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Abstract 

Background. 

 Functional capacity evaluations (FCEs) are used to determine a worker’s capacity for 

return to work (RTW) or for job matching purposes. FCEs are completed using a subjective 

approach, where a trained evaluator will determine the capacity of a worker by monitoring 

for changes in movement patterns as the worker completes manual material handling tasks. It 

is well established that movement patterns change as workers become fatigued, explaining 

why evaluators are trained to watch for such changes; however, the current subjective 

approach used in FCEs assumes that everyone changes in the same way. In part due to the 

subjectivity of capacity determinations, the predictive validity and reliability of FCEs to 

produce accurate RTW outcomes has been questioned (Reneman, 2003). Therefore, an 

objective and personalized approach to detecting the onset of fatigue is needed. Machine 

learning may provide such an approach, specifically using an outlier detector algorithm. 

Objective. 

 To determine if one-class support vector machines (OCSVM), an outlier detection 

machine learning algorithm, can be utilized to objectively identify fatigue during repetitive 

lifting on a subject-specific basis.  

Methods. 

 Fourteen participants completed a repetitive lifting protocol for 60 minutes or until 

volitional fatigue. Whole-body kinematics were recorded using a 3D motion capture system 

(Vicon, Oxford, UK). Ratings of perceived exertion (RPE) and heart rate (HR) were recorded 
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after every 15 lifts. A whole-body kinematic model of each participant was created in 

Visual3D, where trajectory data from 15 landmark locations were exported for each lift. For 

each participant, lifts were separated into a training set and multiple test sets. The training set 

consisted of approximately the first 35% of lifts, and the test sets were subsequent sets of 15 

lifts. Principal component analysis (PCA) was used as a data reduction and feature extraction 

method and applied to the training set. The PC scores from the training set data were used as 

features in a OCSVM. Test set data were projected back onto the training set principal 

component (PC) feature space. Test set PC scores were then classified against the decision 

boundary defined by the OCSVM. The percentage of PC scores from each test set that were 

beyond the boundary (“outliers”) was calculated. Spearman’s rank correlation (ρ), a non-

parametric test, was used to assess the association between RPE, HR and the percentage of 

outliers in each test set.  

Results. 

 Significant positive associations between RPE and the percentage of outliers were 

detected in seven of the ten participants who were likely fatigued based on their RPE. Only 

two of eight participants who were likely fatigued based on their HR had significant positive 

associations. All participants who were not likely to be fatigued had no significant 

association between either RPE or HR and the percentage of outliers. The OCSVM did 

however reveal changes in movement patterns from baseline for some participants who did 

not fatigue. 
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Conclusion. 

 The application of OCSVMs identified significant changes in movement patterns 

from baseline in those who experienced fatigue from a repetitive lifting protocol. Although 

no significant associations were identified in those who were not fatigued, the OCSVM still 

identified movement pattern changes. These results show support for use of an outlier 

detection tool to aid in FCE assessments to potentially reduce subjectivity, supporting 

improved RTW decision making.  
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1. Introduction 

Injuries affect almost everyone at some point in their lifetime, which may disrupt the 

ability of a person to do work. In 2017, there was a total of 251,625 lost time claims in 

Canada due to work-related injury or illness (Association of Worker’s Compensation Boards 

of Canada, 2017). In 2015, the total economic cost of injury in Canada was $26.8 billion, 

consisting of direct and indirect costs (Parachute, 2015). Indirect costs was totaled at $10.9 

billion in 2015 (Parachute, 2015), which consist of productivity losses, employee benefits 

and legal costs. These indirect costs are related to lost opportunity for the worker, the 

employer, the workplace and community (Lebeau & Duguay, 2013). The longer a person 

remains away from work, the more money is spent on indirect costs of the injury (Lebeau & 

Duguay, 2013). Occupational injury also creates psychological issues for the injured worker, 

reducing functional and occupational outcomes post-injury (Kendrick et al., 2011). A longer 

return to work (RTW) time may be compounded by these psychological issues, creating an 

even larger impact of psychological outcomes and economic costs. Safely reintegrating and 

returning injured workers into the workplace is of utmost importance to reduce the economic 

burden of injury and improve the overall well-being of the worker.  

Functional capacity evaluations (FCEs) are often requested by employers, insurance 

companies and physicians to inform RTW decisions for injured employees (Pransky & 

Dempsey, 2004). As seen in Figure 1, FCEs play an important role within the rehabilitation 

process, providing information to inform RTW decisions. FCEs provide an assessment of a 

person’s physical and cognitive abilities to accomplish a task, termed their capacity (Gibson 

& Strong, 2003). Their capacity is then compared to job demands to determine if they are fit 
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to RTW. If their capacity does not meet required job demands, FCE results may highlight 

opportunities to focus continued therapy to restore capacity as required or to identify if job 

demands can be reduced to accommodate their capabilities. In select cases, it can also 

establish that a worker is indeed unable to return and should instead pursue vocational 

training to prepare for an alternate career path. As a result of the potential uses for an FCE, 

an FCE can range from two-to-six hours a day, with up to two days of testing depending on 

the reason for the FCE and the specific tests included in the functional testing battery (King, 

Tuckwell, & Barrett, 1998). 

FCEs are often comprised of a battery of physical tests. Many of the physical tests 

measure the capacity to complete dynamic manual materials handling (MMH) tasks, such as 

lifting, lowering and carrying (Allison et al., 2018). Depending on the purpose of the MMH 

test being administered, capacity can be measured as the maximum safe load a person can 

safely handle in that specific task, or it can be measured as the endurance to repetitively 

complete a task (Allison et al., 2018). A common approach for determining capacity during 

these physical tests is the kinesiophysical approach, which relies on the administrator of the 

test subjectively determining when the person has reached their capacity (Isernhagen, 1992). 

The evaluator uses biomechanical (visual appraisal of unsafe movement patterns and 

coordination) and physiological changes, such as heart rate (HR), to estimate when the 

person has reached their capacity. 
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Figure 1. Overview of the occupational rehabilitation process, adapted from Innes and 

Straker (1998a). The red box indicates where in the rehabilitation timeline an FCE 

would take place to determine RTW decisions. 

  The predictive validity and reliability of FCEs to estimate accurate RTW outcomes 

has been questioned (Gouttebarge et al., 2004; Gross & Battié, 2005; Reneman, 2003). The 

subjectivity of determining the capacity from pre-determined biomechanical observations 

may be a reason why FCE reliability continues to be questioned (Sinden et al., 2017). The 

biomechanical criteria often used to inform evaluator decisions includes muscle recruitment 

(observation of muscle bulging), movement patterns, coordination and balance (Allison et al., 

2018). Accurate use of pre-determined biomechanical observations relies on the experience 
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of the test administrator to correctly identify the biomechanical criteria during the test. For 

example, an evaluator may use how close to the body a worker is holding a load during a lift 

as one of the criteria for determining an endpoint. However, this criterion can be vague and 

might not be consistent across lifts, or people. If there was an objective method to help 

determine when someone was reaching their capacity, the validity and reliability of FCE 

outcomes may improve. 

 Different methods have emerged to identify and classify changes in subject-specific 

movement patterns based on objective data and criteria (Chan et al., 2020; Kobsar & Ferber, 

2018). In fact, different techniques have been demonstrated to detect changes in movement 

patterns when a person may be exhibiting fatigue during a repetitive spine flexion-extension 

task (Chan et al., 2020), or after a clinical gait intervention (Kobsar & Ferber, 2018) as 

examples. Diving deeper, Chan et al. (2020) used ten movement variables, such as angular 

velocity, acceleration, and repetition time to create an individualized spine motion composite 

index. The index was calculated from 50 baseline flexion-extension repetitions, and then 

again in ten subsequent repetitive fatiguing sets of 50 repetitions. Changes in movement 

patterns were calculated as the number of standard deviations above or below the mean 

baseline composite index measurement. Alternatively, Kobsar and Ferber (2018) trained a 

one-class support vector machine (OCSVM) to objectively classify relevant within-

individual changes in movement based on their deviation from their normal range of 

behavior. OCSVM essentially defines a decision boundary from “typical” data and classifies 

new data as either fitting within or outside of that decision boundary (Kobsar & Ferber, 

2018), serving as an outlier detection algorithm. Such an approach may be useful to 



 

5 

objectively identify fatigue related changes in movement during the performance of 

continuous MMH tasks within an FCE paradigm. 

In the context of lifting, a common FCE task, a person’s “typical” lifting behavior 

could be identified, and then as the lifter begins to adapt their lifting pattern as a result of 

fatigue, subsequent lifts could be classified as differing based on the decision boundary. This 

is illustrated in Figure 2 where the blue circles represent exemplar baseline lifts, and the teal 

outline represents the OCSVM determined decision boundary. The red ‘X’s represent new 

exemplar lifts that were classified as either inliers or outliers based on whether the data fell 

within or beyond the decision boundary. Outliers that fall outside of the decision boundary 

can be considered different than the baseline lifts. Note that it is possible for the machine 

learning algorithm to classify baseline data as outliers as well, where OCSVM performance 

is dependent on hyperparameter selection (Wang et al., 2018). The ability to objectively 

identify when an individual lifter adapts their movement patterns as a result of fatigue may 

help strengthen the ability to predict an individuals prolonged workability.  

Lifting kinematics have been shown to change because of fatigue during repetitive 

lifting. When compared to the baseline lifting movement pattern, shoulder, elbow and trunk 

kinematics have differed when fatigued during repetitive lifting (Fischer et al., 2015; Mehta 

et al., 2014). Using full-body motion capture to drive the model, a OCSVM may be able to 

objectively detect fatigue related kinematic changes. In the FCE context, an objective method 

for identifying biomechanical related changes from factors such as fatigue may lead to more 

accurate FCE outcomes and capacity determinations. Instead of relying on the subjective 

evaluation of the administrator, machine learning could automatically detect these changes 
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based solely on motion data. This study will help identify the applicability and feasibility of 

such an approach. 

 

 

Figure 2.  Example of how one-class support vector machines create a decision 

boundary (teal outline) based on the features of the data. Data points are then classified 

as inliers or outliers. Baseline training data (used to establish the decision boundary) 

are shown as blue circles, and test data (classified based on the decision boundary) are 

shown as red ‘X’s. This example includes a feature space with two relevant movement 

features (i.e., PC 9 and PC 10) for example purposes, however a OCSVM may have a 

multi-dimensional decision boundary. 
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2. Literature Review 

2.1 Functional Capacity Evaluations 

FCEs are used in the rehabilitation process to help make RTW decisions for 

employees recovering from an injury. FCEs produce an estimate of a person’s capacity to do 

work, which is then compared to the job-specific demands to determine their RTW level 

(Pransky & Dempsey, 2004). A worker may be prescribed to RTW at a normal level, RTW at 

the same job with modified duties, RTW at a different job, or not to RTW. Results of the 

FCE may also be used by medical and legal teams to make decisions about further 

rehabilitation options and worker’s compensation claims (Innes & Straker, 1998b). 

Isernhagen (1992) describes and contrasts two styles of FCEs commonly used that 

differ in their approaches to generate capacity determinations. First, Isernhagen (1992) 

describes the kinesiophysical approach. This approach relies on an evaluator to determine 

when the person has reached their maximum safe load. The evaluator uses biomechanical 

(unsafe movement patterns and coordination) and physiological changes, such as HR, to 

decide when the person has reached their max capacity. Other signs of fatigue are also used, 

such as recruitment of secondary muscles to complete a movement when the primary 

muscles are fatigued (Isernhagen, 1992). This method emphasizes safe movement patterns 

throughout testing. The other approach that Isernhagen (1992) describes is known as the 

psychophysical approach. In contrast to the kinesiophysical approach, the psychophysical 

approach relies on the person completing the FCE to determine when they have reached their 

self-selected maximum safe load. This approach is sensitive to factors such as pain, fear of 
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reinjury and willingness to RTW. If a person is influenced by one of these factors, their 

capacity determination may be lower than what they are truly capable of (Isernhagen, 1992).  

Extensive research has aimed to determine the extent of FCE usefulness and rigor. 

Many different FCE systems have been developed, so it is important that these systems are 

validated with evidence of their practicality. Psychometric properties are crucial for FCEs to 

exhibit for validation that they are tools that can be safely and reliably used for accurate 

RTW decisions (King et al., 1998; Reneman, 2003). Two key psychometric properties 

important for FCEs are validity and reliability (Gross, 2004). Subsequent sections will 

discuss research completed on these properties on various FCE systems, with a focus on 

predictive validity, interrater and intrarater reliability.  

 

2.1.1 FCE Predictive Validity 

Predictive validity is a crucial psychometric property that FCEs must exhibit in order 

to be valuable (Gross, 2004). Predictive validity within an FCE context means that the FCE 

results correctly predicts future RTW level and performance (King et al., 1998). The 

determination made by the evaluator needs to be compared to what occurs in the future for 

that individual’s RTW status. For example, if the FCE outcome concludes a worker can 

RTW in two weeks with minimal modifications to their job and the worker does not RTW for 

another 3 months, the FCE would have low predictive validity, especially if incorrect 

predictions are a consistent trend with the FCE system. Issues that may contribute to a low 

predictive validity include poor characterization of job demands and the incorrect 

measurement of the capacity of an individual, through an FCE, in relation to those job 
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demands (Pransky & Dempsey, 2004). The subjective means of an evaluator determining the 

capacity of an individual may also contribute to poor predictive validity. 

 Several studies and comprehensive reviews conducted to determine the predictive 

validity of RTW decisions made by various FCE systems have shown that FCEs have a 

generally low predictive validity. In a review looking to determine the extent and quality of 

evidence for validity of 28 commercially available work-related assessments being used in 

Australia, Innes and Straker (1999) determined that most systems had limited evidence of 

validity. Additionally, none of the systems had moderate to good validity in each area of 

validity that was measured. Of the 28 FCE systems, only 2 were shown to have good 

evidence of predictive validity. Similarly, a systematic review examining reliability and 

validity of four different FCE systems found that only one of them, the Isernhagen Work 

Systems FCE, had evidence of good predictive validity. Two of the remaining three systems 

had not demonstrated good validity in their studies, while the remaining FCE system had no 

studies examining validity (Gouttebarge et al., 2004). These results highlight why it is 

important to probe and understand how new approaches to determining capacity might 

improve these outcomes. 

In a study measuring the predictive validity of the Isernhagen Work Systems FCE in 

chronic low back pain clients, Gross and Battié (2005) found that the number of failed FCE 

tasks and a higher maximum weight on floor-to-waist lifting were only mildly associated 

with faster RTW. Also, four of the six claimants that met or exceeded physical job 

requirements on all FCE tasks experienced a recurrent injury event or were not working at 

one-year follow up. The authors suggest that FCEs should not be relied upon for patients 
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with chronic low back pain to correctly predict safe RTW. Similarly, Gross et al. (2014) 

found no significant difference in RTW or functional work levels at any of the follow-up 

periods between claimants who underwent an FCE or a functional interview as a part of their 

rehabilitation programs. The findings of this study showed that a functional interview, which 

would be safer and easier to implement, may be just as useful as an FCE. In contrast to other 

studies, Matheson, Isernhagen, and Hart (2002) showed that RTW level was predicted by 

various lifting subtests in the ISW FCE. However, they showed no evidence of the full FCE 

outcome predicting RTW level, using only five specific subtests of the 29 tests in the 

Isernhagen Work Systems FCE. All of the above-mentioned results show that the generic 

tests done in an FCE may not represent a worker’s ability to do work in the workplace, or 

their ability to stay injury free.  

 Overall, there is lack of evidence of the predictive validity of FCEs. Of the available 

evidence, the quality is either poor or there is minimal evidence supporting good predictive 

validity. Reneman (2003) questioned the ability of FCEs to accurately predict RTW and 

suggests that successful RTW depends on many other factors than just functional capacity 

itself. He concludes that workability is multidimensional, and the FCE test is only measuring 

a single dimension. FCE results should be combined with other tests, and if not, the results 

should be used to confirm or deny the patient’s beliefs about their abilities to do work 

(Reneman, 2003). If an objective approach using machine learning was introduced, the 

predictive validity of FCEs may be improved by more accurately determining when a person 

has reached their endpoint. 
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2.1.2 FCE Reliability 

Another important psychometric property that FCEs should exhibit is reliability, 

defined as the consistency of a measurement. Specifically, the interrater and intrarater 

reliability are the most important reliability measures for FCEs (King et al., 1998). Good 

interrater reliability means that if two different evaluators administer an FCE to the same 

person, the outcomes should be the same. This situation may occur if one evaluator 

administers an FCE prior to a treatment, and a different evaluator administers one after the 

treatment. Any difference in scores should not be attributed to the administration of the test 

by the different evaluators. High intrarater reliability is when the scores of an FCE test 

administered twice by the same evaluator on the same person is consistent. If the evaluator 

gave a different score, when other factors should be unchanged, there may be an issue with 

the test or the evaluator (King et al., 1998).  

Test-retest reliability can also refer to the consistency of the capacity determinations 

of an individual (Bieniek & Bethge, 2014). For example, if a person did a lifting protocol 

twice, they would reach the same lifting capacity both times. Although reliability measures 

may be influenced by the test protocol or the evaluators, reliability may also be susceptible to 

participant’s behavior during the testing. For example, participant attitudes, beliefs and 

motivations for the testing may provide inconsistent results (Gross, 2004). Learning effects 

may also play a role, as Reneman et al. (2002) saw improved performance of lif ting and 

carrying capacity on the second day in participants with chronic low back pain, possibly due 

to familiarity with the testing. Since many factors have been shown to influence reliability of 

FCEs, it is important that FCEs are designed to limit the possibility of inaccurate results. 
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Similar to validity, studies have been conducted on various FCE systems to examine 

the reliability of the tests. In a systematic review of 11 studies examining the reliability of the 

WorkWell Systems FCE, Bieniek and Bethge (2014) found that 82% of the overall reliability 

statistics measured were acceptable. However, 85% of the measures had poor methodological 

quality, and 76% of the measures were for test-retest reliability. Also, all the inter- and intra-

rater reliability measures were for weight-handling and strength portions of the FCE. They 

concluded that all reliability measures for the weight-handling and strength portions were 

acceptable, but results for the other portions were inconsistent or were lacking evidence. 

Reneman et al. (2002) also provided evidence that the test-retest reliability of lifting and 

carrying in the Isernhagen Work Systems FCE was acceptable in 50 patients with chronic 

low back pain. There was an average difference of 1.7kg lifted and 3kg carried between the 

two days, which they argue is not clinically relevant. These two specific FCE systems show 

that their reliability measures are fairly limited and inconsistent, except in portions that may 

be more standardized than others, such as the weight-handling portions.  

 The above studies only examined reliability of two different FCE systems. Another 

systematic review examined evidence for reliability of four FCE systems, one of them being 

the Isernhagen Work Systems FCE (Gouttebarge et al., 2004). Their results showed that only 

the Isernhagen Work Systems FCE had studies assessing reliability, which had good 

evidence for interrater reliability but not intrarater reliability. None of the other FCE systems 

had studies examining their reliability. The same authors conducted a study two years later to 

assess the interrater reliability of one of the FCE systems that had no reliability studies 

during the time of their systematic review. They assessed five different Ergo-Kit FCE lifting 
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tests in subjects with chronic low back pain, showing good interrater reliability (Gouttebarge 

et al., 2006). However, there were only two different evaluators used, and only the lifting 

portion of the FCE was evaluated. There is a trend showing that the available reliability 

studies only truly show reliability in portions of the FCE that can be easily standardized, 

however, evidence is very limited or non-existent. 

Although there is good evidence available that some FCE systems provide sufficient 

reliability, the majority of researchers have examined test-retest reliability, and only test 

specific sections of an entire FCE protocol. There is an overall lack of reliability studies 

available for the majority of FCE systems. At the time of the King et al. (1998) paper, they 

only found evidence of inter- and intrarater reliability in peer-reviewed journals for two FCE 

systems when many more FCE systems are available. Experts suggest one way to increase 

reliability is to increase standardization of the tests (King et al., 1998). Standardization would 

involve aspects such as task demonstrations, data collection and analysis, and instructions 

given. These should not change with each different evaluator conducting the test. 

Introduction of an objective machine learning approach for assessing fatigue related changes 

to determine endpoints would help to improve FCE reliability. A machine learning approach 

could eliminate the vague endpoints used by evaluators. Also, opportunity for poor intra - and 

interrater reliability would essentially be negated since the machine learning model would be 

objective and work the same way every time.  Overall, better reliability of FCEs would lead 

to better predictions of RTW leading to improved outcomes for employees and employers.  
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2.1.3 Other FCE Limitations 

As discussed in the previous sections, FCEs are not short of debate and potential for 

research. Although problems with validity and reliability have seen the most research, other 

issues exist with FCEs. One such issue is the ability of people undergoing the test to provide 

dishonest effort (Gross, 2006). Evaluators conducting the FCEs are trained to detect insincere 

efforts and will adjust decisions based on their perceptions, but this is not perfect. There are 

various reasons why a person may not give full effort, such as fear of reinjury or anxiety 

towards RTW (Innes & Straker, 1998a), or for secondary gain such as financial 

compensations (Geisser et al., 2003).  

To attempt to measure sincerity of effort, various methods have been studied. 

Variability of performance is one such method, with low variability suggesting lower 

sincerity of effort (Geisser et al., 2003). Jay et al. (2000) examined various indicators of 

sincere effort in a previously injured population while performing an EPIC lift capacity test. 

These indicators included HR and systolic blood pressure increases, and an evaluator’s 

subjective evaluation of the participant’s exertion. Using each of the indicators, the 

evaluators were able to accurately classify 86.8% of full and insincere efforts. However, the 

most reliable measure was the evaluators subjective evaluation of the participants. This study 

shows that various indicators may be valuable to assess sincerity of effort during an FCE but 

more research needs to be done to validate these methods. Although sincerity of effort 

determinations can be completed, the reasons for a person giving less than full effort should 

be examined before any critical RTW decisions are made (Innes & Straker, 1998b). 

Implementation of an objective machine learning method based solely on the worker’s 
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movements during an FCE task may be able to pick up on sincerity of effort. Some of the 

measures used previously, such as variability of movement, may easily be detected with a 

machine learning data analysis approach. In combination with an evaluator’s perception and 

physiological measures such as HR or RPE, a machine learning approach may help estimate 

sincerity of effort. 

 Another issue with FCEs is the length of the protocol. The time commitment needed 

for the evaluator and patient is extensive, especially if it is a two-day protocol. Mentioned in 

the FCE validity section above, some studies show that just a few factors, such as weight 

lifted, are just as predictive as the overall protocol itself (Gross, 2006). If a shorter protocol 

with specific predictive tests is developed, the length of FCEs may be decreased to reduce the 

time commitment burden on health care providers and employees. 

 The above sections have discussed issues with FCEs that may lead to the tool not 

correctly predicting an individual’s RTW status, as well as other debated issues. 

Implementation of an objective machine learning approach is not a fix to all these issues, nor 

will it eliminate the need for trained evaluators. However, it has potential to reduce or 

eliminate some of the FCE limitations. For example, the reliability of capacity determinations 

with an objective approach would be much better than the subjective, evaluator approach 

currently used since an algorithm will run consistently each time. The research and 

knowledge that this study can contribute to this field will provide evidence on whether an 

outlier detection machine learning algorithm is feasible for use in FCEs.  
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2.1.4 FCE Future Directions 

Much of the research on FCEs was in the 1990’s and early 2000’s. FCE research 

slowed down after that period, but there has been occasional research completed as new FCE 

systems were developed and more updates were needed about the state of FCEs. For 

example, a 2018 systematic review updated available evidence of psychometric properties of 

FCEs post-2004 (De Baets et al., 2018). Similar to other studies presented in earlier sections, 

these authors found that some of the FCE systems available had extensive research but 

showed reliability and validity of the FCEs were limited in strength. They also found that 

much of the research done on specific FCE systems were often done by the same authors, 

which may introduce bias. The importance and use of FCEs is unchanged at present time, as 

it was in the past when research was extensive. Research needs to continue to develop 

methods and protocols that strengthen the validity and reliability of FCEs to accurately assess 

whether an injured person can RTW.  

 In a recent report on current FCE practices gathered from literature and clinical 

experts, Allison et al. (2018) suggest that wearable technologies is an emerging trend to be 

aware of for FCE practitioners. Such technologies include electrogoniometers, strain gauge 

sensors, accelerometers and surface electromyography. This list could possibly be extended 

for other advancing technologies and approaches such as machine learning. Data from any of 

the above sensors, as well as movement data, could be added as inputs in a machine learning 

model to help improve capacity determinations and RTW decisions. Doing so could enhance 

the validity and reliability of FCEs, while also aiding evaluators in some other problem areas, 

such as sincerity of effort. Also, efforts exist to use intelligent robotics incorporating machine 
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learning to improve FCE assessments by simulating workplace tasks (Fong et al., 2020). 

Studies such as this thesis can help advance FCEs by implementing new technologies, 

resulting in better RTW decisions that benefit both employers and employees. 

 

2.2 Considering the Use of Machine Learning Methods to Detect Changes in 

Movement Patterns 

 As mentioned previously, evaluators in FCEs are typically trained to watch for 

biomechanical changes that may occur while a person is completing MMH tasks (Allison et 

al., 2018; Isernhagen, 1992). These biomechanical changes include but are not limited to 

counterbalancing or leaning in the opposite direction of the load, activating accessory 

muscles (e.g. the trapezius muscle to aid the biceps during a heavy lift), and using unsafe 

movement patterns (e.g. not using the knees during a heavy lift) (Isernhagen, 1992). 

Although evaluators can be trained to notice these biomechanical changes to detect fatigue in 

an individual, not everybody may exhibit the same changes in the same way. Fatigue related 

movement changes are not always consistent across each person, with evidence showing that 

there can be an increase or decrease in movement variability depending on the kinematic 

variable (N. Cortes et al., 2014). Some people may also change their movement patterns 

when fatigued in more indiscrete ways that cannot be noticed by a trained eye. Therefore, it 

may be useful to use subject-specific machine learning approaches to identify and classify 

changes in movement patterns that may be relevant to the task being completed. 

 Emerging research highlights opportunities to develop subject-specific approaches to 

detect kinematic changes in performance. Kobsar and Ferber (2018) used subject-specific 
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OCSVM models to evaluate whether knee osteoarthritis patients exhibited changes in their 

gait after a six-week intervention. Patients’ baseline gait movement patterns were measured 

by inertial measurement units (IMUs) before the exercise intervention and used to define a 

decision boundary in the OCSVM. Gait movement patterns were measured again after the 

exercise intervention, then were classified against the decision boundary to detect if the 

intervention lead to changes in the patients’ gait. From this example, OCSVM was 

successfully used as a subject-specific outlier detection algorithm for clinical intervention 

purposes. OCSVM may therefore have the potential to detect changes in kinematics due to 

other mechanisms, such as fatigue, which may prove useful for FCEs. Fatigue related 

changes during prolonged MMH tasks could be detected and identified by OCSVMs. 

 The ability to detect subject-specific fatigue related changes in kinematics was 

demonstrated by Chan et al. (2020). Ten pre-selected kinematic related variables associated 

with muscle fatigue were measured using an IMU setup. From these measured variables, they 

calculated a spine motion composite index. Participants performed a baseline set, and 

multiple fatiguing sets of a spine flexion-extension task. They calculated the composite index 

on a subject-specific basis, where the composite index at the baseline set was determined to 

be their “typical” movement pattern for the task. The fatigue sets’ composite index then 

represented the number of standard deviations above or below the mean of each participant’s 

“typical” spine movement. This method shows how pre-selected, known fatigue related 

kinematic variables can be combined with wearable sensors to detect fatigue related changes 

in movement (Chan et al., 2020). These above examples demonstrate how subject-specific 

approaches to identifying changes in movement can be accomplished with different methods.  
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2.2.1 Data Reduction and Feature Extraction using Principal Component 

Analysis 

 As demonstrated by Chan et al. (2020), it is possible to choose pre-selected kinematic 

variables to include in a subject-specific analysis. Since evaluators in FCEs also use pre-

selected variables that they try to observe and quantify (Allison et al., 2018) that may not be 

homogenous across individuals, it may be useful to use an approach that can automatically 

detect changes in kinematics to create movement- relevant features. Principal component 

analysis (PCA) is a feature detection and data reduction technique that detects underlying 

synergistic or functional patterns in a waveform that explain the greatest proportion of 

variance (Daffertshofer et al., 2004). Instead of using variables such as mean knee angle or 

peak shoulder adduction that reduce the amount of information about a movement waveform, 

PCA will preserve the variability of the dataset when used in an analyses (Halilaj et al., 

2018). PCA is therefore useful for biomechanical analyses since human movement is 

variable, and fatigue related changes may not be homogenous, as previously mentioned. PCA 

can extract meaningful movement-relevant features on an individual basis to create more 

personalized analyses. PCA will extract principle components (PCs) that represent a certain 

amount of variance, with the first PC explaining the most amount of variance and each 

subsequent PC explaining less than the one before it (Brandon et al., 2013). Each waveform 

will then receive a PC-score for each PC, which represents the degree that the waveform 

exhibits the specific variance pattern of the PC (Deluzio & Astephen, 2007). Therefore, PC 

scores can be used to represent the overall movement pattern that was inputted into the PCA. 
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PC scores can also be used for any statistical testing techniques typically used (Deluzio & 

Astephen, 2007). 

 PCA is also useful as a data reduction technique that reduces the number of features 

of a dataset. In a review of machine learning literature in human biomechanics, Halilaj et al. 

(2018) found that PCA is one of the two most common approaches for reducing the number 

of features in a dataset prior to selecting features for use within machine learning models. 

Having a smaller number of features than the number of observations in most machine 

learning applications is crucial for the model to work properly (Phinyomark et al., 2018). 

Since whole-body time series kinematic data has a large amount of features (i.e. multiple 

three-dimensional trajectories), data reduction is needed (Halilaj et al., 2018; Phinyomark et 

al., 2018). Most studies assessed by Halilaj et al. (2018) retain enough PCs to explain at least 

90% of the variance in the dataset. PCA continues to provide a reasonable method to support  

data reduction and feature extraction technique prior to the application of  machine learning 

models where examples include the classification of runners based on running kinematics 

(Clermont, Phinyomark, et al., 2019; Phinyomark et al., 2014), detection of subject-specific 

gait movement pattern changes after a clinical intervention (Kobsar & Ferber, 2018), and for 

identifying movement phenotypes during the performance of deep squat and hurdle step 

movements (Remedios et al., 2020). PCA is therefore a useful tool to use for data reduction 

and feature extraction for machine learning models related to biomechanical analyses.  
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2.2.2 Outlier Detection using One-Class Support Vector Machines 

 Once a feature set has been determined, it is necessary to apply methods that can 

classify or group data based on those underlying features. Support vector machines (SVMs) 

are a machine learning approach commonly used for binary classification (Cortes & Vapnik, 

1995). Essentially, the SVM will define an optimal hyperplane (also called decision 

boundary) that has the maximal margin between the vectors of the two classes (usually 

denoted as positive and negative classes) (Cortes & Vapnik, 1995). The decision function 

that defines the hyperplane can be linear or non-linear depending on the kernel function used 

(Burges, 1998). In either case, support vectors are the input data that lie closest to, or on the 

decision boundary for both positive and negative classes. Figure 3 shows an example of what 

a simple linear, 2-dimensional hyperplane and support vectors might look like (Cortes & 

Vapnik, 1995). More complex problems would require a higher-dimension, non-linear 

decision function. Examples of SVMs use in biomechanics include detecting age-related 

changes in running kinematics (Fukuchi et al., 2011), gender and age-related differences in 

lower extremity running mechanics (Phinyomark et al., 2014), classifying runners as high or 

low milage based on running kinematics (Clermont, Phinyomark, et al., 2019), and 

classifying lifting postures as correct (safe) or incorrect (unsafe) from IMU data (Conforti et 

al., 2020). In combination with wearable sensors and/or motion capture, SVMs are a useful 

tool for biomechanical analyses. 
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Figure 3. From Cortes & Vapnik (1995). An example of a linear, two-dimensional 

hyperplane. The points marked with a grey square are the support vectors which define 

the maximum width of the margin. 

 Support vector machines can also be multi-class, or one-class. In the case of multi-

class models, the goal of the model is to separate each class by a hyperplane, similar to the 

binary classification example. This can be done by combining several binary classifiers, or 

by considering all of the data into an optimization problem (Hsu & Lin, 2002). In one-class 

SVMs, the data are not treated as having positive and negative examples. Instead, a decision 

boundary is computed around a training set which could be considered the “typical” data. 

Then, new test examples can be classified as outliers if they fall outside of the decision 

boundary, or inliers if they fall within (Mourão-Miranda et al., 2011).  

OCSVMs can be used for many different applications. For example, Mourão-Miranda 

et al. (2011) used a OCSVM to define a boundary of “typical” brain activity when viewing a 

sad facial expression from healthy controls, then tested whether new cases (depressed 
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patients) fit within or outside of this “typical” boundary of brain activity. Another way to use 

OCSVM is to detect subject-specific changes. As mentioned previously, Kobsar & Ferber 

(2018) used a subject-specific OCSVM to evaluate whether knee osteoarthritis patients 

exhibited changes in their gait after a six-week intervention. Figure 4 shows a two-

dimensional representation of the decision boundary data from the Kobsar & Ferber (2018) 

study. From this example, OCSVM was successfully used as a subject-specific outlier 

detection algorithm for clinical intervention purposes. OCSVMs could also be used to 

identify subject-specific fatigue related changes in movement, which this study aims to 

explore. 
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Figure 4. From Kobsar & Ferber (2018). Two-dimensional representation of the 

decision boundary, baseline and post-intervention data using two features. Example (A) 

shows no post-intervention outliers, while example (B) showcases a feature space that 

may better identify post-intervention outliers. In reality, a multi-dimensional feature 

space is used to capture relevant outliers. 
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2.3 Literature Review Conclusion 

 The literature demonstrates the importance of predictive validity and reliability of 

FCEs, but the available evidence for current FCE systems is limited and poor. A need to 

improve and conduct more research on FCEs is apparent to support improved RTW decision 

making, and to ultimately improve the safety and productivity of workers. The lack of an 

objective approach to determine capacity is highlighted as a potential area for improvement. 

If subjectivity could be eliminated from RTW decisions, outcomes may be improved. Using 

a machine learning based outlier detection approach may provide a potential solution for this 

problem. SVMs have been shown to be successful for classifying patterns in gait and running 

contexts, and in identifying correct versus incorrect lifting postures. However, whole-body 

kinematics have not been used as inputs into a OCSVM to detect fatigue related changes 

during lifting. If OCSVMs can be used to identify when a person’s lifting movement patterns 

have changed relative to their baseline due to fatigue, it provides important proof-of-principle 

data that such methods might be able to overcome limitations associated with the subjectivity 

of an FCE evaluator’s capacity determination. 
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3. Research Question and Hypotheses 

The global objective of this thesis was to develop subject-specific models to 

objectively identify fatigue related changes in lifting kinematics using one-class support 

vector machines. 

Research Question: Is the percentage of outlier movement patterns as calculated from a 

OCSVM machine learning model correlated with increases in ratings of perceived exertion 

(RPE) or HR during a single-session repetitive lifting task in healthy adults? 

Hypothesis 1: There will be a significant positive correlation between the changes in lifting 

patterns, measured as the percentage of outliers determined by the OCSVM, and the RPE 

exhibited by participants that were likely to have fatigued during the lifting trials. 

Specifically, participants who exhibited a greater RPE will have more outliers during the 

final lifting trials. 

Hypothesis 2: Similarly, there will be a significant positive correlation between the 

percentage of outliers determined by the OCSVM, and the HR exhibited by participants that 

were likely to have fatigued during lifting trials. 
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4. Methodology 

4.1 Study Design 

 This study was conducted as a secondary analysis of data previously collected. In the 

original study, a cross-sectional observational-based exploratory research design was used 

for this study. Participants came to the Occupational Biomechanics and Ergonomics 

Laboratory at the University of Waterloo for data collection. Participants lifting kinematics 

were captured during a repetitive lifting protocol, where participants were encouraged to 

repetitively lift boxes at a self-selected pace for 60 minutes or until volitional fatigue.  

 The original study was reviewed and approved by the University of Waterloo Ethics 

Board (ORE #40762) prior to commencement of the study. Informed consent was received 

by each participant before participating in the study. 

 

4.2 Participants 

 Data were obtained from fourteen healthy participants (Table 1) that were recruited 

from a local university student population. Participants were excluded if they had acute 

and/or chronic pain that interfered with prolonged lifting in the previous seven days, 

determined using the Nordic Musculoskeletal Disorder Questionnaire. Participants were 

asked about their repetitive lifting and resistance training experience and length, if any.  
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Table 1. Participant demographics. 

              Males (N=7) Females(N=7) 

Age (years)   25.1 ± 4.1 22.3 ±3.7 

Height (cm)   178.7 ± 8.7 160.7 ± 5.3 

Weight (kg)   68.5 ± 10.8 60.6 ± 9.9 

Repetitive Lifting Experience 

(# Participants)   
3 4 

Length of Repetitive Lifting 

Experience (# Participants) ≤ 1 year 
2 3 

  > 1 year 1 1 

Resistance Training Experience 

(#Participants)   
3 5 

Length of Resistance Training 

Experience (# Participants) ≤ 1 year 
1 2 

  1 to 2 years 1 1 

  > 2 years 1 2 

 

4.3 Instrumentation 

4.3.1 Motion Capture 

A 12-camera (6 Vero v2.2, 6 Vantage V5) Vicon motion capture system (Vicon, 

Oxford, UK) was used to track 3D kinematics of the body. Position data were sampled at 

100Hz using Vicon Nexus (v2.6, Vicon, Oxford, UK). Reflective markers used for static 

calibration were placed on anatomic landmarks, shown in Figure 5 (bilaterally on the 2nd and 

5th metacarpal head, ulnar and radial styloid, medial and lateral epicondyles, acromia, C7, T8, 

xyphoid process, suprasternal notch, anterior superior iliac spines, posterior superior iliac 

spines, lateral iliac crests, greater trochanters, medial and lateral femoral condyles, medial 

and lateral malleoli, calcaneus tuberosity, 1st and 5th metatarsal head). Rigid clusters with 

four reflective markers were placed on the subject for calibration and remained on for the 

experimental protocol. These clusters were placed on the shanks, thighs, pelvis, trunk, upper 
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arms, and forearms. Four markers were also placed on each of the head, both hands and both 

feet. The anatomical markers, excluding the ulnar and radial styloids, were removed after the 

static calibration was completed. The three boxes that were used for lifting also had reflective 

markers attached to them so their position could also be tracked during collections.  

 

 

Figure 5. Anterior (left) and posterior (right) views of Vicon reflective marker 

placement for motion capture collection. 

 

4.3.2 Fatigue Measures 

 HR was collected using a Polar FT1 Heart Rate Monitor (Polar Electro Oy, Kempele, 

Finland), displayed on a watch worn by the participant. Borg’s 6-20 scale was used to collect 

RPE data (Borg, 1982). Participants were asked after every 15 lifts (approximately every 2 

minutes) what their HR (shown on the watch) and RPE was. 
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4.4 Experimental Protocol 

4.4.1 Participant Preparation 

Once all consent forms and questionnaires were completed, participants were 

prepared with the reflective motion capture markers. Reflective markers were placed at the 

anatomical landmarks identified above in Figure 5 with hypoallergenic tape. Clusters were 

placed at their respective sites with Velcro straps. Once the participant was prepared and 

ready for motion capture, the participant was calibrated in the motion capture space. A static 

calibration trial was collected, then the anatomical markers were removed. Dynamic 

calibration trials were also performed that were used later to assist in data processing. The 

shelves were adjusted to be matched to the participant’s shoulder height.   

 

4.4.2 Lifting Protocol 

  Participants completed two-handed box lifts from floor-to-shoulder height at a self-

selected pace until volitional fatigue, or until a maximum time limit of one hour was reached. 

Participants started behind a line 10 feet away from three boxes and three shelves that were 

adjacent to each other (Figure 6). Each shelf had its own respective box that was lifted from 

just above the floor onto a shoulder-height shelf. Each box contained a weight that 

corresponded to approximately 30% of their maximum lifting capacity as determined using 

Matheson’s EPIC Lifting Capacity test (Matheson et al., 1995). 

Participants completed trials that consisted of three consecutive lifts. Once given the 

signal to start, participants walked towards the shelf on the left, picked up the box from the 

floor and placed it on the shoulder-height shelf. They then moved from left to right, lifting 
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each box onto the respective shelf. Once a trial of three lifts was completed, the participant 

walked back towards the starting line, ending that trial. Participants repeated the lifting 

procedure at a self-selected pace until volitional fatigue or until they reached the 60-minute 

time limit. HR and RPE were collected after every five trials (15 lifts) and participants were 

asked if they were able to continue the protocol. If they answered yes, the participant would 

continue the lifts. If they answered no, the protocol was stopped as the participant reached 

volitional fatigue.  

 

Figure 6. The shelf and box setup. There were three shelves that had its own respective 

box. The participants lifted the box from the shelf just above floor-height onto the 

shoulder-height shelf, moving from left to right. One trial consisted of three consecutive 

lifts. 

 

4.5 Data Processing 

 Figure 7 illustrates the flow of data treatment and analysis. Methods are described in 

greater detail in the following sections. 
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Figure 7. General overview of the data treatment and processing steps. 

 

4.5.1 Data Treatment and Preparation 

4.5.1.1 Vicon Nexus 

All marker data were labelled, and gap filled in Vicon Nexus. For gaps less than 

200ms in length, a cubic spline was used. If the gaps were greater than 200ms, either a 

pattern fill or rigid body fill was used (Howarth & Callaghan, 2010). Rigid body fills were 

used if there were three available markers on the rigid body cluster for the required time 

points. Otherwise, a pattern fill was completed using one other marker that was available 

from the same rigid cluster. 
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4.5.1.2 Visual3D 

 The position data were exported into Visual3D software (v6.01.03, C-Motion, 

Germantown, Maryland). Data were dual pass filtered in Visual3D through a low pass 

second order Butterworth filter with an effective cut off frequency of 6Hz (Winter, 2009). 

The initial cut off frequency was 7.5Hz to correct for the dual passing of the filter.  

A whole-body kinematic model of each participant was created in Visual3D using the 

anatomical landmark position data from the static trial to define segments. The model 

consisted of a pelvis, thorax, head and bilateral foot, shank, thigh, upper arm, forearm and 

hand segments. Figure 8 shows a representation of a full-body model in Visual3D for a static 

standing trial. The pelvis segment was created using a CODA pelvis defined by the left and 

right ASIS and PSIS, and hip joint centres. The thorax segment was defined using the C7, 

suprasternal notch, left and right acromion, left and right ASIS and PSIS, left and right iliac 

crest and sacrum anatomical markers. The thigh segments were defined by the medial and 

lateral markers at the knee joint center, and an estimate of the hip joint centre as defined in 

(Bell et al., 1989). The upper arm segment was defined by the medial and lateral epicondyles 

distally. To define the glenohumeral joint centre, the acromion markers and upper and lower 

mid-torso landmarks were used. A point was projected 5cm inferiorly from the acromion 

along a vector from the upper and lower mid-torso (Nussbaum & Zhang, 2000). Medial and 

lateral markers on their proximal and distal endpoints were used to define the foot, shank, 

forearm, and hand segments. The head, pelvis and trunk centre of gravity, and the bilateral 

ankle, knee, hip, wrist, elbow, shoulder joint centres were all calculated for each frame of 

each lift and exported from Visual3D. These fifteen anatomical location three-dimensional 
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data points were used to represent the whole-body trajectories during the lifts. A visual 

example of these 15 anatomical locations can be seen in Figure 18 (Section 6.3.1). 

 

Figure 8. Full-body model of a static standing trial in Visual3D. 

A trial collection consisted of three lifts, starting as the participant approached the 

first box, and ending once they finished the third box lift. Therefore, trial recordings needed 

to be segmented into individual lifts for analysis. Events in Visual3D were created to 

segment the trials at the appropriate frames to signify the start and end of each lift. Figure 9 

shows an example of these events created in Visual3D. The start of a lift was defined as the 

moment a head marker reached 85% of the participants height, signifying when they were 

starting to bend down to pick up the box. The end of the lift was defined as the moment the 

box markers reached a maximum horizontal displacement along the global Y-axis (anterior to 
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the direction that the participant was facing when lifting the box). These events were 

manually checked for each lift to ensure proper placement. The trajectory data for each of the 

fifteen anatomical locations mentioned above were exported for each lift for only the frames 

between the start and end events for each lift. A lift was not included if the collection of the 

trial started too late or ended too early (i.e. if the participant was already in the middle of a 

lift when the collection started, or the collection ended before the participant finished the 

lift). 

 

Figure 9. Example of events created in Visual3D to signal the start and end of a lift, 

graphed on the Y-axis (anterior-posterior) trajectory of each box. Only data in between 

the start and end of each lift was exported for analysis. 
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4.5.1.3 Python 

The exported trajectory data from Visual 3D were read into Python (version 3.8) for 

further conditioning. The length of each lift was calculated from the total number of frames 

in each lift. Trajectory data for each lift was then normalized to 101 frames. Since the 

trajectory data were expressed in this global coordinate system, trial-to-trial variations in 

global positioning could induce variability in the trajectory data that could be captured by the 

PCA model. Therefore, these trajectory data were expressed in the local pelvis body-specific 

coordinate system so that trial-to-trial variability would represent local differences in body 

motion relative to the pelvis. Following conditioning, each frame of a lift was represented by 

the three-dimensional coordinates of the fifteen anatomical locations, defining an m = 45 by 

n = 101 frames matrix. Frame specific matrices were concatenated into a 1x4545 length 

vector, to represent the time normalized trajectory data as a single row vector. 

The OCSVM requires a training set to define the decision boundary, and 

consequently the baseline lifting movement pattern. As a result, each participant’s lifting data 

were separated into a training set and multiple test sets (presumed to represent motion at 

increasing levels of fatigue). The training sets were sectioned to include about 35% of the 

total number of lifts completed by each respective participant. This percentage was chosen to 

provide enough data to train the model to appropriately define the baseline movement of a 

participant. There are no examples to draw from the literature that use OCSVMs for 

classifying fatigued motion data to draw a specific conclusion about the size of the training 

set that should be used. However, Clermont, Benson, et al. (2019) used kilometers 4-14 from 

a marathon, or approximately 23.7% of the total marathon, to use as baseline “typical” 
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running motion data in their study. For this study, it is important to try not to include lifts that 

may be when a person is starting to fatigue and possibly adapting away from their baseline 

lifting movement pattern. However, since each individual lift cannot be specifically labelled 

as either “fatigued” or “non-fatigued”, an assumption was made that approximately the first 

35% of the lifting data was “non-fatigued.” Table 2 shows statistics about the lifts completed 

by each participant. 

Table 2. Descriptive statistics for the number of lifts completed by each participant, the 

number of lifts used for analysis after omitting lifts that were not properly captured due 

to human or technological error, the number of training set lifts used in the OCSVM, 

and the percentage of the total lifts that were used in the training set. 

Participant # Lifts # Lifts used 

# Training 

Lifts 

% Lifts used for 

Training 

P1 465 455 157 34.5 

P2 333 326 120 36.8 

P3 288 285 105 36.8 

P4 510 504 180 35.7 

P5 618 575 204 35.5 

P6 540 538 180 33.5 

P7 495 490 165 33.7 
P8 255 255 90 35.3 
P9 489 489 165 33.7 

P10 510 494 177 35.8 

P11 420 420 150 35.7 

P12 495 494 164 33.2 

P13 345 345 120 34.8 

P14 450 450 150 33.3 
Group Mean ± 

SD 
443.8±103.3 437.1±97.5 151.9±32.2 34.9±1.3 

     

The remaining lifts were then separated into multiple test sets. Since HR and RPE 

were collected after every 15 lifts, a test set was sectioned to include one HR and one RPE 

measurement, and 15 lifts. Some test sets contained more or less than 15 lifts depending on 
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collection errors that led to lifts being omitted, or errors with collecting the HR and RPE 

from the participant at the appropriate times (i.e. if HR and RPE was collected three lifts too 

late, 18 lifts would be included in that test set instead of 15). The separation of the data into 

training and test sets can be seen in Figure 10. 

Figure 10. Separation of total lifts completed by a participant into one training and 

multiple test sets, where n represents the number of test sets for one individual. The 

progression can also be thought of as the start of the protocol (first lifts in training set) 

to the end of the protocol (last lifts in test set n). 

 

4.5.2 Participant Fatigue Likeliness Classification 

 Participants were classified as either likely fatigued or unlikely fatigued to aid in 

analysis as a correlation between HR or RPE and outliers in those that did not fatigue would 

not be anticipated. Figure 11 shows a decision tree that led to their classification. If 

participants did not finish the full hour-long protocol due to volitional fatigue, they were 

labelled as likely to be fatigued. The remaining participants had their median RPE and HR 

for the training set and test sets calculated (i.e. a median RPE difference of two means their 

median RPE during the test sets was two higher than their median RPE during the training 

set). If participants that finished the hour-long protocol had a median RPE difference of two 

or greater, or a median HR difference of seven beats per minute (BPM) or greater, they were 

labelled as likely to be fatigued. If participants did finish the hour-long protocol but had a 
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median RPE difference of less than two, or a median HR difference of less than seven BPM, 

they were labelled as unlikely to be fatigued. Participants were labelled twice for both RPE 

and HR. For example, a participant could have finished the hour-long protocol, had a median 

RPE difference of three and a median HR difference of five BPM. In this case, they would be 

labelled as likely to be fatigued based on the RPE data, and unlikely to be fatigued based on 

the HR data. 

 

Figure 11. Decision tree leading to each participants’ fatigue likeliness classification. 

 

4.5.3 Feature Extraction using Principal Component Analysis 

PCA was used as a feature extraction and data reduction method to identify features 

of movement to capture orthogonal modes of variability (Remedios et al., 2020). Each PC 

calculated from PCA describes a specific feature of movement (Armstrong et al., 2020). A 

95% trace criterion was used, where PCs were retained that explained up to at least 95% of 
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the overall variance in the data (Armstrong et al., 2020; Brandon et al., 2013; Sadler et al., 

2011). PCA was first used on only the training set of lifts. The PC scores retained from the 

training set PCA were used as features to define the overall baseline lifting pattern for each 

participant. Since this is a subject-specific analysis, 14 PCAs, one unique to each participant, 

were conducted. The motion data from each test set was then projected back onto the PC 

feature space derived from the training set to generate PC scores for each test set using the 

transform function from the PCA toolkit. The PCA tool was used from the Scikit learn 

library in Python. PC scores from the training set and each test set were then used in the 

OCSVM model. 

 

4.5.4 OCSVM Classification 

 As mentioned in the introduction, the OCSVM defines a decision boundary from 

“typical” data and classifies new data as fitting either within or outside of that decision 

boundary (Kobsar & Ferber, 2018), serving as an outlier detection algorithm. The OCSVM 

tool from scikit was used and a Gaussian kernel function was used to train the boundary.  

The OCSVM has two hyperparameters that can be altered to modify how the decision 

boundary is made. Gamma is a hyperparameter of the Gaussian kernel, controlling the 

influence of individual training examples (set as a number > 0). Essentially, gamma effects 

the ‘smoothness’ of the model, where a higher value will lead to a tighter fitted model, while 

a lower value will lead to a more generalizable model. The default value, scaled, was used 

for each model, and calculated using Equation 1. Matrix X refers to the matrix being input 

into the OCSVM. Figure 12 shows how the gamma value influences the decision boundary. 
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The other hyperparameter, nu (set between 0 and 1), is defined as the upper bound on the 

fraction of training errors and a lower bound on the fraction of support vectors. In other 

words, nu represents the proportion of outliers that is expected in the data. For this model, nu 

was set to nu = 0.01. Figure 13 shows how the value of nu influences the decision boundary. 

These two hyperparameters had to be set so the training set boundary included a high 

percentage of the training set lifts as inliers so that the overall lifting movement pattern was 

defined, but not improperly set to make the decision boundary too large, where outliers 

would not be found in the test set data. 

Equation 1. Calculating the hyperparameter value gamma. The number of features 

refers to the number of PCs retained to use in each respective OCSVM, and matrix X is 

the matrix of PC scores defining each participant’s movement pattern. 

1 ÷ (# 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∗ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑥 𝑋)     

The PC scores in both the training set and test set were standardized to the mean and 

standard deviation of the training set using the StandardScaler function from Scikit learn. 

The PC scores from the training set were then used to fit a OCSVM decision boundary to the 

data. The percentage of outliers in the training set data were then calculated using Equation 

2. The test set PC scores were then tested against this decision boundary using the predict 

function from the OCSVM tool in Scikit learn. The number and percentage of outlier lifts 

were calculated for each test set. The percentage of outliers was calculated using Equation 2. 

Equation 2. Calculating the percentage of outliers in the training and test sets. 

(
# 𝑜𝑢𝑡𝑙𝑖𝑒𝑟  𝑙𝑖𝑓𝑡𝑠 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 /𝑡𝑒𝑠𝑡 𝑠𝑒𝑡

𝑇𝑜𝑡𝑎𝑙  # 𝑙𝑖𝑓𝑡𝑠 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 /𝑡𝑒𝑠𝑡 𝑠𝑒𝑡
) x 100 
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Figure 12. Influence of the hyperparameter gamma on the smoothness or generalizability of the decision boundary. A lower 

value, such as 0.05, will result in a wide, more generalizable model (a). A higher value, such as 10 (e), results in a tighter fit 

model. The default value ‘scale’ was used for the models in this study (c). Equation 1 shows how this value was calculated. Two 

PCs (features) were used for visualization purposes. 
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Figure 13. Influence of the hyperparameter nu on the amount of training errors the 

model includes. A lower value, such as 0.01, will have less training data outliers (a). A 

higher value, such as 0.8, will have more training data outliers (d). For example, a value 

of 0.2 would expect to include about 20% of the training data as outliers in the model. A 

nu value of 0.01 was used for the models in this study. Two PCs (features) were used for 

visualization purposes. 
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4.6 Statistical Analysis 

To test the hypotheses, the recorded HR, RPE and percentage of outliers for each test 

set was tested for association. Spearman’s rank-order correlation (ρ), a non-parametric test, 

was used to assess the association between the percentage of outliers, and both RPE and HR 

separately. Spearman’s rank-order correlations were applied to each individual participant’s 

data. Each individuals’ data were combined and assessed for associations to also explore the 

generalizability of the findings across the sample. A correlation of 0.10-0.29, 0.30-0.49 and 

0.5+ was interpreted as small, medium and large, respectively (Cohen, 1988). A p-value of < 

0.05 indicated significance. The spearmanr function from SciPy was used in Python for the 

statistical testing. Descriptive statistics were also calculated for the recorded HR, RPE and 

percentage of outlier measures. 
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5. Results 

5.1 Fatigue Likeliness Classification 

 The descriptive statistics of each participant’s RPE measurements, their total time 

spent completing the repetitive lifting protocol and the fatigue likeliness classification are 

presented in Table 3. There were three participants that were classified as likely to be 

fatigued due to not finishing the hour-long protocol from volitional fatigue. Seven 

participants were classified as likely to be fatigued due to having a difference in RPE 

medians between the test and training sets of two or greater. Four participants were classified 

as unlikely to be fatigued due to not having a difference of two or greater.  

The descriptive statistics of each participant’s HR measurements, their total time 

spent completing the repetitive lifting protocol and the fatigue likeliness classification are 

presented in Table 4. There were three participants that were classified as likely to be 

fatigued due to not finishing the hour-long protocol. Five participants were classified as 

likely to be fatigued due to having a difference in HR medians between the test and training 

sets of seven BPM or greater. Six participants were classified as unlikely to be fatigued due 

to having a difference in median HR of less than seven. 

Two of the fourteen participants had a different classification of fatigue likeliness 

between RPE and HR. Both P4 and P12 were classified as likely fatigued based on their RPE 

median difference but classified as unlikely fatigued based on their HR median difference.
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Table 3. Descriptive statistics for each participant’s RPE measurements for the training and test sets, their total time spent 

completing the repetitive lifting protocol, and the likelihood of fatigue classification based on the decision tree in Figure 11. 

Participants are ordered by their likelihood of fatigue classification. 

Participant Training 

RPE 

Median 

Training 

RPE Range 

(Min:Max) 

Test 

RPE 

Median 

Test RPE 

Range 

(Min:Max) 

Difference in 

Medians 

(Test - Training) 

Total Time, 

1hr max 

(hh:mm) 

Likelihood of Fatigue 

P2 15.5 14:16 18 17:19 2.5 0:38 Fatigue likely - volitional fatigue 

P3 16 15:17 18 17:20 2.0 0:35 Fatigue likely - volitional fatigue 

P8 11.5 9:14 18 14:20 6.5 0:27 Fatigue likely - volitional fatigue 

P1 11 9:13 15 13:17 4.0 1:01 Fatigue likely - increased RPE 

P4 13 12:14 15 14:16 2.0 1:02 Fatigue likely - increased RPE 

P6 14 11:15 16 15:18 2.0 1:03 Fatigue likely - increased RPE 

P10 13.5 12:15 17 15:18 3.5 1:05 Fatigue likely - increased RPE 

P11 13 12:15 15 14:15 2.0 1:03 Fatigue likely - increased RPE 

P12 13 12:14 16 14:18 3.0 1:01 Fatigue likely - increased RPE 

P13 12.5 9:14 15 14:20 2.5 0:57 Fatigue likely - increased RPE 

P5 17 13:17 18 17:19 1.0 0:59 Fatigue unlikely - small RPE change 

P7 16 15:16 17 16:17 1.0 1:04 Fatigue unlikely - small RPE change 

P9 9 9 9 9 0.0 1:01 Fatigue unlikely - no RPE change 

P14 13 13 13 13 0.0 1:03 Fatigue unlikely - no RPE change 

  



 

47 

Table 4. Descriptive statistics for each participant’s HR measurements for the training and test sets, their total time spent 

completing the repetitive lifting protocol, and the likelihood of fatigue classification based on the decision tree in Figure 11. 

Participants are ordered by their likelihood of fatigue classification. 

Participant Training HR 

Median 

(BPM) 

Training 

HR Range 

(Min:Max) 
(BPM) 

Test HR 

Median 

(BPM) 

Test HR 

Range 

(Min:Max) 
(BPM) 

Difference in 

Medians 

(Test - Training)  

Total Time, 

1hr max 

(hh:mm) 

Likelihood of Fatigue 

P2 148.5 129:156 147 143:149 -1.5 0:38 Fatigue likely - volitional fatigue 

P3 138 131:145 146.5 135:157 8.5 0:35 Fatigue likely - volitional fatigue 

P8 139 125:142 154 137:159 15.0 0:27 Fatigue likely - volitional fatigue 

P1 93 89:100 104.5 92:111 11.5 1:01 Fatigue likely - increased HR 

P6 133 122:138 141 131:148 8.0 1:03 Fatigue likely - increased HR 

P10 174.5 150:180 182 179:187 7.5 1:05 Fatigue likely - increased HR 

P11 133 116:142 145.5 138:157 12.5 1:03 Fatigue likely - increased HR 

P13 131.5 124:146 147 135:154 15.5 0:57 Fatigue likely - increased HR 

P4 129 119:134 134 127:139 5.0 1:02 Fatigue unlikely - small increase in HR 

P5 141.5 139:146 136 124:146 -5.5 0:59 Fatigue unlikely - decreased HR 

P7 106 103:110 112.5 106:118 6.5 1:04 Fatigue unlikely - small increase in HR 

P9 107 102:112 106.5 102:111 -0.5 1:01 Fatigue unlikely - decreased HR 

P12 130 124:139 133.5 131:138 3.5 1:01 Fatigue unlikely - small increase in HR 

P14 114 112:118 116.5 112:123 2.5 1:03 Fatigue unlikely - small increase in HR 
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5.2 Feature Extraction Results 

There was an average of 20.4 ± 8.8 PCs retained from the PCAs (see Table 5). The 

first PC explained an average of 56.5 ± 18.1% variance in each participants’ baseline training 

set lifts. The PC scores for these PCs were input as features into each participants’ respective 

OCSVM model to define their baseline lifting movement pattern. 

Table 5. PCA results. The number of PCs that were retained, and the percentage of 

variance that the first PC explains from the training set data. 

 

 

 

Participant # PCs Retained First PC % Explained 

P1 17 69.8 

P2 39 28.1 

P3 21 33.1 

P4 28 36.9 

P5 17 68.3 

P6 13 62.1 

P7 27 42.0 

P8 18 54.2 

P9 10 81.2 

P10 12 76.5 

P11 32 38.0 

P12 20 59.6 

P13 23 60.9 

P14 8 80.8 

Group Mean ± SD 20.4 ± 8.8 56.2 5± 18.1 
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5.3 OCSVM Classification Results 

 After using the training set lifts to define the OCSVM, the same lifts were classified 

against the decision boundary to get a measure of how many training lifts were outliers . 

There was an average of 16.0 ± 2.9% of training lifts that were classified as outliers from the 

training set decision boundary (see Table 6).  

 The results of the test set classification for each participant is also shown in Table 6. 

Participants have been separated by their likeliness of fatigue classifications that was based 

on RPE. Seven of the ten participants who were likely fatigued have a higher test set median 

outlier percentage than those participants who were likely not fatigued. Line graphs of the 

percentage of outliers for each test set for each participant are presented in Figure 14 and 15, 

where each plot separates participants based on their likeliness of fatigue. Most participants 

who finished with a higher percentage of outliers were classified as likely fatigued based on 

their RPE (see Figure 14), but less so based on HR (see Figure 15). 
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Table 6. Training set and test set OCSVM classification results. Included for each 

participant are the percentage of training lifts that were classified as outliers based on 

the boundary definition resulting from the training set, the number of test sets, the test 

set outliers percentage median, and the test set outliers percentage range. Participants 

are separated by their likeliness of fatigue classification from RPE. 

Participant 
Training Set 
Outliers (%) 

# Test 
Sets 

Test Set Outliers 
Median (%) 

Test Set Outliers Range (%) 
(Min:Max) 

Participants likely to have fatigued (based on RPE) 

P1 12 20 14 7:40 

P2 22 14 90 50:100 

P3 18 12 67 47:93 

P4 12 22 41 27:73 

P6 14 23 100 80:100 

P8 19 11 80 47:100 

P10 15 21 53 7:100 

P11 16 18 80 27:100 

P12 17 22 87 27:100 

P13 19 15 87 60:100 

Participants unlikely to have fatigued (based on RPE) 

P5 16 26 47 21:33 

P7 17 22 53 21:27 

P9 14 22 33 7:80 

P14 13 20 40 13:73 

Group 

Mean ± SD 
16.0 ± 2.9 19.1 ± 4.5 --- --- 
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Figure 14. Each participants’ percentage of outliers graphed over the increasing test set 

number. The left side of the graph represents the first test set after the training set and 

moving to the right indicates an increasing test set number (increasing time spent 

completing the repetitive lifting protocol). The subplots are used to improve the ease of 

visualization. Solid lines are participants who were likely fatigued based on RPE, and 

dashed lines are participants who were not likely fatigued based on RPE. 

 

 

P1-P5 

P6-P10 

P11-P14 
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Figure 15. Each participants’ percentage of outliers graphed over the increasing test set 

number. The left side of the graph represents the first test set after the training set and 

moving to the right indicates an increasing test set number (increasing time spent 

completing the repetitive lifting protocol). The subplots are used to improve the ease of 

visualization. Solid lines are participants who were likely fatigued based on HR, and 

dashed lines are participants who were not likely fatigued based on HR. 
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P6-P10 
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5.4 Assessing Association Between Fatigue and Changes in Movement 

5.4.1 RPE Spearman Results 

Seven of the ten participants who were likely fatigued had a significant large positive 

association between RPE and the percentage of outliers, while one participant had a 

significant large negative association (see Table 7). All four participants that were labelled as 

unlikely to be fatigued had no significant association. A scatterplot of all the participants’ 

data, as well as lines of best fit, is shown in Figure 16.  

Table 7. Spearman rank order correlation results for RPE and the percentage of 

outliers in the test sets. (*) indicates significance. Participants are ordered by their RPE 

fatigue likeliness classification. Note that P9 and P14 gave RPE values that did not 

change over the course of the protocol, therefore no association can be calculated. 

Participant RPE rho 
RPE p-

value 
Likeliness of Fatigue 

P1 -0.0527 0.825 Fatigue likely - increased RPE 

P2 0.831 <0.001* Fatigue likely - volitional fatigue 

P3 0.775 0.00306* Fatigue likely - volitional fatigue 

P4 -0.0925 0.682 Fatigue likely - increased RPE 

P6 0.644 <0.001* Fatigue likely - increased RPE 

P8 0.936 <0.001* Fatigue likely - volitional fatigue 

P10 0.880 <0.001* Fatigue likely - increased RPE 

P11 -0.585 0.0107* Fatigue likely - increased RPE 

P12 0.831 <0.001* Fatigue likely - increased RPE 

P13 0.816 <0.001* Fatigue likely - increased RPE 

P5 0.195 0.340 Fatigue unlikely - small RPE change 

P7 0.337 0.125 Fatigue unlikely - small RPE change 

P9 N/A N/A Fatigue unlikely - no RPE change 

P14 N/A N/A Fatigue unlikely - no RPE change 
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Figure 16. Scatterplot showing each participants’ RPE and percentage of outliers for 

each test set. Each participant is represented by a different color, and participants with 

a significant association are denoted in the legend with a (*). Lines of best fit are 

included for ease of visualization. Note that some data points may not be shown due to 

overlap where some participants may share the same data point values. 
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5.4.2 HR Spearman Results 

Two participants had a significant large positive association between the percentage 

of outliers and HR during the test sets (see Table 8). Nine participants had either a small or 

medium negative, non-significant association, indicating HR and the percentage of outliers 

tended towards a negative association at the individual level. Of the eight participants that 

were labelled as likely to be fatigued based on HR, two had a significant positive association. 

All six participants that were labelled as unlikely to be fatigued had no significant 

association. A scatterplot of all the participants’ data, as well as lines of best fit, is shown in 

Figure 17.  

Table 8. Spearman rank order correlation results for HR and the percentage of outliers 

in the test sets. (*) indicates significance. Participants are ordered by their HR fatigue 

likeliness classification.  

Participant HR rho HR p-

value 

Likeliness of Fatigue 

P1 -0.236 0.317 Fatigue likely - increased HR 

P2 -0.0412 0.889 Fatigue likely - volitional fatigue 

P3 -0.404 0.192 Fatigue likely - volitional fatigue 

P6 -0.163 0.457 Fatigue likely - increased HR 

P8 0.633 0.0366* Fatigue likely - volitional fatigue 

P10 0.509 0.0186* Fatigue likely - increased HR 

P11 -0.376 0.124 Fatigue likely - increased HR 

P13 0.0375 0.894 Fatigue likely - increased HR 

P4 0.107 0.636 Fatigue unlikely - small increase in HR 

P5 -0.383 0.0531 Fatigue unlikely - decreased HR 

P7 0.397 0.0673 Fatigue unlikely - small increase in HR 

P9 -0.259 0.245 Fatigue unlikely - decreased HR 

P12 -0.310 0.161 Fatigue unlikely - small increase in HR 

P14 -0.334 0.150 Fatigue unlikely - small increase in HR  
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Figure 17. Scatterplot showing each participants’ HR and percentage of outliers for 

each test set. Each participant is represented by a different color, and participants with 

a significant association are denoted in the legend with a (*). Lines of best fit are 

included for ease of visualization. Note that some data points may not be shown due to 

overlap where some participants may share the same data point values. 
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6. Discussion 

The use of OCSVM as an outlier detection algorithm for identifying fatigue related 

changes in whole-body movement patterns over the course of a repetitive lifting protocol was 

investigated in this thesis. Based on the results of the fatigue likeliness classification in 

Tables 3 and 4, not every participant fatigued to the same degree from the protocol. Most of 

the participants (except for two) were labelled the same when classified based on either their 

RPE or HR measurements, indicating consistency between the two measures for identifying 

potential fatigue. Significant positive associations were found between RPE and the 

percentage of outliers in those participants that were likely fatigued from the repetitive lifting 

protocol. However, participants exhibited a more negative trend between HR and the 

percentage of outliers, and less significant positive associations in those that were likely 

fatigued. Overall, the results support the first hypothesis that there would be an association 

between RPE and the percentage of outliers in those who were likely fatigued. However, the 

second hypothesis is not supported that there would be an association between HR and 

percentage of outliers in those who were likely fatigued. 

 

6.1 Movement Pattern Changes When Fatigued 

6.1.1 RPE Outcomes 

Most participants (seven out of ten) labelled as likely fatigued had significant positive 

associations between the percentage of outliers and RPE scores, partially supporting the first 

hypothesis. No significant associations between the percentage of outliers and RPE were 



 

58 

found in participants who were unlikely to be fatigued, which would also be a logical 

outcome given the stated hypothesis. These results suggest that those participants who were 

more fatigued from the repetitive lifting task were indeed more likely to change their 

movement patterns relative to their baseline, and those who were not fatigued were less 

likely to change their movement patterns relative to baseline. These results are similar to past 

research, where participants who fatigued during a repetitive lifting protocol (measured as a 

significant decrease in instantaneous median frequency in their electromyography signal) 

also had significant changes in their knee and elbow ranges of motion (Bonato et al., 2002). 

However, participants that did not have a significant decrease in the instantaneous median 

frequency in their electromyography signals also did not have significant changes in their 

lifting kinematics. Although the length and type of lifting protocols were different to the 

current study, the results of Bonato et al. (2002) help explain and reinforce why fewer 

outliers were detected in those that were not likely fatigued from the prolonged lifting 

protocol, relative to those that likely fatigued.  

Repetitive lifting literature indicates that fatigue related kinematic changes occur 

(Bonato et al., 2003; Fischer et al., 2015; Mehta et al., 2014; Sparto et al., 1997). However, 

inconsistencies in the fatigue related kinematic changes that are observed during repetitive 

lifting exist. For example, Bonato et al. (2003) found that participants who started with a 

stoop style lift switched to more of a squat style lift, seen as increased hip and trunk range of 

motion, but those who started with a squat style did not change their lifting technique. In 

contrast, a decrease in knee and hip range of motion was seen at the end of a repetitive lifting 

protocol compared to the start, suggesting a switch to a stoop style lift (Sparto et al., 1997). 
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The differences in past study results suggest that fatigue related kinematic changes may be 

subject-specific. It may be possible that kinematic differences exist from the studies due to 

differences in protocols or weights used, but the overall task was similar. The inherent 

variability of movement, where individuals can select movement pattern strategies to 

complete a task on their own accord, may not make measuring group level fatigue related 

changes in movement patterns useful. Due to these inconsistencies in movement pattern 

changes, the use of a subject-specific pattern recognition feature extraction method such as 

PCA was justified in this study.  

Circling back to the main issue with FCEs guiding this thesis is the subjective and 

vague biomechanical criteria that evaluators use to determine test endpoints during simulated 

work tasks. Evaluators currently have pre-determined biomechanical criteria that they 

observe, but individuals may not respond homogenously with respect to those pre-determined 

criteria. Fatigue related changes across individuals in lifting are inconsistent as shown by the 

literature, showing the need for a subject-specific approach. The results from this thesis show 

support for the use of the outlier detection approach, where lifting pattern outliers were 

classified based on a comparison to their own initial lifting patterns in individuals who were 

likely fatigued based on their RPE. It is not known the magnitude of differences in movement 

patterns used across participants, but there was success with the subject-specific approach. 

The use of an outlier detection model may be considered for use in clinical applications, such 

as FCEs, for possible identification of heterogenous variability in movement patterns and 

adaptations to fatigue among individual patients. 
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6.1.2 HR Outcomes 

In contrast to the RPE results and the first hypothesis, the second hypothesis that 

those who were likely fatigued would exhibit a significant positive association between the 

percentage of outliers and HR during the test sets was not supported. Only two of the eight 

participants that were likely fatigued had significant positive associations between the 

percentage of outlier lifts and their increase in HR. Similar to RPE, no significant 

associations were found in participants who had no difference or a decrease in HR. Nine 

participants actually had a negative non-significant correlation where HR decreased as the 

percentage of outliers increased. These results suggest that HR may not be a suitable measure 

of fatigue during a repetitive lifting protocol. It is likely that HR can be used as a measure of 

how hard the body is working (more intensity would have a higher heart rate), but HR 

increases may or may not be associated with overall fatigue when considering steady-state 

prolonged work. 

Past literature has recorded HR measurements during repetitive lifting protocols. In a 

similar study that had participants undergo an hour-long repetitive lifting protocol, no 

significant increase in HR were observed when the work rate was below 40% of their VO2 

maximum for all different weights used (Petrofsky & Lind, 1978). Because of this, it is 

possible that the weight and rate of lifting used by participants in the current study may not 

have been enough to cause an increase in heart rate, suggesting they were working below the 

40% of their VO2 maximum. Only eight of the fourteen participants were likely fatigued 

based on their HR, and only two had significant associations between the percentage of 

outliers and HR. A higher load or work rate may have led to more increases in HR. Also, in a 
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study of 500 participants undergoing an FCE progressive loading lifting test, there was an 

average increase in HR of 18.1% from resting to peak (85.7 to 99.8 bpm) in a sub-maximal 

floor to waist lift, and an average of 16.8% (86.4 to 100.5 bpm) increase in a sub-maximal 

waist to shoulder height lift (Morgan et al., 2012). Since HRs only went as high as 100bpm 

on average, this suggests that a submaximal progressive lifting test, although different from 

the submaximal repetitive lifting test used in this thesis, may not produce large increases in 

HR. As seen in the this thesis and the above studies, there will undoubtedly be increases in 

HR when a person is doing sub-maximal work when compared to their resting HR. However, 

these increases may not be correlated with fatigue that would result in movement pattern 

changes, but may be due to overall increase in workload compared to rest, where the 

cardiovascular system must supply the needs to the working muscles appropriately. 

Another possible explanation for the difference between the RPE and HR findings in 

the current study is that HR can vary much more over the course of a prolonged lifting 

protocol. If the participant ever stopped to take a water break, or had time in between sets to 

give their RPE and HR measurement, the HR may have dropped quickly due to the stoppage 

of work. RPE is more subjective and may be more susceptible to the participant’s overall 

physical and mental fatigue. Most participants saw episodic rises and falls in their HR data 

during the protocol but maintained an overall steady state. Conversely, RPE consistently 

increased for most participants during the protocol without reporting a decrease as they 

progressed. HR will increase in response to an increased workload to meet the working 

muscle’s oxygen requirements but may not increase further when there is localized muscular 

fatigue. However, RPE may be more sensitive to fatigue, where participants will be aware of  



 

62 

the feeling of their fatiguing muscles, contributing to their perception of their subjective 

workload and fatigue. RPE was therefore more likely to see a positive significant association 

with the percentage of outliers if a participant’s movement pattern was in fact changing from 

fatigue as they neared the end of the protocol. The use of HR in FCEs for physiological 

monitoring is common, but its use may be focused more on safety (e.g. making sure 

participants stay under 85% of their maximum HR) and tracking effort level (Allison et al., 

2018), rather than as a specific measure of fatigue. A reliable method of detecting fatigue 

may be needed in order to appropriately assess fatigue related changes in movement patterns 

during an FCE using an outlier detection approach.  

 

6.2 Movement Pattern Changes When Not Fatigued 

 Although a portion of the participants were likely not fatigued from the repetitive 

lifting protocol based on their RPE and HR measurements, some still exhibited an increase in 

their percentage of outlier lifts during the test sets (see Figures 14 and 15). For example, the 

OCSVM boundary for P9 was determined such that 14% of the training lifts were considered 

outliers. In the first test set, 7% of lifts were identified as outliers. In the third from last test 

set, 80% of the lifts were outliers. However, P9 gave a consistent RPE rating of 9 throughout 

the entire protocol, did not have a difference in median HR greater than seven between 

training and test sets, and completed the entire 60-minute protocol suggesting they were not 

fatigued from the protocol. These results indicate that although they were not fatigued on the 

basis of the criteria used to define fatigue in this study, they were still changing their 

movement pattern compared to their baseline.  
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There may be different reasons for these findings that should be considered. First, the 

nature of the repetitive lifting protocol and the large number of degrees of freedom in whole-

body movement allows participants the freedom to vary their movement from one lift to the 

next. When considering the amount of variability exhibited at the start versus the end of a 

repetitive fatiguing protocol, there is evidence that variability can both increase and decrease, 

depending on the movement variable examined (N. Cortes et al., 2014). In the context of 

lifting, it was found that there were significant increases in variability of whole-body centre 

of mass kinematics during a repetitive lifting and lowering task as participants started to 

fatigue (Sedighi & Nussbaum, 2017). Increasing movement variability may help to limit 

fatigue development, or relieve loading on tissues that may be fatiguing during repetitive 

movements (Srinivasan & Mathiassen, 2012). Combining all of this information, it may be 

possible that participants such as P9 have more variable movement in the later stages of a 

prolonged lifting protocol in order to prevent possible fatigue and injury, all while 

maintaining their ability to perform the task consistently.  

A secondary explanation is that HR and RPE may not be reliable fatigue measure for 

all participants. The subjectivity of RPE may limit its potential to reliably measure a 

participant’s whole-body fatigue state. Although P9 gave a consistent RPE measurement that 

did not change during the hour-long lifting protocol, it might be hard to argue that they did 

not fatigue at all. In the original data collection that this data was used from, participants 

were not specifically told to use RPE as a measure of their fatigue. Instead, it was presented 

as a measure of exertion and fatigue. Therefore, differences in interpretation could have led 
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to some participants not considering how tired they felt, but rather how hard they were 

working.  

A more objective and sensitive measure of whole-body fatigue may have been able to 

identify, at the minimum, some changes in participants’ fatigue states. A more dedicated 

subjective fatigue measure, such as a fatigue visual analog scale used by Chan et al. (2020), 

may provide a better self-reported measure of fatigue. Also, Chan et al. (2020) used an 

isometric lift strength assessment to measure the maximum tensile force the participant could 

exert on a load cell. Similarly, a 31% reduction in lifting power has previously been used as 

fatigue criteria in a repetitive lifting protocol (Sparto et al., 1997). A whole-body isometric 

maximal exertion, such as a mid-thigh isometric pull, may be a more reliable objective 

measure of whole-body fatigue (Stone et al., 2019). Considering the first reason mentioned 

above that adaptations to movement strategy may occur to prevent potential fatigue or injury, 

and the possibility for fatigue to not appropriately be quantified, the results from participants 

like P9 can be supported. The capability to measure an association between the percentage of 

outlier lifts detected by a OCSVM and the level of fatigue exhibited by the participants may 

rely on the sensitivity of the fatigue measure, but inherent movement variability while 

completing repetitive tasks should also be considered. Although there were no significant 

associations with RPE or HR in participants who were likely not fatigued, the OCSVM was 

still able to identify outlier lifts. When considering outlier detection use in FCEs, importance 

should be placed on having a reliable measure of fatigue to make accurate conclusions about 

possible fatigue related movement pattern changes from baseline when completing a 

repetitive protocol. If a reliable association between fatigue and an increase in outliers is 
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established, inherent movement variability may become less of a potential factor for outliers 

to be observed. 

 

6.3 OCSVM Considerations 

6.3.1 Feature Selection 

 The feature selection process is important for appropriately defining the overall 

movement pattern of an action such as lifting. In this case, PCA was used as a data reduction 

and feature extraction method based on pattern recognition. The OCSVM was able to detect 

when participants were adapting their lifting movement pattern relative to baseline but 

understanding how they were adapting is also important to know. Although PCA is useful for 

extracting PCs that explain the variance in the data, interpreting what these PCs represent 

biomechanically in motion data can be difficult. A method to interpret PCs is to add and 

subtract a scalar multiple of the particular PC to the overall group mean, known as single 

component reconstruction (Brandon et al., 2013). An example of a scalar multiple to use is ± 

2, to represent roughly two standard deviations above or below the mean. This would give 

visualization of the representative extremes, or the 5 th (low) and 95th (high) percentile, 

assuming the PC scores are normally distributed (Brandon et al., 2013). Upon visualization 

of the representative extremes compared to the group mean for a particular kinematic 

variable, inferences can be made about the movement pattern that particular PC represents. 

Since the success of this method relies on visual inspection of the waveforms, an untrained 

person without prior knowledge or expertise may not be able to properly interpret the 
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meaning. If interpreting the PCs is not a priority, PCA can still be a useful feature selection 

method for the OCSVM approach used in this thesis. 

 Another potential problem of applying PCA in this approach is that the PCs retained 

as features may not be associated with fatigue. Single component reconstruction was applied 

to a small portion of the data from this thesis to get a sense of how one of the participants in 

this study was varying their movement. An example of a single component reconstruction of 

PC1 for P1 is shown in Figure 18. In short, the first PC representing the largest degree of 

variability of one of the participants seemed to be which foot they placed forward while 

lifting the box. This PC may or may not be associated with fatigue but was more likely just 

natural variance in their lifting pattern over the repetitive protocol. Without doing an analysis 

of each individual PC retained as a feature to assess its association with fatigue, the PCs 

input into the OCSVM may not be relevant for detecting fatigue related changes. Using pre-

selected task-relevant variables (Chan et al., 2020; Clermont, Benson, et al., 2019) that are 

known to be associated with fatigue is an alternative option, but may ignore subject-specific 

differences. In the future, performance of outlier detection algorithms for detecting fatigue 

related changes in MMH tasks should be evaluated using pre-selected task-relevant features 

and compared to pattern recognition methods such as PCA.  

PCA does have strengths however, where the whole-body motion is considered in the 

analysis. The large number of degrees of freedom of movement in the kinetic chain creates 

many possible movement combinations when completing a task such as lifting (Scott, 2004). 

Selecting pre-defined variables may lead to situations where possibly important information 

is not being considered. Using a pattern recognition method such as PCA is also in line with 
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the goal of removing subjective appraisal from FCEs, where pre-selected variables may be 

more similar to the biomechanical criteria already used by evaluators, and may not be 

homogenous for every individual.  
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Figure 18. Example of PCA single component reconstruction of the first PC of P1, 

which explains 70% of their variance. One of the main differences between the 5th and 

95th percentile is which foot is forward during the lift. 
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6.3.2 Hyperparameters 

The overall performance of the OCSVM model for identifying outliers in data relies 

heavily on the setting of the hyperparameters gamma and nu. Improper selection of these 

values in the models can lead to overfitting or underfitting of data, which can affect the 

ability of the model to detect outliers effectively (Wang et al., 2018). If gamma is set too 

large, the training data will be overfit with a very tight decision boundary, thus the model 

will classify too many data points as outliers (see Figure 12(e)). If gamma is set too small, 

the data will be underfit with a very smooth and generalizable decision boundary, making it 

hard to detect outliers (see Figure 12(a)). Similarly, if nu is set too large there will be too 

many training set outliers (see Figure 13(d)). A small nu may result in a decision boundary 

distorted by noisy training data (see Figure 13(a)) (Wang et al., 2018). Appropriately setting 

these two parameters are crucial for the OSCVM performance. 

Hyperparameters are typically optimized in machine learning models using an 

automated approach that aims to maximize the accuracy of the model (Wu et al., 2019). For 

example, consider if each lift in the training data being input into the OCSVM models in this 

thesis were already pre-classified as similar or different to the baseline lifting movement 

pattern used by participants. The hyperparameters would be optimized to maximize the 

accuracy of the model to only include lifts classified as differing from baseline as outliers 

from the decision boundary. However, OCSVMs are an unsupervised approach where the 

data do not have labels to indicate an outlier class (in this case, individual lifts cannot be 

reliably pre-labelled as the same or different movement patterns). Therefore, traditional 
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hyperparameter optimization approaches such as cross-validation grid searches cannot be 

used (Wang et al., 2018). 

A manual optimization search was instead used for this thesis, with the definition of 

the hyperparameters used as a guideline. Since nu is defined as the upper bound on the 

fraction of training errors, nu was set to 0.01 based on the assumption that about 1% of the 

training lifts might be classified as an outlier. This assumption was made so the model could 

form a decision boundary around most of the training data to define the baseline movement 

pattern. Gamma was set to the default scaled value that was calculated using Equation 1. 

Through the manual search, the values used were found to have consistent performance for 

the training sets (see Table 6), where an average of 16% of training lifts were classified as 

outliers. These hyperparameter values were also able to identify a wide range of test set 

outlier percentages (see Table 6). Other values (gamma >0, nu in range of 0 to 1) of these 

hyperparameters were examined to test model performance for both the training and test sets 

outlier percentage. These other values tested in the manual search would result in narrower 

ranges of outlier percentages, or in some cases, 100% or 0% of the test set lifts being 

classified as outliers (i.e. an overfit or underfit model). The manual search used to settle on 

the values used in this thesis may have led to overfitting or underfitting of the data, but the 

nature of the data and OCSVM data made it difficult to measure. However, consistency and 

transparency were regarded as crucial for the approach used. 

The presence of similar applications of OCSVM for movement pattern outlier 

detection in the literature is limited in order to draw conclusions about the hyperparameter 

optimization approach. Kobsar and Ferber (2018) used a method where the hyperparameter 
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value chosen was able to achieve less than 1% of outliers in a randomly selected 20% cross-

validation set from the baseline data. However, they had pre-defined gait movement data 

where the baseline data were from a pre-exercise intervention, and the test data were from the 

post-exercise intervention. Having these separate time points for data collection may have 

allowed them to fit the decision boundary more loosely around their baseline data than in this 

thesis. Compared to the average 16% of training data being classified as outliers in this 

thesis, Kobsar and Ferber (2018) had an average of 0.5% of the 20% cross-validation set 

classified as outliers. Also, this thesis had a range of 13.8 to 100 median percentage of test 

set outliers, where the majority of participants had a median of 40% or higher (see Table 6). 

In contrast, Kobsar and Ferber (2018) had an average of 17.7% of outliers in their post-

intervention data. These results signify that the decision boundaries in this thesis may have 

been overfit since there is a higher percentage of outliers in both the training and test set data. 

However, it is hard to determine how well the model fit the data due to the high 

dimensionality of the data, and the lack of ability to calculate classification accuracy. 

In the future, emerging methods for OCSVM hyperparameter optimization should be 

investigated to examine performance. One such method is described in Wang et al. (2018), 

where they use a self-adaptive data shifting method. This new proposed method 

outperformed seven state-of-the-art OCSVM hyperparameter optimization methods. 

Nevertheless, hyperparameters should be optimized for each individual model and special 

attention should be paid to model performance based on these hyperparameters. Precise 

reporting of hyperparameter values or optimization methods are also crucial for 

reproducibility and understanding of research studies.  
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6.4 Methodological Limitations 

The use of an outlier detection machine learning model was able to detect fatigue 

related changes in some participants during a repetitive lifting protocol, however, limitations 

should be considered. First, a sample size of 14 participants recruited from the local 

university population was used. Although this was a subject-specific approach, only a small 

sample was used which may limit the generalizability of the results. Also, the demographics 

of the population could limit generalizability. The main objective guiding the thesis was the 

improvement of FCEs, where a younger population may not be representative of the people 

who may undergo FCE testing. In this study, only 50% of participants had MMH experience, 

and only three had experience of one year or longer. Results may differ based on the age and 

work experience of the participants included.  

Another limitation to consider are the fatigue measures used during the protocol. As 

mentioned in Sections 6.1.2 and 6.2, the fatigue measures used may not reliably detect 

whole-body fatigue. Nonetheless, RPE is a common measurement used to get an idea of 

training load (Roos et al., 2013), and has been shown to have associations with other 

physiological measurements during workplace lifting tasks (Jakobsen et al., 2014). RPE is 

also a common monitoring method used in FCEs, but is usually combined with other 

physiological methods of monitoring individual’s responses to simulated work-tasks (Allison 

et al., 2018). 

 Lastly, the use of PCA as a data reduction and feature extraction method distorts the 

time domain of the movements since each lift was normalized to 101 frames. The OCSVM 

model could therefore not discriminate lifts based on any measures that may have varied with 
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time. For example, time to complete a lift has been shown to both increase (Fischer et al., 

2015) and decrease (Mehta et al., 2014) over the duration of a repetitive lifting protocol. 

Biomechanical variables such as joint velocities and accelerations would not be considered 

due to the time distortion. However, PCA was useful to account for at least 95% of the 

variance in participants’ baseline whole-body movement patterns based on pattern 

recognition, creating a truly unique subject-specific feature space for each individual model. 

 

6.5 Potential FCE Applications and Future Directions 

The central objective of this thesis was to examine the use of an outlier detection 

machine learning algorithm as a potential alternative approach to move away from the 

subjective visual appraisal approach currently used by evaluators during FCEs. The results 

support that when individuals were fatigued, there was an associated change in their lifting 

movement strategy away from their baseline. However, laboratory-grade motion capture 

systems are not available for use in day-to-day clinical applications, like an FCE, to make 

tracking of whole-body kinematics possible. Therefore, alternative approaches should be 

considered. Similar to other applications of subject-specific approaches to detecting changes 

in movement (Clermont, Benson, et al., 2019; Conforti et al., 2020; Kobsar & Ferber, 2018), 

IMUs are a potential wearable sensor alternative to track various kinematic variables. IMUs 

are an affordable, easy to use sensor that could be used in conjunction with real-time 

monitoring systems to get quick feedback and measurements, even with potential to utilize 

machine learning algorithms (Graham & Josan, 2017). An additional potential approach to 

collecting whole-body kinematic data is through the use of marker-less motion capture and 
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convolutional pose estimation (Cao et al., 2019; Wei et al., 2016). Again, real-time motion 

data could be captured and analyzed (Van Den Bogert et al., 2013) in conjunction with 

OCSVMs to give quick information to evaluators in FCEs to make more objective decisions. 

 A second future-direction is associated with the OCSVM considerations mentioned 

previously (see Section 6.3). Future research should explore the use of various kinematic or 

kinetic variables during MMH tasks for use as features in OCSVMs, where pre-selected task-

relevant variables (Chan et al., 2020) may give more direct insight for FCE evaluators and 

patients. Although PCA is useful for extracting movement features in an unsupervised 

manner, interpreting the relevance of what those features may represent is less straight-

forward. However, PCA is useful for the subject-specific approach described in this thesis, 

where some pre-selected variables may not be homogenous in every individual if that 

alternative approach was used. Secondly, the hyperparameter selection process should be 

examined further in future research. Since this is a novel study where whole-body kinematics 

from a lifting task were input into a OCSVM, there is not currently a basis to follow. The 

lack of labels of lifts as specifically fatigued or non-fatigued does not allow for the testing of 

model accuracy, so under-fitting and over-fitting of the model may be an issue. However, 

steps were taken to ensure consistency and transparency in this thesis. Using alternative 

approaches for hyperparameter selection should be investigated, such as the self-adaptive 

shifting method (Wang et al., 2018). 

Lastly, the amount of repetitive lifts needed to accurately define a person’s whole-

body baseline lifting movement pattern should be explored. In this study, about 35% of the 

lifts completed in the hour-long protocol was used as the training set to define their baseline 
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pattern. This threshold was chosen to allow for the remaining lifts in the test sets to have a 

potential adequate observable progression from non-fatigued to fatigued. Since this was one 

continuous data collection, there was no definitive moment that could be used to separate 

training and test lifts. For example, a defined separation would be using pre-intervention data 

as the training set and post intervention data as the test set (Kobsar & Ferber, 2018). Future 

research could utilize an approach where lifting patterns are recorded before a fatiguing 

activity, and then again after the fatiguing activity to have a defined separation between 

training and test data. Another issue with defining a baseline movement pattern is that 

movement is innately variable, especially during prolonged repetitive tasks like the one used 

in this thesis (Sedighi & Nussbaum, 2017). Knowing how many lifts are required to reliably 

define a baseline movement pattern would also be important in FCEs, where time may be 

limited. Lifting is not the only MMH task completed during an FCE, so baseline movement 

patterns may need to be measured for multiple tasks. Future research should investigate the 

influence on number of training lifts needed, and how changing the amount may influence 

the results from an outlier detection algorithm. 
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7. Conclusion 

The use of an outlier detection machine learning algorithm to identify subject-specific 

fatigue related changes in lifting movement patterns during a prolonged repetitive protocol 

was examined. Spearman’s rank order correlation was used to assess the level of association 

between participant’s fatigue level and their percentage of outlier lifts in each test set as 

classified by the OCSVM. Results showed that for participants who were likely to be 

fatigued, there were significant deviations in their lifting movement pattern observed as more 

outlier movements from baseline, as they became more fatigued. For those who were likely 

not fatigued, there were fewer outliers from their baseline when associated with the fatigue 

measures. However, the OCSVM was able to discern changes in their movement pattern 

even though they may not have been fatigued. 

The results from this thesis support the use of OCSVMs to detect subject-specific 

changes in whole-body movement when completing MMH tasks. A combination of more 

objective fatigue measures, and examination of different feature selection processes could 

further improve this method. Considerations for application of this method to the FCE space 

are discussed, where the combination of wearable sensors and real-time analyses could help 

detect fatigue related changes in movement in a clinical setting. Overall, this objective, 

subject-specific machine learning method may help eliminate the subjectivity of FCE to 

support improved RTW decision making.
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