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Abstract 

This thesis focuses the challenges and opportunities that come with deep learning in the 

extraction of 3D information from point clouds. To achieve this, 3D information such as point-

based or object-based attributes needs to be extracted from highly-accurate and information-

rich 3D data, which are commonly collected by LiDAR or RGB-D cameras from real-world 

environments. Driven by the breakthroughs brought by deep learning techniques and the 

accessibility of reliable 3D datasets, 3D deep learning frameworks have been investigated with 

a string of empirical successes. However, two main challenges lead to the complexity of deep 

learning based per-point labeling and object detection in real scenes. First, the variation of 

sensing conditions and unconstrained environments result in unevenly distributed point clouds 

with various geometric patterns and incomplete shapes. Second, the irregular data format and 

the requirements for both accurate and efficient algorithm pose problems for deep learning 

models.  

To deal with the above two challenges, this doctoral dissertation mainly considers the 

following four features when constructing 3D deep models for point-based or object-based 

information extraction: (1) the exploration of geometric correlations between local points when 

defining convolution kernels, (2) the hierarchical local and global feature learning within an 

end-to-end trainable framework, (3) the relation feature learning from nearby objects, and (4) 

2D image leveraging for 3D object detection from point clouds. Correspondingly, this PhD 

thesis proposes a set of deep learning frameworks to deal with the 3D information extraction 

specific for scene segmentation and object detection from indoor and outdoor point clouds. 

Firstly, an end-to-end geometric graph convolution architecture on the graph representation 

of a point cloud is proposed for semantic scene segmentation. Secondly, a 3D proposal-based 

object detection framework is constructed to extract the geometric information of objects and 

relation features among proposals for bounding box reasoning. Thirdly, a 2D-driven approach 

is proposed to detect 3D objects from point clouds in indoor and outdoor scenes. Both semantic 

features from 2D images and the context information in 3D space are explicitly exploited to 

enhance the 3D detection performance. Qualitative and quantitative experiments compared 
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with existing state-of-the-art models on indoor and outdoor datasets demonstrate the 

effectiveness of the proposed frameworks. A list of remaining challenges and future research 

issues that help to advance the development of deep learning approaches for the extraction of 

3D information from point clouds are addressed in the end of this thesis. 
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Chapter 1 

Introduction 

This chapter introduces the background and motivation of the use of deep learning for 

extraction of 3D information from point clouds and the organization of this thesis. Sections 1.1 

introduces the background and challenges of extraction of 3D information from point clouds. 

Section 1.2 describes the motivation of the deep learning based 3D information extraction 

frameworks specific for semantic segmentation and object detection. Section 1.3 presents the 

objective of this study. The overall structure of this thesis is described in Section 1.4.  

1.1 Background 

Nowadays, the development of 3D remote-sensing technology facilitates the collection of 

indoor and outdoor 3D data in a faster, safer way with high accuracy, which significantly 

upgrades the results of perception, modeling, and survey for road infrastructures and indoor 

environments (Li et al., 2016). These applications can be concluded in two main aspects: (1) 

real-time environment perception and processing for scene understanding and object detection 

(Yang et al., 2018); (2) high-definition (HD) map and urban model generation and construction 

for reliable localization and referencing (Levinson et al., 2011). To provide accurate products 

or outputs for these applications, efficient and effective 3D information extraction is of great 

importance.  

3D information can be extracted from images (Li et al., 2019) or point clouds (Li, 2017). 

Although images captured by digital camera can provide color, texture, and semantic 

information for objects with low cost and high efficiency, they lack 3D geo-referenced 

information (Ma et al., 2018). In addition, the presence of partial or fully distortion, occlusion, 

and truncation in images affect the 3D information extraction performance. A Point cloud, with 

3D topological and geo-referenced information, is a set of data points in space and it can 

provide more accurate 3D pose and position information for objects. Each point has its set of 

X, Y and Z coordinates. Compared with image-derived height data, point cloud data have fewer 
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occlusion and truncation problems. Thus, our study focusses on 3D information extraction 

from point clouds. 

Point cloud data are commonly acquired by either a laser scanner or an RGB-D depth 

camera. Normally one or two laser scanners are mounted on a car or a van together with an 

integrated GNSS/IMU (Global Navigation Satellite System and Initial Measuring Unit), a POS 

(position and orientation system) subsystem, optical cameras, and a distance measurement 

indicator (DMI) device to form a so-called mobile laser scanning (MLS) system or a mobile 

LiDAR system (Ma et al., 2018). Such an MLS system has been used to collect 3D point clouds 

covering large-scale complex roadway environments (Guan et al., 2016; Ma et al., 2018). 

Because the GNSS signals are not available in most indoor or underground areas, named 

GNSS-denied environments, the approach to simultaneous localization and mapping (SLAM) 

has been developed for indoor mapping (Dissanayake et al., 2001).  

The RGB-D camera can be used to capture both a colored (RGB) image and perform a 

depth (D) measurement. RGB-D data can be lifted to point clouds within the known camera 

matrix and depth information (Qi et al., 2018). Compared with MLS, the RGB-D camera is 

easier to operate and has lower cost. However, it is sensitive to illumination change, occlusion, 

and truncation, and not suitable for long distance sensing. Thus, the RGB-D camera is 

commonly applied in short-distance 3D sensing such as indoor environment scanning.  

To provide highly-accurate and geo-referenced data for 3D information extraction in 

different scenarios, MLS system usually scans the road continually for dozens or even 

hundreds of kilometers (Geiger et al., 2013), while RGB-D camera scans hundreds of rooms 

in indoor buildings (Song et al., 2015). Consequently, large-scale 3D point clouds can be 

produced. 

However, how to process the massive inhomogeneous and unstructured point clouds is 

critical to 3D information extraction. The variation of ranging and imaging conditions and the 

complexity of environments result in significant variations for objects in point cloud data. 

Thus, there are several challenges when processing point cloud data: 
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 Diversified point density and reflective intensity. Due to the scanning mode of laser 

scanners, the density and intensity for objects vary considerably. The distribution of 

these two characteristics highly depends on the distance between objects and laser 

scanners (Wang et al., 2015; Hackel et al., 2017; Wen et al., 2019). For example, 

objects that are far away from the sensors have low point density, but objects that are  

close to the sensors have high point density. Besides, the ability of scanning sensors, 

the time constraints of scanning, and the needed resolutions also affect the point cloud 

distribution and intensity. 

 Incompleteness. Objects that are represented by point clouds are commonly 

incomplete (Tagliasacchi et al., 2009). This mainly results from the occlusion caused 

by objects (Guan and Neumann, 2016), the cluttered background in urban scenes 

(Wang et al., 2015; Kumar et al., 2019), and the unsatisfactory material surface 

reflectivity. Such problems are severe in real-time capturing of moving objects, which 

result in large gaping holes and severe under-sampling. 

Therefore, there is an urgent need to develop intelligent algorithms and methods for 

extracting the target-based 3D geometric information from point clouds. Besides, data 

representation for point clouds and algorithm requirements for both accuracy and efficiency 

should also be considered when processing point clouds. Commonly, the performance of these 

models is measured by the accuracy, precision, recall, etc. The training time or inference time 

within the same experimental settings, the memory usage, and the model size are referenced 

as the efficiency evaluation metrics.  

Thus, the overriding research question of this thesis is: what is the best way to infer 

information from a large amount of 3D point clouds? Traditionally, to extract accurate 3D 

information, the collected point clouds are processed step-by-step to acquire the desired target 

information (Guan et al., 2018). Commonly, the foreground points are segmented first from 

the raw input points to reduce the noise and background disturbance (Yu et al., 2015). Then, 

clustering methods are applied to cluster the foreground points into different individual parts. 

Finally, the point or object based information are extracted from these clusters (Yu et al., 2016), 
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e.g., semantic class, bounding box size, orientation, and geometric shape. Although these 

traditional methods have been applied in many cases, they suffer the following two 

disadvantages: 

 Low generalization. Hand-designed features are commonly proposed for a target task, 

which cannot quantitatively generalize well to other tasks (Zhong, 2019). 

 Semi-automatic: These type of methods extract the target information with several 

steps, e.g., feature design, manual parameter selection, and coarse-to-fine clustering. 

Such semi-automatic operation cannot meet the requirement for real-time perception 

and localization.  

 In recent years, deep learning methods utilize multiple layers to progressively learn high-

level features from the input data. With the advancement of hardware techniques such as faster 

Graphics Processing Units (GPUs), faster network connectivity, and the appearance of reliable 

public 3D datasets, deep learning methods applied to 3D scene segmentation, object detection 

and classification have emerged and achieved noticeable increased performances in accuracy 

and efficiency (Qi et al., 2017; Li et al., 2018; Zhang and Zhang, 2018). One reason is that the 

feature design is omitted and not required, which relieves more chance for model itself to fully 

exploit all potential features. In addition, the multi-task training for different applications can 

be achieved simultaneously with multi-layer neural networks (Liang et al., 2019).  

Consequently, the objective of this thesis is to design a set of deep learning frameworks to 

extract 3D information from massive and irregular point clouds in different scenes and achieve 

better results in accuracy and efficiency compared with state-of-the-art 3D deep models (Qi et 

al., 2017; Li et al., 2018; Zhang and Zhang, 2018; Benshabat et al., 2018; Shi et al., 2019; 

Wang et al., 2019) in several cases. 

1.2 Motivation  

2D convolutional neural networks (CNNs)  have been developed rapidly in recent years 

for the discriminate feature learning and high generalization capability (Lecun et al., 2015). 

Specifically, CNN is a type of neural networks that apply the convolution, a mathematical 
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operation, in place of general matrix multiplication in at least one of neural layers. However, 

the irregular and unstructured data format of point clouds poses a great challenge for traditional 

2D CNN models. Conventionally, these models are mainly applied to data with a regular 

structure, such as the 2D pixel array (Long et al., 2015). Thus, in order to apply CNNs to 

irregular 3D point cloud data, Multi-view CNN (MVCNN) (Su et al., 2015) is proposed as the 

pioneer in exploiting 2D deep models to learn 3D information. Multiple views of interest 

objects or scenes are captured from different orientations and then input to 2D CNNs for object 

class prediction. MVCNN-MultiRes (Qi et al., 2016), RotationNet (Kanezaki et al., 2018), and 

3D Multi-View (3DMV) (Dai and Niesner, 2018) further improve the 3D information 

extraction performance by considering multiple resolution features and oriented-view cues. 

View-based 3D models can exploit established 2D deep architectures and datasets, however, 

the projection from 3D space to 2D views can lose some geometrically-related spatial 

information in 3D space. 

To explore the 3D geometric attributes of point clouds, 3D ShapeNet (Wu et al., 2015) is 

proposed to apply CNNs to volumetric data, where point clouds are divided into regular grids 

with certain size to describe the distribution of data in 3D space. A more advanced voxel-based 

data representation of a point cloud is the octree-based grids (Riegler et al., 2017; Tatarchenko 

et al., 2017), which use adaptive size to divide the 3D point cloud into cubes. However, the 

computation cost increases cubically with the increment of input data size or resolution, which 

limit the model’s performance in large-scale or dense point clouds.  

Voxel grids and view images are Euclidean-structured data which are suitable for using 

traditional 2D convolutional operation to extract distinctive spatial features such as edges and 

key-points (Li et al., 2020). But they are constrained by the local receptive fields as they scan 

the space with fixed strides. Besides, the original geospatial information in 3D space cannot 

be well-kept during point cloud projection or voxelization. For example, the depth information 

along Z axes will be lost when transforming point clouds from 3D scene to (x, y) in 2D image 

dimension. 
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Although point clouds can preserve the original 3D geospatial information in 3D scenes, 

the unstructured and irregular data format limits the application of conventional 2D CNNs. 

After Qi et al. (2017) proposed the first point cloud based deep model (PointNet), which takes 

the point clouds directly as input, many deep learning models are later designed on this basis 

to extract the geospatial structure features of a point cloud, such as PointNet++ (Qi et al., 2017) 

and  PointCNN (Shi et al., 2019). These methods facilitate the development of deep learning 

in 3D geospatial information extraction tasks with robust and efficient performances. 

Graphs as a type of non-Euclidean data structure can also be used to represent point cloud 

data. Each graph node corresponds to a point and the edges represent the relationship between 

each point neighbours (Yi et al., 2017; Simonovsky and Komodakis, 2017). Those graph CNNs 

define convolutions directly on the graph in the spectral and non-spectral (spatial) domain, 

operating on groups of spatially close neighbours (Benshabat et al., 2018; Wang et al., 2019; 

Wang et al., 2019). The advantage of graph-based models is that the geometric relationships 

among points and their neighbours are exploited. Thus, spatially-local correlation features are 

extracted from the grouped edge relationships. Figure 1.1 introduces the chronological 

overview of 3D deep learning networks since 2015 and four data representation examples of 

point cloud data. Multi-view and voxel representations are firstly developed in 2015. With the 

publication of PointNet (Qi et al., 2017) and ECC (Simonovsky and Komodakis, 2017) in 

2017, point-based and graph-based representations are then explored in 3D information 

extraction. 

Although the multi-view and voxel grid data formats can leverage existing mature 2D 

CNNs, point cloud and graph representation of a point cloud can preserve the raw 3D 

geospatial information in 3D space and the internal local structure of objects. Thus, this thesis 

mainly focuses on the point cloud and graph representation of point cloud data when 

developing deep learning models for 3D information extraction.  
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Figure 1.1: Chronological overview of 3D deep learning networks. 

The information extracted from point clouds can be classified as point-based and object-

based information. The related tasks of such information can be roughly divided into three 

types: 3D point cloud segmentation (Armeni and Zamir, 2016), 3D object detection (Luo et 

al., 2019), and 3D object classification (Gao et al., 2018). Scene segmentation focuses on the 

per-point label prediction, while detection and classification concentrate on integrated point 

set or object points labeling. The semantic information for each point can attribute to 

foreground point extraction in object detection and classification. For object detection, the 

classification module is generally enrolled to predict the detected object semantic label. Thus, 

in this thesis, point-based semantic segmentation and object-based detection tasks are 

performed to extract 3D information in indoor and outdoor scenes. 

When applying deep learning on these tasks, point-exact features and object-based patch 

features are required (De Brabandere et al., 2017). The primary problems and corresponding 

requirements for point-based semantic segmentation and object-based detection are: 

1) Geometric patterns of objects vary enormously (Ren and Sudderth, 2018). The 

designed CNNs should consider the geometric variation. 
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2) Most 3D object shapes are incomplete. The proposed deep models can predict the 

semantic label or oriented bounding box with missing information. 

3) The exploration of local geometric correlations between the input and its neighbouring 

coordinates or features is hard to achieve. The proposed CNNs can learn such geometric 

information. 

4) The target objects only occupy a very limited amount of the whole input data. The 

proposed framework can extract targets accurately from backgrounds. 

5) Sensors only capture surfaces of objects, 3D object centres are likely to be in empty 

space, far away from any point (Qi et al., 2019). Thus, the constructed framework can collect 

sufficient object information around the object centre. 

These challenges lead to the complexity of per-point labeling and object localization and 

detection in real-world environments.  

Commonly, MLS and RGB-D cameras can provide corresponding images for the acquired 

point clouds. Objects in large-scale and sparse point clouds are hard to localize accurately. 

How to reduce searching area when detecting objects is a key challenge. Some methods 

leverage 2D images to reduce 3D searching space for object localization, e.g., F-PointNet (Qi 

et al., 2018; Wang and Jia, 2019), where the 3D detector extract the amodal bounding box in a 

3D frustum space which is lifted from a 2D proposal in the image. Several papers (Chen et al., 

2017; Ku et al., 2018) reduce the searching work by projecting 3D points to 2D images, and 

then use proposal-based network for object detection in 2D images. However, how to exploit 

2D images to leverage 3D detection remains an open problem. 

1.3 Objectives of the Study 

To handle the above mentioned problems in semantic segmentation and object detection 

and explore the 2D images to assist 3D object detection, this thesis proposes a set of deep 

learning frameworks to extract point-exact or object-based information from point clouds. 

Both complex road scenes and indoor scenes are covered. The objectives of these proposed 

algorithms are to achieve higher accuracy and robustness, but less computational time than the 

state-of-the-art methods. The specific objectives of this thesis can be described as follows:  

javascript:;
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 The first objective is to address the 3D point cloud segmentation problem in both indoor 

and outdoor environments by considering the geometric relationships for each point with its 

local neighbours. An end-to-end encoder-decoder structure with a CRF refinement layer is 

constructed to predict the per-point label with efficiency and accuracy. 

 The second objective is to propose an end-to-end point cloud geometric relation network 

focused on 3D object detection. Intra-object geometric features and inter-object relation 

features are learned and used to enhance the 3D object detection performance in an end-to-end 

trainable way. 

The third objective is to propose a 2D-driven 3D object detection architecture, which can 

exploit the 2D images to assist 3D object detection. The geometric features learned from the 

point clouds and semantic features generated from the corresponding single image are 

leveraged in bounding box reasoning.  

1.4 Structure of the Thesis 

This doctoral dissertation aims at proposing a set of deep learning based 3D information 

extraction algorithms from point clouds in indoor and outdoor scenes with robust and efficient 

performances. Figure 1.1 illustrates the overall structure of this thesis. The corresponding 

arrangement of this thesis is shown as follows: 

Chapter 2 reviews the basic knowledge of CNN and point cloud convolution, a variety of 

existing deep learning studies related to point cloud segmentation, 3D object detection, and 

sensor fusion for 3D object detection. The indoor and outdoor datasets that can be used to train 

3D deep models for segmentation and detection tasks are provided. To evaluate the algorithm 

performance in accuracy and efficiency and conduct comparison with existing state-of-the-art 

methods, several evaluation metrics for segmentation and detection are also introduced. 

Chapter 3 details a geometric graph convolution architecture for per-point semantic 

labeling in indoor and outdoor scenes, which explore the geometric attributes among local 

points to improve the segmentation results. 
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Chapter 4 introduces a geometric relation framework for 3D object detection from point 

clouds. The intra-object geometric features and inter-object relation features are prompt to 

enhance the 3D detection performance. 

Chapter 5 proposes the 2D-driven 3D object detection framework to leverage 2D images 

for 3D object detection. Semantic cues from 2D detection results and context features learned 

from 3D detectors are fused to boost 3D detection accuracy in indoor and outdoor scenes. 

Chapter 6 concludes this research with a summary of contributions and details future 

research directions. 
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Figure 1.2: Framework of this thesis. 
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Chapter 2 

Related Work 

This chapter briefly reviews the related work in the scope of deep learning-based 3D 

information extraction from LiDAR and RGB-D data. Section 2.1 provides the basic 

knowledge of CNN and point cloud convolution. Section 2.2 provides the problem definition 

of point cloud segmentation and object detection tasks, and related studies of deep learning 

methods in point cloud segmentation and 3D object detection. Sensor fusion 3D object 

detection methods are also reviewed. Section 2.3 presents the related evaluation metrics for 

accuracy and efficiency. Section 2.4 concludes this chapter. 

2.1 Point Cloud Convolution 

2.1.1 Convolutional Neural Networks 

 The convolutional neural network (CNN) is one of the most popular deep learning 

algorithms. CNNs are featured with shift-invariant based on their weight sharing architecture 

and translation invariance characteristics. Commonly, a CNN is composed of an input and an 

output layer, and multiple hidden layers (Lecun et al., 2015). The input layer mainly pre-

processes the input data. The hidden layers consist of a series of neural layers, such as the 

convolutional layer, the activation layer, the pooling layer, and the fully connected layer. The 

convolutional layer, which convolves with a multiplication or other dot product, is used to 

extract features from the input data. Each element of the convolutional kernel corresponds to 

a weight coefficient and a bias vector. The activation layer refers to the non-linear mapping of 

the output feature map of the convolutional layer. The pooling layer is sandwiched between 

successive convolutional layers to reduce the spatial size of the output feature maps to 

compress the number of parameters and hence to control overfitting. Neurons in a fully 

connected layer have full connections to all activations in the previous layer. Their activations 

can be computed with a matrix multiplication followed by a bias offset.  
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The convolution and nonlinearity on 2D grid data (e.g., images) can be expressed as 

follows (Liu et al., 2020): 

𝑥𝑗
𝑙 = 𝜎( ∑ 𝑥𝑖

𝑙−1 ∗ 𝑤𝑖,𝑗
𝑙

𝑁𝑙−1

𝑖=1

+ 𝑏𝑗
𝑙)  (2.1) 

where xi
𝑙−1 represents the 𝑖th input feature map at layer 𝑙 − 1, xj

𝑙 denotes the 𝑗th output feature 

map at layer 𝑙. * is the convolution operation. wi,j
𝑙  and bj

𝑙 represent the weights and bias at layer 

𝑙 . N𝑙−1  is the number of feature maps at layer 𝑙-1. The 𝜎(∙) is the elementwise nonlinear 

function.  

2.1.2 Point Cloud Convolution 

Compared to kernels defined on 2D grid structures, designing convolutional kernels for 3D 

point clouds is hard to achieve. In order to extract discriminate point features from irregular 

point clouds, the modification of standard convolution is conducted.  

Similar to 2D kernels, the 3D point convolution defines a set of spatial filters applied 

locally in the point cloud. Given the points 𝑥𝑖 from 𝒫 ∈ 𝑅𝑁×3 and their corresponding features 

𝑓𝑖  from ℱ ∈ 𝑅𝑁×𝐷 , the general point convolution of ℱ  by a kernel 𝑔  at a point 𝑥 ∈ 𝑅3  is 

defined as: 

(ℱ ∗ 𝑔)(𝑥) = ∑ 𝑔(𝑥𝑖 − 𝑥)

𝑥𝑖∈𝒩𝑥

𝑓𝑖 (2.2) 

where 𝒩𝑥 = {𝑥𝑖 ∈ 𝒫|‖𝑥𝑖 − 𝑥‖ ≤ 𝑟} is denoted as the neighbor set of point x, 𝑟 ∈ 𝑅 is the 

selected radius. The neighbor point set is commonly searched using Ball query or K nearest 

neighbor (KNN) search (Qi et al., 2017). 

However, there are two ways to define convolutional kernels. The first one defines 

convolutional kernels on a continuous space, where the weights for neighboring points are 

related to the spatial distribution with respect to the center point (Guo et al., 2020). The second 

one defines convolutional kernels on regular grids, where the weights for neighboring points 

are related to the offsets with respect to the center point (Guo et al., 2020). 
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2.2 Deep Learning-based 3D Information Extraction Techniques: An 

Overview 

2.2.1 Point Cloud Segmentation 

Problem definition: Point cloud segmentation is the process to cluster the input data into 

several homogeneous regions, where points in the same region have identical attributes 

(Nguyen and Le, 2013). Each input point is predicted with a semantic label, such as ground, 

tree, building. The task can be summarized as: given a set of ordered 3D points X = {𝑥1, ⋯ , 𝑥𝑛} 

with 𝑥𝑖 ∈ 𝑅3 and a candidate label set Y = {𝑦1, ⋯ , 𝑦𝑘}, assign each input point 𝑥𝑖 with one of 

the k semantic labels (Huang et al., 2018). Segmentation results can further support object 

detection and classification.   

 Point cloud segmentation algorithms based on deep learning can be grouped into two main 

categories according to their data structures: Euclidean-structured data and non-Euclidean data 

(Ahmed et al., 2018). The Euclidean-structured data refer to the volumetric data structure 

which has gridded regular data structure, while the non-Euclidean data refer to the irregular 

and unstructured data formats such as point cloud and graphs. 

Euclidean-structured data models. The Euclidean-structured data are suitable for 

convolutional operation to extract distinctive spatial features such as edges and key-points. 

Volumetric-based models (Wu et al., 2015; Klokov and Lempitsky, 2017; Riegler et al., 2017; 

Zhou and Tuzel, 2018) are the most representative frameworks in existing 3D Euclidean-

structured deep models applied on large-scale point clouds. The inputs of these methods are 

3D volumetric grids voxelized from the raw point clouds. In early voxel-based networks, 

convolution is operated in regular and uniform voxel grids (Wu et al., 2015). This leads to an 

excessive requirement of memory footprints and high computation cost. Thus, the input point 

clouds are reduced to low resolutions to decrease memory and computation costs. For example, 

3D ShapeNets (Wu et al., 2015) inputted volumetric grids with size 30*30*30 into CNN 

architecture, the geometric 3D shape was represented by binary variables with a probabilistic 

distribution of a 3D voxel grid. Instead of limiting the size of the input volume, Kd-networks 

(Klokov and Lempitsky, 2017) adaptively divided the input data into hierarchical grids, which 
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further reduce the computation cost and memory. OctNet (Riegler et al., 2017) hierarchically 

splitting the 3D space into a set of unbalanced octrees based on the density of the data. Then a 

modified CNN was applied to such a hybrid grid-octree data structure. However, the geometric 

features especially the intrinsic characteristic of 3D shapes and surfaces are not exploited. Such 

intrinsic characteristic can help the model differentiate objects with different shapes to improve 

the segmentation accuracy. 

Non-Euclidean data models: As for the non-Euclidean data models, point cloud based 

models and graph-based models have achieved compelling results in several 3D tasks, such as 

segmentation (Qi et al., 2017; Qi et al., 2017), classification (Klokov and Lempitsky, 2017; 

Wang et al., 2019).  

Point cloud based models: Volumetric input of 3D point clouds is still computational and 

complex, a simpler network PointNet was proposed by Qi et al. (2017), which takes point cloud 

directly as input. Symmetry function was used to irregular points and the spatial transform 

network was exploited to improve the geometric invariance of the proposed network. Spatial 

features of each input point were learned through the network. Then, the learned features were 

assembled across the whole region of point clouds. The outstanding performance of PointNet 

has achieved in 3D objects classification and segmentation tasks. However, local structure 

feature is not considered, which constrains its ability to learn fine-grained features and 

generalize to complex scenes. To solve the above problems, PointNet++ was proposed later by 

Qi et al. (2017) to compensate the local feature extraction problem. This network was applied 

in raw input point clouds with various resolutions and assemble local features using a 

hierarchical architecture. PointCNN (Li et al., 2018) proposed the χ-Conv to assemble features 

in each local range and developed a hierarchical network architecture. However, these models 

have not exploited the high-level geometric correlations of local neighbours, which limits their 

semantic segmentation accuracy. 

Graph-based models: Related works about convolution on graphs can be classified into 

spectral and non-spectral approaches. The spectral-based graph CNNs are analogous to the 

operation between the Fourier transforms and eigen-decomposition of the graph Laplacian 
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(Bruna et al., 2013). Yi et al. (2017) defined the signal of point clouds in the Euclidean domain 

by the metrics on the graph nodes and related the convolution operation to the scaling signals 

based on eigenvalues of graph Laplacian. However, such operation is linear and dependent on 

the eigenvectors of the graph Laplacian, meaning that it is domain-dependent. Besides, the 

spectral filtering was defined based on the whole input data, which results in high computation 

cost. Thus, Wang et al. (2018) carried out the graph convolution on local point set and applied 

a recursive clustering and pooling operation to aggregate information from spectral-close 

nodes. Spatial-based graph CNNs is commonly operated on groups of spatially close 

neighbours. In Simonovsky and Komodakis (2017), features from local neighbourhoods were 

filtered and aggregated. Besides, the edge information based on the graph signal in the spatial 

domain was also exploited in constructing the convolution filters. Wang et al. (2019) also 

constructed a local neighbourhood graph to learn the local geometric features. The EdgeConv 

was applied on the edges connecting neighbouring pairs of each point. Besides, the given fixed 

graph was dynamically updated to extract high level local spatial information. However, not 

all neighbours contribute equally. Wang et al. (2019) introduced an attention scheme in graph-

based point cloud segmentation by assigning specific attentional weights to different 

neighbouring points. This operation can dynamically adapt the kernel to different objects with 

various structures. 

2.2.2 3D Object Detection 

Problem definition: Given an arbitrary point cloud data, the goal of 3D object detection 

is to detect and locate the instances of predefined categories (e.g., cars, pedestrians, and 

cyclists, and return their geometric 3D location, orientation, and semantic instance label (Qi et 

al., 2018). Such information can be represented coarsely using a 3D bounding box which is 

tightly bounding the detected object (Zhou and Tuzel, 2018; Qi et al., 2019). This box is 

commonly represented as (𝑥, 𝑦, 𝑧, ℎ, 𝑤, 𝑙, 𝜃, 𝑛𝑐𝑙𝑎𝑠𝑠) , where (𝑥, 𝑦, 𝑧)  denotes the object 

(bounding box) centre position, (ℎ, 𝑤, 𝑙) represents the bounding box size with width, length 

and height, and is the object orientation. The orientation 𝜃 refers to the rigid transformation 

that aligns the detected object to its instance in the scene, which are the translations in each of 
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the of x, y, and z directions as well as a rotation about each of these three axes (Beltran et al., 

2018; Kundu et al., 2018). 𝑛𝑐𝑙𝑎𝑠𝑠 represents the semantic label of this bounding box (object). 

 Existing point-based 3D object detection methods can be grouped into two main types: 

view-based and 3D based. View-based methods project 3D points into 2D views and leverage 

mature 2D detectors to extract objects, while point based directly detect 3D objects from point 

clouds.  

 View-based Methods. In order to exploit existing 2D CNNs, some approaches first project 

point clouds into 2D views and then apply 2D CNNs to detect and localize objects from images. 

In early work by Xiang et al. (2015), Chen et al. (2016) and Mousavian et al. (2017), point 

clouds were projected initially to the camera image plane, then RGB images and shape 

attributes or occlusion patterns were exploited to predict 3D bounding boxes. Li et al. (2016) 

and Deng et al. (2017) treated depth data as 2D maps and applied 2D CNN learners to detect 

objects in 2D images. Luo et al. (2019) proposed a detection framework via fusing multi-view 

representations of point clouds to extract high-level features. Wen et al. (2019) projected point 

clouds into a horizontal plane and used a modified U-net to extract road markings. MV3D 

(Chen et al., 2017) projected LiDAR point clouds to bird’s eye view images first and then 

constructed a region proposal network (RPN) (Ren et al., 2015) for 3D bounding box 

prediction. However, these methods have sub-optimal performance for accuracy for small 

object detection (e.g., pedestrians and cyclists) and multiple clutter object detection in the 

vertical direction. Due to the sparsity of point clouds, the projection of point clouds to 2D 

image planes produces sparse 2D point maps and losses 3D geometric information. 

3D-based methods. Compared with view-based detection methods and 3D object 

detection using 2D-3D features, 3D-based approaches focus more on utilizing geometric 

features from point clouds. In work by Song and Xiao (2014) and Wang and Posner (2015), 

support vector machine (SVM) was adopted to classify 3D objects using hand-designed 

geodesic features extracted from point clouds. Then the object was localized via a sliding 

window search. Engelcke et al. (2017) extended the work by Wang and Posner (2015) by using 

3D CNN instead of SVM on 3D voxelized grids. Ren and Sudderth (2016) designed new 
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geometric features for 3D object detection. Song and Xiao (2016) converted the entire scene 

represented by point clouds into volumetric grids and applied 3D volumetric CNNs on object 

proposal for classification. The computation costs for these methods are usually high because 

3D convolutions and 3D space searching in large areas cost expensively. More recently, deep 

networks on point clouds were adopted by Yi et al. (2019) and Shi et al. (2019) to exploit the 

sparsity of the data. Considering the scanned points lying on the surface of the objects and the 

empty object centre, Qi et al. (2019) proposed a deep Hough voting network to shift the surface 

point to the object centre. This method achieved high accuracy in bounding box centre 

prediction and box size estimation. 

2.2.3 Sensor Fusion for 3D Object Detection 

 When the point clouds are collected by RGB-D cameras (Song et al., 2015) or the mobile 

laser scanning system (Geiger et al., 2013), the corresponding images are also existed. Thus, 

to leverage the 2D imagery for 3D object detection, fusion-based approaches (Chen et al., 

2017; Lahoud and Ghanem, 2017; Ku et al., 2018; Qi et al., 2018; Hou et al., 2019; Qi et al., 

2020) have been developed rapidly and achieved a notable success.  

 There are two type methods for fusing 2D and 3D sensing data (Qi et al., 2020): 2D-driven 

and 2D-3D feature fusion. 2D-driven strategies (Lahoud and Ghanem, 2017; Qi et al., 2018) 

first extract objects from 2D images, which are then back-projected to 3D space to guide the 

search area. 2D features such as color and semantic information are exploited for 3D object 

detection. These methods can leverage the mature 2D detectors for object detection from 

images and reduce the search area for 3D object by utilizing the frustum projection. However, 

their detection results highly rely on 2D detection performance.  

 2D-3D feature fusion methods focus on the early or late 2D and 3D fusion in the process, 

such as Multi-View 3D networks (MV3D) (Chen et al., 2017), Aggregate View Object 

Detection (AVOD) network (Ku et al., 2018), 3D semantic instance segmentation (3D-SIS) 

network (Hou et al., 2019), and Continuous Fusion (ContFuse) network (Liang et al., 2018). 

MV3D (Chen et al., 2017) proposes the ROI feature fusion using the 2D features extracted 

from images and 3D features from LiDAR points for the bounding box refinement. AVOD 
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(Ku et al., 2018) network fuses the 2D and 3D features in both early and late stage, thus, further 

improves the detection results. ContFuse (Liang et al., 2018) exploits the continuous 

convolution to concatenate multi-level image and LiDAR features. Discrete state 2D features 

and continuous geometry are encoded within the continuous fusion layer. 

2.3 Evaluation Metrics for Accuracy and Efficiency 

 To evaluate the proposed methods’ accuracy and efficiency for segmentation and detection 

tasks, several metrics are proposed. These evaluation metrics are also adopted by other 

published methods for a fair comparison. The detailed description of these metrics is given as 

follows. 

 For the segmentation task, the most commonly used evaluation metrics for accuracy are 

the accuracy, Intersection over Union (IoU) metric, mean IoU (mIoU), and overall accuracy 

(OA) (Everingham et al., 2015): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2.1) 

𝐼𝑜𝑈𝑖 =
𝑐𝑖𝑖

𝑐𝑖𝑖 + ∑ 𝑐𝑖𝑗 + ∑ 𝑐𝑘𝑖𝑘≠𝑖𝑗≠𝑖
 (2.2) 

𝑚𝐼𝑜𝑈 =
∑ 𝐼𝑜𝑈𝑖

𝑁
𝑖=1

𝑁
 (2.3) 

𝑂𝐴 =
∑ 𝑐𝑖𝑖

𝑁
𝑖=1

∑ ∑ 𝑐𝑗𝑘
𝑁
𝑘=1

𝑁
𝑗=1

 (2.4) 

 

where 𝑁 is the number of classes, TP, TN, FP, and FN are the number of true positives, true 

negatives, false positives, and false negatives, respectively.  𝐶 is an 𝑁 × 𝑁 confusion matrix 

of the segmentation result, where each entry 𝑐𝑖𝑖 is the number of points from ground-truth class 

𝑖 predicted as class 𝑗. IoU defines the quantify the percent overlap between the target mask and 

the prediction output. mIoU represents the mean IoU. OA means the proportion of correctly 

classified points among all the input points. 
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    For 3D object localization and detection task, the most frequently used metrics for accuracy 

are: Average Precision (AP) and mean average precision (mAP) (Arnold et al., 2019): 

𝐴𝑃𝑖 =
1

𝑁
∑

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖𝑖∈𝑁
 (2.1) 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

 
(2.2) 

The AP is used to evaluate the localization and detection performance by calculating the 

averaged valid bounding box IoU which exceed predefined values. These evaluation metrics 

are crucial for understanding how applicable the method is in real-world complex scenarios 

where large quantity number of points must be processed. 

   Apart from the above evaluation metrics, which are used to measure the 3D information 

extraction performance in accuracy. The efficiency of deep learning algorithms is commonly 

evaluated based on training time or inference time within the same experimental settings (Qi 

et al., 2017). Besides, the memory usage and model size are also referenced as the efficiency 

evaluation metrics.  

2.4 Chapter Summary 

In this chapter, the basic knowledge of CNN and point cloud convolution, deep learning 

based 3D information extraction techniques, and evaluation metrics were systematically 

reviewed. To understand deep learning segmentation and detection tasks technically, the basic 

knowledge of CNN and point cloud convolution and the problem definitions of these two tasks 

were detailly described. A variety of existing deep learning based methods for segmentation, 

detection, and sensor fusion based object detection were reviewed and analyzed, respectively. 

It can be concluded through the literature review that the point cloud or graph based deep 

learning models are more suitable for geometric attributes extraction among 3D space. Besides, 

the enrollment of local geometric relationship when defining CNNs is a promising direction 

for discriminate point feature learning. Thus, the segmentation and detection frameworks will 

be developed based on these two findings in Chapters 3 and 4, respectively. As for sensor 
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fusion based 3D object detection, the 2D-driven 3D model is considered in Chapter 5 to 

leverage 2D images for 3D object detection. The corresponding evaluation metrics for 

quantitative comparison in accuracy and efficiency were followed with the mathematical 

equation description. These evaluation metrics are partially employed in Chapters 3, 4, and 5 

according to the tasks.  
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Chapter 3  

Point Cloud Segmentation 

This chapter describes the overall structure of a deep learning based point cloud 

segmentation algorithm. In Section 3.1, the background of the deep learning based semantic 

segmentation, the preliminary knowledge of geometric convolution, and the implementation 

details of the proposed algorithm are described. In Section 3.2, experimental settings, including 

the selected datasets, evaluation metrics, segmentation results, ablation studies, and the timing 

and memory usage are provided in detail. Section 3.3 discusses the quantitative and qualitative 

results of the proposed framework. Section 3.4 provides a summary of this chapter.  

This chapter is mainly a paper published in a journal and only  minor format changes have 

been made in order to make them to fit into the format of the entire thesis. © [2020] IEEE. 

Reprinted, with permission, from [Li, Y., Ma, L., Zhong, Z., Cao, D. and Li, J. 2020. TGNet: 

Geometric Graph CNN on 3D Point Cloud Segmentation. IEEE Transactions on Geoscience 

and Remote Sensing, vol. 58, no. 5, pp. 3588-3600.] 

 

3.1 Algorithm Description 

   Semantic segmentation is urgently desired for a comprehensive scene understanding in 

real-time perception and urban modeling (Tchapmi et al., 2017). Similar to per-pixel image 

labeling, 3D semantic segmentation seeks to attribute a semantic classification label to each 

3D point. Given the features are hierarchically learned in an end-to-end trainable framework 

(Qi et al., 2017), deep convolutional neural network (CNN) models have achieved remarkable 

success in 2D semantic segmentation tasks. However, compared with 2D regular imagery data, 

3D point clouds are uneven, unstructured, noisy, and irregular data, which cannot exploit the 

classical 2D CNNs directly. 

 Recently, several methods have been proposed to define convolution filters in non-

Euclidean domain, which can directly process irregular data such as point clouds. These 
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approaches, prompting the emerging field of geometric deep learning (Bronstein et al., 2017), 

can be roughly classified into two types: spectral-based and spatial-based methods. The 

spectral-based methods define the convolution operations by exploiting the spectral eigen-

decomposition of the graph Laplacian (Yi et al., 2017). The signal frequencies of the graph 

constructed from point clouds are commonly represented by the eigenvalues of the graph 

Laplacian. They are filtered in the spectral domain, similar to the Fourier domain filtering of 

conventional signals (Fey et al., 2018). But these spectral-based geometric CNNs have the 

following two problems: (1) the learned spectral filter’s coefficients are not suitable for another 

domain with a different basis (Bronstein et al., 2017); and (2) the spectral filtering is calculated 

based on the whole input data, which requires high computation capability. 

 Thus, Masci et al. (2015) proposed the first spatial-based CNN on non-Euclidean data, 

applying filters to local neighbours represented in geodesic polar coordinates. Qi et al. (2017) 

constructed spatial-based CNNs by defining convolution kernels in local neighbours with 

respect to local Euclidean positional relationships between points. Monti et al. (2017) defined 

the convolution kernels based on the degrees of the nodes. Then these learned features are 

aggregated (e.g., sum or max) to generate new point or vertex feature vectors. Compared with 

spectral-based CNNs, spatial-based CNNs are not basis-dependent and, thus, can be 

transformed into different domains (Bronstein et al., 2017). In addition, spatial filtering that is 

conducted in the local region has a lower computation cost. However, the aforementioned 

spatial-based CNNs suffer the following two limitations. 

 The high-level geometric correlations between the input and its neighbouring 

coordinates or features are not fully exploited in defining convolution kernels. These 

correlations can enhance the kernel’s shape description capability. 

 The traditional aggregation functions, e.g., max or mean, discard or neglect the 

structural connection among local neighbours because different neighbours contribute 

differently. 

 To address the above two challenges, we propose an alternative geometric graph 

convolution, termed TGConv, which is designed to explore high-level geometric correlations 

among local neighbours extracted from point clouds for semantic segmentation. These filters 
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are defined as products of local neighbour point features with geometric features extracted 

from local coordinates expressed by a family of Gaussian weighted Taylor kernel functions. 

Although local coordinates can express the low-level geometric characteristic for local 

neighbours, we use our defined functions to map the position information to high-level 

geometric attributes. Then a parametrized pooling operation based on distance metric is 

proposed for effective feature aggregation. Such aggregation is composed of the max and a 

learnable distanced-based weight function, which can harness the most representative features 

and adaptively exploit related neighbour features. 

 Based on the proposed TGConv, we construct an end-to-end geometric graph convolution 

architecture on the graph representation of a point cloud, called Taylor Gaussian mixture model 

(GMM) network (TGNet). To improve the scale invariance of our network, TGNet employs a 

multiscale hierarchical architecture by operating TGConv on neighbourhoods at multiple 

scales, which allows it to extract coarse-to-fine semantic deep features. Besides, a conditional 

random field (CRF) layer is combined within the output layer to further improve the 

segmentation result. 

3.1.1 Preliminary Knowledge 

  The convolution in a Euclidean domain can be defined as extracting a template patch at 

each point of the domain and learning the correlation of the patch with the function at that 

point. Thus, for 2D imagery convolution in regular Euclidean domain, per-pixel patch 

extraction at each position is always the same. However, due to the unstructured and irregular 

data structure of point clouds and the different input shapes, it is difficult to define an effective 

convolution operation in non-Euclidean domains. There are two requirements in the 

construction of non-Euclidean CNNs which are as follows. 

 The local patch extraction should be shift-invariant; however, it is actually position-

dependent. 

 The patch has to be represented in a local intrinsic coordinate system because of the 

difficulty in global parametrization in non-Euclidean domains. 

 To achieve these, Monti et al. (2017) and Kipf and Welling (Kipf and Welling, 2016) 

constructed patch operators 𝐷(·)  by defining a family of learnable weight functions 
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𝑤1(𝑢), ⋯ , 𝑤𝐽(𝑢) of a local patch (e.g., a local graph) represented by pseudo-coordinates 𝑢. 

Given vertex 𝑥 and its neighbour [denoted as 𝑥′ ∈ 𝒩(𝑥)] features 𝑓 , the patch operator can 

be formulated as the weighted summation of 𝑓: 

𝐷(𝑥)𝑓 = ∑ 𝑓(𝑥′)𝑤𝑗(𝑢(𝑥, 𝑥′))

𝑥′∈𝒩(𝑥)

, 𝑗 = 1, ⋯ , 𝐽 (3.1) 

Based on the above fact, a spatial geometric convolution on non-Euclidean domains is defined 

as: 

(𝑓 ∗ 𝑔)(𝑥) = ∑ 𝑔𝜃(𝐷𝑗(𝑥)𝑓)

𝐽

𝑗=1

 (3.2) 

where ∗ represents the convolution operation, 𝑔𝜃 denotes the learnable coefficients applied on 

the patch extracted at each point. 

 This kind of geometric convolution kernels has been applied in several non-Euclidean 

CNNs such as Graph Convolutional Networks (GCN) (Kipf and Welling, 2016) and mixture 

model network (MoNet) (Monti et al., 2017) by defining different weight functions. However, 

these methods just use the local intrinsic coordinate information, the high-level geometric 

feature is not fully exploited, which is crucial for robust semantic segmentation. Besides, the 

traditional aggregation method such as max, sum, or mean pooling operation is not adaptable 

for various inputs. To solve the above two challenges, we define our TGConv as a product of 

local neighbour point features with geometric features extracted from local coordinates 

expressed by a family of Taylor kernel functions. In addition, we proposed a learnable pooling 

function to aggregate features to improve the performance of discriminative feature learning. 

3.1.2 TGConv 

 Consider a graph 𝒢 = (𝒱, ℰ, U)  constructed from a given 3D point cloud P =

{𝑝1, 𝑝2, ⋯ , 𝑝𝑛} ∈ 𝑅3 according to their spatial neighbours, where 𝒱 =  {1, 2, . . . , n} and ℇ ⊆

 𝒱 × 𝒱  represent the set of vertices and edges, respectively, and  U  contains 3D pseudo-

coordinates u(x, y) ∈ 𝑅3 for each directed edge (x, y) ⊆ ℰ. Denote each point 𝑦 ∈ 𝒩(𝑥) as 

the neighbour set of vertex x, u(x, y) is a 3D vector of pseudo-coordinates for each y. Let h =
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{ℎ1, ℎ2, ⋯ , ℎ𝑛} be a set of input vertex features, each feature ℎ1 ∈ 𝑅𝐹  is associated with a 

corresponding graph vertex i ⊆ 𝒱, where F is the feature dimension of each vertex.  

 To leverage spatially local correlation, we mimic Eq.(3.1) and Eq.(3.2) to conduct local 

operations on the local graph, by parametrizing a family of convolutional filters. These filters 

are defined as products of local neighbour point features with geometric features extracted 

from local coordinates expressed by a family of Gaussian weighted Taylor kernel functions 

(see Figure 3.1). Then they are aggregated via a parametric pooling operation to new point set 

features ℎ′ = {ℎ1
′ , ℎ2

′ , ⋯ , ℎ𝑛
′ } with ℎ𝑖

′ ∈ 𝑅𝐾. 

 In Eq.(3.1), the patch operator is defined directly on the pseudo-coordinates u(x, y) . 

Although geometric information can be extracted, however, high-level geometric spatial 

features are not exploited. Thus, we map the pseudo-coordinates to a high-level geometric 

feature using a function T (u): 𝑅3 → R, which  

 

Figure 3.1: TGConv on graph representation of point clouds. 

can improve the geometric expression of the patch operator. Besides, the summation is not 

suitable for aggregating the effective and robust features. To solve this, we define a learnable 
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aggregation function to adaptively pool local features. As a result, we define our convolution 

operation as: 

(𝑓 ∗ 𝑔)(𝑥) = Agg(𝑔𝜃(∑ 𝐷𝑠(𝑥)ℎ𝑦), 𝑦 ∈ 𝒩(𝑥) 

𝑆

𝑠=1

 (3.3) 

where Agg(·)  represents the aggregation function, 𝑔𝜃(∙)  is the learnable feature mapping 

function: 𝑅𝐹 → 𝑅𝐾 . The weight function Ds (·) is defined as 

𝐷𝑠(𝑥) = 𝑤𝑠(𝑇(𝑢)), 𝑠 = 1, ⋯ 𝑆 (3.4) 

with u representing the pseudo-coordinates,w(T) = 𝑤1(𝑇), ⋯ , 𝑤𝑆(𝑇) being weight functions 

parametrized by learnable parameters, and S being the number of kernels. 

 The critical construction of our proposed kernels is the choices of the pseudo-coordinates 

u , geometric pseudo-coordinates mapping function 𝑇(𝑢) , weight functions w(T) , feature 

mapping function 𝑔𝜃(∙), and aggregation function Agg(·). 

 Pseudo-coordinates: Pseudo-coordinates, such as polar, spherical, or Cartesian 

coordinates, encode local positional relationships between points (Fey et al., 2018) and can be 

used to describe local geometric features. Table 3.1 lists the selection of pseudo-coordinates 

u and weight function w(u) of some geometric deep learning methods (Kipf and Welling, 

2016; Monti et al., 2017; Qi et al., 2017; Wang et al., 2019). For example, MoNet (Monti et 

al., 2017) and GCN (Kipf and Welling, 2016) define their kernels on the pseudo-coordinates 

based on the degree of graph vertices. PointNet++ (Qi et al., 2017) and DGCNN (Wang et al., 

2019) select the local Euclidean coordinates as their pseudo-coordinates. In order to reduce the 

computation cost and exploit the original geometric feature from 3D coordinates, local 

Euclidean coordinates are selected as our pseudo-coordinates. For each vertex x and vertex 

𝑦 ∈ 𝒩(𝑥) in the neighbourhood of x, we consider local pseudo-coordinate u(x, y) as: 

u(x, y) = y − x = (𝑢1, 𝑢2, 𝑢3)𝑇 (3.5) 
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where each vertex x is represented by 3D Cartesian coordinates, and (𝑢1, 𝑢2, 𝑢3)𝑇 represent 

the corresponding pseudo-coordinate along each axis of each neighbourhood point y to point 

x. 

Table 3.1: Choice of pseudo-coordinates and weight functions of several geometric CNN 

models 

Method  Aggregation Pseudo-

coordinates 

Pseudo-coordinates 

u(x, y) 

Weight Function 𝑤𝑠(𝑢), 

𝑠 = 1, ⋯ 𝑆 

PointNet++ max Local 

Euclidean 

u(y) − u(x) - 

MoNet ∑ Vertex 

degree 

(
1

√deg(𝑥)
,

1

√deg(𝑦)
) exp (−

1

2
(𝑢 − 𝜇𝑗)𝑇 ∑ (𝑢 − 𝜇𝑗)

−1

𝑗
) 

GCN   ∑ Vertex 

degree 

(deg(x) , deg (y)) 
(1 − |1 −

1

√𝑢1

|) (1 − |1 −
1

√𝑢2

|) 

DGCNN max Local 

Euclidean 

u(y) − u(x) - 

 Geometric Pseudo-coordinates Mapping Function: The pseudo-coordinates leverage 

only the low-level spatial information, and the high-level structural and geometric information 

among pseudo-coordinates is not exploited. Based on that, we design our filters considering 

the high-level structural information of pseudo-coordinates to increase the CNN kernels’ shape 

description ability. To ensure that the filters are powerful enough to extract intricate local 

geometric features, a mapping function T(u) is used to leverage the intrinsic information 

among (𝑢1, 𝑢2, 𝑢3)𝑇 into a high-level representation g(𝒖𝟏, 𝒖𝟐, 𝒖𝟑). There are two important 

considerations for choosing such a mapping function T(u): 1) the optimization is convenient 

to conduct and 2) it can interpolate arbitrary values in local graph. Inspired by SpiderCNN (Xu 

et al., 2018), the order-3 Taylor expansions of 3D coordinates are used to map the local pseudo-

coordinates u into the high-level geometric attribute. 
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T(u) = 𝑔
𝜎𝑇
𝑇𝑎𝑦𝑙𝑜𝑟(𝒖𝟏, 𝒖𝟐, 𝒖𝟑)

= 𝜎0
𝑇 + ∑ 𝜎𝑖

𝑇

3

𝑖=1

𝒖𝒊 + ∑ ∑ 𝜎𝑖𝑗
𝑇

3

𝑗=1,𝑖≤𝑗

𝒖𝒊𝒖𝒋

3

𝑖=1

 

+ ∑ ∑ ∑ 𝜎𝑖𝑗𝑘
𝑇

3

𝑘=1
𝑖≤𝑗≤𝑘

𝒖𝒊𝒖𝒋𝒖𝒌

3

𝑗=1

3

𝑖=1

 

(3.6) 

where 𝜎0
𝑇 , 𝜎𝑖

𝑇 , 𝜎𝑖𝑗
𝑇  and 𝜎𝑖𝑗𝑘

𝑇  are the 1 × 1 learnable parameters. By varying these parameters, 

g(𝒖𝟏, 𝒖𝟐, 𝒖𝟑),  we can approximate arbitrary values. 

 Weight function: In MoNet (Monti et al., 2017), a Gaussian mixture model (GMM) is 

used as the weight functions w(u) with learnable parameters as: 

𝑤𝑠(𝑢) = exp (−
1

2
(𝑢 − 𝜇𝑠)𝑇 ∑ (𝑢 − 𝜇𝑠)

−1

𝑠
) , 𝑠 = 1, ⋯ 𝑆 (3.7) 

where ∑𝑠  and 𝜇𝑠  are learnable d × d  and d × 1  covariance matrix and mean vector of a 

Gaussian kernel, respectively. Their experimental results have demonstrated that they can 

distinguished performance. Thus, we also adopt the GMM as our weight functions. Because 

we have mapped our pseudo-coordinates into a more powerful geometric feature with one 

dimension, our weight function is defined as: 

𝑤𝑠(𝑢) = exp (−
1

2
(𝑔 − 𝑔𝑠)2), 𝑠 = 1, ⋯ 𝑆 (3.8) 

where 𝑔𝑠  are learnable 1 × 1  mean vector of a Gaussian kernel. The kernel number 𝑆  is 

experimentally set to 10 in our method. 

 Based on the above function, we can get our intermediate feature ℎ𝑚
′  within the input 

feature ℎ: 

ℎ𝑚
′ = ∑ exp (−

1

2
(𝑔

𝜎𝑇
𝑇𝑎𝑦𝑙𝑜𝑟

(𝒖) − 𝑔𝑠)2))

𝑆

𝑠=1

ℎ (3.9) 

Compared with traditional CNNs, these convolution kernels can better exploit the learnable 

3D geometric features and are easy to optimize. 
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Feature Mapping Function: The feature mapping function 𝑔𝜃(∙) is applied on each vertex 

to map the intermediate feature ℎ𝑚
′  from 𝑅𝐹  to  𝑅𝐾 . In our article, 𝑔𝜃(∙)  is a multilayer 

perception (MLP). Because, theoretically, an MLP with one hidden layer can approximate an 

arbitrary continuous function (Hornik, 1991). Besides, MLP retains the crucial characteristic 

of standard convolution in grid domain: weight sharing. Thus, the input intermediate feature 

ℎ𝑚
′   is mapped as: 

ℎ𝜃
′ = 𝑀𝐿𝑃(ℎ𝑚

′ ) (3.10) 

Aggregation Function: Aggregation operation aims to output the aggregated features on 

the vertices of a coarsened graph. Traditionally, the most commonly used pooling function is 

max function (Qi et al., 2017), which corresponds to the max pooling. The main reason is that 

the most discriminate feature can better represent the local pattern. However, max pooling 

operation discards some other fine-grained features which results a coarse prediction for 

semantic segmentation. To better leverage the most discriminate features and local contextual 

features, in this article, we use the max and a learnable weighted average function for graph 

pooling and concatenate these two pooling results as the output aggregated features. Thus, the 

output feature set for vertex x is calculated as follows: 

ℎ𝑥
′ = max{ℎ𝜃𝑦

′ } +
∑ 𝜃𝑗𝜔𝑗ℎ𝜃𝑦

′𝑘
𝑗=1

∑ 𝜔𝑗
𝑘
𝑗=1

, 𝑦 ∈ 𝒩(𝑥)    (3.11) 

where 

𝜔𝑗 =
1

𝑑(𝑝𝑦, 𝑝𝑥)𝑃
 (3.12) 

and 𝑝𝑦, and 𝑝𝑥 represent the coordinates of neighbour point 𝑦 and the vertex 𝑥. 𝑘 represents 

the number of neighbours. 𝜃𝑗  is a learnable 1 × 1 vector, which is used to learn most relevant 

neighbour features and reweight the nonrelevant neighbour features with low values even if 

they are close to the vertex. The distance metric 𝑝  is set to 2 in our experiment. This 

aggregation method improves the discriminative capability of the network by considering 

nearby neighbours’ features to influence prediction. 
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3.1.3 Taylor GMM Convolutional Network 

 Our TGNet builds a graph pyramid of point clouds by hierarchically grouping the points 

and progressively abstracting larger and larger local regions along the hierarchy, as shown in 

Figure 3.2. At each scale of the graph pyramid, TGConv is applied for local feature learning. 

After that, the learned features are interpolated back to the finest scale layer by layer. Similar 

to PointNet++ (Qi et al., 2017), features at the same scale are skip-connected. Besides, due to 

the limitation of computation, TGConv can only be applied to the sampled input features which 

cannot provide fine-grained per-point information for semantic segmentation. Thus, a shared 

MLP is applied to the raw input to extract per-point features. These learned features are 

combined with the interpolated features learned from the finest layer to predict the per-point 

semantic label likelihood. Finally, considering the loss of feature fidelity caused by the 

multiple graph pooling and feature interpolation layers, an additional CRF layer is applied at 

the finest scale for feature refinement. 

 Graph Sampling and Grouping Module: In order to increase the receptive field of 

TGConv, the raw input point clouds are hierarchically subsampled into different scales. We 

use the farthest point sampling (FPS) algorithm (Qi et al., 2017) to subsample the point set 

with a family of ratios. Given the input point set P, FPS iteratively selects a subset of points 

which is the most distant point from this set compared with the remaining points. This method 

is data-dependent and adaptive to various point clouds with uneven density. Thus, within the 

input point set 𝑃, the subsampled point clouds are denoted as 𝑃1, ⋯ , 𝑃𝐿 where 𝐿 represents the 

number of scales. For each 𝑃𝑙(𝑙 = 0, ⋯ , 𝐿) , a corresponding graph 𝒢𝑙 = (𝒱𝑙, ℰ𝑙)   can be 

constructed as described above. 
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Figure 3.2: Framework of our TGNet. 

 Because our TGConv is operated in the local region for each vertex at multiple scales. 

Thus, how to find spatially important neighbours is of great significance. There are two ways 

to search the nearest neighbours: Spherical neighbourhood (Thomas et al., 2018) and K-nearest 

neighbour (KNN) (Engelmann et al., 2018). The first one selects 𝑘  neighbours randomly 

within radius, while KNN chooses the point with k smallest distance neighbours among all the 

input points. Thus, spherical neighbourhood is adaptive to density variation. Because the point 

clouds are commonly distributed unevenly, the spherical neighbourhood is selected to enhance 

the framework’s invariance to density change. We determine the radius of the local spherical 

neighbour experimentally. Our method processes both indoor and outdoor scenes. However, 

points in indoor scenes scanned by RGB-D camera have uniform point distribution, while point 

clouds of outdoor scenes acquired by an MLS system have irregular and sparse point density. 

Fixed radius is simple and cost-effective, but not adaptive-efficient. An adaptive radius is 

effective but not cost-efficient. Based on the above characteristics and computation cost, we 

set each sampling radius to a fixed value determined experimentally. 

 Feature Propagation Module: Although the hierarchical sampling can improve the 

receptive field of TGConv, the fine-grained information is lost. Besides, semantic labeling 
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needs the feature for each point. Thus, to obtain a distinctive result, the interpolation of learned 

point features between the coarsest to raw scale must be conducted gradually. Let ℎ𝑙 be the 

learned feature set at the lth scale of the graph pyramid, 𝑃𝑙 and 𝑃𝑙−1 are the spatial coordinates 

set of the 𝑙th and 𝑙 − 1th scales, respectively. To obtain features at the 𝑙 − 1th scale, we use 

the inverse distance weighted average based on KNNs (denoted as 𝑝𝑖, 𝑖 = 1, ⋯ , 𝑘) for each 

point 𝑝 of 𝑃𝑙−1 in 𝑃𝑙 (see (13), k = 3, q = 2) to calculate the weighted sum of their features: 

ℎ𝑙−1 =
∑ 𝜃𝑗ℎ𝑗

𝑘
𝑖=1

∑ 𝜔𝑗
𝑘
𝑖=1

, 𝑤ℎ𝑒𝑟𝑒 𝜔𝑖(𝑥) =
1

𝑑(𝑝, 𝑝𝑖)
𝑞
 (3.13) 

These interpolated features on 𝑃𝑙−1 are then concatenated with skip linked point features from 

the corresponding TGConv layer. Then a shared MLP is applied to these concatenated features 

using 1 × 1 CNNs to update each point’s features. 

 CRF Layer: CRF (Zheng et al., 2015) is commonly applied to postprocess the CNN’s 

prediction results in semantic segmentation challenges. Because convolutional filters with 

large receptive fields produce coarse semantic results for each point. CRF inference formulates 

the label assignment task as the probabilistic inference problem, which encourages spatially 

close and appearance-similar points to share consistent labels. Thus, CRF can help to refine 

our weak and coarse point-level labeling results. However, CRF is commonly applied in the 

post-process step, which cannot fully exploit the advantage of the CRF, because it is not 

integrated with neural networks. To harness it in deep learning frameworks, in (Krahenbuhl 

and Koltun, 2011), an approximate inference method is proposed. It assumes independence 

between semantic label distributions Q(X) = Π𝑖𝑄𝑖(𝑥𝑖), an derives the update equation: 

𝑄𝑖
+(𝑥𝑖 = 𝑙) =

1

𝑍𝑖
𝑒𝑥𝑝 {−𝜓𝑢(𝑥𝑖)

− ∑ 𝜇(𝑙, 𝑙′)

𝑙′∈ℒ

∑ 𝜔(𝑚) × ∑ 𝑘(𝑚)(𝑓𝑖, 𝑓𝑗)𝑄𝑗(𝑙′)

𝐾

𝑗≠𝑖

𝐾

𝑚=1

} 

(3.14) 

 Based on that, Zheng et al. (Zheng et al., 2015) formulated CRF inference and learning as 

a RNN, termed CRFasRNN. We integrate this CRF layer following our TGNet framework for 
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joint training and inference. Thus, the coarse semantic labeling results can be further improved 

in a learnable scheme. 

3.2 Experiments 

To verify the effectiveness of our proposed algorithm, qualitative and quantitative 

evaluations were conducted on indoor and outdoor point cloud data sets, including ScanNet 

data set (Dai et al., 2017), Stanford Large Scale 3D Indoor Spaces (S3DIS) data set (Armeni 

and Zamir, 2016) and Paris-Lille-3D data set (Roynard et al., 2018). Before we conduct 

experiments on the above three data sets, some ablation studies of TGNet are first analyzed to 

demonstrate the effectiveness of our method. 

3.2.1 Data Sets 

ScanNet (Dai et al., 2017): The ScanNet data set contains 1513 scans by using RGB-D 

video streaming in indoor environments, such as offices, apartments, conference rooms, etc. 

These scans are split into 1201/312 scenes for training/testing in semantic voxel labeling. This 

data set was manually interpreted and labeled into 20 classes, such as the floor, desk, curtains, 

and bathtubs. 

S3DIS Data Set (Armeni and Zamir, 2016): The S3DIS data set was generated from three 

different buildings which contain five large-scale indoor areas, covering a total of 6020 m2. 

These scenes have different architectural styles and appearances, including offices, conference 

rooms, open spaces, etc. The whole data set was manually labeled with 12 semantic elements 

according to their attributes, e.g., structural elements, common indoor items, and furniture. 

Each point is represented by a nine-dimension vector of XYZ, RGB, and normalized location. 

Paris-Lille-3D (Roynard et al., 2018): Paris-Lille-3D data set contains 140 million points 

and covers 55,000 m2 area in outdoor environments. This data set was acquired by a MLS 

system in two cities: Paris and Lille. Thus, the points in this data set are sparse and relatively 

low measurement resolution compared with the above two indoor data sets. The whole data set 

was fully annotated into 50 classes unequally distributed in three scenes: Lille1, Lille2, and 

Paris. For simplicity, these 50 classes were combined into ten coarse classes for challenging. 
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Figure 3.3: TGNet model zoo for ScanNet, S3DIS, and Paris-Lille-3D data sets. 

3.2.2 Evaluation Metrics 

On ScanNet data set, we adopted accuracy and unweighted average accuracy (Qi et al., 

2017) as our evaluation metric, which is different from the overall accuracy (OA) used in 

PointWeb (Zhao et al., 2019). OA means the proportion of correctly classified points among 

all the input points (Story and Congalton, 1986), while unweighted average accuracy 

represents the unweighted average of each accuracy per class. Because there exit biases 

between different semantic classes in real scene. Points with large proportion have high 

probability to be learned and predicted correctly. Objects with low proportion are generally 

hard to be labeled accurately. To demonstrate the effectivity of our TGNet that can learn and 

distinguish small or uncommon objects, we selected unweighted average accuracy as our 

evaluation metric. 

 On S3DIS and Paris-Lille-3D data sets, three metrics, including per-class intersection over 

union (IoU) (Wang et al., 2019), mean IoU (mIoU) of each class (Wang et al., 2019), and OA 

were employed to quantitatively evaluate the performance of our method. IoU evaluates per-

class segmentation result, while mIoU can reflect the average segmentation result considering 

all semantic classes. 
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3.2.3 Ablation Studies and Analysis 

Table 3.2: Ablation studies on ScanNet test set 

Ablation studies Avg (%) 

                                      Aggregation methods 

Base model 57.8 

TGNet (with max pooling) 61.6 

TGNet (with max + parametric weighted average pooling) 62.2 

                                              CRFasRNN 

TGNet (without CRF) 59.7 

CRFasRNN (1 iteration) 61.4 

CRFasRNN (2 iteration) 62.2 

CRFasRNN (5 iteration) 61.0 

                               Number of nearest neighbours 

K=8 56.8 

K=16 60.0 

K=24 60.5 

K=32 62.2 

In order to verify the effectiveness of our proposed aggregation method, CRFasRNN, and 

determine the number of nearest neighbours, we conduct several ablation studies on ScanNet 

test data set (Dai et al., 2017) and show their results in Table 3.2. 

1) Ablation Test of Aggregation Methods: Our base model is PointNet++ (Qi et al., 2017), 

which achieves 57.8 % unweighted average accuracy. To demonstrate the effectiveness of our 

proposed aggregation method in TGNet, we test two different aggregation methods: max 

pooling and max and parametric weighted average pooling. Specifically, we only replace the 
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max and parametric weighted average pooling in TGConv with the max operator while keeping 

the rest unchanged in our TGNet. We can see that the average accuracy of our TGNet is 0.8% 

higher than the max pooling aggregation method, which shows that our max and parametric 

weighted average pooling has more advantages in discriminative feature learning than the max 

operator. Because max operator only considers the most representative features, however, the 

remaining features are actually contributed differently to feature learning. Our proposed 

aggregation method not only consider the most representative features but also learn the 

remaining features based on their spatial location and adapt learned features via parameter 

optimization. Compared with the base model, our TGNet improves 4.4% average accuracy in 

semantic voxel labeling task. 

2) CRFasRNN: CRF is commonly used to improve the segmentation results by adding 

smoothness constraints between points which have similar features. In GACNet (Wang et al., 

2019), graph attention convolution (GAC) is applied to process the finest scale points in the 

last layer. However, due to the computation limitation, we cannot apply TGConv to the same 

layer. Thus, in the last layer, CRF in our framework plays a similar role as GAC to consider 

weights in more relevant parts. To experimentally verify its effectiveness in our model, we add 

CRFasRNN layer in the last layer of our TGNet using different iterations. Specifically, we use 

the Gaussian kernels from (Zheng et al., 2015) for the pairwise potentials of CRF. The testing 

results on the ScanNet test data set are also provided in Table 3.2 for comparing convenience. 

We can see that, within the integration of CRFasRNN layer, the average accuracy of semantic 

segmentation result is improved about 1.8% compared with TGNet without CRFasRNN layer. 

With two iterations, the CRFasRNN has basically converged, and more iterations do not result 

in considerably increased accuracy. Thus, in our TGNet, the iteration number is set to 2. 

3) Effect of the Number of Nearest Neighbours: We also study the number of nearest 

neighbours k chosen in TGNet, where the results are provided in Table 3.2. The number of 

nearest-neighbours k is analogous to the size of the receptive field in the common convolution. 

32 is the optimal choice, achieving the 62.2% unweighted average accuracy, among 8, 16, 24, 

and 32-nearest neighbours. The higher number of nearest neighbours is not tested due to the 

limitation of our computation capability. 
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3.2.4 Segmentation Results 

Semantic Voxel Labeling on ScanNet: There are 1201/312 scenes in ScanNet for 

training/testing our TGNet. The framework and implementation details of this network are 

depicted in Figure 3.3. The input to the network is 4096 points with XYZ information. The 

sampling point in each layer is: 1024, 512, 64, 16, and the number of nearest neighbours is 

experimentally set to 32. Due to the limitation of computation capability, the TGConv is only 

applied in these subsampled points. We use max and parametric weighted pooling in our 

TGConv filters. As for the MLP layers, we use 1 × 1 convolution kernels to process the 

extracted features. The training epoch is set to 200.  

Table 3.3 lists quantitative results of our semantic segmentation on a voxel-basis for 20 

classes. Our method achieves the highest unweighted accuracy of 62.2%. Most objects can be 

correctly labeled, except picture, cabinet, door, window, counter, and desk objects. These six 

objects only occupy a limited ratio of the whole scene, or share a similar shape with other 

objects, thus their poor segmentation results reduced the unweighted average accuracy. 

Compared with several existing methods, e.g.,  ScanNet (Dai et al., 2017), Scan-Complete (Dai 

et al., 2018), 3DMV (Dai and Niesner, 2018), Recurrent Slice Networks (Huang et al., 2018), 

PointNet (Qi et al., 2017), FCPN (Rethage et al., 2018), PointNet++ (Qi et al., 2017), and 

Matter-port3D (Chang et al., 2017), our approach learns geometry features hierarchically. This 

is crucial for understanding scenes at different scales and labeling objects with different sizes. 

Although PointNet++ (Qi et al., 2017) learns hierarchical and geometry features at different 

scales, the geometric coordinates are not applied in defining their convolutions. Therefore, its 

performance on small or uncommon objects is suboptimal. We can note that the improvement 

of our TGNet mainly comes from uncommon or shape-similar objects, e.g., sofa, curtain, and 

window. Besides, our framework is based on PointNet++ (Qi et al., 2017), we have tested their 

published code in our own computer on this data set and achieved 57.8% unweighted accuracy, 

shown in Table 3.2. This can further demonstrate the effectiveness of our method. 
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Table 3.3: Semantic voxel label prediction accuracy (%) on ScanNet test scenes 

Method Of the 

scenes 

ScanNet Scan-

Complete 

3DM

V 

 

Recurrent 

Slice 

Networks 

PointNet 

  

FCPN 

 

PointNet++ Matter-

port3D  

Ours 

Wall 38.8 70.1 87.2 60.4 79.2 69.4 87.7 89.5 78.8 79.7 

Floor 35.7 90.3 96.9 95.0 94.1 88.6 96.3 97.8 92.6 96.6 

Cab 2.4 49.8 44.5 54.4 31.3 5.0 52.1 39.8 91.1 46.6 

Bed 2.0 62.4 65.7 69.5 56.0 18.0 65.9 80.7 60.6 81.1 

Chair 3.8 69.3 75.1 79.5 65.0 35.9 81.6 86.0 20.7 82.2 

Sofa 2.5 75.7 72.1 70.6 55.4 32.8 76.0 68.3 28.4 85.3 

Table 3.3 68.4 63.8 71.3 51.0 32.8 67.6 59.6 14.4 64.8 

Door 2.2 48.9 13.6 65.9 3.0 0.0 27.5 16.6 14.7 29.0 

Wind 0.4 20.1 16.9 20.7 8.8 0.0 12.5 23.7 0.0 36.9 

Bkshf 1.6 64.6 70.5 71.4 53.0 3.2 81.0 84.3 1.0 83.5 

Pic 0.2 3.4 10.4 4.2 1.0 0.0 1.8 0.0 7.5 0.0 

Cntr 0.6 32.1 31.4 20.0 22.7 5.1 31.6 37.6 23.8 33.0 

Desk 1.7 36.8 40.9 38.5 34.5 2.6 58.5 66.7 54.0 42.2 

Curt 0.7 7.0 49.8 15.2 6.8 0.0 6.1 48.7 85.4 69.3 

Fridg 0.3 66.4 38.7 59.9 37.9 0.0 54.7 54.7 6.8 60.6 

Show 0.04 46.8 46.8 57.3 29.9 0.0 48.0 85.0 20.2 84.9 

Toil 0.2 69.9 72.2 78.7 54.2 0.0 86.7 84.8 5.1 89.4 

Sink 0.2 39.4 47.4 48.8 34.8 0.0 53.5 62.8 27.5 70.6 

Bath 0.2 74.3 85.1 87.0 49.4 0.2 79.1 86.1 18.3 89.4 

other 2.9 19.5 26.9 20.6 19.0 0.1 30.2 30.7 16.6 15.7 

avg - 50.8 52.8 54.4 48.4 19.9 54.2 60.2 33.4 62.2 
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Semantic Segmentation on S3DIS: Although there are six labeled indoor areas in S3DIS 

data set, for a principled evaluation, the Area 5 is selected as our testing set and the rest is used 

to train our TGNet (Qi et al., 2017; Tchapmi et al., 2017; Landrieu and Simonovsky, 2018; Ye 

et al., 2018; Wang et al., 2019; Wang et al., 2019). Notably, Area 5 is not in the same building 

as other areas, and there exist some differences between the objects in Area 5 and other areas. 

This across-building experimental setup is better for measuring the model’s generalizability, 

while also brings challenges to the segmentation task.   

The input to the network is 4096 points with nine-dimension features in training and testing 

our model. The sampling point in each layer is 1024, 256, 128, 64, and the number of nearest 

neighbours is experimentally set to 16. The TGConv is only applied to the above layers. 

Because the S3DIS has larger data than ScanNet and we have limited computation capability, 

we replace the aggregation function as max pooling operation. The other experimental setting 

is the same as the ScanNet framework. The training epoch is set to 100.  

The quantitative evaluations of the experimental results are provided in Table 3.4. We can 

see that our TGNet achieves the best OA than other competitive methods, e.g., PointNet (Qi et 

al., 2017), SegCloud (Tchapmi et al., 2017), 3P-RNN (Ye et al., 2018), SPG (Landrieu and 

Simonovsky, 2018), DGCNN (Wang et al., 2019), and GACNet (Wang et al., 2019). As the 

convolution weights of TGConv are assigned according to not only the spatial positions but 

also the geometric attributes of the neighbouring points, the proposed TGNet is able to capture 

the discriminative feature of point clouds even though the spatial geometry is lost or weak. 

However, our mIoU is lower than the result of GACNet (Wang et al., 2019). We guess the 

main reason is that they applied GAC in the first and last layers which have 4096 points and 

thus acquired more accurate per-point features for segmentation.  

In Figure 3.4, semantic segmentation results of S3DIS within 6 representative scenes are 

presented. Compared to groundtruth, most areas can be accurately predicted. But in the 

connected area of several different objects, the predicted boundary is unclear and blurred. This 

is mainly due to the limited receptive field of TGConv constrains its geometric feature learning 

ability to differentiate connected objects. 
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Table 3.4: OA (%) and mIoU (%) on S3DIS data set.  

 PointNet SegCloud 3P-RNN  SPG DGCNN GACNet Ours 

OA - - - 86.4 59.8 87.8 88.5 

mIoU 41.1 48.9 53.4 58.0 51.5 62.9 57.8 

Ceiling 88.8 90.1 95.2 89.4 93.0 92.3 93.3 

Floor 97.3 96.1 98.6 96.9 97.4 98.3 97.6 

Wall 69.8 69.9 77.4 78.1 77.7 81.9 78.0 

Beam 0.1 0.0 0.8 0.0 0.0 0.0 0.0 

Column 3.9 18.4 9.8 42.8 12.2 20.4 9.3 

Window 46.3 38.5 52.7 48.9 47.8 59.1 57.0 

Door 10.8 23.1 27.9 61.6 39.8 40.9 39.4 

Chair 52.6 75.9 76.8 84.7 67.4 78.5 83.4 

Table 58.9 70.4 78.3 75.4 72.4 85.8 76.4 

Bookcase 40.3 58.4 58.6 69.8 23.2 61.7 60.6 

Sofa 5.9 40.9 27.4 52.6 52.3 70.8 41.8 

Board 26.4 13.0 39.1 2.1 39.8 74.7 58.7 

Clutter 33.4 41.6 51.0 52.2 46.6 52.8 55.3 
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Figure 3.4: Semantic segmentation results of S3DIS. 

Semantic Segmentation on Paris-Lille-3D: This data set is composed of three files, 

including Lille1, Lille2, and Paris, and labeled with ten classes. The first unclassified class will 

be ignored during training and test. We split the Lille1 data set into two equal folds as Lille1-

1 and Lille1-2. The Lille1-1, Lille2, and Paris three folds are treated as training data sets and 

the Lille1-2 is used as testing data set. To prepare our training data following PointNet (Qi et 

al., 2017) and PointCNN (Li et al., 2018), we first split the data set along the XOY plane and 

then sampled them into 5 m × 5 m blocks with a 0.1m buffer area on each side. Points lying in 

the buffer area are regarded as the contextual information and are not linked to the loss function 

for model training or class prediction. In addition, points in each block were sampled into a 

uniform number of 2048 based on the point density and our computation capability.  
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Table 3.5: OA (%) and mIoU (%) on Paris-Lille-3D data set 

 PointNet  PointNet++  DGCNN Ours 

OA 93.9 88.7 96.9 97.0 

mIoU 40.2 36.1 62.5 68.2 

Ground 97.5 92.0 98.5 97.9 

Building 91.3 79.4 95.2 94.9 

Pole 26.5 27.9 57.6 58.8 

Bollard 6.3 27.6 52.1 69.8 

Trash can 9.0 0.4 42.4 63.8 

Barrier 8.5 5.4 35.6 35.9 

Pedestrian 4.4 1.8 18.6 38.4 

Car 74.3 68.0 93.1 91.7 

Natural 44.0 22.3 69.2 62.4 

 

The sampling point in each layer is 2048, 1024, 512, 256, and the number of nearest 

neighbours is experimentally set to 12. The TGConv is also only applied to the above layers. 

Due to the limitation on computation capability, we also use the max pooling operation as our 

aggregation function in TGConv. The other experimental setting is the same as the ScanNet 

and S3DIS framework. The training epoch is set to 100.  

The quantitative evaluations of the experimental results are provided in Table 3.5. In 

general, our performance is on par with or better than other competitive algorithms, e.g., 

PointNet (Qi et al., 2017), PointNet++ (Qi et al., 2017), and DGCNN (Wang et al., 2019). 

Notably, most objects, such as bollard, car, building, and vegetation are fragmented and 

incomplete due to the mutual occlusion among points. However, our TGNet can still learn to 

capture their discriminative features for segmentation owing to the powerful structured feature 

learning capability of TGConv.  
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Figure 3.5: Comparison semantic segmentation results of DGCNN and TGNet.  

Figure 3.5 shows comparison semantic segmentation results of DGCNN (Wang et al., 

2019) and TGNet on Paris-Lille-3D data set. Compared with ground truth, DGCNN and TGNet 

can segment most points correctly. But there exist some differences between these two results. 

In the black rectangle, DGCNN misclassified natural points as building points. In our 

segmentation results, these points were correctly labeled. In the yellow rectangle, there have 

five objects: signage, natural, car, trash can, and ground. DGCNN classified the natural points 

as barrier, and trash can as car. These incorrect segmentations did not appear in our TGNet 

results. Although there have limited natural points predicted wrongly as signage. Thus, we 

conclude that the exploitation of geometric information in TGNet helps the model to 

distinguish cluttered objects and shape-similar objects. 

3.2.5 Optimizer, Model Size, Memory Usage, and Timing 

The proposed method was implemented with Python 3.5 and TensorFlow 1.4 (Abadi et al., 

2015) on one GTX 1080ti GPU. We use ADAM optimizer (Kingma and Ba, 2014) with an 

initial learning rate of 0.001, batch size 12 for the training of our three models. Parameter 

number and running time are listed in Table 3.6. The model for ScanNet semantic voxel 

labeling with 4096 input points has 4.32 million parameters for TGNet without CRF layer, and 
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8.54M parameters for TGNet. TGNet without CRF layer runs 0.058/0.064 s/batch for 

training/testing, while TGNet runs 0.064/0.068 s/batch for training/testing. 

Table 3.6: Parameter number and running time comparisons 

Method # Parameters (million) Time (second) 

Training Testing 

TGNet (without 

CRFasRNN) 

4.32 0.058 0.064 

TGNet 8.54 0.064 0.068 

 

3.3 Discussion 

We have tested our TGNet in both indoor and outdoor environments, where the indoor data 

were acquired by RGB-D camera and the outdoor data were collected by MLS. The main 

differences between the above two data sets are the point density and their distribution. Points 

in indoor scenes are distributed uniformly, while points in outdoor scenes are distributed 

unevenly and sparsely. 

However, the OA (97.0%) in Paris-Lille-3D MLS dataset is much higher than that (88.0%) 

in S3DIS indoor dataset. We conclude two main reasons for this difference: first, indoor scenes 

have strong occlusions and tight arrangements of common objects (Qi et al., 2018); second, 

compared with outdoor scenes, some common objects in indoor scenes have similar shapes 

and features, thus are hard to differentiate. For example, table and chair, door and window, 

these object pairs are difficult to distinguish, and they occupy a certain ratio among the whole 

points. But in outdoor scenes, shape-similar objects are rare. Although, there are sign-like 

objects (e.g., traffic sign and billboard), they only occupy limited ratio among the whole points. 

Based on our experiments, we propose two suggestions when dealing with these two 

different data sets. For sparse and unevenly distributed MLS data, hierarchically applying 

convolution in the finest scale points can extract and learn a comprehensive geometric feature. 

Because geometric information of objects may be severely lost during multiscale sampling. As 
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for evenly distributed RGB-D data, conducting convolution in multiple scales can exploit both 

local and global features. This can also reduce the computation cost with guaranteed 

segmentation performance. 

3.4 Chapter Summary 

In this chapter, the 3D point cloud segmentation problem was addressed in both indoor and 

outdoor environments. A novel geometric graph convolution TGConv, which is defined as 

products of local neighbour point features with geometric features, was proposed. Such 

geometric features are extracted from local coordinates expressed by a family of Gaussian 

weighted Taylor kernel functions. This operation can explore the high-level geometric 

correlations among local neighbours to improve TGConv performance in semantic 

segmentation. Besides, a parametrized pooling operation, composed of the max and a learnable 

distanced-based weight function for feature aggregation, were introduced. Based on that, an 

end-to-end geometric graph convolution architecture TGNet was constructed on the graph 

representation of point clouds. It employs a multiscale hierarchical architecture by operating 

TGConv on neighbours at multiple scales and a CRF layer combined within the output layer 

to further improve the segmentation result.  

The experimental results on three different data sets demonstrate that the proposed method 

achieves 62.2% average accuracy on ScanNet, 57.8% and 68.2% mIoU on S3DIS and Paris-

Lille-3D data sets. Quantitative comparison results with several related methods show that our 

TGNet is more accurate in semantic labeling and has stronger geometric feature expressiveness 

for 3D point clouds. However, our method still suffers one limitation in multi-object connected 

area labeling, which is mainly caused by the limited receptive field for TGConv. Thus, how to 

increase the receptive field and reduce the computation cost will be studied in the future to 

further improve our algorithm performance.  
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Chapter 4  

3D Indoor Object Detection 

This chapter details 3D object detection algorithm in indoor environments. The background 

of 3D object detection is first introduced in Section 4.1. The proposed framework, including a 

backbone network for semantic segmentation, a centralization module, and a relation learning 

module, is then described. The backbone network is constructed based on the algorithm 

proposed in Chapter 3. Experimental results with corresponding datasets and evaluation 

metrics are described in Section 4.2. Discussions are presented in Section 4.3. Section 4.4 

provides a summary of this chapter. 

This chapter is mainly a paper published in a journal and only  minor format changes have 

been made in order to make them to fit into the format of the entire thesis. © [2020] Elsevier. 

Reprinted, with permission, from [Li, Y., Ma, L., Tan, W., Sun, C., Cao, D., Li, J. 2020. 

GRNet: Geometric relation network for 3D object detection from point clouds, ISPRS Journal 

of Photogrammetry and Remote Sensing, 165, 43-53.] 

4.1 Algorithm Description 

The primary problems of 3D object detection are: (1) points distribute sparsely and 

irregularly (Qi et al., 2017), (2) geometric patterns vary enormously (Ren and Sudderth, 2018), 

and (3) points locate on the surface of objects, far from their centre (Qi et al., 2019). These 

challenges lead to the complexity of localization and detection of 3D objects in real scenes. 

When constructing our detection framework, we face two selections: one-stage detection and 

two-stage detection. One-stage detection (Yang et al., 2019) generates bounding boxes directly 

from the extracted point set features without any post-processing steps for refinement. Two-

stage detection methods (Hou et al., 2019; Qi et al., 2019; Shi et al., 2019; Yang et al., 2019) 

mainly consist of two steps: proposal generation and bounding box refinement. One-stage 

detection is efficient and straightforward but highly relies on the performance of the proposed 

algorithms. If some difficult objects or geometric-salient objects that could be clearly 
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distinguished are missed, they have no chance to retrieve (Qi et al., 2019). As for two-stage 

detection, it considers sufficient possible candidates in the first step and refines the coarse 

results in the second step. This can sometimes avoid miss detection and thus commonly has 

higher detection performance and computation cost than the former (Yang et al., 2019). In 

order to achieve a discriminate performance, we select a two-stage pipeline to construct our 

model and try to reduce the computation burden. 

Different from previous work that inputs RGB-D data as images to 2D CNNs for detection 

(Gupta et al., 2014), we detect 3D objects from point clouds lifted from depth maps. Geometric 

attributes and topological structure of 3D objects can be exploited using such data 

representation (Xu et al., 2018; Li et al., 2020). For example, plane, curve, line, and corner are 

more easily parameterized and described by 3D learners. In this paper, we introduce an 

efficient and novel bottom-up two-stage 3D object detection framework from point clouds in 

indoor scenes, termed geometric relation network (GRNet). We mainly focus on three 

challenges to improve 3D detection performance: 

• Bottom-up feature learning of representative points. Only certain points are selected as 

candidate points for proposal selection. Their intra-object and inter-object features are 

exploited. 

• Centralization of object surface points. 3D object centres are likely to be empty without 

any point (Qi et al., 2019). We centralize surface points for more accurate bounding 

box prediction. 

• Object relation learning. Relation features among 3D proposals can attribute to 

bounding box parameter refinement. 

To encode the local geodesic information (e.g., coarse local shape) for representative 

points, we mimic TGNet (Li et al., 2020) to explore geodesic correlations and attributes among 

local neighbours. We observe that, in indoor scenes, the topological structure of points in the 

local region has limited geometric variation. For example, most object surfaces (e.g., beds, 

desks, and tables) are flat or in regular shape. Thus, we replace the Taylor-Gaussian geometric 

function with exponentially trilinear interpolation function to approximate local surface 
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features. We term this new convolution operation as GeoConv. GeoConv is similar to TGConv, 

but simpler and has fewer parameters. 

Our bottom-up backbone framework is constructed based on an encoder-decoder structure, 

with four-layer down-sampling and two-layer up-sampling. To extract both intra-object and 

inter-object features, GeoConv is applied to the first two down-sampling layers to exploit the 

intra-object geometric features. We leverage PointNet (Qi et al., 2017) in the last two down-

sampling layers to extract inter-object features. These features are then propagated and 

concatenated to two up-sampling layers. The output of the backbone network is the selected 

representative points and their propagated bottom-up features. 

Due to the empty object centre, VoteNet (Qi et al., 2019) proposes a Hough voting module 

to regress the surface points to its centre. Such operation has been proved effective in 3D object 

detection. However, the scaling problem is not considered, which results in the sub-optimal 

regression for small or vertical objects. We follow VoteNet (Qi et al., 2019) to propose a 

centralization module with a scalable loss function. By adding a scaling control parameter in 

defining centralization loss, object points with a different pattern are centralized in a compact 

way, which further increases the bounding box prediction results. 

Proposals are sampled from these shifted representative points. Their features are learned 

and aggregated from their nearest neigh- boring points that most are from the same object. 

Many methods (e.g.,(Yang et al., 2018; Qi et al., 2019; Shi et al., 2019)) predict bounding 

boxes using such aggregated intra-object features. However, the relation feature between 

proposals is not exploited. Thus, we propose a simple relation learning module to learn both 

intra- object and inter-object features to increase the prediction results. Only features from a 

certain number of nearest neighbours for each proposal are considered for relation feature 

learning. These neighbours are searched based on the predicted bounding box centre using 

aggregated intra-object features. Then bounding box parameters are generated as the additive 

sum of prediction results from relation-based inter-object features and aggregated intra-object 

features. 
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4.1.1 Backbone Network  

The backbone network is proposed based on the following considerations: (1) intra-object 

attributes extraction, such as geometric shape, surface variation, and correlation between 

closed points; (2) inter-object attributes exploitation, e.g., relation features between objects; 

(3) feature learning and aggregation in a hierarchical way, which can extract point features in 

different scales; (4) representative points selection, these points are selected to represent the 

input scene to reduce the computation cost. To meet the above requirements, we construct a 

bottom-up hierarchical deep framework using a newly defined geometric CNN, GeoConv. The 

following parts introduce the details of the proposed backbone network.  

Although TGNet (Li et al., 2020) proposed the TGConv to explore geodesic correlations 

and attributes among local neighbours for each point. However, it introduces a high number of 

parameters. Besides, we observe that, in indoor scenes, most points and their local neighbours 

lie on planes or regular shape surfaces, which can be described by a simplified parameterized 

geometric function. To reduce the number of parameters and exploit the geodesic intra-object 

feature of indoor objects, we propose a new geometric CNN, termed GeoConv. GeoConv is 

similar to TGConv, but simpler and focuses on regular and simplified geometric 

characteristics. 

Given a 3D point cloud 𝑃 = {𝑝1, … , 𝑝𝑛} ⊆ 𝑅3  according to their Euclidean nearest 

neighbours, a graph 𝐺 =  (𝑉, 𝐸) is constructed. 𝑉  =   {1, 2, . . . , 𝑛}  and 𝐸 ⊆   𝑉  × 𝑉 denote 

vertices and edges respectively. The neighbour set for each vertex 𝑥 is denoted as 𝑦 ∈ Ν(𝑥). 

Let ℎ = {ℎ1, ℎ2, . . . , ℎ𝑁} be a set of input vertex features, each feature ℎ𝑁 ∈ 𝑅𝐹 corresponds to 

a graph vertex 𝑖 ⊆ 𝑉 . F represents each vertex’s feature dimension. The output ℎ𝑦
′  of 

GeoConv for each vertex is derived as follows: 

ℎ𝑦
′  =  𝑚𝑎𝑥 (𝑔𝜃(𝐺(𝒖(𝑥, 𝑦)) ∙ ℎ𝑦  +  ℎ𝑦)) ,   𝑦 ∈ Ν(𝑥) (4.1) 

where 𝐺(∙)  is a geometric mapping function: 𝑅3 →  𝑅 , which maps the local Euclidean 

coordinates 𝒖(𝑥, 𝑦)  =  𝒖(𝑦) − 𝒖(𝑥)  between each vertex and its neighbours’ Euclidean 

coordinates to a geometric parameter. Then the product of 𝐺(𝒖(𝑥, 𝑦)) and feature ℎ𝑦 is added 
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with ℎ𝑦. 𝑔𝜃(·) is the learnable feature mapping function: 𝑅𝐹 →  𝑅𝐾, 𝑚𝑎𝑥(·) denotes the max 

aggregation function.  

 As mentioned in TGConv (Li et al., 2020), a family of parametrized Taylor-Gaussian filters 

were proposed to interpolate arbitrary values at the vertexes of a graph and capture geometric 

spatial information in a local region. These filters are defined as products of local neighbour 

point features with geometric features extracted from local coordinates expressed by a family 

of Gaussian weighted Taylor kernel functions. TGConv is suitable for both indoor and outdoor 

objects with variable geometric shapes. However, in indoor scenes, common objects have 

regular geometric shapes. As mentioned in SpiderCNN (Xu et al., 2018), a family of 

parameterized trilinear interpolation based kernels have been demonstrated to be effective in 

extracting geometric features. To reduce the number of parameters but also maintain the 

kernel’s expression ability, an exponential-based trilinear interpolation function is used in this 

paper as the geometric mapping function 𝐺(𝑢(𝑥, 𝑦)) with learnable parameters as: 

𝐺(𝑢(𝑥, 𝑦)) = 𝐺(∆𝑥, ∆𝑦, ∆𝑧)

= 𝑒(𝜎0
𝑇+ 𝜎1

𝑇∆𝑥+𝜎2
𝑇∆𝑦+𝜎3

𝑇∆𝑧+𝜎4
𝑇∆𝑥∆𝑦+ 𝜎5

𝑇∆𝑥∆𝑧+𝜎6
𝑇∆𝑦∆𝑧+𝜎7

𝑇∆𝑥∆𝑦∆𝑧) 
(4.2) 

where 𝜎𝑖
𝑇(𝑖 = 0, … ,7)  is a 1 × 1  learnable parameter. By varying these parameters, 

𝐺(𝑢(𝑥, 𝑦)) can approximate different geodesic values for each vertex 𝑥 using its neighbour set 

𝑦 ∈ Ν(𝑥).  

 Because a multi-layer perception (MLP) can approximate an arbitrary continuous function 

and retains weight sharing as standard convolution (Xu et al., 2018). We use an shared MLP 

as our feature mapping function 𝑔𝜃(·) to map the addition of the original input feature ℎ𝑦 and 

the products of ℎ𝑦 with a geometric feature 𝐺(𝑢(𝑥, 𝑦)) to a different feature dimension: 𝑅𝐹 →

 𝑅𝐾. Max aggregation, which can exploit the most effective features and adaptively explore 

related neighbour features (Qi et al., 2017), is then applied to aggregate the learned new feature 

ℎ𝑦
′ .  

 A good backbone framework should meet the above four requirements. In VoteNet (Qi et 

al., 2019), PointNet++ (Qi et al., 2017) is chosen as the backbone network, which is a 

hierarchical deep framework with representative point selection. However, the intra-object and 
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inter-object features are not fully exploited. We construct our backbone framework based on 

PointNet++, but also explore these two features. 

 Due to the high density of point clouds in the first two downsampling layers, the extracted 

local neighbours for each point still construct part of the object surface. As shown in Figure 

4.1, we apply GeoConv in these two upsampling layers to extract intra-object features. When 

points are sampled sparsely, especially in the last two encoder layers, geometric attributes (e.g., 

shape) among extracted neighbours are weakened but the inter-object features (e.g., position 

or layout) are enhanced. Because using GeoConv in all four encoder layers cannot extract the 

inter-object features, it sharpens the detection performance. Thus, in the last two 

downsampling layers, we adopt PointNet (Qi et al., 2017) to extract inter-object features. Then 

these features are concatenated and interpolated in the following two upsampling layers using 

PointNet. The output of this backbone is a set of representative points {𝑟𝑖}𝑖=1
𝑀  where 𝑟𝑖 =

[𝑥𝑖; 𝑓𝑖] with 𝑥𝑖 ∈ 𝑅3 and 𝑓𝑖 ∈ 𝑅𝐶. 

 

Figure 4.1: Details of our proposed backbone network. 

4.1.2 Centralization Module 

Due to depth sensors mainly capturing surface points of objects, there are limited points 

or no points around object centres. Thus, existing point-based networks have a problem in 
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extracting scene context around the object centre. To solve this, VoteNet (Qi et al., 2019) 

proposed a Hough voting module to generate new points (votes) that lie close to the object 

centre. Votes are generated from features of representative points. Then these votes can be 

grouped and aggregated with a learnable module to generate proposals with enough context 

information. A vote loss function is introduced to regress the displacements of votes based on 

the Euclidean distance. This network has been demonstrated to be effective in 3D object 

detection. However, the scaling problem is not considered in defining their vote loss function. 

Large objects (i.e., bed) can regress better than small objects (i.e., chair) (Qi et al., 2019). To 

improve this, we follow VoteNet to construct our centralization module but introduce a scaling 

control parameter in defining the loss function. 

Given a set of representative points {𝑟𝑖}𝑖=1
𝑀 , the centralization module generates offset 

from each representative point position to its centre independently. This module is composed 

of a shared MLP module with three fully connected layers, ReLu and batch normalization. The 

input is the feature 𝑓𝑖 ∈ 𝑅𝐶 of representative points, and the output is the 3D position offset 

∆𝑥𝑖 ∈ 𝑅3 in the Euclidean domain and a feature offset ∆𝑓𝑖 ∈ 𝑅𝐶. Thus, this module generates 

𝑐𝑖 = [𝑦𝑖; 𝑔𝑖] from the representative point 𝑟𝑖 and has 𝑦𝑖 = 𝑥𝑖 + ∆𝑥𝑖 and 𝑔𝑖 = 𝑓𝑖 + ∆𝑓𝑖. 

The predicted 3D offset ∆𝑥𝑖 is supervised by the following loss function: 

𝐿𝑜𝑓𝑓𝑠𝑒𝑡−𝑟𝑒𝑔 =
1

𝑁𝑝𝑜𝑠
∑

‖∆𝑥𝑖 − ∆𝑥𝑖
∗‖

𝛾
1[𝑟𝑖 𝑜𝑛 𝑜𝑏𝑗𝑒𝑐𝑡]

𝑖
 

(4.3) 

where 1[𝑟𝑖 𝑜𝑛 𝑜𝑏𝑗𝑒𝑐𝑡] represents whether a representative point 𝑟𝑖  is on an object surface, 

𝑁𝑝𝑜𝑠 is the total number of representative points on object surface. ∆𝑥𝑖
∗ is the ground truth 

displacement from the representative point position 𝑥𝑖 to the bounding box centre of the object 

it belongs to. 𝛾 is a scale control parameter, which is set to 0.1 in our experiments. Because the 

offset of different object points varies. Thus, we add a scaling control parameter to enlarge the 

distance-based regression loss for small objects. Experimental results demonstrate the effective 

of such scale control parameter. 
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4.1.3 Proposal Selection and Feature Pooling 

The centralization module moves the object surface points to the object centre compactly, 

while background points still distribute sparsely. Thus, proposal selection should consider such 

density variation. To ensure the proposal can represent enough possible objects, the sampling 

and clustering methods are selected according to spatial proximity. A subset of 𝐾 points are 

sampled using farthest point sampling (FPS) (Qi et al., 2017) based on the representative point 

position {𝑥𝑖}i=1
𝑀  in 3D Euclidean space. The index of these points is then used to find proposals 

in shifted representative points {𝑦𝑖}𝑖=1
𝑀 , to get {𝑝𝑘}𝑘=1

𝐾 . 

After that, we cluster 𝑁 group points for each proposal by searching neighbouring points 

𝑝𝑘
(𝑛)

 in {𝑦𝑖}𝑖=1
𝑀 , if ‖𝑝𝑘

(𝑛)
− 𝑝𝑘‖ ≤ 𝑟  for 𝑛 = 1, … 𝑁 . The corresponding feature for each 

grouped point is denoted as 𝑔𝑘
(𝑛)

. Ball query searching (Qi et al., 2017) is adopted as the nearest 

neighbour finding method, which only considers neighbouring points in a fixed radius 𝑟. 𝑁 is 

set to 16 and the 𝑟 is set to 0.2 according to experimental results. Although smaller radius can 

include cleaner neighbours (from the same object), it loses context information from 

background points. Increasing 𝑟 can contaminate neighbours because more nearby object and 

clutter points are included. 

For each proposal, we use a shared MLP for neighbouring points’ feature mapping. The 

max operation is applied for feature aggregation: 

𝐹𝑘 =
𝑚𝑎𝑥

𝑛 = 1, … 𝑁{𝑀𝐿𝑃([𝑟𝑘
(𝑛)

; 𝑔𝑘
(𝑛)

])} (4.4) 

where 𝑟𝑘
(𝑛)

= 𝑝𝑘
(𝑛)

− 𝑝𝑘 is the relative coordinate between neighbouring points to its proposal, 

and 𝐹𝑘 ∈ 𝑅(3+𝐶). This aggregated output feature represents the intra-object attribute, because 

neighbouring points mainly come from the same object. 

4.1.4 Object Relation Learning module 

As for discriminate 3D object detection, intra-object feature and inter-object feature are of 

the same importance. The above aggregated proposal feature represents the intra-object feature 

generated from points that lies on the same object surface. However, in the real scene, there 

exists relationships between objects. To leverage the inter-object feature between co-
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occurrence and locations of objects for better reasoning, we propose an object relation learning 

module. 

We only consider 𝑆 nearest neighbouring proposals for each proposal to leverage their 

relation features. These neighbouring proposals are searched based on the predicted bounding 

box centre position. In this paper, a 3D bounding box is represented as (𝑥, 𝑦, 𝑧, ℎ, 𝑤, 𝑙, 𝜃), 

where (𝑥, 𝑦, 𝑧)  is the object centre coordinates, (ℎ, 𝑤, 𝑙)  is the object size (height, width, 

length), and 𝜃 is the object orientation. Three fully connected layers are applied to predict 

bounding box parameters 𝐵𝑘,1(𝑥𝑘,1, 𝑦𝑘,1, 𝑧𝑘,1, ℎ𝑘,1, 𝑤𝑘,1, 𝑙𝑘,1, 𝜃𝑘,1)  using the intra-object 

feature 𝐹𝑘.  

Each proposal neighbours are searched using the predicted bounding box centre position 

(𝑥𝑘,1, 𝑦𝑘,1, 𝑧𝑘,1). We formulate the relation between a proposal to its neighbouring proposals 

as a region-to-region undirected graph 𝒢 = (𝒱, ℰ) , where 𝒱  =   {1, 2, . . . , 𝑆}   and ℰ ⊆

  𝒱  × 𝒱  denote vertices and edges respectively. The 𝑖 th neighbouring proposal feature is 

denoted as 𝐹𝑖,𝑘. We then seek to learn the relation parameter 𝛼𝑖,𝑘 ∈ 𝑅1×(3+𝐶) (𝑖 = 1, . . 𝑆), and 

the object relation feature 𝐹𝑟𝑘 as follows:  

𝛼𝑖,𝑘 =
exp (𝛼𝑖,𝑘̃ ∗ 𝐹𝑖,𝑘)

∑ exp (𝛼𝑖,𝑘̃ ∗ 𝐹𝑖,𝑘)𝑆
𝑖=1

 
(4.5) 

𝐹𝑟𝑘 = ∑ 𝛼𝑖,𝑘 ∗ 𝐹𝑖,𝑘

𝑆

𝑖=1
+ 𝐹𝑘 

(4.6) 

where 𝛼𝑖,𝑘 ̃  (𝑖 = 1, . . 𝑆) is a 1 ×  (3 + 𝐶) learnable parameter. This newly generated relation 

feature 𝐹𝑟𝑘 is then sent to three fully connected layers for bounding box parameter prediction, 

which is denoted as 𝐵𝑘,2(𝑥𝑘,2, 𝑦𝑘,2, 𝑧𝑘,2, ℎ𝑘,2, 𝑤𝑘,2, 𝑙𝑘,2, 𝜃𝑘,2). The final output of this network 

is the additive sum of 𝐵𝑘,1 and 𝐵𝑘,2. Figure 4.2 illustrates the framework of this module. 
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Figure 4.2: The framework of the object relation learning module 

Following VoteNet (Qi et al., 2019), we use a hybrid of classification and regression 

formulation. For angle prediction, we pre-define 𝑁𝑎 as equally split angle bins and classify the 

proposal angle into different bins. Residual is regressed with respect to the bin value. 𝑁𝑎 is set 

to 12 in our experiments. Finally, the non-maximum suppression (NMS) based on the 

objectness score and semantic classification score is applied to eliminate redundant proposals. 

Specifically, we keep up to 256 proposals during training and testing. 

4.1.5 Loss Function 

To optimize the proposed end-to-end framework, a multi-task loss is applied. It includes a 

centralization loss, a 3D bounding box estimation loss, a semantic classification loss, and an 

objectness loss: 

𝐿𝐺𝑅𝑁𝑒𝑡 = 𝐿𝑜𝑓𝑓𝑠𝑒𝑡−𝑟𝑒𝑔 +  𝜆1𝐿𝑏𝑜𝑥 + 𝜆2𝐿𝑠𝑒𝑚−𝑐𝑙𝑠 + 𝜆3𝐿𝑜𝑏𝑗−𝑐𝑙𝑠 (4.7) 

where 𝜆1 = 1,  𝜆2 = 0.1and 𝜆3 = 0.5 . These parameters are used to weight the losses to 

maintain that they have similar scales. 

𝐿𝑜𝑓𝑓𝑠𝑒𝑡−𝑟𝑒𝑔 is as defined in Section 4.2. As for the last three losses, we follow VoteNet 

(Qi et al., 2019) to construct them. Both the objectness loss and the semantic classification loss 
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are cross-entropy loss, but for two classes and 𝐶 semantic classes, respectively. Only positive 

proposals are considered in calculating the box and semantic losses, which are normalized by 

the total number of positive proposals. Those proposals, whose distances to their nearest 

ground truth centre are less than 0.2m, are defined as positive proposals. For those proposals 

with distance larger than 0.5m are denoted as negative proposals. Those proposals whose 

distances are between these two thresholds are neglected. These distance thresholds are 

determined by experimental results. 

The box loss is composed of the centre regression, heading estimation and size estimation 

sub-losses using L1-smooth loss (Qi et al., 2018): 

𝐿𝑏𝑜𝑥 = 𝐿𝑐𝑒𝑛𝑡𝑒𝑟−𝑟𝑒𝑔 +  0.1𝐿𝑎𝑛𝑔−𝑐𝑙𝑠 + 𝐿𝑎𝑛𝑔𝑙𝑒−𝑟𝑒𝑔 + 0.1𝐿𝑠𝑖𝑧𝑒−𝑐𝑙𝑠 + 𝐿𝑠𝑖𝑧𝑒−𝑟𝑒𝑔 (4.8) 

where centre regression loss 𝐿𝑐𝑒𝑛𝑡𝑒𝑟−𝑟𝑒𝑔 is defined by Chamfer loss (Fan et al., 2017). 

4.2 Experiments 

4.2.1 Experimental Setup and Implementation 

Dataset. The performance of our method is evaluated on two indoor datasets: SUN-RGBD 

(Song et al., 2015) and ScanNetV2 (Dai et al., 2017). SUN-RGBD is collected using multiple 

different RGB-D cameras with varying resolutions from different indoor scenes. It contains 

5,285 training images and 5,050 testing images, respectively. There are 37 object categories 

labeled with amodal oriented 3D bounding boxes. We report model performance on the testing 

set. Point cloud data are acquired following the method provided by VoteNet (Qi et al., 2019). 

Detection results on the 10 most common categories are reported. 

ScanNetV2 contains 1,201/312 training/testing RGB-D images collected from various 

indoor rooms. These scenes are labeled with 18 object classes for semantic segmentation and 

instance segmentation. Compared with SUN-RGBD dataset, scenes in this dataset are 

annotated with more categories and cover larger areas. Point clouds are sampled from the 

reconstructed meshes. Because the orientation of the bounding box is not annotated, the axis-

aligned bounding boxes are predicted, as in VoteNet (Qi et al., 2019). 

Evaluation Criteria. Following VoteNet (Qi et al., 2019) and 3D-BoNet (Yang et al., 

2019), the average precision metric 𝐴𝑃3𝐷 of 3D detection results is adopted as our evaluation 
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criteria. The predicted bounding box 𝐵𝑝 is treated as a valid detection result only its 3D overlap 

area (IoU) between the predicted bounding box 𝐵𝑝 and the ground truth bounding box 𝐵𝑔𝑡 

exceeds a certain ratio. IoU is calculated using the following evaluation metric: 

𝐼𝑜𝑈 =
𝑎𝑟𝑒𝑎(𝐵𝑝 ∩ 𝐵𝑔𝑡)

𝑎𝑟𝑒𝑎(𝐵𝑝 ∪ 𝐵𝑔𝑡)
 (4.9) 

Predicted bounding boxes with 3D 𝐼𝑜𝑈 results exceeding 0.25 and 0.5 are used to evaluate the 

detection performance for all classes in both two datasets. 

Implementation Details. In our experiments, we implement our model based on VoteNet 

(Qi et al., 2019), an open-source framework for 3D object detection built on the PyTorch 

platform. This framework is composed of three-part: backbone network, Hough voting 

module, and object proposal and classification module. The backbone network is based on 

PointNet++ (Qi et al., 2017), which has several set-abstraction (SA) layers and feature 

propagation (FP) layers with skip connections. In the first two SA modules, we replace the 

PointNet (Qi et al., 2017) with our proposed GeoConv. Our centralization module is similar to 

the Hough voting module, but we replace the vote loss function with our proposed scalable 

loss function. The last module is also replaced by our object relation learning module for 

discriminate object bounding box reasoning and refining. The training epoch is set to 200. 

The general setting of our backbone network for these two datasets are listed in Table 4.1. 

The input number of points, sampling radius, the number of nearest neighbours, and the mlp 

output sizes to each layer are introduced. Most hyper-parameters in the same layer of two 

datasets are similar, only limited parameters are different. Because SUN-RGBD has more 

sparse point density than ScanNetV2, the sampling radius in SUN-RGBD is reduced to 0.1 and 

0.2 in the first two SA layers with the same number of nearest neighbours as 32. Such changes 

can ensure that the GeoConv in the first two layers extract enough intra-object geometric 

information in both two datasets. 
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Table 4.1: General setting of the backbone network on ScanNetV2 and SUN-RGBD datasets 

Layer Backbone 

(Dataset) 

#Point Sampling 

radius (m) 

#neighbours mlp 

SA1 

(GeoConv) 

ScanNetV2 2048 0.2 64 [4,64,64,128] 

SUN-RGBD 2048 0.1 32 [4,64,64,128] 

SA2 

(GeoConv) 

ScanNetV2 1024 0.4 32 [128,128,128,256] 

SUN-RGBD 1024 0.2 32 [128,128,128,256] 

SA3 

(PointNet) 

ScanNetV2 512 0.8 16 [256,128,128,256] 

SUN-RGBD 512 0.8 16 [256,128,128,256] 

SA4 

(PointNet) 

ScanNetV2 256 1.2 16 [256,128,128,256] 

SUN-RGBD 256 1.2 16 [256,128,128,256] 

FP1 

(PointNet) 

ScanNetV2 512 - 3 [512,256,256] 

SUN-RGBD 512 - 3 [512,256,256] 

FP2 

(PointNet) 

ScanNetV2 1024 - 3 [512,256,256] 

SUN-RGBD 1024 - 3 [512,256,256] 

 

4.2.2 Ablation Studies 

To demonstrate the effectiveness and importance of each proposed individual module, 

some ablation studies were conducted on both SUN-RGBD and ScanNetV2 datasets. When 

testing each module, the remaining modules kept unchanged. The followings are the detailed 

evaluation of these modules. 

(1) Contribution of GeoConv in backbone network 

As mentioned in the Section 5.1.2, the backbone network is based on PointNet++ (Qi et 

al., 2017), which has several SA modules and FP modules with skip connections and PointNet 

(Qi et al., 2017) for feature mapping. We replace PointNet in some SA modules with our 

proposed GeoConv to extract geometric intra-object features for representative points. When 

testing the effectiveness of GeoConv, the scaling parameter of centralization loss for 

ScanNetV2 was set to 0.1 and SUN-RGBD was set to 0.2, and the neighbouring number in the 

object relation learning module for both two datasets was set to 3. We found that, as shown in 

Table 4.2, the highest performances for both two datasets were achieved when the PointNet in 



 

 60 

the first two SA modules was replaced by GeoConv while keeping others unchanged. Because 

the GeoConv is mainly focused on the intra-object geometric features learning, with an 

increased sampling ratio, the relation features between those remaining points are increasing. 

The geometric attributes among these points are weakened. Thus, the performance dropped 

when replacing more PointNet layers among SA modules with the GeoConv layer. 

Table 4.2: Contribution of GeoConv in backbone network on ScanNetV2 and  

SUN-RGBD datasets 

 SA1 SA2 SA3 SA4 FP1 FP2 mAP@0.25 (%) mAP@0.5 (%) 

ScanNetV2 SUN-

RGBD 

ScanNetV2 SUN-

RGBD 

PointNet++ 

(Qi et al., 

2019) 

PT PT PT PT PT PT 58.3 57.2 37.8 33.9 

#1GeoConv-

PointNet++ 

GC PT PT PT PT PT 57.6 57.5 36.7 33.7 

#2GeoConv-

PointNet++ 

GC GC PT PT PT PT 59.1 58.4 39.1 34.9 

#3GeoConv-

PointNet++ 

GC GC GC PT PT PT 58.6 57.4 37.7 33.5 

#4GeoConv-

PointNet++ 

GC GC GC GC PT PT 57.7 56.6 36.9 32.9 

Note: #GeoConv-PointNet++: represents the number of  PointNet in PointNet++ replaced by our 

proposed GeoConv in SA modules. PT represents PointNet (Qi et al., 2017), GC means GeoConv. 

(2) Comparison of different scaling parameters 

In this part, we tested different scaling parameters to see their effectiveness. We selected 

0.05, 0.1, 0.15, 0.2 and 0.25 in our experiments, as shown in Table 4.3. The highest results for 

ScanNetV2 with 59.1% mAP@0.25 and 39.1% mAP@0.5 were achieved using 0.1, while the 

best results for SUN-RGBD were accomplished with 58.4% mAP@0.25 and 34.9% mAP@0.5 
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using 0.2. Because SUN-RGBD has more sparse point density than ScanNetV2, the best 

scaling parameter for SUN-RGBD was 0.2. The performances for these two datasets with 

larger or smaller scaling parameters than the parameters with the best results were decreased. 

The reduced scaling parameter leads to a compact grouping, which causes the contamination 

of non-object points in proposal feature pooling. With a larger scaling parameter, the 

aggregated intra-object feature cannot consume enough effective neighbouring features. Thus, 

detection results decreased.  

Table 4.3: Effectiveness of different scaling parameters on ScanNetV2 and 

SUN-RGBD datasets 

Scaling parameter mAP@0.25 (%) mAP@0.5 (%) 

ScanNetV2 SUN-RGBD ScanNetV2 SUN-RGBD 

0.05 57.0 56.7 38.0 34.3 

0.1 59.1 57.3 39.1 33.7 

0.15 57.9 56.9 38.2 34.3 

0.2 58.7 58.4 38.6 34.9 

0.25 58.1 56.6 37.5 33.3 

 

(3) Effectiveness of Object Relation Learning Module 

We also tested the contribution of our proposed object relation learning module on 

ScanNetV2 and SUN-RGBD datasets. As shown in Table 4.4, without (w/o) the relation 

learning module, the detection results dropped 1.4% at mAP@0.25 and 1.7% mAP@0.5 on 

ScanNetV2 and decreased 0.7% mAP@0.25 and 1.8% mAP@0.5 on SUN-RGBD, compared 

to their best results. Relation learning from 3 nearest neighbour proposals achieved the best 

results with 59.1% mAP@0.25 and 39.1% mAP@0.5. An increasing number of neighbouring 

proposals may induce more irrelevant features for bounding box reasoning. Thus, the detection 

performance was weakened. With a reduced number of neighbouring proposals, e.g., 2 
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neighbours, some important relation features are missing. This results in a decreased 

performance. 

Table 4.4: Effectiveness of Object relation learning module on ScanNetV2 and  

SUN-RGBD datasets 

Relation module mAP@0.25 (%) mAP@0.5 (%) 

ScanNetV2 SUN-RGBD ScanNetV2 SUN-RGBD 

w/2nn 57.1 57.4 36.5 34.1 

w/3nn 59.1 58.4 39.1 34.9 

w/4nn 56.8 57.0 36.6 34.4 

w/5nn 57.9 56.9 38.3 32.8 

w/6nn 57.5 56.7 38.0 31.9 

w/o 57.8 57.7 37.3 33.5 

 

4.2.3 Object Detection Results 

(1) ScanNetV2 Detection Results 

Quantitative detection results of ScanNetV2 are listed in Table 4.5. GRNet outperforms 

all previous methods, e.g., 3DSIS Geo (Hou et al., 2019), 3DSIS 5views (Hou et al., 2019), 

and VoteNet (Qi et al., 2019) by at least 0.5% mAP@0.25 and 5.5% mAP@0.5 increases. The 

important improvement mainly comes from mAP@0.5 results. Compared with VoteNet (Qi et 

al., 2019), our method improves the previous state of the art by more than 20.0% AP in the 

category “counter”, 11.0% AP in “desk”, 10.0% AP in “bookshelf”, 7.0% AP in 3 categories 

such as sink, and 4.0% AP in the other 8 categories. As illustrated in the ablation studies, the 

centralization module centralized the surface points in a compact way, which contributes to a 

more effective proposal feature aggregation. The object relation learning module extracted the 

useful nearest neighbours feature for better bounding box reasoning. These two modules 

improve the detection results for mAP@0.5. As for the results at mAP@0.25, GeoConv 
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improves the performance of the representative points’ feature by considering both intra-object 

and inter-object features. Figure 4.3 shows some examples of the detection result. Small and 

shape-similar objects are easy to be mis-detected. There also exists wrong detection in density-

compact areas, e.g., corners. 

Table 4.5: 3D object detection scores per category on the ScanNetV2 (validation) dataset 

 3DSIS 

Geo 

 

3DSIS 

5views 

 

VoteNet 

 

GRNet 

(Ours)  

3DSIS 

Geo 

 

3DSIS 

5views 

 

VoteNet 

 

GRNet 

(Ours) 

 mAP@0.25 (%) mAP@0.5 (%) 

Cab 19.8 12.8 36.3 39.5 5.1 5.7 8.1 9.8 

Bed 69.7 63.1 87.9 88.8 42.2 50.3 76.1 80.3 

Chair 66.2 66.0 88.7 89.2 50.1 52.6 67.2 71.0 

Sofa 71.8 46.3 89.6 88.3 31.8 55.4 68.8 76.0 

Tabl 36.1 26.9 58.8 58.2 15.1 22.0 42.4 44.6 

Door 30.6 8.0 47.3 48.5 1.4 10.9 15.3 20.6 

Wind 10.9 2.8 38.1 32.7 0.0 0.0 6.4 8.9 

Bkshf 27.3 2.3 44.6 47.0 1.4 13.2 28.0 38.2 

Pic 0.0 0.0 7.8 4.9 0.0 0.0 1.3 1.2 

Cntr 10.0 6.9 56.1 63.5 0.0 0.0 9.5 29.7 

Desk 46.9 33.3 71.7 69.8 13.7 23.6 37.5 49.0 

Curt 14.1 2.5 47.2 48.5 0.0 2.6 11.6 18.4 

Fridg 53.8 10.4 45.4 49.1 2.6 24.5 27.8 34.2 

Showr 36.0 12.2 57.1 66.4 3.0 0.8 10.0 13.4 

Toil 87.6 74.5 94.9 94.1 56.8 71.8 86.5 90.1 

Sink 43.0 22.9 54.7 49.7 8.7 8.9 16.8 20.9 

Bath 84.3 58.7 92.1 90.9 28.5 56.4 78.9 82.6 

Ofurn 16.2 7.1 37.2 35.6 2.6 6.9 11.5 15.5 

mAP 40.2 25.4 58.7 59.1 14.6 22.5 33.5 39.1 
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Figure 4.3: Qualitative results of 3D object detection in ScanNetV2. 

(2) SUN-RGBD Detection Results 

Quantitative results in Table 4.6 illustrates the detection performance for all classes on 

SUN-RGBD dataset. GRNet outperforms all previous methods by at least 0.7% mAP@0.25 

increase and 2.8% mAP@0.5 increase in SUN-RGBD with point clouds input only. Compared 

with other detection performances. e.g., DSS (Song and Xiao, 2016),  COG (Ren and Sudderth, 

2016), 2D-driven (Lahoud and Ghanem, 2017), F-PointNet (Qi et al., 2018), PointFusion (Xu 

et al., 2018),  and VoteNet (Qi et al., 2019),  our algorithm can achieve the state-of-art or on-

par-with mAP@0.25 detection results on large and geometric-salient objects, such as bed, sofa, 

bathtub, table and chair. For geometric-weak objects, such as picture and dresser, the 

improvements are limited. As for detection results on mAP@0.5, our algorithm outperforms 

the VoteNet (Qi et al., 2019) on 8 categories and on-par-with it on 2 categories. As shown in 

Figure 4.4, the large object with enough scanned point clouds, such as beds, can be detected 

accurately. However, for thin and density-sparse objects (e.g., bookshelves, desks, and 

dressers), misdetection occurs commonly. Besides, for shape similar objects, such as tables 

and nightstands, they are easy to be mis-predicted. 
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Table 4.6: 3D object detection scores per category on the SUN-RGBD (test) dataset 

(use one decimal place in this table) 

 DSS COG 2D-

driven 

F-

PointNet 

Point- 

Fusion 

VoteNet GRNet 

(ours) 

VoteNet 

(Baseline) 

GRNet 

(ours) 

 mAP@0.25 (%) mAP@0.5 (%) 

Input Geo& 

RGB 

Geo& 

RGB 

Geo& 

RGB 

Geo& 

RGB 

Geo& 

RGB 

Geo 

only 

Geo 

only 

Geo only Geo 

only 

Bathtub 44.2 58.3 43.5 43.3 37.3 74.4 76.8 41.4 41.3 

Bed 78.8 63.7 64.5 81.1 68.6 83.0 84.3 49.5 54.9 

Bookshelf 11.9 31.8 31.4 33.3 37.7 28.8 29.3 5.4 5.0 

Chair 61.2 62.2 48.3 64.2 55.1 75.3 76.2 52.3 55.9 

Desk 20.5 45.2 27.9 24.7 17.2 22.0 26.0 4.9 5.8 

Dresser 6.4 15.5 25.9 32.0 24.0 29.8 26.1 12.1 14.9 

Night-

Stand 

15.4 27.4 41.9 58.1 32.3 62.2 59.2 33.9 36.1 

Sofa 53.5 51.0 50.4 61.1 53.8 64.0 64.8 42.9 46.1 

Table 50.3 51.3 37.0 51.1 31.0 47.3 51.1 18.5 24.6 

Toilet 78.9 70.1 80.4 90.9 83.8 90.1 90.4 60.5 63.9 

mAP 42.1 47.6 45.1 54.0 45.4 57.7 58.4 32.1 34.9 
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Figure 4.4: Qualitative results on SUN-RGBD. 

4.2.4 Optimizer, Model size, Memory Usage and Timing 

We implemented our model with Python 3.5 and PyTorch 1.0 on one GTX 1080ti GPU. 

ADAM optimizer (Kingma and Ba, 2014), with an initial learning rate of 0.001, was adopted. 

The learning rate was decayed at 80, 120, 160 epochs, respectively, with a 0.1 decay rate. The 

batch size was set to 8 for both training and testing our GRNet-SUN-RGBD and GRNet-

ScanNetV2 models. As shown in Table 4.7, the model for GRNet- SUN-RGBD with 20000 

input points has 13.5M parameters and 17.8M parameters for GRNet-ScanNetV2 with 40,000 

input points. GRNet-SUN-RGBD runs 0.12 seconds per frame or scan for training, while 

GRNet-ScanNetV2 runs 0.10 seconds per frame or scan for training. Because the GRNet 

(ScanNetV2) has larger model size than VoteNet, its computation cost increases. However, as 

for GRNet (SUN-RGBD), although it increases around 2MB model size compared to VoteNet, 

their computation costs are the same. The main reason is that the GRNet (SUN-RGBD) reduces 

the search radius and sampling neighbours in the first two SA modules in the backbone 

network. Such reduction largely relieves the computation burden. 
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Table 4.7: Model size and processing time (per frame or scan) 

Method Model size SUN-RGBD ScanNetv2 

F-PointNet 47.0MB 0.09s - 

3D-SIS 19.7MB - 2.85s 

VoteNet 11.2MB 0.10s 0.14s 

GRNet (ScanNetV2) 17.8MB -    0.22s 

GRNet (SUN-RGBD) 13.5MB 0.10s - 

 

4.3 Discussion 

We have tested our GRNet in two indoor environments, which show some differences in 

point density, room layout, and area. SUN-RGBD has a larger room area, sparser point density, 

and less labeled objects compared with ScanNetV2. Thus, the application of GeoConv should 

consider such differences. The sampling radius of GeoConv in the first two SA modules is 0.1 

and 0.2 in SUN-RGBD, 0.2 and 0.4 in ScanNetV2, respectively.  

In addition, the scaling parameter is also different. Labeled objects in ScanNetV2 are 

smaller and more compact than SUN-RGBD. As mentioned in VoteNet, voting is only useful 

for points that are far away from the object centre (Qi et al., 2019). Thus, in order to improve 

the centralization results for small objects, 0.1 scaling parameter was applied as the scaling 

parameter. However, in SUN-RGBD dataset, labeled objects are larger than ScanNetV2, the 

best detection result was achieved using 0.2 scaling parameter. We also found that the scaling 

parameter and relation learning module are more effective in predicting mAP@0.5 bounding 

box parameters. A compact centralization attributes to neighbours’ inter-object and intra-object 

features learning, which results in a more accurate bounding box prediction. The subgraph (a) 

in Figure 4.5 shows the centralization effects. The further improvement for both mAP@0.25 

and mAP@0.5 should consider the RGB information, especially for geometric-weak objects, 

such as the picture.  

Finally, as shown in Figure 4.5, those proposals can cover all the labeled objects. However, 

the post-processing by using NMS based on the objectness score and semantic classification 

score removed low confident proposals (which were actually true positive proposals). Thus, 
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the final detection results missed the true bounding box for objects. From the subgraph (f) in 

Figure 4.5, we can see that the right nightstand is not detected. Additionally, the position of 

confident proposals affects the predicted bounding box position, which can be seen in the 

subgraph I and (f) in Figure 4.5. Thus, how to associate the objectness score with the accuracy 

of the predicted bounding box should be studied in the future to improve our final detection 

results. 

 

Figure 4.5 Staged outputs of GRNet. 

4.4 Chapter Summary 

In this chapter, an end-to-end point cloud geometric relation network (GRNet) focused on 

3D object detection in indoor scenes was proposed. The oriented 3D bounding boxes (i.e., 

centre, heading angle, and size) and semantic classes of objects were estimated. This network 

can exploit both intra-object and inter-object features in a bottom-up hierarchical way using 

the proposed backbone network for representative points. Then, a centralization module with 

a scalable loss function was introduced to centralize object points to its centre. Proposal points 

were sampled from these shifted representative points, following a proposal feature pooling 

operation. Finally, an object-relation learning module was applied to predict bounding box 

parameters. Such parameters are the additive sum of prediction results from relation-based 

inter-object features and aggregated intra-object features.  

This model achieves state-of-the-art 3D detection results with 59.1% mAP@0.25 and 

39.1% mAP@0.5 on ScanNetV2 dataset, 58.5% mAP@0.25 and 34.1% mAP@0.5 on SUN-
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RGBD dataset. Quantitative comparison performance and qualitative results demonstrated the 

effectiveness of our proposed framework in 3D object detection. However, RGB features are 

not exploited in this paper, which may contribute to a further improvement for geometric-weak 

objects. Besides, how to associate the objectness score with the accuracy of the predicted 

bounding box should be studied in the future to improve the performance of our method.  
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Chapter 5 

2D-Driven 3D Object Detection from Indoor and 

Outdoor Environments 

In this chapter, the framework of the proposed 2D-driven 3D object detection algorithm is 

introduced. In Section 5.1, the introduction for the 2D-driven 3D model and the 

implementation details of the proposed algorithm are provided. In Section 5.2, the details for 

each sub-network, datasets, evaluation metrics, and experimental results are provided. Section 

5.3 discusses the experimental results of the proposed framework. Section 3.4 concludes this 

chapter. 

This chapter is mainly a manuscript submitted to a journal and only minor format changes 

have been made in order to make them to fit into the format of the entire thesis. © [2020] IEEE. 

Reprinted, with permission, from [Li, Y., Ma, L., Tan, W., Sun, C., Cao, D., Li, J. 2020. 2020. 

3D Object Detection from Indoor and Outdoor Frustum Point Clouds, IEEE Transactions on 

Intelligent Transportation Systems, submitted.] 

5.1 Algorithm Description 

3D object detection is crucial in many applications, such as autonomous driving (Gao et 

al., 2018), modeling (Zhong et al., 2018), computer vision (Mousavian et al., 2017), and remote 

sensing (Luo et al., 2019). 3D data can be obtained by LiDAR or RGB-D cameras. Thus, some 

3D data have accompanied corresponding 2D images. There are multiple ways to extract 3D 

objects from these data, e.g., point-based (Qi et al., 2019; Shi et al., 2019; Li et al., 2020), 

view-based (Chen et al., 2017; Ku et al., 2018), and multi-sensor fusion-based (Liang et al., 

2018; Wang and Jia, 2019) methods. The point-based scheme detects 3D objects directly from 

point clouds, the view-based scheme coverts the 3D points into 2D views and leverages the 

mature 2D detector to detect objects, while the multi-sensor fusion scheme explores object 

features from 2D and 3D data together. 3D point clouds are irregular and sparse, locating 
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objects accurately is hard to achieve. To leverage the mature 2D detectors and high-resolution 

images, following F-PointNet (Qi et al., 2018), we make effective use of 2D images and 3D 

detection schemes to enhance the 3D detection performance.  

Intuitively, we detect 2D object proposals in the input images. A 2D detected proposal box 

can be lifted to a 3D frustum area using a known camera-LiDAR projection matrix. Points in 

this frustum space are collected as inputs to the point-based detection framework to predict the 

amodal bounding box.  However, there are two main considerations when detecting objects in 

frustum point clouds: 

• How to detect the object accurately from the frustum points with background and 

clutter disturbance. 

• How to improve the incorrect detection results caused by the inaccurate 2D proposal 

boxes. The detected 2D proposal boxes cannot bound the object instances precisely.   

To solve the above challenges, our detection framework is composed of the following two 

stages: bounding box prediction and bounding box refinement. Stage-1 networks predict the 

amodal bounding box from the frustum point clouds. To compensate the incorrect 2D detection 

results, stage-2 networks refine the predicted bounding box using points in the enlarged 

predicted bounding box. Both two stage networks contain point cloud segmentation, residual 

centre prediction and bounding box prediction modules. 

For stage-1 detection networks, the primary challenge comes from the background and 

clutter point disturbance. To improve the detection accuracy, foreground object points are 

extracted after the point cloud segmentation module. Bounding box parameters are predicted 

from these foreground points. As mentioned in (Shi et al., 2019), the context information of 

the predicted objects can improve the detection results. Thus, in this paper, a context point 

extraction method is proposed to extract the context points from background points. The 

context and the foreground points are combined as the context foreground points for further 

bounding box prediction.  

For stage-2 refinement networks, points in the enlarged predicted bounding box are 

collected as inputs for bounding box refinement. The frustum space lifted from 2D proposal 

boxes is not applied in this stage for box point collection. This operation can extract object-
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specific points with useful context points compared to the frustum points. The detection 

pipeline in the first stage is applied again in this stage for amodal bounding box refinement. 

However, the context point extraction module is removed because the collected input points in 

this stage can be viewed as the context foreground points.  

In order to describe the detected object comprehensively in both two stage networks, the 

global feature, which represents the surrounding background of the object, and the local feature 

that describes the object attributes, should be leveraged. In our paper, the global feature learned 

in the point cloud segmentation module is used as the global context feature, while the global 

feature obtained from the context foreground points is viewed as the object-specific feature. 

These two features are concatenated with semantic cues extracted from the 2D proposals for 

bounding box parameter prediction. Figure 5.1 shows the detection framework of our proposed 

method. 

 

Figure 5.1: 3D object detection framework. 
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5.1.1 Context Foreground Point Segmentation 

 

Figure 5.2: Detection networks. 

Following F-PointNet (Qi et al., 2018), in our method, we assume that the point clouds 

have corresponding images. Instead of detecting the objects directly from point clouds, objects 

in 2D images are first detected with 2D bounding boxes. Then these boxes are lifted to frustums 

using the known camera projection matrix. Such frustums define the 3D searching area for 

object detection. Points in the frustum are collected to form a frustum point cloud. This 

mechanism can leverage the mature 2D detectors and largely reduce the computation cost for 

3D object detection. To improve the rotation-invariance of the frustums, these frustums are 

normalized to make the centre axis of the frustum orthogonal to the image plane. 

Within the normalized frustum points, there are two pipelines to detect the amodal object:1) 

directly detect the object from the point clouds; 2) extract foreground points first and then 

predict the bounding box using these points (Qi et al., 2018). Although the frustum points 

reduce the most non-relevant backgrounds and clutter, the remaining points and overlap objects 

still disturb the precise localization of the amodal object. Although the first pipeline is simple, 

to ensure the detection performance, we follow F-PointNet (Qi et al., 2018) to construct our 

detection framework. Figure 5.2 shows the detection pipeline. 

   The foreground point segmentation can locate the associated object accurately with 

foreground context. To exploit the geometric features for each foreground point, we apply 

multi-scale GeoConv (Li et al., 2020) with the encoder-decoder structure to the input frustum 

points. Because GeoConv can only extract the intra-object features, with the increased 
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downsampling scale, PointNet (Qi et al., 2017) is used in our backbone to extract inter-object 

features. The semantic cues learned from 2D images are also leveraged for segmentation. Such 

information is encoded as a one-hot class vector and concatenated with the learned global 

features, and then back-propagated to point-wise features for the per-point class labeling. This 

segmentation network is a binary classification to segment background and foreground points.  

 

Figure 5.3: Context point collection. 

As mentioned in PointRCNN (Shi et al., 2019), the context information around the object 

can improve the bounding box reasoning accuracy. Thus, to collect the context points from 

background points, we propose a context point collection method with an efficient and 

effective performance. For each background point, we collect its 16 nearest neighbours, as 

shown in Figure 5.3. If there has at least 1 foreground point, this background point is labeled 

as a context point. Query ball search (Qi et al., 2017) and KNN (Qi et al., 2017) are commonly 

used as neighbouring search methods. KNN searches the nearest neighbours without 

considering the distance. Thus, background points that are far away from the foreground point 

have a potential to be selected as the context points. These points have limited contributes to 

the object detection. To avoid such contamination, query ball search with 0.9m radius is 

experimentally selected as the neighbouring search method. This method not only selects 
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nearby background points and but also maintain the object geometric attributes. All the context 

points and foreground points are combined as the context foreground points. The experimental 

results demonstrate the effective of this method. 

5.1.2 Residual Centre Estimation and Bounding Box Prediction 

F-PointNet (Qi et al., 2018) has demonstrated the importance of coordinate transformations 

in enhancing the object detection performance. Those transformations can align the points in 

a set of constrained and canonical frames. Specifically, the object centre oriented 

transformation can help the 3D detectors better exploit the object geometric attributes, such as 

symmetry and planarity. Within the obtained context foreground points, we follow F-PointNet 

(Qi et al., 2018) to normalize these points to a local coordinate by subtracting their mean 

coordinates to boost the translational invariance. Then these points are input to a T-Net (Qi et 

al., 2017) to predict the residual box centre. The estimated residual centre can be derived as: 

𝐶𝑝𝑟𝑒 = 𝐶𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 + 𝐶𝑡−𝑛𝑒𝑡 (5.1) 

where the 𝐶𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 represents the mean xyz of the foreground points. The context points 

are not considered in calculating the 𝐶𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 to make the predict centre closer to the object 

part. Then the normalized points are transformed into the predicted object centre for the 

bounding box prediction with canonical coordinates. 

To predict an accurate bounding box, the bounding box prediction network should consider 

the local and global features of the object. The local feature encodes the object information, 

while the global feature provides the surrounding information of the object. Although we have 

added context points to the foreground, the information extracted from the context foreground 

points contains more information about the object. Features learned from the frustum points 

are more suitable to represent the global feature. Thus, the global features extracted from the 

foreground segmentation network are concatenated with the local global features extracted 

from the canonical context foreground points to predict the bounding box parameters. PointNet 

(Qi et al., 2017) is selected as the bounding box prediction network. In addition, the reflectance 

and semantic feature that learned from 2D proposals are also encoded for bounding box 

prediction. The experimental results demonstrate the effective of this network.  
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In this algorithm, a 3D bounding box is represented as (𝑥, 𝑦, 𝑧, ℎ, 𝑤, 𝑙, 𝜃, 𝑠𝑐𝑜𝑟𝑒), where 

(𝑥, 𝑦, 𝑧) is the object centre location, (ℎ, 𝑤, 𝑙) is the object size (height, width, length), 𝜃 is the 

object orientation, and 𝑠𝑐𝑜𝑟𝑒 represents the objectness score. Following F-PointNet (Qi et al., 

2018), we use a hybrid of classification and regression formulation. For angle prediction, we 

pre-define 𝑁𝑎 and 𝑁𝑠 as equally split angle and size bins and classify the proposal angle and 

size into different bins. Residual is regressed with respect to the bin value. 𝑁𝑎 is set to 12 and  

𝑁𝑠 is set to 8 in our experiments. The bounding box prediction network outputs 3 + 4 × 𝑁𝑠 

+2 × 𝑁𝑎 + 2. 

5.1.3 Amodal Bounding Box Refinement 

 

Figure 5.4: Refinement networks. 

Although 2D region proposals detected by existing mature 2D detectors are precise enough, 

they cannot bound the object instance accurately. Larger 2D boxes contain the whole object 

instances but also include more background occlusions or clutters, while smaller 2D boxes 

contain less background noises but cannot provide the complete 3D object instances. To 

compensate this, in the refinement stage, we collect the points in the point clouds directly 

according to the estimated 3D boxes, instead of relying on the 2D boxes. The estimated 

bounding boxes are applied to recollect context foregrounds in point clouds only. Specifically, 

following Frustum ConvNet (Wang and Jia, 2019), we expand each estimated box by a 

specified factor -we set the factor as 1.2 in this work and normalize points inside the expanded 

box by translation and rotation. 
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 To further improve the 3D detection performance, the point-wise, local and global features 

are considered to extract fine-grained box information. The refinement pipeline is similar to 

the detection pipeline in the first stage, as shown in Figure 5.4. The obtained points contain 

object and limited context information, we can see these points as context foreground points. 

Thus, the context point extraction module is removed in this stage. All the input points are 

utilized to learn the bounding box information. Point-wise features learned in the segmentation 

stage are concatenated with the MLP features learned in residual centre prediction network and 

bounding box prediction network for max-pooling. The global feature obtained in the 

segmentation stage is concatenated with the max-pooled feature in the bounding box prediction 

network for box parameter reasoning. The predicted box parameters are optimized with the 

same loss function in the detection stage. 

5.1.4  Training with Multi-task Loss 

Our point-based detection framework consists of two stage networks, one for bounding 

box prediction, the other for bounding box refinement. Each stage networks are optimized with 

a multi-task loss, which is composed of the segmentation loss, centre regression loss, bounding 

box loss (Qi et al., 2018), corner loss (Qi et al., 2018) and objectness loss. Both the objectness 

loss and the semantic segmentation loss are two-class cross-entropy loss. We adopt the similar 

bin-based classification and regression loss (Qi et al., 2018) for box optimization. The box loss 

is composed of the centre regression, heading estimation and size estimation sub-losses using 

Huber loss: 

𝐿𝑏𝑜𝑥 = 𝐿𝑐𝑒𝑛𝑡𝑒𝑟−𝑟𝑒𝑔 +  𝐿𝑎𝑛𝑔−𝑐𝑙𝑠 + 𝐿𝑎𝑛𝑔𝑙𝑒−𝑟𝑒𝑔 + 𝐿𝑠𝑖𝑧𝑒−𝑐𝑙𝑠 + 𝐿𝑠𝑖𝑧𝑒−𝑟𝑒𝑔 + 𝐿𝑐𝑜𝑟𝑛𝑒𝑟 (5.2) 

where 𝐿𝑐𝑒𝑛𝑡𝑒𝑟−𝑟𝑒𝑔 is the residual central loss for the predicted centre, 𝐿𝑎𝑛𝑔−𝑐𝑙𝑠 𝑎𝑛𝑑 𝐿𝑎𝑛𝑔𝑙𝑒−𝑟𝑒𝑔 

represent the loss of classification and regression for the predicted angle, respectively.  

𝐿𝑠𝑖𝑧𝑒−𝑐𝑙𝑠 𝑎𝑛𝑑 𝐿𝑠𝑖𝑧𝑒−𝑟𝑒𝑔 represent the loss of classification and regression for the predicted size, 

respectively. The corner loss 𝐿𝑐𝑜𝑟𝑛𝑒𝑟  is derived from the distance between the predicted 

corners 𝐶𝑜𝑟𝑛𝑒𝑟𝑝𝑟𝑒 and the groundtruth corners 𝐶𝑜𝑟𝑛𝑒𝑟𝑔𝑡 (Qi et al., 2018): 
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𝐿𝑐𝑜𝑟𝑛𝑒𝑟 = ∑‖𝐶𝑜𝑟𝑛𝑒𝑟𝑝𝑟𝑒 − 𝐶𝑜𝑟𝑛𝑒𝑟𝑔𝑡‖

8

𝑘=1

 (5.3) 

The groundtruth of the objectness score is defined using the distance of the predicted box 

centre to the groundtruth box centre. If the distance is larger than 0.3m, the groundtruth label 

is set to 1, otherwise, the label is set to 0. Within such operation, the predicted score has 

geometric correlation with the predicted bounding box. Thus, the total loss 𝐿𝑡𝑜𝑡𝑎𝑙  for each 

network is as follows: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑠𝑒𝑔 + 𝐿𝑐𝑒𝑛𝑡𝑒𝑟−𝑟𝑒𝑔 + 𝐿𝑏𝑜𝑥 + 𝐿𝑜𝑏𝑗𝑒𝑐𝑡𝑛𝑒𝑠𝑠 + 𝐿𝑐𝑜𝑟𝑛𝑒𝑟 (5.4) 

where 𝐿𝑠𝑒𝑔 is the segmentation loss, 𝐿𝑐𝑒𝑛𝑡𝑒𝑟−𝑟𝑒𝑔 is the regressions loss for predicted centre in 

residual centre prediction module,  𝐿𝑜𝑏𝑗𝑒𝑐𝑡𝑛𝑒𝑠𝑠 is the objectness loss. 

 

5.2 Experiments 

In this part, the experimental performance of our proposed method is presented and 

analyzed. In Section 5.2, we introduce the experimental setting of our approach, including 

datasets, evaluation criteria, and implementation details. Then, the object detection results are 

presented in Section 5.2.1. Ablation studies to analyze the proposed modules are conducted in 

Section 5.2.2. Optimizer, memory usage and timing are provided in Section 5.2.3. Finally, 

discussions about the merits and demerits of our method are presented in Section 5.2.4.  

5.2.1 Experimental Setting 

Datasets. The performance of our method is evaluated on two datasets: KITTI (Geiger et 

al., 2013) and SUN-RGBD (Song et al., 2015). The KITTI dataset was collected in outdoor 

scenes by a moving platform equipped with cameras, laser scanners, GPS and IMU. Thus, it 

can provide LiDAR points and corresponding images with high accuracy. This dataset contains 

7481/7518 training/testing samples. In this paper, we follow F-PointNet (Qi et al., 2018) to 

split the training samples into train split (3712 samples) and val split (3769 samples). Detection 

results on val split are reported and compared with other state-of-art methods.   
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SUN-RGBD is collected using multiple different RGB-D cameras with varying resolutions 

from different indoor scenes. It contains 5,285 training images and 5,050 testing images, 

respectively. There are 37 object categories labeled with amodal oriented 3D bounding boxes. 

We report model performance on the testing set. Point cloud data are acquired following the 

method provided by F-PointNet (Qi et al., 2018). Detection results on the 10 most common 

categories are reported. 

Evaluation Criteria. Following F-PointNet (Qi et al., 2018), the average precision metric 

𝐴𝑃3𝐷 of 3D detection results is adopted as our evaluation criteria. The predicted bounding box 

𝐵𝑝 is treated as a valid detection result only its 3D overlap area (IoU) between the predicted 

bounding box 𝐵𝑝 and ground truth bounding box 𝐵𝑔𝑡 exceeds a certain ratio. IoU is calculated 

using the following evaluation metric: 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎(𝐵𝑝 ∩ 𝐵𝑔𝑡)

𝐴𝑟𝑒𝑎(𝐵𝑝 ∪ 𝐵𝑔𝑡)
 (5.5) 

Predicted bounding boxes with 3D 𝐼𝑜𝑈 results exceeding 0.7 are used to evaluate the car 

detection performance in KITTI dataset and the IoU threshold for all classes in SUN-RGBD 

dataset is 0.25. 

5.2.2  Implementation Details 

We use the 2D detection results of KITTI validation provided by F-PointNet (Qi et al., 

2018) and the 2D detection results of SUN-RGBD validation provided by Frustum-ConvNet 

(Wang and Jia, 2019) to extract frustum points. Data augmentation is applied to the detected 

2D bounding boxes by translation and scaling during training. The input to the first stage 

detection networks is 2,048 points for KITTI. The number of inputs in the second stage 

refinement networks for KITTI is 512. The input to the SUN-RGBD framework is 2048 points. 

Similar random flipping and shifting (Qi et al., 2018) are adopted to these points.  

The details of the detection and refinement networks are shown in Figure 5.5. The point 

cloud segmentation network is a multi-scale encoder-decoder structure (Qi et al., 2017). The 

encoder is constructed with set abstract (SA) module, while the decoder is composed with 

feature propagation (FP) module. As for the detection networks, when the sampling radius is 
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set to 0.2m, the GeoConv (Li et al., 2020) is used to learn intra-object features. For other 

sampling radius, the PointNet is used to map inter-object features. But for the refinement 

networks, only context foreground points with different geometric distributions are input for 

point segmentation. To improve the refinement performance, point-wise features learned in 

segmentation network are concatenated with the object global feature for bounding box 

prediction. Such features are sensitive to the incomplete geometric shape variances. Because 

GeoConv cannot extract the expressive intra-object features, the PointNet (Qi et al., 2017) is 

used in all multi-scale set abstract layers to learn local and global features in the stage-2 

segmentation network.  

 

  

  

Figure 5.5: The details of the detection and refinement networks. 
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Residual centre prediction and bounding box prediction networks in both two stages are 

constructed based on PointNet (Qi et al., 2017). The learned object global features in bounding 

box prediction networks of detection and refinement networks are all concatenated with the 

frustum global feature and one-hot 2D semantic cues for bounding box parameter prediction. 

For the refinement networks, the point-wise features learned in segmentation stage are 

concatenated with the per-point features learned from the normalized points. These features 

are maxpooled to generate global features for residual centre prediction and bounding box 

parameter prediction. 

5.2.3 Object Detection Results 

(1) KITTI Detection Results 

Table 5.1: 3D detection, 3D localization, and 2D detection results. 

 

Input 

3D (%) BEV (%) 2D (%) 

Easy Mode

-rate 

Hard Easy Mode

-rate 

Hard Easy Mode

-rate 

Hard 

VoxelNet LiDAR 82.0 65.5 62.9 89.6 84.8 78.6 - - - 

IPOD LiDAR 
84.1 76.4 75.3 88.3 86.4 84.6 - - - 

PointRCNN LiDAR 

88.9 78.6 77.4 - - - - - - 

MV3D LiDAR 

+RGB 
71.3 62.7 56.6 86.6 78.1 76.7 - - - 

ContFusion LiDAR 

+RGB 
86.3 73.3 67.8 95.4 87.3 82.4 - - - 

F-PointNet LiDAR 

+RGB 
83.8 70.9 63.7 88.2 84.0 76.4 96.5 90.3 87.6 

Frustrum  

ConvNet  

LiDAR 

+RGB 
89.0 78.8 77.1 90.2 88.8 86.8 96.5 90.3 87.6 

Ours 

LiDAR 

+RGB 
88.8 78.1 75.3 90.3 88.6 79.9 98.1 90.4 87.9 

We evaluate our detection framework on the KITTI val split with 3769 samples, and the 

experimental results are shown in Table 5.1. Existing methods with LiDAR and RGB inputs 
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such as F-PointNet (Qi et al., 2018),  MV3D (Chen et al., 2017), ContFusion (Liang et al., 

2018), Frustrum ConvNet (Wang and Jia, 2019) and LiDAR only inputs such as VoxelNet 

(Zhou and Tuzel, 2018), IPOD (Yang et al., 2018), and PointRCNN (Shi et al., 2019) are 

compared to demonstrate the effectiveness of our proposed method. Compared with these 

methods, our method achieves the compatible results as Frustrum ConvNet (Wang and Jia, 

2019) and PointRCNN (Shi et al., 2019) and better results than the remaining approaches in 

easy and moderate difficulties in 3D object detection and localization tasks. Although we use 

the same detector as F-PointNet (Qi et al., 2018) and Frustrum ConvNet (Wang and Jia, 2019), 

our 2D detection results improved about 1.4% AP in easy difficulty. The main difference is 

that we use the sum of 2D proposal score and 3D detection score as the final objectness score 

to post-process the detected results. Boxes with higher 2D and 3D objectness score have higher 

probability to be detected.  

(2) SUN-RGBD Detection Results 

We compare our detection results with existing state-of-art algorithms on SUN-RGBD 

dataset, such as DSS (Song and Xiao, 2016), COG (Ren and Sudderth, 2016), 2Ddriven3D 

(Lahoud and Ghanem, 2017), PointFusion (Xu et al., 2018), F-PointNet (Qi et al., 2018), 3D-

Latent (Ren et al., 2018), VoteNet (Qi et al., 2019), Frustum ConvNet (Wang and Jia, 2019), 

GRNet (Li et al., 2020), etc. Compared with outdoor LiDAR points, indoor points lifted from 

the RGB-D camera are denser and indoor objects commonly exist together and have similar 

shapes. Thus, we only use the refinement networks to detect 3D objects from SUN-RGBD 

frustum points. Context extraction method is not applied in SUN-RGBD detection framework. 

As shown in Table 5.2, our proposed method achieves the best result with mAP 58.5%. Such 

improvements mainly come from the discriminative point-wise, local and global feature 

exploration for amodal bounding box prediction. 
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Table 5.2: 3D object detection AP (%) on SUN-RGBD val set. 

Methods Bathtub Bed Bkshf Chair Desk Dresser Nitstd Sofa Table Toilet mAP 

DSS  44.2 78.8 11.9 61.2 20.5 6.4 15.4 53.5 50.3 78.9 42.1 

COG 58.3 63.7 31.8 62.2 45.2 15.5 27.4 51.0 51.3 70.1 47.6 

2Ddriven3D 43.5 64.5 31.4 48.3 27.9 25.9 41.9 50.4 37.0 80.4 45.1 

PointFusion 37.3 68.6 37.7 55.1 17.2 24.0 32.3 53.8 31.0 83.80 45.4 

3D-Latent 76.2 73.2 32.9 60.5 34.5 13.5 30.4 60.4 55.4 73.7 51.0 

F-PointNet 43.3 81.1 33.3 64.2 24.7 32.0 58.1 61.1 51.1 90.9 54.9 

VoteNet 74.4 83.0 28.8 75.3 22.0 29.8 62.2 64.0 47.3 90.1 57.7 

Frustum 

ConvNet 

61.3 83.2 36.5 64.4 29.7 35.1 58.4 66.6 53.3 87.0 57.6 

GRNet 76.8 84.3 29.3 76.2 26.0 26.1 59.2 64.8 51.1 90.4 58.4 

Ours 59.6 82.7 36.3 66.6 32.8 33.6 59.6 67.6 55.2 90.8 58.5 

5.2.4 Ablation Studies 

To demonstrate the effectiveness and importance of the context foreground extraction 

method, feature fusion in detection networks and the effectiveness of refinement networks, 

some ablation studies are conducted. When testing each module, the remaining modules 

remain unchanged. The followings are the detailed evaluation of these modules.  

(1) Context foreground point extraction 

The context information for each object is critical for 3D learners to differentiate the target 

from background clutters. Thus, in this paper, we propose a context point extraction method 

that can attribute to the 3D object detection performance in detection networks. In our method, 

the extraction radius is an important hyperparameter. In achieved with a 0.9 searching radius. 

Especially in the easy and moderate difficulties, our method has 2.2% and 1% improvements 

than the performances without context extraction. However, the improvement for hard 

difficulty is limited, with less than 1% improvement. The main reason is that the hard difficulty 

has sparse and limited points, which are gathered closer to the centre. Such radius cannot 

collect enough context points for these objects. 
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Table 5.3, we test different radius to show their differences. Within the context extraction 

method, the best performance was achieved with a 0.9 searching radius. Especially in the easy 

and moderate difficulties, our method has 2.2% and 1% improvements than the performances 

without context extraction. However, the improvement for hard difficulty is limited, with less 

than 1% improvement. The main reason is that the hard difficulty has sparse and limited points, 

which are gathered closer to the centre. Such radius cannot collect enough context points for 

these objects. 

Table 5.3: Ablation studies of the context extraction method. 

Context 

radius 

3D (%) BEV (%) 

Easy Moderate Hard Easy Moderate Hard 

No context 85.7 75.5 67.2 89.5 87.5 78.8 

0.8m 86.3 75.9 67.5 89.2 87.2 78.7 

0.9m 88.0 76.5 67.9 90.1 87.9 79.1 

1m 87.9 76.4 67.8 90.0 87.5 78.8 

1.1m 87.6 76.2 67.6 90.0 87.6 79.0 

 

(2) Feature fusion 

The local and global features of the object are crucial to predict an accurate amodal 

bounding box. The local feature contains the object information, while the global feature 

encodes the surrounding information of the object. In F-PointNet (Qi et al., 2018), the global 

feature from frustum points is not considered in bounding box prediction. In this paper, we use 

the global feature learned from the point cloud segmentation network to represent the frustum 

point global feature. This feature is concatenated with the object global feature and one-hot 

semantic cues from the 2D proposal for amodal bounding box prediction in detection networks. 

The results in Table 5.4 demonstrate that such fusion can improve around 1.5% for easy and 

moderate difficulties. For hard difficulty, the global feature contributes limited. More specific 

global feature with small range around the hard difficulty may largely improve the detection 

performance. 
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Table 5.4: Ablation studies of the effects of feature fusion. 

 3D (%) BEV (%) 

Easy Moderate Hard Easy Moderate Hard 

Local & 

semantic cues 
86.7 75.5 67.7 89.5 86.2 78.5 

Local & global & 

semantic cues 
88.0 76.5 67.9 90.1 87.9 79.1 

 

(3) Refinement networks 

 As mentioned in the context point extraction and feature fusion ablation experiment 

analysis, these two approaches for hard difficulty improvement is limited. To provide more 

object-specific context foreground points and compensate the incorrect 2D proposals, the 

refinement networks are proposed to learn more specific object and context information for 

bounding box refinement. As shown in Table 5.5, the detection performance of hard difficulty 

improves about 7%, while easy and moderate increase around 0.8% and 1.6%, respectively. 

The improvement for localization accuracy is limited, within around 0.8% increases. 

Table 5.5: Ablation studies of the effectiveness of refinement networks. 

 3D (%) BEV (%) 

Easy Moderate Hard Easy Moderate Hard 

Ours-detection 88.0 76.5 67.9 90.1 87.9 79.1 

Ours-detection 

+refinement 
88.8 78.1 75.3 90.3 88.6 79.9 
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Figure 5.6: Visualization of our results on KITTI val set. 
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Figure 5.7: Visualization of our results on SUN-RGBD val set. 

 

5.2.5 Optimizer, Timing and Hyperparameter Setting 

We implement our detection and refinement networks with Python 3.5 and TensorFlow 1.8 

on one GTX 1080ti GPU. ADAM optimizer (Kingma and Ba, 2014), with an initial learning 

rate of 0.003 and a 0.1 decay rate, is adopted in KITTI dataset. Table 5.6 shows the comparison 



 

 88 

results of our method and F-PointNet (Qi et al., 2018) and Frustum ConvNet (Wang and Jia, 

2019) on timing and hyperparameter setting. The batch size was set to 24 for training and 

testing with 100 epochs for two stage networks respectively. Although we have detection and 

refinement networks, the total training time only consumes around 14 hours totally to get the 

desired detection results.  

Table 5.6: Timing and hyperparameter setting on KITTI dataset. 

 #GPU Training Time Input points # Epoch  Learning rate 

F-PointNet  1 ~3 days 2048 200 0.001 

Frustum ConvNet  1 ~1 day 2048 50 0.001 

Detection network 

(ours) 

1 ~10 hours 2048 100 0.003 

Refinement 

network (ours) 

1 ~4 hours 512 40 0.003 

 

5.3 Discussion 

In Figure 5.6 and Figure 5.7, some representative outputs of our method in KITTI and 

SUN-RGBD datasets are presented. In most cases, the 3D box can be accurately detected. Even 

for partial data or overlapping 2D objects, as shown in image data, our model can predict the 

amodal bounding box precisely. Even for some very partial examples which hard for 2D 

detectors to predict, our method can localize their 3D boxes with remarkable accuracy as long 

they have 2D proposals.  

 However, there are several failure examples, which need further improvements. The first 

mistake comes from the misdetection in 2D images. If the positive object is not detected in the 

2D image, its 3D bounding box cannot be predicted via our point-based detection networks. 

The second failure is the inaccurate pose and size estimation for hard difficulty with limited 

object points. Due to the lack of enough object information in this case, the orientation and 

pose are hard to be optimized. 

 In our paper, we have tested the indoor and outdoor point cloud dataset for object detection. 

The difference between these two datasets corresponds to the two different detection 



 

 89 

frameworks. The KITTI points are sparse and large-scale, the extracted frustum points contain 

more background information. Thus, the context extraction module and refinement networks 

can greatly improve the detection performance, especially for the hard difficulty. But in SUN-

RGBD dataset, point clouds lifted from RGB-D data are dense and small-scale. The extracted 

frustum points are more similar to the enlarged predicted bounding box in the KITTI detection 

model. As a result, using the refinement networks only on SUN-RGBD frustum points can 

achieve remarkable performance. 

5.4 Chapter Summary 

In this chapter, a 2D-driven frustum-based two-stage object detection framework to detect 

objects in indoor and outdoor environments was proposed. A 2D proposal was used to extract 

a frustrum 3D space, points in such space were leveraged via detection networks to estimate a 

coarse amodal bounding box. To compensate the inaccurate 2D proposals, refinement 

networks were followed to refine the estimated bounding box. Both semantic features from 2D 

images and the object and context information in 3D space were explicitly exploited to enhance 

the 3D detection performance. We have validated our model on the KITTI val set with 88.8%, 

78.1%, and 75.3 % 3D AP for easy, moderate, and hard difficulties, respectively.  On SUN-

RGBD dataset, our algorithm achieves the leading performance with 58.5% mAP. Ablation 

studies were provided to demonstrate the effectiveness of each designed module. However, the 

detection performance is constrained by the 2D detection accuracy. In future, proposals in 2D 

and 3D data will be extracted parallelly to overcome the misdetection and inaccurate detection 

in 2D images.  
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Chapter 6  

Conclusions and Recommendations 

6.1 Conclusions 

The wide application of 3D sensing in automatic perception, urban modeling, and 

infrastructure survey, and the rapid development of deep learning in robust and discriminate 

feature extraction have prompted the emerging of 3D information extraction using deep 

learning techniques. 3D data are commonly represented as point clouds, which are massive 

and irregular. This poses a great challenge for applying deep learning to process these data. 

Besides, the 3D data collected by different sensors in different scenes show multiple variations, 

e.g., point density, point distribution, and geometric shape. While 3D data is often in the form 

of point clouds, how to represent point clouds and which deep model to use for 3D information 

extraction remains an open problem. 

This dissertation provides a set of deep learning frameworks for 3D information extraction, 

specific for point cloud segmentation and object detection tasks. 2D-driven 3D object detection 

is also explored to demonstrate the effectiveness of 2D image leveraging to assist 3D object 

detection from point clouds. Data collected by LiDAR and RGB-D sensors in multiple indoor 

and outdoor scenes are studied to validate the accuracy and efficiency of our proposed 

algorithms. 

For point cloud segmentation, an end-to-end geometric graph convolution architecture is 

constructed on the graph representation of point clouds to predict the per-point semantic label. 

It employs a multiscale hierarchical architecture by operating TGConv on neighbours at 

multiple scales and a CRF layer combined within the output layer to further improve the 

segmentation result. Qualitative and quantitative experimental results on the ScanNet and 

S3DIS indoor datasets and the Paris-Lille-3D outdoor benchmark demonstrate the 

effectiveness of the proposed method. 
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For object detection, an end-to-end point cloud geometric relation framework, focusing on 

3D object detection, is proposed. The geometric feature among object points and the relation 

feature between different objects are explored to enhance the detection performance. A 

centralization module with a scalable loss function and an object-relation learning module are 

applied to predict bounding box parameters. Experimental results demonstrate the 

effectiveness of the proposed algorithm on SUN-RGBD and ScanNetV2 indoor datasets. 

To leverage 3D images for 3D object detection, a 2D-driven frustum-based two-stage 

object detection architecture is presented to detect objects in indoor and outdoor environments. 

A 2D proposal is used to extract a frustrum 3D space with the known camera projection matrix. 

Points in this space are leveraged via detection networks to estimate a coarse amodal bounding 

box. Then the refinement networks are followed to refine the estimated bounding box. Both 

semantic features from 2D images and the object and context information in 3D space are fused 

to boost the 3D detection performance. Experimental results on the KITTI val set and SUN-

RGBD datasets show the capability of the proposed method. 

6.2 Contributions 

This dissertation has made several contributions for deep learning based 3D information 

extraction in point cloud segmentation and object detection tasks. 

For point cloud segmentation, an end-to-end geometric graph convolution architecture 

(TGNet) for per-point semantic labeling has been presented. There are four main contributions: 

• A novel convolutional filter that can capture local correlations described by 

neighbourhood features and local geometric features is proposed. These features can 

enhance the filter’s shape description capability.  

• Point features are extracted in a hierarchically multiscale way, which can ensure the 

information from different scales can be combined together to increase the 

segmentation performance.  

• A CRF layer is added after the output layer when constructing the end-to-end trainable 

framework.  
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• The TGNet achieved state-of-the-art results in three cases with 62.2% average accuracy 

on ScanNet, 57.8% and 68.2% mIoU on S3DIS and Paris-Lille-3D datasets, 

respectively. 

For object detection, an end-to-end point cloud geometric relation framework (GRNet) 

focusing on 3D object detection has been proposed. The main contributions of GRNet are as 

follows: 

• A novel geometric convolution is proposed and applied in a bottom-up backbone 

network. Intra-object geometric features and inter-object relation features for each 

representative point are extracted in a hierarchical way.  

• A centralization module is presented to centralize object surface points to its centre. 

This contributes to an improved bounding box prediction.  

• An object relation learning module is introduced to exploit the relation feature between 

proposals for better bounding box reasoning. 

• The GRNet achieved state-of-the-art 3D detection results with 59.1% mAP@0.25 and 

39.1% mAP@0.5 on ScanNetV2 dataset, 58.4% mAP@0.25 and 34.9% mAP@0.5 on 

SUN RGB-D dataset. 

To leverage 2D images for 3D object detection, a 2D-driven frustum-based two-stage 3D 

object detection architecture has been constructed. This framework is featured with the 

following four contributions: 

• To leverage the 2D images of the point clouds, each 2D proposal is lifted to a frustrum 

3D space and points in such space are collected. Then, these frustum points are used to 

estimate the coarse bounding boxes of 3D objects.  

• To compensate the inaccurate 2D proposals, the refinement networks are proposed to 

refine the estimated bounding box.  

• Both semantic features from 2D images and the context information in 3D space are 

fused to enhance the 3D detection performance. 
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• This framework achieved compatible results on the KITTI val set with 88.8%, 78.1%, 

and 75.3 % 3D AP for easy, moderate, and hard difficulties, respectively.  On SUN-

RGBD dataset, this algorithm achieved the leading performance with 58.5% mAP. 

6.3 Discussions and Recommendations for Future Studies 

This thesis has proposed three novel deep learning frameworks for point cloud segmentation 

and object detection tasks, which can effectively extract 3D information from indoor and outdoor 

scenes. However, there still exists a huge gap between cutting-edge results and human-level 

performance. Although there is much work to be done, we mainly summarize the remaining 

challenges specific for data, deep architectures, and tasks, and then discuss the corresponding 

future researches in the following six aspects: 

Robust Data Representation: Although  there  are  several  effective  data  representations 

such as voxels (Maturana and Scherer, 2015), point clouds (Qi et al., 2017; Qi et al., 2017) , 

graphs (Xu et al., 2018; Wang et al., 2019), 2D views (Kanezaki et al., 2018), or novel 3D data  

representations (Le and Duan, 2018; Li et al., 2019; Mescheder et al., 2019), there has not yet 

agreed on a robust and memory-efficient 3D data representation. As for point clouds and 

graphs which have been explored in this thesis, the permutation invariance and the computation 

capability limit the processable quantity of points, which inevitably constrains the 

segmentation and detection accuracy and efficiency of the proposed deep models. Thus, deep 

representation learning focuses on improving existing 3D data representations (Mescheder et 

al., 2019) or proposing novel 3D data representations (He et al., 2019; Mescheder et al., 2019) 

based on exploiting the intrinsic and geodesic structure of data in local 3D space remains an 

interesting and challenging task.  

Multi-source Data Fusion: To compensate the absence of semantic, textual and 

incomplete information in 3D points, point clouds are fused with 2D images for 3D object 

detection in this thesis. Besides, there also exists a fusion between data acquired by low-end 

LiDAR (e.g., Velodyne HD-16E) and high-end LiDAR  (e.g., Velodyne HD-64E) sensors.  

However, there  exist several challenges in fusing these data: the first is that the sparsity of 

point clouds causes the inconsistent and missing data when fusing multi-source data; the 
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second is that the proposed data fusion scheme using deep learning knowledge is processed in 

a separate line, which is not an end-to-end scheme. Thus, how to fuse multi-source data 

indicates a valuable research direction. 

Effective and More Efficient Deep Frameworks: Due to the limitation of memory and 

computation facilities, effective and efficient deep learning architectures are crucial for the 

wide applications in automatic sensing and localization. Although the proposed models have 

achieved several significant accuracy and efficiency improvements, such as TGNet and 

GRNet, the real-time segmentation and detection tasks are not achieved. Lightweight and 

compact architecture designing should be considered to reduce the computation cost of these 

proposed models. 

Context Knowledge Extraction: Due to the sparsity of point clouds and incompleteness 

of scanned objects, detailed context  information for objects is not fully exploited. For example, 

the semantic context of vehicles is crucial for autonomous navigation, but the proposed 2D-

driven 3D object detection method cannot extract such information completely from point 

clouds. Besides, the proposed framework cannot solve the sparsity and incompleteness 

problems for context information extraction in an end-to-end trainable way. 

Multi-task Learning: The approaches related to 3D information extraction can be 

classified into several tasks, such as scene segmentation, object detection (e.g., cars,  

pedestrians, traffic lights, etc.) and classification (e.g., road markings, traffic signs). All these 

results are commonly fused together to report a comprehensive result in product and model 

generation (Janai et al., 2017). However, the proposed three models cannot combine these 

multiple point cloud tasks together. Thus, the inherent information  among  them  is  not  fully  

exploited  and  used  to generalize better models with less computation.  

Weakly Supervised/Unsupervised Learning: The three proposed models are constructed 

under supervised modes using labeled data for per-point labeling or 3D bounding box 

prediction. However, there are some limitations of these fully supervised models. The first is  

the  limited availability of high quality, large scale, and enormous general objects datasets and 

benchmarks. The second is the fully supervised model generalization capability which is not 
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robust to unseen or untrained objects. Weakly supervised (Yew and Lee, 2018) or unsupervised 

learning (Sauder and Sievers, 2019; Shoef et al., 2019) should be developed to increase the 

model’s generalization and solve the data absence problem. 
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