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Abstract

This thesis describes several novel approaches in quantum molecular dynamics for obtaining
properties of molecular systems in different regimes. We investigate ground state properties of
chains of linear rotors with dipole–dipole interactions via the density matrix renormalization group
(DMRG), by deriving the appropriate form of the interaction operator and implementing it in
ITensor. This provides us with further evidence of a quantum phase transition in this system. We
also improve the sampling of Gaussian mixture distributions for finite temperature path integral
Monte Carlo (PIMC) of vibronic Hamiltonians. To do this, we replace random sampling by quasi-
random sampling, and improve sampling distributions by optimizing their parameters. Finally,
we introduce estimators and integrators for constrained free energy simulations in path integral
molecular dynamics (PIMD). This method is applied to the study of a water dimer, for which we
obtain a quantum potential of mean force.
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Chapter 1

Introduction

In 1929, Dirac famously claimed10 that

The fundamental laws necessary for the mathematical treatment of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty lies
only in the fact that application of these laws leads to equations that are too complex
to be solved.

Nearly a century later, these equations are still too complex to be solved exactly, but the fields of
theoretical physics and chemistry are thriving, and full of creative approximations.

Much of theoretical chemical physics is concerned with the solution of the time-independent
Schrödinger equation (TISE)

Ĥ |ψn〉 = En |ψn〉 (1.1)

for the molecular Hamiltonian Ĥ, which contains the kinetic and potential energy terms of the
nuclei (K̂n, V̂n) and electrons (K̂e, V̂e) in a chemical system:

Ĥ = K̂n + K̂e + V̂n + V̂e + V̂ne. (1.2)

The coupling term V̂ne is responsible for the interactions between nuclei and electrons.

In the position representation, the TISE becomes a differential equation, as the Hamiltonian takes
on the form

〈R r| Ĥ =

[
−
∑
i

~2

2Mi

∂2

∂R2
i

−
∑
j

~2

2me

∂2

∂r2
j

+ V (R, r)

]
〈R r| , (1.3)
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x y

z

M1
R1

M2

R2

me

r1

me

r2

Figure 1.1: Schematic of the nuclei (R1, R2) and electrons (r1, r2) in the hydrogen molecule placed at
arbitrary positions. The dashed line indicates nucleus–nucleus repulsion due to V̂n; the dotted line indicates
electron–electron repulsion due to V̂e; the dash-dotted lines indicate nucleus–electron attraction due to V̂ne.
The figure is not to scale.

where Ri and Mi are the coordinates and masses of the nuclei, rj are the coordinates of the electrons
(which all share the same mass me), and V (R, r) is the full Coulombic potential arising from V̂n, V̂e,
and V̂ne. For example, the potential terms involved in the H2 molecule are depicted in Fig. 1.1. The
eigenstates

ψn(R, r) = 〈R r|ψn〉 (1.4)

along with the corresponding eigenenergies En make up the solutions to the TISE, but they are not
simple to obtain directly.

Since the lightest nucleus (composed of just a single proton) is over 1800 times heavier than an
electron,11 a simplification is possible even for the fairly general form in Eq. (1.3). By combining
all the terms except K̂n, one arrives at the electronic Hamiltonian Ĥe(R), which is parameterized
by the nuclear geometry. Its eigenstates χk(r; R) and eigenenergies Ek(R) therefore also depend
parametrically on the positions of the nuclei, and the total wavefunctions may be written as

ψn(R, r) =
∑
k

ϕ
(n)
k (R)χk(r; R), (1.5)

with nuclear coefficients ϕ(n)
k (R). Relying on the vast difference in masses (and hence time scales)

between the nuclei and electrons, one arrives at the Born–Oppenheimer approximation (BOA).12 In
this approximation, the electrons are treated as if they are able to instantaneously adapt to the
motion of the nuclei, while the nuclei only experience interactions with an effective electronic force
field. As a result of this adiabatic separation, it is valid in many cases to take only solutions of

2



CHAPTER 1. INTRODUCTION

Ĥe(R) with the lowest energy (k = 0) and keep just the first term of the wavefunction expansion:

ψn(R, r) ≈ ϕ
(n)
0 (R)χ0(r; R). (1.6)

Although finding solutions of the electronic Hamiltonian is a noble endeavor, the focus of this thesis
is the complementary problem: quantum molecular dynamics, which typically studies the motion of
nuclei subject to an effective potential energy surface (PES) as dictated by the electronic structure.
The Hamiltonian is reduced to just the nuclear motions, described by the kinetic and potential
energy terms:

Ĥn = K̂n + VPES(R̂). (1.7)

In ab initio methods, the potential function VPES(R) is taken to be E0(R) from the electronic
problem, but it may also be approximated by a phenomenological model or an empirical force field.
It should be noted that even though the word “dynamics” evokes notions of time evolution, quantum
molecular dynamics encompasses more than just real-time phenomena; it does not necessarily imply
quantum dynamics, which concerns itself with things like correlation functions and wavepacket
propagation.

While the ideal solution to the TISE contains all the eigenstates, as obtained through diagonalization
of the nuclear Hamiltonian matrix, this is usually neither possible nor required. Real systems are
commonly found to be at some specific temperature, and it is often just thermodynamic properties
that are of interest. These properties may be found using statistical mechanics, which for closed
systems at constant temperature has as its central object the canonical partition function

Z = Tr e−βĤn , (1.8)

where β = 1/kBT is the reciprocal temperature.13 Various derivatives of the partition function yield
quantities such as internal energy U , pressure p, and entropy S; for example:

U = −∂ logZ

∂β
=

1

Z
Tr e−βĤnĤn = 〈Ĥn〉 . (1.9)

Thus, we may apply the rules of statistical mechanics to combine the eigenstates |ϕi〉 of Ĥn (with
eigenvalues Ei) into thermal averages of quantum operators:

〈Ô〉 =
1

Z
Tr e−βĤnÔ =

1

Z

∑
i

e−βEiOii, (1.10)

where Ô is an arbitrary operator with matrix elements Oij = 〈ϕi|Ô|ϕj〉.

3



CHAPTER 1. INTRODUCTION

A
B

β/P

Figure 1.2: Two particles A and B expressed using path integrals with P = 7 beads. The dashed lines
correspond to inter-particle interactions, while the wavy lines represent the coupling between the replicas of
each particle.

Some finite temperature schemes, such as imaginary time path integrals, can provide these averages
without explicitly computing any eigenstates.14 The resolution of the identity in the position
representation,

1̂ =

∫
dR |R〉〈R| , (1.11)

may be inserted at evenly spaced intervals into the integral form of the partition function,

Z =

∫
dR 〈R|e−βĤn|R〉 , (1.12)

to construct a discretized imaginary time path integral. This results in a sequence of coupled
identical replicas of the system:

Z =

∫ ∫
· · ·
∫

dR1 dR2 · · · dRP 〈R1|e−
β
P
Ĥn|R2〉 〈R2|e−

β
P
Ĥn |R3〉 · · ·

× 〈RP−1|e−
β
P
Ĥn |RP 〉 〈RP |e−

β
P
Ĥn |R1〉 . (1.13)

In general, the high-temperature propagator 〈R′|e− β
P
Ĥn |R〉 is impossible to express exactly, but it

may often be approximated. A common approximation stems from the Trotter decomposition

e−βĤn = lim
P→∞

(
e−

β
P
K̂ne−

β
P
V̂PES

)P
, (1.14)

in which case increasing the number of replicas in the path improves the quality of the approximation.
A discretized path integral of this kind may be viewed as a necklace of P beads, such as in Fig. 1.2.

Once the high-temperature propagators are appropriately decomposed, the entire integrand in
Eq. (1.13) may be written as a function, π(R1,R2, . . . ,RP ), which we condense to just π(q) for
brevity by consolidating all the coordinate vectors Rj into q. The partition function may then be

4
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approximated as

Z ≈
∫

dq π(q), (1.15)

which has the advantage of being entirely free of operators. Likewise, for some observable Ô, the
quantum expectation value

〈Ô〉 =
Tr e−βĤnÔ

Tr e−βĤn
(1.16)

may be written as

〈Ô〉 ≈
∫

dq π(q) EÔ(q)∫
dq π(q)

, (1.17)

where EÔ(q) is an estimator function for Ô. Given the ability to sample the configurations {q[i]}NMC
i=1

from π(q), one may apply Monte Carlo techniques to the evaluation of expectation values, estimating
the above path integral expression as

〈Ô〉 ≈ 1

NMC

NMC∑
i=1

EÔ(q[i]). (1.18)

This approach to computing finite temperature quantities is referred to as path integral Monte
Carlo (PIMC).

While PIMC is incredibly versatile, its flexibility comes at a cost: efficiently sampling from π(q) is
not always straightforward. However, in some circumstances, it is possible to dynamically evolve
the full replicated system using classical mechanics. This is achieved by augmenting the position
coordinates of the system by fictitious momenta.15 The result is known as path integral molecular
dynamics (PIMD), and the equations of motion are typically evaluated using a specialized integrator,
such as the path integral Langevin equation (PILE).16 In this thesis, both PIMC and PIMD are
used to calculate finite-temperature properties of small systems.

In 2018, a PIMC method was introduced that allows the partition function of a nonadiabatic system
to be computed from a vibronic Hamiltonian.7 This sort of Hamiltonian contains couplings between
the vibrational and electronic degrees of freedom, which are neglected in the BOA, making this
an example of a method that does not reduce the behavior of the electrons to a single function
VPES(R). This extension beyond the BOA can be important for nuclear configurations R that have
some eigenvalues Ek(R) close to each other in energy, and which may therefore have nonadiabatic
coupling terms that are not negligible.

5



CHAPTER 1. INTRODUCTION

Unlike prior nonadiabatic path integral methods in which the coordinates hop between surfaces,17,18

in the novel PIMC method, all the coordinates are evaluated on all surfaces simultaneously by
virtue of the path being composed of matrices. However, this method relies on the Gaussian mixture
distribution (GMD) that is used for sampling having good coverage of the vibrational regions of
interest, which can be difficult to achieve in practice. In this thesis, we propose a way to improve
the sampling GMD to ensure that it is as similar as possible to the integrand in the partition
function integral. To that end, we construct a loss function and minimize it using a standard
optimization algorithm.19,20 Additionally, we provide some general sampling improvements, including
the replacement of Monte Carlo by quasi-Monte Carlo, which uses low discrepancy sequences in
place of pseudo-random numbers.21

Even within the confines of the BOA, the Helmholtz free energy

A = − 1

β
logZ (1.19)

is important for connecting theoretical simulations with experimental results, such as relative isomer
populations and equilibrium constants. However, it is challenging to compute A with Monte Carlo
and molecular dynamics, as it has no corresponding observable.22 When constructing a free energy
profile A(ξ) (also known as a potential of mean force, or PMF) along the reaction coordinate ξ, the
chief issue is that values of the reaction coordinate corresponding to energies much greater than
the PES minima are extremely rare in a regular simulation. This makes it impossible to properly
examine the regions of interest when studying properties such as transition rates, which inherently
involve exploration of high-energy states.

To circumvent this, augmented dynamics must be used, such as umbrella sampling with subsequent
histogram unbiasing.23 It has been previously demonstrated that umbrella sampling may be im-
plemented alongside PIMD by adding post-quantization restraints in order to study the quantum
PMF of molecular clusters.24 In our work, we propose an alternative approach that uses constraints
rather than restraints, and we introduce specialized estimators and integrators for this purpose. We
show that these estimators and integrators are simple to implement, and that they give correct
results for the water dimer system at low and high temperatures.

For very cold systems, finite temperature methods become inefficient. For example, in the case
of PIMC as described above, the required number of replicas becomes intolerable. Since only
the lowest energy eigenstate, the ground state, contributes appreciably when the temperature is
sufficiently low, it is more appropriate to use a method that is designed to obtain only the ground
state wavefunction. Because wavefunctions in the naive tensor representation (Cn = 〈n|ψ〉; see
Fig. 1.3) have a tendency to grow exponentially with system size, it is beneficial to also find a
suitable ansatz to encode the wavefunction.

6
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Figure 1.3: Pictorial representation of a rank-16 tensor of wavefunction coefficients Cn = Cn1n2···n16 . The
vertical line segments correspond to the site indices.

Figure 1.4: Pictorial representation of a matrix product state decomposition of a rank-16 tensor into
rank-2 and rank-3 tensors. The vertical line segments correspond to the site indices. The contraction
performed by the horizontal line segments may be interpreted as matrix multiplication.

One possibility is the matrix product state (MPS)

〈n|ψ〉 ≈ A(1),n1A(2),n2 · · ·A(N),nN , (1.20)

which is written here as a product of matrices over N sites, and a 16-site example is depicted in
Fig. 1.4. The power of the MPS originates from the ability to systematically reduce the common size
between adjacent matrices A(k),nk and A(k+1),nk+1 , called the “bond dimension”.25 Reducing a bond
dimension shrinks the state, but at the cost of cutting down the amount of entanglement that can
be expressed across that bond and worsening the quality of the approximation. Many ground states
of physical Hamiltonians are observed to obey an entanglement area law: the entanglement entropy
of the state is proportional to the surface area of the boundary between subsystems, rather than
their volume.26 In one spatial dimension, the boundary must be of a fixed size, so the entanglement
across every bond is constant, irrespective of the number of sites; the MPS of such a state will grow
linearly with system size. Thus, states of long one-dimensional systems can often be represented
compactly using an MPS.

The density matrix renormalization group (DMRG) takes advantage of the structure of an MPS by
sweeping back and forth across the sites and diagonalizing an effective Hamiltonian for only two
sites at a time.25,27 For some problems, DMRG is so much more efficient than exact diagonalization
of the entire Hamiltonian, that system sizes larger by several orders of magnitude become possible.
This is why have chosen to use DMRG in order to find the ground state properties of a chain of
linear rotors with dipole–dipole interactions. Although DMRG has seen use in electronic structure28

and for the study of vibrations in molecules,29 to our knowledge, our work shows its first application
to the many-body rotational problem.

The model system in question is composed of quantum rotors arranged on a line, with a fixed, regular
spacing between them. This may be implemented in a laboratory in the form of an endofullerene
peapod: a nanomolecular assembly made up of polar linear molecules encased in fullerenes, which
are then wrapped up into a nanotube (see Fig. 1.5). From a theoretical standpoint, the various
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Figure 1.5: Artist’s rendering of an (HF@C60)@SWNT nanomolecular assembly. The carbon nanotube
and C60 fullerenes are in shades of grey, F atoms are green, and H atoms are white. A section of the
nanotube has been omitted to reveal the interior.

Figure 1.6: Example configurations of a chain of 16 dipolar rotors. Disordered rotors (top, R� 1) point
in unrelated directions. Ordered rotors (bottom, R� 1) are aligned in a single direction, breaking left–right
symmetry.

experimental parameters (such as the dipole moment and rotational constant) may be combined
into a single dimensionless quantity R, allowing all possible realizations to be accessed by changing
a Hamiltonian parameter.

This system of dipolar rotors has been hypothesized to undergo a quantum phase transition as
the parameter R is decreased and the rotors orient themselves to point in one direction (as in
Fig. 1.6),30 and we provide further evidence to support this claim. In particular, we are able to
compute the von Neumann entanglement entropy for a symmetric splitting of the system. We find
that it converges fairly quickly with system size for both disordered and ordered chains, but near
R = 1, there is instead a pronounced peak. This peak arises due to a divergence in the entanglement
entropy, which is consistent with a violation of the area law that is expected at the critical point of
a phase transition.

When the rotor DMRG calculations were first performed, the model that we had in mind of
endofullerene peapod nanomolecular assemblies containing linear rotors inside them was only a
dream. Since then, (HF@C60)@SWNT has been successfully synthesized in a laboratory setting.31

Although this recent experiment was only performed at a single value of R = 2.86 (calculated from
a lattice spacing of 1.05 nm, dipole moment of 0.45 D, and rotational constant of 20.561 cm−1)31–33,
it has paved the way for a physical realization of this quantum phase transition.

In all, the following chapters approach quantum molecular dynamics from many different perspectives,
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CHAPTER 1. INTRODUCTION

and make an attempt to advance various facets of the field. Nevertheless, the diverse collection of
methods mentioned above make up only a minuscule portion of the wide assortment of approaches
to theoretical chemical physics, and one wonders whether Dirac envisioned such a breadth of
approximations and algorithms in physics and chemistry.

The remainder of this thesis is structured as follows: in Chapter 2, we find ground states of the
many-body linear rotor system using DMRG; in Chapter 3, we improve upon a PIMC method
for vibronic Hamiltonians; in Chapters 4 and 5, we derive path integral estimators and molecular
dynamics integrators for free energy calculations; and in Chapter 6, we reflect on what we’ve done.
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Chapter 2

Ground states of linear rotor chains via the
density matrix renormalization group

This chapter is reproduced from Dmitri Iouchtchenko and Pierre-Nicholas Roy, “Ground states of
linear rotor chains via the density matrix renormalization group”, The Journal of Chemical Physics
148, 134115 (2018), with the permission of AIP Publishing.1

2.1 Introduction

The ability to produce endofullerenes by molecular surgery34 has resulted in a number of exciting
results, both experimental32,35 and theoretical.36–41 The generation of carbon nanotube “peapods” has
also recently been shown to be possible.42–47 The combination of these ideas leads to endofullerene
peapods: carbon nanotubes which contain fullerene cages with atoms or molecules trapped inside.48–54

By treating these nanomolecular assemblies (NMAs) as fixed and rigid, we may study the motion
of the atoms and molecules enclosed therein. The resulting model is similar in many respects to
that obtained from placing ultracold particles in an optical lattice,55,56 and has previously been
studied in that context.30,57 Nevertheless, there are some fundamental differences: in an NMA, the
imprisoned entities may not move between sites as they do in an optical lattice, so there cannot be
double occupation of a site; the spacing between adjacent sites is much smaller in an NMA (on the
order of 1 nm)47 than in a typical optical lattice (on the order of 100 nm);55 and the carbon walls of
the fullerene cages shield the interactions between the captive particles.32

For an endofullerene peapod NMA model as described above, one is in principle left with translational,
vibrational, and rotational degrees of freedom for the confined particles. At very low temperatures,
the translations and vibrations are restricted to their respective ground states, and only the rotational
motion remains relevant, such that one can approximate the low-lying energy spectrum with an
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effective rotor Hamiltonian. In the following, we therefore focus on the rotational degrees of freedom
of molecules arranged in a linear chain. Specifically, we choose dipolar linear rotor molecules (such
as HF, LiCl, or CsI) which interact pairwise through the (dimensionless) dipole–dipole potential

Vij(ei, ej; rij) = ei · ej − 3(ei · rij)(ej · rij), (2.1)

where ei and ej are unit vectors describing the orientation of two rotors and rij is the unit vector in
the direction from one rotor to the other.

In this article, we propose a method for the calculation of ground state energies and wavefunctions
for long one-dimensional systems of dipolar rotors using the density matrix renormalization group
(DMRG). Originally introduced by White in 1992,58 the approach of DMRG has proven fruitful in
a number of applications ranging from condensed matter physics25,27 to quantum chemistry.28,59,60

Although it has been extended to the study of two-dimensional systems, finite temperature systems,
and real-time evolution, DMRG excels at finding ground states of strongly-correlated one-dimensional
systems.61

For small systems of this kind (up to around 10 rotors), sparse iterative methods for Hamiltonian
diagonalization are sufficient to obtain a handful of low-lying eigenstates.6 As the systems grow, the
size of the many-body basis increases exponentially, and the problem quickly becomes intractable.
Hence, we turn to DMRG in order to grow the rotor chain under study to 100 rotors, which is
made feasible by the matrix product state (MPS) wavefunction ansatz inherent to DMRG. We
accomplish this with the ITensor package, which allows us to efficiently formulate the Hamiltonian as
a matrix product operator (MPO) and which contains an implementation of DMRG.62 While existing
publications have also examined many-body quantum systems with dipole–dipole interactions using
DMRG,57,63,64 due to their use of different geometries and focus on mapping to other model systems,
they do not capture the full physics of interacting molecules under quantum rotation.

This paper is organized as follows: in Sec. 2.2, we provide a brief introduction to matrix product
states; in Sec. 2.3 we derive an expression for the dipole–dipole interaction potential in terms of
angular momentum ladder operators; in Sec. 2.4, we show the results of our DMRG calculations for
the rotor system; in Sec. 2.5, we end with some concluding remarks.

2.2 Matrix product states

Despite originally being developed as a renormalization group technique, DMRG is now typically
understood in terms of MPSs.25 When a wavefunction |ψ〉, which is an abstract element of a Hilbert
space H = H1 ⊗ H2 ⊗ · · · ⊗ HN , is represented in a finite (perhaps truncated) basis, it may be
treated as a vector Cn = 〈n|ψ〉 of coefficients indexed by the multi-index n = (n1, n2, . . . , nN ). Such
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a vector may always be expanded exactly into a product of matrices

〈n|ψ〉 = A(1),n1A(2),n2 · · ·A(N),nN . (2.2)

Even though they do not necessarily correspond to physical sites on a lattice, the entities living
in the N one-body Hilbert spaces Hk are referred to as “sites.” The collection {A(k)} of rank-3
tensors forms an MPS representation of |ψ〉, where nk is the physical index for the site and the
two matrix indices (implied by the matrix multiplication) are bond indices with “bond dimension”
Mk. [Each A(1),n1 is treated as a row vector and each A(N),nN as a column vector, so that the
product in Eq. (2.2) results in a scalar.] In practice, this expansion will not be made exact, as that
leads to exponential scaling with system size; instead, the matrices are truncated to keep the bond
dimension small.

We may arbitrarily group the sites into regions A and B, and write the many-body Hilbert space as
the product H = HA ⊗HB. At the core of DMRG is the Schmidt decomposition

|ψ〉 =
∑
i

√
λi
∣∣ϕAi 〉⊗ ∣∣ϕBi 〉 , (2.3)

where the λi are non-negative real numbers, and {
∣∣ϕAi 〉} and {∣∣ϕBi 〉} are orthonormal sets in HA

and HB, respectively. Truncation of the terms with the smallest coefficients results in an optimal
approximation |ψ̃〉 in the sense of the 2-norm: ‖|ψ〉 − |ψ̃〉‖ 2 is minimized compared to other
truncation schemes that retain the same number of terms. This truncation is typically performed
so that ∑

i

λi ≤ ε, (2.4)

where the sum is over the discarded values and ε � 1. Hence, this decomposition provides a
systematic way to generate an efficient MPS. DMRG makes repeated use of this decomposition
(along with iterative diagonalization, for example using the Lanczos algorithm) by “sweeping” the
boundary between A and B from one end of the system to the other in order to obtain the ground
state of a Hamiltonian.

The number of terms that remain in the sum dictates the bond dimension and has a direct impact
on the difficulty of the calculation. The bond dimension also bounds the amount of entanglement
that may be present across the corresponding boundary between the regions connected by the bond.
The standard measure of bipartite entanglement for pure states is the von Neumann entropy

SvN = −Tr(%̂A log %̂A), (2.5)
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where %̂A = TrB |ψ〉〈ψ| is the reduced density operator for region A.65 The entanglement entropy
cannot exceed logM , where M is the dimension of the Hilbert space HA. When the boundary is at
bond k, the dimension of the subspaces spanned by {

∣∣ϕAi 〉} and {∣∣ϕBi 〉} is Mk, so the maximum
possible von Neumann entropy is SvN = logMk. Conversely, the minimum bond dimension required
to faithfully represent a state with entanglement entropy SvN across bond k is Mk = eSvN . As these
bounds are saturated only for maximally-entangled states, the bond dimension will in general be
larger than eSvN .

In one spatial dimension and away from criticality, ground states of gapped Hamiltonians with
short-range interactions are known to obey an entanglement area law.66 That is, the amount of
entanglement between regions is proportional to the size of the boundary between them and is
independent of the sizes of the regions themselves. Because a single boundary in one dimension
must always have a constant size, the entanglement entropy of such states cannot depend on the
size of the system and therefore the bond dimension will not increase when the system is made
larger.

For long-range interactions, the picture is less clear. Recent work has shown that, under appropriate
conditions, ground states of one-dimensional Hamiltonians with interactions that decay faster than
1/r4 must satisfy an entanglement area law.67 For systems with even longer range interactions, such
as the 1/r3 considered in the present work, we are not aware of any proofs regarding entanglement
area laws away from criticality. However, near a critical point, where conformal field theory takes
over, the entanglement entropy scales logarithmically with system size in one dimension,68 which
causes the bond dimension to grow linearly, increasing the computational cost of DMRG.

2.3 Dipolar rotors

For N identical rotors with rotational constant B and dipole moment µ, the general Hamiltonian is

Ĥ =
B

~2

N∑
i=1

ˆ̀2
i +

µ2

4πε0

N∑
i=2

i−1∑
j=1

V̂ij
r3
ij

, (2.6)

where rij is the distance between rotors i and j. Since a peapod NMA is inherently linear, without
loss of generality, we may place the rotors along the z axis and express the potential operator
compactly as

V̂
(z)
ij = x̂ix̂j + ŷiŷj − 2ẑiẑj. (2.7)
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Because of the regular structure of a peapod NMA, we space the rotors evenly and write the
Hamiltonian as

Ĥ

B
=

N∑
i=1

ˆ̀2
i

~2
+

1

R3

N∑
i=2

i−1∑
j=1

V̂
(z)
ij

(i− j)3
, (2.8)

where

R = r

(
4πε0B

µ2

) 1
3

, (2.9)

r is the distance between adjacent rotors (the lattice spacing), and we have taken this opportunity
to non-dimensionalize the Hamiltonian. Since all the physical properties appear only in R, the
one-parameter form of the Hamiltonian allows us to explore the entire realm of physical realizations
of this model by scanning a single parameter.

As the effective rotor Hamiltonian lacks the microscopic details describing the confinement of the
rotors, it is general enough to apply to a variety of experimental situations in addition to NMAs,
such as molecules trapped in a sufficiently deep optical lattice in which tunnelling between minima
is suppressed. The specifics of the physical configuration are encoded in R; for example, in an NMA,
the dipole moment µ is screened by the fullerene cages,32 which causes an increase in R.

A natural one-body basis for this problem is that of the spherical harmonics |`imi〉, in which the
squared angular momentum operator ˆ̀2

i is diagonal

ˆ̀2
i |`imi〉 = ~2`i(`i + 1) |`imi〉 . (2.10)

Although in principle this basis is infinite, in order to carry out any calculations, it will need to
be truncated at a finite `max so that it is large enough to accurately represent the quantities in
question, but no larger.

Thanks to the form of the potential operator, the Hamiltonian in Eq. (2.8) conserves the total `
parity

`p ≡
N∑
i=1

`i (mod 2) (2.11a)

and the total m value

m =
N∑
i=1

mi. (2.11b)
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In order to exploit the block-diagonal structure of the Hamiltonian in DMRG, we must make explicit
use of these good quantum numbers. That is, we need to express the potential operator in terms
of one-body operators that only change the quantum numbers `p and m by a definite amount,
termed the “flux.” This makes it possible to construct both the wavefunction MPS and Hamiltonian
MPO as sparse objects, reducing the amount of storage required and significantly accelerating the
calculation.25 Terms like x̂ix̂j do not suffice, because the position operators (x̂i, ŷi, ẑi) do not have
a well-defined flux. The action of one of these operators on a state with definite `p and m quantum
numbers does not result in a state with definite `′p and m′ values.

The ladder operators ˆ̀±
i and m̂±i , which raise and lower `i and mi, are obvious candidates for

building blocks, as their flux is immediately evident. The latter operators have the well-known form

m̂±i = ˆ̀
i,x ± iˆ̀i,y (2.12)

and they act as69

m̂±i |`imi〉 = ~
√

(`i ±mi + 1)(`i ∓mi) |`i,mi ± 1〉 . (2.13)

On the other hand, the ladder operators for `i do not appear to have been as deeply analyzed.
There exist the definitions70

~R̂i,z = i(x̂i ˆ̀i,y − ŷi ˆ̀i,x) +
ẑi
2

(
~ +

√
4ˆ̀2
i + ~2

)
(2.14a)

and

~Q̂i,z = i(x̂i ˆ̀i,y − ŷi ˆ̀i,x) +
ẑi
2

(
~−

√
4ˆ̀2
i + ~2

)
, (2.14b)

but unfortunately R̂†i,z 6= Q̂i,z. We instead introduce the operators

ˆ̀±
i =

~
2
ẑi

1± ~√
4ˆ̀2
i + ~2

± i(x̂i ˆ̀i,y − ŷi ˆ̀i,x) ~√
4ˆ̀2
i + ~2

, (2.15)

which are intimately related to R̂i,z and Q̂i,z, but satisfy (ˆ̀+
i )† = ˆ̀−

i .

From this definition, it follows that

x̂i =
1

2~2

[
(ˆ̀+
i + ˆ̀−

i ), (m̂+
i − m̂−i )

]
, (2.16a)

ŷi =
1

2i~2

[
(ˆ̀+
i + ˆ̀−

i ), (m̂+
i + m̂−i )

]
, (2.16b)
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and

ẑi =
1

~
(ˆ̀+
i + ˆ̀−

i ). (2.16c)

The clean and concise form of these expressions suggests that our choice of the ladder operators ˆ̀±
i

is an appropriate one. The potential from Eq. (2.1) may then be written as

V̂ij = (1− 3r2
ij,z)B̂

0
i B̂

0
j −

1

4

[
(1− 3r2

ij,z)B̂
−
i B̂

+
j + 3r2

ij,⊥B̂
−
i B̂

−
j + 6rij,⊥rij,z(B̂

−
i B̂

0
j + B̂0

i B̂
−
j ) + h.c.

]
,

(2.17)

where

B̂±i = ± 1

~2

([
ˆ̀+
i , m̂

±
i

]
+
[
ˆ̀−
i , m̂

±
i

])
, (2.18a)

B̂0
i =

1

~
(ˆ̀+
i + ˆ̀−

i ), (2.18b)

and

rij,⊥ = rij,x + irij,y. (2.19)

The simplified form for rotors aligned along the z axis is

V̂
(z)
ij = −2B̂0

i B̂
0
j +

1

2

[
B̂−i B̂

+
j + h.c.

]
. (2.20)

When written in this form, the potential operator may be constructed as a sparse MPO.

2.4 Results

In this section, we give some results for the ground state properties of the rotor system, as well as
transition dipole moments (TDMs) for an excitation spectrum. The results were computed using
DMRG with the MPS truncation parameter ε from Eq. (2.4) set to 10−10.

2.4.1 Ground state properties

The primary result of the DMRG routine is the ground state energy E0. As these energies are
expected to decrease with increasing system size N , we present them in the form of chemical
potentials in Fig. 2.1. It is evident that a smaller value of R (stronger interactions) requires a
larger `max (more basis states), as expected. For sufficiently large systems, we expect on physical
grounds that the addition of a single particle will result in a constant decrease in the energy of the
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system, regardless of the system size. In other words, because a newly added rotor should only be
substantially correlated with finitely many rotors on the end of the system, the chemical potential
should tend to a constant in the large N limit. For R = 0.5 and R = 2, this limit is reached by
25 rotors, but for R = 1, the chemical potential continues to change even at 50 rotors, indicating
longer-ranged correlations.

The maximum bond dimension Mmax, shown in Fig. 2.2, is the largest bond dimension across the
entire MPS, and it is indicative of the amount of long-range correlations in the state. That Mmax

plateaus quickly for R = 0.5 and R = 2 implies the presence of only short-range correlations, but the
same cannot be said for R = 1. The von Neumann entanglement entropy SvN for the partitioning
of the system into halves behaves similarly to the bond dimension, as shown in Fig. 2.3. Indeed, we
see what appears to be area law scaling at R = 0.5 and R = 2, as the entanglement does not change
with system size once the system is large enough to make finite size effects negligible. At R = 1, we
instead notice what looks like an area law violation, possibly signifying a phase transition.

The quantum rotor model, which resembles the model used in the present article, but lacks the
anisotropic term in Eq. (2.1), is known to have no ordered phase in one dimension and therefore no
phase transition.71 In light of this, the observed anomalies at R = 1 are peculiar, but it has been
suggested that the breaking of rotational symmetry in the anisotropic model is responsible for a
second-order phase transition between ordered and disordered phases.30 This is corroborated by the
sudden change in both the expectation value of the orientational correlation operator

2

N(N − 1)

N∑
i=2

i−1∑
j=1

êi · êj, (2.21)

and the von Neumann entanglement entropy SvN near R = 1, as demonstrated in Fig. 2.4. Of the
two, it seems that the latter is a sharper indicator of the apparent phase transition. For larger
system sizes, the entropy even peaks at R = 1, clearly delineating the boundary between strongly
and weakly interacting systems.

Though the maximum MPS bond dimension Mmax is not a physical parameter, it contains valuable
information about the effectiveness of DMRG for the system in question. As can be seen in Fig. 2.5,
away from R = 1, the maximum bond dimension converges very quickly, and we expect linear
scaling of computational time. On the contrary, the peak at R = 1 indicates that the scaling will
not be as favorable, which is to be expected for DMRG near a second order phase transition.

At such a phase transition, the spatial correlation length should also diverge.72 Thus, in the near
future we plan to examine the behaviour of the correlation length around R = 1 to confirm the
existence of the transition and identify the value of the critical parameter Rc. We then hope to
extract the central charge of the relevant conformal field theory for the critical system.68
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Figure 2.1: Chemical potential of rotor chains of
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the others to plateau.
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Table 2.1: Energy differences and transition dipole moments for rotor chains of length N at R = 2. Each
value is computed between the ground state of the entire Hamiltonian and the ground state of the specified
block at `max = 12 and with 30 DMRG sweeps.

N `p m ∆E0 TDM

5
1 0 1.856 5.935× 10−2

1 ±1 1.950 3.117× 10−4

10
1 0 1.843 2.296× 10−2

1 ±1 1.950 7.340× 10−5

15
1 0 1.824 1.611× 10−2

1 ±1 1.948 3.504× 10−5

2.4.2 Excitation spectrum

Because the Hamiltonian in Eq. (2.8) is block-diagonal, we can also use DMRG to target the
ground state of any symmetry block. The `p = 0,m = 0 block contains the ground state of the
entire Hamiltonian, but the `p = 1,m = 0 and `p = 1,m = ±1 blocks are also of interest, because
their states

∣∣n`p,m〉 are reachable from the ground state
∣∣0`p=0,m=0

〉
by application of the x̂i and ẑi

operators. That is, while most transition dipole moments (TDMs) are forbidden by symmetry, the
moments

|
〈
n`p=1,m=0

∣∣ 1

N

N∑
i=1

ẑi
∣∣0`p=0,m=0

〉
|2 (2.22a)

and

|
〈
n`p=1,m=±1

∣∣ 1

N

N∑
i=1

x̂i
∣∣0`p=0,m=0

〉
|2 (2.22b)

do not necessarily vanish.

Computed energy differences ∆E0 and TDMs for R = 2 are listed in Table 2.1. Despite this
calculation providing only two peaks of a dipole excitation spectrum for each system size, it lays
the foundation for a series of more involved calculations which can reveal more information from
the spectrum. We propose two complementary approaches for this. The first involves the direct
calculation of excited states within the identified symmetry blocks. From these, more energy
differences and TDMs can be computed, gradually populating a stick spectrum. The second requires
time evolution of the ground state to obtain a correlation function, followed by a Fourier transform
which yields a spectrum with finite resolution. Both approaches are presently possible using standard
extensions to DMRG for excited states and real-time evolution.25
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2.5 Conclusions

We have shown that DMRG can be applied to systems of dipolar linear rigid rotors which are
pinned to the sites of a one-dimensional lattice. The method can be used to obtain ground state
properties, such as the energy and von Neumann entanglement entropy. Excited states which are
ground states of their respective symmetry blocks may also be reached by this method.

In order to perform the DMRG calculations efficiently, we have expressed the dipole–dipole potential
in terms of angular momentum ladder operators ˆ̀±

i and m̂±i . These operators have a well-defined
quantum number flux and they permit the use of an algorithm that conserves the total quantum
numbers of the MPS. By making use of the symmetries of the Hamiltonian, which conserve `p and
m, we are able to apply our approach to a chain of 100 rotors.

Away from R = 1, the computational time of the method scales linearly with system size and
ground states of much longer chains with several hundred rotors may be computed relatively quickly.
However, near R = 1, the scaling is worse than linear and computing properties of larger systems
becomes challenging. We attribute the favorable growth to area law scaling of the entanglement
and its breakdown to a violation of the area law that is expected for a critical system.

An important extension to the above model is the addition of translational motion for the rotor
molecules.38 This would take into account the interactions between the rotor molecule and the
fullerene cage and would greatly enhance the applicability of the model to NMA experiments.
The primary difficulty in implementing this change is the dynamical nature of the intermolecular
separations: the classical parameter R must be augmented by quantum mechanical operators which
describe the deviations from the cage centers. Although it is not currently clear how such an
implementation would look, it is likely to involve a model for the rotation–translation coupling
which can be expressed in terms of raising and lowering operators for the site-local translational
states.
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Chapter 3

Deterministic and quasi-random sampling
of optimized Gaussian mixture distributions
for vibronic Monte Carlo

This chapter is reproduced from Dmitri Iouchtchenko, Neil Raymond, Pierre-Nicholas Roy, and Mar-
cel Nooijen, “Deterministic and quasi-random sampling of optimized Gaussian mixture distributions
for vibronic Monte Carlo”, arXiv:1912.11594v1.2

3.1 Introduction

Although the Born–Oppenheimer approximation (BOA) has proven itself to be an invaluable tool
in computational chemistry, certain classes of systems cannot be accurately described under its
restrictions.12 Systems with coupling between vibrational and electronic degrees of freedom (vibronic
coupling) have regions of nonadiabaticity, where adiabatic surfaces approach each other in energy,
possibly crossing; this situation is often observed in photochemical reactions.73–76 Examples in
biologically relevant molecules include the photoisomerization of retinal and the photostability of
DNA base pairs.77,78

When vibronic coupling is present, it is necessary to use methods that are not bound by the BOA.
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Several approaches use a vibronic description of the form

Ĥaa′ = δaa′
N∑
j=1

ωj
2

(p̂2
j + q̂2

j ) + E(0)aa′ +
N∑
j=1

E
(1)aa′

j q̂j +
N∑
j=1

N∑
j′=1

E
(2)aa′

jj′ q̂j q̂j′

+
N∑
j=1

N∑
j′=1

N∑
j′′=1

E
(3)aa′

jj′j′′ q̂j q̂j′ q̂j′′ + · · · , (3.1)

where A diabatic surfaces (labelled by a = 1, . . . , A) describing N vibrational degrees of freedom
are coupled via the off-diagonal (a 6= a′) elements of Ĥ.75,76,79 For convenience, all the quantities
in Eq. (3.1) (i.e. the position and momentum coordinates, as well as the various parameters, and
hence also the resulting Hamiltonian operator) are taken to be dimensionless, with ~ = 1.

In recent years, multiple proposals have been put forward to find properties of such vibronic
Hamiltonians using path integrals, and in particular path integral Monte Carlo (PIMC).7,80–83 While
most of these focus primarily on dynamical properties, in Ref. [7] it was shown that PIMC may be
used to compute the canonical partition function Z of a system with vibronic coupling.

In the present work, we build on the approach established in Ref. [7], offering several improvements.
To reduce the overall stochastic error, we augment the random sampling of a Gaussian mixture
distribution (GMD) with two deterministic techniques. The first is a way to select the component
of the GMD for optimal reduction of the variance of the mean. The other is quasi-Monte Carlo,
which uses low-discrepancy sequences (quasi-random numbers) instead of pseudo-random numbers,
and has seen success in physical, chemical, and financial applications.84–88

Furthermore, we describe a generic approach for optimizing the parameters of the GMD used in
importance sampling to ensure that regions of high integrand magnitude can be sufficiently well
explored, even when their locations are not already known. This is accomplished by means of the
simultaneous perturbation stochastic approximation (SPSA) algorithm, which repeatedly varies the
GMD parameters in order to minimize a loss function.19,20

The remainder of this article is structured as follows: in Sec. 3.2, we provide the theoretical
background for the subsequent sections; in Sec. 3.3, we explain the proposed enhancements; in
Sec. 3.4, we apply these enhancements to model systems; and in Sec. 3.5, we give some concluding
remarks.

3.2 Background

To bring the reader up to speed with the variant of vibronic PIMC discussed in this work, we
include a brief derivation in Sec. 3.2.1. Since randomized quasi-Monte Carlo is not frequently seen
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in computational chemistry literature, we give a short overview in Sec. 3.2.2. In Sec. 3.2.3, we
review the simultaneous perturbation stochastic approximation algorithm.

3.2.1 Vibronic path integral Monte Carlo

The goal of Ref. [7] is to compute the partition function

Z = Tr e−βĤ (3.2)

of the vibronic Hamiltonian Ĥ in Eq. (3.1) at reciprocal temperature β = 1/kBT . This is accom-
plished by inserting resolutions of the identity

1̂ =
A∑
a=1

∫
dq |aq〉〈aq| (3.3)

in the combined diabatic basis and (normal mode) position representation to arrive at the expression

Z =
A∑

a1=1

· · ·
A∑

aP=1

∫
dq1 · · ·

∫
dqP 〈aP qP |e−τĤ |a1 q1〉

P−1∏
i=1

〈
ai qi

∣∣e−τĤ∣∣ai+1 qi+1

〉
, (3.4)

which has the form of a discretized imaginary time path integral with P beads and time step
τ = β/P . The Trotter factorization is then applied to obtain an approximation that is exact in the
P →∞ limit. It takes on the form

Z =

∫
dR g(R), (3.5)

in which: we use R to mean the vector containing all the continuous path coordinates q1, . . ., qP ;
the integrand is

g(R) = Tr

[
O(qP ,q1)M(q1)

P−1∏
i=1

O(qi,qi+1)M(qi+1)

]
; (3.6)

and the matrix-valued functions O and M have the elements

O(q,q′)aa′ = δaa′ 〈q|e−τĥ
a |q′〉 , (3.7a)

M(q)aa′ = 〈a|e−τV̂ (q)|a′〉 . (3.7b)
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The operator ĥ is diagonal in the diabatic basis and has the form

ĥa =
N∑
j=1

ωj
2

(p̂2
j + q̂2

j ) + E(0)aa +
N∑
j=1

E
(1)aa
j q̂j, (3.8)

whereas the operator

V̂ = Ĥ − ĥ (3.9)

is diagonal in the position representation. The shorthand notation

ĥo =
N∑
j=1

ωj
2

(p̂2
j + q̂2

j ) (3.10)

is sometimes used for the harmonic oscillator terms.

The integral in Eq. (3.5) is then approximated by NMC steps of Monte Carlo with importance
sampling from the probability density function (pdf) π(R):

Z = 〈f〉π =

∫
dR π(R)f(R) ≈ 1

NMC

NMC∑
i=1

f(Ri) = f̄ , (3.11)

where

f(R) =
g(R)

π(R)
. (3.12)

In principle, π(R) may be any normalized pdf that does not vanish on the support of g(R).‡ In
practice, the distribution π must be chosen to allow efficient sampling and to have significant overlap
with g. If the latter condition is not fulfilled, the result is spectacular failure of the method, as
shown in Ref. [7].

The ease and efficiency with which one can sample from a Gaussian mixture distribution (GMD),
combined with the GMD-like form obtained for g when V̂ = 0, make a GMD a natural choice for π.
The general form of a GMD pdf is the convex combination

π(R) =
B∑
b=1

wbπb(R) (3.13)

of multivariate Gaussian pdfs πb(R). The straightforward approach for randomly sampling a point
R from π is to first choose a component πb, and then sample from πb according to its mean vector

‡The unnormalized function %(R) that appears in Ref. [7] is related to π(R) by the normalization: %(R) = Z%π(R).
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db and covariance matrix Σb. Although each component pdf

πb(R) =
1√

(2π)PN det Σb
e−

1
2

(R−db)T(Σb)−1(R−db) (3.14)

has a fixed number of parameters (the mean vector db has length PN and the covariance matrix
Σb is PN × PN), the total number of parameters is arbitrary, scaling linearly with B.

Broadly speaking, there are three issues to be addressed when using the GMD π as a sampling
distribution: how to select a component πb, how to sample from πb, and how to choose the parameters
of each component. In this work, we consider some improvements to all of these areas.

3.2.2 Randomized quasi-Monte Carlo

It is often more important for Monte Carlo (MC) that sampled points be consistently distributed
rather than randomly distributed. To take advantage of this, low-discrepancy sequences (LDSs)
may be used as a smoother substitute for pseudo-random sequences, such as those output by a
pseudo-random number generator (RNG). The aim of an LDS is to produce values which are as
evenly spaced as possible within some volume (typically the D-dimensional hypercube [0, 1)D).21 In
this context, the values forming an LDS are called “quasi-random numbers” and their application
to MC gives rise to quasi-Monte Carlo (qMC‡).89 The chief argument in favor of qMC is that the
estimates it provides have an error whose asymptotic scaling with the number of samples NMC is
expected to be better than the N−

1
2

MC scaling seen in plain MC.85,90

In the present work, we employ Sobol sequences to produce quasi-random numbers.91 Other sequences
may also be used, such as those of Halton or Faure, but Sobol sequences have been observed to
perform better for high-dimensional problems92 and there exists a convenient software package to
generate them.93 Some authors suggest skipping the initial points of a low-discrepancy sequence,94

but we have noticed no change when doing so, and therefore choose not to skip any points. We have
included a demonstration of qMC in Appendix 3.A, where we show its application to the classic MC
problem of estimating the number π, and a very brief discussion in Appendix 3.B, where we mention
some associated difficulties with Gaussian distributions and correlations in many dimensions. For
more information about qMC, the reader is directed to Refs. [85, 89, 95].

The primary concern with qMC is its inability to provide error estimates. Some theoretical bounds
are known, but they are not useful in practice.96 Instead, one may use randomized quasi-Monte
Carlo (RqMC), which reintroduces pseudo-random numbers in order to compute statistical error
bars. The idea is simple: several low-discrepancy sequences are run in tandem, each with a different

‡We use a lower-case “q” in “qMC” to avoid confusion with quantum Monte Carlo, which is frequently abbreviated as
“QMC”.
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shift v generated by an RNG.96,97 An LDS where every point u is shifted by the same displacement
vector v to produce

w′ = u + v (3.15)

is still an LDS in the new shifted hypercube [0, 1)D + v. If we take the elements of w′ that stick out
of the original hypercube [0, 1)D and wrap them back in as if using periodic boundary conditions,
we end up with the vector w, whose elements (for i = 1, . . . , D) are

wi = w′i % 1 = w′i − bw′ic. (3.16)

Here, x%y is the unique value in [0, y) such that x−(x%y) is an integer multiple of y > 0 (commonly
referred to as the remainder), and bxc is the largest integer not exceeding x (commonly called the
floor).

After being shifted and wrapped, every individual sequence in RqMC should still be evenly distributed
in the original hypercube, and will generate a single estimate for the quantity in question. Because
the estimates depend on the random shifts, they are themselves random variables and may be
combined in the customary ways to obtain not only a sample mean, but also its standard error.
This adds another parameter into the calculation: the number of shifted sequences NS must be
chosen carefully to strike a balance between ensuring a sufficient sample size for valid estimation of
the error, and conserving the smooth results provided by low-discrepancy sequences. An example of
this trade-off is shown in Appendix 3.C.

In addition to drawing uniform samples from a hypercube, we require the ability to sample quasi-
randomly from the multivariate Gaussian pdf in Eq. (3.14). To do this, we first generate a point in
the D-dimensional hypercube [0, 1)D using a D-dimensional Sobol sequence and shift this point
to randomize it. Then each of the D elements is treated as a cumulative distribution function
(cdf) value (i.e. as a probability) and inverted to produce a one-dimensional standard Gaussian
sample.‡ Finally, these are combined to generate the appropriate multi-dimensional sample. In full,
the randomized low-discrepancy multivariate Gaussian sampling routine sample_q(b) may be
implemented as in Alg. 1, where b = 1, . . . , B determines the distribution πb.

3.2.3 Simultaneous perturbation stochastic approximation

The goal of the simultaneous perturbation stochastic approximation (SPSA) algorithm is to find
the global minimum of a loss function L(Θ) by varying the G-dimensional parameter vector Θ.19

Although similar to the finite difference stochastic approximation (FDSA) algorithm, in which each
‡Some programming languages and libraries include a function called erfcinv, which computes the inverse of the
complementary error function and may be used for Gaussian cdf inversion: Φ−1(ϕ) = −

√
2 erfcinv(2ϕ).
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Algorithm 1 Multivariate Gaussian sampling for randomized quasi-Monte Carlo.
Require: NS ≥ 1
Require: mean vector db

Require: covariance matrix Σb whose inverse (Σb)−1 has eigenvalues Λb and eigenvectors Sb

Require: shift vectors vbs
Require: next(b) returns the next point in the D-dimensional LDS labelled by b
Require: cdfinv(w) performs Gaussian cdf inversion

function sample_q(b)
u← next(b)

for s← 1 : NS do
for i← 1 : D do

wsi ← (ui + vbsi) % 1

ysi ← cdfinv(wsi) /
√

Λb
i

end for
xs ← Sbys + db

end for

return(x)
end function
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Algorithm 2 One iteration of SPSA.
Require: flip() returns ±1, each with probability 1/2

function spsa(loss, k, Θ)
for i← 1 : G do . Perturb parameters.

∆i ← flip()
Θ+
i ← Θi + ck∆i

Θ−i ← Θi − ck∆i

end for

`+, σ+ ← loss(Θ+) . Approximate gradient.
`−, σ− ← loss(Θ−)
g← `+−`−

2ck
∆

Θ′ ← Θ− akg . Update parameters.
return(Θ′)

end function

dimension requires a finite difference evaluation at every step, SPSA perturbs all G dimensions
simultaneously, accelerating convergence. The “SA” part of the name refers to the approximation
made in computing the gradient of L using samples of

`(Θ) = L(Θ) + noise, (3.17)

in contrast to many other methods that require exact gradients.20

This iterative algorithm is straightforward to describe and implement. The function spsa(loss, k,
Θ) in Alg. 2 is repeatedly called with increasing integer k ≥ 1 until convergence or a maximum
iteration threshold NSPSA. The argument loss is a function that provides an estimate of the loss,
together with the standard error of the estimate (which is not used here, but will be necessary
elsewhere). Implicit in the presented algorithm is our choice to use a symmetric Bernoulli distribution
to generate the perturbation vector ∆.

Besides NSPSA, the algorithm requires five parameters to be chosen: A, a, c, α, and γ. These are
used to compute the gain sequences

ak =
a

(A+ k)α
(3.18a)
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and

ck =
c

kγ
. (3.18b)

For α and γ, we use the recommended values α = 0.602 and γ = 0.101, and we set A to 10 % of
NSPSA and c to be equal to the standard error of `(Θ) before the initial iteration.20 For a, we resort
to manual adjustment; the optimization will be inefficient if it is too small, and erratic if it is too
large.

3.3 Methods

In this section, we present our proposed improvements to GMD sampling for purposes of estimating
partition functions of vibronic Hamiltonians using PIMC. In Sec. 3.3.1 and Sec. 3.3.2, we describe
how to make the sampling more efficient. In Sec. 3.3.3 and Sec. 3.3.4, we show how to optimize the
GMD parameters to better describe the integrand.

3.3.1 Deterministic component selection

The intuitive way to sample from a mixture distribution of the form in Eq. (3.13) is to first choose
a component πb using an RNG and then sample from that component. Repeating this NMC times
results in the point set {Ri}NMC

i=1 , where it is assumed that the points are not correlated. If the
components are chosen in accordance with the weights wb, these points can be used in the usual
way98 to find the sample mean

f̄ =
1

NMC

NMC∑
i=1

f(Ri), (3.19)

sample variance

s2
f =

1

NMC − 1

NMC∑
i=1

(f(Ri)− f̄)2, (3.20)

and sample error of the mean (also known as standard error)

sf̄ =

√
s2
f

NMC

=

√√√√ 1

NMC(NMC − 1)

NMC∑
i=1

(f(Ri)− f̄)2. (3.21)

Although quite straightforward (see Alg. 3 and Fig. 3.1), this approach struggles with small
component weights. For example, consider NMC = 106 and wb? = 10−6 for some b?. From a simple
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Algorithm 3 GMD sampling with stochastic component selection.
Require: NMC ≥ 1
Require: choose(w) returns index b with probability wb
Require: sample(b) returns a sample from πb

for i← 1 : NMC do
b← choose(w) . Component selection.

Ri ← sample(b) . Component sampling.
fi ← f(Ri)

end for

1
b=1

2
b=1

3
b=2

4
b=1

5
b=2

6
b=1

7
b=1

8
b=1

f̄

Figure 3.1: Example of NMC = 8 samples fi drawn using Alg. 3, with GMD components stochastically
chosen in the order 1, 1, 2, 1, 2, 1, 1, 1. The numbers along the bottom indicate the order in which the
samples were obtained, and the b labels show the GMD components from which they were sampled. The
brace shows the values used to compute the average f̄ .

binomial distribution analysis, we expect to find exactly one sample for this component only(
106

1

)
(10−6)1(1− 10−6)106−1 ≈ 37 % (3.22)

of the time, with it being under-represented (zero samples) 37 % of the time, and over-represented
(two or more samples) the remaining 26 %.‡ In any event, it is unlikely that just a handful of
samples is sufficient to properly explore the component.

The formulas in Eqs. (3.19)–(3.21) continue to hold so long as the effective distribution of components
is consistent with the weights, even if the components are chosen in some other way, such as by
a deterministic procedure. This suggests that we could sample from each component exactly
N b = wbNMC times, in any order. The obvious flaw with this approach is that N b must be an
integer, so a very small wb implies a very large NMC, which is inconvenient. In the remainder of
this section, we demonstrate how to adjust the standard formulas to compensate for point sets
where the distribution of components used for sampling does not match their weights, and provide
a strategy for choosing the components during sampling.

Suppose we sample from each component πb an arbitrary number of times N b, obtaining the point

‡The asymptotic distribution as NMC →∞ and wbNMC = 1 is a Poisson distribution with mean 1, resulting in the
following probabilities: 1/e for zero samples, 1/e for one sample, and 1− 2/e for two or more samples.
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set
⋃B
b=1{Rb

i}N
b

i=1. From these samples, we may compute a collection of sample averages

f̄ b =
1

N b

Nb∑
i=1

f(Rb
i). (3.23)

The combined quantity

f̄ =
B∑
b=1

wbf̄ b (3.24)

is an unbiased estimator for 〈f〉π:

〈
f̄
〉

=
B∑
b=1

wb
1

N b

Nb∑
i=1

〈f〉πb =
B∑
b=1

wb
∫

dR πb(R)f(R) =

∫
dR π(R)f(R) = 〈f〉π . (3.25)

Each f̄ b is itself an independent random variable with population variance σ2
f̄b
. As shown in

Appendix 3.D, the overall population variance of f̄ is then given by

σ2
f̄ =

B∑
b=1

(wb)2σ2
f̄b . (3.26)

For the variance σ2
f̄b
, we have the usual unbiased estimate

s2
f̄b =

s2
fb

N b
=

1

N b(N b − 1)

Nb∑
i=1

(f(Rb
i)− f̄ b)2, (3.27)

from which we get

s2
f̄ =

B∑
b=1

(wb)2s2
f̄b . (3.28)

Thus, the standard error may be estimated by

sf̄ =

√√√√ B∑
b=1

(wb)2s2
f̄b

=

√√√√ B∑
b=1

(wb)2s2
fb

N b
. (3.29)

Although it is possible to fix N b ahead of time, it is not necessary to do so. Instead, we may choose
each component during sampling in a way that attempts to optimally reduce the overall statistical
error. We observe that after sampling N b points from each component, an additional sample from
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the component labelled by b? changes the sample variance of the mean s2
f̄
to

(s′f̄ )
2 =

(wb
?
)2(s′

fb?
)2

N b? + 1
+

B∑
b=1

(b 6=b?)

(wb)2s2
fb

N b
. (3.30)

Ideally, the estimate of the component variance will not be greatly affected by a single sample, so
we make the simplifying assumption that

(s′fb? )2 ≈ s2
fb? . (3.31)

This allows us to write

(s′f̄ )
2 ≈ s2

f̄ − (wb
?

)2s2
fb?

[
1

N b?
− 1

N b? + 1

]
, (3.32)

from which it follows that

(s′f̄ )
2 ≈ s2

f̄ −
(wb

?
)2s2

f̄b?

N b? + 1
, (3.33)

and we see that to lower the standard error most quickly, it is beneficial to choose the component
with the largest

δb =
(wb)2s2

f̄b

N b + 1
. (3.34)

This criterion makes intuitive sense, as it targets components that have larger weights (because
they are more important to sample well), larger errors of the mean (because they have a lot of
remaining uncertainty), and fewer samples (because they have not been explored as thoroughly).
Since the computation of δb requires an existing estimate of the variance in that component, it is
necessary to bootstrap this method by taking Nboot points from each component.

When implementing the above prescription, one must be careful to avoid the common formula in
Eq. (3.20) for estimating variance, since it scales linearly with the number of samples. Using it
after sampling each point leads to quadratic scaling of the total sampling algorithm. To avoid this
undesirable behavior, one may use an efficient “online” variance update scheme. For example, the
scheme of Youngs and Cramer for the L-point sample variance s2

f (L) is

s2
f (L) =

Uf (L)

L− 1
, (3.35a)
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where

Tf (L) = Tf (L− 1) + f(RL), (3.35b)

Uf (L) = Uf (L− 1) +
(Lf(RL)− Tf (L))2

L(L− 1)
, (3.35c)

subject to Tf (0) = Uf (1) = 0.99,100 These updates can be evaluated in constant time at each step of
the calculation. The scheme is made more effective with a conditioning step where the data are
shifted by the mean:100

f(RL)→ ∆fL = f(RL)− f̄ . (3.36)

Although the final sample mean will not be known until the end of the calculation, uniformly
shifting the data has no impact on its variance. Thus, the precise value of the shift is not crucial,
and the estimates f̄ bboot obtained from the bootstrap points may be used. The overall algorithm for
deterministic component selection is shown in Alg. 4, with an example in Fig. 3.2.

3.3.2 Randomized quasi-Monte Carlo

In order to incorporate quasi-random numbers into the PIMC study of vibronic Hamiltonians, the
essential change is the substitution of an RNG by NS randomly shifted Sobol sequences for each
GMD component. Instead of drawing NMC pseudo-random points from an RNG, one then obtains
NqMC quasi-random ones from the low-discrepancy sequences. The main consequence of this change
can be seen by comparing the examples in Fig. 3.2 and Fig. 3.3: the component averages f̄ b are
not computed from N b values, but from NS of them. This does not affect the prior formulas in
Eq. (3.24) and Eq. (3.28) for combining these averages into the overall mean f̄ and variance s2

f̄
.

However, the component selection criterion in Eq. (3.34) and the online variance update formula
in Eq. (3.35) are not directly applicable when RqMC is in use. They are based on the premise
that each additional sample increases the number of entities being considered. Since the number of
statistically independent values used for computing each component mean f̄ b is now always fixed to
be NS, the reasoning behind these equations is no longer valid. Conveniently, the online variance
update is not necessary anymore, as the conventional variance formula becomes independent of the
number of samples and can therefore be computed in constant time.

Component selection, on the other hand, becomes highly non-trivial, since Eq. (3.33) changes to

(s′f̄ )
2 = s2

f̄ −
(wb

?
)2

NS

(
s2
fb? − (s′fb? )2

)
, (3.37)

which requires us to be able to predict the change in variance for a component when a single
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Algorithm 4 GMD sampling with deterministic component selection.
Require: Nboot ≥ 2
Require: NMC ≥ BNboot

Require: sample(b) returns a sample from πb

for b← 1 : B do . Bootstrap.
for i← 1 : Nboot do

Rb
i ← sample(b)

f bi ← f(Rb
i)

end for

N b ← Nboot

f̄ bboot ← 1
Nb

∑Nb

i=1 f
b
i

T b ← 0
U b ←∑Nb

i=1(f bi − f̄ bboot)
2

s2
f̄b
← Ub

Nb(Nb−1)

end for

for i← 1 : (NMC −BNboot) do . Sampling.
for b← 1 : B do . Component selection.

δb ←
(wb)2s2

f̄b

Nb+1

end for
b← argmax(δ)
N b ← N b + 1

Rb
Nb ← sample(b) . Component sampling.

f b
Nb ← f(Rb

Nb)

∆f ← f b
Nb − f̄ bboot . Online variance update.

T b ← T b + ∆f

U b ← U b + (Nb∆f−T b)2

Nb(Nb−1)

s2
f̄b
← Ub

Nb(Nb−1)

end for
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Figure 3.2: Example of NMC = 10 samples f bi
drawn using Alg. 4, with GMD components deter-
ministically chosen in the order 1, 1, 2, 2 for the
bootstrap (Nboot = 2), followed by 1, 2, 1, 1, 2,
1. The component-wise counts are N b=1 = 6 and
N b=2 = 4. The numbers indicate the order in which
the samples were obtained, and the b labels on the
left identify the GMD components. The braces show
the way in which the samples are combined: those
for each GMD component are first grouped into f̄ b,
and these averages are subsequently used to form f̄ .
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b=1

s=3 → f̄ b=1
s=3

s=2 → f̄ b=1
s=2

s=1 → f̄ b=1
s=1

f̄ b=1

b=2

s=3 → f̄ b=2
s=3

s=2 → f̄ b=2
s=2

s=1 → f̄ b=2
s=1

f̄ b=2

f̄

Figure 3.3: Example of NMC = 21 samples f bis
across NS = 3 sequences drawn using Alg. 5 from
NqMC = 7 low-discrepancy points, with GMD com-
ponents deterministically chosen in the order 1, 1,
2, 2 for the bootstrap (Nboot = 2), followed by 1, 2,
1. The component-wise counts are N b=1 = 4 and
N b=2 = 3. The numbers indicate the order in which
the samples were obtained, and the b and s labels on
the left identify the GMD components and random-
ized sequences. The arrows and braces show the way
in which the samples are combined: each sequence
is first folded into the pseudo-random quantity f̄ bs ,
then these are averaged for each GMD component
to find f̄ b, and finally the GMD component averages
are combined into f̄ .
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quasi-random sample is added. To side-step this issue altogether, we argue that the intuition behind
Eq. (3.34) is still legitimate and we continue to choose the component with the largest

δb =
(wb)2s2

f̄b

N b + 1
, (3.38)

where N b is the total number of quasi-random points drawn so far for that component. The overall
procedure for RqMC with deterministic component selection is detailed in Alg. 5, with an example
in Fig. 3.3. Note that NqMC is the number of quasi-random points obtained in total from the LDSs;
for a fair comparison with plain Monte Carlo methods, we also define NMC = NSNqMC, which is the
total number of times that f(R) is evaluated.

3.3.3 Parameter optimization

A major concern with the sampling scheme presented in Ref. [7] is the need to choose a sampling
GMD π that closely approximates the true path density g. Neglecting to do so results in catastrophic
failure when estimating 〈f〉π, as the sampled points are chosen to lie in irrelevant locations that
contribute nothing of substance to the integral in Eq. (3.5). Thus, we need a way to refine π, making
it more similar to g, and this requires a quantitative measurement of the difference between them.

A common metric to determine the similarity between two distributions is the relative entropy, also
known as the Kullback–Leibler divergence.101 It is not symmetric in the distributions, so given pdfs
g(R)/Z and π(R), there are two possible quantities:

D(π||g/Z) =

∫
dR π(R) log

π(R)Z

g(R)
= log 〈f〉π − 〈log f〉π (3.39a)

and

D(g/Z||π) =

∫
dR

g(R)

Z
log

g(R)

π(R)Z
= log

〈
1

f

〉
g/Z

−
〈

log
1

f

〉
g/Z

. (3.39b)

For our purposes, these expressions are both ill-defined, because g(R) may differ in sign from Z

(see Appendix 3.E for an example), and g(R)/Z is therefore not necessarily a pdf. This may be
remedied by using

|g(R)|
Z||

=
|g(R)|∫

dR′ |g(R′)| (3.40)

instead; if the negative regions of g are small in magnitude, this will be a good approximation to
g/Z. However, with no way to sample directly from |g|/Z||, it is not clear how to efficiently evaluate
D(|g|/Z|| ||π).
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Algorithm 5 Quasi-random GMD sampling.
Require: Nboot ≥ 1
Require: NS ≥ 2
Require: NqMC ≥ BNboot

Require: sample_q(b) is implemented as in Alg. 1 in Sec. 3.2.2

for b← 1 : B do . Bootstrap.
for i← 1 : Nboot do

Rb
i ← sample_q(b)

for s← 1 : NS do
f bis ← f(Rb

is)
end for

end for
N b ← Nboot

for s← 1 : NS do
T bs ←

∑Nb

i=1 f
b
is

f̄ bs ← T bs
Nb

end for

f̄ b ← 1
NS

∑NS

s=1 f̄
b
s

s2
f̄b
← 1

NS(NS−1)

∑NS

s=1(f̄ bs − f̄ b)2

end for

for i← 1 : (NqMC −BNboot) do . Sampling.
for b← 1 : B do . Component selection.

δb ←
(wb)2s2

f̄b

Nb+1

end for
b← argmax(δ)
N b ← N b + 1

Rb
Nb ← sample_q(b) . Component sampling.

for s← 1 : NS do
f b
Nbs
← f(Rb

Nbs)
T bs ← T bs + f b

Nbs

f̄ bs ← T bs
Nb

end for

f̄ b ← 1
NS

∑NS

s=1 f̄
b
s . Variance update.

s2
f̄b
← 1

NS(NS−1)

∑NS

s=1(f̄ bs − f̄ b)2

end for
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Thus, the best measure of quality that we can get is

D(π || |g|/Z||) =

∫
dR π(R) log

π(R)Z||
|g(R)| = log 〈|f |〉π − 〈log |f |〉π . (3.41)

We can then minimize this quantity by modifying π using any of a number of optimization techniques,
yielding

argmin
E

D(πE || |g|/Z||), (3.42)

where the sampling distribution πE is parameterized by the tensor E. In most cases, attempting this
would not be fruitful: if first we need to optimize π in order to be able to compute 〈f〉π, then we
can’t use Eq. (3.41) directly. However, for cases where π is already a reasonably good approximation
of g/Z, this could be used to improve it further.

Though each πE may be any GMD, as specified by its weights, mean vectors, and covariance
matrices, we choose to construct it from the diagonal Hamiltonian ĥE with the elements

ĥbE =
N∑
j=1

ωj
2

(p̂2
j + q̂2

j ) + E(0)b +
N∑
j=1

E
(1)b
j q̂j, (3.43)

where b = 1, . . . , B, and B must be large enough that πE is sufficiently flexible to describe g, but not
so large that the optimization becomes too costly. This is a natural form for this problem and allows
us to easily use the same frequencies ωj as in the full Hamiltonian Ĥ in Eq. (3.1). Additionally,
because πE may be generated from ĥE for any number of beads P , the same optimized parameters
may be used for a range of P values.

The primary constituent of the optimization loss function L(E) should be the relative entropy
D(πE || |g|/Z||), but we can avoid some pitfalls in the optimization by adding extra terms. One
concern is with components πbE and πb′E that come too close to each other (that is, whose mean
vectors dbE and db

′
E become nearly the same). When this happens, they are likely to follow the same

trajectory during optimization, which is wasteful. To encourage the components to steer clear of
one another, we introduce a penalty term proportional to

2

B(B − 1)

B−1∑
b=1

B∑
b′=b+1

e−

∣∣∣∣dbE−db
′

E

∣∣∣∣2
2ε2 , (3.44)

where ε determines the stiffness of the repulsion.

Another potential issue is that some components πbE can fall out of favor and stop being considered
important due to their low weights wbE. When this occurs, they cease being purposefully optimized
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Algorithm 6 GMD parameter optimization.
Require: initial parameter tensor E
Require: NSPSA ≥ 1
Require: loss(E) estimates the loss function L in Eq. (3.46), returning a value and standard error
Require: spsa(loss, k, E) is implemented as in Alg. 2 in Sec. 3.2.3

E0 ← E

for k ← 1 : NSPSA do
Ek ← spsa(loss, k, Ek−1)

end for

E← ENSPSA

and begin to aimlessly wander. While this does allow them to explore highly unfavorable regions and
therefore possibly cross barriers to find deeper minima, in our experience this is futile and should
be suppressed. To support those components which might find themselves at risk of becoming
irrelevant, we penalize mixtures that have a low Shannon entropy102 of the weights using a term
proportional to

1 +

∑B
b=1w

b
E logwbE

logB
. (3.45)

This vanishes when all the weights are equal and grows to unity when a single component dominates
the mixture.

The complete loss function that we employ is

L(E) = D(πE || |g|/Z||) + C1
2

B(B − 1)

B−1∑
b=1

B∑
b′=b+1

e−

∣∣∣∣dbE−db
′

E

∣∣∣∣2
2ε2 + C2

(
1 +

∑B
b=1w

b
E logwbE

logB

)
, (3.46)

where ε, C1, and C2 are tunable parameters, and only the first term has an associated statistical
error. To optimize the parameter tensor E, we use SPSA, as it is both efficient and very simple to
implement.19,20 The overall optimization algorithm is shown in Alg. 6.

Estimation of the relative entropy from Eq. (3.41) is performed using the RqMC method with
deterministic component selection outlined in Sec. 3.3.2.‡ When a single RqMC calculation is used
to compute both terms of Eq. (3.41), evaluating the standard error of the mean is not as simple

‡When the RqMC algorithm selects components, it tries to reduce the overall error in the estimate of the partition
function. Ideally, it would be modified to attempt to reduce the error in the estimate of Eq. (3.41) instead, but we
find that this is not necessary.
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as for the partition function, because of the correlations between |f | and log |f |. We may use the
jackknife technique,98 but since there are several layers to RqMC, we must be careful about what
exactly our statistical sample means are. Recall that each of |f | and log |f | is computed separately
using the weights and component means, so a simple estimate of the sample mean is given by

D
(
|f 1|, . . . , |fB|, log |f 1|, . . . , log |fB|

)
= log

[
B∑
b=1

wb|f b|
]
−

B∑
b=1

wblog |f b|. (3.47)

Because each component mean |f b| and log |f b| is computed as a statistical average over NS

independent random variables, we may apply jackknife to this function as usual.

3.3.4 Parameter optimization with deformation

To get around the circularity in Sec. 3.3.3 that arises from needing π in order to determine π in the
general case, we propose an iterative scheme. Recall that the function g is derived from the vibronic
Hamiltonian Ĥ in Eq. (3.1) as described in Sec. 3.2.1. We define the parameterized function gν
(with 0 ≤ ν ≤ 1) to be similar to g, but instead derived from the parameterized Hamiltonian Ĥν ,
where all the terms except the pure harmonic oscillator are scaled by ν:

Ĥaa′
ν = νĤaa′ + (1− ν)δaa′ĥo. (3.48)

When ν = 1, we recover the original Hamiltonian Ĥ = Ĥν=1, so g = gν=1; when ν = 0, all
off-diagonal terms vanish and the Hamiltonian Ĥν=0 is trivial, so gν=0 is proportional to a GMD.
This allows us to smoothly interpolate between easily solvable models and chemically interesting
ones. Thus, we can use gν to guide the optimization of π towards g. For each gν , we introduce the
normalized and sign-free distribution

|gν(R)|
Zν||

=
|gν(R)|∫

dR |gν(R)| . (3.49)

In practice, we must choose a monotonically increasing sequence νn, where ν1 > 0 and νNν = 1, such
that each step ∆νn = νn − νn−1 is small enough to obtain accurate estimates, yet large enough to
make rapid progress toward the desired distribution. To select the νn, we use the function step_nu

in Alg. 7, which is described in more detail in Appendix 3.F. At the final iteration n = Nν , the target
distribution is |g|/Z|| itself, so the optimized GMD should be adequate for evaluating Z = 〈f〉π.

To initialize the coefficients E(0)b and E(1)b
j making up the tensor E in Eq. (3.43), we set them all
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to zero; this leaves us with only the pure harmonic oscillator terms:

ĥbE=0 =
N∑
j=1

ωj
2

(p̂2
j + q̂2

j ) = ĥo. (3.50)

Hence, the initial distribution πE=0 resembles gν=0, but potentially with a different number of
components.

For each n = 1, . . . , Nν , we perturb E using the optimization routine from Alg. 6 to minimize the
loss function

Lν(E) = D(πE || |gν |/Zν||) + C1
2

B(B − 1)

B−1∑
b=1

B∑
b′=b+1

e−

∣∣∣∣dbE−db
′

E

∣∣∣∣2
2ε2 + C2

(
1 +

∑B
b=1 w

b
E logwbE

logB

)
,

(3.51)

where the second and third terms are the same as in Eq. (3.46). We take the best of these perturbed
distributions πE and promote it to be the starting distribution for the next iteration. The overall
algorithm for optimization with deformation can be seen in Alg. 8. Note that we use NW independent
“walkers” and take the result from the best performing one (in the sense of minimizing the loss
function); because they are independent, they may be executed in parallel.

3.4 Results

In this section, we apply the methods from Sec. 3.3 to model systems. All the systems that we
consider have two diabatic surfaces and two spatial degrees of freedom, with the Hamiltonian

Ĥ =

(
E1 + ĥo + λq̂1 0

0 E2 + ĥo − λq̂1

)
+ γ

(
0 q̂2

q̂2 0

)
, (3.52)

which has six parameters. We use an inverse temperature of β = 38.7, which is approximately
300 K if the parameter values are interpreted in eV. Where applicable, we use NS = 100 to ensure
sufficiently many randomized sequences for accurate error bars, and Nboot = 64 to obtain reasonable
initial estimates. The sole exception to this is during GMD parameter optimization, when quality
estimates are not required, in which case we use NS = 50 and Nboot = 4. The algorithms are
implemented using VibronicToolkit.103

3.4.1 Deterministic component selection

We start with a contrived example that highlights the ability of the deterministic component
selection algorithm described in Sec. 3.3.1 to reduce the impact of outliers. We use the model
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Algorithm 7 Step size selection for ν.
Require: lossν(E) estimates the loss function Lν in Eq. (3.51), returning a value and standard
error

function step_nu(νprev, ∆νprev, E)
∆νmin ← 10−3

if νprev > 1− 10−1 − 10−2 then
∆νmax ← 10−2

else
∆νmax ← 10−1

end if

∆ν ← min(∆νmax, 2∆νprev)

for i← 1 : 8 do
νnew ← min(1, νprev + ∆ν)
`, σ ← lossνnew(E)

if ` < 1 then
∆νmin ← ∆ν

else if ` > 2 then
∆νmax ← ∆ν

else
break

end if

∆ν ← (∆νmin + ∆νmax)/2
end for

return(∆ν)
end function
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Algorithm 8 GMD parameter optimization with deformation.
Require: NSPSA ≥ 1
Require: NW ≥ 1
Require: lossν(E) estimates the loss function Lν in Eq. (3.51), returning a value and standard
error

Require: spsa(loss, k, E) is implemented as in Alg. 2 in Sec. 3.2.3
Require: step_nu(νprev, ∆νprev, E) is implemented as in Alg. 7

for b← 1 : B do . Initialization.
E(0)b ← 0
for j ← 1 : N do

E
(1)b
j ← 0

end for
end for

ν ← 0
∆ν ← 10−1

while ν < 1 do . Iteration.
∆ν ← step_nu(ν, ∆ν, E) . ν selection.
ν ← min(1, ν + ∆ν)

for i← 1 : NW do . Parameter update.
Ei0 ← E
for k ← 1 : NSPSA do

Eik ← spsa(lossν , k, Ei,k−1)
`ik, σik ← lossν(Eik)

end for
end for

i, k ← argmin(`+ σ)
E← Eik

end while
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Table 3.1: Parameters of the model Hamiltonian in Eq. (3.52) for the modified Displaced γ2 system.

Parameter Value

E1 0.1
E2 0.275

Parameter Value

ω1 0.02
ω2 0.04

Parameter Value

λ 0.075
γ 0.05

Hamiltonian Eq. (3.52) with the parameters given in Tab. 3.1, which are similar to those of the
Displaced model of Ref. [7] with the γ2 parameter.

The coupling between the surfaces is not very strong, so we expect the basic sampling approach
to work well, and we use the diagonal portion of Ĥ to construct the two-component sampling
distribution π0. At a temperature of β = 38.7, the component weights are wb=1 ≈ 0.998 86 and
wb=2 ≈ 0.001 14. Thus, out of every 1000 samples, approximately one should be drawn from the
second component.

What makes this example particularly artificial is that we force the second point drawn from the
second component to be an extreme outlier. Recall from Ref. [7] that each path is sampled from
the component πb0 using uncoupled coordinates yjλ (where j = 1, . . . , N and λ = 1, . . . , P ), each
with a standard deviation σbjλ. For the outlier point, we choose the coordinates

yjλ =

{
6σb=2

jλ if j = 2 and λ = 1

0.01σb=2
jλ otherwise,

(3.53)

which place the centroid mode of the path quite far from its mean in the second spatial coordinate,
as shown in Fig. 3.4. Since the cdf of a univariate Gaussian is (with erf being the error function)

Φσ(x) =
1

2

(
1 + erf

x√
2σ2

)
, (3.54)

the total probability of either x < −nσ or x > nσ is

1− erf
n√
2
. (3.55)

Hence, when P = 16, the probability of sampling a point that’s at least as unlikely in all directions
is (

1− erf
6√
2

)(
1− erf

0.01√
2

)31

≈ 1.539 276× 10−9. (3.56)

Admittedly, this is not a very probable event. However, when taking huge numbers of samples over
many calculations, very unlikely things are bound to happen occasionally.
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Figure 3.4: Ground state potential energy surface of the modified Displaced γ2 model. The locations of
the GMD component minima are marked with + signs. The position of the forced outlier from Eq. (3.53)
is marked with a × sign.

We compare the convergence of Z ≈ f̄ between four scenarios. In Fig. 3.5(a), we have the simplest
case: familiar stochastic component selection, and no forced outlier; here, the mean stabilizes
relatively quickly, and the second component is sampled twice, as expected. The forced outlier
is clearly visible in Fig. 3.5(b), where the stochastic algorithm accepts it as yet another point,
greatly changing the mean and increasing the standard error. Fig. 3.5(c) features the deterministic
algorithm and looks very similar to (a), except the second component is sampled multiple times
during the bootstrap phase. Finally, in Fig. 3.5(d), the outlier is found to have a strong impact
during bootstrapping, but this is quickly quelled; additionally, in the remainder of the calculation,
the outlier causes more samples to be drawn from the second component. The final result is similar
in all scenarios, except the stochastic algorithm with a forced outlier in Fig. 3.5(b), which fares
poorly.

We also consider a more legitimate example, which doesn’t require any elaborate setup of the
sampling. The same model system and sampling distribution are used, but without any forced
outliers. We run 1000 calculations with the stochastic component selection algorithm, and 1000

more with the deterministic one. These calculations are stopped when the standard error of the
mean reaches 10−3, and the number of samples (including the Nboot = 64 bootstrap samples per
component for the deterministic version) is recorded. The numbers of samples are then binned to
produce the histograms in Fig. 3.6, where it is clear that the deterministic method tends to require
slightly fewer samples to achieve the same level of error. The reduction in the mean number of
samples is about 1.7 %.
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Figure 3.5: Convergence of f̄ for the modified Displaced γ2 model with P = 16 and (a) stochastic
component selection with no outlier; (b) stochastic component selection with an outlier; (c) deterministic
component selection with no outlier; (d) deterministic component selection with an outlier. The shaded area
reflects the instantaneous error estimates. The vertical marks above the plots indicate steps at which the
sample was drawn from the second component; in (c) and (d), this occurs Nboot times during bootstrapping.
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750000 800000 850000 900000 950000 1000000

Stochastic

Deterministic

Figure 3.6: Distributions of the numbers of samples required to obtain a standard error of the mean of
10−3 for the modified Displaced γ2 model. To avoid very wide histograms, the right-most bins collect all
the points with more than 106 samples. The vertical lines indicate the means, dashed for stochastic and
solid for deterministic.

3.4.2 Randomized quasi-Monte Carlo

In order to evaluate the efficiency of RqMC compared to MC, we use the same modified Displaced
γ2 model system in Tab. 3.1 as in Sec. 3.4.1, along with the same sampling distribution π0. The
approach for the comparison is simple: for several values of τ , we estimate Z ≈ f̄ from a fixed
number of samples (NMC = 105), and compare it to the exact result ZTrotter, which includes the
systematic error due to the Trotter factorization. It is clear from Fig. 3.7 that RqMC tends to result
in smaller error bars than MC for this system, even though we use the deterministic component
selection algorithm for MC.

We also present in Fig. 3.8 a comparison of the error scaling with the number of samples. We
compare the scaling for several P values (see Tab. 3.2), finding it extremely consistent for MC,
where the slope is always near −1/2, indicating an asymptotic error scaling proportional to N−

1
2

MC,
which is precisely what one expects for Monte Carlo. In the RqMC case, the raw data are not as
smooth (on account of being computed from just NS points instead of NMC), so the variability in
the slopes is greater; still, we find that they are more negative than their MC counterparts, implying
faster error reduction.

3.4.3 Parameter optimization

The GMD parameter optimization algorithm described in Sec. 3.3.3 is tested here using a simple
model system derived from the Displaced model of Ref. [7] with the γ6 parameter by reducing the
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Figure 3.7: Comparison of RqMC with MC for the convergence of f̄ with imaginary time step size τ . The
data are plotted relative to the exact result ZTrotter. Values of τ are staggered between the two methods for
better visibility (P = 6, 12, 24, 48, 96, 192, 384 for MC and P = 4, 8, 16, 32, 64, 128, 256 for RqMC).

Table 3.2: Slopes of linear fits in Fig. 3.8.

P Slope (MC) Slope (RqMC)

16 −0.496 47 −0.558 76
32 −0.501 14 −0.587 58
64 −0.501 90 −0.640 40

128 −0.494 53 −0.652 34
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Figure 3.8: Scaling of the estimated error in f̄ with the number of samples for P = (a) 16, (b) 32, (c) 64,
(d) 128. In grey are linear least squares fits whose slopes are given in Tab. 3.2.
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Table 3.3: Parameters of the model Hamiltonian in Eq. (3.52) for the weakened Displaced γ6 system.

Parameter Value

E1 0.02
E2 0.04
ω1 0.02
ω2 0.04

Parameter Value

λ 0.01
γ 0.05

0 50 100 150 200 250

Optimization step

1.0

1.2

1.4

L

Figure 3.9: The loss function L at each step of the GMD optimization for the weakened Displaced γ6

model. The uncertainty of the loss function estimates is indicated by the shaded area.

magnitude of the non-frequency parameters. The resulting system parameters are given in Tab. 3.3,
while those for the algorithm are in Tab. 3.4.

The sampling distribution is initially determined from the diagonal portion of the Hamiltonian, but
with each GMD component replicated to make up a total of B = 8 components. It is then optimized
using Alg. 6 to better match the true distribution arising from the entire Hamiltonian. The progress
of this optimization can be seen in Fig. 3.9 and Fig. 3.10; the former shows the loss function, while
the latter displays the motion of the GMD components. As the oscillators find their way to the
minima of the potential energy surface, the loss function steadily decreases. The standard error
of the loss function estimates also lessens as the optimized distribution gets closer to the desired
distribution. The components’ journey is a fairly boring one: about half-way through, they get near
the mimima, and towards the end, the ones closest to the minima have the largest weights.

To demonstrate that the optimized distribution πopt is an improvement over the simple diagonal
sampling distribution π0, we compare estimates of the partition function Z ≈ f̄ at various values of
P from NMC = 105 samples. As evident in Fig. 3.11, π0 already results in relatively small deviations
from the exact values, but πopt is undeniably the better choice.
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Figure 3.10: Snapshots of the GMD optimization for the weakened Displaced γ6 model. The number in
each panel indicates the optimization step. The background is the ground state potential energy surface of
Ĥ. The minimum of each GMD component is represented by a square, colored according to the relative
component weights.
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Table 3.4: Parameters for GMD optimization.

Parameter Value Description

P 64 # of beads
B 8 # of components
a 0.002 SPSA gain factor

NSPSA 256 # of SPSA steps
NMC 2000 # of samples per L estimation
ε 3 component repulsion stiffness
C1 1 prefactor for repulsion term
C2 1.5 prefactor for weight balancing term
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Figure 3.11: Comparison of sampling distributions for the convergence of f̄ with imaginary time step size
τ for the weakened Displaced γ6 model. The data are plotted relative to the exact result ZTrotter. Values
of τ are staggered between the two distributions for better visibility (P = 48, 96, 192, 384, 768 for π0 and
P = 64, 128, 256, 512, 1024 for πopt).
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Table 3.5: Parameters for GMD optimization with deformation.

Parameter Value Description

P 64 # of beads
B 8 # of components
a 0.0005 SPSA gain factor

NSPSA 64 # of SPSA steps
NW 10 # of SPSA walkers
NMC 2000 # of samples per L estimation
ε 3 component repulsion stiffness
C1 1 prefactor for repulsion term
C2 1.5 prefactor for weight balancing term

3.4.4 Parameter optimization with deformation

To evaluate the algorithm for parameter optimization with deformation, we use one system with
weak coupling and two with strong coupling. The sampling distribution for each system is optimized
using the procedure described in Sec. 3.3.4 and the parameters in Tab. 3.5.

To evaluate the quality of the optimized distribution πopt for each system, we use it with the RqMC
method to estimate the partition function Z ≈ f̄ at various values of P . For comparison, we also
provide results computed using the best hand-picked sampling distribution of Ref. [7] for the system
in question, which we call πbest. For both distributions, we use NMC = 105.

Displaced γ2

We start with a weakly-coupled model system: the γ2 version of the Displaced model from Ref. [7],
which has the parameters given in Tab. 3.6. The optimization progress is shown in Fig. 3.12 and
Fig. 3.13. Because this is a fairly simple system, the loss function never takes on large values
and the optimization algorithm always makes the largest ν step possible, which makes for a quick
optimization. As the Hamiltonian is deformed, the oscillators track the minima of the ground state
potential energy surface. The end result has most of the components located in the deeper minimum
and having larger weights, and two components in the shallower minimum with smaller weights.

As the reference distribution πbest for the sampling efficiency comparison, we simply use the one
built from the diagonal portion of the Hamiltonian, which Ref. [7] calls %0. The results shown in
Fig. 3.14(a) are quite promising: the estimates using πopt are slightly better than the ones using
πbest, which we suspect is due to the crowding of components in the deeper well.
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Figure 3.12: The value of ν (top panel) and the loss
function Lν (bottom panel) at each step of the GMD
optimization for the Displaced γ2 model. In the top
panel, the horizontal lines indicate the bounds on
ν. In the bottom panel, the horizontal line marks
the lower bound on the desired loss function values,
and the uncertainty of the loss function estimates is
indicated by the shaded area.
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Figure 3.13: Snapshots of the GMD optimization
for the Displaced γ2 model. The number in each panel
indicates the optimization step. The backgrounds are
the ground state potential energy surfaces of Ĥν . The
minimum of each GMD component is represented by
a square, colored according to the relative component
weights.
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Table 3.6: Parameters of the model Hamiltonian in Eq. (3.52) for the Displaced γ2 system.

Parameter Value

E1 0.0996
E2 0.1996
ω1 0.02
ω2 0.04

Parameter Value

λ 0.072
γ 0.04
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Figure 3.14: Comparison of sampling distributions for the convergence of f̄ with imaginary time step
size τ for (a) Displaced γ2, (b) Displaced γ6, and (c) Jahn–Teller λ6. The data are plotted relative to
the exact result ZTrotter. Values of τ are staggered between the two distributions for better visibility
(P = 48, 96, 192, 384, 768 for πbest and P = 64, 128, 256, 512, 1024 for πopt).
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Table 3.7: Parameters of the model Hamiltonian in Eq. (3.52) for the Displaced γ6 system.

Parameter Value

E1 0.0996
E2 0.1996

Parameter Value

ω1 0.02
ω2 0.04

Parameter Value

λ 0.072
γ 0.2

Displaced γ6

The first strongly-coupled model system that we consider is the γ6 variant of the Displaced model,
with the parameters in Tab. 3.7, and results in Fig. 3.15 and Fig. 3.16. The optimization algorithm
struggles when the minima first appear (around steps 100 to 350; top panel of Fig. 3.16), but it
is eventually able to find them. This difficulty is clear from the large and noisy values of the loss
function and the small ν steps. However, once the minima are found, the rest of the optimization
proceeds fairly well.

Unfortunately, many of the components in the final distribution are of no consequence (bottom
panel of Fig. 3.16). As they have very low weights, this does not put a damper on the estimation of
the partition function seen in Fig. 3.14(b). Again, both sampling distributions (in this case πbest is
what Ref. [7] calls %1) work well, but the optimized distribution πopt ekes out a tiny decrease in the
error bars, possibly due to slightly more thorough coverage of one of the wells.

Jahn–Teller λ6

As the other strongly-coupled model system we use the λ6 variant of the Jahn–Teller model from
Ref. [7], whose parameters are given in Tab. 3.8. The results can be found in Fig. 3.17 and Fig. 3.18.
The early part of the optimization is a bit uncertain, as the components search for the circular well
(top panel of Fig. 3.18). Once they fall into the well around step 350, the situation temporarily
improves. However, as the symmetric well grows, more regions become neglected and loss function
estimation becomes more difficult. Additionally, there are significant fluctuations in the components
weights; at times, only a single component will have most of the weight (middle panel of Fig. 3.18).
Still, by the end of the optimization (bottom panel of Fig. 3.18), the components are reasonably
well spread out with somewhat even weights, which attests to the importance of the penalty terms
in Eq. (3.51) for avoiding clustering of components and domination by a single component.

Likely owing to the uneven distribution of the components in the well, the partition function
estimation in Fig. 3.14(c) does not perform as well with the optimized distribution πopt as it does
with πbest (in this case, %2 of Ref. [7], which also has 8 components). This could conceivably
be remedied by including more components in the GMD or adjusting the ε and C1 parameters
responsible for the repulsion penalty term of the loss function.
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Figure 3.15: The value of ν (top panel) and the loss
function Lν (bottom panel) at each step of the GMD
optimization for the Displaced γ6 model. In the top
panel, the horizontal lines indicate the bounds on ν.
In the bottom panel, the horizontal lines mark the
bounds on the desired loss function values, and the
uncertainty of the loss function estimates is indicated
by the shaded area.
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Figure 3.16: Snapshots of the GMD optimization
for the Displaced γ6 model. The number in each panel
indicates the optimization step. The backgrounds are
the ground state potential energy surfaces of Ĥν . The
minimum of each GMD component is represented by
a square, colored according to the relative component
weights.
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Figure 3.17: The value of ν (top panel) and the loss
function Lν (bottom panel) at each step of the GMD
optimization for the Jahn–Teller λ6 model. In the
top panel, the horizontal lines indicate the bounds on
ν. In the bottom panel, the horizontal lines mark the
bounds on the desired loss function values, and the
uncertainty of the loss function estimates is indicated
by the shaded area.

−5

0

5

q 2

300

−5

0

5

q 2

600

−5 0 5
q1

−5

0

5

q 2

1012

Figure 3.18: Snapshots of the GMD optimization
for the Jahn–Teller λ6 model. The number in each
panel indicates the optimization step. The back-
grounds are the ground state potential energy sur-
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Table 3.8: Parameters of the model Hamiltonian in Eq. (3.52) for the Jahn–Teller λ6 system.

Parameter Value

E1 0.631 35
E2 0.631 35
ω1 0.03
ω2 0.03

Parameter Value

λ 0.2
γ 0.2

3.5 Conclusions

We have demonstrated four methods to enhance partition function estimation for vibronic Hamilto-
nians: deterministic component selection in GMD sampling when using MC (Sec. 3.3.1, Sec. 3.4.1);
RqMC as a substitute for MC in GMD sampling (Sec. 3.3.2, Sec. 3.4.2); and optimization of the
GMD parameters without (Sec. 3.3.3, Sec. 3.4.3) and with deformation (Sec. 3.3.4, Sec. 3.4.4). Each
of these was shown to improve the scheme described in Ref. [7].

We have found that choosing the components of a GMD in an MC calculation deterministically as
opposed to stochastically can slightly reduce the standard error of the mean with a fixed number of
samples (or, conversely, reduce the number of samples for a fixed standard error). Additionally,
it can diminish the impact of extreme outliers. Thus, we recommend the use of deterministic
component selection for MC partition function calculations of vibronic models, and for GMD
sampling in general.

However, when possible, RqMC should be used in place of MC. We have shown that employing
quasi-random numbers in addition to pseudo-random numbers can help improve the rate at which
the stochastic error decreases with the number of samples, making RqMC the more efficient choice.
In subsequent studies, the impact of the NS and Nboot parameters on the quality of the error
estimate should be determined.

Finally, the optimization of GMD parameters was observed to improve the sampling efficiency when
compared to the simplest choice of sampling distribution, and sometimes even when compared to a
hand-crafted sampling distribution. For the version without deformation of the target distribution,
we have presented an example of a distribution which is significantly improved in just 256 steps.
Because of the way the sampling GMD is constructed from Hamiltonian parameters, even though
the optimization was carried out at P = 64 beads, the distribution obtained for P = 1024 functions
very well.

The iterative algorithm to optimize GMD parameters with deformation of the target distribution
was seen to perform rather well for two of the three systems, but only tolerably for the third. It
was able to find the regions of high density for each model system, resulting in very well-behaved
sampling at several values of τ , although the highly symmetric Jahn–Teller λ6 system was shown to
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give the method some trouble. Because the algorithm parameter values were the same across all
the model systems, this appears to be a fairly robust and general method, and we are interested in
seeing it applied to realistic molecular systems.

Several upgrades to the optimization are possible which may improve its efficiency, and which we
hope to attempt in the future. The first is to use different magnitudes for the different components
of the SPSA perturbation vector ∆, allowing the E(0) parameters to evolve at a different rate than
the E(1) parameters. Another is to allow low-weight components to be culled and replaced by clones
of high-weight components. Finally, if the loss function is seen to be decreasing rapidly, it may be
beneficial to continue beyond NSPSA optimization steps before moving on to the next value of ν.
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3.A Demonstration of quasi-Monte Carlo

At its core, quasi-Monte Carlo (qMC) is just plain Monte Carlo (MC), but with the pseudo-random
number generator (RNG) replaced by a low-discrepancy sequence (LDS). Informally, the discrepancy
of a sequence is its maximum local deviation from a uniform density.89 LDSs attempt to minimize
the discrepancy of the generated points and therefore cover space more evenly than RNGs.85 The
hope is that this can help reduce the stochastic error when using a statistical estimator.

The canonical introductory MC problem is that of estimating π (the ratio of a circle’s circumference
to its diameter) by sampling uniformly from a square of unit side length, and counting the fraction
F of points lying within one unit of one of the corners. Since the ratio of areas is π/4, 4F should
tend to π. In this section, we compare the behavior of MC to qMC for this elementary problem.
For the former, we use the Mersenne Twister, an extremely popular RNG;104 for the latter, we use
a two-dimensional Sobol sequence.91

As seen in Fig. 3.19(a), the RNG creates a typically irregular pattern, with clumps and empty
spaces. On the other hand, in Fig. 3.19(b), the quasi-random points are extremely uniform. It is
this regularity that results in the faster convergence of qMC shown in Fig. 3.20. Although qMC
is not a panacea for numerical integration, this example demonstrates that it can have improved
performance over plain MC.
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Figure 3.19: Distribution of 104 points sampled
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and (b) quasi-randomly using a Sobol sequence. The
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Figure 3.21: Histograms comparing pseudo-random and quasi-random Gaussian sampling methods: (a)
Box–Muller with Mersenne Twister RNG; (b) Box–Muller with Sobol LDS; (c) cdf inversion with Mersenne
Twister RNG; (d) cdf inversion with Sobol LDS. Each histogram is generated from 2000 samples grouped
into 100 bins. In (c), some bins are cut off at the top to show more detail elsewhere. The true pdf is drawn
as a solid curve.

3.B Gaussian sampling in quasi-Monte Carlo

One method for sampling from an arbitrary one-dimensional probability distribution function (pdf)
uses the inverse of the corresponding cumulative distribution function (cdf). If uniformly distributed
samples are input into the inverse cdf, the outputs are distributed according to the desired pdf.
Unfortunately, this is often computationally taxing, so specialized methods are preferred. For the
case of Gaussian random variables, two common alternatives are Box–Muller and ziggurat.105,106

While these methods perform well with pseudo-random numbers, they destroy the low-discrepancy
nature of quasi-random numbers. Compare, for example, the histogram obtained from sampling a
standard Gaussian with the Box–Muller method and the Mersenne Twister pseudo-random number
generator (RNG) in Fig. 3.21(a) and the same method applied to a Sobol low-discrepancy sequence
(LDS) in Fig. 3.21(b). The latter does an extremely poor job of describing the true pdf.
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Despite its cost, the preferred method in this circumstance turns out to be straightforward cdf
inversion.84,87 Application of this method is shown in Fig. 3.21(c) using the Mersenne Twister RNG
and in Fig. 3.21(d) using a Sobol LDS. It is evident that among the four options presented in
Fig. 3.21, cdf inversion of an LDS results in by far the smoothest histogram. Thus, we have chosen
this approach as the basis of low-discrepancy Gaussian sampling in the present work.

Nevertheless, even cdf inversion is imperfect with a many-dimensional LDS. Because the higher
dimensions of a Sobol sequence tend to be more strongly correlated before the inversion,85 these
correlations are carried through to the generated points. In Fig. 3.22, we show two-dimensional
cuts of a 32-dimensional point set created from a 32-dimensional LDS using cdf inversion separately
for each dimension. While there are no obvious correlations present in Fig. 3.22(a) between the
second and third dimensions, we see some glaring patterns in Fig. 3.22(b), where dimensions 27 and
32 are shown. However, these correlations do not prevent us from using quasi-random numbers as a
smoother alternative to pseudo-random numbers for multidimensional Gaussian sampling.

3.C Example of randomized quasi-Monte Carlo

The flexibility allowed in randomized quasi-Monte Carlo (RqMC) by changing the number of
sequences NS creates a tension between pure qMC (NS = 1), which lacks the ability to accurately
estimate error bars, and pure Monte Carlo (NS = NMC), which misses out on the low-discrepancy
smoothness. In this section, we demonstrate the practical implications of this balance by estimating
the 64-dimensional integral

I =
1

(2π)32

∫
dx1 · · ·

∫
dx64 e

−∑64
j=1

x2
j
2

64∑
j=1

x2
j . (3.57)

Factoring and evaluating these integrals individually reveals the exact solution I = 64.

To compute I using Monte Carlo (MC), we sample NMC = 214 times from a collection of 64 uncoupled
standard Gaussian distributions. For RqMC, we instead obtain NqMC = NMC/NS samples from
each of NS 64-dimensional Sobol sequences, then transform them using cdf inversion, and combine
them into a single point with error bars. In either case, we use the estimator

64∑
j=1

x2
j (3.58)

and the total number of sampled points is always the same.

The results in Fig. 3.23 make it clear that for such a well-behaved integrand, RqMC does not require
all that many sequences in order to generate faithful error bars. Additionally, the error bars for
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NS � NMC are substantially smaller than the MC ones, suggesting improved performance. When
NS ≈ NMC, the RqMC error bars are of a comparable size to their MC counterpart, which confirms
that RqMC matches MC in this limit.

3.D Variance of linear combination

Consider a collection of B uncorrelated random variables {rb}Bb=1, from which we form a new random
variable

r =
B∑
b=1

wbrb (3.59)

using the constant coefficients wb. If each rb has population variance

σ2
rb =

〈(
rb − 〈rb〉

)2
〉

= 〈(rb)2〉 − 〈rb〉2 , (3.60)

then

σ2
r =

〈
(r − 〈r〉)2〉 (3.61a)

=
B∑
b=1

B∑
b′=1

wbwb
′
〈

(rb − 〈rb〉)(rb′ − 〈rb′〉)
〉
. (3.61b)

For b 6= b′, rb and rb′ are uncorrelated, so〈
(rb − 〈rb〉)(rb′ − 〈rb′〉)

〉
= 0. (3.62)

Thus,

σ2
r =

B∑
b=1

(wb)2
〈(
rb − 〈rb〉

)2
〉

=
B∑
b=1

(wb)2σ2
rb . (3.63)

Suppose that s2
rb

is an unbiased estimator of σ2
rb
, meaning that

〈
s2
rb

〉
= σ2

rb . (3.64)

Then

s2
r =

B∑
b=1

(wb)2s2
rb (3.65)
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Figure 3.22: Cuts along dimensions (a) 2 and 3
and (b) 27 and 32 of a 32-dimensional Gaussian LDS
point set containing 1000 points.
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Figure 3.23: Estimation of I in Eq. (3.57) using
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tent of the MC error bars. The inset shows the data
directly above it.
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Table 3.9: Parameters of the model Hamiltonian in Eq. (3.67).

Parameter Value

ω1 0.1
γ1,1 1.0

Parameter Value

γ1,2 0.1
γ2,2 0.01

is an unbiased estimator of σ2
r , since

〈
s2
r

〉
=

B∑
b=1

(wb)2
〈
s2
rb

〉
=

B∑
b=1

(wb)2σ2
rb = σ2

r . (3.66)

3.E Example of negative g(R)/Z

It was noted in Ref. [7] that g(R), as defined in Eq. (3.6), may take on negative values. If g(R) > 0

for some R, but g(R) < 0 for others, g(R) cannot always agree in sign with any constant real
number Z, so g(R)/Z must be negative at some point and is not a pdf. We give a simple example
of this using the Hamiltonian

Ĥ =

(
ĥo 0

0 ĥo

)
+

(
γ1,1 γ1,2

γ1,2 γ2,2

)
q̂1, (3.67)

with the parameters in Tab. 3.9. At an inverse temperature of β = 38.7, with P = 3 beads located
at R = (1, 2, 0), we obtain

g(R) ≈ 0.003 116 5. (3.68)

However, at R = (1, 2,−0.3), we instead find

g(R) ≈ −0.010 741. (3.69)

3.F Explanation of ν step size selection algorithm

The function step_nu for choosing the step size ∆ν in Sec. 3.3.4 is given in Alg. 7, and is based
on a number of heuristics. The core assumption is that (all else being fixed) the loss function grows
monotonically with the step size. We justify this by pointing out that the relative entropy term
which appears in the loss function quantifies the difference between the GMD used for sampling and
the target distribution, and this difference should grow with increasing deformation of the target
distribution.
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We use this assumption to tune the loss function to be between 1 and 2 by varying ∆ν with a
simple binary search. If the loss function is too low (and we would not be optimizing very much
this iteration), the lower bound ∆νmin is set to the current value of ∆ν; if it is too high (and we
might be approaching a regime where the sampling is not trustworthy), the upper bound ∆νmax is
set to the current value of ∆ν. After each update, the new trial value of ∆ν is set to be the average
of the lower and upper bounds. The values of 1 and 2 for the loss function bounds, as well as the
number of binary search iterations, are entirely ad hoc, but appear to be reasonable for the systems
considered in this work.

We start the process by optimistically guessing that the current step should be twice as large as the
previous step. We also take steps that are no smaller than 10−3 so that the optimization doesn’t
grind to a halt in difficult regions, and no larger than 10−1 (or 10−2 close to the end) to ensure that
we don’t skip over any details.
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Chapter 4

On the quantum mechanical potential of
mean force. I. A path integral perspective

This chapter is reproduced from Dmitri Iouchtchenko, Kevin P. Bishop, and Pierre-Nicholas
Roy, “On the quantum mechanical potential of mean force. I. A path integral perspective”,
arXiv:2101.00761v1.3

4.1 Introduction

Free energy calculations provide vital theoretical insights into the behaviour of chemical systems (such
as equilibrium constants and stability of molecular conformations) and are commonly used to make
comparisons with experimental results. The classical potential of mean force (PMF), also referred to
as a free energy profile, may be obtained from classical molecular dynamics simulations in a number
of ways: umbrella sampling with the weighted histogram analysis method (WHAM),23,107,108 blue
moon sampling,109–111 metadynamics,112,113 and potential of mean constraint force,114,115 among
others.

The quantum mechanical analogue of the PMF has not been as thoroughly studied, but there are
many interesting systems where nuclear quantum effects play an integral role. These effects are
essential within simulations performed at low temperature or containing light atoms. Crucially, the
inclusion of nuclear quantum effects has been demonstrated to be indispensable in the accurate
determination of properties of the water dimer as well as other small water clusters due to the
presence of the light hydrogen atoms.116–118 Recent work has combined the existing umbrella
sampling method with path integral molecular dynamics simulations to study the free energy profile
of water–water24,119 and water–methanol dimers119 while accounting for such nuclear quantum
effects.
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Many existing efforts to compute the quantum PMF120–124 have used the path integral centroid
coordinate,125,126 but this is known to produce deviations from the exact quantum mechanical
result.24,127 Our current focus is therefore to obtain the PMF as a function of the true reaction
coordinate rather than the path centroid.

In the present work, we formally derive two path integral Monte Carlo (PIMC) estimators for
the derivative of the PMF, which can be integrated to determine the PMF. The first estimator
is obtained by performing an analytical differentiation of the exact path integral, followed by its
discretization over the path. Conversely, the second estimator is derived by initially discretizing the
path integral before performing the analytical differentiation. Theoretically, these estimators should
provide the same numerical results, and to verify this, they are benchmarked against known model
systems.

Both estimators may be used in conjunction with the path integral Langevin equation (PILE),16 as
we show in Paper II of this series, titled “Constrained path integral molecular dynamics integrators”.
Together with the constrained PILE formulation, we aim to use these estimators for systems that
are not as easily studied with PIMC, such as low-temperature molecular clusters.

The remainder of this article is organized as follows: in Sec. 4.2, we describe our notation; in Sec. 4.3,
we develop two estimators for the derivative of the PMF; in Sec. 4.4, we apply the estimators to
model systems; and in Sec. 4.5, we summarize our findings.

4.2 Background

We consider systems with f Cartesian degrees of freedom, that we label q1, q2, . . . , qf ; commonly,
there are N particles in three spatial dimensions, in which case f = 3N . For convenience, we group
them into a single vector q.

We restrict the Hamiltonian to have the form

Ĥ = K̂ + V̂ =

f∑
i=1

p̂2
i

2mi

+ V (q̂) =
1

2
p̂ ·M−1 · p̂ + V (q̂), (4.1)

where p̂i is the momentum operator conjugate to the position operator q̂i, mi is the mass corre-
sponding to qi, and M is the diagonal mass matrix whose elements are mi. The restriction on the
kinetic energy allows us to write the exact free particle propagator

〈q′|e−τK̂ |q〉 =

√
|M|

(2π~2τ)f
e−

1
2~2τ

(q′−q)·M·(q′−q) (4.2)

for an imaginary time duration τ . We require that the potential energy be diagonal in the position
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representation so that

〈q′|e−τV̂ |q〉 = δ(q′ − q)e−τV (q). (4.3)

Despite these limitations, such Hamiltonians are general enough to describe many diverse systems
of itinerant particles.

The partition function of a system with Hamiltonian Ĥ at reciprocal temperature β = 1/kBT is

Z = Tr e−βĤ =

∫
dq 〈q|e−βĤ |q〉 , (4.4)

and the thermal expectation value of an operator Ô is

〈Ô〉βĤ =
1

Z
Tr e−βĤÔ =

∫
dq 〈q|e−βĤÔ|q〉∫
dq 〈q|e−βĤ |q〉

. (4.5)

As a means of evaluating 〈Ô〉βĤ , we may construct a discretized imaginary time path integral for
the partition function. To that end, we first rename q to Q(1) and then insert P − 1 resolutions of
the identity

1̂ =

∫
dQ(j) |Q(j)〉〈Q(j)| , (4.6)

which introduce the additional Cartesian coordinates Q(2), . . . , Q(P ) along the imaginary time path;
we combine them all into the vector Q and refer to them as “beads”, picturing the path as a necklace.
This results in

Z =

∫
dQ

P∏
j=1

〈Q(j)|e− β
P
Ĥ |Q(j+1)〉 , (4.7)

where it should be understood that the path is cyclic in imaginary time (that is, Q(P+1) is an alias
for Q(1)).

To evaluate each high-temperature propagator, since [K̂, V̂ ] 6= 0, we rely on the Trotter factorization

e−βĤ = lim
P→∞

(
e−

β
P
K̂e−

β
P
V̂
)P

, (4.8)

which allows us to start with the approximation

〈q′|e− β
P
Ĥ |q〉 ≈

√
|M|P f

(2π~2β)f
e
− P

2~2β
(q′−q)·M·(q′−q)− β

P
V (q) (4.9)
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and systematically improve the error in the product of these approximate factors by increasing P .
For any finite P , we may construct the approximate path density

π(Q) =

( |M|P f

(2π~2β)f

)P
2

e−βVcl(Q) (4.10)

with the classical potential

Vcl(Q) =

f∑
i=1

miP

2~2β2

P∑
j=1

(
Q

(j)
i −Q(j+1)

i

)2

+
1

P

P∑
j=1

V (Q(j)), (4.11)

so that

Z = lim
P→∞

∫
dQ π(Q). (4.12)

For the remainder of this article, we drop the P →∞ limit for the sake of brevity.

In order to use PIMC sampling to calculate 〈Ô〉βĤ , it is necessary to procure an estimator function
EÔ(Q), the details of which depend on the nature of the operator. The operator expression in
Eq. (4.5) is then replaced by a ratio of integrals containing only regular functions:

〈Ô〉βĤ = 〈EÔ〉π =

∫
dQ π(Q)EÔ(Q)∫

dQ π(Q)
. (4.13)

This ratio is commonly evaluated as

〈EÔ〉π ≈
1

NMC

NMC∑
i=1

EÔ(Q[i]) (4.14)

by drawing the samples {Q[i]}NMC
i=1 from π(Q) using Markov chain Monte Carlo.

4.3 Estimators

It is generally more convenient to work with path integrals in Cartesian coordinates q, but the PMF
A(ξ?) is expressed in terms of an arbitrary curvilinear coordinate ξ at some value ξ?. To connect
the two, we introduce an invertible coordinate transformation to the generalized coordinates X1,
X2, . . . , Xf−1, ξ, where the first f − 1 of these are grouped into the vector X. This transformation
has non-zero Jacobian determinant J(q) = J(X, ξ). The special coordinate ξ is referred to as the
reaction coordinate; for example, it may be the distance between two specific centers of mass in a
cluster.
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Using the diagonal reduced density

%(ξ?) =
1

Z
〈ξ?|TrX e

−βĤ |ξ?〉 (4.15a)

=
1

Z

∫
dX 〈X ξ?|e−βĤ |X ξ?〉 (4.15b)

at reciprocal temperature β, we may construct the overall object of interest: the potential of mean
force

A(ξ?) = − 1

β
log

%(ξ?)

%0

, (4.16)

where %0 is an arbitrary constant with the same physical dimension as ξ−1. Choosing a value for
%0 sets the zero of energy for the PMF. Note that our definitions imply that %−1

0 =
∫

dξ? e−βA(ξ?),
which does not contain any explicit volume element factors; instead, we encounter a geometric term
in the estimators. Even though the momentum operator p̂ξ conjugate to the reaction coordinate
operator ξ̂ satisfies128

〈ξ| p̂ξ = −i~ ∂
∂ξ
〈ξ| , (4.17)

in general we find that

〈q| p̂ξ 6= −i~
∂

∂ξ
〈q| , (4.18)

and the missing portion is directly responsible for the geometric term.

We wish to compute A(ξ?) via its derivative

A′(ξ?) = − 1

β

d

dξ?
log

%(ξ?)

%0

= − 1

β

%′(ξ?)

%(ξ?)
. (4.19)

As shown in Appendix 4.A, we may write the diagonal reduced density in Cartesian coordinates as

%(ξ?) =
1

Z

∫
dq δ(ξ(q)− ξ?) 〈q|e−βĤ |q〉 , (4.20)

so

−βA′(ξ?) =

d
dξ?

∫
dq δ(ξ(q)− ξ?) 〈q|e−βĤ |q〉∫

dq δ(ξ(q)− ξ?) 〈q|e−βĤ |q〉
. (4.21)

Because the denominator resembles a constrained version of the partition function Z in Eq. (4.4),
we use this as the starting point to derive two path integral estimators E1(Q) and E2(Q) which
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satisfy

−βA′(ξ?) =〈Ei〉π,ξ? =

∫
dQ δ

(
ξ(Q(1))− ξ?

)
π(Q)Ei(Q)∫

dQ δ
(
ξ(Q(1))− ξ?

)
π(Q)

. (4.22)

For E1(Q), we first differentiate and then discretize the path integral in the numerator, and for
E2(Q) we do the reverse.

4.3.1 Estimator 1: Differentiate then discretize

The main quantity in question is

Z%′(ξ?) =
d

dξ?

∫
dq δ(ξ(q)− ξ?) 〈q|e−βĤ |q〉 , (4.23)

which we write using Appendix 4.B as

Z%′(ξ?) =

∫
dq δ(ξ(q)− ξ?)

[
Jξ(q) +

∂

∂ξ

]
〈q|e−βĤ |q〉 . (4.24)

The simpler of the two terms is the geometric one, which stems from the coordinate transformation:∫
dq δ(ξ(q)− ξ?) 〈q|e−βĤ |q〉 Jξ(q). (4.25)

The remaining term

∫
dq δ(ξ(q)− ξ?)

f∑
i=1

∂qi
∂ξ
Gi(q) (4.26)

is more involved, requiring the derivatives of the imaginary time propagator:

Gi(q) =
∂

∂qi
〈q|e−βĤ |q〉 =

1

i~
〈q|
[
e−βĤ , p̂i

]
|q〉 , (4.27)

where the derivative–commutator identity is derived in Appendix 4.C.

Using the Kubo formula for the commutator with the exponential of an operator,129 we find that

Gi(q) = − 1

i~

∫ β

0

dλ 〈q|e−(β−λ)Ĥ [Ĥ, p̂i] e
−λĤ |q〉 . (4.28)

Since the kinetic energy operator in Eq. (4.1) commutes with p̂i, only the commutator with the
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potential energy remains: [V̂ , p̂i] . It follows from [q̂i, p̂j] = i~δij that

[V (q̂), p̂i] = −i~Fi(q̂), (4.29)

where the component of the force vector F(q) on the coordinate qi is given by

Fi(q) = − ∂

∂qi
V (q). (4.30)

Hence,

Gi(q) =

∫ β

0

dλ 〈q|e−(β−λ)ĤFi(q̂)e−λĤ |q〉 . (4.31)

Having obtained the necessary expressions, we may discretize the path integral in the usual fashion.
The geometric term in Eq. (4.25) poses no difficulty, and we get∫

dQ δ
(
ξ(Q(1))− ξ?

)
π(Q)Jξ(Q

(1)). (4.32)

The integral from the Kubo formula is discretized into an average over the path, and because Fi(q̂)

is diagonal in the additional path coordinates, we only need to perform the substitution

Gi(q)→ π(Q)
β

P

P∑
j=1

Fi(Q
(j)), (4.33)

turning Eq. (4.26) into

∫
dQ δ

(
ξ(Q(1))− ξ?

)
π(Q)

β

P

P∑
j=1

F(Q(j)) · ∂Q(1)

∂ξ
. (4.34)

Thus, the PMF derivative may be written as

−βA′(ξ?)=〈E1〉π,ξ? =

∫
dQ δ

(
ξ(Q(1))− ξ?

)
π(Q)E1(Q)∫

dQ δ
(
ξ(Q(1))− ξ?

)
π(Q)

, (4.35)

where

E1(Q) =
∂

∂ξ
log |J(Q(1))| +

β

P

P∑
j=1

F(Q(j)) · ∂Q(1)

∂ξ
(4.36)

is the first estimator. In the P = 1 case, it reduces to a form recognizable from classical mechanics:115
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− 1

β
E1(q) = − 1

β

∂

∂ξ
log |J(q)| − F(q) · ∂q

∂ξ
(4.37a)

=
∂

∂ξ

[
V (q)− 1

β
log |J(q)|

]
. (4.37b)

4.3.2 Estimator 2: Discretize then differentiate

To derive another estimator, we start from Eq. (4.24), but first discretize the path into P imaginary
time steps to find

Z%′(ξ?) =

∫
dQ δ

(
ξ(Q(1))− ξ?

)[
Jξ(Q

(1)) +
∂Q(1)

∂ξ
· ∂

∂Q(1)

]
π(Q). (4.38)

The geometric term will again be as in Eq. (4.32), but the other term is now straightforward to
compute via ordinary calculus, requiring only

1

π(Q)

∂π(Q)

∂Q(j)
= −β∂Vcl(Q)

∂Q(j)
= βF

(j)
cl (Q) =

β

P
F(Q(j))− P

~2β
M ·

[
2Q(j) −Q(j+1) −Q(j−1)

]
,

(4.39)

in which the classical force F
(j)
cl (Q) on bead j is obtained from the classical potential. The PMF

derivative may therefore also be written as

−βA′(ξ?)=〈E2〉π,ξ? =

∫
dQ δ

(
ξ(Q(1))− ξ?

)
π(Q)E2(Q)∫

dQ δ
(
ξ(Q(1))− ξ?

)
π(Q)

, (4.40)

where

E2(Q) =
∂

∂ξ
log |J(Q(1))| + βF

(1)
cl (Q) · ∂Q(1)

∂ξ
(4.41)

is the second estimator.

It is perhaps a little surprising that the sum β
P

∑P
j=2 F(Q(j)) from E1, which involves all coordinates

except the constrained one, appears to have been replaced by − P
~2β

M ·
(

2Q(1) −Q(2) −Q(P )
)
,

which depends on only three coordinates. This results in the peculiar identity〈
F

(1)
cl (Q) · ∂Q(1)

∂ξ

〉
π,ξ?

P→∞
=

〈
1

P

P∑
j=1

F(Q(j)) · ∂Q(1)

∂ξ

〉
π,ξ?

, (4.42)
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which relates the classical force on the constrained coordinates to the average force over the path.

4.3.3 Removal of geometric term

It is occasionally more convenient to work with

%̃(ξ?) =
%(ξ?)

f(ξ?)
, (4.43)

for some function f , than with %(ξ?) directly. Consider, for example, the spherical coordinates (ξ,
cos θ, ϕ), which have Jacobian determinant

J(ξ, cos θ, ϕ) = −ξ2. (4.44)

The normalization

1 =

∫
dξ? (ξ?)2%̃(ξ?) (4.45)

is often more natural than

1 =

∫
dξ? %(ξ?). (4.46)

Using %̃ leads to the modified PMF

Ã(ξ?) = − 1

β
log

%̃(ξ?)

%̃0

= A(ξ?) +
1

β
log

%̃0f(ξ?)

%0

, (4.47)

where the arbitrary constant %̃0 has the same physical dimension as (ξf(ξ))−1. The corresponding
derivative is

−βÃ′(ξ?) = −βA′(ξ?)− ∂

∂ξ
log f(ξ?), (4.48)

and it follows immediately that

Ẽ1(Q) = E1(Q)− ∂

∂ξ
log f(ξ?) (4.49a)

and

Ẽ2(Q) = E2(Q)− ∂

∂ξ
log f(ξ?) (4.49b)

may be used to estimate −βÃ′(ξ?).
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Whenever a transformation from q to X, ξ exists with Jacobian determinant J(X, ξ) that is a
function of only ξ (as in the above spherical coordinates example) the geometric term may be
exactly cancelled from E1 and E2 by setting f(ξ) = |J(ξ)|. In such a situation,

∂

∂ξ
log f(ξ?) =

∂

∂ξ
log |J(Q(1))| , (4.50)

so we are left with just

Ẽ1(Q) =
β

P

P∑
j=1

F(Q(j)) · ∂Q(1)

∂ξ
(4.51a)

and

Ẽ2(Q) = βF
(1)
cl (Q) · ∂Q(1)

∂ξ
. (4.51b)

This modification provides no substantial computational benefits, as the omitted expression will be
a constant with respect to the integration (for example, 2/ξ? for spherical coordinates). However, it
may make sense to exclude the term from the calculation entirely if it is destined to be excised after
the calculation is completed.

4.3.4 Kubo formula in generalized coordinates

Starting from Eq. (4.15), which expresses the diagonal reduced density in terms of the generalized
coordinates, application of Appendix 4.C immediately yields

Z%′(ξ?) =
1

i~

∫
dX 〈X ξ?|

[
e−βĤ , p̂ξ

]
|X ξ?〉 . (4.52)

This bypasses many of the convoluted steps found above and leaves us with a succinct expression,
which takes on the form

− 1

i~

∫
dX

∫ β

0

dλ 〈X ξ?|e−(β−λ)Ĥ [Ĥ, p̂ξ] e
−λĤ |X ξ?〉 (4.53)

after treatment with the Kubo formula.129 Since

[V (q̂), p̂ξ] = −i~Fξ(q̂) (4.54)

involves only the force along the reaction coordinate, proceeding in this direction seems like the
obvious choice. However, p̂ξ is not guaranteed to commute with the Cartesian momenta, and the
commutator [K̂, p̂ξ] is not always diagonal in the position representation. Consequently, Eq. (4.53)
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does not lend itself well to discretization and we do not pursue this approach to the derivation
further.

4.4 Results

As a proof of concept, we use the estimators E1 and E2 to compute derivatives of the PMF of
two small systems, for which reference results (either exact or numerical) may be calculated: a
one-dimensional harmonic oscillator and a Lennard-Jones model of the Ar2 dimer. To perform the
path integral Monte Carlo sampling, we have implemented a basic Markov chain integrator130 using
the Metropolis–Hastings acceptance criterion. The constraint is exactly enforced by sampling in the
generalized coordinates for the first bead: updates are proposed for X(1), but ξ(1) is held fixed at ξ?.

4.4.1 Harmonic oscillator

The simplest non-trivial problem we can consider is the dependable harmonic oscillator, with the
Hamiltonian

Ĥ =
p̂2

2m
+

1

2
mω2q̂2 (4.55)

and the reaction coordinate ξ = q. Since the eigenstates of this Hamiltonian are known analytically,
we may write down the normalized diagonal density

%(ξ?) =
1

Z
e−

β~ω
2

α√
π
e−(αξ?)2

∞∑
n=0

e−β~ωn

2nn!
H2
n(αξ?), (4.56)

where Hn(x) is the order-n Hermite polynomial at x, α =
√
mω/~, and the partition function is

Z =
1

2
csch(β~ω/2). (4.57)

Using the identity131

∞∑
n=0

kn

2nn!
Hn(x)Hn(y) =

e
k2(x2+y2)−2kxy

k2−1

√
1− k2

(4.58)

for |k| < 1, which in our case simplifies to

∞∑
n=0

kn

2nn!
H2
n(x) =

e
2kx2

k+1

√
1− k2

, (4.59)
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Figure 4.1: Comparison of the estimators E1 and E2 in Eqs. (4.36) and (4.41) for the computation of the
PMF derivative of a harmonic oscillator at ξ? = −1 nm (top curve, least saturated), 0 nm (middle curve),
and 4 nm (bottom curve, most saturated). Error bars are not visible, because they are smaller than the
symbols. The solid curves show the exact result from Eq. (4.61).

we find that

%(ξ?) =

√
α2 tanh(β~ω/2)

π
e−α

2 tanh(β~ω/2)(ξ?)2

. (4.60)

Thus,

−βA′(ξ?) = −2α2 tanh(β~ω/2)ξ?, (4.61)

which is proportional to ξ?.

The necessary quantities for the PIMC estimators are

∂

∂ξ
log |J(q)| = 0, (4.62a)

∂q

∂ξ
= 1, (4.62b)

and

F (q) = −mω2q. (4.62c)

For this example, we have arbitrarily chosen m = 1.5 g mol−1 and ω = 2.3 ps−1. The derivative of
the PMF as computed using the Monte Carlo estimators agrees very well with the exact result over
a range of temperatures and constraint positions, as shown in Fig. 4.1.
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4.4.2 Lennard-Jones dimer

To demonstrate that these estimators are applicable to a curvilinear reaction coordinate, we study
a diatomic molecule with reduced mass µ and Lennard-Jones interactions. Without the term for
translation of the center of mass, its Hamiltonian is

Ĥ =
p̂2

q

2µ
+ VLJ(ξ̂), (4.63)

where q is the radial separation vector between the atoms, whose magnitude ξ = |q| we use as the
reaction coordinate, and

VLJ(ξ) = 4ε

[(
σ

ξ

)12

−
(
σ

ξ

)6
]

(4.64)

is the Lennard-Jones potential. Unlike the harmonic oscillator example, this system has a potential
that vanishes at large separation, allowing the dimer to dissociate.

Expressing q in spherical coordinates (ξ, cos θ, ϕ), we have that the magnitude of the Jacobian
determinant is

|J(X, ξ)| = ξ2. (4.65)

In order to evaluate the PIMC estimators, we therefore require the following quantities:

∂

∂ξ
log |J(q)| =

2

ξ
, (4.66a)

∂q

∂ξ
=

q

ξ
, (4.66b)

and

F(q) = 24ε
q

ξ2

[
2

(
σ

ξ

)12

−
(
σ

ξ

)6
]
. (4.66c)

Note that we retain the geometric term during the simulation and explicitly remove it in the
subsequent numerical integration. To perform a reference calculation, we use numerical matrix
multiplication (NMM), as described in Appendix 4.D.

For the Lennard-Jones parameters provided in Ref. [132] for Ar2 (ε = 119.8 K and σ = 3.405Å),
the results in Fig. 4.2 confirm that the estimators E1 and E2 function correctly with radial distance
as a reaction coordinate. In particular, the rapid change in the slope of the PMF is captured at the
lower temperatures.
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Figure 4.2: Comparison of the estimators E1 and
E2 in Eqs. (4.36) and (4.41) for the computation of
the PMF derivative of a Lennard-Jones dimer at T =
20 K (top curve, least saturated), 4 K (middle curve),
and 2 K (bottom curve, most saturated). Error bars
are not visible, because they are smaller than the
symbols. The solid curves show the NMM results.
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Figure 4.3: Comparison of the estimators E1 and
E2 in Eqs. (4.36) and (4.41) for the computation of
the PMF of a Lennard-Jones dimer at T = 20 K
(narrow curve, least saturated) and 2 K (wide curve,
most saturated). Error bars are not visible, because
they are smaller than the symbols. Additional points
extending to ξ?0 = 1.5 nm are not displayed. The
solid curves show the NMM results, while the dotted
curve is the Lennard-Jones potential in Eq. (4.64).

It is possible to numerically integrate the derivative A′(ξ?) to recover the PMF A(ξ?). We do so
using the midpoint rule on a grid of points ξ?i with spacing ∆ξ? (as in Fig. 4.2), and with ξ?1 placed
at the largest value of ξ?. We also define the virtual point ξ?0 = ξ?1 + ∆ξ? and a shifted grid of points

ξ̄?i = ξ?i −
∆ξ?

2
, (4.67)

with ξ̄?0 acting as a “point at infinity” (the dimer is considered to have dissociated when the atoms
are at least ξ̄?0 apart). Correspondingly, we set Ã(ξ̄?0) = 0 = Ã′(ξ?0), using the normalization in
Eq. (4.45).

In Fig. 4.3, we show

Ã(ξ̄?j ) =
∆ξ?

β

j∑
i=1

[
−βA′(ξ?i )−

2

ξ?i

]
, (4.68)

which is the renormalized PMF with the desired energy offset. The matching NMM curves are
calculated from %(ξ?) as

Ã(ξ?) = − 1

β
log

%(ξ?)(ξ̄?0)2

%(ξ̄?0)(ξ?)2
(4.69)

to ensure a compatible energy offset. Even though the integration grid is rather sparse, especially
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where the slope of the PMF changes suddenly for T = 2 K, the obtained PMFs are consistent with
the reference results.

4.5 Conclusions

We have described two path integral Monte Carlo estimators for the calculation of the derivative of
the quantum mechanical potential of mean force. Notably, the curves obtained from these estimators
are in terms of the true quantum reaction coordinate, unlike other methods that utilize the path
centroid.

The first estimator, Eq. (4.36), was obtained by initially differentiating the exact path integral
and then discretizing the resulting path integral into imaginary time steps. Alternatively, the
second estimator, Eq. (4.41), was obtained by discretizing the exact path integral first and then
performing the differentiation after. In principle, these should be equivalent operations in the
P → ∞ limit, and we have demonstrated that both estimators reproduce the correct derivative
of the PMF for the one-dimensional harmonic oscillator and Lennard-Jones dimer. In contrast to
existing histogram-based methods for the evaluation of free energies, these novel estimators can be
used to ascertain information about the free energy profile at just a single point along the reaction
coordinate.

Furthermore, it is possible to numerically integrate the computed derivatives evaluated from these
estimators to obtain the PMF itself. As shown in the argon dimer example, even when the integration
grid is not very dense, this method successfully reproduces the known PMF obtained from numerical
matrix multiplication.

In Paper II of this series, we show how these estimators may be used with path integral molecular
dynamics. This is achieved by applying techniques from constrained Langevin dynamics to the
PILE integrator in order to constrain one of the beads. The extension of these estimators to path
integral molecular dynamics simulations will allow for their application to more general systems
and potentials, such as small water clusters.
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4.A Kets in curvilinear coordinates
A wavefunction ψ(q) may be thought of as the concrete manifestation of an abstract ket |ψ〉 in a
continuous representation:

ψ(q) = 〈q|ψ〉 . (4.70)

Although the object |q〉 (which represents a state with definite Cartesian position q) is not an
element of Hilbert space, it is common to formally treat it as if it were. Given a change of variables
from q to X, ξ with Jacobian determinant J(q) = J(X, ξ), it is useful to define |X ξ〉 in a way that
fulfills ∫

dq |〈q|ψ〉|2 =

∫
dX

∫
dξ |〈X ξ|ψ〉|2, (4.71)

which is analogous to the statement that the resolution of the identity

1̂ =

∫
dX

∫
dξ |X ξ〉〈X ξ| (4.72)

should have the usual form, even in curvilinear coordinates.

Since ∫
dq |〈q|ψ〉|2 =

∫
dX

∫
dξ |J(X, ξ)| |〈q(X, ξ)|ψ〉|2, (4.73)

it follows that the definition

|X ξ〉 =
√
|J(X, ξ)| |q(X, ξ)〉 =

√
|J(q)| |q〉 (4.74)

is sufficient. This is the approach described in Ref. [128], and the one we use in the present work.
Using this definition, we see that the diagonal matrix elements of the partial trace of an operator Ô
with respect to X may be expressed as

〈ξ?|TrX Ô|ξ?〉 =

∫
dX 〈X ξ?|Ô|X ξ?〉 (4.75a)

=

∫
dX

∫
dξ δ(ξ − ξ?) 〈X ξ|Ô|X ξ〉 (4.75b)

=

∫
dq δ(ξ(q)− ξ?) 〈X ξ|Ô|X ξ〉

|J(q)| (4.75c)

=

∫
dq δ(ξ(q)− ξ?) 〈q|Ô|q〉 (4.75d)

in Cartesian coordinates.
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4.B Derivative of a Dirac delta function integral
We wish to take the derivative

D(ξ?) =
d

dξ?

∫
dq δ(ξ(q)− ξ?)f(q). (4.76)

We first obtain the one-dimensional result

d

dξ?

∫
dξ δ(ξ − ξ?)f(ξ) =

∫
dξ δ(ξ − ξ?) d

dξ
f(ξ) (4.77)

by noting that

d

dξ?
f(ξ?) =

∫
dξ δ(ξ − ξ?) d

dξ
f(ξ). (4.78)

For the general case, we change coordinates to those in which ξ appears explicitly:

D(ξ?) =

∫
dX

d

dξ?

∫
dξ δ(ξ − ξ?)|J(X, ξ)|f(X, ξ) (4.79a)

=

∫
dX

∫
dξ δ(ξ − ξ?) ∂

∂ξ
|J(X, ξ)|f(X, ξ) (4.79b)

=

∫
dX

∫
dξ δ(ξ − ξ?)

[
∂

∂ξ
|J(X, ξ)|

]
f(X, ξ) +

∫
dX

∫
dξ δ(ξ − ξ?)|J(X, ξ)| ∂

∂ξ
f(X, ξ)

(4.79c)

=

∫
dq δ(ξ(q)− ξ?)

[
Jξ(q) +

∂

∂ξ

]
f(q), (4.79d)

where

Jξ(q) =
∂

∂ξ
log |J(q)| =

∂
∂ξ
|J(X, ξ)|
|J(X, ξ)| , (4.80)

and we formally apply the logarithmic derivative notation even when the function is not dimension-
less.

4.C Derivative–commutator identity for diagonal matrix ele-

ments
It is well-known that momentum operators lead to differentiation in the position representation.
For example,

〈q|p̂iÂ|q′〉 = −i~ ∂

∂qi
〈q|Â|q′〉 (4.81)
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for an arbitrary operator Â, where p̂i is the momentum operator conjugate to q̂i. However, this
relationship does not generally hold when q and q′ are the same variable:

〈q|p̂iÂ|q〉 6= −i~
∂

∂qi
〈q|Â|q〉 . (4.82)

Instead, for a Hermitian operator Â with the eigenvalue equation Â |a〉 = a |a〉, we have that

〈q|p̂iÂ|q〉 =
∑
a

〈q|p̂i|a〉 〈a|Â|q〉 (4.83a)

= −i~
∑
a

a

[
∂

∂qi
〈q|a〉

]
〈a|q〉 (4.83b)

and

〈q|Âp̂i|q〉 = i~
∑
a

a 〈q|a〉
[
∂

∂qi
〈a|q〉

]
. (4.84)

Thus, we conclude that

∂

∂qi
〈q|Â|q〉 =

∂

∂qi

∑
a

〈q|Â|a〉 〈a|q〉 (4.85a)

=
∑
a

a 〈q|a〉
[
∂

∂qi
〈a|q〉

]
+
∑
a

a

[
∂

∂qi
〈q|a〉

]
〈a|q〉 (4.85b)

=
1

i~
〈q|Âp̂i|q〉 −

1

i~
〈q|p̂iÂ|q〉 (4.85c)

=
1

i~
〈q|
[
Â, p̂i

]
|q〉 . (4.85d)

4.D Numerical matrix multiplication for a radial coordinate

In Ref. [132], expressions for numerical matrix multiplication of the path integral of a system
described by a three-dimensional relative coordinate are given, but not derived. In this section, we
briefly explain why the radial propagator has such a curious form.

The operator in the kinetic energy of Eq. (4.63) may be expressed as

p̂2
q = p̂2

ξ +
ˆ̀2

ξ̂2
, (4.86)

where p̂ξ is the radial momentum operator, and ˆ̀2 is the squared angular momentum operator, whose
eigenstates are the spherical harmonics |`m〉 with eigenvalues ~2`(`+ 1). The radial momentum
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operator is not self-adjoint and does not have a spectrum of eigenstates,133,134 so the spectral
theorem does not apply to it and the appropriate resolution of identity is not given by∫

dpξ |pξ〉〈pξ| , (4.87)

despite the wavefunctions

〈ξ|pξ〉 =
e
iξpξ
~√

2π~
(4.88)

satisfying p̂ξ |pξ〉 = pξ |pξ〉. Thus, we must be careful when rederiving Eq. (16c) of Ref. [132].

We turn to the operator p̂2
ξ , which is well-behaved and has the eigenstates

〈ξ|p(2)
ξ 〉 =

e
iξpξ
~ − e

−iξpξ
~

2i
√
π~

=
1√
π~

sin
ξpξ
~

(4.89)

with eigenvalues p2
ξ . We may use these states to construct the correct resolution of the identity,

1̂ =

∫
dpξ |p(2)

ξ 〉〈p
(2)
ξ | =

∫
dpξ

(
|pξ〉〈pξ| − |pξ〉〈−pξ|

)
, (4.90)

which, as expected, results in

〈ξ′|e−
τp̂2ξ
2µ |ξ〉 =

∫
dpξ 〈ξ′|e−

τp2ξ
2µ |p(2)

ξ 〉 〈p
(2)
ξ |ξ〉 (4.91a)

=
1

4π~

∫
dpξ e

−
τp2ξ
2µ

+
ipξ
~ (ξ′−ξ) +

1

4π~

∫
dpξ e

−
τp2ξ
2µ
− ipξ~ (ξ′−ξ)

− 1

4π~

∫
dpξ e

−
τp2ξ
2µ

+
ipξ
~ (ξ′+ξ) − 1

4π~

∫
dpξ e

−
τp2ξ
2µ
− ipξ~ (ξ′+ξ) (4.91b)

=

√
µ

2π~2τ

[
e−

µ

2~2τ
(ξ′−ξ)2 − e− µ

2~2τ
(ξ′+ξ)2

]
. (4.91c)
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Chapter 5

On the quantum mechanical potential of
mean force. II. Constrained path integral
molecular dynamics integrators

This chapter is reproduced from Dmitri Iouchtchenko, Kevin P. Bishop, and Pierre-Nicholas Roy,
“On the quantum mechanical potential of mean force. II. Constrained path integral molecular
dynamics integrators”, arXiv:2101.00762v1.4

5.1 Introduction

In Paper I of this series, we demonstrated that the quantum potential of mean force (PMF) may be
obtained from constrained path integral Monte Carlo (PIMC) simulations using novel estimators
for the derivative of the PMF. However, devising efficient configuration update schemes for Monte
Carlo methods is a nontrivial endeavor, as the volume of configuration space grows exponentially
both with the number of particles and the number of beads per particle. For most systems, it is not
feasible to simply perturb the position of each bead by a random amount, since the magnitude of
the perturbations must be decreased substantially when increasing the number of beads, in order
to avoid rejecting all proposed configurations. Thus, it is often beneficial to turn to path integral
molecular dynamics (PIMD), in which configurations are updated based on the force arising from
an effective Hamiltonian. In the unconstrained case, the path integral Langevin equation (PILE)
integrator provides a straightforward implementation of thermostatted ring polymer time evolution
for PIMD.16

In the present work, we incorporate bead-local holonomic constraints into the PILE in order to
calculate the quantum PMF of molecular systems. We also show that when the reaction coordinate
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for the PMF is the radial separation between two centers of mass, the additional computational
effort necessary to enforce the constraint is negligible, as the Lagrange multiplier may be computed
directly without resorting to an iterative scheme.

A recent study has found that an approach which combines PIMD with umbrella sampling and
histogram unbiasing is sufficient to calculate the quantum PMF of a water dimer.24 While it may
be advantageous to stitch together multiple histograms, as each simulation will contribute data over
a range of the reaction coordinate, it can be quite challenging to obtain and converge a collection of
smooth histograms. On the other hand, independent values obtained from an estimator at single
points are simple to examine and improve in a systematic fashion. Indeed, we observe that when
the PMF has a very rapidly changing slope, as in the water dimer at low temperature, it can be
favorable to compute its derivative using constrained PIMD and our estimators rather than by
numerical differentiation of an unbiased PMF.

The remainder of this article is organized as follows: in Sec. 5.2, we describe our notation; in Sec. 5.3,
we develop two integrators for constrained path integral Langevin dynamics; in Sec. 5.4, we derive
exact expressions for a special case of the reaction coordinate; in Sec. 5.5, we apply the integrators
to a water dimer; and in Sec. 5.6, we summarize our findings.

5.2 Background

As in Paper I, we consider Hamiltonians of the form

Ĥ =
1

2
ˆ̃p · M̃−1 · ˆ̃p + V (ˆ̃q) (5.1)

(note the addition of tildes to distinguish these quantities from the fictitious ones in the molecular
dynamics simulations), and work with the classical potential

Vcl(q) =

f∑
i=1

m̃iP

2~2β̃2

P∑
j=1

(
q

(j)
i − q(j+1)

i

)2

+
1

P

P∑
j=1

V (q(j)), (5.2)

which is extracted from the discrete imaginary time path integral of the quantum partition function
Z = Tr e−β̃Ĥ at reciprocal temperature β̃ with P beads.

To sample from the unconstrained path density e−β̃Vcl(q) using molecular dynamics, one may associate
a fictitious mass m(j)

i and momentum p
(j)
i with each Cartesian bead coordinate q(j)

i .15 The masses
form the Pf × Pf diagonal mass matrix M, while the momenta are collected into the vector p

of length Pf . We require that all the fictitious masses for a single degree of freedom be equal
(m(j)

i = mi), so that each corresponding block of M is guaranteed to be invariant under every
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similarity transformation. We consider only the typical case when the ratio m̃i/mi is the same for
all degrees of freedom; we refer to said ratio as m̃/m and define the single-bead fictitious mass
matrix as

M1 =
m

m̃
M̃. (5.3)

For a simulation at a fictitious reciprocal temperature β, the momentum partition function

∫
dp e−

β
2
p·M−1·p =

(
2π

β

)Pf
2

|M| 12 (5.4)

may be inserted into configurational averages to express them as phase space averages:∫
dq e−β̃Vcl(q)f(q)∫

dq e−β̃Vcl(q)
=

∫
dp
∫

dq e−βHcl(p,q)f(q)∫
dp
∫

dq e−βHcl(p,q)
, (5.5)

with the classical Hamiltonian given by

Hcl(p,q) =
1

2
p ·M−1 · p +

β̃

β
Vcl(q). (5.6)

Although it appears that we’ve increased the complexity of the integrals, the phase space formulation
of the expectation value is readily evaluated using molecular dynamics techniques.

5.2.1 Path integral Langevin equation (PILE) integrator

The PILE integrator is a combination of a white noise Langevin thermostat with a generalized
velocity Verlet scheme that operates on path normal modes.16 The normal mode transformation is
done via an orthogonal matrix C with elements

Cjk =



√
1

P
if k = 0√

2

P
cos

2πjk

P
if 1 ≤ k < P

2√
1

P
(−1)j if k = P

2√
2

P
sin

2πjk

P
if P

2
< k ≤ P − 1,

(5.7)

where j labels the beads (1 to P ) and k labels the modes (0 to P − 1). We use the vectors P and
Q for the transformed coordinates.
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This integrator is composed of three exact sub-integrators. The propagation of harmonic oscillators
in normal mode coordinates is

A



P(k) ←∑P
j=1 p(j)Cjk ; Q(k) ←∑P

j=1 q(j)Cjk

P̄
(k) ← SPP

k (∆t)P(k) + SPQ
k (∆t)M1Q

(k)

Q̄
(k) ← SQP

k (∆t)M−1
1 P(k) + SQQ

k (∆t)Q(k)

p̄(j) ←∑P−1
k=0 CjkP̄

(k)
; q̄(j) ←∑P−1

k=0 CjkQ̄
(k)
,

(5.8)

where we have made explicit the transformations to and from normal modes. The propagation
coefficients

SPP
k (∆t) = SQQ

k (∆t) = cos(ωk∆t), (5.9a)

SPQ
k (∆t) = −ωk sin(ωk∆t), (5.9b)

and

SQP
k (∆t) = ∆t sinc (ωk∆t) (5.9c)

arise from the exact solution of Hamilton’s equations of motion for a harmonic oscillator with
angular frequency

ωk = 2

√
m̃P

~2mβ̃β
sin

πk

P
. (5.10)

Application of the remaining force may be done in Cartesian coordinates:

B

{
p̄(j) ← p(j) +

∆tβ̃

Pβ
F(q(j)), (5.11)

where

F(q(j)) = −∇V (q(j)). (5.12)

The normal mode degrees of freedom are independently thermostatted using a Langevin thermostat:

O


P(k) ←∑P

j=1 p(j)Cjk

P̄
(k) ← Tk(∆t)P

(k) + Uk(∆t)M
1
2
1 η

p̄(j) ←∑P−1
k=0 CjkP̄

(k)
,

(5.13)
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where the coefficients are

Tk(∆t) = e−∆tγk (5.14a)

and

Uk(∆t) =

√
1

β
(1− e−2∆tγk), (5.14b)

γk is a friction coefficient (the same for all degrees of freedom), and η is a vector of f pseudorandom
numbers sampled from a standard normal distribution. When k ≥ 1, the value of γk that minimizes
the energy autocorrelation time in the free (V (q̃) = 0) case is known analytically to be 2ωk, and
this value is typically used even when interactions are present; the centroid friction γ0 is a tunable
simulation parameter.

If these sub-integrators are referred to as A, B, and O, respectively, then they may be combined in
the order OBABO to form the PILE integrator. It is implied by this notation that all the steps
other than the central (that is, both repetitions of B and O) have a halved duration of ∆t/2, as
required by the symmetric splitting of the Fokker–Planck operator.

5.2.2 Constrained Hamiltonian integrators

The addition of holonomic constraints to a symplectic integrator for Hamilton’s equations of motion
may be accomplished by a straightforward scheme, in which non-dynamical momentum perturbations
ensure that both the position and velocity constraints are satisfied at the end of each step.135 For
example, this may be used to obtain the well-known RATTLE algorithm136 from velocity Verlet.

In this scheme, a generic integration step of the form{
p̄← fp(p,q)

q̄← fq(p,q)
(5.15)

becomes the two-step sequence 

p′ ← p + ∇ξ(q) ·Λ
p̄← fp(p′,q)

q̄← fq(p′,q)

ξ(q̄) = z

(5.16a)

{
p̄← p + ∇ξ(q) ·Λ
ξ̇(q) = 0,

(5.16b)
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where ξ(q) = z is the holonomic constraint to be maintained, ξ̇(q) = 0 is the implicit velocity
constraint, and each Λ is a vector of Lagrange multipliers that results in the final line of the
corresponding step being valid. Note how the first step begins by perturbing the momentum away
from the constraint manifold in order to ensure that the position constraint is satisfied, while the
second step projects the momentum back onto the constraint manifold.

In principle, the Lagrange multipliers may be found at each step of the simulation by integrating
their equations of motion explicitly. However, this will result in a growing discrepancy between the
calculated values and the values that are needed to correctly enforce the constraints.137 Instead, one
should solve a system of equations for the Lagrange multipliers at each step; since these equations
are generally nonlinear, they are most often solved by iteration.

5.3 Integrators

Our aim is to compute the derivative of the PMF,

−β̃A′(ξ?) =

∫
dq δ

(
ξ(q(1))− ξ?

)
e−β̃Vcl(q)Ei(q)∫

dq δ(ξ(q(1))− ξ?)e−β̃Vcl(q)
, (5.17)

in a PIMD setting using the two path integral estimators

E1(q) =
∂

∂ξ
log |J(q(1))| +

β̃

P

P∑
j=1

F(q(j)) · ∂q(1)

∂ξ
(5.18a)

and

E2(q) =
∂

∂ξ
log |J(q(1))| + β̃F

(1)
cl (q) · ∂q(1)

∂ξ
(5.18b)

from Paper I. Although the molecular dynamics simulations will take place in Cartesian coordinates,
it is substantially more convenient to develop the theory using the generalized coordinates (X,
ξ, u) which include the reaction coordinate. The transformation to these coordinates has non-
zero Jacobian determinant J(q) = J(X, ξ,u); since the unconstrained beads are not transformed
(u = q(2), . . . ,q(P )), J has no dependence on their values and we write simply J(X, ξ), noting that
it has the same value as the Jacobian determinant of the transformation on just the first bead.

By taking the time derivative of the explicit constraint equation ξ(q(1)) = ξ?, we find the implicit
velocity constraint ξ̇(q(1)) = 0, which prevents us from using Eq. (5.4) directly to obtain the
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necessary phase space integral. Instead, we find that the appropriate expression is

∫
dpU e−

β
2
pU·A−1·pU =

(
2π

β

)Pf−1
2

|A| 12 =

(
2π

β

)Pf−1
2

|Γ| 12 Z
1
2
ξ (5.19a)

=

(
2π

β

)Pf−1
2

|M| 12 |J(X, ξ?)|Zξ(X, ξ?)
1
2 , (5.19b)

where pU are the momenta conjugate to all the unconstrained bead coordinates U = X,u,

Γ = JT ·M · J (5.20)

is the generalized mass matrix, J is the Jacobian matrix (whose determinant is J), A is Γ without
the row and column corresponding to ξ, and

Zξ = ∇ξ ·M−1 ·∇ξ = ∇1ξ ·M−1
1 ·∇1ξ (5.21)

is the element of Γ−1 at the row and column corresponding to ξ. The requisite determinant identity
is proved in Appendix 5.A.

Therefore, we have

−β̃A′(ξ?) =

∫
dpU

∫
dU e−βH

c
cl(pU,U;ξ?)Z

− 1
2

ξ Ei(U, ξ?)∫
dpU

∫
dU e−βH

c
cl(pU,U;ξ?)Z

− 1
2

ξ

, (5.22)

where the constrained classical Hamiltonian

Hc
cl(pU,U; ξ?) =

1

2
pU ·A−1 · pU +

β̃

β
Vcl(U, ξ

?) (5.23)

can be obtained from Eq. (5.6) by setting ξ̇ = 0. We may write the above expression in terms of
averages over constrained molecular dynamics simulations as

−β̃A′(ξ?) =
〈Z−

1
2

ξ Ei〉ξ?
〈Z−

1
2

ξ 〉ξ?
, (5.24)

where the dependence of the constrained momentum partition function on the coordinates has
given rise to the Fixman correction.138,139 These constrained molecular dynamics simulations are in
practice carried out in Cartesian coordinates with the constraint enforced via the standard method
of Lagrange multipliers.
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5.3.1 Constrained OBABO (c-OBABO) integrator

The method described in Sec. 5.2.2 is applicable to constrained Hamiltonian systems, but un-
fortunately, the simulations of interest are to be run at constant temperature using a Langevin
thermostat. However, as Lelièvre et al. have shown, the thermostat step may be adjusted in exactly
the same manner for Langevin dynamics.140,141 This allows us to transform the PILE (OBABO)
integrator into the constrained version, c-OBABO. Although for our present purposes (computing
the quantum PMF), we only require a single constraint on one bead, we derive here a more general
integrator that supports multiple independent holonomic constraints on all beads.

Consider P functions ξj(q(j)) and constant vectors zj (not necessarily of the same length for each
bead), making up the constraint equations ξj(q(j)) = zj. The implicit velocity constraints, when
expressed in momentum form, are ∇jξj(q

(j))T ·M−1
1 ·p(j) = 0. Upon adding these constraints to the

OBABO integrator and removing redundant constraint steps, we obtain the c-OBABO integrator
for PIMD:

O


P(k) ←∑P

j=1 p(j)Cjk

P̄
(k) ← Tk(∆t/2)P(k) + Uk(∆t/2)M

1
2
1 η

p̄(j) ←∑P−1
k=0 CjkP̄

(k)

(5.25a)

B

{
p̄(j) ← p(j) +

∆tβ̃

2Pβ
F(q(j)) (5.25b)

C

p̄(j) ← p(j) + ∇jξj(q
(j)) ·Λj

∇jξj(q
(j))T ·M−1

1 · p̄(j) = 0
(5.25c)

Ã



P(k) ←∑P
j=1 p(j)Cjk ; Q(k) ←∑P

j=1 q(j)Cjk

P̄
(k) ← SPP

k (∆t)P(k) + SPQ
k (∆t)M1Q

(k)

Q̄
(k) ← SQP

k (∆t)M−1
1 P(k) + SQQ

k (∆t)Q(k)

p̄(j) ←∑P−1
k=0 CjkP̄

(k)

+
∑P

`=1 S̃
PP
j` (∆t)∇`ξ`(q

(`)) ·Λ`

q̄(j) ←∑P−1
k=0 CjkQ̄

(k)

+
∑P

`=1 S̃
QP
j` (∆t)M−1

1 ∇`ξ`(q
(`)) ·Λ`

ξj(q̄
(j)) = zj

(5.25d)

B

{
p̄(j) ← p(j) +

∆tβ̃

2Pβ
F(q(j)) (5.25e)
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C

p̄(j) ← p(j) + ∇jξj(q
(j)) ·Λj

∇jξj(q
(j))T ·M−1

1 · p̄(j) = 0
(5.25f)

O


P(k) ←∑P

j=1 p(j)Cjk

P̄
(k) ← Tk(∆t/2)P(k) + Uk(∆t/2)M

1
2
1 η

p̄(j) ←∑P−1
k=0 CjkP̄

(k)

(5.25g)

C

p̄(j) ← p(j) + ∇jξj(q
(j)) ·Λj

∇jξj(q
(j))T ·M−1

1 · p̄(j) = 0,
(5.25h)

where

S̃XX
j` (∆t) =

P−1∑
k=0

CjkS
XX
k (∆t)C`k (5.26)

are the normal mode propagation coefficients transformed to real space. For the velocity constraints,
the Lagrange multipliers may be computed directly as

Λj = −
(
∇jξj(q

(j))T ·M−1
1 ·∇jξj(q

(j))
)−1 ·∇jξj(q

(j))T ·M−1
1 · p(j), (5.27)

without an iterative scheme.

Because both the normal mode transformations and the harmonic oscillator equations of motion
are linear, in going from A in Eq. (5.8) to Ã in Eq. (5.25d), the constraint force was threaded
through the sub-integrator, and is applied only at the very end of Ã, after the inverse normal mode
transformation. Although all the beads are coupled by the constraint and the Lagrange multipliers
cannot be obtained directly in the general case, in Sec. 5.4 we show that this form can enable direct
evaluation of the Lagrange multiplier when only one constraint is needed. Additionally, because the
constraints couple the normal modes even in the absence of interactions, the standard derivation for
the optimal friction of a thermostatted harmonic oscillator is not applicable. Despite this, we find
that using the unmodified friction values from the PILE (γk = 2ωk for k ≥ 1) is a valid strategy in
practice.

5.3.2 Constrained BAOAB (c-BAOAB) integrator

It has been demonstrated that the alternate integrator step order BAOAB may result in a smaller
time step error for PIMD.142 While Lelièvre et al. only consider the “side” scheme (which places
the thermostat on the outer sides of the integrator), the feasibility and benefits of the “middle”
scheme (which has the thermostat centered in the integrator) have also been recently established
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for molecular dynamics with holonomic constraints.143 The c-BAOAB integrator for PIMD may
therefore be written as the following arrangement of sub-integrators and constraint steps:

B

{
p̄(j) ← p(j) +

∆tβ̃

2Pβ
F(q(j)) (5.28a)

C

p̄(j) ← p(j) + ∇jξj(q
(j)) ·Λj

∇jξj(q
(j))T ·M−1

1 · p̄(j) = 0
(5.28b)

Ã


P(k) ←∑P
j=1 p(j)Cjk ; Q(k) ←∑P

j=1 q(j)Cjk

P̄
(k) ← SPP

k (∆t/2)P(k) + SPQ
k (∆t/2)M1Q

(k)

Q̄
(k) ← SQP

k (∆t/2)M−1
1 P(k) + SQQ

k (∆t/2)Q(k)

p̄(j) ←∑P−1
k=0 CjkP̄

(k)

+
∑P

`=1 S̃
PP
j` (∆t/2)∇`ξ`(q

(`)) ·Λ`

q̄(j) ←∑P−1
k=0 CjkQ̄

(k)

+
∑P

`=1 S̃
QP
j` (∆t/2)M−1

1 ∇`ξ`(q
(`)) ·Λ`

ξj(q̄
(j)) = zj

(5.28c)

C

p̄(j) ← p(j) + ∇jξj(q
(j)) ·Λj

∇jξj(q
(j))T ·M−1

1 · p̄(j) = 0
(5.28d)

O


P(k) ←∑P

j=1 p(j)Cjk

P̄
(k) ← Tk(∆t)P

(k) + Uk(∆t)M
1
2
1 η

p̄(j) ←∑P−1
k=0 CjkP̄

(k)

(5.28e)

C

p̄(j) ← p(j) + ∇jξj(q
(j)) ·Λj

∇jξj(q
(j))T ·M−1

1 · p̄(j) = 0
(5.28f)

Ã



P(k) ←∑P
j=1 p(j)Cjk ; Q(k) ←∑P

j=1 q(j)Cjk

P̄
(k) ← SPP

k (∆t/2)P(k) + SPQ
k (∆t/2)M1Q

(k)

Q̄
(k) ← SQP

k (∆t/2)M−1
1 P(k) + SQQ

k (∆t/2)Q(k)

p̄(j) ←∑P−1
k=0 CjkP̄

(k)

+
∑P

`=1 S̃
PP
j` (∆t/2)∇`ξ`(q

(`)) ·Λ`

q̄(j) ←∑P−1
k=0 CjkQ̄

(k)

+
∑P

`=1 S̃
QP
j` (∆t/2)M−1

1 ∇`ξ`(q
(`)) ·Λ`

ξj(q̄
(j)) = zj

(5.28g)
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B

{
p̄(j) ← p(j) +

∆tβ̃

2Pβ
F(q(j)) (5.28h)

C

p̄(j) ← p(j) + ∇jξj(q
(j)) ·Λj

∇jξj(q
(j))T ·M−1

1 · p̄(j) = 0.
(5.28i)

Our rather unsophisticated implementation144 of c-BAOAB suffers an increase in run time on the
order of 10 % compared to c-OBABO due to the additional work required. Despite this, as we show
in Sec. 5.5, the former may still outperform the latter, since it can allow a much larger time step to
be used.

5.4 Exact relations for a center of mass distance constraint

When the reaction coordinate ξ is the radial separation between two centers of mass, several
useful expressions may be derived. From this point onward, we work explicitly with N particles in
3-dimensional space, with coordinates xi (where x describes all the degrees of freedom at the first
bead, and can be thought of as a more structured reinterpretation of q(1)). The convex sums

xα =
Nα∑
i=1

mαi

mα

xαi (5.29a)

and

xβ =

Nβ∑
i=1

mβi

mβ

xβi (5.29b)

are the centers of mass of α and β (which we require to be non-empty and disjoint), where mαi is
the mass corresponding to xαi and

mα =
Nα∑
i=1

mαi, (5.30)

and likewise for β. We also use xγi to refer to the remaining particles, if any, which do not participate
in either center of mass, with Nα +Nβ +Nγ = N .

We constrain the distance between the centers of mass as

ξ(x) = |r| = |xα − xβ| = z, (5.31)
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for an arbitrary positive z. The derivatives of this function are

∇αiξ(x) =
mαir

mαξ(x)
, (5.32a)

∇βiξ(x) = − mβir

mβξ(x)
, (5.32b)

and

∇γiξ(x) = 0. (5.32c)

Immediately, it follows that Eq. (5.21) evaluates to

Zξ(x) =
Nα∑
i=1

1

mαi

|∇αiξ(x)|2 +

Nβ∑
i=1

1

mβi

|∇βiξ(x)|2 (5.33a)

=
1

mα

+
1

mβ

=
1

µαβ
, (5.33b)

which is a constant (with µαβ being the reduced mass), so the Fixman correction cancels from
Eq. (5.24) leaving us with just

−β̃A′(ξ?) = 〈Ei〉ξ? . (5.34)

5.4.1 Lagrange multiplier

It is also straightforward in this circumstance to obtain a closed-form solution for the Lagrange
multiplier λ for the constrained harmonic oscillator propagation step Ã. Because the momentum
perturbation was propagated through the linear equations of motion, we know that the equation to
be satisfied is

ξ
(
x̄ + λS̃QP

11 M−1
1 ∇1ξ(x)

)
= z, (5.35)

where x is the value of q(1) before the propagation, and x̄ is its value after propagation by the
unconstrained step A. After some algebraic manipulations, we get∣∣∣∣∣

(
1 +

λS̃QP
11

µαβξ(x)

)
r + ∆r

∣∣∣∣∣ = z, (5.36)

where ∆r = r̄− r is the change in relative position of the centers of mass due to the unconstrained
step. We assume that S̃QP

11 is not zero.
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From geometric considerations, we see that solutions exist only when the component of ∆r orthogonal
to r does not surpass z:

|∆r|2 − (∆r · r̂)2 ≤ z2, (5.37)

where r̂ = r/|r| is the unit vector in the direction of r. When this condition is met, the Lagrange
multiplier is given by

λ = − µαβ

S̃QP
11

[
|r|+ ∆r · r̂−

√
z2 −

(
|∆r|2 − (∆r · r̂)2

)]
, (5.38)

which may be computed directly for very little cost. When the square root is not zero, there is
another solution for λ, which has the root being added rather than subtracted, but this corresponds
to the interchange of the two centers of mass; we assume that the time step is sufficiently small
that this will never be the desired outcome.

The interpretation of the expression for λ is simple. The resulting shifts of the particles in α and β
are, respectively,

− mβ r̂

mα +mβ

[
|r|+ ∆r · r̂−

√
z2 −

(
|∆r|2 − (∆r · r̂)2

)]
(5.39a)

and

mαr̂

mα +mβ

[
|r|+ ∆r · r̂−

√
z2 −

(
|∆r|2 − (∆r · r̂)2

)]
. (5.39b)

The first two terms of each are responsible for completely removing any separation between the
centers of mass along r: the first term takes care of the original vector, while the second term
handles the component of ∆r that is parallel to r. The prefactors ensure that the groups move
toward one another, and that the lighter group moves farther. The square root term then restores
some of the separation along r, with the exact amount being determined by the excess allowance
from Eq. (5.37).

It is important to note that Eq. (5.38) is not an equation of motion for the constraint. Rather,
this is an exact solution to the Lagrange multiplier optimization, equivalent to one that would be
obtained by an iterative scheme. As such, it is not susceptible to numerical drift of the constrained
coordinate.
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5.4.2 Derivatives for estimators

Evaluation of the estimators E1 and E2 requires knowledge of ∂
∂ξ

log |J(x)| and ∂x
∂ξ
, which we find

by performing several coordinate transformations. We begin by transforming x into the Jacobi
coordinates

yα` =
∑̀
i=1

mαi

m1→`
α

xαi −
{

xα,`+1 if 1 ≤ ` ≤ Nα − 1

0 if ` = Nα,
(5.40)

with

m1→`
α =

∑̀
i=1

mαi, (5.41)

and similarly for β. The remaining coordinates xγi are left unmodified. As shown in Appendix 5.B,
this transformation has unit Jacobian determinant.

The coordinates yαNα and yβNβ are the centers of mass xα and xβ, so we further transform them to

R =
mαyαNα +mβyβNβ

mα +mβ

(5.42a)

and

r = yαNα − yβNβ , (5.42b)

and this change of variables also has unit Jacobian determinant.

Finally, the transformation of r to the spherical coordinates (ξ, cos θ, ϕ) is known to have a Jacobian
determinant whose absolute value is ξ2. The overall transformation from x to (yαi, yβi, R, ξ, cos θ,
ϕ, xγi) therefore has |J(x)| = ξ2, so

∂

∂ξ
log |J(x)| =

2

ξ
. (5.43)

The original Cartesian coordinates may be written as

xαi = R +
mβr

mα +mβ

+
Nα−1∑
`=i

mα,`+1

m1→`+1
α

yα` −


0 if i = 1

m1→i−1
α

m1→i
α

yα,i−1 if 2 ≤ i ≤ Nα

(5.44a)
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and

xβi = R− mαr

mα +mβ

+

Nβ−1∑
`=i

mβ,`+1

m1→`+1
β

yβ` −


0 if i = 1

m1→i−1
β

m1→i
β

yβ,i−1 if 2 ≤ i ≤ Nβ.
(5.44b)

Hence, the derivatives of x with respect to ξ are

∂xαi
∂ξ

=
mβ

mα +mβ

r̂, (5.45a)

∂xβi
∂ξ

= − mα

mα +mβ

r̂, (5.45b)

and

∂xγi
∂ξ

= 0. (5.45c)

As observed in the shifts to enforce the constraints in Eq. (5.39), the prefactor for the lighter group
is larger in magnitude than for heavier group: the former must move faster under a changing
separation distance than the latter.

5.5 Results

To demonstrate the effectiveness of the constrained PIMD integrators, we apply them to a q-
SPC/Fw145 water dimer and obtain its quantum PMF as a function of the distance ξ(x) = |xα − xβ|
between the molecules’ centers of mass xα and xβ. To generate reference results, we use the path
integral umbrella sampling method (US/WHAM), which requires a histogram unbiasing step in
order to stitch together the obtained histograms.24

Before attempting to generate a PMF, we first identify which integrator has better time step error
characteristics. In Fig. 5.1, we show two combinations of temperature and constraint distance that
have an appreciable difference in behavior between c-OBABO (solid) and c-BAOAB (dashed). In
both cases, the time step error decreases faster for the latter, which is to be expected from past
work with this ordering of integrator steps.142,143 For the remainder of the calculations, we only use
c-BAOAB, as it allows us to save some computational effort by using a larger time step to achieve
the same level of error.

As shown in Fig. 5.2, direct estimation of the derivative of the PMF is successful using the c-BAOAB
integrator and both estimators. The reference curves are obtained by numerically differentiating
the US/WHAM PMF, which causes a slight wobble that is noticeable at 300 K. At 10 K, the PIMD
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Figure 5.1: Comparison of the time step con-
vergence of the PMF derivative of a water dimer
using the integrators c-OBABO and c-BAOAB in
Eqs. (5.25) and (5.28) at T = 10 K, ξ? = 0.4 nm (top
panel) and T = 300 K, ξ? = 0.25 nm (bottom panel).
Line segments added to guide the eye.
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Figure 5.2: Derivative of the PMF of a water dimer
at T = 300 K (top curve, less saturated) and 10 K
(bottom curve, more saturated). Error bars are not
visible, because they are smaller than the symbols.
The solid curves show the US/WHAM results.

simulations show that the derivative changes rather sharply near 0.7 nm, but the reference curve
has rounded corners. This region of the reaction coordinate is difficult to simulate, as the system
straddles the boundary between being two largely free monomers and a strongly bound dimer. This
makes it challenging to obtain accurate histograms, and even more so for their derivatives, but we
believe that the estimators for the direct calculation of the PMF derivative are not as sensitive to
this sampling difficulty. This allows us to readily estimate the derivative of the PMF at any point
along the reaction coordinate from a single PIMD simulation.

The error bars in Fig. 5.2 are small enough that they cannot be seen at that scale, so we present
them separately in Fig. 5.3. At 300 K, the errors are relatively constant, without any interesting
features. However, the picture is not quite as simple at 10 K, which has a crossing precisely in the
problematic region near ξ? = 0.7 nm. This suggests that while both sides of the identity in Eq. (42)
of Paper I (Eq. (4.42) in Chapter 4) converge to the same value, one may be preferable to the other
depending on the circumstances.

Finally, we numerically integrate the obtained −β̃A′ values and plot the renormalized PMF Ã in
Fig. 5.4, using the same procedure as in Paper I. There is excellent agreement with the reference
results at both temperatures, suggesting that this approach of integrating the derivative of the PMF
is a viable alternative to umbrella sampling and histogram unbiasing.
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Figure 5.3: Comparison of the standard error of the
mean of the PMF derivatives in Fig. 5.2 at T = 300 K
(lower points, less saturated) and 10 K (upper points,
more saturated).
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Ã
/k

J
m

ol
−

1

T = 300 K

T = 10 K

Estimator 1

Estimator 2

Figure 5.4: Potential of mean force of a water dimer
at T = 300 K (top curve, less saturated) and 10 K
(bottom curve, more saturated). Error bars are not
visible, because they are smaller than the symbols.
Additional points extending to ξ?0 = 1.5 nm are not
displayed, and the integration grid is 3 times as dense
as depicted here and in Fig. 5.2. The solid curves
show the US/WHAM results.

5.6 Conclusions

We have augmented the PILE integrator with bead-local holonomic constraints to produce the
c-OBABO and c-BAOAB integrators for PIMD. These integrators allow our estimators from Paper
I to be used with molecular dynamics in addition to Monte Carlo, which greatly expands their
scope of applicability. The constrained harmonic oscillator propagation step Ã of these integrators
has the constraint force applied at the end rather than the beginning of the step, which allows us
to find an exact expression for the Lagrange multiplier for some reaction coordinates, such as the
distance between two centers of mass.

Using one of the constrained integrators, we have computed the derivative of the PMF of a water
dimer at 10 K and 300 K. We observe that the constrained PIMD method captures the sharp step
in the derivative better than umbrella sampling. We have also been able to successfully integrate
the derivative to obtain the PMF itself.

Together, these novel estimators and integrators may be utilized to find free energy differences
and potentials of mean force of molecular clusters using implementations based on existing PIMD
simulation software. The conventional umbrella sampling and histogram unbiasing approach has
several practical drawbacks: the user must choose a force constant for the restraint; the ends of the
histogram have a tendency to be noisy, so histograms must be generated well past the region of
interest; in addition to requiring a grid of points for the unbiasing step, the user must also select
the locations of the restraint windows and make sure that the resulting histograms have sufficient
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overlap; the iterative unbiasing procedure requires a stopping criterion. Our method, on the other
hand, allows the result of each PIMD simulation to be converged independently of all the others,
and there are no additional tunable parameters introduced into the simulations besides the choice
of integration grid.
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5.A Block matrix determinant identity

Consider an invertible block matrix and its inverse with identical block structure,(
A B

C D

)
=

(
W X

Y Z

)−1

, (5.46)

whose blocks A and Z are themselves invertible. Upon combining two manifestations of the Schur
complement,146 ∣∣∣∣∣A B

C D

∣∣∣∣∣ = |A|
∣∣D−CA−1B

∣∣ (5.47)

and

Z−1 = D−CA−1B, (5.48)

we conclude that ∣∣∣∣∣A B

C D

∣∣∣∣∣ = |A| |Z|−1. (5.49)
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5.B Jacobian determinant of transformation to Jacobi coor-

dinates

The transformation to Jacobi coordinates described in Sec. 5.4.2 couples neither α and β nor
the spatial degrees of freedom, and also does not involve γ, so its Jacobian matrix will be block
diagonal with 7 independent blocks. The entire γ block is irrelevant, as its determinant is 1. The
remaining 6 blocks are identical in form, so we may scrutinize only one of them, using xi to label an
arbitrary Cartesian component of either xαi or xβi, with corresponding masses mi and transformed
coordinates y`.

Trivially, the derivative of y` with respect to xi is

∂y`
∂xi

=


mi

m1→` if i ≤ `

−1 if i = `+ 1

0 otherwise,

(5.50)

so the Jacobian matrix J with elements

J`i =
∂y`
∂xi

(5.51)

is a lower Hessenberg matrix (all elements above the superdiagonal i = `+ 1 are zero). Thus, we
may use a recurrence relation to find |J|.147

In the following, J(n) denotes the n× n leading principal submatrix of J, and we see that |J(0)| = 1

and |J(1)| = 1. For subsequent n,

|J(n)| = Jnn|J(n−1)| +
n−1∑
i=1

(−1)n−iJni

n−1∏
j=i

Jj,j+1|J(j−1)| (5.52a)

=
mn

m1→n |J
(n−1)| +

n−1∑
i=1

mi

m1→n

n−1∏
j=i

|J(j−1)| . (5.52b)

By induction, it stands to reason that |J(n)| = 1 for all n, and therefore |J| = 1, so the entire
transformation to Jacobi coordinates for both centers of mass has unit Jacobian determinant. This
is consistent with the view of Jacobi coordinates as iterated pairwise transformations to center of
mass and relative distance coordinates, which individually have unit Jacobian determinant.
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Chapter 6

Conclusions and outlook

In the preceding chapters, we described new algorithms for quantum molecular dynamics, and
applied them to various systems. In Chapter 2, we found a simple form for the ladder operators
ˆ̀+ and ˆ̀− for the ` quantum number of the spherical harmonics |`m〉. Because these operators
have a well-defined flux, we were able to implement them efficiently using the ITensor package. The
dipole–dipole interaction potential for linear rotors is straightforward to expand in terms of these
operators, due to the compact form of the x̂, ŷ, and ẑ operators.

Using the DMRG implementation in ITensor, we were able to obtain ground states of the dipolar
linear rotor chain Hamiltonian for up to 100 sites. The states near R = 1 showed a peak in the
entanglement entropy SvN, which is further evidence of a quantum phase transition in that region.
We were also able to construct part of a dipole excitation spectrum using energy differences between
the ground state of the lowest-lying symmetry block and ground states of other symmetry blocks.

This technique has since been used to benchmark the entanglement entropy in path integral ground
state (PIGS) Monte Carlo calculations in Ref. [8]. Although the expectation is that the PIGS
approach will one day be more efficient for three-dimensional structures of linear rotors, DMRG is
currently able to compute ground state properties of long one-dimensional chains much faster. Once
an MPS is found, it is possible to invoke a perfect sampling algorithm to draw samples distributed
according to the squares of the state amplitudes.148 This enabled us to provide training data for
machine learning of a restricted Boltzmann machine for linear rotor ground states in Ref. [9].

In Chapter 3, we improved PIMC sampling for vibronic systems in three different ways. First, we
replaced random component selection by a deterministic analogue, which helps on two fronts: it
reduces the impact of severe outliers, and it provides a way to systematically recombine the RqMC
results for the different components. It is a straightforward technique with little downside. Next,
we substituted RqMC for MC when drawing samples from each component. This is a more involved
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procedure, and there are potential issues when sampling from high-dimensional spaces, but we
observed that it was able to reduce the statistical error in the partition function estimates for the
model systems.

Finally, we introduced two flavors of parameter optimization. The first relies on already having
a good sampling distribution, and it perturbs the parameters slightly to improve it further. This
is achieved by minimizing a loss function built around the KL divergence between the desired
distribution and the current distribution. The second starts from an empty Hamiltonian and
gradually adds the desired terms back in. This ensures that the current distribution is never too
different from the target distribution. Both of these variants were successful when applied to model
systems, with the exception of a strongly-coupled Jahn–Teller system.

In Chapters 4 and 5, we derived novel path integral estimators (E1, E2) and integrators (c-OBABO,
c-BAOAB) for free energy calculations. Unlike histogram-based approaches that combine histograms
from several calculations using unbiasing techniques such as WHAM, our proposed method is able
to calculate the derivative of the PMF directly at any point along the reaction coordinate. This
simplifies the parameter convergence phase, as there are fewer user-serviceable parameters, and
each estimate is a single value that may be improved independently of the others. The obtained
derivative may be numerically integrated to find the PMF itself.

We computed the PMF of Ar2 with a Lennard-Jones potential using our estimators and PIMC, and
found good agreement with numerical matrix multiplication. We also used our PIMD integrators to
compute the PMF of a water dimer with the q-SPC/Fw model, which agrees with the reference
umbrella sampling result. These calculations were performed using custom proof-of-concept PIMC
and PIMD implementations, which are unfortunately not easily extendable to more complex systems.

6.1 Future directions

Subsequent to the publication of Ref. [1], we have been working to compute ground state properties
of the dipolar linear rotor chain Hamiltonian for even longer systems. To simplify the calculations,
we also consider a modified Hamiltonian in which only interactions between nearest neighbors are
present. Our preliminary results may be seen in Fig. 6.1, and appear promising.

For `max = 1 in the case of nearest neighbor interactions, we see that 1) the von Neumann entropy
SvN for an even bipartition of the system has a very peaked “λ”-like shape, 2) the difference between
the largest Schmidt coefficients, λ1 − λ2, has a crisp corner, and 3) the energy gap E1 −E0 between
the ground state and the first excited state is extremely pointy. However, as `max grows, especially
when all interactions are included in the Hamiltonian, it becomes progressively more time consuming
to compute these properties near the critical point for large systems. Thus, we do not currently
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Figure 6.1: Convergence of several properties (von Neumann entanglement entropy, Schmidt gap, energy
gap) of dipolar linear rotor chains with basis truncation parameter `max. Systems with only nearest neighbor
interactions are in the left column; systems with all interactions are in the right column. The Hamiltonian
parameter g = 1/R3 serves the same purpose as R in Chapter 2.
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have data for large enough system sizes N across the board, as evidenced by rounded-over features
at larger `max. Calculations to remedy this are currently underway, and once they are completed, we
hope to be able to extract the critical exponents and central charge associated with this quantum
phase transition.68,72

In the meantime, our collaborators at the Université Paris-Saclay and Universität Heidelberg have
been applying the multi-configuration time-dependent Hartree (MCTDH) method to the same
system of dipolar rotors. This is not a typical use case for MCTDH, which is more often applied to
the problem of molecular vibrations.149 Our goal is to compare the efficiency of MCTDH (and the
corresponding hierarchical Tucker decomposition) against DMRG (and matrix product states) for
one-dimensional systems of quantum rotors, since both methods are based on the tensor network
paradigm.150 The calculations have been performed by all parties, and a manuscript is in progress.

Furthermore, we plan to extend the linear rotor DMRG method to asymmetric tops, such as
water molecules, with arbitrary interaction potentials. The latter aspect of this has already seen
some progress thanks to Adam Marr, who has successfully implemented a novel approach for the
decomposition of two-body potentials into sums of products of one-body terms using the singular
value decomposition (SVD). The extension of the method to more sophisticated rotors will involve
the derivation of the appropriate ladder operators.

Now that the estimators and integrators for the calculation of the quantum PMF with PIMD have
been validated, our aim is to apply them to more interesting systems. Work has been done by Kevin
Bishop towards implementing the integrators in OpenMM, which opens the door to free energy
calculations of systems with more degrees of freedom, as its highly optimized and GPU-enabled
modules allow large-scale simulations to be completed in a reasonable amount of time.151 OpenMM
also provides straightforward access to the MB-pol water model,152 which is preferable to the one
that was used in this thesis for benchmarking purposes. Once this work is complete, we expect to
be able to obtain an accurate PMF of a small water cluster using this method.
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