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Abstract

As quantum devices are progressively scaled and refined, quantum codes will become
indispensable to guarantee reliable computation in the presence of noise. Due to the
difficulties of characterizing physical noise, direct measures of logical performance will be of
paramount use to tune quantum codes [18]. Logical Randomized Benchmarking in [5] aimed
to characterize the logical operations directly by performing randomized benchmarking
using logical operators and following each operation with perfect QEC. However, due to
resource limitations, physical implementations such as [14] only measure the syndrome at
the end of a computation.

We develop a generalized framework for procedures that measure the fidelity of logical
operations directly, logical fidelity estimation (LFE). We identify several freedoms that
arise when attempting to define a fidelity which characterizes quantum error correction,
specifically, in how error detection events are processed and in how often error correction
is performed. We explore these freedoms by conducting a survey to eliminate inviable pro-
cedures guided by the presence of upticks, a standard signature of non-Markovianity [33].
Our survey highlights procedures that are robust to gate-dependent noise and procedures
which are implementable in the near-term. We recommend applying post-selection after
each gate as a benchmark for quantum codes which is robust to gate-dependent noise.
We manage to eliminate some naive near-term protocols, but guaranteeing the robustness
when QEC is applied at a at fixed time or when post-selection is applied at the end, are
open problems.
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Chapter 1

Introduction

Quantum computation will solve a multitude of real-world problems considered intractable
for classical hardware. However, one must overcome quantum hardware’s high sensitiv-
ity to noise, presenting a significant challenge to achieving scalable computation. As a
consequence, much effort has been put into characterizing and minimizing noise in quan-
tum computation. This thesis contributes to this effort by characterizing how a recovery
minimizes the effective noise on logical components.

Quantum error correction (QEC) shows great promise, as fault tolerant computation
will eliminate the effective logical noise once the physical noise is below a certain thresh-
old [30]. In stabilizer quantum error correction [10], one encodes a k-qubit state |ψ〉 into
an n-qubit state

∣∣ψ̄〉 on which we can perform a stabilizer measurement to detect errors.
The experimentalist can use the information from these syndrome measurements to enact
a decoding meant to invert the noise model or post-select to purify the signal. Although
it is possible to use physical characterizations of the qubits to analytically optimize the
fault tolerance threshold for simplistic noise models [2], determining the optimal decoding
using this method is always hard [19]. Consequently, it is advantageous to characterize the
logical operations directly.

Randomized benchmarking (RB) is a general class of scalable procedures used to es-
timate figures of merit for noisy quantum devices. Since RB aims to characterize the
severity of noise afflicting quantum devices, it is natural to apply RB in an encoded setting
to obtain a figure of merit for the efficacy of quantum codes. We generalize two previous
procedures that apply RB to quantum codes [5, 14] by defining Logical Fidelity Estimation
(LFE), a character benchmarking procedure [17] wherein one may insert a recovery map
after each logical operation.
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We survey a simplified set of LFE protocols by discussing non-Markovianity in several
critical cases. We focus on showing the following:

1. In table 6.1 we summarize our survey by enumerating when non-Markovianity occurs
in a simplified set of LFE procedures.

2. In theorem 6.3 we show rejected post-selection always LFE is robust to gate-dependent
noise.

3. When noise is gate-independent, one may delay applying a decoding to the end of
the LFE sequence by theorem 5.4.

4. Conjecture 6.4 speculates that QEC at fixed time LFE is potentially robust to gate-
dependent noise, minimizes syndrome measurements, and evaluates QEC. However,
the survival probability decay is non-standard.

5. In fig. B.5 we give numerical evidence that discarding post-selected sequences can
produce non-standard survival probability decays.

Chapter 2 of this thesis summarizes the basic concepts in quantum information needed
to understand this thesis. chapter 3 discusses stabilizer codes and quantum error correc-
tion. Chapter 4 gives an introduction to RB and reviews some recent applications of RB
to stabilizer codes. We then combine chapters 3 and 4 in chapter 5 to define logical fi-
delity estimation, a set of procedures that characterize the decrease in noise in the logical
components. Then in chapter 6, we survey a simplified set of LFE procedures, using the
presence of non-Markovianity to prune inviable procedures. In chapter 7, we give numerical
evidence to support the claims made in our survey. We conclude in chapter 8.

I claim all of the work summarized above as my own original work except for theorem 2.6
and it’s following corollaries, which stem from work in the suppolementary material of [9].
Chapters 1-4 review previous work, while chapters 5-7 contain the novel contributions of
the thesis.
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Chapter 2

Quantum Information Review

In this section, we build a toolbox to describe and analyze quantum processes. We assume
some familiarity with group theory. Experienced readers need only to note theorem 2.6
and its corollaries before moving on.

2.1 Group Theory Background

We will assume a basic knowledge of group theory and its axioms. The reader can find
a quantum focused approach to group theory in [31] if further background is needed. We
begin with some basic definitions that will help build the groups required to describe
quantum computation.

Definition 2.1 (Normalizer). The normalizer N (G,U) for a subgroup G of a group U is

N (G,U) = {N ∈ U| ∀G ∈ G N †GN ∈ G}

where G is a subgroup of U.

Definition 2.2 (Commutant). The commutant C(G,U) for a subgroup G of a group U is

C(G,U) = {C ∈ U| ∀G ∈ G C†GC = G}

The most general group n qubits can represent is SU(2n), so we define the shorthand
N (G, SU(2n)) = N (G). Similarly for the commutator.

3



Recall the single qubit Paulis P1 ⊂ SU(2).

I =

(
1 0
0 1

)
X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
. (2.1)

Taking tensor products of these single qubit Paulis gives the full Pauli group Pn.

The normalizer of the Pauli group is the Clifford group N (Pn) = Cn. Typically when
we use RB to assess quantum computers, Cn is sampled for sequences whose product is
identity. The Clifford + T gate design is an increasingly simple method to implement full
quantum computation with a limited gate set. So we can expect that systems that strive
to achieve full quantum complexity will implement Cn. Thus, Cn is a natural setting from
which to construct circuits to evaluate a quantum computer.

However, randomized benchmarking is not limited to using the Clifford group alone.
In chapter 7, we utilized a subgroup of Cn to perform randomized benchmarking.

Definition 2.3. The Asymmetric Group A1 is generated by the set Agens
1 = {Z,HP}

where

H =
1√
2

(
1 1
1 −1

)
P =

(
1 0
0 −i

)
HP =

1√
2

(
1 −i
1 i

)
. (2.2)

One can check the relations HXH† = Z, HYH† = −Y , PZP † = Z, and PXP † = Y
by hand. In section 2.3 we provide appropriate material to check that A1 is a suitable
group for randomized benchmarking.

Another important gate is the controlled single qubit Pauli Cσ where σ ∈ P1. The 4x4
matrix representation is

Cσ =

(
I2 0
0 σ

)
(2.3)

from which we may construct a general controlled Pauli operator Cσ which “controls” n
qubits with a single qubit. Take σ = σ1 ⊗ . . . σn ∈ Pn and we have

Cσ =
n∏
i=1

(
I2n 0

0 ⊗nj=1σ
δi,j
i

)
=

(
I2n 0
0 σ

)
(2.4)

where ⊗nj=1σ
δi,j
i simply picks out the Pauli σj from σ and leaves the rest as identity. We

use the controlled Pauli operators when performing quantum measurement.
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Another important property of the Pauli group is that we can write an implementation
U ∈ SU(2n) as a rotation generated by Paulis

U = ei
∑
n θnσn (2.5)

where σn is an enumeration of Pn and θn is degree of rotation for each generator. We make
use of this model extensively to create examples, but also to see that U ∈ span(iPn).

2.2 Quantum Processes

Quantum processes correspond to linear maps, which can be naturally represented by
matrices, often known as process matrices [35]. We will construct our process matrices for
n qubits using an orthonormal basis B = {Bj | j ∈ Zd2} for 2n = d dimensional matrices
Cd×d under the Hilbert-Schmidt inner product 〈A|B〉 = Tr

(
A†B

)
. By orthonormality and

linearity, we have

E(ρ) =
∑
B∈B

〈B|ρ〉 E(B)

=
∑

B,B′∈B

〈B|ρ〉 〈B′| E |B〉B′. (2.6)

We therefore represent the density matrix ρ ∈ D(Cd×d) ⊂ Cd×d with the column vector |ρ〉
whose jth entry is 〈Bj|ρ〉, and a generic linear quantum process E ∈ Cd2×d2 by a matrix
with entries Ej,k = 〈Bj|E(Bk)〉. As U ∈ SU(2n) is a quantum process, it must have a
representation of its action in Cd2×d2 , we write this action as given by the implementation
map φ : SU(2n)→ Cd2×d2 with φ(U) |ρ〉 =

∣∣UρU †〉 ∀U ∈ SU(2n).

To each noise process E we associate a fidelity F [E ] which is used as a figure of merit for
a quantum computer with noisy implementation θ(G) = φ(G)E . Traditional Randomized
Benchmarking [7] established a scalable, robust method of estimating the fidelity with few
resource requirements. One can use RB theory to rigorously relate the fidelity to the noise
process E

F [E ] =

∫
Tr{|ψ〉〈ψ| E(|ψ〉〈ψ|)} dµ(ψ) (2.7)

where µ is the Fubini-Study measure over states in the complex projective space CPd−1 [3].
In this paper, much effort will be put into establishing a consistent notion of fidelity at the
logical level.
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To extract information from a quantum computer, performing a measurement is neces-
sary. We will utilize measurements not only at the end of a sequence, but also during the
randomized benchmarking procedure.

Definition 2.4 (Projective Measurement (PM)). A set of projectorsQ with
∑

Πi∈Q Πi = I.

The different Πi correspond to all the possible outcomes of a measurement defined by
Q. Throughout this thesis, we will assume that our measurements are perfect, meaning
that measurements can be represented as perfect projections onto the outcome i. If the
outcome is known, we update the state using Lüder’s rule

Π̄i |ρ〉 =
1

Tr{ρΠi}
|ΠiρΠi〉 . (2.8)

When we use projective measures of the form Q = {Π, I − Π}, such as in randomized
benchmarking experiments, we refer to one outcome as “survival”. We will refer to the
probability of the outcome Qs for a sequence length m as the survival probability, psm .

In quantum computation we utilize a gate set G of unitary maps, which is often a group.
We start with an initial state ρ, apply a gate sequence Gm...G1 whose measurement outcome
is given by 〈Q|Gm...G1 |ρ〉. However in practice all of the above components will be noisy,
represented with the map θ : G → Cd×d. We accept a slight abuse of notation in that we
apply θ to preparations and measurements as well as gates to represent state preparation
and measurement (SPAM) errors. So we denote the outcome of an implemented noisy gate
sequence as

q ~G = θ(Q)θ(Gm)...θ(G2)θ(G1)θ(ρ). (2.9)

2.3 Representation Theory

This section is meant to serve as a quick representation theory reference; for a more com-
plete description, see [22]. The reader can find additional resources related to RB and
representation theory in [9, 17, 33] on which we base this section.

Let V be a vector space of dimension d and then End(V ) is set of linear mappings
V → V . A representation φ of a group G on End(V ) is a group homomorphism φ(G∗G′) =
φ(G) ∗ φ(G′) from G→ End(V ) Group homomorphisms like φ preserve some piece of the
group action and cannot make the action on the elements of G more complex. Call this
injective image of G by the shorthand φ(G), which forms a subgroup of End(V ).
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In this thesis, the vector space V will be all of the |ρ〉 corresponding to density matrices,
and End(V) will be Cd2×d2 to represent the process matrices of section 2.2. In this way, the
full dynamics of a sequence of quantum processes can be decomposed and analyzed using
the tools of representation theory. Below, we give an intuition for one of the most potent
tools in representation theory, a general method of decomposing a noiseless implementation
of the group element φ(G) ∈ End(V) known as the canonical decomposition.

Suppose there is a subspace W of V with the invariance φ(G)w ∈ W ∀w ∈ W . In
that case, the representation is reducible. One could “reduce” this representation into sim-
pler representations φH and φH⊥ by restricting the range of φ to End(W ) and End(V/W )
respectively and mapping all other elements to identity. Thus obtaining two subrepresen-
tations with underlying subgroups H and H⊥, each “representing” a smaller piece of the
action of G than φ. This decomposition naturally leads to the notion of an irreducible
representation or irrep as a representation with no invariant subspaces. Schur’s famous
lemma gives a simple test to see if a representation is irreducible. We utilize a version of
Schur’s lemma given in [31].

Lemma 2.1 (Schur’s Lemma). If a subrepresentation φ is irreducible, then a linear map
given by the matrix M ∈ C(φ(G),End(V )) is of the form M = αI for a scalar α.

Following the above process, one may find that a subspace with the same underlying
subgroup appears more than once. Isomorphisms between these subgroups give rise to an
equivalency between representations.

Definition 2.5 (Equivalent Representation). If T is a linear map between irreducible
representations φ and φ′ such that Tφ(G) = φ′(G)T ∀G ∈ G then T = 0 or φ ∼= φ′ are
equivalent.

We use definition 2.5 to define a set of equivalence classes for irreps. I. The number
of equivalent copies of the jth irrep. class is it’s multiplicity mj. Let’s enumerate these
equivalent representations with the variable k < mj in φkj . If mj > 1 we call the jth irrep is
degenerate. Randomized benchmarking procedures which are designed using groups with
low numbers of non-degenerate irreps are, in general, more robust. Note that the group
N (G) is irreducible for any G, so N (Pn) = Cn is an intuitive choice for a group to perform
RB with.

By following the “reducing” process above we can obtain a cannonical decomposition
for a representation φ(G) ∼=

⊕
H∈I φH(G) for I the set of all equivalency classes irreps. of

G. We’ll call a group H irreducible when it has a single irrep.
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Let’s do an example with A1, the single qubit Asymmetric Group defined in section 2.1,
showing that the typical 2× 2 quantum representation of A1 has a single non-trivial irrep.
with mφ = 1.

Example 2.1. Using P1 as a basis for for the state |ρ〉 allows us to write |ρ〉 =
∑

σ∈P1
ρσ |σ〉.

In this basis, one notes that applying σ only alters the sign of the states |σ〉, so we will focus
on applying HP . A quick use of the commutation relations given below eq. (2.2) shows
that φ(HP ) |X〉 = − |Y 〉, φ(HP ) |Y 〉 = |Z〉, and φ(HP ) |Z〉 = |X〉. Thus, all of the non-
identity Pauli eigenstates are in the same irreducible subspace. Now, only two subspaces
remain, the trivial subspace given by the vector space spanned by |I〉 and a non-trivial
subspace which must include all Pauli eigenstates. From this, we conclude that either the
two subspaces are equivalent, or their corresponding representations are irreducible. The
two subspaces must be inequivalent because the trivial irrep only has trivial action in its
underlying subgroup. So both representations are irreducible.

We define the projector onto a particular subrepresentation given by φ as the projector
onto the equivalent representations of φ which all have the character χφ = Tr(φ(G)) as

Πφ = EG∈Gφ(G)χφ(G). (2.10)

To project onto spaces representing individual equivalent representations, we use a more
sophisticated tool from the supplementary material of [9]. In order for the jth irrep to have
multiplicity mj, by definition 2.5 there must exist m2

j linear maps between the equivalent

irreps. For the jth irrep, label these linear maps Qk,l
j where 1 ≤ k, l ≤ mj. Arrange the Qk,l

j

as matrix blocks labeled by j. Then we can diagonalize Qk,k
j in the basis spanned by |vkn〉.

Finally, arrange the Qj as matrix blocks so that Qk,l
j =

∑mj
n=1

(
|j〉 ⊗ |vkn〉

)(
〈j| ⊗ 〈vln|

)
so that Qk,l

j is a projector onto φkHj when k = l and maps between spaces spanned by the
the l and kth equivalent rep. of Hj ∈ GI when k 6= l.

Lemma 2.2 (Properties of Qk,l
j [9]). Qk,k

j φ(G) = φkHj(G)Qk,k
j and Qk,l

j Q
k′,l′

j′ = δj,j′Q
k,l
j Q

k′,l′

j′

We use the above concept to prove the theorem below, which is based on the work in
the supplementary material of [9].

Theorem 2.6. If a matrix M ∈ C(φ(G),End(V )) then ∃Mj with rank mj s.t. M =
|GI |∑
j=1

Mj

and MjMj′ = δj,j′M
2
j .
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Proof.

φ(G)M = Mφ(G) ([φ(G),M ] = 0) (2.11)

Qk,k
j φ(G)MQl,l

j′ = Qk,k
j Mφ(G)Ql,l

j′ (2.12)

φkHj(G)Qk,k
j MQl,l

j′ = Qk,k
j MQl,l

j′φ
l
Hj′ (G). (lemma 2.2) (2.13)

Next, we use definition 2.5 where T = Qk,k
j MQl,l

j′ showing φkHj is equivalent to φkHj′

φkHj(G)Qk,k
j MQl,l

j′ = δj,j′Q
k,k
j MQl,l

j′φ
l
Hj′ (G). (definition 2.5) (2.14)

We can use the above to show

Qk,k
j MQl,l

j′ = δj,j′αj,k,lQ
k,l
j . (lemma 2.1) (2.15)

To be clear, lemma 2.1 is used above when k = l otherwise eq. (2.15) follows from the
definition of Qk,l

j .

We sum over all the projectors onto irreps Qk,k
j in eq. (2.15) to obtain

M =

|I|∑
j=1

mj∑
k,l=1

αj,k,lQ
k,l
j . (2.16)

If Mj :=
mj∑
k,l=1

αj,k,lQ
k,l
j then the desired property for Mj is checked using lemma 2.2.

Corrolary 2.3. If M ∈ C(φ(G),End(V )) ∃Mj with rank mj s.t. Mm =
|I|∑
j=1

Mm
j .

Corrolary 2.4. If a finite set M ⊆ C(φ(G),End(V )) then ∀Mi ∈ M ∃Mi,j with rank

mj s.t. Mi =
|I|∑
j=1

Mi,j and Mi,jMi′,j′ = δjj′Mi,jMi′,j′ by defining Mi,j :=
mj∑
k,l=1

αi,j,k,lQ
k,l
j

similarly to theorem 2.6. One may ignore cross-terms in a product over i to obtain

|M|∏
i=1

Mi =

|M|∏
i=1

|I|∑
j=1

Mi,j =

|I|∑
j=1

|M|∏
i=1

Mi,j. (2.17)
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2.4 Summary

We reviewed some general groups utilized by quantum computation and pointed out some
of their properties.

1. The Pauli group Pn can be used to generate rotations in SU(2n).

2. The Clifford group N (Pn) = Cn and the single-qubit asymmetric group A1 are both
usable for randomized benchmarking.

Quantum process were discussed in the context of gate sequences with perfect measurement

1. Quantum processes are maps in Cd2×d2 between density matrices in D(Cd×d).

2. In quantum computation, we begin in a state |ρ〉 and enact unitaries φ(U) |ρ〉 =∣∣UρU †〉, perform a gate sequence ~G, and measure Q to get the outcome q ~G.

3. We use Lüder’s rule Π̄ |ρ〉 = 1
Tr{ρΠi} |ΠρΠ〉 to describe a measurement with known

outcome Π.

We realised that one could evaluate quantum processes in Cd2×d2 using the tools of repre-
sentation theory

1. An errorless implementation of a group is a representation φ(G), which we decompose
into the cannonical decomposition φ(G) ∼=

⊕
H∈I φH(G),

2. Corrolary 2.3 and corrolary 2.4 showed that representation theory can be used to sim-
plify products of quantum processes of M ⊂ C(φ(G),End(V )) namely for matrices

M,Mi ∈M we have the identities Mm =
|I|∑
j=1

Mm
j and

|M|∏
i=1

Mi =
|I|∑
j=1

|M|∏
i=1

Mi,j.
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Chapter 3

Quantum Error Correction

As with classical computers, it is possible to use redundancy to protect computation on
a subspace. Over the past 20 years Quantum Error Correction (QEC) has proven it has
the potential to suppress errors in long computations with the discovery and development
of fault tolerant noise thresholds [10, 30, 34]. If the noise rate is below this threshold,
errors are suppressed for arbitrarily long computation. We focus on a ubiquitous subfield
of quantum error correction, the stabilizer formalism.

3.1 Stabilizer Formalism

The stabilizer formalism is a tool that describes a restricted set of quantum states known
as stabilizer states [1, 10] which are extensively applied in the study of quantum error-
correcting codes [12]. We study this formalism in the context of randomized benchmarking.
We search for possible benchmarks for a diverse ensemble of stabilizer codes.

To specify an [[n, k]] stabilizer code, we define a stabilizer group which is an Abelian
subgroup S ( Pn with k generators that does not contain −I. We enumerate the generators
Sgen = {Sgen1 , . . . , Sgenn−k} and an invariant subspace of dimension 2k which is referred to as
the code space. The projector onto the code space is given by

ΠS = 2−n
∑
S∈S

S. (3.1)

Equivalently, the code space is the set of all
∣∣ψ̄〉 such that S

∣∣ψ̄〉 =
∣∣ψ̄〉 for all S ∈ S. We

abuse notation a bit in that we also apply ΠS |ρ〉 = |ΠSρΠS〉 to denote a projection onto
the code space. The difference will be clear from context.
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Ḡ

∣∣ψ̄〉 Ḡ
∣∣ψ̄〉

E†

|ψ〉 G

E

∣∣ψ̄〉 |0〉 − − − Ḡ
∣∣ψ̄〉

|0〉 − − −
|0〉 − − −

Figure 3.1: Copies of the same circuit implementing the logical gate Ḡ. On the RHS, we
can see that the encoder E defines a frame that separates the state’s syndrome and logical
portions. In this “Unencoded” frame, it is clear that we may, in principle, measure the
logical qubits (|ψ〉 above) and syndrome qubits ( |~0〉 below) separately. Dashed lines on
the RHS remind the reader that the implementation of Ḡ will be imperfect, so it is likely
the noisy implementation of Ḡ will act to create a non-trivial syndrome.

There exists a Clifford operator E with EZiE
† = Sgeni ∀i > k, commonly called the

encoder because it maps E(|ψ〉 ⊗ |~0〉) =
∣∣ψ̄〉 [10]. We have illustrated in fig. 3.1 how one

may use E to define two “frames” from which one can view the quantum state. We will
make use of the unencoded frame defined in fig. 3.1 often.

Secondly, we have the Logical Group (L), defined by Pauli operations on the logical
qubit in a frame given by E

L = {E(σ ⊗ In−k)E† | ∀σ ∈ Pk}.

These are the important gates which one uses for computation in stabilizer codes. Our
primary interest in performing a benchmark of a stabilizer code will be to characterize the
noise afflicting these operators. Last comes the destabilizers.

Definition 3.1 (Destabilizers). The Abelian group generated by

Tgen = {EXiE
† | ∀ i > k} (3.2)

The general role of destabilizers is to bring us out of the code space without affecting
the logical state. When we apply quantum codes in a randomized benchmarking setting,
destabilizers cause the syndrome qubits in the RHS of fig. 3.1 to flip.

We can express any Pauli σ ∈ Pn as

σ = LST (3.3)

for S ∈ S, L ∈ L, T ∈ T [25].
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The above definitions suggest there is a particular frame defined by E wherein we can
treat logical action as separate from the action on the rest of the system. In fig. 3.1 we
make this notion precise by relegating all of the logical action to a single qubit.

Figure 3.1 also implies that action on the syndrome and logical states can commute
and that we can, in fact, treat them as separate qubit systems. We call them the logical
and syndrome qubits respectively. This structure allows us to make measurements without
decohering any quantum correlations which might occur in a circuit made from elements
of span{L}.

Definition 3.2 (Logical and Syndrome Operator Spaces). The operator space defined by
the process matrices in span{φ(L)} is the logical space where φ(L) is a noiseless imple-
mentation of L. The syndrome operator space can be defined analogously with ST.

It is worthwhile to note the distinction between the logical, syndrome, and code spaces.
The operators in the logical and syndrome spaces specify the evolution of qubits in the
unencoded frame. The code space is the set of states such that S |ψ〉 = |ψ〉 ∀S ∈ S.

We highlight an important group used commonly to assess logical gates.

Definition 3.3 (Logical Clifford Group). The logical Cliffords can be defined as the group
CL = {E(C ⊗ In−k)E†|C ∈ Ck} by considering CL in the unencoded frame of fig. 3.1.

The CL is a group commonly cited [5] as a simple 2-design on the logical space. Gener-
ally, we want the logical gate implementation to be transversal to simplify noise in compu-
tation. However, the logical Cliffords are not guaranteed to be transversal in more compact
codes such as the [[5,1]] code. Therefore in chapter 7 we resort to using another 2-design
on the logical operators, the logical asymmetric group (AL) which cannot be expressed so
quickly in the unencoded frame. However, we will see the commutation relations with XL

and ZL are preserved, so AL still forms the group on the logical bit in the unencoded frame.

3.2 Stabilizer QEC

It is widely recognized that quantum measurements and operators do not commute in
general. Consequently, one cannot measure any operator on the underlying quantum state
to check for the presence of errors without destroying the prepared state. Stabilizer codes
circumvent this problem by using [L, ST ] = 0 ∀L, S, T so that one can, in principle, measure
S or T without disturbing the measurement outcome on the logical space. However, we
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choose to measure the eigenbasis of the stabilizers by convention. Stabilizer measurement
is done by performing a parity check [30] measurement of the generators of the stabilizer
group with a Non-Neumann measurement as in fig. 3.2.

The outcomes of measuring the stabilizer generators Sgeni are denoted by a syndrome
s ∈ Zn−k2 . An encoded state has a trivial syndrome |~0〉. We will consider two possible
methods of addressing the presence of noise, informed by the syndrome. The first is by
simply discarding the state whenever its syndrome is non-trivial. This is called post-
selection and we typically represent discarding post-selected sequences by a state update
inspired by Lüder’s rule

Π̄S |ρ〉 =
1

Tr{ρΠS}
|ΠSρΠS〉 (3.4)

Second, by applying quantum error correction (QEC), an operation which is chosen to
undo the effect of noise. One performs QEC using a Pauli decoding Ds ∈ Pn that applies
the most likely error pattern consistent with the measurement syndrome.

Note that Ds can be decomposed in the form of eq. (3.3) as Ds = TsLsSs, where
Ts ∈ T triggers the syndrome s, while L ∈ L and S ∈ S. We call a decoding trivial if
Ls = I ∀s and denote the resulting operation with R0. We will encapsulate the syndrome
measurement and the decoding step Ds for every syndrome measurement outcome s using
a single quantum process referred to as the QEC map or recovery map R =

∑
sRs. If we

are allowing for either post-selection or QEC, then R is called an error reduction map.

A key model for R which we utilize extensively is perfect measurement, given by

RPM =
2n−k−1∑
s=0

Esφ(Ds)ΠSφ(Ts) (3.5)

where φ is the representation for quantum processes used by the computer. Put simply,
this model assumes stabilizer measurement always results in an eigenstate of S. A more
strict assumption, known as perfect recovery [4, 5, 27] consists of a perfect measurement
and ensures the state ends up back in the code space

RPR =
2n−k−1∑
s=0

Esφ(Ds)Π̄S. (3.6)

Note RPR = RPRΠS acts as a projector from the right. We show that how these two
assumptions are applied is crucial to determining when protocols are robust to gate-
dependent noise.
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|ψ〉 σ Π±σ |ψ〉

|0〉 H • H MZ

Figure 3.2: A model of Von-Neumann measurement useful for QEC. The Pauli observable
σ is extracted from |ψ〉 using Cσ defined in eq. (2.4), an ancilla qubit, and a Z measurement.
This circuit asks “What part of |ψ〉 lies along an eigenstate of σ?” and stores that in the
ancilla to be measured by MZ . In quantum error correction, we substitute σ for and Sgen

and attempt to reduce the error using the result of Mz to post-select or apply QEC. The
projector Π±σ is the projector onto the plus and minus eigenstates of σ.

Syndrome Measurement Recovery

Sgen1 Sgen2

· · ·

Sgenn−k D
...∣∣ψ̄〉 · · ·

· · ·

|0〉 • · · · M1

CC|0〉 • · · · M2
...
|0〉 · · · • Mn−k

Figure 3.3: We combine a syndrome measurement and decoding step to make a QEC map
in the stabilizer formalism. We first perform a Von-Neumann measurement using CSgens
and follow it with a classically controlled operator (or a post-selection). The block CC
shows the process of “classically computing” a decoding to invert errors associated with
the measured syndrome. The block labelled D is the applied decoding.
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Definition 3.4 (Error Reduction). We use the symbol R to denote a syndrome measure-
ment followed by either a post-selection or recovery, i.e., R is a method of using the code
to reduce errors in the system. When R uses a decoding, R will be a QEC map that we
will specify as 1 of 2 forms: perfect measurement defined in eq. (3.5) and perfect recovery
defined in eq. (3.6). We represent syndrome measurement and post-selection with the pro-
jector onto the code space ΠS. However, we may require that Π be normalized. In which
case the projector will be written Π̄S as in eq. (3.4). We call R and error reduction map.

3.3 Fault Tolerance

We give a brief flavor for the diverse and developing field of fault tolerance. For a more
complete set of approaches, see [11, 20, 30].

So far, we have only considered scenarios where we have a noisy set of quantum gates. In
a realistic scenario, one expects that the post-selection or QEC step R will be noisy as well.
It would be unrealistic to assume that noise on this measurement is small, however [10]
showed that for some simplistic noise models R does not increase the size of errors when
the physical noise rate is below a certain threshold. Thus yielding errorless or fault tolerant
computation.

Traditionally, the diamond distance has been touted as the proper figure of merit to look
at if one wishes to guarantee fault tolerant computing [18]. As such, there has been much
interest in measuring the diamond distance using robust experimental protocols such as
RB [28, 33]. The ultimate goal of this pursuit would be to design a protocol characterizing
the physical qubits which indicates fault tolerance is achieved in the ensemble. A recent
breakthrough to bound the diamond norm shows that these fault tolerance certifications
for physical qubits are perhaps on the horizon [6].

However, this approach suffers from 3 major technical issues, which can be attributed
to the large size of the physical system and it’s many parameters [18]. First, the diamond
norm is only rigorously shown to give fault tolerance guarantees under simplistic noise
models [2]. Second, the diamond norm is a worst-case measure of error rates, which
may greatly overestimate the presence of errors in the system to ensure fault tolerance is
achieved. Finally, optimizing a decoding analytically is hard in general [19].

Optimizing at the logical level does away with the need to characterize the many param-
eters required to describe noise at the physical level. Thus, we choose to forgo a physical
characterization of the noise and design experiments that measure error rates directly at
the logical level [18].
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3.4 Summary

An [[n, k]] stabilizer code is a 2k dimensional eigenspace with eigenvalue +1 for a set of
n− k commuting Pauli operators: Sgen = {Sgen1 , . . . , Sgenn−k}.

1. The code-space is the set {|ψ〉 ∈ Hn
2 : Si|ψ〉 = |ψ〉} with projector ΠS =

∑
S∈S S.

2. Each of the encoded states can be prepared using a unitary circuit E called the
encoder: E|ψ〉 ⊗ |0〉n−k = |ψ〉. We can use E to define the following groups:

(a) L the logical group given by L = {E(σ ⊗ In−k)E† | ∀σ ∈ Pk}.
(b) S the stabilizer group generated by Sgen = {EZiE† | ∀ i > k} and S

∣∣ψ̄〉 =
∣∣ψ̄〉.

(c) T the destabilizer group generated by Tgen = {EXiE
† | ∀ i > k}.

(d) CL the logical Clifford group CL = {E(C ⊗ In−k)E†|C ∈ Ck}.
(e) AL the single-qubit logical asymmetric group.

3. We can decompose a n-quit Pauli σ ∈ Pn as σ = LST with L ∈ L, S ∈ S, and T ∈ T,

The error reduction operator R is a 2 fold process

1. Measure in the eigenbasis of S to obtain a syndrome.

2. Next we pick one of the two following responses to the syndrome

(a) Post-selection allows one to discard the outcome when the syndrome is non-
trivial. In this case, we may write R as ΠS = 2−n

∑
S∈S S or Π̄S = ΠS

Tr{ρΠS}
as

in eq. (3.4).

(b) Qunatum error correction uses the information from the syndrome to enact a
Pauli decoding Ds. We use 2 forms for a noisy R:

i. Perfect Recovery assumes |ρ〉 always ends up back in the code space given

by RPR =
∑2n−k−1

s=0 Esφ(Ds)Π̄S

ii. Perfect measurement assumes we end up in an eigenstate of S given by

RPM =
∑2n−k−1

s=0 Esφ(Ds)ΠSφ(Ts).
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Fault tolerance guarantees that if the combined error rates of the QEC subroutine and
gate implementation are below a certain threshold, computation is effectively errorless.

1. Although fault tolerance thresholds can be shown analytically for simplistic noise
models, for a general noise model, implementation is needed to characterize fault
tolerance.

2. We advocate for measuring logical error rates directly to optimize implementations
of QEC.
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Chapter 4

Randomized Benchmarking

Informally, Randomized Benchmarking (RB) is an efficient class of protocols for generating
figures of merit for noisy computation. Extensions of RB [5, 8, 9, 15, 23, 26] demonstrate
that RB is a versatile tool for quantifying the performance of quantum computers.

In this thesis, we survey options for expanding randomized benchmarking to measure
error rates on logical operators directly. Our survey will review two previous protocols
that used RB to characterize logical error rates. We later use character benchmarking to
generalize these protocols.

4.1 Character Benchmarking

Somewhat abstractly, experimental quantum computation aims to develop systems that
implement an approximate representation of the unitary group [13, 24]. One can formalize
this idea by defining a matrix-valued function θ that maps ideal operations, which form
a subrepresentation of the unitary group, to their noisy implementation θ(G) for G ∈ G.
From this perspective, Randomized Benchmarking (RB) algorithms are natural bench-
marks because they experimentally measure the probability of an error occurring using a
subrepresentation of G.

Character benchmarking is a general, robust framework for a wide variety of RB pro-
cedures [17]. In section 5.1 we utilize character benchmarking to define a broad class of
figures of merit for stabilizer codes. We abuse notation somewhat in that we apply θ to
preparations and measurements as well as unitary operations. algorithm 4.1 details the
character benchmarking procedure.
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Algorithm 4.1: Character Benchmarking Procedure

Input: G - implemented group, φ - irrep. with multiplicity 1,
ρ - input state, Q - {Qs, Qd} a projective measurement,
M - list of sequence lengths

Output: F ∈ [0, 1] - Average Fidelity
for m ∈M do

repeat
repeat

Prepare the input state ρ = Qs.
for 1 ≤ i ≤ m do

Sample Gi ∈ G uniformly.
Classically compute GiG

†
i−1 where G0 = I.

Apply noisy implementation θ(GiG
†
i−1) to the state.

Sample GΠ ∈ G uniformly.
Apply the noisy gate θ(GΠG

†
m) to the state.

Measure the projective measurement Q.
Record outcome qRB~G ∈ {Qs, Qd}.

until desired number of qRB~G are obtained ;

Record survival probability pRBsm as the average number of Qs.
Weight pRBsm using the character χφ(GΠ).

until desired number of pRBsm are obtained ;

Fit the decay Aλ
m

+B to the many estimates of pRBsm .
return F = Tr[Qd]λ+ Tr[Qs].
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The character benchmarking sequence qRB~G for a sequence of gates ~G = (GΠ, Gm, . . . , G1)
is given by

qRB~G = θ(Q)θ(GΠG
†
m)

m∏
i=2

θ(GiG
†
i−1)θ(G1)θ(ρ). (4.1)

For simplicity, we assume θ(G) = φ(G)E for some representation φ of G and noise
process E . We expand the sequence using the definition of a representation to derive

qRB~G = θ(Q)φ(GΠ)φ(G†m)E
m∏
i=2

φ(Gi)φ(G†i−1)Eφ(G1)Eθ(ρ). (4.2)

Definition 4.1 (Twirled Noise).

TG[E ] =
∑
G∈G

φ(G†)Eφ(G). (4.3)

Lemma 4.1 (Rotating the Twirl). TG[E ] ∈ C(φ(G),Cd2×d2).

Proof.

φ(G)TG[E ] =
∑
G1∈G

φ(GG†1)Eφ(G1) (definition of a rep.) (4.4)

=
∑
G2∈G

φ(G†2)Eφ(G2G) (define G2 := GG†1) (4.5)

= TG[E ]φ(G). (4.6)

And thus we have

[TG[E ], φ(G)] = 0. (4.7)

The above form for the character benchmarking sequence then naturally breaks up into
a series of twirled noise models when weighted expectation is taken

pRBsm = E ~G

[
qRB~G χφ(GΠ)

]
= θ(Q)ΠφTG[E ]mEθ(ρ). (4.8)

Where pRBsm is the survival probability for an RB sequence and Πφ is from eq. (2.10).
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Together eq. (4.8) and lemma 4.1 suggest that one can interpret randomized bench-
marking with gate-independent noise as a method of simulating the twirled noise map.
A natural projection of the noise process onto C(φ(G),Cd2×d2). These symmetrized noise
maps are desirable because they compose predictably, making them easier to study than
general quantum processes, which may cohere in the degrees of freedom omitted from the
twirled noise.

We can simplify eq. (4.8) slightly by re-defining Eθ(ρ) → θ(ρ). Using corrolary 2.3
and lemma 4.1 we can re-write eq. (4.8) as

pRBsm =

|GI |∑
j=1

θ(Q)ΠφTG[E ]mj θ(ρ) (4.9)

where the TG[E ]mj is the restriction of TG[E ]m onto the span of the jth irrep. The property
TG[E ]jTG[E ]j′ = δi,jTG[E ]2j . Πφ picks out the particular TG[E ]mj corresponding to φ which
we write as

pRBsm = θ(Q)TG[E ]mφ θ(ρ). (4.10)

Recall from section 2.3 the rank of the matrix TG[E ]φ is determined by mφ. So if we take
mφ = 1 then TG[E ]φ = λΠφ where λ must be in [0, 1] because if λ were complex or negative,
then the physical probability pRBsm would be complex or negative and if λ > 1 then pRBsm →∞
as m → ∞. Because λ ∈ [0, 1] we can guarantee that pRBsm will decrease monotonically as
m increases. We will see in the next section that this property is exceedingly important
when evaluating figures of merit are meaningful.

4.2 When does RB give Useful Figures of Merit?

If one sees E ~Gq
RB
~G

increase or uptick one can ascertain mφ > 1 so that φ has multiple
copies or θ 6= Eφ(G). In sections 6.1 and 6.2 we give examples which suggest the former
can happen in LRB-Like sequences and that the latter can be observed in a protocol which
minimizes the number of syndrome measurements.

Upticks indicate that the noise E is non-Markovian [33]. Loosely, non-Markovian noise
can be thought of as introducing temporal correlations to the state [29]. So if survival
probability increases at step i, the state is more correlated to the initial state than at step
i− 1. Thus the composition of all noisy gates up to that point must be non-Markovian, so
at least one of the Ei is non-Markovian.
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Traditionally, upticks are mitigated by guaranteeing that G is a 2-design over SU(2n) [7].
For the sake of completeness, we note that a unitary t-design is a set of unitary operators
G satisfying

1

|G|
∑
G∈G

Pt(G) =

∫
SU(2n)

dη(U)Pt(U) (4.11)

where Pt is a polynomial in U and Ū of order t, η is the Haar measure, and the integral
goes over all unitary operators [3]. However, character benchmarking makes the condition
in eq. (4.11) more flexible by directly considering representations like above. Moreover, we
can use the ideas in [33] to make an even stronger statement.

Theorem 4.2. The survival probability of a character benchmarking sequence pRBsm is mon-
tone decreasing when θ(G) = φ(G)Ei, the multiplicity mφ = 1, and Ei is a time-dependent
linear map acting identically for each instance of qRB~G in pRBsm .

Proof. Repeat the derivation in section 4.1 with E → Ei. In this case eq. (4.8) becomes

pRBsm = θ(Q)Πφ

m∏
i=1

TG[Ei]E0θ(ρ). (4.12)

Then we re-define E0θ(ρ) → θ(ρ). Apply corrolary 2.4 instead with Mi = TG[Ei] being

decomposed into Mi,j := TG[Ei]j with the property TG[Ei] =
∑|GI |

j=1 TG[Ei]j and we have

pRBsm =

|GI |∑
j=1

θ(Q)Πφ

m∏
i=1

TG[Ei]jθ(ρ). (4.13)

Again, Πφ picks out the subspace corresponding to φ from the twirl

pRBsm = θ(Q)
m∏
i=1

TG[Ei]φθ(ρ). (4.14)

Now the argument that TG[E ]φ ∈ [0, 1] can be applied to each TG[Ei]φ as they all must be
physically measurable quantities.

With care, one can show pRBsm decreases monotonically. Even with heavy gate depen-
dence on θ [17]. However, the gate-dependent noise robustness proof of [17] cannot be
applied when the noise model also depends on the current quantum state, as the decoding
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does in a QEC map. If one has gate-dependent noise, we show in section 6.1 the current
syndrome can encode information about previous gates, which noisy QEC can use to create
upticks. Thus, one has to treat E as if it depends on many previous gates E ~G, not just the
most recently applied gate EG. We show that these non-Markovian memory effects in the
syndrome become relevant when QEC maps are inserted into the character benchmarking
sequence in eq. (4.1).

4.3 Previous Applications of RB to QEC

We review two previous papers that utilize randomized benchmarking to assess stabilizer
codes. In section 4.3.1 we review a resource-intense protocol that is meant to be a robust as-
sessment of a code. In section 4.3.2 we review the second protocol, which is implementable
on current quantum computers.

We have also chosen here to omit some details regarding reference sequences. Both
procedures utilize logical gate sequences without syndrome measurements as a reference
for how much the recovery aids the fidelity. We ignore these robust subroutines because
the sequence reduces to a character benchmarking sequence.

4.3.1 Logical Randomized Benchmarking

Logical randomized benchmarking (LRB) is an intuitive, recourse-intensive experiment that
applies randomized benchmarking to quantum codes. Combes et al. achieved this charac-
terization by including a QEC map with every gate [5]. Algorithm 4.2 gives a concrete de-
scription of the protocol. By viewing the system in the unencoded frame defined in fig. 3.1,
one can see that the 2-design property carries over nicely to the logical scenario to form a
logical 2-design. The usual choice for G is the logical Cliffords CL, which we will use as a
default group when applying randomized benchmarking to quantum codes.

Combes et al. propose that one should perform a randomized benchmarking procedure
with a logical 2-design and measure the syndrome at each step, but do not necessarily apply
decoding immediately. Combes et al. argue that applying the decoding operation may be
delayed indefinitely, using a Gottesman-Knill algorithm [1] to commute the decoding to
the end of the LRB procedure. If this is true, Combes et al. reasoned, we can decode in
post-processing, allowing one to optimize the decoding using only classical computation.

One could indeed use an extended Gottesman-Knill algorithm to propagate the de-
coding through the perfect logical operators when G = CL. However, it is unclear how
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Combes et al. plan to commute the decodings through the various noise sources afflicting
the quantum computer. In section 5.2 we show that this produces identical results for
gate-independent noise without SPAM errors, but whether propagation works with more
general noise is unclear. So, for now, we characterize Logical Randomized Benchmarking
as two distinct procedures.

Combes et al. delay the decoding to justify that the recovery is perfect. As applying
the correction in post-processing eliminates the possibility of error. However, as previously
stated, it is unclear how the figure of merit measured when decoding is delayed compares
to when R is applied after each gate. Thus, for the case of gate-dependent noise, we will
spend very little energy considering the case where recovery is perfect. We instead focus
on a weakened assumption: perfect measurement.

4.3.2 Fault Tolerance in the IBM Quantum Experience

Although the LRB procedure is a natural method of characterizing quantum gates, it
is resource-intensive in ancilla qubits and syndrome measurements. To make a notion
of RB on logical qubits physically realizable, Harper et al. in [14] only measured the
syndrome at the end of the RB procedure. Also, because Harper et al. measured a
physical implementation in the [[4,2,2]] parity check code, the authors were limited to
post-select rather than decode. We excluded sequences in which an error was detected
from the average of pIBMsm . So this procedure gives a measure of the best-case performance
of the code when we can only sense errors at the end of the sequence.

The authors of [14] discard sequences in which a non-trivial syndrome is measured, so
the procedure can be described by including a Π̄S after the final gate is applied. Recall
the definition from section 3.2 Π̄S = αΠS where α depends on the state that ΠS acts on.
Because α is correlated to the state, it may be possible that α depends on previously
applied gates. If this occurs, then α may “bias” the twirl, meaning that certain terms in
the sum have a higher weight than others. Biasing the twirl could cause upticks in extreme
cases where only a small portion of the group contributes to survival probability.

The authors of [14] acknowledge this biasing issue in their supplementary material and
resolve it by asserting that α is constant for their particular experiment. Our survey
expands on this by considering noise where α is not constant. Our numerical evidence
in fig. B.5 indicates that for gate-independent noise, the noise model can be significantly
altered by the bias introduced by α. However, a full derivation of the survival probability
when post-selected sequences are discarded remains elusive.
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4.4 Summary

We gave a proof of the fit model for RB with gate-independent noise.

1. Algorithm 4.1 defines the character benchmarking procedure and it’s sequence out-
come qRB~G is given in eq. (4.1).

2. We can enumerate some crucial steps of theorem 4.2 the decay model for gate-
independent character benchmarking.

(a) RB sequences with gate-independent noise can be written as a series of twirled
noise models TG[E ] =

∑
G∈G φ(G)Eφ(G).

(b) Twirled noise can be projected down onto a matrix with rank equal to the
multiplicity of φ given by TG[E ]φ.

(c) If the multiplicity of φ is 1 then TG[E ]φ = λΠφ where λ ∈ [0, 1] so pRBsm is
monotone decreasing.

Upticks are an increase in pRBsm and they indicate noise is non-Markovian.

1. As Markovianity is a crucial property for RB procedures; we will use upticks to prune
inviable procedures.

2. Character Benchmarking with time-dependent noise Ei decreases monotonically.

We studied two previous implementations of RB in the context of stabilizer codes: logical
randomized benchmarking in algorithm 4.2 and IBMQ Real RB in algorithm 4.3.

1. Logical randomized benchmarking by Combes et al. in [5] applies QEC after every
logical gate.

(a) Combes et al. give a method to commute decodings through perfect logical
Clifford gates; however a method of commuting the decoding through the noisy
circuit is unclear.

(b) LRB commutes each decoding to the end of the circuit to justify that recovery
is perfect. So in the absence of a proof one can commute through noisy gates,
a perfect recovery should not be assumed.
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2. Due to physical limitations, Harper et al. designed a procedure that only measures
the syndromes and applies post-selection at the end.

(a) Harper et al. discarded runs which had non-trivial syndromes, excluding the
runs from the estimate of pIBMsm .

(b) Harper et al. demonstrated that post-selection could decrease noise rates in a
physical setting.
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Algorithm 4.2: Logical Randomized Benchmarking Procedure

Input: G - unitary 2-design on logical qubits, Q - {Qs, Qd} projective
measurement in span{L}, M - list of sequence lengths,
Sgens - Stabilizer Generators, Ds - Decoding

Output: F ∈ [0, 1] - Average Fidelity
for m ∈M do

repeat
repeat

Prepare the encoded state ρ = Qs.
for 1 ≤ i ≤ m do

Sample Gi ∈ G uniformly.
Classically compute GiG

†
i−1 where G0 = I.

Apply noisy implementation θ(GiG
†
i−1) to state.

Measure the syndrome using a Von-Neumann measurement of Sgens.
Apply noisy decoding Ds to state. (or delay decoding)

Apply the noisy gate θ(G†m) to the system.
Measure the syndrome using a Von-Neumann measurement of Sgens.
Apply noisy decoding Ds to state. (or delay decoding)
Measure the projective measurement Q.
if decoding was delayed then

Use classical simulation [1] to commute each decoding past ~G.
Apply the decoding perfectly to the outcome of Q in post.

Record outcome qLRB~G
∈ {Qs, Qd}.

until desired number of qLRB~G
are obtained ;

Record survival probability pLRBsm as the average number of Qs.

until desired number of pLRBsm are obtained ;

Fit the decay Aλ
m

+B to the many estimates of pLRBsm .
return F = Tr[Qd]λ+ Tr[Qs].
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Algorithm 4.3: IBM Quantum Experience “Real RB” Procedure

Input: G - orthogonal 2-design [15] on logical qubits,
Q - {Qs, Qd} projective measurement in span{L},
M - list of sequence lengths, Sgens - Stabilizer Generators

Output: F ∈ [0, 1] - Average Fidelity
for m ∈M do

repeat
repeat

Prepare the encoded state ρ = Qs

for 1 ≤ i ≤ m do
Sample Gi ∈ G uniformly.
Classically compute GiG

†
i−1 where G0 = I.

Apply noisy implementation θ(GiG
†
i−1) to state.

Apply the noisy gate θ(G†m) to the system.
Measure the projective measurement Q.
Apply syndrome measurement and post-selection.
Record outcome qIBM~G

∈ {Qs, Qd}.
until desired number of qIBM~G

are obtained ;

Record survival probability pIBMsm as the average number of Qs.

until desired number of pIBMsm are obtained ;

Fit the decay Aλ
m

+B to the many estimates of pIBMsm .
return F = Tr[Qd]λ+ Tr[Qs].
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Chapter 5

Logical Fidelity Estimation

We present a generalized class of procedures to estimate the performance of stabilizer
codes, Logical Fidelity Estimation (LFE). Our flexible formalism will yield insight into
LRB and IBMQ Real RB, identify non-Markovianity in various procedures, and propose
new uses for post-selection which ensure Markovianity.

5.1 The LFE Sequence

To generalize the protocols suggested in [5, 14], we extend the character benchmarking
sequence to include QEC operationsRi at each time step. We want the survival probability
to be predominantly affected by the logical gates in G, instead of those in S or T which
are not computationally relevant.

Definition 5.1 (LFE Sequence). A Logical Fidelity Estimation sequence qL~G is described
by a character benchmarking sequence with an error reduction step R after each gate,
see definition 3.4 for details on error reduction. We write qL~G for a gate sequence ~G =
(G1, . . . , Gm, L) chosen from G by interleaving a time-dependent error reduction scheme
Ri into the character benchmarking sequence

qL~G = θ(Q)Rm+1θ(GΠG
†
m)

m∏
i=2

Riθ(GiG
†
i−1)R1θ(G1)θ(ρ) (5.1)

where Gi ∈ G are often logical operators and Ri =
∑

si
Rsi,m. In this thesis Ri is a QEC

map, a post-selection, or the identity and Ri implicitly depends only on sequence length m
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and the ith syndrome measurement outcome si. However our formalism is general enough
to allow LFE extensions, the most common is to delay decoding as in LRB.

We can calculate the LFE survival probability pLsm of the LFE sequence in exact analogy
to the character benchmarking sequence using algorithm 5.1

pLsm = E ~Gq
L
~G
χφL(GΠ). (5.2)

Algorithm 5.1: Logical Fidelity Estimation Procedure

Input: G - implemented group, Q - projective measurement {Qs, Qd} in span{L},
M - list of sequence lengths, Ri - time-dependent error reduction scheme
φL - irrep. with codomain in span{L} and multiplicity 1

Output: F ∈ [0, 1] - Average Fidelity
for m ∈M do

repeat
repeat

Prepare the encoded state ρ = Qs

for 1 ≤ i ≤ m do
Sample Gi ∈ G uniformly.
Classically compute GiG

†
i−1 where G0 = I.

Apply noisy implementation θ(GiG
†
i−1) to state.

Apply noisy QEC map Ri to state

Sample GΠ ∈ G uniformly.
Apply the noisy gate θ(GΠG

†
m) to the system.

Apply noisy QEC map Rm+1 to state
Measure the binary PVM Q.
Record outcome qL~G ∈ {Qs, Qd}.

until desired number of qL~G are obtained ;

Record survival probability pRBsm as the average number of Qs.
Weight pRBsm using the character χφ(GΠ)

until desired number of pLsm are obtained ;

Fit the many estimates of pLsm to an appropriate decay model, most likely Aλ
m

+B.
return F = Tr[Qd]λ+ Tr[Qs].

This thesis exclusively concerns LFE procedures that employ a fixed error reduction op-
erator R and leave more exotic schemes to future work. We enumerate the error reduction
schemes in fig. 5.1 based on where they interleave R.
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Time-Dependent Error Reduction Schemes

Always - Apply Rsi,m = Rsi ∀i ∈ Zm for all gates except the final one.

|0〉 G0 R G†0G1 R ... G†m−1Gm R G†m

At the End - Apply R with final gate Rsi,m = R
δi,m+1
si .

|0〉 G0 G†0G1
... G†m−1Gm G†m R

Fixed Time - Apply R at a fixed sequence length m0, Rsi,m = R
δi,m0
si independent

from m.

|0〉 G0 ... G†m0−1Gm0 R G†m0
Gm0+1 ... G†m

Measure Always, Recovery at the End - Measure the syndrome at each Ri and apply
Ri = R

δi,m+1
s1...,sm+1 which depends on every previous syndrome. (LFE Extension)

|0〉 G0 Ms G†0G1 Ms ... G†m−1Gm Ms G†m R

Figure 5.1: An enumeration of all the time-dependent error reduction schemes used in
this thesis to perform Logical Fidelity Estimation. One uses these schemes to specify
how R =

∑
sRs,m will be interleaved in the LFE protocol. We include with each scheme

a circuit diagram depicting the corresponding LFE procedure. Picking the form of R
specifies the Logical Fidelity Estimation sequence. The gates labeled with Ms are syndrome
measurements.

We may choose to specify the implemented form of error reduction in the name of a
procedure. For example, QEC always LFE defines all the Ri for i ≤ m to be the same
QEC map. Another example is rejected post-selection at the end LFE. This protocol will
set the outcome of qL~G to Qd if the final syndrome measured at Rm+1 is non-trivial.

Now that we have defined the data collection method, it is natural to talk about ma-
nipulating the data. Such is the main topic of our next section.

32



5.2 Post-processing LFE Data

We distinguish LFE from previous procedures not only by the implemented procedure,
but also by how one is allowed to post-process data. In LFE, we allow two methods of
post-processing post-selected sequences which contribute to the survival probability pLsm
in distinct ways. Discarded post-selection attempts to replicate the performance of the
code when post-selection is applied. In comparison, rejected post-selection has more easily
derivable robustness properties and measures the probability of post-selection indirectly.
A full description of both methods of post-selection can be found below.

Definition 5.2 (Discarded Post-Selection). Post-selected sequences are not used to esti-
mate pLsm . Write Ri = Π̄S as in eq. (3.4).

Definition 5.3 (Rejected Post-Selection). Post-selected sequences are used to estimate
pLsm , but the outcome is treated as if Qd was measured. So we write Ri = ΠS from eq. (3.1).

Note that performing discarded post-selection may require the experimentalist to adjust
how much precision is needed. This adjustment is required because observing a high num-
ber of rejections could make obtaining many estimates of qL~G difficult. So in algorithm 5.1
we have purposely kept the number of sequences ambiguous so that the experimentalist
can adjust precision as required. For this thesis, we assume that enough points can always
be obtained and leave arguments about precision to future work.

The other primary post-processing technique we cover is delaying the decoding, where
one can adjust the Pauli frame in post-processing to optimize the fidelity. In [5] the authors
assert that one can use classical computation to commute decodings to the end of the gate
sequence using classical processing.

Delaying the decoding seemed feasible at first because G can be a subset of the Clif-
fords. The decodings are often Paulis, both of which are efficiently simulatable using a
Gottesman-Knill algorithm [1]. However, the authors of [5] never mention how one would
commute decodings through the error models. Without full noise tomography, it is unclear
how to commute the decoding through the noise model to the end of the LFE sequence.
In theorem 5.4, we use the fact that one can commute the recoveries through the twirled
noise to show a particular case without measurement errors. Theorem 5.4 will require writ-
ing the LFE sequence as if we can gather all logical parts of the decoding on the RHS
which we make explict in lemma 5.1.
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Lemma 5.1. Any QEC always LFE sequence qLA
~G

with perfect measurement R = RPM =∑
s Esφ(Ds)ΠSφ(Ts) can be written

pLsm = E~sE ~G θ(Q)θ(GΠG
†
m)

m∏
i=2

R0
s1
θ(GiG

†
i−1)R0

s1
φ(G1)φ(L ~G)θ(ρ) (5.3)

for θ(G) = φ(G)E gate-independent and trivial R0
si

so that Dsi commutes with all L ∈ φ(L).

Theorem 5.4. If a QEC always LFE sequence has θ(Q) = Q and Ls ∈ G ∀s then we can
use lemma 5.1 and simply re-label the G’s (rotate the twirl as in lemma 4.1) to commute
L ~G next to Q. Allowing one to delay application of L ~G to post-processing.

Proof of lemma 5.1. Begin by repeating the proof for character benchmarking’s fit model
in section 4.1 up to eq. (4.9)

pLsm = θ(Q)TG[ER]mGLEθ(ρ) (5.4)

Let’s write out the explicitly and using eq. (3.3) to decompose Ds = LsSsTs yields

pLsm =
2n−k−1∑
s=0

θ(Q)TG[EEsφ(Ls)φ(TsSs)ΠSφ(Ts)]GLTG[ER]m−1
GL Eθ(ρ). (5.5)

Next we must note the φ(Ls) can be commuted past φ(TsSs)ΠSφ(Ts) as the former is in
span{L} and the latter is in span{ST} to get

pLsm =
2n−k−1∑
s=0

θ(Q)TG[EEsφ(TsSs)ΠSφ(Ts)φ(Ls)]GLTG[ER]m−1
GL Eθ(ρ). (5.6)

We define LGis = G†iLsGi and use the fact that mGL = 1 to commute the φ through

pLsm =
2n−k−1∑
s=0

∑
Gm∈G

θ(Q)φ(G†m)EEsφ(TsSs)ΠSφ(Ts)φ(Gm)TG[ER]m−1
GL φ(LGms )Eθ(ρ). (5.7)

Because the multiplicity of GL is 1 we can commute φ(LGis ) through the noise to one end
of the circuit. We can repeat this process for all the twirls to obtain

pLsm = E~sE ~G θ(Q)
m∏
i=1

φ(G†i )ER0
si
φ(Gi)

(
m−1∏
i=1

φ(LGisi )

)
Eθ(ρ) (5.8)

The quantity in parentheses is a character benchmarking sequence with unitary noise Ls,
so it can be simulated, inefficiently. Right product is the LFE sequence if Ls = I to R.
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To test theorem 5.4 we implemented measure always recovery at the end LFE and QEC
always LFE. We plotted the resulting survival probabilities in fig. 7.1. We found that the
two estimations of fidelity agreed. So delaying the decoding to the end may be viable when
noise is gate-independent. However, the need to commute the Ls forward and backward
through the circuit makes this proof much harder to replicate with gate-dependent noise.
It is possible to delay logical Clifford decodings to the end, but not to post-processing, by
satisfying the following caveat. One may have to adjust the frame of Q to ensure the right
information is measured.

5.3 Summary

The generalized family of logical fidelity estimation procedures we have defined above
will serve as a starting point to search for procedures that characterize R, a syndrome
measurement with decoding or a post-selection.

1. LFE schemes can be broadly characterized into four types defined in fig. 5.1:

(a) Always LFE: inserts post-selection or decoding after each independent logical
operator.

(b) At the end LFE: minimize the number of syndrome measurements by only ap-
plying R at the end of the LFE sequence.

(c) At Fixed Time LFE: Minimizes the number of syndrome measurements by only
applying R at a fixed time.

(d) measure always recovery at the end LFE: may simulate a perfect recovery.

We found that one has several options for post-processing LFE data depending on the
error reduction scheme Ri used.

1. When R is post-selection we have 2 options for post-processing data:

(a) Post-selection discarded simply excludes post-selected sequences from our esti-
mate of pLsm .

(b) Post-selection rejected treats post-selected sequences as if they are failures of
the logical circuit.

2. If R is QEC, E is gate-independent and there is no measurement error on Q, we can
apply decoding in post-processing.

In table 5.1 we summarize why one might study each LFE procedure proposed.
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Motivating LFE Procedures
Always At the End Fixed Time

QEC
robust to gate indep. near-term near-term

suggested in [5] tests QEC tests QEC

Discarded PS
robust to gate indep. near-term near-term
maximal performance implemented in [14]

Rejected PS
robust to gate dep. near-term near-term

Quantifies error detection rate

Table 5.1: A table of LFE procedures in this thesis with each box explaining why it might be
interesting. Each box in the table defines a time-dependent error reduction scheme, which
specifies an LFE procedure as in definition 5.1. Near-term indicates that the procedure
minimizes the number of syndrome measurements, which will be crucial as errors from
one’s measurement can be an order of magnitude larger than errors on gates [21, 32].
Procedures that test QEC are more valuable than post-selection as QEC does not require
a loss of trace to eliminate errors. So we have labeled procedures that test QEC as such.
Maximal performance indicates that discarded post-selection always LFE only quantifies
undetectable errors, so the code’s performance is maximized.
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Chapter 6

Non-Markovianity in Logical Fidelity
Estimation

This chapter contains the technical contributions of this thesis. So require that the reader
be familiar with the ideas of chapter 5.

We can use theorem 4.2 to make a general statement about LFE so long as R is omitted
from the last step. However, we only make use of special cases of this theorem in this thesis.

Theorem 6.1. If Rm+1 = I and each Ri may be a distinct QEC map or rejected post-
selection the survival probability of an LFE sequence pLsm is monotone decreasing when
θ(G) = φ(G)E is gate-independent and Ri has perfect measurement.

Proof. We can redefine EiRi → Ei because Ri has a matrix representation. Concretely,
we found a survival probability for RB pRBsm which is equivalent to pLsm . Since noise is
independent of the gates we can apply theorem 4.2 to show pLA

sm is monotone decreasing.

6.1 Markovianity in Always LFE

We investigate the presence of non-Markovianity in Always LFE under variations in the
noise model and R. We begin with the simple case of always LFE with gate-independent
noise. We then consider gate-dependent noise in the case of post-selection before moving
on to considering forms of QEC. Two forms of QEC will be considered. Perfect recovery
and perfect measurement. We will find that the former is robust to gate-dependent noise
while the latter may be vulnerable. We conclude this section by summarizing our results.
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6.1.1 QEC Always LFE with Gate-Independent Noise

Several useful corollaries follow directly from theorem 6.1, the first of which is listed below.

Corrolary 6.1. The survival probability of a QEC always or rejected post-selection always
LFE sequence pLA

sm is monotone decreasing when θ(G) = φ(G)E is gate-independent and R
has perfect measurement.

Theorem 6.1 is ineffective in the case of discarded post-selection as the normalization
in Π̄S cannot be included in E without making E dependent on the current state. However,
the statement does indeed hold.

Theorem 6.2. The survival probability of a discarded post-selection always LFE sequence
pLA
sm is monotone decreasing when θ(G) = φ(G)E is gate-independent, φ(Gi) preserves the

code space, and Ri has perfect measurement.

Proof. Consider a unitary error θ(G) = φ(G)U . We will show a unitary noise U cannot
induce upticks in discarded post-selection always LFE. The proof for a general quantum
process can be inferred from linearity.

We recall the fact from section 2.2 that we can write any unitary as span(Pn). Then
if U ∈ span(LS) no post-selection occurs so the sequence is a character benchmarking
sequence. If U ∈ span(TS) then post-selection does occur, but the post-selected sequences
will have the same logical state as if they had not been post-selected. So the logical state
and thus the output is unaffected by U .

We can see this by following the character benchmarking proof up to eq. (4.10) to see

qLA
~G

= θ(Q)φ(GΠ)
m∏
i=1

φ(G†i )UΠ̄Sφ(Gi)θ(ρ) (6.1)

= θ(Q)φ(GΠ)φ(G†m)UΠ̄Sφ(Gm)
m∏
i=1

φ(G†i )ΠSUΠ̄Sφ(Gi)θ(ρ) (6.2)

where the second step can be seen by noting that G preserves the code space. From this,
one can see that if U has any part in span(T) then the sequence gets post-selected. Thus,
the only remaining part of the unitary are the logical parts in span(LS) which are twirled
in the usual manner.
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6.1.2 Post-Selection Always LFE with Gate-Dependent Noise

We give a temporary solution to avoid upticks in always LFE by suggesting that one should
replace the decoding with a rejected post-selection. In this case, the noise model cannot
be correlated to past gates since any run with non-trivial information in the syndrome is
excluded from the survival probability.

Theorem 6.3. The survival probability of a rejected post-selection always LFE sequence
pLA
sm is monotone decreasing when θ(G) = EGφ(G) is gate-dependent and R has perfect

measurement.

Proof. The above can be seen as a subcase of QEC always LFE with perfect recovery
in theorem 6.4. Simply pick the decoding Ds = δs,~0 and the proof remains unchanged.

6.1.3 Perfect Recovery with Gate-Dependent Noise

We will explore essentially the case presented in [5] in our framework. Perfect recovery
(PR) is a strong assumption on R, which assumes a perfect projection back onto the
code space with no loss of trace, Π̄S. In [5] Combes et al. claimed the logical randomized
benchmarking procedure could achieve perfect recovery by continuously updating the Pauli
frame using the syndrome measurement outcomes to delay the decoding to the end of the
LRB sequence. It is unclear how one could achieve this scheme with gate-dependent noise.
So we substitute the desired outcome of the delayed decoding with a simplified perfect
recovery model RPR =

∑
s Esφ(Ds)Π̄S which replicates the ultimate results of [5].

Theorem 6.4. The survival probability of an QEC always LFE sequence pLA
sm is monotone

decreasing when θ(G) = φ(G)EG is gate-dependent and R is perfect recovery.

Proof. Recall the definition of perfect recovery as RPR = R =
∑

sRs =
∑

s Esφ(Ds)Π̄S
where s sums over the syndrome outcomes. Then an implemented sequence is

qLA
~G

= θ(Q)Rθ(GΠG
†
m)

m∏
i=2

Rθ(GiG
†
i−1)Rθ(G1)θ(ρ) (6.3)

= θ(Q)RΠSθ(GΠG
†
m)R

m∏
i=2

ΠSθ(GiG
†
i−1)RΠSθ(G1)θ(ρ). (6.4)

Next we can use the above form to define an effective logical representation of the sequence
θS(GiG

†
i−1) = ΠSθ(GiG

†
i−1)RΠS. By viewing θS in the unencoded frame of fig. 3.1 we can
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see θS effectively limits θ to the 2k × 2k matrix block corresponding to when the syndrome
is zero, i.e. the code space block. We can re-define θ(Q)R → θ(Q) as we are guaranteed
to be in the code space

qLA
~G

= θ(Q)θS(GΠG
†
m)

m∏
i=2

θS(GiG
†
i−1)θ(G1)θ(ρ). (6.5)

Thus we have reduced the sequence to a character benchmarking sequence on the code
space block. Which by theorem two of [17], can be fitted to an exponential decay.

As its name suggests, PR is an unrealistic assumption on the recovery. Moreover, PR
eliminates all parameters which describe how Ri acts on ST. Thus, PR should be strictly
“easier” to characterize than a recovery which interacts with ST in some currently undefined
sense of “hardness” of Logical Fidelity Estimation. Considering an error model assumption
that is weaker than perfect recovery may have complex implications for robustness.

6.1.4 Perfect Measurement with Gate-Dependent Noise

We explore the weaker assumption of perfect measurement RPM =
∑

s Esφ(Ds)ΠSφ(Ts).
Here, upticks appear under gate and syndrome-dependent noise.

We could not expand the above proofs to gate-dependent noise with perfect measure-
ment. This is because syndrome qubits may store information such that Ds and Es can
depend on previous gates as presented in example 6.2. In other words, the redefinition
RsiEGi → EGi may not work because we found in example 6.2 below a case where RsiEGi
can be compiled as EGi,Gi−1

, a noise model which depends on the previous 2 gates.

In this subsection we use the logical Clifford group CL = G and notate φ(CL) as CL for
clarity and to save space. The distinction between φ(CL) and CL will be clear from the
context.

First, present an adversarial gate-dependent noise model that produces upticks by stor-
ing the entire gate history in the syndrome bits. It will also serve to make the connection
to the syndrome’s dependence on previous gates obvious. Recall that the single-qubit Clif-
ford group has 24 elements, implying we may encode a Clifford C with as little as 5 bits
(24 < 25 = 32). Call an example of this encoding s(C).
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|ψ〉 C1 R C2 R C3 R . . .

|0〉⊗5

P

|0〉⊗5 X1 |s(C1)〉

P

|0〉⊗5 X2 |s(C2)〉

P

|0〉⊗5 X3 |s(C3)〉

|0〉⊗5 |0〉⊗5 |0〉⊗5 |s(C1)〉 |s(C1)〉 |s(C1)〉 |s(C2)〉

|0〉⊗5 |0〉⊗5 |0〉⊗5 |0〉⊗5 |0〉⊗5 |s(C2)〉 |s(C1)〉
...

Figure 6.1: A circuit depicting the error model discussed in example 6.1 in an unencoded
frame, we have omitted the E and E† to save space. The double lines denote measurement
and classical control. When the lines are absent, the state is written only to show the reader
the current syndrome. Note that each time Ri is applied, it obtains a unique syndrome for
each gate history. We can use this information to design a recovery that arbitrarily rejects
or corrects the logical state, leading to upticks.

Example 6.1. Consider a [[n, 1]] error correcting code where n > 5m + 1 and m is the
maximum length of the LFE Sequence. An important tool to achieve this is the map

P =
2∏

i=n−5

SWAPi,i+5 (6.6)

which swaps qubits down a long line of bits in blocks of 5. The noisy gate θ(CL) is then

θ(CLi) = Ts(Ci)CLiEP (6.7)

so that the gate-dependent destabilizer Ts(Ci) encode the gate CL in the first five syndrome
bits of s(C) while the rest are set to 0. The noise EP = EPE† uses P to “pass” information
correlated to all the CLi down the line of syndrome bits. We can view this noise model in
the unencoded frame defined in fig. 3.1 to give a concrete definition

θ(CLi) = EXi(Ci ⊗ In−k)PE† (6.8)

where Xi = ETs(Gi)E
† as depicted in fig. 6.1.

After the gate comes the recovery with noise model Es = Ts so that the measured
syndrome is preserved. Thus, the first gate is encoded in the first five syndromes, while
the second step transfers the information about the first gate to syndrome bits 6 through
10. The second gate is then encoded into syndrome bits 1 through 5, and so on. As we
have assumed n > 5m + 1, there will always be enough syndrome bits to encode the gate
history at every time-step uniquely.
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We have defined a system where the syndrome uniquely encodes the history of gates
applied until any time step. Thus, we can a priori design a decoder Ds, which introduces
Pauli errors and correct them. For example, identify the syndromes corresponding to when
the input state |ψ〉 is in an eigenstate of ZL and apply a Pauli XL error with Ds. By the
structure of the Clifford group, we can be sure that our recovery scheme will reject this
state 1/3 of the time. One can keep track of the commutation relations of XL and the
applied CL to arbitrarily control when the state is rejected and accepted.

In the above example, ST acts as a memory for the full history of the applied gates.
Our noise model required a significant lack of syndrome reset and highly gate-dependent
noise to create an imprint of the gate history.

Next, we present a less adversarial gate-dependent noise model where a QEC always
LFE sequence exhibits oscillations in the sequence length. This example attempts to
minimize the amount of information about previous gates that the syndrome needs to
hold in order to produce upticks. We use only the first three syndrome qubits to store
information about the previous logical operator, then adjust the recovery to correct the
error. This example shows that although heavy gate-dependence is still required, we can
relax the unrealistic assumption that many syndromes do not reset in exchange for a small
lack of syndrome reset, namely, on syndromes 100 and 001 as described below.

Example 6.2. Consider a QEC always LFE procedure benchmarking the [[7,1]] stabilizer
code with CL, the logical Cliffords andRPM =

∑
s Esφ(Ds)ΠSφ(Ts). Choose ECL on the last

3 syndromes to encode the action of CL on XL. For example: 001 in 001 if CL commutes
with XL, 010 if CL maps XL to YL, and and 100 if CL maps XL to ZL. Assume Ei = I so R
applies a perfect reset on these qubits. We now ignore the last 3 syndromes until eq. (6.12).

Define the recovery’s error model on the first 3 syndromes as the maps E100 = φ(T2) and
E001 = φ(T3), both are meant to store information about previous gates in the syndromes
by preventing the syndrome from resetting. Define part of the recovery: D100 = D110 = XL

and keep D011 undefined for now. Otherwise assume Ei = φ(Di) = I for all i for simplicity.
Finally, we define ECL on the first 3 syndromes, let EI → EIφ(T1) and ECL → ECLφ(T3)
otherwise.

To simplify, we only explicitly show the first three syndromes. Perfectly prepare the
initial state |ψ〉 = |0LΠS〉. After the first gate we obtain

θ(CL1) |ψ〉 = |0LΠ100〉 or C 6=IL1
|0LΠ001〉 (6.9)

where each term on the RHS corresponds to the different gate-dependent errors on CL.
After the first recovery we obtain

Rθ(CL1) |ψ〉 = XL |0LΠ010〉 or C 6=IL1
|0LΠ001〉 . (6.10)
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After the second gate

θ(CL2)Rθ(CL1) |ψ〉 = XL |0LΠ110〉 or C 6=IL2
XL |0LΠ011〉 or

C 6=IL1
|0LΠ101〉 or C 6=IL2

C 6=IL1
|0LΠ000〉 (6.11)

and after the second recovery

(Rθ(CL))2 |ψ〉 = |0LΠ000〉 or D011C
6=I
L2
XL |0LΠ000〉 or

C 6=IL1
|0LΠ000〉 or C 6=IL2

C 6=IL1
|0LΠ000〉 . (6.12)

Because the last three syndromes give the commutation relations of CL2 and XL, we can
choose D011 to correct the XL error. As there is no Rm+1, the gate inversion can be treated
as if it were perfect.

We calculate the survival probability after the first Rθ(CL1)

qLG1
= ECL1

〈ψL|C†LRθ(CL) |ψL〉 =
|CL| − 1

|CL|
(6.13)

the probability XL was not applied by the recovery. And after the second round the error
is corrected regardless of what happened in the first round

qLG2,G1
= ECL1

,CL2
〈ψL|C†L1:2

(Rθ(CL))2 |ψL〉 = 1. (6.14)

An uptick preceding oscillations with amplitude ≈ 2% in the survival probability.

Next, we note always LFE with perfect measurement can uptick if the error reduction
scheme is a trivial decoding. This example shows that we need not adversarially choose
the decoding to induce an uptick, implying that upticks can occur in any QEC always LFE
procedure with gate-dependence.

Example 6.3. The above holds even for trivial decodings that do not affect the logical
space. Include the logical part of the decoding in Es and carry through the above calculation
with Di = I to give a procedure and noise model which upticks.

6.1.5 Summary

Always LFE seems to be generally robust to gate-independent noise. However, extending
the results to gate-dependent noise proved to be more difficult. We have shown that
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relaxing the assumptions on R beyond the simplistic setting of perfect recovery allows
for unfamiliar upticks if the noise model is heavily gate-dependent. These upticks can be
attributed to dependence on previously applied gates and can be guaranteed to disappear
when R is a post-selection. We found a workaround to avoid upticks by showing that
rejected post-selection always is robust to gate-dependent noise.

All of the procedures considered so far are resource-intensive, as they require many
syndrome measurements. The errors on measurements are likely to be almost an order of
magnitude higher than the error on the gates [21, 32], so we will spend the next two sections
attempting to design robust procedures that minimize these syndrome measurements. We
hope that reducing the number of syndrome measurements will make these procedures
feasible in the near-term.

6.2 Markovianity in At the End LFE

One can see a key feature of non-Markovianity in at the end LFE by taking the special case
where R is rejected post-selection. One can imagine this procedure as instead of measuring
Q, the experimentalist measures QExt = {QsΠS, I −QsΠS}. The representation φ(G) will
often have multiple copies in this expanded operator space. For instance, if the G = CL one
could swap the logical qubit with any syndrome qubit to obtain another representation.

We present 2 example LFE sequences, which demonstrate that at the end LFE can
produce upticks under gate-independent noise. Example 6.4 shows that upticks can occur
when the R is a post-selection, while example 6.5 shows that upticks occur when R is
QEC.

Example 6.4. Consider an at the end LFE procedure with θ(ρ) = ΠLΠS, θ(Q) = {ΠL, I−
ΠL} and RPS = ΠS is a rejected post-selection benchmarking the Logical Cliffords CL. This
procedure will benchmark an error model given by the following small unitary overrotation
on ST

θ(CL) = EDLeiδTφ(CL) (6.15)

where EDL = (1− p)ρ+ p
4

∑
L∈L LρL is depolarizing noise on the logical space.

If we repeat this gadget many times one can see that correlations can build up on ST

T [E ]m = EmDLeimδT . (6.16)
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Subsequently if one post-selects based on the syndrome corresponding to T we can write
the survival probability pLE

sm as.

pLE
sm =

〈
Π+
LΠS

∣∣ T m ∣∣Π+
LΠS

〉
(6.17)

=
〈
Π+
L

∣∣ EmDL ∣∣Π+
L

〉
〈ΠS| eimδT |ΠS〉

= pmDL cos(δm) (6.18)

We recognize this damped oscillator behaviour in the simulated data of fig. B.8.

If the error reduction scheme is not a post-selection, but instead uses a QEC map to
affect Q, upticks on Qsynd = {I − ΠS,ΠS} induce upticks in Q. Explicit examples of this
can be found below.

Example 6.5. Repeat the above example, except having R perfectly measure and apply a
logical Pauli, say XL, in response to the syndrome T produces. Then as oscillations occur
in ST, the probability XL is produced by R oscillates as well. XL will register as an error
in the logical space, inducing oscillations in the sequence length identical to the above.

Because at the end LFE does not follow standard RB decays, we expand our survey
to include another class of near-term procedures. Although these new procedures also
produce non-standard decays, more of them are guaranteed to be Markovian while again
using few syndrome measurements.

6.3 Markovianity in Fixed Time LFE

As we saw in the previous section, when we put a QEC map at the end of the LFE pro-
cedure, upticks are produced. A simple explanation is that R acts differently for different
sequence lengths. However, if R performed at a fixed sequence length, then the upticks
presented in section 6.2 cannot occur as R applied is independent of the sequence length.
The corollary below an immediate consequence of theorem 6.1.

Corrolary 6.2. The survival probability of a Fixed Time LFE sequence pLFsm is monotone
decreasing when θ(G) = φ(G)E is gate-independent and R is a rejected post-selection or
QEC.

In near-term devices, the noise from syndrome measurement is likely to be large. So
to keep measurement noise from dominating pLsm it is expected that LFE procedures that
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minimize the number of syndrome measurements will be useful in near-term applications.
Because at the end LFE will certainly not be robust to gate-dependent errors, fixed time
LFE is the only known procedure that minimizes syndrome measurements and may be
robust to gate-dependence.

Lemma 6.3. In rejected post-selection at fixed time LFE, pLAsm is monotone decreasing when
θ(G) = EGφ(G) is gate-dependent and R which is not discarded post-selection has perfect
measurement.

Proof. One can view a Fixed Time LFE sequence with rejected post-selection as inserting
the code space projector ΠS at a fixed time in the LFE sequence. This projector can
only decrease the signal at the time it was interleaved. Every other time step of the LFE
sequence is just a character benchmarking sequence, and thus, the entire sequence is robust
to gate-dependent noise.

Robustness to gate-dependent noise remains to be shown when Ri is a QEC map.

Conjecture 6.4. QEC at fixed time LFE minimizes the number of syndrome measurements
and is robust to gate-dependent noise.

There is currently a mismatch in the development of RB with gate-dependent noise
and RB with time-dependent noise. As of right now, the best analysis of RB with time-
dependent noise comes from [33]. However, some recent results from Helsen et al. showing
further robustness to gate-dependent noise [16] and we anticipate that robustness guaran-
tees for gate and time-dependent noise will be advanced in the near future. These advances
will likely bolster the robustness of QEC at fixed time as an error characterization tech-
nique.

In fig. B.6 we give examples that show discarded post-selection at fixed time LFE
produces upticks under gate-independent noise when the syndrome measurement is perfect.
We feel this numerical evidence is sufficient to show that discarded post-selection at fixed
time is inviable.
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6.4 Summary

We showed Always LFE is robust to gate-independent noise, regardless of the form for the
post-selection or recovery map R.

1. In theorem 6.1 we expanded these results LFE procedures which the final Rm+1 is I.

We expanded the formalism of [5] by considering gate-dependent noise in Always LFE
procedures.

1. Rejected post-selection always LFE is robust to gate-dependent noise by theorem 6.3.

2. QEC always LFE is robust to gate-dependent noise when R has perfect recovery
by theorem 6.4.

3. QEC always LFE produces upticks under gate-dependent noise when R has perfect
measurement by examples 6.1 and 6.2.

We attempted to minimize the number of syndrome measurements to look for procedures
that may be implementable in the near-term.

1. QEC at the end LFE is the naive approach to testing QEC and minimizing syndrome
measurements.

(a) QEC at the End LFE produces upticks in gate-dependent noise. by example 6.4.

(b) Rejected post-selection at the end LFE produces upticks in gate-dependent noise
by example 6.4.

2. We suggested fixed time LFE as a near-term procedure that is robust.

(a) QEC at fixed time LFE and rejected post-selection at the end LFE are robust
to gate-independent noise. by theorem 6.1.

(b) We suspect that the above results may hold under gate-dependent noise as well.

A summary of the proofs of this section can be found in table 6.1.
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Non-Markovianity in Logical Fidelity Estimation
Recovery Noise Always End Fixed

QEC map

Indep. X corrolary 6.1 × example 6.5 X corrolary 6.2
Dep. X if PR see × N/A ?

theorem 6.4. conjecture 6.4
× if PM see

examples 6.1 and 6.2.

Discarded PS
Indep. X theorem 6.2 ? fig. B.5 × fig. B.6
Dep. ? ? × N/A

Rejected PS
Indep. X N/A × example 6.4 X N/A
Dep. X theorem 6.3 × N/A X lemma 6.3

Table 6.1: We summarize the general robustness properties of the LFE schemes in ta-
ble 5.1 for both gate-independent (indep.) and gate-dependent (dep.) noise. In particular,
we look for signatures of non-Markovianity in the form of upticks. X indicates a proof
that no upticks occur. In contrast, a × indicates the presence of upticks. Question marks
denote an unknown result. N/A tells the reader that the result follows trivially from its
gate-dependent or gate-independent counterpart. We note that Rejected Post-Selection
always gives reliable results under the most general noise models. Question marks indicate
open problems. Numerical evidence for each of the above conclusions can be found in ap-
pendix B, but if we only have numerical evidence, we reference the relevant figure in the
table above.
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Chapter 7

Numerical Evidence

7.1 Methods

We assume some familiarity with chapter 5.

We wrote a Mathematica program to implement all the LFE procedures in table 6.1
with perfect measurement in the [[5,1,3]] stabilizer code. We directly estimated the LFE
sequence qLG by simulating the full matrix dynamics of eq. (5.1) and perfect syndrome
measurement as described in eq. (2.8). We ignore ΠφL from eq. (2.10) in qLG as it can be
absorbed into Q when there are no measurement errors. We tested the 9 LFE procedures
in table 6.1 under overrotation noise in 2 directions. The plots are grouped in appendix B
by the implemented LFE procedure. When quantum error correction was applied, we used
the minimum weight decoder [30].

Survival probabilities were estimated using either 1000 or 2000 simulations of qL~G for
each sequence length m and directly extracting the survival probability from the output
state. We recognize that this data collection method may ignore issues with precision that
may occur in a physical implementation. As such, we only make claims regarding the
survival probability and assume we can sample a large number of points. When relevant,
we fit the survival probability estimates to an exponential decay with details included in
an inset table.

Obtaining enough samples of pLsm was more difficult for discarded post-selection LFE.
Discarded post-selection dramatically decreases the number of pLsm sampled when errors are
detected. We also found that discarded post-selection was very effective at correcting errors.
So we needed more points to retain accuracy, and a stronger noise model was required to
see decays. Thus we used 2000 sequences and doubled the error model’s strength.
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Generators of Implemented Stabilizer Code
Sgens Tgens

XZZXI YIIIY
ZZXIX YIIYI
ZXIXZ YIYII
XIXZZ YYIII

Table 7.1: The Paulis which generate S and T in the [[5,1,3]] stabilizer code implemented
in our numerics. They are arranged so that the Paulis across corresponding columns anti-
commute. L is generated from XL = X⊗5 and ZL = Z⊗5.

The logical Clifford group is not transversal in the [[5,1]] code, so we choose G to be
the logical asymmetric group AL generated by

Agen
L = {X⊗5, Z⊗5, (HP )⊗5}. (7.1)

The mφL = 1 property required for character benchmarking was checked in section 2.3
for a single qubit. We can carry over this property to AL because we can view the LFE
procedure in the unencoded frame defined in fig. 3.1. In this frame, HP ’s commutation
relations with the logical qubit’s X, Y, and Z operators are invariant between the encoded
and unencoded frames, so AL must be a representation of A1 on the logical qubit. So if Q
is in span(L), as required by LFE, there is φL s.t. mφL = 1.

For each of the forms of LFE in table 6.1, we estimated the survival probability for 2
noise channels, which we give below in the usual representation of SU(2n). The first is an
X-overrotation on each of the physical qubits

URot
phys =

5∏
j=1

ei
(.03)
2π

Xj . (7.2)

The second noise model considered is an overrotation in the direction of a destabilizer
generator as in example 6.4

URot
T = ei

(.03)
2π

T gen . (7.3)

Although destabilizer overrotations are somewhat adversarial, they show that QEC at the
end LFE produces upticks.

Note the lack of an example with purely logical noise. We have purposely omitted it
here as we feel [5] already addressed these noise models. We chose noise models that rotate
the same amount, but only the rotation’s direction is varied between experiments.
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7.2 Numerics for Always LFE

We can break up our numerical evidence for QEC always LFE into two main points. The
first is to show that one can commute the recovery to the end of the circuit. The second
is to give data that compares QEC always LFE to the other forms of LFE considered in
this thesis.

To test that one can commute recoveries through the LFE circuit, we have compared
the output of measure always recovery at the end LFE and QEC always LFE under physical
overrotations in fig. 7.1. Because the 3% physical rotations appear to be below the noise
threshold, we increased the error rate to compare the two LFE schemes. We found that
survival probabilities closely mirrored each other.

Unsurprisingly, we verified in fig. B.1 that QEC always LFE does not produce upticks
under gate-dependent noise. It appeared that 3% physical overrotations were very close
to the fault tolerance threshold. We found that destabilizer overrotations lowered the
threshold below a 3% rotation, and the QEC always LFE procedure produced decays.

Rejected post-selection always LFE performed well for the noise models given. Fig-
ure B.7 shows that exponential decays can be measured and fitted in the usual way. No
upticks appear.

Figure B.4 shows that discarded post-selection always LFE is insensitive to physical
noise. We expected this insensitivity, as we determined in theorem 6.2 that for gate-
independent noise, discarded post-selection always LFE is only responsive to undetectable
errors in span{L}.

7.3 Numerics for At the End LFE

In section 6.2 we found multiple examples where at the end LFE can produce upticks with
gate-independent noise. To verify these examples, it was essential to focus on noise models
that enact destabilizers. A brief flavor for our numerical results is given in fig. 7.2.

In particular, fig. B.2 shows that QEC at the end LFE may have large upticks un-
der a small destabilizer overrotation noise model. However, we note that under physical
overrotations, the decay was clear and successfully carried out the exponential fit. So
this procedure may still have limited use for characterizing QEC when one has certain
guarantees on the nature of the noise being benchmarked.
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QEC Always Measure Always Recover at the End

Figure 7.1: We plotted survival probabilities for QEC always LFE and measure always
recover at the end LFE to see if commuting recoveries through the circuit changed the
infidelity. Note that we have increased the severity of physical overrotations to 10%.
We plotted the survival probability for each LFE procedure in blue, and we show the
exponential fit model as a solid red line. We find that in each case, the fidelities agree in
the first two digits.

Figure B.8 shows rejected post-selection at the end LFE suffers from even worse oscil-
lations than QEC at the end. So it can be more or less ruled out as a viable procedure.
Rejected post-selection is much better suited to always LFE and at fixed time LFE.

In sharp contrast to the above procedures, ignored post-selection at the end is unaf-
fected by destabilizer noise. So we omitted this behavior from fig. B.5; however, one can
still observe non-standard decays due to physical X-overrotations. This insensitivity to
destabilizers could be anticipated by noting that the destabilizers trigger syndromes which
are completely uncorrelated to the logical output. Thus the post-selections are uncorrelated
to the logical state, and the logical output is unaffected by the post-selections. However,
this is not the case for the physical X-overrotation noise, where we observe an intriguing
non-standard decay.
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QEC Always QEC at the End

Rejected Always LFE

Figure 7.2: 3 LFE procedures were simulated in the [[5,1]] Code with (3%) overrotations
about the X direction on each physical qubit and measured with 1000 points per sequence
length. We plotted the survival probability for each LFE procedure in blue, and we show
the exponential fit model as a solid red line. The minimum weight decoding was utilized
to perform error correction. We can see that in the cases of QEC always LFE and rejected
post-selection always LFE no upticks are observed as predicted in chapter 6. For the case
QEC at the end LFE, we can see clear signs of non-Markovianity in the form of upticks.

53



7.4 Numerics for Fixed Time LFE

We implemented fixed time LFE with R applied at the 50th gate. The recovery generally
shows up in each plot as a decrease in precision, accompanied by a decrease in survival
probability.

QEC at fixed time did not produce upticks in any of the implemented noise models.
Suggesting that it may be an effective method of characterizing how much QEC is affecting
the implemented state. The dip in survival probability might be interpreted as an indicator
of how much QEC affects the size of the error. A large drop in survival probability indicates
that QEC significantly increases the size of errors. A fundamental property to characterize
fault tolerance.

Rejected post-selection at fixed time is relatively trivial. It merely reports the proba-
bility of detecting an error at the fixed point in the sequence length where post-selection is
interleaved. Nevertheless, this procedure does not uptick and so makes a viable assessment
of a stabilizer code.

From fig. B.6, one quickly notices that upticks occur in discarded post-selection at fixed
time LFE. So we can quickly rule out discarded post-selection at fixed time LFE with this
numerical evidence. Although we note that these experiments demonstrate that discarded
post-selection’s restorative powers are remarkable, the survival probability can sometimes
jump very close to 1 when the post-selection is performed as observed in fig. B.6.

7.5 Summary

We implemented simulations in Mathematica to test the 9 LFE protocols of table 6.1.

1. One can see the results our numerics for each procedure in table 7.2.

2. We verified in fig. 7.1 that we could delay recovery to the end of the LFE sequence
without changing the fidelity.

3. Discarded post-selection at the end LFE appears to produce non-standard decays
in fig. B.5.
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Summary of Numerics
Always At the End Fixed Time

QEC
fig. B.1 fig. B.2 fig. B.3

no upticks shows upticks no upticks

Discarded PS
fig. B.4 fig. B.5 fig. B.6

no upticks no upticks shows upticks

Rejected PS
fig. B.7 fig. B.8 fig. B.9

no upticks shows upticks no upticks

Table 7.2: Table summarizing the numerical results available in appendix B for each of
the LFE protocols considered in tables 5.1 and 6.1. We focus on the presence of upticks, a
standard signature of non-Markovianity, in the data. We prune inviable procedures such
as QEC at the end LFE or rejected post-selection at the end LFE by requiring that the
observed noise be Markovian.
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Chapter 8

Conclusions

We defined logical fidelity estimation, a natural class of benchmarks for quantum codes.
We found that their outputs may indicate non-Markovian noise, summarizing the results
in table 6.1. Upticks in QEC at the End LFE can be well understood using the concept
of degenerate irreps. However, the source of upticks in QEC Always LFE remains more
enigmatic, owing to dependence on previously applied gates in the sequence. Our analysis
shows that rejected post-selection always LFE is the natural benchmark which is immune
to both kinds of non-Markovianity discussed above.

We also amended some of the work in [5] by showing that one can indeed apply decod-
ings in post-processing. However, a method to extend these results to gate-dependent noise
is unclear. Using these results, we concluded that one should not assume a perfect recovery;
instead, it is necessary to consider weakened assumptions such as perfect measurement.

We found that if one wishes to reduce the number of syndrome measurements and
test QEC, QEC at fixed time LFE has distinguished itself as an intuitive, robust option.
This result is in contrast to QEC at the end, which produces upticks in the presence
of destabilizer noise. However, the fit model for QEC at fixed time LFE is non-standard.
Thus, finding a method of interpreting the results of QEC at fixed time LFE is an intriguing
open problem.

Discarded post-selection seemed to be harder to characterize. We can think of discarded
post-selection always as maximizing the survival probability pLAsm because the scheme only
lets through undetectable errors. In discarded post-selection at the end LFE, detectable
errors are allowed to build up into undetectable errors. Characterizing how detectable
errors transition to undetectable errors will be crucial to preserving the encoded state, so
identifying the fit model when R is a discarded post-selection is a significant open problem.
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Appendix A

Usage of Provided Code

This appendix is meant to be a simple guide for replicating the results contained in this
thesis. Downloads are available from GitHub https://github.com/mathmeetsmusic/

Thesis_Numerics. Although full documentation is not currently available, questions about
further usage can be directed to mathmeetsmusic@gmail.com.

Begin by downloading and opening the “Thesis Numerics.nb” file. Once open, scroll
down to the section labeled “benchmark,” and within that section, one should find four
subsections, each containing code for a different set of procedures. The first three concern
this thesis directly. To produce the results of appendix B below, run each of the cells in
the subsection labeled “Plot Sequences for Appendix B” in the order provided. To plot
the results of fig. 7.1, one can run the subsection labeled “Test to see if Recovery can be
Delayed” in the order provided. Finally, the discarded post-selection plots with heightened
error rates can be re-created by running all the cells in the subsection labeled “Discarded
Post-Selection with Non-standard Decay.”

The length of run-time will vary dramatically based on the error model and sequence
type. Running on 8 cores, each of the above procedures will likely finish in under 4
hours of computation. Note that the default precision of benchmarks is much lower than
the precision provided in this thesis. To recreate the data here, one will have to adjust
the ncircuit variable to the desired precision. We have included real-time estimates of total
run-time for each of the types of LFE. However, the accuracy and frequency of updates
may vary. The resulting plots should be automatically placed in the current directory of
the .nb file.
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Appendix B

Figures for Numerics
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QEC Always LFE

Figure B.1: QEC Always LFE was simulated in the [[5,1]] Code with (3%) overrotations

about the 2 separate axis given by physical overrotation URot
phys =

∏5
j=1 e

i
(.03)
2π

Xj (above)

and a destabilizer overrotation URot
T = ei

(.03)
2π

T gen (below) with 1000 points per sequence
length. We plotted the survival probability for each LFE procedure in blue, and we show
the exponential fit model as a solid red line. The minimum weight decoding was utilized
to perform error correction. One can see that we are apparently below the threshold for
physical overrotations, so the estimation of fidelity is inaccurate. For more meaningful
fits physical overrotation noise, see fig. 7.1. No upticks were observed in either case as
predicted in chapter 6
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QEC at the End LFE

Figure B.2: QEC at the End LFE was simulated in the [[5,1]] Code with (3%) overrotations

about the 2 separate axis given by physical overrotation URot
phys =

∏5
j=1 e

i
(.03)
2π

Xj (above) and

a destabilizer overrotation URot
T = ei

(.03)
2π

T gen (below) with 1000 points per sequence length.
We plotted the survival probability for each LFE procedure in blue, and we show the
exponential fit model as a solid red line. The minimum weight decoding was utilized to
perform error correction. In the case of destabilizer overrotations, large oscillations are
present in the survival probability. So QEC should not be inserted at the end of the
sequence to have robustness to gate-independent noise.
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QEC at Fixed Time LFE

Figure B.3: QEC at Fixed Time LFE was simulated in the [[5,1]] Code with (3%) over-

rotations about the 2 separate axis given by physical overrotation URot
phys =

∏5
j=1 e

i
(.03)
2π

Xj

(above) and a destabilizer overrotation URot
T = ei

(.03)
2π

T gen (below) with 1000 points per se-
quence length. We plotted the survival probability for each LFE procedure in blue, and
we show the exponential fit model as a solid red line. The minimum weight decoding was
utilized to perform error correction. We inserted QEC after the 50th gate. The large
jump in the destabilizer noise model below an artifact of the destabilizer noise model not
affecting the logical state. When QEC acts at gate 50, it can only harm the logical qubit,
so we see a large decrease in fidelity. As expected, we observe no upticks in either noise
model.
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Discarded Post-Selection Always LFE

Figure B.4: Discarded post-selection always LFE was simulated in the [[5,1]] Code with

(6%) overrotations about the X-axis for each physical qubit given by URot
phys =

∏5
j=1 e

i
(.03)
2π

Xj

with 2000 points per sequence length. We plotted the survival probability for each LFE
procedure in blue. Note the general insensitivity to the noise models presented and supports
the conclusions of theorem 6.2. Where only uncorrectable noise in spanL will explicitly
induce decays. In a nutshell, this procedure seems to maximize the code’s sensitivity and
maximally purifies the signal by excluding any sequence that may contain errors.
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Discarded Post-Selection at the End LFE

Figure B.5: Discarded post-selection at the end LFE was simulated in the [[5,1]] Code with

(6%) overrotations about the X-axis for each physical qubit given by URot
phys =

∏5
j=1 e

i
(.03)
2π

Xj

with 2000 points per sequence length. We plotted the survival probability for each LFE
procedure in blue. One can observe the small deviations from the exponential decay, with
the survival probability appearing as an ostensibly concave function of sequence length.
Confirming the intuition of [14] but still showing no signs of upticks. Note that decays
appear when the noise is a destabilizer-logical overrotations.
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Discarded Post-Selection at Fixed Time LFE

Figure B.6: Discarded post-selection at fixed time LFE was simulated in the [[5,1]]
Code with (6%) overrotations about the x-axis for each physical qubit given by URot

phys =∏5
j=1 e

i
(.03)
2π

Xj with 2000 points per sequence length. We plotted the survival probability
for each LFE procedure in blue. We inserted discarded post-selection after the 50th gate.
Clear upticks can be seen at gate 50 whenR is interleaved due to the exclusion of sequences
with errors.
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Rejected Post-Selection Always LFE

Figure B.7: Rejected post-selection always LFE was simulated in the [[5,1]] Code with (3%)
overrotations about the 3 separate axis given in chapter 7 and measured with 1000 points
per sequence length. We plotted the survival probability for each LFE procedure in blue,
and we show the exponential fit model as a solid red line. Here we have tested theorem 6.3
by defining Ri to be a post-selection. We found that, like the case of QEC, no upticks were
observed.
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Rejected Post-Selection at the End LFE

Figure B.8: Rejected post-selection at the End LFE was simulated in the [[5,1]] Code with
(3%) overrotations about the X-axis given in chapter 7 and measured with 1000 points
per sequence length. We plotted the survival probability for each LFE procedure in blue,
and we show the exponential fit model as a solid red line. In the case of destabilizer
overrotations, large oscillations are present in the survival probability. So rejected post-
selection should not be inserted at the end of the sequence to have robustness to gate-
independent noise.
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Rejected Post-Selection at Fixed Time LFE

Figure B.9: Rejected post-selection at Fixed Time LFE was simulated in the [[5,1]] code
with (3%) overrotations about the X-axis given in chapter 7 and measured with 1000
points per sequence length. We inserted a rejected post-selection after the 50th gate. This
procedure would mostly quantify the probability that the code rejects a state by measuring
the jump in survival.
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