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Abstract

The development of autonomous driving has become one of the biggest trends of
the 21st century’s technology. However, the promotion and the mass production of au-
tonomous vehicles are still at the beginning stage. The human-driven vehicles will still
predominate the traffic. Therefore, understanding the interaction and decision logic be-
tween human-driven vehicles, and utilizing it to predict their driving behavior are the keys
to the development of autonomous driving techniques. Cut-in behavior is one of the top
priorities due to its high risks. Rear-end collisions happen a lot when the lag vehicles
cannot predict this abnormal lane change behavior of the front vehicles and response in
time. However, related studies on cut-in event prediction and risk assessment have rarely
been presented in autonomous driving field. A phase-based design framework is proposed
in this work to realize online prediction and risk estimation of the cut-in behavior consid-
ering interactions between the involved vehicles. After preprocessing and analyzing of a
naturalistic driving dataset, a cut-in behavior predictor and a risk estimator are devised
based on Gaussian mixture model and Gaussian mixture regression method. Compared
with baseline approaches, both the predictor and estimator designed following the pro-
posed framework achieve enhanced results, which can further improve the driving safety
of autonomous vehicles when cut-in behavior occurs.
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Chapter 1

Introduction

Benefited from the fast advances in AI and high-performance computing, autonomous
driving (AD) technique has become one of the hottest topics in recent years because it shows
a great potential to further improve the driving safety and commuting efficiency. Accord-
ing to the statistics from US National Highway Traffic Safety Administration (NHTSA),
there are 94% of the traffic accidents caused by human mistaken operation [1], and the
development of the AD techniques can prevent the human factor related fatalities. It also
implies that the techniques could also prevent up to 1,922 traffic fatalities happened in
Canada in 2018 [2]. Moreover, the AD techniques are expected to reduce commuting time,
traffic congestion and fuel consumption, that it could benefit up to 150 billion US Dollar in
the US and 65 billion Canadian Dollar in Canada every year [3] [4]. Therefore, the AD is
treated as one of the most influential technologies nowadays, and its development has been
paid attention by the universities, leading technology companies, and the policymakers.

The development of AD is unprecedentedly fast, however, the promotion and the mass
production of autonomous vehicle (AV) is still at the beginning stage. For a long period
of time, human-driven vehicles will still be the majority of the traffic. Human drivers
monitor potential risk, continuously make decisions, and adjust their driving behaviors
which are often not rational. Since we lack the understanding of human cognition and
interaction logic at this stage, it is difficult for autonomous driving to make safe and
effective decisions in mixed traffic. Therefore, understanding the interaction and decision
logic between human-driven vehicles, and utilizing it to predict their driving maneuvers
are the key to the development of AD technique.

Understanding and predicting the aggressive lane change have become one of the top
priorities of AD. Lane change maneuvers frequently occur in daily driving. An aggressive
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lane change behavior, called cut-in, usually triggers potential threats to the following ve-
hicle. According to statistics, cut-in related rear-end collisions account for 5% of the total
traffic accidents [5]. Experienced human drivers are able to handle the cut-in behavior of
the front vehicle in most cases by foreseeing its occurrence and evaluating the potential risk
level in advance, which can save more time to slows down early and keep a safe distance
accordingly. Therefore, the AV should also possess the ability of continuously predicting
the cut-in behaviors of nearby vehicles and estimating the risk level by considering their
mutual influences. In this case, the AV can save more time to react the upcoming risky
situations, and thus to improve the safety.

Since 1930s, the cut-in behavior research has been extensively studied [6]. However, the
previous works were based on the data of entire lane change process, which are impossible
to be utilized for online prediction of the cut-in behavior. The topic of cut-in behavior
prediction has only been investigated in the recent five years, alongside with the raise of
AV. In the existing research of cut-in behavior prediction, only a few of them proposed
the methods that consider the interaction. Hence, the research question that the thesis
proposes is ‘how does the AV predict the cut-in behavior and assess its risks online while
considering the interaction?’

To answer the question, this thesis proposes a framework of the interaction-aware
online cut-in event prediction and risk assessment. The methodology it proposes should
1) consider the interactions between ego vehicle and the cut-in vehicle, and 2) perform
online application during the lane change process to improve the prediction and estimation
accuracy. In details, the objectives of the research can be listed as followings:

1. To achieve predicting the cut-in events with estimated risks for autonomous vehicles;

2. To implement online cut-in event prediction and risk assessment works, which means
that the cut-in event with certain risks can be predicted and estimated in real time;

3. To increase the accuracy of online prediction and online risk estimation by considering
the interaction between nearby vehicles.

The remainder of the paper is organized in the following structure. Chapter 2 intro-
duces the related works about cut-in behavior research, cut-in event prediction and risk
assessment. Chapter 3 formulates the cut-in scenario and provides the framework of the
proposed design methodology. Chapter 4 introduces the data preprocessing procedures for
lane change and cut-in event extraction, and Chapter 5 details interaction-aware motion
prediction method of lane change vehicle, which is to support the later cut-in event pre-
diction and risk assessment in the next chapter. Section 6 illustrates the design of cut-in
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event prediction and risk assessment algorithm with the performance displayed. Conclud-
ing remarks and future works are presented in Section 7.
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Chapter 2

Literature Review

Overall, this thesis contributes the research fields of cut-in event prediction and risk
assessment. Specifically, it attempts to find a way to apply prediction and assessment with
considering the inter-vehicle interaction; and, it aims to achieve the online application of
the system. In this chapter, we will outline the representative and state-of-the-art works in
this field. Starting at introducing the existing definitions of cut-in behavior, this chapter
represents the cut-in behavior analysis, which is to investigate the factors that are related
to the defined cut-in events. The next section shows a brief review of motion prediction
and risk assessment methods, and the topic is narrowed to the cut-in event prediction
and risk assessment, according to the results of the cut-in related research. Finally, this
chapter ends up with discussing the merits and the limitations of the related works in the
final section, which gives ideas to conduct our proposed methods in the later chapters.

2.1 Lane change and cut-in behavior

2.1.1 Concept of lane change behavior

According to Operational Definitions of Driving Performance Measures and Statistics
by SAE International [7], the lane change can be defined as ‘Lateral movement of a vehicle
from (1) a merge lane into a lane of a traveled way, (2) one lane of a traveled way to
another lane on the same traveled way with continuing travel in the same direction in the
new lane, or (3) a lane on a traveled way to an exit lane departing that traveled way.’ The
lane change behavior can be classified as discretionary lane change and mandatory lane
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change, where the mandatory lane change represents that the driver must leave the lane,
such as the lane is merging lane. Additionally, the lane change can be also classified as
intentional lane change and unintentional lane change. The unintentional one is also called
lane departure, which could be caused by the factor that is not consistent with the driver’s
will, such as windblown or driving fatigue, etc.

2.1.2 Concept of cut-in behavior

Cut-in behavior is one category of lane change behavior. The general understanding
of cut-in behavior is an abnormal lane change action that causes rear-end collisions or
triggers significant threats for the vehicle behind. To unify the terminology, the vehicle
that applies lane change behavior is called lane change vehicle (LCV), and the subject
vehicle that is influenced by the cut-in action is called ego vehicle (EV). There are multiple
factors that trigger the risk of EV in the cut-in event, for example, the gap distance
between LCV and EV is too close, or LCV applied sudden deceleration, etc. Among these
factors, small gap distance is widely recognized as the factor to triggers the risk, so the gap
distance is utilized to represent the risk of EV and accordingly to define cut-in behavior.
On the other hand, if the drivers of EV feel risky, they will apply emergency brake to
keep safe, which is another way to quantitatively define cut-in behavior. In summary, this
thesis summarizes the existing cut-in definitions as two categories: distance-based cut-in
definitions and response-based cut-in definitions.

Distance-based cut-in definitions

The concept of distance-based cut-in definitions can be illustrated by Project ENabling
SafE Multi-Brand pLatooning for Europe (ENESEMBLE) from European Commission
(EC) [8], which is ‘a lane change manoeuvre performed by vehicles from the adjacent lane
to the ego vehicle’s lane, at a distance close enough (i.e., shorter than desired inter vehicle
distance) relative to the ego vehicle.’ The desired inter vehicle distance is called ‘gap
acceptance’. To define the cut-in events, the following methods proposed the criteria to
quantify the gap acceptance. For example, Wang et al [9] defined the cut-in accepted gap
as 75 meters by manual observations from different testers. From the other articles, the
accepted gap is less strict. Zhao et al [5], Chen et al [10], Aramrattana et al [11], Milanes
et al [12], and Remmen et al [13] regarded the cut-in behavior occurred as the accepted
gap between the LCV and EV where it is inside of the observation range.
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Response-based cut-in definitions

The concept of the response-based cut-in is to regard the deceleration or braking
response of EV as the factor of safety threats levels brought by cut-in behavior. This
type of defining criteria are more popular than the distance-based ones, and the specific
definitions are illustrated below. Ma et al [14] was given a criterion of cut-in, that the cut-
in occurs as long as the EV applies braking behavior, or the acceleration value is lower than
0 m/s2. Xie et al [15] first extracted the cut-in events from the lane change dataset using
the same definition above and utilized K -means method to cluster the extracted cut-in
events into three groups according to the average deceleration and maximum deceleration.
Each cluster represents the cut-in event with different risk levels.

Kim et al [16] defined the occurrence of cut-in events if the minimum acceleration
of EV reaches -0.3 g. This quantitative criterion was conducted from the 31 test drivers’
operations on the driving simulator, that the boundary between normal and emergency
brake is -0.3 g, where the g stands for the gravitational acceleration of 9.8 m/s2. Based on
the results, Zhou et al [17] stated that the cut-in event occurs as the EV possesses braking
action for at least 2 seconds, with the minimum acceleration reaching 0.3 g. Feng et al
[18] extracted the extreme cut-in cases from the naturalistic driving data, with minimum
accelerations of EV reach above -0.4 g in all cases.

Other definitions

Besides the mainstream two types of classifications, there is one special method defin-
ing the cut-in event that is solely based on the LCV. Wu et al [19] utilized the rule-based
criteria to differentiate risky cut-in scenarios from lane change events based on the longi-
tudinal acceleration, lateral acceleration, and yaw rate of LCV.

The results of the literature review show that there is no unified definition of cut-in
behavior. From the two categories of definitions, each one has its pros and cons. Based
on the distance-based definitions, the cut-in behaviors are easy to be measured and can be
instantly detected for online application. However, the criteria of the definitions ignore the
other factors that may trigger the risk level of EV. Conversely, the advantage of response-
based cut-in definitions is that they can comprehensively concern multiple factors that
impact the risk level of EV. But their drawback is that response latency exists between
the actuation of cut-in behavior and driver’s response of EV, meaning that the instant
cut-in detection is not achievable. Hence, this type of definition is usually used for offline
analysis.
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2.2 Cut-in behavior research

Cut-in behavior research is one category of driver behavior research, which essentially
focuses on investigating the related factors that cause certain driving maneuvers. The
cut-in behavior research can be classified as two parts: The first part is to investigate the
relationship between cut-in intention and gap acceptance [20] [9], and the second part is
to investigate the factors that cause the cut-in event with different risk levels of EV. Since
the second part is the field that the thesis concerns about, the following reviewed papers
are all about investigating the factors that cause the cut-in event with certain risk levels.

Zhou et al [17] found out that when the EV applied the emergency brake and the
acceleration was smaller than -0.3 g, the cut-in event occurs with the corresponding time
headway (THW) and gap distance being less than 2 s and 60 m respectively. They also
found out both THW and time-to-collision (TTC) can characterize the risk level of cut-in,
but THW is more sensitive than TTC for human drivers.

Zhao et al [21] mainly investigated how do gap distance and velocity difference influ-
ence the driver’s subjective feelings of the risk levels. In detail, several testers were invited
to view different cut-in scenes and were asked to mark the five levels of risk scores for each
one. Then the dynamic factors, namely velocity difference and gap distance of EV and
LCV, were utilized to characterize the collected risk scores. The result of the experiment
showed that the gap distance was better to characterize the risk levels than the velocity
differences. It means that the gap distance is more sensitive to represent the driver’s risk
levels. In summary, this paper investigated two key cut-in related factors with comparison,
but it only proved that they could characterize the cut-in event instead of the lane change
scenario with no risk.

The two approaches above directly found the single factors to characterize the risk
level of EV. However, the corresponding results were not ideal because the risk level of EV
may be jointly related to multiple cut-in related factors. To prove the assumption, Ma et
al [14] proposed an approach that first classified the road and traffic condition into four
cases: 1) open road and smooth traffic, 2) open road and congested traffic, 3) closed road
and smooth traffic, and 4) closed road and congested traffic. Then in each case, it proposed
a set of rules based on THW and speed difference to characterize the braking behavior of
EV. Compared with the previous approaches, it conducted better results.

Another approach is to utilize the machine learning concept to characterize the braking
behavior with multiple cut-in features. Xie et al [15] first extracted six cut-in indicators:
speed of EV, longitudinal gap distance, lateral gap distance, longitudinal speed difference,
lateral speed difference, longitudinal acceleration difference. Then it proposed an ensemble
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learning model consisting of a Decision Tree (DT) and a Support Vector Machine (SVM)
to characterize three types of braking responses with different risk levels. In general, the
machine learning methods could conduct good results of characterizing cut-in behavior,
but this experiment did not check the characterization ability of each feature. In other
words, it is unknown for the feature that is good or bad for characterizing the model.

Concerning that the cut-in event is a process and lasts several seconds, Feng et al [18]
proposed an analytical approach to characterize the cut-in event by extracting the features
at different time segments of the lane change. At the time of starting braking behavior, its
risk level characterized by THW was significantly correlated with velocity difference, lane
change direction of LCV, and vehicle type of LCV. After the braking was applied, its risk
level was significantly correlated with longitudinal velocity of LCV. In conclusion, The risk
level of EV was triggered by the different related factors in different time processes if the
cut-in event occurs.

The approaches above have extensively analyzed the cut-in related factors with pros
and cons commented. Based on their results, the velocity difference, longitudinal gap
distance, and THW are proved to be the representative factors that relate to the cut-in
behaviors and braking behavior of EV. Additionally, they are proved that the braking
behavior of EV is correlated with multiple factors of cut-in behavior. However, most
analyses ignored the fact, that lane change behavior was a continuous process, and the cut-
in events could have occurred at any time stamp of the lane change scenario. Knowing the
time frame of the cut-in event occurred is crucial for online prediction and risk assessment,
we believe the research gap is urgently needed to be filled, that the lane change process is
supposed to be segmented, and does further analysis on every one of them. Feng et al [18]
and Kim et al [16] proposed some preliminary ideas of splitting the lane change process
into two segments, but both splitting methods are too coarse to get the accurate time of
cut-in occurred, and the finer splitting method is expected to be explored.

2.3 Prediction and risk assessment

Safety is crucial to AD. The concept of risk is the safety threat that the vehicle may
encounter in the near future. Hence, in order to assess the risk associated with a specific
situation, it is necessary to utilize specific methods to predict how this situation will evolve
in the future.

The cut-in prediction is one category of motion prediction. Based on the existing
methodologies and analytical results in the previous section, the cut-in prediction and risk
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assessment can be applied by extracting the features that indicate the occurrence of the
upcoming cut-in events with levels of risks. The features are uniformly called cut-in indi-
cators, and the risk score is defined as the intensity of the braking behavior. In the later
paragraphs, the general motion prediction and risk assessment methods are first reviewed,
and previous applications about cut-in prediction and risk assessment are introduced sub-
sequently.

2.3.1 Methods of motion prediction

In specific, the motion prediction is to conduct the future motion of vehicles based on
the current or history situation. Lefevre et al [22] did a comprehensive review of the motion
prediction and risk assessment methods published in 2014. Since then, there are lots of new
contributions to motion prediction methods published. Hence, the following review content
focuses on the newly published research contributions on the motion prediction field from
2014 to 2020. The motion prediction methods can be classified into three categories: 1)
Physics-based motion prediction, 2) Maneuver-based motion prediction and 3) Interaction-
aware motion prediction methods.

Physical-based motion prediction

The physical-based motion prediction is a fundamental prediction type that predicts
the future trajectory according to the current state and its possible kinetic models of the
target vehicle. There are several types of prediction methods applied to the kinematic
model. For the point-mass kinematic model, Constant Velocity (CV), Constant Accelera-
tion (CA), Constant Turning Rate and Velocity (CTRV), and Constant Turning Rate and
Acceleration (CTRA) are mainly implemented. For the more complex kinematic models,
such as three degrees of freedom (3-DOF) bicycle model, Constant Steering Angle and
Velocity (CSAV) and Constant Steering Angle and Acceleration (CSAA) are derived.

Another alternative method so far is to use interpolation methods to predict the
trajectory, which shows valid simulation with the coordination of the lane change driving
maneuver. Kim et al [23] proposed to use CV methods fifth-order polynomial to interpolate
the lane change trajectory after the lane change intention is already computed on the
highway scenario. Additionally, Yoon et al [24] also proposed a step response of the third-
order linear system as lateral trajectory simulation on the highway scenario.

The following methods were proposed to better describe the uncertainties of predicted
trajectory. [25] mentioned to use Kalman Filter to simulate the prediction results with cor-
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responding distributions. Alternatively, [26] proposed Monte Carlo Simulation to generate
multiple future trajectories, and the belief of each trajectory was conducted in further.

Maneuver-based motion prediction

According to Lefevre et al [22], the definition of maneuver is ‘a set of trajectories
that shares the same features’. It can be defined by people. For instance, ‘turn left’,
‘turn right’, ‘left-lane change’, ‘slow down’ are some of the typical human-defined driving
maneuvers. Conversely, the maneuvers can also be grouped and summarized by the clus-
tering algorithm. A vivid comparison about the differences is Deo et al [27] and Kasper
et al [28]. The maneuvers of the former article were defined by authors, and those six
driving maneuvers on the highway scenario were: constant speed with lane-keeping/left
lane change/right lane change, and deceleration with lane-keeping/left lane change/right
lane change. The latter article proposed 27 maneuvers on the highway scenario, produced
by the clustering algorithm.

The idea of maneuver-based motion prediction comes from the intuition of human
drivers. In some driving situations, human drivers foresee the future trajectory based
on the early recognition of the maneuver that drivers intend to perform. Similarly, the
motion prediction problem can be solved by having the history trajectory to deduce the
future trajectory of one driving maneuver. The existing models that apply the maneuver-
based motion prediction can be classified as ‘Bayesian family’, ‘Neural network family’,
‘Gaussian mixture family’, ‘Typical machine learning family’, and ‘Fuzzy logic family’.

For Bayesian family, researchers have implemented various types of Bayesian methods.
Starting from the simplest one, Wyder et al [29] implemented the Naive Bayesian Filter
to estimate left-turn, right-turn, and stop maneuver as vehicles approaching intersection
with better performances, comparing with CTRV model. The most widely used method of
Bayesian Family is Hidden Markov Model (HMM). By assuming the trajectory evolution
process with Markov properties, Lefevre et al [30] implemented HMM to estimate driver’s
lane change intention on the highway and encoded the prediction results to assist design-
ing personalized adaptive cruise control (ACC) module. Ernst et al [31] implemented an
ensemble learning method, which was to incorporates the results of both fuzzy logic and
HMM to estimate the driving behaviors on the intersection. On the highway scene, Deo
et al [27] also utilized HMM to predict maneuver intentions of surrounding vehicles inde-
pendently. Comparing with HMM, Dynamic Bayesian Network (DBN) is a more complex
form that can define the evolution process of trajectory more thoroughly. Lefevre et al
[32] built a DBN to estimate the driver’s intention at the intersection to quantify the po-
tential degree of risk. Li et al [33] proposed a framework to classify the lane change and
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lane-keeping intentions on the highway. In summary, the methods coming from Bayesian
family are widely implemented, but in most cases, they are preferred to be used on the
intersection scene instead of the highway scene.

Neural Network (NN) has gained a lot of attention in recent decades. Due to its excel-
lence in non-linear data representation, it becomes a trendy type of models to realize the
prediction problem. A typical NN-based intention estimation framework is developed by
Yoon et al [24]. In the proposal, researches trained a Multilayer Perceptron (MLP) to dif-
ferentiate the left/right lane change and lane-keeping intention by feeding the current states
of ego and surrounding vehicles. Besides that, the Deep Neural Network (DNN) methods
have been explored rapidly recently. The Long Short-term Memory (LSTM) of Recurrent
Neural Network (RNN) is one of the most popular prediction methods nowadays. Xin et
al [34] utilized LSTM to handle lane change/lane-keeping estimation; and Khosroshahi et
al [35] proposed a cooperative learning model consisting of an LSTM and a histogram to
detect the turning intention on the intersection scenes. LSTM is also applied to intention
estimation on the roundabout. Zyder et al [36] proposed an LSTM framework to estimate
which exit (north, east, south) the vehicles would leave. Besides LSTM, some other DNN
methods are also utilized to do similar jobs. Lee et al [37] proposed a method to check the
lane change/lane-keeping intention using Convolutional Neural Network (CNN): it firstly
transformed the surrounding sensor data (road geometry, ego position, surrounding vehi-
cle positions) with different historical time stamps to bird-eye view feature maps. Then it
feeds the image-based feature maps into CNN to get the intentions with probabilities of
the surrounding vehicles. In summary, the NN-based methods were widely used on both
intersection and highway scenes.

The Gaussian Mixture Model (GMM) and its variation models are one of the most pop-
ular methods for trajectory prediction. Wiest et al [38] utilized the GMM and Variational
GMM to predict the trajectories with uncertainties at the intersection. The performance
showed that it succeeded in achieving valid prediction under 2-second prediction horizon.
Additionally, it proved that the Variational GMM model showed better prediction results
due to its stronger representation of the nonlinear system. Besides that, there are sev-
eral other methods that consist of the GMM model to fulfill the trajectory prediction.
Schlechtriemen et al [39] achieved similar tasks by utilizing the GMM for longitudinal
prediction. For lateral prediction, it uses Rapidly-exploring Random Tree (RRT) as the
lateral prediction to generate possible future paths and smooth the trajectory using vehicle
models. Wiest et al [40] proposed a Bernoulli GMM as the prediction method and achieve
two seconds prediction before the vehicle approaches intersections. Li et al [41] proposed
a prediction method consisting of GMM with particle filters to predict the trajectory of
surrounding vehicles with lane change or lane-keeping maneuvers.
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For typical machine learning models, Yi et al [25] and Ward et al [42] utilized K-
nearest neighbor (kNN) to classify lane change/lane-keeping intentions on the highway
and stop/go/yield intentions on the merging scene. SVM was also used by Wissing et
al [43] and Izquierdo et al [44] to estimate the lane change/lane-keeping intentions. Xie
et al [45] used SVM to estimate if a lane change intention was aggressive, moderate, or
courteous behavior. Two additional typical approaches to be utilized were RF. Barbier
et al [46] and Kruber et al [47] applied the Random Forest (RF) to estimate maneuver
intention by classifying turning behavior on the intersection.

Fuzzy logic is widely used in the control field, and it can also be regarded as machine
learning prediction models. Mohajerin et al [48] and Ernst et al [31] proposed a fuzzy logic-
based model to estimate the driving intention by classifying turning intention and lane
change intention; Yi et al [25] took advantages of Fuzzy c-mean to cluster the trajectories
as different maneuver intentions.

Interaction-aware motion prediction

Based on the Physical-based motion prediction and Maneuver-based motion prediction
methods, this type of methods applies the prediction by considering the inter-dependencies
of the traffic participants. Hence, it can theoretically handle the prediction in complex traf-
fic scenarios and reach better prediction results. The interaction-aware prediction models
are rarely investigated, and it can be classified as ‘Planning-based’, ‘Neural network-based’,
‘Bayesian network-based’, and ‘Game theory-based’ models.

Planning-based methods transform the prediction works into the multi-agent planning
problem. One way to solve the prediction problem is to use the idea of optimization, that
every vehicle is assumed to have the same intelligence and cooperatively apply the best
planning strategy according to the cost function. To reduce the computational complexity,
the problem usually transforms the road geometry to grid maps. Bahran et al [49] proposed
a method that overlay occupancy grids on the highway geometry and the longitudinal
trajectory prediction of the vehicles are interactively predicted based on the occupancy
percentage in the future time frames. Ding et al [50] also designed a cost function that
assisted the nearby vehicles to plan future trajectories in both urban and highway driving
scenes. Deo et al [51] implemented similar work by designing the cost function as the energy
function, and the trajectory prediction work was based on minimizing the global energy
that every target vehicle reaches. Another way to solve the planning-based prediction is
to use the available driving models to predict future trajectories. For instance, Schulz et
al [52] proposed a method that applied Intelligent Driver Model (IDM) for longitudinal

12



prediction, and also Diehl et al [53] and Li et al [54] also mentioned to use the IDM as a
baseline method in their studies.

Similar to the ‘Neural Network Family’ of Maneuver-based motion prediction, Neural
network-based methods also encode the history information to the deep neural network
for prediction. The only difference is that their encoding strategy concerns the interaction
between vehicles. One type of approach is to encode the driving information into images
and take advantage of the excellent representation of CNN to images. For example, Lee
et al [37] proposed a method on the highway scenario, that abstracted the bird-eye view
scene to vectorized images first. Then it utilized CNN to predict the vectorized image in
the next a few seconds. Similarly, Djuric et al [55] used similar methods to implement the
scene prediction in the intersection, but its vectorized image contains more details in road
geometry. Besides image vectorization, Hu et al [56] also implemented DNN to understand
the interaction between nearby vehicle and outputs the coefficients of future trajectory. Dai
et al [57] created a unified dual LSTM structure, that the upper network predicted the
trajectory of each vehicle only based on its history information, and the lower network
fixed the predicted trajectories by checking if the predicted future trajectories were valid
for consisting the interaction mechanism. Altche et al [58], Kim et al, [59] and Park et
al [60] also proposed LSTM methods that encoded the information about not only the
target vehicles but also its surrounding ones, and the model predicted the trajectory with
lane-keeping and lane change driving intentions and following trajectories.

Bayesian network is able to describe the cause and effect of the complex system by
considering the probabilities. Hence, it is recognized by some researches as an appropriate
model to construct the interaction mechanisms between agents for prediction. The pre-
diction work can be fulfilled by multiple payers consisting of HMM. Li et al [41] provided
two layers of HMM for interaction-aware prediction on the highway, where the upper layer
was to provide the potential situations for each target vehicle, and the lower layer was to
generate a set of future trajectories based on each situation. Geng et al [61] proposed a
model that consisted of HMM and ontology models to cooperatively describe the interac-
tion and achieves the turning, lane change/lane-keeping driving maneuvers. Moreover, the
prediction work can also be achieved by utilizing DBN. The prediction models that Schulz
et al [52] and Li et al [33] proposed consisted of a DBN for predicting vehicle intentions.
Due to the model complexity, those two approaches discretized the reachable road into a
grid map to simplify the prediction scenes.

Similar to the Planning-based prediction methods, Game theory-based model can
describe the inter-vehicles interaction and the outcome is going to find an optimal solution.
But the difference is that the agent can be either cooperative or non-cooperative and thus
achieving different prediction results [62] [63].
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In summary, the existing methods of motion prediction are classified as physical-based,
maneuver-based, and interaction-aware motion prediction methods, according to the model
complexity. As the simplest type of prediction models, physical-based motion prediction
methods are outdated for the current research. However, in some cases, they are coop-
eratively applied with some advanced methods to optimize the prediction performance.
Maneuver-based prediction methods become the most popular type of methods among the
three because they balance the model complexity and prediction accuracy. Interaction-
aware prediction methods are less popular among the other two types, due to its advanced
but complicated model structures. Theoretically, their prediction accuracy can be signif-
icantly enhanced with a longer prediction horizon. However, since the human interaction
mechanisms have not been fully discovered, the existing game theory and dynamic Bayesian
network approaches can hardly expose the advantages of considering the interactions. How-
ever, the neural network approach can potentially deal with the interactions by utilizing
the self-learning strategy, but the machine-generated interaction is untraceable due to its
‘black box’ property.

2.3.2 Methods of risk assessment

The risk assessment methods are able to evaluate the risk levels of the current sit-
uations or upcoming situations according to the prediction results. The methods of risk
assessment can be divided as five categories, which are: time-based, kinematic-based meth-
ods, statistic-based and potential field-based.

Time-based risk assessment

This type of methods assesses the level of risks simply from the time-related factors.
For example, the THW, TTC, and Time-to-reaction (TTR). THW is calculated by taking
the time stamp that passes between the LV and EV reaching the same location [64], which
can be calculated as

THW =
(XLV − XEV)

VEV

,

where the XLV and XEV represent the displacement of the lead vehicle (LV) and EV respec-
tively, and VEV is the current speed of EV. THW is usually used for longitudinal behavior
metrics, such as lane-following scenes. TTC is defined as the time required for the collision
of two vehicles by assuming that they move at their current velocities [65]. Based on the
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TTC concept, some methods evolved to calculate TTC by assuming constant accelerations
[66]. TTC is a simple but effective metric for evaluating the collision risks, and it is widely
used for collision avoidance or collision alarming products. However, the TTC is not as
sensitive as the speed difference between objects is similar.TTR is to compute the remain-
ing time that is necessary to take the action to avoid collisions. There are some works
investigating the driver reaction time [67] [68]. This type of methods are more close to
reality as it considers the driver response when facing the actions and the actual braking
behaviors which are related to the vehicle dynamics [67] [69]. However, the assessment
would fail if the driver possessed the unexpected driving behavior, and the calculation is
more complex than the THW and TTC, meaning that the TTR is more computationally
expensive.

Kinematic-based methods

The kinematic-based methods achieve the risk assessment by utilizing the kinematic-
related factors, such as distance or accelerations. The most straightforward applications are
CV model and CA model. One typical risk assessment method based on distance factors
are Mazda braking distance metrics [70]. It utilized the current accelerations, velocities
of both vehicles, and the driver response to compute the minimum braking distance for
the vehicle. Additionally, the required minimum deceleration to avoid collisions is used as
another metric of kinematic-based methods [71] [72].

Statistic-based methods

The statistic-based methods are mainly data-driven, that the assessment models are
built based on either the collision probability or the naturalistic driving dataset. The
collision probability is to calculate how likely the reachable sets of each vehicle intersect
with each other based on the probabilistic motion prediction results. The motion prediction
part is mainly approached by Monte Carlo simulation [73] [26] [74] and Markov model [75].
The naturalistic driving dataset can be utilized for assessing the driving risks by studying
general driving behavior. For instance, the related features of the braking maneuver that
represents the risk level can be extracted using K -means clustering methods [76]. The risk
related features can also represent the risk levels based on the NN [77]. Moreover, the
Q-learning, one category of Reinforcement learning (RL), was proposed to estimate the
collision risk, that the reward function was designed to augment the quick risk avoidance
[78].
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Potential field-based methods

The potential field-based methods assess the risk levels by examining the effect of
repulsive and attractive artificial potential fields. Originally the potential field is proposed
for mobile robots to avoid the obstacles. The attractive potential fields are for guiding the
robot to the target position, and the repulsive potential fields are placed on the obstacles
for keeping the robot away from them. The potential field force can be represented as the
negative gradient of the attractive and repulsive potential field. The potential field-based
methods are applied for risk assessment of the cut-in behavior [79].

2.3.3 Cut-in event prediction and risk assessment

Based on the existing methodologies and analytical results in Section 2.2, the cut-in
prediction can be applied by extracting the features that indicate the occurrence of the
upcoming cut-in events when the EV driver applies braking behavior. The features are
uniformly called cut-in indicators, and the risk score is defined as the intensity of the
braking behavior. To the best of our knowledge, there are not so many papers that doing
the related field so far. Hence, we present the previous works that are representative of
the cut-in prediction and risk assessment. The works can be classified into two categories,
which are indicator-based methods and motion prediction-based methods.

Indicator-based methods

As the name suggests, the indicator-based method is to extract the cut-in indicators
from the current or history motion states of the ‘lane change scenes, and then applies the
analytical or machine learning methods to map to the future braking behavior of the EV.

Kim et al [16] proposed an analytical method, namely Range-range Plot, to estimate
the braking behavior of EV. In detail, it extracted the longitudinal and lateral gap distances
between EV and LCV as cut-in indicators. After the prediction is applied, the authors
found that the EV is going to apply an emergency brake (a ≥ 0.3 g) if the longitudinal
gap distance is small (≤ 12m) and LCV is at the original lane. After LCV crossed the
lane and was at the target lane, the EV would attempt to release the emergency brake and
switch to a normal deceleration. The prediction results successfully reflected the change
in risk levels of the cut-in process, but the experiment has two drawbacks. First, it failed
to state clearly the prediction horizon. And second, all the experiment was done on the
driving simulator, which has the gap to the real situation.
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Wu et al [19] and Remmen et al [13] proposed machine learning methods to estimate
the braking behavior of EV. In specific, Wu et al extracted THW and longitudinal speed
differences as cut-in indicators. Then it utilized the linear regression model to map the
indicators to maximum braking jerk, average deceleration, and maximum deceleration of
EV respectively. Fair prediction results were conducted, but the experiment exposed the
same problem as mentioned above, which failed to state the prediction horizon.

Similarly, Remmen et al extracted the longitudinal gap distance, lateral gap distance,
longitudinal speed difference, lateral speed difference from the current and previous time
frames as cut-in indicators. Then it utilized ensemble learning consisting of four machine
learning methods to apply the cut-in prediction and risk assessment. The result showed
that the model reaches 83% accuracy for detecting the ongoing cut-in events and 61%
accuracy for predicting cut-in events with the prediction horizon of 1 second. Even if
it proves that the proposed model was able to predict the upcoming cut-in event, the
experiment was not flawless. As a suggestion, it is supposed to select the cut-in indicators
with a high correlation to the upcoming cut-in event.

Motion prediction-based methods

Different from indicator-based methods that solely extract the cut-in indicators from
history data, this type of methods first predicts the future motion of LCV and then checks
if the cut-in event will occur with estimated risks. The core of the method is to predict the
future motion of LCV, and a few existing works have been implemented. Chen et al [10]
proposed a constant velocity model to predict the lateral trajectory of the cut-in vehicles.
Meanwhile, Liu et al [80] applied the motion prediction on LCV using the proposed HMM.
Based on the predicted trajectory segment, it further classified if the future motion was
a cut-in event or a normal lane change. The application was based on motion prediction
methods.

Summary

The two methods above have proven to predict the cut-in event with estimated risks,
however, each method has its drawbacks. For indicator-based methods, some existing
methods do not state the prediction horizon, and some methods failed to evaluate the
performance of each cut-in indicator. For motion prediction-based methods, this research
field is even less rarely investigated. Those methods should be both utilized to conduct
theoretical better results.
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2.4 Summary and comments

In summary, this chapter introduces the existing cut-in definitions to quantitatively
recognize cut-in behavior, the research of cut-in behavior, and the applications about cut-
in prediction and risk assessment, with their pros and cons commented. For the cut-in
definitions, a more comprehensive definition of cut-in event should be proposed with the
criteria concerning about 1) the gap distance between EV and LCV and 2) the braking
response of EV. For cut-in related research, most existing approaches implemented the
offline analysis, and none of them analyzed the specific time of cut-in occurrence. Therefore,
an online-based analysis is needed for the later online cut-in event prediction and risk
assessment. For the application part, a new method is needed to propose with considering
the interaction between EV and LCV. Additionally, the prediction work needs to take
advantage of the results of the motion prediction of LCV, which can be given more useful
indicators and increase the prediction and estimation accuracy.
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Chapter 3

Problem Statement and Proposed
Method Overview

In order to enable the AV to predict the cut-in behavior of LCV and assess its risk, this
chapter focuses on expanding the research question into a practical problem. In particular,
it first describes the specific lane change scene on the highway, then it formulates the
problem by raising some constraints, including the constraints of the physical settings
and the cognitive mutual influence between vehicles. Finally, our method of cut-in event
prediction and risk assessment is proposed, and the corresponding framework is shown.

3.1 Lane change scene

Based on the former experience in the real application, we perceive a lane change
scene on the highway that contains the EV, the LCV, and the LV. The diagram of the
lane change scene is shown in Fig. 3.1. According to the figure, the highway is simplified
as a two-lane road, and the car with lane change behavior is named as LCV marked in
yellow. When LCV starts lane change, the lane it occupies is called the original lane; and
the lane that LCV occupies at the end of lane change is called the target lane. The EV is
the vehicle that is behind LCV at the target lane, and the LV is the vehicle that is in front
of the LCV at the target lane. For EV, only two related vehicles are considered since the
motion of LCV and LV can be fully detected by EV.
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Figure 3.1: Diagram of lane change scene

3.2 Constraints

In the real application, the lane change scenes are not as simple as what we expect in
the diagram above. Instead, there are lots of variations, which makes the problem complex.
To clarify the problem, we specify the necessary constraints, which can be categorized as
physical constraints and cognitive constraints, and the details contents of each constraint
are shown below.

3.2.1 Physical constraints

Physical constraints aim at regulating the variations in physical settings. For exam-
ple, the lane number of the road segment needs to be determined. In addition, we also
need to emphasize the number of traffic participants with their types, and what are their
driving maneuvers according to the physical law. Specifically, the physical constraints are
categorized as road geometry, traffic entity type, and driving behaviors of each vehicle.

• Road geometry: On the highway, two adjacent lanes with the same direction are
only considered. It consists of one carriageway (right) and one overtaking lane (left).
The boundary between lanes is marked as the dashed line, meaning that lane change
behavior is lawfully allowed. No extra ramp or merging lane is shown on the road
segment.

• Traffic entity types: All traffic participants are vehicles in the road segment,
including EV, LCV, and LV. No other traffic participants (i.e. pedestrian, static
obstacles, etc.) are shown in the road segment.
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• Vehicle driving behaviors: LCV applies left lane change, starting on the carriage-
way and ending up on the overtaking lane. During the lane change process of LCV,
the LV, and EV possess lane-keeping behavior.

One thing worth emphasizing is that this thesis only investigates the lane change
behavior. In other words, it means that the LCV has presumably made the decision of
applying lane change. Anything related to lane change decision making is not going to be
considered.

3.2.2 Cognitive constraints

To further formulate the problem, we also consider limiting the constraints that are
caused by cognitive variations. The actions of the traffic participants not only depend on
physical settings but also depend on the states of its nearby participants. For example, the
driver’s lane change action could be applied because there were enough gaps in the target
lane. Also, while the EV noticed that the vehicle is changing the lane, it might keep the
speed or slow down to maintain the sufficient gap distance. Hence, for each traffic agent,
it is necessary to determine its surrounding participants that may affect its action.

In this problem, we check which surrounding vehicles the driver pays attention to
under different driving maneuvers. Based on the research results of Society of Automotive
Engineers (SAE) [7], we find out that under lane-keeping behavior, the average ratio of
driver’s gazing time in the mirror is around 5% over the total driving time. So we can
speculate that the drivers generally pay attention to the front view when the vehicle applies
lane-keeping. The article also shows that under the lane change behavior, the average ratios
of driver’s gazing time in the mirror, on the target lane, and on the original lane are around
10%, 60%, and 30% respectively. Also during the lane change, the driver’s gazing ratio
in the mirror is continuously decreasing while on the target lane is increasing. Based on
the result, we can speculate that while the vehicle is changing lane, the driver pays the
most attention to the LV; meanwhile, it pays much less attention to the EV after the lane
change decision has been made.

This lane change is assumed to occur in mixed traffic, so the LCV and LV are as-
sumed as human drivers, with their movements captured by the perception system of EV.
Additionally, the Vehicle-to-vehicle (V2V) communication is assumed to be unavailable in
the mixed traffic. Hence, only EV and LCV can be fully captured during the lane change
and the other nearby vehicles who may be occluded or do not affect the cut-in event are
not considered.
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By having the supporting conditions above, we make a few cognitive constraints for
the necessary vehicles shown in the problem.

• LV: The motion of the LV has influence on the motion of the LCV and the EV;

• LCV: The motion of the LCV has influence on the motion of EV, and has slight
influence on the motion of LV;

• EV: The motion of EV has slight influence on the motion of the EV and the LCV.

Figure 3.2: Diagram of cognitive constraints between vehicles

We also visualize the cognitive constraints by plotting a diagram, as shown in Fig.
3.2. Each node with its name represents the corresponding vehicle. The black arrow from
A to B represents that the motion of vehicle A has strong influence on B, while the grey
dashed arrow from A to B represents that the motion of vehicle A has slight influence on
B.

By checking those arrows that link two nodes, we find that some pairs of nodes influ-
ence each other, meaning that the interaction between those node pairs exists. To simplify
the diagram, we get rid of the links representing slight influences. The simplified diagram
is shown in Fig. 3.3. Therefore, the simplified cognitive constraints become the following
points below.

• LV: The motion of the LV has influence on the motion of the LCV and the EV;

• LCV: The motion of the LCV has influence on the motion of EV;

Having those design constraints from both physical and cognitive settings finalized, it
is clear enough to propose a series of methods to predict the cut-in event and assess the
risks and solve the formulated problem.
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Figure 3.3: Simplified diagram of cognitive constraints between vehicles

3.3 Proposed methods

In this section, we propose the methods of solving the formulated problem above and
explain the idea according to the diagram of the framework. In detail, we explain how
to decompose the big problem into several small steps and clarify the proposes, corre-
sponding input, and expected outcomes of each step. Finally, we indexed the steps to the
corresponding later chapters of the article.

The diagram of the corresponding framework is shown in Fig. 3.4. In the data ex-
traction step, the valid lane change data is extracted from the naturalistic driving dataset,
which is then used to label the ‘cut-in event’ and ‘normal lane change event’ in the event
labeling step. In the feature extraction and selection step, the extracted lane change data
is first utilized to predict the future trajectory of LCV based on history trajectories of LCV
and LV. Then the data is split into four phases, and the corresponding interaction-related
features are extracted from history trajectories of EV, LCV, and predicted trajectory of
LCV. After that, the drivers’ cut-in responded acceleration data is extracted and normal-
ized as the risk scoring labels in the risk score and labeling step. Having the phase-based
features, the event labels, and the risk score labels prepared, the online cut-in event pre-
diction and the corresponding risk assessment are implemented by utilizing the GMM in
the final step.

The remaining part of the thesis is organized as the following structures: Chapter 4
introduces the data extraction, and Chapter 5 presents the trajectory prediction of LCV
in the feature extraction and selection step and the performance of trajectory prediction.
Chapter 6 details 1) phase-based splitting concept and the feature selection approach and 2)
illustrates the principle of the GMM based predictor and estimator with their performance
results and discussions. Concluding remarks are presented in Section 7.
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Figure 3.4: Diagram of the framework
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Chapter 4

Lane Change and Cut-in Event
Extraction for Experiment Data

The data is the foundation of the later experiment, and its quality can directly affect
the later performances of data-driven methods. In this chapter, our goal is to prepare the
two types of data for 1) LCV motion prediction and 2) cut-in event prediction and risk
assessment respectively. In detail, we select HighD dataset[81] as our data source, and
we show how to extract two types of valid lane change data by proposing the extraction
criteria. Finally for cut-in event prediction and risk assessment, since the cut-in event is
one type of the lane change event, we present the cut-in event extraction criteria to extract
the cut-in scenes among those lane change scenes.

4.1 Dataset

The available public driving and traffic datasets have a wide range of variety, with
each having different research purposes. Therefore, selecting an appropriate data source
as further development is necessary. In this section, we first show the list of criteria that
the dataset should possess, and then we will briefly introduce the dataset, HighD dataset
we decide to use, and how it meets our criteria.
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4.1.1 Dataset selection criteria

Before listing the criteria for the late dataset selection, we recalled the real application
of the research. To realize the trajectory prediction and the cut-in prediction, we need to
detect the movement of the surrounding vehicles. Although the personal driving style is
an important factor to determine a driver’s future actions, it cannot be directly detected.
Hence, we expect the dataset to cover a variety of different lane change settings, and all of
those are driven by different drivers. In this case, although we still don’t know the factor of
the driving style of each driver, this drawback can be recovered by increasing the amount
of learning data, therefore increasing the prediction performance. On the other hand,
the dataset should possess transcendent precision, so the later prediction algorithms could
possess the property of robustness. In summary, we listed the criteria for data selection.

• Precision: The dataset should possess the up-to-date precision from data sampling
and data preprocessing;

• Quantity of lane change scenes: The dataset should contain a large amount
of naturalistic lane change scenes. Each of them should be sampled randomly on
different types of road conditions, and they should be generated by random drivers.

4.1.2 The HighD Dataset

Based on our criteria above, we evaluated the existing popular public traffic dataset.
The naturalistic traffic dataset, Next Generation Simulation (NGSIM) [82], and the HighD
Dataset [81] are commonly used for the related research. Based on Table 4.1, we can see
that the HighD dataset has general better data quality and data variety. HighD Dataset
contains more precise trajectories with existing labels to be used, such as the number of
lane change and neighbor vehicle ID in each trajectory, which makes further development
much easier than NGSIM. About the data variety, the number of lane change trajectory
from HighD dataset is around twice as many as it from NGSIM, meaning that it covers
more types of driving maneuvers. But still, NGSIM has one advantage that cannot be
replaced by HighD Dataset. Since NGSIM was recorded on the road segment with more
lanes and heavier traffic, it shows stronger levels of interaction than HighD dataset. The
rate of lane change is a good indicator to reflect the idea because more vehicles would
choose to change lane in a heavy or congested traffic. Based on the discussion results
above, we chose HighD Dataset as our data source for further research.
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Table 4.1: A comparison between HighD Dataset and NGSIM Dataset

HighD NGSIM

Data quality

Erroneous
trajectories

Less More

Captured
road range

400-420 m 500-640 m

Number of
lanes

2-3 5-6

Preprocessing
procedure

Yes No

Pre-labeled
information

Yes No

Data variety

Traffic type
Light and

heavy traffic
Heavy traffic

Vehicle/trajectory
number

>110,000 9,206

Number of
lane change

> 11,000 5,600

Rate of
lane change

0.10 0.45

Merging scene Yes Yes
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4.2 Lane change scene extraction

To solve the problem described in Chapter 3.3, two units need to be realized: 1)
motion prediction of LCV and 2) cut-in event prediction and risk assessment. The two
units require two different lane change data.

Because HighD dataset has a limited recording range (420 meters), some lane change
trajectories cannot be captured completely. An extraction algorithm is proposed to extract
and the complete lane change scenes for 1) LCV motion prediction and 2) cut-in event
prediction and risk assessment respectively based on the following criteria:

1. The LCV occupies more than one lane during the process;

2. Each lane change scene must include the time of starting lane change (Tstart), crossing
the lane marking (Tcross), and finishing lane change (Tend). It satisfies Tcross ≥ Tstart

and Tend ≥ Tcross. The explanation of Tstart, Tcross and Tend are shown in the Table
4.2;

3. For the lane change data of LCV motion prediction, the corresponding LV must be
within the recording range and possess lane-keeping behavior during the time interval
[Tstart, Tend];

4. For the lane change data of cut-in event prediction and risk assessment, the corre-
sponding rear vehicle (RV) must be within the recording range and possess lane-
keeping behavior during the time interval [Tstart, Tend],

The corresponding diagrams of lane change data are shown in Fig. 4.1. After apply-
ing the algorithm, there are 478 valid left lane change scenes extracted for LCV motion
prediction, and 864 valid left lane change scenes extracted for cut-in event prediction and
risk assessment. Overall, the minimum and the maximum value of lane change duration
are 3.60 and 10.04 seconds respectively. The average duration value is 5.41 seconds and
the standard deviation value is 0.90 seconds.

The definition of Tstart originates from the J2944 by SAE [7]. It is proved as a conser-
vative strategy to specify the start of lane change maneuver from lane-keeping maneuver.
Conversely, the definition of Tend is observed manually. When the lateral velocity decreases
and approaches 0.2 m/s, the LCV lateral deviation to the target lane converges to a certain
value, which is 0.3 m.
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(a) Lane change data for LCV motion prediction

(b) Lane change data for cut-in event prediction and risk
assessment

Figure 4.1: Lane change data for LCV motion prediction

4.3 Interaction-aware cut-in event extraction

To distinguish the cut-in events from the extracted lane change scenes, the differences
between the cut-in and normal lane change events need to be clarified. This section intro-
duces a new method of extracting cut-in events by considering the potential interactions
between LCV and RV.

The conditions of cut-in events are summarized based on the description of the cut-in
event [16]: while the LCV is changing lanes and the driving space of RV is greatly limited,
the driver of RV has to apply emergency brake to avoid crashing. In conclusion, the two
conditions below are satisfied if the cut-in event occurs:

1. The longitudinal gap distance between LCV and RV is small enough and the inter-
action exists;
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Table 4.2: Explanation of the critical timestamps of lane change

Time Explanation

Tstart

While the lateral velocity of LCV is increasing, the
time stamp when lateral velocity of LCV approaches
to 0.34 m/s.

Tcross

After the Tstart occurs, the time stamp when the
geometrical center of LCV covers one of the lane
markings.

Tend

After the Tcross occurs and while the lateral
velocity of LCV is decreasing, the time stamp when
lateral velocity of LCV approaches to 0.2 m/s.

2. RV applies an emergency brake.

To quantify the first condition, the ‘two-second rule’, which is recommended by the
New York State Department of Motor Vehicles (DMV) [83] and Road Road Safety Au-
thority (RSA) in Ireland [84], is used to regulate the gap distance of two vehicles. The
‘two-second rule’ states that the driver is supposed to keep time headway for no less than
2 seconds for a safe car following. On the contrary, if the car-following distance is too close
and the interaction occurs, the rule is violated, which could potentially cause accidents.
Additionally, during the lane change process, the time headway value would reach the
minimum at Tcross. In summary, one way to determine whether the gap distance is close
enough between vehicles is to apply the ‘two-second rule’ at the time step Tcross.

To quantify the second condition, the minimum accelerations of the RV are extracted
and plotted as a histogram, shown in Fig. 4.2. Considering the occurrence rate of the
emergency event as a random variable, this paper proposes a definition, that the rate is
consistent with the ‘one-sigma’ rule: 31.4%. However, the area 31.4% occupies the two
equally extreme parts in the histogram, with the top 15.7% and the tail 15.7%. Eventually,
the histogram with the minimum 15.7% acceleration cases is chosen. It means that from
all lane change scene data, the scenes with 15.7% smallest acceleration values are regarded
to apply emergency brakes. The corresponding threshold that represents the boundary
between the normal brake and emergency brake is 0.92 m/s2.

Based on the two conditions above, the quantitative requirements of the cut-in event
are shown in Equation 4.1, with THW(RV) representing time headway of the RV and a(RV)
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Figure 4.2: Minimum acceleration of the RV in left lane change scenes

representing acceleration of the RV. By applying the cut-in event extraction algorithm, 75
cut-in events are extracted from 478 lane change events.

THW(RV)[Tcross] < 2 s

min(a(RV)[Tstart : Tend]) < −0.92 m/s2

(4.1)

In summary, the cut-in extraction criteria have several merits. First, it is deduced
from the commonly-agreed conception of the ‘cut-in event’. Moreover, it describes the
levels of interaction between the LCV and the RV based on the ‘two-second rule’ from
transportation authorities. The deceleration threshold is reasonable as it is summarized
based on a relatively large volume of naturalistic lane change data.
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Chapter 5

Interaction-aware Motion Prediction
of Lane Change Vehicle

In this chapter, we present the design of an interaction-aware motion prediction al-
gorithm for LCV. The algorithm is able to present real-time prediction, meaning that it
outputs the predicted future trajectory segment based on any parts of the lane change
segment. Additionally, the predicted future movement of LCV considers the potential mu-
tual influence between itself and the lead vehicle. In detail, the design is presented at the
following steps: First, the structure of the algorithm with the configurations, including
input, output, consumed duration, and predicted horizon, is specified. Then, the training
set is processed from lane change data, which includes trimming, data augmentation, and
dimension reduction. Later the training phase and testing phase using GMM is presented.
Finally, the results of motion prediction are discussed.

5.1 Prediction structure formulation

As was discussed in Section 3.3, the future motion of LCV is influenced by LCV itself
and LV. Therefore, the history segments of their trajectories should be both concreted.
For LCV, the lateral distance regarding the crossed lane boundary is important, since it
reflects the process of the lane change maneuver. For both trajectories, the longitudinal
displacement of the trajectory is redundant, because it can be done by integrating the
profile of the longitudinal velocity. However, the longitudinal position difference between
the two vehicles is necessary, as it potentially dominates the level of interaction between
the two vehicles. In summary, the history factors for motion prediction are:
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• Longitudinal and lateral history velocity profiles of LCV and LV;

• The lateral deviation percentage of LCV regarding the crossed lane boundary;

• Lateral behavior of LCV - left lane change or right lane change;

• Longitudinal gap distance between LV and LCV.

Note that hh and hf represent the horizon of history and future trajectory respectively.
Then the predicted trajectory of LCV can be formulated using future factors, which are
longitudinal and horizontal velocity profiles.

Since the prediction algorithm will be built using GMM, which is one type of machine
learning problem. The feature vector can be constructed by concatenating the history
factors, and the label vector can be constructed by concatenating the future factors. How-
ever, the size of both the feature vector and the label vector would become very large and
redundant if the data sampling frequency, history, and future profile duration increases.
For example, the HighD Dataset has a sampling frequency of 25 Hz. If the hh and hf are 1
second and 4 seconds respectively, the feature and label vector size would be 103 and 200,
respectively. The redundant sizes will drag the computation speed for both model train-
ing and trajectory prediction. Another problem is, one of the features, the later velocity
of LCV would be relatively small number varies much small, making the signal-to-noise
ratio large and worse prediction precision. Therefore, dimension reduction and feature
augmentation are crucial tasks to do before the prediction.

5.2 Data preparation

In this section, we introduce the method of data preparation for later training, includ-
ing trimming the lane change data, feature augmentation, and feature dimension reduction
to accord with the formulated structure.

5.2.1 Trajectory trimming

Having a bunch of lane change data with various time duration, we trimmed the data
for the feature vector (history velocity profile) and label vector (future velocity profile)
based on specified history horizon hh and predicted horizon hf respectively. For each lane
change data, we first specify the current time stamp Tc for several times. The Tc starts at
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time stamp of the start lane change . Then the next Tc is specified at 0.2 seconds after the
last Tc. The Tc is pushed forward recursively until the Tc approaches to the time stamp of
the end lane change. For more details about the time stamps of start lane change and end
lane change, see Section 4.2.

Then at each current time stamp Tc, we trimmed the longitudinal velocity profile of
LCV vx(LCV ), lateral velocity profile of LCV vy(LCV ), longitudinal velocity profile of LV
vx(LV ), and lateral velocity profile of LV vy(LV ) at the time interval of [T −hh, Tc] as history
velocity profiles, shown as

vx(LCV ) [Tc − hh, Tc]

vy(LCV ) [Tc − hh, Tc]

vx(LV ) [Tc − hh, Tc]

vy(LV ) [Tc − hh, Tc] .

(5.1)

We also trimmed the longitudinal velocity profile of LCV vx(LCV ), lateral velocity
profile of LCV vy(LCV ) at the time interval of [Tc, Tc+hf ] as future velocity profiles, shown
as

vx(LCV ) [Tc, Tc + hf ]

vy(LCV ) [Tc, Tc + hf ] .
(5.2)

and Equation 5.1 and 5.2 are the history velocity profiles and the future velocity profiles
respectively for the data point.

5.2.2 Feature augmentation

As mentioned in Section 5.1, the profile data is supposed to apply feature augmen-
tation and dimension reduction. For feature augmentation, we simply transformed the
longitudinal and lateral velocity profile into polar coordinates, which is vψ-coordinate.
The v represents the speed scalar, and ψ represents heading angle of the vehicle. In each
time step T , the scalar velocity v [T ] and heading angle ψ[T ] of the vehicle are given as:

v[T ] =
√

(vx[T ])2 + (vy[T ])2 , (5.3)
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and

ψ[T ] = arctan
vy[T ]

vx[T ]
, (5.4)

where vx[T ] and vy[T ] are longitudinal and lateral velocity value in time step T .

In the real implementation, we transformed the ψ[T ] from radius into degree for more
obvious observation of lateral movement.

5.2.3 Feature dimension reduction

For dimension reduction, we applied Chebyshev polynomial to fit each profile. The
coefficients of the fitted polynomial are utilized as a part of the feature vector for the later
GMM model. First, we defined the Chebyshev polynomial Yn of degree n as

Yn(x) = cos(n arccos(x)) , (5.5)

that contains trigonometric property but is able to represent as polynomial. When n = 0
and n = 1, the two polynomials are shown as

Y0(x) = 1 (5.6)

Y1(x) = x (5.7)

and the higher order polynomials can be calculated with iteration, as given

Yn+1(x) = 2xYn(x)− Yn−1(x) ,where n ≥ 1. (5.8)

To fit a function f(x) in the interval [−1, 1], the Chebyshev coefficients can be defined
as

cn =
2

N

N−1∑
k=0

f (xk)Yn (xk) (5.9)

where xk are the N zeros of Yn (xk). The discrete velocity profile can be approximated using
the least square approximation to calculate the coefficients, that representing the velocity
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profile. Based on the function complexity of the velocity profiles, the highest degree is
determined as n. The time intervals of the velocity profiles are mapped as the interval
[−1, 1] for easier function reconstruction. It reduces the feature dimension by transforming
the velocity profile with size Rh×f to the array of coefficients c ∈ Rn+1, where h, f represent
segment horizon and sampling frequency respectively.

The highest degree of the function contains, the better approximation ability it has
with higher numbers of coefficients. Hence, an optimal degree of n can balance the good
fitting performance and small dimension size. To find the optimal highest degree number n,
we compared the fitting performance under different numbers of highest degrees. In detail,
we extracted a longitudinal speed profile from an arbitrary trajectory of HighD dataset.
The trajectory lasts eight seconds with 200 samples in total. Then we applied least square
regression to fit it as Chebyshev polynomial with the highest degree from 1 to 6. Finally,
we recovered the polynomial coefficients to be the trajectories. The performance results
are shown in Fig. 5.1.

Figure 5.1: Performance of the Chebyshev polynomial fit

Based on the results, we conclude that the 4th-degree Chebyshev polynomial fit reaches
excellent performances of data approximation while also reaching the purpose of feature
dimension reduction. The reduced features greatly reduce the computational load of the
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learning model, which will assist the online application performance of the latter prediction.

5.2.4 Processed data format

After the three steps of data preparation, including trajectory trimming, feature aug-
mentation, and dimension reduction, the processed training data are concatenated as the
input feature vector, shown as

xf =

[
Chist−v(LCV ) Chist−ψ(LCV ) Chist−v(LV ) Chist−ψ(LV ) dy(LCV ) by(LCV ) ∆dx

]
,

(5.10)

where the first four factors are n-th degree Chebyshev coefficient arrays of LCV history
velocity profile, LCV history heading angle profile, LV history velocity profile, and LV
history heading angle profile respectively. The fifth factor is lateral deviation percentage
of LCV regarding the crossed lane boundary at the current time frame. The sixth factor is
the categorical value of lateral behavior of LCV, which ‘0’ stands for left lane change and
‘1’ stands for right lane change. The seventh factor is the longitudinal gap distance of two
vehicles at the current time frame.

The corresponding processed label data are concatenated as the input label vector,
shown as

xl =

[
Cfut−v(LCV ) Cfut−ψ(LCV )

]
, (5.11)

where the two factors represent n-th degree Chebyshev coefficient arrays of LCV future
velocity profile, LCV history heading future profile. It is also the ground truth in the
prediction phase.

5.3 Gaussian mixture model-based motion prediction

In this section, we present the motion prediction algorithm based on Gaussian mixture
model (GMM), due to its excellent representation property. In details, we represent the
training step and the prediction step of the model, and finally show the reconstruction
step, that rover the predicted result to the predicted trajectory.
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5.3.1 Training step

The GMM is a function that describes probability density parametrically. Its structure
is formed by an arbitrary number of weighted Gaussian probability density functions. The
generic formula of GMM is shown as:

p(x) =
K∑
k=1

πkN (x|µk,Σk) , (5.12)

where x is a d -dimensional random variable, and N (x|µk,Σk) is a multivariate normal
distribution with mean µk and covariance Σk. K represents the number of mixed Gaussian
kernels of GMM, and πk is the weighting coefficient that satisfies:

0 ≤ πk ≤ 1∑K
k=1 πk = 1.

(5.13)

In the training phase, the Expectation-Maximization (EM) algorithm iteratively con-
sumes all pieces of training data and produces the model parameters [85]. The form of the
input data point is the concatenation of input feature vector xf and input label vector xl,
shown as

x =
[
xf xl

]
, (5.14)

where the format of xf and xl is shown in Section 5.2.4

Before the training starts, there are three parameters need to be specified. The Gaus-
sian kernel number K is to determine the complexity of GMM, while the convergence
threshold hconv and the maximum iteration Jmax are to jointly determine the model accu-
racy and training speed.

5.3.2 Prediction step

As the training is done, the trained model with parameters πk, µk and Σk, describes
the joint mixture distribution of xf and xl. Motion prediction of LCV is to compute the
conditional distribution of estimated label x̃l given a test feature vector xf and trained
GMM. The conditional distribution can also be written as:
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p (x̃l|xf ) =
p (xf , x̃l)∫
p (xf , x̃l) dx̃l

=
K∑
k=1

π̃kN
(
x̃l|xf , µ̃k, Σ̃k

)
,

(5.15)

which is still the Gaussian mixture form. The parameters of the conditional mixture are
given as:

π̃k =
πkN

(
xf |µk,xf ,Σk,xfxf

)
∑K

j=1 πjN
(
xf |µj,xf ,Σj,xfxf

) (5.16)

µ̃k = µk,xl + Σk,xl,xf Σ
−1
k,xfxf

(
xf − µk,xf

)
(5.17)

Σ̃k = Σk,xlxl −Σk,xlxf Σ
−1
k,xfxf

Σk,xfxl , (5.18)

where

µk =

[
µk,xf
µk,xl

]
(5.19)

Σk =

[
Σk,xfxf Σk,xfxl

Σk,xlxf Σk,xlxl

]
(5.20)

is the partition of means and covariance of the GMM.

The mean and the covariance of the estimated label are specified as the full conditional
distribution, which are given as:

µ̃ =
K∑
k=1

π̃kµ̃k (5.21)

Σ̃ =
K∑
k=1

π̃2
kΣ̃k . (5.22)
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5.3.3 Reconstruction step

In the reconstruction step, the predicted results are able to be recovered to the pre-
dicted trajectory. The estimated mean value µ̃ is selected as the predicted results. It is also
consisted with the concatenation of two Chebyshev coefficient arrays, with one represents
predicted future velocity profile and the other represents predicted future heading angle
profile, shown as

x̃l = µ̃ =

[
C̃fut−v(LCV ) C̃fut−ψ(LCV )

]
. (5.23)

By reconstructing the C̃fut−v(LCV ) and C̃fut−ψ(LCV ) through Chebyshev polynomial,
we get the predicted velocity profile ṽx(LCV ) and heading angle profile ṽx(LCV ) in the time
interval [Tc, Tc + hf ], where Tc represents the current time step and hf represents prediction
horizon. After transforming them into XY-coordinate, we get the longitudinal and lateral
speed profile of predicted LCV. Finally, the trajectory of LCV can be calculated through
simple integrations.

5.4 Results and discussion

In this section, we do a comprehensive evaluation of the motion prediction algorithm.
In order to get the optimal configuration of the model design, we try to answer the different
questions:

1. What is the optimal number of Gaussian kernel of the model?

2. Does the model with interaction-aware features show better performance on predic-
tion than the same model without interaction-aware features?

To answer the questions above, we design the experiments on the following evaluation
procedures. To answer the first question, we train several models using different Gaussian
kernel number K and examine the accuracy of each model by calculating in longitudinal,
lateral, and Euclidean root mean square error (RMSE) under different prediction horizons.
The example format of accuracy metrics is shown in Table 5.1. To answer the second
question, we prepare another training model with the same configurations and training
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data, except that the input training vector only contains the Chebyshev polynomial ef-
ficient arrays of LCV. The next section shows the detailed procedures of deducing the
optimal configuration of the model, and the later section compares the performances be-
tween our purposed interaction-aware motion prediction algorithm and the same model
without considering interaction-aware features.

Table 5.1: Example format of performance results

Prediction horizon
Accuracy 1 2 3 · · ·
Longitudinal · · · · · · · · · · · ·
Lateral · · · · · · · · · · · ·
Euclidean · · · · · · · · · · · ·

5.4.1 Influences of Gaussian kernel number to performances

To evaluate how does the Gaussian kernel number influence the prediction perfor-
mance, we first collect 20, 000 numbers of data points in total. Training for the GMM is
done by using the aforementioned EM algorithm with numbers of iteration Jmax = 1000
and convergence threshold value hconv = 0.001.

Since the amount of data influences the complexity of the model, therefore we find
the optimal Gaussian kernel number K for each data. The optimal K is specified based on
Akaike Information Criterion (AIC), which is a standard to evaluate how good a model can
fit the data. A good machine learning model possesses the model complexity that neither
underfit nor overfit the data, and the optimal complexity can be located using the plot of
AICs under different model complexity. To find the optimal K, we plot the AICs under
different K as shown in Fig. 5.2, where x-axis represents Gaussian kernel number K of
GMM and y-axis represents the AIC values. The optimal K number is the ‘elbow point’
of the profile, which is marked in red From the figure, we can see that the optimal K =
1200.

To prove that if the optimal condition reaches if K = 1200, we use the same data to
train four models with different K and test their accuracy. Those four models are consisted
of 100, 600, 1200, and 1700 Gaussian kernels respectively. The training and testing follow
the ‘10 times 10-fold’ cross-validation principle. Therefore, 90% of the data set are used for
training, and the remaining 10% are used for testing. The results of the models are shown
in Table 5.2, and the corresponding visualization of the performance is shown in Fig. 5.4.
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Table 5.2: Performances of the prediction models

(a) GMM with K = 100

Prediction horizon (in seconds)
RMSE 1 2 3 4
Longitudinal 0.0058 0.0362 0.1094 0.2352
Lateral 0.0062 0.0292 0.0641 0.0990
Euclidean 0.0094 0.0516 0.1387 0.2728

(b) GMM with K = 600

Prediction horizon (in seconds)
RMSE 1 2 3 4
Longitudinal 0.0051 0.0275 0.0769 0.1564
Lateral 0.0056 0.0218 0.0431 0.0621
Euclidean 0.0084 0.0387 0.0956 0.1781

(c) GMM with K = 1200

Prediction horizon (in seconds)
RMSE 1 2 3 4
Longitudinal 0.0047 0.0226 0.0605 0.1215
Lateral 0.0051 0.0184 0.0354 0.0505
Euclidean 0.0077 0.0322 0.0763 0.1401

(d) GMM with K = 1700

Prediction horizon (in seconds)
RMSE 1 2 3 4
Longitudinal 0.0046 0.0210 0.0553 0.1097
Lateral 0.0046 0.0172 0.0329 0.0470
Euclidean 0.0075 0.0300 0.0700 0.1271
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Figure 5.2: AIC values under different Gaussian kernel numbers of GMM

There are some general findings based on the plot. Under similar cases, the perfor-
mances of the lateral prediction are better than the longitudinal since the scale of movement
on longitudinal is much larger than the lateral one. And the RMSE does not show the lin-
ear relationship with the prediction horizon - the RMSE possesses the exponential growth
as the prediction horizon increases.

To prove if the model complexity reaches optimal asK = 1200, we test the performance
of the model under different K. From the results, we can see that the accuracy is going
to converge as the K increases from 100 to 1700. In detail, when K increases from 100
to 600, the accuracy is greatly improved. As the K continue increasing from 600 to 1200,
the accuracy is still improving with a smaller scale. As the K increase from 1200 t0 1700,
the performance shows only a minor increase. Based on the results, we can see that the
model is underfitting and approach to overfitting as K increases. Hence, we can conclude
that the K = 1200 cannot be guaranteed to be the optimal condition, but it is close to
the optimal condition. The result of a typical prediction with K =1200 is visualized and
shown in Fig. 5.3.

5.4.2 Effect of interaction-aware features on prediction

To test the effect of the interaction-aware feature on model performance, we compare
the proposed method with the equivalent model without interaction-aware features, and it
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Figure 5.3: An example of the LCV motion prediction result

is regarded as a baseline method.

The performances of the comparison are shown in Table 5.3. Note that the two models
are trained under the same configuration: the number of Gaussian kernel components
is K = 200, and the training is also done by using the aforementioned EM algorithm
with numbers of iteration Jmax = 1000 and convergence threshold value hconv = 0.001.
Additionally, the training and testing data are identical, with the amount of 14, 000. Both
models are tested by ‘10 times 10-fold’ cross-validation. The horizons of history trajectory
are both set as hh = 1 second and the horizons of predicted trajectory are both set as
hf = 6 seconds. To make the later comparison more straightforward, we visualize the
results and plot as shown in Fig. 5.5.

Based on the figure, we can see that both the baseline model and the proposed model
share some similarities. Their performances of the lateral prediction are better than the
longitudinal one. The RMSE shows the exponential growth as the prediction horizon is
linearly increasing. However, compared with their performances, we found out that the
proposed model shows obvious better performances on the longitudinal accuracy. As for
the lateral prediction, however, shows minor better performances than the baseline model.
The reason is that the interaction-aware features of the proposed model are the history
trajectory of LV with the lane-keeping maneuver. Therefore, the longitudinal factor shows
more useful information than the lateral ones. Based on the discussion above, we conclude
that the interaction-aware features are necessary for improving prediction accuracy.
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Figure 5.4: RMSE under different amount of Gaussian kernels

45



Table 5.3: Performances of the proposed and the baseline method

(a) Proposed interaction-aware prediction

Prediction horizon (in seconds)
RMSE 1 2 3 4 5 6
Longitudinal 0.0058 0.0309 0.0866 0.1766 0.3011 0.4594
Lateral 0.0067 0.0267 0.0516 0.0752 0.0932 0.1063
Euclidean 0.0097 0.0452 0.1100 0.2048 0.3295 0.4854

(b) Baseline prediction

Prediction horizon (in seconds)
RMSE 1 2 3 4 5 6
Longitudinal 0.0065 0.0376 0.1124 0.2391 0.4206 0.6556
Lateral 0.0071 0.0302 0.0614 0.0923 0.1177 0.1372
Euclidean 0.0104 0.0534 0.1391 0.2721 0.4546 0.6874

Figure 5.5: Performances of the proposed and the baseline prediction methods

46



Chapter 6

Online Cut-in Event Prediction and
Risk Assessment

In this chapter, we present the design of online cut-in event prediction and risk as-
sessment algorithms. As mentioned in Chapter 4.2, the typical lane change duration lasts
from 3.6 to 10.4 seconds. During a such long process, the driving actions will keep chang-
ing and the cut-in event may be thereby triggered. To achieve the online cut-in event
prediction and risk assessment, we developed a phase-based splitting method to segment
the extracted lane change process into several different phases, and the two algorithms are
applied to predict the cut-in event and estimate the risk of the next phase based on the
current phase.

6.1 Structure formulation

As was discussed in Chapter 3.3, the occurrence of the cut-in event is related to two
factors: one is the abnormal lane change of the LCV, and the other one is determined by
the state of the ego vehicle EV. Therefore, the history information of both LCV and EV is
supposed to be concerned. Additionally, by knowing the predicted trajectory of LCV, the
cut-in prediction can be better handled. To get the predicted trajectory of LCV, Chapter
5 presents the comprehensive implementation of LCV motion prediction design. Hence,
the history information of EV, LCV, and predicted future information of LCV are going
to be concerned about the cut-in prediction and risk estimation.

To realize the online prediction and risk estimation, we proposed a phase-based split-
ting method. In the state-of-the-art, the cut-in related research was extensively investi-
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gated, but only a few publications focus on the cut-in event prediction and estimation. In
the existing methods, the prediction and estimation methods are only applied once in each
lane change event, which cannot reach the online prediction. Therefore, our methods filled
the research gap by dividing the lane change process into four phases, and our proposed
phase-based prediction and estimation algorithms can be applied four times in each phase
to reach the online application. The diagram of the online application in a lane change
process is shown in Fig. 6.1,

Figure 6.1: Diagram of online cut-in event prediction and risk estimation

where the blue dots marked on the timeline are the time stamps of each application. TP0/P1,
TP1/P2, TP2/P3, TP3/P4 mean the time stamps of the edges of the two neighbor phases. ‘P0’,
‘P1’, ‘P2’, ‘P3’, and ‘P4’ represent ‘Phase 0’, ‘Phase 1’, ‘Phase 2’, ‘Phase 3’ and ‘Phase 4’
respectively. When the current time Tc reaches Tc = TP [n]/P [n+1], the detailed procedures
are:

1. Predict the future motion of LCV in the time interval [Tc, Tc + hf ], where hf stands
for the prediction horizon;

2. Based on the predicted motion, estimate the ending point of the next phase T̃P [n+1]/P [n+2],

and trim the predicted trajectory to the time interval [Tc, T̃P [n+1]/P [n+2]]. Note that

Tc + hf > T̃P [n+1]/P [n+2];
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3. Extract the features from the history trajectories of EV and LCV in Phase n, and
from the trimmed predicted trajectory of LCV in the time interval [Tc, T̃P [n+1]/P [n+2]];

4. Apply phase-based cut-in event prediction and risk estimation based on the feature,
and be given the predicted event and estimated risk.

The following sections are presented in the following way. First, we introduce the
phase-based splitting method. Then, the feature extraction including the necessary analysis
is presented. Later, the design of event prediction and risk estimation is shown, which is
followed by the results and discussion.

6.2 Phase-based splitting method

lane change is a complex action and cut-in is a kind of lane change. Splitting the lane
change into several phases is able to decompose the maneuver into simple actions. The
previous research of lane change [86] states that the lane change process can be divided into
four segments based on the analysis of the steering wheel profile. An algorithm is proposed
to split the cut-in into four phases, and the detailed criteria are shown in Table 6.1. Before
lane change (P1) starts, ‘P0’ is defined for representing the time interval before the lane
change. The P0 starts at 2.5 seconds before P0/P1, which represents that the driver starts
the lane change event at the average time of 2.5 seconds before the lane change event is
observed by other vehicles [87].

When P0 ends and P1 starts, the variable representing the deviation to the lane
boundary is defined as Ydev, with the current value recorded as dstart. In addition, the
criteria of 2

3
dstart utilized to split P1/P2, and P3/P4 can make four duration distributions

relatively even. The duration distributions of four phases are shown in Fig. 6.2. This
phase-based splitting method will be applied in the phase split of cut-in events.

6.3 Phase-based feature selection

After each trajectory is split into four phases, the dynamic features are extracted
in each phase, shown in Table 6.2, with X, Vx, Vy, ax, and ay representing longitudinal
distance, longitudinal velocity, lateral velocity, longitudinal acceleration, and lateral ac-
celeration respectively. The THW and ψ represent THW and heading angle respectively.
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Table 6.1: Phase split criteria

Time frame Criteria

P0 starts Tstart − 2.5s

P0 ends/P1 starts Tstart

P1 ends/P2 starts when Ydev = 2
3
dstart on the current lane

P2 ends/P3 starts Tcross

P3 ends/P4 starts when Ydev = 2
3
dstart on the target lane

P4 ends Tend

Figure 6.2: Box plot of phase duration
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Features with ‘ ˜ ’ (tilde sign) means that they are extracted from the predicted trajec-
tory. Every feature is classified based on direction (including longitudinal, lateral, and
yaw) and vehicle category (LCV-related, EV-related, interaction-related features). Within
the extracted features, three interaction-related features are included. Since each extracted
feature is a continuous time-series data, their maximum value, minimum value, and average
values are calculated as the final set of features.

Table 6.2: Extracted features for deceleration analysis

Longitudinal Lateral Yaw

LCV-related Vx, ax, Ṽx, ãx Vy, ay, Ṽy, ãy ψ

EV-related Vx, THW

Interaction-related ∆X, ∆V , ∆X
Vx (EV)

In this step, the features that can characterize the cut-in event are selected as the
cut-in features for the later model design. Since the minimum acceleration of the EV
(min ax(EV)) is an important factor to determine the cut-in event, this section shows the
Pearson’s correlation coefficient r of each feature in phase n and min ax(EV) in phase n+1.
The results are shown in Table 6.3. The signs ‘*’ and ‘**’ indicate that the significance
(p-values) are at 0.05 and 0.01 level, respectively.

Among these 12 features, only eight features of phase n show the significant corre-
lations with min ax(EV) of phase n+1. These eight features are ranked out based on the
average value of r: the average speed difference (r = 0.3725), the minimum value of speed
difference over EV velocity (r = 0.2582), the minimum gap distance (r = 0.2331), the av-
erage LCV acceleration (r = 0.2326), the predicted average LCV velocity (r = 0.2153), the
predicted minimum LCV acceleration (r = 0.2075), the average LCV velocity (r = 0.1849)
and the minimum EV THW (r = 0.1727). These eight features are selected and going to
be used for cut-in event prediction and risk estimation. The selected eight features are all
longitudinal-based, including three interaction-related features. On the contrary, none of
the lateral-based and yaw-based features are selected. This finding is consistent with the
conclusion from [5], showing that the lateral features do not possess significant correlations
with the future occurrences of the cut-in behavior.
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Table 6.3: Pearson’s correlation coefficients between the features in phase n and
minimum ax(EV) in phase n+1

Average
ax(LCV)

Minimum
∆X
Vx(EV)

Average
∆V

Minimum
∆X

Minimum
THW(EV)

P0− P1 0.2295** 0.2339** 0.1490** 0.2372** 0.1934**
P1− P2 0.2555** 0.2607** 0.3958** 0.2193** 0.1438**
P2− P3 0.2019** 0.2730** 0.4717** 0.2307** 0.1531**
P3− P4 0.2436** 0.2653** 0.4735** 0.2450** 0.2213**
Average 0.2326 0.2582 0.3725 0.2331 0.1779

Average
Vx(EV)

Average
Vx(LCV)

Maximum
Vy(LCV)

Maximum
ay(LCV)

Maximum
ψ(LCV)

P0− P1 -0.0502 0.1570** 0.0856 -0.0912 -0.0628
P1− P2 -0.1062 0.1515** 0.0554 0.0297 -0.0625
P2− P3 -0.1040 0.1931** 0.0217 0.0018 -0.1226*
P3− P4 -0.0662 0.2102** -0.0784 -0.0798 -0.1953**
Average -0.0817 0.1779 -0.0422 -0.0349 -0.1108

Minimum
ãx(LCV)

Minimum
ãx(LCV)

Average

Ṽx(LCV)

Minimum

Ṽx(LCV)

P0− P1 0.2330** -0.1243* 0.1786** -0.1555**
P1− P2 0.1990** -0.1378* 0.2284** -0.1704**
P2− P3 0.1982** 0.0476 0.2214** -0.1317*
P3− P4 0.2000** 0.0087 0.2327** 0.0058
Average 0.2075 -0.0515 0.2153 -0.1130
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6.4 Online cut-in event predictor and risk estimator

To enable AVs to achieve online cut-in event prediction and risk estimation, this section
presents the detailed design of the phase-based cut-in event predictor and the estimator.
GMM is chosen as the machine learning model of the predictor and the estimator, due to
its excellent representation properties.

6.4.1 Design of phase-based cut-in event predictor

To realize the phase-based online prediction, three sub-predictors are designed for
predicting the cut-in event of phase 1, phase 2, phase 3, and phase 4 based on features
of phase 0, phase 1, phase 2, and phase 3, respectively, with each constructed based on
GMM. The GMM is a function that describes probability density parametrically. The
structure of GMM is formed by an arbitrary number of weighted Gaussian probability
density functions. The general form of GMM is shown as:

p(x) =
K∑
k=1

πkN (x|µk,Σk) , (6.1)

where x is a d -dimensional random variable, and N (x|µk,Σk) is a multivariate normal
distribution with mean µk and covariance Σk. K represents the number of mixed Gaussian
kernels of GMM, and πk is the weighting coefficient that satisfies:

0 ≤ πk ≤ 1∑K
k=1 πk = 1.

(6.2)

In the training phase, the EM algorithm iteratively consumes all pieces of training
data and produces the model parameters [85]. The form of the input training data point
is shown as:

x =
[
xf xl

]
, (6.3)

where

xf =
[
ax(LCV )

∆X
Vx(EV )

∆V ∆X THW(EV ) Vx(LCV ) Ṽx(LCV ) ãx(LCV )

]
(6.4)
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is the vector, with including the features of the current phase n, and xl is the predictor
label of the next phase n+1, with the binary form of 1 for ‘cut-in event’ and 0 for ‘normal
lane change event’.

Before the training starts, there are three parameters need to be specified. The Gaus-
sian kernel number K is to determine the complexity of GMM, while the convergence
threshold hconv and the maximum iteration Jmax are to jointly determine the model accu-
racy and training speed.

The trained model with parameters πk, µk, and Σk, describes the joint mixture dis-
tribution of xf and xl. Cut-in event prediction is to compute the conditional distribution
of estimated label x̃l given a test feature vector xf and trained GMM. The conditional
distribution can also be written as:

p (x̃l|xf ) =
p (xf , x̃l)∫
p (xf , x̃l) dx̃l

=
K∑
k=1

π̃kN
(
x̃l|xf , µ̃k, Σ̃k

)
,

(6.5)

which is still the form of Gaussian mixture. The parameters of the conditional mixture are
given as:

π̃k =
πkN

(
xf |µk,xf ,Σk,xfxf

)
∑K

j=1 πjN
(
xf |µj,xf ,Σj,xfxf

) (6.6)

µ̃k = µk,xl + Σk,xl,xf Σ
−1
k,xfxf

(
xf − µk,xf

)
(6.7)

Σ̃k = Σk,xlxl −Σk,xlxf Σ
−1
k,xfxf

Σk,xfxl , (6.8)

where

µk =

[
µk,xf
µk,xl

]
(6.9)

Σk =

[
Σk,xfxf Σk,xfxl

Σk,xlxf Σk,xlxl

]
(6.10)
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is the partition of means and covariance of the GMM.

The mean and the covariance of the estimated label are specified as the full conditional
distribution, which are given as:

µ̃ =
K∑
k=1

π̃kµ̃k (6.11)

Σ̃ =
K∑
k=1

π̃2
kΣ̃k . (6.12)

To recover the predicted results as the categorical form instead of distribution, a
threshold value of 0.5 is set and compared with the output mean value. If the estimated
mean value µ̃ satisfies µ̃ ≥ 0.5, the prediction result is a cut-in event. r

6.4.2 Design of phase-based cut-in event risk estimator

The configuration of the phase-based cut-in event risk estimator is similar to the design
of the aforementioned predictor, except that the label is risk scores, which is designed based
on the human driver’s cut-in response.

From the training data, the EV minimum acceleration min a(EV) of the next phase is
extracted as the factor of the risk scores. The idea of the risk estimator is essentially to
estimate ‘what would be the acceleration of the human drivers applied if they encountered
the same cut-in situation’. Showing as the human driver’s longitudinal response, the mini-
mum acceleration of EV has two merits as the risk scoring factor. First, it can imitate the
human sense of the risk levels. When the AV considered interactions with the surrounding
human-driven vehicles, the human-like risk outcomes would potentially assist the AVs to
achieve better decision-making strategies. Second, the driver’s response acceleration can
also objectively reflect the risk level. According to the statistics of ‘100-Car Naturalistic
Driving Study’ by NHTSA [88], the extreme deceleration of the rear vehicle possesses a
positive correlation with the rear-end accident rate. In summary, this scoring factor can
reflect not only the subjective human-like risk level but also the objective risk level due to
the correlation with the statistical accidental rate.

After the extraction, min a(EV) is normalized by a mapping function, shown as:

Risk % = 1− 1

1 + e−α(m−β)
, (6.13)
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where

m = min a(EV), (6.14)

and α, β are the parameters. It normalizes the minimum acceleration min a(EV) ∈ (−∞,
∞) to the range (0, 1), with 0 for ideally no risk and 1 for the theoretically maximum
risk. Based on the cut-in data, the values of α and β are determined as α = 2.031 and
β = −0.92, so that outcome risk scores of the least to the riskiest cut-in events are mapped
from the value of 0.5 to 0.95. The score below 0.5 represents normal lane change events.

Due to the GMM, the estimated output is also a distribution form, so the output
mean value is extracted as the estimated risk score.

6.5 Results and discussions

For the evaluation of the proposed predictor and the estimator, a Constant Accelera-
tion(CA) model is introduced as the baseline cut-in event predictor and the baseline risk
estimator for comparison. By assuming the acceleration constant, it estimates phase n+1
as the cut-in event if the phase n is a cut-in event, with the equivalent risk scores.

6.5.1 Phase-based cut-in event predictor

To evaluate the phase-based cut-in event predictor, 478 numbers of lane change data,
with the cut-in event labels included in each phase, are utilized for training and testing.
Training for the GMM is done with K = 75 components, by using the aforementioned EM
algorithm with numbers of iteration Jmax = 1000 and convergence threshold value hconv =
0.001.

The results of the proposed method and the baseline method are shown in Table 6.4.
The better results are marked in bold. Comparing with the baseline, the proposed cut-in
event predictor shows overall higher accuracy, precision, recall, and F1-scores. However,
the recall values of ‘phase 3 to phase 4’ prediction are not ideal (88.9%), since the cut-in
data is not balanced for training.

In Phase 0 to 1, both predictors show the perfect results. This does not approach to
realistic because the cut-in cases in Phase 1 have only three cases out of 370. If the cut-in
cases could be increased, the results would be more realistic.
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Table 6.4: Phase-based cut-in prediction results of the proposed method and the baseline
method

Phase 0 to phase 1

Predicted results
Normal Cut-in Accuracy Precision Recall F1-score

Proposed
method

Ground
truth

Normal 367 0
100.0% 100.0% 100.0% 100.0%

Cut-in 0 3
Baseline
method

Ground
truth

Normal 367 0
100.0% 100.0% 100.0% 100.0%

Cut-in 0 3

Phase 1 to phase 2

Predicted results
Normal Cut-in Accuracy Precision Recall F1-score

Proposed
method

Ground
truth

Normal 354 1
99.5% 93.3% 93.3% 93.3%

Cut-in 1 14
Baseline
method

Ground
truth

Normal 354 1
98.4% 91.0% 66.7% 76.8%

Cut-in 5 10

Phase 2 to phase 3

Predicted results
Normal Cut-in Accuracy Precision Recall F1-score

Proposed
method

Ground
truth

Normal 340 0
99.7% 100.0% 96.7% 98.3%

Cut-in 1 29
Baseline
method

Ground
truth

Normal 334 6
94.6% 72.2% 53.3% 61.5%

Cut-in 14 16

Phase 3 to phase 4

Predicted results
Normal Cut-in Accuracy Precision Recall F1-score

Proposed
method

Ground
truth

Normal 343 0
99.5% 100.0% 88.9% 94.1%

Cut-in 3 24
Baseline
method

Ground
truth

Normal 339 4
97.0% 83.3% 74.1% 78.4%

Cut-in 7 20
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The false positive of the proposed predictor is small, meaning that it seldom fails to
predict the cut-in scene as the normal lane change scene. It shows the conservative property
of the predictor, as it has a small probability underestimating the risk. By comparison,
the baseline shows larger false negative values of ‘phase 1 to phase 2’, ‘phase 2 to phase
3’, and ‘phase 3 to phase 4’, meaning that the proposed cut-in event predictor is proven to
have better safety qualification in the real application.

6.5.2 Phase-based cut-in risk estimator

The phase-based cut-in risk estimator is trained by the GMM model that shares the
same configuration as the predictor, with K = 75, hconv = 0.001 and Jmax = 1000. The
metrics of the proposed method and the baseline method are measured by mean absolute
error (MAE), as shown in Table 6.5. The better results are marked in bold under the same
conditions. Generally, the performance of the proposed estimator outperforms the baseline.
Under different conditions, the performance of the proposed method in the normal lane
change event is better than that in the cut-in event because the training data for normal
lane change event is more sufficient than the cut-in ones.

Next is to measure the performances of the proposed estimator at different risk levels.
The scenes are separated into 15 subsamples based on the ground truths of their risk
scores. Each subsample goes through the risk estimator and the corresponding MAE is
calculated. Fig. 6.3 shows the MAE in different ranges of the ground truth in P0-P1,
P1-P2, P2-P3, and P3-P4 respectively. The model shows better performance under the
conditions ranging from 0 to 0.3, and after 0.3 the results become oscillating. One possible
reason is that the data is imbalanced and more than half of the training data is focusing
on that range. If more training data with balanced samples were offered, the performance
of the risk estimator would be thereby improved.
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Table 6.5: Mean absolute error of the risk estimator

Mean absolute error (MAE)
Overall Cut-in Normal lane change

P0-P1
Proposed
method

0.0081 0.0130 0.0082

Baseline
method

0.0246 0.0064 0.0247

P1-P2
Proposed
method

0.0104 0.0365 0.0093

Baseline
method

0.0288 0.0553 0.0277

P2-P3
Proposed
method

0.0126 0.0263 0.0113

Baseline
method

0.0517 0.1226 0.0455

P3-P4
Proposed
method

0.0140 0.0197 0.0135

Baseline
method

0.0365 0.0884 0.0324

Figure 6.3: MAE in different ranges of the ground truth
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Chapter 7

Conclusion and Future Work

The AVs are the future of transportation as they have the promising effect of increasing
traffic safety and commuting efficiency. However current AVs can hardly understand the
driving intention of the nearby human-driven vehicles in the mixed traffic, and it is difficult
for them to foresee the risky driving behaviors, like cut-in behavior, from the nearby
vehicles. To deal with the problem, this thesis proposes an interaction-aware cut-in event
prediction and risk assessment framework based on naturalistic driving data. Moreover, it
enhanced the application performances by achieving online prediction and risk assessment,
considering the interaction between vehicles. The original contributions of this work are
made and summarized as followings:

1. A novel phase-based method for cut-in analysis is proposed and implemented for event
prediction and risk estimation. This novel method is used in online applications and
is demonstrated to improve the safety of AV.

2. A Gaussian mixture model-based interaction-aware motion prediction algorithm is
applied for predicting the future trajectory of lane change vehicles. The predicted
outcome provides more features for the later cut-in event prediction and risk assess-
ment, thus increasing the prediction accuracy.

3. Interaction-aware features extracted from the past trajectories and predicted future
trajectories are selected for cut-in event prediction and risk assessment, and enhanced
prediction and estimation performances are achieved compared to the baseline meth-
ods without considering the interaction. This extends the previous cut-in studies from
local features of a single-vehicle to interaction-aware features that comprehensively
considering the interaction process between vehicles, which is closer to reality.
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To the best of the authors’ knowledge, the proposed work is the first attempt so far
to realize online cut-in event prediction and its risk assessment considering interactions.
The proposed design enables autonomous vehicles to foresee the risky cut-in behavior of
the front vehicles, and accordingly offers more reaction time to avoid or mitigate potential
traffic accidents.

Despite the landmark achievements listed above, the research can be extended in three
aspects in the future as followings:

1. The prediction and risk assessment performances can be improved by providing a
larger volume of the naturalistic driving data. For motion prediction of lane change
vehicles, we prove that the accuracy can be further increased using a larger amount
of lane changing data. For the cut-in event prediction, the amount of cut-in scenes
and normal lane change are not balanced, thus the results do not reach the optimal.
Hence, providing a larger amount of lane change data and cut-in events data is the
most straightforward way to enhance performances.

2. The proposed cut-in prediction and risk assessment approach can be applied to more
complex scenarios. It can be the same lane change scene with more surrounding
vehicles involved. It can also be similar scenes with more complex road geometry,
such as multi-lanes highway or with merging ramp. The approach can also be further
developed to handle the cut-in events on the urban driving scenes.

3. A lower-layer planning and vehicle control module of the AV can be expanded into
the proposed framework, so that the risky cut-in scenes can not only be predicted
but also can be actuated and avoided eventually for driving safety.
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[30] Stéphanie Lefèvre, Ashwin Carvalho, Yiqi Gao, H. Eric Tseng, and Francesco Bor-
relli. Driver models for personalised driving assistance. Vehicle System Dynamics,
53(12):1705–1720, 12 2015.

64



[31] Susanne Ernst, Jens Rieken, and Markus Maurer. Behaviour recognition of traffic
participants by using manoeuvre primitives for automated vehicles in urban traffic.
IEEE Conference on Intelligent Transportation Systems (ITSC), pages 976–983, 2016.
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