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Abstract

Single spin quantum dot qubits in silicon are a promising candidate for a scalable
quantum processor due to their long coherence times, compact size, and ease of integration
into existing fabrication technologies. Realizing a large quantum processor composed of
thousands or more logical qubits requires the integration of conventional transistor circuitry
and wiring interconnects to control each individual dot in the processor. The high density
of control wiring required for these processors presents many engineering challenges. In this
thesis, we propose a surface code quantum processor for silicon quantum dot qubits based
on a node/network architecture. Local nodes consisting of just seven quantum dots are
spatially separated on the order of microns to facilitate space for the necessary high density
wiring. Entanglement is distributed between individual nodes via shuttling of entangled
electron pairs throughout the network. X or Z stabilizer operations, necessary for operating
the surface code, are realized by distributing three electron spin singlet pairs across four
local nodes followed by local gate operations and ancilla measurements. Simulations of
electron shuttling indicate that adiabatic transport is possible on timescales that do not
bottleneck the processor speed. Phase rotation of the shuttled spin, induced by the Stark
shift, can lower the overall shuttling fidelity; however, the error can be mitigated by proper
electrostatic tuning of the stationary electron’s g-factor. Using realistic noise models, we
estimate error thresholds with respect to single and two-qubit gate fidelities as well as
singlet dephasing errors during shuttling.

Electron shuttling is a key resource of the proposed network architecture. We continue
the shuttling simulations by presenting an algorithm for finding constant-adiabatic shut-
tling control pulses, which enables a more rigorous study of how different conditions impact
the shuttling speed and fidelity. These constant adiabatic pulses are used to optimize the
physical device geometry to maximize charge shuttling speeds up to ~300 nm/ns in the
single-valley case. We then switch to an effective Hamiltonian representation where spin
and valley degrees of freedom are accounted for during shuttling. Using realistic device and
material parameters, shuttle speeds in the range 10—100 nm/ns with high spin entangle-
ment fidelities are obtained when the tunneling energy exceeds the Zeeman energy. High
fidelity shuttling also requires the inter-dot valley phase difference to be below a threshold
determined by the ratio of tunneling and Zeeman energies, so that spin-valley-orbit mixing
is weak. In this regime, we find that the primary source of infidelity is a coherent spin
rotation that is correctable, in principle, using single spin rotations.

Two-qubit gates in the network architecture are mediated by the exchange interaction,
an interaction that stems from the Coulomb interaction but manifests as a rotation between
the |1) and ||1) two qubit states. Realizing fault tolerant two-qubit gates has proven diffi-



cult in silicon quantum dots due to charge noise which perturbs the electron orbitals states,
causing decoherence. Quantitatively accurate modelling of exchange in general quantum
dot networks is important towards realizing fault tolerant gates. Traditional modelling
methods, such as a full configuration interaction approach, are cumbersome due to signif-
icant computational overhead required when accounting for the electron-electron interac-
tions in the calculation. We present a modified linear combination of harmonic orbitals
configuration interaction (LCHO-CI) approach which significantly reduces the computa-
tional time for obtaining quantitatively accurate estimations of exchange. The method
works by approximating the single electron orbitals of the quantum dot network using
an orthogonal basis of harmonic orbitals. This choice of orthogonal basis allows a pre-
calculated library of matrix elements to be used in evaluating the Coulomb interactions,
which speeds up the LCHO-CI calculation. The modified LCHO-CI approach is then used
to study how the physical device geometry impacts the charge noise sensitivity of a double
quantum dot system. We find that, in general, geometries which increase the dot charging
energy and decrease the gate lever arms improve the system’s sensitivity to charge noise.

We conclude this thesis by pivoting away from theoretical studies of silicon quantum
dots and towards experimental studies of electron transport in dopant-free GaAs het-
erostructures. In modulation doped GaAs heterostructures, a doping layer is used to
induce a two-dimensional electron gas (2DEG) at the heterojunction. Dopant-free GaAs
lack the doping layer which makes fabrication more difficult as local electron reservoirs
must be used to bring carriers and induce a 2DEG. The lack of the doping layer offers sev-
eral advantages over modulation doped heterostructures, such as gate-ability of the 2DEG
and ability to make ambipolar devices (both n- and p-type ohmic contacts). Realizing n-
and p-type ohmic contacts requires etching a recess pit and depositing the ohmic material
at an angle in order to preventing screening of the top gate when inducing a 2DEG or two-
dimensional hole gas (2DHG). Magnetotransport experiments are used to characterize an
induced 2DEG and 2DHG in a Hall bar fabricated on a 310 nm deep single heterojunction.
The carrier mobility and density can be tuned using the top gate, and we achieve peak
mobility values of 4.5x10% cm?/Vs and 0.65x10% cm?/Vs for the 2DEG and 2DHG respec-
tively. We then move to a one-dimensional system and study electron transport through a
quantum point contact. Conductance quantization is observed, and subband spectroscopy
measurements indicate a 1D subband spacing of 4.5 meV. Finally, we study dynamically
driven electron transport in a zero-dimensional system using a tunable-barrier quantum
dot acting as a single electron pump. Single electron pumping is observed up to T'= 5 K,
and fits to the electron cascade model suggests pumping errors of 1.87 ppm when operated
at a driving frequency of f = 500 MHz.
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Chapter 1

Introduction

1.1 Introduction

There has been significant interest in utilizing quantum mechanics to realize novel technolo-
gies for metrology [, 254], communications [30], sensing [169, 52], and computing [195].
Quantum computers are believed to be capable of solving a set computational problems
much faster than could be done on a classical computer, such as prime number factor-
ization [210], database search [93], and simulation of quantum materials [07]. Classical
computers work by performing gate operations on a regular bit of information, which can
be stored in either a 0 or 1 state. Quantum computers utilize quantum superposition
to encode quantum bits (i.e. qubits) as a superposition of both 0 and 1 states. Other
quantum phenomena, such as entanglement and interference, give quantum computers
unique properties that enable them to outperform their classical counterparts. Quantum
computers are getting closer to demonstrating ‘quantum supremacy’, where a quantum
computer performs a particular computational task faster than ever could be possible on
a classical computer. Recently, quantum supremacy has been claimed for a computation
involving pseudo-random quantum circuit sampling [3]. Such milestones will become only
more commonplace in the upcoming years as quantum technologies continue to mature.

There are numerous implementations for realizing a quantum processor including su-

perconducting circuits [10, , 78], nuclear magnetic resonance [15, 171], optical systems
[144], trapped ions [97], topologically protected states [232], diamond nitrogen vacancies
[37], phosphorus donors in silicon [129, 211], spins in quantum dots [170, 142], and more

not listed here. Each implementation has its own advantages and disadvantages which
typically revolve around the ability scale to larger qubit systems or difficulties in achiev-



ing high qubit gate fidelities. The particular implementation focused on in this thesis is
spins in quantum dots. Quantum dots are regions where electrons (or holes) are trapped
in a zero-dimensional system, confined in all three spatial directions [99]. Quantum dots
are very small, ranging from 10s to 100s nm in size depending on the material system,
which enables dense packing of these qubits within a quantum processor. The tight con-
finement of the dot gives rise to discrete energy levels forming s-, p-, d-, orbital ‘shells’.
Electron fill these shells according to Hunds rule leading quantum dots to often be referred
to as ‘artificial atoms’ [38, ]. The number of electrons occupying the a quantum dot
can be precisely tuned from ~100 electrons down to just a single electron. For quantum
information purposes, dots are typically operated in the single to few electron regime.

In this thesis, we focus on quantum dots that are formed laterally in a semiconductor
heterostructure using electrostatic gates. A heterostructure consists of two or more different
semiconductor materials stacked on top of each other, such as Si/SiOy or GaAs/AlGaAs.
By bending the band structure of these materials, either though electrostatic gating or
doping of the material system, a thin conductive layer of free electrons can become trapped
in a 2-dimensional plane along the interface of the host materials. The free electrons in
the conductive layer behave like a gas and as such, are referred to as a two-dimensional
electron gas (2DEG). Gate electrodes deposited on top of the heterostructure can be used
to locally tune the potential landscape to reduce the system from 2D to 0D, forming a
quantum dot. By manipulating the voltages applied to these gate electrodes, the quantum
dots and the electrons within them can be electrostatically controlled.

1.2 Thesis Overview

The rest of this chapter provides an introduction of electron transport through quantum
dots, followed by a brief discussion of how single electron spins in dots can be used as qubits.
This is by no means a comprehensive introduction into the fundamentals of quantum dot

systems, and additional material can be found in the reviews of Hanson et al. [99], Van
der Wiel et al. [262], Kloeffel et al. [112], Kouwenhoven et al. [150], and Zwanenburg et
al. [295] where the last one focuses specifically on silicon quantum devices.

Chapter 2 presents a proposal of a node/network architecture for a scalable quantum
processor using silicon quantum dot spin qubits. Individual nodes in the network are com-
posed of seven quantum dots, and nodes are separated on the order of microns to open up
space for electronic wiring and classical control circuity. Neighboring nodes are connected
via linear chains of empty quantum dots which facilitate entanglement distribution by shut-
tling electrons from singlet pairs between nodes. A circuit for realizing X and Z stabilizer



operations, which are necessary for implementing the surface code, is presented in terms of
elementary quantum dot qubit operations. One of these elementary operations, inter-node
electron shuttling, is simulated to study how fast shuttling operations can occur while still
maintaining adiabatic evolution of the electron state. Surface code error thresholds for the
network are calculated using noise models for single and two-qubit gate errors as well as
spin dephasing errors accumulated during shuttling.

Chapter 3 significantly expands upon the electron shuttling simulations done in the
previous chapter. Electrons are shuttled by sequential tunneling through a linear quantum
dot array where each quantum dot is formed using a simplified gate geometry. A method
for finding constant-adiabatic shuttling pulses is introduced which allows for systematic
comparison of shuttling speeds and fidelities across different device geometries and material
parameters. Constant-adiabatic shuttling pulses are used to optimize the dimensions of the
simplified gate geometry in order to maximize the shuttling speed. Bulk silicon has six-fold
degenerate conduction band minima termed as “valleys” which, for a lateral quantum dot,
reduces to a two-fold nearly degenerate valley system. The interplay between the orbital,
valley, and spin degrees of freedom is highly relevant to silicon, as it can cause mixing and
decoherence during shuttling. The shuttling simulations are extended to include valley
and spin physics using an effective Hamiltonian representation. We find that high fidelity
singlet shuttling can occur when the inter-dot tunnel coupling is larger than the Zeeman
splitting and when the valley phase difference between adjacent quantum dots is below a
threshold value, given by the ratio of tunnel coupling and Zeeman splitting.

Chapter 4 presents work done on modelling the exchange interaction in quantum dot
networks. The exchange interaction can be used to implement two-qubit gates, a neces-
sary part of operating the network architecture introduced in Chapter 2. We introduce
a modified linear combination of harmonic orbitals/configuration interaction (LCHO-CI)
approach for solving the many-electron eigenstates of the quantum dot network. The resul-
tant many-electron spectra is mapped to an effective Heisenberg representation to extract
the individual electron pairwise exchange interaction strengths. In the modified LCHO-
CI approach, an orthogonal basis of harmonic orbitals is used to approximate the single
electron states. This choice of basis significantly reduces the computation time of the CI
calculation by enabling a pre-calculated library of matrix elements to be used when evalu-
ating the Coulomb interactions. Additionally, we show how the harmonic orbital basis can
be optimized to improve the accuracy of the LCHO-CI calculation without hindering the
total calculation time. We use the modified LCHO-CI method to calculate exchange in a
silicon double quantum dot device occupied by two electrons. The full 3D device struc-
ture is modelled, including the physical gate geometry and Si/SiOs heterostructure. The
speed of the modified LCHO-CI calculations enables us to systematically study how the



device’s geometric parameters impact the system’s sensitivity to charge noise fluctuations,
an important decoherence mechanism for quantum dot spin qubits.

Chapter 5 switches focus from applied theoretical studies of silicon quantum dots to
focusing on experimental studies of electron transport in dopant-free GaAs material sys-
tems. The highlight of the chapter is a demonstration of single electron pumping using a
dynamically driven quantum dot in dopant-free GaAs. However, the quantum dots are not
made with quantum information processing in mind but rather for novel quantum optics
and communications applications. The chapter begins by discussing the benefits of dopant-
free systems compared to intentionally doped heterostructures. The biggest challenge with
using dopant-free GaAs is forming high quality ohmic contacts to an induced 2DEG at
the GaAs/AlGaAs interface. 2D magnetotransport data for a deep single heterojunction
demonstrates good ohmic contacts to these structures as well as the presence of an induced
conductive layer of electrons and holes. Next, 1D electron transport is studied using an
etched quantum point contact. Quantized conductance is observed, and bias spectroscopy
measurements show how the 1D subband spacing can be tuned as high as 4.5 meV using
the top gate. Lastly, non-adiabatic electron transport is studied in a 0D system using a
tunable-barrier single electron pump. When the pump is driven by an AC signal, a small
integer number of electrons can be pumped through the device every cycle with high accu-
racy and reproducibility. Non-adiabatic pumping is observed at driving frequencies from
100 MHz to 900 MHz at relatively high cryogenic temperatures of T'= 1.4 K. Fits to the
electron cascade model suggest a pumping accuracy comparable to state of the art single
electron pumps in GaAs at similar frequencies. This device is the very first demonstration
of single electron pumping in a dopant-free GaAs system.

1.3 Background

1.3.1 Electron transport through quantum dots

We begin with a brief introduction of electron transport in quantum dots. Much of this
section is based on the introduction in the thesis of Holloway [109]. To start, we consider
just a single quantum dot that is coupled to source and drain leads, shown schematically in
Figure 1.1. The source and drain leads are capacitively coupled to the quantum dot which
forms tunnel barriers. The source and drain leads act as reservoirs for electrons to tunnel
into and out of the quantum dot. These reservoirs can be used to initialize and measure
electron spin states for quantum information purposes, as discussed in Section 1.3.2. An
additional metal gate electrode with voltage V; is capacitively coupled to the quantum

4



dot with strength C,. V, enables tuning of the energy levels within the quantum dot.
Electrons fill the lowest energy states of the source and drain up to the respective chemical
potentials of the leads pg and pp. By applying an external bias voltage Vias to the leads,
these chemical potentials can be shifted according to eVi.s = pts — pp. The quantum dot
chemical potential ;(N) = U(N) — U(N — 1) specifies the energy required to add an NI
electron to the dot, where U(N) is the total energy of the quantum dot when occupied by
N electrons. When p(N) lies below pg and up, electrons occupy the first N states of the
quantum dot.

Gate

Source T Cy Drain

s ARG AR

Quantum dot

Figure 1.1: Schematic of a single quantum dot coupled to a source and drain reservoir as
well as a nearby gate. Each reservoir has a corresponding chemical potential p, and the
gate voltage V, is capacitively coupled to the dot with strength C,.

Evaluating p(N) from first principles is non-trivial. A good model for p(N) can be
found using the semi-classical constant interaction approach [262], which gives

e2(N — Ny —1/2) eC,V,
— 1.1
C o (1.1)

where Ey is the orbital energy of the N*" electron, N is the number of electrons occupying
the quantum dot when V;, = 0 V, and C is the self-capacitance of the quantum dot. The
tight confinement of the quantum dot can be treated as small 3D box, giving rise to orbital

energies of the form
r? (n, n, n
Eop = 2+ XL = 1.2
> ome (Lx+Ly+Lz) (12)

p(N) = En +
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where m* is the effective mass of the electron in the host material, n; corresponds to an
orbital mode along each spatial direction, and L; are the effective confinement length scales.
We will denote the orbital energy Fom,(n.,ny,n,) of the N electron in the dot as Ey.
The amount of energy required to add an electron to the quantum dot is simply

Faga = (N) — u(N —1) = Ey — Ex_, +¢€*/C (1.3)

where the last term, €?/C, is the quantum dot’s charging energy, typically denoted as
E¢. E¢ accounts for the Coulomb repulsion energy that electrons need to overcome when
being packed within such a tight space. Usually, the physical size of a quantum dot makes
Ec > E. so that Fqq =~ Ec.

When a bias voltage is applied to shift pg and pp, u(N) can be tuned to fall within the
bias window where the quantum dot is no longer in a equilibrium charge configuration. An
electron can tunnel from the source, into the accessible N** dot state, and then back out
of the dot into an unoccupied state in the drain. As this process repeats, a finite current
is produced through the device. However, if u(N) lies outside of the bias window, then
electron tunneling through the dot is suppressed, and there is no current flow. As this
effect is mainly caused by F.,qq =~ E¢, the current suppression is referred to as Coulomb
blockade. The current through the quantum dot is given as

=l S J(u(N) = ps) = F(u(N) = pip) (L4)

where f(u) = [1 + exp(u/kgT)|" is the Fermi function with temperature 7" and Ty is the
electron tunneling rate through the dot barriers [3]. The tunnel rate T'y is an average of
the individual source and drain barrier tunneling rates I'y = I'sI'p/(I's + I'p). Current
through the device can be controlled three ways. The first is the applied bias voltage Vijas.
By increasing Vi,as, the bias window opens bringing more states, p(/N), within the window
allowing for conduction through the device. The second control parameter is temperature.
At higher temperatures there are free electrons with energy > j5/p and unoccupied states
with energy < pug/p in the source and drain. This broadens the bias window and smears
the resolution of when current is and is not blocked through the dot. The third and final
parameter is V,, which directly controls p(/N) as described in Equation 1.1. By changing
Vg, i(IN) can be shifted to lie in and out of the bias window, controlling when current flows
through the dot.

Figure 1.2a shows simulated current through a single quantum dot as a function of Vi,
and V,. The simulation parameters are Ec = 10 meV, T'= 1 K, Cy = 0.1C, and I'y =
1 GHz. Diamond-like regions of Coulomb blockade (i.e. Coulomb diamonds) correspond
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Figure 1.2: Simulated current through a single quantum dot coupled to two electron reser-
voirs with chemical potentials p;, and pgr. Simulation parameters are EFc = 10 meV, T =
1 K, C; =0.1C, and I'y = 1 GHz. a) Coulomb diamonds when Vi;,s and V, are swept.
When no energy levels lie within the bias window, current is suppressed. As the bias in-
creases and dot energy levels are brought within the window, electrons can tunnel from the
left reservoir, into the dot, and out into the right reservoir producing current. Numbers
indicate the electron occupancy of the quantum dot as a function of V,. The width of
the Coulomb diamond directly gives the dot charging energy Ec. b) Current versus Vj at
Vbias = 1 mV. Peaks in the current correspond to an additional electron tunneling onto the
quantum dot. The spacing between peaks is related to E¢ by the dot capacitance C' and
gate capacitance Vj. c-e) Schematics of the dot energy diagrams at different bias and gate
voltage configurations taken from a).

to where no energy levels p(N) lie within the bias window and current is suppressed. As
V, increases, each diamond indicates where an additional electron has tunneled onto the
quantum dot. The respective quantum dot occupancy in each diamond is appropriately



labelled in the figure. The width of the Coulomb blockade diamonds directly gives the
charging energy, providing an easy way to experimentally determine Eo. Figure 1.2b
shows a 1D slice of the simulated current along Vs = 1 mV to highlight the Coulomb
blockade peaks as V; is swept. Each peak corresponds to an additional electron tunneling
onto the dot. The peak broadness is a function of both the temperature T of the electron
reservoir as well as Vijas. At very small Vi, the conductance peaks (G = I/V') can be fit

to the expression
e A a(V, — Vo)
G =——"—sech? | —L—+~ 1.5
kT " ( 2T ) (15)

where A is an amplitude fitting constant, a is the lever arm between V,; and the energy of
the dot, Vj is the voltage location of the peak height, and T is the estimated temperature of
the electron reservoir. In the lab, heating from wiring lines or noise in the signal can raise
the effective temperature of the electron reservoir above the cryostat base temperature
where the device is being measured. Higher T" will smear the resolution of the current
measurements discussed above, and characterizing T' is an important step in assessing the
quality of the cryogenic measurement setup. Figures 1.2c-e show schematics of the dot’s
energy spectra at different bias and gate voltage configurations when current is allowed
and suppressed through the device. The measurements outlined in Figure 1.2 can be used
to find which voltage configurations tune the quantum dot to the regime where a single
electron occupies the dot, which is relevant for quantum computing purposes.

Our above discussion has assumed the system parameters such as Cy; and I'y are constant
in the system. In reality, both C; and I'y depend on the gate voltages that define the
quantum dot system. As a quantum dot approaches the single electron occupancy regime,
the tunnel rate I'g through the quantum dot will fall. This is because as V} is lowered, the
barrier height between the dot and the source and drain leads is indirectly increased. As
['y decreases, so does the magnitude of the current through the quantum dot. Generally at
small electron occupancies, it is not possible to directly measure the current through the
quantum dot due to its small magnitude. Therefore, in order to tune the quantum dot down
to the single electron regime, we must utilize a charge sensor. The charge sensor is another
quantum dot physically located nearby the dot of interest. The close proximity capacitively
couples the two dots together as shown schematically in Figure 1.3a. The charge sensor is
tuned to a higher electron occupancy regime where the tunnel rate I'yg through the sensor is
large enough so that the sensor current Ige,so; can be directly measured. When the charge
sensor is tuned along the edge of a Iy Coulomb peak as shown in Figure 1.3b, the charge
sensor becomes sensitive to electrostatic fluctuations in the surrounding environment. As
electrons in the dot of interest tunnel on or off of the quantum dot, the charge sensor’s
energy is perturbed and a measurable change in I, is recorded. The amplitude of
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Figure 1.3: Using a charge sensor to monitor a nearby quantum dot. a) Schematic showing
two quantum dots (grey) capacitively coupled together. Both dots are capacitively coupled
to two electron reservoirs (yellow). The dot of interest is in a low electron occupancy regime
with low tunneling rate I'y where the current is too small to directly measure. The charge
sensor is in a higher electron occupancy regime where the tunneling rate I'y is high so that
the current Igensor can be resolved. b) A simulated Coulomb blockade peak for the charge
sensor dot using the same dot parameters as Figure 1.2. The sensor is tuned along the
edge of a Coulomb blockade peak making it sensitive to nearby electrostatic fluctuations.
As electrons tunnel off of the dot of interest, the effective voltage on the charge sensor
increases, shifting Insor- The right schematic indicates how Igens0r increases step-wise with
the change in electron occupancy of the dot of interest.

those perturbations is proportional to the strength of the capacitive coupling between the
dot and charge sensor. In this way, the charge sensor can monitor the dot of interest’s
electron occupancy down to the last electron. This ability of the charge sensor to be able
to detect single charge events of dot can be utilized for spin readout as will be discussed
in Section 1.3.2.



1.3.2 Single spins in quantum dots as qubits

There are several methods for encoding spins in quantum dots into a logical qubit including
singlet-triplet [178, ], hybrid [137], exchange-only [5%, |, and single-spin. In this
thesis we focus on the most straightforward of the possible encodings, the single-spin
qubit, first proposed by Loss and DiVincenzo [170]. The quantum processor consists of a
lattice network configuration of many quantum dots coupled together each occupied by a
single electron. By applying a large static magnetic field By, the Zeeman effect lifts the
spin degeneracy forming a two-level qubit system where the logical qubit states |0) and |1)
correspond to the spin states |1) and ||).

The rest of this section provides a brief introduction into four fundamental operations
for these qubits: initialization, single-qubit rotations, two-qubit rotations, and measure-
ment. While these techniques described are applicable to both silicon and GaAs material
systems, our terminology will center around silicon quantum dot devices as they are the
focus of Chapters 2, 3, and 4. Silicon has two distinct advantages over GaAs in its ability
to realize quantum dot spin qubits. First, GaAs has many nuclear spins which can couple
to the electron via the hyperfine interaction and decohere the spin state. While natural
silicon has an abundance of the ?Si, a spin +% isotope, silicon can be purified to only have
2Si, creating a nuclear spin ‘vacuum’ which significantly increases the coherence time of
silicon spin qubits. Secondly, GaAs’s zinc-blende lattice structure has bulk inversion asym-
metry. This creates a strong spin-orbit coupling in GaAs and is a dominanting mechanism
for spin relaxation [63, ]. Silicon has no bulk inversion asymmetry; however, structural
inversion asymmetry arises at the interface where the quantum dot is formed which causes
a non-zero, but far weaker, spin-orbit coupling compared to GaAs [99, ].

Qubit initialization

Qubits can be easily initialized into a quantum dot by coupling to an electron reservoir,
as discussed in Section 1.3.1. Figure 1.4a shows the procedure for initializing a spin-up
|1} (logical |0)) state. The dot is tuned such that the chemical potential of the electron
reservoir, u, falls in between the ground and excited spin states. The black outline of the
yellow region depicts the energy distribution of electrons in the reservoir. At T' = 0 K,
electrons do not have high enough energy to tunnel into the excited spin state |]) and
instead only initialize into the ground spin state |1). The probability of initializing into |1)
depends both on the magnitude of the Zeeman splitting F, as well as the effective electron
temperature of the reservoir. FE, is given as Fy = gugBy where g =~ 2 is the electron
g-factor and pp is the Bohr magneton. Typically |By| is on the order of ~1 T giving E, ~
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110 peV. The magnitude of E, sets an upper bound on the allowable temperature of the
reservoir. If the thermal energy kT ~ E., then some electrons in the reservoir have a high
enough energy to load into the excited spin state as shown in Figure 1.4b. By reducing T’
so that kgT < E,, the |1) state can be initialized with high probability. Due to the small
magnitude of F,, T must be tens of mK, usually achieved using a dilution refrigerator.

In a large quantum dot network, it is not practical to couple reservoirs to every single
dot in the network. Adding reservoirs takes up an important amount of physical space
on the chip as well as introduces extra charge noise from each reservoir. In reality, only a
subset of dots in the network need to be coupled to a reservoir. Electrons can be initialized
in those reservoir-coupled dots and then moved elsewhere by sequential tunneling through
dots in the network. In principle, as long as a quantum dot is decoupled from an electron
reservoir, there is no strict requirement that kgT' < F, in order to operate the spin
qubits. Recent experiments have demonstrated ‘hot’ quantum dot qubits above 1 K where
cryogenic cooling requirements are eased [283, , 207].

a) T=0K b)

Figure 1.4: Spin qubit initialization in a single quantum coupled to an electron reservoir.
The dot is tuned so that the chemical potential of the reservoir, u, lies in between the
|1) and |]) spin states. Both spin states are separated in energy by the Zeeman splitting
E. = gug|B|. The black outline of the yellow region corresponds to the energy distribution
of electrons in the reservoir. a) At 7' = 0 K, electron tunneling into the excited spin state
is suppressed, and electrons only only initialize into the ground [1) state. b) When the
thermal energy of the reservoir is comparable to the Zeeman splitting, there is a non-zero
probability of electrons tunneling into the excited ||) state.

One useful feature of quantum dots is their inherent ability to initialize entangled two-
qubit states. When two electrons from a reservoir are loaded into a single quantum dot,
they load into the same ground orbital state of the quantum dot. The Pauli exclusion
principle prevents two spins of the same species from being loaded, and the electrons load
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into the entangled spin singlet state |S) = \%(]Ti) —|41)). By tunneling one electron from
the pair into a neighboring quantum dot, a distributed entangled qubit can be realized.
This behavior is heavily utilized in our proposal for a scalable quantum dot processor
outlined in Chapter 2.

Single-qubit rotations

A standard method for realizing single-spin qubit rotations is microwave-driven electron
spin resonance (ESR) [211, , , 280]. The static magnetic field By causes a preces-
sion of the electron spin. By applying an on-resonance microwave field B; perpendicular
to By, the spin state can be driven between the [1) and |]) states. The precession fre-
quency of the electron is determined by By and tends to be on the order ~10s of GHz.
The microwave pulse can be generated either by sending power to a resonant cavity or
by using an impedance matched microstrip line placed directly near the quantum dot.
Using resonant cavities has proven difficult as generating a large B; induces a strong mi-
crowave electric field which enables photon assisted tunneling of the electron out of the
dot [151, |. Microstrip lines placed within a few hundred nanometers of the quantum
dot require less power, thereby suppressing photon assisted tunneling. However, microstrip
lines tend to be bulky, taking up valuable physical space and can only control a local set
of nearby quantum dots in the network. Nevertheless, microstrip lines have been used to
demonstrate very high fidelity single-qubit gates >0.999 [280]. As the microwave pulse is
applied perpendicular to the By field, ESR can can only implement directly X and Y qubit
rotations. Z gates can be achieved either by changing the reference frame of the system
or by composing X and Y gates.

Local dot disorder causes the electron g-factor to vary from each dot to dot [122].
This is advantageous as it enables individual addressability of each quantum dot in the
network. However, realizing global control proves problematic as it is difficult to realize a
pulse with wide bandwidth while maintaining uniformly high fidelity. The small but non-
zero spin orbit coupling in silicon allows the g-factor to be electrostatically tuned through
the Stark shift [267]. This allows quantum dots to be brought on and off resonance with
the microwave pulse enabling on-demand individual and global control.

Electron spin dipole resonance (EDSR) uses electric microwave pulses as an alternative
approach for single-spin rotations [179, 11]. Electric fields couple to the qubit’s spin through
the spin-orbit interaction to drive rotations. In silicon, only holes have a sufficiently strong
enough spin-orbit interaction to realize fast spin rotations. For electrons, the spin-orbit
coupling is too weak. Strong enough microwave electric fields can be brought directly to
the qubit by using one of the nearby metal gates defining the quantum dot [197, ],
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providing individual addressability. For electrons, a strong effective spin-orbit interaction
can be realized by using a micromagnet [219, , , |. The micromagnet creates
a magnetic field gradient with perpendicular and parallel fields akin to a strong effective
spin-orbit interaction. Micromagnets are large compared to the quantum dot size and
must be deposited as a final step on top of the device structure, thereby covering a cluster
of nearby quantum dot qubits. While EDSR easily allows for individual addressibility,
the magnetic field gradients are not tunable after depositing the micromagnet, nor easily
reproducible, and variation from micromagnet to micromagnet on the same processor will
require calibration. Additionally, the stray fields from the micromagnet will perturb the
rotation axis of the qubit if the micromagnet is not properly aligned with the By field. The
introduction of the effective spin-orbit interaction means the qubits are more sensitive to
charge noise and will decrease the qubit’s coherence time [13].

Two-qubit rotations

Quantum dot qubits have a natural mechanism for implementing entangling two-spin quan-
tum gates through the exchange interaction [269, , , , ]. This interaction,
with strength J, is a function of tunnel coupling as well as the energy detuning between
neighboring quantum dots. While the interaction arises from the Coulomb interaction, it
manifests as a rotation between the 1)) and ||1) two-qubit spin states. Since tunnel cou-
pling and detuning can be controlled electrostatically using gates that define the quantum
dot, J and the corresponding two-spin gates can be controlled electrostatically. The size
of J enables 7 rotations of the entangling gates in the subnanosecond range [178]. Direct
application of the exchange interaction results in a v/SWAP quantum gate but requires
high bandwidth lines for proper control at the fastest frequencies [116]. For the logical
quantum gates control-Z or CROT, extra single-spin gates must be used in tandem with
the exchange interaction. In the original Loss-DiVincenzo proposal for quantum dot qubits,
the control-Z was proposed using three single-spin and two vSWAP gates [170]. However,
the control-Z can also be directly implemented by creating a difference in Zeeman energy
between the two quantum dots and have an exchange interaction of lesser or comparable
strength. The AFE, can either be realized using a micromagnet as shown experimentally
in Watson et al. [271] or through the Stark shift as in Veldhorst et al. [269].

Two-spin operations are significantly faster than single-spin operations. There are
proposals for exchange-only quantum dot qubits which use only the exchange interaction
for universal control of logical qubits, allowing for very fast processor speeds in principle
[58]. The single-spin qubit requires a combination of both J and single-spin gates, so the
logical two-qubit gates will be limited by the slower single-spin operations. Two-qubit gates
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have only recently obtained high enough fidelities of 98.0% to allow for characterization
using randomized benchmarking techniques, indicating that both single-spin and two-spin
quantum gates are approaching fault tolerance levels for quantum computing [116, ].
The difficulty in realizing high fidelity two-spin gates stems from the exchange interaction’s
sensitivity to charge noise, which perturbs both the detuning and tunnel coupling between
the quantum dot qubits [50, 56]. Reducing charge noise’s effect on the qubit can be done
through operating the qubits near the symmetric operating point which makes the qubit
first order insensitive to charge noise [221, |. Furthermore, the impact of the charge
noise can be reduced using appropriately designed control pulses [29, 94] and refocusing
composite pulses [64]. Charge noise can induce correlated errors on the qubits which can
adversely affect fault tolerant encoding protocols [251]; however, we show in Chapter 2 that
the SWAP error in the vVSWAP gate can be converted to Pauli noise through twirling. The
exchange interaction and its sensitivity to charge noise is one of the focuses of Chapter 4.

Qubit Measurement

Directly measuring the spin of a single electron is challenging due its small magnetic
moment. The most commonly used method for spin readout relies on converting the
electron spin state into a unique charge configuration which can in turn be measured
using a charge sensor [212, , |]. Ome drawback in charge sensing is the need for
dynamic control over the tuning of the charge sensor in order to maintain an optimal
charge sensitivity throughout a wide voltage range measurement [281]. The first spin-to-
charge conversion technique discussed is spin-dependent tunnelling as shown in Figure 1.5a
[63]. When the quantum dot is coupled to an electron reservoir, the dot’s energy levels
can be pulsed so that the chemical potential of the reservoir p lies between the two spin
energy levels. If the electron is in the ground |1) state, it cannot tunnel out of the dot.
As the charge configuration of the dot remains unchanged, so does the charge sensor’s
current Iiensor- On the other hand, if the dot is in the excited |]) state, then the electron
can tunnel out of the quantum dot into the reservoir. Iy sr Will response to the change
in the electrostatic environment with a change in the sensor current. After the electron
has tunneled out of the dot, a new electron can tunnel into the ground state which returns
Lensor t0 it’s idle configuration. The main disadvantage of this readout technique is that the
electron and the spin state is lost when the measured electron tunnels into the reservoir.

An alternative approach, which does not require the electron to be lost to the reservoir,
employs Pauli spin blockade in a double quantum dot system [157], schematically shown
in Figure 1.5b. Two electrons in a double quantum dot system form either a singlet or
one of three triplet spin states corresponding to S, = —1, 0, or +1. When the ground
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Figure 1.5: Spin-to-charge conversion techniques for spin readout using a charge sensor.
a) In spin-dependent tunneling, the dot is coupled to a electron reservoir with chemical
potential p. The dot energy levels are pulsed such that p lies between the two spin states.
When the electron is in the [1) state, the electron remains trapped in the dot, and the
charge sensor sees no response in its current Inso,- When the electron is in the ||) state,
the electron tunnels out of the dot manifesting as a blip in I s until a new electron
tunnels into the dot. b) When a small bias is applied to a double dot system with two
electrons, the leftmost electron wants to tunnel into the right dot taking the system from a
(1,1) — (0,2) charge configuration. This transition only occurs when the electrons are in
the singlet |S) as the doubly occupied triplet |T') is separated by an energy splitting Fgr
due to the Pauli exclusion principle.

state energy levels in each quantum dot are aligned, each electron occupies a single dot in
a (1,1) charge configuration (where each number corresponds to the electron occupancy of
the left /right dot). When a small bias is applied to the dots as shown in Figure 1.5b, an
electron will try and tunnel into the other dot forming a (0,2) charge configuration. The
doubly occupied energy levels for the singlet S and triplet T" states are separated by a large
energy splitting Fsr due to the Pauli exclusion principle. For small biases, the electron can
only tunnel into the right dot if the electron pair are in the singlet state S(1,1) — S(0,2).
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When in the triplet state, the T'(1,1) - T'(0,2) transition is suppressed. A nearby charge
sensor can monitor the respective (1,1) or (0,2) charge configuration of the double dot
system in order to extract the two-electron spin state.

The need for a charge sensor to perform spin readout increases the density of metal
gate lines and device complexity. An alternative and more scalable spin readout method
is gate dispersive readout which uses radio frequency (RF) reflectometry techniques to
probe the charge configuration of the quantum dot [89, 16, ]. An LC tank circuit is
directly connected to one of the metal gates used to define the quantum dot, eliminating
the need for a charge sensor. The LC circuit elements consist of a surface mount inductor
and the parasitic capacitance of the metal gate. Changes in the charge configuration of
the quantum dot shift the load capacitance AC' at the metal gate which manifests as a
dispersive phase response A¢ ~ 1QAC/C,, of the reflected RF signal where @) is the quality
factor of the LC circuit [182]. Homodyne detection on the reflected RF signal can be used
to measure A¢ and detect changes in the charge configuration.

1.3.3 An outlook on quantum dot spin qubits

This section gives a brief summary of the current state of quantum dot spin qubits and
an outlook on what next steps are necessary in order to scale up these devices to the tens
of qubit level. Some of the discussion here will be explored in further detail elsewhere
in this thesis. While electron spin quantum dot qubits are a promising candidate for a
scalable quantum processor, state of the art devices so far consist of at most 10 quantum
dots [181, ]. In contrast, Google’s Sycamore quantum processor, which was claimed
to have demonstrated quantum supremacy, is composed of 54 superconducting qubits [3].
Quantum dot devices are beginning to demonstrate the basic operations needed to scale up
to larger qubit systems. Demonstrating simple quantum algorithms, like the Deutsch—Josza
algorithm, has been realized in a two-qubit silicon quantum dot device [271]. Additional
experiments, such as conditional quantum teleportation, have recently been realized in a
GaAs quadruple quantum dot device [214].

Scaling to larger quantum dot devices is not prohibited by the physical size of a quantum
dot. Quantum dots take up a remarkably small area, with GaAs dots being around 100s of
nm in size and silicon dots being around 10s of nm. Scaling to larger qubit systems is mainly
prohibited by other aspects of quantum dot qubits, such as current state of the art two-
qubit gate fidelities, device variability, cryogenic cooling capabilities, and wiring/control
complexity. Single qubit gates with very high fidelities have been demonstrated for silicon
(0.9996) [283] and GaAs (0.995) [31]. However, two-qubit gates have struggled to achieve

16



similarly high gate fidelities due to charge noise (charge noise is explored in detail in
Chapter 4). Only recently have fidelities for two-qubit gates reached 98% in Si/SiOy
quantum dot devices [1 16] and 92% in Si/SiGe devices [270]. In GaAs, two-spin entangling
gates have demonstrated fidelities of 90% in a double dot system [191]. Additionally,
quantum teleportation was achieved in a GaAs four-dot system using two-qubit gates
[211]; however, the low teleportation fidelities (~0.71) indicate that two-qubit gates in
GaAs are still far from fault tolerant thresholds.

Device variability is another bottleneck in scaling up quantum dot processors. Because
quantum dots are so small, local variations from device fabrication or material quality
can introduce significant dot to dot variations. For example, measurements of nominally
similar silicon quantum dot devices showed that the electron g-factor can vary by up to
0.3% from dot to dot [122]. The magnetic fields typically used to create two-level spin
systems in quantum dots give a Zeeman splitting of ~40 GHz, implying that the energy
splitting could vary by up to ~120 MHz from dot to dot. If global microwave control
fields are used to facilitate single qubit rotations, then there is no guarantee that all qubits
would be on resonance with the common microwave pulse. Of the possible material systems
for quantum dot qubits (GaAs, Si/SiOq, and Si/SiGe), Si/SiO, is the worst offender for
device variability, due to imperfections at the Si/SiO, interface and defects within the
SiOq. For GaAs and Si/SiGe, variability from background dopants or intentional dopants
in the material system give rise to device non-uniformity. Material systems such as GaAs
and SiGe bury the electrons in the quantum dot within the wafer heterostructure, where
device reproducibility is improved [155]. Improvements in fabrication techniques have
already demonstrated multi-dot devices with reduced variation 11, ]. Some proposals
for silicon dot devices suggest using floating gates placed nearby the quantum dot to fine-
tune the dot’s electrostatic potential and reduce dot to dot variation [18]. However, the
use of this technique in practice remains to be seen.

Another main bottleneck for device scaling lies in cryogenic cooling of the quantum
dot processor. Quantum dot devices are typically operated in dilution refrigerator systems
which can cool down the devices to tens of mK. These low temperatures are necessary
in order to resolve the two-level spin system when using conventional measurement tech-
niques. However, as mentioned in the readout section of Section 1.3.2, if the quantum dots
are decoupled from an electron reservoir, there is nothing, in principle, preventing them
from being operated at higher temperatures. Several recent state of the art experiments
have demonstrated implementing single and two-qubit gates in silicon quantum dot devices
above 1 K [283, , ]. At these temperatures, conventional pumped “He cryogenic sys-
tems can be used to cool the devices. Quantum dots require high control wiring density in
order to precisely control the qubits. To handle the high density, it has been proposed to
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bring conventional CMOS control circuitry into the cryostat and even onto the same chip
as the quantum dots [164, , 16, ]. However, these conventional CMOS circuits have
significant power dissipation, which proves problematic for dilution refrigerators. Pumped
4He cryostats have orders of magnitude larger cooling power compared to dilution refriger-
ators and can easily reach 1.4 K temperatures, which could enable the integration of CMOS
control circuitry. As such, raising the operating temperature of quantum dot qubits above
1 K is key towards their scalability.

We have discussed several material systems which can host quantum dot spin qubits:
GaAs, Si/SiO,, and Si/SiGe. GaAs quantum dots are larger and easier to fabricate, and as
such they were realized earlier than silicon quantum dot spin qubits. However, GaAs has a
strong hyperfine interaction, due to the presence of nuclear spins, which results in intrinsic
electron spin coherence times 75 on the order of 10 ns [208, ] (although dynamical
decoupling techniques have demonstrated T3’s up to ~1 ms [176]). When isotopically
purified of the naturally occurring ??Si isotope, silicon is nuclear spin free. This has proven
effective in enabling long coherence times on the order of 75 = 120 ms and 75 = 28 ms
in early Si/SiO, silicon spin qubit experiments [267]. GaAs also has a strong spin-orbit
interaction while silicon does not, making it easier to facilitate long range spin state transfer
in silicon. In bulk silicon, the conduction band minima have six-fold degeneracy, termed
valleys. At the interfaces where the quantum dots are formed, the degeneracy is lifted,
resulting in two low energy states. The presence of these valley states can be a major
source of mixing for silicon quantum dot spin qubits, particularly when the valley splitting
is equal to the Zeeman splitting [282, ]. The valley splitting energy is determined by
the sharpness of the interface, as well as other electric fields present in the system. As the
Si/Si0 interface is sharper than the Si/SiGe interface, the former material tends to have
larger valley splittings compared to the latter; however, both materials have demonstrated
valley splittings >100 peV [79] (note that typical Zeeman splittings are <100 peV). Local
disorder at the interface can cause the valley splitting to vary between dots, which not
only causes unwanted dot to dot variation, but can also suppress the inter-dot coupling
strength [294, 20]. The conduction band of GaAs has no degeneracy resulting in a single
valley material. However, the hyperfine and spin-orbit effects of GaAs still make silicon
a more attractive material system overall in terms of scalability. Si/SiGe materials have
intrinsic strain which makes the wafers more difficult to grow and fabricate devices [255].
In contrast, the Si/SiO, interface is not as strained, making it comparatively easier to grow
and fabricate devices. Charge traps in the SiOs layer are problematic for device noise and
variation; however, forming gas annealing is effective at suppressing those defects [139, 138].
Conventional CMOS technology readily uses Si/SiO, material, which makes it a natural fit
for current foundry processing as well as integration of classical circuits onto the physical
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quantum processor chip. Taking all of these considerations into account, we anticipate
that Si/SiOs will be the material of choice for realizing quantum dot spin qubits, at least
for the nearer-term.
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Chapter 2

Network architecture for a
topological quantum computer in
silicon

Chapter contributions: The network architecture was initially conceived by Dr. Jonathan
Baugh and further refined with input from myself, Eduardo B. Ramirez, Dr. Kyle S.
Willick, and Sean M. Walker. Jiahao Li and Benjamin D. Shaw assisted with nextnano+-+
simulations for Section 2.3. Error models for the quantum gates were proposed by myself
and Dr. Jonathan Baugh with input from Zhenyu Cai and Dr. Simon C. Benjamin.
Simulations of the surface code error thresholds in Section 2.4 were done by Zhenyu Cai.

This chapter is adapted from the publication:

Buonacorsi, B., Cai, Z., Ramirez, E.B., Willick, K.S., Walker, S.M., Li, J., Shaw, B.D.,
Xu, X., Benjamin, S.C., and Baugh, J. (2019). Network architecture for a topological
quantum computer in silicon. Quantum Science and Technology, 4(2), 025003.

2.1 Introduction

Building a large-scale, universal quantum computer would enable major technological ad-
vances, yet presents a significant challenge. Solid-state qubits based on superconduct-
ing circuits [78, 272], semiconductor quantum dots [99, 142], semiconductor donor spins
[129, , 211], or topologically protected quantum states [232] offer exciting prospects for
a quantum computer chip, in analogy to classical CMOS devices. The standard circuit
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model for quantum computation, however, requires a staggering error correction overhead
to achieve fault tolerance. Topological stabilizer codes acting on two-dimensional qubit
arrays, i.e. surface codes [220, 75], can tolerate relatively high error thresholds and are
considered one of the most promising approaches to scaling up. Fowler et al. [72] esti-
mate that ~100 million physical qubits would be required to factor a 2000 bit semiprime
(i.e. RSA) number via Shor’s algorithm on a surface code processor. In that estimate,
the ratio of logical to physical qubits is ~107*. Scaling to this size, while maintaining
the requisite precision of quantum control and the necessary cryogenic environment, is
far beyond what is possible today. Superconducting qubit processors are rapidly advanc-
ing from several qubits [189, : ] to the 50 — 100 qubit scale [3], while competing
platforms such as semiconductor quantum dots are still developing at the few-qubit scale
[271, , 64, , ]. Ultimately, the qubit footprint matters for a large-scale monolithic
chip to be possible. Quantum dot and donor qubits have the advantage of a small (tens
of nanometers) footprint compared to other platforms like superconducting or trapped
ion qubits, making an area density of ~10'° physical qubits per cm? a theoretical pos-
sibility. A rigorous analysis based on a compact exchange-only silicon double dot qubit,
accounting for technological and physical constraints as a function of CMOS technology
node, predicts that a 10'° cm~2 density of physical qubits is possible at the 7 nm CMOS
node, corresponding to ~10* — 10% cm~?2 logical qubits depending on the error correction
scheme chosen [225]. The ability to integrate classical components on the quantum chip to
facilitate multiplexing of control and readout signals will be advantageous. Semiconductor
qubits also have an advantage in this respect, especially those based on silicon platforms.
We will refer to realizing electron or hole spin qubits in a silicon MOS device structure
[179, , , 121] at cryogenic temperatures as ‘QMOS’. A QMOS approach can benefit
from the vast investments and advances that have been made in conventional CMOS de-
vice processing, and is naturally compatible with CMOS integration. In this chapter, we
propose a QMOS architecture that is based on a network/node approach and is distinct
from existing proposals [107, , , , 164]. This approach is advantageous because
it separates the surface code operation into two fundamental parts: local node operations
that should be feasible to demonstrate in the near-term, and medium-range entanglement
distribution that is more challenging but can be developed in parallel. Our scheme provides
greater isolation of the data qubits (data qubits hold the computational quantum states of
the surface code) than a conventional close-packed 2D array, and naturally opens up useful
space to ease wiring density constraints and allow integration of supporting components
to facilitate multiplexing of control and readout signals.

While much early progress in quantum dot spin qubits was achieved in GaAs 2DEG
devices, silicon offers the possibility of a nuclear spin free lattice, which has been demon-
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strated to yield electron spin coherence times of order seconds for donor electrons [2506, ]
and up to tens of milliseconds for MOS quantum dot spin qubits [269]. The intrinsic spin-
orbit interaction for electrons at the conduction band edge in silicon is weak compared to
ITI-V semiconductors, which leads to longer spin relaxation and decoherence times. An
enhanced spin-orbit interaction arises at the Si/SiO, interface due to inversion asymmetry
leading to variation in the electronic g-factor, however this can be tuned near zero by
the orientation of the external magnetic field [121]. The variation in g, of order 1072 at
most [268, 65, |, is tunable by the vertical electric field strength and can be used for
addressing individual spins with a global microwave ESR field, or as a second control axis
for singlet-triplet qubit rotations [121]. Disadvantages of silicon compared to I1I-V’s in-
clude the valley degeneracy problem [19, | and greater difficulty in accurately modelling
two-qubit exchange energies [163]. Valley splittings are enhanced at interfaces, and have
been observed for MOS dots up to several hundred peV but vary considerably depending
on local electric fields and disorder [79, 168]. While Si/SiGe quantum wells present less
disorder in the electrostatic potential and are thus ‘cleaner’, valley splittings are found to
be smaller on average for quantum dots in this material [15, , ].

While for MOS quantum dots the microscopic roughness of the SiO, interface leads
to an unavoidable degree of intrinsic variation in electrostatic and qubit parameters, the
large scale uniformity of the Si/SiO, material system is remarkable and has been critically
important to the scaling of classical CMOS. Many engineering challenges, however, can be
foreseen with developing large scale QMOS: (i) qubit sensitivity to charge noise, (ii) control
line cross-talk, (iii) variability in device tuning parameters, (iv) need for high density 3D
wiring interconnects, (v) need for multiplexing and parallel operations, (vi) ultra-low power
dissipation, (vii) high precision / high bandwidth / low noise voltage controls, etc. Existing
proposals make use of 2D quantum dot arrays as a basis for a surface code quantum
computer. Veldhorst et al. [260] suggest a two-layer structure, with a closely-packed 2D
dot array at a lower 2®Si/SiO2 interface, and an upper Si transistor layer to enable a word-
line/bit-line qubit addressing scheme using floating gates. Each dot is singly charged and
has four nearest neighbours with exchange interactions that must be separately controlled.
Single-qubit rotations are achieved via global microwave field and gate tuning of individual
electronic g-factors. This approach utilizes shared control lines and is therefore scalable
in principle, but requires a high interconnect density with feature sizes well below present
technological capabilities. All qubits, both data and measure, experience the same local
noise environment and capacitive cross-coupling to many electrodes, so that both control
line cross-talk and gate voltage noise would present challenges. Furthermore, the power
dissipated by conventional transistors would make it difficult to maintain mK temperatures,
either requiring very large cooling powers or qubit operation at temperatures approaching
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1 K. Li et al. [164] propose an alternate scheme using shared control that makes use of a
half-filled 2D lattice, so that, between operations, qubits are better isolated. It relies on
shuttling electrons between adjacent lattice sites to accomplish two-qubit interactions, and
uses dc currents in a subset of control lines to tune local ESR frequencies in concert with
a global ESR field. Since the dots and tunnel barriers are all controlled by a crossed array
of common lines, this scheme requires a high degree of device uniformity, at least an order
of magnitude beyond what has yet been demonstrated in experiments. To avoid practical
issues with scaling a qubit array beyond ~1000 qubits, it was proposed to join arrays in
a network, making use of electron shuttling ‘highways’ consisting of linear dot arrays to
transmit quantum information. Hence, both local and long-range electron shuttling are
critical elements of Li et al.’s proposal. Our scheme also makes essential use of electron
shuttling to distribute entanglement between adjacent nodes; however, these are small
nodes of fewer than 10 quantum dots, so that the nodes and their corresponding local
quantum operations are nearly within the reach of present experimental capabilities.

2.2 Node/network surface code for quantum dots

It is well understood that a universal quantum computer could be constructed by net-
working together many simple processor cells, rather than building a single complex device
[193, , 39, 192]. Key to this approach is the ability to distribute entanglement between
such cells, or network nodes. Nickerson et al. [193] showed that even with realistically noisy
entanglement distribution, with raw error rates approaching 10%, entanglement purifica-
tion strategies could be used to reduce the effective error rates to tolerable levels. Combined
with sufficiently high fidelity local gate operations, state preparation and measurement, a
stabilizer protocol was described that enables a two-dimensional surface code to be im-
plemented [193]. This method is straightforwardly applicable to systems like trapped ion
qubits, where spatially separated traps can be linked photonically [1 17, 17, |. However,
successful entanglement distribution via a photonic link is currently probabilistic and slow,
with typical rates on the scale of a few Hz, limiting practical processor speeds. Here we
propose to apply the network model to a monolithic silicon QMOS chip, with internode
distance on the micron scale. We exploit the natural property of spin qubits to form a sin-
glet ground state in a doubly occupied quantum dot to create the entanglement resource,
and the weak spin-orbit interaction in silicon to allow coherent shuttling of electron spins
via inter-dot tunnelling, as illustrated in Figure 2.1. Thus, entanglement distribution be-
comes effectively deterministic. Although our approach is monolithic and thus returns to
‘building a single complex device’, we gain significant advantage by separating the scaling
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problem into two distinct parts, and by creating useful space between these very compact
qubits to improve qubit isolation and make wiring/integration more practical. Numerical
simulations show that electron shuttling on the micron scale can be carried out with high
fidelity in principle, and on the timescale of single-qubit ESR gate operations so that shut-
tling does not create a speed bottleneck. Further, we show that phase error in the singlet
state due to Stark effect modulation of the g-factor during shuttling can be reduced to
negligible levels with appropriate electrostatic tuning. Finally, we obtain threshold values
for errors in gate and shuttling operations that would be required for a scaled up network
to be fault tolerant, using reasonable noise models and the Gottesman-Knill theorem [91, 1]
to efficiently simulate large networks.

Reservoir

¢
o

| Snon—local>

Figure 2.1: Spatial separation of the spin singlet state |S) across distant quantum dots A
and B, via spin shuttling through a linear chain of normally empty quantum dots. The two-
electron ground state singlet is loaded into a quantum dot tunnel coupled to the reservoir.
The singlet is separated into a (1,1) charge state with one electron in dot A, then the other
electron is shuttled to a distant dot B. Both the weakness of the spin-orbit interaction
for conduction electrons in silicon and the isotopic removal of ?*Si nuclear spins help to
preserve spin coherence during transport over micron scales.

For simplicity, we will assume that spatial separation of the singlet states can be done
with high fidelity, so that entanglement purification is not needed. This allows for a minimal
node consisting of one data and two ancilla qubits. Additional ancillae and entanglement
distribution operations could be used for entanglement purification if needed, as described
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Figure 2.2: Sequence of steps in the stabilizer operation on four neighbouring nodes labeled
A-D. Prior to step 1, all dots are empty except for the data qubit dots. Dashed lines
indicate electron internode and intranode tunneling events. In step 1, singlets created at
nodes A and C are shared between nodes A/B and between C/D, populating the ancilla
1 qubits. Long dashed lines indicate internode shuttling. Step 2: a singlet created at
A is shared between ancilla 2 qubits on nodes A/C. Step 3: ancilla 2 qubits on nodes
A/C are measured, which projects the four ancilla 1 qubits into the shared GHZ state with
probability 1/2, or with equal probability into a state that is transformed to the GHZ state
by local gate operations. Step 4: conditional quantum gates (control-NOT or control-Z)
are performed between ancilla 1 and data qubits, followed by measurement of the ancilla
1 qubits, realizing a stabilizer operation on the data qubits. Step numbers are color-coded
to match circuit segments in Figure 2.4
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in [193]. A four-qubit GHZ state is formed across four neighbouring nodes, making use of
singlet separation and the ancilla qubits in each node, as shown in Figure 2.2. The GHZ
resource shared among ancilla 1 qubits, together with conditional logic gates (control-NOT
or control-Z) applied to the data qubits, allows for the X or Z stabilizer operation to be
carried out. In addition to the three quantum dots hosting the data and ancilla qubits,
1 — 2 additional dots are present in the node to facilitate the distribution of singlet states,
which we will refer to as ‘shuttle’ dots. A conceptual device-level illustration of a node is
shown in Figure 2.3. In this version, there are two shuttle dots, which ensures no more
than three tunnel couplings per dot. The node is connected to a single electron reservoir
via one of the shuttle dots, providing a means for initializing the charge state of the device
and loading singlets into the shuttle dot prior to their distribution. All reservoirs are kept
at a fixed potential of 0 V. The node in Figure 2.3 is based on a simplified gate geometry
in which each quantum dot is defined by a single ‘via’ accumulation gate electrode (see
Figure 3.2 in Chapter 3 for an example). Additional barrier gates between intranode dots
allow for fine control of exchange. A double dot, aligned perpendicular to the data/ancilla
linear array, allows for readout of both ancilla qubits, as will be described in Section 2.2.2.
A global microwave field acts in concert with electrostatic tuning of the electronic g-factors
to realize arbitrary single-qubit rotations via ESR. Dots forming the shuttle pathway are
each formed by single gate electrodes, with no additional barrier gates, as we show in
Section 2.3.

2.2.1 Stabilizer circuit

In order to simulate the performance of the proposed network architecture, we must first
write out the explicit stabilizer circuit in terms of the basis operations possible with quan-
tum dot qubits: inter-dot tunneling, single qubit X, Y, and Z rotations, and two-qubit
VSWAP gates. The four-node stabilizer sequence shown in Figure 2.2 begins with all
dots empty except for the data qubit. The explicit circuit diagram corresponding to the
stabilizer sequence is shown in Figure 2.4.

We outline the mathematical details underlying the part of the circuit used to construct
the distributed four-qubit GHZ state. In our notation, commas separate nodes from each
other as |A,B,C,D). Within a particular node, the first qubit represents the ancilla 1
qubit and the second (if written) indicates the ancilla 2 qubit. A blank space in the ancilla
2 location means that qubit is not present. For instance |01,01,01,01) indicates that all
nodes have a |0) state in the ancilla 1 qubit and a |1) state in the ancilla 2 qubit. While
the state |01,0,01,01) indicates that all nodes have a |0) state in the ancilla 1 qubit and
while all but the B node have a |1) state in the ancilla 2 qubit (where the B node actually
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Figure 2.3: Device concept for a node. Accumulation mode MOS quantum dots are formed
by single ‘via’ gate electrodes (gold color), with additional gates to control inter-dot tun-
neling (silver color). All quantum dots (red circles and ovals) form in Si just below the
interface with SiO,. For clarity, gate electrodes forming the electron shuttling pathways
(oval dots) and the electron reservoir are not shown. The intranode dots are identified by
the labels on the via gate electrodes. In this version of the node there are two shuttle dots
(note that only one is labelled explicitly), one tunnel coupled to the shuttle path going
left, the other to the path going right and to the reservoir. This geometry ensures no
more than three tunnel couplings per dot. The labels R1, R2 indicate the double dot that
allows for readout of the ancilla qubits, using the singlet-triplet spin basis together with
RF reflectometry. Gate electrodes to control exchange between the ancilla qubits and R1
are not shown but are implied. The oval-shaped dots making up the shuttle pathway are
each defined by a single gate, with no additional barrier gates.

has no qubit present in the ancilla 2 location). A two-electron spin singlet state is loaded
from the reservoir into the shuttle dots in nodes A and C, and then distributed across A-B
and C-D via internode shuttling. This populates the ancilla 1 qubits giving the initialized
state

1

9 = (10D = 11,00 ) @ 2= (10 D = 1.0)cp (21)

1
= 5 ( |07 17 07 1>ABCD - |07 17 17 O>ABCD - |17 07 07 1>ABCD + |17 07 17 0>ABCD) (22)

From here on out, we will drop the |) ,pop notation. Next, a fresh singlet loaded in node
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A is distributed across the ancilla 2 qubits in nodes A-C giving the state

1
W) = —( 00,1,01,1) — |00,1,11,0) — |10,0,01, 1) + |10,0,11,0)

2v2

(2.3)
—|01,1,00,1) + |01, 1, 10,0) + |11,0,00, 1) — [11,0, 10, o>)

The first step of segment 3 in Figure 2.4 is a Y () rotation on the ancilla 1 qubits in
nodes A and C and on the ancilla 2 qubit in A. This transforms the singlets into the
|1) = \/Li(|00) + |11)) Bell states, and the total state becomes

—i
U :—< 11,1,11,1) +[11,1,01,0) + 01,0, 11, 1) + |01,0,01,0
|¥) Wi | )+ | )+ | )+ | )

(2.4)
+10,1,10,1) + |10, 1,00, 0) + 00,0, 10, 1) + |00,0,00,0>)

Next, we perform a control-Z operation between the ancilla 1 and ancilla 2 qubits in nodes
A and C,

—
22
+10,1,10, 1) 410, 1,00, 0) + 00,0, 10, 1) + 00, 0, 00, 0>)

W) = <|11, 1,11,1) — [11,1,01,0) — |01,0,11,1) -+ ]01,0,01, 0)

(2.5)

To create the 4-qubit GHZ state distributed across all four ancilla 1 qubits, we perform an
X basis measurement on the ancilla 2 qubits in nodes A and C. Rewriting the state above
in the X basis, it is easy to find the state of the ancilla 1 qubits conditional on the four
measurement outcomes:

1 1
tate = —=(10,0,0,0)+ 111,11 —a—c = —=(10,0,0,0)+1,1,1,1))
ate = o5 | )+ | ) a—e = s | )+ | )
1 1
+a,— %—< 0,0,1,1) + 1,1,0,0) —a,+ —>—( 0,0,1,1) + 1,1,0,0>
A C \/5 | > | > A C \/5 ‘ > ’ >

Since the four outcomes above occur with equal probability, the even parity outcomes
give the GHZ state with probability 1/2. The odd parity outcomes give a state with equal
probability 1/2 that is transformed into the GHZ state by applying an X () rotation on the
ancilla 1 qubits in two of the nodes (either A-B or C-D). Therefore, four-qubit GHZ state
preparation is deterministic. The GHZ state provides the shared entanglement resource
that allows the data qubits to be stabilized. A control-NOT (or control-Z) between the
local ancilla 1 and data qubits, followed by measurement of the ancilla 1 qubits, performs
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a 4-qubit X (or Z) stabilizer on the data qubits. The resulting stabilizer measurement
outcomes are fed to a classical data processing module in order to determine if any nodes
require a unitary rotation to correct any errors in the code. The ancilla dots can then
be emptied of electrons (via shuttling to the reservoir) to prepare for the next stabilizer
operation.

A full surface code cycle requires 4 separate stabilizer operations in sequence, since
any two neighbouring 4-node plaquettes cannot be stabilized simultaneously. Both the Z
and X plaquettes are split into two non-adjoining subsets, and each of the 4 subsets are
stabilized sequentially (see Figure 2.5). As pointed out in [193], the stabilizer superoperator
allows projectors and errors to be commuted so that errors occurring in between subsets
can be corrected. Note that the control-NOT and control-Z operations in steps 3 and 4
of Figure 2.4 require single-qubit rotations on the data, ancilla 1 and ancilla 2 qubits. To
simplify the device, however, one could restrict single-qubit control to ancilla 1 only, and
use SWAP operations to realize gates on the neighbouring qubits. While this approach is
more costly in terms of two-qubit gate error, it reduces control complexity by requiring only
one dot per node to be on-resonance with the global ESR field. Since exchange gates are
typically much faster than ESR rotations, this does not present a bottleneck to processor
speed.

2.2.2 Readout of the ancilla qubits

Measuring ancilla qubits quickly and with high fidelity is a critical requirement for any
surface code processor, including the network approach proposed here. One method for
projectively measuring the electron spin is to use spin-dependent tunneling together with
a local charge sensor [03, |. However, this would require bringing both an electron
reservoir and a charge sensor in close proximity to the ancilla qubits, both of which we aim
to avoid in order to keep the data and ancilla qubits well isolated and reduce the number
of local gate electrodes. Instead, we propose to use a double quantum dot placed so that it
can be controllably tunnel coupled to both ancilla dots. The double dot is not coupled to
a reservoir, but is coupled via local gate to an RF reflectometry circuit, as shown in Fig-
ure 2.6. The double dot is operated in the two-electron singlet/triplet basis. The readout
sequence for the ancilla state |¢) is the following: (1) initialize the double dot in the sin-
glet (0,2) charge configuration, (2) separate into the (1,1) singlet, (3) perform a control-Z
gate operation between the ancilla and the adjacent member of the double dot, (4) tune
the double dot to favour the (0,2) configuration and use gate-dispersive RF reflectometry
[205, , 38] to distinguish the T'(1,1) and S(0, 2) spin(charge) states. This charge detec-
tion method works by sensing the quantum capacitance associated with inter-dot tunnelling
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Figure 2.4: Circuit diagram corresponding to the four-node operations shown in Figure 2.2.
The labels 1-4 at the top correspond to the steps in Figure 2.2; entanglement distribution
is carried out in steps 1-2, the GHZ state is formed at the end of step 3, and the stabilizer
operation is step 4. Al and A2 refer to ancilla qubits 1 and 2, respectively. Other symbols
are defined in the legend below. The notation R(f) indicates a spin rotation about the R
axis in the Bloch sphere by an angle 6. Conditional X (7) gates applied to the A1 qubits
in nodes A and B ensure the GHZ state is created with 100% probability in the absence
of measurement and gate errors. Control-Z gates in step 4 correspond to a Z-stabilizer,
whereas additional Y (7/2) rotations transform these to control-NOT gates which yield the
X-stabilizer. The stabilizer measurement outcomes are sent to a classical data processing
node to determine which (if any) nodes require a corrective unitary rotation Ue,,. In the
diagram we assume the ability to perform single qubit rotations on the data and both
ancilla qubits, however, use of additional SWAP gates could restrict this requirement to
one qubit, e.g. single qubit gates on A1 only. The control-Z sequences could be replaced by
direct gates under certain circumstances [271], reducing the number of single-qubit gates
and increasing processor speed. Steps to empty the ancilla dots are not shown explicitly,
but will directly follow the final measurements.
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Figure 2.5: A full stabilizer cycle consists of the four steps indicated in the figure, since
adjacent 4-node plaquettes cannot be stabilized at the same time. Starting at the upper
left, the Z stabilizer is split into two steps, followed by the two-step X stabilizer. The
cycle then repeats. Dark color indicates which stabilizer operations are being performed
in the current step.

(see Mizuata et al. [182] for a description of quantum capacitance). When the ancilla qubit
is in the logical |1) state, the control-Z gate rotates the singlet to a triplet, which remains
in the (1, 1) charge state due to the Pauli spin blockade. The conventional control-Z gate
sequence requires two-qubit exchange and single-qubit rotations on both qubits, but it
may be advantageous to restrict single-qubit rotations to the ancilla qubit by using SWAP
gates. We note that single electron charge detection using gate-dispersive methods has
demonstrated sensitivities allowing for measurement on few-nanosecond timescales [39],
therefore, qubit readout times could be limited by the gate operations and not by charge
detection. The presence of valley states in silicon complicates the spin-blockade based
readout but is not a fundamental obstacle to achieving high readout fidelities [247]. We
note that current state of the art experiments using gate dispersive methods have achieved
readout fidelities of >98% for a two-qubit state in silicon within a time frame of 6 us [293].
Obtaining these fidelities at the 1-100 ns regime is critical to ensuring that readout does
not significantly bottleneck the overall processor speed.
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Figure 2.6: A method for reading out the ancilla qubits. A double quantum dot is operated
in the two electron singlet-triplet basis (labeled S—T'). A local gate electrode (gray) couples
the quantum capacitance of the double dot to an RF reflectometry circuit for gate dispersive
charge readout. A second (gray) gate electrode controls exchange (J) between the ancilla
dot and the double dot. Initialized in the (1,1) singlet state, a control-Z gate conditioned
on the state [1) of the ancilla qubit acts on the dot adjacent to it. The ancilla states |0) and
|1) thus map to the singlet and triplet states, respectively. The Pauli blockade prevents the
T'(1,1) state from tunnelling to the S(0,2) state, and thus the dispersive charge detection
allows the two states to be distinguished. The conventional control-Z sequence requires
control of the exchange coupling and single-qubit rotations, the latter of which can be
restricted to the ancilla qubit using SWAP gates.

2.2.3 Network layout

A proposed layout of the nodes forming a network is presented in Figure 2.7. N-type
ion implanted regions, kept well separated from the nodes to reduce charge noise, allow
reservoirs to be brought to each node using accumulation gates. The shuttle dots in each
node connect to north/south shuttle pathways (linear dot arrays). The version shown
here and in Figure 2.3 has two shuttle dots so that no dot has more than three tunnel
couplings that must be separately controlled. The data qubit dot is coupled only to the
first ancilla, providing isolation for this all-important qubit. East/west shuttle paths can be
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Figure 2.7: Illustration of a proposed network layout showing a plaquette of four nodes and
how they connect beyond to form a 2D surface code. Ion implanted regions indicated by ‘+’
symbols provide electron reservoirs that are brought to each node with accumulation gates
(gold color). The enlarged section at right shows the dot layout in each node relative to the
reservoir and shuttling paths, the latter here indicated as lines that represent linear (empty)
dot arrays. Each switch is a T-junction of quantum dots in which the tunnelling direction is
controlled by local gate electrodes. Gate electrodes that form the dots and enable quantum
control (not shown) connect vertically (out of plane) to wiring in upper interconnect layers.
Gate electrodes controlling shuttling can be shared, since singlet distribution occurs in
parallel across the entire device. The RF reflectometry circuit indicated by the blue box
represents a combination of on-chip and off-chip components and probes the charge state
of the double dot by the gate-dispersive readout technique. Nodes in the main figure are
not to scale.

chosen at T-junctions, where local gate electrodes control the tunnelling direction. Thus,
each node is connected to all four neighbouring nodes. The internode distance can be
scaled to optimize wiring density and integration of classical CMOS components while
minimizing shuttle errors, and we expect this to be on the scale of ~1 to a few microns.
For an internode spacing of 1.5 um, the node (data qubit) density is 4.4x107 cm~2, still
a high density compared to superconducting and ion trap qubits. It is about 2 orders
of magnitude less dense than the estimates given in [225] for close-packed silicon-based
qubits, but would still give a few times 103 cm~2 logical qubits, enough to factor a 2000-

33



bit semiprime number using Shor’s algorithm with a 10 cm? size chip (assuming ~10,000
logical qubits) [225, 72]. The internode space could be used to add floating gate circuits
to correct for small electrostatic variations in qubit device parameters, allowing for widely
shared control lines.

2.3 Single electron transport

Spatial separation of the spin singlet pairs is fundamental to the proposed network ap-
proach, and occurs in parallel across the device at the beginning of every stabilizer cycle.
To coherently translate an electron spin across a distance requires confinement of the wave-
function be maintained. Single electron transport via ‘moving quantum dots’ has been
realized with surface acoustic waves in piezoelectric materials [131, , 10]. This idea
was recently applied even in silicon, with an appropriate piezoelectric material attached to
the surface [25]. Surface acoustic wave generation, however, requires bulky interdigitated
electrodes, and confining the waves to desired pathways is challenging. A more exotic
possibility is the generation of a soliton wave [134, 60], which would render unnecessary
the requirement for a moving potential well. Unfortunately, solitons can only be gener-
ated from a Fermi sea, and not (as far as we know) from single particle levels in quantum
dots. To create a moving confining potential without acoustic waves, one can use a set
of gate electrodes to form a linear array of quantum dots [70, 68]. In the limit of many
fine gate electrodes, a moving dot could be approximated. With realistic gate dimensions,
however, it is more practical to define adjacent dots and force electrons to tunnel succes-
sively between them. We adopt a simplified model in which each dot is formed by a single
accumulation (plunger) gate, and there are no explicit gates to control tunnelling. Instead,
plunger gate voltages and the electrode geometry are used to control tunnelling. Two main
topics are addressed: (1) what shuttling speeds are feasible in realistic devices while adia-
batically maintaining the electronic ground state, and (2) how large is the shuttle-induced
modulation of the electronic g-factor due to the Stark effect, how much error does this
cause in the singlet state fidelity, and can it be mitigated? The results presented here are
only an introduction into the feasibility of sequential electron shuttling through a quantum
dot chain as it relates the network architecture proposal. These results are expanded upon
in significantly more detail in Chapter 3. Although unrealistic for silicon [217], we assume
a single valley model in this chapter as a first step. Coherent spin transport through a
series of dots is unlikely to succeed in cases for which the energy splitting between the two
lowest valley states, A, is comparable to the Zeeman and/or tunnelling energies, E, and
t., respectively. In such cases, even a weak spin-orbit coupling causes levels with different
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spin and valley indices to anti-cross, so that diabatic transitions that mix spin and valley
states are difficult to avoid [291, ]. Thus, our approach would require that A,s > E,, t.,
so that the higher valley state would play a role similar to an excited dot orbital state.
This condition is more likely to be achievable in MOS dots compared to Si/SiGe. The
g-factor modulation is an indirect effect of the spin-orbit coupling and causes a phase
rotation of the singlet state. Direct spin-orbit induced rotations along z,y are expected
to yield weaker errors, but are non-negligible for long shuttle paths, as we discuss below.
Charge decoherence, which can occur when the system is biased near zero-detuning [209)],
is also neglected in our simulations, but will be an important factor to consider in future
work. As a side note, there is a closely related method referred to as coherent transfer by
adiabatic passage (CTAP) which is analogous to the STIRAP (Stimulated Raman Adia-
batic Passage) technique in optics for population transfer in a three-level atomic system (A
system) [92, 216]. CTAP, in a 3-dot linear array, relies on quantum interference to transfer
an electron from dot 1 to dot 3 without it ever being in dot 2. This can be generalized to
an N-dot system (for odd N). This method, however, is not feasible with the simplified
gate geometry of our simulations because CTAP requires independent control of tunnel
couplings and dot potentials, implying more gate electrodes are needed. CTAP is also
sensitive to dephasing throughout the entire sequence, whereas shuttling is only sensitive
during the tunnel events. For these reasons we have not included CTAP in our simulations,
but it remains a possible alternative.

2.3.1 Shuttling simulations

Figure 2.8a shows an example of the gate electrode geometry and potential landscape for
a five-dot linear array. This is simulated using a 3D self-consistent Poisson equation solver
in the nextnano++ software [11]. The ‘via’ gate electrodes are 40 nm wide at the base,
with center-center separation of 60 nm. The base of the via gate is separated from the Si
interface by 17 nm of SiO,, and the potential profile is shown 0.5 nm below the Si/SiO,
interface. Figure 2.8b shows the sequence of gate voltages applied in a five-dot shuttling
simulation, with Vj (V5) corresponding to the leftmost (rightmost) gate electrodes. The
gate voltage sequence for shuttling was designed using a set of 1D potentials calculated
using nextnano++. The electron is first initialized in dot 1 with V; > V5. To transfer
the electron to dot 2, we first sweep V5 linearly in the positive direction while holding
V) fixed. This can be done very quickly over the range of V5 for which the wavefunction
localized in dot 1 is insensitive to V5. This fast sweep ends when inter-dot tunnelling ‘turns
on’ and there is a small probability for the electron to be in dot 2; we chose an arbitrary
threshold of ~0.1% probability. V5, is then swept slowly enough to continue to satisfy the
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Figure 2.8: Setup for the electron shuttling simulations. a) A linear chain of five quantum
dots is formed by single ‘via’ gate electrodes with applied voltages V; — V5. The corre-
sponding electrostatic potential in Si just below the Si/SiOs interface is shown. b) Gate
voltage sweep sequence for moving an electron from dot 1 (left) to dot 5 (right), with time
T'/4 per shuttle. Voltage is swept more slowly near the resonant tunnelling point to pre-
serve adiabaticity. ¢) Snapshots of the 1D potential and ground state electronic probability
density [¢|* at ¢t = 0, 3T/8 and T. Note that potential differences are meaningful but the
potential offset (absolute value) is arbitrary, and the sign of the potential is reversed as
though the electron charge were positive. Coherent tunnelling between dots 2 and 3 can
be seen at ¢t = 37'/8. The minimum 7" for which shuttling remains adiabatic is determined
by the size of the tunnel coupling, the orbital energy spacing and other factors.

approximate adiabatic condition [12]

(U (8)| G0 (2))
s

Folt) N < 1, (2.6)

where 2 |¢(t)) is the time derivative of the instantaneous ground state [1o(t)) and [t,,) is
the m™ excited state orbital. Fy(t) and E,,(t) are the instantaneous eigenenergies of the
ground and m'™ excited state. As the resonant tunnelling point V, ~ V; is approached,
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the relevant energy gap for adiabaticity is given by 2¢; where ¢; is the tunnelling energy.
In a linear dot array, cross-capacitances between gates affect the dot potentials so that the
exact resonant tunnelling points occurs when V; ~ V; rather than at V; = Vj for adjacent
dots j and k. The correct resonant tunnelling points are identified by the electron having
equal probability to be in both dots, and this is taken into account in the construction of
the gate voltage sequences.

After the resonant tunnelling point Vi ~ V5, V; is then swept slowly in the negative
direction with V5 fixed, until the tunnel coupling is sufficiently ‘off” that V; can be swept
quickly without affecting the wavefunction now localized in dot 2. This procedure is then
repeated for the rest of the dots in the linear chain to generate the full voltage shuttling
sequence.
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— —W
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—0.039 ns
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——0.460 ns
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4.097 ns
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Figure 2.9: Adiabaticity threshold for a 3-dot shuttling simulation (i.e. two shuttle steps).
The fidelity between the ground state wavefunction 1y(¢) and the actual wavefunction (t)
is defined as F' = [{¢g(t)[1(¢)}]|?>. The total sequence time is T, and the normalized time
t/T is given on the horizontal axis. The corresponding gate voltages are shown in the
panel above, sharing the same time axis. The process is adiabatic for T = 4.1 ns, but
non-adiabatic for T < 1 ns. For a final state fidelity F' > 0.99, the adiabatic threshold for
these simulations is T}, ~ 3 ns, or roughly 1.5 ns per shuttle step.
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Figure 2.8(c) shows the central one-dimensional (1D) slice of the electrostatic potential
that was used for shuttling simulations, together with the electronic ground state wave-
function at three different points in the sequence (i.e. the actual wavefunction in the ideal
adiabatic limit 7" — oo). The snapshot at ¢ = 37'/8 shows the electron tunnelling between
dots 2 and 3. Here, the tunnel coupling is t. = 25 peV, giving a resonant tunnel rate
I' = 24 GHz, based on the level anti-crossing in the spectrum of two dots at zero detuning.
At the end of the sequence (t = T'), the electron is ideally localized in the rightmost dot
and remains in the ground orbital state. To simulate shuttling, we solved the 1D time-
dependent Schrodinger equation numerically. Results for a 3-dot simulation are shown in
Figure 2.9. For T" larger than a threshold value T}, the shuttling is adiabatic, and the sim-
ulated wavefunction has a large overlap with the ground state at all times. Non-adiabatic
behaviour occurs for T' < Ty,. The state fidelity is defined as |{¢g(t)|1(t))|?, where 1) (t) is
the ground state wavefunction at time ¢, and 1 (t) is the actual simulated state. The data
in Figure 2.9 indicate T}, ~ 3 ns. For shorter sequence times, the electronic wavefunction
develops appreciable overlap with excited orbital states and is not properly localized in the
target dot at the end of the sequence. For the non-adiabatic curves in Figure 2.9, the initial
drop in fidelity occurs when dots 1 and 2 are near the resonant tunnelling point, where the
energy gap between ground and excited states is determined by the tunnel coupling. A
larger tunnel coupling allows for faster shuttling, although this is limited by the condition
t. < AFEym, where AFE,,, is the energy gap between ground and first excited orbital states
in an isolated dot. Additional features can be seen in the middle of the sequence when
V1 and V3 are swept rapidly, and near the second resonant tunnelling point. In our simu-
lated dot, AE,, ~ 3 meV, whereas valley splittings A, are typically a few hundred peV
in MOS dots. Thus, including the first excited valley state is expected to require slower
sweeps to remain adiabatic; however, it is mainly the faster portions of the sweep that will
be modified, as the slowest segments are still governed by t. (as long as t, < A,s). The
sharp but jumps in fidelity near the beginning, middle and end of the shuttling sequence
are caused by discontinuities in the derivative of the shuttling pulse sequence, and using
smooth voltage pulses would mitigate these jumps in fidelity.

2.3.2 Stark effect and singlet phase rotation error

A consequence of the weak (but non-zero) spin-orbit interaction in silicon together with
a gate-induced local electric field is the Stark shift of the electronic g-factor [267, ].
The fractional variation of ¢ is typically of order ~1072 or less for practical gate voltages,
but can be as large as 1072. The normal component of the electric field, F, = —(6\/)2,
perturbs the g value, which can be expressed as % = n|E.|?, where the Stark coefficient 7
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Figure 2.10: Stark effect and singlet phase rotation error for the 3-dot shuttling simulation.
a) Resonance frequency shift of the moving electron relative to its initial value vy = 40 GHz.
The average value over the full duration, v,y,, is indicated by the red dotted line. b) Phase
error quantified as 1 — F, where F' = [{S](t))[?, |S) is the ideal singlet state and 1 (t) is
the actual spin state, a superposition of the singlet and m, = 0 triplet states. The blue
curve is for the case when the static electron has resonance frequency 1. The red curve is
the result of tuning the static dot so that its electron resonance frequency is vayg, in which
case the net phase error cancels out.

contains microscopic information and is normally determined experimentally [215]. During
the shuttling process, the electronic wavefunction experiences a time-dependent field F,
which gives rise to modulation of g. For internode singlet distribution, this leads to errors
since a difference in the g-factors of the static and moving electrons forming the singlet pair
will cause a phase rotation of the state away from the singlet, towards the m, = 0 triplet.
In order to gauge the size of this error, we calculate the time-dependent g-factor of the
moving dot using the instantaneous expectation value of the normal electric field, (F,(t)) =
[ dzy*E,(x,t)1, with respect to the numerically calculated wavefunctions ¢ (z,t). We take
n = 2.2 (nm/V)? based on the empirical results reported in [267]. Figure 2.10 shows the
results from a 3-dot shuttling simulation with the same parameters used in Figure 2.9.
Figure 2.10a shows the shift in resonance frequency v = gupBy/h as a function of time,
where pp is the Bohr magneton, and we take By = 1.43 T so that the initial resonance
frequency is vy = v(t = 0) = 40 GHz. The resonance frequency varies on a scale of
~0.2 MHz, with broad dips at the inter-dot tunneling transitions and abrupt changes
corresponding to the large/fast voltage sweeps. Figure 2.10b shows the error accumulation
e =1 —[{S]1)|* in terms of the overlap between the ideal singlet state |S) and the spin
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state at time ¢, [1/(¢)). The purple curve shows the case when the resonance frequency of
the static qubit is 5. The error surpasses 1079 after these two shuttling steps. The net
phase rotation error is coherent and due only to the offset between the average value of g
for the moving dot versus the static value, and thus the error should increase with time as
e ~ 1 — cos? (r(Av)t). For Av ~ 0.16 MHz and ¢ = 4 ns for two shuttle steps, this yields
€ ~ 4 x 107%. For 30 shuttle steps (i.e. 1.74 um travel distance), this would correspond
to an error of about 0.1%. However, by tuning the g-factor of the static qubit to match
Vavg (blue dashed line in Figure 2.10a), the phase rotations are made to cancel over the
course of the sequence and a much reduced error is obtained, as shown by the blue curve in
Figure 2.10b. In the latter case, the maximum error is ~107%, and returns to a negligibly
small value at the end of the sequence. The Stark dephasing error can thus be mitigated
with proper electrostatic tuning of the static qubit. Equivalently, one can think of the
tuning correction as applying a small Z rotation to one of the qubits to compensate for
the net phase pickup of the shuttling sequence.

From these simulations, we find that the modulation amplitude for g scales roughly
linearly with the range over which the gate voltages are swept, i.e. about 1 MHz/V. The
voltage sweep range should thus be kept as low as possible to reduce the potential for Stark
dephasing error. Fast noise in the electrostatic potential due to fluctuating charge defects
or gate voltage noise from external sources should also be considered, as it would lead to
irreversible dephasing of the singlet state. For an experimentally viable level of rms gate
voltage noise of several peV, the noise-induced fluctuation range for g would be negligibly
small, only ~10 Hz. Direct spin-orbit effects, on the other hand, are expected to produce
larger errors. Spin-orbit coupling in a silicon 2DEG has been estimated to be of order
~2 peV-nm [213], which yields a spin-orbit length ~200 pm. For an electron travel of
1.5 pm this would produce an error in the singlet fidelity ~1.4x10~* due to spin rotation
about a vector in the £ — y plane. Like the Stark effect phase rotation above, this is a
coherent error, and is correctable by a suitable local rotation at the end of the process, in
principle. Therefore, the average error across a large ensemble of shuttled electrons (e.g.
the many shuttling lines operating in parallel across the device) is correctable by local
rotations, but the error spread due to non-uniformity of devices is not. The error spread,
likely of the magnitude of the average error or less, should be tolerable by the surface
code. We show in the next section that a threshold of nearly 1% is obtained for dephasing
error during shuttling when single and two-qubit gate errors are much smaller than the
dephasing error. Multi-axis error such as weighted depolarizing noise during shuttling
would likely have a lower threshold, however. Above-threshold errors would have to be
mitigated by performing entanglement purification at the cost of additional ancilla qubits
and gate operation overhead. We leave a more detailed analysis of the error mechanisms
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associated with spin shuttling to Chapter 3.

2.3.3 Stabilizer repetition rate and other considerations

The time required to distribute a singlet between neighbouring nodes is ~ %7’, where
L is the internode distance, D is the dot dimension and 7 is the time for a single shuttle
operation. For a dot size of D = 50 nm and internode distance of L = 1.5 pum, the shuttling
path consists of ~30 dots (this corresponds to a total of ~35 physical quantum dots per each
data qubit). The shuttling parameters in Figures 2.9 and 2.10 yield 7 = 2 ns, for a total
time of 60 ns. Single-qubit ESR rotations typically require tens of nanoseconds at least, and
with the equivalent of 16.5 7 rotations per subcycle, internode shuttling is not necessarily
a bottleneck for the processor speed. With the inclusion of valley states and spin-orbit
coupling, we expect the adiabaticity condition to be more stringent, reducing the attainable
shuttling velocity. However, even if internode shuttling is an order of magnitude slower
than our estimate above, the timescales of shuttling and intranode operations would still
be comparable. Reducing 7 further should be possible with optimization of voltage sweep
and dot parameters. Elongating the dots along the shuttling direction would reduce the
number of dots required and could improve the operation fidelity. Since the orbital energy
spacing decreases as D2, however, the adiabaticity condition will require slower operations
as D increases. Finding the optimal dot dimensions to maximize shuttling velocity while
remaining adiabatic, along with designing optimal, smooth voltage sweep functions and
optimizing tunnel rates is explored in Chapter 3. We emphasize that internode shuttling
operations are global in that they proceed in parallel across the entire network for each
stabilizer sequence (note, however, each subcycle of the surface code involves a distinct set
of shuttle lines). Therefore, the electrodes controlling the shuttle path dots can be wired
to common lines, assuming sufficiently high device uniformity. We expect that shuttling
will be more tolerant of variations in dot parameters than qubit operations (i.e. as long as
potential disorder is smaller than the minimum ground/excited state gap), although this
should be investigated with numerical simulations. With common lines for shuttling, the
number of external control wires can therefore remain manageable, of the order required
for several plaquettes. We also emphasize that tuning the inter-dot tunnelling without
explicit barrier gates relies only on the geometry of the dot gates and the voltage sequence,
simplifying the device to a bare minimum of electrodes/wires.

The timescale for a full surface code cycle can be estimated by assuming realistic values
for all operations in the subcycle of Figure 2.4. A full cycle consists of four subcycles (see
Figure 2.2). The times we assume for singlet loading, internode shuttling, vSWAP gates,
emptying the ancilla dots and dispersive charge detection are 20 ns, 60 ns, 1 ns, 10 ns
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and 10 ns, respectively. Each subcycle has the equivalent of 16.5 7 rotations, including
the control-Z operation involved in each ancilla readout (Z rotations are synthesized from
X and Y rotations). Single-qubit ESR gates therefore make the dominant contribution to
the cycle time for Rabi frequencies below ~100 MHz. For an ESR Rabi frequency of (100,
10, 1) MHz, a full cycle requires approximately (1.2, 4.1, 33.9) us. A plot of the full cycle
rate versus ESR Rabi frequency is given in Figure 2.11. Although we have not considered
logical qubit operations, which involve alternate stabilizer sequences on a subset of nodes,
the four-qubit stabilizer rate should still give a reasonable estimate of processor speed for
computation. The timescale for factoring a large number using Shor’s algorithm has been
estimated based on the surface code protocols for implementing logic gates described in
[72]. To factor a 2000-bit number in a scaled-up version of our network/node processor we
estimate would require ~23 (~7) days at 10 MHz (100 MHz) single-qubit Rabi frequency.
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Figure 2.11: Rate for the full stabilizer cycle (both X and Z stabilizers) versus the single-
qubit control Rabi frequency. Below ~100 MHz, the cycle rate is dominated by single-qubit
operations and is a linear function of the Rabi frequency. Above ~100 MHz, the cycle rate
reaches a plateau limited by the durations of all other operations. Here we assume the
following operation times: singlet loading = 20 ns, internode shuttling = 60 ns, vVSWAP
gate = 1 ns, and gate-dispersive charge detection = 10 ns.

Although we have so far assumed a global ESR field (e.g. placing the device chip inside
a macroscopic microwave cavity), the highest Rabi frequencies are typically achieved with
micromagnets [280, , 271]. With the latter approach, direct control-Z gates also become
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possible when the Zeeman energy difference between neighbouring qubits is comparable
to the inter-dot tunnel coupling [271]. These gates could be significantly faster than the
standard control-Z sequence we consider above, and potentially yield higher fidelities. Since
micromagnets are not compatible with the singlet-triplet readout scheme proposed herein,
a different method would be required, such as spin-dependent tunnelling to a reservoir
together with fast charge sensing [63]. This would eliminate the control-Z gates used in
the ancilla measurements in our scheme, potentially speeding up the processor. On the
other hand, we expect that spin shuttling will be adversely affected by the presence of
micromagnets, in general. As discussed in [291], an inhomogeneous magnetic field along
the inter-dot axis together with a valley splitting comparable to Zeeman energy can yield a
high probability for spin flip during shuttling. The stray field along the spin quantization
axis (external field direction) would also lead to significant phase rotation in the m, = 0
singlet-triplet subspace. However, since the micromagnet field is static and the shuttling
voltage sequence can be fixed, the phase pickup at the end of the sequence is, in principle,
correctable by an appropriate local Z rotation.

2.4 Surface code error thresholds

In quantum error correction, if the error rate of the physical components is below a certain
threshold, the error rate of the logical qubits can be reduced by scaling up the code. The
error threshold of surface codes is highly dependent on the way the stabilizer check circuit
is implemented and the error models of the physical components. Its exact value can be
obtained via simulations of the error correction circuit using the Gottesman-Knill theorem
[91, 1]. Assuming depolarizing noise for all the physical components, the error threshold of
surface codes can take values between 0.5% ~ 1% under different circuit implementations
[244]. In our proposed quantum dot network architecture, v/ SWAP is the basic building
block of two-qubit gates instead of control-Z or control-NOT gates. Failures of v/SWAP
will predominantly lead to SWAP errors instead of depolarizing errors which we show in
Section 2.4.1. For the shuttling process, we consider dephasing noise instead of depolarizing
noise based on the findings of Section 2.3 that phase rotation due to g-factor modulation
should dominate the singlet state error. Although this is a coherent error for each shuttled
electron, there is a spread in the errors across the device, and this justifies the use of a
dephasing model. Therefore, the error types we consider in the stabilizer check circuit are
the following:

e Single-qubit gates, initialization and measurement: depolarizing errors with proba-
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p— (1=pig)p+ % (XpX +YpY + ZpZ)

o VSWAP gate: SWAP errors with probability psyap

p— (1 - pswap)ﬂ + pswapSWAP P SWAP

e Shuttling process: dephasing errors (due to g-factor modulation) with probability ps,

p— (1= psn)p+ psnZpZ

2.4.1 Errors associated with the control-Z gate

Here we will justify the vVSWAP error model used to calculate the surface code error
thresholds. The effective Hamiltonian for the exchange interaction between two electron
spin qubits is written as H = J & - 03 where J is the exchange interaction strength. We
assume that before the two-qubit gate, the gate voltages of the system are tuned such that
J = 0. At the start of the two-qubit gate, J is quickly raised to a non-zero value and
remains constant during the gate evolution. Afterwards, the voltages are tuned to return
J to 0. The unitary evolution operator acting on the basis spin states {|11), |11}, [41),

L)} is

e—iJT/Q 0 0 0
~ - 0 cos({ —1 sin({) 0
Uea(7) = 0 —isin(%)  cos(%) 0 (2.7)
0 0 0 e—zJT/Q
If we substitute % = 0, we have
U..(0) = cos(0) I — isin(0) SWAP (2.8)

A SWAP gate corresponds to 8 = 7/2, and a vVSWAP gate corresponds to § = /4. In
experiments, over and under rotations of exchange occur due to imprecise pulse timing or
fluctuation of exchange strength due to charge noise. If during the execution of vVSWAP
gate, there is an equal probability of a over and under rotation by € < 1, then the applied
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operator is
Usa <z + e) = cos(% + e)[ - isin(% + e) SWAP (2.9)

5 —ISWAP) & —(~I — iSWAP) (2.10)

~ 0., (4) + 0, (%{) (2.11)
This gives the overall effective operation on a density matrix p as
0 (7 +€) 0l (F+e) +
L0 (T ) ot (5 =€) = O (T) 0L, (5) 4 20, (%{) U7, (%{) (2.12)
— VSWAPVSWAP +
(SWAP\/i ) <SWAP\/7 ) (2.13)

From this, we either have a perfect vSWAP or a €2 probability of having a SWAP error
on top of vSWAP. This justifies the noise model for the vV SWAP gate adopted in these

simulations:
p = (1 — Dswap) P + DswapS WAP - p- SWAP

where pguqp is the error associated with the v/SWAP gate. Similar arguments can be
applied to other symmetric over/under-rotation distributions that center on the correct
rotation angles.

Given this noise model, we now discuss the different non-Pauli errors that can occur
during the execution of a control-Z gate. In the stabilizer circuit (see Figure 2.4), control-Z
gates are implemented as

QL —Z(3) <2<
= =
Q2 — Z(-3) % 5

where Q1 and Q2 simply denote qubit 1 and qubit 2. There are three types of non-Pauli
noise that can occur:
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e SWAP error after second vSWAP = SWAP error after the control-Z
o SWAP error after first VSWAP = (Z,7Z;)-SWAP error after the control-Z

e ol error (for i = z,y, 2) after Z(r) = \/SWAP-O‘%-\/SWAPT error after the control-Z.

To efficiently simulate the error correction circuit using the Gottesman-Knill theorem, these
non-Pauli error operators must be converted into Pauli noise by twirling.

2.4.2 Twirling

Twirling is used for converting arbitrary error channels into Pauli channels by conjugating
the noise with Pauli gates randomly chosen from the twirling gate set [27]. The Pauli
channel we obtain is the incoherent superposition of the Pauli basis of the original noise.
For example, after twirling, a swap noise SWAP = %(Illg—i- X1 Xo+ Yot Z175) will

be transformed into }1(1/1\124— m—i— 3713\/2—1— Z/l\Zg), where ™ denotes a super-operator (i.e.

(ﬁ +B)p = ApAt+ BpB'). Twirling is proven to be effective in error threshold simulations
[50, 95].

To run error threshold simulations, we must first obtain the error distribution for each
round of the stabilizer check. This can be obtained via a full quantum simulation of the
stabilizer check circuit, shown in Figure 2.12. In this circuit, the non-Pauli errors arise
from the failures of the elements comprising the control-Z gates as discussed above in
Section 2.4.1. Using conventional twirling on these two-qubit errors requires the full Pauli
set of the size 4> = 16 as the twirling gate set [0, (1]. Hence, if we want the exact error
distribution for each round of stabilizer check, 16° possibilities must be iterated over since
there are 6 control-Z gates in the circuit. In the stabilizer check circuit, control-Z gates
are always followed by an X measurement whose results are forgotten at the end; we only
record the parity of the X measurements in both the preparation and the stabilizer check
stage. Using the method proposed in [27], it is found that the gate set {I, Xy} of size 2 is
sufficient for twirling. Thus, we only need to iterate over 2° possibilities instead of 16 = 224
to obtain the exact error distribution. The twirling circuit is shown in Figure 2.13.

2.4.3 Threshold simulation results

If we assume no dephasing error during shuttling (ps, = 0), and fix the error ratio between
single-qubit errors (pi,) and SWAP errors (pswap), we obtain the threshold plots for pguap

46



GHZ preparation stabilizer measurement
I r— "

Aot AR
An 7] X
Buata AH [ H——
L D M =S
Cgata Ha e f——
Car —{V] : — : X
D [ X)
Ap —{Y] [O—

Caz (X )—=

Figure 2.12: Simplified diagram of the stabilizer check circuit. Control-Z gates are indi-
cated by the vertical lines connecting dots. The following input pairs are initialized as
singlets: (Aa1, Ba1), (Ca1, Da1), (Aas, Caz). The Hadamard (H) gates in the dashed
boxes are used only for the X stabilizer. When the parity of the measurement results on
Apg and Cyps is odd, two additional X gates are applied on A, Bay to produce the GHZ
state.
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Figure 2.13: Left circuit: If it were the case that the noise existed as a separate physical
process from the ideal gate, then one could target the noise directly by twirling operations
(shown in dashed boxes). Right circuit: In reality the noise process is inseparable from
the ideal gate, therefore we permute one of the twirling operations back through that gate
to obtain the physically achievable twirling protocol.
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Figure 2.14: Fault tolerance thresholds with respect to error in VSWAP gates, with p, = 0
and different ratios -2*~-. Main plot: 22 = 0.1. Top left: -2~ = (.5. Bottom right:
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distances d. The corresponding number of nodes (data qubits) in our network is d?+(d—1).
The dashed lines indicate the threshold values.

as shown in Figure 2.14. The threshold is defined as the gate error rate at which there
is a crossover between the logical error rate increasing with code size (above threshold)
and the error rate decreasing with code size (below threshold). The threshold can be seen
here for code distances ranging from d = 11 to 14, where the corresponding number of
nodes (or data qubits) in our network is d* + (d —1)2. Single-qubit operations are typically
achieved with higher fidelity than two-qubit operations. Under the realistic assumption
that -2~ = 0.1, we obtain a threshold of 0.31% for psyap, which is of the same order as the

swap

threshold for a depolarizing noise model (0.5% ~ 1% [211]). Keeping the assumption that
Ll — (.1, and fixing pswap t0 a below-threshold value 0.2%, we obtain the threshold of the

Pswap

shuttling dephasing error to be 0.79% as shown in Figure 2.15. This threshold approaches
2% in the limit psyap, p1y — 0. This shows a relatively high tolerance of the surface code
to spin dephasing errors during internode shuttling. As noted in Section 2.2.1, each Z
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and X stabilizer is split into two sequential operations since any two neighbouring 4-node
plaquettes cannot be stabilized simultaneously. In these simulations, we have neglected this
by assuming that idle data qubits decohere at a much slower rate than those experiencing
active gate operations.
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Figure 2.15: Fault tolerance thresholds with respect to dephasing errors during shuttling,
with ppi = 0.1 and different values of pgqp. Main plot: psu, = 0.2%. Top left:
Pswap = 0.1%. Bottom right: pg,., = 0. The legend shows curves of different colours
corresponding to different code distances d. The dashed lines indicate the threshold values.

Finally, we note that demonstrated electron spin coherence times in MOS dots (with
isotopic enhancement to remove 2°Si nuclear spins) are compatible with fault tolerance in
our architecture. [269] reports dephasing times Ty ~ 120us and Ty ~ 28 ms under CPMG
refocusing. This should be compared to our estimated stabilizer cycle time ~2 pus. Thus,
with refocusing, the probability of a phase flip error purely due to T5 is of order 10~* per
cycle, which should be well below the fault tolerance threshold for the surface code.
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2.5 Conclusions

In summary, we have proposed a surface code realization for quantum dot spin qubits in
silicon based on a network of nodes. The spatial separation of the nodes allows data qubits
to be better isolated and will ease constraints on wiring density and integration of classical
circuit elements to support control and readout functions. As each node contains fewer
than 10 quantum dots, demonstrating a fully functional node is nearly within the grasp of
current technology. Connecting nodes relies on shuttling of electrons over medium-range
distances (~1 pm) and maintaining the fidelity of the distributed spin singlet states. We
find value in separating the scaling problem into these two streams - local operations and
entanglement distribution - that can be developed in parallel. Realistic simulations with the
simplest possible gate electrode geometry show that adiabatic shuttling can be realized on
timescales that do not necessarily present a speed bottleneck to the processor. Simulations
suggest that the dominant error in a clean system is uncontrolled phase rotation due to
the modulation of the electronic g-factor during shuttling, owing to the Stark effect. While
this error ~0.1% may be tolerable by a scaled-up surface code, we show how it can be much
further reduced by appropriate tuning of the stationary electron’s g-factor. These shuttling
results, however, do not tell the whole story because we have not included multiple valleys,
direct spin-orbit coupling or charge state decoherence in the simulations. The combined
effects of these factors could indeed make coherent spin transport over many dots difficult
or impossible and are studied in Chapter 3. While we have chosen to focus on spin shuttling
in this chapter, of course, any viable method for internode entanglement distribution can
be used in its place.

Achieving fault tolerance is a critical goal for a scalable processor. Using reasonable
noise models, we estimate error thresholds with respect to single and two-qubit gate fideli-
ties as well as dephasing errors due to shuttling. A twirling protocol allows us to transform
the non-Pauli noise associated with exchange gate operations into Pauli noise, making it
possible to use the Gottesman-Knill theorem to efficiently simulate large codes. Not sur-
prisingly, the surface code is found to be more robust to singlet dephasing errors than
to errors in vSWAP operations. A VSWAP error threshold of 0.31% was found when
the probability of single-qubit error is 0.1 times that of the two-qubit exchange gate. A
dephasing (shuttling) threshold of 0.79% was found when vSWAP and single-qubit er-
ror probabilities are 0.2% and 0.02%, respectively. Thus, compared to the current state
of the art in silicon spin qubits [271, , 64, |, both single-qubit and two-qubit gate
infidelities must be reduced by at least an order of magnitude to achieve fault tolerant
levels (of course, this statement applies equally well to other realizations and error correc-
tion schemes). The error models used to estimate fault tolerance thresholds will become
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more realistic as they are further informed by experiments at progressively finer levels of
control. We also expect that the uniformity of tuning parameters/properties of nominally
identical dots must improve by at least an order of magnitude compared to what has been
demonstrated experimentally so far [289]. This is so that shared control lines, a practical
necessity for scalability, can be feasible. Taking advantage of the internode spacing in our
architecture, we envision that local floating gate electrodes could be programmed to apply
small electrostatic corrections to the quantum dots forming the nodes, allowing control
pulse sequences to be applied globally. On the other hand, we expect that electron shut-
tling can be made robust to sufficiently small variations in dot uniformity, so that shared
global control of spin transport will be feasible without the need for correction gates. The
robustness of shuttling operations is a subject for future work.

Similar to [193], we have only considered the case that all nodes perform four-qubit
stabilizer operations, which is equivalent to logical qubit storage rather than computation.
It is expected that error thresholds for computation will be similar, since the four-qubit
stabilizer constitutes the bulk of operations and alternative stabilizers needed for computa-
tion are only required at boundaries. It remains to determine the precise operations within
boundary nodes during computations. Clearly, we must have the ability to address bound-
ary nodes individually, as well as the bulk nodes collectively, noting that the boundaries
move during computations and thus can involve many, if not all, nodes at some point in the
computation. Individual addressing of nodes will also be required during initial calibration,
e.g. for setting the values of correction floating gates. An appropriate multiplexing scheme
utilizing conventional transistor circuits as in [266] could be applied, noting that our scheme
can make available enough space for 3D interconnects using present-day CMOS technolo-
gies (power dissipation at mK temperatures remains a challenge). Performing massively
parallel readout operations in any surface code architecture is another challenge for which
relatively little has been discussed in literature. Both time and frequency multiplexing can
be used with RF reflectometry, but it is not yet obvious how this can be done at large scale
while keeping measurement latency within acceptable bounds [32].
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Chapter 3

Simulated coherent electron shuttling
in silicon quantum dots

Chapter contributions: Benjamin D. Shaw assisted with early nextnano+-+ simulations.
This chapter is adapted from the publication:

Buonacorsi, B., Shaw, B., and Baugh, J. (2020). Simulated coherent electron shuttling
in silicon quantum dots. Physical Review B, 102(12), 125406.

3.1 Introduction

The small footprint of a gate-defined quantum dot (QD), ~50—100 nm in scale, means
that high qubit density is a long-term advantage for scaling, but also brings significant
practical challenges. The ability to rapidly transport quantum information over intermedi-
ate length scales would mitigate some of these challenges and be a valuable resource from
an architecture design perspective. Recent architecture proposals such as the one pre-
sented in Chapter 2 as well as Li et al. [16/1] feature coherent spin shuttling as a primary
resource. Chapter 2 showed how shuttling can be used to share entanglement between
small neighbouring computational nodes, enabling the 2D surface code to be mapped to a
network-of-nodes architecture. Separating the scaling problem into intra-node and inter-
node operations is advantageous, and creates space for practical wiring interconnects while
maintaining a high qubit density compared to state of the art ion trap and superconducting
qubit technologies.
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Coherent transport of quantum information encoded in the electron spin can be realized
in several ways. Surface acoustic waves (SAWSs) in a piezoelectric material such as GaAs
have been used to deterministically transport single charges over several microns [131, ,

, |. Silicon is not piezoelectric, but a thin ZnO layer was shown to enable SAW-
driven charge transport in silicon [25]. One drawback of the SAW approach is that it
requires transducers that are large compared to QDs. Another approach is to manipulate
the exchange interaction in a linear array of singly-charged QDs. An arbitrary spin state
can be transported either via a sequence of SWAP gates [127] or by an “all-on” method
such as coherent transfer by adiabatic passage (CTAP) [92, 216]. This has the advantage
of a fixed charge state for all dots, but requires fine-tuned control of tunnel barriers and
therefore has a limited resilience to charge and voltage noise. In this chapter, we extend the
results from Section 2.3 and focus on coherent shuttling: electrostatically-driven, sequential
tunneling of a single charge/spin through a chain of empty QDs. Coherent spin shuttling
was demonstrated in GaAs QD devices [76, (5], despite the presence of nuclear-spin induced
decoherence. In silicon, shuttling of a single charge across a linear array of nine dots in 50
ns has been reported [181], and recently coherent spin shuttling was demonstrated as well
[285]. It is anticipated that the weak spin-orbit interaction for electrons in silicon, together
with the ability to remove nuclear spins through isotopic purification, could set the stage
for maintaining spin coherence over long shuttling distances. Prior theoretical studies
have examined the impact of spin-orbit and valley physics on spin transport fidelities
[165, , 84]. It was found that the presence of multiple valley states and variation in
valley phase can give rise to significant error, although this can be mitigated by operating
away from so-called leakage hot spots.

In this chapter, we expand on the shuttling simulations performed in Section 2.3. We
connect the shuttling problem to realistic devices, developing tools to optimize both the
shuttling voltage sequences and the device geometry. First, an algorithm for construct-
ing voltage sequences is designed that maintains a constant adiabatic parameter. These
constant-adiabaticity control sequences are a useful tool for systematic comparison and
optimization, and they will be used throughout the paper. The device layout investigated
is a simplified MOS geometry in which each accumulation mode QD is formed by a single
plunger gate electrode, with no explicit tunnel barrier gates. Tunnel rates are controlled
both by the voltages on adjacent plunger gates and by the fixed spatial gaps between elec-
trodes. Potentials from a 3D finite element device model are mapped to 1D potentials to
simulate shuttling along a chain of dots. Charge shuttling in the absence of spin and valley
effects is first investigated, to test the performance of the adiabatic control sequences with
respect to the speed and fidelity of single charge transport. We use an effective Hamilto-
nian, in which detuning and orbital excitation energies are determined based on the finite
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element potentials, to optimize the device geometry for shuttling speed and fidelity. Sub-
sequently, we implement spin and valley physics in an effective Hamiltonian, and gauge the
fidelity of maintaining a desired spin state. This is quantified by the entanglement fidelity
of a spin singlet pair, in which one member of the pair is shuttled and the other is static,
with the two electrons assumed to be well separated. In the regime that Zeeman energy is
smaller than the resonant tunneling energy, we identify a parameter range in which high
shuttling fidelities and speeds up to ~80 m/s are possible. The implications of these results
for coherent spin transport in 28Si MOS qubit architectures are discussed.

3.2 Constant-adiabaticity control sequences

For an adiabatic tunneling process, an electron initialized in the orbital ground state, |1)y),
remains in the ground state at all times. The adiabaticity of the process is quantified by
the approximate adiabatic parameter [12]

Zh

m#0

(3.1)

|dt|¢0(t)>
En(t)

where the index m runs over all excited states, and F,,(t) is the energy of the eigenstate
|ty) at time ¢. When &£(t) £ 1, diabatic transitions to excited orbital states occur with
high probability. Conversely, when £(¢) < 1, the orbital state retains a large overlap with
the ground state. The condition £(t) < 1 is achieved when the Hamiltonian changes slowly
with respect to the frequency corresponding to the ground-excited state gap.

Tunneling between two QDs is achieved by sweeping the inter-dot detuning € = €; — €5,
where ¢; corresponds to the orbital ground state energy of the i** QD. In previous theoretical
studies [18, 291] and experimental demonstrations [181, 76] of shuttling/tunneling, linear
detuning pulses were used. While practically convenient, linear pulses do not maintain
constant adiabaticity, and discontinuities in the pulse shape can cause undesired excita-
tions. In order to systematically compare shuttling simulations with different geometrical
and voltage parameters, and to optimize the device design for shuttling speed, it is conve-
nient to use pulses that maintain a constant £&. We design such pulses using an algorithm
described below. Fidelity of a pulse is defined by the overlap of the final orbital state, in
which the electron is located in the target dot, with the ground orbital state in the target
dot. The fidelity of an adiabatic pulses can be tuned to an arbitrary value by choice of &,
if only the orbital state is considered (spin and valley physics neglected).
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Consider a linear chain of n QDs described by the Hamiltonian H(V) = %VQ +
v(Vi,...,V,) where v is the electrostatic potential. Here, only the orbital component of
the electron wavefunction is considered (spin will be considered in later sections), and we
assume there is no ground state degeneracy. {V;} are the voltages applied to the gate
electrodes that each define an individual accumulation-mode QD and tune the energy
levels ¢;. The set of these voltage parameters is vectorized as V. We wish to find a pulse
sequence 17(25) that shuttles the electron through the n-dot chain while keeping ¢ fixed. In
later sections, we will use an effective Hamiltonian expressed directly in terms of the dot
potentials ¢;. In that case, the vector of dot potentials €(¢) is input into the the algorithm
as the set of control variables. The algorithm is presented below for a double QD system,
but readily generalizes to an n-dot chain.

1. Choose voltage configurations {V(A),V(B),V(C)} at three time points (A, B, C)
that the Hamiltonian should pass through during the shuttling process.

(a) V(A) tunes H so that the electron is fully localized in QD #1 (e < 0).
(b) V(B) tunes H so that the electron resonantly tunnels between the two QDs
0

)-
(¢) V(C) tunes H so that the electron is fully localized in QD #2 (e > 0).

—~
™
I

2. %elect aﬁsufﬁcientlx large number, N, of voltage configurations interpolated between
V(A), V(B) and V(C), and choose a desired adiabatic parameter £'.

3. For each interpolated voltage configuration ‘7(2)

(a) Solve for the eigenstates of the Hamiltonians H(V (7)) and H(V (i) 4+ 6V (i))
where 6V (7) is a small difference in the control pulse.

(b) Use the calculated cigenstates and 6V (i) to approximate ﬁ]%(?(i))).

(¢) Find =+ dV ) such that d‘gi dl dVd( 1o(V (7)) when used in Equation 3.1 gives & = ¢'.

4. Let 17( ti) correspond to voltage configuration V(i) at time #;. Set the initial condition
as V(ty = 0) = ( ). Then convert each voltage configuration index V(i) to V (¢;)
by ti = tios + 355 (Vi +1) = V(i)

The algorithm above does not assume a fixed pulse duration, but converges to a certain
length based on the chosen value of £. Convergence requires selecting a sufficiently large
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number of interpolation points in step 2 (/N is deemed sufficiently large when the final
pulse does not vary with increasing N). The relationship between the applied voltages 1%
and the electrostatic potential is evaluated using a self-consistent 3D Poisson solver based
on the chosen device geometry (this is not required when using the effective Hamiltonians
of Sections 3.3.3 and 3.4 expressed directly in terms of the dot potentials ¢;). A large
set of gate voltage configurations are simulated in order to provide a ‘library’ of potential
landscapes to be used in the algorithm. The discrete set of potentials are interpolated to
provide a quasi-continuous distribution (step 2). We approximate the true potentials by
ignoring the effect of the single electron charge and solving the Poisson equation in the limit
of zero charge density. While quantitatively approximate, this allows us to qualitatively
study shuttling dynamics while avoiding the technical difficulty of maintaining a fixed
charge in a Schrodinger-Poisson solver. In the Section 3.3.1, the effect of an electron charge
on a double QD potential is calculated, showing that at resonant tunneling, reduction of
the tunnel barrier height is the main effect. This can be compensated for, in principle, by
suitable adjustment of the gate geometry and pulse design. In the effective Hamiltonian
simulations of Sections 3.3.3 and 3.4.2, we use the Schrédinger-Poisson method to determine
orbital energy spacings and to determine the tunnel coupling as a function of double QD
geometry.

Longer QD chains are treated by adding more voltage configurations at step 1 (2n — 1
configurations for shuttling through n dots). For example, shuttling to a third dot is
realized by including configurations {V (D), V(E)}. It is assumed that there is no ground
state degeneracy during shuttling, as this causes Equation 3.1 to diverge and the algorithm
to fail. Shuttling pulses can also be found for an electron in the £ excited state by
substituting |¢y) for |1p) in Equation 3.1, assuming the orbital relaxation rate is slow
compared to shuttling. Our approach for designing adiabatic control pulses is valid for any
Hamiltonian of the form H = Hy + H.(uq,us, ...) where Hy is static and H, is a time-
varying term with control parameters {uq, ug, ... }. However, if H is complex or contains
oscillatory terms, evolution under the pulse may not adiabatic, as Equation 3.1 does not
guarantee adiabaticity for Hamiltonians of that form [12].

3.3 Charge shuttling

This section investigates the performance of adiabatic pulses by simulating electron shut-
tling along a triple QD linear chain, considering only single-valley orbital states and ne-
glecting both spin and valley physics. This pertains to the physical case of charge shuttling,
in which the metric of interest is the fidelity of remaining in the orbital ground state. In
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the single-valley case the ground state is unique; in the presence of valley physics, it is a
ground state manifold. While the simulations presented in this section neglect multiple
valley states, in Section 3.4.2 we have confirmed that the results are equivalent to having
equal valley splittings and zero valley phase difference between adjacent dots, with valley
degrees of freedom traced out at the end of the calculation. The purpose of this section is
also to introduce the device geometry of interest, the application of constant-adiabaticity
pulses, and a method for optimizing device geometry for speed and fidelity of charge shut-
tling. Each accumulation-mode QD is defined by a single plunger gate, and there are no
explicit gates to control tunnelling barriers [18, 217]. Tunnelling is controlled both by the
applied gate voltages and the fixed geometric gap separating adjacent gates.

3.3.1 Modelling the electrostatic potential

The full device structure of the QD linear chain, including the metal gates and the Si/SiO4
heterostructure, is simulated using a self-consistent 3D Poisson solver in nextnano-++ [11]
to determine the relationship between the electrostatic potential of the quantum dot device
and the applied gate voltages. A large set of gate voltage configurations are simulated in
order to provide a ‘library’ of potential landscapes to be used in the constant adiabatic con-
trol algorithm. The discrete set of potentials are interpolated to provide a quasi-continuous
distribution used in step 2 of the algorithm. We approximate the true potentials by ig-
noring the effect of the single electron charge and solving the Poisson (P) equation in the
limit of zero charge density. While quantitatively approximate, this allows us to qual-
itatively study shuttling dynamics while avoiding the technical difficulty of maintaining
a fixed charge in a Schrédinger-Poisson (SP) solver. However, SP calculations provide
more realistic simulations of nanoscale QD structures compared to P calculations as they
properly model the quantum effect of the accumulated electron density on the potential
landscape. It is worthwhile to quantify the impact that using just a P calculation has on
the simulations.

Electron shuttling through a linear QD chain can be realized by sweeping the inter-dot
detuning using the plunger gates that define each QD. In a real linear QD chain, sweeping
the plunger gates does not change the total electron occupancy if the QDs are well separated
from a nearby electron reservoir. However, in a P or SP simulation, the electron density can
change continuously as the plunger gate are swept. This varying electron density makes it
difficult to compare potential landscapes for different plunger gate voltage configurations.
Ideally, the integrated electron density could remain fixed during the SP calculation so the
impact of the accumulated electron on the electrostatic potential is consistent; however,
this is not possible in standard P and SP calculations. For the shuttling simulations done
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in this section, the plunger gate voltages were tuned below the device’s turn-on voltage
so that the integrated electron density was 0 e~ for all voltage configurations. In this
0 e~ regime, P and SP calculations provide the same potential landscape and is why P
calculations were used in this section.
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Figure 3.1: Effect of a single electron on a self-consistent calculation of a double well
potential. The 1D 0 e~ (purple) and 1 e~ (blue) potentials were extracted from a 3D
self-consistent Poisson calculation and a 3D self-consistent Schrodinger-Poisson calculation
respectively. The electric field from the single electron lowers the barrier height between
the two potential wells which raises the inter-dot tunnel coupling while simultaneously
widening the individual potential well widths which lower the QD orbital spacing.

We now quantify how neglecting the electron in the P calculation impacts the electron
shuttling results presented in Section 3.3.2 where these calculations are used. To do so,
a 3D simulation of a double QD was done in nextnano++4, and the respective plunger
gate voltages were set equal to form a symmetric double well potential. The plunger gate
voltages were tuned to both the 0 e~ regime just below the device turn-on and the 1 e~
regime and are simulated using a P and SP calculation respectively. 1D extractions of the
3D potentials are plotted in Figure 3.1. The 1D cuts are taken 1 nm below the Si/SiO,
interface along the of QD chain (white dashed line in Figure 3.2b). The addition of the
electron increases the inter-dot tunnel coupling from ¢, ~ 25 peV (0 e7) to t. ~ 60 peV (1
e~ ) due a reduction in the barrier height. Increasing t. does not qualitatively impact the
results shown later in Section 3.3.2, and simply increases the shuttle speed by reducing the
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constant-adiabaticity pulse length. This increase in t. can be compensated for by suitable
adjustment of the gate geometry and pulse design. The electron has the additional effect
of widening the individual potential wells which decreases the orbital spacing for each QD.
For QD geometries where the orbital spacing is much greater than t., the lower orbital
spacing will not affect shuttling performance. However, if the orbital spacing and t. are
comparable, then the lower orbital spacing can cause longer shuttling pulses in order to
maintain adiabaticity as seen in Section 3.3.3. In the effective Hamiltonian simulations of
Sections 3.3.3 and 3.4.2, we use the SP method to determine orbital energy spacings and
to determine the tunnel coupling as a function of double QD geometry.

3.3.2 Trade-off between fidelity and shuttle speed

Figure 3.2a shows a 3D view of a triple QD model and a 2D slice of a simulated potential
landscape taken 1 nm below the Si/SiO, interface. The corresponding plunger gate voltages
were V7 = 0.3 V and Vo, = V3 = 0.2 V. Figure 3.2b shows a 2D top view of the potential
landscape with an outline of the plunger gates superimposed. The plunger gate heads are
40 nm x 40 nm, and the edge to edge separation between them is 30 nm. Figure 3.2c shows
a side view of the device structure taken along the black dotted line in Figure 3.2b. This
view highlights the plunger gate’s vertical design in which electrons only accumulate below
the thinner oxide section, which is 17 nm thick in this model. The pulse control parameters
are the plunger gate voltages {V1, V2, V3}. Approximately 1000 potentials were calculated
using plunger gate voltage configurations ranging from [0.2,0.3] V in steps of 0.01 V for
each gate. Potentials at voltage configurations in between these points are obtained by
linear interpolation. The potential term in the Hamiltonian is v(Vi, V5, V3) where v is a
1D slice of the potential landscape taken along the white dashed line in Figure 3.2¢, 1
nm below the Si/SiO, interface. A 1D potential is used here to reduce computational
resources, but 2D or 3D potentials could be used in principle.

A constant-adiabaticity pulse for electron shuttling using £ = 0.02 and a voltage range
of [0.2,0.3] V is plotted in Figure 3.3. The left panel is an enlarged view that shows the
smooth nature of the pulses near the corners. At time 7' =0,V; =0.3Vand Vo = V3 =0.2
V which localizes the electron in dot 1. At 7"~ 155 ns, e = 0 (V; ~ V5) and the electron
resonantly tunnels between dots 1 and 2. V] is swept to V;, = 0.2 V at T' =~ 315 ns which
fully localizes the electron in dot 2. A similar process is carried out to shuttle the electron
from dot 2 to dot 3. When the detuning |e| > 0, gate voltages can be swept quickly
without harming adiabicity since the ground-excited state energy gap is large. When € = 0
(at T~ 155 ns and T & 465 ns), the gap is small and the voltages must be swept slowly
to maintain adiabaticity. The 1D potentials calculated with the Poisson solver naturally
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Figure 3.2: Schematic of a triple linear quantum dot chain using a ‘via’ gate geometry
with no explicit tunnel barrier gates. a) 3D render of the gate geometry with a plot of a
simulated electrostatic potential obtained with a self-consistent Poisson calculation . b)
A 2D top view of the potential with plunger gates outlined. The potential is a 2D slice
taken 1 nm below the Si/SiO, interface. Darker color indicates a more attractive potential
for electrons. The white horizontal dashed line indicates the 1D potential slice used in
the shuttling simulations. ¢) Side-view of a plunger gate taken along the black line in (b)
showing the vertical plunger gate design. The yellow ellipse indicates electron accumulation
in a quantum dot.

take into account cross-capacitances. This manifests as the zero detuning point (¢ = 0)
occurring at V; > V5 rather than Vi = V5, for example. The dot-to-dot shuttle duration in
this example is about 325 ps.

We now examine the fidelity of shuttling using the constant-adiabaticity pulses de-
scribed previously. The electron is initialized in the orbital ground state of the potential
v(V(0)). State evolution is calculated by solving the time-dependent Schrodinger equation
(TDSE). Numerically, the TDSE is solved using the split-operator approach [57] with a
time step At = 5 x 10716 5. The instantaneous fidelity of the orbital state with the ground
state is defined as F(t) = [(¢o()|Ysm(t))]?, where |1)g(t)) is the ground state for the po-
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Figure 3.3: A constant-adiabaticity shuttling pulse calculated for the linear triple dot
system, with & = 0.02. The electron is initially localized in dot 1 and then shuttled
through dots 2 and 3 by sweeping the three plunger gates. When V; =~ V; or V5 =~ V3, the
detuning between neighbouring dots is €; ; = ¢; — ¢; = 0. The right inset figures show the
pulse shapes over the full voltage range, while the main (left) panel is an enlarged view
showing the smooth nature of the pulse shape near the upper corners.

—

tential v(V (t)), and |tgm(t)) is the simulated orbital state of the shuttled electron. The
quality of a pulse of length T is defined as the final orbital state fidelity F'(7'). We note that
decoherence in the charge basis is neglected in these simulations. Figure 3.4 summarizes
the trade-off between final orbital state infidelity 1 — F/(T) and pulse duration T" as the
adiabatic parameter is varied. An explicit comparison between an adiabatic (7" = 650 ps)
and non-adiabatic (7" = 150 ps) shuttling process is shown in Figure 3.5.

Apart from &, the resonant tunnel coupling ¢. between two neighboring QDs determines
the pulse length. The slowest parts of the pulse occur at the ¢ = 0 anti-crossings where
the energy spacing between the ground and first excited orbital state is 2|t.|. In the
device geometry considered here, there are no gates to directly tune the tunnel barriers
between dots. Instead, t. is determined by the geometry of the gate electrodes and the
inter-electrode gaps, as well as the applied gate voltages. For the device geometry in
Figure 3.2, t. = 25 peV which gives sub-nanosecond shuttling pulses with orbital state
fidelities > 99%. We used a similar geometry and ¢, values in Section 2.3 with linear
pulses. The present results show a threshold time of &~ 325 ps per dot-to-dot shuttling step
for a final orbital state fidelity > 99%, a factor of 5 improvement in speed over the linear
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Figure 3.4: Relationship between the adiabatic parameter &, final orbital state infidelity
1—F(T), and pulse length T". Pulses with arbitrarily high fidelity can be found by reducing
¢ at the cost of increased pulse length.

pulses used in Section 2.3. While superior to linear pulses, constant-adiabaticity pulses
are not time optimal, and we expect that faster high-fidelity pulses could be designed by
allowing ¢ to vary and using optimal control methods.

3.3.3 Device geometry optimization

In this section, we use simulations of the constant-adiabaticity control pulses to optimize
the gate electrode design of Figure 3.2 for maximum shuttling velocity. Stretching out
the QDs in the direction of transport increases the distance travelled per shuttle, however,
this also reduces the QD orbital energy spacing and requires slower pulses to maintain
adiabaticity. To investigate this trade-off, we find shuttling pulses for double QDs with
varying plunger gate length D and gate separation GG and quantify the shuttling speed. An
effective, approximate Hamiltonian describing the orbital dynamics of the shuttled electron
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Figure 3.5: Electron shuttling simulations through a linear triple QD chain showing non-
adiabatic (left column) and adiabatic (right column) evolution. The non-adiabatic (adia-
batic) pulse was calculated using £ = 0.08 (¢ = 0.02) giving a total pulse length 7" = 150
ps (T = 650 ps). For both simulations, the electron is initialized initialized in the or-
bital ground state and simulated according to the time-dependent Shcrodinger equation
using the split-operator method with a time step At = 5 x 10716 s.
instantaneous potential landscape (solid purple), orbital ground state (dashed blue) and
simulated orbital state (solid blue) are plotted. In the non-adiabatic case, the simulated
orbital wave function deviates from the orbital ground state due to the faster pulse’s sweep
rate. Conversely, in the adiabatic case, the simulated orbital state remains in the orbital
ground state throughout the entire pulse sequence.
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is used. The Hamiltonian for the double QD is

€r, 0 tc tc
i 0 €r, + AEL tc tc
i = tc tc €ER 0 (32>
t. te 0 egr+ AFER

where d = L, R refers to the left and right dots, €4 is the ground state energy, AEj, is the
ground to first excited orbital splitting, and ¢. is the resonant tunnel coupling. Here t. is
treated as an independent parameter and not a function of the dot size; we will discuss the
dependence of t. on the dot geometry below.

The orbital spacing AE = AE;, = AFER is determined as a function of dot size D by
simulating a triple linear QD chain using a self-consistent Schrodinger-Poisson solver in
nextnano++. The three plunger gates have the same length D, a 40 nm width, and a
30 nm edge-to-edge separation. The middle plunger gate is used to define a central QD,
and the outside plunger gates are included to model the impact of the QD chain on the
central QD’s orbital spacing. For a given plunger gate length D, the middle plunger gate
voltage V' is tuned so that the integrated electron density is 1 £0.05 e in the central QD.
The outer gate voltages are offset —0.1 V with respect to V' which tunes the outer dots
to zero electron occupancy. From the resulting simulation, the energy difference between
the ground and first excited energy states give the orbital spacing AFE. Figure 3.6 shows
how the orbital spacing varies with D. The data are fit to a power-law f(D) = aD® with
a=0.58 eV-nm® and b = —1.47.

For various QD lengths D, constant-adiabaticity pulses are found with £ = 0.005 and
inserting AE(D) into the Hamiltonian above. Here, the control parameters for the pulses
are the ground state energies of each dot ¢; rather than the applied gate voltages as was
done in Section 3.3.2. In a real device, ¢; is related to the set of gate voltage 1% by a
linear transformation that can be experimentally measured [I81]. Once the pulse length
T is known for given parameters D and t., the shuttling velocity is (G + D)/T', where G
is the inter-electrode gap set to 30 nm. Figure 3.7a summarizes the relationship between
shuttling velocity and dot size D for different tunnel couplings ranging from ¢. = 10 peV to
100 peV. The shuttling speed initially increases with D, but then saturates at a maximum
value and gradually decreases thereafter. The initial positive slope is due to a greater
distance covered per shuttle step, but as D further increases, the effect of reduced orbital
energy spacing dominates, increasing the time 7T needed to maintain adiabaticity. As
expected, the shuttle velocity is a monotonically increasing function of t..

Above, we took t. as a chosen parameter, however in practice t. will be determined by
a combination of the geometrical parameters (G, D) and the applied voltages. To get a
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Figure 3.6: Orbital spacing versus plunger gate length D. The orbital spacings are
extracted using a self-consistent Schrodinger-Poisson calculation and fit to a power-law
f(D) = aD® with a = 0.58 eV-nm® and b = —1.47.

sense of the range of practical tunnel coupling values, . for a double QD was calculated
using a 3D Schrodinger-Poisson solver over a range of (G, D) values. Figure 3.7b shows
the modelled four dot geometry, where the outer gate voltages were fixed at —0.1 V with
respect to the central gates which were set to Vi = V5 = V). V,, was tuned such that a
single electron occupies the symmetric inner double QD potential. The splitting of the
lowest two eigenenergies determines t. [262]. The results are plotted in Figure 3.7c, where
t. decreases monotonically as both D and G increase, with a higher sensitivity to variation
in G. Assuming a practical fabrication limit of G = 10 nm, achievable electron velocities
in Figure 3.7a are restricted to the green shaded region. The solid green line bounding the
shaded region corresponds to G = 10 nm, whereas G > 10 nm for the rest of the shaded
region. The highest practical shuttle velocities for this device geometry, ~0.3 pm/ns, occur
for D ~ 100 nm and G =~ 10 nm. On the other hand, to reduce the number of shuttle
steps, D can be extended to ~ 300 nm at the cost of reducing the velocity by a factor
~3. These results demonstrate that a simplified gate geometry (one electrode per QD) can
be optimized for single electron shuttling, without the need for additional gates to tune
tunnel couplings, effectively reducing the required number of electrodes by two for a linear
shuttling array.

We note two assumptions used when constructing H using Equation 3.2. The first is
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Figure 3.7: Optimizing the gate electrode geometry for fast shuttling. a) Shuttling ve-
locity (G + D)/T determined by finding a constant-adiabaticity pulse of duration T for
given values of D and ¢.. The ten curves corresponds to values of . ranging from 10 to
100 peV in steps of 10 peV. The shaded (green) region corresponds to the range of (D,
t.) values achievable in the geometry of (b) with G > 10 nm. Smaller gap values are
considered impractical for realistic device fabrication. b) Top-down schematic view of the
four-electrode model used to calculate t. as a function of geometrical parameters G and D.
The two central gates form the double QD used to model shuttling, while the outer gates
are set to fixed potentials to make the double dot potential realistic. The dot length D
and inter-electrode gap G are varied uniformly for all four gates. ¢) Dependence of ¢, on
D and G resulting from a 3D Schrodinger-Poisson calculation of the four-electrode model,
with a single electron occupying the central double dot.

that the inter-dot coupling strength ¢, is assumed to be equal between all orbital pairs. In
reality, this is unlikely to be the case. Different ¢. values will certainly cause the quantitative
results in Figure 3.7 to change. We anticipate that when matrix elements of the form
(L,0| H |R, 1) (where 0 and 1 correspond to the ground and excited orbital states) increase
in magnitude, the impact the orbital states have on the shuttling process is amplified. As
such, when (L,0| H |R, 1) is increased, we expect the optimal shuttle speed to occur at
smaller D values. The second assumption in constructing H is that only a single excited
orbital is considered. It is known that in quantum dot systems, the excited orbital state is
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nearly doubly-degenerate (consider the degenerate first and second excited orbital states
of a simple 2D harmonic potential well). We expect that incorporating the second excited
orbital state should serve to reduce the overall shuttle speeds but not significantly impact
which D values give the optimal shuttle speeds. Exploring both of these assumptions of
H in greater detail would be a worthwhile endeavour.

3.4 Spin and valley effects on electron shuttling

Thus far, we have only considered the electronic orbital state dynamics in a single-valley
setting and ignored spin. For quantum information processors based on QDs in silicon,
shuttling of electron spin qubits, especially one member of an entangled pair, would be a
critically important resource [18, 1641]. To examine this possibility, an effective Hamiltonian
model that accounts for spin and valley degrees of freedom is used to study the limits of
coherent single spin transport by shuttling. We use the entanglement fidelity of a two-spin
state to gauge the fidelity of the process, however, the second spin is considered to be static
and never physically close to the shuttled spin.

3.4.1 Valley-orbit Hamiltonian

Bulk silicon has six-fold degenerate conduction band minima referred to as valleys. In a
Si/SiOy hetero-structure, strong confinement along the vertical (2) direction and strain
at the Si/SiO, interfaces raises the energy of the four in-plane valleys, leaving a 2-fold
degeneracy of the out-of-plane valley states |z) and |Z) [2]. The sharp change in potential
at the Si/SiOy interface couples |z) and |Z), lifting the degeneracy and giving two valley
eigenstates |+) = %(M + €' |2)) [230, 228]. The eigenstates |£) are separated in energy

by the valley splitting A = |Ale®®, where ¢ is the phase of the electron’s Bloch wave
function [217, 19]. Disorder at the Si/SiO, interface causes |A| and ¢ to vary randomly
between QDs [51, 79].

The valley phase difference between two neighboring QDs, d¢ = ¢ — ¢, can strongly
affect how fast the electron can be adiabatically shuttled. First consider a single electron
in a double quantum system consisting of two orbital states |L) and |R) where each state
corresponds to the electron orbital occupying the left or right QD. Both QDs have a ground
state energy €4 (with d = L, R) and are coupled with strength .. Each QD has its own
complex valley splitting Ay = |Ag4]e*?® which couples the two valley states |z) and |Z). The
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Hamiltonian of this valley-orbit subspace has the form

Hyo= Y eaka®@m+ Y (Adka @7y +hec) +tck, @ 10 (3.3)

d=L,R d=L,R

where k and 7 are two-level operators acting on the orbital and valley subspaces respec-
tively. In terms of a dummy two-level operator A, the operators appearing in Equation 3.3
are defined as A;, = %(I +0.), Ap = %(I —0,), Ay=1 A, =0,, Ay =0,, A, = 0,, and
Ay = (0, £ i0y), where o; are the Pauli matrices and [ is the identity matrix. The four
basis states are {d,v} with d = L, R (left and right orbital ground states) and v = z, 2
(valley states).

To better understand the impact of valley splitting on the system, it is useful to re-write
the Hamiltonian in the valley eigenbasis |+) = |z) & ¢4 |Z). This is done via the matrix
transformation B = ), , kq ® By where

1 1
Ba = L—z’aﬁd _e—z'asd} (3.4)
After the change of basis, the valley-orbit Hamiltonian becomes

vo=B'HyoB =Y eki@m+ > |Adka® 7!

d=L,R d=L,R
+ (teshy @ 75+ hoc) + (te—k_ @7, + h.c) (3.5)

where 7] are two-level Pauli operators acting on this new valley eigenbasis. The basis states
are defined by {d,v'} with d = L, R and v/ = —,+ (valley eigenstates). Setting ¢, = 0
and ¢p = 0¢ gives t.y = &(14 e %) and ¢, = %(1 — e ?). In this representation,
the tunnel coupling ¢, term has transformed into two distinct forms: ¢, and ¢._. The
intra-valley tunnel coupling ¢, ; allows tunneling events between QD orbitals with the same
valley eigenstate (|L, £) and |R, %)), whereas the inter-valley tunnel coupling t. ) couples
opposite valley eigenstates (|L,+) and |R,F)) [291]. Most importantly, their respective
coupling strengths depend on the magnitude of the valley phase difference d¢. From the
expression for ¢, 4 (. ), the coupling between orbital states from the same (different) valley

eigenstate varies from being strongest (0) when d¢ = 0 to 0 (strongest) when d¢ = 7.

Figure 3.8 shows a valley-orbit energy diagram for a silicon double QD with the four
anti-crossings formed by ¢._ and t.; labelled. The two t.; and two t._ anti-crossings
occur at energies € = £(|AL| — |Ag|) and € = =(|AL| + |Agl), respectively. Sweeping the
inter-dot detuning € = eg — €, adiabatically through any of these four anti-crossings moves
an electron from one QD to the other.
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Figure 3.8: Valley-orbit energy spectrum for a double quantum dot with single electron
occupation. The Hamiltonian parameters are |An| = 200 peV, |Ag| = 150 peV, and
0¢ = w/3. The four eigenstates when e < 0 are labelled on the left side. The intra-valley
and inter-valley tunnel couplings are labelled ¢, and t._, respectively.

As discussed in Section 3.3.2, for an electron in the ground state, the tunnel coupling
t. limits the adiabatic shuttling speed. In the valley-orbit Hamiltonian, ¢.; will limit the
shuttling speed instead. Because the couplings t., and t._ are dependent on d¢, the
highest shuttling speed is obtained when d¢ = 0 and |t. | = t.. With increasing d¢, |t. |
decreases, requiring longer constant-adiabaticity pulses. For d¢ = 7, |t.+| = 0 and intra-
valley tunneling is completely suppressed. At the t._ anti-crossing, the opposite occurs;
inter-valley tunneling cannot occur for d¢ = 0, whereas for 0 < d¢ < m, |t. _| is finite and
yields an anti-crossing that mixes the |L,+) and |R, F) valley-orbit states. When d¢ = T,
|te—| = t. and the inter-valley gap is completely opened.

3.4.2 Validity of the single valley approximation in charge shut-
tling
Here we justify the the single-valley approximation used in the charge shuttling simulations

in Section 3.3. First, consider the single-valley effective Hamiltonian used in Equation 3.2
which includes both the ground and first excited state orbital degrees of freedom for a
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double quantum dot system.

€r, 0 tc tc
o 0 €r, + AEL tc tc
Horb — tc tc €R 0 (36)
tc tc 0 €R + AER

AFE,; with d = L, R is the orbital spacing in the left and right dots, and . is the inter-dot
tunnel coupling. The basis states of Hy,, are {d,n} where n = 0,1 (ground and first excited
state). This effective Hamiltonian can be generalized to include valley states as

HVO = Horb®7_0+ Z (Adk:d®12®7++h.c.) (37)
d=L,R

where the k operator acts on the left and right QD state subspace and 7 acts on the valley
subspace as described in Equation 3.3 of the main text. The 2 x 2 identity operator denoted
I acts on the ground and first excited state subspace. The basis states of this Hamiltonian
are {d,n,v} where v = z, Z (valley states).

Constant-adiabaticity single electron shuttling simulations are performed using both
H, and Hy o in order to compare dynamics resulting from the single-valley and the valley-
orbit effective Hamiltonians. To begin, a constant-adiabatic pulse with & = 0.005 in which
the detuning € = ¢, — €g from —1.5 meV to +1.5 meV is calculated using H,,,. For both
H,., and Hy o, the state is initialized in the ground state of the respective Hamiltonian and
subsequently evolved according to the pulse shape. The infidelity of the shuttling process
is calculated as 1 — |Tr[pom (T)|R, 0)(R,0[]|> where pom,(T') is the orbital density matrix
after shuttling. For simulations of Hy o, porn(T) is found by tracing out the valley degree
of freedom of the final density matrix.

The fixed Hamiltonian parameters used are t. = 50 ueV and |Ag| = 150 peV. The dots
are assumed to be of equal size AE;, = AFEg. Dot size is mapped to an orbital energy
spacing AFE using the fit parameters from Section 3.3.3. Figure 3.9 shows the infidelity of
the shuttling simulations as a function of dot size for different combinations of d¢ and |Ap|.
The infidelity increases with dot size for all simulations; this is due to increased overlap
of the final state with excited orbital states |L,1) and |R,1) with increasing dot size.
We see that the single-valley Hamiltonian H,y, (dashed black) and the valley Hamiltonian
produce the same shuttling dynamics when A, = Ag = 150 peV and d¢ = 0 (solid yellow).
When Aj # Ag (solid purple) or d¢ # 0 (solid blue-green), the two Hamiltonians produce
different dynamics, but with infidelities still of similar order. This shows that the charge
shuttling simulations presented in Section 3.3, which only took into account the single-
valley orbital states, should give a reasonable approximation to the physically relevant
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Figure 3.9: Fidelity of shuttling a charge with and without valley physics. The fixed
Hamiltonian parameters are t. = 50 peV and |Ag| = 150 peV. The orbital infidelity is
plotted on the vertical axis, defined as 1 — |Tr[po,(T)|R,0)(R, 0]|?, where pom,(T) is the
orbital density matrix after shuttling. The dashed black line corresponds to simulations of
H,1, where no valley physics is considered. Simulations of Hy o that include valley physics
are shown for three different cases: equal valley splitting and no valley phase difference
(yellow), non-equal valley splitting and no valley phase difference (purple), and equal valley
splitting and non-zero valley phase difference (blue-green).

case of charge shuttling in the presence of valley states. However this is only strictly true
if the inter-dot valley splittings are equal and there is no valley phase difference.

3.4.3 The effective spin-orbit Hamiltonian

The small but non-zero spin-orbit coupling in silicon’s conduction band mixes spin and
valley eigenstates and is a source of spin decoherence for shuttled electrons [282, 606].
Here we show how to construct an effective Hamiltonian representation of the spin-orbit
Hamiltonian Hgo including Rashba and Dresselhaus terms [26, 59] which will be used to
build a full spin-valley-orbit Hamiltonian next in Section 3.4.4. In real space, the spin-orbit
Hamiltonian takes the standard form

Hso = akySy — KySz) + B(KzSy — KySy) (3.8)
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where a and 3 are the Rashba and Dresselhaus interaction coefficients, x, and &, are the
electron wave operators along the [100] and [010] crystal lattice directions respectively. s is
a two-level operator acting on the spin subspace (defined similarly as the operators k and
7 from Equation 3.3). We also assume there is a static magnetic along the +2Z direction
with strength B, giving |1) as the ground eigenstate of s,. The generalized electron wave
operators take the form 7@ = —iV + %ff (with electron momentum p’'= /ik) with the gauge

chosen such that the magnetic vector potential is A= %(—y, x,0).

We consider a double quantum dot system composed of two harmonic potential wells
giving the orbital Hamiltonian

2

h2 =2 *
F % min[(z + a)? + y?] (3.9)

H, =
0 2m*

where m* is the material effective mass, wy is the harmonic frequency, and 2a is the dot
separation. We take the localized electron orbital states in each quantum dot to be the
Fock-Darwin states. Considering only the ground s-orbital state, the localized electron
orbitals in the left (L) and right (R) dots are

1 b E b r(p4a)2442
ILJR) = = 2e 2% ¢ 2 F Y] (3.10)

lo ™

where [y = \/h/muwy is the effective Bohr radius, lp = \/h/eB, is the effective magnetic
length, b = w/wy = /1 + w? /w? is the magnetic compression factor, and w;, = eB,/2m*
is the Larmor frequency. The phase factor containing (g arises due to the gauge freedom
when choosing A.

In order to convert Hgp to an effective Hamiltonian representation, we first need to
evaluate a number of matrix elements for the shifted Fock-Darwin states and the spin
states. The orbital overlap matrix element is

(LIR) = S = exp {—‘;—g (Qb - %)}

which we have denoted as S. The position operator matrix elements are

ial?
(L|z|L) = —(R|z|R) = —a, (L|y|R) =25
2012,

(Llz|R) = (Lly|L) = (R|y[R) = 0
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Next, the derivative operator matrix elements are

(LI G0 = (Rl 1R =0, (L5 |R) = =(RI 5 1E) = S
—ia 0
(L1510 == (Bl |) = g (|3 1) =0

Finally, we list a few tr1v1a1 spin matrix elements
(Hsa 1) =(Msa ) =1, {lsy|t) == (Msy[{) =~

Now the effective Hamiltonian can be assembled in the basis of spin-orbital states
{IL,}), |L, 1), |R, 1), |R,T)}. Because Hgp contains only s, and s, spin operators, any
matrix elements without a spin flip (i.e. (L,T| Hso|L,T) or (L,|| Hso|R,{)) will be 0.
The first non-zero matrix element considered is (L, || Hso |L, 1) which yields

<L7\J/| HSO |L7T> = <L7\H kxsy |L7T> -« <L7\l/| kysx ’L7T>
BAL, H kasa | L, 1) — B (L, L kysy [L, 1)

—a(0)—a [—i (;TZZ) + %(—a)} (1)

+60) = 5| -i (52 ) + g (-0)] (-0
(LAl Hso L 1) = (0 = i) = m (3.10)

The next non-zero term we consider is a cross-orbital term (R, || Hso |L,T) which gives

<L7$| HSO |R> T> = <L>¢| kxsy |Ra T> -« <La\l/| kysw |R7 T>
6 <L7¢| kmsx |R7 T> - 6 <L7¢| kysy |R7 T>

b 1 al?
(8 (5o
b 4
- —Clb—g {1 + 4b20l4J S(a+ip)

a

(LAl Hso |.1) = —5 {Qb - %] S(a +iB) = s (3.12)
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Evaluating all of the remaining non-zero matrix elements gives the full effective spin-orbit

Hamiltonian ; ,

0 m 0 Tl2

T 0 T2 0 (
3.13)

0 —n 0 -7

e 0 —m 0

An equivalent form written in terms of the two-level operators for the orbital and spin
degrees of freedom is

Hgo e =

Hsoef = (Mmk, ® s_ + h.c) + (n2 ik, ® s_ + h.c.) (3.14)

where k is the two-level operator acting on the L, R orbital subspace as defined in Equa-
tion 3.3. Silicon lacks any bulk inversion asymmetry meaning that the Dresselhaus coeffi-
cient = 0. This condenses the effective Hamiltonian to

Hso et = mk: ® sp + 1m2ky @ 8, (3.15)

This form of Hgo o is the same form used in Zhao et al. [291] and is what we use for later
spin shuttling simulations.

At the Si/SiO, interface, interface inversion asymmetry induces a Dresselhaus-like spin-
orbit Hamiltonian term. The strength of this Dresselhaus-like is usually larger than the
Rashab spin-orbit strength [226, 65, 60, |. Setting 8 = 0 is physically akin to saying
the electron wavefunction has little overlap with the interface and spends more time in
the ‘bulk’” material. Properly accounting for the this effect would be an important gen-
eralization of the following spin shuttling simulations. Additionally, when Hgo o is used
later on, it is assumed that |L) and |R) are orthogonal (S = 0). While this is a good
approximation for combinations of smaller wy and larger a parameters, if wy is large and a
is small, then S # 0. In that case, |L) and |R) can be orthogonalized as |L/R) = (|L/R) —
g|IR/L))/\/1—2Sg+ g where g*> = (1 — /1 — 52)/S. The spin-orbit matrix elements 7,

and 7, should be reevaluated in this new basis.

3.4.4 Spin-valley-orbit Hamiltonian

Here the Hamiltonian given in Equation 3.3 is extended to include the electron’s spin
degree of freedom. The spin-valley-orbit effective Hamiltonian for a double quantum dot
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system is [291]

Hgsvo = Z (€akq @ To @ So) + teky @ To @ So + Z (Agkqg @ 74 ® 8o + h.c.)
d=L,R d=L,R

+ E.ko @ 1o ® 5, + Mk, ® 79 ® 5, + 12k, ®T9® 5, (3.16)

where k, 7, €, t., and A are all defined the same as in Equation 3.3. The 8 basis states
are defined by {d,v, s}, where d = L, R (left and right orbital ground states), v = z, 2
(valley states), s* =1, | (spin eigenstates). E. = $gupB is the Zeeman splitting caused by
a static magnetic field of strength B. 7; and ny describe the spin-orbit interaction with
m = (L,v,}| Hso |L,v,T) and 1y, = (L,v, || Hso |R, v, 1) as derived in Section 3.4.3.

In order to understand the interplay between the spin-orbit interaction and valley split-
ting, we will rewrite Hgy o in the valley eigenbasis. Applying the transformation B from
Equation 3.4 onto Hgyo results in

Hiyo = (B ® s0)Hsyo(B ® sp)

= Z €aka @ T ® so + Z |Adlka @ T, @ S0+ E ko @ T) @ 8,
d=L,R d=L,R
+ (teqhr @ 76 ® So + h.c) + (te—k- @7, @ 8o + h.c)
+ ik, @ 70 ® S5 + (Mo 1ky @ T) @ isy + h.c) + (o_ky @ T, Qis, + h.c) (3.17)

where 1,y = Z(1 + ¢ ) and no_ = 2(1 — e ?). The basis states are now {d,v/, s}
with d = L, R, v/ = —, 4 (valley eigenstates) and s =7, |.

In the valley eigenbasis, it is easier to see how the strength of the spin-orbit coupling
terms 7, and 7, depend on the magnitude of the valley phase difference d¢. The 7y spin-
orbit coupling term takes on two different forms 7,  and 7, _, similarly to how the tunnel
coupling ¢, transforms in this valley eigenbasis as well. These two terms 7o+ and 7, _
couple spin-orbit states from either the same or different valley eigenstate respectively.
The coupling strengths of 7, + and 7, _ are directly controlled by the magnitude of d¢.
When 0¢ = 0, 12+ (which couples spin-orbital states from the same valley eigenstate)
is maximal in strength. However as d¢ — m, 724 is suppressed and fully turned off at
0¢ = 0. The converse is true for 7o _ which couples spin-orbital states from different valley
eigenstates. When d¢ — 0, 1, becomes suppressed, and 7, _ is maximal when d¢ = 7.

For the 7, term, when the detuning is large |¢| > 0, the orbital eigenstates are |L) and
|R). The n; term then acts as a single-spin X rotation operator with no dependence on
0¢. As the detuning is swept near the ¢, and t._ anti-crossings, the orbital eigenstates
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become a super-position of |L) and |R), and the 7; term couples both the orbital and
spin states. The strength of the spin-orbit coupling near these anti-crossing is tied to
the strength of ¢, and ¢._. As t., increases (decreases), spin-orbital coupling between
spin-orbital states from the same valley eigenstate is stronger (suppressed). Similarly as
t.— increases (decreases), spin-orbital coupling between spin-orbital state from different
valley eigenstates is stronger (suppressed). Because both .. and ¢._ depend on d¢, the
spin-orbit coupling from 7; near these anti-crossing depends on d¢ as well.

3.5

Figure 3.10: Relationship between the ratio t./E, and the threshold value of valley phase
difference, d¢yy,, where strong SVO mixing occurs.

When t. < E., the ground orbital, excited spin state overlaps with the excited orbital,
ground spin state, and the spin-orbit terms 7, o cause SVO mixing. When ¢, > £, these
states do not overlap until d¢ reaches a threshold value d¢,. For d¢ < doyn, the SVO
mixing from 7, 5 is heavily suppressed. The threshold value d¢y, occurs at E, = [t. | =
14 ei5¢°h|. The relationship between t¢./E, and d¢yy, is plotted in Figure 3.10. A larger
t./E, ratio provides greater tolerance for variations in d¢ during shuttling to suppress
decoherence caused by SVO mixing. For t. > FE,, d¢y, approaches .

te
2

3.4.5 Spin transport simulations: ¢. > F.

For electron shuttling to be useful in a spin-based quantum information processing device,
it must retain the coherence of the spin state. The silicon material system is promising in
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this respect, since the conduction band spin-orbit coupling is weak compared to that in
ITI-V materials, and nuclear magnetism can be greatly suppressed by isotopic purification.
We now incorporate spin along with orbital and valley degrees of freedom using the double
QD effective Hamiltonian model Hgyo. Only the two lowest valleys are considered, and
orbital excited states are neglected, since they are high in energy compared to typical valley
splittings. Consider the preparation of a two-electron spin singlet state |S) = \%( IT)) —
[41)), with one spin stationary outside of the double dot (e.g. in a third adjacent dot),
and the other electron shuttled from left to right within the double dot system. The
spin transport fidelity is quantified by the overlap of the post-shuttle spin state with the
singlet. It is important to note that satisfying the adiabatic condition Equation 3.1 is not
alone sufficient for maintaining spin coherence during electron shuttling, since for example,
Hgy o is only real if the valley phase difference between adjacent QDs is zero, and adiabatic
evolution is not guaranteed if the Hamiltonian is not real [12].

The effective double QD Hamiltonian is

H=1|> (caha®T0®55) + Lk ®T0 @55+ > (Adka @ 74 @ 55 + hoc.)
d=L,R d=L,R

+ Bk @ 7o ® st +mk. @ 10 ®@ s, + aky @ T ® s, | @ 5§+ Bk @ 10 ® 55 @52 (3.18)

where the bracketed terms are just Hgyo from the previous section acting on the shuttled
electron, and the term outside the bracket acts on the static electron. Two-level operators
that act on the orbital, valley and spin subspaces are denoted by k, 7 and s* respectively.
The 16 basis states are defined by the binary values of the variables {d, v, s', s*}, where
d = L, R (left and right orbital ground states), v = z,Z (valley states), s = 1,/ (spin
eigenstates of the shuttled [i = 1] and stationary [i = 2] electrons).

An electron shuttling from L to R is simulated using the parameters {er, eg} to define
an adiabatic pulse with & = 0.005. The detuning € = €, — € is swept from —600 peV
to +600 peV. The initial state is [¢(0)) = % [y0(0)) @ (|14) — [41)) where |1 9(0)) is
the ground state of the initial valley-orbit Hamiltonian. The state evolution is calculated
by a discretized time-dependent Schrodinger equation. For each simulation, we calculate
both the shuttle speed and the fidelity of the final spin state with respect to the singlet.
An effective speed is based on the electron travel of 60 nm per shuttle, and correspond-
ing duration of the adiabatic pulse T. The fidelity of maintaining the singlet state is
| Tr[p(T) (I, ®|S) (S|)]|?, where p(T) is the density matrix describing the post-shuttle state
and I, is the 4 x 4 identity matrix.
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Figure 3.11: Shuttling one member of a singlet pair, for ¢, > E,. For all panels, the fixed
parameters are: £ = 0.005, t. = 75 peV, E, = 40 peV, |Ag| = 150 peV, n =1y = 2 ueV. a)
Variation of shuttle speed (colour scale) with the left QD valley splitting |A | and the inter-
dot valley phase difference d¢. These speeds are based on finding constant adiabaticity
pulses with £ = 0.005. b) The fidelity of maintaining the spin singlet state versus |Ay| and
d¢. Infidelity is plotted in colour scale, defined as 1 — |Tr[p(T) (I, ® |S) (S])]|?, where p(T)
is the density matrix of the post-shuttle state. High (low) fidelity is indicated by dark blue
(yellow). c¢), d) Energy spectra of the Hgyo in Equation 3.16 versus detuning €, — €g.
|AL] = 200 peV in both panels, d¢ = 1 rad and d¢ = 2 rad for c¢) and d), respectively.
Colour indicates the spin state, with red (blue) corresponding to spin down (up). Energy
levels are labelled by the corresponding eigenstates on the left when the detuning < 0 and
on the right when the detuning > 0. Enlarged views near the ¢, (dashed square) and
t.— (dotted square) anti-crossings illustrate how SVO mixing varies with d¢.
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Figure 3.11 shows the dependence of shuttle speed and spin fidelity on varying the valley
splitting in the left dot, |[Ay|, and the valley phase difference, d¢. The fixed Hamiltonian
parameters are t. = 75 peV > E, = 40 peV, |Ag| = 150 peV, and 7, = 1y = 2 peV. The
chosen spin-orbit strength 7, 5 is about an order of magnitude larger than an experimentally
reported value [100]. |Alp is varied from from 0.1 —250 eV, and §¢ from [0, 7) rad (0 = 7
is excluded because the ground state is degenerate at that point). The range d¢ = (r, 27]
would produce a mirror image.

Since t. > E,, the lowest energy states |L,—,1) and |L,—,]) form a ground state
manifold. The energy gap with respect to this manifold, set by |A.| and ., determines
the speed of the constant-adiabaticity pulse. This is evident in Figure 3.11a, where the
shuttle speed decreases as d¢ increases, due to the closing of the |t. | gap. The gap closing
can be seen in Figures 3.11c-d, which show the energy spectra at Ay = 200 ueV for ¢ = 1
rad and d¢ = 2 rad, respectively. Spin-valley-orbit (SVO) mixing is evident in the dashed
box of Figure 3.11d when d¢ = 2 rad.

The valley splitting in the left dot, |A.|, has no significant impact on the shuttle speed
as long as |Ar| > |t.+| (JAg| is fixed at 150 peV in these simulations). However, when
ALl < |te+|, |AL| represents the lowest excitation energy and therefore determines the
shuttle speed. The crossover point, where |Ap| = |t. |, moves to smaller |Ay| values as
0¢ increases. This is the reason why in Figure 3.11a, for a fixed d¢ value such as 1 rad,
the shuttle speed increases with |Ay|.

Figure 3.11b plots the infidelity (with respect to the singlet) of the post-shuttle spin
state versus d¢ and |Ap|. Fidelities >95% are obtained when |A.| > E, and d¢ is below
about 2 rad. This corresponds to energy spectra qualitatively similar to Figure 3.11c,
where the ground state manifold does not overlap with the lowest excited state. During
the adiabatic pulse, the spin-entangled electron occupies only the ground state spin doublet
and maintains coherence. When d¢ ~ 2 rad, the ¢, gap begins to close and SVO mixing
occurs, rapidly degrading the state fidelity. The threshold value of d¢ for this crossover is
given approximately by E, ~ |t. 4| = &[1 + ¢“%| when |A,| > E,. For the parameters
te =75 peV and E, = 40 peV used here, d¢y, =~ 2 rad. For valley phase differences well
above this threshold, the state fidelity improves modestly; this is due to a suppression of
SVO mixing near the ¢, anti-crossing as d¢ — m. The coupling of spin-orbit eigenstates
through the 7; term is governed by t. and ¢._ (see Section 3.4.1). If either ¢, or ¢,_
equals 0, 7; does not cause SVO mixing near the corresponding anti-crossing. In the valley
eigenbasis, there are two distinct 7, couplings: 74+ = Z(1 £ e ) (see Section 3.4.4).
As with t. 4, na+ (12,—) couple intra-valley (inter-valley) spin-orbit states. The 1, term
mixes states at the ¢.; anti-crossing, but approaches zero as d¢ — .

79



In the high fidelity shuttling regime, where |Ay| > E, and d¢ < d¢yy, the infidelity is
primarily caused by a precession of the shuttled electron’s spin state about an effective axis
due to the presence of the spin-orbit n; and 7, terms in addition to the Zeeman term. In
other words, the singlet state is not an eigenstate of the spin Hamiltonian when the spin-
orbit coupling terms are non-zero. The dominant error is a phase rotation of the singlet
into the |Tp) = \%(\T@ + [41)) triplet state. Figure 3.12a plots the phase rotation angle
with [Ar| = 200 peV and d¢ € [0,1.7] rad. The normalized shuttling time ¢/7" is given on
the g-axis, where T is the total pulse length for the constant adiabaticity shuttling pulses
(£ = 0.005). T increases with d¢, causing the spin to accumulate a larger phase error at
larger d¢ values.
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Figure 3.12: Error due single-spin rotation during shuttling. For both panels, £ = 0.005,
te = 75 peV > E, = 40 peV, |Ar| = 200 peV, |Agr| = 150 peV, and g = np = 2 peV.
a) Phase (o) rotation of the shuttled spin in the regime d¢ € [0,1.67] rad. b) Effect of
corrective rotations on the infidelity of the post-shuttle state with respect to the singlet,
as a function of d¢. (Purple) no corrective rotations are applied; (blue) R,(#) correction
applied; (yellow) R.(f) and R, (¢') corrections applied; (green) R,(6), R,(¢'), and R,(0")
corrections applied.

Figure 3.12b shows that in addition to phase rotation, the finite spin-orbit terms lead
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to small rotations about o, and o, as well. Fidelity with the singlet state significantly
improves as corrective rotations R, (6) = exp(—ifo,/2), where n = {x,y, z}, are applied
to the shuttled electron spin. The correction angles required for the R.(#), R,(¢') and
R.(0") rotations are found by calculating the overlap between the final state and the |Tp),
\%(Hﬁ + |4)), and \%(HT) — [41)) states, respectively. The trace in Figure 3.12b with
no corrective rotations (purple) is a line cut along d¢ from Figure 3.11b, with |A.| = 200
peV. When d¢ < d¢y,, corrective rotations significantly improve the singlet fidelity. Above
¢, the SVO mixing during shuttling produces a spin state with purity < 1 upon tracing
out the orbital and valley degrees of freedom. As d¢ approaches m, however, it can be seen
that the corrective rotations again improve fidelity due to suppression of SVO mixing near
the ¢, anti-crossing.

The R,(0) corrections remove the dominant spin rotation error, resulting in ~ 99.5%
singlet fidelity below d¢y,. Additional R, (6") and R, (0") corrections further improve fidelity
by nearly three orders of magnitude, giving a singlet infidelity ~ 107°. The remaining
error after applying all three corrective rotations is due to weak SVO mixing from the n; »
Hamiltonian terms. When all three corrective pulses are applied, small variation of the
adiabatic parameter £ does not affect the singlet fidelity, indicating that the state evolution
in these simulations is well inside the adiabatic regime. If any of the single spin corrections
are not applied, however, slower pulses (smaller £) will make the fidelity worse, as more
single-spin rotation error accumulates. With all corrections applied, pulses with smaller
¢ (more adiabatic) slightly enlarge the high-fidelity region of d¢ by reducing SVO mixing
near the gap-closing threshold d¢yy,.

In the regime |A7| < E, in Figure 3.11b, the corresponding energy spectra are more
complex. The states labeled (at large negative detuning) |L,— |) and |L,+,1) overlap
near zero detuning, irrespective of d¢. This explains the funnel-shaped, low-fidelity feature
at low |Ar| and d¢ values.

3.4.6 Spin transport simulations: t. < F,

Here we extend the results from Section 3.4.5 and present electron singlet shuttling simu-
lations using an effective Hamiltonian where t. < F.. The fixed Hamiltonian parameters
are t. = 40 peV, E, = 75 peV, |Ag| = 150 peV, and n; = 1y = 2 peV. The electron
pair is initialized into the state [(0)) = \% 1wy C(0)) @ (I1L) — [41)) where |1 9(0)) is
the ground state of the initial valley-orbit Hamiltonian, and simulation is via the time
time-dependent Schrodinger equation. Figure 3.13 shows how the shuttle speed and final
singlet state fidelity vary with d¢ and |AL|. Both the electron velocity and final singlet
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state infidelity are calculated the same as in Section 3.4.5.

Figure 3.13a shows how shuttle speed varies with |Az| and d¢. |Ap| is varied from
0.1 — 250 peV and d¢ is varied from [0,7). Here the shuttle speed decreases and ¢
increases similarly to the case when t. > E, which is discussed in Section 3.4.5 and is
caused by the closing ¢, anti-crossing. Figures 3.13c-e show the shuttled electron energy
spectra versus detuning at |Az| = 200 peV and ¢ = 0, 7, and 7 respectively. The initially
|L,— 1) and |R, —, 1) energy levels form the ¢, anti-crossing near zero detuning which
closes as d¢ increases. When |Ar| > |t. |, the valley splitting |A .| has little impact on the
shuttle speed. This is because the duration of the constant-adiabaticity pulse is determined
by the smallest energy scale with respect to the ground state which in this regime is the
te+ anti-crossing. However, when |Ap| < |t.4|, the valley splitting becomes the smallest
energy scale with respect to the ground state and controls the shuttle speed. The overall
shuttle speed is lower here for t. < E. compared to the t. > E, simulations in Section 3.4.5
because t. is smaller (40 peV compared to 75 pueV).

Figure 3.13b shows the final singlet state fidelity dependence on |A | and d¢. The colour
scale corresponds to the final singlet state infidelity. Unlike when ¢, > E, in Section 3.3.2,
there is no clear region of good fidelity singlet shuttling. Here where t. < F,, the first and
second excited energy levels cross as the detuning is swept for all values of d¢ as seen in
Figures 3.13c-e. These crossing cause SVO mixing from the 7, and 7y Hamiltonian terms
occurs which reduces the singlet fidelity. In the region where |Ay| > F., the singlet fidelity
does improve modestly with d¢. This is caused by a reduction of the SVO mixing strength
between the same valley eigenstates as d¢ increases (refer to Section 3.4.4 for details).
While the singlet fidelity does improve at higher d¢, it is an undesirable region for electron
shuttling as both the shuttle speed is reduced and there is non-zero spin-orbit mixing until

0p =m.

When |Ap| < E,, the final singlet state fidelity is low for all d¢. In this regime,
the shuttled electron’s energy spectra becomes more complicated compared to the spectra
shown in Figure 3.13c-e. Here, the initially |L, —, ]) energy level always crosses with spin-
orbit energy levels from both the same valley eigenstate and different valley eigenstates.
Because the electron travels along the |L, —, ]) energy level during shuttling, it experiences
both types of SVO mixing (between the same and different valley eigenstates). As ¢
increases, the SVO mixing occurring between the same valley eigenstate decreases and is
strongest when d¢p = 0. Conversely, as d¢ decreases, the SVO mixing between different
valley eigenstates increases and is strongest when d¢ = m. Because the electron sees both
types of SVO mixing during shuttling, there is never a value of d¢p where the SVO mixing
is suppressed to give good singlet shuttling fidelity.
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Figure 3.13: Shuttling one member of a singlet pair, for ¢, < E,. For all panels, the fixed
Hamiltonian parameters are: t, = 40 peV, E, = 75 peV, |Ag| = 150 peV, S; = Sy = 2
peV. a) Variation of shuttle speed with the left QD valley splitting |A| and the inter-dot
valley phase difference d¢. b) Final singlet state fidelity’s dependence on |Ap| and §¢. The
infidelity is plotted in colour scale, defined as 1 — |Tr[p(T)(I; ® |S) (S])]|?, where p(T) is
the density matrix of the post-shuttle state. Dark blue indicates high fidelity shuttling,
yellow indicates low fidelity. ¢), d) and e) show the shuttled electron energy spectrum
versus detuning. |Ar| = 200 peV in all panels, and d¢ = 0, 7, and 7 for c¢), d), and e)
respectively. Energy levels are labelled according to their initial energy eigenstate when
the detuning < 0. Enlarged views near the t. (dashed square) and t._ (dotted square)

anti-crossings demonstrate how the SVO mixing varies with d¢.
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3.5 Discussion

The key results of this chapter can be summarized as follows. In Section 3.3.3, it was shown
that single electron shuttling is possible using a simplified device geometry in which there is
a single gate electrode per dot. Such a geometry would be highly economical for large-scale
devices, reducing the required number of electrodes by two, and simplifying the applied
voltage sequences. In the single-valley case, adiabatic transport is achieved at speeds up
to 0.3 pm/ns. Transport speed is mainly determined by the resonant tunneling energy
t., which can reach the 100 peV scale in our simplified device geometry, even considering
practical fabrication constraints. In Section 3.4, we studied the entanglement fidelity of a
shuttled electron spin in the presence of valley states |z) and |Z) and a small, but finite,
spin-orbit coupling. It was found that the t. > E, regime is favourable for high spin
fidelity, but only for inter-dot valley phase differences d¢ below a threshold value (= 2 rad
for the parameters used in our simulation). Below this threshold, SVO mixing is weak, and
the primary effect of the spin-orbit coupling is to generate systematic single-spin rotations
that can, in principle, be corrected. With such corrections applied, very high fidelities
~0.9999 are recovered, compared to 0.995 with phase correction only, and > 0.95 with no
corrections. For d¢ < d¢y, and |A| > E,, average speed and fidelity (without single-qubit
corrections) are estimated as 80 nm/ns and 0.99, respectively. We did not optimize the dot
geometry for maximum speed in the spin/valley case, but one might expect that the dot
length could be extended until the orbital energy scale is comparable to the intra-valley
tunnelling gap, which could significantly increase velocity. However, spin-orbit effects will
also increase with dot elongation, and this trade-off could be explored in future work using
the expressions for 7; and 7, derived in Equations 3.11 and 3.12. Note that for spin-
orbit couplings set to zero, there is no SVO mixing in any of the parameter space, which
results in near-perfect spin fidelities. For d¢ values at or above the threshold, strong SVO
mixing significantly reduces the spin fidelity. The regime of high Zeeman field, t. < E.,
has strong SVO mixing at nearly all values of d¢, and is therefore unfavourable for spin
shuttling. Thus, variability of the valley phase and remaining in the ¢t. > E, regime are
two key experimental concerns. It should be noted that our simulations only pertain to
the case of well-separated electrons, and do not apply to the initial steps of separating
a singlet originating in a single dot. In that regime, a two-electron simulation including
electron-electron interactions is necessary, and is left for future work.

What are the implications of these results for coherent spin transport, a key resource
for large-scale quantum computer architectures in silicon? For entanglement distribution
in a network architecture, Nickerson et al. showed that a raw fidelity ~0.9 is sufficient,
since even one round of entanglement distillation can increase the fidelity to fault tolerant
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levels [193]. Consider a chain of 16 dots, with 15 shuttle events to transport an electron
from dot 1 to dot 16. Each dot-to-dot shuttle requires a fidelity of ~0.993 for the whole
process to be above the 0.9 threshold. In the regime of d¢ < 1.5 rad and |A| > 50 peV of
Figure 3.11, the singlet fidelity is > 0.99 on average. Applying corrective phase rotations
R.(0) increases the fidelity to ~0.995, which is sufficient for a 16-dot process with fidelity
> (.9. These values correspond to a spin-orbit coupling strength 7, 2 = 2 peV, an order of
magnitude larger than what has been reported in silicon [100].

te =75 ueV, E, =40 peV, |Ag| =150 peV, n1 = ny = 0.4 ueV
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Figure 3.14: Shuttling one member of a singlet pair, for t. < F,. For all panels, the fixed
Hamiltonian parameters are: t, = 40 peV, E, = 75 peV, |Ag| = 150 peV, gy = ny = 0.4
peV. a) Variation of shuttle speed with the left QD valley splitting |A| and the inter-dot
valley phase difference d¢. b) Final singlet state fidelity’s dependence on |Ap| and §¢. The
infidelity is plotted in colour scale, defined as 1 — |Tr[p(T)(Is ® |S) (S])]|*2, where p(T') is
the density matrix after shuttling and I, is the 4 x 4 identity matrix. Dark blue indicates
high fidelity shuttling, yellow indicates low fidelity.

Simulations with a weaker spin-orbit coupling 7, = 7, = 0.4 peV are shown in Fig-
ure 3.14. All other fixed Hamiltonian parameters are the same as the simulations in
Section 3.4.5 (t. > E.). The initial electron pair state, shuttle speed, and singlet infidelity
are calculated the same way as in Section 3.4.5. Figure 3.15 directly compares the singlet
fidelity for the larger (purple, n2 = 2 peV) and smaller (blue, 7;2 = 0.4 peV) spin-orbit
coupling simulations. The traces are taken from Figures 3.11b (larger spin-orbit) and
3.15 (smaller spin-orbit) along d¢ at |Ap| = 200 peV. The smaller spin orbit simulation
shows ~1.5 orders of magnitude improvement in singlet fidelity for a factor of 5 reduction
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in spin-orbit strength. Therefore for a smaller spin-orbit coupling strength in the same
regime 0¢ < 1.5 rad and |A| > 50 peV, the singlet fidelity is > 0.999 without any cor-
rective rotations, which is sufficient for the 16-dot process. The timescale of this 16-dot
shuttle, ~12 ns, is shorter than the fastest single-qubit gates that have been implemented
for silicon spin qubits [286]. Intermediate scale shuttling, therefore, is not necessarily a
speed bottleneck for a processor. Indeed, a 9-dot charge shuttle in 50 ns has already been
demonstrated experimentally [181]. Moreover, the same experiment showed it is possible
to shuttle multiple electrons in parallel (separated by a few dots), so that entanglement
distillation would not require a doubling of shuttling times, but would require additional
ancilla dots and measurements. On the other hand, the scenarios discussed above assume
all dots lie within the parameter space for high fidelity shuttling; a single outlier with
sufficiently large valley phase difference or small valley splitting would spoil the scheme.
It remains to be seen experimentally whether material quality and device processing can
yield sufficient control over these parameters.
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Figure 3.15: Comparison of shuttling singlet infidelity for two different spin-orbit coupling
strengths: 712 = 2 peV (purple) and 712 = 0.4 peV (blue). Traces are taken directly
from Figures 3.11b and 3.14b. These are the raw infidelities, with no single-spin correction
rotations applied.

Before concluding this chapter, we will summarize here the several decoherence mech-
anisms relevant to electron shuttling that have been discussed in Chapters 2 and 3. The
first mechanism is variation of the electron g-factor during shuttling. This variation arises
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due to the changing electric field that is induced by the shuttling voltage control pulse or
by local disorder that naturally shifts the g-factor from dot to dot. If the control pulse is
noise-free and remains the same between shuttling events, then the control pulse should, in
principle, introduce the same g-factor modulation. Additionally, if the shuttled electrons
always travel along the same path during shuttling (as would be the case in the network
architecture proposed in Chapter 3), then the total g-factor variation along a shuttle path
should remain fixed. Therefore, the accumulated phase error due to a varying g-factor
should be deterministic, allowing the error to be measured and subsequently corrected by
a single qubit rotation. Of course in reality, there will be noise in the system, particularly
voltage noise on the gate electrodes where the shuttling control pulse is applied. Such noise
will introduce incoherent errors to the two decoherence mechanisms mentioned above. For
typical cryogenic setups, voltage noise levels are in the few V. The results in Section 2.3
showed that over a voltage range of ~0.2 V, the resonance frequency varied by ~0.2 MHz.
This implies that for 10 ©V of noise would give a corresponding resonance frequency shift
of 10 Hz, which is negligible considering the length and timescales that shuttling takes
place over. A second decoherence mechanism, which was discussed in detail this chapter,
is spin rotations caused by the spin-orbit interaction which causes the effective magnetic
axis to be tilted away from the Z axis. As was shown in Section 3.4.5, when the valley phase
difference between neighboring dots is small enough, these spin rotations are coherent and
can be corrected by single qubit rotations on the shuttled electron. If the valley phase
difference is large enough, then spin-valley-orbital mixing occurs and the spin state cannot
be recovered. There are additional decoherence mechanisms related to the orbital state of
the electron during shuttling: adiabaticity and charge decoherence. When the shuttling
process is non-adiabatic, the electron is coherently evolves into a superposition of ground
and excited orbital states. The state would quickly decohere though, due to the orbital
relaxation time, which is determined by the transition dipole matrix element. Of course, by
slowing down the shuttling process, adiabatic evolution is easy to obtain suppressing this
decoherence mechanism. Even still, very fast shuttling sequences, in the few ns timescale,
can still maintain adiabatic evolution. Therefore, we expect that experimental demonstra-
tions of shuttling should not be limited by this decoherence mechanism, as ns shuttling
timescales are more than practical for quantum information purposes. Charge decoherence
is a decoherence mechanism that has been mentioned in passing but not yet discussed in
any detail. When a single electron resides in a double dot system, at zero detuning, the
electron is in an equal superposition of occupying either the left or right dot. If the system
remains fixed at zero detuning, local device disorder causes the charge state to collapse,
so that the electron occupies only one of the dots. This charge decoherence is very fast,
acting on timescales around 10 ns [209]. During electron shuttling, the system must pass
through this zero detuning point where charge decoherence occurs. As the adiabatic shut-
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tling pulses demonstrated in Chapter 2 and 3 are around an order of magnitude faster than
this decoherence timescale, charge decoherence may impact the shuttling fidelity.

3.6 Conclusions

In summary, the first half of this chapter showed how to construct constant-adiabaticity
control pulses for shuttling single electrons along a 1D chain of QDs. By keeping the
adiabatic parameter constant while varying geometric device parameters, for example, we
can compare shuttling under different conditions, and optimize for shuttle speed or fidelity.
Our method of simulation connects the 3D device model to an effective Hamiltonian in
1D. The second half modeled coherent spin transport by including spin-orbit and valley
terms in an effective Hamiltonian, and shuttling one member of a spin-entangled pair.
We found that a high-fidelity process requires t. > FE., 0¢ < d¢y,, and |A| > E,. The
threshold value d¢y, is a function of the ratio t./F,. Shuttle speeds up to 0.3 um/ns were
obtained in the single-valley case, and up to 80 nm/ns in the two-valley case with spin-orbit
coupling present. Our results indicate that disorder-induced variation in the valley phase,
if sufficiently large, is a primary obstacle to high-fidelity spin shuttling in 2®Si. Future
work includes designing faster pulses (constant-adiabaticity is not time-optimal), shuttling
in larger arrays, and including charge noise [154] and charge dephasing effects. Developing
2D simulations would enable simulating shuttling through a T-junction, a likely feature of
realistic device architectures.
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Chapter 4

Calculating the exchange interaction
in lateral quantum dot networks

Chapter contributions: Bohdan Khromets and Dr. Marek Korkusinski assisted with the
derivation of the closed form Coulomb matrix expression (both the symmetric and eccentric
expressions). Dr. Marek Korkusinski also helped in developing the model to explain the
charge noise sensitivity results in Section 4.3.3.

This chapter is based on the following preprint and is under review for publication in a
journal:

Buonacorsi, B., Korkusinski, M., Khromets, B., and Baugh, J. (2020). Optimizing lateral
quantum dot geometries for reduced exchange noise. arXiv preprint arXiv:2012.10512.

4.1 Introduction

Chapter 3 focused on simulating a key aspect of the stabilizer operation for the network
architecture proposed in Chapter 2: electron shuttling. Another key ingredient of the
stabilizer operation for the proposed architecture are the two-qubit vVSWAP gates. This
chapter focus on developing numerical methods to be able to efficiently and accurately
model v/SWAP gates. These methods enable vVSWAP gates to be described in terms of
the directly accessible experimental control variables: the set of applied gate voltages 1%
used to define the quantum dots (we use vector notation to indicate the set of voltages
applied on n gates, {Vi,Vs,...,V,,}).
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In arrays of singly-occupied quantum dots, the inter-dot Coulomb interaction together
with fermionic statistics leads to the effective spin exchange interaction. The dynamics
of exchange enable SWAP and vSWAP quantum logic gates [170, 58]. In weak spin-
orbit materials like silicon, exchange between spins labeled ¢ and j can be described by
an effective Heisenberg Hamiltonian [58] with strength .J;;. The orbital wavefunctions,
especially the overlap between orbitals in adjacent dots, can be manipulated via the gate
electrodes that define the dots, so that .J;; is determined by V. Electrostatic control of
the exchange interaction in multi-dot systems is routine in lateral GaAs quantum dots
[208, , , ], and is becoming routine in silicon dots [269, , , , ]
in both MOSFET and Si/SiGe devices. However, it remains a challenge to realize two-
spin quantum gates with the high fidelities required for fault-tolerant quantum computing,
mainly due to the sensitivity of exchange to charge noise [50, 201]. The relationship between
Jij and V for a network of dots depends on both V and the physical device geometry in ways

—

that are generally hard to accurately predict. Accurate numerical calculation of J;;(V') for
arbitrary device layouts and network topologies is critical to realistic modeling of spin
qubit processors. Such realistic modeling is necessary for optimizing device geometries and

voltage control sequences that will mitigate the impacts of charge noise on quantum gate
fidelity.

—

In order to accurately model J;;(V'), techniques borrowed from quantum chemistry
must be used. Generally, methods for determining J;; offer a trade-off between com-
putational complexity and quantitative accuracy when evaluating the energy spectra of
many-electron systems. Approximate computational methods including Hubbard [119, 55],
Heitler-London [21, 28], and Hund-Miilliken [113, , | techniques use only the local-
ized, lowest energy s-orbitals construct the many-electron state. However, these approaches
are only accurate over a limited range of device parameters [201] and fail more easily in
Si compared to GaAs, due to the larger effective mass in Si [163]. Exact diagonalization
of the many-electron Hamiltonian using a full configuration interaction (CI) formalism
[53, , , , 7, b4] produces more accurate modeling. In a full CI calculation, the
many-electron basis set is constructed by including all configurations of the s-, p-, d-, f-,
etc., orbital states for the Hamiltonian diagonalization. A convergent spectrum requires
a sufficient number of these excited orbital states. The full CI method is applicable, in
principle, to any quantum dot network; however, these calculations are computationally
intensive due to the need to evaluate Coulomb matrix elements for all configurations. Cal-
culating the dependence of exchange strength J;; on varying device parameters, such as
gate voltages and device layout, tends to be impractical for large parameter spaces.

Methods for determining .J;; that are both computationally efficient and numerically
accurate are key to designing devices with improved robustness to charge noise. Such
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optimization would complement standard charge noise reduction techniques such as dy-

namical decoupling [22], composite pulses [235, , |, and symmetric point opera-
tion [221, , ]. Furthermore, quantum optimal control techniques such as GRAPE
[136, 280] and effective Hamiltonian engineering [96], which require many repeated estima-

—

tions of VJ;;(V'), could be applied to exchange operations in quantum dots if efficient CI
computations were available. Finally, the dynamics of coupled spins could be simulated
directly in terms of the applied gate voltages using such tools.

Section 4.2 presents a modification of the linear combination of harmonic orbitals and
configuration interaction (LCHO-CI) approach introduced by Gimenez et al. [33]. The
modified LCHO-CI provides calculations of J;; with significantly improved efficiency, while
retaining quantitative accuracy. In Section 4.2.1, we show how to construct single electron
states in a quantum dot network using a large orthogonal basis of harmonic orbitals. Sec-
tion 4.2.2 describes the full CI calculation that accounts for all electron-electron correlations
in the system. By using an orthogonal basis of harmonic orbitals, evaluation of the Coulomb
matrix elements (the most computationally intensive part of the calculation) is reduced
to a scalar multiplication and subsequent basis transformation of a pre-calculated library
of Coulomb matrix elements. This strategy significantly reduces the resources needed to
evaluate the Coulomb interactions, reducing the total computation time of the LCHO-CI
calculation. The resulting many-electron spectra found with the LCHO-CI method are
then mapped to the effective Heisenberg Hamiltonian [¢3] to obtain J;; for the quantum
dot network. Section 4.2.3 describes how the harmonic orbital basis can be optimized to
improve the accuracy of the LCHO-CI calculations without increasing the computation
time.

Section 4.3 uses the modified LCHO-CI method to study the sensitivity of J with
respect to charge noise in a realistic double quantum dot geometry. In Section 4.3.1, we
introduce the full 3D device structure and model it with a self-consistent Poisson solver.
This allows us to map out how the 2D electronic potential landscape varies with the
geometric parameters of the physical gate layout, as well as the applied gate voltages. In
Section 4.3.3, these 2D potentials are used to study how the sensitivity of J to charge
noise is influenced by the physical device parameters including dot size, tunnel gate width,
gate oxide thickness and dot eccentricity. Sensitivity to charge noise is determined by

calculating a\%-] - as a function of the bias voltage Vi,.s applied across the plunger gates of
aJ

the double dot. We also convert this bias to an effective inter-dot detuning € to obtain .
Overall, the results show that dots with larger charging energies and with smaller plunger
gate lever arms tend to be less sensitive to charge noise. The tools developed here can be

further utilized to design quantum dot networks with optimal robustness to charge noise.
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4.2 The modified LCHO-CI method

In this section we outline a variation of the LCHO-CI approach [33] for calculating many-
electron states and energies in a quantum dot network. We present the method using
double quantum dot networks, but the approach generalizes to larger quantum dot sys-
tems. Each quantum dot (QD) is assumed to be formed electrostatically by surface gate
electrodes. In order to directly compare our method to the Heitler-London and Hund-
Miilliken approaches [21, ], we approximate the confining 2D potential experienced by
the electrons with the quartic model:

m'wi [ 1
2 |4d?

V(z,y) = (2* = d*)* + ¢ (4.1)
where m* is the material effective mass (0.067mq for GaAs and 0.191m for Si where my is
the free electron mass), 2d is the separation between the two QDs, and wy is the harmonic
frequency of the potential wells at +d. The characteristic width of each potential minima

is given by ly = \/A/m*wy.

Later, in Section 4.3, we move to a more realistic model of the potential landscape by
simulating a double QD device structure in a Si/SiOs material system using self-consistent
3D Poisson calculations. Throughout this chapter we assume that there is no magnetic
field; however, this can be included into our calculations by adding a vector potential term
to the Hamiltonian in Equation 4.2. We note that adding a magnetic field will impact the
convergence of the single electron calculations discussed in Section 4.2.1. In particular,
the magnetic field introduces a varying phase component in the orbital wave functions
which may require more harmonic orbital states in order to accurately approximate the
single-electron orbitals.

4.2.1 Building single electron states in a quantum dot network
using harmonic orbitals

We begin the LCHO-CI calculation by evaluating the single electron states for the following
Hamiltonian

o=-

[ o2 0?
[(%UQ * dy?
where 7 is the reduced Planck’s constant. The single electron states |{;) are eigenfunctions

of H with corresponding eigenenergies €; which satisfy H |€;) = €, |{;). In order to make the
LCHO-CI calculation simpler later on, it is useful to approximate the single electron states

v ] +V(z,y) (4.2)
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|€;) using a basis of radially symmetric 2D harmonic orbitals (HOs) centered at the origin of
the quantum dot network. The explicit form of the 2D HO states is ¢pm (2, y) = ¢n ()P (y)

where ¢,(s) = \/ngql (%)1/4 exp(—m;°g52>Hq <1 / m%‘"s), H, are the Hermite polynomials

and w is the harmonic frequency. The full 2-dimensional HO basis {¢,,(z,y)} is found by
taking the Cartesian product of two 1-dimensional HO bases {¢,(z)} and {¢,,(y)} where
each 1D basis is composed of the lowest M, and M, energy states respectively. The total
number of 2D HO states {¢;(z,y)} is M = M, M,. Throughout this work we use M, = M,.

Next, we find approximations |£;> of the first N single-electron states |;) using a linear
combination of harmonic orbitals (LCHO)

€)= ZAW- |:) (4.3)

where 7 is a composite index describing the n, m indices of the harmonic orbital state and
A;; are expansion coefficients. H is then rewritten in the 2D HO basis H?, and we obtain
the generalized eigenvalue problem

H?A=¢A (4.4)

where H? has matrix elements HZ- = (| H|p;), A = (Ay, Ay, ..., Ay describes the
unitary transformation between {|¢;)} and {|¢/)}, and € are approximations of the single
electron state energies e. The basis {|¢})} converges to {|¢;)} as M increases and more har-
monic orbital basis states are included in the basis set. A schematic of the transformation
between {|¢;)} and {’§;>} via A is shown in Figure 4.1a. The three lowest energy single
electron orbitals are shown on the left using the quartic potential given in Equation 4.1
where m* = 0.191my (Si/SiOy system), Awg = 0.375 meV (I = 32.6 nm), and d = 50
nm. Some of the lowest energy harmonic orbital states used in approximating {‘§;>} are
shown on the right for a harmonic frequency of hwy = 0.188 meV (ly = 46.1 nm). Fig-
ure 4.1b shows how the 12 lowest approximated energies € converge as a function of M
for the quartic and harmonic parameters used in Figure 4.1a. The lowest two energy levels
rapidly converge while the higher energy levels do not fully converge until M > 122. The
lowest three energy levels are €, = 0.3436 meV, €], = 0.3692 meV, and €, = 0.5822 meV.

Typically, M must be much larger than N in order for {|£§>} to accurately approxi-

mate {|¢)}. After A has been calculated, A is subsequently trimmed to have dimension
MxN making A semi-unitary (ATA = I but AAT # I). This reduces the computational
complexity later when transforming the Coulomb matrix element basis in Section 4.2.2.
So far, the choice of w used to construct {|¢;)} is arbitrary; we will show in Section 4.2.3
how to optimally choose w to best approximate {|¢;)}.
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Figure 4.1: Using harmonic orbitals to approximate single electron orbital states. a)
Schematic showing how A transforms between the harmonic orbital basis {|¢;)} and the
approximated single electron orbitals ‘f§> The first 3 single electron orbitals are shown
for an example quartic potential on the left and on the right are 8 of the lower energy
HO states. b) Convergence of the first 12 approximated single electron energies € versus
the number of harmonic orbitals M used to compose the basis {|¢¥)}. Here, M = M, M,
where M, = M, are the numbers of 1-dimensional HOs taken along the # and y axes
respectively used to construct the 2-dimensional HOs.

4.2.2 Constructing the many-electron Hamiltonian

Here we focus on the construction of the general many-body Hamiltonian for the quantum
dot network. When written in second quantization, this Hamiltonian takes the form

1
H = Z ecle + 5 Z (ij| v |kl) c;-rc;r-ckcl (4.5)

ijkl

where czT and ¢; are the fermionic creation and annihilation operators acting on an electron
in the i spin-orbital state |i) = |xm.)|&;). Here, |xm.) is the spin component of the
single electron spin-orbital state taking a value of either my; = +1/2. ¢; are the single
electron energies as described in Section 4.2.1. Here, i, j, k, and [ are composite indices for
the spin and orbital components of the corresponding electron spin-orbital state. Lastly,
v = 47:22& \inﬁl is the standard Coulomb potential where ¢, is the vacuum permittivity and

€ is the material dielectric constant (12.4 for GaAs and 7.8 for Si/SiO, where egi/sio, =
[ESi + 63102]/2).
Evaluating the Coulomb Matrix Elements (CMEs) (ij| v |kl) in the single electron basis

is numerically difficult due to the divergent ﬁ potential term. However, the CMEs can
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be calculated by decomposing them into the HO basis using A

M M M M

il v kD) = () (G D Z iaAjs Ary Ass (B[ v [76) (4.6)

Ctzl : : :
where latin indices correspond to single electron states |£), greek indices correspond to 2D
harmonic orbital states |¢), and * denotes the complex conjugate.

In the HO basis, the CMEs have a fully analytic solution. The derivation follows
similarly to Chapter 3 of Korkusinski’s thesis [118]. To begin, we will rewrite the Coulomb
potential into plane waves by using the inverse Fourier transform

1 o
af| ——— |vo o dq = =72) |~ 5
—_ - iﬁl *ifffz . 4
L / dqq<a|e 9) (8172 o) (47)

The 2D harmonic orbital states are products of the 1D harmonic orbital states |a) =
|namea) where n, and m,, are the harmonic oscillator modes along the z and § axes respec-
tively. Next, we will rewrite the position coordinates in terms of the canonical harmonic
oscillator ladder operators

1
V2w

where w is the harmonic oscillator frequency.

r=—=(a;+al)  y=—==(b;+b]) (4.8)

¥l
&

We will now focus on the first matrix element in Equation 4.7, (a| e |5). After
rewriting this matrix element in terms of ladder operators, it becomes

. I
(a] 6T |§) = (o] eV labtan B0 | 5) (4.9)

Using both the fact that a and b commute as well as the Baker-Campbell-Hausdorff formula
XY = eXeYealXY] (valid when [X, [X,Y]] = [Y,[X,Y]] = 0), the matrix element can
be written as

<04| iq |5> _ e—g(qz-iﬂy <a| e\/%ate\/%bfe\/q%me;ﬂbl |§>

with a similar expression for the second matrix element (3|e~%"2 |y) where i — —i.
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Next, each 2D harmonic orbital state |«) can be rewritten as the repeated application
of the creation operator on the vacuum state |00)

) = [nama) =

1 - (a')™ (07)™ 100). (4.10)

Ne My

We will also insert the following identity operator into the middle of the matrix element
expression

I= Z Z |p1pg p2p1

p1=0p2=0

LSS (o) ()" o0y orpa (@

l |
P2’ p1=0p2=0

where p; and py are two dummy indices swept over. Using these above expressions, as well
as Taylor expanding the exponential operator terms, the matrix element becomes

) ( iq >81+83 < iqy )82+S4
e w qz+q > VA z) +\/
<a| el |5> — e = Y E E E 2 2w

Ng!mgnslms! pl'p2 s1!s5! S9ls4!

p1=0p2=0 51,82,583,54=0

(oot (o)™ e (6])™ 7 00) 00 0+ (o) vt (81) " 00y
(4.12)

where s; are the indices in the Taylor expansions.

There are two things of note which simplify Equation 4.12. The first is that p; and ps
cannot sweep all the way to oo and instead, go only up to min(n,,ns) and min(m,, ms)
respectively. Above these limits, there will be indices of s; which result in the annihilation
operator being applied onto the vacuum state. The second thing is that the matrix elements
are non-zero only when p; + s; = n, with analogous relationships for the other three s;
and p; indexing pairs. These observations reduce the matrix element to

e~ 15 (2 +ap)
Vg lmgnglms!

) Na+ns—2p1 . Ma+ms—2p2
min(na,ngs) min(mea,ms) 1 ( 1 ) ( 1qy >
V2w V2w

. Z Z pi'pa! (na — p1)!(ns — p1)! (Mo — p2)!(ms — p2)!

p1=0 p2=0

% (00| al (ai)”" e (bi)m" 100) (00| a (ai)né b (b{)"” 00).  (4.13)

(ol e 15) =
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Applying the ladder operators introduces a scalar ny!mg!ng!lms! term, and the expression
simplifies to

(] € |8) e (a2 +gy)  min{ne,ns) min(ma,ms) Qg \"TTI (g, et
ale = E § :
V2w v 2w

| Ins!
alma!nstms! —

() 414

with an analogous expression for the second matrix element (3]e~"2|y) where i — —i
and p1,p2 = ps, Pa.

Assembling everything together gives

1 1 1 - -~
af| ———70) = — | d7— {a| e |0 e "2
(O8] e 1) = 5 [ i (ol € 18) (8] 7 )

: ; RO
27r\/na!ma!nglm(glnlg!mf;!nw!m ! s D1
min(me,ms) m me min(ng,n,y) ng m
< G0 2 G0
Z D2 P2 Z Y25 s

p2=0 p3=0

(4.15)

mln(mﬁ 7mW)

mg mfy
< w0
Z_ Pa P4 P1P2P3P4

pa=0

where the I, ppsp, 15

. na+ns—2p1 . Mat+ms—2p2
Lpipapspa /@e_m ai+ay) (_qu ) ( Uy )
a - 4.16
— ng+ny—2p3 s - ma+my—2pa ( ‘ )
« (_Q) ( qu) |
\Y4 2w \ /2w

We will now focus on evaluating I, p,psp,- After converting to polar coordinates and
using the change of variables x = ¢/v/2w, the integral can be reduced to

I

Pp1p2p3p4

1 2m
= (—1)”ﬂ+mﬁ+”7+m”+p% r (p + 5) / df (cos 0)* (sin §)*P~* (4.17)
0
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where I' is the gamma function and the notation has been condensed using parameters
2p = ng + Mg +ns +ms +ng+mg+ny, +m, — 2p; — 2py — 2p3 — 2py
a = Ng +ns+ng+ny — 2p; — 2ps.

The integral over 6 can be evaluated analytically using the beta function

jus

B(l’,y) = 2/02 do (Sin ‘9)2171<COS 9)29*1 — M

I'(z+y)
giving
2m 2B (p — =1, «tl)  if d?2
/ d6 (cos ) (sin )" = (—5h o) i @ afich 2p ate ever (4.18)
0 0 otherwise

Lastly, using the fact that I'(z) = 2 T'(z — 1) and I'(1/2) = /m, the final form of the full
CME is

(@B v [16) = <namangmm v nymynsms)

47reoe,, /dﬁ/drg Pa(T1)05(72 )l yﬁbv( RHGY
ng+mg+n~y+m in(na,ns)
e & () ()

47T60€r Va!ma!ns!msinglmgln,Im,! =0 D1

min(me,ms) min(ng,n)

P M VO R M 1 ) RS

p2=0 p3=0

min(mg,m-)

Xy p4!(mﬂ) (mv)(_l)p (2p — DN(2p 2—2pap!— l(a — 1)

pa=0 P4 P4

where k!l = k(k —2)---3-1 is the double factorial for odd k. The above expression only
holds when both a and 2p are even, and (| v |yd) = 0 otherwise.

The analytical expression in Equation 4.19 arises due to the use of an orthogonal HO
basis. This is a key distinction from the original LCHO-CI approach [83] which used a
non-orthogonal set of localized HOs taken from each QD. The CME expression is similar
to the equations presented in Hawrylak et al. [104] and Kyriakidis eta al. [156] which
use different orbital basis sets. We denote the full M?x M2-dimensional matrix of CMEs
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when written in the HO basis with harmonic frequency w as Cno,,. The matrix of CMEs
written in the single electron basis is denoted as Cgsg and has dimension N2xN2. Cgg is
easily obtained via a basis transformation Csg = (AT ® A")Cho (A ® A).

After finding Csg, we use a full configuration-interaction (CI) approach to calculate
the many-electron energy spectra and eigenstates. In the full CI approach, a basis of
K-electron states is constructed out of all possible K-electron configurations of single-
electron spin-orbital states. After this configuration basis is constructed, the Hamiltonian
from Equation 4.5 is rewritten in the configuration basis and subsequently diagonalized
to find the corresponding eigenenergies and eigenstates. A detailed example of how to
construct the configuration basis as well as how to rewrite the many-electron Hamiltonian
in the configuration basis is given in Chapter 3 of Korkusinski’s thesis [118]. The total
number of configurations n. of K-electron states grows according to ne = (2;(\[ ) = %
where 2N is the total number of single electron spin-orbital states. Because H conserves
the total spin S, rather than diagonalizing the Hamiltonian using all K-electron spin-orbit
configurations, the configuration basis can be restricted to a subset of |S.| subspace to ease
computational requirements.

The lowest energy states of the many-electron energy spectra can be mapped onto the
effective Heisenberg Hamiltonian H =), i J;j0; - 0; where indices correspond to quantum
dot sites and & are vectors of the 2-level Pauli spin operators. For a 2-electron system,
J is the energy difference between the singlet and triplet |T) eigenstate. In the presence
of no external magnetic field and in the |S,| = 0 spin subspace, the ground and first
excited eigenstates are the singlet and |Tp) state respectively giving J > 0 according to
the Lieb-Mattis theorem [166]. Therefore, parameterizing J for a 2-electron system is done
by simply taking the energy difference of the two lowest energy states. An example for

parameterizing the Heisenberg Hamiltonian for a 3-electron system is given in Gimenez et
al. [33].

4.2.3 Choosing an optimal harmonic orbital basis

The accuracy of the evaluated K-electron energy spectra relies on two parameters. The
first parameter is N, or how many approximate single-electron states \f;) are used in the
construction of the Hamiltonian in Equation 4.5. As N is increased, higher energy single-
electron states can add important corrections to the K-electron energy spectra until N is
sufficiently large where the energies have converged. The second parameter is how close the
approximate single-electron states {|¢})} are to {|¢;)}. If a large enough basis set of HOs
M is used, then {|¢})} will converge to {|¢;)}. However, it is not always computationally
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practical to use an arbitrarily large M in order to accurately approximate {|¢;)} as the
total size of Cyo,, scales as M*. For a fixed M, an improved approximation of {|§;)} can
be achieved by using an optimal value of w when constructing the HO basis states. So far,
there has been no discussion on the choice of w used when building {|¢¥)} (here we adopt
a new notation for the 2D HOs which specifies the choice of w used to construct the basis).
In the LCHO-CI method laid out in Gimenez et al. [33], {|¢%)} is built by taking localized
HOs centered at each respective QD in the network. For the localized HOs, w is chosen
by fitting the minima of each QD potential to a radially symmetric harmonic potential
well. In the modified LCHO-CI approach described in this paper, a single collection of
HOs centered at the origin constitutes the full HO basis, and there is not a direct analogue
for choosing w. Naively, w could be chosen by fitting the potential minima of each QD in
the network to a harmonic well and using the average w extracted from each fit; however,
there is nothing to suggest that this choice {|¢¥)} will best approximate {|{;)}. The idea
of optimizing basis orbitals used to approximate {|¢;)} was also used in Nielsen et al.
[194] which optimized the relative spacing and width of Gaussian orbitals to improve the
accuracy of the full CI calculation.

The optimal choice of w should maximize the overlap between bases {|¢/)} and {|¢;)}
or mathematically F' = Zjvzl | <§j|§§> |2, If {’§;>} perfectly describes {|¢;)}, then F' = N.
We can optimize w then by recalculating {|f§>} for a given choice of w and subsequently
minimizing 1 — %F . However, evaluating {|£§>} during each optimization step means Hy
must be constructed and subsequently diagonalized as described in Section 4.2.1. The
construction of H, alone requires the evaluation of M (M + 1)/2 inner products Hlf?- =
(¢:| H |¢;). Optimizing w this way can be very slow due to the large choice of M typically
required for the LCHO-CI calculations. We note that the exact length of time it takes
to calculate H, strongly depends on the number of grid points used in constructing the
2D potentials. This is because more grid points increases the computation cost of each
individual inner product, a numerical integration over the 2D grid.

To reduce the computational complexity of this optimization, we take a slightly dif-
ferent approach. We note that if the single electron basis states {|{;)} can be accurately
decomposed into the HO basis {|¢*)}, then for each state |€;), we have STM | (€]69) |* ~ 1.
If instead {|¢*)} poorly describes |¢;), then S22 | (€;]¢2)|> < 1. Therefore for a choice
of N’ single-electron states |¢;), an optimal w can be found via the following minimization
problem

N M
. . 1 w
M frin(w) = min 1 - - > D Gl (4.20)
i
where we refer to the optimization function as fin(w). Note that we have specified using a
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smaller subset N’ of the single-electron orbitals compared to the full number of IV orbitals
used in the main LCHO-CI calculation. Using N’ < N does not significantly impact the
final w value and allows for a slightly faster minimization. The N’ single-electron states
|€;) need to only be evaluated once at the beginning of the minimization, and only N'x M
inner products are calculated during each minimization step. As N’ is usually < M, this
is much faster than directly calculating H? and does not bottleneck the full LCHO-CI
calculation. For minimizations done in this chapter, the minimization is done using a
BFGS quasi-Newton search with a first-order optimality tolerance of 1 x 1075 [70].

Figure 4.2 shows how the optimization function f,;,(w) depends on w as well as the size
of the HO basis {|¢¢)}. The single electron orbitals |¢;) are found using a quartic potential
where m* = 0.191myq (Si/SiOy system), fiwg = 0.375 meV (lp = 32.6 nm), and d = 50 nm.
The first N’ = 6 single electron states are used in the minimization, and M is stepped
from 1 to 162. Recall that M = M, M, where we have set M, = M,. Different line colors
specify different M values. Non-optimal w values can yield orders of magnitude worse
values of fiin(w) compared to the optimal choice of w. This indicates using the optimal w
is a very useful way to improve the accuracy of the approximated orbitals {|§;>} during
the LCHO-CI calculation. At a fixed w, as M is increased, fuin(w) always decreases; this
is in accordance with the fact that as the size of {|¢¥)} increases, better approximations
of {|¢;)} can be obtained no matter the choice of w. Additionally, as M increases, the
optimal choice of w appears to converge towards a singular overall optimal w.

After the optimal w is found, Cyo must be evaluated to continue with the LCHO-
CI calculation. Typically, evaluation of the CMEs is the most computationally intensive
part of the CI calculation, and this is still true here, even though the HO CMEs have
an analytical form. However, we make use of the fact that in Equation 4.19 the only
dependence on w is a scalar y/w term that can be factored out. A large matrix of CMEs
can be pre-calculated for a unit choice of w =1 (Cyp,1) and then simply scaled by v/w to
obtain the matrix of CMEs for the optimal HO basis

Cro.w = VwCho 1. (4.21)

Using the pre-calculated library Cyo; allows for numerically quick yet still quantitatively
accurate full LCHO-CI calculations across a range of quantum dot network potentials.
This is a key computational speed-up in this modified LCHO-CI approach. The longest
part of the calculation (evaluating Csg) becomes a simple scalar multiplication of Cyo
and subsequent rotation of Cxo,, into the single electron basis. The idea of using a pre-
calculated library of CMEs to speed up CI calculations was used previously in Pedersen et
al. [204] for a Gaussian orbital basis; however, the orbital basis was never optimally tuned
to improve the accuracy of the results.
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Figure 4.2: Dependence of the optimization function fi,(w) on w and the size of the
harmonic orbital basis (M,M, = M). N’ = 6 for a quartic potential with parameters
m* = 0.191myg, hwy = 0.375 meV, and d = 50 nm. Color indicates a different number of
HO basis states ranging from M, = M, = 1 (purple) to M, = M,=16 (yellow).

In Section 4.3, we perform modified LCHO-CI calculations of a double quantum dot
potential where M = 162, N = 18, and N’ = 6. The grid spacing of the 2D potential
along & and ¢ axes is 0.5 nm. The choice of M gives a total of 168 CMEs to calculate
using Equation 4.19. In this chapter, the CME calculations were done in MATLAB using
a computer with an Intel Xeon E5-2650 processor and parallelized across 24 cores. It takes
us ~10 hours to evaluate all the CMEs (only half of the CMEs are calculated as Cyo 1 is
Hermitian, and 3/4 of the matrix elements are zero). The scalar multiplication done to
convert Cpo,1 to Choy, is relatively fast, taking only a few seconds. The basis rotation
of Cho, into Csg takes tens of seconds and depends on the size of both N and M. For
the NV and M values used, after the initial long calculation in evaluating Cho 1, the to-
tal evaluation of Csg takes ~25 seconds. The other steps in the LCHO-CI which include
optimization of w, evaluation of A, and construction of the second quantization Hamilto-
nian take approximately 20, 90, and 30 seconds respectively. This gives a total modified
LCHO-CI calculation time of ~3 minutes. These values correspond to a 2D potential with
approximately 300x100 grid points. Larger grids will increase the computation time of
optimizing w and evaluating A. The other steps in the modified LCHO-CI calculation are
unaffected by the grid size.
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It is worthwhile to point out that for some QD networks, such as a linear chain of
QDs, it might be more ideal to use an elliptical set of 2D HOs where w, # w, in order
to better approximate the single-electron states |{;). If w, # w,, then the HO CMEs still
have a closed analytical form; however, w, and w, cannot be factored out of the CME
expression (refer to Appendix A). This means that an elliptical HO basis does not provide
the same computational speed performance as the radially symmetric case, and this is why
we have chosen to use HOs with w, = w,. We note that it is possible to pre-calculate a
discrete set of elliptical CME matrices Cyo 1, where w, = 1 and k = w,/w, is the HO
eccentricity. We can then optimize over a continuous choice of w, as well as a discrete set
of x values and subsequently find Cro w0, = vVWeCrO,1,x (see Appendix A). This comes
at the cost of storing a pre-calculated Cyo 1, matrix for each choice of £ which, due to the
large choice of M typically required for these calculations, may make this impractical. An
alternative idea for QD networks where eccentric harmonic orbitals are desirable could be
to use an asymmetric choice of M, # M, when building a 2D HO basis to approximate
{{§;>} However, this idea is not explored in this work as we deal with only a small double
QD system and use M, = M, for all calculations.

4.2.4 Comparison to Heitler-London and Hund-Miilliken meth-
ods

We conclude the discussion of the modified LCHO-CI approach by comparing it to the
Heitler-London (HL) [21, 28] and Hund-Miilliken (HM) [113, 261, 103] approaches for eval-
uating J. The system considered is a double quantum dot system with a quartic potential
given by Equation 4.1 occupied by 2 electrons. In both the HL. and HM approaches, the 2-
electron singlet and triplet states are constructed using localized s-orbitals taken from each
dot. The HL approach includes only the singly occupied S(1,1) and T'(1,1) states while
the HM method extends the basis set to include the doubly occupied singlet S(0,2) and
S(2,0) states. (n,m) denotes the electron occupancy in each quantum dot. The localized
s-orbitals for both the HL. and HM methods are found by approximating each potential
minimum as a harmonic well with confinement wy located at +d. Approximating the or-
bital states this way gives rise to analytical expressions for .J when the quartic potential
is used, for both the HL and HM methods [21]. The analytical expressions make these
methods useful for exploring qualitative behavior under a variety of potential parameters
as well as magnetic field B or inter-dot detuning. However, both methods are known to
break down at small inter-dot separations 2d and give an nonphysical result where J is
negative at zero-magnetic field. Quantitatively, the breakdown occurs for potential where
the ratio of the Coulomb and confinement energies ¢ = \/7/2(e?/4mege,ly)/hwy > 2.8.
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Therefore, ¢ is inversely proportional to ly = \/h/m*wy and is directly proportional to
m*. This means that the HL and HM methods break down more easily at close inter-dot
distances for small dot sizes and in Si/SiO2 which has a larger m* compared to GaAs. The
inter-dot separation at which breakdown occurs increases with larger dot radii [28]. This
limits the parameter space over which the HL. and HM methods can be used to study J
particularly for Si/SiOs.

This breakdown occurs due to poor approximations of the localized s-orbitals at small
dot separations. Each localized s-orbital is assumed to be taken from a harmonic well
(i.e. gaussian) and separated by 2d. However, at small inter-dot separations, the tunneling
barrier in the quartic potential is lowered, and the electrons delocalize towards the center
of the double well potential. This effect is shown in Figure 4.3a which compares the
ground single electron orbital eigenstate for both the HL/HM and LCHO-CI methods at
different dot separations 2d. We consider a Si/SiO, material system with [j = 6 nm
for the quartic potential. The ground eigenstate for the HL/HM methods is found as
[vo) = (|R)4|L))v/2 where |R) and |L) are the localized s-orbitals taken at +d respectively.
The ground eigenstate for the LCHO-CI method is obtained numerically using the methods
outlined in Section 4.2.1. At small dot separations 2d, the HL/HM clearly overestimate
the actual localization of the electron orbitals. As the separation increases, the numerical
and HL/HM methods more closely agree. We expect that when d/ly is large, that the
numerical and HL/HM should produce similar results for J. For these particular potential
parameters when d/ly > 10, we find that the overlap between the approximated HL/HM
and numerical LCHO-CI ground state orbitals is ~0.99. Therefore, we anticipate that the
LCHO-CI and HL/HM methods should converge to the same J value around d/ly > 10.
Of course, there is no precise comparison between the error in the single electron orbitals
and the many-electron spectra, so this is only an estimate.

Figure 4.3b shows the calculated J as the dot separation 2d for the quartic potential
is varied. In addition to the HL. (purple) and HM (dark blue) calculations, we do three
modified LCHO-CI calculations where N = 2 (blue), 4 (green), and 10 (yellow) single
electron orbitals are used to build the two-electron configuration basis. For all LCHO-CI
calculations, M = 152. As the dot separation decreases, J increases due to the enhanced
Coulomb interaction as the electrons are brought closer together. The most striking feature
of the curves is the anticipated breakdown of the HL. and HM approaches where J goes
negative around a dot separation of 18 nm for the chosen ly. All of the three LCHO-CI
calculations show no breakdown at small dot separations. This is expected as the LCHO-
CI performs an exact diagonalization of the many-electron Hamiltonian as opposed to
the approximate approach in the HL/HM methods. As N increases, J decreases for the
LCHO-CI calculations until J converges around N = 10 (variations are less than 3%).
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Figure 4.3: Comparison of the HL (purple) and HM (dark blue) methods to the modified
LCHO-CI method for evaluating J. The system considered is Si/SiOy with a double dot
quartic potential where [y = 6 nm. a) The ground single electron orbital eigenstate for the
HL/HM and LCHO-CI calculations at different dot separations. At small dot separations,
the HL/HM overestimate the actual separation of the two localized wavefunctions when
found numerically for the quartic potential. As dot separation increases, the HL/HM
approximated states converge to the numerically obtained orbitals. b) J versus the inter-
dot separation 2d is plotted. Three different LCHO-CI calculations are done for N = 2
(light blue), 4 (green), are 10 (yellow). For all LCHO-CI calculations M = 152

For the quartic potential, the HL. and HM methods seemingly underestimate the ex-
change energies found using the LCHO-CI approach. The N = 2 LCHO-CI calculation
uses a 2-electron configuration basis similar to the HL. and HM methods with the exception
that the doubly occupied triplet T'(0,2) and 7'(2,0) states are added to the basis set. Even
though the N = 2 and HL/HM basis functions are similar, there are orders of magnitude
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of difference in the calculated J values. This is attributed mainly to the fact that the
HL/HM methods overestimate the actual dot separation resulting in a lower calculated
J. The key takeaway from this section is to demonstrate the necessity of using numerical
approaches such as the modified LCHO-CI method to calculate J for general quantum dot
networks. Approximate methods like the HL. and HM approaches are computationally easy
to implement but suffer significant flaws such as breakdown for some dot configurations.
As such, HL and HM methods should only be used qualitatively and not for quantitative
accuracy, especially when used for larger effective mass material systems like silicon.

4.3 Charge noise sensitivity of a double quantum dot
device

In this section, the modified LCHO-CI method is used to investigate the charge noise
sensitivity of the exchange interaction in a 2-electron double quantum dot system. Charge
noise is composed of two sources: fluctuations in the gate electrode voltages as well as
charge fluctuations in background charge traps present in the host material system. Both
of these sources perturb the potential minima as well as the tunnel barrier in the double
quantum dot system. The potential fluctuations in turn perturb the electron orbitals which
causes modulations in J. We investigate which device geometries make J less susceptible
to these potential fluctuations coming from the two sources of charge noise. As charge
noise is a strong decoherence mechanism for spin qubits, finding optimal device geometries
to improve robustness to charge noise is critical for achieving high fidelity multi-spin logic
gates.

The calculations are done in a Si/SiOy material system where they are particularly
relevant because SiOy is a known source of charge traps. The silicon valley states are
assumed to have a large splitting (100s meV) which is uniform between the two QDs. If
the valley splitting A is greater than the thermal broadening energy kg7, then electrons
loaded into the double QD system will populate only the ground valley eigenstate. Because
Coulomb interactions between opposite valley eigenstates are weak [19], the Hamiltonian
in Equation 4.5 does not couple the electrons to excited valley-states, and we can assume
a single-valley system for our purposes. We note that at worst, neglecting valley physics
means that the exchange interaction strengths J calculated in this section represent the
highest possible strengths. We saw in Chapter 3 that differences in the phase of the valley
splitting d¢ between adjacent quantum dots serve to decrease the effective inter-dot tunnel
coupling strength .. As it can be shown in the small detuning regime that J o ¢ [221], we
anticipate that non-zero d¢ would decrease the effective J, resulting in J being maximal
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when 6¢ = 0. In our calculations, we additionally neglect any effects of the small but
non-zero spin-orbit interaction in silicon which can be fully tuned to zero by appropriately
tuning the direction of an external magnetic field [250].

4.3.1 Device model

Rather than use an analytical form for the potential landscape, a full 3D device structure
including the Si/SiOy heterostructure and the metal gates electrodes used to define the
quantum dots is simulated using a self-consistent Poisson solver in nextnano++ [11]. In
general, when modelling nanostructures, it is ideal to use Schrodinger-Poisson calculations
instead of Poisson calculations as the former method takes into account quantum effects
that the accumulated electron density has on the potential landscape. However, during
either Poisson or Schrodinger-Poisson calculations the electron density can change contin-
uously as the gate voltages are swept. This does not match the experimental behavior
seen in QDs which maintain a fixed electron number as the gate voltages are swept and
the QDs are decoupled from an electron reservoir. Because of this, all of our simulations
are done below the turn-on voltage threshold of the device where the electron density is
zero and therefore fixed as the gate voltages are swept. In the zero-charge regime, Poisson
and Schrodinger-Poisson calculations are the same and is why only Poisson calculations
are done here. For detail, refer back to Section 3.3.1. There it was shown that for a double
quantum dot system, the presence of a single electron in a double well potential reduces the
tunnel barrier and increases the orbital spacing. Because the exchange interaction is very
sensitive to variations in the electrostatic potential, this approximation is important to
consider in the scope of discussing our results. However, we anticipate a proper accounting
for this effect would only provide a relatively minor quantitative change in our results and
not affect any qualitative behavior.

Figure 4.4a shows a 3D render of the double quantum gate structure with an 2D poten-
tial slice taken 1 nm below the Si/SiO, interface. Two plunger gates with the corresponding
voltages V1 and V), form a double well potential along with a tunneling gate with voltage
V; that is used to control the tunneling barrier. The gate voltages used to form the partic-
ular 2D potential are V,,; = V2 = 0.15 V and V;,,, = 0.094548 V. These particular voltages
are used because they give an exchange interaction strength J ~ 1 peV. Two outer barrier
gates are included in the device structure and are kept grounded for all simulations (V' =0
V). The outer barrier gates are included to better model a realistic device which is typically
surrounded by other metallic gates. A grounded screening gate (V' = 0 V) underneath the
arms of the plunger and barrier gates restricts the formation of the potential wells under-
neath the heads of the plunger gates. Figure 4.4b shows a 2D view of the potential overlaid
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Figure 4.4: Schematic of a double quantum dot gate geometry formed by plunger, tunnel,
and screening gates. The device parameters are D, = D, = 40 nm, D; = 20 nm, T =
15 nm V3 = Ve = 0.150 V, and Vi, = 0.094548 V. a) 3D model of the gate geometry
where the plunger, tunnel and screening gates are colored differently for better contrast
along with a semi-transparent SiO5 layer. A simulated electrostatic potential obtained by
a 3D self-consistent Poisson calculation is plotted below. b) A 2D view of the potential
overlaid with an outline of the gate structure showing the heads of the plunger and tunnel
gates as well as the screening gate. The width and length of the plunger gate as well as
the width of the tunnel gate are labelled D,, D,, and D, respectively. The potential is
taken 1 nm below the Si/SiO, interface. ¢) A side profile of the gate structure taken along
the dashed line in b). The SiO, layer thickness is labelled 7. The quantum dot (yellow
ellipse) is formed underneath the head of the plunger gate.

with an outline of the plunger, tunnel and screening gates. The plunger gate widths along
the 2 and ¢ axes are labelled D, and D,, respectively. The tunneling gate width along
Z is labelled D;, and the ¢ dimension of the tunneling gate is chosen to always be equal
to D,. When D,, D, or D, is changed, it is changed for all the corresponding gates in
unison so that the gate layout is always symmetric about the central § axis. The lack of
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a screening gate on the bottom half of the device causes an asymmetry in the potential
along the g axis seen by the fact the potential wells form slightly off-center of the plunger
gate heads. Figure 4.4c shows a 1D cut along the dashed black line in Figure 4.4d to show
the screening gate and SiO, layer with corresponding thickness 7. The screening gate
restricts accumulation of the QD to be under the plunger gate head. The device geometric
parameters used in Figure 4.4 are D, = D, = 40 nm, D, = 20 nm, and 7" = 15 nm.
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Figure 4.5: Convergence of J with respect to the number of single electron orbitals N when
M = 16*. The device parameters are V,; = Vo = 0.15 V, V, = 0.094548 V, D, = D, =
40 nm, Dy = 20 nm, and 7" = 15 nm. Inset: The convergence of J with respect to M when
N = 18 (star in the main figure).

The potential shown in Figure 4.4 is used to demonstrate the typical convergence be-
havior of J using the LCHO-CI method with this device geometry. Figure 4.5 shows J
versus the number of single electron orbitals N (main figure) as well as the number of
harmonic orbitals M (inset panel). For all data points, w is reoptimized, and in the main
figure, M = 16%. As more single electron orbitals are included, the higher order electron-
electron correlations end up reducing the overall exchange splitting. Around N = 12, J
begins to stabilize but does not stop varying by < 1% until N = 18 where J =~ 1 ueV. The
inset shows how J converges at N = 18 with respect to the number of harmonic orbitals
M. Good convergence (< 1% variation) is achieved when M > 15% While the device
parameters are varied throughout the remainder of this work, the convergence behavior
is qualitatively the same as what is shown in Figure 4.5. As such, for every exchange
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calculation done from here on out, we use N = 18 and M = 162. These values give ng =
630 two-electron spin-orbital configuration states, Cro,, of size 65536x65536, and Csp of
size 324x324.

4.3.2 Charging energies and lever arms

Here we show how the charging energies U and lever arms « are extracted for the device
geometry introduced in Section 4.3.1. These parameters are used to study the device’s
sensitivity to charge noise in Section 4.3.3. When evaluating U, we use only symmetric
double QD potentials where the plunger gate bias voltage Vii.s = 0 V. For a double QD
system where both dots are the same size, the charging energy U of each QD can be
evaluated as [231]

U = (Yrsr(F)r/r(F2)| v |0r r(72) Y r(F)) (4.22)

where v is the standard Coulomb potential as given in Equation 4.5, and |1/1L / R> are the
localized electron orbitals in the left /right QDs. The localized orbitals are found by taking
the symmetric and anti-symmetric combinations of the ground and first excited orbital
eigenstates of the double QD potential: ‘@ZJL/R> = \%(WJO) + [¢1)). The charging energy
U can be found by following the procedure outlined in Section 4.2 to find the Coulomb
matrix elements of these new single electron orbitals WL / R>. The specific charging energies
U that are calculated for each device geometry are given in the tables of Figures 4.7, 4.8,
4.9, and 4.10 of Section 4.3.3.

Next, we show how to evaluate the lever arm « for each device geometry. The lever
arm connects the plunger gate bias voltage to the effective inter-dot detuning € = ez — €,
as € = a'Vyias Where €p/p is the localized ground state energy in the left /right QD. To find
a, Viias 1s varied and the tunnel gate voltage Vi, remains fixed. We model the double QD
system with the simple two-level Hamiltonian

_|€L tc
nefe v 4

where the basis states are {|i1), |[¥r)}. The energy difference between the ground and
first excited energy levels of H is given as

€1 —€ep =€+ 4t (4.24)

The eigenenergies €y and €; are found by solving the Schrodinger equation from Equa-
tion 4.2. The inter-dot tunnel coupling ¢. is found when Vj;,s = 0, which corresponds to

110



102

x1073
4
3
100 Z ]

— 2(, DI’ Dy [nm]
% 30, 30

[
g o 00 ——40, 40
0 ——50, 50
v 80, 80

1074
104 102 100
‘/bias [mV]

Figure 4.6: Relationship between bias voltage Vi;.s and inter-dot detuning e for different
dot sizes. The calculated data points are indicated by circles and the solid line is a fit to
the equation € = aVj.s where « is the lever arm. The region in the dashed black box is
enlarged and shown in the inset to demonstrate the linearity of the fitted data.

an effective inter-dot detuning of € = 0. t. is assumed to remain fixed as Vi, is varied.
Equation 4.24 is used to find the corresponding e value for each Vj,;.s data point.

The resulting data are fit to the linear relationship € = aVj.s to find « for the cor-
responding device geometry. Figure 4.6 shows data of detuning versus bias voltage for a
few different device geometries where the dot size D, = D, was varied. The other device
parameters are D; = 20 nm, 7' = 15 nm, and V,, = 0.150 V. Circles are actual data points,
and solid lines correspond to € = aVj.s fits. For all data sets, the data is only fit in the
interval Vi,s = [1073,107!] mV to avoid noise at low bias voltages and prevent fitting
in any non-linear high bias regimes. The region shown in the figure inset (dashed black
box in the main figure) demonstrates the accuracy of the linear fit to the data. Only a
handful of device geometries are presented here for visual clarity, but all fitted data sets
used throughout this chapter show similar behavior and fit quality. The specific a values
extracted for each device geometry are given in the tables of Figures 4.7, 4.8, 4.9, and 4.10
of Section 4.3.3.
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4.3.3 Exchange calculations for different gate geometries

The 3D model of the device structure discussed in Section 4.3.1 allows us to study how the
physical gate geometry impacts the exchange interaction’s sensitivity to charge noise. It is
quantified using the derivative of the exchange interaction with respect to a bias voltage
Vhias applied between the two plunger gates which form the quantum dots. The bias is
also converted into the effective inter-dot detuning e. Here, € = €3 — €; where ¢; is the
ground state energy in the j'™ QD. 8.J/0Vi4.s highlights J’s sensitivity to the raw voltage
noise. On the other hand, 0.J/0e highlights J’s sensitivity to more general electrostatic
fluctuations in the surrounding material system such as charge traps.

We now outline the general procedure used to study J throughout this section. First,
for a series of varying device geometries, we sweep the tunneling gate voltage Vi, at a
fixed plunger gate voltage V, = V,; = Vj5. For each device geometry, J(Viu,) is linearly
interpolated to find V4, which yields J = 1 peV (corresponding to ~2 ns SWAP pulse). At
each interpolated Vi, value, a symmetric bias voltage Vs is applied between the plunger
gates such that V1 — V), — Vias/2 and Vs — V,, + Vias/2. From the biased potentials
the plunger gate lever arm « is calculated which connects Vi;as and € as € = aVj,s (refer
back to Section 4.3.2 for details). This produces two resulting exchange derivatives for
each device geometry: 0J/0Viias and 0J/0e. Additionally for each device geometry, we
calculate the charging energy U of each QD using the 2D potentials that give J = 1 peV
at zero bias. The derivative of J is a non-trivial relationship between the bias voltage,
tunnel gate voltage, and device geometry. This chapter focuses in particular on exploring
the impact that the device geometry has on J’s sensitivity to charge noise. In order to
make a systematic comparison and remove the effect of Vi, on J, we tune all geometries
to the same reference J value at zero bias. As a reminder, for all simulations, we use
N = 18 and M = 162 for the modified LCHO-CI calculations. In this 2-electron system
with no magnetic field, J is the energy difference between the two lowest eigenenergies and
is always greater than zero.

Varying plunger gate size

We first study how varying the plunger gate size D, and D, impacts the exchange inter-
action’s sensitivity to charge noise. The results are summarized in Figure 4.7. Both D,
and D, are varied simultaneously from 30 nm (purple) to 80 nm (yellow) in steps of 10 nm
so that the plunger gate head is square for each device geometry. The tunnel gate width
D; = 20 nm, and the oxide thickness 7" = 15 nm. Figure 4.7a shows how J varies with
Viun When V,, = 0.150 V. For all curves, J increases as Vi, increases. As Vi, is increased,
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the tunnel barrier decreases, and the localized electron orbitals have a larger probability
of being in the tunnel barrier region. This in turn enhances the Coulomb interaction and
subsequently raises J. For a fixed V;,,, J decreases as the dot size increases. This is
because as the area of the plunger gate head increases, there are additional electric field
contributions that come from the edge of the plunger gate. These contributions further
push the potential minima lower with respect to the tunnel barrier gate, creating an effec-
tively higher tunnel barrier. This is the same as saying the capacitive coupling between
the plunger gate and the QD potential increases with bigger plunger gates. In addition,
the wider plunger gates further separate the electron orbitals which reduces their overlap
and Coulomb interaction. Lastly, the increasing plunger gate size also directly increases
the dot size. The wider QD potentials further localize the electron orbital more within the
potential minima. This suppresses the electron orbital overlap in the tunnel barrier region
and reduces the Coulomb interaction strength. Taking all these effects together explains
why J decreases with increasing dot size. The V,,, values where J =1 peV for each device
geometry (indicated by the dashed black line) are given in Section 4.3.4.

Figures 4.7b-c show the derivative of J with respect to Vs and € when J = 1 pueV
at zero bias. In both figures, the derivative increases with a larger bias. This is due
to the accumulated dipole characteristic of the singlet-like ground state with respect to
the triplet-state [103, ]. At Vhias = € = 0, both the low energy singlet- and triplet-
like states are in the (1,1) charge configuration. As a bias is applied, the singlet S(1,1)
state starts to tunnel into the S(0,2) charge configuration and acquires a non-zero dipole
moment. However, the 7'(1,1) state remains unaffected by the bias as the 7'(0,2) state
is energetically unavailable. Therefore, the triplet state acquires no dipole moment as the
bias increases. The accumulated dipole moment in the singlet state makes the ground state
more sensitive to electrostatic fluctuations. As the bias increases, so does the accumulated
dipole which increases that sensitivity. In Figures 4.7b-c where D, = D, > 60 the second
derivative can be seen to increase near Vi, = 1072 V. This happens because the singlet
state is biased near the S(1,1)-5(0,2) anticrossing.

Figures 4.7b-c¢ show that the charge noise sensitivity with respect to both Vi, and e
increases as the dot size D, = D, increases. The physical reason is straightforward and
can be understood by considering the simple Hubbard model. The Hubbard Hamiltonian
for a double quantum dot system is

t
HHub = Z ejnj% + Unj,x(nj,X — 1) + TC(CJ{’XCQ,X + C;XCLX) (425)
J=12;x 2
where c}}x creates an electron in the j™ QD with spin state x and n = cfe. ¢; is the QD’s

ground state energy, U is the QD’s charging energy (both dots are assumed to be identical
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Color | D, nm| | Dy [nm| | U [meV] | « [eV/V]
30 30 23.15 0.1349

- 40 40 21.29 0.1667
----- 50 50 19.52 0.1861
B — 60 60 18.06 0.1973
70 70 16.86 0.2018

80 80 15.85 0.2022
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Figure 4.7: Dependence of J as the dot size D,, D, is varied. a) J as Vi, is swept from
0.03—0.150 V. The other fixed device parameters are V, = 0.150 V, Vs = 0V, D, =
20 nm, and 7" = 15 nm. The dashed black line indicates where J = 1 peV. b) Derivative
of J with respect to V.. For each device geometry, Vi, is tuned so that J = 1 ueV at
Vibias = 0. ¢) Derivative of J with respect to € where ¢ = aVi,s and « is the lever arm
between the raw bias voltage and the effective inter-dot detuning. The upper-right table
indicates the corresponding varied device parameters, charging energy U, and lever arm .

so Uy = Uy), and t, is the inter-dot tunnel coupling. J is the difference between the ground
and first excited states of Hyy, in the 2-electron basis. Typically, t. < U and in the small
detuning limit where € = €5 — ¢; < U, the ground state energy difference is [221]

202U

J:U2_€2

(4.26)

114



which gives the derivatives

Oe a (U2 - 62)2 a‘/bias B (U2 - a2%2ias>2 .

where in the second derivative € is converted into terms of the raw bias voltage Vi.s and
lever arm « using € = aVj.s. From Equation 4.27, we can see that the derivatives equal 0
when Vs = € = 0. From there, the derivatives increase until either € &~ U or aVi.s =~ U.
The width of this [0,U] interval clearly depends on the magnitude of U in the case of € and
depends both on U and « in the case of Vias. If U is large, then 0.J/0¢ will require larger
detuning values until it becomes appreciable. However if U is small, then 0.J/0e is larger
for smaller values of €. Therefore, in order to improve the sensitivity of J to fluctuations in
€, U must be large. Similar arguments imply that in order to improve the sensitivity of J
to fluctuations in Vi;,s, both U must be large and « be small. These results are not entirely
surprising. If the charging energy is small, then the singlet state can more easily tunnel
into the S(0,2) charge configuration increasing the sensitivity of J. Additionally, if the
plunger gates have smaller lever arms, then fluctuations in the gate voltage will perturb
the potential and, subsequently, J less.

The table in Figure 4.7 shows that the charging energy U decreases and that « increases
as the dot size increases. Both effects are unsurprising. The charging energy is inversely
proportional to the QD radius [150], and the capacitive coupling between the plunger
gate and potential landscape should increase with plunger gate surface area. Even when
the capacitive coupling is accounted for by converting Vi.s into € using a (see table in
Figure 4.7), the same behavior remains where 0.J/0¢ increases with larger dot size. As
the dot size increases in the double quantum dot system, the charging energy decreases
as well. The smaller U causes an increase in 0.J/0e as dot size increases. In summary,
Figures 4.7b-c show that smaller QDs are less susceptible to charge noise coming from
both Vi, and e.

Varying tunnel gate width

Next, we study how varying the tunnel gate width D, impacts the exchange interaction’s
sensitivity to charge noise. The results are summarized in Figure 4.8. D, is stepped
from 15 nm (purple) to 40 nm (yellow) in increments of 5 nm. The other fixed device
parameters are D, = D, = 40 nm, 7" = 15 nm, and V, = 0.150 V. Figure 4.8a shows
how J varies with V;,,. For all curves, J increases with increasing Vi.,, as expected due
to the decreasing tunnel barrier height. At a fixed V;.,, J decreases as D, increases. This
is because the tunnel barrier region gets wider and further separates the QDs. As the
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Figure 4.8: Dependence of J as the tunnel gate width D, is varied. a) J as Vi,, is swept
from 0.03—0.150 V. The other fixed device parameters are V, = 0.150 V, Viis = 0V,
D, = D, = 40 nm, and 7' = 15 nm. The dashed black line indicates where J =1 peV. b)
Derivative of J with respect to Vi,.s. For each device geometry, Vi, is tuned so that J =
1 peV at Vijas = 0. ¢) Derivative of J with respect to € where € = aVi;.s and « is the lever
arm between the raw bias voltage and the effective inter-dot detuning. The upper-right
table indicates the corresponding varied device parameters, charging energy U, and lever
arm o.

electron orbitals move further apart, the orbital overlap in the tunnel barrier region is
reduced. This decreases the Coulomb interaction and subsequently J. The specific Vi,
values at which J =1 pueV are given in Section 4.3.4.

Figures 4.8b-c show the derivative of J with respect to Vj,.s and € for different tunnel
gate widths. For all curves, J = 1 peV at Vs = 0. There is clear difference between
the Vs and € derivatives. While the plunger gate size remains fixed across the varied
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geometries, U decreases with the increasing tunnel gate width. This is because for larger
Dy, Viun must be tuned to higher voltages to reach J =1 peV at zero bias voltage as shown
in Figure 4.8a, . Both the higher V,, value and increased width of the tunnel gate cause
the tunnel barrier to 'flatten’ as D; increases. The flattening of the tunnel barrier actually
widens the QD potentials at the plunger/tunnel gate interface As the potential opens, the
localized electron orbitals broaden. This in turn decreases the charging energy as the QD
is effectively bigger. The explicit potentials for J = 1 pueV are given in Section 4.3.4 to
more clearly explain this behavior. The table in Figure 4.8 shows that the lever arm «
decreases with increases D;,. We attribute this to the fact that increasing D, will screen
the effect of the constant sized plunger gate. The plunger gates have to work harder in
order to overcome the additional electric field contributions from the added tunnel gate
material.

The fact that both U and a decrease with increasing D; has an interesting effect on
0J/OViias. Recall that 0.J/0Vis increases when U decreases and when « increases. As
D; increases, U and « fight against each other to both increase and reduce the sensitivity
with respect to Vi.s. Interestingly, they both cancel out in this device geometry so that
D, has minimal impact on the sensitivity to the raw bias voltage. When the bias voltage is
translated into the effective dot detuning, then J becomes more sensitive to € as the tunnel
gate widens. This is due to the fact that U decreases with increasing D, as discussed above.
In summary, Figures 4.8b-c show that narrower tunnel gates are less susceptible to charge
noise coming from e and has minimal impact on charge noise coming from Vjj,s.

Varying oxide thickness

Next, we study how varying the oxide thickness T impacts the exchange interaction’s
sensitivity to charge noise. The results are shown in Figure 4.9 where T is stepped from
1 nm (purple) to 15 nm (yellow). The other fixed device parameters are D, = D, = 40 nm,
D; = 20 nm, and V,, = 0.100 V. Figure 4.9a shows how J varies with Vi,,. For all device
geometries, J increases with V;,, and is caused by a reduction in tunnel barrier height.
At a fixed Vi, J decreases as the oxide thickness decreases. This occurs because the
plunger and tunnel gates acquire a stronger capacitive coupling to the potential landscape
as they move closer to the Si/SiO; interface. Because Viyn < V), and the plunger gates are
larger than the tunnel gate, the plunger gates push the QD potentials much lower than
the tunnel gate lowers the tunnel barrier height. This effect results in an overall higher
effective tunnel barrier. The higher barrier suppresses probability of the electron orbital
in the tunnel barrier region thereby reducing the Coulomb interaction and J. The Vi,
values which yield J = 1 ueV are given in Section 4.3.4.
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Figure 4.9: Dependence of J as the oxide thickness T is varied. a) J as Vi, is swept from
0.0—0.100 V. The other fixed device parameters are V, = 0.100 V, Vi;os =0V, D, = D, =
40 nm, and D; = 20 nm. b) Derivative of J with respect to Vias. Each device has Vi,
tuned so that J = 1 peV at Vs = 0 as indicated by the dashed black line in panel a).
¢) Derivative of J with respect to € where € = alj,,s and « is the lever arm between the
raw bias voltage and the effective inter-dot detuning. The upper-right table indicates the
corresponding varied device parameters, charging energy U, and lever arm «.

Figures 4.9b-c show the derivatives of J with respect to Vi.s and € as T is varied. For
all curves, J = 1 ueV at zero bias. 9.J/0Vi,.s can be seen to strongly depend on the oxide
thickness. This occurs because the plunger gate lever arm « significantly increases as T’
decreases. Notice that the increase in a overshadows any impact from U which varies non-
monotonically with 7. Figure 4.9c shows a tighter spread in the 0.J/0e curves compared
to 0J/0Viias. The individual 0.J/0e curves are ordered according to the charging energy
U specified in the table (inset panel in Figure 4.9¢). The non-monotonic behavior of U
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with respect to T is surprising. As T decreases, the image of the gates are mapped more
clearly onto the underlying potential landscape. This means that in the limit 7" — 0, the
potential would be two square potential wells connected by a square tunnel barrier. We
expect naively that as T" decreases, the potential should open up reducing the confinement
strength as it transitions from a U-like to a U-like shape. The more open Ll-like shape
would result in a smaller charging energy. However, we see that U actually increases as T'
decreases initially from 15 nm to 3 nm. From 3 nm and lower, U decreases as expected.
The potentials at zero-bias are shown in Section 4.3.4. As T is reduced, the tunnel barrier
transitions from N-like to M-like as expected. However, the slope of the outer edges of the
QD potentials remain relatively unaffected until 7'~ 3 nm. From 7" = 15 nm to 5 nm, the
outer edges of the potential actually move towards the center of the QD. This creates a
tighter confinement in the QD and raises U. As T'= 3 nm to 1 nm, the outer edges of the
potential shift back outward and begin opening up into the expected Li-like shape. This
opens the confinement in the QD and lowers U.

It is possible that the non-monotonic behavior of U is caused by a few of our choices in
the device model itself. The first potential cause could be our choice to ground the outer
tunnel barrier gates in the full device geometry (see Figure 4.4). Allowing those voltages
to vary or be non-zero will certainly impact the exact shape of the QD potentials. Another
potential cause could be that the self-consistent 3D Poisson calculations were done in the
zero-charge regime. Incorporating the impact of an electron using a Schrodinger-Poisson
calculation would also change the exact shape of the QD potential. Even if those effects are
accounted for, the behavior of 0.J/0Vi;.s should not qualitatively change. This is because
the dominating mechanism in determining charge sensitivity with respect to Vi, is the
lever arm and not the charging energy. However, the behavior observed of 0.J/0e may
change if these effects are considered. We would expect any change in 9.J/0e to still follow
how the charging energy U changes. Additionally, we have neglected the fact in an actual
device, reducing the oxide thickness also reduces the total amount of charge defects present
in the material system. This in turn reduces the total amount of fluctuations in €, but
we do not explore that trade-off here. In summary, using our device model, reducing the
oxide thickness increases the sensitivity to charge noise caused by Vj.s and has a relatively
smaller effect on the sensitivity to charge noise caused by e.

Varying plunger gate eccentricity
Lastly, we study how varying the plunger gate eccentricity D, /D, impacts the exchange

interaction’s sensitivity to charge noise. The results are shown in Figure 4.10. Eccentricities
D,/D, > 1.0 mean the plunger gate is being elongated along the § axis while values < 1.0
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Figure 4.10: Dependence of J as the eccentricity D, /D, is varied. For D, /D, > 1.0, D, =
40 nm, while for D,/D, < 1.0, D, = 40 nm. a) J as Vi, is swept from 0.03—0.150 V.
The other fixed device parameters are V,, = 0.150 V, Vhias = 0V, D, = 20 nm, and T" =
15 nm. b) Derivative of J with respect to Vi.s. Each device has Vi, tuned so that J =
1 peV at Vis = 0 as indicated by the dashed black line in panel a). ¢) Derivative of J
with respect to € where € = alj,;,s and « is the lever arm between the raw bias voltage and
the effective inter-dot detuning. The upper-right table indicates the corresponding varied
device parameters, charging energy U, and lever arm «.

mean the plunger gate is being elongated along the 2 axis. For D,/D, > 1.0, D, = 40 nm
while D, is varied. Conversely, for D,/D, < 1.0, D, = 40 nm while D, is varied. At
D,/D, = 1.0, D, = D, = 40 nm. For all geometries, D; = 20 nm, 7" = 15 nm, and
Vp, = 0.150 V. Figure 4.10a shows how J varies with Vi,,. For all curves, J increases with
Viun again as expected. Interestingly, at a fixed value of Vi,,, J decreases monotonically
with the eccentricity. This is because for D, /D, > 1.0, the plunger gate has more electric
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field contributions along the ¢ axis of the device. These additional field contributions push
both the QD potential minima and the tunnel barrier lower. Overall, the tunnel barrier is
pushed lower than the potential minima are, which results in a lower overall tunnel barrier
height. For D,/D, < 1.0, the plunger gate acquires more electric field contributions
along the Z axis instead. These additional contributions affect the QD potential minima
more than they affect the tunnel barrier. Subsequently, the effective tunnel barrier height
increases and D, /D, decreases. The dashed black line shows where J = 1 peV, and the
corresponding Vi, values are given in Section 4.3.4.

Figures 4.10b-c show the derivatives of J with respect to Vi,s and € as D,/ D, is varied.
For all geometries, J = 1 peV at zero bias. In Figures 4.10b-c, both 9.J/0Vy.s and 9J/0€
show the same dependence with respect to the eccentricity. The least sensitive geometry
has D, /D, = 1.0 where the plunger gates have the smallest total area and, therefore, the
largest U. As the plunger gates acquire an eccentricity not equal to 1.0, the plunger gate
area increases. The increased surface area reduces U and causes those device geometries
to be more susceptible to fluctuations in Vj,s and €. The behavior observed for 9.J/0Vias
occurs even though the lever arm a decreases monotonically with D,/D,. This shows
that U is the dominating factor in determining the sensitivity of J with respect to Vi.s as
the eccentricity is varied. In summary, symmetric QDs with no eccentricity are the least
susceptible to charge noise coming from both Vi, and e.

4.3.4 Zero bias potentials

Here we show the zero bias potentials for the varied device geometries discussed in Sec-
tion 4.3.3. 1D slices of the potentials along the & axis are plotted in Figure 4.11. The
y-coordinate at which the slice is taken is chosen such that the 1D slice goes through the
minima of the double quantum dot potential. Note from Figure 4.4b that this point is not
necessarily directly underneath the center of the plunger gate head and changes with the
device geometry. Table 4.1 lists the varied geometry parameters and the V;,, value where

J =1 peV at Vs = 0 V.

Figure 4.11a shows 1D potential slices as the dot size D,, D, is varied. The other
geometry parameters are D; = 20 nm, 7' = 15 nm, and V,, = 0.150 V. As the dot size
increases, the tunnel barrier flattens and the potential confinement decreases causing a
larger charging energy U as discussed in the main text. Interestingly, the minima of the
potential wells seem to remain in the same 2-coordinate location even as the plunger gate
get larger.

Figure 4.11b shows 1D potential slices as the tunnel gate width D, is varied. The other
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Da, Dy [00] [ Voan (V1 | D 00] [ Veaww V] [ 7 (5] | Vean (V] | Dy/Ds | Vian [V]
30, 30 0.057228 15 0.070977 3 0.060071 2.0 0.080796
40, 40 0.094548 20 0.094548 5 0.073663 1.75 0.084305
50, 50 0.114617 25 0.108097 10 0.087739 1.5 0.087954
60, 60 0.126211 30 0.116451 15 0.092118 1.25 0.091506
70, 70 0.133647 35 0.122298 1.0 0.094548
80, 80 0.138619 40 0.126458 0.8 0.117165

0.66 0.131638

Table 4.1: Corresponding tunnel gate voltages V;,, which yield J =1 pueV at Vs =0V
for different device geometries. The default device geometry parameters unless varied are
D, = D, =40 nm, D; = 20 nm, and 7" = 15 nm. For D,/D, > 1.0, D, = 40 nm, and for
D,/D, < 1.0, D, =40 nm. V,, = 0.150 V for all geometries except when 7" is varied where
Vp, = 0.100 V. 1D slices of the corresponding potentials are shown in Figure 4.11.

geometry parameters are D, = D, = 40 nm, 7' = 15 nm, and V}, = 0.150 V. As the tunnel
gate widens the tunnel barrier flattens. This reduces the potential confinement of each QD
thereby increasing the charging energy U as described in the main text.

Figure 4.11c shows 1D potential slices as the oxide thickness 7' is varied. The other
geometry parameters are D, = D, = 40 nm, D, = 20 nm, and V}, = 0.100 V. As the oxide
thickness decreases, the image of the square plunger gate head is mapped more strongly
onto the potential landscape. In the limit where T' = 0, the double QD potential would be
two square wells with a square tunnel barrier between them. As this transition towards a
more ‘square’ potential occurs, the slope of the tunnel barrier increases and slightly widens.
This effect suppresses the wavefunction overlap in the tunnel barrier region as the electrons
are more localized to each QD. Additionally, the effective confinement of each QD increases
which slightly increases the charging energy U as shown in the main text.

Figure 4.11d shows 1D potential slices as the oxide thickness 7" is varied. The other
geometry parameters are Dy = 20 nm, 7' = 15 nm, and V,, = 0.150 V. For D, /D, > 1.0,
D, = 40 nm, while for D,/D, < 1.0, D, = 40 nm. It is clear from these potentials
that U decreases when D, /D, < 1.0 as the QD potentials open. However due to the fact
that we are taking 1D slices along the % axis, it is difficult to see the same effect when
D, /D, > 1.0 even though U is decreasing as well. The potentials do show that the tunnel
barrier height increases as the plunger gate eccentricity increases due to the additional
plunger gate material along the g axis which pushes the QD minima lower. For sensitivity
to charge noise, the relevant parameter is the charging energy U which increases whether
or not the plunger gates are elongated along the z or y axes.
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Figure 4.11: 1D potential slices of the 2D potentials which gives J = 1 ueV at Vi = 0
V. Unless varied, the default device parameters are D, = D, = 40 nm, D, = 20 nm, and
T =15 nm. For D,/D, > 1.0, D, = 40 nm, and for D,/D, < 1.0, D, = 40 nm. The
corresponding gate voltages are given in Table 4.1. The 1D slices are taken along the &
axis where the slice passes through the lowest potential minima in the 2D potential.

4.4 Conclusion

In summary, a modified LCHO-CI method was presented for calculating the many-electron
states and energy spectra of a quantum dot network. Using an orthogonal basis of harmonic
orbitals to approximate single electron orbitals, the evaluation of the Coulomb matrix
elements requires significantly less computational resources. Additionally, we demonstrated
an efficient method for optimizing the choice of harmonic orbital basis in order to better
approximate the single electron orbitals and improve the accuracy of the CI calculation.
Our modified LCHO-CI approach provides a significant reduction in computation time

123



that can be exploited to obtain a large number of accurate energy spectra as a function of
varying model parameters. The energy spectra can be mapped to an effective Heisenberg
Hamiltonian to obtain the pairwise exchange interaction energies J;; in arbitrary quantum
dot networks.

The modified LCHO-CI approach was then used to investigate how the physical gate
geometry of a quantum dot device impacts the sensitivity of exchange to charge noise. A
3D model of a double dot device structure on Si/SiO, is simulated using a self-consistent
Poisson calculation. From these 3D simulations, planar 2D potentials were used in the
LCHO-CI calculations to determine how J varies with respect to an applied bias voltage
between the two plunger gates, and also with respect to the effective inter-dot detuning.
The charge noise sensitivity was calculated as a function of plunger gate size, tunnel gate
width, SiOy (gate dielectric) thickness and dot eccentricity. Generally, device geometries
that maximize the dot charging energy and reduce the lever arm of the plunger gates are
found to be less sensitive to charge noise. For the device layout chosen in this work, this
means that small and symmetric plunger gates, narrow tunnel gates, and suitably thick
Si0y will improve the robustness to charge noise. Future work includes obtaining better
approximations the electronic potential landscape by using self-consistent Schrédinger-
Poisson calculations. There are many device geometries that are ripe for exploration using
our methods, such as asymmetric double quantum dots [108]. We envision these methods
enabling the realistic modeling of exchange in larger quantum dot networks such as multi-
qubit processor nodes.
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Chapter 5

Electron transport in dopant-free

GaAs

Chapter contributions: The Hall bar devices in Section 5.2 were fabricated and measured
by myself, Nachiket Sherlekar, and Dr. Frangois Sfigakis. All of the other devices in Sec-
tions 5.3 and 5.4 were fabricated solely by myself with the exception of the device measured
in Figure 5.15 where Dr. Arjun Shetty assisted with fabrication. All measurements were
done with the assistance of Dr. Francois Sfigakis.

The section regarding single electron pumps is based on a manuscript currently being
prepared for submission to a journal.

5.1 Introduction

The previous chapters in this thesis have so far focused on applied theoretical studies of
quantum dots in Si/SiO, material systems. In this chapter, we shift focus onto experi-
mental studies of electron and hole transport in dopant-free GaAs material systems. The
main result of this chapter is the demonstration of single electron pumping in dopant-free
GaAs using a dynamically driven quantum dot. These quantum dot devices are not made
for quantum information processing purposes in mind, which was the focus of the silicon
quantum dot devices studied in the previous chapters of this thesis. Instead, these dynami-
cally driven quantum dots lay the ground-work for realizing novel on-demand single photon
sources for quantum communications and quantum optics. GaAs is a direct bandgap semi-
conductor which enables electrons to directly emit a photon upon recombination with a
hole. This is why GaAs is the material of focus in this chapter rather than silicon.
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III-V semiconductors (such as GaAs) have a higher mobility compared to silicon leading
ITI-V’s to be a more ideal choice for studying electron transport and mesoscopic physics.
The most popular I1I-V system studied is Gallium-Arsenide/Aluminum-Gallium-Arsenide
(GaAs/AlGaAs) where in the second layer, Al replaces some fraction of the Ga in the lattice
(typically 0.33 giving Aly33GagerAs). The GaAs/AlGaAs interface is called a heterojunc-
tion. When there is only one GaAs/AlGaAs interface in the material, we call this system a
single heterojunction. Both GaAs and AlGaAs have similar lattice structures which means
that a smooth interface layer is formed with few defects and little strain. This enables the
high carrier mobilities observed in GaAs [259] as holes or electrons encounter relatively
fewer scattering sites travelling through the material.

GaAs has a smaller bandgap than AlGaAs leading to a step-like band structure at the
heterojunction. A thin conductive layer of electrons can be formed at the GaAs/AlGaAs
interface by bending the conduction band below the Fermi level. This is achieved by
intentionally doping the material system [245] or by applying an external electrostatic field
using either a doped capping layer [1258] or a metallic top gate [101]. The thin conductive
layer is called a 2-dimensional electron gas (2DEG). 2DEGs are labelled as 2D because the
carriers are confined to a thin region just nanometers thick along the Z direction of the
substrate.

The standard approach to form a 2DEG in GaAs/AlGaAs heterostructures is to add
intentional dopants the material system using a technique called modulation doping. In
modulation doping, a thin layer of a n-type (electron) dopant (typically Si) is embedded in
the AlGaAs layer during the wafer growth using Molecular Beam Epitaxy (MBE) [90]. In
the doping layer, dopants replace either Al or Ga in the lattice and leave both a positively
charged nucleus and free electron. The positive ions serve to bend the conduction band
of the GaAs/AlGaAs interface below the Fermi level where free electrons accumulate to
form the 2DEG. Figure 5.1a shows a simulated 1D band structure along the Z axis of a
modulation doped single-heterojunction. The simulation in nextnano+-+ [!1] using a self-
consistent Schrodinger-Poisson calculation. The full heterostructure from top-to-bottom is
a 10 nm GaAs capping layer, 80 nm of AlGaAs, and 80 nm of GaAs. A 10 nm thick doping
layer composed of Si dopants with a concentration of 3 x 10'® cm™3 is placed 65 nm away
from the GaAs/AlGaAs interface. When exposed to air, AlGaAs oxidizes and is why a
capping layer of GaAs is added on top of the heterostructure. The positively charged ions
in the doping layer pin the Fermi level (black) near the conduction band (blue), and the
ions subsequently bend the conduction band at the heterojunction (blue). Free electrons
then collect at the GaAs/AlGaAs interface and form a 2DEG (yellow).

This chapter focuses on an alternative method of realizing a 2DEG in GaAs/AlGaAs
heterostructures. Rather than intentionally doping the material, an external electric field
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Figure 5.1: Band structures of a modulation doped and dopant-free single heterojunction
simulated in nextnano++. a) A modulation doped heterostructure consisting of a 10 nm
GaAs cap layer, 80 nm AlGaAs, 80 nm GaAs. A 10 nm thick doping layer of Si dopants is
placed 60 nm from the lower GaAs/AlGaAs interface. The conduction band E,. (blue) is
bent near the interface to be below the Fermi level Ef (black) and form a 2DEG (yellow).
The valence band F, (green) is far below Er so that no holes are induced. b) A dopant-
free heterostructure capped with a 10 nm thick metal layer to electrostatically gate the
heterostructure. When the gate voltage is 0 V (dashed lines), the Fermi level (black) is
midgap and no 2DEG is induced in the conduction band (blue). When the gate voltage is
increased to 1.5 V (solid lines), the band structure is bent downward so that the conduction
band falls below Er and a 2DEG is induced (yellow).

is used to bend the conduction band and induce a 2DEG. Because the 2DEG is induced
without the use of any intentionally placed dopants in the material, the GaAs/AlGaAs
structure is labelled dopant-free. Figure 5.1b shows a 1D simulation of the band structure
along the 2 axis of a single heterojunction dopant-free system. The full heterostructure is a
10 nm metal gate, 10 nm GaAs capping layer, 80 nm of AlGaAs, and 80 nm of GaAs. When
0 V is applied to the metal gate (dashed lines), the conduction bands are horizontal, and
the Fermi level (black) is pinned mid-gap. As the Fermi level is well below the conduction
band, no 2DEG is induced. When a sufficiently large voltage (+1.5 V in the simulation) is
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applied on the gate (solid lines), the conduction band at the heterojunction is pulled below
the Fermi level and the 2DEG forms (yellow). In a modulation doped heterostructure, the
electrons in the 2DEG were supplied by the n-type dopants. Since these are not present
in a dopant-free structure, electrons must be supplied from some other electron reservoir
in order to actually form the 2DEG. The reservoir can be realized by locally implanting
n-type dopants into the wafer, either by annealing n-type ohmic contacts [101, , 35] or
by ion implantation [119].

The lack of any intentional dopants in dopant-free structures offers several significant
advantages over conventional modulation doped heterostructures. In modulation doped
material, high quality wafers with high mobilities require a large concentration of dopants.
The density of these intentional dopants is orders of magnitude greater than any back-
ground impurity dopants which arise naturally during the MBE growth [258, . In-
creased scattering from the intentional dopants prevents modulation doped materials from
being gated to very low carrier densities. On the other hand, dopant-free materials are only
limited by scattering from the background impurity dopants, and as such, can be gated
to low carrier densities [114]. Electron-electron interactions are strongest in low density
systems, an ideal platform for studying Wigner crystallization [30, |. In the opposite
regime, dopant-free systems can also be gated to very high carrier densities. High carrier
densities are achievable as well in modulation doped samples, but this requires large dop-
ing concentrations in order to sufficiently bend the conduction band to obtain the high
densities. An external electric field could, in principle, be applied on a modulation doped
heterostructure to even further increase the carrier density; however, in practice this can
problematic. Gating very highly doped structures can induce a parallel conducting path
through the doping layer or cause leakage between the dopants and the 2DEG. Dopant-free
materials avoid these problems by removing the intentional dopants altogether. Another
advantage of dopant-free material systems over their intentionally doped counterparts, is
the ability to induce 2DEGs in very shallow heterojunctions. In such shallow systems, the
potential from the electrodes used to gate the material is more strongly coupled to the
2DEG allowing better control of the potential landscape of the device. However, bringing
the 2DEG closer to surface lowers the carrier mobilities due to scattering from defects
present at the surface [145, |. In modulation doped heterostructures, the thin spac-
ing layer and doping concentrations required to form a 2DEG makes these shallow devices
very difficult to gate, even when realized experimentally [186]. In dopant-free systems, such
gate-ability issues are avoided [174, ] as long as the 2DEG can be properly contacted.

The last advantage of dopant-free systems is the ability to create ambipolar devices,
devices with both n- and p-type (hole) carriers. Holes have only been mentioned in passing
in this thesis. Whereas a free electron occupies the conduction band, a hole is the absence
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of an electron in the valence band. A hole can propagate in the material just like an
electron as a free charge; however, the flow of current will be in the opposite direction
due to the hole’s positive charge. In GaAs, holes have a higher effective mass which means
confined holes are more localized and have lower mobilities (higher resistances) compared to
electrons. Free holes appear when the valence band is bent above the Fermi level forming a
2-dimensional hole gas (2DHG) at the GaAs/AlGaAs interface. For dopant-free structures,
the valence band can be bent upwards simply by applying a negative gate voltage on top
of the heterostructure [11] (the reverse direction of what is shown in Figure 5.1b). In a
modulation doped wafer, the doping layer provides carriers for either the 2DEG or 2DHG.
If the dopants are n-type, then only a 2DEG can form. Conversely, if the dopants are
p-type, then only a 2DHG can form. As such, a modulation doped wafer is restricted to
realizing only a single carrier type. In dopant-free heterostrtuctures, the carriers must be
brought from a local reservoirs. Both n- and p-type reservoirs can be placed locally in the
heterostructure while being far apart as to not contaminate each other. Separate metal
gates can the be used to induce both a 2DEG and 2DHG within the same heterostructure

[45, 45].

This chapter presents experiments done with a variety of devices realized in dopant-free
single GaAs/AlGaAs heterojunctions. These are foundational experiments aimed towards
realizing ambipolar, single electron/hole devices that will provide a new platform for de-
veloping quantum devices where electrons, holes, and electron-hole recombination can be
controlled and exploited. Section 5.2 discusses the first step in making these devices:
fabricating n- and p-type ohmic contacts to the heterojunction. Magnetotransport exper-
iments show that we can induce both 2DEGs and 2DHGs with low contact resistances in
a deep single-heterojunction. In Section 5.3, we use the n-type contacts to demonstrate
1-dimensional electron transport through a quantum point contact (QPC). Quantized con-
ductance persists up to a temperature of 4 K due to the high subband spacing ~4.5 meV
measured in our devices. Lastly, in Section 5.4, the QPC device is expanded upon to realize
a tunable-barrier quantum dot acting as a single electron pump. We demonstrate the first
realization of single electron pumping in dopant-free GaAs heterostructures. Pumping is
evident at temperatures of 1.4 K and persists up to 4K.

5.2 n- and p-type ohmic contacts to dopant-free GaAs
single heterojunctions

The first step towards making dopant-free devices is to develop recipes for ohmic contacts
between the surface and the electrons or holes induced in the conduction layer. Ohmic
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contacts allow a bias voltage to be applied to the 2DEG or 2DHG and for current to be
monitored through the conduction channel. This is critical in being able to study electron
transport through these devices. The ohmic contact resistance must be low and follow
Ohm’s law V' = IR where V is the applied bias voltage, I is the current, and R is the
device resistance. This first half of this section outlines the process for fabricating ohmic
contacts in deep and shallow dopant-free single heterojunctions. The second half discusses
magnetotransport in 2D systems and presents experimental data which demonstrates good
quality n- and p-type ohmic contacts to a 310 nm deep single heterojunction.

5.2.1 Overview of ohmic fabrication

In modulation doped devices, developing high yield and high quality ohmic contacts is
relatively easy. This is because the 2DEG or 2DHG always exists at the heterojunction
due to the free electrons created by the doping layer. To form ohmics, metal is deposited
on top of the heterostructure and subsequently annealed at a high temperature. Annealing
causes the ohmic material to diffuse into the substrate until it contacts the 2DEG or 2DHG.
Typically, for 2DEGs, the ohmic is an alloy of Ni, Au, and Ge. The Ni acts as a catalyst
for the AuGe to diffuse into the material where Ge acts as an n-type dopant. This creates
a conductive channel of electrons from the surface to the 2DEG. For 2DHGs, the ohmic
is an alloy of Au and Be. Similarly when annealed, the AuBe diffuses into the substrate
where Be acts as a p-type dopant creating a conduction channel of holes from the surface
to the 2DHG. Figure 5.2a shows a schematic of this approach for contacting a 2DEG in a
modulation doped heterostructure. The ohmic material is deposited on top of the GaAs
cap and annealed. The semi-transparent region schematically depicts the diffusion of the
ohmic material from the surface to the 2DEG, connecting both by a conductive channel of
free electrons.

Compared to modulation doped devices, ohmic contacts in dopant-free devices are much
more difficult. The reason dopant-free devices are harder is because of the top gate required
to induce the 2DEG or 2DHG in the substrate. Figure 5.2b shows a schematic of a failed
ohmic contact to a would-be 2DEG using the same approach as the modulation doped
device. As before, the ohmic contact is annealed so that metal diffuses into the substrate.
Unlike the modulation doped structure, a 2DEG can only be induced underneath wherever
the top gate is located. Note that the top gate used to induce the 2DEG is no longer directly
on the surface of the structure. An insulating layer of SiOs allows the top gate to overlap
directly with the ohmic contact, bringing the would-be 2DEG as close as possible to the
ohmic. In this configuration, the top gate is screened by the ohmic material preventing the
top gate from sufficiently bending the conduction band underneath the ohmic. Therefore,
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Figure 5.2: Schematic of ohmic contact diffusion after annealing in GaAs/AlGaAs single
heterojunctions. a) Successful ohmic contact to a modulation doped single heterojunction.
The annealed ohmic diffuses downward yielding a good ohmic contact to the 2DEG. b)
Failed ohmic contact in a dopant-free single heterojunction. The ohmic contact screens
the top gate which prevents contact of the diffused ohmic material to the where the 2DEG
would be induced. ¢) Successful ohmic contact in a dopant-free single heterojunction. The
lateral diffusion of the recessed ohmic does not screen the top gate allowing a 2DEG to be
induced with a good electrical contact to the ohmic.

there is high potential barrier between the diffused ohmic material and where the top gate
can induce a 2DEG. As such, electrons cannot populate the region underneath the top
gate and no 2DEG can be induced.

The solution to achieving ohmic contacts in dopant-free materials is to recess the ohmic
contact into the material. A schematic of this technique is shown in Figure 5.2c. Part of
the heterostructure has been etched away so that the ohmic material is now deposited
directly at the heterojunction. Because of this, the material can diffuse laterally through
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the side walls of substrate in addition to the downward diffusion. The lateral diffusion does
not screen the top gate from bending the conduction band all the way up to the diffused
ohmic material. As such there is no potential barrier preventing electrons from populating
underneath the top gate, and a 2DEG is induced with a good electrical contact to the
ohmic.

Fabricating a recessed ohmic is not a straightforward process due to technical fabri-
cation constraints such as photoresist overhang, etching profiles of the recess pit, rough-
ness of the annealed ohmic, and placement of the deposited ohmic material. Figure 5.3
shows a schematic of a self-aligned ohmic fabrication process for deep and shallow single-
heterojunction devices. Using a self-aligned process is critical to making high quality ohmic
contacts. In the self-aligned process, a layer of photoresist (purple) is spun on the sample
and subsequently patterned using optical lithography to act as an etching mask. A wet
etch is done using a solution of 1:1:20 HyO5:H3PO4:H50 to form the recess pit. An ohmic
metal alloy (grey) is deposited at an angle, ending up on top of the photoresist layer and
within the recesses pit. Depositing the metal at an angle is critical as it places ohmic
material directly at the GaAs/AlGaAs interface. The angled profile of the wet etch creates
an undercut underneath the photoresist. The undercut ensures that the metal deposited
directly on top of the photoresist and in the etch pit are not connected which is necessary
for good metal liftoff during fabrication. Because the wet etch and the metal deposition
are done using the same photoresist layer, the process is self-aligned, and the metal pattern
exactly matches the etched pattern.

There are a few subtle, yet important, differences when fabricating ohmics in deep
and shallow single heterojunctions. Figure 5.3a shows the ‘standard’ ohmic process that
was outlined above applied in a deep heterojunction. The etch is done just past the
GaAs/AlGaAs heterojunction, and the metal deposition is done at a 45° angle. The
etch depth and deposition angle allows the metal to slightly climb the AlGaAs side wall.
When the ohmic is later annealed, the metal will diffuse laterally into the side walls to
provide a good contact to the induced 2DEG or 2DHG. Figure 5.3b shows a slightly
modified ohmic process required for a shallower heterojunction. The etched pit for the
shallow heterojunction is the same depth as the deep heterojunction, even though this
places the bottom of the etched pit far past the GaAs/AlGaAs interface. This is done
to standardize the ohmic fabrication process across heterojunctions of various depths to
make a more reproducible fabrication recipe. Applying the ‘standard’ ohmic process to
the shallow heterojunction would result in all the ohmic metal being deposited below the
GaAs/AlGaAs interface. In order to fix this, we do two things: a plasma etch of the
photoresist and a shallower angle metal deposition. The plasma etch removes some of the
photoresist allowing the metal to climb further up the side walls. The shallower deposition

132



Deep heterojunction Shallow heterojunction

a) b)

NSO NN MMM

Ohmic metal Ohmic metal
Photoresist Photoresist
GaAs GaAs

AlGaAs

AlGaAs

GaAs
GaAs

Figure 5.3: Schematic of ohmic fabrication for deep and shallow single heterojunctions.
a) For a deep heterojunction, a recessed pit is etched and the metal is deposited at a
45° angle so that metal slightly climbs the side walls. b) For a shallow heterojunction,
a recessed is etched to the same depth as the deep heterojunction to provide consistency
between different heterostructure recipes. The resist is slightly etched using a plasma etch
and the metal is deposited at a 60° angle to ensure the metal climbs up all the way to the
heterojunction interface.

angle (60° for the shallow heterojunction) also deposits metal further up the side wall.
Both of these modifications increase the risk of a bad metal liftoff as the metal can climb
too high and subsequently connect the metal on top of the photoresist and within the
recessed pit. Proper tuning of the plasma etch duration is required to ensure that ohmics
are produced with high yield.

After the ohmics are deposited, they must be subsequently annealed in order to diffuse
the metal into the material. Annealing must be done at sufficiently high temperatures in
order to allow the metal to react with the substrate. The reaction causes the ohmic material
to become very rough (particularly for n-type ohmics where the AuGe alloy experiences a
liquid phase transition during the anneal). This causes issues later in the device fabrication
as we need the top gate to overlap the ohmic contact in order to induce a 2DEG right next
to the ohmic (as discussed in Figure 5.2c). If the roughness is bad enough, the insulating
Si0s layer will not prevent shorts between the ohmics and top gate, subsequently killing
the device. In order to reduce the roughness for n-type ohmics, a capping layer of Ni is
added on top of the ohmic before annealing. The Ni layer does not get as rough during
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the anneal which suppresses shorts to the top gate. For p-type ohmics, a capping layer
of SiO, is added before annealing and removed afterwards which keeps the AuBe material
relatively smooth during the entire annealing process.

Detailed fabrication notes for n- and p-type ohmic contacts, along with recipes for all
the other steps in realizing a dopant-free device, are given in the Appendix B.

5.2.2 Magnetotransport in a 2D system

Once a device has been fabricated, it is important to characterize the quality of ohmic
contacts as well as characterize the quality of the induced 2DEG or 2DHG in the het-
erostructure. Ohmic quality can be deduced by a simple 4 terminal voltage measurement
in order to differentiate between the resistance of the ohmic contact and the resistance of
the 2DEG or 2DHG. Characterizing the quality of the induced 2DEG or 2DHG can be
achieved by studying the transport behavior of the device under an perpendicular magnetic
field. At high magnetic fields, transport experiments provide clear measurement signatures
that can only be achieved in 2D systems. Additionally, these measurements can be used
to extract the electron mobility and electron density to quantify the quality of the 2DEG.
It is also important to distinguish that we are only contacting a single 2DEG or 2DHG. A
potential issue with our devices is that additional conduction channels could be induced
in the system. The desired 2DEG is induced at the intended GaAs/AlGaAs interface yet
another is induced at a different interface in the heterostructure. Eliminating these par-
allel conducting channels is desired in order to ensure that we have proper electrostatic
control over the 2DEG of interest. The first half of this section briefly goes over the theory
of electron transport in 2D systems in a perpendicular high magnetic field. The second
half of this section presents magnetotransport experiments done in a 310 nm deep single
heterojunction for both n- and p-type ohmics.

2D electron transport in low magnetic fields

As a starting point, we briefly consider electron transport through a 2DEG in low strength
magnetic fields where quantum mechanical effects can be neglected [118]. To begin, we
assume the 2DEG lies on the 2 — g plane and is subjected to an external electric field along
the z axis, E = E.z, and a perpendicular magnetic field along Zz, B = B,2. We assume
that the 2DEG is significantly larger than the mean free path [y of the system where [y
quantifies how far an electron travels, on average, before encountering a scattering event.
The average amount of time 7 between scattering events is termed the scattering time. [
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and 7 are related as ly = vVayeT Where v,y is the average drift velocity of the electrons.
The electric field along 7 is realized by applying a bias voltage across the 2DEG. The drift
velocity v of the electrons along z and g is

€T

e = —FE,——— 5.1

‘ m* (1 + w2r?) 5-1)
1

Uy = _Uavg (]_ — TW) (52)

where m* is the electron effective mass and w, = eB,/m*. When B, = 0 T, v, = 0,

and v, = —E,u = —FEyeT/m* where u = er/m* is the electron mobility. It is clear from

this definition of u that cleaner material systems with longer scattering times 7 directly
correspond to higher electron mobilities.

The current density is related to the drift velocity as I = —ngypev where nyp is the
electron density. The negative sign accounts for the electron’s Tegative charge. Iis related
to the applied electric field via the conductivity tensor 0 asj= O'E The inverse of the
conductivity is the resistivity 67" = p. Equating j J = —ngpev with j J = 6E and solving for
p yields the longitudinal and transverse resistivities respectively as

Ozx H

p o2, +02, ngpe (5:3)
Os B.
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Measuring both resitivities as a function of B allows us to extract the electron mobility
and density of a 2DEG.

Shubnikov-de Haas oscillations and the integer quantum Hall effect

In the high magnetic field regime, quantum effects come into play [2]. In a 2DEG confined
along the 2 axis, the energy levels are discretized into 2D subbands. Due to the small con-
finement along z, the subband energy spacing is large enough so that at low temperatures,
the 2DEG occupies only the lowest subband. For a 2DEG in a perpendicular magnetic
field (i.e. B = B.Z2), the eigenenergies along Z and gy are the solutions to the Schrodinger
equation

1
2m*

(B +eA)*) = By (5.5)
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where p is the momentum operator and A =V x B is the magnetic vector potential. The
subsequent eigenergies are

E, = hw, (n + %) (5.6)

Each energy subband is referred to as a Landau level, and they are separated by a constant
energy spacing hw.. Accounting for Zeeman splitting of the spin 1 and | states will further
split the Landau levels as

1 1
E, = hw, (n + 5) + §g,uBBZ (5.7)

where + correspond to the 1 and | spin states respectively, g is the electron g-factor, and
g is the Bohr magneton. The number of occupied Landau levels is termed the filling

factor v and can be expressed as

hnap
= 5.8
V=B (5.8)

At low magnetic field strengths and in highly disordered samples, v can vary continuously
with B,. As the material quality increases and B, is sufficiently large, v takes on discrete
integer values as will be discussed in the following paragraph.

In theory, the density of states g(F) for each Landau level is a perfect delta func-
tion, schematically shown in Figure 5.4a In practice, scattering impurities in the material
broaden each Landau level by I'. As B, increases, the Landau levels separate in energy
until they have an energy spacing > I' where individual Landau level peaks appear in the
density of states (see Figure 5.4b). When Landau levels pass above the Fermi level Ep,
electrons occupying those levels depopulate into lower energy states which decreases v.
As the total electron density nop must remain fixed, g(F) for each Landau increases as v
decreases. v takes on integer values when Ef lies in between Landau levels (Figure 5.4b)
and will remain fixed until B, is swept further until Er reaches the next Landau level
(Figure 5.4c). When EF lies within a Landau level (Figure 5.4d), v changes continuously.

The behavior of the sample’s longitudinal resistivity p., depends on whether or not
Er lies within a Landau level. When v is an integer and Ef lies in between Landau
levels, there are no accessible energy levels for the electrons to conduct through when a
bias voltage is applied. As such o,, = 0, and by Equation 5.3, p,, = 0 (we note that at
non-zero magnetic fields, p,, # 0). On the other hand, when E lies within a Landau
level, there are available states for the electron to conduct and scatter into. This produces
a non-zero longitudinal resistivity that reaches a maximum when v is in the middle of a
Landau level (i.e. v & 3.5). Therefore as B, is swept, p,, will alternate between periods of
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Figure 5.4: Schematic showing the formation of Landau levels in a 2D system. a) In a ideal
system, each Landau level is a § function and separated by the cyclotron frequency hw..
A perpendicular magnetic field causes a spin-slitting of each Landau level separated by
gupB,. b-d) In a real sample, disorder in the system broadens each Landau level. Levels
below the Fermi level Er (dashed line) are occupied by electrons. As the magnetic field
increases, the Fermi level shifts and electrons drop into lower energy Landau levels which
decreases the amount of filled Landau levels v.

zero and non-zero resistivity. These oscillations are called Shubnikov-de Haas oscillations.
As B, increases, the maximum value of p,, will increase due to stronger localization of the
electron orbits which suppresses conduction through the sample.

Next, we discuss the behavior of the transverse resistivity p,,. In the low field regime
given by Equation 5.4, p,, is expected to increase continuously with B,. In the high field
regime where the Landau levels are sufficiently separated, p,, takes on quantized values
given by -

Pry = 57 (5.9)
This quantization is called the integer quantum Hall effect. As B, increases and Landau
levels are depopulated, p;, increases as well. Understanding the integer quantum Hall

requires a discussion of edge states using Landauer-Buttiker formalism [24]. The confining
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potential of the sample edge raises the Landau levels above Er near the side wall. Electrons
now have states accessible for conduction through a 1-dimensional edge channel along the
side wall. This conduction occurs even if middle of the sample is insulating when Er resides
in between Landau levels. Electrons propagate in opposite directions on the sample edges
[98]. Because these oppositely propagating channels are spatially separated by the sample
width, back-scattering is greatly suppressed, and the longitudinal resistivity is p.. = O.
Each 1D channel contributes e¢?/h to the total conductance [24], and therefore, the total
conductance caused by these edge states is ve?/h giving the transverse resistivity relation
in Equation 5.9.

As touched on earlier, if the material is too disordered (i.e. mobility u is low), then
level broadening I" will cause Landau levels to overlap. As such v cannot take on discrete
integer values both the integer quantum Hall effect and Shubnikov-de Haas oscillations will
be suppressed. In addition to material quality, the temperature of the system is important
in whether or not these effects are observed. If thermal broadening is comparable to the
Landau level spacing (i.e. kT = hw,.), then electrons can freely jump between Landau
levels. This suppresses any localization effects that would otherwise be present and both
the quantum hall and Shubnikov-de Haas effects will be suppressed. Observing these effects
in a sample is a straightforward way of demonstrating the presence of a 2DEG or 2DHG,
as the effects are quantum in nature. Bulk transport through the material would not
show this behavior. More detailed discussions of Shubnikov-de Haas oscillations and the
quantum hall effect can be found in Frief} [74] and Baer et al. [5].

5.2.3 Experimental results

Here, we characterize both n- and p-type ohmic contacts to a 2DEG and 2DHG respectively.
Both a n-type and p-type Hall bar was fabricated on a 310 nm deep single heterojunction.
The full heterostructure consists of a 10 nm GaAs cap, followed by 300 nm of AlGaAs,
and then a GaAs substrate. This is considered a ‘deep’ heterostructure, and the ohmic
contacts are easier to fabricate. An optical image of a nominally similar Hall bar is shown
in Figure 5.5a. A zoomed image in Figure 5.5b better highlights the different regions of
the device. The ohmic square regions are darker and rougher due to the ohmic annealing
process during fabrication. A top gate (smooth gold) overlaps the ohmics and is used to
induce the 2DEG or 2DHG at the GaAs/AlGaAs heterojunction. During fabrication, a
mesa pattern is etched 350 nm deep past the heterojunction restricting formation of the
2DEG or 2DHG within the mesa area. The mesa prevents accumulation of the conduction
layer underneath the bondpads which could otherwise short together during wirebonding
when preparing the sample for measurement. Figure 5.5a also shows a schematic of the
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circuit for measuring Shubnikov-de Haas oscillations and the integer quantum Hall effect
in the Hall bar. A current source passes a constant current through the two ends of the
Hall bar. Two voltage probes measure the respective longitudinal and Hall voltage drops,
V. and Vj respectively, as we sweep a perpendicular magnetic field B,.

Mesa edge

Top gate

Figure 5.5: Optical image of a Hall bar used to characterize induced 2DEGs and 2DHGs in
a dopant-free GaAs heterostructure. a) Shows the full device layout as well as the general
circuit measurement used to perform Hall measurements of the device. Current is passed
longitudinally through the device and two voltage probes measure the longitudinal V., and
lateral Hall Vi voltage in the sample. b) A zoomed in view of the device structure. Ohmic
contacts, the top gate, and the mesa edge are labelled accordingly.

The first device is a n-type Hall bar with a 300 nm thick SiO, insulating layer measured
at 1.4 K. The results are summarized in Figure 5.6. It can be shown that the measured
Hall resistance Ry = Vi /I = pyy,, which gives a direct relation between the Hall voltage
Vi and electron density nop using Equation 5.4. For measurements of nyp, we set B =
0.1 T. Figure 5.6a shows how nyp changes with the top gate voltage V. Below the turn
on threshold V, = 0.6 V, the top gate voltage is not strong enough to induce a 2DEG,
and nyp = 0 ecm™2. Above V, = 0.6 V, the electron density increases linearly with V
until a maximum value of nyp = 2.85x10 ecm™2. The fact that nop increases linearly
indicates that there is no top gate current leakage to the ohmic contact or the 2DEG
through the SiO, insulating layer. Such leakage can occur when the ohmics are very
rough causing the SiO, to deposit non-uniformly. The longitudinal resistivity p,, can be
expressed as pg = Viz|p=o1/(I(l/w)) where [ and w are the length and width of the
Hall bar. For the Hall bar in Figure 5.5, [ = 480 pym and w = 60 pm. Combining this
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expression with Equation 5.3 allows us to determine the electron mobility p.. Figure 5.6b
shows p. at different electron densities nyp. The mobility increases monotonically until
reaching a maximum value of 7.5x10°% cm?/V's at an electron density of 2.85x 10! cm™2.
As the electron density increases, there is higher Thomas-Fermi screening of background
impurities which increases the electron mobility [4].
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Figure 5.6: Characterization of a n-type Hall bar in a 310 nm deep single heterojunction
at T = 1.4 K. a) Electron density nop versus the top gate voltage V. Below the turn-
on threshold V,;, = 0.7 V, there is no induced 2DEG. Above the turn-on threshold, the
electron density increases linearly with top gate voltage suggesting that there is no leakage
to the top gate. b) Electron mobility p. versus the electron density. The electron mobility
increases monotonically with the density as higher electron concentrations screen scattering
events in the material. At the peak density of nyp = 2.5x10* ecm~=2 the mobility is p. =
4x10% cm?/V-s. ¢) Shubnikov-de Haas oscillations and integer quantum Hall measurements
with a perpendicular magnetic field. Oscillations in the longitudinal resistance R, (purple)
appear at high magnetic fields and correspond to narrow quantized hall plateaus in the
Hall resistance Ry (blue). The corresponding filling factors are given for each oscillation
and plateau.

Now that the mobility and electron density of the 2DEG have been characterized, we
need to check that there is no parallel conduction in the device. This is achieved by
observing the integer quantum Hall effect and Shubnikov-de Haas oscillations. Figure 5.6¢

140



show magnetotransport measurements as the magnetic field is swept from 0 to 5.5 T. The
left axis (purple) plots the longitudinal resistance R,, = V./I and the right axis (blue)
plots the Hall resistance Ry = Vi /I of the device. At high magnetic fields, Shubnikov-
de Haas oscillations oscillations appear with the minima of each oscillation approaching
0 as B, increases. Near the minima of the last three oscillations, narrow plateaus in
Ry appear corresponding to v = 6, 4 and 2 (labelled accordingly in the figure). The
narrowness of the Shubnikov-de Hass minima and the quantum hall plateaus is due to
the high measurement temperature 7' = 1.4 K. The quality of the Shubnikov-de Has and
integer quantum Hall effects correspond directly to the mobility of the material (as this is a
direct indication of the amount of disorder in the sample). Measurements of a lower quality
dopant-free heterostructure (. = 1.68x10° cm?/V-s) were done at T' = 300 mK where the
Shubnikov-de Haas oscillations and quantum hall plateaus are very prominent [171]. As the
mobility we report here is even higher than that work, we believe measurements at lower
temperatures would greatly enhance our features. At the temperatures for this experiment,
kgT is greater than the Zeeman splitting gug B, and odd filling factors are not observable
although a Shubnikov-de Haas oscillation does just begin to appear at around v = 3. As
the Shubnikov-de Haas oscillations essentially reach zero in Figure 5.6¢, we conclude that
there is only a single 2DEG present. If there was a second conduction channel present, then
current flow through that other channel would mask these features in R,, and Ryg. All of
the measurements in Figure 5.6 could only have been achieved using high quality ohmics
where there is no leakage to the top gate, a linear response in current with the applied
bias, and a low contact resistance. A series of I-V measurements (not shown) indicate that
the ohmic contact resistance is very low ~110 €.

The second device is a p-type Hall bar with a 300 nm thick SiOs insulating layer
measured at 1.4 K. The results are summarized in Figure 5.7. Figure 5.7a shows the hole
density pop versus the top gate voltage V; at B = 0.1 T. The 2DHG is induced when V, =
—1.5 V. At the highest top gate voltage V, = —5.5 V, pap = 2.26x 10" cm 2. We note that
the turn-on voltage for the 2DHG is more negative than the corresponding positive turn-on
voltage for the 2DEG (0.6 V). This is not surprising as surface states, device fabrication
variability, and oxide quality (among others) can cause the Fermi level of the surface to be
pinned non-mid gap. As such, the turn-on voltages for 2DEGs and 2DHGs is anticipated
to not be symmetric around V, = 0 V. As with the n-type Hall bar, the linear relation
between psp and V, shows that there is no top gate leakage to either the 2DHG or ohmic
contact. The hole mobility py versus psop is plotted in Figure 5.7b and reaches a maximum
of pp = 0.64x10°5 cm?/V-s. Hole mobility is roughly an order of magnitude less than
electron mobility at equal carrier densities. This is because in GaAs a hole has a larger
effective mass (m* = 0.45m,) compared to an electron (m* = 0.067m.). Because mobility
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o< 1/m*, it is clear that higher effective masses have a lower mobility. One artifact of
lower mobilities is that hole resistances will be higher than their electron counterparts.
Figure 5.7c shows the longitudinal R,, and Hall Ry resistances as the magnetic field
is swept. For the 2DHG, no quantum hall plateaus appear while a Shubnikov-de Haas
oscillation does begin to appear around v = 2; however, this oscillation does not drop fully
to zero longitudinal resistance. The absence of the anticipated R,, and Ry behavior is
due to either the presence of another conduction layer in the heterostructure or due to the
high temperature of the experiment T' = 1.4 K. We already argued that this temperature
was too high to clearly resolve these features for a 2DEG. As holes have a higher effective
mass, all their effective energy scales decrease accordingly. This means holes require an
even lower measurement temperature to clearly resolve these features, typically tens of
mK. Nevertheless, the data in Figures 5.7a-b indicate that we can contact the 2DHG and
tune its density and mobility. A series of I-V measurements (not shown) indicate that our
contact resistance is very low ~500 €.

5.3 Quantum point contacts in dopant-free GaAs sin-
gle heterojunctions

This section explores electron transport through quantum point contacts (QPCs) where the
electrons are confined within a 1D system. Quantum point contacts can be realized either
by using a split top gate or split etched pit to restrict the conductive channel to 1D. QPCs
have been experimentally studied in detail for both intentionally doped [253, | and
dopant-free [230] GaAs heterostructures. As before in the 2D case, electrons confined to a
1D channel occupy discrete energy subbands. Each spin-degenerate subband contributes
exactly 2e%/h to the conductance G of the channel. If the length of the 1D channel is less
than the mean free path of the system, then the electron transport is ballistic (meaning the
electron experiences no scattering events). In this case, the conductance G is quantized
into integer multiples of 2¢2/h. The first half of this section will briefly introduce the
theory behind electron transport through these 1D channels. The second half will present
experiments done with QPCs using an induced 2DEG in a shallow single heterojunction.
In particular, our devices show a large subband spacing of 4.5 meV which allows the
conductance quantization to persist up to temperatures of 4 K.
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Figure 5.7: Characterization of a p-type Hall bar in a 310 nm deep single heterojunction at
T = 1.4 K. a) Hole density psp versus the top gate voltage V;,. Above the turn-on threshold
Vy = —1.5 V, there is no induced 2DHG. Below the turn-on threshold, the hole density
increases linearly with top gate voltage suggesting that there is no leakage to the top gate.
b) Hole mobility p;, versus the hole density. The hole mobility increases monotonically
with the density as higher hole concentrations screen scattering events in the material. At
the peak density of pop = 2.26x10" cm™2 the mobility is p, = 0.64x10° cm?/V-s. c)
Shubnikov-de Haas oscillations and integer quantum Hall measurements with a perpendic-
ular magnetic field. A small oscillation starts to appear in the longitudinal resistance R,
(purple) near a filling factor of » = 2. No quantized plateaus in the Hall resistance Ry
(blue) are seen. This suggests either the measurement temperature is too high to resolve
the oscillations or there is a parallel conducting layer.

5.3.1 Electron transport in 1D

Here, we will derive the expression for conductance quantization in a 1D channel following
Bagwell et al. [0]. To begin, we assume an arbitrary 1D potential denoted as U(x, Vijas)
where x is the position and Vs describes an external bias voltage applied across the
channel. The 1D channel is contacted on both the left and right sides by electron reservoirs
(2DEGs). The bias voltage induces an electric field which drives electrons across the 1D
channel U(z, Vias) with a transmission coefficient T1p. A unit coefficient T1p = 1 implies
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that the electrons experience ballistic transport meaning they experience no scattering
events.

At a finite temperature 7', the current through the 1D channel can be written as

[—e / o(E) Tip(E, Virws) 910(E)
X [f(E—= (1~ eVoias), T) — f(E — 1, T)] dE (5.10)

where v(E) is the electron drift velocity in the +& direction, gip(F) is the 1D density of
states for both spin species, p is the Fermi level in the right electron reservoir, and f is
the Fermi function. The f(E — (g + €Viias), T') term corresponds to current induced by
electrons flowing from the left-to-right electron reservoirs (+2 direction). The f(E — p,T)
term corresponds to current induced by electrons ﬂowing from the right-to-left electron
reservoirs (— direction). In 1D, we have that v( L19E| and g1p(E) = 1|4 | where
k is the wave vector of an electron in the conductlon band Both of these terms exactly
cancel to leave a constant # in the integral. The Fermi function can be rewritten as a
composite probability function

df

f<E—u,T>:[1—@<E—u>]®[ a

Y (p, T)] (5.11)

where © is the Heavyside step function and ® is a convolution over F. This allows the
Fermi term in the integral to be rewritten as

f(E_ <u+€‘/lc)ias)7T> - f(E_M7T) =
O(FE — ) —O(F — (u+ eVhias))] @ { A

J=(E. T)} (5.12)

The left bracket term can be interpreted as an energy broadening due to the applied bias
voltage, while the right bracketed term can be interpreted as an energy broadening caused
by temperature smearing. Physically, this separates the effects of voltage and thermal
broadening on the current implying that they are statistically independent. Combining all
these together leads to the reduced expression

I = Q%TID(E Voias) [O(E — 1) — O(E — (1 + eVijas))] @ [—j—é(E T)}
_ Qeszias Tin(E, Vias) (5.13)
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where T denotes the energy averaged transmission coefficient of the 1D channel U (, Viias)-
The conductance G of the 1D channel is simply G = I /WVias. If T' and Vijas are small such
that they induce relatively little smearing, then the expression reduces to the well known

Landauer formula [158]
2¢?

G - TTID(E’ vbias) (514)
The result shows that when an electron transport is ballistic through 1D channel (T}p = 1),
then each 1D channel contributes exactly % to the overall conductance. If many 1D

channels are accessible for electrons to conduct through then the total conductance is
given by

2¢?
G =" T(E, Viius) (5.15)
0,
where T}; denotes the transmission coefficient of an electron travelling from the i** channel
in the left electron reservoir into the j® channel in the right electron reservoir [246].

There are two things to note in this above derivation. The first is the factor of 2
in the conductance quantization coefficient which arises due to the spin-degeneracy in
the absence of a magnetic field. In a non-zero magnetic field, the 1D subbands are no
longer spin-degenerate, and the conductance quantization instead becomes e?/h for each
1D subband. The second thing is that nowhere did we require an explicit form of U. As
long as U is a 1D potential, then the drift velocity and 1D density of states will cancel as
evident in the derivation.

A useful model of U used to understand conductance quantization is the saddle point

potential [23]
1

1
Ulz,y) =V — im*wixz + ém*wzyz (5.16)
The w, term describes the tunneling energy of electrons through saddle point barrier while
w, describes the transverse confinement of the 1D channel. The 1D channel subband

spacings are given by the harmonic confinement along ¢, E, = hw,(n + 1/2). It can be

shown [180, 43] that the transmission coefficient of this channel is given as
T (E) = ! (5.17)
nm - nml T e*WEn .
B, = 2[E — hw,(n + 1/2) — Vo) /i, (5.18)

when 7" = 0 K. This transmission coefficient takes into account the electron scattering
caused directly by the saddle point potential.
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Figure 5.8: Quantum conductance through a saddle point 1D potential. The Z axis corre-
sponds to energy in the 1D channel and the ¢ axis corresponds to the channel’s conductance
G in units of 2e?/h. Line color corresponds to the ratio of w,/w,. As the ratio increases,
conductance quantization appears.

Figure 5.8 shows simulated conductance curves using the saddle point potential for
different ratios of the confinement and tunneling energies w, /w,. The & axis is in normalized
energy units and line color denotes the w,/w, value. When w, < w, (purple), there is no
quantized conductance. This is because electrons have a higher transmission probability
to tunnel directly through the saddle point barrier rather than conduct through the 1D
channel. The quantized conductance transport that does occur in the system is smeared out
by the electron tunneling events through the barrier. When the transmission probability
of tunneling through the barrier is suppressed (i.e. w, decreases thereby increasing w,/w,),
the quantized conductance is no longer smeared and shows clear conductance plateaus
(yellow). Therefore, conductance quantization is most clearly observable when w, > w,.
The particular values of w, and w, are not important as long as w, /w, > 1 is maintained.
Practically, w, can be decreased by lengthening the 1D channel, creating an effectively
wider tunneling barrier. However, conductance quantization occurs only when the electron
transport in the 1D channel is ballistic and no scattering events occur. As a result, the
physical 1D channel length should not exceed the mean free path [y of the material. Clean
material systems, such as dopant-free heterostructures, have larger [y values. This means
that longer QPC channels can be realized, reducing w, and increasing w, /w, to yield clearer
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conductance quantization.

5.3.2 1D subband spectroscopy of a quantum point contact

Here, we present experimental results for an etched QPC in a 90 nm deep single hetero-
junction. A scanning electron microscope (SEM) image of a nominally similar device is
shown in Figure 5.9a. The QPC gates are composed of a metal bilayer of 10/10 nm of
Ti/Au and were patterned using Electron Beam Lithography (EBL). The region in be-
tween the QPC gates has dimension 500x500 nm. A 20 — 30 nm etch using a solution
of 1:1:20 HyO49:H3PO4:H,0O was done right before the metal deposition so that the QPC
gates are slightly recessed. Ohmic contacts (denoted by squares with a cross in the figure)
on both sides of the QPC were fabricated using techniques described in Section 5.2.1. On
top of the device, 300 nm of SiOy was deposited as an insulating layer and subsequently
capped by a 20/80 nm Ti/Au top gate used to induce the 2DEG. The QPC gates screen
the electric field coming from the top gate voltage and prevent a 2DEG from being induced
under the QPC gates. The top gate only induces a 1D channel in between the opening of
the QPC gates. By applying a voltage to the two QPC gates (denoted Vg, ), the energy of
the 1D channel can be shifted in order to move 1D subbands below and above the Fermi
level. This changes the number of 1D subbands contributing to the total conductance. If
Vipe 1s raised too high (£ 0.75 V), a 2DEG can be induced underneath the QPC gates and
suppress the 1D channel.

Figure 5.9a shows the circuit used to measure the conductance through the QPC.
The sample itself is placed in a liquid Helium cryostat with a base temperature of 1.4 K.
Electrical wires connect the sample to voltage sources and measurement equipment outside
of the cryostat at room temperature. A lock-in amplifier with a reference frequency of 100
Hz supplies an AC bias voltage onto the leftmost ohmic with a peak-to-peak amplitude of
200 pV. The right-hand ohmic is connected to the lock-in’s current pre-amp to monitor
the current I through the device. Line resistance from the cryostat wiring and the ohmic
contacts cause only part of the 200 1V to drop in amplitude before reaching the 1D channel.
Therefore, another ohmic pair, split across the 1D channel, is connected to a voltage pre-
amp in another lock-in amplifier in order to monitor the real voltage drop V' directly across
the 1D channel. The conductance through the 1D channel is found as G = I/V. Voltages
to the QPC gates V. and top gate V, are supplied by a DC voltage source.

Figure 5.9b shows the measured conductance of the 1D channel in units of 2¢%/h as
Vape is swept. The top gate is set to V; = 9.0 V and the sample is at a temperature of
1.4 K. The first 6 conductance plateaus are clearly visible and match well to the expected
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Figure 5.9: Quantized conductance of an etched QPC in a 90 nm deep single heterojunction.
a) SEM image of a 20 nm deep etched QPC nominally similar to the device measured. A
schematic of the measurement circuit is overlaid on the SEM image. A small AC bias is
applied across the 1D channel using a lock-in reference signal and a current pre-amplifier
monitors the current flow through the device. The voltage dropped across the device is
measured using voltage pre-amp fed into another lock-in. DC voltages are supplied to the
QPC gates Vg, and a global top gate V. b) Measured conductance in units of 2¢?/h versus
Vape st T'=1.4 K at V; = 9.0 V. Up to 6 quantized plateaus are seen in the given voltage
range. The kink below the first plateau corresponds to the 0.7 structure readily observed

in QPCs.

integer quantized values. Just below the first plateau is the 0.7 structure, a not yet fully
understood phenomenon that forms near ~0.7x2e*/h. The 0.7 structure is believed to
either be an artifact of a partial spin-polarization at zero magnetic field [252] or due to
a Kondo-like correlated spin state [17]. The turn on of the 1D channel occurs at around
Vape = —0.96 V. While data is not shown here, quantized conductance was observed at
lower top gate voltages all the way down to V;, = 3.0 V.

The QPC is tuned to a high top gate voltage Vj in order to increase the 1D subband
spacing as much as possible. Increasing the top gate voltage pulls the potential along the
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central axis of the QPC lower with respect to the potential along the edges of the QPC,
due to the screening of the top gate electric field by the QPC gates. This change induces an
effectively stronger confinement in the 1D potential which increases the subband spacing.
Increasing V; shifts the turn-on of the channel to more negative QPC voltages. At V, =
3.0 V, the top gate cannot induce a 1D channel due to the screening of the QPC gates
when Vi, = 0 V. There are no 1D subbands accessible for electrons to tunnel through in
the channel. V. must have a positive voltage in order to assist the top gate and open the
channel. When V} is increased all the way to 9.0 V, as in Figure 5.9b, the top gate supplies
enough of an electric field to induce a 1D channel even when Vi, = 0 V. In order to pinch
off the channel, V. must be tuned to negative voltages which is more ideal for operating
a QPC. Electrons are repelled by the negative voltage which makes an effectively ‘tighter’
1D channel with a higher subband spacing.

It is not possible to directly evaluate the subband spacing from a single 1D trace of
the quantized conductance. This is because we do not know the lever arm between the
change in V. and the change in energy of the 1D subbands. The fact that such clear
quantization is observable in our device at 1.4 K indicates that the 1D subband spacing
is at least higher than the thermal energy kgT = 0.125 meV. A general rule of thumb is
that the subband spacing must be higher than ~ 10 kg7 in order to see clear conductance
plateaus. In order to measure the true subband spacing, we need to do an energy resolved
measurement [203]. This is achieved by adding a DC bias voltage Vi;as to the measurement
circuit shown in Figure 5.9a. By sweeping Vi,as, we can bring additional subbands within
the bias voltage window to increase the measured conductance through the channel. As
with the small AC bias, Vi;.s does not all drop directly across the 1D channel due to line
and ohmic contact resistances. A DC voltage probe is used to monitor the actual bias
voltage f/bias dropped across the channel.

Figure 5.10 summarizes the results of a 1D subband spectroscopy experiment done
at 1.4 K. The DC bias Vj;,s was stepped from —15 to +15 mV in steps of 0.2 mV. At
each Viias value, Vo, was swept to measure the quantized conductance plateaus. From
analyzing the G versus Viias and Vg, we can extract the subband spacing. The above
steps were repeated at different V, values to measure how the subband spacing changes
with top gate voltage. Raw conductance data are plotted in Figure 5.10a for V;, = 6.0 V
in units of uS. Starting from the leftmost curve which corresponds to Vis = —15 mV,
each conductance curve is shifted by +4 mV on the Z axis for visual clarity. The rightmost
curve corresponds to Vi = +15 mV. As Vi, is increased, additional conductance plateaus
appear at half-integer quantized conductance values. Additional plateaus are appropriately
labelled by their scalar multiple of the fundamental quantized conductance value Gy =
2¢%/h = 77.4 puS.
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Figure 5.10: Subband spectroscopy measurement of an etched QPC. a) Device conductance
in S versus Ve at different DC bias voltage Viias. Starting at Vi = —15 mV on the left-
most curve, each curve is offset laterally by +4 mV for visual clarity. The rightmost curve
corresponds to Viias = +15 mV. Quantized conductance plateaus are labelled according
to their scalar multiple of the fundamental quantized conductance value Gy = 2¢*/h. b)
Schematic showing how a large DC bias voltage causes fractional quantized conductance
values. When the bias window contains a single subband level, electrons can only conduct
through the second subband from the left reservoir and not the right. ¢) Plot of dG/dVyp.
versus Vias and Vbias when V, = 6.0 V. f/bias is the actual bias applied across the device
which changes as the device resistance changes with V,.. Each conductance plateau is la-
belled according to their correspond integer multiple of the fundamental conductance value
Go. The first subband spacing is found at the vertex of the first conductance diamond. d)
Measured subband spacing versus the top gate voltage V.
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The appearance of these half-integer plateaus can be explained using the schematic
shown in Figure 5.10b. The energy of the 1D channel is tuned such that the first 1D
subband falls below the Fermi level (dashed black line) when Vj;,s = 0 V. We assume that
Vhias 18 applied symmetrically across the 1D channel [203]. When Vi, is very small or zero,
no 1D subbands lie within the bias window. Electrons from travelling in both the left-to-
right and right-to-left directions have the same number of subbands to conduct through,
giving rise to an integer quantized conductance G = Gy value. When Vj,s is increased
to values comparable to the subband spacing, a single 1D subband can be brought within
the bias window. Now, there is an asymmetry in the channel conductance as electrons
in the right reservoir can only conduct through the lowest 1D subband while electrons
in the left reservoir can conduct through two 1D subbands [87, ]. This averages the
total conductance through the channel to be 1/2 of the Gy and 2G, integer conductance
values. By sweeping V}.s and tracking the appearance of these half-integer plateaus, we
can extract the subband spacing.

Figure 5.10c shows a 2D map of dG/dV,,. for the data shown in Figure 5.10a. How-
ever, the § axis corresponds to the bias voltage actually applied across the device Vijas.
When V. is low and the channel is pinched off, the channel resistance is very high and
dominates the total line resistance of the measurement circuit. Therefore, all of the bias
is dropped directly across the channel and Vi;,s ~ Vbias. As the channel opens and the
resistance decreases, Vi reduces as demonstrated by the ‘pinching’ of the 2D data along
the = axis. Black corresponds to flat regions of conductance, and white corresponds to
transitions between conductance plateaus. Diamonds indicate regions where the conduc-
tance is quantized. Along the central axis of the graph, diamonds correspond to integer
conductance values G = 0G,, Go, 2Gg, and 3Gy. The 1D subband spacing can be easily
determined by finding Visas at the top of an integer conductance diamond (green star). For
this data set, we measure a subband spacing ~4.2 meV.

The subband spacing can be modified using the top gate voltage. By changing the
top gate voltage, we directly control the shape of the 1D channel potential. When V} is
small, the 1D potential will be shallower with sloped side walls which create an effectively
wider lateral confinement (w, in Equation 5.16). When V/ is large, the 1D potential will be
deeper with sharper side walls creating a tighter 1D channel constriction. Therefore, larger
Vy values will increase the subband spacing. Figure 5.10d shows data for the measured
subband spacing in our etched QPC device at four different V, values. As V increases,
the subband spacing increases until converging towards a maximum value of ~4.5 meV
near V, = 9.0 V. We could not go to higher top gate voltages due to charging of the SiO,
insulator layer. A subband spacing of ~4.5 meV for a etched QPC is higher than any
published result for dopant-free devices [173] but is far from the current record of ~20
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meV for modulation doped devices [153]. This high of a subband spacing easily allows for
observable conductance quantization at 4 K. We believe the device could be even further
optimized to significantly raise the subband spacing. The etch was very shallow, only
20 — 30 nm. A deeper etch would increase the lateral confinement of the 1D channel
thereby increasing the subband spacing. Additionally, the device measured had a 500x 500
nm physical gate dimension; however, by making the channel width narrower, the subband
spacing could also be further increased.

5.4 Single electron pumping in dopant-free GaAs sin-
gle heterojunctions

The previous section explored quantized conductance in a QPC. Here, in this section,
we study quantized current using a one-parameter single electron pump (SEP). In a SEP,
electrons are moved through the device in response to a AC driving signal. The current flow
through the device is given as I = nef where f is the frequency of the driving signal, e is
the electron charge, and n is the number of electrons moved per driving cycle [125]. Single
electron pumps have been realized experimentally a number of different ways including
one-parameter tunable-barrier pumps [123, 81], 2-parameter turnstile pumps [152, 188, 33],
arrays of metallic islands [135], Josephson junction arrays [196, 265], or surface acoustic
waves [238, ]. Such devices are particularly interesting for metrological purposes as a
method for standardizing one of the base SI units, the ampere. Originally, the ampere
was defined as the amount of force generated between two infinitely long conducting rods
placed 1 m apart. As this is difficult to realize in practice, the ampere was redefined in
May 2019 as the number of electrons that pass a given point in 1 second (specifically 1
A corresponds to 6.241x10'® electrons travelling past a given point in 1 second). This
definition corresponds more intuitively to what an ampere means and is more practical to
realize in a lab setting. However, the electron charge is very small, and precisely counting
individual electrons over an extended period of time is challenging. In order for single
electron pumps to be useful for metrology, the pump must have a high operating frequency
f to produce large measurable currents as well as low error rates per driving cycle (i.e. only
1 electron is moved per cycle with very high fidelity). Aside from metrological purposes, a
single electron pump with high operating frequency and low error rates could have practical
usage in optoelectronics applications. A device which deterministically pumps an electron
can be integrated with a PN junction to realize a on-demand single photon source as
proposed for both tunable-barrier pumps [237] and surface acoustic waves [71, 34]. Such a
device has recently been demonstrated experimentally using surface acoustic waves [110].
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Indistinguishably of the emitted photons from a single-photon requires the photon energy
spread to be very narrow. For these types of novel photon sources which combine SEPs
and PN junctions, the photon energy spread is directly related to the energy spread of
the pumped electrons. One-parameter SEPs (which are the focus of this section) have
demonstrated energy spreads of AE = 1.8 meV [257], but theory predicts that this could
be reduced all the way to a few peV [161].

a)

Figure 5.11: SEM image of a tunable-barrier single electron pump on a 90 nm deep single
heterojunction. a) Two QPC gate with voltages Vg, can be used to realize a 1D channel.
The 1D channel is contacted on both sides by an induced 2DEG using a global top gate
deposited on top the device (not shown in the image). b) Zoomed view showing the
active pump device. Entrance and exit barrier gates are used to form a dynamically driven
quantum dot. By RF modulating entrance barrier voltage Ve, electrons are collected from
the source and pumped into the drain resulting in a quantized current I = nef where n is
the number of pumped electrons per RF cycle and f is the RF frequency.

One-parameter tunable-barrier SEPs have demonstrated the highest operating frequen-
cies [277] and lowest error rates at frequencies > 100 MHz (0.2 ppm [213]) out of all types of
single electron pumps. Higher operating frequencies are preferred as they result in larger
quantized current magnitudes which are easier to measure. For the devices considered
in this Section, the SEP geometry consists of a quantum dot. A 1D channel formed by
QPC gates provides lateral confinement and two additional gate electrodes form additional
tunnel barriers to realize the quantum dot. A SEM image of a fabricated SEP device is
shown in Figure 5.11a where the QPC gates have corresponding voltages V. similar to
the devices studied in Section 5.3. The device was fabricated on a 90 nm deep dopant-free
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GaAs/AlGaAs single heterojunction. The 1D channel is contacted by 2DEGs induced on
both sides of the device which provide electron reservoirs. Figure 5.11b is a zoomed in
image of the device highlighting the additional tunnel barrier gates where electrons will
enter and exit the pump.

The operation of the single-parameter tunable-barrier pump is depicted schematically
in Figure 5.12. In the upper left panel is a rough depiction of the entrance and exit
gates where an RF signal is applied to the entrance gate. For each panel, the black line
corresponds to the potential landscape of the device, the dashed line is the Fermi level in the
adjoining 2DEGs, and blue circles are individual electrons. The close physical proximity of
the entrance and exit gates means there is inherent cross coupling of the gate voltages in
the device. There are four stages of electron pumping during a single RF cycle. The start
of the cycle is the loading stage. The entrance tunnel barrier is lowered below the Fermi
level and electrons are ‘scooped’ into the QD potential. During the back-tunneling stage,
the entrance potential begins to rise. Each electron has a corresponding back-tunneling
rate I'; describing how long it takes to tunnel into the left electron reservoir. Given that
I'; < T';4q, higher energy electrons tunnel out of the QD while the lower energy electrons
remain. The remaining electrons are then captured as the entrance barrier increases and
reduces the remaining back-tunneling rates. In the ejection stage, the tunnel barrier gate
is brought sufficiently high so that the remaining electron’s energy rate is higher than the
exit barrier gate and the electron is ejected into the right electron reservoir. The cycle is
then repeated.

The Fermi level in both the source and drain electron reservoirs are the same, meaning
there is no external bias applied across the device. The reason why current still occurs
even in the absence of a bias voltage is because the electrons are pumped non-adiabatically
through our device. A SEPs ability to produce quantized current with a high accuracy is
determined in the back-tunneling stage. When the ratio I'y /Ty > 1, only a single electron
will be captured each pumping cycle with high probability. In the limit where I'; = oo
and [y = 0, the device would pump a single electron with perfect fidelity every RF cycle.
Deviations away from those ideal values lower the pump accuracy. The ratio I'y/T is
affected mainly by two device parameters: the width of the tunneling barriers and the
energy level spacing of the QD (which is determined by the charging energy) [130, 69]. A
wider tunnel barrier will reduce I'y and a higher energy spacing will increase I'y.

The number of electrons ejected per RF cycle is dependent on how many electrons are
captured and ejected during those respective stages. Both the entrance and exit gates have
a corresponding DC voltage component used to tune the SEP device. By adjusting the
DC offset on the entrance gate, more or fewer electrons can be captured in the respective
stage. Similarly, by adjusting the DC voltage on the exit gate, the exit tunnel barrier
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Figure 5.12: The four stages of a tunable-barrier pump operation. a) Loading stage.
Schematic of the circuit and gate electrodes controlling the pump where an RF signal is
applied to the entrance gate. During the loading stage, the entrance barrier is brought
below the Fermi level Er (dashed black line) and many electrons load into the dot. b)
Back-tunneling stage. As the entrance gate is raised, electrons back-tunnel into the
left electron reservoir. Higher energy electrons have faster back-tunneling rates I';;; > T';.
c) Capture stage. After back-tunneling only a small integer number of electrons are
captured in the quantum dot as the entrance barrier is raised. d) Ejection stage. When
the entrance barrier is raised sufficiently high, the electron energy is increased beyond the
exit barrier height, and the electron is ejected from the quantum dot. The entrance barrier
is then lowered back to the loading stage.
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can be shifted lower and higher to allow more or fewer electrons to be ejected each RF
cycle. This allows the n in the I = nef current to be directly tuned by Ve and V. We
emphasize here that V., has both an RF and DC voltage component while V,;; has purely
a DC voltage component. A typical model used to describe the back-tunneling dynamics
during the non-adiabatic electron pumping is the universal decay cascade model [130]. The
model provides a formula for fitting quantized current plateaus where

I/ef = Z exp[—exp(—aV + InT")] (5.19)

1=0

where V' is a swept gate voltage (either Vi, or Ve but is typically Vi), I'; is the back-
tunneling rates, and a is a fitting parameter [130]. The fitted ratio § = In(I';/T) is
a useful figure of merit when discussing the quality of the SEP as ¢§ is related to the
predicted pumping accuracy [130, 81]. Of course, the real pumping accuracy is the more
consequential value; however, measuring the accuracy requires lengthy experiments at a
fixed pumping configuration in order to average out noise in the measurement setup. The
highest accuracy SEPs are measured at cryogenic temperatures where the thermal energy
is much less than the charging energy. SEPs in silicon have been shown to operate up to
17 K [279] while in GaAs temperature most pumps are operated at cryogenic temperatures
limited to <300 mK [123, &1, 73]. By increasing the charging energy F. of the quantum
dot, SEPs can be operated at higher temperatures as long as kgT < FE..

5.4.1 Experimental results

Here we experimentally realize a SEP in a 90 nm deep single heterojunction. While many
SEPs have been realized in intentionally doped GaAs heterostructures, to our knowledge,
this is the first realization of a SEP in a dopant-free GaAs system. The device geometry
is similar to that shown in Figure 5.11. The QPC gates are deposited directly onto the
surface, followed by a 30 nm layer of SiO,, and followed again by the entrance and exit
tunneling gates. These fine metal gate layers were patterned using EBL. The dimensions of
the QPC channel are 1000x400 nm and the inner edge-to-edge separation of the entrance
and exit gates is 400 nm. This results in an effective quantum dot size of 400x400 nm
according to the physical gate dimensions. Ohmic contacts were fabricated as described
in Section 5.2.1, and a 300 nm layer of SiO, was deposited on top of the device and
subsequently capped with a metal top gate. The top gate both induces the 2DEGs on
either side of the device as well as helps shape the quantum dot potential. The source
reservoir is grounded, and the drain reservoir is connected to a current pre-amplifier to
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monitor the pumped current. All the Ve, Vewt, and V, (top gate) voltages are supplied
using a DC voltage source. The entrance gate is connected to a bias tee so that applied
the entrance voltage Ve = Vac sin(27 ft) + Vpe has an AC component in addition to a DC
offset. Throughout this section, we will refer to the DC component as simply Vs and the
RF component of this signal as V,,, corresponding to the peak-to-peak voltage amplitude
of the signal.

a) f = 100 MHz b) f = 500 MHz
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Figure 5.13: Single electron pumping at 7' = 1.4 K for different driving frequencies f. Fits
of the first plateau to the electron cascade model (yellow) are done for panels a)-c). a)
f =100 MHz. Fitting gives § = 12.0. b) f = 500 MHz. Fitting gives § = 16.2. ¢) f =
850 MHz. Fitting gives 6 = 12.8. d) f = 900 MHz. The kink below the first plateau
occurs when the electron is non-adiabatically excited to a higher orbital state during the
back-tunneling stage. Exciting the electron increases its back-tunneling rate allowing it to
escape which suppresses the current.

Figure 5.14 shows measurements of electron pumping at 7' = 1.4 K for driving frequen-
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cies from 100 MHz up to 900 MHz. The % axis corresponds to the exit barrier gate voltage.
On the left y axis the raw current is plotted and the right ¢ axis converts the raw current
to the average number of electrons pumped per RF cycle (n). Dashed lines are added for
visual clarity to highlight where the current plateaus are expected to appear. For all data
sets, V, = 6.0 V and Vg, = 0.18 V. For the 100, 500, 850, and 900 MHz data sets, V¢ =
0.80 V,0.87V,0.94 V,and 0.90 V, and V,, = 0.7V, 1.0 V, 1.6 V, and 1.75 V. At higher
driving frequencies, transmission line losses are greater. To compensate for these losses,
Vpp 1s increased with f in order to maintain the same effective peak-to-peak voltage at the
actual device. In all figures, the current is quantized at expected integer values of (n).
The highest quality plateaus occur at (n) = 1 and reduce in quality as (n) increases where
the back-tunneling ratios I';;1/T"; are lower. In the 900 MHz data set, there is a kink in
the current quantization just below the the first plateau. The kink arises because at high
frequencies, the electron in the ground orbital state is non-adiabatically excited to a higher
energy orbital state due to the fast modulation of the potential [132, ]. When excited,
the back-tunneling rate increases and the electron tunnels back into the source reservoir
causing a decrease in the averaged pumped current. The magnitude of the current drop in
the kink is directly proportional to the probability of inducing an excitation.

For all data sets, the first plateau (except for f = 900 MHz) is fit to Equation 5.19 to
extract §. The resulting fit and corresponding ¢ value is overlaid on the figure. Using the
fit, we can estimate the expected error €, of the SEP which is found as €, = 1 — (ng) at
the inflection point of the fitted first plateau [130]. For f = 100, 500 and 850 MHz, €, ot =
74.8, 1.87, 41.5 ppm. While these are only estimated values, we expect the true pump
error to be within an order of magnitude of €, ;. Previous experiments even suggest that
€pest 18 actually an overestimation of the true pumping accuracy [82, 21].

Figure 5.14 shows a 2D map of single electron pumping at f = 500 MHz taken at T =
1.4 K. Other device parameters are Vypo = 0.18 V, V;, = 6.0 V, and V,, = 1.1 V. The 2
and ¢ axes corresponds to Vi, and Vg respectively. The raw current data is plotted in
Figure 5.14a, and |dI/dV.| is plotted in Figure 5.14b to emphasize the current plateaus.
The plateaus in Figure 5.14b are labelled according to the number of pumped electrons per
RF cycle. The plateaus are very stable in voltage space: 0.1 V wide with respect to Vit
and > 0.35 V with respect to V.. The slant in the plateau boundary lines is attributed
to RF coupling between the entrance and exit gates mediated through the QPC gate.

There are three things could be done to improve the accuracy of the measured SEP
without any modifications to the current device design. The first is operating a lower
cryogenic temperature. All the data taken here was done at T'= 1.4 K. Going to a dilution
fridge would enable tens of mK temperatures which would reduce thermal broadening
effects on the pumping accuracy. The second improvement is to apply a large perpendicular
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Figure 5.14: 2D pumping map of a single electron pump at 7' = 1.4 K. The driving
frequency is f = 500 MHz. Other device parameters are Vo = 0.18 V, V, = 6.0 V,
and V,, = 1.1 V. a) Raw pumped current data showing three current plateaus. b) Plot
of the derivative |dlpump/dVent|. Current plateaus are labelled according to the number
of electrons pumped per RF cycle. The pronounced slope of the transition line between
plateaus is attributed to RF coupling between the entrance and exit gate voltages.

magnetic field during pumping. While the full underlying mechanism is not understood,
large magnetic fields have been seen to enhance pump accuracy in GaAs SEPs [273, 124]. Tt
is typically attributed to a increased sensitivity of the tunnel rate to the varying potential
landscape as well as a suppression of non-adiabatic excitations of the last electron to higher
energy states [09]. There does appear to be a limit in the benefits of a higher magnetic field
as [161, 69] both show almost no improvement in pump accuracy above B = 12 — 15 T.
The last improvement to improve pump accuracy is to use shaped RF pulses. So far
during our experiments, we have used a regular sine wave for the RF signal. At higher
frequencies, non-adiabatic excitations can cause electrons to tunnel out of the dot during
the back-tunneling stage which increases the pumping error [132]. An arbitrary waveform
generator can be used to shape the RF pulse so that a larger portion of the clock cycle is
spent in the back-tunneling and capture stages while less time is spent during the ejection
stage [77, 81]. The overall clock cycle of the pulse still remains f, so the overall pumped
current has the same magnitude I = nef. Such shaped pulses have shown significant
improvements of the pumping accuracy by orders of magnitude [31]. Even without these
improvements, the data shown in Figure 5.13 for f = 500 MHz suggested an estimated
pump error rate €, ¢ = 1.87 ppm which would be comparable to the state of the art pumps
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in GaAs operating at similar frequencies. In Giblin et al. [31], a pump error of ¢, = 1.2
ppm was achieved at f = 1 GHz using all three of the above mentioned improvement.
Another experiment in Stein et al. [213] demonstrated a pump error of ¢, = 0.2 ppm at
f = 545 MHz using all of the above improvements as well.

In addition to these three improvements, higher pump accuracy can, in principle, be
obtained by better tuning of the gate voltages used to control the SEP. One advantage of
dopant-free SEPs over their modulation doped equivalents is the ability to strongly gate
the device. Both the QPC gates and top gate can be used in conjunction with the entrance
and exit barrier gates to better control the shape of the SEP’s potential landscape. Such
tunability has proven to be very effective in improving pumping accuracy in silicon SEPs
by shaping the potential to increase the QD charging energy [231]. However, tunability
comes at the cost of increasing the dimension of the control parameter space, making it
more difficult to find the most optimal tuning regime where the SEP accuracy is highest. In
general, we find for our devices that pump accuracy improves when Vj, is largest and Vi, is
smallest. The former condition pulls the quantum dot potential lower which increases the
charging energy of the quantum dot (analogous to the QPC subband spacing results from
Section 5.3). The latter condition serves to constrict the 1D channel which again raises
the charging energy of the quantum dot. Increasing the charging energy will increase the
ratio of the back-tunneling rates 4.

We conclude our discussion of SEPs by demonstrating single electron pumping at higher
temperatures. SEPs in silicon have demonstrated the highest pumping temperatures up
to even 36 K using donor-based QDs [159]. High temperatures in GaAs are more difficult
due to the fact that the 2DEG is induced deeper in the substrate where the gates are
more weakly coupled to the potential landscape and the doping layer screens the gate
electrodes. The device measured is one similar to that in Figure 5.11 with the exception
that the entrance and exit gates are shorter in order to reduce RF coupling between the
gates. Additionally, this device was fabricated on a 75 nm deep single heterojunction. The
device temperature was varied from 1.4 K to 5 K. The device parameters are Vg, = 0.15
V, Veny = 1.0 V, and V;, = 5.0 V, and V,, = 1.2 V. The RF pumping frequency is f =
150 MHz. The ohmics on this device were very high in resistance (>100 k2) and low
quality which introduced much more noise into the current data. Traces of I versus Vi
are shown for five different temperatures. At lower temperatures, the current plateaus are
well defined, and for 7' = 1.4 K, the first plateau has a fitted § = 11.4 (€ st = 42.5 ppm).
Even all the way up to T' = 5 K, the first plateau is still noticeable and gives a fitted 6 =
5.9 (€pest = 20100 ppm). Above these temperatures, the first plateau is too smeared to
resolve any pumping. While pumping at 5 K is evident, the pump accuracy is obviously
lacking; however this could be increased using the techniques discussed in the previous two
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Figure 5.15: Electron pumping dependence on temperature. This device is a slightly
modified device structure of the one shown in Figure 5.11 (see main text for details). The
device parameters are Vg,e = 0.15 V, Vopy = 1.0 V, and V, = 5.0 V, V,, = 1.2 V, and
f =150 MHz. At T'= 1.4 K (purple) the plateaus are best defined. As the temperature
increases up to 7' = 5.0 K (yellow) the plateaus are thermally broadened and the current
is less quantized. The current curves are noticeable noise because the ohmics of this device
were low quality with high contact resistance.

paragraphs.

5.5 Conclusions

In this chapter, we explored electron transport in dopant-free GaAs. We first introduced
dopant-free GaAs heterostructures and explained their utility for studying mesoscopic
physics. Next, we showed why device are difficult to fabricate with these heterostructures
due to complications in making ohmic contacts to an induced 2DEG. Hall bar devices on
a 310 nm deep heterostructure are fabricated using both n- and p-type ohmic recipes and
are measured to study the ohmic contact quality as well as study the induced 2DEG and
2DHG quality. For both the n- and p-type Hall bar, the ohmics have a low contact resis-
tance and do not leak to the top gate. The lack of any intention dopants in the material
enables high electron and hole mobilities to be realized up to 7.5 million cm?/V-s and 0.64
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million cm?/V-s. Shubnikov-de Haas oscillations and quantum hall measurements suggest
that show that only a single 2DEG layer is contacted in the n-type Hall bar. Lack of
oscillations in the p-type Hall bar suggest that the measurement temperature is too high
to resolve oscillations. Next we moved to a 1D system and studied quantized conductance
through a shallow etched QPC. The first 6 conductance plateaus are seen at at 7' = 1.4 K.
Subband spectroscopy measurements show that the device’s subband spacing can be tuned
by the top gate voltage V;;, and reaches value of 4.5 meV when V;, = 9.0 V. We conclude the
dopant-free experiments by studying a single electron pump, a device capable of producing
quantized current in steps of I = nef where n is the number of pumped electrons per
RF cycle and f is the driving frequency. Measurements show current plateaus indicating
single electron pumping at 7" = 1.4 K with driving frequencies of f = 100 MHz up to
900 MHz. Fits to the electron cascade model indicate that the device tuning at f = 500
MHz yields the highest single electron pumping accuracy with an estimated pump error
rate of 1.87 ppm which is comparable to current state of the art electron pumps in GaAs.
The tunability of the single electron pump allows to realize large quantum dot charging
energies so that single electron pumping is visible up to 7" = 5 K. By lowering the pump-
ing temperature, applying a perpendicular magnetic field, and shaping the RF pulse, the
accuracy of these devices can be significantly improved.
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Chapter 6

Conclusions

Single spins in silicon quantum dots are a promising candidate for building a scalable
quantum processor due to their compact size, high coherence times, and ease of integration
into existing microchip fabrication technology. Chapter 1 introduces these devices by first
discussing electron transport, showing how electrons can be loaded onto and off of the
dot by appropriate electrostatic tuning. The chapter continues with an introduction of
using single spins in quantum dots as qubits by discussing qubit initialization, single spin
rotations, two spin rotations, and spin measurement.

Chapter 2 of this thesis proposes a scalable network architecture for single spin quantum
dot qubits in silicon. Local nodes of quantum dots are spatially separated on the order
of microns to create ample space for the high density of physical wiring needed to control
each quantum dot. Nodes are connected by electron shuttling lines in order to facilitate
entanglement distribution between nodes in the network. Each node consists of just seven
quantum dots used to host a data qubit, two ancilla qubits, two measurement qubits, and
a shuttled qubit. The network architecture is mapped to a surface code, and an explicit
circuit for realizing stabilizer operations amongst four local nodes is presented in terms of
fundamental quantum dot gate operations. A key element of the stabilizer circuit, shuttling
of one electron from an entangled singlet state from one node to a neighboring node, is
simulated. Electron shuttling is achieved by sequential tunneling of an electron through a
quantum dot chain. We find that an electron can be shuttled adiabatically across a micron
in tens of nanoseconds, meaning shuttling is not a bottleneck to the overall processor speed.
The small but non-zero spin orbit coupling in silicon causes a Stark shift of the electron’s
g-factor during shuttling which induces a Z rotation of the shuttled spin state. However,
proper electrostatic tuning of the second electron’s g-factor can completely suppress this
rotation enabling high fidelity shuttling. Error models for the fundamental gate operations
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of the stabilizer circuit are proposed and used to estimate the error thresholds for the
network architecture. Dephasing errors due to electron shuttling are found to have the
highest error thresholds. The strictest error thresholds are for entangling v SWAP errors,
which are almost an order of magnitude less than single qubit errors.

Chapter 3 expands on the electron shuttling simulations of Chapter 2. Electrons are
shuttled by sequential tunneling through a linear chain of quantum dots where each quan-
tum dot is formed using a simplified gate geometry. An algorithm for finding constant-
adiabatic shuttling pulses is introduced, which allows for a systematic comparison of shut-
tling speeds and fidelities as the system Hamiltonian parameters are varied. Self-consistent
3D Poisson calculations are done to approximate how the electrostatic potential of the
quantum dot device varies as a function of applied gate voltage. These potentials are used
to simulate charge shuttling through a triple quantum dot chain. We show that both the
shuttling speed and fidelity are directly proportional to the adiabatic parameter ¢ main-
tained throughout the shuttling pulse. These constant-adiabatic shuttling pulses are then
used to optimize the quantum dot geometry in order to maximize the shuttling speed. We
find that speeds of ~300 nm/ns are achievable using realistic fabrication constraints for
the device geometry. We switch to an effective Hamiltonian representation where valley
and spin degrees of freedom can be included into the shuttling simulations. One electron
from an entangled singlet pair is shuttled from one dot to another. High fidelity spin shut-
tling can be achieved when the Zeeman splitting is less than the interdot tunnel coupling
strength. In order to achieve high fidelity shuttling, the valley phase difference between
neighboring quantum dots must be below some threshold value, determined by the ratio
of the tunneling and Zeeman energies. In the high fidelity parameter space, the shuttling
infidelity is due to a coherent rotation of the shuttled spin, caused by the effective mag-
netic field axis induced by the spin-orbit Hamiltonian terms. The coherent rotation is
correctable, in principle, by single spin rotations applied after shuttling.

Chapter 4 lays the groundwork towards simulating another part of the network archi-
tecture presented in Chapter 2, two-spin quantum gates implemented using the exchange
interaction. We present a modified LCHO-CI approach for calculating the many-electron
energy spectra of a general quantum dot network. Single electron orbitals are approximated
using an orthogonal basis of harmonic orbitals centered at the origin of the network. Us-
ing an orthogonal harmonic orbital basis allows for numerically quick evaluation of the
Coulomb interactions, which are required for the LCHO-CI calculation. The accuracy of
the modified LCHO-CI calculation can be improved by optimizing the confinement energy
hw of the harmonic orbital basis. We present a method for optimizing w without signifi-
cantly impacting the total LCHO-CI computation time. The modified LCHO-CI method
is used to study charge noise sensitivty of a silicon double quantum dot device. The full
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device structure is simulated using a self-consistent Poisson calculation to study how the
physical device parameters, such as plunger gate size, tunneling barrier size, and SiO,
thickness, impact the charge noise sensitivity. By modelling the system using an effective
Hubbard Hamiltonian, we find that geometries which increase the dot charging energy and
decrease the gate lever arm will reduce the device’s sensitivity to charge noise. For the
device geometry studied, this means that smaller plunger gates, wider tunneling gates, and
thicker SiO, will produce less sensitive devices.

Chapter 5 departs from the previous chapters which focused on applied theoretical
studies of silicon double quantum dot devices. In Chapter 5, we experimentally study elec-
tron transport through devices fabricated in dopant-free GaAs heterostructures. One of
the most difficult parts of realizing these devices is fabricating high quality ohmic contacts.
By depositing the ohmic material in an etched recess pit, the ohmic material can diffuse
laterally through the material and not screen the top gate used to the induce a 2DEG.
Magnetotransport experiments, done using a Hall bar fabricated on a 310 nm deep single
heterojunction, show that we can realize both n- and p-type ohmic contacts. Carrier mo-
bilities and densities can be tuned using the top gate, and we measure mobilities up to 7.5
million cm?/V's for electrons and 0.64 million cm?/V-s for holes. Next, we move to a 1D
transport system and study an 20 nm etched QPC in a 90 nm deep single heterojunction.
A 1D subband spacing of 4.5 meV is measured, enabling clear conductance quantization
at T'= 1.4 K. Lastly, we move to a 0D system and study a dynamically driven quantum
dot acting as a single electron pump. The device is fabricated on a 90 nm deep single
heterojunction. Current quantization is observed at 1.4 K and fits to an electron cascade
model suggest single electron pumping errors on the order of 1.87 ppm at a driving fre-
quency f = 500 MHz. The ability for us to finely tune the single electron pump using the
top gate and QPC gates, allows the quantum dot to have a high charging energy enabling
quantized pumping up to 7' = 5 K.

6.1 Outlook and future work

Much of this thesis focuses on work towards simulating a node or even a small group of
nodes in the network architecture proposed in Chapter 2. One of the key next steps is to
experimentally realize the basic building blocks of the network architecture: a 7 dot node
and electron shuttling over ~ 1 um. Silicon quantum dot devices consisting of six [21] and
up to twelve [289] quantum dots have been demonstrated implying that realizing a single
node is within current experimental reach. Single qubit gate and two qubit gate fidelities of
>0.999 [280] and 0.98 [116] respectively have been achieved experimentally, moving silicon
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quantum dot devices closer towards fault tolerance thresholds required for operating the
network architecture.

Both charge shuttling [181] and spin shuttling [285] have been demonstrated experi-
mentally in quantum dot devices; however, the spin shuttling experiment only shuttled
an electron repeatedly between two quantum dots. The spin-orbit coupling causes a fixed
spin rotation during shuttling from one dot to the next. Shuttling in the other direction
would induce the same rotation but in the opposite direction. Repeatedly shuttling a spin
between two dots would cancel the effective rotation and does not show the impact that
spin-orbit coupling has on shuttling through a long quantum dot chain. Therefore, it re-
mains to be seen how important the spin-orbit coupling is experimentally in longer chains
of dots. Additionally, all the demonstrations of shuttling use a standard, yet complicated,
gate geometry to define the quantum dots. In Chapter 3, we showed that shuttling can be
realized with a simplified gate geometry that does not use any tunnel barrier gates. Work
has been done towards realizing quantum dots defined using the simplified gate geometry
[217], yet experimentally demonstrating electron shuttling in such a device remains to be
seen. A simplified gate geometry is critical to reduce the total control line density in the
network architecture.

The modified LCHO-CI method presented in Chapter 4 offers a numerically efficient
method for quantitatively accurate calculations of J in general quantum dot networks. A
key take away of the modified LCHO-CI method is the ability to map out the individual
exchange interaction pairs J;; as a function of the applied gate voltage ‘7, creating a
J;j look-up library. Interpolation can be used to find J;; values at arbitrary gate voltage
configurations which would enable both real time exchange simulations of a device in terms
of V as well as the study of optimal control techniques for improved robustness to charge
noise. In real quantum dot devices, even when fabricated using the same physical gate
pattern, local disorder of the either the physical metal gate or material system causes
small amounts of disorder in the electrostatic potential. An interesting question is if
optimal control pulses can be designed to be robust to this potential disorder. For the
device simulations of charge noise sensitivity done in the latter half of Chapter 4, a very
simple device geometry was assumed. Different geometries such as asymmetric [103]; triple,
or quadruple quantum dots would be interesting to explore using the techniques adopted
in the chapter. We only considered the impact of charge noise on a single spin qubit,
but it would interesting to explore charge noise sensitivity of these devices for other qubit
encodings, such as exchange-only qubits [58, 221].

The experiments done in Chapter 5 lay the groundwork for numerous future experimen-
tal studies of dopant-free GaAs devices. The ability to realize both a 2DEG and 2DHG in
dopant-free GaAs directly leads into realizing lateral PN junctions with these heterostruc-
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tures. We have actually already realized such devices experimentally in conjunction with
the QPD group at the University of Waterloo [237], although we did not discuss these
experiments in this thesis. Integrating the single electron pump (SEP) device presented
in this thesis with a lateral PN junction would create an all-electrical, on-demand, single
photon source as proposed in [237]. A more exotic possibility of an on-demand photon
source involves using a leviton electron source. When a Lorentzian shaped pulse is applied
directly to an ohmic contact, it is possible to generate a single electron soliton (leviton)
whose wave function does not spread out as it propagates [134, 60]. The leviton source
can replace the role of the SEP in the lateral PN junction to inject few (or one) electrons
on-demand into a p-type region. Such a device, if it works, would have the advantage of
simpler and more robust operation compared to the complex gate layout and parameter
space of the traditional SEP. With a 20 nm etched QPC device we were able to realize
a subband spacing of 4.5 meV which roughly suggests that quantized conductance could
be observed near T' =~ 4.5 meV /10 kg ~ 5 K. Pushing the operating temperature further
towards the current GaAs record of T = 30 K [153] requires a larger subband spacing.
This could be achieved by etching a deeper QPC, bringing the 2DEG closer to the surface
with a shallower heterojunction, and reducing the separation between QPC gates. There
are fabrication considerations for each of those three improvements; however, higher QPC
operating temperatures are certainly possible. Raising the QPC operating temperature
will also raise the operating temperature of the SEP above 1.4 — 4 K as the QPC dimen-
sions are utilized in the SEP gate layout. Before such experiments are done, we need to
first perform measurements of the true pumping error in our devices and compare with
the theoretical estimates from the electron cascade model. Another promising research
avenue lies in realizing single hole pumping in GaAs using a tunable-barrier device. Single
hole pumps require smaller gate dimensions and colder operating temperatures, due to
the hole’s higher effective mass compared to the electron in GaAs. The tunability of our
pump design, as well as our ability to realize p-type ohmics, mean that hole pumping may
be possible. Single hole pumping using a tunable-barrier pump has been demonstrated in
silicon [278] but not yet in GaAs.
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Appendix A

Elliptical harmonic orbital Coulomb
matrix elements

In this Appendix we generalize the formula for the Coulomb matrix elements (CMEs)
derived in Section 4.2.2 of the main text for the case of elliptical harmonic orbitals. To
start, the coordinate operators are defined as follows:

A 1 B 1
Z; \/i(al—i_az)? ij? yl \/5( 1+ z)? wy ( )

where w, and w, are the harmonic frequencies along the z- and y- axes respectively.

The first part of the CME derivation is analogous to the derivation of the symmetric
harmonic orbital CME formula in Section 4.2.2 and leads to almost the same expression as
given in Equation 4.15. For elliptical harmonic orbitals, the integral I, ,,psp, is NOW given
by the formula:

— . —2 . —2
dq —(A—2q2+3—2q2) iA Na+ns—2p1 iB Ma+ms—2p2
Ip1p2p3p4 = e 2 2 dx =0y

q V2 V2
A ng+n~y—2p3 _iB mg+m-~—2py
X | —=Gx — A2
(Ze) () A

2 0o 2 ) 5 .
— CA*B»° /0 do /0 dq q* (cos 0)7 (sin )% ¢~ 7 (AT cos 0+ B2sin?0) = 3)
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where the following parameters are introduced to condense the notation:

2p = N + My +ns +ms +ng+mg+ny, +my —2p; — 2py — 2p3 — 2ps
a = ng+ns+mng+ny,—2p — 2p3
O = (=1)pHnetnrtmatmy

After converting to polar coordinates and substituting z = ¢v/A2cos? 0 + B2sin?0//2,
the integral over ¢ immediately yields the Gamma function giving

(cos0)” (sin §)* "

1 3
oA B) =2V2CT (5 ) arre | a0 (A4)
2 0 (A2 cos? 0 + B2sin? 9)p 2
f[o%?(rAB)

if a and 2p are even, and zero otherwise. To calculate the integral f[gg}(A, B), we consider
a generating function:

3 do T
G- | - , (A5)
0 \/(A2 cos? § + B2 sin? 9) 2M(A, B)

where M (A, B) is the arithmetic-geometric mean of the numbers A, B. The derivative of
Equation A.5 with respect to A% and B? is

N

O"MG(A,B) /"d9 (cos?0)" (sin®0)  (—1)*(2k + 20 — 1)1 (A6)

oR(A%)0'(B%) (A% cos®§ + B?sin? G)HH% 28+

and is clearly within a constant factor of I, 0,21(A, B) when k = § and [ = p — 5. This leads
us to the following formula:

(SIS

Ip1p2p3p4 (Au B) =TV 27T(—1)"B+nv+m3+mv < 0 )

o\ 1
51 <a<32>) wap A7

Here we also utilized the identity I’ (p + %) = w that holds for integer p.

Recollecting the definition of A, B from Equation A.1, we are going to obtain the final
expression in terms of w,, w,. To achieve this, we note that the following equality follows
from Equation A.4 by factoring out constant terms from the denominator:

1 1 1
]p1p2p3p4 (A, B) = E]mpngm (E7 Z)
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Then, the Equation A.7 takes the form:

TVIr(— L)ttt 09 NS 9 \TTE
Lorpapaps (4 B) = —— e aB2)) \oA?)) M(5 L)

a—1 a+1

= TV 2m(—1)retmtmetmy BT,

(A.8)

g (a%) (a%) M (w—t, V)

In the end, after substituting Equation A.8 into Equation 4.15, we obtain the final expres-
sion for Coulomb matrix elements in case of elliptical harmonic orbitals:

) e? —1\nptnytmatmy min(na,n;) n ns
st - [ > () ()
TEYEr \/na!ma!n(;!m(g!ng!mﬁ!ny!mv! m ) \p

p1=0
min(me,ms) m e min(ng,n-) n n min(mg,m-) m m
<2 GG Z w06 Z GG
0 D2 D2 =0 b3/ \P3 =0 D4 D4
p2 p3 P4

xw§—3< o )p;w§< 0 ) ! (A9)
Ow, Dwy M<\/w_x, \/w—y)

where a = n +ns +ng +ny — 2p1 — 2ps, 2p = a +mq +ms + mg +m., — 2py — 2py, and
2p and a are even. Otherwise, the matrix elements are equal to zero.

In summary, we find the closed analytic formulas for Coulomb matrix elements in the
cases of circular and elliptical orbitals. However, unlike in the expression from Equa-
tion 4.19, the terms dependent on w, and w, do not factor out from Equation A.9. This
does not allow us to simply scale the preliminary calculated library of CMEs for unit fre-
quencies and achieve the desired computational efficiency as discussed in Section 4.2.2 of
the main text. For this reason, only symmetric harmonic orbitals are used for all simula-
tions described in Chapter 4.

Nevertheless, improvements can be made to Equation A.9 to make it more useful for
full LCHO-CI calculations, even if both w, and w, do not factor out of the expression. We
do this by rewriting Equation A.4 as

1 1 s 0 a /- 0 2p—a
Lyaps (A, K) = — 202 C'T (p + —) K2a / P _(cos6) (sin6)" ", (A.10)
A 2 0 (cos2 0 + k2 sin? 6)p+§
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where k = B/A = w, /w, is the eccentricity of the harmonic orbitals. A easily factors out
of the entire expression, and we can write the Coulomb matrix elements as

e? V2(—1)nstnytmstmsy min(na,ns) o\ /i
o) = v o > ()

Ameoe, my/namatnsimslnglmgln,m.,! — P1 P1
min(me,ms) m e min(ng,n) n m min(mg,m-) m m
< x #0)6) X GG 2 GG
—0 D2 D2 —0 Dps3 Ps3 0 Pa Pa

p2= p3= P4=

x (~1)PT <p+ 1) ﬁp—a/og : (cos0)" (sin )™ (A.11)

1
2 cos? f + k2 sin? 9)p+2

The term within the quadruple summation depends only on x and can be easily evaluated
numerically. A discrete collection of full harmonic orbital Coulomb matrix elements Cyo 1
can be calculated for w, = 1 and a select set of k values (i.e. kK = 0.1, 0.5, 2.0, 10.0). The
harmonic orbital basis can be optimized over a continuous choice of w, and a discrete set
of k, and the desired harmonic orbital Coulomb matrix elements are calculated simply as
CHOwe v = v/WzCHo,1,x- Utilizing this approach requires the storage of several C'; ,, and
since these matrices can be quite large (i.e. M = 162 gives a Cyo 1., size of 65536x65536),
it may not be feasible to store several sets of Cyo 1. However, this approach will be critical
to apply this method on 3D potential as the confinement along the z-axis is generally much
smaller than the confinements along the x- and y- axes. It will be difficult to get converged
approximations of the 3D single electron orbitals if w, = w, = w, for the harmonic orbital
basis.
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Appendix B

Fabrication recipes for dopant-free
GaAs devices

Here we give a detailed fabrication recipes for fabricating a Hallbar in a dopant-free GaAs
single heterojunction. The QPC and SEP devices described in Chapter 5 are more compli-
cated structures, but still follow these fundamental fabrication steps. The main difference
for QPC and SEP devices is the addition of electron beam lithography (EBL) which is
used to pattern the fine gates. The general procedure for EBL and subsequent metal de-
position is listed at the end of this appendix. All devices in this thesis were fabricated in
the Quantum-Nano Fabrication and Characterization Facility (QNFCF) at the University
of Waterloo.

B.1 Sample cleaning

This is the first step of any device’s fabrication and is important in removing any debris
leftover from cleaving of the wafer.

1. Sonicate cleaved wafer for 5 min in Acetone followed by a 5 minute sonication in IPA.
The Acetone helps remove any potential organics left on the wafer. The IPA is more
viscuous helps remove any dust left on the sample from the cleaving. Good cleaning
is critical for nice adhesion of the photoresist for the lithography steps

2. Do a 30 s Buffered Oxide Etch (BOE, 1:10 HF:NH4F by volume) followed by a several
minute rinse in HyO. There is a thin native oxide layer on the sample that needs to
be removed to help adhesion of photoresist.
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B.2 Mesa pattern

This is typically the second step of any device’s fabrication.

1. Spin a PMMA A6/ma-N bilayer of resist. Keep sample covered at all times to prevent
dust or other particles from landing on it, even while baking.

(a) Pre-bake the sample for 1 min at 120 °C. Helps remove any layer of moisture on
the sample before spinning the first layer of resist. Be careful not to do hotter
or longer of a pre-bake as you risk re-forming an oxide layer that will prevent
the PMMA from adhering well to the substrate.

(b) While hot, spin PMMA A6 at 5000 rpm for 60 s, 1000 rpm/s up-ramp and
1000rpm/s down-ramp. Be as quick and careful as possible when moving the
sample from the hot plate to the spinner before it cools. This will help with
adhesion of the PMMA to the GaAs cap layer.

(c) Bake PMMA for 5 mins at 180 °C.

(d) While warm, spin ma-N at 5000 rpm for 60 s, 1000 rpm/s up-ramp and
1000rpm/s down-ramp.

(e) Bake ma-N for 90 s at 120 °C.

2. Expose mesa pattern using photolithography. At QNFCF we use either a SUSS MA6
aligner or a MLA150 Direct Write UV Lithography system for the exposure.

3. Develop in maD-5335 for 2 mins followed by at least 1 min in HyO. We found placing
the sample at the bottom of the beaker during development improves results. This
eliminates any movement you may introduce which can cause jagged edges and de-
lamination of the two resist layers.

4. Do a 10 minute plasma ash of the sample. This is to remove the PMMA from the
regions we developed the ma-N. Approximately 5 mins is spent removing the PMMA,
and the remaining 5 mins are for forming the undercut.

5. Reflow bake the sample at 150 °C for 5 mins. Helps with adhesion of the PMMA to
the substrate before we do an etch.

6. Etch the mesa pattern

(a) Use a profilometer to measure the resist height.
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(b) Dip sample in BOE for ~15 s and a 1 min dip in HyO. This removes any ozide
formed from the ashing

(c) Dip sample in a 1:8:120 solution of HySO4:Hs09:HoO (~60—80 seconds). Use
the Dektak to see how much you have etched. While we aim for 350 nm, the

exact depth does not matter, but you must go past the AlGaAs/GaAs interface
(~310 nm deep). The typical etch rate is between 3.5 — 5.5 nm/s.

Strip the resist by submerging in Acetone or hot Remover PG and sonicating for 5—7
mins. The sample can be sonicated freely because there is no metal deposited yet.

Measure the sample using a profilometer to find the actual etched height. Confirm
using an optical microscope that the mesa pattern is sharp and clean.

B.3 n-type ohmic contacts

1.

Mix a solution of 1:1:9 HyO5:HCI:H;O the night before doing the ohmic recess
etch. The etch solution is left overnight is to yield a solution with a stable etch rate.
When the solution is first mized, the etch rate decays rapidly for the first few hours
until it equilibrates.

Spin a S1811 layer on the main sample, and spin a diluted S1805 layer on an extra
sample piece to calibrate the etch rate.
(a) Pre-bake each sample for 1 min at 120 °C.

(b) While warm, spin resist on each sample at 5000 rpm for 60 s and 1000 rpm/s
ramp speed with a ramp down rate of 1000 rpm/s.

(c) Bake for 90 s at 120 °C.

. Expose the ohmic pattern using photolithography. If the exposure is done using a

photomask, the alignment distance should be decreased all the way before exposure.
This prevents rotation from resist beads that form at at the corners of the wafer
during spinning. These act as pivot points when the mask comes into contact with
the wafer for exposure.

Develop in MF-319 for 45 s and rinse in HyO. Mildly agitate, just enough to get the
developed Shipley off of the patterned area.

. Do a brief 10 s plasma ash to ensure all resist is removed.
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6.
7.

10.

Bake sample at 150 °C for 5 mins to reflow the resist and improve adhesion.
Etch the ohmic pattern

(a) Use a profilometer to measure the test etch sample and obtain the resist height.
The diluted Shipley here is thinner so that the measured height is more accurate
than it would be for regular S1805.

(b) Dip the test etch sample in BOE for 15 s.

(c) Dip test etch sample in HyO5:HCL:H,O etching solution prepared the night be-
fore for ~70—80 s (record the exact time).

(d) Use a profilometer to measure the test etch sample again to calibrate the etch
rate. Use this rate to calculate how much time it takes to etch to 350 nm.
Typical etch rates are ~5 nm/s.

(e) Dip the main sample in BOE for 10 s.

(f) Dip main sample in HyO5:HCI:H5O etching solution for the appropriate amount
of time to obtain ~350 nm deep recess using rate from test etch sample in
GaAs/AlGaAs heterostructures.

. Do a 4 min plasma ash to etch the photoresist on the sample. The goal is to remove as

much of the resist overhang made during the wet etch as possible. This will allow us
to deposit ohmic material as high up on the wall of our ohmic etch region as possible,
making a more reliable and consistent contact to the AlGaAs/GaAs interface where
we want to induce the 2DEG. Without this etching step, we would not deposit any
material on the wall and would have to rely on the diffusion of the metal up towards
the interface during the ohmic anneal step. The precise amount of ashing time should
be calibrated beforehand as resist age and the particulars of the ashing equipment will
impact the precise time.

. Dip sample in BOE for 10 s. We want to make sure there is absolutely no oxide

between the ohmic and the heterojunction where the 2DEG is formed.

Deposit 10/250/120 nm of Ni/Au+Ge/Ni (0.5/2.0/1.5 A/s deposition rates). A
Rotatilt is used to deposit the metal at an angle of 45° or 60 ° for a deep (310
nm) or shallow (90 nm) deep single heterojunction respectively. The first layer of
Ni helps catalyze the reaction that causes the Ge to diffuse into the GaAs substrate
to form a conductive channel to the 2DEG. The Au+Ge layer has a 88:12 ratio by
weight percentage. The cap layer of Ni helps smooth the ohmics after the annealing
step. For all layers, use a small beam amplitude to focus the beam and reduce the
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11.

12.

power required for deposition. At QNFCF the deposition is done with an INTLVAC
Nanochrome II e-beam deposition.

After deposition, place sample in Remover PG and perform metal liftoff. Either let
it sit overnight at room temperature or place it on a hot plate at 100 ° C' for one hour.
Use the spray bottle of acetone to remove any metal pieces clinging to the sample
surface.

Anneal the ohmics using the rapid thermal annealer (RTA). The anneal consists of a
several minute purge with Ny gas and heats the sample in Ar at 450 °C for 3 mins.

B.4 p-type ohmic contacts

1.

Mix a solution of 1:1:20 HyO5:H3PO4:H>O the night before doing the ohmic recess
etch. The etch solution is left overnight is to yield a solution with a stable etch rate.
When the solution is first mized, the etch rate decays rapidly for the first few hours
until it equilibrates.

Spin a S1811 layer on the main sample, and spin a diluted S1805 layer on an extra
sample piece to calibrate the etch rate.
(a) Pre-bake each sample for 1 min at 120°C.

(b) Spin resist on each sample at 5000 rpm for 60 s and 1000 rpm/s ramp speed
with a ramp down rate of 1000 rpm/s.

(c) Bake for 90 s at 120 °C.

. Expose the ohmic pattern using photolithography.
. Develop in MF-319 for 45 s and rinse in H5O.

. Do a brief 10 s plasma ash to ensure all resist is removed.

Bake sample at 150 °C for 5 mins to reflow the resist and improve adhesion.
Etch the ohmic pattern.

(a) Use a profilometer to measure the test etch sample and obtain the resist height.
The diluted Shipley here is thinner so that the measured height is more accurate
than it would be for undiluted S1805.
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8.

10.

11.

12.

13.

(b) Dip the test etch sample in BOE for 15 s.

(c) Dip test etch sample in HyO9:H3PO4:H50 etching solution prepared the night
before for ~70—80 s (record the exact time).

(d) Use a profilometer to measure the test etch sample again to calibrate the etch
rate. Use this rate to calculate how much time it takes to etch to 350 nm.
Typical etch rates are ~5 nm/s.

(e) Dip the main sample in BOE for 10 s.

(f) Dip main sample in HyOy:H3PO4:H5O etching solution for the appropriate
amount of time to obtain ~290 nm deep recess using rate from test etch sample
in GaAs/AlGaAs heterostructures.

Do a 4 min plasma ash to etch the photoresist on the sample. The goal is to remove as
much of the resist overhang made during the wet etch as possible. This will allow us
to deposit ohmic material as high up on the wall of our ohmic etch region as possible,
making a more reliable and consistent contact to the AlGaAs/GaAs interface where
we want to induce the 2DHG. Without this etching step, we would not deposit any
material on the wall and would have to rely on the diffusion of the metal up towards
the interface during the ohmic anneal step. The precise amount of ashing time should
be calibrated beforehand as resist age and the particulars of the ashing equipment will
impact the precise time.

. Dip sample in BOE for 10 s. We want to make sure there is absolutely no oxide

between the ohmic and the heterojunction where the 2DHG is formed.

Deposit 160—200nm of Au+Be alloy onto the sample using a slug weighing 1200-1600
mg in a thermal evaporator at an angle of 45° or 60 ° for a deep (310 nm) or shallow
(90 nm) single heterojunction respectively. At QNFCF the deposition is done using
an Angstrom Engineering Amod Thermal Evaporator.

After deposition, place sample in Remover PG and perform metal liftoff. Either let
it sit overnight at room temperature or place it on a hot plate at 100 ° C' for one hour.
Use the spray bottle of acetone to remove any metal pieces clinging to the sample
surface.

Cap the ohmics with 1 pm of SiOy using PECVD to prevent contamination of the
rapid thermal annealer (RTA) in the subsequent annealing step.

Anneal the ohmics using the RTA. The anneal consists of a several minute purge
with Ny gas and heats the sample in Ar at 520 °C for 3 mins.
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B.5 Oxide insulator and etching via holes

1.

Deposit 300 nm of SiO, via PECVD. Make sure to clean and condition the chamber
prior to deposition even if the previously run process was the same.

Spin a S1811 layer on the sample.

(a) Pre-bake the sample for 1 min at 120 °C.

(b) Spin resist on each sample at 5000 rpm for 60 s and 1000 rpm/s ramp speed
with a ramp down rate of 1000 rpm/s.

(c) Bake for 90 s at 120 °C.

. Pattern the vias using photolithography.
. Develop in MF-319 for 45 s and rinse in HyO.
. Do a brief 10 s plasma ash to ensure all resist is removed.

. Dip in BOE for 3 mins. Check under a microscope to make sure you have removed

all the ozxide in the via areas.

Place the sample in Remover PG and heat to 100 °C for 10 mins. Treat the resist
removal as a regular metal liftoff. Dry the sample with N,. We have found that
the BOFE forms a thin hardened layer of resist during the etching which needs to be
removed like a layer of metal when the resist is stripped. If you don’t, then the resist
layer will fall down onto your sample and can delaminate or flake onto your sample.

B.6 Top gate and bond pads

1.

Spin a PMGI/S1811 bilayer.

(a) Pre-bake the sample for 1 min at 120 °C.

(b) While hot, spin PMGI: 5000 rpm for 60 s and 1000 rpm/s ramp with a ramp
down rate of 1000 rpm/s.

(c) Bake PMGI for 5 mins at 180 °C.

(d) While warm, spin S1811: 5000 rpm for 60 s and 1000 rpm/s ramp with a ramp
down rate of 1000 rpm/s.
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(e) Bake S1811 for 90 s at 120 °C.
2. Pattern the top gate and bond pads using photolithography.

3. Develop in MF-319 for 2.5 mins and rinse in HyO. Do not hold the sample during
the development step. Simply place the sample in the beaker and step away for the
development time. We found that holding the sample during the development can
cause the MF-319 to get in between the resist layer and mess up the pattern profile.

4. Look at the device under the microscope to see if there is a noticeable undercut (1—2
pm). If there is, proceed to the next step. If not, then develop in MF-319 for another
30 seconds and check again. Repeat this until there is a proper undercut.

5. Ash for 10 seconds to remove any resist residue (recipe 5).

6. Dip in 1:4 HCL:H5;0O to remove any oxide from ashing. Do not do a BOE dip like
you normally would before the deposition. The SiO, there will etch away if you do a
BOE dip.

7. Deposit 20/80 nm of Ti/Au (0.5/2.0 A/s deposition rate). At QNFCF the deposition
is done with an INTLVAC Nanochrome Il e-beam deposition.

8. Place in Remover PG for liftoff. FEither leave overnight or heat at 100 °C' for one
hour.

B.7 Electron beam lithography and metal deposition

1. Spin a PMMA A6 monolayer.

(a) Pre-bake the sample for 1 min at 120 °C.

(b) While hot, spin PMMA: 5000 rpm for 60 s and 1000 rpm/s ramp with a ramp
down rate of 1000 rpm/s.

(c) Bake PMMA for 15 mins at 180 °C.

2. Expose the fine gate pattern using electron beam lithography. At QNFCF we use the
JEOL JBX-6300FS Electron Beam Lithography System with a 100 kV electron beam.

3. Develop in TPA:H50 with a ratio of 7:3 by volume for 60 s. Rinse in HyO for 30 s.
Stir the sample throughout development to ensure all the resist gets developed and
removed.
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10.
11.
12.

13.

14.

Deposit 10/10 nm of Ti/Au (0.5/0.5 A /s deposition rate). At QNFCF the deposition
is done with an INTLVAC Nanochrome II e-beam deposition. Notice that we did not
do a plasma ash or acid dip right the deposition. The undercut from EBL is very
small and ashing or etching, even briefly, can etch enough resist away so that the
undercut no longer ensures good liftoff.

. Place in Remover PG for liftoff. Either leave at room temperature overnight or heat

it at 80 °C for a few hours.

. Use a small glass pipette to blow the metal off of the sample. Aggressively blow on

the sample to remove all of the metal. When you are done, there should be no loss
pieces of metal clinging to the sample. Look around the wafer to see any small bits
of flakes left over on the sample.

Place the sample in another beaker of hot Remover PG and blow again with the
pipette for a few minutes. The second beaker of Remover PG helps remove any resist
residue and the extra pipetting helps ensure all flakes are knocked off.

. Place sample in a beaker and spray the sample with IPA to remove the Remover PG.

Spray now with Acetone to remove all of the IPA on the sample. Feel free to hold the
spray bottle far away from the sample in order to make the Acetone stream “rough”
to do a very gentle sonication of the sample.

Do a final spray with IPA to remove the Acetone.
Completely dry with Ny gas.

Check under the optical microscope to ensure that there are no big metal pieces left
on the sample and that there are no residue marks from missed IPA during drying.

If some metal is leftover, then you can place the sample back in hot Remover PG
and repeat steps 6—10.

If the metal continues to cling, then use a paintbrush to knock off the unwanted metal.
Awvoid doing this if you can as fine EBL gates are more sensitive to the paint brush
than features done with reqular photolithography. If you do need to use a paintbrush,
make sure to use a real hair paint brush as a faux hair brush can potentially damage
the surface. Take caution and avoid doing this with overlapping metal gates as you
may puncture the oxide between metal layers creating a short; however, it is definitely
possible to do so without causing shorting.
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