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Summary

In health research interest often lies in modeling a failure time process but in many cohort studies
failure status is only determined at scheduled assessment times. While the assessment times may
be fixed upon study entry, individuals may become lost to follow-up and miss visits subsequent to
the time of loss to follow-up. We consider a three-state model to characterize a joint failure and
loss to follow-up process, and use it to investigate the impact of dependent loss to follow-up on
standard parametric, nonparametric, and semiparametric analysis. The effect of dependent loss to
follow-up is mitigated by fitting the joint model. The performance of standard methods is studied
using the asymptotic theory of misspecified models, and the finite sample performance is exam-
ined for the standard and joint analyses through simulation studies. An application to data from a
youth smoking prevention study is presented for illustration.

Keywords: dependent censoring, failure time analysis, joint modeling, loss to follow-up, model
misspecification

This is the peer reviewed version of the following invited article: Richard J. Cook
and Jerald F. Lawless, Failure time studies with intermittent observation and losses to
follow-up, Scandinavian Journal of Statistics (2020), 47(4): 1035-1063 which has been
published in final form at https://doi.org/10.1111/sjos.12471.



https://doi.org/10.1111/sjos.12471

Failure time studies with intermittent observation and losses to follow-up 2

1 INTRODUCTION

Longitudinal studies of event occurrences or failure time outcomes typically involve intermittent ob-
servation of study individuals at scheduled times; for convenience we refer to the occasions at which
individuals are seen as visits (e.g. to a clinic or assessment facility) and the observation times as
visit times. The status (failed versus unfailed) of an individual is determined and covariates may be
measured at each visit. When an individual is determined to have failed for the first time (i.e. they
have failed since the previous visit) their failure time is interval-censored. Sometimes the exact failure
time can be ascertained retrospectively; we consider both cases here. Individuals may also become
lost to follow-up (LTF). For example, a person is often deemed to be LTF when they do not appear
for a scheduled visit.

Problems arise in dealing with LTF under intermittent observation schemes. First, an exact LTF
time is rarely observed; all we know is that a person has not had a visit, scheduled or not, for some
period of time. This has lead to discussion about what to use as a putative censoring time for persons
LTF (e.g. Shepherd et al., 2011; Lesko et al., 2018). In practice, analysts have used a variety of
choices, including the time of the last observed visit, the time of the first missed visit, and a defined
time in between these visit times. It has been noted (e.g. Lawless, 2013) that if LTF intensities
are different for failed and unfailed individuals, then the independent censoring condition needed
by standard methods of analysis does not hold, and standard estimates of failure time distributions
are biased under the first choice and, in general, under the other choices as well. Another issue
arises if there is a possibility that failure time intensities are different for persons before versus after
loss to follow-up. This type of dependent or non-ignorable LTF has been studied extensively in the
case where individuals can be continuously monitored; see for example, Fisher and Kanarek (1974);
Slud and Rubinstein (1983); Scharfstein and Robins (2002); Siannis (2011). Lawless and Cook
(2019) review this area and discuss the use of tracing studies (e.g. Baker et al., 1993; Frangakis and
Rubin, 2001; Farewell et al., 2003) that collect failure information on persons after LTF. However,
aside from aforementioned studies on how to define LTF times, there has been very little study of
settings with intermittent observation. Exceptions include a brief investigation of bias in standard
estimates (Lawless, 2013) and studies of the special situation where LTF corresponds to death, for
which exact times are ascertainable (e.g. Joly et al., 2002; Binder and Schumacher, 2014; Binder
etal., 2017; Binder et al., 2019). We focus here on situations where exact LTF times are not generally
ascertainable. Examples are ubiquitous and include, for example, registry studies (Gladman and
Chandran, 2011), large national cohort studies in which follow-up assessments are scheduled every 3
years (Raina et al., 2009), and high-school based smoking prevention studies (Cameron et al., 1999).

Our objectives in this paper are to provide a framework through which dependent, non-ignorable
LTF can be addressed in studies involving intermittent observation. The framework uses joint failure-
loss to follow-up models based on multistate processes in the spirit of Commenges and Gégout-Petit
(2007), Lange et al. (2015), and Cook and Lawless (2018). This allows us to discuss the effects
of dependent LTF on estimation based on standard follow-up until failure or LTF is confirmed, as
well as the utility of auxiliary information collected on individuals after LTF or failure or, in some
cases, between visits. Thus, we are able to examine bias in standard failure time analyses that ignore
dependent LTF, and to consider how more appropriate analyses may be conducted. We focus first
on settings where failure is not a terminal event such as death; we consider death, either on its own
or as a competing risk, later in the article. We assume throughout that visit times are conditionally
independent in the sense of Griiger et al. (1991) or Cook and Lawless (2007, 2018, 2019); we discuss
violations of this condition in Sections 6.1 and 7.

Section 2 introduces joint multistate models for failure time and loss to follow-up and considers
three potential observation schemes: standard follow-up until either failure or loss to follow-up is
confirmed, and two schemes with extended follow-up for at least some individuals. Maximum like-
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lihood estimation is developed for each observation scheme, along with ways to assess independent
LTF conditions. Section 3 examines the bias arising from standard parametric failure time analysis
which ignores the LTF mechanism, as well as estimation with joint models. Section 4 considers anal-
ogous biases from nonparametric or semiparametric methods under independent LTF assumptions.
Section 5 reports the results of an application involving data from a school-based smoking prevention
study, where the aim is to illustrate the impact of naive and joint modeling. Section 6 considers the
challenges arising when observation times are random as well as when processes are more complex
and there is non-negligible risk of death or some other terminal event; time-dependent covariates are
also discussed briefly. Concluding remarks are given in Section 7.

2 INTERMITTENT OBSERVATION SCHEMES AND L0OSS TO FOLLOW-UP

2.1 A JOINT MULTISTATE MODEL

Methods for formulating and fitting multistate models can be found in books such as Cook and Law-
less (2018), Andersen et al. (1993), Beyersmann et al. (2012) and Willekens (2014). Here we consider
multistate models that include states representing the condition of being lost to follow-up. Lawless
(2013) used such models to discuss association for disease processes and loss to follow-up, and to
consider joint modeling. In one model shown in Figure 1(a) we display intensity functions (Cook
and Lawless, 2018, Section 1.3) for each of three types of transitions; covariates are not included for
simplicity but are considered later. We consider failure events that do not preclude further follow-up
of an individual, so transitions to the LTF state are possible either before failure (i.e. from state 1) or
after failure (i.e. from state 2). In settings where an individual’s failure status is only known at the
intermittent visit times, consider an individual observed to be in state 1 at visit time a;_; and declared
lost to follow-up (and hence in state 3) at their next scheduled visit time a;. In this case we would not
know their underlying disease state at this time; that is, we would not know whether they had passed
through state 2 between times a;_; and a;.

An expanded model is shown in Figure 1(b) where we distinguish the failure status of individuals
lost to follow-up; the label 17 represents the state of being unfailed and LTF, and 27 the state of being
failed and LTF; note that state 2 can be entered from either state 2 or state 17. Such a formulation
is appropriate when failures can occur after LTF, which is typically the case. If we are able to obtain
data on some individuals after LTF, say through a tracing study, such models can be fit. Figure 1(a)
applies to settings where the observation process terminates upon LTF and acquiring data following
LTF is not possible. In Figure 1(a), (b), the intensity for LTF from states 1 and 2 is allowed to be
different. In Figure 1(b), we also allow the failure intensity to differ for persons before and after LTF;
Lawless and Cook (2019) consider this for the case where individuals are continuously rather than
intermittently observed.

We denote time of failure (entry to state 2 in Figure 1(a) or to states 2 or 2”7 in Figure 1(b)) as 7'.
We assume that for a generic individual there is an administrative end of follow-up time A, but that an
individual may be prematurely lost to follow-up at time C' < A; this corresponds to the time of entry
to state 3 in Figure 1(a) and 17 or 2”7 in Figure 1(b). As noted earlier, we assume that failure does
not preclude further visits, and that the rate of terminal events such as death is negligible and can be
ignored; cases where this is not possible are considered in Section 6. We now describe intermittent
observation schemes, some types of data, and likelihood functions based on them.

2.2 OBSERVATION SCHEMES AND TYPES OF OUTCOMES

We consider observation schemes where an individual attends a clinic upon study entry at ¢y = 0 and
is then scheduled for future visits at times a; < ae < ---; we consider the case in which data are
only collected at these clinic visit times. When the visit times are stochastic, we let A; denote the
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Figure 1: Joint models for a failure and loss to follow-up process: (a) a three-state model where
LTF terminates the observation and (b) an expanded model accommodating failure post-LTF and LTF
post-failure.

random time of the jth visit, which may depend on data observed up to the previous visit time a;_;
but, conditional on that, is independent of unobserved process history before and after a;_; (Cook
and Lawless, 2018, Section 5.1). At time a;, data D; are collected on the failure status and possibly
covariates X (¢) for the time interval (a;_1, a;|; in some settings it may be possible to ascertain the
exact time of failure in an interval, or information on changes in covariate values between a;_; and
a;, but often all that can be obtained are current values /(7" < a;), X (a;).

Here we make a number of simplifying assumptions. First, we assume that follow-up of an indi-
vidual begins at time ¢ = 0 and define ay = 0. Second, we assume for convenience of discussion that
the visit times a; are prespecified by design, but the methods also apply to cases where a; is specified
according to information gathered at visits ag, a1, . .., a;—;. In general, individuals may have differ-
ent administrative censoring times and so the numbers of potential visits may be different. Third, we
assume that visit times are the same across individuals; this is common in many longitudinal studies,
but most of the methods here extend easily to cases where visit times may vary across individuals.
We discuss random visit times in Section 6.1 and Section 7. Loss to follow-up is assumed confirmed
when an individual fails to appear for a specified visit.

In planned studies or surveys, a baseline visit will take place at ap = 0 and R subsequent visit
times at aq, as . . . , ag may be set for an individual; individuals, however, may become LTF before a .
In such cases an exact LTF time is usually unobserved and the notion of such a time may be ambiguous
since all that is known is that the person dropped out of the study between two (potential) visit times.
In some settings, for example, an individual may decide not to attend the visit at time a; just an
instant before a;. We describe a framework for considering a discrete LTF process in Appendix C and
note that the data generated and types of likelihood functions presented there correspond to those we
construct with our continuous-time LTF processes.

For this part of the discussion we consider the model in Figure 1(b) for generality. We reiterate
that in this framework if a person is in state 1 at time a;_; but LTF at time a; then we do not know
whether they made transition to LTF 1 — 17 or 1 — 2 — 2P between a;_; and a;. In this setting, LTF
is dependent and non-ignorable if AP(t) # A(t) or if a1 (t) # ax(t); in the latter case LTF may depend
on an unobserved failure since the preceding visit. In the language of missing data, observations at
a; are not missing at random in this setting as missingness depends not just on observed data, but on
missing data after time a;_;.

To accommodate LTF we introduce a random variable M, which denotes the subscript labeling
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the visit time they were last observed to be in state 1; lower case m denotes its realized value. Let
A; = I(individual is seen at a;) and let D; denote the information obtained at a; when A; = 1. For
now we ignore covariates and suppose D; just involves failure information. We now consider three
observation schemes that might be used for a given individual.

Scheme I: Observation ends as soon as either failure or LTF is recorded.
Scheme II: Observation continues until LTF.

Scheme III: Observation continues until time ag or, for some individuals, to the first visit at which
entry to state 2” is recorded.

Scheme I is standard practice in failure time studies, and Schemes II and III involve collecting
additional information after failure or loss to follow-up. Scheme II is common when time to event
analyses are based on data from a prospective study where interest may lie in multiple events. Scheme
IIT would occur when some individuals are traced following LTF to obtain extended follow-up data.
We assume here for simplicity that this begins immediately after LTF is recorded, but the discussion
is readily extended to cases where, for example, persons LTF are contacted only at time ap, and their
vital status is recorded then. We focus on Schemes I and II in the main part of this article; Scheme III
is discussed briefly in Section 7 and Appendix B.

2.3 LIKELIHOOD CONSTRUCTION FOR JOINT MODELS

We now consider likelihood construction under observation Schemes I and II, and then discuss es-
timability of parameters in the joint model of Figure 1(a).

2.3.1 LIKELIHOOD CONSTRUCTION FOR OBSERVATION SCHEME |

We let Z(t) denote the state occupied by an individual in Figure 1 at time ¢ > 0, and assume Z(0) = 1.
It is easy to write down the types of observable histories under each of Schemes I and II, along
with their probabilities. We initially discuss the data and corresponding probabilities for a generic
individual with potential visits at specified times a; < --- < ag and let a,, denote the time they are
last observed in state 1; if m < R then at time a,,; the individual is in either state 2 or 17 or 27 in
Figure 1(b). We consider two scenarios for the type of data collected:

Case A: We observe only whether or not failure occurred over an interval (a;_1, a;], and

Case B: If failure occurs in (a;_1, a;|, we can ascertain the exact failure time 7" = ¢.

We assume that exact LTF times may be conceptualized but are not observable. In what follows
we write Py(aj_q,a;) for P(Z(a;) = l|Z(aj_1) = k; Z(aj_2),...,Z(ag)) for convenience where
apg = 0.

There are three distinct observation types for Case A in Scheme I which, since they are defined
by a sequence of observations, we refer to as paths; they are portrayed in Figure 2(a). For a generic
individual with ar < min(7,C), m = R and path 1 defined by Z(a,) = --- = Z(ag) = 1 oc-
curs with probability P;;(0,ag). For path 2, a,, < T < a,,41 < C for some m < R so they are
known to have failed, and Z(a;) = -+ = Z(am) = 1, Z(amy1) = 2; this occurs with probability
P11(0, ap,) Pia(@m, Gmy1). Finally, path 3 occurs when a,, < T and a,, < C' < a,,; for some
m < Rsothat Z(ay) = -+ = Z(am) = 1, Z(amy1) = 17 or 27; this occurs with probability
P11(0, ay){ Pi1#(@m, @) + Piov(@m, @)} In what follows we assume that AP(t) = A(¢) in Fig-
ure 1(b), in which case it is sufficient to consider the reduced model in Figure 1(a) and for simplicity
we use it in describing types of outcomes and estimation procedures.
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Figure 2: Schematic of the distinct possible paths under (a) Scheme I and (b) Scheme II.

We next add a subscript 7 to identify terms from individual 7 and consider likelihood construction
based on a sample of n independent individuals, 7 = 1, ..., n. If individuals are serially accrued to a
study they may have different administrative censoring times A; and potential numbers of follow-up
visits R;, © = 1,...,n. For simplicity, however, we assume that the potential visits are scheduled
in study time, so that 0 = ap < a; < --- are the same across individuals. As in the preceding
discussion, a,,; (a,, < ar, < A;) denotes the last scheduled assessment time individual 7 is observed
in state 1. We let ¢;; indicate whether the observed path for individual ¢ is of type j, j = 1,2, 3. When
considering the three possible paths the likelihood under Scheme I, Case A observation is

L{ax(?/f) = HPH(O, aRi)5i1 [P11(0, am,) Pra(am,, ami+1)]5i2 [P11(0, am,) Pra(am,, ami+1)]5i3 , (D

=1

where i) parameterizes the joint process. Covariates are left out of the notation for now, but if the tran-
sition intensities involve covariates, the same likelihood functions apply, with transition probabilities
depending on the covariate values for each individual.

For settings in which the failure time can be retrospectively determined (i.e. Case B) the only
modification is the contribution for path 2, in which case Z;(a,,,+1) = 2is replaced by Z;(am,+1) = 2,
T; = t; and the probability P3(ay,,, am,,+1) in (1) is replaced by

Pri(am,, t; ) Ati) Poo(ts, m,11) -
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‘We thus obtain the likelihood for Scheme I, Case B as
n . ~ 5, .
L) =[] Pui(0,ar)™ [Pia(0,£7) AMts) Paa(tis am1)]™ [Pra(0, am,) Pra(am,, 1))
=1
Note that we can write

Lp(¥) = LY () LE (W) )

0i2

where

L) = |:P11(07ti_) A(ti) Poo (L5 am, 1)

Pl P11(0, am;) Pra(Gm,, Gm;t1)
If we let J% (¢) = —0%log LY () /0v0y and JL () = —0%log LL (1)) /01D’ then
Tp() = —0%log Ly () /000y’ = Jy(v) + Jo () 3)
where JZ (1) is the information added by the retrospective collection of the data on the event time for
individuals known to have failed under Case B.
2.3.2 LIKELIHOOD CONSTRUCTION FOR OBSERVATION SCHEME II

For Scheme II observation individuals are followed until LTF and so there are four possible paths
for Case A observation as shown in Figure 2(b). As before, for a generic individual path 1 has

arp < min(7T,C) givingm = Rand Z(a,) = --- = Z(agr) = 1, with probability P;(0,ar). For
path 2 failure is known to have occurred (i.e. a,, < T < a,,41) for some m < R and there is no
subsequent LTF (i.e. ap < C),s0 Z(ay) = -+ = Z(am) = L and Z(ay41) = -+ = Z(agr) = 2 for

m < R. This occurs with probability Py1(0, a,,) Pia(am, @mi1) Peo(@ma1,ag). If failure is known
to have occurred at some point prior to LTF then a,, < T" < a,,4+1 and a, < C < a,;; for some
m < r < M represented by path 3 with Z(a,) = --- = Z(an) = 1, Z(apmyr) = -+ = Z(a,) = 2
and Z(a,+1) = 2P which occurs with probability

P11(0, am) P12(am, am+1> P22(6lm+1, a'r) P23<Clr, ar+1) .

Finally if a,, < T and a,, < C' < a,,41 for some m < R then path 4 is realized, with Z(a;) = --- =
Z(ay) = 1and Z(a;,41) = 17 or 2P since the failure status is unknown at a,,1; this occurs with
probability Pi1(0, a,){ Pi1r(@m, @mi1) + Proe(Gm, Gms1) }

Reintroducing the subscript ¢ to distinguish individuals the likelihood for a sample of n indepen-
dent individuals under Scheme II, Case A is then

LY () = ] P11(0, ar,)** [Pia(0, am,) Pro(@um,, am,11) Poa(amii1, ar,)]" 4)
i=1
X [P11(0, ami) P12(am¢> amﬁ—l) P22(ami+1a ari) P23(Clm ari-i-l)]éﬁ
X [P11(0, ap,) Pl:a(Olmi,0bml-+1))]5i4 5
where J;; indicates a path of type j, 7 = 1,2,3,4. In Case B the likelihood contributions change
for paths 2 and 3 with the additional recording of 7; = ¢; for both. In particular the contributions
P12(amm amﬁ-l) to (4) arc replaced by Pll(amm tz_))‘(tz)Pﬂ(tu ami-i-l) glVll’lg

L) = [ Piu0.ar)’ [Pu(0.7) A(t:) Pos(ti, an,)] ™
=1

X [Pn(O’ ;) A(t:) Paa(ts, ar,) Pas(ay,, Grﬁl)}&ig
X [Pn((),ami) P13(am¢7am¢+1>]5i4 .

&)
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As in Scheme I, we can write L (1) = LI (1) LY (1)) here, where

n

L) =]

1

[ P1y(0.t7) Mt;) Poa(ti; am,) r

P11(0, ami) P12(Clm,-, amﬁ-l) P22(ami+17 CLMi)

[ Pi1(0,t;7) A(t;) Paa(ts, ar,) Pas(ar,, Gr,+1) ]613
Pn(O, ami> P12(am¢> am¢+1) P22<ami+17 ari) P23(am am+1) .

(]

X

2.3.3 REMARKS ON IDENTIFIABILITY AND ESTIMABILITY

Estimability of the intensities in Figure 1 is an important concern. For observation Scheme I in which
individuals are followed to the first visit where failure or LTF is observed, estimation of intensities
in Figure 1(b) essentially requires the constraints o (t) = as(t) and AP(t) = A(t). Lawless (2013)
considers the case where \(t) = A(t) but a;(t) # a»(t) and describes the bias in estimation of \(t)
that results from treating Z(a;_;) as the final observation in a standard analysis when LTF is recorded
at a;. The proper approach in such cases is based on conditional probabilities P(D,|Z(a;_1) =
1, Z(a;) € {1,2}) or likelihoods (1) and (2) that can be considered with the joint models of Figures
1(a), (b). However estimation of all the parameters in Figure 1(a) is problematic. We show below
that when visits are equi-spaced (Aa; = a; — a;—1 = A), parameters are non-identifiable for Scheme
I, Case A. For Case B, and for both cases when Aa; values vary, parameters appear identifiable but
very large samples are needed to estimate aw precisely. We discuss this and provide some numerical
results in Section 3.3.

To demonstrate the non-identifiability issue for Scheme I, Case A we consider the time-homogeneous
model for Figure 1(a) with A(t;n) = n, a1(t;01) = 61 and ax(t;02) = Oy; we let v = (1/,0")'. We
focus on the setting where Aa; = A for j = 1,2,.... In this time time-homogeneous setting we let
Pu(t,t + A) = Py(A) for A > 0, and we see that the likelihood L7 (¢)) in (1) reduces to

L) = H [Pn(A)Ri}éﬂ [P (A)™ Piao(A))2 [Py (A)™ Piy(A)]

= Pn(A; T/J)nl Plz(A; w)’” P13(A3 ¢)n3 ) (6)

where ny = Y1 | i R+ 0;9m;+0igmi,na =Y i dpandng = > | 0;3. Since Py (A)+ Po(A)+
Pi3(A) = 1, we see that L% () involves only two parametric functions of 1, say P;;(A;1)) and
Pi3(A; ). As there are three functionally independent parameters in ) = (7, 01, 05) the parameter
vector is non-identifiable based on (6); that is, for any data set there will be an infinite set of 1-vectors
maximizing L% (1). Consequently we need data from Scheme I, or external information about vy (#)
versus «a; (t) for estimation. The same results hold for other parametric models.

We remark that if «;(t) = ao(t) in Figure 1(a), corresponding to independent LTF, then the
likelihood in (1) factors into a term involving ¢ (= 6, = 6) only and a term involving 7 only. A
unique maximum likelihood estimate 1 exists in this case. For ay(t;601) = as(t;03) = 0 in the
time-homogeneous case above it is easily seen that this occurs at

n= A1 log(1 + P12/p11) ; 0=—-A"" log(Pll + ]512)7

where Pj; = ny /m and Py = ny /n. More details are given in Sections 3.1 and 4.1.

For Case B and equi-spaced visits and for both Cases A and B for unequally spaced visits, all
parameters 7, #,, 65 in the time-homogeneous joint model appear estimable. We have not proven con-
sistency, but extensive simulations show that with large enough samples estimators have small bias,
and coverages for confidence intervals based on normal approximations for log7, log 61, log 6, are
close to nominal levels. For smaller sample sizes, and depending on the proportions of individuals
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failed and prematurely lost to follow-up, 6 is less well estimated; 52 can equal zero and its distribution
can have a long left tail. In regression models with A(¢|X) = AeX” and X binary, 3 was well esti-
mated. The main limitation of observation Scheme I, however, is that information about parameters in
more complex models is limited unless the Aa; are small. This makes adequate model checking and
specification challenging, and we therefore caution against an over-reliance on the models in Figure
1(a) unless auxiliary information about loss to follow-up or data obtained under observation Scheme
II are available.

For Scheme II where individuals are followed after failure, under \?(t) = A(t) we can fit paramet-
ric models A(¢;n), aq (t; 61) and az(t; 02). There may be limited information about certain parameters,
however, if visits are far apart, if particular paths occur infrequently in a given sample, or if the sample
size is small.

In the next section we examine bias in standard failure time analysis when o () # as(t). Section
3.3 gives numerical results on estimability for the model in Figure 1(a) under observation Scheme II.

3 STANDARD ANALYSIS AND BIASES FROM DEPENDENT LTF

3.1 PARTIAL LIKELIHOODS UNDER INDEPENDENT LTF

Under the assumption that the LTF time is independent of 7" (i.e. ay(t) = as(t) = «(t) in Figure
1(a)) then the likelihood contributions in (1) or (2), which are expressed in terms of the joint model,
can be simplified. Let F(t;n) = P(T > t;n) and G(t;0) = P(C > t;0) denote the marginal
survivor functions for the failure and LTF processes. Then under the assumption of independent LTF,
P1(0,t;9) = F(t:n) G(t;0), Pia(s, t;¢) = [1 = F(t;m)/F(s;n)] G(t;6)/G(s;0), and Pis(s,t;9) =
1 —G(t;0)/G(s;0). In this case, (1) can be written as L', (¢)) = L%, (n) L%,(0) where

n

Lhi(n) = T F(apm' 2 (Flam,) = Flam1)) (7)

=1

with mz =01 Ry + (1 — d;1)my, @ = 1,...,n. Under the assumption of non-informative LTF we
would typically ignore

n

Lio(0) < [ ] G(a,5:0) 7 [Glam,) — Glam41)]™ ®)

i=1

where m} = 6;; R;+ 6,5 (m;+1), and focus on the partial likelihood L, (r). A similar simplification
for Case B gives the partial likelihood for 7 as

L (n) = T a0, @)= [Pa(0,6)A)] ™ = [ M) F(vs), ©)
i=1 =1
where m: = 521R7, + 5i3mz~, V; = min(am;,ti), and 57, = 51‘2, 1= 1, o, n.

The resulting expressions in (7) and (9) are of the conventional form for interval-censored and
right-censored failure time data, respectively. Note that if failure is not recorded to have occurred in
both (7) and (9) the censoring time is the last visit they were known to be failure-free (in state 1). This
confirms the appropriateness of adopting this as the censoring time rather than some other value in
[@m,, @m,+1] as has sometimes been suggested. We now use the joint model to derive the asymptotic
bias of estimators based on (7) or (9) when dependent LTF occurs.
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3.2 BIAS IN PARAMETRIC MODELS ASSUMING INDEPENDENT LTF

We now consider models involving fixed covariates and write A(|x;; 1) for the failure intensity given
x;,1 = 1,...,n. The score functions based on (7) and (9) are denoted by U, () = dlog L', (n)/dn
and UL, (n) = dlog LY, (n)/0n, respectively. If the joint model in Figure 1(a) represents the true
process, then under mild conditions the estimators 74 and 7z obtained by solving U%,(n) = 0
or UL, (n) = 0 converge in probability as n — oo to vectors 1% and 1% obtained as solutions to
E{UL,(n%)} = 0and E{UL,(n%)} = 0, respectively (White, 1982). We assume that { R;, X;, Z;(t),t >
0} are i.i.d. across individuals and use the corresponding probability model for the required expecta-
tions. It is feasible in some cases to solve these equations; in other situations simulation can be used
to examine the extent to which 7% and 7} differ from the true value 7.
We consider Case A for illustration and note that

n

) = {0 80 A%a i) + 8B emi | (10

i=1

where A(t;n) = —log F(t;n) is the cumulative hazard for failure and we let §; = &;0, A7(t;n) =
OA(t;n)/On, and

B"(am;n) = 0log(exp(—=A(am;n)) — exp(—=A(am+1:1)))/0n .

The expectation is to be taken with respect to the joint model for the failure and LTF process under the
intermittent observation scheme and for this it is helpful to re-express the contribution to (10) in terms
of the joint multistate process. The score vector in (10) can be written as U}, (n) = Y., Ul (n)
where

Ri—1

Uln(n) = =1(Zi(ar,) = D) A'arin) = Y 1(Zi(am) = 1, Zi(ami1) = 3) A"(apm;n)
R;,—1
+ Y I(Zi(am) = 1, Zi(ap1) = 2) B'(am:n) . (11)

We consider the case where covariates X may be present and write A"(a|X;n) and B"(a|X;n)
to indicate this. Dropping the subscript 7 we note that the expectation of an individual contribution to
(11) under the joint model in Figure 1(a) is then

E{UL,(n")} = —Erx{P(Z(ag) = 1| X) A"(ar|X;n) (12)

=N P(Z(a) = 1 Z{ar) = 3| X) M(an) X:))

+ Egrx {z_: P(Z(am) =1, Z(am+1) =2 | X) B”(am|X;n)} )

=0

under the assumption that the processes { R;, X;, Z;(s),0 < s} are independent and identically dis-
tributed.

We consider a particular setting where R is fixed to illustrate the impact of a dependent LTF
process. We consider a proportional hazards failure time process with A\(¢|X) = \o(t)e*?, where
Ao(t) is a baseline hazard and X is a Bernoulli random variable with P(X = 1) = 0.5. The baseline
hazard function is taken to be piecewise-constant with break-points 0 = by < b; < --- < bk and
Mo(t) = prift € [bp_1,b), k = 1,..., K. We consider the process over the period [0, A] where
A = 1is a fixed and common administrative censoring time, and set the break-points as b, = k/K,
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k=0,1,...,K. Welet p, = py_1€% k = 2,..., K where ¢ = 1.1 so there is a 10% relative
increase in the risk of failure for each successive interval. Welet p = (p1, . .., px )’ so thatn = (o', 3)’
parameterizes the failure time process. The probability of failure by time A = 1 is denoted by 7 and

given by
1

mp=F(1) = Ex{F(1|X)} =1 =) exp (=A(1) ™) 05077 0.5", (13)
=0
where Ay(t) fo Xo(s) ds. Under Scheme I we follow individuals to the first visit with evidence of

failure or the last visit before LTF. Under the joint model in Figure 1(a), let 7% denote the probability
an individual is observed to fail by A = ar = 1; this is given by computing

mp(X) = P(Z(al) =2|Z(ap) = 1; X) (14)
R
+ HP (a5) = 1| Z(as—1) = 1; X)| P(Z(a;) = 2| Z(a;_1) = 1;X),

]:

and averaging over X.

We next discuss how we set the particular parameter values. For a specified K, e¢ = 1.1 and
e = 0.75, we solve for p; such that 7z equals 0.8 (i.e. the probability of failure by A = 1 is 0.80).
For the visit schedule we seta; = j/R, 7 =0, 1,..., R. For simplicity we set X' = R and leta; = b,,
j=1,...,K = Rfor K = R = 5 or 10. For the LTF process we let ay(t) = ay, set as/a; =1
(corresponding to independent LTF), 2 or 5, and for each of these values we solve for o in order to
achieve a desired value of 7% using (14). Then 6 = (v, ) and ¢ = (', 6')’. In the top two panels
of Figure 3 we plot the asymptotic percent relative bias of the naive estimator for 3 as a function of
7% /7, the probability that failure is observed given that it occurred before A = 1. We consider the
setting with ' = R = 5 in panel (a) and X = R = 10 in panel (b). Separate lines are given for the
cases where ay /vy = 1 where no asymptotic bias is anticipated since LTF is independent, oy /vy = 2
for moderately dependent LTF, and ay/c; = 5 for more strongly dependent LTF. We find as expected
that the asymptotic percent relative bias for the regression coefficient is zero under independent LTF
and small when the rate of censoring is low. The bias can be more substantial under heavier censoring
reflected by lower values of 7% /7 , but it does not exceed 4.5% for the scenarios examined even
when ay/a; = 5 in panel (a). With more frequent assessments and more flexible baseline hazards
(i.e. when K = R = 10 as in panel (b)) the asymptotic bias is much lower.

In the bottom two panels of Figure 3 we plot the asymptotic percent relative bias for estimators
corresponding to different levels of random censoring (i.e. with 7% /7r = 0.2, 0.4, 0.6 and 0.8) for
the baseline survival distribution F(¢|X = 0) over ¢ € [0, 1] under the strongly dependent LTF (i.e.
as/ay = 5). Here the percent relative bias can be large with K = R = 5, particularly for lower
values of 7% /7 and as ¢ approaches the administrative censoring time. With X' = R = 10 the bias
remains large but is much smaller (panel (d)).

In summary there is a small relative bias in the relative risk parameters (covariate effects) but
much larger bias in the absolute survival probabilities; this is a phenomenon often seen in scenarios
involving dependent censoring (Cook et al., 2003). We caution, however, that these results hold for a
proportional hazards failure time process and other types of processes would need to be investigated
on a case-by-case basis.

3.3 EMPIRICAL STUDIES AND NUMERICAL RESULTS

In Table 1 we report on the results of simulation studies to assess biases of naive (standard) methods
of analysis that assume independent LTF under observation Scheme I, Case A, as well as the perfor-
mance of estimators based on the joint model for Scheme II under Cases A and B. Additional data
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Figure 3: Asymptotic percent relative bias 100 x (5* — )/ versus 3. /7 for K = 5 (panel (a)) and
K = 10 (panel (b)) and asymptotic percent relative bias 100 x (F*(t|x = 0) — F(t|z = 0))/F(t|z =
0) of baseline survivor function with KX = 5, as/a; = 5 (panel (¢)) and K = 10, ay/a; = 5
(panel (d)) under standard parametric analysis assuming independent LTF; for all figures 7 = 0.80,
e¢ = 1.1, ¢# = 0.75 and the assumed model is A(t|z) = X\o(t) eX? with \o(¢) piecewise constant
baseline hazard with break-points at by = a, = k/K,k=1,..., K with K =5 or 10.

under the more informative Scheme II enables fitting of the joint model to mitigate the bias from
dependent LTF.

We consider the same parametric setting as in Section 3.2, but set X = 1 so the fitted model is
a proportional hazards model with a constant baseline hazard. Here K # R as visits are scheduled
ata; = j/R,j =0,1,..., R with R = 5, and we consider ay/co; = 2 and 5 to represent moderate
and more severe dependent LTF. The failure time model is an exponential model with A(t|x) =
A exp(zf) with § = log0.75. Table 1 shows the empirical bias (BIAS) and empirical standard
error (ESE), the average standard error based on the observed information (ASE) and the empirical
coverage probability of nominally 95% confidence intervals for the case where 7 = 0.8. The sample
size is set to n = 1000 and the results are based on nsim = 2000 simulated samples.

The first set of columns in Table 1 is from maximizing the naive likelihood L%, (n) in (7) based
on the assumption of independent LTF. We see large bias for the estimator of A\ but small bias for the
estimator of 3; even when censoring is heavy (as reflected by small 7% /7x) the empirical coverage
probability for /3 is close to the nominal level. The magnitude of the bias is close to that expected
from the results in Figure 3. The second and third set of columns give results from the joint analysis
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Table 1: Empirical performance of estimators from naive and joint analyses of a proportional hazards
model with an exponential (i.e. time-homogeneous) baseline hazard; visit times are equi-spaced with
aj=j/R,j=0,1,...,R, mp = 0.8, f =1og0.75, n = 1000, nsim = 2000.

CASE A CASE B

NAIVE, L, (n) in (7) JOINT, LI (¢)) in (4) JOINT, L () in (5)

Parameter Value BIAS ESE ASE ECP BIAS ESE ASE ECP BIAS ESE ASE ECP

LIGHT, MILDLY DEPENDENT CENSORING: 7% = 0.6, ay/aq = 2

A 1.870 -0.079 0.101 0.101 86.0 0.004 0.106 0.106 95.0 0.004 0.106 0.105 95.0
B -0.288 -0.001 0.082 0.082 94.5 -0.000 0.081 0.082 94.6 -0.000 0.081 0.081 94.8
o 0.512 - - - - 0.000 0.043 0.042 955 0.000 0.043 0.042 955
o 1.025 - - - - 0.002 0.064 0.065 95.0 0.002 0.064 0.065 95.3

LIGHT, STRONGLY DEPENDENT CENSORING: 7%, = 0.6, as/ay = 5

A 1.870 -0.201 0.093 0.094 41.8 0.003 0.104 0.105 96.0 0.003 0.104 0.105 95.8
B -0.288 -0.003 0.082 0.082 954 0.000 0.080 0.080 95.0 0.000 0.079 0.079 94.8
o 0.328 - - - - -0.001 0.040 0.040 94.8 -0.001 0.040 0.040 94.7
o 1.642 - - - - 0.002 0.089 0.091 95.2 0.002 0.088 0.090 95.2

MODERATE, MILDLY DEPENDENT CENSORING: 7% = 0.4, as/a; = 2

A 1.870 -0.198 0.117 0.115 564 0.004 0.134 0.131 94.7 0.004 0.133 0.130 945
B -0.288 -0.002 0.101 0.101 95.2 0.001 0.100 0.099 955 0.001 0.099 0.099 955
o 1.294 - - - - 0.000 0.079 0.078 94.4 0.000 0.079 0.078 94.4
o 2.588 - - - - 0.005 0.153 0.152 955 0.005 0.150 0.150 95.5

MODERATE, STRONGLY DEPENDENT CENSORING: 7% = 0.4, ag /vy = 5

A 1.870 -0.457 0.100 0.097 1.0 0.005 0.134 0.130 94.3 0.005 0.133 0.129 94.5
B -0.288 -0.007 0.104 0.101 94.5 -0.001 0.096 0.093 94.9 -0.001 0.096 0.093 94.9
o 0.818 - - - - -0.000 0.077 0.074 94.5 -0.000 0.076 0.074 94.6
o 4.091 - - - - 0.007 0.234 0.231 9438 0.006 0.224 0.223 95.1

HEAVY, MILDLY DEPENDENT CENSORING: 7% = 0.2, aa/ay = 2

A 1.870 -0.396 0.140 0.142 227 0.020 0.196 0.195 953 0.019 0.193 0.193 955
B -0.288 -0.008 0.142 0.143 953 -0.001 0.137 0.137 953 -0.001 0.136 0.137 955
o 2.811 - - - - -0.010 0.155 0.152 945 -0.009 0.151 0.148 95.0
o 5.622 - - - - 0.054 0.445 0435 950 0.047 0415 0.409 95.0

HEAVY, STRONGLY DEPENDENT CENSORING: 7% = 0.2, aa/a; = 5

A 1.870 -0.813 0.100 0.102 0.0 0.021 0.200 0.198 95.0 0.016 0.192 0.192 9438
B -0.288 -0.013 0.141 0.143 953 -0.001 0.123 0.122 94.8 -0.001 0.122 0.122 95.0
o 1.743 - - - - -0.013 0.154 0.150 94.6 -0.007 0.142 0.140 943

o 8.716 - - - - 0.084 0.750 0.721 94.8 0.046 0.632 0.623 94.8
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possible under the Scheme II observation process for Cases A and B, obtained by maximizing the
likelihoods in (4) and (5), respectively; for these analyses the LTF intensities are estimated. Moreover
the added value of retrospective ascertainment of the failure time in Case B is apparent by comparing
the standard errors of the estimates from (5) versus (4). We see negligible empirical bias for all
estimators, good agreement between the empirical standard errors and average model-based standard
errors and the empirical coverage probabilities are all close to the nominal level. The added value
of observing the failure time in Case B observation is very small for A\ and § suggesting the term
JI (1) in (3) conveys relatively little information on these parameters; gains are more substantial for
the intensities oy, as for LTF at the heavier censoring rates. The very small gain in efficiency for
exact versus interval-censored failure times is a phenomenon that is often observed for the analysis of
constant failure rates.

4 BIAS IN NONPARAMETRIC AND SEMIPARAMETRIC ANALYSES

4.1 BIAS IN NONPARAMETRIC ANALYSES

Nonparametric estimation of A\(¢) can be considered by discretizing time, letting ¢ = 1,2, ... denote
possible visit, failure and LTF times. The survivor and probability functions for 7" are in this case

F(t)=P(T >t) = ﬁ(l “A$)), fO =FE-DAE), t=1,2,...

s=1

where F(0) = 0and A(t) = P(T =t|T > t).

For data under Scheme I, Case A we once again consider nonparametric estimation when individ-
uals have the same potential visit times. To do this we let n; = P(aj_1 < T < a;|T > a;_;) for
7 =1,2,... In the absence of censoring 1; = 1 — e~®-1%) where A(a;_1,a;) = A(a;) — Ala;_,)
and with J; = ;o we can rewrite (7) as

n i 1-46; mg oi
Ly (n) o H{H(l - m)} {nmm [T - m)}
i=1 \j=1 j=1
n 1(Zi(aj—1)=1,Z;(a;)<3)
_ HH{(l o n})z(zi(aj):n 77I(Zi(aj)=2)} ! ’
j j
j=1i=1

- 1(Zi(a;) =2)  I(Zi(a;) =1
> 1) = 1) 1(Zay) <3 { {2 =20 1) = D] 15)
i=1
and equating this to zero gives the estimates
7 = >z 1(Zila;-1) =1, Zi(a;) = 2)
T YL I(Zi(aj-) = 1, Ziay) < 3)

(16)

Taking the expectation of dlog LY (n)/dn; with respect to the joint model or directly from (16), it
can be seen that 7); converges in probability to

- Piz(a,-1, ;) (17)
7 Pu(aj-1,a5) + Pia(aj-1,a5)




Cook RJ and Lawless JF 15

as n — oo, which equals P(Z(a;) = 2|Z(a;—1) = 1,Z(a;) = 1 or 2). When a4 (t) = as(t) = a(t)
in Figure 1(a) then

Pll(Sa t) _ e—A(s,t)-i—A(s,t) 7 P22(S7 t) _ e—A(s,t) : P12(S’ t) _ (1 . e—A(sJ)) e—A(s,t) (18)

for s < t, where A(s, t) f Au) du and A(s,t) = fsta(u) du. In this case we find that 1y = 7; =
1 —exp{—A(a;_1, aj)} soa con31stent estimate is obtained.

A similar result holds for Case B. The partial likelihood function for case B corresponding to (9)
is

L (n) = _H{A(m Ft) " Fam: )%,

where 1 = (A\(1), A\(2), ...). For a given ¢ we find that 9log L%, (n)/0\(t) = 0 gives

)\(t) — - Zz:l ( ) ' (19)
Yo (1= 6) I(am: > t) +6; 1(t; > t)
By similar arguments to those above X(t) fort € (a;j_1, a;] converges in probability to
ng(t, CLj) }
AT(t) = At), (20)
( ) {Pll(t,aj)‘i‘Plz(t,aj) ( )

as n — oo; see Lawless (2013). Under independent LTF (i.e. when a4 (t) = as(t)), (18) holds and
the multiplier of A(¢) in (20) equals one, so that A\*(¢) = A(f). When ay (t) # aw(t), the expressions

t
PH(S, t) = eiA(s’t)JrAl(s’t) s PQQ(S, t) = 67A2(s’t) R P12(8, t) = / PH(S, Ui) )\(U) PQQ(U, t) du

21
can be used to compute \*(¢). Cook and Lawless (2018, Section 7.2.5) consider this for the time-
homogeneous case, where A\(t) = A, a;1(t) = ay, as(t) = ao.

4.2 THE SEMIPARAMETRIC COX MODEL

Here we investigate the implications of the Scheme I: Case B observation process when fitting a Cox
regression model of the form dH (s|X;) = dHy(s) exp(X/v) to the available data where X is a fixed
p x 1 covariate. To this end we let Y;;(s) = I(a;—1 < s < a; < (;) indicate s € A; = [a;_1, a;)
and the LTF time for individual i exceeds a;, let Y;'(s) = I(s < T;) indicate individual  is at risk of
failure at s, and let Y;;(s) = Y;;(s)Y; (s). The semiparametric maximum likelihood score equations
for the working Cox model based on Scheme 1, Case B are

Uy (s; dHo(") ZZYW {dN;(s) —dH(s | X;)} , s>0 (22a)
=1 j5=1

Un(dHo(-) ZZ / Yij(s) {dNi(s) — dH(s | X))} X; (22b)
i=1 j=1

given a sample of size n. Under mild conditions the estimates H(¢) and B\ obtained by setting (22a)
and (22b) equal to zero and solving, converge in probability to a function H}(¢) and vector v* for
which the expectations of (22a) and (22b) are equal to zero. We therefore derive E{U;(s)} where
the expectation is taken with respect to the three-state process with Aj5(¢|X;) = Ao(t) exp(X;/5) for
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the 1 — 2 transition intensity in Figure 1(a), and o () and a»(t) the censoring intensities which are
taken to be independent of the covariate. Setting this expectation equal to zero gives the solution

_ Ex{P(Z(s")=1,Z(s) =2,Z(a;) =2 | X)} ) TJ(-O)(S)
Ex{P(Z(s7) = LZ(a;) < 3] X) exp(X)} ~ +(5;7)

dH;(s;7) (23)

for s € A; = [a;_1,a;) where the numerator is Ex{P(Z(s™) =1 | X) \2(s|X) P(Z(a;) = 2 |
Z(s) = 2,X)}. Substituting (23) for dHy(s) in (22b), taking the expectation of the resulting function,
and setting it equal to zero, gives the equation

R ra r
S/ {5
j=1 7 ai-1 j (W

where for k = 0,1,2 and u € [a;_1,q; ),

rj(-o) (u)} du =0, (24)

r ) = Ex{P(Z(u™) = 1| X) Ma(u| X) P(Z(a;) =2 | Z(u) =2, X) X®F},  (25)
Ex{P(Z(u")=1,Z(a;) <3| X) X®F exp(X'y)} . (25b)

hﬁ

s

=2
Il

The estimator 7 obtained by setting (22a) and (22b) equill to zero and solving is consistent for 7*
defined as the solution to (24) and the limiting value of Hy(t) = fot dHy(s) is given by replacing
with v* in (23) and integrating (Struthers and Kalbfleisch, 1986; Lin and Wei, 1989).

Here we consider the same parametric setting as in Section 3.2 and plot the limiting value v* in
Figure 4 for K = R = 5 (panel (a)) and K = R = 10 (panel (b)) with separate lines for ap /vy = 1,2
and 5. Note that the data are generated under a proportional hazards model with a piecewise-constant
baseline hazard described in Section 3.2, but here the analysis is based on a Cox regression model so
the value of K simply reflects the number of pieces in the true baseline hazard here. Interestingly, we
see a very similar trend in the bias for the regression coefficient in panel (a) to what was seen earlier
in the results for the parametric analyses, and a smaller bias is also seen in panel (b) reflecting the
decreasing effect of dependent LTF when the assessments are more frequent; this arises because the
2 — 3 intensity as is at play for a shorter period of time in such settings. Figure 4 (bottom panels)
shows the asymptotic bias of H(t;v*) — Ag(t) with ay/a; = 5 for 7% /7 = 0.2, 0.4, 0.6 and 0.8.
We find in panel (c) that the bias can be appreciable under heavy censoring but decreases as one might
expect with more frequent assessments (panel (d)). The trend of the asymptotic bias within intervals
[bj_1,b;) reflects the fact that failures early during the corresponding interval are less likely to be
reported due to LTF later during the interval, but the LTF process has a weaker effect on the estimator
of the baseline hazard later during the interval since the time at risk of LTF is shorter.

5 THE WATERLOO SMOKING PREVENTION STUDY

Here we report on an application involving data from a large smoking prevention study in which
100 schools were randomized to receive a health curriculum enhanced with more information on the
consequences of smoking delivered by a nurse or specially trained teacher, or the regular curriculum.
Students in participating schools entered the study in grade 6 and completed follow-up assessments
at school visits in grades 7 and 8 along with follow-up assessments during high school grades 9 to
12. Among the 100 schools recruited there were 4,456 students taking part. We restrict attention in
the following analysis to 527 children who had a high social models risk score, which was obtained
if both of their parents smoked. We consider the failure time to be the first incident of smoking and
consider a missed visit as representing loss to follow-up.
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Figure 4: Plot of asymptotic percent relative bias 100 x (y*—/3)/ versus 75 /7 (top panels) and plot
of asymptotic bias H(t;v*) — Ag(t) versus ¢t with ay/c; = 5 (bottom panels) from semiparametric
analyses under different settings including dependent LTF; 7mp = 0.80

The intervention effect was assessed based on a proportional hazards model with A(¢|X)
Ao(t) exp(X ), where \o(t) was again specified to be piecewise constant with break-points each year,
and X = 1 if the child received the intensive anti-smoking program and X = 0 otherwise. An anal-
ysis was carried out based on a simple two-state failure process under the assumption of independent
LTF. For the joint analysis based on the three-state model, the LTF intensity had a piecewise-constant
form motivated by the fact that the LTF process is known to be quite different following the comple-
tion of elementary school. In particular we assumed a constant LTF rate between each consecutive
pair of assessments but allowed this rate to change from year to year. An intervention effect on the
LTF process and a dependence between the failure and LTF times were accommodated by specifying
a1 (t|X) = ao(t) exp(X&) and as(t|X) = ago(t) exp(XE), where ag(t) reflects the intensity of a
1 — 3 transition for a child receiving the standard curriculum. We further set ao(t) = a19(t) exp(0)
so that § reflects the dependence between the failure and LTF times, and take a;0(t) to be piecewise-
constant with break-points each year.

The results of a standard interval-censored failure time analysis based on the proportional hazards
model, along with the results for an analysis involving the joint model are given in Table 2. Note that
fewer individuals contribute to the two-state analysis because individuals LTF following their initial
assessment do not contribute to the corresponding likelihood. Estimates were obtained for the failure
time and three-state analysis under a working independence assumption in which the outcomes for the
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527 students are treated as independent, but within-school dependencies were accommodated through
use of a robust variance estimate (Cook et al., 2002; Cook and Lawless, 2018).

We find no evidence of an intervention effect on the intensity for smoking from either the standard
or joint models. This lack of effect is aligned with the results of the primary analysis reported by
Cameron et al. (1999), which was directed at estimating the intervention effect on the yearly smoking
prevalence rate. The hazard ratios are estimated to be 1.080 (95%CI: 0.789, 1.477) based on the
standard analysis and 1.090 (95% CI: 0.801, 1.470) from the joint analysis. There is some variation
in the intensity for onset of smoking over the grades as expected from both models. There is highly
significant evidence of dependent LTF with exp(d) = 2.351 (95% CI: 1.581, 3.501; p <0.001), and
exp(g) = 1.406 (95% CI: 0.947, 2.090; p = 0.091), which is suggestive of a higher withdrawal rate
for individuals in the intervention arm. Despite this strong evidence of dependent LTF the impact
on the estimate of the intervention effect is negligible; this finding is consistent with the results of
our numerical studies which showed mild sensitivity of covariate effects to dependent LTF. More
appreciable (but still quite modest) differences are seen in the estimates of the baseline intensity for
the onset of smoking from the standard and joint models. Here we see an expected pattern of higher
smoking rates in higher grades.

Table 2: Estimates obtained by fitting a two-state failure time model and three-state joint model to
data from the Waterloo Smoking Prevention Project; restrict attention to students with high social
model risk score in grade 6

Two-State Model Three-State Model
(N =296 subjects) (N =527 subjects)
Parameter Interval Est.” 95% CI° P’ Est.® 95% CI° i

Failure Process

1 — 2 Intensity log A(t) [6,7) -0.981 (-1.301, -0.661) -0.933  (-1.248,-0.619)

[7,8) -1.007 (-1.344, -0.669) -0.973  (-1.309, -0.636)

[8,9) -1.049 (-1.457,-0.642) -0.940 (-1.349,-0.531)

[9,10) -0.888 (-1.370,-0.405) -0.886 (-1.368, -0.405)

[10,11) -1.871 (-2.716,-1.026) -1.819 (-2.651,-0.987)

[11,12) -1.859 (-2.781,-0.938) -1.846 (-2.743,-0.950)
Intervention Effect B 0.077  (-0.236,0.390) 0.631 0.082  (-0.222, 0.385) 0.598

Loss to Follow-up Process

1 — 3 Intensity logay(t) 16,7) - - - -2.603  (-3.058, -2.147)

[7,8) - - - -3.013  (-3.519, -2.507)

[8,9) - - - -2.317  (-2.909, -1.725)

[9,10) - - - -3.356  (-3.912, -2.800)

[10,11) - - - -2.794  (-3.355, -2.234)

[11,12) - - - -3.102  (-3.633, -2.570)
log(avao(t)/0a0(t)) ) - - - 0.855 (0.458,1.253) < 0.001
Intervention Effect & - - - 0.341 (-0.054, 0.737) 0.091

¢ Estimates are obtained based on proportional intensity models

b 95% CIs and p-values are computed based on sandwich-type S.E. (clustered by school an individual attended in Grade
0)
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6 SOME FURTHER REMARKS

6.1 RANDOM VISIT TIMES

We have focussed on settings where visits are scheduled at predetermined times, as in the protocols
of many large cohort studies. In this case LTF is confirmed, or declared, at the first missed visit for
an individual. The concept of a time of LTF is usually idealized in the sense that even with complete
data a precise time at which an individual decided to drop out of a study might not be ascertainable.
The methods considered in this article treat LTF time as interval-censored, so this is not a problem.

In many observational cohorts, visit times are random and may vary considerably within and be-
tween individuals. Cook and Lawless (2019) consider this situation and formalize the concepts of in-
dependent and dependent visit processes. This involves defining a visit counting process { N4(t), ¢ >
0}, where N“(t) is the number of visits for an individual up to time ¢. Using clinic-based cohorts of
persons with rheumatic disease for illustration, they consider models that allow the intensity functions
for visit processes to depend on the disease history {Z(¢),¢ > 0}. They consider situations where
LTF times are observable, however, so that a combined visits-LTF process as shown in Figure 5 ap-
plies. Cook and Lawless (2019) mainly consider independent LTF, but the methods in the paper can
readily be extended to deal with settings where LTF may depend on disease history.

NUMBER OF FOLLOW-UP VISITS

0 |—— | 1 |——| 2 | ———— «..

Figure 5: A joint visit and LTF process.

Our focus in this article is on settings where exact LTF times are not observed. This is difficult to
deal with when visit times are random, and especially when they are highly variable. The key problem
is that the observed data simply record in this case that for an individual with administrative censoring
time A, there was a final visit at some time a,,, and then no further visits over (a,,, A). It is therefore
uncertain whether LTF occurred or not, and observation schemes I and II in this article do not apply
here because of this. Researchers are then faced with the issue of how to specify end-of-follow-up
times for individuals. The use of a,, is typically inadvisable if visit processes are related to disease
histories, since it uses the information that no visit occurred over (a,,, A). There have been empirical
studies of the effect of different choices for end-of-follow-up, for example, in connection with HIV-
AIDS cohorts (e.g. Shepherd et al., 2011; Lesko et al., 2018) but these have been in the context of
independent visit processes and have not involved joint modeling. Our current recommendation is
to use the joint visits-disease process models in Cook and Lawless (2019), perhaps combined with
a protocol for declaring LTF. For example, in a setting where inter-visit times vary widely but are
typically 2 years or less, we might declare LTF once no visit has occurred for 2 years. In this case we
treat a,, + 2 years as the end-of-follow-up time; note that there is no new information on the disease
process observed at that time. More informed approaches can be considered if some level of tracing
is undertaken for persons who are thus declared LTF, as discussed for Scheme III in this article; see
Appendix B. In particular, for persons successfully traced we can obtain information concerning their
disease history over the time period (a,,, A). Research on this topic is ongoing and we hope to report
further in a future communication.
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6.2 ILLNESS-DEATH AND OTHER MULTISTATE PROCESSES

We can consider a similar approach to joint modeling when a general multistate process (i.e. not
simply a failure time process) is of interest. Joint models analogous to that in Figure 1(b) can be
used; Figure A.1 in Appendix A shows such a joint model for an illness-death process and LTF. In the
general case, if there are no absorbing states in the disease process model, then observation Schemes
I and II are the same; both involve observation of an individual until they become LTF. When there
is an absorbing state, then Scheme I involves observation up to the first time when a person is either
in an absorbing state or LTF, whereas Scheme II follows individuals until they are LTF. The standard
likelihood function used with an assumption of independent LTF does not use the joint model and
includes data on the disease process up to the last visit where an individual is not LTF. We give this
likelihood in Appendix A and note how asymptotic bias in standard estimates can be assessed when
there is dependent LTF, as represented by the joint model. The likelihood functions under observation
Scheme II and the joint model are also easy to write down. They include terms for cases where an
individual was LTF at some visit time a,, 1 but were not LTF and in some observed state, absorbing
or otherwise, at time a,,,.

A death state is an important special case of an absorbing state. In this case we can typically
ascertain the exact time of entry to the death state. Slightly different settings can arise. In the simplest
case, a person who does not appear for a visit at time a,,,.1 can be identified as either being dead or
LTF; if they are dead the time of death can be obtained. In studies with planned visit times this is often
the case. A more complicated case is where the vital status of an individual who does not appear for a
visit at time a,,,11 cannot immediately be ascertained. In that case we can treat them provisionally as
LTF, but in some cases deaths are eventually reported, but subject to random reporting delays. Many
cohort studies link periodically to death registries, for example. We stress that such registries usually
involve random reporting delays and that information about the distribution of delays is needed to
avoid potential bias. A number of authors, including Binder and Schumacher (2014) and Binder et al.
(2017, 2019) have considered bias in the estimation of failure time models caused by death being
treated as independent LTF. There have not been thorough investigations of the effects of reporting
delays, however, and we are currently undertaking this.

6.3 INTERMITTENT OBSERVATION OF TIME-VARYING COVARIATES

Information is routinely collected on time-varying covariates at visits which may be used for modeling
the life history process. In this case we may consider the failure intensity corresponding toa 1 — 2
transition in Figure 1(b) as

. PZt+At)=2]Z(t")=1,X(t))
lim
AtL0 At

= At | X(?))

and the LTF intensities as

. P(Z(t+At)=3|Z(t") =k, X(1))
lim
At10 At

—a(t| X(1), k=12,
If 7 L C|{X(s),0 < s} then it is sufficient to model the failure time process. In practice, however,

models can only be fit of the form

" PZ(t+At7)=2|Z(t7) =1, X(aaq)))
11m
At10 At

= At | X(aaw))),

where a4(;-) denotes the time of the most recent assessment, which may be viewed as a reasonable
strategy when visits are regularly scheduled, but inadequate when they are random and highly variable
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as this can lead to long lags between ¢ and the most recent measurement of the covariates. That is, if
the temporal variation of the covariate values is high over the typical intervals between the scheduled
visits, the most recently recorded covariate value may be a poor approximation of the current covariate
value and models are misspecified. This leads to a type of covariate measurement error problem which
has been studied by de Bruijne et al. (2001) and Andersen and Liestgl (2003).

The conditioning on time-dependent covariates weakens the nature of the conditionally indepen-
dent LTF assumption, however if the covariate values have high temporal variation, conditioning on
the most recently recorded value may not render LTF as conditionally independent and mitigate bi-
ases from dependent LTF. If measurements on time-dependent covariates are available that can render
LTF conditionally independent, but interest lies in the marginal hazard and failure time distribution,
inverse probability of censoring weighting can be carried out (Satten et al., 2001).

7 CONCLUDING REMARKS

We have focussed primarily on the setting of many cohort studies where recruited individuals are
scheduled to be examined according to protocol at fixed visit times. When individuals are found
to have experienced the event between the previous and current assessment the failure times may
be available retrospectively in some cases through self-report, a review of medical records, or other
means. In the present context we found this retrospective data did not add an appreciable amount of
information. More importantly we found that in both the setting where the data are retrospectively
available and when it is not, use of a joint model can mitigate the bias that would otherwise arise
from dependent LTF. We have considered joint models which are Markov. Sensitivity analyses can be
conducted to assess the robustness of findings to misspecification of the LTF process in joint models.
More flexible models which retain Markov LTF intensities are straightforward to implement, but ones
with semi-Markov LTF intensities can be challenging to fit.

The main focus of this article has been on failure time processes; more general multistate pro-
cesses were discussed briefly in Section 6.2. In other settings interest may lie in modeling time-
varying marker processes such as prostate-specific antigen (Proust-Lima et al., 2008). In such cases a
fundamentally different framework for joint modeling of the marker and failure processes seems nec-
essary, with potentially stronger assumptions which are more difficult to check; see Tsiatis and Da-
vidian (2004) for a discussion of the conceptual issues and an overview of the modeling approaches.
Meaningful estimands are often difficult to specify in such cases (Commenges, 2019) and the impact
of dependent LTF on related inference warrants further study for this setting.

As discussed in Section 6.1 matters are more complicated when visit times are random. In cir-
cumstances where patients are being treated by study clinicians, this will often be the case since they
will naturally seek care when symptoms are manifest. Data from such visits can be excluded from
a study database but interventions administered during such visits can change the course of the fail-
ure or multistate process of interest so that is not a suitable approach. A further complication is that
such spontaneous visits can alter the probability that future scheduled visits are made, thereby more
substantially impacting the visit process. Further work is warranted on the development and use of
hybrid visit process models, which involve an intensity for random visits along with a model for an
indicator of whether scheduled visits are made. Embedding these into a joint model with potential
LTF would enable comprehensive modeling of the failure and observation processes but these models
could require collection of additional information such as the nature of any visit process.

The discrete visit process model discussed in Appendix C is particularly appealing as a framework
for considering the challenge of intermittently missed visits. In this case there may be a sequence
of visits scheduled in advance but some individuals may attend scheduled visits sporadically. This
makes modeling of the LTF process more difficult and a definition of LTF may need to incorporate
this complication.
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Finally in related work we have discussed the idea of tracing studies as a means of strengthening
inferences for joint models (Lawless and Cook, 2019). In the LTF setting this would involve use of
extraordinary resources to track down individuals who are identified as LTF or perhaps use of external
administrative databases to obtain partial information on the status of the individuals LTF. Dynamic
tracing studies could also be carried out during the course of a study to track down individuals who
have not shown up for clinic visits in order to obtain partial information; even the reason for the
missed visit could facilitate fitting of more complete joint models. Further study of the utility of such
methods is warranted given the many large cohort studies now being undertaken around the world.
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APPENDIX A DEPENDENT LTF WITH MULTISTATE PROCESSES

Here the consequences of dependent LTF is considered when more general multistate processes are
under intermittent observation according to Scheme I. Let S = {1, ..., K'} denote the state space and
let A denote the subset of absorbing states. Let { Z(¢),¢ > 0} denote the multistate process governed
by intensities

L PEZt+AT) =1 2(t7) =k, H(t))
At | H(t) = lim A7
for! < kand k ¢ A where H(t) = {Z(s),0 < s < t} is the history. We omit covariates for conve-
nience but fixed covariates are easily handled. We focus on Markov processes for which Ay (¢|#H (1))

is equal to A(t). In this class of models, it is possible to compute the K x K matrix of transition
probabilities P(s, t) with (k, 1) entry P(Z(t) = l|Z(s) = k).

ALIVE
EVENT-FREE POST-EVENT DEAD
[ v
1 _— 2 _— 3 PRE-LTF
1P —>| 2 — 3° POST-LTF
l i

Figure A.1: A joint model for an underlying illness-death process and LTF process.

We let S? = {17,..., K7} denote the states that can be occupied after loss to follow-up. An
expanded state space is formed by considering the union of all possible states in S and S? denoted
ST =8uUS8"={1,...,K,17,... KP}, where k” denotes disease state k after loss to follow-up. We
let Z(t) denote the state of this joint process and H(t) = {Z(t),0 < s < t} let be the respective
history at time ¢. Then

P(Z(t+At) =1| Z(t™) =k, H(t)

lAltfﬁ) Al = Au(t;m)
and P(Z At~ kP | Z(t~ k. H
lim (Z(t+At7)=kP | Z(t7) =k, H(t)) ——

ALL0 At

so that the intensities for transitions between disease states in the expanded model are the same as
those in the model solely for the disease process. Figure A.l1 gives an illustrative state space for a
joint model involving an underlying illness-death process.

The likelihood under Scheme I can be written as follows. Let Yy, = I(Z;(a,—1) = k),

pii(s,t) = P(Z,(t) = 1| Zi(s) = k),
and p;x; = piri(ar—1, a,), which is indexed by 7. Then if Ny, = 1(Z;(a,—1) = k, Z;(a,) = 1),

syt o TTTT{TT [Tt

:|Yik7' [(Zi(ar)iisp)}
i=1 r=1 k l
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where if [ = k£ we note p,(n) =1 — ), 2 pirir (). The resulting score vector can be written as

n R

Ui(n) =YY 1(Zi(a,) € S") Y Yier Y Nigay 0log pisar (1)/0n.

i=1 r=1 k=1 l

The limiting value of 7) is obtained by solving E{U%,(n)} = 0 where the expectation is taken with
respect to the joint model.
Under Scheme II the likelihood contribution from individual 7 based on the joint model is

ﬁ{ H [{Hp;’klr(w)]vik”} {Z o 0) }I(zi(ar)eszj)} Yk}

r=1 “keS les lesp

where p}, (V) = P(Z;(a,) = l|Z;(a,—1) = k,X;) is the transition probability based on the joint
Markov model and N, = I(Z;(a,—1) = k, Z;(a,) = [) indicates a k — [ transition, where k € S if
[ € S then Z;(a,) is observed, but otherwise it is only known that [ € S? and that LTF has occurred.

APPENDIX B LIKELIHOOD FOR OBSERVATION SCHEME III

Here we consider the likelihood construction under observation Scheme III mentioned in Section 2.2
in which observation continues until a,; or for some individuals who are LTF until entry to state
2P, The paths can be of five unique forms. We may have ag < min(7’, C') in which case the data

are of the form Z(a,) = --- = Z(ar) = 1 and the likelihood contribution is Py;(0, ar). For path
2a, <T < anpy and ag < C so failure is detected at a,,,; but there is no LTF; the resulting
data will be of the form Z(a;) = -+ = Z(a,,) = 1 and Z(apy1) = -+ = Z(ar) = 2 for some

m < R and the likelihood contribution is P;1(0, a,,) Pia(@m, @ma1) Poa(@ms1,ar). For path 3 we
have a,, < T < a,,+1 for some m and a, < C' < a,4; so LTF is determined post-failure with
m + 1 < r. Here the likelihood contribution is

P11(0, @) Pra(@ms @met1) [Poa (@1, ar)]l(mﬂq) Poor(ay,a, +1).

For path 4 a, < C < a,;1 and ag < T so there is LTF detected at a,; but no failure by ag; the
likelihood contribution is Py (0, a,.) Pi1»(ar, ari1) Pir1e(ar41,ag). For path 5, a, < C < a,4; and
Ay < T < @y so LTF is detected at a,.,q and failure occurs over [a,,, Gy, 11] with 7 + 1 < m; for
this the likelihood contribution is

P11(07 ar) Pnp(ar, ar+1) Plplp(ar+1, Clm) PIPQP(ama am+1) .

For Case B the contributions for paths 2 and 3 change as they did under Scheme II. In addition, the
contribution for path 5 changes with the addition 7' = ¢ so the term Pypop (G, Gpyr1) is replaced by

Pip1p (am> t) )\(t) Popop (ta am—i—l) )

where the last term is equal to 1 as 27 is an absorbing state.

For Scheme III we can estimate all four transition intensities in Figure 1(b). Thus it is only
under Scheme III, which involves tracing and extended follow-up of individuals LTF, that independent
censoring can be assessed, by comparing estimates of A(¢) and AP(t). For most of the article we focus
on Schemes I and II and assume AP(t) = A(¢), since our primary objective is to investigate the
dependent LTF induced by intermittent observation.



Cook RJ and Lawless JF 27

APPENDIX C CONTINUOUS-TIME AND DISCRETE-TIME LTF PROCESSES

Here we give some remarks on the relation between models for the LTF process under the current
continuous-time formulation and a discrete-time one, which is often used in longitudinal data settings
when interest lies in marginal analyses. We let scheduled visits be at times ag < a; < --- < ag and
let A; = I(not LTF at a;) = I(a; < C). Let

o o oy py=magoa) if Z(a;) =1
P(A; 1| Hlay1,a;), H(a; 1)) { b= pl)

If we consider Scheme 2, then the likelihood contributions for data over (a;_1, a;| are of the form

1. P(Z(aj—1) = 1| Z(aj—1) = 1,A; = 1) = exp(—A(aj_1,a;)) p1; when an individual is in
state 1 for the successive visit times a;_; and a;,

2. (a) If the failure time is not retrospectively observed as in Case A observation the correspond-
ing contribution is

a;
P(Z(a;) = 2| Z(aj) =1,4; =1) = / exp (—A(a;-1,t)) A(t) p2(aj-1, a;,t) di
aj—1
when state 1 is occupied at a;_; and state 2 is occupied at a;;
(b) For Case B observation in which the failure time is retrospectively determined the contri-

bution is

P(Z((Ij) = 27T | Z(aj) = ]., Aj = 1) = exXp (—A((J,j_l,t)) )\(t) pg(aj_l, CLj,Zf) 3

3. If state 1 is occupied at a;_; and state 3 is occupied at a; (i.e. LTF occurs over (a;_1, a;)) then
the contribution is

P(Z(a;) =3 | Z(aj1) =1) =1 =) P(Z(aj) = 1| Z(aj-1) = 1,4; = 1).

=1

For continuous-time models, the likelihood contributions corresponding to those above are

exp (—A(aj-1,a;)) exp (—Ai(aj-1,a;)) = exp (=A(a;-1, a;)) py;

for 1,

exp (—A(aj-1,t)) A(t) exp (—Ai(aj-1,t)) exp (—A2(t, a5)) = exp (=A(aj-1,1)) A(t) p2(a;-1,a;,1)

for 2 a., .
/ exXp <_A(aj*17t)) )\(t)p2<ajflaajat) dt

Jj—

for 2 b. and

P(Z(a;) =3 | Z(aj—1) =1) = 1—exp (—A(a;_1, a;)) plj—/aj exp (—A(aj_1,t)) A(t) p2(aj_1,a;,t)dt

j—

for 3.
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