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A linear elastic solution of a boundary value problem is used as the basis to generate the 

corresponding inelastic solution. This method mats the material parameters as field 

variables. and their distribution is obtained as pan of the solution in an iterative manner. 

Five different schemes to update these material parameters are discussed anci coiiipüred. 

A procedure for the calculation of the residual stress field is presented. 

I n  tliis context. a general axisymmetric rnethod of elastic-plastic analysis is proposed. 

Application of this method to the residual stress prediction for an autofrettnged cylinder 

anci ri cold worked fastener hoIe is presented. Lamé's linear elristic solutioii is ~ised in 

tliese ripplications. Residuai stress caiculations based on die actiiril inaterial ciirve. 

isotropie or kineinatic hardening models. and a variable Baoschinpr efkct factor (BEF) 

is ciirried out. It is concluded that the consideration of the dependeiicy of [lie BEF on 

pliistic strain makes significant changes to the residual hoop stress near the bore for Iow- 

levrl aiitofrettage. However. this dependency is insignificant for liigh level autofrettnge. 

Results obtained here are shown to be in good agreement with experiment. and finite 

elçinent results. 

.4 total deformation theory capable of analyzing a sequence of linear nonproponionnl 

lotiding is proposed. Each linear loading path is defined with reference to its previoiis 

londing path, analogous to proportionai loading. The application of the proposed 

fonnulation to tension-torsion loading of thin tubes and pressure-torsion loading of thick- 

walled cylinders is carried out. It is shown that for smss conuolled processes. the 

proposed method gives the same plastic strain field as does increinental plasticity. For 

Iond controlled processes, where stresses are not known a priori. a metliod to estiinnte the 

plastic strain for linear hardening materials is proposed. This metliod cnlciilates the 

iircessary stress fields using conventional deformation plasticity. Tliese stresses are tlieii 



used in the proposed total deformation formulation to predict plastic sutiins. The plastic 

strain field resulting from this rnethod is compared with finite element results iising 

incrementd plasticity. The resula are in very good agreement. The proposed tncthod 

significantly reduces computation time. 
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In the design and analysis of components, it has become increasingly important to 

develop inethods that are less sophisticated, more understandable, and ensy to npply: but 

still accurate. 

Design of components such as high pressure tubing in mechanical, chernical and 

arinament industries, or fastener joints in aircraft industries requires elastic-plastic 

nnrttysis. One reason for this is the need to accurately predict residual stresses. 

Compressive residual stresses in many applications such as autofrettage of cylinders and 

hstener holes, apan from increasing the pressure bearing capacity of the coinponeiit. 

riiliünc the component's fatigue Me. The presence of these beneficial residunl stresses 

rrtluces the probability of crack initiation and slows the growth of fitigue cracks. 

Reliable prediction of the influence of residud stresses on the critical crack lengtli niid 

fatigue life of tlie components requires an accurate prediction of the actual residual stress 

field in tlie cornponent. It is therefore essential to develop accurate and reliable methods 

ro calculate residual stresses induced by pre-loads. 

Tlie theories of plasticity are not fully exploited by practicing engineers becniise of the 

tlifficulties in applying tliese mathematically sophisticated techniques. Usiinlly it tiikrs 

coiisiderable effort to understand and irnplement techniques for plastic analysis. In inost 

cilses, industries are not convinced of the resulting economy and hence consider sucli 

a~ialysis unaffordable. 

Alternative methods of elastic-plastic anaiysis have attracted special attention recen tl y. 

Tiiese inethods provide simpler techniques to approximate the elastic-plastic behavior of 

coiiiponents and therefore are more attractive to practicing engineers. 



1.1 OBJECTIVES AND PROBLEM IDENTIFICATION 

The objectives of this study are twofold. The f i s t  objective is to establish a method of 

elastic-plastic analysis based on linear elastic solutions. This method should be capable of 

predicting the stress, plastic strain and displacement for proportional loading. It should 

also be capable of accurately predicting mechanically induced residual stress. strain and 

displacement fields. The method, unlike conventional methods of residual stress 

calculation, should be able to employ the actual material stress-suain unloadiiig curve to 

prodtice a close approximation to the reai fields, 

The second objective is to develop a totai defornation theory applicable to 

nonproportional loading. This method should provide a proper way of representing n 

sequence of linear (but nonproportional) loadings such chat total defor~matioii tlieory cati 

be etnployed for tlie analysis. The method should provide techniques for Iinndling 

tiifferent deformation processes such as stress and load controlled defonnotioiis. The 

iiiaiii focus should be devoted to reasonable plastic strain prediction in nonproportioiinl 

loading where either messes or Ioads are known a prion. 

1.1.1 Inelastic AnaIysis Based on Linear Elastic Solutions 

An nttempt is made in this investigation to develop a mathematical mode1 tliat caii 

cenerate an inelastic solution using linear elastic results. This mode1 sliould be able to : 
C 

1) accuntely predict the elastic-plastic solution and 2) accurately predict tlie residunl 

stress field due to unloading. 

In order to do this, the problem to be solved can be outiined as follows. In a body under 

lond as shown in Fig. 1. la. different material points such as a, P and y, shown in  Fig. 1.1 

(a). are ar different levels of stress. Let the material behavior be represented in a genecil 

manner as shown in Fig. l.I(b). Based on their stress levels, the rnaterial points a. 0 and 

y inay be represented by the points a, P and y on the uniaxiai stress-stnin curve (Fig. 1.1 

b). The problem may now be defined as foliows: instead of perforrning n nonlinear 

aiialysis (following the nonlinear stress-strain curve) to arrive at points a, P and y, use 



known linear solutions with modified properties to reach the same points (Fig. Mc). It 

sliould be emphasized that the functiond form of such linear dependency at ex11 point 

will be the same as the functional f o m  of the linear elastic solution. 

(b) 

Figure 1. l (a): Elastic-plastic andysis based on 

linear elastic solutions 



(cl 
Figure 1.1 (cont.): Elastic-plastic analysis based on 

linear elastic solutions 

1.1.1 Application of Tohl Deformation Theory of Plasticity to Nonproportional 

Loading 

There are two theones of elastic plastic analysis. deformation plasticity and increinentül 

plasticity. 

Iiicremental theory of plasticity provides the most satisfactory basis for treatiiig plasrici ty 

problems. However, this theory is incrernenral and Ieads to iriathematicol and 

computational cornplexities. Considerable simplifications are often achieved by using 

deformation theory of plasticity which depends only on the end values of stresses and is 

independent of stress history. Nevenheless, expenmentd resuits indicate that plastic 

strains depend not only on the cunent value of stress but also on the stress Iiistory. 

Tlierefore. total deformation plasticity gives inaccurate plastic strain fields for maiiy 

sitiiations involving nonproportional loading. 



Despite the general inappropnateness of deformation theory, it is preferred in iiimy 

prxtical fields of engineering because of its sirnpiicity over incremental theory. For 

rxainple. total deformation theory is widely used in fatigue design analysis (Dowliiig. 

1993). 

The validity of total deformation theory can be mathematicdy proven for proportional 

loading (Hilî, 1950). and its physical soundness can be shown for lirnited degrees of 

nonproportional loading (Budiansky, 1959). However, to the authors knowledge. the 

applicability of total deformation theory to a sequence of iinear nonproportionnl Icüdings 

sucli as the one shown in Fig 1.2, has not been adequately addressed in general. 

An nttempt is made to examine the validity of total deformation theory to 

nonproportional loading that can be defined as a sequence of linear loadings (Fig. 1.2). In 

order to do this the problem to be solved is defmed as foilows. Let a linear loading OA 

(siinple torsion), as shown in Fig. 1.2, be followed by another linear loading AB (siinplr 

coinpression). The aim is to find a proper way cf defining the second linear loading (AB) 

sticli that total values of plastic strain at A and B can be calculated froii~ the sticss wliirs 

at A and B. 

Figure 1.2: Nonproportional loading OB, defined as a 

sequence of two linear loading OA (torsion) and AB 

(compression) 



The thesis consists of six chapters. The present chapter describes the inotivatioii. 

objectives and problem definition. The fundamental concepts which governs the tlieory 

of plasticity are reviewed in chapter 2. Only those subjects of the theory of plasticity 

which are appropriate for the subsequent discussions are selected. The literature on 

methods of elastic-plastic solutions based on elastic analysis is reviewed at the end of 

chapter 2. This review includes some of the frequently used approximate elastic-plastic 

methods. 

The variable material property method is proposed in chapter 3. This is applied to obt;iiii 

ri general axisymmetric method of elastic-plastic analysis. Numencal implementation of 

this inethod and proper treatment of unloading are also discussed in chapter 3. 

In chapter 4 the models derived in the previous chapter are applied to different 

axisyininetric problems. Loading of thick-walled cylinders and a plate wi tli a circiil ;ir 

hole are studied for different materiai behavior and stress States. Results cire coiiipat-cd 

with otlier analytical methods. The ABAQUS finite elernent program has been i m d  by 

the iiuthor for cornparison purposes. The present approach results for the cases wlierr no 

otlier solutions were availabIe are compared to the results obtained by ABAQUS. 

Applications, including the autofrettage of cylinders is studied extensively in chapter 4. 

The application of the variable material property approach to the residual stress field 

ûround a cold worked fastener hole is also studied in chapter 4. 

Application of the proposed axisymrneaic analysis is extended to multiaxinl londing of a 

tliick tube. Pressure and torsion are applied proportionaily to a thick cylinder. Since there 

are no other methods avilable for solving this problem, the results are coinpareci witli 

finire element results obtained by the author using ABAQUS. 

Chapter 5 examines the validity of total deformation theory of plasticity to the situations 

involving nonproportional loading. Application of this method to nonproportioii;il 

loading of a thin tube under tension and torsion is carried out for a linear hardening 

iiinterial and a material obeying the Ramberg-Osgood relation. The application of 



proposed total deformation formulation to nonproportional loading of a thick-walkd 

cylinder under pressure and torsion is aiso exarnined in chapter 5. 

Chapter 6 surnmarizes the rtsults and the major conclusions of rliis work. 

Recommendations are made for future work. 

Appendix A gives the listing of the FORTRAN program for the elastic-plastic anaiysis of 

axisyrnmetric problems. 

Appendix B gives the details of the integration of the Prandtl-Reuss equation for a 

sequence of linear loadings, based on the output from MAPLE V. 

Appendix C gives the subrourine thar utilizes the proposed total defonnation fonnulntion 

ro calculate the plastic strain field using the variable material property merhod. The 

MAPLE V worksheet which performs the irttegration for any Ramberg-Osgood relation 

is included. This MAPLE program automaticaily generates a FORTRAN code out of the 

integration results which are used by the subroutine listed Li this appendix. 



Plasticity theory aims to quantify and predict the behavior of solids. generally metüls. 

under permanent deformation. The four major components needed for such a prediction 

are: 1) a stress-srnin relation, which describes the uniaxial loading behavior of material. 

2) a yield criterion, which distinguishes between multiaxial elastic and elastic-plastic 

beliavior, 3) a flow or deformation rule, which relates the stresses to the corresponding 

strains or strain increments, and 4) a hardening rule, which describes the changes of the 

yirld criterion during the course of deformation. A boundary value problein is constituted 

once the above components are defined. A brief description of eacli component is given 

in this chapter. More detail on these subjects can be found in many publications. some of 

wliicli are given in the references, and more or less follow the book on plasticity by R. 

Hi11 (1950). 

Also. a cornparison of the two major methods of plastic analysis, increinental and 

deforinntion plasticity, is discussed. The literature on methods of elastic-plastic annlysis 

wliicli drpend on elastic solutions is reviewed at the end of tliis cliapter. 

A knowledge of matenal propenies is essential to elastic-plastic analysis. They are used 

in constitutive equations which relate stxsses to strains. Material propenies. such as the 

elnstic modulus, Poisson's ratio, plastic modulus, secant moduIus, and tangent moduIus. 

are obtained from a uniaxial stress-strain experirnent. Hence. i t  is important to 

understand and mode1 stress-suain curves obtained experimentally. 



Figure 2.1: Elastic. secant, tangent, and plastic moduli definition bnsed on 

a) saess-strain or b)stress-plastic suain curves 

2.1.1 Moduli involved in elastic-plastic analysis (E, E,, E, and ES 

Figure 7.1 (a) shows n typical uninxial stress-suain curve. Tliere are diffsreiit iiiodiilus 

drtiiiitions nssociated witli this curve. The elastic modulus, E, is the slope of the initial 

proponionai part of the stress-suain curve. It has a constant value. The secant inodoliis. 

&,. varies from point to point and depends on the total values of straiii aiid stress. It is 

defined as 

Cleürly, wlien the stresses and mains remain within tlie proportioiial litnit, tlie secant 

inodulus is the same as the elastic inodulus. The secant modiilus is well suited to 

plasticity formulations based on total values of stress and strain. However. becntise the 

rlastic-plastic stress-strain curve of the material is nonlinear in nature. an inmemental 

procedure is often adopted. In this regard, the increment of plastic straiii is consicirred to 

be the suin of an elastic pan, &*. and a plastic part, dg:  



The infinitesimal stress increment, do, is related to the infinitesimal strain increineiit, (IE, 

by 

wlirre E, is the tangent modulus which varies during plastic deforiiiatioii. Tlir 

instantaneous slope of the stress-strain curve shown in Fie. 2.1 (a) is tlie tangent 

inodiilus. If the plastic strain, Ê. is separated from the total strüin. E.  rlien tlie pl:istic 

sti-riin increiiienr and tlie stress increment are relnted by 

wliere E is referred to ris the plastic modulus, which in the case of uniaxial loadiiig is the 

slope of tlie O-d curve sliown in Fig. 2.1 (b). Clearly, the inociuliis of eliisticity. E. 

relates elastic strriin increment, (IE'. to tlie increment of stress by 

Siibstitution of de (in Eq. 2.3), d f  (in Eq. 2.4), and dee (in Eq. 2.5) into Eq. (7.2) lexi to 

the relationsliip bctween the three nioduli E,, E and Ep: 



Anotlier material paralneter which is not explicitly defined by die stress-stciin ciin-r is 

Poisson's ratio. This parameter describes the lateral behavior of materials iindsr ;ixial 

lorid. Poisson's ratio is defined as 

This material parameter can also be measured during a simple uniaxial lolidiiig. 

1.1.2 Modeling of the uniaxial behavior in plasticity 

To inake the uniaxial stress-suain curve more compatible with the tnetliod of solution 

iised, it is often necessary to idealize the stress-strain curve. Four types of idealized 

stress-strain curve are discussed here in. 

2.1.2.1 Elastic-perfectly plastic model 

In some cases, it is permissible and convenient to neglect the effect of work hardening 

and rissuine tliat the phsuc flow occurs when the stress reach its yield value. a. Tlius. 

die iiiiiaxiül stress-strain relation may be expressed as 

O 
& =- 

L7 
for o < G. 

Figure 2.2 (a) shows this model. 
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Figure 2.2: Idealized stress-main curves 

1.1.2.2 Elastic-linear hardening mode1 

III tlie elas tic-linear Iiardening model, the stress-strain curve is approxiiniited by two 

strüiglit lines, tliiis replacing the smooth transition by-a sharp corner. The orciiiiatr of tliis 

corner is the yield stress g. The first linear branch of tlie idealized diagrain (Fig. 2.7 b) 

has a slope equal to the elastic modulus. The second branch, representing the idenlized 

hardening behavior, has a slope eqiial to the tangent modulus E,. The stress-suain relation 

has the following form: 



2.1.2.3 Ramberg-Osgood model 

Rarnberg and Osgood (1943) suggested the following relation for repi-esentntion of the 

nonlinear stress-strain curve shown in Fig. 2. 2 (c) 

in wliich material constants a and rn are the yield offset and the hiirdening cspoiient. 

1-espectively. The initia1 slope of the curve iakes tlie value of elastic iiiod~11iis ilt o=O. m i  

tircreases monotoiiically with increasing load. Since the model lias tliree prir;irneters (G, , 

cc, nnci I I I ) ,  i t  allows for a better fit of real stress-suain curves. 

It is sometiines convenient to work with a plastic strain-stress relation in tlie following 

ionil 

where H is a matenal constant and n is the corresponding hardening exponent. These 

constants for a particular set of stress-strain data are obtained by making a log-log plot of 

stress versus plastic strain, o vs. Y. Taking logarithms of both sides of Eq. (2.1 1)  gives 



This is a straight line on a log-log plot (y=rrr+b). The constant H is theretors the value of 

stress at é= I ,  and ri is the slope of the log-log plot. 

This method of idealizauon is usually utilized in the deformation theory of plnsticity 

wiiich will be discussed later. 

Ll.2.4 Piecetvise linear mode1 

A stress-strain curve, which in general is nonlinear, can be modeled by approxiinating it 

as ri  series of piecewise linear segments as illustrated in Fi-. 2.2 (d). The first liiicar 

srgrnent ends at the yield strength. Eac h subsequent line segment describes the rrsponse 

of the materiai from one yield point ro the subsequent yield point. The dope of the line 

reprrsents the stiffness of the associated segment. 

Tlir stress and strain for a point in the ith segment is given by 

wliere E is the slope and E,. is the increase in strain within that segiiient. The tor;il strairi 

iip to a point in  the 11th segment is 

with ai*, and E, being the Young's modulus. 

The piecewise linear approximation of the actual stress-strain cime is ofteii iisrd in tlic 

increinental theory of plasticity whicli will be discussed later. 



The yield condition for a materid defines the limit of purely elastic beliavior under any 

combination of stresses. For complicated loading with a multiaxial stress state, a yield 

criterion descnbes how each stress component contributes to yielding at a particular 

material point. 

It is generally agreed that yielding, especialiy for rnetals, is indepeiident of Iiytlrost;itic 

stresses. Though many initial yield conditions have been proposed, tlie Tresca yisld 

criterion (1864), also known as the maximum shear stress criterion, and tlie von Mises 

yield condition (1913), also referred to as the maximum distortion energy criterion. best 

represent m u a l  matenal behavior ( Davis. 1945; Naghdi et al., 1958) wliile preserviiig 

mathematical tractability. 

2.2.1 Tresca gield criterion 

According to this criterion, a material point yields when the maxirnuin sliear stress lit tlint 

point reaches the maximum shear stress in a uniaxial tension specimen at yield. The 

Tresca yield criterion, shown in Fig. 2.3 by a hexagon, is expressed as 

where o,,, a,, are the maximum and minimum principal stresses, and o0 is [lie yield 

stress in tension. The drawback of this criterion is that it is independent of tlie 

intermediate principal stress. 

Note that, when not concerned with the initial yielding, the left hand side of Eq. (2.15) 

may be taken as a representation of the state of stress (i.e., an eqiiivaleiit stress) ar e given 

material point. The definition of equivalent stress is essential wlien working witli 

huciening rnaterials. The hardening characteristics of a matenal follow frorn the tiniaxial 

stress-strain curve. For hardening materials some function of stresses. called equivnlent 



Figure 2.3: Yield locus for Tresca and von Mises yield critenon 

stress. and some function of rhe plastic strains, called equivalent stciin. ;ire iised to 

correlate the test results obtained for differenr loading propins .  Trrscii's eqiiivalriit 
T stress. o,,. inny be defined in the following fonn: 

n i e  equivaient plastic strain will be defined later. 

2.2.2 Von Mises yield criterion 

According to this criterion, yielding begins when the distortion energy for a complex 

stress state is equal to the distonion energy at yield in a tension specimen. The von Mises 

yield condition is represented using the deviatoric stress tensor. S ,  , anci the y ieltl stress 

cr0 which are defined as follows: 



Ckk S.. =O.. --a. 
'J tJ 3 

and 

whrre 6,, is the Kronecker delta and the usuai summation convention over repeated 

indices is adopted. The von Mises cnterion in tems of principal stresses is 

whsre O,, o.. and a, are the principal stresses. The pianar view of this surface for o,=O is 

an ellipse in principal suess space as shown in Fig. 2.3. 

Note tliat. when not concemed with the initial yielding, the left hand side of Eq. (2.19) 

iii;iy be tüken as a representation of the stress state at a given material point. specificnlly 

tlir von Mises equivalent stress. o,. is defined by 

The Tresca and von Mises yield criteria never give dramatically diffireii t predictioiis of  

tlir yield behavior under coinbined stress, there being no state of stress wliere the 

difference exceeds approximately 15%. The maximum distances from the orizin to the 

Mises ellipse and the Tresca hexagon in Fig. 3.3 have the ratio of 1.155. Hill (1950) 



siiggested that ri solution obtained using the Tresca criterion mrty bt: scriled by tliis factor 

to give an estimation based on Mises. 

Three suess-strain relations are considered here. The first one describes the linex elascic 

response of the material during elastic and plastic deformation. The otlier two describe 

the plastic response of the matenal. These are: 1) deformation plasticity, wliich relates 

the total plastic strains to the stresses. and 2) incremental or flow plasticity, wliich relates 

the plastic main increments to the stresses. A cornparison of these two plasticity tlieories 

on the basis of validity, accuracy, simplicity, and computational preferences is made. 

2.3.1 Linear elastic 

The generalized Hooke's law constitutes the linear elastic relationship. 

wliçre G. E and v are the shear moduius, Young's moduliis. and Poissoii's ratio. 

respectively. 

Tiiese relationships apply not only prior to yielding but also after yielding. except tlint in 

the latter case they give only the elastic pomons of the mains. Superscript r in Eq. (2.2 1) 

indicates elastic strains, and the plastic portion of strains must be added to tlietn to obtain 

the total strains. 



1.3.2 Deformation plasticity 

Hencky (1924) proposed a relationship berween total plastic strains and stresses. 

Assuming smail saains, the plastic stress-saain relation proposed by Hencky may be 

written as 

where @ is a scalar vaiued function. For hardening matenals, Q depends on the equivalent 

stress (e.g. Mises equivalent stress), o, , which may be regarded as n function of an 

equivalent total plastic strain, qqPr defined as 

A key feature of deformation theory is that a single c w e ,  Le., the uniaxial stress-strain 

curve. relates equivalent stress and equivalent plastic strain for a11 States of stress. Soine 

tests on tliin walled copper tubes conducted by Davis (1943) verify tliis approxiiiiatrly. 

Equntion (2.23). Eq. (2.18) and Eq. (2.24) are used to detennine the function 0: 

The stress-strain relation may therefore be expressed in the following form 



wliere E, is the secanr modulus of the uniaxial stress-strain curve. 

Levy (1871) and von Mises (1913) independentiy proposed a relationship between total 

strain increments (sum of elastic and plastic strain increments) and the ciirrent state of 

stress. The modified form of this relation. which uses plastic svain increments, wiis 

proposed by Prandtl (1924) for plane strain and by Reuss (1930) for an arbitrary state of 

strain in the foUowing form 

or in  component fonn 

whrre d@ is a factor of proponionality. which may be found by considenng plastic work 

increments. It can be shown (Hill. 1950) that the increment of plastic work per unit 

volume for the von Mises yield cnterion is 

wliere the equivalent plastic strain increment is defined as 



Substituting Eq. (2.27) into Eq. (2.29), gives 

where Ep is the plastic modulus defirted by Eq. (2.4). The Prandtl-Ruess nile is 

completely defined by Eq. (2.27) and Eq. (2.3 1). 

2.3.1 Deformation versus incrernentnl plasticity theories 

Boih plasticity theories have been used for plastic analysis of materinls. Nadai (1950) and 

SokoIovsky (1969) have used Hencky's deformation stress-snain relation extensively. On 

the other hand, Hill (1950) and Prager and Hodge (1% 1) focused on the tlieoretical 

sliortco~nings of the deformation theory and used the Prandtl-Reuss eqiiation to hniidie 

plas tic de formation. 

Esperimental results (Mroz and Olszak, 1963) indicate thüt plastic strains depend riot 

oiily on the values of the stresses reriched but also on the history of stressing. For 

cxainple. consider a thin wailed tube loaded to particular values of axial load P = P 8  and 

rorque T=T', either of which is sufficient to cause yielding by itszlf (Fig. 2.4). If the 

rixiril Ioad to cause yielding is applied frrst and then the torsion, the plastic strains tliric 

rrsult differ from those that occur if the torsion is instead applied first. Also, ;i tliird 

resiilt is obtained if the tension and torsion are increased proponionally. so t h  the ratio 

PIT reinains constant until P' and T' are sirnultaneously reaclied. Tiiis s~~ggests tllilt 

deforination plasticity, which is independent of the loading patli, leads to incorrect strain 

field calculations. In Hencky's theory, paths OP'A, OT'A, and OA give identical strain 

fields. Thus, in order to get the correct strain field, one has to adopt an incremental 

fomulation to allow for the effect of the loading path. Experimental resiilts (Mroz and 

Olszak. 1963) show that the Prandtl-Reuss equation, which is path dependent. is the inost 

accurate relationship. 



Figure 2.4: Nonproportional loading prit11 

Tliere have been many studies, especiaiiy during the 50's and 60's, cotnparing the two 

theories on the basis of the physical comecmess of Hencky's theory. Many of tliese 

studies (Morrison et al. 1950, Hundy and Green 1954) emphasized the incorrect 

predictions of deformation theory, while some (Hodge and White 1952. Budiansky 1959, 

Clien 1973) pointed out the applicability of defonnation theory for a range of londiiig. 

For proportionai loading where the components of the deviatoric stress inriintain 

proportionality throughout the load history, the two theones are the same. A proponionnl 

londing is represented by a straight line passing through the origin in the principal stress 

space. The components of deviaronc stresses for a proportional loading are given as 



where K is a monotonically increasing function and O S n j  is an arbitrary (nonzero) state of 

stress. The equivalent s t ress  (Tresca or Mises) WU then take the following f o m  

Siibstituting Eq. (2.3 1) into the Prandtl-Reuss relation of Eq. (2.27) gives 

wliicii upon integration yields tlic Hencky relation given in Eq. (3.26). This pmvss the 

squivalence of the rwo theories for proportional stressing. 

However, Budiansky (1959) showed that the deformation theory of plasticity mny be 

used for a range of loading patlis other than proportionai loading without violnting the 

griierül requirements for physical soundness of a plasticity theory. Assiirniiig Driicker's 

(1 95 1) basic postulates as criteria for physical soundness of n pli~sticity tlieory. 

Biidi:iiisky sliowed that deformation tlieory is consistent witli these rrqiiireiiiriits for ;i 

ciiigz of loading patlis that are close to proportional loading. Drucker's postiil:irss 

(Drucker, 1951) on the theory of plasticity are based on thermodynamic principles and 

result in two inequalities related to the rate of plastic work increment and the maximum 

plastic work. Budiansky rearranged Drucker's inequalities using deformation plasticity 

for a situation in which a corner is formed in the yield locus at the ciirrent stress point 

during plastic deformation. The Tresca yield surface (hexagon in Fia. 2.3 ) is an exniiiple 

of a yield surface witli discontinuous corners. Drucker's inequalities tlien reduce to 

(Cliakrabarty, 2987) 

(do, - do2)' + (da, - do,)2 + (do3 - dol)' c 2(1+ m)doA 



wliere m is the exponent for the stress-smin curve represented by the Rnmberg-Osgood 

rquaùon. Also, do, . do, , and da3 are the principal stress incremrnts and is the 

increment of equivalent stress. For a hardening matenai, this inequality will be satisfied 

in a large number of practical problems where the stress ratios vnry diiring the 

deformation (Chakrabarty, 1987). 

Diie to the mathematical complexity arising from the incrernental forinlil:itioii. :i 

deforiilation plasticity solution is preferred for many applications. Most finite element 

packages, such as ABAQUS, offer a defomation plasticity option as well as :in 

incremental plasticity option. For many problems where monotonic loading is of 

concem, defomation plasticity not only gives an answer with reasonable acciiracy but 

takes less computational time. A cornparison of the two theories on the bnsis of 

computational time and accuracy for a nonproponionally loaded thick-wnllzd cyliiicisr is 

piven in cliapter five. Sirnilar cornparisons cm be found in different arens of solid 

iiiecliünics, for example, Chen (1996) in fracture mechanics. Deformation plûsticity lias 

been extensively used for cyclic plasticity (Dowling, 1993) and notch analysis (Sergar 

1985, Moftakhar 1994). 

WliiIe Hencky's theory is valid for rnonotonic loading only, with modifications i t  rnay be 

applied to unloading as well. This has been done widely for cyclic plasticity (Dowling. 

1993) ünci residual stress field prediction (Jahed and Dubey. 1996 aiicf 1097). 

Evrn though defomation plasticity is utilized for proportional loading, the possibility of 

using a total deformation formulation for nonproportional loading which can be defined 

as a sequence of linear loading steps has not been addressed in the literature. Such a 

loading is shown in Fig. 2.4 (loading paths OP'A, or OT'A). In chaptrr five, tliis 

possibility is exarnined and it is shown that, for deformations where stresses are known n 

prion. such a relationship gives the same results as incremental plasticity. Furtlieniiore. 

for situations where stresses are not known a priori in a nonproponioiial londing of a 

linear hardening material, a total deformation rnethod is proposed for strain field 

calculation. 



Hardening d e s  describe how the yielding crierion changes during the course of plastic 

deformation. For unloading situations, they also descnbe the onset of reversed yielding. 

There are two widely used hardening rules: 1) isotropic hardening and 2) kineinatic 

hardening. Both rules preserve the shape and orientation of the yield surface. Note. 

however, that some research (Phiiiips and Lee, 1979) suggests a distortion of the surface. 

Despite the fact that it is necessary to work with a hardening rule for complex loading 

such as cyclic plasticity, neither of these rules are able to capture al1 featiirrs of material 

behavior. Figure 2.5 shows an experimentally obtained stress-strain curve. The 1i;irden ing 

mle approximations (both are the sarne in this case) are also shown. The inriterial (AISI 

4333) has a perfectiy plastic loading behavior while showing a hiirdrning effect upon 

unloading. Even the Bauschinger effect (early yielding behavior on unloading, e.g. prior 

to reaching the yield strength under monotonie loading) is not captured by the kineincitic 

hardening rule because of the nonhardening response in loading. Unlike dunng loading. 

the matenal transition from elastic unloading to reversed yielding is sinooth. TIiese 

points show the importance of utilizing the actual matenal curve, where applicable. 

2.1.1 botropic hardening 

The isotropic hardening nile (Hill, 1950) States that the yield surface grows during phstic 

deformation, effectively changing the yield stress as the material becomes elastic-plastic. 

The center of the yield surface, however, remains fixed. Such behavior is sliown in  

deviatoric stress space (two dimensionai case) in Fig. 2.6. Adopting the von Mises yield 

critenon. the yield surface is descnbed by 
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Figure 2.5: AIS1 4333 M4 loading-unloading curve 

(S tacey and Webster, 1988) 

where %, the Mises equivalent stress, attains its largest value during loading. 



Figure 2.6: Isotropic hardening 

Isotropic hardening cannot account for the Bauschinger effect which is experiineiitally 

observed for many metals (Milligan et. al. 1966). In terms of ctniaxi:iI behavior. the 

isotropic hardening predicts reversed yielding at -2o,, where oCq is the ii~asiiiiiiin stress 

reaclied during loading. Figure 2.7 shows possible unloading paths on the uniaxial stress- 

s t r m  curve. 

Isotropic hardening is thought to best describe material behavior for l a y e  str;iins. For 

this reason, this mle is used more in metal forming problems. 

Figure 2.7: Isotropic and kinematic hardening 



2.4.1 Kinematic hardening 

Kinematic hardening mode1 was f ~ s t  proposed by Prager (1956) as a way to inodel the 

Bauschinger effect. The yield surface in kinematic hardening is allowed to translate in 

stress space. Figure 2.8 shows the yield surface movement in deviatoric stress space 

bûsed on Prager's kinematic hardening rule. The yield surface equation for the von Mises 

criterion is 

whrre a,, is the  shift tensor which accommodates translation. Different relations for the 

sliift tensor increment have been proposed. Ziegler (1959) inodified Pragrr's riile by 

proposin2 the following evolution form for the shift tensor 

Soine finite element progams, e.g., ABAQUS, utilize Prager's kinematic hardening mle 

with Ziegler's modification. Kinematic hardening is used mostly in fiitigiie nnnlysis aiid 

cyclic plastici ty. 

4 boundary value problem is formulated when the solution to a pmicular problein is of 

interest. A boundary value formulation requires consideration of: 1) the equilibtiuin 

equation, 2) the compatibility condition, and 3) the constitutive relation. 

In rii-ialytical or numencal fomulations of solid mechanics, such as the finite elelnent 

iiietliod, it is very important to understand and enforce these consideratioiis. A coinple te. 
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Figure 2.8: Kinematic hardening 

re liiible solution is achieved only if equilibrium and compatibility are iiiain taiiied. and [lie 

coixct constitutive mode1 is employed. 

2.5.1 Equilibriurn 

Forces acting on a body give rise to stresses. Through a static (or dynniiiic) mülysis of 

forces involved in a deformation. a set of equations restricting the stress ciistribiitioii i i i  ;i 

body are fonned. 

Coiisider a body of volume Q enclosed within surface T. In the absence of body forces. 

the body is in equilibrium if the stress tensor, c,,~ satisfies the following equntion 

wlirre the comma followed by a suffix denotes partial differentiation. This ensures the 

eqiiilibrium of points interior to T. In addition, equilibrium of the points on the boundary 

r should be satisfied. If the boundary condition consists of prescribed tractions. r,' . 
aiid/or displacements, y.', then the following two conditions must be satisfied to ensiire 

rqiiilibriuin and compatibility of points on the boundary : 



- traction fia over the boundary rI 

- displacement ui' over the boundary r2 

wlirre the union of the two parts of the boundary give the entire boundary 

r = rI + r, 

and iz, is the unit outward nomal to the surface r,. 

Displacements give nse to strains. A kinematic analysis of the defonnntioii leads to 

certain restrictions on the suain tensor. Here and throughout this work. only small strnin 

tlieory is considered. Therefore, the displacements and strains are related by the 

following equation 

wliere z ï ,  is the displacement vector. While the physical meaning of the equilibriuiii 

equation is fairly straightforward. it is not as easy to physically understand the 



cornpatibility equation. Mathematically, the strains are compatible when they are 

de finable in tenns of a single vaiued, continuously differentiable dispIacciiien t. A! so. n 

compatible strain field ensures: 1) ali of that part of space which is specified by the body 

configuration is being occupied by the body (Le. no vacancies or overlaps), and 2) tliere 

is a one-to-one correspondence between particies of the body and points in this pan of 

space. However, a more physical interpretation of compatibility is that the separate 

particles of the body must deform in such a way that they fit togther after deformation. 

This requirement is essential in finite element calculations to satisfy compatibility. 

3.5.3 Constitutive relations 

Eqciilibriuin equations which involve only stresses are independent of the compntibility 

equations wliich involve only strains. Constitutive equations are necessary to relate 

stresses to strains through the material propemes. For this reason, knowledge of the 

inüterial behavior is necessary. Here, only isotropic matenals are considered. A inaterinl 

is said to be isotropic if it possess the same behavior in al1 directions. The nuinber of 

independent mate rial constants for linear elastic behavior of this class of inriterilil red lices 

to two (Barber 1992) as given by Eq. (2.21). Hencky's relation aiid Praiidtl-Rriiss 

rqiiation are also exarnples of constitutive equations. 

In çlinpter tliree, a set of constitutive relations analogous to Hooke's Law, but describing 

zlas tic-plastic behavior, is derived. 

Linear elastic behavior of rnaterials is a well established branch of solid rneclianics. 

There exists a unified understanding of the Linear elastic response of materials. Also, 

linear elastic formulations of problems are mathematically simple and their solution are 

readily attainable. Most practical problems in this field have either anntytical or 

n~iinencal solutions which are in good agreement with experimental obseivütion. 



Plasticity, however, is much more complex. Although a unïfied theory of plasticity begm 

to emerge about 1945, even today there is not a unified understanding of plastic behavior 

of materials. On one hand, theoretical plasticity with complex matlieinatics is a inatter of 

debate and research. On the other hand, practical plasticity (e-g., metal forining) Iiiis 

deviated from pure theoretical plasticity and is based more on experimental results and 

relared empirical formulas. Because of its mathematical complexity, many theoretical 

works find a narrow range of application, and for this reason simpler methods of elastic- 

plastic analysis have attracted attention amongst researchers in the practical field of 

pIasticity 

The simplicity of linear elasticity and dimculties with nonlinear plasticity litive imdz 

way for researchers to attempt solving elastic-plastic problems by ndapting a iiiodified 

forin of available elastic solutions. The idea of estirnating the elastic-plastic beliavior by 

using elastic andysis is not new, and cm be mced back to Nadai (1931) wlio discussed 

sotne of his earlier work such as the plastic analysis of a pressurized cylinder using an 

elas tic solution. 

2.6.1 Modified elastic solution in elastic-plastic notch analysis 

The earliest work dealing with elastic-plastic behavior at a stress conceiitration was baseci 

on elasticity (Nadai, 1930). Nadai studied the maximum shear stress around a circular 

hole in a thin wide plate using the elasticity equation and Mohr's circle to describe the 

progression of yielding. 

Stowell(1950) employed a modified fonn of the elastic notch solution to coiiie iip witli a 

fonnula for stress and strain concentration factors for plastic loading. By assiiining tliat 

the effect of plasticity of the material was to lower the stress concentration factor 

obtained from elasticity, he argued that the complete stress field in an infinite plate with 

a central circular hole may be found by modifying its elastic suess field. Stowell 

separated the terms in the elastic solution of the circular notch problem to terms due to 

the far field stress and tems due to the local concentration. He then scriled down the 

rems due to the presence of the hole by the ratios of the local secant moduliis aiid the h r  



field secant modulus. In this manner he simulated the plasticity effect by lowering the 

elastic modulus. Based on this, he proposed the foiiowing modification to tlie elastic 

stress concentration factor 

where K, is the elastic-plastic stress concentration factor, E, and E, are the secant moduli 

at tlie notch root and away from the notch, respectively. This equation, which has to be 

solved by trial and error, gave good stress concenuation factors wlirn coinpnred to 

exprrimental results. However, based on the same analogy. the strain coiicentratioii 

Eictor, y,  defined by 

hiled to give satisfactory results at relatively high loads. In a siinilnr iiiiinner. Biidiaiisky 

and Vidensek (1953) obtained the elastic-plastic stress field in a plate witli a circulür Iiolc 

by adding a correction to the corresponding elastic solution. 

Neuber (1961) used the notch tip smss and saain components obtained for a linea. 

elastic body to estimate the elastic-plastic saain and stress components in a geometrically 

identical elastic-plastic body. He onginally proposed the following relation 



wliere S is the remote stress and K, is the elastic stress concentration factor. He assiirnrd 

that the actual total strain energy density (the sum of stnin enegy density and the 

coinplementary saah energy density) at the notch tip is equal to thnt wliich would be 

obtained if the materiai were to rernain linearly elastic. 

Walker (1977) and Dowling (1977) extended Neuber's rule for different types of 

loading. This method of analysis has been used widely in design codes and has proven to 

be a good approximation (Conle and Nowack 1977, and Sharp and Wang 199 1 ). 

Subsequently. Hoffmann and Seeger (1985) generalized Neuber's rnethod for estiinating 

multiaxial elastic-plastic notch stresses and strains based on the corresponding elastic 

soIution. This method. which is based on proportional loading. utiiizes Hencky's 

deformation theory and provides the foilowing general Hooke's Law forrniilation 

where et and q denote the principal strains and stresses, respectively, and 

and o, is calculated from a hypothetical h e a r  elastic solution by adopting a yirld 

criterion such as von Mises. The corresponding equivalent notch strain. E,. is tlien 

calculated through a relationship (like Neuber's nile for equivalent stress and strniii) 

involving the modulus cf elasticity. Including von Mises yield criterion. Eq. (2.47) 

provides four equations for the five unknown smsses and strains (in a plane stress 

problein one of the principal stress is zero which makes the number of unknowns five). 



By making the extra assumption that the ratio of elastic stnins rernain the sarnc in 

elastic-plastic behavior. principal stresses and s a a i n s  at the notch Up can be obtained. 

Later, Hoffmann et al. (1991) extended their method to nonproportional loading. 

In a similar correlation, Molski and Giinka (1981) used the elastic strain energy density. 

instead of total energy density, to calculate the corresponding elastic-plastic stress and 

main components at the notch tip. This assumption was motivated by Hutchinson (1968) 

who found that the strain energy density at a crack tip in a bilinear material is tlie same as 

that computed from a purely elastic solution. This method has been extended to 

multiaxial proportional loading (Moftakhar, 1994) and nonproponioiinl lo;idiiig (Cliii iiiid 

Conle, 1994). Sharp et al. (1992) modified Glinka's method to account for iiorclies wliere 

the initial elastic state is neither plane stress nor plane suain. 

2.6.2 Method of successive elastic solution 

Ilyushin (1946) used a method of successive elastic solutions to solve tlie problem of a 

plastically deformed thin shell. This rnethod is based on Picard's method (Ince. 1944) of 

successive approximations to nonlinear equations. Later, in a more p i e ra l  seiise. rliis 

method was proposed by Mendelson and Manson (1959) as a pnctical solution for 

plastic deformation. This method uses the following constitutive relation 

wliere E: is the total accumulated plastic strain up to, but not including, tlie current 

increment of loading . The method allows the plastic svain increinent to be relateci 

to the stresses through any yield criterion and the associated flow rule, but the Pründtl- 

Ruess relations (Mendelson, 1968) are preferred. In this method, the loading patli is 

divided into a number of increments. For the first increment of load, a distribution is 

assumed for the components of plastic strain increments A&; . The coinponeiits of total 



plastic strain E: are zero. Therefore, the boundary value problem formed by the above 

constitutive equation c m  be solved as for any elastic problem to give a fust 

approximation for the stresses and total saains. The assumed values for AE' give an 

equivalent plastic incrernent Ad' based on Eq. (2.30). From the uniaxial stress-snain 

curve, the conespondhg value of equivalent stress is obtained and new sets of A&: are 

calculated from the Prandtl-Reuss equation. Using the new plastic strain increments, the 

boundary value problem is solved again as a new elastic problein. This process is 

continued until convergence is obtained, i.e., the ciifferences between two successive sets 

of strain increments are less than some prescnbed values. Mendelson (1968) records a 

collection of work on different plastic problems using this method. Davis (1964) and 

Tuba (1966) extended this method to two dimensional problerns and provided the 

solution to a plate with a central hole. 

2.6.3 Reduced modulus method 

Structural limit loads can be calculated by a number of analysis techniques, the state of 

art being incremental finiie element analysis by specialist nonlinear p r o p m s  such as 

ABAQUS. However. calculation of limit loads by detailed inelastic analysis can be 

difficult and computationally expensive. In practice, limit load analysis for design 

considerations is often performed using simplified methods. most cotnrnonly bnsed on 

the limit load boundary theorem of plasticity (Mackenzie et al.. 1994). Sucli siinplified 

methods are based on elastic analysis. The bais  of this method was proposecl by Jones 

and Dhalla (1981). In their method, rather than performing an inelastic analysis, the 

inelastic response was investigated by iterative linear elastic analyses in which highly 

stressed regions of the smcture were sysrematicaiiy weakened by reduction of the local 

inodulus of elasticity in order to simulate the effect of local inelasticity. First an elastic 

analysis is performed and the equivalent sû-ess and strain at the most Iiighly loaded 

location noted. A rough estimate of the inelastic strain corresponding to the elastically 

calculated stress is then made. The minimum secant modulus is defined as the ratio of the 

effective elastic stress to the estimated inelastic s ~ a i n :  



where A is the most highly loaded location. Once the minimum secant modulus is 

defined, three values of reduced moduli between the minimum secant inodulus and 

Young's modulus arc defmed. Next, an elastic analysis is performed in which these 

reduced modulus values are assigned to the most highly stressed local regions of the 

component This procedure was used for partitionhg the stress at A into pnmary and 

secondary components. 

A modified version of Dhalla's method was presented iater by Marriott (1988). 

Marriott's procedure is a truly iterative elastic procedure. An initial elastic anrilysis is 

performed and al1 elements with a maximum difference in principal stress greater tliiin 

some stress Sm (to be defmed by pressure vesse1 design code) are identified. The elastic 

moduli of these elements are then individuaily reduced on an element by element basis, 

according to the equation 

wliere ER and Eo are the reduced and previous values of modulus. respectively. Sm is tlie 

code allowable and SI is the element stress (i.e.. the maximum difference in tlie principal 

stresses). The analysis is then rerun to obtain a reduced modulus malysis solution. The 

modulus reduction procedure is then repeated in an iterative manner until tlie maxiinurn 

element stress, SI, is less than Sm or convergence to some other value occurs. 

Seshadri (1990 and 1991) incorporated aspects of the Dhaila and Marriott procedure in 

estimating creep darnage in pressurized components. Seshadri, like Dhalla used 

equivalenc elastic stress but, like Marriott's method, the reduced modulus is calculated on 

an element-by-element basis. He applied the modulus reduction method to deformntion 



control and elastic-perfectiy plastic material. The reduced rnodulus required for perfrctiy 

plastic behavior is calculated by the following equation: 

Mackenzie and Boyle (1993) have developed an elastic compensation metliod wiiich uses 

conventional elastic finite element andysis to derive suitable stress and strain fields for 

bounding theorems of classical plasticity. The elastic compensation merhod requires only 

a few Iinear elastic finite element analyses of a structure. After each iteration, the elastic 

modulus of each element is modified according to the equation 

where subscript i is the present iteration number, o, is a nominal stress value and a,,,, is 

rhe maximum nodal equivalent stress associated with the elernent from the previoiis 

solution. After a few iterations, an estimate of the lirnit load is caIcuIated. This inethoci 

Iiiis been applied to a number of different problems (Nadarajah et ai.. 1993 and Shi et al. 

1993). 

In a different approach, Seshaciri and Marrion (1992) and Seshadn and Fernando (1992) 

laid out a procedure based on two elastic analyses. This method is based on Schulte's 

(1960) discovery of points in the cross section of a smcnue  at which the stress did not 

change as the solution progressed from the initial elastic solution to the final stationary 

solution. The aim of this method, known as GLOSS, is to find tliese points called 

redistribution nodes or R-nodes. In this method, a linear elastic solution is tint obtained. 

A location j is arbitrarily chosen. The elastic moduli of al1 other elements are tlien 

modified according to the following equation: 



where O#, is the equivalent smss in the ith element. Based on the two linear elastic 

analyses the R-node element is identified and by interpolation the exact location of the R- 

node is obtained. Having found the R-node, an estirnate of the iimit load is obtained. This 

rnethod has been applied to different saucnires by Seshaciri et al. (1992). 



The variable material propeny method for the solution of nonlinear plasticity uses linear 

elastic resuits to mode1 nonlinear plastic response. The constitutive equation relates total 

strains to the curent value of stresses in a linear fashion- However, the material 

parameters are treated as field variables. For isotropie materids, the number of these 

independent parameters is limited to two. The distribution of these variable panmeters 

are obtained as a part of the solution in an iterative manner. This method is also capable 

of predicting the ioad induced residual m e s s  field. 

First the constitutive equation is denved. The functional f o m  of the parameters for 

rlas tic-perfectly plas tic matenals, elastic-linear hardening matenals and materials 

charactenzed by the Rarnberg-Osgood relation are then derived. A method for numerical 

iinplementation is also discussed. Five different schemes to evaluate the tnaterial 

parameters are aiso presented in this chapter. Finaiiy, a rnethod for the prediction of 

residual stress fields is introduced and implemented. 

An axisymrnetric elastic-plastic analysis based on the proposed method is presented in 

this chapter. Mile  the axisymrneaic method is applicable to a number of problems, the 

main focus here is on cylindrical tubes. Equations for different end conditions and 

loadings are also derived. A cornparison of the different schemes of parameter evaluation 

is made at the end of this chapter. 

The total strain tensor, $I , is assumed to be the sum of an elastic part E,' and a plastic part 



The elastic pan is given by Hooke's Law (Eq. 2-21)' which may be represented in the 

form: 

wliere v and E are Poisson's ratio and Young's modulus. The plastic componem of straiii 

is given by Hencky's total deformation relation (Eq. 2.23). Substituting the rlnstic and 

plastic components of main into Eq. (3.1), the total suain is then related to the current 

stress through 

wliere the function (I is defined in Eq. (2.25). The quantities inside parentheses in Eq. 

(3.3) are di functions of the material properties and hence could be represented in the 

following alternative form 

which is sirnilar to the linear elastic constitutive relation. The effective Young's modulus. 

E,  . and the effective Poisson's ratio. v,, are defined as follows: 



Tiiese effective values depend on v , E and the current Suess and/or striiin. 

3.1.1 Pseudo linear elastic points 

Stress and strain are inrrinsically point functions; they are always defined at a material 

point inside a body. A constitutive equation which relates these two is also a point 

function. It is a materiai point rather than a collection of points (i.e., a body) wliich 

behaves elasticaiiy or inelastically. If a body possesses homogeneity. theii tlie s m e  

constitutive relation is applicable throughout the body. For a body under load. a liiieiir 

rlnstic relation may be applicable to some material points while a noiiliiicar stress-strniii 

relation may be applicable to others (Fig. 3.1). Truesdell and No11 (1965) defined elastic 

points as matenal points which obey a constitutive relation of the form 

wlicrr T and G are measures of stress and strain, respectively, and H is a response - - - 

tiinction. Equation (3.4) is an example of a generalization of Eq. (3.6). where stress and 

stnin measures are O,, and E,, respectively. The response function, Eq. (3.4). is 

homogeneous of order one in stresses and srnains and depends on corresponding values of 

E, and V,  at each point. The variability of parameters Eef and v, are witli nsprct to tlieir 

position in the body. Therefore. once the load is applied and is fixed, E e ~  and v ,  will Iiave 

different values at different points which means that Eq. (3.4) will tnke a different lineiir 

fonn at each point. 



(cl 
Figure 3.1 : Pseudo Linear elastic points 



Material points obeying the constitutive relation of Eq. (3.4) are called pseltdo litieur- 

ëtusric y oiri fs. 

Fisure 3.1 shows how the parameters E, and v, are treated in a typicül body obeyiiig the 

constitutive relation given by Eq. (3.4). For simpiicity, it is assuineci tliiit tlie body 

behaves in an elastic-perfectiy plastic manner. Assume that the stress and straiii iit e:icli 

point is known and some of the material points 1, 2 .  3 etc. shown in Fig. 3.la are 

expenencing plastic deformation. They c m  be identifed by the sarne nuinbers 1.2. 3 etc. 

on the stress-strain curves in Fig. 3.lb and c. In this example, it is assumed tliat the total 

lond lias been applied and that the differences in strain States of tlie points are dile to the 

different positions they occupy within the body. In other words. tlie cliangiiig vuiable is 

attributed to position and not to load (aiso sometimes referred to as tiine). To ideiitify 

point I ,  for example, on the stress-strain curve, one may follow the ~ionliiicai. stress- 

stroin patli (Fig 3. lb)  or alternatively take linear paths as shown in Fig. 3. Ic. In tliis 

iniinner tlie corresponding stresses and suains at matenal point 2 are related by a linenr 

equation. In a similar way, stresses and strains at other material points, e.g.. 2.3 etc.. tire 

also linearly related (Fig. 3. lc). The corresponding parameters in the linear relations cit 

eacli rnatenal point are Erf and v, at that point. 

3.1.2 Effective moduli forms 

The stress-smin relation under uniaxial loading for elastic-perfectly plastic materials is 

given in Eq. (2.8). The effective moduli for these matenals are of the following form 



For linear hÿrdening materials. the stress-strain relation under uniaxial londiiis is givcn 

by Eq. (2.9). The effective moduli are then of the from: 

where the relation between elastic, plastic and tangent moduli given by Eq. (2.6) Iias 

been used. 

For inaterials obeying the Ramberg-Osgood equarion given in Eq. (2.10). the effective 

t i~odi i l i  are defined as 

The disaibution of these moduli throughout the body is obtained as part of the solution. 

3.1.3 Implementation 

In order to solve a boundary value problem utilizing the constitutive rrlütioii giren by 

Eq. (3.4). it is necessary to know the cornplete spatial distribution of v, and E,. This Iias 



to be found as pan of the solution. For this reason, the following procedure is used for 

determination of v, and E, 

First, a purely elastic solution of the problem is obtained. It is tlierefose üssuinrd tiiat tlir 

effective rnoduli at al l  points in the body equal their elastic values. E and v. Assiiining 

tlie loading is sufficient to cause plasticity at sorne points in tlie body. tliis will bt cnlled n 

liypotheticai or pseudo-elastic solution. Based on this solution. the equivalent stress (von 

Mises or Tresca equivalent stress) is calculated at aU points. Then the points with the 

sarne equivalent stress are connected to construct %=constant curves. It is assumed tliat, 

for each iteration, al1 of the points lying on the same orq=corrsrarrt curve are sepresented 

by ri single point on the uniaxial stress-strain curve, Le., they have the saine valiies for v, 

and Et,. That is. matenai points at the sarne stress level c m  be identifird by the s m e  set 

of rnaterial properties values. 

Now suppose that o, remains constant over a small strip of thickness ds. As a 

consequence v~, and E,  remain constant throughout this strip. Next the strip is isolated 

and its boundary value problem is defined. Each strip is subjected ro compatible tractioiis 

aiid displacements on its boundaries with neighboring strips. The soliition of tliis 

boundary value problem is obtained so that the behavior of points witliiii the strip is 

riscenained. In this manner, the original problem is discretized into severri1 in fi ni tzsi ii~al 

strips. The matenal propenies remain constant for points within a particular suip. Hence, 

an inelastic solution for each saip can be obtained from the elastic solution. 

The solution for each smp is reconstituted once the values of the corresponding inodiili 

Iiave been updated. To implement this procedure a scheme is needetl for updatiiig the 

effective matenal properties. Three general methods are discussed here: projection, arc- 

Irngtli and energy methods (including methods based on Neuber's appsoncli. Glinkii's 

approach and a combination of these two approaches). 



3.1.4 Moduli evaluation 

Once the strips are formed, the new values of effective moduli will be assigned to ench 

suip based on the results of the previous solution using one of the three genernl n~etliotis 

descnbed below. 

3.1.4.1 Projection method 

This merhod is based on the assumption that the total strain predicted by n Iiypothetical 

elastic solution is always less than or equal to the strain calculated from an mual  elastic- 

plastic analysis. Hence, the updated value of E, is dways less tlian tlic pnvioiis value. 

which results in a monotonie convergence to the solution. 

To iinplement this scheme, first a hypothetical elastic solution based on the elastic 

 nod du lus and Poisson's ratio is obtained. The state of stress in each suip is defined 

through an equivalent stress. Each sûip is then identified by a point on the Iiypotiietical 

straight line which is the extension of the elastic line on the stress-suain curve (Fi-. 3.2). 

Points a, b, and c shown in Fig. 3.2, correspond to material points a, b. aiid c definrd foi- 

a particular problem (like points 1 ,23  etc. shown in Fig. 3.la). To update the values of 

the moduli, a point on the real stress-suain c u v e  is defined for each stnp whicli possess 

tlie sarne strain as that predicted by the pseudo-elastic solution. For exaiiiple point a' 

from point a in Fig. 3.2. The updated value of E, for the strip including a. is tlien 

obtained by taking the ratio of the mess and suain at a' 

The corresponding updated value of v, is then calculated using Eq. (3.5) in genenl, or 

Eq. (3.7),Eq. (3.8) or Eq. (3.9) for the corresponding matenal behavior. Next, ;in 

inelastic solution is obtained based on the updated values for tlie moduli. Since it is 

assumed that the corresponding values of effective rnoduli remain constant in eacli srrip. 
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Figure 3.2: Projection method 

the solution for each stnp cm be obtained from an elastic solution. This riest soltition 

will provide new stress and strain values for each strip. The stress and straiii at the strip 

including a will now be defined by a, in Fig. 3.2. Equation (3.10) is iiow used ar poii~t 

a, ' . 

The effective values for moduli obtained in this manner are updated in each iterntion 

until the 4 vs. oJE, cuve obtained from the calculation coincides with the 

experimenrally obtained uniaxial stress-strain curve to within an acceptable tolerwce. 



3.1.4.2 Arc-length method 

In this method, it is more convenient to work with a dimensionless uniaxial stress-strain 

ciirve. Each smp is identifïed by a point on the hypothetical srrüiglit line wliicli is the 

extension of the elastic line on the dimensionless stress-snain curve (Fig. 3.3). Nrxc a 

radius r is defined: 

An arc of radius r=oa from the origin of the dimensionless uniaxial stress-sri' III ciirve 

intersects the actual uniaxial curve at the point a' (Fig. 3.3). Equation (3.10) gives the 

new value for E,  The corresponding updated value of V, is then calculated usin2 Eq. 

(3.5) in general, or Eq. (3.7) .Eq. (3.8) or Eq. (3.9) for any corresponcfing ii~atrriril 

beliavior. Next, an inelastic solution is obtained based on the updated valiies for the 

inoduli. Since it is assumed that the corresponding values of effective inoduli retnain 

coiistant in eacli strip. the solution for each saip remains identical in fonn to tlir rlastic 

solution. As shown in Fig. 3.3, the next solution shows the stress and main at the strip 

including a to be that corresponding to point a, on the dimensionless ilniaxial stress- 

strain curve. Equation (3.10) is now used at point a, '. 

The effective moduli values obtained in this manner are updated in each itertltion iintil 

the orV vs. GJE, curve obtained coincides with the expenmentally obtniiied iiniaxiiil 

stress-suain cuwe to within an acceptable tolerance. 



O 

Figure 3.3: Arc-length method 

-1.1.4.3 Energy rnethods 

Tliere are three different energy based methods for updating the effective inodiili viilues: 

Nriiber's rule for elastic-plastic total strain energy, Glinka-Molski's inrthod for strain 

energy density, and a combination of the these two. Al1 three are discussed below. 

3.1.4.3.1 Neuber's method 

As mentioned in section 2.6.1, Neuber (1961) suggested that the total strain energy 

density (the sum of strain energy and the complementary strain energy density) at the 

notch tip in elastic-plastic materials is equal to that of a hypotlieticnl elastic soliirion. 

Wliile Neuber's calculation was for shear loading, he argued that the assurnption cnn be 

estended to other modes. Walker (1977) showed the validity of this approximation for 

otlier loads. 



Although this method was intended for localized plasticity and more specifically for 

notches. it may also be taken as a scheme for updating the effective moditli. To 

irnplement this method, each snip is first assigned an equivalent stress value calculated 

from a hypothetical elastic solution. An equivaient total strain energy drnsiry is 

calculated for each saip using the following equation, 

wlicre W" is the total strain energy density. Next. a point (with strain erE ) on the x i i ~ i i l  

stress-strain curve is selected such that it gives the s m e  W E  (Fig. 3.4). n i e  

corresponding value of smss at that point yields the updated value for E, from Eq. 

(3.10). The corresponding updated value for v, is then calculated using Eq. (3.5) in 

grneral, or Eq. (3.7), Eq. (3.8) or Eq. (3.9) for any corresponding material behavior. 

Next, an inelastic solution is obtained based on the updated moduli valties. 

The effective moduli values obtained in this manner are updated in rücli iter;itioii i i i i t i l  

rlir o, vs. g l E ,  curve obtained coincides with the experiineiitally obtüiiicd iinitixi;il 

stress-strain curve to within an acceptable tolerance. 

3.1.4.3.2 Glinka's Method 

Hutchinson (1968) showed that, for a material with a bilinea stress-st~iin ctirve, the 

striin energy density (rather than the total energy density) at the crack tip is iiidepriident 

of inaterial hardening. and hence is exactiy the same as that predicted iising n ptirely 

eiastic analysis. Motivated by this observation, Molski and Glinka (198 1) and Glinka 

(1985) proposed that, instead of the total strain energy density used by Neuber, one 

should use the strain energy density. They argued that the suain energy density at the 

notch root does not change significantly if the localized plasticity is siirroiinded by 

predominately elastic material. 
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Figure 3.4: Neuber's method 



To implement this method. each strip is fust assigneci an equivalent stress value obtriiiieti 

from a hypothetical elastic solution. An equivalent strain energy density is calculated for 

each smp using the following equation, 

wliere vE is the strain energy density. Next, a point (with saain es' ) on the actual stress- 

strüin curve is selected such that it gives the same (Fig. 3.5). The corresponding 

value of stress at that point yields the updated value for Erfl froii Eq. (3.10). Tlir 

corresponding updated value for v, is then calculated using Eq. (3.5) in geiieml. or Eq. 

(3.7). Eq. (3.8) or Eq. (3.9) for any corresponding matenai behavior. Next. an inelüsric 

soIution is obtained based on the updated moddi vaiues. 

The effective moduli values obtained in this manner are updated in each iteration utitil 

the o, vs. qjE, curve obtained coincides with the expenmentally obtiiiii~ci iilii;is i d  

stress-strain curve to within an acceptable tolerance. 

3-1.4.3.3 Combined method 

Moftakhar et ai. (1995) compared the results based on Nueber's and Gliiik;i's 

assumptions to experimental and numencal results and concluded that Neuber's methotl 

serves as an upper bound, and Glinka's method serves as a lower boiind to inany elristic- 

plastic solutions. That is, the actual vaiues of elastic-plastic stresses and strains at the 

notcli tip are less than that predicted by Neuber and greater than that calciilated by 

Glinka. For this reason, the fouowing method of updating effective moduli is proposed. 

After calculating E= and h m  the hypothetical elastic solution, the updated value of 

effective moduli are defined as the geometric mean value of Neuber's and Glinka's 

estimates, 
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Figure 3.5: Glinka's method 



and its corresponding stress. G, nom the actud uniaxial stress-snain curve. n i e  updated 

value for E, is defined using Eq. (3.10).'ïhe corresponding updated value for v, is then 

calculated using Eq. (3.5) in general, or Eq. (3.7), Eq. (3.8) or Eq. (3.9) for any 

corresponding material behavior. Next, an inelastic solution is obtaiiied biised on the 

updated modulï values. 

The effective moduli values obtained in this manner are updated in each iteration until 

the o, vs. oJE, curve obtained coïncides with the expenmentally obtained uniaxial 

stress-strain curve to within an acceptable tolerance. 

3.1.5 Unloading and reversed yielding 

At the end of loading. the unloading stress-simin curve for each material point (i.e.. eacli 

strip) is defined using the curent value of yield stress at the end of loading for eacli strip 

within the plastic zone, the loading c w e ,  and the matenai hardening rule. niis  is 

discussed below. 

If the actual unloading curve is known, then this would be ernployed iiistead of adaptiiig 

n Iiardening rnodel. Otherwise, two different materiai hardening models. isotropic aiid 

kinematic hardening. may be considered. If the unloading is fully elastic tlien <lie 

corresponding stresses and strains due to unloading c m  be calculated siinply witli one 

torally elastic analysis. However, in cases of reversed yielding, the prediction based on 

eacli hardening rule is different. In the case of isotropic hardeniria, reverse yielding is 

controlled by 

a.' = 2c* 



whrre oon is the difference of the stress at the end of loading and the revcrsed yield. III 

die case of kinematic hardening, reverse yielding is assumed to occur according to the 

following general relationship 

o.' = ( l + B E F ) o .  (3.16) 

wliere the Bauschinger effect factor, BEF, is defined as the ratio of the initial yield stress 

i n  tension to the yield stress in compression (Walter 1948). For a case where the 

Bauschinger effect factor is one, i.e. BEF=l, Eq. (3.16) yields oOu = 2g. 

For each material point, the staning point for the unloading curve is the filin1 yield stress 

at the end of loading. From this point, the unloading is linear over a stress difference of 

ou after this, hardening begins, following the same hardening curve as for lociding froiii 

the point of take off (Fig. 2.7). 

Hnving defined the unloading curve, a second proportional loading. which in this case is 

unloading, is considered The method of analysis is the same as described above for 

loading. However, in this case each strip has to follow its own unlonding ciirve. 

Results from the second analysis are subtracted from those from loüdiiig to obtaiii die 

corresponding residual stress or strain fields, 

where superscripts R and u stand for residual and unloading, respectively. 



In this section, the proposed rnethod is used to develop a generai method for analyzing 

elastic-plastic axisymmetric problerns. While this method is applicable to al l 

axisymmetric problem (thick-wded tubes, fastener holes, spherical vessels. rotating 

disks etc.), attention is focused herein on the analysis of thick-walled tubes and relarrcl 

pro blems. 

Figure 3.6 shows a typicd thick tube under pressure. In this figure. p, aiid pu are insidc 

and outside pressures, and r, and ro are inside and outside radii of the cylinder. 

respectively . 

The g=consfant curves for this problem are concentric circles. Moreover. the 

q,=consrmt curves defined by the f i s t  pseudo elastic solution reiniiin g,=c.oitsrmtr 

+ 
Figure 3.6: Thick-walled cylinder 



curves in the final elastic-plastic solution due to the axisymmetric nature of this problem. 

Assuming that the value of equivalent stress remains constant within a smdl radius. ds. 

the strips for this problem are annula, as shown in Fig. 3.7. The boundary value problem 

defined by each snip is that of a cylinder under intemal and extemal pressure. The elastic 

solution to this problem is the weiI known Lamé solution which is reviewed briefly 

below. Since the effective moduli values are assumed to remain constant within each 

strip. Lamé's solution is applicable to ail strips. 

3.2.1 Lamé solution 

Consider a thick-walled cylinder under external and internai pressure (Fig. 3.6). I t  is 

convenient to use cylindncal coordinates (r, 8. z), where 8 is the angle between a radius 

vector and a fmed axis, and z is taken dong the axis of the cylinder. By vutue of 

symmetry the stresses at any given point are a function of r only, and the equilibriuin 

equation may be written as 

Figure 3.7: Strip in a thick-walled cylinder 



where U, and oe are radial and tangentid (or hoop) stresses, respectively. 

The radial strain, E,, and the hoop saain, Q, may be witten as 

wliere 14 de notes the radiai displacement. 

Since q is independent of r, elimination of u fiom the above equations and the 

substitution for (00-c,) kom Eq. (3.18) leads to the compatibiiity equation: 

Ir follows that (&+or) and 4 have constant values at each point in an elastic 

de formation. Writing oe+or=2A, the equilibrium equation can be integrated to obtniii 

Lainé's solution: 

wliere 1- is the mean radius of each strip, and A, and A, are constants obtainecl by applyiiig 

the boundary condition g=-po  at r = r  and or=-pi at r=r,. These constants take tlie 

following form: 



In addition, the strain displacement relations Eq. (3.19) may be solved in teniis of the 

displacements. For the plane strain case (&.=O), 

Stibstituting this into the equilibrium relation Eq. (3.18) yields the following differentinl 

equation after some manipulation: 

a Z i i  l a u  Li + - - - -  -0 al-?  I -  a r  r 

There fore. the radiai displacemen t has the following form: 

wliere C, and C. are found by applying the boundary conditions: 



Different end conditions (closed, open or plane strain) result in different values for q and 

E,. If the resultant longitudinal Ioad is denoted by P, the axial stress. o;, is ~/[ir(1-,,%-,3/, 
sincc this stress is constant over the cross section. In panicular, P=O for an open-endecl 

cylinder and P=xI-,$~ for a closed-ended intemally presswized cylinder away froiii the 

ends. The plane strain condition, sometimes considered for simplicity, gives 

Hcnce. for an internally loaded cylinder 

closed end 

open end 

plane strain 

Similarly, the axial strain is 



1 ( 1 - 2 ~ ) ~ ~  - closed end 
E r: 

2 - 1  
5 

open end 

(iong cyiinder) 

plane strain 

3.2.2 Implementation for elastic-plastic analysis 

As sliown in Fig. 3.7, an annular saip in the cylinder forms a boiindary valiie probleiii 

wliich admits the Lamé solution. However, a modification needs to be made in Lamé's 

soliition to make it suitable for the proposed elastic-plastic analysis. The modification 

concerns replacing the elastic rnodulus and Poisson's ratio with effective rnoduli vnlues. 

Hence. the constants in Eq. (3.25) are now of the following form: 

- for plane strain 

- for plane stress 



Here. t;,  ri are the inner and outer radii, p,, and p., intemal pressure. and externnl 

pressure on each strip, respectively. It should be noted that for other axisyrnrnetric 

problems. e.g., thick sphencd vessels where the stnps take the form of a splierical shell. 

tlie form of the displacement function (Eq. 3.25) must be modified accordingly. 

However. the analysis is identical to the one descnbed here. 

The inside and outside displacements of the strip can be related to its insidr and oiitside 

pressiires in the following form 

nit components of coefficient matrix [CI-' in the case of plane strriiii are as follows: 

In tlie case of plane stress, the components take the following form 



After assembling al1 strips together, a system of linear equations of the for111 

ic obtnined and solved for {U}. Then p, and p. are calculated froin Eq. (3.32) for e;icli 

strip. The Iioop stress. ce, radial stress, O,, and axial stress. o., for plane suairi or plnne 

stress analyses are determined from Eq. (3.21). The axial stress, wliich is zero for plnne 

stress. mny be obtained from the following equation for plane strain: 

wliere A, is given by 



3.1.2.1 Residual stresses calculation 

The pressure is removed entirely once the loading is cornpleted. Analysis for unloading is 

carried out by first employing a hardening d e .  Accordingly. the unloading ciirves are 

defined. In the case where the actual unloading c w e  is available, this is iised. nie 

rnethod described (in section 3.1.5) above is then used to find the stresses due to 

uiiloading. In the unloading analysis. each strip is forced to follow its own unloading 

curve. The residual saess field is then calculated from the foliowing equations: 

wlirre GO', a,'. and ozM, are the hoop, radiai, and axial smsses due to unloading. and O:, 

<, and qR are the corresponding values of the residual stresses. The unloading analysis 

is capable of handling elastic unloading as well as reversed yielding. 

A FORTRAN code based on the pmposed method of axisyinmetric elastic-plastic 

nnalysis was developed. This code (see Appendix A), utilizes al1 five methods of inoduli 

evaluation outlined in section 3.1.4. The code is aiso capable of calculating residual 

stress, strain and displacement fields. It can also handle different stress-stn- , in  ciirve 

idealizarions as well as actual loading and unloading curves. Tlie code wris used for 

different applications wliich are given in the next chapter. 

An equilibnum iteration critenon is used in this code. Suess values for eacli strip are 

- compared to their previous values in each iteration. A mean value of the stress difference 

over al1 strips is compared to the tolerance. 



- Uniaxial Stress-Strziin Curve 

Pseudo-Elastie Solution 

First Iteration 

,+' Third Iteration 

Elastic-Plastic Solution 

1 
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Figure 3.8: Convergence of the pseudo elastic solution to the elastic plastic solution 

3.3.1 Evatuation of methods for updating the moduli 

Wlien any of the five discussed methods of moduli evduation is useci. the first 

Iiypothetical elastic solution graduaily (within a couple of iteratioiis) coiivrrges to the 

elastic-plastic solution. Figure 3.8 compares pseudo elastic solutions to the elastic 

solution for points dong the radius. 

Point 1 corresponds to the f i s t  strip at the bore of a thick-walied cylinder. Other points 

correspond to strips near the bore. It can be seen from this figure that the elastic-plastic 

solution obtained by the proposed method (dark squares in the figure) inatches the 

iiniaxial stress-strain curve. The figure also shows that for eacli modification of the 

iiioduli (iteration). the solution gets closer to the me elastic-plastic solution. 



Von Mises 
Hardening Materials 

2 .O 3 .O 4 .O 

Figure 3.9: Effective moduli variation 

A typical moduli distribution through the wall thickness of a cylinder is sliown in Fig. 

3.9. This variation depends on the level of loading. In Fig. 3.9, three different ratios of 

the intemal pressure to the yield stress are considered; the material is assumed to obey 

the Ramberg-Osgood equation with a=3/7 and m=5; the ratio of the outside to inside 

radius is 5; Poisson's ratio is 0.3; the ratio of the elastic modulus to the yield stress is 

1000 and the von Mises yield criterion is used. 

The following tube is considered for comparing the five different methods of evaliiatinp 

the effective moduli: inside radius of 22 mm, outside radius of 66 mni, nonhardening 

bchnvior, yield stress of 1000 MPa, modulus of elasticity of 180 GPa. Poisson's ratio of 

0.3, obeying the Tresca yield critenon. The fust cornparison is based on the number of 

iterations required for convergence to the elastic-plastic solution. Table 3.1 records the 



resufts for a cylinder in the plane stress situation. In this table, the niiinber of irerations is 

coinpared as the plastic zone size increases with increasing load. Neuber's inethod and 

the combined me thod give the fastest convergence rates. 

Load Projection 

Method 

pie 

Arc- 

Length 

Method 

Neuber's Glinka's 

Method Metliod Penetration 

l - p O  

Table 3.1 : Convergence cornparison (plane stress) 

Table 3.2 shows the results for a cylinder in the plane saain situation. The combined 

inethod and Glinka's method give the best convergence rates. The arc-lengrh method 

gives better convergence rates than the remaining methods. 

Sliarpe (1995), in an expenmental evaluation of the Neuber's and Glinka's metliods in 

predicting local plastic strains and stresses, concluded that "Neuber's inodel works best 



when the local region is in a state of plane stress and the Glinka's mode1 is best for plane 

strain". Results tabulated in Table 3.1 and 3.2 show that, in a plane stress case. soiutions 

based on Neuber's method are the fastest. In a plane strain case, Glinka's inetliod gives 

inuch faster convergence rates than Neuber's method. 

- - 

Com bined 

hllethod 

Plas tic 

Penetration 

l - p o  

O. 18 

Glinka's 

Methoci 

Projection 

Method 

Arc- 

Le ngth 

Me thod 

Neuber's 

Method 

Table 3 2: Convergence cornparison (plane strain) 

The convergence behavior at a given material point on the above cylinder has also been 

coinpared. The projection method result is compared to energy methods in Figure 3.10 

for the fvst strip (at the bore). Since a l i  three energy methods show the same type of 

brhavior, only the results of the one which gave the fastest convergence (i.e., Neuber's 

inetliod) is shown in this figure. The projection method shows a more stable (i.e.. 



50 % Y'ELDED CYLINDER 
STRIP AT THE BORE 

-8- PROJECTION METHOD 

- a - - ENERGY METHOD 

4 8 
Number of Iterations 

Figure 3.10: Convergence behavior at the bore 

iiionotonic) convergence than the energy method. As shown in tables 3.1 and 3.2, the rate 

of convergence is 358 faster when the energy method is used. 

3.3.2 Number of strips 

A convergence study on the number of seips has shown that around 30 strips are enough 

for a diable  solution, based on studies for different loadings, cylinder sites and plastic 

zone sizes. 

Increasing the number of strips beyond 30 will not alter the results. Except for the 

displacements, al1 calculations are done at the mid radius of each strip. The radial 

tiisplncements at the inside and outside radii of each strip are calciilnted nssiiiiiin~ 



constant moduli vaiues across the strip. This is the value obtained at the rnid radius of 

each strip. 

For this study a nonhardening cylinder with an outside-to-inside diaineter ratio of 4 \ ~ i s  

used. The cylinder was internally Ioaded such that half of the wall tliickiiess yieldzd. It 

was assumed that the cylinder is in plane strain state. 

Figures 3.11-3.16, show the results for this study. Figure 3.11- 3.13 show the results for 

the hoop, radial and axial stress based on 30, 90 and 270 smps. Figures 3.14 and. 3.15 

compare the strain results while Fig. 3.16 shows the results for radial displxrmenrs. It 

sliould be noted that the displacements calculated based on 30, 90 and 270 suips are in 

close agreement. even though they are calculated at the inside and outside rxiiiis of cadi 

strip. and not at the mid radius where the moduli are calculated. This compnrison sliows 

t1i;it 30 suips is sufficient and that an increase beyond this does not alter die solution. 

However, in this research, 99 sûips were used in generd to provide a more detailed 

solution (Le., more data points), especidy near the bore, where tlie residuül stresses ;ire 

of interest. 



Figure 3.1 1: Effect of number of elements (hoop stress) 

Figure 3.12: Effect of number of elements (radial stress) 



Figure 3.13: Effect of number of elements (axial stress) 

Figure 3.14: Effect of number of elements (hoop strain) 



Figure 3.15: Effect of number of elements (radial main) 

Figure 3.16: Effect of number of elements (displacement) 



The variable material propeny approach proposed in chapter 3 is used herein for the 

analysis of thick-walled cylinders and fasrener holes. Both loading and unloading are 

considered. Results obtained from the present method are compared to other analytical 

solutions (where appkable), finite element solutions and/or expenmen ta1 solutions 

(where applicabIe). 

The plastic loading of hardening and nonhardeninig thick tubes is considered first. 

Autofrettage is discussed next, foiiowed by loading and residual stress calculation for 

hstener holes. Muitiaxial loading of thick-walled cylinders is considered at the end of 

this chapter. 

P~tssurized tubes have a very wide range of applications. Their elastic-plastic beliavior is 

of interest to achieve optimum design in, for instance, pressure vessels, nuclear reactors. 

rocket boosten and containment sheiis for nuclear generating facilities. The inelastic 

behavior of thick-walled cylinders, therefore, is of considerüble teclinologicai 

importance. 

4.1.1 Literature Review 

Due to the wide range of applications and technological importance, elastic-plastic 

deformation of thick-walled tubes has been neated at great length. Literature includes 

expenmental investigations (Roach and Riddy, 1994); finite difference (Chen. 1980). 

finite element (Chen, 1972), boundary element (Yong and Naijie 1991) solutions and 

analytical solutions. 



There have been several analytical solutions o b t h e d  in closed form or wirh numeric:il 

implementations. These solutions differ in their assumptions of the type of material 

response, yield criterion, plasticity theory , compressibility of the material. manne r of 

loading. end conditions and the completeness of the solution. Table 4.1 summarizes and 

compares several methods for elastic-plastic anaiysis of thick-walled cylinders. 

4.1.1.1 Elastic-perfectly plastic Tresca cylinder 

The problem of a nonhardening thick-walled cylinder obeying Tresca's yield criterion 

under interna1 pressure is statically determinate. It has an exact stress field solution 

(Prager and Hodge, 1951), which is reviewed here. 

Let the thick-walled cylinder shown in Fig. 3.6 be made of elastic-perfectly plastic 

material obeying Tresca's yield critenon. The equilibrium of an differential element on 

the wall is given by Eq. (3.18). The yield condition based on Eq. (2.15) is 

This implies that 4 has an intermediate value between oe and 0,. This is valid in the 

plastic nnge if the ratio of the outer to inner radius, rJr,, is less than a certain value 

which depends on the value of Poisson's ratio (Koiter, 1953). For example. this valiie for 

v=0.3, is 5.75. By combining Eq. (3.18) and Eq. (4.1), the corresponding diffei-eiitial 

equation has the following general solution 



Hill, Lee and 

Tupper 

Cook Sokolovsky 

von Mises von Mises Tresca Tresca 

Hencky Hencky Hencky Prandtl-Reuss 

Linear 

hardening 

Nonhardening Linear 

hardening 

Plane striiin Plane suain Plane strain Plane strain 

In temal 

pressure 

In ternal 

pressure 

In ternal 

pressure 

In ternal 

pressure 

Yes Yes 

Closed form Closed form Numerical Nuinerical 

Stress 

$train 

Stress 

strain 

Stress 

suai n 

Stress 

strain 

Table 4.1: Cornparison of several theones for plastic analysis of thick cylinders 



Method 

Year 

- 

MacGregor, 

Coffin and 

Fisher 

Hodge and 

White 

Hill, Lee and 

Tupper 

von Mises von Mises Tresca 

I Plasticity mode1 Hencky Hencky Prandtl-Reuss 

I Material Nonhardening Nonhardening Nonhardening 

Y Behavior 

End conditions Open ends PIane strain Closed ends 

Loading Internal pressure In ternal 

pressure 

Internal 

pressure 

Dilatation Yes Yes Yes 

I Type of Solution Numerical Numerical 

Capabilities I Stress and strain Stress and ssain Stress and strain 

Table 4.1 (cont): Cornparison of severai theories for plastic analysis of thick cylinders 



Method 

Year 

Yield Criterion 

Plasticity 

mode1 

Allen and Sopwith Koiter 1 

Tresca Tresca Tresca 

Hencky Hencky 

Material 

Behavior 

End conditions 

Nonhardening Linear hardening Nonhardening 

Plane strain opcned 

and closed end 

Opened and 

closed ends 

closed ends 

Loading Internai pressure 

and end load 

Interna1 pressure I n t e m l  pressure 

Dilatation r Yes 

- -  

Closed form Closed form Closed forin 

I Solution 

Suess and strain Stress and strain Capabilities Suess and strain 

Table 4.1 (cont.): Cornparison of several theones for plastic anaiysis of thick cylinders 



Bland Smith and 

Sidebottom 
Method 

Year 

Tresca von Mises von Mises or Tresca YieId Criterion 

Incrementat & 

Hencky 

Deformation 

theory 
Plasticity mode1 

Linear hardening Linear hardening Actual iiiaterinl Material 

Behavior loading curve 

closed ends Plane strain 

opened and 

closed ends 

Generalized plane 

strain with ~in1o;irted 

ends 

End conditions 

- -  . - -  

Internai, pressure 

therrnal 

Interna1 pressure 

and temperature 

Lnternal pressure Loading 

Dilatation Yes 

Closed form CIosed form Type of Solution Numerical 

Stress, strain 

iisplacement and 

temperature 

Stress and strain Stress, strain and 

temperature 

Table 4.1 (cont.): Cornparison of several theones for plastic analysis of thick cylinders 



- 

Method 

-- 

Shih-Chi Chu Shih-Chi Chu 

and Vasiiakis 

Year 

von Mises von Mises von Mises Yield Criterion 

Incremen ta1 Incrernental Incremental & 

Deformation 
Plasticity mode1 

Material 

Behavior 

Nonhardening Linear hardening Linear Iiardening 

Plane stress Plane strain 

~pened and closed 

end 

Plane strain 

spened and closed 

end 

End conditions 

-- 

Loading Intemal, extemal 

pressure and end 

Ioad 

In temal pressure Ln ternai, external 

pressure 

nonproportional 

pressure-tension 

Yes Yes Yes Dilatation 

Numeric al Type of Solution 

Stress and strain Stress, ~train and 

displacement 

Stress and strain Capabilities 

Table 4.1 (cont.): Cornparison of several theories for plastic analysis of thick cyiinders 



1 Sidebottom and Durban Durban aiid 

Kubi 
Method 

Chu 

Year 

- - 

Yietd Criterion von Mises von Mises 

Deformation 

theory 

Deformation 

theory 

- - 

Defonnation 

theory 

Incremen ta1 Plasticity mode1 

Actuai stress- 

suain curve 

Romberg- 

Osgood with 

no elastic 

Part 

Nonhardenin 

g and 

hardening 

Romberg- Material 

Behavior Osgood and 

nonhardeiiing 

Plane straiii Plane strain Plane strain 

closed end 

Generalized 

plane saain 
End conditions 

- - 

Internai 

pressure 

Internai, 

external, end 

force 

intemal, external 

pressure, tension 

and torsion 

Intemal pressure Loading 

Yes Yes Dilatation 

Numerical closed form Numerical closed fonn rype of Solution 

stress strain 

displnceii~eiit 

B urs t 

pressure 

S train, fini te 

deformation 

S~ZSS,  strriin 

displaceinen t 
Capabilities 

Table 4.1 (cont-): Cornparison of several theones for plastic analysis of thick cylinders 



Loghrnan and 
1 Wahab 

Present method Method 

Tresca von Mises von Mises or 

Tresca or eny other 

yield criterion 

Yield Criterion 

Deformation theory Deformation theory Plasticity mode1 

Hardening with 

temperame effec t 

Linear hardening Actual stress-strain 

curve or Rriinberg- 

Osgood mode1 

Material Behavior 

Plane stress Generalized plane 

s train 

Plane stress or 

Plane strain 
End conditions 

Intemal pressure 
- -- 

In ternd, externa! 

pressure and torsion 

Interna1 pressure Loading 

Yes Yes Dilatation 

Type of Solution Numerical Numerical Numerical l 

S tress s train 

displacement 

Stress main Stress, s trai II 

displacement 

nonproportional 

loading 

hble 4.1 (cm.): Cornparison of several theories for plastic analysis of thick cylinders 



where C is an integration constant For any value of interna1 pressure p, Içss thnii [lie 

ultimate pressure and greater than the pressure for fxst yield, the cross section of rhe 

cylinder between the inner radius, rgT and an intemediate radius. rp, is fully plastic. 

whzreas that between rp and outer radius, rQ, is in the elastic dornain. At the elastic-plastic 

boundary (r=c), the yield condition is just satisfied, and the correspondhg radial stress 

can be computed: 

This equation dong with Eq. (4.2) gives the integration constant 

If tliis constant is substituted into Eq. (4.2), then at r=r where g = p ,  

wliich can be solved for the elastic-plastic boundiuy. The stress distribiition in the plastic 

zone is of the following form: 



and the stress in the elastic zone can be obtained by Lame's solution (Eq. 3.2 1). 

4.1.2 Elastic-plastic behavior of nonhardening materiais 

The nonhardening response of a thick-walled cylinder obtained using the proposed 

method of solution is considered here. Numericd results have been obtained for a 

cylinder with r0/r,=5. v=03,  and Elg=1000. The fust example is a Tresca cylinder 

under intemal pressure. The above cylinder is loaded such that half the wall becomes 

plastic. The stress field due to this intemal pressure, obtained by using present inetliod. is 

compared to the analytical solution given by Eq. (4.6). In Fig. 4.1 the two solutions 

111atch extremely well. 

The stress field for a cylinder of the same dimensions and under the same pressure but 

obeying the von Mises yield critenon is shown in Fig. 4.2. 

Figure 4.1: Cornparison of present method and analytical solution 



A finite element solution of the problem using ABAQUS (Hibbit, Karlsson S: Sorensen. 

1996), was obtained by the author for cornparison purposes. The stress field obtaiiird by 

the finite element solution is compared to the present method in Fig. 4.2. The two 

solutions are in excellent agreement. 

The changes in the stress distribution for the above cylinder in a plane stress situation as 

the intemal pressure increases has also been studied. These stress distributions are sliown 

in Fig. 4.3. As has been noticed by MacGregor et al. (1948), and more recently by Bon 

and Haupt (1995), the circumferential stress changes from tension to compression even 

for partially yielded cylinders. Moreover, for a nonhardening inarerial the cyliiidrr 

rriiclies its limiting pressure very quickly. The co~~esponding s m i n  6eId is sliowii in Fig. 

4.4. 

The behavior of an externaily loaded thick cylinder was also studied. The geoinetry of 

the cylinder was the sarne and it was assumed to be in plane strain. The distribution of 

Figure 4.2: Cornparison of present method and finite element solution 



hoop and axial stresses for various load ratios are shown in Figs. 4.5 and 4.6. In tliis case. 

tlie maximum hoop stress, unlike for elastic behavior, is not at tlie bore. The iiiaxiiniitn 

value is at the elastic-plastic boundary and is compressive. In tliis case. the ultiinnte 

pressure is lower than for an internally loaded cylinder. The axial stress. which is also 

compressive, increases from the bore toward the elastic-plastic boundary and remains 

constant in the elastic region. 

4.1.3 Elastic-plastic behavior of hardening materials 

The plastic response of a thick-walled cylinder obeying the Ramberg-Osgood rqiiation 

was obtained using the proposed method of solution. Numerical results have been 

obtained for a cylinder with r&=5, v=0.3, Elo,=1000, a=3/7 and m=S. Tlie first 

txample is a von Mises cylinder under interna1 pressure and plane strain conditions. The 

above cylinder is Ioaded until it is partially plastic. Since there is no exact solutioii for 

this situation, ABAQUS has been used for cornparison purposes. Tlie tïnite eleii~eiit 

ünnlysis was perfonned using the deformation plasticity option of ABAQUS. This option 

is büsed on total deformation plasticity and employs the Ramberg-Osgood formulri. Fig. 

1.7 shows the hoop, axial and radial stress dismbution for this cylinder froin the preseiit 

nnalysis and as predicted by the finite element method. The agreement is excellent. Tiie 

corresponding strain field for the same cylinder is compared in Fig. 4.8. The agreement 

between the two solutions is again excellent. 

The change in hoop and radial stresses due to changes in the interna1 pressure wos nlso 

studied. Results are shown in Fig. 4.9. Unlike nonhardening materials, the Iioop stress 

reiiiains tensile even for high values of pressure. Only close to the ultimate pressure dors 

tlie hoop stress becomes compressive. Also, as expected, the ultimate pressure is much 

higlier in this case as compared to the nonhardening case. The corresponding change in 

tlie strain field is shown in Fig. 4.10. Not only are the strain values in tliis case mucli 

lower than the corresponding nonhardening case, but also the changes in the strain field 



Figure 4.3: Stress variation in intemally loaded cylinder 

GO Von Mises 

Figure 4.4: Strain variation in internaiiy loaded cylinder 
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Figure 4.5: Hoop stress variation in externally loaded cylinder 
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Figure 4.6: Axial stress variation in extemally loaded cylinder 



due to changes in the pressure is much more gndual. Note that the loading for botli the 

nonliardening and hardening cylinders is the same (Fig. 4.4). 

To study the effect of plane strain or plane stress assumptions on the stress field. the 

Iioop stresses rcsulting from plane suain or plane stress analysis are compared in Fig. 

1.1 1. The difference is not very appreciable. In the plane smss cylinder, the stresses tend 

CO be higher in the plastic zone. However, in the elastic region, the stress calculnred using 

plane suain is higher. 

Von Mises 
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Figure 4.7: Cornparison of present method and fmite element solution (stress 

field) 
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Figure 4.8: Cornparison of present method and finite element 

solution (strain field) 
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Figure 4.9: Stress variation in intemally loaded cylinder 
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Figure 4.10: Strain variation in intemdly loaded cylinder 

Figure 4.1 1: Cornparison of plane strain and plane stress results 



The concept of introducing compressive residual hoop smsses at the inner portion of a 

cylindrical pressure vessel as a means of increasing the maximum allowable pressure tliat 

tlie vessel can withstand onginates in the gun barre1 industry of the nineteenth century 

(Perl and Arone, 1994). Various techniques and processes to attain these favorable 

residual stresses were developed, e.g., casting hollow iron guns while cooling tliem froin 

wirliin, winding sheet iron around wrought iron gun tubes. or using hoops welded froiii 

coils and shrunk together. When it became apparent that a funlier increasr i i i  biirrel 

strrngth could not be obtained using these techniques, designers turned to biiilt-up giins 

which were composed of severai concenaic tubes shrunk ont0 ex11 other, tlius creriting 

pre-stressing. At the turn of the century, a French anillery officer (Jacob. 1907) 

suggested an alternative process for pre-saessing monobloc gun barrels. now known as 

su tofrettage, from the French word for "self-hooping". In this process, the cy linder is 

sii bjected to an interna1 pressure with an intensity sufficien t to produce y ielding t1irocigli 

a part of or the entire cylinder wall. This process is carried out eitlier by Iiydrciiilic 

p~ssurization or by pushing an oversized mandrel or swage througli tlie forging. Once 

the required permanent deformation is reached, the pressure is released. Wliile the outer 

Inyrrs tend to return to their original dimensions, the inner layers. hnving been 

considerably expanded due to plastic deformation, tend to maintain their enlargeci 

diaineter. Thus, a residual stress field is introduced in the cylinder's wdl. This resiciiial 

stress is compressive at inner layers and tensile at outer ones. The process of ;iutofmtage 

lias become common practice since about 1930. The application of autofrettiige is not 

liinited to the m a r n e n t  industry, but is widely used in industries iitilizing very Iiigh 

pressure cylindrical vessels, such as chernical reactors and hydrostatic extriisioii 

cliambers. 

Apart from increasing the pressure bearing capacity of the vessel, the residual stress 

induced by autofrettage enhances the vessel's fatigue life. The preseiice of co~iipressive 

stresses at the bore reduces the probability of crack initiation and slows tlie growtli of 

fatigue cracks (Parker and Farrow. 198 1; Stacey and Webster, 1988). This enhanceinent 



may result in an extension of fatigue Me by a factor of up to three (Perl and Arone. 

1988). 

A reliable prediction of the influence of autofrettage on the cntical crack lengtli and 

fatigue life of a thick-walled pressurized cyhder  requires an accuriite prediction of the 

actual residud stress field prevailing in the cyhde r  wail. It is therefore essential to 

develop accurate and reliable methods to calculate the residuai stress field induced by 

autofrettage. 

The variable material propeny approach for axisyrnrnetric problems is capable of 

riccurately predicting mechanically induced residual stress fields. Tiiis tncthod cmploys 

rlie actual loading and unloading stress-smin curve to $ive a close esritnate of tlir ncrii:il 

residual stress field. 

The application of this method to residual s a s s  prediction in autofrettage is presented in 

this section. Three major capabilities of this method are: 1) employment of the actunl 

unloadiiig material curve. 2) employment of different hardening iiiodel S. and 3) 

consideration of variability in the Bauschinger effect factor (BEF). 

A review of different methods of calculating residual smss induced by autofrettage is 

discussed first. Results obtained by the present method are presented and compared with 

different experimental. finite element and analyticai results later. 

4.2.1 Literature Review 

Tliere have been many solutions proposed for the calculation of residiinl stress fields 

iiiduced by autofrettage. Most of them consider only elastic unloading (Hill. 1950; Steel, 

1952). However, there are a nurnber of solution which take into account reversed 

yielding. These solutions differ due to their assumptions on loading behavior (hardening 

or nonhardening), unloading behavior (hardening or nonhardening), yield criterion 

(Mises or Tresca), hardening rules (khematic or isotropic hardening). dilatation 

assumption. end conditions, and Bauschinger effect factor (constant or variable). 



Manning (1945) provided a method of calculating residual stress fields which ernploys 

the actual loading and unloading cuve. A d a p ~ g  the assumption previously rinployed 

by Nadai (193 1) and Nacrae (1930), that the shear saain is inversely proponional to the 

square of the cylinder radius, he was able to predict the residual stress field. Lnter. 

Franklin and Momson (1960), using the same assumption, proposed and validated a 

method of residual smss calculation. Their method requires full knowledge of tlie sliear 

stress-strain properties of the materid in pure torsion. In their two-step method. the 

cylinder is f i s t  divided into an even number of equal (maximum of eight) layers and 

successive values of strain at the extemai boundary are assumed. By iising tlie basic 
4 

assurnption that the totai shear strain is inversely proportional to the square of the 

cyIinder radius in  the forrn 

the shear strain in different layers is calculated. Based on this calculation and using the 

slirar stress-strain curve, the corresponding stress value is read froin tlie torsion curve. 

Clearly, the Tresca yield criterion is embedded in this procedure. Usince equilibriurn and 

Simpson's rule of integration, the interna1 pressure causing this strain and stress field is 

calculated. This method, which assumes plane saain, gave reasonable estimates to the 

residual hoop stress field when compared with experimental measurements of residuül 

stress (FnnkIin and Momson. 1960). However, the axial strain predicted frorn tliis 

niethod did not agree with expenmental results, especially in the proxiinity of the bore. 

IdeaIly. the torsion data needed in this method should be obtained from a cylinder witli 

an identical shear stress gradient. 

Kendall (1970 and 1986) proposed a correction factor to the elastic unloading results to 

compensate for the Bauschinger effect during uriioading. This correction factor was 

based on extensive experimental study conducted by Kendall (1970) to detennine the 

pressure at which the material of a previously autofrettaged cylinder tïrst undergoes 



additional plastic deformation. In his method, Kandell(1986) assumcd that for the points 

inside the plastic zone of the cylinder, the difference between the tangential and radial 

residual stresses was a linear function of the radius between the inside radius and the 

radius at a point, r:, at which this stress difference is zero. Using the Tresca yield 

critenon and a method sirnilar to linear elastic unloading, he introduced equations for the 

calculation of hoop and radial stresses within the plastic zone. The linear elastic 

unloading method was used to estimate the residuai hoop and radial stresses in the elastic 

zone of the cylinder. However, to ensure c o n ~ u i t y  of saesses at r,, the linear unloading 

stresses were rnultiplied by a correction factor. This factor was determined by calculating 

the radial stress at r,, by using the equauon introduced for the plastic zone. and dividing 

the radial stress by the corresponding stress calculated for assuining a linenr elastic 

iinloading. Compûring his predictions with the published experiinental resiilts, lie 

concluded that there was general agreement between his predictions and expentnentnl 

results but that there were significant differences in the value of the residiiül hoop stress 

at tlie bore. This method lacked a procedure to calculate the axial stress. 

Clien (1986), proposed a different method which incorporated botli the Bnuscliinger 

effect and the hardening effect due to unloading. Based on experirnental observations of 

Iiigli strength steel behavior, the Bauschinger effect factor is very iiiiportnnt in 

determining the range of elastic unloading. After reversed yielding occurs, a very large 

degree of strain hardening will develop, even when the initial tensile test exliibits very 

little strain hardening. Chen argued that any discrepancy between the different solutions 

and the experimental results was due to two factors: 1) the Bauschinger effect factor 

dependency on the value of reversed yielding, and 2) the iinear hardening responsr 

dunng elastic-plastic unloading. He then proposed a bilinear stress-strain iinloading curve 

to mode1 the behavior of the high strength steel usually used in autofrertage. Clien's 

solution is a two step closed form solution. The fust step involves loading of tlie 

cylinder. Dunng loading the material is assumed to be elastic-perfectly plastic, obeying 

Tresca's yield cntenon and associated flow theory. Chen employed Koi tter's (1 953) 

closed form solution for Ioading. In the second step, if the pressure is not sufficient to 

cause reversed yielding, the unloading is purely elastic. However, if the pressure is higli 



rnough to cause rewersed yielding, by introducing a BEF factor and a hardening fxtor. 

elastic-plastic unloading is analyzed. Bland's (1956) closed form solution for linear 

hardening matenal's obeying Tresca's yield criterion was used. This method is capable 

of using a beaer mode1 of the unloading curve, once the BEF and the hardening 

parameter are selected. For such a selection the actual unioading curve is needed. Also. 

this method is restricted to the elastic-perfectly plastic behavior and the Tresca's yield 

criterion. 

The three methods discussed above are the methods that are used most A comparison of 

the different methods for residual smss field caiculation is given in Table 4.2. This 

cornparison is Limited to those methods that consider reversed yielding. Methods with 

elastic unloading are not discussed here. 

4.2.2 Actual Stress-Strain Unloading Cuwe 

The matenal chosen for the numerical simulation was a high sûength steel (AISI 4333 

M4). The actual matenal behavior is shown in Fig. 4.12 . This figure is a reproduction of 

the expenmentally obtained stress-strain curve for AISI 4333 steel recorded b y Stacey 

and Webster (1988, Fig. 2). For comparison, some of the material models used in the 

residual stress calculations are also s h ~ w n  in the same figure. In this analysis, it \vas 

assumed that the unloading curve was independent of the level of over-strain. 

In accordance with the specimen used in experiments performed by Stacey et d. (1985). 

a tube with a nominal bore diarneter of 30 mm and outside diameter of 62 mm was 

considered. It was assumed that the tube is in a plane stress situation and has been 

internally pressurized to 662 MPa and subsequently fuUy unloaded. 

Since the sfress disaibution in the autofrettaged tubing is a result of a combination of the 

initial rnanufacturing (known as as-received residual stress) and the autofrettage process. 

Stacey et al. (1985) measured the as-received residual stress distribution of the tube used 

in their experiment. This stress distribution is shown in Fig. 4.13 . 



Manning (1945) Franklin & 

Morrison (1960) 

Kendall 

(1970,1986) 

Tresca Tresca Tresca 

Total Deformation Total Deformaaon Total Deformation 

Actual Cuve Actual Behavior in 

Torsion 

Elastic- Perfectiy 

plastic 

Actual Curve Actual Behavior in 

Torsion 

Elastic with 

correction factor 

. . 

Plane Strain Plane Strain 

. - -- 

Yes Yes 

Yes Yes As a Correction 

Residual Hoop & 

Radial Stresses 

Residud Hoop, Axial 

& Radial Stresses 

Residual Hoop & 

Radial stresses 

Nurnencal 

Table 4.2: Cornparison of severai autofretrage theones 



Rees (1990) 

- -- 

Tresca Tresca & von Mises 

Total Deformation Increinental Plasticity 

- - - - - - - - - - 

Elastic- Petiecdy Plastic Elastic- Perfectly plastic 

Elastic- Linear Hardening Kinematic & Isotropic 

Models 

PIane Strain & stress Open end with nonzero axial 

suain 

Yes Yes 

Yes 

- - - --- - - 

Residual Hoop, axial & Radial 

Stresses and Displacement 

Residual Hoop, Axial & 

Radial Stresses and S trains 

Closed FormçTwo Sep)  

Table 4.2(cont.): Cornparison of several autofrettage theones 



Meghahed & Abbas (1991) 

Tresca 

Total Defornation 

Power Law Hardening 

Po wer Law Hardening and 

Kinematic & Isotropie Models 

Plane Strain 

Yes 
- - 

Yes (BEF dependency is defined 

by an exponential equation) 

Residual Hoop, & Radiai 

Stresses and Displacement 

Analytical r w o  S tep) 

Present Met hod 

Tresca & von Mises or any Yield 

Criterion 

Total Deformation 

Actual curve, Nonhardening, 

Linear hardening and the 

Ramberg-Osgood mode1 

Actual curve, Kineiniiric & 

Isotropie Models 

Yes 

Yes 

Yes (Actual BEF dependency on 

over strain / any representation 

of BEF dependency) 

Residual Hoop. Axial & Radial 

Stresses and Strains, and 

Displacemen t 

Numerical 

Table 4.2(cont.): Comparison of several autofrettage theories 
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Figure 4.12: AIS1 4333 M4 Material curve 

(Fig. 2. Stacey & Webster. 1988) 

The present analysis of the sarne tube was camied out assuming that the cylinder was pre- 

suessed pnor to application of the autofrettage pressure. Hence. the results obtained 

iiiclude the as-received stress field. When the von Mises yield criterion was used. more 

than 1/3 of the wall thickness was found to be plastic at the end of loading. Also. tliere 

were no indication of reversed yielding upon unloading. Figure 4.14 compares the 



present results with experimental measurements of Stacey et al. (1 985) who used neutron 

diffraction method to determine residual stresses for autofrettage samples of 5 mm and 

10 mm thickness. There is very good agreement between the present results and tlieir 

measurements, especiaIiy near the bore. This good agreement signifies the importance of 

employing the actual unioading behavior of material in residual suess calculations. 

The residual stress fields calculateci using the different material models shown in Fig. 

4.12 are shown in Fig. 4.15. The results s h o w  in this figure were al1 obtained using the 

present method, which is capable of employing any unloading rnodcl. Stricey and 

Webster (1988), following the rnethod proposed by Chen (1986), suggested a 

Bauschinger factor of 0.3 and a linear hardening factor equal to 0.3E for an accurate 

mode1 of the unloading behavior. 

Since the actual loading-unloading behavior was employed, the choice of yield criterion 

had the main influence over the results. Results using different yield conditions wcrr 

obtained and are compared with the experimental results in Fig. 4.16. 
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Figure 4.13: Residual suess field induced by manufacturing 

(Fig. 7, Stacey et al., 1985) 



Figure 4.14: Residual stress cornparison 

(Expenmental data from Stacey et al., 1985) 
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Figure 4.15: Comparison of different matenal models 
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Figure 4.16: Comparison of different yield critena 

(Expenmental data from S tacey & Webster, 1988) 



Tlir Tresca cntenon, the von cntenon Mises and an average value of Iioop stress os 

prrdicted by the two cntena were used in the analysis. Results are compared with 

expenmental results obtained from neutron diffraction, the Sach boring out ~echnique 

and the Sach machining fiom outside technique, provided by Stacey and Webster (1988). 

The rneasured values are due to autofrettage only. That is, the as-received residiid field 

lias been subrracted from the measured value to show the effect of autofrettage (Stacry 

and Webster, 1988). The solution based on the Tresca yield criterion clearly over- 

predicts the experimental results, while that based on the von Mises criterion shows the 

best prediction near the bore. The average of the two criteria's best predicts tlie 

intermediate transition between the plastic and elasac zones. In genenl. it serins tliiit [lie 

rxperimental results obtained using the different techniques lie berwcen the prediction 

b;issd on the von Mises and the werage of prediction based on tlic von Mises and the 

Ti-ssca criteria. 

42.3 Isotropie and Kinematic Hardening Models 

Hunsaker et al. (1976)- in an extensive study of hardening rules in plüsticiry. coiic1ticted 

tliat isonopic (IH) and kinematic (KH) hardening rules represent the l i i i i i r  of acriial 

reverseci yielding behavior and other models usually fall witliin rliis l i i i i i t .  Hcir . bo tli 

iiiodets were used to predict the residual stress field. 

Clien and O'Hara (1984) presented a comprehensive study of the two inodels by using 

ADINA finite element software. To compare the present analysis witli their finite 

eletnent results, the sarne cylinder dimensions and loading were coiisidrred. Ili tlir 

present study, a closed ended cylinder with a outside-to-inside radii ratio of 4.63, intesiial 

nidius of 0.865 inches (=2.2 cm), and extemai radius of 4.005 inches (=10.17 cm) w:is 

pressurized to 250 Ksi (=1720 MPa) in ten steps and then unloaded in five siibseqiisnt 

steps. Chen and O'Hara (1984) used a rnultilinear (6 point) representation of the stress- 

strain curve. These data points are tabulated in Table 4.3. The stress-strain curve and 

unloading c w e  is shown in Fig. 4.17. Based on the results obtained by the present 

inethod, at the end of loading, 43% of the cylinder had yielded. As expecteci, ericli mode1 



predicted a different residual stress field. When the 

Ioad was fuiiy removed, 8.3% of the wall thickness 

near the bore experienced reversed yielding 

according to the kinematic hardening model, 

whereas for isotropic hardening the percentage 

decreased to 3.3%. The results are compared with 

the results obtained by Chen and O'Hara (1984) 

using ADINA finite element code in Fig. 4.18. In 

tliis figure, a and b are the inside and outside radii of 

the cylinder. The agreement is excellent. Figure 4.19 

shows the residual radial and axial stresses. Again 

the agreement is very good. The differences between 

the residual axial stress from the present method and 

tliat of ADINA are due to compressibility 

1 

Stress : Ksi : MPa 
I 

155 1 1066 
I 
I 

167 1 1150 
1 

I 
172 1 1183 

I 

1 
177 1 1218 

I 

I 
181 1 1245 

I 
I 
1 

1 181 1 1245 
I 
I 

Table 4.3: Uniaxial stress- 
suain data (Clien & O'Hara, 

1984) 

assurnptions. The present solution assumes the material to be compressiblr. The radial 

displacement at inner and outer radii from the two solutions are also compared in Fig. 

1.20 and 4.21 for isotropic and kinematic hardening, respectively. The agreement is very 

good. 
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Figure 4.17: Stress-saah curve used in the analysis 
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Figure 4.18: Residual hoop stress cornparison 

(FEM result from Chen & O'Hara. 1984) 
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Figure 4.19: Residual radial and axial stresses cornpuison 

(FEM result from Chen & O'Hara. 1984) 
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Figure 4.20: Comparison of the boundary displacements (IH) 

(FEM results from Chen & O'Hara, 1984) 
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Figure 4.2 1: Comparison of the boundary displacements (KH) 

(FEM results from Chen & O'Hara. 1984) 



1.2.4 Variable Bauschinger Effect 

Milligan et ai. (1966), in an experimental investigation on high strength steel. concliided 

tliiir the Bauschinger effect factor decreases (Bauschinger effect increases) i i i  inagni tiide 

witli increasing permanent s aah  up to approximately 2%. Thereafter, it tends to reiiiain 

at a fixed value of 0.35. Figure 4.1 1 is a reproduction of figure 8 in Milligan et al. (1966) 

for 4330 modifed steel. There have been many attempts to develop a method thnt 

includes the Bauschinger effect in the calculation of residual stresses induced by 

autofrertage. As discussed earlier, Franklin and Momson (1960) provided a iiietlioti 

w1iicl-i employed the actuai unloading curve and hence considered a BEF. Kendall ( 1984) 

proposed a simple (empirical) BEF correction for use when the residuiil Iioop stress Ixis 

bren obtained by assuming elastic unloading. Chen (1986) proposed a closed-fortil 

solution for calculating residual stresses in auiofrettage using a simple mode1 of die 

stress-suain cuve  which included a BEF and a hardening effect upon unloading. These 

solutions use a fixed value for BEF only and do not allow for changes in the BEF üs a 

fiinction of over-strain. 

Otlirr citreinpts have been made to take into account the changes in the Baiiscliingrr rffect 

hictor as a function of plastic snain. Chaaban et al. (1986). in ü rntlier coinplicrired 

nianner, provided a method of generating stress-strain curves as a function of plastic 

strain by introducing fictitious thermal loads. In their method, which is designed to be 

usrd with a finite element package (e.g., ABAQUS). the dependency of the BEF on over- 

strnin was modeled by introducing a fictitious thermal load to develop differsnt stress- 

strain loading curves. Then. using isotropie hardening, the uiiloiiding curves were 

defined. Each layer of the cylinder would then have a different unloading curvr to 

follow. In this way they simulated the changes in BEF as the plastic strain changes. 

hlegahed and Abbas (1991) proposed a method that employs variable BEF's in the 

calculation of residual stresses in an autofrettaged cylinder by inciuding an empincal 

equation descnbing the BEF dependence on plastic strain. Their solution, as mentioned 

earlier. is for material whose behavior is rnodeled by a power Iaw. The present inetliod 

einploys the experimentally obtained BEF-plastic strain curve (e.g.. Fig. 4.22) mi 



autornatically generates the unloading curve of each strip based on its plastic strain value 

at the end of loading. The reversed yield point is defmed by the equivalent stress at the 

end of loading (current yield value for each saip) and the correspoiiding BEF. The 

unloading curve resumes its (loading) shape afier reversed yield. 

The third example discussed here examines the effect of a variable Bauschinger effect oii 

residual stress predictions in autof~ttaged tubes. The experimental results of Milli, =an et 

al. (1966) were used as the BEF data. A cyhder  with inner to outer radii ratio of 3, Elq 

= 1000, and elastic-perfectly plastic behavior during loading and unloading wris 

coiisidered. The cylinder was assurned to be in plane strain and the plastic detoni~utioii 

w s  based on the von Mises yield criterion. Four different üutoli;ltt;ige levels wen 

considered. Figures 4.23-4.26 show the results obtained. The Iiighest autofretrage 

percentrige where the unloading was fully elastic was found to be 16%. At tliis level. not 

only does a constant BEF=0.35 falsely predict reverse yieiding but ûlso underesrimntes 

the bore Iioop sness by a factor of 113 (Fig. 4.23). However, the discrepancy in the axial 

stress was lower. At higher levels of autofrettage, the differences between the two 

predictions decreases (Figs. 4.24-4.26), and eventually vanish (Fig. 4.26). Tlierefore, i t  

can be concluded that including the dependence of BEF on plastic striiin for low Iwel 

niitofrettaged analyses is important, especially for the prediction of reverse yielding. 
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Figure 4.22: BEF in 4330 Steel 



Elostlc-Pcrktly Plastic (b/a = 3) 

Comatu B i F  (d35) 

6.60 

Figure 4.23: Variable BEF vs Constant BEF 

(Autofrettage level=l6%) 

30% Autdrettage Cylinder 
Eladle-Pafectly Plastic (b/a = 3) 

I \  / Comaru BEF (BEF=OJSJ 
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4.3 LOADING AND UNLOADING OF FASTENER HOLES 

Riveted and bolted joints often appear in built-up, rnechanic~y loaded structures. For a 

plate containing a hole and subjected to a uniform remote tensile stress Ioad. the hoop 

stress at the notch surface is roughly three tirnes larger than the remote stress. Such stress 

concentrations are very imponant in fatigue life. In an earlier investigation in the aircraft 

industry. the most important source of failure in sixty-four aircraft incidents was found to 

be poor qudity of the fastener holes. Results of this study (Wood. 1975) are summarized 

in Fig. 4.27. However, more recent studies of fatigue failure of airplane structures reveal 

tliat up to 70% of ail fatigue cracks originated from joints hole (Buxbauin and Hutli. 

The deinand for longer service Iives in aircraft is 

dominated by the limited fatigue performance of 

crirical aidrame components. Therefore, it is 

desirable to reduce the tende hoop smss at the 

liole surface. Methods of improving the fatigue 

performance of fastener holes which are simple, 

of relatively low cost, and that do not add weight 

or tnaterial to the airframe are particularly 

desirable. Foremost arnong such processes, cold 

espansion of holes has gained particular 

iiiipomnce over the past thirty years and a variety 

of techniques by which expansion may be 

acliieved have been considered (Champoux, 

1986). AI1 processes require insertion of a hard 

tool to deform the periphery of a hole plastically 

both in the radial and hoop directions. When the 

tool is rernoved from the hole, the elastic bulk 

surrounding the permanently defomed region Figure4-27: Importance of Fastener 

forces it to spnng back so that the vicinity of the Holes in FaiIure of Aircraft 

(Fig. 1 in Wood, 1975) 



Iiole develops compressive residual swsses. Superposition of these stresses with service 

loads results in fatigue life improvements by factors of 2-10, either by retarding the cnck 

initiation or, more often, by reducing crack growth rates (Ozelton and Coyle, 1986). 

The level of the cold work expansion is usuaily defined by one of the following. The 

percentage (or degree) of applied cold work is calculated by dividing the change in the 

hole diameter due to the insertion of the mandrel by the diameter of the hoIe before co1d 

working 

( ~ + 2 r ) - d  xlOO 
Applied Cold Work( %) = 

d 

wliere D, t and d are the mandrel diameter, the sleeve thickness and Iiole diriiiietsr, 

i-espectively. The percentage (or degree) of residual cold working is defined by the mtio 

of the increase in the hole radius after removal of the mandrel, i lr .  to the mdiiis of the 

liole. r, prior to cold working 

U r  Residual Cold Work (%) = - 
I' 

In  order to take full advantage of cold working at the design stage. it is necessary ro 

qiiantify the magnitude and distribution of the residuai stresses induced by cold work 

expansion of the fastener holes. The proposed generai axisyrnmemc method of elastic- 

plastic analysis based on the variable material property approach is capable of predicting 

residual stress, strain and displacement fields close to a cold worked fastener hole. Due ro 

the flexibility of the present method in employing different yield criteria, loading 

behavior, unloading behavior, Bauschinger effect factors and hardening ru les, application 

to fastener holes covers a wide range problems. The application of this metliod to loading 

and unloading of fastener holes is discussed. 



3.3.1 Literature Review 

1.3.1.1 Loading 

For the loading of a fastener hole, the main concern is the stress concentration factor 

calculauon. Stoweii (1950) was the fust to present an acceptable approximate formula 

for the stress concentration factor at a circular hole in an infmite plate. His fonnula \vas 

obtained from an approximate stress distribution which was adjusted by miniinizing the 

inean square of the error in satiswng the equiiibrium equations. There was no 

consideration of the compatibility equations. Hardrath and Ohman (1953) generalized 

Stowell's formula to include different loaciings. Their formula for the case of a balanced 

biaxial tension plate with a circular hole which obeys the Ramberg-Osgood formula is 

where K,=[(q), ]/a, is the stress concentration and o, is the remote biiixial tension. 

Budiansky and Mangasarian (1960) using the Ramberg-Osgood formula and the total 

deformation theory of plasticity, found a general analytical equation for the stress 

concentration factor in a uniformiy dl around loaded plate with a circular Iiole. This 

equation has a closed form solution only for a material with no elastic response and a 

plastic response completely defmed by a pure power law. A power series solution 

technique was presented for the general case. They included numerical results with stress 

concentration factors for different materials. 



Neliber (196 1). by considering a notched prismatic body obeying an arbitrriry nonlinsar 

stress-saain Iaw, derived the following relationship between stress and strain 

concentration factors: 

where Kc is the strain concentration factor and y is the elastic stress (or strain) 

concentration factor. Neuber's rule for the case of a baianced biaxial tension plate witli a 

circular hole for a materid obeying the Rarnberg-Osgood mode1 is 

Tuba (1965), using the iterative method of Manson and Mendelson (1959) and the stress 

fiinction method for plane problems. solved for the stress and snain concentration factors 

at a circular hole in a uni fody smssed i n f ~ t e  plate for a linear hardening material. In 

this method, the nonhomogeneous biharmonic equation was solved by estimating the 

plastic strain and successive readjusunent by the method of successive elast ic solutioiis 

(see section 2.6.2). Numencal results for a wide range of strain hardening, from perfectly 

plastic to purely elastic, were presented. 

In an extensive theoretical study of stress concentrations at a circular hole, Huang (1 973) 

solved the problem by a method involving Fourier series and finite differences. The 

goveming equations, based on the J, deformation theory of plasticity and the Ramberg- 

Osgood stress-strain relation, were formulated in tems of a stress function for bot11 plane 

stress and plane strain (under the restriction of no unloading). The solution was expanded 

into a Fourier series in the circurnferential direction and the Fourier coefficients, whicli 



are a function of radial coordinate only, were determined by a finite differrnce inethod. 

Numerical results, including that for equal biaxial Ioadhg of a plate was presented. 

In a different approach, Gao et al. (1991), using a method of solving plane stress 

problems for power law materials with a complex pseudo stress function, gave a closed 

form equation for the smss distribution around a hole in an infinite plate under uniform 

dl-around tension. This solution, which is based on the total deformation theory of 

plasticity, and does not consider compressibility of the material, is given in the following 

fonn 

wliere n is the hardening power in the power law relation: qq=Aqqn. 

4.3.1.2 Residual stress calculations 

There have been many investigations regarding the calculation of residual stress fields in 

a cold worked fastener hole. Most of the anaiytical work in this area follows one of the 

three most prominent theones proposed by Nadai (1943), Hsu and Fonnan (1975) iliid 

Rich and Impelliueri (1977). One of the main subjects of these theones is the calculation 

of the elastic-plastic radius, 5, upon removal of the mandrel. At this location. the 

maximum residual tensile smss occurs, which is very important in design and 

specification of hole location. The maximum compressive stress is also of interest. This 

maximum value may occur at the bore (for elastic unloading) or close to the bore (for 

reverse yielding). Hence, calculation of stresses within the residual compressive plastic 

zone due to reversed yielding is also of interest. Not al1 of the above theories -ive 

relations for the calculation of the above mentioned points of interest. A summary of the 

analytical work in p r e d i c ~ g  the residual s a s s  field in fastener holes follows. 



Nadai (1943) pubiished a theory of plastic expansion of tubes fitred into boilsr hcrids. In 

the manufacturing process these tubes were expanded by a roller device to insure 3 leak- 

free fit He considered both the plastic deformation of the plate and the tubes. First, he 

solved the plate problem which is of interest here. His main assumptions were: 1) a 

perfecdy plastic matenal, i.e., neglecting elastic nsponse, 2) a linear approximation to 

the von Mises yield criterion, 3) elastic unloading, 4) deformation theory and 5) plane 

stress. He developed a simple closed f o m  expression for the saesses and displacements 

in the plastic zone as weU as for the location of the elastic-plastic interface. These 

expressions for stresses and displacements are as follows: 

where rp is the radius of the elastic-plastic boundary, a is the initial radius of the Iiole and 

1. is the radius of interest. The maximum elastic displacement at the Iiole, udE. is 

The simplicity of these formulas makes this theory very easy to use. 

Carter and Hanagud (1974) performed an experimentai investigation of the stress 

corrosion susceptibility of cold worked fastener holes since the residual tensile stresses 

surrounding the hole could be greater than the threshold for smss corrosion cracking. 

They developed their own theory, which was sirnilar to an earlier tlieory by Taylor 

(1947), to calculate loading and unloading stresses. Their main assurnptions were: 1) the 

Tresca yield critenon was valid, 2) the radial displacement at the e d g  of the hole was 



known. 3) the matenal was responding in an elastic-plastic manner. i.e.. elastic response 

was included, and 4) the plate was in a state of plane stress. Based on these assumptions 

they developed an equation for the elastic-plastic radius rp when the hole edge 

displacement was known. 

Hsu and Forman (1975) proposed a theory which was basically the Nadai theory 

extended to account for hardening response. They utilized a solution technique developed 

b y Budiansky (1 97 1) for eiastic-plastic stress concentrations. Their main assump tions 

were: 1) the matenal behavior was represented by the Ramberg-Osgood fomulation, 2) 

the von Mises yield critenon was applicable, 3) the unloading was elastic, 4) deformation 

theory was valid and 5) the plate was in a plane stress state. Their solution in the plastic 

region was developed in tems of a parameter a varying between 90' (corresponding to 

initial yield) and q (corresponding to final expansion). The solution was in a closed 

form. and the equations are easily programmable. 

Cliang (1975) used the elastic-plastic solution of Hoffman and Sachs (1953) for thick- 

walled tubes to compute the nsiduai stress disnibution adjacent to an open liole in a thick 

plate and then used it for the andytical prediction of fatigue crack g-rowth for cold 

worked holes. The assumptions of this theory were: 1) perfectly plastic beliavior of the 

material, 2) the von Mises yield critenon, 3) plane strain conditions under unifonn 

pressure at the hole edge, and 4) deformation theory. He then gave a relation between the 

elastic-plastic radius and the hole edge displacement 

Rich and Impelliuen (1977). proposed an approximate closed form solution for residual 

stresses surrounding cold worked holes. Their assumptions were: 1) the material behavior 

was elastic-perfectly plastic, 2) the thick-walled c y h d e r  solution was valid. 3) the von 

Mises yield criterion was applicable, 3) deformation theory was applicable, 4) the hole 

was in a state of plane saain, and 5) the material was plastically incompressible. They 

basically modified the elastic unloading solution of Hoffman and Sachs (1953) to predict 

an approximate compressive yield zone, rc, upon removai of the mandrel: 



where a is the intemal radius, b is the distance fiom the hole center to the edge of the 

plate, and 5 is the radius of plastic zone. They further developed a relation for predicting 

the circumferentiai residual stress at the hole walI 

where 

and the radius of the plastic zone is calculated from 

In this equation, E, and E, are the moduli of elasticiv of the mandrel and the plate. 

respectively. This equation relating the plastic radius, 5, and the hole displacement, ild, 

was introduced by setting the radial interference fit equal to the sum of radial 

displacements of the mandrel and the plate. 



Potter et al. (1978), developed expressions for the residual stress field at fastener holes. 

Their assumptions were: 1) elastic-perfectly plastic material response, 2) the von Mises 

yield criterion, 3) an incompressible plastic zone. 4) plastic unloading. and 5) a plane 

stress state. The expressions for stresses and strains were in closed form and are function 

of the plastic re-yield zones. However, the size of these zones cm only be obtained with 

knowledge of the applied expansion and are found by numerically solving nonlinear 

equations. 

Clark (1 982 and 199 l), provided an approximation for the residual stress field in f. 'istener 

holes. His assumptions were: 1) elas tic-perfectly plastic material behavior. 2) rnod i ficd 

Tresca yield criterion (based on Hill (1950) and Warren (1947) modified yield stress), 3) 

the plane stress condition, and 4) reversed yielding upon unloading. 

Mann and Jost (1983), by an extensive study of Merent  theories, showed tlie influence 

of different assumptions on residual stresses field predictions. The effec t of di fferen t 

conditions considered by different theories were studied. These conditions included: 1) 

yield critena (Mises. Tresca or others), 2) stress state (plane stress for th in  plate. or plme 

strain for thick plate), 3) defoxmation (elastic, elastic-perfectly plastic or elnstic- plast ic). 

1) unloading (elastic or embodying reverse yielding). 5) displacement (sinall or I;irge), 6) 

plate width (infinite, semi-infinite or infinite), and 7) mandrel and fastener propenies 

(rigid or deformable). Their study showed how each of these conditions change the 

residual stress field. They concluded that there were significant shortcomings in some of 

the models that have been used to predict the residual stress fields (puticularly in 

assumptions regarding elastic-plastic behavior of the plate matenal and the devance of 

reverse yielding) and there is very littie evidence that experirnentally verifies tlie 

predicted stress distributions. 

Jost (1988). developed relations for the residual stress of an annulus of finite dimensions. 

His assumptions were: 1) elastic-perfectly plastic matenal response. 2) then von Mises 

yield cntenon, 3) an incompressible plastic zone, 4) plastic unloading. and 5) the plane 

strain state. His mediod is similar to Potter et al. (1978) but is for plane suain. 



Wang (1988) presented a closed fonn residual stresses solution for a circular Iiolc iindrr 

uniform pressure. His assumptions were 1) a modified Ramberg-Osgood inodel. wlierr 

the elastic response is separated from its plastic response (given by a power Iaw). was 

applicable, 2) the J, deformation theory was applicable. 3) plastic unloading was allowed, 

4) a constant Bauschinger efiect factor defmed the reversed yield stress value, and 5) tlie 

hole expanded in a plane strain state. His solution was based on Nadai's technique and 

was an extension to Nadai (1943) and Hsu and Fonnan (1975). 

Wanlin (1993), extended the work of Hsu and Forman (1975) to incliide not only tlie 

elastic plastic response during unloading but also the effects of a finite size plate. He 

considered the dependency of the compressive yield stress value on a constant 

B ausc hinger effect. 

Bal1 (1995) followed the solution technique of Budiansky (1971) for botli loading and 

unloading. This solution is also an extension to Hsu and Forman (1975). He assurned 

funher that the radial expansion of the hole was affected by an elastic insen and the 

required relationships among interference ratio. applied expansion. interface pressure and 

retained expansion (afrer removal of the insert) were given. His solution wns for a plane 

stress state. 

Beside these anaiytical approaches, there have been many experimental measurements 

and finite element analyses of the cold worked fastener holes. It is very interesting to 

note that there has been very little agreement beîween the proposed merliods and 

experimental results (Poolsuk and Sharpe, 1978; Mann and Jost. 1983; Forgues et al.. 

1993; Priest et al., 1995, Poussard et al., 1995). Then are a number of reasons provided 

for such discrepancies and some are discussed here. There have been some studies 

regarding the duee dimensional na= of the fastener hole problem. Poussard et al. 

(1994) simulated the cold work pmcess using finite elements. He studied tlie change in 

stress distribution at the entrance face of the manchel, mid-thickness plane and exit hce. 

The changes were appreciable. Forgues et ai. (1995), through a three diinensional 

axisymrneaic numerical study, concluded that the residual stress distribution throiigh the 

thickness of plate was different. However, three dimensional residual stress 



measurements (Ozdemir and Edwards, 1996) show some changes through the tliickness 

near the hole but very little away from the hole. Also, the 3-D andysis results do not 

agree with experimental resdts (Forgues et al.. 1995). Another reason is the modeling of 

the matenal behavior. It is amazing to note that, among many expenmental studies on the 

fastener hole problem, there are very few that provide the actual loading-unloading 

curves of the materiai used in the experirnent. It look as if the unique unloading 

behavior of high smngth aluminum (such as Ai 7050). usuaiiy used in aircraft industries. 

has not been taken into consideration. Poussard et ai.(1995), one of the few who noticed 

this point, noted that the observed material behavior under compression does not initially 

agree with either kinematic or isotropic hardening models for revened yielding. Tiiey 

further suggest that a materiai mode1 allowing the compressive material behavior to be 

closely approximated would be extremely beneficial. None of the present methods of 

solution is capable of including the actuai matenal behavior in compression. 

Another reason provided for such disagreement is that the plate does not reiiiain 

axisymmetric in the industrial process of hole expansion. Even though tliis point is valid 

to some extent, adding to the complexity of the analysis is sometliing one would like to 

avoid. Moreover, funher away frorn the hole, the matenal responds as if tlie expansion 

had been uniform. Therefore, this has only a locd influence and it should not effect the 

position of the elastic-plastic boundary as calculated by the axisymmeoic analysis. 

The proposed method of axisymrnemc elastic-plastic analysis is capable of predicting the 

residual stress field induced by the fastener hole expansion. The capabilities embeclded in 

this method are far more than each single method descnbed above. This merhod is able to 

consider: 1) either elastic-perfectly-plastic behavior, behavior based on tlie Ranibrrg- 

Osgood formula (and not only the modified form of it) or the actual material behavior 

during loading and unloading; 2) the von Mises, Tresca or any other yield criteria: 3) 

plastic unloading with kinematic or isotropic hardening rules; 4) the Bauschinger effect 

and its changes as a function of plastic strain kduced during loading; 5) a pre-stressed 

hole in cold worlc expansion, and 6) material compressibility. Al1 of these features are 

included in a single simple FORTRAN code (see appendix A) which performs tlie 



anaiysis in few seconds on a personal computer. Desired options are chosen from an 

input fde. Some of the results obtained by this program are discussed in rhis cliapter. 



4.3.2 Loading of a Fastener hole 

The variable materiaï property approach has been applied to the problem of an infinite 

plate with a ckcular hoIe under an aii-around tensile field. The scliermtic for this 

problem is shown in Fig. 4.28 . The strips have the shape of annular rings under tension. 

The elastic solution is given by the Lame solution where the usual extemal and intemal 

pressures are replaced by a tensile stress. Stress and strain concentration factors at the 

notch up are caiculated for different nonhardening or hardenine materials. Figure 4.29 

shows the results for nonhardening matenals. The stress and strain concentration factors 

for a wide range of Ioading from elastic to fuii plastic load is shown. The values of stress 

concen ration factors are cornpared with the analytical solution of Biidiansky and 

Mangasarian (1960). and the saah concentration factors are compared with the results 

obtained by Tuba (1965). The agreement is very good. 

Figure 4.28: Circular hole under unifom tension 



Figure 4.29: Cornparison of concentration factors 

(nonhardening matenals) 
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Figure 4.30: Cornparison of concentration factors 

(harde ning materiais) 



The results for stress concentration factors for a hardening material are s h o w  in Fit.  

4.30. The results of the present method are compared to concentration factors obtained 

from Neuber's d e ,  Haung (1972) solution and the Budiansky and Mangasarian (1961) 

series solution. The present method agnes very well with Nueber's rule, wliich lias 

proven to be an acceptable approximation of stress concentration. The resulrs of Haung 

(1972) and Budiansky and Mangasarian (1961), which are Fourier series solutions, 

deviate from the present method. 

Figure 4.31 shows a summary of concenmtion factors obtained using the pirsent iiietliod 

and other methods, including results obtained using ABAQUS. The ABAQUS results 

were obtained by the author. The agreement is very good. 

The hoop and radial stress distributions around the hole are shown in Fig. 4.32. Tlie 

results are compared with the closed form solution of Gao et al. (1991) for n materinl 

obeying a power Iaw o-E behavior and the agreement is found to be excellent. 

To examine the changes in stress response for different materials, a study on Iioop and 

equivalent stress changes of different materials was conducted using the present rnerliod. 

Tlie materials considered in this study include nonhardening and hardeiiing tnateriiils 

obeying the Rarnberg-Osgood formula with different hardening exponents. The stress 

distributions dong the horizontal Line from the hole edge are shown in Figs. 4.33. and 

4.34. The stress concentration factor decreases as the hardening exponent increases. This 

drop for a nonhardening matenal is about 70% as compared to a material witli Iinrdrning 

exponent equal to 3. 
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Figure 4.3 1: Stress and strain concentration factors 
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Figure 4.32: Hoop and radial stress distibutions 



Equfvalent Stress Distribution 

1 .O 1.5 2 0  2.5 3.0 3.5 4 0 

Distance from Notch Cenfer 

Figure 4.33: Equivdent stress distribution nez the notch 
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Figure 4.34: Hoop stress distribution near the notch 



4.3.3 Residual stresses in CoId worked Fastener Holes 

The variable material property method was used here for the analysis of the iinloatiing 

beliavior of fastener holes. This study includes: 1) residual stress predictions based on 

consideration of the actual Ioading-unloading behavior and 2) prediction of the elastic- 

plastic boundary. ResuIts are compareci to available experimental measurements and 

fini te element calculations. 

4.3.3.1 Actual Stress-S train Unloading Cuwe 

Tliere have been many experimental measurements of the residual smss in fnstener 

Iioles. With the exception of a few, none of these recorded the actual loadi~ig-unloliding 

beliavior of the materiai used. In many of these investigations the uniaxial stress-strüin 

curve (for rnonotonic loading) was obtained to find the values of the modiilus of 

elasticity, Poisson's ratio and yield s~ength.  To the authors knowledge, tliere have becii 

no analyses based on the actual unloading behavior of material. None of the inerhods 

inen tioned in literature review is capable of employing the mual  rnaterinl cur \c  

Coinmercial finite element packages are not designed to follow the exact tinloxiing ctirvc 

eitlier. 

Poussard et al. (1995) are among the few to record the actual unloading curve. Tliey usrd 

2031 T351 aluminurn alloy in their finite element analysis. Figure 4.35 is a reproduction 

of Fig. 1 from Poussard et al. (1995). Two commonly used approxiinatioiis of the 

beliavior are also shown in the sarne figure. None of these models can represriit the 

unloading behavior precisely. There exists a pronounced Bauschinger effect in tliis 

aluininum ailoy. While the rnonotonic Ioading curve represents a linear Iinrden i ng 

beliavior. with a slope of 0.022E, the reversed yield stress (based on 0.1% proof st~zss) 

remains at a constant value of -110 MPa for unloading from different plastic strain stntes. 

This suggest that the BEF is a function of plastic strain. 

The experimental measurements of the residual stresses in the sarne Al 2024-T35 1 wrre 

recorded by Pnest et. al. (1995). The results are very scattered and iinreliablr. For 



example, the measured hoop residual stress in a 4% cold worked plate is compressive 

even fat- away from the hole edge. Priest et al. (1995) suggest that the ineasured v;iliirs 

are highly influenced by the stresses e x i s ~ g  in the plate pnor to cold working. Howevrr. 

Tliey did not record the as-received residual stress field. 

In earlier independent work, Mann and Iost (1983) aiso recorded results of experimental 

measurernents on aluminurn 2024. The experimental resulu. based on the work of Lowak 

(198 1), are for a 4.5% cold worked fastener hole with an initial hole radius of 8 inm. 

The present method of analysis was used to predict the residual stress field for ii 4.56 

cold worked plate. The actual unloading behavior of 2024 aluminurn alloy sliown in Fig. 

1.35 was used. The changes in the BEF were accounted for in the anülysis. This wns 

done by setting the compressive yield at -110 MPa as observed from the uniaxial curve. 

7 Sîress (MPa) 

Figure 4.35: Uniaxial loading-unloading response of Al 2024 T35 1 

(Poussard et al.. 1995, Fig. 1) 



An infinite plate with a hole of 8 mm initial radius was considered. The residual stress 

field due to 4.5% expansion of the hole was obrained and the results are shown in Fig. 

4.36. n ie  shape of the curve near and at the hole edge indicate a possibility of reversed 

yield. However, the experirnental results do not show any reversed yielding and show 

only elastic unloading. This may be due to size of the plate used in the experiment which 

Residual 
a - - -  

Hoop Stress - _ - _ - _ - _ - - -  -- - _ , - - - - .  

0 

Figure 4.36: Cornparison of calculated and measured residual stress 

dismbution for 4.5% cold expanded hole in Ai 2024 alloy plate 

(Experimental results from Mann & Jost, 1983) 



is of finite size (80 mm). The general agreement between the present method and the 

experimental values is good. The prediction by Rich and Impliuem (1977), which is one 

of the few methods which accounts for reversed yielding is also shown in the figure. It is 

quite obvious that consideration of the actuai unloading curve is very important. 

Poussard et al. (1995), have employed the actual loading behavior of Al 2024 with the 

ABAQUS finite element package to predict the residual stress field. Dfierent hardening 

models provided by ABAQUS (isotropic and kinematic hardening rules) were used. 

Their f i t e  element analysis was on a plate with an initial hole radius of 3.175 mm and 

width of 200 mm. The hole was assumed to be 4% cold expanded. The same dimensions 

were employed by the author to obtain the residual stress field using the variable material 

property method. The results are shown in Fig. 4.37. While the kinematic hardening 

model underestimates the compressive smss  at the hole edge by 20%, the isotropic 

model shows a unifonn compressive field near the hole. Both model predictions away 

Residuai Stress 

- Present Mcthod (Actual ctuve) 

,%> IH-FEM (Possard cr al., 1995) 

RH-FEM (Porsord et ai.. 1995) 

0.0 0.4 0.8 1.2 1.6 2.0 

Figure 4.37: Cornparison of residual stress distribution for 4% cold 

expanded hole in Al 2024 aiioy plate 

(FEM results from Poussard et al., 1995) 



froin the hole are very close to the present analysis based on the actuiil iinlolidiiig 

behavior. The isotropie hardening mode1 stays closer to the present analysis nway froiii 

the hole. The ciifference in radial residual stress is not simcant. 

4.3.3.2 Elastic-Plastic Boundary Prediction 

Knowledge of the size of the plastic zone in a fastener hole is very iinportant because ii 

Iarger plastic zone will delay crack propagation emerging from the hole rdge (Bernard et 

ai., 1995). It is also very important in design and spacing of hole locations. Soiiie 

theoreticai studies have been based entirely on predicting the size of the plastic zone 

(e-g.. Carter and Hanagud, 1947). A cornparison of the prediction froin different theones 

witli the prediction fkom present method for the plastic zone radius is given herein. 

Poolsuk and Sharpe (1978) conducted a senes of experiment to measure tlir exact s i x  of 

the plastic zone and to examine the validity of different theories in tliis regard. Tliey 

argtied that it was easier to measure the location of the elastic-plastic boondiiry. r~itlier 

tlian the complete residud stress field. Since most of the experimental results for stress 

tïeld have been found to be in poor agreement with the values predicted by differeiit 

tlicories, Poolsuk and Sharpe (1978) suggested that the theories could be evaluated based 

on tlieir capabilities of predicting the elastic plastic boundaries. The rsperiiiient w;is 

conducted on a plate with a central hole of 3.3 mm radius made of 7075 T6 riliiitiinuiii 

iilloy. They used four different levels of cold work and cornpareci tlieir iiieosureiiients 

witli different theones. 

Tlie loading-unloading behavior of Al 7075-T6 was given by Endo and Morrow (1969) 

and Landgraf et al. (1969). The data points for the monotonic loading curve are given i n  

Table 4.4. The yield stress and modulus of eIasticity for this curve matches the 

specifications of one of the sarnples used with Poolsuk and Sharpe's (1978) experiments. 

Tlie behavior of this aluminum alloy can not be modeled precisely by any of the 

nvailable hardening models. However, consideration of the actual unlooding curve will 

only influence the prediction of residual stresses near the hole edge and will Iiave very 

li ttle effect on the prediction of the elastic-plastic boundary location. 



Table 4.4: Data for loading behavior of Al 7075 T6 

(Frorn Endo and Morrow, 1969) 

The eIristic plastic radius results obtained from the present method are sliown in Table 

4.5. The value of ri, in this table is given by Eq. (4.15). 

Figure 4.38 shows the cornparison of the results obtained by the present inetliod and the 

esperimentaï rneasurements. The agreement is very good. The prediction from some 

other theones are also shown in the sarne figure. As can be seen from Fig. 4.38. some of 

tliese predictions are far from the experimental results ( Potter & Grandt, 1978: and 

Carter & Hanagud, 1975). Nadai (1943) and Hsu & Forman (1975) show the same trend 

as the experimental results. However, the plastic radius predicted by these two metliods 

are not accunte. Rich & Impellizzei's (1977) solution is the best among the different 

tlieories compared here. Nevertheless, the trend shown by Rich & Implezzeri (1977) is 

different from that shown by the expenment It appears that this solution will deviate 



very much from the experimental results for higher values of i i / l ld , .  Chang's (1971) 

solution is vexy close to the Rich and Impellizem (1977) solution. 

Table 4.5: Present rnethod results of elastic-plastic boundary location 



Present Method 

Experimental Results 
(Pwlsuk & S harpe, 1978) 

. Chang 

' Rich & / - . . Irnpellizzeri 
A : 
: 

/ - 

+ - - -  

/ 
Potter & 

I Grandt 
0 

I 

I 

2 4 6 8 1 O 

Figure 4.38: Cornparison of predicted elastic-plastic boundaries with measuremen ts 

for 7075 T6 Aluminurn 

(Experimental results from Poolsuk and Sharpe, 1987) 



The problem of a thick-walled cylinder under proportional pressure and torsion is 

considered here. 1t is assumed that an intemal torque, T. is applied at the cylinder bore 

(Fig. 4.39) while its outer surface is kept fixeci. The stress in any strip of mean radius 1- 

can be obtained directly from the equilibrium equation. Assuming a uniform shear stress 

distribution at r, the shear stress is related to the torque by: 

The constitutive equation proposed in chapter three (Eq. 3.4) relates shear stress and 

sliear strain, y, , in the foiiowing way 

Figure 4.39: Intemal moment in a thick-wailed cylinder 



wlirre G, , the effective modulus of rigidity, is defmed as 

Tiiis set of equations, dong with equations for a pressurized cylinder (discussed in 

chapter 3), were used for the analysis of torsion-pressure loading of a thick wiilled 

cylinder. The cylinder dimensions and loading in this study were: intemal radius of 22 

mm, extemal radius of 66 mm, modulus of elasticity of 180 GPa, Poisson's ratio of 0.3. 

yield strength of 1070 MPa, a=3/7, m=5, internal pressure of 1000 MPa and internal 

torque of 4 MN-m. The results obtained from the present method were compüred witli 

results obtained by the author using ABAQUS. The deformarion plasticity option i i i  

ABAQUS, which is based on Hencky's total deformation, was used for the finite eleitirnt 

;indysis. As mentioned before, this option in ABAQUS only allows for a Rainberg- 

Osgood mode1 of material behavior. The stress and strain distribution rhrough the wnll 

tliickness were obtained and are shown in Fig. 4.40 -4.48. 

The general agreement is very good except for points close to the bore. ABAQUS does 

not allow for tangentid disaibuted forces on the edge of elements. Therefore, to iiiodzl 

the torque at the inner surface of the cylinder, appropriate concentrated forces wi-e 

applied to the nodes at the bore. The application of these concentrated forces Iiave local 

effects which are clearly seen, for example, in Fig. 4.41. An increase in the number of 

elements does not eliminate such Iocd effects; however, it will reduce the scatter in tlie 

results since this effect is resuicted to the first one or two elements at the bore. Hence, 

tlie results of the present solution, which uses the exact form for the displacement, stress 

and strain functions are believed to be more accurate at the bore. 

An important application of multiaxid loading is nonproportional loüding w hicli is 

discussed in the next chapter. 



Proportional Loading 
Torsion+Pressure 

0 - ABAQUS 

Prescrit Mericod 

1 .O 1.5 2 0  2.5 3 .O 

Figure 4.40: Cornpaison of radial stresses in multiaxial loading of cylinder 

Proportionai Loading 
Torsion+Pressure 

O - - ABAQUS 

Prcseni Merlid 

Figure 4.41: Cornparison of hoop stresses in multiaxial loading of cylinder 



Proporcional Loading 
Torsion+Ressure 

O . ABAQUS 

Presenr Meritod 

Figure 4.42: Cornparison of axial stresses in multiaxial loading of cylinder 

Proportional Loading 
Torsion+Pressure 

0 - ABAQUS 

Present Merirod 

Figure 4.43: Comparison of shear stresses in multiaxial loading of cylinder 



Proportional Laadhg 
Torsio~Rtssurc 

0 - ABAQUS 

Present Mcthod 

Figure 4.44: Comparison of equivalent stresses in multiaxial loading of cylinder 

Proportional Loading 
Torsion+Press ure 

Presenr Merhod 

0 - ABAQUS 

1 .O 1 5  2.0 2 5  3.0 

Figure 4.45: Comparison of plastic hoop strain in multiaxial loading of cylinder 



Proportional Loading 
Torsion+Pressure 

Preseni Method 

O - ABAQUS 

Figure 4.46: Comparison of plastic radial strain in multiaxial loading of cyiinder 

Plastic Shear Strain 

Proportional Loading 
Torsion+Pressure 

1 .O 15 2.0 2.5 3 .O 

Figure 4.47: Comparison of plastic shear strain in multiaxial loading of cylinder 



Equivalent Plastic Strain 

Proportionai Loading 
Torsion+Pressure 

1 .O 1 5  2.0 2.5 3 .O 

Figure 4.48: Cornparison of equivalent plastic strain in 

multiaxial loading of cylinder 



As pointed out in chapter 2 (sections 2.3.2-2.3-4). two main methods of elristic-plastic 

analysis are deformation plasticity and incremental plasticity. Total deformation 

plasticity (Eq. 2-23). which was postulated by H. Hencky (1924), presumes a one-to-one 

correspondence between stress and saain. Thus, the components of total plastic strain are 

taken to be proportional to the corresponding deviatoric stresses (see Eq. 2.23). 

Incremental plasticity (Eq. 2.27). which was proposed by L. Prandtl (1924) and A. Reuss 

(1930), sets a one-to-one correspondence beiween the increment of suain and the total 

stress. Thus. the components of the plastic saain increments are taken to be proponiond 

to the corresponding deviatonc stresses (see Eq. 2.27). Although the Pnndtl-Rems 

relation provides the most satisfactory basis for treating plasticity problems. the theory is 

incremental and generally leads to mathematical and computational complexities. 

Considerable simplifications are often achieved by using deformation plasticity. 

Ho wever, as discussed in chapter 2, experimentd results indicate tliat plastic stmi ns 

depend not only on the current value of the saesses but also on the stress history. Hence. 

total deformation plasticity gives inaccurate strain fields for si titations witli 

nonproportional loading. Although the validity of total deformation theory c m  be proven 

mathematically for proportional loading (R. Hill, 1950) and irs validity for limited 

degrees of nonproportional loading has been shown by B. Budiansky (1959). the validity 

of deformation theory for nonproportional loading, which can be represented as a 

sequence of linear loadings (one Linear loading foilowed by a different linear loading). 

fias not been adequately addressed in general. 



In the fouowing, a total deformation formulation is derived fiom the Pnndtl-Ruess 

equation for a sequence of proportional loadings. The validity of the formulation is 

examined by applying it to thin-walled and thick-walied tubes under combined loxiing. 

It has been shown in section 2.3.4 that if aii Ioads are applied so that their magnitudes are 

proportional, and if no unioading occurs, then incrementai plasticity theory gives the 

same results as deformation theory. For a given point in a deforming solid, proponional 

stressing describes a condition where the stresses maintain a constant ratio ris tlieir values 

increase. This may be represented by the stress tensor, a,,, 

or in terms of deviatoric stress tensor (Eq. 2.18). Sr,, 

S,. =KoS,. 

where or O S ,  is an arbitrary (nonzero) state of stress and K. the proponionality 

function. is a monotonicaiiy increasing function of t h e .  

A typical nonproportional loading which is of interest here is shown in Fig. 5.1. The 

loading is a sequence of two linear loadings, i-e., linear loading OA and linear loading 

AB. Conventionally. a load path such as OA which passes through the origin of the 

principal stress space is considered a proportional loading. However. a loading path suc11 

as AB, even though it is still linear, is not considered proportional loading. It simply does 

not go through origin O. 



Figure 5.1: A typical sequence of proportional loading 

The prirnary aim here is to define the second linear loading, AB, in a manner similar to 

proportional loadings. It is shown in this section that, if the second linear loading, AB. is 

taken with reference to point A rather dian origin O. then it c m  be defined as a 

proponiond loading. 

The deviatoric stresses during the second Linear loading AB (Fig. 5.1) inay be written as 

wliere "S,, and B ~ 8 j  are the deviatoric components of the stress States at the end of londing 

stnte A and B, respectively. Further, the Mises equivalent stress 



during the second loading wiU be 

where the change in equivaient sû-ess, Aq, is defmed as 

Differentiating Eq. (5.5) with respect to K 

aiid subs tituung in the Prandtl-Reuss equation 

3 1 d ~ ,  d&, = --- 
E ,  (Je 

s, 

yields 



do, wliere E,  =- is the plastic modulus. The change in plastic suain during the second 
At 

loading can now be obtained by integra~g the above equation 

w here 

aiid the plastic strain at the end of the second loading, 'E,, . is of interest. The intrgmreti 

forrn of Eq. (5.10) for two classes of material is obtained next. 

5.2. l Linear hardening materials 

For linear hardening materials 

wliere Er and E are the tangent and elastic moduli, respectively. Integration of Eq. (5.10) 

yields 



and 

the coefficients A. B and C depend on the end stress values only. This iiitegr;ition. 

pcrfonned using Maple, is given in Appendix B. The first t e m  in Eq. (5.13). A@ AS,, . is 
a direct application of Hencky's equation for the second linear loading. Other terms are 

correction terms which account for the coupiing effect of the two linear loiidings. In 

otlier words, the remaining terms account for the path of stress. Application of tliis 

relation (Eq. 5.13) to a thin tube under tension and torsion, and a tliick-wallsd cylinder 

~iiider pressure and torsion are presented in section 5.5. 

5.2.2 Hardening materials obeying Ramberg-Osgood equation 

As mentioned in chapter 2, Ramberg and Osgood (1943) recoinmended the following 

power Iaw 



for plastic strain dependency on equivalent stress in a uniaxial stress-strain curve. The 

plastic modulus therefore is given by 

n ie  change in plastic strain can now be obtained from the following genenl eqiiation 

wliicli can be integrated for any given value of m. For example. for a material with m=3, 

Eq. (5.18) reduces to 

where A$ and A are defined in Eq. (5.15). For m=5, the form becomes 

-1 5 
Ae, = -AgAS, +-A$ [ ( A ~  + D)A& - 3AD(ASj, + 2 A ~ , , ) ]  

24 24 

with 



where A@ is defined in Eq. (5.14) and A is defmed in Eq. (5.15). 



The application of the above total deformation formulation will now be exainined. A tliin 

tube made of linear hardenïng material is considered first. The same tube. made of a 

material modeled by the Ramberg-Osgood equation, is examined next. The loading for 

both cases is cornbïned tension and torsion. In the above cases, the proposed method is 

exact since the f m d  stress state is known a priori. These thin tube results are compared 

witli analytical solutions. 

Liiienr liardenhg thick walled vessels under combined pressure and torsion are tlieri 

discussed. For this problem. the fuial saess state is not known and an npproxiinate 

inethod for plasuc strain field calculation is proposed. This rnethod estimates the strnin 

field induced by a nonproportional loading using a number of proportional analyses 

alortg with the denved total deformation formulation. The thick walled tube results are 

coinpared to incremental finite element solutions produced by the ;iiitlior iisiiig 

ABAQUS. 

5.3.1 Thin tubes under tension and torsion 

First. the incremental plasticity solution to combined loading of a thin tube is discussed 

briefiy. Results of this solution will be used later for cornparison witli the proposed 

inethod. Figure 5.2 shows a thin tube under tension and torsion. Two possible loriding 

patlis are shown in Fip. 5.3. The tube may be loaded first in tension (OC) and [lien in 

torsion (CB), or fkst in torsion (OA) and then in tension (AB). 

The increment of plastic s a a h  is related to the deviatoric stresses by 

(S .  22) 

wliere for a linear hardening material with tangent modulus E, 



Figure 5.2: Thin tube under tension and torsion 

For the present case 

Figure 5.3: Different loading paths 



wliere o and r are the axial and torsional saesses, respectively. A h .  

and noting that 

tlien from Eq. (5.22) 

where df and df are the increments of plastic axial and shear strains. respectively. Ench 

of the Eqs. (5.27 ) and (5.28) should be integrated dong loading paths to give the value 

of the strains. For example, integration dong path CB where 



y ie lds 

Siinilarly integrarion d o n g  path AB where 

y ie lds 

& P  = (é. --- b)(~-%). 

For a material obeying the Ramberg-Osgood formula where the plastic inodiiliis is given 

by Eq. (5.17). the incrernent of plastic mains are 



Tliese equation should be intepteci along the path of loading. For csninple. for a 

inüterial with a=3/7 and m=5, the integration along path CB yields 

Likewise, integration along path AB gives 

5.3.1.1 Linear hardening materials 

Figure 5.4 shows a linear hardening materiai characterized by E and E, . the eiastic and 

rangent inoduli. respectively. The mess-suain relationship for these intiterials is given by 

where cro is the yieid stress. 

Let the loading paths be described as shown in Fig. 5.3 . Two different routes for r imving 

at B. OCB and OAB. are considered next. Note that in each case. the first loading path 

just produces yielding. 



Figure 5.4: Linear hardening matenal 

5.3.1.1.1 Tension-torsion (path OCB) 

Figure 5.5 shows the loading paths based on the von Mises yield criterion in stress space. 

No plastic strain is induced from O to C, since C corresponds to the onset of yielding. as 

illustrated in Fig. 5.5. From C to B, Eq. (5.13) can be used to obtain the plastic strain at 

B. For this linear loading the equivalent stresses are 

aiid the deviatonc stresses at the end of each loading stage are 



so that the change in deviatoric stress is 

Also, the coefficients in Eq. (5.13) are 

Figure 5.5: Loading path for von Mises isotropie matenal under consideration 



and substitution into Eq. (5.13) yields 

which gives the following values for strain at the end of loading 

Tliese results agree with the incremental solution given by Eq. (5.30). 

5.3.1.l.l Torsion-tension (path OAB) 

No plastic strain is induced from O to A, since A corresponds to the onset of yieldins 

(Fig. 5.5). From A to B. Eq. (5.13) cm be used to obtain plastic strain at B. For this 

proponional loading the equivalent stresses are 

A G~ = o0 Bo, = fi 0, Aa, = o, 

and the deviatonc stresses at the end of each proponional loading are 



and the change in stress is 

Substitution into Eq. (5.13) results in 

wliich gives the following strain values 

These results agree with the incremental solution given by Eq. (5.32). 



5.3.1.2 Materials obeying the Ramberg-Osgood relation 

In this section, materials obeying the Rarnberg-Osgood relation are exarnined. To 

simplify mathematical manipulation, it is assurned that a=3/7 and m=5. However. it will 

be shown later that this is not necessary. 

In this case, equivalent plastic strain is related to equivalent stress through Eq. (5.16). 

The loading path is the same as shown in Fig. 5.3 andFig. 5.5. using Eq. (5.17). the 

plastic modulus takes the foilowing form: 

Plastic svains for the two load paths. OCB and OAB, are obtained below. 

3 12.1 Tension-torsion (path OCB) 

The equivalent stresses. the deviatoric s a s s  tensors at the end of each loading, and the 

cliange in the deviatonc stress tensor are the same as in Eqs. (5.37). (5.38) aiid (5.39, 

respectively. Therefore, the two coefficients in Eq. (5.20) are 

Substitution in Eq. (5.20) yields 



wliich gives the following strains: 

Tlirse results agree with the incrementd solution given by Eq. (5.34). 

5.3.1.2.2 Torsion-tension (path OAB) 

The equivalent stresses, the deviatonc stress tensors at the end of exfi  loxiing and tlie 

cliûnge in the deviatonc stress tensor are the sarne as in Eqs. (5.43). (5.44) and (5.45). 

respectively. Therefore, the two coefficient obtained from Eq. (5.20) are [lie sariie as 

given in Eq. (5.49). Substitution in Eq. (5.20) yields 

wliich gives the following s~ains: 



These results agree with the incremental solution given by Eq. (5.35). 

In conclusion, for situations where stresses are known a priori such as the exainples 

considered in this section, the denved formulation and the incremental plasticity are the 

same. 



5.3.2 Nonproportional loading of thick walled cylinders 

The method of elastic-plastic analysis proposed in chapter 3 and applied in chapter 4 is 

based on total deformation plasticity. Although it has been modified to handle unloading. 

it cannot handie nonproportional loading. One natural extension of the proposed method 

is to nonproportional loading. 

The formulation derived in section 5.1 gives answers similar to incremental plasticity 

provided the exact stress field is known. In other words, it works very well for cases with 

a known stress field. However, in situations where stresses are not known, such as a 

tliick-wailed vesse1 under pressure sufficient to produce plasticity, the applied pressure is 

known but not the stress. The application of torsion following an applied pressure not 

only produces shear strains and stresses but also changes the normal stresses and strains. 

Figure 5.6: Finite element mesh (undefomed configuration) 



Figure 5.7: Finite element mesh (deformed configura t i O n) 

This inakes the process much more complex and requires long coinputationül rimes for a 

conventional incremental solution. To use the proposed formulation for nonproportional 

loading of a thick wailed cyihder, the stress field at the end of each loading is needed. 

To obtain the proper stress field it is necessary to consider different factors such as 

coinputation tune, complexity, and accuracy. 

First, a conventional incremental solution for a thick walled cylinder under 

nonproportional pressure and torsion was obtained using ABAQUS version 5.6 (Hibbit, 

Karlsson & Sorensen, 1996). As shown in Fig. 5.6, the mesh was generated for the whole 

cylinder. The applied pressure was assumed to be uniformiy distributed on the interna1 

surface. The intemal torque was sirnulated by applying proper tangen tial concentrated 

forces at the nodes of the internai surface. The nodes at the outer surface were fixed. 

Figure 5.7 shows the deformed shape of the finite element model. 



AB AQUS offers two plasticity options: incremental plasticity (Prandtl-Reuss equation) 

and deformation plasticity (Hencky's equation). The deformation plasticity option is 

based on isotropie hardening and the von Mises yield cnterion. This option describes the 

eqiiivdent stress and equivalent plastic strain relationship using the Ramberg-Osgood 

relation. The incremental plasticity option uses the same hardening and yield criterion. 

However, this option uses a multi-hear equivalent stress-equivalent plastic suain 

relationship. The elastic analysis in this option is entirely linear and is based on the 

elas tic modulus and the yield stress. 

There have been a number of cornparisons of the two plasticity theories for thick wnlled 

cyliiiders under intemal pressure (for example, Hodge et al.. 1950 and Chen. 1973). 

However, none have considered nonproportional loading as a basis for coinparison. In 

tliis study, the two plasticity theories were compared for a thick cylinder under a 

srquence of linear loadings. Attention was focused on computational tirne vs stress field 

results. It was observed that when defomation plasticity option (Hencky's equation) is 

used, the CPU time is less than 40% of that in incremental plasticity. 

The strain fields predicted by the two theories, as expected, are quite different. A typical 

plastic hoop strain distribution, as predicted by the two theories, is showii in Fig. 5.8. The 

total deformation prediction of the plastic hoop strain at the bore is two tiiiies thnt 

predicted by incremental plasticity. However, the stress field predicted by the two 

iinnlyses remain reasonably close, especially for cases with larger plastic zones. 

Fipires 5.9 -5.13 show a cornparison of the stress fields from the two analyses for two 

non proportional loading path in linear hardening materials. In one case. pressiire is 

applied first followed by torsion, whereas in the second case. torsion is npplied first. I t  is 

evident from these graphs that the stresses remain reasonably close wlien different 

plasticity theories are used. This suggests that for this case at least, one coulci use the 

stress field predicted by proportional loading. Therefore, this smss field can be 

employed in the total defomation formulation presented here in. In this manner, instead 

of a lengthy incremental solution, a proportional loading solution can be used. 



Nonproportional Loading 
Torsion-Pressure 

Incremen ta1 Plastici ty 

- - - - - .  Deformation Plasticity 

The total deformation theory proposed here (Eq. 5.13) requires tlie end values of stress 

for each linear Ioading. For a nonproportional loading, such as tliick cylinder iiiider 

torsion and tension, these stresses may be obtained by a proponional analysis. Ii i  tliis uay 

significant CPU time is saved. These stresses, obtained from Eq. (5.13). will tlien give 

tlie plastic strain field for the corresponding nonproportional loading. Tliat is, the stress 

field due to the application of pressure only, dong with the stress field due to the 

application of propomonal pressure and torsion may be used in Eq. (5.13) to estimate the 

plastic strain field for a corresponding nonproportionai loading. 

O 
R 1 Ri 

l 1 I 1 i I 1 I I 1 I 1 
0.8 12 1 -6 2 0  2.4 2.8 3.2 

Figure 5.8: Cornparison of plastic hoop strain predictions of tlie two plasticity 

theones (deformation and incremental) for a nonproponional loading 



Proportional 

O Nonproportional : pressure+torsion 

O Nonproportional : iorsion+prrssure 

Figure 5.9: Stress cornparison (proportional vs nonproportional), equivalent stress 

Proportional 

O - h'onproportional : prcssure+torsion 

. h'oapropo~ional : torsion+pressure 

Figure 5.10: Sass cornparison (proportional vs nonproponional), Iioop stress 



Proportional 

O Konproportional : prcssurc+torsiun 

O - Konproportional : torsion+prcssurc 

Figure 5.1 1: Stress comparison (proportional vs nonproporrional). ndinl stress 

Proportionai 

O . Nooproportionnl : pressurc+torsiot, 

- Nooproportiood : torsion+prrssurc 

Figure 5.12: Stress comparison (propomonal vs nonproportional). axial stress 



Proportioaal 

O - Nonproportional : pressure+torsion 

O - Nouproportio~nl : torsion+pressure 

Figure 5.13: Stress cornparison (proportional vs nonproponional), shear stress 

5.3.2.1 Plastic strain field 

To estiinate the suain field of a thick walled cylinder under nonproponional londing. the 

stress field of two proportional loadings were used in Eq. (5.13). These stress fields can 

be erisily obtained from the proposed method in chapter 3. Since the stress field obtiiiiied 

in tliis inanner is close to that of the incremental solution for a linear hardening tliick 

wûlled cylinder, one would expect the strain field aiso to be close. Appendix C shows the 

subroutine that was added to the main program (see Appendix A) for axisyininetric 

elastic-plastic analysis. Note that this subroutine, for the Ramberg-Osgood relation witli 

different hardening exponents, is automaticaily generated by MAPLE V (Waterloo 

Mnple Inc.. 1996) once the integration is performed. 



The stress field resulting from the application of torsion donc, dong with tlie stress field 

resulting from the application of torsion and pressure together were used in Eq. (5.13) to 

estimate the changes in the plastic saain field during the application of pressure. This 

value was then added to the plastic strain at the end of the first loading (application of 

torsion) to give the total plastic strain field. The resulting strain field is coinpüred with 

the strain field obtained from a nonproportional loading, incremental plastici ty so ILI tion 

iising ABAQUS. These results, which are shown in Figures 5.14 -5.16 , show a very 

close agreement with the incremental solution. The s d n  field predicted by the 

conventional deformation theory of plasticity is also shown. As discussed in section 4.4 

tlie scatter in FEM resdts at the bore is due to local effect of tangentid concentrated 

forces on the node at the bore. Both the deformation plasticity and proposed inerliod 

soliitions in these graphs were obtained from the axisyrnrnetric elastic-plastic analysis 

proposed in chapter 3. The cornputational tirne for the proposed method soliition in tliesr 

exninples were a few (15-25) seconds on a 100 MHz, 486 personal cornputer. 

- Proposed hlcihod 

Incremental Plast i c i t j  

- - * .. Deformation Plasticity 

Figure 5-14: SÛain cornparison (incremental vs present method), hoop strain 



Propased Method 

Incremental Plasticity 

* * * - *  Deformation Plasticity 

Figure 5.15: S train comparison (incremental vs present method), radial stnin 

Proposed Method 

- Incrementd Plasticity 

* - - - -  Deformntion Plasticity 

Figure 5.16: Strain comparison (incremental vs present rnethod), shear strain 



The same procedures were used to consider the alternative loading: pressure, followed by 

torsion. The stress field resulting fiom the application of pressure alone, with the stress 

field resulting from the application of pressure and torsion together were used in Eq. 

(5.13) to fmd the changes in the plastic strain during the application of torsion. This 

value was then added to the plasac strain at the end of the fxst loading (application of 

pressure) to give the total plastic strain. The resulting saain field was compared with the 

strain field resulting from a nonproportional loading, incrernenral plasticity solution 

using ABAQUS. These results are shown in figures 5.17 -5.19. They also show a very 

close agreement 

Proposed Method 

Incremental Plasticity 

- - - - - .  Deformation Plasticity 

Figure 5.17: S train cornparison (incremental vs present rnethod), shear main 



Proposcd Mcthod 

- InermenW ~ l v t i d t y  

- - - - *  Monnat ion Ptmtidty 

0.8 t .2 1.6 2.0 2.4 2.8 3 2 

Figure 5.18: Strain cornparison (incremental vs present metliod). hoop striiin 

- Ptoposed Method 

- Incremental PIasticity 

- - - - .  Deformation Plasticity 
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Figure 5.19: Strain cornparison (incremental vs present method). radial strain 



6.  CONCLUSIONS AND RECOMMENDATIONS 

The aims of this work were to: 1) establish a method of elastic-plastic analysis based on 

linear elastic solutions capable of predicthg mechanicdly induced residual stress fields. 

and 2) develop a total deformation theory applicable to a sequence of linex- 

nonproportional loadings. 

nie results presented here lead to the foiiowing conclusions: 

A) The variable material propeny approach 

1. 

II. 

III. 

IV. 

A rnethod of elastic-plastic analysis based on linear elastic solutions hns beri i 

presented. This method uses the concept of pseudo linear elastic poirits treütiiig 

inaterial properties as field variables. 

A general axisymmetric method of elastic-plastic anaiysis has been proposed. This 

method provides a complete elastic-plastic solution for axisymmetric problems. 

Five different schemes for evduating materiai moduli have been presented. I t  Ii:is 

been shown that iteration methods based on a strain energy density concept. i.e.. 

Neuber's or Glinka's interpretation of saain energy equivalence in elnstic and 

elastic-plastic behaviors, are most useful for updating the material properties. 

Mile the projection method guarantees a monotonic convergence, energy inetliods 

give faster convergence rates. 

The axisyrnmetric method has been successfully applied to the analyses of 

autofrettaged thick-wailed cylinders and cold worked fastener Iioles. In tliese 

applications the analyses are based on Lame's linear elastic soliitioii. Th is m e  thod 



empIoys the acmal material unloaduig cuve and is capable of modeling reversed 

yielding using isotropic and/or kïnematic hardening, as well as a variable 

Bauschinger effect factor. The capabilities of this method in predicting autofrettage 

residual stress field and residual srress field around a fastener holes have been 

compared to other theories. It has been concluded that this method provides a more 

cornprehensive and a more accurate rnethod than other available methods. 

V. It has been shown that consideration of a variable Bauschinger effect factor during 

unloading has a significant effect on reversed yield prediction in low-level 

autofrettage. 

B) Total deformation theory for nonproportional loading 

VI. A total deformation theory has been presented and successfully applied to 

nonpropomonal loading. In this mathematical model, a proper way of representing 

s sequence of linear loadings, analogous to proportional loading. has been 

proposed. It has been proven that with this representation a total deforiiintioii 

formulation may be used for calculation of plastic strain even for nonproportioiinl 

loading. This method, unlike conventional plasticity. defines loaciiiips witli 

reference to previous loadings. This allows for a representation simi liir to 

proponional loading. 

VII. It has been shown for situations where stresses are known a priori that the proposed 

method gives the same results as incremenral plasticity. 

VIII. For situations where stresses are not known a priori a method for estimnting the 

plastic suain field for linear hardening materials has been proposed. This merhod 

caIculates the necessary stress fields using conventional deformation tlieoiy. The 

resulu for plastic strain field estimation in a nonproportional load controlled 

situation has been compared to plastic s t r a h  field estirnates using incremental 

plasticity. The results are in very good agreement. 



K. The proposed method for estimating the plastic s m i n  field significantly reduces 

computation time as compared to an incnrnental plasticity solution. 

The variable matenai property approach in elastic-plastic analysis for proportional and 

nonproportional loading has been developed herein. The results give rise to many ideas 

which could be explored in future research: 

The total deformation theory presented here should be extended to nonproportiontil 

problems involving strain and displacement controiied deformation processes. 

The proposed total deformation theory, which has been applied to the sitiiation 

involving loading only, should be extended for nonproportional unloading 

situations as weU. 

The proposed total deformation theory should be extended to cyclic plasticity. A 

method to determine whether the stresshg (or snaining) is elastic. elasric-plastic. 

or unloading during each iinear Ioading, dong with a memory mode1 for innterial 

cyclic behavior, is necessaq for such a task. 

Different problems should be studied to generalize the applications of the proposed 

total deformation theory. 

The general axisymmetric method proposed here should be exrended to 3-D 

axis ymmetric problems, such as the fas tener hole problem. 

A study on the effective moduli distribution in different applications should be 

conducted. This may lead to a generalized form for these moduli distributions in 

tems of ioad, elastic properties and body dimensions. These could give a good 

approximation to the actuai axisymmeaic strcss. strain and displacement fields. 

without iteration. 



This appendix includes the FORTRAN code for the axisyrnrnetric elastic-plastic problern 

using the variable material property method. The code is based on Lame linear elastic 

solution for thick-walled tubes. 

7 Ver.1 : JüNE 1995 THICK-WALLED CYLINDERS 

m Ver.2 : SEPT. 1995 AUTOFRETTAGE 

Ver.3 : OCT. 1995 FASTENER HOLES 

i Ver.4 : JUNE 1996 MULTIAXIAL LOADING 

t Ver.5 : DEC. 1996 NONPROPORTIONAL LOAûING 

+ T T + t * * * * * t t * + * * * * * * * * * * * * * * * * * * * * * * * * * * * * t * * * * * * * * * * t *  

C-PROGRAM VARIABLE MAXIMUM DIMENSIONS 

IMPLICIT DOUBLE PRECISION (A-H, K, 0-2) 

PAMMETER (PAI=3.1415926S4) 

........ COMMON/BLKO/R(5OO),RR(500),MXITER,NELM,N,NITER8IUNLD,PII,POO,T 
. , MXITR, ITER, IDUM, IAIUST, IBOUND 

COMMON/BLKl/K ( 2 , S )  

COMMON/BLKZ /A, B. AI, BO, YSTRES (500) , SY, ERROR, ICURVE, ALPH+, M 

COMMON/BLK3/AA(500) ,BB (500) ,CC(S00) ,U(500), P(5OO) ,UT(5OO) 

COMMON/BLK4/SZZ(500) ,SRR(SOO) ,STT(500) ,SRT(SOO) ,SEQ(SOO) 

COMMON/BLKf /E(SOO) ,ANU(SOO) ,EELAS,ANUE8 IPLANE, IYCRT 

COMMON/BLK6/SZZIN,SRRi:N,STI'1NISRROUT 

,STTOUT,ERRIN,ERROUT,ETTIN,ETTOUT 



COMMON/BLK7/EL(~OO),STTL~sOO),SRRL(SOO),SZZL(5OO),E~L(5OO) 

. ,ERRL(SOO) 

. ,EZZL(500) ,UL(SOO) ,SEQL(SOO) ,SRRLIN,STTLZN,ERRLI:N, ETTLIN, SRRLOT 

. ,STTLOT,ERRLOT,ETTLOT,EEQL(SOO) ,SZZLIN,SRTL(500) ,ERTL(500) 

COMMON/BLK8/ERR(SOO) ,ETT(500) ,EZZ (500) ,ERT(SOO) 

COMMON/BLK9/NDAT,SIGDAT(20) ,ESTDAT(20) ,SYL(SOO), SLOPE (20) 

COMMON/BLXiO/DESTDT (20 ) 

COMMON/BLKll/PERR(SOO) , EERR(SO0) ,PETT((SOO) 
, PERT(500) ,EERT(S00) 

COMMON/BLKl2 /METHOD 

C-OPEN INPUT FILE AND CREATE OUTPUT FILES 

OPEN(3 ,FILE='INPUT' ) 

OPEN (4, FILE= 'KI , FORM='UNFORMATTED' ) 
OPEN ( S I  FILE= ' OUTPUT ' ) 

OPEN(6,FILE='STRESS.DAT') 

OPEN(7,FILE='STRAIN.DAT') 

OPEN (8, FILE= ' DISPLAC . DAT ' ) 
OPEN(9,FILE='ST-ES.DAT1) 

REWIND ( 4  ) 

C . C.z.LL INPUT FILE AND READ DIMENSIONS, MATERIAL PROPERTIES, LO-\D 

C-?.E-=D THE SPECIFIED METHOD OF MODULI UPDATING 

C-DEFINE STRIPS 

CALL INPUT 

ITERATION 

IUNLD=O 

NITER=O 

IADJST=O - NITER=NITER+l 

REWIND (4) 

ERROR=O.DO 
C.CIJ.,L KMP-TRIX TO RELATE LOAD AND DISPLACEMENT USING LPkE SOLUTION 

C.UPDATE THE EFFECTIVE MODULI VALUES 

CALL KMATX ( 1) 

C.GET THE AVERAGE VALUE OF STRESS DZFFERENCE OTER ALL STRIPS 

ERROR=DSQRT ( ERROR) /FLOAT (NELM) 

C-SOLVE THE SYSTEM OF LINEAR EQUATION 

CALL TRIDAG (N) 



C.C.zLL POST 

C.FIND RADIAL, HOOP, AND EFFECTIVE IN EACH S'TRIP 

CALL POST(U,UT) 

C.C.?LL PRINT 

C-PRINT 1ST (ELASTIC SOLUTION) & LAST (ELASTIC-PLASTIC SOLUTION) 

IF(N1TER-EQ-1.OR.ERRORRLT-lLD-6-0R- 

- NITER-EQ.MXITER) CALL PRfNT 

C . UNLO2ADING 
IF(NITER.GT.l.AND,ERROR,LT.l.D-6.AND.IUNLDEQ-O CALL UNLOAD 

IF(NITER.GT,l.AND~ERROR.LTTl1D-6.AND.IUNLD.EQ) C U L  ADJUST 

IF(NITER.EQ,MXITER) GO TO 9 

GO TO 7 

9 CLOSE (3, STATüS= 'KEEP.' ) 

CLOSE(5,STATUS='KEEP1) 

CLOSE(6,STATUS='KEEP1) 

CLOSE (7, STATUS= 'KEEP ' ) 

CL0SE(8,STATüS='KEEP8) 

STOP 

END 

C INPUT SUBROUTINE 
*****tr************************t********************************~******~ 

SUBROUTINE INPUT 

IMPLICIT DOUBLE PRECISION (A-H,K,O-2) 

COMMON/BLKO/R(500) ,AR(5OO) ,MXITER,NELM,N,PJITER, IUEILD, PII, PO0,T 

. , MXITR, ITER, IDUM, IADJST , IBOUND 
COMMON/BLK2/A,B,AI,BO,YSTRES(SOO) ,SY,E-,&l 

COMMON/BLK~/AA(~OO) ,BB(SOO) ,CC (500) ,U(SOO) , P (500) , UT(SO0) 

COMMON/BLKS/E(SOO) ,ANU(SOO) ,EELAS,ANUE, IPLam, IYCRT 

COMMON/BLK7/EL(SOO) ,STTL(SOO) ,SRRL(SOO) ,SZZL(SOO) , ETïL(500) 

, ERRL (500) 
. , E Z Z L ( S O O ) , ü L ( 5 O O ) , S E Q L ( 5 O O ) , S R R L I N , S ~ L I N , S R R L O T  

. ,STTLOT,ERRLOT,ETTLOT,EEQL(500),SZZLIN~SRTL(5OO),ERTL(500) 

COMMON/BLK9/NDAT,SIGDAT~2O),ESTDAT~2O~ISYL(5OO),SLOPE(2O) 

COMMON/BLKlO/DESTDT(20) 

COMMON/BLK12/METHOD 

C.CHOOSE THE UPDATING METHOD 

READ(3,ll) 
READ(3,lll)METHOD 



READ ( 3  11) 

C . RE-?ID INTERNAL AND EXTERNAL RADIUS 

READ(3,* )AI,BO 

A=AI 

B=BO 

READ (3,11) 

C-NUMBER OF STRIPS AND DEFINE THE STRIPS 

REPS(3,lll)NELM 

DR= (B-A) /FLOAT (NELM) 

N=l 

R(1) =AI 

DO 10 I=I,NELM 

N=N+I 

10 R (NI =R (N-1) +DR 

C.FOR MORE DETAILS NEAR THE BORE USE THE FOLLOWING 

DR= ( 3  .DO*AI) / (1 .DO* (NELM-2) ) 

READ (3,ll) 

DO 10 I=l,NELM-2 

N=N+1 

R (N) =R (N-1) +DR 

N=N+1 

R (N) =R (N-1) +INT ( (B-R (N-1) 1 /S. ) 

N=N+ 1 

R (N) =B 

C.RE2.D THE EUSTIC PROPERTIES AND STRESS STATE 

READ ( 3 , * ) EELAS , ANUE ,1 PLANE 

RE,W(3,11) 

C-RE.2.D YIELD STRESS VALUE AND TYPE OF UNIAXIAL CURVE MODEL 

READ (3, * )  SY, IYCRT 

READ ( 3  r 11) 
C .  FOR RAMBERG-OSGOOD GET THE COEFFICIENTS 

READ(3, * ) M I  ALPHA, ICURVE 
C.>.SSIGN INITIAL PROPERTIES TO U L  STRIPS 

D û  5 I=l,NELM 

E ( 1 ) =EELAS 

ANU ( I ) =ANUE 

YSTRES (1) =SY 

5 CONTINUE 

C.INITI.4LIZATION OF STRESS FIELD 

Dû 103 I=l,NELM 

STTL(1) =O. 

SRRL (1) = O .  



SZZL(I)=O. 

SRTL (1) =O - 
UL(I)=O. 

103 CONTINUE 

UL(I)=O. 

SRRLIN=O . 
STTLIN=O . 
SZZLIN=O . 
S W O T = O .  

STTLOT=O . 
C.BOUNDARY CONDITION 

READ(3,11) 

C.READ THE INTERNAL AND EXTERNAL PRESSURES AND INTEFWAL TORQUE 

READ(3, ')PII,FOO,T 

P (1) =PI1 

P (NI =POO 

DO 80 I=S,N-1 

30 P ( 1 )  =O.DO 

READ(3,ll) 

C.I+LX<IMUM NUMBER OF I T E U T I O N  

READ (3, I11)MXITER 

READ (3,ll) 

C-READ THE STRESS-STRAIN CURVE DATA (LOADING) 

READ (3,111 

READ ( 3 , ' ) NDATL 
DO 81 I=l,NDATL 

31 READ(3, *)ESTDL(I) ,SIGDL(I) 

DO 83  J=l,NDATL-1 

23 SLOPEL(J)=(SIGDL(J+l) -SIGDL(J) ) /  (ESTDL(J+l) -ESTDL(J) ) 
C.RE-XI3 THE STRESS-STNIN CURVE DATA (UNLOADING) 

READ(3,11) 
m ( 3 ,  +)NDAT 

Dû 85 I=l,NDAT 

85 READ(3, *)ESTDAT(I) ,SIGDAT(I) 

Dû 87 J=l,NDAT-1 

87 S L O P E ( J ) =  (SIGDAT(J+l) -SIGDAT(J) ) / (EçTDAT(J+l) -ESTDAT(J) ) 
C . B-WSCHINGER FACTOR VALUES 

READ(3#11) 
READ (3, * )  LDAT 

DO 93 L=l,LDAT 

93 READ(3, *)EP(L) ,BE(L) 

DO 95 L=l,LDAT-1 



5 5 SLLOP (L) = (BE (L+l) -BE (L) ) / (EP (L+l) -EP (LI 
11 FORMAT (2DlO. 5) 

Ill FORMAT(I4) 

RETURN 

END 

SUBROUTINE KMATX(1) 

IMPLICIT DOUBLE PRECISION (A-H,K,O-2) 

COMMON/BLKO/R(SOO) ,AR(500) ,MXITERINELM,N,NITER, IUNLD, PIIf P00,T 

- ,MXITR,ITER,IDUM,IADJST,IBOUND 

COMMON/BLKl/K ( 2 , S )  

COMMON/BLK2/A,B,AI,BOIYSTRES(500), SY,ERRORf ICURVE,ALPHA,I-1 

COMMON/BLK3/Xi(SOO) ,BB(SOO) ,CC(SOO) ,U(SOO) , P(SOO), ,UT (5001 

COhfMON/BLK4/SZZ (500) , SRR(SO0) , sTT(SOO), SRT(500 1 , SEQ (500 1 

COMMON/BLKS/E (500) ,W (500) , EELAS, ? M E f  IPLANE, IYCRT 

C0MMON/BLK9/NDATI SIGDAT(20) ,ESTDAT(20), SYL(500) , SLOFE(20) 

COMMON/BLK12/METHOD 

C.INITI>LIZATZON OF THE COEFFICIENT MATRIX 

DO 100 I=l,N 

Aii(1) =O,DO 

BB(I)=O.DO 

CC(I)=O.DO 

100 CONTINUE 

DO 50 I=l,NELM 

A=R(I) 

B=R (I+l) 

IF(NITER.GT.l.OR.IUNLD.EQ.1) CALL MATRPR(1) 

IF(IPLANE.EQ.0) THEN 

Kir=( (l.DO+ANU(I) )/E(I)) *(A**3/(Bt*2-At*2) ) 

(1.DO-2 .DO*ANU(I) +B**2/Ae*2) 

K22= ( -  (1 .DO+ANü(I) ) /E(I) * (B**3/ (B**2-A**2) ) 

* (l.DO-2.DO*ANU(I) +A**2/B**2) 
Kl2=-2 .DO* ( (1 .DO-AMi(I) **2) IE(1) ) *Bf*2*A/ (B**2-~**2) 

K21=2.D0* ( (1.DO-ANU(1) * * 2 )  /E(I) ) * A * * ~ * B /  (B**2-~**2) 

ELSE 

Kl1=((1.DO+ANU(I))/E(I))*(A**3/(B+f2-A+'2)) 



. * (  ((1-DO-ANU(1) ) /  (l-DO+ANU(I)) )+B**2/A**2) 

K22=(-(1.DO+iWU(I) 1 / E ( I )  ) * ( B e * 3 /  (B**2-A*'2) ) 

. * (  ((1.DO-ANU(1) ) /  (l.DO+ANU(I)) )+A**2/B**2) 
K12=(-Z.DO/E(I) ) *B**2*A/ (B**2-A**2) 

K21= (2 .DO/E (1) ) *Ae*2*B/ (B**2-A-) 

ENDIF 
DETK=KlleK22-KI2 *K21 

IF(DETK.EQ.0) THEN 
PRINT*, 'ERROR DETK=O' 

WRITE (7, * ) ' ERROR DETK=O ' 
STOP 

ELSE 

DETK=l-DO/DETK 

ENDIF 
C-FIND THE INVERSE OF 'Km 

IF(I.EQ.l) THEN 

K (1,l) =DETKeK22 

K (1,2) =-DETK*K12 

ELSE 

K ( 1 , l )  =-DETK*K22 

K (1,2 ) =DETK*Kl2 

ENDIF 
K(2,2) =DETKeK1l 

K(2,l) =-DETKIK21 

BB(I)=BB(I}+K(l,l) 
CC(I)=CC(I)+K(1,2) 

AA(I+l)=AA(I+I)+K(S, 1) 

BB(I+l)=BB(I+l)+K(2,2) 

WRITE(4)K 
5ï l  CONTINUE 

IF(IiWST.EQ.1) BB(IBOUND)=BB(IBOUND)'1.D20 

IF (IRDJST - EQ 1) P ( IBOUND) =BB ( IBOUND) *U ( IBOUND} 
RETURN 

END 

T T * * t * * * * t + * * * * * * * * t * * * * * * * * * * * * * * * * * * e * * * * * * * * * * * * * * * * * * T * * T ~ * T * * t * * T * *  

t SUBROUTINE 

MATERIAL PROPERTIES 

t*t**t********t**************t*****tt*********************************** 

SUBROUTINE MATRPR(1) 

IMPLICIT WUBLE PRECISION (A-H.K.0-2) 



COMMON/BLKO/R(SOO) ,AR(5OO) ,KXXTER,NE&M,N,NITER, IUNLD, PII, P00,T 

- , MXITR, ITER, IDUM, IAD3çT, 1 BOUND 

COMMON/BLK2/A,B,AI,B08YSTRES (500) , S Y , E R R , I d I  

COMMON/BLX4/SZZ (500) , SRFt(500) ,STT(SOO) ,SRT (500) , SEQ (500) 
COMMON/BLKS/E(SOO) ,ANü(SOO) #EEuS,ANuE, IPUNE, IYCRT 

COMMON/BrX9/NDAT8S1GDAT(2O) #ESTDAT(20) ,SYL(SOO) , SLOPE(20) 
COMMON/BLKlO/DESTDT(20) 

COMMON/BLK12/METHOD 

C-CKOOSE THE METHOD FOR UPDATING MODULI 

C . LOADING 
IF(NETHOD.EQ.l.AND.ICIJRVE.NENEOOAND UNLOAD.EQ-0)THEN 

C-ELASTIC-PERFECTLY PLASTIC 

C.PROJECTION METHOD 

IF(SEQ(1) .LT-YSTRES(1) ) RETURN 

EEl=(YSTRES(I) /SEQ(I) ) *E(Z) 

ETOT=YSTRES (1 ) /EEl 

E(I) =EE1 

EPLAS=ETOT-YSTRES(I)/EELAS 

ERROR=ERROR+ (ABS (SEQ (1) -YSTRES (1) ) ) * * 2  

ANUEE=(2.DOTANUEiYSTRES(I)/EEUS+EPUS)/ 

( 2 .  DO*YSTRES (1) /EELAS+2 .DO*EPLAS) 

MW ( 1 ) =ANUEE 

ELSEIF (METHOD. EQ .2 ) THEN 

C . PIEUBER ' S RULE 

~ = ( S E Q ( I ) / E ( I )  )*SEQ(I) 
IF(AREA.LT-YsTREs(I)**~/(EELAs)) RETURN 

ETOT=AREA/YSTRES ( 1 ) 

EEl=YSTRES ( 1) /ETOT 

E(1) =EEI 

EPLASSTOT-YSTRES (1) /EELAS 

ERROR=ERROR+ ( A B S  (SEQ (1) -YSTRES (1) ) 1 **2 
ANUEE= (2. DO*ANUE*YSTRES (1) /EELAS+EPLAS) / 

- (~.D~*YSTRES(I)/EELAS+~.DO*EPLAS) 

ANU ( 1 1 =ANLIEE 

ELSEIF(METHOD.EQ.3) THEN 

C .GLINKA & MOLSKI 

IF(sEQ(1) .LT.YSTRES(I)) RETURN 

EToT=(SEQ(I) **~+YSTRES(I) **2) / (~.DO*E(I) *YSTRES(I) ) 

E ( 1 )  =YSTE€ES(I)/ETOT 

EPLAS=ETOT-YSTRES (1) /EE= 

ERRoR=ERROR+ (ABS (SEQ (1) -YSTRES (1) ) ) **2 



ANUEE= ( 2 .  DO*ANüE*YSTRES (1) /EELAS+EPLAS) / 

. (2 .DO*YSTRES (1) /EELAS+2 .DOfEPLAS) 

ANU ( 1 ) =ANUEE 

ELSEIF (METHOD, EQ. 4) THEN 

C . iiVEFUàGE 
IF( (SEQ(1) "2/E(I) ) .LT.YSTR.ES(I) * * 2 /  ( E E S  ) iiETüRN 

ETOTN= ( (SEQ(1) / E ( I )  ) *SEQ (1) ) /YSTRES (1) 

ETOTG=(SEQ(I)**S+YSTRES(I) **2)/ (2.DOfE(I) *YSTRES(I) ) 

ETOT=ABS (DSQRT (ETûTN*ETOTG) ) 

E ( 1 )  =YSTRES (1) /ETûT 

EPLAS=ETûT-YSTRES ( 1) /EELAS 

ERROR=ERROR+ (ABS (SEQ (1) -YSTRES (1) ) ) * * 2  

ANUEE= ( 2 .  DO*ANTE*YSTRES (1) /EELAS+EPLAS) / 

- (2.D0*YSTRES(I)/EELAS+2.DOfEPLAS) 

AMJ ( I ) =ANUEE 

ELSE 

C .2RC - LENGTH 

IF (SEQ ( 1 ) . LT. YSTRES ( 1) ) RETURN 
Cl=YSTRES (1) 

CS=Cl/EELAS 

ETOT=SEQ (1) / E ( I )  

ARCR=ABS (DSQRT( (ETOT/CS) * *2+ (SEQ (1) /Cl) * + 2 )  ) 

ETOT=ABS (DSQRT (ARCRft2 - 1. DO ) ) *CS 
EE1 =YSTRES ( 1 ) /ETOT 

E(1) =EE1 

EPLAS=ETOT-YSTRES(I)/EELAS 

ERROR=ERROR+ ( A B S  ( SEQ ( 1 ) -YSTRES ( 1 ) ) ) * " 2  

ANUEE= (2 .DO*ANüE*YSTRES (1) /EElAS+EPLAS) / 

- (2-DO*YSTRES(I)/EELAS+2.DOfEPLAS) 

PsJV ( 1 ) =ANUEE 

ENDIF 

C-FOR RAMBERG-OSGOOD MODEL USE THE FOLLOWING 

C-PROJECTION METHOD 

IF ( ICURVE . EQ , O ) THEN 
IF(I.EQ.l.AND.NITER.EQ.2) SSS=SEQ(I)/SY 

ETOT=SEQ ( 1) /E (1) 
IITER=100 

IXET=O 

ICON=O 

IIET=ZIET+l 

FUNC= SSS+ALPHA* (SSS*+M) - (EELAS*ETOT/SY 1 



DFUNC=l-DO+M*ALPHA*(SSS**(M-1)) 

Zl=SSS-FüNC/DFüNC 

IP(ABS( (Zl-SSS) /SSS) .LTT1 -D-6) ICON=l 

SSS=Zl 

IF(1CON-EQ-O-AND-IIET-LT-IITER) GO TO 1 

EE1= (SSS'SY) /ETOT 

E ( 1 )  =EE1 

YSTRES (1) =SSS*SY 

EPLASzETOT-(SSS*SY)/EELAS 

AWEE= ( 2  .DO*ANUE* (SSS*SY) /EELAS+EPLAS) / 

1 (2 -DO* (SSS*SY) /EELAS+2 .DO*EPLAS) 

AMJ (1) = M E E  

ERROR=ERROR+ (ABS (SEQ (1) -SSS*SY) ) * * 2  

C.OTHERWISE USE THE STRESS-STRAIN CURVE DATA 

ELSE 

ETOT=SEQ ( 1 ) /E ( 1) 

DO 13 M=S,NüAT 

IF (ETOT.LT.ESTDAT(M) ) GO TO 7 

13 CONTINUE 

M=M- 1 

7 YSTRES (1) =SLOPE (M-1) * (ETOT-ESTDAT (M-1) ) +SIGD.?T (PI- I ) 

EEl=(YSTRES(I) /SEQ(I) ) *E(I) 

ETOT=YSTRES (1) /EE1 

E(Z! =EE1 

EPLAS=ETOT-YSTRES ( 1 ) /EELAS 

ERROR=ERROR+ (ABS (SEQ ( 1) -YSTRES ( 1 ) ) ) **S 

iWUEE= (2. DOfANUE*YSTRES (1) /EELAS+EPLAS) / 

1 (2.DO*YSTRES(I)/EELAS+2.DO*EPLAS) 

A m  (1) =ANuEE 

C . UNLOSJING 
ELSEIF(IuNLD.EQ.I.AND.NTTER.NITER.NE.1)THEN 

C.GET THE INDIVIDUAL, WOADING CURVE OF EACH POINT 

ESTDAU ( 1 ) =ESTDAT ( I ) 

SIGDAU(1) =SfGDAT(l) 

ESTDAU(2) =SYL(I) /SLOPE(l) 

SZGDAU(2) =SYL(I) 

SLOPEU ( 1 ) =SLOPE (1 ) 

Dû 9 IJ=3,NDAT 
IF(EYL(1) -LT.ESTDAT(IJ))GO TO 5 

IJsIJ-1 

ESTDAU (3 ) =ESTDAU (2 ) + (ESTDAT ( IJ) -EYL ( 1 ) ) 

SIGDAU(3)=SIGDAW(2)+SLOPE(IJ-1) *(ESTDAT(IJ) -EYL(I) } 



SLOPEXJ (2) =SLOW (IJ-1) 

IJI=IJ 

DO 10 L=4,3+ (NDAT-IJ) 

ESTDAW (L) =ESTDAU (L-1) +DESTDT ( IJI) 

SIGDAU(L) = SIGDAU(L-l)+SLOPE(IJI) *DESTDT(IJI) 
SLOPEU (L-1) =SLOPE (IJI) 

IJI=IJI+l 

ENDIF 

RETURN 

END 

C-SOLVE THE SYSTEM OF LINEAR EQUATION 

SUBROUTINE TRIDAG (N) 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

COMMON/BLK3/Wi(SOO) ,BB(SOO) ,CC(SOO) ,U(5OO) rP(500) rUT(500) 

PAR?XETER (NMAX=500) 

DIMENSION G r ?  (NMAX) 

IF(BB(1) .EQ.O. )PAUSE 

BET=BB ( 1 ) 

U(1) =P(l) /BET 

DO 11 J=S,N 

G-Ul (J) =CC (J-1) /BET 

BET=BB (J) -,A?i(J) *GnM(J) 

IF (BET. EQ . O. ) PAUSE 
U(J)=(P(J) -=(JI *U(J-1) )/BET 

11 CONTINUE 

DO 12 J=N-l,l,-1 

U(J) =U(J) -GAM(J+l) * U ( J + 1 )  

12 CONTINUE 

RETURN 

END 

C POST PROCESSING SUBROUTINE 
* *+ * * * * * * * * * * * * * * * * * *~ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SUBROUTINE POST (U, UT) 

IMPLICIT DOUBLE PRECISION(A-H,K,O-2) 



PARAMETER (PAI=3-l4lS92654) 

COMMON/BLKl /K ( 2 , 2  ) 

COMMON/BLX2/A, B,AI, BO, YSTRES (500) , SY, ERROR, ICURVE, ALPHa., M 

COMMON/BLK4/SZZ (500) SRR(SO0) ,STT(SOO) ,SRT(500) n SEQ (500) 

COMMON/BLKO/R(500) ,AR(SOO) ,MXITER,NELMrN,NITER, IUNLD, PI1 , POO, T 
. , MXITR , ITER , IDUM, IAD3ST, IBOUND 

COMMON/BLX6/SZZIN,SRRIN,STTIN,SRROUT 

, S'M'ûUT, ERRIN, ERROUT, ETTIN, ETTOUT 
COMMON/BLKS/E(fOO) ,ANU(SOO) , E E L A S , M E ,  IPLWE, WCRT 

COMMON/BLK7/EL(SOO), STTL(SOO), SRRL(SO0) , SZZL (500) , ETTL(500) 
,ERRL(SOO) 

. , EZZL (500) , üL (500) , S m  (500) , SRFGIN, STTLIN, ERRLIN, ETTLIN, SRRLOT 
- ,STI'L0T,ERRL0T,ETTL0T,EEQL(S00),SZZLIN,L(500~,ERTL~500) 

COMMON/BLK8/ERR(SOO), ETT(5OO) ,EZZ (500) ,ERT(SOO) 

COMMON/BLXll/PERR(SOO) , EERR(SO0) , PETT(500) ,EETT(500) 
1 ,PERT(SOO) ,EERT(S00) 

DIMENSION U(500) ,UT(500) 

RENIND (4) 

C-FIND THE 1NTERNA.L AND EXTERNAL PRESSURES OF EACH STRIP 

C .USE L M  SOLUTION 

DO 20 I=l,NELM 

READ(4)K 

IF(I.EQ.1)THEN 

PI=K(l, 1) *U(I)+K(1,2) *U(I+l) 

PO=K(2,1) *U(I) +K(2,2)*U(I+1) 

ELSE 

PI=-K(1,1) *U(I) - K ( 1 , 2 )  *U(I+l) 

PO=K(2,l)'U(I)+K(2,2) *U(I+l) 

ENDIF 

C.GET THE MID RADIUS OF EACH STRIP 

C.FIND THE CORRESPONDING COEFFICIENT MATRIX 

AR(1) = ( R ( I )  +R(I+1) ) /2-DO 

CO=1 .DO/ (R(1+1) **2-R(1) **2) 

CI=CO+ ( (PIfR(1) **2) -PO* (R(I+1) * * 2 )  ) 

C2=CO* (PI-PO) (R(1) * * 2 )  *R(I+l) **2 

C-FIND THE RADIAL,TANGENTIAL AND SHEAR STRESSES IN EACH STRIP 

C.FIND THE RADIAL,TANGENTIAL AND SHEAR STRAINS IN EACH STRIP 

SRR(I)=Cl-C2/ (AR(1) **2) 

STT(1) = C l + C 2 /  (AR(1) **2) 

SRT(1) =T/ (2 .DO*PAI*AR(I) - 2 )  

ERT(I)=SRT(I)*2.DO*(l+ANü(I) )/E(I) 



C.FIND THE VALUE OF AXIAL STRESS AND STRAIN 

IF(IPLANE.EQ.O)THEN 

C . PLANE STRAIN 
szz(r) =ANU(I) (STT(I)+SRR(I)) 

EZZ(1) =O.DO 

ERR(I)=( (l.DO+ANü(I) )/E(I) )*(SRR(I)- 

ANWf *(SRR(I)+STT(I) 1 )  
MT(I)=( (I.DO+ANlf(I)) /E(I) ) * (STT(1) - 

. ANU(1) (SRR(1) +STT(I)) ) ) 
ELSE 

C . PLANE STRESS 
EZZ (1) =-AN'ü(1) (STT(I) +SRR(I) ) /E (1) 

SZZ (1) =O ,DO 

ERR(I)=(l.DO/E(I) ) (SRR(1) -ANU(I) *STT(I) ) 

ETT(I)=(I.DO/E(I) ) (STT(1) -ANü(I)*SRR(I)) 

ENDIF 

C-FIND THE EQUIVALENT STRESS 
C-TRESCA CRITERIA 

IF(fYCRT.EQ.0) 

SEQ (1) =2 -DOiABS (DSQRT( ( (SRR(1) - S m )  ) /2) * * 2  

- +SRT(I) * * 2 )  ) 

C-VON MISES CRITERIA 

IF(IYCRT.EQ.1) SEQ(1) =DSQRT(.SDO* ((STT(1) -SRR(I) Y 2  

. +(STT(I) -SZZ(I) ) "2+ (SRR(1) -SZZ(I) )**2+6.DO*SRT(I) * * 2 )  } 

C-FIND THE ELASTIC & PLASTIC STRAIN 

EERR(I)=(l.DO/EELAS)*SRR(I)-(ANUE/EELAS)*(STT(I) +SZZ(I) 1 

EETT(I)=(l.DO/EELAS)*STT(I)-(ANUE/EEtAS)*(SRR(I)+SZZ(I)) 

EERT(I)=2.DO*((l.DO+ANUE)/EELAS)*SRT(I) 

PERR(1) =ERR(I) -EERR(I) 

PETT(1) =ETT(I) -EETT(I) 

PERT(1) =ERT(I) -EERT(I) 

C-FIND THE STRESSES AT THE BORE 

IF(I.EQ.1)THEN 

SRRIN=Cl-C2/(R(I)**2)+SRRLIN 

STTIN=CI+C2/ (R(1) **2) +STTLfN 

C. P L W E  STRAIN 

IF(1PW.EQ.O)THEN 

EMIN=( (l.DO+ANTJ(I) ) /E(I) ) * ( S R R I N -  

ANU ( 1 ) ( SRRIN+STTIN) ) 

E'TTIN=( (l.DO+ANU(I) ) / E ( I )  ) * (STTIN- 
ANU ( 1) + (SRRIN+STTIN) 

SZZIN=W (1) * (SRRIN+STTIN) 



C.PL>NE STRESS 

ELSE 

ERRIN= (1 .DO/E (1) ) * (SRRIN-MN (1) *STTIN) 
ETTIN=(l-DO/E(I) 1 (STTIN-ANU(1) *SRRIN) 

SZZIN=O.DO 

ENDIF 

C-FIND THE STRESSES AT THE EXTEXNAL SURFACE 

ELSEIF ( 1. EQ . NELM) THEN 

SRROUT=Cl-CS/ (R (I+1) * * 2 )  +SFlRLOT 

STTOüT=Cl+C2/ (R(I+l) **2) +STTLOT 

C. PLPNE STRAIN 

IF(IPLANE.EQ.O)THEN 

ERROUT=( (1-DO+AMJ(I) ) /E(I) ) *(SRROUT- 

ANü (1) * (SRROUT+STTûUT) ) 

ETTOUT=( (1-DO+ANv(I) )/E(I) ) * (STTOUT- 
ANU (1) * (SRROUT+STTOUT) ) 
ELSE 

ERROUT=(i.DO/E(I) * (SRROUT-PNU(I)*STTOUT) 
ETTOUT=(I.Do/E(I) ) *  (STTOUT-ANU(I)*SRROUT) 

ENDIF 

ELSE 

ENDIF 

20 CONTINUE 

RETURN 

END 

C SUBROUTINS FOR UNLOADING INITIATION 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SUBROUTINE UNLOAD 

IMPLICIT DOüBLE PRECISION (A-H, K, 0-2) 

COMMON/BLXO/R(SOO) ,AR(SOO) tMXITER,NEtM,N,NITER, I U N L D ,  PII, P00,T 

. , MXITR, ITER, IDUM, IADJçT, IBOüND 
COMMON/BfXS /A, B, AI, BO, YSTREç (500) , SY S R R O R ,  ICURVE, .ALPH?., M 

COMMON/BLK3/fLA(SoO) ,BB(sOO) ,CC(SOO) ,U(SOO), P(5OO) , u T ( ~ O O )  

COMMON/BLK~/SZZ(~OO),SRR(~OO),STT(~OO),SRT~~OO),SEQ(~OO) 

COMMON/BLKS/E(SOO) ,ANU(SOO) ,EELASIANUE, Z, IYCRT 

COMMON/BLK6/SZZIN,SRRIN,SRROUT 

,ST'TOUT,ERRIN,ERROUT,ETTIN,ETTOUT 

COMMON/BLK~/EL(SOO) ,S'X"I'L(SOO} ,SRRL(SOO) lSZZL(500), ETTL (500) 

, ERRL (SOO) 



. ,EZZL(500),UL(S00)rSEQL(~OO)rSRRLINIS~~~N.ERRLIN,E~LIN,SRRL~T 

. .STTLOTrERRLOT.ETTLOT,EEQL(SOO),SZZLIN,SRTL(500),ERTL(500) 

COMMoN/BLK8/ERR (500) . ETT(SO0) , EZZ (500) . ERT (500) 
COMMON/BLK9/NDAT,SIGDAT(20) ,ESTDAT(20) ,SYL(500), SLOPE (20) 

C-STORE THE LOADING STRESS FIELD 

DO 10 I=l,NELM 

SEQL(I)=SEQ(I) 

EEQL(I)=SEQ(I) / E ( I )  

STTL (1) =STT(I) 

SRRL (1) =SRR (1) 

szzL(r) =szz(r) 
ETTL (1 )  =ETT(I) 

ERRL (1) =ERR(I) 

ERTL(1) =ERT(I) 

EZZL(1) =EZZ (1) 

SRTL(1) =SRT(I) 

UL(1) = U ( I )  

EL(1) =E(I) 
C.STORE THE STATE OF STRESS AT THE END OF FIRST LOADING 

C-THIS POINT IS THE REFERENCE POINT OF THE W O A D I N G  

C-IF ISOTROPIC HARDENING 

SYL (1) =S*YSTRES (1) 

C.FOR VIzRIABLE BAUSCHINGER EFFECT FACTOR FIND OVER-STRrIN 

EPLAST=YSTRES(I)*((l./E(I))-(I./EEUS)) 

DO 20 J=2, LDAT-1 

IF(EPLAST.LT-EP(J) ) GO TO 7 
20 CONTINUE 

C.GET THE CORRESPONDING VALUE OF BEF FROM THE DATA 

7 BEF=SLLOP (J-1) (EPLAçT-EP (J-1) ) +BE (J-l) 
C-FIND THE REVERSED YIELD STRSS 

SYL(1) =(l.DO+BEF) 'çY 

C-NOTE FOR KINEMATIC HARDENING BEF=I FOR ALL STRIPS 

10 CONTINUE 

UL(I)=U(I) 

IUNLD=l 

NITER=O 

P(I)=O.DO 

PII=P (1) 

P (N) =POO 

T=O -D6 

SRRLIN=SRRIN 



STTLIN=STTIN 

SZZLIN=SZZIN 

SRRLOT=SRROUT 

STl'LJOT=STIY)UT 

ERRLIN=ERRIN 

E T I Z I N = r n I N  

ERRLOT=ERROUT 

ETTLOT=ETI'OUT 

DO 20 1=2,N-1 

P(I)=O.DO 

RETURN 

END 

C SUBROUTINE FOR PRINTING THE RESULTS 
* * * t * t * t t t * ~ * * * * * * * * + * * * * * * * * * * * + * * * * * * * * * * * * * * * * * * * * * n * * * * * * * * * * * * * * r * *  

SUBROUTINE PRINT 

IMPLICIT DOUBLE PRECISION (A-H, O-Z) 

COMMON/BLKO/R(SOO),AR~SOO),MXITER8NELM8N,NITER,IUNLD,PII,POO,T 

, MXITR, ITER, IDUM, IADJST, IBOUND 
COMM0N/BLK2/A,B,AI8BO,YSTRES (500) ,SY,ERROR, ICURVE,.?LPH?.,FI 

COMMON/BLK3/AA(SOO) ,BB(SOO) ,CC(SOO) , W O )  , P(SOO) ,UT(SOO) 
COMMON/BLX4/SZZ(SOO) ,SRR(SOO) 8STT(500) ,SRT(SOO) ,SEQ(500) 

COMMON/BLKS/E(SOO) ,ANU(SOO) ,EELAS,ANüE, IPLANE, IYCRT 

COMMON/BLX6/SZZIN8 SRRIN, STTIN, SRROUT 

,STTOUT,ERRXN,ERROUT,ETTIN,ETTOUT 

COMMON/BLK7/EL(SOO) ,STTL(SOO), SRRL(500) ,SZZL(SOO), E'i"ïL(500) 

,ERRL(SOO) 

,EZZL(SOO) ,UL(500) ,SEQL(SOO) , S R R L . I N , S T L I F J , S F . R L O T  

,STTL0T,ERRL0T8E~L0T,EEQL(500),SZZL1N,SRTL(500),ERTL(500) 

COMMON/BLK8/ERR(sOO) ,ETT(SOO) ,EZZ(SOO) ,ERT(SOO) 

COMMON/BLKll/PERR(SOO) ,EERR(SOO) , PETT(500) ,EETT(SOO) 
, PERT(500) ,EERT(500) 

COMMON/BLKll/METHOD 

IF(NITER-GT.1.OR IUNLD-EQ-1) GO TO 5 

WRITE(5, * )  

WRITE(5,*) ' ELASTIC-PLASTIC SOLUTION ' 

WRITE(5, + )  ' OF I 

WRITE(S,*) ' THICK-WALLED CYLINDER ' 

WRITE(5, * )  

WRITE(5, * )  



TJRITE(S, * )  

IF(PI1-EQ.0, )WRITE(5# *) 

' PROCESS : TORSION FOLLOWED BY PRESSURE' 
IF(T.EQ.O)WRITE(S, +) 

' PROCESS : PRESSUE FOLLOWED BY TORSION' 

WRITE(5, +)  

WRITE (5, ) ' NUMBER OF ELEMENTS : ' , NELM 

WRITE (5, * ) ' INSIDE RADIUS : '  , A I  

WRITE ( 5 ,  ) ' OUTSIDE RADIUS : '[BO 

WRITE ( 5 ,  + ) ' INSIDE PRESSURE : ' ,P(l) 

WRITE(S,*)' OUTSIDE PRESSURE :',P(N) 

WRITE(Snt) ' INSIDE TORQUE : ' ,T 
WRITE ( 5, ) ' ELASTIC MODULUS : ' , EEtAS 
WRITE ( 5 ,  * ) ' PO1 SSON RATIO : ' ,iIEJUE 

WRITE ( 5 ,  + 1 ' Y IELD STRESS :',SY 

IF(IYCRT.EQ.1) WRITE(5,*) ' YIELD CRITERION : VON MISES0 

IF (IYCRT.EQ. O) WRITE (5, + )  ' YIELD CRITERION : TRESC-?' 

WRITE(S,*)' MAX. ii OF ITERATION:',MXITER 

IF(ICURVE.EQ.1)THEN 

WRITE ( 5 ,  * ) ' HARDENING RESPONSE : G I V E N  STRESS -STP.-AIEI CUP.';f ' 

ELSE 

WRITE(S,*) ' RAMBERG-OSGOOD EQOATION' 

WRITE(S, * )  ' : r 8 M = 8 , M r '  ALPKk8,.-LLPH-% 

ENDIF 

IF(IPLANE.EQ.O)WRITE(S,*) ' PLANE STRAIN' 

IF(IPL.?NE.EQ.l)WRITE(S,*)' PLANE STRESS' 

IF (METHOD. EQ .1) WRITE ( 5 ,  * ) ' PROJECTION METHOD ' 
IF(METKOD.EQ.2)WRITE(5,")' NEUBER'S METHOD' 

IF(METHOD.EQ.3)WRITE(5,*)' GLINKA'S METHOD' 

IF (METHOD. EQ - 4  ) WRITE ( 5  [ * ) ' AVERAGE ENERGY METHOD ' 

IF(METHOD.EQ.S)WRITE(5, * )  ' ARC-LENGTH METHOD' 

WRITE(5, * )  

5 CONTINUE 

EY=SY/EELAS 

IF (NITER. EQ. 1) THEN 

WRITE(5, * )  

WRITE ( 5 ,  * )  

WRITE(5, * )  

IF(IUNLD.EQ.0) 

. WRITE(S,*)' 

IF(IUNLD.EQ.1) 

- WRITE(5,*)' 

PSEUDO ELASTIC SOLUTION (LOADING) ' 

PSEUDO ELASTIC SOLUTION (UNLO>.DIEIG ) ' 



STT 

SEQ , 

STT 

SEQ, 

STT 

SRR 

PERR 

PERT 

WRITE (5, *) 

WRITE ( 5  1 * )  

ELSE 

WRITE(5, *) 

WRITE ( 5 ,  ") 

IF(N1TER.EQ.MXITER) WRITE(S,*)' SOLOTION DID NOT CONVERGED' 

IF(NITER.NE.MXITER) WRITE(S,*) ' SOLUTION CONVERGED AFTER', 

- NITER, ' ITERATION ' 

WRITE(5, +)  

ENDIF 

WRITE (5, *) 

WRITE(S, * )  

WRITE(S,+) ' NODE NO, COORD. 
WRITE(5, * )  ' ---------- -------- 
WRITE(8,*) ' NODE NO. COORD . 
WRITE(8, * )  ---------- -------- 
WRITE (5, * )  

DO 10 I=l,N 

IF(NITER.EQ.1) THEN 

WRITE(5,f 11 , R ( I )  ,U(I) ,UT(I) 
ELSE 

IF(IUNLD.EQ-1) WRITE(Stl)I,R(I) ,U(I) ,UT(I) 

IF(IUNLD.EQ.0) WRITE(S,1)I,R(I) , U ( I )  ,UT(I) 

IF(IUNLD.EQ-1) WRITE(8,l) I,R(I) /AI,U(I) ,UT(I) 
IF(IUNLD.EQ.0) WRITE(8,1)I,R(I) ,U(I) ,UT(I) 

ENDZF 

10 CONTINUE 

WRITE(5, * )  

IF(IPLANE.EQ.O)THEN 

WRITE(5, + )  ' RAD. 
1 SRT , 
ELSE 

WRITE(S,*) ' RAD 
4 SRT, 

ENDIF 

WRITE(6,*) ' RAD 
' SRT 
WRITE(7, * )  ' RAD 

B EZZ 

DO 20 I=l,NELM 

IF (NITER-EQ. 1) THEN 

IF(IPLANE.EQ.O)THEN 

szz ' , 
E' 

SZZ ' , 
SEQ ' 

PETT ' , 
PEEQ ' 



20 CONTINUE 

IF(NITER.EQ.1) RETURN 

IF ( IUNLD . EQ . O ) THEN 
WRITE(S,*)'HOOP STRESS AT INSIDE CORE :',STTIN 

WRITE(S,*)'AXIAL STRESS AT INSIDE CORE :',SZZIN 

WRITE(S,*)'RADIAL STRESS AT INSIDE CORE :',SRRIN 

WRITE (5, * ) ' HOOP STRAIN AT INSIDE CORE : ' , ETTIN 
WRITE ( S .  + ) ' RADIAL STRAIN AT INSIDE CORE : ' , ERRIN 
WRITE(5, +)  

WRITE(5,*)'RAOIAL STRESS AT OUTSIDE CORE :',SRROUT 
WRITE(5,*)'RADIAL STRAIN AT OUTSIDE CORE :',ERROUT 

WRITE(5,')'HOOP STRESS AT OUTSIDE CORE :',STTOUT 

WRITE(S,*)'HOOP STRAIN AT OUTSIDE CORE : '  ,ETTOUT 

ELSE 

WRITE ( S .  ) ' HOOP STRESS AT INSIDE CORE : ' , STTIN 



WRITE ( S , ') ' AXIAL STRESS AT INSf DE CORE : ' , SZZIN 

WRITE(S,*)'RADIAL STRESS AT INSfDE CORE :',SRRIN 

WRITE ( S , *) ' AXIAL STEESS AT INSIDE CORE : ' , SZZIN 

WRITE(S,+) 'RADIAL STRAIN AT INSIDE CORE :',ERRIN 

WRITE(S,*)'HOOP STRAIN AT INSIDE CORE :',ETTIN 

WRITE(5, * )  

WRITE ( 5 ,  * )  ' RADIAL STRESS AT OUTSIDE CORE : ' , SRROUT 
WRITE (5 ,  * ) ' RADIAL STRAIN AT OUTSIDE CORE : ' , ERROUT 
WRITE(S,*) 'HOOP STRESS AT OUTSIDE C O N  t',S'M'OUT 

WRITE ( 5 ,  *) ' HOOP STRAIN AT OUTSIDE CORE : ' , ETTOUT 
ENDIF 

1 FORMAT(lX, IS,3 (8X,El2 - 6 )  ) 

2 FORMAT(F5.2,4(3X,E12.5) ,2X1E12.5) 

3 FOmT(F7.3,5(2X,E12.5) ,2XlF1006) 

RETüRN 

END 



APPENDLX B 

MAPLE V.4 OUTPUT 
TOTAL DEFORMATION THEORY FOR A SEQUENCE OF LINEAR 

LOADING 
(LINEAR HARDENING MATERIALS) 

This appendix includes a summary of the integration of Eq. (5.10) bascd on the 
oiitput from MAPLE V.4. The result of this integration is given in Eq. (5.13). 

> restart; 

DEFINITIONS OF THE PROPORTIONALITY VARIABLES 

INTEGRATION FROM THE STARTING AND ENDING POINT OF 
NEXT PROPORTIONAL LOADING 



DEFINITION OF END POINTS STRESS AND STRAIN PARAMETERS 

> a l ia s  (S  [A] =a) : 
> a l ia s  (Delta ( S )  =b) : 
> alias (sigma [A] =cl : 

( 3 - 3 )  
> a l i a s  (sigma [BI =d) : 
> a l i a s  ( (Delta(egsi1on [ij ) ) =FC1) : 
> alias ( (Delta (sigma) ) =h) : 

SUBSTITUTION 

> EQ: =EQ; 
( 3 . 4 )  

THE CHANGE IN PLASTIC STRAIN 



SIMPLIFICATION 



PLASTIC STRAIN CALCULATION FOR A SEQUENCE OF LINEAR 

NONPROPORTIONAL LOADLNGS 

This appendu: includes three items: 1) the subroutine that utilizes the total nefonnation 

formula given in Eq. (5.13) for calculation of plastic strain field. 2) MAPLE V.4 

worksheet providing the integration results for materials obeying the Rainberg-Osgood 

relation, and 3) the FORTRAN code generated automaticaily by MAPLE V.4 based on 

the resulis of integration for the Ramberg-Osgood relation. 

The iMAPLE V.4 worksheet is a typical example for generating total defonnûtioa 

fonnula for nonhardening materials. In this exarnple the Ramberg-Osgood relation in a 

form shown in Eq. (2.11) is used. The hardening exponent n=0287, which is for 

stninless steel 304, is used. This Maple routine automatically generates a FORTRAN 

code shown at the end of this appendix. 

.+****+*****************+*********************************  

C. THIS SUBROUTINE WILL ADJUST THE STRAIN FIELD FOR A 

C. NONPROPORTIONAL LOADING USING THE DERIVED TOTAL 

C . DEFORMATION FORMULATION 
**+*+**t+**********t**************************************************~* 

C. THE MAIN PROGRAM LISTING IS IN APPENDIX A 

C. DEFINITION OF VARIABLES 

SUBROUTINE AhJUST 

IMPLICIT DOUBLE PRECISION (A-H, K, 0-2) 

DIMENSION DELSEQ(SOO),SRLPRM(S00),STLPRM~SOO),SZLP~(500) 

1 , PETTL (500) , PERRL (500) , PE'RTL (500) 

2 , SRPRM(SO0) , STPRM(SOO), SZPRM(500) , SIIL(500) 
3 ,SI1 (500) ,DELSRR(500) ,DELSZZ(500) ,DELSTT(500) , DELSRT(S00) 



,DELERR(SOO) ,DELETT(500) ,DELEZ2 (500) JELERT(500) 

,EERRL(sOO) ,EETTL(SOO) ,EERTL(SOO) 

COMMON/BLKO/R(500),AR(~OO)~MXITER~NELM,N~NITERIIU~D~PII~POO~T 

, MXITR , ITER, IDüM , IADJST, IBOUND 
COMMON/BLKl/K ( 2 , S  ) 
COMMON/BLKS/A, B, AI, BO, YSTRES (500) , SY, ERROR, ICURVE, ALPHA, M 

COMMON/BLK3/AA(500) ,BB (500) ,CC(SOO) ,0(500), P(5OO) 

COMMON/B~K~/SZZ(SOO),SRR(~OO),STT(~OO),SRT(~OO),SEQ~~OO~ 

COMMON/BLKS/E(SOO),ANU(SOO),EELAS,~,IPLANE,IYCRT 

COMMON/BLK6/SZZIN,SRRIN,STTIN,SRROUT 

,STTOUT,ERRIN,ERROUT,ETTIN,ETTOUT 

COMMON/BLK7/EL(SOO) ,STTL(SOO) , SRRL(500) ,SZZL(SOO) ,ETTL(SOO) 
, EFmL (500) 

,EZZL(5OO),UL(5OO),SEQL(SOO),SRRLIN,S~LIN,ER~IN,E~LINISRRLOT 

,STTLOT,ERRLOT,ETTLOT,EEQL(500) ,SZZLIN,SRTL(SOO) , ERTL (500) 

COMMON/BLK8/ERR(5OO),ETT~5OO),EZZ(S00),ERT(5OO) 

COMMON/BLKg/NDAT, SIGDAT(20) ,ESTDAT(20) ,SYL(SOO) SLOPE(20) 

COMMON/BLKil/PERR(500) ,EERR(SOO) , PETT(500) EETT!500) 
,PERT(SOO),EERT(SOO) 

EEPLAS=SLOPE (2) 

IF(XADJST.EQ.O)THEN 

C. SAVE THE STRESS VALUES OF THE FIRST LOADING 

DO 10 I=l,NELM 

EERRL(1) = (1 .DO/EELAS) *SRRL(I) - ( A N U E / E E L A L  (1) +SZZL (1) ) 

EETTL(1) =(l.DO/EELAS) +çTTL(I) - (ANUE/EELAS)*(SRRL(I) tSZZL(1) 1 

EERTL(1)=2.D0* ((l.DO+ANUE) /EELAS)'SRTL(I) 

PERRL ( 1 ) =ERRL ( 1 ) -EERRL ( 1 ) 

PETTL ( 1 =ETTL ( 1 ) -EETTL ( 1 ) 

PERTL ( 1 ) =ERTL ( 1) -EERTL ( 1 ) 

C-FIND THE HYDROSTATIC PRESSURE AND THE DEVIATORIC STRESS OF 

C .THE FIRST LOADING 

SIIL(I)=(i.D0/3 . D O ) * ( S R R L ( I : ) + S Z Z L ( I ) )  

SRLPRM(I)=SRRL(I) -SIIL(I) 

SnPRM(1) =STTL(I) -SIIL(I) 

SZLPRM (1) =SZZL (1) -SIIL (1) 

10 CONTINUE 

ELSE 

ENDIF 

C-CALCULATE THE STRAINS 

DO 20 I=l,NELM 

IF(SEQ(1) .GT.SY) THEN 



C-FIND THE DEVIATORIC STRESS 
SiI(I)=(l.D0/3 .DO) *(SRR(I) +STT(I)+SZZ(I) ) 

SRPRM(1) =SRR(X) -SI1 (1) 

STPRM(1) =STT(I) -SI1 (1) 

SZPRM(1) =SZZ (1) -SI1 (1) 

C-FIND THE CHANCES IN DEVIATORIC STRESS TENSOR 

DEZSRR (1) =SRPRM (1 ) -SRLPRM ( 1) 

DELSTT (1) =STPRM (1) -STLPRM (1) 

DELSZZ (1) =SZPRM(I) -SZLPRM (1) 

DELSRT (1) =SRT (1) -SRTL (1) 

C-FIND THE EQUIVAtENT STRESS FOR STRESS CHANGES 

DELSEQ(1) =DSQRT(.sDO* ((DELSTT(1)-DEtSRR(1) ) **2 

. + (DELS'I"I'(1) -DELSZZ(I) ) +"2+ (DELSRR(1) -DELSZZ (1) 1 * * 2  

. +6,DO*DELSRT(I)+*2)) 

C-FIND THE ELASTIC & PLASTIC STRAIN OF THE COMBINED PROPORTIONAL LOADING 

EERR(I)=(l.DO/EELAS)*SM(I)-(AN[;TE/EEUS)*(S~(Il+SZZ(I)) 

EETT(Il=(l.DO/EELAS) *STT(I) -(ANUE/EELAS) (SRR(1) +SZZ(I) ) 

EERT(I)=2.D0* ( (l.DO+ANüE) /EELAS) *SRT(I) 

PERR(I)=ERR(I) -EERR(I) 

PETT(I)=ETT(I) -EETT(I) 

PERT(I)=ERT(I) -EERT(I) 

C . CALL THE PLASTIC STRAIN CALCULATION SUBROUTINE GENER4TED BY C . ILisPLE-J . 4 

CALL PLSCAL (SRLPRM ( 1 ) , DELSRR ( I ) , SEQL ( 1 ) , SEQ ( 1 ) 
1 ,DELSEQ(I),DELERR(I),M,ALPtfAIEELASISY) 

CALL PLSCAL(STLPRM(1) ,DELSTf(I) ,SEQL(I) ,SEQ(I) 

1 ,DELSEQ(I) ,DELETT(Il ,M,ALPHAIEELAS,SY) 
CALL PLSCAL(SRTL(1) ,DELSRT(I) ,SEQL(I) ,SEQ(I) 

1 ,DELSEQ(I)lDELERT(I)rM,ALPHA,EELAS,SY) 

DELERT ( 1) =2, DO DELERT (1 ) 

C .ADD UP THE STRAINS 

PERR ( 1 ) =DELERR ( 1 ) +PERRL ( 1 ) 

PETT ( 1 =DELETT ( 1 ) +PETTL ( 1 ) 

PERT ( 1 ) =DELERT ( 1 ) +PERTL ( 1 ) 

ERR(1) =PERR(I) +EERR(I) 

ETT (1) =PETT (1) +EETT(I) 
ERT(I)=PERT(I)+EERT(I) 

ELSE 

PERR (1) =PERRL (1) 
PETT(1) =PETTL(I) 

PERT (1) =PERTL (1) 

ENDIF 

20 CONTINUE 



CALL PRINT 

IDUM=l 

RETURN 

END 



MAPLE V.4 

TOTAL DEFORMATION THEORY FOR A SEQUENCE OF LINEAR 
NONPROPORTIONAL LO ADINGS 
(RAMBERG-OSGOOD MATERIALS) 

epsl@)=(siglHYYl/n) 

> restart; 

DEFINITIONS OF THE PROPORTIONALITY 
VARIABLES 

> ZQ:=(sa+kxdels)*((2*k-l)*d8igh2-(8igah2-s 

igbA2) ) * (k* ( - l + k )  *dsigA2-k* (sigaA2-sigbA2 

) +sigaA2) A ( 7 1 2 - 3 )  ; 

(C- 1) 

EQ := (sa + k dels) ( ( 2  k - 1 ) dsig2 - siRaZ + sigb2) 

J L  ( - 1  + k )  hig' - k (siga2 - sigb2) + siga2 

INTEGRATION FROM THE STAFtTING AND ENDING 

POINT OF NEXT PROPORTIONAL LOADING 

> FC: =iat (EQ, k=O.. 1) ; 

( C - 2 )  

1 
FC := - ( 3 dels sigos h(2) + 6 dels siga8 In(dsig ) + 3 dels siph8 in( 2) 

192 
+ 6 deis sigb8 ln( dsig ) - 3 dels sigb8 %2 - 3 dels siga8 8 2  



+ 1 6 deis sigo2 (sigb2 ; - ' drig: d q  + 1 8 deis riga; 2 3  ri@ Jz 
- 18 dek s i g a y j r b 2  4 &ig2 + 18 d:sg~4 &ig!2 & i f ) /  dsi;' 

+ 6 dels sigb6 sighw drig2 - 12 dek sigu sigb2 si@ dsig dsig 
+ 3 deis drig8 In(2) - 3 dets b ig8  $2 + 6 dek drig8 h(drig) 
t 12 dels siga2 sigb6 462 - 24 dek sigh sigb6 h(u!sig) - 12 deis sisa6 sigb2 In( 2 ) 
+ 12 dels siga6 sigb2 %2 - 24 dek siga6 sigb2 In(dsig ) + 18 deb siga4 si.@' in( 7 ) 
- 1 Y deis siga4 sigb4 %2 + 36 dels sigu4 sigb4 In(&ig ) 

- 12 deis siga2 sigb2 drig4 %2 + 24 deLr siga2 sigb2 big4 In(drig) 
- 12 dels sigb6 drig2 ln( 2 ) + 12 dek sigb6 &ig2 Q2 - 24 deis sigl16 dsig2 Iii f dsig ) 
- 12 deis dsig6 sigb2 h(2) + 12 deLF drig6 sigb2 %2 - 24 deis dsig6 sigb2 lii(dsig) 
- 12 deis siga6 d.sig2 ln(2) + 12 deis sigo6 akig2 4 2  - 24 deis siga6 dsig2 hi( dsig ) 
+ 12 dcls sigu4 sigb2 &igZ ln(2) - 12 dels siga4 sigb2 &ig2 %2 
+ 21 ciels siga4 sigb2 &ig2 h(&ig) + 18 deis siga4 dsig4 ln( 2 ) 
- 18 dels sigaJ drig4 4 2  + 36 dels sigcr4 diig4 In(dFig) + 18 defs sigb4 dsiy4 in( 2 j 

- 18 dels sigb4 &ig4 %2 + 36 dels sigb4 dsig4 în(dsig) - 12 cfds dsig' si,& ln( 2 ) 
+ 1 2 dels dsig6 sigaz 4 2  - 24 dels drig6 siga2 ln(drig) 

+ 1 2 deis siga2 sigb4 dsig2 ln( 2 )  - 12 deis siga2 sigb4 dsig2 %2 
+ 24 dds siga2 sigb4 dsig in(dsig) + 12 dets si2a2 sigb2 dsigJ ln(2) 

- 6 dels sigo8 ln(dsig ) - 3 dels sigb8 In(2) + 3 deis sigbs 9c 1 + 3 dcls sijus B I 
+ 3 dels dsigS % 1 - 6 dets sigb8 In(- ) + 12 dets siga2 sigb2 d.siS4 % 1 
+ 12 dcls siqa2 sigb4 dsig" 1 - 12 deis sigb6 dsig2 % 1 + 18 dcls si& (/A-is4 9; l 

- 1 2 dcls *a6 &ig2 5% 1 - 12 dels siga2 sigb6 % 1 + 18 dcis sigo4 sisb4 % 1 

- 12 dcis dsig6 sigb2 % 1 + 18 dels siga4 arig4 %1 + 12 dels sigd siyb2 dsiy' 6 1 

- 12 dels akig6 siga2 % 1 - 12 dels siga6 sigb2 % 1 - 3 deis dsig8 in( 2 ) 
- 6 dels dsig% (n(drig) + 24 deis siga2 sigb6 In( dsig ) + 12 deis sigB siyb2 In ( 7 ) 
+ 24 dek siga6 sigb2 h(drig ) - 1 8 dek sigd sigb4 in( 2 ) 
- 36 dels siga4 sigb4 ln( dsig ) - 24 dels siga2 sigb2 drig4 In(drig ) 
+ 12 dels sigb6 drig2 ln(2) + 24 dets sigb6 drig2 in(&& ) 
+ 12 dcls dsigd sigb2 ln(2) + 24 dds dsig6 sigb2 h(drig) 
+ 12 dcls sigu6 &ig2 In(2) + 24 dds siga6 akig' ln(dvig ) 
- 12 rieis siga4 sigb2 drig2 ln(2) - 24 de& siga4 sigb2 drig2 In(dsig) 
- 18 dels siga4 drig4 ln(2) - 36 dek siga4 dsig4 h(dsig) 
- 1 8 dels sigb4 dsig4 h ( 2 )  - 36 deis sigb4 drig\(dsig) 
+ 12 dels hig6 siga2 ln( 2 )  + 24 dek &ig6 siga2 In(&ig) 



- 12 deis siga2 sigb4 drig2 In(- ) - 24 defs si& sigb4 b ig2  in(dsig ) 
- 12 deLF siga' sigb2 dsig4 in(2) + 12 dek siga2 sigb6 ln(2) 

- 16 de& siga2 (sigo2) 4 4 . 7  94: 
' 

drig2 JdrigZ - 18 d& siga sigrr- si@ k i g -  

- 6 dels sigb6 &&/dSig2 - 16 dels (siga2<12 drig4 Jrlrig' 
- 128 sa (sigu2) " ' akig4 Jdriq' + 6 dels drig6 4 2  4d;;é; ) / (ds$ Jz' 

1 

+1 := h ( ~ / T d s i $  f ~ l i g d ~ ~ s i g ~ + ~ ~ d s i s 2 )  

% 2 := h( &ig- drig - dsig sigo- + drig c 2 sigb2 dSig2 ) 

DEFINITION OF END POINTS STRESS AND STRAXN 
PARAMETER 

> al ias  (S [A] =sa) : 

> zlias (Delta ( S )  =&els) : 

> al ias  (sigma [A) =siga) : 

> eiias (sigma [Bf  =sigb) : 

(C13) 

> alias((Delta(epsilon[ij]))=FCI)= 

> alias((Delta(sigxua) )=ds ig)  : 

SUBSTITUTION 







> append to (genera2) ; 

CREAT A FORTRAN PROGRAM AND ADD IT TO THE 
CODE CALLED GENERAL 

> fortran ( " )  ; 



C e - -  -TRIS ROWTINE IS GENERATED BY -LE V - 4  

C....PLASTIC STRAIN CALCULATION 

SUBROUTINE PLSCAL (SA, DELS, SIGA, SIGB. DSIG, TO ,M, ALPW. EE. SY 

DELPHI= (3. / 4  - ) *ALPHA+M/ (EE* (SY** (M-1) ) ) 

52 = DELPHI/192 

,LS*SIGA**B*ALOG(DSIG)+~*DELS*SIGB**~*ALOG(~.EO)+~*DELS*SIGB**~*XO 

, G (DSIG) -3 *DELs*sIGB**~*R~oG (SQRT (DSIG"~) 'DSIG* *2-SQRT (DSIG* '2 *SI 

, IGB**6*ALOG (SQRT(DSIG**~) *DsIGe*2-SQRT(DSIG"2) *SIGA**2+SQRT (DSIG' 

, -2) *SIGB**2+2*SQRT(SIGB**Z) *DSIGe*2) -12*DELS*SIGA~'2*SIGB'*6*.-LOG( 

,2.EO)-24*DELS*SIGB**6*DSIG**2*AtOG(DSIG)+12*DELS*SIGB*'6*DSIG**2wA - - -  

LOG (SQRT(DSIGe*2) *DSIGe*2-SQRT (DSIG"2) *SIGA**2+SQRT(DSIG**2) * S I G B  

.**2+2*SQRT(SIGB**2)*DSIG**2)+6*DELS*SIGB**6*SQRT(SIGB**2)*SQRTLDSI 

,G**2)-12*DELS*SIGA**6*SIGB**2*ALOG(2.E0) 

.SIGA**~+SQRT(DSIG**~)*SIGB**~+~*SQRT(SIGB**~)*DSIG**~)+~~*DELS*SIG 

,A**4*SIGB**2*DSIG**2*ALOG (DSIG) 

S6 = S~-~~*DELS'SIGA**~*SIGB**~*DSIG**~*ALOG(SQRT(DSIG**~)*DSIG'*~ 



,A**2*~OG(DSIG)+12*DELS*DSIG**6*SIGA**2*AL,OG(SQRT(DSIG~*2)*DSIG**2 

,-SQRT(DSIG**2)*SIGA**2+SQRT(DSIG**2)*SIGB**2+2*SQRT(SIGB**2)~DSIG* 

,*2)-12*DELS*DSIG**6*SIGA**2*ALOG(22EO)-l2*DELS*SIGA**2*SIGBg*4*DSI 

,G**2*ALOG(SQRT(DSIG**2)*DSIG**2-SQRT(DSIG**2)*SIGA**2+SQRT(DSIG**2 

,)*SIGB**2+2*SQRT(SIGB**2)*DSIG**2)+12*DELS*SIGA**2*SIGB**4*DSIG**2 

, *ALOG (2 .E0) +36*DELS*SIGB**4*DSIG**4*ALOG (DSIG) 

S7 = S6-18*DELS*SIGB**4*DSIG**4*ALOG(SQRT(DSIG**2)*DSIG**2-SQRT(DS 
,fG**2)*SIGA**2+SQRT(DSIGf*2)*SIGB**2+2*SQRT(SIGB**2)*DSIG**2)+l8*D 

,ELS*SIGB**4*DSIGf*4*ALOG(22EO)+36*DEtS*SIGA**4*DSIG**4*FLOG(DSIG)- 

, l 8 * D E L S * S I G A * * 4 * D S I G * * 4 * A L û G ( S Q R T ( D S ~ ( D S I G y n 2 ) * S  

,IGA**2+SQRT(DSIG**2)*SIGB**2+2*SQRT(SIGB**2)*DSZG**2)+18*DELS*SIGG9 

,**4*DSIG*t4*ALOG(22EO)+12*DELS*SIGA**6*DSIG**2*Af,OG(SQRT(DSIG**2)* 

,DSIG**2-SQRT(DSIG**2)*SIGA**2+SQRT(DSIG**2)*SIGB**2+2*SQRT(SIGB**2 

,)*DSIG**2)-12*DELS*SIGA**6*DSIG**2*ALOG(2.E0) 

S4 = S7-l2*DELS*DSXG**6*SIGB**2*ALOG(22EO)-24*DELS*DSIG**6*SIGB**2 

,*ALOG(DSIG)+12*DELS*DSXG**6*SIGB**2*~OG(SQRT(DSIG*T2)nDSIG*u2-SQR 

,T(DSIG**2)*SIGA**2+SQRT(DSIGf*2)*SIGB**2+2*SQRT(SIG3**2)*DSIG**2)+ 

,~4'DELS*SIGA**2*SIGB**2*DSIG**4*ALOG(DSIG)-l2*DELS*SIGA**2*SIGB**2 

,*DSIG**4*~OG(SQRT(DSIG**2)*DSIGt*2-SQRT(DSIG**2)*SIGA**2iSQRT~DSI 

,Gf*2)*SIGB**2+2*SQRT(SIGBt*2)*DSIG**2)+l2*DELS*SIGA**2*SIGB**2*DSI 

,G"4*KOG(2.E0)+24*DELS*SIGA**2*SIGB"f4OG(DSIG)-24*DELS 

, 'SIGA**6*DSIG* *2+ALOG (DSIG) +SS 
SS = I/DSIG**4/SQRT(DSIG++2) 
S3 = S4*S5 

S1 = S2*S3 
S3 = -DELPHI/192 

S 8  = l2*DELS*SIGB**6*DSIG**2*IUllOG(-SQRT(DSIG**2)*DSIGT*2-SQRT~DSIG 
,**~)*SIGA**2+SQRT(DSIG**2)*SIGB**2+2*SQRT(SIGAr*2)*D~IG**2)+l2*DEL 

,S*SIGA**6*SIGBT'2*AtOG(-SQRT(DSIG**2)*DSIG**2-SQRT(DSIG*f2)*SIG~-*T 

,2+SQRT(DSIG**2)*SIGB**2+2*SQRT(SIGA**2)*DSIG**2)-12*DELS*SIGA**4~S 

,IGB'*2*DSIG**2*ALOG(-SQRT(DSIG**2)*DSIG**2-SQRT(DSIG**2)*SIGA**2+S 

,QRT(DSIG**2)*SIGB**2+2*SQRT(SIGA**2)*DSIG**2)-18*DELS*SIGB**4*DSIG 

,**4*ALE(-SQRT(DSIG**2)*DSIG**2-SQRT(DSIG**2)*SIGA**2+SQRT(DSIG**2 

,)*SIGB**2+2*SQRT(SIGA**2)*DSIG**2)+3*DELS*SIGA**8*~OG(2~EO)+6*DEL 

,S*DSIG**8*UOC(DSIG)+12*DELS*SIGA**2*SIGB**6*UOG(-SQRT(DSIG**2)*D 

,SIG**2-SQRT(DS~G**2)*SIGA**2+SQRT(DSIG**2)uSIGB**2+2*SQRT(SIG~~**2) 

, *DSIGe*2) 
S9 = S8-18*DELS*SIGA**4*SIGB**4*ALOG(-SQRT(DSIG**2)*DSIG**2-SQRT(D 
,SIG**~)*SIGA**~+SQRT(DSIG**~)*SIGB**~+~*SQRT(SIGA**~)*DSIG**~)+~~* 

,DELS*DSIG**6*SIGA**2*~OG(-SQRT(DSIG**2)*DSIG**2-SQRT(DSIG**2)*SIG 

,A**~+SQRT(DSIG**~)*SLGB**~+~*SQRT(SIGA**~)*DSIG**~)-~~*DELS*SSGA** 

,4'DSTG**4*AL~(-SQRT(DSIG**2)*DSIG**2-SQRT(DSIG**2)*SIGA**2+SQRT(D 



, **2 ) +3 *DELS*DSIG"B*A&OG (2. EO) -12*DELS*SIGA'*2*SIGB**2 *DSIG*'4*.XLO 

S8 = S7-3*DELS*SIGB**8*ALoc( 
, ICA* *2+SQRT (DSIG**2) *SIGBe*2 

,*8*ALOG(DSIG)+18*DELS*SIGA** 

,16*DELS*SIGB**2*SQRT(SIGA+fS 

, **6* SQRT (SIGA**2) *SQRT(DSIGe 
,IGB**8*ALOG(DSIG) 

-SQRT (DSIGe*2) *DSIG**2- 

+2*SQRT (SIGA**2) 'DSIG" 

4*SQRT(SICA**2)*SIGB**2 

) "3 *DSIG**2 *SQRT (DSIG* 

*2) +~*DELS*SIGB+*~*A.LOG 

, *4*SQRT (SIGA**2) *DSIG**Z*SQRT (DSIGe*2) -6*DELS*SIGA* *6'SQRT (SIG.?* * 2  

,)*SQRT(DSIG**2)+16*DELS*SIGA**2*SQRT(SIGA**2)**3*DSIG*T2TSQRT(DSIG 

,**2)-18*DELS*SIGB**4*SQRT(SIGA**2)*DSIG*'2'SQRT(DSIG"2)+~28*SA*SQ 

,RT(SIGA**2)**3*DSIG**4*SQRT(DSIG**2)+16*DELS*SQRT(SIGAr*2)w~3*DSIG 

,**4*SQRT(DSIG**2)+I2*DELS*DSIG**6*SIGB**2*ALOG(-SQRT(DSIG**Z)*DSIG 

,**2-SQRT(DSIG**2)'SIGA**2+SQRT(DSIG**2)*SIGB**2+2*SQRT(SIGA**Z) *DS 

, IG* '2) 

S5  = S7+12*DELS*SIGA**2*SIGB**4*DSIG**2*ALOG(2.EO)+36*DELS*SIGB*'4 
,*DSIG**4*~OG(DSIG)+18*D&LS*SIGB**4*DSIG**4*ALOG(2.E0)+36*DELS*STG 

,A**4*DSIG**4*ALOG(DSIG)+l8*DELS*SIGA**4*DSIG**4*ALOG(2.EO)-l2*DELS 

,*SIGA**6*DSIG**2*ALOG(2.EO)-12*DELS*DSIG**6*SIGB**2*ALOG(2.EO)-24* 

,DELS*DSIG**6*SIGB**2*ALOG(DSIG)+24*DELS*SIGA**2*SIGB**Z*DSIG~*4*AL 

, OG (DSIG) +12*DELS*SIGA**2*SIGB**2*DSIG**4*ALOG ( 2  .EO) +24*DELS*SIG-&'* 
t2*SIGB**4*DSIG**2*ALOG(DSIG)-24*DELS*SIGA**6*DSIG**2*ALOG(DSIG)+6' 

tDELS*SQRT(SIGA**2)*SIGA**2*DSIG**4*SQRT(DSIG**2)+l2*DELS*SIGA**2*S 

,IGB**Z*SQRT(SIGA**2)*DSIG**2*SQRT(DSIG**2)-6*DELS*DSIG"6*SQRT(SIG 



,A**2)*SQRT(DSIG**2)+18*DELS*SQRT(SIGA**2)*SIGB**2*DSIG~*4*SQRT~DSI 

, G'*2 ) 

S6 = l/DSIG**4/SQRT(DSIG+fS) 

S4 = SS*S6 

S2 = S3*S4 

TO = Sl+S2 

RETURN 

END 
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