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Abstract 

Two-dimensional (2D) materials have attracted significant attention for electronic device applications 

since the first graphene transistor was demonstrated in 2004. Various 2D materials not only exhibit 

excellent carrier mobility and suitable bandgap, but also provide great opportunities for flexible and 

transparent device applications. However, the fabrication of high-performance 2D transistors is limited 

by various factors, such as unintentional doping, defects, and poor contact properties. In this study, 

some of the promising 2D materials, such as black phosphorus (BP) and molybdenum disulfide (MoS2), 

and their electronic devices are studied. In particular, the contact effects on the performance of 2D 

material nanoscale transistors are explored by means of theory. Simulation methods for ohmic and 

Schottky contact in 2D-material field-effect transistors (FETs) are discussed in detail. Simulation 

settings in non-equilibrium Green’s function (NEGF) and boundary conditions in Poisson’s equation 

are specified. A quantum transport simulator is built to explore the performance of those devices with 

different types of contacts. 

First, the effects of contact resistance (Rc) on the high-frequency performance limit of BP FETs are 

studied using self-consistent quantum simulations. A detailed comparison between intrinsic and 

extrinsic cut-off frequency (fT) and unity power gain frequency (fmax) is made. Unlike zero-bandgap 

graphene devices, semiconducting BP FETs exhibit clear saturation behaviors, which is critical for high 

fmax. It is shown that near THz frequency range of fT and fmax are highly promising for high-frequency 

applications, which is possible with an aggressive channel length scaling (Lch » 10 nm) along with state-

of-the-art fabrication techniques for low Rc. Our benchmarking against the experimental data indicates 

that there still exists large room for optimization of Rc.  

Based on the recent temperature studies of 2D-material FETs, two different trends can be observed. 

We propose a model based on the effective mass approximation to explain the low-temperature current-

voltage measurements of multilayer MoS2 thin-film-transistors (TFTs). Our model suggests that the 

different temperature responses with Schottky and ohmic contacts result from various aspects of 

contacts, such as Schottky barrier height and barrier thickness. We also investigated the distinct device-

to-device low-temperature responses in multilayer MoS2 TFTs. Our comprehensive study provides a 

systematic scheme for the analysis of the contact properties in 2D material-based FETs. 

Recently two-dimensional transition metal dichalcogenides (TMDs) lateral heterojunction field-

effect transistors (FETs) have been demonstrated experimentally, in which metallic TMDs were used 
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for the source/drain. We systematically investigate the contact property and device performance of 

monolayer 1T/1T’-2H MoS2, MoSe2, and MoTe2 FETs. Schottky barrier (SB) heights are extracted 

from density functional theory calculations, and non-equilibrium Green’s function (NEGF) transport 

simulations have been performed to study device characteristics. Our simulation results reveal that ON 

and OFF-state characteristics of these devices are limited due to the inherent Schottky barrier. We 

optimize the performance of TMD lateral heterojunction SBFETs by using two different approaches: 

improving the electrostatic control by scaling equivalent oxide thickness and gate underlap and by 

moderately doping the gate underlap region. Our comprehensive study reveals that 1T’-2H MoTe2 

SBFET shows the highest ON current (~1 mA/µm) among the three with a reasonably small 

subthreshold swing (80 mV/dec) if properly scaled, while 1T-2H MoS2 SBFET exhibits the highest 

Ion/Ioff (~107) when Ohmic contact is established with moderate doping in the gate underlap region. This 

study not only provides physical insight into the electronic devices based on novel TMD 

heterostructures but also suggests engineering practice for device performance optimization in 

experiments. 

    We also investigate the geometric effect of contact in 2D heterojunctions. The electron transport 

through the interface has been simulated with the top-contact and side-contact 1T-2H MoS2. We studied 

the five potential stacking modes in top-contact MoS2 junctions. The accurate maximally localized 

wannier functions and Schottky barrier height in top and side contact junctions have been extracted for 

conductance calculation. The conductance comparison shows side contact is better than top contact in 

the 1T-2H MoS2 heterojunction. The oscillations of conductance are observed with different 1T2H 

overlap lengths with a top contact. Also, it is compared with the strong conductance oscillation in the 

semiconducting mono-bi-monolayer black phosphorus (BP) heterojunctions. The current flow pattern 

of the 1T-2H MoS2 junction shows that the majority of current transitions from 1T layer to 2H layer 

happen at the edge. We further modify the weak van der Waals interactions at the edge, suggesting a 

potential engineering method to achieve a better contact property in metal-semiconductor top-contact 

junctions.  This study may help us better understand metal-semiconductor junctions in 2D materials.  

Lastly, future works are suggested. The device simulations of top contact and side contact MoS2 

FETs are the next work to compare their device performance. There are huge numbers of novel systems 

in van der Waals 2D material heterojunctions. We can achieve tunneling FETs by engineering the band 

alignment between 2D materials with different bandgaps. In addition, with the developed simulator, 

vertical tunneling junctions can be investigated in layered 2D material systems. 
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Chapter 1 
Introduction 

1.1 2D Materials 

The experimental demonstration of single-layer graphene by Novoselov et al. in 2004 [1], has explored a 

new area of two-dimensional (2D) materials and their device applications. Since then, many other 2D 

materials, such as hexagonal-boron nitride (h-BN), transition metal dichalcogenides (TMDs), black 

phosphorus (BP), and complex oxides, have been grown or achieved by micromechanical exfoliation. In 

their bulk forms (i.e., with many layers), in-plane atoms are firmly packed by strong covalent bonds through 

valence electrons, while adjacent layers are held together by relatively weak van der Waals force. The 

atomic-scale thickness and the pristine interfaces lead to many interesting physics and novel applications 

in electronic devices.  

The field-effect transistor (FET) is a building block of modern semiconductor electronics. 2D materials 

have drawn significant attention for the active channel material in FETs. Notably, the International 

Technology Roadmap for Semiconductors (ITRS) 2011 considered graphene as a candidate for future 

electronics [2]. In the following sections, the emerging 2D materials will be briefly reviewed. 

1.1.1 Semi-metallic Graphene and Metallic 1T/1T’ TMDs 

Graphene is the monolayer form of bulk graphite, with carbon atoms arranged in a 2D honeycomb lattice, 

as shown in Figure 1.1. The first demonstrated graphene was achieved from graphite using sticky tape [1]. 

Although the quality of graphene obtained by mechanical exfoliation is good, which is confirmed by the 

observation of the room-temperature quantum Hall effect [3]. It suffers from the low yield and the small 

size of the samples. Graphene with a larger surface area can be achieved by chemical methods, with the 

reduction of graphene oxide. Nowadays, high-quality, large-scale graphene can be obtained by the chemical 

vapor deposition (CVD) method [4], [5].  
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Figure 1.1 Atomistic structure of monolayer graphene [6]. 

    Graphene shows extremely high mobility up to 40,000 cm2V-1s-1 and high thermal conductivity [7], [8]. 

These suggest the great potential of graphene as a novel material for next-generation electronic devices. 

However, graphene suffers from zero bandgaps, which leads to small Ion/Ioff, limiting its application. 

However, as a large ON-OFF ratio is not required for radio frequency (RF) applications, the ultra-high 

mobility and atomic thickness make graphene suitable for RF applications. High cut-off frequency (fT) up 

to a few hundred gigahertz can be achieved due to high mobility [9], [10], but the highest reported unity 

power gain frequency (fmax) is around 50 GHz due to a zero bandgap [11]. 

The semi-metallic property of graphene comes from its unique band structure. At K point, the conduction 

band bottom meets the valance band top, forming cone-shaped band structures. To investigate the semi-

metallic graphene, we will start from its atomistic structure. The schematic unit cell of graphene is shown 

in Fig 1.2. There are two atoms (named A and B atoms, respectively) in one unit cell with around 1.42 Å 

bond length (aC-C). The honeycomb lattice can be characterized by defining the primitive unit vectors of a1 

and a2 as 

𝐚, = .
3
2
𝑎121,

√3
2
𝑎1215 , 𝐚6 = .

3
2
𝑎121, −

√3
2
𝑎1215	 

And the vectors describing the separation between type A atoms to its nearest neighbor type B atoms are 

R1, R2, and R3 as, 

𝐑, = (𝑎121, 0), 𝐑6 = .−
1
2
𝑎121,

√3
2
𝑎1215 , 𝐑= = .−

1
2
𝑎121, −

√3
2
𝑎1215 
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Figure 1.2 The honeycomb lattice of graphene and its primitive unit cell [12]. 

For the nearest tight-binding approximation, the hopping parameter is t0 = -3 eV, which only happens 

between two neighboring carbon atoms. Then, the Hamiltonian matrix of graphene can be written as 

𝐻 =	 ?0 𝑡A
𝑡A 0 B + ?

0 0
𝑡A 0B 𝑒

D𝐚E∙𝒌 + ?0 0
𝑡A 0B 𝑒

D𝐚G∙𝒌 + H?0 0
𝑡A 0B 𝑒

D𝐚E∙𝒌 + ?0 0
𝑡A 0B 𝑒

D𝐚G∙𝒌I
J
 

In this way, we can plot the band structure of graphene, as shown in Fig. 1.3. The band structure of 

graphene near the K points can be regarded as a linear dispersion. It leads to massless particles, which is of 

great interest in condensed matter physics. The six K-points where conduction and valence bands meet are 

also called Dirac points. The linear energy dispersion near K-points also leads to ultra-high Fermi velocity. 

For 2D materials with parabolic band shape, the density of states (DOS) is approximately constant. For 

graphene with a linear E-k relation, it exhibits a linear DOS near the K points. The reason why graphene is 

considered a semi-metal is that the DOS vanishes to zero even though there is no bandgap, in contrast to 

regular metals with large DOS at the Fermi level.  
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Figure 1.3 Band structure of graphene in normalized reciprocal lattice. The two surfaces denote the conduction band 

bottom and valence band top of graphene. 

There are several ways to open the band gap of graphene for digital applications; for example, tailoring 

graphene into graphene nanoribbons, or applying a strong vertical electric field across multilayer graphene, 

and applying strains in graphene. However, they all suffer from significant mobility degradation once the 

bandgap is introduced.  

TMDs have attracted extensive attention due to their broad potential applications [13], [14]. TMDs 

exhibit various crystal structures with unique properties[15]–[19]. Based on the atomic structure and 

symmetry, TMDs can be classified into two categories: H-phases and T- (or T’-) phases. The top view and 

side view of the 2H, 1T, and 1T’ phase of MoSe2 is shown in Figure 1.4. The H-phase TMDs are 

semiconducting in general and have been widely studied, especially in electronics applications. The T-

phase TMDs generally show metallic properties, which show great potential in energy-related applications 

and electrochemical reactions. Figure 1.5 shows the density of state (DOS) of graphene and 1T MoS2. Both 

graphene and 1T MoS2 are zero bandgap materials. However, graphene demonstrates zero DOS at the Fermi 

level Ef, whereas 1T MoS2 has non-zero DOS at Ef. In this way, graphene is considered a semi-metallic 

material, and 1T TMDs are considered as a metallic material. The T-phase TMDs can be synthesized 

directly in certain growth conditions, or they can be transferred from H-phase TMDs by phase-engineering.  
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Figure 1.4.Top (top) and side view (bottom) of the atomistic structure of (a) 2H, (b) 1T, and (c) 1T’ monolayer MoSe2. 

MoS2 and MoTe2 have similar atomistic structures with different cell sizes. The primitive cells of 2H, 1T and 1T’ 

structures are shown in the top view.  

 

Figure 1.5 Density of States (DOS) of (a) semi-metallic graphene (b) metallic 1T MoS2.  

1.1.2 Semiconducting BP and TMDs 

For digital applications, in general, the bandgap is critical. Therefore, semiconducting 2D material with a 

finite bandgap along with high mobility would be highly desired. Group-VIB transition metal 

dichalcogenides (TMDs) MX2 (M = Mo, W; X = S, Se, Te) have attracted significant attention due to their 

extraordinary electronic and optical properties. Monolayer TMDs exhibit a direct bandgap in the visible 

frequency range and excellent mobility (around 200 cm2 V-1 s-1 [20]) at room temperature, making them 

promising candidates for electronic and optoelectronic devices.   

    The synthesis of the monolayer to few-layer TMDs has been following graphene practice, as bulk 

TMD materials have a similar layered structure as graphite. Mechanical/chemical exfoliation and chemical 

vapor deposition (CVD) growth are the two primary TMDs' synthesis methods. In general, the exfoliation 
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method is favorable for less-defect, high-quality MX2 films, while the CVD method is favorable for the 

growth of large-area (up to wafer-scale) MX2 films. For instance, large single-crystal MoS2 domain (>100 

µm) and large-area films can be grown on SiO2 substrates using solid-phase sulfurization of MoO3, MoCl5, 

or Mo thin films [21]–[23]. The quality of CVD synthesized MoS2 is comparable to those of the exfoliated 

MoS2 films within one domain [23]. However, large-area MoS2 films synthesized by CVD suffer from a 

large number of grain boundaries, which can significantly degrade the electrical properties [21]–[23]. Hence, 

the device properties of MoS2 electronics can benefit by reducing grain boundaries in the CVD-grown thin 

films. 

 

Figure 1.6 (a) Top view of monolayer MX2. (b) Schematic of unit cell structure in trigonal prismatic coordination. (c) 

The 2D first Brillouin zone of MX2 [24]. 

The structure of 2H-phase MX2 monolayers is similar to that of graphene from the top view. Each unit 

cell consists of one M atom sandwiched by two X atoms, forming a trigonal prismatic structure, as shown 

in Figure 1.6(a) and (b) in the ball and sticks model. The large grey ball is for M, and the small yellow ball 

for X. R1 through R6 shows the nearest neighbors. The shape of the 2D unit cell is shown in the shadowed 

green diamond region with a lattice constant a. The three-dimensional schematic of the trigonal prismatic 

unit cell is shown in Figure 1.6(b). As we can see here, each X atom is shared by its neighbors. MX2 also 

demonstrates a hexagonal first Brillouin zone with a near honeycomb atomic structure as shown in Figure 

1.6(c). The b1 and b2 are the reciprocal basis vectors. Two inequivalent valleys K and -K are shown. 

Black phosphorus (BP) is a stable allotrope of the phosphorus element in a layered form. Few layers BP 

has attracted lots of attention due to its moderate band gap as well as intriguing electrical properties. The 

layers of BP are also weakly bonded through van der Waals force. The in-plane phosphorus atoms are 

strongly bonded like the carbon atoms in graphite. However, unlike graphene, the in-plane phosphorus 

atoms are arranged in a puckered honeycomb lattice. This opens the bandgap, which is critical for digital 

device applications. Few-layer BP can be achieved by mechanical exfoliation. Recent theoretical studies 

have predicted that monolayer BP can exhibit extremely high hole mobility (10,000 cm2 V-1s-1) [25]. The 
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experiment has demonstrated over 1,000 cm2 V-1s-1 high field-effect mobility [26]. Theoretical studies have 

predicted the bandgap can be tuned by changing the number of layers. The bandgap decreases gradually 

from 2.0 eV in its monolayer form to 0.3 eV in bulk [27], [28]. The wide tuning range of BP makes it 

favorable for optical device applications.  

At this moment, the main focus of the experiment is given to the synthesis of bulk BP rather than thin 

film at a wafer-scale [29]. Few layer BP are obtained through mechanical or chemical exfoliation from bulk 

BP. Although bulk crystals of BP are proven stable for more than several months, few-layer BP is found to 

be unstable in the presence of moisture and oxygen in the air [30]. However, few-layer BP can be stable for 

at least a few weeks after being encapsulated by Al2O3 over-layers under an ambient environment [31]. 

Similarly, poly(methyl methacrylate) (PMMA) coating [32], graphene, and hBN encapsulation [33] have 

also proven to be effective. Overall, few-layer BP does not have serious issues in stability if effective 

passivation methods are used, although few-layer BP is not as stable as graphene or TMDs. 

The atomic structure of a few-layer BP is achieved by relaxing bulk BP [25]. The structure changes 

slightly from the bulk to the monolayer form. The top view and side view of the atomic structure of 

monolayer BP and bilayer BP are shown in Figure 1.7 (a), (c), and (d), respectively. Unlike graphene, the 

shape of the unit cell of BP is rectangular, as shown in Figure 1.7, which is partly due to the fact that the 

phosphorus atoms are not located on the same surface. The Brillouin zone of monolayer BP is rectangular, 

as shown in Figure 1.7(b). From monolayer to the bilayer, the value of a decreases abruptly by 0.06 Å, 

while it changes gently from bilayer to bulk BP. The value of b increases gently as the number of layers 

increases. The interlayer spacing is almost constant, with around 3.20 Å regardless of the thickness of BP. 

 

Figure 1.7(a) Top view of the atomic structure of monolayer BP. (b) Brillouin zone of monolayer BP. (c) (d) Side 

views of the atomic structure of bilayer BP [25]. 
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Table 1.1 Structural information for few-layer BP [25]. 

NL 1 2 3 4 5 Bulk 

a(Å) 4.58 4.52 4.51 4.50 4.49 4.47 

b(Å) 3.32 3.33 3.33 3.34 3.34 3.34 

Unlike TMDs, monolayer and bilayer BP exhibit strong anisotropic electron and hole effective mass. 

The hole effective mass of BP along the zigzag direction is more than six times larger than that along the 

armchair direction. The extracted electron and hole effective mass of monolayer and bilayer BP along 

armchair (x-) direction and zigzag (y-) direction are shown in Table 1.2. The strong anisotropic properties 

of 2D materials can be applied to novel electronic, thermoelectric, and optoelectronic device applications. 

Table 1.2 Effective mass of monolayer and bilayer BP extracted from tight-binding band structure. Subscripts “e” and 

“h” denote “electron” and “hole”, and subscripts “x” and “y” denote for armchair and zigzag directions. 

 mex/m0 mey/m0 mhx/m0 mhy/m0 

Monolayer 0.17 0.87 0.19 1.17 

Bilayer 0.18 1.13 0.20 0.78 

 

1.1.3 Insulating h-BN 

Boron nitride (BN) is a conventional material with superior thermal and chemical stability. BN exists in 

various forms, which are similar to structured carbon lattices. The hexagonal form (h-BN) corresponds to 

the graphite lattice structure, and the cubic (sphalerite structure) form corresponds to the diamond lattice 

structure. Even in layered h-BN bulk, due to the highly polar B-N bonds, various stacking modes exist [34], 

[35]. Unlike conductive graphite, h-BN exhibits unique electronic properties with a wide bandgap, low 

dielectric constant, high thermal conductivity, and chemical inertness. 

    Monolayer h-BN has a structure similar to graphene, with alternating boron and nitrogen atoms 

arranged in the honeycomb lattice structure. In-plane B-N atoms are bonded by sp2 covalent bonds similar 

to graphene, while the interlayers are held together by weak van der Waals force. In spite of a large number 

of studies and its seemingly simple crystal structure, the very basic band gap remains controversial due to 

the inconsistent values reported experimentally and theoretically. Early experiments suggested h-BN as a 

direct band gap material with around 6.0 eV band gap [35], [36], while ab-initio calculations claimed that 

h-BN is an indirect bandgap crystal [34], [37]. The inconsistencies between experiments and simulations 

can be ascribed to the impurity and defects of h-BN samples. The early obtained h-BN crystalline samples 
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may actually be a mixture of different stackings. Recent simulations on h-BN with various polytypes 

showed that, with different stacking modes, h-BN exhibits different band structures [34], [38]. The band 

gap can be indirect, quasi-direct, or direct, and the values vary from 3.27 eV to 5.98 eV. A recent experiment 

also supports the indirect band gap of 5.96 eV by using high-purity crystals [39]. The phonon-assisted two-

photon absorption suggests an exciton binding energy about 130 meV, and supports the indirection band 

gap in h-BN, showing a good matching to the simulation results. 

The h-BN thin films can be obtained through a top-down or bottom-up approach [40]. The top-down 

approach is by mechanical or chemical exfoliation from bulk h-BN, and this method is simple. High-quality 

flakes can be obtained, although the limited size hiders the applications in large-area devices. On the other 

hand, the bottom-up approach is by CVD growth. Wafer-size high-quality thin film can be obtained, while 

it needs unconventional boron-containing precursors. Nevertheless, growth control of high-quality few-

layer h-BN is still challenging. 

Various forms of BN have been used for lubricant and abrasive material for a long time, and the unique 

electronic properties of BN have now been utilized and attract lots of attention. The h-BN is considered a 

promising candidate for optoelectronic and high-power electronic devices. Due to the wide band gap, hBN 

based devices can operate in the deep-ultraviolet range. Few layer h-BN films can play an important role 

in novel 2D electronics. The high electrical resistivity, low dielectric constant, and structural and 

mechanical similarity to graphite make h-BN a good candidate for dielectric layer and insulating substrates 

for many 2D material devices. Various groups have demonstrated with experiments that the device 

performance of graphene FETs can be significantly boosted by replacing conventional SiO2 support and 

dielectric layer with h-BN thin films. Wang et al. showed that, by encapsulating graphene with h-BN, the 

remarkably low contact resistance is achieved by edge contact, and ultra-high mobility up to 140,000 cm2 

V-1s-1 has been observed [41]. Similarly, the device performance of single-layer WS2 FET has been 

improved by employing h-BN thin films as a substrate and the capping layer, with up to 214 cm2 V-1s-1 

high field-effect mobility at room temperature and ON/OFF ratio as high as 107 [42]. By integrating h-BN 

with other 2D materials, heterostructures can be achieved to realize novel devices. The rich physics in the 

graphene/h-BN van der Waals vertical heterostructure may lead to novel electronic and optoelectronic 

devices [43]–[45]. Based on a WS2/h-BN/graphene/SiO2 van der Waals heterostructure, Qiu et al. 

demonstrated non-volatile memory devices [46]. In this device, WS2 is used as a FET channel, h-BN serves 

as a tunnel barrier, and graphene acts as an electron confining layer. It should be noticed that research of h-

BN for electronic applications is still in its very early stage, and rapid progress is expected in the near future. 
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1.2 Effect of Contact Resistance 

The electronic properties of semiconductors play a primary role in determining the device performance, yet 

metal-semiconductor junction is comparably important. As the size of the device shrinks to the nanoscale, 

the effect of contact resistance becomes more dominant. Generally, a high electrical resistance is due to the 

large Schottky barrier at the metal-semiconductor interface. This hinders the injection/ejection of charge 

carriers to/from the channel and consequently degrades the overall device performance. Here we will focus 

on the effect of contact resistance on two different electronic devices: digital and analog applications. 

In digital applications, transistors switch between ON and OFF states. Ideally, low Ioff and high Ion/Ioff are 

desired for low standby power consumption, and high Ion is desired for fast switching speed. However, large 

contact resistance will significantly limit Ion. As the intrinsic delay, which determines device speed, can be 

approximately evaluated by t = CVDD/Ion, where VDD is the power supply voltage and C is the gate 

capacitance of the transistor, the device gets slower with large contact resistance (Rc). Assuming the clock 

frequency f ~ 1/t, large Rc will also result in larger dynamic power consumption as PD ~ fCVDD
2. For analog 

applications, the parasitic resistance significantly reduces the cutoff frequency (fT) and the unity power gain 

frequency (fmax), as 𝑓L =
MN

6OP1QQ,R[,TMU(VWTVX)]T1QU,RMN(VWTVX)Z
, where gm is the transconductance, and Cgg,t 

is the total gate capacitance, Cgd,t is the total gate-to-drain capacitance. Details of the effect of contact 

resistance on radiofrequency applications will be discussed in a later chapter.  

The quantum limit of the contact resistance is predicted by 𝑅\~ℎ/(2𝑒6𝑀), where h is Planck’s constant, 

e is the element electron charge, and M is the number of electron modes whose wavelength fits the 

conductor. This means that the minimum contact resistance exits even in ballistic transport, and only certain 

electron modes that fit can be injected into the channel, while the rest will be reflected [47], [48]. 

Considering 𝑀~𝑘b𝑊, where W is the width of the channel and kF is the Fermi wave vector, as kF increases, 

the density of electrons in 2D channel n2D = kF
2/2p increases, and more modes M fit the channel. Thus, the 

minimum contact resistance can be calculated as 𝑅\𝑊~ d
6eGfg

~ A.A6i
√jGX

𝑘Ω	µm. Normally the electron density 

of semiconductor is in the unit of 1013 cm-2, which gives a minimum 𝑅\𝑊~30	Ω	µm. This is far less than 

that of usual experimental results, indicating there is plenty of room for improvement. 

1.3 Towards Ohmic Contact 2D FETs 

1.3.1 Challenges to Achieve Practical Ohmic Contacts  

The metal-semiconductor junction can play a critical role in determining the device's performance. In 

general, the quality of contact is evaluated by contact resistance. For conventional 3D materials like Si and 
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Ge, low contact resistance can be achieved by using highly transparent tunneling contacts through heavy 

doping of the semiconductor in the contact region. However, there are several major issues for metal contact 

with 2D material. Unlike the conventional metal-semiconductor junctions, the thickness of 2D material is 

thinner than the depletion and transfer lengths. Due to the ultrathin thickness, the commonly adopted heavy 

doping in the contact region is not applicable; it would also modify the structure and property of 2D material. 

The interface between the 2D semiconductor and 3D metal normally leads to large contact resistance, which 

drastically restrains the drain current. In addition, the advantage of free dangling bonds of the 2D material 

surface becomes a disadvantage when it comes to forming a strong bond with the metal.  

The presence of a significant Schottky barrier has been a major issue for many cases [49]–[51].  It is 

straightforward to choose contact metal with large (for p-type semiconductors) or small (for n-type 

semiconductors) work functions to achieve a small Schottky barrier, which has also been proven to be 

effective. Nonetheless, it is not a perfect approach due to the following reasons: (i) It is challenging to find 

a metal with a proper work function that exhibits high conductivity, high chemical, thermal and electrical 

stability. (ii)  TMDs and BP exhibit thickness-dependent band gap, and BP also shows a strong anisotropic 

band structure, thus contact resistance cannot be easily predicted. (iii) The 2D semiconductor-metal 

interface could also be impacted by Fermi level pinning, proven by both experiment and theory [51]–[53]. 

Many recent experimental works have demonstrated progress in improving contact properties. The 

approaches include the use of small work function metals, graphene, or doped TMDs as electrodes, thermal 

annealing, ionic-liquid doping of contact regions, phase-engineering, selective etching, and thin tunnel 

barriers. Unfortunately, some methods suffer from poor air, thermal or long-term stability. The effective 

methods towards practical thermal and long-term stable ohmic contacts can be generally classified into two 

types: reducing the Schottky barrier height (SBH) and thinning the Schottky barrier width (SBW).  

1.3.2 Reducing Schottky Barrier 

Various methods have been realized to achieve ohmic contact by reducing SBH, which can be generally 

categorized as selective metal contact, graphene contact, and thin layer tunneling contact. Das et al. 

demonstrate that the metal-to-MoS2 interface is strongly impacted by Fermi level pinning close to the 

conduction band, and low work function metals like Sc can significantly reduce contact resistance [54]. 

Based on the standard electron affinity of MoS2 and the work function of the corresponding metal, the band 

diagram should be the same as Figure 1.8(a). Thus, electron current is expected by Sc and Ti contacts, and 

hole current is expected by Ni and Pt contacts with MoS2 FETs, as shown in Figure 1.8(b). However, 

experimental results tell a different story. The transfer characteristics of back-gated MoS2 FETs with Sc, 

Ti, Ni, and Pt metal contacts with threshold voltage shift are shown in Figure 1.8(c). All these FETs exhibit 

n-type characteristics, which indicate the Fermi levels of Sc, Ti, Ni, and Pt metals are lined up closed to the 



 

 12 

conduction band of MoS2, as shown in the insert figure in Figure 1.8(c).  We notice a clear on-state current 

degradation as higher work function metal is used. The extracted Schottky barrier heights are shown in 

Figure 1.8(d). The extracted dFSB/dFM is around 0.1, indicates a strong pinning effect at the metal-MoS2 

interface. It also explains why most metal contact MoS2 transistors exhibit n-type characteristics. 

 

Figure 1.8 (a) Expected line-up of various metal Fermi levels with the conduction band (EC) and valence band (EV) of 

MoS2-metal contact. (b) Expected transfer characteristics based on (a). (c) Transfer characteristics of back-gated MoS2 

thin-film transistor with various contacts. The inset demonstrates the actual line-up of metal Fermi level with EC and 

EV of MoS2. (d) Extracted Schottky barrier height for Sc, Ti, Ni, and Pt. The inset shows the device structure of the 

back gated MoS2 transistor [54]. 

    To overcome the limitation of metal contacts, graphene contacts have been introduced and proven to 

be effective [55]–[58]. Graphene is mechanically strong, flexible, and thermally stable, especially desirable 

for flexible electronics applications. More importantly, the Fermi level of graphene can be effectively tuned 

by gate control or chemical doping to minimize the SBH at the graphene/semiconductor interface [53], [59]. 

Yu et al. demonstrated that large-scale electronic systems based on graphene/ MoS2 heterostructures could 

be grown by a CVD method, and high-performance transistors can be achieved with reliable ohmic contact 

where graphene is used as electrodes, and circuit interconnects. The comparison between graphene/MoS2 

heterojunction contact and traditional metal/MoS2 junctions demonstrates over ten times larger current with 

graphene/MoS2 heterojunction contact FETs. The extracted Schottky barrier height FB as a function of gate 

bias Vbg for both devices is shown in Figure 1.9(c). The FB of graphene/MoS2 FETs decreases significantly 

from 110 to 0 meV with Vbg increased from 0 to 35 V. On the other hand, the FB of metal/MoS2 FETs 

(c) (d)
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shows a weak dependence on the change of Vbg, varying from 50 to 40 meV with Vbg increasing from 0 to 

80 V. For an ideal metal-semiconductor contact, FB is determined by the metal work function (Wm) and the 

semiconductor’s electron affinity (𝜒n), with Φp = 𝑊q − 𝜒n. In metal/MoS2 FETs, the change in FB is 

limited by the modulation of midgap interface states. However, Wm can be modulated as shown in Figure 

1.9(d). Here, when Vbg is larger than 35 V, the Schottky barrier height becomes zero, and an ohmic contact 

is achieved. The work function of graphene is modulated by the electric field, which is consistent with 

previous works [53]. This study shows that graphene outperforms Ti to make contact with MoS2, which 

can be achieved using electronic doping or chemical doping. 

 

Figure 1.9 (a) Transfer characteristics of (a) back gated MoS2/graphene (MoS2-G) and (b) MoS2-Ti FETs at various 

VD at room temperature. The insets are the device schematics, respectively. (c) Extracted barrier height as a function 

of back-gate bias for MoS2-G and MoS2-Ti FETs. (d) Upper panel: Experimental setup. Lower panel: schematic band 

diagram of MoS2-G FETs at Vbg = 0 and Vbg > 0 with corresponding EF [57]. 

Chuang et al. report a new strategy to fabricate low contact resistance with TMD transistors using van 

der Waals assembly of substitutionally doped TMDs for source/drain [60]. The WSe2 transistors with 

2D/2D contacts have been demonstrated with a low contact resistance of ~0.3 kW µm, high on/off ratios up 

to 109, and high drive currents are exceeding 320 µA µm-1. High field-effect mobility (µFE) up to 200 cm2 

V-1 s-1 is achieved at room temperature, and up to 2000 cm2 V-1 s-1 high µFE can be achieved at cryogenic 

temperature. The 2D/2D contact is formed by the vertical junction between highly doped WSe2 

(Nb0.005W0.995Se2) and intrinsic WSe2. This method can also be applied to other TMDs, like MoS2. In 

conventional metal/MoS2 contacts, the hole injection has been obstructed by a large Schottky barrier. 

bg

(a) (b)

(c) (d)
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However, the band offset in degenerately p-doped MoS2 (Nb0.005Mo0.995S2)/ intrinsic MoS2 vertical junction 

can be tuned by the gate voltage, resulting in near barrier-free contact with low contact resistance. 

Furthermore, 2D/2D hetero contact is also investigated. Degenerately p-doped WSe2 

(Nb0.005Mo0.995S2)/intrinsic MoSe2 contact also shows a low ohmic contact resistance. 

 

Figure 1.10 (a) Design and characteristics of WSe2 FETs with 2D/2D source and drain contacts. The inset shows side 

view of degenerately p-doped WSe2 (Nb0.005W0.995Se2)/ intrinsic WSe2 vertical hetero junction. (b) Two terminal field 

effect hole mobility of 2D/2D contact WSe2 device at various temperatures [60]. 

    It is much more challenging to achieve thin SBW by degenerately doping for 2D materials since ionized 

impurity doping would substantially damage the structural integrity of the atomically thin channel. Ionic 

liquid doping and gas doping have been developed to achieve ohmic contact with WSe2 and MoS2 FETs. 

Fang et al. demonstrated high-performance p-type field-effect transistors based on monolayer WSe2 as an 

active channel with chemically doped source/drain (S/D) contacts combined with high-k gate dielectrics 

[61]. The high hole field-effect mobility of ~250 cm2 V-1 s-1 with an almost ideal subthreshold swing of 

~60 mV/dec, and large ION/IOFF up to 106 at room temperature has been achieved. Low contact resistance is 

achieved for hole injection by using large work function Pd contacts by patterning NO2 chemisorption on 

WSe2. Although Pd was found to be the best contact for p-type WSe2 FETs, a small Schottky barrier still 

exists at the Pd-WSe2 interface. Heavily p-doped WSe2 is achieved by surface NO2 doping to reduce the 

barrier width at the metal-WSe2 interface, inspired by a similar approach in carbon nanotubes and graphene 

where NO2 molecules also serve as p-type surface dopant [62], [63]. As we can see in Figure 1.11(b), a 

drastic enhancement of ~1000 times larger ION is observed after surface doping of S/D by NO2, without 

affecting the IOFF level.  

(a) (b)
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Figure 1.11 (a) Schematic of a top-gated WSe2 monolayer FETs with chemically doped S/D contacts by NO2 exposure. 

The top gate also serves as a protective layer for the active channel from NO2 doping. (b) Transfer characteristics of 

WSe2 FET with L ~9.4 µm before and after NO2 doping of the S/D contacts [61]. 

    Hsun-Jen et al. reported the fabrication of both n-type and p-type WSe2 FETs with h-BN passivated 

channels and ionic-liquid (IL)-gated graphene contacts [55]. High ION/IOFF up to 107 and large electron and 

hole mobility ~200 cm2 V-1 s-1 are achieved at 170 K. As we can see from Figure 1.12(b), the on-state 

current at Vbg = 70 V increases by order of magnitude to 3 µA/µm, while the hole current measured at Vbg 

= - 70 V decreases by more than three orders of magnitude. Although a small Schottky barrier still exists 

at the graphene-WSe2 interface, the contact resistance is significantly reduced by the combined effect of 

SBH reduction and SBW narrowing due to the IL gating.  

 

Figure 1.12 (a) Schematic illustration of the structure and working principle of a WSe2 FET with ionic-liquid gated 

graphene contacts. (b) Transfer and output characteristics of a 6 nm thick WSe2 FET device with graphene contacts 

and a 4.8 µm long channel passivated by h-BN, at Vds = 0.1 V and T = 170 K, VILg varying from 0 to 6 V. The inset 

shows the same date with linear scale [55]. 

    Ferromagnetic contact by inserting a thin tunneling layer, like MgO or TiO2, between TMDs and metal, 

not only reduces the contact resistance but also provides possibilities for novel spin-based electronics [64], 

[65]. Ohmic contact can also be achieved by using atomically thin h-BN as a tunneling layer [66]. Other 

(a) (b)

(b)(a)
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methods like thermal annealing [67] and selective etching[68], [69] also provide new ideas to lower SBH. 

Jingli et al. reported high-performance MoS2 FETs with low contact resistance, achieved by using 

atomically thin hexagonal boron nitride as a tunneling layer between MoS2 and Ni/Au metal contacts at the 

source and drain side [66]. Figure 1.13(a) shows the scanning electron microscope (SEM) image, optical 

image, and schematic side view of the fabricated device. The Schottky barrier heights are extracted from 

the thermionic emission regime, as shown in Figure 1.13(b) and (c). The metal contact shows the highest 

Schottky barrier height, around 158 meV. With one or two-layer h-BN insertion, the barrier height is 

reduced to 31 meV. 

 

Figure 1.13 (a) SEM image (upper inset), optical image (upper), and side view schematic of MoS2 FETs with h-BN 

as tunneling layer at S/D. Extracted barrier height at various Vg for MoS2 FETs (b) without h-BN and (c) with 1 or 2 

layers h-BN as tunneling layer at S/D [66]. 

1.3.3 Use Metallic 2D Material as Leads 

Besides all these attempts to reduce the Schottky barrier by degenerate doping and engineering metal leads, 

the phase transition between TMD materials provides an exciting way to reduce contact resistance using 

metallic 2D material.  

Cho et al. [70] reported MoTe2 ohmic hetero-phase homojunction by using laser-induced phase 

patterning. The junction between the semiconducting 2H phase and the metallic 1T’ phase is stable up to 

300°C. Compared to 2H contact MoTe2 devices, 1T’ contact MoTe2 device demonstrates 50 times larger 

field-effect carrier mobility around 50 cm2 V-1s-1, while retaining a high on/off ratio of 106. Figure 1.14(d) 

shows the significant reduction in the Schottky barrier height. The extracted barrier height for 1T’/2H 

MoTe2 device is only 0.01 eV compared to 0.2 eV of 2H contact. The phase transition between 1T’ and 2H 

avoids device performance degradation caused by the impurity-involved transfer process. It suggests the 

great potential of using metallic 2D material as a buffer contact layer for next-generation devices. 

 

(a) (b) (c)
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Figure 1.14 (a) Schematic diagram of a MoTe2 device with 1T’/2H in-plane heterojunction. (b) AFM image of a 

fabricated device with 2H MoTe2 in the channel and metal leads on 1T’ MoTe2. (c) ISD-VSD characteristics of 1T’/2H 

MoTe2 device with gate voltage ranging from -60 V to 60 V. (d) Extracted barrier and Arrhenius plot of the 

conductance comparison between 1T’ contact and 2H contact MoTe2 device [70]. 

    Sung et al. [17] reported on the polymorphic integration of distinct metallic 1T’ and semiconducting 2H 

MoTe2 crystals within the same atomic planes by heteroepitaxy. Two types of devices are fabricated, as 

showing in Figure 1.15. One type is 2H-only MoTe2 FETs with metal leads on 2H MoTe2. Another type of 

device is 1T’-2H heterojunction MoTe2 FETs with 2H MoTe2 as channel and in-plane 1T’ MoTe2 as metal 

leads. The coplanar contact is atomically coherent, and the extracted lowest barrier height is ∼25 meV, 

which is significantly reduced compared to the 2H-only device with 0.15 eV barrier height. The small 

barrier height gives small contact resistance and a much larger on-state current.  

What’s more, the 1T’-2H WTe2 FETs are also fabricated following a similar process. This work 

demonstrates the generality of the synthetic integration approach for other TMDC polymorph films with 

large areas.  

 

(a) (b)

(c) (d)
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Figure 1.15 Comparison of the 1T’-side contact and Au-top contact MoTe2 FETs. Schematic energy band at the metal-

semiconductor interface and effective Schottky barrier height for (a) polymorphic 1T’-side contact and (b) Au-top 

contact for MoTe2 FETs with 2H channel [17]. 

    Zhang et al. [16] reported the direct synthesis of large-area metal-semiconductor (1T’-2H) 

heterostructure of MoTe2 by chemical vapor deposition (CVD) technique. The phase transition from 2H to 

1T’ is controlled by reaction temperature and time. Device performance of FETs based on direct-grown 

1T’-2H MoTe2 with 1T’ MoTe2 serving as electrode contact is compared with devices using Ti as electrodes 

on 2H MoTe2. The schematic device structure is shown in Figure 1.16(a). The transfer length method (TLM) 

is used to extract the contact resistance between the Ti/Au and 2H MoTe2 interfaces as well as the metallic 

1T’ MoTe2 interface, as shown in Figure 1.16(b). The measured contact resistance is 3.26 kW µm for 1T’ 

MoTe2 and 326.5 MW µm for 2H MoTe2. The differential contact resistance between 2H-metal and 1T’-

metal is in order of 106. The 1T’-2H-1T’ in-plane hetero-junction-based transistor is shown in Figure 

1.16(c). From the comparison of normalized current between 1T’-2H transistor and 2H only transistor in 

Figure 1.16(d), we can see a great improvement in the current. It suggests contact resistance is reduced. 

This one-step CVD method to synthesize large-area, seamless-bonding 2D lateral metal-semiconductor 

junction can improve the performance of 2D electronic and optoelectronic devices.  

(a) (b)
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Figure 1.16 (a) Schematic MoTe2 device structures. On the top, 2H only device with metal electrodes; on the bottom, 

1T’-2H device with metal electrodes on 1T’ MoTe2. (b) Optical image of a MoTe2 ribbon contacted by metal. 

Electrodes 1-3 are in contact with the 1T’ phase, whereas electrodes 4-6 are in contact with the 2H phase. (c) Optical 

image of a 1T’-2H-1T’ MoTe2 ribbon, where metal electrodes 7 and 8 are in contact with the 1T’ phase. (h) Normalized 

IDS-VDS curves acquired by electrodes 4 and 5, and 7 and 8 [16]. 

Ma et al. [18] also investigated the structural and electrical properties of in situ-grown lateral 1T’-2H 

MoTe2 homojunction in detail, which is grown by flux-controlled phase engineering. Here, the channel 

material 2H phase MoTe2 was first grown on the substrate and patterned into individual channels. Then 1T’ 

MoTe2 was grown around the 2H channels and further patterned. In the last, the metal was deposited on 1T’ 

MoTe2 to avoid the Schottky contact between metal and 2H MoTe2.  The schematic device structures are 

shown in Figure 1.17(a) and (b). The contact resistance of 1T’ electrodes extracted from transfer length 

method measurements is 470 ± 30 Ω µm. The back gate voltage-dependent Arrhenius plots in Figure 1.17(c) 

and (d) are measured to extract barrier height. The barrier of the 1T’-2H junction is around 30 ± 10 meV at 

zeros back gate voltage, which is much smaller than the barrier height between 2H MoTe2 and Ti electrodes. 

The significant improvement in device performance compared to the metal-2H contacts suggest the great 

potential of in-plane heterojunctions in large-scale 2D integrated circuits. 

(a) (b)

(c) (d)
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Figure 1.17 Schematic diagram of (a) 2H only and (b) 1T’-2H heterojunction MoTe2 FETs device structures. Backgate 

voltage-dependent Arrhenius plots with VBG ranging from −100 to 100 V for (c) 2H only and (d) 1T’-2H MoTe2 FETs 

at VDS = - 0.1 V. (e) Effective Schottky barrier height of the 2H only device in the high-temperature regime (red 

squares) and 1T’-2H device in the high- (close blue circles) and low- (open blue circles) temperature regimes as a 

function of VBG [18]. 

Similar works have been achieved by Ma et al. [19]. The large-scale monolayer 2H-WSe2 is grown by 

CVD, and the semiconducting-to-metallic phase transition in WSe2 is achieved via controlled n-BuLi 

treatment. In addition, two types of transistors using 2H WSe2 as a channel are fabricated. The schematic 

device structure and IDS-VG characteristics are shown in Figure 1.18(a) and (b). The device performance is 

substantially improved with metallic 1T’ phase WSe2 serving as source/drain electrodes compared to the 

devices using metal like Pd/Ti and Au/Ti as electrodes, showing high on/off current ratios of 107, high 

mobilities up to 66 cm2 V-1s-1, and better SS down to 0.658 V/dec. These results further suggest that phase 

engineering can be a generic strategy to improve device performance for many kinds of 2D TMDC materials.  

 

(a) (c)

(b) (d)

(e)
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Figure 1.18 (a) IDS-VG curves for 2H only back-gated monolayer WSe2 FET with metal contacts. Inset: Schematic 

device structure of 2H only WSe2 FET. (b) IDS-VG curves for 1T-2H back-gated WSe2 FET with metal contacts on 1T 

WSe2. Inset: Schematic device structure of 1T-2H WSe2 FET [19]. 

Kappera et al. [15] demonstrated 1T-2H MoS2 transistors by inducing metallic 1T MoS2 on 2H MoS2 

nanosheets. The measured contact resistance is around 200-300 W µm at zero gate bias, which is 

significantly smaller than devices directly depositing metal on MoS2 (0.7 kW µm - 10 kW µm). FETs with 

1T MoS2 as electrodes are tested in air exhibit mobility of around 85 cm2 V-1s-1, SS value below 100 mV/dec, 

high on/off ration above 107, and large on-state current approaching 100 µA µm-1. The electrostatic force 

microscopy phase image of the 1T-2H-1T MoS2 nanosheet is shown in Figure 1.19(a). The extracted contact 

resistance and schematic device structure of the two types of devices are shown in Figure 1.19(b) and (c). 

This work suggests that phase engineering of electrodes is an effective strategy for further improving the 

performance of 2D MoSe2 devices. 

 

Figure 1.19 (a) Electrostatic force microscopy phase image of a monolayered MoS2 nanosheet showing the locally 

patterned 2H (bright color) and 1T (dark color) phases. The scale bar is 1 µm. Resistance versus 2H channel lengths 

for Au deposited directly on (b)  the 2H phase and on (c)  the 1T phase [15]. 

(a) (b)

(c) (d)

(a) (b) (c)
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    Even with all this exciting progress in using metallic TMD as electrodes, the reported fabricated 

transistors are still limited in MoS2, WSe2, and MoTe2. Some underlying physics is still unclear to us. What 

is the mechanism of barrier lowing by using metallic TMD? How is the lattice mismatch and defects at the 

interface affect the device performance? Can this process extend to all 2D materials? And most importantly, 

can we further improve device performance by device engineering? In this work, attempts are made using 

quantum mechanism-based simulation to investigate the contact effect on 2D material nanotransistors' 

performance.  
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Chapter 2 
Simulation Methods 

2.1 Material Properties 

As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) technology is 

approaching its limits, the development of simulation tools for novel materials and nanoscale devices is 

becoming more and more critical. To support the long and expensive experimental processes in exploring 

new materials and devices, the computer-aided design stands out for its cost and time efficiency. For the 

device simulation, we need to start with the materials. Understanding the properties of new materials is the 

first step. In this section, we will briefly introduce how we extract the necessary information for device 

simulation from the first principle studies of novel materials. 

2.1.1 DFT Calculations 

Density functional theory (DFT) is the most successful and widely adopted method to study the electronic 

properties of novel materials. The DFT theory is derived from the many-body Schrodinger equation. For a 

system containing N particles, it is described by  

 st−
ℏ6

2𝑚D
∇D6 + 𝑉(𝑟,,⋯ 𝑟z)

D

{Ψ(𝑟,,⋯𝑟z) = 𝐸Ψ(𝑟,,⋯ 𝑟z) (2.1) 

However, this equation is almost impossible to solve directly for any system containing many atoms. For 

example, if a system containing 10 electrons and no nuclei, with 100 grid points along each spatial direction. 

We need to solve a matrix with a size of 100=∙,A = 10iA. The first step to make this problem feasible is the 

Boron-Oppenheimer approximation, which separates the wavefunctions for the nuclei and the electrons. 

We can further consider the valance electrons. The nuclei along with the core electrons can be considered 

as a closed shell and treated classically. Still, the problem is too large to solve. An important concept is 

introduced, which is the electron density at any position r1 is defined as: 

 𝑛(𝑟,) = 𝑁�𝑟6 ⋯�𝑟z Ψ∗(𝑟, 𝑟6,⋯ 𝑟z)Ψ(𝑟, 𝑟6,⋯ 𝑟z) (2.2) 

It reduces the dimension of the problem from 3N to 3. Most approaches in solid-state physics are based 

on the single-electron eigenvalue equations, where each electron interacts only with the mean-field of all 

the others. The Schrodinger equation can be written in the following form 

 𝐻�Ψ(𝑟,,⋯𝑟z) = �𝑇� + 𝑉� + 𝑈�� (2.3) 
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�t−
1
2
∇D6

z

D

+t𝑉(𝑟D)
z

D

+t𝑈�𝑟D, 𝑟��
z

D��

�Ψ(𝑟,,⋯ 𝑟z) = 𝐸Ψ(𝑟,,⋯ 𝑟z) 

where the three terms in Hamiltonian are kinetic energy (𝑇�), external potential (𝑉�), and electron-electron 

interactions (𝑈�) [71], [72].  There are two fundamental theorems in DFT by Hohenberg-Kohn: 

• The ground-state energy is a unique functional of electron density. 

• The electron density that minimizes the energy of the overall functional is the true ground-state 

electron density. 

    For non-degenerate ground-states, the wavefunction uniquely depends on the potential 𝑉� , and  there 

exists exactly one 𝑉�  that produces the prescribed charge density. The ground-state wavefunction and energy 

are unique functionals of the density. The general energy functional can be expressed as 

 𝐸�[𝑛(𝑟)] = 𝐹[𝑛(𝑟)] + �Ψ[𝑛(𝑟)]�𝑉��Ψ[𝑛(𝑟)]� (2.4) 

where the variable F is called universal functional as it doesn’t depend on the specific system and is defined 

as 

 𝐹[𝑛(𝑟)] = �Ψ[𝑛(𝑟)]�𝑇� + 𝑈��Ψ[𝑛(𝑟)]� (2.5) 

The ground state energy E0,V can be written as 

 𝐸A,� = 𝐸�[𝑛A(𝑟)] (2.6) 

With the knowledge above, we can rewrite the many-electron Schrodinger equation through a set of 

single-electron equations 

 �𝑇� + 𝑉ze� + 𝑉�� + 𝑉�1� �ΨD = 𝐸DΨD (2.7) 

where 𝑇� is the kinetic energy term, 𝑉ze�  is the potential interaction term of the electron and the atomic nuclei, 

𝑉�� is the Hartree potential describing the repulsive interactions of the single electron to the total electron 

density of the system. These three terms are known terms. The 𝑉�1�  is the unknown term, which is the 

functional derivative of the exchange-correlation functional 𝐸�1. 

 𝑇� = −
1
2
∇D6 (2.8) 

 𝑉ze� = −
𝑍�
𝑟D�

 (2.9) 
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 𝑉�� = �
𝑛(𝑟�)
𝑟D�

𝑑𝑟� (2.10) 

 𝑉�1� =
𝛿𝐸�1
𝛿𝑛

 (2.11) 

One can find the solution following a self-consistency scheme: 

1. Define a trailing electron density n(r) 

2. Solve Kohn-Sham equations with n(r) and obtain a single electron wave function Yi. 

3. Calculate the electron density nnew(r) based on the single-electron wave functions using Eqn. (2.2). 

4. Check if nnew(r) = n(r). If yes, calculate the ground-state energy E0. If not, adjust n(r) using a weighted 

average of nnew(r) and n(r) and go back to step 1 until the difference is below the tolerance. 

There are several methods to approximate EXC. Here we’ll just briefly introduce the two simplest ones as 

the local density approximation (LDA) method and generalized gradient approximation (GGA) method. 

The LDA assumes the system has a uniform electron gas with density n(r), the electrons are moving in the 

background of positive charge distribution, and the total ensemble is charge neutral. While the LDA method 

has been successfully applied to many quantum chemistry problems, it suffers from underestimating the 

band gap of most semiconductors when dealing with solid-state physics problems. The accuracy can be 

improved by taking into account the gradient of the electron density beside the local density itself. It is 

known as the GGA method. The most commonly used GGA functional these days are the Perdew-Wang 

(PW91) functional and Perdew-Burke-Ernzerhof (PBE) functional. 

There are several packages available for DFT simulation: VASP, Quantum Espresso, Abinit, and Siesta. 

In this study, all the DFT simulations are performed using Quantum Espresso. Quantum Espresso is an 

integrated open-source package for electronic-structure calculations and materials modeling in nanoscales 

based on DFT, plane waves, and pseudopotentials. There are device simulation packages based on DFT-

NEGF, such as Quantum ATK. However, in most cases, DFT is too complicated for device simulations. 

DFT-NEGF is limited by the size of atomic numbers limited to a few hundred atoms. For practical device 

simulations in sub-micrometer scales, we need a more practical method to describe material properties, for 

example, by using effective mass approximations, tight-binding (TB) approximations, and maximally 

localized Wannier functions (MLWF). 

2.1.2 Effective Mass Approximation 

The effective mass approximation was extensively used to describe electronic motion in the presence of 

slowly varying perturbations. Under effective mass approximation, the motion of the electrons is described 
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by the one-electron Hamiltonian, assuming that the many-body interactions among electrons are negligible. 

In solid-state physics, band structures around the conduction band bottom can be described as 

 𝐸(𝑘) = 𝐸A +
ℏ6𝑘6

2𝑚∗  (2.12) 

where E(k) is the energy of an electron at wavevector k, E0 is usually the conduction band bottom or valence 

band top. By analogy with three-dimensional ellipsoidal energy bands, the E(k) of 2D materials can be 

approximated by 

 𝐸(𝑘) = 𝐸A +
ℏ6

2𝑚�
∗ (𝑘� − 𝑘A,�)

6 +
ℏ6

2𝑚�
∗ (𝑘� − 𝑘A,�)

6 (2.13) 

where 𝑚�
∗  and 𝑚�

∗  are the inertial effective masses along x and y axes around 𝑘A,� and 𝑘A,�. We can further 

define the density of states effective mass (mdos) and conductivity effective mass (mc) by 

 𝑚��n = �𝑚�𝑚��
,
6�  (2.14) 

 𝑚\ = 2.
1
𝑚�

+
1
𝑚�

5
2,

 (2.15) 

Here we use monolayer MoS2 as an example to show how to extract effective mass from DFT band 

structures. Most TMDs materials exhibit isotropic electron-effective mass. The band structure from DFT 

calculations of MoS2 is shown in Figure 2.1(a). Here the mid-bandgap (Ei) is not at 0 eV since this is the 

direct output from the DFT simulation. The usual band structure can be easily achieved by shifting Ei to 0 

eV. To extract the effective mass for electrons, we first plot the surface of the conduction band in the k-

space in Figure 2.1(b). There are two conduction band valleys in the first Brillouin zone, which is indicated 

by the hexagon (white line). Since we are only interested in the bands near the conduction band bottom, an 

enlarged surface plot around the K point is shown in Figure 2.1(c). By applying parabolic fitting, we 

extracted the effective mass along the x and y direction and compared the bands with DFT bands in Figure 

2.1(d) and (e). The polar plot of the electron effective mass of MoS2 is shown in Figure 2.1(f). The electron 

effective mass of MoS2 is near isotropic and is around 0.57m0. Similar processes can be adapted to extract 

hole effective mass. The surface plot of the valence band of MoS2 is shown in Figure 2.2(a) and (b). The 

extracted hole effective mass is also near isotropic and is around 0.61m0. 
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Figure 2.1 (a) MoS2 band structure along with high symmetry points from DFT, red line denotes the conduction band 

(b) Surface plot of MoS2 conduction band in k-space, the white line indicates the first Brillouin zone, the red line 

indicates the fitting range around K point which is the conduction band bottom. (c) Surface plot of MoS2 conduction 

band around K point. The DFT bands compared with the parabolic fitting of E(k) around K points along (d) x-direction 

and (e) y-direction. (f) Extracted electron effective mass polar plot. 

 

Figure 2.2 (a) Surface plot of MoS2 valence band in k-space. (b) Surface plot of valence band around K point. (c) 

Extracted hole effective mass polar plot. 

2.1.3 Tight-binding Approximation 

A tight-binding method is an approach to the calculation of electronic band structure using an approximate 

set of wave functions based upon the superposition of wave functions. It is closely related to the linear 

combination of atomic orbitals (LCAO) method, which is also a semi-empirical method. The name "tight 

binding" itself suggests that, in this model, electrons are considered tightly bounded to atoms. This method 
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can describe complex band structures with much better accuracy than the effective mass method, while at 

the same time, it can be applied to much larger systems than DFT up to a few thousand atoms. In this 

chapter, we will use monolayer TMD and monolayer to few-layer BP as examples to briefly demonstrate 

how the TB method solves band structures. 

    For monolayer TMD, here we adopt a three-band tight-binding approximation [24]. It is assumed that 

only three d orbitals (𝑑�G, 𝑑��, 𝑑�G2�G) of M (Mo, W) atom are considered and p orbitals of X (S, Se, Te) 

atom are neglected, since the Bloch states of monolayer MX2 near the band edges mostly consist of these 

three orbitals. We will start with the nearest-neighbor tight-binding (NN TB) model. The on-site 

Hamiltonian matrix for the unit cell as shown in Fig. 1.6(a) can be written as 

𝐻A = s
𝜖, 0 0
0 𝜖6 0
0 0 𝜖6

{ 

The integrations with neighbor unit cells as denoted by R1 to R6 can be written as 

𝐻, = s
𝑡A 𝑡, 𝑡6
−𝑡, 𝑡,, 𝑡,6
𝑡6 −𝑡,6 𝑡66

{ 
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𝐻= = 𝐻iL  

𝐻¥ = 𝐻,L 

𝐻¦ = 𝐻6L  

 

In this way, the Hamiltonian matrix of NN TB MX2 can be written as 
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𝐻 = 𝐻A + 𝐻,𝑒Df
§⃑ ∙VE§§§§§⃑ + 𝐻6𝑒Df

§⃑ ∙VG§§§§§⃑ + 𝐻=𝑒Df
§⃑ ∙V©§§§§§⃑ + 𝐻¥𝑒Df

§⃑ ∙Vª§§§§§⃑ + 𝐻¦𝑒Df
§⃑ ∙V«§§§§§⃑ + 𝐻i𝑒Df

§⃑ ∙V¬§§§§§⃑  

    The fitted parameters of the three-band NN TB model of monolayer MX2 using generalized gradient 

approximations (GGA) are shown in Table 2.1. a and ZX-X are the relaxed lattice constant and X-X distance 

in the z-direction, respectively. The energy parameters 𝜖, to t22 are given in the unit of eV. Here we use 

MoS2 and MoSe2 as two examples to show the band structures plotted by using the TB parameters (blue) 

and the first principle results (red) in Figure 2.3(a) and (b), respectively.  

Table 2.1 Fitted parameters of the three-band NN TB models for monolayer MX2 [24]. 

 a(Å) zX-X(Å) ϵ, ϵ6 tA t, t6 t,,  t,6  t66 

GGA 

MoS2 3.190 3.130 1.046 2.104 -0.184 0.401 0.507 0.218 0.338 0.057 

WS2 3.191 3.144 1.130 2.275 -0.206 0.567 0.536 0.286 0.384 -0.061 

MoSe2 3.326 3.345 0.919 2.065 -0.188 0.317 0.456 0.211 0.290 0.130 

WSe2 3.325 3.363 0.943 2.179 -0.207 0.457 0.486 0.263 0.329 0.034 

MoTe2 3.557 3.620 0.605 1.972 -0.169 0.228 0.390 0.207 0.239 0.252 

WTe2 3.560 3.632 0.606 2.102 -0.175 0.342 0.410 0.233 0.270 0.190 

 

Figure 2.3 The NN TB band structures (blue line) of MX2 monolayer compared with the first principle results (red 

lines) for (a) MoS2 and (b) MoSe2 [24]. 

The tight-binding parameters of BP are extracted from GW approximation [73] and listed in Table 2.2. 

The interactions between each atom in one unit cell are shown in Figure 2.4. Due to the rectangular unit 

cell, the Hamiltonian matrix of the interaction between unit cell to its neighbor cells can be written as 

follows: 

𝛼 = ¯

0 𝑡, 𝑡¥ 𝑡¦
𝑡, 0 𝑡6 𝑡¥
𝑡¥ 𝑡6 0 𝑡,
𝑡¦ 𝑡¥ 𝑡, 0

° 

𝛽 = ¯

0 0 0 0
𝑡= 0 0 0
𝑡¥ 𝑡¦ 0 0
𝑡6 𝑡¥ 𝑡= 0

° 
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𝛾 = ¯

0 0 0 0
𝑡, 0 0 𝑡¥
𝑡¥ 0 0 𝑡,
0 0 0 0

° 

𝛿, = ¯

0 0 0 0
𝑡= 0 0 0
𝑡¥ 0 0 0
0 0 0 0

° 

𝛿6 = ¯

0 0 0 0
0 0 0 0
0 0 0 0
0 𝑡¥ 𝑡= 0

° 

𝐻 = 𝛼 + 𝛽𝑒Df§⃑ ∙(³,A) + 𝛾𝑒Df§⃑ ∙(A,´) + 𝛿,𝑒Df
§⃑ ∙(³,´) + 𝛿6𝑒Df

§⃑ ∙(³,2´) 

+𝛽L𝑒Df§⃑ ∙(2³,A) + 𝛾L𝑒Df§⃑ ∙(A,2´) + 𝛿,
L𝑒Df§⃑ ∙(2³,2´) + 𝛿6

L𝑒Df§⃑ ∙(2³,´) 

For bilayer BP, interlayer interactions need to be added to the Hamiltonian matrix. The interlayer 

interactions can be described as bottom to the top layer (B2T) and top to bottom layer (T2B). The relevant 

matrices are given as: 

𝛼L6p = ¯

ℎ¥ ℎ6 0 0
ℎ6 ℎ, 0 0
0 0 0 0
0 0 0 0

° , 𝛼p6L = ¯

ℎ¥ ℎ6 0 0
ℎ6 ℎ, 0 0
0 0 0 0
0 0 0 0

° 

𝛽L6p = ¯

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

° , 𝛽p6L = ¯

ℎ, ℎ6 0 0
ℎ6 ℎ¥ 0 0
0 0 0 0
0 0 0 0

° 

𝛾L6p = ¯

ℎ¥ ℎ= 0 0
ℎ= 0 0 0
0 0 0 0
0 0 0 0

° , 𝛾p6L = ¯

0 ℎ= 0 0
ℎ= ℎ, 0 0
0 0 0 0
0 0 0 0

° 

𝛿,L6p = ¯

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

° , 𝛿,p6L = ¯

0 ℎ= 0 0
ℎ= ℎ¥ 0 0
0 0 0 0
0 0 0 0

° 

𝛿6L6p = ¯

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

° , 𝛿6p6L = ¯

ℎ, ℎ= 0 0
ℎ= 0 0 0
0 0 0 0
0 0 0 0

° 

In this way, the interactions between unit cell to its neighbor cells can be written as: 
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𝛼´D = ?
𝛼 𝛼L6p

𝛼p6L 𝛼L B 

𝛽´D = ?
𝛽 𝛽L6p
𝛽p6L 𝛽L B 

𝛾´D = ?
𝛾 𝛾L6p

𝛾p6L 𝛾L B 

𝛿,´D = µ
𝛿, 𝛿,L6p

𝛿,p6L 𝛿,
L ¶ 

𝛿6´D = µ
𝛿6 𝛿6L6p

𝛿6p6L 𝛿6
L ¶ 

𝐻´D = 𝛼´D + 𝛽´D𝑒Df
§⃑ ∙(³,A) + 𝛾´D𝑒Df

§⃑ ∙(A,´) + 𝛿,´D𝑒
Df§⃑ ∙(³,´) + 𝛿6´D𝑒

Df§⃑ ∙(³,2´) 

+𝛽´D
L𝑒Df§⃑ ∙(2³,A) + 𝛾´DL𝑒Df

§⃑ ∙(A,2´) + 𝛿,´D
L𝑒Df§⃑ ∙(2³,2´) + 𝛿6´D

L𝑒Df§⃑ ∙(2³,´) 

Table 2.2 Intralayer (t) and interlayer (h) hopping parameters of tight-binding parameters for monolayer and bilayer 

BP [73]. 

Number of layers 1 2 3 4 5 

Intralayer (t) [eV] -1.220 3.665 -0.205 -0.105 -0.055 

Interlayer (h) [eV] 0.295 0.273 -0.151 -0.091 ¾ 

 

 

Figure 2.4 Intralayer and interlayer interactions in bilayer BP [73]. 

    The comparison between DFT bands and tight-binding bands of monolayer and bilayer BP is shown in 

Figure 2.5. The conduction band bottom and valence band top are both located in G points. Even though 

the E(k) from the TB method is away from DFT bands along most high symmetry points, it captures the 
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bands around G points pretty well. This is already enough for large-scale device simulations with very good 

accuracy.  

 

Figure 2.5 Band structure using tight-binding (blue line) in comparison with the original GW band structure (red line) 

for (a) monolayer BP and (b) bilayer BP [73]. 

2.1.4 MLWF Approximation 

Most of the DFT codes are using plane-waves to expand the single-particle Kohn-Sham wavefunctions. 

However, this is not suitable for transport simulations. The localized basis functions are desired for high-

accuracy quantum transport simulations. Wannier introduced a localized, real-space representation of Bloch 

states. Later, Marzari and Vanderbilt developed a formally and computationally attractive method for the 

construction of such Wannier functions (WFs) with maximal localization criteria. It is implemented in the 

Wannier90 code [74]. The Bloch Hamiltonian is transformed to the MLWF basis. The MLWF can fit band 

structure very well, yet still practical for device scale simulations. With the help of Wannier90, we can 

study complex heterojunction structures, which is difficult in the TB method. In this section, we will use 

bilayer AB stacking 1T2H MoS2 as an example to demonstrate how MLWF makes hetero-junction device 

simulation possible. 

The top view and side view of the atomic structure of the 1T2H bilayer is shown in Figure 2.6(a). The 

primitive cell is highlighted by a black rhombus panel. This is the cell used for band structure calculation 

for most material studies. And the corresponding band structure is shown in Figure 2.6(b). As the existence 

of Van Der Waals interaction between 1T and 2H layer, the band structure of 1T2H bilayer is different from 

1T bands overlie on 2H bands. The 1T2H MoS2 is a metallic material with zero bandgaps. However, the 

primitive cell is not suitable for NEGF simulation. We constructed a rectangular supercell which is denoted 

by the grey panel, with twice the number of atoms compared to the primitive cell. From the orbital 

contribution analysis, we found the bands near the Fermi level is mainly contributed by the five d orbitals 

(𝑑�G, 𝑑��, 𝑑��, 𝑑��, 𝑑�G2�G	) from Mo atom, and three p orbital (px, py, pz) from S atom. As there are 4 Mo 

atoms and 8 S atoms in one supercell, the extracted MLWF is 44 by 44 matrix. The band structure from 

X Y
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extracted MLWF is compared with the DFT bands in Figure 2.6(c). We can see that the fitting is very good 

for a large energy range. 

 

Figure 2.6 (a) Top view and side view of 1T2H bilayer (b) Band structure along high symmetry points from DFT of 

MoS2 primitive cell (c) Band structure of MoS2 rectangular supercell comparison between DFT and MLWF. 

2.2 Schottky Barrier 

2.2.1 Metal-Semiconductor Junction 

For modeling of Schottky contact device, we will start from the ideal case of the conventional 3D 

semiconductor-metal junction. The band diagrams of metal and n-type semiconductor are shown in Figure 

2.7, where fBn is the barrier height, and EFm is the fermi level of metal, Ybi is the build-in potential of the 

semiconductor. The barrier height is determined by the work function of metal (fm) and electron affinity of 

semiconductor (c), and we have qfBn = q(fm - c) [75]. Here the interface states and image-force barrier 

lowering will not be considered. We will focus on the current transport process. 

 

Figure 2.7 Energy band diagrams of metal and n-type semiconductors under different biasing conditions (a) Thermal 

equilibrium (b) Forwards bias (c) Reverse bias [75]. 

For forward bias conditions, five basic transport processes are normally considered, as shown in Figure 

2.8. These five processes are (1) electrons emission over barrier, (2) electron tunneling through barrier, (3)  

recombination in the space-charge region, (4) diffusion of electrons, (5) diffusion of holes. Here processes 

(1) and (2) will be mainly discussed. For thermionic emission, the following assumptions are made to derive 
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the current: 1) barrier height qfBn is much larger than kT, 2) thermal equilibrium is established, 3) the 

existence of net current flow doesn’t affect equilibrium. Thus we can decompose the total current into two 

current fluxes, one from semiconductor to metal and the other from semiconductor to metal.  

 𝐽j = 𝐽¸→º − 𝐽º→¸ (2.16) 

 

Figure 2.8 Five basic transport processes for forward bias metal and n-type semiconductor contacts [75]. 

Since only thermionic emission is considered here, the current flow only depends on barrier height, and 

the barrier shape is immaterial. The current density from semiconductor to metal is determined by the 

electrons with sufficient energy to overcome the barrier, which is EFn + qfBn. 

 𝐽¸→º = � 𝑞𝑣�𝑑𝑛
½

¾g¿TÀÁÂ¿
 (2.17) 

Where vx is the carrier velocity along the transport direction. The electron density is given according to 

 𝑑𝑛 = 𝑁(𝐸)𝐹(𝐸)𝑑𝐸 ≈
4𝜋(2𝑚∗)

=
6

ℎ= Å𝐸 − 𝐸1	exp	(−
𝐸 − 𝐸1 + 𝑞𝜙j

𝑘𝑇
)𝑑𝐸 (2.18) 

Where N(E) is the density of states and F(E) is the distribution function, m* is the effective mass of electron 

at conduction band. If we assume for electrons, all the energy in the conduction band is kinetic energy. We 

will have Å𝐸 − 𝐸1 = 𝑣Å𝑚∗/2. Then Equation 2.18 can be written as  

 𝑑𝑛 ≈ 2Ê
𝑚∗

ℎ
Ë
=

exp Ê−
𝑞𝜙j
𝑘𝑇

Ë exp.−
𝑚∗𝑣6

2𝑘𝑇
5 (4𝜋𝑣6𝑑𝑣) (2.19) 

 

This describes the number of electrons per unit volume with velocities between v and v + dv in all directions. 

Since the desired transport direction is along +x direction, with the transformation 4𝜋𝑣6𝑑𝑣 = 𝑑𝑣�𝑑𝑣�𝑑𝑣�. 

We can have 
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𝐽¸→º = 2𝑞 Ê
𝑚∗

ℎ
Ë
=

exp Ê−
𝑞𝜙j
𝑘𝑇

Ë� 𝑣� exp .−
𝑚∗𝑣�6

2𝑘𝑇
5𝑑𝑣�

½

ÌÍÎ
 

� exp .−
𝑚∗𝑣�6

2𝑘𝑇
5𝑑𝑣�

½

2½
� exp .−

𝑚∗𝑣�6

2𝑘𝑇
5𝑑𝑣�

½

2½
 

= (
4𝜋𝑞𝑚∗𝑘6

ℎ=
)𝑇6exp	(−

𝑞𝜙j
𝑘𝑇

)exp	(−
𝑚∗𝑣A�6

2𝑘𝑇
) 

(2.20) 

The velocity v0x is the minimum velocity to surmount the barrier, which is given by ,
6
𝑚∗𝑣A�6 = 𝑞(𝜓´D −

𝑉). We can further get 

 𝐽¸→º = .
4𝜋𝑞𝑚∗𝑘6

ℎ=
5𝑇6 exp Ê−

𝑞𝜙pj
𝑘𝑇

Ë exp Ê
𝑞𝑉
2𝑘𝑇

Ë = 𝐴∗𝑇6 exp Ê−
𝑞𝜙pj
𝑘𝑇

Ë exp Ê
𝑞𝑉
2𝑘𝑇

Ë (2.21) 

where the prefactor 𝐴∗ = ¥OÀq
∗fG

d©
 is the effective Richardson constant for thermionic emission, neglecting 

the effects of optical-phonon scattering and quantum effect. For free electrons (𝑚∗ = 𝑚A) the Richardson 

constant is 120 A/cm2-K2. For electrons injected from metal to semiconductor remain constant as barrier 

height is not affected by bias. At thermal equilibrium (V = 0) we have 𝐽¸→º = 𝐽º→¸. 

 𝐽º→¸ = 𝐴∗𝑇6 exp Ê−
𝑞𝜙pj
𝑘𝑇

Ë (2.22) 

In the way, we get 

 𝐽j = 𝐴∗𝑇6 exp Ê−
𝑞𝜙pj
𝑘𝑇

Ë ?exp Ê
𝑞𝑉
2𝑘𝑇

Ë − 1B = 𝐽L¾ ?exp Ê
𝑞𝑉
2𝑘𝑇

Ë − 1B (2.23) 

where 𝐽L¾ = 𝐴∗𝑇6 exp Ñ− ÀÁÂ¿
fL

Ò. 

    The thermionic current is strongly affected by temperature. When the temperature is low, the tunneling 

current will become the dominant part. Similarly, when the semiconductor is highly doped, the barrier 

becomes thinner, and the tunneling current becomes more significant. As we increase the doping 

concentration, the degenerate semiconductor will form an ohmic contact with metal where the tunneling 

current is the dominant transport process. We can roughly categorize the components into three types as 

shown in Figure 2.9: (1) thermionic emission (TE) over the barrier as we discussed above, (2) field emission 

(FE) near the Fermi level, which is a pure tunneling process and (3) thermionic-field emission (TFE) at an 

energy between TE and FE, which is tunneling of thermally excited carriers through thinner barrier than 

FE. The relative contributions of these components depend on both temperature and doping level. The 

further analytical expression is complex and not intuitive. Rigorous numerical simulations based on 

quantum mechanisms are needed as we will discuss in the following chapters. 
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Figure 2.9 Energy band diagrams of tunneling currents in Schottky metal and n-type semiconductor under (a) forward 

bias (b) reverse bias. Em is where the TFE peak locates [75].  

2.2.2 Extracting SB Height from DFT Simulation 

Extracting Schottky barrier height is one key step towards practical device simulations. Here we’ll use 1T-

2H heterojunction MoS2 as an example to demonstrate how barrier height is extracted from DFT 

simulations. The top view and side view of in-plane 1T-2H MoS2 heterojunction, top contact 1T-2H 

junction with AB stacking, and top contact 1T-2H with AA stacking heterojunctions are shown in Figure 

2.10. As DFT simulations are using plan wave functions, in the x-direction, heterojunctions are constructed 

with enough length for 1T and 2H MoS2. Enough space is used in the z-direction to screen the interactions. 

Van der Waals interactions are considered with vdW-DF2 Van der Waals density functional. A 7×11×1 k-

space sampling is used for self-consistent simulations. A denser k mesh of 15×21×1 is used for non-self-

consistent simulations. The kinetic energy cutoff for wavefunctions is set to 50 Ry, and the kinetic energy 

cutoff for charge density and potential is set to 400 Ry. The difference between AB and AA stacking in 

bilayer 1T2H MoS2 as shown in Figure 2.10(b) and (c) is, for AA stacking, all the Mo atoms in bottom 2H 

MoS2 are under the Mo atoms in the top 1T layer, similarly for S atoms; for AB stacking, all the Mo atoms 

in the bottom 2H layer are under the S atoms in top 1T layer, S atoms in the bottom 2H layer are under Mo 

atoms in top 1T layer. AB stacking are slightly more stable than AA 1T2H stacking MoS2. The projected 

density of states (PDOS) of 2H MoS2 in the right part of the heterojunction is extracted. Then we can read 

the Ec and Ev from the PDOS plot and read the difference to the common Fermi level, which is the Schottky 

barrier height. The bandgap read from PDOS fits the bandgap calculated from free-standing 2H MoS2. As 

we can see in the right part of Figure 2.10, 1T-2H side contact MoS2 heterojunction is n-type with FBn = 

0.70 eV, 1T-2H top contact MoS2 heterojunctions with AB stacking and AA stacking are p-type with FBp 

= 0.72 eV and 0.74 eV respectively. We also notice in the bandgap region of PDOS, the top contact is clean 

with close to zero value. However, in the side contact heterojunction, some non-zero value exists. This is 

because the coupling formed in the side contact heterojunction is much stronger than the Van der Waals 
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interactions in top contact. The stronger interactions make 2H MoS2 semi-metallic when it’s close to 1T 

MoS2. This can be observed in the space distributed PDOS plot of side contact heterojunction in Figure 

2.11. The white lines in the 2H part denote the conduction band bottom and valence band top. The red color 

indicates high DOS, and blue indicates low DOS. For 2H MoS2 away from the interface, it is 

semiconducting with a clear bandgap. However, for 2H MoS2 in the middle and right end (as this is still 

periodic along x-axis), we notice red peaks in the bandgap energy range, which makes semiconducting 2H 

MoS2 “semi-metallic.”  

 

Figure 2.10 Top view and side view of MoS2 heterojunctions with (a) 1T-2H side contact (b) 1T-2H top contact with 

AB stacking (c) 1T-2H top contact with AA stacking. The projected density of states (PDOS) plots from 2H MoS2 are 

on the right column. 
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Figure 2.11 Space distributed PDOS for side contact 1T-2H MoS2 heterojunction. 

The different extracted barrier height indicates the geometry of junction has strong effects. In DFT 

simulation, the metallic 1T MoS2 is strained to match the lattice constant of 2H MoS2. In real experiments, 

things can be much more complex. There might exist defects at the interface, the interface between 1T and 

2H might be nonuniform, the interface atoms might suffer from hanging dangling bonds. All these nonideal 

effects might result in the shifting of Schottky barrier height. In this study, we will only focus on the ideal 

case. 

2.3 Quantum Transport Simulations 

The wave-like behavior of electrons becomes substantially significant in nanoscale devices. As a result, the 

semiclassical transport equation, like Boltzmann Transport Equation (BTE), may not be valid anymore. A 

full quantum mechanical transport non-equilibrium Green’s function (NEGF) approach is needed. With the 

help of DFT simulation, we can extract the H matrix describing the material properties and extract Schottky 

barrier height at the metal-semiconductor interface. In this section, the atomic quantum transport simulation 

method will be briefly introduced [76]. We will start from the 1D atomic chain and expand to more 

generalized forms in Green’s functions.  

2.3.1 Phase Coherent Quantum Transport in 1D Atomic Chain 

The Hamiltonian of a spatially uniform one-dimensional grid point with spacing a and with a constant 

potential is 

 −𝑡ΨÀ2, + (𝐸 − 𝜖)ΨÀ − 𝑡ΨÀT, = 0 (2.24) 

Where E is the energy, and ΨÀ is the wave function at grid point q. Using the Bloch theorem, the solution 

of Equation 2.24 is 
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𝐸 = 	𝜖 + 2𝑡	𝑐𝑜𝑠(𝑘𝑎) 

ΨÀ = 𝑒DfÀ³ 
(2.25) 

A general nearest neighbor uniform tight-binding Hamiltonian can be given as 

 −𝑡À,À2,ΨÀ2, + �𝐸 − 𝜖À�ΨÀ − 𝑡À,ÀT,ΨÀT, = 0 (2.26) 

where 𝜖À is the onsite potential at gird q and tq,q+1 is the hopping parameter from grid q to q+1. We have 

𝑡À,ÀT, = 𝑡ÀT,,ÀJ as the Hamiltonian is Hermitian. In effective mass approximation, we have  

 

𝑡 = 𝑡À,ÀT, = 𝑡À,ÀT, = −
ℏ6

2𝑚∗𝑎6
 

𝜖À = 𝑉À +
ℏ6

𝑚∗𝑎6
= 𝑉À − 2𝑡 

(2.27) 

Where m* is the effective mass and Vq is the electrostatic potential at grid q. 

 

Figure 2.12 A schematic of the setting of Schottky contact FET. The Source and Drain are semi-infinite metal leads, 

with a notation of (l1, l2 …) and (r1 r2 …). The Device region is with the notation of (1, 2, 3 …) [76]. 

    A typical SBFET can be divided into three parts: semi-infinite source metal lead, semi-infinite drain 

metal lead, and semiconducting device region, as shown in Figure 2.7. The effective mass of electron in the 

semiconductor is 𝑚∗ and the effective mass of electron in metal is 𝑚Ö
∗. The potential of the source (drain) 

lead 𝜖×	(𝜖Ø) and the hopping parameter tl (tr) is assumed to be constant. Then the Hamiltonian of the device 

and leads can be expressed as 

• 

• 

−𝑡×Ψ×= + (𝐸 − 𝜖×)Ψ×6 − 𝑡×Ψ×, = 0 

 −𝑡×Ψ×6 + (𝐸 − 𝜖×)Ψ×, − 𝑡×,�Ψ, = 0 (2.28) 

 −𝑡�,×Ψ×, + (𝐸 − 𝜖,)Ψ, − 𝑡,,6Ψ6 = 0 (2.29) 
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  −𝑡6,,Ψ, + (𝐸 − 𝜖6)Ψ6 − 𝑡6,=Ψ= = 0 (2.30) 

• 

• 

 −𝑡j,j2,Ψj2, + (𝐸 − 𝜖j)Ψj − 𝑡�,ØΨØ, = 0 (2.31) 

 −𝑡Ø,�Ψj + (𝐸 − 𝜖Ø)ΨØ, − 𝑡ØΨØ6 = 0 (2.32) 

−𝑡ØΨØ, + (𝐸 − 𝜖Ø)ΨØ6 − 𝑡ØΨØ= = 0 

• 

• 

Follow the routing, we want to fold the influence of semi-infinite metal leads into Σ¸ and  ΣÚ. The wave 

function in source and drain leads due to waves incident from left is  

 Ψ×j = (𝑒TDfÛ�Û¿ + 𝑠××𝑒2DfÛ�Û¿) in region L (2.33) 

 ΨØj = 𝑠Ø×𝑒TDfÜ�Ü¿  in region R (2.34) 

Where xln and xrn correspond to integer times grid spacing (a), sll and srl are the reflection and transmission 

amplitudes. The normalization constant has been neglected, and the corresponding eigenvalues are 

 𝐸 − 𝜖× = 2𝑡Ý𝑐𝑜𝑠(𝑘×𝑎) = 𝑡Ý�𝑒DfÛ³ + 𝑒2DfÛ³� (2.35) 

Similarly, for right lead, with indexes r. Substituting (2.38) and (2.40) in (2.33) we have 

 𝑠×× = 𝑡×2,(−𝑡× + 𝑡×,�Ψ,) (2.36) 

Substituting (2.36) and (2.33) in (2.28) we have  

 �𝐸 − 𝜖, − 𝑡�,×𝑒DfÛ³𝑡×2,𝑡×,��Ψ, − 𝑡,,6Ψ6 = −2𝑖𝑡�,×sin	(𝑘×𝑎) (2.37) 

Equation (2.37) is a modification of equation (2.29). As we can see here, the influence of the entire semi-

infinite left lead has been included in grid point 1. Similarly, substituting (2.34) and 𝐸 − 𝜖Ø = 2𝑡â𝑐𝑜𝑠(𝑘Ø𝑎) 

into (2.32), we have 

 𝑠×Ø =
𝑡Ø,�
𝑡Ø
Ψj (2.38) 

Once we substitute (2.34) and (2.38) into (2.31) we can fold the influence of the entire semi-infinite right 

lead into grid point n. 

 −𝑡j,j2,Ψj2, + Ê𝐸 − 𝜖j −
𝑡Ø,�
𝑡Ø

𝑒DfÜ³ËΨj = 0 (2.39) 
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To get the wave function in the device due to waves incident from left lead, we can solve the following 

n-dimensional matrix: 

 𝐴ΨÚ(ã) = 𝑖ã (2.40) 

Where the size of A is n by n, ΨÚ(ã) and 𝑖ã is n by 1. 𝑖ã is the source function at (k, E) due to the left lead. 

Similarly, for waves incident from right lead, we have 

 𝐴ΨÚ(V) = 𝑖V (2.41) 

Where iR is the source function due to the right lead. 

Matrix A is 

 𝐴 = 𝐸𝐼 − 𝐻Ú − Σ¸ − ΣÚ (2.42) 

And the only nonzero elements in Σ¸ and ΣÚ are 

 Σ¸(1,1) =
𝑡�,×𝑡×,�
𝑡×

𝑒DfÛ³ (2.43) 

  ΣÚ(𝑛, 𝑛) =
𝑡�,Ø𝑡Ø,�
𝑡Ø

𝑒DfÜ³ (2.44) 

The physical meaning of Σ¸ and ΣÚ is that the on-site potential at grid point 1 is shifted from 𝜖, to 𝜖, +

𝑅𝑒(Σ¸), at grid point n the on-site potential is shifted from 𝜖j  to 𝜖j + 𝑅𝑒(ΣÚ). The scattering rate of 

electrons from grid point 1 of the device to the left lead is −2𝐼𝑚(Σ¸), and from grid point n of the device 

to right lead is −2𝐼𝑚(ΣÚ) in the weak coupling limit. The only nonzero element of A, iL, and iR are 

 𝐴(1,1) = 𝐸 − 𝜖, − Σ¸(1,1) and 𝐴(𝑛, 𝑛) = 𝐸 − 𝜖j − ΣÚ(𝑛, 𝑛) (2.45) 

 𝐴(𝑖, 𝑖) = 𝐸 − 𝜖D (2.46) 

  𝐴(𝑖, 𝑖 + 1) = −𝑡D,DT, and 𝐴(𝑖 + 1, 𝑖) = −𝑡D,DT,J (2.47) 

  𝑖ã(1) = −2𝑖𝑡�,×sin	(𝑘×𝑎) (2.48) 

 𝑖V(𝑛) = −2𝑖𝑡�,Øsin	(𝑘Ø𝑎) (2.49) 

2.3.2 Self-Energy 

2.3.2.1 Schottky Contact 

For a nominal SBFET with effective mass approximation, we assume a uniformly distributed 

semiconductor with effective mass 𝑚∗ and space grid a, we have 
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𝑡D,DT, = 𝑡DT,,D = 𝑡 = −

ℏ6

2𝑚∗𝑎6
	𝑎𝑛𝑑	𝜖D = −2𝑡 

(2.50) 

The source and drain metal lead are with the same effective mass 𝑚Ö
∗ and same space grid a, we have 

 
𝑡Ø = 𝑡× = 𝑡q = −

ℏ6

2𝑚Ö
∗𝑎6

 
(2.51) 

For source lead, to avoid using the bottom of the conduction band, we shift the energy down by Eoffset, which 

is normally set to 1 eV or 2tm. According to Equation 2.40, we have  

 𝐸 − 𝐸�ååneÖ − 2𝑡q = 2𝑡æ𝑐𝑜𝑠(𝑘×𝑎) (2.52) 

For source lead we have  

 𝑘×𝑎 = 𝑐𝑜𝑠2,(1 −
𝐸 − 𝐸�ååneÖ

𝑡æ
) (2.53) 

Similarly, for drain side we have 

 𝑘Ø𝑎 = 𝑐𝑜𝑠2,(1 −
𝐸 − 𝐸�ååneÖ + 𝑉�

𝑡æ
) (2.54) 

The simplest approximation for coupling between the source and device [77], and drain and device would 

be  

 
𝑡�,× = 𝑡×,� = 𝑡�,Ø = 𝑡Ø,� = 𝑡q = −

ℏ6

2𝑚Ö
∗𝑎6

 
(2.55) 

Under this assumption, we have Σ¸(1,1) = 𝑡q𝑒DfÛ³, and ΣÚ(𝑛, 𝑛) = 𝑡q𝑒DfÜ³. Relative studies have shown 

that the value of 𝑚Ö
∗ has a small effect on final results [78]. 

    For a nominal SBFET with a tight-binding approximation, it becomes more complex. We will start from 

the basic form of monolayer black phosphorus along the armchair direction. As we have discussed in 

Chapter 2.3.1, we can eliminate the influence of two semi-infinite leads into SS and SD. And the only 

nonzero elements are SS(1,1) and SD(n,n), where n is the number of girds in the device region. For SBFET, 

there are no transitional areas in the device region. The semiconducting device region is directly connected 

to semi-infinite metal leads. We will start from the device region. The atomistic structure of each grid of 

monolayer BP is shown in Figure 2.14. We will use the tight-binding parameters provided in Chapter 2.1.3. 

The basis function for monolayer BP is one orbital for each atom. Then the size of Hamiltonian is 4 by 4 

matrix. Then we will look at the Hamiltonian for metal leads. We lack the exact format of Hamiltonian of 

metal leads without knowing its atomics structure and its basis functions. But we will show under a certain 

assumption we can get SS and SD without knowing the exact Hamiltonian of metal leads.  
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Figure 2.13 Atomistic structure of monolayer BP grid in device region in (a) top-down view, (b) side view. 

Let’s assume there are w atoms in one metal grid point and one orbital for each atom. Then the size of 

Hamiltonian would be w by w. Let’s assume for the source side, the last atom of metal is connected to the 

first atom of BP with some coupling parameter p. We have shown that the only nonzero element in Σ¸ 

locates in [1,1] as Σ¸(1,1) = 𝛽J𝐺¸(𝑙1, 𝑙1)𝛽, where 𝛽 is the coupling matrix of neighbor grids from BP to 

metal. The size of 𝛽 is 4 by w. As the only coupling is between the last atom in metal and the first in BP, 

we have the only nonzero element locates in (w,1) in 𝛽 and (1,w) in 𝛽J as follows, 

 𝛽 =

1 2 3 4
1
2
3
⋮
⋮
𝑤 ⎣

⎢
⎢
⎢
⎢
⎡

𝑝 ⎦
⎥
⎥
⎥
⎥
⎤

, 𝛽J =

1 2 3 ⋯ ⋯ 𝑤
1
2
3
4

¯

𝑝

° (2.56) 

The size of 𝐺Ú(𝑙1, 𝑙1) is w by w. We would have 

 

Σ¸(1,1) = 𝛽J𝐺¸(𝑙1, 𝑙1)𝛽 

=

1 2 3 ⋯ ⋯ 𝑤
1
2
3
4

¯

𝑝

° s
𝑔¸,, ⋯ 𝑔¸,í
⋮ ⋱ ⋮

𝑔¸í, ⋯ 𝑔¸íí
{

1 2 3 4
1
2
3
⋮
⋮
𝑤 ⎣

⎢
⎢
⎢
⎢
⎡

𝑝 ⎦
⎥
⎥
⎥
⎥
⎤

 

=

1 2 3 4
1
2
3
4

¯

𝑝𝑔¸íí𝑝

° 

(2.57) 

In this way, we prove the only nonzero element in Σ¸(1,1) locates in [1,1]. Similarly, for the drain side, 

we assume the last atom in BP is connected to the first atom in metal. As the only nonzero element in ΣÚ 

locates in [n,n] as ΣÚ(𝑛, 𝑛) = 𝛽𝐺Ú(𝑟1, 𝑟1)𝛽J, we have 

(a) (b)
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ΣÚ(𝑛, 𝑛) = 𝛽𝐺Ú(𝑟1, 𝑟1)𝛽J 

=

1 2 3 ⋯ ⋯ 𝑤
1
2
3
4

¯

𝑞

° s
𝑔Ú,, ⋯ 𝑔Ú,í
⋮ ⋱ ⋮

𝑔Úí, ⋯ 𝑔Úíí
{

1 2 3 4
1
2
3
⋮
⋮
𝑤 ⎣

⎢
⎢
⎢
⎢
⎡ 𝑞

⎦
⎥
⎥
⎥
⎥
⎤

 

=

1 2 3 4
1
2
3
4

¯

𝑞𝑔Ú,,𝑞

° 

(2.58) 

We have converted the unknown matrix 𝛽, 𝐺Ú(𝑙1, 𝑙1) and 𝐺¸(𝑟1, 𝑟1) into two unknown parameters 

𝑝𝑔¸íí𝑝 and 𝑞𝑔Ú,,𝑞. In this way, we get Σ¸ and ΣÚ. The value of 𝑝𝑔¸íí𝑝 and 𝑞𝑔Ú,,𝑞 reflect the contact 

quality between metal and semiconductor. For example, if we use the rectangular supercell shown in Figure 

2.14 as the building block for a monolayer BP SBFET. Then at the leftmost side of the channel, atom 1 is 

connected to source metal; at the rightmost side, atom 4 is connected to drain metal. The continuous carrier 

injection from metal to BP channel is modeled by self-energy matrix 

 Σ¸ = −𝑖 ¯
𝑡A

° , ΣÚ = −𝑖 ¯

𝑡A

° (2.59) 

    Where there’s the only nonzero element at the left top corner for Σ¸ and right bottom corner for ΣÚ. The 

t0 value determines the contact quality, and a commonly adopted value is around 2 eV [79]. 

    Besides the self-energy matrix, additional modifications should be addressed in the settings of Poisson 

equations. We need to change the boundary condition for source-semiconductor and drain-semiconductor 

interface to fixed boundary conditions. For the source side, the potential should be fixed to FBn, and for the 

drain side, the potential should be fixed to FBn-VD. This will be discussed in later chapters.  

2.3.2.2 Ohmic Contact 

For Ohmic contact devices, we assume semi-infinite leads at source and drain with heavily doping. The 

device can also be divided into three parts. However, for Ohmic contact devices, the simulated device region 

consists of two transition regions near the source and drain and the channel region in the middle. The 

transition regions play an important role, and it should be sufficiently long that the potential can smoothly 
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drop and match with 𝜇¸ and 𝜇Ú. The semi-infinite source and drain can be eliminated by a certain process 

as follows. 

    We first consider a device with just drain and device region. The interactions from device to drain can 

be described by the matrix t (size n ´ rn), then the interactions from drain to device is 𝜏J(size rn ´ n). We 

have  

 𝐺Ö�Ö = ? 𝐺 𝐺�Ú
𝐺Ú� 𝐺Ú

B = ?
(𝐸 + 𝑖0T)𝐼 − 𝐻 −𝜏

−𝜏J (𝐸 + 𝑖0T)𝐼Ú − 𝐻Ú
B
2,

 (2.60) 

Where HD is the Hamiltonian of the semi-infinite drain in size rn ´ rn, ID is an identity matrix same size as 

HD, 0+ is infinitesimal number gives rise to a finite broadening. In this way, we can write G in the form as 

follows: 

 𝐺 = [(𝐸 + 𝑖0T)𝐼 − 𝐻 − ΣÚ]2, = [(𝐸 + 𝑖0T)𝐼 − 𝐻 − 𝜏𝐺Ú𝜏J]2, (2.61) 

where ΣÚ = 𝜏𝐺Ú𝜏J. If we assume interaction only exits between two neighbor grids, the hopping matrix tdr 

(size determined by the basic function of each grid) between grid n in the device region and r1 in the semi-

infinite right lead region can be described by b. Then the only nonzero element in 𝜏 locates at [n, 1]. The 

nonzero element in 𝜏J locates in [1, n] as follows 

 
𝜏 = ñ

0 ⋯ 0
⋮ ⋱ ⋮
𝛽 ⋯ 0

ò , 𝜏J = ñ
0 ⋯ 𝛽J
⋮ ⋱ ⋮
0 ⋯ 0

ò		 
(2.12) 

In this way, the only nonzero element in ΣÚ locates in [n, n] as ΣÚ(𝑛, 𝑛) = 𝛽𝐺Ú(𝑟1, 𝑟1)𝛽J. Now we 

need to solve the surface Green’s function gs, which is 𝐺Ú(𝑟1, 𝑟1). We can use Equation 2.16 to assume 

that 

 𝑔njeí ≈ 𝑔 = [(𝐸 + 𝑖0T)𝐼 − 𝑎 − 𝑈z − 𝛽𝑔n�×�𝛽J]2, (2.63) 

Where a is self-energy of the grid in the device region, UN is the potential at grid n in the device region 

obtained from Poisson’s Equations. Usually, Equation 2.68 start with an initial guess of 𝑔n�×� =

[(𝐸 + 𝑖0T)𝐼 − 𝑎 − 𝑈z]2,. Once �𝑔njeí − 𝑔n�×�� < 102,A, we can assume this is the converged result for 

surface Green’s function. In this way, we can get ΣÚ for NEGF simulation. 

The same method can be applied to source side semi-infinite lead. The Green’s function can be written 

as  

 𝐺 = [(𝐸 + 𝑖0T)𝐼 − 𝐻 − Σ¸]2, = [(𝐸 + 𝑖0T)𝐼 − 𝐻 − 𝜏J𝐺¸𝜏]2, (2.64) 
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where Σ¸ = 𝜏J𝐺¸𝜏, GS is the Green’s function for semi-infinite source lead, the hopping matrix from device 

to source is 𝜏J (size n ´ ln), and the hopping matrix from source to the device is 𝜏 (size ln ´ n). With the 

assumption that interaction only happens between neighbor grids which are b, we have Σ¸(1,1) =

𝛽J𝐺¸(𝑙1, 𝑙1)𝛽, the rest are zero. Similarly, the surface Green’s function at the source side can be achieved 

by  

 𝑔njeí ≈ 𝑔 = [(𝐸 + 𝑖0T)𝐼 − 𝑎 − 𝑈, − 𝛽J𝑔n�×�𝛽]2, (2.65) 

Where a is self-energy, U1 is the potential at grid 1 in the device region. The initial guess is usually 𝑔n�×� =

[(𝐸 + 𝑖0T)𝐼 − 𝑎 − 𝑈,]2,. Once �𝑔njeí − 𝑔n�×�� < 102,A, we can get a converged Σ¸ for NEGF simulation. 

2.3.3 Electron and Current Densities in Terms of Green’s Function  

The Green’s function corresponding to Schrodinger’s equation for the device and leads is 

 [𝐸 − 𝐻 + 𝑖𝜂]𝐺 = 𝐼 (2.66) 

where 𝜂 is an infinitesimally small positive number that pushes the poles of G to the lower half-plane in 

complex energy, and H is the Hamiltonian. This equation is usually written in another form as 

 [𝐸𝐼 − 𝐻Ú + Σ×e³�]𝐺 = 𝐼 (2.67) 

The wave functions in device region due to waves incident from source and drain can be written as 

 ΨÚeÌD\e¸ = 𝐺𝑖¸ (2.68) 

 ΨÚeÌD\eÚ = 𝐺𝑖Ú (2.69) 

Only two columns G(:, 1) and G(:, n) are necessary for device simulation as iS and iD are nonzero only at 

grid points 1 and n. With the wavefunctions, we can get the electron density in real space as 

 𝑛(𝑥) = � ö�ΨÚeÌD\e¸ (𝑥)�
6
𝑓 (𝐸) + �ΨÚeÌD\eÚ (𝑥)�

6
𝑓Ú(𝐸)÷ 𝑑𝑘 (2.70) 

The detailed derivations will be omitted. For device simulations, the electron density at grid point q can 

be expressed as 

 𝑛À = 2�
𝑑𝐸
2𝜋

𝐺(𝐸)Σ×e³�Dj (𝐸)𝐺J(𝐸)�À,À (2.71) 

where Σ×e³�Dj  is a sparse matrix with only nonzero elements at 

 Σ×e³�	,,,Dj (𝐸) = Σ¸Dj(𝐸) (2.72) 
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 Σ×e³�	j,jDj (𝐸) = ΣÚDj(𝐸) (2.73) 

Where the in-scattering self-energy matrix due to source and drain can be written as 

 Σ¸Dj(𝐸) = −2𝐼𝑚[Σ¸(𝐸)]𝑓 (𝐸) (2.74) 

 ΣÚDj(𝐸) = −2𝐼𝑚[ΣÚ(𝐸)]𝑓Ú(𝐸) (2.75) 

Where fS and fD are the Fermi distribution in source and drain, Σ¸  and ΣÚ  are the self-energy matrix 

discussed before, which depends on whether the device is Ohmic contact or Schottky contact, and whether 

effective mass approximation or TB approximation has been assumed. 

The current density between two grid points q and q + 1 per unit energy can also be derived from the 

device wavefunction as 

 
𝐽À→ÀT,(𝐸) =

𝑒ℏ
2𝑚𝑎𝑖

2 öÑΨÀ¸
JΨÀT,¸ − ΨÀT,¸ JΨÀ¸Ò 𝑓 (𝐸)

+ ÑΨÀÚ
JΨÀT,Ú −ΨÀT,Ú JΨÀÚÒ𝑓Ú(𝐸)÷ 

(2.76) 

Again, the detailed derivations are omitted. The current density can be expressed as 

 𝐽À→ÀT, =
𝑒ℏ
2𝑚𝑎𝑖

2�
𝑑𝐸
2𝜋

ö𝐺(𝐸)Σ×e³�Dj (𝐸)𝐺J(𝐸)�À,ÀT, − 𝐺(𝐸)Σ×e³�
Dj (𝐸)𝐺J(𝐸)�ÀT,,À÷ (2.77) 

 

2.3.4 Overview of Non-equilibrium Green’s Function (NEGF) Methods  

In previous chapters, quantum transport simulations are discussed under the assumption of the 1D atomic 

chain. This is the foundation of NEGF simulations and can be expanded to 2D or 3D simulation by replacing 

H matrix accordingly. In this chapter, we will briefly summarize the NEGF in a generalized form of 

formalism under non-equilibrium bias. From the retarded Green’s function at given energy [80], we have 

 𝐺(𝐸) = [𝐸𝐼 − 𝐻 − Σ¸ − ΣÚ]2, (2.78) 

where I stands for identity matrix. The Fermi distribution of source and drain are: 

 
𝑓 (𝐸) =

1

exp Ñ𝐸 − 𝜇¸𝑘p𝑇
Ò + 1

 
(2.79) 

 
𝑓Ú(𝐸) =

1

exp Ñ𝐸 − 𝜇Ú𝑘p𝑇
Ò + 1

 

 

(2.80) 
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    The total spectral function [A] can be described by: 

 [𝐴] = 𝑖[𝐺 − 𝐺T] = [𝐴,] + [𝐴6] (2.81) 

where 𝐴, = 𝐺Γ,𝐺T and 𝐴6 = 𝐺Γ6𝐺T. The Γ, and Γ6 can be described as Γ, = 𝑖[Σ¸ − Σ¸T] and Γ6 =

𝑖[ΣÚ − ΣÚT]. It describes the broadening matrices to the source and drain. The correlation function can be 

expressed as  

 [𝐺j] = [𝐴,]𝑓 + [𝐴6]𝑓Ú (2.82) 

The density matrix can be written in the form of  

 [𝜌] =
1
2𝜋

�𝐺j(𝐸)𝑑𝐸 (2.83) 

This gives the information we need to start the loop for Poisson’s equations, which in turn gives us a 

new potential for NEGF input. The details will be explained later. Once we got the self-consistent result, 

the current per spin can be expressed as  

 𝐼 /Úú = 𝑇𝑟𝑎𝑐𝑒ûΓ,/6𝐴ü𝑓 /Ú − 𝑇𝑟𝑎𝑐𝑒[Γ,/6𝐺j] (2.84) 

    The current at the terminal can be written as  

 𝐼 /Ú = −
𝑞
ℎ
� 𝐼 /Úú 𝑑𝐸 (2.85) 

Where q and h are the free electron charge and the Planck’s constant, respectively. 

2.4 Electrostatics  

2.4.1 Self-consistent Simulation 

Within the NEGF formalism discussed above, we usually describe the device by three parts: source, drain, 

and channel. The source and drain parts are regarded as two infinite reservoirs and coupled to channel 

described by self-energy matrices, Σ¸  and ΣÚ . The Fermi levels of source and drain, 𝜇¸  and 𝜇Ú  are 

controlled by the applied voltage. The channel region is represented by Hamiltonian H. Incoherent carrier 

transport due to scattering can be described by self-energy Σ¸\³Ö . To discretize above operators, the 

effective-mass (EM) or tight-binding (TB) approximation can be adopted. Mode space representation is 

usually adopted instead of three-dimensional real space simulation to reduce the computational cost by 

minimizing the size of the operator matrices. With the above information, the transmission coefficient at a 

given energy (T(E)), electron density (r), and current (I) can be computed self-consistently with Poisson’s 

equation. The general procedures consist following steps [81]: 
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(1). The finite Difference Method (FDM) is chosen to discretize all operators for a given device. 

(2). An initial guess of self-consistent potential 𝑈¸1(𝑟) is given to start the self-consistent loop. 

(3). With initial 𝑈¸1(𝑟), the device Hamiltonian H can be written according to the approximation 

we adopted (EM or TB). The Σ¸ and ΣÚ can also be computed. 

(4). The density matrix is calculated through the retarded Green’s function. 

(5). The charge density (r) of the device can be obtained by a density matrix, which will be passed 

to Poisson equations to solve the new self-consistent potential 𝑈¸1(𝑟). 

(6). Step (3) to (5) are iterated until the results reach our criteria. 

(7). The current can be calculated from the converged self-consistent potential and density matrix. 

 

Figure 2.14 (a) Schematic structure of device coupled to the source and drain contacts. (b) Self-consistent simulation 

scheme between NEGF and Poisson [82]. 

2.4.2 Overview of Electrostatics Calculation 

In this section, we will briefly review the steps to get the numerical solutions for Poisson’s Equation. The 

FDM method is used for solving general double-gate MOSFET structure. Figure 2.16(a) shows the device 

structure with schematic uniformly spaced grids. The naming of girds is showing in Figure 2.16(b).  

(a)

(b)
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Figure 2.15 (a) A schematic of double-gate MOSFET structure in the 2D simulation domain. Uniformly spaced grids 

are used in both X and Z directions with spatial constants a and b, respectively [81]. (b) Computational molecule for 

the 5-pointed star. 

First, we assume the semiconductor has the same dielectric constant as the insulating layer. The numeric 

solution to the Poisson equation can be obtained by Gauss’s law 

 ∇ ∙ 𝑫(𝒓) = 𝜌(𝒓) (2.86) 

Where D, r, and r stand for electric flux density, position vector, and charge density, respectively. Since 

we assume a uniform distributed dielectric material, according to constitutive relation, we have 𝑫(𝒓) =

𝜀A𝜀Ø𝑬(𝒓) , where 𝜀A  is the permittivity of vacuum, 𝜀Ø  is the dielectric constant of semiconductor and 

insulating layer and 𝑬(𝒓) is the electric field function. And we know 𝑬(𝒓) = −∇ ∙ 𝑽(𝒓), where 𝑽(𝒓) is the 

space potential function, the former equation can be written as 

 ∇6	𝑽(𝒓) = −
𝜌(𝒓)
𝜀A𝜀Ø

 (2.87) 

As we have shown in Figure 2.2, a and b are the mesh spacings along X and Z directions, respectively. 

And Vm,n is the potential at gird [m, n]. The solution domain consists of NX nodes along X direction and NZ 

nodes along Z direction. A 2D numerical solution to the Poisson equation should be in the size of NX ´ NZ. 

In this way, the same number of equations are needed. We rewrite Equation (2.87), and at grid [m, n] we 

have 

 
𝜕6𝑉q,j
𝜕𝑥6

+
𝜕6𝑉q,j
𝜕𝑧6

= −
𝜌q,j
𝜀A𝜀Ø

 (2.88) 

where 𝜌q,j is the charge density at node [m, n]. Equation (2.88) can be rewritten using FDM as 

(a) (b)
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𝑉q,jT, − 2𝑉q,j + 𝑉q,j2,

𝑎6
+
𝑉qT,,j − 2𝑉q,j + 𝑉q2,,j

𝑏6
= −

𝑞(𝑝 − 𝑛 + 𝑁Ú −𝑁�)q,j
𝜀A𝜀Ø

 (2.89) 

Where p is the hole concentration and n is the electron concentration, ND and NA are donor and acceptor 

concentrations, q is the elementary charge. Ans it can be simplified as  

 

𝑎
𝑏
𝑉q2,,j +

𝑏
𝑎
𝑉q,j2, − 2(

𝑎
𝑏
+
𝑏
𝑎
)𝑉q,j +

𝑏
𝑎
𝑉q,jT, +

𝑎
𝑏
𝑉qT,,j 

=
𝑎𝑏
𝜀A𝜀Ø

𝑞(𝑝 − 𝑛 + 𝑁Ú − 𝑁�)q,j 
(2.90) 

According to the doping of semiconductors, n or p can be neglected in fully depleted ultra-thin body 

MOSFET. 

Next, we will consider more realistic situations. As shown in Figure 2.16(a), the dielectric constant of 

semiconductor and oxide layer most times are different. The discontinuity of 𝜀Ø  should be considered. If 

node [m,n] is within the oxide regions or the semiconductor regions, we have 𝜀Ø = 𝜀��  or 𝜀Ø = 𝜀¸1. In case 

that the node is positioned at the SC/Oxide interface, Equation (2.90) is rewritten as 

 

𝑎
𝑏
𝜀L�&𝑉q2,,j +

𝑏
𝑎
(
𝜀L�& + 𝜀p�Ö

2
)𝑉q,j2, − 2(

𝑎
𝑏
+
𝑏
𝑎
)(
𝜀L�& + 𝜀p�Ö

2
)𝑉q,j

+
𝑏
𝑎
(
𝜀L�& + 𝜀p�Ö

2
)𝑉q,jT, +

𝑎
𝑏
𝜀p�Ö𝑉qT,,j =

𝑎𝑏
𝜀A
𝑞(𝑝 − 𝑛 +𝑁Ú −𝑁�)q,j 

(2.91) 

where 𝜀L�& and 𝜀p�Ö  are dielectric constants for the materials above and below the interface. 

Next, we will consider the boundary conditions for the nodes. At the gate contact, the gate potential is 

fixed as V = VG, so Dirichlet boundary conditions should be specified. The numerical equation to be satisfied 

at the interface between oxide and top/bottom gate is Vm,n = VG, where VG is determined by the gate bias 

and the work function of the metal. 

However, in ballistic simulations, we impose floating boundary conditions for the rest boundaries to 

solve the Poisson equation. This boundary condition is by assuming 𝒏 ∙ ∇𝑉 = 0 at the end of the simulation 

region of source and drain, where n is the surface unit normal vector. It looks contrary to the scattering-

dominated simulations where we assume fixed boundary conditions at the source and drain based on 

equilibrium statistics to obtain charge neutrality. Here in the ballistic case, at high VDS, the source injected 

carriers are partially exhausted due to the drain injected carriers are suppressed. In this way, it’s better to 

impose a zero-field boundary condition instead of fixing the potential. In order to obtain macroscopic 

charge neutrality, the potential will float to the correct value according to 𝜇¸ and 𝜇Ú provided in NEGF. 

The boundary conditions are as follows: 
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𝑉q,j − 𝑉q±,,j = 0 for the top and bottom edges excepted the gate covered region, 

𝑉q,j − 𝑉q,j±, = 0 for the left and right edge, 

2𝑉q,j − (𝑉qT,,j + 𝑉q,j±,) = 0 for the two corner nodes along the top edge, 

2𝑉q,j − (𝑉q2,,j + 𝑉q,j±,) = 0 for the two corner nodes along the bottom edge. 

    To this point, we have NX ´ NZ equations to solve Vmn. A certain algorithm can be applied to speed up the 

simulation. The self-consistent result of all grids can be solved in each iteration. However, only the potential 

of the semiconductor region is needed for NEGF simulation. For example, a monolayer MOSFET structure 

has [H] in size of MNX ´ MNZ, where M is the number of the basis for each grid. The potential we solved 

from Poisson’s equations for semiconductor layer is in size of NX ´ 1. We will assume in each individual 

grid has a constant potential, and it becomes in size MNX ´ 1. We put it in diagonal of a matrix which is 

USC. And we can get H = H0 + USC which feeds back to NEGF sections and start a new loop till we get 

converged results.  

2.4.3 Electrostatics Calculation for Hetero-structure 

For a hetero-junction device, some additional assumptions are made. A schematic device structure of double 

gate top contact 1T-2H MoS2 heterojunction is shown in Figure 2.16. Here we use a denser grid with a = 

2dx and c = 2dz. To mimic the situation where metallic 1T MoS2 is used as leads instead of conventional 

metal, a fixed boundary condition is assumed at the left end of source 1T MoS2 and right end of drain 1T 

MoS2. Spacing oxide is assumed below extended 1T leads. In the channel region, 2H MoS2 is sandwiched 

by the top and bottom gate oxide. At all these heterojunction interfaces, the effects of different permittivity 

materials need to be addressed carefully. 
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Figure 2.16 A schematic of double-gate MOSFET structure for top contact 1T-2H heterojunctions. Uniformly spaced 

grids are used in both x and z directions with spatial constants dx and dz, respectively. The red dots indicate grids in 

NEGF simulations. 

A more generalized five-point star with different permittivity materials is shown in Figure 2.17. We 

have 

 ∇ ∙ [𝜖(𝒓)∇𝑉(𝒓)] = ∇ ∙ )𝜖(𝒓) µ
𝜕𝑉(𝒓)
𝜕𝑥

+
𝜕𝑉(𝒓)
𝜕𝑧

¶* = −
𝜌(𝑟)
𝜖A

 (2.92) 

Which can be expanded to  

 

1
2𝑎
µ
𝜖6�𝑉q,jT, − 𝑉q,j�

𝑎
−
𝜖,�𝑉q,j − 𝑉q,j2,�

𝑎
¶

+
1
2𝑎
µ
𝜖¥�𝑉q,jT, − 𝑉q,j�

𝑎
−
𝜖=�𝑉q,j − 𝑉q,j2,�

𝑎
¶ + 

1
2𝑐
µ
𝜖=�𝑉qT,,j − 𝑉q,j�

𝑐
−
𝜖,�𝑉q,j − 𝑉q2,,j�

𝑐
¶

+
1
2𝑐
µ
𝜖¥�𝑉qT,,j − 𝑉q,j�

𝑐
−
𝜖6�𝑉q,j − 𝑉q2,,j�

𝑐
¶ = −

𝜌(𝑟)
𝜖A

 

 

(2.93) 
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Figure 2.17 Finite-difference mesh for the generalized Poisson equation. Each blue square represents a region of 

constant dielectric permittivity. The rectangular mesh has a width of a and height of c.  

    Besides the adjusted Poisson equations, another thing that needs to be considered carefully is the 

permittivity of metallic 2D material 1T MoS2. In conventional MOSFET, we assume the potential of metal 

is constant, which means infinite large permittivity. However, for the 2D metal in nanometer scale, things 

need to be considered carefully. This will be discussed in later chapters. 
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Chapter 3 
Assessment of High-Frequency Performance Limit of Black 

Phosphorus Field-Effect Transistors 

3.1 Motivation 

2D materials are very intriguing for next-generation electronic devices due to their unique physical 

properties such as compelling electrical characteristics, large immunity to aggressive scaling, excellent 

optical and mechanical properties. For more than a decade, graphene has been explored extensively, and it 

turned out that graphene is promising for radio-frequency (RF) applications [83] rather than switching 

devices, mainly due to its ultra-high carrier mobility (~10,000 cm2V-1s-1) [84] and high saturation velocity 

(> 3×107 cm s-1) [85] yet inherently large leakage current. Graphene field-effect transistors (FETs) exhibit 

as comparably high cutoff frequency (fT) as state-of-the-art InAs high-electron-mobility 

transistors(HEMTs) and GaAs metamorphic HEMTs [83], [86], [87], although III-V semiconductors (~1 

THz) [88] still outperform graphene FETs. The fT of graphene FET (GFET) can reach a few hundred GHz 

when channel length scales down below 100 nm [10]. However, the unity power gain frequency (fmax) of 

GFETs is significantly limited due to its poor saturation behavior of drain current. The highest reported fmax 

is ~50 GHz, which is far less than fT [11]. Moreover, its large output conductance (gd) also significantly 

limits the intrinsic voltage gain of GFETs. To overcome such limitations, a large bandgap, as well as high 

carrier mobility, would be required. And black phosphorus (BP) can be an outstanding contender for high-

frequency applications among many 2D materials. 

    Black phosphorus is a layered material with high hole mobility (10,000 cm2V-1s-1) and a thickness-

dependent direct bandgap ranging from 0.3 eV (bulk) to 2 eV (monolayer) [25], [89]. Even at its early stage, 

BP FETs have demonstrated high field-effect mobility (~1,000 cm2V-1s-1) and a high on-off current ratio 

(>105) [26], [90], which are critically important not only for high-performance logic circuits but also for 

high-frequency applications. Recently, gigahertz frequencies (fT = 17.5 GHz; fmax = 14.5 GHz) have been 

reported with BP FETs on a bendable substrate [91], [92]. However, the performance of BP FETs is 

currently limited by various factors. For example, the source/drain contact resistance (RS/D) of BP FETs is 

relatively high (~5 kΩ∙µm) [92] compared to that of GFETs, for which RS/D = 0.1 kΩ∙µm was reported [93], 

[94]. Gate resistance (RG) can be another limiting factor for fmax, and parasitic resistance (Cp) can also 

significantly affect the extrinsic performance of the device negatively [95]. As the high-frequency 

performance limit of BP FETs has remained unexplored yet, it would be worth investigating BP FETs based 

on rigorous models, and numerical simulations before more extensive experimental efforts will be made. 
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In this study, we investigate the high-frequency performance limit of BP FETs using self-consistent 

quantum transport simulations and the small-signal circuit model. We thoroughly explore the effects of 

various device parameters on fT and fmax by varying equivalent oxide thickness (EOT), channel length (Lch), 

device width (W), RG, RS/D and Cp. Our simulation results reveal that BP FETs can exhibit as good fT as 

GFETs. Furthermore, fmax of BP FETs is not limited, unlike that of GFETs, enabling near THz frequencies 

for both fT and fmax with proper engineering. Our benchmark against experimental data indicates that there 

exists huge room for optimization to boost the high-frequency performance of BP FETs, particularly with 

channel length scaling. 

3.2 Approach 

3.2.1 Device Structure 

Figure 3.1 (a) shows a schematic device structure of a simulated BP FET. Monolayer BP is used for the 

channel as it can provide better performance than multilayer BP in the conventional FET structure[96]. A 

single-gate device structure is considered following the recent experimental demonstrations, and Al2O3 (κ 

= 9) is used for the gate oxide [92], [97]. For a nominal device, we set the following device parameters: 15-

nm channel length and 3-nm-thick gate dielectric (equivalent oxide thickness of EOT = 1.3 nm). Source 

and drain extensions are p-doped, where Ohmic contact is achieved with a doping concentration of 1.3×1013 

cm-2. We assume that metal electrodes are deposited, as shown in Fig. 3.1(a). Device parameters such as 

channel length, contact resistance, and parasitic capacitances will be varied to explore their impacts on the 

device performance. 

 

Figure 3.1 (a) Device structure of simulated black phosphorus (BP) field-effect transistor (FET). Monolayer BP is 

used for the channel, and the source/drain is p-doped, forming an Ohmic contact. Single-gate geometry is used. (b) 

Small-signal equivalent circuit of the BP FET. gm and gd are the transconductances and the output conductance; RG, 

RS, and RD are the gate resistance, the source, and the drain contact resistance, respectively; Cgs, Cgd , and Csd are the 

small-signal gate-to-source, the gate-to-drain, and the source-to-drain capacitance, respectively [98]. 
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3.2.2 Numerical Simulations 

Transport properties of BP FETs are simulated based on the non-equilibrium Green’s function (NEGF) 

formalism within a tight-binding (TB) approximation, self-consistently with the Poisson’s equation[80]. To 

accurately describe electronic states of monolayer black phosphorus, five TB parameters (t1 = −1.220 eV, 

t2 = 3.665 eV, t3 = −0.205 eV, t4 = −0.105 eV, t5 = −0.055 eV) are used in the Hamiltonian matrix [73]. 

Considering the anisotropic nature of the band structure of black phosphorus, we took the armchair 

orientation for the transport direction due to its light hole effective mass (mhx = 0.19m0) for the p-type 

conduction. Ballistic transport is assumed considering relatively short channel length with NEGF 

simulations, and the effect of scattering is treated separately based on the Landauer-Lundstrom-Datta model 

[99] in section 3.3.6. The large dimension of the device width is treated by a mode space approach with a 

periodic boundary condition. Charge density and current are calculated by using the numerical summation 

of the transverse momentum. Therefore, device characteristics such as current and transconductance are 

given per unit width, with which different widths of devices (e.g., 1 µm or 10 µm) are considered. The open 

boundary condition is treated by contact self-energies [100]. Power supply voltage of VDD = 0.5 V is used, 

and the room temperature is assumed.  

3.2.3 Equivalent Small-Signal Circuit Model 

Quasi-static treatment is used to assess high-frequency performance following standard procedures [101]. 

The steady-state channel charge (Qch) and drain current (ID) are computed by performing self-consistent 

DC simulations. The intrinsic gate capacitance (Cgg) and transconductance (gm) are extracted from the ID–

VG characteristics as 

 𝐶MM =
𝜕𝑄\d
𝜕𝑉-

.
�X
,				𝑔q =

𝜕𝐼Ú
𝜕𝑉-

.
�X
. (3.2) 

    Similarly, intrinsic gate-to-drain capacitance (Cgd) and the output conductance (gd) can be extracted from 

the ID–VD characteristics as 

 𝐶M� = −
𝜕𝑄\d
𝜕𝑉Ú

.
�/
,			𝑔� =

𝜕𝐼Ú
𝜕𝑉Ú

.
�/
. (3.3) 

    Then, we can obtain gate-to-source capacitance as 

 𝐶Mn = 𝐶MM − 𝐶M�. (3.4) 

In this study, the main interest lies in cutoff frequency (unity current gain frequency) fT and unity power 

gain frequency fmax of BP FETs. The intrinsic fT can be calculated as 

 𝑓L =
𝑔q

2𝜋	𝐶MM
 (3.5) 

and intrinsic fmax is given by 
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 𝑓q³� =
𝑓L

2Å𝑔�𝑅- + 2𝜋𝑓L𝐶M�𝑅-
	, (3.6) 

where RG is the gate resistance and it can be determined by 

 	𝑅- = 𝛼𝑅¸�-
𝑊
𝐿
×
1
𝑁
	. (3.7) 

    RSHG is the gate sheet resistance of metal gate being related to the gate metal’s resistivity (ρG) and 

thickness (ΛG) as 𝑅¸�- =
1/
2/

. α is 1/3 when the gate terminal is brought out from one side, and 1/12 when 

connected to both sides. W and L are the width and the length of gate metal per finger, respectively. N is 

the number of fingers. We assumed that the gate metal is connected from one end (α = 1/3) and a single 

finger structure is used (N = 1) for the nominal device. 

In practical devices, fT and fmax can be significantly limited by other device parameters such as 

source/drain contact resistance and parasitic capacitances. The extrinsic fT is calculated as 

 𝑓L =
𝑔q

2𝜋P𝐶MM,Ö[1 + 𝑔�(𝑅¸ + 𝑅Ú)] + 𝐶M�,Ö𝑔q(𝑅¸ + 𝑅Ú)Z
 (3.8) 

and the extrinsic fmax is given as 

 𝑓q³� =
𝑔q

4𝜋ÅΨ, + Ψ6 + Ψ=
 (3.9) 

where Ψ1, Ψ2 and Ψ3 are  

 Ψ, = 𝑅- ö(𝑅¸ + 𝑅Ú)�𝐶MM,Ö𝑔� + 𝐶M�,Ö𝑔q�
6 + 𝐶MM,Ö�𝐶MM,Ö𝑔� + 𝐶M�,Ö𝑔q�÷	 (3.10) 

  Ψ6 = 𝑅Ú ö𝑅¸�𝐶MM,Ö𝑔� + 𝐶M�,Ö𝑔q�
6 + 𝐶M�,Ö�𝐶�M,Ö𝑔� + 𝐶��,Ö𝑔q�÷ (3.11) 

 Ψ= = 𝑅¸û𝑔q�𝐶MM,Ö − 𝐶M�,Ö��𝐶M�,Ö − 𝐶��,Ö� + 𝑔��𝐶MM,Ö − 𝐶M�,Ö��𝐶MM,Ö − 𝐶�M,Ö�ü	 (3.12) 

and the capacitance with subscript t is the total capacitance considering various parasitic components: 

 𝐶MM,Ö = 𝐶MM + 𝐶M�,& + 𝐶Mn,& (3.13) 

  𝐶M�,Ö = 𝐶M� + 𝐶M�,& (3.14) 

  𝐶�M,Ö = 𝐶�M + 𝐶�M,& (3.15) 

  𝐶��,Ö = 𝐶�� + 𝐶�M,& + 𝐶�n,& (3.16) 

    The intrinsic capacitances of Cdg and Cdd are determined by  

 𝐶�M = −
𝜕𝑄Ú
𝜕𝑉-¸

,𝐶�� =
𝜕𝑄Ú
𝜕𝑉Ú¸

, (3.17) 

where we treat Cdg and Cdd being zero as the variation of charge inside the drain is negligible. Based on a 

planar MOSFET structure, we estimate Cp induced by the contacts as: 

 𝐶Mn,& = (𝜖¸ + 𝜖A)𝑊 ×
𝐾 .41− 𝑘Mn6 5

𝐾�𝑘Mn�
, 𝑘Mn = 5

𝐿-¸
𝐿-¸ + 𝐿-

 (3.18) 
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 𝐶M�,& = 𝐶�M,& = (𝜖¸ + 𝜖A)𝑊 ×
𝐾 Ê41− 𝑘M�6 Ë

𝐾�𝑘M��
, 𝑘M� = 5

𝐿-Ú
𝐿-Ú + 𝐿-

 (3.19) 

 𝐶�n,& = (𝜖¸ + 𝜖A)𝑊×
𝐾 .41− 𝑘�n6 5

𝐾(𝑘�n)
, 𝑘�n = 5

(2𝐿n + 𝐿Ú¸)𝐿Ú¸
(𝐿¸ + 𝐿Ú¸)6

 (3.20) 

where 𝜖¸ and 𝜖A are dielectric constant of semiconductor and air, respectively, LG is the gate length, and 

K(k) is the complete elliptic integral of the first kind, defined as 

 
𝐾(𝑘) = �

𝑑𝑤
(1 − 𝑤6),/6(1 − 𝑘6𝑤6),/6

,

A
 

(3.21) 

The inductance of contact is ignored in the small-signal circuit as its impact is negligible compared to those 

of contact resistance and parasitic capacitance [101]–[104].  

3.3 Results 

3.3.1 Transfer and Output Characteristics of BP FETs 

First, we have plotted the intrinsic transfer and output characteristics of the nominal device based on the 

self-consistent NEGF quantum transport simulations. Figure 3.2(a) shows the ID–VG characteristics of the 

BP FET at VD = -0.5 and -0.7 V in linear scale (left axis) and logarithmic scale (right axis). It exhibits large 

on current (Ion > 1.5 mA/µm), large transconductance (gm ~6.4 mS/µm), large on/off current ratio (Ion/Ioff 

reaches 4.8×107 and 1.8×1010 at VDD = -0.5 V and -0.7 V, respectively), and excellent switching 

characteristics with a small subthreshold swing (SS = 64.8 mV/dec).  One of the main advantages of 

monolayer BP over graphene is the presence of a large bandgap, which enables a clear saturation behavior 

in ID–VD characteristics, as shown in Fig. 3.2(b). Output conductance of gd = 147 µS/µm and 62 µS/µm are 

achieved at VG = -1 V and -0.8 V, respectively, even with a short channel length (15 nm). 
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Figure 3.2 (a) ID–VG characteristics of a nominal BP FET at VD = -0.5 and -0.7 V. (b) ID–VD characteristics of the same 

device at VG = -0.8 and -1 V [98]. 

3.3.2 Effect of EOT 

In general, the efficiency of gate control is critical for the device performance of field-effect transistors [96]. 

Higher gate efficiency can be realized in various manners: by using double-gate geometry, high-κ dielectric, 

or thinner gate oxide. For switching devices, smaller EOT is generally preferred for steep subthreshold 

slope, large Ion/Ioff and large gm. However, it could be different for high-frequency applications, and 

therefore, we investigate the effect of EOT on the intrinsic fT by varying it from 0.5 to 25 nm. Since the 

intrinsic fT is a function of transconductance and gate capacitance, gm and Cgg are plotted in Fig. 3.3(a) and 

3.3(b), respectively, where both increase as EOT is scaled down. Figure 3.3(c) shows the intrinsic fT as a 

function of EOT, and the peak value of 5.7 THz is achieved at EOT = 5 nm. Therefore, in the subsequent 

discussion, we will use EOT = 5 nm to evaluate the high-frequency performance of BP FETs. It should be 

noted that the peak value of intrinsic fT is not achieved with the thinnest EOT considered in our simulations, 

which is due to the fact that the increase of Cgg prevails over that of gm as EOT scales down less than 5 nm.  

 

Figure 3.3 (a) gm, (b) small-signal intrinsic gate capacitance Cgg, and (c) intrinsic cutoff frequency fT as a function of 

EOT varying from 0.5 to 25 nm. The gm and Cgg are extracted at Ion = 1 mA/µm from the simulation results [98].  
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3.3.3 Effect of Channel Length Scaling 

We investigate the effect of channel length scaling on the intrinsic high-frequency performance of BP FETs 

by varying the channel length from 5 to 150 nm. Figures 3.4(a) and 3.4(b) show the gm and Cgg as a function 

of Lch, respectively, for a fixed EOT of 5 nm. While our ballistic transport simulation results show that gm 

is nearly constant for the channel longer than 30 nm, it decreases as the channel length scales down less 

than 30 nm due to the short-channel effects. The intrinsic gate capacitance is extracted from our numerical 

simulation results at VG = -1.3 V, and the Cgg exhibits nearly linear dependence to the channel length. Then, 

we have plotted the intrinsic fT vs. 1/Lch, which shows nice linearity for long-channel devices. But it starts 

to deviate from 1/Lch dependence for Lch < 30 nm due to the degradation of gm. A similar trend was also 

observed in graphene FETs [105]. To show the linearity of fT to 1/Lch for the long-channel devices, we have 

plotted a guideline (dashed line) in Fig. 3.4(c) with fT = 100 GHz∙µm/Lch, which is, surprisingly, very similar 

to that of graphene FETs reported earlier [106]. Although semiconducting black phosphorus has relatively 

lower mobility than graphene, BP FETs can exhibit a comparable cutoff frequency as graphene FETs due 

to relatively smaller Cgg. 

 

Figure 3.4 Intrinsic fT and unity power gain frequency fmax calculated for various Lch with a fixed EOT of 5 nm at the 

on state (VG = -1.3 V; VD = -0.5 V). Channel length dependence of (a) gm, (b) Cgg, (c) intrinsic fT, (d) gd, (e) Cgd, and 

(f) intrinsic fmax for gate sheet resistance of RSHG = 2 Ω/sq with a fixed device width of W = 1 µm. The dashed line in 

(c) shows the linear fitting for long-channel devices with fT = 100 GHz∙µm/Lch [98]. 

    One of the most significant drawbacks of graphene FETs for high-frequency applications is the limited 

unity power gain frequency. It has been observed from many experiments that fmax is significantly lower 

than fT in graphene FETs [83], [86]. This is attributed to the fact that graphene is semi-metal and hence the 
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current cannot be saturated with increasing the drain voltage. On the other hand, semiconducting BP-based 

FETs can offer significantly smaller gd along with large fT, which makes BP FETs attractive for high-

frequency applications. Figure 3.4(d) shows the output conductance as a function of Lch, which is extracted 

from the numerical simulations at VD = -0.5 V.  We notice that gd increases slowly as Lch decreases from 

150 nm to 30 nm, where the gate controls the electrostatic potential in the channel region well, and the gd 

can be as low as 13 µS/µm at 150-nm channel, which is smaller than that of graphene FETs by two orders 

of magnitude [102]. However, as the channel length further scales down below 30 nm, gd increases 

significantly due to the short-channel effect, but the gd of BP FETs still remain one order smaller than that 

of graphene FETs [102]. 

The gate-to-drain capacitance for various channel length is shown in Fig. 3.4(e), which is also extracted 

from the numerical simulation results at VD = -0.5 V. As the channel length scales down from 150 nm to 15 

nm, Cgd is also linearly decreased, which can be explained by the strong correlation of the channel charge 

to the length of the device, considering that Cgd is proportional to ΔQch for a given VD variation as shown 

in Eq. (3.2). Notably, the channel length dependence of Cgd becomes even more significant (i.e., Cgd vs. Lch 

shows a steeper slope) at Lch < 15 nm, where the ΔQch for a given VD variation becomes more susceptible 

to the change of channel length due to the short-channel effect. 

    The intrinsic unity power gain frequency is plotted in Figure 3.4(f) using the intrinsic fT, gd, and Cgd 

evaluated above for a gate resistance. In general, RG depends on the geometry of the device and the actual 

fabrication process of the gate electrode (e.g., the number and the width of gate fingers, and the materials 

of the gate). Here we use a single-finger metal gate reached out from one side, and the width of the transistor 

is assumed to be W = 1 µm. Unlike the cutoff frequency, fmax is significantly affected by the device width, 

and the detailed investigation on its effect will be reserved for a later discussion. As can be seen from Eq. 

(3.6), distributed gate resistance is linearly proportional to W and RSHG. A few decades ago, RG was the most 

limiting factor for the polysilicon gate. Nowadays, however, the use of metal gates has enabled a 

considerable reduction of RSHG. The intrinsic fmax is investigated in Figure 3.4(f) using RSHG = 2 Ω/☐ [107], 

[108]. The peak value is observed to be 14 THz at ~30 nm channel length, where two competing terms exist 

as shown in Eq. (5): fmax is mainly dictated by 2π fT Cgd for long-channel devices, whereas gd becomes 

predominant for short-channel devices. 

3.3.4 Effect of Contact Resistance 

So far, we have investigated the intrinsic performance without considering contact resistances and parasitic 

capacitances. Now we will extend our discussion to the extrinsic fT and fmax. First, we focus on the effect of 

contact resistance, and the impact of parasitic capacitance will be discussed separately in the following 

section. RS/D has been known as one of the limiting factors of device performance in 2D material electronics 
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[104]. By carefully choosing the source and drain metal and optimizing fabrication processes, low RS/D 

(0.1–0.78 kΩ∙µm) has been realized for graphene and MoS2 devices [109], [110]. In the case of BP FETs, 

5 kΩ∙µm could be a typical value extracted from recent experiments [92], [111], [112]. First, we have taken 

this value along with W = 1 µm and RSHG = 2 Ω/☐ to investigate the extrinsic fT and fmax. Figure 3.5 shows 

that both fT and fmax can be ~500 GHz at Lch = 10 nm and reduces as the channel length increases, resulting 

in a half-peak value when Lch = 150 nm. If the contact resistance is reduced significantly to 0.58 kΩ∙µm, 

which is the lowest value reported for BP FETs [113], the extrinsic fT and fmax can be tremendously improved. 

By reducing the contact resistance from 5 kΩ∙µm to 0.58 kΩ∙µm, the peak values of fT and fmax can be 

enhanced by 7 times, leading to ~3.5 THz, if the parasitic capacitance is ignored. 

 

Figure 3.5 Effect of contact resistance RS/D on extrinsic fT and fmax ignoring parasitic capacitance. (a) Extrinsic fT and 

(b) fmax for RS/D = 0.58 and 5 kΩ∙µm with W = 1 µm and RSHG = 2 Ω/sq [98].  

3.3.5 Effect of Parasitic Capacitance 

In practice, parasitic capacitance is one of the most important factors to consider when evaluating fT and 

fmax as Cp is very sensitive to device size and geometry. Based on the planar device structure shown in Figure 

3.1(a), we calculate the parasitic capacitance using Eqs. (3.12)–(3.15), where metal line width (LS/D), the 

spacing between the gate and the source/drain metal (LGS/GD), and the gate length (LG = Lch) determine the 

parasitic capacitance. We used three different values of 14 nm, 200 nm and 1 µm for LGS/GD with LS/D = 200 

nm, and we have Cgs,p = Cgd,p = Cdg,p according to the conditions considered in this study. In Figure 3.6(a)-

(d), the parasitic capacitances are evaluated at various channel lengths for three different LGS/GD and 

compared to their intrinsic values (dashed lines in Figure 3.6(a)-(c)). As the metal lines are getting closer 

(with smaller LGS/GD), parasitic capacitances increase significantly at all channel lengths. 

(a) (b)
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Figure 3.6 Parasitic capacitances and their effects on extrinsic fT and fmax with various Lch. (a) parasitic small-signal 

gate-to-drain capacitance Cgd,p, (b) gate-to-source capacitance Cgs,p, (c) gate capacitance Cgg,p, and (d) drain-to-source 

capacitance Cds,p as a function of Lch for three different source/drain to gate metal distances LGS/GD of 14 nm, 200 nm 

and 1 µm, with a fixed W = 1 µm. In (a)-(c), dashed lines represent the intrinsic values for comparison. (e) Extrinsic 

fT and (f) fmax as a function of Lch with RS/D = 0.58 kΩ∙µm, RSHG = 2 Ω/sq and W = 1 µm [98]. 

When a transistor is operated in the saturation region, the intrinsic Cgd is negligible, but its parasitic 

capacitance is not. For example, with LGS/GD = 14 nm, Cgd,p is greater than Cgd by 3-4 times for the channel 

length from 15 to 150 nm as shown in Figure 3.6(a). Therefore, Cgd,p plays an important role for the extrinsic 

fT and fmax. On the other hand, Cgs,p and Cgg,p could be less critical since the intrinsic Cgs and Cgg are large in 

the saturation region, and impact of Cgs,p and Cgg,p would be relatively insignificant, especially for long 

channel devices, as shown in Figure 3.6(b) and 6(c). However, our results reveal that Cgs,p and Cgg,p become 

comparable to or even larger than intrinsic capacitances for the short-channel devices. Moreover, as LGS/GD 

decreases, the contribution by the parasitic components becomes more dominant in the total gate 

capacitance Cgg,t for a given channel length, as can be seen in Figure 3.6(c). Figure 3.6(d) shows Cds,p for 

different LGS/GD as a function of channel length, which exhibits that Cds,p increases as the channel length 

scales down, unlike other parasitic capacitances discussed above, due to the strong interaction between 

source and drain metal lines.    

Considering all parasitic capacitances and intrinsic ones along with contact resistance, we have plotted 

the extrinsic fT and fmax in Figure 3.6(e) and 3.6(f). When comparing these with the dashed lines in Figure 

3.5(a) and 3.5(b), we can clearly see the following distinctions. First, the values are significantly reduced. 

Second, the extrinsic fT and fmax exhibit large degradation at extremely scaled channel lengths. The peak 

(a) (b) (c)

(d) (e) (f)
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values are found at ~15 nm channel: the maximum fT varies from 600 GHz to 1.1 THz; the maximum fmax 

from 800 GHz to 1.4 THz under different parasitic capacitances. 

3.3.6 Effect of Scattering 

So far, we have ignored the effect of scattering. Although we focus on relatively short channel lengths for 

the maximum fT and fmax in this study, in order to minimize the gap between our assessment and the actual 

measurements, we take the effect of scattering into account using 𝐼&Ø�� =
6N7Î

ã89T6N7Î
𝐼 ³×, where λmax is the 

peak mean free path of BP, Ibal is the ballistic current determined by the NEGF simulations, and Iproj is the 

projected current considering scattering [99]. To determine λmax, we have taken the measurement data (ID–

VG plot) from Ref. [92] and followed the approach outlined in Ref. [114]. Figures 3.7(a) and 3.7(b) show 

the field-effect mobility and mean free path of black phosphorus. The extracted peak mobility is 245 cm2V-

1s-1, which is in good agreement with Ref. [92] and the corresponding mean free path turns out to be 14 nm. 

The consequent gm and gd after considering the scattering effects are shown in Figs. 4(a) and (d) with dashed 

lines, respectively where apparent degradation can be observed particularly for the long-channel devices. 

We assume that scattering has negligible impacts on intrinsic capacitance for the size of devices considered 

in this study[102], [115], and parasitic capacitance is determined solely by the device structure, not by 

scattering. 

 

Figure 3.7 (a) Field-effect mobility and (b) mean free path extracted from experiment (Ref. [92]). (c) Extrinsic fT and 

(d) fmax are calculated considering the scattering effect along with contact resistances and parasitic capacitances [98].  
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The corresponding extrinsic fT and fmax are plotted in Figure 3.7(c) and 3.7(d) with RS/D = 0.58 kΩ∙µm, 

moderate gate sheet resistance (RSHG = 2 Ω/☐) and W = 1 µm for three different parasitic capacitances. The 

peak values can be found at Lch of 10–15 nm. Although scattering affects the extrinsic fT and fmax of long-

channel devices significantly (fT and fmax become only 50 GHz and 200 GHz, respectively, at Lch = 150 nm), 

their impacts can be minimal for the short channel region where the peak frequencies are achieved. Even 

with scattering, the maximum fT ranges from 500 to 900 GHz; the peak fmax from 650 GHz to 1.15 THz for 

different parasitic capacitances.  

3.3.7 Effect of Device Width 

In theory, fT is not a function of device width since the units of both gm in the numerator and capacitances 

in the denominator in Eq. (7) are given per unit width, and the width information is canceled out. However, 

things will be different for fmax because the distributed gate resistance is proportional to the device width. 

We have studied the effect of W on the extrinsic fmax in Figure 3.8 by considering W = 1 and 10 µm under 

RS/D = 0.58 kΩ∙µm, RSHG = 2 Ω/☐, and LGS/GD = 200 nm. In general, smaller device width is preferable for 

high fmax, and the peak fmax of W = 1 µm is 5 times larger than that of W = 10 µm with α = 1/3 (solid lines). 

Alternatively, fmax can be improved with a smaller gate resistance by using the gate terminal brought out 

from both sides, where α becomes 1/12. The blue dashed line in Figure 3.8 indicates that a huge 

improvement can be achieved with α = 1/12 if the width of the device is large. For example, the peak fmax 

can be enhanced by 100% if α is changed from 1/3 to 1/12 for W = 10 µm. However, the gain of α = 1/12 

can be quite small (less than 10%) if high fmax is already achieved with a small width (W = 1 µm). 

 

Figure 3.8 The effects of device width and 𝛼 on extrinsic fmax at various Lch with RS/D = 0.58 kΩ∙µm and RSHG = 2 Ω/sq, 

considering scattering and moderate parasitic capacitance (LGS/GD = 200 nm) [98].  
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3.3.8 Performance Limit Projection and Benchmark 

Finally, the high-frequency performance limit is projected in Figure 3.9 based on optimal device parameters 

to achieve the maximum fT and fmax. By using RSHG = 0.02 Ω/☐ [95], [101] with α = 1/12, W = 1 µm, LGS/GD 

= 1 µm and RS/D = 0.58 kΩ∙µm, the peak fT of 900 GHz and the peak fmax of 1.2 THz are projected at Lch = 

10 nm. In order to benchmark against experimental data [91], [92], we have extrapolated the simulation 

results up to 1-µm channel length. The measurement data show fT of 17.5 GHz and fmax around 14.5 GHz at 

250 nm [92], which are still quite smaller than the values projected in Figure 3.9. This indicates that there 

exists large room to improve in fabrication through optimization and engineering various parameters 

discussed in this study. According to our results shown in Figure 3.9, the realization of a short-channel BP 

FET is strongly suggested as both fT and fmax exhibit significant improvement if Lch becomes shorter than 

100 nm. Aggressive scaling of channel length beyond THz fmax can be achievable with a BP FET, making 

it very attractive for future high-frequency applications. 

 

Figure 3.9 Performance limit projection of extrinsic fT and fmax at RS/D = 0.58 kΩ∙µm, RSHG = 0.02 Ω/sq, 𝛼 = 1/12 and 

W = 1 µm, considering scattering and small parasitic capacitance (LGS/GD = 1 µm) [98]. 

3.4 Discussion 

Since BP has a highly anisotropic band structure, it would be useful to discuss the effect of different 

orientations. The main significance of heavier effective mass with zigzag orientation in the transport 

direction is twofold: (i) Ballistic current is reduced due to the small carrier velocity and the less number of 

transverse modes [116], [117]. (ii) Scattering mean free path becomes shorter due to the heavier effective 

mass, resulting in lower mobility, as supported by the recent experiment [118]. Consequently, it is expected 

that fT and fmax will be limited in zigzag transport direction as compared with armchair orientation. On the 

other hand, in theory, contact resistance will remain unaffected by different orientations since thermionic 

emission current in a two-dimensional system depends on density-of-states effective mass [119]. Recent 

experimental studies also exhibited that the measured current, transconductance, and field-effect mobility 
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are significantly limited in zigzag orientation [113], [118], which indicates that the impacts of effective 

mass on the ballistic current, mobility, and scattering mean free path are not altered by the minimal 

influence of different orientations on the contact resistance. 

In this study, we used the quasi-static approach considering the equivalent capacitive and resistive 

elements but neglecting the inductive elements, as is widely used in similar studies [102]–[106], [120], 

[121]. To validate our approach, we evaluated the LC characteristic frequency û𝑓ã1 = 1 �2𝜋Å𝐿f𝐶MM�⁄ ü for 

the simulated BP FETs, using the kinetic inductance [Lk = (m*/pq2)(Lch/W); p and q are hole density per 

unit area and elementary charge] and Cgg extracted from the simulated data, leading to fLC ~9 THz for 15 

nm channel device. This is significantly higher than the peak frequencies of ~1 THz evaluated in this study 

(Figure 3.9), thus validating the quasi-static approximation. Nonetheless, further work will be needed to 

examine the exact role of kinetic inductance and non-quasi-static effects through time-dependent transport 

simulations, which is beyond the scope of this study. 

3.5 Conclusion 

By using atomistic quantum transport device simulations and equivalent small-signal circuit model, high-

frequency behaviors of BP FETs are studied. We have investigated intrinsic and extrinsic fT and fmax 

considering source/drain contact resistance, parasitic capacitance, distributed gate resistance, and device 

width, and have discussed the impact of each device parameter on the high-frequency performance one by 

one. Our simulation results and assessment not only reveal the great potential of BP FETs for high-

frequency applications, but also shed light on the proper direction to optimizations. The main points of this 

study can be summarized as follows: 

1) BP FETs exhibit clear saturation behaviors with increasing drain voltage, unlike graphene FETs, 

resulting in >10 THz frequencies for both intrinsic fT and fmax. While intrinsic fT increases 

monotonically with channel length scaling, fmax starts to degrade at Lch < 30 nm. 

2) Although extrinsic fT and fmax are significantly affected by contact resistance and parasitic capacitance, 

they can remain near THz frequency range (fT = 900 GHz; fmax = 1.2 THz) through proper engineering, 

particularly with an aggressive channel length scaling (Lch ≈ 10 nm).  

3) In spite of the significantly lower mobility of semiconducting BP compared to that of semi-metallic 

graphene, fT of BP FETs can be comparable to that of graphene FETs. Moreover, fmax of BP FET is 

unconstrained due to large output resistance. Although the measurement data shows relatively lower 

values (fT = 17.5 GHz; fmax = 14.5 GHz at Lch = 250 nm)[92] simply because BP FETs are still in their 

infancy yet, our assessment and benchmark indicate that there exists large room for optimization, 

suggesting further advancement of high-frequency performance of the state-of-the-art BP FETs for 

future analog and RF applications. 
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Chapter 4 
Temperature-Dependent Transport Characteristics of Ohmic and 

Schottky Contact MoSe2 FETs 

4.1 Introduction 

Transition metal dichalcogenides (TMDs) are layered materials, which can be isolated as ultrathin layers 

by exfoliation from bulk crystals or can be achieved by direct syntheses. TMDs have attracted intensive 

attention due to their suitable bandgap for electronic devices [13], [122]–[125]. The direct bandgap in the 

visible frequency range and good mobility at room temperature make TMDs promising for flexible 

electronics and optoelectronics. However, the fabrication of high-performance TMDs transistors is 

challenging, limited partly by metal-semiconductor contact properties. The presence of a significant 

Schottky barrier has been a major issue [49]–[51]. In traditional silicon-based electronics, ohmic contact 

with low resistance can be achieved by selective ion implantations in source/drain regions to reduce the 

barrier width between semiconductor and metal. However, effective doping by ion implantation is less 

practical for ultrathin monolayer and few-layer TMDs. Many recent experimental works have demonstrated 

various progress toward improved contact properties. The method includes the use of low work function 

metals, graphene, or doped TMDCs as electrodes, thermal annealing, ionic-liquid doping of contact regions, 

phase-engineering, selective etching, and the introduction of thin tunnel barriers. However, some methods 

suffer from poor air, thermal or long-term stability. The effective methods of practical thermal and long-

term stable ohmic contacts can be generally classified as two types: reducing the Schottky barrier height 

(SBH) and thinning the Schottky barrier width (SBW).  

In this work, we provide a simple physical model of temperature-dependent transport behavior for TMD 

FETs. We discuss the effect of lowering SBH and thinning SBW to achieve an ohmic contact. Our 

experimental collaborator fabricates thin-film MoS2 FETs to verify our models further. The device-to-

device variations are also discussed along with other non-ideal factors. Our simple model reveals the 

underlying physics in the temperature-dependent transport behaviors. It may provide guidelines to fabricate 

high-performance ohmic contact devices in experiments. 

4.2 Computational Method 

In this work, monolayer MoSe2 is used in our simulation. However, this model can be applied to other 

TMDs and general 2D materials. Non-equilibrium Green’s function (NEGF) formalism with an effective 

mass approximation is used for transport simulation along with Poisson’s equation for self-consistent 
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solutions. Since n-type Schottky contact is assumed in our model, only electron (n-type) current is 

calculated. The value of 0.49 m0 is used for electron effective mass along transport and transverse directions 

since MoSe2 has anisotropic effective mass near conduction band minimum [24], [126]. The nominal device 

structure is shown in the inset of Figure 4.1(a). The details of parameters are as follows: Monolayer MoSe2 

(Eg = 1.43 eV, εr = 6.9) for the channel material with 15 nm gate-controlled channel length (LG) and 15 nm 

underlap length (LU) at both source and drain sides, single-gate device structure with 3.4 nm-thick SiO2 (εr 

= 3.9) gate dielectric. The 15 nm LU is to mimic the Schottky barrier at the metal-semiconductor interface. 

The total channel length (Lch) is the sum of LU and LG. Ballistic transport is assumed in our NEGF 

simulation, and the scattering effect will be considered separately. These simulation settings can be altered 

for other materials or device structures to explore the underlying physics without changing our conclusion 

for temperature-dependent transport behavior. The Schottky barrier height for electrons (ΦBn) is assumed 

to be 0.3 eV for Schottky contact devices [127]. Flat band condition at VG = 0 V is assumed here. We use 

300 K and 77 K as two typical temperatures for room temperature and low temperature for our simulations.  

4.3 Results and Discussion 

4.3.1 Temperature-Dependent Transport in the Ballistic Regime 

Due to the existence of barriers in the Schottky contact FETs, the current level is limited, and the current 

also degrades more at a lower temperature. Self-consistently calculated ballistic ID-VG characteristics for 

monolayer Schottky contact MoSe2 FET is shown in Figure 4.1(a). We notice that the room-temperature 

devices' threshold voltage (VTH) is lower than the low-temperature device. Six times larger Ion (VG = 1.2 V) 

can be explained by the Fermi distribution of electrons. Figure 4.1(b) shows the potential of the device 

along the transport direction at VG = 1.0 V. As we can see that EC (conduction band) at 300 K and 77 K are 

almost identical. However, the difference in current can be reflected in the linear-scale energy-resolved 

current spectrum (IE) in Figure 4.1(c). We can see that the peak of IE at 300 K locates around 0.1 eV, while 

the peak of IE at 77 K locates slightly below µs. According to the Landauer equation, the factor making such 

a difference in current is the Fermi distribution. A similar shape between the Fermi distribution and 

logarithm-scale energy-resolved current spectrum can be observed in Figure 4.1(d), which verifies our 

explanation. Below µs, IE of 300 K and 77 K are overlapped. Above µs, IE of 77 K drops exponentially in 

the same trend as the Fermi distribution. Due to the near-zero IE above µs at 77 K, its Ion is much smaller 

than that of 300 K. To turn on the FET, larger VG is needed at lower temperatures, and this results in a larger 

threshold voltage VTH. In general, due to the barrier at the Schottky contact, the significant difference in the 

shape of the tail of the Fermi distribution determines the overall current level. 
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Figure 4.1 Nominal Schottky contact MoSe2 FETs with ΦBn = 0.3 eV: (a) ID-VG characteristics. A schematic illustration 

of device is shown in the inserted panel. (b) Conduction band bottom (EC) diagram. (c) Linear scale energy-resolved 

current spectrum (IE). (d) Left panel: Fermi distribution. Right panel: logarithmic scale IE. The solid red line is for 300 

K, and the blue line is for 77 K. 

Our first model is to lower the Schottky barrier height (SBH) by reducing ΦBn to 0 eV to achieve an 

ohmic contact device. Other parameters are the same as the nominal device. We name this kind of contact 

as the type I contact. Flat band condition at VG = 0 V is assumed here. The ID-VG characteristic is shown in 

Figure 4.2(a). The current level is significantly increased. The VTH of 300 K is also slightly smaller than 

that of the 77 K device. The on-state current at 77 K is still smaller than 300 K, but the difference is much 

less than that of the Schottky contact situation. At the off-states, potential along transport direction is almost 

identical at 300 K and 77 K, whereas, at on-state, due to the large carrier injection, 300 K devices exhibit 

slightly higher barriers at the source side, as shown in Figure 4.2(b). It can also be reflected in the energy-

resolved current spectrum in Figure 4.2(c). We notice that the peak of IE at 77 K is around 0 eV, which 

corresponds to µs. However, at 300 K, the peak of IE locates around 0.04 eV, which is close to the top of 

the barrier (0.02 eV). The tail of the Fermi distribution is less important here compared to the Schottky 

contact situation since the majority of IE locates around µs. The insignificant barrier at 300 K reduces the 

difference in the current level between 300 K and 77 K. 

Gate Oxide

Gate

Source Drain

(a) (b)

(c) (d)
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Figure 4.2 Ohmic contact MoSe2 FETs by lowering SBH (Type I): (a) ID-VG characteristics. (b) EC diagram. (c) Linear 

scale IE. Ohmic contact MoSe2 FETs by thinning SBW (Type II): (d) ID-VG characteristics. (e) EC diagram. (f) Linear 

scale IE. The solid red line is for 300 K, and the blue line is for 77 K. 

The second ohmic contact model is to use thin Schottky barrier width (SBW) by reducing LU. We name 

this kind of contact as type II contacts. The “effective barrier height” is lowered due to the thin barrier width. 

Zero underlap regions at source and drain sides are assumed in our model to explore the limit of device 

performance. Other parameters are the same as the nominal device, with ΦBn = 0.3 eV and LG = 45 nm to 

make Lch same. The ID-VG characteristic is shown in Figure 4.2(d). Significantly a hundred times larger Ion 

is achieved as compared to that of Schottky contact FETs. The device potential along transport direction at 

the on-state (VG = 0.8 V) is shown in Figure 4.2(e). The Ec of 300K is slightly higher due to a slightly large 

current injection. At both temperatures, it exhibits a near-transparent thin barrier at the source side. The 

temperature-dependent Fermi distribution can explain the difference in on-state current, as in Figure 4.2(f). 

Above µs, IE drops to zero quickly at 77 K, as the Fermi distribution drops exponentially in Figure 4.1(d). 

At the same time, IE at 300 K exhibits a nearly symmetric waveform around µs. The small mismatch in IE 

corresponds to the same amount of difference in channel potential in Figure 4.2(e). The barrier height of 

type II contact SBFET is 0.3 eV, same as the SBFET demonstrated in Figure 4.1. However, due to the thin 

Schottky barrier at the metal-semiconductor interface, the majority of electron transport happens around µs. 

It suggests the “effective barrier height” of type II contact SBFET is around 0 eV. 

(a) (b) (c)

(d) (e) (f)
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4.3.2  Mean Free Path (lmax) and Mobility (µ) of MoSe2 

To this point, we reveal the distinct temperature-dependent behavior for short-channel FETs in the ballistic 

region. The difference becomes even more notable when considering scattering effects. We take the effect 

of scattering using 𝐼&Ø�� =
6N7Î

ã89T6N7Î
𝐼 ³×, where λmax is the peak mean free path of MoSe2, Ibal is the ballistic 

current determined by the NEGF simulations, and Iproj is the projected current considering scattering [99]. 

To determine temperature-dependent λmax, we have taken the measurement data (σ-VG, Conductivity-Gate 

voltage plot) from Ref. [60] to extract ID-VG plot, and follow the approach outlined in Ref. [114]. Here we 

limit our temperature range from 50 K to 300 K. The extracted λmax is shown in Figure 4.3(a), and the dashed 

line indicates the fitted λmax-T plot. It matches our expectation that the lower temperature, the longer mean 

free path, since both ionized impurity scattering and phonon scattering can be suppressed at lower 

temperatures. The mean free path at 77 K and 300 K can be read from the dashed line being 21 nm and 8.5 

nm. We further compare our extracted mobility to the experimental results shown in Figure 4.3(b), which 

shows a good match. The µmax increases rapidly as temperature decreases.  

 

Figure 4.3 (a) Mean free path at various temperatures. The red circle stands for extracted data from Ref, and the red 

dashed line stands for the fitting. (b) Mobility at various temperatures. Blue triangles represent experimental results 

from Ref. [60]. The Red dashed line represents the fitting of extracted mobility.  

4.3.3 Temperature-Dependent Transport in the Diffusive Regime 

For the nominal Schottky contact and ohmic contact devices, Lch = LG + 2LU, which is 45 nm. The ID-VG 

characteristics of Schottky, type I, and II ohmic contact FETs are shown in Figure 4.4 (a), (b), and (c), 

respectively. Compared to the ballistic results, VTH doesn’t change, but the current is smaller. This can be 

understood as scattering coefficient 6N7Î
ã89T6N7Î

 is always smaller than 1. For a FET with a given Lch, the 

scattering coefficient is notably affected by λmax, as longer λmax leads to a larger scattering coefficient. In 

this way, the current is less degraded at a lower temperature. For the Schottky contact FETs, Ion at 300 K is 

less than one-sixth of its ballistic value, and Ion at 77 K is around one-third of its ballistic value. Still, Ion at 

(a) (b)
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300 K demonstrates about two times larger current than its value at 77 K. Same magnitude of current 

degradation happens for type I and type II ohmic contact FETs. However, because Ion at low temperature is 

near to Ion at room temperature, current at lower temperature soon exceeds its value at room temperature 

after considering the scattering effect, as VG increases. We stop at VG = 0.6 V for type I ohmic contact FETs 

where I77K is around 1.4 times of I300K, and VG = 1.0 V for type II ohmic contact FETs where I77K is about 

1.7 times of I300K. A higher current ratio may be achieved in experiments at high gate voltage. The 

temperature-dependent transport behavior matches with experiment results in Ref. [60].  

 

Figure 4.4 ID-VG characteristics of MoSe2 FETs considering scattering of (a) nominal Schottky contact; (b) ohmic 

contact by lowering SBH (Type I); (c) ohmic contact by thinning SBW (Type II). The red line is for 300 K, and the 

blue line is for 77 K. 

    Next, we studied the temperature-dependent on-state current for both ohmic and Schottky FETs as shown 

in Figure 4.5. Here the Ion is taken at VG = 1.1 V for the Schottky contact FETs (ΦBn = 0.3 eV), VG = 0.5 V 

for type I ohmic contact FETs (ΦBn = 0 eV) and VG = 0.9 V for type II ohmic contact FETs (ΦBn = 0.3 eV). 

As the temperature increase, Ion of type I and II ohmic contact FETs increases, while Ion of Schottky contact 

FETs decreases. As we have explained earlier, this depends on the energy range where the majority of 

transport happens. The two competing effects of Fermi distribution and scattering effect work as follows: 

the greater Schottky barrier is, the worse current degradation at a lower temperature because of the 

logarithmic decrease of Fermi distribution above µs; the lower temperature, the larger scattering coefficient, 

due to longer mean free path. In other words, for the Fermi distribution, the further IE peak above µs, the 

larger difference in current at various temperatures. However, if the IE peak is near or below µs, the Fermi 

distribution is 1 for all temperatures. For the scattering, the lower temperature, the longer mean free math, 

and higher mobility; thus, current is larger. For the Schottky contact devices, even with higher mobility at 

low temperature, current still degrades at a lower temperature, since Fermi distribution is the dominant 

factor as most transport happens above µs. For type I and II ohmic contact devices, the scattering effect is 

the dominant factor due to near zero “effective barrier height”. Current degradation due to the Fermi 

distribution is less important because the majority of transport happens around µs. 

(a) (b) (c)
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Figure 4.5 Ion-Temperature characteristics of MoSe2 FETs. Ion is taken at VG = 1.1 V, 0.5 V, and 0.9 V for nominal 

MoSe2 FETs with Schottky contact, type I and II ohmic contacts. 

We further explore the effect of channel length, and it turns out that it does not change our conclusion. 

The on-state current ratio of I50K/I300K is used to indicate the temperature-dependence as shown in Figure 

4.6. Ion is taken at VG = 1.1 V, 0.5 V, and 0.9 V for MoSe2 FETs with Schottky contact, type I and II ohmic 

contacts, respectively. The current is estimated using 𝐼&Ø�� =
6N7Î

ã89T6N7Î
𝐼 ³×. The ballistic current of longer 

Lch FETs should be the same as the nominal device since ballistic NEGF simulation is assumed. 45 nm to 

1 µm Lch are examined here. For the Schottky contact devices at all channel lengths, we have I50K/I300K < 1. 

As Lch increases, I50K/I300K slightly increases and saturates around 1/3. The I50K/I300K is larger than one for 

both ohmic contact FETs, and it also increases gradually as Lch increases. Overall, the distinct temperature-

dependent on-state current ratio doesn’t change with Lch. 

 

Figure 4.6 On state temperature-dependence current (indicates by I50 K/I300 K) at various Lch. Ion is taken at VG = 1.1 V, 

0.5 V, and 0.9 V for MoSe2 FETs with Schottky contact, type I and II ohmic contacts, respectively. 
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4.3.4 Device-to-Device Variation 

In the following sections, we will discuss device-to-device variations with the support of experimental data. 

In the simulation, 15 nm LU and 0.3 eV ΦBn are chosen to mimic MoSe2 Schottky contact, while the value 

can be altered based on the quality of contact. Longer LU means more “Schottky”, which means smaller 

current, similar to the effect of barrier height. Also, as LU and ΦBn increase, the low-temperature current 

suffers more from current degradation, which means the on-state current ratio of ILow T/IHigh T will be smaller. 

Our analysis matches well with experiments [49], [60]. For type I ohmic contact, we reduce ΦBn to zero to 

explore the ideal case (negative barrier height would be similar). It is straightforward that increasing ΦBn 

makes it less “Ohmic”. Thus the on-state current ratio of ILow T/IHigh T will be decreased until it becomes 

smaller than one. It matches well with various experiments of ohmic contact FETs by lowering barrier 

height [54], [56], [58], [60], [128], [129]. For type II ohmic contact, we make thin SBW by reducing LU to 

zero. The ohmic contact can still be achieved with moderately long LU. The thinner SBW, the more 

transparent the barrier to electrons, which also reflects the quality of the contact. As LU increases, the on-

state current ratio of ILow T/IHigh T will be decreased until it becomes smaller than one like the Schottky 

contact situations. It matches with experiment results of ohmic contact by thinning SBW [55], [130]. In 

experiments, lowering SBH and thinning SBW may happen at the same time. 

4.3.5 Device Fabrication and Characterization 

Our model can be further applied to other TMDs or, more generally, other 2D materials. The electron mass, 

the bandgap can be changed to other materials without changing our conclusion. MoS2 FETs are fabricated 

to support our model. Mechanically exfoliated multilayer MoS2 flakes were transferred onto the high-k 

aluminum oxide (Al2O3) dielectric layer with a thickness of 50 nm, which was deposited on the p-type 

doped silicon wafer. Then, source/drain (S/D) electrodes were patterned through the E-beam evaporation 

of Ti/Au (20/100 nm), photolithography, and etching techniques. The MoS2 TFTs were thermally annealed 

at 300 °C for 30 minutes for enhancing contact properties between the active channel and S/D electrodes. 

More details of fabricating conditions were reported earlier [131], [132]. X-ray diffraction (XRD) pattern 

was measured by using Bruker D8 Discover diffractometer with Cu-Kα radiation. Raman spectra were 

obtained through high-resolution Renishaw Raman microscope with an excitation wavelength (lex) of 514 

nm. The X-ray photoelectron spectroscopy (XPS) experiments were performed by using Thermo:Electron 

X-ray photoelectron spectrometer. The current-voltage characteristic curves at RT were investigated using 

a Keithley-4200 Semiconductor Characterization System with a probe station under atmospheric 

environments. During the low-temperature measurement of transport properties, the temperature was 

controlled using a variable temperature cryogenic probe system (LakeShore, TTPX). Significant variations 
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in contact resistance between Ti/Au and MoS2 were observed among samples and across a sample [133]–

[135].  

 

Figure 4.7 (a) 3D schematic illustration of a back-gated multilayer MoS2 TFT with a 50-nm-thick ALD Al2O3 gate 

insulator. (b) A representative XRD pattern of natural MoS2. (c) A representative Raman spectroscopy measurement 

on natural MoS2. (d) A representative XPS measurement on natural MoS2 [136].  

    The three-dimensional schematic structure of back-gated MoS2 TFT is shown in Figure 4.7(a), which 

employs multilayer MoS2 as the active channel, Ti/Au layers as S/D electrodes, and a 50-nm-thick atomic-

layer-deposited (ALD) Al2O3 as the gate dielectric. The thickness of multilayer MoS2, mechanically 

exfoliated from bulk MoS2 crystals, is in the range of 50 ± 30 nm. We characterized the crystallinity of all 

the natural MoS2 used for exfoliation by XRD. The representative XRD pattern depicted in Figure 4.7(b) 

shows the family of (00l) reflections only, revealing its single-crystal nature. We also characterized 

exfoliated MoS2 flakes by Raman spectroscopy with 𝜆<= of 532 nm. All tested MoS2 flakes exhibit two 

signature Raman-active modes: 𝐸6>,  (at 381.4 cm-1) and 𝐴,> (at 407 cm-1) as shown in Figure 4.7(c). The 

distance between the two modes (25.6 cm-1) is consistent with that of bulk crystals [137], indicating the 

multilayer structure of the exfoliated MoS2 crystals. We further characterized exfoliated MoS2 flakes by 

XPS. Figure 4.7(d) shows the existence of Mo4+ (3d3/2 and 3d5/2) and S2- (2p1/2 and 2p3/2). Within the given 

conditions, overall XPS results indicate negligible differences among the natural MoS2 samples.  
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4.3.6 Temperature-Dependent Transport in Experiment 

Here, we investigate the contact properties of back-gated MoS2 TFTs based on natural MoS2 crystals by 

means of low-temperature measurement on current-voltage characteristics. Significant variations in contact 

resistance between Ti/Au and MoS2 were observed among samples and across a sample. We classify the 

fabricated devices into two groups: one group of MoS2 TFTs shows large Ion consistently for a wide range 

of temperature variation, which indicates ohmic contact; another group of MoS2 TFTs exhibit relatively 

lower Ion along with a significant temperature dependence, which implies the existence of a significant 

Schottky barrier (𝛷@). Figure 4.8(a) and (b) show the output characteristics (Ids-Vds) of two multilayer MoS2 

TFTs (Device A and Device B) measured at 85K, and 300 K, where dissimilar device characteristics are 

observed corresponds to Schottky contact and Ohmic contact device respectively. It needs to be mentioned 

that the distinct output characteristics in Figure 4. 8 are consistently observed in our other MoS2 TFTs. This 

can be related to the intrinsic variation of natural MoS2 as all the MoS2 TFTs are fabricated with the same 

materials (MoS2 flakes exfoliated from the same natural crystal, identical Al2O3 gate dielectric, and Ti/Au 

electrodes) under the same processes. We further measured the on-state current at VGS  = 3 V for device A 

and B from 85 K to 320 K, as shown in Figure 4.9. Device A exhibits a smaller current and strong 

temperature-dependent behavior, as we have discussed for the Schottky contact situation in our model. 

Device B exhibits a larger current, which is constant in a wide range of temperatures.  

 

Figure 4.8 Measured IDS-VG characteristics at 300 K and 85 K of (a) Device A (b) Device B. 

(a) (b)

85 K 
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Figure 4.9 Measured Ion-T characteristics of Device A (blue line) and B (red line). 

In our model, we analyze n-type contact by calculating electron current. Similarly, p-type contact can be 

analyzed by estimating the hole current near the valance band. The effect of equivalent oxide thickness 

(EOT) is not performed through simulation. While thinner EOT gives better gate control, FETs will benefit 

from the thinner barrier at the semiconductor-metal interface. Subthreshold region device performance is 

not discussed in this study since it’s straightforward that smaller subthreshold swing can be obtained with 

lower temperatures due to less thermionic current. 

4.4 Conclusion 

In this work, we provide a simple model about the contact properties in 2D-material FETs and validate our 

model by low-temperature current-voltage measurements of multilayer MoS2 TFTs. For the Schottky 

contact devices, current degrades more at a lower temperature. To achieve ohmic contact, “effective barrier 

height” should be lowered by reducing SBH or thinning SBW. Both methods improve the current level 

significantly. Moreover, at a lower temperature, the current may exceed its value at room temperature due 

to less scattering, verified by many experimental works. Our simple model suggests the different 

temperature responses between the Schottky and ohmic contact are determined by the energy range where 

the majority of transport happens. We also investigate the distinct device-to-device low-temperature 

responses in multilayer MoS2 TFTs. The inconsistent contacts could be caused by the intrinsic variation of 

the electronic properties of natural MoS2 flakes. We show that the ohmic contact devices can be 

distinguished from those with Schottky barriers if low-temperature behaviors are characterized. Our model 

reveals the origin of temperature dependency. Our comprehensive theoretical and experimental study 

provides a systematic scheme to investigate the contact properties in 2D-material FETs, which will 

significantly advance the fundamental knowledge and understanding of the metal-semiconductor interface 

to promote the realization of high-performance 2D-material TFTs.  

  



 

 80 

Chapter 5 Performance Optimization of Monolayer 1T/1T’-2H MoX2 
Lateral Heterojunction Transistors 

5.1 Motivation 

Two-dimensional (2D) materials can be promising components of next-generation ‘more than Moore’ 

transistors. Among many 2D materials available today, monolayer transition metal dichalcogenides 

(TMDs) attract significant attention due to their chemical stabilities, suitable bandgaps, excellent carrier 

mobilities, and compatibility with bipolar doping [66], [55], [13]. Consequently, field-effect transistors 

(FETs) based on atomically thin TMD semiconductor channels have been widely studied over a decade. In 

general, the overall performance of 2D-material devices is significantly affected by contact resistance [54], 

[138]. In conventional silicon-based FETs, degenerate semiconductors are used to form Ohmic contacts. 

However, for 2D materials, achieving degenerate semiconductors is challenging due to their ultra-thin 

nature, and therefore, most fabricated 2D-material transistors have Schottky contacts based on metal-

semiconductor junctions. The Schottky barrier strongly depends on source and drain metals used, and many 

studies have tried to use proper work-function metals such that Fermi levels (Ef) can exist close to the 

conduction or the valence band of TMD materials to achieve better contact properties [54], [61], [138], 

[139]. However, it can be challenging to find proper metals having a desirable work function that can 

provide low contact resistance for given 2D materials. In addition, conventional doping processes such as 

ion implantation can substantially damage the structural integrity of 2D materials, which may lead to 

significant alternation of their band structures. 

 

Figure 5.1. Top (top) and side view (bottom) of the atomistic structure of (a) 2H, (b) 1T, and (c) 1T’ monolayer MoSe2. 

MoS2 and MoTe2 have similar atomistic structures with different cell sizes. The primitive cells of 2H, 1T and 1T’ 

structures are shown in the top view.  

    Recently, low contact resistance using metallic TMDs for the source and the drain of 2D-material FETs 

has been demonstrated [15], [140]–[142], [70], [16]–[18]. Figure 1 shows the atomistic configurations of 
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2H, 1T, and 1T’ phases of monolayer MoSe2 as an example. Different TMDs may have different stable 

phases, and 2H phase is most stable for many TMDs such as MoS2 and MoSe2. It was shown that 2H phase 

can be transformed into 1T or 1T’ phase, and some 1T/1T’ phases are stable at room temperature [70], 

[143]–[147]. Recently, 1T/1T’-2H TMD in-plane heterojunctions have been achieved experimentally [15], 

[140]–[142], [70], [16]–[18]. Subsequently, theoretical studies on the 1T/1T’-2H junction properties have 

also been reported [148]–[150]; however, most of them mainly discussed the material properties rather than 

the performance of devices based on such heterostructures. In addition, many previous works used ATK 

package for an integrated simulation of density functional theory (DFT) and non-equilibrium Green’s 

function (NEGF), which makes it difficult to investigate and optimize material and device parameters 

independently. Moreover, when a combined DFT-NEGF approach is directly used, the size of a simulated 

device is restricted due to the computational limit in the DFT calculation. If NEGF device simulation could 

be performed separately from DFT material calculations, it would be more useful as device-level 

optimization could be done thoroughly. We do notice that there exists enough room to improve the 

performance of in-plane heterojunction TMD FETs reported earlier both experimentally and theoretically. 

For this kind of nanoscale devices based on novel material systems, direct experimental investigations could 

often be extremely challenging and expensive, and therefore, quantum transport simulation may provide a 

powerful tool for device engineering and useful insight into novel TMD-based in-plane heterostructure 

devices. We also note that there exists a previous study on the device performance of 1T-2H MoS2 FET 

[149], in which, however, the exact Schottky barrier (SB) height was not rigorously evaluated based on the 

DFT calculation, unlike other previous studies [67], [148], [151]. 

In this study, we simulate 1T/1T’-2H MoX2 (X = S, Se, Te) SBFETs. DFT calculations are used to 

achieve the SB height at the 1T/1T’-2H junction and the effective mass of the 2H channel. Then, we perform 

NEGF device simulations using the extracted parameters from the DFT calculations. First, we compare 

device performance of 1T/1T’-2H lateral heterojunction SBFETs based on MoS2, MoSe2 and MoTe2. Then, 

we optimize the performance of those three devices using two different strategies: (i) by scaling equivalent 

oxide thickness (EOT) and gate underlap and (ii) by moderately doping the gate underlap region. Our 

simulation results reveal that the performance of MoX2 heterojunction SBFETs can be optimized for either 

high-performance or low-power device applications if proper engineering design strategies are applied. 

5.2 Simulation Method 

5.2.1 DFT Calculation 

The geometric optimizations of MoS2, MoSe2 and MoTe2 are performed with the projector augmented wave 

(PAW) pseudopotential within generalized gradient approximation (GGA) exchange-correlation functional 
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and cut-off energy of 50 Ry using Quantum Espresso [152]. A G-centered grid of 21 ´ 21 ´ 1 k-points is 

used for variable cell optimization. A vacuum layer of 20 Å is used to avoid interactions. Unit cells are 

relaxed until the total force becomes less than 0.001 Ry/a.u. and the stress is less than 10-7 Ry/𝑎A= (a0 being 

Bohr radius) in all directions. The lattice constants of primitive cells for 2H MoS2, MoSe2 and MoTe2 are 

3.19, 3.33 and 3.55 Å, respectively. The thicknesses of monolayer MoS2, MoSe2 and MoTe2 are 6.15, 6.47 

and 6.98 Å, respectively [153]. The band structures of 2H and 1T/1T’ monolayer MoX2 are shown in Fig. 

5.2. For all 2H phases, the conduction band bottom and the valence band top locate at the K point, forming 

a direct bandgap.  For all three cases, 1T/1T’ are metallic as their bands cross the Fermi level. 2H and 1T 

MoX2 have hexagonal lattice structures [Fig. 5.1(a) and 5.1(b)], and 1T’ MoX2 has a rectangular lattice 

[Fig. 5.1(c)]. The bandgap (Eg) of 2H MoS2, MoSe2 and MoTe2 are 1.71, 1.43 and 1.10 eV, respectively 

(Table I). The calculated values are close to the reported value from experiments: 1.85-2.0 eV for monolayer 

2H MoS2 [123], [154], 1.53-1.56 eV for monolayer MoSe2 [155], [156], and around 1.10 eV for monolayer 

MoTe2 [157], [158].  Effective masses for electrons and holes of 2H MoX2 (Table 5.1) are extracted around 

the K point, which is used in the subsequent NEGF device simulations. We have chosen the zigzag direction 

being the transport direction (x) and the armchair direction as the transverse direction (y) because the in-

plane heterojunctions between 1T/1T’ and 2H MoX2 can only form along the zigzag direction.  

 

 

Figure 5.2 Band structure of monolayer (a) 2H MoS2, (b) 1T MoS2, (c) 2H MoSe2, (d) 1T MoSe2, (e) 2H MoTe2, and 

(f) 1T’ MoTe2 along high symmetry points. Dashed lines indicate the location of the Fermi level.  
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Table 5.1 Bandgap (Eg), effective mass for electrons (me) and holes (mh) along zigzag (x) and armchair (y) directions 

for 2H MoS2, MoSe2 and MoTe2.  

2H 𝐸M	(eV) 𝑚e
�	(𝑚A) 𝑚e

�	(𝑚A) 𝑚d
�	(𝑚A) 𝑚d

�	(𝑚A) 

MoS2 1.71 0.58 0.56 0.73 0.67 

MoSe2 1.43 0.65 0.62 0.81 0.73 

MoTe2 1.10 0.70 0.65 0.84 0.78 

 

    As suggested by experiments [15], [140]–[142], [70], [16]–[18], 1T/1T’-2H TMD heterostructures can 

reduce SB height to improve the overall device performance. It was reported that accurate values of SB 

height cannot be achieved from the difference of the metal work function and the electron affinity of 

semiconducting TMDs [159]. In addition, such a method cannot take into account the interaction between 

1T/1T’ and 2H TMDs. Therefore, we extract the SB height directly from 1T/1T’-2H heterojunctions using 

DFT calculation [160]. We construct 1T-2H heterostructure for MoS2 and MoSe2 and 1T’-2H 

heterostructure for MoTe2 as shown in Fig. 5.3. 1T-2H MoS2, 1T-2H MoSe2 and  1T’-2H MoTe2 

heterostructures were fabricated experimentally [15], [70], [140], [141], [161]. The supercell is periodic in 

x-, y- and z- directions. A vacuum layer in the z-direction is set to be 20 Å to avoid interactions. In 

constructing heterojunctions, lattice mismatch is inevitable although the difference in lattice constants for 

1T and 2H MoX2 could be minimal [148]. To form seamless in-plane heterojunction and minimize lattice 

mismatch, we maintain the cell size of semiconducting 2H MoX2 and deform the metallic 1T/1T’ MoX2 to 

match its 2H counterpart, following the method used in previous works [151], [160], to evaluate SB height. 

We have confirmed that it has only minor impacts on the band structure of metallic MoX2 as they still have 

gapless metallic properties with almost same density of states (DOS). It should be noted that there is no 

universal method for optimizing 1T/1T’-2H heterojunctions, which requires extensive research. It is beyond 

the scope of this study and suggested for a future work. The projected DOS (PDOS) is plotted for 2H MoS2, 

MoSe2 and MoTe2 in the right panels of Fig. 5.3(a), (b) and (c), respectively, following the method specified 

in Ref. 35. The regions with zero DOS match the bandgap of the 2H MoX2. The SB height of the 

heterojunction is achieved by subtracting the Fermi level from the conduction band edge [160]. The SB 

heights (Φpj) of 1T-2H MoS2 and MoSe2 and 1T’-2H MoTe2 heterojunctions are 0.70, 0.51 and 0.44 eV, 

respectively. Our results agree well with the reported values calculated using the DFT-NEGF method [148], 

[150]. 



 

 84 

 

Figure 5.3 Atomistic structure of (a) 1T-2H MoS2, (b) 1T-2H MoSe2, and (c) 1T’-2H MoTe2 heterojunctions (top: top 

view, bottom: side view) (left panels) and the projected density of states (PDOS) of their corresponding 2H MoX2 
(right panels). 

5.2.2 NEGF Simulation 

Figure 5.4(a) shows a schematic device structure of the simulated MoX2 heterojunction SBFET. Intrinsic 

monolayer 2H MoX2 is used for the channel. Seamless in-plane heterojunction is formed by using 1T (MoS2 

and MoSe2) or 1T’ (MoTe2) MoX2 for the source and the drain. A double-gate device geometry is used for 

a good electrostatic control. For a nominal device, we set the following device parameters: 3.1 nm-thick 

SiO2 (κ = 3.9) is used for the top and the bottom gate oxide; the equivalent oxide thickness (EOT) is 3.1 

nm with a 15-nm gate length (LG) and 10-nm gate underlap (LU). Device parameters such as gate underlap 

length, EOT and doping concentration in the gate underlap region will be varied to engineer the 

performance of the devices. The dielectric constants of 6.4, 7.4 and 8.9 are used for monolayer 2H MoS2, 

MoSe2, MoTe2, respectively [162]. 
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Figure 5.4 (a) Simulated device structure with a double-gate geometry. 2H MoX2 is used for a channel and 1T/1T’ 

phase is used for the source and the drain. (b) Log-scale ID vs. VG and (b) linear-scale ID vs. (VG – Vth) plot for Schottky 

barrier FETs based on 1T/1T’-2H heterojunction MoS2, MoSe2 and MoTe2. (d) Subthreshold swing (SS) and 

transconductance (gm) for the same devices. 

    Transport properties of MoX2 heterojunction SBFETs are simulated using the non-equilibrium Green’s 

function (NEGF) formalism within an effective-mass approximation, self-consistently with Poisson’s 

equation. Electron current (In) and hole current (Ip) are calculated separately, and the total current is 

achieved by I = In + Ip. Due to the relatively short channel length considered in this study, ballistic transport 

is assumed. Anisotropic effective mass is used as shown in Table I. The effective mass of 1T/1T’ MoX2 is 

assumed to be free electron mass (m0), and its variation has only a negligible effect on the simulation results 

[78], [163].  The coupling parameters are 𝑡A =
ℏG

6q∗³G
  and 𝑡q = ℏG

6qÍ³G
 in channel and metallic source/drain 

regions, respectively, where m* is the effective mass of the channel and 𝑎 = 1	Å. A coupling parameter of  

𝑡\ =
ÖÍTÖN
6

 is used at the interface between metallic source/drain and semiconducting channel, where the 

SB height extracted from the DFT calculation is adopted. While both 1T/1T’ and 2H MoX2 are included 

for the NEGF calculation, the simulation domain for Poisson’s equation is limited to the 2H channel region 

(including gate oxide) assuming flat bands for the 1T/1T’ source and drain, as a previous DFT-NEGF study 

revealed that band bending of the source/drain in a 1T/1T’-2H heterostructure FET is negligible [151]. For 

electron current, virtual conduction band minimum is taken at 1 eV below the source/drain Fermi level; 

similarly, for hole current, virtual valence band maximum is chosen at 1 eV above the source/drain Fermi 
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level [78], [163]. The open boundary condition from semi-infinite source/drain extension is treated by self-

energies Σ¸/Ú. Power supply voltage of VDD = 0.5 V is used, and the room temperature is assumed.    

5.3 Performance Comparison of Nominal MoX2 Heterojunction SBFETs 

First, we compare the performance of nominal devices. Figure 5.4(b) shows the ID–VG characteristics of 

SBFETs based on monolayer MoS2, MoSe2 and MoTe2 lateral heterostructures. At a given gate voltage, 

MoTe2 SBFET exhibits the largest current and MoS2 SBFET shows the smallest, which is attributed to the 

inherent difference of electronic structure such as bandgap, effective mass and SB height. As it can be seen 

in Fig. 5.4(b), all three devices demonstrate ambipolar behaviors. Minimum current (Imin) is achieved when 

electron current (In) and hole current (Ip) are the same. MoTe2 SBFET exhibits the largest Imin, which is due 

to the smallest bandgap of 2H MoTe2 among the three. Similarly, MoS2 SBFET shows the smallest Imin due 

to its largest Eg. To compare ON-state characteristics, we have plotted ID vs. (VG–Vth) by considering 

threshold voltage (Vth) shift in Fig. 5.4(c). Subthreshold swing (SS) and transconductance (gm) of the three 

devices are compared in Fig. 5.4(d). Due to the largest SB height, MoS2 SBFET exhibits the smallest SS 

and gm. At the same time, due to the largest bandgap, MoS2 SBFETs also show the largest ON/OFF current 

ratio (Ion/Ioff) [see Fig. 5.4(b)]. It should be noted that the overall device performance of all three MoX2 

heterojunction SBFETs is far from optimization. Therefore, it is suggested to engineer various device 

parameters in order to achieve better device performance. For device performance optimization, we will 

use the MoS2 heterojunction SBFET for our example in the subsequent discussion.  

5.4 Engineering MoX2 Heterojunction SBFETs by Scaling EOT and Gate Underlap 

5.4.1 EOT Scaling 

Efficient gate control is, in general, critical for the overall device performance of FETs. Small EOT is 

preferred for steep subthreshold slope, large Ion/Ioff and large gm. Better gate efficiency can be achieved by 

using double-gate geometry, high-κ dielectric, or thin gate oxide. In this work, we achieve small EOT by 

substituting SiO2 with high-κ dielectric while keeping the physical thickness the same. Figure 5.5(a) shows 

ID vs. (VG–Vth) with various EOTs from 0.5 to 3.1 nm. A noticeable increase of Ion can be achieved with 

smaller EOTs at the same gate overdrive voltage after Vth shift due to the better electrostatic control with 

larger gm. Figure 5.5(b) shows the log-scale ID–VG plot. It is observed that the subthreshold swing of both 

n-type and p-type branches becomes smaller as EOT decreases. The voltage for the minimum current (Vmin) 

slightly increases (i.e., shifted to the right) with smaller EOT. This is due to the fact that SB height for holes 

(Φp& ) is greater than that for electrons (Φpj ) for the MoS2 heterostructure. In this case, Ip is more 

susceptible to the change in EOT compared to In. In other words, by decreasing EOT, the increase of Ip is 
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greater than that of In, which leads to the right shift of Vmin. For the n-type MoS2 heterojunction SBFET, by 

varying EOT from 3.1 to 0.5 nm, SS can be reduced to 80 mV/dec from 117 mV/dec [Fig. 5.5(c)] and gm 

increases by more than 5 times [Fig. 5.5(d)] by using ZrO2 (κ = 25) for gate oxide instead of SiO2. 

 

Figure 5.5 MoS2 heterojunction SBFETs for EOTs from 0.5 to 3.1 nm (with the gate underlap length of 10 nm). (a) ID 

vs. (VG–Vth), (b) log-scale ID vs. VG. (c) SS and (d) gm as a function of EOT. 

5.4.2 Gate Underlap Scaling 

Next, we investigate the effect of gate underlap scaling on the performance of MoS2 heterojunction SBFETs 

by varying LU from 0 to 10 nm. Figures 5.6(a) shows ID–VG characteristics for various lengths of gate 

underlap with an EOT of 0.5 nm. In general, a shorter gate underlap results in smaller Vth and larger Ion. By 

scaling LU from 10 nm to 0 nm, SS reduces to 74 mV/dec from 80 mV/dec and gm increases to 1370 µS/µm 

from 760 µS/µm [Fig. 5.6(b)]. This improvement stems from barrier thickness thinning at the source-

channel interface. This can be even more prominent when EOT is large. Figure 5.6(c) shows the conduction 

band profile near the source-channel interface for LU of 10 nm (dotted line) and 0 nm (solid line). For 

SBFETs, the current is, in general, affected largely by the Schottky barrier. When LU is short, the gate 

control becomes more efficient, particularly near the source-channel interface. Consequently, the Schottky 

barrier becomes thinner, which leads to smaller SS and larger gm.  
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Figure 5.6 MoS2 heterojunction SBFETs for various gate underlap lengths (LU) from 0 to 10 nm (with EOT = 0.5 nm). 

(a) ID–VG characteristics, (b) SS and gm as a function of LU. (c) Conduction band profile near the source-channel 

interface for LU = 0 nm (blue solid line) and 10 nm (red dotted line) (with EOT = 3.1 nm) at VG = 0.5 V.  

5.4.3 Performance Comparison of Scaled MoX2 Heterojunction SBFETs 

Using the scaled EOT and gate underlap discussed above, we compare the device performance of MoX2 

heterojunction SBFETs. ID vs. (VG – Vth) and log-scale ID–VG characteristics are shown in Fig. 5.7(a) and 

7(b), respectively. MoTe2 SBFET demonstrates the highest Ion and the largest gm, and MoS2 SBFET shows 

the largest Ion/Ioff, as observed for the nominal devices, due to the same reason discussed earlier. However, 

the overall device performance for all three devices was significantly improved, which can be seen by 

plotting Ion vs. Ion/Ioff in Fig. 5.7(c), where dashed lines are for the nominal devices and the solid lines are 

for scaled devices. The curves are shifted from the bottom left to the top right corner (see an arrow), which 

indicates that both Ion and Ion/Ioff are considerably improved. MoS2 SBFET demonstrates the largest Ion/Ioff 

while that of MoTe2 SBFET is quite limited due to large Ioff. The Ion of MoTe2 SBFET can be most enhanced 

among the three devices by means of EOT and gate underlap scaling. MoSe2 SBFET shows intermediate 

characteristics. Figure 5.7(d) shows the improvement of SS and gm with EOT and gate underlap scaling. 

Compare to the nominal MoX2 heterojunction SBFETs, SS is significantly reduced to 70-80 mV/dec from 

120-140 mV/dec. gm also benefits significantly from better gate control, and it can be improved by ~10 

times compared to that of the nominal device. 
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Figure 5.7 Performance comparison of MoS2, MoSe2 and MoTe2 heterojunction SBFETs with no gate underlap and 

EOT = 0.5 nm. (a) ID vs. (VG–Vth), (b) log-scale ID–VG, and (c) Ion vs. Ion/Ioff. Dashed lines are for the nominal devices 

(LU = 10 nm, EOT = 3.1 nm), and solid lines are for the scaled ones (LU = 0 nm, EOT = 0.5 nm). (d) SS and gm of the 

nominal and the scaled devices.  

5.5 Engineering MoX2 Heterojunction SBFETs by Doping Gate Underlap Region 

So far, we have used EOT and gate underlap scaling to achieve the performance improvement of MoX2 

heterojunction SBFETs. However, in practice, scaling EOT and gate underlap requires advanced fabrication 

processes, which could be challenging. In this section, we try to enhance device performance in an 

alternative manner by using doping in the gate underlap region. Degenerate semiconductors are used for 

conventional silicon FETs to form Ohmic contacts, which requires high doping concentration, and it is 

practically channeling for 2D materials. Here we use moderate doping in the gate underlap region to achieve 

better device performance. The nominal MoS2 SBFET was used below for the sake of discussion. Device 

parameters are the same as the ones used for the nominal device, except that moderate doping is used for 

the gate underlap region. Doping concentration (ND) is varied from 0 to 5×1012 cm-2 for n-type doping, 

which is achieved by varying the doping concentration directly in Poisson’s equation. Gate metal work 

function is unchanged throughout the process. 

5.5.1 Effect of Gate Underlap Doping on N-type Conduction 

Figure 5.8(a) shows log-scale ID–VG characteristics with various ND in the gate underlap regions. For n-type 

conduction (i.e., the right side of the ID–VG curve for the electron transport), SS decreases significantly to 

62 mV/dec with 5.00×1012 cm-2 from 117 mV/dec for the nominal device [Fig. 5.8(b)]. This superior 
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improvement in SS is due to the fact that the gate underlap doping makes SBFETs behave like ‘Ohmic-

contact’ FETs. Figure 5.8(c) shows the potential profile with various ND in a subthreshold region (VG = 0.5 

V). We can see that the potentials in the gated region (10 nm < x < 25 nm) are well controlled for all ND 

values. For the nominal SBFET (ND = 0 cm-2, blue line), the electrons tunnel through a relatively thick 

Schottky barrier at the source-channel interface. However, with increasing doping concentration, SB 

thickness becomes thinner due to the band bending. Consequently, the current with higher doping 

concentration can be significantly larger than that of the nominal device [see Fig. 5.8(a)]. As ND increases, 

the SB becomes more transparent and Ohmic-like contacts are created. In addition, due to the barrier 

lowering in the gate underlap region, the conduction band profile in the channel region looks like that of a 

conventional metal-oxide-semiconductor (MOS) FET [see Ec at 5 nm < x < 30 nm in Fig. 5.8(c) for ND = 

5.00×1012 cm-2]. Due to the Ohmic-like contacts and MOSFET-like band profile, the operation mechanism 

with gate underlap doping becomes analogous to that of conventional MOSFETs, and the SS with ND = 

5.00×1012 cm-2 can be 62 mV/dec, which is close to the theoretical limit for the conventional MOSFET. 

 

 

Figure 5.8 Effect of doping gate underlap regions. (a) Log-scale ID –VG and (b) SS with various doping concentrations 

(ND). (c) Conduction band (Ec) and valence band (Ev) profile at VG = 0.5 V. (d) Linear-scale ID –VG and (e) Vth for 

different ND. (f) Ec profile near the source-channel interface (bottom x-axis) with energy-resolved current spectrum, 

I(E) (top x-axis) at VG = 1.0 V for ND = 5.00×1012 cm-2 (left panel) and the intrinsic case (mid panel). The right panel 

shows the thickness of SB (tSB), which is obtained at the energy level giving the peak I(E). 

Figure 5.8(d) shows linear-scale ID–VG characteristics for the same doping concentration used above in 

the gate underlap region. With increasing ND, threshold voltage decreases, which can be seen in Fig. 5.8(e), 

where Vth as a function of ND is plotted. This trend can be explained by comparing the potential profile and 
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SB thickness (tSB) with two different ND values in Fig. 5.8(f). At VG = 1.0 V, the nominal device is in the 

subthreshold region, whereas the device with ND = 5.00 ´ 1012 cm-2 is in the ON state [see Fig. 5.8(d)]. For 

the nominal device, SB thickness is 2.8 nm at VG = 1 V [the mid-panel in Fig. 5.8(f)], which is reduced 

significantly to 1.5 nm if ND = 5.00 ´ 1012 cm-2 is used [the left panel in Fig. 5.8(f)]. In addition, the peak 

of I(E) [shown with the top axes of the left and the mid panels in Fig. 5.8(f)] is also lowered, which increases 

the number of electrons injected from the source. Hence, if higher ND is used in the gate underlap region, 

devices are turned ON at lower gate voltages, resulting in a negative Vth shift. The right panel of Fig. 5.8(f) 

shows tSB (which is measured at the energy level showing a peak of the energy-resolved current spectrum) 

as a function of ND at VG = 1.0 V. This gives us an intuitive illustration of how doping in the gate underlap 

region can improve ON-state characteristics through barrier thinning and Vth shift. 

5.5.2 Effect of Gate Underlap Doping on P-type Conduction 

While SS of the n-type conduction improves significantly with ND, that of p-type conduction [the left side 

of the ID–VG curve for the hole transport in Fig. 5.8(a)] is nearly unchanged with the doping concentration. 

This is due to the fact that p-type conduction is still based on tunneling through the SB at the channel-drain 

junction, unlike the n-type conduction that becomes MOSFET-like transport when gate underlap doping is 

used. In addition, it can be seen from Fig. 5.8(a) that Imin becomes smaller with higher doping. Figure 5.9(a) 

is Imin vs. ND plot, where Imin of the device with ND = 5.00 ´ 1012 cm-2 is smaller by three orders of magnitude 

as compared to that of the nominal device. For the p-type conduction, the SB at the channel-drain interface 

becomes thicker with increasing ND [the left panel of Fig. 5.9(b)]. Consequently, the peak location of I(E) 

is pushed away from the chemical potential of the drain and the magnitude of I(E) decreases exponentially 

as the doping increases [the right panel of Fig. 5.9(b)], making the total hole current smaller. In addition, 

as ND increases, the subthreshold slope in the n-type conduction becomes steeper, which results in a smaller 

electron current in the deep subthreshold region (e.g., VG < 0.1 V). Therefore, the minimum current 

exponentially decreases with increasing ND since the total current is determined by In + Ip where both In and 

Ip become smaller with doping at the relevant gate voltages of operation. This reduced Imin is preferred for 

low-power device applications as Ion/Ioff can increase significantly. 
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Figure 5.9 Effect of gate underlap doping on the minimum current and p-type transport. (a) Imin vs. ND. (b) Ev profile 

near the channel-drain interface (left panel) and energy-resolved current spectrum (right panel) for various doping 

concentrations.  

5.5.3 Performance Comparison of MoX2 Heterojunction SBFETs with Doping in the Gate 
Underlap Regions 

We compare the device performance of MoX2 heterojunction SBFETs with doping in gate underlap regions. 

We have used LU = 10 nm and ND = 3.75 ´ 1012 cm-2 for all three devices based on MoS2, MoSe2 and 

MoTe2. Figure 5.10(a) and 10(b) are ID vs. (VG – Vth) and log-scale ID–VG characteristics, respectively. While 

overall trends are similar to those of nominal devices, significant performance improvement is observed. 

Figure 5.10(c) compares Ion vs. Ion/Ioff of the devices with gate underlap doping (solid lines) against those 

of nominal devices (dashed lines). The curves are shifted to the right, indicating that significant 

improvement is achieved for Ion/Ioff by three orders of magnitude with doping in the gate underlap region. 

The quantitative comparisons of SS and gm are given in Fig. 5.10(d). With gate underlap doping, all three 

devices show a nearly ideal SS of 63-68 mV/dec, unlike the nominal devices. However, the improvement 

in gm is quite limited. Least improvement was observed with MoS2, while gm of MoSe2 and MoTe2 SBFETs 

could be increased by 41% and 32%, which is, however, relatively insignificant compared to performance 

improvement through EOT and gate underlap scaling [see the right panel of Fig. 5.7(d)]. As discussed 

earlier, doping in the gate underlap region transforms an SBFET into a MOSFET-like device, where the 

top of the channel potential barrier is manipulated by the gate voltage, in the OFF states. However, when 

high VG is applied and the channel potential barrier becomes low, the transport is still affected mainly by 

the SB, which doesn’t show a noticeable difference with varying ND. Therefore, the improvement in gm in 

Fig. 5.10(d) is limited, and the curves in Fig. 5.10(c) are shifted only to the right without showing significant 

improvement in Ion. 
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Figure 5.10 Performance comparison of MoS2, MoSe2 and MoTe2 heterojunction SBFETs with doped gated underlap 

region (ND = 3.75 ´ 1012 cm-2). (a) ID vs. (VG–Vth) and (b) log-scale ID–VG. (c) Ion vs. Ion/Ioff where dashed lines are for 

nominal devices and the solid lines are with gate underlap doping. (d) SS and gm comparison between the nominal 

devices and the ones with gate underlap doping. 

5.6 Design Strategies 

In sections 5.4 and 5.5, we have investigated two different approaches to optimize device performance. 

By using scaled EOT and gate underlap (EOT = 0.5 nm, LU = 0 nm), both ON and OFF-state characteristics 

could be improved adequately. On the other hand, if moderate doping is used in the gate underlap region 

within our nominal device structure (EOT = 3.1 nm, LU = 10 nm), we could achieve nearly ideal SS (down 

to 62 mV/dec) but an only negligible gain for the ON-state characteristics. Figure 5.11 summarizes the 

observations from our simulations, where MoS2 heterojunction SBFETs are used again for the sake of 

discussion. A red arrow indicates that both Ion and Ion/Ioff are improved with EOT and gate underlap scaling. 

For example, for Ion/Ioff = 103, Ion is increased by 23 times. This kind of device engineering would be 

favorable for high-performance device applications. On the other hand, a blue arrow indicates that gate 

underlap doping can be used for low-power device applications as it can significantly enhance Ion/Ioff. For 

instance, by using ND = 3.75 ´ 1012 cm-2, maximum-achievable Ion/Ioff could be more than 107, which is 

larger than that of the nominal device by three orders of magnitude.  
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Figure 5.11 Ion vs. Ion/Ioff comparison for MoS2 SBFETs. The nominal device is shown with a dashed line; the device 

with EOT and gate underlap scaling with a red solid line; the device with gate underlap doping with a blue solid line. 

5.7 Discussion and Conclusion 

In this study, we have not considered Fermi level pinning, which might be caused by an imperfection in 

reality. In that case, SB height at the 1T/1T’-2H MoX2 junction could be affected and differ from the values 

calculated by DFT. Nonetheless, the engineering methods, analyses and qualitative conclusions of this 

study would still remain the same. 

It should be pointed out that device performance could not be improved further by applying both 

optimization methods simultaneously. For example, if gate underlap doping (with ND = 5.00 ´ 1012 cm-2) 

is used along with EOT and gate underlap scaling (EOT = 0.5 nm; LU = 5 nm), device performance is similar 

to that of the scaled SBFET discussed in Section B. This is because the effect of gate underlap doping 

becomes minimal due to the strong electrostatic control by the gate through thin EOT and short gate 

underlap. This suggests to avoid excessive scaling when designing a MOSFET-like device through gate 

underlap doping. 

In summary, we discussed the performance of in-plane heterojunction SBFETs based on 1T/1T’-2H 

MoS2, MoSe2, MoTe2. We extracted SB height and effective mass from DFT calculations, and NEGF 

simulations are performed for the transport behaviors. Their inherent device performance can be limited 

mainly by Schottky contacts, and engineering of device parameters was suggested to achieve better 

performance using two possible approaches: (i) EOT and gate underlap scaling, and (ii) moderate doping 

in the gate underlap region. If better gate control is achieved by means of EOT andww gate underlap scaling, 

ON-states characteristics such as Ion and gm can be largely enhanced along with noticeable improvement in 

the OFF-state performance, making the device more suitable for high-performance applications. 
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Alternatively, if moderate doping is used in the gate underlap region, steep switching and superior Ion/Ioff 

can be achieved. Although only minimal gain can be expected for the ON-state characteristics, gate underlap 

doping could be suggested for the fabrication of low-power electronic devices.  
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Chapter 6 Electron Transport through 1T-2H MoS2 Interface: Top 
Contact vs. Side Contact 

6.1 Introduction 

Two-dimensional (2D) material attracts significant attention for the next-generation transistor. The 

advantages of 2D materials reside in their naturally passivated surfaces, the great electrostatic control due 

to atomistic thickness, and high carrier mobility. Transition metal dichalcogenides (TMDs) are one of the 

promising 2D materials. Among the many TMDs, MoS2 is the most significantly studied [13], [132], [135]. 

One of the main challenges towards high-performance transistors is the contact problem. It is reported that 

the contact resistance can be as low as 200 W µm by using metalized 1T MoS2 electrodes [15]. Similar 

works are reported in 1T’-2H MoTe2 heterojunction transistors [16]–[18], [70] and 1T-2H WSe2 

heterojunction transistors [19]. These works reduce contact resistance and the Schottky barrier by 

introducing in-plane metallic-semiconducting heterojunction. It is well known that the side contact is more 

favorable for low contact resistance, and related works have been investigated extensively, especially the 

contact between conventional metal to 2D material [164]–[167].  

    In this work, 1T-2H MoS2 heterojunctions with different geometries are examined by atomistic 

simulations. We extract accurate maximally localized wannier functions (MLWF) from DFT simulations. 

The Schottky barrier height is extracted from DFT simulations of top contact and side contact junctions. 

We calculated the conductance from NEGF formalism at zero bias. The simulation results suggest side 

contact is more favorable for conducting current. The oscillations of conductance are carefully studied and 

compared to the conductance oscillation in semiconducting mono-bi-monolayer black phosphorus (BP) 

heterojunctions. The current flow patterns are presented, showing the edge state is critical in determining 

conductance and current flow patterns. Extended studies of modifying weak van der Waals interactions at 

the edge are performed, suggesting a potential method for better contact property in metal-semiconductor 

top-contact junctions.   

6.2 Simulation Method 

6.2.1 General DFT Simulation Settings 

The atomic structures of 2H, 1T, and AB1 stacking 1T2H MoS2 are shown in Figure 6.1. The geometric 

optimizations of all structures are performed with the projector-augmented wave (PAW) pseudopotential 

and cut-off energy of 50 Ry, using Quantum Espresso [168]. A G-centered grid of 21 ´ 21 ´ 1 k-points is 

used for variable cell optimization for 2H and 1T MoS2 primitive cell.  A vacuum layer of 20 Å is used to 

avoid interactions in the z-direction. Primitive cells are relaxed until the total force becomes less than 0.001 
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Ry/a.u. and the stress is less than 10-7 Ry/𝑎A= (a0 being Bohr radius) in all directions. The 2H and 1T MoS2 

primitive cells are both hexagonal lattices, with a 3.19 and 3.20 Å lattice constant. To minimize the lattice 

mismatch in 1T2H bilayer system, the 1T and 1T2H MoS2 primitive cells are relaxed by a fixed cell 

optimization with the lattice constant of 3.19 Å. The strain in 1T MoS2 is defined as ∆= ³GD2³EE
³GD

= 0.31	%. 

Because the lattice mismatch is small, the bands of strained 1T MoS2 (blue solid line) are quite similar to 

free-standing 1T MoS2 (red dotted line). 

 

Figure 6.1Top view and side view of optimized atomic positions of (a) 2H MoS2 (b) 1T MoS2 (c) AB1 stacking 1T2H 

MoS2 with the 2H lattice constant and their corresponding band structures. The red dotted lines in 1T MoS2 bands 

stand for free-standing 1T, and the blue lines are for strained 1T with the 2H lattice constant. The primitive cells are 

shown in the black panel. The red panels denote the supercells used for quantum transport simulation. 

For 1T2H MoS2, due to van der Waals interaction between 2H and 1T layer, the band structure is not the 

overlay of 2H and 1T MoS2 bands. Van der Waals density functionals (vdW-DF2) is used for electron 

density, along with a semi-empirical pairwise interatomic dispersion interaction of DFT-D method, to 

address the vdW interactions appropriately. 

6.2.2 Stacking Modes in Bilayer 1T2H MoS2 

The potential stacking modes are studied and shown in Figure 6.2. The five different types are named 

according to the names of bilayer TMDs [169] and classified as three types: (1) All the Mo(S) atoms of the 

bottom 2H layer are placed under the Mo(S) atoms of the top 1T layer (S atoms of 2H under lower S atoms 

of 1T layer for AA1; under upper S atoms of 1T layer for AA2); (2) All the Mo(S) atoms of the bottom 2H 

E 
- E

 [e
V]

M K
-3

-2

-1

0

1

2

3

f

Γ Γ M K
-3

-2

-1

0

1

2

3

E 
- E

f[e
V]

(a) MoS2 (2H) MoS2 (1T)

M K
-3

-2

-1

0

1

2

3

E 
- E

f[e
V]

Z

YX

Y

XZ

MoS2 (AB1 1T2H)(c)(b)

D d

AC

B

AC

B

AC

B



 

 98 

layer are placed under the S(Mo) atoms of the top 1T layer (S atoms of 2H under lower S atoms of 1T layer 

for AB1; under upper S atoms of 1T layer for AA2); (3) Staggered stacking from AB stacking mode. These 

polytypisms can be transformed from one to another by sliding in y-directions or by rotating around the z-

axis. The total energy is calculated for all five structures, and the energy differences are listed in Table 1. 

Here we set the AB1 stacking 1T2H MoS2 as a reference because it has the lowest energy. The AB2 stacking 

has the second-lowest total energy, with only a 1.633 meV difference per primitive cell. The AB1 and AB2 

stacking modes have almost the same Mo-Mo distance (D) and interlayer distance (d). The AA2 stacking 

has the third-lowest total energy and the almost same interlayer distance. The lower stability may come 

from stronger Pauli repulsions between the Mo atoms on the same site. The less stable AC1 and AA1 

stackings have a noticeable larger interlayer distance, suggesting a stronger repulsive force between the 1T 

and 2H layers. 

 

Figure 6.2 Top view and side view of optimized atomic structure of 1T2H MoS2 in different stacking mode: (a) AA1 

(b) AA2 (c) AB1 (d) AB2 (e) AC1 

The band structures of these five-stacking modes 1T2H MoS2 are quite similar. Here we analyze the 

bands contributed from the bottom 2H MoS2. The conduction band bottom (EC), valence band top (EV), and 

bandgaps (Eg) are summarized in Table 1. Due to van der Waals interaction, the bottom 2H MoS2 also 

contributes slightly to the bands near Ef. At the same time, bandgaps are all slightly larger than the free-

standing 2H MoS2 with 1.711 eV as predicted by DFT. Besides the contribution from interlayer van der 

Waals interaction, the atomic positions are also slightly changed due to structural optimization. Some works 

refer to the difference between the EC and Ef as the “vertical Schottky barrier,” in contrast to the usual 

Schottky barrier in SBFETs. This vertical Schottky barrier is included in the band alignment in the MLWF 

matrix. For all the 2H, 1T, and 1T2H MoS2 supercells,  MLWF matrix are extracted by wannier90, where 

the d orbitals (𝑑�G, 𝑑��, 𝑑��, 𝑑��, 𝑑�G2�G	) are considered for the Mo atoms, and the p orbital (px, py, pz) are 
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considered for the S atoms. For all the 2H, 1T and 1T2H MoS2 supercells,  MLWF matrix are extracted by 

wannier90 [74], where the d orbitals (𝑑�G, 𝑑��, 𝑑��, 𝑑��, 𝑑�G2�G	) are considered for the Mo atoms, and the 

p orbital (px, py, pz) are considered for the S atoms. Which gives a 22 by 22 Hamiltonian matrix for 1T and 

2H MoS2, and a 44 by 44 Hamiltonian matrix for 1T2H MoS2. 

Table 6.1 Comparison between the fixed cell relaxed vdW-DF2 bilayer 1T2H MoS2. The bandgaps contributed from 

the bottom 2H layers are also summarized here. 

MoS2 AA1 AA2 AB1 AB2 AC1 

E – Emin (meV) 91.974 14.286 0 1.633 22.858 
D ( Å) 6.795 6.334 6.335 6.334 6.422 
d ( Å) 3.531 3.076 3.075 3.075 3.160 

EC of 2H (eV) 1.017 0.9711 0.987 1.015 0.986 
EV of 2H (eV) -0.719 -0.768 -0.755 -0.717 -0.752 
Eg of 2H (eV) 1.736 1.739 1.742 1.732 1.738 

 

6.2.3 Schottky Barrier Height 

The side contact and the top contact heterojunctions are constructed and shown in Figure 6.3 to extract the 

Schottky barrier between metallic 1T and semiconducting 2H MoS2. Here we mainly compare the side 

contact and the top contact with AB1 stacking, as AB1 1T2H MoS2 is the most stable structure. The top 

contacted heterojunction with AA2 stacking is also shown here as this represents the most stable structure 

in AA stacking mode. The projected density of states (PDOS) is plotted in the right panels of Fig. 6.3(a), 

(b), and (c), following the method specified in Ref. [160]. The regions with zero DOS match the bandgap 

of the free-standing 2H MoS2. The SB height of the heterojunction is achieved by subtracting the Fermi 

level from the conduction/valence band edge. The SB heights (Φp) of side contact, top contact with AB1 

stacking, and top contact with AA2 stacking heterojunctions are 0.70 (n-type), 0.72 and 0.74 eV (p-type), 

respectively [160]. The regions with zero DOS match the bandgap of the 2H MoS2. The SB height of the 

heterojunction is achieved by subtracting the Fermi level from the conduction/valence band edge. The SB 

heights (Φp ) of side contact, top contact with AB1 stacking, and top contact with AA2 stacking 

heterojunctions are 0.70 (n-type), 0.72 and 0.74 eV (p-type), respectively.  
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Figure 6.3 Top view and side view of the atomic positions along the transport direction of 1T-2H MoS2 heterojunctions 

(a) Side contact (b) Top contact with AB1 stacking (c) Top contact with AA2, and their corresponding extracted 

barrier height.  

6.3 Results and Discussion 

6.3.1 1T-2H MoS2 Side Contact 

The atomic structure of side contact 1T-2H MoS2 heterojunction is shown in Figure 6.4(a). The electron 

transport properties are studied by non-equilibrium Green’s function (NEGF) formalism within an MLWF 

approximation at equilibrium state. The 1T and 2H MoS2 lengths are set as 3.2 nm. The 1T MoS2 is 

highlighted with a light blue background. Figure 6.4(b) shows the schematic device Hamiltonian matrix 

with 1T MoS2 in the top left corner and 2H MoS2 in the right bottom corner. The H matrix is extracted from 

free-standing 1T and 2H MoS2 supercells. The bands are aligned to match the Schottky barrier extracted in 

Fig. 6.3(b). The only unknown part for device simulation is the coupling matrix at the interface. It has been 

reported that the coupling matrix at the interface has negligible effects on device transport properties in 

lateral heterojunctions [149], [170].It has been reported the choosing of coupling matrix at interface has 

small effect to device transport properties in lateral heterojunctions [149], [170]. Here we test the effect of 

coupling matrix with three different settings: by using the coupling between neighbor cells from 1T, from 
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2H, and the average of the two. Here we compare the conductance of the junction from the NEGF formalism 

𝐺(𝐸) = 6ÀG

d
𝑇(𝐸) , where 𝑇(𝐸) = 𝑡𝑟𝑎𝑐𝑒(Γn𝐺ØΓÚ𝐺ØT)  is the transmission calculated from recursive 

Green’s function. 𝐺Ø = [(𝐸 + 𝑖0T)𝐼 − 𝐻 − Σ¸ − ΣÚ]2, is the retarded Green’s function, Γ̧ /Ú = 𝑖�Σ¸/Ú −

Σ¸/ÚT � is the broadening function, and Σ¸/Ú is the self-energy matrix at semi-infinite source and drain, which 

is calculated by recursive surface green’s function. Here the transport behaviors are investigated assuming 

ky = 0 for two reasons: 1) The conduction band bottom and valence band top of 2H MoS2 locate at K point, 

which is captured by assuming ky = 0; 2) For fast convergence. Comparisons of ky = 0 and ky = 201 from 0 

to 𝜋 𝑏�  are carefully tested, showing a very small difference. And ky = 0 is assumed for all following works. 

From Fig. 6.4(c), we can see the difference in conductance with three settings. However, the overall shape 

is quite similar. Here we use the average of coupling from 1T and 2H as the interface coupling matrix.  

 

Figure 6.4 (a) Schematic of the atomic structure of side contact 1T-2H MoS2 heterojunction (b) Schematic of device 

Hamiltonian matrix with 1T MoS2 in up left corner and 2H MoS2 in the bottom right corner. The coupling at the 

interface is denoted by green blocks. (c) Conductance comparison with different coupling at the interface. 

6.3.2 1T-2H MoS2 Top Contact 

The top contact 1T-2H MoS2 heterojunction, as shown in Figure 6.5(a), is formed through van der Waals 

interactions. The schematic device Hamiltonian is demonstrated in Fig. 6.5(b). The Hamiltonian matrix for 

1T, 2H, and 1T2H MoS2 are extracted from free-standing supercells, respectively. The coupling matrix at 

two interfaces is extracted from the bilayer 1T2H MoS2 system, as shown in Fig. 6.5(c). For the 1T-1T2H 

interface, the interlayer interactions can be extracted from two neighboring 1T2H MoS2 cells, with the 
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bottom 2H layer in the left is replaced with vacancy. This 22 by 44 matrix highlighted by green blocks 

represents the van der Waals interactions between metallic 1T in the left and metallic 1T2H MoS2 in the 

middle. Similarly, for the 1T2H-2H interface, the 44 by 22 matrix represented by yellow blocks is extracted 

from neighboring 1T2H MoS2 cells with 1T layer in the right replaced by the vacancy.  

 

Figure 6.5 (a) Schematic of the atomic structure of top contact AB1 stacking 1T-2H heterojunction (b) Schematic of 

device Hamiltonian matrix with 1T, 1T2H, and 2H MoS2 blocks, the coupling at two interfaces are denoted by green 

and yellow blocks (c) Schematic of the extracted coupling matrix at the interface.  

    The conductance of the top contact 1T-2H MoS2 heterojunction is closely related to the 1T2H MoS2 

length. Space projected conductance plot with L1T2H ranging from 0 nm to 9.6 nm and L1T = L2H = 3.2 nm 

is shown in Figure 6.6(a). The bandgap from the conductance plot fits the Eg calculated from DFT. The 

energy ranges around EC and EV are critical in determining the current of transistors. The zoomed-in plots 

around EC and EV are shown in Fig. 6.6(b). We notice when L1T2H is smaller than 1 nm, the conductance is 

small in all energy range. This suggests electron/hole transport is inhibited because of too short overlap 

length. When L1T2H is larger than 1nm, the overall shape of G is similar. However, a close look at the 

conductance near EC and EV suggests it oscillates with 1T2H length. For shorter L1T2H, the conductance 

peaks are more localized compared to longer L1T2H. The conductance plots with different L1T2H at specific 

energies are shown in Fig. 6.6(c). For example, at the energy 0.1 eV above EC and 0.1 eV below EV, 

conductance oscillates between large and small values in a period around 1–2 nm. This may come from 

quantum confinement in the bilayer section.  
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Figure 6.6 (a) Space projected conductance plot of top contact AB1 stacking 1T-2H MoS2 with L1T2H from 0 to 9.6 

nm (b) Zoomed in space projected conductance plot around EC and EV (c) Comparison of conductance at different 

energies (d) Current flow pattern with L1T = L2H = 3.2 nm, L1T2H = 6.4 nm. Green dots represent one 1T MoS2 cell, 

and black dots represent one 2H MoS2 cell along the transport direction. The bottom figure used a larger ratio to show 

the interlayer current flow pattern more clearly.   

Similar conductance oscillation has been reported in stacking graphene nanoribbons [171]. However, the 

top contacted AB1 stacking 1T-2H MoS2 system shows weaker oscillations compared to the graphene 

nanoribbons (GNRs) system. It may because the orbitals in MoS2 are much more complex than GNRs. At 

the same time, heterojunction formed by metallic 1T and semiconducting 2H MoS2 is expected to 

demonstrate different behavior compared to junctions formed by two semi-metallic graphene flakes. One 

of the interesting questions is, in the region of bilayer 1T2H part, will electron prefer metallic 1T rather 

than semiconducting 2H MoS2? Here we simulated the current flow pattern to investigate this question. The 
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rectangular supercell for 1T and 2H MoS2 is considered as gird points for the current flow. The current 

from pth cell to qth cell in an energy range between E1 and E2, which is nonzero only when these two cells 

are nearest neighbors, is calculated by 

𝐼&→À =
2𝑞
ℎ
� 𝑑𝐸	𝐼𝑚û𝐺&,Àj (𝐸)𝐻À,& −𝐻&,À𝐺À,&j (𝐸)ü
¾G

¾E
 

Where 𝐺&,Àj (𝐸) is the (p, q) submatrix in 𝐺j(𝐸), and 𝐻À,& is the (p, q) submatrix in the device Hamiltonian 

matrix. In Figure 6.6(d), monolayer 1T and 2H MoS2 are both 3.2 nm, and bilayer 1T2H MoS2 is 6.4 nm. 

The 1T MoS2 supercells are represented by green dots, and 2H MoS2 supercells are represented by black 

dots. The upper plot demonstrates interlayer interactions (blue arrows) and intralayer interactions (red 

arrows) with a common scale bar within the energy range of |𝐸| ≤ 2	eV. Because of the weak van der 

Waals interactions, interlayer current flow is much smaller than intralayer current flow. Current flow is 

gradually transferred from the top 1T layer to the bottom 2H layer. A zoomed-in plot showing only the 

interlayer current flow with a smaller scale bar is shown at the bottom. It indicates the majority of current 

transfer happens around two interfaces at 1T edge and 2H edge. And the 1T MoS2 edge is the dominant 

one. In the middle region, current oscillates between the top 1T layer and bottom 2H layer. The results 

suggest the importance of edge states in this kind of top-contact metallic-semiconducting heterojunctions.  

6.3.3 Mono-bi-monolayer BP Heterojunction 

To fully understand the effect of staggered stacking in top contact, mono-bi-monolayer black phosphorus 

(BP) heterojunction is constructed as shown in Figure 6.7(a). Here we adopt a tight-binding (TB) 

approximation for the device Hamiltonian matrix [73]. The monolayer BP has a bandgap of 1.52 eV, and 

bilayer BP has a bandgap of 1.12 eV. The bands are aligned where Ei of monolayer and bilayer BP locate 

at 0 eV. The space projected conductance plot is shown in Figure 6.7(b). In the energy range of |𝐸| ≤

0.56	eV, conductance is zero as this is determined by the bandgap of middle bilayer BP. In the energy range 

of 0.56 ≤ |𝐸| ≤ 0.76	eV, conductance is small as we are assuming semi-infinite monolayer BP source and 

drain, and this is still within the Eg of monolayer BP. The conductance oscillation is more significant in 

mono-bi-monolayer BP heterojunction than in the top contacted 1T-2H MoS2 heterojunction.  The junction 

is turned on and off in a period of bilayer region length. A detailed comparison of conductance at various 

energies is plotted in Figure 6.7(c). At the energy 0.1 eV above EC and 0.1 eV below EV, conductance is 

small. And the junction is turned on and off in a period Lbi around 2 nm for electrons. For holes, the 

conductance is slightly shifted to the left. This is due to the quantum well formed by monolayer and bilayer 

BP bands along the transport direction. For example, the EC forms a well with 0.2 eV depth in energy. The 

difference between conductance for electrons and holes is expected to be related to the significant difference 

between the effective mass of electrons and holes in monolayer and bilayer BP. At the energy 0.3 eV above 
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EC and 0.3 eV below EV, this is out of the quantum well formed by EC, and more like a ballistic transport 

situation. The conductance becomes larger, and the junction is turned on and off in a period Lbi around 4 

nm for electrons and 2 nm for holes. It is also expected to be related to the effective mass difference in 

electron and hole. Another noticeable difference is the conductance is close to zero when Lbi < 2 nm.  

    It suggests mono-bi-monolayer BP heterojunction can be considered “broken” if bilayer length is not 

long enough. The current flow pattern is also investigated. An example of Lmono = 2.3 nm and Lbi = 9 nm is 

shown in Figure 6.7(d) in the energy range of |𝐸| ≤ 2	eV. The oscillation of current flow between top and 

bottom layer is more significant compared to top contact 1T-2H MoS2 heterojunction. The edge state is not 

substantial, and the current flow is uniformly and periodically distributed along the bilayer region. The 

interlayer current flow is stronger than the 1T-2H top contact junction, suggesting stronger van der Waals 

interactions in mono-bi-monolayer BP junction. 

 

Figure 6.7 (a) Schematic of atomic structure of mono-bi-mono BP junction (b) Space projected conductance plot with 

Lbi from 1 to 13 nm (c) Comparison of conductance at different energies (d) Current flow pattern with Lmono = 2.3 nm 

and Lbi = 9 nm.    

6.3.4 Comparison between Top Contact and Side Contact 

We come back to the question of how is the 1T-2H MoS2 top contact compared to the 1T-2H MoS2 side 

contact. We constructed an artificial structure shown in Figure 6.8(a). Here top contact and side contact is 
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compared within one device. In the left region, another 1T MoS2 is connected to the bottom 2H MoS2 layer 

using the same coupling as in the side contact 1T-2H junction. It is assumed no interaction between top 1T 

MoS2 and bottom 1T MoS2 to mimic independent current injection. And same MLWF is used for the top 

and bottom 1T MoS2. A recursive surface green’s function is used to calculate Σ¸ assuming same semi-

infinite 1T MoS2 source for top and bottom layers. The bands are aligned the same to the top contact 

situation, where we assume a Φp& = 0.72	eV at the 1T2H and 2H interface. At the 1T/1T and 1T2H 

interface, a Φp& = 0.76	eV is read from Table 6.1 for the artificial 1T-2H side contact. The current flow 

pattern is shown in Figure 6.8(b) with L1T/1T = L1T2H = L2H = 0.32 nm. We can see the current is larger in 

the bottom layer at the left end, suggesting side contact is more favorable for current. In the 1T2H MoS2 

part, the current gradually transferred from the top 1T layer to the bottom 2H layer, similar to the top contact 

situation. Again, the majority of current transferring happens at the edges. The current flow pattern stays 

almost the same with changing junction length. A comparison of conductance between top contact, side 

contact, and this artificial structure is shown in Figure 6.8(c). As the energies around EC and EV are critical 

in determining current, the zoomed-in plots are given on the right side. In the energies close to EC and EV, 

the artificial contact demonstrates the largest conductance. But not simply the sum of the conductance of 

top contact and side contact. 

 

Figure 6.8 (a) Atomic structure of constructed MoS2 junction having both top contact and side contact (b) Current 

flow pattern with zoomed-in for interlayer current flow (c) Comparison of conductance with zoomed-in for energies 

around EC and EV. 

6.3.5 Engineering Edge States in Top-Contact 1T-2H MoS2 Junction 

From our previous results, we find edge state is extremely important in determining conductance and 

current flow pattern. In the experiment, edge states can be more complex due to various defects or 

contaminations. For example, vacancies,  dislocations, grain boundaries, and so on. These defects will affect 
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the van der Waals interactions between two layers. Here we will not discuss how defects change interlayer 

interactions. We consider the extreme cases of no coupling and strong covalent coupling. Three situations 

will be discussed, shown in Figure 6.9(a). And the current flow pattern is compared in Fig. 6.8(b) using a 

common scale bar. The conductance is then compared in Fig. 6.9(c). In the first set: the interlayer interaction 

is replaced by a zero matrix. It represents no van der Waals interactions at 1T edge. We find the cells near 

the edge are still important from the zoomed-in plot for interlayer current flow pattern. As there’s no van 

der Waals interaction between the rightmost cell in the top 1T layer to bottom layer, the only coupling is 

the vertical tunneling from the top 1T cell to the bottom 2H at the same site in the 1T2H section. From the 

conductance comparison, we find the difference compares to the original top contact is very small. This 

result is under the assumption that only the interlayer van der Waals interaction at 1T edge is affected. It 

supports this van der Waals interaction itself is a weak coupling. The second situation assumes the coupling 

at the interface is the same as the intralayer covalent coupling between neighbor cells in 2H MoS2. The 

current flow pattern is significantly changed compared to the original situation. With this strong coupling 

at the interface, the electron will prefer the top 1T layer and transfer to the bottom 2H layer at the very end 

edge. And the interlayer current is as strong as the intralayer current. Under this assumption, no more 

oscillations in conductance as electrons always prefer the top metallic 1T layer. From the conductance plot 

in Fig. 6.8(c), we can see the this is better than the original top contact. The third situation assumes the 

coupling at the interface is the same as the intralayer covalent coupling between neighbor cells in 1T MoS2. 

It is expected this coupling is even stronger than in semiconducting 2H MoS2. We have a similar current 

flow pattern and even larger conductance, as shown in Fig. 6.9(b) and (c). In practice, the conductance can 

be smaller than set 2 and set 3. These two sets suggest the upper limits of top contact to be similar as side 

contact. However, it proposes the edge engineering for future work. 
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Figure 6.9 (a)  Schematic of the device Hamiltonian matrix at the 1T2H-2H interface with modified van der Waals 

interactions (b) Current flow pattern with L1T = L2H = L1T2H = 3.2 nm in the energy range |𝐸| ≤ 2	𝑒𝑉. The second 

subplot shows the interlayer current flow for device 1 with a smaller scale  (c) Comparison of conductance, with 

zoomed-in energies around EC and EV. 

6.4 Disucussion and Conclusion 

In this study, we showed the importance of edge states for transport properties. The defects and 

contaminations would change the van der Waals interactions, which leads to different conductance and 

current flow pattern. It is expected that the extracted Schottky barriers from DFT will also change if there 

are defects and contaminations in heterojunction. A more detailed study in DFT is in the plan for the next 

work. Nonetheless, the analyses and qualitative conclusion of this study would still remain the same with 

different extracted barrier heights.  

    Because of the defect-less heterojunction considered in this work, the difference in conductance between 

top contact and side contact is still in the same order. In experiments, defects and contaminations may lead 

to deformed stacking 1T2H MoS2 with weaker van der Waals interactions between two layers. It may 

further weaken the coupling at the edges. And a much smaller conductance is expected for top contact 

heterojunctions. Our analysis above fits the observations of smaller contact resistance for side contact in 

experiments. Not only because the covalent bonding in side contact is stronger than van der Waals bonding 

in top contact, but also the side contact is less affected by defects and contaminations. On the other hand, 

our simulations point out in the ideal case, the device performance of top contact will not be significantly 

worse than side contact. 

In summary, we investigate the geometric effect of top contact and side contact in 1T-2H MoS2 

heterojunctions. The different stacking modes in top contact are studied by DFT simulations, and AB 
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stacking is the most stable mode. The Schottky barriers are extracted from DFT simulations for top contact 

and side contact. We perform NEGF simulations for transport properties at zeros bias. The oscillations of 

conductance in top contact heterojunction are investigated in detail, comparing with oscillations of 

conductance in staggered graphene flakes and staggered BP heterojunctions. Compared to semiconducting-

semiconducting mono-bi-monolayer BP heterojunction, metallic-semiconducting 1T-2H MoS2 

heterojunction is different in two parts: 1) The transfer of current flow from the top layer to bottom layer is 

dominated by narrow regions near the edges,  and it is not uniformly distributed through the bilayer region; 

2) The oscillation of current flow between the top and bottom layer is weak. We compare the conductance 

and current flow pattern between top contact and side contact 1T-2H MoS2 heterojunctions, showing side 

contact is better than top contact. As the edge states are important in top contact 1T-2H junctions, we discuss 

the potential effects of defects and contaminations by assuming different interlayer interactions at the edge. 

We find with strong interlayer coupling at the edge, the conductance will be enhanced, and the current flow 

pattern will change significantly to an edge-dominated point current flow between the top and bottom 

layers. Our results support that side contact is better in 2D material devices in experiments and propose 

engineering edge states may improve device performance of top contact metallic-semiconducting 

heterojunctions. 
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Chapter 7 Conclusion and Future Work 

7.1 Conclusion 

The aim of this dissertation is to investigate the effects of contact resistance on device performance in 

nanoscale transistors. A multiscale simulation approach has been used for device simulation, which is 

introduced in Chapter 2. A generalized workflow from material to the device has been introduced. For 

material properties, we first apply the first principle simulations for structural optimization and 

bandstructure plot. Then we extract effective mass, tight-binding parameters, or maximally localized 

Wannier functions from DFT results based on our needs. These are used for device simulations. We also 

introduce how to extract the Schottky barrier height by DFT simulations from the constructed junctions. 

For device simulations, we introduce the NEGF method for quantum transport simulations and the finite 

difference method to solve Poisson’s equations. The main works can be summarized into four parts. 

7.1.1 Effect of Contact in BP RF Transistors 

In Chapter 3, we investigate the effect of contact resistance in transistors for RF applications. We project 

the frequency limit of BP FETs based on rigorous atomistic quantum transport simulations and the small-

signal circuit model. Our self-consistent non-equilibrium Green’s function (NEGF) simulation results show 

that semiconducting BP FETs exhibit clear saturation behaviors with the drain voltage, unlike zero-bandgap 

graphene devices, leading to >10 THz frequencies for both intrinsic cutoff frequency (fT) and unity power 

gain frequency (fmax). To develop a keen insight into practical devices, we discuss the optimization of fT and 

fmax by varying various device parameters such as channel length (Lch), oxide thickness, device-width, gate 

resistance, contact resistance, and parasitic capacitance. Although extrinsic fT and fmax can be significantly 

affected by the contact resistance and parasitic capacitance, they can remain near THz frequency range (fT 

= 900 GHz; fmax = 1.2 THz) through proper engineering, particularly with an aggressive channel length 

scaling (Lch ≈ 10 nm). Our benchmark against the experimental data indicates that there still exists large 

room for optimization in fabrication, suggesting further advancement of high-frequency performance of 

state-of-the-art BP FETs for future analog and radio-frequency applications. 

7.1.2 Temperature-Dependent Transport in 2D Ohmic and Schottky Contact Transistors 

In Chapter 4, we investigate the two distinct temperature-dependent transport behaviors of 2D Ohmic and 

Schottky contact transistors. It is observed that the fabricated MoS2 TFTs can be classified into two groups 

based on low-temperature behaviors: one with a large Schottky barrier showing thermally activated 

transport and the other with an Ohmic contact exhibiting consistently high mobility at various temperatures. 

We propose a simple model based on monolayer MoS2 FETs to explain this temperature-dependent 
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behavior. Especially for the ohmic contact device, we discuss two situations with reduced SBH and thinned 

SBW. Our simulation results suggest that the different temperature responses mainly come from two parts: 

the temperature-dependent Fermi distribution of carriers at leads and the temperature-dependent mean free 

path of MoS2 material. We suggest that the ohmic contact devices can be distinguished from the devices 

with Schottky barriers based on low-temperature measurements. The comprehensive theoretical and 

experimental studies provide a systematic scheme to investigate the contact properties in 2D material-based 

FETs, which may help us understand metal-semiconductor interface and promote the realization of high-

performance 2D-material transistors. 

7.1.3 In-plane Heterojunction Transistors Using Metallic 2D Material as Contacts 

Recently two-dimensional transition metal dichalcogenides (TMDs) lateral heterojunction field-effect 

transistors (FETs) have been demonstrated experimentally, in which metallic TMDs were used for the 

source/drain. In Chapter 5, we systematically investigate the contact property and device performance of 

monolayer 1T/1T’-2H MoS2, MoSe2, and MoTe2 FETs. Schottky barrier (SB) heights are extracted from 

density functional theory calculations, and non-equilibrium Green’s function (NEGF) transport simulations 

have been performed to study device characteristics. Our simulation results reveal that on and off-state 

characteristics of these devices are limited due to the inherent Schottky barrier. Here we optimize the 

performance of TMD lateral heterojunction SBFETs by using two different approaches. First, we have 

improved the electrostatic control by scaling equivalent oxide thickness and gate underlap, which boosts 

both on and off-state characteristics, making the device suitable for high-performance applications. On the 

other hand, moderate doping has been used in the gate underlap region, which can only improve on/off 

current ratio with negligible impacts on on-state characteristics, and hence, this engineering approach is 

more preferred for low-power applications. Our comprehensive study reveals that 1T’-2H MoTe2 SBFET 

shows the highest on current (~1 mA/µm) among the three with a reasonably small subthreshold swing (80 

mV/dec) if properly scaled, while 1T-2H MoS2 SBFET exhibits the highest Ion/Ioff (~107) when Ohmic 

contact is established with moderate doping in the gate underlap region. This study not only provides 

physical insight into the electronic devices based on novel TMD heterostructures but also suggests 

engineering practice for device performance optimization in experiments.  

7.1.4 Electron Transport through Top Contact and Side Contact 2D Heterojunctions  

In Chapter 6, 1T-2H MoS2 heterojunctions with different geometries are studied by DFT and NEGF 

simulations. We extract accurate maximally localized Wannier functions (MLWF) from DFT results. The 

Schottky barrier height is extracted from DFT simulations of top contact and side contact junctions. We 

calculate the conductance from NEGF formalism at zero bias. The simulation results suggest side contact 
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is more favorable for conducting current. The oscillations of conductance are carefully studied and 

compared to the conductance oscillation in mono-bi-monolayer black phosphorus (BP) heterojunctions. 

The current flow patterns are presented, showing the edge state is critical in determining conductance and 

current flow patterns.  Extended studies of modifying weak van der Waals interactions at the edge are 

performed, suggesting a potential method for better contact property in metal-semiconductor top-contact 

junctions.   

7.2 Future Works 

7.2.1 Device Performance Comparison between Top Contact and Side Contact 

In Chapter 6, the conductance and current flow pattern of 1T-2H heterojunction is investigated at an 

equilibrium state. A detailed device simulation is in the plan. A new simulator based on Julia language has 

been developed, with the capability to handle heterojunction in both NEGF and electrostatic simulations. 

Converging of NEGF simulations may become more difficult than homogeneous 2D material transistors. 

Simulation regions will be divided into several parts according to the number of heterojunctions in the 

transistor. We need to pay attention to the interface coupling matrix as it is closely related to the 

convergence of NEGF simulation. For electrostatic simulations, we may need to fill the vacant space with 

gate oxide or spacer in heterojunctions, as shown in Figure 2.16. It will introduce more interfaces in 

electrostatic grids. And the finite difference equations will be more complex. Another interesting topic is 

the permittivity of 2D metal. Even though with zero bandgaps, 1T/1T’ TMDs demonstrate metallic 

properties, the DOS of 2D metals are expected smaller than conventional metal. At the same time, nanoscale 

metals may not be treated as conventional metals. The comparison of device simulation between top and 

side contact in 1T-2H TMD heterojunctions is needed. It may help us understand the geometric effect of 

contact more thoroughly.  

7.2.2 Extended Works on 2D Metal-Semiconductor Heterojunctions 

At the end of Chapter 6, we discussed defects and contaminations in 2D material, especially at edge states, 

which may change the conductance and current flow pattern significantly. At the same time, defects and 

contaminations may also change the extracted Schottky barrier height. In the reported 1T/1T’-2H TMDs, 

extracted Schottky contact can be less than 0.1 eV. However, in most DFT simulations, the values reported 

are much larger than 0.1 eV. How defects, contaminations, and doping affect the Schottky barrier is an 

interesting and important topic. 

Besides the 1T/1T’-2H heterojunctions in TMD material, there are many other 2D material systems with 

the metallic-semiconducting interface. For example, van der Waals junctions formed by semi-metallic 
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graphene and semiconducting BP, homogeneous junction formed by metallic multilayer arsenene and 

monolayer semiconducting arsenene [170], [172], [173]. Investigating these novel systems may help us 

better understand the contact problem in 2D materials and may shed light on novel electronics devices 

based on tunneling. The ultimate goal could be to achieve circuit-level electronics based on all 2D materials.  

7.2.3 Vertical Tunneling in Contact and Stacked 2D Materials 

Since the birth of graphene, people have tried to open the bandgap of graphene and make it suitable for 

digital applications. One of the well-known methods is by layered structure, either hexagonal boron nitride 

or MoS2 is sandwiched between graphene sheets [174]. There are also reported works using hBN as a buffer 

layer between metal and MoS2 to reduce barrier height. All these works utilized the vertical tunneling 

current in layered 2D materials. In normal 2D material, electrons are confined in the plane and considered 

as quantum confinement states in the vertical directions. The tunneling of carriers in the vertical directions 

in 2D materials is an interesting topic. It may propose a generalized method to reduce contact resistance 

using a tunneling barrier instead of a Schottky barrier. 

At the same time, the developed simulator for heterojunctions can also be used for the simulation of van 

der Waals heterojunctions. We can carefully engineer the band alignments by selecting semiconductors 

with desired bandgap and work functions. It can be used for vertical tunneling FETs. The grain boundaries 

in CVD-grown 2D material are an inevitable problem. How the grain boundaries affect the overall device 

performance is still unclear. We can investigate such a problem by constructing junctions within the same 

material, like mono-bi-monolayer BP junctions. Device performance can be compared with normal 

monolayer or bilayer BP FETs. With the newly developed simulator, a lot of interesting works would be 

possible. 
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