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Abstract 

Owing to potentially reduced costs and faster project timelines, North American designers are 

increasingly opting for novel structural systems that are not well-addressed by the current model 

codes. Specifically, mid-rise structures are increasingly incorporating a vertical combination of 

seismic force-resisting systems, in which a stiff and massive lower podium structure (e.g. a reinforced 

concrete moment resisting frame) is used to support a less massive, less stiff upper tower structure 

(e.g. of cold-formed steel). These structures are vertically irregular in both their mass and stiffness 

and thus subject to restrictions and complications if designed according to modern design codes. In 

particular, the design procedure is generally both dynamic and iterative, not static and closed-form. 

These restrictions are imposed based on the justifiable expectation that such a vertically irregular 

structure behaves differently than a regular one. Research has repeatedly demonstrated that such 

structures exhibit more severe higher-mode effects, differences in inelastic action and a response that 

is sensitive to the relative stiffness and mass of the two structures. To remedy this, previous studies 

by Yuan & Xu (Xu & Yuan, 2015; Yuan, 2016; Yuan & Xu, 2016, 2014) propose a methodology to 

assess the feasible storey-stiffness distributions and equivalent static loads appropriate to such as 

structure, both for NBCC 2010 (National Research Council of Canada (NRCC), 2010). and ASCE 7-

10 (American Society of Civil Engineers (ASCE), 2010). Based on the work of Yuan & Xu, the 

current study aims to both improve the ease of use and the scope of these methods. This includes 

extending them to NBCC 2015 (NRCC, 2015c), larger mass ratios and storey counts. 

The first half of the current study concerns the feasible storey-stiffness distributions, as first 

proposed by Yuan & Xu (Xu & Yuan, 2015; Yuan, 2016; Yuan & Xu, 2014). By approximating the 

expected magnification of the upper structure’s first mode shear as a function of the mass and 

stiffness ratios between the two structures and by applying the code-specified limitation on interstorey 

drift to the upper structure, the procedure relates the degree of irregularity in a given structure to the 

required stiffness of the upper structure.  the stiffnesses of the upper and lower structures are confined 

to those ranges for which the interstorey drift is tolerable for the expected amplification. In other 

words, the relationship between the higher-mode and first-mode base shears for the upper structure is 

used to characterize the feasible stiffness distribution subject to all other variables being known a 

priori. Compared to Yuan (2016), the critical points that define the relationship between the overall 

stiffness ratio and the amplification ratio are redefined and simplified, and the approximation to the 

NBCC spectral relationship is abandoned in favour of a direct numerical or graphical solution. Two 
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examples demonstrate the proposed procedure, with the second also comparing the results to Yuan 

(2016). 

The latter half of the current study concerns the estimation of equivalent static loads on a mid-rise 

structure with a vertical combination of framing systems. Neither ASCE 7 nor NBCC 2015 

incorporate irregularity into their static procedures –they consider the default procedure applicable to 

irregular structures subject to period and/or height requirements, except for cases where the lower 

structure is much stiffer than the upper one. If this is the case, the ASCE 7 two-stage procedure may 

be used. The procedure allows that each structure can be analyzed separately via the static procedure 

and reassembled to obtain the full structural loads. Unfortunately, Yuan & Xu (Yuan, 2016; Yuan & 

Xu, 2016) and others note that both the two-stage procedure and default static procedures do not well-

represent the load distribution on an irregular structure.  

Instead, the current study proposes two approaches. The first is applicable only for a one-storey 

upper structure (appendage) and is based on Yuan (2016). In this method, the proposed higher-mode 

amplification factor is used to characterize the increased loads applied to the top storey, and the lower 

structure is analyzed as though regular per the NBCC. Despite the removal of the requirement on the 

stiffness ratio imposed by Yuan (2016), the revised method performs well with the redefined 

amplification factor. Meanwhile, the second method is wholly new and more generally applicable 

than the two-stage procedure proposed by Yuan (2016). By extending the amplification factor 

concept to the top storey and modifying the assumed force distribution accordingly, the proposed 

method conservatively estimates the loads on even fairly irregular structures. Altogether, the 

proposed changes to both the stiffness procedure and the calculation of the equivalent static loads 

represent a marked improvement to the methods proposed by Yuan (2016). Despite an expanded 

domain and applicability and an updated acceleration spectrum, the proposed procedures are both 

easier to use and more widely applicable than the previous iteration.   
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Sa(T) 5% damped spectral response acceleration, expressed as ratio to 

gravitational acceleration, for a period of T. Both defined by NBCC 2015 

(NRCC, 2015c), or ASCE 7-16 (2017) equivalent, as applicable [g] 

T’
s Fit parameter for EXP-2 exponential approximation to NBCC 2010 Sa(T) 

proposed by Yuan (2016) [-] 

Ti, Tj, T1, T2 Periods associated with i-th, j-th, first (fundamental) and second period of 

structure, respectively. [s] 

TL, TsingL Period associated with entire lower structure, and with one storey of the 

lower structure, respectively [s] 

Ts Period associated with the transition from constant acceleration region to 

constant velocity region of Sa(T), defined by ASCE 7-16 (2017). Analogous 

to 0.2 seconds for most locations in NBCC 2015 (NRCC, 2015c).  [s] 

TU, TsingU Period associated with entire upper structure, and with one storey of the 

upper structure, respectively [s] 

tstud Cold-formed steel stud designation thickness, defined by AISI S400-15 

(2015) [mm] 

v Shear demand, defined by AISI S400-15 (2015) [N/mm, kN/m] 

V Lateral earthquake design force at the base of the structure as defined by 

NBCC 2015 (NRCC, 2015c). [kN] 

Total lateral load applied to a cold-formed shear wall, defined by AISI 

S400-15 (2015) [kN] 

VUb Lateral earthquake force at the base of the upper structure [kN] 

W Weight of structure, as defined by NBCC 2015 (NRCC, 2015c) [kN] 
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as defined by NBCC 2015 (NRCC, 2015c) [kN] 

WU Weight of upper structure [kN] 

WUi,WUj The portion of WU associated with i-th or j-th mode of vibration, 
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yi Parameter used in i-th term of numerical solution of critical kU in the 

procedure proposed by Yuan (2016). [-] 

αU Factor to account for higher mode effect on base shear of the upper 

structure. Analogous to Mv used by NBCC 2015 (NRCC, 2015c) [-] 

αU1 Value of αU corresponding to critical stiffness ratio RkU1 (rkU1) [-] 

αU11 Lower bound on the value of αU1 in Yuan (2016) formulation for αU [-] 
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structure. [-] 

β Parameter specified by AISI S400-15 (2015) [N/mm1.5] 

Γ Modal participation factor [-] 

δ Calculated deflection of cold-formed steel shear wall, defined by AISI 

S400-15 (2015) [mm] 

δv Vertical deformation of anchorage/attachment details of cold-formed steel 

shear wall, defined by AISI S400-15 (2015) [mm] 

Δ Interstorey drift (relative displacement) [m] 

𝛥𝑗𝑛
𝑠𝑡  The static portion of interstorey drift corresponding to DOF j and mode n, as 

defined by Chopra (2012) [m] 

Δjo, Δio, Δno Peak interstorey drift corresponding to DOF j, mode i or mode n evaluated 

at DOF j, respectively, as defined by Chopra (2012) [m] 

ΔU Interstorey drift at the base of the upper structure [m] 
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ΔUlim Interstorey drift limit at the base of the upper structure, 2.5% of storey 

height for regular importance structures per NBCC 2015 (NRCC, 2015c) 
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S400-15 (2015) [-] 



 1 

Chapter 1 

Introduction 

1.1 Background 

Mid-rise residential/commercial building structures with a vertical combination of seismic force-

resisting systems (SFRS), such as those in Figure 1.1, are increasingly common throughout North 

America. Such a structure, often referred to as a podium structure by commercial proponents, is 

characterized by a lower structure of stiff, massive construction (e.g. structural steel or reinforced 

concrete (RC)) which supports an upper structure of less stiff, less massive construction (e.g. cold-

formed steel (CFS) or wood). To architects, engineers and building owners, the mix of materials suits 

a mix of building uses – for example, where commercial or parking space is desired near grade, the 

stiffer lower structure allows larger structural spans and larger open spaces. Meanwhile, for 

residential occupancy in the upper structure, lighter-weight materials can be used. The result is a 

structure that is more efficiently matched to the loads imposed by its occupancies – this is understood 

by commercial proponents, who are increasingly endorsing the approach to suit project requirements.   

(Hoesly, 2019; Ni et al., 2016; Nitterhouse Concrete Products, 2019; Podesto, 2017; Think Wood, 

2019; Warr, 2019). 

  

Figure 1.1: Mid-Rise structures with a vertical combination of framing systems  

(Left: RC and CFS (D. Allen & Wills, 2017), Right: RC and wood (Think Wood, 2019)) 

By the loose industry use of the term, podium buildings are characterized by vertical irregularity in 

any or all of mass, stiffness, strength and geometry, encompassing both structures with a combination 

of framing systems and a regular floor plan, and structures with a single structural system but a 

shrinking floor plan at higher elevations. While in practice these cases overlap, the focus herein is on 
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structures with a combination of framing systems and thus irregularity of mass and stiffness, as 

opposed to the geometric irregularity characteristic of setback or stepped structures. 

Given the growing popularity of combining seismic force-resisting systems vertically, one might 

naively expect that the code provisions and designer knowledge have improved to match. This, 

however, is not the case. The 2015 National Building Code of Canada (NBCC) (National Research 

Council of Canada (NRCC), 2015c) and American Society of Civil Engineers (ASCE) 7-16 (2017) 

code do not articulate the effect of irregularity either qualitatively or quantitatively. Both characterize 

irregularity only by a set of independent limits which according to research are not effective in 

characterizing the expected behaviour of vertically irregular structures (more on this in Chapter 2). 

The codes recommend only that irregular structures be preferentially designed using dynamic analysis 

but give no further guidance regarding the expected behaviour.  

On account of these irregularity limits being questionably effective and potentially ambiguous, it is 

often left to engineering judgement to determine how to analyze these types of structures. For mid-

rise structures, designers may then embrace simpler static approaches to inform their dynamic design, 

or to replace dynamic design altogether. In NBCC 2015 and ASCE 7-16, there are two alternatives – 

the equivalent static force procedure (or its ASCE 7 equivalent) and the ASCE 7 two-stage procedure. 

But these procedures are derived for relatively regular structures and rely on the first mode of 

vibration being dominant – this is not always the case for irregular structures (Rosenblueth et al., 

1980). This is true also of the two-stage procedure. Despite being intended for irregular structures, it 

can produce unconservative results, given differences in the dynamic behaviour compared to a regular 

structure (Chen & Ni, 2020; Yuan & Xu, 2016). 

The crux of the problem is that these existing methods do not incorporate irregularity. Research has 

repeatedly observed that higher mode effects are potentially more substantial for irregular structures 

than regular structures, particularly as the extent of the irregularity increases. Depending on the 

distribution of mass and stiffness in the structure, the relative value of modal periods, and the applied 

earthquake excitation, this means that the storey shears may be amplified relative to those predicted 

by the first mode alone. For example, a relatively lightweight upper structure may experience much 

larger storey shears if attached to a more massive lower structure. This amplification effect is of 

primary concern for this research. Based on earlier work by Yuan & Xu (Xu & Yuan, 2015; Yuan, 

2016; Yuan & Xu, 2014, 2016), this study aims to provide a set of static approximations which will 

address the higher-mode amplification effect neglected by current codes and designers.  
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1.2 Research objectives 

Given that existing static design methods specified by NBCC 2015 do not incorporate the effect of 

vertical irregularity and neglect the effect of different modes of vibration interacting with one another, 

this study has three objectives: 

1. quantify the higher-mode amplification effect on the base shear of the upper structure, 

2. select the storey stiffness of the upper and lower structures such that the NBCC-specified 

interstorey drift limit is satisfied, and; 

3. conservatively estimate the equivalent static seismic loads – the storey shears – associated 

with a vertically irregular structure.  

As opposed to Yuan (2016), this study is focused exclusively on application to NBCC 2015, rather 

than ASCE 7-16 (2017).  

1.3 Applicability 

1.3.1 Assumptions 

To simplify the procedure by which mid-rise structures with combined framing systems are designed, 

assumptions are made to facilitate analysis. The assumptions can be defined in two categories – those 

which are commonly adopted, and those which are specific to the current study.  

The following assumptions are commonly adopted by simplified methods: 

1. The combined framing systems are modelled as discrete, lumped-mass models, with each 

storey (in the case of the MDOF model) or each of the upper and lower structures (in the 

simplified 2DOF model) being represented by a single mass at the appropriate storey height. 

Consequently, it is assumed that mass and stiffness are uniformly distributed within a given 

storey. Torsional effects, effects due to vertical displacements and out-of-plane effects are 

neglected. It is also assumed that each storey height is identical and that each storey mass of 

the upper structure is equal to all other storey masses in the upper structure, and similarly for 

the lower structure. 

2. The model is a pure shear model – all load is resisted in shear only and all storeys are 

assumed to act as rigid diaphragms. Consequently, vertical displacements and joint rotations 
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are neglected, but this requires a smaller number of DOFs and avoids the problem of coupled 

DOFs. 

The following assumptions are specific to the current study: 

1. Only vertical combinations of seismic force-resisting systems are considered.  

2. The model is evaluated and calibrated using code-specified linear modal response spectrum 

analysis using the CQC (complete quadratic combination) rule to combine modal responses 

via the NBCC 2015 spectrum.  

3. The spectral acceleration, Sa(T), specified by NBCC 2015 (NRCC, 2015b) is adopted. This is 

based on soil class C and 5% (Rayleigh) damping in each mode, as associated with the 

default spectrum in the NBCC. Any differences in damping or soil conditions from this 

baseline are neglected. 

4. The effect of overstrength and ductility factors (Ro and Rd) are neglected in the design 

examples. For practical application, RdRo values should be taken as the minimum of the two 

systems being combined per the recommendation of NBCC 2015 (NRCC, 2015b).  

5. The model assumes that the interstorey drift at the base of the upper structure is larger than 

that at the base of the lower structure. Specifically, that the interstorey drift between the top 

storey of the lower structure and the bottom storey of the upper structure is the largest of any 

storey in the structure. This requirement is explained more in-depth in Chapter 3 and 

Appendix C along with the overall stiffness ratio requirement RkU1, as RkU1 defines the limits 

at which this assumption is true. As the interstorey drift between the top storey of the lower 

structure and the bottom storey of the upper structure is the largest, it is therefore the critical 

design variable. It is assumed that no slippage occurs between the different framing systems – 

e.g. between storeys of the upper structure or between the upper and lower structures.  

1.3.2 Scope 

The simplified approach proposed in this study is applicable only for mid-rise buildings with a 

vertical combination of framing systems having the following characteristics: 

1. It is assumed that the number of storeys is no greater than twelve., Compared to Yuan (2016), 

the storey count is increased by two. This is partially on account of NBCC (NRCC, 2015c) 

limits on seismic force-resisting system heights – timber and cold-formed steel systems are 
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often limited to 20-30 metres in height (≈ 6-10 storeys) depending on the system in question. 

For CFS, fire-related considerations are often more onerous than seismic requirements, 

likewise limiting their height. Nonetheless, these structures do not generally exceed 12 

storeys in height.  

2. For this study, the single-storey periods of the lower and upper structures (TsingL and TsingU) 

are less than or equal to 0.31 seconds, consistent with Yuan (2016). In the 2015 NBCC 

(NRCC, 2015c), the largest empirical period is that of a steel moment-resisting frame, and the 

maximum permitted period via structural mechanics is 1.5 times the empirical value. Thus, if 

the maximum interstorey height is 3.3 metres, the maximum permitted period for a single 

storey is 0.31 seconds, as follows:  

T𝑠𝑖𝑛𝑔 ≤ 1.5(0.085)(3.3)3/4 = 0.31𝑠 (1.1) 

In the ASCE 7 spectrum shown in Figure 1.3, the lower bound on TsingU and TsingL, the spectral 

acceleration associated with T < 0.2Ts is lower than that for longer periods, and therefore 

Yuan (2016) specifies that 0.2Ts ≤ TsingU and TsingL. Ts is a parameter specified by ASCE 7. 

However, the NBCC 2015 spectrum shown in Figure 1.2 is monotonically decreasing, so this 

lower bound on TsingU and TsingL is not required.  

 

Figure 1.2: Sample NBCC 2015 design spectrum 
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Figure 1.3: Annotated ASCE 7 design spectrum (ASCE, 2010, 2017; Yuan, 2016) 

3. The storey-mass ratio rm = mL/mU, where mU and mL are the mass of one storey of the upper 

and lower structures, respectively, is limited to 1 ≤ rm ≤ 5. This is increased from the previous 

formulation, which is capped at 3. 

4. Storey-stiffness ratio rk = kL/kU is limited to max(rkU1,1) ≤ rk ≤ 20, where the minimum storey 

stiffness ratio rkU1 is the minimum stiffness ratio at which the maximum storey-drift ratio 

occurs at the first storey of the upper structure. RkU1 and rkU1 are defined in Chapter 3. 

The limits on rm and rk exclude a soft storey scenario - each storey of the lower structure must be 

more massive and stiffer than each storey of the upper structure. However, the mass ratio in a setback 

structure may be greater than five where the change in dimension is significant. This study is 

concerned primarily with vertical combinations of seismic force-resisting systems and thus may not 

apply to a variety of setbacks structures. 

1.4 Thesis structure 

The thesis is organized as follows: 

• Chapter 2 consists of a review of the relevant literature relating to vertically irregular 

structures. The focus is on vertically irregular structures with mass and stiffness 

irregularity and on vertical combinations of framing systems, but both code-specified 

irregularity limits and setback structures are also discussed. 
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• Chapter 3 concerns the derivation of the upper structure amplification factor αU. In 

combination with a drift-based design criterion, this amplification factor is used to derive 

adequate distributions of storey stiffness on a vertically irregular structure. Two examples 

are provided to demonstrate the feasible stiffness distributions associated with the proposed 

method. 

• Chapter 4 concerns the specification of equivalent static loads on vertically irregular mid-

rise structures with stiffness and mass irregularity. It begins with an investigation of the 

efficacy of the NBCC 2015 spectrum and ends with a method for a single-storey upper 

structure (appendage structure) and another more general method applicable to other 

structures. 

• Chapter 5 presents the study’s conclusions and recommendations.
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Chapter 2 

Literature Review 

2.1 Introduction 

Vertically irregular structures have been considered in one form or another since the very first seismic 

design codes in North America, beginning with the first edition of the Structural Engineers 

Association of California (SEAOC) Recommended Lateral Force Requirements (also known as the 

Blue Book), which featured in an appendix a brief characterization of the expected behaviour of 

setback structures (Blume et al., 1960). In the time since, the concept of irregularity has progressed 

from considering only soft storey and setback irregularity, and now incorporates not only differences 

in stiffness, mass and strength but also discontinuity of the SFRS and other configuration issues. 

Categories continue to be added to the NBCC as they become relevant – inclined columns, for 

example, have appeared in proposals for the 2020 edition of the NBCC in response to industry 

demand (Canadian Commission on Building and Fire Codes, 2018).  

But despite the ever-expanding list of irregularity types, the design of vertically irregular structures 

with a combination of framing systems remains a complicated process, hindered by three main 

obstacles: 

1. code-imposed limitations on the design of vertically irregular structures, 

2. the characterization of vertical irregularity in building codes and design standards lacks a 

theoretical basis and may not be effective, and 

3. lack of familiarity and understanding regarding the complex response of vertically 

irregular podium structures. 

The first point is a practical one – designers face additional requirements and restrictions on the 

design of vertically irregular structures. This is internationally and near-unanimously the case, and in 

the case of North American codes is predicated on whether the structure satisfies the numerical limits 

on irregularity set out by the code. The specific requirements vary from code to code and may include 

the amplification of design forces, added detailing requirements, or prohibition of irregular 

configurations based on criteria such as building importance, design limit states, structural 

characteristics (e.g. fundamental period) or soil conditions. Analysis techniques, too, are limited - 

dynamic analysis (e.g. linear modal response spectrum analysis) is generally required at a minimum 
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for analysis. Only in limited scenarios are static procedures provided by various codes considered 

applicable, and often only for short structures (e.g. less than 20 metres in height).  

Naturally, these limitations are not unfounded – irregular structures experience more complicated 

inelastic action and failure modes, often featuring damage concentrated at the location of 

irregularities (Federal Emergency Management Agency (FEMA), 2009b; NRCC, 2015b). Likewise, 

static procedures are generally applicable only to first mode vibration of regular structures, and 

therefore less accurate as the degree of irregularity and thus the significance of higher-mode effects 

increases (Valmundsson & Nau, 1997). Specifically, an increase in irregularity generally results in the 

higher-mode response becoming more prominent, and so only in certain scenarios is the first mode 

dominant as assumed by static approaches. 

Implicitly, even routine structures have some degree of irregularity, and so design codes must 

define what constitutes an irregular structure. In the National Building Code of Canada (NBCC), the 

American Society of Civil Engineers (ASCE) 7 code and other North American design codes and 

standards, these limits are quantified based on the mechanical properties of the seismic force-resisting 

system and characterized into multiple archetypes (ASCE, 2017; NRCC, 2015c). In the case of 

podium structures with a vertical combination of framing systems designed using NBCC 2015, the 

cases listed in Table 2.1 are the most important, with Type 1 and 2 being the focus of this study.  

Table 2.1: Relevant structural irregularities (NRCC, 2015c)  

Type Type and Definition 

1 Vertical stiffness irregularity – exists where lateral stiffness of a storey’s SFRS is 

less than 70% of an adjacent storey or 80% of the average of three above or three 

below 

2 Weight (mass) irregularity – exists where the weight of a storey is more than 150% 

of an adjacent storey’s 

3 Vertical geometric irregularity – exists where the horizontal dimension of the SFRS 

of any storey is more than 130% of an adjacent storey’s 

6 Discontinuity in capacity – weak storey – exists where a storey’s shear strength is 

less than the storey above 
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But while the NBCC limits are quantitative and straightforward to calculate, little justification is 

provided for the limits in the commentary to NBCC 2015 (NRCC, 2015b). Furthermore, it is not clear 

that they are effective – a significant body of research criticizes the NBCC limits. However, despite 

these criticisms, there are no universally agreed-upon alternative limits, either in research or in 

international building codes. This discussion is the focus of Section 2.2.  

Therefore, and especially so for vertically irregular (e.g. podium) structures, it can be difficult to 

ascertain to what degree a structure will behave as though regular (i.e. primarily in the first mode and 

with inelastic behaviour well-distributed through the structure), even where the individual limits on 

irregularity are satisfied. Putting aside the question of whether the limits themselves are appropriate, 

Yuan (2016) and Yuan & Xu (2016) note that podium structures are susceptible to higher-than-

expected base shears in the upper structure if assessed statically, and so the naïve use of static 

approaches may result in unconservative design. Structural engineers are thus faced with the choice of 

potentially unconservative static design – either by the Equivalent Static Force Procedure (ESFP) set 

out in NBCC 2015 or the two-stage analysis procedure set out in ASCE 7, or dynamic design and its 

associated challenges. Still, while broadly applicable and required by code for many irregular 

structures, dynamic analysis is more cumbersome, costly and time-consuming than static analysis – 

this is especially true for nonlinear dynamic design, which is largely unaddressed by NBCC 2015 

(NRCC, 2015c). Therefore, practitioners often prefer static approaches, owing to their relative ease of 

use and speed despite their limitations.  

This preference for static analysis can be hazardous at the periphery of current limits on 

irregularity. Where irregularity types appear together, where irregularity limits are met but not 

exceeded over multiple storeys, or where the code as a whole is ambiguous, the engineering 

judgements underlying these limits break down. Ideally, where ambiguous, an analysis should 

proceed dynamically. Nevertheless, static analyses will continue to be preferred by practitioners 

where permitted by a reasonable interpretation of the code provisions. In the zone between regular 

structures and those requiring dynamic analysis, this decision is often subject to engineering 

judgement with little additional guidance from the code. Consider for example a ten-storey podium 

structure designed according to NBCC 2015, with a seven-storey upper structure with each storey 

having 80% of the stiffness, 70% of the mass and 80% of the dimension of all storeys in the lower 

structure. Per either of NBCC 2015 or ASCE 7-16, such a structure approximately satisfies all the 

regularity limits, but with the irregularities in combination and over multiple storeys, the response 
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may or may not behave in a sufficiently regular way that the code-specified equivalent static 

approaches are applicable. Indeed, owing to the upper structure’s presumably much lower overall 

stiffness and mass, it is unreasonable to expect that the behaviour will be the same as if the structure 

was perfectly homogeneous in its height-wise properties, and it is unclear whether the code-specified 

performance is still adequate. 

However, while irregularity has received some attention in the commentary and text to the NBCC, 

there is often limited explanation for the origins or intent of the limits assigned to each type of 

irregularity. Aside from soft storey and geometric irregularity (setback and stepped), vertical 

irregularity has received less attention both in codes and in research relative to plan irregularity. This 

is particularly true of non-geometric vertical irregularity, and doubly so for structures with a 

combination of framing systems, which have only recently gained some degree of attention.   

To better inform the development of a simplified procedure to calculate loads on vertically 

irregular structure such as those considered in this study, it is therefore important to characterize the 

research and codes in the following areas: 

1. The definition of vertical irregularity – what are the origins and intent of the limits given in 

NBCC 2015, and how does this compare to the treatment of vertically irregular structures 

in other international codes?  

2. The behaviour of setback, stepped and soft-storey structures – Given the lack of research 

focused on structures with a vertical combination of framing systems, what insight do 

previous studies on related structural archetypes give that is relevant to the current study? 

3. The behaviour of vertical irregularity as a function of stiffness, mass and strength 

irregularity – subsequent research has departed from exclusively considering setback, 

stepped and soft-storey irregularities. What further conclusions does this provide? 

4. The behaviour of structures with a vertical combination of framing systems – What is the 

state-of-the-art regarding structures with a vertical combination of framing systems? 

2.2 Characterizing vertical irregularity 

As alluded to in Chapter 1, the limits of irregularity in the NBCC are somewhat ambiguous, 

somewhat arbitrary, and criticized by existing research. With consideration of this and the fact that 

the limits do not quantify the impact of the intensity of irregularity, nor the combination of types of 
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irregularity, a designer may look to other design code limits for guidance. Unfortunately, while other 

codes sometimes define vertical irregularity, they provide no more guidance than the NBCC. In the 

case of standards from the United States, the limits are almost the same as those in the NBCC – this is 

true of ASCE 7-16 (2017), FEMA P-750 (2009b), and the 2015 International Building Code (IBC) 

(International Code Council (ICC), 2015), all of which are generally updated in parallel (Thornburg 

& Henry, 2015). Likewise, Eurocode 8 provides no further information - its definition of vertical 

irregularity (termed irregularity in elevation) is a qualitative one, using vague terminology such as not 

vary disproportionately and without abrupt changes to delimit whether a structure is irregular 

(European Committee for Standardization, 2004). No quantitative limits or categories are provided, 

except for setback structures. Nor does Japan give useful information to a North American designer, 

for its code philosophy is wholly different than that of Europe, Canada and the United States 

(Teshigawara, 2012). In it, buildings are designed using working stress design principles and then 

checked for storey drift and rigidity – the ultimate limit state of strength is not always required. An 

irregular structure is defined based on a modification factor arising from the relative storey rigidities, 

and a storey cannot be less than 60% the rigidity of an adjacent one. Finally, the AS1170.4 code used 

in Australia does not specify irregularity at all, for it is assumed that in the low seismicity of Australia 

the majority of structures are irregular (Standards Australia, 2007; Weller, 2005). Categorically, 

where they exist, quantitative limits are defined in terms of engineering judgement rather than a 

systematic justification (Sadashiva et al., 2012). It can therefore be difficult to interpret existing 

provisions, and Agham & Tariverdilo (2012) conclude that this can lead to designers ignoring such 

provisions altogether.  

However, research on alternative vertical irregularity limits is inconclusive, with authors criticizing 

existing limits and proposing new limits, often applicable to a single structural system. The limits 

currently given by NBCC 2015 and ASCE 7-16 (and similar) have been routinely criticized by 

numerous authors as generally poor indicators of whether a structure behaves as irregular (De Stefano 

& Pintucchi, 2008; Magliulo et al., 2002, 2004, 2012; Sadashiva et al., 2012; Valmundsson & Nau, 

1997). Various alternative limits have been proposed by Mazzolani & Piluso (1996), Karavasilis et al. 

(2008b), and Roy & Mahato (2013), each of whom uses similar geometric ratios. Meanwhile, 

Varadharajan et al. (2013) propose an index based on the ratio of frequencies in a regular and 

irregular frame and Sarkar et al. (2010) propose an index based on the ratio of modal participation 

factors. Each focus on a different type of structure – Karavasilis et al. (2008b) focus on steel moment-

resisting setback frames, Roy & Mahato (2013) and Varadharajan et al. (2013) focus on reinforced 
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concrete setback frames, and Sarkar et al. (2010) focus on reinforced concrete stepped frames. 

Nonetheless, Bhosale et al. (2017, 2018b) conclude that collectively the existing indicators do not 

correlate well with the seismic risk, which they aggregate from the fragility curves, probability of 

collapse, drift hazard and confidence level. In a separate paper (Bhosale et al., 2018a), they propose 

another new indicator based on relative interstorey drifts between an irregular structure and a 

reference regular structure.  

There is, in summary, no uniquely appropriate irregularity limit for vertical irregularity. Numerous 

approaches have been proposed based on geometry, frequency or other first-mode parameters, and 

research does not agree on which is most appropriate, nor on whether geometry as a proxy to stiffness 

and/or mass is appropriate whatsoever. Categorically, very little guidance is given as to the limits 

given in NBCC 2015 and ASCE 7, and international codes give either identical limits or no 

quantitative limits at all. It is consequently difficult for a designer to even identify whether a structure 

is worth consideration beyond the NBCC’s default static approach, which is derived based on a 

regular structure. For the current purposes, the proposed upper structure base shear amplification 

factor αU given in Chapter 3 will be used as a proxy for irregularity. 

2.3 The response of setback, stepped and soft-storey structures 

In the introduction, a distinction is made between podium structures in the scope of this thesis 

(specifically, having vertical mass and stiffness irregularity) and those with a stepped or setback 

configuration (having vertical geometric irregularity). In reality, the distinction is less clear – often, 

structures with a vertical combination of framing system also have geometric irregularity and vice 

versa. As existing research on vertical irregularity often focuses exclusively on geometric irregularity, 

it is pragmatic to review research on setback and stepped structures to gain insight into the current 

problem. For clarity, setback structures are defined herein as those having a reduction in dimensions 

(equivalently, floor area) at a single location in the building, and stepped structures are those having 

multiple such reductions through their height. When podium structures are referred to colloquially, it 

is often regarding these structures which have geometric irregularity.  

Setback structures began seeing significant attention in research following the first SEAOC 

recommendations published in 1960. Early research quickly identified the susceptibility of setback 

structures to an increase in higher-mode effects brought about due to the irregularity of the structure, 

especially given the significant damage observed during then-recent earthquakes (Humar & Wright, 
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1977; Penzien & Chopra, 1965; Sexton & Keith, 1965; Shibata et al., 1965; Skinner et al., 1965). 

Collectively, these studies conclude that the differences in higher-mode effects change the force and 

interstorey drift distributions relative to a regular structure. This is especially so for structures which 

are particularly irregular in their stiffness and/or mass, or for which the values of the modal periods 

are similar to each other or to the predominant period of the seismic excitation. For example, if the 

second modal period of the lower structure is similar to the upper structure’s fundamental period or 

the earthquake’s predominant period, the higher-mode effects are most pronounced. This is 

significant for the applicability of the square-root-sum-of-squares (SRSS) method for combining 

modal responses – the SRSS method neglects the interaction of different modes and is therefore not 

applicable where these effects are significant (Chopra, 2012). SEAOC (1999) recommends that the 

SRSS method is useful if and only if the ratio of all higher modes to that of all lower modes is 0.75 or 

less – otherwise, the CQC (complete quadratic combination) method should be used.  

Later analyses also indicate that a setback increases the ductility demands when compared to 

regular structures, particularly in the storeys adjacent to the setback (Aranda, 1984; Elnashai & 

Soliman, 1995; Habibi et al., 2018; Humar & Wright, 1977; Jain & Sharma, 1988; Osman, 2002; 

Pekau & Green, 1974; Pinto & Costa, 1993; Shahrooz & Moehle, 1990; Sobaih et al., 1988; 

Varadharajan et al., 2014). These effects are subject not only to the stiffness/geometrical difference 

between the tower and the podium structure but are also sensitive to the number of storeys, the beam-

to-column strength ratio and the limit state being considered (Karavasilis et al., 2008b; Varadharajan 

et al., 2013). Furthermore, Varadharajan et al. (2014) also indicate that a more severe setback reduces 

the median collapse capacity and especially when the setback occurs at a lower point in the height. 

Thus, the inelastic design of setbacks may require special attention towards members in the vicinity 

of the setback to prevent excessive damage. However, numerous authors disagree that setback 

structures require more stringent analysis than regular frames (Bhosale et al., 2018a; Mazzolani & 

Piluso, 1996; Moehle & Alarcon, 1986; Pinto & Costa, 1993; Romao et al., 2004; Tena-Colunga, 

2004; Wood, 1986, 1992).   

In general, the existing NBCC 2015 equivalent static force procedure (ESFP) does not apply to 

setback structures – it is calibrated for regular structures (Humar & Mahgoub, 2003; Humar & 

Rahgozar, 2000; NRCC, 2015b). Instead, many practitioners advocate for the ASCE 7 two-stage 

procedure, in which the podium and tower of many setback structures are evaluated as two separate 

structures and reassembled to evaluate the equivalent static loads on the structure (ASCE, 2017). 
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Despite this, the two-stage method is criticized – for its limits (Chen & Ni, 2020; Yuan, 2016; Yuan 

& Xu, 2016), its accuracy (Tremblay et al., 2005), and its ease of application (M. Allen et al., 2013). 

Given this lack of consensus, other studies have proposed alternatives (Cheung & Tso, 1987; Duan & 

Chandler, 1995; Pekau & Green, 1974; Shahrooz & Moehle, 1990; Valmundsson & Nau, 1997; 

Wong & Tso, 1994). Nonetheless, the proposed alternatives have not seen wide adoption – designers 

continue to rely on the ESFP and two-stage procedure for static analyses.  

Given the importance of setback structures to the more general class of vertically irregular 

structures, the foregoing discussion is of importance. However, it would be remiss not to also briefly 

mention soft-storey structures, in which one or more storeys (typically, the ground floor) possess 

lower strength than the remaining storeys of the structure. These structures are very common in 

irregularity research and are characterized by their strength irregularity – Tena-Colunga & 

Hernandez-Garcia (2020) provide an excellent review of the current research. It is not the intent of 

this study to discuss soft storey structures in detail – instead, Tena-Colunga & Hernandez-Garcia 

(2020) indicate several problems in soft-storey research that also apply to other vertical irregularity 

research. Namely: 

• Codes provide limited case studies of the analysis of vertically irregular structures and the 

appropriateness of code provisions 

• Studies inconsistently check for irregularity conditions at intermediate storeys and 

inconsistently report storey stiffness and storey strength ratios 

• Few studies are oriented to assess the impact of the stiffness and strength ratios between 

adjacent storeys as dictated by codes, and few studies focus on assessing the efficacy of 

code recommendations towards preventing failure caused by irregularity. 

Many of these trends are consistent throughout vertical irregularity research. As discussed in the 

forthcoming section, more general research on vertical irregularity is subject to similar flaws, 

particularly that many studies investigate only vertical irregularity concentrated in a single storey. 

This lack of investigation is also reflected in the code provisions – of type 1, 2, 3 and 6 irregularities 

in NBCC 2015 (Table 2.1), only type 1 (stiffness irregularity) considers more than a single storey-to-

storey consideration, rather than also considering irregularity distributed over several storeys.  
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2.4 The dynamic behaviour of other vertically irregular structures 

While historically research has paid great attention to setback, stepped and soft-storey structures, 

studies since the 1990s have increasingly defined vertical irregularity more generically in terms of 

stiffness, mass and strength in an attempt to explore such irregularities in other contexts. This 

especially true following the 1988 UBC/SEAOC Blue Book (ICBO, 1988; SEAOC, 1988), in which 

stiffness, mass and strength irregularity are defined by quantitative limits as they appear today in 

NBCC 2015 (NRCC, 2015c).  Prior to this, Moehle & Sozen (1980), Moehle & Alarcon (1986) and 

Dolce (1988) published research that describes mass, stiffness and strength irregularity in this generic 

manner. Moehle & Sozen (1980) and Moehle & Alarcon (1986) did so based on experimental tests of 

RC frames with shear walls, and Dolce (1988) did so following a series of nonlinear dynamic 

analyses. In Moehle & Sozen (1980) and Moehle & Alarcon (1986), they conclude that while 

dynamic and static analysis are generally equally proficient at predicting structural demands (except 

for displacements), elastic methods do not well-represent the distribution of ductility demands that 

occur when stiffness abruptly changes due to irregularity. Meanwhile, Dolce (1988) concludes that 

traditional static procedures are adequate for structures up to 12 stories in height and modest changes 

in stiffness, on account of the overestimation of first mode effective masses. This occurs as the total 

mass, rather than effective mass, is used in code static force procedures (e.g. ESFP in NBCC 2015).  

Of studies undertaken in the 1990s, those published by Al-Ali & Krawinkler (Al-Ali, 1998; Al-Ali 

& Krawinkler, 1998) are the most influential. In a similar vein as Jhaveri (1967) vis-à-vis setbacks, 

Al-Ali & Krawinkler investigate vertical irregularities of mass, stiffness and strength both separately 

and in combination, using both inelastic and elastic methods. These irregularities are introduced by 

modifying the storey properties of a generic planar 10-storey regular structure, a technique that is 

used in many other studies (e.g. Cruz & Cominetti (1996), Tremblay & Poncet (2005), Pirizadeh & 

Shakib (2013)). In general, Al-Ali & Krawinkler (Al-Ali, 1998; Al-Ali & Krawinkler, 1998) observe 

that strength irregularity is the most significant, followed by stiffness and then mass irregularity. They 

assert that this strength irregularity may be significant even in otherwise regular buildings, on account 

of relatively small irregularities introduced during the design process for a variety of reasons, and that 

this irregularity cannot be identified without nonlinear analysis. Accordingly, they recommend that 

code specifications for strength irregularity consider both above and below the given storey, rather 

than simply above (it is only relative to the above storey in NBCC 2015’s definition). Al-Ali & 

Krawinkler are therefore consistent with much of the research on setbacks which note that ductility 
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demands may be significantly affected in the vicinity of the setback level. Concerning mass and 

stiffness irregularity, they conclude that structures with large irregularities of stiffness (i.e. setback 

structures) behaving elastically are prone to significant higher-mode effects, consistent with Jhaveri 

(1967) and Humar & Wright (1977). Nevertheless, Al-Ali & Krawinkler (Al-Ali, 1998; Al-Ali & 

Krawinkler, 1998) depart from many researchers by advocating for the universal application of 

inelastic analysis. Finally, they also state that the complete quadratic combination (CQC) method has 

no advantage over the square-root-sum-of-squares (SRSS) method – both are said to underestimate 

time history analysis for closely-spaced modes of vibration. Specifically, considering some set of 

modal responses e.g. shear for n modes, the CQC response is the square root of the weighted sum of 

squares of every combination of products of modal responses (Chopra, 2020). These weights are 

applied based on the correlation between modes – if the weights are assumed to be zero for the 

product of different modes, it simplifies to the SRSS method. These approaches are applied in 

Chapter 3.1 and Appendix A – nonetheless, Al-Ali & Krawinkler (Al-Ali, 1998; Al-Ali & 

Krawinkler, 1998) indicate that both are inappropriate to assess the time history response of irregular 

structures.  

However, the inherent necessity of inelastic analysis is not a universal consensus. Numerous 

studies including Das & Nau (2003), Tremblay & Poncet (2005), Soni & Mistry (2006) and Le-Trung 

et al. (2012) agree that irregular structures can be adequately evaluated using an equivalent static 

force method. Further still, Das & Nau (2003) and Le-Trung et al. (2012) assert that the use of 

quantitative limits on the use of equivalent static procedures may be unnecessary so long as additional 

checks are performed to prevent unwanted failure modes. Similarly, Cruz & Cominetti (1996) 

conclude that ductility demand is largely independent of the vertical irregularity so long as the 

element design strengths are proportional to the computed maximum elastic forces. Nevertheless, 

most studies agree that careful detailing is required to ensure a ductile response, particularly in the 

vicinity of the irregularity or in the lower storeys to address shifts in ductility demand, consistent with 

research on setbacks specifically (Cassis & Cornejo, 1996; Cruz & Cominetti, 1996; Das & Nau, 

2003; Karavasilis et al., 2008a; Pirizadeh & Shakib, 2013). Some studies propose modifications to the 

behaviour factors for overstrength and ductility to address this (Anagnostopoulou et al., 2015). It is 

also near-unanimously agreed that strength irregularity is most important, followed by stiffness and 

then mass irregularity (Al-Ali, 1998; Al-Ali & Krawinkler, 1998; Chintanapakdee & Chopra, 2004; 

Fragiadakis et al., 2006; Le-Trung et al., 2012; Soni & Mistry, 2006; Valmundsson & Nau, 1997).  
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2.5 The response of structures having a vertical combination of framing systems 

Whereas setbacks, stepped and soft-storey structures received attention beginning in the 1960s and 

more generic descriptions of irregularity received attention since the 1990s, vertical combinations of 

seismic force-resisting systems remain novel, with perhaps fewer than twenty papers having been 

published on the topic in the last twenty years. Nonetheless, designers have proceeded despite limited 

research guidance as the demand for cost-effective mixed-use designs has driven the adoption of (in 

particular) cold-formed steel and light timber structures atop reinforced concrete or hot-rolled steel 

podiums. This is despite potential issues posed by vertical combinations of framing systems, which 

are compounded with those related to the more general problem of vertical irregularity. There are in 

general three aspects of continuing interest in research: 1) experimental and numerical tests of 

expected behaviour 2) characterization of overstrength, ductility and damping and 3) simplified 

methods usable to evaluate structural demands.  

Publications have been inconsistent on the terminology used – some studies refer to these structures 

as (vertically) mixed structures (Fanaie & Shamlou, 2012, 2015; Huang et al., 2015; Papageorgiou & 

Gantes, 2010; Pnevmatikos et al., 2019), whereas other studies prefer to call them hybrid structures 

(Guo et al., 2014; Liu et al., 2008; Xiong et al., 2015). Others still prefer to use vertical combination 

of framing systems (Xu & Yuan, 2015; Yuan, 2016; Yuan & Xu, 2014, 2016), and one uses podium 

buildings (Chen & Ni, 2020). Presumably, the inconsistent naming used in these studies, as well as 

the relatively short span of time between their publishing dates, is the explanation for the limited 

extent to which these otherwise related papers cross-reference each other. Unfortunately, the 

mixed/hybrid nomenclature often lacks specificity, as it could also refer to the use of different systems 

on a given storey, rather than distinct systems on distinct storeys. To maintain clarity, the current 

study will use podium structures and vertical combination of framing systems rather than the more 

ambiguous hybrid/mixed nomenclature. 

Many investigations have focused exclusively on experimental and numerical tests of behaviour, 

with most of those being purely numerical, nonlinear studies. This can be attributed to the significant 

cost of shake table tests on scale-model structures. One exception is Xiong et al. (2015), which 

considers experimental tests on a set of full-scale, 3-storey wood-concrete structures, in which a two-

storey wood-frame structure sits atop a one-storey concrete frame. They observe that the seismic 

responses are sensitive to the stiffness ratio between the upper wood and lower concrete structures 

and observe that responses are larger for smaller stiffness ratios (defined as the stiffness of the 
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concrete structure divided by that of wood structure). Another exception is Lu et al. (2018). In Lu et 

al., a 12-storey frame consisting of a four-storey steel upper structure, a seven-storey concrete lower 

structure and a one-storey transition storey designed according to the Chinese building code is 

subjected to seismic excitation. Similarly to Xiong et al. (2015), the acceleration response is sensitive 

to the relative stiffness of the upper and lower structures – where the structure changes abruptly in 

stiffness, there is a significant magnification of the response. They note that the response is also 

sensitive to the characteristic period of the seismic input, and peak accelerations are exhibited when it 

matches the period of the upper structure, as noted in earlier research by Jhaveri (1967).  

Numerical studies often investigate specific configurations to assess design recommendations given 

by codes. Maley et al. (2012) performed nonlinear time-history analysis for a steel/RC system 

alongside displacement-based design (DDBD) and the ASCE 7-10 (ASCE, 2010) equivalent static 

method, the equivalent lateral force method (ELF). While the ELF method produces conservative 

results, the authors conclude that DBDD provides superior performance. Guo et al. (2014) similarly 

investigate a wood-steel structure designed using the Chinese code, concluding that the rigid 

diaphragm assumption is adequate for such structures. Chen & Ni (2020) investigate wood-concrete 

structures designed using the NBCC and the two-stage assumption, concluding that neither ASCE 7 

nor the NBCC adequately delimit the two-stage behaviour. However, research is not consistent that 

these structures are of concern: an analysis of fragility curves for frames with a concrete lower 

structure and hot-rolled steel upper structure by Pnevmatikos et al. (2019) concludes that mixed 

concrete/steel frames designed according to code are less vulnerable than the equivalent single-

material steel or concrete frame. 

Furthermore, while not in the current study’s scope, the calculation of modification factors (in 

NBCC, overstrength factor Ro and ductility factor Rd) and equivalent damping remain problematic for 

vertical combinations of framing systems. Few studies assess the inelastic modification factor – 

Fanaie & Shamlou (2012, 2015) propose simple formulas for mid-rise structures with a lower 

structure of reinforced concrete and an upper structure of structural steel. Equivalent damping is 

better addressed, with numerous authors using an equivalent 2DOF model which represents each of 

the upper and lower structures as a single degree of freedom. In two related papers, Jiang et al. (2015) 

and Huang et al. (2015) use such a model for a structural steel upper structure and reinforced concrete 

lower structure and define the equivalent damping ratio according to the ratio of total mass and ratio 

of fundamental frequencies for the upper and lower structures. Likewise using a 2DOF model, Yuan 
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(2016) approaches the problem more generically and proposes a combination rule which composites 

the upper and lower structures’ stiffness ratios. Yuan (2016) derives their modal damping ratio from 

classical damping relationships for generic materials, while Qian et al. (2015) and Huang et al. (2015) 

exclusively look at steel-concrete structures. The forthgoing discussion focuses on more recent 

publications - a more thorough look at equivalent damping is given by Yuan (2016). 

The final area of research for vertical combinations of framing systems concerns the development 

of simplified methods for the assessment and design of such structures. Two groups – Yuan & Xu 

(Xu & Yuan, 2015; Yuan, 2016; Yuan & Xu, 2014, 2016) and Lin et al. (2019) – have proposed 

significantly different solution methodologies. While both use an equivalent 2DOF model, the 

method given by Yuan & Xu is more approximate and oriented towards practical, code-specified 

design, whereas Lin et al.’s method is primarily concerned with simplifying nonlinear analysis rather 

than immediate application to design.  

Specifically, concluding that a  single-degree-of-freedom (SDOF) modal system as is commonly 

used in inelastic static (modal pushover) analysis is inadequate to characterize the inelastic response 

of vertical combinations of framing systems, Lin et al. (2019) propose an alternative inelastic 

simplification to nonlinear time history analysis – a procedure they refer to as uncoupled modal 

response history analysis (UMRHA). This method is similar to conventional elastic modal analysis 

but for the substitution of the traditional SDOF modal system with a new inelastic 2DOF modal 

system that represents both the stiff-and-strong lower structure and the less stiff, less strong upper 

structure as shown in Figure 2.1. The characteristics of each DOF of this new system are constructed 

using a bilinear (trilinear, for the upper structure) approximation of the n-th mode pushover curve of 

the building.  

 

Figure 2.1: n-th 2DOF modal system (Lin et al., 2019) 
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In summary, the procedure is as follows: 

1. perform eigenvalue analysis of the real/modelled structure, truncating to the desired number 

of modes (typically no more than three), 

2. calculate the elastic 2DOF modal parameters, 

3. construct the idealized bilinear/trilinear modal pushover curves in each mode, 

4. calculate the inelastic 2DOF modal parameters, 

5. compute each inter-storey drift ratio, and 

6. repeat for each mode and combine to determine inelastic inter-storey drift ratio time history 

While certainly preferable to directly performing nonlinear time history analysis, the procedure 

does not lend itself readily to routine or preliminary design, for which designers desire yet simpler 

and preferably static procedures. Furthermore, the paper gives little guidance on determining a design 

base shear or feasible stiffness distribution and instead focuses exclusively on interstorey drift ratios.  

Fortunately, the behaviour of mid-rise structures with a vertical combination of seismic force-

resisting systems can be further simplified under the right circumstances and assumptions. For 

example, by assuming the damping is classical and identical in each mode of vibration, and by 

limiting the maximum storey count. Toward this end, Yuan & Xu (Xu & Yuan, 2015; Yuan, 2016; 

Yuan & Xu, 2014, 2016) propose a set of linear elastic static procedures to evaluate mid-rise 

vertically irregular structures having ten or fewer storeys. As culminating in Yuan (2016), these 

methods apply to both the NBCC 2010 and the ASCE 7-10 codes and can be grouped into four 

categories: 

1. To quantify the effect of higher modes, Yuan & Xu propose an approximation for the 

amplification factor αU. αU describes the higher-mode amplification of the upper structure’s 

base shear as a function of the mass and stiffness ratio of the upper and lower structures. 

2. To aid the pre-selection of stiffnesses satisfying the NBCC (or ASCE) interstorey drift, 

Yuan & Xu propose an interstorey drift criterion that is a function of both αU and the upper 

structure’s storey stiffness. By proxy via αU, the criterion therefore relates the storey 

stiffnesses of the upper and lower structures to the interstorey drift limit, allowing a 

designer to identify whether a given selection of stiffnesses will satisfy the interstorey drift 

limit. This procedure is defined using the interstorey drift at the bottom storey of the upper 

structure, and on account of being static, negates most of the iteration that is otherwise 
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inherent in dynamic procedures (the iterative nature of the dynamic analysis is noted by 

Liu et al. (2008)). 

3. To quantify the equivalent static loads, Yuan & Xu propose two methods for both NBCC 

2010 and ASCE 7-10 to determine the seismic load distribution on a mid-rise structure 

with a vertical combination of seismic force-resisting systems. 

4. Yuan & Xu also define equivalent damping for the structure (not in the scope of the current 

study). 

As part of a cohesive whole, the work of Yuan & Xu provides a set of linear static methods to 

facilitate the preliminary design of vertically irregular structures in a variety of ways. These methods 

(barring equivalent damping) are the basis of the current study, and so there is no need to further 

elaborate on them here. Where necessary, they will be discussed in the subsequent chapters.  

2.6 Commentary on previous research 

The study of vertical combinations of framing systems has arisen from the wider class of vertically 

irregular structures much in the way that the latter arose from the study of setback, stepped and soft-

storey structures. Thus, despite the relatively small number of studies specifically investigating the 

behaviour of vertical combinations of framing systems, there are decades of research and codes with 

which some conclusions can be recognized. While there is some dispute among authors, several 

conclusions can be said to apply generally to vertical combinations of framing systems: 

1. Existing regularity limits are criticized by a large body of previous research despite being 

present for decades in both Canadian and American design standards. Some authors have 

proposed modifications or new criteria altogether, whereas others question the efficacy of such 

limits in a general sense and instead propose that requirements focus on ensuring acceptable 

failure modes rather than arbitrary limitations on specific parameters. The ultimate result is that 

there is no general framework in either North American or international codes for designers to 

determine whether a structure behaves as a regular structure - thus, designs may at times be 

over-conservative and at others times not fulfill the expected performance objectives (and thus 

be under-conservative). 

2. Previous research on the elastic response of irregular structures has identified the risk of 

higher-mode effects arising due to the interaction of different modes of vibration. Studies have 

identified that this is sensitive to numerous design variables, notably the number of storeys, and 
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the mass and stiffness attributed to each of the upper and lower structures. This manifests most 

clearly in the relative values of modal periods – effects are most severe when the upper and 

lower structures, or the upper structure and the full structure as a whole are prone to vibrate at 

the same frequencies. Studies have also identified that the characteristic period of the input 

excitation is important. 

3. Most studies on the inelastic behaviour of irregular structures agree that irregular structures are 

potentially subject to non-uniform distributions of ductility demand, particularly in the vicinity 

of the irregularity. Some studies also identify that increased ductility demand may occur in the 

lower structure based on the characteristics of the structure. These demands are sensitive to the 

location and magnitude of the irregularity, the beam-to-column stiffness ratio and the limit 

state being considered, as well as those factors affecting the elastic behaviour. It is in general 

unclear the extent to which detailing these critical sections is important to ensure adequate 

ductile performance in severe earthquakes. 

4. There is a consensus that strength irregularity is the most severe type of irregularity, followed 

by stiffness and then mass irregularity, with combinations being worse than any single type.  

5. Despite the importance of inelastic behaviour and strength irregularity, it is inconclusive 

whether elastic analysis, particularly code-specified equivalent static analysis, is adequately 

conservative to predict shear demands. Many studies argue that equivalent static procedures are 

adequate, even with little to no modification. A limited number of studies argue that irregular 

structures are not necessary higher-risk than regular ones, particularly setback/stepped 

structures and others that generally consist of a massive, stiff and strong lower structure 

underlying a less massive, less stiff and less strong upper structure.  

6. Two-degree-of-freedom simplified models and generic regular structures are commonly used 

in research to compare the effects of irregularity. 

Regarding vertical combinations of framing systems specifically: 

1. Research on vertical combinations of framing systems features potentially ambiguous 

nomenclature and has currently received limited attention in research compared to other types 

of irregularity. Existing research explores a variety of archetypes but has focused largely on 

hot-rolled steel or wood atop concrete, rather than cold-formed steel as is increasingly common 

in North American practice.  
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2. Limited research has explored equivalent damping, overstrength and ductility for vertical 

combinations of framing systems.  

3. Two major proposals exist for simplifying the analysis of vertical combinations of framing 

systems. One is oriented towards simplifying nonlinear analysis and the other is oriented 

towards improving code-specified elastic design procedures.  

It is clear from the research that there is a large degree of uncertainty regarding the analysis and 

design of vertically irregular structures, particularly those with a vertical combination of framing 

systems. However, ever-improving computational and methodological techniques beg the question:  

why continue the development of an equivalent linear static method? The simplest answer is that, in 

NBCC 2015 and for the near future, linear static analysis is used as a reference for all dynamic 

analysis and as a minimum so that designs are sufficiently conservative (NRCC, 2015c; SEAOC, 

2019). More broadly, the practice of dynamic and nonlinear analysis invites errors and difficulty of 

interpretation - as opined by Krawinkler (2006), “good and complex are not synonymous, and in 

many cases they are conflicting” rationalizations for seismic design. As pointed out by Fajfar (2018) 

and Terzic et al. (2015) in the context of a contest run by PEER (Pacific Earthquake Engineering 

Research Center), the use of advanced and sophisticated models did not necessarily ensure accurate 

results. Indeed, some led to wildly inaccurate results which could be easily refuted by a simple linear 

single-degree-of-freedom (SDOF) model.  Since designers also consistently report that the guidance 

for nonlinear analysis is insufficient, that nonlinear analysis is excessively time-consuming, and that 

there is inadequate software support for such analysis, a more intuitive linear static analysis remains 

both desirable and necessary (Head et al., 2014). So long as nonlinear time history analysis remains 

esoteric, prone to errors and lacking extensive incorporation in codes, linear elastic analysis, 

including elastic static analysis, will serve a role in building codes.
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Chapter 3 

Characterization of the Effect of Higher Vibration Modes on the Upper 

Structure of Podium Structures 

3.1 Introduction 

The true behaviour of structures under earthquake excitation is a highly nonlinear, stochastic, and 

dynamic problem, the behaviour of which can only be exactly determined by observation of the real 

structure under the effects of an actual earthquake. This degree of accuracy is neither tenable nor 

necessary for design, and so codes often provide that the equivalent storey forces and interstorey 

drifts can be calculated based on a semi-empirical linear elastic static calculation. There are several 

essential simplifications made by the NBCC and other codes – the spectrum Sa(T), the linear-to-

nonlinear ductility and overstrength modification factors Rd and Ro, and some factor, e.g. Mv, to 

characterize the effect of the second or higher modes of vibration. These factors vary in form but are 

generally consistent in function between codes. 

However, the use of these factors is predicated on the assumption that the structure is 

approximately regular in form throughout its height. Where structures vary in stiffness, mass, and/or 

other parameters through their height, factors such as Mv may not adequately represent the behaviour 

of the structure. To address this, Yuan & Xu (2014) propose a factor analogous to Mv, αU, to 

characterize the amplification of the upper structure’s base shear as a function of the structural 

irregularity. This factor serves as the basis of a simplified design method that can identify an 

appropriate distribution of stiffness and mass which ensures that the code-specified storey drift limits 

are satisfied. While originally derived for the ASCE 7-10 code (2010), the method is also adapted to 

the NBCC 2010 (NRCC, 2010) code.  

Despite this, there remain improvements to be made to the existing method. It was originally 

developed for ASCE 7-10 (ASCE, 2010), not NBCC 2010 or 2015 (NRCC, 2010, 2015c), and, its 

application to NBCC 2010/NBCC 2015 is awkward for designers unfamiliar with the terminology of 

the American code. Focusing only on application to NBCC 2015 except where necessary, this chapter 

aims to refine the upper structure higher mode amplification factor αU to improve its accuracy and 

ease of use and to expand the scope, where possible. The structure of the chapter is as follows: First, 

αU and the storey drift-based design criterion are introduced, and with the help of an equivalent 2DOF 

model the parameters affecting αU are described. Next, having established αU, a simplified empirical 
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form is proposed and then applied to derive the required storey stiffness distribution such that the 

design criterion is satisfied. To end the chapter, examples are presented to demonstrate the 

determination of feasible stiffness distributions via the higher-mode amplification factor αU, 2DOF 

model parameters (e.g. Rk) and NBCC 2015 spectral acceleration Sa(T). Feasible stiffness 

distributions in this context are considered those which simultaneously satisfy the scope set out in 

Section 1.3.2, e.g. max(1, rkU1) ≤ rk ≤ 20 and the drift-based design criterion set out in Equation (3.9). 

3.2 Design criterion 

As is the case in Yuan (2016), the present study is motivated by the need to reduce the iteration used 

for the design of vertically irregular structures. Towards this end, a design criterion is needed, and so 

the interstorey drift between the base of the upper structure and the top storey of the lower structure is 

chosen. As excessive storey drifts lead to collapse or excessive damage in a structure, the maximum 

interstorey drift is commonly used as a proxy for structural performance. Accordingly, both ASCE 7-

16 (2017) and NBCC 2015 (NRCC, 2015c) specify a limit on interstorey drifts as a proportion of the 

storey height – for example, 2.5% of the interstorey height for a structure of normal importance 

(NBCC 2015). Considering a simplified MDOF lumped-mass model in which each storey is 

represented as a single mass as described in the forthcoming sections, the interstorey drift between the 

bottom storey of the upper structure and the top storey of the lower structure is defined as: 

Δ𝑈 =
𝑉𝑈𝑏
𝑘𝑈

 (3.1) 

where VUb is the elastic base shear force of the upper structure and kU is the storey-stiffness of the 

upper structure. In this MDOF model, characterized by Figure 3.1, the lumped mass representing the 

bottom storey of the upper structure is associated with the seismic force-resisting system below the 

mass – therefore, the interstorey drift between the bottom storey of the upper structure and the top 

storey of the lower structure is characterized by the base shear of the upper structure acting on the 

storey stiffness of the upper structure. So long as the minimum overall stiffness ratio RkU1 as defined 

in Section 3.3.4 and Appendix C is exceeded, it is expected that the maximum interstorey drift will 

occur at the base of the upper structure and therefore Equation (3.1) is an acceptable measure of 

structural performance. The proposed procedure is predicated on the fact that the base of the upper 

structure is the only location for which interstorey drift needs to be checked.  
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The assumption that the interstorey drift (at least insofar as the elastic response) is largest at the 

base of the upper structure beyond a certain stiffness ratio for a fixed mass ratio and number of 

storeys is justified based on the behaviour of the MDOF model analyzed by MRS analysis. Assuming 

that the storey heights of each storey are identical, the interstorey drift of each storey is a function 

only of the storey stiffness of the storey and the shear force acting on the seismic force-resisting 

system at that storey. In a structure with constant stiffness, the shear forces accumulate towards the 

base of the structure, and thus the interstorey drift is largest at the base of the structure. However, if 

the upper structure’s storey stiffness is decreased relative to the base, the interstorey drifts will 

increase in the upper structure, eventually surpassing those which appear at the base of the lower 

structure. The forces in the upper structure increase towards its base, thus the largest interstorey drift 

in an upper structure of constant stiffness at its base. This phenomenon as observed in the MDOF 

model for an arbitrary structure is illustrated by Figure C.1. That the interstorey drift is largest in the 

upper structure beyond a certain value of Rk can also be observed in other research (Humar & Wright, 

1977; Shahrooz & Moehle, 1990; Wong & Tso, 1994; Yuan, 2016). 

Note that unlike Yuan (2016) the formulation for interstorey drift is not a function of the inelastic 

modification factors Rd and Ro, nor the ASCE 7 drift amplification factor Cd. The definition given by 

Yuan (2016) is based on ASCE 7. In ASCE 7 (2010, 2017), the nonlinear scaling for forces (via R) 

and storey drifts (via Cd) are not equal, whereas in the NBCC the same factor (RdRo) is used for 

scaling down linear elastic forces to estimate inelastic ones, and for scaling up linear storey drifts to 

estimate nonlinear ones. Consequently, the design criterion is not a function of RdRo. However, where 

RdRo varies between the upper and lower structures, the value for the combined structure is taken as 

the lower of the two structures’ RdRo, as recommended by NBCC 2015 (NRCC, 2015b). The 

difference between Cd and RdRo is not of particular concern – there are contemporary proposals to 

revise Cd to be equal to R in American codes, as currently assumed by NBCC 2015 (NRCC, 2015c; 

SEAOC, 2019).  

To apply the criterion, the base shear VUb must be determined. It is well-understood that higher 

mode effects can be significant even for regular structures, and that it is inadequate to assume that 

shears are fully described by the first mode of vibration. To characterize this effect, the NBCC 

(NRCC, 2015c) applies a higher mode factor, Mv, to the equivalent static base shears predicted by its 

equivalent static force procedure (ESFP), defined as (Humar & Mahgoub, 2003; NRCC, 2015c):  
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M𝑣 =
√∑(𝑆𝑎(𝑇𝑖)𝑊𝑖)

2

𝑆𝑎(𝑇1)𝑊
 

(3.2) 

where Sa(Ti) and Wi are the i-th-mode spectral values and modal weights, and Sa(T1) and W are the 

first-mode spectral value and the total weight of the structure. In essence, Mv describes the ratio of the 

total seismic force and that of only the first mode and is given in the NBCC as a function of 

Sa(0.2)/Sa(5.0) and T1 (NRCC, 2015c). Sa(0.2)/Sa(5.0) and T1 describe the spectral shape and 

fundamental period of the structure.  Therefore, per the NBCC the elastic base shear of the upper 

structure (VUb) considering the upper structure as though fixed at its base (i.e. without the lower 

structure) is: 

𝑉𝑈𝑏 = 𝑀𝑣𝑊𝑈𝑆𝑎(𝑇𝑈) = 𝑀𝑣𝑚𝑈𝑁𝑈𝑔𝑆𝑎(𝑇𝑈) (3.3) 

where WU, mU and NU are the total weight, storey mass and storey count of the upper structure, Sa(TU) 

is the spectral acceleration at the fundamental period of the upper structure TU, g = 9.8 m/s2 is 

gravitational acceleration, and VUb is the elastic upper structure base shear. 

However, Mv is derived for use with mostly regular structures and is based on the square-root-sum-

of-squares (SRSS) method for combining modal contributions, which is applicable only if the modal 

periods of the structure are well-separated and can be considered independently (Humar & Rahgozar, 

2000; Meskouris et al., 2019). This is not always true for vertically irregular structures. As observed 

by Xiong et al. (2015) and Yuan & Xu (2014), the amplification effect otherwise characterized by Mv 

varies as a function of the relative stiffness, mass and periods of the upper and lower portions of the 

structure, particularly for more severe irregularities. Therefore, Yuan & Xu (2014) introduce αU to 

account for the effect of higher modes on the shear of vertically irregular structures: 

𝛼𝑈 =
𝑉𝑈𝑏

𝑚𝑈𝑁𝑈𝑔𝑆𝑎(𝑇𝑈)
=

𝑢𝑝𝑝𝑒𝑟 𝑏𝑎𝑠𝑒 𝑠ℎ𝑒𝑎𝑟 𝑓𝑟𝑜𝑚 𝑎𝑙𝑙 𝑚𝑜𝑑𝑒𝑠

𝑢𝑝𝑝𝑒𝑟 𝑏𝑎𝑠𝑒 𝑠ℎ𝑒𝑎𝑟 𝑓𝑟𝑜𝑚 𝑓𝑖𝑟𝑠𝑡 𝑚𝑜𝑑𝑒 𝑜𝑛𝑙𝑦
 (3.4) 

where αU is the upper structure base shear amplification factor, hereafter amplification factor for 

short. αU is explicitly the ratio of the base shear of the upper structure considering all modes divided 

by the first-mode value and therefore characterizes the effect of higher modes on the upper structure 

base shear. 

In both Yuan & Xu (2014) and this study, the complete quadratic combination (CQC) rule is used, 

and therefore αU can also be expressed as: 
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𝛼𝑈 =

∑ ∑ √𝜌𝑖𝑗𝑊𝑈𝑖𝑊𝑈𝑗𝑆𝑎(𝑇𝑖)𝑆𝑎(𝑇𝑗)
𝑁
𝑗=1

𝑁
𝑖=1

𝑊𝑈𝑆𝑎(𝑇𝑈)
 

(3.5) 

where WU, WUi, WUj are the weights associated with the full upper structure and with the i-th and j-th 

modes, and Sa(TU), Sa(Ti), Sa(Tj) and TU, Ti, Tj are the corresponding spectral accelerations and 

periods. ρij is a correlation coefficient which is taken as (assuming equal damping ζ in each mode) 

(Chopra, 2012): 

𝜌𝑖𝑗 =
8𝜁2(1 + 𝛽𝑖𝑗)𝛽𝑖𝑗

3/2

(1 − 𝛽𝑖𝑗
2 )

2
+ 4𝜁2𝛽𝑖𝑗(1 + 𝛽𝑖𝑗)

2   , 𝛽𝑖𝑗 =
𝑇𝑗

𝑇𝑖
 (3.6) 

Evident from Equations (3.2) and (3.5), αU is analogous to Mv as used in the NBCC, except that αU 

is defined at the base of the upper structure rather than that of the full structure and that αU is defined 

with the CQC method rather than the SRSS method (note that if ρij = 0 for all i ≠ j, the CQC method 

simplifies to the SRSS method). Previous authors, e.g. Jhaveri (1967), have noted that the inter-mode 

interaction effects are potentially significant in irregular structures on account of adjacent periods of 

vibration having similar modal periods. The CQC method considers both intra-modal and inter-modal 

contributions, whereas the SRSS method neglects the inter-modal effects caused by interactions 

between modes. Accordingly, it is common to see the CQC method used in research regarding 

irregular structures, e.g. Montazeri et al. (2012), Wong & Tso (1994) and Roy & Mahato (2013). As 

noted by SEAOC (1996), “the adequacy of the SRSS method depends on the ratio of the modal 

periods and the modal damping ratios”. Meanwhile, the CQC method is said to always be acceptable. 

Given its robustness relative to SRSS, the CQC method is preferred. 

Substituting the definition of αU in place of Mv in Equation (3.3), the upper structure’s base shear 

considering the vertical irregularity is as follows: 

𝑉𝑈𝑏 = 𝛼𝑈𝑚𝑈𝑁𝑈𝑔𝑆𝑎(𝑇𝑈) (3.7) 

The design criterion given in Equation (3.1) can therefore be described as: 

Δ𝑈 =
𝛼𝑈𝑚𝑈𝑁𝑈𝑔𝑆𝑎(𝑇𝑈)

𝑘𝑈
 (3.8) 

With some manipulation of Equation (3.8) and assuming that ΔU = ΔUlim, where ΔUlim is the storey 

drift limit (e.g. 2.5%) specified by NBCC 2015, the governing equation for the simplified design 

procedure is: 
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𝛼𝑈 ≤
𝑘𝑈ΔUlim

𝑚𝑈𝑁𝑈𝑔𝑆𝑎(𝑇𝑈)
 (3.9) 

This design criterion can be interpreted using the language of limit states design. In this sense. αU 

represents a load (relative to the first-mode upper structure base shear) which is resisted by the 

quotient on the right-hand side of Equation (3.9). For a value of αU exceeding the specified limit, the 

degree of amplification exceeds the amplification that can be resisted by the given stiffness, in which 

case the interstorey drift limit ΔUlim is exceeded. In other words, for any given scaling of the first-

mode base shear VUb represented by αU, there is a required stiffness kU (with all else being held 

constant) required to not exceed the design interstorey drift limit ΔUlim. In essence, the goal of the 

simplified design procedure is to establish the range of stiffnesses kU such that the expected 

amplification due to higher-mode effects as characterized by αU is tolerable (i.e. ΔU ≤ ΔUlim). If kU is 

lower than that required by Equation (3.9), the storey drift limit is exceeded, and otherwise, the 

structural configuration is capable of bearing the expected amplification. The stiffness of a single 

storey of the lower structure, kL, is implicitly incorporated in Equation (3.9) via αU, which is a 

function of the relative stiffness and mass between the upper and lower structures. With kU as the 

primary design variable, the remainder of this chapter focuses on the development of a simplified 

approximation of αU in terms of variables assumed to be known a priori, and the subsequent 

application of that relationship towards solving for appropriate distributions of kU and kL. 

3.3 Revised stiffness ratio and amplification (Rk-αU) relationship 

Having established Equation (3.9) as the upper bound of αU such that the interstorey drift is satisfied, 

the next step is to relate αU to the parameters of the 2DOF model. The focus is on an expression for αU 

which is a function of the overall stiffness ratio Rk only (The overall mass ratio Rm and the storey 

masses mU and mL are assumed to be known a priori). This relationship is developed as follows: 

1. Represent the MDOF model as a simplified 2DOF model (Section 3.3.1) 

2. Investigate the behaviour of αU in the 2DOF and MDOF models (Section 3.3.2) 

3. Calibrate αU using the MDOF model (Section 3.3.3) 

4. Propose equations for αU and analyze the error between the proposed αU and the αU 

obtained from modal response spectrum analysis of the MDOF model (Section 3.3.4) 
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3.3.1 Simplified 2DOF model 

Speaking most generally, the lumped-mass multiple-degree-of-freedom (MDOF) models used in this 

study are fully described given the storey mass (mU), storey stiffness (kU) and storey count (NU) of the 

upper structure and the lower structure (mL, kL, NL). However, it is desirable to possess a more general 

diction with which to compare otherwise different structures. To this end, Yuan & Xu (2014) 

introduce an equivalent 2DOF model as illustrated in Figure 3.1, in which the total mass of the upper 

and lower structures are lumped into two separate masses, MU and ML, defined analogously to their 

MDOF counterparts. Likewise, the upper and lower structures’ total stiffnesses can be combined to 

obtain the total upper structure stiffness KU and total lower structure stiffness KL. As is the case with 

the mass and stiffness, this study distinguishes MDOF parameters from their 2DOF counterparts by 

their case – uppercase letters denote 2DOF parameters while lowercase letters denote MDOF 

parameters (e.g. mU versus MU). 

 

Figure 3.1: Model simplification (Yuan, 2016; Yuan & Xu, 2014) 

With the MDOF and 2DOF models thusly defined, the 2DOF model masses and stiffnesses (MU, ML, 

KL, and KU) can be defined (Xu & Yuan, 2015): 

𝑀𝑈 = 𝑚𝑈𝑁𝑈 (3.10) 

𝐾𝑈 = (𝜔̄1𝑈√𝑘𝑈 𝑚𝑈⁄ )
2
𝑀𝑈 (3.11) 

𝑀𝐿 = 𝑚𝐿𝑁𝐿 (3.12) 
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𝐾𝐿 = (𝜔̄1𝐿√𝑘𝐿 𝑚𝐿⁄ )
2
𝑀𝐿 (3.13) 

where 𝜔̄1𝑈 and 𝜔̄1𝐿denote the normalized first-mode frequencies for the upper and lower structure, 

respectively. For an MDOF structure having equal mass and stiffness at each DOF, the value of 

stiffness and mass can be factored out of the eigenvalue problem for free vibration by assuming that 

the n-th mode circular frequency can be expressed as 𝜔𝑛 = 𝜔̄𝑛√𝑘 𝑚⁄ . 𝜔̄1, the first eigenvalue 

corresponding to a structure with unit mass and stiffness at each DOF can therefore be used to 

determine ω1 of any uniform structure. The first mode circular frequencies are presented of 𝜔̄1, 

applicable to an N-storey uniform structure of up to 12 storeys, in Table 3.1. These can be derived for 

an arbitrary structure, but no structure in the current scope is beyond twelve storeys in height.   

Table 3.1: Normalized first mode circular frequency of uniform structure 

N 1 2 3 4 5 6 7 8 9 10 11 12 

𝜔̄1 1 0.618 0.445 0.347 0.285 0.241 0.209 0.185 0.165 0.150 0.137 0.126 

The normalized first mode frequencies, 𝜔̄1,  can also be used to define the fundamental period of 

the upper structure (TU) and the lower structure (TL). These periods, as well as the corresponding 

single-storey periods (i.e. TsingU, TsingL, associated with a single DOF of the MDOF model), are 

defined as: 

𝑇𝑈 = 2𝜋√
𝑀𝑈
𝐾𝑈

=
2𝜋

𝜔̄1𝑈
√
𝑚𝑈

𝑘𝑈
=
𝑇𝑠𝑖𝑛𝑔𝑈

𝜔̄1𝑈
 (3.14) 

𝑇𝐿 = 2𝜋√
𝑀𝐿
𝐾𝐿

=
2𝜋

𝜔̄1𝐿
√
𝑚𝐿

𝑘𝐿
=
𝑇𝑠𝑖𝑛𝑔𝐿

𝜔̄1𝐿
 (3.15) 

It is also advantageous to characterize the degree of irregularity in the structure. On either a storey-

versus-storey basis (as with rm and rk) or an overall basis (as with Rm and Rk), the mass and stiffness of 

the upper and lower structures in the 2DOF or MDOF model can be used to define stiffness and mass 

ratios: 

𝑟𝑚 =
𝑚𝐿

𝑚𝑈
 (3.16) 
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𝑟𝑘 =
𝑘𝐿
𝑘𝑈

 (3.17) 

𝑅𝑚 =
𝑀𝐿
𝑀𝑈

=
𝑟𝑚𝑁𝐿
𝑁𝑈

 (3.18) 

𝑅𝑘 =
𝐾𝐿
𝐾𝑈

= 𝑟𝑘 (
𝑁𝐿
𝑁𝑈
) (
𝜔̄1𝐿
𝜔̄1𝑈

)
2

 (3.19) 

where rm is the storey mass ratio and rk is the storey stiffness ratio, and where Rm is the overall mass 

and Rk the overall stiffness ratio. With rm, rk, Rm and Rk, the structure is defined with respect to the 

upper structure and the degree of irregularity rather than by the lower structure’s mass and stiffness 

directly. Collectively, the 2DOF properties represent an approximation of the MDOF structure, such 

that any given input structure can be compared using the relative (total) mass and stiffness between 

the upper and lower structures.  

Note that the interpretation of rk and rm concerning irregularity differs from that for Rk and Rm. A 

regular structure in the context of building codes such as the NBCC 2015 is a structure in which the 

storey stiffness and mass are approximately equal across all storeys, or otherwise vary only gradually. 

For such a structure, both rk and rm are approximately one, for the mass and stiffness of the upper and 

lower structure, however defined, are approximately equal. Conversely, because Rm and Rk are each a 

function of the number of storeys, they indicate only the relative mass and stiffness between the upper 

and lower structures in the collective sense. This is important in the overall behaviour because (for 

example) much lighter-weight penthouses are expected to behave differently than a larger and more 

massive upper structure, but it means that structures with equal Rk and Rm may have considerably 

different characteristics vis-à-vis structural regularity. For example, consider a structure with a tall, 

slender tower, a structure with an upper structure and lower structure of an equal number of storeys, 

and a tall lower structure with a one-storey penthouse. Because Rk and Rm are functions of NU and NL, 

Rk = Rm = 1 implies a regular structure if and only if NU = NL. For the hypothetical penthouse 

structure, NU << NL, and so Rm and Rk < 1 if the structure is regular, and for the hypothetical slender 

tower on a short base, NU >> NL and thus Rm and Rk > 1 if the structure is regular. In addition, while 

Rm is a function of NL and NU, Rk is also a function of the normalized first mode frequencies 𝜔̄1𝑈 and 

𝜔̄1𝐿. Therefore, while Rk and Rm both indicate the relative difference in stiffness and mass 

(respectively) between the upper and lower structures, they do not correspond in the same ratio to the 

storey ratios rk and rm. The interpretation of Rm and Rk should always be regarding the relative 
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importance of the upper and lower structure, not whether the structure is regular or not in the 

traditional sense. 

It is precisely because Rm and Rk articulate a different view of irregularity (as opposed to being only 

that each storey is identical) that they are useful to further articulate the problem of vertically 

irregular structures. A 2DOF analogy, as well as the mass and stiffness ratios (alternatively, 

period/frequency ratio), has been used to great effect frequently in past research, such as by Shahrooz 

& Moehle (1990) and Wong & Tso (1994), The 2DOF modal approximates the responses’ first two 

modes, and therefore lies within the range of results from the MDOF model, as the modal 

contributions from higher modes may exacerbate or alleviate the amplification effect observed from 

the 2DOF model. Therefore, while it is useful to use the 2DOF approximation to discuss and develop 

the approximation for the amplification factor αU, the MDOF results are of greatest interest to the 

final solution.  

Note also that the overall mass ratio Rm as given by Equation (3.18) and overall stiffness ratio Rk as 

given by Equation (3.19) are directly related to the first-mode periods of the upper and lower 

structure, TU and TL, given by Equations (3.14) and (3.15). Therefore, using these equations the period 

ratio of the two structures, TU/TL, can be expressed using Rm and Rk: 

𝑇𝑈
𝑇𝐿
=
(2𝜋)√𝑀𝑈 KU⁄

(2𝜋)√𝑀𝐿 𝐾𝐿⁄
= √

𝜔̄1𝐿
2 (𝑚𝑈/𝑘𝑈)

𝜔̄1𝑈
2 (𝑚𝐿/𝑘𝐿)

= √
𝑅𝑘
𝑅𝑚

 (3.20) 

3.3.2 Analytical results based on the 2DOF model 

The shear response of the MDOF model via MRS analysis is described by seven variables: the storey 

stiffnesses, masses and counts (mU, mL, kU, kL, NU, NL), and the spectral acceleration Sa(T), which 

itself is described by values at T = 0.2, 0.5, 1.0, 2.0, 5.0 and 10.0 seconds. Given some arbitrary 

values of these variables, the corresponding free vibration eigenvalue problem can be used to 

calculate the MRS storey shears and αU in either the MDOF or 2DOF model, as desired. 

Unfortunately, an analytical solution of the eigenvalue problem is not possible, and thus it is 

necessary to interrogate the behaviour of αU in the MDOF model indirectly via the inputs mU, mL, kU, 

kL, NU, NL and Sa(T). This is impractical – the eigenvalues depend more on the relative values of the 

masses and stiffnesses rather than the absolute values. It is therefore difficult to discuss the effect of 

e.g. mU independently of mL, since changing either will affect the values of the eigenvalues and thus 

αU. Accordingly, while the MDOF value of αU is desired for design, the 2DOF model, Rm, Rk, TU and 
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Sa(T) can be used to generalize the trends of αU. The 2DOF model truncates the 3rd and higher 

vibration modes but is sufficient to capture the overall trends.   

To articulate these trends, a parameter survey of the 2DOF model is conducted and described in 

Appendix B, incorporating both the findings of Xu & Yuan (2015) and Yuan (2016) and additional 

commentary concerning the MDOF model and NBCC 2015 as applicable. Much of the survey is pre-

established by Xu & Yuan (2015) and Yuan (2016) for ASCE 7-10, and so the effects of Rm, Rk, TU 

and Sa(T) on αU in the 2DOF model are already well-established. In this study, Rm, Rk, TU and Sa(T) 

are varied according to NBCC 2015 and used to reproduce the results given by Xu & Yuan (2015) 

and Yuan (2016) as applicable to NBCC 2015. The results are largely identical to those of Xu & 

Yuan (2015) and Yuan (2016) despite the differences between ASCE 7-10 and NBCC 2015. Where 

they differ, additional commentary is provided. The parameter survey is described in more detail in 

Appendix B – the following paragraphs describe the key conclusions. 

Effect of overall stiffness ratio Rk 

Assuming that all variables are constant except for Rk, αU varies between two extremes as illustrated 

by Figure 3.2. The theoretical relationship between Rk and αU can be broadly characterized into three 

regions: 

1. For values of Rk approaching zero, the lower structure damps the vibration response of the 

upper structure, and at the limit Rk = 0, the lower structure completely isolates the upper 

structure from the ground excitation. Thus, αU → 0 as Rk → 0.  

2. Conversely, for values of Rk approaching infinity, the lower structure acts as a rigid body 

that transfers loads directly to the upper structure. In this scenario, the upper structure 

behaves as though rigidly fixed to the ground and can be analyzed without consideration of 

the lower structure. This is the two-stage assumption (as appearing in ASCE 7 (2017)), and 

for practical purposes, a limit RkU2stg can be defined beyond which this assumption applies. 

This limit is subsequently defined in Equation (3.28). 

It should be emphasized that while αU ≈ 1 beyond RkU2stg, it will not generally be exactly 

1. As discussed by Humar & Mahgoub (2003), regular structures are susceptible to higher-

mode effects to some extent, and so too is a uniform upper structure attached to a perfectly 

rigid base. They refer to Mv as used in the NBCC (Equation (3.2)), but this conclusion 

equally applies to αU. This is not explicitly captured by the two-stage procedure given by 
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ASCE 7-16 (2017), except for structures with T > 0.5, to which an exponent is applied to 

modify the force distribution. 

3. The final scenario is intermediate to scenarios 1 and 2. Where Rk lies between that 

corresponding to a regular structure (which varies based on NU and NL) and RkU2stg, αU 

varies. While αU for these irregular structures is sometimes less than one, it is more 

typically greater than one. Particularly for large values of Rm and Rk that do not exceed the 

two-stage limit, higher-mode effects arising due to interaction between vibration modes of 

the upper and lower structures may cause amplification by a factor αU of 1.5 or more. 

  

a) extremely flexible lower structure (Rk → 0) b) extremely stiff lower structure (Rk → ∞) 

Figure 3.2: Physical interpretation of extremely flexible and stiff lower structure (Yuan, 2016) 

Yuan & Xu (2014) are not the first to articulate this trend. An appendix to the first edition of the 

Blue Book published in 1960 by SEAOC (1960) warns of the same effect in setback (geometrically 

irregular) structures, namely that as a function of the masses and stiffnesses of the tower and base: 1) 

the base predominates, 2) the tower predominates, or 3) some intermediate condition occurs.  

Effect of overall mass ratio Rm 

However, it is not only the relationship for stiffness but also mass that is important in determining the 

amplification. As discussed in Appendix B, a larger mass ratio generally produces a larger 

amplification for those structures in the scope of this study. For instance, consider an appendage 

structure, in which a lightweight penthouse or mechanical floor adjoins a more massive lower 

structure. Such a structure would have a large Rm, and given the difference in the inertia, the 

appendage is subject to the whims of the structure below. It follows that such a structure would 

impose more significant higher-mode effects on the appendage (and thus, higher αU) compared to the 

first-mode response of this penthouse alone.  
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If the value of αU for an arbitrary structure is plotted as a function of Rm and Rk as in Figure 3.3, it is 

clear that a larger value of Rm corresponds to a larger amplification. The relationship for Rk is also 

demonstrated – the curve increases from zero and trends towards one, with varying behaviour in 

between. But it should also be noted that the value of Rk that is associated with the maximum changes 

as a function of Rm, generally increasing in conjunction with Rm. This maximum point is soon 

estimated by RkU2 and RkU3 in the forthcoming sections. RkU2 and RkU3 are the lower and upper bound 

of the region for which it is assumed that αU is at its maximum value – they are defined in Section 

3.3.4 and elaborated on in Appendix C. 

 
Figure 3.3: Effect of Rm and Rk on amplification factor αU 

Effect of upper structure period TU and Sa(T) 

Typically, an increase in TU and an increase in the slope of Sa(T) (as described by Sa(0.2)/Sa(0.5) or 

Sa(0.2)/Sa(5.0)) can be expected to lead to a decrease in αU, as in Figure 3.4. However, this is not 

always the case. The effect of TU and Sa(T) on αU varies based on the relative values of modal periods 

and the relative slope of Sa(T) (e.g. as gauged by Sa(0.2)/Sa(0.5) or Sa(0.2)/Sa(5.0)). The modal periods 

will generally be such that 0 < T2 ≤ TU ≤ T1 as discussed in Appendix A (where T1 and T2 are the first 

two periods of the full MDOF model). The stiffer lower structure means that the period of the full 

structure will be longer than TU. Considering this, the following observations can be made: 

1. Where TU and T1 are both in the constant acceleration region (i.e. typically ≤ 0.2 s), 

Sa(T1)/Sa(TU) = 1 and αU is at its maximum. As is the case in Figure 3.4, TU ≤ 0.2 seconds 
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alone does not necessarily imply this is the case – as TU increases, T1 eventually falls into 

the next segment of Sa(T) (0.2 s ≤ T ≤ 0.5 s), at which point Sa(T1)/Sa(TU) < 1. In Figure 3.4, 

this occurs when TU ≈ 0.1 seconds, but this varies based on the input parameters. 

2. At extremely long periods, (T → 10 s) Sa(T1)/Sa(TU) → 1 as the spectral curve flattens. 

Structures with such a period are outside the scope of this study, and so the effect on αU is 

irrelevant. In any event, Sa(T) is low enough for such structures that the effect of 

Sa(T1)/Sa(TU) → 1 on αU for large T is likely not of concern. 

3. For intermediate periods, the spectral acceleration Sa(T) is monotonically decreasing and so 

it is tempting to assume that αU always decreases. This is not the case. As both Sa(TU) and 

Sa(T1) are piecewise linear, the shape of Sa(T1)/Sa(TU) varies based on whether TU and T1 lie 

on the same or different segments of Sa(T), and based on the slope of the spectrum. As 

further discussed in Appendix B, this results in a relationship for Sa(T1)/Sa(TU) which 

transitions between downward-sloping segments in which T1 and TU lie in the same 

segment of Sa(T), and upward-sloping segments caused by the transition of period T1 

(which is longer than TU) to the subsequent segment of Sa(T). It is therefore not sufficient 

to use the ratio of periods to gauge how αU changes - Sa(T1)/Sa(TU) itself should be 

evaluated.  

Figure 3.4 demonstrates the variable nature of this behaviour by comparing five locations with 

widely different spectra – from top to bottom: Vancouver, Halifax, Wrigley (NWT), Montreal, and 

Toronto. As annotated in the figure, each has a different value of Sa(0.2)/Sa(0.5) and thus a different 

slope for the initial descending portion of the spectrum. It is clear that compared to Figure 3.5, the 

relationship is less specific as a function of TU and more variable as a function of Sa(T) – not only as a 

function of the initial slope Sa(0.2)/Sa(0.5) but also by the values of the other values as evidenced by 

the differences in overall shape between the different locations. Figure 3.5 is from Yuan (2016) and 

based on the ASCE 7 spectrum, and Figure 3.4 is constructed to provide a clear parallel between the 

two spectra. In general, while the NBCC curve depends on Sa(T) and has no well-defined endpoints, 

the ASCE curve transitions cleanly between a maximum and minimum at the well-defined points 

TU/TS = 1 and TU/TS = TU/T1 (= 0.56 in Figure 3.5), where Ts is analogous to 0.2 seconds in the NBCC 

and defines the start of the descending portion in the ASCE. 
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Figure 3.4: Effect of period ratio TU/0.2 on αU (NBCC) 

 

Figure 3.5: Effect of period ratio TU/TS on αU (ASCE), (Yuan, 2016) 

3.3.3 Analytical results based on the MDOF model 

Yuan (2016) develops the relationship for αU in terms of the 2DOF model and subsequently 

investigates the results in the context of their scope to confirm that the results are adequate for direct 

application to the MDOF model. Yuan (2016) concludes that: 

1. For Rk < RkU2, the simplified 2DOF model may underestimate αU, and thus the MDOF 

model should be used. 
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2. For Rk > RkU3, the simplified 2DOF model is adequate to estimate αU, given minor 

modifications to ensure αU is not underestimated. 

3. Otherwise, the simplified 2DOF model is accurate. 

As will be seen in the forthcoming section, RkU2 and RkU3 are used to approximate the bounds of Rk 

associated with the maximum response αU. It can then be inferred that between these bounds that the 

2DOF model best approximates the MDOF model, and this efficacy diminishes further from this 

region.  

However, an alternative approach is taken in the current study. Whereas Yuan (2016) is based 

fundamentally on the 2DOF model with modifications to ensure that the results are conservative for 

the MDOF model, the current study focuses on the MDOF model, leveraging the previous 

observations and parameter survey. For application to the MDOF model, αU in the MDOF model is 

most important, and this can only be confirmed by computation of the MDOF results. The procedure 

used in the current study to verify the Rk-αU relationship is as follows: 

1. For each input variable (NU, NL, rm, rk, TsingU, Sa(T)), a linearly-spaced vector is generated 

between the upper and lower bound of each variable defined in the scope as in Section 

1.3.2. In the case of Sa(T), values are taken from the Geological Survey of Canada Open 

File 7893 (Halchuk et al., 2015). The Open File provides seismic hazard values for all of 

Canada in a 10 km grid, including at the 2%/50 years risk level specified by NBCC 2015, 

For input, several dozen linearly spaced rows are selected from the data file. It is not of 

concern that certain Sa(T) curves are selected over others – as defined in Equation (3.5), αU 

is based on the relative values of Sa(T), not on absolute values. Linearly spaced rows from 

the dataset provide geographically well-spaced locations and varied spectral shapes (by 

proxy, varied Sa(0.2)/Sa(0.5)).  

2. Each of these input vectors is combined to obtain every permutation of NU, NL, rm, rk, TsingU, 

and location selected from the open file (i.e. Sa(T) curve), and invalid combinations (e.g. 

NU + NL > 12) are removed from the set based on the relationship being investigated. This 

includes omitting scenarios where mL < mU and kL < kU since these correspond to rm < 1 

and rk < 1. In general, this results in several million different combinations for 

investigation.  

3. αU and other outputs are computed for every permutation generated in the prior step. 
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While the approach is more computationally intensive than that used by Yuan, it allows for the 

computation of only MDOF results based on inputs within the scope, rather than trying to post-

process the 2DOF results. Given that the volume of inputs is larger than the previous study and 

conforms to the scope, it is also possible to elaborate on variation in the MDOF model.  

3.3.4 Proposed equations to evaluate shear-force-amplification factor αU 

The premise of the proposed Equations (3.21) to (3.33) is to convert the MDOF model to a simplified 

2DOF one and then evaluate αU based on these generalized parameters. Nevertheless, the intent is not 

to determine αU corresponding to the 2DOF model – because higher mode effects are prevalent, the 

proposed equations must encapsulate these higher modes. Instead, the intent is that αU be interpreted 

as a conservative overestimate of the αU associated with the MDOF model, rather than the 2DOF 

model. The 2DOF model truncates the effects of the 3rd and higher modes, which may significantly 

alter the response – for any MDOF value of αU, the corresponding 2DOF value of αU may be either 

larger or smaller based on the effect of the 3rd and higher modes. The premise, then, of incorporating 

the 2DOF model is as a generalized language to describe the relationships between the variables of 

otherwise disparate MDOF models. In any event, αU magnifies the value of the upper structure base 

shear, and thus a larger value is more conservative. As alluded to in Section 3.3.2, αU can be 

determined as a function of Rk, Rm and Sa(T1)/Sa(TU) via the following empirical equations, The 

rationale for the provided factors Rk and αU are discussed in Section 3.3.5 and elaborated on in more 

detail in Appendix C. 

The overall equation for upper structure amplification factor αU 

𝛼𝑈 =

{
  
 

  
 𝛼𝑈1 (

𝑅𝑘
𝑅𝑘𝑈1

)
𝑥1

𝐶𝑈1 ≤ 𝛼𝑈𝑚𝑎𝑥 𝑅𝑘𝑈1 ≤ 𝑅𝑘 < 𝑅𝑘𝑈2

𝛼𝑈𝑚𝑎𝑥 𝑅𝑘𝑈2 ≤ 𝑅𝑘 ≤ 𝑅𝑘𝑈3

𝛼𝑈𝑚𝑎𝑥 (
𝑅𝑘
𝑅𝑘𝑈3

)
𝑥2

𝑅𝑘𝑈3 < 𝑅𝑘 < 𝑅𝑘𝑈2𝑠𝑡𝑔

𝛼𝑈2𝑠𝑡𝑔 𝑅𝑘𝑈2𝑠𝑡𝑔 ≤ 𝑅𝑘

 (3.21) 

General coefficients and exponents 

𝑥1 =
𝑙𝑛 (𝛼𝑈𝑚𝑎𝑥 𝛼𝑈1⁄ )

𝑙𝑛 (𝑅𝑘𝑈2 𝑅𝑘𝑈1⁄ )
 (3.22) 
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𝑥2 =
𝑙𝑛 (𝛼𝑈2𝑠𝑡𝑔 𝛼𝑈𝑚𝑎𝑥⁄ )

𝑙𝑛 (𝑅𝑘𝑈2𝑠𝑡𝑔 𝑅𝑘𝑈3⁄ )
 (3.23) 

𝐶𝑈1 = −
2

5
(
𝑅𝑘 − 𝑅𝑘𝑈1
𝑅𝑘𝑈1 − 𝑅𝑘𝑈2

)
2

−
2

5
(
𝑅𝑘 − 𝑅𝑘𝑈1
𝑅𝑘𝑈1 − 𝑅𝑘𝑈2

) + 1 (3.24) 

Critical overall stiffness ratios Rk: 

𝑅𝑘𝑈1 = 𝑓(𝑁𝑈,𝑁𝐿 , 𝑟𝑚)  (3.25) 

𝑅𝑘𝑈2 = 𝑅𝑚 + 1 (3.26) 

𝑅𝑘𝑈3 = {

4.13𝑅𝑚 + 2 𝑅𝑚 ≤ 0.8
−0.26𝑅𝑚 + 5.52 0.8 < 𝑅𝑚 < 2

𝑅𝑚 + 3 𝑅𝑚 ≥ 2
 (3.27) 

𝑅𝑘𝑈2𝑠𝑡𝑔 = 10𝑅𝑚 ≥ 10 (3.28) 

Amplification factor αU1 associated with critical stiffness ratio RkU1: 

𝛼𝑈1 = 𝐴𝑈1𝑒
(𝐵𝑈1

𝑆𝑎(𝑇1)
𝑆𝑎(𝑇𝑈)

)
  (3.29) 

𝑆𝑎(𝑇1) ≈ 𝑆𝑎 (
𝑇𝑈

√1− 𝜙𝐿1(𝑅𝑘𝑈1, 𝑅𝑚)
) (3.30) 

Amplification factor αUmax associated with critical stiffness ratios RkU2 and RkU3: 

𝛼𝑈𝑚𝑎𝑥 = 𝐴𝑚𝑎𝑥𝑒
(𝐵𝑚𝑎𝑥

𝑆𝑎(𝑇1)
𝑆𝑎(𝑇𝑈)

)
 (3.31) 

𝑆𝑎(𝑇1) ≈ 𝑆𝑎 (
𝑇𝑈

√1 − 𝜙𝐿1(𝑅𝑘𝑈2, 𝑅𝑚)
) (3.32) 

Amplification factor αU2stg associated with critical stiffness ratio RkU2stg: 

𝛼𝑈2𝑠𝑡𝑔 = {
1 +

𝑅𝑚
8

𝑅𝑚 < 2

1.25 𝑅𝑚 ≥ 2
 (3.33) 

where RkU1, AU1, BU1, Amax, and Bmax are given in Appendix E. Each table should be interpolated for 

intermediate values of rm. It is expected that φL1 and TU are evaluated according to Equations (A.13) 

and (3.14), T1 based on Equation (A.13) and TU, and Sa(T1) and Sa(TU) evaluated using the NBCC 
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2015 spectrum rather than the exponential or power approximations given by Yuan (2016) (e.g. the 

EXP-2 approximation given in Appendix D). The parameters in the previous equations are calibrated 

so that the equations conservatively predict the base shears acting on the upper structure of the 

MDOF model. 

3.3.5 The rationale for proposed equations to evaluate upper structure base shear amplification 

factor αU 

The intent of the equations to evaluate αU is to find a solution to the design criterion given by 

Equation (3.9). Based on Section 3.3.2, αU is a function of the overall mass and stiffness ratios (Rm 

and Rk) and the spectral acceleration associated with the first period of the upper structure, Sa(TU). It is 

assumed that kU, the storey stiffness of the upper structure, is the design variable. All other design 

parameters are assumed to be known a priori or otherwise derived.  

The idealized relationship between Rk and αU is adopted similarly to Yuan (2016), as illustrated in 

Figure 3.6. This relationship, represented by Equation (3.21), is divided into four regions based on 

three sets of critical values:  

1. RkU1 and αU1 describe the lower bound on the stiffness ratio and amplification factor which 

are within the scope of the thesis based on the design requirement given by Equation (3.9). 

As discussed in Appendix C, RkU1 delimits the boundary of Rk beyond which the maximum 

interstorey drift is at the base of the upper structure, and is defined empirically as a 

function of rm, NL, and NU. Rather than an assumed mode shape as used in the previous 

formulation, the new proposal features interpolation via a table, similarly to how αU11 and 

αU12 are described in Yuan (2016).  

αU1 is the αU value corresponding to RkU1 and is significantly changed from the previous 

formulation. In the original formulation (Equations (C.18) to (C.20)), αU1 varies between a 

minimum and maximum value as a power function of Sa(T1)/Sa(TU) (TU/TS for the ASCE 

formulation), with the empirically-derived maximum and minimum values being tabulated as 

a function of NU, NL and rm. However, on account of the difficulty of defining the lower 

bound analogously to the original ASCE formulation, given that Sa(T1)/Sa(TU) is not directly 

related to TU/T1 in NBCC 2015, Equations (3.29) and (3.30) redefine αU1 in terms of an 

exponential function so that the precise definition of endpoints is not required. Sa(T1) is 

defined similarly to the original formulation, except that T1 is now defined relative to the 
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2DOF model directly rather than the ambiguously-derived value given by Yuan (2016). 

Besides this, the proposed form is more intuitive – it is immediately understandable how a 

simple exponential function changes based on Sa(T1)/Sa(TU).  

2. RkU2, RkU3 and αUmax describe the region for which αU = αUmax. RkU2 and RkU3 are given by 

Equations (3.26) and (3.27), identically to Yuan (2016). Considering that they are 

significantly based on the 2DOF parameter survey rather than purely empirical, they are 

considered sufficiently accurate. Meanwhile, αUmax is redefined to the exponential form 

given by Equation (3.32), just like αU1. The rationale is the same – it is easier to define the 

fit parameters for the exponential curve than the endpoints. On some occasions, αUmax will 

be less than αU2stg. In this case, no modification should be applied – this simply means that 

the approximated αU increases as a function of Rk beyond RkU3.  

3. RkU2stg and αU2stg are related to the two-stage procedure given by ASCE 7, and a number of 

changes have been applied to clarify and improve the definitions. RkU2stg is the stiffness 

ratio associated with the two-stage procedure, beyond which it is expected that the two-

stage procedure is applicable, and beyond which αU generally maintains a constant value. 

The definition has been revised slightly to be simpler by consolidating the results of 

previous research by Yuan & Xu (2016) and Chen & Ni (2020). Likewise, the proposed 

definition consolidates the ambiguously named RkU2stg and Rk2stg  defined by Yuan (2016). 

In Yuan (2016), RkU2stg approximately indicates Rk beyond which αU is approximately 

constant (in their words, approximately unity), whereas Rk2stg demarcates the two-stage 

procedure’s applicability. These definitions are quite different for the ASCE formulation 

given by Yuan (2016), but nigh-identical for the NBCC formulation, and thus for the 

current application they have been consolidated. There is not an apparent need for the two 

variables to be separate, particularly in light of their near-identical definition in the Yuan 

(2016) NBCC formulation, and so they have been consolidated. αU2stg is similar to the 

previous formulation, except recalibrated for the expanded scope and restricted only to 

values of variables that are within the scope. For example, the previous definition of αU2stg, 

Equation (C.26), is said to apply to Rm > 3 despite that no value of Rk within the scope 

satisfies Rk > RkU2stg for Rm > 3. 

However, despite its name, RkU2stg does not indicate that the ASCE 7 two-stage 

procedure can be used – the two-stage procedure corresponds to αU ≈ 1. Instead, RkU2stg 
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indicates that the behaviour is analogous but not equivalent to that assumed by the two-

stage procedure. To be conservative, either the proposed procedure for multistorey upper 

structures (Chapter 4.5) or the Yuan (2016) two-stage procedure (Appendix F) should be 

used.  

Despite these changes to the definitions of the critical values of Rk and αU, the idealized form of the 

relationship given by Equation (3.21) remains similar to that of Equation (D.1) (the form given by 

Yuan (2016)) and is divided into 4 regions: 

1. For RkU1 ≤ Rk < RkU2, αU is interpolated between αU1 (at RkU1) and αUnax (at RkU2) using a power 

function. If RkU2 < RkU1, this region does not apply. Compared to Yuan (2016), the Rk-αU 

relationship given by Equation (3.21) features an additional coefficient CU1. CU1, defined by 

Equation (3.24), varies quadratically between RkU1 and RkU2 and applies a slight increase of up 

to 10% at the midpoint of RkU1 and RkU2 (i.e. CU1 = 1 at RkU1 and RkU2, and increases 

quadratically to 1.1 at the midpoint of the segment). This increase diminishes towards the 

endpoints and is applied to ensure that the approximated αU conservatively estimates the αU 

obtained from the linear modal response spectrum analysis. For closely-spaced endpoints, this 

may sometimes result in αU > αUmax, and so the predicted αU is limited to αUmax. CU1 is necessary 

so that the values are not underestimated given the new values of RkU1, RkU2, αU1 and αUmax – the 

exponent x1 does not produce a sufficient curvature alone to prevent αU from being 

underestimated at the midpoint. If CU1 is omitted, αU may be underestimated by as much as 5%. 

2. For RkU2 ≤ Rk ≤ RkU3, it is assumed that αU = αUmax. The only difference from before it the 

changed definition of αUmax, which is now defined as an exponential function of Sa(TU)/Sa(TL) 

rather than a power function.  

3. For RkU3 < Rk < RkU2stg, αU is interpolated between αUmax (at RkU3) and αU2stg (at RkU2stg) using a 

power function.  

4. For RkU2stg < Rk, it is assumed that αU = αU2stg. The formulation for αU2stg is aggregated from any 

results for Rk larger than RkU2stg. Beyond this point, it is also assumed that the two-stage 

procedure proposed by Yuan (2016) is applicable. This procedure appears in Appendix F. 

For any of the above regions, RkU1 is the minimum value of Rk – only values such that Rk ≥ RkU1 are 

within the scope of the current study, and the Rk-αU distribution should be truncated accordingly. 
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Specifically, where RkU2 ≤ RkU1, the critical points are according to the values of αUmax, RkU2, RkU2stg 

etc., rather than αU1 and RkU1. αU1 and RkU1 only defines the minimum Rk. 

 

 

 
Figure 3.6: Idealized Rk-αU relationship (Yuan, 2016) 

In general, the proposed αU increases in value for larger values of rm (Rm) and Sa(T1)/Sa(TU). 
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3.4 Error of the proposed Rk-αU relationship 

To evaluate the effectiveness of the proposed approach, αU is evaluated according to both the 

proposed and previous (Yuan, 2016) approaches for a range of valid inputs within the scope (i.e. rm, 

rk, NU, NL, TsingU, Sa(T)) and compared to the corresponding values of αU evaluated based on the modal 

response spectrum method, MDOF model and the CQC combination rule. This section summarizes 

several aspects of the results, namely: 1) the comparison of the overall effectiveness of the proposed 

and previous approaches insofar as estimating αU and 2) the evaluation of proposed procedure’s error 

based on the proposed and previous scope, and based on the combination of storeys being used. Both 

the previous scope (where NU+NL ≤ 10 and 1 ≤ rm ≤ 3) and the proposed scope (where NU+NL ≤ 12 

and 1 ≤ rm ≤ 5) are considered, on account of the previous approach being calibrated for and 

applicable to only the previous scope.  

However, Yuan (2016) provides four alternative schemes to evaluate Sa(T1)/Sa(TU) for their NBCC 

2010-based method. These schemes approximate NBCC 2010’s Sa(T) such that Sa(T1)/Sa(TU) 

corresponds to a ratio of periods as it does in ASCE 7. This being the case, the approximated 

relationships can be directly substituted into the ASCE 7 procedure as the relationships are defined 

analogously. Yuan (2016) provides approximations based on both power functions (referred to as 

PWR-1 and PWR-2) and exponential functions (referred to as EXP-1 and EXP-2) and recommends 

that the exponential EXP-2 formulation be used for best performance. Therefore, of the four, only the 

EXP-2 form given in Appendix D is used to evaluate Sa(T1)/Sa(TU) here. Despite this, the EXP-2 

transformation is not strictly necessary. It is possible to evaluate Sa(T1)/Sa(TU) directly via the 

definition of Sa(T) given by NBCC 2015. This renders it impossible to establish a direct 

correspondence between Sa(T1)/Sa(TU) and a ratio of periods but requires no additional variables, 

ensures that Sa(T) is defined familiarly to Canadian designers and uses the newer NBCC 2015 spectral 

shape.  

In fewer words, three approximations for αU are compared to the value of αU calculated from the 

MDOF model:  

1. The proposed approach - αU is evaluated according to Equations (3.21) to (3.33), (A.13) and 

(3.14) as indicated by Section 3.3.4. Values of AU1, BU1, AUmax, BUmax and RkU1 are evaluated 

according to Appendix E. 
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2. The Yuan (2016) approach - αU is evaluated according to Equations (D.1) to (D.17), where αU1, 

αUmax and RkU2stg are evaluated by their NBCC formulation i.e. Equations (D.15) to (D.17). 

Values of αU12 and αUmax2 are given in Table D.1 and Table D.3. In this case, Sa(T) is 

numerically evaluated based on its NBCC 2015 definition rather than using the EXP-2 

approximation.  

3. The EXP-2 approach is the same as the Yuan (2016) approach, except that Sa(T) is evaluated 

according to Equations (D.20) to (D.23). To define the fit parameters, the NBCC 2015 values 

are used.  

For each of these comparisons, the error is defined as follows: 

𝐸𝑟𝑟𝑜𝑟 (%) =
(𝛼𝑈,𝑎𝑝𝑝𝑟𝑜𝑥 − 𝛼𝑈,𝑀𝑅𝑆)

𝛼𝑈,𝑀𝑅𝑆
× 100  (3.34) 

where αU,approx. and αU,MRS refer to the approximated and MRS-derived values of the amplification 

factor αU. αU,approx. corresponds to the approach being used – in the case of the proposed approach, it is 

defined by Section 3.3.4, i.e. according to Equations (3.21) to (3.33), (A.13) and (3.14) as previously 

described. Conversely, αU,MRS is the value of αU derived according to the MRS analysis of the MDOF 

model. Positive error values indicate that the approximation overestimates the MRS-derived value, 

whereas negative error values indicate an underestimate.  

For these purposes, the MRS-derived value of αU is considered the correct value which αU,approx. 

attempts to conservatively approximate. But αU,MRS is itself an approximation, albeit a better one than 

αU,approx., for several reasons. First, like Mv in NBCC 2015, αU,MRS is strictly applicable only for the 

linear response – as noted by Humar & Rahgozar (2000), Mv increases monotonically with both the 

period and ductility. It is not clear how this relates to αU, but to establish an inelastic αU with any sort 

of generality would be a herculean undertaking. Secondly, αU is based on Sa(T) and modal analysis 

rather than time history analysis – thus, rather than encapsulating any specific earthquake record, αU 

represents the NBCC’s consensus as to a conservative spectrum at a given site. The third aspect is the 

assumption that the upper structure and lower structure are each uniform and have uniformly 

distributed mass and stiffness – the observed value of αU will increase or decrease based on the 

impact of non-uniformity on the distribution of the effective mass of the structure. In general, 

however, αU is based on similar simplifications as those already tolerated by the NBCC for Mv.  
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Figure 3.7 illustrated the comparison between the MRS-derived values versus a) the proposed 

method and the Yuan (2016) scope, b) the proposed method and the expanded scope, c) the Yuan 

(2016) value of αU, without the EXP-2 approximation being adopted, and d) the Yuan (2016) value of 

αU, including the EXP-2 approximation. In all of the subplots, the results are generally conservative, 

with only a modest difference between each plot. There are some differences – the Yuan (2016) 

approximation exhibits a small gap between the 1:1 line and the data points for αU ≥ 2, which 

indicates a slightly more conservative approximation in that range. The shape of the lower end of the 

distribution is subtly different as well – the proposed approach shows a larger variance for αU ≤ 1. 

Finally, for the expanded scope there is a modest underestimate around αU = 1.25. Given the 

comparison between a) and b), this can be attributed to the expanded scope – structures with rm > 3 

and NU+NL > 10. 

 

Figure 3.7: αU – MRS value versus approximated value  (Yuan, 2016) 
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However, while Figure 3.7 indicates where values might be over/underestimated relative to the 

MRS-derived values, it does not indicate the density of those values. Given that there are a larger 

number of combinations (≈ 8 million) of input values that are evaluated compared to Yuan (2016), it 

is not ideal to only investigate whether or not the values are conservative, it is also meaningful to 

investigate the density of the distribution of those values. It is not reasonable to expect that the results 

are equally distributed throughout the area illustrated in Figure 3.7, after all – for example, the error 

could be normally distributed about some median error value. Figure 3.8 provides four histograms of 

the error for the different regions of Rk for each of the three approaches for the previous scope. The y-

axis of each is normalized to approximate the probability distribution function (PDF). Based on 

Figure 3.8, it can be observed that: 

1. The error is generally lower for the proposed approach, except for RkU3 ≤ Rk ≤ RkU2stg, for 

which the proposed and previous approaches perform equally well. The proposed approach 

works equally well regardless of Rk. 

2. The error is identical for Yuan (2016), regardless of whether Sa(T) is approximated using 

the EXP-2 approximation or if the value is calculated directly using the NBCC 2015 

spectrum. 

Figure 3.9 consolidates each of the subplots of Figure 3.8, and it is clear from Figure 3.9 that the 

proposed approximation performs better than the previous formulation. Both formulations produce 

errors that are approximately normally distributed about their medians, with very few values in the 

vicinity of the maximum and minimum values reported in Table 3.2. 

An analogous comparison to Figure 3.8 and Figure 3.9 is made in Figure 3.10 and Figure 3.11, 

comparing instead the error of the proposed approach for the previous and expanded scope. In 

general, there is little observable difference between the two results aside from the absolute maximum 

and minimum extents noted in Table 3.2. The shape of the distribution is largely unchanged based on 

the change in scope, and the median changes marginally.  
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Figure 3.8: Comparison of error as a function of Rk - Proposed versus Yuan (2016), previous 

scope 

 

Figure 3.9: Comparison of error - Proposed versus Yuan (2016), previous scope 
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Figure 3.10: Comparison of error as a function of Rk - Proposed, previous versus expanded 

scope 

 

Figure 3.11: Comparison of error – Proposed, previous versus expanded scope 
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To further summarize the ≈ 8 million combinations of input values are evaluated, summary 

statistics are useful. Table 3.2 provides the minimum, median and maximum values for each 

formulation as well as the 1st and 99th percentile values. Negative values indicate underestimates and 

positive values indicate overestimates of the MRS-derived αU value for the MDOF model. For the 

previous scope, the proposed approach provides overall better accuracy than that of Yuan (2016) 

evaluated by either the EXP-2 approximation or directly via the NBCC 2015 spectrum. While the 

maximum error is slightly larger for the proposed approach, the rest of the summary statistics perform 

better, with a larger minimum error and smaller median error. For the larger, expanded scope, the 

proposed formulation performs slightly more poorly, albeit with a slightly larger maximum and 

minimum error. The reason that the extremes of the error values (the maximum and minimum) are 

worse for the expanded scope is simple. The expanded scope permits a larger overall mass ratio due 

to both the increase in the storey-mass ratio and in the number of storeys, both of which are 

associated with higher amplification. While this means that the minimum/maximum error is more 

severe, it is only markedly worse for a very small proportion of the inputs. Namely, those associated 

with the most severe irregularities. These are uncommon. In general, a larger degree of irregularity 

imposes a more significant amplification. However, given the limitations of approximating the 

dynamic response, this is adequate.    

Table 3.2: Comparison of αU approximation error 

 
Minimum 

1st 

Percentile 
Median 

99th 

Percentile 
Maximum 

Proposed -0.42% 1.36% 13.23% 23.35% 48.25% 

Yuan (2016) -1.78% 3.44% 15.00% 26.09% 36.66% 

Exp-2 (Yuan, 2016) -1.93% 3.25% 15.12% 26.12% 36.66% 

Proposed (expanded 

scope) 
-5.50% 1.84% 14.20% 27.00% 60.17% 

Note: negative error indicates an underestimate of αU, positive error indicates an overestimate 

One final useful comparison is on the maximum and minimum error as a function of the number of 

storeys, as is done in Table 3.3 and Table 3.4 for the previous scope, and Table 3.5 and Table 3.6 for 

the expanded scope. In general, the maximum error is larger for larger values of NU + NL (i.e. taller 
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structures with more storeys), and for structures where the upper and lower structures are 

comparatively equal in height, and for the newer expanded scope relative to the previous one. The 

largest underestimates correspond to NU > NL, particularly where the number of storeys in the upper 

structure is much larger. Speculatively, structures with a relatively equal number of storeys between 

the lower and upper structures perform worst for the error as neither structure fully dominates the 

vibration response. An upper structure with lower storey stiffness and mass but an equal period to the 

lower structure could be subject to significant interaction effects causing large amplification of the 

base shear. 

Table 3.3: Minimum error for αU - Proposed, NU+NL ≤ 10, rm ≤ 3  

      NL 

NU      
1 2 3 4 5 6 7 8 9 

1 0.2% 0.4% 0.7% 0.7% 0.7% 0.7% 0.8% 0.9% 1.2% 

2 2.5% 2.4% 2.3% 1.2% 1.2% 1.0% 2.2% 0.2% N/A 

3 2.4% 2.2% 3.2% 2.4% 2.4% 1.6% 1.8% N/A N/A 

4 2.0% 3.2% 4.4% 3.9% 3.4% 0.5% N/A N/A N/A 

5 3.4% 2.7% 3.1% -0.4% 3.8% N/A N/A N/A N/A 

6 4.0% 4.2% 4.1% 3.7% N/A N/A N/A N/A N/A 

7 5.3% 6.4% 5.1% N/A N/A N/A N/A N/A N/A 

8 6.1% 6.8% N/A N/A N/A N/A N/A N/A N/A 

9 6.4% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: negative values (indicated by grey shading) indicate an underestimate. Where no negative 

values are shown, the value of αU is always overestimated (conservative). 

Table 3.4: Maximum error for αU - Proposed, NU+NL ≤ 10, rm ≤ 3  

      NL 

NU      
1 2 3 4 5 6 7 8 9 

1 15.1% 14.8% 14.7% 14.8% 20.1% 26.7% 31.3% 31.9% 32.5% 

2 19.0% 30.5% 29.9% 27.2% 26.9% 24.6% 23.9% 24.0% N/A 

3 18.7% 23.6% 43.2% 36.3% 34.7% 32.4% 31.6% N/A N/A 

4 19.1% 23.9% 36.4% 47.7% 39.4% 40.8% N/A N/A N/A 

5 19.5% 24.1% 30.2% 41.5% 48.3% N/A N/A N/A N/A 

6 19.8% 24.0% 26.9% 34.2% N/A N/A N/A N/A N/A 

7 20.0% 23.9% 26.8% N/A N/A N/A N/A N/A N/A 

8 20.3% 23.8% N/A N/A N/A N/A N/A N/A N/A 

9 20.4% N/A N/A N/A N/A N/A N/A N/A N/A 
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Table 3.5: Minimum error for αU – Proposed, expanded scope 

      NL 

NU      
1 2 3 4 5 6 7 8 9 10 11 

1 0.2% 0.4% 0.7% 0.7% 0.7% 0.7% 0.8% 0.9% 0.5% 0.4% 0.7% 

2 2.5% 1.7% 1.0% 0.8% 0.8% 1.0% 1.7% 0.2% 2.3% 0.8% N/A 

3 2.4% 2.2% 2.4% 0.5% 1.2% 1.2% 1.6% 1.5% 0.8% N/A N/A 

4 2.0% 3.1% 1.9% 3.0% 2.1% 0.5% 0.5% 0.9% N/A N/A N/A 

5 3.1% 2.1% -5.5% -0.9% 3.5% 3.0% 2.0% N/A N/A N/A N/A 

6 4.0% 2.8% -1.7% -5.3% -0.8% 3.5% N/A N/A N/A N/A N/A 

7 4.7% 3.8% 1.9% -4.0% -3.6% N/A N/A N/A N/A N/A N/A 

8 5.4% 4.6% 3.6% -1.2% N/A N/A N/A N/A N/A N/A N/A 

9 5.5% 3.5% 0.9% N/A N/A N/A N/A N/A N/A N/A N/A 

10 -0.8% -4.0% N/A N/A N/A N/A N/A N/A N/A N/A N/A 

11 -0.2% N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Note: negative values (indicated by grey shading) indicate an underestimate. Where no negative 

values are shown, the value of αU is always overestimated (conservative). 

Table 3.6: Maximum error for αU – Proposed, expanded scope 

      NL 

NU      
1 2 3 4 5 6 7 8 9 10 11 

1 16.1% 14.8% 14.7% 18.4% 23.4% 27.6% 31.3% 31.9% 32.5% 31.3% 26.5% 

2 21.8% 30.5% 29.9% 27.2% 26.9% 24.6% 25.5% 31.6% 36.0% 38.3% N/A 

3 24.3% 23.6% 43.2% 36.3% 34.7% 32.4% 31.6% 30.2% 29.3% N/A N/A 

4 24.0% 27.9% 36.4% 47.7% 39.4% 40.8% 38.9% 34.8% N/A N/A N/A 

5 23.6% 30.9% 30.2% 41.5% 48.3% 39.1% 42.9% N/A N/A N/A N/A 

6 23.6% 30.2% 31.1% 34.2% 45.1% 60.2% N/A N/A N/A N/A N/A 

7 23.4% 29.7% 32.4% 36.1% 51.4% N/A N/A N/A N/A N/A N/A 

8 23.3% 29.2% 33.4% 36.2% N/A N/A N/A N/A N/A N/A N/A 

9 23.1% 28.7% 32.8% N/A N/A N/A N/A N/A N/A N/A N/A 

10 23.1% 28.3% N/A N/A N/A N/A N/A N/A N/A N/A N/A 

11 23.0% N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

3.5 Revised formulation for design stiffness kU 

Given the approximation for the stiffness-amplification relationship (Rk-αU) characterized by 

Equation (3.21), the next step is to transform the relationship into one for kU and kL for design 

purposes. More specifically, the Rk-αU relationship is transformed into an Rk-kU relationship, in which 

kU is dependent on the remaining variables, and eventually into a kU-kL relationship that defines the 

feasible stiffness region for the design of upper and lower structures. As an initial step in the 
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transformation, Equation (3.9) is rearranged to develop an inequality of kU, into which Equation 

(3.21) is then substituted: 

𝑘𝑈 ≥
𝛼𝑈𝑚𝑈𝑁𝑈𝑆𝑎(𝑇𝑈)𝑔

𝛥𝑈𝑙𝑖𝑚
 (3.35) 

𝑘𝑈 ≥
𝑚𝑈𝑁𝑈𝑔𝑆𝑎(𝑇𝑈)

𝛥𝑈𝑙𝑖𝑚

{
  
 

  
 𝛼𝑈1 (

𝑅𝑘
𝑅𝑘𝑈1

)
𝑥1

𝐶𝑈1 ≤ 𝛼𝑈𝑚𝑎𝑥 𝑅𝑘𝑈1 ≤ 𝑅𝑘 < 𝑅𝑘𝑈2

𝛼𝑈𝑚𝑎𝑥 𝑅𝑘𝑈2 ≤ 𝑅𝑘 ≤ 𝑅𝑘𝑈3

𝛼𝑈𝑚𝑎𝑥 (
𝑅𝑘
𝑅𝑘𝑈3

)
𝑥2

𝑅𝑘𝑈3 < 𝑅𝑘 < 𝑅𝑘𝑈2𝑠𝑡𝑔

𝛼𝑈2𝑠𝑡𝑔 𝑅𝑘𝑈2𝑠𝑡𝑔 ≤ 𝑅𝑘

 (3.36) 

where Sa(TU) corresponds to the piecewise linear spectral acceleration curve specified by NBCC 

2015, evaluated at period TU, i.e. (NRCC, 2015a): 

𝑆𝑎(𝑇𝑈) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝑚𝑎𝑥(𝑆𝑎(0.2), 𝑆𝑎(0.5)) 𝑇𝑈 ≤ 0.2

𝑆𝑎(0.5) {
0.2 < 𝑇𝑈 ≤ 0.5
𝑆𝑎(0.5) ≥ 𝑆𝑎(0.2)

𝑆𝑎(0.2) +
𝑆𝑎(0.5) − 𝑆𝑎(0.2)

0.3
(𝑇𝑈 − 0.2) {

0.2 < 𝑇𝑈 ≤ 0.5
𝑆𝑎(0.5) < 𝑆𝑎(0.2)

𝑆𝑎(0.5) +
𝑆𝑎(1.0) − 𝑆𝑎(0.5)

0.5
(𝑇𝑈 − 0.5) 0.5 < 𝑇𝑈 ≤ 1.0

𝑆𝑎(1.0) +
𝑆𝑎(2.0) − 𝑆𝑎(1.0)

1.0
(𝑇𝑈 − 1.0) 1.0 < 𝑇𝑈 ≤ 2.0

𝑆𝑎(2.0) +
𝑆𝑎(5.0) − 𝑆𝑎(2.0)

3.0
(𝑇𝑈 − 2.0) 2.0 < 𝑇𝑈 ≤ 5.0

𝑆𝑎(5.0) +
𝑆𝑎(10.0) − 𝑆𝑎(5.0)

5.0
(𝑇𝑈 − 5.0) 5.0 < 𝑇𝑈 ≤ 10.0

𝑆𝑎(10.0) 10.0 < 𝑇𝑈

 (3.37) 

Equation (3.36) specifies a minimum kU at any given value of Rk. However, Rk is not known a priori 

on account of being a function of kU and kL, and so a solution for kU via Equation (3.36) would require 

further assumptions on Rk or kL. Instead, the intended approach is to develop a solution on kU which in 

turn imposes requirements on Rk and kL.  

Per Section 3.2, the design criterion given by Equation (3.9) can be interpreted as the balance 

between the expected amplification of the upper structure base shear due to higher mode effects and 

the expected resistance to said amplification, characterized by the stiffness, mass and interstorey drift 

limit. In essence, some amplification αU of the base shear VUb is expected and is resisted by the other 

term of the inequality. This expected amplification is characterized as a function of Rm, Rk and Sa(T) 
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according to the assumed Rk-αU relationship (Equations (3.21) to (3.33)). The same relationship 

applies to kU via Equation (3.36) – for each of the critical values of the amplification factor αU, there 

is a minimum value of the upper storey stiffness kU below which the storey drift limit given by ΔUlim is 

exceeded. In other words, below which the amplification resistance provided by kU is exceeded. 

Therefore, three scenarios can be established based on the value of kU: 

1. If kU is above a certain threshold, kU,unconditional, the resisting αU always lies above or on the Rk-

αU curve. Thus, for such kU, all values of Rk within the domain of the Rk-αU curve are valid. 

2. If kU is below a certain threshold, kU,required, the resisting αU always lies below the Rk-αU 

curve. Thus, for such kU, all values of Rk within the domain of the Rk-αU curve are invalid. 

kU,required is, therefore, the absolute minimum value of kU. 

3. If kU lies between kU,required and kU,unconditional, so long as the resisting αU lies above or on the 

Rk-αU curve a solution exists. This is only true for some subset of Rk, and so kL will be 

constrained by the value of kU. 

Considering the form of the Rk-αU curve, kU,required and kU,unconditional (formerly kUmin and kUmax) 

correspond to the minimum and maximum values of αU on the curve. These can be fully described 

using only the values of αU at the critical values RkU1, RkU2, RkU3 and RkU2stg. Therefore: 

𝑘𝑈,𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = {
𝑚𝑖𝑛(𝑘𝑈1, 𝑘𝑈𝑚𝑎𝑥, 𝑘𝑈2𝑠𝑡𝑔) 𝑅𝑘𝑈1 < 𝑅𝑘𝑈2
𝑚𝑖𝑛(𝑘𝑈𝑚𝑎𝑥, 𝑘𝑈2𝑠𝑡𝑔) 𝑅𝑘𝑈2 ≤ 𝑅𝑘𝑈1

 (3.38) 

𝑘𝑈,𝑢𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 = {
𝑚𝑎𝑥(𝑘𝑈1, 𝑘𝑈𝑚𝑎𝑥 , 𝑘𝑈2𝑠𝑡𝑔) 𝑅𝑘𝑈1 < 𝑅𝑘𝑈2
𝑚𝑎𝑥(𝑘𝑈𝑚𝑎𝑥, 𝑘𝑈2𝑠𝑡𝑔) 𝑅𝑘𝑈2 ≤ 𝑅𝑘𝑈1

 (3.39) 

where 

𝑘𝑈1 =
𝛼𝑈1𝑚𝑈𝑁𝑈𝑔

𝛥𝑈𝑙𝑖𝑚
𝑆𝑎(𝑇𝑈) (3.40) 

𝑘𝑈𝑚𝑎𝑥 =
𝛼𝑈𝑚𝑎𝑥𝑚𝑈𝑁𝑈𝑔

𝛥𝑈𝑙𝑖𝑚
𝑆𝑎(𝑇𝑈) (3.41) 

𝑘𝑈2𝑠𝑡𝑔 =
𝛼𝑈2𝑠𝑡𝑔𝑚𝑈𝑁𝑈𝑔

𝛥𝑈𝑙𝑖𝑚
𝑆𝑎(𝑇𝑈) (3.42) 

To proceed further and determine the valid ranges of kL and kU, each of Equations (3.40) to (3.42) 

must be solved for kU1, kUmax and kU2stg using the critical values of αU and Sa(T1) per Equations (3.25) 
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to (3.33), as applicable. Unfortunately, the determination of the critical values of kU via Equations 

(3.40) to (3.42) is possible only by numerical solution, on account of both kU and Sa(TU) appearing in 

each equation. TU, as given by Equation (3.14), is a function of kU, and thus both sides are a function 

of kU. The nature of the NBCC 2015 spectrum precludes a concise, closed-form solution, and so this 

numerical solution is inevitably required.  

To equate this to the physical system, the relationship for stiffness is obtained by mapping the Rk-

αU curve to stiffness via the given by Equation (3.9) – for each value of Rk and αU (itself a function of 

Rm, Rk and Sa(T)), there is a corresponding value of kU for which the interstorey drift criterion is 

exactly satisfied. For any lower or higher value of kU, assuming that the system changes accordingly 

so that Rk and αU do not change, the interstorey drift between the bottom storey of the upper structure 

and the top storey of the lower structure increases or decreases. In the former case, this is 

problematic, since it implies that the NBCC-specified interstorey drift limit is exceeded. As with the 

Rk-αU curve given in Section 3.3.4, the corresponding mapping to kU is defined completely by the 

critical values RkU1, RkU2, RkU3 and RkU2stg and αU1, αUmax and αU2stg, thus kU1, kUmax and kU2stg. But in the 

proposed approach the selection of kU takes place before Rk is finalized – accordingly, kU,unconditional and 

kU,required indicate the maximum and minimum values of kU. If kU is less than kU,required, the interstorey 

drift criterion is not satisfied for any possible combination of Rk and αU (i.e. Rm, Rk and Sa(T)) – this 

stiffness is therefore required. Meanwhile, if kU is greater than kU,unconditional, the interstorey drift 

criterion is always satisfied. In between, the satisfaction of the criterion depends on the selection of Rk 

(kL), considering that all else is constant. The physical relationship regarding kU is therefore entirely 

related to the relative satisfaction, or not, of the interstorey drift criterion.  

It may be unclear why 1) αU1 and thus kU1 might not be applicable and 2) why, while there are RkU2 

and RkU3, that only kUmax is used. This relates to the definition of the Rk-αU relationship defined in 

Section 3.3.4. αU1 is only applicable if RkU1 < RkU2, otherwise αU1 is not required, and RkU1 is used only 

as a lower bound on Rk. Consequently, kU1 is applicable only if αU1 is. Meanwhile, RkU2 and RkU3 both 

relate to the same value αUmax, and thus the same kUmax. They only come into play when defining the 

permissible range of Rk (kL) once kU has been specified. In her solution for the critical kU, Yuan (2016) 

proceeds as described in Appendix D.4 by using an exponential approximation (EXP-2) of the NBCC 

2010 spectrum. Her approach is similar up until the derivation of Equation (3.36), at which point they 

make several substitutions and fully expand the equations. Namely, she substitutes the NBCC 2010 

spectrum with a piecewise exponential (EXP-2) approximation, substitute their approximation for αU 
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and fully expand the resulting relationship for each of the critical stiffnesses kU1, kUmax and kU2stg, 

which they refer to instead as kαU1, k αUmax and kαU2stg. The result is a set of three piecewise equations 

for each critical stiffness value, each of which contains up to eight separate terms. One of these 

equations is transcendental and requires a numerical solution according to a pre-generated table of 

values.  

These equations require additional parameters – to define the EXP-2 fit: τ, A and T’s, and to define 

the remainder of the solution: bi and yi. The fit parameters τ, A and T’s are defined by Equations 

(D.21) to (D.23) based on the NBCC 2010 spectral acceleration curve Sa(T). Specifically, for the 

EXP-2 approximation, the midpoint of each linear segment of the NBCC 2010 spectrum (e.g. 

Sa(0.35), Sa(0.75)) is used to define the parameters. Each is recursive, so for larger values of T 

multiple values of τ, A and T’s must be calculated. Meanwhile, the critical values of kU are defined by 

Equations (D.24) to (3.31), and by two sets of parameters yi and bi in conjunction with the EXP-2 fit 

parameters. The parameters yi and bi are not given a physical meaning by Yuan (2016) and are 

defined by Table D.4 and Equations (D.32) to (D.34), respectively.  

To solve these equations, the following procedure is necessary: 

1. For each piece of the equation for each critical kU, it is necessary to solve a separate 

transcendental equation, Equation (D.31), for numerical parameter yi. 

2. To solve for each yi, it is necessary to determine the associated coefficient bi, which is 

uniquely defined for each piece of each piecewise equation for kU by Equations (D.32) to 

(D.34).  

3. Having calculated intermediate parameters bi and yi for each piece, it is necessary to solve 

for the bounds to each piece of the equation for each critical kU. These bounds are expressed 

in terms of stiffness, transformed from the periods used to express the EXP-2 approximation 

to NBCC 2010, and three further equations define the bounds’ values.  

4. Having calculated the bounds for each piecewise equation, the result of the piecewise 

equation must be calculated for each piece.  

5. Given each piecewise equation, the resulting critical kU corresponds to the piece of the 

piecewise equation that lies within the bounds that define that specific piece of the piecewise 

equation. In other words, if one piece evaluates to some constant x and the bounds are x - 1 < 
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x < x + 1,  then the function value is x. Yuan (2016) provides no remedy for multiple 

solutions.  

Given the approach taken by Yuan (2016), the resulting equations are sprawling, onerous to 

calculate and not clearly nor immediately related to the prior steps in the derivation (e.g. Equation 

(3.36)). This poses additional problems: 

1. The substitutions and derivation are complex and prone to error – inconsistencies in the 

definition of piecewise elements between analogous rows are present in her formulations, 

including in the definition of the EXP-2 coefficients, which do not match the values used in 

the original MATLAB code.  

2. The formulation is lengthy – at standard font size, it requires more than 3 pages to list all the 

pieces of the piecewise equation, without commentary. 

3. The piecewise definition of the EXP-2 approximation is recursively defined – for a period of 

e.g. 4 seconds, all parameters for all previous segments for smaller periods must be 

calculated.  

4. The formulation imposes many novel parameters not familiar to Canadian designers - not 

only the fit parameters for the EXP-2 fit (τ, A, T’s) but also the numerical solution parameters 

bi and yi. 

5. Parameters bi and yi correspond to no clear physical interpretation, and the transcendental 

equation may have multiple solutions. No guideline is given for interpreting which is which, 

aside from pre-specified values. This lends itself to errors – designers are forced to take the 

calculated value of bi and yi at face value without any supporting intuition. 

6. The formulation is defined only for NBCC 2010, and the EXP-2 fit would need to be 

extended to the new spectrum used in NBCC 2015. 

Instead, the proposed approach uses the NBCC 2015 spectrum given by Equation (3.37) and the 

newly-proposed definition of the Rk-αU curve given by Equations (3.25) to (3.33) to provide a new, 

updated and more intuitive solution, either graphically or analytically (i.e. purely numerical). Rather 

than perform substitutions and manipulations, the revised premise is to solve Equations (3.40) to 

(3.42) directly as a function of kU. After all, if the solution is ultimately numerical, there is no clear 
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benefit to introducing many new parameters and expanding the equation simply to arrive at an 

impossible to parse set of equations. 

For an analytical solution, Equations (3.40) to (3.42) can be expanded and represented with each 

term of the equation being represented as a function of kU. For example, by substituting the definition 

of αU1, Equation (3.40) can be expanded to the form kU = f(kU): 

𝑘𝑈1 =
𝑚𝑈𝑁𝑈𝑔

𝛥𝑈𝑙𝑖𝑚
(𝐴𝑈1𝑒

(𝐵𝑈1
𝑆𝑎(𝑇1)
𝑆𝑎(𝑇𝑈)

)
)𝑆𝑎(𝑇𝑈) (3.43) 

As TU (and thus, T1) are defined by Equations (3.14) and (3.30) as functions of kU, a nonlinear 

solver can be used to find the solution for kU directly. Numerous options exist, including MATLAB 

and Microsoft Excel’s solver tool. Nonetheless, care should be taken, as the form of Equations (3.40) 

to (3.42) may lead to multiple solutions, on account of the fact they are non-smooth. This non-

smoothness arises from the piecewise nature of Sa(T). To avoid missing a larger second solution, the 

initial value of the solver input should be taken as a sufficiently large value (e.g. 1020 N/m) so that the 

largest possible value is found, and care should be taken to find the largest solution. The largest of all 

solutions for each critical kU should be considered the correct one, as this poses the most restrictive 

requirement on the stiffness and storey drift. 

It can also be advantageous to solve the solution to Equations (3.40) to (3.42) graphically, given 

that they can be represented in the form kU = f(kU), since TU = f(kU) and T1 = f(TU). Given that 

Equations (3.40) to (3.42) are functions of only kU, and because their output is itself kU. any valid 

solution will occur when the input kU is equal to the output of kU = f(kU). Consequently, this can be 

plotted in two dimensions, with the input kU on the x-axis and the output kU = f(kU) on the y-axis. 

Valid solutions occur where the line kU = kU, lying at 45 degrees to either axis, intersects the curve kU 

= f(kU). This concept is illustrated schematically in Figure 3.12 b) – each of Equations (3.40) to (3.42) 

correspond to one of the black lines, which plots kU = f(kU) relative to the red line kU = kU. Valid 

solutions are illustrated at the intersections of the red and black lines by a red circle, and it is these 

values that correspond to the numerical solutions to each of kU1, kUmax and kU2stg. It is readily apparent 

from a graphical solution whether multiple solutions exist, unlike an analytical solution. This solution 

can also be plotted in terms of TU, as in Figure 3.12 a). 

Whether solved numerically or graphically, the ultimate goal is to calculate each critical kU so that 

kU,unconditional and kU,required are established according to Equations (3.38) and (3.39). Depending on the 
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relative values of RkU1, RkU2, RkU3 and RkU2stg, there may be either two or three critical kU to consider, 

as (e.g.) if RkU1 > RkU3,  values of Rk < RKU1 (including RkU3) are not applicable and therefore not 

included. Regardless, once kU,unconditional and kU,required are established the full set of limits on kU and kL 

can be defined by rearranging Equation (3.36) for kL and by applying the limitations imposed by the 

scope. 

 

 

 
a) b) 

Figure 3.12: Schematic representation of the graphical solution for kU 

Note: the relative position of the lines corresponding to kU1, kUmax and kU2stg in Figure 3.12 varies 

based on relative values of αU1, αUmax and αU2stg 

The constraints on kL following the selection of kU depend on the values of kU,required and kU,unconditional 

relative to a given kU. More specifically, the three cases discussed mentioned earlier are relevant: 

1. If kU < kU,required, no valid solutions of kL exist for the selected kU – kU must be increased to at 

least kU,required 

2. If kU ≥ kU,unconditional, any kL is valid, subject to the scope of the study.  

3. If kU,required ≤ kU < kU,unconditional, it is required that the selected point (Rk, kU) lies above the Rk-

kU line corresponding to the design criterion. Therefore kL is limited based on the values of 

the Rk-kU line described by Equations (3.40) to (3.42) (for critical kU) and Chapter 3.3.4 (for 

critical Rk). 
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Namely, if kU,required ≤ kU < kU,unconditional, the following conditions apply based on the value of Rk. 

They are derived directly from the transformation of Equation (3.36). 

1. If RkU1 < RkU2, either of the following is valid: 

𝑘𝐿  ≤ 𝑘𝑈𝑅𝑘𝑈1 (
𝑁𝑈
𝑁𝐿
) (
𝜔̄1𝑈
𝜔̄1𝐿

)
2

(
min (𝛼𝑈𝑙𝑖𝑚, 𝛼𝑈𝑚𝑎𝑥)

1.1𝛼𝑈1
)

1
𝑥1

 (3.44) 

𝑘𝐿  ≥ 𝑘𝑈𝑅𝑘𝑈3 (
𝑁𝑈
𝑁𝐿
) (
𝜔̄1𝑈
𝜔̄1𝐿

)
2

(
𝛼𝑈𝑙𝑖𝑚
𝛼𝑈𝑚𝑎𝑥

)

1
𝑥2

 (3.45) 

In Equation (3.44), CU1 is taken as its maximum value of 1.1. CU1 is a function of 

Rk, and thus to use its definition in the derivation of Equation (3.44) would make 

the equation nonlinear with respect to kL. Instead, by using CU1 = 1.1 the 

expression is much simpler and conservative since larger CU1 corresponds to a 

larger estimate of αU. If CU1 is evaluated numerically rather than taken as 1.1, the 

restriction on kL will be slightly less restrictive than that predicted by Equation 

(3.44), corresponding to a larger feasible region. 

 

2. If RkU2 ≤ RkU1 and αUmax > αU2stg: 

𝑘𝐿  ≥ 𝑘𝑈𝑅𝑘𝑈3 (
𝑁𝑈
𝑁𝐿
) (
𝜔̄1𝑈
𝜔̄1𝐿

)
2

(
𝛼𝑈𝑙𝑖𝑚
𝛼𝑈𝑚𝑎𝑥

)

1
𝑥2

 (3.46) 

3. If RkU2 ≤ RkU1 and αUmax ≤ αU2stg 

𝑘𝐿  ≤ 𝑘𝑈𝑅𝑘𝑈3 (
𝑁𝑈
𝑁𝐿
) (
𝜔̄1𝑈
𝜔̄1𝐿

)
2

(
𝛼𝑈𝑙𝑖𝑚
𝛼𝑈𝑚𝑎𝑥

)

1
𝑥2

 (3.47) 

where: 

𝛼𝑈𝑙𝑖𝑚 = 
𝑘𝑈𝛥𝑈𝑙𝑖𝑚

𝑚𝑈𝑁𝑈𝑔𝑆𝑎(𝑇𝑈)
 (3.48) 

Additionally, kU and kL are subject to the following constraints inherited from the scope: 

1. The single-storey periods (TsingU and TsingL) of the upper and lower structures must be less 

than or equal to 0.31 seconds (Equation (3.49) and (3.50)). As discussed in Chapter 1.3.2, the 

limits on TsingU and TsingL are imposed so that they are less than or equal to the most flexible 

code-specified period approximation for a 3.3-metre storey height.  
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2. The storey stiffness ratio should be between 1 and 20, inclusive, and if 1 < rkU1, rk should 

also be larger than or equal to rkU1 (Equation (3.51)).  

𝑘𝑈 ≥ 𝑚𝑈 (
2𝜋

0.31
)
2

 (3.49) 

𝑘𝐿 ≥ 𝑚𝐿 (
2𝜋

0.31
)
2

 
(3.50) 

max(𝑟𝑘𝑈1𝑘𝑈, 𝑘𝑈) ≤ 𝑘𝐿 ≤ 20𝑘𝑈 (3.51) 

In combination, Equations (3.35) to (3.51) are the set of equations that describe the set of valid 

solutions of kU and kL (equivalently, Rk). By solving these equations, it is possible to identify valid 

values of kU and the associated valid range of kL. While this can be as simple as confirming whether a 

given combination is valid, it can also be used to optimize the design for the minimum required 

stiffness kU associated with the minimum amplification αU. Of course, care should be taken when 

using the minimum kU value or one which lies along the boundary which delineates the feasible and 

infeasible regions, as subtle changes or inaccuracies to the stiffness could increase the expected αU 

and thus required stiffness. The curve is selected to be conservative but is nonetheless a theoretical 

estimate of a practical characteristic.  

Practical application aside, it can be difficult to parse the logic of Equations (3.35) to (3.51) to 

interpret the procedure intuitively, even once the critical values of kU (kU1, kUmax, kU2stg) are 

determined. Fortunately, it is possible to relate the Equations (3.35) to (3.51) graphically to the Rk-αU 

curve from which they are derived, as in Figure 3.13. Any combination of kU and kL can be mapped to 

the Rk-αU curve via the design criterion (Equation (3.9)) in combination with the definitions of the Rk 

and αU. Specifically, the right-hand side of Equation (3.9) corresponds to a provided value of αU 

which may or may not exceed the approximated value of the Rk-αU curve – if this value corresponding 

to kU is larger than the value of the Rk-αU curve, Equation (3.9) is satisfied. As before, this is akin to a 

provided resistance being greater than an expected amplification response. In this context, the Rk-αU 

space is divided graphically into four distinct regions based on the value of kU and kL: 

1. The critical points of the Rk-αU curve (i.e. RkU1, RkU2, αU1, etc.) correspond directly to kU1, 

kUmax and kU2stg. Regions above the line are possibly feasible, whereas regions below the line 

are always infeasible. Combinations of kU and Rk are considered feasible if they satisfy the 

design criterion given by Equation (3.9) as well as the scope described by Section 1.3.2.  
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2. The left and right bounds on Rk are defined using the most restrictive of rk ≥ 1, rk ≤ 20 and rk 

≥ rkU1. Values that lie outside this range are considered out-of-scope, corresponding to the 

grey region of the figure.  

3. The green region which is greater than or equal to all points on the Rk-αU curve corresponds 

to the condition kU ≥ kU,unconditional. Regardless of what the value of kL is, the value of the right-

hand side of Equation (3.9) will be adequate so long as it is larger than the largest αU and 

therefore also lies in the green region. 

4. The blue region corresponds to combinations of kU and kL which are feasible, but only while 

the combination of kU and kL lie above the Rk-αU curve. If kL or kU changes and the point (Rk, 

αU) moves into the red or grey regions, the combination is no longer considered adequate. 

The bottom of this region corresponds to kU = kU,required, and Equations (3.44) to (3.48) are 

applied to ensure that the considered values of kU and kL lie above the Rk-αU curve. 

5. The single-storey periods TsingU and TsingL also apply a floor on kU and kL (and consequently 

Rk), but this is not necessarily obvious in the Rk-αU domain. 

Note that, in general throughout this thesis, red regions indicate that the interstorey drift limit is not 

satisfied but that each variable is within this study’s scope, and grey out-of-scope regions indicate that 

at least one variable is outside the scope, but not necessarily that the interstorey drift limit is 

exceeded. Thus, points within the grey region may satisfy the interstorey drift limit. However, the 

out-of-scope data is associated with, for example, a storey count larger than the limit of 12, a longer 

single-storey period (TsingU/TsingL) than 0.31 seconds, or a mass or stiffness ratio that is either too 

high or too low. In the case of the stiffness ratio, if the stiffness ratio rk < 1, rk < rkU1, or 20 < rk, the 

structure is out-of-scope. With respect to structures with a large difference in stiffness that might 

otherwise be analyzed with the two-stage procedure, this method is applicable so long as the stiffness 

ratio, mass ratio and other parts are in the limits set out in the scope. Nonetheless, a structure that is 

out-of-scope may be a practical design, it just cannot be analyzed by this thesis – this includes 

structures with an extreme setback, such that e.g. 20 < rk. 
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Figure 3.13: Graphical Illustration of Bounds on Design Stiffness kU in terms of Rk and αU 

Now, while the relationship between kU and kL can be discussed in the context of the Rk-αU curve, 

the relationships given in Equations (3.38), (3.39), and (3.44) to (3.51) (i.e. kU,required, kU,unconditional, and 

the limits imposed by the Rk-αU curve and scope) can also be used to map the problem directly in 

terms of kU and kL. For example, in Figure 3.14, which is related to Figure 3.13. If the relationships, 

excluding those which correspond to kU,required ≤ kU < kU,unconditional (Equations (3.44) to (3.48)) are 

plotted for the same scenario as Figure 3.13, the resulting plot resembles a linear programming 

problem – each of the conditions constrains kU and kL with an upper or lower bound, and the resulting 

area is the region of valid combinations. In the case of Figure 3.14, the black lines are imposed by the 

need to keep the single-storey periods TsingU and TsingL within the scope, the red lines correspond to 

kU,required and kU,unconditional, and the blue lines correspond to the upper and lower bounds on the storey 

stiffness ratio rk imposed by the scope of the study. The magenta lines characterize the conditions on 

kL imposed via kU, Rk and Equations (3.44) to (3.48) – one is marked with upwards triangles, 

indicating that values above the line are valid, and the other is marked with downwards triangles, 

indicating that values below the line are valid. As in Equations (3.44) to (3.48), the satisfaction of one 

requirement, not both, is sufficient. In this case, the scope restricts the valid ranges of kU and kL, but 

this may not always be the case.  
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Figure 3.14: Sample graphical illustration of the feasible range of stiffness kU and kL 

3.6 Summary of Rk-αU relationship and procedure to evaluate upper structure stiffness 

kU 

The amplification factor αU, analogous to Mv used in NBCC 2015, quantifies the increase in higher-

mode effects on the base shear of the upper structure of a structure with a stiff-and-massive lower 

structure and a less stiff, less strong upper structure. It is, in general, a function of the overall stiffness 

and mass ratios Rk and Rm and the spectral acceleration Sa(T) and modal periods TU, TL, T1, T2, etc. αU 

is approximated as a function of Sa(T), Rm and Rk at four critical values of the stiffness ratio: RkU1, 

corresponding to the minimum stiffness ratio such that the base of the upper structure experiences the 

structure’s largest interstorey drift, RkU2 and RkU3, which correspond to the maximum amplification 

ratio, and RkU2stg, which corresponds to the ASCE 7 two-stage requirement and to an effective plateau 

beyond which αU is generally constant. 

By enforcing the code-specified interstorey drift limit on the base of the upper structure, a design 

criterion is established which sets a limit on αU as a function of the upper structure stiffness kU. By 

transforming this relationship and substituting the proposed approximation for αU, a limit on kU is 

established corresponding to the critical values of the proposed Rk-αU curve. This limit must be 

evaluated numerically for each critical point. Eschewing the transformations and piecewise 

exponential spectral approximation used by Yuan (2016), it is proposed that the critical values of kU 
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be numerically evaluated directly from their proposed definitions using either a nonlinear solver or by 

using a graphical solution.  

The resulting critical values of kU are used in conjunction with limitations imposed by the scope 

and are substituted into the relationship between kU and Rk. These relationships are used to impose 

limitations on kL and kU, classifying values of kU into the three classifications based on the design 

criterion – 1) where kL is unrestricted, 2) where limitations on Rk constrain kL and 3) where no value 

of kL in combination with the selected kU produces a feasible design. The design problem, which can 

be displayed graphically, is intended to aid the preselection of kU and kL statically so that the structure 

can tolerate the expected amplification without exceeding drift limits. Given an objective function to 

assign some weighting to kU and kL, the solution could be used as the basis for a nonlinear 

programming problem. Conceivably, it could be specified that it is preferable to reinforce the upper 

structure rather than the lower one, for example. Such a nonlinear programming problem would aim 

to find the most preferred combination of kU and kL, subject to the constraints imposed by the 

equations given in Chapter 3.5. 

Consequently, the procedure to determine kU is as follows: 

1. Select based on the structural configuration: mU, mL, NU, NL, Sa(T) 

2. Evaluate 𝜔̄1𝐿 and 𝜔̄1𝑈 from Table 3.1, corresponding to N = NL and N = NU 

3. Calculate rm and Rm based on Equations (3.16) and (3.18) 

4. Determine RkU1, RkU2, RkU3 and RkU2stg according to Equations (3.25) to (3.28) and Appendix 

E, as well as AU1, BU1, AUmax, and BUmax from Appendix E. 

5. Solve for the critical values of kU. If any equation produces multiple solutions, choose the 

largest kU corresponding to a solution. 

a. Solve for kU1 numerically based on: kU1 - Equation (3.40), Sa(TU) - Equation (3.37), 

αU1 - Equation (3.29), Sa(T1) – Equation (3.30), φL1 – Equation (A.13), and AU1 and 

BU1 

b. If RkU1 ≤ RkU3, solve for kUmax numerically based on: kUmax – Equation (3.41), Sa(TU) 

- Equation (3.37),  αUmax – Equation (3.31), Sa(T1) – Equation (3.32), φL1 – Equation 

(A.13), and AUmax and BUmax 
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c. Solve for kU2stg numerically based on: kU2stg – Equation (3.42), Sa(TU) - Equation 

(3.37), and αU2stg - Equation (3.33)  

6. Evaluate kU,required and kU,unconditional based on Equations (3.38) and (3.39) using kU1, kUmax and 

kU2stg 

7. Select a value of kU, not less than dictated by kU,required and Equation (3.49) 

8. Select a value of kL. If kU,required ≤ kU < kU,unconditional, then one of the following conditions a) 

to d) applies: 

a. If RkU1 < RkU2, kL must satisfy either Equation (3.44) or (3.45) 

b. If both RkU2 ≤ RkU1 and αUmax > αU2stg, kL must satisfy Equation (3.46) 

c. If both RkU2 ≤ RkU1 and αUmax ≤ αU2stg, kL must satisfy Equation (3.47) 

d. Otherwise, if kU,unconditional ≤ kU, kL is not subject to the limits specified by items a) to 

c)  

9. In addition, the selected kL and kU must satisfy Equations (3.49) to (3.51). The parameter 

rkU1 is determined from Equation (3.19) in combination with the predetermined value of 

RkU1. 

Following the selection of kU and kL satisfying the design criterion, an initial framing layout can be 

determined, and with which the interstorey drifts ratios, storey shears and overturning moments, and 

any other applicable requirements should be checked to ensure that the structure meets the 

requirements of NBCC 2015.   

3.7 Design examples 

To demonstrate the proposed procedure to evaluate the critical stiffnesses kU, two examples are 

provided. Each is a hypothetical structure with a vertical combination of framing systems, in which 

the assumed masses and stiffness provide a basis for the design. Detailed design is not provided – the 

intent is to provide an approximately realistic example for the proposed method rather than a fully 

realized design. The examples are as follows: 

1. A six-storey structure with a three-storey upper structure and a three-storey lower structure, in 

St. Catharines, Ontario. This example is evaluated only for the proposed procedure. 
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2. Having the same properties as Example 5-1 from Yuan (2016), a nine-storey structure having a 

six-storey lower structure and a three-storey upper structure located in Vancouver, the critical 

stiffnesses kU is assessed in three cases: 

a. according to the proposed procedure and NBCC 2015 spectrum 

b. according to the proposed procedure and NBCC 2015 spectrum, considering the 2.61 

amplification recommended by Yuan (2016) 

c. A comparison of the EXP-2 approximation to the NBCC 2010 Sa(T) relationship 

proposed by Yuan (2016) and direct numerical calculation of Sa(T) 

For simplicity, the same combination of SFRS is considered in each example – a reinforced 

concrete moment-resisting frame for the lower structure, per CSA A23.3-19 (2019), and a cold-

formed steel frame with oriented strand board (OSB) sheathed shear walls, per AISI S400-15 (2015). 

Specifically, the masses are assumed based on a specified dead load, and stiffnesses are based on an 

assumed unit stiffness. However, the two examples differ insofar as the estimation of the stiffnesses 

and the storey plan size. The first example is new and features a constant 25-metre by 25-metre floor 

plan in which the columns (for the lower structure) are arranged at five-metre increments, and in 

which the stiffness of the upper structure is estimated according to the rationale provided in Appendix 

G. Conversely, Example 3-2 is based on Example 5-1 appearing in Yuan (2016) and features a four-

by-four grid of columns spaced at 6.1 metres centre-to-centre. Furthermore, while the new example 

uses a stiffness estimated from AISI S400-15 (2015), Yuan (2016) adopts a value of stiffness directly 

inferred from physical testing performed by Branston (2004). 

3.7.1 Example 3-1 

In this example, a sample structure located in St. Catharines, Ontario is evaluated according to the 

new proposed procedure to demonstrate how to calculate the feasible distribution of kU and kL. The 

SFRS of the lower structure is a reinforced concrete moment-resisting frame, and the SFRS of the 

upper structure is a CFS frame having OSB-sheathed shear walls. Each of the lower and upper 

structures is three storeys in height - NU  = NL = 3 – and subject to the spectral accelerations specified 

by Table 3.7. 
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Table 3.7: NBCC 2015 spectral acceleration for St. Catharines, Ontario (NRCC, 2015a) 

Sa(0.2) Sa(0.5) Sa(1.0) Sa(2.0) Sa(5.0) Sa(10.0) 

0.319 0.155 0.071 0.032 0.0076 0.0028 

Both the lower structure and upper structure are set on a 25 metre by 25 metre floor plan, in which 

the columns or shear walls (as applicable) are arranged uniformly. In the lower structure, it is 

assumed that the columns are 500 mm by 500 mm in dimension and constructed from standard-

density concrete having a 35 MPa compressive strength. The according assumed stiffness is 3.08×104 

kN/m stiffness per column – the final requirements on stiffness are expressed in terms of this unit 

stiffness. As discussed in Appendix G, the assumed unit stiffness of the CFS shear walls is 1640 

kN/m/m. It is assumed that the interstorey height is 3 metres. 

The specified dead loads applied to each storey of the upper and lower structures are 3 kPa and 9 

kPa, respectively, and thus the upper and lower structures’ storey masses are 191000 kg and 573980 

kg, respectively. The critical properties are summarized in Table 3.8 as follows: 

Table 3.8: Input characteristics of Example 3-1  

Parameter Value Parameter Value 

mU 191000 kg mL 573980 kg 

NU 3 NL 3 

rm 3 ΔUlim (2.5%) 0.075 m 

For the newly proposed method, the first step in the procedure is to establish the critical stiffness 

ratios RkU1, RkU2, RkU3 and RkU2stg, as well as to establish the values of AU1, BU1, AUmax and BUmax. Using 

Equation (3.18) to evaluate Rm,  Equations (3.25) to (3.28) to evaluate RkU1, RkU2, RkU3 and RkU2stg, and 

Appendix E to define RkU1, AU1, BU1, AUmax, and BUmax, the key parameters are given in Table 3.9: 
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Table 3.9: Example 3-1 critical intermediate parameters  

Parameter Value Parameter Value 

Rm 3.00   

RkU1 2.28 RkU3 6.00 

RkU2 4.00 RkU2stg 30.00 

AU1 0.465 AUmax 0.499 

BU1 1.163 BUmax 1.117 

Using the above properties, the solution of Equations (3.40) to (3.42), for kUmax, kU2stg and kU1 are 

plotted in Figure 3.20. As illustrated, the solutions of kUmax, kU2stg and kU1 are 3.20×102 kN/m, 

2.62×102 kN/m and 3.12×102 kN/m, and so kU,required and kU,unconditional are 2.62×102 kN/m and 

3.20×102 kN/m. In this case, the minimum stiffnesses based on the Rk-αU formulation are quite low, 

corresponding to TU > 10 seconds on account of the values of the input parameter given in  Table 3.8. 

This can be attributed to the relatively low value of Sa(TU) – per Equations (3.40) to (3.42), the critical 

values of kU are heavily dependent on the intensity of Sa(TU). Without the 2.61 scaling factor applied 

by Yuan (2016), it is significantly more likely that the required stiffnesses are controlled by the scope. 

Specifically, the critical stiffness values specified by Equations (3.38) to (3.42) are an approximately 

linear function of Sa(TU), whereas the limits imposed by the scope, Equations (3.49) to (3.51), are 

constant as a function of Sa(TU). Therefore, if Sa(TU) is small, it is more likely that Equations (3.49) to 

(3.51) will govern the requirements on kU and kL, whereas if Sa(TU) is increased it is more likely that 

the critical stiffness values specified by Equations (3.38) to (3.42) will be larger than those imposed 

by Equations (3.49) to (3.51). By scaling the entire spectrum by a factor of 2.61, it is more likely that 

the latter case is true, and that the limitations imposed by the scope, Equations (3.49) to (3.51), are 

less significant. Now, αU, not only (e.g.) kU1 is a function of Sa(T), and so it would be reasonable to 

expect that kU1 is not linear for Sa(T). However, αU is not a function of Sa(T) but of ratios of Sa(T). A 

constant scaling of Sa(T) will not change αU. This factor is explained to some extent in Example 3-2, 

but overall changes the spectral accelerations to match a higher hazard level than the default. 
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a) b) 

Figure 3.15: Graphical solution for critical stiffnesses kU 

The remaining restrictions on the range of kU and kL are: 1) based on the scope according to 

Equations (3.49) to (3.51), and 2) based on kU,required and kU,unconditional, according to Equations (3.44) to 

(3.48). In this case, Equations (3.49) to (3.51) are evaluated as follows: 

𝑘𝑈 ≥ 𝑚𝑈 (
2𝜋

0.31
)
2

= 7.85(104) 𝑘𝑁/𝑚 (3.52) 

𝑘𝐿 ≥ 𝑚𝐿 (
2𝜋

0.31
)
2

= 2.35(105) 𝑘𝑁/𝑚 
(3.53) 

max(𝑟𝑘𝑈1𝑘𝑈, 𝑘𝑈) = 2.28𝑘𝑈 ≤ 𝑘𝐿 ≤ 20𝑘𝑈 (3.54) 

In combination with kU,required and kU,unconditional, the upper bound on TsingU significantly constricts kU 

such that the correct minimum value of kU is 7.85×104 kN/m rather than 2.62×102 kN/m. As for 

Equations (3.44) to (3.48), the value of kL is a function of both kU and αUlim, itself a function of kU on 

account of Sa(TU). These limits on kL therefore cannot be so simply expressed in terms of kU and 

should instead be evaluated over the range of kU,required to kU,unconditional to establish the overall curve. In 

this case, RkU1 < RkU2 and so either Equation (3.44) or (3.45) can be satisfied. It can be hard to parse 

these equations, and so they can be interpreted graphically as in Figure 3.20, similarly to Figure 3.14. 

In the case of Figure 3.20, the structural configuration places such small limits on kU as a result of 

αU such that the limits on the periods TsingU and TsingL govern the lower bound on the two stiffnesses by 

several orders of magnitude. Expressed instead in terms of the equivalent number of columns or 

length of shear wall, Figure 3.19 can be transformed into Figure 3.22. 
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Figure 3.16: Graphical illustration of bounds on design stiffness kU in terms of kU and kL 

 

Figure 3.17: Graphical illustration of bounds on design stiffness kU in terms of system 

properties 
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In both Figure 3.16 and Figure 3.17, the minimum value of kU is strictly limited by the requirements 

on TsingU, given that Sa(T) is relatively small and thus the value of kU,unconditional is much smaller 

than the value of kU associated with TsingU. For example, the lines kL ≤ f(kU) and kL ≥ f(kU) are not 

clearly visible in Figure 3.15 and 3.16 because kU,required and kU,unconditional are of much smaller 

magnitude than the limit for TsingU. If instead the spectral curve for Victoria, British Columbia is used 

per Table 3.10, kU1 = 7.45×104 kN/m, kUmax = 1.15×105 kN/m and kU2stg = 7.45×104 kN/m. In this 

case, the critical stiffnesses (kU1, kUmax, kU2stg) and thus kU,required and kU,unconditional are of an equal or 

larger magnitude to the scope-imposed limitations and thus more prominent in the feasible stiffness 

distribution, as illustrated by Figure 3.18. Correspondingly, the restrictions on Rk impose limitations 

on kL in the case of Victoria. The specific importance of each of the limitations depends on the degree 

of irregularity as well as the spectral acceleration. 

Table 3.10: NBCC 2015 spectral acceleration for Victoria, British Columbia (NRCC, 2015a) 

Sa(0.2) Sa(0.5) Sa(1.0) Sa(2.0) Sa(5.0) Sa(10.0) 

1.30 1.16 0.676 0.399 0.125 0.044 

 

Figure 3.18: Graphical illustration of bounds on design stiffness kU in terms of system 

properties – Victoria, BC 

Finally, to briefly examine the effect of CU1 = 1.1 on Equation (3.44) corresponding to Figure 3.18 

(Victoria, BC), consider the limit if kU = 1.12×105 kN/m (68 metres of shear wall) and kL = 3.08×105 
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kN/m (10 times the assumed column stiffness). If evaluated using these stiffnesses, CU1 = 1.08 and 

therefore: 

𝑘𝐿  ≤ 𝑘𝑈(2.28)(
min(1.38,1.38)

1.08 × 1.02
)

1
0.53

= 3.49𝑘𝑈 (3.55) 

Compare this to if CU1 = 1.1: 

𝑘𝐿  ≤ 𝑘𝑈(2.28)(
min(1.38,1.38)

1.1 × 1.02
)

1
0.53

= 3.37𝑘𝑈 (3.56) 

Thus, depending on the value of Rk corresponding to any given combination of kU and kL, the 

maximum value dictated by Equation (3.44) is slightly smaller if CU1 is taken as 1.1 for defining the 

limit. In this case, αUlim ≈ 1.38 – all this indicates is that for αU > 1.38 the interstorey drift limit is not 

satisfied. However, note that the specific values given are applicable only in the vicinity of the chosen 

kU and kL, given that these values influence αU and αUlim. Nonetheless, assuming CU1 = 1.1 imposes a 

slightly more restrictive limit than if calculated for specific values of kU and kL.  

3.7.2 Example 3-2 

For the second example, Example 5-1 from Yuan (2016) is re-examined to provide a comparison 

between the previous and proposed NBCC-based methods. As appearing also in Yuan (2016)  

Example 3-1, the structure is a nine-storey building consisting of a six-storey reinforced concrete 

lower structure and a three-storey cold-formed steel upper structure. Specifically, the lower structure 

is a moment-resisting frame (MRF) supported by a four-by-four square grid of columns arranged as in 

Figure 3.19. The lateral forces in the CFS frame are resisted by oriented strand board (OSB) sheathed 

shear walls. Each column of the MRF is assumed to be 600 mm by 600 mm in cross-section, with E = 

30000 MPa and 𝑓𝑐
′  = 30 MPa, thus providing a stiffness of kL = 5.41×104 kN/m per column. This 

value is calculated according to FEMA 356 (2000) recommendations for the effective moment of 

inertia as opposed to the Canadian standard (i.e. CSA SA23.3) but is nonetheless used for both the 

ASCE 7-based and NBCC 2010-based examples provided in Yuan (2016). Besides this, the CFS 

shear wall strengths are not calculated. Instead, Yuan (2016) assumes that the wall’s elastic stiffness 

is 3836 kN/m per metre of wall length and refers to experimental data published by Branston (2004). 

Yuan (2016) provides no context on the wall configuration, indicating only that a double-sided 11 

mm OSB configuration is used, but details given by Branston (2004) indicate that the tested 

specimens are 1220 x 2440 mm in size and use 11 mm OSB according to CSA O325 (Canadian 
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Standards Association, 1992) alongside back-to-back 362S162-43 CFS chord studs with Fy = 230 

MPa (33 ksi) (Clark Dietrich, 2017). It is not immediately clear that the 3836 kN/m per metre value is 

provided by Branston (2004) – the provided values are doubled to estimate the effect of the second 

sheet of OSB. This assumption is only valid if it is assumed that the local failure of the end studs does 

not control the strength of the wall. Compare this to the value calculated in Appendix G via AISI 

S400-15 (2015) of 1634 kN/m/m for the same configuration. Nonetheless, for consistency’s sake the 

3836 kN/m/m value is used in this example.  

 

Figure 3.19: Floor plan of the lower RC structure (Yuan, 2016) 

These stiffnesses being assumed, the mass is based on an assumed dead lead applied to each storey 

– 2.87 kPa for the upper structure, and 6.55 kPa for the lower structure. The corresponding masses are 

96113 kg for each storey of the upper structure, and 219352 kg for each storey of the lower structure. 

The interstorey heights are assumed to be 3.06 metres. These key inputs are summarized in Table 

3.11.  

Table 3.11: Input characteristics of Example 3-2  

Parameter Value Parameter Value 

mU 96113 kg mL 219352 kg 

NU 3 NL 6 

rm 2.28 ΔUlim (2%) 0.0612 m 
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The last remaining key parameter is the spectral acceleration, which varies based on the 

assumptions being made. As used in the original example in Yuan (2016), it is assumed that the 

structure is located on Class C soil in Vancouver: 

Table 3.12: NBCC 2010 spectral acceleration for Vancouver (Yuan, 2016) 

 Sa(0.2) Sa(0.5) Sa(1.0) Sa(2.0) 

NBCC 2010 0.940 0.640 0.330 0.170 

Yuan (2016) 2.453 1.670 0.861 0.444 

However, as indicated in Table 3.12, Yuan (2016) does not use the values of the NBCC 2010 

spectral values as-is and instead applies a 2.61 multiplier to uniformly scale the spectrum. This 

multiplier, which they apply to both their ASCE and NBCC-derived examples, is based on an 

interpretation of the inherent hazard level in ASCE 7. According to FEMA P-695 (FEMA, 2009a), 

the mean collapse probability of buildings designed for ASCE 7-10 (2010) is 10% under the 

maximum considered earthquake (MCE). ASCE 7-10 specifies that the design acceleration to be used 

is the median demand rather than the MCE. Thus, Yuan argues, the design acceleration must be 

scaled by a factor of 2.61 to ensure that the non-exceedance probability of a storey drift larger than 

the storey drift limit ΔUlim is 90%.  It is unclear whether this scaling is appropriate or necessary, 

particularly when applied to NBCC 2015, for which the seismic hazard is defined differently than 

ASCE 7. While the modern incarnations of both codes use the mean hazard values to determine 

design spectral accelerations, the commentary to NBCC 2015 notes that direct comparison of the 

hazard level considered by the two codes is both inconsistent and difficult to quantify, owing to 

significant methodological differences between the codes (NRCC, 2015b). It is therefore unclear 

whether the specific value or even the use of such a scaling factor is required. Such a determination 

requires further study and is outside the scope of the current study. Except for comparing results to 

those calculated by Yuan (2016), the spectral accelerations are used as-is.  

Another complication regarding the spectral accelerations is the differences between NBCC 2015 

and NBCC 2010. Modelling changes have changed the values of Sa(T) in some locations between 

NBCC 2010 and 2015, and so the spectral acceleration applied at identical locations varies between 

the two versions. To provide an analogous location, the Vancouver City Hall spectrum is adopted for 

calculations involving NBCC 2015:  
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Table 3.13: NBCC 2015 spectral acceleration for Vancouver City Hall (NRCC, 2015a) 

Sa(0.2) Sa(0.5) Sa(1.0) Sa(2.0) Sa(5.0) Sa(10.0) 

0.848 0.751 0.425 0.257 0.080 0.029 

Given the differences between the proposed and Yuan (2016) formulations, there are therefore 

three relevant calculations to be made as part of this example: 

1. The calculation of design stiffnesses for the newly proposed method, using the default NBCC 

2015 spectral values provided by Table 3.13 

2. The calculation of design stiffnesses for the newly proposed method, using the default NBCC 

2010 spectral values, scaled by a factor of 2.61 as used by Yuan (2016) 

3. The calculation of design stiffnesses for the Yuan (2016) method using the NBCC 2010 values 

given by Table 3.12, to compare the direct numerical solution of kU to that using the EXP-2 

approximation given in Appendix D. 

Case a) – Newly proposed method 

For the newly proposed method, the first step in the procedure is to establish the critical stiffness 

ratios RkU1, RkU2, RkU3 and RkU2stg, as well as to establish the values of AU1, BU1, AUmax and BUmax. Using 

Equation (3.18) to evaluate Rm,  Equations (3.25) to (3.28) to evaluate RkU1, RkU2, RkU3 and RkU2stg, and 

Appendix E to define RkU1, AU1, BU1, AUmax, and BUmax, the key parameters are given in Table 3.14: 

Table 3.14: Critical intermediate parameters  

Parameter Value Parameter Value 

Rm 4.56   

RkU1 1.83 RkU3 7.56 

RkU2 5.56 RkU2stg 45.60 

AU1 0.488 AUmax 0.591 

BU1 1.129 BUmax 1.072 

Using the above properties, the solution of Equations (3.40) to (3.42), for kUmax, kU2stg and kU1 are 

plotted in Figure 3.20. As illustrated, the solutions of kUmax, kU2stg and kU1 are 4.95×104 kN/m, 
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3.38×104 kN/m and 2.24×104 kN/m, and so kU,required and kU,unconditional are 2.24×104 kN/m and 

4.95×104 kN/m.  

  
a) b) 

Figure 3.20: Graphical solution for critical stiffnesses kU 

Having established kU,required and kU,unconditional, only two considerations remain: restricting the range of 

kU and kL based on the scope according to Equations (3.49) to (3.51), and where kU,required and 

kU,unconditional, restricting kL according to Equations (3.44) to (3.48). In this case, Equations (3.49) to 

(3.51) are evaluated as follows: 

𝑘𝑈 ≥ 𝑚𝑈 (
2𝜋

0.31
)
2

= 3.98(104) 𝑘𝑁/𝑚 (3.57) 

𝑘𝐿 ≥ 𝑚𝐿 (
2𝜋

0.31
)
2

= 9.00(104) 𝑘𝑁/𝑚 
(3.58) 

max(𝑟𝑘𝑈1𝑘𝑈, 𝑘𝑈) = 3.11𝑘𝑈 ≤ 𝑘𝐿 ≤ 20𝑘𝑈 (3.59) 

In combination with kU,required and kU,unconditional, the upper bound on TsingU constricts kU such that the 

correct minimum value of kU is 3.98×104 kN/m rather than 2.24×104 kN/m. As for Equations (3.44) 

to (3.48), the value of kL is a function of both kU and αUlim, itself a function of kU on account of Sa(TU). 

These limits on kL therefore cannot be so simply expressed in terms of kU and should instead be 

evaluated over the range of kU,required to kU,unconditional to establish the overall curve. In this case, RkU1 < 

RkU2 and so either Equation (3.44) or (3.45) can be satisfied. It can be hard to parse these equations, 

and so they can be interpreted graphically as in Figure 3.21, similarly to Figure 3.14. 
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Figure 3.21: Graphical illustration of bounds on design stiffness kU in terms of kU and kL 

In Figure 3.21, the green area is that which corresponds to a permissible combination of kU and kL. 

For kU,unconditional ≤ kU, combinations are valid so long as kU and kL are within the bounds of the scope – 

namely, between the blue lines which represent Equation (3.51) and the limitations on the storey 

stiffness ratio rk, and above the black lines which correspond to the bounds on single-storey periods 

TsingU and TsingL (Equations (3.49) to (3.50)). For kU,required ≤ kU < kU,unconditional, the same limits apply in 

combination with Equations (3.44) to (3.48). In this case, RkU1 < RkU2, and so both kU ≥ f(kU) 

corresponding to Equation (3.45), and kU ≤ f(kU) corresponding to Equation (3.44) apply. Only one of  

Equations (3.44) and (3.45) must be satisfied – these two limits correspond to the two regions 

illustrated in Figure 3.21. If the same assumed unit stiffnesses of 5.41×104 kN/m per column of the 

concrete structure and 3836 kN/m per unit length of the CFS frame/OSB shear wall system are 

adopted, the kU and kL axes of Figure 3.21 can be normalized so that they are defined in terms of the 

required length of shear wall and the number of columns per storey, respectively. If normalized using 

these properties, Figure 3.21 can be transformed into Figure 3.22. 
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Figure 3.22: Graphical illustration of bounds on design stiffness kU in terms of system 

properties 

To give a specific example, consider if twelve metres of the shear wall are provided and five 

columns are provided per storey of the upper and lower structure, respectively. In practical terms, this 

does not imply that only five columns are used, only that the stiffness equivalent to five columns is 

provided. To suit the intended column arrangement, a larger number of less stiff columns could be 

used. Considering the assumed unit stiffness of 3836 kN/m/m for the shear wall and 5.41×104 kN/m 

per column for the moment-resisting frame, the corresponding stiffnesses are kU = 4.60×104 kN/m and 

kL = 2.71×105 kN/m. Therefore, rk = 5.88, Rk = 3.45, TU  = 0.65 s and αU = 1.41 according to the 

proposed approximation given in Section 3.3.4. Considering the design criterion given by Equation 

(3.9): 

𝛼𝑈 = 1.41 ≤
𝑘𝑈ΔUlim

𝑚𝑈𝑁𝑈𝑔𝑆𝑎(𝑇𝑈)
=

(4.60 ×
107𝑁
𝑚 )(0.0612m)

(96113𝑘𝑔)(3) (9.81
𝑁
𝑘𝑔
) (0.656)

= 1.52 (3.60) 

Given these inputs, the expected amplification is αU = 1.41, and the quotient on the right-hand side 

representing the maximum acceptable value of αU is 1.52, so the design criterion is satisfied, and the 

design is feasible (at least insofar as kU – kL must also be checked if kU < kU,unconditional). This is 



 

 83 

consistent with Figure 3.22 – the minimum kU corresponds to a 10.5-metre shear wall length 

(approximately) – the assumed wall is 14% longer and stiffer, and the design criterion is satisfied by 

an extra 8%. The MRS-derived value of αU is 1.19, and so the estimate is conservative. Now, because 

the selected kU is less than kU,unconditional, it is also necessary to confirm that the selection of kL 

(equivalently, Rk) is valid, but per Figure 3.22 this requirement does not govern, so this calculation is 

omitted.  

To consider a second configuration, if the shear wall is instead fourteen metres in length, the 

resulting stiffness kU = 5.37×104 kN/m. Assuming that the lower structure is unchanged, the new 

properties are rk = 5.05, Rk  = 2.96, TU  = 0.60 s and αU = 1.30 (versus the MRS-derived value of 

1.14). The same calculation can be performed for the design criterion:  

𝛼𝑈 = 1.30 ≤
𝑘𝑈ΔUlim

𝑚𝑈𝑁𝑈𝑔𝑆𝑎(𝑇𝑈)
=

(5.37 ×
107𝑁
𝑚

)(0.0612m)

(96113𝑘𝑔)(3) (9.81
𝑁
𝑘𝑔
) (0.688)

= 1.69 (3.61) 

As the stiffness ratio Rk has changed, so has the value of αU. In this case, the margin between the 

provided resistance and the expected amplification is larger on account of the larger distance from the 

minimum kU indicated in Figure 3.22. Likewise, kU is greater than kU,unconditional, and so kL does not 

need to be checked, so long as rk is between max(1, rkU1) and 20. In fact, because kU is greater than 

kU,unconditional, it is reasonable to expect that the value of 1.69 is larger than any value of αU on the Rk-αU 

curve. Indeed, in this case, αU1 = 0.96, αUmax = 1.60, and αU2stg = 1.25. 

Case b) – Newly proposed method with 2.61x spectrum magnification 

Following the same procedure as for case a), but for applying a 2.61 modification factor as done by 

Yuan (2016), the previous calculation can be repeated using the NBCC 2010 spectrum. The critical 

stiffness values are summarized in Table 3.15. Compared to Yuan (2016), the values are generally 

slightly lower but of similar magnitude. Given the variation between the definitions of αU, it is 

reasonably expected that the values will be different, but their similarity suggests that the revised 

formulation performs adequately despite its simplifications. The values are most different for kU1 – 

this difference can be attributed to the changed form of RkU1, which in some cases has significantly 

changed versus Yuan (2016). Other than that, some differences can be attributed to solving the 

numerical problem directly using Sa(T) rather than the EXP-2 approximation. 
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Table 3.15: Comparison of critical stiffness values – Proposed versus Yuan (2016) 

 Proposed Yuan (2016) 

kU1 7.17 × 104 kN/m 1.21 × 105 kN/m 

kUmax 1.55 × 105 kN/m 1.79 × 105 kN/m 

kU2stg 1.08 × 105 kN/m 9.14 × 104 kN/m 

kU,required 7.17 × 104 kN/m 9.14 × 104 kN/m 

kU,unconditional 1.55 × 105 kN/m 1.79 × 105 kN/m 

The resulting plot of the kU-kL relationship, normalized according to the assumed stiffness of each 

column and metre of the shear wall, is plotted in Figure 3.23 for both the newly proposed method and 

for the previous method (as illustrated by Yuan (2016)). For comparison, the dashed black lines 

superimposed on Figure 3.23a) indicate the extents of Figure 3.23b). It is immediately clear from this 

comparison that the scope of results illustrated varies between the two plots. Part of this is on account 

of physical limits applied by Yuan (2016) – whereas plot a) is scaled to suit the annotations being 

used and so that each of the limits defined in the formulation is clearly visible, Figure 3.23 b) is cut 

off at a value of 16 on the y-axis, i.e. the number of columns in the assumed frame. Correspondingly, 

the area illustrated by Yuan (2016) is not the theoretical one given by the formulation for kU and kL, 

but is truncated based on assumed practical limits on the two variables. The new plot instead shows 

the full theoretical space without restriction due to preconceived practical limits. This is ultimately up 

to the designer, as the number of columns and shear wall length (e.g.) are only proxies for the actual 

stiffness afforded by the specific systems – a larger column or stiffer shear wall would provide a 

larger unit stiffness. To plot the full theoretical space better illustrates where each of the limits is 

relative to each other – this is ambiguous in Yuan (2016). 

Also significantly varying between Figure 3.23 a) and b) is the lower bound corresponding to rk = 

max(rkU1,1). The value of RkU1 has changed from 2.59 in Yuan (2016) to 1.83 in the new proposal, and 

thus the slope of the lower bound on the scope is approximately only 70% of that corresponding to 

the previous definition. Likewise, the upper bound for shear wall lengths of < 37.21 m (presumably 

corresponding to rk = 20) is significantly different between the Yuan (2016) plot and the new one. 

Yuan (2016) does not clearly distinguish what requirement imposes this upper bound. As it does not 

appear to correspond to rk = 20, it is speculatively different from the new proposed plot on account of 
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the revised stiffness-amplification formulation and the abandonment of the EXP-2 approximation in 

the new proposed formulation. 

Compared instead to Figure 3.22, Figure 3.23a) is of similar shape, with two key differences. The 

increased spectrum from Figure 3.22 to Figure 3.23a) has predictably shifted the lower bound on kU 

and kL (i.e. the shear wall length and the number of columns) upwards, as larger spectral accelerations 

reduce the limit on αU characterized by Equation (3.9). At the same time, the lower bound on kL for kU 

≤ kU,unconditional has shifted due to the changed values of Sa(T), and thus the value of kL is restricted in 

Figure 3.23a) beyond those restrictions imposed by kU,required and rk. 

  

a) Newly proposed b) Appearing in Yuan (2016) 

Figure 3.23: Graphical illustration of bounds on design stiffness kU in terms of system 

properties 

Case c) – Comparison of Yuan (2016) method – EXP-2 approximation of Sa(T) versus direct 

numerical evaluation of Sa(T) 

The final element of investigation for Example 3-2 is the aspect of the EXP-2 (exponential) 

approximation – is it necessary? Yuan (2016) argues that the EXP-2 approximation is necessary to 

determine the solution of each critical kU numerically, rather than solving the problem by numerical 

solution of the kU via the assumed definitions directly. Instead, the current study proposes to simply 

solve the provided functions (e.g. Sa(TU)) numerically without transformation via the EXP-2 
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approximation. In other words, the solution for kU can be found without the EXP-2 approximation via 

commonplace nonlinear solvers. Given that the EXP-2 approximation is calibrated only for the 

NBCC 2010 spectrum, the following procedure uses the NBCC 2010 spectrum with the 2.61 

multiplier applied (Table 3.12). The Yuan (2016) formulation for αU and the EXP-2 approximation 

are given in Appendix D.  

As before, the input parameters mU, NU, etc. are given in Table 3.8. Using these input values, the 

values of RkU1, RkU2, RkU3 and RkU2stg can be determined via Equations (D.11) to (D.14), and the 

counterpart values of rk can be defined via Equation (3.19). The values of 𝜔̄1𝐿 and 𝜔̄1𝑈 are 

unchanged and are defined using Table 3.1. Thus, the values of Rk and rk are: 

Table 3.16: Critical stiffness ratio values – Yuan (2016) 

Parameter Value Parameter Value 

rkU1  4.41 RkU1 2.59 

rkU2  9.47 RkU2 5.56 

rkU3  12.88 RkU3 7.56 

rkU2stg  81.44 RkU2stg 47.79 

Having defined the critical stiffness ratios, the corresponding key values of αU can be determined 

via Equation (D.15) for αU1, Equation (D.16) for αUmax, and Equation (D.10) for αU2stg. The solution 

for αU1 requires values αU11, αU12 and x3, and the solution for αUmax requires values αUmax1, αUmax2 and x4. 

The values of αU12 and αU12 are interpolated from Yuan (2016) Table 3.1, and αUmax1 and αUmax2 are 

interpolated from Yuan (2016) Table 5.1. These tables are provided in Appendix D. For other 

combinations of NU, NL and rm, the values should be taken from Yuan (2016). The exponents x3 and 

x4, meanwhile, are defined by Equations (D.5) and (D.7). The values of these parameters used by 

Yuan (2016) are listed in Table 3.17. Also important are the fit parameters which define the EXP-2 

approximation to the NBCC spectral acceleration curve. These equations are given incorrectly in 

Yuan (2016) – the corrected forms are given by Equations (D.21) to (D.23), and the correct values are 

given in Table 3.18. 
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Table 3.17: Critical values of αU – Yuan (2016) 

Parameter Value Parameter Value 

αU11  1.169 αU12 1.702 

αUmax1  1.661 αUmax2 1.976 

x3  -0.850 x4 -1.005 

αU2stg  1.100   

Table 3.18: EXP-2 fit parameters – Yuan (2016) 

Parameter Value Parameter Value 

τ1  -1.266 A1 3.211 

τ2  -1.192 A2 3.095 

τ3  -0.729 A3 1.949 

τ4 -0.309 A4 0.840 

Ts
’ 0.213 s   

Having established the fit parameters, three different approaches are used to determine the 

stiffnesses kU1, kUmax, and kU2stg corresponding to the Yuan (2016) formulation for αU given by 

Equations (D.1) to (D.17). Given that this is for the NBCC formulation, αU1, αUmax and RkU2stg are 

evaluated according to Equations (D.15), (D.16) and (D.17) instead of Equations (D.4), (D.6), (D.8), 

(D.9) and (D.14), which apply only to the ASCE formulation. The first approach is that given by 

Yuan (2016) – the fit parameters for the EXP-2 approximation are used to evaluate Equations (D.24) 

to (D.34), and the equations are solved using the tabulated values of yi provided in Table D.4. Of the 

pieces of each piecewise equation, the correct one is which the result lies within the bounds related to 

that result. The second approach substitutes Sa(TU) with the EXP-2 approximation for Sa(TU) and 

evaluates the proper value of each kU numerically as a function of kU rather than using the fully 

expanded expressions given by Equations (D.24) to (D.34). This is possible because Equations (3.40) 

to (3.42) are derived from the design criterion regardless of the assumed form of αU – the right-hand 

side of the functions can be numerically evaluated based on the relevant value of Sa(TU) and αU 

directly, rather than by the transformations which produce the form provided by Yuan (2016). The 
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third approach is like the second, except that Sa(TU) is evaluated directly based on the definition given 

by NBCC 2010 rather than the EXP-2 approximation. The numerical results of these three analyses 

are provided in Table 3.19, and the corresponding graphical solution appears in Figure 3.24. 

Table 3.19: Critical kU as evaluated by different methods 

Scenario kαU1 [105 kN/m] kαUmax [105 kN/m] kαU2stg [105 kN/m] 

Yuan (2016)  1.21 1.79 0.91 

EXP-2 1.21 1.76 0.91 

NBCC 2010 1.21 1.76 0.90 

 

Figure 3.24: Graphical solution for critical stiffnesses kU 

Based on Table 3.19 and Figure 3.24, it is clear that the numerical solution of the critical values kU 

can be done without the substitutions proposed by Yuan (2016). Specifically, while the EXP-2 

formulation provides a smoother relationship between the input and output values of kU for Equations 

(3.40) to (3.42), it provides no clear advantage over directly solving based on the code-specified form 

of Sa(T). The form given by Yuan (2016) requires that a numerical solution takes place in addition to 
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several cumbersome substitutions and transformations – it is, therefore, advantageous to simply solve 

the relationships as-is rather than use the Yuan (2016) transformations. 

3.8 Conclusions 

This chapter presents two key elements of the newly-proposed design approach – the approximation 

for the amplification factor αU and the base shear of the upper structure, and the permissible storey 

stiffnesses that satisfy the NBCC 2015 interstorey drift requirement. The method applies to a wide 

variety of mid-rise structures with a vertical combination of framing systems and explicitly 

characterizes the impact of the mass and stiffness irregularity unlike both ASCE 7-10/16 (2010, 2017) 

and NBCC 2010/2015 (NRCC, 2010, 2015c). Much of the derivational framework underlying those 

methods proposed by Yuan & Xu is preserved; however, many changes have been made to the 

methods to streamline their execution and expand their scope.  

First and foremost, the newly proposed method is based on NBCC 2015, not ASCE 7 or NBCC 

2010. Accordingly, the exponential and power approximations to the NBCC 2010 spectrum proposed 

by Yuan (2016) are abandoned and replaced by a direct numerical or graphical solution using the 

NBCC 2015 spectrum. Concurrently, the scope of the methods is also expanded to apply to up to 

twelve storeys as opposed to only ten, and the maximum storey mass ratio is now five as opposed to 

three. The scope vis-à-vis the stiffness ratio or the single-storey period is unchanged. 

As before, Rm, Rk and Sa(T) are the primary variables defining the approximation of αU, and the 

following conclusions apply: 

1. The overall mass and stiffness ratios Rm and Rk are introduced along with the 2DOF model 

to characterize the relative importance of the upper and lower structures. Rm and Rk = 1 do 

not correspond to regularity in the traditional sense – they are a function of the storey count 

and reflect instead the relative mass and stiffness of the two structures.  

2. As Rk increases from below one, αU generally first increases towards a global maximum at 

some value of Rk between RkU2 and RkU3. Following this maximum, αU typically decreases 

as Rk continues to increase towards RkU2stg, beyond which it maintains a constant value, 

typically modestly larger than one. In theoretical terms, αU approaches zero as Rk 

approaches zero, and one as Rk approaches infinity, but in more practical terms, αU is often 

at least one. The maximum practical value of αU for structures within the scope will not 

generally be larger than 2.5-2.75 or so.  
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3. The proposed approximation for αU mirrors that of Yuan (2016) and is based on four 

critical stiffness ratios Rk and three critical stiffness values αU. Many of the definitions are 

changed to facilitate their use with NBCC 2015. Nonetheless, the proposed approximation 

of αU demonstrates improved performance compared to the Yuan (2016) definition, both by 

direct numerical solution and by the EXP-2 approximation. For the Yuan (2016) scope, the 

newly-proposed approximation typically overestimates αU by 1% to 24% (median: 13%), 

compared to 3% to 26% (median: 15%) for the Yuan (2016) procedure. For the expanded 

scope, the error is typically between 2% and 27%. In rare scenarios within the expanded 

scope, αU may be underestimated by 5% or overestimated by 60%.  

4. Both a graphical and a numerical solution are proposed to be used to determine feasible 

stiffness distributions. The EXP-2 and other approximations of Sa(T) proposed by Yuan 

(2016) are abandoned in favour of a direct solution, resulting in a streamlined and more 

concise formulation.  

5. The proposed approach to determine feasible stiffness distributions is demonstrated in two 

examples, the latter of which also considers the methods proposed by Yuan (2016). 

Despite the proposed approach, some aspects need to be clarified by future research. The effect of 

stiffness variation on αU should be investigated, as should the appropriateness of the 2.61 modifier 

that Yuan (2016) suggests should be applied to spectral accelerations. These are the main two points, 

in addition to a nonlinear investigation, but expanding the scope is another possibility for future work.  
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Chapter 4 

Equivalent Static Loads on Vertically Irregular Structures 

4.1 Introduction 

This chapter concerns the determination of equivalent static loads on a mid-rise structure with a 

vertical combination of framing systems. Both ASCE 7 and NBCC 2015 do not capture the effect of 

vertical irregularity, and so two methods are proposed following a discussion of the NBCC 2015 

equivalent static force procedure: 

1. A method applicable to appendage structures (one-storey upper structure) is proposed based on 

an analogous method proposed by Yuan (2016). The proposed method is defined for the 

expanded scope and does not include the stiffness ratio requirement previously adopted by 

Yuan (2016).  

2. A more general method applicable to structures having a multistorey upper structure is 

proposed, incorporating elements from both NBCC 2015 (NRCC, 2015c) and ASCE 7-16 

(2017). This method extends the concept of αU to the top storey of αU to the top storey of the 

upper structure and modifies the upper structure’s force distribution accordingly.  

Two examples are given to demonstrate the newly proposed methods. The two-stage procedure 

proposed by Yuan (2016), is given in Appendix F for comparison.  

4.2 The NBCC 2015 Equivalent Static Force Procedure 

Notwithstanding that modal response spectrum analysis (or other dynamic analysis) is recommended 

by NBCC 2015 for mid-rise irregular structures, linear elastic static analysis continues to have a place 

in the design of such structures. Part of this role is mandated by NBCC 2015 itself, for the minimum 

dynamic base shear is set to be a fixed percentage of the base shear determined by the Equivalent 

Static Force Procedure (ESFP) (NRCC, 2015c). This percentage varies based on whether the structure 

is regular or irregular – if irregular, the dynamic base shear must be at least that predicted by the 

ESFP, and if regular 80% of the ESFP base shear is the minimum. Therefore, even for structures for 

which the higher modes may counteract the first mode, the static estimate is used as a conservative 

baseline. Thus, the static response via the ESFP is an inescapable element of NBCC 2015’s dynamic 

analysis, even if only insofar as the base shear. Per NBCC 2015, the static base shear V is evaluated 

according to the following form: 
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𝑉 =
𝑆𝑎(𝑇1)𝑀𝑣𝐼𝐸𝑊

𝑅𝑑𝑅𝑜
 

(4.1) 

where Sa(T1) is the spectral acceleration acting at the first mode period T1, MV is the higher mode 

factor defined in Equation (3.2), IE is the importance factor (= 1 for most structures), W is the total 

structural weight, and Rd and Ro are the inelastic modification factors for ductility and overstrength, 

respectively. Now, strictly speaking, Sa(T1) is replaced by S(Ta) in NBCC 2015, but this study 

neglects the effect of the site soil conditions, and thus Sa(T1) is used instead. Likewise, T1 is used in 

place of Ta. Ta is the preferred nomenclature used by NBCC 2015. The maximum limits on Ta 

specified by the NBCC are not enforced. 

For reference elsewhere, the values of Mv given by NBCC 2015 corresponding to the other systems 

archetype (the most severe/general) are provided in Table 4.1, subject to some caveats. Firstly, 

S(0.2)/S(5.0) and Ta, the nomenclature used by NBCC 2015, are swapped with Sa(0.2)/Sa(5.0) and T 

(T1, TU, etc) – because it is assumed that the soil is class C and because the theoretical rather than 

code-specified empirical periods are used, these substitutions match what is used in this thesis. 

Furthermore, per NBCC 2015, Mv is to be interpolated for Sa(0.2)/Sa(5.0) and T. However, for the 

period, the product S(T)Mv is to be interpolated rather than only Mv. Finally, the values for T ≥ 5 

seconds are taken as equal to those for 2.0 seconds based on NBCC 2015 – ideally, the NBCC itself 

should be consulted for periods longer than 2.0 seconds to ensure that the correct values are being 

used. 

Table 4.1: NBCC 2015 higher mode factor Mv – Other Systems (NRCC, 2015c) 

Sa(0.2)/Sa(5.0) T ≤ 0.5 T = 1.0 T = 2.0 T ≥ 5.0 

5 1 1 1 1 

20 1 1 1.18 1.18 

40 1 1.19 1.75 1.75 

65 1 1.55 2.25 2.25 

Note that V as defined by Equation (4.1) alone is not the static base shear – the NBCC’s ESFP 

specifies a lower and/or upper bound based on the structural system and other requirements. The most 

general of these requirements applies to moment-resisting frames, braced frames and other systems 
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not otherwise classified by NBCC 2015, and defines a minimum base shear based on the spectral 

value at 2 seconds: 

𝑉 ≥
𝑆𝑎(2.0)𝑀𝑣𝐼𝐸𝑊

𝑅𝑑𝑅𝑜
 

(4.2) 

The above is henceforth referred to as the code-specified minimum base shear and is the most 

stringent of the requirements on V imposed by the NBCC. There is a different, lower requirement 

based on S(4.0) for walls, coupled walls, and wall-frame systems, and a further relaxed requirement 

for certain structures, but Equation (4.2) is the most severe and generally applicable. 

In general, this is the extent of the ESFP – except for the design base shear, the remainder of the 

analysis should be done dynamically. For some structures, however, the ESFP applies. Namely, if any 

of the following are true, then the ESFP is considered appropriate for the full analysis: 

1. IEFaSa(0.2) < 0.35, (IEFa = 1 for/ the current study, i.e. site class C, normal importance), or: 

2. The structure is regular, less than 60 metres in height, and has T1 < 2 seconds in both 

orthogonal axes, or: 

3. The structure has specific types of irregularity (including vertical stiffness, mass and geometric 

irregularity), is less than 20 metres in height and has T1 < 0.5 seconds in both orthogonal axes 

Notwithstanding the ambiguous nature of the irregularity limits as discussed in Chapter 2, the general 

premise of these limitations is sound. An increase in the height, degree of irregularity or the 

fundamental period is associated with a more complex and nuanced dynamic analysis, and so in 

general it is reasonable to apply dynamic analysis for taller, more flexible and more irregular 

structures. On the other hand, designers will inevitably refer to the storey shears determined from the 

ESFP as a baseline for any dynamic analysis. Dynamic analysis is inherently variable on account of 

the assumptions vis-à-vis stiffness, mass and other system properties, and therefore it can be helpful 

to compare the assumed static response to that predicted by dynamic analysis.  

The default NBCC 2015 (NRCC, 2015c) force distribution used by the ESFP is defined by 

Equation (4.3) and consists of two components : 

1. To account for higher mode effects, a portion of the base shear V is applied to the top storey as 

the top storey shear Ft. Ft does not change the total shear, but increases the top storey shear for 
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longer periods to account for higher mode effects. It is defined by Equation (4.4) as a function 

of the first mode period T1. 

2. The remaining shear, V - Ft, is applied at each storey x as storey force Fx according to the 

product of storey weight Wx and storey height (from the ground level) hx, normalized by the 

sum of the weight Wi and height hi for all n storeys in the structure. 

𝐹𝑥  =  (𝑉 − 𝐹𝑡)
𝑊𝑥ℎ𝑥

∑ 𝑊𝑖ℎ𝑖
𝑛
𝑖=1

 
(4.3) 

𝐹𝑡  = {

0 𝑇1 ≤ 0.7
0.07𝑇1𝑉 0.7 < 𝑇1 < 3.6
0.25𝑉 3.6 ≤ 𝑇1

 
(4.4) 

The form of Equation (4.3) is traditional for North American building codes and standards and 

appears similarly in both ASCE 7 (2010, 2017), FEMA P-695 (2009a), and elsewhere. It appears in 

NBCC-related documents as far back as Ward (1966) and is largely unchanged but for the addition of 

Ft and changes to V. In any case, the key assumptions of Equation (4.4) are that the first mode shape 

is linear, and thus that the storey forces increase proportionally to their height, and that the total mass, 

rather than the effective mass acting in the first mode, is used (NRCC, 2015c, NRCC, 2015b). This 

simplification generally results in an underestimation of higher-mode effects and an overestimation of 

the first-mode effective masses and performs best for relatively short, stiff and regular structures 

(Humar & Mahgoub, 2003; Rosenblueth et al., 1980). For longer periods, the NBCC’s top storey 

shear, inherited from UBC 1997 (ICBO, 1997), attempts to counteract increased higher mode effects. 

To address the same problem, ASCE 7 (2017) applies an exponent to the storey heights instead.  

Regardless, the goal of such methods is not to exactly match the expected force distribution but is 

to conservatively approximate the envelope of such effects (NRCC, 2015b; Rosenblueth et al., 1980). 

The commentary to the NBCC provides little detail on the extent of the overestimate expected from 

static analysis compared to dynamic analysis. What then, is the expected performance of the NBCC 

2015 ESFP applied to regular structures, to which it presumably performs best? The following 

subsection addresses this, for it is meaningless to propose a new static method without an 

understanding of the inherent margins in the currently accepted NBCC 2015 ESFP. The comparison 

of the NBCC 2015 ESFP for irregular structures is made in forthcoming sections alongside the newly 

proposed methods.  
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4.2.1 Regular structures 

Insofar as irregularity of stiffness and mass, podium structures designed according to NBCC 2015 

(NRCC, 2015c) are considered to be regular if the stiffness of each of the upper storeys is no less than 

80% than those in the lower structure, and if the mass of each storey of the lower structure is no more 

than 150% of those in the upper structure, i.e. rk ≤ 1.25 and rm ≤ 1.5. That is, assuming each of the 

lower and upper structures is uniform. The NBCC compares adjacent storeys and so strictly speaking 

a larger maximum mass and stiffness ratio is possibly considered regular if adjacent storeys satisfy 

the prescribed limits – this storey-by-storey variation is common in realistic structures. This aside, a 

regular structure can be analyzed by the ESFP if it is less than 60 metres tall and has a first mode 

period of 2 seconds or less, or if the spectral acceleration is sufficiently low. For this study, the total 

height will never exceed 60 metres, and IE and Fa are both assumed to be unity, and so the ESFP 

applies to a regular structure if T1 < 2 seconds or if Sa(0.2) < 0.35.  

As for the performance of regular structures meeting these criteria, the NBCC 2015 commentary 

implies no range of error. To determine such a range, results corresponding to the ESFP and modal 

response spectrum methods are computed for 1 ≤ rk ≤ 1.25 and 1 ≤ rm ≤ 1.5 (assuming the upper and 

lower structures are uniform), with all other variables varied according to the scope of the current 

study. This is subject to two caveats. First, the assumed range on rk is assumed to override Rk ≥ RkU1, 

as Rk ≥ RkU1 is not generally true for regular structures. Secondly, the period used to calculate the 

results for the ESFP is the theoretical period rather than that dictated by NBCC 2015, to ensure that it 

is consistent with the computed modal response spectrum results. However, the code-specified 

minimum base shear given in Equation (4.2) is still applied, as is the top storey shear given by 

Equation (4.4).  

Considering each combination of variables as a separate structure, Figure 4.1 summarizes the most 

severe overestimate across all the storeys for each. As before, a negative value indicates that the 

NBCC distribution underestimates the MRS results and a positive value corresponds to an 

overestimate. But for these regular structures the NBCC is always conservative – as apparent in Table 

4.2, the NBCC generally overestimates the regular structure’s storey shears by at least 5% for the 

selected regular structures. There are therefore only ever overestimates.  
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Figure 4.1: Maximum overestimate associated with NBCC 2015 ESFP 

Specifically, considering each set of inputs as representing a different structure, Figure 4.1 

illustrates the maximum error across all the storeys of that structure, evaluated as: 

𝐸𝑟𝑟𝑜𝑟 = max (
Vapprox − VMRS

VMRS
× 100) 

(4.5) 

where Vapprox is the value of the storey shear at a given storey estimated by the NBCC 2015 ESFP, and 

VMRS is the storey shear estimated by the MDOF model and MRS analysis. This is evaluated at each 

storey, and the maximum value of all the storeys is the value summarized in Figure 4.1. 

Categorically, the NBCC does not underestimate the storey shears as applied to regular mid-rise 

structures. Most typically, the NBCC overestimates storey shears by at least 10-15%. This much is 

expected, given the overestimation of first-mode effective masses and the predominance of first-mode 

effects for regular structures. However, as evident from Figure 4.1, this conservatism does not imply 

that the distribution is accurate. The red lines on Figure 4.1 indicate the 1st percentile, median and 99th 

percentile values of the overestimate for the approximately three million different combinations that 

appear in Figure 4.1. While the method is modestly conservative much of the time, under some 

circumstances the ESFP predicts storey shears as much as an additional 150% above the value 

predicted via MRS analysis. This is particularly true of taller structures, and generally is worst at the 

base shear of the structure, but altogether implies that the NBCC is content with a potentially large 

overestimate of the storey shears if it is conservative. In more specific terms, the results as a function 
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of NU and NL are summarized in Table 4.2 and Table 4.3. Note that these tables and the preceding 

figures do not incorporate any storey-wise variation of properties, only variation between the upper 

and lower structures enumerated by NU and NL.  

It is not unreasonable to expect that the mismatch between the NBCC ESFP and the MRS analysis 

results is largest for structures that are tall (i.e. larger NU + NL) - particularly at the base of the 

structure - for three reasons. First, the NBCC ESFP intentionally overestimates the actual effective 

modal mass attributed to the first mode by using the full mass of the structure rather than the effective 

mass (NRCC, 2015c; Rosenblueth et al., 1980). Rosenbluth et al. (1980) assert that the first mode 

mass is typically 60-80% of the total mass, and thus the default base shear is much larger than that 

predicted for regular structures via MRS analysis. Accordingly, the NBCC permits that a base shear 

as low as 80% of the static value may be used as the base shear for dynamic analysis of regular 

structures. Furthermore, taller structures have longer periods than shorter ones, and thus the top storey 

shear and the higher mode factor Mv are increased relative to a structure having fewer storeys but 

identical storey properties. These factors are introduced to account for higher-mode effects at the top 

of the structure that might cause shears in the upper storeys to be underestimated, but they also 

increase the storey shear throughout the structure – particularly for Mv, which magnifies the total base 

shear. Finally, on a related note, the effects of higher modes are more significant in taller structures, 

especially the second mode. Considering a typical mode shape for the second mode of a uniform 

structure, it is often the case that the second mode increases the storey shears in the top storeys and 

reduces the total shears nearer to the base of the structure relative to the first mode shears – numerous 

examples are provided by Chopra (2012). But the ESFP assumes a first-mode response, thus 

neglecting the reduction that the second mode may provide to the base shear. The result is a 

distribution that is consistently conservative for regular structures but nonetheless may be quite 

conservative at the base of the structure. 
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Table 4.2: Minimum overestimate for shear – NBCC 2015 ESFP, regular structure  

      NL 

NU      
1 2 3 4 5 6 7 8 9 10 11 

1 3.7% 7.1% 8.6% 9.3% 9.1% 9.3% 9.2% 9.3% 9.9% 10.2% 10.2% 

2 7.9% 9.1% 9.0% 8.8% 9.0% 8.9% 8.7% 8.7% 8.5% 9.1% N/A 

3 9.4% 8.9% 9.0% 8.9% 9.3% 8.9% 8.7% 8.6% 8.6% N/A N/A 

4 9.4% 8.6% 8.5% 9.0% 8.7% 8.6% 8.7% 9.2% N/A N/A N/A 

5 10.2% 9.2% 8.6% 8.3% 8.3% 8.5% 9.1% N/A N/A N/A N/A 

6 10.1% 8.5% 9.4% 9.5% 8.3% 8.9% N/A N/A N/A N/A N/A 

7 10.7% 9.5% 9.3% 9.7% 8.6% N/A N/A N/A N/A N/A N/A 

8 10.4% 9.6% 9.7% 8.3% N/A N/A N/A N/A N/A N/A N/A 

9 10.4% 10.1% 10.3% N/A N/A N/A N/A N/A N/A N/A N/A 

10 10.9% 10.9% N/A N/A N/A N/A N/A N/A N/A N/A N/A 

11 11.8% N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Table 4.3: Maximum overestimate for shear – NBCC 2015 ESFP, regular structure 

      NL 

NU      
1 2 3 4 5 6 7 8 9 10 11 

1 17.7% 34.4% 50.0% 65.8% 85.7% 101.5% 119.2% 158.5% 209.4% 267.9% 338.8% 

2 31.1% 47.7% 62.0% 80.2% 94.1% 108.7% 138.0% 183.7% 235.9% 298.9% N/A 

3 42.5% 59.6% 78.9% 93.3% 107.9% 129.9% 172.8% 222.0% 281.6% N/A N/A 

4 58.2% 72.9% 89.1% 105.2% 123.4% 162.6% 210.0% 266.9% N/A N/A N/A 

5 67.8% 83.4% 99.7% 118.5% 152.4% 198.9% 253.4% N/A N/A N/A N/A 

6 78.7% 94.9% 117.6% 141.4% 187.3% 240.2% N/A N/A N/A N/A N/A 

7 91.9% 115.0% 139.3% 175.6% 225.6% N/A N/A N/A N/A N/A N/A 

8 110.8% 136.8% 162.8% 212.0% N/A N/A N/A N/A N/A N/A N/A 

9 132.2% 151.5% 197.3% N/A N/A N/A N/A N/A N/A N/A N/A 

10 147.0% 183.2% N/A N/A N/A N/A N/A N/A N/A N/A N/A 

11 177.7% N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Considering Table 4.2, the minimum error is generally 10% or so, regardless of the number of 

storeys, and so the NBCC ESFP is effective at providing a conservative estimate of the storey shears, 

even for structures where T1 > 2 s. Conversely, Table 4.3 indicates that the maximum error is most 

severe for taller structures. This effect only modestly varies as a function of NU and NL – the tolerable 

irregularities for a structure to remain regular only modestly change the maximum and minimum 

error. For practical purposes, the maximum error is generally smaller than that given by Table 4.3 (as 

is clear from Figure 4.1 b)), for Table 4.3 represents only the most severe case for each NU and NL. 

Nonetheless, this maximum error can be attributed to several factors. For example, severely high 

overestimates can be partially attributed to the imposition of the strictest possible code minimum 
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shear per Equation (4.2) and the conservatism inherent in the higher mode factor Mv. For small 

periods in particular, Mv intentionally overestimates the effects of higher modes on regular structure 

(Humar & Mahgoub, 2003; NRCC, 2015b) 

Most important is the period T1. The fundamental period is associated throughout the ESFP via Mv, 

Ft, Sa(T) and elsewhere, and thus has a significant impact on the value of the error. Specifically, 

constraining T1 to 2 seconds as done by the NBCC for use of ESFP does not significantly change the 

distribution of Figure 4.1 nor the values of the minimum error (Table 4.2), but lowers the maximum 

value of the error (Table 4.3). If T1 < 2 seconds is enforced, the maximum error is as much as 100% 

lower for some combinations, albeit only where the scope limitation of TsingU ≤ 0.31 seconds permits 

T1 ≥ 2 seconds to be possible. The values associated with this restriction are given in Table 4.4.  

Table 4.4: Maximum error for Shear – NBCC 2015 ESFP, regular structure, T1 < 2 s 

      NL 

NU      
1 2 3 4 5 6 7 8 9 10 11 

1 17.7% 34.4% 50.0% 65.8% 85.7% 101.5% 119.2% 131.8% 144.4% 158.7% 171.4% 

2 31.1% 47.7% 62.0% 80.2% 94.1% 108.7% 125.1% 138.2% 149.5% 162.7% N/A 

3 42.5% 59.6% 78.9% 93.3% 107.9% 122.4% 133.7% 145.1% 158.7% N/A N/A 

4 58.2% 72.9% 89.1% 105.2% 119.8% 127.6% 142.0% 155.4% N/A N/A N/A 

5 67.8% 83.4% 99.7% 118.5% 125.8% 136.0% 149.5% N/A N/A N/A N/A 

6 78.7% 94.9% 117.6% 129.3% 133.0% 147.0% N/A N/A N/A N/A N/A 

7 91.9% 115.0% 132.4% 131.3% 141.0% N/A N/A N/A N/A N/A N/A 

8 110.8% 130.6% 133.6% 136.0% N/A N/A N/A N/A N/A N/A N/A 

9 126.7% 129.8% 133.3% N/A N/A N/A N/A N/A N/A N/A N/A 

10 122.4% 131.3% N/A N/A N/A N/A N/A N/A N/A N/A N/A 

11 123.9% N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

In general, both the maximum and minimum error values increase as both T1 and Sa(0.2)/Sa(5.0) 

increase, as suggested by Mv and the NBCC 2015 commentary. 

Altogether, the NBCC 2015 ESFP is therefore typically effective and conservative at estimating the 

force distribution of regular structures, albeit at times severely overestimating some storey shears. 

This is true regardless of the number of storeys, although the maximum error increases as the number 

of storeys (i.e. the height) of the structure increases, the period lengthens, of the ratio Sa(0.2)/Sa(5.0) 

increases. The consideration or omission of the code minimum shear or the limit T1 < 2 changes the 

maximum value of the error but does not change the overarching distribution of error given in Figure 

4.1 appreciably for the structures considered. 
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4.3 Using αU to estimate the upper base shear on an irregular structure 

Recalling Equation (3.4), αU explicitly relates the first mode shear at the base of the upper structure, 

mUNUgSa(TU) to the higher mode shear at the base of the upper structure, VUb. It follows, therefore, 

that if a conservative approximation for αU is established based on the MDOF value of αU, that this 

conservative approximation can be used in reverse to estimate the base shear VUb acting on the upper 

structure independently of that at the base of the lower structure, in the same manner as Mv is applied 

in NBCC 2015 If the first mode shear is scaled by αU and the error relative to the modal response 

spectrum results are calculated for each combination of inputs in the scope, the resulting distribution 

of error is that of Figure 4.2. 

 

Figure 4.2: Error at base of upper structure using αU to scale the first-mode shear 

Figure 4.2 is essentially identical to the part of Figure 3.11 corresponding to the expanded scope. 

As αU specifically relates mUNUgSa(TU) to VUb, the error between the estimate of αU and the αU 

calculated from the MDOF model via MRS is by definition equivalent to the error between 

mUNUgSa(TU) and VUb. αU therefore can be used to well-approximate the base shear considering higher 

mode effects. 

4.4 Appendage structures 

It is generally understood that structures having a relatively lightweight appendage structure (NU = 1) 

atop a much stiffer and more massive lower structure behave largely as a more regular structure does. 

This is recognized by NBCC 2015 (NRCC, 2015c) and other codes, which typically provide 
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exceptions for lightweight roof structures and penthouses. After all, one significant concern for 

irregular structures is the shifting of effective modal mass from the first to higher modes, 

complicating the analysis and causing higher-than-expected loads in the upper structure. Given that 

such appendage structures generally constitute only a modest proportion of the mass for a lightweight 

appendage storey, their effect on the effective modal masses is itself minor. As articulated by Yuan 

(2016), the premise of such an assumption is that the lower structure can be treated as an independent 

structure dominated in the first mode.  

This does not, however, imply that the ESFP given by NBCC 2015 (NRCC, 2015c) can be 

immediately applied. Past research suggests that appendage structures are prone to larger-than-

expected shears in the appendage which may cause larger damage than elsewhere in the structure 

(Blume et al., 1960; Penzien & Chopra, 1965; Skinner et al., 1965). This effect is based on the 

relative stiffness and mass of the appendage and lower structures and is referred to as a whipping 

effect by some authors. This effect was observed by Sexton & Keith (1965) in the aftermath of the 

1960 Chile and 1964 Anchorage earthquakes - they note that some appendages failed despite only 

minor damage to the supporting structures. This amplification of the base shears of the appendage is 

captured by αU, and Yuan (2016) proposes that the base shear of the appendage structure be evaluated 

by Equation (3.7), i.e. that the upper structure’s first mode base shear should be scaled by αU.  

4.4.1 The Yuan (2016) modified equivalent lateral force method 

These observations are the basis of the modified equivalent lateral load method proposed by Yuan 

(2016). In this method, it is assumed that the lightweight appendage has minimal effect on the lower 

structure, and thus the base shear of the lower structure, VLb, can be evaluated according to the ASCE 

7 equivalent lateral load method, i.e. according to the first mode response of the structure: 

𝑉𝐿𝑏 = (ML +MU)Sa(T1) (4.6) 

Except for the appendage, which is evaluated using αU and Equation (3.7), the storey forces Fx are 

evaluated conventionally based on the static load distribution assumed by ASCE 7 (2010, 2017), 

using V = VLb as the base shear: 

𝐹𝑥  =  𝑉
𝑊𝑥ℎ𝑥

𝑘

∑ 𝑊𝑖ℎ𝑖
𝑘𝑛

𝑖=1

 
(4.7) 

The ASCE 7 force distribution is identical to that given by NBCC 2015 in Equation (4.3), except 

that there is no top storey force Ft. Instead, ASCE 7 specifies an exponent k which modifies the 



 

 102 

assumed mode shape according to the period to account for higher modes. This exponent is defined 

by Equation (4.7): 

𝑘 =

{
 

 
1 𝑇1 ≤ 0.5

1 +
2 − 1

(2.5 − 0.5)
(𝑇1 − 0.5) 0.5 < 𝑇1 < 2.5

2 2.5 ≤ 𝑇1

 
(4.8) 

As applied to NBCC 2010 rather than ASCE 7, the Yuan (2016) procedure is identical, except that 

the base shear and force distribution are evaluated according to their NBCC counterparts. Namely, 

Equations (4.3) and (4.4) for the force distribution, and the default NBCC 2010 Sa(T). However, Yuan 

(2016) suggests Mv = 0, given that higher mode effects are expected to be small. The resulting force 

distributions are therefore defined by Equation (4.9) for ASCE 7, and Equation (4.10) for NBCC 

2010: 

𝐹𝑥 = {

𝛼𝑈𝑀𝑈Sa(TU) 𝑥 = 𝑁𝑈 +𝑁𝐿

𝑉𝐿𝑏
𝑊𝑥ℎ𝑥

𝑘

∑ 𝑊𝑖ℎ𝑖
𝑘𝑛

𝑖=1

𝑥 ≤ 𝑁𝐿  
 

(4.9) 

𝐹𝑥 =

{
 
 

 
 

𝛼𝑈𝑀𝑈Sa(TU) 𝑥 = 𝑁𝑈 +𝑁𝐿

(𝑉𝐿𝑏 − 𝐹𝑡)
𝑊𝑥ℎ𝑥

∑ 𝑊𝑖ℎ𝑖
𝑛
𝑖=1

+ 𝐹𝑡 𝑥 = 𝑁𝐿

(𝑉𝐿𝑏 − 𝐹𝑡)
𝑊𝑥ℎ𝑥

∑ 𝑊𝑖ℎ𝑖
𝑛
𝑖=1

𝑥 ≤ 𝑁𝐿  

 
(4.10) 

However, the modified equivalent lateral force procedure proposed by Yuan (2016) is not 

permitted to be applied to any appendage structure – it is assumed to apply only for values of the 

overall stiffness ratio such that Rk ≤ Rkb1. Rkb1 is the overall stiffness at which the effective modal mass 

associated with the first mode is equal to 90% of the total structural mass, and is defined as follows: 

𝑅𝑘𝑏1  =  {
0.386𝑅𝑚 + 1.1 1 ≤ 𝑅𝑚 ≤ 2
0.65𝑅𝑚 + 0.58 𝑅𝑚 > 2

 
(4.11) 

The threshold of 90% of the total mass is commonly used in dynamic analyses to demonstrate that 

the number of considered modes is adequate to represent the structural response. Yuan (2016) derives 

the limit of Rkb1 by identifying the Rk associated with the ratio of the effective modal mass in the first 

mode M1
* to the total mass MU + ML. These parameters are defined according to Equations (A.16), 

(3.10) and (3.12).  
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4.4.2 Newly proposed method to evaluate appendage structures 

However, the procedure proposed by Yuan (2016) has room for improvement. It is expected that the 

upper structure’s base shear is well-approximated by αU and Equation (3.7) and that the lower 

structure is well-approximated by the NBCC 2015 ESFP. Presupposing then that the top and bottom 

storey shears are well-approximated, the restriction on Rkb1 is unnecessarily strict – so long as the 

assumed loads are conservative, there is no need to enforce that 90% of the total mass is effective in 

the first mode. The 90% threshold itself is somewhat suspect according to some researchers (Dhileep 

et al., 2019), and therefore the proposed method eschews Rkb1 as a requirement for appendage 

structures.  

Notwithstanding Rkb1, the procedure is similar to that proposed by Yuan (2016). The upper base 

shear is evaluated via Equation (3.7), as before, and the lower base shear is evaluated according to the 

code-specified first-mode base shear. Despite this, the new assumed definition of the lower base shear 

is slightly different than that of Yuan (2016). Yuan (2016) assumes that the base shear of the lower 

structure is evaluated by the first mode response of the full structure without higher-mode effects. 

Instead, the newly proposed procedure assumes that the lower structure and upper structure are to be 

evaluated separately and combined in a manner more like that of the two-stage procedure. Namely, it 

is assumed that VLb is instead defined as: 

𝑉𝐿𝑏 = 𝛼𝑈𝑀𝑈𝑔Sa(TU) +𝑀𝑣𝑀𝐿𝑔𝑆𝑎(𝑇𝐿) = 𝑉𝑈𝑏 +𝑀𝑣𝑀𝐿𝑔𝑆𝑎(𝑇𝐿) (4.12) 

The first term of Equation (4.12) corresponds to the base shear of the upper structure as defined by 

αU and Equation (3.7), and the second term corresponds to the first mode response of the lower 

structure only. Unlike Yuan (2016), the lower structure incorporates the higher mode factor Mv and is 

evaluated at its period TL rather than the period of the combined upper and lower structure, T1. As TL 

is less than T1, this slightly increases the associated spectral value, but this change will generally be 

small owing to the minor contribution of the upper structure. For consistency with NBCC 2015, it is 

assumed that the contribution corresponding to the lower structure, MvMLSa(TL) is not less than the 

code-specified minimum base shear dictated by Equation (4.2).  

Equation (4.12) is based on a different philosophy than the base shear given by Equation (4.6). 

Yuan (2016) assumes that the upper and lower structures act as a larger whole, with the upper base 

shear being corrected via αU but the structure otherwise acting according to the equivalent static force 

procedure. Meanwhile, the new proposal is more akin to the two-stage procedure, in which the two 
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structures are analyzed independently. It is not true that the upper structure is independent of the 

lower structure, but because αU well-approximates the shear on the upper structure it can be separated 

from the lower structure and applied as a top storey shear. For the lower structure, because the upper 

structure has only a minor contribution, it can be applied after the evaluation of the lower structure 

alone analogously to Ft. This rearrangement is a contrivance that nonetheless allows the contributions 

of the lower and upper structures to be distinguished. Whereas Yuan (2016) treats the upper and 

lower structure as two parts of a whole, the proposed method assumes that the appendage’s base shear 

is additive to, rather than part of, the lower base shear. This is strictly a matter of interpretation – the 

Yuan (2016) approach to define the lower base shear is likely equally effective. 

Considering this alternative paradigm, the storey forces are distributed differently than in Yuan 

(2016). Unlike Yuan (2016), the entire mass of the upper structure is assumed to be applied as a top 

storey shear (i.e. the first term of Equation (4.12)). Only MvMLSa(TL), the portion associated with the 

lower structure, is distributed according to the standard distribution specified by Equation (4.3). It is 

assumed that the top storey shear Ft is replaced by the base shear applied to the lower structure, and 

therefore the storey force distribution is: 

𝐹𝑥 = {

𝑉𝑈𝑏 𝑥 = 𝑁𝑈 +𝑁𝐿

[𝑀𝑣𝑀𝐿𝑔𝑆𝑎(𝑇𝐿)]
𝑊𝑥ℎ𝑥

∑ 𝑊𝑖ℎ𝑖
𝑛
𝑖=1

𝑥 ≤ 𝑁𝐿  
 

(4.13) 

Where Fx indicates the x-th storey counted from the bottom. Note that for this study, each storey 

height is assumed to be identical, and each storey of the lower structure is assumed to have identical 

mass. To be exceedingly clear, the corresponding shear distribution is: 

𝑉𝑥 = {

𝑉𝑈𝑏 𝑥 = 𝑁𝑈 +𝑁𝐿

[𝑀𝑣𝑀𝐿𝑔𝑆𝑎(𝑇𝐿)]
∑ 𝑊𝑖ℎ𝑖
𝑛
𝑖=𝑥

∑ 𝑊𝑖ℎ𝑖
𝑛
𝑖=1

+ 𝑉𝑈𝑏 𝑥 ≤ 𝑁𝐿  
 

(4.14) 

4.4.3 Efficacy of the newly proposed method to evaluate appendage structures 

To evaluate the proposed method, it is compared with two analogous methods (three methods are 

compared): 

1. The proposed approach is articulated by Equation (4.13). The contribution MvMLSa(TL) from 

the lower structure is not less than the minimum code-specified base shear. 
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2. The proposed method, using Mv evaluated at TU rather than αU at the base of the upper 

structure, to demonstrate that Mv is inadequate to capture the amplification of the top storey. 

3. The default NBCC distribution, evaluated at period T1 obtained from the MDOF eigenvalue 

analysis. The default top storey shear and code minimum base shear are enforced. 

As elsewhere, the results are calculated for a variety of values for each input parameter in the same 

manner as Section 3.4, but only for NU = 1. Considering first the upper appendage structure alone, as 

in Figure 4.3, it is apparent that neither Mv applied to the upper structure nor the default ESFP 

adequately account for the higher mode effects in the upper structure. Using Mv to scale the first mode 

shear of the appendage structure is particularly problematic, and underestimates the MRS shear. 

Conversely, using αU to characterize the appendage shear is relatively accurate, with a median 

overestimate of 10%. Considering instead the maximum and minimum error, using αU to evaluate the 

appendage produces error values between -0.7% (underestimate) and 30% (overestimate).  

 

Figure 4.3: Error at base of the upper structure for appendage structure 

If the largest underestimates and overestimates across each structure are considered as in Figure 

4.4, the relative success of the method (including the lower structure) can be inferred. Based on the 

similarity between Figure 4.4 a) and Figure 4.3, it is clear that the upper structure is where the error is 

generally at its minimum and thus the largest underestimates occur. The same conclusions can 

therefore be made as in Figure 4.3 insofar as the adequacy of each method at preventing the 

underestimation of shears in the appendage structure. Meanwhile, Figure 4.4 b) indicates that each 
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method produces generally modest overestimations of the storey shears in the worst-case scenario. 

These overestimates are 10% higher for the median structure via the proposed method versus the 

others. This is likely due to an increase in the base shear of the lower structure due to the increased 

top storey shear -  the base of the lower structure is where the largest overestimates generally appear. 

However, because the newly proposed method is better at controlling the minimum error (i.e. the 

underestimate) at the upper structure, it is an effective alternative to the default NBCC method. 

Despite the removal of the Rkb1 requirement compared to Yuan (2016), the error is not excessively 

increased.  

 
a) b) 

Figure 4.4: Error for appendage structure 

Based on Figure 4.3 and Figure 4.4, the proposed method is therefore adequate at conservatively 

addressing the underestimate of the error at the appendage which is inherent in the default force 

distribution used by NBCC 2015. In exchange, the newly proposed procedure generally increases the 

overestimate of storey shears in the lower structure, but only by about 10% on a median basis.  

4.5 Newly proposed method 

Whereas the method provided in the previous section is applicable only to one-storey upper 

structures, this proposed method applies to a wider array of structures. The method involves both 

elements of the NBCC and ASCE 7 equivalent static methods – the base shears are evaluated 

(roughly) according to the NBCC, and the force distribution is modified by an exponent similarly to 

ASCE 7. Specifically: 
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1. The upper structure base shear is defined by αU (Chapter 3). 

2. The top storey shear is defined by αUtop, analogously to αU (Chapter 4.5.1). 

3. The force distribution is selected so that the top storey and upper structure base shears are 

consistent with αU and αUtop. No NBCC-specified top storey shear is applied (Chapter 4.5.3). 

4. The base shear of the lower structure is the sum of the upper structure’s base shear and the 

inertial force associated with the mass of the lower structure. The lower structure component is 

distributed through the lower structure, and the upper base shear is applied as a top storey shear 

to the lower structure, replacing the NBCC-specified top storey shear (Chapter 4.5.4). 

4.5.1 Top storey higher mode amplification factor αUtop 

The storey-wise distribution of force on irregular structures is not constant and varies not only as a 

function of the period e.g. T1 and the degree of irregularity e.g. Rm and Rk but also based on the storey 

of the structure being considered. This much is acknowledged by both building codes such as NBCC 

2015 (NRCC, 2015c) and ASCE 7 (2017) and by researchers e.g. Yuan & Xu (Yuan, 2016; Yuan & 

Xu, 2016). The higher mode amplification factor, αU, is based on this premise and characterizes the 

changing impact of higher-mode effects at the base of the upper structure on account of stiffness and 

mass irregularity. Predicting the effect of higher modes on the force distribution is, therefore, 

necessary to approximate it with any degree of accuracy for irregular structures. Insofar as the base 

shear of the upper structure, αU adequately captures this effect. 

Unfortunately, while αU is performative at the base of the upper structure (and consequently the top 

of the lower structure), it does not address the top storey shear. Both NBCC 2015 (NRCC, 2015c) and 

ASCE 7 (2017) acknowledge that the top storey is the most vulnerable to being underestimated by 

traditional static approaches and provide some means of increasing the shear at the top storey. The 

NBCC does so via the top storey shear Ft of Equation (4.4), and ASCE 7 does so via the exponent k 

of Equation (4.7). Each has a different effect on the shear distribution - Ft uniformly increases each of 

the storey shears by a set amount, and k modifies the assumed distribution of forces such that the 

storey forces increase more aggressively towards the top of the structure compared to the default 

distribution. 

However, neither of these approaches captures the effect of irregularity, given that they are 

concerned only with the fundamental period of the structure T1. Regular structures are indeed 

sensitive to the fundamental period, but the variation of stiffness and mass present in irregular 
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structures further modifies this relationship based on the extent of the irregularity. Despite this, both 

NBCC 2015 (NRCC, 2015c) and ASCE 7 (2017) use an identical force distribution for all structures 

having an identical fundamental period, irrespective of any irregularity. This is problematic for 

attaining accurate force distributions on irregular structures, as both the top storey shears and the 

shape of the force distribution change as a function of the irregularity. Both Ft and k are predicated on 

certain assumptions regarding the behaviour of structures which may misestimate the top storey 

shear. 

Therefore, it is advantageous to have an effective estimate for the top storey shear. The storey 

shears vary more or less smoothly between the top and base shears, and if both the top and bottom 

shears are known, the remaining shears can be estimated. Towards this end, the top storey higher 

mode amplification factor, αUtop, is defined analogously to the theoretical definition of αU: 

𝛼𝑈𝑡𝑜𝑝 =
𝑉𝑈𝑡𝑜𝑝

𝑚𝑈𝑔𝑆𝑎(𝑇𝑠𝑖𝑛𝑔𝑈)
 

(4.15) 

where VUtop is the top storey shear predicted by the modal response spectrum analysis. Similar to αU 

which is defined for the NU-storey upper structure, αUtop is defined for the top storey alone. 

Accordingly, the period TU is replaced with TsingU, the mass is that of a single storey, mU, and the top 

storey shear alone, VUtop, is of concern. In this way, the higher-mode effect on the top storey of the 

upper structure can be quantified in the same way as that of the lower structure.  

Based on an empirical investigation, the upper bound on αUtop is approximately linear as a function 

of the ratio Sa(T1)/Sa(0.2), i.e. the ratio of the structure’s first mode spectral acceleration to the 

maximum value. In general, the value of αUtop increases as Sa(T1) approaches Sa(0.2), and thus, the 

higher mode effects in the top storey increase as the period shortens. The proposed formulation for 

αUtop is, therefore:  

𝛼𝑈𝑡𝑜𝑝 = 𝐴𝑡𝑜𝑝 (
𝑆𝑎(𝑇1)

𝑆𝑎(0.2)
) + 𝐵𝑡𝑜𝑝 

(4.16) 

Atop and Btop are fit parameters calibrated such that αUtop is a conservative overestimate of the values 

of αUtop calculated from the MDOF model, just like αU. Specifically, the parameters Atop and Btop apply 

only to configurations that satisfy the scope set out in Section 1.3.2, e.g. max(rkU1, 1) ≤ rk ≤ 20. Much 

like AU1 and BU1, these values are tabulated as a function of NU, NL and rm, and appear in Table 4.5 

and Table 4.6. That is not to say that Atop and Btop are only a function of the mass ratio and number of 
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storeys. As with AU1, BU1, Amax and Bmax, the stiffness ratio Rk and single-storey period TsingU are 

implicitly embodied by T1, which is defined by Equations (3.14) and (A.13), i.e. T1 is defined via φL1 

and TU. These values are tabulated to achieve reasonable accuracy. For rm = 4, NU = 2, and NL = 6, the 

proposed αUtop is plotted against the calculated results in Figure 4.5. 

Table 4.5: Values of Atop 

NU NL 1 2 

rm 

3 4 5  NU NL 1 2 

rm 

3 4 5 

2 1 0.89 0.88 0.86 0.89 0.90  5 2 1.06 1.00 0.96 0.95 0.97 

2 2 0.89 0.88 0.95 1.04 1.10  5 3 1.02 0.99 1.04 1.11 1.18 

2 3 0.91 1.05 1.16 1.37 1.61  5 4 1.01 1.07 1.19 1.31 1.43 

2 4 1.00 1.28 1.49 1.79 1.93  5 5 1.03 1.18 1.35 1.49 1.62 

2 5 1.12 1.41 1.76 1.90 1.95  5 6 1.08 1.29 1.49 1.65 1.82 

2 6 1.24 1.60 1.79 1.82 1.74  5 7 1.14 1.39 1.61 1.80 2.01 

2 7 1.35 1.68 1.74 1.66 1.57  6 1 1.09 1.07 1.05 1.04 1.02 

2 8 1.43 1.68 1.62 1.51 1.42  6 2 1.07 1.02 0.98 0.96 0.96 

2 9 1.44 1.61 1.51 1.41 1.34  6 3 1.04 0.99 1.02 1.07 1.14 

2 10 1.48 1.54 1.41 1.31 1.25  6 4 1.02 1.05 1.15 1.24 1.34 

3 1 1.01 0.99 0.97 0.97 0.95  6 5 1.03 1.14 1.29 1.41 1.52 

3 2 0.99 0.95 0.96 1.00 1.07  6 6 1.07 1.24 1.41 1.55 1.68 

3 3 0.98 1.02 1.15 1.28 1.40  7 1 1.11 1.09 1.07 1.05 1.03 

3 4 1.00 1.18 1.39 1.54 1.74  7 2 1.09 1.03 0.99 0.97 0.97 

3 5 1.07 1.34 1.55 1.80 2.02  7 3 1.06 1.00 1.02 1.05 1.10 

3 6 1.16 1.49 1.75 1.99 2.13  7 4 1.03 1.04 1.12 1.20 1.28 

3 7 1.25 1.58 1.88 2.04 2.07  7 5 1.03 1.12 1.25 1.35 1.45 

3 8 1.33 1.69 1.92 1.98 1.94  8 1 1.12 1.10 1.08 1.06 1.04 

3 9 1.39 1.75 1.90 1.86 1.78  8 2 1.10 1.04 1.00 0.97 0.97 

4 1 1.06 1.03 1.01 1.00 0.97  8 3 1.07 1.00 1.01 1.03 1.07 

4 2 1.03 0.98 0.96 0.97 1.01  8 4 1.04 1.03 1.10 1.17 1.24 

4 3 1.00 1.00 1.08 1.17 1.29  9 1 1.12 1.11 1.08 1.07 1.05 

4 4 1.00 1.11 1.27 1.41 1.54  9 2 1.10 1.05 1.01 0.98 0.97 

4 5 1.04 1.24 1.45 1.61 1.79  9 3 1.07 1.01 1.01 1.02 1.06 

4 6 1.11 1.37 1.60 1.80 2.00  10 1 1.13 1.11 1.09 1.08 1.06 

4 7 1.18 1.48 1.72 1.96 2.14  10 2 1.11 1.06 1.02 0.99 0.97 

4 8 1.25 1.58 1.84 2.06 2.19  11 1 1.13 1.12 1.10 1.09 1.07 

5 1 1.08 1.06 1.03 1.02 1.00         

Note: Table 4.5 is to be interpolated for intermediate values of rm. 
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Table 4.6: Values of Btop 

NU NL 1 2 

rm 

3 4 5  NU NL 1 2 

rm 

3 4 5 

2 1 0.40 0.54 0.67 0.74 0.84  5 2 0.39 0.58 0.70 0.78 0.84 

2 2 0.52 0.72 0.85 0.92 1.02  5 3 0.49 0.69 0.78 0.86 0.94 

2 3 0.61 0.73 0.85 0.86 0.85  5 4 0.56 0.73 0.84 0.87 0.74 

2 4 0.64 0.68 0.77 0.78 0.86  5 5 0.62 0.76 0.76 0.63 0.68 

2 5 0.63 0.70 0.75 0.85 0.89  5 6 0.64 0.74 0.57 0.62 0.65 

2 6 0.58 0.69 0.81 0.85 0.81  5 7 0.65 0.61 0.55 0.61 0.62 

2 7 0.57 0.72 0.81 0.76 0.70  6 1 0.28 0.39 0.47 0.55 0.60 

2 8 0.58 0.73 0.75 0.70 0.67  6 2 0.36 0.54 0.66 0.75 0.81 

2 9 0.62 0.74 0.69 0.66 0.65  6 3 0.45 0.65 0.76 0.81 0.87 

2 10 0.62 0.70 0.67 0.67 0.76  6 4 0.52 0.72 0.76 0.85 0.90 

3 1 0.33 0.48 0.59 0.67 0.75  6 5 0.58 0.69 0.79 0.78 0.67 

3 2 0.45 0.67 0.81 0.91 0.97  6 6 0.62 0.71 0.71 0.59 0.64 

3 3 0.56 0.78 0.87 0.77 0.82  7 1 0.26 0.37 0.44 0.51 0.56 

3 4 0.63 0.78 0.65 0.71 0.70  7 2 0.34 0.51 0.61 0.70 0.77 

3 5 0.68 0.62 0.64 0.65 0.67  7 3 0.43 0.61 0.72 0.80 0.85 

3 6 0.68 0.55 0.61 0.66 0.74  7 4 0.49 0.67 0.75 0.83 0.89 

3 7 0.61 0.56 0.63 0.73 0.83  7 5 0.54 0.70 0.77 0.85 0.85 

3 8 0.55 0.57 0.69 0.79 0.79  8 1 0.26 0.36 0.43 0.49 0.54 

3 9 0.52 0.60 0.74 0.78 0.73  8 2 0.34 0.49 0.59 0.68 0.74 

4 1 0.30 0.45 0.54 0.62 0.69  8 3 0.41 0.58 0.68 0.76 0.83 

4 2 0.42 0.62 0.75 0.86 0.94  8 4 0.48 0.64 0.75 0.80 0.87 

4 3 0.52 0.73 0.86 0.96 0.90  9 1 0.27 0.36 0.43 0.48 0.53 

4 4 0.59 0.80 0.84 0.68 0.73  9 2 0.33 0.48 0.57 0.65 0.72 

4 5 0.64 0.79 0.61 0.64 0.67  9 3 0.40 0.57 0.67 0.75 0.81 

4 6 0.68 0.63 0.57 0.61 0.63  10 1 0.26 0.34 0.41 0.46 0.51 

4 7 0.69 0.52 0.58 0.60 0.65  10 2 0.32 0.45 0.55 0.63 0.70 

4 8 0.63 0.51 0.57 0.63 0.74  11 1 0.25 0.33 0.39 0.44 0.49 

5 1 0.29 0.42 0.51 0.57 0.63         

Note: Table 4.6 is to be interpolated for intermediate values of rm. 
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Figure 4.5: αUtop versus calculated results for NU = 2, NL = 6 and rm = 4 

4.5.2 Error associated with αUtop 

The use of αUtop to estimate the response of the top storey is predicated on the assumption that 

Equation (4.16) adequately predicts the MRS-derived value corresponding to Equation (4.15). 

Fortunately, as apparent from Figure 4.6, Equation (4.16) provides an effective estimate of αUtop. The 

error of Equation (4.16) is generally between 0% and 40%, with a median of 10%. It is therefore 

concluded that αUtop is adequate for determining the top storey shear. 

 

Figure 4.6: Error of proposed approximation of αUtop  



 

 112 

4.5.3 Evaluating loads on the upper structure via αU and αUtop 

Considering each of the equivalent static force procedures proposed by the NBCC (NRCC, 2010, 

2015c), ASCE 7 (2010, 2017) and Yuan & Xu (Yuan, 2016; Yuan & Xu, 2016), each method’s shear 

distribution (including the ASCE 7 and Yuan & Xu two-stage procedures) requires three elements to 

determine the distribution of forces on any given segment: 

1. The base shear 

2. An assumed force distribution  

3. A modification to the response that increases the storey shears in the upper storeys to 

account for higher mode effects 

This seems a trivial conclusion, but each method does so by different means. In the NBCC, the 

force distribution is assumed to be a constant shape – the top storey shear is added where the base 

shear is not adequate by itself. In the ASCE, there is no additional top storey shear – instead, the force 

distribution is changed by the exponent k such that the top storey shear is conservative. This is also 

true of the two-stage procedure – the intent is that the base shear of the upper structure plus the 

expected response of the lower structure’s top storey is conservative. Likewise, in their two-stage 

(Yuan, 2016; Yuan & Xu, 2016) and modified ELF (Yuan, 2016) methods, Yuan & Xu either scale 

the top storey shear via αU or apply an additional top storey shear as a function of the irregularity. The 

convention of these methods is to assume a force distribution and a base shear and then apply 

adjustments to the top storey shear to ensure that the method is conservative.  

However, if αUtop and αU are used to estimate the shear at the top and bottom of the upper structure, 

the procedure can be reversed. Each value of the exponent k used by ASCE 7, as in Equations (4.7) 

and (4.8), corresponds to a top storey shear which is some proportion of the upper base shear. If this 

ratio between the top and upper base shears is evaluated using αUtop and αU, the k (and thus the force 

distribution) matching these endpoints can be determined using αUtop and αU rather than by 

presupposing some value arbitrarily.   

In other words, if the base shear VUb and the top storey shear VUtop of the upper structure are defined 

as: 

𝑉𝑈𝑏 = 𝛼𝑈𝑀𝑈𝑔𝑆𝑎(𝑇𝑈) (4.17) 
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𝑉𝑈𝑡𝑜𝑝 = 𝛼𝑈𝑡𝑜𝑝𝑚𝑈𝑔𝑆𝑎(𝑇𝑠𝑖𝑛𝑔𝑈) (4.18) 

then the corresponding value of the exponent, k  ̧is evaluated based on Equation (4.19): 

𝑠𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑘: 
(𝑊𝑥ℎ𝑥

𝑘)
𝑥=𝑁𝑈

∑ 𝑊𝑖ℎ𝑖
𝑘𝑛=𝑁𝑈

𝑖=1

=
𝑉𝑈𝑡𝑜𝑝
𝑉𝑈𝑏

 (4.19) 

Note: in Equation (4.19) the heights are evaluated beginning at the base of the upper structure.  

The left-hand side of Equation (4.19) corresponds to the top storey of the force distribution given 

by ASCE 7 in Equation (4.7). The desired value of the exponent k is that which produces a 

distribution matching VUb at the base and VUtop at the top, given that VUb is the base shear of the upper 

structure. VUb is automatically the total base shear given by Equation (4.7), and so k is selected based 

on the requirement that the top storey value of the ASCE 7 distribution (i.e. at x = NU) is the same 

proportion of the top storey shear as VUtop, the proposed estimate of the top storey shear.  

However, based on the input values (i.e. rm, rk, NU, NL, TsingU, Sa(T)), the solution of k via Equation 

(4.19) may produce unreasonably large or small values. For example, where VUtop is a significant 

portion of VUb, the k for which Equation (4.19) is satisfied may be much larger than otherwise. A 

large value of k may cause the lower storeys of the upper structure to be significantly overestimated, 

and a small value of k may cause some underestimation of the storey immediately below the top 

storey. For practical purposes, it is assumed that k lies between 0.5 and 3.0, as specified by Equation 

(4.20). These limits are selected based on the following rationale – the lower bound of 0.5 is applied 

to ensure that the upper storey shears are not excessively diminished where VUtop is small, and the 

upper bound of 3 is applied so that the lower storeys of the upper structure are not excessively 

overestimated just to suit the top storey. A value of 0.5 indicates that the height of each storey has a 

significantly diminished effect and thus the forces are distributed more evenly through the height, and 

a value of 3.0 indicates that much more force is concentrated at the uppermost storeys.  

0.5 ≤ 𝑘 ≤ 3.0 (4.20) 

Compared to the definition of k given by ASCE 7 and Equation (4.8), the limits in Equation (4.20) 

correspond to a relaxed lower bound and a larger upper bound. The relaxed lower bound indicates 

that the irregularity may sometimes decrease the top storey forces relative to the assumed distribution 

of NBCC 2015/ASCE 7, and the larger upper bound indicates that potentially much larger upper 

storey forces than expected are sometimes warranted. This lower bound is less stringent than that 
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dictated by either ASCE 7 or NBCC 2015 – designers who wish to be even more conservative can 

apply a lower bound of 1.0, corresponding to the NBCC’s default distribution, if desired. 

Given k and VUb, the storey forces on the upper structure are evaluated for the upper structure as 

though it is fixed at its base (where i = 1 at the base of the upper structure): 

𝐹𝑥,𝑢𝑝𝑝𝑒𝑟 = (𝑉𝑈𝑏)
𝑊𝑥ℎ𝑥

𝑘

∑ 𝑊𝑖ℎ𝑖
𝑘𝑛=𝑁𝑈

𝑖=1

 
(4.21) 

where Fx,upper here concerns only the upper structure. Therefore, the storey shear distribution for the 

upper structure, Vx,upper is: 

𝑉𝑥,𝑢𝑝𝑝𝑒𝑟 = (𝑉𝑈𝑏)
∑ 𝑊𝑖ℎ𝑖

𝑘𝑛=𝑁𝑈
𝑖=𝑥

∑ 𝑊𝑖ℎ𝑖
𝑘𝑛=𝑁𝑈

𝑖=1

≥ 𝑉𝑈𝑡𝑜𝑝 
(4.22) 

It is assumed that the storey shears are greater than the value of VUtop - this may not be the case if k 

= 3. 

If the calculated value of k ≥ 3.0 (k = 3.0 is the upper bound), the storey shear at all storeys is 

increased by 50% of the top storey shear: 

𝑖𝑓 𝑘 = 3.0, 𝑉𝑥,𝑢𝑝𝑝𝑒𝑟 = (𝑉𝑈𝑏)
∑ 𝑊𝑖ℎ𝑖

𝑘𝑛=𝑁𝑈
𝑖=𝑥

∑ 𝑊𝑖ℎ𝑖
𝑘𝑛=𝑁𝑈

𝑖=1

+ 0.5𝑉𝑈𝑡𝑜𝑝 ≤ 𝑉𝑈𝑏 (4.23) 

This surcharge for k = 3.0 is to account for the truncation of larger values of k. There is no issue 

with selecting a larger value of k – this increases the shears in the upper storeys without reducing 

those in the lower storeys. However, the truncation of value values of k via the upper bound of 3.0 

leads to some limited circumstances where the top storey shear is underestimated. Therefore, where k 

= 3.0, a minimum storey shear must be applied to ensure that the top storey is not underestimated 

despite the upper bound on the exponent. However, there is no need to increase the storey shears 

beyond the calculated value of VUb. 

4.5.4 Evaluating loads on the lower structure: 

Like the formulation for appendage structures set out in Section 4.4.2, it is assumed that the lower 

structure behaves approximately as a regular structure fixed at its base with the upper structure loads 

being applied as an additional top storey shear. Similarly, then, the base shear of the lower structure, 
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VLb, is assumed to be the superposition of the upper structure’s base shear and a base shear associated 

with the lower structure:  

𝑉𝐿𝑏 = 𝑉𝑈𝑏 +𝑀𝑣𝑀𝐿𝑆𝑎[min (𝑇1, 0.75)] (4.24) 

As in Equation (4.12), VLb has two parts. The first part, VUb, corresponds to Equation (4.17) and is 

the shear force contributed from the base of the upper structure. It is treated as an additional top 

storey shear and thus is applied at the top of the lower structure. The second portion, 

𝑀𝑣𝑀𝐿𝑆𝑎[min (𝑇1, 0.75)], corresponds to the lower structure and is somewhat different than that 

dictated in Equation (4.12). In Equation (4.12), it is recommended that the period of the lower 

structure, TL, be used as a conservative period. This is acceptable if somewhat over-conservative 

because TL and T1 are relatively close for an appendage structure and the influence of the relatively 

small irregularity is small on the lower structure. Meanwhile, for other structures, especially where NL 

is small, TL is sometimes much, much smaller than T1 and using it instead is excessively conservative. 

Therefore, for the more general case, it is recommended that T1 is used with the caveat that T1 be not 

more than 0.75 seconds for evaluation of Sa(T). Under certain circumstances, large irregularities may 

cause a much larger base shear than predicted for the given first-mode period T1 for large values of T1 

within the scope. This upper bound on T1 is applied to ensure that the base shear is conservatively 

estimated even for cases where the irregularity is large. Note also that 𝑀𝑣𝑀𝐿𝑆𝑎(min (𝑇1, 0.75)) 

should be larger than the code-specified base shear given by Equation (4.2), and that Mv should be 

evaluated according to the selected value of T1. T1 can be approximated from TU as a function of Rm 

and Rk using Equation (A.13). 

Assuming that the portion 𝑀𝑣𝑀𝐿𝑆𝑎(min (𝑇1, 0.75)) (i.e. VLb – VUb) associated with the lower 

structure is distributed according to the NBCC distribution with VUb applied at the top storey, the 

storey shears in the lower structure are evaluated as: 

𝐹𝑥,𝑙𝑜𝑤𝑒𝑟 =

{
 
 

 
 [𝑉𝐿𝑏 − 𝑉𝑈𝑏]

𝑊𝑥ℎ𝑥

∑ 𝑊𝑖ℎ𝑖
𝑛=𝑁𝐿
𝑖=1

+ 𝑉𝑈𝑏 𝑥 = 𝑁𝐿

[𝑉𝐿𝑏 − 𝑉𝑈𝑏]
𝑊𝑥ℎ𝑥

∑ 𝑊𝑖ℎ𝑖
𝑛=𝑁𝐿
𝑖=1

𝑥 < 𝑁𝐿  

 
(4.25) 

The corresponding shear distribution across the lower structure is, therefore: 
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𝑉𝑥,𝑙𝑜𝑤𝑒𝑟 =

{
 
 

 
 [𝑉𝐿𝑏 − 𝑉𝑈𝑏]

(𝑊𝑥ℎ𝑥)𝑥=𝑁𝐿
∑ 𝑊𝑖ℎ𝑖
𝑛=𝑁𝐿
𝑖=1

+ 𝑉𝑈𝑏 𝑥 = 𝑁𝐿

[𝑉𝐿𝑏 − 𝑉𝑈𝑏]
∑ 𝑊𝑖ℎ𝑖
𝑛=𝑁𝐿
𝑖=𝑥

∑ 𝑊𝑖ℎ𝑖
𝑛=𝑁𝐿
𝑖=1

+ 𝑉𝑈𝑏 𝑥 < 𝑁𝐿  

 
(4.26) 

where i = 1 at the first storey. 

In summary, the proposed shear distribution is: 

𝑉𝑥 =

{
 
 

 
 (𝑉𝑈𝑏)

∑ 𝑊𝑗ℎ𝑗
𝑘𝑛=𝑁𝑈

𝑗=𝑥

∑ 𝑊𝑗ℎ𝑗
𝑘𝑛=𝑁𝑈

𝑗=1

≤ 𝑉𝑈𝑏 𝑥 > 𝑁𝐿

[𝑉𝐿𝑏 − 𝑉𝑈𝑏]
∑ 𝑊𝑖ℎ𝑖
𝑛=𝑁𝐿
𝑖=𝑥

∑ 𝑊𝑖ℎ𝑖
𝑛=𝑁𝐿
𝑖=1

+ 𝑉𝑈𝑏 𝑥 ≤ 𝑁𝐿  

 
(4.27) 

where the heights hj for the distribution of forces in the upper structure are measured from the base of 

the upper structure rather than the base of the overall structure, and where the storey shears in the 

upper structure are not larger than VUb, but at minimum VUtop.  

4.5.5 Error of proposed procedure 

To evaluate the relative performance of the newly proposed method, the error between the proposed 

method and the modal response spectrum results are calculated for linearly-spaced inputs for each of 

TsingU, rm, rk, NU, NL and Sa(T) (in the manner of Section 3.3.3) and compared to the corresponding 

storey shear predicted by the default NBCC 2015 ESFP. The calculations comprise approximately 7.3 

million different combinations of variables within the scope, after having been pre-processed to 

remove out-of-scope combinations. This includes omitting scenarios where mL < mU and kL < kU since 

these correspond to rm < 1 and rk < 1. 

Figure 4.7 a) to c) depicts the relative error for the top storey, the base of the upper structure and 

the base of the lower structure for both the proposed method and the NBCC. Based on Figure 4.7 a) 

and b), the estimates provided by αU and αUtop provide a better estimate of the MRS base shear 

compared to the NBCC. The error at the top storey and the base of the upper structure by the 

proposed method is better on both a median and minimum basis than that given by the NBCC and 

demonstrates a smaller variance. Whereas the NBCC exhibits at times a 20% underestimate (-20% 

error) of the top and upper base shears, the newly proposed method does not underestimate either. 

Strictly speaking, the NBCC ESFP distribution does not apply to most irregular structures; however, 
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there is no alternative in the NBCC for irregular structures, and thus the ESFP distribution is 

considered to be the default assumption to be compared to. Overall: 

1. The median overestimate at the top storey is 10% by the newly proposed method, and generally 

not more than 40%. Any underestimates are negligible.  

2. The median overestimate for the upper base shear is approximately 15% for the newly 

proposed method, and generally not more than 30%. The estimates are conservative. 

  
a) b) 

 
c) 

 Figure 4.7: Error for the proposed method and NBCC – specific locations 

Meanwhile, per Figure 4.7 c), the newly-proposed method appears to more conservative on average 

but better at a minimum than the NBCC at predicting the lower structure’s base shear. Whereas the 

NBCC has a median overestimate of 40% for the overall base shear, the newly proposed method has a 

median overestimate of 75%. In exchange, the newly proposed method does not underestimate the 

lower structure’s base shear. 

Considering each of the upper and lower structures, the lower bound of the error is usually 

governed by the top storey for the upper structure and the bottom storey of the lower structure, for 
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which the proposed method most closely predicts the shear. It is because of this that the period T1 

must be capped to ensure a minimum base shear for the full structure, or else the lower base shear 

would be underestimated. Meanwhile, the largest overestimate in the upper structure is generally 

amidst the upper storeys given that the top and bottom storeys are generally well-approximated. This 

is less clear for the lower structure and generally depends on how effective the base shear and the 

assumed force distribution represent the lower structure. This is more variable than the selected 

values for the upper structure and should be further studied. 

  
a) b) 

 Figure 4.8: Worst-case overestimate for the proposed method and NBCC 

4.5.6 Error considering non-uniform storey stiffness of the upper structure  

In the forthgoing analysis, it is assumed that the storey stiffness of the upper structure, kU, is constant, 

and thus that the upper structure is entirely uniform. For practical reasons, this may be unrealistic – a 

more appropriate assumption is that the storey stiffness gradually decreases towards the top of the 

upper structure, on account of the accumulation of forces towards the base of the upper structure. Any 

change in the stiffness matrix of the structure changes the dynamic response, and therefore it is 

prudent to investigate whether this effect changes the accuracy of the proposed method.   

To evaluate the effects of a gradual reduction of stiffness in the upper structure, four different 

constant reductions of storey stiffness are considered as illustrated in Figure 4.9. The uniform 

structure is modified in each case by applying a constant, stepping reduction through the height of the 

structure such that the storey stiffness of the base is always kU. Each case is associated with a stiffness 

reduction factor – 1 indicates a uniform structure in which all stiffnesses are identical, 1.10 indicates 

that the base storey stiffness is 10% larger than the stiffness of the storey above, 1.20 corresponds to 

20% larger, and so on. This is repeated throughout the height of the upper structure for each 
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subsequent storey. Therefore, if the base of the upper structure is 1.25 times the stiffness of the 2nd 

storey of the upper structure, it will be (1.25)2 = 1.56 times the stiffness of the 3rd storey, (1.25)3 = 

1.95 times the stiffness of the 4th storey and so on (equivalently, the storey stiffnesses are kU, 0.8kU, 

0.64kU, etc.). This modification is approximately based on the stiffness regularity threshold of NBCC 

2015 listed in Table 2.1Error! Reference source not found., which specifies that the stiffness of any 

storey must be at least 70% that of an adjacent storey, or 80% of the average of the three storeys 

above or below. Technically, a stiffness distribution of kU, 0.8kU, 0.64kU, etc. exceeds the 80% three-

storey average limit set out by the NBCC, but for simplicity only the storey-to-storey variation is 

considered.   

 

Figure 4.9: Variation of storey stiffness in the upper structure (NU = 5) 

As before, the response is first calculated for a variety of values of NU, NL, rm, rk, TsingU, and Sa(T), 

assuming that the lower structure is uniform with constant storey stiffness kL and the upper structure 

is uniform with constant storey stiffness kU. This is considered the base case, and the corresponding 

load distributions for the modal response spectrum and the newly proposed method are calculated. 

Next, the stiffness distribution is modified for each of the distributions illustrated in Figure 4.9, and 

the MRS results are recalculated given the new stiffness matrix. For each stiffness distribution, the 

error is calculated between the proposed force distribution associated with the base case and its period 

T1, and the MRS force distribution associated with the modified stiffness matrix. The corresponding 

error is therefore between the proposed force distribution assuming a uniform structure and the MRS 

results for each modified stiffness distribution. The proposed force distribution is not recalculated for 

the modified stiffness distributions – it is based on the uniform case. 



 

 120 

 Considering again the error at the top of the upper structure, the base of the upper structure and the 

base of the full structure, the error for each of the arrangements illustrated in Figure 4.9 is plotted in 

Figure 4.10 a) to d). It is apparent from Figure 4.10 that the method is still applicable for a non-

uniform variation of stiffness. However, the error is not precisely the same. Per Figure 4.10 a), the top 

storey shear is prone to additional underestimation of up to 10% given a variation of the stiffness, and 

so the top storey force should be increased by 5-10% to ensure that the top storey shear is not 

underestimated. Moving onto Figure 4.10 b), there is no apparent increase in the underestimate at the 

base of the upper structure. Instead, the median overestimate increases significantly from 15% to 30% 

for the most severe stiffness variation. This indicates that the upper structure experiences larger 

overestimates of the storey shears in the upper structure if the stiffness varies but remains 

conservative but for some of the uppermost storeys. Figure 4.10 c) indicates that the lower structure’s 

base shear is largely unchanged despite the variation of shears in the upper structure. A more severe 

stiffness reduction in the uppermost storeys modestly increases the median and maximum 

overestimates but otherwise does not significantly change the adequacy of the proposed method. 

Finally, Figure 4.10 d) considers the largest underestimate for each combination across all storeys. 

The distribution is similar to Figure 4.10 a), as expected – the worst underestimates are generally at 

the top storey. In general, the largest underestimate is 10% for the most severe stiffness variation, and 

this underestimate diminishes for a more uniform upper structure.  
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a) b) 

  
c) d) 

 Figure 4.10: Error for proposed method considering upper structure with stiffness variation 

4.6 Design Procedure 

For either method proposed to evaluate the lateral loads defined by the current study, the first step is 

to define the input parameters and αU. Therefore, the following steps are taken irrespective of the 

number of storeys: 

1. Based on the selected building configuration, identify the value of each of these parameters: 

mU, kU, mL, kL, NU, NL, Sa(T) 

2. Evaluate 𝜔̄1𝐿 and 𝜔̄1𝑈 from Table 3.1, corresponding to N = NL and N = NU 

3. Calculate rm, rk, Rm and Rk based on Equations (3.16) to (3.19) 
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4. Determine RkU1, RkU2, RkU3 and RkU2stg according to Equations (3.25) to (3.28) and Appendix E, 

as well as AU1, BU1, AUmax, and BUmax from Appendix E. If Rk ≥ RkU2stg, it is possible to use the 

two-stage procedure detailed in Appendix F, subject the conditions listed in that appendix. 

5. Evaluate αU1 according to Equations (3.29) and (3.30) (if applicable, i.e. RkU1 < RkU2), αUmax 

according to Equations (3.31) and (3.32) and αU2stg according to Equation (3.33). Sa(TU) is 

evaluated according to Equation (3.37) and φL1 according to Equation (A.13). As with the 

definition of αU given in Chapter 3, if RkU1 ≥ RkU2, αU does not require αU1 to be calculated, only 

αU2stg and αUmax are required. In such a case, RkU1 is only used as a lower bound on Rk, i.e. it is 

required that RkU1 ≤ Rk. 

6. Evaluate αU according to Equations (3.21) to (3.24). Recall that Rk must be larger than RkU1. If 

αU is larger than desired, repeat steps 1-6 with a modified set of properties. Note that the 

estimate of αU will never be greater than the maximum of αU1, αU2stg and αUmax, nor less than the 

minimum. If a lower value is desired, dynamic analysis (e.g. MRS analysis) can be used. 

7. Evaluate VUb according to Equation (3.7). It should not be less than Equation (4.2). 

Having established αU, the procedure diverges based on whether the upper structure is an 

appendage, i.e. NU = 1 or not. If the upper structure is an appendage, Chapter 4.4.2 applies. 

Otherwise, Chapter 4.5 applies. Steps 8 onwards differ depending on the structure being considered – 

evaluate the loads according to the relevant list. 

Appendage Structure (NU = 1): 

8. Evaluate TL according to Equation (3.15), and the corresponding Mv based on Table 4.1. Note 

that for interpolation for T, the product MvSa(TL) should be interpolated rather than Mv only, per 

NBCC 2015. 

9. Evaluate VLb according to Equation (4.12), but not less than Equation (4.2) 

10. Evaluate the storey forces via Equation (4.13), or the storey shears via Equation (4.14) 

Structures that are not appendage structures (NU > 1): 

8. Evaluate T1 using Equation (A.13) and the value of TU already calculated. Evaluate the 

corresponding Mv based on Table 4.1. Note that for interpolation for T, the product MvSa(T1) 

should be interpolated rather than Mv only, per NBCC 2015. 

9. Determine Sa(T1), and determine Atop and Btop from Table 4.5 and Table 4.6. 
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10. Determine αUtop according to Equation (4.16), and then VUtop according to Equation (4.18). TsingU 

is defined by Equation (3.14). 

11. Solve for k via Equation (4.19). The value should not be less than 0.5 or more than 3.0, as 

specified by Equation (4.20). 

12. Define the upper structure storey forces Fx,upper according to Equation (4.21). Equivalently, the 

storey shears Vx,upper are defined by Equation (4.22). 

13. If the exponent calculated in step 11 is equal to or greater than 3, an additional surcharge must 

be applied, as defined by Equation (4.23). The storey shears do not need to be larger than the 

upper base shear VUb, but should not be less than VUtop 

14. Evaluate the lower structure’s base shear VLb using Equation (4.24). 

15. Define the lower structure storey forces Fx according to Equation (4.25). Equivalently, the 

storey shears Vx are defined by Equation (4.26). 

16. Finally, to address the possibility that the upper structure’s storey shears are not underestimated 

considering stiffness variation as discussed in Section 4.5.6, increase the storey shears in the 

upper structure by 10%. They do not need to be larger than VUb 

4.7 Design examples 

To demonstrate the efficacy of the two proposed approaches, four examples are given, two for each of 

the proposed methods. Each example is set up to provide an approximately realistic demonstration of 

the methods (albeit without detailing e.g. reinforcement), with stiffnesses determined using the 

methodology described in Appendix G and according to CSA A23.3-19 (2019) (for concrete) and 

AISI S400-15 (2015) (for cold-formed steel shear walls). Each consists of an NU-storey OSB-

sheathed CFS shear wall frame atop an NL-storey RC moment-resisting frame. The provided 

examples are: 

1. A ten-storey structure with a one-storey upper structure in Montreal, evaluated using the 

method for appendages. 

2. A twelve-storey structure with a one-storey upper structure, in Vancouver, evaluated using 

the method for appendages. 
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3. An eight-storey structure having a four-storey upper and lower structure, in St. Catharines, 

Ontario, evaluated using the proposed method.  

4. A nine-storey structure having a three-storey lower structure and a six-storey upper structure 

in Montreal is evaluated using the proposed method. The structure exceeds the two-stage 

limit and so is also compared using the Yuan (2016) two-stage method described in Appendix 

F. 

Note that none of the above examples are specifically selected to be a worst-case scenario for the 

applicability of the NBCC, but are instead selected to demonstrate a variety of different 

configurations. The NBCC generally performs worst when the mass ratio and stiffness ratio are as 

large as possible, but rm = 5 and rk = 20 are rare in practical structures. The proposed methods may be 

over-conservative in some cases to accommodate these extreme cases, but fine-tuning these methods 

is for a future study. Strictly speaking, the NBCC ESFP distribution does not apply to most irregular 

structures; however, there is no alternative in the NBCC for irregular structures, and thus the ESFP 

distribution is considered to be the default assumption for comparison. In the absence of an 

alternative, designers will likely use the NBCC ESFP distribution in order to provide a baseline for 

dynamic analysis results, thus, even if it is not strictly applicable the NBCC-specified force 

distribution is considered the default assumption. Therefore, the example calculations include an 

NBCC calculation. These calculations include: 1) the base shear V, limited by the NBCC-specified 

minimum shear specified for other systems (i.e. not otherwise classified), 2) the default top storey 

shear Ft, and 3) the default higher mode factor Mv, and 4) the default assumed force distribution. It is 

assumed that each structure is of normal importance (IE = 1), on soil class C (no soil modification), 

and no inelastic modification is applied (RdRo = 1). Some factors are kept constant between the 

examples for simplicity’s sake – it is assumed in each case, for example, that the floor dimensions are 

a constant 25 metre by 25 metre square, on which either the shear walls or the moment-resisting 

frame columns (as applicable) are symmetrically and uniformly arranged.  

4.7.1 Example 4-1 

To demonstrate the proposed procedure for appendage structures, a ten-storey structure placed at 

Montreal (City Hall) is selected. The corresponding spectral values are as follows: 
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Table 4.7: NBCC 2015 spectral acceleration for Montreal City Hall (NRCC, 2015a) 

Sa(0.2) Sa(0.5) Sa(1.0) Sa(2.0) Sa(5.0) Sa(10.0) 

0 595 0.311 0.148 0.068 0.018 0.0062 

As for the structure itself, it is assumed that the one-storey upper (appendage) structure experiences 

a 3 kPa specified dead load over a 25 metre by 25 metre floor plan, thus: mU = 1.91×105 kg. It is 

assumed that 75 metres of the shear wall are provided at a unit stiffness of 1640 kN/m/m, and thus kU 

= 1.23 × 105 kN/m and TsingU = 0.25 seconds. Meanwhile, the lower structure is assumed to be a nine-

storey reinforced concrete moment-resisting frame over the same 25 metre by 25 metre dimensions. 

The frame consists of a five-by-five square grid of columns that are 600 mm by 600 mm in dimension 

which have a compressive strength of 40 MPa, an elastic modulus of approximately 28460 MPa and a 

stiffness of 6.83 × 104 kN/m per column. Therefore, kL = 1.71 × 106 kN/m and rk = 13.90. It is 

assumed that rm = 2.40 and thus mL = 4.58×105 kg and TsingL = 0.10 s. The assumed interstorey height 

is 3 metres.  

Following the procedure given by Section 4.6, the relevant values are: Rm = 21.60, Rk = 3.41, RkU1 = 

2.76, RkU2 = 22.60, αU1 = 1.14, αUmax = 2.99, and finally, αU = 1.28. Rk lies between RkU1 and RkU2, and 

so the other critical values of Rk and αU are irrelevant. Using mU, TsingU and αU, VUb is found to be 

1.31×103 kN. For the lower structure component, MvSa(TL) = 0.27, and the base shear is 1.11×104 kN. 

In combination with the shear contributed from the upper structure, the final base shear is 1.24×104 

kN. The final force distribution, with the upper structure acting as a top storey force on the lower 

structure, is illustrated alongside both the modal response spectrum and default NBCC distributions in 

Figure 4.11. 

As expected, the proposed method is not necessary for the lower structure for structures having an 

appendage – the default NBCC distribution well-represents the loads on the lower structure. Indeed, 

the proposed procedure modestly worsens the accuracy of the loads on the lower structure. The 

proposed method explicitly separates the lower and appendage structures’ loads despite this to 

thoroughly separate the calculations for the upper and lower structures’ contributions. Where the 

NBCC does not perform well is at the top storey with the top-storey shear being underestimated by 

20%. As discussed elsewhere, Mv and the default force distribution are inadequate to predict the top-

storey shear, and instead, αU should be used. As Rkb1 is 14.62 per Equation (4.11) and the Yuan (2016) 

method would also be applicable. The two methods are quite similar; in any event, it can be said that 

the proposed method performs better than the default NBCC ESFP at predicting the storey loads such 
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that the estimate is consistently conservative, despite a significant difference in stiffness and mass on 

a storey-by-storey basis between the appendage and lower structures.  

 

Figure 4.11: Example 4-1 force distribution and error 

4.7.2 Example 4-2 

As a second example, consider the same structure as Example 4-1, but at Vancouver City Hall and 

with an eleven-storey lower structure rather than a nine-storey one. The Vancouver City Hall 

spectrum values appear in Table 3.13. In this case, the same storey masses and stiffnesses are 

adopted, and following the same procedure as Example 4-1: Rm = 26.40, Rk = 2.85, RkU1 = 2.74, RkU2 

= 27.40, αU1 = 1.42, αUmax = 3.29, and finally, αU = 1.42. The assumed interstorey height is 3 m.  

Like Example 4-1, the proposed method is much better at predicting the top storey shear of the 

upper structure than the NBCC despite a significant degree of irregularity. However, unlike Example 

4-1, the NBCC does not underestimate the top storey force – instead, the NBCC overestimates it by 

60%, compared to only a marginal overestimate by the proposed method.  
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Figure 4.12: Example 4-2 force distribution and error 

4.7.3 Example 4-3 

For Example 4-3, consider a structure having a four-storey lower structure and a four-storey upper 

structure (NU  = NL = 4) and having the same storey properties for the upper structure (mU = 1.91×105 

kg, kU = 1.23 × 105 kN/m). This structure is assumed to be constructed in St. Catharines, Ontario 

using the values given in Table 3.7. It is assumed that rm = 3.10 and rk = 5.87, corresponding to mL = 

5.92×105 kg, and kL = 7.23 × 105 kN/m and to the same five-by-five grid of columns, each 500 mm by 

500 mm in dimension having a compressive strength of 30 MPa, an elastic modulus of approximately 

24975 MPa and a stiffness of 2.89 × 104 kN/m per column. Therefore: Rm = 3.10, Rk = 7.14, RkU1 = 

2.29, RkU2 = 4.10, RkU3 = 6.10, αUmax = 1.35, and finally, αU = 1.35. However, because the upper 

structure is more than a single storey, so the method applicable to appendage structures does not 

apply – the more general method described by Chapter 4.5 must be used. Thus, it is necessary to also 

calculate αUtop and the exponent k. 

Per Equation (3.14) and then Equation (A.13), TU = 1.04 seconds and T1 = 1.07 seconds (and thus,  

Atop and Btop are evaluated from Table 4.5 and Table 4.6 as 1.28 and 0.82, and thus per Equation (4.16) 

αUtop = 1.20. Therefore: 

𝑉𝑈𝑏 = (1.35)(7.64 × 10
6𝑘𝑔)(9.8𝑁/𝑘𝑔)(0.118) = 1.19 × 103𝑘𝑁 (4.28) 

𝑉𝑈𝑡𝑜𝑝 = (1.20)(1.91 × 10
5kg)(9.8𝑁/𝑘𝑔)(0.292) = 6.54 × 102𝑘𝑁 (4.29) 
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(1.91 × 105kg)(𝑁𝑈 × 3𝑚)
𝑘

∑ [(1.91 × 105kg)(𝑖 × 3𝑚)𝑘]
𝑛=𝑁𝑈
𝑖=1

=
6.54 × 102𝑘𝑁

1.19 × 103𝑘𝑁
→ 𝑘 = 2.12 (4.30) 

The storey shears for the upper structure are defined using Equation (4.22): 

𝑉𝑥,𝑢𝑝𝑝𝑒𝑟 = (𝑉𝑈𝑏)
∑ 𝑊𝑖ℎ𝑖

𝑘𝑛=𝑁𝑈
𝑖=𝑥

∑ 𝑊𝑖ℎ𝑖
𝑘𝑛=𝑁𝑈

𝑖=1

 (4.31) 

The loads on the lower structure are evaluated according to Equation (4.24) and Equation (4.26): 

𝑉𝐿𝑏 = 1.19 × 10
3𝑘𝑁 + 0.121(9.8𝑁/𝑘𝑔)(4 × 5.92 × 105𝑘𝑔) = 4.00 × 103𝑘𝑁 

(4.32) 

The calculation of the loads according to Equation (4.27) is tabulated in Table 4.8, and the results 

are plotted alongside the MRS and NBCC results in Figure 4.14.  

Table 4.8: Calculation of proposed force distribution 

Storey (𝑉𝑈𝑏)
∑ 𝑊𝑖ℎ𝑖

𝑘𝑛=𝑁𝑈
𝑖=𝑥

∑ 𝑊𝑖ℎ𝑖
𝑘𝑛=𝑁𝑈

𝑖=1

 [𝑉𝐿𝑏 − 𝑉𝑈𝑏]
∑ 𝑊𝑖ℎ𝑖
𝑛=𝑁𝐿
𝑖=𝑥

∑ 𝑊𝑖ℎ𝑖
𝑛=𝑁𝐿
𝑖=1

 𝑉𝑥 

8 7.20 × 102𝑘𝑁  7.20 × 102𝑘𝑁 

7 1.11 × 103𝑘𝑁  1.11 × 103𝑘𝑁 

6 1.16 × 103𝑘𝑁  1.16 × 103𝑘𝑁 

5 1.19 × 103𝑘𝑁  1.19 × 103𝑘𝑁 

4  1.21 × 103𝑘𝑁 2.40 × 103𝑘𝑁 

3  2.01 × 103𝑘𝑁 3.20 × 103𝑘𝑁 

2  2.54 × 103𝑘𝑁 3.73 × 103𝑘𝑁 

1  2.81 × 103𝑘𝑁 4.00 × 103𝑘𝑁 

For Figure 4.13, the proposed method adequately predicts the force distribution on the structure, 

albeit not consistently better than the NBCC. In this example, the NBCC generally performs better in 

the lower structure whereas the proposed method performs better in the upper structure. The reason 

for the overestimate in the lower structure is that T1 = 1.07 seconds but is limited to 0.75 seconds for 

the calculation of the base shear for the proposed method. This is necessary to ensure that the method 

is generally conservative – see Example 4-4 for an example where the NBCC method underpredicts 

the base shear.  
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Figure 4.13: Example 4-3 force distribution and error 

4.7.4 Example 4-4 

For Example 4-4, consider the same parameters as Example 4-1 (mU = 1.91×105 kg, kU = 1.23 × 105 

kN/m, mL = 4.58×105 kg , kL = 1.71 × 106 kN/m), except that the upper structure is now six storeys 

tall and the lower structure is three storeys tall – NU = 6, NL = 3. As before, the key variables are 

therefore: Rm = 1.20, Rk = 23.69, RkU1 = 2.85, RkU2stg = 12.00, αU2stg = 1.15, and finally, αU = 1.15. 

However, because the upper structure is more than a single storey, so the method applicable to 

appendage structures does not apply – the more general method described by Chapter 4.5 must be 

used. Thus, it is necessary to also calculate αUtop and the exponent k.  

Per Equation (3.14) and then Equation (A.13), TU = 1.04 seconds and T1 = 1.07 seconds (and thus, 

Atop and Btop are evaluated from Table 4.5 and Table 4.6 as 1.00 and 0.69, and thus per Equation 

(4.16) αUtop = 0.93. Therefore: 

𝑉𝑈𝑏 = (1.15)(1.15 × 10
6𝑘𝑔)(9.8𝑁/𝑘𝑔)(0.145) = 1.87 × 103𝑘𝑁 (4.33) 

𝑉𝑈𝑡𝑜𝑝 = (0.93)(1.91 × 10
5kg)(9.8𝑁/𝑘𝑔)(0.548) = 9.57 × 102𝑘𝑁 (4.34) 

(1.91 × 105kg)(𝑁𝑈 × 3𝑚)
𝑘

∑ [(1.91 × 105kg)(𝑖 × 3𝑚)𝑘]
𝑛=𝑁𝑈
𝑖=1

=
9.57 × 102𝑘𝑁

1.87 × 103𝑘𝑁
→ 𝑘 = 3.25 (4.35) 

The exact value of the exponent k satisfying Equation (4.19) is 3.25. Since it is assumed that k is no 

larger than 3, Equation (4.23) applies: 
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𝑉𝑥,𝑢𝑝𝑝𝑒𝑟 = (𝑉𝑈𝑏)
∑ 𝑊𝑖ℎ𝑖

𝑘𝑛=𝑁𝑈
𝑖=𝑥

∑ 𝑊𝑖ℎ𝑖
𝑘𝑛=𝑁𝑈

𝑖=1

+ 0.5𝑉𝑈𝑡𝑜𝑝 ≤ 𝑉𝑈𝑏 (4.36) 

The loads on the lower structure are evaluated according to Equation (4.24) and Equation (4.26): 

𝑉𝐿𝑏 = 1.87 × 10
3𝑘𝑁 + 0.239(9.8𝑁/𝑘𝑔)(3 × 4.58 × 105𝑘𝑔) = 5.09 × 103𝑘𝑁 (4.37) 

The calculation of the loads according to Equation (4.27) is tabulated in Table 4.9. 

Table 4.9: Calculation of proposed force distribution 

Storey 
(𝑉𝑈𝑏)

∑ 𝑊𝑖ℎ𝑖
𝑘𝑛=𝑁𝑈

𝑖=𝑥

∑ 𝑊𝑖ℎ𝑖
𝑘𝑛=𝑁𝑈

𝑖=1

 
𝑉𝑥,𝑢𝑝𝑝𝑒𝑟 

[𝑉𝐿𝑏 − 𝑉𝑈𝑏]
∑ 𝑊𝑖ℎ𝑖
𝑛=𝑁𝐿
𝑖=𝑥

∑ 𝑊𝑖ℎ𝑖
𝑛=𝑁𝐿
𝑖=1

 
𝑉𝑥 

9 1.1 × 9.57 × 102𝑘𝑁 1.1 × 1.42
× 103𝑘𝑁 

 1.56 × 103𝑘𝑁 

8 1.49 × 103𝑘𝑁 1.87 × 103𝑘𝑁  1.87 × 103𝑘𝑁 

7 1.72 × 103𝑘𝑁 1.87 × 103𝑘𝑁  1.87 × 103𝑘𝑁 

6 1.84 × 103𝑘𝑁 1.87 × 103𝑘𝑁  1.87 × 103𝑘𝑁 

5 1.87 × 103𝑘𝑁 1.87 × 103𝑘𝑁  1.87 × 103𝑘𝑁 

4 1.87 × 103𝑘𝑁 1.87 × 103𝑘𝑁  1.87 × 103𝑘𝑁 

3   1.69 × 103𝑘𝑁 3.57 × 103𝑘𝑁 

2   2.71 × 103𝑘𝑁 4.58 × 103𝑘𝑁 

1   3.22 × 103𝑘𝑁 5.09 × 103𝑘𝑁 

However, because Rk > RkU2stg (equivalently, Rk2stg per Yuan (2016)), the two-stage procedure given 

by Appendix F is applicable, albeit without the 2.61 multiplier that Yuan specifies should be applied 

to the spectral acceleration (this multiplier is described in Example 3-2 and not used otherwise). For 

comparative purposes, the Yuan (2016) two-stage calculation is performed here, but rather than using 

the NBCC 2010 values or EXP-2 approximation, the NBCC 2015 spectral values are used for 

brevity’s sake and to ensure that the same values are being used for each method. Strictly speaking, 

the Yuan (2016) two-stage method is applicable only for ASCE 7-10 and NBCC 2010, but the 

spectral accelerations required by NBCC 2010 and 2015 are different, and so the 2015 values are used 

for each calculation in this example so that the results are consistent  Per Table F.1, Table F.2 and 

Equations (F.6) and (F.7), γreg is evaluated as: 
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𝛾𝑟𝑒𝑔 = 0.05 
(4.38) 

NU = 6, TL = 0.23 seconds and TU = 1.04 seconds, therefore (TU/TL)CRT1 < (TU/TL) = 4.44 < 

(TU/TL)CRT2, ηmin = ηmin2 = 0.62 and (TU/TS)CRT = 1.24 ≤ Sa(TL)/Sa(TU) = 3.88 ≤ TU/TL. Therefore, ηintr is 

calculated according to the second term of Equation (F.9) as 0.65. αU2stg per Equation (D.10) is 1.1. 

Thus, per Equations (F.1) and (F.4): 

𝑉𝑈𝑏 = (1.1)(1.15 × 10
6𝑘𝑔)(9.8𝑁/𝑘𝑔)(0.145) = 1.80 × 103𝑘𝑁 

(4.39) 

𝐹𝑡 = (0.05 + [1 − 0.65])𝑉𝑈𝑏 = 7.20 × 10
2𝑘𝑁  

(4.40) 

Figure 4.4 depicts the response predicted by the newly proposed method, the Yuan (2016) two-

stage method and the default NBCC distribution side-by-side. Both the newly proposed method and 

the Yuan (2016) two-stage method represent the forces in the upper structure well, especially at the 

base of the structure where αU is defined. At the top storey, the Yuan (2016) method performs better, 

but this is expected – its method is explicitly tailored to the two-stage scenario, as opposed to the 

newly-proposed method which is intended to be more general. By comparison, the NBCC 

demonstrates a much larger error at the base of the upper structure compared to either of the other 

methods. At the top storey, the NBCC is approximately correct, but this is likely circumstantial based 

on the selected inputs. It cannot be generally said that the NBCC is effective at predicting the loads in 

the upper structure – as demonstrated by Example 4-2.  

Insofar as the lower structure, the response varies widely based on how the base shear is calculated. 

In the newly proposed method, the lower base shear is based on the absolute sum of the upper 

structure base shear with the inertia of the lower structure evaluated at T1, whereas the Yuan (2016) 

method uses TL instead and combines the upper and lower structure responses using the SRSS 

method. As TL is much smaller than T1, Yuan (2016) predicts a larger base shear for the lower 

structure. By using T1 instead of TL, the proposed method generally predicts a lower shear. The T1 ≤ 

0.75 seconds requirement is imposed to ensure that this does not cause the lower base shear to be 

underestimated as it is by the NBCC in this example. This sometimes causes the base shear to be 

excessively conservative via the proposed method – this is an area for further investigation.  
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Figure 4.14: Example 4-4 force distribution and error 

4.8 Conclusions 

In this chapter, three major aspects are discussed: 1) the NBCC 2015 ESFP and its adequacy as 

applied to regular structure, 2) a method to address appendage structures (one-storey upper structure), 

and 3) a more general method intended to conservatively estimate loads on structures with a multi-

storey upper structure. The key conclusions, divided according to these categories, are as follows: 

1. The NBCC 2015 ESFP is based on a set of assumptions primarily oriented around regular 

structures. For mid-rise regular structures, it is generally conservative. Nevertheless, while the 

error associated with the NBCC 2015 ESFP is typically small, the MRS-derived storey shears 

associated with some configurations may be overestimated by 100% or more, especially at the 

base of the lower structure. The NBCC is primarily concerned with conservatism and 

simplicity but does not incorporate any systematic means of addressing irregular structures. 

This last aspect is also true of ASCE 7 in general. 

2. For structures having a one-storey upper structure, the upper structure is a relatively small 

portion of the mass, and thus its impact on the lower structure is relatively small. Conversely, 

the lower structure’s presence significantly amplifies the upper structure’s response. The 

premise of the proposed method is that the upper base shear is scaled by αU and the lower 

structure shears are adapted from the typical ESFP. In contrast to Yuan (2016), the proposed 

method proposes that the requirement Rkb1 is not necessary and that the period of the lower 

structure rather than the full structure should be used to analyze the lower structure. The 
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proposed method does not underestimate the appendage’s shear force but is modestly more 

conservative in its estimates of the lower structures’ storey shears.  

3. For structures having an upper structure of more than one storey in height, a more general 

method is proposed to assess the distribution of storey shears. In recognition that the top storey 

shear force is prone to underestimation by the NBCC ESFP, the concept of αU is extended to 

the top storey to estimate the top storey force. Rather than assuming a force distribution, the 

force distribution of ASCE 7 is adopted and modified to suit the endpoints defined by αU and 

αUtop. This defines the upper structure, and the lower structure is defined similarly to the 

appendage method, albeit using the full structure’s period in place of that of the lower 

structure. To account for the potential that this is unconservative at the base of the lower 

structure, T1 is limited to a fixed value. Whereas the NBCC is prone to underestimating the 

storey shears throughout the structure, the proposed method is conservative and performs 

particularly well in the upper structure. The median error at the top storey and the base of the 

upper structure is approximately 10% and 20%, respectively via the proposed method. 

However, the base shears of the lower structure are generally at least 25% larger than that 

predicted by the modal response spectrum analysis on account of the constraints, including 

those applied to T1. A future study should investigate improvements to the overall base shear of 

the lower structure, specifically to replace the fixed limit on T1 currently adopted.  

As an addendum to the investigation of the method applicable to structures having a multi-

storey upper structure, a brief investigation considers the storey-by-storey variation of stiffness 

in the upper structure. A decrease in stiffness from the base to the top of the upper structure 

modestly affects the adequacy of the proposed method insofar as predicting the storey shears. 

Considering this variation, the top storey shear may be underestimated by up to 10%, whereas 

the estimates remain conservative at the base of the upper and lower structures. For a future 

study, this investigation should be extended to the lower structure and incorporate changes to 

prevent the underestimation of shears under more realistic distributions of stiffness. To address 

this potential underestimation, each storey in the upper structure is increased by 10%, but not in 

excess of the upper base shear.  

A total of four examples, two for each of the proposed methods, compare the proposed methods to 

the NBCC 2015 ESFP. Each features an OSB-sheathed CFS shear wall frame as the seismic-force 

resisting system of the upper structure, and a reinforced concrete moment-resisting frame for the 
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lower structure. The stiffnesses and masses are selected to approximate a realistic pre-design example 

based on the relevant building and material codes. In one example the Yuan (2016) two-stage method 

is also compared alongside the NBCC and one of the newly proposed methods. In either case, the 

proposed methods conservatively estimate the storey shears, particularly in the upper structure.  

More generally, future work should consider the proposed methods alongside the two-stage 

procedure given by Yuan (2016) in more detail. Each method advantages and disadvantages, and it 

may be possible to better suit the methods to specific applications. In addition, Yuan (2016) specifies 

that all spectral accelerations be multiplied by 2.61. The rationale for this is discussed in Example 3-

2, but it is not used in the Chapter 4 examples, pending further investigation of its relevance as 

applied to the NBCC. 
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Chapter 5 

Conclusions and Recommendations 

5.1 Summary  

Ultimately, the investigation conducted in the current study addresses the same concerns as Yuan 

(2016) except for damping irregularity. Namely, for mid-rise structures having a stiff, massive lower 

structure, and a less stiff, less massive upper structure, two aspects are considered: 1) a procedure to 

define feasible distributions of design stiffnesses based on an approximation of higher-mode effects 

on the upper base shear, as a function of the irregularity of the structure, and 2) the estimation of the 

equivalent static load distribution on such structures. Chapters 3 and 4 of this thesis concerns these 

two aspects – Chapter 3 concerns the stiffness distribution and expected higher-mode amplification 

effects, and Chapter 4 concerns the approximation of the equivalent static loads.  

Chapter 3 concerns two main elements, which in combination define the feasible stiffness 

distributions. Using the code-specified interstorey drift limit, the stiffness of the upper structure is 

directly related to the higher-mode amplification of shear at the upper structure. Analogously to the 

NBCC’s higher mode factor Mv, αU quantifies this amplification as a function of the mass and 

stiffness irregularity and is approximated via the overall mass ratio Rm, the overall stiffness ratio Rk 

and the spectral acceleration Sa(T). Using αU and the storey drift, a limit state analogue is defined – to 

satisfy the interstorey drift limit for a given structure, the storey stiffness of the upper structure must 

provide adequate resistance against the amplification quantified by αU. In this way, the stiffness of the 

upper structure is said to provide resistance to the loading represented by αU. Thus, combinations of 

upper and lower structure storey stiffnesses satisfying both this requirement and the scope are said to 

be feasible. The latter half of Chapter 3 concerns how to solve for these feasible stiffnesses, including 

two examples.  

Meanwhile, Chapter 4 concerns the approximation of equivalent static loads on vertically irregular 

structures. It begins with a discussion of the NBCC 2015 Equivalent Static Force Procedure (ESFP) 

and its application to regular structures and proposes two approaches to evaluate the loads on 

vertically irregular structures – one applicable to a single-storey (appendage) upper structure, and 

another applicable to a multistorey upper structure. Whereas the ESFP does not always provide 

conservative estimates for the storey shears, particularly in the upper structure, the proposed methods 
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are consistently conservative. Four examples, two for each method, are used to demonstrate the 

proposed methods.  

5.2 Conclusions 

Overall, the key conclusions for Chapter 3 are: 

1. The observed behaviour vis-à-vis Rk is the same as in Yuan: a) for a lower structure which is 

much less stiff than the upper structure, its behaviour approaches that of a damper, 

counteracting the effects of the upper structure, b) for a lower structure which is much stiffer 

than the upper structure, the upper structure acts as though attached to a rigid base, and c) for 

more practical ranges of relative stiffness and mass, the lower structure and upper structure 

may interact – the resulting amplification is potentially greater than or less than unity, 

representing a decrease or increase in the upper structure’s base shear, respectively. The values 

of Rm and Sa(T) heavily influence which of these three conditions are applicable. In general, 

larger values of Rm increase the influence of the lower structure on the upper one and therefore 

correspond to a larger amplification factor αU, particularly where Rm and Rk are approximately 

equal – equivalently, where the fundamental periods of the upper and lower structure are 

closely-spaced. 

2. The value of αU indicates the effect that higher mode effects have on the upper structure’s base 

shear: a) αU < 1 indicates that higher mode effects decrease the expected upper structure base 

shear and is associated especially with the upper structure being much stiffer than the lower 

structure overall (i.e. the damper case above), and b) αU > 1 indicates that the higher mode 

effects amplify the base shear and is associated with closely-spaced periods between the upper 

and lower structure. Meanwhile, a very stiff lower structure is associated with a relatively 

constant αU - Yuan (2016) interprets this as αU ≈ 1. More specifically, αU in this region can be 

as large as 1.25. The proposed formulation modestly improves on the accuracy of the previous 

formulation and expands the scope – within the expanded scope, αU is generally overestimated 

by 2% to 27% by the proposed method.  

3. This αU directly relates the storey drift at the base of the upper structure to the upper structure 

storey stiffness kU. In conjunction with the overall stiffness ratio Rk, this relationship is used to 

characterize those combinations of stiffness that satisfy the scope of the study and the code-

specified interstorey drift requirement. The derivation uses the NBCC 2015 spectrum to solve 
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the relationships directly rather than using the transformed NBCC spectrum adopted by Yuan 

(2016). While this can still be done numerically, a graphical solution is also proposed for the 

critical values of kU. 

4. The existing examples and calculations are defined using the linear response, and thus RdRo = 

1. Correspondingly, the proposed methods, including αU, are independent of RdRo. For practical 

application, designers may adopt the smallest RdRo of the two seismic force-resisting systems 

that are used, consistent with NBCC 2015 recommendations. 

Much of Chapter 3 is similar to Yuan (2016). Consequently, the high-level details of αU and the 

procedure to define feasible stiffness distributions are mostly identical. The main differences are in 

the form rather than the substance of the formulation – to better suit the NBCC 2015, the critical 

values of Rk and αU are updated, and the feasible stiffnesses distributions feature a more direct (albeit 

still numerical) solution.  

The following chapter, Chapter 4, proposes two procedures to determine the storey shears on a 

mid-rise structure with a combination of framing systems: 

1. The first method applies only to structures with a one-storey upper structure (appendage). In 

the method, the appendage’s base shear is amplified using αU to account for higher-mode 

effects due to irregularity, and the lower structure’s base shear is defined similarly to the 

NBCC base shear. The loads on the lower structure are defined according to the standard 

NBCC static procedure, albeit with the upper structure’s base shear replacing the code-

specified top storey shear Ft. 

2. The second method applies to structures having a multistorey upper structure. The αU concept 

is extended to the top storey to define αUtop, and using αUtop and αU the higher-mode top storey 

and upper structure base shears are defined. The force distribution on the upper structure is 

chosen to suit these endpoints. For the lower structure, the default NBCC distribution is used, 

albeit with the upper structure base shear replacing the code-specified top storey shear Ft. An 

additional limit on the period of the full structure is applied to ensure that the base shear of the 

lower structure is conservative. The method is still largely conservative if the upper structure is 

considered to have some degree of stiffness variation – however, a modest increase of 5-10% 

to the top storey loads is appropriate to prevent underestimation in this more realistic scenario. 
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Therefore, a 10% increase is applied to the storey shears of all storeys in the upper structure. 

These adjusted shears do not need to be larger than the upper base shear.  

3. Unlike the default equivalent static procedure specified by NBCC 2015, neither method 

considers the entire structure in one piece. Instead, both methods bear a passing resemblance to 

the ASCE 7 two-stage procedure – the upper structure and lower structure are analyzed 

separately and reassembled, with the upper structure’s base shear being applied to the top of 

the lower structure.  

4. The existing examples and calculations are defined using the linear response, and thus RdRo = 

1. Correspondingly, the proposed methods are independent of RdRo. For practical application, 

designers may adopt the smallest RdRo of the two seismic force-resisting systems that are used, 

consistent with NBCC 2015 recommendations. 

In general, αU is an appropriate measure of irregularity and is useful in defining both appropriate 

stiffness distributions and equivalent static loads on the base of the upper structure. The proposed 

methods defined using αU are generally conservative and applicable to a wide array of structures. The 

proposed methods have been updated to cover a larger scope than those proposed by Yuan & Xu (Xu 

& Yuan, 2015; Yuan, 2016; Yuan & Xu, 2016, 2014) and have been updated to reflect NBCC 2015. 

5.3 Recommendations 

Much like the existing National Building Code of Canada, the current study relies on a mix of linear 

dynamic modal response spectrum analysis and linear static analysis, rather than nonlinear and/or 

time history analysis, besides a limited nonlinear time history analysis investigation performed by 

Yuan (2016). Nonlinear analysis, especially for complex systems such as mid-rise structures with a 

vertical combination of framing systems, is difficult and time-consuming to perform, difficult to 

interpret, and difficult to generalize. Thus, codes often rely on a mix of linear elastic analysis and 

engineering judgment, in part because they wish to be both general and simple-to-use. It is inevitable 

that some of these simplifications must be made for a non-iterative, static method. Unfortunately, 

focusing exclusively on the linear modal response spectrum is somewhat myopic – nonlinear and time 

history analysis can reveal trends that are not evident in a simpler analysis.  

 Insofar as nonlinear analysis: 
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1. Research should investigate the inelastic modification factors RdRo (NBCC) and R (ASCE) for 

combined framing systems. The existing research is piecemeal and not generalizable, and 

sometimes the values given in the codes themselves for individual systems are somewhat 

arbitrary or reliant on engineering judgment (FEMA, 2009b). The treatment between codes is 

likewise inconsistent – NBCC 2015 specifies that the lowest of the two systems should be 

used, whereas ASCE 7’s two-stage procedure sometimes allows a mix of values to be used. 

The risks and expected performance should be made clear by the design codes, and research 

should be undertaken the evaluate the effective RdRo of combined framing systems.  

2. A more comprehensive set of nonlinear time history analyses should be undertaken to assess 

the effectiveness of αU and the other parameters and procedures introduced in this study. In 

particular, previous research has identified that the effect of closely-spaced periods of the upper 

and lower structures, or of the structure and the seismic excitation, may not be well-captured by 

linear modal response spectrum or static analyses. Studies have also identified the risk of 

damage concentration in the vicinity of the irregularity – this must be evaluated. 

Aside from the issue of nonlinear behaviour, there remain limitations on the linear analysis. Further 

research could expand the scope to which these methods apply, or investigate such issues such as 

equivalent damping, flexible diaphragms, torsion or soil conditions other than Class C. More 

fundamentally, several outstanding issues remain for the method proposed in this thesis, namely: 

1. The definitions of αU and the procedure to derive feasible stiffnesses proposed in Chapter 3 

should be extended so that it applies for Rk < RkU1. This limitation is imposed to ensure that the 

largest interstorey drift occurs at the base of the upper structure, but it is reasonable to expect 

that a more regular structure is less vulnerable. The current procedure is unable to analyze 

regular structures. 

2. Yuan (2016) suggests that spectral accelerations should be multiplied by 2.61 to ensure a 

certain level of seismic hazard. It is unclear whether this is necessary for the NBCC spectrum 

given its methodological differences from ASCE 7, and so this matter should be investigated. 

3.  The investigation of the variation of stiffness should be extended to the lower structure. The 

current study considers only the upper structure having variation of stiffness. 

4. In general, the methods proposed to determine the loads in this thesis, as well as the Yuan 

(2016) two-stage method, have different approaches and therefore may be better suited if 
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calibrated to specific ranges of Rk. This notwithstanding, the newly proposed method for 

multistorey upper structures relies heavily on rules-of-thumb and approximate limits on 

specific variables. Further investigation should improve these approximations, particularly 

applied to the base of the lower structure. Likewise, the 10% surcharge applied to the upper 

structure to account for stiffness variation should be further improved.  

5. The current study applies only to NBCC 2015. Given that revisions to both the NBCC and the 

US National Earthquake Hazard Reduction Program (NEHRP) recommendations (which 

inform ASCE 7) are imminent, the newly-proposed methods and those proposed by Yuan & 

Xu (Xu & Yuan, 2015; Yuan, 2016; Yuan & Xu, 2016, 2014) should be re-examined in the 

context of the new provisions. In particular, NBCC 2020 will be incorporating new ground-

motion prediction models which may change the spectral acceleration relationships in some 

regions (Adams et al., 2019). 
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Appendix A 

Modal Response Spectrum Analysis to Evaluate αU of Simplified 2DOF 

Model  

As in Yuan (2016) and Chopra (2012), the governing ordinary differential equation (ODE) for an 

MDOF lumped-mass system is:  

𝑴𝒙̈(𝑡) + 𝑪𝒙̇(𝑡) + 𝑲𝒙(𝑡) = 𝑭(𝒕) (A.1) 

where M, C, and K are the mass, damping and stiffness matrices associated with the structure, F is 

the forcing vector, and 𝒙,  𝒙̇, and 𝒙̈, represent the displacement, velocity and acceleration co-

ordinates. For a 2DOF system fixed at its base and separated into upper and lower degrees of freedom 

(denoted by U and L respectively), the matrices are constructed as follows: 

𝑴 = [
𝑀𝐿 0
0 𝑀𝑈

]              (A.2) 

𝑲 = [
𝐾𝑈 + 𝐾𝐿 −𝐾𝑈
−𝐾𝑈 𝐾𝑈

] (A.3) 

𝑪 = [
𝐶𝑈 + 𝐶𝐿 −𝐶𝑈
−𝐶𝑈 𝐶𝑈

] (A.4) 

From the ODE (Equation (A.1)), the eigenvalue problem for free vibration of the 2DOF system is 

defined as: 

                  𝜔𝑛
2𝑴Φ = 𝑲Φ (A.5) 

∴ 𝑑𝑒𝑡|𝑲 − 𝜔𝑛
2𝑴| = 0      (A.6) 

(𝐾𝐿 + 𝐾𝑈 −𝜔𝑛
2𝑀𝐿)(𝐾𝑈 −𝜔𝑛

2𝑀𝑈) − 𝐾𝑈
2 = 0                                               (A.7) 

where the eigenvalues ωn and eigenvectors Φ correspond to the circular frequencies and mode shapes 

of the system.  Each column of Φ (𝜙n), corresponds to the n-th mode shape of the structure. Using 

Equations (3.18) and (3.19) to express KL and ML in terms of KU and MU, the first and second mode 

periods of the 2DOF model, as well as the period of the SDOF upper structure are obtained:   

𝜔2 =
𝑀𝑈𝐾𝑈(𝑅𝑚 + 𝑅𝑘 + 1) ± √𝑀𝑈

2𝐾𝑈
2(𝑅𝑚 + 𝑅𝑘 + 1)

2 − 4𝑅𝑚𝑅𝑘𝑀𝑈
2𝐾𝑈

2

2𝑅𝑚𝑀𝑈
2  

(A.8) 

𝑇1 = √
𝑀𝑈

𝐾𝑈
[

8𝜋2𝑅𝑚

𝑅𝑚 + 𝑅𝑘 + 1 − √(𝑅𝑚 − 𝑅𝑘 − 1)
2 + 4𝑅𝑚

] (A.9) 
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𝑇2 = √
𝑀𝑈
𝐾𝑈

[
8𝜋2𝑅𝑚

𝑅𝑚 + 𝑅𝑘 + 1 + √(𝑅𝑚 − 𝑅𝑘 − 1)
2 + 4𝑅𝑚

] (A.10) 

Using the definitions of TU, T1 and T2 from Equations (3.14),  (A.9) and (A.10), the mode shapes 

can likewise be expressed in terms of MU, KU, TU, T1 and T2: 

[−𝐾𝑈]𝜙𝐿 + [𝐾𝑈 −𝜔𝑛
2𝑀𝑈]𝜙𝑈 = 0 (A.11) 

                        𝜙𝐿 =
𝐾𝑈 −𝜔𝑛

2𝑀𝑈
𝐾𝑈

𝜙𝑈

= (1 −
𝑀𝑈
𝐾𝑈

𝐾𝑈
𝑀𝑈

[
𝑅𝑚 + 𝑅𝑘 + 1 ±√(𝑅𝑚 + 𝑅𝑘 + 1)

2 − 4𝑅𝑚𝑅𝑘
2𝑅𝑚

])𝜙𝑈 

(A.12) 

𝜙1 = {
𝜙𝐿1
𝜙𝑈1

} = {

1

2
(
𝑅𝑚 − 𝑅𝑘 − 1 + √(𝑅𝑚 − 𝑅𝑘 − 1)

2 + 4𝑅𝑚
𝑅𝑚

)

1

} = {1 − (
𝑇𝑈
𝑇1
)
2

1

} (A.13) 

𝜙2 = {
𝜙𝐿2
𝜙𝑈2

} = {

1

2
(
𝑅𝑚 − 𝑅𝑘 − 1 − √(𝑅𝑚 − 𝑅𝑘 − 1)

2 + 4𝑅𝑚
𝑅𝑚

)

1

} = {1 − (
𝑇𝑈
𝑇2
)
2

1

} (A.14) 

The effect of the 2DOF masses in each mode can be characterized by the n-th mode effective mass 

Mn
*. Chopra (2012) defines the quantities as: 

𝑀𝑛
∗ =

(∑ 𝑚𝑗ϕ𝑗𝑛
𝑁
𝑗=1 )

2

(∑ 𝑚𝑗ϕ𝑗𝑛
𝑁
𝑗=1

2
)
 (A.15) 

where N is the number of degrees of freedom of the structure, and 𝜙𝑗𝑛 is the n-th mode shape value at 

the j-th DOF. With some manipulation and by using the definition of Rm given by Equation (3.18), the 

effective modal masses for the first two modes can be defined: 

𝑀1
∗ = 𝑀𝑈1

∗ +𝑀𝐿1
∗ =

𝑅𝑚𝜙𝐿1 + 1

𝑅𝑚𝜙𝐿1
2 + 1

𝑀𝑈 +
𝑅𝑚𝜙𝐿1

2 + 𝜙𝐿1

𝑅𝑚𝜙𝐿1
2 + 1

𝑀𝐿 (A.16) 

𝑀2
∗ = (𝑀𝑈 +𝑀𝐿) − 𝑀1

∗ = 𝑀𝑈2
∗ +𝑀𝐿2

∗  (A.17) 

where Mjn
* is the effective mass of the j-th DOF in the n-th mode, and where the notation M1

* is used 

rather than Mb1
* as is used in Yuan (2016) to denote the effective mass of the full structure in the first 

mode (likewise, M2
* for the second mode). As is the case in Yuan (2016), the contributions associated 

with the upper and lower masses MU and ML can be isolated to determine the effective mass 

associated with each of the upper and lower structure: 
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𝑀𝑈1
∗ =

𝑅𝑚𝜙𝐿1 + 1

𝑅𝑚𝜙𝐿1
2 + 1

𝑀𝑈 (A.18) 

𝑀𝑈2
∗ = 𝑀𝑈 −𝑀𝑈1

∗  (A.19) 

𝑀𝐿1
∗ =

𝑅𝑚𝜙𝐿1
2 + 𝜙𝐿1

𝑅𝑚𝜙𝐿1
2 + 1

𝑀𝐿 
(A.20) 

𝑀𝐿2
∗ = 𝑀𝐿 −𝑀𝐿1

∗  (A.21) 

Yuan (2016) also normalizes the effective modal masses by the mass of the relevant DOFs. The so-

called normalized effective modal masses, denoted by omitting the asterisk, are: 

𝑀𝑈1 =
𝑅𝑚𝜙𝐿1 + 1

𝑅𝑚𝜙𝐿1
2 + 1

  (A.22) 

𝑀𝑈2 = 1 −𝑀𝑈1 (A.23) 

𝑀𝐿1 =
𝑅𝑚𝜙𝐿1

2 + 𝜙𝐿1

𝑅𝑚𝜙𝐿1
2 + 1

 
(A.24) 

𝑀𝐿2 = 1 −𝑀𝐿1 (A.25) 

𝑀1 = 𝑀𝑈1 +𝑀𝐿1 (A.26) 

𝑀2 = 1 −𝑀1 (A.27) 

Using the effective modal masses MU1
* and MU2

* above in conjunction with αU expressed in its 

complete quadratic combination (CQC) form via Equations (3.5) and (3.6), αU and the base shear VUb 

are expressed in the 2DOF model as : 

𝑉𝑈𝑏 = √(𝑀𝑈1
∗ )2[𝑔𝑆𝑎(𝑇1)]

2 + (𝑀𝑈2
∗ )2[𝑔𝑆𝑎(𝑇2)]

2 + 𝜌12𝑔
2(𝑀𝑈1

∗ 𝑆𝑎(𝑇1))(𝑀𝑈2
∗ 𝑆𝑎(𝑇2)) (A.28) 

𝛼𝑈 = √(𝑀𝑈1)
2 [
𝑆𝑎(𝑇1)

𝑆𝑎(𝑇𝑈)
]

2

+ (𝑀𝑈2)
2 [
𝑆𝑎(𝑇2)

𝑆𝑎(𝑇𝑈)
]

2

+ 𝜌12 (𝑀𝑈1
𝑆𝑎(𝑇1)

𝑆𝑎(𝑇𝑈)
)(𝑀𝑈2

𝑆𝑎(𝑇2)

𝑆𝑎(𝑇𝑈)
) (A.29) 

By omitting the modal interaction terms associated with ρ, the square-root-sum-of-squares (SRSS) 

combination can also be defined for αU: 

𝛼𝑈 = √(𝑀𝑈1)
2 [
𝑆𝑎(𝑇1)

𝑆𝑎(𝑇𝑈)
]

2

+ (𝑀𝑈2)
2 [
𝑆𝑎(𝑇2)

𝑆𝑎(𝑇𝑈)
]

2

 (A.30) 

However, while Equation (A.30) may occasionally be representative, interaction effects are 

significant and so Equation (A.29) should be used.  
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Appendix B 

Analytical Study on αU 

B.1  Introduction 

In Section 3.3.2, the typical behaviour for several variables’ influence on αU is summarized. This 

Appendix is intended to further develop this parameter survey. Inevitably, much of the following is 

similar to that of Xu & Yuan (2015) and Yuan (2016) owing to the similarities between the two 

models. Despite this, it is necessary to reiterate this information for ready access throughout the thesis 

text. Where possible the original content is supplemented with additional commentary and insights 

specific to NBCC 2015.  

B.2 Effect of overall stiffness ratio Rk and overall mass ratio Rm on αU 

As with Xu & Yuan (2015) and Yuan (2016) and per Equation (A.29), αU is chiefly subject to the 

variables MU1, MU2, Sa(T1)/Sa(TU) and ρ, and thus Rm and Rk. The influence of Rk on each of these 

variables is therefore essential to articulate how αU changes as a function of Rk. However, Equation 

(A.29) is based on the 2DOF model and therefore ignores the third and higher modes. Consequently, 

the following conclusions based on the 2DOF model indicate the general trend but may obscure 

variation hidden by truncating higher modes. Note that frequent reference is made to a line Rk = Rm + 

1 in the following plots. The line Rk = Rm + 1 is used frequently in Xu & Yuan (2015) and Yuan 

(2016) and so to avoid unnecessarily changing the previous formulation it is kept the same. 

Ultimately, Rk = Rm + 1 are adequate for the degree of specificity of the proposed method, and rather 

than expend great effort fixing the line to some other value it is preserved for simplicity and 

consistency.  

B.2.1 Effects of Rk and Rm on φL1 

Yuan (2016) provides that the derivatives of φL1 with respect to Rk, where φL1 is defined by Equation 

(A.13), is: 

𝑑ϕ𝐿1
𝑑𝑅𝑘

=
−√(𝑅𝑚 − 𝑅𝑘 − 1)

2 + 4𝑅𝑚 − (𝑅𝑚 − 𝑅𝑘 − 1)

2𝑅𝑚√(𝑅𝑚 − 𝑅𝑘 − 1)
2 + 4𝑅𝑚

 (B.1) 

Likewise, the derivative for Rm can be derived, but in a form complex enough that a plot is more 

intuitive. Figure B.1 illustrates the change of φL1 with respect to Rk (a) and Rm (b). 
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a) b) 

Figure B.1: Variation of φL1 as a function of Rk and Rm 

It is observed that φL1 increases as Rm increases and decreases as Rk increases, assuming that only 

one of the two is varied at a time. While in general φL1 is bounded between 0 and 1, an increase in Rk 

will generally cause φL1 to decrease from 1 quickly and then asymptotically approach 0 as Rk further 

increases. Likewise, for practical values of Rk, an increase in Rm will cause φL1 to increase from some 

minimum and proceed asymptotically towards 1. 

B.2.2 Effects of Rk and Rm on φL2 

The second mode shape of the lower structure, φL2, is also relevant as it is related to T2/TU via 

Equation (A.14). While φL1 is bounded between zero and one given that the first mode shape values 

increase towards the maximum (normalized to one in this case) from the base towards the top, φL2 

may take any negative value so long as it is consistent with the upper structure’s second mode shape 

value, which is normalized to a value of one. Consequently, φL2 may hypothetically take any negative 

value based on the value of Rm and Rk. In this case, it is apparent in Figure B.2 that φL2 is 

comparatively small in magnitude for small Rk and large Rm, and increases greatly in magnitude for an 

increase in Rk or a decrease of Rm. For extremely small values of Rk or large values of Rm, φL2 trends 

towards zero. This is indicative of the full effective mass being concentrated in the first mode and 

occurs as the upper structure becomes either relatively rigid (small Rk) such that it acts as a rigid body 

or relatively massive (small Rm) relative to the lower structure such that the upper structure’s inertia is 

dominant. By Equation (A.13), it can also be understood that as Rk increases or Rm decreases, φL2 

increases in magnitude, and therefore the magnitude of TU/T2 increases. 
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a) b) 

Figure B.2: Variation of φL2 as a function of Rk and Rm 

B.2.3 Effects of Rk and Rm on MU1 and MU2 

Based on the definition of MU1 provided by Equation (A.21), Xu & Yuan (2015) and Yuan (2016) 

provide the first derivative of MU1 as a function of Rk: 

𝑑M𝑈1

𝑑ϕ𝐿1
=
−𝑅𝑚(𝑅𝑚ϕ𝐿1

2 + 2ϕ𝐿1 − 1)

(𝑅𝑚ϕ𝐿1
2 + 1)2

 (B.2) 

Combining the above expression with that of Equation (D.19), they state that MU1 reaches its 

maximum at Rk = Rm + 1, which can be easily verified by calculating the Rk-MU1 curve for different 

values of Rm, and identifying the co-ordinate (Rk, Rm) associated with the maximum. They further 

provide that where Rk = Rm + 1, the maximum MU1 is: 

𝑀𝑈1,𝑚𝑎𝑥 =
𝑅𝑚√1 + 𝑅𝑚

(√1 + 𝑅𝑚 − 1)
2
+ 𝑅𝑚

 (B.3) 

However, Equations (B.2) and (B.3) do not lend themselves to an intuitive understanding. Figure 

B.3 illustrates how MU1 and MU2 change as a function of Rm and Rk. Compared to the mathematical 

representation, the trends are obvious in three dimensions, namely:  

1. MU1 is largest when the distance from the line Rk = Rm + 1 is the smallest. Correspondingly, 

the effective mass of co-ordinates (Rm, Rk) farther from the line is smaller, and trends towards 

unity at the extremes. The rate of change is most pronounced near the line Rk = Rm + 1, and 

the slope flattens as Rk or Rm approach 0. 
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2. The absolute value of MU2 is largest when MU1 is largest and follows the same trend as MU1. 

Nevertheless, while this is true of the 2DOF model on account of how MU1 and MU2 are 

defined this is only approximately true of the MDOF model, in which the definitions are 

slightly different and where higher modes may either decrease or increase the overall 

response. 

3. As MU1 approaches unity, MU2 necessarily approaches 0, and in relative terms MU2 is 

negative-valued. 

 

Figure B.3: Variation of MU1 and MU2 as a function of Rk and Rm 

Note that the axes of the upper left (MU1) and lower left plots (MU2) are swapped in direction. This 

is done to emphasize the shape of MU2 which would otherwise be obscured. 

B.2.4 Effect of Rk and Rm on periods TU, T1, T2, and spectral ratios Sa(T1)/Sa(TU) and Sa(T2)/Sa(TU) 

As expressed in Equations (A.29) and (A.30), the period of the upper structure (TU) and the first two 

periods of the full structure (T1 and T2) are related to the amplification factor αU owing to the 

relationship between these periods and the corresponding spectral values Sa(TU), Sa(T1) and Sa(T2). In 

Yuan (2016), ASCE 7 permits ratios of these values to be directly related to the periods themselves 
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on account of the shape of the ASCE 7 spectrum, which facilitates a very concise and simple 

definition of Sa(T1)/Sa(TU) and Sa(T2)/Sa(TU). As alleged in Section 3.3.2, this association is not as 

clear in the NBCC as in the ASCE formulation provided by Yuan (2016), owing largely to the 

differences between the NBCC and ASCE 7 spectra. To reiterate the key statements of Yuan (2016) 

and Section 3.3.2 (concerning Sa(T1)/Sa(TU)): 

1. Where both T1 and TU as calculated using the 2DOF approximation lie within the constant 

acceleration region (i.e. ≤ 0.2 seconds for most locations in NBCC 2015, or, equivalently: 

(TU/TS) ≤ (TU/T1) per Yuan (2016), αU takes its maximum value and is constant as a function 

of TU. So long as both periods are in the constant acceleration range, this applies equally to 

both the NBCC and ASCE spectra. 

2. As TU and T1 grow beyond 0.2 seconds, αU changes as the spectral acceleration curve Sa(T) 

descends with an increase in TU and T1. Using the ASCE spectrum, the ratio Sa(T1)/Sa(TU) in 

this region can be described with only TU and T1, such that Sa(T1)/Sa(TU) monotonically 

decreases. This is possible because Sa(T) in the so-called constant velocity region is a linear 

function of 1/T, and so Sa(T1)/Sa(TU) is directly a function of TU/T1. Conversely, the NBCC 

spectrum is more indirect: Sa(T) is a piecewise linear function of T, and so Sa(T1)/Sa(TU) 

fluctuates in slope when T1 and TU lie in different segments. As a consequence, Sa(T1)/Sa(TU) 

often decreases but is punctuated by regions of local increase. 

3. At long periods, the distinction remains. In the ASCE spectrum, Sa(T) for long periods is a 

linear function of 1/T2 and consequently continues decreasing ad infinitum, while for NBCC 

2015 Sa(T) = Sa(10.0) for all periods beyond 10 seconds. Thus, while Sa(T1)/Sa(TU) does not 

significantly increase at longer periods for ASCE 7, it returns to one for the NBCC where 

both T1 and TU exceed 10 seconds. Long periods (T > 10 seconds) are not of importance in 

this study, but what this implies is that Sa(T1)/Sa(TU) neither consistently decreases nor 

increases for the NBCC spectrum. In approximate terms, the NBCC 2015 spectrum leads to 

Sa(T1)/Sa(TU) having an approximately U-shaped form – equal to one at the extremes, some 

intermediate minimum, and multiple intermediate changes between downward-sloping and 

upward-sloping segments as the two periods transition between segments of the Sa(T) curve. 

Figure B.4 depicts the relationship between αU and Sa(T1)/Sa(TU) as calculated according to the NBCC 

2015 spectrum for an assumed ratio of T1 and TU. Showing three locations (Toronto, Halifax and 

Vancouver) side-by-side, it is evident that αU matches the shape of the Sa(T1)/Sa(TU) distribution. αU 
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and Sa(T1)/Sa(TU) change slope at TU values matching the critical T-values which define the NBCC 

2015 spectrum (0.2, 0.5, 1.0 seconds, etc.), and the critical T-values multiplied by the ratio of TU/T1 

(0.2 TU/T1, 0.5 TU/T1 seconds, etc.). Moving left to right, these points mark where either T1 or TU 

transition to the next segment of the NBCC spectrum. The trend is not uniformly downward and 

depends both on the periods and on the shape of the spectral acceleration curve Sa(T). Unlike the 

ASCE formulation given by Yuan (2016), Sa(T1)/Sa(TU) cannot be replaced by T1/TU or some other 

combination of periods – it must be evaluated directly. 

  

Figure B.4: Variation of αU relative to Sa(T1)/Sa(TU) 

Thus, T1 and T2 must be evaluated. Generically, they can be considered as more inputs to the 

model, but this is unhelpful. Instead, the same approach as Yuan (2016) is used – T1 and TU are 

related to Rm and Rk via φL1 and Equation (A.13), and so therefore for any arbitrary Rm and Rk, Sa(T1) 

can be approximated. In a similar manner, Equation (A.14) relates T2 and TU. 

From the conclusions of Section B.2.1, it is known that φL1 increases as Rm increases and decreases 

as Rk increases, but the relationships of Equations (A.13) and (A.14) are not immediately obvious as 

they apply to Rk and Rm. With some manipulation of Equations (A.13) and (A.14), the following 

relationships can be derived between T1, T2 and TU:  
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√1 − 𝜙𝐿1 =
𝑇𝑈
𝑇1

 (B.4) 

√1 − 𝜙𝐿2 =
𝑇𝑈
𝑇2

 (B.5) 

Using these functions to estimate and plot the ratios TU/T1 and TU/T2 as a function of Rm and Rk in 

Figure B.5, it is easily recognized that the plots featuring TU/T1 mirror Figure B.1. Evidently, a 

decrease in φL1 increases TU/T1, and as before this is associated with either an increase in Rk or a 

decrease in Rm. However, because the relationship is of the square root of 1 − φL1 rather than φL1 itself, 

the characteristics of TU/T1 are distinct. As TU/T2 is nigh-identically defined, it is of identical shape 

but inverted in orientation. This can be attributed to the fact that generally T2 ≤ TU ≤ T1, and so well-

separated T1 and TU produce a ratio of less than 1, whereas T2 is less than TU and therefore an equal 

absolute distance (in seconds) apart to that of T1 and TU will result in a ratio larger than 1.  

The first observation to be made is that an increase in Rk or a decrease in Rm will result in an 

increase in the value of TU/T1 and of TU/T2, such that TU/T1 tends towards zero and TU/T2 tends 

towards infinity. These endpoints are bounded in a practical sense because of limitations on the 

relative stiffnesses and masses of the upper and lower structures (and accordingly, of the upper 

structure and the whole), and on how well the 2DOF model approximates the MDOF periods (setting 

aside the altogether different problem of estimating periods on realistic structures). Let it suffice to 

say that none of the structures in the current scope will have any of T1, T2, or TU which are of 

excessively small magnitude compared to the others. 

The remaining key takeaway is what Figure B.5 implies about the relative distance between T1 and 

TU and between T2 and TU. For example, TU/T1 increases as Rk increases (albeit at a slower rate with 

higher Rm), which implies that the influence of the first mode on the upper structure becomes 

relatively more significant, consistent with the trend of MU1 observed in Figure B.3. Meanwhile, the 

same change of Rk causes an increase in the ratio between TU/T2. Considering that TU is generally 

between T2 and T1, this implies that as Rk increases, TU moves farther and farther away from the 

second mode until the theoretical limit at which it vibrates only in the first mode. While the details are 

elaborated further in developing RkU2stg in Section C.2.3, there is a relationship between Figure B.5 

and the Rk ≥ 10 and T1/TU ≤ 1.1 limits which delineate the two-stage procedure in ASCE 7 (2010, 

2017). A parallel can also be drawn between Figure B.5 and the logic given by Yuan & Xu (2016) 

and Yuan (2016), in which the two-stage assumption is characterized by T1 ≈ TU while T2 ≈ TL.  
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Figure B.5: Variation of TU/T1 and TU/T2 relative to Rk and Rm 

Having characterized T1/TU and T2/TU, it is desirable to describe Sa(T1)/Sa(TU) in terms of Rk and Rm. 

Figure B.6 depicts the variation of Sa(T1)/Sa(TU) relative to Rk in the same fashion as illustrated in 

Yuan (2016). As expected the relationship is similar despite some small variation in the shape of the 

plotted curves - Sa(T1)/Sa(TU) increases as Rk does, and attains a value of unity beyond approximately 

Rk = Rm + 1. 
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Figure B.6: Variation of Sa(T1)/Sa(TU) relative to Rk and Rm 

The relationship for Sa(T2)/Sa(TU) is slightly different and is plotted in Figure B.7. Unlike 

Sa(T1)/Sa(TU), Sa(T2)/Sa(TU) is always unity for TU ≤ 0.2 seconds because of T2 ≤ TU and thus Sa(T2) = 

Sa(TU). For TU > 0.2 seconds, Sa(T2)/Sa(TU) increases with Rk until it reaches its peak value. Unlike 

Sa(T1)/Sa(TU), this does not correspond as clearly to Rk = Rm + 1. As Sa(T2)/Sa(TU) also appears in 

Equation (A.29), this necessarily entails that the (Rk, Rm) co-ordinate associated with the maximum 

value of αU is not a single value but instead a range of possible values. The selection of 

approximations for these points is considered in Appendix C. 
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Figure B.7: Variation of Sa(T2)/Sa(TU) relative to Rk and Rm 

B.2.5 Effect of Rk and Rm on T2/T1 and ρ 

Having established the effect of Rk and Rm on the first mode shape, on the effective modal masses and 

the periods and associated spectral values, all that remains is to articulate the effect of Rk and Rm on ρ, 

the correlation coefficient which differentiates the CQC combination method from that of the SRSS 

combination method. If ρ is insubstantial, this implies that the modes are well-separated and thus the 

SRSS method is adequate, whereas if ρ is not negligible this implies that the contributions predicted 

by the SRSS method may significantly differ from those of the CQC method on account of modal 

interactions being neglected. ρ as defined by Equation (3.9) is itself a function only of ζ, and T2/T1 (in 

the 2DOF model). ζ is assumed to be 5% in all modes in this study, consistent with the definition of 

Sa(T) given by NBCC 2015 (NRCC, 2015c), and so therefore ρ is a function only of T2/T1, which 

themselves are expressed only as functions of Rm and Rk according to Equations (A.9) and (A.10). 

Using Equations (A.9) and (A.10), T2/T1 may be defined as (Yuan, 2016): 
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T2
T1
= √

𝑅𝑚 + 𝑅𝑘 + 1 − √(𝑅𝑚 − 𝑅𝑘 − 1)
2 + 4𝑅𝑚

𝑅𝑚 + 𝑅𝑘 + 1 + √(𝑅𝑚 − 𝑅𝑘 − 1)
2 + 4𝑅𝑚

= √
1− ϕ𝐿1

1 +
1

𝑅𝑚ϕ𝐿1

 (B.6) 

If Equation (B.6) is plotted as a function for Rk and Rm as in Figure B.8, the conclusions are similar 

to those for MU1 given in Section B.2.2, except that the curvature with respect to Rk and Rm is 

inverted. The following observations can be made based on Figure B.8: 

1. As identified by Yuan (2016) and similarly to MU1 (Section B.2.2), T2/T1 is the largest along 

the line Rk = Rm + 1. As the distance from the line increases, the value of T2/T1 decreases at 

an accelerating rate as the distance from the line increases.  

2. For Rm or Rk approaching zero, T2/T1 approaches zero, and as Rk = Rm + 1 approaches infinity 

T2/T1 approaches one.  

 

Figure B.8: Variation of T2/T1 relative to Rk and Rm 

If Rk = Rm + 1 is substituted into Equation (B.6), the maximum T2/T1 can be determined for any 

value of Rm (Yuan, 2016): 

(
T2
T1
)
max

= √
(√1 + Rm − 1)(𝑅𝑚 + 1 − √1 + 𝑅𝑚)

𝑅𝑚√1 + 𝑅𝑚
 (B.7) 

Considering that the limitations given in Section 1.3.2 have changed relative to Yuan & Xu (2016) 

and Yuan (2016), the maximum and minimum values of T2/T1 and ρ are different. For the current 

study, the maximum Rm is 55, corresponding to rm = 5, NU = 1 and NL = 11, and the minimum Rm is 
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0.09, corresponding to rm = 1, NU = 11 and NL = 1. For Rm = 55, the maximum T2/T1 given by 

Equation (B.7) is 0.874, as opposed to 0.826 according to Yuan (2016).  Using Equation (3.6), the 

maximum ρ is therefore 0.35. The previous maximum used in Yuan (2016) was 0.22. As the change 

in scope has increased the range of possible Rm, the potential for modal interaction (as indicated by ρ) 

has significantly increased. If T2/T1 is defined using Equation (B.6), ρ can be plotted as a function of 

Rm and Rk for 5% damping as in Figure B.9. The relationship is like that of Figure B.3 and MU1 and 

MU2. Specifically, the increase in the absolute values MU1 and MU2 coincides directly with an increase 

in ρ, which can be explained via the increase in between-mode interaction which ρ expresses. In 

addition, Rk = Rm + 1 coincides with the maximum value of ρ. 

 

Figure B.9: Variation of ρ as relative to Rm and Rk 

It should however be emphasized that the choice of damping ratio will affect the value of ρ and 

therefore the relative necessity of the CQC method versus the SRSS method. For this study, it is 

assumed that damping is 5% of critical damping in all modes, but real structures may experience 

anywhere between 2% and 20% damping, depending on the type and condition of the structure 

(Newmark & Hall, 1982).  As illustrated by Figure B.10, this can significantly change the behaviour 

of ρ in the 2DOF model and the MDOF model, and thus designers must carefully assess the validity 

of the model for a given structure. In general, however, the trend is the same – ρ is relatively low for 

well-spaced periods, and quickly increases as the period ratio exceeds 0.7 (for ζ = 5%). 
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Figure B.10: Effect of period ratio T2/T1 and damping ratio ζ on ρ 

B.2.6 Effect of Rk and Rm on αU 

Based on the forthgoing sections, an increase of Rk from zero with Rm held constant corresponds to: 

1. A decrease in φL1 from unity at a decreasing rate until φL1 asymptotically approaches zero. 

Simultaneously, φL2 increases in magnitude at an increasing rate, resulting in negative values 

of large magnitude for large values of Rk and small values of Rm. 

2. At first, an increase in the magnitude of effective modal masses MU1 and MU2 as Rk 

approaches from Rk = Rm + 1. As Rk continues to increase beyond Rk = Rm + 1, the 

magnitudes decrease, with MU1 approaching unity and MU2 approaching zero. The rate of 

change with respect to Rk is largest for small distances from Rk = Rm + 1, and decreases as the 

distance from the line Rk = Rm + 1 increases. 

3. As Rk increases from zero, TU approaches the value of T1 and grows increasingly distant from 

T2. The value of Sa(T1)/Sa(TU) also increases, reaching its maximum value of one at 

approximately Rk = Rm + 1. 

4. As Rk increases from zero, the distance between T2 and T1 increases from zero, reaching its 

maximum at Rk = Rm + 1. As Rk increases further, the ratio T2/T1 approaches zero. The rate of 

change with respect to Rk increases as the distance to the line Rk = Rm + 1 increases. ρ 

behaves similarly, with its maximum value achieved at Rk = Rm + 1, except that the rate of 
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change decreases as the distance from Rk = Rm + 1 increases, with ρ approaching zero at the 

limit. 

The relationships with Rm being varied and Rk held constant follow approximately the same patterns 

as that for Rk being varied for most of the variables. This is except for φL1, TU/T1 and TU/T2, for which 

an increase in Rm produces a similar result as a decrease of Rk.  

From this, it can be inferred that the line Rk = Rm + 1 is associated with the maximum amplification 

factor αUmax and that αU decreases for values of Rm and Rk which increase the distance from this line. 

Note, however, that the interpretation of Rk = Rm + 1 is that of Yuan (2016) is adopted for 

consistency. It could be argued that Rm = Rk is an equally valid boundary based on the previous 

sections’ figures. However, this difference is small and Rk = Rm + 1 is used instead. 
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Appendix C 

Determination of Revised Critical Stiffness Ratios and Amplification 

Factors 

C.1 Introduction 

To characterize the Rm-αU distribution assumed for this study as it appears in Chapter 3.3.4, four 

critical stiffness ratios Rk are required, similarly to Yuan & Xu (2016) and Yuan (2016): 

1. RkU1 – this stiffness ratio identifies the value of Rk below which the interstorey drift is largest 

in the lower structure, and above which the interstorey drift is largest in the upper structure. 

This is therefore the minimum stiffness ratio. Values of Rk < RkU1 are outside the scope of 

this study. 

2. RkU2 and RkU3 – as a pair, these stiffness ratios represent the range of stiffness ratios within 

which the maximum amplification αUmax is assumed to occur. With RkU2 as the lower bound 

and RkU3 as the upper bound, αU = αUmax for values of Rk within this range. 

3. RkU2stg – this stiffness ratio identifies the limit beyond which the two-stage assumption 

similar to that appearing in ASCE 7 is applicable. RkU2stg and Rk2stg as defined by Yuan (2016) 

have been consolidated into a single variable. 

Likewise, each of the critical Rk is associated with a corresponding amplification factor αU: 

1. RkU1 and αU1 

2. RkU2 and RkU3 and αUmax 

3. RkU2stg and αU2stg 

This chapter intends to present the background for each new proposed definition, to compare them 

to those given by Yuan (2016), and to elaborate on differences where they exist. First, for the stiffness 

ratios Rk and then for the revised amplification ratios αU. 

C.2 Revised stiffness ratios 

C.2.1 Minimum overall stiffness ratio RkU1 

The proposed design criterion, Equation (3.9), is derived based on ΔUlim, the code-specified interstorey 

drift limit (e.g. per Clause 4.1.8.2 11 in NBCC 2015 (NRCC, 2015c)), and according to the definition 
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of αU given by Equation (3.5). However, to use this amplification implicitly assumes that the drift 

limit is governed by the drift at the base of the upper structure. For a regular structure, this is not the 

case – the maximum storey drift occurs at the base of the structure. Yet as the storey stiffness and 

mass of the upper structure decrease relative to the lower structure, the drift at the base of the upper 

structure becomes more dominant until a transition occurs at which it becomes larger than elsewhere 

in the structure. This transition can be associated with the overall stiffness ratio Rk – this value is 

referred to as the minimum overall stiffness ratio RkU1.  

   

   
a) Rk < RkU1 b) Rk ≈ RkU1 c) Rk > RkU1 

Figure C.1: Interstorey drift and Displacement Transition Characterizing RkU1  

Figure C.1 illustrates the effect using a sample structure with a three-storey lower structure and a 

five-storey upper structure, each of equal height, and with other parameters selected arbitrarily. The 

specific values are not important, as the intent is to illustrate the trend rather than the specific values 

of storey drift. From left to right, the stiffness ratio is increased with all else kept constant, and the 

relative importance of the upper structure’s drift increases until it is dominant.  
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The interstorey drift Δ is calculated according to the following procedure derived from Chopra 

(2012):  

Δ𝑗𝑛(𝑡) = Δ𝑗𝑛
𝑠𝑡𝐴𝑛(𝑡) =

Γ𝑛

𝜔𝑛
2 (𝜙𝑗,𝑛 −𝜙𝑗−1,𝑛)𝐴𝑛(𝑡) 

(C.1) 

Δ𝑛𝑜 = Δ𝑛
𝑠𝑡𝐴𝑛(𝑇𝑛, 𝜁𝑛) = Δ𝑛

𝑠𝑡𝑆(𝑇𝑛) (C.2) 

Δ𝑗𝑜 ≈ √Σ𝑖=1
𝑁 Σ𝑛=1

𝑁 𝜌𝑖𝑛Δ𝑖𝑜Δ𝑛𝑜 (C.3) 

Where: 

Γ𝑛 = 
𝜙𝑛
𝑇𝑴𝟏

𝜙𝑛
𝑇𝑴𝜙𝑛

 (C.4) 

Proceeding from Equation (C.1), the drift at DOF (storey) j is described in terms of modal 

properties Γn, 𝜙𝑗,𝑛, 𝜙𝑗−1,𝑛 and ωn, and pseudo-acceleration An(t), where M is the mass matrix of the 

MDOF model. Using the code-specified pseudo-acceleration spectral value S(Tn) to approximate the 

peak response of A(Tn,ζn = 5%), the peak modal drift at storey j, Δjo, is computed according to 

Equation (C.3), which uses the CQC method to combine each the peak drift Δno in each mode. ρ is 

defined by Equation (3.6). Using this procedure, the storey stiffness ratio rk is increased until the 

transition described by Figure C.1 occurs. The corresponding Rk is taken as RkU1, which is tabulated in 

Table E.1. 

Conversely, RkU1 as previously proposed in Xu & Yuan (2015) and Yuan (2016) is defined based 

on an assumed value of the mode shape φL1: 

𝜙𝐿1 =
0.88𝑁𝐿
𝑁𝐿 +𝑁𝑈

 (C.5) 

which is an approximation based on the same procedure given above. By substituting this into the 

form of φL1 given by Equation (A.13) and using the definitions of Rm and Rk given by Equations 

(3.18) and (3.19), the definition of rkU1 given by Yuan (2016) is: 

𝑟𝑘𝑈1 = [
𝑟𝑚𝑁𝐿(0.12𝑁𝐿 +𝑁𝑈)

(𝑁𝐿 +𝑁𝑈)𝑁𝑈
+
0.12𝑁𝐿 +𝑁𝑈
0.88𝑁𝐿

]
𝑁𝑈
𝑁𝐿
(
𝜔̄1𝑈
𝜔̄1𝐿

)
2

 (C.6) 

However, the form of Equation (C.6) is inconvenient for comparison on account of being for rk 

rather than Rk, which is used as the basis of the definition of αU. While the expression for rkU1 can be 

helpful to determine whether a structure is within the scope of the method at-a-glance (i.e. 1 ≤ rk ≤ 
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20), the remainder of the critical stiffness ratios are expressed as a function of the overall ratio Rk. 

With a reversal of some of the substitutions, Equation (C.6) can be re-expressed as: 

𝑅𝑘𝑈1 = [
𝑅𝑚(0.12𝑁𝐿 +𝑁𝑈)

(𝑁𝐿 +𝑁𝑈)
+
0.12𝑁𝐿 +𝑁𝑈
0.88𝑁𝐿

] (C.7) 

Or, even more generally: 

𝑅𝑘𝑈1 = −𝑅𝑚ϕ𝐿1 − 1 + 𝑅𝑚 +
1

ϕ𝐿1
 (C.8) 

Where φL1 is defined according to Equation (C.5). 

However, the formulation of Equation (C.5) is only an approximation, and there is room for 

improvement, as evident in Figure C.2. In Figure C.2, the value of φL1 associated with a variety of 

inputs in the MDOF model is plotted against the mode shape proposed by Yuan (2016) given in 

Equation (C.5). At-a-glance, the Yuan (2016) assumption measurably overestimates the minimum 

mode shape value at low values of NL/(NU + NL) and underestimates it at intermediate values where 

the storey count of the upper and lower structure are approximately equal. Moreover, the comparison 

to NL/(NU + NL) obscures the differences between disparate combinations having the same value of 

NL/(NU + NL) – for example, it is not necessarily the case that RkU1 for NU = 1 and NL = 1 will resemble 

that of NU = 6 and NL = 6, despite NL/(NU + NL) being of equal value. Accordingly, Figure C.3 

compares the values of the minimum mode shape value φL1 (= φL1,min) as calculated versus the Yuan 

(2016) formulation as a function of each permissible storey combination, with each pair of points 

associated with a given combination of NU and NL connected by a black line for easier interpretation. 

From Figure C.3, it is observed that, in general, lower values of NU (and thus, higher NL/(NU + NL)) 

are associated with larger underestimates of φL1,min, whereas larger values of NU are generally 

associated with Yuan (2016) more closely estimating φL1,min albeit with some points being 

overestimated. Nevertheless, this relationship is not consistent – some adjacent points have a 

significant variation in the difference between Yuan (2016) and the calculated minimum. One 

example is (NU,NL) = (1,1) and (2,1). Despite a one-storey difference, the ratio of NL/(NU+NL) changes 

significantly, and thus the estimate of φL1,min given by Yuan (2016), despite only a minor difference 

between the two calculated values of φL1,min.   
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Figure C.2: Mode shape associated with RkU1 - Yuan (2016) vs calculated as f(NL/(NU + NL)) 

 

Figure C.3: Mode shape associated with RkU1 - Yuan vs calculated as f(NU, NL) 

Therefore, while it serves as an effective rule of thumb, the estimate of φL1 given by Equation (C.5) 

can be improved by instead formulating RkU1 in a tabular format, similar to αU11, αU12, αUmax1 and 

αUmax2 in the original formulation of the αU appearing in Xu & Yuan (2015) and Yuan (2016). While 

this increases slightly the complexity of calculating RkU1 by replacing a closed-form equation with 

tabular input and linear interpolation, the discrete nature of NL and NU means that the relationship 
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need not work for intermediate, fractional values of NU and NL. Given that there is a limited range of 

points, discretely tabulating the values can therefore give a more accurate but not excessively onerous 

representation of RkU1. 

To determine the tabulated values of RkU1, the calculated values of φL1 are computed as before for 

approximately 500,000 combinations of NU, NL, rm, TsingU and Sa(T) which lie within the scope of the 

study and by using Equation (C.8) the values of φL1 are converted into the equivalent value of RkU1. 

Then, two tabular configurations are considered – either as tabulated only as a function of NL and NU, 

or as a function of NL, NU, and rm. For each configuration, the maximum RkU1 is recorded for each 

combination of NU and NL (and rm, as applicable) to construct the table, since the requirement that 

RkU1 ≤ Rk is most conservative for larger RkU1. These two cases are referred to as f(NU, NL) and f(NU, 

NL, rm) for brevity. In the case of f(NU, NL), RkU1 is based only on NU and NL, and for f(NU, NL, rm) the 

value is also based on rm and interpolated for non-integer rm. 

Rather than based on the difference between the calculated and proposed RkU1, the error of each 

formulation for RkU1 – Yuan (2016), f(NU, NL) and f(NU, NL, rm) – is assessed based on the calculated 

drift ratio between the bottom of the upper structure and the bottom of the full structure in the MDOF 

model. As previously discussed, the theoretical formulation of RkU1 is predicated on predicting the 

value of Rk at which these two interstorey drifts are identical. Ergo, it is logical to use this to evaluate 

the efficacy of the proposed forms directly, rather than using RkU1 as a proxy. Considering a larger set 

of values compared to Figure C.2 and Figure C.3, the following histograms plot the error in the drift 

ratio between the proposed and calculated values. For each, the x-axis indicates the percentage error 

(i.e. between the calculated drift ratio and the ideal value of one), and the y-axis indicated the 

proportion of values that sit within a given bin of the histogram, and red lines indicate the 99th 

percentile, 1st percentile and median. Figure C.4 corresponds to RkU1 as defined by Yuan (2016), 

Figure C.5 corresponds to f(NU, NL), Figure C.6 corresponds to f(NU, NL, rm) and Figure C.7 is a side-

by-side comparison of the three. 
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Figure C.4: Error histogram - RkU1 as defined by Yuan (2016) 

 

Figure C.5: Error histogram - RkU1 as defined by f(NU, NL) 
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Figure C.6: Error histogram - RkU1 as defined by f(NU, NL, rm) 

 

Figure C.7: Comparison of RkU1 error histograms 

From Figure C.4 to Figure C.7, the following conclusions can be drawn: 

1. The median error of the Yuan (2016) formulation is 50% (overestimate), with most values 

lying between a 25% and 75% overestimate of RkU1. Overestimates do not generally exceed 

150%. 
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2. The median error of RkU1 if defined only as a function of NU and NL is approximately 15% 

(overestimate), and most of the error is between 0% and 50%. Overestimates do not 

generally exceed 100%. 

3. The median error of RkU1 defined as a function of NU and NL and interpolated for rm is less 

than a 5% overestimate, with most error values lying between 0% and 10%. Overestimates 

do not generally exceed 60%.  

From this comparison, RkU1 = f(NU, NL, rm) exhibits superior performance at estimating the RkU1 

corresponding to the drift transition described by Figure C.1. The values corresponding to RkU1 = 

f(NU,NL,rm) appear in Table E.1. 

As values taken from Table E.1 are to be used for further calculations, the question remains as to 

how many decimal places for calculation are appropriate. Figure C.8 indicates the difference between 

the results where the tabulated RkU1 is rounded to a different number of decimal points (dp). Of note 

are the blue and red lines corresponding to 1 or 5 decimal places, respectively. Clearly, 1 decimal 

place somewhat worsens the results of using the tabulated RkU1, as expected. However, aside from 1 

decimal place, the distinction between the other 4 lines is minor – the adequacy of RkU1 does not 

significantly differ based on the number of decimal places so long as at least two are used. Therefore, 

the values in Table E.1 are provided to three decimal places. 

 

Figure C.8: Sensitivity of RkU1 = f(NU, NL, rm) 
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C.2.2 Overall stiffness ratios associated with maximum amplification, RkU2 and RkU3 

As with Xu & Yuan (2015) and Yuan (2016), RkU2 and RkU3 delimit the bounds within which αU ≈ 

αUmax - RkU2 is the lower bound and RkU3 is the upper bound. Based on Appendix B.2, Sa(T1)/Sa(TU), 

MU1 and MU2 generally attain their absolute maximum values for Rk = Rm + 1, and given that 

Sa(T1)/Sa(TU) is approximately unity for all Rk > Rm + 1, RkU2 is taken as equal to Rm + 1, consistent 

with Equation (3.30) and with Xu & Yuan (2015) and Yuan (2016). However, it is clear from Figure 

B.6 that this is only approximately true – for TU ≥ 0.2 seconds, there is a small influence of TU as TU 

increases beyond the extent of the constant acceleration region (typically ≤ 0.2 seconds in NBCC 

2015 (2015c)). This discrepancy is connected to Sa(T2)/Sa(TU) – as evident in Figure B.7, Sa(T2)/Sa(TU) 

is equal to one when TU ≤ 0.2 seconds, and otherwise increases as a function of Rk. This maximum of 

Sa(T2)/Sa(TU) for TU is neither directly connected to Rk = Rm + 1 nor bounded between zero and one 

(although the reciprocal Sa(TU)/Sa(T2) is bounded between zero and one).  

Therefore, αU as defined by Equation (A.29) is due to two components – one, the product of MU1 

and Sa(T1)/Sa(TU) and two, the product of MU2 and Sa(T2)/Sa(TU). It is known that MU1, MU2 and 

Sa(T1)/Sa(TU) all approximately attain their maximum values at Rk = Rm + 1, albeit with a minor 

change to Sa(T1)/Sa(TU) based on TU. However, this is not the case with Sa(T2)/Sa(TU), and 

consequently RkU3, the upper bound of the region where αU ≈ αUmax, must be empirically based to 

ensure that the region bounded by RkU2 and RkU3 still approximately captures the Rk associated with 

the maximum αU for any given combination of inputs.  

This problem is acknowledged as such by Yuan (2016), which defines RkU3 based on an empirical 

investigation of the ASCE spectrum. Although not particularly clear as to how the variable is derived, 

they define RkU3 as follows: 

𝑅𝑘𝑈3 = {

0.826𝑅𝑚 + 4.76 𝑅𝑚 ≤ 0.71
−0.26𝑅𝑚 + 5.52 0.71 < 𝑅𝑚 < 2

𝑅𝑚 + 3 𝑅𝑚 ≥ 2
 (C.9) 

Note that the above equation as it appears in Yuan (2016) gives the upper bound of the second 

piece of the piecewise equation as 1 rather than 2. This has been changed to ensure that the equation 

is continuous and to ensure it is consistent with the given discussion. Likewise, RkU3 is partially 

defined for another variable in Yuan (2016) – this intermediate substitution has been made here for 

brevity so that RkU3 is only a function of Rm.  
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However, Yuan (2016) gives another formulation different that that referred to in their derivation, 

based on calibration to ensure that the MDOF results are conservatively approximated. This can be 

considered the final formulation: 

𝑅𝑘𝑈3 = {

4.13𝑅𝑚 + 2 𝑅𝑚 ≤ 0.8
−0.26𝑅𝑚 + 5.52 0.8 < 𝑅𝑚 < 2

𝑅𝑚 + 3 𝑅𝑚 ≥ 2
 (C.10) 

In any event, RkU3 as specified by Equation (C.10) is used for both the NBCC and ASCE-derived 

formulations given by Yuan (2016). Perplexingly, the first piece of Equations (C.9) and (C.10) are 

significantly different. It is unclear why this is the case – Equation (C.9) is supposedly based on the 

parameter survey whereas Equation (C.10) is modified to ensure the MDOF αU is conservatively 

approximated. Nonetheless, in the absence of a better rationale and on account of being sufficiently 

performative, RkU2 and RkU3 are defined identically to Yuan (2016).  

C.2.3 Overall stiffness ratio RkU2stg associated with the two-stage criterion (formerly RkU2stg and 

Rk2stg) 

In multiple previous studies published by Yuan & Xu (Xu & Yuan, 2015; Yuan, 2016; Yuan & Xu, 

2016, 2014), two variables with very similar notation – RkU2stg and Rk2stg (henceforth: RkU2stg,Yuan and 

Rk2stg,Yuan) – are used in different contexts somewhat related to the ASCE 7 two-stage procedure to 

capture two different phenomena. In these works, RkU2stg,Yuan corresponds to a lower bound of stiffness 

above which αU ≈ 1, whereas Rk2stg,Yuan delimits the stiffness ratio beyond which the two-stage 

criterion applies. The requirement that αU ≈ 1 is not by itself sufficient to satisfy the assumptions of 

the two-stage assumption. It is therefore imperfect to identify RkU2stg,Yuan as related to the two-stage 

criterion and only invites confusion when set alongside the similarly named Rk2stg,Yuan which is 

intended to identify whether the two-stage procedure applies. To alleviate this confusion, RkU2stg,Yuan 

and Rk2stg,Yuan are consolidated in the current study, so that RkU2stg refers to both phenomena. However, 

it should be noted that αU ≈ 1 is only approximately true – based on the inputs to the MDOF model 

and as stated in Yuan (2016), αU for Rk > RkUstg may in some circumstances be as high as 1.25 or so.  

The following section explains the previous formulation’s Rk2stg,Yuan and RkU2stg,Yuan as they appear in 

the previous formulation and describes the changes made in the proposed formulation in two 

subsections. First, the focus is on Rk2stg,Yuan beyond which the two-stage procedure is assumed to be 

approximately applicable. This discussion includes a characterization of the two-stage procedure and 

relevant research to justify the proposed criterion. Following this, the focus shifts to RkU2stg,Yuan, 
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beyond which αU ≈ 1. In more practical terms, αU for Rk > RkU2stg,Yuan can exceed 1, but it is expected 

that αU ≤ αU2stg in this region. 

Overall stiffness ratio associated with the two-stage criterion, Rk2stg,Yuan 

Prior to characterizing Rk2stg,Yuan, it is necessary to define the two-stage procedure. For vertically 

irregular structures having a flexible upper structure and a sufficiently stiff lower structure, it is often 

assumed that the lower structure acts as a rigid body transmitting the ground acceleration directly to 

the upper structure’s base. If this is true, it follows that the upper structure behaves as though fixed to 

the ground, and so the upper structure and lower structure can be analyzed separately via the 

equivalent static force procedure (ESFP) and reassembled to obtain the loads on the original structure. 

This assumption that the upper and lower structure can be analyzed separately and reassembled to 

obtain the full structure’s loads is the two-stage assumption, and the procedure by which this is done 

is the two-stage procedure.  

While this method does not appear in the NBCC aside from a brief mention in the 2015 

commentary (NRCC, 2015b), it is commonly used in American design codes and has appeared in 

historical versions of the NBCC for setback structures (e.g. NBCC 1970 (NRCC, 1971)). First 

introduced in the 1988 SEAOC Blue Book and UBC (ICBO, 1988; SEAOC, 1988), the procedure 

appears in subsequent codes such as ASCE 7. In ASCE 7-16 (2017), it applies to structures for which 

the lower structure’s (overall) stiffness is at least 10 times the (overall) stiffness of the upper 

structure, and for which the period of the full structure is less than 1.1 times that of the upper structure 

alone. In other words: 

1. Rk ≥ 10, which indicates that the lower structure acts as a rigid body that transmits ground 

accelerations directly to the base of the upper structure (SEAOC, 2019) 

2. T1/TU ≤ 1.1, which implies that the upper structure is dominated by the first mode as assumed 

by equivalent static procedures 

However, American design codes have given negligible feedback on the adequacy of the limits 

given in ASCE 7, which are essentially unchanged since their introduction with UBC 1988, except 

that the stiffness ratio is considered relative to storey stiffness in 1988 UBC/SEAOC and overall 

stiffness in ASCE 7-16 (2017). Research using both nonlinear time history analysis (Chen & Ni, 

2020) and linear modal response spectrum analysis (Yuan & Xu, 2016) concludes that the ASCE 7 

criteria are not adequate to ensure the two-stage procedure can be applied.  
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To remedy this both Xu & Yuan (2015) and Chen & Ni (2020) propose alternative criteria given by 

Equations (C.12) and (C.13). If the ASCE criteria are translated into terms of Rk and Rm as proposed 

by Xu & Yuan (2015) and Equation (C.11), the three criteria can be readily compared: 

𝑅𝑘 ≥ 𝑚𝑎𝑥(0.826𝑅𝑚 + 4.76,10) (Xu & Yuan, 2015) (C.11) 

𝑅𝑘 ≥ 10R𝑚 (Chen & Ni, 2020) (C.12) 

𝑅𝑘 ≥ 𝑅𝑘2𝑠𝑡𝑔,𝑌𝑢𝑎𝑛 = {
1.637𝑅𝑚 + 9.07 𝑅𝑚 ≤ 1.23
11.029𝑅𝑚 − 2.5 𝑅𝑚 > 1.23

 
(Yuan & Xu, 2016) (C.13) 

Note that the normalization for stiffness in Chen & Ni (2020) is slightly different than that used in 

Xu & Yuan (2015). However, because the formulations that are given by Equations (C.12) and (C.13) 

are so similar, this difference is assumed to be negligible.  

If these criteria are plotted side-by-side per Figure C.9, it is evident that Chen & Ni (2020) and 

Yuan & Xu (2016) agree that the ASCE 7 criteria are inadequate and propose that a similar limit 

should be applied for Rm > 1. This, despite their relatively different approaches, indicates that the 

ASCE 7 criteria are incapable of fully capturing the two-stage phenomena. Chen & Ni (2020) 

attribute this to the incapability of T1/TU to identify whether the two-stage procedure should be 

applied. Instead, they argue that the masses and stiffnesses of the building itself should be used 

exclusively, as these parameters determine the response of the structure.  

 

Figure C.9: Comparison of existing two-stage criteria 



 

 184 

 

Figure C.10: Effective mass distribution of simplified 2DOF model with extremely stiff lower 

structure (two-stage assumption)  (Yuan, 2016) 

Meanwhile. Yuan (2016) does not eschew T1/TU entirely and instead considers also the relationship 

between T2 and TL. As interpreted by Yuan (2016) in Figure C.10, the two-stage procedure implicitly 

assumes that the effective mass of the upper and lower structures are approximately concentrated in 

well-separated first and second modes such that TU ≈ T1 and TL ≈ T2. In terms of the effective modal 

masses given by Equations (A.22) to (A.27), they interpret the two-stage requirement as associated 

with T1/TU ≤ 1.1, ML1 ≤ 0.1 and MU1 ≤ 1.1. Essentially, Yuan (2016) specifies that: 

𝐹𝑈 = 𝑀𝑈𝑆𝑎(𝑇𝑈) (C.14) 

𝐹𝑈 = 𝑀𝐿𝑆𝑎(𝑇𝐿) (C.15) 

i.e. that the equivalent static loads on the upper and lower structures feature no contribution from 

the other structure. 

By amalgamating the ASCE 7-16 (2017), Chen & Ni (2020) and Yuan & Xu (2016) definitions, it 

is proposed that 𝑅𝑘𝑈2𝑠𝑡𝑔 = 10𝑅𝑚 ≥ 10 as stated in Equation (3.28). The lower bound is applied 

based on ASCE 7-16 (2017) and Yuan & Xu (2016) and chosen to be Rk ≥ 10 as it is very similar but 

much simpler than 1.637Rm+9.07 given by Yuan & Xu (2016). Likewise, the ascending portion is 

applied based on Chen & Ni (2020) and Yuan & Xu (2016), with Rk ≥ 10Rm being chosen over Rk ≥ 

11.029Rm-2.5 for simplicity. It is true that Chen & Ni (2020) do not specify a lower bound on 

Equation (C.12), but given that all structures in their study with Rk < 10 are considered inadequate, it 

is reasonable to apply the oft-used lower bound of Rk = 10 which appears in ASCE 7. As for the 

adoption of simplified bounds over those proposed by Yuan & Xu (2016) and Yuan (2016), the 

previously-proposed coefficients are not so precise as to be worth preserving when a simpler result is 
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desirable. The bounds given by Yuan & Xu (2016) and Yuan (2016) are based on a theoretical 

application of assumed bounds on chosen parameters in the 2DOF model using the ASCE spectrum, 

and only approximately represent the results of the MDOF model using the NBCC spectrum. Given 

that the variation between the new and previously proposed RkU2stg is less than the width of the range 

[RkU2, RkU3] which defines αU = αUmax for values of Rk and Rm within the current scope of rk, rm and 

TsingU, it is reasonable to expect that the net impact on the accuracy of the method will be negligible. 

To further justify the proposed approach, it is compared against the ratios of the modal masses 

given by Equations (A.22) to (A.27). If the two-stage procedure applies as interpreted by Yuan (2016) 

and Figure C.10, it follows that the absolute value of the ratios |MU2/ML2| and |ML1/MU1| ≤ 0.1 (10%), 

which implies that the effective mass of the upper structure in the second mode is much smaller than 

that of the lower structure and that the effective mass of the lower structure in the first mode is much 

smaller than that of the upper structure. As apparent from Figure C.11, the proposed criterion is 

effective at ensuring that the effective modal mass of the lower structure dominates the second mode 

(b) and that the effective mass of the upper structure dominates the first mode (a). 

  

a) b) 

Figure C.11: Relative modal masses in the 2DOF model versus proposed RkU2stg 

Overall stiffness ratio associated with αU ≈ 1, RkU2stg,Yuan  

As Rk increases beyond the maximum αU with Rm held constant, at some point the two-stage 

procedure is expected to apply. According to Yuan (2016), this necessarily entails that αU ≈ 1, for a 
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sufficiently stiff lower structure acts as a rigid body to transmit the ground motions without 

amplification to the upper structure. However, the two-stage phenomenon involves both the upper and 

lower structures, and so it may be that αU ≈ 1 even for Rk < RkU2stg (i.e. the two-stage procedure does 

not apply). Assuming that αU ≈ 1 if T1/TU ≤ 1.1 and MU1 < 1.1, Yuan (2016) defines RkU2st,Yuan as in 

Equation (C.16). As αU ≈ 1 is necessary but insufficient for the two-stage phenomenon to occur, 

RkU2stg,Yuan is potentially much smaller than R2stg,Yuan. Later, Yuan (2016) develops Equation (C.16) for 

the NBCC spectrum. On account of the larger variation of Sa(T1)/Sa(TU) using the NBCC spectrum, 

the limit T1/TU ≤ 1.1 is reduced to T1/TU ≤ 1.05 in the derivation of Equation (C.16), resulting in a 

much stricter limit. 

𝑅𝑘𝑈2𝑠𝑡𝑔,𝐴𝑆𝐶𝐸 = {
0.826𝑅𝑚 + 4.76 𝑅𝑚 ≤ 0.71
11.029𝑅𝑚 − 2.5 𝑅𝑚 > 0.71

 (C.16) 

𝑅𝑘𝑈2𝑠𝑡𝑔,𝑁𝐵𝐶𝐶 = {
0.907𝑅𝑚 + 9.78 𝑅𝑚 ≤ 1.213
11.029𝑅𝑚 − 2.5 𝑅𝑚 > 1.213

 (C.17) 

Despite this difference in RkU2stg,Yuan, the two-stage requirement Rk2stg,Yuan from Yuan & Xu (2016) 

and Yuan (2016) in (C.18) is identical in either case. Perplexingly, this means that Rk2stg,Yuan for the 

NBCC is larger for some values of Rm than the two-stage limit Rk2stg,Yuan. This is likely just an 

oversight owing to the derivation that was used – intuitively, RkU2stg,Yuan ≤ Rk2stg,Yuan and given their 

proximity Equations (C.13) and (C.17) are effectively the same. 

Strictly speaking, αU ≈ 1 is a misnomer – RkU2stg_Yuan is more appropriately the boundary beyond 

which αU ≤ αU2stg, where αU2stg at times may be larger than 1.1. This is implicitly acknowledged by 

Yuan (2016) – αU2stg is assumed to vary as a function of Rm and at times is considered to be as large as 

1.25. It is, therefore, true that the assumptions MU1 ≤ 1.1 and T1/TU ≤ 1.1 (or T1/TU ≤ 1.05) applied to 

the 2DOF model ensure that αU ≈ 1 in only a very broad sense. To some extent this is expected – the 

two-stage assumption entails the upper and lower structures each behave as a regular structure. 

However, it is known and acknowledged by NBCC 2015 that even regular structures experience some 

sort of higher mode effect, which is captured by Mv. Mv, as defined by Equation (3.2), is directly 

analogous to αU as defined by Equation (3.4), and so if the upper structure is considered alone as a 

regular structure is prone to higher-mode effects indicated by Mv ≥ 1, it follows that the same is true 

of αU. 

In consideration of the forthgoing discussion, it is proposed that RkUstg,Yuan and Rk2stg,Yuan be merged 

into a single variable, RkU2stg. The form of RkU2stg expressed in Equation (3.28) is based on the 

amalgamation of the two-stage criteria given by Equations (C.11) to (C.13). The aspect that αU attains 
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a constant value for large Rk is not given a separate variable and instead is implicitly incorporated into 

the new definition of RkU2stg. Given the close similarity of RkU2stg,Yuan and Rk2stg,Yuan for the NBCC, this 

is merely a simplification of what is already the case in Yuan (2016). 

C.2.4 Amplification ratio αU1 (associated with RkU1) 

Accompanying the lower-bound stiffness RkU1 is αU1, which is the approximation to the amplification 

ratio αU at Rk = RkU1. Much the same as αU in the 2DOF model, αU1 varies on account of not only Rm 

and Rk but also Sa(T1)/Sa(TU), as discussed in Appendix B. Therefore, αU1 approximated as a function 

of Rm and Rk only is inadequate – the effect of Sa(T1)/Sa(TU) must be incorporated. Broadly speaking, 

Sa(T1)/Sa(TU) varies between zero and one (or more practically: a finite lower bound and one), and 

thus αU1 itself varies between some maximum and minimum value.  

The original ASCE formulation of αU1 given by Xu & Yuan (2015) denotes these minimum and 

maximum values as αU11 and αU12 (see Table D.1). Accordingly, αU11 is therefore associated with the 

minimum Sa(T1)/Sa(TU) and αU12 associated with the maximum Sa(T1)/Sa(TU), and αU1 is assumed to 

vary between these endpoints via a power function fit. From this logic Xu & Yuan (2015) obtain the 

following form of αU1 as formulated for ASCE 7: 

𝛼𝑈1 =

{
 
 
 

 
 
 
𝛼𝑈11 𝑇𝑈 𝑇𝑆⁄ ≥ 1

α𝑈12 𝑇𝑈 𝑇𝑆⁄ ≤ √
𝑁𝑈 + 0.12𝑁𝐿
𝑁𝑈 +𝑁𝐿

α𝑈11(𝑇𝑈 𝑇𝑠⁄ )𝑥3 √
𝑁𝑈 + 0.12𝑁𝐿
𝑁𝑈 +𝑁𝐿

< 𝑇𝑈 𝑇𝑆⁄ < 1

 (C.18) 

Where x3 is an exponent defined as: 

𝑥3 =
𝑙𝑛 (

α𝑈12
α𝑈11

)

0.5𝑙𝑛 (
𝑁𝑈 + 0.12𝑁𝐿
𝑁𝑈 + 𝑁𝐿

)
 (C.19) 

If unfamiliar with the ASCE 7 spectrum and the Xu & Yuan (2015) formulation as a whole, it is 

not immediately clear why αU1 is defined as a function of TU/TS rather than Sa(T1)/Sa(TU) and for what 

reason the endpoints are selected. The lack of clarity is via a pair of substitutions – as previously 

mentioned, all values Sa(T1)/Sa(TU) defined via the ASCE map directly to ratios of periods TU, T1 and 

TS, whereas before TS marks the end of the constant acceleration region in the ASCE spectrum. 

Consequently, the relationship between TU/TS and Sa(T1)/Sa(TU) is the same: for TU/TS ≥ 1, 
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Sa(T1)/Sa(TU) = 1 and αU1 reaches its maximum and thus αU1 = αU12, and for TU/TS ≤ TU/T1 = 

√(𝑁𝑈 + 0.12𝑁𝐿) (𝑁𝑈 +𝑁𝐿)⁄ , Sa(T1)/Sa(TU) is at its minimum and thus αU1 = αU11. The bound TU/T1 = 

√(𝑁𝑈 + 0.12𝑁𝐿) (𝑁𝑈 +𝑁𝐿)⁄  is derived by substituting the assumed mode shape for Rk = RkU1 given 

by Equation (C.5) into Equation (A.13) which relates the mode shape and period ratio. In this way, 

Equation (C.18) follows the logic outlined above to define αU1 based on Sa(T1)/Sa(TU) using TU/TS as a 

proxy. 

For the NBCC, the substitution of Sa(T1)/Sa(TU) for TU/T1 is not possible, and therefore Yuan (2016) 

provides a slightly different albeit similar formulation where T1 is approximated via TU/T1 = 

√(𝑁𝑈 + 0.12𝑁𝐿) (𝑁𝑈 +𝑁𝐿)⁄  as before: 

𝛼𝑈1 =

{
 
 
 
 
 
 

 
 
 
 
 
 

𝛼𝑈11

𝑆𝑎 [√
𝑁𝑈 + 𝑁𝐿

𝑁𝑈 + 0.12𝑁𝐿
𝑇𝑈]

𝑆𝑎(𝑇𝑈)
= √

𝑁𝑈 + 0.12𝑁𝐿
𝑁𝑈 + 𝑁𝐿

α𝑈12

𝑆𝑎 [√
𝑁𝑈 + 𝑁𝐿

𝑁𝑈 + 0.12𝑁𝐿
𝑇𝑈]

𝑆𝑎(𝑇𝑈)
= 1

α𝑈12

{
 
 

 
 𝑆𝑎 [√

𝑁𝑈 + 𝑁𝐿
𝑁𝑈 + 0.12𝑁𝐿

𝑇𝑈]

𝑆𝑎(𝑇𝑈)

}
 
 

 
 
−𝑥3

√
𝑁𝑈 + 0.12𝑁𝐿
𝑁𝑈 + 𝑁𝐿

<

𝑆𝑎 [√
𝑁𝑈 + 𝑁𝐿

𝑁𝑈 + 0.12𝑁𝐿
𝑇𝑈]

𝑆𝑎(𝑇𝑈)
< 1

 (C.20) 

Where x3, αU11 and αU12 are defined identically to the ASCE procedure. 

However, while the substitution of TU/TS for Sa(T1)/Sa(TU) is necessary to adapt the ASCE 

formulation to the NBCC, the resulting equation is unwieldy. In the original ASCE derivation, it is 

assumed that αU11 and αU12 correspond to the minimum and maximum values of αU1, corresponding to 

Sa(T1)/Sa(TU) = TU/T1 and 1, respectively. The NBCC formulation is identical to the ASCE 

formulation and simply assumes that T1/TU is defined using Equations (C.5) and (A.13). These 

equations relate the same mode shape they use to derive RkU1 to the period ratio T1/TU. By substituting 

TU/TS for Sa(T1)/Sa(TU) and T1/TU for a function of the mode shape, the NBCC formulation is derived.  

Unfortunately, these substitutions obscure the relationship between the ASCE formulation and 

NBCC formulation. For designers not familiar with the ASCE, it is not immediately clear how TU/TS 

translates to Sa(T1)/Sa(TU), and given that the corresponding equations are spread throughout the 

thesis, not immediately clear that T1/TU is used to derive the revised limits. More significantly, the 

form of Equation (3.18) comes off as somewhat contrived for the NBCC on account of the non-
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monotonic relation between the ratio of two periods and the ratio of the corresponding spectral 

values. The relationship is convenient for ASCE 7, as any two periods can be related directly to the 

spectral values such that an increase in the period ratio TU/TS directly corresponds to a decrease in the 

spectral ratio Sa(T1)/Sa(TU). It is consequently the case that the minimum value of αU does not 

necessarily correspond to T1/TU = Sa(T1)/Sa(TU) for the NBCC spectrum. Since the endpoints of the 

relationship between Sa(T1)/Sa(TU) and αU1 are less clear for the NBCC spectrum,  it makes less sense 

to define it using αU11 and αU12. This is further complicated by the changed definition of RkU1, which 

has changed from the one-size-fits-all definition which arises from the assumed mode shape given by 

Equation (C.5) to a variable defined via NU, NL and rm. As RkU1 has changed, so too must αU1. 

Therefore, the proposed Equation (3.29) differs from the prior Equation (C.20) in two primary 

ways:  

1. The form of the equation is no longer a piecewise power function fit between two fixed 

endpoints and is now a simpler exponential fit. Rather than αU11 and αU12 being the 

parameters defining the fit, coefficients AU1 and BU1 are introduced. AU1 and BU1 are tabulated 

in the same fashion as αU11 and αU12 and appear in Appendix E. The fit is therefore not 

between two set endpoints but based on two set fit parameters. 

2. Sa(T1) is no longer defined according to an assumed mode shape. Instead, it is defined via 

Equation (3.30) and RkU1 (Table E.1). Equation (3.30) is based on Equation (A.13).   

As a consequence of the change, the formulation is more intuitive and requires fewer calculations. 

For the same number of inputs, it is clear from the form of Equation (3.29) that αU1 (approximately) 

increases monotonically as a function of Sa(T1)/Sa(TU). The proposed formulation also clearly relates 

the value of RkU1 and the ratio of TU/T1 (albeit obliquely via Sa(T1)/Sa(TU)) and is no longer piecewise.  

To calculate the proposed αU1, values of Sa(T1)/Sa(TU) and αU corresponding to the MDOF model 

are calculated for each combination of NU, NL and (integer) rm for a range of inputs (e.g. Sa(T) and 

TsingU) within the scope. An exponential fit is then applied to the resulting Sa(T1)/Sa(TU)-αU, with post-

processing to ensure that αUmax is not underestimated. An example of this is shown in Figure C.12 for 

NU = 4, NL = 5 and rm = 2. By adjusting the least-squares exponential fit, the proposed values of AU1 

and BU1 are obtained and tabulated in Table E.2 and Table E.3.  
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Figure C.12: Comparison between calculated and proposed αU1 (NU = 4, NL = 5, rm = 2) 

C.2.5 Amplification ratio αUmax (associated with RkU2 and RkU3) 

The maximum amplification factor, αUmax, associated with RkU2 and RkU3, is analogously defined in 

both the previous and the new proposed formulations. Xu & Yuan (2015) define the ASCE 7 

formulation of αUmax in the same manner as αU1, with αUmax1, αUmax2 and x4 acting as direct counterparts 

to αU11, αU12 and x3 which appear in Equation (C.18): 

𝛼𝑈𝑚𝑎𝑥 = {

𝛼𝑈𝑚𝑎𝑥1 𝑇𝑈 𝑇𝑆⁄ ≥ 1

α𝑈𝑚𝑎𝑥2 𝑇𝑈 𝑇𝑆⁄ ≤ 0.769(𝑅𝑚)
0.059

α𝑈𝑚𝑎𝑥1(𝑇𝑈 𝑇𝑠⁄ )𝑥4 0.769(𝑅𝑚)
0.059 < 𝑇𝑈 𝑇𝑆⁄ < 1

 (C.21) 

Where x4 is an exponent defined as: 

𝑥4 =
𝑙𝑛 (

α𝑈𝑚𝑎𝑥2
α𝑈𝑚𝑎𝑥1

)

𝑙𝑛(0.769(𝑅𝑚)
0.059)

 
(C.22) 

Equations (C.21) and (C.22) are nigh-identical to Equations (C.18) and (C.19), except that TU/T1 is 

instead assumed to be 0.769Rm
0.059 and αUmax1 and αUmax2 are defined by piecewise functions rather 

than drawn from a table of values. Per Yuan (2016): 

𝛼𝑈𝑚𝑎𝑥1 = {

0.03𝑅𝑚 + 1 𝑅𝑚 ≤ 0.71
0.17𝑅𝑚 + 0.9 0.71 < 𝑅𝑚 ≤ 4.5

−0.005𝑅𝑚
2 + 0.19𝑅𝑚 + 0.91 4.5 < 𝑅𝑚 ≤ 16

0.047𝑅𝑚 + 1.918 𝑅𝑚 > 16

 (C.23) 
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𝛼𝑈𝑚𝑎𝑥2 =

{
 
 

 
 

1.1 𝑅𝑚 ≤ 0.4
0.35𝑅𝑚 + 0.96 0.4 < 𝑅𝑚 ≤ 71
0.209𝑅𝑚 + 1.061 0.71 < 𝑅𝑚 ≤ 4.5

−0.0025𝑅𝑚
2 + 0.145𝑅𝑚 + 1.4 4.5 < 𝑅𝑚 < 21

0.0335𝑅𝑚 + 2.639 𝑅𝑚 ≥ 21

 (C.24) 

The formula for αUmax is likewise adapted for the NBCC, with αUmax1 and αUmax2 defined via a table 

of values instead of Equations (C.23) and (C.24): 

𝛼𝑈𝑚𝑎𝑥 =

{
 
 
 

  
 𝛼𝑈𝑚𝑎𝑥1

𝑆𝑎[1.30(𝑅𝑚)
−0.059𝑇𝑈]

𝑆𝑎(𝑇𝑈)
= 0.769(𝑅𝑚)

0.059

α𝑈𝑚𝑎𝑥2
𝑆𝑎[1.30(𝑅𝑚)

−0.059𝑇𝑈]

𝑆𝑎(𝑇𝑈)
= 1

α𝑈𝑚𝑎𝑥2 {
𝑆𝑎[1.30(𝑅𝑚)

−0.059𝑇𝑈]

𝑆𝑎(𝑇𝑈)
}

−𝑥3

0.769(𝑅𝑚)
0.059 <

𝑆𝑎[1.30(𝑅𝑚)
−0.059𝑇𝑈]

𝑆𝑎(𝑇𝑈)
< 1

 (C.25) 

For the same reasons discussed in Section C.3.1, the exponential form of Equation (3.31) is 

adopted, with coefficients Amax and Bmax being defined analogously to AU1 and BU1, with Sa(1.30(Rm)-

0.059TU) being replaced with Equation (3.32). T1 = 1.30(Rm)-0.059TU is not immediately connected to the 

formulations given in Appendix A and its rationale is somewhat poorly-articulated in Yuan (2016), 

and so Equation (3.32) is adopted to more clearly align with Appendix A and to mirror the 

formulation for αU1. In the same fashion as Figure C.12, Figure C.13 illustrates the relationship 

between the proposed fit given by AUmax and BUmax for NU = 4, NL = 5 and rm = 2. The proposed values 

of AUmax and BUmax are given in Table E.4 and Table E.5. Specifically, Amax and Bmax are derived for 

values of αU lying between RkU2 and RkU3. Occasionally, αU reaches its maximum value for Rk > RKU3 – 

for these situations αU2stg is large enough that αU remains conservative.  
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Figure C.13: Comparison between calculated and proposed αUmax (NU = 4, NL = 5, rm = 2) 

C.2.6 Amplification ratio αU2stg (associated with RkU2stg) 

As discussed in Section C.2.3, αU2stg is the upper bound on αU for Rk > RkU2stg beyond which αU  ≈ 1. 

However, this is only approximately true, since even in the Yuan (2016) αU2stg can take on values as 

large as 1.25 depending on Rm. The expectation is that αU will not exceed αU2stg for Rk > RkU2stg, rather 

than specifically a value of one.  

In Yuan (2016), αU2stg is defined as a function of Rm, according to Equation (C.26): 

𝛼𝑈2𝑠𝑡𝑔 = {

1.1 𝑅𝑚 ≤ 1.4
0.14𝑅𝑚 + 0.918 1.4 < 𝑅𝑚 ≤ 2.3
−0.08𝑅𝑚 + 1.424 2.3 < 𝑅𝑚 < 4.1

1.1 𝑅𝑚 ≥ 4.1

 (C.26) 

In essence, it is assumed that αU2stg = 1.1 (theoretically 1 with a 10% surcharge for conservatism), 

with a spike between Rm = 1.4 and 4.1 to account for an increase in αU2stg owing to higher mode 

effects not considered by the 2DOF model. This formulation is used for both the NBCC and ASCE 7 

formulations.  

However, it is somewhat misleading to state that the relationship given by Equation (C.26) applies 

for Rm > 3. In Yuan (2016), the maximum storey count is ten, and the maximum rk and rm are 20 and 

3, respectively. Considering the definition of RkU2stg given by Equation (C.16), if e.g. Rm = 3, Rk ≥ 

30.6. Using Equation (3.19), if rk lies between 1 and 20, this implies that 1.5 ≤ (𝑁𝐿 𝑁𝑈⁄ )(𝜔̄1𝐿 𝜔̄1𝑈⁄ )2 

≤ 30.6. But for NU+NL ≤ 10, this is only true for a few combinations of NU and NL, all of which have 
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NL/NU ≤ 0.5. By Equation (3.18), if rm ≤ 3 there is no combination in the scope where both Rm ≥ 3 and 

Equation (C.16) are satisfied. Therefore, by working from the 2DOF model and not enforcing the 

scope being used, the output can be potentially misleading. 

As elsewhere, αU2stg is computed based on a range of input values for NU, NL, rm, etc. for Rk ≥ 

RkU2stg, where RkU2stg is defined by Equation (3.28). These values are plotted alongside the Yuan 

(2016) and newly proposed formulations for αU2stg, i.e. Equations (C.26) and (3.28) in Figure C.14. In 

general, the newly proposed formulation more closely matches the calculated values of αU2stg in a 

more concise form. However, as alluded to, the proposed formulation is not valid for Rm > 3 due to 

the results having been truncated according to the scope. 

 

Figure C.14: Comparison between proposed and Yuan (2016) αU2stg 
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Appendix D 

αU-kU Relationship Derived by Yuan (2016) 

D.1 Introduction 

The latter half of Chapter 3, in which the approximated αU relationship is used to derive limits on the 

storey stiffness kU, is adapted from Yuan (2016). However, the original formulation is based on 

ASCE 7-10 (2010) and is adapted in an expedited manner to suit NBCC 2010 (NRCC, 2010). 

Correspondingly, the need to suit the relationships produced for ASCE 7 leads to several novel 

transformations by Yuan (2016) to the form of the NBCC 2010 spectrum. The current study heavily 

modifies these derivations and thus this appendix provides the relevant original equations so that they 

can be referred to without requiring the full text of Yuan (2016). In the following order, this 

Appendix provides a reference for three aspects of the Yuan (2016) formulation: 

1. The Yuan (2016) approximation for αU, both for ASCE 7-10 and NBCC 2010 

2. The EXP-2 approximation for NBCC 2010’s spectral acceleration, Sa(T) 

3. The derivation of design stiffnesses kU based on αU and the EXP-2 approach.  

This Appendix is only a partial account of Yuan (2016) – for example, as part of the adaptation of the 

ASCE 7 procedure to NBCC 2010, Yuan (2016) proposes four alternative transformations to the 

NBCC 2010 spectrum. Of these, the EXP-2 approach is identified as the preferred approach by Yuan 

(2016) and so is given exclusive attention here. For the remaining three alternatives, refer to Yuan 

(2016).  

However, while the EXP-2 formulation is discussed in the current thesis, note that it is based on 

NBCC 2010 rather than NBCC 2015. In NBCC 2010, the spectral acceleration is defined by values at 

T = 0.2, 0.5, 1.0 and 2.0 seconds, while in NBCC 2015 values at T = 5.0 and 10.0 seconds are also 

used. Therefore, the fits proposed by Yuan (2016) are not directly applicable to NBCC 2015. 

D.2 Equations proposed to evaluate shear-force-amplification factor αU 

So that the previously-proposed formulation can be referenced elsewhere, the Yuan (2016) 

formulation for αU is given here, in Equations (D.1) to (D.17). The intent of each variable is 

analogous to the newly proposed procedure given in Section 3.3.4, and the changes are discussed in 

detail in Appendix C. Both those equations for the ASCE 7-10 and NBCC 2010 formulations are 
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given, and except for αU1, αUmax, and RkU2stg are identical between the two formulations. For ASCE 7, 

Sa(T) is defined as specified by the code, and for NBCC 2010 Sa(T) is defined according to one of the 

four alternatives proposed by Yuan (2016) (in this case, the EXP-2 formulation is discussed in 

Appendix D.3). 

ASCE Formulation 

𝛼𝑈 =

{
  
 

  
 𝛼𝑈1 (

𝑅𝑘
𝑅𝑘𝑈1

)
𝑥1

𝑅𝑘𝑈1 ≤ 𝑅𝑘 < 𝑅𝑘𝑈2

𝛼𝑈𝑚𝑎𝑥 𝑅𝑘𝑈2 ≤ 𝑅𝑘 ≤ 𝑅𝑘𝑈3

𝛼𝑈𝑚𝑎𝑥 (
𝑅𝑘
𝑅𝑘𝑈3

)
𝑥2

𝑅𝑘𝑈3 < 𝑅𝑘 < 𝑅𝑘𝑈2𝑠𝑡𝑔

𝛼𝑈2𝑠𝑡𝑔 𝑅𝑘𝑈2𝑠𝑡𝑔 ≤ 𝑅𝑘

 (D.1) 

𝑥1 =
𝑙𝑛 (𝛼𝑈𝑚𝑎𝑥 𝛼𝑈1⁄ )

𝑙𝑛 (𝑅𝑘𝑈2 𝑅𝑘𝑈1⁄ )
 (D.2) 

𝑥2 =
𝑙𝑛 (𝛼𝑈2𝑠𝑡𝑔 𝛼𝑈𝑚𝑎𝑥⁄ )

𝑙𝑛 (𝑅𝑘𝑈2𝑠𝑡𝑔 𝑅𝑘𝑈3⁄ )
 (D.3) 

𝛼𝑈1 =

{
 
 

 
 
𝛼𝑈11 1 ≤ 𝑇𝑈 𝑇𝑆⁄

𝛼𝑈12 𝑇𝑈 𝑇𝑆⁄ ≤ √(𝑁𝑈 + 0.12𝑁𝐿) (𝑁𝑈 +𝑁𝐿)⁄

𝛼𝑈11 (
𝑇𝑈
𝑇𝑆
)
𝑥3

√(𝑁𝑈 + 0.12𝑁𝐿) (𝑁𝑈 +𝑁𝐿)⁄ < 𝑇𝑈 𝑇𝑆⁄ < 1

 (D.4) 

𝑥3 =
𝑙𝑛 (𝛼𝑈12 𝛼𝑈11⁄ )

0.5𝑙𝑛 ((𝑁𝑈 + 0.12𝑁𝐿) (𝑁𝑈 +𝑁𝐿)⁄ )
 (D.5) 

𝛼𝑌𝑚𝑎𝑥 =

{
 
 

 
 𝛼𝑈𝑚𝑎𝑥1 1 ≤ 𝑇𝑈 𝑇𝑆⁄

𝛼𝑈𝑚𝑎𝑥2 𝑇𝑈 𝑇𝑆⁄ ≤ 0.769(𝑅𝑚)
0.059

𝛼𝑈𝑚𝑎𝑥1 (
𝑇𝑈
𝑇𝑆
)
𝑥4

0.769(𝑅𝑚)
0.059 < 𝑇𝑈 𝑇𝑆⁄ < 1

 (D.6) 

𝑥4 =
𝑙𝑛 (𝛼𝑈𝑚𝑎𝑥2 𝛼𝑈𝑚𝑎𝑥1⁄ )

𝑙𝑛 (0.769(𝑅𝑚)
0.059)

 (D.7) 

𝛼𝑈𝑚𝑎𝑥1 = {

0.03𝑅𝑚 + 1 𝑅𝑚 < 0.71
0.17𝑅𝑚 + 0.9 0.71 ≤ 𝑅𝑚 ≤ 4.5

−0.005𝑅𝑚
2 + 0.19𝑅𝑚 + 0.91 4.5 < 𝑅𝑚 < 16

0.047𝑅𝑚 + 1.918 16 ≤ 𝑅𝑚

 (D.8) 
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𝛼𝑈𝑚𝑎𝑥2 =

{
 
 

 
 
1,1 𝑅𝑚 ≤ 0.40
0.35𝑅𝑚 + 0.96 0.40 < 𝑅𝑚 ≤ 0.71
0.29𝑅𝑚 + 1.061 0.71 < 𝑅𝑚 ≤ 4.5

−0.0025𝑅𝑚
2 + 0.145𝑅𝑚 + 1.40 4.5 < 𝑅𝑚 < 21

0.0335𝑅𝑚 + 2.639 21 ≤ 𝑅𝑚

 (D.9) 

𝛼𝑈2𝑠𝑡𝑔 = {

1.1 𝑅𝑚 ≤ 1.4
0.14𝑅𝑚 + 0.918 1.4 < 𝑅𝑚 ≤ 2.3
−0.08𝑅𝑚 + 1.424 2.3 < 𝑅𝑚 < 4.1
1.1 4.1 ≤ 𝑅𝑚

 (D.10) 

𝑅𝑘𝑈1 =
𝑅𝑚(0.12𝑁𝐿 +𝑁𝑈)

𝑁𝐿 +𝑁𝑈
+
0.12𝑁𝐿 +𝑁𝑈
0.88𝑁𝐿

 (D.11) 

𝑅𝑘𝑈2 = 𝑅𝑚 + 1 (D.12) 

𝑅𝑘𝑈3 = {

4.13𝑅𝑚 + 2 𝑅𝑚 ≤ 0.8
−0.26𝑅𝑚 + 5.52 0.8 < 𝑅𝑚 < 2
𝑅𝑚 + 3 2 ≤ 𝑅𝑚

 (D.13) 

𝑅𝑘𝑈2𝑠𝑡𝑔 = {
0.826𝑅𝑚 + 4.76 𝑅𝑚 ≤ 0.71
11.029𝑅𝑚 − 2.5 0.71 < 𝑅𝑚

 (D.14) 

NBCC Formulation (otherwise identical to ASCE formulation) 

𝛼𝑈1 =

{
  
 

  
 
𝛼𝑈12(

𝑆𝑎 (√
𝑁𝑈 +𝑁𝐿

𝑁𝑈 + 0.12𝑁𝐿
𝑇𝑈)

𝑆𝑎(𝑇𝑈)

)

−𝑥3

√
𝑁𝑈 +𝑁𝐿

𝑁𝑈 + 0.12𝑁𝐿
𝑇𝑈 > 0.2 𝑠

𝛼𝑈12 √
𝑁𝑈 +𝑁𝐿

𝑁𝑈 + 0.12𝑁𝐿
𝑇𝑈 ≤ 0.2 𝑠

 
(D.15) 

𝛼𝑈𝑚𝑎𝑥 = {
𝛼𝑈𝑚𝑎𝑥2 (

𝑆𝑎(1.30𝑅𝑚
−0.059𝑇𝑈)

𝑆𝑎(𝑇𝑈)
)

−𝑥4

1.30𝑅𝑚
−0.059 > 0.2 𝑠

𝛼𝑈𝑚𝑎𝑥2 1.30𝑅𝑚
−0.059 ≤ 0.2 𝑠

 

(D.16) 

𝑅𝑘𝑈2𝑠𝑡𝑔 = {
0.907𝑅𝑚 + 9.78 𝑅𝑚 ≤ 1.213
11.029𝑅𝑚 − 2.5 1.213 < 𝑅𝑚

 
(D.17) 

The relevant values of αU11, αU12, αUmax1 and αUmax2 given by Yuan (2016) appear in Table D.1, Table 

D.2 and Table D.3. αU11 and αU12 are identical whether the ASCE 7 or NBCC 2010 formulations are 

used, and αUmax1 and αUmax2 are evaluated either by Equations (D.8) and (D.9) (for ASCE 7) or by 

Table D.2 and Table D.3 (for NBCC 2010). 
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Table D.1: Values of αU12 and αU12 for the case where RkU1 < RkU2 (Yuan, 2016) 

   αU11    αU12  

NU NL 1 

rm 

2 3 

 

1 

rm 

2 3 

1 1 0.986 1.162 1.281  1.258 1.435 1.572 

1 2 0.990 1.179 1.296  1.468 1.681 1.818 

1 3 0.979 1.165 1.267  1.550 1.757 1.874 

1 4 0.985 1.163 1.253  1.609 1.801 1.899 

1 5 0.993 1.165 1.248  1.652 1.826 1.910 

1 6 1.007 1.175 1.252  1.686 1.846 1.921 

1 7 0.929 1.077 1.145  1.556 1.692 1.754 

1 8 0.942 1.086 1.154  1.575 1.703 1.761 

1 9 0.956 1.100 1.168  1.593 1.716 1.771 

2 2 0.905 1.086 1.222  1.237 1.412 1.555 

2 3 0.893 1.088 1.221  1.314 1.516 1.663 

2 4 0.944 1.150 1.283  1.452 1.674 1.823 

2 5 0.943 1.147 1.269  1.500 1.720 1.586 

2 6 0.948 1.148 1.260  1.541 1.754 1.877 

2 7 0.954 1.148 1.250  1.574 1.778 1.888 

2 8 0.959 1.145 1.239  1.600 1.793 1.892 

3 3 0.920 1.051 1.190  1.223 1.391 1.532 

3 4 0.869 1.064 1.200  1.278 1.470 1.617 

3 5 0.921 1.127 1.267  1.400 1.615 1.769 

3 6 0.925 1.131 1.267  1.441 1.661 1.809 

3 7 0.927 1.134 1.262  1.476 1.696 1.836 

4 3 0.918 1.066 1.204  1.231 1.373 1.502 

4 4 0.905 1.092 1.240  1.285 1.459 1.605 

4 5 0.903 1.106 1.250  1.331 1.525 1.678 

4 6 0.907 1.114 1.256  1.370 1.577 1.732 

5 4 0.901 1.054 1.197  1.223 1.383 1.515 

5 5 0.892 1.077 1.225  1.193 1.385 1.548 

Note: Table D.1 is to be interpolated for intermediate values of rm. In addition, the bolded value of 

0.920 differs from Yuan (2016) and is given to correct a mismatch between the original MATLAB 

code used by Yuan (2016) and the text of Yuan (2016). 
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Table D.2: Values of αUmax1 for NBCC 2010 (Yuan, 2016) 

   αUmax1      αUmax1  

NL NU 1 

rm 

2 3 

 

NL NU 1 

rm 

2 3 

1 1 1.070 1.240 1.410  3 7 0.900 1.046 1.119 

1 2 1.015 1.070 1.155  4 1 1.580 2.110 2.470 

1 3 1.010 1.040 1.080  4 2 1.240 1.580 1.870 

1 4 1.008 1.015 1.060  4 3 1.050 1.353 1.580 

1 5 1.006 1.012 1.018  4 4 1.010 1.151 1.410 

1 6 1.005 1.010 1.015  4 5 0.990 1.142 1.232 

1 7 1.004 1.009 1.013  4 6 0.940 1.043 1.141 

1 8 1.004 1.008 1.011  5 1 1.735 2.310 2.635 

1 9 1.003 1.007 1.010  5 2 1.325 1.735 2.054 

2 1 1.240 1.580 1.870  5 3 1.082 1.467 1.735 

2 2 1.070 1.240 1.410  5 4 1.040 1.224 1.538 

2 3 1.020 1.127 1.240  5 5 1.000 1.198 1.293 

2 4 1.015 1.070 1.155  6 1 1.870 2.470 2.764 

2 5 1.012 1.036 1.104  6 2 1.410 1.870 2.215 

2 6 1.010 1.020 1.070  6 3 1.102 1.580 1.870 

2 7 1.009 1.017 1.046  6 4 1.050 1.295 1.665 

2 8 0.900 1.015 1.028  7 1 1.995 2.590 2.905 

3 1 1.410 1.870 2.215  7 2 1.495 1.995 2.354 

3 2 1.155 1.410 1.665  7 3 1.152 1.688 1.995 

3 3 1.020 1.240 1.410  8 1 2.110 2.670 3.046 

3 4 0.990 1.155 1.283  8 2 1.580 2.110 2.470 

3 5 0.965 1.050 1.123  9 1 2.215 2.764 3.187 

3 6 1.015 1.070 1.155       

Note: Table D.2 is to be interpolated for intermediate values of rm.  
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Table D.3: Values of αUmax2 for NBCC 2010 (Yuan, 2016) 

   αUmax2      αUmax2  

NL NU 1 

rm 

2 3 

 

NL NU 1 

rm 

2 3 

1 1 1.270 1.479 1.688  3 7 1.030 1.180 1.330 

1 2 1.135 1.270 1.375  4 1 1.897 2.400 2.780 

1 3 1.100 1.193 1.270  4 2 1.479 1.897 2.180 

1 4 1.100 1.135 1.230  4 3 1.280 1.618 1.897 

1 5 1.100 1.100 1.170  4 4 1.240 1.350 1.688 

1 6 1.100 1.100 1.135  4 5 1.240 1.395 1.520 

1 7 1.100 1.100 1.110  4 6 1.100 1.230 1.479 

1 8 1.100 1.100 1.100  5 1 2.063 2.600 3.013 

1 9 1.100 1.100 1.100  5 2 1.584 2.063 2.347 

2 1 1.479 1.897 2.180  5 3 1.274 1.758 2.063 

2 2 1.270 1.479 1.688  5 4 1.285 1.436 1.845 

2 3 1.193 1.340 1.479  5 5 1.220 1.479 1.550 

2 4 1.135 1.270 1.375  6 1 2.180 2.780 3.200 

2 5 1.100 1.228 1.312  6 2 1.688 2.180 2.503 

2 6 1.100 1.193 1.270  6 3 1.320 1.897 2.180 

2 7 1.100 1.140 1.160  6 4 1.260 1.540 2.002 

2 8 1.000 1.080 1.130  7 1 2.293 2.940 3.343 

3 1 1.688 2.180 2.503  7 2 1.763 2.293 2.647 

3 2 1.375 1.688 2.002  7 3 1.365 2.022 2.293 

3 3 1.180 1.479 1.688  8 1 2.400 3.080 3.443 

3 4 1.127 1.375 1.531  8 2 1.897 2.400 2.780 

3 5 1.080 1.198 1.291  9 1 2.503 3.200 3.544 

3 6 1.135 1.270 1.375       

Note: Table D.3 is to be interpolated for intermediate values of rm. 

D.3 Approximation of spectral acceleration relationship Sa(T) 

A key difference between the ASCE 7 and NBCC codes is the spectral shape used. In the case of 

ASCE 7 (2010, 2017), the spectrum is similar to that of Newmark & Hall (1982), while the NBCC 

(NRCC, 2010, 2015c) uses a piecewise uniform hazard spectrum that is intended to describe more 

accurately a uniform hazard across the full range of considered periods. Each is defined by different 

parameters and produces a different shape, as demonstrated by Figure 1.2 (NBCC 2015), Figure 1.3 

(ASCE 7), and Figure D.1 (NBCC 2010). For comparison, the approximated EXP-2 and the NBCC 

2010 spectrum appear in Figure D.2.  
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Figure D.1: NBCC 2010 design spectrum (Yuan, 2016) 

 

Figure D.2: EXP-2 design spectrum (Yuan, 2016) 

One key advantage of the ASCE 7 spectrum utilized by Xu & Yuan (2015) is that any ratio of two 

spectral accelerations calculated using ASCE 7 can be directly related to the ratio of two related 

periods. Consequently, the relationships between Rm, Rk, αU, and kU are readily expressed in terms of 

the structural periods directly, without the intermediate calculation of the spectral accelerations. Due 

to the piecewise nature of the NBCC spectrum, this is not the case, and therefore some expression to 
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calculate the ratio of spectral accelerations is required. To suit the ASCE 7-based expressions, Yuan 

(2016) proposes two alternative approximations to the NBCC spectrum such that the ratio of spectral 

accelerations can be expressed analogously to ASCE 7. The first approximation expresses the spectral 

values Sa(T) using a power function as in Equation (D.19) and the second uses an exponential 

function as in Equation (D.20). Equation (D.18) corresponds to the form of Sa(T1)/Sa(TU) given by 

ASCE 7, for comparison. 

𝑆𝑎(𝑇1)

𝑆𝑎(𝑇𝑈)
 = {

1 𝑇𝑈 𝑇𝑆⁄ ≤ 𝑇𝑈 𝑇1⁄

𝑇𝑆 𝑇1⁄ 𝑇𝑈 𝑇1⁄ < 𝑇𝑈 𝑇𝑆⁄ ≤ 1

𝑇𝑈 𝑇1⁄ 1 < 𝑇𝑈 𝑇𝑆⁄
 (D.18) 

𝑆𝑎(𝑇)  =

{
 
 

 
 
𝑆𝑎(0.2) 𝑇 ≤ 𝑇𝑠

′

𝐴1(𝑇)
𝜏1 𝑇𝑠

′ < 𝑇 ≤ 0.5𝑠

𝐴2(𝑇)
𝜏2 0.5𝑠 < 𝑇 ≤ 1.0𝑠

𝐴3(𝑇)
𝜏3 1.0𝑠 < 𝑇 ≤ 2.0𝑠

𝐴4(𝑇)
𝜏4 2.0𝑠 < 𝑇 ≤ 4.0𝑠

 (D.19) 

𝑆𝑎(𝑇) =

{
 
 

 
 
𝑆𝑎(0.2) 𝑇 ≤ 𝑇𝑠

′

𝐴1𝑒
(𝜏1𝑇) 𝑇𝑠

′ < 𝑇 ≤ 0.5𝑠

𝐴2𝑒
(𝜏2𝑇) 0.5𝑠 < 𝑇 ≤ 1.0𝑠

𝐴3𝑒
(𝜏3𝑇) 1.0𝑠 < 𝑇 ≤ 2.0𝑠

𝐴4𝑒
(𝜏4𝑇) 2.0𝑠 < 𝑇 ≤ 4.0𝑠

 (D.20) 

In Equations (D.19) and (D.20), A, τ and 𝑇𝑠
′ are curve fitting parameters specified by Yuan (2016). 

These parameters are evaluated in one of two different ways for each of Equations (D.19) and (D.20), 

as they can be calibrated either according to the midpoint or the endpoints of each segment. The 

differences significantly affect the calculated results, but those associated with the preferred EXP-2 

(read: 2nd alternative, exponential form) alternative are sufficient to discuss the characteristics of the 

fitting functions. The fitting parameters for the EXP-2 fit are as follows: 

τ𝑖 =

{
 
 
 
 

 
 
 
 
𝑆𝑎(0.5) − 𝑆𝑎(0.2)

0.3𝑆𝑎(0.35)
𝑖 = 1

𝑙𝑛[𝑒𝑥𝑝(0.15τ1 )(𝑆𝑎(0.35) 𝑆𝑎(0.75)⁄ )]

0.5 −  0.75
𝑖 = 2

𝑙𝑛[𝑒𝑥𝑝(0.25τ2 )(𝑆𝑎(0.75) 𝑆𝑎(1.5)⁄ )]

1.0 −  1.5
𝑖 = 3

𝑙𝑛[𝑒𝑥𝑝(0.5τ3 )(𝑆𝑎(1.5) 𝑆𝑎(3.0)⁄ )]

2.0 −  3.5
𝑖 = 4

 (D.21) 
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𝐴𝑖 =

{
 

 
𝑆𝑎(0.35) 𝑒𝑥𝑝(−0.35τ1) 𝑖 = 1

𝑆𝑎(0.75) 𝑒𝑥𝑝(−0.75τ2) 𝑖 = 2

𝑆𝑎(1.5) 𝑒𝑥𝑝(−1.5τ3) 𝑖 = 3

𝑆𝑎(3.0) 𝑒𝑥𝑝(−3.0τ4) 𝑖 = 4

 (D.22) 

𝑇𝑠
′ =

𝑙𝑛[𝑆𝑎(0.2)/𝐴1]

τ1
 (D.23) 

Note that the form of Equation (D.21) differs from that given in Yuan (2016). The coefficients that 

are given to calculate τ in Yuan (2016) do not match the MATLAB code originally used to 

demonstrate the adequacy of the fit and do not produce satisfactory results. Equation (D.21) provides 

the correct values. This aside, Equation (D.21) is not appropriate for Sa(0.2) ≤ Sa(0.5) as sometimes 

occurs in NBCC 2010, and will produce nonsensical results. For Sa(0.2) ≤ Sa(0.5), 𝑇𝑠
′ should be taken 

as 0.5 seconds and the term corresponding to 0.2 to 0.5 seconds should be omitted. 

Altogether, Equations (D.21) to (D.23) are cumbersome for several reasons. For example, τ is 

defined recursively and so requires that each prior term must also be calculated for larger periods. 

Therefore, even for a hypothetical structure where all the essential periods are at longer periods, the 

function must be evaluated for shorter periods notwithstanding that Sa(T) itself at those periods is not 

required. The formulation also requires that several new variables be defined beyond those required to 

calculate αU and to those familiar to users of the NBCC equivalent static force procedure. Finally, the 

formulation is based only on NBCC 2010 and would require updating for use with NBCC 2015, and 

the imminent NBCC 2020. 

D.4 Critical upper structure stiffnesses kU for EXP-2 fit 

By using the exponential form for Sa(T), Sa(T1)/Sa(TU) can be re-expressed to be similar to that of 

ASCE 7 (i.e. Equation (D.18)). Via the design requirement given by Equation (3.9), the approximate 

form of αU given by Yuan (2016) in Equation (D.1), the form of Sa(T) given by Equations (D.20) to 

(D.23) and a significant amount of algebraic manipulation, the following expressions can be derived 

for the various critical kU which correspond to the critical points (Rk, αU) of the Rk-αU distribution (e.g. 

RkU1). Said equations are derived by substituting the form of αU into Equation (3.9) and then 

rearranging to solve for kU. The form of Sa(T) given by Equations (D.20) to (D.23) (corresponding to 

the EXP-2 fit) is then substituted into the equation. What results is a series of equations for each 

critical value of kU. For the EXP-2 fit, the solution that is given by Yuan (2016) is the following: 
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𝑘α𝑈1 =

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 𝛼𝑈12𝑚𝑈𝑁𝑈

𝑆𝑎(0.2)

Δ𝑈𝑙𝑖𝑚
𝑘𝑈03 ≤ 𝑘α𝑈1

𝑚𝑈 (
2𝜋

𝜔̄1𝑈
)
2

(
𝑁𝑈 +𝑁𝐿

𝑁𝑈 + 0.12𝑁𝐿
)(
τ1𝑥3
𝑦1

)
2

𝑘𝑈01 ≤ 𝑘α𝑈1 < 𝑘𝑈03

𝑚𝑈 (
2𝜋

𝜔̄1𝑈
)
2

((1 − 𝐶1)𝑥3 + 1)
2
(
𝜏1
𝑦2
)
2 𝑘𝑈03(𝑇𝑠

′)2

0.25
≤ 𝑘α𝑈1 < 𝑘𝑈01

𝑚𝑈 (
2𝜋

𝜔̄1𝑈
)
2

((𝜏1 − 𝜏2𝐶1)𝑥3 + 𝜏1)
2
(
1

𝑦3
)
2 𝑘𝑈01(𝑇𝑠

′)2

0.25
≤ 𝑘α𝑈1 <

𝑘𝑈03(𝑇𝑠
′)2

0.25

𝑚𝑈 (
2𝜋

𝜔̄1𝑈
)
2

((1 − 𝐶1)𝑥3 + 1)
2
(
𝜏2
𝑦4
)
2

𝑘𝑈03(𝑇𝑠
′)2 ≤ 𝑘α𝑈1 <

𝑘𝑈01(𝑇𝑠
′)2

0.25

𝑚𝑈 (
2𝜋

𝜔̄1𝑈
)
2

((𝜏2 − 𝜏3𝐶1)𝑥3 + 𝜏2)
2
(
1

𝑦5
)
2

𝑘𝑈01(𝑇𝑠
′)2 ≤ 𝑘α𝑈1 < 𝑘𝑈03(𝑇𝑠

′)2

𝑚𝑈 (
2𝜋

𝜔̄1𝑈
)
2

((1 − 𝐶1)𝑥3 + 1)
2
(
𝜏3
𝑦6
)
2 𝑘𝑈03(𝑇𝑠

′)2

4
≤ 𝑘α𝑈1 < 𝑘𝑈01(𝑇𝑠

′)2

𝑚𝑈 (
2𝜋

𝜔̄1𝑈
)
2

((𝜏3 − 𝜏4𝐶1)𝑥3 + 𝜏3)
2
(
1

𝑦7
)
2 𝑘𝑈01(𝑇𝑠

′)2

4
≤ 𝑘α𝑈1 <

𝑘𝑈03(𝑇𝑠
′)2

4

 

 

(D.24) 

𝑘α𝑈𝑚𝑎𝑥 =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 𝛼𝑈12𝑚𝑈𝑁𝑈

𝑆𝑎(0.2)

Δ𝑈𝑙𝑖𝑚
𝑘𝑈03 ≤ 𝑘α𝑈𝑚𝑎𝑥

𝑚𝑈 (
2𝜋

𝜔̄1𝑈
)
2
(1.691𝑅𝑚

−0.118) (
τ1𝑥4

𝑦1
)
2

𝑘𝑈01 ≤ 𝑘α𝑈𝑚𝑎𝑥 < 𝑘𝑈03

𝑚𝑈 (
2𝜋

𝜔̄1𝑈
)
2
((1 − 1.30𝑅𝑚

−0.059)𝑥4 + 1)
2
(
𝜏1

𝑦2
)
2 𝑘𝑈02(𝑇𝑠

′)
2

0.25
≤ 𝑘α𝑈𝑚𝑎𝑥 < 𝑘𝑈01

𝑚𝑈 (
2𝜋

𝜔̄1𝑈
)
2
((𝜏1 − 1.30𝜏2𝑅𝑚

−0.059)𝑥4 + 𝜏1)
2
(
1

𝑦3
)
2 𝑘𝑈01(𝑇𝑠

′)
2

0.25
≤ 𝑘α𝑈𝑚𝑎𝑥 <

𝑘𝑈02(𝑇𝑠
′)
2

0.25

𝑚𝑈 (
2𝜋

𝜔̄1𝑈
)
2
((1 − 1.30𝑅𝑚

−0.059)𝑥4 + 1)
2
(
𝜏2

𝑦4
)
2

𝑘𝑈02(𝑇𝑠
′)2 ≤ 𝑘α𝑈𝑚𝑎𝑥 <

𝑘𝑈01(𝑇𝑠
′)
2

0.25

𝑚𝑈 (
2𝜋

𝜔̄1𝑈
)
2
((𝜏2 − 1.30𝜏3𝑅𝑚

−0.059)𝑥4 + 𝜏2)
2
(
1

𝑦5
)
2

𝑘𝑈01(𝑇𝑠
′)2 ≤ 𝑘α𝑈𝑚𝑎𝑥 < 𝑘𝑈02(𝑇𝑠

′)2

𝑚𝑈 (
2𝜋

𝜔̄1𝑈
)
2
((1 − 1.30𝑅𝑚

−0.059)𝑥4 + 1)
2
(
𝜏3

𝑦6
)
2 𝑘𝑈02(𝑇𝑠

′)
2

4
≤ 𝑘α𝑈𝑚𝑎𝑥 < 𝑘𝑈01(𝑇𝑠

′)2

𝑚𝑈 (
2𝜋

𝜔̄1𝑈
)
2
((𝜏3 − 1.30𝜏4𝑅𝑚

−0.059)𝑥4 + 𝜏3)
2
(
1

𝑦7
)
2 𝑘𝑈01(𝑇𝑠

′)
2

4
≤ 𝑘α𝑈𝑚𝑎𝑥 <

𝑘𝑈02(𝑇𝑠
′)
2

4

  

 

(D.25) 
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𝑘α𝑈2𝑠𝑡𝑔 =

{
 
 
 
 

 
 
 
 𝛼𝑈2𝑠𝑡𝑔𝑚𝑈𝑁𝑈

𝑆𝑎(0.2)

Δ𝑈𝑙𝑖𝑚
𝑘𝑈01 ≤ 𝑘α𝑈2𝑠𝑡𝑔

𝑚𝑈 (
2𝜋

𝜔̄1𝑈
)
2

(
τ1
𝑦1
)
2 𝑘𝑈01(𝑇𝑠

′)2

0.25
≤ 𝑘α𝑈2𝑠𝑡𝑔 < 𝑘𝑈01

𝑚𝑈 (
2𝜋

𝜔̄1𝑈
)
2

(
𝜏2
𝑦2
)
2

𝑘𝑈01(𝑇𝑠
′)2 ≤ 𝑘α𝑈2𝑠𝑡𝑔 <

𝑘𝑈01(𝑇𝑠
′)2

0.25

𝑚𝑈 (
2𝜋

𝜔̄1𝑈
)
2

(
𝜏3
𝑦3
)
2 𝑘𝑈01(𝑇𝑠

′)2

4
≤ 𝑘α𝑈2𝑠𝑡𝑔 < 𝑘𝑈01(𝑇𝑠

′)2

 (D.26) 

𝐶1 = √
𝑁𝑈 +𝑁𝐿

𝑁𝑈 + 0.12𝑁𝐿
 (D.27) 

𝑘𝑈01 = 𝑚𝑈 (
2𝜋

𝜔̄1𝑈𝑇𝑠
′)
2

 (D.28) 

𝑘𝑈02 = 1.691(𝑅𝑚)
−0.118𝑘𝑈01 (D.29) 

𝑘𝑈03 = (
𝑁𝑈 +𝑁𝐿

𝑁𝑈 + 0.12𝑁𝐿
)𝑘𝑈01 (D.30) 

𝑒𝑥𝑝(𝑦𝑖)𝑦𝑖
2 = 𝑏𝑖 (D.31) 

𝑏α𝑈1,𝑖 =

{
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 [

𝑁𝑈 +𝑁𝐿
𝑁𝑈 + 0.12𝑁𝐿

] 𝜏1
2𝑥3

2 (
2𝜋

𝜔̄1𝑈
)
2

(
𝑆𝑎(0.2)

𝐴1
)

𝑥3 𝛥𝑈𝑙𝑖𝑚
𝛼𝑈12𝑁𝑈𝑆𝑎(0.2)

𝑖 = 1

[(1 − √
𝑁𝑈 + 0.12𝑁𝐿
𝑁𝑈 +𝑁𝐿

)𝑥3 + 1]

2

𝜏1
2 (

2𝜋

𝜔̄1𝑈
)
2 𝛥𝑈𝑙𝑖𝑚
𝛼𝑈12𝑁𝑈𝐴1

𝑖 = 2

[(𝜏1 − 𝜏2√
𝑁𝑈 + 0.12𝑁𝐿
𝑁𝑈 +𝑁𝐿

)𝑥3 + 𝜏1]

2

(
2𝜋

𝜔̄1𝑈
)
2

(
𝐴2
𝐴1
)
𝑥3 𝛥𝑈𝑙𝑖𝑚
𝛼𝑈12𝑁𝑈𝐴1

𝑖 = 3

[(1 − √
𝑁𝑈 + 0.12𝑁𝐿
𝑁𝑈 +𝑁𝐿

)𝑥3 + 1]

2

𝜏2
2 (

2𝜋

𝜔̄1𝑈
)
2 𝛥𝑈𝑙𝑖𝑚
𝛼𝑈12𝑁𝑈𝐴2

𝑖 = 4

[𝑥3(𝜏2 − 𝜏3√
𝑁𝑈 + 0.12𝑁𝐿
𝑁𝑈 +𝑁𝐿

)+ 𝜏2]

2

(
2𝜋

𝜔̄1𝑈
)
2

(
𝐴3
𝐴2
)
𝑥3 𝛥𝑈𝑙𝑖𝑚
𝛼𝑈12𝑁𝑈𝐴2

𝑖 = 5

[(1 − √
𝑁𝑈 + 0.12𝑁𝐿
𝑁𝑈 +𝑁𝐿

)𝑥3 + 1]

2

𝜏3
2 (

2𝜋

𝜔̄1𝑈
)
2 𝛥𝑈𝑙𝑖𝑚
𝛼𝑈12𝑁𝑈𝐴3

𝑖 = 6

[(𝜏3 − 𝜏4√
𝑁𝑈 + 0.12𝑁𝐿
𝑁𝑈 +𝑁𝐿

)𝑥3 + 𝜏3]

2

(
2𝜋

𝜔̄1𝑈
)
2

(
𝐴4
𝐴3
)
𝑥3 𝛥𝑈𝑙𝑖𝑚
𝛼𝑈12𝑁𝑈𝐴3

𝑖 = 7

 (D.32) 
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𝑏αU𝑚𝑎𝑥,𝑖 =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 [1.169Rm

−0.118]𝜏1
2𝑥4

2 (
2𝜋

𝜔̄1𝑈
)
2

(
𝑆𝑎(0.2)

𝐴1
)

𝑥4 𝛥𝑈𝑙𝑖𝑚
𝛼𝑈𝑚𝑎𝑥2𝑁𝑈𝑆𝑎(0.2)

𝑖 = 1

[(1 − 1.3𝑅𝑚
−0.059)𝑥4 + 1]

2𝜏1
2 (

2𝜋

𝜔̄1𝑈
)
2 𝛥𝑈𝑙𝑖𝑚
𝛼𝑈𝑚𝑎𝑥2𝑁𝑈𝐴1

𝑖 = 2

[(𝜏1 − 1.3𝜏2𝑅𝑚
−0.059)𝑥4 + 𝜏1]

2 (
2𝜋

𝜔̄1𝑈
)
2

(
𝐴2
𝐴1
)
𝑥4 𝛥𝑈𝑙𝑖𝑚
𝛼𝑈𝑚𝑎𝑥2𝑁𝑈𝐴1

𝑖 = 3

[(1 − 1.3𝑅𝑚
−0.059)𝑥4 + 1]

2𝜏2
2 (

2𝜋

𝜔̄1𝑈
)
2 𝛥𝑈𝑙𝑖𝑚
𝛼𝑈𝑚𝑎𝑥2𝑁𝑈𝐴2

𝑖 = 4

[(𝜏2 − 1.3𝜏3𝑅𝑚
−0.059)𝑥4 + 𝜏2]

2 (
2𝜋

𝜔̄1𝑈
)
2

(
𝐴3
𝐴2
)
𝑥4 𝛥𝑈𝑙𝑖𝑚
𝛼𝑈𝑚𝑎𝑥2𝑁𝑈𝐴2

𝑖 = 5

[(1 − 1.3𝑅𝑚
−0.059)𝑥4 + 1]

2𝜏3
2 (

2𝜋

𝜔̄1𝑈
)
2 𝛥𝑈𝑙𝑖𝑚
𝛼𝑈𝑚𝑎𝑥2𝑁𝑈𝐴3

𝑖 = 6

[(𝜏3 − 1.3𝜏4𝑅𝑚
−0.059)𝑥4 + 𝜏3]

2 (
2𝜋

𝜔̄1𝑈
)
2

(
𝐴4
𝐴3
)
𝑥4 𝛥𝑈𝑙𝑖𝑚
𝛼𝑈𝑚𝑎𝑥2𝑁𝑈𝐴3

𝑖 = 7

 (D.33) 

𝑏αU2𝑠𝑡𝑔,𝑖 =

{
 
 
 

 
 
 𝜏1

2 (
2𝜋

𝜔̄1𝑈
)
2 𝛥𝑈𝑙𝑖𝑚
𝛼𝑈2𝑠𝑡𝑔𝑁𝑈𝐴1

𝑖 = 1

𝜏2
2 (

2𝜋

𝜔̄1𝑈
)
2 𝛥𝑈𝑙𝑖𝑚
𝛼𝑈2𝑠𝑡𝑔𝑁𝑈𝐴2

𝑖 = 2

𝜏3
2 (

2𝜋

𝜔̄1𝑈
)
2 𝛥𝑈𝑙𝑖𝑚
𝛼𝑈2𝑠𝑡𝑔𝑁𝑈𝐴3

𝑖 = 3

 (D.34) 

In the above, each kαU is the storey stiffness of the upper structure corresponding to the relevant αU 

(i.e. kαU1 is associated with the Yuan (2016) formulation for αU1\RkU1). The formulation is defined in 

three parts -  kαU, with which the final value of kαU is defined, yi, an intermediate variable which must 

be solved numerically via Equation (D.31), and bαU, a coefficient associated with each kαU and used to 

solve for yi. For kαU1 and kαUmax, the derivation assumes that T1/TU =√𝑁𝑈 +𝑁𝐿 𝑁𝑈 + 0.12𝑁𝐿⁄  and 

1.30𝑅𝑚
−0.059 respectively as part of the transformations performed. Note that the variables C1, kU01, 

kU02 and kU03 are used to make the equations more concise and that each kαU is referred to as simply kU 

in the newly proposed formulation.  

To continue and evaluate each kαU requires the solution of the transcendental equation, Equation 

(D.31), for yi based on bαU,i. This Equation (D.31) is derived from the same procedure as kαU but has 

no direct physical interpretation. It can therefore only be said that the relationship may produce 

multiple results based on the value of bαU,I, which can be interpreted as having an exponential part and 

a quadratic part. Where multiple solutions exist, no guidance is provided by Yuan (2016) but that yi is 
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to be evaluated according to Table D.4. While not stated explicitly by Yuan (2016), it appears that the 

tabulated solutions correspond to the negative-valued root closest in value to zero. 

Table D.4: Numerical solution of yi (Yuan, 2016) 

yi bi yi bi 

-0.100 0.009 -1.100 0.403 

-0.200 0.033 -1.200 0.434 

-0.300 0.067 -1.300 0.461 

-0.400 0.107 -1.400 0.483 

-0.500 0.152 -1.500 0.502 

-0.600 0.198 -1.600 0.517 

-0.700 0.243 -1.700 0.528 

-0.800 0.288 -1.800 0.536 

-0.900 0.329 -1.900 0.540 

-1.000 0.368 -2.000 0.541 

The development of Equations (D.24) to (D.34) is an involved procedure. It may not be obvious 

where various elements arise from when compared to the initial formulation of αU and the original 

design criterion. In particular, the limits expressed concerning stiffness kαU are not directly related to 

the prior limits given for Rk, TU and T1, and yi is not clearly related to either the original formulation 

or some physical intuition. Little guidance is provided for the transcendental equation in particular, 

which is integral to the solution for kαU and arises due to a transformation partway through the 

derivation. Specifically, each kαU can be expressed as an exponential function of the period TU of the 

form given by (D.35). Assuming that the exponent is equal to yi and assuming that the form of kαU can 

be represented similarly to Equation (D.24) to (D.26), the numerical solution is derived according to 

Equation (D.31). What is not obvious from the Equations given by Yuan (2016) is that yi is directly 

related to TU based on the fitting parameters τ, A and 𝑇𝑠
′, as well as the exponent x (x3 or x4 as 

applicable). In fact, the intermediate exponential form can be generically expressed as: 

𝑘𝛼𝑈 = 𝐶1𝑒
𝐶2×𝑇𝑈 = 𝐶1𝑒

(
𝐶3

√𝑘𝛼𝑈
)

 
(D.35) 

where Ci represents various constants defined with respect to the model and fit parameters (e.g. τ, 

Sa(T)).  

Note that compared to Yuan (2016) x3
2 has been added to the first term of Equation (D.32) for 

consistency with the original MATLAB code and with Equation (D.32). Likewise, the limits on 

stiffness on the seventh term of Equation (D.25) have been revised so that they vary continuously, 
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and the eighth term of Equation (D.25) has been corrected from 1.301 to 1.30 to be consistent with 

elsewhere.  
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Appendix E 

Tabulated values of RkU1, AU1, BU1, AUmax and BUmax 

The following tabulated values are used as part of the αU formulation given in Chapter 3.3.4. 

Table E.1: Values of RkU1 

NU NL 1 2 

rm 

3 4 5  NU NL 1 2 

rm 

3 4 5 

1 1 1.496 1.978 2.457 2.936 3.414  4 3 1.691 2.032 2.351 2.705 3.054 

1 2 1.506 2.223 2.937 3.652 4.367  4 4 1.461 1.846 2.252 2.654 3.055 

1 3 1.463 2.315 3.165 4.016 4.868  4 5 1.302 1.751 2.194 2.635 3.076 

1 4 1.433 2.368 3.301 4.231 5.159  4 6 1.210 1.685 2.158 2.632 3.105 

1 5 1.412 2.398 3.374 4.342 5.303  4 7 1.141 1.639 2.137 2.635 3.134 

1 6 1.395 2.411 3.399 4.366 5.316  4 8 1.088 1.605 2.123 2.642 3.160 

1 7 1.382 2.408 3.385 4.320 5.216  5 1 2.725 3.113 3.594 4.142 4.723 

1 8 1.370 2.395 3.351 4.246 5.091  5 2 2.327 2.872 3.315 3.598 3.762 

1 9 1.359 2.381 3.320 4.201 4.907  5 3 1.941 2.351 2.608 2.860 3.120 

1 10 1.349 2.369 3.307 4.200 5.071  5 4 1.670 2.005 2.331 2.693 3.051 

1 11 1.341 2.362 3.313 4.098 5.135  5 5 1.462 1.833 2.234 2.632 3.028 

2 1 1.618 1.915 2.180 2.456 2.732  5 6 1.313 1.743 2.172 2.600 3.027 

2 2 1.460 1.900 2.330 2.756 3.182  5 7 1.222 1.678 2.131 2.584 3.037 

2 3 1.322 1.848 2.368 2.888 3.408  6 1 3.152 3.613 4.193 4.901 5.684 

2 4 1.230 1.814 2.397 2.980 3.563  6 2 2.616 3.214 3.856 4.417 4.778 

2 5 1.167 1.794 2.420 3.046 3.672  6 3 2.185 2.711 3.060 3.272 3.476 

2 6 1.122 1.781 2.437 3.092 3.746  6 4 1.868 2.258 2.531 2.795 3.109 

2 7 1.089 1.770 2.447 3.118 3.786  6 5 1.641 1.978 2.312 2.676 3.040 

2 8 1.063 1.761 2.448 3.125 3.794  6 6 1.463 1.824 2.222 2.616 3.009 

2 9 1.043 1.751 2.442 3.116 3.776  7 1 3.543 3.998 4.553 5.161 5.841 

2 10 1.026 1.741 2.430 3.095 3.736  7 2 2.919 3.558 4.365 5.306 6.370 

3 1 1.947 2.257 2.524 2.747 2.940  7 3 2.426 3.041 3.533 3.867 4.139 

3 2 1.692 2.040 2.352 2.686 3.017  7 4 2.071 2.545 2.861 3.091 3.309 

3 3 1.453 1.865 2.280 2.690 3.099  7 5 1.815 2.203 2.477 2.754 3.092 

3 4 1.301 1.773 2.240 2.706 3.172  8 1 3.939 4.386 4.952 5.579 6.247 

3 5 1.204 1.715 2.222 2.730 3.238  8 2 3.219 3.881 4.736 5.681 6.671 

3 6 1.135 1.675 2.214 2.753 3.293  8 3 2.657 3.313 4.000 4.574 5.078 

3 7 1.084 1.647 2.210 2.774 3.337  8 4 2.274 2.846 3.273 3.556 3.728 

3 8 1.044 1.626 2.208 2.789 3.369  9 1 4.342 4.798 5.381 6.029 6.709 

3 9 1.013 1.610 2.205 2.798 3.388  9 2 3.535 4.164 4.954 5.900 6.983 

4 1 2.319 2.663 3.039 3.383 3.675  9 3 2.919 3.616 4.482 5.276 6.148 

4 2 1.982 2.386 2.681 2.918 3.148  10 1 4.763 5.260 5.905 6.670 7.507 
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NU NL 1 2 

rm 

3 4 5  NU NL 1 2 

rm 

3 4 5 

10 2 3.881 4.583 5.376 6.255 7.322  11 1 5.193 5.744 6.461 7.315 8.306 

Table E.2: Values of AU1 

NU NL 1 2 

rm 

3 4 5  NU NL 1 2 

rm 

3 4 5 

1 1 0.433 0.516 0.575 0.618 0.65  4 4 0.291 0.39 0.471 0.533 0.582 

1 2 0.396 0.518 0.593 0.64 0.674  4 5 0.307 0.410 0.49 0.549 0.593 

1 3 0.444 0.564 0.629 0.669 0.697  4 6 0.321 0.427 0.504 0.56 0.601 

1 4 0.478 0.595 0.657 0.696 0.722  4 7 0.335 0.443 0.515 0.567 0.603 

1 5 0.505 0.624 0.691 0.735 0.768  4 8 0.347 0.457 0.525 0.571 0.605 

1 6 0.527 0.656 0.737 0.800 0.852  5 1 0.386 0.409 0.423 0.434 0.443 

1 7 0.547 0.692 0.798 0.891 0.974  5 2 0.276 0.310 0.351 0.402 0.464 

1 8 0.567 0.731 0.865 0.982 1.085  5 3 0.262 0.327 0.403 0.477 0.537 

1 9 0.586 0.768 0.917 1.039 1.126  5 4 0.266 0.356 0.441 0.511 0.566 

1 10 0.604 0.800 0.947 1.058 1.142  5 5 0.278 0.377 0.463 0.528 0.58 

1 11 0.619 0.821 0.960 1.037 1.127  5 6 0.289 0.393 0.478 0.541 0.588 

2 1 0.382 0.446 0.510 0.565 0.611  5 7 0.301 0.407 0.490 0.549 0.593 

2 2 0.329 0.428 0.509 0.570 0.617  6 1 0.406 0.436 0.474 0.511 0.550 

2 3 0.344 0.458 0.534 0.589 0.629  6 2 0.274 0.301 0.326 0.353 0.387 

2 4 0.364 0.483 0.555 0.603 0.638  6 3 0.248 0.297 0.354 0.423 0.492 

2 5 0.384 0.503 0.572 0.616 0.648  6 4 0.244 0.319 0.399 0.470 0.529 

2 6 0.413 0.536 0.601 0.645 0.677  6 5 0.25 0.343 0.423 0.489 0.542 

2 7 0.433 0.549 0.619 0.669 0.709  6 6 0.262 0.362 0.442 0.505 0.556 

2 8 0.444 0.565 0.648 0.709 0.758  7 1 0.427 0.462 0.509 0.570 0.634 

2 9 0.456 0.588 0.682 0.756 0.818  7 2 0.270 0.300 0.324 0.345 0.367 

2 10 0.468 0.612 0.719 0.806 0.882  7 3 0.234 0.271 0.313 0.360 0.416 

3 1 0.375 0.406 0.452 0.503 0.553  7 4 0.226 0.282 0.347 0.417 0.479 

3 2 0.279 0.354 0.424 0.486 0.539  7 5 0.238 0.316 0.402 0.474 0.525 

3 3 0.291 0.391 0.465 0.524 0.573  8 1 0.449 0.488 0.542 0.619 0.72 

3 4 0.319 0.421 0.497 0.553 0.595  8 2 0.268 0.300 0.334 0.365 0.394 

3 5 0.340 0.448 0.521 0.571 0.609  8 3 0.251 0.262 0.284 0.315 0.348 

3 6 0.359 0.468 0.538 0.584 0.618  8 4 0.252 0.294 0.343 0.401 0.469 

3 7 0.376 0.487 0.554 0.597 0.630  9 1 0.465 0.512 0.570 0.653 0.764 

3 8 0.390 0.504 0.569 0.612 0.644  9 2 0.305 0.344 0.388 0.434 0.486 

3 9 0.402 0.513 0.579 0.626 0.663  9 3 0.268 0.300 0.325 0.347 0.372 

4 1 0.369 0.388 0.406 0.432 0.465  10 1 0.507 0.565 0.641 0.737 0.871 

4 2 0.282 0.332 0.395 0.459 0.513  10 2 0.313 0.360 0.421 0.496 0.597 

4 3 0.278 0.362 0.441 0.506 0.559  11 1 0.632 0.547 0.438 0.307 0.165 



 

 210 

Table E.3: Values of BU1 

NU NL 1 2 

rm 

3 4 5  NU NL 1 2 

rm 

3 4 5 

1 1 1.033 0.976 0.944 0.925 0.914  4 4 1.442 1.252 1.150 1.087 1.044 

1 2 1.234 1.086 1.018 0.981 0.957  4 5 1.418 1.228 1.131 1.073 1.034 

1 3 1.176 1.036 0.977 0.945 0.924  4 6 1.394 1.206 1.114 1.059 1.024 

1 4 1.125 0.994 0.937 0.904 0.882  4 7 1.375 1.188 1.100 1.048 1.015 

1 5 1.087 0.953 0.889 0.849 0.821  4 8 1.358 1.174 1.088 1.040 1.008 

1 6 1.055 0.909 0.832 0.779 0.738  5 1 0.955 0.932 0.923 0.915 0.909 

1 7 1.025 0.864 0.769 0.699 0.643  5 2 1.360 1.308 1.240 1.161 1.083 

1 8 0.998 0.820 0.711 0.631 0.570  5 3 1.479 1.343 1.212 1.120 1.060 

1 9 0.973 0.783 0.669 0.592 0.542  5 4 1.505 1.307 1.181 1.104 1.054 

1 10 0.951 0.755 0.646 0.578 0.533  5 5 1.497 1.281 1.167 1.098 1.052 

1 11 0.933 0.737 0.637 0.590 0.542  5 6 1.483 1.263 1.154 1.090 1.047 

2 1 1.063 1.007 0.955 0.918 0.891  5 7 1.466 1.248 1.144 1.083 1.043 

2 2 1.310 1.158 1.073 1.021 0.987  6 1 0.888 0.845 0.788 0.731 0.669 

2 3 1.327 1.153 1.069 1.020 0.989  6 2 1.350 1.302 1.262 1.216 1.162 

2 4 1.310 1.133 1.052 1.008 0.979  6 3 1.520 1.410 1.293 1.181 1.096 

2 5 1.285 1.110 1.033 0.989 0.961  6 4 1.587 1.402 1.250 1.156 1.097 

2 6 1.244 1.077 1.002 0.958 0.927  6 5 1.607 1.372 1.237 1.160 1.108 

2 7 1.206 1.048 0.970 0.921 0.886  6 6 1.582 1.338 1.220 1.150 1.100 

2 8 1.179 1.020 0.936 0.879 0.836  7 1 0.824 0.771 0.696 0.605 0.515 

2 9 1.159 0.993 0.898 0.832 0.780  7 2 1.350 1.283 1.231 1.183 1.134 

2 10 1.140 0.966 0.861 0.786 0.725  7 3 1.576 1.477 1.384 1.289 1.196 

3 1 1.028 1.010 0.965 0.916 0.876  7 4 1.663 1.517 1.368 1.249 1.170 

3 2 1.429 1.283 1.179 1.113 1.066  7 5 1.636 1.433 1.273 1.177 1.118 

3 3 1.459 1.265 1.163 1.098 1.054  8 1 0.766 0.703 0.618 0.505 0.372 

3 4 1.399 1.216 1.122 1.066 1.029  8 2 1.351 1.265 1.174 1.102 1.038 

3 5 1.353 1.179 1.093 1.043 1.010  8 3 1.519 1.488 1.444 1.379 1.311 

3 6 1.321 1.151 1.071 1.025 0.995  8 4 1.547 1.463 1.364 1.258 1.156 

3 7 1.294 1.128 1.051 1.007 0.977  9 1 0.723 0.645 0.554 0.436 0.296 

3 8 1.272 1.109 1.034 0.987 0.956  9 2 1.222 1.135 1.041 0.946 0.842 

3 9 1.254 1.093 1.014 0.963 0.928  9 3 1.408 1.339 1.291 1.253 1.203 

4 1 1.011 1.002 0.994 0.968 0.933  10 1 0.670 0.588 0.483 0.365 0.216 

4 2 1.374 1.291 1.193 1.113 1.058  10 2 1.185 1.079 0.955 0.822 0.662 

4 3 1.448 1.284 1.173 1.102 1.054  11 1 0.632 0.547 0.438 0.307 0.165 
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Table E.4: Values of AUmax 

NU NL 1 2 

rm 

3 4 5  NU NL 1 2 

rm 

3 4 5 

1 1 0.449 0.570 0.687 0.797 0.899  4 4 0.287 0.394 0.506 0.611 0.710 

1 2 0.405 0.609 0.793 0.960 1.113  4 5 0.304 0.437 0.570 0.692 0.806 

1 3 0.445 0.713 0.948 1.156 1.343  4 6 0.323 0.481 0.633 0.771 0.897 

1 4 0.502 0.826 1.103 1.344 1.557  4 7 0.343 0.525 0.694 0.845 0.982 

1 5 0.564 0.938 1.251 1.518 1.753  4 8 0.364 0.569 0.753 0.917 1.063 

1 6 0.627 1.046 1.390 1.680 1.931  5 1 0.34 0.359 0.382 0.409 0.438 

1 7 0.690 1.150 1.520 1.830 2.095  5 2 0.266 0.308 0.356 0.408 0.462 

1 8 0.752 1.249 1.643 1.969 2.244  5 3 0.258 0.324 0.395 0.470 0.546 

1 9 0.813 1.344 1.759 2.099 2.382  5 4 0.263 0.352 0.447 0.544 0.638 

1 10 0.872 1.435 1.868 2.218 2.511  5 5 0.276 0.386 0.504 0.620 0.732 

1 11 0.929 1.521 1.972 2.331 2.631  5 6 0.292 0.424 0.562 0.696 0.821 

2 1 0.38 0.447 0.519 0.590 0.658  5 7 0.307 0.462 0.620 0.769 0.907 

2 2 0.328 0.449 0.572 0.688 0.796  6 1 0.337 0.352 0.370 0.392 0.415 

2 3 0.347 0.516 0.679 0.828 0.966  6 2 0.251 0.286 0.326 0.367 0.413 

2 4 0.381 0.593 0.790 0.968 1.129  6 3 0.237 0.292 0.352 0.414 0.479 

2 5 0.421 0.672 0.898 1.100 1.280  6 4 0.238 0.313 0.392 0.475 0.558 

2 6 0.461 0.749 1.002 1.223 1.419  6 5 0.247 0.341 0.439 0.540 0.639 

2 7 0.503 0.825 1.101 1.341 1.550  6 6 0.259 0.371 0.488 0.606 0.715 

2 8 0.544 0.897 1.195 1.449 1.673  7 1 0.328 0.341 0.357 0.374 0.393 

2 9 0.585 0.968 1.286 1.553 1.785  7 2 0.248 0.271 0.299 0.331 0.365 

2 10 0.626 1.036 1.370 1.652 1.893  7 3 0.238 0.270 0.314 0.361 0.411 

3 1 0.360 0.399 0.446 0.494 0.542  7 4 0.238 0.284 0.342 0.406 0.472 

3 2 0.278 0.355 0.437 0.519 0.596  7 5 0.239 0.303 0.377 0.455 0.535 

3 3 0.274 0.387 0.499 0.607 0.709  8 1 0.321 0.331 0.341 0.355 0.370 

3 4 0.289 0.435 0.573 0.704 0.826  8 2 0.253 0.275 0.302 0.331 0.360 

3 5 0.312 0.486 0.648 0.800 0.939  8 3 0.245 0.281 0.324 0.365 0.409 

3 6 0.337 0.539 0.724 0.893 1.047  8 4 0.246 0.299 0.353 0.410 0.466 

3 7 0.364 0.591 0.797 0.982 1.149  9 1 0.319 0.329 0.338 0.349 0.359 

3 8 0.391 0.642 0.868 1.068 1.247  9 2 0.254 0.276 0.296 0.323 0.352 

3 9 0.419 0.693 0.937 1.149 1.34  9 3 0.245 0.277 0.315 0.355 0.398 

4 1 0.342 0.367 0.398 0.432 0.466  10 1 0.319 0.327 0.335 0.344 0.354 

4 2 0.277 0.331 0.391 0.453 0.512  10 2 0.251 0.271 0.289 0.310 0.336 

4 3 0.275 0.357 0.444 0.529 0.610  11 1 0.318 0.326 0.334 0.341 0.349 

 

 

 



 

 212 

Table E.5: Values of BUmax 

NU NL 1 2 

rm 

3 4 5  NU NL 1 2 

rm 

3 4 5 

1 1 1.003 0.906 0.828 0.767 0.719  4 4 1.462 1.261 1.116 1.011 0.931 

1 2 1.232 1.020 0.892 0.806 0.743  4 5 1.440 1.212 1.061 0.954 0.875 

1 3 1.237 0.987 0.851 0.764 0.702  4 6 1.411 1.165 1.010 0.904 0.826 

1 4 1.196 0.937 0.803 0.719 0.661  4 7 1.377 1.119 0.965 0.862 0.788 

1 5 1.147 0.888 0.760 0.681 0.627  4 8 1.343 1.078 0.925 0.824 0.754 

1 6 1.099 0.846 0.723 0.649 0.598  5 1 1.111 1.096 1.073 1.042 1.012 

1 7 1.056 0.810 0.693 0.622 0.574  5 2 1.419 1.335 1.244 1.165 1.097 

1 8 1.016 0.777 0.666 0.599 0.555  5 3 1.503 1.354 1.223 1.119 1.037 

1 9 0.981 0.749 0.643 0.580 0.539  5 4 1.516 1.319 1.167 1.053 0.966 

1 10 0.949 0.724 0.623 0.563 0.524  5 5 1.501 1.270 1.107 0.990 0.900 

1 11 0.920 0.703 0.605 0.549 0.512  5 6 1.473 1.218 1.050 0.932 0.845 

2 1 1.070 1.004 0.935 0.876 0.826  5 7 1.442 1.171 1.000 0.883 0.797 

2 2 1.312 1.131 1.002 0.908 0.836  6 1 1.109 1.099 1.081 1.056 1.030 

2 3 1.332 1.095 0.948 0.848 0.775  6 2 1.479 1.395 1.310 1.231 1.160 

2 4 1.298 1.038 0.887 0.789 0.718  6 3 1.590 1.440 1.307 1.198 1.109 

2 5 1.251 0.981 0.834 0.739 0.673  6 4 1.618 1.415 1.255 1.132 1.036 

2 6 1.204 0.931 0.788 0.698 0.636  6 5 1.613 1.367 1.192 1.064 0.969 

2 7 1.158 0.887 0.749 0.663 0.604  6 6 1.589 1.316 1.134 1.004 0.914 

2 8 1.116 0.849 0.716 0.635 0.578  7 1 1.136 1.125 1.107 1.085 1.062 

2 9 1.077 0.815 0.686 0.609 0.557  7 2 1.493 1.446 1.387 1.322 1.258 

2 10 1.041 0.785 0.661 0.586 0.537  7 3 1.593 1.508 1.411 1.316 1.233 

3 1 1.083 1.044 0.992 0.944 0.899  7 4 1.628 1.505 1.378 1.265 1.166 

3 2 1.436 1.277 1.148 1.051 0.978  7 5 1.637 1.477 1.329 1.202 1.102 

3 3 1.511 1.276 1.117 1.007 0.925  8 1 1.162 1.156 1.146 1.131 1.112 

3 4 1.505 1.227 1.059 0.948 0.866  8 2 1.457 1.410 1.355 1.299 1.247 

3 5 1.468 1.171 1.004 0.893 0.813  8 3 1.533 1.447 1.359 1.281 1.215 

3 6 1.425 1.118 0.952 0.845 0.768  8 4 1.553 1.433 1.324 1.233 1.158 

3 7 1.379 1.070 0.908 0.803 0.730  9 1 1.165 1.160 1.154 1.142 1.127 

3 8 1.334 1.028 0.868 0.767 0.697  9 2 1.444 1.400 1.351 1.299 1.251 

3 9 1.293 0.988 0.833 0.736 0.669  9 3 1.519 1.434 1.353 1.278 1.210 

4 1 1.117 1.094 1.059 1.021 0.985  10 1 1.163 1.162 1.156 1.146 1.135 

4 2 1.396 1.297 1.200 1.120 1.053  10 2 1.452 1.411 1.369 1.323 1.277 

4 3 1.460 1.300 1.171 1.073 0.995  11 1 1.162 1.161 1.155 1.147 1.139 
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Appendix F 

The Yuan (2016) two-stage procedure 

F.1 Introduction 

In Yuan (2016), a modification of the ASCE 7-10 two-stage procedure is proposed to address 

structures beyond having a stiffness ratio larger than the two-stage stiffness ratio RkU2stg (note: Rk2stg is 

the nomenclature used by Yuan). Their approach uses an additional top storey force analogous to that 

used by NBCC 2015, defined in terms of a regular component and an irregular/interactional 

component. The regular component is associated with the modal masses and period of the perfectly 

uniform upper structure considered alone, and the irregular/interactional component considers the 

remaining proportion of the top shear. This is unlike the newly-proposed method given in Chapter 

4.5, which instead changes the force distribution to match a proposed top storey shear. Replaced by 

the newly-proposed method in this thesis, the Yuan (2016) two-stage procedure is given here so that it 

can be referenced in Chapter 4.  Note also that, technically, the method first appears in Yuan & Xu 

(2016) – however, this method exclusively references ASCE 7-10. The method is only adapted to 

NBCC 2010 within Yuan (2016), which is the exclusive source of the content in this appendix. 

F.2 The rationale of the two-stage procedure 

The rationale associated with the two-stage procedure given by Yuan (2016) is already discussed in 

the context of RkU2stg in Chapter C.2.3. To not belabour this point, Yuan (2016) associates the two-

stage phenomena with the upper structure and lower structure responses being delineated clearly into 

the first and second modes, respectively. This manifests as TU ≈ T1 and TL ≈ T2, and therefore the 

force applied at the upper and lower DOF of the 2DOF model arises only from the respective mass. In 

other words, the upper structure only contributes an equivalent static force to itself, and likewise to 

the lower structure – the masses do not interact whatsoever, theoretically. 

F.3 Seismic load distribution 

F.3.1 Upper structure 

As with the ASCE 7 two-stage procedure, Yuan (2016) assumes that the upper structure acts as 

though fixed to the ground. However, despite the theoretical rationale for the two-stage procedure, 
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there is in practical terms some magnification of the upper structure’s base shear. Given that Rk > 

RkU2stg, αU = αU2stg, and so the assumed base shear on the upper structure is: 

𝑉𝑈𝑏 = 𝛼𝑈2𝑠𝑡𝑔𝑀𝑈𝑔𝑆𝑎(𝑇𝑈) (F.1) 

where αU2stg is defined by Equation (D.10) and RkU2stg by Equation (D.17). Based on this VUb, Yuan 

(2016) assumes that the storey forces are defined in the same manner as the NBCC, i.e. by Equation 

(4.3), except that the top storey shear Ft is redefined to account for irregular structures.  

F.3.2 Lower structure 

For the lower structure, Yuan (2016) assumes that the storey forces are computed based only on the 

mass and period of the lower structure and according to the default NBCC distribution without a top 

storey force applied, i.e.:  

𝐹𝑥  =  (𝑀𝐿𝑆𝑎(𝑇𝐿))
𝑊𝑥ℎ𝑥

∑ 𝑊𝑖ℎ𝑖
𝑛=𝑁𝐿
𝑖=1

 (F.2) 

where Fx is the top storey shear on each storey of the lower structure. This definition of the storey 

force applies only to the lower structure – those in the upper structure are defined using VUb and the 

(forthcoming) definition of the additional top storey shear Ft. Having established the storey forces on 

the upper structure and lower structure, Yuan (2016) proposes that the storey shears in the i-th storey 

of the lower structure, VLi, be defined by combining the upper structure base shear VUb given by 

Equation (F.1) with the storey forces Fx given by Equation (F.2) via the square-root-sum-of-squares 

(SRSS) method: 

𝑉𝐿𝑖  =  √(𝑉𝑈𝑏)
2 + (∑𝐹𝑥

𝑁𝐿

𝑥=𝑖

)

2

 (F.3) 

By using the SRSS method to combine the responses for the lower structure, Yuan (2016) differs 

from the two-stage procedure given by ASCE 7 (2010, 2017). ASCE 7 makes no explicit mention of 

how the reaction force from the upper structure is to be applied to the lower structure. Given that, 

ASCE 7 presumably intends that the absolute sum (ABSSUM) method be used, rather than the SRSS, 

to combine the two structures’ responses. This appears to be the approach, for example, used by 

SEAOC (2015) in their 2015 IBC seismic design manual. 
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F.3.3 Top storey loading 

While Sections F.3.1 and F.3.2 describe the assumed force distribution used in the Yuan (2016), these 

components are comparable to those given by the NBCC (NRCC, 2010, 2015c) and ASCE 7 (2010, 

2017) and of comparatively less significance to the method than its linchpin, the top storey shear Ft. 

Yuan (2016) identifies that the top storey of the upper structure is very susceptible to the likes of 

higher mode effects such as those embodied by αU, such that the top storey shear may significantly 

exceed that of the uniform upper structure considered alone. Surmising that the response of the top 

storey associated with the uniform upper structure is more likely to be affected by higher-mode 

effects due to the presence of the lower structure, Yuan (2016) proposes that an additional top force 

be applied similarly to that of the NBCC. As in Equation (4.4), Yuan (2016) specifies that the top 

storey force is to a proportion of the base shear of the upper structure: 

𝐹𝑡  = 𝛾𝑉𝑈𝑏 (F.4) 

where γ denotes the proportion of the base shear VUb defined by Equation (F.1). Specifically, Yuan 

(2016) defines γ as the sum of two parts: γreg, the component associated with the perfectly-uniform 

upper structure, and γintr, the portion associated with the interaction between the top storey and the 

rest of the structure in excess of the regular component. γintr, therefore, can be thought of as the 

component attributed to the irregularity of the structure and the presence of the lower structure, such 

that:  

𝛾 = 𝛾𝑟𝑒𝑔 + 𝛾𝑖𝑛𝑡𝑟 (F.5) 

F.3.3.1 The regular component, γreg 

In either the NBCC (NRCC, 2010, 2015c) or ASCE 7 (2010, 2017), higher-mode effects on the top 

storey of a regular structure are already captured by code formulas. In the case of NBCC 2015, Ft via 

Equation (4.4) fulfills this role, and in ASCE 7 the exponent k given by Equation (4.8) serves as its 

counterpart. In both cases, the factor is only a function of the fundamental period. However, as noted 

by Yuan (2016) and as discussed in Chapter 2, the predominant period of the seismic excitation 

influences the response. This is not captured in either the ASCE 7 or NBCC approaches. To address 

this, Yuan (2016) proposes that γreg be based on modal masses of a uniform structure, combined using 

the SRSS method, as follows: 
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𝛾𝑟𝑒𝑔 =

√∑ (
𝑀𝑁𝑖𝑆𝑎(𝑇𝑖)
𝑁𝑈𝑆𝑎(𝑇1)

)
2

𝑛=𝑁𝑈
𝑖=1 −

𝑚𝑈ℎ𝑁
∑ (𝑚𝑈ℎ𝑖)
𝑛=𝑁𝑈
𝑖=1

1 −
𝑚𝑈ℎ𝑁

∑ (𝑚𝑈ℎ𝑖)
𝑛=𝑁𝑈
𝑖=1

 
(F.6) 

where MNi and Ti are the normalized effective modal mass of the top storey and the period associated 

with the i-th mode. The structure is assumed to be perfectly uniform, and therefore MNi and Ti are 

constant as a function of the number of storeys. MNi and Ti are tabulated in Table F.1 and Table F.2, 

which have been expanded compared to Yuan (2016) to accommodate the expanded scope of 12 

storeys. Note that if NU = 1, the full mass of the upper structure acts at the storey, and Equation (F.6) 

does not apply. 

Table F.1: i-th mode normalized effective modal masses MNi for top storey of uniform structure 

      i 

NU      
1 2 3 4 5 6 7 8 9 10 11 

2 1.171 -0.171 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

3 1.220 -0.280 0.060 N/A N/A N/A N/A N/A N/A N/A N/A 

4 1.241 -0.333 0.120 -0.028 N/A N/A N/A N/A N/A N/A N/A 

5 1.252 -0.362 0.159 -0.063 0.015 N/A N/A N/A N/A N/A N/A 

6 1.258 -0.379 0.183 -0.090 0.036 -0.009 N/A N/A N/A N/A N/A 

7 1.262 -0.390 0.200 -0.110 0.057 -0.024 0.006 N/A N/A N/A N/A 

8 1.264 -0.398 0.212 -0.124 0.072 -0.038 0.017 -0.004 N/A N/A N/A 

9 1.266 -0.403 0.220 -0.135 0.084 -0.050 0.027 -0.012 0.003 N/A N/A 

10 1.267 -0.407 0.226 -0.143 0.093 -0.060 0.037 -0.020 0.009 -0.002 N/A 

11 1.268 -0.410 0.231 -0.149 0.101 -0.068 0.045 -0.028 0.015 -0.007 0.002 

Table F.2: i-th mode normalized circular frequencies 𝝎̅𝒊 of uniform structures 

      i 

NU      
1 2 3 4 5 6 7 8 9 10 11 

2 0.618 1.618 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

3 0.445 1.247 1.802 N/A N/A N/A N/A N/A N/A N/A N/A 

4 0.347 1.000 1.532 1.879 N/A N/A N/A N/A N/A N/A N/A 

5 0.285 0.831 1.310 1.683 1.919 N/A N/A N/A N/A N/A N/A 

6 0.241 0.709 1.136 1.497 1.771 1.942 N/A N/A N/A N/A N/A 

7 0.209 0.618 1.000 1.338 1.618 1.827 1.956 N/A N/A N/A N/A 

8 0.185 0.547 0.892 1.205 1.478 1.700 1.865 1.966 N/A N/A N/A 

9 0.165 0.491 0.803 1.094 1.355 1.578 1.759 1.892 1.973 N/A N/A 

10 0.150 0.445 0.731 1.000 1.247 1.466 1.653 1.802 1.911 1.978 N/A 

11 0.137 0.407 0.670 0.920 1.153 1.365 1.551 1.709 1.834 1.926 1.981 
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Equation (F.6) represents the difference between the ratio of the MRS-derived shear force and 

MRS-derived first-mode shear force (i.e. the term in the square root) and the proportion of the base 

shear specified by the NBCC’s default load distribution. This difference is normalized by another 

representing the proportion of the upper structure’s mass that the NBCC force distribution does not 

contribute to the top storey. The top storey force, Ft, indicated by NBCC is not included, for the intent 

of the proposed proportion is to replace that component altogether. In this way, Equation (F.6) 

captures the component of the top shear force associated with the uniform upper structure which is 

not captured by the default NBCC distribution. 

For the above, the period Ti is calculated similarly to TU: 

𝑇𝑖 =
2𝜋

𝜔̄𝑖
√
𝑚𝑈

𝑘𝑈
 (F.7) 

where each period 𝜔̄𝑖 is provided in Table F.2. 

F.3.3.2 The irregular component, γintr 

To address the interactional component as it affects the upper structure, Yuan (2016) introduces γintr 

and its counterpart, ηintr. γintr is defined as before by Equation (F.5) and ηintr is defined relative to γintr: 

𝛾𝑖𝑛𝑡𝑟 = 1 − 𝜂𝑖𝑛𝑡𝑟 (F.8) 

Similarly to γintr, ηintr represents a proportion of a whole and is bounded between zero and unity. It 

has the inverse meaning to γintr: whereas γintr = 1 indicates that the full base shear is applied at the top 

storey, ηintr = 1 indicates that the interaction of the first mode of the lower structure and the higher 

modes of the upper structure does not induce an additional top storey force, i.e. that γintr = 0. 

Correspondingly, a smaller ηintr corresponds to a larger top storey force. 

The calibration of ηintr is performed by Yuan (2016). They observe that the error of the top storey 

considering no additional top-storey force is associated (in the ASCE 7 formulation) with TU/TS and 

TU/TL. Specifically, TU/TS is related to the relative value of Sa(TU) and the maximum Sa(T), and TU/TL 

is related to the relative closeness of the upper and lower structures’ fundamental periods. 

Considering these variables, Yuan (2016) proposes that ηintr decreases as a TU/TS increases, attaining 

some minimum, ηmin, where TU/TS exceeds TU/TL. In the NBCC formulation where period ratios are 

exchanged for spectral acceleration ratios, ηintr is defined as: 
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𝜂𝑖𝑛𝑡𝑟 = 

{
 
 
 

 
 
 1

𝑆𝑎(𝑇𝐿)

𝑆𝑎(𝑇𝑈)
≤ (

𝑇𝑈
𝑇𝑆
)
𝐶𝑅𝑇

𝜂min [
𝑆𝑎(𝑇𝐿) 𝑆𝑎(𝑇𝑈)⁄

𝑇𝑈 𝑇𝐿⁄
]

𝑥5

(
𝑇𝑈
𝑇𝑆
)
𝐶𝑅𝑇

<
𝑆𝑎(𝑇𝐿)

𝑆𝑎(𝑇𝑈)
<
𝑇𝑈
𝑇𝐿

𝜂min
𝑆𝑎(𝑇𝐿)

𝑆𝑎(𝑇𝑈)
=
𝑇𝑈
𝑇𝐿

 (F.9) 

where (TU/TS)CRT is a tabulated critical value, provided in Table F.4, and x5 is an exponent defined as 

follows: 

𝑥5 =
ln (𝜂𝑚𝑖𝑛)

ln [
𝑇𝑈 𝑇𝐿⁄

(
𝑇𝑈
𝑇𝑆
)
𝐶𝑅𝑇

]

 

(F.10) 

The minimum value of ηintr, ηmin, is said to vary as a function of TU/TL between 1 and two values - 

ηmin1 and ηmin2: 

𝜂𝑚𝑖𝑛 = 

{
 
 
 
 

 
 
 
 𝜂min1 [

𝑇𝑈 𝑇𝐿⁄

√𝑅𝑘2𝑠𝑡𝑔/𝑅𝑚
]

𝑥6 𝑇𝑈
𝑇𝐿
< (

𝑇𝑈
𝑇𝐿
)
𝐶𝑅𝑇1

𝜂𝑚𝑖𝑛2 (
𝑇𝑈
𝑇𝐿
)
𝐶𝑅𝑇1

≤
𝑇𝑈
𝑇𝐿
≤ (

𝑇𝑈
𝑇𝐿
)
𝐶𝑅𝑇2

𝜂min2 [
𝑇𝑈 𝑇𝐿⁄

(𝑇𝑈 𝑇𝐿⁄ )𝐶𝑅𝑇2
]

𝑥7

(
𝑇𝑈
𝑇𝐿
)
𝐶𝑅𝑇2

<
𝑇𝑈
𝑇𝐿
< (

𝑇𝑈
𝑇𝐿
)
𝐶𝑅𝑇3

1 (
𝑇𝑈
𝑇𝐿
)
𝐶𝑅𝑇3

≤
𝑇𝑈
𝑇𝐿

 (F.11) 

where Rk2stg is defined according to Equation (C.13), the critical values (TU/TL)CRT are provided by 

Table F.3, ηmin1 and ηmin2 are given in Table F.3 and Table F.4, and x6 and x7 are defined as: 

𝑥6 =
ln (𝜂𝑚𝑖𝑛2/𝜂𝑚𝑖𝑛1)

ln [
(𝑇𝑈 𝑇𝐿⁄ )𝐶𝑅𝑇1
√𝑅𝑘2𝑠𝑡𝑔 𝑅𝑚⁄

]

 
(F.12) 

𝑥7 =
ln (𝜂𝑚𝑖𝑛2)

ln [
(𝑇𝑈 𝑇𝐿⁄ )𝐶𝑅𝑇2
(𝑇𝑈 𝑇𝐿⁄ )𝐶𝑅𝑇3

]
 

(F.13) 

Using Equations (F.4) to (F.13), the loads on any structure for which Rk ≥ RkU2stg can be estimated 

using the Yuan (2016). However, the definitions of the critical TU/TL, TU/TS and η are based on the 
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ASCE 7 spectrum. Consequently, they exploit the fact that the Newmark-Hall spectrum explicitly 

relates ratios of spectral accelerations to periods – if this were not applied, TU/TL should be replaced 

by Sa(TU)/Sa(TL) and TU/TS with Sa(TU)/Sa(TS). Therefore, for the application of these equations to the 

NBCC, the EXP-2 formulation given in Appendix D should be used. Unfortunately, this relationship 

does not apply to the NBCC 2015 spectrum, and so some sort of equivalency must be assumed to 

apply this method to the NBCC 2015 spectrum.  

Table F.3: Empirical values of critical TU/TL and TU/TS (Yuan, 2016) 

NU (TU/TL)CRT1 (TU/TL)CRT2 (TU/TL)CRT3 (TU/TS)CRT 

3 2.34 3.18 4.71 1.00 

4 3.06 4.25 7.44 1.00 

5 3.74 4.61 9.30 1.05 

6 4.44 5.87 10.92 1.24 

7 4.60 6.40 10.70 1.43 

8 4.83 6.64 12.97 1.63 

9 4.86 7.82 13.08 1.82 
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Table F.4: Values of ηmin1 and ηmin2 for two-stage analysis procedure (Yuan, 2016) 

   ηmin1      ηmin2  

NU NL 1 

rm 

2 3  NU NL 1 

rm 

2 3 

1 1 1.00 1.00 1.00  1 1 1.00 1.00 1.00 

2 1 1.00 1.00 1.00  2 1 1.00 1.00 1.00 

2 2 1.00 1.00 1.00  2 2 1.00 1.00 1.00 

2 3 1.00 1.00 1.00  2 3 1.00 1.00 1.00 

3 1 1.00 0.91 0.70  3 1 1.00 0.91 0.70 

3 2 0.95 0.57 0.55  3 2 0.95 0.57 0.55 

3 3 0.68 0.49 N/A  3 3 0.68 0.49 N/A 

3 4 0.60 0.46 N/A  3 4 0.60 0.46 N/A 

4 1 1.00 0.86 0.74  4 1 1.00 0.86 0.74 

4 2 0.90 0.68 0.55  4 2 0.90 0.68 0.55 

4 3 0.78 0.56 0.55  4 3 0.78 0.56 0.55 

4 4 0.72 0.42 N/A  4 4 0.72 0.42 N/A 

4 5 0.68 0.51 N/A  4 5 0.65 0.51 N/A 

5 1 1.00 0.89 0.79  5 1 1.00 0.89 0.79 

5 2 0.91 0.70 0.63  5 2 0.91 0.70 0.63 

5 3 0.83 0.63 0.53  5 3 0.83 0.61 0.53 

5 4 0.77 0.55 0.47  5 4 0.75 0.55 0.47 

5 5 0.68 0.49 N/A  5 5 0.68 0.49 N/A 

6 1 1.00 0.90 0.83  6 1 1.00 0.90 0.83 

6 2 0.93 0.81 0.70  6 2 0.93 0.78 0.69 

6 3 0.88 0.73 0.52  6 3 0.86 0.68 0.52 

6 4 0.84 0.60 0.50  6 4 0.78 0.59 0.50 

7 1 1.00 0.92 0.87  7 1 1.00 0.92 0.85 

7 2 0.95 0.84 0.74  7 2 0.95 0.80 0.72 

7 3 0.88 0.77 0.62  7 3 0.87 0.74 0.58 

8 1 1.00 0.92 0.86  8 1 1.00 0.92 0.86 

8 2 0.95 0.82 0.73  8 2 0.95 0.82 0.73 

9 1 1.00 0.94 0.89  9 1 1.00 0.94 0.89 

Note: N/A indicates that the two-stage analysis procedure is not applicable. The 

table should be interpolated for intermediate values of rm. 

F.4 Design procedure 

As an alternative to the two methods provided in this study, structures for which Rk ≥ RkU2stg can be 

evaluated according to the Yuan (2016) two-stage procedure set out in the prior sections of this 

appendix. The procedure is set out below, but note that the original procedure is calibrated only for 1 
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≤ rm ≤ 3, NU + NL ≤ 10 and the NBCC 2010 spectrum, specifically via the EXP-2 approximation. The 

method is only approximately applicable to the NBCC 2015 spectrum, and there are no guarantees 

that the method is accurate or even defined for values of rm, NU and NL outside the originally 

considered scope (i.e. that of Yuan (2016)). 

1. Based on the selected building configuration, identify the value of each of these parameters: 

mU, kU, mL, kL, NU, NL, Sa(T) 

2. Evaluate 𝜔̄1𝐿 and 𝜔̄1𝑈 from Table 3.1, corresponding to N = NL and N = NU 

3. Calculate rm, rk, Rm and Rk based on Equations (3.16) to (3.19) 

4. Determine RkU1, RkU2, RkU3 and RkU2stg according to Equations (3.25) to (3.28) and Appendix E, 

as well as AU1, BU1, AUmax, and BUmax from Appendix E. If Rk ≥ RkU2stg, it is possible to use the 

Yuan (2016) two-stage procedure detailed in Appendix F, subject the conditions listed in that 

appendix. 

5. Evaluate αU1 according to Equations (3.29) and (3.30) (if applicable, i.e. RkU1 < RkU2), αUmax 

according to Equations (3.31) and (3.32) and αU2stg according to Equation (3.33). Sa(TU) is 

evaluated according to Equation (3.37) and φL1 according to Equation (A.13). As with the 

definition of αU given in Chapter 3, if RkU1 ≥ RkU2, αU does not require αU1 to be calculated, only 

αU2stg and αUmax are required. In such a case, RkU1 is only used as a lower bound on Rk, i.e. it is 

required that RkU1 ≤ Rk. 

6. Evaluate αU according to Equations (3.21) to (3.24). Recall that Rk must be larger than RkU1. If 

αU is larger than desired, repeat steps 1-6 with a modified set of properties. Note that the 

estimate of αU will never be greater than the maximum of αU1, αU2stg and αUmax, nor less than the 

minimum. If a lower value is desired, dynamic analysis (e.g. MRS analysis) can be used. 

7. Evaluate VUb according to Equation (3.7). It should not be less than Equation (4.2). 

8. Confirm Rk ≥ RkU2stg, RkU2stg is defined by Yuan (2016) according to Equation (D.17), and that 

NU + NL ≤ 10, rm ≤ 3. 

9. Evaluate αU2stg according to the Yuan (2016) definition, Equation (D.10). 

10. Evaluate the base shear of the upper structure, VUb, according to Equation (F.1). Use the value 

of αU2stg evaluated in the previous step, rather than according to the newly-proposed definition. 
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11. Select the appropriate Sa(T) – strictly speaking, Yuan (2016) requires that the EXP-2 

approximation be used based on NBCC 2010. The calculation for the relevant parameters is 

given in Appendix D. However, the direct substitution of the NBCC 2015 Sa(T) is most likely 

adequate. 

12. Evaluate TL according to Equation (3.15), and the resulting storey forces on the lower structure 

according to Equation (F.2). The storey shears on the lower structure are defined by Equation 

(F.3). 

13. Evaluate the regular component of the top storey shear, γreg, according to Equation (F.6). The 

required normalized effective modal masses MNi and normalized circular frequencies 𝜔̅𝑖 are 

provided by Table F.1 and Table F.2, and Ti is defined by Equation (F.7).  

14. Evaluate ηintr according to Equation (F.9). This requires (TU/TS)CRT, (TU/TL)CRT1, (TU/TL)CRT2, 

and (TU/TL)CRT3, obtained from Table F.3, and x5, x6, x7, ηmin, ηmin1 and ηmin2, defined by 

Equations (F.10), (F.12), (F.13), (F.11) and Table F.4 (for ηmin1 and ηmin2), in that order. 

15. Evaluate the irregular/interactional component of the top storey shear, γintr via Equation (F.8).  

16. Evaluate the top storey shear Ft according to Equation (F.4). This replaces the NBCC 

2010/2015 definition of Ft. 

17. The storey shears and forces on the upper structure are defined using Equation (4.3), with V = 

VUb. 
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Appendix G 

Stiffness of CFS shear wall and RC moment-resisting frame 

G.1 Introduction 

Rather than elaborate on the calculation of SFRS element stiffnesses in the Chapter 3 and 4 examples, 

this appendix describes the rationale used to estimate the member stiffnesses. The CFS shear wall 

stiffnesses are estimated based on AISI S400-15 (AISI, 2015) and the reinforced concrete moment-

resisting frame column stiffnesses are estimated based on CSA A23.3-19 (CSA Group, 2019). The 

intention of these calculations is not to provide an exact value for the stiffness – this is impractical, as 

the stiffness will vary based on the members selected, whether an initial or secant stiffness is used, 

and based on the effects of non-structural members. Instead, the intent is to provide a semi-realistic 

baseline value for the examples’ stiffness. 

G.2 CFS stiffness 

In Yuan (2016), the CFS shears walls are assumed to be oriented strand board (OSB) sheathed CFS 

shear walls corresponding to tests 25A, 25B, and 25C in Branston (2004). These shear wall 

configurations have back-to-back 362S162-43 CFS chord studs (Fy = 230 MPa, 33 ksi) backed by one 

11 mm sheet of OSB, and are tested in 1220 x 2440 mm segments. The OSB is subject to CSA O325 

(Canadian Standards Association, 1992) and is fastened at 3” increments (75 mm). Per Branston 

(2004), these specimens have an average elastic stiffness of 1960 kN/m. Meanwhile, Yuan (2016) 

assumes that two sheets of sheathing are provided, and thus that the stiffness is doubled - 3836 kN/m. 

In doing so, they assume that the failure of the studs, particularly at the ends of the wall, does not 

control the design. 

However, it is not necessarily practical to use tested values as design values, despite that AISI S400 

cites Branston (2004). Stiffness of shear walls is not well-addressed by AISI S400-15 - to estimate the 

stiffness for an OSB-sheathed shear wall, the formulation for design deflection is used: 

𝛿 =
2𝑣ℎ3

3𝐸𝐴𝑐𝑏
+

𝜔1𝜔2𝑣ℎ

𝜌𝐺𝑡𝑠ℎ𝑒𝑎𝑡ℎ𝑖𝑛𝑔
+𝜔1

5
4𝜔2𝜔3𝜔4 (

𝑣

𝛽
)
2

+
ℎ

𝑏
𝛿𝑣 (G.1) 

For Equation (G.1), the material properties for the CFS studs are based on Clark-Dietrich 

specifications (2017), the OSB properties are based on Louisiana Pacific specifications (2012) and the 

American Wood Council (2017, 2018), and the remaining variables are per AISI S400-15 (AISI, 
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2015). The chord studs are back-to-back 362S162-43 and thus tstud = 0.0451 in (1.15 mm), Ac = 

2×0.340 in2 (439 mm2) and E = 203000 MPa. The OSB panels are 11 mm thick (7/16”) and are 

assumed to have a 24/16 span rating, and so tsheathing = 22 mm. Per the AWC, 24/16 panels have a 

rigidity-through the thickness of 83500 lbf/in (14600 N/mm), and thus it is assumed that the shear 

modulus G = 1329 MPa (rigidity-through-the-thickness Gvtv can be used to approximate G per AISI 

S400). It is assumed that the walls are 1220 mm by 2440 mm and thus b = 1220 mm and h = 2440 

mm with a fastener spacing of s = 75 mm (3”). The remaining variables are defined by AISI S400 for 

OSB: β = 1.91 N/mm1.5, ρ = 1.05, ω1 = 0.492, ω2 = 0.732, ω3 = 1 and ω4 = 1. 

Left outstanding are δv, V and v. δv corresponds to the vertical deformation expected from the 

anchorage attachment details – this is assumed to be negligible. Meanwhile, V and v are the total 

shear and shear flow and thus depend on the condition being considered. Having defined all other 

variables, the shear is dictated by the displacement and vice versa. Two conditions are considered – 

the wall as stressed to the interstorey drift ratio, and the wall at its factored resistance. Considering the 

interstorey drift limit of 2.5% of the storey height applied to a 3-metre storey, the limiting drift is 75 

mm, and the corresponding force is 35.7 kN. The secant stiffness is therefore 475.8 kN/m, or 390 

kN/m per metre of wall. But this exceeds the factored strength of the wall segment – per AISI S400, 

the nominal resistance for this type of wall is 18.5 kN/m per metre, and so the factored resistance is 

15.8 kN for this 1.2 metre-long wall segment. Considering instead that V = 15800 N, the stiffness is 

1000 kN/m, or 822 kN/m/m for a one-panel wall, or 2000 kN/m (1640 kN/m/m) for a two-panel wall. 

G.3 RC frame stiffness 

The resistance of the reinforced concrete moment frame is estimated according to CSA A23.3-19 

(2019), albeit with some simplifying assumptions. For one, A23.3-19 specifies that the effective area 

of a column for seismic analysis is defined as between 0.5 and 1.0 times the gross area, defined as a 

function of the dead load applied to the column. In lieu of a more specific analysis, the effective area 

is taken as 50% of the gross area, and the stiffness is assumed to be 12EI/L3, corresponding to the 

theoretical fixed end moment for a fixed-fixed column experiencing a lateral displacement. The 

modulus of elasticity is assumed to be equal to 4500√𝑓𝑐
′, and the columns are assumed to be equal, 

square columns. 


