing behaviour for
a weakly diattenuating sample. The same procedure was used as above, except for that
the variables D and Px were uniformly distributed on the interval [0,0.2].
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Depolarization Power A

Figure B.1: Histograms of A for randomly generated MMs using two different values of
the parameter \.

B.2 Methodology for Section 4.4

The simulations described in section 4.4 required the random generation of both nine and
ten parameter RI MMs. Similar to how general MMs can be generated by inverting the Lu-
Chipman decomposition, this can be done by inverting the “double pass decomposition”
developed in section 5.3 and Appendix E. Using the results of those sections, it can be
shown that most RI MMs can be written in the form

M =X (MzMp)" BMzMp

where
1 0 0 O
10 b 0 0
B = 0 0 b 0|’
0 0 0 bs

with —1 < b; < 1 and X = diag(1, 1, —1, 1) as defined in section 3.2. A class of MMs
known as “type II” MMs [53, 95] cannot be decomposed this way, even if they are RI.
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However, these matrices are expected to be rare and therefore their omission should not
significantly effect the simulation results (see Appendix E).

The retarder and diattenuator MMs Mz and M p were generated in the same way as in
Appendix B.1. For ten parameter RI MMs, the three eigenvalues by, by, and b3 were each
selected independently from a uniform distribution on the interval [—1,1]. The resulting
matrix was not guaranteed to be a physical MM. Similar to in Appendix B.1, the coherency
matrix was calculated for every M and only physical MMs were kept. Out of the randomly
generated set of 10° matrices, 33434 were physical MMs. To keep a consistent number of
MMs between the nine parameter and ten parameter sets, 30000 of these were chosen at
random. Finally, each MM was multiplied by the scalar factor

1
M(1,1) (1++/M(1,2)2 + M(1,3)2 + M(1,4)?)

This re-scaling guarantees that for an input Stokes vector having s;n o = 1/2, the output
irradiance sopro < 1/2 [53].

(B.4)

Nine parameter RI MMs must also obey the trace condition 3.14. Using the matrix
G = diag(1, —1, —1, —1), the trace condition is equivalent to
0 — Ml,l — M272 + M3’3 - M4,4 (B5)
= trace(G X M)
= trace(G X X (MzMp)" BMzM)p)
= trace(Mr BMz Mp G M7})
= (1 — D?*)trace(BMp G M%)
= (1 — D*)trace(BG) =
Ozl—bl—bg—bg (B6)
where the identities Mp G M%, = (1—D?)G and Mz G M% = G follow from the definitions
of Mp (equation 2.29) and Mg (equation 2.37), and the cyclical property of the trace has
been used several times. To guarantee that expression B.6 was fulfilled, first three random

variables 0}, b, and b} were each selected independently from a uniform distribution on
the interval [—1,1]. Then the true eigenvalues were given by

1 —b) — by — b
3

for ¢ = 1,2,3 which guarantees that they satisfy 1 — b; — by — b3 = 0. Unphysical resul-

tant matrices were dropped, and the matrices were re-scaled, in the same way as for ten

parameter RI MMs. Out of 10° generated matrices, 74 950 were physical, but 30 000 were
randomly selected for use in the simulations of section 4.5.

(B.7)
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Appendix C

Reflections and Coordinate Systems

In sections 5.2 and 5.4, the Lu-Chipman decomposition was applied to the double pass ma-
trix M pp after a change of coordinates. This appendix explains and justifies the coordinate
system convention used.

In general, a MM depends on the coordinate systems that are used for both the input
and output waves. Suppose a wave enters the eye while travelling in the direction n while
the (detected) wave exits in the opposite direction —n. In order to maintain right-handed
coordinate systems for both, if the input Jones and Stokes vectors are defined with respect
to the coordinates (tAl, tAz), the output vectors can be defined relative to ({17 -tAz). This
was the choice made during chapter 3, and it underlies both the definition of reciprocal
invariance (equation 3.14 and 3.13) and the double pass model (equation 3.16). Let the
MM with respect to these coordinates be written M.

While this convention was convenient during chapter 3, several authors suggest using
the same coordinate system (ti, t) for both the input and output waves [24, 78, ].
It can be shown that changing the coordinates of the output beam from (ty, -t3) to (tq,
t2) is equivalent to left multiplying the MM by the mirror matrix Y = diag(1, 1, —1, —1)

[78, 105, 138].

Therefore, the new MM! in these coordinates is
M=YM. (5.1)

M can be calculated in one of two ways. If the PSA is defined relative to the (ti, -
t2) coordinates, then M will be measured directly (this is the assumption in chapter 4).

IThe results of this section are applicable to any reflection MM, not just double pass matrices. There-
fore, the subscript DP is dropped.
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Note however that the beam path might include several mirrors or beamsplitters before
reaching the PSA (e.g. [33, 120, 130]), so the effects of each of these must be accounted
for to ensure the correct coordinate system is used. Then M can be calculated using
equation 5.1. Alternatively, expression 2.46 for an individual irradiance measurement can
be written as

Ii =cacg[1000] Mpga; MMpge; [1000]"
=cacg[1000]Mpsa; (YY)MMpse; [1000]"
=cacg[1000] (YMpsa;Y)MMpsa,;[1000]7,

because YY =T and [1000] = [1000]Y. YMpga,Y is the PSA expressed in the (ti,
tAz) coordinates. By examining the product YMpg4,;Y, it can be shown that if a PSA
component is represented by an azimuthal angle 6§ measured relative to (tAl, —t;)), it
must be replaced by —6. Additionally, if the PSA contains any components with circular
retardance or diattenuation, the sign of these must be inverted due to (tAl, tg, —11) being

left handed. If the PSA is represented in this way, then M is measured directly instead of
M.

When analyzed using the Lu-Chipman decomposition, M and M have different polari-
metric properties. This begs the question of which set of properties to use. It will be shown
that the polarimetric properties of M behave in an inconsistent way under rotations of the
coordinates (ty, tz). For an ordinary transmission measurement (both input and output
waves defined relative to the same coordinates (t1, t3)), a rotation of (ty, t2) by angle @
about n transforms the MM Mr,,, according to

MTra,Rot = R(9>T MTra R(e) [ ] (Cl)
where
1 0 0 0
| 0 cos20 —sin20 0
R(0) = 0 sin20 cos26 0 [39)-
0 0 0 1

It can be shown that My, rt and Mr,, have identical linear and circular diattenuation
(equation 2.29), linear and circular retardance (equation 2.38), and depolarization power
(equation 2.45). However, for the reflection matrix M, the input and output coordinates
are not the same and so C.1 is not the correct transformation. Instead, a rotation of ({1’
t2) has the effect

M, = R(6) MR(6) [30]. (C.2)
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The polarimetric properties mentioned above are not invariant upon transformation C.2. If
the Lu-Chipman decomposition is used to interpret M, quantities such as linear retardance
will change with a rotation of the coordinate axes (ty, tz). This problem is alleviated by
analyzing M instead of M:

M, = R(O)MR(F) =
(Y M;or) = (YR(O)Y) (YM)R(0) —
M, = R(0)" MR(0)
which is the same transformation as equation C.1. Therefore, the aforementioned polari-

metric properties of M are invariant with a coordinate system rotation. This justifies why
the Lu-Chipman decomposition was applied to M pp instead of M pp throughout chapter 5.
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Appendix D

Derivation of All Possible Single Pass
Mueller Matrices For
Non-depolarizing Double Pass
Mueller Matrices

In subsection 5.2.2; the relationship between the single and double pass properties of non-
depolarizing MMs was considered. Applying the Lu-Chipman decomposition to both,

CDPMR,DPMD,DP:C2QMgM£QMRMD- (512)

Assuming that cpp, Mg pp, and Mp pp are known, this Appendix will derive all possible
Mgp. Using equations for the MMs of retarders and diattenuators (2.37 and 2.29), the left
and right side of equation 5.12 are expanded as

—_— Cpp 1 DT
Myp = —— Dp 5.13
br—1 + Dpp [ mpgppDpp mpgppmp pp ] (5.13)
c? 1—|—DquD DT+DqumD
_ T . 7 (5.14)
(1+D)2 | gD+qmpm,D gDD" +qmj;m,mp

m, = mj qmpg. (5.15)

In subsection 5.2.2, the eigenvector of m, given by v = m%|[0, 0, 1]7 was defined.
Two cases were considered: first if D is parallel (or antiparallel) to v, and second if D is
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perpendicular to v. Assuming D is perpendicular to v, it was shown that it must have the
uniquely determined value

1—+/1-D?
D, = DPDpp. (5.23)

! Dpp

Continuing with this assumption, it was shown how to calculate the principal single pass
MM

M, = ¢, Mg, Mp,

which obeys Mpp = QMgQMp and has the property that D, 1 v, where v, =
mﬁp [0, 0, 1]%.

Suppose there is a second single pass matrix Mgp which gives the same double pass
MM as M,,. Then,

QM, QM, = QM QMsp —
M} QM, = M{,QMsp =
Q=M)"MQMsppM,' =
I=QM};QM, (D.1)
My = Mgp M, (D.2)

It has been assumed that M, is invertible, which is the true as long as Dg % 1. The Df) =1
case will be treated later. Products and inverses of non-depolarizing MMs are always non-
depolarizing MMs [53], therefore M4 is a non-depolarizing MM. Equation D.1 shows that
M 4 must “cancel out” in double pass. Therefore, using equation D.2 and assuming Dg #1,
all possible Mgp can be obtained by left multiplying M, by a non-depolarizing MM that
cancels out in double pass:

Mgp = M4 M,. (D.3)

Next, it is necessary to find every M, that obeys equation D.1. Because it is non-
depolarizing, M4 = ¢4 Mg, Mp, using the Lu-Chipman decomposition. Define m,, =
m}, qmpg, and v4 =m}, [0, 0, 1]" where mp, is the lower right 3 x 3 submatrix of Mg,,.
Any 3D vector D4 can be written as the sum of components parallel and perpendicular to
va: Dy = Dy + D,. This implies that m,,D = —Dy, m,,D, = D/, and DWDL = 0.
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Writing for convenience F = Q M’ Q M4, equation 5.14 becomes

F(1,1) = ¢ 1+ D% — D? D.4
ROy - o
F(1,2:4) = ! (DY + D + (DT - D )mp,) (D.5)

(1+ /D% + Dj)?
F(2:4,1) =qF(1,2:4)"

2
€A
(1+ /D% + Dj)?

Using the definition of a diattenuator matrix (equation 2.29), mp, is given by

mp, = /1 — D3I+ a D, D}
1—+/1-D?

D}

F(2:4,2:4)=

(q(Dy +Dy)(D] +Dj)+qmp, my, mp,). (D.6)

ap =

Equation D.1 requires that F = [. Starting with equation D.5, this implies that
0=DT +Dj + (D] —D{)mp,

:D{+D|’—|”+(D{—D|’{),/1—D§1+aA(Di—Dﬁ)(D{+D{)
= bLDT_ + b||Dﬁ (D.7)

by =(1+4/1— D% +aa (D] - Dj))

b”E(l— 1—D124—|—CLA(D3_—Dﬁ)).

D, and Dy are by definition perpendicular, so equation D.7 implies both b DT =0
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and by D| = 0. Assume Dj # 0. Then
0= b”Dﬁﬂ —

0=b
:1—«/1—D§,+1_— Vl_Dzl(D?_D?)
D? + D Lo
A -VIZDY)
D}
0=D?

because D” ;é 0 — D124 # 0 = (1 — \/1 — D?A) # 0. If on the other hand DH - 0,

1—J1I=-D?
by =144/1—-D2 + — YL (D?)

DI
=20
b, D' =0 =
D, =0.
Therefore, in all cases D, = 0. Next, using equation D.4
2
ot =
P 1)
1—|Dy|

Lastly, with some algebra equation D.6 reduces to

2
S - 2 / 2 2 T

=qmg,
= qmp, qmg,. (D.8)
The expression in large brackets vanishes, so the result is independent of D,4. Subsec-

tion 5.2.1 shows that equation D.8 can only be satisfied if mp, is a circular retarder or
half wave linear retarder. For all such matrices,

va=myg, [0,0,1]"
= ng/HLR [0, 0, 1"
= [0, 0, £1]".
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D4 = Dy must be parallel or antiparallel to v4, so in all cases D4 = [0, 0, Di]" for
—1 < D¢ < 1. Collecting these results, it follows that

1+1|D
M, = L+ |Del Mcr/nrr Mep(De)
1—|Dg|
and finally
1+ D¢
Mgp = ﬁ Mecr/aLr Mep(Dg) M, (D.9)
— e

for all possible single pass MMs Mgp.
It was assumed above that Dg # 1. If D, =1, then it follows from equation 5.20 that

2

D =— D, =D,.
DpP 1+D]2) p P

Then using equations 5.13 and 5.14 while writing D = D+ D as the sum of components
parallel and perpendicular to v, it can be shown that D = Dpp = D,. Therefore, the
principal diattenuation vector D, is the only possible diattenuation vector.
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Appendix E

Symmetric Decomposition of
Reciprocal Invariant MMs

As discussed in 2.3.2, the decomposition of a MM into additive or multiplicative factors
is a tool designed to aid in the physical interpretation of that MM. One multiplicative
decomposition other than that due to Lu and Chipman [33] is known as the symmetric
decomposition, and expresses a given MM in the form

M = MD2 MR2 MAI/II MRI MDI

where Mp, for i = 1,2 represent diattenuator matrices, Mpg; represent retarder matrices,
and M represents a depolarizer matrix that may have one of two different forms [53, 95].
It was attempted to use the symmetric decomposition as a starting point to obtain a
“double pass decomposition” of the form

M = (XML, X)Y Mgp (E.1)
Msp = Ma MrMp,

which interprets M in view of the double pass model described in section 3.3.

Take M to be a RI MM satisfying M = X M? X (it may also obey the trace con-
dition 3.14, but this is not necessary for any of the following results). The first step of
the regular symmetric decomposition algorithm is to find the two diattenuation vectors
belonging to Mp; and Mpy by solving

(MT GM G)sp; = a’*sp, (£2)
(MG M G)spy = a’*spsy
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where G = diag(1, —1, —1, —1), sp; = (1, Di)”, Di are the two diattenuation vectors,
and a? is the largest shared eigenvalue between MT GM G and M G M?” G [53]. Using
the double pass restriction, it follows that

(M" G M G)sp; = a’sp,
(XMXGMX?G)sp; = a’sp
(XMGXMXG X)sp;, = a’sp
(MGM” G)(Xsp;) =a*(Xsp1)

Ll

and so spy = X sp;. Using the expressions 2.29 to construct Mp; from the diattenuation
vectors Di, it can be shown that they must obey Mpy, = XMng. That is, Mps is
nothing other than the direction reversed version of Mp,. If M GM G = I, then the
MM is nondepolarizing [53] and Di are not uniquely defined. In this instance, every single
pass MM can be calculated as described in section 5.2.2 must be used instead. For the
moment, it will also be assumed that MT GM G # 0 and |D1]| # 1. Note that |D1| # 1
implies that |D2| = [x D1| # 1, and also that M ps and Mp; are both invertible.

Once the two diattenuator matrices are known, one can compute M’ = M, MM} =
Mps M Mpg,. M’ will always have the form

1 oF
0 m’

M’ = M, [

M 5 mmamn | (E£3)

0 mpympamp

where m’, mp;, and mp are each the 3 x 3 submatrices of the corresponding full matrices
M’, Mpg;, and M. In the original symmetric decomposition, the singular value decompo-
sition of M’ is used in order to determine Mp; and Ma [53]. However, in order to obtain
the desired form E.1, a modification is necessary. First, using the reciprocal invariance
restriction 3.13,
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M=XM'X =
Mp,M' Mp, = XML MTME, X —
Mp,M'Mp, = XML, XPMTX2ME, X —
MpoM' Mp, = Mp XMTXMp;, =
M=XM"X =
(XM) =(XM)T —

(xm') = (xm’)”.

Because x m’ is a real symmetric matrix, it must have an eigen decomposition of the form
xm’ = U” AU where U is a real orthogonal matrix and A is a real diagonal matrix [60].
Manipulating this expression by using the fact that x? =1,

xm' =U'x*?AU =
m' = (xU"x)(xA)U. (E.4)

The eigen decomposition of a matrix is not fully unique however. Assuming there are
three unique, nonzero eigenvalues, then one can obtain a new decomposition by either:
multiplying any of the rows of U by -1, or by permuting the rows of U while at the same
time permuting the diagonal entries of A in the same way. This is the same ambiguity
that exists in the original symmetric decomposition [53]. There are 23 = 8 possible sign
combinations and six possible permutations, resulting in forty-eight different (U, A) pairs.
Comparing equations E.3 and E.4, it would be favorable to take mg; = U and mpy =
x U7 x. Recall that a retarder mp must be a proper rotation matrix, that is, it must have
mprpm% = T and det(mp) = +1. U has the first property, but can have det(U) = +1.
Each of the transformations of U (i.e. swapping two rows or inverting the sign of a row)
also switches the sign of det(U), so it follows that twenty-four of the forty-eight possible
(U, A) pairs have det(U) = +1.

Equation E.3 also suggests taking x A = ma. However, to make the final decomposition
correspond more closely to the double pass model E.1, take

ap 0 0
xA=x| 0 a O
0 0 as

=Mag, XZMAg,
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where

[ |CL1| 0 0
B 0 0 |CL3|
[ sign(a) 0 0
zZ = 0 sign(as) 0 . (E.6)
0 0 sign(as)

This is not the same z as was introduced in chapter 4. Note that because it is diagonal,

<
>
3

I

N
Il
—
=}
!
| IS |

Putting all of this together,

M = Mps Mgz Ma Mg Mp:
= XM}, XXMp XXML,  XXZMa,, Mz Mp,
= XM, X (XZ)Msp
Mgsp = Mag, Mpri Mp;.

This expression matches the double pass model E.1 except for the replacement of Y
with X Z. The implications of this replacement are considered in section 5.2.3.

The original symmetric decomposition algorithm [53], applied to a RI MM, would
naturally have obtained D2 = x D1. However, prior knowledge of this identity allows one
to significantly simplify the algorithm. The original would in general not have obtained
retarders obeying Mgy = X M, X. This is due to the fact that it used the singular value
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decomposition of m’, while the new method uses the eigen decomposition of x m’ instead.
Singular values are always positive, while eigenvalues can be negative. The sign differences
between the two result in sign differences between the retarders Mpg; that are obtained by
each method.

There are a few edge cases that should be considered. If M' GM G = 0 (and M # 0),
it follows that |D1| = |D2| = 1 [53]. M must be non-depolarizing, and can be handled
using the method of section 5.2.2. It is also possible that |[D1| = |D2| = 1 and yet
MTGMG # 0. In this case, M is known as a “type II” MM, while MMs that do not
have this property are “type I”. Type II MMs can still be decomposed in the form

M = Mparr Mrz Marr Mg Mpis
where the central depolarizer now has the peculiar form

ag+a —a 0 O

- a a—a 0 0
Marr= 0 0 ay O
0 0 0 as

(0<ay<ag, 0<a) [53]

The diattenuation vectors (D1II, D2IT) are not equal to the vectors (D1, D2) which were
obtained by solving E.2. Instead, a different, more complicated algorithm is necessary
to find each diattenuation, retardance, and depolarization matrix [53]. Moreover, Ma;;
can never be RI because of the requirement that ¢ > 0. Suppose one was able to find
a way of modifying this process for a RI M in order to obtain a decomposition with
Mporr = XME,;; X and Mgy, = X M%, X as was done above for type I MMs. Then

M=X M;Fgln Mﬁl XMarrMgriMpirr =
Marr = X (Mg MDHI)A)T XM (Mg, 1VID111)71

which implies

XML X =X (Mg Mpir) )" M" X (Mg Mpyrr) ' XX
=X ((Mpg; MDIII)_I)T XMXX (Mg 1\/11711'1)_1
= Marr

using the fact that M? = X M X because M is RI. However, this implies that Ma;; is RI,
which is impossible. Therefore, it must not be possible to decompose a type II matrix in
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such a way that Mpo;;r = XME, ;X and Mg, = X ME, X. Therefore type IT RT MMs
are incompatible with the double pass model.

It is possible for a RI MM to be type II; for example,

[ ag+a —a 0 0
_ —a —a+a 0 0
M= 0 0 —ay 0
0 0 0 a
(0<(12§CLO, 0<CL)
1 0 0 0
0 -1 0 0
“lo o —1 o |Man
0 0 0 1

which obeys 3.13 and 3.14 if ay = a9, is physical due to being the product of physical
MMs, and also is type II. However, type I MMs appear to be rare, occurring only in the
happenstance that |D1] is exactly equal to one. Because of this, it was postulated that they
are an edge case of limited practical importance. This idea was further validated by the
simulations that were performed in section 5.4, in which no type II MMs were encountered.

Finally, if any of the eigenvalues of x m’ are equal to zero, or if any two are equal to one
another, then there are many more possible U (and therefore many possible mpg;). The
twenty-four solutions that are found by the algorithm described above will still be valid.

Assume that M avoids all of these edge cases and also has the property that Z has
exactly one negative element (it is believed on account of section 5.4 that this will be true
for most if not all double pass MMs). Then, the double pass decomposition algorithm
would proceed as follows: first, calculate the largest eigenvalue and associated eigenvector
sp1 of MY G M G. This can be done in Matlab using the eig function. D1 is equal to the
last three elements of sp;. Then use equation 2.29 to calculate M p;, which can be used
to calculate

M =XMp XMM,!.

The eigenvalue decomposition of M’ (which can again be performed using eig) gives U
and A. If it is found that Z (and therefore A) has one negative element, rearrange the
entries of A such that it has the general form diag(+,+, —). Rearrange the rows of U
in exactly the same way. Finally, if U has negative determinant, multiply any one row
of U by minus one. The depolarization matrix Magp can be calculated using E.5, while
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the retardance matrix is determined by mpg; = U. The full single pass MM is given by
Msp = Masp Mg Mp;.

This gives only one out of the eight possible values of Mgp. Section 5.2.3 discusses how
the polarimetric properties of these eight are related.
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