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ABSTRACT 

The physically strenuous and demanding nature of construction tasks exposes workers to injury 

risks, can reduce productivity, and contributes to undesirable early retirement. In spite of these 

risks, human performance in the workplace is often managed by over-simplified standards. 

Complex construction sites require continuous manual labor intervention. Site complexity also 

preclude objective and reliable quantification of labor exposure to ergonomic risk factors. It 

also impedes the introduction of automation and robotics in construction industry despite 

recent advancements in other construction technologies.  

The overarching goal of this dissertation is to identify opportunities for human-centric 

advanced work assessment systems that can  

1) objectively and simultaneously evaluate ergonomic risk levels and productivity in 

construction tasks involving heavy material handling,  

2) effectively identify safe and productive working postures and techniques that workers 

develop as they gain experience, and  

3) evaluate the impact of introducing new, semi-automated work systems on health and 

productivity in a construction context.  

To achieve these goals, this research adopts wearable inertial measurement unit (IMU) based 

motion capture systems as means of data collection in construction worksites. It analyzes the 

resultant whole-body kinematic data using analytical tools including combined biomechanical-

productivity analysis, rule-based postural ergonomic risk assessment, statistical analysis, and 

data clustering algorithms. This research specifically focuses its efforts on the masonry field, 

one of the most labor-intensive trades in construction. Over the span of four years, 45 masons 

at various levels of experience participated in field experiments within the framework of this 

study.  
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The acquired data was used to develop automated ergonomic assessment systems to 

evaluate risk levels via various rule-based assessment tools as well as biomechanical analysis. 

This approach enabled us to objectively evaluate ergonomic risk level in construction tasks, 

then analyze the relationships among body loads, experience, and work methods to 

quantitatively investigate differences in joint loads between experts and apprentices. 

Furthermore, motion data-driven identification of expert work technique was proposed as a 

guide to proper working methods and apprentice training. These approaches allowed us to 

identify proper work techniques adopted by experts and suggested the utilization of expert' 

techniques in apprentice training to reduce the prevalence of occupational injuries and to 

improve productivity.  

Leveraging these insights, this study proposed a systematic and objective methodology 

to assess the value of a semi-automated work system in a construction context. The proposed 

methodology fills an important technology gap by representing a proactive approach for the 

evaluation of semi-automated work systems in terms of reduction in exposure to health risks 

and improvements of productivity. Ultimately, the present research seeks to maximize 

occupational performance by minimizing the level of human efforts in construction. 
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CHAPTER 1  
INTRODUCTION 

1.1 BACKGROUND 

Due to the physically strenuous and demanding nature of construction tasks, work-related 

musculoskeletal disorders (WMSDs) present a considerable challenge in the construction 

industry (Boschman et al., 2012; Fung et al., 2008; Holmstrom & Engholm, 2003; Merlino et 

al., 2003; Rosecrance et al., 2001; Schneider, 2001).  In 2017, the Bureau of Labor Statistics 

reported that the incidence rate of work-related musculoskeletal disorders (WMSDs) was 28.6 

for every 10,000 full-time workers for all industries in the U.S., with construction leading at 

9% higher than average rate (CPWR, 2019).  

Canada experiences a proportional impact. Over the past ten years in Canada, 

sprains/strains and overexertion were reported as the leading injuries and injury events, 

accounting for 44% and 18%, respectively, of allowed lost time claims in 2019 (WSIB, 2020). 

WMSDs also impose significant economic burden to workers, society, and health insurance 

systems (Sultan-Taieb et al., 2017). Given the reports from both the United States and Canada, 

risks of WMSDs are clearly a significant issue in North America. 

A consensus has been established that working postures and motions are associated with 

WMSD risks (Kivi & Mattila, 1991; NIOSH, 2014; Punnett & Wegman, 2004). As a result, 

research efforts have attempted to address WMSD by identifying risk factors in workers' 

postures and motions. Researchers and practitioners utilized body posture and motion patterns 

as the primary input to evaluate workers' ergonomic risks. However, the current practice—

heavily reliant on manual assessment of workers' tasks—suffers from several limitations. 

Specifically, obtaining accurate working postures and motions through manual observation is 
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time-consuming, expensive, and error-prone due to the subjective judgment of observers 

(Golparvar-Fard et al., 2013; Taneja et al., 2011). Therefore, reliable ergonomic assessment 

based on comprehensive kinematic (motion) data is essential not only to identify any potential 

issues in health and safety but also to evaluate and improve productivity.  

Recently, advanced sensing, whether computer-vision or wearable-sensor based, 

technologies have enabled the acquisition of accurate and sufficient motion data. Although 

several studies have successfully assessed workers' ergonomic risks using these sensing 

technologies, these studies consist of limited investigations of lightweight material-handling 

tasks (e.g., using a screwdriver (Vignais et al., 2013), a brick (Valero et al., 2016)) in well-

controlled experimental conditions (e.g., laboratory and warehouse (Battini et al., 2014)). 

These limitations have impeded implementation of those technologies in complex construction 

sites and in relation to physically demanding tasks. In fact, discussion of consistent and 

quantitative risk assessment is also sparse. Hence, the first motivation of this research is to 

address the need to develop objective work assessment methods for construction workers that 

do not require sophisticated measurement and processing systems.  

Furthermore, it has been reported that more experienced workers adopted superior work 

techniques, in terms of safety and productivity, as opposed to less experienced workers 

(Alwasel et al., 2017a; Authier et al., 1995; Authier et al., 1996; Patterson et al., 1987). 

However, few studies have quantitatively investigated the relationships between body loads 

and work techniques, on one hand, and working postures and movements, on the other hand, 

in both experts and less experienced workers. Therefore, the second motivation of this research 

is to carry out a quantitative analysis of these relationships using the objective work assessment 

methods.  

The use of advanced sensing technologies and analytical tools has enabled us to identify 

and monitor risk factors in construction tasks. However, an objective definition of proper work 

techniques has not been forthcoming. With the findings that more experienced workers adopt 

safer and more productive work techniques, identification of proper working postures and 

techniques from expert workers motions has a great potential in defining proper work 
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techniques. The third motivation is to identify those work techniques and use them as a basis 

for construction workers' apprenticeship training in order to improve their safety and health. 

Lastly, the variability of construction worksites has made their automation prohibitively 

complex. The flexibility of semi-automated work systems, where operators work in 

conjunction with machines and robots, presents an attractive alternative. However, it is critical 

to estimate the anticipated effectiveness of these interventions before integrating them into 

current work processes. This research proposes a systematic and objective methodology to 

assess the value of semi-automated work systems in a construction context, as it pertains to 

productivity improvements and reduced exposure to WMSDs. This methodology presents a 

proactive approach to the evaluation of health and productivity impacts of semi-automated 

work systems, filling an existing technical gap. 

1.2 PROBLEM STATEMENT 

Different ergonomic risk evaluation methods for the worksite have been proposed to 

proactively prevent WMSDs (Li and Buckle, 1999; Punnett & Wegman, 2004). However, the 

employment of such methods in an occupational setting, particularly in construction, is limited 

because it is difficult to collect data on working postures and motions with the reliability levels 

required for effective evaluation. For instance, postural ergonomic assessment methods have 

been widely used to evaluate risk exposures and provide ergonomic intervention using detailed 

guidelines of rule-based practical assessment tools (Golabchi et al., 2016) such as Rapid Upper 

Limb Assessment (RULA) (McAtamney and Corlett, 1993), Rapid Entire Body Assessment 

(REBA) (Hignett & McAtamney, 2000), and Ovako Working posture Analysing System 

(OWAS) (Karhu et al., 1977). The use of these methods, however, relies heavily on an 

ergonomic experts' manual observation to measure posture and body movement, which can 

lead to subjective and imprecise results due to human error and missing information (Li and 

Buckle, 1999; Valero et al., 2016). Although video recording may relax these limitations, the 

extra cost, the additional effort required to setup equipment and eliminate occlusions and the 
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limited accuracy of the resulting motion data (due to the limited viewpoints of the cameras) 

remain as shortcomings. Lastly, both manual observation and video recording cannot provide 

continuous and simultaneous data on multiple body segments and joints.  

Motion capture systems present a possible replacement for manual observation, 

providing automatic, continuous, whole body motion data acquisition. They enable accurate 

measurement of workers' postures and motions, which is essential not only for automated rule-

based ergonomic assessment (Li and Buckle, 1999) but also for in-depth analysis of physical 

demands and loads on body segments via biomechanical models (Radwin et al., 2001). In 

construction, there are two main methods for motion capture: optical (camera or video-based) 

systems and inertial measurement unit (IMU) systems. In laboratory studies, marker-based 

optoelectronic motion capture systems are considered the ‘gold standard’ for kinematic data 

collection (Kim & Nussbaum, 2013). However, these systems are often impractical for use in 

field studies due to their illumination requirements, which can be sensitive to outdoor 

conditions, and their need for a clear line of sight to the individual, restricting data collection 

to a bounded area (van der Kruk & Reijne, 2018).  

Another type of camera-based systems uses remote-sensing or computer vision 

algorithms to detect 2D and 3D kinematics without markers (van der Kruk & Reijne, 2018). 

These systems have already been tested in construction settings for posture recognition and 

ergonomic analysis of workers (Ray & Teizer, 2012; Yan et al., 2017). While these systems 

have the advantage of marker-less tracking, they still rely on cameras. They are, thereby, 

limited by line-of-sight requirements and can be adversely affected by light conditions and 

occlusions (Seo et al., 2015). Compared to optical systems, motion capture systems based on 

IMUs are more advantageous for use in working environments because they are portable, 

lightweight, low-cost, adept in various illumination conditions, and do not require a line of 

sight (Alwasel et al., 2017a; Bolink et al., 2016; Morrow et al., 2017; Robert-Lachaine et al., 

2017; van der Kruk & Reijne, 2018) They have demonstrated ab acceptable level of accuracy 

and validity in measuring kinematics (Bolink et al., 2016; Morrow et al., 2017; Robert-

Lachaine et al., 2017).  
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Additionally, the research efforts to clarify desirable and undesirable working postures 

and motions on a practical basis are still insufficient. Since construction is one of the most 

labor-intensive industries, it is extremely important to maximize workers' productivity without 

compromising health and safety (e.g., WMSDs), which is directly related to success in 

construction projects (Seo et al., 2016). However, most of the current worker-related studies 

mainly focus on monitoring work performance regarding productivity (e.g., work sampling) or 

identifying health and safety issues (e.g., risk factors of WMSDs). A lack of understanding of 

proper and improper working postures, motions, and techniques hinders the mitigation of 

ergonomic issues and the improvement of productivity on worksites.  

Lastly, to alleviate workers' physical demands, the formation of flexible semi-automated 

work systems has been promoted in the industry, such as robotics arms supporting external 

weight (Li and Ng, 2017). The integration of automation into a conventional work system could 

reduce industrial injury risks, and further, have economic values through both reductions of 

the injuries and increase productivity (Shan et al., 2016). To effectively implement semi-

automated work systems into conventional work processes, quantitative and objective 

assessment of its value, especially in terms of health and productivity, is critical. However, no 

systematic and objective methodology to assess their value is introduced in a construction 

context. 

1.3 RESEARCH OBJECTIVES 

With this background, the overarching goal of this research is to identify opportunities for 

human-centric advanced work systems that can 1) objectively evaluate ergonomic risk levels 

and productivity in construction tasks involving heavy material handling, 2) effectively 

identify safe and productive working postures and techniques that workers develop as they 

gain experience, and 3) evaluate the impact of introducing new, semi-automated work systems 

on health and productivity in a construction context.  Specific objectives in this research are 

listed below.  
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1. To investigate comprehensive methods for WMSD assessment that can 

objectively evaluate risk levels in construction tasks including heavy material 

handling: Over the past few decades, various rule-based postural assessment 

systems have been developed and widely used to facilitate the measurement and 

evaluation of risks related to WMSDs in many industries. However, the 

applicability of rule-based assessment to tasks involving heavy material handling 

has not yet been examined. Through inter-methods reliability and comparison with 

ground truth (biomechanical analysis), we can investigate the applicability of the 

rule-based assessments, which can contribute to the development of interventions 

to effectively manage ergonomic risks for workers. 

2. To analyze the relationship between body loads, experience, and work 

methods: Continued exposure to the physically demanding tasks can contribute 

workers' undesirable early retirement, resulting in a shortage of skilled craft 

workers. On the contrary, expert workers gain distinctive techniques, which 

adventitious regarding safety and productivity. Therefore, a systematic and 

comprehensive understanding of the relationship between body loads, work 

experience, and work methods can greatly contribute to workers' safety, health, and 

productivity, especially to apprentice-training methods and applied to high 

musculoskeletal-disorders-risk trades.  

3. To identify the proper working postures and techniques that workers develop 

as they gain experience to increase safety and productivity: Skilled experts are 

often unable to articulate or convey their ‘physical wisdom’ to apprentices. Experts 

tend to underestimate how difficult a task can be for apprentices; also, they are often 

unaware of all knowledge behind their superior performance resulting in omitting 

information that apprentice may find valuable. Therefore, by analyzing experts' 

work techniques and identifying their distinctive working postures differed from 

less-experienced workers, we can investigate the experts' knowledge of work 

methods as well as the improvement of work systems for safer and more productive.  
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4. To develop a systematic and objective methodology to assess the value of semi-

automated work systems in a construction context: Combined biomechanical-

productivity analysis using the kinematic data provide an accurate estimation of 

physical demands and work performance from construction operations. When 

integrating a semi-automated work system into current work processes, it is critical 

to objectively estimate the anticipated effectiveness of the interventions. A 

systematic and objective methodology to assess the value of semi-automated work 

systems based on the combined biomechanical-productivity analysis can evaluate 

not only the productivity increments incurred from the implementation of a semi-

automated work system, but also the impact on workers' physical exposures as an 

equally important component. 

 

To achieve these research objectives, an inter-disciplinary approach is used in this 

research. The first approach taken in this research is wearable motion capture system-based 

ergonomic assessment that enables an automated assessment of postural load by automatically 

evaluating workers' postures. The automated rule-based assessment enables us to investigate 

applicability of industrial standard rule-based assessments without inter- and intra- rater 

misinterpretations (Research Objective #1). The central hypothesis of this approach is that 

accurate and objective human motion allows in-depth analysis which is not possible with 

human observation alone.  

The novelty of the proposed research lies in automatic estimation of joint angles and 

continued evaluation of postural load based on a rule-based assessment guideline using 

massive whole-body motion datasets collected from wearable motion capture system. Manual 

observation-based working posture evaluation can lead to unreliable results due to different 

raters and viewpoints. Furthermore, the human observation cannot provide decimal-level joint 

angle estimates as well as continuous whole-body angle measure. Therefore, automated rule-

based postural load assessment using a whole-body motion capture system overcomes the 

shortcomings from the human observation.  
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Another approach used in this research is motion data-driven a combined biomechanical-

productivity analysis for ergonomics (Research Objective #2 and #3) and for human-machine 

interactions (Research Objective #4). Accurate motion data collection without interfering with 

on-going works in construction sites is one of the main technical challenges for the 

implementation of on-site biomechanical analysis. The main advantage of the wearable motion 

capture system is that it provides information rich and direct whole-body motion data without 

interrupting workers' on-going tasks. Furthermore, kinematic measurement directly from 

workers will open door toward analyzing diverse in-depth analysis of physical demand based 

on workers' postures and motions; furthering configure the relationships of their work 

techniques and experiences as well as the incorporated with machine and automations.  

The final approach taken in this research is whole-body-posture-based proper working 

posture identification using a clustering algorithm (Research Objective #3). For proper posture 

identification, the proposed framework distinguishes frequent working postures according to 

the workers' level of experiences. Specifically, experienced workers' strategies to mitigate body 

loads and increase productivity are represented in the clustering algorithm. One limitation of 

the clustering algorithm is that postures dominated by experts and apprentices occur 

concurrently, which indicated common to human locomotion and the given tasks rather than 

those related to experience. As will be introduced in Chapter 6, a process to identify postures 

distinctive to each experience group (i.e., expert and apprentice) by assessing the proportion 

of expert and apprentice population for the postures assigned by both expert and apprentice is 

proposed to address the co-existence issue.  

1.4 STRUCTURE OF THE DISSERTATION 

This dissertation is a compilation of the studies used to achieve the proposed research 

objectives. This dissertation is composed of 8 chapters, and Chapter 4 – 7 introduce each of 

the studies that corresponds to a research objective. Following is the list of the Chapters.  
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CHAPTER 1: INTRODUCTION. This chapter covers the background, problem 

statements, and objectives and approaches of the proposed research.  

CHAPTER 2: LITERATURE REVIEW. This chapter provides a critical appraisal of 

the previous studies related to the dissertation in order to contextualize the research objective 

and eventual contribution of this research.  

CHAPTER 3: RESEARCH METHODS. This chapter introduces the main research 

methods used in common for the completion of this thesis.  

CHAPTER 4: APPLICABILITY OF RULE-BASED ERGONOMIC ASSESSMENT 

OF BRICKLAYING. This chapter introduces automated rule-based assessments developed 

using wearable motion capture system. The automation rule-based assessment is used to 

investigate the applicability of industry standard postural stress assessment to the heavy 

material handling tasks. 

CHAPTER 5: ANALYSIS OF THE RELATIONSHIPS BETWEEN BODY LOAD 

AND TRAINING, WORK METHODS, AND WORK RATE. This chapter presents an 

analysis relationship between body-loads experiences, and work methods using motion-data-

driven biomechanical-productivity analysis on masonry tasks. 

CHAPTER 6: ERGONOMIC EVALUATION OF EXPERT MASONS WORK 

TECHNIQUES. This chapter extends biomechanical analysis to investigate the expert masons' 

work techniques regarding safety of different masonry activities to determine the associated 

risks. Furthermore, this chapter introduces an automated posture clustering technique to 

identify proper working postures adopted by experts.  

CHAPTER 7: A METHODOLOGY TO EVALUATE THE IMPACT OF SEMI-

AUTOMATED WORK SYSTEMS IN CONSTRUCTION. This chapter introduces a 

systematic and objective methodology to assess the value of a semi-automated work system in 

a construction context, as it pertains to reduced exposure to musculoskeletal disorder risks and 

productivity improvements. 
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CHAPTER 8: CONCLUSIONS. This chapter provides a summary of the conclusions 

that can be drawn from the research. Several recommendations for future streaming from the 

research are also provided.  
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CHAPTER 2  
LITERATURE REVIEW 

The objective of this chapter is to identify the research gap and opportunities for human-centric 

advanced work systems and their assessment methods. The chapter reviews: (1) the prevalence 

of occupational injuries in construction and their impact on the industry, (2) the methods of 

ergonomic risk assessment and the state-of-the-science of the sensing technologies they use, 

and (3) previous research on adoption of automation into construction work systems. This 

review is meant to justify and contextualize the research objectives and eventual contributions. 

2.1 ERGONOMICS OF CONSTRUCTION 

Construction workers perform a multitude of diverse physically demanding tasks, which have 

varying degrees of ergonomic risks. Work-related musculoskeletal disorders (WMSDs)—

defined as a "group of painful disorders of muscles, tendons, and nerves" (CCOHS, 2014)—

are widely exhibited by construction workers due to task characteristics, such as overexertion, 

repetitive motion, and awkward postures. Continued exposure to the risks of WMSDs is 

associated with workplace injuries and loss of workdays, which can lead to a decline in well-

being and other undesirable social and financial burdens (Cheng et al., 2013; Gatti et al., 2014).  

2.1.1 Prevalence of WMSDs in Construction 

The U.S. Center for Construction Research and Training (CPWR, 2018) reported that the 

number of WMSDs in construction have continuously dropped in the past decades. However, 

in 2015, the rate of WMSDs in construction was still 16% higher than the combined all industry 

rate at 29.8 per 10,000 full-time workers. Even worse, the overall reported numbers may be 
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underestimated due to the likelihood of injuries going underreported and the difficulty of 

estimating work-relatedness of musculoskeletal disorders (CPWR, 2018).  

Exposure to risk factors for WMSDs, including overexertion (excessive physical effort), 

repetitive motion, and awkward postures, increases a worker's injury risk (CDC, 2020). 

Particularly, overexertion is a major risk factor in WMSDs resulting in days away from work 

in construction. It is also a leading cause of other nonfatal injuries nationally (CPWR, 2018). 

In 2015, overexertion during lifting and lowering accounted for 29.9% of the total 20,490 

WMSDs in construction; the highest rate for a single risk factor (Figure 2-1). Furthermore, 

other types of overexertion—including pushing, pulling, carrying, and holding—accounted for 

an additional 37% of WMSDs. These risk factors are typical in common construction activities, 

and as a result, the rate of injuries stemming from both overexertion in lifting and other forms 

of overexertion was higher than all other industry averages (CPWR, 2018).  

Between 2003 and 2017 (CPWR, 2013, 2018, 2019), the body part most affected by 

WMSDs in construction is the back. Specifically, back injuries accounted for 41.7% of 

WMSDs in construction in 2017, which was even higher than all other industries combined 

(CPWR, 2019). 

 
Figure 2-1: Distribution of risk factors for WMSDs resulting in days away from work in 

construction, total of 20,490 cases (CPWR, 2018) 
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2.1.1.1 Prevalence of WMSDs in Masonry 

Among construction trades, masonry had the highest rate of overexertion injuries resulting in 

days away from work (66.5 per 10,000 full-time equivalent worker) in 2010, Figure 2-2,which 

was more than double the overall rate for the construction field at 28.5 per 10,000 full-time 

equivalent worker (CPWR, 2013). Although the rate of overexertion injuries decreased to 33.4 

per 10,000 full-time equivalent worker in 2015, the combined rate for cement and brick masons 

was still the third highest between 2015 and 2017 (CPWR, 2019).  

 
Figure 2-2: Rate of overexertion injuries resulting in days away from work for selected 

construction subsectors in 2010 (CPWR, 2013) 

Masons' high injury rates are closely related to their physically demanding tasks. 

Particularly, manual block and brick lifting, which is an integral part of masonry work, requires 

masons to perform frequent deep bending of trunk, hips, and knees to lift and laydown heavy 

loads, such as concrete masonry units (CMU) (Hess et al., 2010; van der Molen et al., 2004). 

Hess et al. (2010) estimate that block masons manually lift at least 200 CMUs per day. 

Considering the standard CMU size (0.19 x 0.19 x 0.38m) and weight (16.6 kg) (CCMPA, 

2013), masons manually lift over 3,300 kg per workday. Figure 2-3 shows a complete sequence 

of a typical CMU lift. Masons also spend up to 53% of their working time in a bending posture 
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to pick up materials at or below knee level and 38% of their working time in awkward postures 

(Boschman et al., 2012). As such, the frequent handling of heavy materials in bent postures 

exposes masons to severe lower back injuries, which translates to masons recording the 

second-highest back-injury rate across construction subsectors (CPWR, 2013).  

 
Figure 2-3: A complete CMU lift sequence from pick up to lay down 

2.1.2 Losses from Occupational Injuries 

Musculoskeletal injuries drastically impact the economy. For example, the estimated cost of 

aggregated musculoskeletal disease, including direct healthcare cost, deceased or lost wages, 

in the U.S. was $980.1 billion in 2014 alone (USBJI, 2018). As a share of Gross Domestic 

Product (GDP), the cost of musculoskeletal conditions accounted for 5.8% of GDP and 

exceeded the defense spending for that year. In Canada, the economic burden of 

musculoskeletal disorders is estimated to amount to $22 billion (CAD) annually, with a 

significant number of these disorders related to workplace hazards (IMHA, 2019). 

The costs of occupational injuries can be categorized into three groups: (1) direct costs, 

(2) indirect costs, and (3) quality of life costs (Waehrer et al., 2007). Direct costs are associated 

with the treatment of injuries and worker compensation as a result of injury; those expenses 

are easily identified. Specifically, data on workers' compensation is an important source for 

evaluating costs associated with work-related injuries (Everett & Thompson, 1995; Hinze et 

al., 1995; Morantz et al., 2016). In 2015, the National Academy of Social Insurance (NASI) 

estimated that workers' compensation programs paid $61.9 billion in worker benefits across all 

industries in the U.S. (CPWR, 2018). Construction workers received significantly more 

compensation benefits compared to workers in other industries; the total compensation costs 

as a percentage of employer spending is in construction nearly three times the average cost for 

Research Idea 
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all other industries (3.6% vs. 1.4%) (CPWR, 2018). The direct costs of workers' compensation 

for non-fatal claims with more than five days away from work in construction was about $10.4 

billion in 2017 (LMRIS, 2020b). It is worth noting that overexertion injuries involving outside 

sources, such as lifting, holding, and carrying objects, amounted to $1.48 billion in direct costs 

and accounted for 14.2% of the total compensation cost in construction. Overexertion was also 

ranked the first among the leading causes of disabling injuries for all workplaces in the U.S. in 

2017, accounting for $13.98 billion which is 23.5% of the overall national burden (LMRIS, 

2020a).  

Indirect costs include long-term and short-term wage losses and household production 

losses as well as administrative costs (Waehrer et al., 2007). Although those costs are 

considerably more difficult to estimate due to incomplete or inaccurate evaluation, indirect 

costs have generally been found to exceed direct costs (Pillay & Haupt, 2008). For example, 

the ratio between direct and indirect costs of injuries in construction varies from a high of 1:30 

to a low of 1:1 (Manuele, 2011). Furthermore, quality of life costs—the value of the pain and 

suffering that the victims and their families experience as a result of such injuries—were 

estimated at $1.9 million per workplace fatality for the average worker (Waehrer et al., 2007).  

2.1.3 Relationship between Injury Rate and Experience 

With more experience, workers earn essential skills and knowledge about safe working 

procedures that enhance their performance (Gyekye & Salminen, 2010). Many researchers 

have found that more experienced workers encounter fewer work-related injuries than their 

less experienced counterparts (Keyserling et al., 1993; Oh & Shin, 2003; Siskind, 1982). For 

instance, Authier et al. (1995, 1996) found that the strategies of experts differed from those of 

novices' during manual handling (e.g., straightening their back, orienting their pelvis, and 

taking short steps). Therefore, it can be concluded that a comparison of work methods between 

experts and novices may identify appropriate work practices that promote safety and 

productivity. 

These practices can and should be used as means for injury prevention and practical 

training of apprentices (Plamondon et al., 2010). One tool to confirm or explain these findings 
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is to carry out biomechanical analysis in order to estimate loads on the body segments using 

2D or 3D biomechanical models (Radwin et al., 2001). Joint loads can provide a quantitative 

evaluation of safer working methods. However, only a few studies have used biomechanical 

analysis to examine the relationship between experience and load levels. Further, 

experimentally validated studies were limited to laboratory environments under restrictive 

conditions (Gagnon, 2005; Plamondon et al., 2010, 2012). To date, there are no quantitative 

investigations of the relationship between body loads and levels of experience, work methods, 

and productivity under realistic work conditions. 

2.2 ERGONOMIC RISK ASSESSMENT 

Appropriate work postures have long been also considered an essential factor in improving 

productivity on the job (Gilbreth and Gilbreth 1917). Awkward body-postures and forceful 

motions are also considered important risk factors for WMSDs because they tend to create 

excessive musculoskeletal stresses beyond the internal tolerance of tissues (Kumar, 2001). 

Identifying risk factors associated with WMSDs is essential to develop effective ergonomic 

interventions that can prevent WMSDs in construction workers. Different postural assessment 

approaches have been developed and utilized for that purpose. These approaches can be 

divided into three groups according to their measurement technique: self-reporting, 

observation-based methods, and direct measurement (Li & Buckle, 1999). Self-reporting 

assesses workers' physical loads, body discomfort, and work stress through checklists, rating 

scales, diaries, interviews, and questionnaires. Due to its simplicity and its ease of use, self-

reporting is widely used in most worksites; however, its results can vary due to subjective 

assessments leading to unreliable results and misleading interpretations (Plantard et al., 2015; 

Spielholz et al., 2001). 

2.2.1 Observation-based WMSDs Assessment 

Observation-based methods are based on direct observation of workers' postures and tasks by 

ergonomic experts (Li and Buckle, 1999). The observational methods evaluate risk exposure 
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by using rule-based practical assessment tools, which include Rapid Upper Limb Assessment 

(RULA) (McAtamney & Corlett, 1993), Rapid Entire Body Assessment (REBA) (Hignett & 

McAtamney, 2000), and Ovako Working posture Analysing System (OWAS) (Karhu et al., 

1977). These tools are among the most cited and widely used observational assessment 

methods in industry (Andreoni et al., 2009; Kee & Karwowski, 2007; Kong et al., 2018a; Lee 

& Han, 2013; Roman-Liu, 2014). 

Generally, these tools evaluate whole-body postures by combining scores for specific 

body segments to provide grand scores that indicate the degree of risk for each posture (David, 

2005). For example, RULA and REBA divide the human body into two sections (i.e., Section 

1 is the arms and wrists and Section 2 is the neck, trunk, and legs) whereas OWAS divides it 

into three sections (i.e., back, arms, and legs). These sections are scored according to pre-

defined tables as shown in Figure 2-4. An assessment grid assigns a score for each body section 

called a “local score”. Combinations of local scores are then classified into “grand scores” or 

action categories, which represent an overall evaluation of the posture and recommended 

actions accordingly. 

                
Figure 2-4: Pre-defined postural classification in REBA (left) and OWAS (right) 

RULA, REBA, and OWAS have been tested in construction tasks. McGorry and Lin 

(2007) used RULA to demonstrate the utility of a proposed methodology that evaluates arm 

posture and grip strength in tool handling. Kim et al. (2011) used REBA to estimate the risk of 
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WMSDs in panel erection. Finally, OWAS was used to identify risky postures during 

hammering tasks at building construction sites (Mattila et al., 1993). From these studies, it 

appears that practical assessment tools have proven well-suited for working posture analysis 

at construction, identification of awkward or problematic postures, and post-intervention 

assessment of improved working postures.  

These methods are traditionally based on manual observation of joint angles by 

ergonomic experts. Although manual observation is easily implemented, the evaluation results 

are prone to inaccuracies and inconsistencies due to human error (Valero et al., 2016). 

Furthermore, assessment tools typically assign risk levels using discrete bins determined by 

body angle ranges. However, it is challenging for observers to clearly distinguish the angle 

around the boundary between bins. Therefore, evaluation results are usually non-repeatable 

and subjective across different observers (Golabchi et al., 2016, 2017).   

2.2.2 Direct Measurement 

In order to replace manual human observation, automated worker activity data collection 

approaches have been devised using advanced sensing technologies. The use of these sensors 

allows for the collection of accurate and precise measurements, enhances assessment accuracy, 

and improves results reliability. As a result, direct measurement methods have been widely 

applied to monitor workers' status and the physical demands of diverse construction tasks.  

2.2.2.1 Computer vision systems 

In recent years, automated vision-based construction worker activity monitoring has drawn 

attention because it provides continuous data collection and an understanding of current 

activities. Computer vision technologies, which identify and categorize actions by using 

pictures and videos from single or multiple cameras, have been widely used to analyze the 

productivity of construction workers and to monitor their safety and health (Brilakis et al., 

2011; Escorcia et al., 2012; Han et al., 2013; Weerasinghe & Ruwanpura, 2009). Peddi et al. 

(2009) proposed a human pose-analysis algorithm using a video camera for construction-

productivity estimation, while Han and Lee (2013) suggested a motion-capture approach with 
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2-D images obtained from multiple cameras for behavior-based safety management. Computer 

vision-based approaches have also been applied to identify potential ergonomic risks by 

detecting awkward postures using range depth cameras (Ray & Teizer, 2012) and video images 

(Seo et al., 2015).  

Computer vision also enables automated ergonomic evaluation systems that integrate 

motion capture with rule-based assessment tools. An early study, Li and Buckle (1999) created 

the Quick Exposure Check tools using a vision-based motion tracking system to assess the 

movement of workers. Recently, Plantard et al. (2015) presented a validation of RULA-grand 

scores automatically obtained from Microsoft Kinect v2 data. Furthermore, Dzeng et al. (2017) 

developed an automatic method of assessing WMSD risks in construction tasks (e.g., 

handling/moving materials and hammering) based on OWAS using motion data from 

Microsoft Kinect. Despite their contributions to automatic posture assessment, the occurrence 

of large errors in certain postures remains an important limitation of these systems. For 

example, Plantard et al. (Plantard et al., 2015) found that the mend and standard deviation of 

the shoulder and elbow flexion angles were 4.5° ± 8.9° and 12.6° ± 17.2°, respectively, and 

the peak error was larger than 40°. 

Previous computer vision-based activity monitoring and ergonomic assessment studies 

have shown their advantages, such as providing a less intrusive method to collect a rich set of 

kinematic information. However, this method is adversely affected by lighting conditions and 

occlusions that require installation of multiple cameras, which is a limitation to its deployment 

in worksites (Seo et al., 2015).  

2.2.2.2 Inertial measurement systems 

The use of body-worn inertial measurement units (IMU), a sensor platform integrating 3D 

accelerometers, gyroscopes, and magnetometers, for construction activity monitoring has 

proven an effective method for ergonomic assessment. Specifically, single or multiple IMUs 

enable continuous tracking of workers' motion via measurement of segment accelerations and 

angular rates (Chen et al., 2017; Seel et al., 2012). In addition, wearable IMU-based motion 

capture suits, featuring a set of IMUs firmly attached to the worker's body, allows for direct 
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motion data collection without interfering with ongoing worksite tasks. Indeed, wearable IMU-

based motion capture systems have been used in industrial environments for various 

applications including ergonomic assessments, activity monitoring and productivity analysis.  

2.2.2.2.1 Rule-based postural risk assessment using IMUs 

In the section above, providing accurate input postural data to postural assessment systems 

(e.g., RULA, REBA, and OWAS) is crucial for reliable and objective risk assessment. 

Wearable IMU-based motion capture systems enable accurate joint kinematics measurement. 

Their accuracy was found to be comparable to the current gold standard, optical motion capture 

systems (Cuesta-Vargas et al., 2010; Robert-Lachaine et al., 2017, 2020; Schall Jr et al., 2016). 

The advantages of accurate kinematics estimation without interfering with motion, suggest 

integrating IMU-based motion capture systems into rule-based postural risk assessment 

systems.  

Vignais et al. (2013) combined seven IMUs attached to the upper-body with RULA to 

compute the risk-level in real-time. In the experiment, participants were provided with visual 

and auditory feedback during light manual tasks, such as screwing and unscrewing. Battini et 

al. (2014) also introduced a visual feedback-based real-time ergonomic evaluation system 

using 17 IMUs integrated with different assessment tools (including RULA and OWAS) for 

manual material handling tasks in a warehouse environment. Furthermore, Vignais et al. (2017) 

conducted a continuous RULA evaluation on cleaning medical materials using a wearable IMU 

sensor network. By calculating the right and left side's RULA scores continuously, the 

evaluation provided ergonomic recommendations for a workplace redesign. Moreover, Valero 

et al. (2016) developed a system to detect basic unsafe postures of construction workers (e.g., 

stooping and squatting with back bending) using a wearable IMU suit. In a following study, 

Valero et al. (2017) assessed inadequate working postures in bricklaying integrating the IMU-

based system into standardized ergonomic assessment rules defined by the International 

Organization for Standardization (ISO).  

2.2.2.2.2 Motion data-driven biomechanical analysis 
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Chaffin et al. (2006) define occupational biomechanics as "the study of the physical interaction 

of workers with their tools, mechanics, and materials so as to enhance the workers' 

performance while minimizing the risk of musculoskeletal disorders." To achieve these 

objectives, quantitative biomechanical models are required to estimate forces and moments on 

a human body while it conducts manual tasks, take different postures and movements, or is 

exposed to various external forces (Chaffin et al., 2006).  

Due to the extensive effort required to estimate the internal loads in 3D whole-body 

biomechanical models, software packages, such as 3D Static Strength Prediction Program 

(3DSSPP) (Chaffin et al., 2006), AnyBody (Damsgaard et al., 2006), and OpenSim (Delp et 

al., 2007), have been developed to carry out biomechanical analysis (Seo et al., 2015). The 

software package 3DSSPP was adopted in this research as a tool to estimate the physical 

demands (e.g., spinal compression force and joint moments) under static loading conditions.  

Figure 2-5 shows an example of the input posture into 3DSSPP and the results of its 

biomechanical analysis. The stick figures shown are generated based on input posture data. 

The results shown on the right side include the net spinal compression force and the percent 

capability (i.e., the percentage of the population with a strength capability in excess of the 

resulting moment). 3DSSPP use body segment parameters, stature, body weight, link lengths, 

link weights, link centers of gravity, and strength, determined based on values for U.S. 

industrial population by The Center for Ergonomics at the University of Michigan .  

It calculates compression forces in the lumbar joint at L4/L5 disc level, and the joint 

moments in the elbow, shoulder, L5/S1 disc, hip, and knee joints, using a top-down approach 

that starts from the forces and moments applied to the hands and ends with the forces and 

moments applied to the floor by the feet. Further, it uses ten L4/L5 level torso muscles, 5 each 

on the left and right side, to compute the compression force at the L4/L5 lumbar level (The 

Center for Ergonomics at the University of Michigan). 

Integrating accurately collected motion data, from IMU motion capture systems, with 

biomechanical analysis tools enables automation of biomechanical analysis. For example, 

Alwasel et al. (2017a) assessed the loads acting on 21 masons' major body joints (lower back, 
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shoulders, elbows, hips, and knees) using 3DSSPP driven by posture data obtained on-site by 

IMU-based motion capture. On-site biomechanical analysis can, thus, provide explicit and 

quantitative assessment of joint loads, which is an improvement over traditional ergonomic 

assessment methods, such as observation and self-reporting. 

        
Figure 2-5: Graphical representations of the input posture (left) and biomechanical analysis 

results (right) in 3DSSPP 

Wearable IMUs can also enable automated and objective investigation of various 

worker-related issues. For example, integration of IMUs with activity recognition has enabled 

identification of assembly tasks in manufacturing (Koskimaki et al., 2009), classification of 

automotive workers activities (e.g. sawing, drilling, and hammering) (Zappi et al., 2007) and 

tracking the productivity of masons (Joshua & Varghese, 2014; Ryu et al., 2016, 2019). Zhang 

et al. (2019a, 2019b) assessed the level of physical exertion and fatigue by analyzing the jerk, 

the time derivative of acceleration, obtained from wearable accelerometers. Ankle-located 

IMUs were able to assess fall-risk in construction workers (Jebelli et al., 2016a, 2016b; Yang 

et al., 2016, 2017).  

2.3 SEMI-AUTOMATED FORCE-ASSIST SYSTEM 

Howe (2000) classifies automation of manual labor in building processes into: (a) independent 

work cells that can be integrated into traditional building methods; (b) stationary on-site 

factories; and (c) dynamic on-site factories that move as the building is completed. Modern 
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research promotes full automation of building processes—such as the Shimizu Manufacturing 

System by Advanced Robotics Technology (SMART) (Maeda, 1994), autonomous mobile 

robots (Ardiny et al., 2015), contour crafting (Khoshnevis, 2004), and other 3D printing 

techniques (Perkins & Skitmore, 2015). However, full automation is not yet feasible based 

considering available technologies and the current challenges in the industry (Ardiny et al., 

2015; Howe, 2000; Perkins & Skitmore, 2015). These limitations have led to the emergence 

of semi-automated work systems in construction where human operators work in conjunction 

with automation and robotics (Balaguer & Abderrahim, 2008; Bock et al., 2012; Cai et al., 

2019; Han, 2011; Kim et al., 2019). 

In particular, semi-automated force-assist systems have the potential to mitigate 

exposure to WMSD risks from physically demanding tasks by directly reducing task demands. 

For example, robotic arms that externally support the weight and maneuver tools at 

construction sites offload physical demands from the operator to the mounting system, thereby 

reducing the associated risk (Li & Ng, 2017). Warszawski and Navon (1998) suggested that 

robotics can generate economic value by performing the most physically demanding tasks (e.g., 

heavy lifting, reaching to the ceiling and/or floors) to reduce the costs of injuries and time loss, 

leaving the more complex finishing tasks to humans. These robots can also enhance the well-

being of workers and improve workers' skills, alleviating skilled labour shortage problems 

(Bock & Linner, 2016; Linner & Bock, 2012; Pan et al., 2018). As such, several streams of 

semi-automation research in construction have targeted improving the safety of operators with 

respect to WMSDs (Balaguer & Abderrahim, 2008; Pan et al., 2018; Paulson Jr, 1985; 

Warszawski & Navon, 1998). 

The primary goal and driving factor for automation in construction has been its 

productivity and economic value (Balaguer & Abderrahim, 2008; Paulson Jr, 1985; 

Warszawski & Navon, 1998). A market research questionnaire about the importance of various 

attributes when implementing automation into construction revealed that the number one 

priority was increased productivity, followed by improved quality control and reliability, with 

safety being listed as the third most important attribute (Cobb, 2001; Kamaruddin et al., 2016; 

Son et al., 2010). Nevertheless, well-designed and implemented ergonomic interventions often 
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have economic value as well, through the reduction of injuries, worker compensation, lost days, 

and other associated indirect and direct costs of WMSDs, or through increased productivity 

(Bevan, 2015; Oxenburgh et al., 2004; Rinder et al., 2008; Shan et al., 2016). According to the 

National Safety Council (NSC) (National Safety Council, 2017), the estimated cost of 

industrial work injuries were $161.5 billion in 2017, including wage and productivity losses, 

medical expenses, and administrative expenses. Therefore, integrating automation into the 

work system can reduce exposure to injury risks and, consequently, save billions of dollars 

annually.  

2.4 CONCLUSION 

This chapter reviewed the prevalence of ergonomic problems and their impact on the 

construction industry. Then, it described the current state-of-the-art on sensing technologies 

for ergonomic risk assessment and worker-related issues. Finally, the chapter reviewed the 

adoption of automation in construction. Findings suggest a growing body of knowledge 

pertaining to deployment of wearable motion capture systems for health, safety, and 

productivity purposes. Specifically, the use of these sensing technologies is promising, not 

only to overcome the limitations of manual observation, but also to develop continuous and 

automated worker activity-related data collection and analysis.  

Wearable IMU-based motion capture systems have a greater potential for used in work 

assessment in construction because it enables the collection of realistic worker motion data. 

They are not interrupted by construction site conditions due to the sensors being firmly 

attached to the workers' bodies. They do not hinder the workers from performing their tasks. 

Hence, in the present study, accurate whole-body motion data collected using wearable IMU-

based motion capture system suits are analyzed to assess the ergonomics of construction 

workers. The following chapter on the research methods utilized in this study describes in 

detail how body motion data are derived from the raw measurements of IMU's and how they 

are utilized in the ergonomic assessment. 
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CHAPTER 3  
RESEARCH METHODS 

This chapter introduces the research methods common to this thesis. As discussed earlier, one 

of the key challenges of current ergonomic assessments is the lack of an on-site automated 

evaluation method based on accurate whole-body motion data. Therefore, the basis of the 

proposed approaches in this thesis is to utilization of whole-body motion data from wearable 

IMU suits to derive body posture including 3D positions of body joints and joint angles. More 

details on analysis methods are directed to the experimental methods section included in each 

of the following chapters. 

3.1 DATA COLLECTION 

3.1.1 Participants 

In Ontario, Canada, the 3-year masonry apprenticeship program consists of on-site and in-

school training. Upon completion, the apprentice can apply to become certified as a 

journeyman (Ontario Masonry Training Centre). For the entire research project, sixty-six (66) 

healthy masons with different work experiences were recruited to collect motion data at two 

institutions: the Ontario Masonry Training Centre in Waterloo and the Canada Masonry Design 

Centre in Mississauga, Ontario. The participants were grouped into four cohorts based on their 

experience: (1) novice with no experience, (2) 1-year of experience, (3) 3-years of experience, 

and (4) journeyman with twenty or more years of experience. The number of participants and 

their demographics are shown in Table 3-1. With an estimation of motion data's sampling 
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frequency of 125 Hz per joint, per mason, the overall data collected totals approximately 2 

terabytes. 

As participants were only requested to report their work experience categorically, their 

average age was estimated by taking a weighted measure of their years of work experience and 

distributing it by the proportion of the number of participants in each group. The estimated 

average age of each group is (1) 22.63 ± 6.35 years in novice, (2) 25.84 ± 4.79 years in 1-year 

apprentice, (3) 28.56 ± 3.59 years in 3-year apprentice, and (4) 40.93 ± 3.12 years in 

journeyman. This study and its protocols were approved by the Institutional Review Board 

(IRB) of both the University of Waterloo1 and Conestoga College2, Appendix A.  

In this thesis, each chapter utilizes the entire dataset or a subset. Specifically, the masons' 

dataset size (n) for each chapter is as follows: (a) forty-three (43) for Chapter 4, (b) sixty-six 

(66, entire) for Chapter 5, (c) eight (8) and forty-five (45) for Chapter 6, and thirteen (13) for 

Chapter 7. Details of demographics for each subset of data are described in each chapter.  

 

Table 3-1: Demographics of the entire participants 

Experience  

group 

Number of participants Height (cm) Weight (kg) 

Conestoga  

College 
CMDC Total Average Std. Average Std. 

Novice 5 12 17 182.9 7.1 86.1 14.3 

1-year 4 15 19 180.8 5.4 89.3 15.5 

3-years 7 9 16 181.3 4.6 90.7 15.2 

Journeymen 5 9 14 178.1 6.4 87.3 10.7 

Total 21 45 66 180.8 5.9 88.3 13.9 

 
 
1 University of Waterloo Research Ethics Committee (#30382) 
2 Conestoga College Research Ethics Board (#141) 
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3.1.2 Experimental Setup 

Each participant completed a pre-built lead wall using 45 CMUs. Before initiating the 

experiment, the participants put on their personal protective equipment, namely a hard hat and 

a safety boot, and performed warm-up activities. Installing the motion capture suit, was 

comprised of fitting elastic bands carrying the IMUs around the participants' limbs and torso. 

It did not involve the use of a safety harness or other implements that may interfere with their 

motions. Figure 3-1 shows the participants equipped with the motion suit as well as the 

experimental setup at different stages of the experiments. Figure 3-2 shows the configuration 

of the lead wall. The pre-built lead wall consisted of 27 CMUs with 6-course height. The 

participants laid down CMUs from the 2nd course to the 6th course. The CMUs are CSA - 

Type “A”, weighting 16.6 kg with dimensions of 0.39 x 0.19 x 0.19 m (CCMPA, 2013). The 

CMUs were stacked in three piles approximately one meter away from the pre-built lead wall, 

and each pile of CMUs consisted of 16 CMUs, which were stacked with 4 layers of 4 CMUs 

each. Mixed mortar was provided by helpers in two mortar boards placed between the stacked 

blocks. The participants were continuously supplied with mixed-mortar to avoid work-delays 

due to a lack of mortar. Furthermore, the Ontario Masonry Training Centre mortar mixers were 

used to maintain the same mortar fluidity. Participants were not instructed to take breaks or 

complete the experiment within a fixed time frame.  

 
Figure 3-1:Experiment setup: placing a CMU at the 2nd course (Left), and 6th course 

(Right) 
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Figure 3-2: Pre-built lead wall configuration 

3.1.3 Sensor Network 

Two sets of wireless motion capture suits, namely MVN Awinda (Xsens, 2016) and Perception 

Neuron (Noitom Ltd, 2017) (Figure 3-3), were utilized to acquire whole-body motion data 

during the experiment. Each suit consists of 17-IMUs, with each unit is composed of a three-

axis accelerometer, a three-axis gyroscope, and a three-axis magnetometer. Specifically, the 

IMUs were firmly attached using elastic straps to the head, back, each of the shoulders, the 

upper and lower arms, hands, the upper and lower legs, and the feet. Figure 3-4 shows a mason 

wearing the motion capture suit and highlights the IMU locations with blue dots. All 

participants reported that the motion capture suit was comfortable and did not interrupt their 

work.  

 
Figure 3-3: Wearable motion capture suits: (a) MVN Awinda (Xsens, 2016) and (b) 

Perception neuron (Noitom Ltd, 2017) 

(a) (b)
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Figure 3-4: Photo of a mason wearing Axis Neuron (Noitom Ltd, 2017) motion capture. 

IMU locations are marked with blue dots  

Each motion capture suit pairs and communicates with its in-house software, MVN 

Studio (Xsens, 2016) and Axis Neuron (Noitom Ltd, 2017), respectively. The software 

manages and calibrates the motion capture suits. Prompted by the software (Noitom Ltd, 2017; 

Xsens, 2016), each participant performed a calibration procedure (A-pose, T-pose, and S-pose, 

Figure 3-5) to determine the sensor-to-body alignment and body segment lengths at the 

beginning of the experiment.  

Each IMU measures samples the segment motion at the rate of 125 Hz. Specifically, the 

accelerometer estimates acceleration due to the gravitational field and segment motions in the 

sensor frame, the gyroscope and magnetometer estimate the sensor’s attitude. Then, a fusion 

algorithm combines this data to predict the segment kinematics using the calibrated sensor-to-

body alignment in successive time steps based on preceding time step estimation and current 

time step measurements (Filippeschi et al., 2017; Roetenberg et al., 2009). Finally, the software 

reconstructs the 3D human skeletal model based on the estimated 3D spherical adjustment and 

Euler angles in the global reference frame (Filippeschi et al., 2017; Robert-Lachaine et al., 

2020; Roetenberg et al., 2009; Sers et al., 2020). In addition, to counteract sensor drift, both 

software implemented a Kalman filter and a measurement proprietary algorithm, respectively 
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(Noitom Ltd, 2017; Xsens, 2016). Finally, the entire experiment was recorded using 

camcorders in order to label and segment data during the processing phase. As a part of the 

experiment consent form, the participants were asked for their consent to video recording prior 

to the beginning of the experiment. 

       

(a) A-pose (b) T-pose (c) S-pose 

Figure 3-5: Calibration postures (Noitom Ltd, 2021) 

3.2 DATA PROCESSING 

3.2.1 Data Segmentation 

Manual block lifting is an essential part of masonry tasks. Masons are exposed to cumulative 

musculoskeletal injuries by performing frequent heavy block lifting (Alwasel et al., 2017a, 

2017b). To investigate the levels of risks in block lifting, the acquired motion data was 

segmented into 45 single CMU lifting motion files for each participant. Based on the recorded 

video, each ‘lift’ was defined from the moment the participant picked up the CMU to the 

moment the CMU was entirely placed on the lead wall. Thus, the interval of spreading mortar 

on the CMU was not part of this analysis. 

3.2.2 Joint Location Extraction 

The obtained motion data was extracted as Biovision Hierarchy (BVH) files that define 

hierarchical body segments as local rotation and translation information from a root body joint, 

namely the hip (Meredith & Maddock, 2001). Then, the global position (3D coordinates) of 



 

 31 

body joints in the BVH file were repeatedly computed from local transformation matrices 

based on the hierarchical kinematic structure of humans. In this study, a “BVHViewer” 

software, which enables the export of 3D joint information from a BVH file to .txt files, was 

used. Finally, 28 body joint positions in three axes (i.e., X, Y, and Z) were obtained from the 

processed motion data. As the motion data was segmented into 45 single lifts, the 3D joint 

center information was also stored as 45 individual files. The data processing flow chart is 

shown in Appendix B. 

3.3 BIOMECHANICAL ANALYSIS  

To run the biomechanical analysis in 3DSSPP, the 3D joint center positions (.txt) exported from 

BVH motion files are converted to ‘joint location files (.loc)’, formatted following a 

hierarchical description of body joint center location (X, Y, and Z coordinates) using a 

MATLAB code. Combining the participants' anthropometric parameters (height and weight) 

with the joint location files corresponding to their lifts, along with the external forces (CMU 

weight) they experience, 3DSSPP calculates compression forces in the lumbar joint at the 

L4/L5 disc level, and the joint moments in the elbow, shoulder, L5/S1 disc, hip, and knee joints. 

Figure 3-6 compares the lumbar compression forces experienced by a journeyman to a novice 

mason during a CMU lift. It also demonstrates two loading thresholds recommended by the 

National Institute for Occupational Safety and Health (NIOSH, 1981), namely the action limit 

set to 3433 N (dashed green line) and the maximum permissible limit set to 6376 N (dashed 

red line). 
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Figure 3-6: Comparison of lumbar compression force between a journeyman and a novice 

during a CMU lift by  

This study does not account for dynamic loads generated by body segment and CMU 

accelerations. Instead, it treats the motion sequence as a set of static postures, which is a 

standard practice in ergonomic analysis. The analysis finds the ‘most critical posture’, defined 

as that where peak force or moment is registered, per lift. The peak joint loads were averaged 

and compared according to the experience level and course height. Therefore, the averages of 

the peak joint loads (i.e., most critical working postures) were investigated for each category. 

The steps of this analysis are shown in Appendix C. 

3.4 PRODUCTIVITY ANALYSIS 

In the typical job environment, masons are expected to complete a predetermined number of 

CMUs per day. Thus, productivity is an essential part of a mason's career. In this analysis, 

productivity was measured for all participants by recording the average time taken by masons 

to lay a block. The analysis sheds light on whether work experience enhances productivity 

substantially more than safety, or whether experts gain both safety and productivity skills.   
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CHAPTER 4  
APPLICABILITY OF RULE-BASED ERGONOMIC ASSESSMENT IN 

BRICKLAYING3 

4.1 INTRODUCTION 

Different postural assessment systems (OWAS (Karhu et al., 1977); RULA (McAtamney & 

Corlett, 1993); REBA (Hignett & McAtamney, 2000)) have been developed and utilized to 

evaluate risk exposure as early as the 1970s. They were designed as a practitioner's field tool 

to objectively assign overall scores or indices based on pre-determined rules (i.e., posture 

categories) (David, 2005; Golabchi et al., 2016; Schwartz et al., 2019). The overall scores and 

indices indicate prescribed acceptable risk exposure limits for workers, with associated levels 

of intervention required to reduce risk (David, 2005). The design of these rule-based 

assessments is based on the pen-and-paper based observational approach, which allows a 

simple and rapid evaluation onsite (Li & Buckle, 1999).  

As primary input, the rule-based assessments require a quantitative description of 

working posture. Thus, the reliability of the assessment results directly depends on the input 

posture information collected (Andrews et al., 2008a; Fagarasanu & Kumar, 2002). However, 

the current practice to collect and estimate posture is heavily reliant on manual assessment 

(e.g., human observer and estimation of projected angle in recorded videos/photos), which is 

subjective and qualitative (Li & Buckle, 1999; Valero et al., 2016). Specifically, rule-based 

assessment reports risk levels in discrete categories for various body angle ranges (i.e., bins). 

 
 
3 This chapter is adapted from Ryu, J., Diraneyya, M., Haas, C., and Abdel-Rahman, E. (2020) “Analysis of the 
Limits of Automated Rule-based Ergonomic Assessment in Bricklaying”. Journal of Construction Engineering 
and Management. 147(2), 04020163. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001978. 
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Therefore, it is challenging for observers to clearly distinguish between bins when the angle is 

close to the boundaries (Andrews et al., 2008a). As a result, manual assessment may lead to a 

decrease in reliability due to the high intra- and inter-observer variability (Plantard et al., 2017).  

Andrews et al. (2008b) investigated misclassification errors of trunk posture images. 

They reported mean bin misclassifications of 32% for trunk flexion/extension and 22% for 

trunk lateral bend. In particular, the bin class was 50% wrong when participants examined 

flexion/extension bend images representing postures near bin boundaries. In a laboratory 

setting, the optimal position to obtain reliable posture images is a sagittal (side) view 

(Sutherland et al., 2007). However, placing a camera, or an observer, in that position is not 

always feasible due to constrained worksite layouts (Sutherland et al., 2007). Therefore, 

significant errors also occur due to variations in viewing angles. Sutherland et al. (2007) 

investigated the reliability of working posture assessment based on images taken for eleven 

joint postures by four cameras placed at 0, 45, 60, and 90 degrees with respect to the frontal 

plane. They calculated 20% disagreement in bin selections between pairs of camera viewing 

angles. Considerable disagreement was reported with large joint angles, reaching 43% for left 

shoulder flexion. Given the inconsistency and non-repeatability of manual assessment, the 

collection of accurate motion data is essential for reliable postural assessment. 

Recently, technological advances in motion capture systems have unlocked the 

possibility of replacing manual assessment with automated tools. As these systems provide 

quantitative measurements of human motion, they enable quantitative assessment of working 

postures. Particularly, wearable IMUs are increasingly being used for motion data acquisition. 

IMU-based motion capture suits have been developed to continuously capture full-body 

motion using measured acceleration, angular rate, and magnetic field orientation (Ahn et al., 

2019; Chen et al., 2017; Seel et al., 2012). In these suits, individual IMUs are firmly attached 

to major body segments to directly track user's motions without interfering with tasks or site 

limitations. Furthermore, accurate estimation of joint kinematics using an IMU-based motion 

capture system is comparable to use of an optical motion capture system, the current gold 

standard (optical motion capture system) (Cuesta-Vargas et al., 2010; Robert-Lachaine et al., 

2017, 2020; Schall Jr et al., 2016). Therefore, IMU-based motion capture systems are widely 
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used to investigate ergonomic risk by integrating with rule-based assessment systems (Battini 

et al., 2014; Valero et al., 2016, 2017; Vignais et al., 2013, 2017).  

For motion data to provide a sound basis for ergonomic assessment, the method must be 

valid for the target task (Takala et al., 2010). A problem arises because the extant rule-based 

assessment systems were developed for different purposes within special workplace conditions, 

excluding specifications for certain jobs like bricklaying in masonry (Kivi & Mattila, 1991; 

Levanon et al., 2014). Without these specifications, the evaluation results (i.e., overall scores 

or indices) for a given posture may vary according to which assessment system is used (Kee 

& Karwowski, 2007). A number of studies (Ansari & Sheikh, 2014; Kee & Karwowski, 2007; 

Kee et al., 2020; Kong et al., 2010; Kong et al., 2018b; Manavakun, 2004) have compared and 

evaluated the results from different rule-based assessment systems (i.e., inter-methods 

reliability) including RULA, REBA, and OWAS. Such comparisons among the evaluation of 

the rule-based assessments for the same task can be used to test inter-method reliability and 

prove convergent validity (Schwartz et al., 2019).  

Furthermore, while comparison with a “gold standard” is the ideal way to assess validity, 

there is no general “gold standard” for assessing biomechanical risk exposure (Takala et al., 

2010). As an alternative, biomechanical analysis has been widely used as an objective means 

to assess musculoskeletal risks during occupational tasks by estimating quantitative joint loads 

(Chaffin et al., 2006). A recent study (Alwasel et al., 2017a; Ryu et al., 2020) conducted a 

biomechanical analysis of a bricklaying task and reported quantitative estimates of masons' 

joint loads grouped by different levels of experience. It found that experienced journeymen 

adopt ergonomically safer and more productive working methods than less experienced 

masons. 

However, no work has analyzed the validity of rule-based assessments for tasks 

involving heavy material handling, such as bricklaying in construction. This study investigates 

the applicability of three rule-based assessment systems, namely RULA, REBA, and OWAS, 

in a bricklaying task by 1) inter-methods reliability and 2) comparison with ground truth. To 

achieve this, the study develops an automated ergonomic assessment tool implementing RULA, 
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REBA, and OWAS systems on motion data captured by IMU motion suits. The automated 

rule-based assessment tool eliminates intra- and inter-observer variability due to manual 

assessment. Then, the study demonstrates the use of this tool to assess risk levels in a standard 

CMU bricklaying task. The dataset is expanded from a previous study (Alwasel et al., 2017a), 

increasing the number of participants from twenty-one to forty-three. The assessment results 

of RULA, REBA, and OWAS are compared for inter-methods reliability. Finally, rule-based 

assessment findings are compared to those obtained from full-body biomechanical analysis 

(i.e., ground truth) to examine the validity of implementing a rule-based assessment to CMU 

bricklaying.  

4.2 JOINT ANGLE ESTIMATION 

Joint angles were calculated based on the International Society of Biomechanics (ISB) 

standards (Wu et al., 2002, 2005). Once the local coordinate system was defined for each 

segment using the joint centers, then the joint angles between adjoining segments' coordinate 

systems were calculated. Figure 4-1 shows an example of knee angles as per Grood and Suntay 

(1983). It is noted that this study treats the knee and elbow joints as one-degree freedom (DOF) 

joints allowing only for the flexion angle. 
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Figure 4-1: Knee angles as described by Grood and Suntay (1983) 

 

The trunk angles were calculated between the trunk's local y-axis, extending from the 

center of the hip joints to the C7/T1 disc—interposed between the seventh cervical (neck) spine 

vertebrae and the first thoracic (chest) vertebrae—and the global y-axis that was defined by 

the direction of gravitational acceleration. From there, the trunk flexion was taken as the angle 

between those two vectors in the sagittal plane (vertical plane dividing the body into a left and 

right section), whereas trunk side bending was taken as the angle between them in the coronal 

plane (vertical plane dividing the body into a front and back section). Furthermore, the trunk 

twist was measured as the angle between the vector connecting the hip joints and the vector 

connecting the shoulder joints in the transverse plane (horizontal plane dividing the body into 

an upper and lower section). Figure 4-2 shows the joint angles of major body joints, namely 

the elbow, shoulder, knee, hip, neck, and trunk, as functions of the normalized time for a 

sample lift. 
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Figure 4-2: Joint angles for a sample lifting 
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4.3 AUTOMATED RULE-BASED ASSESSMENT 

Worker postures, described by estimated joint angles, were ergonomically evaluated according 

to RULA, REBA, and OWAS assessment systems. These systems combine body section scores 

into a ‘grand score’ describing an overall risk index for a given posture. RULA and REBA 

divide the human body into two sections: namely, section 1, which is composed of the lower 

arms, upper arms, and wrists; and section 2, which is composed of the neck, trunk, and legs 

(Hignett & McAtamney, 2000; McAtamney & Corlett, 1993). Section scores are assigned by 

combining individual joint scores according to an assessment grid with scores for external 

loads and repetitive exposure to loads. OWAS divides the body into three sections; back, arms, 

and legs (Karhu et al., 1977). Each section is assigned a local score which is then combined 

into various risk categories (OWAS). For example, RULA's grand score ranges from ‘1’ for 

minimum risk to ‘7’ for very high risk that requires change to be implemented. 

The automated algorithm firstly calculates ‘joint scores’ from the estimated joint angles 

for the elbows, shoulders, knees, and hips as well as the neck (C7/T1 disc) and trunk (L5/S1 

disc) joints. The joint scores are adjusted upward to account for awkward postures. Since those 

postures are defined qualitatively in rule-based assessments, quantitative thresholds were 

introduced to implement them in the automated algorithm as follows:  

- RULA and REBA adjusted their joint scores by +1 when upper arm 

abduction, neck side bending, trunk side bending, and trunk twist “occur”. The 

criteria for this occurrence was interpreted as a joint angle in excess of 30% of the 

maximum joint range of motion, which was determined to be more than 20° of 

upper arm abduction, 10° of neck side bending, 20° of trunk side bending, and 10° 

of trunk twist.  

- RULA's lower arm score was adjusted when the hand was positioned “across 

the midline” or “outside” the body frame. The corresponding quantitative threshold 

was defined as the relative position, in the transverse plane, of the wrist joint center 

concerning the body midline being negative or more than 35 cm.   
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- RULA and REBA wrist scores did not include adjustments for hand 

deviation from the midline (radial/ulnar deviation) since that motion is minimal in 

handling CMUs. 

- REBA adjusted the leg score when one leg was not supported. As a 

quantitative threshold, it considered legs to be supported when both feet were 

standing still. However, when one foot was moving, the other foot was considered 

supported. Similarly, OWAS adjusted the grand score upward when a subject was 

walking; defined when one-foot speed was more than 0.5 m/s to filter out signal 

noise. 

Section scores were also added to account for the external forces required to handle 

CMUs in all assessment systems. RULA section scores for the upper limbs and the rest of the 

body, as well as REBA score for the rest of the body, were adjusted by +3 to account for the 

CMU weight. Conversely, a score of 0 was assigned for the muscles use because the CMU 

handling period was less than the static load threshold (1 minute) and repetitive load patterns 

were below the exposure limit (4 times/minute). OWAS' fourth code, which accounts for 

external forces, was set to 2—corresponding to a load between 10 and 20 kg. Then, Table 4-1 

shows the MSD risk levels corresponding grand score and action category ranges. 
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Table 4-1: Range of grand scores (RULA and REBA) and action categories (OWAS) 

Assessment 
Score/ 
Category Levels of MSD Risks 

RULA 

1-2 Acceptable posture 

3-4 Further investigation, change may be needed 

5-6 Further investigation, change soon 

7 Investigate and implement change 

REBA 

1 Negligible risk, no action required 

2-3 Low risk, change may be needed 

4-7 Medium risk, further investigation, change soon 

8-10 High risk, investigate and implement change 

11+ Very high risk, implement change 

OWAS 

1 No action required 

2 Corrective action required in the near future 

3 Corrective actions should be done as soon as possible 

4 Corrective actions for improvement required immediately 

 

Figure 4-3 demonstrates a sample of the RULA scoring process over a lift lasting 5 

seconds. It starts with assigning joint scores based on the joint angles shown in Figure 4-3 (a) 

and (b), combined with load scores from the upper limbs and rest of the body as shown in 

Figure 4-3 (c) and (d), respectively. Lastly, a lookup table to combine section scores revealed 

the grand score shown in Figure 4-3 (e).  
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Figure 4-3: Calculation of RULA scores for a sample lifting. (a) joint angles for section 1, 

(b) joint angles for section 2, (c) section 1 score, (d) section 2 score, and (e) RULA grand 

score 
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4.4 RESULTS 

The results of this chapter were obtained by utilizing a subset of the entire dataset, forty-three 

(43) masons' motion data (stature 180.3 ± 6.2 cm, total body mass 86.6 ± 13.2 kg). Seventeen 

of participants were a novice, seven participants were apprentices with 1 year of masonry 

experience, thirteen participants were apprentices with 1 year of masonry experience, and six 

of the participants were journeymen with more than 20 years of masonry experience. Each 

participant was instructed to complete a pre-built lead wall, which is described in the Chapter 

3, Research Methods. 

For each lift, the ‘most critical posture’ was defined as 1) the highest score for each 

assessment tool or 2) the highest lumbar compression force—the most critical load point (joint) 

in the trunk during bricklaying in a standard wall (Alwasel et al., 2017a). The highest measured 

scores and compression forces represented the peak loading of the task, which is significantly 

correlated to musculoskeletal injuries (Norman et al., 1998; Village et al., 2005). The peak 

loadings (i.e., most critical posture) were grouped according to the participant's level of 

experience and course height; then, the average and standard deviation of the peak loadings 

were investigated for each of the four levels of experience and each of the five-course heights, 

from 2nd to 6th course of the pre-built lead wall. 

4.4.1  Rule-based Assessment 

The average scores of RULA, REBA, and OWAS lifts were 6.949, 10.910, and 2.942, 

respectively. According to each tool's guideline, all overall scores indicated high 

musculoskeletal risks, which require users to investigate and implement changes in their 

posture. Figure 4-4 compares the average scores among the four experience groups. The 

average RULA score was highest for the 3-year group, whereas the average REBA and OWAS 

scores were highest for the journeymen. Furthermore, the novice group showed the lowest 

score across all assessment systems. However, the variance of average scores among the groups 

was insignificant in all three assessment systems. For example, the difference between the 

highest and lowest score in RULA was only 0.071.  
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To examine whether a relationship exists between the levels of experience and the risk 

evaluations obtained from RULA, REBA, and OWAS, a one-way Analysis of Variance 

(ANOVA) was carried out on the four experience groups using SPSS (version 21). The group 

size N, the mean grand score, its standard deviation, the ratio of variability among the groups, 

to the variability within group F, and the p-value are listed in Table 4-2, with the significance 

level set to 5%. The p-values were much larger than the required significance level (p < 0.05) 

indicating no significant difference among the groups for all three assessment systems. 

 

 
Figure 4-4: RULA, REBA, and OWAS scores averaged by experience level 
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Table 4-2: RULA, REBA, and OWAS scores averaged by experience level and the 

corresponding one-way ANOVA results 

Assessments 

Group 

(Level of 

Experience) 

N µ s F 
Sig. 

(p-value) 

RULA 

Novice (a) 17 6.915 0.191 

0.858 0.471 

1-Year (b) 7 6.937 0.127 

3-Year (c) 13 6.987 0.028 

Journeyman (d) 6 6.981 0.022 

Total 43 6.949 0.133 

REBA 

Novice (a) 17 10.824 0.510 

0.719 0.547 

1-Year (b) 7 10.770 0.770 

3-Year (c) 13 11.004 0.441 

Journeyman (d) 6 11.111 0.472 

Total 43 10.910 0.530 

OWAS 

Novice (a) 17 2.901 0.362 

0.267 0.848 

1-Year (b) 7 2.957 0.411 

3-Year (c) 13 2.935 0.355 

Journeyman (d) 6 3.056 0.360 

Total 43 2.942 0.358 

 

To build the lead wall, participants laid CMUs from the 2nd to the 6th course. Thus, their 

working postures varied with course height; participants bent their back much more to place a 

CMU on the 2nd course than they did on the 6th course. Table 4-3 shows the risk assessment 

scores averaged over course and experience group as well as the F and p-values comparing 

variation in average score for the five-courses within the same group at a significance level of 

5%. This represents a fine-grained comparison of performance as opposed to what is presented 

in the preceding table. However, the variance in scores by course was also found to be 
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insignificant for all three assessment systems with p-values much larger than the significance 

level (p < 0.05). The differences between the highest and lowest scores over the five-courses 

were 1.4%, 3.1%, and 10.5% for RULA, REBA, and OWAS, respectively. 
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Table 4-3: RULA, REBA, and OWAS scores averaged by course and experience group and 

the corresponding one-way ANOVA results 

Groups 
Average RULA scores (Std.) F 

(p-value) 2nd 3rd 4th 5th 6th 

Novice 
6.94  

(0.191) 

6.876  

(0.328) 

6.854  

(0.256) 

6.928  

(0.154) 

6.938  

(0.178) 

0.508 

(0.730) 

1-Year 
7.000  

(0) 

6.929  

(0.189) 

6.873  

(0.252) 

6.9  

(0.183) 

7.000  

(0) 

0.886 

(0.484) 

3-Year 
7.000  

(0) 

6.988  

(0.041) 

6.960  

(0.113) 

7.000  

(0) 

6.981  

(0.069) 

0.901 

(0.470) 

Journeyman 
7.000  

(0) 

6.917  

(0.204) 

6.889  

(0.272) 

6.876  

(0.194) 

7.000  

(0) 

0.702 

(0.598) 

Groups 
Average REBA scores (Std.)  

F (p-value) 
2nd 3rd 4th 5th 6th 

Novice 
10.961  

(0.473) 

10.73  

(0.725) 

10.561  

(0.792) 

10.71  

(0.581) 

11.108  

(0.533) 

1.867 

(0.125) 

1-Year 
10.724  

(0.827) 

10.696 

 (0.835) 

10.835  

(0.873) 

10.823  

(0.488) 

10.926  

(0.885) 

0.095 

(0.983) 

3-Year 
11.218  

(0.486) 

10.978  

(0.577) 

10.819 ( 

0.567) 

10.834  

(0.594) 

11.101  

(0.598) 

1.153 

(0.341) 

Journeyman 
10.742  

(0.882) 

10.6  

(0.903) 

10.792  

(0.935) 

10.869  

(0.504) 

10.548  

(0.942) 

0.148 

(0.962) 

Groups 
Average OWAS scores (Std.)  

F (p-value) 
2nd 3rd 4th 5th 6th 

Novice 
3.083 

(0.223) 

2.868  

(0.393) 

2.681 

(0.791) 

2.908  

(0.493) 

2.981 

(0.449) 

1.299 

(0.279) 

1-Year 
3.092 

(0.221) 

2.858  

(0.425) 

2.718 

(0.627) 

2.991  

(0.415) 

3.135  

(0.508) 

0.980 

(0.433) 

3-Year 
3.067 

(0.202) 

2.943  

(0.373) 

2.649  

(0.5) 

2.865  

(0.612) 

3.029  

(0.44) 

1.731 

(0.155) 

Journeyman 
3.091 

(0.265) 

2.79  

(0.425) 

2.655  

(0.63) 

2.893  

(0.329) 

2.819  

(0.985) 

0.446 

(0.774) 
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4.4.2 Biomechanical Analysis 

Biomechanical studies have confirmed that low back injuries are associated with frequent 

lifting in industrial manual material handling tasks, particularly those where the lumbar 

compression force is in excess of the loading threshold, 3433N, defined by NOISH (Alwasel 

et al., 2017a; Arjmand & Shirazi-Adl, 2005). Figure 4-5 shows the lumbar compression force 

averaged and grouped by levels of experience. It also demonstrates two loading thresholds, 

namely the action limit set to 3433 N (dashed green line) and the maximum permissible limit 

set to 6376 N (dashed red line). Biomechanical analysis shows that the lumbar compression 

force was significantly lower for journeymen and novices than for 1- and 3-year apprentices. 

Although the novice group showed a similar lumbar compression force to journeymen, they 

took almost twice as long to complete the task. This finding indicates that a slower pace 

allowed novices to reduce the loads on their body compared to more experienced and 

productive apprentices. Furthermore, biomechanical analysis shows that while all groups 

experience back compression forces within NIOSH action limits at the fourth, fifth, and sixth 

courses, 1- and 3-year apprentices experience back compression forces beyond the action limit 

when they work on the 2nd and 3rd courses. 

 
Figure 4-5: Lumbar compression force to complete each course by the levels of experience 
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4.4.3 Comparison Between Rule-based Assessment and Biomechanical Analysis 

To compare the rule-based and biomechanical assessment results, each result was normalized 

by dividing the average score or force of the most critical posture of each participant by the 

corresponding maximum limit, namely 7 for RULA scores, 12 for REBA scores, 4 for OWAS 

scores, and 6376 N for lumbar compression force. The results are shown in Figure 4-6. The 

biomechanical metric shows significant variation among participants. The normalized RULA 

and REBA scores were almost constant regardless of the participant, and the normalized 

OWAS scores were scattered without obvious correlation to the biomechanical metric. For 

instance, the critical lumbar back compression force for participant #43 was less than that for 

participant #1 by 2431.45N. However, all three rule-based assessment scores for participant 

#43 were slightly worse than those for participant #1. 

 
Figure 4-6: Normalized rule-based assessment average scores and the corresponding 

biomechanical metric 

An independent sample t-test was conducted to examine whether rule-based assessments 

and biomechanical analysis results had statistically significant differences. To this end, 

participants were grouped into high and low groups based on their calculated lumbar back 
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compression force. Lumbar compression forces and the grand scores of RULA, REBA, and 

OWAS were compared for three sample sizes comprised of the 5, 10, and 15 highest and lowest 

participants groups, corresponding to 25%, 50%, and 75% of the total sample size as 

demonstrated in Table 4-4. The t-test of the lumbar compression force found significant 

differences between the high and low groups regardless of the sample size, indicating 

significantly different lower back joint loads between the two groups. On the other hand, all 

rule-based grand scores showed no differences for all three group sizes indicating similar MSD 

risk levels for both groups. 
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Table 4-4: Independent sample t-test between the high and low groups 

Assessments Group N µ s t value 
Sig. 

(p-value) 

RULA 

Highest 5 6.971 0.042 
-0.255 0.805 

Lowest 5 6.977 0.039 

Highest 10 6.985 0.032 
1.340 0.197 

Lowest 10 6.941 0.100 

Highest 15 6.939 0.192 
-0.207 0.838 

Lowest 15 6.950 0.089 

REBA 

Highest 5 2.915 0.213 
0.456 0.660 

Lowest 5 2.848 0.251 

Highest 10 10.873 0.309 
-0.533 0.600 

Lowest 10 11.000 0.685 

Highest 15 10.866 0.408 
-1.022 0.315 

Lowest 15 11.059 0.609 

OWAS 

Worst 5 10.733 0.268 
-0.855 0.417 

Lowest 5 10.980 0.587 

Worst 10 2.914 0.313 
-0.511 0.616 

Lowest 10 2.990 0.355 

Highest 15 3.002 0.360 
0.322 0.750 

Lowest 15 2.963 0.296 

Lumbar 

Compression 

Force (N) 

Highest 5 4849.814 54.621 
55.629 0.000* 

Lowest 5 2575.705 73.297 

Highest 10 4568.427 324.922 
17.209 0.000* 

Lowest 10 2673.557 125.152 

Highest 15 4286.568 500.031 
11.103 0.000* 

Lowest 15 2766.308 176.657 

* Significant difference (p < 0.05) between the best and worst groups 
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4.5 DISCUSSION 

This chapter examined the applicability of RULA, REBA, and OWAS to tasks involving heavy 

manual handling, specifically CMU bricklaying, by utilizing an automated rule-based 

assessment tool. A high-level of agreement among the evaluation results for all assessment 

systems was found. Despite the different scoring schemes, the most critical postures (i.e., the 

highest scored posture) indicated high level risk in all three systems, recommending posture 

changes as soon as possible. Furthermore, consistently high scores were found within each 

assessment system, irrespective of worker experience or work height. In each assessment 

system, no significant differences were found between experience levels or course heights.   

However, the biomechanical analysis—a ground truth measure offering an explicit and 

quantitative assessment of actual joint loads—showed a range of evaluation results among the 

experience groups as well as course heights. Specifically, 3-year apprentices experienced the 

highest lumbar compression forces, while the journeymen and novices experienced relatively 

lower joint loads. In addition, the compression forces were lowest for all experience groups 

when completing the 4th course. These results are consistent with the results of the previous 

study (Alwasel et al., 2017a) conducted using a subset of the data in this study. The inverted-

U-shape relationship between joint load (injury rates) and experience has been widely reported 

(Alwasel et al., 2017a; Frost & Andersen, 1999; Yerkes & Dodson, 1908). According to such 

studies, stimulus (e.g., peer pressure) on the first 5 – 8 years of apprentices' careers induce 

them to change their behavioral task performance to achieve higher productivity and 

proficiency while sacrificing ergonomic safety. However, after surviving the apex, they learn 

techniques allowing them to achieve increased productivity while maintaining ergonomic 

safety. It was also found that the main distinction between experienced and novice participants 

was not in safety but in productivity. Experts laid CMUs faster, completing the overall task 

(lead wall) in less time. Specifically, journeymen laid CMUs twice as fast as novices. 

Biomechanical analysis provided sensitive risk evaluation that can distinguish the 

different degrees of risk (joint loads) arising from different motion patterns of the four 

experience groups while they performed the same tasks. Furthermore, even within the same 
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experience group, the varying risks (joint loads) generated by different work heights were also 

distinguished by biomechanical analysis. However, rule-based assessment systems failed to 

distinguish these differences and only indicated that masonry work posed a significant risk to 

masons, regardless of experience and course height. Lastly, this study found that expanding 

the dataset used in biomechanical analysis, more than doubling the number of participants from 

the previous pilot study, produced results consistent with that study (Alwasel et al., 2017a). 

This shows that biomechanical analysis is an objective and robust method for risk assessment 

in heavy material handling tasks. 

The contrast between rule-based assessment systems and biomechanical analysis can 

also be seen across all participants in Figure 4-6, where the grand scores of rule-based 

assessment systems are seen to be either saturated (RULA) or scattered (REBA and OWAS) 

irrespective of the biomechanically calculated back compression forces. For example, Figure 

4-7 shows the lumbar compression forces and the grand scores for all frames captured 

throughout one lift. The red and blue circles in Figure 4-7 (a) indicate the frames where the 

lumbar compression forces were highest and lowest, respectively. The same frames are marked 

in Figure 4-7 (b), (c), and (d) which demonstrate the grand scores of RULA, REBA, and OWAS, 

respectively. While the lumbar compression force increases between these two frames, from 

41% to 85% of the maximum permissible limit, the rule-based grand scores are saturated at 7 

for RULA, decrease from 10 to 9 for REBA, and increase from 1 to 2 for OWAS. 
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Figure 4-7: Results of biomechanical analysis and rule-based assessment from a sample lift. 

(a) Lumbar compression force, (b) RULA, (c) REBA, and (d) OWAS 

 

An independent sample t-test was conducted to examine the discrepancy between 

biomechanical analysis and rule-based assessment systems (Table 4-4). The results of the t-

test confirmed significant differences between high and low lumbar compression force groups 

for all sample sizes. However, the t-test results of all rule-based grand scores corresponding to 

the high and low lumbar compression forces showed no difference. These results illustrate that 

the inability of rule-based assessment systems to distinguish between risk levels in this task is 

due to score saturation, rather than an indicator of an across-the-board biomechanical risk 

One factor driving up the grand score of rule-based assessments is the external load of 

the CMUs. Specifically, an external load greater than 10kg increases the RULA and REBA 

section scores by 3 and 2, respectively, and the OWAS section score by 1. Therefore, all rule-

based assessment systems reported inflated (higher risk) grand scores regardless of the various 

body postures—even though the actual joint forces and moments were not consistently high. 
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With manual observation methods, it is only possible to analyze one or several distinct 

momentary posture(s) observed while performing the target task. Furthermore, depending on 

the viewpoint of the observer or the frame of the recorded video, the evaluator(s) may assess 

different levels of risk. This inherent error may, consequently, cause inter- and intra-observer 

variability of evaluation results. The developed automated rule-based assessment tool enabled 

accurate and continuous quantification of joint angles at 125 Hz, thereby overcoming the 

problem of evaluation variability. Specifically, the developed method can eliminate the 

problem of posture misclassification which undermines manual observation, particularly for 

joint angles near bin boundaries (Andrews et al., 2008b). Furthermore, the joint angles were 

estimated from the reconstructed 3D human skeleton model; thereby eliminating errors due to 

viewing angle variations (Sutherland et al., 2007).  

However, in rule-based assessment systems, the discrete boundaries between the joint 

angle bins corresponding to each score can lead to discontinuous jumps between scores for 

consecutive frames (postures). Figure 4-8 illustrates the underlying reasons for the abrupt 

changes in the RULA upper limb section score over 0.2 seconds and 0.7 seconds, seen in Figure 

4-3 (a) and Figure 4-3 (c), respectively. The score fluctuations occur due to upper arm and 

wrist flexion angle fluctuations around the bin boundaries. Specifically, a change of 0.762° in 

the upper arm angle from 44.9° in frame 26, to 45.8° in frame 27 shows the upper limb section 

score increase by 1 as it crosses the upper arm angle boundary at 45°. These discontinuous 

variations in risk scores are a fundamental shortcoming of rule-based assessment that cannot 

be overcome by automating angle quantification. 
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Figure 4-8: Joint score discrepancy between consecutive postures 

The scope of the present study was limited to the investigation of ergonomic risk levels 

during the task of laying CMUs to a standard wall. This task represents the ergonomic risks in 

many masonry tasks involving repetitive and physically demanding manual handling. Future 

studies should assess the ergonomic risks of similar tasks in masonry (e.g., handling different 

size and weight blocks) and other trades. Moreover, in this study, risk evaluation was conducted 

on the most critical postures because the peak joint load is closely correlated to musculoskeletal 

injuries (Norman et al., 1998; Village et al., 2005). However, other studies have found that it 

was necessary to consider cumulative joint loads where critical loads were maintained over 

extended periods of time (Kumar, 1990, 2001; Norman et al., 1998). Therefore, researchers 



 

 57 

should investigate the cumulative joint loads in assessing risk levels for tasks where critical 

loads are maintained over several seconds.  

4.6 CONCLUSIONS 

This study investigated the applicability of three rule-based assessment systems, RULA, 

REBA, and OWAS, to a bricklaying task—laying 16.6 kg CMUs on a standard wall. An 

automated assessment tool was developed for those systems using static postures obtained 

from wearable motion capture systems. This tool was able to eliminate intra- and inter-observer 

variabilities, an inherent obstacle in manual rule-based assessment. The automated assessment 

tool also enabled accurate and continuous risk evaluation at a high-frame rate (125 postures 

per second) for the targeted task. It was used to assess risk levels encountered by forty-three 

masons during the bricklaying task. The evaluation results were compared among the three 

assessment systems and with the ground truth obtained from biomechanical analysis. 

According to the guidelines of the three assessment systems, the results indicated that 

masons were exposed to high risk of injury regardless of their experience level and activity 

(course height) — no significant differences were found from one-way ANOVA. Despite their 

high-level of agreement, comparison with the ground truth showed that the results of these 

assessments were misleadingly saturated. Put another way, the assessment systems were unable 

to distinguish between safe and unsafe postures, finding both of them to be unsafe. For example, 

the difference between the highest and lowest lumbar compression forces was 2,431 N; 

however, the rule-based risk evaluations indicated high risk for both participants. In fact, the 

lowest loaded participant was 28% below the action limit for the joint while the highest loaded 

participant was 43% above the action limit. Further, all three assessment systems assigned 

higher risk scores to the lowest loaded participant than the highest loaded participant. In 

contrast, biomechanical analysis provided a range of risk evaluations that varied depending on 

experience as well as course height that the rule-based assessment systems failed to 

demonstrate. Specifically, journeymen and novices experienced low risk levels (joint loads) 
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while 1- and 3-year apprentices encountered higher risk levels laying the CMUs on the 2nd 

and 3rd courses. 

The present study is one of the first attempts to examine the applicability of rule-based 

assessment to tasks involving heavy manual material handling, such as bricklaying, via inter-

methods reliability and comparison with ground truth, the results of biomechanical analysis. It 

has shown that rule-based assessment systems provide saturated risk evaluations for heavy 

material handling tasks because higher external forces can artificially inflate their scores, 

indicating higher risk, regardless of posture safety and actual joint loads. Over-inflated risk 

evaluations are not only inaccurate and insensitive to ergonomics but can also lead to 

unnecessary ergonomic interventions. In contrast, biomechanical analysis can provide robust 

risk evaluations that reflect the effects of external loads and distinguish between risk levels due 

to experience and course height. Therefore, biomechanical analysis should be adopted to 

evaluate ergonomic risks especially for tasks involving heavy material handling. 
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CHAPTER 5  
ANALYSIS OF THE RELATIONSHIPS BETWEEN BODY LOAD AND 

TRAINING, WORK METHODS, AND WORK RATE4 

5.1 INTRODUCTION 

Skilled construction craft workers are supplied through various sources of craft training, such 

as apprenticeship programs, community colleges, and firm-sponsored training (Wang et al., 

2008). Through these training programs, workers are taught essential work skills (e.g., proper 

use of tools) and work safety to reduce occupational risks (Albers et al., 1997; Wang et al., 

2008). An evaluation of the effectiveness of training programs is usually done qualitatively 

using subjective means, including manual observation and surveying (Teizer et al., 2013). This 

evaluation, however, is limited by the absence of a quantitative score or index for apprentice 

performance. Furthermore, apprentices lack the necessary training loop feedback on postures 

and motions that would provide sufficient data to produce the functional adaptation. In 

particular, qualitative evaluations do not provide a full understanding of proper work methods 

for apprentices, thereby adding a layer of challenge to proactive injury prevention. 

Collecting and analyzing data pertaining to apprentice work motions is essential to 

quantitatively evaluate their performance. Namely, working postures and movement patterns 

are primary inputs for evaluating ergonomic risks due to their association with joint load (joint 

force/ joint moment) in which there is a vulnerability to WMSDs (NIOSH, 2014; Punnett & 

 
 
4 This chapter is adapted from Ryu, J., Alwasel, A., Haas, C., and Abdel-Rahman, E. (2020) “Analysis of 
Relationships Between Body Load and Training, Work Methods, and Work Rate: Overcoming the Novice 
Mason’s Risk Hump”. Journal of Construction Engineering and Management. 146(8), 04020097. 
https://doi.org/10.1061/(ASCE)CO.1943- 7862.0001889 
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Wegman, 2004). Recent advanced sensing technologies, such as wearable inertial 

measurement units (IMUs), have enabled the acquisition of a broad range of accurate motion 

data (Chen et al., 2017; Valero et al., 2016). This data has allowed researchers to look at 

improving safety performance (Dzeng et al., 2017; Jebelli et al., 2016b; Yang et al., 2017; 

Zhang et al., 2019a, 2019b), work efficiency and productivity (Joshua & Varghese, 2014; Ryu 

et al., 2016, 2019), and ergonomic analysis (Nath et al., 2017; Ryu et al., 2018; Valero et al., 

2016, 2017) within the construction industry. Collectively, the previous motion data studies 

show great potential for predicting and monitoring worker safety and productivity. Nonetheless, 

there has been little research into how workers interpret appropriate or inappropriate working 

methods, as well as how to reduce or eliminate the inappropriate working process. 

In addition to the use of sensing technologies, the introduction of automation has been 

widely discussed to protect workers against repetitive and physically intensive tasks. For 

example, the manufacturing industry has shown that automation is well-suited for 

manufacturing tasks, such as repetitive mass-production assembly operations (Everett & 

Slocum, 1994). Although many parts of construction tasks are also repetitive, constant 

intervention by craft workers is inevitable due to the complexities of continuously changing 

construction sites (Everett & Slocum, 1994). As a result, the construction industry remains 

heavily dependent on craft workers and must prioritize workers' sustainability over automation 

by training workers to perform tasks safely.  

Previous ergonomic studies have observed that workers develop beneficial work 

techniques as they gain experience. The primary consensus is that expert material handlers 

adopt different work techniques from those of inexperienced handlers and that the expert's 

techniques were advantageous in terms of safety and productivity (Alwasel et al., 2017a; 

Authier et al., 1995, 1996; Patterson et al., 1987). Indeed, researchers found a steady decline 

in work injuries as work experience increases from the data reported in the Occupational Health 

Supplement, National Health Interview Survey (Oh & Shin, 2003), and the Supplementary 

Data System (Siskind, 1982). So far, however, few studies have quantitatively investigated and 

compared how expert joint loads arising from work posture and motions differ from those of 

apprentices. 
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As a pilot study, Alwasel et al. (2017a) conducted combined biomechanical and 

productivity analysis on 21 masons recruited into four groups based on their experience: 

novices with no experience; apprentices with 1-year of experience; apprentices with 3-years of 

experience; and journeymen with more than 20 years of experience. All participants completed 

a pre-built standard concrete block wall using 45 CMUs. Then, they analyzed whole-body 

kinematic data collected from IMU motion capture systems. It was found that journeymen 

achieved not only low joint loads, but they also completed the task significantly faster than all 

other experience groups (Alwasel et al., 2017a). Furthermore, in a consecutive study, they 

found that masons have different work patterns that can be distinguished and classified, using 

machine learning, into different groups according to their experience (Alwasel et al., 2017b). 

The pilot study (Alwasel et al., 2017a) hypothesized and confirmed that experienced 

masons adopt safer and more productive work methods than less experienced masons. The 

present study extends the pilot study by significantly increasing number of participants from 

21 to 66 masons and analyzing the relationships among body loads, work experiences, and 

work methods. Exploiting the larger dataset, this study firstly evaluated a combined 

biomechanical-productivity analysis to improve confidence in the results. Further, this study 

examined the variations in work methods and their relationship to work height. Specifically, 

this study assesses how different work experience groups load their joints and adjust their work 

postures as the work height changes. Furthermore, it investigated the distinctive differences 

between journeymen's work methods and those of less experienced masons. 

5.2 RESULTS 

5.2.1 Joint Loads and Work Experience 

Participants completed the prebuilt lead wall described in the Chapter 3. This analysis focused 

on the lumbar compression force at the L4/L5 disc level as it was found to be the most critical 

load point in the trunk, closely linked to lower back pain (Alwasel et al., 2017a). Better 
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understanding of the lumbar joint load may also encourage the advancement of safe work 

methods (Plamondon et al., 2010).   

Figure 5-1 shows the lumbar compression force arranged by levels of experience with 

the loading threshold defined by NIOSH (i.e., the action limits are 3433 N and the maximum 

permissible limits are 6376 N). Interestingly, journeyman and novice groups achieved lower 

lumbar compression force values than the mid-experienced groups. Particularly, the 

journeyman achieved a lumbar compression force lower than the action limits through all five 

courses. However, all groups experienced the lowest lumbar compression force when working 

on the 4th course. Statistical significance of the body of observations is explored later in this 

chapter. 

Furthermore, the results of all major joints moments are shown in Figure 5-2. Joint 

moments at both the upper (elbow and shoulder) and the lower (hip and knee) body showed 

relatively high values for the 3-year apprentice group and low values for the journeymen. 

While joint moments in the lower body were at a similar level at the highest course, all groups 

experienced increasing joint moments in the upper body by completing higher courses. 
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Figure 5-1: Peak lumbar compression force per course averaged by experience level  

 

 
Figure 5-2: Peak joint moment per course averaged by experience level (Left: Upper body, 

Right: Lower body) 
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5.2.2 Joint Loads with Lift Types 

In the current experiment, it was observed that participants used different lift types to handle 

CMUs (Figure 5-3). While most of the participants used a two-handed lift (70% of all lifting), 

12.4% of all lifting was done one-handed, a method using only one hand from picking up to 

laying down CMUs. The remainder of the tasks involved mixed lifts, such as picking up a 

CMU with a one-handed lift and then switching to a two-handed lift at the halfway point of 

the lift. The same proportion of lift types was observed among experience groups, except for 

1-year apprentices. 

 
Figure 5-3: Count of lift by types (left) and count of lift type by groups (right) 

 

 Figure 5-4 shows the lumbar compression force by lift type for all experience groups. 

From this result, it is evident that the proportion of novice and apprentice groups experiencing 

lumbar compression forces above the action limit varies according to their lift type. For 

example, 3-year apprentices experience lumbar compression force above the action limit when 

they lift bilateral and mixed lift types. Conversely, the journeymen group consistently achieved 

lumbar compression forces below the action limit regardless of lift type.  
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Figure 5-4: Lumbar compression force at L4/L5 level by lift type and experience level 

 

Significant asymmetry occurs to the body when handling a CMU with only one hand. 

Thus, the joint moments between one- and two-handed lift types were compared. Specifically, 

considering that the participants have different dominant hands (e.g., right-handed and left-

handed), joint moments on the side of the carried block and free-loading sides were examined. 

Figure 5-5 shows the upper and lower joint moments by lift type and level of experience. While 

all groups experienced symmetric joint moments on the right and left sides of the body during 

two-handed lifts, significant asymmetric joint moments were present between the carrying and 

the non-carrying sides during one-hand lifts.  
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Figure 5-5: Joint moments averaged by level of experience during one-hand lifts (left) and 

two-hand lifts (right)  

 

5.2.3 Productivity 

While each participant placed the same number of CMUs during the controlled experiment, 

the completion time varied as per their work experience. Specifically, journeymen completed 

the wall in the shortest time, an average of 28 minutes, while novices, 1-year, and 3-year 

apprentices completed the wall in an average of 56 minutes, 37 minutes, and 40 minutes, 

respectively. Similarly, when converting the completion time to the number of CMUs laid per 

minute, journeymen laid approximately twice as many CMUs as novices (1.63 CMU/min. and 

0.83 CMU/min.). These results follow the same trend shown in the initial report by Alwasel et 

al. (2017a), which was based on a subset of the data in this study. As discussed in their study, 

expert masons adopted safer working methods while maintaining high efficiency as their work 

experience increases (Alwasel et al., 2017a, 2017b). 

This study also investigated productivity loss that occurred as the experiment progressed. 

The average time for each experience group to lay a CMU for each course was found from the 

2nd to the 6th course. Then, the averages were normalized with respect to the 2nd course 

average (Figure 5-6). The normalized time taken to lay a CMU for each course indicates 

changes in pace throughout the task. While novice, 1-year, and 3-years apprentice groups 
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dropped their pace at the end, journeymen maintained an almost constant pace from the 2nd to 

the 6th course. 

 
Figure 5-6: Normalized completion time per course for four experience groups. 

5.3 DISCUSSION 

This study carried out a combined biomechanical-productivity analysis on masons with 

varying levels of experience. It expands the number of participants from 21 in a previous pilot 

study (Alwasel et al., 2017a) to 66. Further, it extends the analysis of work methods to 

investigate the impact of course high and lift type (two-handed versus one-handed) on joint 

moments and the lumbar compression force. The results of this study show the experienced 

journeymen with more than twenty years of experience adopt similar work techniques distinct 

from those of less experienced workers. Specifically, it was found that 3-year apprentices 

experienced the highest lumbar compression forces, while novices and journeymen 

experienced lower forces. Furthermore, the journeymen group achieved the highest 
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productivity, in terms of time taken to complete a lead wall, and were twice as fast as the novice 

group. The study, thus, finds that those work techniques were more productive and safer, 

suggesting their adoption in apprentice training to reduce the prevalence of occupational 

injuries and to improve productivity. 

To examine the significance of differences between mean peak joint loads among the 

experience groups, this study carried out a one-way Analysis of Variance (ANOVA) using 

SPSS (version 21) with the significance level set to 5%. The name of the joint loads, experience 

groups, mean and standard deviation, the ratio of variability among the groups to the variability 

within group F, and the p-value are listed in Table 5-1. The analysis confirms that all joint loads 

of the journeyman group were significantly different than the less experienced groups. In 

particular, 3-year apprentices experienced significantly higher joint loads than journeymen, for 

all joints. It was concluded that these results accord with our earlier results, which showed that 

journeymen have distinguishable work postures causing low joint loads.  
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Table 5-1: Joint loads averaged by levels of experience, and corresponding one-way ANOVA 

results  

Joint loads Experience 
Group Mean Std. dev. F value 

(p value) 
Post Hoc 

Tests 

Lumbar 
compression 

force (N) 

Novice (a) 3217.61 779.01 

47.812 
(0.00*) 

c > a,b,d 
b > a,d 

(Dunnett T3) 

1 Year (b) 3485.06 810.00 

3 Year (c) 3668.19 1050.69 

Journeyman (d) 3190.98 767.54 

Center of Hip 
moment 
(N∙m)	

Novice (a) 186.49 41.28 

31.921 
(0.00*) 

c > a,b,d 
b > a,d 

(Dunnett T3) 

1 Year (b) 194.93 38.17 

3 Year (c) 203.67 52.29 

Journeyman (d) 182.42 40.80 

Right Elbow 
(N∙m) 

Novice (a) 19.04 8.10 

13.107 
(0.00*) 

c > a,b,d 
(Dunnett T3) 

1 Year (b) 17.88 9.99 

3 Year (c) 20.72 10.44 

Journeyman (d) 18.34 7.55 

Left Elbow 
(N∙m) 

Novice (a) 22.26 9.78 

28.787 
(0.00*) 

c > a,d 
a > d 
b > d 

(Dunnett T3) 

1 Year (b) 22.76 9.49 

3 Year (c) 23.84 10.02 

Journeyman (d) 19.24 8.05 

Right 
Shoulder 

(N∙m) 

Novice (a) 28.99 13.36 

14.406 
(0.00*) 

c > a,b,d 
(Dunnett T3) 

1 Year (b) 30.20 15.55 

3 Year (c) 33.89 17.38 

Journeyman (d) 30.02 12.60 

Left Shoulder 
(N∙m) 

Novice (a) 32.60 14.34 

26.873 
(0.00*) 

c > a,b,d 
b > a,d 

(Dunnett T3) 

1 Year (b) 35.22 14.81 

3 Year (c) 38.48 16.92 

Journeyman (d) 31.98 13.20 
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Table 5-1: Joint loads averaged by levels of experience, and corresponding one-way ANOVA 

results (Continued) 

Joint loads Experience 
Group Mean Std. dev. F value 

(p value) 
Post Hoc 

Tests 

Right Hip 
(N∙m) 

Novice (a) 153.44 60.80 

25.732 
(0.00*) 

c > a,b,d 
a > d 
b > d 

(Dunnett T3) 

1 Year (b) 158.55 59.88 

3 Year (c) 171.69 67.46 

Journeyman (d) 142.40 59.27 

Left Hip 
(N∙m)	

Novice (a) 165.01 56.52 

30.916 
(0.00*) 

c > a,d 
b > a,d 

(Dunnett T3) 

1 Year (b) 181.46 50.76 

3 Year (c) 177.31 65.53 

Journeyman (d) 154.02 59.92 

Right Knee 
(N∙m) 

Novice (a) 129.51 72.03 

24.99 
(0.00*) 

c > a,d 
a > d 
b > d 

(Dunnett T3) 

1 Year (b) 137.45 65.85 

3 Year (c) 140.83 80.38 

Journeyman (d) 109.44 69.81 

Left Knee 
(N∙m) 

Novice (a) 142.47 75.57 

6.084 
(0.00*) 

c > d 
a > d 
b > d 

(Dunnett T3) 

1 Year (b) 148.03 65.26 

3 Year (c) 143.10 77.33 

Journeyman (d) 131.52 74.06 
* Significant difference (p < 0.05) 

 

Consistent with the literature, this research found that journeymen achieved low joint 

loads and high productivity compared with less experienced apprentices. A more significant 

finding is that the joint load-experience relationship keeps following the inverted-U-shaped 

trend from the pilot study. Higher joint loads in the 1-year and 3-year apprentice groups can be 

matched with those observed in earlier studies. For example, Frost and Andersen (1999) 

reported that the prevalence of upper extremity injuries among workers in jobs that require 

overhead work rose within their first 5 - 8 years on the job, decreased, then rose again after 

spending more than 25 years on the job. These results indicate that the injuries are cumulative, 
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rather than individualistic or discrete incidents, since they appear as an outbreak after 5 - 8 

years on the job. As a result, people who learned to do work safely tend to survive the longest 

without major injuries. 

To investigate the dispersion of the dataset between the pilot study and the current study, 

we measured the normalized standard deviation for the lumbar joint forces, which is defined 

as the standard deviation for each group divided by the mean for all participants (Figure 5-7). 

For all groups, the overall results increased compared to the pilot study. Specifically, novice, 

1-year apprentice and journeyman groups increased by 10%, 3%, and 5%, while 3-year 

apprentice groups showed an increase of 31%. Though the number of participants for each 

group increased approximately two or three times, the dispersion of the experienced lumbar 

compression force is similar, except for the 3-year apprentice groups. These findings also 

indicate that the highest diversity of working methods and motions exist in the 3-year 

apprentice groups.  

 
Figure 5-7: Normalized standard deviation of lumbar compression force comparison by 

courses 

 

The lead wall was configured for the participants who laid CMUs at the 2nd to 6th 

courses, and participants adopted distinctly different postures to complete each course. 

Specifically, laying a CMU at the 2nd course required significant back bending (> 90o), 

resulting in the highest lumbar compression force for all groups. Similarly, all groups 
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experienced the lowest lumbar compression force at the 4th course because, at this course, the 

CMU pick up and lay down heights were between knee and waist height, approximately 80cm 

to 120cm, thereby avoiding excessive back bending.  

Participants used different lift types, namely two-hand, one-hand, and mixed lifts. The 

lumbar compression force of the novice and apprentice groups exceeded the action limit during 

one-handed lifts. The apprentice groups exceeded the action limit during mixed lifts. The 3-

year apprentices' lumbar compression force was always above the action limit, whereas the 

journeymen's lumbar compression force was below the limit regardless of the lift type, as 

shown in Figure 5-4.  

The relationship between lift type and course height were examined (Figure 5-8). It was 

found that journeymen never use one-handed lifts to place a CMU at the 6th course and used 

mixed lifts more frequently than other groups. To place a CMU on the 6th course of the wall, 

participants needed to pick up a CMU near the ground level and lay down the CMU at a height 

of approximately 120cm. This significant height difference may result in excessive joint stress. 

Instead, the journeyman group used their momentum to pick up a CMU from the ground level 

in a one-handed lift and switched to a two-handed lift during the swing phase to increase 

stability and distribute the load on both sides of the body. 
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Figure 5-8: Percentage of each lift type by course for all experience groups 

 

The statistical significance of the differences among the anthropometrics (height and 

weight) of the four experience groups was examined using a one-way ANOVA. A p-value of 

less than 0.05 was considered significant. The results confirm that there were no significant 

differences in height or weight among the groups, as the p-values were 0.182 and 0.805, 

respectively.  Therefore, this data confirms that the variation in joint loads experienced by those 

groups was solely related to their work methods. 
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Regarding the relationship between productivity and levels of experience, journeymen 

achieved considerably higher productivity rates than less experienced groups. For example, 

journeymen had a CMU/min approximately two times higher than novices and were 30% more 

productive than the mid-experience groups. Further investigation was focused on determining 

productivity loss by tracking the working pace to complete each course (Figure 5-6). It was 

found that all novice and apprentice groups decreased their working pace as they progressed 

through the experiment, while journeymen maintained theirs. The productivity analysis 

indicated that journeymen adopted working methods that were not only efficient but also 

minimized the loss of productivity over time. The average completion times for 1-year and 3-

year apprentices were similar, but the decline in productivity was greater among 1-year 

apprentices.  

The recent study that utilized a subset of data of the present study examined the physical 

exertion of the bricklaying process by analyzing jerk values, which measure motor control 

(Zhang et al., 2019a). Journeymen marked the lowest jerk (the derivative of acceleration), 

indicating that they moved with smooth motions and a high degree of motor control while 3-

year apprentices performed the lift tasks with the highest jerk values, indicating inferior motor 

control. Given these findings and the results of the biomechanical and productivity analysis in 

this study together, journeymen adopted working methods that help control their body properly, 

resulting in not only minimizing physical exertion but also maximizing productivity. Mid-

experience groups performed with higher productivity than novices, but their working methods 

were accompanied by higher joint loads and poor motor control. The previous pilot studies 

suggested possible explanations to support these findings: 1) mid-experience groups appeared 

to be in competition with their peers during the experiment; also, 2) they perceived peer-

pressure to reach their seniors' productivity level (Alwasel et al., 2017a, 2017b).  

As skilled craft workers increasingly exit the workforce as a result of a workplace injury 

or aging, the recruitment of inadequately trained workers may cause higher injury statistics. 

Notably, the first baby boomers hit the retirement age in 2011, and industries are thus facing 

worker shortages in the labor force (Statistics Canada, 2011). Baby boomers, aged between 45 

and 54 years of age, were reported to have suffered fewer injuries than their younger 
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counterparts (BLS, 2015). Thus, there is a possibility that there will be an increase in workplace 

injury as more boomers retire. The findings have indicated that journeymen have more 

advanced working methods concerning safety and productivity that can help minimize the 

issues of workplace injury in the construction industry. 

5.4 CONCLUSIONS 

This study evaluated relationships between body loads, levels of experience, and work methods 

of masons. The results of this study have shown that the four experience groups adopted 

different motion patterns resulting in different levels of joint loads while they performed the 

same tasks. The levels of experience are also closely related to production rates. More 

specifically, journeymen and novices experienced relatively lower joint loads than 1-year and 

3-year apprentice groups. The productivity rate tended to increase with more experience. 

Furthermore, it was found that the various experience groups adopted different CMU handling 

methods according to working height, namely one-handed, two-handed, and mixed lifts. 

Overall, these findings have indicated that journeymen adopt safer and more efficient working 

methods that are distinct from those of apprentices. The less-experienced groups had either 

higher joint loads increasing the likelihood of injury, as is the case for 1-year and 3-year 

apprentices, or lower production rates, as is the case for novices. The present study contributes 

to the body of knowledge on masons’ safety and productivity by providing an in-depth 

understanding of the linkage between body loads, work experience, techniques, and 

productivity. Additionally, the findings in this study should inform apprentice-training methods 

and find application in other trades prone to higher risks of musculoskeletal-disorders.  
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CHAPTER 6  
ERGONOMIC EVALUATION OF EXPERT MASONS WORK 

TECHNIQUES5 

6.1 INTRODUCTION 

Masons are aided by tools, processes, equipment, and materials, yet they continue to be subject 

to extreme physical demands. With advances in materials, design, and automation, the overall 

masonry work system may be redesigned to minimize the bodily harm associated with the 

industry. While ergonomic interventions have been introduced, masons are still required to 

perform diverse and hazardous tasks (e.g., placing a block overhead or lifting extremely heavy 

blocks) at the worksite. Less skilled masons exposed to these activities are at a high risk of 

injury and involuntary early retirement.  

Analysis of the extensive motion data collected on masonry work enable us to understand 

the ergonomic risks of masonry tasks. In Chapter 5, the relationship between body joint loads, 

productivity, and work experience of masons was analyzed. It was found that expert masons 

adopted ergonomically safer and more productive work methods than less experienced masons. 

In this context, by analyzing expert masons' performance in different masonry tasks, we can 

identify the experts' knowledge about safer and more productive work methods.  

When workers execute manual tasks (e.g. lift materials), they often select qualitatively 

different movement techniques (e.g. stoop- versus squat lifts) (Park et al. (2005). Alwasel et 

al. (2017b) proposed classifying working postures of masons into expert and inexpert classes 

 
 
5  A part of this chapter is adapted from Ryu, J., McFarland, T., Haas, C., and Abdel-Rahman, E. (2020) 
“Automatic Clustering of Proper Working Posture”. 27th International Workshop on Intelligent Computing in 
Engineering. Berlin, Germany. July 1-3, 2020. http://dx.doi.org/10.14279/depositonce-9977. 
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by applying machine learning techniques to joint location data. They generated a pose 

codebook based on a simplified set of six key-joint locations (C7/T1 disc, hip, right and left 

wrists, and right and left knees) then they identified a set of dominant poses within this 

codebook using k-mean clustering. They achieved the 92.04% of classification accuracy using 

Support Vector Machine classifier and 50 clusters codebook (k = 50). 

These findings suggest that distinctive working postures and motion patterns identified 

from experts' work-techniques can be proactively used in apprentice training to improve the 

ergonomics and productivity of masons. Considering that apprenticeship programs mandate 

includes safety training, employing those work techniques in these programs may prove 

effective in minimizing safety and health hazard.  

This chapter aims to (1) determine whether expert masons' work methods are safe and 

(2) identify the proper postures workers develop as they gain experience to increase safety. 

Specifically, this study evaluates joint loads in seven different masonry activities performed 

by expert masons (journeymen) and report on an automated posture clustering technique that 

applies a learning algorithm to whole-body motion data. 

6.2 ERGONOMIC EVALUATION OF SEVEN MASONRY ACTIVITIES 

Eight journeymen with over twenty years of experience were recruited to perform seven 

common masonry activities at CMDC in Mississauga, Ontario. The average participant was 

179.63 ± 4.78 cm in stature and 90.84 ± 12.03 kg in body mass. The participants utilized three 

sizes of CSA – Type “A” CMUs to complete those activities.  

In the first phase of the experiment, individual masons carried out four activities: laying 

out CMUs to construct (1) a standard wall, (2) a reinforced wall, (3) a wall in a constraint space 

(under a ceiling), and (4) a lead (first) course, in which the masons utilized 20cm hollow CMUs 

weighing 16.6 kg with dimensions of 0.19 x 0.19 x 0.39 m in these activities. In the second 

phase, (5) a wall was constructed by individual masons using heavy (30cm hollow) CMUs 

weighing 23 kg and measuring 0.29 x 0.19 x 0.39 m. The same task was also completed by 
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two masons collaboratively lifting (6) the same 23 kg CMUs and (7) 30cm semi-solid CMUs 

weighing 35.2 kg and measuring 0.29 x 0.19 x 0.39 m. In the first four tasks, participants 

retrieved CMUs from three piles placed approximately one meter away from the lead wall and 

used mixed mortar provided by helpers in two mortar trays between the piles. In the final three 

tasks, the CMUs were placed in one pile approximately one meter away from the lead wall 

with one mortar tray placed next to the pile.  

The journeymen completed all tasks over one day. First, each participant completed a 

standard prebuilt lead wall (activity 1) using 45 standard CMUs, Figure 6-1(a). Upon 

completion, seven units along the top course were removed by study personnel, and 

reinforcements were placed in the cells. The reinforcements were extended approximately 800 

mm above the 5th course, Figure 6-1(b). Participants laid 2 courses, the 6th and 7th, using 15 

CMUs—13 standard and 2 half units— to complete the activity (2). This study, however, 

focused on the handling of the standard CMUs and excluded analysis of the half units. This 

configuration represents the maximum height a mason would be required to perform a lift over 

reinforcement. Following completion, the reinforcements were removed, and a temporary 

ceiling was placed approximately 625 mm above the top of the 7th course, Figure 6-1(c). 

Participants laid courses 8 through 10 using 22 units—20 standard and 2 half units— to 

complete the activity (3). This set-up simulates the final courses of an unreinforced partition 

wall built up to the ceiling. All blocks being laid were above the shoulder/head height. After 

the completion of this activity (3), participants carried out the activity (4) by laying 7 standard 

CMUs to form the first course of a wall, Figure 6-1(d). Between activities, participants had a 

15-minute break while helpers modified the configurations for the next activity. After 

completing the activity (4), the participants had an hour for break time. 

Subsequently, the next phase of the experiment commenced with individual participants 

constructing a wall using 30cm hollow CMUs. The wall contained a steel rods for lead and had 

the lead course completed beforehand, Figure 6-1(e). Similar to the standard wall, participants 

laid units from the 2nd to 6th course. Each participant laid 20 of the 30cm hollow CMUs—15 

full and 5 half units. Subsequently, participants repeated construction of the same wall with 
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30cm hollow and 30cm semi-solid CMUs laid collaboratively, in a two-person lift, Figure 

6-1(f). 

 
Figure 6-1: Experimental configurations: (a) standard wall; (b) reinforced wall; (c) 

constraint wall; (d) first course; (e) one-person lift of 23 kg CMUs; and (f) two-person lifts of 

23 kg & 35.2 kg CMUS 

6.2.1 Results: Standard Weight Blocks 

The first four activities employing standard weight CMUs span wall course heights from 1 to 

10. Figure 6-2 shows the peak lumbar compression forces at each of these activities and courses, 

namely first course (F. 1), standard wall (S. 1-6), reinforced wall (R. 6-7), and constraint wall 

(C. 8-10), averaged over all subjects. The green dashed line represents an action limit (load 

threshold) of 3433 N (NIOSH, 1981). Expert masons were found to maintain the lumbar 

compression forces below the action limit, except when they completed the first course where 

it reaches 3893 N. Further, it was found that the subjects experienced similar or lower 

(a) (b) (c)

(d) (e) (f)
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compression forces in the higher course reinforced and constraint walls than those of the first 

course and standard wall.  

 
Figure 6-2: Average peak lumbar compression force by activity and course 

The average peak of the shoulder, elbow, hip, and knee joint moments for each course 

are shown in Figure 6-3. Shoulder moments were consistently higher than elbow moments and 

both of them increased gradually with course level. In contrast to the upper limb joint moments, 

the lower limb joint (hip and knee) moments remained relatively constant demonstrating no 

correlation with the activities or course levels except that the hips experience elevated joint 

moment in the first two courses. 
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Figure 6-3: Average peak joint moment for the (a) shoulder, (b) elbow, (c) hip, (d) and knee 

joints 

6.2.2 Results: Heavy Weight Blocks 

Figure 6-4 shows the average peak lumbar compression force during lay down of courses 2 to 

6 of a standard wall while employing individual lifts of 20cm hollow and 30cm hollow CMUs 

and collaborative (two-person) lifts of 30cm hollow and 30cm semi-solid CMUs. The subjects 

experienced the highest lumbar compression force (3915.74 N) when they handled individually 

30cm hollow CMUs. This was approximately 14% in excess of the action limit. The difference 

in the lumbar compression force between collaborative lifts of 30cm hollow and semi-solid 

CMUs was small despite a 50% difference in their weight.  
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Figure 6-4: Lumbar compression force for by CMU weight 

Comparing the peak lumbar compression forces averaged by course, Figure 6-5, shows 

that lifting heavier CMUs results in higher lumbar compression forces. It also shows that the 

force variation with course height for individual lifts, both of 20cm and 30cm hollow CMUs, 

were similar. Likewise, the force variation with course height for the collaborative lifts, both 

of 30cm hollow and 30cm semi-solid CMUs, were similar. However, individual force variation 

pattern was different from the collaborative force variation pattern. Moreover, the lumbar 

compression forces during placement of CMUs at the fourth course were below the action limit 

across all three CMU weights and similar to that when placing 20cm hollow CMUs at the 2nd 

course. 
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Figure 6-5: Lumbar compression force averaged by CMU type-lift method and course height 

The shoulder and elbow joint moments increased with course height, Figure 6-6, in all 

lift cases irrespective of CMU type or lift method. In contrast, knee and hip joint moments 

were relatively unaffected by course height. Upper and lower limb joint moments were highest 

for individual lifts of 30cm hollow CMUs regardless of course height.  
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Figure 6-6: Average peak joint moment for the (a) shoulder, (b) elbow, (c) hip, (d) and knee 

joints during individual and collaborative lifts of three CMU weights 
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6.3 AUTOMATED PROPER POSTURE CLUSTERING 

In this analysis, different lifting postures frequently adopted by experts and apprentices were 

investigated using k-mean clustering. The analysis focused on the 45 CMU lifts required to 

complete the standard wall (activity 2). Forty-five masons grouped into experts (journeymen) 

and three apprentice groups (novices with no experience, 1-year and 3-year apprentices), 

participated in this experiment as described in Chapter 3.  

6.3.1 k-means Clustering 

The k-means clustering algorithm was introduced in 1967 by MacQueen (MacQueen, 1967). 

It is one of the most commonly used clustering algorithms for many practical applications 

(Aggarwal & Aggarwal, 2012; Jain et al., 1999; Johnson & Wichern, 2002). The algorithm 

partitions a given set of data into k disjointed clusters around the nearest k means. The value 

of k is fixed in advance (MacQueen, 1967).  

In this study, each CMU lift is composed of a sequence of postures. Since the sampling 

rate was held constant, the number of those postures is dependent on the duration of the lift 

only. For example, a CMU lift lasting 4 seconds consists of a sequence of 500 postures (frames). 

Each posture is represented by a 78-component vector comprising the coordinates of 26 major 

body joints. The posture dataset was categorized into k clusters by minimizing the sum of the 

squared Euclidian distance between the individual postures represented by the locations of 

those joints. The initial center points for the clusters were randomly selected and iteratively 

updated to obtain the final cluster locations (Singh et al., 2013).  

Each cluster has a posture centroid represented by a vector of joint centers. Each bin 

contains the closest, most similar, postures to the centroid posture irrespective of whether they 

belong to experts and apprentices.  



 

 86 

6.3.2 Posture Classification  

The clustered postures were classified as distinctive to experts or apprentices by assessing the 

proportion of expert and apprentice postures present in the population of each bin. Specifically, 

bins were categorized as: 

- ‘Expert-dominated’ where more than 65% of the postures belonged to journeymen. 

- ‘Apprentice-dominated’ where more than 65% of the postures belonged to apprentice 

masons. 

- Otherwise, the bins were labeled as ‘equally represented’. Those clusters indicate 

postures common to human locomotion and trade. 

Furthermore, to enable objective comparison between expert and apprentice-dominated 

postures, each bin was further labelled according to the lift phase where it appears during a 

CMU lift, namely pick up, moving, or lay down. These labels allowed us to deduce how 

different masons perform similar functions. Since most lifts were completed within 3 to 5 

seconds, 360 to 600 frames, the first and last 150 frames were defined as pick up and lay down 

phases, and the frames in between were defined as moving phase.  

6.3.3 Results: Automated Proper Posture Clustering 

Figure 6-7 shows the clusters obtained for k = 50 and the proportion of expert and apprentice 

postures in each cluster. Figure 6-8 shows representative postures for each annotation. Each 

row shows the similar postures among the annotations. Interestingly, expert postures were 

limited to 10 clusters out of all 50 clusters. In contrast, apprentice postures were present in 

most clusters. There were 24 apprentice-dominated clusters and 16 equal representation 

clusters. This finding indicates that expert masons adopt a limited set of simple motions when 

performing repetitive lift tasks. At the same time, apprentices appear to utilize more complex 

and varied lift techniques when carrying out the same tasks. Appendix D summarizes the 5 

representative postures selected from each category.  

Two clusters (5 and 46) were almost exclusively populated by experts and ten clusters 

(3, 10, 15, 19, 25, 32, 39, 40, 47, and 48) were almost exclusively populated by apprentices. 

Sixteen cluster histograms had similar proportions of expert and apprentice postures, for 
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example cluster 11 was populated by 48% of expert and 52% of apprentice postures. These 

results are in accord with our previous conclusion that expert masons adopt a distinctive and 

simple set of work postures and motion pattern different from those of apprentice masons.  

 
Figure 6-7: Posture clusters obtained from k-means clustering 
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Figure 6-8: Examples of postures representing each annotation 

To enable objective comparisons among various postures, this study identified the 

function associated with each cluster based on the frame numbers of postures in its population. 

Figure 6-9 compares the centroid postures of an expert-dominated bin (# 8) to that of an 

apprentice-dominated bin (# 15) belonging to the moving phase. The figure shows two 

projections of each posture in the sagittal and frontal planes. Comparing the postures in the 

sagittal plane, it was found that the expert mason positioned the CMU closer to the centre of 

body mass using smaller back and knee flexion angles. In the frontal plane, it was found that 

the expert maintained better body symmetry than the apprentice mason.  
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Figure 6-9: Comparison of expert-dominated and apprentice dominated postures during 

moving the CMU phase 

6.4 DISCUSSION AND CONCLUSIONS 

Masons are at a high risk of WMSDs and premature retirement due to a lifetime of repetitive 

bodily strain, heavy lifting, and awkward postures. By analyzing the expert performance, in 

terms of body kinematics and biomechanical force levels, during various masonry activities, 

we can formulate guidance for the training of a safer and more productive generation of masons. 

Furthermore, identifying working postures adopted by experts can provide insight into the 

factors underlying safer work methods.  

To achieve these goals, this study first carried out biomechanical analysis of eight expert 

masons during seven masonry activities using three types of CMUs. The study found that the 

most critical body joints were in the lower back and upper limbs (shoulders and elbows). Strain 

to these joints specifically may lead to lower back pain and other injuries requiring days away 

from work or, in severe cases, leading to retirement (Adams 2004).  

The critical joints were dependent on the activity. In standard wall tasks, lumbar 

compression forces were more critical than upper limb joint moments. Assuming safer postures, 
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where masons maintain a straight back and hold the CMU closer to body center, these forces 

remained with the safe (action) limit regardless of course height. In reinforced and constraint 

walls, the shoulder joins were at a higher risk than the lower back. In these activities, masons 

must raise CMUs above their shoulders or over their heads. Maintaining a straight back in 

these activities does not protect the shoulder and elbow joints from absorbing the awkward lift 

strain. Lower limb joints (hips and knees), however, do not appear exposed to risk during these 

activities. The experience similar loads regardless of activity or course height. This is reflected 

by near-constant joint moments between activities and courses, except for individual lifts of 

30cm hollow CMUs where they experienced elevated joint moments. Further analysis reveals 

a constant increase in shoulder moments when heavyweight CMUs (23 kg and 35.2 kg) were 

lifted individually as well as collaboratively.  

The weight of a 30cm hollow CMU (23 kg) is equal to the Recommended Weight Limit 

for a one-person lift established by NIOSH (Waters et al., 1993). However, the average peak 

lumbar compression forces for individual lifts of 30cm hollow CMUs was 15 % higher than 

NIOSH action limit which poses increased risks of lower back pain (Waters et al., 1993). On 

the other hand, the lumbar compression forces resulting from individual lifts of 20cm hollow 

CMUs (16.6 kg) were below the action limit for all course heights. 

Individual lifts of 20cm hollow and 30cm hollow CMUs generated the highest and lowest 

back compression forces during the completion of the 2nd and 4th courses, respectively. The 

height of the 2nd course is 40cm. Placement of CMUs at this height required excessive back 

bending, resulting in significant lumbar compression forces regardless of the CMU weight. On 

the other hand, the height of the 4th course is approximately 80cm, which corresponds to the 

waist level for a 50% male. Participants maintained a straight back posture while slightly 

bending their knees when placing CMUs at the fourth course. This posture enabled them to 

hold even the heavy 30cm hollow CMUs close to the center of the body. As a result, 

participants experienced the lowest lumbar compression force at the 4th course. In fact, the 

lumbar compression force during individual laying of 30cm hollow CMUs at the 4th course 

(3411 N) was below the action limit and similar to the force during laying of 20cm hollow 

CMU at the 2nd course (3298 N). 
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The lumbar compression force trends for collaborative (two-person) lifts of 30cm hollow 

and semi-solid CMUs (23kg and 35.2kg) were similar to each other but dissimilar to those of 

individual lifts. This is expected since body loads are function of body posture and the relative 

position of the CMU with respect to the body. Specifically, in individual lifts participants 

maintained a symmetric posture with respect to the unit. In contrast, in collaborative lifts 

participants frequently showed asymmetric body postures.  

Finally, expert masons used different CMU handling techniques as summarized by the 

percentages shown in Table 6-1. Single-handed lifts were primarily used in the first course of 

a standard wall as they lifted unit from the top of a pile and laid them at the bottom of the wall. 

They were also employed during two-person lifts at all course heights. Expert masons opted 

for two-handed or mixed lifts in higher courses completed individually (including reinforced 

and constraint walls). It is noted that an investigation of the body loads caused by asymmetric 

lifts (e.g., single-handed and mixed lifts) is not included in this chapter but should be 

investigated in future studies. 

Table 6-1: CMU handling techniques 

 

Activity 

Usage (%) 

Single-handed Lift Double-handed Lift Mixed Lift 

First Course 64.81 27.78 7.41 

Standard Wall 8.36 70.47 21.17 

Reinforced Wall 0.00 58.91 41.09 

Constraint Wall 0.00 83.67 16.33 

Individual lift (23kg) 0.00 78.33 21.67 

Collaborative lift (23 kg) 64.71 25.00 10.29 

Collaborative lift (35.2 kg) 56.20 35.54 8.26 

This chapter also introduced an automated posture clustering method proposed to 

identify proper working postures that workers develop as they gain experience. This method 

utilizes whole-body motion data and the k-means clustering algorithm. The motion data was 
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collected from forty-five masons with different experience levels while they carried out an 

indoor masonry task, namely completing a lead wall using 20cm hollow CMUs.  

The results show that the proposed method can automatically cluster the most frequent 

working postures among two experience groups: expert and apprentice. Expert-dominated and 

apprentice-dominated postures were determined by evaluating the population belonging to the 

two groups in each cluster. Identifying the lift phase where each cluster appears, based on the 

frame numbers of the postures it contains, enabled objective comparison among clusters 

corresponding to the same function. This is a significant advantage over manual observation 

work assessment, commonly used at worksites, where it is almost impossible to accurately 

obtain and compare postures occurring during continuous body motion. Furthermore, 

visualization of the clustered postures allows for an intuitive understanding of the differences 

between ‘good’ and ‘bad’ postures undertaken to carry out the same function. A sample of 

training literature, a Safe Posture poster, was developed based on comparison of the expert-

dominated and apprentice-dominated frequent postures (Appendix E). The poster was 

delivered to the research partner (CMDC) for use in training.  

The methods and results proposed in this chapter provide important insights into expert 

masons' distinctive work techniques through ergonomic evaluation of various masonry tasks 

and automated clustering of working postures. In particular, these findings suggest a 

configuration of optimized working height to minimize musculoskeletal stress. Although 30cm 

hollow CMU is 40% more in weight and volume than standard CMUs, they result in joint loads 

similar to standard CMUs when placed individually at the 4th course height (waist). Therefore, 

it is proposed that the optimal working height for tasks involving CMU handling is at the waist 

level. In summation, identification of proper postures adopted by experts has clear potential to 

serve as a straightforward method to provide apprentice workers with training techniques and 

training materials.  
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CHAPTER 7  
A METHODOLOGY TO EVALUATE THE IMPACT OF SEMI-

AUTOMATED WORK SYSTEMS IN CONSTRUCTION6 

7.1 INTRODUCTION 

Despite being one of the oldest industries, the level of automation and robotics in the 

construction industry has only begun to advance in the past few decades, lagging behind other 

industries such as automotive and manufacturing (Balaguer & Abderrahim, 2008; Bock, 2015; 

Hasegawa, 2006). Furthermore, continuous changes in construction sites demand manual 

intervention by laborers, which is a concern due to the high number of injuries and WMSDs 

associated with the trades (Everett & Slocum, 1994). Therefore, flexibility of semi-automated 

work system, where operators work in conjunction with machines and robots, is an attractive 

alternative. 

In this chapter, semi-automated work systems are defined as an equipment which 

automates a component of a task and is designed to be used in conjunction with manual laborers 

to complete the task, with a focus on force-assist systems. This study targets the 

implementation and integration of semi-automated systems with traditional working processes. 

Previous methodologies have been proposed to assess the value of integrating new work 

systems into traditional systems in a construction context. Those methodologies focused on 

either project-level evaluation of full automation (Paulson Jr, 1985; Slocum, 1986) or were 

limited to worker productivity (Grau et al., 2009; Zhai et al., 2009). This work proposes a 

 
 
6 This chapter is adapted from Ryu, J., McFarland, T., Banting, B., Haas, C., and Abdel-Rahman, E. (2020) 
“Health and Productivity Impact of Semi-Automated Work Systems in Construction”. Automation in 
Construction. 120, 103396. https://doi.org/10.1016/j.autcon.2020.103396. 
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systematic and objective methodology to assess the value of semi-automated work systems in 

a construction context, where value is assessed in terms of both reduction in risk exposure to 

MSDs and improvements in productivity. A broader and more complete assessment of value 

prior to implementing such a system would also include analysis of: (1) net present value, (2) 

safety impact, (3) morale impact, (4) quality effects, (5) competitiveness impacts, and (6) 

process changers required. Validation of this methodology is demonstrated through an 

experimental evaluation of a force-assist self-leveling pallet in a masonry task. 

7.2 METHODOLOGY 

The flowchart of the methodology to evaluate semi-automated work systems is outlined in 

Figure 7-1. The general steps of the methodology involve the following components: the 

identification of at-risk tasks within the job; a quantitative assessment of biomechanical 

demands and productivity; a proposal of semi-automated work systems and their integration 

into current work processes; experimental evaluation of the proposed equipment; and a final 

implementation decision and plan. Expanding the system boundaries of this type of evaluation 

is possible by carefully aggregating the basic health and productivity elements of the 

methodology in a way that accounts for all tasks and activities within the bounded system. An 

early perspective on this was published by Skibniewski (1988). 
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Figure 7-1: Flowchart of methodology to evaluate semi-automated work systems  

 

7.2.1 Identify At-Risk Tasks or Activities 

The first step is to identify which tasks should be prioritized for the introduction of automation 

in the workplace. The presence of risk factors such as force, repetition, duration, awkward 
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posture, contact stress or vibration, can point to at-risk tasks (Kumar, 2001; Wang et al., 2015). 

Furthermore, reported occupational injury data (e.g., the incidence rate of nonfatal 

occupational injury and illness cases reported by the U.S. Bureau of Labor Statistics) may 

indicate high-risk areas for MSDs. Lastly, critical bottlenecks that affect productivity are also 

areas where automation can be introduced. Production bottlenecks may be caused by 

undesirable ergonomic standpoints (Dempsey, 2007), therefore, the introduction of automation 

has the potential to mitigate the adverse effects that impact health and productivity concurrently. 

 

7.2.2 Objective Assessments 

The current biomechanical demands and productivity of the chosen task need to be assessed 

to: (1) determine the parts of each task which may pose a hazard, and (2) provide valuable 

baseline data for later comparative analysis (Step 4: Experimental evaluation). Quantitative 

measurements enable the creation of objective benchmarks by which variables of critical 

importance to management are established and the performance of the semi-automated work 

system is evaluated.  

7.2.2.1 Types of Assessment 

To evaluate biomechanical exposures in the field of construction, practitioners and researchers 

have developed different assessment methods and tools. The approaches can be divided into 

four groups according to the data measurement techniques: self-reports, observational 

assessments, direct measurements (Li & Buckle, 1999), and simulation-based methods. In 

addition, due to several benefits—such as low-cost and its ease of use—both self-reports (e.g., 

checklists and diaries) and observational assessments (e.g., direct observation through 

ergonomic experts) are widely used in most worksites (David, 2005). However, self-reports 

can be subjective and unreliable (Plantard et al., 2015) while observational assessments can be 

prone to inaccuracies and inconsistencies due to human error and missing information (Valero 

et al., 2016).  
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Simulation-based methods can also be used to evaluate task demands such as joint loads 

and internal forces without directly measuring a worker. In simulation-based methods, a digital 

human model can be incorporated into a virtually reconstructed environment to estimate the 

biomechanical loads that an operator might face during a prescribed task (Golabchi et al., 2015; 

Jayaram et al., 2006). This is useful for evaluating the potential impacts of workplace redesign 

without the costs and time for changing the physical environment. However, the accuracy of 

the simulation can vary according to the accuracy of inputs and the assumptions made by the 

model. Furthermore, humans have large variability in movement decisions and simulations 

cannot always accurately predict the way an individual may move in a complex environment 

or task (Reed et al., 2006). An example of this is showcased in a study carried out by Alwasel 

et al. (2017a, 2017b), in which they found that expert masons moved in significantly different 

ways than apprentice masons while performing the same task (e.g., building a concrete 

masonry block wall). Consequently, experienced masons suffer fewer joint loads and injury 

risks than the apprentices as they have fewer wasted motions, which also leads to higher 

productivity than apprentice masons (Alwasel et al., 2017b). Therefore, direct measurements 

may facilitate the capture of more detailed and nuanced information with respect to the real 

scenario, whereas a simulation may disregard these crucial elements. 

7.2.2.2 Types of Data 

The quantification of injury risk is a complex challenge due to the many factors which 

influence injury, such as individual traits (e.g., genetics, morphology, and psychosocial factors), 

biomechanical risk factors (e.g., force, repetition, duration, and posture), and the integration of 

these factors acting on the tissues of the body (Kumar, 2001). Since individual risk factors will 

vary between workers, the best estimate of occupational demands stems from analysis of 

biomechanical exposures, namely force, posture and time (i.e. repetition or duration). While 

repetition and external loads can be easily measured, internal demands (e.g. joint forces or 

muscle contractions) and postures are harder to quantify without the appropriate tools. Injury 

rates are typically easier to track and have a direct relationship with worker compensation. 

However, they are less useful for collecting data on the immediate impact of the intervention, 

raise research ethics issues, and may not be sensitive enough to evaluate smaller task changes. 
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They are, therefore, not recommended for this methodology. Expected quantitative data 

collection and analysis is preferable. Quantitative data collection methods include the direct 

measurement of forces, body motions (kinematic data), and muscle activity.  

7.2.2.3 Evaluation 

Quantitative and objective evaluation is required to assess the value of a semi-automation work 

system(s) into the current process. Biomechanical analysis can be an effective solution, 

because it estimates a quantitative load on the body segments (e.g., inertial forces and moments) 

using a 2D or a 3D biomechanical model (Radwin et al., 2001). Furthermore, several loading 

thresholds exist to evaluate the risk of MSDs, such as the action limit for lower back 

compression force defined by the NIOSH (Waters et al., 1993). In terms of productivity, the 

best measure of productivity will vary by construction discipline and be unique to both the job 

site and its management values. Nevertheless, quantitative productivity measures will often 

take the form of either completion rates (labor productivity) or task completion times, since 

this information can be included in broader analysis of the business value proposition 

represented by substituting a semi-automated work system for a manual system.  

7.2.3 Propose Semi-Automated Work System 

After the initial assessment and evaluation of the at-risk tasks, stakeholders should propose 

potential semi-automated work systems to reduce or eliminate the risk factors identified in the 

previous steps. Low-impact and cost-effective solutions should be prioritized. Once a potential 

intervention(s) has been selected it will be necessary to determine the optimal integration 

method into the current work processes. To achieve this, work layout, procedures, and steps 

should be considered.  

7.2.4 Experimental Evaluation 

During this portion of the methodology, the original work task should be re-evaluated with the 

semi-automated work system integrated into the work process. Except for the activity that has 

been replaced by the introduction of the semi-automatic system, all processes should be under 

the same condition as the original work tasks. Then, the same biomechanical and productivity 
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analysis performed at the baseline should be repeated and compared to evaluate the impact of 

the intervention. 

7.2.5 Implementation Design and Plan 

The value and effectiveness of the semi-automated work system(s) should be determined and 

compared against alternative solutions based on the impact of biomechanical demands and 

productivity. Management should make a final decision on whether the system fits their needs 

and budget, among other factors. Skibniewski (1988) suggested that the final implementation 

decision for the employment of robotics in construction should be based upon the consideration 

of a wide number of elements such as the type of future projects and location, labor costs, 

availability and projections, market volume estimations, tax advantages, and other preferences 

to determine the desirability of the robot (Skibniewski, 1988). 

Where management decides not to implement the work system, alternative solutions 

should be explored, and the process can be repeated from Step 3: Propose semi-automation 

work system(s) until an acceptable solution has been found. Once management decides to 

move forward with a solution, a comprehensive implementation plan should be formulated. 

The implementation plan should be specific and systematic and include the following 

components: policy changes (where applicable), maintenance guidelines, appropriate training 

of both management and workers, effective communication and knowledge dissemination, 

adequate time and resources, and management support and commitment (van Eerd et al., 2010; 

Yazdani & Wells, 2018) 

Worker participation is implicated in Step 1: Identify at-risk tasks or activities; Step 3: 

Propose semi-automated work systems; Step 4.1: Evaluate semi-automated work systems; and 

Step 5: Implementation decision & plan of the proposed methodology. A systematic review of 

participatory ergonomic (PE) interventions, in which worker participation is involved heavily 

in the evaluation, problem-solving and decision-making process of ergonomic improvements, 

found partial to moderate evidence that PE interventions were successful in reducing MSD 

symptoms, injuries, compensation claims and lost work days (Rivilis et al., 2008; van Eerd et 

al., 2010). Worker participation and feedback are also noted by several studies as critical in 
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increasing the effectiveness of MSD interventions (Hess et al., 2004; Selby, 1992; Yazdani & 

Wells, 2018). Worker feedback provides an important insight into the practical implementation 

of the proposed work system through its usability and compatibility with current work 

processes, which will influence the adoption of the work system by workers and its consequent 

successfulness. 

7.3 VALIDATION OF THE METHODOLOGY 

To experimentally validate the proposed methodology, masonry tasks and biomechanical 

analysis were selected as the methods for the identification of at-risk tasks and quantitative 

assessment respectively. The study protocols were approved by the Research Ethics Committee 

at the University of Waterloo. In this case, a self-leveling pallet was used both for force 

assistance and improved positioning while building a standard wall out of 20cm CMUs. 

7.3.1 Propose Semi-Automated Work System 

Masons spend up to 53% of their working time in a bending posture to pick and place materials 

at ground or knee levels (Boschman et al., 2012). In Chapters 5 and 6, it was found that picking 

up and laying down CMUs at heights between 80cm and 120cm was optimal, avoiding 

excessive back bending and resulting in the lowest lumbar compression force. Therefore, to 

reduce lifting demands on the operator, particularly to avoid picking up CMUs at or below 

knee level, while building a standard wall, a self-leveling pallet was proposed as an 

intervention. The self-leveling pallet is an automatic load leveler that uses a mechanical spring 

system to adjust its height based on the weight of the materials placed on the pallet, allowing 

the pick-up height of the CMUs to remain at waist height as the number of CMUs, and 

consequently the weight of the load, decreases. 

In this study, the self-leveling pallet—manufactured by Southworth Products Corp. 

(Southworth, Portland, USA)—had a 2041.17 kg (4500 lb.) load capacity with a rotating 

platform measuring 1.11 m in diameter (Figure 7-2). The self-levelling pallet had a fully 

automatic, spring-actuated mechanism calibrated to a height range between 29.5cm (fully 
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loaded) and 70.5cm (unloaded). As safety features, it also includes bellow skirting, which 

wraps around the entire unit to keep the area under the pallet free of debris, and a sold disc 

cover on top. The goal of this equipment was to reduce the height and reach distance while 

unloading CMUs from the pallet, thereby reducing the arm movement and movement of the 

lower back as well as reducing wasted motions during lifting to reduce task completion time.  

 
Figure 7-2: Self-leveling pallet utilized in the experiment (Southworth, Portland, USA) 

7.3.2 Experimental Evaluation 

7.3.2.1 Evaluate Semi-Automated Work System 

A controlled experiment was conducted to objectively evaluate the performance of the 

proposed semi-automated work system. Thirteen healthy male masons (aged 26.4 ± 6 years, 

stature 181.0 ± 4.7 cm, total body mass 88.5 ± 12.1 kg) were recruited from the Ontario 

Masonry Training Centre (Mississauga, Ontario). Ten of the participants were apprentices with 

1 year of masonry experience, while three of the participants were apprentices with 3 years of 

masonry experience. 

7.3.2.1.1 Protocol 
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The study was comprised of control wall sessions and self-levelling pallet sessions. 

Participants took part in one session per day. In day one, they were randomly assigned to either 

the control wall session or the self-leveling pallet session. In day two, they completed 

whichever session they had not yet completed. This randomization was meant to minimize the 

impact of a learning curve on the results.  Each participant was instructed to complete a pre-

built lead wall, which is described in the Chapter 3, Research Methods. 

During the control wall construction session, the materials were arranged to simulate a 

typical job site set up (Figure 7-3, left). In the self-leveling pallet construction session, the 

CMUs were placed on a self-leveling pallet approximately one meter from the lead wall and 

the two mortar boards were placed beside the self-leveling pallet (Figure 7-3, right). During 

the self-leveling pallet construction session, CMUs were stacked on the self-leveling pallet in 

stacks of 3 layers of 16 CMUs each.  

 
Figure 7-3: Layout of the experimental setup: conventional workspace (left) and semi-

automated workspace (right) 

 

The initial CMU pick-up height in the control wall construction session was 76 cm for 

each pile, Figure 7-4 (a). Participants picked up CMUs at lower levels as they proceeded with 

the experiment to a minimum of 19 cm for the bottom layer. In the self-leveling pallet 
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construction session, pick-up heights for each layer moved between 105 cm, 97 cm, and 90 cm 

in sequence, which were shown in Figure 7-4 (b), (c), and (d). 

 
Figure 7-4: Pick-up height of the CMUs (a) resting on a pile on the floor, (b) on top of the 

self-leveling pallet stacked 3 blocks, (c) 2 blocks, (d) and 1 block high 

7.3.2.2 Evaluate Impact on Biomechanical Demand 

Peak lumbar compression force at the L4/L5 disc level was the primary focus in this study due 

to the direct representation of the physical demands on the back. In this section, peak lumbar 

compression force was compared during the 1) lifting and 2) pick-up phase.  

Figure 7-5 shows the average peak lumbar compression force, at pick-up and during the 

lift, for all 13 participants. While using the self-leveling pallet, the overall average peak lumbar 

compression force was reduced by approximately 20% during the lifting phase, and 40% at 

pick-up. NIOSH defines the action limit (3433 N) as the threshold below which 99% of male 

workers and 75% of female workers have the strength capability to perform the task with 

nominal risk (NIOSH, 1981; Waters et al., 1993). While completing the task manually (without 

the self-leveling pallet), participants were exposed to lumbar compression forces close to the 

action limit during lifting. However, significantly lower lumbar compression forces were found 

when using the self-leveling pallet both during lifting and at pick-up. Notably, participants 

97 cm
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90 cm

76 cm

(d)(c)
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were only exposed to lumbar compression forces that were ~50% of the action limit during the 

pick-up phase with the self-levelling pallet. It was determined that the differences in lumbar 

compression forces between the two work conditions were significant by conducting an 

independent sample t-test (p < 0.05). 

 
Figure 7-5: Peak lumbar compression force (N) during lifting and at pick-up with and 

without the self-leveling pallet  

  

To complete the pre-built lead wall, participants laid CMUs from the 2nd to the 6th 

course; therefore, their working postures varied according to course height. Specifically, 

participants bent their back significantly more to place a CMU at the 2nd course than they did 

to place it at the 6th course. Figure 7-6 shows the peak lumbar compression forces during the 

lifting phase by course height. Due to significant differences in trunk flexion according to 

course height, participants experienced the highest lumber compression at the 2nd course for 

both conditions (with and without the self-levelling pallet). However, lumbar compression 

forces decreased with progressive course heights for participants while using the self-leveling 
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pallet. Particularly, the peak lumbar compression force at the sixth course is 37.9% lower 

compared to forces experienced at the 2nd course and 38.5% lower compared to the control 

wall at the sixth course. 

 
Figure 7-6: Averaged peak lumbar compression force (N) during whole lift for the control 

wall and the self-leveling pallet by course 

  

The difference in lumbar load due to the presence or absence of the self-leveling pallet 

was most significant during the CMU pick-up phase of the “lift”. Figure 7-7 compares lumbar 

compression forces by course at pick-up only. In the control wall construction session, the 

CMUs were picked up from a decreasing height as participants removed CMUs from the 

stacked piles to complete the wall. As a result, the lumbar compression force increased as they 

worked on higher courses. On the contrary, with the use of the self-levelling pallet, participants 

were able to maintain similar CMU pick-up height regardless of the course of the wall, so their 

lumbar loads remained consistent throughout.  
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Figure 7-7: Averaged peak lumbar compression force (N) during pick-up phase for the 

control wall and the self-leveling pallet wall by course 

Significant posture variations were observed during the pick-up phase of the CMUs. 

Figure 7-8 shows the postural differences when a participant picked up a CMU manually (left) 

and with the self-leveling pallet (right). To examine significant differences of postures 

occurring between the use and non-use of the self-leveling pallet, an independent sample t-test 

was conducted. Mean body joint angle (trunk, right and left shoulder, right and left knee), its 

standard deviation, t and p values are listed in Table 7-1 (p <0.05). Significant differences were 

found for all five joint angles between the use and non-use of the self-leveling pallet. Both 

mean and standard devotion of all five joint angles were lower when using the self-leveling 

pallet than when using traditional methods. One interesting finding is that the mean and 

standard deviation of trunk angle without using the self-leveling pallet were approximately 

seven- and ten times larger than the angles using a pallet, respectively. These results indicated 

that participants can create safer posture patterns at the pick-up phase with the self-leveling 

pallet. 
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Figure 7-8: Postural differences: picking up a CMU manually (left) and with the self-

leveling pallet (right) 

 

Table 7-1: Mean and standard deviation of joint angles in the sagittal plane at pick-up with 

and without the self-levelling pallet (significant p-values denoted in bold)  

Joint Group Mean Std. Dev. t-value p-value 

Trunk 
Control wall 54.35 41.75 

25.22 0.00* 
Self-leveling pallet 8.06 4.92 

Right Shoulder 
Control wall 59.14 36.91 

15.38 0.00* 
Self-leveling pallet 23.69 36.58 

Left Shoulder 
Control wall 53.58 25.06 

19.31 0.00* 
Self-leveling pallet 24.21 23.38 

Right Knee 
Control wall 26.15 12.90 

16.08 0.00* 
Self-leveling pallet 14.90 9.24 

Left Knee 
Control wall 28.43 12.95 

12.35 0.00* 
Self-leveling pallet 19.19 10.88 

* Significant difference (p < 0.05) 
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7.3.2.3 Evaluation Impact on Productivity 

In both experimental sessions, participants completed the lead walls with the same number of 

CMUs. On average, the completion time with the self-leveling pallet was 10% faster than 

without the pallet. Specifically, eleven out of thirteen participants completed the self-leveling 

pallet construction session at a similar duration or faster than the control wall. Since the self-

leveling pallet directly affected a participant's CMU lifts rather than other actions, such as 

spreading mortar, it was compared the time to complete a lift in both conditions. With the self-

leveling pallet, participants were able to complete lift motion approximately 22% faster than 

the original work condition (Figure 7-9). The result indicates that participants moved CMUs 

with concise motions and paths resulting in shorter completion times.  

 
Figure 7-9: Average time to complete a CMU lift by participant 
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7.3.3 Implementation Decision & Plan 

The results of the comparative evaluations show that the self-leveling pallet has great value 

and effectiveness in terms of reducing biomechanical demands and increasing labor 

productivity. Specifically, the intervention eliminated excessive back bending postures when 

masons picked up a CMU, resulting in significantly reduced lumbar compression forces over 

course heights and significant overall average load reductions. Moreover, the self-leveling 

pallet helped participants to accelerate their work process (10% increased overall productivity 

and 22% faster lift completion time) safely. 

Due to the cost-driven nature of the industry, demonstration of the economic value of the 

work system is critical for management consideration. For the cost-justification of ergonomic 

intervention, the potential impact on injury risks must be considered with regard to costs and 

productivity measures. For example, the National Safety Council reported that the average total 

incurred medical costs per injuries to the lower back for the years 2016-2017 was $17,583 

(National Safety Council, 2017). In addition to the medical expenses, indirect costs (e.g., time 

loss on the day of injuries and reduced output of replacement employee(s)) can also be incurred, 

estimated at four times the direct cost in the U.S. (MacLeod, 1994). Connecting with the 

current study, the self-leveling pallet effectively reduced risk factors related to lower back 

injuries (i.e., excessive back bending). Furthermore, productivity increased. As a result, 

significant financial benefits, can be expected from the implementation of the semi-automated 

work system. The data from the comparative analysis can be used to evaluate the expenses 

associated with the intervention (e.g. training, maintenance, purchase costs etc.) with cost-

savings from increased productivity, reduction in injuries, workers' compensation, turnover 

and training costs to estimate the payback period and help support the case for adoption of the 

semi-automated work system (Oxenburgh, 1997). Factors identified in the introduction would 

also need to be considered in the overall business value proposition.  

According to the participant's feedback, mortar boards should be placed at a height 

similar to the self-leveling pallet. Due to the lower height of the mortar boards than the pallet, 

participants had to slightly bend their back to get mortar on their trowel and apply it to the 

CMU. In addition, while the control workstation had three CMU piles, the semi-automated 
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work system had only one self-leveling pallet in the center of the workstation, so the 

participants were required to follow a longer path to place CMUs at the end of each course of 

the lead wall. Replacement with a wider rotating cover-top of the self-leveling pallet or 

placement of additional pallets could be a complementary addition. Therefore, a final 

implementation decision and plan should consider this feedback. 

7.4 DISCUSSION AND CONCLUSIONS 

This study presented a methodology to evaluate the impact of semi-automated work systems 

on health and productivity in the construction industry. The proposed methodology integrates 

wearable motion capture suits and analytical tools in the assessment of masonry tasks. The 

methodology was implemented to assess the use of a self-leveling pallet in masonry tasks. 

Thirteen participants completed a standard wall using 45 CMUs under two conditions: 

traditional and semi-automated workstations. Biomechanical and productivity analyses were 

carried out to assess and compare the participants' lumbar compression forces and productivity 

in each experimental condition.   

The current study has shown that the proposed methodology provided an objective 

evaluation of semi-automation showing a 40% reduction in lumbar compression force and 22% 

increase in lift motion speed. Labor productivity was improved by 10%. Therefore, it offered 

a quantitative evaluation of the semi-automated work system's contribution to reducing 

exposure to MSD risk factors associated with lower back injuries and increasing CMU pickup 

speed. This evaluation process also provides much of the quantitative basis necessary to carry 

out an objective cost-benefit analysis to estimate the potential financial benefits of ergonomic 

interventions (Goggins et al., 2008; Oxenburgh, 1997).  

The adoption of full automation in construction is an active area of research. Particularly, 

in masonry, bricklaying robots, SAM 100 (Construction Robotics) and In-situ-Fabricator 

(Giftthaler et al., 2017), are currently being introduced. Such masonry automation promises 

improvements of masons' health and productivity by taking over physically demanding and 
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repetitive tasks. Full automation is still challenging in many situations because of limitations 

such as intrinsic dynamic changes in worksites, the need for continued worker interventions, 

and regulations. Therefore, until construction sites are fully automated, collaboration among 

robots, machines and workers is inevitable. As such, semi-automation is a feasible alternative 

for the foreseeable future. In fact, a recent surge in the popularity of exoskeletons has 

introduced this technology to the construction industry, such as robotic exoskeletons (FRACO) 

designed to augment masons' physical capabilities. As the popularity of these systems grow 

and they are adopted onto worksites, management increasingly needs resources to 

systematically evaluate their impact on health and productivity. Consequently, the methods 

proposed in this study play an important role in bridging the gap between traditional and fully 

automated work systems. 

The proposed methodology can also be integrated into broader continuous improvement 

frameworks within organizations, such as MSD prevention programs, occupational health and 

safety frameworks and integrated management systems, which follow a common framework 

for continuous improvement e.g. Deming's Plan-Do-Check-Act cycle (Deming, 1951, 1986; 

Moen & Norman, 2006; Yazdani et al., 2015). This allows the evaluation process to integrate 

seamlessly into previously established internal organizational tools. The compatibility of this 

methodology with existing processes increases its value and applicability as a pathway for 

management to undertake health risk reduction activities while promoting a continuous 

improvement model for MSD prevention and productivity enhancement.  

The proposed methodology emphasizes the importance of evaluating not only 

productivity increments incurred from the implementation of a semi-automated work system, 

but also the impact on workers' physical exposures as an equally important component. Often, 

ergonomic principles are neglected in workplace design or the planning phase of new projects, 

such as the installation of semi-automated work systems, due to a lack of consideration or a 

deficit in knowledge (Broberg, 2007; Jensen, 2002; Skepper et al., 2000). The introduction of 

robotics and automation into a workplace may introduce new risks, if human factors and 

ergonomics principles are not integrated in the design, work processes, and operation and 

maintenance requirements (Helander, 1990). This methodology presents a proactive approach 
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to the evaluation of both health and productivity of semi-automated work systems, which fill 

this deficit. 
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CHAPTER 8  
CONCLUSIONS 

8.1 SUMMARY AND CONTRIBUTIONS 

This research effort started with an overarching goal to identify opportunities for human-

centric advanced work systems that can  

1) objectively and simultaneously evaluate ergonomic risk levels and productivity in 

construction tasks involving heavy material handling,  

2) effectively identify safe and productive working postures and techniques that workers 

develop as they gain experience, and  

3) evaluate the impact of new, semi-automated work systems on health and productivity in a 

construction context.  

Considering this goal, the principal findings of this research effort can be summarized in the 

context of the four specific objectives outlined in Chapter 1:  

Objective 1: Investigate comprehensive methods for WMSD assessment that can 

objectively evaluate risk levels in construction tasks involving heavy material handling. 

Chapter 4 investigated the applicability of three rule-based assessment system (RULA, REBA, 

and OWAS) to a bricklaying task. An automated assessment tool to implement those systems 

on whole-body motion datasets consisting of static postures. Using this tool, risk levels 

encountered by 43 masons during laying of 16.6 kg standard CMUs in a wall were assessed. 

Biomechanical analysis of the same datasets was carried out and utilized as ground truth to 

evaluate their results. It was found that rule-based assessments may lead to erroneously inflated 

risk scores in heavy manual handling tasks. In contrast, biomechanical analysis provided 

sensitive risk evaluations able to distinguish the different degrees of risk arising from different 

motion patterns while participants performed the same tasks. These findings suggest using 
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automated biomechanical analysis as an objective and robust method to evaluate risks 

encountered in tasks involving heavy material handling. 

Objective 2: Analyze the relationship between body loads, experience, and work methods. 

Chapter 5 carried out a combined biomechanical-productivity analysis to determine the loads 

experienced by major body joints. Exploiting the motion datasets of 66 masons with various 

work experiences, this study assessed how different experience groups load their joints and 

adjust their work techniques as the work height changes. The results show that experienced 

journeymen with more than 20 years of experience adopt similar work techniques distinct from 

those of less experienced workers. Specifically, those work techniques were more productive 

and safer, suggesting their adoption in apprentice training to reduce the prevalence of 

occupational injuries and to improve productivity. This study contributes to the body of 

knowledge on masons' safety and productivity by providing an in-depth understanding of the 

linkage between body loads, work experience, techniques, and productivity. Additionally, the 

findings of this study are expected to have a greater impact when they are adopted to 

apprentice-training methods and applied to other trades exposed to high musculoskeletal-

disorders-risks. 

Objective 3: Identify the proper working postures and techniques that workers develop 

as they gain experience to increase safety and productivity. Chapter 6 investigated the 

expert masons' work methods in carrying out seven masonry activities to determine the 

associated risks. Further, the study identified proper working postures adopted by experts using 

a joint location-based clustering algorithm. The results provided insights into expert masons' 

distinctive work techniques through ergonomic evaluation for various masonry tasks and 

automated clustering of working postures. Particularly, it was found that an optimized work 

configuration (working height for picking up and laying down material) can minimize 

musculoskeletal risk. Specifically, it was found that the optimal working height for CMU 

handling is at the waist level. Furthermore, automatic proper posture clustering provides 

significant advantages over manual observation work assessment. It also provides an intuitive 

understanding of the differences between ‘good’ and ‘bad’ postures undertaken to carry out 
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similar block handling tasks. These findings would open the door not only to redesign masonry 

work systems for a safer generation of masons but also to provide apprentice-level workers 

with easy-to-understand training materials. 

Objective 4: Develop a systematic and objective methodology to assess the value of semi-

automated work systems in a construction context. Chapter 7 proposed a systematic and 

objective methodology to assess the value of a semi-automated work system in a construction 

context, as it pertains to reduced exposure to musculoskeletal disorder risks and productivity 

improvements. The flexibility semi-automated work systems offer is attractive. However, it is 

critical to estimate the anticipated effectiveness of these interventions before integrating them 

into current work processes. The proposed methodology was validated through an 

experimental evaluation of a force-assist self-leveling pallet in a masonry task. It provides an 

objective evaluation of impact on the task showing 40% reduction in joint loads and 10% 

increase in productivity. The methodology emphasized the importance of simultaneous 

evaluation of the semi-automated work system’s impact on workers' physical exposure and 

productivity. Additional assessments are also suggested for a complete analysis of efficacy. 

8.2 LIMITATIONS AND FUTURE RESEARCH DIRECTIONS 

Motion data-driven work assessment systems will help tradesmen work better, faster, and safer. 

This will have direct impacts not only on maintaining health and improving workers' well-

being but also on preventing WMSD risk factors and enhancing productivity. However, many 

methodological and technical challenges remain which still warrant further attention in future 

research efforts. Certain limitations of this research are discussed, particularly in the context 

of directions for future research. 

1. Task Type: The scope of this study was limited to the investigation of ergonomic risk 

levels and productivity for masonry tasks that involve lifting of CMUs. Although these 

tasks are integral to masonry work, other types of masonry tasks were excluded from 

this study, could also negatively affect masons in terms of health and productivity, e.g., 
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mixing and spreading of mortar, handling of bricks etc. Future studies should assess 

the ergonomic risks of these tasks. Moreover, given that ergonomic risks are commonly 

encountered in other construction activities and other trades, the research methods 

introduced in this thesis have the potential to expand their scope to other construction 

subsectors (e.g., concrete, carpentry, plumbing, and roofing) as well as other industries 

(e.g., manufacturing and automation). 

2. Task Duration: In this study, risk evaluation was conducted on the most critical 

postures because the peak joint load is closely correlated to musculoskeletal injuries 

(Village et al., 2005; Norman et al, 1998). However, other studies have found that it 

was necessary to consider cumulative joint loads where critical loads were maintained 

over extended periods of time (Norman et al, 1998; Kumar 1990, 2001). Therefore, 

further research should investigate the cumulative joint loads in assessing risk levels 

for tasks where critical loads are maintained over several seconds or more. 

3. Static Analysis: This research only considered static postures in assessing risk levels. 

Specifically, static biomechanical loads were evaluated using 3DSSPP. It did not 

account for inertial forces caused by accelerations of body segments and CMUs. 

Dynamic biomechanical analysis, which accounts for those inertial forces, can draw 

out additional loads imposed by the motion patterns of a given task. Further studies 

applying dynamic estimates of joint loads could help to enhance the understanding of 

how movements affect joint loads, better account for the load thresholds (e.g., action 

limit and maximum permissible limits defined by NIOSH), and study energy 

expenditure patterns. 

4. Training System: Traditional apprenticeship programs do not provide sufficient 

feedback on postures and motions to inform the trainees' functional adaption as they 

gain skill in their trade. In other fields (e.g., athletics), novices are encouraged to learn 

the intricacies of effective movement techniques through professional instruction. One 

such example is golfer learning an effective swing. Using professional feedback, novice 

golfers learn and practice the proper form for a safe and effective swing. Additionally, 
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through this practice, they learn to avoid countless forms of improper swings which 

may be inefficient or harmful. Therefore, as an extension of the proper working posture 

identification methods introduced in chapter 6, further studies are needed on how 

apprentices may learn and practice proper working techniques to intuitively understand 

how to move safely and efficiently. 

5. On-site Risk Monitoring Tool: Wearable motion capture system presents an 

unprecedented opportunity for real-time assessment and feedback about workers' 

exposure to biomechanical risk to trainers, supervisors or managers. However, the 

analysis methods utilized in this thesis required a significant amount of time and effort 

to go through multiple data processing steps in order to provide evaluation results. This 

is a limitation in monitoring ergonomic risks at the worksite. Therefore, research is 

needed to better understand use-cases and to develop real-time techniques for motion 

data-driven on-site risk monitoring and feedback systems. 

8.3 PUBLICATIONS 

The peer-refereed publications, directly related to this scope of this thesis, and authored by the 

candidate are listed below: 

8.3.1 Peer-refereed Journal Articles 

1. Ryu, J., Diraneyya, M. M., Haas, C. T., Abdel-Rahman, E. M. (2020) “Analysis of the 

Limits of Automated Rule-based Ergonomic Assessment in Bricklaying”. ASCE 

Journal of Construction Engineering and Management. 147(2) 04020163. 

https://doi.org/10.1061/(ASCE)CO.1943-7862.0001978 

2. Ryu, J., Alwasel, A., Haas, C. T., Abdel-Rahman, E. M. (2020) “Analysis of 

Relationships Between Body Load and Training, Work Methods, and Work Rate: 

Overcoming the Novice Mason’s Risk Hump”. ASCE Journal of Construction 



 

 118 

Engineering and Management. 146(8), 04020097. 

https://doi.org/10.1061/(ASCE)CO.1943-7862.0001889 

3. Ryu, J., McFarland, T., Banting, B., Haas, C. T., Abdel-Rahman, E. M. (2020) “Health 

and Productivity Impact of Semi-Automated Work Systems in Construction”. Automa-

tion in Construction. 120, 103396. https://doi.org/10.1016/j.autcon.2020.103396 

8.3.2 Peer-refereed Conference Papers 

1. Ryu, J., McFarland, T., Banting, B., Haas, C., and Abdel-Rahman, E. (2020), 

“Automatic Clustering of Proper Working Posture” 27th International Workshop on 

Intelligent Computing in Engineering, Berlin, Germany. July 1-3, 2020. 

http://dx.doi.org/10.14279/depositonce-9977 
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“Ergonomic assessment of standard vs. heavy-weight CMU lifts” 13th North American 

Masonry Conference, Salt Lake City, UT. June 16-19, 2019. 

3. Ryu, J., Zhang, L., Haas, C., and Abdel-Rahman, E. (2018) “Motion Data Based 

Construction Worker Training Support Tool: Case Study of Masonry Work” 35th 

International Symposium on Automation and Robotics in Construction (ISARC). 

Berlin, Germany. July 20-25, 2018.  https://doi.org/10.22260/ISARC2018/0150 
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Department of Systems Design Engineering 
Date: July 11, 2019 
Title of Project: Identification of Good Form among Construction Trade 
Workers 

Principal Investigator: Eihab Abdel-Rahman 
 University of Waterloo, Department of Systems Design 
Engineering 

 519-888-4567 Ext. 37737 
 eihab@uwaterloo.ca 
 
Principal Investigator: Carl Haas 

 University of Waterloo, Department of Civil and 
Environmental Engineering 

 519-888-4567 Ext. 35492 
      chaas@uwaterloo.ca 
 
Co-Investigator: SangHyun Lee 

 University of Michigan, USA, Department of Civil and 
Environmental Engineering 

 +1 734-764-9420 
     shdpm@umich.edu 
 
Co-Investigator:  Abdullatif Alwasel 

 King Saud University, Department of Biomedical 
Technology 

 +966 11-469-3764 
 alwasel@ksu.edu.sa 

 
Student investigator:  JuHyeong Ryu 

 University of Waterloo, Department of Civil and 
Environmental Engineering 

 519-884-4567 Ext. 33929 
 j4ryu@uwaterloo.ca 
 

Student investigator:  Tasha Chun Lien McFarland 
 University of Waterloo, Department of System Design 
Engineering 

 519-884-4567 Ext. 33929 
 tclmcfarland@uwaterloo.ca 
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Student investigator:  Ahmad Mahmassani 
 University of Waterloo, Department of System Design 
Engineering 

 amahmassani@uwaterloo.ca 
 

Purpose of this Study 

This study is being carried out as part of the PhD program requirements of 
Mr. JuHyeong Ryu’s. Injury is one of the reasons that remove workers off the 
workforce early in their careers. These injuries are usually a result of working in 
dangerous postures that overtime lead to injury. Workers often use these postures 
as part of their daily work without realizing their long-term implications.  

This study hypothesizes that experienced workers have adopted a healthy 
way of work. Thus, we aim at discovering this ‘way of work’ to deduce methods 
that novice workers can use to gain expertise while avoiding injuries and early 
retirement. 

We are seeking to recruit trainees in construction apprenticeship programs 
to participate in this study. The study will recruit 150 trainees or more from four of 
experience levels in the program (no experience, first year, second year, and third 
year trainees). We will also recruit 50 expert workers, with 5 or more years of 
experience, in construction trades and no apparent health challenges. 

Procedures Involved in this Study 

The project will collect data about how you move during your daily work 
tasks. Two types of sensors will be used in this study. 1) Whole-body motion data: 
Wearable commercial motion-tracking suit that will be mounted on each body 
segment of upper and lower body. Specifically, upper arms, forearms, trunk, 
thighs, and legs. These are commercially available sensors that measure the joint 
angles. More information on the suit is available at (http://perceptionmocap.com/). 
2) Real-time streaming acceleration data: Wearable and mountable wireless IMUs 
will be attached at the lower back and each of the thighs. The sensor information 
is available at (https://mbientlab.com/).   

The motion tracking suit units, also known as suit, and the Mbient IMUs will 
be strapped to body segments using Velcro tape. No adhesive material will be 
used. The suit and Mbient IMUs send the measured motions wirelessly to a nearby 
computer and smartphone, respectively. 

The placement of all types of sensors will not need removing of clothing 
articles. However, you will need to lift your shirt sleeve to expose your upper 
shoulder for the placement of the sensor on the skin of your shoulder area. After 
the placement of the sensor your sleeve can be lowered down again.  
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The suit will be placed on both sides of your body to provide full motion 
tracking. In addition, one or two video cameras will record how you complete the 
task.  

Prior to the task, you will be asked about your height, age, and weight. You will be 
asked to participate in one of the described tasks below. The tasks involved are: 

- Complete a wall starting from a lead wall. Mortar and blocks will be brought 
to the site of building. The wall is 6 blocks high and 12 blocks wide. 

- Lay one or two courses of blocks in an existing wall. 
- Complete tool and material handling tasks, such as rebar tying of 

reinforcement walls, drilling of reinforcement walls, and grinding or welds. 
Material will be laid out before hand for your task.  

- A regular eight-hour construction work shift. We will only use IMU data for 
the working hours and will exclude data for break times and lunch time. In 
addition, the collected data will only be used for the analysis of physical 
exertion.    

As token of our appreciation, a $10 Tim Card will be given for each 
participant. The amount received is taxable. It is your responsibility to report this 
amount for income tax purposes. 

Risks to Participation and Associated Safeguards 

• There is always a risk of muscle, joint or other injury in any physical work. 
However, the risks in this study are not anticipated to be greater than those 
required for your daily work tasks.  

• If you are allergic to alcohol swabs used to sanitize the equipment and/or 
adhesive material used in double-sided tapes you are not be eligible to 
participate in this study as both materials will be used in this study. 

• Sensors are not disposable and will be used for all participants in this study. 
The sensors will be sanitized using alcohol swabs between uses. The 
double-sided tape is disposable. Redness or a rash may occur when 
removing the tape from your skin. This should be temporary and disappear 
in one or two days. 

Time Commitment 

Participation in this study will require approximately 1 hour of your time. All 
sessions will be scheduled outside of class time. 

Changing Your Mind about Participation 

You may withdraw from this study at any time without penalty. To do so, 
indicate this to the researcher or one of the research assistants by saying, "I no 
longer wish to participate in this study". 
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Personal Benefits of Participation 

There are no direct benefits for participating in the study. However, this 
study will provide researchers with knowledge about how workers move in their 
daily tasks thus allowing researchers to design work tasks safer and more efficient. 

Confidentiality 

To ensure the confidentiality of individuals’ data, each participant will be 
identified by a participant identification code known only to the principal 
investigators and student investigators. Videotapes will be stored for 7 years, from 
the day of study anticipated completion (Aug 2021), in a secure area for further 
research purposes in the future e.g. alerting the worker using video data. No face 
blurring will be used as the video recording will not be facing the participant, hence, 
mostly no face recording is done. A separate consent will be requested in order to 
use the videotapes and/or photographs for teaching, for scientific presentations, or 
in publications of this work. 

Data related to your participation will be submitted to an online data 
repository. It will be completely anonymized/de-identified by removing names and 
video recordings before submission. This process is integral to the research 
process as it allows other researchers to verify results and avoid duplicating 
research. Other individuals may access this data by downloading data 
spreadsheets. Should you choose, you may review all data that will be submitted 
before it is entered into data repository. 

Participant Feedback 

After the study is completed, you will be provided with an appreciation letter 
from the research team.  

Concerns about Your Participation 

This study has been reviewed and received ethics clearance through a 
University of Waterloo Research Ethics Committee (ORE#30382). If you have 
questions for the Committee contact the Chief Ethics Officer, Office of Research 
Ethics, at 1-519-888-4567 ext. 36005 or ore-ceo@uwaterloo.ca.  

For all other questions contact Eihab Abdel-Rahman, Carl Haas, JuHyeong 
Ryu at 519-888-4567 Ext. 37737, 35492, and 33929 respectively. 

Questions about the Study  

If you have additional questions later or want any other information 
regarding this study, please contact (Eihab Abdel-Rahman, Carl Haas, JuHyeong 
Ryu) at 519-888-4567 Ext. 37737, 35492, and 33929 respectively. 
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CONSENT TO PARTICIPATE  
 

By signing this consent form, you are not waiving your legal rights or 
releasing the investigator(s) or involved institution(s) from their legal and 
professional responsibilities.  
______________________________________________________________________ 

 

I agree to take part in a research study being conducted by Dr. Eihab Abdel-
Rahman, Dr. Carl Haas, and Juhyeong Ryu of the Department of Systems Design 
Engineering and Civil and Environmental Engineering, University of Waterloo. 

I have made this decision based on the information I have read in the 
Information letter. All the procedures, any risks and benefits have been explained 
to me. I have had the opportunity to ask any questions and to receive any additional 
details I wanted about the study. If I have questions later about the study, I can ask 
one of the researchers (Eihab Abdel-Rahman, Department of Systems Design 
Engineering, Carl Haas, JuHyeong Ryu, Department of Civil and Environmental 
Engineering at 519-888-4567 exts. 33737, 35492, 33929 respectively). 

I understand that I may withdraw from the study at any time without penalty 
by telling the researcher.  

This study has been reviewed and received ethics clearance through a 
University of Waterloo Research Ethics Committee (ORE#20023). If you have 
questions for the Committee contact the Chief Ethics Officer, Office of Research 
Ethics, at 1-519-888-4567 ext. 36005 or ore-ceo@uwaterloo.ca. 

Do you want to review data before it is stored in data repository? 

Yes    No  

 

 

_____________________________  __________________________ 
Printed Name of Participant  Signature of Participant  

_____________________________ ___________________________ 
Dated at Waterloo, Ontario Witnessed  
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Consent to Use Video and/or Photographs 

 

Sometimes a certain photograph and/or part of a video-tape clearly shows 
a particular feature or detail that would be helpful in teaching or when presenting 
the study results in a scientific presentation or publication. If you grant permission 
for photographs or videotapes in which you appear to be used in this manner, 
please complete the following section. 

I agree to allow video and/or photographs to be used in teaching or scientific 
presentations, or published in scientific journals or professional publications of this 
work without identifying me by name. 

_____________________________  __________________________ 
Printed Name of Participant Signature of Participant  

_____________________________  ___________________________ 
Dated at Waterloo, Ontario   Witnessed  
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APPENDIX B 

Data Processing Chart 
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Raw Data
(*.raw)

60 MB

BVH Viewer

3DSSPP

3D Joint 
Positions 

(*.3d)

Synchronization

Axis Neuron

[45] Location 
file (*.loc)

BioVision
Hierarchical 
Data (*.bvh)

500 MB

Video
(*.avi)

2 GB

Result matrix 
(*.mat)[45] Joint loads 

(*.txt)

MATLAB

MATLAB

Axis Neuron uses translational and 
rotational accelerations collected 
using IMU sensors to estimate 3D 
coordinates of body joint centers in 
space and time.

Raw data (accelerometer and gyroscope)
collected from IMU sensors contains
translational and rotational accelerations
from the body segment it is attached to.
The motion captured data is recorded at
approximately 125 frames per second.

BVH is a type of motion capture file which contains channel data (rotation) of each 
bone within a skeleton over time. The data is displayed in two parts 1) details the 
hierarchy and initial pose of the skeleton and 2) describes the channel data at each 
frame.

BVH Viewer is a visualization tool 
for the *.bvh animation format. 

3D joint positions (X-, Y- and Z-position) for 
28 joints for each frame are extracted from 
BVH Viewer. 

The output, joint loads files (*.txt) contain the joint compression forces and joint 
moment for each joint. The output files then converted a single matrix (*.mat) using 
a MATLAB code The matrix is combined joint loads result of all 45 lift motion data.

A developed MATLAB code generates to location file (*.loc) which is a special file of 
frames of body joint center locations (X,Y,Z). To process, The time frames at which 
the motion data were collected are synchronized with the video recording. Then, 
the MATLAB code segmented a file to 45 single “lift” files which defined from the 
moment when a participant picks up the CMU to the moment the CMU was fully 
placed on the lead wall. 

3D Static Strength Prediction Program (3DSSPP) uses body anthropometric 
parameters (height and weight of participant), body joint angles, and external 
forces applied on the body to predict 3D joint forces and moments

500 MB
50 MB

100 MB 5 MB
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APPENDIX C 

Framework for Biomechanical Analysis 
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APPENDIX D 

Representative Examples of Postures Classified using k-mean Clustering 
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Expert Dominant Postures

Bin 5– Expert Dominated
G5P4: Lift 10 (Frame 462)

Bin 8– Expert Dominated
G5P1: Lift 23 (Frame 257)

Bin 9– Expert Dominated
G5P2: Lift 10 (Frame 125)

Bin 23– Expert Dominated
G5P6: Lift 16 (Frame 135)

Bin 46– Expert Dominated
G5P4: Lift 39 (Frame 500)

Apprentice dominant postures

Bin 3– Apprentice Dominated
G1P6: Lift 31 (Frame 391)

Bin 10– Apprentice Dominated
G2P6: Lift 4 (Frame 397)

Bin 15– Apprentice Dominated
G1P6: Lift 31 (Frame 278)

Bin 26– Apprentice Dominated
G1P6: Lift 43 (Frame 391)

Bin 34– Apprentice Dominated
G1P7: Lift 29 (Frame 427)
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Equal representation

Bin 1– Equally Represented 
G4P2: Lift 27 (Frame 277)

Bin 11– Equally Represented 
G2P2: Lift 7 (Frame 432)

Bin 21– Equally Represented 
G1P5: Lift 11 (Frame 100)

Bin 23– Equally Represented 
G5P6: Lift 17 (Frame 422)

Bin 33– Equally Represented 
G4P7: Lift 7 (Frame 318)
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APPENDIX E 

Safety Training Literature for Apprenticeship Programs 
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Advanced Masonry Work Systems Analysis 

Recommend posture

Pick up

Swing

Lay down

Less lower back bend

Hold block closer to the body

Less lower back bend

Hold block closer to the body

More knee bend

Straight back

Straight back

Stable lower body

(Frequent posture comparison)


