
Selectable Heaps and Their
Application to Lazy Search Trees

by

Lingyi Zhang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2021

© Lingyi Zhang 2021

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

This thesis is based on the materials of a paper I co-authored with Bryce Sandlund.

[38] Bryce Sandlund and Lingyi Zhang. Selectable heaps and optimal lazy search trees,
2020

iii

Abstract

We show the O(logn) time extract minimum function of efficient priority queues can
be generalized to the extraction of the k smallest elements in O(k log(n/k)) time. We
first show the heap-ordered tree selection of Kaplan et al. can be applied on the heap-
ordered trees of the classic Fibonacci heap to support the extraction in O(k log(n/k))
amortized time. We then show selection is possible in a priority queue with optimal worst-
case guarantees by applying heap-ordered tree selection on Brodal queues, supporting the
operation in O(k log(n/k)) worst-case time. Via a reduction from the multiple selection
problem, Ω(k log(n/k)) time is necessary.

We then apply the result to the lazy search trees of Sandlund & Wild, creating a new
interval data structure based on selectable heaps. This gives optimal O(B +n) lazy search
tree performance, lowering insertion complexity into a gap ∆i to O(log(n/∣∆i∣)) time. An
O(1)-time merge operation is also made possible under certain conditions. If Brodal queues
are used, all runtimes of the lazy search tree can be made worst-case. The presented data
structure uses soft heaps of Chazelle, biased search trees, and efficient priority queues in a
non-trivial way, approaching the theoretically-best data structure for ordered data.

iv

Acknowledgements

I would like to thank everyone who made this thesis possible.

v

Table of Contents

List of Tables vii

1 Introduction 1

1.1 Overview . 3

1.2 Application . 4

1.3 Organization . 6

2 Selectable Heaps 7

2.1 Lower bound . 7

2.2 Heap-ordered tree selection . 8

2.3 The Fibonacci heap selection . 9

2.4 The Brodal queue selection . 11

3 Optimal Lazy Search Trees 15

4 Conclusion 20

References 21

vi

List of Tables

1.1 The runtime for the priority queue implementations 4

vii

Chapter 1

Introduction

In this thesis, we deal with extending the operations of a priority queue and its efficient
implementation as a “heap”. While originally defined by Williams [43] as an implicit
representation of a tree, the term heap has come to be used for any tree based data
structure for the abstract data type priority queue. That is, one supporting the operations
insert and extract minimum. The key property is that the trees need to satisfy heap
ordering, i.e., a tree is heap ordered if the value associated with each node is at most that
associated with its parent.

The operations of a priority queue have also been extended for various applications.
Efficient creation (better than inserting elements one at a time) of a heap is an obvious
extension, as is the merging of two heaps or decreasing the value of an element.

In this thesis we extend the operations even further, adding the deletion of several
elements, the extraction of the k smallest and, perhaps most notably, selecting the k
smallest values (in no particular order). For this reason, we call our implementation a
selectable heap.

The operations supported by our extended priority queues are:

• MakePQ() ∶= Create a new, empty priority queue.

• Merge(q1, q2) ∶= Return a new priority queue containing all elements of priority queue
q1 and q2, destroying q1 and q2.

• Insert(e) ∶= Add element e to the priority queue.

• DecreaseKey(e, v) ∶= Decrease the key of e to v.

• Delete(e) ∶= Delete element e from the priority queue.

• FindMin() ∶= Return the minimum element of the priority queue.

• ExtractMin() ∶= Return and remove the minimum element of the priority queue.

• SelectK(k) ∶= Return the k smallest elements of the priority queue, in no particular
order.

1

• ExtractK(k) ∶= Return and remove the k smallest elements of the priority queue, in
no particular order.

• Delete(e1, . . . , ek) ∶= Remove elements e1, . . . , ek from the priority queue.

We extended the original priority queue data type over previous work to support
SelectK(k), ExtractK(k), and Delete(e1, . . . , ek) operations.

The term “heap”, as noted above was originally defined by Williams [43] as what we
would now call an implicit data structure [35], i.e. the elements are stored in the first n
locations of an array and the only structural information is that which can be inferred
from their relative values. The heap was a representation of a perfectly balanced and left
adjusted binary tree in which parent values were at most that of their children. With the
root (smallest value) in position A[1], the children of A[i] are in locations 2i and 2i + 1.
While the original purpose of this structure was to enable the first O(n logn) in place
sorting algorithm, it was obvious that it could be used as a priority queue (operations
insert and extract minimum). Soon after, Floyd [18] showed a heap could be implemented
in about 2n comparisons and later Gonnet and Munro [22] reduced this to 1.625n.

Over the past 60 years, the term heap has come to be applied to any tree ordered
(parent less than child) implementation of a priority queue; and, as noted, the notion of
priority queue has been extended to include more operations as required for particular
applications. Before getting into the details of the complexity for selectable heap, we start
with the literature of priority queues.

The binary heaps were the first minimum priority queue data structure that were in-
vented in 1964 by Williams for the heapsort algorithm [43]. Binary heaps support O(logn)
time extract minimum and insert operations. Due to their simplicity and storage of el-
ements in an array, binary heaps or their generalization to d-ary heaps [27, 40] continue
to be one of the most practical priority queues. Later the priority queues were extended
since some applications require additional operations. The binomial heap was invented in
1978 [41], providing a simple priority queue that supports insertion in O(1) amortized time
and the merge of two heaps also in O(1) amortized time [33].

A breakthrough in efficient priority queue literature, Fibonacci heaps, came in 1984
via generalizing binomial heaps to support an efficient decrease-key operation [20]. Fi-
bonacci heaps are created first to efficiently support Dijkstra’s single source shortest paths
algorithm which makes essential use of priority queues, and in particular the primitive of
lowering the priority of an existing element in the priority queue. Fibonacci heaps can
perform insert, merge, and decrease-key all in O(1) amortized time. Fibonacci heaps pro-
vide improved runtimes in shortest path and minimum spanning tree algorithms, among
other applications [20]. A number of priority queues with time bounds matching or
close to Fibonacci heaps have since been developed, including pairing heaps [21, 15],
strict Fibonacci heaps [5], rank-pairing heaps [23], Brodal queues [3], and many oth-
ers [7, 16, 24, 14, 25, 2, 30, 31, 37]. The pairing heaps [21, 15] simplifies the ExtractMin

operations, but they pay a higher cost for DecreaseKey operations. This was later im-
proved in Rank-pairing heaps [23] which combine the asymptotic efficiency of Fibonacci
heaps with much of the simplicity of pairing heaps. Brodal gave two priority queues

2

matching Fibonacci heap bounds but in the worst-case. The Brodal queues [3] were
first presented in 1996, and the improved version strict Fibonacci heaps [5] were given
in 2012. Although many results claim to be a simpler or more practical alternative to
Fibonacci heaps [7, 24, 23, 16, 30, 31, 37], Fibonacci heaps continue to be one of the most-
taught, most-performant, and simplest-to-code priority queues with optimal theoretical
efficiency [24, 34]. More on the history and breadth of research on priority queues is given
in the recent survey by Brodal [4].

1.1 Overview

In this thesis we show the extract minimum function of priority queues, particularly, Fi-
bonacci heaps [20] and Brodal queues [6], can be generalized to the extraction of the k small-
est elements. Via a reduction from the multiple selection problem, we show a comparison-
based priority queue supporting insertion in o(logn) time must take Ω(k log(n/k)) time
for the extraction of the k smallest elements. This lower bound is not surprising since we
need to pay for sorting the remaining elements after the k smallest extraction, but we save
the cost for sorting the k elements removed from the set.

The Fibonacci heap is data structure for a broad set of priority queue operations that
has a better amortized runtime than many other priority queue implementations. It is a
collection of heap-ordered trees such that the size of the (sub)tree rooted at any node x
of degree d in the heap must have size at least Fd+2, where Fk is the kth Fibonacci num-
ber. In the original Fibonacci heap paper [20], it was proven that Fibonacci heaps sup-
port MakePQ(), Merge(), Insert(), DecreaseKey(), and FindMin() in O(1) amortized
time and ExtractMin() and Delete() in O(logn) amortized time. We show FindMin()

and ExtractMin() operations can be expanded to SelectK(k) and ExtractK(k), respec-
tively. We apply the heap-ordered tree selection algorithm of Kaplan, Kozma, Zamir,
and Zwick [29] to the heap-ordered trees of Fibonacci heaps, supporting SelectK(k) and
ExtractK(k) in O(k log(n/k)) amortized time.

We then show Brodal queues [3] also be made to support efficient selection. The Brodal
queue is a priority queue implementation that take advantage of lazy merge and the power
of constant time array index access. Brodal queues match all time bounds of Fibonacci
heaps for MakePQ(), Merge(), Insert(), DecreaseKey(), FindMin(), ExtractMin(), and
Delete() operations but in the worst-case rather than just amortized. We show heap-
ordered selection [29] can be made to work on a Brodal queue, giving SelectK(k) and
ExtractK(k) in O(k log(n/k)) worst-case time. This provides a priority queue with opti-
mal worst-case time operations for all standard operations while also supporting optimal
worst-case time ExtractMin(). Finally, we show both Fibonacci heaps and Brodal queues
support Delete(e1, . . . , ek) in O(k log(n/k)) time amortized and worst-case respectively.

The exact conditions necessary for efficient selection in a heap are rather delicate. In
order to have the selection algorithm [29] fast enough for k selection, we want to limit the
number of nodes with large degrees. For the worst case, a forest of size n with k roots and
all non-root nodes being the direct children of the root nodes will require O(n) time for

3

Operation FindMin ExtractMin Insert DecreaseKey Merge
Binary O(1) O(logn) O(logn) O(logn) O(n)

Binomial O(1) O(logn) O(1)∗ O(logn) O(1)∗
Fibonacci O(1) O(logn)∗ O(1) O(1)∗ O(1)
Pairing O(1) O(logn)∗ O(1) O(logn)∗ O(1)
Brodal O(1) O(logn) O(1) O(1) O(1)

Rank-pairing O(1) O(logn)∗ O(1) O(1)∗ O(1)
Strict Fibonacci O(1) O(logn) O(1) O(1) O(1)
We use ∗ when the runtime is amortized; otherwise, the runtime we list in the table is all in
worst-case time.

Table 1.1: The runtime for the priority queue implementations

selection. One of the necessary conditions will be that the degree of each node must be
bounded by the logarithm of subtree size, but this alone is not sufficient. For example, a
chain of nodes each with O(logn) child leaves would require Ω(k logn) time to select the
k smallest. Fibonacci heaps do not permit such structures because child subtrees must
be of exponentially-increasing size, the key property we use in our proof. Brodal queues
follow even more rigorous structure constraints, and the technical difficulty of our proof for
efficient selection is getting around the potentially O(n) nodes throughout the heap that
do not satisfy heap order.

Various existing priority queues seem roughly evenly-divided in their ability to also
support efficient selection. Specifically, it appears relaxed heaps [14], two-tier pruned
binomial queues [17], hollow heaps [24], and thin and fat heaps [30] can also support
selection in O(k log(n/k)) time, while quake heaps [7], strict Fibonacci heaps [5], pairing
heaps [21], rank-pairing heaps [23], and violation heaps [16] do not.

It is not surprising that various seemingly-unrelated ordered data structures see simul-
taneous use in our construction. As optimal solutions in their own domains, an optimal
solution in the general domain will likely require similar ideas. On the other hand, with
regards to selection in priority queues, it may seem surprising that existing efficient priority
queues can support the selection of the k smallest elements in optimal time without much
modification, despite being designed only for the extraction of the minimum element. In
any case, the fact these classic heap data structures support efficient selection suggests
they make few comparisons beyond the minimal required of the underlying partial order
and keep this information efficiently accessible.

1.2 Application

One of the applications of selectable heap is that it can be used an interval data structure
for the lazy search tree [37]. A lazy search tree is a comparison-based data structure
that supports the operations of a binary search tree; this operation set is referred to as a
sorted dictionary in [37]. (A formal description of allowed operations is given in Section 3.)
Instead of sorting elements on insertion, as does a binary search tree, lazy search trees store

4

bags of unsorted elements in a partition into gaps based on key order. Specifically, a set
of gaps ∆1, . . . ,∆m are maintained such that for any x ∈ ∆i and y ∈ ∆i+1, x ≤ y. Inserted
elements are placed into a gap respecting the key-order partition, and each query falls
into a gap and splits the gap into two new gaps at a position associated with the query
operation. Lazy search trees are able to provide superior runtimes to binary search trees
on operation sequences with small number of queries or with non-uniformly distributed
queries. For example, n insertions and q queries can be served in O(n log q+q logn) time, q
queries for k consecutive keys with n interspersed uniformly-distributed insertions can be
served in O(n log q+qk logn+n log logn) time, or the data structure can be used directly as
a priority queue with O(log logn) time insert and decrease-key operations. More generally,
if we take B = ∑

m
i=1 ∣∆i∣ log2(n/∣∆i∣), lazy search trees serve an operation sequence of n

insertions and q distinct queries in O(B +min(n log logn,n log q)) time, where Ω(B +n) is
a lower bound. Precise performance statements and further applications are stated in [37].

The interval data structure given in the original lazy search tree paper can be made into
a selectable heap with time complexities matching those stated herein for Fibonacci heaps
and Brodal queues, except that Insert() and DecreaseKey() take O(log logn) time and
SelectK(k) can be supported in O(k) amortized time. (Although operations FindMin()

and SelectK(k) are not explicitly addressed in [37], in Section 1.2, “Selectable Priority
Queue”, it is stated how they can be performed.) By building an interval data structure
off Fibonacci heaps or Brodal queues, we show the following:

1. Lazy search trees can achieve optimal O(B + n) time performance over a sequence
of n insertions and q distinct queries, lowering insertion complexity into gap ∆i

from O(min(log(n/∣∆i∣)+ log log ∣∆i∣, log q)) to O(log(n/∣∆i∣)). This lowers the time
complexity for n uniformly-distributed insertions and q interspersed queries for k
consecutive keys to O(n log q + qk logn) and improves insertion and decrease-key
complexity as a priority queue toO(1) time. (This answers open problem 2 from [37].)

2. Lazy search trees can be made to support O(1) time merge when used as a priority
queue, among other situations. (This answers open problem 4 from [37].)

3. Queries in a lazy search tree can be made worst-case in the general case of two-
sided gaps. (This addresses open problem 5 from [37]; a fully-general worst-case time
solution does not appear possible while keeping change-key in the exact model given
in [37]. We do offer a worst-case time solution with fully-general gap merge and
change-key supported as deletion and re-insertion in O(logn) time.)

The proposed data structure makes fundamental use of soft heaps [8, 32, 29], biased
search trees, and efficient priority queues. A soft heap is a variant on the simple heap
data structure that allows constant amortized time deletion. The main difference between
soft heaps and regular heaps is that soft heaps are allowed to increase the keys of some
of the items in the heap by an arbitrary amount. Such items are said to become corrupt.
In some sense, this research approaches a unification of different ordered data structures
into a single theory of a best data structure for ordered data. Optimal priority queues
(a single gap ∆1), online dynamic multiple selection [1] (gaps are separated by queried

5

ranks), and binary search trees (every element is in its own gap) are special cases of our
solution. This paper closes the book theoretically in the gap-based model proposed in [37];
any further work in this research direction requires generalization of the gap model, stated
in [37] as open problem 1: Extend the model and provide a data structure so that the
order of operations performed is significant.

1.3 Organization

We organize the remainder of this thesis as follows. In the next chapter, in Section 2.1, we
show a priority queue supporting insertion in o(logn) time must take Ω(k log(n/k)) time
to extract the k smallest elements. In Section 2.2, we describe the general framework of
heap-ordered tree selection from [29]. In Section 2.3, we show how to support SelectK(k),
ExtractK(k), and Delete(e1, . . . , ek) in a Fibonacci heap inO(k log(n/k)) amortized time.
In Section 2.4, we show how to support SelectK(k), ExtractK(k), and Delete(e1, . . . , ek)
in a Brodal queue in O(k log(n/k)) worst-case time. In Chapter 3, we apply selectable
heaps to lazy search trees, achieving optimal performance, supporting merge as a priority
queue, and giving worst-case time operations for the general case of two-sided gaps. We
give concluding remarks in Chapter 4.

This thesis is written assuming the reader is familiar with the previous work on priority
queues, especially in Fibonacci heaps [20] and Brodal queues [3], though a brief summary
of this background is given in Section 2.3 and 2.4. In Section 2.2, we will give a high level
idea about the algorithm we are using. However, the reader can get a better understanding
of the algorithm we are using and other selection algorithms from the original paper [29].

6

Chapter 2

Selectable Heaps

Before giving the full details of the implementation of the selectable heap and analysis of
its complexity, we will start with the lower bound on selection in a priority queue in Section
2.1. Then we will introduce the major tool we use in Section 2.2. We will give the details
of implementation based on Fibonacci heap and Brodal queue respectively in Sections 2.3
and 2.4 respectively.

2.1 Lower bound

In this section, we give a simple lower bound for extraction of the k smallest elements in
a priority queue.

Theorem 1. A priority queue supporting insertion and extraction of the k smallest ele-
ments must have Ω(log(n/k)) time insertion per element or Ω(k log(n/k)) time extraction
of the k smallest elements.

Proof. We can reduce a multiple selection instance [28] to the selectable priority queue.
We insert all n elements and repeatedly extract the k smallest. The lower bound for this
multiple selection instance is n log(n/k) + o(n log(n/k)) + O(n) comparisons [28]. Since
selectable priority queue requires both insertion operations and extraction operations, this
implies either insertion must take Ω(log(n/k)) time or extraction of the k smallest elements
must take Ω(k log(n/k)) time.

Corollary 2. A priority queue supporting Insert() and ExtractK(k) must spend either
Ω(logn) time on Insert() per element or Ω(k log(n/k)) time on ExtractK(k).

Proof. As we consider priority queues with extraction operations with k specified as a pa-
rameter, Theorem 1 implies such a priority queue must either have Ω(logn) time insertion
per element or Ω(k log(n/k)) time extraction of the k smallest elements.

Corollary 2 implies the priority queues we consider in this work must take Ω(k log(n/k))
time on ExtractK(k) operations.

7

2.2 Heap-ordered tree selection

We use the heap-ordered tree selection algorithm Soft-Select-Heapify(r) from Ka-
plan, Kozma, Zamir, and Zwick [29], where r is the root of the tree. Algorithm
Soft-Select-Heapify(r) works on arbitrary heap-ordered trees in which nodes may have
different degrees. We will use Soft-Select-Heapify(r) as a black box. Given a heap-
ordered tree with root r, Soft-Select-Heapify(r) will return a set of k smallest items
from the tree. This is in contrast to a different algorithm by Frederickson [19] which can
be used to achieve the same result but is quite complicated.

We need the following definition from [29].

Definition 3 ([29]). For any subtree, S rooted at the root of T , let ∆(S) denote the sum
of the degrees of the nodes of S in the tree T . Then, define

D(T, k) ∶= max(∆(S)) for all subtrees S of size k rooted at the root of T .

Kaplan et al. [29] give the following examples. A large enough d-ary tree has D(T, k) =
dk, as each node has degree d. As another example, consider a tree T where each node at
level i has degree i+2; then, D(T, k) = ∑

k−1
i=0 i+2 = k(k+3)/2, where the subtrees achieving

this maximum are paths starting from the root. Their heap-ordered tree selection theorem
is the following.

Theorem 4 ([29]). Let T be a heap-ordered tree with root r. Algorithm
Soft-Select-Heapify(r) selects the set of k smallest items in T in O(D(T,3k)) time.

We give the high level idea of the algorithm Soft-Select-Heapify(r) here. The
algorithm uses the soft heap for selection. A soft heap is a variant on the simple heap
data structure that allows “corruption”. A node is corrupted if the key is increased. The
number of corrupted nodes in the tree can be controlled by a selected parameter 0 < ε ≤ 1/2.
More precisely, the guarantee offered by soft heaps is the following: for a fixed value ε,
at any point in time there will be at most εn corrupted keys in the heap, where n is the
number of elements inserted across the lifetime of the heap (which can be more than the
number of current elements). Soft heaps can achieve constant amortized time Delete,
Insert, Merge, ExtractMin, and FindMin operations. Deterministic linear time selection
algorithm is one of the applications of soft heaps.

Algorithm Soft-Select-Heapify(r) starts by initializing an empty soft heap Q and
set S. The algorithm first adds the root r of the input heap into the soft heap Q. The
algorithm then performs k − 1 iterations of selection. In each iteration, the algorithm first
performs (e,C) ∶=ExtractMin(Q), where e is the node with minimum key in Q and C is
the set of nodes that are corrupted by the operation. If e is not corrupted, it is added to
C. Then the algorithm inserts all the children of nodes in C into both Q and S. After
k − 1 iterations, the algorithm performs a k selection on set S to find the k smallest items
required.

With a carefully chosen parameter ε = 1/6, we can limit the total number of corruptions
of the above algorithm to 2k. Thus, there will be at most 3k nodes whose children are
inserted into the soft heap Q. We have the runtime of the algorithm to be O(D(T,3k)).

8

2.3 The Fibonacci heap selection

In this section we describe our algorithm and analysis for the Fibonacci heap [20] selec-
tion. As we mentioned before, Fibonacci heaps support MakePQ(), Merge(), Insert(),
DecreaseKey(), and FindMin() in O(1) amortized time and ExtractMin() and Delete()

in O(logn) amortized time. We will show in this section how we apply the heap-ordered
tree selection algorithm of Kaplan, Kozma, Zamir, and Zwick [29] to expand FindMin() and
ExtractMin() operations to SelectK(k) and ExtractK(k) and prove that SelectK(k)
and ExtractK(k) operations can be done in O(k log(n/k)) amortized time.

Fibonacci heaps store a forest of heap-ordered trees and a pointer to the minimum root.
FindMin() returns the minimum root that the pointer points to. Insert() adds a single
new root with no children to the forest, possibly updating the pointer to the minimum root.
Merge() combines two forests into one, again possibly updating the minimum pointer.
ExtractMin() removes the smallest element, makes all its children new roots in the forest,
finds the next smallest element, and then repeatedly combines roots of the same degree.
DecreaseKey() is supported with a marking scheme. Each non-root node can either be
marked or unmarked. If a node x is marked, this implies x has lost a child. When a marked
node x loses a second child, x is removed from the list of children stored at its parent, p(x),
the subtree rooted at x is made a new root, and x is unmarked. The parent p(x) is then
either marked or also removed to form a new root, recursively. DecreaseKey() of a node
x simply makes x a new unmarked root and processes its parent p(x) via the marking
scheme. Delete() calls DecreaseKey() on the element and decreases the key to −∞.

It is perhaps surprising that a tree T of a Fibonacci heap satisfies D(T, k) =

O(k log(n/k)). The bound is easier to show on a binomial heap [41], since a binomial tree
of degree k has exactly 2k nodes. Fibonacci heaps have a more-flexible structure, in partic-
ular giving only lower bounds on the degree of child nodes. We cannot find a fixed relation
between the degree of the node and the size of the subtree rooted at such node. In order
to bound the runtime of the selection algorithm, it will require bounding the total degree
sum by showing that a large degree sum implies more than n nodes in the Fibonacci heap.
The fundamental property used is that children of a node have exponentially-increasing
subtree size. In Fibonacci heaps, this is due to the following lemma.

Lemma 5 ([20]). Let x be any node in a Fibonacci heap. Arrange the children of x in the
order they were linked to x, from earliest to latest. Then the ith child of x has a degree of
at least i − 2.

Lemma 5 can be used to prove the following corollary.

Corollary 6 ([20]). A node of degree k in a Fibonacci heap has at least Fk+2 ≥ φk descen-
dants, including itself, where Fk is the kth Fibonacci number and φ = (1 +

√
5)/2 is the

golden ratio.

We give the main theorem of the section below.

Theorem 7. Fibonacci heaps support SelectK(k), ExtractK(k), and Delete(e1, . . . , ek)
in O(k log(n/k)) amortized time.

9

Proof. We first create a heap-ordered tree Tbig from the collection of roots stored in the
Fibonacci heap by creating a dummy node d with value −∞ and linking all roots below it.
We then perform Soft-Select-Heapify(d) [29] to select the k + 1 smallest elements from
Tbig. We show D(Tbig, k) = O(t+ k log(n/k)), where t is the number of roots the Fibonacci
heap contains at the time of selection.

Consider the subtree Tselect of Tbig of selected nodes. Subtree Tselect contributes O(k)
to the degree of the selected nodes in tree Tbig. Let us thus ignore this contribution and
consider only unselected children of selected nodes. As there are a total n+1 nodes in Tbig,
we will maximize the sum of unselected children by attaching subtrees of smallest size to
every selected node other than d, so that we may attach as many of them as possible. By
Lemma 5 and Corollary 6, the first two unselected subtrees we attach must be of degree
at least 0, containing 1 element, then the third must be of degree 1, containing 2 elements,
and the jth subtree must be of degree at least j −2, containing at least φj−2 elements. The
number of attached subtrees, ignoring the contribution of Tselect, is maximized when we
attach the same number i to each selected node. Solving for i in

k + k
i

∑
j=2
φj−2 ≥ n − k,

we can determine

i ≤
log(1 + (φ−1)(n−2k)k)

logφ
+ 1.

It follows that i ≤ logφ(n/k) + 1. Adding back the contribution of Tselect affects the above
analysis by no more than k, so that in total each selected node has degree O(log(n/k)),
besides dummy node d which has degree t. Structural limitations imposed by the particular
tree Tbig can only make average degree decrease by replacing smaller subtrees with larger
subtrees. It thus follows that D(Tbig, k) = O(t + k log(n/k)) and by Theorem 4, selection
in Tbig takes O(t + k log(n/k)) time.

To complete operation SelectK(k), we reduce t to at most logn by repeatedly combin-
ing roots of equal degree. By the potential function of the Fibonacci heap [20], this releases
t units of potential and achieves amortized O(k log(n/k)) time selection. To complete op-
eration ExtractK(k), we first remove the k smallest elements. This leaves O(t+k log(n/k))
independent trees. We then again repeatedly combine roots of equal degree, resulting in
at most logn independent trees. The amortized time complexity of ExtractK(k) is thus
also O(k log(n/k)).

The above degree bounds did not require the subtree Tselect be minimal, or even con-
nected. Our argument shows the total sum of degrees of any k nodes in a Fibonacci heap
is O(k log(n/k)). This allows an O(k log(n/k)) time Delete(e1, . . . , ek) operation. For
each i, we remove the subtree rooted at ei and perform cascading cuts until an ances-
tor of ei is not marked or a root is reached, as in the decrease-key operation. The final
unmarked ancestor, if not a root, is then marked and all children of ei are added to the
collection of roots. The total number of children is O(k log(n/k)) and each cascading cut
operation takes O(1) amortized time per ei. Thus the entire deletion can be performed in
O(k log(n/k)) amortized time.

10

2.4 The Brodal queue selection

Brodal queues [3] are much more complicated than Fibonacci heaps, but allow all operations
in worst-case time. Nodes are stored in a tree T1 or possibly another tree T2 which is
incrementally merged into T1. Each node has a non-negative integer rank assigned to it.
For each node x, we use p(x) as the parent of x, r(x) as the rank1 of x, and ni(x) as the
number of children of rank i that x has. Finally, we use ti as the root of Ti. Nodes which
satisfy heap order, i.e. they are larger than their parents, are called good nodes. Nodes
which are not good are called violating nodes.

Brodal queues use 13 invariants to maintain the structure. The invariants can be
classified into three sets S, O and R respectively. The invariants in the set S apply to all
nodes in the Brodal queue, while the invariants in the set R apply to the root of the trees.
The invariants in set O control the violations.

For any node x, the following invariants are satisfied.

S1 : If x is a leaf, then r(x) = 0,

S2 : r(x) < r(p(x)),

S3 : if r(x) > 0, then nr(x)−1(x) ≥ 2,

S4 : ni(x) ∈ {0,2,3, . . . ,7},

S5 : T2 = ∅ or r(t1) ≤ r(t2).

Each node x has rank r(x) and at most 7 children of any rank less than r(x) (Invariants
S2 and S4). Additionally, x cannot have a single child of any rank (S4) and must have at
least two children of rank r(x) − 1 (S3). Leaves have rank 0 (S1).

Beside the good nodes, Brodal queues also allow violating nodes. To keep track of the
violating nodes, each node x is associated with two subsets V (x) and W (x). If a node y
is smaller than its parent p(y), the violation is stored in a violating set V (x) or W (x) for
some node x ≤ y. Despite the fact that each node x might need to maintain non-empty
subsets V (x) and W (x), elements will only be inserted to either V (t1) or W (t1) (t1 is
the root of T1). The V sets take care of large violations, i.e. violations that have rank
larger than r(t1) when they are created will be added to V (t1). The W sets handle smaller
violations, i.e. violations that have rank less than or equal to r(t1). We use wi(x) to
denote the number of nodes of rank i in the set W (x). Brodal uses the constant α for the
number of large violations that can be created between two increases in the rank of t1. In
the original paper [3], Brodal uses the following set of invariants to maintain the violations.

O1 : t1 = min T1 ∪ T2,

1Rank is used here as an assigned parameter. The term rank is used for different concepts in chapter
2 and 3.

11

O2 : if y ∈ V (x) ∪W (x), then y ≥ x,

O3 : if y < p(y), then an x ≠ y exists such that y ∈ V (x) ∪W (x),

O4 : wi(x) ≤ 6,

O5 : if V (x) = (y∣V (x)∣, . . . , y2, y1), then r(yi) ≥ ⌊(i − 1)/α⌋ for i = 1,2, . . . , ∣V (x)∣,
where α is a constant.

From the above invariants, we can obtain the upper bound of the size of V and W sets.
The set W (x) contains at most 6 violations of any rank (O4) and the set V (x) contains
at most mα violations of rank less than m, where α is a constant (O5).

At the roots t1 of T1 and t2 of T2, invariants are stronger. Each root tj has at least two
children of every rank (R1).

R1 : ni(tj) ∈ {2,3, . . . ,7} for i = 0,1, . . . , r(tj) − 1,

R2 : ∣V (t1)∣ ≤ αr(t1),

R3 : if y ∈W (t1), then r(y) < r(t1).

A guide data structure [30, 17] is used to efficiently manage the invariants R1 and O4.
Given a sequence of integer variables xk, xk−1, . . . , x1 and xi ≤ T for some threshold T , we
can only perform Reduce(i) operations on the sequence which decrease xi by at least two
and increase xi+1 by at most one. The xis can be forced to increase and decrease by one,
but for each change in an xi we are allowed to do O(1) Reduce operations to prevent any
xi from exceeding T . The guide data structure will tell us which operations to perform in
O(1) time.

Notice that, if we have at least three nodes of the same rank i, we can combine those
nodes and create a new node with rank i+1. Similarly, we can also split a node of rank i+1 to
several nodes of rank at most i. We call the first operation linking and the latter delinking.
For each node, if we count the number of children of each rank and list the number from
highest rank to lowest, we obtain a sequence of integer variables xk, xk−1, . . . , x1. We can
perform linking and delinking operation for the children of the same node, and we can
reflect the changes of the rank in the above sequence by performing Reduce(i) operations.
We can use two instances of the guide data structure for each node to maintain both a lower
and upper bound on the number of children of each rank so that addition and removal of
a child of any rank can be supported at the roots t1 and t2 in O(1) worst-case time. A
guide data structure is also used to maintain the upper bound given in Invariant O4 on
W (t1). Two violations of the same rank r can be reduced to at most one of rank r + 1 in
worst-case O(1) time.

Brodal queue [3] selection will differ from Fibonacci heap selection in a couple ways.
The most important is handling violating nodes. We treat violating nodes with on-the-fly
conversion into a proper heap-ordered tree. The second is that the rigid rank structure of

12

Brodal queues can actually allow us to simplify the proof of degree bounds compared to
the approach taken in the previous section. Namely, rather than lower bounding the sizes
of unselected subtrees, we can directly upper bound the number of nodes of high degree.
We first give a lemma from [3]2.

Lemma 8 (Brodal [3]). A node x with rank r(x) in a Brodal queue has subtree of size at
least 2r(x)+1 − 1.

Lemma 8 implies the maximum rank r in a Brodal queue is at most log2(n).

We can use S2 and Lemma 8 to get a bound on the number of nodes in a Brodal queue
of a particular rank.

Lemma 9. A Brodal queue has at most one node of rank ⌈log2(n)⌉, two nodes of rank
⌈log2(n)⌉ − 1, and in general at most 2i nodes of rank ⌈log2(n)⌉ − i, where i ≤ ⌈log2(n)⌉.

Proof. By S2, nodes of the same rank cannot be descendants of each other. This implies
their subtrees are disjoint. By Lemma 8, a node of rank ⌈log2(n)⌉−i has at least n/2i−1−1 ≥
n/2i descendants. Thus there can only be 2i such nodes.

Theorem 10. Brodal queues support SelectK(k), ExtractK(k), and Delete(e1, . . . , ek)
in O(k log(n/k)) worst-case time.

Proof. As in the Brodal queue delete minimum operation, we first empty tree T2 by
moving all children of t2 to T1 and making t2 a rank 0 child of T1. We then call
Soft-Select-Heapify(t1) to select the k smallest nodes in T1.

Whenever we reach a node y, we consider nodes of V (y) and W (y) to be children of y in
the selection algorithm. From invariant O2, we know that x ≥ y. It is thus possible to reach
a node x via its proper parent or a node y in which x ∈ V (y) ∪W (y). Upon encountering
x, we check to make sure it was not already selected. Since x is in the violating set V (y) or
W (y) of at most one node y, the total extra work for encountering x on two paths is O(1),
totaling O(k) for all k selected nodes. Algorithm Soft-Select-Heapify() can process
the selection by considering the heap to be constructed in this way since the tree T we
construct on the fly still remains heap order.

We now consider the cost of the selection. We must show D(T, k) = O(k log(n/k)),
where T is the heap-ordered tree we construct on the fly. Observe that the degree of a
node x in T is the sum of the number of violating nodes in its sets V (x) and W (x) and
the number of its proper children. Observe that the number of proper children of a node
x is bounded by 7r(x). Thus to bound the number of proper children of selected nodes, it
suffices to find an upper bound on the total sum of ranks of selected nodes.

Let the ranks of the k selected nodes in non-increasing order be r1, . . . , rk. Then by
Lemma 9, r1 ≤ ⌈log2(n)⌉, r2, r3 ≤ ⌈log2(n)⌉−1, r4, . . . , r7 ≤ ⌈log2(n)⌉−2, and rk ≤ ⌈log2(n)⌉−
⌊log2(k)⌋ ≤ log2(n/k) + 2. The total sum of ranks is thus at most

2k +
∞
∑
i=0

k

2i
(log2(n/k) + i) = k log2(n/k) + 4k.

2While this is not an explicit lemma in [3], it is explicitly stated and proven on page 2.

13

It follows the total sum of proper children of selected nodes is O(k log(n/k)).

We can apply a similar strategy to bound the total number of nodes in violating sets
V and W of selected nodes. Divide the nodes into two categories: those with rank greater
than or equal to log2(n) − log2(k) and those with rank less than log2(n) − log2(k). By
Lemma 9 again and by employing the above argument, there are at most O(k) nodes in
the first category.

We can bound the number of nodes in the second category with invariants O4 and
O5. Invariant O4 states that the W sets of selected nodes contain at most 6 nodes per
rank. Invariant O5 states that V sets of selected nodes contain at most mα nodes of
rank less than m. Together they imply a bound of (6 + α) log2(n/k) nodes in total in the
second category. As α = O(1), this implies the total number of nodes in violating sets
of selected nodes is O(k log(n/k)). Since the number of proper children of selected nodes
is also O(k log(n/k)), we have D(T, k) = O(k log(n/k)). By Theorem 4, this implies the
heap-ordered tree selection takes O(k log(n/k)) worst-case time.

This shows SelectK(k) takes O(k log(n/k)) worst-case time on a Brodal queue. To
prove O(k log(n/k)) worst-case runtime for ExtractK(k), we must rebuild the Brodal
queue with the k smallest nodes removed. We can do so as follows. We remove nodes
other than t1 one-by-one. Consider the process for a node x. First, we remove x. This
may cause p(x) to have only one child of rank r(x), violating S4. If r(p(x)) > r(x) + 1, we
can remove the other rank r(x) node from p(x) and make it a child of t1. Otherwise, we
can find a rank r(x) child of the root and replace x with it. This may create a violation;
if so, we can add it to W (t1). We then add the proper children of x below t1. Further, we
must deal with V (x) and W (x). We can simply add them to W (t1).

We can bound the total cost of adding children of removed nodes below t1 as the above
analysis gives for the bound on the number of proper children, at O(k log(n/k)). Similarly,
we can bound the number of violations created at O(k) and the number of violations added
to W (t1) at O(k log(n/k)), again following the above analysis. At this point we can then
remove t1, following the extract minimum procedure stated in DeleteMin(Q) of [3]. The
total time taken to remove the k smallest elements is O(k log(n/k)).

As in the proof of Theorem 7, we again do not need the property that the k nodes
removed in ExtractK(k) are minimal. We can thus support Delete(e1, . . . , ek) as follows.
We again first empty tree T2 by moving all children of t2 to T1 and making t2 a rank 0 child
of T1. If any ei = t1, we remove each node one-by-one as in ExtractK(k), but save t1 for the
final removal as in DeleteMin(Q) of [3]. Otherwise, we remove each node ei one-by-one
exactly as in the above procedure for ExtractK(k), skipping the final DeleteMin(Q) pro-
cedure of [3]. Either way the above analysis indicates the total cost will be O(k log(n/k))
worst-case time.

14

Chapter 3

Optimal Lazy Search Trees

Lazy search trees [37] are comparison-based data structures that support the following
operations on a dynamic set S with ∣S∣ = n. (It is straightforward to extend data structures
to multisets.) Lazy search trees are designed for scenarios where the number of insertions
is larger than the number of queries. The element of rank r is the rth smallest element in
the set S. The operations of lazy search trees are referred to as a sorted dictionary.

Lazy search trees support the following operations that change the set S.

• Construction(S) ∶= Construct a sorted dictionary on the set S.

• Insert(e) ∶= Add element e to S; (this increments n).

• Delete(e) ∶= Delete e from S, with a pointer to e; (this decrements n).

• ChangeKey(e, v) ∶= Change the key of the element e (with pointer to it) to v.

• Split(r) ∶= Split S at rank r, returning two sorted dictionaries T1 and T2 of r and
n − r elements, respectively, such that for all x ∈ T1, y ∈ T2, x ≤ y.

• Merge(T1,T2) ∶= Merge sorted dictionaries T1 and T2 and return the result, given
that for all x ∈ T1, y ∈ T2, x ≤ y.

Lazy search trees support RankBasedQuery() to get information about the set. Infor-
mally, a rank-based query is a query computable inO(logn) time on a (possibly augmented)
binary search tree and in O(n) time on an unsorted array. The permitted queries include:

• rank(k) ∶= Return the rank of key k in the set S.

• select(r) ∶= Return the element of rank r in S.

• contains(k) ∶= Return true if exists an element e ∈ S with key k; otherwise return
false.

• successor(k) ∶= Return the successor of the element e in set S.

15

• predecessor(k) ∶= Return the predecessor of the element e in set S.

• minimum() ∶= Return the minimum element of set S

• maximum() ∶= Return the maximum element of set S.

For more formal definitions on the permitted queries, see the original lazy search trees
paper [37].

Lazy search trees seek to improve the O(logn) time per-operation complexity given by
binary search trees as a sorted dictionary by employing a fine-grained complexity analysis,
not unlike that done in dynamic optimality literature [39, 42, 10, 9, 26, 12, 11]. Instead
of sorting elements upon insertion, sorting is delayed until query operations. Elements are
stored in a partition into gaps ∆1, . . . ,∆m such that for x ∈ ∆i and y ∈ ∆i+1, x ≤ y. Inserted
elements are placed into a gap respecting the key-order partition. Upon query, the gap ∆i

containing rank r is split into two gaps ∆′
i and ∆′

i+1 such that ∣∆′
i∣ + ∑

i−1
j=1 ∣∆j ∣ = r and for

x ∈ ∆′
i, y ∈ ∆′

i+1, x ≤ y.

The results of [37] are Construction(S) in O(n) time where ∣S∣ = n, Insert() into
a gap ∆i in O(min(log(n/∣∆i∣) + log log ∣∆i∣, log q)) worst-case time (q is the number of
queries), RankBasedQuery() that splits a gap ∆i into a smaller gap of size k and a larger
gap of size ∣∆i∣ −k in O(k log(∣∆i∣/k)+ logn) amortized time, Delete() in O(logn) worst-
case time, Split(r) in time as in RankBasedQuery(r), and Merge() in O(logn) worst-case
time.

The performance of ChangeKey(e, v) is not as easily stated. In general it can be sup-
ported in O(logn) worst-case time as in deletion and reinsertion. More efficient runtimes
are possible dependent on the rank of the element e and the nature of the gap ∆i to which
e belongs (and remains after the key-change).

Each gap is either zero-sided, left-sided, right-sided, or two-sided. If no queries have
occurred, the single gap ∆1 is zero-sided; if queries have occurred only on the left bound-
ary of ∆i it is left-sided, only on the right boundary it is right-sided, and otherwise
(the typical case) it is two-sided. A zero-sided gap ∆i supports any key-change oper-
ation within ∆i in O(1) time. A left-sided gap ∆i supports decrease-key within ∆i in
O(min(log q, log log ∣∆i∣)) time. A right-sided gap ∆i supports increase-key within ∆i in
the same time complexity. A two-sided gap ∆i supports decrease-key on elements less
than or equal to the median of ∆i and increase-key on elements larger than or equal to the
median of ∆i, again in the same time complexity.

As previously stated, if we take B = ∑
m
i=1 ∣∆i∣ log2(n/∣∆i∣), lazy search trees serve an

operation sequence of n insertions and q distinct queries in O(B +min(n log logn,n log q))
time, where Ω(B + n) is a lower bound [37]. By using selectable heaps in place of the
interval data structure in [37], we can achieve three new results for lazy search trees.

Theorem 11. 1. Lazy search trees can support insertion into gap ∆i in O(log(n/∣∆i∣))

time and change-key in O(1) time instead of O(min(log q, log log ∣∆i∣)) time in the
conditions stated above, while matching previous time bounds for all other operations.
Taking B = ∑

m
i=1 ∣∆i∣ log2(n/∣∆i∣), lazy search trees serve a sequence of n insertions

and q distinct queries in O(B + n) time, which is optimal.

16

2. Split of a two-sided gap ∆i can be done in worst-case instead of amortized time. Split
of a left-sided or right-sided gap ∆i can be done in worst-case instead of amortized
time if the larger resulting gap is left-sided or right-sided, respectively.

3. Merge of two left-sided gaps or two right-sided gaps can be performed in O(1) amor-
tized or worst-case time. Alternatively, change-key can be made O(logn) time, the
merge of any two gaps can be supported in O(1) time, and all operations of the lazy
search tree can be made worst-case.

Proof. We create a new interval data structure1 based on selectable heaps. If the gap is
zero-sided, the interval data structure is an unsorted array or linked list. If the gap is
left-sided, the interval data structure is a selectable min-heap. If the gap is right-sided,
the interval data structure is a selectable max-heap. Otherwise, the gap is two-sided, and
we partition the elements roughly into thirds. The smallest third of the elements we make
into a min-heap, the largest into a max-heap, and the middle third we keep unsorted. We
maintain that each third contains at least a 1/3 − ε for 0 < ε < 1/6 fraction of the total
elements in the gap. We can maintain static separator elements between the thirds to
ensure a valid partition.

As in [37], insertion first locates the gap ∆i in which the inserted element belongs in
O(log(n/∣∆i∣)) worst-case time. Insertion within the interval data structure then considers
which third to place the element, if applicable, then does so in O(1) worst-case time if the
selectable heap is Fibonacci [20] or Brodal [3] (or if it is an unsorted array). Change-key
is supported as decrease-key in a left-sided heap or increase-key in a right-sided heap, in
O(1) time. For a two-sided gap, any element in the middle third can have its key increased
or decreased via removal and re-insertion into the proper third in O(1) time, otherwise the
min-heap supports decrease-key and the max-heap increase-key, ultimately satisfying the
necessary constraints for efficient change-key, in O(1) time. If a Brodal queue is used, the
complexity is worst-case.

Query works as follows. As in [37], first the gap ∆i in which r ∈ ∆i is found in O(logn)
time. If ∆i is zero-sided we amortize the work against the total number of elements in zero-
sided gaps, as in [37], performing the operation in O(1) amortized time. If ∆i is two-sided,
then it should be possible to determine which third the query rank r falls into, if applicable,
in O(1) time. If in the middle third, we answer the query in O(∣∆i∣) time, rebuilding ∆i

into ∆′
i and ∆′

i+1 as previously described. Otherwise, we must perform selection in a min-
or max-heap; without loss of generality, assume it is a min-heap. We repeat the following.
We select the smallest 2j elements into a set X and the smallest 2j+1 elements into a set
Y , starting at j = 0. By Definition 6 in the original paper [37], we can determine which
of X or Y contains r. If it is Y , we continue with j ← j + 1; otherwise, we stop and
answer the query. We break ∆i into ∆′

i and ∆′
i+1 so that ∣∆′

i∣ + ∑
i−1
j=1 ∣∆i∣ = r, by extracting

k = r − ∑
i−1
j=1 ∣∆i∣ elements from the heap. We make ∆′

i into a new two-sided gap in O(k)
time. The existing structure of gap ∆i becomes ∆′

i+1.
1The term “interval data structure” was used in [37] due to the representation of elements within a gap

into a second-level key-order partition into intervals, analogous to the gaps on the first level. The “interval
data structure” discussed herein is based on selectable heaps, so at this point the name is a misnomer, but
we maintain the nomenclature for consistency.

17

The time complexity of query can be proven as follows. The time taken for the se-
lections, by Theorems 7 and 10, is proportional to no more than ∑

∞
i=0 k/2i log(n2i/k) =

O(k log(n/k)). Extraction similarly takes O(k log(n/k)) time. If a Brodal queue is used,
the time bound is worst-case. However, k may be larger than ∣∆i∣/2 if ∆i was a left-sided
or right-sided gap. In this case we can amortized against the total number of elements in
one-sided gaps, as is done in [37], to perform the operation in O(1) amortized time.

Operation Construction(S) can be completed via insert. Operation Delete(e) can be
performed as priority queue deletion, in O(logn) time. Operation Split(r) is performed
as query and then an operation on the biased search tree gap data structure, as in [37].
Finally, Merge(T1,T2) similarly occurs at the gap level.

One detail remains, which is the maintenance of the partition into thirds in a two-sided
gap into fractions of size at least 1/3−ε of the total gap size. For every k elements inserted,
removed, or key-changed in an operation, we perform O(k) work towards building a new
copy of the interval data structure with a more-accurate partition, as described in [36].
After the new version is constructed it is caught up to the operations performed during
construction at twice the pace they occur. When it is caught up the current data structure
is thrown away and construction on a new data structure begins. This allows worst-case
time maintenance of the partition while keeping all operation complexity the same.

The above shows parts 1 and 2 of Theorem 11. We now consider part 3. Brodal and
Fibonacci heaps support O(1) time merge, in worst-case and amortized time, respectively.
As left-sided and right-sided gaps are just selectable heaps, we can simply merge the heaps.
For the alternative approach, we forget about left-sided, right-sided, or two-sided gaps and
store all elements of a gap in both a min- and max-heap, with each element containing a
pointer to the other in the opposite heap. All operations work as above, except now for
query, when we extract elements from the min- or max-heap, we also delete the elements
in the other heap. As stated in Theorems 7 and 10, deletion of the k elements can be
completed in O(k log(n/k)) amortized or worst-case time, respectively. Now, since any
two gaps has both a min- and a max-heap, we can support the merge of two arbitrary gaps
in O(1) time by simply merging the two min- and max-heaps. Change-key is supported
only by deletion and re-insertion, in O(logn) time. All operations can be made worst-case
via use of a Brodal queue.

With the help of Theorem 11 we can improve lazy search trees in the following ways:

1. Lazy search trees can achieve optimal O(B + n) time performance over a sequence
of n insertions and q distinct queries, lowering insertion complexity into gap ∆i

from O(min(log(n/∣∆i∣)+ log log ∣∆i∣, log q)) to O(log(n/∣∆i∣)). This lowers the time
complexity for n uniformly-distributed insertions and q interspersed queries for k
consecutive keys to O(n log q + qk logn) and improves insertion and decrease-key
complexity as a priority queue toO(1) time. (This answers open problem 2 from [37].)

2. Lazy search trees can be made to support O(1) time merge when used as a priority
queue, among other situations. (This answers open problem 4 from [37].)

18

3. Queries in a lazy search tree can be made worst-case in the general case of two-
sided gaps. (This addresses open problem 5 from [37]; a fully-general worst-case time
solution does not appear possible while keeping change-key in the exact model given
in [37]. We do offer a worst-case time solution with fully-general gap merge and
change-key supported as deletion and re-insertion in O(logn) time.)

However, we give worst-case performance only in the general case of two-sided gaps. It
appears this may be necessary if change-key is to be supported as a decrease-key operation
for all elements in a left-sided gap (analogously, increase-key in a right-sided gap), which
is what provides optimal performance as a priority queue. Specifically, the performance of
change-key and the ability to perform quick splitting of a gap are coupled. If a lazy search
tree is used as a min-heap, allowing decrease-key of all elements, then we cannot find the
maximum element in O(logn) worst-case time. We need to rebuild the data structure so
that ranks close to the maximum and minimum can be found efficiently, which necessarily
requires the change-key operation to be decrease-key on elements with rank closer to the
minimum and increase-key on elements with rank closer to the maximum.

Finally, we observe that the alternative insertion complexity of O(log q) is also achieved
in the version of lazy search trees stated herein. The number of elements in the gap data
structure is bounded by q [37], and insertion into the interval data structure based on
selectable heaps takes O(1) time. However, O(log q) vs. O(log(n/∣∆i∣)) time insertion
does not impact overall time complexity on any sequence of operations, so we leave it out
of the statement of Theorem 11.

19

Chapter 4

Conclusion

In this thesis we have shown that the O(logn) time extract-minimum function of effi-
cient priority queues can be generalized to the extraction of the k smallest elements in
O(k log(n/k)) time. We apply selectable heaps to lazy search trees [37], giving an optimal
data structure in the gap model, adding a merge function when used as a priority queue,
and providing worst-case runtimes in the general case of two-sided gaps. Any further
theoretical improvement in lazy search trees would require abstraction to an even more
fine-grained model.

We believe by using selectable heaps, we can achieve a more straightforward approach
to lazy search trees than that of [37]. With an understanding of Fibonacci heaps [20]
or Brodal queues [3], the technical arguments required herein are slightly less involved.
However, the approach of [37] based on first principles has its own merit. In [37], the
data structure satisfies an O(min(n, q)) pointer bound, where n is the number of elements
and q the number of queries. Further, the simple priority queue developed which supports
extraction natively is surely more practical. In [37], it is shown in the experiments that a
rudimentary implementation of the described data structure with the number of insertions
approaches n ≥ 1 000 000 can outperform binary search trees in following two ways: when
the number of queries q is way smaller than the number of insertions n (q ≤

√
n), or

when the queries ask for consecutive elements in the tree in increasing order. In contrast,
considering the complicated structures of Fibonacci heaps [20] or Brodal queues [3], the
lazy search tree improvement discussed herein are likely to mostly be of theoretical interest.

For future work, it would be interesting to see if selectable heaps have further applica-
tions outside of the straightforward transitive applications through lazy search trees, such
as an optimal online multiple selection algorithm [13]. Although of relatively low theoret-
ical import, it would also be interesting to see if selection can be supported on a priority
queue with optimal worst-case guarantees in the pointer machine model, such as strict
Fibonacci heaps [5]. Such a data structure would allow a lazy search tree with worst-case
guarantees on the pointer machine, whereas the version discussed here requires internal
use of arrays. Finally, it may be possible to support SelectK(k) in O(k) time, as do lazy
search tree priority queues, but while retaining optimal time bounds for the remaining
operations.

20

References

[1] Jérémy Barbay, Ankur Gupta, Srinivasa Rao Satti, and Jon Sorenson. Near-optimal
online multiselection in internal and external memory. Journal of Discrete Algorithms,
36:3–17, 2016. WALCOM 2015.

[2] Gerth Stølting Brodal. Fast meldable priority queues. In Workshop on Algorithms
and Data Structures (WADS), pages 282–290. Springer, 1995.

[3] Gerth Stølting Brodal. Worst-case efficient priority queues. In Symposium on Discrete
Algorithms (SODA). SIAM, 1996.

[4] Gerth Stølting Brodal. A survey on priority queues. In Space-Efficient Data Structures,
Streams, and Algorithms, pages 150–163. Springer, 2013.

[5] Gerth Stølting Brodal, George Lagogiannis, and Robert E. Tarjan. Strict Fibonacci
heaps. In Symposium on Theory of Computing (STOC). ACM, 2012.

[6] Mark R. Brown. Implementation and analysis of binomial queue algorithms. SIAM
Journal on Computing, 7(3):298–319, 1978.

[7] Timothy M. Chan. Quake heaps: A simple alternative to Fibonacci heaps. In Space-
Efficient Data Structures, Streams, and Algorithms, pages 27–32. Springer, 2009.

[8] Bernard Chazelle. The soft heap: an approximate priority queue with optimal error
rate. Journal of the ACM, 47(6):1012–1027, 2000.

[9] Richard Cole. On the dynamic finger conjecture for splay trees. part II: The proof.
SIAM Journal on Computing, 30(1):44–85, 2000.

[10] Richard Cole, Bud Mishra, Jeanette Schmidt, and Alan Siegel. On the dynamic finger
conjecture for splay trees. part I: Splay sorting logn-block sequences. SIAM Journal
on Computing, 30(1):1–43, 2000.

[11] Erik D. Demaine, Dion Harmon, John Iacono, Daniel Kane, and Mihai Patrascu. The
geometry of binary search trees. In Symposium on Discrete Algorithms (SODA), pages
496–505. SIAM, 2009.

[12] Erik D. Demaine, Dion Harmon, John Iacono, and Mihai Patrascu. Dynamic
optimality–almost. Siam Journal of Computing, 37(1):240–251, 2007.

21

[13] David Dobkin and J. Ian Munro. Optimal time minimal space selection algorithms.
Journal of the Association for Computing Machinery, 28(3):454–461, 1981.

[14] James R. Driscoll, Harold N. Gabow, Ruth Shairman, and Robert E. Tarjan. Relaxed
heaps: An alternative to Fibonacci heaps with applications to parallel computation.
Communications of the ACM, 31(1):343–354, 1988.

[15] Amr Elmasry. Pairing heaps withO(log logn) decrease cost. In Symposium on Discrete
Algorithms (SODA). SIAM, 2009.

[16] Amr Elmasry. The violation heap: A relaxed Fibonacci-like heap. Discrete Mathe-
matics Algorithms and Applications, 2(4):493–503, 2010.

[17] Amr Elmasry, Claus Jensen, and Jyrki Katajainen. On the power of structural viola-
tions in priority queues. In Proceedings of the thirteenth Australasian symposium on
Theory of computing. ACM, 2007.

[18] Robert W Floyd. Algorithm 245: treesort. Communications of the ACM, 7(12):701,
1964.

[19] Greg N. Frederickson. An optimal algorithm for selection in a min-heap. Information
and Computation, 104(2):197–214, 1993.

[20] Michael Fredman and Robert E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the Association for Computing Machin-
ery, 34(3):596–615, 1987.

[21] Michael L. Fredman, Robert Sedgewick, Daniel D. Sleator, and Robert E. Tarjan. The
pairing heap: A new form of self-adjusting heap. Algorithmica, 1(1):111–129, 1986.

[22] Gaston H. Gonnet and J. Ian Munro. Heaps on heaps. In Mogens Nielsen and
Erik Meineche Schmidt, editors, Automata, Languages and Programming, 9th Collo-
quium, Aarhus, Denmark, July 12-16, 1982, Proceedings, volume 140 of Lecture Notes
in Computer Science, pages 282–291. Springer, 1982.

[23] Bernhard Haeupler, Siddhartha Sen, and Robert E. Tarjan. Rank-pairing heaps. SIAM
Journal on Computing, 40(6):1463–1485, 2011.

[24] Thomas Dueholm Hansen, Haim Kaplan, Robert E. Tarjan, and Uri Zwick. Hollow
heaps. ACM Transactions on Algorithms, 13(3):1–27, 2017.

[25] Peter Høyer. A general technique for implementation of efficient priority queues. In
Proceedings of the Third Israel Symposium on the Theory of Computing and Systems.
IEEE, 1995.

[26] John Iacono. Alternatives to splay trees with o(logn) worst-case access time. In
Symposium on Discrete Algorithms (SODA), pages 516–522. SIAM, 2001.

[27] Donald B. Johnson. Priority queues with update and finding minimum spanning trees.
Information Processing Letters, 4(3):53–57, 1974.

22

[28] Kanela Kaligosi, Kurt Mehlhorn, J. Ian Munro, and Peter Sanders. Towards opti-
mal multiple selection. In International Colloquium on Automata, Languages and
Programming (ICALP), pages 103–114. Springer, 2005.

[29] Haim Kaplan, László Kozma, Or Zamir, and Uri Zwick. Selection from Heaps, Row-
Sorted Matrices, and X + Y Using Soft Heaps. In Jeremy T. Fineman and Michael
Mitzenmacher, editors, 2nd Symposium on Simplicity in Algorithms (SOSA 2019),
volume 69 of OpenAccess Series in Informatics (OASIcs), pages 5:1–5:21, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[30] Haim Kaplan and Robert E. Tarjan. New heap data structures. Technical report,
Princeton University, 1999.

[31] Haim Kaplan and Robert Endre Tarjan. Thin heaps, thick heaps. ACM Transactions
on Algorithms, 4(1), 2008.

[32] Haim Kaplan, Robert Endre Tarjan, and Uri Zwick. Soft heaps simplified. SIAM
Journal on Computing, 42(4):1660–1673, 2013.

[33] C. M. Khoong and H. W. Leong. Double-ended binomial queues. In Proceedings of
the 4th International Symposium on Algorithms and Computation. Springer, 1993.

[34] Daniel H. Larkin, Siddhartha Sen, and Robert E. Tarjan. A back-to-basics empirical
study of priority queues. In Proceedings of the Meeting on Algorithm Engineering &
Experiments, pages 61–72. ACM, 2014.

[35] J. Ian Munro and Hendra Suwanda. Implicit data structures for fast search and
update. J. Comput. Syst. Sci., 21(2):236–250, 1980.

[36] Mark H Overmars. The design of dynamic data structures, volume 156. Springer
Science & Business Media, 1983.

[37] Bryce Sandlund and Sebastian Wild. Lazy search trees. In Proceedings of the 61st
Annual Symposium on Foundations of Computer Science, 2020.

[38] Bryce Sandlund and Lingyi Zhang. Selectable heaps and optimal lazy search trees,
2020.

[39] Daniel D. Sleator and Robert E. Tarjan. Self-adjusting binary seach trees. Journal of
the ACM, 32(3):652–686, 1985.

[40] Robert Endre Tarjan. Data Structures and Network Algorithms. Society for Industrial
and Applied Mathematics, 1983.

[41] Jean Vuillemin. A data structure for manipulating priority queues. Communications
of the ACM, 21(4):309–315, 1978.

[42] Robert E. Wilber. Lower bounds for accessing binary search trees with rotations.
Siam Journal of Computing, 18(1):56–69, 1989.

23

[43] J. W. J. Williams. Algorithm 232 - heapsort. Communications of the ACM, 7(6):347–
348, 1964.

24

	List of Tables
	Introduction
	Overview
	Application
	Organization

	Selectable Heaps
	Lower bound
	Heap-ordered tree selection
	The Fibonacci heap selection
	The Brodal queue selection

	Optimal Lazy Search Trees
	Conclusion
	References

