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Abstract

One of the state of the art techniques for classically simulating quantum circuits relies
on approximating the output state of the circuit by a superposition of stabilizer states.
If the number of non-Clifford gates in the circuit is small, such simulations can be very
effective. This thesis provides various improvements in this framework. First, we describe
an improved method of computing approximate stabilizer decompositions, which reduces
the time cost of computing a single term in the decomposition from O(¢n?) to O(mn?),
where ¢ is the total number of gates in the circuit, and m is the number of non-Clifford
gates. Since this subroutine has to be repeated exponentially many times, this improvement
can be significant in practice whenever ¢ > m. Our method uses a certain re-writing of the
circuit, which in some cases allows for a significant amelioration of the exponential scaling
of the required classical resources.

Furthermore, we describe a method of constructing exact, low-rank stabilizer decom-
positions of [¢)®™ where [¢)) is either a magic state or an equatorial state. For any
single qubit magic state |¢)), we find stabilizer decompositions of [1)®™ with 2 log2(3)/4
terms. This improves on the best known bound of 271°€2(7)/6  Similarly, for any single
qubit equatorial state |¢), we give a stabilizer decomposition of [¢))®™ with 2"/2 terms. To
our knowledge no such decompositions were previously known. These results translate to
milder exponential scaling of the classical resources required for estimating probabilities of
quantum circuits up to a polynomially small multiplicative error, as well as allowing more
types of circuits to be simulated in this way.

We also consider certain obstructions to classical simulations. It has been argued in
various contexts that contextuality and non-locality hamper classical simulations of quan-
tum circuits. Linear constraint systems (LCSs) are a generalization of the well-known
Peres-Mermin magic square, which has been recently used to prove a separation between
the power of constant depth classical and quantum circuits.

While binary LCSs have been studied in detail, d-ary LCSs are less well-understood.
In this thesis we consider linear constraint systems modulo d > 2. We give a simple proof,
of the previously known fact, that any linear constraint system which admits a quantum
solution consisting of generalized Pauli observables in odd dimension must be classically
satisfiable. We further prove that, for odd d, if a Pauli-like commutation relation between
two variables in the LCS arises, then it has no quantum solutions in any dimensions, in
stark contrast to the even d case. We apply this result to various examples, for instance
showing that many generalizations of the Peres-Mermin magic square do not give rise to a
quantum vs. classical satisfiability gap.
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Chapter 1

Introduction

1.1 Overview

There is overwhelming evidence that quantum computers are more powerful than classical
computers. This evidence arises from strong complexity-theoretic conjectures, such as
the non-collapse of the polynomial hierarchy, as well as independently of such conjectures
in relativized models of computation. Despite this, seemingly innocuous restrictions on
the quantum computation can make it easy to simulate classically. One of the most well-
known examples is polynomial-sized quantum circuits consisting of Clifford gates and Pauli
measurements. Such circuits are efficiently simulable by the celebrated Gottesman-Knill
theorem [1]. Augmenting this model with the ability to implement any non-Clifford gates,
for example a 7/8 Z-rotation on a fixed qubit, allows for universal quantum computation.
Another example is nearest-neighbour matchgate circuits, which encode the physics of
non-interacting fermions [2, 3]. Such circuits can be simulated efficiently on a classical
computer, although adding the ability to coherently swap nearest neighbour qubits allows
for universal quantum computation [4].

For certain restricted quantum computations that can be simulated classically, the
associated classical simulation algorithms become inefficient as we relax the restriction.
For slight deviations the required classical resources may scale exponentially in a different
parameter than the number of qubits. For instance, one can classically simulate an n-qubit
Clifford circuit augmented with m non-Clifford gates using classical resources that scale as
4™poly(n), as shown in Aaranson & Gottesman [5]. Since such circuits are universal for
quantum computation®, this allows for classically simulating universal quantum circuits

! provided we take m = Q(n).



with an amount of resources that scales exponentially only in the number of non-Clifford
gates. The works of Bravyi, Smith & Smolin [6], Bravyi & Gosset [7], and Bravyi et al
[8], show that this scaling can be significantly ameliorated. For instance, if all non-Clifford
gates are /8 Z-rotations, the classical cost scales like 27™, where v & 0.228. In practice
this allows for cheap classical simulations of useful quantum algorithms on as many as 50
qubits [8].

This exponential scaling is in fact much milder than recently reported similar Monte
Carlo methods. These alternative methods are based on importance-sampling the entries
of the gates in the standard basis [9], quasi-probability distributions [10], robustness of
magic [11], or Clifford-channel decompositions [12]. The advantage holds even though
the above mentioned alternatives can only estimate quantum circuit probabilities up to
inverse-polynomial additive error. In comparison the methods in [7, 8] can do something
much stronger; estimate probabilities up to inverse-polynomial multiplicative error, and
approximately sample from the quantum circuit distribution with inverse-polynomial error
in total variation distance.

Prior works [6, 7, 8] introduce and study the notion of the stabilizer rank. For a multi-
qubit quantum state [¢), the stabilizer rank, denoted x (%) is the minimum integer k such
that a decomposition of the form

k

) = ZQ’WQ (1.1)

i=1

exists, where |¢;) are multi-qubit stabilizer states, and ¢; are complex coefficients. Given
any decomposition of the form in eq. (1.1), the classical cost of simulating measurements
of [¢) in the computational basis scales linearly in k, and polynomially in the number of
qubits, provided we can compute each term efficiently. In many interesting cases one can
find decompositions of the form in eq. (1.1) for which k£ < 2". A decomposition with small
k is referred to as a low-rank stabilizer decomposition. Occasionally we will also refer to
it as a sparse stabilizer decomposition.

The fact that the number of stabilizer states of n qubits grows like 2*° makes it ex-
tremely challenging to compute low-rank stabilizer decompositions, or to even determine
whether there is a decomposition of some rank k, even for small £ and n. However, when
the state |¢)) is the output state of a quantum circuit, we can use the structure of the
circuit to find such decompositions.

One way to do this relies on finding stabilizer decompositions of tensor product states of
the form |A)®™, where |A) is some single qubit state. These can typically be decomposed



using only 2°™ stabilizer states, for some exponent 0 < 3 < 1. The link between such
decompositions and quantum circuits comes from considering a gate A such that |A) =
Al+). Any quantum computation that can be implemented by a circuit of Clifford gates
and m instances of the gate A can be simulated classically using an amount of resources
that scales as 2°™ [7, 8]. Reducing the exponent 3 can be done by finding a stabilizer
decomposition of |A)®" for some small » < m using some number k, of stabilizer terms,
and then taking an (m/r)-fold tensor product of the decomposition, which gives f =
logy(k,)/r. This method is throttled by the difficulty of numerically finding low rank
stabilizer decompositions even for small r; typically r is at most 6 or 7.

Another way to find sparse stabilizer decompositions relies on an approximate version
of the stabilizer rank. In this version we allow an error €, and ask for the minimum integer
k such that

k

) = ZQVM” <6 (1.2)

=1

for some stabilizer states |¢;) and coefficients ¢;. Obviously this can only reduce the required
number of stabilizer terms below what is needed for the exact case.

Furthermore, starting from an exact decomposition as in eq. (1.1), which may not
be sparse, Ref. [8] shows that it can be made sparse by picking random terms in an
importance sampling scheme in a way that produces a low-rank approximation of [)).
This method is known as randomized sparsification, and combining it with stabilizer rank
classical simulations allows for significant improvement in the required resources as well
as in the scope of the type of circuits that can be simulated [8]. Using these methods
the amount of classical resources scales as ||c||?, rather than k, provided we can efficiently
sample the distribution p(i) = |¢;|/||c||s and compute |¢;) for any given i.

Most of the first part of this thesis discusses various improvements in this framework.
These improvements translate to reducing the cost of simulating quantum circuits, in
some situations leading to runtimes that have a milder exponential scaling than previously
reported.

In the second part of the thesis, we consider obstructions to efficient classical simu-
lations. It has been argued in various contexts that quantum computational advantage
is deeply related to phenomena such as non-locality and contextuality. For instance, it
is known that the absence of contextuality makes any quantum computation classically
simulable efficiently in a certain restricted setting [13, 14]. Furthermore, it was recently
shown that the presence of non-local correlations between the qubits in a state generated



by a constant-depth quantum circuit can thwart constant-depth classical simulations of
the circuit [15, 16].

Linear constraint systems (LCS), and their associated non-local games [17, 18], are two
closely related manifestations of contextuality and non-locality. The idea behind these
constructions is to start with a system of linear constraints Az = b over a mathematical
field, and promote the scalar-valued variables to quantum observables while requiring that
every constraint can be checked by a simultaneous measurement of the observables it
depends on. A quantum solution is a set of observables over some Hilbert space that
satisfies every constraint. If the system Ax = b has no classical solutions and yet admits a
quantum solution, we call that a satisfiability gap. In terms of hidden variable theories a
satisfiability gap is a state-independent proof of contextuality [19, 20]. When a satisfiability
gap exists in a LCS, one can construct a bipartite non-local game which can be won with
unit probability by quantum players but not by classical players, a situation sometimes
referred to as quantum pseudo-telepathy [21].

Non-local games constructed from LCSs are behind recent breakthroughs in proving a
separation between fixed-depth classical and quantum computation that is independent of
complexity-theoretic conjectures [15, 16]. Certain non-local correlations can arise between
the registers of a fixed-depth quantum circuit that are impossible to produce by any fixed-
depth classical circuit, even if the former is restricted to short-range gates and the latter is
allowed arbitrary long-range gates, and even if noise is present [16]. The proof of this state-
ment is based on considering correlations that win certain variants of the Peres-Mermin
magic square game, which is in fact the canonical example of a LCS with a satisfiability

gap.

Non-local games constructed from LCSs have also been instrumental in significant
recent progress in understanding quantum non-locality. An important problem in non-
locality is to distinguish sets of quantum correlations defined using different models of
entanglement, for instance the tensor-product and the commuting-operator models [22].
In this framework the use of LCSs led to ground-breaking results [23, 24, 25] 2.

The Pauli group plays an interesting role in the framework of LCSs. The commutation
relation UV = —V'U encodes the simplest classically inconsistent linear constraint on two
binary variables. Whenever such relations appear in the so-called solution group of a
quantum-feasible LCS, it implies a satisfiability gap. The results in [24, 25] rely in an
important way on embedding this commutation relation into certain families of binary

2A variant of such questions is equivalent to one of the most famous and long-standing conjectures in
operator theory, namely Connes’ embedding conjecture. This conjecture was very recently refuted using a
construction involving certain bipartite quantum nonlocal games [26] (although not of the LCS variety).



LCSs.

This thesis considers a generalization of the Pauli group for higher dimensional systems,
known as the Weyl-Heisenberg group. While other generalizations of the qubit Pauli group
exist, the Weyl-Heisenberg group is arguably the most natural one, since it preserves the
commutativity structure and error-correction properties of the qubit Pauli group [27]. We
consider how the Weyl-Heisenberg group relates to d-ary LCSs, i.e. those defined modulo
some integer d. When the dimension of the quantum system is odd, it is known that
one cannot have a state-independent proof of contextuality using these generalized Pauli
observables [13, 28].

Somewhat more surprisingly, when the modulus d is odd, and regardless of the quantum
dimension, we find in this thesis that any commutation relation of the generalized Pauli
group, UV = w/VU, where w is a dth root of unity and j # 0, cannot be embedded in the
solution group of a LCS if a quantum solution exists in any (infinite or finite) dimension.
In other words, no satisfiability gap can ever arise from classically inconsistent relations of
that form, in stark contrast to the binary case.

Another piece of the puzzle is revealed by the so-called discrete Wigner function. For
qudits of odd-prime dimension, it is known that any quantum circuit consisting of mea-
surement of generalized Pauli observables and unitary transformations that preserve them
(i.e. the qudit Clifford group) can be simulated efficiently using a non-negative discrete
Wigner function. For such systems the discrete Wigner function provides a local hidden
variable theory [19, 20]. In other words, correlations produced from such circuits cannot
produce quantum correlations that win any nonlocal game. Remarkably, the simulation
algorithm based on the discrete Wigner function can be executed in the same depth as the
quantum circuit, which precludes any advantage for fixed depth quantum circuits of this
type, i.e. it precludes any construction such as in Refs. [15, 16].

1.2 Organization and contributions of this thesis

We begin in Chapter 2 by reviewing preliminary material related to stabilizer rank methods,
and summarizing important tools introduced in [7, §].

In Chapter 3, we consider the problem of computing stabilizer decompositions of the
output state of a quantum circuit consisting of ¢ gates in total, m of which are non-
Clifford gates. We describe an improved method of performing randomized sparsification,
which reduces the time of cost of computing a single term of the stabilizer decomposition
from O(¢n?*) to O(mn?). Since this operation has to be repeated for each term in the

5



decomposition, the reduction in runtime can be significant if ¢ > m. This method uses
a certain re-writing of the circuit, which also allows for exploiting more sparse Clifford
decompositions of products of non-Clifford gates. In some cases this gives a significant
amelioration of the exponential scaling of the required classical resources. We suggest a
straight-forward simulation using importance-sampling Monte Carlo to estimate the circuit
amplitudes up to additive error. Such estimates can be used with the Markov Chain Monte
Carlo variant of stabilizer rank methods, as shown in [8]. We briefly consider generalizing
this method of estimating amplitudes to other gate sets. The results in Chapter 3 are
published in [29].

In Chapter 4, we describe a method of constructing exact, low-rank stabilizer decom-
positions of )™ where [¢) is a single qubit state. We focus on the case where |¢)) is
either a magic state or an equatorial state.

Magic states are the non-stabilizer eigenstates of single qubit Clifford unitaries [30].
They come in two flavors, depending on whether they are Clifford-equivalent to the T
state |T) = 27Y2(]0) + e™/4|1)) or the face state |F) = cos($)|0) + e"™/*sin(3)|1), where
/3 is an angle such that cos(28) = 1/4/3. Equatorial states are those of the form |0) =
2712(]0) + 1))

We find stabilizer decompositions of |T)®™ and |F)®™ with 2m1°820)/4 terms. This
improves on the best known bound of 2°82(7)/6 and is based on a stabilizer decomposition
of |T)®% with six terms. Previously [6] the stabilizer rank of |T)®% was conjectured to be
seven (which this result refutes), and the stabilizer rank of the two types of magic states
was conjectured to be the same (which this result provides further evidence for). Also, for
any equatorial state |§) we give a stabilizer decomposition of |#)®™ with 2/2 terms. To our
knowledge no such decompositions were previously known. Exact stabilizer decompositions
of this form allow us to estimate probabilities of quantum circuits up to polynomially small
multiplicative error, which we cannot do with approximate stabilizer decompositions. Our
results translate to milder exponential scaling of the classical resources required for this
task, as well as allowing more types of circuits to be simulated in this way.

The results in Chapter 4 are based on unpublished joint work with David Gosset * and
Hakop Pashayan *.

In Chapter 5, we consider using stabilizer decompositions to simulate the time evolution
under a time-independent spin Hamiltonian, that is, to simulate the state e7!|0)*". If the

3Institute for Quantum Computing, Waterloo, Ontario, and the Department of Combinatorics and
Optimization, University of Waterloo, Ontario.
4Perimeter Institute, Waterloo, Ontario, and the Institute for Quantum Computing, Waterloo, Ontario.



Hamiltonian is given as a sum of operators that are easy to exponentiate,

K
H= ZajAj’ (13)
j=1

then this method allows for approximate-sampling from the probability distribution asso-
ciated with measuring any subset of the qubits in the computational basis in time which
scales as exp(~vt||al|;), where ~ is a constant that depends on which Lie product formula is
used to approximate the time evolution, and on the sparsity of the Clifford decomposition
of the associated circuit. For example, using a decomposition of the Hamiltonian into
the Pauli basis together with the first-order Suzuki formula gives v = 2v/2 — 2 ~ 0.83.
We describe various ways to reduce . This kind of simulation may be useful for short
time evolution when exp(vyt|lall;) < 2", and reducing ~ allows longer times for the same
computational budget.

In the last two chapters we consider linear constraint systems (LCS). We start by re-
viewing background material in Chapter 6, then in Chapter 7 we consider linear constraint
systems modulo an integer d > 2. First we give a simple proof, of the previously known
fact [13, 28], that any linear constraint system which has a generalized Pauli solution of
odd dimension must be classically satisfiable. We further prove that, for odd d, embedding
a Pauli-like commutation relation between any two elements of the solution group implies
that the LCS has no quantum solutions in any dimensions, and therefore cannot display
a satisfiability gap. We apply this result to various examples, for instance showing that
many generalizations of the Peres-Mermin magic square and pentagram cannot have a
satisfiability gap. The results in Chapter 7 are published in [31].



Chapter 2

The stabilizer rank and classical
simulation of quantum circuits

2.1 Preliminaries

2.1.1 Notation

This thesis deals with finite-dimensional quantum systems. We use the bra-ket notation to
denote elements of the d-dimensional complex vector space C¢. For n-qubits the dimension
is 2", and we identify the standard 0,1 basis with elements of the binary vector space
F2 = {0,1}". We use small letters x,y, ... to denote bit-strings in F, but reserve capital
letters A, B, ... to denote operators on C.

2.1.2 Stabilizer states and the Clifford group

Stabilizer states and the Clifford group are ubiquitous in the theory of quantum informa-
tion. In a nutshell, the Clifford group of n qubits is a finite subgroup of the unitary group
U(2"), and the set of stabilizer states is the orbit of the state |0)®™ under this group.

More specifically, we start by defining the usual single qubit Pauli matrices

B I R () P (R R



The n-qubit Pauli group P(n) consists of all n-fold tensor products of Pauli matrices with
an arbitrary global phase ¢(1). The Clifford group of n qubits C(n) is defined as the
subgroup of unitaries which preserve P(n), i.e.

C(n) :=={U eU(2") : UPU' € P(n) for all P € P(n)}. (2.2)
The set of n-qubit stabilizer states S(n) is the orbit

S(n) = {UJ0)®" : U e C(n)}. (2.3)

This definition coincides with the usual definition of a stabilizer state as a simulta-
neous +1 eigenstates of a maximal stabilizer group, that is, a subgroup generated by n
independent, Hermitian, and mutually commuting Pauli operators.

Another definition of stabilizer states, which we will find useful in proving some results
later, is based on characterizing both the support of these states in the computational basis
and the set of allowed relative phases.

Namely, it is known that the support of a stabilizer state in the computational basis
is always an affine subspace A C [} ! The allowed relative phases between the states
in the support of a stabilizer state take the form of linear and quadratic phases [32].
Specifically, the phase on the component z € A is given by /™) (—1)%®) where ¢ is a
quadratic polynomial on F3, and ¢ is a linear function on Fy. A stabilizer state is then
determined by the triplet (A, g, ¢);

1A, q,0) = W > it )|z). (2.4)

z€A

One can easily check that Clifford unitaries preserve this form up to a global phase.
For instance, the set of gates

100 0
1 /1 1 10 010 0

H‘ﬁ(1 —1)’ S_(o z) “Z=1o01 o | (25)
000 —1

on all qubits (for H and S) and pairs of qubits (for C'Z), generate the Clifford group, and
one can quickly check that they preserve the form (2.4).

'Recall that an affine subspace of F} is a translated linear subspace, i.e. a set of the form A =V @©a
where V is a linear code and a is a translation vector.



Yet another equivalent classical description of stabilizer states is given by the so-called
CH-form. This description is suitable for certain tasks, such as computing phase-sensitive
Clifford circuit amplitudes, which is a key component in the classical simulation schemes
in [8] and in this thesis.

The CH-form description of a stabilizer state is given by a tuple (w, s, h,U), where
w € C is a complex number, s, h € ) are binary vectors, and U is a circuit consisting of
gates from the gate set {CNOT, CZ, S}, where

1 000
CNOT,, = 8 (1) 8 (1) (2.6)
0010
Note that any such U satisfies
Ul0)*" = [0)*", (2.7)

which fixes the global phase convention. The vector representation of the stabilizer state
associated with the tuple (w, s, h,U) is given by

lw, s, h,U) :=wUH(h)|s), (2.8)

where H(h) acts as the Hadamard gate on qubit i if h; = 1 and as the identity otherwise.
Note that the circuit U can be stored using O(n?) bits in the form of a stabilizer tableau
specifying its action on Paulis Xi,..., X,, Z1,...,Z,, see Ref. [5]. Hence storing the CH-
description of an n-qubit stabilizer state requires O(n?) bits of classical memory. This is
the same cost as the more standard approach in [5], but it allows us to keep track of the
global phase in the simulation by updating w.

2.1.3 The stabilizer rank, the approximate stabilizer rank, and
the stabilizer extent

In this subsection we define the stabilizer rank and related quantities, and discuss some of
their properties and relations.

Definition 1. The stabilizer rank of a quantum state |1)), denoted by x(¢), is the minimum
number of terms in a stabilizer decomposition of the state.
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In other words, x(¢) is the minimum integer k such that there exists a superposition

k

) = Zci’(bi)? (2.9)

i=1

where |¢;) are stabilizer states and ¢; are complex coefficients. The stabilizer rank is
sub-multiplicative under the tensor product

X(1 @ @) < x(¥)x(o), (2.10)

since we can decompose each state separately and take the tensor product of the de-
compositions. It is also invariant under Clifford operations and sub-multiplicative under
projections onto stabilizer codes, that is

X(CY) = x(¥),  x(Iy) < x(¥), (2.11)

for any Clifford C' and projector II onto a stabilizer code.

The stabilizer rank of an n-qubit state is extremely difficult to compute even for product
states and modest n. The difficulty comes from having to check all k-tuples of stabilizer
states to determine whether a decomposition with & terms exists. The number of n-qubit
stabilizer states grows like 2”2, making such brute force technique impractical. Numerical
methods for computing (7)) (and finding low rank decompositions) have been proposed
in [6] and [8], based on a heuristic simulated annealing algorithm, but these methods miss
the mark for product states on as low as six qubits, as we will elaborate on in Chapter 4.

For m copies of a state ¢, sub-multiplicativity implies that

X(@W®™) < x(¥)™.

In general, we can do much better than a naive product decomposition. An important
example is the quantum state 2

IT) = 27V2(|0) + €™/4]1)). (2.13)

2This state is related to the T gate,

10
T = < - > (2.12)

via |T) = T|+). The state |T) is Clifford-equivalent to a state known as the H-type magic state (the
+1 eigenstate of Hadamard), and in the past has been referred to as |H) (incidentally the second type of
magic state, the so-called face state, has been denoted by |T')). In this thesis we use |T') for the first type,
and |F) for the second type.
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Two copies of |T') can be written as a sum of two stabilizer states:
i /4

2

)82 — %(|00) + ¢y11>) + < (|01> n 110>). (2.14)

This makes it possible to decompose |T)®™ using only k = 2m/2 stabilizer terms:
Tyem = (jT)#2) ™/ (2.15)

Better decomposition strategies allow us to achieve k = 2*" where a = log,(3)/4 =~
0.3962, as we shall prove in Chapter 4 of this thesis. An optimal decomposition achieves
k = x(T®™); the stabilizer rank of m copies of |T'). Conjectures aside, the value of x(7%™)
is currently unknown for m > 3, and determining its asymptotic scaling is one of the
biggest open problems in this field.

In the approximate version of the stabilizer rank, our goal is to approximate a state 1
up to error € by a superposition of stabilizer states. That is, to find ¢ such that

k

lp—dll <e )= cilén), (2.16)

i=1
where ¢; are stabilizer states.

Definition 2. The approzimate stabilizer rank, x.(v), is defined as the minimum k for
which (2.16) can hold.

Clearly, x.(¢) < x(¢) for any state ¥ and € > 0. Interestingly, it turns out that the
approximate stabilizer rank is upper bounded by a quantity which is easier to handle,
namely the stabilizer extent [8].

Definition 3. The stabilizer extent of 1, denoted by £(v), is the minimum 1-norm squared
of a vector of coefficients ¢ € C* in a stabilizer decomposition of .

Here the 1-norm of a vector ¢ € C* is ||c||; = |ci| + - + |cx]. In other words, the
stabilizer extent is the solution to the (convex) optimization problem:

minimize c|?
subject to ) = Z ci|oi)
¢; are stabilizer states (2.17)
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This optimization is slightly less computationally demanding than computing the stabilizer
rank. It has also led to very interesting insights. For instance, by examining its dual
program it was shown in [8] that, for a large class of quantum states, the stabilizer extent
is multiplicative under the tensor product, i.e.

EWEM) = &)™, (2.18)

The class of states for which this is known to hold is called stabilizer-aligned states, and
includes all states 1 of three or less qubits. Interestingly, for n > 3 not all n qubit states
are stabilizer-aligned.

The main result relating the approximate stabilizer rank of a state to its stabilizer
extent is known as the randomized sparsification lemma.

Lemma 4 (Randomized Sparsification, Ref. [8]). For any quantum state ¢ and € > 0, it
holds that

Xe(¥) < €% (). (2.19)

Proof sketch. Suppose we're given a stabilizer decomposition

) = ZCJ@) (2.20)

(2

Without loss of generality, we can assume that the ¢; are real and positive by absorbing all
phases into the stabilizer states ¢;. Consider the random vector |wy) obtained by averaging
N random vectors of the form ||c[[1|¢), where |¢) is chosen independently from the set of
stabilizer states {¢;} according to the probability distribution ¢;/||c|[;. The average of this
random vector is |¢). Using standard probability tail bounds, one can show that, with
high probability,

) — lwn)|| < e

provided that N > ||c||?¢~2. This implies that there exists a quantum state, 1), of the
form

Mellfe?1
[y = Y o)), (2.21)

j=1

where 6; are stabilizer states, such that ||¢) — || < e. O
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A more detailed version of the above proof can be found in Ref. [8]. This construction
plays a key role in the classical simulation schemes we describe in this thesis.

The three quantities we have defined in this section, the stabilizer rank, approximate
stabilizer rank, and stabilizer extent, can all be defined for unitary operators as well.
For example, we may define the stabilizer rank of a unitary U as the minimum number
of Clifford unitaries in a linear decomposition of U. However, it turns out that this is
not the most general thing we can do. For instance, we can also allow the terms of the
decomposition to be projectors onto stabilizer codes, or even products of such projectors.
The point is that such operators preserve stabilizer states, and can be used just as well as
Cliffords for classical simulation purposes.

Such generalized notions of the stabilizer rank will not be discussed in this thesis, with
one exception, namely the stabilizer extent. For a unitary U we define £(U) as the minimum
l|c||? for any vector of coefficients in a linear Clifford decomposition of U. For the cases we
consider, we find that nothing is gained by allowing stabilizer projectors or their products,
i.e. that the minimum 1-norm is always achieved with a decomposition in which every
term is a Clifford unitary. For this reason we refrain from making that generalization in
this thesis.

Simulating a quantum circuit consisting of Clifford gates augmented with m T gates
can be done classically in time that scales as £(T)™ a2 202%™ [8]. Here the T gate is defined

as
1 0
T = (0 eiﬂ/4). (2.22)

Note that for the closely related T state |T) = T|+), we have {(T) = &(|T)). More
generally this holds for diagonal gates from the third level of the Clifford hierarchy [8].

For unitary gates, the stabilizer extent is sub-multiplicative under the tensor product:
§(A® B) <&(A)E(B), (2.23)

as well as under matrix multiplication;
{(AB) < {(A)E(B). (2.24)

In Chapter 3, we will show how a certain re-writing of the quantum circuit allows us to
take advantage of this fact, resulting in a milder exponential scaling of the time cost of
classically simulating certain quantum circuits.
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Operation Time cost
PHASE, CNOT, or CPHASE gates O(n)
Hadamard gates O(n?)
Multi-qubit rotations exp (i P/4) O(n?)
Post-measurement state after measuring b qubits O(bn?)
Compute an amplitude (x|¢) O(n?)

Table 2.1: The time cost of performing various phase-sensitive operations on a stabilizer
state specified by its CH-form using the methods of [8], described in this section.

2.1.4 Efficient simulation of Clifford circuits: the phase-sensitive
version

The Gottesman-Knill theorem gives an efficient classical simulation of quantum circuits
consisting of Clifford gates acting on stabilizer state inputs [1]. The classical algorithm
is based on storing the quantum state in terms of generators of its stabilizer group, and
updating the generators as Clifford gates are applied. Such a description of the state is
correct up to an irrelevant global phase. In this section we describe a recent variant of
these simulations which also keeps track of the global phase on the quantum state.

Keeping track of the global phase is necessary to maintain coherence between the terms
in a stabilizer decomposition of a non-stabilizer state, which is a prerequisite for the simu-
lation schemes in this thesis. Peculiarly, tracking the global phase adds a considerable time
requirement. For instance, it increases the number of basic operations required to update
the description of a stabilizer state under a single qubit Clifford gate from O(n) to O(n?).

In the rest of this subsection we give an overview of how to perform Clifford operations
and measurement updates while keeping track of the global phase. We describe these
update rules in quite some detail, although we leave out the proof of one key lemma
(Lemma 5). The interested reader can go to [8] for further reference. The impatient reader
can skip to the next section. For convenience the time cost of the update rules described
in this section is summarized in Table 2.1.

Unitary updates

Recall that the CH description of a stabilizer state is a tuple (w, s, h,U), where w is a
complex scalar, s and h are n-bit strings, and U is a Clifford circuit consisting of gates
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from the set J = {CZ,CX,S}. The correspondence is given by

|w, s, h,U) = wUH/(h)|s). (2.25)

Also recall that U is stored in classical memory in the form of a stabilizer tableau,
i.e. a binary matrix of 2n rows where each row specifies the Pauli operator UPU' with P
ranging over Xq,..., X, Z1,..., Zy.

Given a stabilizer state specified by its CH-form (w, s, h, U), and a Clifford gate C' from
the gate set {CZ,CX, S, H}, our goal is to compute (w', s, h',U") such that
Clw,s,h,U) = |u',s', b, U"). (2.26)

If the gate C' itself belongs to J, only U needs to be updated. We simply compute the
tableau of the circuit U’ = CU by computing the action of C' on at most 2n Pauli op-
erators, using standard binary linear algebra. Since C' acts on O(1) qubits, the update
(w,s,h,U) — (w, s, h,U") can be computed in time O(n).

If ' is a Hadamard gate on one of the qubits, for example C' = Hj;, the situation is
more complicated. The identity

1
H; = E(Xj + 7)) (2.27)

implies

1
Hi|lw,s,h,U) = E (Xj|w, s, h,U) + Zj|w,s,h,U)). (2.28)
By definition, |w, s, h,U) = wUH (h)|s), and therefore
X;|lw, s, h,U) = wUH(h)P|s)
Zw, 5,1, U) = wUH(1)Q]s)
where P = (UH(h))'X;(UH(h)) and Q = (UH(h))'Z;(UH (h)) are Pauli operators. Note
that we can compute P and @ in time O(n?) using the tableau associated with U and

the fact that H permutes X and Z. We can then compute strings x, z € F} and integers
D, q € Zy, in time O(n), such that P|s) = i?|x) and @Q|s) = i9|z). We now have

Hj|lw, s, h,U) = PwUH (h) (W) . (2.29)

To proceed we need to use a certain decomposition of Clifford circuits.
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Lemma 5 (Proposition 4 in [8]). Let x,z € F}, x # z. For any h € F} and m € Z,, there
exists a circuit V- consisting of O(n) gates from the set {CZ,CX,S}, a vector h' € Fy,
and a complex number a € C, such that

|z) +i™2)

H(h) (T> =aVH(I)|s). (2.30)
Moreover, V.1, and o, can be computed in time O(n).

Applying Lemma 5 to the right-hand side of eq. (2.29) yields

(Pe* ™/ w)\U H (h)|) if z =2

(iPw)UVH(h & I)|s') if z # =, (2.31)

Hj]w,s,h,U>:{

where V) «, and I/ are the items referred to in Lemma 5. Finally, computing the stabilizer
tableau of U’ := UV given that of U can be done in time O(n?), since there are O(n) gates
in V each of which take time O(n) to absorb into U.

To conclude, we can update the CH description of a stabilizer state under the action
of a Hadamard gate, i.e. compute (w',s’,h’,U’) such that H;|w,s, h,U) = |, s, b/, U’),
in time O(n?).

Another set of Clifford gates which we make use of in this chapter are Pauli rotations
of the type
{exp (i(7/4)P) : P € P(n), P = P'}. (2.32)

These unitaries typically entangle many qubits, but it turns out that one can update
the CH-description of a stabilizer state under such gates in time O(n?), the same time
requirement for a single qubit Hadamard gate.

The above assertion follows immediately from Lemma 5: given a stabilizer state (w, s, h, U)
and a Pauli P we can compute another Pauli P’ in time O(n?) such that

il lw, s, h,U) = wUH(h)e'il|s), (2.33)

namely, P’ = (UH(h))'P(UH(h)). We can then compute a string z and an integer p
such that e'5|s) = 271/2(|s) + i?|z)), and proceed similarly to the Hadamard case, using
Lemma 5 if necessary.
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Measurement updates

Next we summarize how to compute the CH-form of the post-measurement state after
measuring a subset of the qubits and obtaining some outcome. For any Hermitian Pauli
R, projecting onto the + eigenspace of R corresponds to an update rule (w,s, h,U) —
(w', s, h',U") such that

1
§(I+ R)|w,s,h,U) = |w',s',h,U"). (2.34)
As before, we have
R|w, s,h,U) = wRUH (h)|s) = wUH (h)R'|s) (2.35)

where R’ = (UH (h))TR(UH(h)) is a Pauli operator that can be computed in time O(n?).
We now have

1

S R)lw, s, b, U) = wUH(b)(|s) +7715)) (2.36)
where r € Z, and s’ € FYy satisfy R|s) = i"|s'). If s = ¢’ the update is trivial, and if s # &’
it reduces to Lemma 5. Therefore computing (w’, s, i/, U’) takes time O(n?).

Let II, denote the projector onto the subspace corresponding to some computational
basis outcome x. In other words II, acts as |z)(z| on the measured qubits and as identity
on the rest of the qubits. We have

n/

I, =2" [+ (-1)"Z), (2.37)

J=1

where n’ is the number of qubits being measured. Computing the CH-form of the post-
measurement state therefore takes time O(n'n?).

Computing amplitudes

Finally, let’s describe how to compute an amplitude of a stabilizer state given its CH-
form. Namely, we want to compute (x|w,s,h,U), where x € Fy. This can be done in
time only O(n?), compared to the O(n?) required to update the CH-description using the
post-measurement update rules.
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We have

(elw, 5, h, U) = wiz|UH(R)[s)

= w(0"|(U'X (2)U)H (h)]s)

— w(0"|QH(R)]s) (2.38)
for some Pauli @ which can be computed in time O(n?). Here we crucially made use of
the fact that U]0™) = |0™). Writing @ = i*Z(t) X (u) we obtain

(x|w, s, h,U) = wiP{0™| X (u)H(h)|s)
=272 TT (usls;) ] (=1)"* (2.39)

j:hj:() j:hj:1

Once @ is computed, the above expression can be evaluated in time O(n). Thus the total
runtime for computing an amplitude of the state |w, s, h, U) is O(n?).

2.2 Classical simulation using stabilizer decomposi-
tions

In this section, we give an overview of a family of techniques for classically simulating
quantum circuits based on stabilizer decompositions. These techniques are useful when
the number of non-Clifford gates in the circuit is roughly the same as the number of
qubits. The discussion presented in this section is based on Refs. [7, §].

Let U be a circuit acting on n qubits initialized in the state |0)®*". The methods
described in this section pertain to two different simulation tasks;

1. Estimating the probability P(x) of obtaining outcome x € F§ when measuring a
subset of s < n qubits of the state U]0)®", and

2. Sampling an outcome z € Fj according to a distribution P(z) that approximates
P(z) in total variation distance.

The exact versions of these tasks are colloquially known as strong and weak simulations,
respectively. We caution that these terms can be somewhat misleading. While it is true
that the ability to compute the quantum circuit probabilities exactly can be used to sam-
ple the circuit distribution, this implication hinges on the ability to compute marginal
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probabilities. For example, for a given quantum circuit U, a classical simulator that can
only compute P(x) = [{x|U|0")|? for x € F} needs to be run exponentially many times to
produce a sample from the circuit distribution.

A key component in the simulation schemes based on stabilizer decompositions is a
randomized algorithm for approximating the norm of a linear combination of stabilizer
states.

Lemma 6 (Refs. [7, 8]). Let |¢) € (C?)®" be given as a linear combination of stabilizer
states;

k

) = Z Cil@i).- (2.40)

i=1
There exists a randomized classical algorithm which queries the terms {(¢;, ¢;)} one at a
time and with probability at least 1 — & outputs an estimate b which approzimates ||]|* up
to multiplicative error €, i.e.

(1T=evl* <b< (146l (2.41)
The runtime of the algorithm is

O(kn®e?logd™t). (2.42)

The randomized algorithm in Lemma 6 is based on computing inner products of [¢))
with uniformly random stabilizer states. It relies on two key properties of stabilizer states.
First, computing an inner product (¢;|¢;) between two stabilizer states can be performed
in time O(n?). Second, for a uniformly random stabilizer state |§) and any fixed vector
|v), the random variable 2"|(f|v)|?> has mean and standard deviation both equal to |[v||%.
This follows from the fact that stabilizer states form a 2-design, but being a 2-design is
not necessary for this to hold ®. Thus with high probability the average of a large number
of evaluations of this random variable approximates ||v||* with a small multiplicative error
(for instance by a standard application of Chebyshev’s inequality).

2.2.1 Overview of known simulation algorithms
Estimating probabilities with bounded multiplicative error

Lemma 6 can be used to estimate outcome probabilities of a quantum circuit U given a
stabilizer decomposition of the output state. To see this, suppose we're given a stabilizer

31t was shown in [8] that in fact one can take a much smaller subset of stabilizer states, namely the
so-called equatorial stabilizer states.
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decomposition

k

U‘O>®n = Z cil i) (2.43)

i=1

Suppose that a subset of s < n qubits is measured in the computational basis, and that
we want to estimate the probability P(x) of some outcome x € F5. The probability P(x)
is equal to the square of the norm of the vector II,U|0)®", where II, is the projector that
acts as |r)(x| on the measured qubits and as identity operator on the rest. Using the
phase-sensitive measurement updates of section 2.1.4, we can compute the CH-form of
the vector IT,|¢;) with its global phase in time O(sn?), and therefore we can compute a
stabilizer decomposition

k
ILU[0)®" =" cill,|é:) (2.44)
=1

in time O(ksn?). Combining this with Lemma 6, we obtain an estimate of P(z), correct
up to multiplicative error €, in time O(ksn?) + O(kn®c2logd™t).

Approximate sampling from the circuit distribution

Now we briefly describe how the above method for estimating outcome probabilities P(x)
with bounded multiplicative error can be used to sample bit strings = € 5 from a proba-
bility distribution which approximates P. Here s is the number of qubits measured. More
specifically, the goal is to sample x € 5 according to a distribution P such that

. 1 .
|P =Pl =3 > |P(z) - Px)| < e (2.45)
z€F3
Suppose we are given a stabilizer decomposition of the output state of the circuit

ujo”) = ZCZ|¢’L> (2.46)

Using the chain rule for probabilities we have, for © = (z1,...,z,) € F3,

P(x) = P(x1)P(xa|z1)P(23]T1, 22) . . P(6|T1, ..o T 1). (2.47)
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The idea is to sample z; according to the distribution P(z;) obtained by estimating P(x1)
using eq. (2.44) and Lemma 6, then sample x5 according to the distribution P(xs|xq)
obtained by estimating P(xs|x1), and so forth. This produces a sample = € F§ according

to a certain distribution P(z).

To ensure that P satisfies eq. (2.45), the multiplicative error on the estimates of each
conditional probability must be small enough. Each conditional probability can be written
as

P(.Tl, Ce ,xi,l,xi)
P(Qfl, e ,.Z'i_l)

P(l‘i|$1,...,l’i_1) = (248)
Let v be the multiplicative error on the approximations of each of the numerator and de-
nominator. Then the multiplicative error on the ratio is at most 2v, and the multiplicative
error on approximating P(z) by

P(z) := P(z1)P(xa|z1) P3|z, ) . .. P(zg|zy, ... 2ey) (2.49)

is at most O(sv). To ensure that eq. (2.45) holds, it’s enough to pick v = O(e/s).

The scaling of the total runtime can be determined as follows. To produce a sample,
we need to make 2s calls to the multiplicative error estimation algorithm of the previous
section, each with error tolerance O(e/s). Thus the runtime for sampling a bitstring = € F}
from a distribution that approximates P up to error € in total variation distance is

O(kn®s*c?1og(071)).

Suppose now that, instead of eq. (2.46), we only have an approximate stabilizer decom-
position of U]0™). That is, we have a sum of stabilizer states

k
) = ZC¢|¢1'> (2.50)
i=1
such that
[lv) = U0 < e (2.51)

Define a probability distribution () over s-bit strings by

_ (WL |y)
Q) =+ (2.52)
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Since |1) is e-close to a normalized state, we have 1 — e < ||¢|| < 1 + ¢, which implies
I+e)2< |72 < (1 —¢€)2 Using (1+€)2=1FO(e) we get

1721 = UI0")] < ce, (2.53)

for a small constant ¢ > 0 that is not hard to determine from the Taylor expansion of
(1 +€)~2 (for example for € < 1/2 we may take ¢ = 6). This implies

1P = Ql < ce. (2.54)

By appropriately re-scaling €, we can ensure that approximate sampling from () produces
a sample from a distribution which approximates P to within any desired error in total
variation distance. We can approximately sample ) by using the same method as in the
exact case, replacing U|0™) by the state

k

[/ I1NP =D (ei/ [1011%)]3)-

i=1

Namely, every marginal distribution of (), obtained by measuring a subset of r qubits, can
be written as
(|}y)

Q(xl,...,xr) :W

for some stabilizer projector II, and both the numerator and denominator can be estimated
up to multiplicative error using Lemma 6.

2.2.2 Finding exact and approximate low-rank stabilizer decom-
positions

Next we discuss how to obtain stabilizer decompositions of the output state of the circuit;
i.e. a decomposition of the form

k

Ujo”) = Zcz'|¢i>7 (2.55)

i=1

where ¢; are stabilizer states. Here we seek decompositions which are sparse, that is, the
number of stabilizer terms in the decomposition needs to be k < 2™. Note that we can
typically write a non-Clifford gate as a linear combination of two Clifford gates, which
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gives a stabilizer decomposition of the form in eq. (2.55) with £ = 2™ terms. We seek to
find more compressed decompositions than this baseline.

Two methods are known for producing such decompositions. The first method relies on
constructing an equivalent circuit to U in which every non-Clifford gate is replaced by a Clif-
ford gate and an ancilla qubit initialized in a magic state. This is the same state-injection
gadget from fault-tolerant quantum computing, where non-Clifford gates are applied by
consuming ancilla qubits prepared using some magic state distillation routine [30]. The
upshot is that this method allows us to convert compressed stabilizer decompositions of
copies of a magic state into stabilizer decompositions of the output state of the circuit.

The second method, known as the sum-over-Cliffords method, is more direct, but
produces only approximate stabilizer decompositions. It relies on decomposing each non-
Clifford gate in the circuit as a linear combination of Cliffords and then using randomized
sparsification to find a sparse approximation. Below we give a more detailed description
of the two methods.

Decompositions using state injection gadgets

In this construction, a non-Clifford gate A can be applied by consuming an ancilla qubit
initialized in the state A|+). A CNOT gate is applied between the qubit we want to
apply A to and the ancilla qubit, followed by measuring the ancilla qubit, see Figure 2.1.
Conditioned on obtaining the outcome 0, the correct gate is applied to the data qubit. If
outcome 1 is obtained, a correction is needed. The correction gate is guaranteed to be a
Clifford gate provided that A belongs to the third level of the Clifford hierarchy, otherwise
it is some arbitrary non-Clifford gate (in which case the gadget is not very useful for
purposes of fault-tolerant quantum computing, but still useful for classical simulations).

The ancilla measurement returns either 0 or 1 with equal probability. Suppose that we
post-select on the ancilla measurement returning the outcome 0. In this case no correction
is required. By replacing every non-Clifford gate in the circuit U by its corresponding
state-injection gadget and post-selecting, we obtain an equivalent Clifford circuit V', acting
on the original n qubits and m additional ancilla qubits, that is equivalent to U under
post-selection.

Suppose for example that each of the m non-Clifford gates in the circuit is a T gate,
where T' = diag(1,e"™*), and let |T') := T|+). Using state-injection we obtain a Clifford
circuit V' on n + m qubits which satisfies

U10)" = 272 (L. ® (0°™[) V(0) =" T)"™). (2.56)

oo
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Figure 2.1: The state-injection gadget. A non-Clifford gate A can be applied by consuming
an ancilla qubit initialized in the state A|+). If the measurement outcome is 0, the gate A
is successfully applied to the data qubit. Otherwise a correction gate B needs to be applied.
If A is in the third level of the Clifford hierarchy (such as the T" gate), the correction gate
B is a Clifford gate.

The factor 2™/2 corrects the norm of the state to account for the post-selection probability.

For every (n + m)-qubit stabilizer state |¢), the state (09|¢) is an n qubit stabi-
lizer state which can be computed efficiently. The idea now is to start with a stabilizer
decomposition of |T)®™ and use it to compute a stabilizer decomposition of

(L1 ® (0F]) V(JO)ZM|T)™).

This gives a stabilizer decomposition of U|0") using the same number of terms as the
decomposition of |T)®™ .

Finding a low-rank decomposition of U|0") is now reduced to the problem of finding low-
rank decompositions of |T)®™. This problem is still hard, but we can use decompositions
of a small number of copies by breaking the m tensor factors into blocks. For example,
it is known that we can decompose 6 copies of |T') using 7 stabilizer states. This gives a
decomposition of m copies in terms of 7™/¢ a2 20-468m gtabilizer states. In Chapter 4 in this
thesis, we describe how that can be improved to reduced 2039627

The method outlined above requires an ezact stabilizer decomposition of |T)®™. This
is easy to see from eq. (2.56); an additive error € on |T)®™ will be exponentially amplified
by the factor 2™/2.

Decompositions by sparsifying a sum-over-Cliffords
The randomized sparsification idea of Lemma 4 can be used to produce approximate sta-

bilizer decompositions of the state U]0)®™ in a way that bypasses the need for introducing
state-injection gadgets.
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Suppose the circuit is given in the form
U - CmUmCm—lUm—l oo ClUlco, (257)

where C; are Clifford blocks and each U; is a non-Clifford gate. By expanding each U; as
a sum of Cliffords,

Uy = bV, (2.58)
k

we can write the entire circuit U as

U=> aW, (2.59)

where each W; is a Clifford circuit, and |lally = T;/[0;]l;- Since each U; requires at least
2 Clifford gates to decompose, the number of terms in the above Clifford expansion of U
is at lease 2™. Thus k = 2™ is the baseline for the number of stabilizer terms. We will
improve on it by making use of randomized sparsification.

To implement randomized sparsification, we pick a random subset of N of the terms in
eq. (2.59), where each element is independently randomly selected from the set {W;} with
a frequency determined by |a;|/||al[;. This can be done by selecting Vj; with probability
|bjx|/|Ib;|l1 and replacing each U; with Vj,. This produces a random Clifford circuit C
according to some distribution.

Let Cq,...,Cy be independent instances produced in this way. By a complex-valued
version of Hoeffding’s inequality, we have

la

N
oy~ 12 S cjoyen) < (2.60)
i=1

with probability at least 1 — § provided that
N = c|la|/?e % logé . (2.61)

where ¢ is a small constant. For such N the state

lalli <= o an
N ;CAO) (2.62)

26



approximates the output state of the circuit. Since each C; is a Clifford circuit, each term
in eq. (2.62) is a stabilizer state. Hence we found an approximation of U]0") that is a sum
of roughly ||al|2e 2 log 6~ stabilizer states.

In order to reduce the number of terms N, we should pick decompositions in eq. (2.58)
with small 1-norm, i.e. small ||b;]1 = Y, [bjr]. If each U is a single-qubit rotation of
the form exp(if;Z) for 0 < #; < 7/2, then the optimal Clifford decomposition achieves
||b;]|1 = cosB; + tan(w/8)sin(#;), and in this case

m

lally = H!lbjlll = ]I (cos(8;) + tan(w/8) sin(4;)) . (2.63)

Jj=1

For example, if each U; is a T gate, i.e. 6; = /4 for all j, then the number of stabilizer
terms in the approximate state in eq. (2.62) is k ~ 20228m¢=2]og 5=, The time cost
of simulating the circuit using these approximate decompositions is determined by this
scaling.

More generally, the optimal product decomposition of this type has 1-norm
lall = T [ €W)). (2.64)
j=1

where ¢ is the stabilizer extent. In section 3.3, we describe how we can go beyond such
product decompositions by re-writing the circuit in such a way that allows us to use Clifford
decompositions of matriz products of gates.
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Chapter 3

Improved simulation by Clifford
recompilation

3.1 Introduction

When a quantum circuit U contains m non-Clifford single qubit gates, the output state
U|0)®™ can be written as sum of k& = 2™ stabilizer states. Randomized sparsification
allows us to reduce k significantly at the expense of introducing an approximation error.
Each term of this approximate stabilizer decomposition is computed by replacing each
non-Clifford gate in the circuit with a Clifford gate chosen randomly according to its
relative weight in the Clifford decomposition of the non-Clifford gate, and then classically
simulating the circuit using the phase-sensitive Clifford simulations of section 2.1.4.

The time cost of producing the approximate state in eq. (2.62) is roughly the number
of required stabilizer states k to approximate U|0™) with high probability multiplied by
the cost of computing each stabilizer term. Denoting by ¢ the total number of gates in the
circuit, the update rules in section 2.1.4 show that we can compute the CH-form of each
stabilizer term in time O(¢n?), and therefore the total time cost for producing a sparse
approximation of U|0)®™ is O(kfn?).

In Section 3.2, we provide an alternative method of computing the terms which re-
quires only O(mn?) basic operations and a modest increase in memory. As k is typically
exponentially large, such an improvement can result in a useful speed up whenever ¢ > m.
This is done by absorbing the action of the Clifford part of the circuit into the input state
|0™), while simultaneously keeping track of an efficient description of certain many-qubit
gates that is well-suited for phase-sensitive Clifford simulation.
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In Section 3.3, we show that the improved method allows for reducing the exponential
scaling of the runtime by utilizing low rank approximate decompositions of matriz products
of non-Clifford gates.

In section 3.4 we suggest a straight-forward method of estimating amplitudes with
inverse polynomial additive error using this canonical form of the circuit. Such estimates
are useful when the probability we want to estimate is not exponentially small, as well
as in approximate-sampling from the circuit distribution using the heuristic Metropolis
algorithm in [§].

3.2 Clifford recompilation

We now describe an improved method for generating low stabilizer rank approximations
of the output state U|0)®™ of a quantum circuit U based on a re-writing procedure, which
we call Clifford recompilation. Here the goal is to simulate a quantum circuit U given as

U= CmUmCmflUmfl e ClUlco, (31)

where C; are multi-qubit Clifford sub-circuits, and U; are non-Clifford gates. The first step
is to commute all non-Clifford gates to the end of the circuit

where U] = Cm;iUiij, with the concise notation Cj;, := C;Cj_1 ... Cy. Of course the U]
no longer act on a fixed number of qubits, and one might expect them to be too complicated

to store and manipulate. However, as we will explain below, we can efficiently keep track
of a compact description of the U] that is well-suited for randomized sparsification.

We can absorb the action of the Clifford gates into the input state, so that the output
state is given by

Ulony = U’ ... Ull¢) (3.3)

where |¢) = Cy,.0/0™) is a stabilizer state. Note that the CH-form of |¢) can be computed
in time O(cn?), where ¢ = £ — m is the number of Clifford gates in U. In any case, it is
a one-time computation that does not need to be iterated over in the simulation. Storing
the CH-form of |¢) in memory requires O(n?) bits.
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Algorithm 1: Monte Carlo algorithm for improved randomized sparsification

Input : The CH-form (wg, U2, UY) of the stabilizer state |¢) in eq. (3.3). A
decomposition of the form in eq. (3.7) for i =1,...,m.

Output: A random vector |z) such that E(|z)) = U|0)®".

1 begin

2 Set (W,U(j,UH) — ((U(),U%,U%)

3 for i =1, ..., m do

4 Choose V; with probability p;(j) = |as;|/lla:l|1;

5

6

Update (w,U¢c, Ugr) under V;/],
Set w <« (aij/laij|)w;

7 | Output |2) = ||laljwUcUgls).

s end

Next we discuss how to compute and store the U. Suppose we are given a Clifford
decomposition of each non-Clifford gate in U;

J

We will use exponentiated Pauli matrices to compute and store U] efficiently. First note
that each V;; can be written as a product of Clifford gates of the form exp(ifP) where P
is a Pauli and 6 € (7/4)Z '. We can therefore write

o(1)
Ui =D [ ] exp(ifiiPn). (3.6)
J k=1

where a;; absorbs any phases from the elementary gates, and {P;;;} is some collection of

'For example, the Hadamard, PHASE, and CZ gates can be written as
HJ — eiﬂ/Qef’i%Zjei%Y}"
Sj — 61’71'/46—1’%Zj7

CZjy = ™ 4e T 2iZr =15 21715 20 (3.5)

Similar identities can be derived for any Clifford gate.
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Pauli matrices. Then

CT

Uz/ - Z aiij:i m:
J
— Z a;j H exp(i0;jxCn:i Pijr C1 )
j k

= Z Qij H eXp(iegjkPi/jk)
j k
J

H exp (01 Pjr )
K

where

Vij = Hexp(zﬂ;jk k) (3.8)
k

0i;x € {£0ijx}, and the P are Pauli matrices each of which can be computed efficiently in
time O(c). Storing this description of U’ requires O(nm) bits of memory, since each Pauli

matrix requires O(n) bits to specify.

Algorithm 1 describes the improved randomized sparsification Monte Carlo. By Hoeffd-
ing’s inequality, the required number of iterations of the Monte Carlo in order to bound the
error by € with probability at least 1—¢ is O(||b||7¢"*1og(1/4)). This is the same number of
iterations required of the vanilla randomized sparsification method in [8] (see eq. (2.61)),
but the point is that each iteration in the improved algorithm requires only O(mn?) basic
operation.

In short, our improved randomized sparsification removes the dependence of the runtime
on how many Clifford gates there are. This is achieved by recompiling the circuit and
absorbing the action of all Clifford gates in the circuit into the input state, which only
needs to be computed once.

3.3 Clifford decomposition of products of multi-qubit
gates

As we mentioned earlier in this chapter, finding a Clifford decomposition of a non-Clifford
gate U; with minimal 1-norm (i.e. minimum ||a;||; in eq. (3.4)) can be done using a convex
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optimization software [11, 8]. These brute-force optimizations can only be performed for
one- or two-qubit gates, as it is too computationally intensive for more qubits. In this
section we describe how recompiling the circuit as in the previous section allows us to
search for more sparse approximate stabilizer decompositions of the output state.

The stabilizer extent for unitaries is sub-multiplicative under composition, i.e.

§(AB) < £(A)(B). (3.9)

For two operators A and B, let us call a Clifford decomposition of the product AB con-
tractive if its 1-norm is strictly less than £(A)¢(B). Finding a contractive Clifford decom-
position of AB is generally hard unless A and B are at most 2-qubit gates acting on the
same pair of qubits, so that we can use convex optimization.

An exception is when the two operators can be mapped to the same pair of qubits via a
Clifford C. In that case, one can find a contractive decomposition of C ABCT using convex-
optimization, and then apply the inverse CT, using the idea of eq. (3.7) to keep the terms in
a form enabling fast phase-sensitive Clifford updates. This method is well-suited to the case
of Clifford+e®” circuits, which we discuss next. Furthermore, if better numerical methods
can be found for minimizing the 1-norm, so that one can find the optimal decomposition
for 3 qubit gates, this Clifford-equivalence method can be used with a much greater effect.

Example: Clifford+e?” circuits. As an example of how these ideas can be used in
practice, we consider circuits where each non-Clifford gate has the form e*”, where P is
a Pauli operator, and § € [—m, 7). This class of circuits includes important cases such as
Clifford+T' circuits, and more generally Clifford+Z rotation circuits. For a circuit U of
this type containing m non-Clifford gates, eq. (3.3) reduces to

U|0") = efm@m  191g), (3.10)
for a list of Hermitian n-qubit Pauli operators @1, ..., Q,,, a list of angles 64, ...,6,,, and
a stabilizer state |¢).

Note that the unitary F is Clifford if and only if § € (7/4)Z. Thus we may, without
loss of generality, assume that 0; € (0, 7), as otherwise we can “factor out” Clifford gates
e*59 and absorb them into the state |@), at the cost of applying a Clifford mapping to
the list of Pauli operators (); with j < 4. The Clifford mapping can be quickly computed
using the relation

iZP A —iZP _ Q if [RQ]:O
Qe = {z’PQ it {P,Q} =0. (3:11)
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We refer to eq. (3.10) as the canonical form of the output state of a Clifford+e®? circuit.

What is the optimal Clifford decomposition of the product

ezeQO L. 67;‘916917

and how can we find it? Here optimal is in the sense of having a vector of coefficients
with minimum 1-norm. Not only is this question too hard to settle using currently known
methods, it is unlikely that there will ever be tractable numerical or analytical tools that
can answer it in general.

We therefore restrict our attention to the task of reducing the 1-norm below that which
is achieved by optimally decomposing each exponential separately. Recall that, for a single

qubit Pauli operator P, we can numerically find the optimal decomposition of ¢*” into
Clifford gates, and it is given by
P = (cosf — sinB)I + (v/2sin h)ei”. (3.12)
The above decomposition achieves the stabilizer extent
. 2
£ = [cose + (V2 —1)sing 0<0< %). (3.13)

This numerically obtained fact for single qubit Pauli operators can be generalized to n-qubit
Pauli operators, since we can map an n-qubit Pauli to a Pauli acting on a single qubit via
Clifford conjugation. This assertion follows from i) invariance of £ under multiplication by
Clifford unitaries, ii) invariance of £ under tensoring by the identity, i.e. £(U & I) = £(U).

Let’s now consider a product of a small number of exponentials. If a sub-sequence
of the exponentials in eq. (3.10) multiplies to a Clifford gate, it can be commuted past
the gates prior to it and absorbed into the input stabilizer state |¢), effectively reducing
the number of non-Clifford gates in the circuit. As we are dealing with a universal set of
gates, it is generally intractable to determine whether any such sub-sequence belongs to
the Clifford group.

For a sub-sequence of length two; %@ with 0, ¢ € (0,7/4), PQ # +1I, there exists
no better decomposition of €?7e’? than the product one, obtained by decomposing each
gate separately and multiplying. In other words,

Lemma 7. For any two n-qubit Paulis P and Q, PQ # +I, and 0,¢ € (0,7/4), we have
f (eialpeiezQ) — 6 (eielP) 5 (€i02Q) . (314)
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Figure 3.1: Theoretical time cost of simulating various one- and two-qubit exponential
sequences. The angles are chosen to be equal for simplicity. For a sequence of length L,
the function f(#) is the 1-norm of the decomposition of the sequence into Clifford gates, and
f(0)Y is the effective 1-norm per gate. The function 2log(f(8)'/*) is the contribution of
each gate to a, where 2 is the exponential scaling factor in the runtime of the simulation.
The data is obtained using a convex optimization software (CVX with the SDPT3 solver).

Proof. This can be verified numerically for two-qubit Paulis, and the general case follows
from the fact that any pair of n-qubit Paulis P and () can be mapped by a Clifford circuit
to a pair of Paulis with support on the first two qubits only. O

For products of three or more exponentials, we can find decompositions with signif-
icantly reduced 1-norm in certain cases. Numerically, we observe that the possibility of
1-norm reduction is correlated with the rank of the binary representation of the Paulis.
Specifically, for x,z € Z§ write X[z] = X" @ -+ - @ X* Z[z] = 72 ® --- ® Z*, and
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Pa2y = 1" X[2]Z[2]. Then numerics in the two qubit case suggest that,

¢ <H ) < TLete) (3.19

whenever rank(vy, ve, - -+ ,vg) < k with rank(:) computed mod 2.
For example, it is possible to numerically verify that
5 (ei91X6i92Y€’i932) < 5 (eielX) 5 (e’iHQY) f (€i03Z) , (316)

for any choice of angles (6;,02,603). We can also numerically find the optimal Clifford
expansion

o1 X gib2Y 037 _ Z a;Cl, (3.17)

for some collection of single qubit Cliffords C;. For example, for any 0 < 6 < 7/8, the
optimal expansion is given by

X0 07 — 0 (0) + ¢1(0)SH + co(0)HX + c5(0)SHS (3.18)
where
co(6) = cos 30 — sin 6
¢1(0) = e™/*[sin 20(cos § — sin 0)]
c2(0) = ¢3(0) = (vV25sin 20sin 0). (3.19)

More generally, the Clifford terms in the optimal expansion eq. (3.17) vary depending on
(01, 605,05), and a general expression for the optimal decomposition is too tedious to write
down, although finding it numerically is easy on a case-by-case basis.

Similarly to what we did in the case of two exponentials, we can now conclude that, for
any triple of n-qubit Paulis (P, @, W) which are equivalent to (X3, Y7, Z;) via conjugation
by a Clifford V', the optimal decomposition is given by

eielPeiOQQeng — Z CYZVT(OZ ® I®TL_1)V (320)

As before, each Clifford term VT(C; ® I®""1)V is easy to write as a product of a small
number of Cliffords of the form e¢®® where R is a Pauli and ¢ € (7/4)Z, using the same idea
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in eq. (3.7). This way we obtain a decomposition of the many-body operator ei1f¢#2Q¢isW

which is both optimal and in a form enabling fast phase-sensitive Clifford updates.

The reduction in the 1-norm by decomposing products of gates can be quite large, see
for example Figure 3.1, where the log of the 1-norm is plotted for different one and two
qubit gate sequences of varying lengths. This directly translates to classical simulation
schemes with milder exponential scaling of the runtime.

3.4 Additive-error approximation of amplitudes

In section 2.2 we described how a marginal circuit probability 2 can be estimated using
stabilizer decompositions of the output state. To bound the multiplicative error on the
estimate by €, the required runtime of this algorithm depends linearly on the number of
terms in an exact stabilizer decomposition of the output state, and polynomially on the
number of qubits and 1/e.

For estimating an amplitude, (i.e. a probability of a fine-grained event, where we
measure all of the qubits), the time cost of the above mentioned algorithm is O(kn’¢?),
where k is the number of terms in the stabilizer decomposition. The n® factor is significant
in practice, as was noted in [8].

In this section we instead consider an approximation correct up to additive error e
whose runtime scales like O(kmn?), where m is the number of non-Clifford gates in the
circuit and k is the number of stabilizer terms in an approximate decomposition of the
output state. Such estimates are useful when the probability we want to estimate is not
exponentially small. Furthermore estimates obtained in this way can be used with the
Markov Chain Monte Carlo variant of stabilizer rank methods, as shown in [8], which was
shown to outperform other methods, despite having no rigorous error guarantees.

We describe how such an algorithm may be extended to other gate sets, such as nearest-
neighbor matchgate circuits, and highlight how sampling Clifford-like unitary trajectories
requires a significantly smaller sample size to guarantee convergence up to a required
precision than other, similar approaches.

%i.e. the probability P(x) of obtaining outcome z when measuring a subset of the qubits after applying
a quantum circuit.
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3.4.1 A simplified algorithm for estimating amplitudes

A simple Monte Carlo algorithm based on randomized sparsification can be used to estimate
the amplitudes (x|U]0") of the circuit U. Indeed the output of Algorithm 1 is an unnormal-
ized random vector |n), proportional to a stabilizer state, whose mean is E(|n)) = U|0").
Thus for any z € Fy

E((z|n)) = («|U]0"). (3.21)

Given an instant |n), we can efficiently compute (x|n) using the methods in section 2.1.4.
This is because |n) is proportional to a stabilizer state. Since (z|n) is an unbiased estimator
of (z|U|0™), we can use an empirical mean to estimate it, invoking a complex-valued version
of Hoeffding’s inequality [33, 9] to bound the probability of the additive error exceeding e.
An empirical mean R obtained by averaging k instances satisfies

Pr[|R — (z|U]0")] > € <, (3.22)

provided we take k ~ |la||?¢ ?log(d~!). Thus by averaging enough evaluations of (z|z),
one obtains a good estimate of (z|U|0") with high probability.

Given the CH-form of an instance of |n), it takes time O(n?) to compute the amplitude
(x|n) using the methods in section 2.1.4. This gives a runtime scaling of O(||a||?mn?e¢ =2 log(d~1))
for computing an additive error estimate of the amplitude, using the improved sparsifica-
tion Monte Carlo Algorithm 1.

Typically we are interested in estimating the probability Pr(z) = [{(x|U]0™)|?, rather
than the amplitude. It is straightforward to check that if |R — (z|U|0")| < ce, where
¢ = V2 —1, then ||R|? — P(z)| < € (assuming ¢ < 1). In other words, estimating the
probability instead of the amplitude only requires multiplying k& by the constant ¢=2 =~ 6.

3.4.2 A digression on sampling computational paths
The algorithm just described for estimating (z|U|0™) relies on sampling a large number of

Clifford-like computational paths and averaging their contributions to the amplitude. This
is achieved by writing the circuit U as sum of Clifford circuits,

lal

a;
U=> aW;=|lal)_ ai Wi, (3.23)
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and then averaging many contributions ||a||;(x|W;|0™), each chosen independently with
probability p(i) = ||‘Z|i\|1
into the W;). Each Clifford circuit W; is associated with a computational trajectory.
These trajectories branch at every non-Clifford gate in the circuit. The distribution p over
trajectories can be sampled by implementing a suitable probabilistic update rule at every

non-Clifford time step. This is an intuitive description of what algorithm 1 does.

(here we assume that the a; are positive by absorbing phases

Estimating the amplitude in this way clearly suffers from the problem of large can-
cellations. This is because ||al|; > 1, and the contributions from different computational
trajectories, namely ||al|;{x|WW;|0™), can have different phases. Catastrophic destructive
interference can make the estimate of the amplitude unstable.

Despite this, we can still obtain rigorous error guarantees by averaging a large number of
trajectories, roughly ||al|3/€. Tt is possible to obtain error guarantees with less trajectories
if we had more information about the circuit, in particular the variance of the associated
random variable. In general we do not have access to the variance and so we choose the
most pessimistic tail-bound, i.e. the one specified by Hoeffding’s inequality.

The main advantage of using Clifford decompositions of the circuit is that the required
number of trajectories to obtain error guarantees has a mild exponential scaling with the
number of non-Clifford gates. For instance, a circuit consisting of Clifford gates and m
T gates requires averaging roughly ||al|?/e* & 292%™ /e2 trajectories, a dramatic improve-
ment over the total number of trajectories 2™. This exponential scaling is in fact much
milder than similar Monte Carlo methods for simulating Clifford+T circuits that have been
recently reported. These alternative methods are based on Monte Carlo using entries of
the gates in the computational basis [9], quasi-probability distributions [10], robustness of
magic [11], and channel decompositions [12].

What is it about unitary Clifford trajectories that gives rise to this phenomenon? The
obvious explanation is not very satisfactory; it is simply the geometric fact that there exists
a decomposition

T = 0101 + CQCQ, (324)

where C; are Clifford gates, such that [|c[|?™ = 20228™  where ||c||; = |c1| + |cof is the
1l-norm. Can we instead decompose the circuit as a linear combination over some other
set of circuits and obtain a similarly mild exponential scaling? In the next subsection we
explore such possibilities.
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3.4.3 Generalizations to other gate sets

Suppose we want to estimate the amplitude (x|U|0™) by decomposing U as a linear combi-
nation of some set of unitaries W;. A necessary requirement is that we are able to efficiently
compute the contribution from each term (x|1¥;|0™) on a classical computer.

As an example, given a circuit U in the gate set {HADAMARD, CNOT, NOT, T}, we
may write U as a sum of circuits that preserve the computational basis. This can be done
by decomposing each Hadamard gate in the circuit as a sum of Paulis;

1
H = E(X + 7). (3.25)

Denoting by h the total number of Hadamard gates in the circuit, the resulting expansion
U=y a
i

has ||all; = (2/v/2)" = 2"/2. Therefore the required number of computational trajectories
for constant additive error € is roughly ||a||? = 2". This offers no advantage in terms of the
exponential scaling of the runtime over simply computing the sum of all 2" branches.

Perhaps the most natural candidate for generalizing stabilizer rank methods is fermionic
Gaussian states and nearest-neighbor matchgates. Nearest-neighbor matchgates have been
known to be classically simulable since a seminal work of Valiant [2], who gave efficient
algorithms for computing circuit probabilities and sampling the circuit distribution. An ex-
tension of these method and an interpretation of them in terms of non-interacting fermions
was later identified by Terhal & Divincenzo [3]. Furthermore, a variant of the norm esti-
mation algorithm, Lemma 6, specific to fermionic Gaussian states was derived by Bravyi
& Gosset in the context of simulating quantum impurity models [34].

Importantly for our purpose, nearest-neighbor matchgate circuit amplitudes can be
computed (i.e. with the phase) in classical polynomial time, see for instance the appendix
in [35] for a quick recipe. Augmenting nearest-neighbor matchgates with nearest-neighbor
SWAP gates is sufficient for universal quantum computation. This motivates searching for
matchgate decompositions of the SWAP gate.

We can use a straightforward numerical optimization to minimize the 1-norm over
matchgate decompositions of the SWAP gate. Namely, every two-qubit matchgate has the
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form

U1 0 0 U12
0 V11 V12 0
0 V21 U2 0

U921 0 0 U929

G(U,V) = (3.26)

where U, V' € U(2) satisfy det(U) = det(V). Discarding a global phase we may take U,V €
SU(2). Note that the SWAP gate cannot be written in this form since det(X) = — det(I).

Our numerical search suggests that the decomposition
6727r/4 —im/4

5 GUL—iX) + =

has minimal 1-norm over all matchgate-decompositions of SWAP, where G(I,+iX) is the
+iSWAP gate

SWAP =

G(I,iX) (3.27)

1 0 0 0

. 0 0 +£2 O
GULEX)=| o o oo (3.28)

0 0 0 1

This decomposition has 1-norm equal to v/2, which implies that amplitude estimation using
this decomposition has a runtime scaling like 2™, where m is the number of SWAP gates.
Since it is possible to exactly compute the amplitude in time 2™poly(n) by computing the
2™ matchgate contributions, this decomposition is not useful for this purpose.

Our numerics are not exhaustive, and furthermore do not exclude the possibility of
reducing the 1-norm by decomposing parallel SWAP gates into nearest-neighbor matchgate
circuits involving more than two qubits.

Another possible generalization involves product vs. entangling gates. Considering the
universal gate set {HADAMARD, PHASE, T, CPHASE}, we seek to find decompositions
of the CPHASE gate into a sum of tensor product unitaries. We find numerical evidence
that the decomposition

ez7r4

CPHASE =
V2

(5151 —i5,5,) (3.29)
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achieves the minimum 1-norm over all decompositions of CPHASE as a sum of tensor
product gates (not necessarily Cliffords), where S; is the PHASE gate on qubit ¢. Similar
to the matchgate case, the 1-norm of this decomposition is v/2, too large to provide an im-
provement over brute force methods. Nevertheless, our numerical search is not exhaustive
and a better decomposition may exist. It may also be the case that a decomposition of the
form

CPHASE®™ = ",V (3.30)

J

exists such that each V; is a product gate on 2k qubits and ||af; < 2¥/2. Our numerical
search did not detect such decompositions for k£ = 2 allowing for up to 4 terms in the sum.

The reason it is not easy to perform conclusive numerical search, both for matchgate
and product decompositions, is that the number of terms in the optimal decomposition
may be large, and each term requires 6 extra search parameters (three for each gate in
SU(2)). The decompositions given in egs. (3.27) and (3.29) are optimal allowing up to 8
terms in the sum.

It is possible that much better decompositions can be achieved in the continuum limit,
for example, via a complex-valued function f such that

CPHASE = /dUde(U, VeV, |fl= /dUdvyf(U, V)| < V2,

where integration is with respect to the Haar measure over SU(2). This would reduce the
runtime of the amplitude estimation algorithm to |f]|?™ < 2™, where m is the num-
ber of CPHASE gates, provided we can efficiently sample the distribution p(U, V) =
LF (U W/ fll1- A similar question arises for decompositions of SWAP in terms of match-
gates, i.e. whether there exists a function g such that

SWAP = /dUdVg(U, VIGWU, V), gl = /dUdV|g(U, V)| < V2.

Determining whether such f and g exist (whose associated distributions can be sampled
efficiently) is an interesting question, but outside the scope of this discussion.

Finally, let us return to the example of decomposing Hadamard gates as a linear combi-
nation of computational-basis-preserving gates. It is easy to check that the decomposition

H=—(X+2), (3.31)
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is in fact optimal over all such single-qubit gates. It is easy to prove a somewhat stronger
statement that lower-bounds the 1-norm in any decomposition of parallel Hadamard gates
H®* over the set B, of computational-basis-preserving k-qubit unitaries. Equivalently Bj
is the group of permutation matrices with a phase-mask: every element in B;, is obtained
by taking a 2* by 2¥ permutation matrix and replacing its non-zero entries with phases.

In what follows we treat By as if it were a discrete group (it is in fact a continuous
group). This does not lose any generality (just replace the sum with integral with respect
to Haar measure over the group By).

Proposition 8. Suppose

H®* = " awW. (3.32)

WeBg

Then ||al|, > 2+/2.

Proof. Every entry in H®* is non-zero with modulus 27%/2. Let By(i, j) C By be the subset
in which the (4, j)th entry is nonzero. We must have, for every (i, j),

2= N aw| < ) Jawl

WeB(i,5) WeB(4,5)

As every element of By, contains exactly one non-zero entry in every row, we have By (i, j) N
By.(i,7) = 0 for j # j', which implies

=N awl <Y > awl < lall
J WeBL(,j) J WeBK(4,5)

]

Proposition 8 shows that no such decomposition can speed up the amplitude estimation
Monte Carlo beyond the baseline scaling of 2", where h is the number of Hadamard gates
in the circuit.

To conclude, up to validity of the numerical evidence we gathered, natural general-
izations of the amplitude estimation and randomized sparsification to other gate sets do
not offer any advantage in terms of the scaling of the simulation runtime. Only Clifford
unitaries and stabilizer states seem to have that feature.
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Chapter 4

Upper bounds on the exact stabilizer
rank

4.1 Introduction

Finding low-rank stabilizer decompositions of the output state of a quantum circuit can
significantly reduce the runtime of simulating the circuit on a classical computer. The
sparsification lemma offers one way to construct low-rank approximate decompositions.
One drawback of approximate stabilizer decompositions is that we do not know how to
use them to estimate circuit probabilities with multiplicative error e in time k - poly(1/e),
where k is the number of stabilizer terms and we are ignoring the dependence on other
variables. In contrast, exact stabilizer decompositions can be used for this purpose.

In this chapter we describe a method of constructing exact, low-rank stabilizer decom-
positions of [)®™, where [¢)) is a single qubit state. Using the gadget-based methods of
[7, 8] (see section 2.2), such decompositions allow us to estimate marginal probabilities
of quantum circuits consisting of Cliffords gates and m instances of a certain non-Clifford
gate associated with [¢), with a resource cost scaling as k- poly(1/¢), where k is the number
of terms in the decomposition and € is the multiplicative error.

We focus on the case where 1) is either a magic state or an equatorial state. Recall that
magic states are the non-stabilizer eigenstates of single qubit Clifford unitaries. The set of
magic states decomposes into two Clifford orbits, of either the T state |T) = 271/2(|0) +
e™4|1)) or the face state |F) = cos()|0) + e™/*sin(f), where 3 is an angle such that
cos(28) = 1/4/3. Equatorial states are those of the form |8) = 271/2(|0) + €?|1)).
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We demonstrate a family of decompositions with improved asymptotic scaling for such
states, namely a stabilizer decomposition of |T)®™ with 2m°&2(3)/4 terms. This improves
on the best known bound of 2™°22(7)/6 and is based on a stabilizer decomposition of |T7)®"
with 6 terms. The stabilizer rank of |T)®% was conjectured to be 7 in [6]. We also find a
decomposition of |F)®™ with the same number of terms. The stabilizer rank of |F)®™ was
conjectured in [6] to be equal to that of |T)®™, and the fact that our method applies to
both types of magic state may be seen as evidence supporting this conjecture. Finally, for
any equatorial state |#) we give a stabilizer decomposition of |#)®™ with 2™/2 terms. To
our knowledge no such decompositions were previously known.

The results in this chapter are based on joint work with David Gosset ! and Hakop
Pashayan 2.

4.2 The stabilizer rank of cat states

In this chapter we will make use of relations involving the stabilizer rank of certain en-
tangled states. In this section we summarize these relations. For a single qubit state |v),
define the cat state

[caty (1)) == 27 2(|g)" + [¢)®"), (4.1)

where |¢)1) is an orthogonal state to |1)). The phase on |[¢)1) is fixed by assuming that
(0]1p1) is real and positive (the case [1)) = |0) is unimportant and we can discard it from
this definition).

The stabilizer ranks of |¢))®" and |cat, (1)) are related as follows.

Proposition 9. For any single qubit quantum state |¢), we have

X (¥°") < dx (cata(¥)) .-

Moreover, if |1)) is a magic state then

X (¥°7) < 2x (cat (¥)) .-

nstitute for Quantum Computing, Waterloo, Ontario, and the Department of Combinatorics and
Optimization, University of Waterloo, Ontario.
2Perimeter Institute, Waterloo, Ontario, and the Institute for Quantum Computing, Waterloo, Ontario.
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Proof. We have
[¥)*" oc ([) (] @ I)|cat, (1))

Decomposing [1) (1| into the four Pauli matrices implies

X(¥F") < Ax (cat,(¥)) (4.2)
If |¢) is a magic state then it is a +1 eigenstate of a Hermitian Clifford C', and therefore
() (W] = 3(I +C) and x(¢*") < 2 (cat,(1))). N

Next we describe sparse stabilizer decompositions of cat states of up to six qubits. In
particular, we focus on cat states constructed from single qubit equatorial states and from
magic states.

Cat states constructed from equatorial states

Let |6) = 27Y2(]0) + €?|1)). For n < 6, the states cat,(|#)) can be decomposed in terms
of at most 4 permutation-invariant stabilizer states, namely

00", (D", By =272 Y ) K =272 Y (-1 @), (4.3)

T even T even

where S(z) = >, _; ;jv5. The exact decompositions are given by

|catz(0)) = (|0>®2 +eM1)#2) V2,
cats(6)) = 515) + (5 — )| )

—iesing, o, ie30sing o, 9
lcaty(0)) = —————0)%* + ————|1)®* + | Ey),

V2 V2
|cats(6)) = (1/4)(1 — €*)[0)®® + €* cos 0| E5) + ie*” sin 0] K5)

[cats(0)) = (1/4v2)(1 — €™)[0)°° + (1/4v/2)(e* — €2)[1)*°

+ €% cos 0| Eg) + ie* sin 0] Kg).
Therefore for any 6 we have the upper bounds

X (cata(0)) = x (catsz(0)) =2, x(caty(f)) <3, x(cats(f)) <3, x(catg(d)) < 4.
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Cat states constructed from the T state

For some values of 6 these upper bounds are not tight. For example, the states cat,(T")
constructed from |T) = |0) + ¢™/4|1) satisfy

X (cato(T) =1, x(caty(T)) =2, x(catg(T)) < 3.

The above can be verified by noting that for § = 7/4 certain terms in the above decompo-
sitions combine into stabilizer states, reducing the overall number of stabilizer terms.

Cat states constructed from the F' state
The face state is given by
|F) = cos(5)]0) + et/ sin(5)[1) (4.4)

where 3 € [0,7/2] is an angle such that cos(23) = 1/v/3. For n < 6, the states cat, (F) ad-
mit low rank stabilizer decompositions similar to those of the T" state. The most important
two are caty(F') and catg(F):

|caty(F))
|catg(F))

(10)*2 +i[1)%2) /2,
(2/3)|th1) + €¥/4(2/3)[iba) — €™/ (2/3)|ub3)

where
Y1) = 271/2(|0)®6 — 4[1)®°)
o) =270 Y (i)l med 2 )

z€{0,1}6
[gs) =270 Y (=1)5@HH|a), (4.5)
z€{0,1}6
These decompositions imply
x(cata(F)) =1, x(catg(F)) < 3. (4.6)
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Contracting cat states

The stabilizer rank of |cat,,), constructed from any single qubit state [¢)) (which we omit to
ease the notation), can be upper bounded via certain tensor contractions. Here, we explain
the idea by considering an example. We can prepare cat states by contracting other cat
states together, for instance

((T!®2 n <TJ_|®2> ((‘T>®6 n |TJ_>®6) <|T>®6 n ’TJ_>®6)> — |T)®10 1 |7ty®10

(4.7)

on qubits 6 & 7

Proposition 10. Let |¢) be an n qubit state and |¢') be a state on s < n qubits. Then
the stabilizer rank of the state (¢'|¢), where the contraction is on some subset of s qubits,
satisfies

X((¢'16)) < x(é)x(¢'). (4.8)

Proof. For every stabilizer decomposition of |¢) and |¢') using stabilizer states {|¢)} and
{|¢') } respectively, there is a decomposition of (¢'|¢) using stabilizer states {(¢'|¢)}. O

Combining eq. (4.7) and Proposition 10, we obtain the upper bound

x(cat1o(T)) < x(cato(T))x(cats(T))* < 9, (4.9)

where we used x(cato(T")) = 1 and x(catg(T")) < 3.

More generally, we can place k copies of |cat,) in a 1D chain, and then connect each
pair of nearest neighbours by acting with the contraction (cate| on one qubit from each.
This prepares the state |cat,,), where m = nk — 2(k — 1), implying that

x(cat,,) < x(caty)** Dy (cat,,)*. (4.10)

4.3 Upper bounds on the stabilizer rank of n copies
of single qubit states

We now consider the stabilizer rank of [1))®", where [¢) is a single qubit state. We start
by giving a quick proof of two improved upper bounds, and then, in Theorems 11 and 12,
show how to improve them further.
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Proposition 9 implies that
X(T*°) <6, (4.11)

which follows since x(cate(T)) < 3 and |T)(T'| = 3(I + C), where C is the Clifford unitary
whose +1 eigenstate is |T) . Equation (4.11) implies an improved upper bound

where 7 = log,(6)/6 ~ 0.431. An identical argument holds for the face state |F’).

Similarly, for any equatorial single qubit state |#) = |0) + €¥|1), the stabilizer rank of
|6)®™ is at most 22™/3. This is true since

x(6%°%) < 16, (4.13)

where we used Proposition 9 and noted that the stabilizer rank of |catg(f)) is at most four.
Therefore

X(0®m) < X(9®6)m/6 < 22m/3' (4‘14)

We can improve the two upper bounds in eq. (4.12) and eq. (4.14) by contracting cat
states, which is shown in the next two theorems. Namely, the improved upper bounds for
the stabilizer rank of m copies of magic/equatorial states are respectively given by 2™
and 2™/2, where o = log,(3)/4 ~ 0.3962. Moreover, the proofs are constructive, meaning
that we obtain decompositions which achieve these bounds.

Theorem 11. Let |¢) be a single qubit magic state. Let o > 0 be the smallest number
such that x(Y®™) < 2% for all m. Then

~ 0.3962. (4.15)

Proof. Since |1) is a magic state it is Clifford equivalent to either |T') or |F'). Without loss
of generality let it be equivalent to |T). For ease of notation set

|W,,) = |cat,(T)).

3Namely C = e~*"/4SX where S is phase gate
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CEDNCORE N

Figure 4.1: Top: the chain used for proving Theorem 11. There are k vertices and k — 1
edges. Every vertex is a |Vg) state and every edge is a (U] contraction on one qubit from
each of the vertices it contains. Bottom: the chain used for proving Theorem 12. There
are bk + 1 vertices and k hyper-edges. Every vertex is a |®g) state and every hyper-edge
is a (Pg| contraction on one qubit from each of the vertices it contains.

Consider the 1D chain in Figure 4.1 Top. There are k vertices and k£ — 1 edges. Every
vertex is a |Wg) state and every edge is a (V5| contraction on one qubit from each of the
vertices it contains. The resulting state after the contraction is

((‘1’2\®k1> (\‘1’6>®k> X [Wapr1). (4.16)
edges vertices

Since x(Wy) =1 and x(¥g) < 3, we have
X (Waprr) < 3%, (4.17)
which implies
(T < 2 % 3k, (4.18)

where we used Proposition 9 and noted that |T)(T'| = $x(I + C) for some Clifford unitary
C. Using Clifford invariance of the stabilizer rank, sub-multiplicativity of the stabilizer
rank, and the bound eq. (4.18), we obtain

X(w@m) — X(T®m) S X(T®4k+l)m/(4k+1) S (2 % 3k)m/(4k+1) N 2am’ (419>

ask%m,wherea:%. O

Theorem 12. For any equatorial single qubit state |0) = |0) + ¢|1), the smallest number
B > 0 such that x(6°™) < 2™ for all m satisfies

5§§ (4.20)
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Proof. For ease of notation set
| @) = |catn(0)).

Consider the chain in Figure 4.1 Bottom. There are 5k + 1 vertices and k hyper-edges.
Every vertex is a |®g) state and every hyper-edge is a (®g| contraction acting on one qubit
from each of the vertices it contains. The resulting state after the contraction is given by

<<¢)6|®k> <|@6>®5k+1) X |<I)24k+6>- (421)
hyper-edges vertices

Since x(®g) < 4 for any equatorial state, we have

X (Paarse) < 4%, (4.22)
which implies

X (OO2HH8) < 4Oh+2, (4.23)

where we used eq. (4.2) and noted that |#)(6| can be written as a sum of four Cliffords.
Using sub-multiplicativity of the stabilizer rank and the bound eq. (4.23), we obtain

X(9®m) S X(9®24k‘+6)m/(24k‘+6) S (46k+2)m/(24k‘+6) N 2m/2’ (424)

as k — o0. O

4.4 Discussion, conjectures, and open problems

A key idea in this chapter is that the stabilizer rank of cat states grows more slowly than
the stabilizer rank of the state they are constructed from. To get a feel of why this is the
case, let us consider |T') = |0) + e™/4|1) and expand (ignoring normalization)

Ty = W),

€Y

Ty THE = Y wil), (4.25)

€Y : x even

where w = exp(in/4) and |z| is the Hamming weight of the bit string x. The cat state
looks the same as the original state, except its support is restricted to the even parity
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subspace of F5'. In both cases in eq. (4.25), the problem is to find a sparse decomposition
of the hamming weight phase w!®l in terms of phases of the form i®)(—1)9®) where ¢ and
q are linear and quadratic functions®. On the even parity subspace we have wl®l = {l#1/2 ¢
{#£1, i}, and moreover, on this subspace the function |z|/2 is congruent modulo 4 to
the totally symmetric quadratic polynomial S(z) = Zi<j x;xj, and therefore ilel/2 = 5@,
This almost has the right form of a stabilizer state. It is then not too surprising that the
stabilizer rank of the highly entangled cat states can be lower than the stabilizer rank of

the product states they are constructed from.

For concreteness let us discuss two examples; the two-qubit and six-qubit cat states.
The fact that these states have low stabilizer rank is a key ingredient in the proof of
Theorem 11. In both cases, special cancellations/combinations allow for low rank stabilizer
decompositions. The two-qubit cat state is a stabilizer state

|T)®% 4 |T+)®% = |00) + i[11). (4.27)

For |T)®5 + |T+)®5 the even parity subspace of 6-bit strings contains one string of weight
0, one string of weight 6, and an equal number of strings of weights 2 and 4. Let’s consider
two quadratic phase functions: the first is the trivial phase fi(x) = 1 and the second is
the totally-symmetric quadratic phase fy(x) = (—1)%i<i %% The function f; is of course
constant on all bit strings, and the function f, distinguishes between strings of weights 2
and 4. Therefore we can get the correct phase w!®l on all bit strings of weights 2 and 4 by
a linear combination of the two stabilizer states

S A@l, Y @),

T even T even

However, the phases on [0)®% and |1)®% will be incorrect. By a stroke of luck, the required
corrections on |0)®% and |1)®° differ only by a phase multiple —i. Therefore both corrections
can be applied with a single additional stabilizer state, namely

0% — 1.

This gives us a decomposition of |T)®6 + |T+)®6 in terms of only 3 stabilizer states.

4Recall that every stabilizer state on m qubits has the form

> it (1)) ). (4.26)

TEA

where A is an affine subspace of Fy’, ¢ is a quadratic function on A, and ¢ is a linear function on A.
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Unfortunately, for m > 6 a similar construction fails. A simple explanation is that
there are too many m-bit strings of weight 6 in this case, and the correction we need to
apply requires too many additional stabilizer terms. The best decomposition we found for
|T)®7 + |T+)®7 requires six stabilizer states, which is too many for our purposes. It is an
open question whether more sparse decompositions exist for m = 7.

In order for a decomposition of |T)®7 + |T+)®7 to improve the upper bound in Theo-
rem 11, it needs to consist of no more than three stabilizer states, which in our opinion is
unlikely to exist. For |T)®® + |T+)®® we need a decomposition consisting of no more than
five stabilizer states. We leave it as an open question whether such a decomposition exists.
Note that it is not hard to construct a decomposition of |T)®8 + |T+)®® consisting of six
stabilizer terms, for instance via the contraction

<<T|®2 n <T¢|®2>

on qubits 4 & 5

<(|T>®4 T4 (IT)*° + |Tl>®6)) — )% 4 T4
(4.28)

and the fact that |T)®2 4 |T4)®2 | T)®* + |T+)®4, and |T)®5 + |T+)®® can be decomposed
in terms of one, two, and three stabilizer states, respectively.

The second important idea is contracting cat states to produce other cat states, as in
eq. (4.28) above. Intuitively, this provides a systematic way of constructing decompositions
of |T)®™ 4 |T+)®™ that consist of highly entangled stabilizer states. These decompositions
can then be converted to stabilizer decompositions of | T)®™ itself, for instance by projecting
the first qubit onto |T"). Thus cat states are useful not only because of their low stabilizer
rank, but also because they allow us to include in the decomposition of |T)®™ stabilizer
states which have long range entanglement, which can only improve the sparsity compared
to decompositions which are local in this sense.

Can the bound in Theorem 11 be improved? We can consider a generalization of
Figure 4.1 Top to an arbitrary graph G with vertex set V' and edge set E. Proceeding
similarly to the proof of Theorem 11, we place a cat state of 6 qubits at each vertex, and
contract pairs in the edge set E with cat states of two qubits. If the graph is connected,
then the resulting state after the contraction is a cat state on 6|V| — 2|E| qubits. The
number of stabilizer terms in the decomposition will be 3/Vl. Proceeding as in the proof of
Theorem 11, the upper bound on « (defined in the statement of Theorem 11) obtained in
this way is

log, (2 x 31V

. 4.29
“ S GV[= 2B (4.29)
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To minimize this upper bound for fixed |V| we need to have the minimum number of
edges, subject to the graph being connected. This is equivalent to picking G to be a
tree, so that the number of edges is |E| = |V| — 1. Therefore the graph used to prove
Theorem 11 is optimal amongst such strategies. We can also show that we cannot do any
better by a combination of vertices and edges consisting of cat states on m < 6 qubits. In
other words, improving this upper bound will require something beyond simply considering
other contraction graphs and other known decompositions of cat states.

On the other hand, we conjecture that the upper bound in Theorem 11, o < log,(3)/4 ~
0.3962, is not tight. The reason is the following. By sub-multiplicativity of the stabilizer
rank, we know that the stabilizer rank of two copies of |cats) = [T)®5 + |T1H)®% is at most
9, with equality iff x(|catg)|cate)) = x(|cats))x(|cate)). There are no known examples of
quantum states whose stabilizer rank is multiplicative for two copies, and this requirement
seems quite stringent. Therefore it is quite likely that

X(|catg)|catg)) < 8. (4.30)

conjecture

Plugging this in the proof of Theorem 11 gives the upper bound

0 < 2a0375 (4.31)

conjecture
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Chapter 5

The stabilizer rank and
continuous-time evolution

5.1 Introduction

Stabilizer-rank methods are useful for simulating quantum circuits, and a natural question
is whether these ideas can be applied to simulate other types of quantum dynamics, such
as continuous-time evolution. In this chapter we consider such applications.

The question we consider in this chapter is how to find low-rank stabilizer decompo-
sitions of the state e*|0)*" where H is an n-qubit Hamiltonian. As we have previously
seen, the cost of classically simulating this state scales linearly in the number of stabilizer
terms in such a decomposition, provided we can compute the terms efficiently. Here by
classical simulation we mean sampling bit strings from a distribution close to the distribu-
tion obtained by measuring a subset S of the qubits in the computational basis, in other
words, approximately sampling from the probability distribution

P(xz) := (0" " 'TL,eM0™), 2 € FY, (5.1)

where II, acts as |z)(z| on S and as identity on all other qubits.

One straightforward way to construct low rank stabilizer decompositions of e*#f|0)®™ is
to find an approximate Clifford decomposition of the operator ¢!/t with small 1-norm ||c||,
and then use randomized sparsification to find an approximate stabilizer decomposition of
e0)®" within error e using ||c||?/€? stabilizer states. As before, this is useful as long as
leflf/e* < 2.
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There are a number of different ways to find approximate decompositions of the operator
et as a sum of Cliffords. For example, we can start with either a Lie product formula
or a truncated series expansion, and then apply randomized sparsification to reduce the
number of terms. This approach somewhat resembles well known methods such as worldline
Monte Carlo and the stochastic series expansion, which are commonly used to compute
static properties of the Hamiltonian, such as the ground state energy or the partition

function.

The time evolution of a non-eigenstate of a spin Hamiltonian can be much harder to
simulate than static properties of the Hamiltonian. For example, the ubiquitous class of
stoquastic Hamiltonians, i.e. sign-problem free Hamiltonians, have efficiently-computable
static properties [36], and yet their time evolution is universal for quantum computation
[37]. As another example, computing the ground state energy of 1D nearest neighbour
Hamiltonians can be done efficiently using matrix product states [38], and yet simulating
the time evolution of such Hamiltonians is likely to be classically hard [39].

In this chapter the Hamiltonian is given as
K
H = Z CLij, (52)
j=1

where (); has an efficient classical description and ||@;|| < 1. For example the operator
exp(i0(Q),;) may be written as a sum of a small number of Cliffords for all #. Such @); may
be non-local (for example, n-qubit Pauli operators). We assume that the number of terms
K is polynomial in n, and that the a; are positive by absorbing signs into the @);.

For example, by taking {Q);} to be Pauli operators and using the first-order Suzuki in-
tegrator, we find that the required number of stabilizer states is, up to a polynomial factor,
exp(7|lal1t), where v = 2¢/2 — 2 ~ 0.83. If instead we apply randomized sparsification to
a truncated Taylor approximation

M T, = (zr: M) (5.3)

§=0
then the number of stabilizer states required for the same error guarantee is, up to a
polynomial factor, exp(2||al|:t).

This reduction in the exponent is interesting because it directly ameliorates the ex-
ponential scaling of the required classical resources to simulate short time evolution. For
example, for fixed depth ¢t = 1/log,(e) and fixed ||lal|;/n = 1, the required classical re-
sources scale as 27". The minimum possible v is determined by the stabilizer extent of
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eft|0).  We give examples of how to reduce 7 in section 5.4 by finding more sparse
stabilizer decompositions.

5.2 Clifford decompositions of the time evolution op-
erator

There are a number of ways to find approximate decompositions of the operator e’! as a
sum of Cliffords. For example, if we are given H in the form

H = Z CLij, (54)

where each @); is “easy to exponentiate” then we can use a Lie product formula. By easy
to exponentiate we mean that, for every angle 6 and every j, we can efficiently compute a
Clifford decomposition

eXp(ier) = ZCjijk (55)

k

and sample the distribution |c;x|/||c;|l1, where ||¢;|[1 = >_, |cjk|- If a Lie product formula
U consists of products of such exponentials and satisfies

U — e < e (5.6)

then we can approximate e'7!|0) by a sum of stabilizer states obtained by multiplying the
Clifford expansion of each exponential. We can then implement randomized sparsification
by choosing C'j;, with probability |c;x|/||c;|1, for each exponential in the product formula.
This samples world-line trajectories in which the state at every time step is a stabilizer
state. By averaging enough trajectories the state we obtain is close to ¢7t|0") with high
probability. The number of required trajectories, i.e. the number of stabilizer terms in
the decomposition, depends on the particular Lie product formula and the decompositions

eq. (5.5).

As an example of this approach, we consider the Trotter-Suzuki first order integrator

U, = [(eml@l/% o e““KQK/QS) (eit“KQK/QS o eitalQl/Qs)r . (5.7)

To bound the approximation error ||e/*—U|| by ¢ it is sufficient to take s = /(2K [|a[|t)?/9,
where ||al| = max; |a;| [40]. More sophisticated product formulas can reduce the number
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of gates required for a given error tolerance. We will stick to eq. (5.7) to simplify the
analysis.

The stabilizer extent of U can be upper bounded by decomposing each exponential
in terms of Cliffords. For example, if () is a Pauli operator then we can use the optimal
decomposition eq. (3.12)

9 = (cosf — sinA)I + (v/2sinh)e'i9. (5.8)

Using Lemma 4 (the randomized sparsification lemma) we obtain
K
4s
H (cos a;t/2s) + (V2 — 1) sin(ajt/2s)) : (5.9)
Note that for any s the right hand side is less than eV2-2llalit and for large s we have
4s
lim H (cos a;t/2s) + (V2 — 1) Sin(ajt/25)> = (2V23-2alt (5.10)
§—00

This implies
E(U,) < e®V22lallnt, (5.11)

To compare this to a more standard approach, let us use the same Pauli decomposition of
the Hamiltonian in a truncated series approximation

" (iHt/s) §

m%ﬂw:@:&%i>. (5.12)
Jj=0 ’

To bound the error by ¢ one can take (see for example [41])

_ log log(s/9)
log(s/9)

To perform randomized sparsification with this series, we start by writing

s = |la|1t, (5.13)

S

Ty = MZp > Q. Qs) (5.14)

ZGZ]
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Figure 5.1: The exponent as a function of the slicing parameter s for the Trotter-Suzuki
decomposition and the truncated series decomposition for a collection of truncation pa-
rameters 7. The cost of simulating exp(iHt)|0") scales linearly in £&. Here v = 2¢/2 — 2.
For the purpose of illustration we set ¢t = 7/4, K = 100, and ||a||; = K7 /4.

where p and ¢ are probability distributions given by

. . (la]|it/s)? Ay .. Gy
p(j) = NS,Q(HHJ#, q(z) = W (5.15)
: 1
and N, s is the normalization constant
' t J
v, 5 (lallt/sy 516

=7

To randomly sparsify this decomposition, we start with |0™), and for every time slice we
multiply it by a string of Pauli operators and a weight, (i’ N;,)Q., ... Q);, chosen with
probability p(j)g(z). We need to average NZ5/€* such trajectories to guarantee that the
resulting state approximates e/1*|0)*™ with high probability. Figure 5.1 compares this to
the Trotter-Suzuki method.



Interestingly, if instead of eq. (5.8) we use the more usual decomposition
9 = (cos )1 + (isinh)Q, (5.17)

in the Trotter-Suzuki method, then a similar calculation shows that the number of required
trajectories, up to a polynomial factor, is exp(2||al[1t). In other words, the amelioration of
the exponential scaling is wiped out. An intuitive (but heuristic) explanation is that Pauli
operators permute the computational basis up to phases, and so the sampled trajectories
for both the truncated series and the Trotter-Suzuki with eq. (5.17) are over a classical
state space, whereas by using eq. (5.8) the trajectories are over highly-entangled stabilizer
states, which somehow allows for a more sparse representation of exp(iHt)|0").

We should emphasize that there are numerous techniques for improving the world-
line and stochastic series approaches, such as using loop and cluster updates. These are
typically applied in the context of simulating imaginary time evolution, but some of these
ideas can be adapted to the real time case. The above discussion only compares the most
crude way to apply these methods. However, there is already a significant improvement
at this base level, and more clever ways of constructing low-rank approximate stabilizer
decompositions may be possible.

5.3 Simulating continuous-time evolution using stabi-
lizer decompositions

We consider two applications of stabilizer rank methods: the first is approximating an
amplitude (x|e'H*|0"), where x € F} is a computational basis state (an n-bit string), and
the second is sampling bit strings from a distribution which approximates the probability
distribution

P(y) — <On‘€7thHyeth’On>7

where 11, is a projector onto the eigenspace of the outcome y € IFlzsl when measuring a
subset S of the qubits in the computational basis.

We can apply the approximate sampling algorithm of Ref. [8], and the additive-error
amplitude approximation algorithm of section 3.4, to the Trotter circuit Us. The resulting
classical simulations require poly(n) bits of memory and have run times in which the
only exponential factor is the number of stabilizer terms in an approximate stabilizer
decomposition of ¢|0)®". For concreteness we will restrict our attention to a Pauli
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decomposition of the Hamiltonian
"= Y00, 519
J

but generalizing the results to any decomposition in which (); can be easily exponentiated
is straightforward.

Theorem 13. The time cost of classically approvimating (z|e*f*|0™) up to additive error
€ using the algorithm in section 3.4 is

O (e@V22Melbin2 (¢ /e)/2(||al|oct)* 2 0g (57))
where ||al|o = max; a;.

Proof. We can produce an estimate 7 of the amplitude (z|U|0™), by using the algorithm
in section 3.4, with the Clifford decompositions in eq. (5.8). The number of iterations the
algorithm in section 3.4 requires to bound the additive error on 7 by €/2 with probability
at least 1 — ¢ is

@) (6(2‘/5_2)”“””6_2 log(5_1)> )

Each iteration requires performing 2sK Clifford updates, each of which takes time O(n?).
If we choose s = /(2K ||al|t)3/€, then |[e" — V;|| < €/2. By the triangle inequality our
estimate n satisfies |n — (z|e*f1]0")| < e with probability at least 1 — §. O

We can also use this stabilizer decomposition to sample from the outcome distribution
associated with measuring any subset S of the qubits in the computational basis, i.e. the
distribution

P(y) = (0"|e” " TI(y)e™]0"), (5.19)

where y € IE"QS' and I1(y) acts as |y)(y| on S and identity on the rest of the qubits.

Theorem 14. The distribution P(y) can be approximately sampled from with error € in
total variation distance using the algorithm in section 2.2.1. The time cost scales as

O (22t (¢ fe) 2t o)) + O(e®/ 221 | S|P g (57)).

where ¢ is the failure probability of the algorithm.
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Proof. As in the proof of Theorem 13, we can choose s = O<\/(2K||a||oot)3/n) so that

1U:[07) — e j0m)]| < /2.

Now we obtain an approximate stabilizer decomposition of e/7!|0") by randomly sparsifying
Ug|0™). By eq. (5.11), we can approximate Ug|0™) up to error 1/2 by a linear combination
of O(eV2-2lelhty=2) stabilizer states. Denote this linear combination by |¢). Then

) — e jom)]| <.

Each of the states in the decomposition of [¢) takes time O(sKn?) to compute, therefore
the time cost of producing this approximation is

O (cVE- DMl 1 )2t ). (5.20

Given this approximation, we can proceed as in section 2.2.1. Namely, approximately
sampling the distribution P(y) up to error € in total variation distance can be done for a
suitable choice of n = O(¢) by approximately sampling the distribution

o inme)
PO ="pE

The time cost of producing a sample in this way scales as O(e2V2-2lalitp3|§3e=21og(571)).

]

5.4 Discussion and open problems

The method discussed in this chapter bears a close resemblance with Quantum Monte
Carlo (QMC) methods. One of the most important QMC methods is path integral Monte
Carlo [42], which is typically used to simulate static properties of the Hamiltonian, such
as its ground state energy and partition function. In its most general form, this method
is based on a Markov chain Monte Carlo, in which the state space is defined as the set of
trajectories of the form (vy,vs,...,v), where the v; are states from a product basis and
L is the number of time slices. Update rules, also known as Metropolis moves, are defined
in a certain way that makes use of properties of the Hamiltonian. The runtime of such
algorithms depends on the mixing time of the chain. In important cases, such as when the
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Hamiltonian is 1D and stoquastic, the chain can be shown to mix rapidly under certain
update rules [60].

An important variant of stabilizer rank methods relies on a similar Metropolis algorithm
in which the probabilities of local bit flip moves are determined by ratios of estimates of the
associated amplitudes [8]. The algorithm was found to numerically outperform the method
based on the norm estimation algorithm, despite having no rigorous error guarantees if the
mixing time of the chain is unknown, as is generally the case.

For the continuous-time case, a similar algorithm can be implemented using additive
error estimates of the amplitude (z|e*|0") obtained using Theorem 13. The state space
of the Markov chain is the set of computational basis states {|y)}, and the moves are
single bit flips chosen with probability that depends on the ratio of the estimates of the
two associated amplitudes. When the chain equilibrates we obtain a final state from a
distribution close to P(y) = (0"|e *TI(y)et|0"), although the mixing time of the chain
is generally unknown. The only other super-polynomial scaling comes from the sample

complexity required to estimate an amplitude using stabilizer state monte carlo, namely
etllall

To reduce the exponent we need to search for more sparse stabilizer decompositions of
the final state. If the Hamiltonian is given as a sum of 2-local terms,

H=> a;A (5.21)
J

then one way to do this is to numerically find the optimal Clifford decomposition of each
Trotter gate exp(ifA;) using convex optimization. For 3-local Hamiltonians this may also
be possible with more computational resources.

Sometimes we can use the idea of decomposing matrix products of gates, as in sec-
tion 3.3, to find more sparse decompositions. One example where this is possible is

H = Z (XiX; Xy, + YY) + Z,Z; 7)), (5.22)

<igk>
where the sum is over three-neighbors in a chain. For any neighbours (4, j, k), the set
(XX, X0, Yy Ya, 2.2, 2

is equivalent to {X;, —Y;, Z;} up to conjugation by a Clifford, and therefore we can use the
results of section 3.3 to find optimal Clifford decompositions of the Trotter step

exp (10X, X, Xy) exp (102, Z; Zy) exp (i0Y;Y;Yy).
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Using convex optimization, we find the optimal single qubit decomposition
exp (10X;) exp (10Z;) exp (—i0Y;) = c1(0)1 + c2(0)S; + ¢3(0)H;.S;, (5.23)
where S; and H; are the phase and Hadamard gates on qubit ¢ and

c1(0) = cos(20)[cos(#) — sin(0)]

6i7r/4
ca(0) = 7 [cos(6) — cos(36)]
c3(f) = e™* sin(26)[cos(0) — sin(A)). (5.24)

We get the optimal decomposition of the Trotter step by conjugating eq. (5.23) with any
3-qubit entangling Clifford which permutes X7 — X1 X2X3, Z1 — Z1Z,7Z5 (and there-
fore Y1 — —Y1Y5Y3). This significantly reduces the number of stabilizer terms in the
approximate stabilizer decomposition of €7!|0"), in a similar way to the decompositions
in section 3.3.

More generally, for a decomposition H = > ; A; we try to find Clifford decomposi-
tions of the Trotter steps exp(i#A;) with minimum I1-norm. The framework presented in
this chapter allows us to use any decomposition of the Hamiltonian, even if the terms are
non-local. Although this involves finding sparse Clifford decompositions for many-qubit
gates, which is computationally difficult, it leaves open the possibility of much faster simu-
lations. Combining this with the the fact that there are various ways to directly ameliorate
the exponential scaling, suggests that this approach deserves further study. An interest-
ing question is how mild we can make the exponential scaling for a given Hamiltonian.
This question is likely to be very difficult to answer. A similar problem, namely proving
super-polynomial lower bounds on the approximate stabilizer rank of product states, is
remarkably difficult [8].
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Chapter 6

Linear constraint systems

6.1 Introduction

Linear constraint systems (LCS) are generalizations of the simple proofs of contextuality of
Peres and Mermin [20, 19]. These proofs are based on inconsistent systems of linear equa-
tions over the binary field that nevertheless admit solutions if we allow for non-commutative
versions of the variables, i.e. binary quantum observables. A gap between classical and
quantum satisfiability in this setting is a proof of contextuality [43]. In addition, such a gap
can be used to define a non-local game which can be won with certainty by quantum play-
ers but not by classical players, i.e. a pseudo-telepathic game [21]. This link has turned out
to be immensely useful in the study of quantum non-locality [17, 44, 18, 23, 25, 24, 45]. In
particular, games constructed from LCSs are suitable for studying the separation between
different models of quantum correlations, such as the tensor-product and the commuting-
operator models [23, 25, 24]. Further, non-local games constructed in this way can be used
for devising robust self-testing protocols [46].

An example of a linear constraint system is the Peres-Mermin square, depicted in fig. 6.1
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(Left). It corresponds to a system of linear equations modulo 2

T+ 20+ 23=0
Ty +x5+25=0
Tr+ 23+ 29 =0
T+ x4+27=0
To+ x5+ 23 =0
T3+ x5+ 29 =1
(6.1)

It is easy to check that this system has no classical solutions with binary variables x;. Yet
the system of operator equations

A AgAy = T
AgAsAg = T
A AgAg = T
A A A, =T
AgAsAg = T
AgAgAg = —1

(6.2)

constrained by the requirement that the operators in each equation pairwise commute and
square to the identity, does have a solution, depicted in fig. 6.2 (Left). While it is easy to
check the satisfiability of eq. (6.1), determining whether eq. (6.2) has an operator solution
is trickier, intuitively because we need to check every possible dimension these operators
may act on (including countable infinity).

Quantum satisfiability of LCSs over [F5 has an elegant characterization if every variable
appears in exactly two equations. Namely, it was shown in [17] that a LCS of that form is
“magic”, i.e. has a satisfiability gap for some choice of right-hand side in eq. (6.1), if and
only if a certain graph constructed from the LCS is non-planar . Planarity of a graph can
be checked efficiently in the size of the graph, and so this offers a complete and efficiently
checkable characterization. However, it is unclear how to extend this characterization to
d > 2, or to the more general case where variables appear in any number of constraints.

Beyond the case where each variable appears in exactly two constraints, whether or not
a binary LCS has a quantum solution was addressed in [18, 23], where it was found that

LA graph is planar if it can be drawn without the lines representing edges intersecting.
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this question has two other equivalent forms. The first form involves quantum strategies
for certain non-local games constructed from the LCS, and the second form involves a
property of a certain group associated with the LCS, known as the solution group.

In this chapter and the next our purpose is to shed light on systems of linear equations
modulo d where d > 2. This case was considered to varying extents in Refs. [23, 46, 28],
but is generally less well-understood.

6.2 Group theory preliminaries

In this section we review elements of group theory. For more details the reader can refer
to any standard textbook, such as Ref. [47].

A group is a set GG closed under a binary operation, which contains an identity element
e and an inverse g~' for each element g € G. The binary operation is called group
multiplication. For h, g € G the product is denoted gh. One way to specify a group is by
a multiplication table. A more concise way to define a group is through a presentation,
which is a list of relations that define the group. For example, we can define a group with
two generators s,t which commute st = ts and square to the identity s* = > = e. This
completely specifies the group as {e, s, t, st}. A finitely presented group is a group defined
by a finite number of relations. Such a group may be infinite.

More formally, let S = {s,t,u,...} be a set of symbols, and define a set of inverses of
these symbols S" = {s71 ¢t71 v~ ... }. A word in SUS’ is any string of symbols and their
inverses. An example of such a word is

sstuu 't st (6.3)

Two words are equivalent if one of them can be reduced to the other by removing collisions
of the form s~ !s or ss~!. For example, the above word is equivalent to ssst = s3t. The
free group F(S) generated by S consists of all words in the alphabet S U S’, up to this
equivalence. Let G be a group. The normal closure of a subset R C G is the subgroup
N(R) generated by the set {grg~': g € G,r € R}. Let R ={r1,...,r:} be a set of words
in F(S). The finitely presented group with generators S and relations {ry =e,...,ry = e}
is the quotient F(S)/N(R). Intuitively this group consists of all words in F(S) where we

identify r; with the identity element.

A representation of a group G is a mapping ¢ from G to invertible matrices over some
vector space, which preserves the group operation, i.e. ¢(gh) = ¢(g)o(h). A representation
is irreducible if it cannot be simultaneously brought into a block diagonal form by a change
of basis.
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Figure 6.1: Linear constraint systems for the magic square (left) and pentagram (right) [19].
Each variable can take values modulo d. The linear constraints are that the values of the
variables along a solid (dashed) line add to zero (one) modulo d. Note that whether the
games are “magic” depends upon the constraints, e.g., if all lines are solid then both games
are classically satisfiable.

6.3 Linear constraint systems and solution groups

A linear constraint system (LCS) over Z, is a pair (M,b), where M € M,,x,(Z4) and
be Z}. A classical solution is a vector a € Z]} such that Ma = b modulo d. Figure 6.1 (a)
is a diagrammatic depiction of a LCS that is classically unsatisfiable for all d > 2, since the
sum of the variables along the rows is 0, while the sum of the variables along the columns
is 1, which is a contradiction for classical variables.

A quantum solution {4y,..., A,} is a collection of normal operators 2, acting on some
Hilbert space, satisfying:

1. A2=1forallie{l,...,n};
2. [A;, Ax] = 0 whenever there exists a row ¢ such that M;; # 0 and M;;, # 0; and

3. 11 A;-w” =wbi for alli € {1,...,m}.

2An operator A is normal if AAT = ATA.
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By condition (1), each operator A; is unitary and the eigenvalues are dth roots of unity.
By condition (2), whenever x; and x; appear in one of the constraints, their operator
counterparts A; and A, commute. In particular, all operators corresponding to a constraint
pairwise commute, and therefore can be simultaneously measured. By condition (3), the
expectation values of the operators satisfy the specified constraints. Here and below, we
set w = exp 2mi/d, where d is to be understood from context. Quantum solutions for the
magic square and pentagram are shown in Figure 6.2.

To every linear constraint system one can associate a solution group, which is a finitely
presented group with relations that encode the defining properties of a quantum solution.
Namely,

Definition 15. For a LCS (M,b), the solution group G(M,b) is the finitely presented
group generated by the symbols {J, g1, ..., ¢g,} and the relations

1. gl=e, Jl=ce¢,

2. Jgi = gid,

3. 99k = grg; whenever there exists a row ¢ such that M;; # 0 and M, # 0,
4. 11, gjwij = Jb for all i € {1,...,m}.

Proposition 16. Let (M, b) be a LCS. Suppose that a quantum solution ezists in dimension
D € NU{oo}. Then G(M,b) admits a D-dimensional representation ¢ in which ¢(J) = wl.

Proof. Given a quantum solution {A;,...,A,} in dimension D, it is straight-forward
to check that the homomorphic extension of the map ¢(g;) = A;, ¢(J) = wl, is a D-
dimensional representation of G(M,b). O

6.4 Non-local games constructed from linear constraint

systems
One of the most useful applications of LCSs is the fact that they are related to perfect
quantum strategies in certain non-local games, i.e. strategies which win with certainty. For

a LCS given by Mx = b, we define a bipartite non-local game L(M,b) as follows. The game
involves two co-operating players, Alice and Bob, who receive and reply to questions from
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Figure 6.2: Quantum solutions for the magic square (left) and pentagram (right) for d =
2 [19]. Each vertex is a unitary operator whose eigenvalues are dth roots of unity. The
operators along a solid (dashed) line multiply to I (—1).

a referee. The players are allowed to agree on a strategy beforehand but are not allowed to
communicate once the game starts. Alice receives an index of a row of M (corresponding
to a constraint), and Bob receives an index of one of the variables in Alice’s constraint.
Alice is required to assign a value to each variable in the constraint, and Bob is required
to assign a value to the single variable he receives. The players win if Alice’s assignment
satisfies the constraint and Bob’s assignment agrees with Alice’s.

It is not hard to show that players using classical means cannot win with certainty unless
Max = b has a classical solution. If the players are allowed to use a quantum strategy, they
can in some cases win the game £(M,b) with certainty. Namely, the main result of [23] is
the following

Theorem 17 ([23]). Let d be a prime number, and Mz = b be a LCS modulo d. The
following statements are equivalent

1. Mx =b has a quantum solution (possibly infinite-dimensional),

2. The non-local game L(M,b) has a perfect quantum strategy (possibly of the commuting-
operator type),

3. The solution group G(M,b) has the property that J # e.

69



Note that in (2) the quantum strategy may be of the commuting-operator type. Such
a strategy is defined by a quantum state in some Hilbert space |¢)) € H and observables
{AZ@}, {B;} respectively for Alice and Bob. Here ¢ is an index for the constraint, and 7 is
an index for the variable. Upon receiving the constraint ¢ as the question, Alice measures
the observables {AEZ) : 1 € V;} and reports the outcomes, where V; is the set of indices of
the variables in constraint ¢. Similarly when Bob receives j as the question he measures
the observable B; and reports the outcome.

Alice’s and Bob’s observables are required to commute, i.e. [Az@, B;] =0 for all 4,¢, j,
but the Hilbert space H is not required to have a tensor product structure. Such correla-
tions are natural in algebraic quantum field theory, where local observables of space-like
separated regions are required to commute but the quantum state is global (in the sense
that the Hilbert space ‘H does not factorize as Ha ® Hp).

Statement (3) asks us to determine whether the defining relations of the solution group
definition 15 imply that J = e. Checking this property is difficult in general (it is an
instance of the word problem, which is undecidable), although for small enough instances
a computer software, such as GAP, can compute it fairly quickly.

6.5 Generalized Pauli observables

For d = 2, the canonical examples of a satisfiability gap rely on the commutation relations
of qubit Pauli observables. Pauli observables can be generalized to higher dimensions in a
number of different ways. The Weyl-Heisenberg group is arguably the most natural gener-
alization, since it preserves the commutativity structure and error-correction properties of
the qubit Pauli group [27]. Elements of this group are commonly referred to as generalized
Pauli operators, and are natural candidates for constructing quantum solutions for LCS
over Zgq for d > 2.

The single-qubit Pauli operators can be generalized to arbitrary dimensions D? via the
generalized shift and boost operators

X =) [j+ 1)l
JE€EZp

z="3 W)il. (6.4)

JELZD

3We use D to refer to the dimension since the more usual d is reserved for the modulus of the LCS.
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The generalized shift and boost operators satisfy the commutation relation
ZP X1 = PIX17P (6.5)

A generalized Pauli operator for a single quDit is any operator A « ZPX9 for some
p,q € Zp. For n quDits, a generalized Pauli operator is defined as a tensor product
of single quDit generalized Paulis. From eq. (6.5), any two generalized Pauli operators
commute up to a Dth root of unity.
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Chapter 7

No-go theorems for a satisfiability
gap in linear constraint systems

7.1 Introduction

In this chapter we prove a few results for linear constraint system modulo d > 2. First, we
give a concise proof that the existence of a quantum solution which uses generalized Pauli
observables in some odd dimension implies the existence of a classical solution. This fact
follows from the non-negative discrete Wigner function for Hilbert spaces of odd dimension
[48, 13, 49], but, interestingly, does not require the full Wigner function, only its definition
at a single point in phase-space. While a discrete Wigner function can be defined in even
dimensions based on generalized Pauli observables [50], it is easy to show that a satisfiability

gap can be demonstrated using generalized Pauli observables in every even dimension (see
Table 7.1).

For a LLCS over Z,4 given by the equation Mz = b mod d, checking whether a classical
solution exists is easy, for example by Gaussian elimination if d is prime, or other efficient
methods if d is not prime [51, 52]. On the other hand, checking whether a quantum
solution exists is a difficult task. One characterization is given in [23] in terms of the so-
called solution group. The solution group associated with Mx = b is a finitely presented
group which encodes the algebraic relations satisfied by every quantum solution to Mx = b.
It is generated by symbols {g;}, which can be thought of as a non-commutative relaxation
of the variables {x;}, in addition to a special generator J. The characterization in [23] is
based on properties of the element J. Namely, for a LCS over Z; with d prime, a quantum
solution exists if and only if J is not equivalent to the identity element in the group.
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Checking whether an element in a finitely presented group is equivalent to the identity is
an instance of the word problem, which is undecidable in general. Nevertheless, for small
enough instances or in the case of highly structured groups one can use computer software,
such as GAP [53], to find a so-called confluent rewriting system, thus solving the word
problem for the group.

In this chapter, we note a simple extension of the characterization in [23] which covers
arbitrary d. Specifically, a quantum solution exists for a LCS over Z, if and only if J has
order d. When d is prime, this characterization reduces to the one in [23].

Furthermore, we note a property of some LCSs which we call phase-commutation.
Roughly speaking, phase-commutation is an abstraction of matrix anti-commutation re-
lations of the form AB = —BA. A LCS Mx = b exhibits phase-commutation if its
non-commutative relaxation (as defined by the solution group) contains two variables, g;
and g, with commutation relation

9192 = J°g2g1, ¢ #0. (7.1)

We show that, if d is odd, any relation of the form in eq. (7.1), or of the more general
form in eq. (7.21), implies that quantum solutions do not exist in any (finite- or countably
infinite-dimensional) Hilbert space. As a consequence, this implies that all natural gener-
alizations of the Peres-Mermin magic square and pentagram to odd prime d do not exhibit
a satisfiability gap.

This is in contrast to the case of even d, where the Peres-Mermin magic square and pen-
tagram exhibit satisfiability gaps that rely on using Pauli operators to represent eq. (7.1).
In fact, a much stronger statement was proven for d = 2 in Ref. [25], namely that any
group generated by involutions can be embedded (in a strong sense) in the solution group
of some binary LCS which admits a quantum solution. A significant consequence of this
embedding for d = 2 is the separation, proven in the latter work, between commuting and
tensor-product quantum nonlocal strategies. Our result shows that a similar statement
cannot hold for odd d, as the group defined by the phase-commutation relation in eq. (7.1)
cannot be embedded in a LCS that has a quantum solution.

The idea that phase-commutation can rule out a satisfiability gap appears in (the newer
version of) Ref. [46] for particular instances of the magic square and pentagram LCSs, and
a similar idea appears more recently in [28], as part of a homotopical treatment of quantum
contextuality. In comparison, our exposition is more general (it applies to all LCSs, and
we use it to cover all natural generalizations of the square and pentagram for odd d),
and perhaps more accessible to the non-expert reader (it does not require familiarity with
topological ideas like cell-complexes and group pictures).
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7.2 A no-go theorem for a satisfiability gap using gen-
eralized Pauli observables

Theorem 18. Let D be odd. Then the LCS (M,b) has a quantum solution using n-quDit
generalized Pauli operators if and only if it is classically satisfiable.

Proof. The first direction is easy: suppose that Mx = b has a classical solution r — a =
(a1,...,a,). Then A; = w%I defines a quantum solution in which every operator is a
Pauli operator. Conversely, let us assume that the LCS admits a quantum solution {A4;}
consisting of generalized n-quDit Pauli operators. We will construct a classical solution
by consistently assigning a root of unity w?(®) to each generalized n-quDit Pauli operator
0. The map v will be defined in terms of the parity operator IIp = Zf:_ol|— 7)(j|. Namely,
we set

W' = Tr (II"0) . (7.2)

For a single-quDit Pauli 0 = w*ZP X9 eq. (7.2) gives v(o) = k + 271pq, where the inverse
is modulo D. It can be readily verified that the following identities hold for any n-quDit
generalized Paulis o, 7

1. v(wi]) =7,

2. v(c®71)=wv(o)+v(r) mod D ,

3. v(0?) = ju(o) mod D,
To prove that the map A; — v(A;) gives a classical solution to the LCS in question, it is
enough to show that, if o and 7 are commuting n-quDit generalized Pauli operators, then

v(oT) =v(o)+v(7). Indeed if that were true then using identities 1 & 3 we get, for every
row 7 of M,

n

iMm’U (Aj) = qu (A?”) =0 <f[ A;W"’j> =0 (wbi[) = b;. (7.3)

J=1

Let 0 « Z[p|X|[q] and 7 < Z[F]X[5] be tensor products of generalized Pauli operates.
Here we are denoting Ald] = @), _, A% for an n-element vector @ = (a1, ...,a,), and, for
simplicity, ignoring the phase factors in the definition of generalized Paulis, which does not
affect the analysis. Note that

V(ZPXY) +u(Z7X") =27 (pg +15) Vp, g1, 5. (7.4)
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On the other hand, by eq. (6.5),
V(ZPX1ZTX%) = w(w 2P X)) = —qr + 27 (p+ 1) (g + 5) . (7.5)
Comparing Eq. (7.4) and (7.5) and using identity 2,
v(Z[PX[qZ[MX[5]) = v(Z[p)X[q) + v(Z[F]X[5]) <= p-§— -7 =0 (mod d). (7.6)

The condition p'- § — ¢- 7 = 0 is precisely the requirement that Z[p|X[q] and Z[r] XS]
commute. Indeed, by eq. (6.5)

—

ZIPX1Q2[AX[5] = T Z[PZ[AX X[ = T ZAX[RZPX G . (77)

Therefore v(o7) = v(0o) + v(7) for any commuting o and 7, finishing the proof. O

The above proof fails for even D. The proof hinges on the ability to consistently assign
a root of unity to every generalized Pauli operator. For o = w*ZP X4, eq. (7.2) reads

WO = Te ()0 = S (lol—j) = 3 Wit (78)

J Ji2j=q

When D is even, the sum evaluates to 0 whenever ¢ is odd, making it impossible to define
the map in this way. One may wonder whether the map v can be defined in a different
way for even D. This is also impossible, as shown by the family of quantum solutions
in Table 7.1. Note that the parity operator IIp in the proof of Theorem 18 is one of the
phase point operators for the discrete Wigner function in odd dimensions [48]. While it
is possible to define a discrete Wigner function in even dimensions based on generalized
Pauli operators [50], important properties, such as non-negativity of stabilizer states and
Clifford-covariance, are lost in that case [54].

7.3 A no-go theorem for a satisfiability gap with Pauli-
like commutation relations

Theorem 18 asserts that a quantum/classical satisfiability gap cannot be illustrated using
generalized Pauli operators in odd dimension. We now show that the canonical commuta-
tion relations of these operators cannot be embedded in the solution group of a LCS that
has a quantum solution. Some of this discussion is inspired by (the corrected version of)
Ref. [46], but it applies more generally than what is considered in that work.

A key characterization of quantum satisfiability when d is prime is the following:
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Zt ) Xt Xt ® Zt tht ® ZtXt Zt—i—l ® Xt—H Xt ® Zt tht—l ® ZtXt—l
'@l | I®Z AR YA 75l eI I®Zt ViR YA
IoX | Xtel Xt Xt I Xt XteolI Xt Xt

Table 7.1: Quantum solutions to a generalized magic square LCS modulo D = 2t, for
odd (even) t on the left (right). In both cases, the generalized two-quDit Pauli operators
along every row and column mutually commute, their product along the third column is
wtI = —1I, and their product along the rows and remaining columns is I. This shows that a
satisfiability gap exists using n-quDit generalized Pauli operators for every even dimension

D.

Theorem 19. [23]. Let (M,b) be a LCS over Z, where d is prime. Then (M,b) admits a
quantum solution if and only if the solution group G(M,b) has the property that J # e.

The proof of Theorem 19 relies on the fact that, when J # e, the group algebra of
G(M,b) contains a subspace on which it is easy to construct a quantum solution. A similar
proof works for non-prime d as well, provided we make an adjustment to the statement of
the theorem.

Theorem 20. Let (M,b) be a LCS over Zg4 with d > 1. Then (M,b) admits a quantum
solution if and only if the order of J is d.

Proof (A minor modification of the proof in [23]). Suppose (M, b) has a quantum solution
{A;}. By Proposition 16, there is a representation ¢ of G(M,b) such that ¢(J) = wl. For
c#0 mod d, ¢(J) = wl # I, and therefore J° # e. Thus the order of J is d. Conversely,
suppose that G(M,b) is such that the order of J is d. Define the complex vector space H
by

"= {Zagm a2 < oo}. (7.9)

geg

Define the operators {L, : g € G} via L,y|h) = |gh). The proof proceeds in two steps. First
we list certain properties of the L,. Second, we define a certain subspace of H on which
the restriction of L ., Ly, is a quantum solution. The relevant properties of the L, are
the following

g1y -

1. The eigenvalues of Ly, are dth roots of unity:

Ly =Lyj=L.=1. (7.10)

9;
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2. Let 4,7 and k be such that M,; # 0 and M;;, # 0, then, for all g € G(M, b),
Ly, Lo |9) = 1959k9) = |9x959) = Lo Lg;19), (7.11)
and therefore [L,,, L,,] = 0.
3. Forany i € {1,...,m} and g € G(M,b),
Lg{“ . L%ﬂg) = |g{wi1 . gMing)
= |J%g)
= L%|g). (7.12)

4. Define a fiducial vector [¢)) = d~'/2Y" _, w°[J¢). Then

w> _ ZWC’JC*bi> = b Y

c€ZLq

—b;
LJ

). (7.13)

To construct the quantum solution, first we define the subspace H' C H

H = {E|¢> :EGQl}, (7.14)

where 2 is the algebra generated by Ly, ..., L,, (i.e. all linear combinations of products
of the L,,). Note that the powers of J are all distinct by assumption: if J* = J° then
J%% = ¢, and hence a — b = 0 mod d. In particular this implies that [1)) # 0, and, as
) € H', H' # {0},

Define the quantum solution A; as the restriction of (Lg, )" to ', i.e. A; = L, .
Let us verify that this satisfies the definition of a quantum solution:

1. A% =T follows from eq. (7.10),
2. if M;; # 0 and M;;, # 0 then [A;, A;] = 0 follows from eq. (7.11),

3. First use eq. (7.13) and the fact that L% commutes with every element of F € 2 to
deduce that L;%E|y) = EL;"|¢)) = w¥ Elp). From eq. (7.12) we then have

[T4" =11%"
J J

w =L =T (7.15)
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]

Note that Theorem 19 is a special case of Theorem 20 since, for prime d, cyclicity of
the powers of J imply that J # e if and only the order of J is d.

Generalized Pauli operators obey commutation relations of the form AB = w°BA, and
are in a sense uniquely determined by these relations. More specifcally, consider the finite
group P, with generators {X, Z,n} and relations

XZ=nZX, X'=Z'=pnl=c nX=2x&n nZ=2Z2n. (7.16)

By Schur’s lemma and the fact that n? = e, every irreducible representation of P, assigns
a dth root of unity w’I to n. Furthermore, it was shown by Weyl that up to unitary
equivalence every irreducible representation of Py in which j # 0 maps X and Z to (phase-
multiples of) the clock and shift operators in some dimension d' that divides d [55].

We consider a particular notion of an embedding of eq. (7.16) into the solution group
of a LCS. Namely, suppose that the solution group contains a relation of the form

g°h’ = J°hbg" (7.17)

for a pair of generators g and h and some nonzero a, b, c € Zy4. We refer to such a relation
as a phase-commutation relation in the solution group. A phase-commutation relation
implies that the LCS is classically unsatisfiable; no integers x and y can satisfy the equation
ar + by = c+ by + axr mod d for ¢ # 0 mod d.

This notion of an embedding can be motivated by considering the situation for d = 2.
Given a group K, a collection of elements ki,...,k, € K and a non-identity central
element 7, such that k? = n? = e, it was shown in [25] that there exists a LCS Mz = b
and an embedding ¢ : K — G(M,b), such that ¢ (k;) = g; and ¥(n) = J. As 1 is injective,
this implies that J # e, and so every such K embeds in the solution group of some LCS
which has a (possibly infinite-dimensional) quantum solution.

In contrast, we show next that, for odd d, a phase-commutation relation implies that
quantum solutions to the LCS in question do not exist in any dimension, which rules out
a satisfiability gap for any LCS in which eq. (7.16) embeds in the solution group.

Theorem 21. Let d be odd. Suppose that a LCS over Zg4 has a phase-commutation relation.
Then it has no quantum solutions.
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Theorem 21 can be proven diagrammatically using symmetries of the so-called group-
picture associated with solution groups [25, 46]. We avoid group-pictures for the sake of
simplicity, and present a more direct proof instead.

Proof. Let S = {J, ¢1,...,ga} denote the generators of the solution group G, and S’ =
{JY g7t .., g7'). Let R C F(S) be the set of relations defining G, so that G =
F(S)/N(R). Let g € S and h € S be a phase-commuting pair, so that, in G,

g*hb = J°hbg*, c#0. (7.18)

Let w be the word J=¢g?h’g=?h~". Since w = e in G, it holds that, in F(S), w is equivalent
to an element of the normal closure N(R). This implies that there exist uq,...,u, € F(S5)
and qi,...,q € R, such that the word

W = (ulqlul_l)(u2q2u2_1) . (ugqguzl), (7.19)

is equivalent to w in F(S), that is, W can be reduced to w using only generator contractions
of the form g;g; ' = e. Let W be the “reflected” version of W

W = (@, Getiy) - . . (15 ' Golin) (@) " Guity ), (7.20)

where 7 is obtained from x by reversing the order of multiplication of the letters making
up z. For example, if © = g19293 then T = g3g29;.

Recall, from the definition of solution groups, that each of the relations in R (and
therefore each of the ¢;) consists of mutually commuting letters from S U S’. It therefore
holds that ¢; = ¢; = e in G. This implies that W =ecing. Furthermore, we have W =& in
G, since the same sequence of generator contractions that reduces W to w can be applied
to reduce W to @, so W is equivalent to @ in F(S), and therefore also in G.

Thus we have @ = e in G, and therefore h’¢® = J°¢°h® in G. Combining this with
g*h? = J°hP¢® implies that J?¢ = e in G. Since d is odd, we have 2¢ # 0 mod d. Therefore,
by Theorem 20, there are no quantum solutions. O

The statement and proof of Theorem 21 can be generalized by considering relations of
the form

gt gyt = Jgk gt (7.21)

Following the same steps in the proof of Theorem 21, we can deduce that J?¢ = e, which,
for ¢ # 0 mod d, implies that the order of J is less than d, and hence that there are no
quantum solutions.

79



7.4 Examples

7.4.1 Magic square modulo prime d > 2

Let d > 2 be prime. Here we consider a broad class of generalizations of the magic square
LCS. Namely, we consider any LCS, over Z,; of the form in Figure 6.1 (a) with arbitrary
coefficients, i.e. any system of the form

a7y + Ty + azrs = by,
a,ry + a5Ts + agle — bg,
a7 + agxrs + a9glg — bg,
a @y + ayry + aszr = by,
apTe + asxs + agrs = bs,

asr3 + agle + agre = bg, (7.22)

for some b € ZY, and some set of coefficients a;, a’ € Zg — {0}.
d %

We can simplify by making some reductions. First, we assume that the coefficients in
the first three constraints are all equal to one, if necessary by relabeling x; — a;x;. Second,
as d is prime, every nonzero element of Z; has a multiplicative inverse, so we can divide
the last three constraints respectively by the coefficients of 1, z, and x3. These two steps
yield a LCS of the form

Ty + Ty +x3 =0
Ty + x5+ 26 = by
T7 + T8 + x9 = b3
1+ YaTy + Y77 = by
Ty + V525 + Y8 = bs
x3 + Y6Te + YoTg = be, (7.23)

for some v; € Zy—{0}, and (generally different) b € ZS. Note that these operations preserve
classical and quantum satisfiability (whereas more general row operations do not). Denote
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the above reduced LCS by Mx = b, where

111 0 0 O O 0 O
0001 1 1 0 0 O
000 0 O 0 1 1 1
M= 100 v 0 0 ~ 0 O (7.24)
01 0 0 » 0 0 ~ O
001 0 0 % 0 0
It is straightforward to check that
5 'f — — d = —
rank(M) = 1174 ‘75 Ve and yz = 78 = Yo, (7.25)
6 otherwise,

where the rank is computed modulo d (which is well-defined as d is prime). Thus the
system Mz = b is classically unsatisfiable only if 74 = 75 = % and 7 = 7% = 7.
Essentially this means that we only need to check (d — 1)? cases, corresponding to the
values of the v; € Zy — {0} that could make the LCS classically unsatisfiable. As we will
see next, in each of these cases a phase-commutation relation prohibits the existence of a
satisfiability gap.

Theorem 22. Let d > 2 be a prime integer. A LCS of the form in eq. (7.22) over Zq has
a quantum solution if and only if it is classically satisfiable.

Proof. 1f a classical solution exists then a quantum solution exists. Conversely, assume
that a quantum solution exists, and denote the associated reduced LCS in eq. (7.23) by
Mz = b. Assume that v4 = 75 = 7% = v and v = 75 = 79 = 0, otherwise there is a
classical solution and we are done. In the solution group G(M,b), we have

919295 = I gagsgs = J”  grgsgo = J
9198 = I gaglgt = J"  gsgdge = J%. (7.26)
We note the group identity

_ yba+bs ,—0 —0
_J4 597 g8

_ 7—0b3+bs+bs 6
=J 99

91949294

__ 7—0b3+bsg+bs+bs ,—1 —7
=J 93 Y

_ Jb1—'ybg—6b3+b4+b5+b6glgzgzgg' (7.27)
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Multiplying both sides on the left by g;' and on the right by g;” reveals the phase-
commutation

gzgz — J*b1 *7b275b3+b4+b5+bﬁgzg2. (7.28)

Since d is odd, by Theorem 21 and eq. (7.28), a necessary condition for the existence of a
quantum solution is that —b; —ybs —dbs+bs+bs+bs = 0 mod d. This implies that the LCS
is classically satisfiable: set x, = (—vby — 0bs + by, bs, by + by + dbz — by — b5, b2, 0,0, b3, 0, 0),
then Mxy, = (by, b, b3, by, bs, by + yby + 6bg — by — bs) = b. This shows that the original LCS
in eq. (7.22) has a classical solution. O

7.4.2 Magic pentagram modulo prime d > 2

Similar to the magic square LCS, we consider any LCS, over Z, of the pentagram form in
Figure 6.1 (b) with arbitrary coefficients, i.e. any system of the form

171 + agTo + azrs + asxy = by
ayry + asTs + agre + arrr = by
anTy + asTs + agry + agly = b3
asxs + agle + agrs + 1010 = bs

ayTy + atzy + agrg + ajpri0 = bs. (7.29)

We can perform similar reductions to the magic square case. First, we set all coefficients
equal to 1 in the first constraint by relabeling x; — a;x; if necessary. Next, we divide the
remaining four constraints by the coefficients of the first variable from the left. Finally,
for : = 5,...,10, we relabel x; — a;x; if necessary to ensure that the coefficient of each x;
equals 1 in the first constraint it appears in. This yields the LCS

1+ To+ a3+ 14 = b1
X1+ x5+ x5 + 17 = by
T + Y5x5 + g + Tg = b3
T3 + Y6e + YsLs + T10 = by
Ta + Y787 + YoTo + Y10Z10 = bs, (7.30)
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for some v; € Zy— {0}, and (generally different) b € Z35. As before, the reduction preserves
quantum and classical satisfiability. Denote the reduced LCS above by Mz = b, where

11110 0 0 0 0 O
10001 1 1 0 0 O
M=]10100=% 0 0 1 1 0 (7.31)
0010 0 % 0 ~n 0 1
00010 0 3% 0 % %
It is straightforward to verify that
4 if vy = —1 for all 4,
rank(M) = ¢ =T TRt (7.32)
5 otherwise,

where the rank is computed modulo d. Thus the system Mx = b is classically unsatisfiable
only if ; = —1 for all 7. Again, we find that phase-commutation prohibits the existence
of a satisfiability gap in this case.

Theorem 23. Let d > 2 be a prime integer. A LCS of the form in eq. (7.29) over Zq has
a quantum solution if and only if it is classically satisfiable.

Proof. 1f a classical solution exists then a quantum solution exists. Conversely, assume
that a quantum solution exists, and denote the associated reduced LCS in eq. (7.30) by
Mz = b. Assume that v = (=1, —1,—1,—1, —1, —1), otherwise there is a classical solution
and we are done. In the solution group G(M,b), we have

01929394 = I G1959697 = TP gags 'gsge = J*
9396 95 910 =J"  gag7 g5 " gre = T (7.33)

We can deduce a phase-commutation relation by multiplying the last four constraints:

JOHOR — (g1959697) (9295 ' 9s99) (9396 95 ' 910) (9497 99 ' 910)

= (919697)(9299) (9395 ') (9497 95 ")

(9197)(9299)(93) (9297 95 )

(9197)(9299) (97 ' 95 ') (9394)

(9197)9297 ' (9394)

97(919294)97_193 (7.34)
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where in the third and fourth lines we use the facts that gs commutes with ¢g.g9, and
g3 commutes with grgy, respectively. Substituting gigogs = J'g3"' reveals the phase-
commutation relation

97951 — J*b1+b2+b3+b4+b5gglg7' (735)

Since d is odd, by Theorem 21 and eq. (7.35), a necessary condition for the existence
of a quantum solution is that —b; 4+ by + b3 + by + b5 = 0 mod d. This implies that
the LCS is classically satisfiable: set x, = (bo, b3, by, by — by — b3 — b4,0,0,0,0,0,0), then
Muzy = (by, ba, bg, by, by — by — by — by) = b. This shows that the original LCS in eq. (7.29)
has a classical solution. O

7.4.3 Magic square and pentagram modulo odd, composite d

When d is a composite integer, Z, is not a field, and one cannot define a vector space
over Zg. This makes it difficult to generalize the proofs of the previous two subsections to
this setting. In particular, zero-divisors can appear as coefficients in the LCS, making the
reductions used in eqs. (7.23) and (7.30) inapplicable. Linear algebraic concepts, such as
matrix rank and column space, are also invalid in this case, so we cannot use eqs. (7.25)

and (7.32).

Nevertheless, if the coefficients in the LCS are restricted to {£1}, the arguments used
in the prime d case go through almost unchanged. Namely, we can use the same reductions
to obtain the LCSs eqgs. (7.23) and (7.30), and these LCSs satisfy the following,.

Lemma 24. If the LCS in eq. (7.23) is classically unsatisfiable modulo an odd integer and
vi € {£1}, then ya =5 = 76 and v7 = 18 = Y.

Proof of Lemma 2. Due to symmetry under the exchange (z4,x5,26) < (27, xs,%9), it

is enough to show that if (74 = 75 = 75) does not hold then a classical solution exists.
Suppose that 7, = —~5. Then a classical solution is given by

1 1
T — 5(1)1 — by — y7b3 + by — bs — bg) Ty — 5(51 + Yab2 + 7b3 — by + bs — be)

1 1
Ty — 574(—51 + Yaba — y7b3 + bs + bs +bg) x5 — 574(51 + Yaba + Y7bs — by — bs — bg)

xr3 — b6, Ty — bg, Tg, Ly, Tg — 0. (736)
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Suppose now that 4 = 5 and 75 = —v. Then a classical solution is given by

1 1
T — 5(51 + Yaba — Y7b3 + by — bs — bg) Ty = 5 (b1 + Yaby + y7b3 — by — b5 + b)

1 1
Ty — 5")/4 (—bl + ’}/4b2 — ")/7b3 + b4 + b5 + b6) Te — 5"}/4 (bl + ’Y4b2 + ")/763 — b4 — b5 + bﬁ)

To — b5, Ty — bg, Ty, T8, Tg — 0. (737)

These solutions are valid modulo d as long as 2 has a multiplicative inverse modulo d,
which is the case when d is odd. O

We can also prove a similar statement for the pentagram LCS:

Lemma 25. If the LCS in eq. (7.30) is classically unsatisfiable modulo an odd integer and
vi € {£1}, then v = (—1,-1,—1,—-1,—1,—1).

Proof of Lemma 25. The following explicit solutions

1 1 1
x — (*(b1+b2763*b4*b5),*(b1*b2+b37b47b5) b4,b5,§(7b1+b2+b3+b4+b5),0,0,0,0,0

—_

l\.’)\b—\/‘

(by + by —bg — by — bs) , b3, = (blbefb3+b4fb5) bs,0, = (=b1 + ba + b3 + by +5),0,0,0,0

2
1
5 (b1 + by —bg — by —bs), b37b47 (bl—bz—ba—b4+bs) 0,0,

v (50
(3
(b2
( L
o (

T — ( b1+bg+b3+b4+b5),0,0,0

8
1

bl—b2+b5—b4—b5) (bl—bg—b3+b4—b5),b5,0 0,0, *(—b1+b2+b3+b4+b5),0,0
1
bl—b2+b3—b4—b5) b47§(b1—b2—b3—b4+55)0000 ( b1 4+ b + b3 + by + b5),0

4

X bg

N— N N N N N

1
bg,bg, bl—bg—b3+b4 b)7§(b1—b2—b3—b4+b5)00000 ( b1+b2+b3+b4+b)
(7.38)

prove the statement, provided that 2 has a multiplicative inverse modulo d, which is the
case if d is odd. ]

We can now immediately generalize Theorems 22 and 23 to the case of odd d and
coefficients in {£1}. For the square LCS we get

Theorem 26. Let d > 1 be odd. A LCS of the form in eq. (7.22) over Zq with coefficients
in {£1} has a quantum solution if and only if it is classically satisfiable.

and for the pentagram LCS we get
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Theorem 27. Let d > 1 be odd. A LCS of the form in eq. (7.29) over Zq with coefficients
in {£1} has a quantum solution if and only if it is classically satisfiable.

The proofs of Theorems 26 and 27 are identical to those of Theorems 22 and 23,
respectively.
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Chapter 8

Concluding remarks and open
problems

One of the major frontiers of current scientific research is understanding the separation
in computational power between quantum and classical computers. An essential tool in
these investigations is the use of classical simulation algorithms as a theoretical paradigm.
The main problem this thesis tackles, i.e. finding low-rank stabilizer decompositions of
quantum states, is very unusual in that it is quite concise and yet has profound theoretical
and practical implications. The second topic in this work, linear constraint systems, is
a highly structured manifestation of certain physical phenomena that have been argued
to be the main reason quantum computers have an advantage, namely nonlocality and
contextuality. This thesis leaves a number of interesting open questions in both topics,
and in this chapter we discuss some of them.

In Chapter 3 we showed that constructing approximate stabilizer decompositions is
significantly facilitated by rewriting the circuit in a canonical form using Clifford recom-
pilation. An interesting open question is how much further we can compress the stabilizer
decomposition. We have some evidence that using Clifford decompositions of matrix prod-
ucts of multi-qubit gates can lead to dramatic improvements. Furthermore, randomized
sparsification bears a close resemblance to well-known Monte Carlo methods in many-
body physics. In these methods, significant improvements are possible by employing clever
sampling schemes, such as loop and cluster updates. Whether similar ideas can work for
stabilizer rank simulations is an interesting and practical question.

In Chapter 4 we found significantly more sparse exact stabilizer decompositions of m
copies of a magic state, [¢))®™, and further conjectured that better decompositions exist.
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A natural question is whether there exists a lower bound on x(¥®™); the stabilizer rank
of [)Y®™. I x(1®™) is polynomial or even sub-exponential in m, and we could efficiently
compute any desired term of the optimal stabilizer decomposition, that would lead to
extremely unlikely complexity theoretic consequences, such as collapse of the polynomial
hierarchy [8]. Conversely this means that, either y(¢®™) is exponential in m, or that com-
puting the terms of the optimal decomposition is as hard as simulating quantum circuits.
Distinguishing between the two possibilities is an interesting open question. Refs. [6, 7, §]
attempt to prove a lower bound on x(7®™) independently of complexity theoretic conjec-
tures, and succeed in proving partial results, for example proving that x(7%™) is Q(y/m)
[6], and that any approximate decomposition of x(7%™) that uses tensor product stabilizer
states require exponentially many terms [§].

The sparse decompositions derived in Chapter 4 are based on stabilizer states with a
certain entanglement structure, but the exact role entanglement plays in this framework
remains unclear. Entangled stabilizer states are in a sense classical, since they can be
efficiently simulated using the Gottesman-Knill theorem. Yet using entangled stabilizer
states seems to facilitate classical simulation of non-stabilizer states by allowing for more
sparse decompositions. Finding a generalization of the results in Chapter 4 which elucidates
this relationship between entanglement structure and the stabilizer rank is an interesting
open problem.

Such a generalization may be possible by considering linear binary codes, i.e. subspaces
of the vector space Fj. For a given linear code L C Fy and a product basis {|z) : z € F}},
one can ask what the stabilizer rank of the uniform superposition ) _, |z) is. The cat states
considered in Chapter 4 correspond to the repetition code in the basis |¢), [¢)+). Other
linear codes have a different entanglement structure, and allow similar tensor contractions
as in Chapter 4 to be used. Determining the optimal stabilizer decomposition of [¢)®™
obtained in this way is a natural next step.

In Chapter 5 we considered approximate stabilizer decompositions of the time evolved
state €11|0)*", and concluded that one can find significantly more sparse decompositions
in comparison to more standard approaches. We stop short of claiming that this method
is advantageous to known methods of simulating short time dynamics, since that would
require extensive numerical evidence. This is left for a future work.

For linear constraint systems (LCS), the existence of a quantum/classical satisfiability
gap in a LCS modulo d is deeply related to whether d is even or odd. Part of this dependence
is elucidated by considering generalized Pauli operators. These operators enter the picture
in two ways. First, as shown in Theorem 18, generalized Pauli operators in odd d cannot
be used to demonstrate a satisfiability gap, since every quantum solution consisting of
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these operators can be reduced to a classical solution. Second, the canonical commutation
relation AB = w°BA, obeyed by generalized Pauli operators, is itself sufficient to rule out
a satisfiability gap when d is odd. Specifically, Theorem 21 shows that if this relation is
embedded in the solution group of a LCS over odd d, then quantum solutions do not exist
in any dimension.

Both of these facts are in contrast to the case of even d; table 7.1 shows a family of LCSs
for every even d, each of which has a phase-commutation relation, as well as a satisfiability
gap which can be demonstrated using generalized Pauli operators in even d. Theorem 21
can be seen as an obstruction to generalizing the embedding theorem of [25], which holds
for d = 2, to odd d.

In Section 7.4 we use the relationship between phase-commutation and satisfiability
to prove that certain generalizations of the magic square and pentagram to odd d do not
have a satisfiability gap. The LCSs we consider in these examples can be seen as arising
from the incidence matrices of (weighted) graphs. Prior work for d = 2 characterizes the
existence of a gap in terms of planarity of such graphs [17], but this characterization does
not carry over to the case of d > 2. The techniques based on phase-commutation, outlined
in the examples in Chapter 7, may become useful in finding such a generalization. It is,
however, unclear how simple such a characterization might be. Planarity of a graph can
be checked efficiently, see for example [56], but phase-commutation seems to be a more
difficult property to check.

Finally, the results in Chapter 7 raise the question of whether there exists a LCS over
odd d with a classical /quantum satisfiability gap. While no such cases are currently known,
an upcoming work by Slofstra and L. Zhang [57] answers this question in the affirmative;
there exists a LCS with a classical/quantum gap modulo d for every prime d, with some
evidence that the gap is achievable using finite-dimensional quantum solutions.
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