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Abstract

Artificial intelligence methods such as deep learning are leading to great progress in
complex tasks that are usually associated with human intelligence and experience. Deep
learning models have matched if not bettered human performance for medical diagnosis
tasks including retinal diagnosis. Given a sufficient amount of data and computational
resources, these models can perform classification and segmentation as well as related tasks
such as image quality improvement. The adoption of these systems in actual healthcare
centers has been limited due to the lack of reasoning behind their decisions. This black
box nature along with upcoming regulations for transparency and privacy exacerbates the
ethico-legal challenges faced by deep learning systems.

The attribution methods are a way to explain the decisions of a deep learning model
by generating a heatmap of the features which have the most contribution to the model’s
decision. These are generally compared in quantitative terms for standard machine learning
datasets. However, the ability of these methods to generalize to specific data distributions
such as retinal OCT has not been thoroughly evaluated. In this thesis, multiple attribution
methods to explain the decisions of deep learning models for retinal diagnosis are compared.
It is evaluated if the methods considered the best for explainability outperform the methods
with a relatively simpler theoretical background.

A review of current deep learning models for retinal diagnosis and the state-of-the-art
explainability methods for medical diagnosis is provided. A commonly used deep learning
model is trained on a large public dataset of OCT images and the attributions are generated
using various methods. A quantitative and qualitative comparison of these approaches is
done using several performance metrics and a large panel of experienced retina specialists.

The initial quantitative metrics include the runtime of the method, RMSE, and Spear-
man’s rank correlation for a single instance of the model. Later, two stronger metrics -
robustness and sensitivity are presented. These evaluate the consistency amongst different
instances of the same model and the ability to highlight the features with the most effect
on the model output respectively. Similarly, the initial qualitative analysis involves the
comparison between the heatmaps and a clinician’s markings in terms of cosine similar-
ity. Next, a panel of 14 clinicians rated the heatmaps of each method. Their subjective
feedback, reasons for preference, and general feedback about using such a system are also
documented.

It is concluded that the explainability methods can make the decision process of deep
learning models more transparent and the choice of the method should account for the
preference of the domain experts. There is a high degree of acceptance from the clinicians

iv



surveyed for using such systems. The future directions regarding system improvements
and enhancements are also discussed.
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Chapter 1

Deep learning for retinal OCT and
the need for explainablity

Based on:

• A Singh, S Sengupta, and V Lakshminarayanan. “Explainable
deep learning models in medical image analysis.” Journal of
Imaging, vol. 6, no. 6, p. 52, 2020.

• H Leopold, A Singh, S Sengupta, J S Zelek, and V Laksh-
minarayanan, “Deep Learning on Optical Coherence Tomog-
raphy for Ophthalmology”, State-of-the-Art in Neural Net-
works, Vol.1, A. El-Baz, and J.Suri, Eds, Elsevier, NY (in
press, 2021).
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1.1 Introduction

The major contributions of this thesis are summarized in the next subsection followed by
the organization of the thesis. The rest of this chapter describes the basic concepts of
retinal optical coherence tomography (OCT) imaging, deep learning applications, and the
process of explaining the decisions made by a deep learning model in the context of medical
imaging.

1.1.1 Major contributions

Retinal image diagnosis has undergone a revolution by the advances in artificial intelligence
(AI) methods such as deep learning. These methods have not percolated to the patient
care systems due to a lack of reasoning behind their decisions. Attribution based methods
are available in the literature to explain these decisions in multiple ways. There is a need
to inspect the performance of the explainability methods initially validated on standard
computer vision data sets in the context of the OCT data. The major contributions of this
thesis are:

• Provide summaries of the deep learning methods for retinal OCT diagnosis and the
emerging applications of explainability in medical imaging.

• Train and evaluate a deep learning model for identifying retinal diseases from a large
public dataset.

• Implement multiple explainability methods to generate the explanations in the form
of heatmaps of the input images.

• Perform a quantitative comparison of various explainability methods to measure their
ability to identify the primary features that influence the model decision.

• Perform a qualitative evaluation of these methods in terms of clinical relevance using
ratings from clinicians.

• Identify explainability methods fit for retinal diagnosis and indicate the directions of
future research.
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1.1.2 Organization of the thesis

The organization of this thesis follows the sequence of listed contributions. This chapter
serves as the background for discussing the applications of explainability approaches to
retinal OCT diagnosis. Section 1.2 provides a summary of deep learning methods for OCT
diagnosis. Detailed reviews for OCT analysis [1] and fundus diagnosis [2] are available
elsewhere. Section 1.3 introduces the need for explaining the deep learning model used for
medical diagnosis. A general categorization of explainability methods and the fundamentals
needed for subsequent chapters are discussed. An overview of the applications in various
medical imaging domains showing the diverse approaches is also presented with a summary
table. A more expansive version of the section is available in the literature [3].

The chapter 2 demonstrates the process of training and evaluating a deep learning model
for diagnosing multiple diseases along with the generation of explanations. Chapter 3 uses
quantitative metrics such as root mean squared error (RMSE) and sensitivity to compare
the explanations from different methods. A study involving the clinicians’ ratings of the
explanations for their ability to highlight pathologies is presented in chapter 4. Chapter
5 concludes with discussions of future research directions including an ongoing work on
uncertainty. The relevant codes are available at https://github.com/amitojdeep.

1.2 Deep learning for retinal OCT diagnosis

Ophthalmology is a branch of medicine and surgery that deals with the anatomy, physi-
ology and diseases of the eye as well as the visual process [4]. The landmark treatise on
vision can be attributed to the Arab scholar Ibn Al-Haytham who in his magnum opus,
Kitab al Manzir (The Book of Optics) laid down the foundations of vision science [5]. The
invention of direct Ophthalmoscope by Hermann von Helmholtz in 1861 revolutionized our
understanding of retina [6]. The ophthalmoscope and its modern successors, including the
retinal fundus camera and the OCT are indispensable tools for ophthalmic examination.
The development, commercialization and the impact of the OCT is well documented in
a recent article by one of the inventors of the OCT [7]. This chapter mainly deals with
analysis of OCT images of retinal diseases (e.g., glaucoma, diabetic retinopathy (DR), age
related macular degeneration (AMD). An analysis of retinal fundus photographs can be
found in a recent review article [2] .
In general, patient care system is immensely non-uniform in various parts of the world.
Sometimes it is over-burdened due to high demand and paucity of adequate number of
trained clinicians. These factors increase the risk of diagnostic errors and degrade the
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health-care quality and efficacy. It is estimated that by 2020 the number of glaucoma pa-
tients may reach almost 80 million worldwide [8], the DR patient percentage will increase
upto 4.4% by 2030 [9], and AMD prevalence is about 12% in people over the age of 80 in
the United States [2].
Diagnosis with OCT images is sometimes difficult due to the various factors e.g. pres-
ence of noise, variations in camera calibration, aperture, contrast setting, training of the
clinicians and ethnicity of patients. Enhancing the efficacy of computer-aided diagnostic
(CAD) technique can be a way to mitigate the need of trained clinicians which is unavail-
able in many places in a cost and time optimal manner.
Prior to the advent of deep learning, traditional image processing and pattern recognition
based methods have been used to make CAD systems [10]. But, these traditional methods
are too benign to extract useful and distinguishable insights from high-dimensional, com-
plex, unstructured medical data. Also these methods require feature extraction to obtain
important information. It is very hard to construct generalized robust automated sys-
tems except for some highly specific problems. These traditional methods typically involve
steps like image pre-processing, feature extraction and application of traditional classifiers
to predict an outcome.
Deep learning based models are powerful architectures to automatically find important pat-
terns or feature maps from different high dimensional data. Unlike traditional methods,
without any manual feature extraction it derives necessary representations and provides
an efficient paradigm to build an automated end-to-end model to predict and distinguish
different tasks. With the advent of graphics processing units (GPU), deep learning meth-
ods have become much easier to implement offering considerable savings in computational
time when compared to ordinary processors. In various fields like computer vision, natural
language processing deep learning models have started to outperform traditional machine
learning based models and retinal diagnosis is not an exception. In this section the main
focus is on neural networks based CAD systems for retinal disease diagnosis using OCT
images.

1.2.1 Optical Coherence Tomography

This section briefly describes OCT, its various types and key advantages. The OCT is a
clinical imaging technique to visualize the cross-sectional structure of retina. The basic
physics of the OCT is given in detail in the articles.
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1.2.1.1 Overview

The OCT is a clinical imaging technique to visualize the cross-sectional structure of retina.
OCT uses low-coherence light to capture 2D and 3D images of scattering media. It is based
on the interferometric technique invented by Albert A. Michelson and was developed by
James Fujimoto. OCT is used to non-invasively image the retinal layers for diagnosis of
pathologies like glaucoma, AMD and DR. A review of OCT applications in ophthalmology
is given in [11], and general information on OCT can be found in [12]. Figure 1.1 is
an example slice from a retinal OCT with the various retinal layers, including retinal
nerve fibre layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (INL), outer
plexiform layer (OPL), outer nuclear layer (ONL), external limiting membrane (ELM),
inner segment (IS), outer segment (OS), retinal pigment epithelium (RPE), interdigitation
zone (IZ), bruch membrane (BM), which will be discussed further in Section 1.2.2 [12].
Figure 1.3 shows OCT cross-sections for common variants discussed in Section 1.2.1.2.
Other modalities for retinal imaging include fundus photography [13] and scanning laser
ophthalmoscopy (SLO) [14].

Figure 1.1: OCT image including retinal anatomy [10].

1.2.1.2 Variants of OCT systems

The 4 common variants of OCT used for retinal diagnosis are discussed here.
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Figure 1.2: Schematic of a single point OCT setup. Adapted from [15]

Time domain OCT (TD-OCT) is the traditional and earliest OCT imaging tech-
nique [16]. The reference arm pathlength is varied in time. Interference happens if the
path difference is within the range of the light coherence. Typically an OCT setup consists
of a low coherence broad bandwidth interferometer. In figure 1.2 a typical schematic of
the OCT setup is shown, where light is coming from a monochromatic light source and it
is split into two arms, a sample arm and a reference arm by a beam splitter. By translat-
ing the reference arm longitudinally, the path length of the reference arm is varied and it
results into a series of bright and dark fringes due to interference of light waves reflected
from various layers.

Spectral domain OCT (SD-OCT) has similar basic setup to the TD-OCT. The
main difference between TD-OCT and SD-OCT is the reference arm length is fixed. It does
not obtain the depth information of the sample by scanning reference arm, rather a fourier
spectrometer is used to analyze the output light. SD-OCT is also known as frequency
domain OCT (FD-OCT). The main advantages of SD-OCT are the higher resolution and
the faster speed of image acquisition. SD-OCT offers a more detailed 3D map, facilitating
better visualization of inter-retinal layers and a higher possibility of multiple retinal layers’
segmentation. It has been shown that the sensitivity of SD-OCT technique is 20dB more
than traditional TD-OCT [17], though sometimes in practice the presence of artifacts deter
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the efficacy of segmentation.

Polarization sensitive OCT (PS-OCT) enables contrast specific examination of
retinal layers. The major drawback of the conventional OCT system is it does not provide
tissue-specific contrast. It uses the fact that several materials and tissues can change
the polarization state of light providing additional contrast and information. PS-OCT
finds applications in a wide range of applications including imaging eyes, muscles, teeth,
cancerous tissues, nerves, blood vessels etc due. Detailed information about the PS-OCT
method and its applications can be found in [18], [19].

Swept source OCT (SS-OCT) was first used clinically in 2012 and it provides
deeper penetration and faster acquisition time than other approaches. This is used to
visualize vitreous, choroid and other retinal structures that are covered by dense preretinal
hemorrhages. It has been pivotal in the study of the posterior precortical vitreous pocket.
SS-OCT devices are not widely available due to the higher costs relative to more popular
SD-OCT. The impact of SS-OCT on in-vivo ophthalmic studies is reviewed in [20]. In
figure 1.3 different OCT scans from these variants are shown.

Figure 1.3: Different types of OCT images for normal eye (clockwise from top left): TD-
OCT [21], SD-OCT [20], PS-OCT [22] (more contrast) and SS-OCT [20] (more depth)
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1.2.2 Retinal Diseases

This subsection briefly describes some important retinal diseases and the associated anatom-
ical and physiological changes.

1.2.2.1 Diabetic Retinopathy and Diabetic Macular Edema

DR is one of the leading causes of blindness. This is a vascular disease of retina, patients
with diabetes melitus get affected with this disease. People over the age of 30 years are
more prone to this disease [9]. It is suspected that the diabetic patients worldwide will
increase from 2.8% in 2000 to 4.4% in 2030. DR is characterized by various abnormalities in
retina such as microaneurysms (MA) and other small lesions. DR, a diabetes complication
on eye, is majorly caused by the rupture of thin light-sensitive retinal capillaries [10].

Diabetic macular edema (DME) occurs in persons having DR and it involves fluid
accumulation in the macula. Since the macula is the region of fine vision, DME greatly
impacts vision.

1.2.2.2 Glaucoma

Glaucoma is another major cause of blindness; it is estimated that by 2020, 80 million
people will be affected by glaucoma [8]. Open-angle glaucoma and angle closure glaucoma
are the two main types of glaucoma. About 90% of the affected people suffer from primary
open-angle glaucoma [23]. Glaucoma is caused due to rise in intra-ocular pressure leading
to damage of retinal nerve fibres. This is the pressure of fluid inside the eye and can be
measured using a tonometer. Blockage of drainage canals is one of the causes of rise in of
this pressure.

1.2.2.3 Age-related Macular Degeneration

AMD is another common retinal disease. It causes the loss of vision in the middle of the
visual field. With time there is a high chance of complete loss of central vision [24]. It is
reported that in the United States, about 0.4% people from age range 50 to 60 suffer from
this disease and almost 12% people above 80 years are affected by this disease. [25].
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Figure 1.4: Sample OCT images from OCTID dataset [26]. Normal, DR, AMD (L to R)

1.2.3 Deep learning approaches to OCT analysis

In this section applications of deep learning approaches for biomarker detection and oph-
thalmic disease classification from OCT images are discussed. Further details of neural
networks can be found in [27]. It should be emphasized that the segmentation task is
essentially a biomarker detection task from pixel level annotations of images.It is notable
that much of the work in this area is on using convolutional neural network (CNN)s for
classification, whereas generative adversarial network (GAN) and similar architectures are
used for more complex tasks such as super-resolution and noise reduction.

1.2.3.1 Convolutional neural network (CNN) applications

CNNs are very common deep learning paradigms. Its applications span computer vision,
natural language processing [28], financial forecasting, signal processing, and many more
domains. These use the convolution operation instead of simple matrix multiplication in
at least one of the layers.

Figure 1.5: An example of Inception-v3 CNN [29] used for classification. Adapted from
[30]
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The structure of a typical CNN is shown in figure 1.5. The data (an OCT image in this
case) is provided to the input layer of the network. A certain number of kernels (feature
filters) are convoluted with the input and an activation function is applied to produce the
activation matrices corresponding to each kernel. These kernels are usually square matri-
ces in the case of a 2D CNN with size in the range of 3x3 to 7x7 in most applications. A
smaller kernel is believed to extract minute features better while larger kernel provides an
overall view. The activation functions are designed to replicate the activation of a neuron
and some of the common variations are the rectified linear unit (ReLU) [31], softmax, tanh,
etc. The process of convolution is repeated at each convolutional layer on the outputs of
the preceding layer. The final step is typically a dense layer consisting of a multi-layer
perceptron where each neuron is connected to every neuron of the preceding convolutional
layer. The output is generated in terms of probabilities of each class for classification prob-
lems like the detection of pathology. The entire network is trained using backpropagation
[32]. CNN has been extensively applied to retinal diagnostics and the major variations are
described in table 1.1.

Architecture Application Dataset Performance Others
AlexNet TL +
SVM

DME detection
SERI: 32 3D
OCT

Acc: 98.6%, SN:
99.3%, SP: 98.4%

AlexNet + RF
Glaucoma detec-
tion [33]

Private: 102
OCT

Acc:93.1%

VGG16 TL on 2
scales + patient
data with SVM

Glaucoma detec-
tion [34]

Private: 8270
OCT

Acc:89.3%, SN:
88.9%, SP: 89.6%,
AUC: 0.9456

VGG based
AMD, DR,
DME [35]

A2A, SERI,
CUHK

AUC: AMD: 0.99,
DR & DME:0.86

Added
feature
fusion
[36]

ResNet + RF
Layer segmenta-
tion [37]

DUKE F1:0.885

Inception-v3:
transfer learning
(TL)

AMD detection
[38]

200k+ OCT

Acc:96.6%,
SN:97.8%,
SP:97.4%,
AUC:0.999%

[39], [40]

Inception-v3 DME [41] Private
Acc:85%,
SN:80%, SP:89%
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RelayNet TL for
seg + layer guided
CNN

DME, CNV,
DRUSEN [42]

2 datasets: 93k
images

Acc:89.9+-0.6%

3 CNN subnets
for different scales

Glaucoma [43]
2 private
datasets: 9k
images

F1: 0.677 & 0.814

Patch based CNN DME [44] Private:328 F1:0.926
Custom CNN
(OCT-NET)

DME [45]
SERI: 32 SD-
OCT volumes

Acc:93.8%

MGRF + deep fu-
sion CNN and au-
toencoders

DR detection
[46]

Private:74
Acc:93%,
SN:91%, SP:97%

CNN + Graph
search

Layer segmenta-
tion [47]

Private: 117
SD OCT

ME:1.26, SD:1.24

TL + PCA with
majority voting

DME [48] SERI Acc:93.8%

Ensemble of CNN DME, AMD [49] Private: 577
AUC:0.998, preci-
sion (PR):98.9%

[50]

Weakly super-
vised (DenseNet)

Fluid segmenta-
tion [51]

Private: 1217
OCT

Acc:94.8%

Weakly super-
vised localization

AMD [52] Private: 10.1k Acc: 94.9%

3D CNN Glaucoma [53]
Private: 1110
3D SD-OCT

AUC:0.940

3D CNN
GA segmenta-
tion [54]

Private: 200k+
SD OCT scans

Mean OR: upto
87.24%+-7.95%

3D CNN AMD (NSR) [55]
A2A: 384 SD
OCT

MAPE:15.6

CNN + LSTM
Biomarker
detection [56]

Private: 416
vols

F1: 0.694 +-
0.009

CNN with soft at-
tention map

Lesion detection
[57]

UCSD (84k im-
ages) + NEH
(148 vols)

Acc: 90.1%,
SN:86.8%, PR:
86.2%

Table 1.1: CNN applications
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1.2.3.2 Fully convolutional network (FCN) including Encoder - Decoder net-
work

A fully convolutional neural network (FCN) consist of only convolutional layers and no
fully connected or dense layers. Encoder decoder architecture is a typical example of an
FCN and it has two distinct paths - a downsampling path made of convolutional layers and
an upsampling path made of deconvolutional layers. The downsampling path represents
the data in a high dimensional vector space and an identical but in reverse orientation
upsampling path recreates the data from this representation. The FCN is typically used
for applications like segmentation and denoising where output has similar dimensionality
to the input, unlike one-dimensional classification tasks.

The table 1.2 presents some of the commonly used FCN and encoder-decoder architec-
tures for retinal diagnostics. The measures used in addition to those previously discussed
are dice score and mean structural similarity index measurement (SSIM). The most fre-
quently performed task is retinal layer segmentation and it has been used to segment
structures such as choroidal vessels, hyperreflective foci, retinal fluid, and drusen.

1.2.3.3 Generative adversarial network (GAN)

A GAN [68] is made of two major components - a generator and a discriminator as shown
in figure 1.6. The generator learns to produces the data whereas the discriminator learns
to distinguish between the spurious data from the generator and the real data. Both the
networks are trained together in an adversarial way such that the generator gets better at
producing data whereas the discriminator improves the ability to detect fake data. Most
of the GANs used in current practice have both generator and discriminator comprised of
convolutional networks.

In the area of retinal diagnostics, GANs have been used to perform tasks requiring the
generation of new images/image masks such as segmentation, denoising, image generation
and super-resolution of OCT images as described in table 1.3. The various performance
measures used include dice score, SSIM, signal to noise ratio (SNR) and peak signal to
noise ratio (PSNR).
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Architecture Application Dataset Performance Others

FCN: Patch
based U-Net

Layer segmenta-
tion [58]

TASMC & OC-
Texplorer

F1: upto 0.95 [59]

Cornea segmen-
tation [60]

Private:20k Acc:99.5%

FCN: DenseNet +
Gaussian process

Layer segmenta-
tion [61]

Pvt: UMiami-
50 images

Mean error: 1.1

FCN: ResNet
based

Choroidal vessel
segmentation
[62]

Private: 40 SS-
OCT

Avg SA:0.840 +-
0.035

FCN: 4 conv lay-
ers

hyper-reflective
foci segmenta-
tion [63]

Private: 1111
SD-OCT slices

Dice:over 95%

FCN + RF
Fluid segmenta-
tion [64]

Multiple
datasets

Acc: IRF:0.9815,
SRF:0.9653,
PED:0.9931

Encoder decoder:
single encoder
multi decoder

Drusen segmen-
tation [65]

Mix of pub-
lic/private:
366 SD-OCT
vols

Absolute sur-
face diff:
ILM:0.65+-0.06,
IBRPE:1.06+-
0.12, BM:0.9+-
0.08

Encoder decoder:
DeconvNet and
U-Net

Layer segmenta-
tion (ReLayNet)
[66]

DUKE F1:0.94

Encoder decoder:
residual blocks
and skip conn.

Denoising [67]
Private: 3,880
scans

Mean SSIM:0.65
+- 0.03

Table 1.2: FCN including encoder-decoder applications
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Figure 1.6: GAN schematic diagram [69]

Architecture Application Dataset Performance

cGAN: Unet
as generator,
PatchGAN as
discriminator

Denoising [70]
384 B scan
pairs

SNR:60.09 +-
8.00

Image genera-
tion [71]

Private 600 im-
ages

SSIM: upto
63.30%

GAN: encoder-
decoder with skip
conn. as gen.

Fluid segmenta-
tion [72]

RETOUCH: 42
volumes

Dice: IRF: 0.69,
SRF: 0.67, PED:
0.85

GAN: other
Denoising &
super–resolution
[73]

Multiple
sources

PSNR: upto 28.13

Table 1.3: GAN algorithms
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1.2.4 Summary of deep learning for retinal OCT diagnosis

In the previous sections, a plethora of research directions and development of computer-
aided diagnosis with OCT images have been discussed. The major difference between
traditional machine learning methods and deep learning methods is that the feature maps
are generated automatically in deep learning methods which is in contrast to the need for
manual feature engineering for traditional algorithms. With the growing availability of high
power computing resources, deep learning has become popular and surpassed the results
of the other methods for disease detection and image segmentation tasks. Since, medical
diagnosis procedure is very crucial and sensitive, the computer-aided models should be
made extremely robust to perform in real-world scenarios and sensitivity is a key measure
of this goal.

To sum it up, deep learning methods have considerably advanced the automated di-
agnosis of retinal diseases through OCT images. The major tasks performed include the
classification of different diseases like AMD, glaucoma, DME, and DR as well as segmen-
tation of various biomarkers like retinal layers, drusens, retinal fluid, hyper-reflective foci
etc. There is a rising interest in denoising, image generation and super-resolution tasks
and newer deep learning methods are being exploited for these. Various types of neural
networks designs such as CNN, FCN, encoder decoder and GAN have been demonstrated
to achieve a high performance on this wide variety of tasks.

A key challenge with the acceptance of deep learning for clinical applications in oph-
thalmology and other domains is the lack of reasoning for the decisions. It leads to a lack
of trust in the model results amongst clinicians, regulators, and patients. The next section
describes the concept of explainability of deep learning models with a focus on medical
imaging.

1.3 Explainable deep learning for medical images

Deep learning is the leading AI method for a wide range of tasks including medical imaging
problems. It is the state of the art for several computer vision tasks and has been used for
medical imaging tasks like the classification of Alzheimer’s [74], lung cancer detection [75],
retinal disease detection [1], [2], etc. Despite achieving remarkable results in the medical
domain, AI-based methods have not achieved a significant deployment in the clinics. This
is due to the underlying black-box nature of the deep learning algorithms along with other
reasons like computational costs. It arises from the fact that despite having the underlying
statistical principles, there is a lack of ability to explicitly represent the knowledge for a
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given task performed by a deep neural network. Simpler AI methods like linear regression
and decision trees are self-explanatory as the decision boundary used for classification
can be visualized in a few dimensions using the model parameters. But these lack the
complexity required for tasks such as classification of 3D and most 2D medical images.
The lack of tools to inspect the behavior of black-box models affects the use of deep
learning in all domains including finance and autonomous driving where explainability and
reliability are the key elements for trust by the end-user.

A medical diagnosis system needs to be transparent, understandable, and explainable to
gain the trust of physicians, regulators as well as the patients. Ideally, it should be able to
explain the complete logic of making a certain decision to all the parties involved. Newer
regulations like the European General Data Protection Regulation (GDPR) are making
it harder for the use of black-box models in all businesses including healthcare because
retraceability of the decisions is now a requirement [76]. An AI system to complement
medical professionals should have a certain amount of explainability and allow the human
expert to retrace the decisions and use their judgment. Some researchers also emphasize
that even humans are not always able to or even willing to explain their decisions [76].
Explainability is the key to safe, ethical, fair, and trust-able use of AI and a key enabler
for its deployment in the real world. Breaking myths about AI by showing what a model
looked at while making the decision can inculcate trust among the end-users. It is even
more important to show the domain-specific features used in the decision for non-deep
learning users like most medical professionals.

The terms explainability and interpretability are often used interchangeably in the
literature. A distinction between these was provided in [77] where interpretation was
defined as mapping an abstract concept like the output class into a domain example,
while explanation was defined as a set of domain features such as pixels of an image the
contribute to the output decision of the model. A related term to this concept is the
uncertainty associated with the decision of a model. Deep learning classifiers are usually
not able to say ”I don’t know” in situations with ambiguity and instead return the class
with the highest probability, even if by a narrow margin. Lately, uncertainty has been
analyzed along with the problem of explainability in many studies to highlight the cases
where a model is unsure and in turn make the models more acceptable to non-deep learning
users. Deep learning models are considered as non-transparent as the weights of the neurons
can’t be understood as knowledge directly. [78] showed that neither the magnitude or the
selectivity of the activations, nor the impact on network decisions is sufficient for deciding
the importance of a neuron for a given task. A detailed analysis of the terminologies,
concepts and, use cases of explainable AI is provided in [79].

This section describes the studies related to the explainability of deep learning models
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in the context of medical imaging. A general taxonomy of explainability approaches is de-
scribed briefly in the next section and a comparison of various attribution based methods is
performed in section 1.3.2. Section 1.3.3 reviews various explainability methods applied to
different medical imaging modalities. The analysis is broken down into subsections 1.3.3.1
and 1.3.3.2 depending upon the use of attributions or other methods of explainability. The
evolution, current trends, and some future possibilities of the explainable deep learning
models in medical image analysis are summarized in 1.3.4.

1.3.1 Taxonomy of explainability approaches

Several taxonomies have been proposed in the literature to classify different explainability
methods[80], [81]. Generally, the classification techniques are not absolute, it can vary
widely depending upon the characteristics of the methods and can be classified into many
overlapping or non-overlapping classes simultaneously. Different kinds of taxonomies and
classification methods are discussed briefly here and a detailed analysis of the taxonomies
can be found in [79], [80] and a flow chart for them is shown in 1.7.

Figure 1.7: Taxonomy of XAI methods
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It is to be noted that these classification methods are non-exclusive, these are built
upon different logical intuitions and hence have significant overlaps. For example, most of
the post-hoc models like attributions can also be seen as model agnostic as these methods
are typically not dependent upon the structure of a model. However, some requirements
regarding the limitations on model layers or the activation functions do exist for some
of the attribution methods. The next section describes the basic concept and subtle dif-
ference between various attribution methods to facilitate a comparative discussion of the
applications in section 1.3.3.

1.3.2 Explainability methods - attribution based

There are broadly two types of approaches to explain the results of deep neural networks
(DNN) in medical imaging - those using standard attribution based methods and those
using novel, often architecture or domain-specific techniques. The methods used for the
former are discussed in this section with applications provided in 1.3.3.1 while the latter
are discussed along with their applications in section 1.3.3.2. The problem of assigning
an attribution value or contribution or relevance to each input feature of a network led
to the development of several attribution methods. The goal of an attribution method is
to determine the contribution of an input feature to the target neuron which is usually
the output neuron of the correct class for a classification problem. The arrangement of
the attributions of all the input features in the shape of the input sample forms heatmaps
known as the attribution maps. Some examples of attribution maps for different images
are shown in Figure 1.8. The features with a positive contribution to the activation of the
target neuron are typically marked in red while those negatively affecting the activation
are marked in blue. These are the features or pixels in case of images providing positive
and negative evidence of different magnitudes respectively.

The commonly used attribution methods are discussed in this section and the applica-
tions in the next section. It must be noted that some of the approaches like DeepTaylor
[83] provide only positive evidence and can be useful for a certain set of tasks.The at-
tribution methods can be applied on a black box CNN without any modification to the
underlying architecture making them a convenient yet powerful explainable AI (XAI) tool.
An empirical comparison of some of the methods discussed in this section and a unified
framework called DeepExplain is available in [84]. Most of the methods discussed here
apart from the newer Deep Learning Important FeaTures (DeepLIFT) and Deep SHapley
Additive exPlanations (SHAP) are implemented in the iNNvestigate toolbox [82].
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Figure 1.8: Attributions of VGG-16 with images from Imagenet using the methods imple-
mented in [82]

1.3.2.1 Perturbation based methods - Occlusion

Perturbation is the simplest way to analyze the effect of changing the input features on
the output of an AI model. This can be implemented by removing, masking, or modifying
certain input features, and running the forward pass (output computation), and measuring
the difference from the original output. This is similar to the sensitivity analysis performed
in parametric control system models. The input features affecting the output the most are
ranked as the most important. It is computationally expensive as a forward pass needs
to be run after perturbing each group of features of the input. In the case of image data
the perturbation is performed by covering parts of an image with a grey patch and hence
occluding them from the system’s view. It can provide both positive and negative evidence
by highlighting the responsible features.

This technique was applied by Zeiler and Fergus [85] to the CNN for the image classi-
fication task. Occlusion is the benchmark for any attribution study as it is a simple to
perform model agnostic approach which reveals the feature importance of a model. It can
reveal if a model is overfitting and learning irrelevant features as in the case of adversarial
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examples [86]. The adversarial examples are the inputs designed to cause the model to
make a false decision and are like optical illusions for the models. In that case, the model
misclassifies the image (say a cat as a dog) despite the presence of discriminating feature

Occluding all features (pixels) one-by-one and running the forward pass each time can
be computationally expensive and can take several hours per image [84]. It is common to
use patches of sizes such as 5x5, 10x10, or even larger depending on the size of the target
features and computational resources available.

Another perturbation based approach is Shapley value sampling which computes
approximate Shapely Values by taking each input feature for a sample number of times.
It a method from the coalitional game theory which describes the fair distribution of the
gains and losses among the input features. It was originally proposed for the analysis of
regression [87]. It is slower than all other approaches as the network has to be run samples
× number of features times. As a result it is not a practical method in its original form but
has led to the development of game theory-based methods like Deep SHAP as discussed in
the next subsection.

1.3.2.2 Backpropagation based methods

These methods compute the attribution for all the input features with a single forward and
backward pass through the network. In some of the methods these steps need to be repeated
multiple times but it is independent of the number of input features and much lower than
for perturbation-based methods. The faster run-time comes at the expense of a weaker
relationship between the outcome and the variation of the output. Various backpropagation
based attribution methods are described in Table 1.4. It must be noted that some of these
methods provide only positive evidence while others provide both positive and negative
evidence. The methods providing both positive and negative evidence tend to have high-
frequency noise which can make the results seem spurious. [84].

Table 1.4: Backpropagation based attribution methods

Method Description Notes

Gradient
Computes the gradient of the output
neuron with respect to the input.

The simplest approach but is
usually not the most effective.

DeConvNet
[85]

Applies the rectified linear unit
(ReLU) to the gradient computa-
tion instead of the gradient of a neuron
with ReLU activation.

Used to visualize the fea-
tures learned by the layers.
Limited to CNN models with
ReLU activation.

20



Saliency
Maps [88]

Takes the absolute value of the par-
tial derivative of the target output neu-
ron with respect to the input features to
find the features which affect the output
the most with least perturbation.

Can’t distinguish between
positive and negative evi-
dence due to absolute values.

Guided
backprop-
agation
(GBP) [89]

Applies the ReLU to the gradient
computation in addition to the gra-
dient of a neuron with ReLU activation.

Like DeConvNet, it is limited
to CNN models with ReLU ac-
tivation.

Layer wise
relevance
propagation
(LRP) [90]

Redistributes the prediction score
layer by layer with a backward pass on
the network using a particular rule like
the ε-rule while ensuring numerical sta-
bility

There are alternative stabil-
ity rules and limited to CNN
models with ReLU activation
when all activations are ReLU.

Gradient ×
input [91]

Initially proposed as a method to im-
prove sharpness of attribution maps
and is computed by multiplying the
signed partial derivative of the output
with the input.

It can approximate occlu-
sion better than other meth-
ods in certain cases like mul-
tilayer perceptron (MLP) with
Tanh on MNIST data [84] while
being instant to compute.

Gradient
weighted
class ac-
tivation
mapping
(GradCAM)
[92]

Produces gradient-weighted class ac-
tivation maps using the gradients of
the target concept as it flows to the fi-
nal convolutional layer

Applicable to only CNN in-
cluding those with fully con-
nected layers, structured out-
put (like captions) and rein-
forcement learning.

Integrated
gradients
(IG) [93]

Computes the average gradient as the
input is varied from the baseline (of-
ten zero) to the actual input value unlike
the Gradient × input which uses a single
derivative at the input.

It is highly correlated
with the rescale rule of
DeepLIFT discussed below
which can act as a good and
faster approximation.
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DeepTaylor
[83]

Finds a rootpoint near each neuron with
a value close to the input but with out-
put as 0 and uses it to recursively esti-
mate the attribution of each neuron us-
ing Taylor decomposition.

Provides sparser explana-
tions i.e. focuses on key fea-
tures but provides no negative
evidence due to its assump-
tions of only positive effect.

PatternNet
[94]

Estimates the input signal of the output
neuron using an objective function.

Proposed to counter the incor-
rect attributions of other meth-
ods on linear systems and
generalized to deep networks.

Pattern
Attribution
[94]

Applies Deep Taylor decomposition by
searching the rootpoints in the signal
direction for each neuron

Proposed along with Pattern-
Net and uses decomposition in-
stead of signal visualization

DeepLIFT
[95]

Uses a reference input and computes the
reference values of all hidden units us-
ing a forward pass and then proceeds
backward like LRP. It has two variants
- Rescale rule and the one introduced
later called RevealCancel which treats
positive and negative contributions to a
neuron separately.

Rescale is strongly related to
and equivalent in some cases
to ε-LRP but is not appli-
cable to models involving
multiplicative rules. Re-
vealCancel handles such
cases and using RevealCancel
for convolutional and Rescale
for fully connected layers re-
duces noise.

SmoothGrad
[96]

An improvement on the gradient method
which averages the gradient over multiple
inputs with additional noise

Designed to visually sharpen
the attributions produced by
gradient method using class
score function.

Deep SHAP
[97]

It is a fast approximation algorithm to
compute the game theory based SHAP
values. It is connected to DeepLIFT
and uses multiple background sam-
ples instead of one baseline.

Finds attributions for non
neural net models like trees,
support vector machines (SVM)
and ensemble of those with a
neural net using various tools in
the the SHAP library.

An important property of attribution methods known as completeness was introduced
in the DeepLIFT [95] paper. It states that the attributions for a given input add up
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to the target output minus the target output at the baseline input. It is satisfied by
integrated gradients, DeepTaylor and Deep SHAP but not by DeepLIFT in its rescale rule.
A measure generalizing this property is proposed in [84] for a quantitative comparison of
various attribution methods. It is called sensitivity-n and involves comparing the sum of
the attributions and the variation in the target output in terms of Pearson’s correlation
coefficient (PCC). Occlusion is found to have a higher PCC than other methods as it finds
a direct relationship between the variation in the input and that in the output.

The evaluation of attribution methods is complex as it is challenging to discern between
the errors of the model and the attribution method explaining it. Measures like sensitivity-
n reward the methods designed to reflect the network behavior closely. However, a more
practically relevant measure of an attribution method is the similarity of attributions to
a human observer’s expectation. It needs to be performed with a human expert for a
given task and carries an observer bias as the methods closer to the observer expectation
can be favored at the cost of those explaining the model behavior. We underscore the
argument that the ratings of different attribution methods by experts of a specific domain
are potentially useful to develop explainable models which are more likely to be trusted by
the end users and hence should be a critical part of the development of an XAI system.

1.3.3 Applications

The applications of explainability in medical imaging are reviewed here by categorizing
them into two types - those using pre-existing attribution based methods and those using
other, often specific methods. The methods are discussed according to the explainability
method and the medical imaging application. Table 1.5 provides a brief overview of the
methods.

1.3.3.1 Attribution based

A majority of the medical imaging literature that studied interpretability of deep learning
methods used attribution based methods due to their ease of use. Researchers can train a
suitable neural network architecture without the added complexity of making it inherently
explainable and use a readily available attribution model. This allows the use of either a
pre-existing deep learning model or one with a custom architecture for the best performance
on the given task. The former makes the implementation easier and allows one to leverage
techniques like transfer learning [30], [98] while latter can be used to focus on specific data
and avoid overfitting by using fewer parameters. Both approaches are beneficial for medical
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imaging datasets which tend to be relatively smaller than computer vision benchmarks like
ImageNet [99].

Post-model analysis using attributions can reveal if the model is learning relevant fea-
tures or if it is overfitting to the input by learning spurious features. This allows researchers
to adjust the model architecture and hyperparameters to achieve better results on the test
data and in turn a potential real-world setting. Some recent studies using attribution meth-
ods across medical imaging modalities such as brain magnetic resonance imaging (MRI)
[100], [101], retinal imaging [52], [102]–[104], breast imaging [105], [106], skin imaging [107],
[108], computerized tomography (CT) scans [109], and chest X-ray [110], [111],

The attribution based methods were one of the initial ways of visualizing neural net-
works and have since then evolved from simple class activation map and gradient-based
methods to advanced techniques like Deep SHAP. The better visualizations of these meth-
ods show that the models were learning relevant features in most of the cases. Any presence
of spurious features was scrutinized, flagged to the readers, and brought adjustments to
the model training methods. Smaller and task-specific models like [52] along with custom
variants of the attribution methods can improve the identification of relevant features.

1.3.3.2 Non-attribution based

The studies discussed in this subsection approached the problem of explainability by de-
veloping a methodology and validating it on a given problem rather than performing a
separate analysis using pre-existing attributions based methods like those previously dis-
cussed. These used approaches like attention maps, concept vectors, returning a similar
image, text justifications, expert knowledge, generative modeling, combination with other
machine learning methods, etc. It must be noted that the majority of these are still post-
model but their implementation usually needs specific changes to the model structure such
as in the attention maps or the addition of expert knowledge in case of rule-based methods.
In this section, the studies are grouped by the explainability approach they took.

The design of the methods in this case is more involved than the application of at-
tribution based methods on the inputs of a trained model. Specific elements like concept
vectors, expert-based rules, image retrieval methods need to be integrated often at a model
training level. This added complexity can potentially provide more domain-specific expla-
nations at the expense of higher design effort. Notably, a majority of these techniques
are still a post-hoc step but for a specific architecture or domain. Also, here the scope
is limited to medical imaging as that is the dominant approach for automated diagnosis
because of the detailed information presented by the images. However, patient records also
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provide rich information for diagnosis and there were studies discussing their explainabil-
ity. For example, in [112] a gated recurrent unit (GRU)-based recurrent neural network
(RNN) for mortality prediction from diagnostic codes from electronic healthcare record
(EHR) was presented. It used hierarchical attention in the network for interpretability
and visualization of the results.

Table 1.5: Applications of explainability in medical imaging

Method Algorithm Model Application Modality

Attribution

Gradient*I/P,
GBP, LRP, occlu-
sion [100]

3D CNN
Alzheimer’s detec-
tion

Brain MRI

GradCAM, GBP
[101]

Custom CNN
Grading brain tu-
mor

Brain MRI

IG [102] Inception-v4 DR grading
Fundus im-
ages

EG [52] Custom CNN
Lesion segmenta-
tion for AMD

Retinal
OCT

IG, SmoothGrad
[105]

AlexNet
Estrogen receptor
status

Breast MRI

Saliency maps [106] AlexNet
Breast mass classifi-
cation

Breast MRI

GradCAM, SHAP
[107]

Inception
Melanoma detec-
tion

Skin images

Activation maps
[108]

Custom CNN Lesion classification Skin images

DeepDreams [109] Custom CNN
Segmentation of tu-
mor from liver

CT imaging

GSInquire, GBP,
activation maps
[110]

COVIDNet
CNN

COVID-19 detec-
tion

X-ray im-
ages

Attention

Mapping between
image to reports
[113]

CNN &
LSTM

Bladder cancer
Tissue
images

U-Net with shape
attention stream
[114]

U-net based
Cardiac volume es-
timation

Cardiac
MRI
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Concept
vectors

TCAV [115] Inception DR detection
Fundus im-
ages

TCAV with RCV
[116]

ResNet101
Breast tumor detec-
tion

Breast
lymph node
images

UBS [117] SqueezeNet
Breast mass classifi-
cation

Mammogram
images

Expert
knowledge

Domain constraints
[118]

U-net
Brain MLS estima-
tion

Brain MRI

Rule-based segmen-
tation, perturba-
tion [119]

VGG16
Lung nodule seg-
mentation

Lung CT

Similar
images

GMM and atlas [77] 3D CNN MRI classification
3D MNIST,
Brain MRI

Triplet loss, kNN
[120]

AlexNet
based with
shared
weights

Melanoma
Dermoscopy
images

Monotonic con-
straints [121]

DNN with
two streams

Melanoma detec-
tion

Dermoscopy
images

Textual
justifica-
tion

LSTM, visual word
constraint [122]

Breast mass
classification

CNN
Mammogra-
-phy images

Intrinsic
explainabil-

-ity

Deep Hierarchical
Generative Models
[123]

Auto-
encoders

Classification and
segmentation for
Alzheimer’s

Brain MRI

SVM margin [124]
Hybrid of
CNN & SVM

ASD detection Brain fMRI

1.3.4 Discussion

There has been significant progress in explaining the decisions of deep learning models,
especially those used for medical diagnosis. Understanding the features responsible for a

26



certain decision is useful for the model designers to iron out reliability concerns for the end-
users to gain trust and make better judgments. Almost all of these methods target local
explainability, i.e. explaining the decisions for a single example. This then is extrapolated
to a global level by averaging the highlighted features, especially in cases where the images
have the same spatial orientation. However, emerging methods like concept vectors [115]
provide a more global view of the decisions for each class in terms of domain concepts.

It is important to analyze the features of a black-box which can make the right decision
due to the wrong reason. It is a major issue that can affect performance when the system
is deployed in the real world. Most of the methods, especially the attribution based are
available as open source implementations. However, some methods like GSInquire [111]
which show higher performance on some metrics are proprietary. There is an increasing
commercial interest in explainability, and specifically the attribution methods which can
be leveraged for a variety of business use cases.

Despite all these advances, there is still a need to make the explainability methods
more holistic and interwoven with uncertainty methods. More studies like [102] need to
be conducted to observe the effect of the explainability models on the decision time and
accuracy of the clinical experts. Expert feedback must be incorporated into the design of
such explainability methods to tailor the feedback for their needs. Initially, any clinical
application of such explainable deep learning methods is likely to be a human-in-the-loop
(HITL) hybrid keeping the clinical expert in the control of the process. It can be considered
analogous to driving aids like adaptive cruise control or lane keep assistance in cars where
the driver is still in control and responsible for the final decisions but with a reduced
workload and an added safety net.

Another direction of work can be to use multiple modalities like medical images and
patients’ records together in the decision-making process and attribute the model decisions
to each of them. This can simulate the diagnostic workflow of a clinician where both images
and physical parameters of a patient are used to make a decision. It can potentially
improve the accuracy as well as explain in a more comprehensive way. To sum it up,
explainable diagnosis is making convincing strides but there is still some way to go to meet
the expectations of end-users, regulators, and the general public.
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Chapter 2

Explaining deep learning models for
retinal OCT diagnosis

This chapter and the next two are based on:

• A Singh, S Sengupta, J J Balaji, M A Rasheed, I Faruq, V
Jayakumar, J S Zelek, and V Lakshminarayanan, “What is
the optimal attribution method for explainable ophthalmic
disease classification?” In International Workshop on Oph-
thalmic Medical Image Analysis, Springer, 2020.

• A Singh, A R Mohammed, J S Zelek, and V Lakshminarayanan.
“Interpretation of deep learning using attributions: applica-
tion to ophthalmic diagnosis.” Proc. SPIE 11511, Applica-
tions of Machine Learning, 2020.
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2.1 Introduction

Retinal diseases are prevalent among large sections of society, especially amongst the aging
population and those with other systemic diseases such as diabetes [125]. It is estimated
that the number of Americans over 40 years with a diabetic retinopathy (DR) diagnosis
will rise threefold from 5.5 million in 2005 to 16 million in 2050 [126]. For each decade
of age after 40, the prevalence of low vision and blindness increases by a factor of three
[127]. There is a widespread shortage of trained medical professionals leading to longer wait
times and unavailability of medical aid to remote communities. The situation is especially
acute in developing countries. It is critical to have an early diagnosis for retinal diseases
such as glaucoma where delayed treatment can cause irreversible vision loss. Automated
screening and diagnostic assistance using computer-aided methods like deep learning have
been suggested as a potential solution to make the diagnosis faster and more accessible.
These methods can be used to assist clinicians in making more accurate and faster decisions.

Despite the emergence of many deep learning methods for retinal diagnosis [2], [128]
their adoption in clinical settings is very limited [129]. The main hurdle is the lack of trust
of the clinical end-users, regulators, and patients due to the black-box nature of the algo-
rithms. These models can detect diseases with high accuracy which is often comparable
to human experts [130] but can not explain the logic for their decision. The explainability
methods provide reasoning for model decisions. A majority of those evaluate the con-
tribution of each pixel of the image to the model output and hence are called attribution
methods. An overview of explainability methods is discussed in section 1.3 and more details
are given in [3]. There are a very limited number of studies for explaining the retinal diag-
nosis performed by deep learning models [52], [102]. Studies are evaluating the impact of
explainability on machine learning practitioners [131] and for comparing attribution meth-
ods quantitatively [100], [132]. Almost all the studies, especially the ones for ophthalmic
diagnosis utilize a single explainability method and do not provide comparisons with al-
ternatives. However, to the best of our knowledge, there is no study evaluating multiple
attribution methods both quantitatively and qualitatively for retinal disease diagnosis.

In this study, we performed a quantitative analysis of the attribution methods using
multiple measures - robustness, runtime, and sensitivity. The quantitative analysis is
important to understand the ability of an attribution method to highlight the features
according to their impact on the model output. However, we strongly believe that for any
explainability method to be successfully used in the field it must be evaluated by trained
experts as an assistive tool. A panel of retinal experts consisting of ophthalmologists and
optometrists evaluated the methods for their ability to justify the predicted class in terms
of the similarity to the clinical concepts. The use of attributions as a tool to improve the
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models and inculcate the trust of clinician end-users through visualizations is discussed in
this study.

Section 2.2 describes the studies on explainability and more specifically the applications
for retinal diagnosis. Commonly used Inception-v3 [133] architecture was trained on the
large UCSD OCT dataset [134] to classify images among 4 classes - choroidal neovascular-
ization (CNV), DME, drusen and normal. CNV refers to the formation of new leaky blood
vessels in the choroid beneath the retina, DME is the accumulation of fluid in the most
visually active region called the macula, and drusen are the yellowish deposits of lipids
and proteins under the retina. The experiment is discussed in section 2.3 highlighting the
dataset, model training, and the generation of explanations. The quantitative analysis
using multiple metrics is described in chapter 3. These methods were rated by a panel
of 14 eye care professionals (10 ophthalmologists and 4 optometrists). Their observations
regarding the clinical significance of these methods, preference regarding AI systems, and
suggestions for future implementations are analyzed in chapter 4. The findings are con-
cluded in section 5 with directions for future research. Further details can be found in
[103], [104], [135].

2.2 Related studies

It is imperative for both the machine learning practitioners and the end-users to observe
the relevant features used by an AI system for making decisions. It leads to a better un-
derstanding of the interaction between the model and the data [131] enabling the former
to design better models. It can inculcate confidence and trust in the domain experts lead-
ing to the more responsible use of deep learning methods. Explaining the diagnostic and
treatment decisions to all the parties involved is an integral part of the modern health-
care system. The ethical and legal challenges of the domain require decisions to be more
transparent, explainable, and understandable for the users. This has lead to advances in
the development of XAI systems for medical diagnosis [76]. The key challenges and op-
portunities for XAI are presented in [79] and a detailed categorization of the methods is
provided in [80]. [3] discussed the applications of explainability in the medical imaging and
highlighted a need for evaluation of these methods by end-users.

Deep learning methods are used for tasks like classification, segmentation, image en-
hancement, and image generation from retinal images captured by two common modalities
- fundus camera and OCT scans. The classification problem deals with detection of dis-
eases like glaucoma, DR, and AMD from retinal images. Segmentation involves identifying
regions of interest such as optic cup and disc, retinal layers, drusen deposits, etc. Image
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enhancement refers to denoising OCT scans, increasing the details with super-resolution,
and generation of synthetic data for model training. Reviews of deep learning methods for
ophthalmic diagnosis are available in [1], [2], [10], [128]. IDx-DR was a method for DR
classification from fundus images [129] which received FDA approval.

In a study for weakly-supervised segmentation of lesions for AMD diagnosis [52], an
extension of IG called expressive gradients (EG) was proposed. The EG method added
the high-level attributions to the input only attributions of IG, outperforming it when
applied along with a relatively small custom CNN. The impact of the model predictions
and attributions generated by IG on DR grading by ophthalmologists was studied in [102].
The combination of class probabilities and attributions was found to be the most effective
in improving the grading accuracy of the users compared to only the probabilities or no
assistance. The grading time of the users increased initially but it reduced from the initial
levels after prolonged use of the assistance showing the potential to increase the patient
throughput and improve the diagnosis simultaneously.

Recent studies have looked into the quantitative analysis of multiple attribution meth-
ods [84], [132] in terms of the theoretical principles. A study in the domain of brain
imaging [100] performed a robustness analysis to measure the repeatability of the attri-
butions generated by various methods. Motivated by the findings of these as well as the
studies for explainable retinal diagnosis [52], [102], we explore the efficacy of different at-
tribution methods to highlight the clinically relevant regions of the images. Instead of
evaluating them as a tool for weakly-supervised segmentation and then comparing with
markings of a clinician, we suggest their use as a framework for understanding the model
- data interactions and assisting clinical end-users.

2.3 Methods

This section describes the dataset, computational hardware, model training, and generation
of attributions using various methods.

2.3.1 Dataset

In this study, we used a large publicly available dataset known as the UCSD dataset [38].
It has images in “training” and “test” folders with 4 classes and the details are as shown
in table 2.1. It is observed that the dataset is not balanced with the most images in the
CNV class. However, no issues due to class imbalance are observed in training due to the
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large size of the dataset. It consisted of 83.5k training images from four classes - CNV
(37.2k), DME (11.3k), drusen (8.6k) and normal (26.3k). The test set of 1000 images had
250 images from each class.

Table 2.1: Dataset description showing the class level split for training and test sets.

Data CNV DME Drusen Normal Total
Training 37205 11348 8616 26315 83483
% of total 44.57% 13.59% 10.32% 31.52% 100%
Test 250 250 250 250 1000
% of total 25.00% 25.00% 25.00% 25.00% 100%

2.3.2 Computational hardware

Two kind of systems were used for model training and attribution generations:

1. Intel Core i7 9700K 3.60GHz 8 core CPU, 64GB RAM, Nvidia Titan V 12GB GPU :
Used for training the model and hyperparameter tuning of a single model.

2. Compute Canada Beluga nodes: Intel Gold 6148 Skylake 2.4 GHz processor, up to
128GB RAM, upto 4 Nvidia Tesla V100 16GB GPU : Used for training multiple
model instances and calculating attributions in parallel by using more than one
GPUs.

2.3.3 Model

The UCSD OCT dataset [134] was used to train an Inception-v3 [133] network and generate
the attributions. The Inception-v3 model was chosen due to its prevalence in medical
imaging, especially ophthalmic diagnosis [30], [38], [136], due to ease of implementation
and availability of pre-trained weights. TensorFlow 2 library [137] with Keras API [138]
was used for building the model. The model was trained from random weights to avoid
any irrelevant features from pre-training. 20% of the training images from each class were
separated for validation. The test accuracy for the ten training instances ranged between
99.00% and 99.90% with an average of 99.42%.

The confusion matrix for an instance with 99.30% accuracy is shown in figure 2.1. The
model learned the labels in a balanced way despite the class imbalance discussed in sub-
section 2.3.1. Drusen has the most misclassification as CNV. The potential reasons could

32



be harder detection due to the relatively small size and presence of secondary diagnosis.
Also, larger drusen deposits could be confused with smaller CNV structures, especially in
the presence of high noise. In some cases, drusen and CNV are also hard to distinguish
for human experts. Some normal images with little imperfections were misdiagnosed as
drusen.

Figure 2.1: Confusion matrix with true labels on Y-axis and predictions on X-axis

The attributions were generated using variants of DeconvNet [85], Saliency maps [88],
GBP [89], LRP [90], gradient times input, IG [93], DeepTaylor [83], DeepLIFT [91],
SmoothGrad [96], DeepSHAP [97] as well as the baselines from gradient and occlusion.
Three libraries were used for implementation of these methods - Innvestigate [82], Deep
Explain [84], and SHAP [97]. SHAP and DeepLIFT are considered as state-of-the-art on
standard machine learning datasets and have superior theoretical background while IG is
commonly used for retinal images Note that some images of the source. A summary of
these methods is provide in table 1.4 in chapter 1.

For LRP, the ε rule was used while DeepLIFT was used in the original rescale variant
implemented by[84]. The reveal cancel rule of DeepLIFT in [95] was incompatible with the
bias term of the Inception model. SHAP was the only model that required background
distribution and we selected a random set of 20 normal images for the same denoting it as
SHAP random. It was observed to be sensitive to artifacts and noise in the background
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images. Hence, another variant with 20 normal images with low noise and artifacts was
also used and denoted as SHAP selected. A window size of 64x64 and a step size of 16 were
used for occlusion as the runtime is very high when every pixel is perturbed separately as
explained in the section 1.3.2.1.

The heatmaps using the attribution methods for one correctly classified example of
each disease and an incorrectly classified example of drusen are shown in figures 2.2, 2.3,
2.4 and, 2.5 respectively. A brief description of the output is provided with each figure.
The source images in the dataset were cropped and rotated. Notably, certain methods
such as DeepTaylor and Saliency provide only positive evidence. Those providing both
positive and negative evidence have a high-frequency noise (negative evidence) that can
be removed in practice but retained here to compare original outputs. The attributions
generated by all the methods were analyzed both quantitatively and qualitatively and are
discussed in chapters 3 and 4 respectively.
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Figure 2.2: Heatmaps for a scan with choroidal neovascularization (CNV).The scale in
the bottom shows that the parts highlighted in magenta color provide positive evidence
regarding presence of a disease while those in blue color provide a negative evidence indi-
cating that the image doesn’t belong to the target class. DeepTaylor, GBP perform the
best, SHAP highlights partial but precise regions, and the rest of the methods have varying
amounts of noise. The fluid accumulation for CNV was highlighted by better performing
methods.
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Figure 2.3: Heatmaps for a scan with diabetic macular edema (DME). Overall results are
consistent with the CNV case. The edges of the edema for DME were highlighted by better
performing methods.
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Figure 2.4: Heatmaps maps for a scan with drusen using various attribution methods.
The pathological structures are smaller than the previous two and as a result most of the
methods highlight regions outside too. SHAP is the most precise here. The performance
of the methods can be observed in terms of positive highlights of the bumpy RPE.
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Figure 2.5: Heatmaps for a drusen scan misclassified as CNV. Most of the methods show
a higher than usual amount of negative evidence as blue marks and there is a prominent
blue glow over the drusen in occlusion.
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Chapter 3

Quantitative evaluation of
attribution methods

3.1 Introduction

The quantitative evaluation of attribution methods is tedious in the absence of ground
truth unlike those for conventional segmentation tasks. Both the analyses were performed
in two stages in separate studies. In the first stage deconvnet, DeepLIFT, GBP, input
times gradient, IG, LRP - ε, occlusion, saliency maps, and SHAP were used. In the later
stage, all the methods were used to compute improved metrics.

3.2 Stage 1 analysis

In the initial stage, three metrics - runtime, RMSE, and Spearman’s rank correlation
were calculated for a subset of the methods. These metrics describe the computational
cost, absolute error, and the agreement between rankings of features with their impact on
model output [139] respectively. It must be noted that these were calculated for a more
recent deep learning model known as Inception-Resnet-v2 [29], an improvement over the
popular Inception-v3. More details about the implementation are available in [103].
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3.2.1 Runtime

The methods were run on the same system and benchmarked for the average time for
heatmap generation of a single image. Figure 3.1 shows the runtimes along with error bars
showing maximum and minimum bars for all the methods. SHAP had the highest runtime
of over 1.5 seconds per image as it had to calculate the reference value of the neurons for the
background distribution of normal images before finding the SHAP values for the sample.
Occlusion was the second slowest despite the speed-up caused by the sliding window. The
integrated gradient averages the gradient by varying it from a reference value and hence
needs more computational effort. All other methods gave results in under 300ms, indicating
their potential suitability for systems with lower computational power.

Figure 3.1: Runtime of the attribution methods with error bars showing upper and lower
bounds

3.2.2 RMSE

The rootmean squared error (RMSE) was used to quantify the absolute average error of the
attribution values. The difference in attribution values between various images of a disease
was calculated. A lower score indicated a more robust performance. As indicated in figure
3.4, LRP had the least RMSE score and all methods but occlusion had an RMSE under
0.8 with a relatively small variation. RMSE can be affected by the number of features
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highlighted by each method, and hence methods like DeConvNet which highlight more
features tend to be less robust. As can be seen in figure 2.3.3, highlighting more pixels
indicated either marking of areas outside the retina or better coverage.

Figure 3.2: RMSE of the output of each method

3.2.3 Spearman’s rank correlation

The Spearman’s rank correlation was used to measure the agreement between the mag-
nitude of attribution values and their relative effect on the model output. A model with
higher values showing more impact on the output would have a higher Spearman’s rank
correlation score. Similar to the previous measure, LRP had the best score, closely fol-
lowed by input×gradient. Occlusion, saliency maps, and DeConvNet performed poorly
which agreed with their noisy attribution maps in figure 2.3.3. The mediocre performance
of SHAP despite highlighting the pixels well could be due to smaller highlighted areas
and giving high attribution values to most of the marked pixels. Interestingly, GBP did
not perform as well on this metric despite one of the more clinically relevant markings.
Hence, we looked at these methods qualitatively to observe the overlap of the heatmaps
with clinical markings.
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Figure 3.3: Spearman rank correlation showing agreement between methods and output

3.3 Stage 2 analysis

The results from metrics in the first stage were insufficient to discern the methods. The
RMSE suffered from the displacement of the images in the scans and favored the methods
with smaller highlighted areas. Spearman’s rank correlation scores were not attuned with
expected results from visual inspection, for example, GBP was strongly penalized despite
good heatmaps. Hence, in a later study [104], two stronger metrics from recent literature
were evaluated for all the methods. The robustness of a given method between the trained
model weights [100] and sensitivity analysis [84], [139] were performed to compare the
various attribution methods. All 1000 images of the test set were used for the robustness
analysis to achieve better estimates while 80 images (20 per class) were used for sensitivity
analysis due to computational constraints.

3.3.1 Robustness between models and runtime

The RMSE between the attributions of a method from all pairs of 10 separately trained
instances of the model was used as a measure of robustness. Ideally, the models would
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Table 3.1: RMSE between the attributions for different model instances and average run-
time

Method RMSE Avg. runtime
CNV DME Drusen Normal Total (LRP - ε base)

DeconvNet 424.74 415.37 400.05 465.75 1705.91 2.70x
Deep Taylor 198.06 211.55 187.24 211.77 808.62 1.58x

DeepLIFT - Rescale79.49 70.80 93.72 64.77 308.77 2.51x
Gradient 493.56 457.87 432.02 438.49 1821.93 1.63x

GBP 267.25 277.97 240.25 285.48 1070.95 1.61x
Input × Gradient 392.54 378.22 343.07 371.32 1485.15 3.53x

IG 368.8 347.24 311.86 346.18 1374.07 8.70x
LRP - ε 392.34 378.09 342.89 371.18 1484.50 1x (72.44ms)

Occlusion 64 196.36 306.85 441.94 598.44 1543.59 15.53x
Saliency 107.67 86.60 112.78 84.59 391.64 2.03x

SHAP - Random 117.19 85.89 93.29 65.83 362.20 21.30x
SHAP - Selected 122.48 75.08 99.41 63.90 360.87 15.69x

SmoothGrad 465.35 429.34 405.97 409.66 1710.32 5.04x

have learned similar features for all the runs and the attribution methods would, therefore,
provide similar results. However, the stochastic nature of model training and the algorith-
mic differences between the attribution methods leads to non-zero RMSE values as shown
in table 3.1. The DeepLIFT rescale rule had the least RMSE followed by SHAP selected,
while SHAP random gave similar to that of SHAP selected. SHAP random had slightly
better results for drusen as it highlighted smaller areas as shown in figure 2.4. The gradient
had the highest RMSE as it is directly influenced by the variation in the model’s features.
It should be noted that this analysis inherently favored the methods highlighting a smaller
area and was affected by the difference in distributions of attributions despite normalizing
them from -1 to 1. The code was run on an Intel Gold 6148 Skylake 2.4 GHz processor
with 16GB RAM and Nvidia Tesla V100 16GB GPU to benchmark the runtimes. LRP
had the least runtime while SHAP random had the most due to high computation cost
incurred by having a background of normal images. However, using a selected background
with lower artifacts reduced the runtime of SHAP by 26.33%.
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3.3.2 Sensitivity analysis

Sensitivity does not suffer the pitfalls of robustness and is a better indicator of the top
features identified by an attribution method. The pixels in the original image were ranked
by their attribution value and removed sequentially by setting them to 0. The value of a
pixel provided its relative importance and was expected to have a positive correlation to
its contribution to the output. The faster the drop in target neuron value on eliminating
the top pixels, the better a method was able to rank the most important pixels and hence
more sensitive to the output of the target neuron [84], [140]. The analysis was performed
for the top 20% of the features of the same weights.
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Figure 3.4: Sensitivity analysis by removing the top features of each attribution map and
observing the effect on the output neuron. The methods with lower curves identify the
relevant features better. The random selection of features shows a linear effect.

The removal of the features identified by all the methods showed a similar exponentially
decreasing behavior. Due to the small area of pathology, it resulted in asymptotic curves
beyond the 10% mark as shown in figure 3.4. The initial drop was fastest in DeepLIFT
and IG but IG continued to be most sensitive till about 10% of top features beyond which
occlusion 64 had the most sensitivity. The rapid decrease in model output showed that
the features influencing the model ouput the most received the highest attribution values.
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Saliency and deconvnet had the worst performance which is also reflected by their noisy
heatmaps as shown in fig. 3.4. All the methods performed significantly better than the
linear curve obtained by randomly dropping the features.

3.4 Discussion

The quantitative analysis performed here measured the ability of all the attribution meth-
ods to find the features that had the most effect on the model output. This study compared
13 different attribution methods for explaining a deep learning model for retinal OCT clas-
sification. The quantitative comparison showed high robustness between the models for
DeepLIFT and SHAP while IG had marginally more sensitivity for detecting the features
that impacted the decision the most.

The quantitative analysis, though important for measuring the ability to detect the
features that impact the model decisions, may disagree with the visual inspection of the
highlighted pathological regions. In a clinical context, it is essential to identify the features
that cover the pathology the best. To this end, the next chapter describes the comparison
with markings of clinicians and the ratings by clinicians for different methods.
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Chapter 4

Qualitative evaluation of attribution
methods

With additional content from:

• A Singh, J J Balaji, V Jayakumar, M A Rasheed, R Raman,
V Lakshminarayanan “Quantitative and Qualitative Evalua-
tion of Explainable Deep Learning Methods for Ophthalmic
Diagnosis.” arXiv preprint arXiv:2009.12648 (2020).

4.1 Introduction

As discussed earlier, the qualitative analysis provides an evaluation of the methods by
the end-users. A method providing explanations that are both quantitatively sound and
closer to the regions analyzed by an expert is likely to have more trust and acceptance.
In this section, two qualitative analysis measures - agreement with clinician’s markings
and ratings from a panel of clinicians are demonstrated. The latter was performed as a
pilot study with 3 optometrists initially. It was further expanded to include a group of 14
clinicians (both optometrists and ophthalmologists specializing in the retina) for a more
diverse opinion. More details regarding the same are available in [135].
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Table 4.1: Average cosine similarity between the heatmap and the clinical grading

Method CNV DME Drusen Average
DeconvNet 0.3503 0.3253 0.2142 0.2966
DeepLIFT 0.3701 0.2541 0.2763 0.3002
GBP 0.4297 0.3889 0.3697 0.3961
Input × Gradient 0.3784 0.2949 0.2779 0.3170
IG 0.2886 0.2450 0.3264 0.2867
LRP - ε 0.3684 0.3520 0.2827 0.3344
Occlusion 0.6052 0.4170 0.3401 0.4541
Saliency 0.5818 0.4187 0.3680 0.4562
SHAP 0.3322 0.3208 0.3096 0.3209

4.2 Agreement with clinical markings

In this subsection, the heatmaps of different methods are compared to the markings done by
a clinician. An optometrist with 4 years of experience with retinal OCT images graded 10
images from each disease and marked the pathological areas. This was done using ImageJ
on a Microsoft Surface Pro 4 tablet with a stylus. Figure 2.3.3 shows the original images
with class probabilities and heatmaps of each attribution method against the clinician’s
grading. The examples for CNV, DME, drusen, and drusen misclassified as CNV are
presented in the figure 4.1. Unlike the figures in chapter 2, here negative values were
truncated and colored heatmaps were produced on the basis of attribution scores. The
number and size of the drusen present in the scan could have influenced the model to
predict is as CNV in figure 2.5. It also showed some degree of confusion in the probability
between CNV and drusen in figure 2.4 as well as other images in the data as shown in
figure 2.1.

The cosine similarity 1 was used to measure the similarity between the heatmaps and
the gradings as shown in table 4.1. It is a metric used to compare two vectors by computing
their cosine angle in a multi-dimensional space. It was observed that all the methods except
occlusion produced heatmaps of regions which were smaller parts within the graded area.
Saliency also highlighted relatively larger regions and had more overlap with the gradings
than occlusion. This led to the highest average cosine score of 0.4582 along with the highest
for DME and the second-highest for CNV. The occlusion had the highest cosine score for

1Cosine similarity measures the similarity between two vectors in terms of the cosine of the angle
between them
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CNV as it is the pathology covering the largest area in the scans. GBP had the highest
score for the smallest pathology, i.e. drusen, and had the second-highest score for DME
despite covering more targetted regions. The effect is further pronounced for SHAP which
highlighted even more focussed parts of the pathology structure leading to low cosine score
despite clinically relevant heatmaps.

The rest of the methods were somewhat useful as they highlighted both within and
outside the gradings. Notably, IG which was previously used in literature for both fundus
and OCT images had a mediocre result which means comparing a wider range of methods
before selecting one for deployment in real-world is important. Overall, GBP performed
the best qualitatively despite having the third-highest cosine score as it highlighted in a
more targeted way. SHAP worked notably better for drusen as it effectively highlighted
even smaller regions.
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(a) CNV

(b) DME
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(c) Drusen

(d) Drusen classified as CNV

Figure 4.1: Input images of the classes with output probabilities and heatmaps of the
attribution methods. Clinician’s markings are shown in white.
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Table 4.2: Statistics of ratings for all data and the best rated method - Deep Taylor

Rater Mean all Median all Mean best Median best Spearman ρ
P1 1.30 1 3.15 3 2: 0.11 3: 0.51
P2 2.30 2 4.28 4 1: 0.11 3: 0.22
P3 2.33 2 4.78 5 1: 0.51 2: 0.22

4.3 Ratings by 3 clinicians

This study was part of [104] and served as the foundation of a larger study involving a
partnership with leading ophthalmologists who specialize in retinal diseases. Three expert
clinicians with different levels of experience in making diagnoses from OCT rated the
explanations from all the attribution methods for 20 images from each of the 3 disease
classes from a scale of 0 to 5 with 0 indicating no clinical significance. P1 has clinical
optometry experience of more than 25 years and has imaged and reviewed around 2500
retinal images in the last 5 years. P2 is an optometrist with 4 years of clinical experience.
P3 has over several years of clinical experience as an ophthalmologist and now as an
optometrist.

Fig. 4.2 shows box plots of the ratings given to explanations of different methods.
To adjust for harshness, each clinician’s ratings are normalized by the respective average
and then the minimum of all clinicians’ ratings is added to them. It was observed that
the clinicians preferred Deep Taylor with a mean rating of 4.42 due to clinically coherent
explanations, better coverage of pathology, and lack of high-frequency noise. GBP had a
mean of 3.79 while SHAP-selected had marginally better mean of 2.85 compared to 2.81
of SHAP-random. LRP, IG, and input×gradient have a consistent but mediocre rating
of around 2, and occlusion performed the worst as expected. It was observed that the
ratings of methods changed over pathologies, e.g. SHAP performed close to Deep Taylor
for detecting relatively small drusen deposits as it highlighted smaller areas.

It must be noted that there were differences in rating preferences between the clini-
cians as shown in table 4.2. The clinical experience profile might have some influences on
grading OCT especially in the absence of written criteria. P1, with the most experience
in OCT grading, gave a lower rating to the methods and gave a more accurate diagnosis.
Spearman’s rank-order correlation indicated a strong correlation between the ratings of P1
and P3 despite the difference in mean and median values.

The clinicians pointed out several differences between these methods and actual areas
of relevance. It was observed that some low rated methods highlighted the vitreous regions
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Figure 4.2: The box plots of the normalized ratings of the clinicians for explanations of
different methods sorted by mean (red marker). Deep Taylor and GBP had the high mean
and short whiskers indicating consistently good ratings.

outside the retina as explanations. This is due to the system’s lack of awareness about the
bounds of the retinal region. P1 pointed out that CNV was the hardest to explain for the
methods while drusen had the most consistent results. P2 and P3 highlighted discrepancies
in the source data such as lack of information about the cross-sectional plane of scans and
incomplete view of the affected region. The clinicians also found secondary diagnosis for 4
out of the 60 images indicating potential noise or confounds in the source data.

4.4 Rating by a panel of 14 clinicians

The study in the previous section led to further evaluation of the methods for their suitabil-
ity for clinical use. A panel of 14 clinicians was set up including 10 ophthalmologists and
4 optometrists [135]. The heatmaps generated by the 13 methods for 20 images from each
disease category were evaluated by the clinicians. The group had a median experience of
5 years in retinal diagnosis, including 4 years with OCT imaging. The average number of
images rated per week was approximately 40 with all the clinicians having prior experience
analyzing retinal SD-OCT images. They rated the explanations from 0 (not relevant) to 5
(fully relevant). The scores of each clinician were normalized by subtracting the respective
mean and then rescaling between 0 to 5. A comparison between the scores of the raters
was also performed in addition to the comparison between methods. The clinicians also
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provided qualitative feedback in addition to the ratings.

4.4.1 Comparison between methods

One way to represent the rating scores are through the use of violin plots. In these figures,
the estimated probability density of each method is shown by the thickness of the violin
plot. The plots of normalized scores of raters for all the methods across 60 scans are shown
in figure 4.3. Table 4.3 gives the rating data for all conditions and methods. Deep Taylor
with the highest median rating of 3.85 was judged as the best performing method. It
had the highest ratings for all conditions as shown in table 4.3. It is relatively simple to
compute and involves Taylor series expansion of the signal at neurons. It was considerably
ahead of GBP, the next best method which was closely followed by SHAP with selected
and then random background.

Table 4.3: Median ratings (with IQR) for each disease for all attribution methods. Deep
Taylor had the highest ratings.

Method Median rating (IQR)
CNV DME Drusen Total

DcNet 2.17 (1.71-2.61) 2.47 (1.74-3.09) 2.32 (1.71-2.61) 2.32 (1.71-2.82)
DTaylor 3.80 (3.22-4.05) 3.48(3.09-3.99) 3.99 (3.58-4.56) 3.85 (3.23-4.07)
DLift-Res 2.44 (1.85-2.72) 2.44 (1.96-2.53) 2.53 (2.32-3.09) 2.47 (2.06-2.82)
Grad 2.32 (1.77-2.53) 2.47 (2.19-2.95) 2.44 (2.03-2.61) 2.44 (1.96-2.72)
GBP 3.23 (3.09-3.80) 3.26 (3.07-3.80) 3.71 (3.22-3.99) 3.29 (3.09-3.97)
I*Grad 2.50 (2.32-2.95) 2.47 (2.28-2.82) 2.53(2.44-3.04) 2.50 (2.32-2.95)
IG 2.50 (2.32-2.95) 2.47 (2.19-2.82) 2.57 (2.44-3.20) 2.50 (2.32-2.95)
LRP.E 2.50 (2.32-2.95) 2.50 (2.32-2.95) 2.53 (2.41-3.04) 2.50 (2.32-2.95)
LRP.Z 2.50 (2.32-2.95) 2.50 (2.32-2.95) 2.53 (2.41-3.04) 2.50 (2.32-2.95)
Occ64 1.71 (1.55-1.96) 1.71 (1.42-1.85) 1.71 (1.42-1.96) 1.71 (1.52-1.96)
Saliency 2.47 (1.74-3.29) 2.72 (1.74-3.29) 2.61 (1.74-3.29) 2.61 (1.74-3.29)
SHAP-R 3.23 (2.53-3.85) 3.23 (2.53-3.85) 3.58 (2.89-3.96) 3.23 (2.53-3.85)
SHAP-S 3.23 (2.53-3.85) 3.23 (2.53-3.85) 3.53 (2.61-3.96) 3.26 (2.53-3.96)
SmoothGrad 2.45 (1.85-2.95) 2.47 (1.96-3.09) 2.47 (1.85-3.04) 2.47 (1.93-3.04)

IG which is commonly employed in the literature for generating heatmaps for retinal
diagnosis [52], [102] received a median score of only 2.5. It is known to be strongly related
and in some cases mathematically equivalent to LRP - ε [84] and this was also reflected
in similar ratings. DeepLIFT could not be tested in its newer Reveal Cancel rule due to
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compatibility issues with the model architecture and the older Rescale rule had a below par
performance. As expected, the baseline occlusion which used sliding window of size 64 to
cover the pixel and then compute significance performed worse than the attribution-based
methods.

Most of the methods have the majority of the values around the median indicating
consistent ratings across images and raters. Both cases of SHAP and Saliency have par-
ticularly elongated distributions. For SHAP, the curve is widest around 4 indicating good
ratings for many cases. However, the values around 2.5 due to lower coverage of pathology
drive the overall median lower. In the case of Saliency, the ratings are spread from about
4.5 to 1.5 with many of them around 3.25 and 1.75 marks. The former is due to larger
coverage of the pathological region and the latter is due to the fact that it missed regions
frequently. Hence, despite better median value, it is not as suitable as lower-rated methods
such as IG where a bulk of the value is around the median.

4.4.2 Comparison between raters

The Spearman’s rank correlation was used to compare the ratings of the clinicians with
each other. This test is a non-parametric measure that assesses the relationship between
two variables, in this case the ratings of images by two different clinicians. A correlation
of +1 indicates a perfect positive correlation, 0 indicates no correlation, and -1 indicates
perfect negative correlation. The correlations between the ratings of all 14 clinicians for
the 60 images and 13 methods are shown in figure 4.4. P1 to P10 are ophthalmologists
while P11 to P14 are optometrists.

Most of the values are around 0.5 indicating an overall moderate agreement between
clinicians. The highest correlation was of 0.76 between P10 and P13 while two cases of
slight negative correlation were between P1 and P11 and P2 and P11. The rater P11 had
relatively less experience with OCT which could have resulted in a lower correlation with
other clinicians. This indicates that the background and training (i.e., prior experience) of
clinicians affected their ratings of the system.

4.4.3 Qualitative observations

The positively correlation between the ratings of the methods by the clinicians indicates
similar preferences between different attribution methods in a quantitative way. In this
subsection the qualitative feedback given by the clinicians regarding the performance of the
system, potential use cases and other suggestions are summarized. A survey was collected
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Figure 4.3: Violin plots of normalized ratings of all methods. The breadth of the plot
shows the probability density of the data and the median value is reported on top of the
plots. Deep Taylor was rated the highest overall followed by GBP and SHAP.

from the clinicians to seek their opinion post study. This would help understand the
observations of clinicians in a more nuanced manner.

It is notable that 79% (11/14) clinicians who participated in the study would prefer
to have an explainable system assisting them in practice, reaffirming the need for such
system to the clinical community. One of the ophthalmologists gave their feedback on the
system as – “It is a definite boon to the armamentarium as far as screening and diagnosis
is concerned on a mass scale or in a telemedicine facility”.

The clinicians noted an overall better coverage of the pathology by Deep Taylor as
the reason for higher ratings, however it and other methods except SHAP were found to
be detecting the boundaries of the regions better. SHAP was observed to be identifying
regions inside the edema also, though the partial coverage of the region and to some extent
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Figure 4.4: Spearman’s correlation for clinician’s ratings.

the noise (represented in blue) from negative attributions led to a lower score. The noise,
especially in case of LRP was found to be a distraction by some clinicians. It was kept
in this study to not alter the attributions in any way and compare the methods in their
original form. However, it is easy to remove it by keeping only positive valued attributions.

Most of the clinicians identified telemedicine and tertiary care centres as potential sites
which can utilize this system. It was suggested that it can be used for screening in places
with large number of patients without sufficient number of specialists (or a tertiary care
center), which was one of the initial goals of this study. It helps clinicians by categorizing
the scans with suspect conditions and thus allows clinicians to focus their attention on
examining the areas of the images highlighted by algorithm and hence take necessary steps
towards making final decision on the diagnosis. This can improve efficiency and help in
saving time, resulting in more efficient patient care. Another application could be archival
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and data management where the heatmaps could be used for separating images faster.

4.5 Discussion

In addition to a comparison of various available attribution methods to explain deep learn-
ing models, this study validated their results through ratings from a large panel of clinicians.
Most of them were not involved in the design process at this stage, were in general positive
about the utility of the system and were and receptive to using this methodology.

A method based on Taylor series expansion, known as Deep Taylor, received the highest
ratings showing that methods with stronger or better theoretical backgrounds and high
performance on standard datasets may not be the optimal methods in a practical medical
imaging situation. It must be noted that the original goal of these attribution methods
was to explain the model’s decision-making process by generating a true representation of
the features used by a model to perform a given task. Hence, the heatmaps generated are
affected by both by the model and the attribution method used.

It must be noted that a significant issue with GBP, the second highest rated method is
that it acts as an edge detector and not actually revealing the model’s decision-making pro-
cess [141], [142]. Despite this issue its attributions were rated highly due to a good coverage
of the pathological region, especially its boundaries. However, we suggest using explain-
ability methods which are both technically sound and generate heatmaps to highlight the
pathology to be used in clinical deployment of explainable deep learning systems.
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Chapter 5

Conclusion and future research

In this thesis, different approaches to explain deep learning models for retinal diagnosis were
compared. The quantitative comparison involved metrics used in the literature to compare
the explainability methods on standard computer vision datasets. The results from these
metrics could not clearly distinguish the methods in line with the observed images. Hence,
a qualitative comparison for coverage of the clinically relevant regions was performed. A
direct comparison using cosine scores with markings of a clinician improved the distinction
but favored the methods covering larger areas. A comparison using ratings of each method
was found to be in line with the observations and favored a relatively simple yet effective
method, namely Deep Taylor. The study revealed that despite performing reasonably well,
the state-of-the-art explainability methods may not be the most suitable for a specific task
such as retinal diagnosis. There is a need to explain the deep learning models to improve
their acceptability and using the right approach to do so is the key.

Identifying a suitable method from the choices available is a single element of the
problem of explaining deep learning models for retinal diagnosis using OCT images and
making them more acceptable by the clinicians and the public. Several additional hurdles
need to be overcome before such a method can be deemed suitable for wider deployment.
Some such directions of future research are:

• System enhancements:

– Uncertainty aware explainable system: Deep learning methods tend to give a
high softmax value as output due to the nature of the objective function used
in their training. This value is often misinterpreted as a probability or confi-
dence in the decision. However, an uncertainty analysis using methods such as
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Bayesian neural networks have to be undertaken in order to create a compre-
hensive system. This is currently being studied in a project which combines and
relates uncertainty and explainability for retinal diagnosis [143].

– On demand explainability method choice: Even though Deep Taylor emerged as
the highest-rated method it is not the truest to the actual model features as
revealed in the sensitivity analysis. SHAP displayed better results for covering
the drusen area while Deep Taylor and GBP covered the RPE better. Similarly,
occlusion gave prominent negative heatmaps in cases with misdiagnosis. Hence,
depending on the uncertainty and the class predicted, a specific attribution
method or a combination of multiple methods can be used for generating the
heatmaps for the end-user.

– Screening tool with human-in-the-loop (HITL) design: AI systems such as the
one designed in this thesis are not meant to replace human experts but to
augment their abilities for delivering better service. The decisions made by a
deep learning model must be approved by a human expert before using them for
patient care. An explainable system with suitably trained clinicians can be used
to implement large screening programs with much higher patient throughput.
For this, the trust of the clinicians must be calibrated using uncertainty metrics.
[144].

– Integration with portable OCT systems: Currently, OCT systems are not used in
eye camps since the devices are not only expensive but also are bulky. Given re-
cent advances in low-cost portable OCT devices [145], it is possible to integrate
an explainable diagnosis system on a laptop or mobile device for teleophthal-
mology purposes, which would be invaluable to the clinical community.

• Data and model improvements:

– Using a dataset labeled for secondary diagnosis: The dataset used here labeled
only primary diagnosis. However, the clinicians were able to identify a secondary
diagnosis for some images from their evaluation.

– Using information about the orientation of scans: Due to the nature of the
dataset, the study is limited to a single orientation of the OCT scan which
might differ between the images. Using volumetric scans could train more robust
models and potentially better explanations for a complete view of the retina.

– Integrating patient records and fundus images: This study used only OCT image
data whereas in practice multiple sources of information such as fundus image,
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age, past ocular and medical history, fellow eye status, etc. An integrated
AI system with electronic medical records can be used to develop a clinical
decision support system. This can make early-stage detection of disease or
predict prognosis. Another application of the explainability system could be
as a self-learning tool. All the clinicians in this study preferred having fundus
images in addition to OCT, hence, a system that uses fundus, OCT, and patient
data similar to [146] could be useful in practice. A multi-modal system with all
available diagnostic information - patient reports, fundus, and OCT images can
improve both accuracy and explainability of diagnosis.

– More diseases and types of imaging equipment: The system can be developed
to encompass other diseases and finetuned for the specific imaging modality,
taking into account variables such as noise, illumination, field position, etc. A
deep learning model for retinal OCT usually does not generalize well to the
images from a device from a different manufacturer than the one it was trained
on [147].
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T. H. Falk, Eds. CRC Press, 2018, pp. 329–365.

[11] A. Agarwal and D. A. Kumar, Essentials of OCT in Ocular Disease. Thieme, 2015,
https://doi.org/10.1097/OPX.0000000000000875.

[12] D. Huang, E. A. Swanson, C. P. Lin, et al., “Optical coherence tomography,” Sci-
ence, vol. 254, no. 5035, pp. 1178–1181, 1991.

[13] F. C. Delori, E. S. Gragoudas, R. Francisco, et al., “Monochromatic ophthalmoscopy
and fundus photography: The normal fundus,” Archives of ophthalmology, vol. 95,
no. 5, pp. 861–868, 1977.

[14] R. H. Webb and G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Transac-
tions on Biomedical Engineering, no. 7, pp. 488–492, 1981.

[15] J. I. Morgan, “The fundus photo has met its match: Optical coherence tomography
and adaptive optics ophthalmoscopy are here to stay,” Ophthalmic and Physiological
Optics, vol. 36, no. 3, pp. 218–239, 2016, https://doi.org/10.1111/opo.12289.

[16] H. G. Bezerra, M. A. Costa, G. Guagliumi, et al., “Intracoronary optical coherence
tomography: A comprehensive review: Clinical and research applications,” JACC:
Cardiovascular Interventions, vol. 2, no. 11, pp. 1035–1046, 2009.

[17] R Leitgeb, C. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs.
time domain optical coherence tomography,” Optics Express, vol. 11, no. 8, pp. 889–
894, 2003.

[18] J. F. De Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical
coherence tomography–a review,” Biomedical Optics Express, vol. 8, no. 3, pp. 1838–
1873, 2017.

[19] B. Baumann, “Polarization sensitive optical coherence tomography: A review of
technology and applications,” Applied Sciences, vol. 7, no. 5, p. 474, 2017, https:
//doi.org/10.3390/app7050474.

[20] S. Kishi, “Impact of swept source optical coherence tomography on ophthalmology,”
Taiwan Journal of Ophthalmology, vol. 6, no. 2, pp. 58–68, 2016.

62

https://doi.org/10.1097/OPX.0000000000000875
https://doi.org/10.1111/opo.12289
https://doi.org/10.3390/app7050474
https://doi.org/10.3390/app7050474


[21] M. Bhende, S. Shetty, M. K. Parthasarathy, et al., “Optical coherence tomogra-
phy: A guide to interpretation of common macular diseases,” Indian Journal of
Ophthalmology, vol. 66, no. 1, pp. 20–35, 2018.

[22] M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive
optical coherence tomography in the human eye,” Progress in Retinal and Eye Re-
search, vol. 30, no. 6, pp. 431–451, 2011.

[23] M. T. Nicolela and J. R. Vianna, “Optic nerve: Clinical examination,” in Pearls of
Glaucoma Management, Springer, Belin, 2016, pp. 17–26.

[24] R. D. Jager, W. F. Mieler, and J. W. Miller, “Age-related macular degeneration,”
New England Journal of Medicine, vol. 358, no. 24, pp. 2606–2617, 2008.

[25] D. S. Friedman, B. J. O’Colmain, B. Munoz, et al., “Prevalence of age-related mac-
ular degeneration in the united states,” Arch ophthalmol, vol. 122, no. 4, pp. 564–
572, 2004.

[26] P Gholami, P Roy, M. K. Parthasarathy, et al., “OCTID: Optical Coherence To-
mography Image Database,” arXiv preprint arXiv:1812.07056, 2018.

[27] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

[28] Y. Kim, “Convolutional neural networks for sentence classification,” arXiv preprint
arXiv:1408.5882, 2014.

[29] C. Szegedy, S. Ioffe, V. Vanhoucke, et al., “Inception-v4, inception-resnet and the
impact of residual connections on learning,” in Thirty-first AAAI conference on
artificial intelligence, 2017.

[30] A. Singh, S. Sengupta, and V. Lakshminarayanan, “Glaucoma diagnosis using trans-
fer learning methods,” in In Proc. Applications of Machine Learning, SPIE, Inter-
national Society for Optics and Photonics (SPIE), vol. 11139, 2019, 111390U.

[31] V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltzmann
machines,” in Proc. 27th International Conference on Machine Learning (ICML-
10), 2010, pp. 807–814.

[32] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in Neural Net-
works for Perception, IEEE, Washington, DC, 1992, 65–93, doi: 10.1109/IJCNN.1989.118638.

[33] H. Muhammad, T. J. Fuchs, N. De Cuir, et al., “Hybrid deep learning on single wide-
field optical coherence tomography scans accurately classifies glaucoma suspects,”
Journal of Glaucoma, vol. 26, no. 12, pp. 1086–1094, 2017.

63

http://www.deeplearningbook.org
http://www.deeplearningbook.org


[34] H. Fu, Y. Xu, S. Lin, et al., “Multi-context deep network for angle-closure glaucoma
screening in anterior segment oct,” in International Conference on Medical Image
Computing and Computer-Assisted Intervention, MICCAI 2018. Lecture Notes in
Computer Science eds. Frangi A., Schnabel J., Davatzikos C., Alberola-López C.,
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