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Abstract

In Runtime Verification (RV), monitors check programs for correct operation at execu-
tion time. Also called Runtime Monitoring, RV offers advantages over other approaches to
program verification. Efficient monitoring is possible for programs where static checking is
cost-prohibitive. Runtime monitors may test for execution faults like hardware failure, as
well as logical faults. Unlike simple log checking, monitors are typically constructed using
formal languages and methods that precisely define expectations and guarantees. Despite
the advantages of RV, however, adoption remains low.

Applying Runtime Monitoring techniques to real systems requires addressing practi-
cal concerns that have garnered little attention from researchers. System operators need
monitors that provide immediate diagnostic information before and after failures, that are
simple to operate over distributed systems, and that remain reliable when communica-
tion is not. These challenges are solvable, and solving them is a necessary step towards
widespread RV deployment.

This thesis provides solutions to these and other barriers to practical Runtime Monitor-
ing. We address the need for reporting diagnostic information from monitored programs
with nfer, a language and system for event stream abstraction. Nfer supports the automatic
extraction of the structure of real-time software and includes integrations with popular pro-
gramming languages. We also provide for the operation of nfer and other monitoring tools
over distributed systems with Palisade, a framework built for low-latency detection of em-
bedded system anomalies. Finally, we supply a method to ensure program properties may
be monitored despite unreliable communication channels. We classify monitorable prop-
erties over general unreliable conditions and define an algorithm for when more specific
conditions are known.
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Chapter 1

Introduction

Runtime Verification (RV), also called Runtime Monitoring, has gained acceptance as a
means to verify the correctness of software where static methods are impractical [149].
Meanwhile, the number of safety-critical systems too large to statically check is growing
exponentially, as the compound annual growth rate of software these systems has been es-
timated at roughly 1.16 [111, 223, 113]. Even for systems where model checking is possible,
RV carries benefits. In addition to design faults, Runtime Monitoring can detect execution
faults caused by circumstances such as hardware failure or malicious attacks [153].

Figure 1.1 shows the components of a traditional RV system. The Monitored System
(1) outputs an Execution Trace (2) made of symbols to the Runtime Monitor (3). The
Runtime Monitor uses the Specification (4) to compute a Stream of Verdicts (5) that
it outputs to an Operator or an Enforcement Mechanism (6). Monitored systems are
usually embedded computers with real-time requirements. These systems are often safety-
critical, meaning their failure may result in harm to persons. The execution trace may
take several forms, including timed events representing state transitions, regularly sampled
real numbers representing sensor readings, or propositional formulae representing state.
Monitors are special programs running independently from the monitored system. In
some cases, monitors may run on the same computer as monitored software, but monitors
also may execute on a separate machine connected to the monitored system by a network.
Specifications are often written in a formal language such as Linear Temporal Logic (LTL),
but they may also be encoded directly in monitoring algorithms or learned from historical
traces. Verdicts are usually drawn from a domain including Boolean values (true and false)
but they may also come from a richer domain of calculated results. An Operator may use
the verdicts to make decisions about the Monitored System, or an Enforcement Mechanism
may override behaviors.
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Figure 1.1: Components of a Runtime Verification system

Despite RV’s potential, its adoption in many industries has been slow. In the automo-
tive industry, where software can reach 20 million lines of code [46], even error logging for
future diagnosis is uncommon, let alone comprehensive error checking or systematic error
recovery [186]. Engineers in these and other industries have largely disregarded RV as a
part of their safety strategy.

One reason so few have embraced RV is that research in the area has inadequately
addressed many practical limitations. When deploying a Runtime Monitor in a realistic
environment, some of these limitations become apparent. These problems affect every
component of an RV system:

1. Most RV methods assume that the execution trace (2 in Figure 1.1) that reaches
the Runtime Monitor (3) is the same trace output by the Monitored System (1).
This assumption is often violated, however, when traces are corrupted by unreliable
communication. Even when the monitor executes on the same computer as the
monitored system, messages may be lost or modified.

2. For a Runtime Monitor (3 in Figure 1.1) to prevent failures, it must detect errors
quickly enough for an operator or enforcement mechanism to react. However, mon-
itoring algorithms for RV techniques often operate offline, meaning they require the
system to have completed execution before they determine a verdict. Those monitors
that operate online are often difficult to deploy and integrate into existing systems.
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3. Specifications (4 in Figure 1.1) formalize the requirements of the system, but many
systems do not have well-formalized requirements. RV research usually assumes that
a specification is available and complete, but this is optimistic for all but the most
rigorously defined projects. Cross-functional specifications are rarer still.

4. Most RV approaches result in a Verdict Stream (6 in Figure 1.1) containing only the
status of whether a specification was violated or satisfied. If a violation occurs, the
Operator or Enforcement Mechanism (6) may transition to a safe state, but no other
information is provided to assist in error diagnosis or failure prevention.

This thesis proposes solutions to these and other practical barriers to the adoption of
RV. These solutions are presented with the goal of increasing the use of formal verification
for safety-critical software to help prevent harm caused by computing errors. Each chapter
contains improvements to the state-of-the-art, motivated by the challenges faced when
putting RV into practice.

In Chapter 2, we present nfer, a language and system for event stream comprehension.
Unlike traditional verification tools, nfer is designed to produce an abstraction of program
execution in the form of a hierarchy of temporal intervals. Nfer is a solution to Problem 4,
that RV techniques often do not provide any information beyond success or failure. Other
RV solutions exist that compute data on event streams, such as stream processors [155, 54,
103] and rule-based RV [22, 23], but nfer’s combination of computed facts with temporal
intervals is unique. Nfer facilitates trace comprehension, providing crucial information to
understand possible failures. Nfer is a rule-based system, but its rules may also be mined
from real-time system traces. This is a solution to Problem 3, that RV methods usually
require known, formalized system requirements. Users can discover new relationships in
their data from these mined rules and use them to validate handwritten specifications.
Nfer is also integrated with the popular programming languages R and Python, providing
Application Programming Interfaces (APIs) that are easy to access without learning a
domain-specific language (DSL).

Chapter 3 introduces Palisade, a framework for distributed online anomaly detection.
Anomaly detection is a form of RV where patterns of nominal behavior are typically trained
using historical data. These models of normal behavior are often created using statistical
learning, but they may also be handwritten or created by other sources. Palisade is de-
signed to operate multiple online anomaly detectors in parallel to address different potential
symptoms of system error. Palisade is a solution to Problem 2, where RV monitors are
often designed only to operate offline and do integrate easily with existing systems. Those
RV systems that support online operation are highly specialized [216, 76], lack support for
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distributed operation [54, 103], or have high detection latencies [60, 217]. Palisade is both
a communications and programming framework and solves many of the logistical hurdles
to deploying RV in a realistic environment.

In Chapter 4, we identify what properties may be monitored in the presence of unreliable
communication. This theoretical framework is a solution for Problem 1, where RV methods
assume the integrity of execution traces. Prior work on unreliable channels in RV has
focused on building monitoring systems that work under specific degraded conditions [232,
122, 27] or that quantify imprecision due to trace corruption [17, 214, 148]. Our solution
is unique in that it is the only general framework for determining the monitorability of
program properties. We model communication errors as relations of traces called mutations
and propose general mutations for common circumstances. These mutations may cause
monitors for some properties to provide incorrect verdicts, and we define what it means
for a verdict to be trustworthy when a mutation may be present. We identify classes of
properties with trustworthy verdicts for common mutations. We also provide an algorithm
for testing if a property may be monitored in the presence of user-defined mutations.

Chapter 5 concludes the thesis and discusses future work. These contributions are a
step towards solving practical limitations of RV that prevent its wider adoption. With
continued efforts, we hope that RV can gain acceptance as a solution to verifying the
correctness of safety-critical software.

1.1 Preliminary Notation

This section defines notation used throughout the thesis. Additional notation for Chapter 4
is defined in Section 4.2.

By B2 we denote the set of Boolean values {true, false}. For brevity, we sometimes
write ⊥ to denote false and > to denote true. We use N to denote the set of all natural
numbers including zero {0, 1, 2, . . .} and ∞ to denote infinity. By R we denote the set of
real numbers. For readability, we use the type Clock = R to represent clock time stamps
measured in continuous (or dense) time.

In this thesis, we consider both finite and infinite sequences. A finite sequence σ of n
values is written σ = 〈v1, · · · , vn〉 where both vi and σ(i) mean the i’th item in the sequence.
Throughout the thesis, sequence index numbers begin at one. The notation 〈v1, v2, · · · 〉 is
used to denote either an infinite sequence or a finite sequence of indeterminate length. A
value x is in a sequence σ, denoted by x ∈ σ, iff ∃ i ∈ N such that σ(i) = x. The length
of a sequence σ is written |σ| ∈ N ∪ {∞}. The suffix of a sequence σ beginning at the
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i’th item in the sequence is written σi. A subsequence of σ beginning at and including the
ith index and ending at and including the jth index is denoted σ[i,j]. The concatenation
of two sequences σ, τ is written σ · τ where σ is finite and τ is either finite or infinite. A
finite sequence u is a prefix of a finite or infinite sequence σ, written u v σ, iff there exists
a sequence v such that u · v = σ.

By A × B we denote the cross product of sets A and B. By A → B we denote the
set of total functions from A to B. Given a set S, we write 2S to mean the set of all
subsets of S. The cardinality of a set S is written |S|. Given a set S, S∗ denotes the set of
finite sequences over S where each sequence element is in S, Sω denotes the set of infinite
sequences of such elements, and S∞ = S∗ ∪ Sω. Given a set S, by Sn for a given n ∈ N
(n ≥ 2) we denote the tuple type: S × S × . . . × S (n times).

Let I be a set of names (identifiers, also called topics), and let V be a set of values,
including strings, integers, and floating point numbers. A map is a partial function from
names to values with a finite domain, that is, a function of type I 7→ V . We use M to
denote the type of all maps. The empty map is denoted by [ ]. We denote by M⊥ the
extension of M with a bottom element: M⊥ = M ∪ {⊥}. Here ⊥ represents a “no map”
value. GivenM ∈M, k ∈ I, and v ∈ V , we writeM(k)← v to denote the mapM updated
with k mapped to v.

Functions can be denoted by lambda terms: λx.e. A function of type A→ B2 is referred
to as a predicate. Predicates with the same domain type can be composed with Boolean
operators. For example, given f : A→ B2 and g : A→ B2, then (f ∧ g)(x) = f(x) ∧ g(x).

An event is a timestamped, named tuple of the type E = I × Clock × M. That
is, it contains a name (sometimes called a topic), a clock time, and a map. An element
(id, t,M) of type E may be written id(t,M). In some cases, where maps are not needed,
events may be written with maps omitted as (id, t). In this thesis, a trace may be a finite
sequence of events (an event series), a finite sequence of symbols in an alphabet, or an
infinite sequence of symbols in an alphabet. Where a trace means a finite event series, its
type is denoted by T and is defined by T = E∗.

Figure 1.2 shows an example of a finite event series. In the figure, the event names
are listed above the timeline and event times are listed below. Maps are omitted from the
figure. Note that neither event names nor times must be unique in such a trace.

A B C

Time

B A C

10 20 30 40 50 60

Figure 1.2: Example finite event series
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Chapter 2

Abstracting Event Streams

2.1 Introduction

A key challenge in operating remote spacecraft is that human operators must rely on re-
ceived telemetry to assess the status of the spacecraft. Telemetry can be thought of as an
execution trace: a stream consisting of discrete events, each having a name, a time stamp,
and carrying data. Telemetry streams can contain millions of events and can therefore be
difficult to comprehend by humans, as well as interpret against the higher-level execution
plans submitted to the spacecraft. At the National Aeronautics and Space Administration’s
(NASA’s) Jet Propulsion Laboratory (JPL) the current approach to analyzing spacecraft
telemetry for missions like Mars Science Laboratory (MSL), and specifically from its Cu-
riosity rover, relies on ad-hoc scripts that are labor intensive to write and maintain. We
propose a formalism for specifying interval abstractions of event streams, with a semantics
that produces a set of intervals from a trace. Such abstractions can be useful for telemetry
visualization1 and querying to aid human comprehension. Our formalism is inspired by
interval logics, specifically Allen’s Temporal Logic [11], commonly used in the planning and
artificial intelligence (AI) domains. We extend a variation of this logic with a rule-based
declarative formalism, named nfer, for expressing event abstractions.

The nfer formalism and implementation has commonalities with classical rule-based
systems known from AI. Our early work on the trace abstraction problem was effectively
done using a rule-based system, as documented in [109, 108]. However, we learned that a

1Visualization of information is e.g. at JPL considered an important approach to aid humans in daily
spacecraft operations.
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rule system does not represent meta-level constraints well, i.e., properties that hold on the
collection of all facts produced by the rule system. An example of a meta-level constraint is
the notion of minimality: do not create an interval if an interval has already been generated
with the same name in the same time period. Such meta-constraints and, in particular, the
minimality constraint, turn out to be crucial to reduce the complexity of trace analysis.
A similar observation can be made about Prolog. As an experiment, we formulated the
chapter’s guiding example in LogFire [107], our homegrown rule-based system used in
[109, 108]; and in Prolog, and compared them to the Scala and C versions of nfer. The
four systems were applied to an event trace of 10,000 randomly generated events. LogFire
had to be aborted after running more than a week. Prolog took 64 hours to finish. The
Scala version and C version, both of which implement minimality, finished in 1.8 and 0.05
seconds, respectively.

Our system differs from traditional runtime verification (RV) systems, in which a pro-
gram execution trace is checked against a user-provided specification. RV usually results in
a binary decision (true/false) as to whether the execution trace satisfies the specification,
although variations on this theme have been developed, including 3-valued logics [47] and
4-valued logics [31]. In contrast, the result of running nfer on an event stream is a set of
named and timed intervals carrying data collected from the trace, representing abstractions
of the trace. Such abstractions can be visualized to support trace comprehension, or can
be considered as input to further analysis.

This chapter primarily consists of work published in [130, 129] and [127]. We introduce
the semantics and derived forms of nfer rules and propose a monitoring algorithm for
them. We discuss two implementations of the monitoring system and study modifications
to improve its scalability. We also present an algorithm to mine nfer before relations from
historical telemetry and other real-time embedded system traces. The chapter includes case
studies using data from MSL and two other datasets.

The remaining contents of the chapter are as follows. Section 2.2 provides the problem
statement and motivation for this work. Section 2.3 defines the nfer formalism. Section 2.4
presents an algorithm for applying an nfer specification to an event stream. Section 2.5
describes the implementation of the system, including the external DSL. Section 2.6 illus-
trates the application of nfer to a scenario from the Mars Science Laboratory. Section 2.7
introduces modifications to the nfer algorithm to improve its execution time, including
an experimental evaluation of their performance. Section 2.8 presents an algorithm for
mining nfer before relations from historical telemetry and other real-time system traces.
Section 2.9 discusses related work. Finally, Section 2.10 concludes the chapter.
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2.2 Problem Statement

In this section, we briefly outline the requirements for our specification formalism. We first
illustrate a concrete problem with an example. Subsequently, we outline the requirements.
Consider the trace (telemetry stream) shown on the left part of Figure 2.1, that we assume
has been generated by a spacecraft2. The trace consists of a sequence of events, or EVent
Reports (EVRs) as they are named in space mission operations, each with a name, a time
stamp, and a list of parameters. The events in this particular trace represent activities
such as a boot process starting, a boot process ending, downlink of data to ground, and
operating the antenna and radio. Our goal is to produce higher level views of this trace,
which will make it easier to understand the meaning of its contents. One particular concern
in this case is whether there is a downlink operation during a 5-minute time interval where
the flight computer reboots twice. This scenario could cause a potential loss of downlink
information. Notice the use of the term interval. We suggest imposing a structure on
the trace, where such intervals are named and highlighted, as shown on the right part of
Figure 2.1. Specifically, we want to identify the following intervals: A BOOT represents
an interval where the flight computer is rebooting. A DBOOT (double boot) represents an
interval where the flight computer reboots twice within a 5-minute timeframe. A RISK
represents an interval where the flight computer reboots twice while the downlink software
is also attempting to send data to Earth. Our objective now is to formalize the definition
of these intervals in a specification. In this case, we need a formalism for defining the
following three intervals:

DOWNLINK      10    size -> 430

BOOT_S        42    count -> 3

TURN_ANTENNA  80

START_RADIO   90

DOWNLINK      100   size -> 420

BOOT_E        160 

STOP_RADIO    205

BOOT_S        255   count -> 4

START_RADIO   286

BOOT_E        312

TURN_ANTENNA  412

RISK

NAME        TIME  PARAMS

BOOT

BOOT

DBOOT

Figure 2.1: An event trace and its abstractions

2The trace is artificially constructed to have no resemblance to real artifacts.
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1. A BOOT interval starts with a BOOT_S (boot start) event and ends with a BOOT_E
(boot end) event.

2. A DBOOT (double boot) interval consists of two consecutive BOOT intervals, with no
more than 5-minutes from the start of the first BOOT interval to the end of the second
BOOT interval.

3. A RISK interval is a DBOOT interval during which a DOWNLINK occurs.

The specification formalism should allow a user to:

1. Define intervals as a composition of other intervals/events. For example to define
the label BOOT as an interval delimited by the events BOOT_S and BOOT_E, or to define
a DBOOT to be composed sequentially of two BOOT intervals;

2. Refer to time stamps associated with events, as well as specify start and end times
of generated intervals. It should be possible to define complex time constraints; and

3. Refer to data associated with events, as well as generate and later read data of gen-
erated intervals using a rich expression language. For example, a generated interval
may have a datum value defined as the sum of two lower-level interval data.

We have found that Allen’s Temporal Logic (ATL) [11], specifically its operators for
expressing temporal constraints on time intervals, is a useful starting point. In ATL, a
time interval represents an action or a system state taking place over a period. A time
interval has a name, a start time, and an end time. ATL offers 13 mutually exclusive binary
relations. Examples include: Before(i, j) which holds iff interval i ends before interval j
starts, and During(i, j) which holds iff i starts strictly after j starts and ends before or
when j ends, or i starts when or after j starts and ends strictly before j ends. An ATL
formula is a conjunction3 of such relationships, for example, Before(i, j) ∧ During(j, k).
A model is a set of intervals satisfying such a conjunction of constraints.

Figure 2.2 shows seven of these relations (the other six are their duals, with the dual of
equals being identical). The temporal intervals (the boxes labeled A and B) are shown on
a timeline which increases left to right. Each relation listed on the left side of the figure is
demonstrated by the relative position on this timeline of the two intervals to its right.

ATL is typically used in planning for generating a plan (effectively a model) from a
formula, but ATL can also be used for checking a model against a formula, as described

3A limited form of disjunction is also allowed but not described here.
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A

A before B

A meets B

A equals B

A overlaps B

A during B

A starts B

A finishes B

B

B

B

B

B

B

B

Figure 2.2: Allen’s temporal relations

in [196]. Our objective is different from planning and verification. Given a trace, we want
to generate a set of intervals, guided by a specification that we provide. Each interval
represents an abstraction of the original trace, either of low-level events, or of other lower-
level intervals. As such, the set of resulting intervals represents a hierarchical abstraction
of the original trace, useful for human comprehension and further automated processing.

2.3 The nfer Formalism

This section describes the semantic foundations of nfer. The syntax given in this section
forms part of the theory of nfer, in contrast to the domain-specific language (DSL) intro-
duced in Section 2.5.1 that is intended for practical use. We first introduce the notion of
intervals, the fundamental data structure processed by nfer specifications. Subsequently
the core formalism is introduced including syntax and semantics, followed by derived forms
which map to the core form. Finally, we present an example.

2.3.1 Intervals

A telemetry stream (for example received from a spacecraft) is a sequence of events, also
referred to as a trace. In contrast to most runtime verification systems, however, the
nfer formalism does not directly operate on such traces from a semantics point of view.
Instead, it operates on a set of intervals (defined below). We will provide the definition
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and intuition behind intervals, and how a trace is converted into an initial set of intervals,
on which nfer operates.

An interval represents a named section of a trace, spanning a certain time period. An
interval can carry data as well, using a map. Concretely, an interval is a 4-tuple of the form
(η, t1, t2,M), where η ∈ I is an interval name, t1, t2 ∈ Clock are time stamps4 representing
the start and end time of the interval, satisfying the condition t1 ≤ t2, and M is a map
in M, the data that the interval carries. The interval’s duration is t2 − t1. An interval is
atomic if its duration is zero. The type of all intervals is denoted by I.

A pool is a set of intervals, that is, an element of type P = 2I. A trace τ is converted
into an initial pool by a function init of type T → P :

init(τ) = { (η, t, t,M) : η(t,M) ∈ τ }

The nfer system subsequently transforms this initial pool of intervals to a pool also con-
taining the abstractions defined by the specification. We say that we are annotating the
original trace with labels (interval names). In the following section, we illustrate how such
specifications are written.

2.3.2 Syntax of the nfer Formalism

An nfer specification consists of a list of declarative labeling rules taking two forms: inclu-
sive and exclusive. The application of a rule results in a set of intervals, which is the set
of all possible intervals filtered to include only those that match the constraints specified
by the rule.

Inclusive rules

The first form of labeling rule, called an inclusive rule, defines a new interval by the
presence of two existing intervals:

η ← η1 ⊕ η2 map Φ (2.1)

where, η, η1, η2 ∈ I are identifiers, ⊕ : Clock6 → B2 is a clock predicate on six time stamps
(two for each of η, η1, and η2), and Φ : M×M→ M⊥ is a map function taking two maps

4Time stamps have no specified units and their interpretation depends on the specification.
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and returning a map or returning ⊥, which represents non-satisfaction of a constraint on
the maps. The syntax presented here contains mathematical functions to simplify the
presentation.

The informal interpretation of an inclusive rule is as follows. Given a pool π, the rule
generates a set of new intervals (a pool), each of the form (η, s, e,M), provided that in π
there exist two intervals (η1, s1, e1,M1) and (η2, s2, e2,M2), such that the time constraint
defined by ⊕ is satisfied: ⊕(s1, e1, s2, e2, s, e), and such that the map function Φ produces a
well-defined map as a function of the maps of the two input intervals: M = Φ(M1,M2) 6= ⊥.
Note that the ⊕ time constraint defines the start time s and end time e of the result interval
as well. Hence, one can control the time values of the generated interval.

The time constraint can, for example, express that one interval ends before the other
interval starts (e1 < s2), which corresponds to one of the Allen operators. Likewise, the
map function can check whether the input maps M1 and M2 satisfy certain conditions: if
they do not, the map function returns ⊥, but if they do, it returns a new map that is part
of the generated interval. The time constraint must evaluate to true and the result of the
map function must not be ⊥ for the rule to apply.

As an example, the following rule generates an abstraction interval named BOOT from a
BOOT_S (boot start) interval that occurs before a BOOT_E (boot end) interval, and further-
more carries the boot count contained in the BOOT_S interval:

BOOT← BOOT_S ⊕ BOOT_E map Φ

where the two functions ⊕ and Φ are defined as follows:

⊕(s1, e1, s2, e2, s, e) = e1 < s2 ∧ s = s1 ∧ e = e2

Φ(m1,m2) = [count 7→ m1(count)]

Note how the resulting interval’s start time s is constrained to be the start time of the
BOOT_S event, and likewise the end time e is constrained to be the end time of the BOOT_E
event. In Section 2.3.4, we introduce a pre-defined set of candidate functions for ⊕ inspired
by Allen logic to make specifications easier to write, allowing us instead to write this rule
as follows (with the same Φ function and before denoting the ⊕ function above):

BOOT← BOOT_S before BOOT_E map Φ
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Exclusive rules

The second form of labeling rule, called an exclusive rule, defines an interval by the presence
of one interval and the absence of a second:

η ← η1 unless 	 η2 map Φ (2.2)

where, η, η1, η2 ∈ I are identifiers, 	 : Clock4 → B2 is a clock predicate on four time stamps
(two for each of η1 and η2, while η is constrained implicitly), and Φ : M ×M → M⊥ is a
map function taking two maps and returning a map or ⊥.

The informal interpretation of an exclusive rule is as follows: Given a pool π, the rule
generates a set of new intervals (a pool), each of the form (η, s1, e1,M1), provided that in π
there exists an interval (η1, s1, e1,M1), and there does not exist an interval (η2, s2, e2,M2),
such that (i) the time constraint defined by 	 is satisfied: 	(s1, e1, s2, e2), (ii) the map
function Φ produces a well-defined map as a function of the maps of the two input intervals:
M = Φ(M1,M2) 6= ⊥, and (iii) the second interval ends before the first ends (e2 < e1).

For example, the time constraint can express that the first interval begins at the same
time the second interval ends (s1 = e2). Likewise, the map function can check whether the
input maps M1 and M2 satisfy conditions, and return ⊥ if not. If an η1 interval exists, and
no η2 interval exists for which both the time constraint is true and the map function is not
⊥, then a new η interval is generated. Unlike the first form, the start and end times and
the map of the new interval cannot be controlled by the labeling rule, but are copied from
the existing η1 interval. Also unlike the first rule, the second interval must end before the
first interval ends. This constraint ensures that exclusive rules are monotone – produced
facts will not later be retracted.

As an example, the following rule generates an abstraction interval named BOOT_OK
from a BOOT interval, if no interval named FAILURE with the same value of the map key
bootId exists, that starts after the BOOT begins and ends before the BOOT ends:

BOOT_OK← BOOT unless 	 FAILURE map Φ

where the two functions 	 and Φ are defined as follows:

	(s1, e1, s2, e2) = s1 ≤ s2 ∧ e2 ≤ e1

Φ(m1,m2) = if m1(bootId) = m2(bootId) then [ ] else ⊥
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Like in the first form, we introduce a pre-defined set of candidate functions for 	 which
make specifications easier to write. The above rule could be rewritten with the pre-defined
function contain denoting the 	 function above, and the same Φ function:

BOOT_OK← BOOT unless contain FAILURE map Φ

2.3.3 Semantics of the nfer Formalism

The semantics of the core form is defined in three steps: the semantics R of individual rules
on pools, the semantics S of a specification (a list of rules) on pools, and finally the seman-
tics T of a specification on traces of events. We first define the semantics of labeling rules
with the interpretation function R℘, with the following type and definition. This function
is parameterized with a selection function ℘ : P × P → P, which will be explained below.
Briefly stated: the Function ℘ is used, for example, to express the minimality constraint
mentioned earlier, which helps to reduce the complexity of the algorithm introduced in
Section 2.4. Let ∆ be the type of rules. Semantic functions are defined using the brackets
[[ _ ]] around syntax being given semantics.

R℘ [[_ ]] : ∆ → P → P
R℘ [[η ← η1 ⊕ η2 mapΦ ]] π =

let π′ =
{ (η,s,e,M) ∈ I :

∃ s1 ,e1 ,s2 ,e2 ∈ Clock . ∃ J ,K ∈M .
(η1 ,s1 ,e1 ,J) ∈ π ∧ (η2 ,s2 ,e2 ,K) ∈ π ∧
⊕(s1 ,e1 ,s2 ,e2 ,s,e) ∧ M= Φ(J ,K) 6=⊥ }

in ℘ (π′ , π )

The above definition, which defines the semantics of inclusive rules, reads as follows: Given
an inclusive rule δ ∈ ∆ and a pool π, R℘[[δ]] π first produces a pool π′ containing intervals
(η, s, e,M), where there exist two intervals in π, with names η1 and η2, where the time
constraint is satisfied, and the map resulting from applying Φ to the respective sub-maps
is not ⊥. Subsequently the selection function ℘ selects from (potentially modifies) π′,
informed by π as well. The selection function is said to be idempotent iff ℘(π′, π) = π′, and
a refinement iff ℘(π′, π) ⊆ π′. The following definition gives semantics to exclusive rules:
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R℘ [[η ← η1 unless 	 η2 mapΦ ]] π =
let π′ =
{ (η,s1 ,e1 ,J) ∈ I :

(η1 ,s1 ,e1 ,J) ∈ π ∧
¬ ( ∃ s2 ,e2 ∈ Clock . ∃ K∈ M .

e2 < e1 ∧ (η2 ,s2 ,e2 ,K) ∈ π ∧
	(s1 ,e1 ,s2 ,e2) ∧ Φ (J ,K) 6= ⊥) }

in ℘ (π′ , π )

The above definition, which defines the semantics of exclusive rules, reads as follows: Given
an exclusive rule δ ∈ ∆ and a pool π, R℘[[δ]] π first produces a pool π′ containing intervals
(η, s1, e1, J), where there exists an interval with the name η1 in π with the same time stamps
and same data, and there does not exist a second “older” (e2 < e1) interval with the name
η2 in π, where the time constraint is satisfied, and the map resulting from applying Φ to
the respective sub-maps is not ⊥. As with inclusive rules, the selection function ℘ is then
applied and may modify π′.

Next, we define the semantics of a list of rules, also referred to as a specification. For
this we define the following one-step interpretation function S, which, given a set of rules
and a pool, returns a new pool extending the input pool with added abstraction intervals
resulting from taking the union of the pools generated by each rule:

S [[ _ ]] : ∆∗→ P → P
S [[ δ1 . . . δn ]] π = π ∪ R℘ [[δ1 ]] π ∪ . . . ∪ R℘ [[δn ]] π

That is, given a specification δ1 . . . δn and a pool π, a new pool is returned by S[[δ1, . . . , δn]]π.
Finally, we define the semantics of a specification applied to a trace (a sequence of events).
For this we define the interpretation function T , which, given a list of rules and a trace,
returns a pool containing abstraction intervals:

T [[ _ ]] : ∆∗→ T → P
T [[ δ1 . . . δn ]] τ =
least π ∈ P such that init(τ) ⊆π ∧ π = S [[ δ1 . . . δn ]] ( π )

That is, given a specification δ1 . . . δn and a trace τ , a pool of abstractions is returned by:
T [[δ1, . . . , δn]] τ . The resulting pool is defined as the least fixed-point of S[[δ1 . . . δn]] : P→
P that includes init(τ), corresponding to repeatedly applying S[[δ1 . . . δn]] , starting with
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init(τ), and until no new intervals are generated. Note that the least fixed-point exists
since the semantic functions are monotonic. However, our simple iterative algorithm may
not reach the least fixed-point if it is an infinite set.

2.3.4 Derived Forms

As hinted at the end of Section 2.3.2, a collection of ⊕ functions and 	 functions have
been pre-defined, along with symbols (operators) denoting them. The symbols denoting ⊕
functions are shown in Table 2.1 together with their definitions. Note that s1 and e1 are the
start and end times for the left-hand interval, s2 and e2 are the start and end times for the
right-hand interval, and s and e are the start and end times for the resulting interval. For
all operators, except the slice operator, the start and end times of the resulting interval
are the earliest and latest time stamps of the involved intervals, respectively. For the slice
operator, the resulting time span denotes the overlapping section of two intervals. Note
that the definitions of these operators differ from those of the Allen logic operators in [11],
which are defined to be mutually exclusive, whereas nfer’s operators are not.

Table 2.1: nfer ⊕ operators

Operator ⊕ ⊕(s1, e1, s2, e2, s, e)

before e1 < s2 ∧ s = s1 ∧ e = e2

meet e1 = s2 ∧ s = s1 ∧ e = e2

during s1 > s2 ∧ e1 6 e2 ∧ s = s2 ∧ e = e2

coincide s = s1 = s2 ∧ e = e1 = e2

start s = s1 = s2 ∧ e = max(e1, e2)
finish s = min(s1, s2) ∧ e = e1 = e2

overlap s1 < e2 ∧ s2 < e1 ∧ s = min(s1, s2) ∧ e = max(e1, e2)
slice s1 < e2 ∧ s2 < e1 ∧ s = max(s1, s2) ∧ e = min(e1, e2)

The informal explanation of the ⊕ operators is as follows: A before B: A ends before
B starts; A meet B: A ends where B starts; A during B: all of A occurs during B;
A coincide B: A and B occur at the exact same time; A start B: A starts at the same
time as B; A finish B: A finishes at the same time as B; A overlap B: A and B overlap in
time; A slice B: A and B overlap in time, and only the overlapping time span is returned.

The symbols denoting	 functions are shown in Table 2.2 together with their definitions.
Note that s1 and e1 are the start and end times for the left-hand interval, and s2 and e2

are the start and end times for the right-hand interval. Unlike the ⊕ operators, the 	
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operators do not affect the start and end times of the resulting interval. The informal
explanation of the 	 operators is as follows: A unless after B: A starts after B ends;
A unless follow B: A starts where B ends; A unless contain B: all of B occurs during
A. These operators are the dual of before, meet, and during, respectively.

Table 2.2: nfer 	 operators

Operator 	 	(s1, e1, s2, e2)

after s1 > e2

follow s1 = e2

contain s1 6 s2 ∧ e2 6 e1

The next abbreviation concerns further time constraints a user may want to impose.
The core rule notation (see Section 2.3.2) allows for any time constraints to be expressed.
Possible constraints include the just introduced relational operators, but also time spans,
such as stating that an event B should follow an event A within 10 time units. We present
the following shorthand for allowing the specification of additional time constraints in
addition to the just introduced operators. Let � ∈ {before, meet, during, coincide,
start, finish, overlap, slice}, and let �p denote the corresponding clock predicate. The
following derived rule form:

η ← η1 � η2 within Θ map Φ

where Θ : Clock6 → B2 is a predicate on six time stamps, is synonymous with:

η ← η1 (�p ∧Θ) η2 map Φ

We shall allow the time constraint (within) and/or map transformation (map) to be left
out, in which case they assume the default function values respectively λs1, e1, s2, e2, s, e.true
and λm1,m2. [ ].

So far rules can only be defined that refer to one operator and one additional clock
predicate as shown above. This format presents a simple notation with a clean semantics.
However, further convenient syntax allows rules containing more than one operator, for
example: A ← (B before C) overlap D. Such rules are mapped into multiple rules in
the core form (in this case two). The external DSL described in Section 2.5.1 allows such
enriched rules.
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2.3.5 Example

As an example, we will formalize the three rules that were informally stated in Section 2.2.
The specification similarly consists of three rules:

BOOT ← BOOT_S before BOOT_E map (λ m1,m2 . [count 7→ m1(count)])

DBOOT ← BOOT before BOOT within (λ s1,e1,s2,e2,s,e . e−s 6 300) map snd

RISK ← DOWNLINK during DBOOT map snd

The rules should be mostly self-explanatory (time is assumed measured in seconds). The
first rule creates from the two sub-maps m1 and m2 a new map, mapping count to the
same value as in m1. The function snd selects m2 from a binary tuple (m1,m2).

Let us illustrate how this specification is evaluated on the trace in Figure 2.1. This
trace is first converted into an initial pool. The semantic S function on (page 15) will go
through three iterations when applied to this initial pool before a fixed-point is reached.
The added intervals in each iteration are as follows, assuming the selection function is
idempotent:

1 : { (BOOT, 42, 160, [count 7→3]),
(BOOT, 255, 312, [count 7→4]),
(BOOT, 42, 312, [count 7→3]) }

2 : { (DBOOT, 42, 312, [count 7→4]) }
3 : { (RISK, 42, 312, [count 7→ 4]) }

Note that the third interval in step one, (BOOT, 42, 312, [count 7→ 3]) , is irrelevant, since
it spans other BOOT intervals. In the next section, we will define the concept of minimality
to restrict the generated intervals to only those in which we are interested.

2.4 Monitoring Algorithm

The semantics given in Section 2.3 is expressed using an interpretation function R℘[[δ]] π
that operates on a finite pool, built from a finite, known trace. However, in online telemetry
stream analysis, the stream of incoming events is, in theory, infinite, since we do not know
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when it ends. Therefore, constructing a pool from such a trace is not practical. To interpret
an nfer specification with respect to a live telemetry stream (online), events in the stream
must be converted to intervals and processed one at a time as they arrive. Algorithm 1
expresses a simple procedure for interpreting one interval at a time, either coming from
the trace, or produced by the algorithm. The algorithm is defined as a function, calling
itself recursively with newly produced intervals. An informal explanation of Algorithm 1
follows with a detailed example in Section 2.4.1.

Rules are assumed to be in a simplified binary form only referring to one temporal
operator. Any specification can be rewritten into a semantically equivalent one consisting
only of such binary rules, and it simplifies the algorithm. In a rule of the form η ←
η1 ⊕ η2 map Φ we refer to η as the rule head, and to η1 ⊕ η2 map Φ as the rule
body, or the rule expression. In such a rule body, we refer η1 as the left-hand label, and η2

as the right-hand label. We refer to the head, body, and left and right labels of exclusive
rules in the same way. For each rule, the algorithm keeps track of three sets of already
produced intervals relevant for that rule: rule.LeftCache holds the intervals which have
been produced and matched the left-hand label of the rule, rule.RightCache holds the
intervals which have been produced and matched the right-hand label of the rule, and
finally rule.Produced holds the intervals which have been produced by the rule itself. In
addition, the algorithm uses a variable Subscribers, which maps interval names to those
rules that subscribe to intervals with those names.

Each rule also has methods that behave according to the operators ⊕ and 	, and
map function Φ. Method rule.testInclusion checks that the time operator ⊕ is true and
that the map function Φ does not return ⊥. Method rule.testExclusion checks that the
time operator 	 is true and that the map function Φ does not return ⊥. Finally, method
rule.createInterval generates a new interval using the time operator and map function.

An informal explanation of Algorithm 1 follows. On Line 2, the procedure accesses the
map Subscribers that associates interval names with rules. The rules that subscribe to the
submitted interval’s name are then iterated over.

Between lines 4 and 14, the algorithm handles the case where the passed interval name
matches the left-hand label of the rule. If the rule is an exclusive rule (see Section 2.3.2),
then rule.RightCache is iterated over looking for any intervals for which rule.testExclusion
is true. If no such interval is found, then a new interval is generated and added to the set
New. If the rule is an inclusive rule (see Section 2.3.2), then rule.RightCache is iterated
over looking for any intervals for which rule.testInclusion is true. If such an interval is
found, then a new interval is generated and added to the set New.

Between lines 15 and 18, the algorithm handles the case where the submitted interval
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Algorithm 1 Basic nfer Processing Algorithm
1: procedure process(interval)
2: for rule ∈ Subscribers[interval.name] do
3: New ← ∅
4: if interval.name = rule.leftLabel then
5: if rule is exclusive then
6: exclude ← false
7: for rightIntv ∈ rule.RightCache do
8: exclude ← exclude ∨ rule.testExclusion(interval, rightIntv)
9: if ¬ exclude then
10: New ← New ∪ {rule.createInterval(interval)}
11: else
12: for rightIntv ∈ rule.RightCache do
13: if rule.testInclusion(interval, rightIntv) then
14: New ← New ∪ {rule.createInterval(interval, rightIntv)}
15: if interval.name = rule.rightLabel ∧ rule is inclusive then
16: for leftIntv ∈ rule.LeftCache do
17: if rule.testInclusion(leftIntv, interval) then
18: New ← New ∪ {rule.createInterval(leftIntv, interval)}
19: if interval.name = rule.leftLabel then
20: rule.LeftCache ← rule.LeftCache ∪ {interval}
21: if interval.name = rule.rightLabel then
22: rule.RightCache ← rule.RightCache ∪ {interval}
23: selected ← select(New, rule.Produced)
24: for new ∈ selected do
25: rule.Produced ← rule.Produced ∪ {new}
26: selected ← selected ∪ process(new)
27: return selected
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name matches the right-hand label of the rule, and the rule is inclusive. In such a case,
rule.LeftCache is iterated over looking for any intervals for which rule.testInclusion is true.
If such an interval is found, then a new interval is generated and added to the set New. No
work is required if the rule is exclusive, other than adding the interval to rule.RightCache.

Between lines 19 and 22, the algorithm adds the submitted interval to either or both
caches, depending on which labels the interval name matches. It is necessary to wait to
add the interval to the caches until after all of the condition tests are performed so that
the interval cannot be matched against itself.

On Line 23 the selection function (℘ in the semantics in Section 2.3.3) is applied and
its results are iterated over on Line 24. Each interval in the selected set is added to the
rule.Produced set, and the process function is called on the interval recursively. The
results are added to the selected set then returned.

2.4.1 Example

This section presents an example illustrating an execution of Algorithm 1. Assume the fol-
lowing rule: BOOT← BOOT_S before BOOT_E. We will trace the processing of two intervals:
(BOOT_S, 10, 10, [ ]) and (BOOT_E, 20, 20, [ ]).

First, process((BOOT_S, 10, 10, [ ])) is called. The above rule is found to be a subscriber
to this interval on Line 2 because its label (BOOT_S) is referenced in the rule’s expression.
The condition on Line 4 is true because BOOT_S is used on the left side of the before
operator in the rule expression. The rule is inclusive, so the condition on line 5 is false.
Since the condition was false, execution continues on Line 12 by iterating over the rule’s
RightCache, which is empty. The condition on Line 15 is false, since the interval’s name
(BOOT_S) does not appear on the right side of the before operator. Execution continues
on Line 19, where the condition is met and so the interval is added to the rule’s LeftCache.
The condition on Line 21 is not met, so execution continues on Line 23. The select function
is called on (∅,∅), and the results are iterated over. If the select function is a refinement
(see Section 2.3.3), then the returned set will also be empty, and the procedure returns.

Next, process((BOOT_E, 20, 20, [ ])) is called. The same rule is found to be a subscriber
because BOOT_E is referenced in the rule’s expression. Since BOOT_E appears on the
right side of the before operator, the condition on Line 4 is false, but the condition on Line
15 is true and execution continues on Line 16. The rule’s LeftCache contains the BOOT_S
interval from above, so rule.testInclusion is called on the two intervals. The testInclusion
method returns true, since the conditions of the before operator are met and there is no
map function, so a new interval is created and added to the New set. The condition on
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Line 19 is false, but the condition on Line 21 is true, so the interval is added to the rule’s
RightCache. Next, the select function is called on two arguments: New, which contains the
created interval; and the set of the rule’s previously produced intervals, which is empty. If
the select function returns a set containing the created interval, then that interval is added
to the Produced set and then process is called on it recursively.

2.4.2 Complexity

When an nfer specification contains circular references, Algorithm 1 may not terminate.
A circular reference occurs when rules may be composed in such a way that the same
label appears on both the left and right sides of the ←. An example of such a rule
is A ← A coincide A. With an idempotent selection function, infinite A intervals will
be generated if an interval such as (A, 10, 10, [ ]) appears twice. Note that the minimality
selection function (described below) removes many, but not all, results that would otherwise
result in infinite recursion.

Circular references to not guarantee infinite recursion, however, and they are often
useful to describe recurring behavior. As a result, we do not prohibit them in general but
only warn that they may lead to non-termination.

The asymptotic complexity of Algorithm 1 for specifications without circular references
is O(n3) in the length of the trace. We assume that the methods associated with a rule
(testInclusion, testExclusion, createInterval) are constant time expressions. Given the num-
ber r of rules in a specification, and the number n of intervals in a trace, we can find the
complexity as follows, with nx referring to n’s value (nx = n, where x differentiates its use
in the algorithm).

ntrace×r×max

nright + s+ (1× nrecurse)︸ ︷︷ ︸
exclusive

, nright + nleft + s+ ((nleft + nright)× 2nrecurse)︸ ︷︷ ︸
inclusive


For each interval in the trace (ntrace) (Line 1), for each rule (r) (Line 2), we calculate the
maximum of the two cases of: an exclusive rule versus an inclusive rule. Assume first that
the rule is exclusive. If the submitted interval name matches the left-hand label of the rule,
check all the intervals in the right cache (nright), and generate at most one interval (Line
7). Call the selection function (s) (Line 23), and for each interval returned by the selection
function, call process recursively (Line 26). If the selection function is a refinement, then

22



the number of iterations in the loop on Line 23 is bounded by the cardinality of the set New,
which in this case is 1 (if the selection function is not a refinement, then the complexity of
Algorithm 1 is unbounded). On the other hand, if the submitted interval name matches
the right-hand label of the rule the interval is just stored (not included in the complexity
calculation).

Assume next that the rule is inclusive. If the submitted interval name matches the left-
hand label of the rule, for all the intervals in the right cache (nright), generate an interval
(Line 12). Symmetrically, if the submitted interval name matches the right-hand label
of the rule, for all the intervals in the left cache (nleft), generate an interval (Line 16).
Subsequently the selection function is called (s). The cardinality of New is at most n+ n
since an interval may be created for each pairing of the newly submitted interval with all
the intervals in both the left and right cache. For each interval returned by the selection
function, call process recursively (Line 26).

The complexity of the algorithm is in part determined by the complexity of the selection
function and the cardinality of the set it returns. In the case of an idempotent selection
function, its complexity should be constant and the cardinality of the returned set should
be at most 2n. As long as the complexity of the selection function is not super-linear, the
complexity of the processing function is O(n3) in the length of the trace, which appears
impractical.

2.4.3 Minimality

This complexity is largely related to the number of new intervals returned by the selection
function. Limiting the size of this set is therefore desirable as long as it is consistent with
pragmatic needs. In practice, it is typically not desirable to use an idempotent selection
function and return every matching interval. This is similar to how practical implemen-
tations of regular expressions use greedy matching instead of complete matching [135]. In
the example in Section 2.3.5, three BOOT intervals are generated, but only two of them are
relevant. The interval that begins at time 42 and ends at time 312 does not represent an
intended abstraction, i.e. a period when the spacecraft is continuously booting. Instead,
it contains two smaller BOOT intervals with a gap between where there is no boot taking
place.

We observe that the property that differentiates relevant intervals from others is their
minimality. An interval is defined as minimal if no other interval with the same label
occurs during it. That is, given a pool π ∈ P and an interval (η, s, e,M),
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minimal(η,s,e,M)(π) ←@ (η′,s′,e′,M ′) ∈π . η = η′∧ s ≤ s′ ∧ e′ ≤ e

The following selection function implements the minimality constraint. The function is a
refinement and has a complexity determined by the cardinality of the New and Prior sets.
In Section 2.7 we explore methods to limit the size of these sets.

Minimal Selection Function
1: procedure select(New, Prior)
2: {i ∈ New : @ j ∈ Prior ∪ New \ {i} . i.name = j.name ∧ i.start ≤
j.start ∧ j.end ≤ i.end}

2.5 Implementation

The nfer logic has been implemented as a shallow, internal DSL (iDSL - essentially a
library where functions on data are coded as functions in the implementation language),
as well as an external DSL (eDSL - a stand-alone domain-specific language) in both Scala
and C. The Scala iDSL was described in detail in [129] but is omitted here. This section
provides an overview of the eDSL as well as its implementation in both Scala and C. The
C implementation is available to the public under the terms of the Gnu Public License
version 3 (GPLv3) at http://nfer.io. The C version, furthermore, supports R [220] and
Python [224] language interfaces.

Each kind of DSL (internal and external) has advantages and disadvantages. The ad-
vantages of the iDSL are ease of implementation and modification, ease of use in already
existing programming environments (like IDEs), as well as a maximally expressive for-
malism for writing arbitrary data processing functions to be called in specifications. The
disadvantages include the requirement that the user must be a programmer in the host
language (Scala or C), generally a somewhat poorer syntax compared to an external DSL,
and difficulty in analyzing specifications (in the case of a shallow internal DSL, where the
host language forms a fundamental part of the DSL). Due to these negative iDSL prop-
erties, we chose to implement an eDSL. The choice of iDSL versus eDSL in a practical
situation depends on the value given to the advantages and disadvantages mentioned just
above.

In addition to these textual languages, we have experimented with visual entering of
rules. A prototype GUI has been designed and implemented5 for visual entering of rules

5The GUI was designed and implemented by Nathaniel Guy (JPL).
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based on an initial visualization of a trace. That is, the user is in this system presented a
linear visualization of a trace, and can interact with this by selecting events of importance
(point-and-click), thereby informing the system of the event patterns forming the body of
a rule. The rationale behind this approach is the acknowledgement that it can be difficult
for users to write rules without some guidance based on the format of actual traces. This
prototype forms a basis for future work, and is not elaborated on further in this thesis.

This section first introduces the eDSL syntax, then gives an overview of the actor-based
Scala implementation, then describes the C implementation, and finally describes the R
and Python interfaces.

2.5.1 The External DSL

This section introduces the external DSL (eDSL) for writing nfer specifications. Consider
the double boot example written in the nfer notation in Section 2.3.5. This example can
be written as follows in the external DSL:

BOOT :− BOOT_S before BOOT_E map {count → BOOT_S.count}

DBOOT :− b1:BOOT before b2:BOOT
where b2.end − b1.begin ≤ 300 map {count → b1.count}

RISK :− DOWNLINK during DBOOT map {count → DBOOT.count}

The syntax should be self explanatory except for a few details. The first rule creates a
BOOT interval containing a data map, which maps count to the count value of the BOOT_S
interval. This illustrates how data of particular intervals can be referenced. In cases where
a rule body contains more than one occurrence of the same interval, as BOOT in the second
rule, these can be labelled (here b1 and b2) to enable reference to their data and begin and
end time points. The second rule illustrates a where-clause expressing a constraint on time
values6. Such constraints can also refer to data. An expression language covering Boolean
expressions involving arithmetic operations and comparisons (integers and real numbers)
as well as string comparisons is built in.

A grammar for the eDSL is shown in Figure 2.3. A specification is either a list of
rules or a list of modules. Modules are useful for conceptually grouping a large number

6Note that the eDSL uses begin to denote the start time of an interval, in contrast to the notation in
Section 2.3 where it was referred to as start (time).
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〈spec〉 ::= 〈rule〉* | 〈module〉*

〈module〉 ::= module 〈id〉 ‘{’ [import 〈id〉*, ‘;’] 〈rule〉* ‘}’

〈rule〉 ::= 〈id〉 ‘:-’ 〈interval〉 [〈whereExp〉] [〈mapExp〉] [〈endPoints〉]

〈interval〉 ::= 〈intervalPrim〉 (〈op〉 〈intervalPrim〉)*

〈intervalPrim〉 ::= [〈id〉 ‘:’] 〈id〉 | ‘(’ 〈interval〉 ‘)’

〈whereExp〉 ::= where 〈exp〉

〈mapExp〉 ::= map ‘{’ (〈id〉 ‘→’ 〈exp〉)*, ‘}’

〈endPoints〉 ::= begin 〈exp〉 end 〈exp〉

〈op〉 ::= also | before | meet | during | coincide | start | finish | overlap
| slice | 〈exclude〉

〈exclude〉 ::= unless ( after | follow | contain )

〈exp〉 ::= ... | 〈id〉 ‘.’ (〈id〉 | begin | end) | 〈id〉 ‘(’ 〈exp〉+, ‘)’ | ...

Figure 2.3: Grammar for external nfer DSL

of rules. A module can import other modules and contains rules. The last occurring is
the main module. A rule body is defined by an interval expression (interval), and three
optional items: a where-constraint, a map, and a definition of the end points begin and
end, in case the default generated time points are not desired. An interval (expression) is a
composition of primary intervals separated by the temporal operators. A primary interval
consist of an optional label, and an interval name. Alternatively a primary interval can be
an interval in parentheses. Value expressions are standard and only specified partially here,
focusing on the syntax for referring to data fields, and begin and end times of intervals; as
well as function calls. Function calls are calls to user-defined functions in a programming
language, registered to the monitor. This allows a user to call a function in, for example,
Python or Scala, achieving the full expressiveness of a real programming language. Among
the temporal operators is one that has not mentioned before: also, representing the lack
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of any constraints at all. This operator allows for time constraints defined purely using the
where clause.

2.5.2 Scala Implementation

The Scala implementation is based on Akka actors communicating via asynchronous mes-
sage passing through a publish/subscribe model built with Apache Kafka [138]. Each rule
in an nfer specification results in an actor, which subscribes to intervals referenced by
name in the body of the rule, and publishes the interval mentioned in the rule head (head,
in head :− body) to the shared bus. This means that rule actors are only passed intervals
which are pertinent to their execution. Figure 2.4 shows the nfer implementation’s inter-
nal configuration corresponding to the double boot example in Section 2.5.1. The Kafka
publish/subscribe framework is represented in the center by the Shared Telemetry Bus.
Each actor is represented by a circle, with arrows showing the messages that are passed to
the actor (those it subscribes to), as well as the messages the actor publishes back.

For example, the RISK actor subscribes to both DBOOT and DOWNLINK intervals, and
publishes back RISK intervals. A special actor receives messages from the spacecraft and
publishes them to the bus. When a rule actor publishes an interval, any subscribers will be
notified and can build on this interval to create yet new intervals. The nfer formalism is
declarative and the order in which rules are declared is unimportant. Likewise, the order
in which actors execute is also unimportant, since the results of one actor cannot inhibit
the behavior of any other actor.

The implementation can process events online, as they come down to the ground from
the spacecraft, or it can process a log of events stored on a file system. When processing
logs, ground operators are usually only interested in recent events. However, there can
be a need to analyze the telemetry stream from earlier points in time stored as multiple
logs, e.g. from the start of the mission. In this case, it is not expedient to process all
events in the full telemetry stream from the start of the mission whenever the nfer system
is activated. Instead, nfer can be used to incrementally create intervals from older logs,
which can then be stored for later use as an abstraction of those logs. In other words:
stored intervals produced by nfer represent abstractions of the past.

Internal Representation of Rules in Scala

As already mentioned, each rule is implemented as an actor receiving and publishing events
to the event bus. The rule inside an actor is represented by a tree structure closely corre-
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Figure 2.4: Actor network corresponding to double boot example in Section 2.5.1

sponding to the abstract syntax tree obtained by parsing the body of the rule. Each node
in the tree corresponds to a temporal operator, or a leaf node representing intervals to
which the actor subscribes. During execution, a node contains the intervals that have thus
far matched the corresponding sub-expression. To illustrate this tree structure, consider a
slightly different formulation of the last two rules DBOOT and RISK above, merging them
into one:

RISK :− DOWNLINK during (b1:BOOT before b2:BOOT)
where b2.end − b1.begin ≤ 300 map {count → b1.count}

The body of this rule contains two temporal operators. This rule is represented as the
tree shown in Figure 2.5. Each node lists (in the top part of the box) a node number, a
(possibly auto-generated) name, and an indication of which temporal operator it represents,
including “Atomic” for the leaf nodes. The tree is shown after the following three intervals
have been submitted: (BOOT_S, 100, 100, [count 7→1]), (BOOT_E, 200, 200, [ ]), and
(DOWNLINK, 300, 300, [ ]). As can be seen, some of the nodes contain intervals, and
others do not yet. This reflects the step-wise evaluation of the rule as intervals arrive. An
interval is submitted to the appropriate atomic leaf nodes of the tree, and then ascends
the tree. It merges with other intervals according to the temporal operators, until the top
node is reached and an interval is generated and published on the bus if the constraint is
satisfied.
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Figure 2.5: Tree structure representing rule RISK

An interesting observation is that this data structure resembles the Rete data structure
[92] used in rule-based systems, and explained in detail in [73]. In [107] we implemented
the Rete algorithm following [73], while augmenting it for runtime verification. For a
mention of other rule-based systems, the reader is referred to Section 2.9. In rule systems,
rules typically have the form c1, . . . , cn → a, representing an action a to be executed
when conditions c1, . . . , cn are true. Conditions and actions refer to facts stored in the
Rete network, similar to how intervals are stored in the rule trees. The Rete algorithm
maintains a single directed acyclic graph of nodes containing produced facts. The single
graph represents all the rules in the rule program, and allows rules to share parts of the
graph, thus reducing the amount of evaluations needed. In nfer, each rule is represented by
its own tree, not shared with other rules. Similar to the nfer algorithm, the Rete algorithm
for each node handles data coming up from a child node (left or right) by traversing the
“other” child-node for matches. Whereas the nfer tree structure consists of nodes all of
the same kind, the Rete data structure involves four kinds of different nodes.

2.5.3 C Implementation

The C language implementation is single threaded and conforms closely to the algorithm
in Section 2.4. It encodes all rules as relations between two intervals7. Each rule subscribes
to a left and a right label. For example, the following rule subscribes to BOOT_S as its
left label and BOOT_E as its right label because of their position relative to the before
operator:

BOOT :− BOOT_S before BOOT_E map {count → BOOT_S.count}

7The eDSL supports unary rules but we avoid describing them here as they represent a special case.
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The implementation keeps two linked lists of subscribers to every label, one for left labels
and one for right labels. When an interval is received, both lists of subscribers are iterated
over for that label. Separate left and right lists are necessary because each rule may
subscribe to two different labels, so it may appear in two different linked lists.

Nested rules are handled by adding anonymous, internal intervals to which other rules
subscribe. All rules must have a label for the intervals they create, so nested rules create
anonymous intervals with generated labels. Uniqueness is guaranteed for these labels by
using an augmented naming alphabet and they are omitted from the final output of the
algorithm. The parent rule that relies on the results of a nested rule then subscribes to
this generated label. For example, the nested rule in Section 2.5.2 becomes the following
two rules in the C implementation:

$BOOTBOOT1 :− b1:BOOT before b2:BOOT
where ( b2.end − b1.begin ≤ 300 )
map { $count1 → ( b1.count ) }

RISK :− DOWNLINK during $BOOTBOOT1
map { count → ( $BOOTBOOT1.$count1 ) }

To ensure the correct behavior in where, map, begin, and end expressions, data items
must be renamed and passed between nested rules. The external DSL only allows such
expressions to be specified at the highest level, but they may refer the intervals in a nested
rule. In the example above, the RISK interval sets the map item “count” to be equal to the
value of the “count” data item of the left BOOT interval in the nested rule. The value is
copied to an intermediate map key, “$count1”, of the generated interval $BOOTBOOT1 so
it can be accessed in the RISK rule.

Similarly, nested rules must inherit parts of where expressions that apply to them.
This is important due to the influence of selection functions on the result. In the example
above, the where expression is applied to the nested rule (b1:BOOT before b2:BOOT)
because it applies only to the intervals in that rule. If the nested rule does not contain
the restriction (b2.end − b1.begin ≤ 300), then the wrong intervals may be selected. If
a subexpression of a where restriction concerns only a nested rule, the subexpression will
be applied to the nested rule and replaced in the original expression with a generated map
value.

The C implementation includes some performance optimizations. Strings are interned
in dictionaries and expressions are stored and processed using Reverse Polish Notation
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(RPN). It is meant as a reference implementation, but its execution time and memory
requirements are low enough to be used in an embedded setting.

2.5.4 R and Python Integrations

The C implementation of nfer includes two integrations with programming languages. The
R integration allows a programmer to mine rules from event data and to apply those and
other rules to transform traces. In addition to those capabilities, the Python integration
allows programs to be automatically instrumented and includes a graphical output. Both
integrations are meant to reduce the barriers an engineer may encounter when adding nfer
to an existing project.

R

R is an interpreted programming language especially popular with statisticians and scien-
tists [220]. Unlike most programming languages, R has no scalar types, preferring to treat
data as vectors. R supports user packages and has a large community of contributors.

The nfer R Application Programming Interface (API) is simple and revolves three
primarily operations: loading rules, mining rules, and applying rules. The example in
Figure 2.6 loads the R language interface on Line 1, reads a specification from a file on
Line 2, and applies it to a dataframe of events on Line 4. This returns a dataframe of
intervals produced by applying the specification. In the example, the summary function is
applied to this structure on Line 5.

The R API also supports mining rules from data using the algorithm described in
Section 2.8. The function that mines rules returns a handle that can be applied to a
dataframe to produce intervals, just like loading a specification. In Figure 2.7, the mining
algorithm is called on Line 2 and then applied to the dataframe of events on Line 3.

The R API contains only batch operations, and this is well suited for how R is typically
used as a data analysis tool. Because the API uses standard R dataframes, it integrates
easily into other R programs. The API uses the C implementation of the nfer processing
and mining algorithms, so they are much faster than if the algorithms were written natively
in R.
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1 > source("R/nfer.R")
2 > handle <− Rnfer("examples/specs/ssps.nfer")
3 > data <− read.table("examples/logs/ssps.events", sep="|", header=FALSE)
4 > intervals <− RnferApply(handle, data)
5 > summary(intervals)
6 name start end
7 Length:19342 Min. :8.238e+05 Min. :1.080e+09
8 Class :character 1st Qu.:2.452e+13 1st Qu.:2.455e+13
9 Mode :character Median :4.023e+13 Median :4.024e+13

10 Mean :4.460e+13 Mean :4.462e+13
11 3rd Qu.:6.589e+13 3rd Qu.:6.592e+13
12 Max. :9.335e+13 Max. :9.335e+13

Figure 2.6: Example of using the nfer R API to read and apply rules

1 > df <− read.table("examples/logs/ssps.events", sep="|", header=FALSE)
2 > learned <− RnferLearn(df)
3 > intervals <− RnferApply(learned, df)
4 > summary(intervals)
5 name start end
6 Length:4864 Min. :8.238e+05 Min. :1.080e+09
7 Class :character 1st Qu.:2.289e+13 1st Qu.:2.290e+13
8 Mode :character Median :3.948e+13 Median :3.948e+13
9 Mean :4.475e+13 Mean :4.475e+13

10 3rd Qu.:6.771e+13 3rd Qu.:6.772e+13
11 Max. :9.335e+13 Max. :9.335e+13

Figure 2.7: Example of using the nfer R API to learn and apply rules

32



Python

Python is an interpreted programming language popular with data scientists but also with
the wider programming community [224]. It is considered a good pedagogical language
due to its high level constructs and concise syntax. Python also has an enormous module
library and is easy to extend. Telemetry analysis scripts at JPL often use Python.

The nfer Python API supports similar usage to the R API but also includes stream-
ing support and the ability to instrument Python programs automatically and to display
their timings in a streaming graphical web interface. Figure 2.8 shows the web interface
displaying some selected functions from an instrumented copy of the open source program
xhtml2pdf [112]. The program was called with arguments to download and convert the
author’s personal website to a pdf. In the figure, the solid blue lines represent the inter-
val when the function on the vertical axis executed. The user can mouse-over an interval
to learn its precise begin-and-end-times and, in the case of a function, its arguments.
For example, the getFile function executed from :15.655 until :16.859 and had two
arguments: https://orcid.org/sites/default/files/images/orcid_32x32.png, and
http://seanmk.com.

Figure 2.8: The nfer Python API graphical interface displaying selected functions from
an instrumented copy of xhtml2pdf

Instrumenting a program with the nfer Python API is simple and requires only a single
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function call. In the example below, the xhtml2pdf module is instrumented on Line 6.
After instrumentation, rules may be added with an internal DSL (shown on Line 7) and
the Graphical User Interface (GUI) may be started via a non-blocking call (Line 8).

1 from nfer.instrument import instrument
2 from nfer. rules import when
3 from nfer.gui import gui
4 from nfer. nfer import monitor
5

6 instrument( "xhtml2pdf" )
7 monitor( when("execute").during("command").name("pisa") )
8 gui( intervals =["getFile","pisaContext.addParam","Frame._add","pisaParser"] )

Figure 2.9: Example of using the nfer Python API to instrument a program and launch
the GUI

Like the R API, the Python API uses the C implementation of the nfer processing
and mining algorithms. Unlike the R API, however, the Python API contains a rich
internal DSL for instantiating rules and executes nfer in a separate thread from the main
application.

2.6 Example Application to Warning Analysis

As noted earlier, the nfer tool has been applied to processing of telemetry from the Curios-
ity rover. In this section, we briefly describe an application to a task that is traditionally
performed either manually or by ad-hoc scripts. We consider the problem of automatically
labeling warning messages that are anticipated due to known idiosyncrasies of the system,
and therefore can be ignored. Events (EVRs) produced by Curiosity are associated with
a severity level, which is used to distinguish between expected and unexpected behavior.
One of the severity levels is WARNING, which indicates potentially anomalous behavior.
Unfortunately, due to various idiosyncrasies of hardware and software, there are several
situations in which warning EVRs do not denote real anomalies (are false positives). As a
result, one of the roles of the ground operations team is to label those received warnings
that are to be ignored; this work needs to be completed before the next plan can be up-
linked to the spacecraft. To speed up analysis, we have implemented a set of rules that

34



can label EVRs corresponding to known idiosyncrasies. As a result, ground operators can
limit their attention to only unlabeled warning EVRs. We describe some of these rules
below.

The first pair of rules capture a known (benign) race condition in the software caused
when a thread servicing the radio is starved and generates the warning TLM_TR_ERROR which
indicates missing telemetry. This happens because the thread is preempted by higher-
priority threads that are processing one of two commands (either MOB_PRM or ARM_PRM)
that generate reports of current mobility and robotic arm parameter values. Because the
error was discovered late in the mission, and the impact is benign, no code fix was deemed
necessary. The rule below looks for this known scenario by checking for an occurrence of
TLM_TR_ERROR during execution of either a MOB_PRM or an ARM_PRM command. A command
execution interval itself is defined by a pair of CMD_DISPATCH and CMD_COMPLETE events
whose maps agree on the cmd key, which denotes the command name.

cmdExec :− CMD_DISPATCH before CMD_COMPLETE
where CMD_DISPATCH.cmd = CMD_COMPLETE.cmd
map {cmd → CMD_DISPATCH.cmd}

okRace :− TLM_TR_ERROR during cmdExec
where cmdExec.cmd = "MOB_PRM" | cmdExec.cmd = "ARM_PRM"

The next rule involves a timing consideration. In this case, an instrument power-on com-
mand fails and then recovers within 15 seconds. Since the behavior is predictable, and
benign, the two warnings about command failure and subsequent recovery are labeled as
being expected. The this keyword serves as a label for the interval that is generated.

okCmdFail :− INST_PWR_ON before
INST_CMD_FAIL before
INST_RECOVER

where this.end − this.begin ≤ 15

The last set of rules label a situation in which a warning about task starvation is expected
whenever an activity (labeled vdp) which fetches data products from the cameras overlaps
with an Earth communication activity (labeled comm, and identified by an id field in its
map). In this case, we use the slice operator to identify the interval of overlap between the
vdp and comm intervals:
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comm :− COMM_BEGIN before COMM_END
map {id → COMM_BEGIN.id}

vdp :− VDP_START before VDP_STOP

okStarvation :− TASK_STARVATION during (vdp slice comm)
map {id → comm.id}

2.7 Performance Considerations

We saw in Section 2.4 that the complexity of the basic nfer processing algorithm with an
idempotent selection function is O(n3) with respect to the length of the trace. For many
cases, this is too high to be practical. The LogFire and Prolog experiments referred to in
Section 2.1 illustrate this. Introducing a selection function to only keep intervals which
are minimal reduces the complexity considerably, according to experiments, pushing the
algorithm into the realm of being practical. However, performance is still insufficient for
some cases. Kernel trace utilities such as tracelogger for QNX or ftrace for Linux can
produce millions of messages per minute, for example [173, 213]. Even with the minimality
selection function, Nfer is unable to cope with such data rates over long periods.

In this section we look for modifications which can improve the performance of the
basic algorithm, anticipating, however, that such improvements may suffer from lack of
soundness and completeness compared to the basic algorithm. These modifications are
shown as alterations to Algorithm 1. Three such modifications are given: one-use, most-
recent, and rolling-window. Note that, although they are given as modifications to the
algorithm, their relationship to the semantics of nfer may be understood as changes to
the selection function. Each of these modifications can be understood as a method to
reduce the worst-case cardinality of the data structures over which Algorithm 1 iterates,
specifically limiting the size of the left and right caches.

2.7.1 Proposed Modifications

The one-use modification, shown as Algorithm 2 (changes are underlined), deletes input
intervals when they are used to create new intervals. In this way, any interval may only
be used to create one new interval per rule. The New variable is modified to hold triples
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(ileft, iright, inew) for each new candidate interval inew included (before selection), where ileft
and iright are the intervals in the left and right caches, respectively, that inew is derived
from. This is needed to remove those intervals from the caches later if inew is selected
(lines 25 and 26). The one-use modification reduces the maximum sizes of the left and
right caches. This also reduces the amortized worst-case cardinality of the New set to
one. Note that, because the worst-case cardinality of the Produced set is still linear in the
size of the trace, the complexity of the minimality selection function is also linear, so the
worst-case complexity of the nfer processing function is not changed.

Algorithm 2 One-use Modification
1: · · ·
4: if interval.name = rule.leftLabel then
5: · · ·
9: if ¬ exclude then
10: New ← New ∪ {(interval, ε, rule.createInterval(interval))}

11: else
12: for rightIntv ∈ rule.RightCache do
13: if rule.testInclusion(interval, rightIntv) then
14: New←New ∪ {(interval, rightIntv, rule.createInterval(interval, rightIntv))}

15: if interval.name = rule.rightLabel ∧ rule is inclusive then
16: for leftIntv ∈ rule.LeftCache do
17: if rule.testInclusion(leftIntv, interval) then
18: New ← New ∪ {(leftIntv, interval, rule.createInterval(leftIntv, interval))}

19: · · ·
23: for (left, right, new) ∈ select(New, rule.Produced) do
24: rule.Produced ← rule.Produced ∪ {new}
25: rule.LeftCache ← rule.LeftCache \ {left}
26: rule.RightCache ← rule.RightCache \ {right}
27: process(new)

The most-recent modification, shown as Algorithm 3, only stores the most recent
intervals instead of keeping a cache of all of the previously seen ones. This change reduces
the maximal cardinality of all caches to 1, except for the Produced cache. A cache’s single
element can be selected with the head function. The variable New holds at most one
interval in this solution. Because the Produced cache still has a worst-case cardinality of
n− 1 (suppose a rule A :− B before B, then an interval is created for each subsequent B
after the first), the worst-case complexity of the nfer processing algorithm is not reduced.
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Algorithm 3 Most-recent Modification
18: · · ·
19: if interval.name = rule.leftLabel then
20: rule.LeftCache ← {interval}

21: if interval.name = rule.rightLabel then
22: rule.RightCache ← {interval}

The rolling-window modification, shown as Algorithm 4, only considers intervals in
a cache that occur within a time window. Intervals falling outside the window are deleted
from the caches. The time window is calculated as a fixed offset from the end of the
last submitted interval. The rolling-window modification does not change the maximum
cardinality of the caches (if all events occur within the window, then nothing is deleted), so
it does not change the complexity of the algorithm according to the formula. However, if
the window size is carefully chosen, the heuristic can have a drastic effect in the execution
time of the processing algorithm.

2.7.2 Experimental Setup

We conducted a series of screening experiments to explore possibilities for improving the
execution time of the nfer processing algorithm. We do not intend for this to be a com-
prehensive evaluation for choosing one algorithm over another. We implemented each
algorithm and used it to apply nfer specifications on three different test datasets. All
algorithms were tested using the minimality selection function discussed in Section 2.4.3.
Both the C and Scala implementations were used to run the experiments. This helped us to
eliminate some implementation specific blocking factors that could affect the performance
of an algorithm. The C implementation experiments were performed in the Linux 4.9.6
operating system on an Intel Core i5 running at 2.4 GHz with 16 GB of RAM. The Scala
implementation experiments were performed in the Mac OS X 10.10.5 operating system
on an Intel Core i7 running at 2.8 GHz with 16 GB of RAM. The datasets are described
in the following paragraphs.

Sequential Sense-Process-Send (SSPS)

The Sequential Sense-Process-Send (SSPS) dataset was generated by a system mimicking
an embedded data collection device. The device-under-test (DUT) was a first generation
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Algorithm 4 Rolling-window Modification
6: · · ·
7: for rightIntv ∈ rule.RightCache do

if rightIntv.end < interval.end - WINDOW then
rule.RightCache ← rule.RightCache \ {rightIntv}

else
8: exclude ← exclude ∨ rule.testExclusion(interval, rightIntv)
9: · · ·
12: for rightIntv ∈ rule.RightCache do

if rightIntv.end < interval.end - WINDOW then
rule.RightCache ← rule.RightCache \ {rightIntv}

else
13: if rule.testInclusion(interval, rightIntv) then
14: New ← New ∪ {rule.createInterval(interval, rightIntv)}
15: · · ·
16: for leftIntv ∈ rule.LeftCache do

if leftIntv.end < interval.end - WINDOW then
rule.LeftCache ← rule.LeftCache \ {leftIntv}

else
17: if rule.testInclusion(leftIntv, interval) then
18: New ← New ∪ {rule.createInterval(leftIntv, interval)}
19: · · ·
23: for new ∈ select(New, {p : p ∈ rule.Produced, p.end > interval.end - WINDOW} )

do
24: rule.Produced ← rule.Produced ∪ {new}
25: process(new)
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BeagleBone with a 720 MHz ARM Cortex-A8 running version 6.6.0 of the QNX real-
time operating system [188]. Logs were collected using the QNX tracelogger utility. The
SSPS system executes a periodic process with three phases: acquisition, processing, and
communication. Data acquisition is accomplished using the dd utility to copy random data
to a file. There are two phases of data processing. The first data processing phase creates
a checksum for the data using cksum and the second compresses the data using bzip2. The
communication phase is optional, but if it is performed it consists of using scp to transfer
the compressed file to another host on the network. After the optional communication
phase, the process is made periodic by sleeping for a period.

The system logs an event between each phase, and between the two parts of the pro-
cessing phase. This complicates log comprehension, as each event must serve as both
the end of the previous phase and the beginning of the next. The nfer specification
for the SSPS dataset, shown in Figure 2.10, defines each phase, then groups the phases
into HANDLING and FINALIZATION intervals, and finally defines a MAIN_LOOP interval using
those. HANDLING is made up of the acquisition and processing phases, while finalization
is made up of communication and sleep. Since the communication phase and the event
associated with its beginning are optional, the rules must allow for a processing phase that
ends with either communication or sleep.

The tested dataset contained 12,766 relevant events covering a collection period of
approximately 26 hours. The SSPS dataset is also described in Section 2.8.5.

ACQUISITION <− EV401 before EV402
PROC1 <− EV402 before EV403
PROC2_W_COM <− EV403 before EV404
PROC2_NO_COM <− (EV403 before EV405) unless contain EV404
COMMUNICATION <− EV404 before EV405
SLEEP <− EV405 before EV401
PROCESSING <− PROC1 meet PROC2_W_COM
PROCESSING <− PROC1 meet PROC2_NO_COM
HANDLING <− ACQUISITION meet PROCESSING
FINALIZATION <− COMMUNICATION meet SLEEP
FINALIZATION <− SLEEP unless follow COMMUNICATION
MAIN_LOOP <− HANDLING meet FINALIZATION

Figure 2.10: Specification used in the SSPS experiments
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System Call Logs with Natural Random Faults (LANL)

The System Call Logs with Natural Random Faults (LANL) dataset was generated by
running a simulation of an automotive cruise-control application on a computer under
high-energy neutron bombardment [173]. The DUT was a Xilinx ZC706 featuring a
XC7Z045 [233] System-on-a-Chip (SoC) running version 6.6.0 of the QNX real-time oper-
ating system [188]. Faults in the dataset were generated by placing the SoC in the path of
a high-energy neutron beam at the Los Alamos Neutron Science Center (LANSCE) facility
at the Los Alamos National Laboratory (LANL) in New Mexico, USA. The cruise-control
application used for the LANL dataset consists of communicating components: a speed sen-
sor, brake and accelerator actuators, and cruise controllers. The speed sensor is simulated
and sends randomized speed readings to a configurable number of cruise controller func-
tions which then command the brake or accelerator actuators to correct for any changes.
Multiple cruise controller functions operate in parallel and their actuator commands are
compared against one another as a form of error correction. The ionizing radiation present
during system operation can cause differences in the calculated actuator commands which
result in changes to the trace.

The nfer specification for the LANL dataset, shown in Figure 2.11, defines periods of
activity for each component and then defines the nominal and off-nominal behavior during
those periods. During the period of activity for the speed sensor, the nominal behavior is
for the speed value to be sent and no off-nominal behavior is defined. During the period of
activity for the actuators, the nominal behavior is for a unanimous response to be received
after a request to the controllers for commands is sent and the off-nominal behavior is for
a non-unanimous or non-quorum response to be received. During the period of activity for
the controllers, the nominal behavior is for the correct actuator to acknowledge receipt after
a controller sends its command and the off-nominal behavior is for an incorrect actuator
to acknowledge receipt of the command.

The tested dataset contained 50,000 relevant events covering a collection period of
approximately 10 hours. The LANL dataset is also described in Section 2.8.5.

Mars Science Laboratory (MSL)

The Mars Science Laboratory (MSL) dataset was generated by checking the property
okRace described in Section 2.6 on telemetry logs received from the Curiosity rover. We
checked logs covering rover activities over around 60 days. For convenience, we first filtered
the rover logs to include only relevant EVRs. These EVRs are generated on board the
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SENSOR <− EV20 before EV21
ACTUATOR <− EV22 before EV23
CONTROLLER <− EV24 before EV25
SENSOR_OK <− EV12 during SENSOR
BRAKE_PRESSURE_OK <− EV14 before before EV1
ACCEL_PRESSURE_OK <− EV14 before EV4
ACTUAT_BRAKE_OK <− BRAKE_PRESSURE_OK during ACTUATOR
ACTUAT_ACCEL_OK <− ACCEL_PRESSURE_OK during ACTUATOR
ACTUATOR_OK <− ACTUAT_BRAKE_OK coincide ACTUAT_ACCEL_OK
RESP_ACTUAT <− EV9 before EV10
RESP_SENSOR <− EV8 before EV10
CTRL_ACTUAT_OK <− RESP_ACTUAT during CONTROLLER
CTRL_SENSOR_OK <− RESP_SENSOR during CONTROLLER
CONTROLLER_OK <− CTRL_ACTUAT_OK unless contain RESP_SENSOR
CONTROLLER_OK <− CTRL_SENSOR_OK unless contain RESP_ACTUAT
BRAKE_PRESSURE_WARN <− EV14 before before EV2
ACCEL_PRESSURE_WARN <− EV14 before EV5
ACTUATOR_WARN <− BRAKE_PRESSURE_WARN during ACTUATOR
ACTUATOR_WARN <− ACCEL_PRESSURE_WARN during ACTUATOR
BRAKE_PRESSURE_ERROR <− EV14 before before EV3
ACCEL_PRESSURE_ERROR <− EV14 before EV6
ACTUATOR_ERROR <− BRAKE_PRESSURE_ERROR during ACTUATOR
ACTUATOR_ERROR <− ACCEL_PRESSURE_ERROR during ACTUATOR
ACTUATOR_ERROR <− EV7 during ACTUATOR

Figure 2.11: Specification used in the LANL experiments
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rover when the software executes command sequences as part of daily activity plans that
are uplinked to the rover from Earth. The test dataset contained 50,000 relevant EVRs.

2.7.3 Experimental Results

Table 2.3 shows the results from the experiments. The Impl column differentiates be-
tween the C and Scala implementation (note that comparisons in timing and memory use
should not be made between the C and Scala implementations). The Algorithm column
shows the version of the processing algorithm under consideration, where Basic means
Algorithm 1, One-use means Algorithm 2, Most-recent means Algorithm 3, and Window
means Algorithm 4. The Window algorithm was applied with different window sizes indi-
cated in seconds. The Data column shows the dataset and specification used for the row.
The Ex Time column shows the clock time in seconds used by the program to reach a
fixed-point, and the Memory column shows the peak memory used during computation.
The Precision and Recall columns show the precision and recall of the algorithm where
the “true” output is the result of running the Original algorithm.

Precision is an indicator for soundness (wrt. the basic algorithm) and is defined as the
fraction of created intervals that are correct, and recall is an indicator for completeness
(wrt. the basic algorithm) and is defined as the fraction of all expected intervals that
are generated. More precisely, given the set of intervals B created by running the basic
Algorithm 1 on a dataset with a specification, and given the set of new intervals N created
by running a different algorithm on the same dataset and specification, precision and recall
are defined as:

precision =
|B ∩N |
|N |

recall =
|B ∩N |
|B|

For example, Line 4 of Table 2.3 shows the results from running the C implementation of
the rolling-window algorithm (with a window size of five seconds) on the SSPS dataset with
its nfer specification. It took 0.01 seconds to complete and used 11 megabytes of memory
at its peak. The number of intervals found by the basic algorithm for the dataset and
specification was 19,360, the number of intervals found by the rolling-window modification
(5 s) was 5,749, and the size of the intersection between the two results was 5,661. So, the
precision was 5661/5749 = 0.985 and the recall was 5661/19360 = 0.292.

In case of the MSL dataset, the recall number is followed by a number in parentheses.
This is the number of okRace intervals produced, which are the intervals in which we are
ultimately interested for this dataset. Four such intervals should be produced as shown
for the Basic algorithm. We observe that the Most-recent algorithm did not produce any
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of these, and that the Window algorithm with a window of size 30 seconds (the smallest
shown) only produced two of these, whereas the remaining window sizes produced all four.

Table 2.3 shows evidence that the rolling-window modification has the most promise
to improve performance while still finding most or all of the relevant intervals. For each
dataset, a window size was found that enabled a precision and recall of exactly 1.0, while
executing at least an order of magnitude faster than the original algorithm. This ideal
examined window size was different for each dataset: it was 210 seconds for SSPS, 1,000
seconds for LANL, and 41,000 seconds for MSL. For each new application, the window size
must be tuned to find this optimal number.

The one-use modification was interesting, in that it was able to return nearly the same
results as the basic algorithm but it did not show as much of a performance improvement
as the well-tuned rolling-window modification. For the LANL dataset, the results were
exactly the same as the basic algorithm. For the SSPS dataset 25 out of 19,360 intervals
were missing and three extra intervals were generated. For the MSL dataset around 9%
of the expected results were missing and one extra interval was generated. Performance
varied from about a 32% improvement for MSL to about a 80% improvement for LANL,
but this is in contrast to the one or two order of magnitude improvements seen from the
other methods.

The most-recent modification missed too many relevant intervals to be of much practical
use, although it was found to execute quickly and had good precision. Its recall of only
0.613 for the LANL dataset and 0.454 for the MSL dataset show that it found too few of
the expected results. The modification had nearly perfect results for the SSPS dataset,
however, so it may be usable in some circumstances.

2.8 Mining Intervals from Real-Time System Traces

To use the results from nfer to improve telemetry comprehension, rules must specify the
interval abstractions to infer from a trace of events. Typically, such a specification would
be written by the engineers that designed the software. Writing specifications is time-
consuming and error-prone, however, and only captures facets of the software that were
understood at design time. Dynamic specification mining seeks to solve these problems
by using machine learning techniques to discover rules that define how the system should
behave.

We can leverage prior research in pattern recognition to mine ATL relations from his-
torical telemetry, but these works assume the existence of a multivariate interval series.
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Table 2.3: Results from experiments

Impl Algorithm Data Ex Time Memory Precision Recall

C Basic SSPS 1.58 s 16 MB 1.0 1.0
C One-use SSPS 0.37 s 13 MB ∼ 1.0 0.999
C Most-recent SSPS 0.14 s 9 MB ∼ 1.0 0.997
C Window (5 s) SSPS 0.01 s 11 MB 0.985 0.292
C Window (15 s) SSPS 0.01 s 13 MB 0.999 0.699
C Window (30 s) SSPS 0.02 s 15 MB ∼ 1.0 0.966
C Window (60 s) SSPS 0.02 s 15 MB ∼ 1.0 ∼ 1.0
C Window (210 s) SSPS 0.03 s 15 MB 1.0 1.0
C Window (1,000 s) SSPS 0.06 s 15 MB 1.0 1.0

C Basic LANL 138.40 s 54 MB 1.0 1.0
C One-use LANL 26.93 s 42 MB 1.0 1.0
C Most-recent LANL 0.55 s 12 MB 1.0 0.613
C Window (1 s) LANL 0.18 s 49 MB 1.0 0.772
C Window (5 s) LANL 0.21 s 53 MB 1.0 0.986
C Window (30 s) LANL 0.30 s 52 MB 1.0 0.999
C Window (500 s) LANL 1.96 s 54 MB 1.0 ∼ 1.0
C Window (1,000 s) LANL 3.63 s 53 MB 1.0 1.0
C Window (10,000 s) LANL 41.59 s 53 MB 1.0 1.0

Scala Basic MSL 251.1 s 80 MB 1.0 1.0 (4)
Scala One-use MSL 196.9 s 70 MB ∼ 1.0 0.916 (4)
Scala Most-recent MSL 0.4 s 1 MB 0.997 0.454 (0)
Scala Window (30 s) MSL 2.9 s 1 MB ∼ 1.0 0.550 (2)
Scala Window (100 s) MSL 27.3 s 10 MB 0.976 0.913 (4)
Scala Window (2,000 s) MSL 24.7 s 50 MB 0.992 0.972 (4)
Scala Window (41,000 s) MSL 28.5 s 40 MB 1.0 1.0 (4)
Scala Window (500,000 s) MSL 89.6 s 70 MB 1.0 1.0 (4)
Scala Window (1,000,000 s) MSL 166.0 s 80 MB 1.0 1.0 (4)
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To use existing research in interval pattern mining, we must first convert our telemetry
(sometimes called a symbolic time sequence [160]) to a multivariate interval series. To
this end, we introduce an algorithm for automatically mining time intervals from real-time
system traces. We show that our algorithm has linear complexity in the size of the trace
and that it produces interesting intervals.

Our requirements lead to an approach that combines aspects of sequential pattern
mining and automata-based specification mining. We are interested in finding intervals
that have been called response patterns [78] or serial episodes [157]. We mine patterns in
event sequences that define the beginning and the end of a process in a real-time embedded
system such as a spacecraft. A process may be any task, routine, or function that is part
of the behavior of the system. Since our technique outputs nfer rules, the mined response
patterns are expressed as ATL before relations.

2.8.1 Problem

Given a trace τ ∈ T, our goal is to find pairs of event names (η1, η2) ∈ I × I such that
∃(η1, t1), (η2, t2) ∈ τ where t1 < t2, such that ∀(η1, tj), (η2, tk) ∈ τ the intervals ( · , tj, tk) ∈ I
are interesting.

It is simple to convert an event trace into a sequence of atomic intervals, but this is
insufficient for our purposes. Any event may be converted to an atomic interval in the same
fashion as the initial pool is generated in Section 2.3. However, atomic intervals are not
more useful than the original events for deriving meaning from the trace or as the input
to an algorithm meant to mine ATL relations.

We observe that an algorithm to mine Allen’s or other temporal relations on an interval
series will not work on an atomic interval sequence. The only Allen relation that can be
applied to an atomic interval sequence to define intervals is before. We designed our
algorithm therefore to mine before relations from a trace of events. The intervals that
result from the mined relations may then be used for human or machine comprehension, or
combined with traditional algorithms meant to mine temporal relations from an interval
series.

2.8.2 Measuring Interestingness

We must also address the problem of whether or not intervals are interesting. Although the
concept is subjective, we can observe properties that make some intervals more interesting
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than others. It is often assumed that an interesting interval is one that is derived from
a rule that also appears in a handwritten specification. This definition is only helpful for
judging the quality of a mining algorithm, however. We must define metrics that we can
use to mine intervals when no specification exists.

Minimality

The example in Figure 2.12 illustrates why minimality is a property of interesting intervals.
The intervals 1, 2, and 3 all match the relation A before B, but only 1 and 2 are minimal.
If A is the beginning of a process and B is its end, then interval 3 does not capture the
intent of the relation.

A B A B

1 2
3

Time

Figure 2.12: Minimality example

Support and Confidence

We use the two most common metrics used to judge the acceptance of rules in specification
or pattern mining: support and confidence. Support is usually defined as the number of
times a rule is matched in the training data, and confidence is the probability that the
post-condition of the rule follows the pre-condition of the rule.

Some research has suggested that these common metrics are less effective than other
statistical measurements for judging the correctness of a rule. Le and Lo published a study
that compared the effectiveness of different metrics in mining response and precedence
patterns from the Java Software Development Kit (SDK) source code [144]. In their work,
they found that the “odds ratio” and “leverage” metrics outperformed support and con-
fidence on average. Their definitions for computing the leverage and odds ratio metrics
for a relation A before B include the notion of tracking the probability that A occurs
independently and tracking the probability that neither A nor B occur.

However, Le’s research makes assumptions that do not apply to this work. Most impor-
tantly, they assume the use of a sliding-window algorithm which is not sufficient to mine
intervals of arbitrary duration. In our algorithm, which does not use a sliding window, the
probability of A occurring independently will be either one or zero, and the same applies
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to the probability of neither A nor B occurring. Additionally, they used instrumented Java
code in their research, where they added logging to the beginning of each method. Our
traces represent telemetry or similar system traces logged from real-time systems, where
the data is periodic, and events often occur at the end as well as the beginning of processes.

Relative Duration

We make the assumption that the average duration of an interval that represents the exe-
cution of a process will usually be shorter than the average duration of the time between
executions. The real-time software that generates the event streams from which we mine
intervals is made up of processes that are mostly periodic. Even when they can be inter-
rupted, tasks are usually executed in a cycle where the system wakes up, performs work,
and shuts down.

In developing our algorithm, the periodic nature of embedded software presented a
challenge. In most cases, when the support and confidence thresholds are met for a relation
A before B, they are also met for the relation B before A. In a periodic process, one of
those intervals represents the time between when a process starts and ends (its duration)
and the other represents the time between when it ends and starts again. The time between
when a process ends and when it starts again is called its between-job inter-arrival time
(BJI). If a process is interrupted its duration may be extended. The time during which it
is interrupted is called its intra-job inter-arrival time (IJI).

Figure 2.13 shows a trace and the intervals that represent a periodic task execution.
In the figure, A marks the beginning of the task and B marks the end, while I marks the
beginning of an interrupt service routine (ISR) and J marks its end. Interval 1 shows an
IJI of the task, interval 3 shows a BJI of the task, and intervals 2 and 4 show instances of
the task’s duration.

A B A B

2 4

3
Time

I J

1

Figure 2.13: Periodic processes

Without further heuristics, it is not possible to differentiate between the BJI and du-
ration of a periodic process. When a process repeats, the result will be an alternating
pattern of A and B events. Since we do not assume a complete trace, we cannot simply
treat the first of the two to appear in the trace as the beginning of the process’ execution.
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A recent work by Iegorov et al. used the relationship between the IJI and the BJI of
a process to mine strictly periodic tasks and their response times [118]. They used an
assumption that the IJI of a process should be shorter than its BJI on average. This
assumption comes from the predictable way that real-time software is scheduled and the
fact that such systems are designed with a maximum expected CPU utilization. We use
the same idea to differentiate between the duration of a process and its BJI.

We performed a simulation using the YAO-SIM tool [37] to see if a relationship exists
between the duration of a task and its BJI that could be used to differentiate between them.
Following a similar procedure to [118] and [37], we generated 1,000 periodic task sets for
CPU utilizations between 10% and 70% at 5% increments and simulated execution of the
system for 1 × 107 time units. We used two scheduling algorithms common in real-time
embedded systems: Rate Monotonic (RM) scheduling with fixed priorities, and Earliest
Deadline First (EDF) scheduling with dynamic priorities. The number of tasks in each
task set and their Worst-Case Execution Times (WCETs) were randomly chosen from a
uniform distribution and the period of each task was computed from its WCET and the
CPU utilization using the UUniFast algorithm [38]. The number of tasks was selected from
the interval [3, 10] and the WCET was taken from the interval [1, 30].

Figure 2.14 shows the results of a scheduling simulation comparing the duration of a
task to its BJI. The y-axis represents the ratio of the mean of duration for a task set over
the mean of BJI, while the x-axis represents the CPU utilization of the system. At each
CPU utilization level, the results using EDF scheduling are on the left and those using
RM scheduling are on the right. Dots that appear below the horizontal line represent
simulations where a task’s average duration was shorter than its BJI, while dots that
appear above the line represent simulations where the reverse was true.

The choice of 70% CPU utilization as the upper bound of the simulations was deliberate.
The commonly accepted notions of safe CPU utilization in real-time systems are that 69%
is the theoretical safe upper limit, 51-68% is considered “safe”, 26-50% is considered “very
safe”, and below 26% is considered “unnecessarily safe” [143]. These regions are shown
in Figure 2.14 by differently shaded backgrounds. For any system in the “very safe” or
“unnecessarily safe” regions, our simulations show that any task’s duration should always
be shorter than its BJI. For systems in the “safe” region, this assumption still holds most
of the time.
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Figure 2.14: Simulation results comparing duration with BJI

2.8.3 Mining Algorithm

This section describes our solution to mine pairs of event names which correspond to the
beginnings and ends of minimal intervals. The details are shown in Algorithm 5. Our
algorithm is loosely based on work by Cutulenco et al. to mine Timed Regular Expressions
(TREs) [57] in that we achieve linear asymptotic complexity in the length of the trace
using a matrix of pattern statistics.

The idea behind the algorithm is as follows. We process the trace in order. When
we encounter an event with name A, we store it as the most recent A event. For every
succeeding event B, we count the relation A before B as matched and record the duration
of the interval. When the next A event is encountered, we increment a success counter for
all A before · relations marked as matched exactly once and increment a failure counter
otherwise. We also update the average duration of successful relations. When all events
have been read, we check each pair of event names and output the associated rule if the
user specified confidence and support thresholds are exceeded and if the average duration
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is shorter than that of the inverse relation.

We create a square matrix data structureM where each dimension maps to an event
name: a member of I. The rows of M represent the left side of a before relation, and
the columns represent the right side. Each entryM(i, j) in the matrix contains a 5-tuple
(m, s, f, pd, ad) where m ∈ N represents the number of times the event name I(j) has
been seen since the last I(i) (the matched count), s, f ∈ N are success and failure counts,
and pd, ad ∈ R are the previous duration and the average duration of successfully matched
pairs. We also keep an array R, where indices map to names in I and contain the most
recent copy of each event if one has been seen.

The user must specify a support threshold St and a confidence threshold Ct. A count
is kept of the success and failure of each event to imply every other event. The support
for a pair is defined as the total number of successes for that pair. This varies somewhat
from other notions of support because we do not use a sliding window in our algorithm
and events may occur many times in the trace. The confidence for a pair is defined as the
number of successes for that pair over the sum of the successes and failures.

After the trace is complete, the matrix is iterated over, and each cell is checked to
see if it meets the acceptance conditions. A pair (I(i), I(j)) is accepted if the following
conditions hold.

1. The event is not matching itself: i 6= j.

2. The confidence threshold is met: M(i,j).s
M(i,j).s+M(i,j).f

> Ct.

3. The support threshold is met: M(i, j).s > St.

4. The average duration is less than the average duration of the inverse pair:
M(i, j).ad <M(j, i).ad.

After a trace has been processed, the matrixM is traversed in a finalization step that
facilitates handling multiple, non-contiguous traces. For each cell of the matrix, its success
count is incremented if its matched count is exactly one and its failure count is incremented
if its matched count is greater than one. Importantly, its failure count is not incremented
if the matched count is zero. This causes the algorithm to assume that the behavior after
the trace will not invalidate any of the relations. The matched count of each cell is also
set to zero and the array of the most recent events (R) is cleared. This final step enables
handling traces with few events such as the example in Section 2.8.4 and the case study in
Section 2.8.5.
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Algorithm 5 Interval Mining Algorithm
1: procedure addToModel(event)
2: define i : I(i) = event.name
3: for left ∈ I.indices do
4: if R(left) is set then
5: if R(left).time < event.time then . if the before relation holds
6: incrementM(left, i).matched
7: M(left, i).pd ← event.time−R(left).time
8: end for
9: if R(event.name) is set then
10: for right ∈ I.indices do
11: if M(i, right).matched = 1 then
12: incrementM(i, right).success
13: toadd← (M(i, right).pd−M(i, right).ad)/M(i, right).success
14: M(i, right).ad←M(i, right).ad + toadd
15: else
16: incrementM(i, right).failure
17: M(i, right).matched← 0

18: end for
19: R(event.name)← event
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2.8.4 Mining Example

In this section, we present an illustrative example of the mining algorithm discussed in
Section 2.8.3. Assume a confidence threshold Ct of 1.0, a support threshold St of 1, and
the trace shown in Figure 1.2: 〈 (A, 10), (B, 20), (B, 30), (C, 40), (A, 50), (C, 60) 〉. The
state of the matrixM and the array R are shown after each event is added to the model.
Each field ofM contains the 5-tuple (m, s, f, pd, ad), and each field of R contains the most
recent event with that name.

• addToModel((A,10)) – The indices corresponding to A, B, and C in I are looped
over on Line 3, but R is empty so the condition on Line 4 is false and the procedure
continues on Line 9. The condition on Line 9 is also false because R is empty, so the
event is simply inserted into R on Line 19.

M :
I A B C
A 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0
B 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0
C 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0

R :
I Most Recent
A (A,10)
B
C

• addToModel((B,20)) – There is now an A event in R, so the conditional is taken
for that event on Line 4 and (A,10) is compared to (B,20) on Line 5. Since 10 < 20,
matched is incremented for the pair (A,B) on Line 6 and its previous duration is set
on Line 7. No B event is in R, so the condition on Line 9 is false. The event is
inserted into R on Line 19.

M :
I A B C
A 0,0,0,0,0 1,0,0,10,0 0,0,0,0,0
B 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0
C 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0

R :
I Most Recent
A (A,10)
B (B,20)
C

• addToModel((B,30)) – There are now A and B events inR, so the conditional on
Line 4 is taken for those. The matched count for (A,B) and (B,B) are incremented,
and their previous durations are set. The pair (A,B) has been seen twice, so its
matched count is now two. For the first time, the condition on Line 9 is true, since B

53



has been seen before. The indices corresponding to A, B, and C in I are looped over
on Line 10 and the pairs (B,A), (B,B), and (B,C) are checked to see if matched equals
one on Line 11. This is only true for (B,B), so its success counter is incremented
on Line 12 and its average duration is updated on Line 14. The failure counters for
(B,A) and (B,C) are incremented on Line 16. All three matched counters are reset
to zero on Line 17. Finally, the index for B in R is replaced with (B,30).

M :
I A B C
A 0,0,0,0,0 2,0,0,20,0 0,0,0,0,0
B 0,0,1,0,0 0,1,0,10,10 0,0,1,0,0
C 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0

R :
I Most Recent
A (A,10)
B (B,30)
C

• addToModel((C,40)) – There are both A and B events in R, so the conditional
on Line 4 is taken for those. Both (A,C) and (B,C) have their matched counters
incremented, their previous durations are recorded, and the event is inserted into R.

M :
I A B C
A 0,0,0,0,0 2,0,0,20,0 1,0,0,30,0
B 0,0,1,0,0 0,1,0,10,10 1,0,1,10,0
C 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0

R :
I Most Recent
A (A,10)
B (B,30)
C (C,40)

• addToModel((A,50)) – All three event names have been seen, so the condition
on Line 4 is true in all cases. The pairs (A,A), (B,A), and (C,A) all have their
matched counters incremented on Line 6 and their previous durations updated on
Line 7. The condition on Line 9 is true again, so the pairs (A,A), (A,B), and (A,C)
are checked to see if they have been matched once. The pairs (A,A) and (A,C) have
been matched once, so their success counters are incremented and average durations
updated. However, (A,B) has been matched twice, so its failure counter is updated.
All three matched counters are reset. The index for A in R is replaced with (A,50).

M :
I A B C
A 0,1,0,40,40 0,0,1,20,0 0,1,0,30,30
B 1,0,1,20,0 0,1,0,10,10 1,0,1,10,0
C 1,0,0,10,0 0,0,0,0,0 0,0,0,0,0

R :
I Most Recent
A (A,50)
B (B,30)
C (C,40)
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• addToModel((C,60)) – The pairs (A,C), (B,C), and (C,C) have their matched
counters incremented and previous durations updated. On Line 12, the success
counter for the pairs (C,A) and (C,C) are incremented and their average duration
updated, as they have been matched, while on Line 16 the failure counter for the
pair (C,B) is incremented since its matched count is zero. The event is added to R,
and the trace is complete.

M :
I A B C
A 0,1,0,40,40 0,0,1,20,0 1,1,0,10,30
B 1,0,1,20,0 0,1,0,10,10 2,0,1,30,0
C 0,1,0,10,10 0,0,1,0,0 0,1,0,20,20

R :
I Most Recent
A (A,50)
B (B,30)
C (C,60)

• Finalize – After the trace has completed, each cell of the matrix is iterated over,
and the success count is incremented if the cell’s matched count is exactly one. The
success counters are incremented for (B,A) and (A,C) and their average durations are
updated. Failure counts are only incremented if the call’s matched count is greater
than one, so this is done for (B,C). All matched counts are reset to zero and R is
cleared.

M :
I A B C
A 0,1,0,40,40 0,0,1,20,0 0,2,0,10,20
B 0,1,1,20,20 0,1,0,10,10 0,0,2,30,0
C 0,1,0,10,10 0,0,1,0,0 0,1,0,20,20

R :
I Most Recent
A
B
C

The result of processing the example trace is that the pair (C,A) is output. Although
(C,A) only appears once in the visible trace, the trace is assumed to be incomplete and
contains no evidence to refute the hypothesis that A before C is an interesting relation.

The other pairs inM are rejected for the following reasons.

• (A,A), (B,B), (C,C) – fail condition 1, that the event is not matching itself

• (B,A), (A,B), (C,B), (B,C) – fail condition 2, that the confidence threshold of 1.0 is
met
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• (A,B), (C,B), (B,C) – fail condition 3, that the support threshold of 1 is met

• (A,C) – fails condition 4, that the average duration is shorter than that of the inverse
pair

2.8.5 Mining Case Studies

We performed a series of case studies to demonstrate the viability of our mining algorithm.
We ran the algorithm on datasets for which we had a handwritten nfer specification and
compared the rules in those specifications to those that our algorithm mined from the same
datasets. Although nfer rules concern a hierarchy of intervals, we were only interested
in comparing against before relations on events rather than general ATL relations on
intervals.

We implemented our algorithm in the C programming language version of nfer. Our
tool currently loads the entire trace into memory before processing, but this is an imple-
mentation detail, not a requirement of the algorithm. We ran the command-line version of
the tool, compiled using the GNU Compiler Collection (GCC) 4.9.4 with -O3 optimizations.

Experiments were performed in Linux 4.9.6 on an Intel Core i5 at 2.4 GHz with 16 GB of
RAM. We obtained execution time information from the GNU time command and memory
usage from the Valgrind Massif heap profiler. We ran each experiment 20 times and took
the mean of their execution times, while the memory usage was fully deterministic.

All experiments were run with the confidence threshold Ct = 0.90 and the support
threshold St = 10. Tuning these parameters is difficult without an established ground truth
the algorithm is attempting to match for a dataset. We found, through experimentation,
that these values were effective in cases where such a ground truth was known.

SSPS Dataset

The SSPS dataset consists of application logs from software mimicking an embedded data
collection device. The tested dataset contained 1,451,193 events broken up into 404 trace
files. Our tool ran on this dataset in 0.88 seconds and used 14.1 MB of memory. The
algorithm mined relations that established the sequential nature of the main application
with no incorrect rules.

The SSPS system executes a periodic process with three phases: acquisition, processing,
and communication. Data acquisition is accomplished using the dd utility to copy random
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data to a file. There are two phases of data processing. The first creates a checksum for
the data using cksum and the second compresses the data using bzip2. The communication
phase consists of using scp to transfer the compressed file to another host on the network.
After the communication phase, the process is made pseudo-periodic by sleeping for a
period.

The system logs an event between each phase, and between the two parts of the pro-
cessing phase. This complicates log comprehension, as each event must serve as both the
end of the previous phase and the beginning of the next. The trace also contains anoma-
lies, in that the communication phase is sometimes absent. These issues are illustrated in
Figure 2.15, which shows the phases of execution and their relationship to the events in
the trace. In the figure, event D and scp interval are highlighted because they are absent
from anomalous traces.

dd cksum bzip2 scp sleep
Time

A B C D E

Figure 2.15: SSPS events and application phases

Another challenge of the SSPS dataset was that it was broken up into 404 separate
traces that mostly contained events related to interrupt handling. Each trace contained,
on average, only 8.6 events related to phases of the application. This meant that a single
trace usually did not contain events from two full cycles of the main loop. These traces
were non-contiguous, so events were missing between them and they could not simply be
concatenated together and treated as one trace.

The intervals that were meant to be derived from the event sequence were the phases
of execution of the main program and the pattern of an interrupt firing, its ISR starting,
its ISR exiting, and the interrupt returning control to the operating system. Our algo-
rithm mined relations that established the sequential nature of the main application with
no incorrect rules. It also perfectly captured the relations pertaining to each interrupt
occurring, being handled, and exiting.

The most interesting aspect of the mined relations from the SSPS dataset was that
some of the rules defined the BJI of a phase rather than its duration. This highlighted a
problem with the dataset rather than with our algorithm. We discovered that the system
that generated the logs had an average CPU utilization of 84%. As this is above the
theoretical safe limit for a real-time system of 69% (see Section 2.8.2) we should expect
some tasks’ BJIs to become shorter than their durations.
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LANL Dataset

The System Call Logs with Natural Random Faults (LANL) dataset consists of application
logs from a simulation of an automotive cruise-control application on a CPU under ionizing
radiation bombardment [173]. The dataset contains faults from placing the SoC in the path
of a high energy neutron beam at the LANSCE facility in New Mexico, USA. The dataset
contained 100,000 events. Our tool ran on this dataset in 0.06 seconds and used 12.6 MB
of memory.

The nfer specification for the LANL dataset defines request-response behavior for sen-
sors, controllers, and actuators and then defines nominal and off-nominal relations between
them. The cruise-control application that generated the dataset executes in a polling loop,
but most events occur in response to external factors. The intervals that are meant to be
derived from the event stream are the request-response patterns, where the response may
be nominal or off-nominal.

The cruise-control application used for the LANL dataset consists of communicating
components: a speed sensor, brake and accelerator actuators, and cruise controllers. The
speed sensor is simulated and sends randomized speed readings to a configurable num-
ber of cruise controller functions which then command the brake or accelerator actuators
to correct for any changes. Multiple cruise controller functions operate in parallel and
their actuator commands are compared against one another as a form of error correction.
The ionizing radiation present during system operation causes anomalies in the calculated
actuator commands which result in changes to the trace.

The nfer specification for the LANL dataset defines periods of activity for each compo-
nent and then defines the nominal and off-nominal behavior during those periods. During
the period of activity for the speed sensor, the nominal behavior is for the speed value to
be sent and no off-nominal behavior is defined. During the period of activity for the actu-
ators, the nominal behavior is for a unanimous response to be received after a request to
the controllers for commands is sent and the off-nominal behavior is for a non-unanimous
or non-quorum response to be received. During the period of activity for the controllers,
the nominal behavior is for the correct actuator to acknowledge receipt after a controller
sends its command and the off-nominal behavior is for an incorrect actuator to acknowledge
receipt of the command.

Our algorithm found every relation describing nominal behavior for the speed sensor
and actuator components, but was unable to find off-nominal behavior relations. This is
not surprising, as the faults that are part of the off-nominal behavior occur infrequently
in the trace. As a result, the relations that include events from faults do not have enough
support to be mined.
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More surprisingly, many nominal behavior relations describing the controller function-
ality were missing from the mined rules. The only relation we mined from the controller
behavior was from two events that appeared sequentially in the source code with only inter-
process communication occurring between them. We discovered that the missing rules were
explained by the parallel execution of multiple controllers. This design caused events to
appear in non-deterministic order.

Figure 2.16 shows the problem of the parallel execution of multiple controllers in the
LANL dataset. The events from every controller shared the same names, so it became
impossible to find the correct relations without having a way to differentiate between them.
We discovered that the controllers logged their process identifiers as data parameters in
the trace, so we would be able to differentiate between the processes if we supported the
notion that data parameters should be equal, as in the case of [191]. For now, we suggest
that users choose unique event names per process instance. We plan to incorporate data
parameters into our algorithm in future work.

controller 1

Time

A A B A B B

controller 2

controller 3

Figure 2.16: LANL parallel controller execution

MSL Dataset

The MSL dataset consists of telemetry in the form of EVRs received from the Curiosity
rover on Mars. The events in the MSL logs are generated by the rover when commands
are executed from daily activity plans uploaded by controllers on Earth. The logs cover a
period of about 60 days and are filtered only to contain the events relevant to the available
nfer specification, written for the case study in Section 2.6. The dataset contained 49,999
events. Our tool ran on this dataset in 0.64 seconds and used 45.7 MB of memory.

The nfer specification for the MSL dataset defines situations where errors that have
been reported by the spacecraft can safely be ignored. We specifically analyzed one set
of rules that defines a benign race condition where the routine servicing a radio reports
missing telemetry due to thread starvation. The intervals that are meant to be derived
take the form of a command being dispatched and later completing. The same pattern
of dispatch before complete follows for 464 different types of commands in the trace, all
intermingled together.
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Our algorithm found 117 pairs of dispatch before complete relations for the same
command. Encouragingly, no complete before dispatch rules were mined for the same
command, meaning that our assumption that the duration should be shorter than the BJI
held throughout.

To assist in assessing the relatively large number of rules produced from mining the
MSL dataset, we developed a technique for grouping events based on the mined rules in
which they appear. To group events, we compute a forest where each tree is made up of
events that share rules. Algorithm 6 shows how to compute such a forest. In the algorithm,
Groups is a map from event names in the trace alphabet I to group numbers. On Lines 5
through 7, each event name in the alphabet is iterated over and assigned a group if it
does not already have one. Then, on Lines 8 through 12, all rules that refer to that event
name are found, and both sides of the relation are assigned to the same group (one will
be name). In this way, we organized the 937 event names from the MSL dataset into 90
groups with more than one event.

Algorithm 6 Event Name Grouping Algorithm
1: procedure GroupEventsByRules(Specification)
2: nextgroup← 1
3: Groups← [ ]
4: for name ∈ I do
5: if Groups[name] is not set then
6: Groups[name]← nextgroup
7: nextgroup← nextgroup + 1

8: for rule ∈ Specification do
9: if rule refers to name then
10: Groups[rule.leftside]← Groups[name]
11: Groups[rule.rightside]← Groups[name]
12: end for
13: end for
14: return Groups

A scientist at JPL examined the mined rules from running our algorithm on the MSL
dataset. He found that the rules captured some useful information about how the space-
craft behaves, and we were able to use his analysis to verify that a sequential task was
correctly identified. For example, a set of rules successfully describes a periodic activity
that loads a schedule table for the Rover Environmental Monitoring Station (REMS) in-
strument that monitors Mars’ weather. The table tells the REMS instrument what data to
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collect and consists of a sequence of six commands. Our algorithm found relations between
dispatch and complete events for each command, but it also found relations for the different
commands in sequence.

2.9 Related Work

An earlier effort to develop a telemetry comprehension tool is described in [108], which
provided a Scala DSL for writing a subset of the specifications shown in this article. That
work was based on a still earlier effort using the rule-based system LogFire [107] for analyz-
ing telemetry streams, as described in [109]. Although rule systems are strongly related to
nfer, they are not suited for expressing minimality constraints for optimization purposes,
as discussed previously. Other rule systems include Drools [75], Clips [52], and Jess [121].

Interval logics are common in the planning domain. Allen formalized his algebra [11],
which has come to be known as ATL, for modeling time intervals. He argued that it was
necessary to model relative timing with significant imprecision, and proposed his algebra’s
use in planning systems [12]. Many other planning languages have been proposed which
rely on these same concepts, including PDDL [162] and ANMLite [42]. The concepts
introduced and formalized by these interval logics are useful for modeling telemetry data,
but the languages themselves have been principally designed for planning, not verification.
Some efforts have been made to adapt them to that role, however. An effort is described
in [205], where the suitability of the ANMLite system for verification was evaluated, with
some positive results, but it was ultimately concluded that the solver techniques were not
yet mature enough to be useful. A translation from LTL to PDDL is described in [10] as
a means to leverage PDDL’s solver for verification. Conversely, [196] defines a translation
of a modified ATL to LTL for monitoring. It is concluded, however, that this approach
is impractical since the generated monitoring automata become too large, even for small
ATL formulas. Instead, they introduce a simple algorithm for that purpose using a state
machine for each relationship. Other interval logics have been designed specifically for
verification purposes, such as Interval Temporal Logic (ITL) [170], the Duration Calculus
(DC) [105], and Graphical Interval Logic (GIL) [69].

Our work has strong similarities to data-flow (data streaming) languages. A recent
example is QRE [14], which is based on regular expressions, and offers a solution for
computing numeric results from traces. QRE allows the use of regular programming to
break up the stream for modular processing, but is limited in that the resulting sub-streams
may only be used for computing a single quantitative result, and only using a limited set of
numeric operations, such as sum, difference, minimum, maximum, and average, to achieve
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linear time (in the length of the trace) performance. Our approach is based on Allen logic,
and instead of a numeric result produces a set of named intervals, useful for visualization
(and thereby systems comprehension). Furthermore, data arguments to intervals can be
computed using arbitrary functions.

Runtime verification [149, 86] can generally be defined as the discipline of constructing
monitors for analyzing systems executions. Assuming the type E of events, and some data
domain D, a monitor can abstractly be considered as a function that takes a set of traces
as an argument and returns a data value of type D. That is, M has the typeM : 2E∗ → D.
In most runtime verification systems a monitor processes a single trace. As such nfer
can be seen as a runtime verification tool, processing a single trace and returning a set of
intervals: D = 2I. Traditionally, however, runtime verification tools analyze traces in order
to provide a Boolean verdict (D = B2), or some value in a simple extension of the Boolean
domain [31], indicating whether a trace satisfies a specification or not (or the result can
be unknown). Such systems include e.g. Eagle [21], MOP [163], Orchids [100], Ruler [23],
TraceContract [22], LTL3 [33], MarQ [194] (based on QEA - Quantified Event Automata
[20]), LogFire [107], Larva [53], RiTHM [175], JUnitRV [63], MMT [64], MonPoly [26], and
DejaVu [110]. Runtime verification systems have been developed which aggregate data
as part of the verification [90, 25]. A system such as LOLA [59] computes general data
streams from input data streams, and is in this sense more general than the Boolean verdict
systems. Systems such as Ruler and LogFire produce sets of facts from traces, which is
also more general than Boolean verdicts. Statistical model checking [146] is an approach
collecting statistical information about the degree to which a specification is satisfied on
multiple traces. In specification mining [83, 192] the user provides no specification. Instead
it is learned from a collection of nominal executions.

The problem of mining patterns based on Allen’s interval relations from a multivariate
interval series has been thoroughly studied. Kam et al. looked for nested combinations
of ATL patterns in an interval series [124]. Höppner used Allen’s transitivity law in a
sliding window to reduce the number of candidate patterns [115]. Likewise, De Amo et
al. constrained candidate ATL patterns using regular expressions [62].

Our work in Section 2.8 is closely related to the field of specification mining using
dynamic inference. Although we do not seek to mine general property specifications, we
are interested in what Dwyer et al. called response and precedence patterns [78]. Yang
et al. proposed solutions to the scaling problems of dynamic property inference in their
Perracotta tool [235]. Ernst et al. introduced the popular Daikon tool that uses a library
of patterns to efficiently check for program invariants [83]. Le Goues and Weimer found
that they could reduce false positives in the mined properties by incorporating trustwor-
thiness metrics [145]. Reger et al. introduced parametric specification mining using Quan-
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tified Event Automata (QEA) [191] and later proposed support for imperfect traces [193].
Lemieux et al. supported user-defined Linear Temporal Logic (LTL) patterns and imperfect
traces in their Texada tool [147]. Cutulenco et al. efficiently mined TREs using a matrix
of pattern automata [57].

A related and widely explored topic is sequential pattern mining, which seeks to find
frequent subsequences of events in a database of sequences [160, 167]. Many sequential
pattern mining works differ from ours because they seek to find arbitrary length patterns,
because they expect the patterns to be frequent, and because the duration of the patterns
is limited. Agraval and Srikant are often credited with introducing the idea, and proposed
a set of Apriori-based algorithms for finding such consecutive subsequences [6]. Mannila
et al. used sliding-window algorithms with pattern matching automata to mine frequent
episodes, including serial episodes, from event traces [157]. Han et al. introduced a series of
algorithms to reduce the search space of such algorithms by using tree-based data structures
and by projecting subsequences into smaller databases [104, 177]. This work culminated
in the well-known CloSpan algorithm by Yan et al. to find closed sequences, meaning
sequences where no supersequence exists with the same support [234].

Some existing sequential pattern mining techniques have focused on performance. Zaki
proposed Sequential PAttern Discovery using Equivalence classes (SPACE), which com-
plexity improvements using combinatorial properties to decompose the problem using lat-
tice search techniques [237]. Ayres et al. used a bitmap representation in their Sequential
PAttern Mining (SPAM) tool to achieve improved performance over SPACE, but with a
prohibitive increase in its memory requirements [16]. Wang and Han introduced their BI-
Directional Extension (BIDE) tool to mine frequent closed sequences and achieved an order
of magnitude improvement in speed over CloSpan [225]. They measured linear execution
time and memory scalability in the size of the trace in their experiments. We are not,
however, interested in mining frequent or closed sequences.

Ding et al. introduced a variation called repetitive pattern mining which more closely
resembles our work [70]. Repetitive pattern mining considers infrequent patterns of ar-
bitrary length that may repeat in a trace. Our work achieves improved time and space
complexity over theirs but our application is more specialized to finding patterns of length
two in real-time system traces.

2.10 Conclusion

We have introduced the nfer rule-based formalism and system for inferring event stream
abstractions. The problem has been inspired by actual planetary space mission operations,
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specifically the Mars Curiosity rover. The result of applying an nfer specification to an
event stream is a set of intervals: named sections of the event stream, each including a start
time, an end time, and a map holding data. Intervals are formed from events and other
intervals, forming a hierarchy of abstractions. The result may be visualized or queried, and
can generally help engineers to better comprehend the contents of an event stream. Rules
may be mined from historical data to assist users or to validate specifications. The nfer
system is implemented in both Scala and C, with an external DSL for expressing rules,
in addition to internal Scala and C DSLs (APIs). APIs are also available in the popular
programming languages R and Python. The system has been shown to scale well, aided
by simple algorithmic enhancements without much loss of precision.
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Chapter 3

Online Distributed Anomaly Detection

3.1 Introduction

Anomaly detection is a form of Runtime Verification (RV) where nominal behavior is
typically learned from the statistical analysis of historical data. In many cases, anomaly
detection concerns continuous signals rather than the more typical event series in other
forms of RV. However, both terms may be applied to the detection of unexpected behavior
in either continuous or discrete data that may be a symptom of a failure.

Failures may be caused by logical faults, which can be avoided with good design princi-
ples, or execution faults, which can be difficult or impossible to detect at design time [153].
Execution faults may be caused by software errors such as memory leakage or deadlocks, or
hardware errors like degraded sensors. Malicious attacks may also cause execution faults,
exploiting weaknesses in hardware and software to cause unpredictable behaviors. As
safety-critical embedded systems become more ubiquitous and connected, such attacks be-
come more scalable and realistic [219]. Examples of attacks on embedded systems include
disabling a car’s braking system [161] and injecting a fatal dose of insulin in an insulin
pump [158].

Detection systems must be able to identify faults and attacks quickly and accurately
for their results to be useful. If an anomaly is missed it cannot be corrected, and if an
anomaly is detected too late, the correction may be unable to prevent a failure. To use an
analogy, anomalies such as faults and attacks can be thought of as diseases in a system. To
prevent a disease from causing a system failure, it is necessary to understand the disease’s
symptoms, carefully watch for them, and act quickly if any are detected.
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In this chapter, we introduce a taxonomy of anomaly symptoms and a framework for
low-latency online detection of these anomaly symptoms called Palisade. Our system is
designed to monitor remote, real-time embedded systems, and to provide a unified mecha-
nism for responding quickly to faults and attacks. Palisade is also designed to be extensible
to facilitate the incorporation of new anomaly detection algorithms to detect the symp-
toms of unforeseen anomalies. Among other detectors, Palisade includes an integration
with nfer.

The main contributions of this chapter are:

• We describe a comprehensive taxonomy of symptoms of anomalies that may occur in
embedded systems and give examples of instances in the literature where they occur.
This taxonomy is a valuable resource for anomaly detection work as it supplies a
shared language with which researchers and practitioners can discuss their capabilities
and requirements.

• We propose Palisade, a data streaming framework that supports online anomaly de-
tection for embedded systems. We present its software architecture, design choices,
included anomaly detectors, and two evaluations of its detection latency and exten-
sibility.

• We evaluate the applicability of Palisade through two case studies: one using real
data from an autonomous car and a second using data generated from an autonomous
driving development platform. We show that, by integrating different anomaly de-
tectors, Palisade is able to detect more anomalies than a stand-alone detector.

Palisade deviates from conventional anomaly detection frameworks in that it is designed
to monitor remote, embedded systems and to provide online verdicts with low latency.
Many anomaly detection algorithms have been proposed in recent years but the vast ma-
jority are designed to operate offline, by analyzing recorded traces [8, 44, 176, 19, 9, 184].
Offline anomaly detection is useful for post mortem analysis of problems, but not to prevent
failures at runtime. To monitor remote systems, events and readings must be transmitted
to detection algorithms using a data streaming architecture. Palisade uses the publish-
subscribe interface from the Redis in-memory database [190].

Our contributions improve on the state-of-the-art of both taxonomies of anomalous be-
havior and anomaly detection frameworks. We propose a finer grained and more extensive
taxonomy of anomalies from prior works, including symptoms of anomalies in an event se-
ries. Ours is also the first framework that unifies many algorithms into an online anomaly
detection system that can be applied to remote, embedded systems.
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The rest of this chapter is organized as follows. Section 3.2 describes anomaly symptoms
in both continuous signals and event series. Section 3.3 introduces and discusses the
Palisade architecture. Sections 3.4 and 3.5 present the two case studies and performance
results. Section 3.6 discusses a number of ways to evaluate the framework. Section 3.7
summarizes prior work related to this chapter. Section 3.8 concludes the chapter.

3.2 Anomaly Symptoms

This section logically groups the anomaly symptoms that are present in the observable
outputs of a system. These symptoms represent the realization of a perturbation in an
internal, unobserved state machine. These symptoms do not prove an anomaly by their
mere presence, but an anomaly may cause one or more symptoms, hence the disease-
symptom analogy. The list in this section is not exhaustive, but categorizes common
anomaly symptoms.

This taxonomy relates to Mitre’s Common Attack Pattern Enumeration and Classifi-
cation (CAPEC) [165], in that both CAPEC and this taxonomy can be used to classify
capabilities and behaviors. They differ substantially in that CAPEC describes possible
attacks, while this section simply describes symptoms of attacks or other, non-malicious
anomalies.

Many of the symptoms defined in this section are expressed in relation to a set of
parameters. Examples include the constant factor c expressing the spike height for spike
symptoms, or the difference ` expressing the difference required to define a level change
symptom. For a given system, a user can determine these constants using a system simu-
lation based on prior knowledge, or traditional parameter-finding approaches such as grid
search [36, 89].

3.2.1 Notation Used in this Section

The arithmetic mean, sometimes just called the mean, of n values σ = 〈x1, · · · , xn〉 is
σ = 1

n
Σn
i=0xi. The mean of a sequence σ is denoted σ. The variance of n values σ =

〈x1, · · · , xn〉 is var(σ) = 1
n
Σn
i=0(xi − σ)2 and the standard deviation (stdev) is the square

root of the variance stdev(σ) =
√

var(σ). The absolute value of a number n, denoted
|n| is n if n ≥ 0 or −n if n < 0. We use Iverson Bracket notation [Q] for some Boolean

condition Q to denote [Q] =

{
1 if Q is true
0 otherwise

. The standard normal distribution is given as
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the probability density function N(x) = 1√
2π
e−

1
2
x2 . The general normal distribution is the

standard normal distribution with the domain stretched to a specified stdev and translated
to a specified mean. We denote the general normal distribution as N (x|m, s) = 1

s
N(x−m

s
).

The Discrete Fourier Transform (DFT) of a time series is a sequence of the same length
of the frequency components of the time series. Given a time series σ with length N , its
DFT X is defined by Xk = ΣN

n=1σne
− 2πi

N
k(n−1). We write F(σ) to denote the DFT of σ.

3.2.2 Continuous-Signal Anomaly Symptoms

For the purposes of anomaly symptoms, we define a continuous signal as a digitally sampled
signal with a constant sample rate, represented here as a time series of type R∗. This signal
is expected to be the result of readings from a single sensor, not an amalgamation of many
sources. The constant sample rate means that the sample time of each value is known from
its index in the time series.

Spikes and S-waves

We define a Spike (Figure 3.1a) as a subsequence of contiguous samples that lie farther than
a given number of standard deviations from the current mean of the signal. To account
for signals with means that change over time, we consider the distance to the mean of a
window of samples prior to the subsequence.
Definition 1 (Spike). Given a time series y ∈ R∗, indices p and q, a window size n ∈ N,
and a constant factor c ∈ R, the subsequence y[p+1,q] exhibits a Spike if for all yt where
p < t ≤ q it holds that |yt − y[p−n,p]| > c (stdev(y[p−n,p])).

We define S-waves (Figure 3.1b) as spikes with an additional deviation in the opposite
direction immediately following the spike. S-waves can mimic spikes if the counter-spike is
sufficiently dampened.

Example: A flooding attack over a vehicle Controller Area Network (CAN) may falsely
indicate that the collision prevention system issued a command to engage the brakes [164].
Such an attack falls under the category of 〈CAPEC-125: Flooding〉 [165] and could be
detected by monitoring for Spike anomalies in the volume of CAN packets.

Drifting

A Drift (Figure 3.1c) is a slow movement of the signal mean over a period of time. We
consider only linear drift here; logarithmic and sub-linear drifts are rare, and higher order
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drifting encroaches on the definition of level changes or spikes. Mathematically, a contin-
uous signal y is offset by tc, where t is the time index and c is a constant representing the
slope of the drift.

Definition 2 (Drift). Given a time series y ∈ R∗, indices p and q, a nominal version of
the time series ŷ ∈ R∗, and a slope c ∈ R, a subsequence y[p,q] exhibits linear Drift if for
all yt where p ≤ t ≤ q it holds that yt = ŷt + tc.

Example: An infrared combustible sensor, when functioning over the operational tem-
perature limit, may drift or fail [195]. Such a failure could be detected by monitoring
temperature readings for Drift anomalies.

Noise

Noise (Figure 3.1d), an expected component of any signal, is considered a symptom of an
anomaly only when it is more pronounced than is typical. We define noise as a normally
distributed offset around the true value of the signal.

Definition 3 (Noise). Given a time series y ∈ R∗, indices p and q, some noisiness coeffi-
cient n ∈ R, and a nominal version of the time series ŷ ∈ R∗, a subsequence y[p,q] exhibits
Noise if for all yt where p ≤ t ≤ q it holds that yt = ŷt + N (0, n) where N (0, n) is a
standard normal distribution centered at zero with standard deviation n.

Example: Compressed air in truck brakes may generate acoustical interference and
cause metallic friction noise from track vehicles in ultrasonic sensors [201]. Brake failure
could be detected by correlating Noise anomalies in ultrasonic sensors with air brake usage.

Clipping

We define Clipping as a loss of data at the extrema of a signal range (Figure 3.1e), where
a signal is of a higher amplitude than is supported by the sensor or transmission medium.
Thus a clipped signal is indicated by a large proportion of samples at the maximum or
minimum extent of the sample medium.

Definition 4 (Clipping). Given a time series y ∈ R∗, indices p and q, maximum and
minimum possible sample values ymax, ymin ∈ R, and a threshold ε ∈ R, a subsequence
y[p+1,q] exhibits Clipping if (Σp<t≤q([yt = ymax] + [yt = ymin])/(q − p)) > ε.
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Example: A partially blinding attack on a camera of a vehicle by emitting light can
hide objects [181]. This light can exceed the input range of the camera and would appear
as clipped. This attack is an example of 〈CAPEC-607: Obstruction〉 [165]. Such blinding
light attacks could be detected by monitoring for Clipping anomalies.

Loss

While Loss (Figure 3.1f) may more typically refer to high noise levels making it difficult to
decode a signal, here we use loss to indicate a complete loss of a signal. Although trivially an
anomaly, a total loss of signal may be a symptom of temporary network disruption without
any more dangerous cause. We represent a total loss of signal as a sudden transition to a
fixed sample value. This can be observed as a special case of Clipping, where the extrema
of the signal are identical for a short time.

Definition 5 (Loss). Given a time series y ∈ R∗, indices p and q, and a threshold ε ∈ R,
a subsequence y[p+1,q] exhibits Loss if (Σp<t≤q([yt = yt+1])/(q − p)) > ε.

Example: An attack sending a large volume of request messages over the J1939 pro-
tocol increases the computational load of the recipient ECU until it is not able to perform
regular activities like transmitting periodic messages [171]. Such an attack is an example
of 〈CAPEC-125: Flooding〉 [165] and could be detected by monitoring CAN traffic for Loss
anomalies.

Smoothing

We define Smoothing to be a reduction in the short term variance of a signal compared
to recent history. Smoothing (Figure 3.1g) is the rarest of the symptoms presented here,
with few natural causes.

Definition 6 (Smoothing). Given a time series y ∈ R∗, an index t, a constant k ∈ N
representing how far back the recent historical signal variance should be considered, and
the factor threshold τ ∈ R at which the signal is considered smoothed, a subsequence of n
samples y[t,t+n] exhibits Smoothing if var(y[t,t+n]) < var(y[t−(nk)−1,t−1])τ .

Example: In an attack of a control system, the attacker may observe and record sensor
readings and then continuously repeat the recorded values during the attack [166]. This is
an example where the sensor values are smoothed. Such an attack falls under the category
of 〈CAPEC-148: Content Spoofing〉 [165]. Such spoofing attacks could be detected by
monitoring sensor readings for Smoothing anomalies.
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Amplification

Amplification (Figure 3.1h) is a simple gain on the target signal. For amplification of an
original signal we multiply every sample by some factor.

Definition 7 (Amplification). Given a time series y ∈ R∗, an index t, the magnitude
threshold of amplification α ∈ R, and an unamplified time series ŷ ∈ R∗, a sample yt
exhibits Amplification if yt > αŷt.

Example: Analog to Digital Converters (ADCs) can be attacked by amplifying analog
signals past the dynamic range of the device. These attacks can obscure other malicious
behavior and damage hardware [39]. This type of attack is an example of 〈CAPEC-153:
Input Data Manipulation〉 [165]. It could be detected by monitoring the analog signal for
Amplification anomalies.

Level Change

A Level Change (Figure 3.1i) symptom is observed when the mean of a signal changes in a
short period and then remains consistent at the new level. Slower changes may fall under
drifting.

Definition 8 (Level Change). Given a time series y ∈ R∗, an index t, a window size
w ∈ N, an acceptable minimum level change threshold ` ∈ R, and a minimum number
of samples the mean change must persist n ∈ N, a subsequence y[t,t+w−1] exhibits a Level
Change if |y[t+w,t+w+n] − y[t−n−1,t−1]| > `.

Example: An attack that increases the amount of code execution will increase the
power consumption of the Central Processing Unit (CPU), which can be observed as a
Level Change [168, 169, 132]. Such an attack could be an example of 〈CAPEC-175: Code
Inclusion〉, or 〈CAPEC-242: Code Injection〉 [165]. Many attacks with this profile can be
detected by monitoring the power consumption of the CPU for Level Change anomalies.

Frequency Change

A Frequency Change (Figure 3.1j) occurs when the primary frequency of a signal changes
over a short period. We say a Frequency Change occurs if the primary frequency in a
sliding window moves more than some threshold over some time window.

71



Definition 9 (Frequency Change). Given a time series y ∈ R∗, an index t, a window size
w ∈ N, a function P : R∗ → R which extracts the frequency of the highest peak from a DFT
(denoted F), a threshold ε ∈ R, and a minimum number of samples the frequency change
must persist n ∈ N, a subsequence of w samples y[t,t+w−1] exhibits Frequency Change if
|P (F(y[t+w,t+w+n]))− P (F(y[t−n−1,t−1]))| > ε

It may be useful to consider more frequencies, but we restrict our definition to only
consider the primary frequency for simplicity.

Example: An attack inserting a burst of light into a vehicle camera may change
the tonal distribution (light frequency) of the captured images, resulting in misclassifica-
tion [181]. This attack is an example of 〈CAPEC-607: Obstruction〉 [165] and it could be
detected by monitoring captured images for Frequency Change anomalies.

Echo/Reflection

We consider an Echo (Figure 3.1k) to be a duplication of a previous series of samples on
top of the underlying signal at a later position. A Reflection is identical to an Echo, except
that the repeated signal is inverted.

Definition 10 (Echo). Given a time series y ∈ R∗, indices t and t′, an echo length e ∈ N,
an echo coefficient (the factor at which the echo is played back) q ∈ R, and the nominal
form of the time series ŷ ∈ R∗, if we consider the subsequence y[t,t+e] as the origin of the
echo, the subsequence y[t′,t′+e] exhibits Echo if y[t′,t′+e] = ŷ[t′,t′+e] + y[t,t+e] × q.

Example: A relay attack on the original signal sent from the vehicle LiDAR creates
fake echoes and can make real objects appear closer or further than their actual location,
thus affecting the mission planning [181]. This attack is an example of 〈CAPEC-586:
Object Injection〉 [165]. Such an relay attack could be detected by monitoring the LiDAR
signal for Echo and Reflection anomalies.

3.2.3 Event-Series Anomaly Symptoms

Symptoms of anomalies also appear in event series, which are defined as a sequence of
discrete events rather than a continuous signal. An event series represents a trace of the
execution of an automaton where each event describes a state transition. Event series differ
from discretized continuous signals in that their events are not required to occur at regular
time intervals and they may carry more complex data than only a single real value.
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Figure 3.1: Time Series Anomaly Symptoms. The red line indicates the period of the
described anomaly

Event Frequency Change

When events of the same name are periodic or semi-periodic, they have fairly consistent
inter-arrival times and, by extension, frequency. When that frequency changes suddenly,
it can be a symptom of a system anomaly. Similarly, when the frequency of all events in
a trace change suddenly, it may be due to an anomaly.

The inter-arrival time of an event is the difference between the clock times of successive
events of the same name. It can be thought of as the period of the event.

Definition 11 (Inter-arrival Time). Given a trace T ∈ T, an event name µ ∈ I, and
a non-empty time interval defined by the end points t1, t2 ∈ Clock where t1 < t2, the inter-
arrival time is given by the curried function interArrival : T→ I × (Clock× Clock)→ Clock.
Define a set S containing all the events between t1 and t2, S = {(µ, t, ·) ∈ T : t1 ≤ t ≤ t2}.
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For all (µ, t, ·) ∈ S, interArrival(T )(µ, (t1, t2)) = (max t−min t)/(|S| − 1).

Event frequency measures how often events occur in a given time span. It is the inverse
of inter-arrival time.

Definition 12 (Event Frequency). given a trace T ∈ T, an event name µ ∈ I, and a
non-empty time interval defined by the end points t1, t2 ∈ Clock where t1 < t2, the event
frequency of µ is given by the curried function eventFreq : T → I × (Clock × Clock) → Clock.
It is defined as eventFreq(T )(µ, (t1, t2)) = 1/interArrival(T )(µ, (t1, t2)).

A sudden change in event frequency, then, is when the first derivative of event frequency
is high. A rapid change in event frequency can be found by taking the difference between
successive time intervals (or windows) in the trace. If the difference exceeds some threshold,
then the change in event frequency may indicate an anomaly.

Definition 13 (Frequency Change). Given a trace T ∈ T, an event name µ ∈ I, a
window size w ∈ Clock, and a threshold ε ∈ R, T contains an Event Frequency Change if
∃t1, t2, t3 ∈ Clock such that eventFreq(T )(µ, (t1, t2))− eventFreq(T )(µ, (t2, t3)) > ε.

Example: Lin and Siewiorek introduced their Dispersion Frame Technique (DFT) to
predict hardware failures [152]. From analyzing the logs of file servers, they observed that
there exists a period of an increasing rate of intermittent errors before most hardware fail-
ures. Many such failures could be detected by monitoring error reports for Event Frequency
Change anomalies.

Unexpected Event

Most traces only contain events with a limited vocabulary of event names. While events
themselves are unique, due to their varying clock times, the event names are repeated many
times. When an event occurs in a trace with a name that has not come earlier in the trace,
it may be a symptom of an anomaly.

Definition 14 (Unexpected Event). Given a trace T ∈ T, an Unexpected Event is an
event (µ, t1, ·) ∈ T such that @(µ, t2, ·) ∈ T where t2 < t1.

By this definition, however, most events at the beginning of a trace will be considered
unexpected. To solve this problem, we can restate the definition in terms of the probability
that an event occurs.
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Definition 15 (Improbable Event). Given a trace T ∈ T and a threshold ε ∈ R, an
Improbable Event is an event e ∈ T such that P(e ∈ T ) < ε.

Example: Bellovin reported receiving broadcast packets meant for local networks,
requests to unused ports, and requests to unoccupied addresses over the public Internet at
AT&T in his classic whitepaper [35]. These types of requests are examples of 〈CAPEC-
169: Footprinting〉 [165] and they could be detected by monitoring network traffic for
Unexpected Event anomalies.

Periods of Silence

A period of silence in a trace is a segment of time where no, or few, events occur. Events
may occur more-or-less frequently during the operation of a system as different behaviors
result in different patterns in the trace. However, nominal system behavior usually results
in some events appearing. When a period occurs where no events appear in the trace, it
may be a symptom of an anomaly.

Definition 16 (Period of Silence). Given a trace T ∈ T and a minimum number of
events ν ∈ N, a Period of Silence is a non-empty time interval defined by the end points
t1, t2 ∈ Clock where t1 < t2 such that |{(·, t, ·) ∈ T : t1 ≤ t ≤ t2}| < ν.

The threshold for when a time interval is considered a period of silence varies from
system to system. Some high priority tasks may monopolize system resources while not
emitting any events. To solve this problem, we can restate the definition to specify a
minimum length of the interval.

Definition 17 (Minimum Period of Silence). Given a trace T ∈ T, a minimum number of
events ν ∈ N, and a minimum length ` ∈ R where ` > 0, a Minimum Period of Silence is
time interval defined by the end points t1, t2 ∈ Clock where t2 − t1 ≥ ` such that the interval
is a Period of Silence by Definition 16.

Example: Missing log messages can indicate problems and failures in High Perfor-
mance Computing (HPC) logs that are too large for humans to manually analyze [106].
These types of failures can be detected by monitoring logs for Periods of Silence anomalies.

Sampled Value Anomaly Symptom

When an event trace includes sampled values from a continuous signal, those sampled
values may include the same trace anomalies defined in Section 3.2.2. An event trace is
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not sampled at a fixed rate like a time series, however. To test for sampled value anomaly
symptoms, it may be necessary to extrapolate the values between samples to approximate
a continuous signal.

There are several popular methods for recovering a continuous signal from irregular
samples. These algorithms include, for example, the projections onto convex sets (POCS)
method [212], the Wiley/Marvasti method [159], the Sauer/Allebach Algorithm (also called
the Voronoi method) [200], and the Adaptive Weights Method [88]. These methods gen-
erally construct an auxiliary signal from some sample values and then obtain an initial
approximation by applying a low-pass filter. The error between this approximation and
the samples is then fed into an iterative algorithm which can recover the signal if the
sampling density is high enough.

Example: Changes in byte frequency patterns in network payloads to the same host
and port can be accurate predictors of network intrusions [226]. Such attacks can be
detected by monitoring for Sampled Value Frequency Change anomalies.

3.3 Palisade Architecture

Palisade is motivated by the need to remotely detect a dynamic range of anomaly symptoms
in an embedded system at the time they occur. We are further motivated by the desire to
combine multiple anomaly detectors to leverage their different performance characteristics
into a single, more reliable, detector. These motivations lead to the following requirements:

1. the anomaly detection must have low latency,

2. it must be easy to implement and maintain detectors,

3. the detectors must be able to be run on separate machines,

4. multiple detectors must be able to run in parallel on the same data, and

5. deployment of the system must be simple.

Requirement 1 is due to the need to respond to anomalies with enough time to mitigate
their effects. Requirement 2 is important to any serious software framework, since it should
always be a goal to reduce engineering costs. Requirement 3 allows Palisade to run on
separate machines from the monitored system and to support anomaly detection appliances
to plug into existing networks. It also facilitates horizontal scaling. Requirement 4 is
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related to Requirements 1 and 3, since operating multiple detectors in series over multiple
machines would delay detection and require complex sequencing. Requirement 5 is to
reduce the barriers to adoption of the system: if it is hard to install, no one will use it.

Palisade is designed as a set of distributed micro-services built around a data streaming
architecture. These micro-services are implemented as three types of nodes: sources, pro-
cessors, and sinks. Nodes are typically written in Python as Palisade provides a Python
API to simplify their creation and maintenance. However, it is also possible to integrate
existing tools written in other languages with Palisade. Figure 3.2 presents an overview of
the Palisade architecture through a Unified Modeling Language (UML) information flow
diagram [198]. Each node uses the publish-subscribe interface of the Redis data streaming
infrastructure to receive and send data. We do not discuss the GUI in this chapter, as it
is out-of-scope.

Figure 3.2: UML information flow of the Palisade architecture

3.3.1 Data Streaming

To support Requirements 1, 3, and 4, we needed to find a distributed streaming architec-
ture to transport information between different nodes. We evaluated the latency of four
streaming frameworks while considering their inclusion in the Palisade architecture. La-
tency is defined as the time difference between the instant data is generated by a source
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and the instant it is received by a processor or a sink [77]. As a result of this experiment
we chose Redis as the data streaming architecture for Palisade.

We designed a set of experiments to measure the latency of four data streaming frame-
works: Redis [190], RabbitMQ [189], Kafka [138], and NATS [174]. We used two first
generation Raspberry Pis (single 700 MHz ARM6 core, 128 MB system RAM) for the
subscriber and the publisher and a Raspberry Pi 2 (quad-core ARM Cortex-A7, 1G RAM)
for the server. The clients and the server were synchronized using Precision Time Protocol
(PTP), a network level time synchronization protocol capable of microsecond accuracy.
We varied the transmitted message sizes (256 bytes, 1 KB, 100 KB, and 1 MB) and the
publishing frequency (30 Hz, 60 Hz, and 100 Hz). Latency was measured by including
the timestamp at which a message was sent within the message itself. The subscriber
then noted the timestamp at which it received the message and subtracted the sending
timestamp to find the latency. We ran each configuration of the experiment five times and
extracted the average and standard deviation of the latency.

Table 3.1 shows the results for Redis latency. We note that mean latency increases as
the packet size increases, as does the standard deviation. The throughput also increases
when both frequency and packet size increase, reaching 6 MB/s at 1 MB and 100 Hz.
Redis presents the lowest latency of the four data streaming frameworks. Refer to [77] for
a complete comparison.

Table 3.1: Redis latency results in seconds

Freq. (Hz)/Packet size 256 B 1 KB 100 KB 1 MB

30 0.0125
± 0.005

0.184
± 0.005

0.0731
± 0.035

0.315
± 0.3

60 0.0218
± 0.005

0.0213
± 0.005

0.0461
± 0.035

0.337
± 0.3

100 0.0425
± 0.005

0.0245
± 0.005

0.0946
± 0.035

0.365
± 0.3

REmote DIctionary Server (Redis) is an open-source, in-memory, key-value database
that provides a publish-subscribe interface. Redis clients publish data to channels using the
REdis Serialization Protocol (RESP), and subscribers receive data in the same order it was
published. Redis also supports integration with on-disk databases. Moreover, Redis has
low memory consumption; in a 64-bit system, 1 million keys (hash values), representing an
object with five fields, use around 160 MB of memory [190]. Redis provides a master-slave
replication mechanism in which slave server instances are exact copies of master servers.
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To reduce the network round trip latency, Redis implements pipelining, making it possible
to send multiple commands to the server without waiting for individual replies [190]. These
replies are instead batched together into a single response.

3.3.2 Data Format

Formatting the data transmitted between Palisade nodes requires choices to be made
between the relative importance of the requirements listed in Section 3.3. If Require-
ment 2 (implementation) and Requirement 5 (deployment) are more important, then a
textual format is preferable due to its increased interoperability and human readability.
If Requirement 1 (latency) is the most important one, then a simple, offset-based binary
format is better because of its lower bandwidth requirements and parsing costs. Palisade
handles this conflict by supporting both JavaScript Object Notation (JSON) and a custom
binary format for data transmission between nodes.

JSON is a standardized data format [79] with support in most programming lan-
guages [123], which makes it easy to consume and produce messages compatible with
Palisade from different tools. JSON is a textual format, meaning the data is represented
as sequences of characters and, as such, must undergo some processing to convert to-and-
from internal program state. While this does increase the processing requirements of JSON
formatted data, it has the benefit of being human readable which substantially eases de-
bugging. Formatting with JSON also means that new parameters may be added without
breaking backward compatibility since a parser will ignore JSON object keys that aren’t
expected.

In contrast, an offset-based binary format needs to be strictly specified and any changes
require updates to producers and consumers alike. Such a binary format has the advantage
of transmitting less data and does not require parsing since its fields may be found by their
memory offsets (like a C struct). Some binary formats, like Google’s Protocol Buffers,
are more complex and allow some modification without updating all uses. However these
features always incur additional costs that must be considered. For example, it is only
possible to extend a Protocol Buffer message if field numbers were previously allocated for
that purpose [71].

To support both sampled continuous value signals and discrete event series data, Pal-
isade includes JSON formats for both time series and event series content. Palisade only
supports a binary format for time series data. The time series binary format also en-
ables integration with high throughput data sources such as a logic analyzer. Palisade
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does not currently support more complex binary formats that attempt trade-offs between
extensibility and latency as there are no current use cases for such a format.

Figure 3.3 shows different JSON formats for event and time-series data. Time-series
data (Figure 3.3a) contains the initial timestamp for the received message as well as a
frequency, which is used to calculate the timestamp for each datum (by using the fre-
quency and the timestamp of the first data). For the event-based format (Figure 3.3b),
timestamp represents the instant in which the event is produced and the data field can be
composed of arbitrary subfields (also in JSON format).

Figure 3.3c represents the binary format for time series. There are three fields in little-
endian format. The first field is the millisecond component of the message time, followed
by the two magic bytes set to zero, followed by the seconds portion of time, and the data
in 16-bit signed two’s complement integer format. In Figure 3.3c, there are 100 samples,
which makes the data field have 200 bytes (100 integers, 2 bytes each).

{
"timestamp": 12345.5678,
"data": [0.3, 0.1, −0.5],
"frequency": 100000

}

(a) Time-series JSON format.

{
"timestamp": 12345.5678,
"data": {
"somefield": 13.3,
"someotherval": "test"

}
}

(b) Event-series JSON format.

0x5D03 // 861
milliseconds

0x0000 // magic bytes
0x00100000 // 256 seconds
<data> // 200 bytes = 100

16−bit signed ints

(c) Time-series binary format.

Figure 3.3: Examples of data formats used in Palisade

3.3.3 Source Nodes

Source nodes are responsible for streaming data into Redis. These nodes select and transmit
data from a database, file, or an embedded system. Examples of source nodes are one that
reads data from a relational database instance, a node that reads a Comma Separated
Value (CSV) file, and a User Datagram Protocol (UDP) sniffer that reads packets from
the network. Data might include system log entries, aggregate network states, or commands
from an autonomous driving stack. Usually, a source node should read data from some data
source, change it to JSON or binary Palisade formats, and publish it to a Redis channel.
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3.3.4 Processor Nodes

Processors in Palisade are responsible for detecting anomalies and forwarding the results
to sink nodes (see Section 3.3.5). Each processor implements a different anomaly detection
algorithm.

All processors are sub-classes of the abstract Processor class. A processor object is in-
stantiated by the ProcessorLauncher class, which associates the processor with an instance
of the DataSource class, which supplies data from either Redis or an offline file source for
unit testing purposes.

Individual processors must inherit from the Processor class and implement an interface
used by the ProcessorLauncher to pass data from the DataSource. The relevant methods re-
quired are configure (which collected metadata) and test_on_data (which is invoked when
new data is ready from the DataSource). Other optional methods that may be implemented
by processors are: begin (called on startup), end (called on shutdown), load_model (called
if a model is specified in configure) and train (used to build models where applicable).

All non-source nodes subscribe to a channel, named command. This is motivated by
Requirements 3 and 5, that deployment must be distributed and simple. Without this
channel, each Palisade node would need to be individually controlled from a local interface.
The command channel supports the control commands for nodes (such as restart and info
(a status command)) the are used for general system maintenance.

Once a detector finds an anomaly, it publishes the timestamp at which the anomaly
occurred, a note about its cause, and the source channel of the anomaly to a specific Redis
channel. Figure 3.4 shows an example of the JSON data format for anomalies in Palisade.
The timestamp field contains the time at which the anomaly occurred. The anomaly field
is a measure of the confidence (c ∈ R : 0 < c ≤ 1) of the detector that an anomaly has
occurred, where 1 represents 100% confidence. The note field is a textual description of
the anomaly, and channel contains the Redis channel in which the anomaly happened.

{
"timestamp": 12345.5678,
"anomaly": 1,
"note": "what happened",
"channel": "input channel name

"
}

Figure 3.4: JSON format used when an anomaly is detected
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3.3.5 Sink Nodes

Sinks are nodes that subscribe to Redis channels to perform final processing and do not
publish their results. They usually serve as interfaces to other systems, such as GUIs,
or alarm systems. Examples of sink nodes include the insertion of received data into
databases, writing to I/O ports when an anomaly is received, and storing results into files.

3.3.6 Example Anomaly Detectors

Palisade currently includes more than 20 example anomaly detectors. All of these detectors
are based on existing methods and are distributed with Palisade to provide out-of-the-box
detection of the anomaly symptoms listed in Section 3.2. Tables 3.2 and 3.3 show detectors
in Palisade and the anomaly symptoms they are capable of detecting. Table 3.2 shows the
detectors for continuous-signal anomaly symptoms (see Section 3.2.2) while Table 3.3 shows
the detectors for event-series anomaly symptoms (see Section 3.2.3). In both tables the left-
most column shows the detectors while the top-most row shows the anomaly symptoms.
The intersection of row and column contains a check mark (3) if the detector is sensitive
to the anomaly symptom and is blank otherwise.

For some detectors, the capability to detect an anomaly symptom depends on the
magnitude of the symptom. For example, the spike detector can detect the noise symptom
as long as the noise falls outside of the variance of the previous time window. Even though
multiple detectors may be able to detect the same anomaly symptom, they complement
each other by detecting it in different situations. The distributed nature of Palisade allows
running multiple detectors in parallel, increasing the robustness of the system (we show
such a situation in the Section 3.5).

Below is a brief description of each of the example detectors. For the more complex
detectors, see the relevant citations for a detailed explanation of the algorithm.

Continuous Signal Example Detectors

• Autoencoders uses a neural network that can encode and then decode windows of
non-anomalous time series [137]. The network is trained by comparing its input to
its output and trying to find an encoding that minimizes the difference. Depending
on the configuration, the encoding can be on the order of 10 bits for a window of
hundreds of samples. When running, the detector encodes and then decodes its input
time series using the same network it trained on nominal data. If the network does
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a poor job of producing output that matches its input (measured by a difference
metric), then the detector concludes that the network must not have seen similar
data during training, and therefore the input contains symptoms of anomalies.

• Clip detect checks for a number of contiguous identically valued symbols at the
extremes of the range of a time series. The detector assumes that a sufficiently long
sequence of such values is a symptom.

• SAX + HMM uses Symbolic Aggregate approXimation (SAX) to discretize a time
series into a sequence of symbols [151]. The symbols are based on the distribution of
a non-anomalous time series where a new symbol is generated based on thresholds in
the learned distribution. The sequence of those symbols are used to build a Hidden
Markov Model (HMM) approximating the sequence [228]. The input to the detector
is encoded into symbols using the same distributions. Sequences that are sufficiently
unlikely in the learned HMM are considered symptoms of anomalies.

• Sixnum tracks changes in six standard statistical metrics: mean, standard deviation,
maximum, minimum, upper hinge, and lower hinge. Changes to these metrics above
configurable thresholds are considered symptoms.

• Spike detect continuously computes the variance of the most recent window of a
configurable number of samples. A new sample that falls too far outside the variance
of the current window is considered a symptom of an anomaly.

• Spectrum detect stores a model of the frequency distribution calculated from the
Fourier transform of a non-anomalous time series averaged over time. Windows of
the input time series are transformed into the frequency domain and compared to
the average frequency model. Deviations beyond a configurable distance metric are
considered symptoms of anomalies.

Event Series Example Detectors

• HMM is similar to the SAX + HMM detector, except that the input is already
composed of events that represent state change instead of continuous samples of a
signal, so there is no need to transform them using SAX. Since events have a variable
time between them, the HMM can consider the time between events, as well as the
type of the event when evaluating the likelihood of the sequence against the learned
model.
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• Nfer is a recently introduced language and system for inferring event stream ab-
stractions [129, 130] that utilizes a syntax based on ATL [11]. See Chapter 2 for
more details on nfer. The integration with Palisade utilizes the nfer Python API
described in Section 2.5.4. If an interval produced by nfer has been designated
as anomalous, its generation means a symptom of an anomaly has been detected.
Palisade supports both hand-written and mined nfer specifications [127].

• SiPTA uses the expected periodicity in events from embedded systems to apply
signal processing techniques to compare the input traces to non-anomalous data.
For more information, see Zedah et al.’s 2014 paper [236].

• TPG trains a Task Precedence Graph based on a non-anomalous event stream. This
method exploits the periodicity of tasks executed in an embedded system. If the
input event stream does not follow the learned graph, it is considered a symptom of
an anomaly. For more information, see Iegorov and Fischmeister’s 2018 paper [117].

• TRE trains Timed Regular Expressions based on a non-anomalous event stream. If
an event from the input stream of the detector violates the learned expressions, then
it is considered a symptom of an anomaly. For more information, see Narayan et al.’s
2018 paper [172].

Table 3.2: Example detectors and their detected continuous-signal anomaly symptoms
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Spike 3 3 3 3 3
S-Wave 3 3 3 3 3
Drifting 3 3 3 3

Noise 3 3 3
Clipping 3 3 3

Loss 3 3 3 3 3 3
Smoothing 3 3 3

Amplification 3 3 3 3
Level change 3 3 3 3

Frequency change 3 3
Echo/Reflection 3
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Table 3.3: Example detectors and their detected event-series anomaly symptoms
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Event Freq. Change 3 3 3 3 3
Unexpected Event 3 3
Periods of Silence 3 3 3 3 3

Sampled Value 3

3.3.7 Fault Handling

Palisade is designed to detect anomalies in streams of data from remote systems, not in its
own operation. However, Palisade includes some failure handling capabilities. All nodes
in Palisade are monitored by a system service and restarted in the presence of a failure.
Detector node failures are interpreted as though an anomaly has been reported by the failed
detector, including failures to respond in a configurable time window. This can lead to
false-positives, but it is a simple mechanism to alert operators to a situation that deserves
their attention. Source node failures are interpreted as loss or period of silence anomaly
symptoms by the relevant detectors, and will be reported as anomalies. Sink node failure
handling varies depending on the node, but many are obvious (GUI failures) or fail-warn
(alarm systems).

3.4 Case Study 1: Autonomous Vehicle

We evaluated the performance and applicability of Palisade using the University of Wa-
terloo’s autonomous car as a case study. The vehicle was a 2016 Lincoln MKZ fitted with
a range of sensor arrays including LiDAR, a Global Positioning System (GPS) receiver,
Inertial Measurement Units (IMUs), cameras, and radars. Figure 3.5 shows an overview
of the software and hardware organization in the vehicle. Sensors, such as LiDAR and
cameras, produce data that is the input of the autonomy software stack. The output of
the autonomy stack (control commands) is sent, for example, to actuators controlling the
steering and brakes. Two Renesas automotive computers were installed on the vehicle to
run the autonomous driving software. Each computer was equipped with two SoCs with
multiple ARM CPU cores and a single ASIL-D certified Micro-controller Unit (MCU).
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Figure 3.5: Overview of the software/hardware organization in the autonomous car

The autonomous driving software was built using Robot Operating System (ROS). ROS
is an open source framework for robotic application development in C++ and Python for
POSIX-based Operating Systems (OSs). ROS employs the concept of nodes (a process that
performs computation), which provides modularity and development isolation. ROS nodes
operate on a periodic loop, are event-driven, or both (they publish data at different fre-
quencies into topics). Like Palisade, ROS uses a publish-subscribe model to communicate
between nodes.

We implemented a new ROS node, named ros2redis (see Figure 3.5), to receive messages
published to ROS topics and republish them to Redis channels. A Palisade sink node
received the command and sensor data and stored them in a database. The stored data
were obtained from several ROS topics with different publish frequencies. For instance,
GPS information was published at a frequency of 50 Hz, while throttle and gear reports
were sent at 20 and 10 Hz, respectively. We logged the data during several autonomous
driving sessions and then replayed the recorded data as input to Palisade.

In the next sections, we present the results of running Palisade with the collected data
from the autonomous car in two scenarios: gear flip-flop and autonomy mode flip-flop.

3.4.1 Gear Flip-Flop

The autonomous vehicle in the case study reports its current gear in messages
published to the _vehicle_gear_report topic. The values reported in the data item
_vehicle_gear_report_cmd_gear reflect the requested shift position of the automatic
transmission, and the values in _vehicle_gear_report_state_gear reflect the reported
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shift position. Both values are encoded as integers with the following mapping: {0: No
change, 1: Park, 2: Reverse, 3: Neutral, 4: Drive, 5: Low}.

The autonomous driving software sends gear change requests over an Internet Protocol
(IP) network to a separate controller that interfaces with the vehicle. The controller then
converts the requests into CAN messages that the vehicle transmission understands, and
also converts messages from the transmission back into IP packets sent to the driving
software. Messages on the _vehicle_gear_report_cmd_gear channel are only sent when
the software requests a change. The request is repeated over a short interval until a
message is received on the _vehicle_gear_report_state_gear channel reporting that
the new gear has been reached. Conversely, the transmission regularly reports its current
gear on the _vehicle_gear_report_state_gear channel regardless of whether or not it
has recently changed.

The reports of the current gear from the transmission exhibit the Sampled Value
Anomaly Symptom of Noise. When the value of the gear is stable, the signal appears
to be nominal. However, when the gear is changing, the signal varies wildly before finally
stabilizing on the correct gear. While it is not clear if intermediate gear values should be
reported by the transmission during a gear change, it is clear that the transition should be
approximately linear. The fluctuations in the signal amount to noise, and are a symptom
that an anomaly has occurred in either the transmission itself or in the CAN controller.

Figure 3.6 shows a brief sample of the two channels over a period when a gear change
into Drive was requested. The _vehicle_gear_report_cmd_gear messages (the blue
points) begin at zero, indicating no change is requested, then change to four to request a
change to Drive, then switch back to No change once the gear change is complete. The
_vehicle_gear_report_state_gear value (the red line) demonstrates the Noise Sampled
Value Anomaly Symptom as it transitions from Park to Drive.

We used nfer to detect the Gear Flip-Flop anomaly. To highlight the flexibility of
Palisade, we implemented two different integrations with nfer. The first built Redis and
JSON support directly into the C implementation of nfer, and the second used a Python
processor node to call the nfer Python API. The advantage of building support directly
in C is its execution speed, while the advantage of calling the tool through its Python API
is its simplicity: the Python nfer processor is 42 lines of code.

Our nfer specification for detecting the Gear Flip-Flop anomaly is given in Figure 3.7.
The specification contains one rule which defines conditions which, each time they are
met, cause a new interval abstraction to be produced with the associated label (topic),
timestamps, and data items also being specified by the rule. The rule says that a new
interval abstraction should be published to the gear_flip_flop topic when there are
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Figure 3.6: Gear flip-flop anomaly example

three messages published to the _vehicle_gear_report topic within 200 time units (ms)
such that the first and third specify the same gear state, but the second specifies a different
gear state.

Line 1 specifies the topic of the resulting message, while Lines 2 and 3 give the topics
on which the tool will listen for events. Lines 2 and 3 also partially specify the temporal
relationship of those events, and assigns shorthand identifiers (g1, g2, and g3) to each of the
events. The where clause, from Lines 4 through 9 specifies further conditions that must
be met to produce a new interval abstraction. The map clause, from Lines 10 through 16
specifies the data items associated with the published abstraction so that consumers of the
message can access the details of the anomaly.

We ran nfer using our Gear Flip-Flop specification with the minimality restriction
disabled (--full in the tool) and using the window optimization with the window size set
to 200. Disabling the minimality restriction causes all matched intervals to be reported
instead of the default of only reporting the shortest (minimal) intervals [129]. The window
optimization restricts reported intervals to those shorter than the window size, instead
of the default of no restriction on interval length [130]. The results are reported in Sec-
tion 3.4.3.
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1 gear_flip_flop :−
2 g2:_vehicle_gear_report during
3 (g1:_vehicle_gear_report before
4 g3:_vehicle_gear_report)
5 where
6 g1._vehicle_gear_report_state_gear =
7 g3._vehicle_gear_report_state_gear &
8 g3.begin − g1.end < 200 &
9 g1._vehicle_gear_report_state_gear !=

10 g2._vehicle_gear_report_state_gear
11 map {
12 first_gear → g1._vehicle_gear_report_state_gear,
13 anomalous_gear → g2._vehicle_gear_report_state_gear,
14 anomaly → 1,
15 note → "The gear changed and reverted within 200 ms",
16 channel → "_vehicle_gear_report"
17 }

Figure 3.7: nfer specification for detection of Gear Flip-Flops

3.4.2 Autonomy Mode Flip-Flop

The autonomous vehicle reports its current autonomy state in messages published to spe-
cific topics, such as _vehicle_brake_report and _vehicle_throttle_report. When the
data item enabled is true, the car is running in autonomy mode. When enabled is false,
the vehicle is controlled by the human driver.

Once enabled, autonomy mode should remain enabled, as indicated by the enabled
data item, for the duration of a trip. However, in track testing, we found instances when
the vehicle would switch from autonomy enabled back to autonomy disabled during a lap,
giving the driver control of the vehicle. We discovered that the Dataspeed CAN module
of the autonomous vehicle would disable autonomy mode if no command was given to
the vehicle for at least 80 ms. This timeout was unexpected and caused an unsafe driving
condition. When the timeout occurs, and autonomy mode is disabled, we call the condition
Autonomy Mode Flip-Flop.

We used TREs to monitor the Autonomy Mode Flip-Flop anomaly. Regular expressions
provide a declarative way to express patterns for a system specification. TREs define timing
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constraints in a regular expression [172]. For instance, a regular expression specification
of the form “state a is followed by state b” can be modified to “state a is followed by state
b within t time units” to obtain a TRE specification. The TRE processor uses a manual
specification of a TRE to monitor and detect anomalies. To integrate with Palisade, we
added Redis support to the C implementation of the TRE detector.

The TRE specification used for detecting the Autonomy Mode Flip Flop anomaly is
the following

((〈P.S〉 [0, 3])||(〈S.P 〉 [0, 3]))+

P and S above represents the two Autonomy Mode Flip-Flop states - Autonomy En-
abled and Disabled respectively. The above specification can be translated as the occur-
rence of patterns where the flip-flop changes from enabled state to disabled state or vice
versa within 3 time units.

3.4.3 Comparison with Siddhi

To evaluate Palisade’s rules-based capabilities, we matched the nfer processor against the
Complex Event Processing (CEP) system, Siddhi. We developed a query in the Siddhi
query language to find all instances of the gear flip-flop anomaly described in Section 3.4.1,
then modified the nfer specification in Figure 3.7 to exactly match the results from Siddhi.
By first configuring Siddhi, we were able to keep its query short and natural, while the
specification for nfer to exactly match its result was more complex. The purpose of this
choice was to avoid biasing the test results against Siddhi. The data and configuration
used for this comparison is available at [126]. In this test, Palisade detected anomalies over
35 times faster than Siddhi and with much lower variance in the latency.

Siddhi is a good choice to compare with the nfer processor of Palisade because it is a
specification-based stream-processing framework. Both Siddhi and nfer require the user
to write rules in a declarative language to generate facts from a stream of input events.
Both languages are complex enough to define queries for the Gear Flip-Flop anomaly:
nfer is Turing complete when circular references are permitted [130] and Siddhi is likely
Turing complete, although no complexity analysis is available [217]. Like Palisade, Sid-
dhi supports data streaming frameworks where sources and sinks may be remote from the
processor. While Siddhi supports cloud-based installations, it can also be installed locally
and deployed where internet connections are not available. The ability to install the soft-
ware locally was important both for automotive use cases and for our ability to accurately
measure the tool’s detection latency. Siddhi is also easy to install, which is a requirement
for Palisade that many CEP systems fail to meet.

90



We used Siddhi and the nfer Palisade processor to independently monitor events sent
over a network. We ran the test on a desktop computer with an Intel I5-5200U 2.7 GHz
processor and 8 GB of memory running Linux 3.10.0. For Palisade, we streamed the data
over Redis and for Siddhi, as it did not support Redis, we sent the data directly over
HTTP. For the data, we chose a period of about 68 minutes during which 73,079 events
occurred. To simulate an online environment, we delayed publication between messages for
the same period as the difference in their timestamps. For example, the difference between
the timestamps of sequential messages A and B was 75 ms, we would publish message A
and then delay 75 ms before publishing B.

Figure 3.8 contains part of the Siddhi query to detect the Gear Flip-Flop anomaly. In
the query, Lines 1-4 match the input stream when three events occur within 200 ms where
the first and third event report gear zero but the second reports a different gear. If there is
a match, the code in Lines 5-12 are a select statement for the data to be published, while
Line 13 sends the data on the output stream over HTTP where we record the capture.
The omitted portions of the query repeat Lines 1-13, but replace the gear value of zero in
the first two lines with the other possible gears. For more information on the Siddhi query
language, see the Siddhi documentation [204] and previous publication [217].

1 from every e1=dataInputStream[gear == 0],
2 e2=dataInputStream[gear != 0],
3 dataInputStream[gear!=e1.gear]∗,
4 e3=dataInputStream[timestamp − e1.timestamp < 200 and gear

==e1.gear and timestamp > e1.timestamp]
5 select e1.timestamp as Timea,
6 e1.gear as Geara,
7 e2.timestamp as Timeb,
8 e2.gear as Gearb,
9 e3.timestamp as Timec,

10 e3.gear as Gearc,
11 e3.pySendTime as pySendTime,
12 eventTimestamp() as siddhiSendTimestamp
13 insert into outputDataStream ;

Figure 3.8: Partial Siddhi specification for detection of Gear Flip-Flops

To measure round-trip detection latency, we added the time of publication to each event
and then copied those values to the output when a gear flip-flop anomaly was detected. A
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second script monitored the results and recorded the timestamp when the anomaly report
was received. We then subtracted the passed-through publish timestamp of the message
that triggered the anomaly report (the most recent message) from the timestamp when
the anomaly report was received.

The comparison in Table 3.4 shows that, in this case, Palisade detects anomalies over
35 times faster than Siddhi. In the table, lower lower values are better for both the mean
and stardard deviation of the latency. Not only is Palisade’s mean detection latency much
faster, but the standard deviation of its latency is also about 2.4% of that of Siddhi.

Table 3.4: Results of comparing Palisade with Siddhi

Round-trip latency Siddhi Palisade
Mean (lower is better) 60.6 ms 1.58 ms
Standard deviation 20.9 ms 0.50 ms

3.5 Case Study 2: ADAS-on-a-Treadmill

Advanced Driver-Assistance Systems (ADAS)-on-a-Treadmill is a research platform of the
Real-time Embedded Software Group of the University of Waterloo [203]. The platform
mimics the movement of car on a straight road using a treadmill. A model car with on-
board ADAS features emulates various driving conditions, such as Adaptive Cruise Control
(ACC), Lane Keeping Assistance (LKA), Lane Departure Warning (LDW), and Forward
Collision Detection and Avoidance (FCDA). As in the autonomous vehicle case study,
ADAS algorithms are implemented on top of ROS. We have integrated Palisade with the
ADAS-on-a-Treadmill platform and run four anomaly detection algorithms (spike, clipping,
loss, and range) in two different scenarios (GPS spoof and dead spot). The next sections
describe each scenario and present an evaluation.

3.5.1 GPS Spoof Attack

The GPS spoof scenario simulates an attack on the vehicle positioning system. In this
scenario, one car moves from one side of the treadmill to the other on the Y-axis, while
keeping the same position on the X-axis. The GPS spoof attack changes the car’s Y position
by fooling the controller into correcting for an inaccurate reading. In a real autonomous
vehicle, such an attack could result in an accident, for instance. We performed three
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GPS spoof attacks in a five minute period and ran two Palisade detector nodes, spike and
clipping.

The spike detector keeps each data point in a buffer. Whenever the buffer is full and
new data is received, the detector discards the oldest data point. Then, it compares the
value of the newly received data with the mean and standard deviation (std) of the data
in the buffer. If the received value is greater or smaller then the std multiplied by a
constant plus the mean, then an anomaly is reported. Once an anomaly is detected, the
detector waits for a period before starting to compute the mean again. The buffer length
considered was 50, the std multiplicative constant was 4.6, and the waiting period was 8
seconds. These are all configurable parameters in the detector. We chose these parameters
because they output anomalies without false positives (we discuss the choice of detectors
parameters in Section 3.6).

The clip detector also buffers incoming messages to avoid detection jitter. When the clip
detector fills its buffer, it counts how many data points in the buffer are within a configured
distance of new values (buffer value + distance > received value and buffer value - distance
< received value). When there are ten or more matching data points within the interval,
a clipping anomaly is reported. The buffer length used in the experiment was 60 and the
distance parameter was 0.0005 (difference in the received Y-axis position).

Figure 3.9 shows the car’s Y position when the attacks were performed and the output
from the two detectors. The spike detector identifies two out of the three anomalies, while
the clip detector finds all three inserted anomalies. The first anomaly is identified quickly
by the spike detector because there is a sharp jump in the received Y position. We also ran
both detectors with the same parameters using a dataset without anomalies, and neither
detected any anomalies, as expected.

3.5.2 Dead Spot in a Platooning Formation

This scenario simulates a situation where a lighting inconsistency in the environment causes
“dead spots” on the conveyor, causing any car that drives into the spot to lose its positioning
data. This is inspired by a real experience running the University of Waterloo autonomous
car at CES 2018. In this scenario, two cars drive on the treadmill in a platoon formation.
A dead spot is inserted in the treadmill and a command is issued to move the first car
forward on the X-axis. The car then moves to the desired point, stays for a while, and
returns to its original position. We ran the experiment for five minutes and inserted four
dead spots while executing two Palisade detector nodes, loss and range check.
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Figure 3.9: Car positioning with four inserted anomalies and the anomaly detection points
(Spike and Clipping detector)

The loss detector keeps track of the average period of message reception and, when
a data point takes longer to arrive than the average multiplied by a constant factor, an
anomaly is reported. The detector checks for anomalies after a minimum number of sam-
ples is received. In the experiment, we set the minimum number of samples to 30 and
the constant factor to four. The range detector tests whether a data point is between
a maximum and minimum value. If a received data point is outside the range, then an
anomaly is reported. We trained the range check with a dataset without anomalies.

Figure 3.10a illustrates the expected behavior (without anomalies) of the platooning
formation for the first car. For instance, around 100 seconds into the experiment a com-
mand to move the first car forward is issued, which causes it to move from the position of
about 1.0 to 1.5. When the vehicle reaches the desired position, it takes a second or two
to stabilize, causing the small spikes after each acceleration.

Figure 3.10b shows the car X-axis position with inserted dead spots. The first command
to move forward is issued around 25 seconds into the experiment. The first car attempts to
move to the desired point but reaches a dead spot where it loses its positioning signal for
a short time. This causes the “shaking” at the bottom of the figure as the controller tries
to reestablish the car’s position. The range detector is able to identify such a situation
because those values are lower than the minimum in the dataset without anomalies. The
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Figure 3.10: Car positioning with inserted dead spots and the anomaly detection points
(Loss and Range detector)

loss detector recognizes the loss of communication while the car passes through a dead
spot. Around 140 seconds into the experiment, we can see two lines that move up and
down in a short period. This happens because the first car passes the dead spot by its side,
corrects its trajectory by returning to the dead spot, and then returns to its position before
the command to move was issued. This is another scenario where Palisade improves the
anomaly detection by providing means to easily run two detectors using the same input
data. We discuss how Palisade improves the anomaly detection in Section 3.6.

3.5.3 Comparison with Beep Beep 3

We evaluated Palisade against the stream-processing system Beep Beep 3. We developed
a Beep Beep 3 processor to find all instances of the dead-spot anomaly described in Sec-
tion 3.5.2. To provide an accurate comparison, we used the Beep Beep 3 HTTP palette to
construct a distributed detector, with events sent and anomalies reported over a network
connection. We found that Palisade and Beep Beep 3 attained comparable anomaly detec-
tion latency in this case, but that building such a distributed processor with Beep Beep 3
was more cumbersome than with Palisade. The data and configuration used for this com-
parison is available at [126].

Beep Beep 3 is a good choice for a comparison with Palisade because it is specifically
designed for online, streaming data processing. Futhermore, the tool is highly flexible,
supports arbitrary data types, and allows distributed processors to be created using official
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libraries. Like Palisade, Beep Beep 3 is more of an architecture and set of APIs than a
standalone tool. However, unlike Palisade, Beep Beep 3 does not include out-of-the-box
processors designed for anomaly detection, although such extensions exist [197].

We used Beep Beep 3 along with the Palisade RangeCheck and LossDetect processors
to independently monitor events sent over a network. We ran all the detectors on a desk-
top computer with an Intel I5-6300U 2.4 GHz processor and 16 GB of memory running
Linux 4.19.72. Palisade was run on Python 3.6.10 and Beep Beep 3 was executed using
OpenJDK 1.8.0_252 (IcedTea 3.16.0). For Palisade, we streamed the data over Redis and
for Beep Beep 3, as it did not support Redis, we used the Beep Beep 3 HTTP Palette
and its serialization library. For the data, we used the same period of about 5 minutes
from Figure 3.10b during which the car’s position was reported 7,030 times. To simulate
an online environment, we delayed publication between messages for the same period as
the difference in their timestamps. For example, the difference between the timestamps of
sequential messages A and B was 33 ms, we would publish message A and then delay 33
ms before publishing B.

To measure round-trip detection latency, we added the time of publication to each event
and then copied those values to the output when a loss or range anomaly was reported.
A second program monitored the results and recorded the timestamp when the anomaly
report was received. We then subtracted the passed-through publish timestamp of the
message that triggered the anomaly report (the most recent message) from the timestamp
when the anomaly report was received.

To compare between Palisade and Beep Beep 3, we constructed a Beep Beep 3 stream
processor that mimicked the behavior of both the RangeCheck and LossDetect Palisade
processors. Figure 3.11 shows an outline of this processor, along with Beep Beep 3 pro-
grams for reading and printing events [103].

Figure 3.11 uses the official Beep Beep 3 drawing guide to show how events are read,
transmitted, filtered, retransmitted, and printed. The top diagram in the figure shows
the events being read from a file and transmitted using the HTTP palette to the central
processor. The central diagram in the figure shows how events are filtered to only be
included in the output if they are out-of-range or occur after a long delay. The events
arrive via HTTP and are duplicated to follow two paths: in the lower path, they are
tested to see if they are out-of-range or occur after a long delay (there is more logic here,
not shown in the figure), in the upper path, they reach a filter (shown as a traffic light)
which is gated based on the result of the lower path test. Events for which the test is true
are transmitted via HTTP to the final program, shown as the third diagram. The third
diagram shows how events that arrive are then printed to the console.
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Figure 3.11: Graphical representation of the Beep Beep 3 processor omitting the details of
how Range and Loss were computed

Beep Beep 3 is not designed for distributed processing, however. The only officially
supported networking mechanism is direct HTTP connections, which necessitates tightly
coupled components. That is, the program that reads the events from a file must know the
address of the processor, which must, in turn, know the address of the program that prints
the events. This is why the range and loss checks are performed in one processor; if they
were separated into two processors, the file reader would need to send events directly to
both end points. That Palisade components are loosely coupled is a fundamental advantage
for distributed stream processing.

Although it was not necessary to write new Palisade processors for the comparison,
the existing processors are much simpler than the equivalent processor written with
Beep Beep 3. The reason for this disparity is that the programming model for Beep Beep 3
is not aligned with the programming language in which it must be implemented. That is,
Beep Beep 3 programs do not resemble Java programs. This can most clearly be seen in
the code to apply a function to check if an event is outside a fixed range. In Palisade,
this check is written in Python and requires a series of three conditional statements with
inequality expressions. In Beep Beep 3, the check requires the creation of 14 objects, es-
sentially requiring the author to create an abstract syntax tree by hand. Beep Beep 3 does
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support the creation of DSLs but intentionally avoids providing one 1.

The comparison in Table 3.5 shows that, in this case, Palisade and Beep Beep 3 had
similar mean detection latency but the standard deviation of Palisade’s latency was lower
(lower is better). The higher standard deviation for Beep Beep 3’s detection latency ap-
pears to be the result of the Java Virtual Machine’s Just-In-Time (JIT) compiler as a few
anomalies early in the experiment had many times longer detection latencies than the rest.
These longer detection times could probably be avoided by implementing a boot-strapping
process for the Beep Beep 3 processor, but this would require another component and
added complexity not required by Palisade.

Table 3.5: Results of comparing Palisade with Beep Beep 3

Round-trip latency Beep Beep 3 Palisade
Mean (lower is better) 2.87 ms 2.85 ms
Standard deviation 3.2 ms 0.66 ms

3.6 Discussion

This section discusses the Palisade results and design choices. We divide the discussion in
three parts: software architecture, performance, and anomaly detection.

3.6.1 Software Architecture Evaluation

Evaluating software architectures is not a straightforward task. There is no common lan-
guage to describe different software architectures and no clear way to understand and
compare different software concerns, such as maintainability, portability, modularity, and
reusability [133]. Also, the effectiveness of the software architecture is related to the ex-
perience and knowledge of the development team, thus quality must be considered in this
context.

We examined two software architecture evaluation methods, Software Architecture
Analysis Method (SAAM) [133] and Architecture Tradeoff Analysis Method (ATAM) [134],
to determine if we could objectively evaluate Palisade’s architecture. We found that both

1The API provided by Beep Beep 3 could arguably be described as a deep internal DSL
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methods are intended for evaluating monolithic software projects that serve specific busi-
ness cases, and that they do not map well onto Palisade. However, both SAAM and ATAM
argue that modularity and extensibility are important metrics for evaluating the quality of
an architecture. While we cannot quantitatively measure these metrics, here we present
an argument that they are well satisfied by our design.

One measurement of the extensibility of software is the number of lines of code that
must be written to meaningfully extend it. The most common way to extend Palisade
is to write a new processor node. The average number of lines in the current Palisade
processor nodes (written in Python) is 144.25 lines (including comments). Autoencoder
is the longest processor node with 601, while Clip detector is the shortest with 72 lines.
The Processor abstract base class has 239 lines. The nfer detector, which uses the nfer
Python API, has only 42 lines of Python code.

As discussed in Section 3.3.4, processor nodes are independent modules that share
infrastructure from a base class. Editing a processor node has no effect on upstream or
sibling processor nodes. Only nodes dependent on the output of the edited node may
themselves require editing.

Constructing a new source node does not affect other source nodes in the system. Only
processor nodes that will be subscribing to a new source may need adjustment, and then
only if the new source differs from those that already exist. Adding a new processor node
has a lesser impact than editing one, as no downstream nodes should be affected, typically.
Instead a new processor node can be added to the system without a single modification to
any other component.

For adding a new processor node, we consider the basic code to extend the base class.
A new processor node requires at least 24 lines of code in Python. Obviously, the total
number of lines depends on the complexity of the algorithm, but the processor abstract
base class makes extending Palisade straightforward.

We compared the extensibility of Palisade with the CEP/RV system Beep Beep 3 In
Section 3.5.3. While it was possible to build processors in Beep Beep 3 that mimicked those
in Palisade, they required tight coupling between components. In Beep Beep 3, construct-
ing a new processor or sink node would require modifying the other nodes. Palisade’s loose
coupling between components means that these similar modifications are not required to
support new or modified nodes.

Palisade can be used in any embedded system that provides a network interface. As
the core Palisade functionality is built around the Redis publish-subscribe interface, any
system that has a network interface can send data directly to Redis or to a server that
then sends to Redis. Also, RESP is simple and would be easy to port to an embedded
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system without Linux support. Consequently, we believe that the integration of Palisade
with any embedded system is a straightforward task.

3.6.2 Performance Evaluation

Palisade is built for low latency anomaly detection and this is evident from our comparisons
with other frameworks. In the case study evaluation in Section 3.4.3, an nfer Palisade
processor detected anomalies over 35 times faster than a comparable detector using the
CEP system Siddhi. In the case study evaluation in Section 3.5.3, two Palisade processors
detected anomalies with similar latency to a comparable detector using Beep Beep 3, which
required tight coupling between components and a using a complicated API for performing
simple data comparisons.

We looked for other appropriate frameworks to compare against Palisade detectors such
as the Autoencoder processor, but we discovered that no such framework exists. It does
not make sense to compare Palisade’s performance against a framework which does not
support many of the same core features or which is unusable in the same environments.
Frameworks such as Extendible and Generic Anomaly Detection System (EGADS) [82]
and Datastream.io [61] only support CSV input for offline detection, while Palisade op-
erates online. Other frameworks like Esper [221] and TeSSLa [54] support online stream
processing, but lack support for distributing processors over a network. Detectors like
Hogzilla [116], StreamMill [222], and NiagaraCQ [48] are abandoned projects that cannot
be installed. Others, like Thirdeye [60], can only be run in a cloud environment, making
them ill-suited for latency comparisons. The lack of online, streaming, distributed, locally
runnable anomaly detection frameworks shows the need for Palisade, and we hope that
our work motivates others to design comparable tools.

An important design decision in Palisade regards the copying of messages instead of
passing message IDs. Once data arrives into a channel, Redis copies the messages to
all nodes that subscribed to that specific channel. Another approach, found in Zero-Copy
message protocols [218] for example, would be to pass just the message ID to all destination
nodes. The ID would then be used to access a central database to retrieve the data. When
most nodes require the data, however, the ID passing approach causes a performance
bottleneck due to access serialization at the central database (increased latency). We
assume that a node that subscribes to a channel needs the data on that channel, so the
message copying approach reduces latency while not affecting the processing or memory
requirements. This is a reasonable assumption given that it only requires different types
of data to be assigned separate channels. The ID passing approach is usually used in
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micro-service architectures and is preferable when the target application needs all of the
data (good for batch processing) [74].

3.6.3 Anomaly Detection

The multiple anomalies detected by different processors can be compared against each
other to verify anomalies and thereby decrease the false positive rate of anomaly detection
by Palisade (this could be done by a voter sink node, for instance). There are also cases
where some anomalies are detected by only a subset of the detectors. Palisade covers these
cases as a variety of detectors can be integrated with low-development effort (due to our
design choices - command channel, abstract base class, and data formats).

The choice of parameters in the detector nodes plays a central role in the efficiency of
such detectors. In our experiments, we varied the detector parameters until we found a
configuration without false positives (Sections 3.4 and 3.5). This was possible because we
could repeat the execution of the detectors several times. When the execution cannot be
repeated, we suggest tuning the detector parameters using a system simulation.

3.7 Related Work

This section describes existing work related to Palisade. We divide the discussion by subject
area: anomaly detection, Information Flow Processing (IFP) systems, anomaly detection
with streaming frameworks, offline frameworks, and outdated or commercial frameworks.
Few existing works combine the central features of Palisade: online, distributed anomaly
detection for both time series and event streams. Our work is motivated by the lack of
options in this niche area.

3.7.1 Anomaly Detection

Anomaly detection, sometimes called outlier detection, attempts to find unexpected or
non-conforming patterns in data [8, 44, 176, 19, 9, 184]. Anomalies are distinct from noise,
in that noise is not of interest and hinders analysis. The output of an anomaly detector
may be either a score or a label, but the purpose is always to provide a verdict on whether
an anomaly was detected at a given time.

Anomaly detection has appeared in statistics literature for many decades [80, 183],
but more recently it has found application and been studied in other fields. In healthcare,
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anomaly detection is used to look for cardiac irregularities that might indicate heart failure
or patterns of disease outbreak [98, 231]. In computer network security, anomaly detection
is widely used in intrusion detection systems to look for suspicious activity [228, 209, 5].
Banks, insurance companies, and advertising firms, among others, employ anomaly detec-
tion to search for instances of fraud [87, 72, 97]. Heavy industry and safety-critical systems
operators like airlines use anomaly detection for equipment damage detection [136, 29].
Recent work has shown how anomaly detection can be applied to detect events in a power
grid [239].

Lightweight Online Detector of Anomalies (LODA) is a data streaming online anomaly
detection system [182]. LODA uses a collection of one-dimensional histograms to improve
the anomaly detection. The rationale behind the use of a collection of weak classifier
is because together they can form a strong classifier [139]. LODA presented the same
performance in terms of precision of HS-Tress, but with better time to process a data
stream.

Weber et al. proposed a two-stage anomaly detection framework for vehicle signals [229].
The first stage is based on static checkers (for CAN messages) and the second stage is based
on machine learning algorithms (named learning checks). The learning checks stage imple-
ments a Recurrent Neural Network (RNN) and LODA. In a performance evaluation using
CAN messages from a vehicle, RNN had a false positive rate of 0.065%. Palisade also
supports both static and machine learning-based algorithms. However, Palisade supports
the execution of all detectors in parallel or in any number of stages (not only two). In the
same work, the authors defined seven types of anomalies that can occur in a sensor or Elec-
tronic Control Unit (ECU) [229]. Table 3.6 compares the seven types of anomalies propose
in [229] with our nomenclature described in Section 3.2. We can note that the seven types
of anomalies are a subset of ours. In this sense, we provide a more comprehensive overview
of anomaly symptoms that can occur in embedded real-time systems.

Table 3.6: Anomaly symptoms defined in [229] compared to our proposed symptoms

Symptoms in [229] Our Symptoms
Sine anomaly S-Wave

Plateau stuck anomaly Loss
Peak anomaly Spike

Negative peak anomaly Spike
Noise Noise

Plateau rise/fall anomaly Clipping
Zero fall anomaly Clipping/Loss
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3.7.2 Information Flow Processing Systems

Palisade processes flows of information online, deriving high level events and alerts from
the flow as data is received. This online flow processing has similarities to the definition
by Cugola and Margara of a CEP system [56]. CEP systems are a kind of IFP system
that supports continuous and timely processing of low-level event streams into high-level
abstractions according to predefined rules. CEP systems are differentiated from Data
Stream Management System (DSMS) systems in that DSMS systems work on generic data
streams rather than event streams and their output is similarly unconstrained. Palisade
supports both event and non-event stream information and includes processors, like nfer,
that use predefined rules, and learning-based processors that use training data to construct
behavioral models.

This section discusses some CEP systems in the literature that could be applied to
some of the use cases for Palisade. However, all of these systems require predefined rules to
construct their event abstractions, which most Palisade processors do not. As a result, these
CEP systems should only be compared to Palisade processors with the same requirements.

Gigascope is a DSMS designed for network monitoring, intrusion detection, and traffic
analysis [55]. Gigascope uses a Structured Query Language (SQL)-like query language
called Gigascope Query Language (GSQL) that uses data streams as its input and output.
Gigascope is explicitly aimed at intrusion detection in networked systems and is not a
general solution for anomaly detection.

Triceps is an open source CEP system that does not define its own SQL variant, but
rather has the user implement queries and operations directly in C++ or Perl [1]. Triceps
is unique in that it is an embedded CEP. That is, Triceps is meant to be used as a
library and to be embedded into other programs. This fills an interesting niche, but it is
not a framework for distributed anomaly detection like Palisade. In the future it would be
interesting to build a processor using Triceps, similar to the already existing nfer processor.

Esper is a CEP and DSMS for Java and .Net (Nesper) with a SQL variant called Event
Processing Language (EPL) that Esper compiles to byte code [221]. Esper is designed for
low latency and high throughput, as well as extensibility and low resource utilization. These
traits make Esper a good candidate for online anomaly detection. Esper is designed to work
well running inside a distributed stream processing framework and includes examples of
integrations with Java networking libraries. However, Esper is not itself a distributed
stream processing framework, and integrating Esper with Palisade would require building
a variety of custom components to handle networking, serialization, and command.

Siddhi is an open source CEP system deployed by companies such as Uber, eBay,
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and PayPal for use cases like fraud analysis and policy enforcement [217]. Siddhi uses a
specification language called Streaming SQL and supports input from a variety of streaming
sources such as Apache Kafka and NATS in diverse formats like JSON and Extensible
Markup Language (XML). It supports streaming input and ouput, multiple end-points,
and specification-based anomaly detection, and is one of the existing works closest to
supporting Palisade’s requirements (defined in Section 3.3). We compared the detection
latency of Palisade with Siddhi, where detection latency is defined as the time difference
between the instant data is generated by a source and the instant it is reported as anomalous
by a detector. The results, reported in Section 3.4.3, show that Palisade responds over 35
times faster on average than Siddhi for our case study.

3.7.3 Anomaly Detection with Streaming Frameworks

Several other works have used data streaming frameworks for online detection of errors or
anomalies. Lopez et al. discuss the characteristics and compare the throughput of three
stream processing platforms (Apache Spark, Flink, and Storm) using a threat detection
application [155]. Solaimani et al. used Apache Spark to detect anomalies for a multi-
source VMware-based cloud data center [210]. Subramaniam et al. proposed a framework
to detect anomalies online (outlier detection) in wireless sensor networks [216]. However,
the authors only implemented the framework in a simulator. Du et al. built a streaming
detector using Apache Storm that used k-Nearest Neighbors (k-NN) to detect anomalies in
IP network traffic [76]. Shi et al. implemented an online fault diagnosis system based on
Apache Spark for power grid equipment [202]. Song et al. proposed an integrated system
for explainable anomaly detection using Apache Spark called EXAD [211].

Thirdeye is an anomaly detection framework based on Apache Spark [60]. It uses
machine learning and artificial intelligence algorithms for cybersecurity, data analytics, and
outlier detection. Thirdeye is designed for deployment on Amazon’s AWS cloud computing
platform. Palisade, by contrast, is designed to run on a curated local area network to reduce
communication latency.

Beep Beep 3 is a stream-processing system that combines some aspects of CEP systems
with ideas from RV [102]. Beep Beep 3 is primarily a set of Java APIs to build synchronous
processors for arbitrary data types. The standard Beep Beep 3 APIs may be augmented
with modules called palettes that implement interfaces such as network communication,
temporal logic, and plots.

Beep Beep 3 has been studied for use in online, streaming anomaly detection [197].
However, Beep Beep 3 has different goals from Palisade that make it less well suited for
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distributed anomaly detection. We compared the detection latency of Palisade with Beep
Beep 3, as well as the experience of building anomaly detectors using the two frameworks,
in Section 3.5.3. The results show that the two tools have similar detection latency, but
that Palisade is better suited than Beep Beep 3 for detecting anomalies in a distributed
environment.

TeSSLa is a stream-based specification language and monitoring system designed for
specifying and analyzing the behavior of systems where timing is important [54]. TeSSLa,
like Beep Beep 3, combines aspects of CEP systems with RV. However, unlike Beep Beep 3,
TeSSLa may only be used through an external DSL and its interpreter only accepts input
via file arguments or standard in. While TeSSLa’s language and theoretical foundation are
exciting, its lack of network support means that it cannot currently operate as a distributed,
online anomaly detection framework. Integrating TeSSLa with Palisade is also impossible
because TeSSLa is only distributed as a compiled binary.

3.7.4 Offline Frameworks

Datastream.io is an open-source anomaly detection framework that allows users to integrate
their custom detectors for testing and training [61]. The project plans to support online
streaming but presently only supports the use of CSV files as input to perform offline
detection.

EGADS is an open-source anomaly detection framework by Yahoo [82]. EGADS is a
self-contained Java package developed for time-series anomaly detection, providing access
to multiple detectors. EGADS accepts input only in the form of CSV and standard-input
and is no longer actively maintained.

Frankowski et al. used a variety of CEP systems, including Siddhi and their own
SECOR CEP, to detect intrusions and anomalies [94]. Their work combined several CEP
systems to periodically analyze log files and store the results in a database. They showed
that it is possible to build an effective, signature-free anomaly detection framework using
off-the-shelf components. However, they did not construct an online detector.

Outdated or Commercial Frameworks

Other frameworks have been proposed in the past but are unusable in practice because
they are either expensive to license or unmaintained. NiagaraCQ was an early and in-
fluential continuous query system, but the software has not been available for at least a
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decade [48]. SASE was a stream processing system designed to support complex queries
and high throughput, but it was last maintained in 2014 [238]. Cayuga was a stateful
publish-subscribe system based on Non-deterministic Finite Automata (NFAs) that was
adapted as an event monitoring system, but it was last maintained in 2013 [65]. Stream
Mill was a DSMS that combines predefined rules with statistical learning algorithms for
mining queries [222], but it was last maintained in 2012. GEM is a commercial CEP vendor
in the industrial space and, as such, their software is not freely available [96].

Hogzilla is an open-source anomaly-based Intrusion Detection System (IDS) targeted
towards network communications [116]. Hogzilla purports to detect a wide range of network
attacks including zero-day attacks. At the time of publishing, the software no longer runs
and has not been maintained for some time. However, in October 2019 the project website
was updated to report that the tool will be maintained and supported by a commercial
partner, so Hogzilla may return to relevance in the area.

Many of the IFP systems Cugola and Margara review are either no longer maintained or
locked up behind commercial licenses [56]. Other promising systems from their study that
are unavailable or impractical include: the Borealis stream processor (abandoned 2008),
StreamBase (commercial), SQLStream (commercial), Oracle CEP (commercial), Tribeca
(disappeared), and TelegraphCQ (abandoned 2003).

3.8 Conclusion

In this chapter, we presented Palisade, a software framework for anomaly detection in em-
bedded systems. We introduced a new taxonomy of anomaly symptoms, and we designed
Palisade to support their detection using a variety of algorithms including nfer. Palisade is
built around the Redis publish-subscribe interface, which allows running different anomaly
detectors with the same input data across a distributed network. We demonstrated the
viability of the proposed framework using two case studies, one using data from an au-
tonomous vehicle and another one using data from an ADAS platform. We argued that
Palisade is easy to operate and modify and that it detects anomalies with low latency.

As future work, we plan to integrate Palisade with the University of Waterloo’s au-
tonomous car and implement more learning-based anomaly detectors. The datasets used
in the experiments is available online [126] and the Palisade source code is available upon
request.
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Chapter 4

Monitoring Over Unreliable Channels

4.1 Introduction

In RV the correctness of a program execution is determined by another program, called
a monitor. In some cases, monitors run remotely from the systems they monitor, either
due to resource constraints or for dependability. For example, ground stations monitor a
spacecraft, while an automotive computer may monitor emissions control equipment. In
both cases, the program being monitored must transmit data to a remote monitor.

Communication between the program and monitor may not always be reliable, however,
leading to incorrect or incomplete results. For example, data from the MSL rover is received
out-of-order, and some low priority messages may arrive days after being sent [81]. Function
tracing in Linux with the ftrace framework requires careful filtering to avoid losing as
many as half of all kernel events from full message buffers [213]. Even dedicated debugging
channels like ARM Embedded Trace Macrocell (ETM) have finite bandwidth and may lose
data during an event burst [15]. Some works in the field of RV have begun to address the
challenges of imperfect communication, but the problem has been largely ignored in the
study of monitorability.

This chapter introduces a definition for a property to be considered monitorable over an
unreliable channel. We define common mutations that may occur to a trace and provide a
decision procedure to test ω-regular properties for monitorability over a channel with such
a mutation. We also definine when a property can be unmonitorable over an unreliable
channel but still have value to monitor. We also provide a classification of properties that
may be monitored over certain unreliable channels.
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The chapter is organized as follows. We first define notation used throughout the
chapter in Section 4.2. We then introduce foundations necessary for understanding the
chapter in Section 4.3, first examining the concept of uncertainty in monitoring in Sec-
tion 4.3.1 and then reviewing common notions of monitorability in Section 4.3.2. We then
define common trace mutations due to unreliable channels in Section 4.4. In Section 4.5,
we describe what makes a property immune to a trace mutation and how that relates to
monitorability. Section 4.6 expands on that idea by defining how a verdict for a property
may be trustworthy over an unreliable channel even when the property is not immune
to the channel’s mutation. We then review and augment the Finitely-Refutable/Finitely-
Satisfiable property classification in Section 4.7 by adding subclasses relevant to common
mutations. We use this augmented classification to categorize properties with trustworthy
verdicts over those mutations in Section 4.8 including a discussion of the utility of such
properties in Section 4.8.5. We work towards a decision procedure for the immunity of an
ω-regular property by mapping the definition of immunity to a property of derived monitor
automata in Section 4.9. Finally, we present a decision procedure for the immunity of an
automaton to a mutation and prove it correct in Section 4.10. We then present related
work in Section 4.11. Section 4.12 discusses some of the conclusions from the chapter and
possible future work.

4.2 Preliminary Notation

This chapter uses propositional symbols instead of events with timestamps and data. This
choice limits the expressive power of traces and is important for many of our results. AP
is a finite, non-empty set of atomic propositions. Throughout the chapter, we assume an
alphabet, denoted Σ = 2AP. An element of the alphabet is a symbol s ∈ Σ. In this chapter,
a trace, word, or string is a sequence of symbols. A language, or a property, is a set of
words. A trace σ ∈ Σ∞ satisfies a property L ⊆ Σ∞ if σ ∈ L or violates it if σ /∈ L.

In this chapter, we use Finite Automata (FAs) to represent both regular and ω-regular
languages. We use Non-deterministic Büchi Automata (NBAs) to represent ω-regular
languages, which accept infinite strings, and NFAs to represent regular languages, which
accept finite strings. Both an NBA and an NFA are written A = (Q,Σ, q0, δ, F ), where Q
is the set of states, Σ is the alphabet, q0 ∈ Q is the initial state, δ : Q × Σ → 2Q is the
transition function, and F ⊆ Q is the set of accepting states. The two types of FAs differ
in their accepting conditions.

A path (or run) through an FA A from a state q ∈ Q over a word σ ∈ Σ∞ is a sequence
of states π = 〈q1, q2, · · ·〉 such that q1 = q and qi+1 ∈ δ(qi, σi). We write A(q, σ) to denote
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the set of all runs on A starting at state q with the word σ. The set of all reachable states in
an FA A from a starting state q0 is Reach(A, q0)={q ∈ Q : ∃σ ∈ Σ∞.∃π ∈ A(q0, σ). q ∈ π}.

A finite run on an NFA π = 〈q1, q2, · · · , qn〉 is considered accepting if qn ∈ F . For an
infinite run ρ on an NBA, we use Inf(ρ) ⊆ Q to denote the set of states that are visited
infinitely often, and the run is considered accepting when Inf(ρ)∩F 6= ∅. L(A) denotes the
language accepted by an FA A. The complement or negation of an FA A = (Q,Σ, q0, δ, F )
is written A where L(A) = Σ∗ \ L(A) for NFAs and L(A) = Σω \ L(A) for NBAs.

An NFA is a Deterministic Finite Automaton (DFA) iff ∀q ∈ Q. ∀α ∈ Σ. |δ(q, α)| = 1.
Given a DFA (Q,Σ, q0, δ, F ), a state q ∈ Q, and a finite string σ ∈ Σ∗ where |σ| = n, the ter-
minal (nth) state of the run over σ beginning in q is given by the function δ∗ : Q× Σ∗ → Q.

We use LTL formulae throughout the chapter to illustrate examples of properties be-
cause it is a common formalism in the RV area. The syntax of these formulae is defined by
the following inductive grammar where p is an atomic proposition, U is the Until operator
(ϕ Uψ means ψ must eventually hold and ϕ must hold until then), and X is the Next
operator (Xϕ means ϕ must hold in the next state, which must exist).

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ

We use the following inductive semantics for the infinite case, where σ ∈ Σω. The reader
should assume the use of infinite-trace semantics unless otherwise specified where LTL is
found in this chapter.

σ |= p if p ∈ σ(1)
σ |= ¬ϕ if σ 6|= ϕ
σ |= ϕ ∨ ψ if σ |= ϕ or σ |= ψ
σ |= Xϕ if σ2 |= ϕ
σ |= ϕ Uψ if ∃k ≥ 1. σk |= ψ ∧ ∀j. 1 ≤ j < k. σj |= ϕ

The language of an LTL formula ϕ is given in the infinite case by L[[ϕ]] = {σ ∈ Σω : σ |= ϕ}.
For the finite case, where σ ∈ Σ∗, we use the following inductive semantics.
σ |= p if |σ| > 0 and p ∈ σ(1)
σ |= ¬ϕ if σ 6|= ϕ
σ |= ϕ ∨ ψ if σ |= ϕ or σ |= ψ
σ |= Xϕ if |σ| > 0 and σ2 |= ϕ
σ |= ϕ Uψ if ∃k ≥ 1. σk |= ψ ∧ ∀j. 1 ≤ j < k. σj |= ϕ

The language of an LTL formula ϕ is given in the finite case by LF [[ϕ]] = {σ ∈ Σ∗ : σ |= ϕ}.
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For both infinite and finite-trace semantics we also define the standard notation: true =
p ∨ ¬p for any proposition p, false = ¬true, ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ), ϕ → ψ = ¬ϕ ∨ ψ,
Fϕ = true Uϕ (eventually ϕ), and Gϕ = ¬F¬ϕ (globally ϕ).

Example: Consider an infinite trace σ where p holds for the entire trace except the
tenth symbol, which is the only symbol where q holds. The LTL formula Gp is violated for
σ in the infinite case and it is violated in the finite case for prefixes of σ of at least length
ten. The formula is satisfied, however, in the finite case for prefixes of σ of length less than
ten. Likewise, the LTL formula Fq is satisfied for σ in the infinite case and in the finite
case for prefixes of σ of at least length ten. It is violated for prefixes of σ of length less
than ten.

4.3 Foundations of Monitoring

In this section, we establish definitions from previous works referenced in the article. We
begin with the truth domains we use and how they relate to monitoring. We then provide
traditional definitions of monitorability.

4.3.1 Uncertainty

In RV, there are two prevailing options for checking that a trace of a program’s execution
satisfies a property: offline and online. In offline RV, we consider a finite trace produced
by a program that has terminated. In this case, properties are specified as languages of
finite words, for example using a finite-trace semantics to interpret LTL formulae. In online
RV, we consider a continuously expanding finite prefix produced by a running program.
In this case, properties are specified as languages of infinite words, for example using an
infinite-trace semantics to interpret LTL formulae.

In this chapter, we are interested in checking finite prefixes of execution traces against
properties specified as languages of infinite words. We say a finite string determines in-
clusion in (or exclusion from) a language of infinite words only if all infinite extensions of
the prefix are in (or out of) the language. If some infinite extensions are in the language
and some are out, then the finite prefix does not determine inclusion and the result is
uncertainty. The problem appears with an LTL property such as Fa, which is satisfied if
an a appears in the string. However, if no a has yet been observed, and the program is
still executing, it is unknown if the specification will be satisfied in the future.
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To express notions of uncertainty in monitoring languages of infinite words, extensions
to the Boolean truth domain B2 = {>,⊥} have been proposed. B3 adds a third verdict
of ? to the traditional Boolean notion of true or false to represent the idea that the
specification is neither satisfied nor violated by the current finite prefix [30]. B4 replaces
? with presumably true (>p) and presumably false (⊥p) to provide more information on
what has already been seen [32].

The verdicts >p and ⊥p differentiate between prefixes that would satisfy or violate the
property interpreted with finite trace semantics. The intuition is that ⊥p indicates that
something is required to happen in the future, while >p means there is no such outstanding
event. For example, if the formula G(a → Fb) is interpreted as four-value LTL (LTL4)
(also called Runtime Verification LTL (RV-LTL) [32], which uses B4), the verdict on a trace
〈{c}〉 is >p because a has not occurred, and therefore no b is required, while the verdict
on 〈{a}〉 is ⊥p because there is an a but as yet no b. If the same property is interpreted as
Three-value LTL (LTL3) (which uses B3) the verdicts on both traces would be ? .

The above intuitions are formalized in Definition 18. Here, we define a property L to
be a set of both finite and infinite traces. The infinite words determine the permanent
verdicts of > and ⊥ while the finite words are used in the B4 case to choose between >p
and ⊥p. For both B3 and B4, Definition 18 includes a function that evaluates a finite trace
prefix with respect to L.

Definition 18 (Evaluation Functions). Given a property L ⊆ Σ∞ for each of the truth
domains V ∈ {B3,B4}, we define evaluation functions of the form EV : 2Σ∞ → Σ∗ → V as
the following.

For B3 = {⊥,?,>},

EB3(L)(σ) =


⊥ if σ · µ /∈ L ∀µ ∈ Σω

> if σ · µ ∈ L ∀µ ∈ Σω

? otherwise

For B4 = {⊥,⊥p,>p,>},

EB4(L)(σ) =


EB3(L)(σ) if EB3(L)(σ) 6= ?
⊥p if EB3(L)(σ) = ? and σ /∈ L
>p if EB3(L)(σ) = ? and σ ∈ L

Example: Suppose we would like to monitor the LTL formula ϕ = G(a) ∨ b using the B4

truth domain. The language (property) to monitor is L = L[[ϕ]] ∪ LF [[ϕ]]. The following
are the evaluations for given finite prefixes:
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EB4(L)(〈{b}〉) = > All infinite strings beginning with this prefix
are in the language.

EB4(L)(〈{}〉) = ⊥ No infinite strings beginning with this prefix
are in the language.

EB4(L)(〈{a}〉) = >p Some infinite strings beginning with this prefix
are in the language, and the finite prefix is
itself in the language (because 〈{a}〉 ∈ LF [[ϕ]]).

Monitors also exist for properties that cannot be specified in LTL or other common
temporal logics. This chapter uses language-theoretic formalisms that allow for the moni-
toring of any language of finite and infinite words. For example, it is possible to monitor
a property consisting of an infinite repetition of every valid C program. Clearly, such a
language is not representable in LTL since recognizing it requires a stack.

For the verdicts specified in Definition 18 for EB4 to make intuitive sense, the infinite
and finite words in the language must be related. For an LTL formula ϕ, the infinite words
are defined by L[[ϕ]] and the finite words by LF [[ϕ]]. Given a language of finite words,
Falcone et al. defined how to construct both the finite-words and infinite-words in [85]. In
the general case, however, the precise relationship between the two subsets has not been
defined. This relationship remains a subject for future work on monitoring non-ω-star-free
languages.

Introducing the idea of uncertainty in monitoring causes the possibility that some prop-
erties might never reach a definite, true or false verdict. A monitor that will only ever
return a ? result does not have much utility. The monitorability of a property captures
this notion of the reachability of definite verdicts.

4.3.2 Monitorability

In this section, we examine the four most common definitions of monitorability. To define
monitorability for properties over unreliable channels, we must first define monitorabil-
ity for properties over ideal channels. Rather than choose one definition, we introduce
established definitions and allow the reader to select that of their preference.

We begin with the definition of σ-Monitorability, which depends not only on the moni-
tored property but also on the already-seen trace prefix. For each definition of monitorabil-
ity that depends only on the monitored propertyM ∈ {C(lassical), W(eak), A(lternative)},
we introduce an evaluation predicate of the form MM

on : 2Σ∞ → B2 that returns true iff the
input property is monitorable. We say that an LTL formula ϕ is monitorable if its language
L[[ϕ]] ∪ LF [[ϕ]] is monitorable.
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σ-Monitorability

Pnueli and Zaks introduced the first formal definition of monitorability in their work on
Property Specification Language (PSL) for model checking in 2006 [185]. They define
monitorable properties given a trace prefix σ. Subsequent works all define monitorability
for a property without assuming knowledge of any part of the trace.

Definition 19 (σ-Monitorability). Given a finite sequence σ ∈ Σ∗, a property L ⊆ Σ∞ is
σ-monitorable iff ∃η ∈ Σ∗. ∀s ∈ Σω. (σ · η · s |= L or σ · η · s 6|= L).

That is, there exists another finite sequence η such that σ · η determines inclusion in or
exclusion from L.

For example, the LTL formula GFp is non-σ-monitorable for any finite prefix, be-
cause the trace needed to determine the verdict must be infinite. Other properties are
σ-monitorable for some prefixes but not others. For example, there is no point to contin-
uing to monitor GFp ∨ q if q does not hold in the first symbol of the trace.

Classical Monitorability

Bauer, Leuker, and Schallhart reformulated this definition of monitorability and proved
that safety (e.g. Gp) and guarantee (e.g. Fp) properties represent a proper subset of the
class of monitorable properties [33]. It was already known that the class of monitorable
properties was not limited to safety and guarantee properties from the work of d’Amorim
and Roşu on monitoring ω-regular languages [58], however that work did not formally
define monitorability. Diekert and Leuker have also defined a purely topological version of
this definition of monitorability [67].

The definition of monitorability given by Bauer et al. is identical to Definition 19 except
that it considers all possible trace prefixes instead of a specific prefix [84, 85] and it excludes
languages with finite words. The restriction to infinite words is due to their interest in
defining monitorable LTL3 properties, which only considers infinite traces.

Bauer et al. use Kupferman and Vardi’s definitions of good and bad prefixes of an
infinite trace [140] to define what they call an ugly prefix. That is, given a language of
infinite strings L ⊆ Σω,

• a finite word b ∈ Σ∗ is a bad prefix for L iff ∀s ∈ Σω. b · s /∈ L, and
• a finite word g ∈ Σ∗ is a good prefix for L iff ∀s ∈ Σω. g · s ∈ L.
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Bauer et al. use good and bad prefixes to define ugly prefixes and then use ugly prefixes
to define Classical Monitorability.

Definition 20 (Ugly Prefix). Given a language of infinite strings L ⊆ Σω, a finite word
u ∈ Σ∗ is an ugly prefix for L iff @s ∈ Σ∗. u · s is either a good or bad prefix.

Definition 21 (Classical Monitorability). Given a language of infinite strings L ⊆ Σω,

MC
on(L) = @u ∈ Σ∗. u is an ugly prefix for L

Many works have explored decision procedures for Classical Monitorability. Diekert,
Muscholl, and Walukiewicz proved that the problem is PSPACE-Hard and can be solved
in EXPSPACE [68] for ω-regular languages. This result was most recently refined by Peled
and Havelund, who showed that deciding Classical Monitorability for these languages is
EXPSPACE-Complete [178].

Weak Monitorability

Recently, both Chen et al. [49] and Peled and Havelund [178] proposed a weaker definition
of monitorability that includes more properties than the Classical definition. They observed
that there are properties that are classically non-monitorable, but that are still useful to
monitor. For example, ¬M C

on(L[[a ∧GFa]]) because any trace that begins with a must then
satisfy or violate GFa, which is not possible. However, a∧GFa is violated by traces that
do not begin with a, so it may have some utility to monitor.

Definition 22 (Weak Monitorability). Given a language of infinite strings L ⊆ Σω,

MW
on(L) = ∃p ∈ Σ∗. p is not an ugly prefix for L

Deciding that an ω-regular property is Weakly Monitorable requires testing that no
information may be obtained from the monitor. Peled and Havelund gave an algorithm
for deciding Weak Monitorability for these languages and showed that it is EXPSPACE-
Complete [178].

Alternative Monitorability

Falcone et al. observed that the class of monitorable properties should depend on the truth
domain of the monitored formula. However, they noticed that changing from B3 to B4

does not influence the set of monitorable properties under classical monitorability [84, 85].
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To resolve this perceived shortcoming, the authors of [84, 85] introduce an alternative
definition of monitorability. They introduce the notion of an r-property (runtime property)
which separates the property’s language of finite and infinite traces into disjoint sets. We
do not require this distinction and treat the property as a single set containing both finite
and infinite traces. Falcone et al. then define an alternative notion of monitorability for a
property using a variant of Definition 18.
Definition 23 (Alternative Monitorability). Given a truth domain V and an evaluation
function for V, EV : 2Σ∞ → Σ∗ → V and a property L ⊆ Σ∞,

MA
on(L) = ∀σin ∈ L ∩ Σ∗. ∀σout /∈ L ∩ Σ∗. EV(L)(σin) 6= EV(L)(σout)

Definition 23 says that, given a truth domain, a property with both finite and infinite
words is monitorable if evaluating the finite strings in the property always yield different
verdicts from evaluating the finite strings out of the property. By Definition 23, only
properties with finite words are considered monitorable and its results must be understood
in the same context as EB4 , where finite words identify prefixes where no outstanding event
precludes satisfaction.

Procedures for deciding if an ω-regular property is Alternatively Monitorable depend
on the truth domain. For B3, monitorable properties are exactly the union of Safety
and Guarantee properties (see Section 4.8) [85]. Determining inclusion in these classes is
known to be PSPACE-Complete [207]. For B4, monitorable properties are the Reactivity
properties, which are all properties representable in LTL [85]. Deciding if a language
represented as an NBA is a Reactivity property is PSPACE-Complete [66].

4.4 Unreliable Channels

For a property to be monitorable over an unreliable channel it must be monitorable over
ideal channels, and it must reach the correct verdict despite the unreliable channel. To
illustrate this, we introduce an example.

4.4.1 An Example with Unreliable Channels

Consider the LTL formula ϕ = Fa over the alphabet Σ = {{a}, {¬a}}. That is, all traces
that contain at least one symbol with a satisfy ϕ. We assume that the trace is monitored
remotely, and, for this example, we will adopt a B3 truth domain. Using EB3 from Defi-
nition 18, the verdict on finite prefixes without an a, is ? , while the verdict when an a is
included is >. Figure 4.1a shows the NBA for such a property.
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q1 q2
a

¬a a,¬a

(a) NBA for Fa

q1

q2 q3

a¬b

b

¬a¬b
¬a¬b

b
a¬b Σ

(b) NBA for G(a→ F¬a) ∨ Fb

Figure 4.1: Büchi automata for example properties

Monitorability under reordering

Suppose that the channel over which the trace is transmitted may reorder events. That is,
events are guaranteed to be delivered, but not necessarily in the same order in which they
were sent.

We argue that Fa should be considered monitorable over a channel that reorders the
trace. First, the property is monitorable over an ideal channel (see Section 4.3.2). Second,
given any trace prefix, reordering the prefix would not change the verdict of a monitor.
Any a in the trace will cause a transition to state q2, regardless of its position.

Note that we are not concerned with when the verdict occurs. For example, assume a
trace 〈{a}, {¬a}〉 that is reordered to 〈{¬a}, {a}〉. Both traces result in a B3 verdict of >,
but in the reordered case it comes one symbol later. This article considers these results to
be equivalent, but future work could consider the implications of such a change in timing.

Monitorability under loss

Now suppose that, instead of reordering, the channel over which the trace is transmitted
may lose events. That is, the order of events is guaranteed to be maintained, but some
events may be missing from the trace observed by the monitor.

We argue that Fa should not be considered monitorable over a channel that loses
events, even though the property is deemed to be monitorable over an ideal channel. It
is possible for the verdict from the monitor to be different from what it would be given
the original trace. For example, assume a trace 〈{a}, {¬a}〉. For this trace, the verdict
from an LTL3 monitor would be >. However, if the first symbol (containing a) is lost, the
verdict would be ? .
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Note that there may still be some utility to monitor Fa when symbols may be lost
because a > verdict is actionable. That is, if the monitor receives a trace 〈{a}〉 then a
must have held in the original trace as well. In this case, we call > a trustworthy verdict.
We explore the concept of trustworthy verdicts in Section 4.6.

4.4.2 Trace Mutations

To model unreliable channels, we introduce trace mutations. A mutation represents the
possible modifications to traces from communication over unreliable channels. These muta-
tions are defined as relations between unmodified original traces and their mutated coun-
terparts. Trace mutations include only finite traces because only finite prefixes may be
mutated in practice.

There are four trace mutations Mk ⊆ Σ∗ × Σ∗ where M denotes any of the relations
in Definitions 24, 25, 26, and 27 or a union of any number of them, and k denotes the
number of inductive steps.

Definition 24 (Loss Mutation). Loss = {(σ, σ′) : σ = σ′∨
∃α, β ∈ Σ∗. ∃x ∈ Σ.
σ = α · 〈x〉 · β ∧ σ′ = α · β}

Definition 25 (Corruption Mutation). Corruption = {(σ, σ′) :
∃α, β ∈ Σ∗. ∃x, y ∈ Σ.
σ = α · 〈x〉 · β ∧ σ′ = α · 〈y〉 · β}

Definition 26 (Stutter Mutation). Stutter = {(σ, σ′) : σ = σ′∨
∃α, β ∈ Σ∗. ∃x ∈ Σ.
σ = α · 〈x〉 · β ∧ σ′ = α · 〈x, x〉 · β}

Definition 27 (Out-of-Order Mutation). OutOfOrder = {(σ, σ′) :
∃α, β ∈ Σ∗. ∃x, y ∈ Σ.
σ = α · 〈x, y〉 · β ∧ σ′ = α · 〈y, x〉 · β}

Definition 28 (Inductive k-Mutations). Given any mutation or union of mutations M,
we defineMk inductively as the following.

M1 ∈ {
⋃
m : m ∈ 2{Loss,Corruption,Stutter,OutOfOrder} ∧m 6= ∅ }

Mk+1 =Mk ∪ { (σ1, σ3) : ∃σ2. (σ1, σ2) ∈Mk ∧ (σ2, σ3) ∈M1 }
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These mutations are based on Lozes and Villard’s interference model [156]. Other
works on the verification of unreliable channels, such as [43], have chosen to include in-
sertion errors instead of Corruption and OutOfOrder. We prefer to define Corruption and
OutOfOrder because the mutations more closely reflect our real-world experiences. For
example, packets sent using the UDP may be corrupted or arrive out-of-order, but packets
must be sent before these mutations occur.

In this thesis, we assume that the monitor has no information about how a received
trace has been modified by an unreliable channel. Instead, we only permit that the channel
is known to sometimes mutate traces in a certain manner (e.g. losing symbols). This differs
from and is a weaker assumption than some other works, where trace modifications are
marked [95, 27, 122, 148].

We say a mutationM is prefix-assured when ∀(σ, σ′) ∈M such that |σ| > 1, ∃(σp, σ′p) ∈
M , where σp v σ and σ′p v σ′. All mutationsM1 are prefix-assured. Combining mutations
is possible under Definition 28, and it is possible to form any combination of strings by
doing so. This capability is important to ensure the mutation model is complete.

Definitions 24 through 27 include every possible mutation. That is, it is possible to
apply a combination of these mutations to a trace to transform it into any other trace.

Theorem 1 (Completeness of Mutations). Given any two sets of non-empty traces
S, S ′ ⊆ Σ∗ \ {ε}, ∃k ∈ N. (Loss ∪ Corruption ∪ Stutter)k = S × S ′.

Proof: First, Definition 25 allows an arbitrary symbol in a string to be changed to any
other symbol. Thus, ∀σ′ ∈ Σ∗ there exists σ : (σ, σ′) ∈ Corruptionn where |σ| = |σ′| and
n ≥ |σ|. A string can also be lengthened or shortened arbitrarily, so long as it is non-empty.
Definition 26 allows lengthening, because Stutter(σ, σ′) =⇒ |σ| < |σ′|, while Definition 24
allows shortening, because Loss(σ, σ′) =⇒ |σ| > |σ′|.

These mutations are general and it may be useful for practitioners to define their own,
more constrained mutations based on domain knowledge. For example, if a communications
protocol guarantees delivery of high priority messages but allows low priority messages to
be lost, this can be modeled as a mutation. Some properties may be monitorable over this
more-precise mutation when they would not be monitorable over the Loss mutation, which
permits losing any message.

Even Definition 27 (OutOfOrder) is a more-constrained version of the Corruption mu-
tation. That is, OutOfOrdern ⊂ Corruption2n ∀n ∈ N. OutOfOrder is unnecessary for the
completeness of the mutation model, as can be seen in Theorem 1. However, we consider
the mutation to be general enough to include here, and a combination of Definitions 24, 25,
and 26 can only over-approximate the OutOfOrder relation.
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4.5 Immunity to Trace Mutations

The two requirements for a property to be monitorable over an unreliable channel are that
the property is monitorable over an ideal channel and that the property is immune to the
effects of the unreliable channel. A monitor must be able to reach a meaningful, actionable
verdict for a trace prefix, and the verdict must also be correct. If a monitored property is
immune to a mutation then we can trust the monitor’s verdict whether or not the observed
trace is mutated.

The notion of immunity to a mutation is related to the concept of monotonicity of
entailment of a logical system. For a monotonic logic, anything that could be concluded
before information is added can still be concluded after. In this case, however, mutations to
a trace may remove or modify information as well as add. Monotonicity of a property with
regard to past events was also previously defined by Joshi, Tchamgoue, and Fischmeister
for channels with Loss to mean that the property’s monitor cannot change its verdict if
lost information is added to the trace [122]. Monotonicity has also been used in RV in the
sense of a monotone function to describe how verdicts like > and ⊥ may not change once
reached [50]. Here, we use the term immunity to avoid overloading the word monotonic
further in the field of RV.

Definition 29 characterizes properties where the given trace mutation will have no effect
on the evaluation verdict. For example, the LTL formula Fa from Figure 4.1a is immune to
OutOfOrder1 (an LTL formula ϕ is immune to a mutationMk if its language L[[ϕ]]∪LF [[ϕ]]
is immune toMk) with truth domain B3 or B4 because reordering the input trace cannot
change the verdict.

Definition 29 (Full Immunity to Unreliable Channels). Given a property L ⊆ Σ∞, a trace
mutationMk ⊆ Σ∗ × Σ∗, a truth domain V, and an evaluation function EV : 2Σ∞ → Σ∗ →
V, L is immune toMk iff ∀(σ, σ′) ∈Mk. EV(L)(σ) = EV(L)(σ′).

Example: We want to check if the LTL formula ϕ = Ga is immune to the Stutter1

mutation for truth domain B4. The property for this formula is L = L[[ϕ]] ∪ LF [[ϕ]]. L is
immune to Stutter1 for B4 iff the verdict from EB4 is always the same when applied to both
the left and right sides of every pair in Stutter1. Where Σ = {{a}, {¬a}}, we check the
following:

• (EB4(L)(〈{a}〉),EB4(L)(〈{a}〉)) = (>p,>p)

• (EB4(L)(〈{¬a}〉),EB4(L)(〈{¬a}〉)) = (⊥,⊥)

119



• (EB4(L)(〈{a}〉),EB4(L)(〈{a}, {a}〉)) = (>p,>p)

• (EB4(L)(〈{¬a}〉),EB4(L)(〈{¬a}, {¬a}〉)) = (⊥,⊥)

• (EB4(L)(〈{a}, {a}〉),EB4(L)(〈{a}, {a}, {a}〉)) = (>p,>p)

• ...

If every pair has an equal verdict, then L (and ϕ) is immune to Stutter1 for B4.

Definition 29 specifies a k-Mutation from Definition 28, but a property that is immune
to a mutation for some k is immune to that mutation for any k. This significant result
forms the basis for checking for mutation immunity in Section 4.10. The intuition is that,
since we assume any combination of symbols in the alphabet is a possible ideal trace, and
a mutation could occur at any time, one mutation is enough to violate immunity for any
vulnerable property.

Theorem 2 (Single Mutation Immunity Equivalence). Given a property L ⊆ Σ∞, a trace
mutationM⊆ Σ∗×Σ∗, and a number of applications of that mutation k, L is immune to
Mk iff L is immune toM1.

Proof: Since k-Mutations are defined inductively, Theorem 2 is equivalent to the state-
ment that L is immune toMk+1 iff L is immune toMk. Now assume by way of contra-
diction a property Lbad ⊆ Σ∞ such that Lbad is immune to some k-Mutation Mk but not
to Mk+1. That is, given a truth domain V, there exists a pair of traces (σ1, σ3) ∈ Mk+1

such that EV(Lbad)(σ1) 6= EV(Lbad)(σ3).

From Definition 28, either (σ1, σ3) ∈ Mk, or there exists both (σ1, σ2) ∈ Mk and
(σ2, σ3) ∈M1 such that EV(Lbad)(σ1) 6= EV(Lbad)(σ3). It cannot be true that (σ1, σ3) ∈Mk

since Lbad is immune to Mk so there must exist pairs (σ1, σ2) ∈Mk and (σ2, σ3) ∈M1.
Since Lbad is immune to Mk, EV(Lbad)(σ1) = EV(Lbad)(σ2) so it must be true that
EV(Lbad)(σ2) 6= EV(Lbad)(σ3). However, it is clear from Definition 28 that Mk ⊆Mk+1, so
M1 ⊆Mk for any k, which is a contradiction.

For the reverse case, assume a property Lsad ⊆ Σ∞ such that Lsad is not immune to
some k-Mutation Mk but is immune to Mk+1. However, as we saw before, Mk ⊆Mk+1 so
Lsad must not be immune to Mk+1, a contradiction.

Immunity under Definition 29 is too strong to be a requirement for monitorability over
an unreliable channel, however. Take, for example, the property G(a → F¬a) ∨ Fb, as
shown in Figure 4.1b. By Definition 29 with truth domain B4 this property is vulnerable
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(not immune) to OutOfOrder1 because reordering symbols may change the verdict. For
example, the trace 〈{a,¬b}, {¬a,¬b}〉 results in a verdict of >p, but reordering the trace
to 〈{¬a,¬b}, {a,¬b}〉 changes the verdict to ⊥p. However, this property is monitorable
under all definitions in Section 4.3.2, because it is always possible to reach a > verdict if a
b appears. We would like a modified definition of immunity that only considers the parts
of a property that affect its monitorability.

To achieve this modified definition of immunity, we consider only the determinization
of the property to be crucial. Definition 30 characterizes properties for which satisfaction
and violation are unaffected by a mutation. We call this true-false immunity, and it is
equivalent to immunity with truth domain B3. The intuition is that B3 treats all verdicts
outside {>,⊥} as the symbol ? so immunity with this truth domain does not concern
non-true-false verdicts.

Definition 30 (True-False Immunity to Unreliable Channels). Given a trace mutation
Mk ⊆ Σ∗ × Σ∗, a language L ⊆ Σ∞ is true-false immune to Mk iff L is immune to Mk

for the truth domain B3.

The true-false immunity of a property to a mutation is necessary but not sufficient to
show that the property is monitorable over an unreliable channel. For example, the LTL
formula GFa is true-false immune to all mutations because EB3(L[[GFa]])(σ) = ? for any
prefix σ ∈ Σ∗, but the property is not monitorable. We can now define monitorability over
unreliable channels in the general case.

Definition 31 (Monitorability over Unreliable Channels). Given a language L ⊆ Σ∞, a
trace mutation Mk ⊆ Σ∗ × Σ∗, and a definition of monitorability MM

on : 2Σ∞ → B2, L is
monitorable overMk iff MM

on(L) and L is true-false immune toMk.

The question of what languages are considered monitorable by Definitions 21, 22, and 23
has largely been answered by prior work. To understand what languages are monitorable
over an unreliable channel, we must understand what languages are true-false immune to
the given mutation.

4.6 Trustworthy Verdicts

Some properties that are unmonitorable over an unreliable channel may still have some
utility. A property that is not true-false immune to a trace mutation may still yield
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trustworthy verdicts when monitored. This idea is similar to that of weak-monitorability,
defined in Section 4.3.2, in that some properties may be interesting to monitor despite being
classically unmonitorable. In this section we define trustworthy verdicts and examine their
practical consequences.

A trustworthy verdict for a property over an unreliable channel implies the same verdict
for the property over an ideal channel. For example, EB3(L[[Fa]])(σ) = > (the NBA for the
LTL formula Fa is shown in Figure 4.1a) when there exists a symbol in σ where a holds.
Over a channel with the Loss mutation, a > verdict guarantees that a held in the original
as well as the mutated trace, since Loss cannot add such a symbol.

Definition 32 (Trustworthy Verdicts). Given a property L ⊆ Σ∞, a trace mutation
Mk ⊆ Σ∗ × Σ∗, a truth domain V, and an evaluation function EV : 2Σ∞ → Σ∗ → V,
a verdict v ∈ V is trustworthy for L over a channel with Mk iff ∀(σ, σ′) ∈Mk.
(EV(L)(σ′) = v)→ (EV(L)(σ) = v).

Definition 32 specifies a k-Mutation from Definition 28, but a property that is immune
to a mutation for some k is immune to that mutation for any k. This result follows from
Theorem 2, which specifies single mutation immunity equivalence.

Corollary 1 (Single Mutation Trustworthy Verdict Equivalence). Given a property L ⊆
Σ∞, a truth domain V, a trace mutation M ⊆ Σ∗ × Σ∗, and a number of applications of
that mutation k, a verdict v ∈ V is trustworthy from L over a channel with Mk iff v is
trustworthy for L over a channel withM1.

Proof: Corrollary 1 is implied by Theorem 2. Theorem 2 specifies that a property
L ⊆ Σ∞ is immune to a mutation Mk ⊆ Σ∗ × Σ∗ iff L is immune to M1. By Def-
inition 29, if the property is immune to M1 for a truth domain V and an evaluation
function EV : 2Σ∞ → Σ∗ → V then for all pairs (σ, σ′) ∈Mk and for all verdicts v ∈ V
(EV(L)(σ) = v)↔ (EV(L)(σ′) = v). Therefore the same result applies for a specific ver-
dict v ∈ V and one-way implication instead of two.

If all verdicts in a truth domain are trustworthy for a property and a trace mutation,
then that property is immune to the trace mutation. This equivalence allows us to apply
the study of trustworthy verdicts to that of mutation immunity. In Section 4.8, we classify
properties with trustworthy verdicts over unreliable channels which applies equally to the
classification of mutation-immune properties.

Theorem 3 (Trustworthy Verdict Immunity Equivalence). Given a property L ⊆ Σ∞,
a trace mutation Mk ⊆ Σ∗ × Σ∗, a truth domain V, and an evaluation function
EV : 2Σ∞ → Σ∗ → V, L is immune to Mk iff all verdicts in V are trustworthy over a
channel withMk.
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Proof: The proof is trivially derived from Definitions 29 and 32. If for all
pairs (σ, σ′) ∈Mk and for all verdicts v ∈ V it is true that EV(L)(σ′) = v implies
EV(L)(σ) = v, then for all pairs (σ, σ′) ∈Mk and all verdicts v ∈ V it must be true
that EV(L)(σ) = EV(L)(σ′).

Corollary 2 (Trustworthy Verdict True-False Immunity Equivalence). Given a property
L ⊆ Σ∞, and a trace mutation Mk ⊆ Σ∗ × Σ∗, L is true-false immune to Mk iff all
verdicts in B3 are trustworthy over a channel withMk.

Proof: The proof follows directly from Definition 30 and Theorem 3. For a property
to be true-false immune to a mutation it must be immune for the B3 truth domain. If all
verdicts in a domain are trustworthy for a property and mutation, then the property is
immune to that mutation.

4.7 Classification for Mutation Immunity

In this section, we update the monitorability-focused refinement of the safety-liveness tax-
onomy, recently introduced by Peled and Havelund [178]. This classification is designed
so that its delineations between classes align well with questions of monitorability. This
makes it better suited for our purposes than the more established Safety-Progress Hierar-
chy [45]. We are interested in classifying ω-regular properties that are immune to trace
mutations from unreliable channels.

4.7.1 The FR/FS Classification

Peled and Havelund classify properties by whether they are Finitely Refutable (FR) or
Finitely Satisfiable (FS) [178]. An ω-regular property L ⊆ Σω must be one of the following.

• Always Finitely Refutable (AFR) iff ∀σ /∈ L. ∃α ∈ Σ∗ such that α v σ
and ∀µ ∈ Σω. α · µ /∈ L

• Sometimes Finitely Refutable (SFR) iff ∃σ /∈ L. ∃α ∈ Σ∗ such that α v σ
and ∀µ ∈ Σω. α · µ /∈ L

• Never Finitely Refutable (NFR) iff ∀σ /∈ L. @α ∈ Σ∗ such that α v σ
and ∀µ ∈ Σω. α · µ /∈ L

Additionally, L must be one of the following.
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• Always Finitely Satisfiable (AFS) iff ∀σ ∈ L. ∃α ∈ Σ∗ such that α v σ
and ∀µ ∈ Σω. α · µ ∈ L

• Sometimes Finitely Satisfiable (SFS) iff ∃σ ∈ L. ∃α ∈ Σ∗ such that α v σ
and ∀µ ∈ Σω. α · µ ∈ L

• Never Finitely Satisfiable (NFS) iff ∀σ ∈ L. @α ∈ Σ∗ such that α v σ
and ∀µ ∈ Σω. α · µ ∈ L

The definitions for AFR, NFR, AFS, and NFS map directly to the classic definitions of
safety and liveness properties, and their duals, guarantee and morbidity. The authors
of [178] show that all ω-regular properties are included in both AFR ∪ SFR ∪ NFR and
AFS ∪ SFS ∪ NFS.

• Liveness (NFR) – A property L ⊆ Σω is a liveness property iff for all finite prefixes
α ∈ Σ∗ there exists an infinite suffix β ∈ Σω such that α · β ∈ L.

• Morbidity (NFS) – A property L ⊆ Σω is a morbidity property iff for all finite
prefixes α ∈ Σ∗ there exists an infinite suffix β ∈ Σω such that α · β /∈ L.

• Safety (AFR) – A property L ⊆ Σω is a safety property iff for all infinite traces σ /∈ L
there exists a finite trace α ∈ Σ∗ such that α v σ and for all infinite suffixes β ∈ Σω

α · β /∈ L

• Guarantee (AFS) – A property L ⊆ Σω is a guarantee property iff for all traces
σ ∈ L there exists a finite prefix α ∈ Σ∗ such that α v σ and for all infinite suffixes
β ∈ Σω α · β ∈ L

The FR/FS classification is defined by the intersections beetween pairs of FR and FS
classes. These intersections are shown in Figure 4.2, which also labels the intersection
SFR ∩ SFS as Quaestio, which are the ω-regular properties not covered by the liveness,
morbidity, safety, and guarantee classes. In the figure, each of NFR, NFS, AFR, and AFS is
shown as a stadium shape with their intersections in the corners. The SFR ∩ SFS class
surrounds the stadia and is also represented in the center of the diagram.

4.7.2 Additional Property Classes

We introduce five classes of properties that overlap with the classes from the FR/FS tax-
onomy. These are Proximate, Tolerant, Permissive, Inclusive, and Exclusive. We propose
language-theoretic definitions for these classes and locate them within the context of the
FR/FS framework.
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Safety

AFR  SFSSFR  SFS

Guarantee

AFR  AFSSFR  AFS

Liveness

NFR  NFS

NFR  SFS

NFR  AFS

Morbidity

SFR  NFS AFR  NFS

Quaestio SFR  SFS

Quaestio

Figure 4.2: The original FR/RS property classification. In the figure, Liveness is NFR,
Morbidity is NFS, Safety is AFR, and Guarantee is AFS
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The FR/FS classification provides the basis for a framework for relating properties that
are immune to a trace mutation to properties that are monitorable under ideal conditions.
However, the original FR/FS classes do not precisely define properties with mutation
immunity in many cases. We must define smaller property classes within the framework
to identify the properties with trustworthy verdicts over channels with the mutations from
Definitions 24-27.

Figure 4.3 shows the FR/FS classification with the additional property classes indicated.
In the figure, each area is numbered for ease of reference. Each area may represent multiple
classes (if they overlap) and each class may be include multiple areas. For example, Liveness
(NFR) Properties are represented in the figure by areas 1, 7, 8, 12, 13, and 16. Inclusion
Properties, on the other hand, are represented in only area 12.

Proximate Properties

Proximate Properties, which we denote Prox, are properties where the duplication of a
symbol may change whether or not a trace satisfies or violates the property. For ex-
ample, L[[Xp]] is Proximate, since the trace 〈{¬p}, {p}, · · ·〉 satisfies the property but
〈{¬p}, {¬p}, {p}, · · ·〉 does not. The intuition behind the name “Proximate” is that these
properties depend, in some way, on the proximity of two parts of the trace. In Figure 4.3,
areas 9, 10, 14, and 15 contain only Proximate Properties, and areas 5, 6, 8, and 13 include
Proximate Properties but not only Proximate Properties.

Proximate Properties are related to the dual of a class usually called closed under
stuttering [207], or stutter-invariant [179]. Stutter-invariant Properties are those in which
any satisfying trace still satisfies the property when symbols are repeated. Proximate is
not exactly the dual of stutter-invariant, as Proximate Properties are affected only by
finite stuttering. This includes most, but not all, LTL formulae that contain the next
(X) operator. For example, L[[GF (p∧Xq)]] is not Proximate because finite duplication of
symbols cannot cause a satisfying trace to violate the property. Note that the presence of
next (X) in an LTL formula is not sufficient to prove inclusion in Prox but the absence of
X guarantees that the formula is out of Prox.

Definition 33 (Proximate Properties). A given property L ⊆ Σω is a Proximate
Property (L ∈ Prox) iff ∃α ∈ Σ∗. ∃µ ∈ Σω. ∃x ∈ Σ such that either α · 〈x〉 · µ ∈ L, and
α · 〈x, x〉 · µ /∈ L, or α · 〈x〉 · µ /∈ L, and α · 〈x, x〉 · µ ∈ L.
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Safety

R  SFS

Guarantee

AFR  AFSSFR  AFS

Quaestio SFR  SFS

11

17 18

9

Figure 4.3: FR/RS property classification including Proximate (9, 10, 14, 15, and parts of
5, 6, 8, 13), Tolerant (1, 7, 12, 16), Permissive (1, 2, 3, 4), Inclusion (12), and Exclusion
(3) classes
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Tolerant Properties

Tolerant Properties, which we denote by the abbreviation Tolr, are properties where sat-
isfying traces will still satisfy the property with any finite string inserted into the trace.
For example, L[[Fp]] is a Tolerant Property because adding any finite string to a satisfying
trace (say, 〈{p}, · · ·〉) cannot cause the trace to violate the property. The intuition behind
the name “Tolerant” is that the properties tolerate the insertion of a finite string. Tolerant
Properties are shown in Figure 4.3 as areas 1, 7, 12, and 16.

Definition 34 (Tolerant Properties). A given property L ⊆ Σω is a Tolerant Property
(L ∈ Tolr) iff ∀α, β ∈ Σ∗. ∀µ ∈ Σω. (α · µ ∈ L)→ (α · β · µ ∈ L).

Tolerant is a subclass of Liveness and is disjoint from Proximate. That Tolerant is dis-
joint from Proximate is obvious, and we show that it is a subclass of Liveness in Theorem 4.
Areas 8 and 13 in Figure 4.3 represent Liveness Properties that are not Tolerant. A con-
seqence of the differences between Definitions 33 and 34 is that NFR ∩ Prox ⊂ NFR \ Tolr,
however. An example of an NFR property that is not Tolerant, but also is not Proximate
is L[[F (p ∧Xq)]]. A Proximate Property that is not Tolerant is L[[F (p ∧Xq ∧XXp)]]. An
exact characterization of the properties NFR \ (Prox ∪ Tolr) is unknown and left for future
work.

Theorem 4 (Tolerant is a Subclass of Liveness). Tolr ⊂ NFR

Proof: We must consider two cases: if the property is infinitely satisfied, or finitely
satisfied.

1. Case 1 (infinite satisfaction): In that case the infinite suffix of the trace µ ∈ Σω

determines that α · µ ∈ L for any α ∈ Σ∗. This is what Sistla called an absolute
liveness property which are a subset of liveness properties [207].

2. Case 2 (finite satisfaction): Suppose, a property L2 ⊆ Σω where the finite prefix
determines satisfaction. For clarity, we separate this finite portion into two parts
α, β ∈ Σ∗ such that ∀µ ∈ Σω. α · β · µ ∈ L2. We will prove by contradiction. Now
assume there exists a finite trace γ ∈ Σ∗ and an infinite suffix µf ∈ Σω such that
α · γ · β · µf /∈ L2. If ∀µf ∈ Σω. α · γ · β · µf /∈ L2, then L2 is finitely refutable and
not a Liveness property. Otherwise, ∃µt ∈ Σω such that α · γ · β · µt ∈ L2. If that is
true, then it must be that ∃µ ∈ Σω. ∀σ ∈ Σ∗. σ · µ ∈ L2 which is the definition of a
Liveness property.
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Permissive Properties

Permissive Properties, which we denote by the abbreviation Perm, are properties where
violating traces will still violate the property with any finite string inserted into the trace.
For example, L[[Gp]] is a Permissive Property because adding any finite string to a violating
trace (say, 〈{¬p}, · · ·〉) cannot cause the trace to satisfy the property. The intuition behind
the name “Permissive” is that the properties permit the insertion of a string (like tolerant,
but negative). Permissive Properties are shown in Figure 4.3 as areas 1, 2, 3, and 4.

Definition 35 (Permissive Properties). A given property L ⊆ Σω is an Permissive Property
(L ∈ Perm) iff ∀α, β ∈ Σ∗. ∀µ ∈ Σω. (α · µ /∈ L)→ (α · β · µ /∈ L).

Permissive is a subclass of Morbidity and is disjoint from Proximate. That Permis-
sive is disjoint from Proximate is obvious, and we show that it is a subclass of Morbid-
ity in Theorem 5. Areas 5 and 6 in Figure 4.3 represent Morbidity Properties that are
not Permissive. A conseqence of the differences between Definitions 33 and 35 is that
NFS ∩ Prox ⊂ NFS \ Perm, however. An example of an NFS property that is not Permissive,
but also is not Proximate is L[[G(p Uq)]]. A Proximate Property that is not Permissive
is L[[G(p → Xq)]]. Like with Tolerant and Proximate, an exact characterization of the
properties NFR \ (Prox ∪ Perm) is unknown and left for future work.

Theorem 5 (Permissive is a Subclass of Morbidity). Perm ⊂ NFS

Proof: The proof is equivalent to that for Theorem 4 but for Morbidity instead of
Liveness.

Inclusion Properties

Inclusion Properties, which we denote by the abbreviation Incl, are always satisfied by the
presence of a finite set of symbols. For example, L[[Fp]] is an Inclusion Property because
its satisfaction depends only on the presence of one symbol where p holds. Intuitively,
Inclusion Properties are restricted to those that can be expressed as LTL formulae of the
form Fp where p is propositional, or disjunctions of Inclusion Property formulae with Fp
or Gq where p and q are propositional. Inclusion Properties are shown in Figure 4.3 as
area 12.

Definition 36 (Inclusion Properties). A given property L ⊆ Σω is an Inclusion
Property (L ∈ Incl) iff there exists a finite set of symbols S ⊆ Σ such that
∀σ ∈ Σω. (σ ∈ L ↔ ∀s ∈ S. s ∈ σ).
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Theorem 6 (Inclusion is a Subclass of Tolerant and Disjoint from Morbidity).
Incl ⊂ Tolr \ NFS

Proof: Clearly, L ∈ Tolr ∀L ∈ Incl. Given a property L ∈ Incl, any trace σ ∈ L will
still satisfy the property with additional symbols. It is also obvious that L /∈ NFS ∀L ∈
Incl, since it must be possible to satisfy L by the inclusion of a finite set of symbols.

Exclusion Properties

Exclusion Properties, which we denote by the abbreviation Excl, are always violated by
the presence of a finite set of symbols. For example, L[[G(¬p)]] is an Exclusion Property
because its satisfaction depends only on the absence any state where p holds. Intuitively,
Exclusion Properties are restricted to those that can be expressed as LTL formulae of the
form Gp where p is propositional, or conjunctions of Exclusion Property formulae with Fp
or Gq where p and q are propositional. Exclusion Properties are shown in Figure 4.3 as
area 3.

Definition 37 (Exclusion Properties). A given property L ⊆ Σω is an Exclusion
Property (L ∈ Excl) iff there exists a finite set of symbols S ⊆ Σ such that
∀σ ∈ Σω. (σ /∈ L ↔ ∀s ∈ S. s ∈ σ).

Theorem 7 (Exclusion is a Subclass of Permissive and Disjoint from Liveness).
Excl ⊂ Perm \ NFR

Proof: Like for Theorem 6, L ∈ Perm ∀L ∈ Excl. Given a property L ∈ Excl, any
trace σ /∈ L will still violate the property with additional symbols. It is also obvious that
L /∈ NFR ∀L ∈ Excl, since it must be possible to violate L by the inclusion of a finite set
of symbols.

4.8 Classifying Immune Properties

In this section, we classify trustworthy verdicts in the B3 truth domain for properties
monitored over unreliable channels. As shown in Section 4.6, this classification also serves
to categorize properties that are immune to the trace mutations from those unreliable
channels. To classify properties, we use the augmented FR/FS classification introduced in
Section 4.7. We limit our study to the mutations introduced in Section 4.4.
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Table 4.1: Trustworthy B3 verdicts over unreliable channels by property class

Loss Corruption Stutter OutOfOrder
Class > ⊥ ? > ⊥ ? > ⊥ ? > ⊥ ? Example

SFR ∩ NFS - 3p 7 - 7 7 - 3x 3x - 3e 3e Fp ∧Gq
AFR ∩ NFS - 3p 7 - 7 7 - 3x 3x - 3e 3e Gp
AFR ∩ SFS 7 7 7 7 7 7 3x 3x 3x 7 7 7 p ∨Gq
AFR ∩ AFS 7 7 7 7 7 7 3x 3x 3x 7 7 7 p
SFR ∩ AFS 7 7 7 7 7 7 3x 3x 3x 7 7 7 p ∧ Fq
NFR ∩ AFS 3t - 7 7 - 7 3x - 3x 3i - 3i Fp
NFR ∩ SFS 3t - 7 7 - 7 3x - 3x 3i - 3i Gp ∨ Fq
NFR ∩ NFS - - 3 - - 3 - - 3 - - 3 GFp
SFR ∩ SFS 7 7 7 7 7 7 3x 3x 3x 7 7 7 (p ∨GFp) ∧ q

Table 4.1 shows trustworthy verdicts in B3 for each FR/FS class of properties and each
of the four mutations from Section 4.4. In the table, a 3 indicates that the verdict is
trustworthy, a 7 means that the verdict is not trustworthy, and a - denotes that the verdict
is not possible for the given property class. The table also includes an example property
for each class. For example, the first row in Table 4.1 shows the results for the SFR ∩ NFS
class, an example of which is the LTL property Fp ∧ Gq. The leftmost three cells show
the results for the Loss mutation. The cells show that the > verdict is not possible for
SFR ∩ NFS Properties, the ⊥ verdict is trustworthy (for the Permissive subclass), and the
? verdict is not trustworthy.

Most of the property classes for which verdicts are trustworthy are subclasses of the
original FR/FS classes defined in Section 4.7.2. For these, we annotate the 3 mark to
indicate the precise subclass. A 3p indicates the verdict is trustworthy for only Permissive
properties. A 3t indicates the verdict is trustworthy for only Tolerant properties. A 3i

denotes that the verdict is trustworthy for only Inclusive Properties. A 3e denotes that
the verdict is trustworthy for only Exclusive Properties. A 3x indicates the verdict is
trustworthy for the given property class excluding Proximate Properties.

4.8.1 Channels with Loss

Only the unmonitorable class NFR∩ NFS is immune to Loss, but true and false verdicts are
trustworthy over certain properties. Loss is interesting because it is the only mutation from
Definitions 24-27 for which some properties have both trustworthy and non-trustworthy
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verdicts.

Theorem 8 (Over Channels with Loss , True is Trustworthy only for Tolerant Properties).
Given a property L1 ∈ Tolr and a property L2 ⊆ (Σω \ Tolr), for all pairs (σ1, σ

′
1) ∈ Loss1,

(EB3(L1)(σ′1) = >)→ (EB3(L1)(σ1) = >) and there exists a pair (σ2, σ
′
2) ∈ Loss1 such that

(EB3(L2)(σ′2) = >) ∧ (EB3(L2)(σ2) 6= >).

Proof: We will show that true is trustworthy for exactly the properties Tolr. We
must show that ∀L ∈ Tolr there cannot exist a pair of traces (σ, σ′) ∈ Loss1 such that
EB3(L)(σ′) = > ∧ EB3(L)(σ) 6= >. Or, to restate using Definition 18, σ′ · µt ∈ L for all
infinite suffixes µt ∈ Σω and there exists an infinite suffix µf ∈ Σω such that σ · µf /∈ L.
We will prove by contradiction.

From Definition 24, since σ and σ′ must not be equal (or they must result in the same
verdict), there exist finite traces α, β ∈ Σ∗ and a symbol ∃x ∈ Σ such that σ = α · 〈x〉 · β
and σ′ = α · β. So, we assume there exist a pair of finite traces (α · 〈x〉 · β, α · β) ∈ Loss1

such that, for all infinite suffixes µt ∈ Σω, α · β · µt ∈ L and there exists an infinite suffix
µf ∈ Σω such that α · 〈x〉 · β · µf /∈ L. For this to be true, it must be that there exists an
infinite suffix µ ∈ Σω such that α · β · µ ∈ L and α · 〈x〉 · β · µ /∈ L. Since β · µ appears in
both traces, we can simplify to say that there exists an infinite suffix µ ∈ Σω such that
α · µ ∈ L and α · 〈x〉 · µ /∈ L. However, this is the complement of Tolerant Properties from
Definition 34, which we have explicitly excluded.

Theorem 9 (False is Trustworthy only for Permissive Properties over Channels with Loss).
Given a property L1 ∈ Perm and a property L2 ⊆ (Σω \ Perm), for all pairs (σ1, σ

′
1) ∈ Loss1,

(EB3(L1)(σ′1) = ⊥)→ (EB3(L1)(σ1) = ⊥) and there exists a pair (σ2, σ
′
2) ∈ Loss1 such that

(EB3(L2)(σ′2) = ⊥) ∧ (EB3(L2)(σ2) 6= ⊥).

Proof: The proof is identical to that for Theorem 9, but for false and Permissive
Properties.

Theorem 10 (NFR ∩ NFS Properties are Vacuously Immune to All Mutations). Given
a property L ∈ NFR ∩ NFS, for any finite traces σ, σ′ ∈ Σ∗ it is always true that
EB3(L)(σ′) = EB3(L)(σ).

Proof: The proof is trivial, since EB3(L)(σ) = ? for any finite trace σ ∈ Σ∗.
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4.8.2 Channels with Corruption

Corruption is the only trace mutation we examine for which no properties, apart from
those in NFR∩NFS have trustworthy verdicts. This result is not surprising, since corruption
can change any symbol in the alphabet to any other symbol. Corruption cannot change
the length of the original trace, so we first show that this does not limit the properties for
which the mutation may affect the monitoring verdict.

Lemma 1 (Strings of the Same Length Must Be Able to Result in Different Verdicts).
Given a property L ⊆ Σω, if there exist two finite strings s, s′ ∈ Σ∗ such that
EB3(L)(s′) 6= EB3(L)(s), then there must exist two finite strings of the same length
σ, σ′ ∈ Σ∗. |σ| = |σ′| such that EB3(L)(σ′) 6= EB3(L)(σ).

Proof: First, suppose a property L ∈ Σω such that there exist finite traces s, s′ ∈ Σ∗

such that EB3(L)(s′) 6= EB3(L)(s), and for all pairs of finite traces of equal length
(σ, σ′) ∈ Σ∗. |σ| = |σ′|, EB3(L)(σ′) = EB3(L)(σ).

If all traces of the same length yield the same verdict, then one of s or s′ must be longer
than the other (which one does not matter). Assume |s| > |s′|. There are three cases:

1. If EB3(L)(s′) = > then, from Definition 18, s′ · µ ∈ L for all infinite suffixes µ ∈
Σω. However, for all traces of the same length t ∈ Σ∗. |t| = |s′|, we assume that
EB3(L)(t) = >, so there must be a prefix of s where the verdict is >, but this is a
contradiction.

2. The same logic applies if EB3(L)(s′) = ⊥.

3. If EB3(L)(s′) = ? , then either EB3(L)(s) = > or EB3(L)(s) = ⊥. Suppose that
EB3(L)(s) = >, as the same argument applies for both verdicts. Then for all finite
suffixes t ∈ Σ∗ such that s′ concatenated with t is the same length as s, |s′ · t| = |s|,
it must be that (s′ · t) ∈ L. However, by Definition 18, there exists an infinite suffix
µ ∈ Σω such that (s′·µ) /∈ L. Then, there must be either a finite suffix the same length
as t, σ ∈ Σ∗. |s′ · σ| = |s| where EB3(L)(s′ · σ) = ⊥ or EB3(L)(s′ · σ) = ? , which is a
contradiction.

Theorem 11 (If Multiple Verdicts are Possible for a Property, Then None are Trustworthy
Over Channels with Corruption). Given a property L ⊆ Σω, for all verdicts v ∈ B3, if there
exist two finite traces s, s′ ∈ Σ∗ such that EB3(L)(s′) = v and EB3(L)(s) 6= v, then there
exists a pair of traces (σ, σ′) ∈ Corruption1 such that EB3(L)(σ′) = v and EB3(L)(σ) 6= v.
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Proof: Suppose two finite traces with different verdicts s, s′ ∈ Σ∗. EB3(L)(s′) = v∧
EB3(L)(s) 6= v. From Lemma 1 it must be possible for |s| = |s′|. Clearly, from Defini-
tions 25 and 28, there exists a number k ∈ N such that (s, s′) ∈ Corruptionk, since any
finite string may appear on the left side of the pair and applying Corruption an arbitrary
number of times can transform a string to any other string of the same length. From Corol-
lary 1, a verdict is trustworthy for Corruption1 iff it is trustworthy for Corruptionk.

4.8.3 Channels with Stutter

Many works on temporal logic have examined the effects of stuttering. Lamport argued
for the omission of the next (X) operator in temporal logic, and demonstrated that traces
with repeating symbols could not be differentiated without it [142]. The difference between
prior work on stuttering and ours is that Definition 26 includes only finite stuttering, while
other works have allowed for infinite repetition of a symbol [13, 207, 179]. This difference
has significant consequences for what properties are immune to the mutation.

Theorem 12 (All Non-Proximate Properties are Immune to Stutter). Given a property
L ⊆ (Σω \ Prox), for all pairs (σ, σ′) ∈ Stutter1, it must be that EB3(L)(σ′) = EB3(L)(σ).

Proof: The proof follows directly from Definitions 26 and 33. For all non-Proximate
Properties, L ∈ (Σω \ Prox) and for all finite prefixes α ∈ Σ∗ for all infinite suffixes ∀β ∈ Σω

and for all symbols x ∈ Σ, either α · 〈x〉 · β ∈ L, and α · 〈x, x〉 · β ∈ L, or α · 〈x〉 · β /∈ L,
and α · 〈x, x〉 · β /∈ L. Clearly, true is trustworthy, since for all pairs (σ, σ′) ∈ Stutter1,
if σ′ · µ ∈ L for all infinite suffixes µ ∈ Σω, then σ · µ ∈ L. By the same logic, false is
trustworthy. If there exist infinite suffixes µt, µf ∈ Σω such that σ′ · µt ∈ L and σ′ · µf /∈ L,
then σ · µt ∈ L and σ · µf /∈ L, so ? is also trustworthy. By Theorem 3 such a property is
immune.

4.8.4 Channels with Out-of-Order

Properties that are immune to OutOfOrder are limited to subclasses of Liveness and Mor-
bidity. The Inclusion and Exclusion classes defined in Section 4.7 are limited to properties
where satisfaction or violation depend on the presence of specific symbols.

Theorem 13 (Inclusion and Exclusion Properties are Immune to OutOfOrder). Given a
property L ∈ Incl ∪ Excl, for all pairs of finite traces (σ, σ′) ∈ OutOfOrder1, it must be
true that EB3(L)(σ) = EB3(L)(σ′).

134



Proof: The proof follows directly from Definitions 27, 36 and 37. By Definition 36, given
a property L ∈ Incl, for all traces in that property s ∈ L there exists a set of symbols
X ⊆ Σ such that for an infinite trace σ ∈ Σω, σ ∈ L iff all of the symbols in X are in
σ. By Definition 27, for all pairs of finite traces (σ, σ′) ∈ OutOfOrder1 there cannot exist
a symbol x ∈ Σ such that x ∈ σ′ and x /∈ σ. Since all pairs (σ, σ′) ∈ OutOfOrder1 must
contain the same symbols, they must result in the same verdicts. The same logic applies
for Definition 37 and violation, rather than satisfaction, of the property.

Theorem 14 (No Verdicts are Trustworthy for Non-Inclusion, Non-Exclusion Properties
Over Channels with OutOfOrder). Given a property L ⊆ (Σω \ (Incl ∪ Excl)), for all ver-
dicts v ∈ B3 there exists a pair of traces (σ, σ′) ∈ OutOfOrder1 such that EB3(L)(σ′) = v
and EB3(L)(σ) 6= v, except in the case where L ∈ NFR ∩ NFS and v = ?, since that is the
only possible verdict for such properties.

Proof: The proof, again, follows directly from Definitions 27, 36 and 37. Consider a
property L ⊆ (Σω \ (Incl ∪ Excl)). Then, there must exist two infinite traces σ, σ′ ∈ Σω

such that σ ∈ L and σ′ /∈ L where all symbols s ∈ Σ occur in both string s ∈ σ and s ∈ σ′.
In that case, there are two possibilities.

1. Satisfaction or violation depend on infinite strings. In that case, either both satis-
faction and violation depend on infinite strings, so L ∈ NFR ∩ NFS and the verdict is
always ? , or only one depends on infinite strings and the other is covered by the
second case.

2. Satisfaction or violation depend on symbol order. In that case, by Definition 27, there
exists a pair of finite traces (σ, σ′) ∈ OutOfOrder1 such that σ ∈ L and σ′ /∈ L.

4.8.5 Utility of Mutation Immune Properties

Many properties that are immune to the Stutter and OutOfOrder mutations or have trust-
worthy verdicts in the presence of Loss are useful. To show the importance of these proper-
ties, we provide a classification of property specification patterns from Dwyer, Avrunin, and
Corbett’s survey [78]. This analysis shows that the most common patterns are monitorable
over some unreliable channels.

Table 4.2 shows the property specification patterns from [78] and where they fit in the
updated FR/FS classification. Note that we only list patterns in the global scope as these
patterns account for 78.9% of all the properties in the survey. In the table, the Pattern
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Table 4.2: Property specification patterns

Pattern Class Occurence
Absence AFR ∩ NFS ∩ Excl 9.4%
Universality AFR ∩ NFS ∩ Excl 25.1%
Existence NFR ∩ AFS ∩ Incl 2.7%
Bnd. Existence AFR ∩ NFS ∩ Excl 0%
Precedence AFR ∩ SFS \ Prox 55%
Response NFR ∩ NFS 5.7%
Precedence Chn. SFR ∩ SFS \ Prox 1.8%
Response Chn. NFR ∩ NFS 0.2%

column gives the name of the pattern, Class gives the classification of that pattern in the
updated FR/FS taxonomy, and Occurence gives the incidence of that pattern in the global
scope in the original study [78].

All of the patterns in Table 4.2 are immune to at least Stutter , and most are immune to
or have trustworthy verdicts over other mutations. The Absence, Universality, Existence,
and Bounded Existence patterns are all either Inclusive or Exclusive Properties. These
patterns are immune to Stutter and OutOfOrder and have trustworthy verdicts over Loss
and make up 37.2% of the global-scope properties from [78]. The Precedence and Prece-
dence Chain patterns, which make up 56.8% of global-scope properties, are non-Proximate
and immune to Stutter . The Response and Response Chain patterns, which only make up
5.9% of global-scope properties, are in NFR ∩ NFS, which means they are non-monitorable
and trivially immune to all mutations.

The property classification in this section is valuable for quickly identifying properties
that can be monitored over channels with the Loss , Corruption, Stutter , and OutOfOrder
mutations. However, custom mutations that more precisely model an unreliable channel
must be analyzed separately. This requires a decision procedure that can accommodate
any mutation. By Rice’s Theorem, monitorability over unreliable channels is undecidable
in the general case where the language may require a Turing Machine to express. Most
properties of interest, however, including those expressible as LTL, are ω-regular. We now
provide a decision procedure for those properties expressible by an NBA.
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4.9 Deciding Immunity for Omega-Regular Properties

To determine the immunity of an ω-regular property to a trace mutation, we must construct
automata that capture the notion of uncertainty from B3. Bauer et al. defined a simple
process to build a B3 monitor using two DFAs in their work on LTL3 [30]. We will examine
these DFAs to decide if the property is true-false immune to the trace mutation.

Two DFAs are needed to represent the B3 output of the monitor, since each DFA can
only accept or reject a trace. In the monitor, if one DFA rejects the trace then the verdict
is ⊥, if the other rejects the trace then the verdict is > and if neither reject then the verdict
is ? . It is not possible for both DFAs to reject due to how they are constructed.

The construction procedure for the monitor begins by complementing the property. A
language of infinite words L is represented as an NBA AL = (Q,Σ, q0, δ, FL), for example,
an LTL formula can be converted to an NBA by tableau construction [206]. The NBA
is then complemented to form AL = (Q,Σ, q0, δ, FL). Remark: The upper bound for
NBA complementation is 2O(n logn), so it is cheaper to complement an LTL property and
construct its NBA if starting from temporal logic [141].

To form the monitor, create two NFAs based on the NBAs and then convert them to
DFAs. The two NFAs are defined as A = (Q,Σ, q0, δ, F ) and A = (Q,Σ, q0, δ, F ) The new
accepting states are the states from which an NBA accepting state is reachable. That
is, we populate the accepting states so that F = {q ∈ Q : (Reach(AL, q) ∩ FL) 6= ∅}, and
F = {q ∈ Q : (Reach(AL, q) ∩ FL) 6= ∅}. The two NFAs are then converted to DFAs via
subset construction. The verdict for a finite trace σ is then given as the following function
VB3 : 2Σω → Σ∗ → B3.

Definition 38 (B3 Monitor Verdict). Given a property L ⊆ Σω , derive B3 monitor DFAs
A and A. The B3 verdict for a string σ ∈ Σ∗ is the following.

VB3(L)(σ) =


⊥ if σ /∈ L(A)

> if σ /∈ L(A)

? otherwise

Example: Figure 4.1b shows the NBA AL that accepts the infinite-string language of
the LTL formula ϕ = G(a→ F¬a) ∨ Fb. To construct an LTL3 monitor for ϕ, we must
first complement this NBA, then use the two NBAs to create NFAs and finally DFAs.

Figure 4.4a shows the NBA AL that accepts the language L[[¬ϕ]] and is the complement
of AL in Figure 4.1b. To obtain monitor DFAs, the states and transitions from these
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NBAs are used to construct NFAs with new accepting conditions, and then the NFAs are
determinized. Figures 4.4b and 4.4c show the simplified monitor DFAs for L[[ϕ]] and L[[¬ϕ]],
respectively. The monitor reaches a > verdict if the input trace prefix contains a symbol
where b holds, otherwise the verdict is ? .

q1

q2 q3

b

a¬b

¬b

Σ a¬b
¬a, b

(a) NBA AL

q1 Σ

(b) DFA A

q1

q2

¬b

b

Σ

(c) DFA A

Figure 4.4: NBA for L[[¬ϕ]] and its B3 monitor DFAs

We can now restate Definition 30 using monitor automata. This new definition will
allow us to construct a decision procedure for a property’s immunity to a mutation.

Theorem 15 (True-False Immunity to Unreliable Channels for ω-Regular Properties).
Given an ω-regular language L ⊆ Σω, derive B3 monitor DFAs A = (Q,Σ, q0, δ, F ) and
A = (Q,Σ, q0, δ, F ). L is true-false immune to a trace mutationMk ⊆ Σ∗ × Σ∗ iff for all
pairs of finite traces in the mutation (σ, σ′) ∈Mk, it must be that (σ /∈ L(A)⇔ σ′ /∈ L(A))
and (σ /∈ L(A)⇔ σ′ /∈ L(A)).

Proof: By Definition 30 we need only show that EB3(L)(σ) = EB3(L)(σ′) is equivalent
to (σ /∈ L(A)⇔ σ′ /∈ L(A)) and (σ /∈ L(A)⇔ σ′ /∈ L(A)). There are three cases: ⊥, >,
and ? . For ⊥ and > it is obvious from Definition 38 that the verdicts are derived from
exclusion from the languages of A and A. As there are only three possible verdicts, this
also shows the ? case.

We say that an automaton is immune to a trace mutation in a similar way to how a
property is immune. To show that a property is true-false immune to a mutation, we only
need to show that its B3 monitor automata are also immune to the property. Note that,
since the implication is both directions, we can use either language inclusion or exclusion
in the definition.

Definition 39 (Finite Automaton Immunity). Given an FA A = (Q,Σ, q0, δ, F ) and a
trace mutationMk ⊆ Σ∗ × Σ∗, A is immune toMk iff for all pairs of finite traces in the
mutation (σ, σ′) ∈Mk, it must be that σ ∈ L(A)⇔ σ′ ∈ L(A).
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With this definition we can provide a decision procedure for the monitorability of an
ω-regular property over an unreliable channel. The procedure will check the immunity of
the B3 monitor automata to the mutations from the channel, as well as the property’s mon-
itorability. If the DFAs are both immune to the mutations and the property is monitorable,
then the property is monitorable over the unreliable channel.

4.10 Decision Procedure for DFA Immunity

We propose Algorithm 7 for deciding whether a DFA is immune to a trace mutation. The
algorithm is loosely based on Hopcroft and Karp’s near-linear algorithm for determining
the equivalence of finite automata [114].

Algorithm 7 Determine if a DFA is immune to a given trace mutation.
1: procedure immune( A = (Σ, Q, q0, δ, F ),M )
2: for q ∈ Q do E(q)← {q} . E is a map
3: R← Reach(A, q0) . R is the reachable states
4: T ← { } . T is a worklist
5: for (σ, σ′) ∈M where |σ| = minLength(M) do
6: for q ∈ R do
7: q1 ← δ∗(q, σ) . Follow original trace
8: q2 ← δ∗(q, σ′) . Follow mutated trace
9: E(q1)← E(q2)← {q1, q2}
10: T ← T ∪ {(q1, q2)}
11: while T is not empty do
12: let (q1, q2) ∈ T . Get a pair from the worklist
13: T ← T \ {(q1, q2)} . Remove the pair from T
14: for α ∈ Σ do
15: n1 ← δ(q1, α)
16: n2 ← δ(q2, α)
17: C ← {E(n1), E(n2)}
18: if |C| > 1 then
19: E(n1)← E(n2)←

⋃
C . Merge sets in E

20: T ← T ∪ {(n1, n2)}
21: if Any set in E contains both final and non-final states then return False
22: else return True

Algorithm 7 checks if the DFA A is immune to the mutation M , where A represents
part of the B3 monitor for a property and M is a relation given by M1 in Definition 28.
The intuition behind Algorithm 7 is to follow transitions for pairs of unmutated and corre-
sponding mutated strings in M and verify that they lead to the same acceptance verdicts.

139



More specifically, Algorithm 7 finds sets of states which must be equivalent for the DFA
to be immune to a given mutation. The final verdict of immune is found by checking
that no equivalence class contains both final and non-final states. If an equivalence class
contains both, then there are some strings for which the verdict will change due to the
given mutation.

If all mutations required only a string of length one, the step at Lines 7 and 8 could
follow transitions for pairs of single symbols. However, mutations like OutOfOrder re-
quire strings of at least two symbols, so we must follow transitions for short strings. We
express this idea of a minimum length for a mutation in the minLength : 2Σ∗×Σ∗ → N
function. For mutations in Section 4.4, minLength(Loss) = minLength(Corruption) =
minLength(Stutter) = 1 and minLength(OutOfOrder) = 2. Note that minLength for unions
must increase to permit the application of both mutations on a string. For example,
minLength(Loss ∪ Corruption) = 2. This length guarantees that each string has at least
one mutation, which is sufficient to show immunity by Theorem 2.

The algorithm works as follows. We assume a mutation can occur at any time, so
we begin by following transitions for pairs of mutated and unmutated strings from every
reachable state (stored in the set R). On Lines 5-10, for each pair (σ, σ′) in M and for
each reachable state, we compute the states q1 and q2 reached from σ (respectively σ′).
The map E contains equivalence classes, which we update for q1 and q2 to hold the set
containing both states. The pair of states is also added to the worklist T , which contains
equivalent states from which string suffixes must be explored.

The loop on Lines 11-20 then explores those suffixes. It takes a pair of states (q1, q2)
from the worklist and follows transitions from those states to reach n1 and n2. If n1 and
n2 are already marked as equivalent to other states in E or aren’t marked as equivalent to
each other, those states are added to the worklist, and their equivalence classes in E are
merged. If at the end, there is an equivalence class with final and non-final states, then A
is not immune to M .

Theorem 16 (Immunity Procedure Correctness). Algorithm 7 is sound and complete for
any DFA and prefix-assured mutation. That is, given a DFA A = (Σ, Q, q0, δ, F ), and a
mutation, M , Immune(A,M)⇔ A is immune to M .

Proof: By Definition 39, this is equivalent to showing that Immune(A,M)⇔
(∀(σ, σ′) ∈M, σ ∈ L(A)⇔ σ′ ∈ L(A)).

We will prove the⇒ direction (soundness) by contradiction. Suppose at the completion
of the algorithm that all sets in E contain only final or non-final states, but that A is
not immune to M . There is at least one pair (σb, σ

′
b) ∈ M where one leads to a final
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state, and one does not. If Algorithm 7 had checked this pair then these states would
be in an equivalence class in E. Since the loop on Line 7 follows transitions for pairs in
M of length minLength(M), the reason (σb, σ

′
b) was not checked must be because |σb| 6=

minLength(M). The length of σb must be greater than minLength(M) since strings shorter
than minLength(M) cannot be mutated by M . Since M is prefix-assured, there must be
a pair (σ, σ′). |σ| = minLength(M) that are prefixes of (σb, σ

′
b). The loop on Line 11 will

check (σ · s, σ′ · s) ∀s ∈ Σ∗. Therefore it must be the case that there exist two different
finite suffixes t, u ∈ Σ∗. t 6= u such that σb = σ · t and σ′b = σ′ · u. However, if t 6= u then
(σb, σ

′
b) ∈Mk for some k > 1, so A is immune to M1 but not Mk, but from Theorem 2

this is a contradiction.

We prove the ⇐ direction (completeness) by induction. We will show that if A is
immune to M then no set in E, and no pair in T will contain both final and non-final
states. The base case at initialization is obviously true since every set in E contains only
one state and T is empty. The induction hypothesis is that at a given step i of the algorithm
if A is immune toM then every set in E and every pair in T contains only final or non-final
states.

At step i + 1, in the loop starting at Line 7, E and T are updated to contain states
reached by following σ and σ′. Clearly, if A is immune to M then these states must be
both final or non-final since we followed transitions from reachable states for a pair in M .
In the loop on Line 11, n1 and n2 are reached by following the same symbol in the alphabet
from a pair of states in T . If A is immune to M , the strings leading to that pair of states
must both be in, or both be out of the language. So, extending both strings by the same
symbol in the alphabet creates two strings that must both be in or out of the language.
These states reached by following these strings are added to T on Line 20.

On Lines 17 and 19, the two sets in E corresponding to n1 and n2 are merged. Since both
sets must contain only final or non-final states, and one-or-both of n1 and n2 are contained
in them, the union of the sets must also contain only final or non-final states.

Theorem 17 (Immunity Procedure Complexity). Algorithm 7 is Fixed-Parameter Trac-
table. That is, given a DFA A = (Σ, Q, q0, δ, F ), and a mutation, M , its maximum running
time is |Q|O(1)f(k), where f is some function that depends only on some parameter k.

Proof: The run-time complexity of Algorithm 7 is O(n)O(ml f(M)) where n = |Q|,
m = |Σ|, l = minLength(M), and f is a function on M . First, Lines 4, 7, 8, 9, 10, 12, 13,
15, 16, 17, 18, 19, and 20 execute in constant time, while each of Lines 2, 3, and 21 run in
time bounded by n.
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The initialization loop at Line 5 runs once for each pair in the mutation where the length
of σ is bounded by minLength(M). This count is ml times a factor f(M) determined by
the mutation. For example, f(Loss) = l because each σ is mutated to remove each symbol
in the string. Critically, this factor f(M) must be finite, which it is for the mutationsM1.
The loop at Line 6 runs in time bounded by n, so the body of the loop is reached at most
mlf(M)n times.

The loop at Line 11 may run at most mlf(M) +n times. The loop continues while the
worklist T is non-empty. Initially, T has mlf(M) elements. Each time Line 13 runs, an
element is removed from the worklist. For an element to be added to T , it must contain
states corresponding to sets in E which differ. When this occurs, those two corresponding
sets are merged, so the number of unique sets in E is reduced by at least one. Therefore,
the maximum number of times Line 20 can be reached and an element added to T is n.

Note that, in practice, minLength(M) is usually small (often only one), so Algorithm 7
achieves near linear performance in the size of the FA. The size of the alphabet has an
effect but it is still quadratic.

4.11 Related Work

Unreliable channels have been acknowledged in formal methods research for some time.
For example, Lamport suggested in 1983 that temporal logics without next operators were
immune to stutter [142]. More recent works by Purandare et al. [187] and Lomuscio et
al. [154] applied the principle suggested by Lamport for performance optimizations.

In this section, we describe related work in three areas. First, on works examining
unreliable channels in RV, second, on the study of unreliable channels as they relate to
communicating finite state machines (CFSMs), and finally, on other definitions of moni-
torability.

4.11.1 Runtime Verification

RV seeks to decide whether a trace generated by the execution of a program satisfies a
specification, often expressed in a temporal logic like LTL [21]. Most RV methods assume
an ideal trace, but the topic of unreliable channels is of growing interest in the field.

Work has been done to show which properties are verifiable on a trace with mutations
and to express degrees of confidence when they are not. Stoller et al. used HMMs to
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compute the probability of a property being satisfied on a lossy trace [214]. Their definition
of lossy included a “gap” marker indicating where symbols were missing. They used HMMs
to predict the missing states where gaps occurred and aided their estimations with a
learned probability distribution of state transitions. Joshi et al. introduced an algorithm
to determine if a specification could be monitored soundly in the presence of a trace with
transient loss, meaning that eventually it contained successfully transmitted events [122].
They defined monotonicity to identify properties for which the verdicts could be relied
upon once a decision was made.

Garg et al. introduced a first-order logic with restricted quantifiers for auditing incom-
plete policy logs [95]. The authors used restricted quantifiers to allow monitoring policies
that would, in principle, require iterating over an infinite domain. Basin et al. also speci-
fied a first-order logic for auditing incomplete policy logs [28]. Basin et al. also proposed a
semantics and monitoring algorithm for Metric Temporal Logic (MTL) with freeze quan-
tifiers that was sound and complete for unordered traces [27]. Their semantics was based
on a three-value logic, and the monitoring algorithm was evaluated over ordered and un-
ordered traces. All three of these languages used a three value semantics (t, f,⊥) to model
a lossy trace, where ⊥ represented missing information.

Leuker et al. introduced a technique for a Stream Runtime Verification (SRV) over
incomplete traces [148]. They defined an abstract form of the TeSSLa SRV language and
showed how it could be used to obtain sound verdicts on traces with well defined gaps.
Abstract verdicts were clearly delineated from concrete ones, so that imprecise results could
not be confused for incorrect results. Their work assumed that missing values were within
a known range and that gaps were identifiable.

Li et al. examined out-of-order data arrival in CEP systems and found that SASE [232]
queries processed using the Active Instance Stack (AIS) data structure would fail in several
ways [150]. They proposed modifications to AIS to support out-of-order data and found
acceptable experimental overhead to their technique.

Baader, Bauer, and Tiu examined the complexity of regular language inclusion and
exclusion of a finite trace with lost symbols [17]. They modeled traces as patterns where
missing sequences were replaced with variables and considered both the linear case, where
variables were unique, and the non-linear case, where they could repeat. The authors
showed that, for languages specified as an NFA, linear exclusion was solvable in polynomial
time while non-linear exclusion was PSPACE-Complete. For inclusion, they found that
both the linear and non-linear cases were PSPACE-Complete.

Runtime verification in the presence of noise has been studied in the context of Analog
and Mixed Signal (AMS) components, also referred to as mixed signal circuits. These
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integrate analog circuits and digital circuits; e.g. such a component can transform an analog
signal to a digital signal. Wang et al. describe using runtime verification in combination
with Monte Carlo simulation (called statistical runtime verification) to analyze Jitter [227].
Jitter is defined as the deviation in time between a noisy signal and an ideal one. A related
concept is the notion of system instability, where control outputs ocillate permanently while
inputs are constant. Halbwachs et al. proposed a method to verify the stability of systems
using heuristics to check strongly connected components of an operator network [101].

4.11.2 Communicating Finite State Machines

Several works in information theory have modeled the problem of unreliable communica-
tion channels in CFSMs [40]. CFSM communication channels are treated as unbounded
first-in first-out (FIFO) buffers between finite state machines (FSMs), which is a Turing
complete model of computation for a class of infinite-state systems called simple reactive
programs [230]. Simple reactive programs are data-independent and are useful for mod-
eling communication protocols like the Alternating Bit Protocol [24] and High-level Data
Link Control (HDLC) [119]. CFSMs also form the basis of protocol specification languages
such as Estelle [41], and Specification and Description Language (SDL) [34]. CFSMs with
unreliable communcations channels are no longer Turing complete, and a number of useful
properties have been shown to hold in such cases.

Finkel introduced his notion of completely specified protocols to show that they are
a class of machines for which the termination problem is decidable [91]. He defined a
completely specified protocol as a CFSM where any FSM can receive any message in
any local state and can stay in that state, and he showed that protocols using lossy FIFO
channels are examples of such protocols. Abdulla and Jonsson later provided algorithms for
deciding the termination problem for protocols on lossy FIFO buffers, as well as algorithms
for some safety and eventuality properties [3].

Cécé et al. expanded this examination of unreliable FIFO channels in CFSMs by con-
sidering channels with insertion errors, duplication errors, and a combination of insertion,
duplication, and lossy errors [43]. Their work defined insertion errors in FIFO buffers to
be equal to our general notion of noisy traces, but their duplication errors were restricted
to consecutive duplicates. They showed that noisy errors on a communication channel
between two FSMs decrease the expressive power of the system more than lossy errors,
while consecutive duplication errors do not decrease its expressive power at all.

Iyer and Narasimha introduced probability to the notion of lossy communications chan-
nels [120]. They argue that this is a more realistic notion of loss, as hardware reliability
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statistics are often known. Their work included algorithms for solving probablistic notions
of reachability and model checking. That is, given a channel with a known probability of
loss, they asked whether a global state in the CFSM was reachable with a certain probabil-
ity and tolerance, and whether a Propositional Temporal Logic (PTL) property was true
with a certain probability and tolerance. Baier and Engelen proved that the set of message
sequences on a probabilistic lossy channel that satisfy an LTL property could be decided
with probability 1 if the probability of message loss was at least 1/2 [18]. Abdulla et
al. proved that, if the probability of message loss was less than 1/2 then the same problem
was undecidable [2].

Peng and Makki introduced lossy communicating finite state machines (LCFSMs) to
simplify protocol modeling for lossy channels [180]. Traditionally, loss in unreliable com-
munications channels has been modeled using the addition of extra CFSMs which consume
messages. The authors argued that this leads to messy CFSM specifications which obfus-
cate the protocol being modeled. They introduced a delete action to allow the removal of
these extra CFSMs.

4.11.3 Other Definitions of Monitorability

Some other definitions of monitorability exist which are outside the scope of this work.
These solutions either assume partial knowledge of the monitored system or concern mon-
itoring multiple systems simultaneously.

Sistla, Žefran, and Feng defined monitorability and strong monitorability for partially
observable stochastic systems modeled as HMMs [208]. Gondi, Patel, and Sistla had al-
ready introduced this notion in their work on external monitoring of ω-regular properties
of stochastic systems [99], but the later work focused on formalizing the concept and on
internal monitoring. In these works, properties to be monitored are given as deterministic
Streett automata [199] and a model of the system is supplied as a HMM. This varies from
definitions of monitoring where only a trace of the output symbols from the monitored
system is assumed to be known.

Sistla et al. use Acceptance Accuracy (AA) and Rejection Accuracy (RA) to define mon-
itorability and strong monitorability, and define them as properties of both a monitored
formula and a monitored system. AA is given as the probability that a monitor accurately
returns a positive verdict (accepts) for a formula and a system model, while RA is given as
the probability that a monitor accurately returns a negative verdict (rejects) for a formula
and a system model. Sistla et al. thus define that a system is strongly monitorable with
respect to a formula if there exists a monitor such that both the AA and RA are 1. They
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then define that a system is monitorable with respect to a formula if there exists a mon-
itor(s) such that accuracies arbitrarily close to 1 may be achieved. The authors conclude
that all properties that can be represented as Streett automata are considered externally
monitorable for finite state systems and safety properties are also strongly monitorable.

Agrawal and Bonakdarpour first proposed monitoring hyperproperties and introduced
a notion of monitorability for such properties [7]. Hyperproperties are sets of sets of traces
where monitoring requires reasoning about many prefixes simultaneously. The authors
introduce a three-valued semantics for the hyperproperty specification language Hyper-
LTL [51] and define monitorable classes in that logic. Stucki et al. proposed incorporating
partial or complete knowledge of the system into monitoring hyperproperties [215]. They
showed that monitoring hyperproperties without such information is infeasible in general
and refined Agrawal and Bonakdarpour’s definition of hyperproperty monitorability to
incorporate computability of the monitor.

Francalanza, Aceto, and Ingolfsdottir defined monitorability for µ-Hennessy-Milner
Logic (µHML), a branching time logic for RV based on the modal µ-calculus [93]. They
characterized what properties of µHML are monitorable and gave a method to synthesize
monitors for those properties. Aceto et al. later introduced a hierarchy of monitorable
fragments for µHML and established different guarantees for each fragment [4].

4.12 Conclusions and Future Work

The mutations from Definitions 24 to 27 are useful abstractions of common problems in
communication. However, in many cases, they are stronger than is needed as practitioners
may have knowledge of the channel that constrains the mutations. For example, on Mars
Science Laboratory, messages contain sequence numbers which can be used to narrow the
range of missing symbols. Although the property classification from Section 4.8 cannot
be used for custom mutations, mutations can be easily defined and then properties can
be tested for immunity using Algorithm 7. Custom mutations should avoid behavior that
requires long strings to mutate, however, as this causes exponential slowdown. Future
work should incorporate a decision procedure for trustworthy verdicts that can be used for
custom mutations.

Well designed mutations like those from Definitions 24-27 can be checked quickly. How-
ever, the method relies on B3 monitor construction to obtain DFAs, and the procedure to
create them from an NBA is in 2EXPSPACE. We argue that this is an acceptable cost of
using the procedure since it is done offline and a monitor must be derived to check the
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property in any case. Future work should explore ideas from the study of monitorabil-
ity [68, 178] to find a theoretical bound on deciding immunity and to explore algorithms
that do not require monitor construction.

Another avenue for improving our work is to incorporate partial system models to
reduce the range of unmutated strings as in grey-box monitoring [215]. Currently, the
definition of immunity to a mutation requires that any string (using the alphabet) could
be mutated. For many systems, this is more general than is needed, and constraining
unmutated strings can allow for more properties to be considered immune and therefore
monitorable.

Our definition of monitorability also assumes that every verdict must be trustworthy
for a mutation, but some properties may be useful to monitor where only some verdicts
are trustworthy. This is similar to how Weak Monitorability relaxes the requirement from
Classical Monitorability that every execution may reach a true or false verdict. It may be
interesting to define a notion of Weak Monitorability over Unreliable Channels that only
requires true and false to be trustworthy.

The ability to check properties expressible by NBAs for monitorability over unreliable
channels allows RV to be considered for applications where it would have previously been
ignored. To arrive at this capability, we first needed to define monitorability over unreliable
channels using both existing notions of monitorability and a new concept of mutation
immunity. We proved that immunity to a single application of a mutation is sufficient
to show immunity to any number of applications of that mutation, and we defined true-
false immunity using B3 semantics. The FR/FS classification provided a framework that
we extended to categorize the properties that are immune to common mutations. In some
cases, we found that properties had trustworthy verdicts when monitored over an unreliable
channel, despite not being immune to the mutation from that channel.

We believe unreliable communication is an important topic for RV and other fields
that rely on remote systems, and we hope that this work leads to further examination of
unreliable channels in the RV community.
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Chapter 5

Conclusion

For Runtime Verification to gain acceptance as a method to formally verify safety-critical
software, practical limitations must be overcome. This thesis introduces improvements to
the state-of-the-art that improve the usability of RV in the real world.

Practical barriers to the adoption of Runtime Monitoring occur in every component of
an RV system. In Chapter 1, four problems were introduced:

1. that RV methods assume the integrity of execution traces,
2. that monitors are challenging to deploy and may only operate offline,
3. that RV techniques require known formal requirements, and
4. that the verdicts output by monitors are insufficient for error diagnosis and recovery.

Nfer is a language and system to infer a hierarchy of temporal interval abstractions
from an event stream. Nfer provides a formalism based on relative temporal relationships
that is simple to adopt for planning software users. It includes the ability to mine abstrac-
tions from historical data and offers integrations with popular programming languages.
This work addresses problem 3 by supporting a method to mine rules and problem 4 by
computing temporal abstractions useful for human and machine comprehension.

Palisade is a framework for distributed online anomaly detection that balances detection
latency with ease-of-use. Palisade allows multiple detectors, including nfer, to combine
to detect a combination of different anomaly symptoms. Palisade is currently in use in
several industry collaborations and continues to be extended to support sources, sinks,
and processors. This work addresses problem 2 by providing a simple mechanism for
distributing online, low-latency monitors.
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The definition of monitorability over unreliable channels provides a means to operate
traditional RV tools under realistic networking conditions. Properties may be classified
as monitorable given prior knowledge of possible trace mutations, even if those mutations
are more implementation-specific than the general ones provided. The work provides a
platform on which further theories may be built regarding the effects of unreliable commu-
nication on runtime monitoring. This work addresses problem 1 by categorizing precisely
what program properties may be monitored given inconsistent data.

5.0.1 Future Work

We have made some progress on addressing the barriers to the widespread adoption of RV
in safety-critical embedded systems, but much work remains. There are several areas in
which we continue to work to improve upon the results in this thesis.

One area of continuing progress is in expanding the usability and effectiveness of nfer.
The original research was done to support the use case at JPL described in Chapter 2.
However, we believe that temporal intervals are a natural abstraction for event sequences,
and, as such, we are expanding how nfer can be used to understand other types of systems.
For example, we are interested in using nfer to debug multi-threaded and multi-process
Python programs. We can instrument a program to visualize each function execution as
an interval, but the question of which functions are the most interesting to examine is
unsolved. One solution could be to extend the mining capability to include heuristics
specific to the application.

The work in Chapter 4 defines which ω-regular properties are monitorable in the pres-
ence of both generic and custom trace mutations. However, more could be done to assist
users with crafting custom trace mutations. It may be possible to mine trace mutations
from historical data, for example. Another avenue for extending our contribution is to
examine property immunity for other language classes. We are interested in the immunity
to trace mutations of properties from real-time logics like MTL, from non-propositional
logics like Signal Temporal Logic (STL), and from other infinite-trace language classes like
ω-context-free languages. We are also interested in the immunity to trace mutations of
monitors with richer outputs, such as nfer. Some initial work on this problem has been
promising.

These contributions represent progress towards practical RV. More work must be done
for monitoring to gain acceptance in industry, however. We believe that improving the
safety of systems on which lives depend is ultimately worth the effort.
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