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ABSTRACT

A linear elastic solution of a boundary value problem is used as the basis to generate the
corresponding inelastic solution. This method treats the material parameters as field
variables, and their distribution is obtained as part of the solution in an iterative manner.
Five different schemes to update these material parameters are discussed and compared.

A procedure for the calculation of the residual stress field is presented.

In this context, a general axisymmetric method of elastic-plastic analysis is proposed.
Application of this method to the residual stress prediction for an autofrettaged cylinder
and a cold worked fastener hole is presented. Lamé’s linear elastic solution is used in
these applications. Residual stress calculations based on the actual material curve,
isotropic or kinematic hardening models, and a variable Bauschinger effect factor (BEF)
is carried out. It is concluded that the consideration of the dependency of the BEF on
plastic strain makes significant changes to the residual hoop stress near the bore for low-
level autofrettage. However, this dependency is insignificant for high level autofrettage.
Results obtained here are shown to be in good agreement with experiment, and finite

element results.

A total deformation theory capable of analyzing a sequence of linear nonproportional
loading is proposed. Each linear loading path is defined with reference to its previous
loading path, analogous to proportional loading. The application of the proposed
formulation to tension-torsion loading of thin tubes and pressure-torsion loading of thick-
walled cylinders is carried out. It is shown that for stress controlled processes, the
proposed method gives the same plastic strain field as does incremental plasticity. For
load controlled processes, where stresses are not known a priori, a method to estimate the
plastic strain for linear hardening materials is proposed. This method calculates the

necessary stress fields using conventional deformation plasticity. These stresses are then
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used in the proposed total deformation formulation to predict plastic strains. The plastic
strain field resulting from this method is compared with finite element results using
incremental plasticity. The results are in very good agreement. The proposed method

significantly reduces computation time.
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Intrinsically, man seeks to attain  absolute
perfection. An artist is seeKing for ultimate beauty,
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Him” whom they all seek, fowever, fie may not be

aware of it!
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I. INTRODUCTION

In the design and analysis of components, it has become increasingly important to
develop methods that are less sophisticated, more understandable, and easy to apply: but

still accurate.

Design of components such as high pressure tubing in mechanical, chemical and
armament industries, or fastener joints in aircraft industries requires elastic-plastic
analysis. One reason for this is the need to accurately predict residual stresses.
Compressive residual stresses in many applications such as autofrettage of cylinders and
fastener holes, apart from increasing the pressure bearing capacity of the component,
enhanc the component’s fatigue life. The presence of these beneficial residual stresses

reduces the probability of crack initiation and slows the growth of fatigue cracks.

Reliable prediction of the influence of residual stresses on the critical crack length and
fatigue life of the components requires an accurate prediction of the actual residual stress
field in the component. It is therefore essential to develop accurate and reliable methods

to calculate residual stresses induced by pre-loads.

The theories of plasticity are not fully exploited by practicing engineers because of the
difficulties in applying these mathematically sophisticated techniques. Usually it takes
considerable effort to understand and implement techniques for plastic analysis. In most
cases, industries are not convinced of the resulting economy and hence consider such

analysis unaffordable.

Alternative methods of elastic-plastic analysis have attracted special attention recently.
These methods provide simpler techniques to approximate the elastic-plastic behavior of

components and therefore are more atiractive to practicing engineers.



[*]

1.1 OBJECTIVES AND PROBLEM IDENTIFICATION

The objectives of this study are twofold. The first objective is to establish a method of
elastic-plastic analysis based on linear elastic solutions. This method should be capable of
predicting the stress, plastic strain and displacement for proportional loading. It should
also be capable of accurately predicting mechanically induced residual stress, strain and
displacement fields. The method, unlike conventional methods of residual stress
calculation, should be able to employ the actual material stress-strain unloading curve to

produce a close approximation to the real fields.

The second objective is to develop a toral deformation theory applicable to
nonproportional loading. This method should provide a proper way of representing a
sequence of linear (but nonproportional) loadings such that total deformation theory can
be employed for the analysis. The method should provide techniques for handling
different deformation processes such as stress and load controlled deformations. The
main focus should be devoted to reasonable plastic strain prediction in nonproportional

loading where either stresses or loads are known a priori.

1.1.1 Inelastic Analysis Based on Linear Elastic Solutions

An auempt is made in this investigation to develop a mathematical model that can
generate an inelastic solution using linear elastic results. This model should be able to :
1) accurately predict the elastic-plastic solution and 2) accurately predict the residual

stress field due to unloading.

In order to do this, the problem to be solved can be outlined as follows. In a body under
load as shown in Fig. 1.1a, different material points such as a, B and ¥, shown in Fig. 1.1
(a), are at different levels of stress. Let the material behavior be represented in a general
manner as shown in Fig. 1.1(b). Based on their stress levels, the material points a, § and
Y may be represented by the points &, B and y on the uniaxial stress-strain curve (Fig. 1.1
b). The problem may now be defined as follows: instead of performing a nonlinear

analysis (following the nonlinear stress-strain curve) to arrive at points a, f and v, use
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known linear solutions with modified properties to reach the same points (Fig. 1.lc). It
should be emphasized that the functional form of such linear dependency at each point

will be the same as the functional form of the linear elastic solution.

(a)

(b)
Figure 1.1(a): Elastic-plastic analysis based on

linear elastic solutions
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Figure 1.1 (cont.): Elastic-plastic analysis based on

linear elastic solutions

1.1.2 Application of Total Deformation Theory of Plasticity to Nonproportional

Loading

There are two theories of elastic plastic analysis, deformation plasticity and incremental

plasticity.

Incremental theory of plasticity provides the most satisfactory basis for treating plasticity
problems. However, this theory is incremental and leads to mathematical and
computational complexities. Considerable simplifications are often achieved by using
deformation theory of plasticity which depends only on the end values of stresses and is
independent of stress history. Nevertheless, experimental results indicate that plastic
strains depend not only on the current value of stress but also on the stress history.
Therefore, total deformation plasticity gives inaccurate plastic strain fields for many

situations involving nonproportional loading.



Despite the general inappropriateness of deformatdon theory, it is preferred in many
practical fields of engineering because of its simplicity over incremental theory. For
example, total deformation theory is widely used in fatigue design analysis (Dowling,

1993).

The validity of total deformation theory can be mathematically proven for proportional
loading (Hill, 1950), and its physical soundness can be shown for limited degrees of
nonproportional loading (Budiansky, 1959). However, to the authors knowledge, the
applicability of total deformation theory to a sequence of linear nonproportional lcadings

such as the one shown in Fig 1.2, has not been adequately addressed in general.

An attempt is made to examine the validity of total deformation theory to
nonproportional loading that can be defined as a sequence of linear loadings (Fig. 1.2). In
order to do this the problem to be solved is defined as follows. Let a linear loading OA
(simple torsion), as shown in Fig. 1.2, be followed by another linear loading AB (simple
compression). The aim is to find a proper way cf defining the second linear loading (AB)
such that total values of plastic strain at A and B can be calculated from the stress values

at A and B.

O

Figure 1.2: Nonproportional loading OB, defined as a
sequence of two linear loading OA (torsion) and AB

(compression)



1.2 OUTLINE

The thesis consists of six chapters. The present chapter describes the motivation,
objectives and problem definition. The fundamental concepts which governs the theory
of plasticity are reviewed in chapter 2. Only those subjects of the theory of plasticity
which are appropriate for the subsequent discussions are selected. The literature on
methods of elastic-plastic solutions based on elastic analysis is reviewed at the end of
chapter 2. This review includes some of the frequently used approximate elastic-plastic

methods.

The variable material property method is proposed in chapter 3. This is applied to obtain
a general axisymmetric method of elastic-plastic analysis. Numerical implementation of

this method and proper treatment of unloading are also discussed in chapter 3.

In chapter 4 the models derived in the previous chapter are applied to different
axisymmetric problems. Loading of thick-walled cylinders and a plate with a circular
hole are studied for different material behavior and stress states. Results are compared
with other analytical methods. The ABAQUS finite element program has been used by
the author for comparison purposes. The present approach results for the cases where no
other solutions were available are compared to the results obtained by ABAQUS.
Applications, including the autofrettage of cylinders is studied extensively in chapter 4.
The application of the variable material property approach to the residual stress field

around a cold worked fastener hole is also studied in chapter 4.

Application of the proposed axisymmetric analysis is extended to multiaxial loading of a
thick tube. Pressure and torsion are applied proportionally to a thick cylinder. Since there
are no other methods available for solving this problem, the results are compared with

finite element results obtained by the author using ABAQUS.

Chapter 5 examines the validity of total deformation theory of plasticity to the situations
involving nonproportional loading. Application of this method to nonproportional
loading of a thin tube under tension and torsion is carried out for a linear hardening

material and a material obeying the Ramberg-Osgood relation. The application of



proposed total deformation formulation to nonproportional loading of a thick-walled

cylinder under pressure and torsion is also examined in chapter 5.

Chapter 6 summarizes the results and the major conclusions of this work.

Recommendations are made for future work.

Appendix A gives the listing of the FORTRAN program for the elastic-plastic analysis of

axisymmetric problems.

Appendix B gives the details of the integration of the Prandtl-Reuss equation for a
sequence of linear loadings, based on the output from MAPLE V.

Appendix C gives the subroutine that utilizes the proposed total deformation formulation
to calculate the plastic strain field using the variable material property method. The
MAPLE V worksheet which performs the integration for any Ramberg-Osgood relation
is included. This MAPLE program automatically generates a FORTRAN code out of the

integration results which are used by the subroutine listed in this appendix.



2. BACKGROUND

Plasticity theory aims to quantify and predict the behavior of solids, generally metals,
under permanent deformation. The four major components needed for such a prediction
are: 1) a stress-strain relation, which describes the uniaxial loading behavior of material,
2) a yield criterion, which distinguishes between multiaxial elastic and elastic-plastic
behavior, 3) a flow or deformation rule, which relates the stresses to the corresponding
strains or strain increments, and 4) a hardening rule, which describes the changes of the
yield criterion during the course of deformation. A boundary value problem is constituted
once the above components are defined. A brief description of each component is given
in this chapter. More detail on these subjects can be found in many publications, some of
which are given in the references, and more or less follow the book on plasticity by R.

Hill (1950).

Also, a comparison of the two major methods of plastic analysis, incremental and
deformation plasticity, is discussed. The literature on methods of elastic-plastic analysis

which depend on elastic solutions is reviewed at the end of this chapter.

2.1 STRESS-STRAIN CURVES

A knowledge of material properties is essential to elastic-plastic analysis. They are used
in constitutive equations which relate stresses to strains. Material properties, such as the
elastic modulus, Poisson’s ratio, plastic modulus, secant modulus, and tangent modulus,
are obtained from a uniaxial stress-strain experiment. Hence, it is important to

understand and model stress-strain curves obtained experimentally.
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ds do

de”

de de*

(@) (b)
Figure 2.1: Elastic, secant, tangent, and plastic moduli definition based on

a) stress-strain or b)stress-plastic strain curves

2.1.1 Moduli involved in elastic-plastic analysis (E, E, E and E)

Figure 2.1 (a) shows a typical uniaxial stress-strain curve. There are different modulus
detinitions associated with this curve. The elastic modulus, E, is the slope of the initial
proportional part of the stress-strain curve. It has a constant value. The secant modulus,

E,, varies from point to point and depends on the total values of strain and stress. It is

defined as

Q2.0

™ |a

Clearly, when the stresses and strains remain within the proportional limit, the secant
modulus is the same as the elastic modulus. The secant modulus is well suited to
plasticity formulations based on total values of stress and strain. However, because the
elastic-plastic stress-strain curve of the material is nonlinear in nature, an incremental
procedure is often adopted. In this regard, the increment of plastic strain is considered to

be the sum of an elastic part, d¢’, and a plastic part, de”:



10

de =de“+de? 2.2

The infinitesimal stress increment, dG, is related to the infinitesimal strain increment, /€,

by
do =E, de (2.3)

where E, is the tangent modulus which varies during plastic deformation. The
instantaneous slope of the stress-strain curve shown in Fig. 2.1 (a) is the tangent
modulus. If the plastic strain, €, is separated from the total strain, €. then the plastic

strain increment and the stress increment are related by
dc =E,de’ (2.4)

where E_ is referred to as the plastic modulus, which in the case of uniaxial loading is the
slope of the o~€" curve shown in Fig. 2.1 (b). Clearly, the modulus of elasticity, E,

relates elastic strain increment, de°, to the increment of stress b
y

do=Ede* (2.5)

Substitution of de (in Eq. 2.3), de” (in Eq. 2.4), and de* (in Eq. 2.5) into Eq. (2.2) lead to

the relationship between the three moduli £, E and E

—_—=— ? (2.6)
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Another material parameter which is not explicitly defined by the stress-strain curve is
Poisson’s ratio. This parameter describes the lateral behavior of materials under axial

load. Poisson’s ratio is defined as

v= _ Bl (2.7)

axial
This material parameter can also be measured during a simple uniaxial loading.

2.1.2 Modeling of the uniaxial behavior in plasticity

To make the uniaxial stress-strain curve more compatible with the method of solution
used, it is often necessary to idealize the stress-strain curve. Four types of idealized

stress-strain curve are discussed here in.

2.1.2.1 Elastic-perfectly plastic model

In some cases, it is permissible and convenient to neglect the effect of work hardening
and assume that the plastic flow occurs when the stress reach its yield value, ¢,. Thus,

the uniaxial stress-strain relation may be expressed as

for ¢ <oG.

(y]
I

(2.8)
+g? for o0 > 0.

m
I
mfa mja

Figure 2.2 (a) shows this model.



(a) (b)

o)
g’ g’
E
£
(c) (d)
Figure 2.2: Idealized stress-strain curves
2.1.2.2 Elastic-linear hardening model

In the elastic-linear hardening model, the stress-strain curve is approximated by two
straight lines, thus replacing the smooth transition by-a sharp corner. The ordinate of this
corner is the yield stress 6,. The first linear branch of the idealized diagram (Fig. 2.2 b)
has a slope equal to the elastic modulus. The second branch, representing the idealized
hardening behavior, has a slope equal to the tangent modulus E,. The stress-strain relation

has the following form:



—
)

for o0 <0,

™
Il

1 (2.9)
+?(o —0'.) for o >0G.

r

m
1]
m[Q m|a

2.1.2.3 Ramberg-Osgood model

Ramberg and Osgood (1943) suggested the following relation for representation of the

nonlinear stress-strain curve shown in Fig. 2. 2 (c)

-1
o [e @ o)
E=—7+0 = —'T (2.10)

in which material constants & and m are the yield offset and the hardening exponent,
respectively. The initial slope of the curve takes the value of elastic modulus at 6=0. and
decreases monotonically with increasing load. Since the model has three parameters (G, ,

a, and m), it allows for a better fit of real stress-strain curves.

[t is sometimes convenient to work with a plastic strain-stress relation in the following

form

s=H(e?)" @.11)

where H is a material constant and »n is the corresponding hardening exponent. These
constants for a particular set of stress-strain data are obtained by making a log-log plot of

stress versus plastic strain, ¢ vs. €. Taking logarithms of both sides of Eq. (2.11) gives

logs =nloge? + logH (2.12)
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This is a straight line on a log-log plot (y=nx+b). The constant A is theretore the value of

stress at €'=/, and n is the slope of the log-log plot.

This method of idealization is usually utilized in the deformation theory of plasticity
which will be discussed later.

2.1.2.4 Piecewise linear model

A stress-strain curve, which in general is nonlinear, can be modeled by approximating it
as a series of piecewise linear segments as illustrated in Fig. 2.2 (d). The first linear
segiment ends at the yield strength. Each subsequent line segment describes the response
of the material from one yield point to the subsequent yield point. The stope of the line

represents the stiffness of the associated segment.

The stress and strain for a point in the ith segment is given by

G -0, G, <0 <0, (2.13)

where £ is the slope and €, is the increase in strain within that segment. The total strain

up to a point in the nth segment is
E=2,— 2.
=1 E,'

with 6,=0, and E, being the Young’s modulus.

The piecewise linear approximation of the actual stress-strain curve is often used in the

incremental theory of plasticity which will be discussed later.
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2.2 YIELD CRITERIA

The yield condition for a material defines the limit of purely elastic behavior under any
combination of stresses. For complicated loading with a multiaxial stress state, a yield
criterion describes how each stress component contributes to yielding at a particular

material point.

[t is generally agreed that yielding, especially for metals, is independent of hydrostatic
stresses. Though many initial yield conditions have been proposed, the Tresca yield
criterion (1864), also known as the maximum shear stress criterion, and the von Mises
yield condition (1913), also referred to as the maximum distortion energy criterion, best
represent actual material behavior ( Davis, 1945; Naghdi et al., 1958) while preserving

mathematical tractability.

2.2.1 Tresca yield criterion

According to this criterion, a material point yields when the maximum shear stress at that
point reaches the maximum shear stress in a uniaxial tension specimen at yield. The

Tresca yield criterion, shown in Fig. 2.3 by a hexagon, is expressed as

Cpax — Opun| =0 (2.15)

max

where ¢, ¢, are the maximum and minimum principal stresses, and G, is the yield
stress in tension. The drawback of this criterion is that it is independent of the

intermediate principal stress.

Note that, when not concerned with the initial yielding, the left hand side of Eq. (2.15)
may be taken as a representation of the state of stress (i.e., an equivalent stress) at a given
material point. The definition of equivalent stress is essential when working with
hardening materials. The hardening characteristics of a material follow from the uniaxial

stress-strain curve. For hardening materials some function of stresses, called equivalent
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Figure 2.3: Yield locus for Tresca and von Mises yield criterion

stress, and some function of the plastic strains, called equivalent strain, are used to
correlate the test results obtained for different loading programs. Tresca’s equivalent

stress, o, may be defined in the following form:

G:; = Io-max —Gminl (2 16)

The equivalent plastic strain will be defined later.

2.2.2 Von Mises yield criterion

According to this criterion, yielding begins when the distortion energy for a complex
stress state is equal to the distortion energy at yield in a tension specimen. The von Mises
yield condition is represented using the deviatoric stress tensor, S, . and the yield stress

o, which are defined as follows:



S.=0g. ———§.. (2.17)
and

, 3
ol =35,S; (2.18)

where 8 is the Kronecker delta and the usual summation convention over repeated

indices is adopted. The von Mises criterion in terms of principal stresses is

G. (2.19)

\/_;_'{(Gu —Gz)z +(Gl ‘03)2 +(03 —Gz):}

where 0,, 6,, and G, are the principal stresses. The planar view of this surface for 6,=0 is

an ellipse in principal stress space as shown in Fig. 2.3.

Note that, when not concerned with the initial yielding, the left hand side of Eq. (2.19)
may be taken as a representation of the stress state at a given material point. specifically

the von Mises equivalent stress. G, , is defined by

The Tresca and von Mises yield criteria never give dramatically ditferent predictions of
the yield behavior under combined stress, there being no state of stress where the
difference exceeds approximately 15%. The maximum distances from the origin to the

Mises ellipse and the Tresca hexagon in Fig. 3.3 have the ratio of 1.155. Hill (1950)
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suggested that a solution obtained using the Tresca criterion may be scaled by this factor

to give an estimation based on Mises.

2.3 STRESS-STRAIN RELATIONS

Three stress-strain relations are considered here. The first one describes the linear elastic
response of the material during elastic and plastic deformation. The other two describe
the plastic response of the material. These are: 1) deformation plasticity, which relates
the total plastic strains to the stresses, and 2) incremental or flow plasticity, which relates
the plastic strain increments to the stresses. A comparison of these two plasticity theories

on the basis of validity, accuracy, simplicity, and computational preferences is made.

2.3.1 Linear elastic

The generalized Hooke’s law constitutes the linear elastic relationship.

where G, E and v are the shear modulus, Young’s modulus, and Poisson’s ratio,

respectively.

These relationships apply not only prior to yielding but also after yielding, except that in
the latter case they give only the elastic portions of the strains. Superscript ¢ in Eq. (2.21)
indicates elastic strains, and the plastic portion of strains must be added to them to obtain

the total strains.

€, =g;+e/ (2.22)
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2.3.2 Deformation plasticity

Hencky (1924) proposed a relationship between total plastic strains and stresses.
Assuming small strains, the plastic stress-strain relation proposed by Hencky may be

written as
P = 79
ef=0 S; (2.23)

where ¢ 1s a scalar valued function. For hardening materials, ¢ depends on the equivalent
stress (e.g. Mises equivalent stress), @, , which may be regarded as a tunction of an

equivalent total plastic strain, € ", defined as

5
P |[ZeppP 22
€. 3 €€ (2.24)

A key feature of deformation theory is that a single curve, i.e., the uniaxial stress-strain
curve, relates equivalent stress and equivalent plastic strain for all states of stress. Some
tests on thin walled copper tubes conducted by Davis (1943) verify this approximately.

Equation (2.23), Eq. (2.18) and Eq. (2.24) are used to determine the function 6:



where £, is the secant modulus of the uniaxial stress-strain curve.

2.3.3 Incremental plasticity

Levy (1871) and von Mises (1913) independently proposed a relationship between total
strain increments (sum of elastic and plastic strain increments) and the current state of
stress. The modified form of this relation, which uses plastic strain increments, was
proposed by Prandtl (1924) for plane strain and by Reuss (1930) for an arbitrary state of

strain in the following form

def =d¢ S; (2.27)

or in component form

where d¢ is a factor of proportionality, which may be found by considering plastic work
increments. It can be shown (Hill, 1950) that the increment of plastic work per unit

volume for the von Mises yield criterion is
P = —
dW? =§.def =c de} (2.29)

where the equivalent plastic strain increment is defined as

2
de? = ,fgde,.;de; (2.30)



Substituting Eq. (2.27) into Eq. (2.29), gives

J 3dx~:,‘; 31dc,q 531
¢—2(5 "2E, o (2.31)

q P q

where E, is the plastic modulus defined by Eq. (2.4). The Prandtl-Ruess rule is
completely defined by Eq. (2.27) and Eq. (2.31).

2.3.4 Deformation versus incremental plasticity theories

Both plasticity theories have been used for plastic analysis of materials. Nadai (1930) and
Sokolovsky (1969) have used Hencky’s deformation stress-strain relation extensively. On
the other hand, Hill (1950) and Prager and Hodge (1951) focused on the theoretical
shortcomings of the deformation theory and used the Prandtl-Reuss equation to handle

plastic deformation.

Experimental results (Mroz and Olszak, 1963) indicate that plastic strains depend not
only on the values of the stresses reached but also on the history of stressing. For
example, consider a thin walled tube loaded to particular values of axial load P=P" and
torque T=T", either of which is sufficient to cause yielding by itself (Fig. 2.4). If the
axial load to cause yielding is applied first and then the torsion, the plastic strains that
result differ from those that occur if the torsion is instead applied first. Also, a third
result is obtained if the tension and torsion are increased proportionally. so that the ratio
P/T remains constant until P* and T are simultaneously reached. This suggests that
deformation plasticity, which is independent of the loading path, leads to incorrect strain
field calculations. In Hencky’s theory, paths OP°A, OT'A, and OA give identical strain
fields. Thus, in order to get the correct strain field, one has to adopt an incremental
formulation to allow for the effect of the loading path. Experimental results (Mroz and
Olszak, 1963) show that the Prandtl-Reuss equation, which is path dependent, is the most

accurate relationship.
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Figure 2.4: Nonproportional loading path

There have been many studies, especially during the 50°s and 60’s, comparing the two
theories on the basis of the physical correctness of Hencky’s theory. Many of these
studies (Morrison et al. 1950, Hundy and Green 1954) emphasized the incorrect
predictions of deformation theory, while some (Hodge and White 1952, Budiansky 1959,

Chen 1973) pointed out the applicability of deformation theory for a range of loading.

For proportional loading where the components of the deviatoric stress maintain
proportionality throughout the load history, the two theories are the same. A proportional
loading is represented by a straight line passing through the origin in the principal stress

space. The components of deviatoric stresses for a proportional loading are given as



where K is a monotonically increasing function and °S,; is an arbitrary (nonzero) state of

stress. The equivalent stress (Tresca or Mises) will then take the following form

c.=KTo (2.33)

P=5= S, (2.34)

which upon integration yields the Hencky relation given in Eq. (2.26). This proves the

equivalence of the two theories for proportional stressing.

However, Budiansky (1959) showed that the deformation theory of plasticity may be
used for a range of loading paths other than proportional loading without violating the
general requirements for physical soundness of a plasticity theory. Assuming Drucker’s
(1951) basic postulates as criteria for physical soundness of a plasticity theory,
Budiansky showed that deformation theory is consistent with these requirements for a
range of loading paths that are close to proportional loading. Drucker’s postulates
(Drucker, 1951} on the theory of plasticity are based on thermodynamic principles and
result in two inequalities related to the rate of plastic work increment and the maximum
plastic work. Budiansky rearranged Drucker’s inequalities using deformation plasticity
for a situation in which a corner is formed in the yield locus at the current stress point
during plastic deformation. The Tresca yield surface (hexagon in Fig. 2.3 ) is an example
of a yield surface with discontinuous corners. Drucker’s inequalities then reduce to

(Chakrabarty, 1987)

(dcrl —dcvz)2 +(afcr2 -d0'3)2 +(dcs'3 - dol)2 <2(l+mds}, ~ (2.35)
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where m is the exponent for the stress-strain curve represented by the Ramberg-Osgood
equation. Also, do, , do, , and dos are the principal stress increments and dg, is the
increment of equivalent stress. For a hardening material, this inequality will be satisfied
in a large number of practical problems where the stress ratios vary during the

deformation (Chakrabarty, 1987).

Due to the mathematical complexity arising from the incremental formulation, a
deformation plasticity solution is preferred for many applications. Most finite element
packages, such as ABAQUS, offer a deformation plasticity option as well as an
incremental plasticity option. For many problems where monotonic loading is of
concern, deformation plasticity not only gives an answer with reasonable accuracy but
takes less computational time. A comparison of the two theories on the basis of
computational time and accuracy for a nonproportionally loaded thick-walled cylinder is
given in chapter five. Similar comparisons can be found in different areas of solid
mechanics, for example, Chen (1996) in fracture mechanics. Deformation plasticity has
been extensively used for cyclic plasticity (Dowling, 1993) and notch analysis (Seegar

1985, Moftakhar 1994).

While Hencky's theory is valid for monotonic loading only, with moditications it may be
applied to unloading as well. This has been done widely for cyclic plasticity (Dowling.

1993) and residual stress field prediction (Jahed and Dubey, 1996 and 1997).

Even though deformation plasticity is utilized for proportional loading, the possibility of
using a total deformation formulation for nonproportional loading which can be defined
as a sequence of linear loading steps has not been addressed in the literature. Such a
loading is shown in Fig. 2.4 (loading paths OP'A, or OT A). In chapter five, this
possibility is examined and it is shown that, for deformations where stresses are known a
priori, such a relationship gives the same results as incremental plasticity. Furthermore,
for situations where stresses are not known a priori in a nonproportional loading of a
linear hardening material, a total deformation method is proposed for strain field

calculation.



2.4 HARDENING RULES

Hardening rules describe how the yielding criterion changes during the course of plastic
deformation. For unloading situations, they also describe the onset of reversed yielding.
There are two widely used hardening rules: 1) isotropic hardening and 2) kinematic
hardening. Both rules preserve the shape and orientation of the yield surface. Note,

however, that some research (Phillips and Lee, 1979) suggests a distortion of the surface.

Despite the fact that it is necessary to work with a hardening rule for complex loading
such as cyclic plasticity, neither of these rules are able to capture all features of material
behavior. Figure 2.5 shows an experimentally obtained stress-strain curve. The hardening
rule approximations (both are the same in this case) are also shown. The material (AISI
4333) has a perfectly plastic loading behavior while showing a hardening eftect upon
unloading. Even the Bauschinger effect (early yielding behavior on unloading, e.g., prior
to reaching the yield strength under monotonic loading) is not captured by the kinematic
hardening rule because of the nonhardening response in loading. Unlike during loading,
the material transition from elastic unloading to reversed yielding is smooth. These

points show the importance of utilizing the actual material curve, where applicable.

2.4.1 Isotropic hardening

The isotropic hardening rule (Hill, 1950) states that the yield surface grows during plastic
deformation, effectively changing the yield stress as the material becomes elastic-plastic.
The center of the yield surface, however, remains fixed. Such behavior is shown in
deviatoric stress space (two dimensional case) in Fig. 2.6. Adopting the von Mises yield

criterion, the yield surface is described by

3
0= 5;8; =0 (2.36)
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where ©, , the Mises equivalent stress, attains its largest value during loading.
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Figure 2.6: Isotropic hardening

Isotropic hardening cannot account for the Bauschinger effect which is experimentally
observed for many metals (Milligan et. al. 1966). In terms of uniaxial behavior. the
isotropic hardening predicts reversed yielding at -26,, where o, is the maximum stress
reached during loading. Figure 2.7 shows possible unloading paths on the uniaxial stress-

strain curve.

[sotropic hardening is thought to best describe material behavior for large strains. For

this reason, this rule is used more in metal forming problems.

o

— Isotropic
.-+ Kinematic

cessacs s’

Figure 2.7: Isotropic and kinematic hardening



2.4.2 Kinematic hardening

Kinematic hardening model was first proposed by Prager (1956) as a way to model the
Bauschinger effect. The yield surface in kinematic hardening is allowed to translate in
stress space. Figure 2.8 shows the yield surface movement in deviatoric stress space
based on Prager’s kinematic hardening rule. The yield surface equation for the von Mises

criterion 1s
o? —%(S,.,. —a,)(s,-a,)=0 (2.37)

where o is the shift tensor which accommodates translation. Different relations for the
shift tensor increment have been proposed. Ziegler (1959) modified Prager’s rule by

proposing the following evolution form for the shift tensor
do,; = du (s, - o) (2.38)

Some finite element programs, e.g., ABAQUS, utilize Prager’s kinematic hardening rule
with Ziegler’s modification. Kinematic hardening is used mostly in fatigue analysis and

cyclic plasticity.

2.5 BOUNDARY VALUE PROBLEM

A boundary value problem is formulated when the solution to a particular problem is of
interest. A boundary value formulation requires consideration of: 1) the equilibrium

equation, 2) the compatibility condition, and 3) the constitutive relation.

In analytical or numerical formulations of solid mechanics, such as the finite element

method, it is very important to understand and enforce these considerations. A complete,
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Figure 2.8: Kinematic hardening

reliable solution is achieved only if equilibrium and compatibility are maintained, and the

correct constitutive model is employed.

2.5.1 Equilibrium

Forces acting on a body give rise to smesses. Through a static (or dynamic) analysis of
torces involved in a deformation, a set of equations restricting the stress distribution in a

body are formed.

Consider a body of volume Q enclosed within surface I. In the absence of body torces,

the body is in equilibrium if the stress tensor, G, satisfies the following equation

where the comma followed by a suffix denotes partial differentiation. This ensures the
equilibrium of points interior to I'. In addition, equilibrium of the points on the boundary
[ should be satisfied. If the boundary condition consists of prescribed tractions,
and/or displacements, «,, then the following two conditions must be satistied to ensure

equilibrium and compatibility of points on the boundary:



- traction ¢, over the boundary I'y

o.n. =t (2.40)

u, =u; (2.41)
where the union of the two parts of the boundary give the entire boundary
C=T,+T, (2.42)

and n, is the unit outward normal to the surface I';.

2.5.2 Compatibility

Displacements give rise to strains. A kinematic analysis of the deformation leads to
certain restrictions on the strain tensor. Here and throughout this work, only small strain
theory 1s considered. Therefore, the displacements and strains are related by the

following equation

ed=%@u+uﬁ) (2.43)

where u«, is the displacement vector. While the physical meaning of the equilibrium

equation is fairly straightforward, it is not as easy to physically understand the



compatibility equation. Mathematically, the strains are compatible when they are
definable in terms of a single valued, continuously differentiable displacement. Also, a
compatible strain field ensures: 1) all of that part of space which is specified by the body
configuration is being occupied by the body (i.e. no vacancies or overlaps), and 2) there
is a one-to-one correspondence between particles of the body and points in this part of
space. However, a more physical interpretation of compatibility is that the separate
particles of the body must deform in such a way that they fit together after deformation.

This requirement is essential in finite element calculations to satisfy compatibility.

2.5.3 Constitutive relations

Equilibrium equations which involve only stresses are independent of the compatibility
equations which involve only strains. Constitutive equations are necessary to relate
stresses to strains through the material properties. For this reason, knowledge of the
material behavior is necessary. Here, only isotropic materials are considered. A material
is said to be isotropic if it possess the same behavior in all directions. The number of
independent material constants for linear elastic behavior of this class of material reduces
to two (Barber 1992) as given by Eq. (2.21). Hencky’s relation and Prandtl-Reuss

equation are also examples of constitutive equations.

In chapter three, a set of constitutive relations analogous to Hooke's Law, but describing

elastic-plastic behavior, is derived.

2.6 ELASTIC-PLASTIC METHOD OF SOLUTION BASED ON ELASTIC SOLUTION

Linear elastic behavior of materials is a well established branch of solid mechanics.
There exists a unified understanding of the linear elastic response of materials. Also,
linear elastic formulations of problems are mathematically simple and their solution are
readily attainable. Most practical problems in this field have either analytical or

numerical solutions which are in good agreement with experimental observation.
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Plasticity, however, is much more complex. Although a unified theory of plasticity began
to emerge about 1945, even today there is not a unified understanding of plastic behavior
of materials. On one hand, theoretical plasticity with complex mathematics is a matter of
debate and research. On the other hand, practical plasticity (e.g., metal forming) has
deviated from pure theoretical plasticity and is based more on experimental results and
related empirical formulas. Because of its mathematical complexity, many theoretical
works find a narrow range of application, and for this reason simpler methods of elastic-
plastic analysis have attracted attention amongst researchers in the practical field of

plasticity.

The simplicity of linear elasticity and difficulties with nonlinear plasticity have made
way for researchers to attempt solving elastic-plastic problems by adapting a modified
form of available elastic solutions. The idea of estimating the elastic-plastic behavior by
using elastic analysis is not new, and can be traced back to Nadai (1931) who discussed
some of his earlier work such as the plastic analysis of a pressurized cylinder using an

elastic solution.

2.6.1 Modified elastic solution in elastic-plastic notch analysis

The earliest work dealing with elastic-plastic behavior at a stress concentration was based
on elasticity (Nadai, 1930). Nadai studied the maximum shear stress around a circular
hole in a thin wide plate using the elasticity equation and Mohr’s circle to describe the

progression of yielding.

Stowell (1950) employed a modified form of the elastic notch solution to come up with a
formula for stress and strain concentration factors for plastic loading. By assuming that
the effect of plasticity of the material was to lower the stress concentration factor
obtained from elasticity, he argued that the complete stress field in an infinite plate with
a central circular hole may be found by modifying its elastic stress field. Stowell
separated the terms in the elastic solution of the circular notch problem to terms due to
the far field stress and terms due to the local concentration. He then scaled down the

terms due to the presence of the hole by the ratios of the local secant modulus and the far
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field secant modulus. In this manner he simulated the plasticity effect by lowering the
elastic modulus. Based on this, he proposed the following modification to the elastic

stress concentration factor

K, =1+2—= (2.44)

where K, is the elastic-plastic stress concentration factor, £, and E. are the secant moduli
at the notch root and away from the notch, respectively. This equation, which has to be
solved by trial and error, gave good stress concentration factors when compared to
experimental results. However, based on the same analogy, the strain concentration

factor, K, , defined by

K, =2 245
C-E, ( )

m

failed to give satisfactory results at relatively high loads. In a similar manner, Budiansky
and Vidensek (1953) obtained the elastic-plastic stress field in a plate with a circular hole

by adding a correction to the corresponding elastic solution.

Neuber (1961) used the notch tip stress and strain components obtained for a linear
elastic body to estimate the elastic-plastic strain and stress components in a geometrically

identical elastic-plastic body. He originally proposed the following relation

(2.46)

“,
m |2,
I
8
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where § is the remote stress and K, is the elastic stress concentration factor. He assumed
that the actual total strain energy density (the sum of strain energy density and the
complementary strain energy density) at the notch tip is equal to that which would be

obtained if the material were to remain linearly elastic.

Walker (1977) and Dowling (1977) extended Neuber’s rule for different types of
loading. This method of analysis has been used widely in design codes and has proven to

be a good approximation (Conle and Nowack 1977, and Sharp and Wang 1991).

Subsequently, Hoffmann and Seeger (1985) generalized Neuber’s method for estimating
multiaxial elastic-plastic notch stresses and strains based on the corresponding elastic
solution. This method, which is based on proportional loading, utilizes Hencky's

deformation theory and provides the following general Hooke’s Law formulation

e, =—%(0, -v/{(30, —5,)) (2.47)

0'I +0'2+63
Olﬂ
3 .
1 (1 G., (2.48)
vi=——|==-v
2 \2 Ee,,

and o, is calculated from a hypothetical linear elastic solution by adopting a yield
criterion such as von Mises. The corresponding equivalent notch strain, g, is then
calculated through a relationship (like Neuber’s rule for equivalent stress and strain)
involving the modulus of elasticity. Including von Mises yield criterion, Eq. (2.47)
provides four equations for the five unknown stresses and strains (in a plane stress

problem one of the principal stress is zero which makes the number of unknowns five).
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By making the extra assumption that the ratio of elastic strains rernain the same in
elastic-plastic behavior, principal stresses and strains at the notch tip can be obtained.

Later, Hoffmann et al. (1991) extended their method to nonproportional loading.

In a similar correlation, Molski and Glinka (1981) used the elastic strain energy density,
instead of total energy density, to calculate the corresponding elastic-plastic stress and
strain components at the notch tip. This assumption was motivated by Hutchinson (1968)
who found that the strain energy density at a crack tip in a bilinear material is the same as
that computed from a purely elastic solution. This method has been extended to
multiaxial proportional loading (Moftakhar, 1994) and nonproportional loading (Chu and
Conle, 1994). Sharp et al. (1992) modified Glinka's method to account for notches where

the initial elastic state is neither plane stress nor plane strain.

2.6.2 Method of successive elastic solution

[lyushin (1946) used a method of successive elastic solutions to solve the problem of a
plastically deformed thin shell. This method is based on Picard’s method (Ince, 1944) of
successive approximations to nonlinear equations. Later, in a more general sense, this
method was proposed by Mendelson and Manson (1959) as a practical solution for

plastic deformation. This method uses the following constitutive relation

1
€; =750, =

v
Y= —0,0, +€£;7 +Ae,’ (2.49)

E

where € is the total accumulated plastic strain up to, but not including, the current
increment of loading Ag” . The method allows the plastic strain increment to be related
to the stresses through any yield criterion and the associated flow rule, but the Prandtl-
Ruess relations (Mendelson, 1968) are preferred. In this method, the loading path is
divided into a number of increments. For the first increment of load, a distribution is

assumed for the components of plastic strain increments A€’ . The components of total
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plastic strain € are zero. Therefore, the boundary value problem formed by the above
constitutive equation can be solved as for any elastic problem to give a first
approximation for the stresses and total strains. The assumed values for Ag’ give an
equivalent plastic increment Ag” based on Eq. (2.30). From the uniaxial stress-strain
curve, the corresponding value of equivalent stress is obtained and new sets of Az-:u" are
calculated from the Prandtl-Reuss equation. Using the new plastic strain increments, the
boundary value problem is solved again as a new elastic problem. This process is
continued until convergence is obtained, i.e., the differences between two successive sets
of strain increments are less than some prescribed values. Mendelson (1968) records a
collection of work on different plastic problems using this method. Davis (1964) and
Tuba (1966) extended this method to two dimensional problems and provided the

solution to a plate with a central hole.

2.6.3 Reduced modulus method

Structural limit loads can be calculated by a number of analysis techniques, the state of
art being incremental finite element analysis by specialist nonlinear programs such as
ABAQUS. However, calculation of limit loads by detailed inelastic analysis can be
difficult and computationally expensive. In practice, limit load analysis for design
considerations is often performed using simplified methods, most commonly based on
the limit load boundary theorem of plasticity (Mackenzie et al., 1994). Such simplitied
methods are based on elastic analysis. The basis of this method was proposed by Jones
and Dhalla (1981). In their method, rather than performing an inelastic analysis, the
inelastic response was investigated by iterative linear elastic analyses in which highly
stressed regions of the structure were systematically weakened by reduction of the local
modulus of elasticity in order to simulate the effect of local inelasticity. First an elastic
analysis is performed and the equivalent stress and strain at the most highly loaded
location noted. A rough estimate of the inelastic strain corresponding to the elastically
calculated stress is then made. The minimum secant modulus is defined as the ratio of the

effective elastic stress to the estimated inelastic strain:
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; G
Epe=—t (2.50)

where A is the most highly loaded location. Once the minimum secant modulus is
defined, three values of reduced moduli between the minimum secant modulus and
Young’s modulus are defined. Next, an elastic analysis is performed in which these
reduced modulus values are assigned to the most highly stressed local regions of the
component. This procedure was used for partitioning the stress at A into primary and

secondary components.

A modified version of Dhalla’s method was presented later by Marriott (1988).
Marriott’s procedure is a truly iterative elastic procedure. An initial elastic analysis is
performed and all elements with a maximum difference in principal stress greater than
some stress S_ (to be defined by pressure vessel design code) are identified. The elastic
moduli of these elements are then individually reduced on an element by element basis,

according to the equation

S
= I—’I"_ 2¢-l
E,=E 5/ (2.51)

where E, and E, are the reduced and previous values of modulus, respectively, S_ is the
code allowable and S/ is the element stress (i.e., the maximum difference in the principal
stresses). The analysis is then rerun to obtain a reduced modulus analysis solution. The
modulus reduction procedure is then repeated in an iterative manner until the maximum

element stress, S/, is less than §_ or convergence to some other value occurs.

Seshadri (1990 and 1991) incorporated aspects of the Dhalla and Marriott procedure in
estimating creep damage in pressurized components. Seshadri, like Dhalla used
equivalent elastic stress but, like Marriott’s method, the reduced modulus is calculated on

an element-by-element basis. He applied the modulus reduction method to deformation
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control and elastic-perfectly plastic material. The reduced modulus required tor perfectly

plastic behavior is calculated by the following equation:

Mackenzie and Boyle (1993) have developed an elastic compensation method which uses
conventional elastic finite element analysis to derive suitable stress and strain fields for
bounding theorems of classical plasticity. The elastic compensation method requires only
a few linear elastic finite element analyses of a structure. After each iteration, the elastic

modulus of each element is modified according to the equation

c, .
Eo= B (2.53)
i~

where subscript i is the present iteration number, G, is a nominal stress value and o, is
the maximum nodal equivalent stress associated with the element from the previous
solution. After a few iterations, an estimate of the limit load is calculated. This method
has been applied to a number of different problems (Nadarajah et al., 1993 and Shi et al.

1993).

In a different approach, Seshadri and Marriott (1992) and Seshadri and Fernando (1992)
laid out a procedure based on two elastic analyses. This method is based on Schulte’s
(1960) discovery of points in the cross section of a structure at which the stress did not
change as the solution progressed from the initial elastic solution to the final stationary
solution. The aim of this method, known as GLOSS, is to find these points called
redistribution nodes or R-nodes. In this method, a linear elastic solution is first obtained.
A location j is arbitrarily chosen. The elastic moduli of all other elements are then

modified according to the following equation:



E,=E— (2.54)

where o, is the equivalent stress in the ith element. Based on the two linear elastic
analyses the R-node element is identified and by interpolation the exact location of the R-
node is obtained. Having found the R-node, an estimate of the limit load is obtained. This

method has been applied to different structures by Seshadri et al. (1992).
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3. VARIABLE MATERIAL PROPERTY METHOD

The variable material property method for the solution of nonlinear plasticity uses linear
elastic results to model nonlinear plastic response. The constitutive equation relates total
strains to the current value of stresses in a linear fashion. However, the material
parameters are treated as field variables. For isotropic materials, the number of these
independent parameters is limited to two. The distribution of these variable parameters
are obtained as a part of the solution in an iterative manner. This method is also capable

of predicting the load induced residual stress field.

First the constitutive equation is derived. The functional form of the parameters for
elastic-perfectly plastic materials, elastic-linear hardening materials and materials
characterized by the Ramberg-Osgood relation are then derived. A method for numerical
implementation is also discussed. Five different schemes to evaluate the material
parameters are also presented in this chapter. Finally, a method for the prediction of

residual stress fields is introduced and implemented.

An axisymmetric elastic-plastic analysis based on the proposed method is presented in
this chapter. While the axisymmetric method is applicable to a number of problems, the
main focus here is on cylindrical tubes. Equations for different end conditions and
loadings are also derived. A comparison of the different schemes of parameter evaluation

is made at the end of this chapter.

3.1 FORMULATION

The total strain tensor, €_, is assumed to be the sum of an elastic part €, and a plastic part

e’

Y
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E; =€; +€/ 3.1

The elastic part is given by Hooke’s Law (Eq. 2.21), which may be represented in the

form:
(3.2)

where v and E are Poisson’s ratio and Young’s modulus. The plastic component of strain
is given by Hencky's total deformation relation (Eq. 2.23). Substituting the elastic and
plastic components of strain into Eq. (3.1), the total strain is then related to the current

stress through

1+v 1
ey =(Fprre o, —(F 430 s, (3.9

where the function ¢ is defined in Eq. (2.25). The quantities inside parentheses in Eq.
(3.3) are all functions of the material properties and hence could be represented in the

following alternative form

£. = Ty — ‘ﬁcuﬁ. 3.4)

which is similar to the linear elastic constitutive relation. The effective Young’s modulus,

E 5, and the effective Poisson’s ratio, v g, are defined as follows:



3E

Er =372E0 33)
v = 3v+Ed ’
T~ 342E¢

These effective values depend on v, E and the current stress and/or strain.

3.1.1 Pseudo linear elastic points

Stress and strain are intrinsically point functions; they are always defined at a material
point inside a body. A constitutive equation which relates these two is also a point
function. It is a material point rather than a collection of points (i.e., a body) which
behaves elastically or inelastically. If a body possesses homogeneity, then the same
constitutive relation is applicable throughout the body. For a body under load, a linear
elastic relation may be applicable to some material points while a nonlinear stress-strain
relation may be applicable to others (Fig. 3.1). Truesdell and Noll (1965) defined elastic

points as material points which obey a constitutive relation of the form

T=H(G) (3.6)

where T and G are measures of stress and strain, respectively, and A is a response

tunction. Equation (3.4) is an example of a generalization of Eq. (3.6), where stress and
strain measures are ¢, and €, respectively. The response function, Eq. (3.4), is
homogeneous of order one in stresses and strains and depends on corresponding values of
E ;and v  at each point. The variability of parameters E_ and v , are with respect to their
position in the body. Therefore, once the load is applied and is fixed, £, and v, will have
different values at different points which means that Eq. (3.4) will take a different linear

form at each point.
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Figure 3.1: Pseudo linear elastic points
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Material points obeying the constitutive relation of Eq. (3.4) are called pscudo linear

elastic points.

Figure 3.1 shows how the parameters £ and v, are treated in a typical body obeying the
constitutive relation given by Eq. (3.4). For simplicity, it is assumed that the body
behaves in an elastic-perfectly plastic manner. Assume that the stress and strain at each
point is known and some of the material points /, 2, 3 etc. shown in Fig. 3.1a are
experiencing plastic deformation. They can be identified by the same numbers /, 2, 3 etc.
on the stress-strain curves in Fig. 3.1b and c. In this example, it is assumed that the total
load has been applied and that the differences in strain states of the points are due to the
different positions they occupy within the body. In other words, the changing variable is
attributed to position and not to load (also sometimes referred to as time). To identify
point /, for example, on the stress-strain curve, one may follow the nonlinear stress-
strain path (Fig. 3.1b) or alternatively take linear paths as shown in Fig. 3.lc. In this
manner the corresponding stresses and strains at material point / are related by a linear
equation. In a similar way, stresses and strains at other material points, e.g.. 2,3 etc., are
also linearly related (Fig. 3.1c). The corresponding parameters in the linear relations at

each material point are £_ and v , at that point.

3.1.2 Effective moduli forms

The stress-strain relation under uniaxial loading for elastic-perfectly plastic materials is

given in Eq. (2.8). The effective moduli for these materials are of the following form

1_1.e
E, E o.
v ter G.7)
v E
4" _ao.
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For linear hardening materials, the stress-strain relation under uniaxial loading is given

by Eq. (2.9). The effective moduli are then of the from:

(3.8)

where the relation between elastic, plastic and tangent moduli given by Eq. (2.6) has

been used.

For materials obeying the Ramberg-Osgood equation given in Eq. (2.10), the effective

moduli are defined as

2v +a| — (3.9)

The distribution of these moduli throughout the body is obtained as part of the solution.

3.1.3 Implementation

In order to solve a boundary value problem utilizing the constitutive relation given by

Eq. (3.4), it is necessary to know the complete spatial distribution of v_ and £,,. This has
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to be found as part of the solution. For this reason, the following procedure is used for

determination of v 7 and E,,.

First, a purely elastic solution of the problem is obtained. It is therefore assumed that the
effective moduli at all points in the body equal their elastic values, £ and v. Assuming
the loading is sufficient to cause plasticity at some points in the body, this will be called a
hypothetical or pseudo-elastic solution. Based on this solution, the equivalent stress (von
Mises or Tresca equivalent stress) is calculated at all points. Then the points with the
same equivalent stress are connected to construct 6, =constant curves. It is assumed that,
for each iteration, all of the points lying on the same G, =constant curve are represented
by a single point on the uniaxial stress-strain curve, i.e., they have the same values forv,,
and £ _. That is, material points at the same stress level can be identified by the same set

of matenal properties values.

Now suppose that ©, remains constant over a small strip of thickness ds. As a
consequence V,, and E  remain constant throughout this strip. Next the strip is isolated
and its boundary value problem is defined. Each strip is subjected to compatible tractions
and displacements on its boundaries with neighboring strips. The solution of this
boundary value problem is obtained so that the behavior of points within the strip is
ascertained. In this manner, the original problem is discretized into several infinitesimal
strips. The material properties remain constant for points within a particular strip. Hence,

an inelastic solution for each strip can be obtained from the elastic solution.

The solution for each strip is reconstituted once the values of the corresponding moduli
have been updated. To implement this procedure a scheme is needed for updating the
effective material properties. Three general methods are discussed here: projection, arc-
length and energy methods (including methods based on Neuber's approach, Glinka's

approach and a combination of these two approaches).
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3.1.4 Moduli evaluation

Once the strips are formed, the new values of effective moduli will be assigned to each
strip based on the results of the previous solution using one of the three general methods

described below.

3.1.4.1 Projection method

This method is based on the assumption that the total strain predicted by a hypothetical
elastic solution is always less than or equal to the strain calculated from an actual elastic-
plastic analysis. Hence, the updated value of E _, is always less than the previous value,

which results in a monotonic convergence to the solution.

To implement this scheme, first a hypothetical elastic solution based on the elastic
modulus and Poisson’s ratio is obtained. The state of stress in each strip is defined
through an equivalent stress. Each strip is then identified by a point on the hypothetical
straight line which is the extension of the elastic line on the stress-strain curve (Fig. 3.2).
Points a, b, and ¢ shown in Fig. 3.2, correspond to material points a, b, and ¢ defined for
a particular problem (like points /,2,3 efc. shown in Fig. 3.1a). To update the values of
the moduli, a point on the real stress-strain curve is defined for each strip which possess
the same strain as that predicted by the pseudo-elastic solution. For example point a’

from point a in Fig. 3.2. The updated value of E , for the strip including a. is then

obtained by taking the ratio of the stress and strain at a’

(¢)
Eg= n (3.10)

The corresponding updated value of v, , is then calculated using Eq. (3.5) in general, or
Eq. (3.7).Eq. (3.8) or Eq. (3.9) for the corresponding material behavior. Next, an
inelastic solution is obtained based on the updated values for the moduli. Since it is

assumed that the corresponding values of effective moduli remain constant in each strip.



48

Figure 3.2: Projection method

the solution for each strip can be obtained from an elastic solution. This next solution
will provide new stress and strain values for each strip. The stress and strain at the strip
including a will now be defined by a, in Fig. 3.2. Equation (3.10) is now used at point

a,’.

The effective values for moduli obtained in this manner are updated in each iteration
until the ©, vs. o, /E, curve obtained from the calculation coincides with the

experimentally obtained uniaxial stress-strain curve to within an acceptable tolerance.
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3.1.4.2 Arc-length method

In this method, it is more convenient to work with a dimensionless uniaxial stress-strain
curve. Each strip is identified by a point on the hypothetical straight line which is the
extension of the elastic line on the dimensionless stress-strain curve (Fig. 3.3). Next a

radius ris defined:

o o. Y

eq eq
— | + . 3.11
c. Ee. ( )

An arc of radius r=oa from the origin of the dimensionless uniaxial stress-strain curve
intersects the actual uniaxial curve at the point a’ (Fig. 3.3). Equation (3.10) gives the
new value for E . The corresponding updated value of v, is then calculated using Eq.
(3.5) in general, or Eq. (3.7) ,Eq. (3.8) or Eq. (3.9) for any corresponding material
behavior. Next, an inelastic solution is obtained based on the updated values tfor the
moduli. Since it is assumed that the corresponding values of effective moduli remain
constant in each strip, the solution for each strip remains identical in form to the elastic
solution. As shown in Fig. 3.3, the next solution shows the stress and strain at the strip
including a to be that corresponding to point a, on the dimensionless uniaxial stress-

strain curve. Equation (3.10) is now used at point a, .

The effective moduli values obtained in this manner are updated in each iteration until
the G, vs. ¢, /E , curve obtained coincides with the experimentally obtained uniaxial

stress-strain curve to within an acceptable tolerance.
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Figure 3.3: Arc-length method

3.1.4.3 Energy methods

There are three different energy based methods for updating the effective moduli values:
Neuber’s rule for elastic-plastic total strain energy, Glinka-Molski’s method for strain

energy density, and a combination of the these two. All three are discussed below.

3.1.4.3.1 Neuber’s method

As mentioned in section 2.6.1, Neuber (1961) suggested that the total strain energy
density (the sum of strain energy and the complementary strain energy density) at the
notch tip in elastic-plastic materials is equal to that of a hypothetical elastic solution.
While Neuber’s calculation was for shear loading, he argued that the assumption can be
extended to other modes. Walker (1977) showed the validity of this approximation for

other loads.
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Although this method was intended for localized plasticity and more specifically for
notches, it may also be taken as a scheme for updating the effective moduli. To
implement this method, each strip is first assigned an equivalent stress value calculated
from a hypothetical elastic solution. An equivalent total strain energy density is

calculated for each strip using the following equation,

2
Ou

—_ 2
Etﬂ' (3 )

W= =

where W' is the total strain energy density. Next, a point (with strain € ) on the actual
stress-strain curve is selected such that it gives the same W™ (Fig. 3.4). The
corresponding value of stress at that point yields the updated value for E , from Eq.
(3.10). The corresponding updated value for v,, is then calculated using Eq. (3.5) in
general, or Eq. (3.7), Eq. (3.8) or Eq. (3.9) for any corresponding material behavior.

Next, an inelastic solution is obtained based on the updated moduli values.

The effective moduli values obtained in this manner are updated in each iteration until
the o, vs. ©,/E_, curve obtained coincides with the experimentally obtained uniaxial

stress-strain curve to within an acceptable tolerance.

3.1.4.3.2 Glinka’s Method

Hutchinson (1968) showed that, for a material with a bilinear stress-strain curve, the
strain energy density (rather than the total energy density) at the crack tip is independent
of material hardening, and hence is exactly the same as that predicted using a purely
elastic analysis. Motivated by this observation, Molski and Glinka (1981) and Glinka
(1985) proposed that, instead of the total strain energy density used by Neuber, one
should use the strain energy density. They argued that the strain energy density at the
notch root does not change significantly if the localized plasticity is surrounded by

predominately elastic material.
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Figure 3.4: Neuber’s method
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To implement this method, each strip is first assigned an equivalent stress value obtained
from a hypothetical elastic solution. An equivalent strain energy density is calculated for

each strip using the following equation,

0.2
W = —2 (3.13)

where W* is the strain energy density. Next, a point (with strain €* ) on the actual stress-
strain curve is selected such that it gives the same W* (Fig. 3.5). The corresponding
value of stress at that point yields the updated value for £, from Eq. (3.10). The
corresponding updated value for v, is then calculated using Eq. (3.5) in general, or Eq.
(3.7), Eq. (3.8) or Eq. (3.9) for any corresponding material behavior. Next, an inelastic

solution is obtained based on the updated moduli values.

The effective moduli values obtained in this manner are updated in each iteration until
the ©, vs. 0, /E,, curve obtained coincides with the experimentally obtained uniaxial

stress-strain curve to within an acceptable tolerance.

3.1.4.3.3 Combined method

Moftakhar et al. (1995) compared the results based on Nueber's and Glinka's
assumptions to experimental and numerical results and concluded that Neuber’s method
serves as an upper bound, and Glinka’s method serves as a lower bound to many elastic-
plastic solutions. That is, the actual values of elastic-plastic stresses and strains at the
notch tip are less than that predicted by Neuber and greater than that calculated by
Glinka. For this reason, the following method of updating effective moduli is proposed.
After calculating €™ and £* from the hypothetical elastic solution, the updated value of
effective moduli are defined as the geometric mean value of Neuber’s and Glinka's

estimates,
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e =veTe* (3.14)

and its corresponding stress, G, from the actual uniaxial stress-strain curve. The updated
value for E_, is defined using Eq. (3.10).The comresponding updated value for v, is then
calculated using Eq. (3.5) in general, or Eq. (3.7), Eq. (3.8) or Eq. (3.9) for any
corresponding material behavior. Next, an inelastic solution is obtained based on the

updated moduli values.

The effective moduli values obtained in this manner are updated in each iteration until
the o, vs. 6, /E , curve obtained coincides with the experimentally obtained uniaxial

stress-strain curve to within an acceptable tolerance.

3.1.5 Unloading and reversed yielding

At the end of loading, the unloading stress-strain curve for each material point (i.e., each
strip) is defined using the current value of yield stress at the end of loading for each strip
within the plastic zone, the loading curve, and the material hardening rule. This is

discussed below.

It the actual unloading curve is known, then this would be employed instead of adapting
a hardening model. Otherwise, two different material hardening models, isotropic and
kinematic hardening, may be considered. If the unloading is fully elastic then the
corresponding stresses and strains due to unloading can be calculated simply with one
totally elastic analysis. However, in cases of reversed yielding, the prediction based on
each hardening rule is different. In the case of isotropic hardening, reverse yielding is

controlled by

c." =20y (3.15)
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where 6" is the difference of the stress at the end of loading and the reversed yield. In
the case of kinematic hardening, reverse yielding is assumed to occur according to the

following general relationship

c.“=(1+BEF)c. (3.16)

where the Bauschinger effect factor, BEF, is defined as the ratio of the initial yield stress
in tension to the yield stress in compression (Walter 1948). For a case where the

Bauschinger effect factor is one, i.e. BEF=1, Eq. (3.16) yields 6," = 20,.

For each material point, the starting point for the unloading curve is the final yield stress
at the end of loading. From this point, the unloading is linear over a stress difference of
o." after this, hardening begins, following the same hardening curve as for loading from

the point of take off (Fig. 2.7).

Having defined the unloading curve, a second proportional loading, which in this case is
unloading, is considered. The method of analysis is the same as described above for

loading. However, in this case each strip has to follow its own unloading curve.

Results from the second analysis are subtracted from those from loading to obtain the

corresponding residual stress or strain fields,

BT (3.17)

where superscripts R and u stand for residual and unloading, respectively.
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3.2 AN AXISYMMETRIC METHOD OF ELASTIC-PLASTIC ANALYSIS

In this section, the proposed method is used to develop a general method for analyzing
elastic-plastic axisymmetric problems. While this method is applicable to all
axisymmetric problem (thick-walled tubes, fastener holes, spherical vessels, rotating
disks etc.), attention is focused herein on the analysis of thick-walled tubes and related

problems.

Figure 3.6 shows a typical thick tube under pressure. In this figure, p, and p, are inside
and outside pressures, and r, and r, are inside and outside radii of the cylinder,

respectively.

The o, =constant curves for this problem are concentric circles. Moreover, the

o, =constant curves defined by the first pseudo elastic solution remain G, =consiai

Figure 3.6: Thick-walled cylinder
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curves in the final elastic-plastic solution due to the axisymmetric nature of this problem.
Assuming that the value of equivalent stress remains constant within a small radius, ds,
the strips for this problem are annular, as shown in Fig. 3.7. The boundary value problem
defined by each strip is that of a cylinder under internal and external pressure. The elastic
solution to this problem is the well known Lamé solution which is reviewed briefly
below. Since the effective moduli values are assumed to remain constant within each

strip, Lamé’s solution is applicable to all strips.

3.2.1 Lamé solution

Consider a thick-walled cylinder under external and internal pressure (Fig. 3.6). It is
convenient to use cylindrical coordinates (r, 0, z), where 6 is the angle between a radius
vector and a fixed axis, and z is taken along the axis of the cylinder. By virtue of
symmetry the stresses at any given point are a function of r only, and the equilibrium

equation may be written as

(3.18)

Figure 3.7: Strip in a thick-walled cylinder



where o, and O, are radial and tangential (or hoop) stresses, respectively.

The radial strain, €,, and the hoop strain, €, may be written as

Q

u
€

r

|

= —ve, +1—z-l[(1—v)0', -vo, ]

(3.19)
lil;.—v-[(l—v)cr9 -vo, |

Q

r

u
r

where « denotes the radial displacement.

Since €, is independent of r, elimination of u from the above equations and the

substitution for (Ge-0,) from Eq. (3.18) leads to the compatibility equation:

d

E(G’ +0, ) =0

(3.20)

It follows that (ce+0,) and o, have constant values at each point in an elastic

deformation. Writing 0e+G,=24, the equilibrium equation can be integrated to obtain
Lamé’s solution:

A,

0,=A - e
(3.21)

4,

Gy = A4, +r—2

where r is the mean radius of each strip, and A, and A, are constants obtained by applying

the boundary condition G,=-p, at r=r, and 6,=-p, at r=r. These constants take the
following form:
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2 2
A pl'; _poo
1= 2 2
ok (3.22)
2.2 e
4 (p.—p)r'r,
2 rtoy?

In addition, the strain displacement relations Eq. (3.19) may be solved in terms of the

displacements. For the plane strain case (g =0),

S =eva—awl ~Var TV
E '_ du u]

% = (1+v)(1—2v)|.v57+(1-v)7_|

Substituting this into the equilibrium relation Eq. (3.18) yields the following differential

equation after some manipulation:

ou 1%u u
S 3.24
or: rar 0 ( )

r

Therefore, the radial displacement has the following form:

(Y]
(R
W
A

u=Clr+& 3.
r

where C, and C, are found by applying the boundary conditions:
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_(t+v)1-2v) pi*—p,r’

Cl E rol__ril ] 76)
. - V) (=) -2
17 E ’,02_';2

Different end conditions (closed, open or plane strain) result in different values for ¢, and
€.. If the resultant longitudinal load is denoted by P, the axial stress, ¢, is P/[ n(r-.f-r“’) /.
since this stress is constant over the cross section. In particular, P=0 for an open-ended
cylinder and P=nr’p for a closed-ended internally pressurized cylinder away from the

ends. The plane strain condition, sometimes considered for simplicity, gives

s, =v(o, +0, ) (3.27)

Hence, for an internally loaded cylinder

closed end

0 open end A
0. =) (3.28)

- plane strain

Similarly, the axial strain is



- for plane strain

- for plane stress

"

closed end

open end
(long cylinder)

plane strain

3.2.2 Implementation for elastic-plastic analysis

Hence, the constants in Eq. (3.25) are now of the following form:

1

C = a +vfﬁ)(l—?'vef) Plrxz ‘Pzrzz
Eg nt-

c. = WHVa) (o - p)r’r?
=

Eg

2.2
n=n
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(3.29)

As shown in Fig. 3.7, an annular strip in the cylinder forms a boundary value problem
which admits the Lamé solution. However, a modification needs to be made in Lamé’s
solution to make it suitable for the proposed elastic-plastic analysis. The modification

concerns replacing the elastic modulus and Poisson’s ratio with effective moduli values.



_ (1-Vg) pir’ —pyry’
E, ni-r?

G

(3.31)
- (1+V¢1_7'_)_ (p,—p)R’r’

2 2 2
E, R -n

Here, r,, r, are the inner and outer radii, p,, and p,, internal pressure, and external
pressure on each strip, respectively. It should be noted that for other axisymmetric
problems, e.g., thick spherical vessels where the strips take the form of a spherical shell,
the form of the displacement function (Eq. 3.25) must be modified accordingly.

However, the analysis is identical to the one described here.

The inside and outside displacements of the strip can be related to its inside and outside

pressures in the following form

[Cu Clz:lrl{ul}={171} 3.32)
Gy Cyn L7 P,

The components of coefficient matrix {C]" in the case of plane strain are as follows:

1+V'ﬂ- 1‘13 1-2 2]
= V +=5
1 E‘ﬂ' r22_rl2k o l
2
c =_20-Vw) nn’
12 E'ﬂ‘ ’-,--’ll
(3.33)
(1 vfﬁ"z) ﬁzrz
G, =2 1_ 2
Eeﬂ' h —rl
1+v ;'3 ( )-2
G4 2 1
Cyy=— 1-2v . +—5
2 Eeﬂ’ rzz"lzk of 'El

In the case of plane stress, the components take the following form
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" E, rzz-rfkl-f-v,, i’

2
c __2
12 E‘J r22_r12
2 "[2"2
G =7
Ecﬂ" £ rl
1+vqf r, (1—\/60r
Cpn=- — 2|
Eeﬂ' r2 rl k +v:ﬁ"

(3.34)

After assembling all strips together, a system of linear equations of the form

[c'Kut={P}

(3.35)

is obtained and solved for {U}. Then p, and p, are calculated from Eq. (3.32) for each

strip. The hoop stress, Cs, radial stress, 6, and axial stress, ©,, for plane strain or plane

stress analyses are determined from Eq. (3.21). The axial stress, which is zero for plane

stress, may be obtained from the following equation for plane strain:

0. =2V 4

where A, is given by

(3.36)

(3.37)
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The pressure is removed entirely once the loading is completed. Analysis for unloading is
carried out by first employing a hardening rule. Accordingly, the unloading curves are
defined. In the case where the actual unloading curve is available, this is used. The
method described (in section 3.1.5) above is then used to find the stresses due to
unloading. In the unloading analysis, each strip is forced to follow its own unloading

curve. The residual stress field is then calculated from the following equations:

69R =0, —0,"
of=0,-0" (3.38)
c.f=0,-0."

where Gy, 6,°, and G,", are the hoop, radial, and axial stresses due to unloading, and oq",
o, and Gf are the corresponding values of the residual stresses. The unloading analysis

is capable of handling elastic unloading as well as reversed yielding.

3.3 CONVERGENCE COMPARISON

A FORTRAN code based on the proposed method of axisymmetric elastic-plastic
analysis was developed. This code (see Appendix A), utilizes all five methods of moduli
evaluation outlined in section 3.1.4. The code is also capable of calculating residual
stress, strain and displacement fields. It can also handle different stress-strain curve
idealizations as well as actual loading and unloading curves. The code was used for

different applications which are given in the next chapter.

An equilibrium iteration criterion is used in this code. Stress values for each strip are
compared to their previous values in each iteration. A mean value of the stress difference

over all strips is compared to the tolerance.
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Figure 3.8: Convergence of the pseudo elastic solution to the elastic plastic solution

3.3.1 Evaluation of methods for updating the moduli

When any of the five discussed methods of moduli evaluation is used, the first
hypothetical elastic solution gradually (within a couple of iterations) converges to the
elastic-plastic solution. Figure 3.8 compares pseudo elastic solutions to the elastic

solution for points along the radius.

Point / corresponds to the first strip at the bore of a thick-walled cylinder. Other points
correspond to strips near the bore. It can be seen from this figure that the elastic-plastic
solution obtained by the proposed method (dark squares in the figure) matches the
uniaxial stress-strain curve. The figure also shows that for each modification of the

moduli (iteration), the solution gets closer to the true elastic-plastic solution.
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Figure 3.9: Effective moduli variation

A typical moduli distribution through the wall thickness of a cylinder is shown in Fig.
3.9. This variation depends on the level of loading. In Fig. 3.9, three different ratios of
the internal pressure to the yield stress are considered; the material is assumed to obey
the Ramberg-Osgood equation with ot=3/7 and m=35; the ratio of the outside to inside
radius is 5; Poisson’s ratio is 0.3; the ratio of the elastic modulus to the yield stress is

1000 and the von Mises yield criterion is used.

The following tube is considered for comparing the five different methods of evaluating
the effective moduli: inside radius of 22 mm, outside radius of 66 mm, nonhardening
behavior, yield stress of /000 MPa, modulus of elasticity of /80 GPa, Poisson’s ratio of
0.3, obeying the Tresca yield criterion. The first comparison is based on the number of

iterations required for convergence to the elastic-plastic solution. Table 3.1 records the
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results for a cylinder in the plane stress situation. In this table, the number of iterations is

compared as the plastic zone size increases with increasing load. Neuber’s method and

the combined method give the fastest convergence rates.

Plastic Load Projection Arc- Neuber’s | Glinka’s | Combined
Penetration Method Length Method Method Method
p/c, Method

rir,

0.17 0.7 10 7 8 10 7
0.27 0.8 14 10 8 13 9
0.40 0.9 18 14 10 18 12
0.57 1.0 25 21 13 24 16
0.68 1.05 32 27 16 31 21
0.76 1.07 37 32 18 36 24
0.87 1.09 49 42 24 48 32

Table 3.1: Convergence comparison (plane stress)

Table 3.2 shows the results for a cylinder in the plane strain situation. The combined

method and Glinka’s method give the best convergence rates. The arc-length method

gives better convergence rates than the remaining methods.

Sharpe (1995), in an experimental evaluation of the Neuber’s and Glinka’s methods in

predicting local plastic strains and stresses, concluded that “Neuber’s model works best
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when the local region is in a state of plane stress and the Glinka’s model is best for plane
strain”. Results tabulated in Table 3.1 and 3.2 show that, in a plane stress case. solutions
based on Neuber’s method are the fastest. In a plane strain case, Glinka’s method gives

much faster convergence rates than Neuber’s method.

Plastic Load Projection Arc- Neuber’s | Glinka’s | Combined
Penetration Method Length Method Method Method
plo, Method

rir

0.18 0.7 9 6 16 9 6
0.28 0.8 12 8 20 11 8
0.38 0.9 15 11 27 14 10
0.56 1.0 21 16 37 20 14
0.68 1.05 27 21 46 26 18
0.75 1.07 32 26 51 31 21
0.86 1.09 44 36 59 43 29

Table 3.2: Convergence comparison (plane strain)

The convergence behavior at a given material point on the above cylinder has also been
compared. The projection method result is compared to energy methods in Figure 3.10
for the first strip (at the bore). Since all three energy methods show the same type of
behavior, only the results of the one which gave the fastest convergence (i.e., Neuber’s

method) is shown in this figure. The projection method shows a more stable (i.e..
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Figure 3.10: Convergence behavior at the bore

monotonic) convergence than the energy method. As shown in tables 3.1 and 3.2, the rate

ot convergence is 35% faster when the energy method is used.

3.3.2 Number of strips

A convergence study on the number of strips has shown that around 30 strips are enough
for a reliable solution, based on studies for different loadings, cylinder sizes and plastic

zone sizes.

Increasing the number of strips beyond 30 will not alter the results. Except for the
displacements, all calculations are done at the mid radius of each strip. The radial

displacements at the inside and outside radii of each strip are calculated assuming
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constant moduli values across the strip. This is the value obtained at the mid radius of

each strip.

For this study a nonhardening cylinder with an outside-to-inside diameter ratio of 4 wus
used. The cylinder was internally loaded such that half of the wall thickness yielded. It

was assumed that the cylinder is in plane strain state.

Figures 3.11-3.16, show the results for this study. Figure 3.11- 3.13 show the results for
the hoop, radial and axial stress based on 30, 90 and 270 strips. Figures 3.14 and. 3.15
compare the strain results while Fig. 3.16 shows the results for radial displacements. [t
should be noted that the displacements calculated based on 30, 90 and 270 strips are in
close agreement, even though they are calculated at the inside and outside radius of each
strip, and not at the mid radius where the moduli are calculated. This comparison shows

that 30 strips is sufficient and that an increase beyond this does not alter the solution.

However, in this research, 99 strips were used in general to provide a more detailed
solution (i.e., more data points), especially near the bore, where the residual stresses are

of interest.
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Figure 3.12: Effect of number of elements (radial stress)
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4. APPLICATIONS

The variable material property approach proposed in chapter 3 is used herein for the
analysis of thick-walled cylinders and fastener holes. Both loading and unloading are
considered. Results obtained from the present method are compared to other analytical
solutions (where applicable), finite element solutions and/or experimental solutions

(where applicable).

The plastic loading of hardening and nonhardeninig thick tubes is considered first.
Autofrettage is discussed next, followed by loading and residual stress calculation for
fastener holes. Multiaxial loading of thick-walled cylinders is considered at the end of

this chapter.

4.1 LOADING OF THICK-WALLED CYLINDERS

Pressurized tubes have a very wide range of applications. Their elastic-plastic behavior is
of interest to achieve optimum design in, for instance, pressure vessels, nuclear reactors,
rocket boosters and containment shells for nuclear generating facilities. The inelastic
behavior of thick-walled cylinders, therefore, is of considerable technological

importance.

4.1.1 Literature Review

Due to the wide range of applications and technological importance, elastic-plastic
deformation of thick-walled tubes has been treated at great length. Literature includes
experimental investigations (Roach and Priddy, 1994); finite difference (Chen, 1980),
finite element (Chen, 1972), boundary element (Yong and Naijie 1991) solutions and

analytical solutions.
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There have been several analytical solutions obtained in closed form or with numerical
implementations. These solutions differ in their assumptions of the type of material
response, yield criterion, plasticity theory, compressibility of the material, manner of
loading, end conditions and the completeness of the solution. Table 4.1 summarizes and

compares several methods for elastic-plastic analysis of thick-walled cylinders.

4.1.1.1 Elastic-perfectly plastic Tresca cylinder

The problem of a nonhardening thick-walled cylinder obeying Tresca’s yield criterion
under internal pressure is statically determinate. It has an exact stress field solution

(Prager and Hodge, 1951), which is reviewed here.

Let the thick-walled cylinder shown in Fig. 3.6 be made of elastic-perfectly plastic
material obeying Tresca’s yield criterion. The equilibrium of an differential element on

the wall is given by Eq. (3.18). The yield condition based on Eq. (2.15) is

G, —0, =0C. (4.1)

r

This implies that o, has an intermediate value between Ge and ©,. This is valid in the
plastic range if the ratio of the outer to inner radius, r /r,, is less than a certain value
which depends on the value of Poisson’s ratio (Koiter, 1953). For example, this value for
v=0.3, is 5.75. By combining Eq. (3.18) and Eq. (4.1), the corresponding differential

equation has the following general solution

6, =6.Inr+C (4.2)
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Method Nadai Cook Sokolovsky Hill, Lee and
Tupper
Year 1931 1934 1946 1947
Yield Criterion von Mises Tresca von Mises Tresca
Plasticity model Hencky Hencky Hencky Prandtl-Reuss
Material Linear Nonhardening Linear Nonhardening
Behavior hardening hardening
End conditions Plane strain Plane strain Plane strain Plane strain
Loading Internal Internal Internal Internal
pressure pressure pressure pressure
Dilatation No No Yes Yes
Type of Closed form Closed form Numerical Numerical
Solution
Capabilities Stress Stress Stress Stress
strain strain strain strain

Table 4.1: Comparison of several theories for plastic analysis of thick cylinders



Method MacGregor, Hodge and Hill, Lee and
Coffin and White Tupper
Fisher
Year 1948 1950 1951
Yield Criterion von Mises von Mises Tresca
Plasticity model Hencky Hencky Prandtl-Reuss
Material Nonhardening Nonhardening Nonhardening
Behavior
End conditions Open ends Plane strain Closed ends
Loading Internal pressure Internal Internal
pressure pressure
Dilatation Yes Yes Yes
Type of Solution Numerical Numerical Numerical
Capabilities Stress and strain | Stress and strain | Stress and strain
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Table 4.1 (cont.): Comparison of several theories for plastic analysis of thick cylinders



Method Allen and Sopwith Steele Koiter
Year 1951 1952 1953
Yield Criterion Tresca Tresca Tresca
Plasticity Hencky Hencky Incremental
model
Material Nonhardening Linear hardening [ Nonhardening
Behavior
End conditions | Plane strain opened Opened and closed ends
and closed end closed ends

Loading Internal pressure Intemnal pressure | Internal pressure
and end load
Dilatation Yes No Yes
Type of Closed form Closed form Closed form
Solution
Capabilities Stress and strain Stress and strain | Stress and strain
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Table 4.1 (cont.): Comparison of several theories for plastic analysis of thick cylinders



Method Bland Smith and Mendelson
Sidebottom
Year 1956 1965 1968
Yield Criterion Tresca von Mises von Mises or Tresca
Plasticity model Incremental Deformation Incremental &
theory Hencky

Material

Behavior

Linear hardening

Linear hardening

Actual material

loading curve

End conditions

closed ends

Plane strain
opened and

closed ends

Generalized plane
strain with unloaded

ends

displacement and

temperature

Loading Internal pressure | Internal pressure Internal, pressure
and temperature thermal
Dilatation No No Yes
Type of Solution Closed form Closed form Numerical
Capabilities Stress, strain Stress and strain Stress, strain and

temperature

Table 4.1 (cont.): Comparison of several theories for plastic analysis of thick cylinders



Method Shih-Chi Chu Chen Shih-Chi Chu
and Vasilakis
Year 1972 1973 1973
Yield Criterion von Mises von Mises von Mises
Plasticity model Incremental Incremental & Incremental
Deformation
Material Linear hardening Nonhardening Linear hardening
Behavior
Plane strain Plane stress Plane strain

End conditions

opened and closed

end

opened and closed

end

Internal, external

Internal pressure

Internal, external

Loading
pressure and end pressure
load nonproportional
pressure-tension
Dilatation Yes Yes Yes
Type of Solution Numerical Numerical Numerical
Capabilities Stress and strain Stress, strain and | Stress and strain

displacement

Table 4.1 (cont.): Comparison of several theories for plastic analysis of thick cylinders
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Method Sidebottom and Durban Chen Durban and
Chu Kubi
Year 1975 1979 1980 1992
Yield Criterion von Mises von Mises von Mises Tresca
Plasticity model Deformation Deformation | Incremental Deformation
theory theory theory
Material Actual stress- Romberg- | Nonhardenin Romberg-
Behavior strain curve Osgood with gand Osgood and
no elastic hardening nonhardening
part
End conditions Plane strain Plane strain | Generalized Plane strain
closed end plane strain
Loading internal, external Internal Internal, Internal pressure
pressure, tension pressure external, end
and torsion force
Dilatation No No Yes Yes
Type of Solution Numerical closed form Numerical closed form
Capabilities Strain, finite Burst Stress, strain stress strain
deformation pressure displacement displacement

Table 4.1 (cont.): Comparison of several theories for plastic analysis of thick cylinders




Method Chen Loghman and Present method
Wahab
Year 1992 1994 1996
Yield Criterion Tresca von Mises von Mises or
Tresca or any other
yield criterion
Plasticity model Deformation theory Incremental Deformation theory
Material Behavior Linear hardening Hardening with Actual stress-strain
temperature effect | curve or Ramberg-
Osgood model
End conditions Plane stress Generalized plane Plane stress or
strain Plane strain

Internal pressure

Internal pressure

Internal, external

Loading
pressure and torsion
Dilatation Yes No Yes
Type of Solution Numerical Numerical Numerical
Capabilities Stress strain Stress strain Stress, strain
displacement displacement

nonproportional

loading

Table 4.1 (cont.): Comparison of several theories for plastic analysis of thick cylinders
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where C is an integration constant. For any value of internal pressure p less than the
ultimate pressure and greater than the pressure for first yield, the cross section of the
cylinder between the inner radius, r, and an intermediate radius, r,, is fully plastic,
whereas that between r, and outer radius, r,, is in the elastic domain. At the elastic-plastic
boundary (r=c), the yield condition is just satisfied, and the corresponding radial stress

can be computed:

— (+.3)

This equation along with Eq. (4.2) gives the integration constant

0‘9 f'az - ’:2 )
c=-252 o, (4.4)

(4

It this constant is substituted into Eq. (4.2), then at r=r, where 6 =p,
_ r, 1 r?
—g—' = In—’+—(l—-%] 4.5)

which can be solved for the elastic-plastic boundary. The stress distribution in the plastic

zone is of the following form:

(4.6)



and the stress in the elastic zone can be obtained by Lame’s solution (Eq. 3.21).

4.1.2 Elastic-plastic behavior of nonhardening materials

The nonhardening response of a thick-walled cylinder obtained using the proposed
method of solution is considered here. Numerical results have been obtained for a
cylinder with r/r=5, v=0.3, and E/6,=1000. The first example is a Tresca cylinder
under internal pressure. The above cylinder is loaded such that half the wall becomes
plastic. The stress field due to this internal pressure, obtained by using present method, is
compared to the analytical solution given by Eq. (4.6). In Fig. 4.1 the two solutions

match extremely well.

The stress field for a cylinder of the same dimensions and under the same pressure but

obeying the von Mises yield criterion is shown in Fig. 4. 2.

0.4 —

0.0
1{0 /

0.4 —J’

R/Ri

5.0

-0.8 —
Nonhardening Matcrials

Present Method

O - Analytical Solution (Prager & Hodge 1951)
-1.2 —

-16 —

Figure 4.1: Comparison of present method and analytical solution
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A finite element solution of the problem using ABAQUS (Hibbit, Karlsson & Sorensen,
1996), was obtained by the author for comparison purposes. The stress field obtained by
the finite element solution is compared to the present method in Fig. 4.2. The two

solutions are in excellent agreement.

The changes in the stress distribution for the above cylinder in a plane stress situation as
the internal pressure increases has also been studied. These stress distributions are shown
in Fig. 4.3. As has been noticed by MacGregor et al. (1948), and more recently by Bon
and Haupt (1995), the circumferential stress changes from tension to compression even
for partially yielded cylinders. Moreover, for a nonhardening material the cylinder
reaches its limiting pressure very quickly. The corresponding strain field is shown in Fig.

44.

The behavior of an externally loaded thick cylinder was also studied. The geometry of

the cylinder was the same and it was assumed to be in plane strain. The distribution of

0.8 —G/o: q/q

04 —‘

0.4 —
-0.8 —
Nonhardening Materials
c/a
Presens Method
-1.2 — @ - ABAQUS (von Mises)

16 -

Figure 4.2: Comparison of present method and finite element solution
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hoop and axial stresses for various load ratios are shown in Figs. 4.5 and 4.6. In this case.
the maximum hoop stress, unlike for elastic behavior, is not at the bore. The maximum
value is at the elastic-plastic boundary and is compressive. In this case, the ultimate
pressure is lower than for an internally loaded cylinder. The axial stress, which is also
compressive, increases from the bore toward the elastic-plastic boundary and remains

constant in the elastic region.

4.1.3 Elastic-plastic behavior of hardening materials

The plastic response of a thick-walled cylinder obeying the Ramberg-Osgood equation
was obtained using the proposed method of solution. Numerical results have been
obtained for a cylinder with r/r=5, v=0.3, E/c,=1000, a=3/7 and m=5. The first
example is a von Mises cylinder under internal pressure and plane strain conditions. The
above cylinder is loaded until it is partially plastic. Since there is no exact solution for
this situation, ABAQUS has been used for comparison purposes. The finite element
analysis was performed using the deformation plasticity option of ABAQUS. This option
is based on total deformation plasticity and employs the Ramberg-Osgood formula. Fig.
4.7 shows the hoop, axial and radial stress distribution for this cylinder from the present
analysis and as predicted by the finite element method. The agreement is excellent. The
corresponding strain field for the same cylinder is compared in Fig. 4.8. The agreement

between the two solutions is again excellent.

The change in hoop and radial stresses due to changes in the internal pressure was also
studied. Results are shown in Fig. 4.9. Unlike nonhardening materials, the hoop stress
remains tensile even for high values of pressure. Only close to the ultimate pressure does
the hoop stress becomes compressive. Also, as expected, the ultimate pressure is much
higher in this case as compared to the nonhardening case. The corresponding change in
the strain field is shown in Fig. 4.10. Not only are the strain values in this case much

lower than the corresponding nonhardening case, but also the changes in the strain field
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Figure 4.4: Strain variation in internally loaded cylinder
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due to changes in the pressure is much more gradual. Note that the loading for both the

nonhardening and hardening cylinders is the same (Fig. 4.4).

To study the effect of plane strain or plane stress assumptions on the stress field, the
hoop stresses resulting from plane strain or plane stress analysis are compared in Fig.
4.11. The difference is not very appreciable. In the plane stress cylinder, the stresses tend
to be higher in the plastic zone. However, in the elastic region, the stress calculated using

plane strain is higher.

Von Mises

o,/ O, Hardening Materials
B PRESENT METHOD
& AzaQUS
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Figure 4.7: Comparison of present method and finite element solution (stress
field)
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Figure 4.8: Comparison of present method and finite element
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4.2 AUTOFRETTAGE

The concept of introducing compressive residual hoop stresses at the inner portion of a
cylindrical pressure vessel as a means of increasing the maximum allowable pressure that
the vessel can withstand originates in the gun barrel industry of the nineteenth century
(Perl and Arone, 1994). Various techniques and processes to attain these favorable
residual stresses were developed, e.g., casting hollow iron guns while cooling them from
within, winding sheet iron around wrought iron gun tubes, or using hoops welded from
coils and shrunk together. When it became apparent that a further increase in barrel
strength could not be obtained using these techniques, designers turned to built-up guns
which were composed of several concentric tubes shrunk onto each other, thus creating
pre-stressing. At the turn of the century, a French artillery officer (Jacob, 1907)
suggested an alternative process for pre-stressing monobloc gun barrels, now known as
autofrettage, from the French word for “self-hooping”. In this process, the cylinder is
subjected to an internal pressure with an intensity sufficient to produce yielding through
a part of or the entire cylinder wall. This process is carried out either by hydraulic
pressurization or by pushing an oversized mandrel or swage through the forging. Once
the required permanent deformation is reached, the pressure is released. While the outer
layers tend to return to their original dimensions, the inner layers, having been
considerably expanded due to plastic deformation, tend to maintain their enlarged
diameter. Thus, a residual stress field is introduced in the cylinder’s wall. This residual
stress is compressive at inner layers and tensile at outer ones. The process of autofrettage
has become common practice since about 1930. The application of autofrettage is not
limited to the armament industry, but is widely used in industries utilizing very high
pressure cylindrical vessels, such as chemical reactors and hydrostatic extrusion

chambers.

Apart from increasing the pressure bearing capacity of the vessel, the residual stress
induced by autofrettage enhances the vessel’s fatigue life. The presence of compressive
stresses at the bore reduces the probability of crack initiation and slows the growth of

fatigue cracks (Parker and Farrow, 1981; Stacey and Webster, 1988). This enhancement
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may result in an extension of fatigue life by a factor of up to three (Perl and Arone,

1988).

A reliable prediction of the influence of autofrettage on the critical crack length and
fatigue life of a thick-walled pressurized cylinder requires an accurate prediction of the
actual residual stress field prevailing in the cylinder wall. It is therefore essential to
develop accurate and reliable methods to calculate the residual stress field induced by

autofrettage.

The variable material property approach for axisymmetric problems is capable of
accurately predicting mechanically induced residual stress fields. This method employs
the actual loading and unloading stress-strain curve to give a close estimate of the actual

residual stress field.

The application of this method to residual stress prediction in autofrettage is presented in
this section. Three major capabilities of this method are: 1) employment of the actual
unloading material curve, 2) employment of different hardening models. and 3)

consideration of variability in the Bauschinger effect factor (BEF).

A review of different methods of calculating residual stress induced by autofrettage is
discussed first. Results obtained by the present method are presented and compared with

different experimental, finite element and analytical results later.

4.2.1 Literature Review

There have been many solutions proposed for the calculation of residual stress fields
induced by autofrettage. Most of them consider only elastic unloading (Hill, 1950; Steel,
1952). However, there are a number of solution which take into account reversed
yielding. These solutions differ due to their assumptions on loading behavior (hardening
or nonhardening), unloading behavior (hardening or nonhardening), yield criterion
(Mises or Tresca), hardening rules (kinematic or isotropic hardening), dilatation

assumption, end conditions, and Bauschinger effect factor (constant or variable).
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Manning (1945) provided a method of calculating residual stress fields which employs
the actual loading and unloading curve. Adapting the assumption previously employed
by Nadai (1931) and Nacrae (1930), that the shear strain is inversely proportional to the
square of the cylinder radius, he was able to predict the residual stress field. Later,
Franklin and Morrison (1960), using the same assumption, proposed and validated a
method of residual stress calculation. Their method requires full knowledge of the shear
stress-strain properties of the material in pure torsion. In their two-step method, the
cylinder is first divided into an even number of equal (maximum of eight) layers and
successive values of strain at the external boundary are assumed. By using the basic
assumption that the total shear strain is inversely proportional to the square of the

cvlinder radius in the form

(89 +V8:)o r. ’
Y= (I—V) ';" 4.7

the shear strain in different layers is calculated. Based on this calculation and using the
shear stress-strain curve, the corresponding stress value is read from the torsion curve.
Clearly, the Tresca yield criterion is embedded in this procedure. Using equilibrium and
Simpson’s rule of integration, the internal pressure causing this strain and stress field is
calculated. This method, which assumes plane strain, gave reasonable estimates to the
residual hoop stress field when compared with experimental measurements of residual
stress (Franklin and Morrison, 1960). However, the axial strain predicted from this
method did not agree with experimental results, especially in the proximity of the bore.
Ideally, the torsion data needed in this method should be obtained from a cylinder with

an identical shear stress gradient.

Kendall (1970 and 1986) proposed a correction factor to the elastic unloading results to
compensate for the Bauschinger effect during unloading. This correction factor was
based on extensive experimental study conducted by Kendall (1970) to determine the

pressure at which the material of a previously autofrettaged cylinder first undergoes
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additional plastic deformation. In his method, Kandell (1986) assumed that for the points
inside the plastic zone of the cylinder, the difference between the tangential and radial
residual stresses was a linear function of the radius between the inside radius and the
radius at a point, r,, at which this stress difference is zero. Using the Tresca yield
criterion and a method similar to linear elastic unloading, he introduced equations for the
calculation of hoop and radial stresses within the plastic zone. The linear elastic
unloading method was used to estimate the residual hoop and radial stresses in the elastic
zone of the cylinder. However, to ensure continuity of stresses at r,, the linear unloading
stresses were multiplied by a correction factor. This factor was determined by calculating
the radial stress at r,, by using the equation introduced for the plastic zone, and dividing
the radial stress by the corresponding stress calculated for assuming a linear elastic
unloading. Comparing his predictions with the published experimental results, he
concluded that there was general agreement between his predictions and experimental
results but that there were significant differences in the value of the residual hoop stress

at the bore. This method lacked a procedure to calculate the axial stress.

Chen (1986), proposed a different method which incorporated both the Bauschinger
effect and the hardening effect due to unloading. Based on experimental observations of
high strength steel behavior, the Bauschinger effect factor is very important in
determining the range of elastic unloading. After reversed yielding occurs, a very large
degree of strain hardening will develop, even when the initial tensile test exhibits very
little strain hardening. Chen argued that any discrepancy between the different solutions
and the experimental results was due to two factors: 1) the Bauschinger effect factor
dependency on the value of reversed yielding, and 2) the linear hardening response
during elastic-plastic unloading. He then proposed a bilinear stress-strain unloading curve
to model the behavior of the high strength steel usually used in autofrettage. Chen's
solution is a two step closed form solution. The first step involves loading of the
cylinder. During loading the material is assumed to be elastic-perfectly plastic, obeying
Tresca’s yield criterion and associated flow theory. Chen employed Koitter’s (1953)
closed form solution for loading. In the second step, if the pressure is not sufficient to

cause reversed yielding, the unloading is purely elastic. However, if the pressure is high



97

enough to cause reversed yielding, by introducing a BEF factor and a hardening factor.
elastic-plastic unloading is analyzed. Bland’s (1956) closed form solution for linear
hardening material’s obeying Tresca’s yield criterion was used. This method is capable
of using a better model of the unloading curve, once the BEF and the hardening
parameter are selected. For such a selection the actual unloading curve is needed. Also,
this method is restricted to the elastic-perfectly plastic behavior and the Tresca’s yield

criterion.

The three methods discussed above are the methods that are used most. A comparison of
the different methods for residual stress field calculation is given in Table 4.2. This
comparison is limited to those methods that consider reversed yielding. Methods with

elastc unloading are not discussed here.

4.2.2 Actual Stress-Strain Unloading Curve

The material chosen for the numerical simulation was a high strength steel (AIST 4333
M4). The actual material behavior is shown in Fig. 4.12 . This figure is a reproduction of
the experimentally obtained stress-strain curve for AISI 4333 steel recorded by Stacey
and Webster (1988, Fig. 2). For comparison, some of the material models used in the
residual stress calculations are also shown in the same figure. In this analysis, it was

assumed that the unloading curve was independent of the level of over-strain.

In accordance with the specimen used in experiments performed by Stacey et al. (1985),
a tube with a nominal bore diameter of 30 mm and outside diameter of 62 mm was
considered. It was assumed that the tube is in a plane stress situation and has been

internally pressurized to 662 MPa and subsequently fully unloaded.

Since the stress distribution in the autofrettaged tubing is a result of a combination of the
initial manufacturing (known as as-received residual stress) and the autofrettage process,
Stacey et al. (1985) measured the as-received residual stress distribution of the tube used

in their experiment. This stress distribution is shown in Fig. 4.13 .
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Methods/Year Manning (1945) Franklin & Kendall
Morrison (1960) (1970, 1986)
Yield Criterion Tresca Tresca Tresca
Model Total Deformation Total Deformation Total Deformation
Basic 1 1 |
Ly L t"‘“xll -1
Assumption Tae =0
Loading Actual Curve Actual Behavior in Elastic- Perfectly
Behavior Torsion plastic
Unloading Actual Curve Actual Behavior in Elastic with
Behavior Torsion correction factor
End Conditions Plane Strain Plane Strain -
Compressibility Yes Yes -
BEF Yes Yes As a Correction
Variable BEF No No No
Generality Residual Hoop & | Residual Hoop, Axial | Residual Hoop &
Radial Stresses & Radial Stresses Radial stresses
Solution Numerical Numerical Analytical

Table 4.2: Comparison of several autofrettage theories
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Methods/Year

Chen (1986)

Rees (1990)

Yield Criterion

Tresca

Tresca & von Mises

Model Total Deformation Incremental Plasticity
Loading Elastic- Perfectly plastic Elastic- Pertectly Plastic
Behavior

Unloading Elastic- Linear Hardening Kinematic & Isotropic
Behavior Models
End Conditions Plane Strain & stress Open end with nonzero axial
strain
Compressibility Yes Yes
BEF Yes No
Variable BEF No No
Generality Residual Hoop, axial & Radial Residual Hoop, Axial &
Stresses and Displacement Radial Stresses and Strains
Solution Closed Form(Two Step) Numerical

Table 4.2(cont.): Comparison of several autofrettage theories
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Methods/Year

Meghahed & Abbas (1991)

Present Method

Yield Criterion Tresca Tresca & von Mises or any Yield
Criterion
Model Total Deformation Total Deformation
Loading Power Law Hardening Actual curve, Nonhardening,
Behavior Linear hardening and the
Ramberg-Osgood model
Unloading Power Law Hardening and Actual curve, Kinematic &
Behavior Kinematic & Isotropic Models Isotropic Models

End Conditions Plane Strain Plane Strain & Stress
Compressibility Yes Yes
BEF Yes Yes
Variable BEF || Yes (BEF dependency is defined | Yes (Actual BEF dependency on
by an exponential equation) over strain / any representation
of BEF dependency)
Generality Residual Hoop, & Radial Residual Hoop, Axial & Radial
Stresses and Displacement Stresses and Strains, and
Displacement
Solution Analytical (Two Step) Numerical

Table 4.2(cont.): Comparison of several autofrettage theories
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Figure 4.12: AISI 4333 M4 Material curve
(Fig. 2, Stacey & Webster, 1988)

The present analysis of the same tube was carried out assuming that the cylinder was pre-
stressed prior to application of the autofrettage pressure. Hence, the results obtained
include the as-received stress field. When the von Mises yield criterion was used, more
than 1/3 of the wall thickness was found to be plastic at the end of loading. Also, there

were no indication of reversed yielding upon unloading. Figure 4.14 compares the
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present results with experimental measurements of Stacey et al. (1985) who used neutron
diffraction method to determine residual stresses for autofrettage samples of S mm and
10 mm thickness. There is very good agreement between the present results and their
measurements, especially near the bore. This good agreement signifies the importance of

employing the actual unloading behavior of material in residual stress calculations.

The residual stress fields calculated using the different material models shown in Fig.
4.12 are shown in Fig. 4.15. The results shown in this figure were all obtained using the
present method, which is capable of employing any unloading model. Stacey and
Webster (1988), following the method proposed by Chen (1986), suggested a

Bauschinger factor of 0.3 and a linear hardening factor equal to 0.3E for an accurate

model of the unloading behavior.

Since the actual loading-unloading behavior was employed, the choice of yield criterion
had the main influence over the results. Results using different yield conditions were

obtained and are compared with the experimental results in Fig. 4.16.
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Figure 4.13: Residual stress field induced by manufacturing
(Fig. 7, Stacey et al., 1985)
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Figure 4.16: Comparison of different yield criteria
(Experimental data from Stacey & Webster, 1988)
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The Tresca criterion, the von criterion Mises and an average value of hoop stress as
predicted by the two criteria were used in the analysis. Results are compared with
experimental results obtained from neutron diffraction, the Sach boring out technique
and the Sach machining from outside technique, provided by Stacey and Webster (1988).
The measured values are due to autofrettage only. That is, the as-received residual field
has been subtracted from the measured value to show the effect of autofrettage (Stacey
and Webster, 1988). The solution based on the Tresca yield criterion clearly over-
predicts the experimental results, while that based on the von Mises criterion shows the
best prediction near the bore. The average of the two criteria’s best predicts the
intermediate transition between the plastic and elastic zones. In general, it seems that the
experimental results obtained using the different techniques lie between the prediction
based on the von Mises and the average of prediction based on the von Mises and the

Tresca criteria.

4.2.3 Isotropic and Kinematic Hardening Models

Hunsaker et al. (1976), in an extensive study of hardening rules in plasticity, concluded
that isotropic (IH) and kinematic (KH) hardening rules represent the limit of actual
reversed yielding behavior and other models usually fall within this limit. Here, both

models were used to predict the residual swress field.

Chen and O’Hara (1984) presented a comprehensive study of the two models by using
ADINA finite element software. To compare the present analysis with their finite
element results, the same cylinder dimensions and loading were considered. In the
present study, a closed ended cylinder with a outside-to-inside radii ratio of 4.63, internal
radius of 0.865 inches (=2.2 cm), and external radius of 4.005 inches (=10.17 cm) was
pressurized to 250 Ksi (=1720 MPa) in ten steps and then unloaded in five subsequent
steps. Chen and O’Hara (1984) used a multilinear (6 point) representation of the stress-
strain curve. These data points are tabulated in Table 4.3. The stress-strain curve and
unloading curve is shown in Fig. 4.17. Based on the results obtained by the present

method, at the end of loading, 43% of the cylinder had yielded. As expected, each model



predicted a different residual stress field. When the
load was fully removed, 8.3% of the wall thickness
near the bore experienced reversed yielding
according to the kinematic hardening model,
whereas for isotropic hardening the percentage
decreased to 3.3%. The results are compared with
the results obtained by Chen and O’Hara (1984)
using ADINA finite element code in Fig. 4.18. In
this figure, @ and b are the inside and outside radii of
the cylinder. The agreement is excellent. Figure 4.19
shows the residual radial and axial stresses. Again
the agreement is very good. The differences between
the residual axial stress from the present method and
of ADINA are due

that to compressibility
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T

Swess: Ksi E MPa | Strain
155 § 1066 0.0060
167 Jé 1150 0.0085
172 J; 1183 0.0125
177 E 1218 0.0300
181 Jg 1245 0.0500
181 ; 1245 0.1500

Table 4.3: Uniaxial stress-
strain data (Chen & O'Hara,

1984)

assumptions. The present solution assumes the material to be compressible. The radial

displacement at inner and outer radii from the two solutions are also compared in Fig.

4.20 and 4.21 for isotropic and kinematic hardening, respectively. The agreement is very

good.

2E+3 4 Stress (MPa)

1E+3

SE+2 =

- Isotropic Hardening (IH)
- - - - Kinematic Hardening (KH)

-0.01

-5E+2
i

1E+3.- -

I
-2E+3 —J

Figure 4.17: Stress-strain curve used in the analysis
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Figure 4.18: Residual hoop stress comparison
(FEM result from Chen & Q'Hara, 1984)
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Figure 4.19: Residual radial and axial stresses comparison
(FEM result from Chen & O'Hara, 1984)
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(FEM results from Chen & O'Hara, 1984)
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4.2.4 Variable Bauschinger Effect

Milligan et al. (1966), in an experimental investigation on high strength steel. concluded
that the Bauschinger effect factor decreases (Bauschinger effect increases) in magnitude
with increasing permanent strain up to approximately 2%. Thereafter, it tends to remain
at a fixed value of 0.35. Figure 4.11 is a reproduction of figure 8 in Milligan et al. (1966)
for 4330 modified steel. There have been many attempts to develop a method that
includes the Bauschinger effect in the calculation of residual stresses induced by
autofrettage. As discussed earlier, Franklin and Morrison (1960) provided a method
which employed the actual unloading curve and hence considered a BEF. Kendall (1984)
proposed a simple (empirical) BEF correction for use when the residual hoop stress has
been obtained by assuming elastic unloading. Chen (1986) proposed a closed-form
solution for calculating residual stresses in autofrettage using a simple model of the
stress-strain curve which included a BEF and a hardening effect upon unloading. These
solutions use a fixed value for BEF only and do not allow for changes in the BEF as a

function of over-strain.

Other attempts have been made to take into account the changes in the Bauschinger effect
factor as a function of plastic strain. Chaaban et al. (1986), in a rather complicated
manner, provided a method of generating stress-strain curves as a function of plastic
strain by introducing fictitious thermal loads. In their method, which is designed to be
used with a finite element package (e.g., ABAQUS), the dependency of the BEF on over-
strain was modeled by introducing a fictitious thermal load to develop different stress-
strain loading curves. Then, using isotropic hardening, the unloading curves were
defined. Each layer of the cylinder would then have a different unloading curve to
follow. In this way they simulated the changes in BEF as the plastic strain changes.
Megahed and Abbas (1991) proposed a method that employs variable BEF's in the
calculation of residual stresses in an autofrettaged cylinder by including an empirical
equation describing the BEF dependence on plastic strain. Their solution, as mentioned
earlier, is for material whose behavior is modeled by a power law. The present method

employs the experimentally obtained BEF-plastic strain curve (e.g., Fig. 4.22) and
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automatically generates the unloading curve of each strip based on its plastic strain value
at the end of loading. The reversed yield point is defined by the equivalent stress at the
end of loading (current yicld value for each strip) and the corresponding BEF. The

unloading curve resumes its (loading) shape after reversed yield.

The third example discussed here examines the effect of a variable Bauschinger effect on
residual stress predictions in autofrettaged tubes. The experimental results of Milligan et
al. (1966) were used as the BEF data. A cylinder with inner to outer radii ratio of 3, E/G,
= 1000, and elastic-perfectly plastic behavior during loading and unloading was
considered. The cylinder was assumed to be in plane strain and the plastic deformation
was based on the von Mises yield criterion. Four different autofrettage levels were
considered. Figures 4.23-4.26 show the results obtained. The highest autofretiage
percentage where the unloading was fully elastic was found to be 16%. At this level, not
only does a constant BEF=0.35 falsely predict reverse yielding but also underestimates
the bore hoop stress by a factor of 1/3 (Fig. 4.23). However, the discrepancy in the axial
stress was lower. At higher levels of autofrettage, the differences between the two
predictions decreases (Figs. 4.24-4.26), and eventually vanish (Fig. 4.26). Therefore, it
can be concluded that including the dependence of BEF on plastic strain for low level

autofrettaged analyses is important, especially for the prediction of reverse yielding.
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Figure 4.22: BEF in 4330 Steel
(Fig. 8 in Milligan et al., 1966)
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4.3 LOADING AND UNLOADING OF FASTENER HOLES

Riveted and bolted joints often appear in built-up, mechanically loaded structures. For a
plate containing a hole and subjected to a uniform remote tensile stress load, the hoop
stress at the notch surface is roughly three times larger than the remote stress. Such stress
concentrations are very important in fatigue life. In an earlier investigation in the aircraft
industry, the most important source of failure in sixty-four aircraft incidents was found to
be poor quality of the fastener holes. Results of this study (Wood, 1975) are summarized
in Fig. 4.27. However, more recent studies of fatigue failure of airplane structures reveal
that up to 70% of all fatigue cracks originated from joints hole (Buxbaum and Huth,
1987).

The demand for longer service lives in aircraft is

dominated by the limited fatigue performance of ) Major Failure Prablems

critical airframe components. Therefore, it is

Pre-Existing
S5%

desirable to reduce the tensile hoop stress at the
hole surface. Methods of improving the fatigue
performance of fastener holes which are simple,

Serv

of relatively low cost, and that do not add weight

Unknown
or material to the airframe are particularly Design 7%

desirable. Foremost among such processes, cold
expansion of holes has gained particular b) Pre-Existing Deficiencics

importance over the past thirty years and a variety

Material

of techniques by which expansion may be
achieved have been considered (Champoux,
1986). All processes require insertion of a hard

tool to deform the periphery of a hole plastically

both in the radial and hoop directions. When the

tool is removed from the hole, the elastic bulk

surrounding the permanently deformed region Figure 4.27: Importance of Fastener

Holes in Failure of Aircraft
(Fig. 1 in Wood, 1975)

forces it to spring back so that the vicinity of the
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hole develops compressive residual stresses. Superposition of these stresses with service
loads results in fatigue life improvements by factors of 2-10, either by retarding the crack

initiation or, more often, by reducing crack growth rates (Ozelton and Coyle, 1986).

The level of the cold work expansion is usually defined by one of the following. The
percentage (or degree) of applied cold work is calculated by dividing the change in the
hole diameter due to the insertion of the mandrel by the diameter of the hole before cold

working

D+2t)-d
Applied Cold Work( %) = (——-d)_ x 100 (4.8)

where D, ¢ and 4 are the mandrel diameter, the sleeve thickness and hole diameter,
respectively. The percentage (or degree) of residual cold working is defined by the ratio
of the increase in the hole radius after removal of the mandrel, «, to the radius of the

hole, r, prior to cold working

Residual Cold Work (%) = ‘j— 4.9)

In order to take full advantage of cold working at the design stage, it is necessary (o
quantify the magnitude and distribution of the residual stresses induced by cold work
expansion of the fastener holes. The proposed general axisymmetric method of elastic-
plastic analysis based on the variable material property approach is capable of predicting
residual stress, strain and displacement fields close to a cold worked fastener hole. Due to
the flexibility of the present method in employing different yield criteria, loading
behavior, unloading behavior, Bauschinger effect factors and hardening rules, application
to fastener holes covers a wide range problems. The application of this method to loading

and unloading of fastener holes is discussed.



4.3.1 Literature Review

4.3.1.1 Loading

For the loading of a fastener hole, the main concem is the stress concentration factor
calculation. Stowell (1950) was the first to present an acceptable approximate formula
for the stress concentration factor at a circular hole in an infinite plate. His formula was
obtained from an approximate stress distribution which was adjusted by minimizing the
mean square of the error in satisfying the equilibrium equations. There was no
consideration of the compatibility equations. Hardrath and Ohman (1953) generalized
Stowell’s formula to include different loadings. Their formula for the case of a balanced

biaxial tension plate with a circular hole which obeys the Ramberg-Osgood formula is

1
1+oz(9~4'-J’r
C.
o i 4.10)
1+a(z—"]~ K

where Ks=[(0s),,.]/0= is the stress concentration and G is the remote biaxial tension.

Budiansky and Mangasarian (1960) using the Ramberg-Osgood formula and the total
deformation theory of plasticity, found a general analytical equation for the stress
concentration factor in a uniformly all around loaded plate with a circular hole. This
equation has a closed form solution only for a material with no elastic response and a
plastic response completely defined by a pure power law. A power series solution
technique was presented for the general case. They included numerical results with stress

concentration factors for different materials.
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Neuber (1961), by considering a notched prismatic body obeying an arbitrary nonlinear
stress-strain  law, derived the following relationship between stress and strain

concentration factors:
K K, =K 4.11)

where K is the strain concentration factor and K, is the elastic stress (or strain)
concentration factor. Neuber’s rule for the case of a balanced biaxial tension plate with a

circular hole for a material obeying the Ramberg-Osgood model is

ol

K= (4.12)

(] -1
(o]
1+a(;“)ﬂ K:_l

Tuba (1965), using the iterative method of Manson and Mendelson (1959) and the stress

function method for plane problems, solved for the stress and strain concentration factors
at a circular hole in a uniformly stressed infinite plate for a linear hardening material. In
this method, the nonhomogeneous biharmonic equation was solved by estimating the
plastic strain and successive readjustment by the method of successive elastic solutions
(see section 2.6.2). Numerical results for a wide range of strain hardening, from perfectly

plastic to purely elastic, were presented.

In an extensive theoretical study of stress concentrations at a circular hole, Huang (1972)
solved the problem by a method involving Fourier series and finite differences. The
governing equations, based on the J, deformation theory of plasticity and the Ramberg-
Osgood stress-strain relation, were formulated in terms of a stress function for both plane
stress and plane strain (under the restriction of no unloading). The solution was expanded

into a Fourier series in the circumferential direction and the Fourier coefficients, which
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are a function of radial coordinate only, were determined by a finite difference method.

Numerical results, including that for equal biaxial loading of a plate was presented.

In a different approach, Gao et al. (1991), using a method of solving plane stress
problems for power law materials with a complex pseudo stress function, gave a closed
form equation for the swress distribution around a hole in an infinite plate under uniform
all-around tension. This solution, which is based on the total deformation theory of
plasticity, and does not consider compressibility of the material, is given in the following

form

:'-_‘)]

(1=n) R’ 12R* } 2 /|

o, =2"""g|1+—5 |4+— J (4.13)
r r

where n is the hardening power in the power law relation: 6, =A€_".
4.3.1.2 Residual stress calculations

There have been many investigations regarding the calculation of residual stress fields in
a cold worked fastener hole. Most of the analytical work in this area follows one of the
three most prominent theories proposed by Nadai (1943), Hsu and Forman (1975) and
Rich and Impellizzeri (1977). One of the main subjects of these theories is the calculation
of the elastic-plastic radius, r,, upon removal of the mandrel. At this location, the
maximum residual tensile stress occurs, which is very important in design and
specification of hole location. The maximum compressive stress is also of interest. This
maximum value may occur at the bore (for elastic unloading) or close to the bore (for
reverse yielding). Hence, calculation of stresses within the residual compressive plastic
zone due to reversed yielding is also of interest. Not all of the above theories give
relations for the calculation of the above mentioned points of interest. A summary of the

analytical work in predicting the residual stress field in fastener holes follows.
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Nadai (1943) published a theory of plastic expansion of tubes fitted into boiler heads. In
the manufacturing process these tubes were expanded by a roller device to insure a leak-
free fit. He considered both the plastic deformation of the plate and the tubes. First, he
solved the plate problem which is of interest here. His main assumptions were: 1) a
perfectly plastic material, i.e., neglecting elastic response, 2) a linear approximation to
the von Mises yield criterion, 3} elastic unloading, 4) deformation theory and 5) plane
stress. He developed a simple closed form expression for the stresses and displacements
in the plastic zone as well as for the location of the elastic-plastic interface. These

expressions for stresses and displacements are as follows:

0‘,=g—'{—1+21n-£:'l . G, =—cl[1+21nLjl

NE) r V3 r

P P
S PSS 3
g 3nrp

where r, is the radius of the elastic-plastic boundary, a is the initial radius of the hole and

(4.14)

u,

1 1s the radius of interest. The maximum elastic displacement at the hole, u,, is

_(1+v)0'.a

U, =———— 4.15
<& EV3 #-13)

The simplicity of these formulas makes this theory very easy to use.

Carter and Hanagud (1974) performed an experimental investigation of the stress
corrosion susceptibility of cold worked fastener holes since the residual tensile stresses
surrounding the hole could be greater than the threshold for stress corrosion cracking.
They developed their own theory, which was similar to an earlier theory by Taylor
(1947), to calculate loading and unloading stresses. Their main assumptions were: 1) the

Tresca yield criterion was valid, 2) the radial displacement at the edge of the hole was
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known, 3) the material was responding in an elastic-plastic manner, i.e., elastic response
was included, and 4) the plate was in a state of plane stress. Based on these assumptions

they developed an equation for the elastic-plastic radius r, when the hole edge

displacement was known.

Hsu and Forman (1975) proposed a theory which was basically the Nadai theory
extended to account for hardening response. They utilized a solution technique developed
by Budiansky (1971) for elastic-plastic stress concentrations. Their main assumptions
were: 1) the material behavior was represented by the Ramberg-Osgood formulation, 2)
the von Mises yield criterion was applicable, 3) the unloading was elastic, 4) deformation
theory was valid and 5) the plate was in a plane stress state. Their solution in the plastic
region was developed in terms of a parameter o varying between 90° (corresponding to
initial yield) and o, (corresponding to final expansion). The solution was in a closed

form, and the equations are easily programmable.

Chang (1975) used the elastic-plastic solution of Hoffman and Sachs (1953) for thick-
walled tubes to compute the residual stress distribution adjacent to an open hole in a thick
plate and then used it for the analytical prediction of fatigue crack growth for cold
worked holes. The assumptions of this theory were: 1) perfectly plastic behavior of the
material, 2) the von Mises yield criterion, 3) plane strain conditions under uniform
pressure at the hole edge, and 4) deformation theory. He then gave a relation between the

elastic-plastic radius and the hole edge displacement.

Rich and Impellizzeri (1977), proposed an approximate closed form solution for residual
stresses surrounding cold worked holes. Their assumptions were: 1) the material behavior
was elastic-perfectly plastic, 2) the thick-walled cylinder solution was valid, 3) the von
Mises yield criterion was applicable, 3) deformation theory was applicable, 4) the hole
was in a state of plane strain, and 5) the material was plastically incompressible. They
basically modified the elastic unloading solution of Hoffman and Sachs (1953) to predict

an approximate compressive yield zone, r,, upon removal of the mandrel:



)

where a is the internal radius, b is the distance from the hole center to the edge of the
plate, and r, is the radius of plastic zone. They further developed a relation for predicting

the circumferential residual stress at the hole wall

(6 ) ges =%[*Y +(':-)le’] (4.17)

where

4]

and the radius of the plastic zone is calculated from

.QIJ

™ lwm
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u [-
—= 052 2102 +1--% 15~ 4.19
. 35]. ln +1 . P (4.19)

In this equation, E, and E, are the moduli of elasticity of the mandrel and the plate,
respectively. This equation relating the plastic radius, r,, and the hole displacement, «,,
was introduced by setting the radial interference fit equal to the sum of radial

displacements of the mandrel and the plate.
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Potter et al. (1978), developed expressions for the residual stress field at fastener holes.
Their assumptions were: 1) elastic-perfectly plastic material response, 2) the von Mises
yield criterion, 3) an incompressible plastic zone, 4) plastic unloading, and 5) a plane
stress state. The expressions for stresses and strains were in closed form and are function
of the plastic re-yield zones. However, the size of these zones can only be obtained with
knowledge of the applied expansion and are found by numerically solving nonlinear

equations.

Clark (1982 and 1991), provided an approximation for the residual stress field in fastener
holes. His assumptions were: 1) elastic-perfectly plastic material behavior, 2) modified
Tresca yield criterion (based on Hill (1950) and Warren (1947) modified yield stress), 3)

the plane stress condition, and 4) reversed yielding upon unloading.

Mann and Jost (1983), by an extensive study of different theories, showed the influence
of different assumptions on residual stresses field predictions. The effect of different
conditions considered by different theories were studied. These conditions included: 1)
yield criteria (Mises, Tresca or others), 2) stress state (plane stress for thin plate, or plane
strain for thick plate), 3) deformation (elastic, elastic-perfectly plastic or elastic-plastic),
4) unloading (elastic or embodying reverse yielding), 5) displacement (small or large), 6)
plate width (infinite, semi-infinite or infinite), and 7) mandrel and fastener properties
(rigid or deformable). Their study showed how each of these conditions change the
residual stress field. They concluded that there were significant shortcomings in some of
the models that have been used to predict the residual stress fields (particularly in
assumptions regarding elastic-plastic behavior of the plate material and the relevance of
reverse yielding) and there is very little evidence that experimentally verifies the

predicted stress distributions.

Jost (1988), developed relations for the residual stress of an annulus of finite dimensions.
His assumptions were: 1) elastic-perfectly plastic material response, 2) then von Mises
yield criterion, 3) an incompressible plastic zone, 4) plastic unloading, and 5) the plane

strain state. His method is similar to Potter et al. (1978) but is for plane strain.



Wang (1988) presented a closed form residual stresses solution for a circular hole under
uniform pressure. His assumptions were 1) a modified Ramberg-Osgood model, where
the elastic response is separated from its plastic response (given by a power law), was
applicable, 2) the J, deformation theory was applicable, 3) plastic unloading was allowed,
4) a constant Bauschinger effect factor defined the reversed yield stress value, and 5) the
hole expanded in a plane strain state. His solution was based on Nadai’s technique and

was an extension to Nadai (1943) and Hsu and Forman (1975).

Wanlin (1993), extended the work of Hsu and Forman (1975) to include not only the
elastic plastic response during unloading but also the effects of a finite size plate. He
considered the dependency of the compressive yield stress value on a constant

Bauschinger effect.

Ball (1995) followed the solution technique of Budiansky (1971) for both loading and
unloading. This solution is also an extension to Hsu and Forman (1975). He assumed
further that the radial expansion of the hole was affected by an elastic insert and the
required relationships among interference ratio, applied expansion, intertace pressure and
retained expansion (after removal of the insert) were given. His solution was for a plane

stress state.

Beside these analytical approaches, there have been many experimental measurements
and finite element analyses of the cold worked fastener holes. It is very interesting to
note that there has been very little agreement between the proposed methods and
experimental results (Poolsuk and Sharpe, 1978; Mann and Jost, 1983; Forgues et al.,
1993; Priest et al., 1995, Poussard et al., 1995). There are a number of reasons provided
for such discrepancies and some are discussed here. There have been some studies
regarding the three dimensional nature of the fastener hole problem. Poussard et al.
(1994) simulated the cold work process using finite elements. He studied the change in
stress distribution at the entrance face of the mandrel, mid-thickness plane and exit face.
The changes were appreciable. Forgues et al. (1995), through a three dimensional
axisymmetric numerical study, concluded that the residual stress distribution through the

thickness of plate was different. However, three dimensional residual stress



measurements (Ozdemir and Edwards, 1996) show some changes through the thickness
near the hole but very little away from the hole. Also, the 3-D analysis results do not
agree with experimental results (Forgues et al., 1995). Another reason is the modeling of
the material behavior. It is amazing to note that, among many experimental studies on the
fastener hole problem, there are very few that provide the actual loading-unloading
curves of the material used in the experiment. It looks as if the unique unloading
behavior of high strength aluminum (such as Al 7050), usually used in aircraft industries,
has not been taken into consideration. Poussard et al.(1995), one of the few who noticed
this point, noted that the observed material behavior under compression does not initially
agree with either kinematic or isotropic hardening models for reversed yielding. They
further suggest that a material model allowing the compressive material behavior to be
closely approximated would be extremely beneficial. None of the present methods of

solution is capable of including the actual material behavior in compression.

Another reason provided for such disagreement is that the plate does not remain
axisymmetric in the industrial process of hole expansion. Even though this point is valid
to some extent, adding to the complexity of the analysis is something one would like to
avoid. Moreover, further away from the hole, the material responds as if the expansion
had been uniform. Therefore, this has only a local influence and it should not effect the

position of the elastic-plastic boundary as calculated by the axisymmetric analysis.

The proposed method of axisymmetric elastic-plastic analysis is capable of predicting the
residual stress field induced by the fastener hole expansion. The capabilities embedded in
this method are far more than each single method described above. This method is able to
consider: 1) either elastic-perfectly-plastic behavior, behavior based on the Ramberg-
Osgood formula (and not only the modified form of it) or the actual material behavior
during loading and unloading; 2) the von Mises, Tresca or any other yield criteria; 3)
plastic unloading with kinematic or isotropic hardening rules; 4) the Bauschinger effect
and its changes as a function of plastic strain irduced during loading; 5) a pre-stressed
hole in cold work expansion, and 6) material compressibility. All of these features are

included in a single simple FORTRAN code (see appendix A) which performs the
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analysis in few seconds on a personal computer. Desired options are chosen from an

input file. Some of the results obtained by this program are discussed in this chapter.



4.3.2 Loading of a Fastener hole

The variable material property approach has been applied to the problem of an infinite
plate with a circular hole under an ali-around tensile field. The schematic for this
problem is shown in Fig. 4.28 . The strips have the shape of annular rings under tension.
The elastic solution is given by the Lame solution where the usual external and internal
pressures are replaced by a tensile stress. Stress and strain concentration factors at the
notch tip are calculated for different nonhardening or hardening materials. Figure 4.29

shows the results for nonhardening materials. The stress and strain concentration factors
for a wide range of loading from elastic to full plastic load is shown. The values of stress
concentration factors are compared with the analytical solution of Budiansky and
Mangasarian (1960), and the strain concentration factors are compared with the results

obtained by Tuba (1965). The agreement is very good.
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Figure 4.28: Circular hole under uniform tension
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The results for stress concentration factors for a hardening material are shown in Fig.
4.30. The results of the present method are compared to concentration factors obtained
from Neuber’s rule, Haung (1972) solution and the Budiansky and Mangasarian (1961)
series solution. The present method agrees very well with Nueber’'s rule, which has
proven to be an acceptable approximation of stress concentration. The results of Haung
(1972) and Budiansky and Mangasarian (1961), which are Fourier series solutions,

deviate from the present method.

Figure 4.31 shows a summary of concentration factors obtained using the present method
and other methods, including results obtained using ABAQUS. The ABAQUS results

were obtained by the author. The agreement is very good.

The hoop and radial stress distributions around the hole are shown in Fig. 4.32. The
results are compared with the closed form solution of Gao et al. (1991) for a material

obeying a power law o-¢€ behavior and the agreement is found to be excellent.

To examine the changes in stress response for different materials, a study on hoop and
equivalent stress changes of different materials was conducted using the present method.
The materials considered in this study include nonhardening and hardening materials
obeying the Ramberg-Osgood formula with different hardening exponents. The stress
distributions along the horizontal line from the hole edge are shown in Figs. 4.33. and
4.34. The stress concentration factor decreases as the hardening exponent increases. This
drop for a nonhardening material is about 70% as compared to a material with hardening

exponent equal to 3.
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4.3.3 Residual stresses in Cold worked Fastener Holes

The variable material property method was used here for the analysis of the unloading
behavior of fastener holes. This study includes: 1) residual stress predictions based on
consideration of the actual loading-unloading behavior and 2) prediction of the elastic-
plastic boundary. Results are compared to available experimental measurements and

finite element calculations.

4.3.3.1 Actual Stress-Strain Unloading Curve

There have been many experimental measurements of the residual stress in fastener
holes. With the exception of a few, none of these recorded the actal loading-unloading
behavior of the material used. In many of these investigations the uniaxial stress-strain
curve (for monotonic loading) was obtained to find the values of the modulus of
elasticity, Poisson’s ratio and yield strength. To the authors knowledge, there have been
no analyses based on the actual unloading behavior of material. None of the methods
mentioned in literature review is capable of employing the actual material curve.
Commercial finite element packages are not designed to follow the exact unloading curve

either.

Poussard et al. (1995) are among the few to record the actual unloading curve. They used
2024 T351 aluminum alloy in their finite element analysis. Figure 4.35 is a reproduction
of Fig. 1 from Poussard et al. (1995). Two commonly used approximations of the
behavior are also shown in the same figure. None of these models can represent the
unloading behavior precisely. There exists a pronounced Bauschinger effect in this
aluminum alloy. While the monotonic loading curve represents a linear hardening
behavior, with a slope of 0.022E, the reversed yield stress (based on 0.1% proof stress)
remains at a constant value of -//0 MPa for unloading from different plastic strain states.

This suggest that the BEF is a function of plastic strain.

The experimental measurements of the residual stresses in the same Al 2024-T351 were

recorded by Priest et. al. (1995). The results are very scattered and unreliable. For
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example, the measured hoop residual stress in a 4% cold worked plate is compressive
even far away from the hole edge. Priest et al. (1995) suggest that the measured values
are highly influenced by the stresses existing in the plate prior to cold working. However,

They did not record the as-received residual stress field.

In earlier independent work, Mann and Jost (1983) also recorded results of experimental
measurements on aluminum 2024. The experimental results, based on the work of Lowak

(1981), are for a 4.5% cold worked fastener hole with an initial hole radius of 8 mm.

The present method of analysis was used to predict the residual stress field for a 4.5%
cold worked plate. The actual unloading behavior of 2024 aluminum alloy shown in Fig.
4.35 was used. The changes in the BEF were accounted for in the analysis. This was

done by setting the compressive yield at -//0 MPa as observed from the uniaxial curve.
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400 —
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200 — - = - [lsotropic Hardening
e = Perfecily Plastic
[ v 1
-0.02 0. 0.06
n Strain
200 —
-600 —

Figure 4.35: Uniaxial loading-unloading response of Al 2024 T351
(Poussard et al., 1995, Fig. 1)
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An infinite plate with a hole of 8 mm initial radius was considered. The residual stress

field due to 4.5% expansion of the hole was obtained and the results are shown in Fig.

4.36. The shape of the curve near and at the hole edge indicate a possibility of reversed

yield. However, the experimental results do not show any reversed yielding and show

only elastic unloading. This may be due to size of the plate used in the experiment which

200 —

-400 —

-600

Residual .-
Hoop Stress R

Present Method
X-ray Measurments (Mann & Jost. 1983)
Strain Measurments (Mann & Jost. 1983 )
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Figure 4.36: Comparison of calculated and measured residual stress

distribution for 4.5% cold expanded hole in Al 2024 alloy plate

(Experimental results from Mann & Jost, 1983)
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is of finite size (80 mm). The general agreement between the present method and the
experimental values is good. The prediction by Rich and Implizzerri (1977), which is one
of the few methods which accounts for reversed yielding is also shown in the figure. It is

quite obvious that consideration of the actual unloading curve is very important.

Poussard et al. (1995), have employed the actual loading behavior of Al 2024 with the
ABAQUS finite element package to predict the residual stress field. Different hardening
models provided by ABAQUS (isotropic and kinematic hardening rules) were used.
Their finite element analysis was on a plate with an initial hole radius of 3.175 mm and
width of 200 mm. The hole was assumed to be 4% cold expanded. The same dimensions
were employed by the author to obtain the residual stress field using the variable material
property method. The results are shown in Fig. 4.37. While the kinematic hardening
model underestimates the compressive stress at the hole edge by 20%, the isotropic

model shows a uniform compressive field near the hole. Both model predictions away
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Figure 4.37: Comparison of residual stress distribution for 4% cold
expanded hole in Al 2024 alloy plate
(FEM results from Poussard et al., 1995)
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from the hole are very close to the present analysis based on the actual unloading
behavior. The isotropic hardening model stays closer to the present analysis away from

the hole. The difference in radial residual stress is not significant.

4.3.3.2 Elastic-Plastic Boundary Prediction

Knowledge of the size of the plastic zone in a fastener hole is very important because a
larger plastic zone will delay crack propagation emerging from the hole edge (Bernard et
al., 1995). It is also very important in design and spacing of hole locations. Some
theoretical studies have been based entirely on predicting the size of the plastic zone
(e.g., Carter and Hanagud, 1947). A comparison of the prediction from different theories

with the prediction from present method for the plastic zone radius is given herein.

Poolsuk and Sharpe (1978) conducted a series of experiment to measure the exact size of
the plastic zone and to examine the validity of different theories in this regard. They
argued that it was easier to measure the location of the elastic-plastic boundary, rather
than the complete residual stress field. Since most of the experimental results for stress
field have been found to be in poor agreement with the values predicted by different
theories, Poolsuk and Sharpe (1978) suggested that the theories could be evaluated based
on their capabilities of predicting the elastic plastic boundaries. The experiment was
conducted on a plate with a central hole of 3.3 mm radius made of 7075 T6 aluminum
alloy. They used four different levels of cold work and compared their measurements

with different theories.

The loading-unloading behavior of Al 7075-T6 was given by Endo and Morrow (1969)
and Landgraf et al. (1969). The data points for the monotonic loading curve are given in
Table 4.4. The yield stress and modulus of elasticity for this curve matches the
specifications of one of the samples used with Poolsuk and Sharpe’s (1978) experiments.
The behavior of this aluminum alloy can not be modeled precisely by any of the
available hardening models. However, consideration of the actual unloading curve will
only influence the prediction of residual stresses near the hole edge and will have very

little effect on the prediction of the elastic-plastic boundary location.
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Strain Elastic Strain | Plastic Strain | Stress (psi) Stress (MPa)
0.0057 0.0057 0.0000 60.92 420
0.0063 0.0063 0.0000 65.41 451
0.0079 0.0079 0.0000 72.95 503
0.0121 0.0114 0.0007 77.89 537
0.0185 0.0145 0.0040 87.89 606
0.0290 0.0090 0.0200 95.87 661
0.0450 0.0095 0.0355 99.93 689

Table 4.4: Data for loading behavior of Al 7075 T6
(From Endo and Morrow, 1969)

The elastic plastic radius results obtained from the present method are shown in Table

4.5. The value of 1 in this table is given by Eq. (4.15).

Figure 4.38 shows the comparison of the results obtained by the present method and the
experimental measurements. The agreement is very good. The prediction from some
other theories are also shown in the same figure. As can be seen from Fig. 4.38, some of
these predictions are far from the experimental results ( Potter & Grandt, 1978; and
Carter & Hanagud, 1975). Nadai (1943) and Hsu & Forman (1975) show the same trend
as the experimental results. However, the plastic radius predicted by these two methods
are not accurate. Rich & Impellizzei’s (1977) solution is the best among the different
theories compared here. Nevertheless, the trend shown by Rich & Implezzeri (1977) is

different from that shown by the experiment. It appears that this solution will deviate
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very much from the experimental results for higher values of u /i ,. Chang’s (1974)

solution is very close to the Rich and Impellizerri (1977) solution.

Expansion u, (mm) u/lu, r./a
1.15% 0.038 2 1.550
1.73% 0.057 3 1.816
2.3% 0.076 4 1.970
3.0% 0.102 5.368 2.180
3.85% 0.127 6.68 2.288
4.60% 0.152 8 2.394

Table 4.5: Present method results of elastic-plastic boundary location
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4.4 MULTIAXIAL LOADING OF A THICK-WALLED CYLINDER

The problem of a thick-walled cylinder under proportional pressure and torsion is
considered here. It is assumed that an internal torque, 7, is applied at the cylinder bore
(Fig. 4.39) while its outer surface is kept fixed. The stress in any strip of mean radius r
can be obtained directly from the equilibrium equation. Assuming a uniform shear stress

distribution at r, the shear stress is related to the torque by:

= T
® 7 onr?

(4.20)

The constitutive equation proposed in chapter three (Eq. 3.4) relates shear stress and

shear strain, v 4, in the following way

To=GC4Yn 4.21)
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Figure 4.39: Internal moment in a thick-walled cylinder



where G, the effective modulus of rigidity, is defined as

Eg

Gy =

This set of equations, along with equations for a pressurized cylinder (discussed in
chapter 3), were used for the analysis of torsion-pressure loading of a thick walled
cylinder. The cylinder dimensions and loading in this study were: internal radius of 22
mm, external radius of 66 mm, modulus of elasticity of 180 GPa, Poisson’s ratio of 0.3,
yield strength of 1070 MPa, a=3/7, m=5, internal pressure of 1000 MPa and internal
torque of 4 MN-m. The results obtained from the present method were compared with
results obtained by the author using ABAQUS. The deformation plasticity option in
ABAQUS, which is based on Hencky’s total deformation, was used for the finite element
analysis. As mentioned before, this option in ABAQUS only allows for a Ramberg-
Osgood model of material behavior. The stress and strain distribution through the wall

thickness were obtained and are shown in Fig. 4.40 -4.48.

The general agreement is very good except for points close to the bore. ABAQUS does
not allow for tangential distributed forces on the edge of elements. Therefore, to model
the torque at the inner surface of the cylinder, appropriate concentrated forces were
applied to the nodes at the bore. The application of these concentrated forces have local
effects which are clearly seen, for example, in Fig. 4.41. An increase in the number of
elements does not eliminate such local effects; however, it will reduce the scatter in the
results since this effect is restricted to the first one or two elements at the bore. Hence,
the results of the present solution, which uses the exact form for the displacement, stress

and strain functions are believed to be more accurate at the bore.

An important application of multiaxial loading is nonproportional loading which is

discussed in the next chapter.
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Figure 4.45: Comparison of plastic hoop strain in multiaxial loading of cylinder
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5. TOTAL DEFORMATION FORMULATION FOR NONPROPORTIONAL

LOADING

5.1. INTRODUCTION

As pointed out in chapter 2 (sections 2.3.2-2.3.4), two main methods of elastic-plastic
analysis are deformation plasticity and incremental plastcity. Total deformation
plasticity (Eq. 2.23), which was postulated by H. Hencky (1924), presumes a one-to-one
correspondence between stress and strain. Thus, the components of total plastic strain are
taken to be proportional to the corresponding deviatoric stresses (see Eq. 2.23).
Incremental plasticity (Eq. 2.27), which was proposed by L. Prandtl (1924) and A. Reuss
(1930), sets a one-to-one correspondence between the increment of strain and the total
stress. Thus, the components of the plastic strain increments are taken to be proportional
to the corresponding deviatoric stresses (see Eq. 2.27). Although the Prandtl-Reuss
relation provides the most satisfactory basis for treating plasticity problems, the theory is
incremental and generally leads to mathematical and computational complexities.
Considerable simplifications are often achieved by using deformation plasticity.
However, as discussed in chapter 2, experimental results indicate that plastic strains
depend not only on the current value of the stresses but also on the stress history. Hence,
total deformation plasticity gives inaccurate strain fields for situations with
nonproportional loading. Although the validity of total deformation theory can be proven
mathematically for proportional loading (R. Hill, 1950) and its validity for limited
degrees of nonproportional loading has been shown by B. Budiansky (1959), the validity
of deformation theory for nonproportional loading, which can be represented as a
sequence of linear loadings (one linear loading followed by a different linear loading),

has not been adequately addressed in general.
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In the following, a total deformation formulation is derived from the Prandtl-Ruess
equation for a sequence of proportional loadings. The validity of the formulation is
examined by applying it to thin-walled and thick-walled tubes under combined loading.

5.2. FORMULATION

It has been shown in section 2.3.4 that if all loads are applied so that their magnitudes are
proportional, and if no unloading occurs, then incremental plasticity theory gives the
same results as deformation theory. For a given point in a deforming solid, proportional
stressing describes a condition where the stresses maintain a constant ratio as their values

increase. This may be represented by the stress tensor, G,

o; =K°c; 5.1
or in terms of deviatoric stress tensor (Eq. 2.18), S,
S; =K°S; (5.2)

where °c, or °S, is an arbitrary (nonzero) state of stress and K, the proportionality

function, is a monotonically increasing function of time.

A typical nonproportional loading which is of interest here is shown in Fig. 5.1. The
loading is a sequence of two linear loadings, i.e., linear loading OA and linear loading
AB. Conventionally, a load path such as OA which passes through the origin of the
principal stress space is considered a proportional loading. However, a loading path such
as AB, even though it is still linear, is not considered proportional loading. It simply does

not go through origin O.
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Figure 5.1: A typical sequence of proportional loading

The primary aim here is to define the second linear loading, AB, in a2 manner similar to
proportional loadings. It is shown in this section that, if the second linear loading, AB, is

taken with reference to point A rather than origin O, then it can be defined as a

proportional loading.

The deviatoric stresses during the second linear loading AB (Fig. 5.1) may be written as

§;="S; +KAS;

5.3
AS'J':BSU‘AS-'; )

where ‘S,I and 85:; are the deviatoric components of the stress states at the end of loading

state A and B, respectively. Further, the Mises equivalent stress



=355

G, 2uf1

during the second loading will be

0.’ =K*Ac? - K(Ac. 2 +%6, ~%G *)+%c.°

where the change in equivalent stress, AG,, is defined as

Differentiating Eq. (5.5) with respect to K

€

do,

o 2

[

N

1 (2K -1Ac,*~%c,*+%? K
2 b) 2 e el (
K*Ac,? - K(Ac, +%6,2-%5 . )+ 5.}

and substituting in the Prandtl-Reuss equation

yields

o 31| OK-DAc’-fo 40
Y 4E,[ K'Ac.’-K(Ac,'+%,7 %5, )+%0.? |

€

] (s, + KA, )ik
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(5.4)

(5.5)

(5.6)

3.7)

(5.8)

(5.9)
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dc, . ) . . . .
where £, = T = is the plastic modulus. The change in plastic strain during the second

€

loading can now be obtained by integrating the above equation

31 r 2K -1)Ac.*~%c *+%c 1
Ae e AS.+KAS JdK  (5.10
¥ J\ 4 E I_KZAO' K(Aoﬁa—‘c,z—"cf)#o;zJ( v ’) )

where
Ae,="¢ "¢, (.11

and the plastic strain at the end of the second loading, “e‘,. , is of interest. The integrated

form of Eq. (5.10) for two classes of material is obtained next.
5.2.1 Linear hardening materials

For linear hardening materials

where E, and E are the tangent and elastic moduli, respectively. Integration of Eq. (5.10)

yields

Ag, = A¢ { {1+(1;A) lnC—-;i [tan'(%) (HAJ] }AS +InC)* } (5.13)



where
A /- (5.14)
“2\E, E '
and
_ Ao.e-_so_e-
T Ac?
80.2 5
B=_[4—=-(1- 5.15
\onf (1-4) (5.15)
BG¢
— Ao

the coefficients A, B and C depend on the end stress values only. This integration,
performed using Maple, is given in Appendix B. The first term in Eq. (5.13), Ad AS . is
a direct application of Hencky’s equation for the second linear loading. Other terms are
correction terms which account for the coupling effect of the two linear loadings. In
other words, the remaining terms account for the path of stress. Application of this
relation (Eq. 5.13) to a thin tube under tension and torsion, and a thick-walled cylinder

under pressure and torsion are presented in section 5.5.

5.2.2 Hardening materials obeying Ramberg-Osgood equation

As mentioned in chapter 2, Ramberg and Osgood (1943) recommended the following

power law



1
c ol
=q === 5.1
£, aE(o_. (3.16)

for plastic strain dependency on equivalent stress in a uniaxial stress-strain curve. The

plastic modulus therefore is given by

sri—1

The change in plastic strain can now be obtained from the following general equation

8

3 am y , [
Ag, = f ~——I|K*Ac,? - K(Ac,*+%0,2 -0, J+*c | *
i~ ), 4 Eoy ol ( o] (5.18)

- (@K -1DAc -6, +%. | *S, + KAS, JdK
7 7

which can be integrated for any given value of m. For example, for a material with m=3,
Eq. (5.18) reduces to

1 3 -
Ae; =7 AAS, — T AD(AS,; +2°5,) A (5.19)
where A¢ and A are defined in Eq. (5.15). For m=5, the form becomes

A, -—-A¢AS +—A¢[(A’-+D AS, -3AD(AS, +2°S,)] (5.20)

with



D B A0'¢2+B°-¢2
Ac,?

where A¢ is defined in Eq. (5.14) and A is defined in Eq. (5.15).



5.3. APPLICATION

The application of the above total deformation formulation will now be examined. A thin
tube made of linear hardening material is considered first. The same tube, made of a
material modeled by the Ramberg-Osgood equation, is examined next. The loading for
both cases is combined tension and torsion. In the above cases, the proposed method is
exact since the final stress state is known a priori. These thin tube results are compared

with analytical solutions.

Linear hardening thick walled vessels under combined pressure and torsion are then
discussed. For this problem, the final stress state is not known and an approximate
method for plastic strain field calculation is proposed. This method estimates the strain
field induced by a nonproportional loading using a number of proportional analyses
along with the derived total deformation formulation. The thick walled tube results are
compared to incremental finite element solutions produced by the author using

ABAQUS.

5.3.1 Thin tubes under tension and torsion

First, the incremental plasticity solution to combined loading of a thin tube is discussed
briefly. Results of this solution will be used later for comparison with the proposed
method. Figure 5.2 shows a thin tube under tension and torsion. Two possible loading
paths are shown in Fig. 5.3. The tube may be loaded first in tension (OC) and then in

torsion (CB), or first in torsion (OA) and then in tension (AB).

The increment of plastic strain is related to the deviatoric stresses by

de; = d\. S, (5.22)

where for a linear hardening material with tangent modulus £,



d\ = -2-2'— . (5-23)

For the present case

0 C ©,0)

Figure 5.3: Different loading paths



where ¢ and T are the axial and torsional stresses, respectively. Also,

do,, ©dc +3tdt

= 5.25
c, o'+x’ ©:23)
and noting that
2 5.2
S =—3-0', S, =1 (5.26)
then from Eq. (5.22)
2
Je? = l o dc:’+3t(fd‘t (5.27)
E, o +3&°
and
1 3otdo +9t *dt
P=— 5.28
& E, oi+x? (5:28)

4

where de” and dY are the increments of plastic axial and shear strains, respectively. Each
of the Eqgs. (5.27 ) and (5.28) should be integrated along loading paths to give the value

of the strains. For example, integration along path CB where



yields

yields

(5.30)

(58.31)

For a material obeying the Ramberg-Osgood formula where the plastic modulus is given

by Eq. (5.17), the increment of plastic strains are

de,,_gn_(o; ' 62do + Jtodr
"~ E\o. o +3t’

am(o, | 3otdo +9t 2dt

E \o. cl+3t?

(5.33)
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These equation should be integrated along the path of loading. For example, for a
material with a=3/7 and m=5, the integration along path CB yields

el = 4 o7
CBE (5.34)
Y '
VEIES
Likewise, integration along path AB gives
8
P e
TTE” (5.35)
, 453 '
V=8 >

5.3.1.1 Linear hardening materials

Figure 5.4 shows a linear hardening material characterized by E and E, , the elastic and

tangent moduli, respectively. The stress-strain relationship for these materials is given by

(o
E‘ o £0,

€= 0__0+0__G,° e (5.36)
E E e

where G, is the yield stress.

Let the loading paths be described as shown in Fig. 5.3 . Two different routes for arriving
at B, OCB and OAB, are considered next. Note that in each case, the first loading path

just produces yielding.
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Figure 5.4: Linear hardening material

5.3.1.1.1 Tension-torsion (path OCB)

Figure 5.5 shows the loading paths based on the von Mises yield criterion in stress space.
No plastic strain is induced from O to C, since C corresponds to the onset of yielding, as
illustrated in Fig. 5.5. From C to B, Eq. (5.13) can be used to obtain the plastic strain at

B. For this linear loading the equivalent stresses are

‘s, =0, fs, =2 0, Ac, =0, (5.37)
and the deviatoric stresses at the end of each loading étage are
M2 [ 2 1]
| 0. 0 l <% =0, |
s, =[3 . J ’s,=| 3 ’E | (5.38)
0 —o =0, —O
3 (7o 5]



so that the change in deviatoric stress is

[ 0 Lcs -}
AS, =| ) V3 | (5.39)
5o ° ]
3
Also, the coefficients in Eq. (5.13) are
Az 2_Bg 2
A= Ac,? =-1
Be |4-S _(1_ ) =2 5.40
Y acl? YT (>-40)
B
c
C=7==2
T
Final yield surface
/—>02 +3t? =20
B
/ G
C

Initial yield surface
o’ +3?=0.t

Figure 5.5: Loading path for von Mises isotropic material under consideration
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and substitution into Eq. (5.13) yields

[ o,/ | [2
0 y o, 0
AE,,;[L-AJ (l_z)lloo Aﬁlm(ﬁ)}fc | J; (5.41)

At .’ = A, =11-(—1—-iJm(JE) o, (5.42)

These results agree with the incremental solution given by Eq. (5.30).

5.3.1.1.2 Torsion-tension (path OAB)

No plastic strain is induced from O to A, since A corresponds to the onset of yieiding
(Fig. 5.5). From A to B, Eq. (5.13) can be used to obtain plastic strain at B. For this

proportional loading the equivalent stresses are

‘6, =0, b5, =\2 g, Ac, =0, (5.43)

(3

and the deviatoric stresses at the end of each proportional loading are
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“Si=l 4 3 l 'S =I ‘;’ ‘E l (5.44)
—=C 0 =0, —OC
L/S ° J L/i ° 3 J
and the change in stress is
2 1
lrgco 0 |
AS; = -1} (5.45)
0 —o,
Substitution into Eq. (5.13) results in
[2 ] [ 6./ 1
3(1 1 r)3% O | 0 /
A&fﬁ(?f) ) l+1n(ﬁ)'tc . J' (5.46)
' (_ 0 -5"0‘0_] 3 0
which gives the following strain values
Ag,’ I 1-=|o
11 E‘ E 4 o
-1{ 1 1 n
Ae,,? = Ag,, *? E‘—E 1—-; G, (5.47)

These results agree with the incremental solution given by Eq. (5.32).
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5.3.1.2 Materials obeying the Ramberg-Osgood relation

In this section, materials obeying the Ramberg-Osgood relation are examined. To
simplify mathematical manipulation, it is assumed that a=3/7 and m=5. However, it will

be shown later that this is not necessary.

[n this case, equivalent plastic strain is related to equivalent stress through Eq. (5.16).
The loading path is the same as shown in Fig. 5.3 andFig. 5.5. using Eq. (5.17), the

plastic modulus takes the following form:

RIRCICA 5.48)
E, 1E\c. )" '

Plastic strains for the two load paths, OCB and OAB, are obtained below.

5.3.1.2.1 Tension-torsion (path OCB)

The equivalent stresses, the deviatoric stress tensors at the end of each loading, and the
change in the deviatoric stress tensor are the same as in Egs. (5.37), (5.38) and (5.39),

respectively. Therefore, the two coefficients in Eq. (5.20) are

A 1_Bg 2
A = 4 > € = __1
Ac,”
. 45 485 2 _, (5.49)
.Y

Substitution in Eq. (5.20) yields



:
+18| LS { (5.50)
]

€,/ = 450’
T agE "
83 (>-51)
P:
Y =T

These results agree with the incremental solution given by Eq. (5.34).

5.3.1.2.2 Torsion-tension (path OAB)

The equivalent stresses, the deviatoric stress tensors at the end of each loading, and the
change in the deviatoric stress tensor are the same as in Eqgs. (5.43), (5.44) and (5.45),
respectively. Therefore, the two coefficient obtained from Eq. (5.20) are the same as
given in Eq. (5.49). Substitution in Eq. (5.20) yields

[2 ] [ 1]
15 1)64/3% O 0 5c.|
Ag,. =—— +1§ I (5.52)
3 o 3 (-4

which gives the following strains:
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(5.53)

These results agree with the incremental solution given by Eq. (5.35).

In conclusion, for situations where stresses are known a priori such as the examples
considered in this section, the derived formulation and the incremental plasticity are the

same.



5.3.2 Nonproportional loading of thick walled cylinders

The method of elastic-plastic analysis proposed in chapter 3 and applied in chapter 4 is
based on total deformation plasticity. Although it has been modified to handle unloading,
it cannot handle nonproportional loading. One natural extension of the proposed method

is to nonproportional loading.

The formulation derived in section 5.1 gives answers similar to incremental plasticity
provided the exact stress field is known. In other words, it works very well for cases with
a known stress field. However, in situations where stresses are not known, such as a
thick-walled vessel under pressure sufficient to produce plasticity, the applied pressure is
known but not the stress. The application of torsion following an applied pressure not

only produces shear strains and stresses but also changes the normal stresses and strains.

ABAQUS

[

Figure 5.6: Finite element mesh (undeformed configuration)
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ABAQUS

CISPLATEMENT MAGNSE INCTIIN FATY JU P
TIME ZCHMPLETED IN NL5T o o4y -~ TIME 1.80
AZAQUS VERSION: S.5-C MREE: [ OIS £ e 7237

STEP 1 INCREMENT 10

Figure 5.7: Finite element mesh (deformed configuration)

This makes the process much more complex and requires long computational times for a
conventional incremental solution. To use the proposed formulation for nonproportional
loading of a thick walled cylinder, the stress field at the end of each loading is needed.
To obtain the proper stress field it is necessary to consider different factors such as

computation time, complexity, and accuracy.

First, a conventional incremental solution for a thick walled cylinder under
nonproportional pressure and torsion was obtained using ABAQUS version 5.6 (Hibbit,
Karlsson & Sorensen, 1996). As shown in Fig. 5.6, the mesh was generated for the whole
cylinder. The applied pressure was assumed to be uniformly distributed on the internal
surface. The internal torque was simulated by applying proper tangential concentrated
forces at the nodes of the internal surface. The nodes at the outer surface were fixed.

Figure 5.7 shows the deformed shape of the finite element model.
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ABAQUS offers two plasticity options: incremental plasticity (Prandtl-Reuss equation)
and deformation plasticity (Hencky’s equation). The deformation plasticity option is
based on isotropic hardening and the von Mises yield criterion. This option describes the
equivalent stress and equivalent plastic strain relationship using the Ramberg-Osgood
relation. The incremental plasticity option uses the same hardening and yield criterion.
However, this option uses a multi-linear equivalent stress-equivalent plastic strain
relationship. The elastic analysis in this option is entirely linear and is based on the

elastic modulus and the yield stress.

There have been a number of comparisons of the two plasticity theories for thick walled
cylinders under internal pressure (for example, Hodge et al.,, 1950 and Chen, 1973).
However, none have considered nonproportional loading as a basis for comparison. In
this study, the two plasticity theories were compared for a thick cylinder under a
sequence of linear loadings. Attention was focused on computational time vs stress field
results. It was observed that when deformation plasticity option (Hencky’s equation) is

used, the CPU time is less than 40% of that in incremental plasticity.

The strain fields predicted by the two theories, as expected, are quite different. A typical
plastic hoop strain distribution, as predicted by the two theories, is shown in Fig. 5.8. The
total deformation prediction of the plastic hoop strain at the bore is two times that
predicted by incremental plasticity. However, the stress field predicted by the two

analyses remain reasonably close, especially for cases with larger plastic zones.

Figures 5.9 -5.13 show a comparison of the swress fields from the two analyses for two
nonproportional loading path in linear hardening materials. In one case, pressure is
applied first followed by torsion, whereas in the second case, torsion is applied first. It is
evident from these graphs that the stresses remain reasonably close when different
plasticity theories are used. This suggests that for this case at least, one could use the
stress field predicted by proportional loading. Therefore, this stress field can be
employed in the total deformation formulation presented here in. In this manner, instead

of a lengthy incremental solution, a proportional loading solution can be used.
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Figure 5.8: Comparison of plastic hoop strain predictions of the two plasticity

theories (deformation and incremental) for a nonproportional loading

The total deformation theory proposed here (Eq. 5.13) requires the end values of stress
tfor each linear loading. For a nonproportional loading, such as thick cylinder under
torsion and tension, these stresses may be obtained by a proportional analysis. In this way
significant CPU time is saved. These stresses, obtained from Eq. (5.13), will then give
the plastic strain field for the corresponding nonproportional loading. That is, the stress
field due to the application of pressure only, along with the stress field due to the
application of proportional pressure and torsion may be used in Eq. (5.13) to estimate the

plastic strain field for a corresponding nonproportional loading.
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Figure 5.9: Stress comparison (proportional vs nonproportional), equivalent stress
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Figure 5.10: Stress comparison (proportional vs nonproportional), hoop stress
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Figure 5.11: Stress comparison (proportional vs nonproportional), radial stress
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Figure 5.12: Stress comparison (proportional vs nonproportional), axial stress
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Figure 5.13: Stress comparison (proportional vs nonproportional), shear stress

5.3.2.1 Plastic strain field

To estimate the strain field of a thick walled cylinder under nonproportional loading, the
stress field of two proportional loadings were used in Eq. (5.13). These stress fields can
be easily obtained from the proposed method in chapter 3. Since the stress field obtained
in this manner is close to that of the incremental solution for a linear hardening thick
walled cylinder, one would expect the strain field also to be close. Appendix C shows the
subroutine that was added to the main program (see Appendix A) for axisymmetric
elastic-plastic analysis. Note that this subroutine, for the Ramberg-Osgood relation with
different hardening exponents, is automatically generated by MAPLE V (Waterloo

Maple Inc., 1996) once the integration is performed.



5.3.2.1.1 Torsion-pressure

The stress field resulting from the application of torsion alone, along with the stress field
resulting from the application of torsion and pressure together were used in Eq. (5.13) to
estimate the changes in the plastic strain field during the application of pressure. This
value was then added to the plastic strain at the end of the first loading (application of
torsion) to give the total plastic strain field. The resulting strain field is compared with
the strain field obtained from a nonproportional loading, incremental plasticity solution
using ABAQUS. These results, which are shown in Figures 5.14 -5.16 , show a very
close agreement with the incremental solution. The strain field predicted by the
conventional deformation theory of plasticity is also shown. As discussed in section 4.4
the scatter in FEM results at the bore is due to local effect of tangential concentrated
forces on the node at the bore. Both the deformation plasticity and proposed method
solutions in these graphs were obtained from the axisymmetric elastic-plastic analysis
proposed in chapter 3. The computational time for the proposed method solution in these

examples were a few (15-25) seconds on a 100 MHz, 486 personal computer.
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b

:
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Figure 5.14: Strain comparison (incremental vs present method), hoop strain
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Figure 5.15: Strain comparison (incremental vs present method), radial strain
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Figure 5.16: Strain comparison (incremental vs present method), shear strain
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5.3.2.1.2 Pressure-torsion

The same procedures were used to consider the alternative loading: pressure, followed by
torsion. The stress field resulting from the application of pressure alone, with the stress
field resulting from the application of pressure and torsion together were used in Eq.
(5.13) to find the changes in the plastic strain during the application of torsion. This
value was then added to the plastic strain at the end of the first loading (application of
pressure) to give the total plastic strain. The resulting strain field was compared with the
strain field resulting from a nonproportional loading, incremental plasticity solution
using ABAQUS. These results are shown in figures 5.17 -5.19. They also show a very

close agreement.
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Figure 5.17: Strain comparison (incremental vs present method), shear strain
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Figure 5.18: Strain comparison (incremental vs present method), hoop strain
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Figure 5.19: Strain comparison (incremental vs present method), radial strain



6. CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

The aims of this work were to: 1) establish a method of elastic-plastic analysis based on

linear elastic solutions capable of predicting mechanically induced residual stress fields,

and 2) develop a total deformation theory applicable to a sequence of linear

nonproportional loadings.

The results presented here lead to the following conclusions:

A) The variable material property approach

IL.

IIL.

IV.

A method of elastic-plastic analysis based on linear elastic solutions has been
presented. This method uses the concept of pseudo linear elastic points treating

material properties as field variables.

A general axisymmetric method of elastic-plastic analysis has been proposed. This

method provides a complete elastic-plastic solution for axisymmetric problems.

Five different schemes for evaluating material moduli have been presented. It has
been shown that iteration methods based on a strain energy density concept, i.e.,
Neuber’s or Glinka’s interpretation of strain energy equivalence in elastic and
elastic-plastic behaviors, are most useful for updating the material properties.
While the projection method guarantees a monotonic convergence, energy methods

give faster convergence rates.

The axisymmetric method has been successfully applied to the analyses of
autofrettaged thick-walled cylinders and cold worked fastener holes. In these

applications the analyses are based on Lame’s linear elastic solution. This method
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employs the actual material unloading curve and is capable of modeling reversed
yielding using isotropic and/or kinematic hardening, as well as a variable
Bauschinger effect factor. The capabilities of this method in predicting autofrettage
residual stress field and residual stress field around a fastener holes have been
compared to other theories. It has been concluded that this method provides a more

comprehensive and a more accurate method than other available methods.

It has been shown that consideration of a variable Bauschinger effect factor during
unloading has a significant effect on reversed yield prediction in low-level

autofrettage.

B) Total deformation theory for nonproportional loading

VL

VIIL

VIIIL.

A twotal deformation theory has been presented and successfully applied to
nonproportional loading. In this mathematical model, a proper way of representing
a sequence of linear loadings, analogous to proportional loading, has been
proposed. It has been proven that with this representation a total deformation
formulation may be used for calculation of plastic strain even for nonproportional
loading. This method, unlike conventional plasticity, defines loadings with
reference to previous loadings. This allows for a representation similar to

proportional loading.

It has been shown for situations where stresses are known a priori that the proposed

method gives the same results as incremental plasticity.

For situations where stresses are not known a priori a method for estimating the
plastic strain field for linear hardening materials has been proposed. This method
calculates the necessary stress fields using conventional deformation theory. The
results for plastic strain field estimation in a nonproportional load controlled
situation has been compared to plastic strain field estimates using incremental

plasticity. The results are in very good agreement.
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IX. The proposed method for estimating the plastic strain field significantly reduces

computation time as compared to an incremental plasticity solution.

6.2 RECOMMENDATIONS

The variable material property approach in elastic-plastic analysis for proportional and

nonproportional loading has been developed herein. The results give rise to many ideas

which could be explored in future research:

a)

b)

c)

d)

e)

The total deformation theory presented here should be extended to nonproportional

problems involving strain and displacement controlled deformation processes.

The proposed total deformation theory, which has been applied to the situation
involving loading only, should be extended for nonproportional unloading

situations as well.

The proposed total deformation theory should be extended to cyclic plasticity. A
method to determine whether the stressing (or straining) is elastic, elastic-plastic,
or unloading during each linear loading, along with a memory model for material

cyclic behavior, is necessary for such a task.

Different problems should be studied to generalize the applications of the proposed

total deformation theory.

The general axisymmetric method proposed here should be extended to 3-D

axisymmetric problems, such as the fastener hole problem.

A study on the effective moduli distribution in different applications should be
conducted. This may lead to a generalized form for these moduli distributions in
terms of load, elastic properties and body dimensions. These could give a good
approximation to the actual axisymmetric strcss, strain and displacement fields,

without iteration.



APPENDIX A

This appendix includes the FORTRAN code for the axisymmetric elastic-plastic problem
using the variable material property method. The code is based on Lame linear elastic

solution for thick-walled tubes.

c PROGRAM MAIN

AR R A RS R E A RS R XSRS RSl Sl SRl iSRSl lllld Rl XSRS SRR RS]
* ELASTIC-PLASTIC ANALYSIS OF AXISYMMETRIC PROBLEM

= USING VARIABLE MATERIAL PROPERTY METHOD

* PROPORTIONAL & NONPROPORTIONAL LOADING

T T R R A R N R A R T A N A T AR AR A AT NN RN

* H. JAHED

* Dept. of Mechanical Eng.

- University of Waterloo

* Ver.1l JUNE 1995 THICK-WALLED CYLINDERS
- Ver.2 : SEPT. 1995 AUTOFRETTAGE

** Ver.3 : OCT. 1995 FASTENER HOLES

* Ver.4 JUNE 1996 MULTIAXIAL LOADING

* Ver.S : DEC. 1996 NONPROPORTIONAL LOADING

AR R R A E R AR AR SRS R SRRttt att il it aii iRl sl R SRR SR

C.PROGRAM VARIABLE MAXIMUM DIMENSIONS
IMPLICIT DOUBLE PRECISION (A-H,K,0-2)
PARAMETER (PAI=3.141592654)
COMMON/BLKO/R (500} ,AR(500) ,MXITER,NELM,N, K NITER, IUNLD,PII, POC,T
MXITR, ITER, IDUM, IADJST, IBOUND
COMMON/BLK1/K(2,2)
COMMON/BLK2/A,B,AI,BO,YSTRES(500),SY, ERROR, ICURVE, ALPHA, M
COMMON/BLK3 /22 (500) ,BB(500) ,CcC(500),U(500),P(500),UT(500)
COMMON/BLK4/S2Z (500) ,SRR(500),STT(500),SRT(500) ,SEQ(500)
COMMON/BLKS/E(500) ,ANU(S500) ,EELAS, ANUE, IPLANE, IYCRT
COMMON/BLK6/SZZIN, SRRIN, STTIN, SRROUT

, STTOUT, ERRIN, ERROUT, ETTIN, ETTOUT
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COMMON/BLK7/EL({500),STTL (500) , SRRL (500) , SZZL (500) , ETTL (500)
,ERRL (500)

,EZZL(500) ,UL(500),SEQL(500) , SRRLIN, STTLIN,ERRLIN, ETTLIN, SRRLOT
, STTLOT, ERRLOT, ETTLOT, EEQL (500) , SZZLIN, SRTL(500) ,ERTL (500)
COMMON/BLKS8/ERR (500) ,ETT(500) ,EZ2(500) ,ERT(500)
COMMON/BLKSY /NDAT, SIGDAT (20) ,ESTDAT (20),SYL(500) , SLOPE(20)
COMMON/BLK10/DESTDT (20}
COMMON/BLK11/PERR(500) ,EERR(500) ,PETT(500) ,EETT(500)

. PERT(500) ,EERT(S00)
COMMON/BLK12/METHOD

C.OPEN INPUT FILE AND CREATE OUTPUT FILES

0

~]

OPEN(3,FILE="'INPUT')
OPEN(4,FILE="'K',6 FORM="'UNFORMATTED"')
OPEN(S5,FILE="'QUTPUT")
OPEN(6,FILE='STRESS.DAT')
OPEN({(7,FILE='STRAIN.DAT"')
OPEN(8,FILE="'DISPLAC.DAT")
OPEN(9,FILE='ST-ES.DAT*)

REWIND (4)

.CALL INPUT FILE AND READ DIMENSIONS, MATERIAL PROPERTIES, LOXD
.PE2D THE SPECIFIED METHOD OF MODULI UPDATING
.DEFINE STRIPS

CALL INPUT

.START ITERATION
.LOADIN

IUNLD=0
NITER=0
IADJST=0
NITER=NITER+1
REWIND (4)
ERROR=0.DO

C.CALL KMATRIX TO RELATE LOAD AND DISPLACEMENT USING LAME SOLUTION
C.UPDATE THE EFFECTIVE MODULI VALUES

CALL KMATX(I)

C.GET THE AVERAGE VALUE OF STRESS DIFFERENCE OVER ALL STRIPS

ERROR=DSQRT (ERROR) /FLOAT (NELM)

C.SOLVE THE SYSTEM OF LINEAR EQUATION

CALL TRIDAG (N)
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C.CALL POST
.FIND RADIAL, HOOP, AND EFFECTIVE IN EACH STRIP
CALL POST({(U,UT)
C.CALL PRINT
C.PRINT 1ST (ELASTIC SOLUTION) & LAST (ELASTIC-PLASTIC SOLUTION)
IF(NITER.EQ.1.0R.ERROR.LT.1.D-6.0R.
. NITER.EQ.MXITER) CALL PRINT
C.UNLOADING
IF (NITER.GT.1.AND.ERROR.LT.1.D-6.AND.IUNLD.EQ.0) CALL UNLOAD
IF(NITER.GT.1.AND.ERRCR.LT.1.D-6.AND.IUNLD.EQ.1) CALL ADJUST
IF(NITER.EQ.MXITER) GO TO 9
GO TO 7
9 CLOSE(3,STATUS="KEEP')
CLOSE (5, STATUS="'KEEP"')
CLOSE(6,STATUS='KEEP')
CLOSE(7, STATUS='KEEP')
CLOSE (8, STATUS="'KEEP"')
STOP
END

N

AR A S AR EA LSS ESS sl il sl il sl 2Rt 2R R R XX R R R RN R R B EREEREEREE S

c INPUT SUBROUTINE

LA A SR AR RS S LSRRl sl iss RSttt RSl 2Rl R R R R R RS EREEERE R

SUBROUTINE INPUT
IMPLICIT DOUBLE PRECISION (A-H,K,0-2)
COMMON/BLKO/R(500) ,AR(500) ,MXITER, NELM, N, NITER, IUNLD, PII, PCO,T
+MXITR, ITER, IDUM, IADJST, IBOUND
COMMON/BLK2/A4,B,AI,BO,YSTRES (500), SY, ERROR, ICURVE, ALPHA , M
COMMON/BLK3 /AA(500) ,BB(500),CC(500) ,U(500),P(500),UT(500)
COMMON/BLKS/E(500) ,ANU(500) ,EELAS, ANUE, IPLANE, IYCRT
COMMON/BLK7/EL(500) ,STTL(500), SRRL(500),S2ZL(500) , ETTL(500)

. ERRL (500)
.EZZL(500) ,UL(500),SEQL(S00), SRRLIN, STTLIN, ERRLIN, ETTLIN, SRRLOT
. STTLOT, ERRLOT, ETTLOT, EEQL (500) , SZZLIN, SRTL(500),ERTL(500)
COMMON/BLKS /NDAT, SIGDAT (20) ,ESTDAT (20) ,SYL (500}, SLOPE(20)
COMMON/BLK10/DESTDT (20)
COMMON/BLK12/METHOD

C.CHOOSE THE UPDATING METHOD
READ(3,11)
READ(3,111)METHOD



READ(3,11)
C.READ INTERNAL AND EXTERNAL RADIUS
READ(3, *)AI,BO
A=AT
B=BO
READ(3,11)
C.NUMBER OF STRIPS AND DEFINE THE STRIPS
READ(3,111)NELM
DR= (B-A) /FLOAT (NELM)

N=1
R(1)=AI
DO 10 I=1,NELM
N=N+1
10 R(N)=R(N-1)+DR

C.FOR MORE DETAILS NEAR THE BORE USE THE FCLLOWING
DR={(3.D0*AI)/ (1.D0* (NELM-2))
READ(3,11)

DO 10 I=1,NELM-2
N=N+1
100 R(N})=R({(N-1) +DR
N=N+1
R(N) =R (N-1) +INT((B-R(N-1})/2.)
N=N+1
R(N)=B

C.RE2D THE ELASTIC PROPERTIES AND STRESS STATE
READ(3, *) EELAS, ANUE, IPLANE
READ(3.,11)

C.RE2D YIELD STRESS VALUE AND TYPE OF UNIAXIAL CURVE MODEL
READ(3, *)SY, IYCRT
READ(3,11)

C. FOR RAMBERG-0SGOOD GET THE COEFFICIENTS
READ (3, *)M,ALPHA, ICURVE

C.ASSIGN INITIAL PROPERTIES TCO ALL STRIPS
DO 5 I=1,NELM
E(I)=EELAS
ANU(I)=ANUE
YSTRES (I)=SY

5 CONTINUE

C.INITIALIZATION OF STRESS FIELD
DO 103 I=1,NELM
STTL (I)=0.

SRRL(I)=0.
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S2ZL (I} =0.
SRTL(I)=0.
UL(I)=0.
CONTINUE
UL(I)=0.
SRRLIN=0.
STTLIN=0.
SZZLIN=0.
SRRLOT=0.
STTLOT=0.

C.BOUNDARY CONDITION

READ(3,11)

C.READ THE INTERNAL AND EXTERNAL PRESSURES AND INTERNAL TORQUE

80

READ(3, *)PII,POO,T
P(1)=PII

P (N} =POO

DO 80 I=2,N-1
P(I)=0.D0O
READ(3,11)

C.MAXIMUM NUMBER OF ITERATION

READ (3,111)MXITER
READ(3,11)

C.READ THE STRESS-~-STRAIN CURVE DATA (LOADING)

8l

23

READ(3,11)

READ (3, *) NDATL

DO 81 I=1,NDATL

READ(3, *)ESTDL(I) ,SIGDL(I})

DO 83 J=1,NDATL-1

SLOPEL (J) =(SIGDL(J+1) -SIGDL(J) )/ (ESTDL (J+1}-ESTDL (J) )

C.READ THE STRESS-STRAIN CURVE DATA (UNLOADING)

8S

87

READ(3,11)

READ (3, *) NDAT

DO 85 I=1,NDAT

READ (3, *)ESTDAT(I), SIGDAT (I)

DO 87 J=1,NDAT-1

SLOPE (J) = (SIGDAT (J+1) -SIGDAT(J) )/ (ESTDAT (J+1)} -ESTDAT(J) )

C.BAUSCHINGER FACTOR VALUES

READ(3,11)
READ (3, *) LDAT

DO 93 L=1,LDAT
READ(3,*)EP(L),BE(L)
DO 95 L=1,LDAT-1
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SLLOP(L)=(BE(L+1)-BE(L) )/ (EP(L+1)-EP(L))
FORMAT (2D10.5)

FORMAT (I4)

RETURN

END
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SUBROUTINE
FOR CALCULATIONS OF MATRIX *K* AND ITS INVERSE
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SUBROUTINE KMATX(I)

IMPLICIT DOUBLE PRECISION (A-H,K,0-Z)
COMMON/BLKO/R(500) ,AR(500) ,MXITER, NELM, N, NITER, IUNLD, PIZ,PQO, T
MXITR, ITER, IDUM, IADJST, IBOUND

COMMON/BLK1/K(2,2)
COMMON/BLK2/A,B,AI,BO,YSTRES(500), SY,ERROR, ICURVE, ALPH2, 11
COMMON/BLK3 /AA (500) ,BB(500) ,CC(500),U(500),P(500},,UT(500)
COMMON/BLK4/SZZ(500) ,SRR(500),STT(500),SRT(500),SEQ (500}
COMMON/BLKS/E(S00) ,ANU(500) , EELAS, ANUE, IPLANE, IYCRT
COMMON/BLKS /NDAT, SIGDAT (20) ,ESTDAT (20) , SYL (500) , SLOPE{20)
COMMON/BLK12/METHOD

C.INITIALIZATION OF THE COEFFICIENT MATRIX

DO 100 I=1,N

AA(I)=0.DO

BB(I)=0.DO0

CC(I)=0.D0

CONTINUE

DO 50 I=1,NELM

A=R(I)

B=R(I+1)

IF(NITER.GT.1.0R.IUNLD.EQ.1) CALL MATRPR(I)
IF(IPLANE.EQ.O0) THEN

K11l=((1.DO+ANU(I))/E{I))*{A**3/(B**2-A**2))
®(1.D0-2.DO*ANU(I)+B**2/A**2)

K22=(-(1.DO+ANU(LX))/E(I))*(B**3/(B**2-A**2))
*(1.D0-2.DO*ANU(I) +A**2/B**2)

K12=-2.D0* ({(1.DO-ANU(I)**2) /E(I)) *B**2*A/ (B**2-A**2)

K21=2.DO0* ((1.D0O-ANU(I)**2)/E(I))*A**2*B/(B**2-A**2)

ELSE

K11=((1.DO+ANU(I))/E(I))*{A**3/(B**2-A**2))
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K22=(-(1.DO+ANU(I))/E(I))* (B**3/(B**2-A*"2))
*(((1.DO-ANU(I))/ (1.DO+ANU(I)))+A**2/B**2)

K12=(-2.DO/E(I))*B**2*A/ (B**2-A**2)
K21=(2.DO/E(I) ) *A**2*B/ (B**2-A**2)

ENDIF

DETK=K11*K22~-K12*K21
IF(DETK.EQ.0) THEN

PRINT*, 'ERROR DETK=0'
WRITE(7,*) ‘ERROR DETK=0"*
STOP

ELSE

DETK=1.D0/DETK

ENDIF

C.FIND THE INVERSE OF "K*

50

IF(I.EQ.1) THEN

K(1,1)=DETK*K22

K(1,2)=-DETK*K12

ELSE

K(1,1)=-DETK*K22

K(1,2)=DETK*K12

ENDIF

K(2,2)=DETK*K11

K(2,1)=-DETK*K21

BB(I)=BB(I)+K(1,1)

CC(I)=CC(I)+K(1,2)

AA(TI+1)=RA(I+1)+K(2,1)
BB(I+1)=BB(I+1l)+K(2,2)

WRITE(4)K

CONTINUE

IF(IADJST.EQ.1) BB({IBOUND)=BB(IBOUND)*1.D20
IF(IADJST.EQ.1l) P (IBCUND)=BB(IBOUND)*U(IBOUND}
RETURN

END

WAARSSAAEE S S SSSARRR ALl SRRl R Rl E R R R R R R R s LR R R R R R

*

L]
*

SUBROUTINE
MATERIAL PROPERTIES
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SUBROUTINE MATRPR(I)
IMPLICIT DOUBLE PRECISION (A-H,K,0-2)
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COMMON/BLKO/R(500) ,AR (500) ,MXITER, NELM,N, NITER, IUNLD, PII, POO, T

MXITR, ITER, IDUM, TIADJST, IBOUND
COMMON/BLK2/A,B,Al,BO, YSTRES (500), SY,ERROR, ICURVE, ALPHA, I
COMMON/BLK4/S2ZZ (500),SRR(500) ,STT(500) ,SRT (500),SEQ(500)
COMMON/BLKS5/E(500) ,ANU(500) , EELAS, ANUE, IPLANE, IYCRT
COMMON/BLKS /NDAT, SIGDAT (20) , ESTDAT (20) , SYL (500) , SLOPE (20}
COMMON/BLK10/DESTDT (20)

COMMON/BLK12 /METHOD

C.CHOOSE THE METHOD FOR UPDATING MODULI
C.LOADING
IF (METHOD.EQ.1.AND.ICURVE.NE.0.AND UNLOAD.EQ.O0)THEN
C.ELASTIC~PERFECTLY PLASTIC
C.PROJECTION METHOD
IF(SEQ(I).LT.YSTRES(I)) RETURN
EE1=(YSTRES (I) /SEQ(I) ) *E{(I)
ETOT=YSTRES(I) /EE1l
E(I)=EE1l
EPLAS=ETOT-YSTRES (1) /EELAS
ERROR=ERROR+ (ABS (SEQ(I) -YSTRES(I))}**2
ANUEE= (2 .DO*ANUE*YSTRES (I) /EELAS+EPLAS) /
(2.DO*YSTRES (I) /EELAS+2.DO*EPLAS)
ANU (I)=ANUEE
ELSEIF (METHOD.EQ.2) THEN
C.NEUBER'S RULE
AREA=(SEQ(I)/E(I)}*SEQ(I)
IF (AREA.LT.YSTRES(I) **2/ (EELAS)) RETURN
ETOT=AREA/YSTRES (I)
EE1=YSTRES (I) /ETOT
E(I)=EEl
EPLAS=ETOT-YSTRES (I) /EELAS
ERROR=ERROR+ (ABS (SEQ(I)-YSTRES(I) )} **2
ANUEE=(2.DO*ANUE*YSTRES (I) /EELAS+EPLAS) /
. (2.DO*YSTRES (I) /EELAS+2.DO*EPLAS)
ANU (I) =ANUEE
ELSEIF (METHOD.EQ.3) THEN
C.GLINKA & MOLSKI
IF(SEQ(I).LT.YSTRES(I)) RETURN
ETOT:(SEQ(I)*'2+YSTRES(I)"2)/(2.D0'E(I)'YSTRES(I))
E(I)=YSTRES(I)/ETOT
EPLAS=ETOT-YSTRES (I) /EELAS
ERROR=ERROR+ (ABS (SEQ(I)-YSTRES (I)))**2
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ANUEE= (2 .DO*ANUE*YSTRES (1) /EELAS+EPLAS) /
(2.DO*YSTRES(I)/EELAS+2.DO*EPLAS)
ANU (I) =ANUEE
ELSEIF (METHOD.EQ.4}) THEN
C.AVERAGE
IF((SEQ(X)**2/E(I)).LT.YSTRES(I)**2/(EELAS)) RETURN
ETOTN=((SEQ(I)/E(I))*SEQ(I))/YSTRES(I)
ETOTG=(SEQ(I)**2+YSTRES(I)**2)/(2.DO*E(I) *YSTRES (I))
ETOT=ABS (DSQRT (ETOTN*ETOTG) )
E(I)=YSTRES(I)/ETOT
EPLAS=ETOT-YSTRES (I) /EELAS
ERROR=ERROR+ (ABS (SEQ(I)-YSTRES(I)))**2
ANUEE=(2.D0*ANUE*YSTRES (1) /EELAS+EPLAS) /
- (2.DO*YSTRES (I) /EELAS+2.D0O*EPLAS)
ANU (I)=ANUEE
ELSE
C.ARC-LENGTH

IF(SEQ(I) .LT.YSTRES(I)) RETURN
Cl=YSTRES(I)
C2=C1l/EELAS
ETOT=SEQ(I)/E(I)
ARCR=ABS (DSQRT( (ETOT/C2) **2+ (SEQ(I) /Cl}**2))
ETOT=ABS (DSQRT (ARCR**2-1.D0) ) *C2
EE1=YSTRES({(I) /ETOT
E(I)=EEl
EPLAS=ETOT-YSTRES (I) /EELAS
ERROR=ERROR+ (ABS (SEQ(I) -YSTRES (I)))**2
ANUEE={2 .DO*ANUE*YSTRES (I) /EELAS+EPLAS)/
(2.DO*YSTRES (I) /EELAS+2.DO*EPLAS)
ANU (I) =ANUEE
ENDIF
C.FOR RAMBERG-0SGOOD MODEL USE THE FOLLOWING
C.PROJECTION METHOD
IF (ICURVE.EQ. 0) THEN
IF(I.EQ.1.AND.NITER.EQ.2) SSS=SEQ(I)/SY
ETOT=SEQ(I)/E(I)
IITER=100
IIET=0
ICON=0
1 ITET=I1IET+1
FUNC= SSS+ALPHA* (SSS**M) - (EELAS*ETOT/SY)
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DFUNC=1.DO+M*ALPHA* (SSS** (M-1))
Z21=SSS-FUNC/DFUNC
IF(ABS((Z21-58S)/SsS) .LT.1.D~6) ICON=1
888=21
IF(ICON.EQ.0.AND.IIET.LT.IITER) GO TO 1

EEl1=(SSsS*SY) /ETOT

E(I)=EEl
YSTRES (I)=5SS*SY
EPLAS=ETOT- (SSS*SY) /EELAS
ANUEE= (2 .DO*ANUE* (SSS*SY) /EELAS+EPLAS) /
1 (2.DO0* (SSS*SY) /EELAS+2 .DO*EPLAS)
ANU (I) =ANUEE
ERROR=ERROR+ (ABS (SEQ(I) -SSS*SY) ) **2
C.OTHERWISE USE THE STRESS-STRAIN CURVE DATA
ELSE
ETOT=SEQ(I}/E(I)
DO 13 M=2,NDAT
IF (ETOT.LT.ESTDAT(M)) GO TO 7

13 CONTINUE
M=M-1
7 YSTRES (I)=SLOPE(M-1) * (ETOT-ESTDAT(M-1) ) +SIGDAT (M-1)

EE1=(YSTRES(I)/SEQ(I))*E(I)
ETOT=YSTRES(I) /EEl
E(I})=EEl
EPLAS=ETOT-YSTRES (I) /EELAS
ERROR=ERROR+ (ABS(SEQ(I)-YSTRES(I)))**2
ANUEE= (2.DO*ANUE*YSTRES (1) /EELAS+EPLAS) /
1 (2.DO*YSTRES(I)/EELAS+2.DO*EPLAS)
ANU (I) =ANUEE
C .UNLOADING
ELSEIF(IUNLD.EQ.1.AND.NITER.NE. 1) THEN
C.GET THE INDIVIDUAL UNLOADING CURVE OF EACH POINT
ESTDAU(1)=ESTDAT(1)
SIGDAU(1)=SIGDAT (1)
ESTDAU(2) =SYL(I) /SLOPE (1)
SIGDAU (2)=SYL(IX)
SLOPEU (1) =SLOPE(1)
DO 9 IJ=3,NDAT

9 IF(EYL(I) .LT.ESTDAT(IJ))GO TO S
I1J3=1J-1
5 ESTDAU (3) =sESTDAU(2) + (ESTDAT (IJ) -EYL(I))

SIGDAU(3)=SIGDAU({2)+SLOPE(IJ-1) *(ESTDAT(IJ) -EYL(I))
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SLOPEU (2} =SLOPE (IJ-~1)
IJI=1J
DO 10 L=4,3+(NDAT-1IJ)
ESTDAU (L) =ESTDAU (L~1) +DESTDT (IJI)
SIGDAU (L) = SIGDAU(L-~1)+SLOPE(IJI)*DESTDT(IJI)
SLOPEU (L-1) =SLOPE(IJI)
10 IJI=IJI+1

ENDIF

RETURN

END
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c TRIDIAGONAL SOLVER SUBROUTINE
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C.SOLVE THE SYSTEM OF LINEAR EQUATION

SUBROUTINE TRIDAG (N}

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON/BLK3 /AA (500) ,BB(500),CC(500),U(500),P(500),UT(500)
PARAMETER (NMAX=500)

DIMENSION GAM (NMAX)

IF(BB(1l) .EQ.0.)PAUSE

BET=BB(1)

U(1)=P(1l)/BET

DO 11 J=2,N

GAM(J)=CC(J-1)/BET
BET=BB (J) -AA(J) *GAM (J)
IF(BET.EQ.0.)PAUSE
U(J)=(P(J)-AA(J)*U(J-1)) /BET

11 CONTINUE
Do 12 J=N-1,1,-~1
U(J)=U0(J)-GAM(J+1) *U (J+1)
12 CONTINUE
RETURN
END
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c POST PROCESSING SUBROUTINE
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SUBROUTINE POST(U,UT)
IMPLICIT DOUBLE PRECISION(A-H,K,0-2Z)
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PARAMETER (PAI=3.141592654)
COMMON/BLK1/K(2,2)
COMMON/BLK2/A,B,AI,BO, YSTRES(500), SY,ERROR, ICURVE, ALPHA , M
COMMON/BLK4/SZZ (500) , SRR(500) ,STT(500),SRT(500),SEQ(500)
COMMON/BLKO/R (500) ,AR(500) ,MXITER,NELM,N,NITER, IUNLD, PII, POO,T
MXITR, ITER, IDUM, IADJST, IBOUND
COMMON/BLK6/SZZIN, SRRIN, STTIN, SRROUT

. STTOUT, ERRIN, ERROUT, ETTIN, ETTOUT
COMMON/BLKS/E (500) ,ANU (500}, EELAS, ANUE, IPLANE, IYCRT
COMMON/BLK7 /EL (500} , STTL(500) , SRRL(500) , S2ZL (500) , ETTL (500)

.ERRL({500)

+E2ZZL(500) ,UL(500), SEQL (500) , SRRLIN, STTLIN, ERRLIN, ETTLIN, SRRLOT
. STTLOT, ERRLOT, ETTLOT, EEQL (500) , SZZLIN, SRTL(500) , ERTL (500)
COMMON/BLK8/ERR(500) ,ETT(500) ,EZZ(500) ,ERT(500)
COMMON/BLK11/PERR(S00) ,EERR(500),PETT(500) ,EETT(500)

. PERT (500) , EERT(500)
DIMENSION U(500),UT(500)

REWIND (4)

C.FIND THE INTERNAL AND EXTERNAL PRESSURES OF EACH STRIP
C.USE LAME SOLUTION

DO 20 I=1,NELM

READ(4)K

IF(I.EQ.1)THEN
PI=K(1,1) *U(I)+K(1,2)*U(I+1)
PO=K(2,1)*U(I)+K(2,2)*U(I+1)

ELSE
PI=-K(1,1)*U(I)-K(1,2)*U(I+1)
PO=K(2,1)*U(I)+K(2,2)*U(I+1)

ENDIF

C.GET THE MID RADIUS OF EACH STRIP
C.FIND THE CORRESPONDING COEFFICIENT MATRIX

AR(I)=(R(I)+R(I+1))/2.D0

€0=1.D0/ (R(I+1)**2-R(I)**2)

C1=CO* ((PI*R(I)**2)-PO* (R(I+1)**2))
C2=CO* (PI-PO) P(R(I)**2)*R(I+1)**2

C.FIND THE RADIAL, TANGENTIAL AND SHEAR STRESSES IN EACH STRIP
C.FIND THE RADIAL, TANGENTIAL AND SHEAR STRAINS IN EACH STRIP

SRR (I)=C1-C2/ (AR(I)**2)
STT(I)=C1+C2/(AR(I)**2)
SRT(I)=T/(2.DO*PAI*AR(I)**2)
ERT(I)=SRT(I)*2.D0*(1+ANU(I))/E(I)



191

C.FIND THE VALUE OF AXIAL STRESS AND STRAIN

IF(IPLANE.EQ.OQ) THEN

C.PLANE STRAIN

SZZ(I)=ANU(I)*(STT(I)+SRR(I})
EZZ(I)=0.D0
ERR(I}=((1.DO+ANU(I))/E(I))*(SRR(I)~
. ANU(I) *{SRR(I)+STT(I}))
ETT(I)=((1.DO+ANU(I))/E(I})*(STT(I)-
. ANU(I)®(SRR(I)+STT(I)))
ELSE
.PLANE STRESS
EZZ(I)=-ANU(I)®(STT(I)+SRR(I})/E(I)
SZZ(I)=0.D0
ERR(I)=(1.DO/E(I)}*®(SRR(I)-ANU(I)"*STT(I))
ETT(I)=(1.D0/E(I))*(STT(I)-ANU(I)*SRR(I))
ENDIF
-FIND THE EQUIVALENT STRESS
.TRESCA CRITERIA
IF(IYCRT.EQ.OQ)}
SEQ(I)=2.DO0*ABS(DSQRT( ((SRR(I)-STT{I))/2)**2
. +SRT(I)**2))
.VON MISES CRITERIA
IF(IYCRT.EQ.1l) SEQ(I)=DSQRT(.SDO*{((STT(I)-SRR(I})*~2
+(STT(I})-S2ZZ(I)) **2+(SRR(I)-S22(1))**2+6.DO0*SRT(I)**2))
.FIND THE ELASTIC & PLASTIC STRAIN
EERR(I)=(1.DO/EELAS) *SRR (I}~ (ANUE/EELAS) * (STT(I)+SZ2Z(I))
EETT(I)=(1.DO/EELAS) *STT (1) - (ANUE/EELAS) * (SRR(I)+SZZ(I))
EERT (I})=2.D0*((1.DO+ANUE) /EELAS) *SRT(I)
PERR (I)=ERR(I)-EERR(I)
PETT(I)=ETT(I)-EETT(I)
PERT(I)=ERT(I)-EERT(I)
.FIND THE STRESSES AT THE BORE
IF(I.EQ.1)THEN
SRRIN=C1-C2/(R(I)**2)+SRRLIN
STTIN=C1+C2/ (R(I)**2) +STTLIN
.PLANE STRAIN
IF (IPLANE.EQ.0) THEN
ERRIN=( (1.D0+ANU(I))/E(I))* (SRRIN-
ANU (I) ® {(SRRIN+STTIN))
ETTIN=((1.DO+ANU(I))/E(I))™* (STTIN-
ANU(I)* (SRRIN+STTIN))
SZZIN=ANU(I) * (SRRIN+STTIN)



C.PLANE STRESS
ELSE
ERRIN=(1.DO/E(I)) * (SRRIN-ANU(I) *STTIN)
ETTIN=(1.DO/E(I)) *(STTIN-ANU(I) *SRRIN)
SZZIN=0.D0
ENDIF
C.FIND THE STRESSES AT THE EXTERNAL SURFACE
ELSEIF (I.EQ.NELM) THEN
SRROUT=C1-C2/ (R(I+1)**2)+SRRLOT
STTOUT=C1+C2/ (R(I+1)**2)+STTLOT
C.PLANE STRAIN
IF(IPLANE.EQ.0) THEN
ERROUT=((1.D0+ANU(I))/E(I))* (SRROUT-
. ANU(I) * (SRROUT+STTOUT) )
ETTOUT=((1.DO0+ANU(I))}/E(I})* (STTOUT-
ANU(I)* (SRROUT+STTOUT) )
ELSE
ERROUT=(1.DO/E(I))* (SRROUT-ANU(I) *STTOUT)
ETTOUT=(1.DO/E(I)}* (STTOUT-ANU (I) *SRROUT)
ENDIF
ELSE
ENDIF
20 CONTINUE
RETURN
END
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C SUBROUTINE FOR UNLOADING INITIATION
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SUBROUTINE UNLOAD
IMPLICIT DOUBLE PRECISION (A-H,K,0-Z)
COMMON/BLKO/R (500} ,AR(500) ,MXITER,NELM,N,NITER, IUNLD, PII,POO,T
.MXITR, ITER, IDUM, IADJST, IBOUND
COMMON/BLK2/A,B,AI,BO,YSTRES(500), SY,ERROR, ICURVE, ALPH3,M
COMMON/BLK3/AA (500) ,BB(500),CC(500),U(500),P(500),UT(500)
COMMON/BLK4/SZZ(500),SRR(500) ,STT(500), SRT(500),SEQ(500)
COMMON/BLK5/E (500) , ANU (500) , EELAS, ANUE, IPLANE, IYCRT
COMMON/BLK6/SZZIN, SRRIN, STTIN, SRROUT
. STTOUT, ERRIN, ERROUT, ETTIN, ETTOUT
COMMON/BLK7/EL (500) , STTL (500) , SRRL(500) ,SZZL(500) , ETTL (500)
.ERRL(500)
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.EZZL(500) ,UL(500),SEQL(500) , SRRLIN, STTLIN, ERRLIN, ETTLIN, SRRLCT
, STTLOT, ERRLOT, ETTLOT, EEQL (500) , SZZLIN, SRTL(500) ,ERTL(500)
COMMON/BLKB/ERR (500) ,ETT(500) ,EZZ (500) ,ERT(500)
COMMON/BLKS /NDAT, SIGDAT (20) , ESTDAT (20) , SYL (500) , SLOPE (20)

C.STORE THE LOADING STRESS FIELD

DO 10 I=1,NELM

SEQL (I)=SEQ(I)

EEQL(I)=SEQ(I)/E(I)

STTL(I)=STT(I)

SRRL(I)=SRR(I)

SZZL(I)=S2Z (1)

ETTL(I)=ETT(I)

ERRL (I)=ERR(I)

ERTL (I)=ERT(I)

EZZL(I)=EZZ (I)

SRTL(I)=SRT(I)

UL(I)=U0(I)

EL(I)=E(I)
C.STORE THE STATE OF STRESS AT THE END OF FIRST LOADING
C.THIS POINT IS THE REFERENCE POINT OF THE UNLOADING
C.IF ISOTROPIC HARDENING

SYL(I)=2*YSTRES(I)
C.FOR VARIABLE BAUSCHINGER EFFECT FACTOR FIND OVER-STRAIN

EPLAST=YSTRES(I)*{({(1./E(I)})-(1./EELAS))

DO 20 J=2,LDAT-1

IF (EPLAST.LT.EP(J)) GO TO 7

20 CONTINUE
C.GET THE CORRESPONDING VALUE OF BEF FROM THE DATA
7 BEF=SLLOP (J-1) *(EPLAST-EP (J-1) ) +BE(J-1)

C.FIND THE REVERSED YIELD STRSS

SYL(I)=(1.DO+BEF) *SY
C.NOTE FOR KINEMATIC HARDENING BEF=1 FOR ALL STRIPS

10 CONTINUE

UL(I)=U(I)

IUNLD=1

NITER=0

P(1)=0.D0

PII=P (1}

P (N) =POO

T=0.D6

SRRLIN=SRRIN
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STTLIN=STTIN
SZZLIN=SZZIN
SRRLOT=SRROUT
STTLOT=STTOUT
ERRLIN=ERRIN
ETTLIN=ETTIN
ERRLOT=ERROUT
ETTLOT=ETTOUT
DO 20 I=2,N-1
20 P(I})=0.D0
RETURN
END
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C SUBROUTINE FOR PRINTING THE RESULTS
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SUBROUTINE PRINT
IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON/BLKO/R(500) ,AR(500) ,MXITER, NELM,N,NITER, IUNLD, PII, PCO,T
MXITR, ITER, IDUM, IADJST, IBOUND
COMMON/BLK2/A,B,AI,BO, YSTRES(500), SY, ERROR, ICURVE, ALPHX, M
COMMON/BLK3/AA (500) ,BB(500),CcC(500),U(500),P(500),UT(500)
CCMMON/BLK4/SZZ (500) ,SRR(S00),STT(500),SRT(500),SEQ(500)
COMMON/BLKS/E(500) ,ANU(500) , EELAS, ANUE, IPLANE, IYCRT
COMMON/BLK6/SZZIN, SRRIN, STTIN, SRROUT
. STTOUT, ERRIN, ERROUT, ETTIN, ETTOUT
COMMON/BLK7/EL(500) , STTL(500) , SRRL(500) ,5Z2ZL(500) ,ETTL (500)
.ERRL(500)
+EZ2L(500) ,UL(500),SEQL(500) , SRRLIN, STTLIN, ERRLIN, ETTLIN, SRRLOT
. STTLOT, ERRLOT, ETTLOT, EEQL (500} , SZZLIN, SRTL(500) , ERTL (500)
COMMON/BLK8/ERR (500) ,ETT(500) ,EZZ (500) ,ERT(500)
COMMON/BLK11/PERR (500) ,EERR(500) , PETT(500) ,EETT(500)
1 PERT(500) ,EERT (500)

COMMON/BLK11/METHOD
IF(NITER.GT.1.0R .IUNLD.EQ.1l) GO TO S

WRITE(S, *)

WRITE(S,*)" ELASTIC-PLASTIC SOLUTION '

WRITE(S, *) ' OF '

WRITE(S,*) "' THICK-WALLED CYLINDER )

WRITE(S,*)

WRITE(S, *)



WRITE(S,*)
IF(PII.EQ.0Q.)WRITE(S, *)
* PROCESS : TORSION FOLLOWED BY PRESSURE’
IF(T.EQ.O)WRITE(S, *)
* PROCESS : PRESSURE FOLLOWED BY TORSION®
WRITE(S, *)
WRITE(S,*)* NUMBER OF ELEMENTS :', NELM
WRITE(5,*)}' INSIDE RADIUS ' ,Al
WRITE(S, ™)' OUTSIDE RADIUS :',BO
WRITE(S,*)' INSIDE PRESSURE ', P(1)
WRITE(S5,*)' OUTSIDE PRESSURE :',P(N)
WRITE(S,*)' INSIDE TORQUE ', 7T
WRITE(S5, ™)' ELASTIC MODULUS : ' ,EELAS
WRITE(S, *)*' POISSON RATIO :*,ANUE
WRITE(5,*) ' YIELD STRESS :',S8Y
IF (IYCRT.EQ.1l) WRITE(S,*)' YIELD CRITERION : VON MISES'
IF(IYCRT.EQ.0) WRITE(S,*)' YIELD CRITERION :  TRESCA'

WRITE(S,*)' MAX. # OF ITERATION:', MXITER
IF(ICURVE.EQ.1) THEN
WRITE (5, *)' HARDENING RESPONSE : GIVEN STRESS-STRAIN CURVE®
ELSE
WRITE(S, *) ' RAMBERG-0SGOOD EQUATION'’
WRITE(S5,*)" ', M= LM, ALPHA=' 6 ALPHA
ENDIF
IF (IPLANE.EQ.OQO)WRITE(S,*) "' PLANE STRAIN®
IF (IPLANE.EQ.1)WRITE(S,*)* PLANE STRESS'
IF(METHOD.EQ.1l)WRITE(S,*)' PROJECTION METHOD'
IF (METHOD.EQ.2)WRITE(S, *)*' NEUBER'S METHOD'
IF (METHOD.EQ.3)WRITE(S5, *)' GLINKA'S METHOD®
IF (METHOD.EQ.4)WRITE(S, *) ' AVERAGE ENERGY METHOD'
IF (METHOD.EQ.5)WRITE (5, *})' ARC-LENGTH METHOD'
WRITE(S,*)
CONTINUE
EY=SY/EELAS
IF(NITER.EQ.1) THEN
WRITE(S,*)
WRITE (5, *)
WRITE (S, *)
IF(IUNLD.EQ.O)
WRITE(S, *)* PSEUDO ELASTIC SOLUTION (LOADING)'
IF(IUNLD.EQ.1)
WRITE(5,*)" PSEUDO ELASTIC SOLUTION (UNLOADING) '
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IF(NITER.EQ.MXITER) WRITE(S.,*)'
IF (NITER.NE.MXITER)} WRITE(S,*)' SOLUTION CONVERGED AFTER',

WRITE (S, *)
WRITE(S,*)

ELSE

WRITE(S,*)
WRITE(S, *)

NITER, ' ITERATION
WRITE(S, *)

ENDIF

WRITE(S, *)

WRITE(S,*)

WRITE(S,*)' NODE NO. COORD.
WRITE(S5,*) ' ~—=---=-=--
WRITE(8,*)* NODE NO. COORD.
WRITE(8,*) ' ~=wecemno
WRITE(S, *)

DO 10 I=1,N
IF(NITER.EQ.1) THEN
WRITE(5,1)I,R(I),U(I),UT(I)

ELSE

IF(IUNLD.EQ.1l) WRITE(S5,1)I,R(X),U({I),UT(I)

IF (IUNLD.EQ.0) WRITE(S5,1}I,R(I),U(X),UT(I)
IF(IUNLD.EQ.1) WRITE(8,1)I,R(I)/AI,U(I),UT(I)
IF(IUNLD.EQ.O0) WRITE(8,1)I,R(I),U(I),UT(I)

SOLUTION DID NOT CONVERGED'
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ENDIF

CONTINUE

WRITE(S, *)

IF(IPLANE.EQ.O) THEN

WRITE(S5, *)' RAD. STT sSZ2Z2*,

' SRT, SEQ, E*
ELSE

WRITE(S,*)' RAD STT SZZ',

' SRT, SEQ, E'
ENDIF

WRITE(6,*)' RAD STT sz,

' SRT SRR SEQ'

WRITE(7,*)*' RAD PERR PETT',

! EZZ PERT PEEQ*

DO 20 I=1,NELM
IF(NITER.EQ.1) THEN
IF (IPLANE.EQ.0) THEN



WRITE(S, 2)AR(I),STT(I),SZ2Z(I},SRT(I),SEQ(I)

ELSE

WRITE(S,2)AR(I),STT(I),S2Z(1),SRT(I),SEQ(I)

ENDIF
ELSE

IF (IPLANE.EQ. Q) THEN
IF(IUNLD.EQ.0.) WRITE(S,2)AR(I),STT(I),SZZ(I).SRT(I),SEQ(I),E(I)
IF(IUNLD.EQ.1) WRITE(5,2)AR(I),STT(I),S2Z(I),SRT(I),SEQ(I},E(I)

ELSE
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IF(IUNLD.EQ.O) WRITE(S,2)AR(I),STT(I),S2Z(I),SRT(I),SEQ(I), E(I)
IF(IUNLD.EQ.1) WRITE(S5,2)AR(I),STT(I),SZZ(I)
+SRT(I},SEQ(I), (SEQ(I)/E(I))-(SEQ(I))/EELAS

ENDIF

IF(IUNLD.EQ.0) WRITE(6,3)AR(I),STT(I),SZZ(I),SRT(I),SRR(I)

+SEQ(I)

IF(IUNLD.EQ.0) WRITE(7,3)AR(I),PERR(I),PETT(I)

+EZZ (I}, PERT(I)

. (SEQ(I) /E(I)-SEQ(I)/EELAS)
IF(IUNLD.EQ.1l) WRITE(6,3)AR(I),STT(I),S2Z(I)

+SRT(I},
SRR(I),SEQ(I)

IF(IUNLD.EQ.1) WRITE(7,3)AR(I),PERR(I),PETT(I)

20

(E2Z (1), PERT(I),

((SEQ(I)/E(I))-(SEQ(I))/EELAS)

ENDIF
CONTINUE
WRITE(S,*)
WRITE(S, *)

IF(NITER.EQ.1) RETURN
IF(IUNLD.EQ.OQ) THEN

WRITE(S, *) * HOOP
WRITE(S, *) ' AXIAL
WRITE(S, *) 'RADIAL
WRITE(5, *) ' HOOP
WRITE(S, *) ' RADIAL
WRITE(S, *)
WRITE(S, *) 'RADIAL
WRITE(S, *) ‘RADIAL
WRITE(S, *) * HOOP
WRITE(S. *) ' HOOP
ELSE
WRITE(S, *) ' HOOP

STRESS
STRESS
STRESS
STRAIN
STRAIN

STRESS
STRAIN
STRESS
STRAIN

STRESS

AT
AT
AT
AT
AT

AT
AT
AT
AT

AT

INSIDE CORE :',STTIN
INSIDE CORE :',SZZIN
INSIDE CORE :',SRRIN
INSIDE CORE :',ETTIN
INSIDE CORE :',ERRIN
OUTSIDE CORE :',6 SRROUT

OUTSIDE CORE :°',ERROUT
OUTSIDE CORE :',STTOUT
OUTSIDE CORE :',ETTOUT

INSIDE CORE :', STTIN



WRITE(S, *) 'AXIAL
WRITE(S, *) 'RADIAL
WRITE(S, *) 'AXTAL
WRITE(S, *) 'RADIAL
WRITE(S, *) ' HOOP
WRITE(S5, *)
WRITE(S,*) 'RADIAL
WRITE(S, *) 'RADIAL
WRITE(S, *) *HOOP
WRITE (S, *) 'HOOP
ENDIF

FORMAT (1X,IS,3(8X,E12.6)})

STRESS
STRESS
STRESS
STRAIN
STRAIN

STRESS
STRAIN
STRESS
STRAIN

AT
AT
AT
AT
AT

AT
AT
AT
AT

INSIDE CORE
INSIDE CORE
INSIDE CCRE
INSIDE CORE
INSIDE CORE

OUTSIDE CORE
OUTSIDE CORE
QUTSIDE CORE
QUTSIDE CORE

FORMAT (F5.2,4(3X,E12.5),2X,E12.5)
FORMAT (F7.3,5(2X,E12.5),2X,F10.6)

RETURN
END

:*,8ZZIN
:*,SRRIN
:',S82ZIN
' ,ERRIN
:*' ,ETTIN

: ', SRROUT
: ', ERROUT
', STTOUT
', ETTOUT

"

"
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APPENDIX B

MAPLE V.4 OUTPUT
TOTAL DEFORMATION THEORY FOR A SEQUENCE OF LINEAR
- LOADING
(LINEAR HARDENING MATERIALS)

This appendix includes a surnmary of the integration of Eq. (5.10) based on the
output from MAPLE V 4. The result of this integration is given in Eq. (5.13).

> restart;

DEFINITIONS OF THE PROPORTIONALITY VARIABLES

> EQ:=(a+k*b)*((2*k-1)*h+2-(c*2-d*2))/{(-k*(i-k)*h*2-k
*(cr2-4~2)+c*r2);
(B.1)
_ (a+kb) (k-1 - +d%)

k(1 =kYR -k(P-d)+c*

INTEGRATION FROM THE STARTING AND ENDING POINT OF
NEXT PROPORTIONAL LOADING

> FC:=int (BEQ.k=0..1);
(8.2)

FC:=(2b4f%1 B ~2%3bd 1 +2 as[BL i In(d) + %3 b ¢*

+0y Bl B In(d)=2%3b P d+b 2B In(d) + %3 b o’

~b Bl In(d)-2%3b PR+ B3b k') /(%L B -2 %25 1
+2a4 %1 BIn(c)-%2bc +54BL B In(c)+2%2b ¢ &
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b B1 In(c)-B2bd ~b 4% In(c) +2%2b K- %26 k') / (
V%1 1)

%1 :=2hc h+2h2dz c+2ld-d
B+t -
%2 = arc (

%3 [h‘—c +d2J
%3 := arctan| —F7—=
1/%1

DEFINITION OF END POINTS STRESS AND STRAIN PARAMETERS

> alias(s([al=a):
> alias(Delta(S)=b):
> alias(sigmal[Al=c):
(B8.3)
> alias(sigmal[Bl=d):
> alias((Pelta({epsilon(ij])}=PC1l):
> alias((Delta(sigma))=h):

SUBSTITUTION

> EQ:=EQ;
(3.4)

(S, +kA(S)) ((2k-1) A(G)* -G, +3G; )

EQ := 2 2 2
k(1 -k)A(G) -k (o, -Gy ) +0,

THE CHANGE IN PLASTIC STRAIN
> FCl:=FC;
(8.5)
Ale;) = (2 AS) Y %1 A(G): —2 %3 A(S) 6, B(0)?
+25,4%1 A(G)? In(G,) + %3 AS) 0, +A(S) Y %1 ACS)? In(a,)
~2%3A(5) 0, O +A(S) G, %1 In(G,) + %3 ACS) O
~A(S) 05 %1 In(0,) -2 %3 AS) 0, AGY: + %3 AS) A(S)*) / (%1
A(GY) = (2 B2 A(S) 0, A(G)2+25, 4% A(o)? In(c,) - %2 A(S) O,
+ A Y B1 A(G)2In(5,) +2 B2 A(S) 6, 0, +A(S) 6, /%I In(a,)
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4 2 2 "
- %2 A(5) 05 —A(S) 0, 4 %1 In(G,) +2 %2 A(S) 5, A(G)?
- %2 AS) A(SY) / (W1 A(S)?)
%1:=2A(6)* 6, —A(6)' +2A(c) 6, -0, +20, 0, -0,
(A(c)2+o'i—cs"
\ V%l
4 2 2 2
A(c)Y -0, +0p
\ %1

%2 := arctan|

%3 := arctan

SIMPLIFICATION

> simplify({");
(B.6)

(2A(5) 4/ %1 A(G) -2 %3 A(S) 6, 8(6)*+2 5, /%1 A(G) In(a,)

+ %3 AS) 6, +A(S) 4B MG In(05) -2 B3 AS) 6, 0,

+A(S) 0, %1 In(ap) + %3 AS) 65" — ACS) 0, /%1 In(5,)

~2%3 A(S) G, A(G)+%3 ACS) A(G)* - 2 %2 A(S) s, A(G)

-2 sﬂ/%-A(c;)2 In(c,) + %2 A(S) 6, — A(S) %1 A(G)? In(a, )
2%24() G, 6 —A(S) G zﬁm(g) +B2AS) o,

+A(S)0'B 1/% 1 In(c,) -2 %2 A(S) o;, A(G)? + %2 A(S) A(G) )/(1/
A(S))

2 2 4 2 2 4 2 2 4
%1:=2A(6)" 0, -A(6)" +2A(6)° 05 ~G, +20, ©; -0,

2 2 2
(A(c) +0, —Gp

2 := arctan ——
\ V %1

2 2 2
A(o) -0, +0p

.3 -= —_—
€D . arctan\ M J

e




APPENDIX C

PLASTIC STRAIN CALCULATION FOR A SEQUENCE OF LINEAR
NONPROPORTIONAL LOADINGS

This appendix includes three items: 1) the subroutine that utilizes the total deformation
formula given in Eq. (5.13) for calculation of plastic strain field, 2) MAPLE V.4
worksheet providing the integration results for materials obeying the Ramberg-Osgood
relation, and 3) the FORTRAN code generated automatically by MAPLE V.4 based on

the results of integration for the Ramberg-Osgood relation.

The MAPLE V.4 worksheet is a typical example for generating total deformation
formula for nonhardening materials. In this example the Ramberg-Osgood relation in a
form shown in Eq. (2.11) is used. The hardening exponent n=0.287, which is for
stainless steel 304, is used. This Maple routine automatically generates a FORTRAN

code shown at the end of this appendix.

R AR TN R R RN R R A R N R P R R A R R T A T AR R A A A A N A XA TN AT RN

C. THIS SUBROUTINE WILL ADJUST THE STRAIN FIELD FOR A
C. NONPROPORTIONAL LOADING USING THE DERIVED TOTAL
C. DEFORMATION FORMULATION
A A S 2SR ERE2R 2RSS XS sdls il llalis i il i il il R i il i s il RSl RR S
C. THE MAIN PROGRAM LISTING IS IN APPENDIX A
C. DEFINITION OF VARIABLES
SUBROUTINE ADJUST
IMPLICIT DOUBLE PRECISION (A-H,K,0-2)
DIMENSION DELSEQ(SQ0) ,SRLPRM(500),STLPRM(500),SZLPRM(500)
. PETTL (500) , PERRL (500) , PERTL (500)
SRPRM(500) , STPRM(500) , SZPRM(500) ,SIIL(500)
,SII(500),DELSRR(500),DELSZZ(500) ,DELSTT(500) ,DELSRT(500)
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S
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.DELERR(500) ,DELETT (500) ,DELEZZ (500} , DELERT(500)
.EERRL(S00) ,EETTL (500) ,EERTL(500)
COMMON/BLKOQO/R(500) ,AR{500) ,MXITER, NELM, N,NITER, IUNLD, PII, POO,T
MXITR, ITER, IDUM, IADJST, IBOUND
COMMON/BLK1/K(2,2)
CCMMON/BLK2/A,B,AI,BO, YSTRES(500), SY,ERROR, ICURVE, ALPHA , M
COMMON/BLK3/AA(500) ,BB(500) ,CcC(500),U(500),P(500)
COMMON/BLK4/S2Z (500) ,SRR(500) ,STT(500) ,SRT(500),SEQ(500)
COMMON/BLKS/E (500) ,ANU(500) , EELAS, ANUE, IPLANE, IYCRT
COMMON/BLK6/SZZIN, SRRIN, STTIN, SRROUT
., STTOUT, ERRIN, ERROUT, ETTIN, ETTOUT
COMMON/BLK7 /EL (500) , STTL(500) , SRRL(500) ,SZZL(500) ,ETTL(500)
,ERRL (500)
.EZZL (500) ,UL(500),SEQL(500) , SRRLIN, STTLIN, ERRLIN, ETTLIN, SRRLOT
. STTLOT, ERRLOT, ETTLOT, EEQL (500) , SZZLIN, SRTL (500) , ERTL (500)
COMMON/BLK8/ERR (500) ,ETT(500) ,EZZ (500) ,ERT(500)
COMMON/BLXS /NDAT, SIGDAT (20) , ESTDAT (20) ,SYL(500) ,SLOPE(20)
COMMON/BLK11/PERR (500) ,EERR (500) , PETT(500),EETT(500)
. PERT(500) ,EERT(500)

EEPLAS=SLOPE(2)
IF (IADJST.EQ.Q) THEN

C.SAVE THE STRESS VALUES OF THE FIRST LOADING

DO 10 I=1,NELM
EERRL(I)=(1.DO/EELAS) *SRRL(I) - (ANUE/EELAS) * (STTL(I)+SZZL(I))
EETTL(I)=(1.DO/EELAS) *STTL(I) - (ANUE/EELAS) * {SRRL(I)}+SZZL(I))
EERTL(I)=2.D0*((1.D0+ANUE) /EELAS) *SRTL(I)

PERRL (I)=ERRL (I)-EERRL(I)

PETTL (I)=ETTL (I)-EETTL(I)

PERTL(I)=ERTL(I)-EERTL(I)

C.FIND THE HYDROSTATIC PRESSURE AND THE DEVIATORIC STRESS OF
C.THE FIRST LOADING

10

SIIL(I)=(1.DC/3.D0)*(SRRL(I)+STTL(I)+SZZL(I))
SRLPRM(I)=SRRL(I)-SIIL(I)
STLPRM(I)=STTL(I)-SIIL(I)
SZLPRM(I)=SZZL(I)-SIIL(I)

CONTINUE

ELSE

ENDIF

C.CALCULATE THE STRAINS

DO 20 I=1,NELM
IF(SEQ(I).GT.SY) THEN



204

C.FIND THE DEVIATORIC STRESS

SII(I)=(1.D0/3.D0)*(SRR(I)+STT(I)+SZZ(I))
SRPRM(I)=SRR(I)-SII(I)
STPRM(I)=STT(I)-SII(I)
SZPRM(I)=SZ2Z(I)-SII(I)

C.FIND THE CHANGES IN DEVIATORIC STRESS TENSOR

DELSRR (I) =SRPRM(I)-SRLPRM(I)
DELSTT(I)=STPRM(I)-STLPRM(I)
DELSZZ (1) =SZPRM(I)-SZLPRM(I)
DELSRT(I) =SRT(I) ~SRTL(I)

C.FIND THE EQUIVALENT STRESS FOR STRESS CHANGES

DELSEQ(I)=DSQRT(.5D0* ( (DELSTT (I} -DELSRR({I))**2
+ (DELSTT(I) -DELSZZ (I)) **2+ (DELSRR(I)-DELSZZ(I))**2
+6 .DO*DELSRT(I)**2))

C.FIND THE ELASTIC & PLASTIC STRAIN OF THE COMBINED PROPORTIONAL LOADING

EERR(I)=(1.DO/EELAS) *SRR(I) - (ANUE/EELAS) * (STT(I)+SZZ(I))
EETT(I)=(1.DO/EELAS) *STT(I) - (ANUE/EELAS) ®(SRR(I)+SZZ(I})
EERT(I)=2.DO*( (1.DO+ANUE) /EELAS) *SRT(I)
PERR(I)=ERR(I)-EERR(I)

PETT (I)=ETT(I)-EETT(I)

PERT (I)=ERT(I) -EERT(I)

C.CALL THE PLASTIC STRAIN CALCULATION SUBROUTINE GENERATED BY C.MAPLEV.4

CALL PLSCAL (SRLPRM(I),DELSRR(I),SEQL(I),SEQ(I)
,DELSEQ(I) ,DELERR(I),M,ALPHA, EELAS, SY)

CALL PLSCAL (STLPRM(I),DELSTT(I),SEQL(I),SEQ(I)
,DELSEQ(I) ,DELETT(I) ,M, ALPHA, EELAS, SY)

CALL PLSCAL (SRTL(I),DELSRT(I),SEQL(I),SEQ(I)
,DELSEQ(I),DELERT(I),M,ALPHA, EELAS, SY)

DELERT (I} =2.DO®DELERT(I)

C.=xDD UP THE STRAINS

20

PERR (I)=DELERR (I)+PERRL(I)
PETT(I)=DELETT(I)+PETTL(I)
PERT (I)=DELERT (I)+PERTL(I)
ERR(I)=PERR(I)+EERR(I)
ETT(I)=PETT(I)+EETT(I)
ERT(I)=PERT(I)+EERT(I)
ELSE

PERR (I)=PERRL (I}
PETT(I)=PETTL(I)
PERT(I)=PERTL(I)

ENDIF

CONTINUE



CaLL PRINT
IDUM=1
RETURN

END

I~
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MAPLE V4

TOTAL DEFORMATION THEORY FOR A SEQUENCE OF LINEAR
NONPROPORTIONAL LOADINGS
(RAMBERG-OSGOOD MATERIALS)

epsl(p)=(sig/HYN(1/n)

> restart;

DEFINITIONS OF THE PROPORTIONALITY
VARIABLES

> EQ:=(s8a+k*dels)*({2*k-1)*daig+2-~(siga~2-s
igb~2))*(k*(-1+k)}*dsig*2-k*(siga*2-sigb~2
Y+8iga*2)+(7/2-3};
(C.1)
EQ :=(sa +k dels) ((2 k- 1) dsig® — siga”® + sigh)
'\/_k (-1 +k) dsig2 -k (J:igaz2 - sigbz) + siga2

INTEGRATION FROM THE STARTING AND ENDING
POINT OF NEXT PROPORTIONAL LOADING

> FC:=int(EQ,k=0..1);
(C.2)
1
FC :=E(3 dels siga8 In(2) + 6 dels .s'iga8 In(dsig) + 3 dels sigb8 In(2)

+ 6 dels sigh® In(dsig ) — 3 dels sigh® %2 - 3 dels siga® %2
372 372
+ 112 dels (sigh®) _ dsig* ] dsig® + 128 sa (sigh®) _ dsig* + dsig®

~ 6 dels sigh® +/ sigh® dsig* +/ dsig® ~ 18 dels siga® o/ sigh® dsig* 4/ dsig®
+ 6 dels dsig® J sigh® af dsig® - 6 dels siga® o/ sigh® 1/ dsig’

. 3irn s N
— 16 dels sigh® (sigh®)  dsig* \/ dsig® — 6 dels sigh* 4] sigh® dsig? +] dsig’




+ 6 dels sigh® +f sigh® 4] dsig® — 12 dels siga® 4] sigh® sigh® dsig* f dsig*

+ 3 dels dsig® In(2) — 3 dels dsig® %2 + 6 dels dsig® In(dsig)

+ 12 dels siga® sigh® %2 — 24 dels siga® sigh® In(dsig) - 12 dels siga® sigh’ In(2)
+ 12 dels siga® sigh® %2 — 24 dels siga® sigh® In(dsig) + 18 dels siga® sigh* In(2)
— 18 dels siga® sigh* %2 + 36 dels siga* sigh* In(dsig)

— 12 dels siga® sigh® dsig* %2 + 24 dels siga” sigh” dsig* In(dsig)

— 12 dels .s'igb6 dsig? In(2) + 12 dels sigb‘S dsig® %2 — 24 dels sigh® dsig” W dsig)
— 12 dels dsig® sigh® In(2) + 12 dels dsig® sigh® %2 — 24 dels dsig® sigh® In(dsig)
— 12 dels siga® dsig? In(2) + 12 dels siga® dsig* %2 — 24 dels siga® dsig® In(dsig)
+ 12 dels siga® sigh® dsig* In(2) — 12 dels siga® sigh® dsig* %2

+ 24 dels siga4 sigb2 d.s‘ig2 In(dsig) + 18 dels siga4 dsig* In(2)

— 18 dels siga’ dsig* %2 + 36 dels siga® dsig* In(dsig) + 18 dels sigh® dsig* In(2)
- 18 dels sigh” dsig* %2 + 36 dels sigh* dsig* In(dsig) — 12 dels dsig® siva™ In(2)
+ 12 dels dsig® siga® %2 — 24 dels dsig® siga® In(dsig)

+ 12 dels siga2 st'gb4 dsig?' In(2) - 12 dels siga2 sigb4 dsig2 2

+ 24 dels siga® sigh® dsig® In(dsig) + 12 dels siga® sigh* dsig" In(2)

. 1
— 12 dels siga® sigh® In(2)) / (dsig* +f dsig?) *To2 (-3 dels siga® In(2)

- 6 dels siga® In(dsig) ~ 3 dels sigh® In(2) + 3 dels sigh® %1 + 3 dels siga® %1
+ 3 dels dsig® %1 — 6 dels sigh® In(dsig ) + 12 dels siga® sigh* dsig* %1

+ 12 dels siga® sigh* dsig® %1 — 12 dels sigh® dsig® %1 + 18 dels sigh* dsig* %1
- 12 dels siga® dsig® %1 — 12 dels siga® sigh® %1 + 18 dels siga’ sigh* %1

~ 12 dels dsig® sigh* %1 + 18 dels siga® dsig* %1 + 12 dels siga® sigh® dsig® %1
— 12 dels dsi g6 .siga2 %1 — 12 dels siga6 sigb2 %1 — 3 dels a'sig8 In(2)

- 6 dels dsig® In(dsig) + 24 dels sigd® sigbf' In(dsig) + 12 dels siga” sigb2 In(2)
+ 24 dels siga6 sigb2 In(dsig) — 18 dels sz'ga" sigb4 In(2)

~ 36 dels siga” sigh® In(dsig) — 24 dels siga® sigh* dsig* In(dsig)

+ 12 dels sigh® dsig® In(2) + 24 dels sigh® dsig® In(dsig)

+ 12 dels dsig® sigh® In(2) + 24 dels dsig® sigh® In(dsig)

+ 12 dels siga® dsig2 In(2) + 24 dels siga‘ d.sig2 In(dsig)

~ 12 dels siga® sigh® dsig® In(2) — 24 dels siga” sigh® dsig*® In(dsig)

— 18 dels siga® dsig* In(2) — 36 dels siga® dsig* In(dsig)

— 18 dels sigh* dsig® In(2) — 36 dels sigh* dsig* In(dsig)

+ 12 dels dsig® siga® In(2) + 24 dels dsig® siga” In(dsig)



— 12 dels sig02 sigb4 dsig2 In(2) - 24 dels siga2 sigb‘ dsig2 In(dsig)
— 12 dels siga” sigh® dsig* In(2) + 12 dels siga” sigh® In(2)

32 2 2 2
+ 16 dels sigh” (siga®)  dsig® dsig® — 18 dels sigh® 4/ siga® dsig’ qf dsig”
- 6 dels 1/ siga® siga’ dsig* «f dsig* + 6 dels siga® 4] siga® +f dsig®
— 6 dels siga’ 1/ sigd® dsig® «j dsig? — 12 dels siga® A siga® sigh” dsig* dsig”
+ 18 dels sigh* 4f siga® dsigz‘\/ dsig® + 18 dels siga® sigh® +f siga® dsig?
3r2 2 ) 2
— 16 dels siga® (siga®) ~ dsig” 4| dsig® — 18 dels siga® 4/ siga® sigh® '\/ dsig*
.06 . 2 . 2 . 2372 4 . 2
~ 6 dels sigh’ +f siga™ +f dsig® — 16 dels (siga”)  dsig" +f dsig

3/2 :
- 128 sa (sigaz) dsig* 1/ 4:1'.sz’g2 + 6 dels dsigls siga2 dsig2 ) / (dsig* 1/ dsiyg’

)
%1 = In(— dsig® dsig* —+f dsig® siga® +4+/ dsig* sigh® + 2 +f siga® dsig*)
%2 = In(+f dsig® dsig® —«f dsig® siga® ++f dsig® sigh® + 2 4] sigh® dsig?)
DEFINITION OF END POINTS STRESS AND STRAIN
PARAMETER

> alias(S[A}=sa):
> alias(Delta(S)=dels):
> alias(sigmaifAl=siga):
> alias(sigma[Bl=s8igb):
(C.3)
> aliag((Delta(epsilonf{ij]))=FCl):
> alias((Delta(sigma))=ds8ig):

SUBSTITUTION

1
A(ey) =755 (3 ACS) 6, In(2) +6 A(S) 6, In(A(G)) +3 A(S) G, In(2)

+6 A(S) 0, In(A(G)) =3 A(S) G5 %5 -3 A(S) G, %5
+112A5) (05 )~ A(G) Y A(G)? +1285, (0,) ~ A(G) 4/ Ao’

2 2 4 2 2 2 s ,
-6 A(S)oy Af0p A(G) 4/A(C) —18A(S) o, Af G A(G) 4 A(G)
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+6A(S) A(6)° 4/ 05" Y A0) ~6A(S) 6, 4 0, Y ACo)?
2 2312 ) " 4 2 » "
-16 A(S)o, (05) A(0G) ‘\/A(G)”—-6A(S)c,, Oz A(G) A/ A(G)”
2 2372 2 3 4 2 2 ~
+16A(S)o, (o) A(c) 4 A(G) +18A(S) o, Op GCp 1/A(0')‘
2 4 2 2 4 2 2 2
~-18A(S)o, oy A/ G, ‘\/A(c) + 18 A(S) o, Af o5 A(G) 4 A(0)
6 2 3 2 2 2 R "
+6A(S) oy A/ 6, AfA(G) ~12A(S) 0, 4/ o; oz A(o) v/ Al(G)”
+3 A(S) A(6)° In(2) =3 A(S) A(S)® %5 + 6 A(S) A(6)® In(A(G))
+12A(8) 6, G %S-24A(S) G, 0, I(A(S)) - 12A(S) o, op In(2)
+12A(5) 0, 6 B5-24 A(S) G, 05 I(A(G)) + 18 A(S) o, o, In(2)
~18A(S) G, G %5+36A(S) 0, O I(A(G)) - 12A(S) 6, 6, A(G) %5
+24A(5) G, 65 A(G)* I(A(G)) — 12A(S) 6, A(G)’ In(2)
+12A(S) 65 A(GY2 %5 —24 A(S) 6,5 A(G)? In(A(G))
~12A(8) () 6, In(2) + 12 A(S) A(G)° 6, %3
~24 A(S) A(6)* 6, In(A(G)) — 12 A(S) 6,° A(S)? In(2)
+12A(5) 6, A(G)? %5 - 24 A(CS) 6, A(G)? In(A(S))
+12A(8) 6, 6, A(G) In(2) - 12A(S) 6, 6, A(G): %5
+24 A(S) cs_: ch A(cs')2 In(A(cG)) + 18 A(S) c; A(cr)" In(2)
~18 A(S) 6, A(G) %5 +36 A(S) 0, A(G) In(A(G))
+18A(S) o, A(G) In(2) — 18 A(S) 0, A(G) %5
+36 A(S) 6 A(G) In(A(G)) - 12 A(S) A(G)® s, In(2)
+12A(S) A(6) G, %5 —24 A(S) A(S) 6, In(A())
+12A(5) 6, 05 A(G)*In(2) - 12 A(S) 6, 6, A(G) %5
+24 A(S) 6, G5 A(G) IN(A(G)) +12A(S) 6, G, A(G) In(2)

2 6 1 8
- 12A(5) 6, o5 In(2)) / (ACo)* A6)) 47 (3 A(S) o, In(2)

~6A(S) 6, In(A(G)) ~3A(S) G, In(2) +3 A(S) 0, %4 +3 A(S) G, B4
+3A(S) A(0)® %4 — 6 AS) 65 In(A(G)) +12A(S) 6, 6, A(G) %4
+12A(5) 6, o5 A(G) %4 — 12 A(S) 05 A(G) %4 + 18 AS) o, AG)' %4



_12A(S) 0, A(G) B4 - 12 A(S) G, Gy %4+ 18 A(S) G, O b

“12 A(S) A(G) 6, T4 + 18 A(S) 6, A(G) Bd+ 12 A(S) G, G, A(G) B4
~12A(5) A(G)° 6, B4 — 12 A(S) 6, O %43 A(S) A(G)® In(2)

—6 ACS) A(G) In(A(G)) + 24 A(S) 6, G, In(A(S)) + 12 A(S) G, 0 In(2)
+24 A(S) 6, 0, In(A(G)) — 18 A(S) G, G, In(2) =36 A(S) 6, Op In(A(G)]
_24A(S) 6, 6, A(G)Y In(A(G)) + 12 A(S) 65 A(G)? In(2)

£24 A(8) 6, A(G) I(A(G)) + 12 A(S) A(6)° 05 In(2)

+24 A(S) AG)® G, In(A(G)) + 12 A(S) G, A(G) In(2)

+24 A(S) 6, ACG) In(A(G)) - 12 A(S) G, G, A(G) In(2)

~24A(S) 6, G, A(G) In(A(G)) ~ 18 A(S) 6, A(G)* In(2)

~36 A(S) 5, A(G)' In(A(G)) - 18 A(S) 65 A(S)* In(2)

_36 A(S) G, A(G) In(A(S)) + 12 A(S) A(G)° G, In(2)

+24 AS) A(G) 6, In(A(G)) - 12 A(S) 6, 0, A(G):In(2)

~24A(S) 5, 0, A(G):I(A(G)) - 12A(S) 6, o5 A(G)* In(2)

+12A5) G, 6, In(2) + 16 A(S) 05 (G, ) A(G)? 4/ A(G)

~18A(S) G, 4/ 6,” A(G) A —6A(S)Al 6, 6, A(S) 4 A(S)
+6A(S) 5, 4l 6, YAGY —6A(S) 0, A6, A() 4/A(c)

-12A(S)cf\/c—:c;A(c)’ A(G): +18A(S) G5 af 6, A(G)? 4/ A(S)
F18AS) 6, 0, Al 5, VA —16A(S) 5, (6,1 A(6) 4 ACG)?
~18 A(S)o,,4 6.} o, A/A(G) —6AS) cf\/——z«/To)z

—16AS) (6,)) T AGG) Y A(S): - 1285, (5, ) A(S) 4 A(S)

+6 A(S) A(o) »\/.'\/A(O') )/(A(G) ‘\/A(O') )

%1 .—q/A(c) c,,
%2 =+ A(G)? c,,z
%3 :=v,/ A(G)? A(o)?

%4 = In(~%3 — %2 + %l + 21/ O'Az A(6)?)



95 :=In(%3 — %2 + %01 +2 0’52 A(G)z)
> append to(general):;

CREAT A FORTRAN PROGRAM AND ADD IT TO THE
CODE CALLED GENERAL

> fortran(®");



(9]
—
(B8]

C....THIS ROUTINE IS GENERATED BY MAPLE V.4

c..

. .PLASTIC STRAIN CALCULATION

SUBROUTINE PLSCAL(SA,DELS, SIGA, SIGB,DSIG,T0,M,ALPHA,EE, SY)
DELPHI=(3./4.) *ALPHA*M/ (EE* (SY** (M-1)))

$2 = DELPHI/192

S6 = 3*DELS*SIGA**8*ALOG(2.E0)+6*DELS*DSIG**8*ALOG(DSIG) -3 *DELS*DS
. IG**8*ALOG (SQRT (DSIG**2) *DSIG**2-SQRT (DSIG**2) *SIGA**2+SQRT (DSIG**
(2) *SIGB**2+2*SQRT (SIGB**2) *DSIG**2) +3*DELS*DSIG**8*ALOG(2.E0) +6*DE
, LS*SIGA**8*ALOG (DSIG) +3*DELS*SIGB**8*ALOG (2.E0) +6 *DELS*SIGB* *8 *ALO
.G (DSIG) -3*DELS*SIGB**8*ALOG (SQRT (DSIG**2) *DSIG**2~-SQRT(DSIG**2) *SI
(GA**2+SQRT (DSIG**2) *SIGB**2+2*SQRT (SIGB**2) *DSIG**2) -3 *DELS*SIGA**
. 8*ALOG (SQRT (DSIG**2) *DSIG**2-SQRT(DSIG**2) *SIGA**2+SQRT (DSIG**2) *S
 IGB**2+2*SQRT(SIGB**2) *DSIG**2) -12*DELS*SIGB**6*DSIG**2~2ALOG(2.E0Q)
, +6*DELS*DSIG**6*SQRT(SIGB**2) *SQRT (DSIG**2)+112*DELS*SQRT(SIGB**2)
, **3*DSIG**4*SQRT(DSIG**2) ~-18*DELS*SIGA**2*SQRT(SIGB**2) *DSIG**4*SQ
,RT(DSIG**2) +128*SA*SQRT (SIGB**2) **3*DSIG**4*SQRT(DSIG**2)

S7 = S6-16*DELS*SIGB**2*SQRT(SIGB**2) **3*DSIG**2*SQRT(DSIG**2)+18~
,DELS*SIGA**4*SQRT (SIGB**2) *DSIG**2*SQRT (DSIG**2)-12*DELS*SIGA**2*S
,ORT (SIGB**2) *SIGB**2*DSIG**2*SQRT (DSIG**2)-6*DELS*SIGB**2*SQRT(SIG
,B**2) *DSIG**4*SQRT (DSIG**2) ~6*DELS*SIGA**6*SQRT (SIGB**2) *SQRT (DSIG
,**2)-6*DELS*SIGB**4*SQRT (SIGB**2) *DSIG**2*SQRT(DSIG**2) +18*DELS*SI
,GA**4*SQRT (SIGB**2) *SIGB**2*SQRT (DSIG**2)

SS = S57+16*DELS*SIGA**2*SQRT(SIGB**2) **3*DSIG**2"SQRT(DSIG**2)-18&"~
, DELS*SIGA**2*SIGB**4*SQRT (SIGB**2) *SQRT (DSIG**2) +12*DELS*SIGA**2*S
. IGB**6 *ALOG (SQRT (DSIG**2) *DSIG**2~-SQRT (DSIG**2) *SIGA**2+SQRT (DSIG™
, *2) *SIGB**2+2*SQRT (SIGB**2) *DSIG**2) -12*DELS*SIGA**2*SIGB**6*ALOG (
,2.E0)-24*DELS*SIGB**6*DSIG**2*ALOG (DSIG) +12*DELS*SIGB**6*DSIG**2*3
, LOG (SQRT (DSIG**2) *DSIG**2-SQRT (DSIG**2) *SIGA**2+SQRT(DSIG**2) *SIGB
, **24+2*SQRT (SIGB**2) *DSIG**2) +6*DELS*SIGB**6*SQRT (SIGB**2) *SQRT (DSI
(G**2)-12*DELS*SIGA**6*SIGB**2*ALCG (2.E0)

S7 = 36*DELS*SIGA**4*SIGB**4*ALOG(DSIG)-18*DELS*SIGA**4*SIGB**4 AL
.OG (SQRT (DSIG**2) *DSIG**2~-SQRT{DSIG**2) *SIGA**2+SQRT(DSIG**2) *SIGB*
. *2+42*SQRT(SIGB**2) *DSIG**2) +18*DELS*SIGA**4*SIGB**4~ALOG(2.E0) -24~*
,DELS*SIGA**2*SIGB**6§ *ALOG (DSIG) ~24*DELS*SIGA**6*SIGB**2*ALOG (DSIG)
,+12*DELS*SIGA**6*SIGB* *2*ALOG (SQRT (DSIG**2) *DSIG**2-SQRT (DS1G**2) *
,SIGA**2+SQRT(DSIG**2) *SIGB**2+2*SQRT(SIGB**2) *DSIG**2) +24 *DELS*SIG
JAY*TEFSIGB**2*DSIG**2*ALOG (DSIG)

S6 = S7-12*DELS*SIGA**4*SIGB**2*DSIG**2*ALOG(SQRT(DSIG**2) *DSIG**2
» ~SQRT (DSIG**2) *SIGA**2+SQRT (DSIG**2) *SIGB**2+2*SQRT(SIGB**2) *DSIG*
¢ *2)+12*DELS*SIGA**4*SIGB**2*DSIG**2*AL0OG(2.E0) -24*DELS*DSIG**6*SIG
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JAT*2*AL0OG (DSIG) +12*DELS*DSIG* *6§ *SIGA**2 *ALOG (SQRT (DSIG**2) *DSIG**2
, —~SQRT(DSIG**2) *SIGA**2+SQRT (DSIG**2) *SIGB**2+2*SQRT (SIGB**2) *DSIG*
, *2)~-12*DELS*DSIG**6*SIGA**2*AL.0G(2.E0)-12*DELS*SIGA**2*SIGB**4*DSI
(G**2*ALOG (SQRT (DSIG**2) *DSIG**2-SQRT (DSIG**2) *SIGA**2+SQRT (DSIG**2
+) *SIGB**2+2*SQRT (SIGB**2) *DSIG**2) +12*DELS*SIGA**2*SIGB**4*DSIG**2
. *ALOG(2.EQ) +36*DELS*SIGB**4*DSIG**4*ALOG (DSIG)

S7 = S6-18*DELS*SIGB**4*DSIG**4*ALOG (SQRT(DSIG**2) *DSIG**2-SQRT (DS
,IG**2) *SIGA**2+SQRT(DSIG**2) *SIGB**2+2*SQRT(SIGB**2) *DSIG**2) +18*D
+ELS*SIGB**4*DSIG**4*ALOG(2.E0Q) +36*DELS*SIGA**4*DSIG* "4 *ALOG (DSIG) -
18 *DELS*SIGA**4*DSIG**4 *ALOG (SQRT(DSIG**2) *DSIG**2-SQRT (DSIG**2) *S
 IGA**2+SQRT (DSIG**2) *SIGB**2+2*SQRT (SIGB**2) *DSIG**2) +18*DELS*SIGAa
+**4*DSIG**4*ALOG(2.E0) +12*DELS*SIGA**6*DSIG**2*ALOG (SQRT (DSIG**2) *
,DSIG**2-SQRT(DSIG**2) *SIGA**2+SQRT (DSIG**2) *SIGB**2+2*SQRT (SIGB**2
,)*DSIG**2) -12*DELS*SIGA**6*DSIG**2*ALOG(2.E0)

S4 = S7-12*DELS*DSIG**6*SIGB**2*ALOG(2.E0)~24*DELS*DSIG**6*SIGB**2
, *ALOG (DSIG) +12*DELS*DSIG**6*SIGB**2*ALOG (SQRT(DSIG**2) *DSIG*~2-SQR
,T(DSIG**2) *SIGA**2+SQRT (DSIG**2) *SIGB**2+2*SQRT (SIGB**2) *DSIG**2) +
24 *DELS*SIGA**2*SIGB**2*DSIG**4*ALOG(DSIG) -12*DELS*SIGA**2*SIGB**2
, *DSIG**4*ALOG (SQRT (DSIG**2) *DSIG**2-SQRT (DSIG**2) *SIGA**2+SQRT(DSI
(G**2) *SIGB**2+2*SQRT(SIGB**2) *DSIG**2)+12*DELS*SIGA**2*SIGB**2*DSI
,G**4*ALOG(2.E0)+24*DELS*SIGA**2*SIGB**4*DSIG**2*ALOG (DSIG) -24 *DELS
, *SIGA**6*DSIG**2*ALOG (DSIG) +S85

S5 = 1/DSIG**4/SQRT(DSIG**2)

83 = 84*s5
S1 = S82*s3
83 = -DELPHI/192

S8 = 12*DELS*SIGB**6*DSIG**2*ALOG(-SQRT(DSIG**2) *DSIG"*2-SQRT (DSIG
 **2) *SIGA**2+SQRT (DSIG**2) *SIGB**2+2*SQRT(SIGA**2) *DSIG=*2) +12~*DEL
,S*SIGA**6*SIGB**2*ALOG (-SQRT (DSIG**2) *DSIG* *2-SQRT (DSIG~**2) *SIGA"~
+2+SQRT (DSIG**2) *SIGB**2+2*SQRT (SIGA**2) *DSIG**2) -12*DELS*SIGA**4*S
, IGB**2*DSIG**2*ALOG (-SQRT (DSIG**2) *DSIG**2-SQRT (DSIG**2) *SIGA**2+S
QRT (DSIG**2) *SIGB**2+2*SQRT (SIGA**2) *DSIG**2) -18*DELS*SIGB**4*DSIG
+ **4*ALOG (-SQRT (DSIG**2) *DSIG**2-SQRT(DSIG**2) *SIGA**2+SQRT (DSIG**2
. ) *SIGB**2+2*SQRT (SIGA**2) *DSIG**2) +3*DELS*SIGA**8*ALOG(2.EO) +6*DEL
,S*DSIG**8*ALOG (DSIG) +12*DELS*SIGA**2*SIGB**6 *ALOG ( -SQRT (DSIG**2) *D
,SIG**2-SQRT(DSIG**2) *SIGA**2+SQRT (DSIG**2) *SIGB**2+2*SQRT (SIGA**2)
. *DSIG**2)

S9 = S8-18*DELS*SIGA**4*SIGB**4*ALOG(-SQRT(DSIG**2)*DSIG**2-SQRT(D
SIG**2) *SIGA**2+SQRT(DSIG**2) *SIGB**2+2*SQRT (SIGA**2) *DSIG**2) +12*
,DELS*DSIG**6*SIGA**2*ALOG (-SQRT(DSIG**2) *DSIG**2-SQRT(DSIG**2) *SIG
(A**24+SORT(DSIG**2) *SIGB**2+2*SQRT(SIGA**2) *DSIG**2) -18*DELS*SIGA**
,4*DSIG**4*ALOG (-SQRT (DSIG**2) *DSIG**2-SQRT (DSIG**2) *SIGA**2+SQRT (D



,SIG**2) *SIGB**2+2*SQRT (SIGA**2) *DSIG**2)

S7 = S9-12*DELS*SIGA**2*SIGB**4*DSIG**2*ALOG (~-SQRT (DSIG**2) *DSIG*~
. 2-SQORT (DSIG**2) *SIGA**2+SQRT (DSIG**2) *SIGB**2+2*SQRT(SIGA**2) *DSIG
,**2) +3*DELS*DSIG**8*ALOG(2.E0) ~12*DELS*SIGA**2*SIGB**2*DSIG**4*ALO
G (-SQRT(DSIG**2) *DSIG**2-SQRT (DSIG**2) *SIGA**2+SQRT(DSIG**2) *SIGB*
. *2+2*SQRT(SIGA**2) *DSIG**2) +12*DELS*SIGA**6*DSIG**2*ALOG (-SQRT (DSI
,G**2) *DSIG**2-SQRT (DSIG**2) *SIGA**2+SQRT(DSIG**2) *SIGB**2+2*SQRT(S
 IGA**2) *DSIG**2)

S8 = S7-3*DELS*SIGB**8*ALOG(-SQRT(DSIG**2)} *DSIG**2-SQRT(DSIG**2)~S
, IGA**2+SQORT (DSIG**2) *SIGB**2+2*SQRT (SIGA**2) *DSIG**2) +6*DELS*SIGa™
. *8*ALOG(DSIG) +18*DELS*SIGA**4*SQORT (SIGA**2) *SIGB**2*SQRT (DSIG~~2) -
. 16*DELS*SIGB**2*SQRT(SIGA**2) **3*DSIG**2*SQRT(DSIG**2) +6*DELS*SIGB
, **6*SORT(SIGA**2) *SQRT (DSIG**2) +3*DELS*SIGB**8*ALOG(2.E0Q) +6*DELS*S
. IGB**8*ALOG (DSIG)

S6 = S8-3*DELS*SIGA**8*ALOG (-SQRT(DSIG**2) *DSIG**2-SQRT(DSIG**2)*S
 IGA**2+SQRT (DSIG**2) *SIGB**2+2*SQRT (SIGA**2) *DSIG**2) +6 *DELS*SIGA*
+*4*SQRT (SIGA**2) *DSIG**2*SQRT (DSIG**2) -6 *DELS*SIGA**6 *SQRT (SIGA**2
.) *SQRT(DSIG**2)+16*DELS*SIGA**2*SQRT (SIGA**2) **3*DSIG**2*SQRT (DSIG
,**2) -18*DELS*SIGB**4*SQRT(SIGA**2) *DSIG**2*SQRT (DSIG~**2) +128*S2*SQ
,RT(SIGA**2) **3*DSIG**4*SQRT(DSIG**2} +16*DELS*SQRT (SIGa*~2) **3*DSIG
**4*SQRT(DSIG**2)+12*DELS*DSIG**6*SIGB**2*ALOG (-SQRT(DSIG**2) *DSIG
**2-SQRT(DSIG**2) *SIGA**2+SQRT (DSIG**2) *SIGB**2+2*SQRT(SIGa**2) *DS
(IG**2)

S7 = -18*DELS*SIGA**2*SIGB**4*SQRT (SIGA**2) *SQRT(DSIG**2)+S6-12*DE
,LS*SIGB**6*DSIG**2*ALOG(2.E0) -12*DELS*SIGA**2*SIGB**6*ALOG (2.EQ) -2
,4*DELS*SIGB**6*DSIG**2*ALOG (DSIG) -12*DELS*SIGA**6*SIGB**2~ALOG (2.E
,0)+36*DELS*SIGA**4*SIGB**4*ALOG (DSIG) +18*DELS*SIGA**4*SIGB**4 *ALOG
, (2.E0) -24*DELS*SIGA**2*SIGB**6*ALOG (DSIG) -3*DELS*DSIG~**3*2LOG (-SCP.
+T(DSIG**2) *DSIG**2-SQRT(DSIG**2) *SIGA**2+SQRT(DSIG**2) *SIGB**2+2*S
QRT (SIGA**2) *DSIG**2) -24*DELS*SIGA**6*SIGB**2*ALOG (DSIG) +24*DELS"S
, IGA**4*SIGB**2*DSIG**2*ALOG(DSIG) +12*DELS*SIGA**4*SIGB**2*DSIG**2*
+ALOG (2.EQ) ~24*DELS*DSIG**6*SIGA**2*ALOG (DSIG) -12*DELS*DSIG**6 *SIGA
 **2*ALOG(2.E0Q)}

SS = S7+12*DELS*SIGA**2*SIGB**4*DSIG**2*ALOG(2.E0)+36*DELS*SIGB**4
. *DSIG**4*ALOG (DSIG) +18*DELS*SIGB**4*DSIG**4*ALOG(2.E0) +36*DELS*SIG
(A**4*DSIG**4*ALOG (DSIG) +18*DELS*SIGA**4*DSIG**4*ALOG(2.E0) -12*DELS
, *SIGA**6*DSIG**2*ALOG (2.E0) -12*DELS*DSIG**6*SIGB**2*ALOG (2.E0) -24~
,DELS*DSIG**6*SIGB**2*ALOG (DSIG) +24*DELS*SIGA**2*SIGB**2*DSIG**4*aL
,0G (DSIG) +12*DELS*SIGA**2*SIGB**2*DSIG**4*ALOG(2.E0) +24*DELS*SIGA"*
, 2*SIGB**4*DSIG**2*ALOG (DSIG) -24*DELS*SIGA**6*DSIG**2*ALOG (DSIG) +6*
,DELS*SQRT (SIGA**2) *SIGA**2*DSIG**4*SQRT (DSIG**2) +12*DELS*SIGA**2*S
. IGB**2*SQRT (SIGA**2) *DSIG**2*SQRT (DSIG**2) -6 *DELS*DSIG**6*SQRT (SIG



(£S]
—
W

,A**2) *SORT (DSIG**2) +18*DELS*SQRT (SIGA**2) *SIGB**2*DSIG**4*SQRT (DSI

G**2)

S6 = 1/DSIG**4/SQRT(DSIG**2)
54 = S5*s6

S2 = S3*s4

TO = S1+S82

RETURN

END
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