
Detecting Exploitable Vulnerabilities
in Android Applications

by

Shivasurya Sankarapandian

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2021

© Shivasurya Sankarapandian 2021

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The world is moving towards remote-first and giving rise to many mobile tools and ap-
plications to get the work done. As more applications are moving towards the cloud and
therefore require remote access, the attack surface is getting wider. This results in more se-
curity vulnerabilities and pain for organizations to manage them. So, organizations have to
scale their security operations, and engineers work overtime to detect, verify and mitigate
security vulnerability at scale. This includes codebase, infrastructure, corporate assets.For
detecting and reporting, security tools are readily available in the market. However, they
tend to produce many false-positive results, which are then manually verified by the or-
ganization’s security engineers. Reproducibility of the security vulnerability and reducing
the false positive are the primary goals of the security engineer.

To overcome this challenge, we propose the Detecting Exploitable Vulnerabilities in
Android Application framework (DEVAA) to help security engineers to automate secu-
rity test cases and verify security vulnerabilities at scale. We envision the solution to be
incorporated within continuous integration and continuous delivery pipeline.By extending
the DEVAA framework similar to JUnit testcase framework, security engineers could auto-
mate security testing and verify the actual exploit with feedback from the system without
fuzzing them. Additionally, the extension is per vulnerability category type rather than
exact vulnerability location which helps security engineers to detect and verify them by
leveraging the common framework. DEVAA helps verify security vulnerability flagged by
the security scanners by reducing the false positives and confirming security vulnerability
reproducibility at scale. Our primary goal while implementing DEVAA is extendability by
which security engineers and developers could leverage the base framework to add their
application-specific payloads and flows to verify the security vulnerability. Most of the
organizations who primarily manage application security and bugbounty programs can
leverage DEVAA in implementing well-known security test cases and verifying them in the
automated approach.

iii

Acknowledgements

I would like to thank Meiyappan Nagappan for being my advisor and mentor during
my Master’s. I must also acknowledge other researchers from various publications, this
work would not have been possible without their contributions.

iv

Table of Contents

List of Figures viii

List of Tables x

1 Introduction 1

2 Background and Related Work 3

2.1 Background . 3

2.1.1 Static Application Security Testing & CodeQL 3

2.1.2 Dynamic Application Security Testing 3

2.1.3 Offensive Penetration testing tools 4

2.2 Related Work . 5

2.2.1 Fuzz Testing . 5

3 Methodology 6

3.1 Overview . 6

3.1.1 Source Code . 7

3.1.2 Static Code Analyzer . 7

3.1.3 Android Components with vulnerability warnings 11

3.1.4 Vulnerability Runner Component 12

3.1.5 Android Debug Bridge Interface . 13

v

3.1.6 Test-case Driver Component . 13

3.1.7 Android Emulator System . 13

3.2 DEVAA Workflow . 14

3.2.1 Vulnerability Runner and Installation Process 14

3.2.2 Exploit Verification . 15

3.2.3 Cross-Site Scripting Attack Overview 16

3.2.4 Content Provider Vulnerability Overview 20

3.2.5 Manual Detection Technique . 21

3.2.6 Automated Detection Technique . 22

3.2.7 Teardown Test-case . 24

3.2.8 Test-case Reporting . 24

4 Results 25

4.1 Initial Experiment . 25

4.2 DEVAA with Baseline . 26

4.2.1 Open-source Project security vulnerability 26

4.2.2 Cross-Site Scripting on IRCCloud Android Application 26

4.2.3 ContentProvider Attack on VLC Android Application 29

5 Discussion 31

5.1 Research Questions . 31

5.2 Reducing False Positives . 31

5.3 Contributions . 32

5.4 Threats to Validity . 32

6 Conclusions 34

6.1 Future Work . 34

References 35

vi

A APPENDICES 38

APPENDICES 38

A.1 Our Tools, Artifacts, Results . 38

A.2 Figures . 38

vii

List of Figures

2.1 DEVAA Value Proposition . 4

3.1 Overall Process Overview . 7

3.2 CodeQL query example for finding redundant ”if” statements in the code . 8

3.3 Content Provider Component Overview . 12

3.4 DEVAA Process Overview . 15

3.5 Class Diagram for Exploit Driver . 16

3.6 Cross-site Scripting Attack in Android WebView Context 17

3.7 Client Server Verification Model . 19

3.8 Cross-Site Scripting Attack Verification Architecture Model 20

3.9 Manual Detection of content provider vulnerabilities 22

3.10 Automatic Detection of Content Provider Vulnerabilities 23

4.1 Vulnerable code snippet of IRCCloud Android App - Cross-site scripting
vulnerability - com/irccloud/android/activity/ImageViewerActivity.java . . 28

4.2 Vulnerable code snippet of IRCCloud Android App - Cross-site scripting
vulnerability - com/irccloud/android/activity/ImageViewerActivity.java . . 29

4.3 Vulnerable code snippet of VLC Android App - Content Provider vulnera-
bility - vlc-android/src/org/videolan/vlc/FileProvider.kt 30

A.1 Screenshot of Web App during Static Code Analysis 39

A.2 Example Security Testcase for IRCCloud Android App - Cross-site scripting
vulnerability . 40

viii

A.3 Example Security Testcase for VLC Android App - ContentProvider vulner-
ability . 41

ix

List of Tables

3.1 Cross-site scripting source and sink examples in the Android API 10

3.2 source and sink of Exposed Content Provider Vulnerability Android API . 11

4.1 Results of Open-source Android Projects using DEVAA 26

4.2 Comparing Static Code Analysis Results with DEVAA Exploitable Vulner-
ability Results . 27

x

Chapter 1

Introduction

This thesis focuses on building a generic framework for verifying exploitable security vul-
nerability in Android apps. Many open-source security scanners and static application
security testing tools [7] generate many false-positive results, which require manual verifi-
cation by the security engineers. However, this does not eliminate the false positive results
[5] and they are validated by the security engineers within the organizations. Often, this
particular verification, detection process is time consuming and is prone to error as we add
manual work to the monotonous verification process. Whereas, our DEVAA framework
accepts the results from the static code analysis, processes the information to exploit the
issue further, and verifies them in real-time. This includes a framework to drive malicious
payloads, create and launch malicious intents and verify the issue post exploiting in the
Android app.

Instead of improving the static analysis itself, we suggest to exploit the exact vulner-
ability automatically. We built a framework which attempts to verify the vulnerability
warning at scale and which can be seamlessly integrated within the continuous integration
pipelines. Moreover, this particular framework can be adopted by the security engineer
and developer to test the code continuously with project specific payloads and detect
any abnormal behaviour when the code changes. This common framework is coined as
Detecting Exploitable Vulnerabilities in Android Applications (DEVAA) for identifying
vulnerabilities in cross-site scripting and content provider categories.

In this thesis, our framework accepts the results from the static code analysis, processes
the information to exploit the issue further, and verifies them in real-time. This includes a
framework to drive malicious payloads, create and launch malicious intents and verify the
issue post exploiting in the Android app. Dynamic Application Security Testing (DAST) [9]

1

has been widely adopted for finding vulnerabilities in the application by tainting source and
sink. However, they are just utilized for identifying vulnerabilities without giving flexible
options to execute payloads by the security engineers. Most of the dynamic application
security testing tools operate on predefined vulnerable patterns and payloads which which
do no offer much customization and extendibility based on static code analysis. As shown
in the figure 2.1, DEVAA is built for solving detect and verify vulnerability problem that’s
overlapping between static analysis, dynamic analysis and offensive pen security testing
tools.

The main contributions of this thesis are,

• Building core framework that helps in driving the security test cases.

• Developing test case driver application that can launch crafted intents directly to the
vulnerable application in the emulator.

• Building a robust exploit test verification pattern for two example vulnerability types
cross-site scripting and content provider attacks.

• Evaluating our framework on three real applications for finding and verifying common
cross-site scripting and content provider attacks.

The thesis is divided into following chapters. In chapter 2, relevant literature needed
to create this thesis is discussed. In chapter 3, the methodology, process and vulnerability
exploits are explained. In chapters 4 and 5, results and implications are discussed. Finally,
we conclude our thesis by summarizing our contributions and discussing potential future
work.

2

Chapter 2

Background and Related Work

2.1 Background

Our thesis is an attempt to semi-automate the task of detecting and testing exploitable
security vulnerabilities. Though we borrow concepts from unit testing & fuzz testing [4],
our thesis’s ultimate aim is to confidently help engineers determine the security vulnera-
bility in the source code without dealing with the setup or filtering for false positive cases
every time.

2.1.1 Static Application Security Testing & CodeQL

Static Application Security Testing (SAST) [13] is often used by developers and security
engineers to find security vulnerability with the well-known vulnerable patterns based on
history. These SAST scanner tools helps in generating call-graphs and control-flow graphs.
However they don’t verify the actual security vulnerability and may contain lot of false
positives. CodeQL [10] from Semmle is one of the primary Static Application Security
Testing tool which helps to detect common security vulnerability patterns in the source
code with predefined query language exposed to the developers, security engineers.

2.1.2 Dynamic Application Security Testing

With rise in more false positive security vulnerability in SAST tools, Dynamic Application
Security Testing [9] can be used to detect the security vulnerabilities by scanning and

3

Figure 2.1: DEVAA Value Proposition

analyzing the application at runtime. DAST tools don’t necessarily require source code as
they rely completely on runtime data to detect malicious attacks. Such an analysis is also
called Black-box testing. However, DAST tools don’t offer customization and extendability
to detect and verify exploits in realtime which is major disadvantage.

2.1.3 Offensive Penetration testing tools

Offensive Penetration testing tools [6] are often utilized by security researchers and hackers
to detect, analyze and confirm security vulnerabilities in the codebase. These offensive
security tools are capable of exploiting the vulnerability blindly even if the application
doesn’t have intelligence to infer security vulnerability and considered to be Black-box

4

testing which is similar to Dynamic Application Security Testing. some of the popular
Offensive Security tools are Metasploit [8], NMap [22], HashCat [18] etc.,

2.2 Related Work

Researchers have identified modern way of testing security vulnerabilities in binaries and
executable libraries using Fuzz testing helps to help find crash location and provides the
log and inputs. Fuzz testing has been successful at discovering security critical bugs in
real software [17]. Recently, researchers have devoted significant effort to devising new
fuzzing techniques, strategies, and algorithms. Fuzz testing verifies security vulnerabilities
in Application security layer rather than lower level device drivers.

2.2.1 Fuzz Testing

Fuzz testing has been used for Browser testing [21], Android fuzzing [4] and modern Appli-
cation security has started leveraging fuzz testing approach for securing the native binaries,
applications and mobile application. Vaggelis Atlidakis et al. [3] have come up with fuzzing
cloud application and related APIs for properties changes in realtime which leads to secu-
rity vulnerability. Fuzz tesing methodology can be helpful when the payloads aren’t known
but instead testing them for diverse set of payload inputs and testing for the behavioural
changes in the application. However, these fuzz testing are considered to be black-box
testing which doesn’t rely on the source code scanning and finding exact vulnerable pat-
terns in the code. The major disadvantage of Fuzz testing is that security vulnerabilities
are only found and verified manually whenever a crash occur and requires manual efforts
to find the exact memory leak location. However, logical security vulnerabilities which are
categorized similar to authorization vulnerabilities, business logic vulnerabilities are not
leading to crashes go undetectable with the fuzz testing.

5

Chapter 3

Methodology

This thesis focuses on building a generic framework for verifying exploitable security vul-
nerability in Android apps. Many open-source security scanners and static application
security testing tools generate many false-positive results, which require manual verifica-
tion by the security engineers. Whereas our specific framework accepts the results from
the static code analysis, processes the information to exploit the issue further, and veri-
fies them in real-time. This includes a framework to drive malicious payloads, create and
launch malicious intents and verify the issue post exploiting in the Android app.

3.1 Overview

As shown in Figure 3.1, DEVAA framework integrates various components that work
cohesively such as the static code analyzer, Android emulator system, Android Debug
Bridge Interface [14]. We chose gradle build system for building the application from the
source code which additionally helps static code analyzer to index and search vulnerable
patterns in the source code. The results from the static code analyzer are then passed on
to the DEVAA framework manually by selecting the Android components with relevant
payloads. DEVAA tries establishing connection with the emulator to inject those payloads
into the Android application (APK) with the help of crafted intents to execute and verify
the results.

6

Figure 3.1: Overall Process Overview

3.1.1 Source Code

As a first step, We chose Gradle build system which is default build system adopted by
Google, for compiling Android source code. As Java is primarily used for building Android
applications, we adopted the gradle plugin for Android java to build, compile and generate
application binaries which is helpful for both testing and vulnerable pattern detection
process.

3.1.2 Static Code Analyzer

Choosing the right static code analyzer is important as we need to strike the balance
between understanding Android build process and Android specific API’s while accepting
vulnerable patterns as a query. Initially, we tried conducting standard reachability analysis
with the help of call graph to map all the vulnerable source and sinks within the code base
which created a lot of false positives and had the limitations of traversing across library
modules, and annotation processing. Java call graphs are efficient for simple application
projects which doesn’t resolve dependencies. However, Android application project is more
complex in nature which by default utilizes more third-party libraries [11]. Finally, we used
CodeQL [10] for code scanning and vulnerability pattern detection, which is a codesearch

7

1 import java

2

3 from IfStmt ifstmt, Block block

4 where ifstmt.getThen() = block and

5 block.getNumStmt() = 0

6 select ifstmt, "This 'if' statement is redundant."

Figure 3.2: CodeQL query example for finding redundant ”if” statements in the code

tool developed at Oxford university by the Semmle team and later acquired by Github.
CodeQL is able to understand Android build system, index the source code, and provides
query interface to interact with the code. Additionally, CodeQL is capable of performing
Data flow analysis with the help of implemented methods while traversing the source code
from source to sink. Below is a sample CodeQL query 3.2 checks for redundant ’if’ state-
ments in the code.

Vulnerable Source and Sink patterns

The primary attack surface of Android application can be Intents [15], File [12], Network
and ports [2]. Intents are the primary dispatcher of data between Android components
such as activities, providers, receivers and services. Among all the attack surfaces, Intent
with exported components shares most of the attack surface area which accept external
intents without access control enforcement and that are controlled by the Manifest file
AndroidManifest.xml [16]. They could further attack the app remotely by injecting payload
into vulnerable network entries in the app.

We primarily use CodeQL for scanning the source code and finding vulnerable patterns
within the app. With the help of CodeQL, we could analyze the control flow graph by
adding additional conditions globally across the source code while comparing the Call-
graph which points only the direct the source and sink method without conditional flows.
In this thesis, we have identified vulnerabilities from two categories in the OWASP Mobile

8

Top 10 [24] as Cross-site scripting (as M1 Improper Platform Usage) and Exposed content
provider (as M2 Insecure Data storage attack). With these two vulnerability categories,
we have generated the source and sink pattern of the attack to identify the exact flows
between the Android components.

Source and Sink for Cross-Site Scripting Vulnerability

Cross-Site Scripting attacks are a type of injection, in which malicious scripts are injected
into otherwise benign and trusted websites or local pages. Cross-Site Scripting attacks
occur when an attacker uses a Intent to send malicious JavaScript code, generally in the
form of a browser side script, to a different application. As mentioned in the Table 3.1,
the cross-site scripting vulnerability source and sink examples in the Android API which
are categorized into three forms.
There are three forms of Cross-Site Scripting, usually targeting users’ Mobile Webview:

Reflected Cross-Site Scripting

The application or API includes unvalidated and unescaped user input as part of HTML
output. A successful attack can allow the attacker to execute arbitrary HTML and
JavaScript in the victim’s browser. Typically the user will need to interact with some
malicious link that points to an attacker-controlled page, such as malicious watering hole
websites, advertisements, or similar.

Stored Cross-Site Scripting

The application or API stores unsanitized user input that is viewed at a later time by
another user or an administrator. Stored Cross-Site Scripting is often considered a high
or critical risk. Most source of the stored cross-site scripting are based on developer and
project specific as they may be from file, network or database layer. We didnt discussed
specifically about stored cross-site scripting in this context as they have wide variety of
source and sink pattern.

DOM Cross-Site Scripting

JavaScript frameworks, single-page applications, and APIs that dynamically include at-
tacker controllable data to a page are vulnerable to DOM Cross-Site Scripting. Ideally,

9

Table 3.1: Cross-site scripting source and sink examples in the Android API

Attack Type Source Sink

DOM cross-site scripting getIntent#getStringExtras WebView#loadDataWith
BaseURL

Reflected cross-site script-
ing

getIntent#getStringExtras WebView#loadUrl

DOM cross-site scripting getIntent#getDataString WebView#loadData

Reflected cross-site script-
ing

getIntent#getDataString WebView#loadUrl

the application would not send attacker controllable data to unsafe JavaScript APIs. Typ-
ical Cross-Site Scripting attacks include session stealing, account takeover, Remote Code
execution via Javascript Interface, multi-factor authentication bypass, DOM node replace-
ment or defacement (such as trojan login panels), attacks against the user’s browser such
as malicious software downloads, key logging, and other client-side attacks.

Source and Sink for Exposed Content Provider

As shown in the figure 3.3 Content providers can help an application manage access to data
stored by itself, stored by other apps, and provide a way to share data with other apps.
They encapsulate the data, and provide mechanisms for defining data security. Content
providers are the standard interface that connects data in one process with code running in
another process. One can easily extend the ContentProvider class and implement their own
methods for adding interface for accessing the data source. There is an additional content
provider named as FileProvider which is recently added to the development environment
to prevent file access abuse and security vulnerability.

Exposed Content Provider which is accessible from the other third party application
may have some use-case of sharing data between multiple applications such as authentica-
tion and syncing use-cases. However, mis-configurations or bad implementation may cause
leakage of sensitive user information from these content providers.

10

Table 3.2: source and sink of Exposed Content Provider Vulnerability Android API

Attack Type Source Sink

Path Traversal ContentProvider#openFile ParcelFileDescriptor#open

ContentProvider mis-
configuration

ContentProvider#query ContentResolver#query

Sensitive File Access ContentProvider#openFile ParcelFileDescriptor#open

Content Provider Vulnerability

As shown in the Table 3.2 content provider is one of the basic components in the An-
droid development toolkit which is mapped to resource access directly via special schemes
internally within the Android operating system. This implements few methods such as
Query, Update, Delete, Insert and OpenFile to access raw information directly from
the secure sandbox of the application. However, the OpenFile method is commonly abused
for the reading sensitive files by utilizing path traversal mechanism.

FileProvider Vulnerability

FileProvider basically extends the ContentProvider class and implements secure access
to the internal sandbox files by eliminating known security vulnerability such as Path
Traversal issues [25], guessing and brute-forcing file name attacks, symlink attacks.

3.1.3 Android Components with vulnerability warnings

With the generated flows from the CodeQL with the related source and sink in the source
code, We try to extract the component information from the results. Additionally, the
Android component information is cross-checked with the Manifest file for its existence
and access to the component. This component information particularly refers to the Class
name or alias, Package, URI schemes, permission information. This extracted component
information is represented as JSON by the CodeQL which are then processed manually by
the security engineer and check for accessibility from the third party perspective attack
surface. This process can be further automated by parsing the JSON information and
related mappings to the manifest file.

11

Figure 3.3: Content Provider Component Overview

3.1.4 Vulnerability Runner Component

The vulnerability runner component acts as an bridge between driving test-case and com-
municating with the Android Debug Bridge. Vulnerability runner components helps secu-
rity engineers and developers to extend and implement scenarios with payloads for testing
the vulnerability to verify the exploit. Similar to Junit Runner, vulnerability runner class
can be extended and implemented with runnable methods and provides APIs to communi-
cate with the emulator system. The core capabilities of this component are crafting unique
Intent with payloads, specifying Android specific components class, installing Android
packages, driving test suite and verifying the exploit.

12

3.1.5 Android Debug Bridge Interface

Android Debug Bridge Interface which belongs to debugging tools of official Android SDK
is the primary communication channel through which interaction between the DEVAA
framework and the Emulator system is made. Additionally, exploit verification leverages
Android Debug Bridge interface to extract the results from the emulator system and test-
case Driver component to verify the exploits.

3.1.6 Test-case Driver Component

Test-case driver component helps the Android Debug Bridge connector to launch the
crafted payload to the Android emulator and additionally acts as an proxy for the ma-
licious application. The crafted intent which holds information regarding the payloads,
and the components of the vulnerable application are received via Android Debug Bridge
and they are converted into native intent before reaching the actual vulnerable application.
Additionally, the test-case driver component is helpful in performing data ex-filtration after
the attack is successfully executed on the vulnerable application which helps the exploit
verifier in the exploit driver component to verify the test-case in realtime. Test-case driver
component is an important part in the exploit verification step as they close the loop
by extracting the necessary information from the vulnerable application process which is
further required for the verification.

3.1.7 Android Emulator System

Android emulator system belongs to official Android development kit and is primarily used
for executing all our test-cases against the vulnerable application. Both the vulnerable app
and test-case Driver components are executed in a separate sandbox to simulate the exact
environment similar to production system. All communication to the emulator system
is managed by the Android Debug Bridge interface and shell commands to control the
applications.

13

3.2 DEVAA Workflow

As shown in the figure 3.4, the DEVAA workflow starts with scanning for the known
vulnerable patterns in the source code with the help of static code analyzer such as CodeQL.
With the help of the warnings from the static code analyzer, we manually extract the
Android component information such as class name, intent parameters which is then used
by the security engineers to test against different payloads and conditions. Upon successful
launch of the crafted intent with the payloads, our test-case driver delivers the payload
to the vulnerable application in the emulator system which is then verified by the exploit
verifier component by either extracting information from the vulnerable app process or
verifying the modification of properties within the application.

3.2.1 Vulnerability Runner and Installation Process

In-order the try exploiting the actual flow returned from the CodeQL, we need to generate
a crafted Intent [15] or payload carrier to deliver them from the test driver application
to the vulnerable application directly. The vulnerability runner module primarily focuses
on accepting payloads, navigating between Android components and initiating the session
with the Emulator via Android Debug Bridge interface. Our driver framework acts as base
class with number of Android related functions are developed and implemented to facilitate
the testing and helping engineers to adopt APIs for developing their own test case scripts
for testing the exploits.

1 function HTMLEncodingXSSTestCase(package , activity , payload , button_id ,

domain) {

2 initateSession(package , activity)

3 setPayload(payload)

4 clickbyButtonID(button_id)

5 executePayload ()

6 verifyScriptingAttack(domain)

7 teardownSession ()

8 }

Listing 3.1: example exploit driver API

We’ve added considerable API function support that will be helpful for developers and
security engineers to write customized security test case to test the application continuously
and generate reports. The class diagram in fig 3.5 gives complete overview of the Exploit
driver API and its extendability for developing developer owned security test case scripts.

14

Figure 3.4: DEVAA Process Overview

3.2.2 Exploit Verification

Exploit verification is the core logic of DEVAA framework as it needs to accurately deter-
mine the changes in the process and detect for the compromise in the application layer.
While comparing it to the fuzzing tools in general, DEVAA primary goal is to verify the
security vulnerability exploit-ability from the attack surface and reporting them to the
security test-case to reduce the false positive. However in the fuzzing tools, we only check
for crashes and not silent exploits. In this section, we discuss about the verification of
the vulnerabilities in the application layer by simulating exactly the behaviour of security
engineer manually verifying the security vulnerabilities.

15

Figure 3.5: Class Diagram for Exploit Driver

3.2.3 Cross-Site Scripting Attack Overview

Cross-site scripting attacks are prevalent and common in the web application context.
However, Mobile Webview attack surface are becoming more targeted with a rise in devel-
opment of Hybrid mobile application using Javascript and HTML5 frameworks. Exposing
the whole webview to the Android API makes the attack surface more vulnerable and
exploiting the hardware resources such as microphone, and camera. In this subsection, we
discuss about the detection of Cross-Site scripting attack and verifying the context of the
vulnerability in the Android WebView.

16

Figure 3.6: Cross-site Scripting Attack in Android WebView Context

Manual Detection Technique

Whenever a cross-site scripting attack is executed in the WebView context, security en-
gineers tend to verify the issue by adding an executable Javascript in the malicious code
to verify both the context of the execution framewindow and the result of the execution.
The context of the execution framewindow is important as it increases the vulnerability
severity as it may hijack user sessions, cookies and information stored within the sandbox
environment. The result of the framewindow context and available Android APIs exposed
to the WebView are accessed by the WebView console and they are manually verified by
the security engineer to determine the severity.

Automatic Detection Technique

In order to automatically verify the cross-site scripting vulnerability, the malicious code
injected into the WebView process should permanently change or alter the state of the
application within the sandbox. For instance, the cross-site scripting payload can add
or modify the cookie [1] state in the webview which is further preserved by the webview

17

cookie document. This state change within the WebView context should be natural and
preserved automatically by the Android framework to prevent false positive cases. These
state changes are then automatically verified by the Android Debug Bridge APIs that
analyze the result of the attack within the Android application sandbox. Since cross-site
scripting rarely extracts or writes to arbitrary internal files in the sandbox, the more generic
way is to modify the properties of the WebView which can be further verified even if the
application crashes or closes after executing the payload.

Challenges and Failed Attempts of verification

Before coming up with state change technique for the cross-site scripting attack in the
WebView, we attempted many techniques to come up with reliable way of verifying the
cross-site scripting attack in the Android WebView which eventually failed or had limita-
tions tied to the application specific implementation. In this section, we will be discussing
the challenges, approaches and failed attempts with limitation which may be helpful for
future optimization and building reliable verification techniques for the cross-site scripting
vulnerability categories.

1. Client Server Verification Model

As shown in the figure 3.7, the traditional approach followed in the Web application security
model is to attach a command and control script with the malicious script to self detect and
execute in the client side which the communicates with the command and control server
to extract the information from the client-side and then transmitted to the server-side.
The similar approach will be helpful for the Android WebView context to setup and host
a command and control server to execute and extract information from the client-side.
However, this approach has few major limitations which are listed below

Drawbacks

• Most of the Android Application built using HTML5 framework requires allow-list
based host which blocks communication between the compromised client and com-
mand & control server

• The Asynchronous verifier script requires co-ordination between the command &
control script and exploit verification script that may often lead to timeout in test
case based verification setup.

18

Figure 3.7: Client Server Verification Model

• This client server model requires Internet permission as they are communicated over
the network to share the exploit results.

Thus, Client Server verification model has major drawback in terms of verifying the
exploit in more generic way instead of targeting the specific application behaviour.

2. Inspecting Application WebView Model

As shown in the figure 3.8, inspecting application WebView from the emulator is a common
model used by the security engineers to manually verify the scripting attacks and property
changes using debugging tools such developer console, proxy for networking with overall
JavaScript execution context. Using the developer console scripting execution engine, the
security engineers verify their payload results by either using Logging API calls or making
any evidence particularly distinguishing the payload execution results from the trusted
script execution context. It is lot more easier to understand the execution context and
verify them easily using this inspection method. But the main issues are described below.

Drawbacks

• The hooks for WebView JavaScript execution context aren’t publicly available for
automating the script detection from the client-side.

19

Figure 3.8: Cross-Site Scripting Attack Verification Architecture Model

• Since Android WebView is closely tied with open-source chromium developer tools,
the version changes may affect the debugging and detection scripts since the developer
tools are modified regularly.

• The lifecycle of the WebView and remote inspecting hook and context should be
mapped together which is manually done by the security engineers which is requires
lot of heavy-lifting from client-side.

Thus, Application Inspection verification model has successful been used in manual
debugging but has major drawback in terms of verifying the exploit in automated manner
utilizing the available API’s from the client-side.

3.2.4 Content Provider Vulnerability Overview

Content provider is an application level component of Android Development ecosystem
which helps to communicate securely between applications from the sandbox environment.

20

However, this content provider has many attack surfaces due to security mis-configurations,
outdated input sanitization techniques. In this section, we will be looking into approaches
for detecting exploits and verifying them from the security engineer view-point.

Path Traversal in Content Provider

As per Open Web Application Security Project (OWASP), a path traversal attack (also
known as directory traversal) aims to access files and directories that are stored outside
the web root folder. By manipulating variables that reference files with “dot-dot-dot-slash
(.../)” sequences and its variations or by using absolute file paths, it may be possible to
access arbitrary files and directories stored on file system including application source code
or configuration and critical system files. It should be noted that access to files is limited
by system operational access control (such as in the case of locked or in-use files on the
Microsoft Windows operating system).

In Content Provider, file name handling and parsing the uniform resource indicator is
so complex. Here are the step by step guidelines followed by the developers to keep the
application secure but they fail in most implementation,

• Sanitizing the user inputs by clearing path traversal based special characters.

• Resolving internal sandbox references for the given uniform resource indicator and
rejecting them.

• Checking for symbolic reference to the internal sandbox files and rejecting them.

• Checking for access control and permissions before accessing the files

However, most of the implementations are prone to these errors and that creates attack
surface over the content provider. In upcoming section, we will discover the process to
identify and verify the content provider vulnerability in detailed manner.

3.2.5 Manual Detection Technique

As shown in figure 3.9, content provider vulnerability attack surface is well-defined and has
single entry point class which primarily extends ContentProvider or FileProvider and they
are primarily exposed to the other applications. So, the payloads are executed directly
either from the Provider APIs or Android Debug Bridge APIs by adding vulnerable inputs

21

Figure 3.9: Manual Detection of content provider vulnerabilities

and target implementation. As a result, these providers either respond with the leakage
of internal sandbox files that may contain sensitive information such as tokens, cookies
or overwrite the internal files explicitly. The response format of the providers are often
Parcelable file descriptors or binary data which can be easily modified and verified the
security engineer to prove the existence of the security vulnerability with the content
provider.

3.2.6 Automated Detection Technique

In-order to detect the content provider leakage attacks, the Android API are well docu-
mented and stable to retrieve and access them for the verification process. Content provider
classes are part of Android Development Kit and Android Debug Bridge supports querying
the provider interfaces directly from the command-line which helps security engineers to
test and craft the payload directly without interacting with the emulator process. The

22

process similar to test case where we craft the payload, inject to the process and verify for
the result with changes to the process as shown in figure 3.10

Figure 3.10: Automatic Detection of Content Provider Vulnerabilities

Automated Exploitation Process Steps

Initially, the core test-case framework establishes connection with the Android Debug
Bridge process and installs vulnerable application and the test-case driver application sepa-
rately. Then the core framework accepts the corresponding payload which is specific to the
application from the actual security test cases and constructed with the existing framework
intent to query the provider interface. The corresponding intents are then passed on to
the Android Debug bridge by creating malicious intent to the Test case driver application.
The corresponding payload is once again proxied to the vulnerable application by target-
ing the exact component class. This particular content provider vulnerability is limited to
the information leakage only but they do not verify security vulnerability associated with
content provider pollution attacks.

23

Verification Steps

Once the malicious intents are delivered to the application provider component, the verifi-
cation steps are then triggered from the client-side of the core test-case driver framework.
The provider response are then captured by the test-case driver application process as
soon the file permission or parcelable file descriptors are exchanged between the vulnera-
ble application and test-case application. Then the parcelable file descriptors and binary
information are processed with the help of the vulnerable application process as String.
The final results are then passed on to Android Debug Bridge which helps in verifying the
file content and exploitability of the reported issue.

3.2.7 Teardown Test-case

After the verification process completes, the result objects are passed as callback to the
original test-case caller which helps the actual test-case to verify them with the expected
results. Often the results are cross checked by the security engineers with different payloads
and test results in action to determine the vulnerability severity, range which may helps
in creating Common Vulnerability Scoring System (CVSS) score. Finally, the test-case
teardown method is called to uninstall or remove the properties in the emulator setup,
clear the Android Debugging session with emulator which facilitates isolation between
multiple test-case suite and identify any false positive behaviours.

3.2.8 Test-case Reporting

The final step of the DEVAA workflow is generating test-case report based on the ex-
ploit verifier results. Most of the vulnerabilities have different implementation of exploit
verification technique as discussed in our previous sections. However, the results are nor-
malized and shared with the actual security test-case with result object containing the
actual information and meta data about the vulnerability.

24

Chapter 4

Results

4.1 Initial Experiment

The initial experiment was learning to build and adopt generic vulnerability call-graph
tracing using java call-graph and Soot framework which eventually did not support for
adding information such as methods and settings which may lead to true negative cases.
We primarily switched to CodeQL from Semmle for extracting vulnerable patterns from
source code including the third party libraries source attached. It is important to note that
though we use CodeQL for scanning the vulnerability, the patterns that include source and
sink with specific criteria are developed and managed by us in-order to reduce false positive
results.

Finding security vulnerabilities using patterns and fuzz testing are actively studied by
software researcher community. Our main objective is to find reach-ability of vulnerable
code from the attack surface and mapping between the vulnerable source & sink with
the Android components which is hard to find and novel to experiment with automated
techniques. Our initial experiments were with open-source Android projects built using
Java and Kotlin which primarily supports gradle build system. CodeQL leverages gradle
build system to inject scanning and finding vulnerable patterns when the source code
compiles and binaries are generated.

25

Table 4.1: Results of Open-source Android Projects using DEVAA

security vulnerability Source Sink

Leakage of Internal files ex-
ploiting Content Provider -
VLC Android

ContentProvider#openFile ParcelFileDescriptor#open

Directory traversal Attack
- VLC Android

ContentProvider#openFile ParcelFileDescriptor#open

Reflected Cross-Site script-
ing Attack - IRCCloud

getIntent#getDataString WebView#loadUrl

4.2 DEVAA with Baseline

This section will showcase results obtained from applying DEVAA to detect exploitable
security vulnerabilities on sample vulnerable open-source Android application projects.
Results include complete analysis on security vulnerability and code changes.

4.2.1 Open-source Project security vulnerability

Table 4.1 shows the results of finding exploitable vulnerabilities using DEVAA framework.
Though the results of Static code analyzer contains few false positive cases, DEVAA has
successfully verified the few of the vulnerabilities which is exploitable from the application
security layer.

We have identified popular open-source Android projects with active development his-
tory and filtered out VLC Player, IRCCloud and Brave Browser Android Application. The
primary language for development is Java and Kotlin. VLC Android is an exception as it
contains native media libraries written in C++ language and compiled as Linux Shared
Object file. Table 4.2 reports the results obtained from Static code analysis and DEVAA
test-case results.

4.2.2 Cross-Site Scripting on IRCCloud Android Application

IRCCloud Android app [19] is popular open-source Internet Relay Chat Application An-
droid client written primarily in Java and with few other native libraries. This section

26

Table 4.2: Comparing Static Code Analysis Results with DEVAA Exploitable Vulnerability
Results

security vulnerability static code anal-
ysis vulnerabilities
reported

DEVAA vulnerabil-
ity exploited

Exploiting Content Provider - VLC
Android

2 1

Cross-site scripting Attack - VLC
Android

0 0

Exploiting Content Provider - IRC-
Cloud

0 0

Cross-site scripting Attack - IRC-
Cloud

3 1

Exploiting Content Provider - Brave
Android

0 0

Cross-site scripting Attack - Brave
Android

1 0

contains detailed information about the security report about Cross-site scripting vulner-
ability in IRCCloud.

Security Report Summary

IRCCloud Android Application uses Android WebView to render images, pastebin URLs,
websites in dedicated webview with configuration allowing to execute JavaScript and con-
tains JavaScript Bridge to invoke Android APIs directly from the JavaScript code. How-
ever, one of the user input passed on to the webview is directly rendered in the webview
without sanitizing for any malicious code or snippets which causes Cross-site scripting
attack in the context of IRCCloud Android application webview and able to access the
JavaScript bridge.

27

1 ImageList.getInstance()

2 .fetchImageInfo(getIntent().getDataString()

3 .replace(getResources().getString(R.string.IMAGE_SCHEME), "http"),

4 new OnImageInfoListener() {

5 public void onImageInfo(ImageURLInfo info) {

6 if (info == null) {

7 ImageViewerActivity.this.fail();

8 } else if (info.mp4 != null) {

9 ImageViewerActivity.this.loadVideo(info.mp4);

10 } else {

11 ImageViewerActivity.this.loadImage(info.thumbnail); // by

default,→

12 }

13 }

14 });

15 }

Figure 4.1: Vulnerable code snippet of IRCCloud Android App - Cross-site scripting vul-
nerability - com/irccloud/android/activity/ImageViewerActivity.java

Vulnerable Code Snippet

As seen in lines of 4.1 & 4.2 with the source and sink are getIntent() and loadDataWith-
BaseURL() respectively, provided the ImageViewerActivity.class was accessible from the
external application. This can cause reflected cross-site scripting attack in the context of
IRCCloud.

DEVAA security test-case & contribution

DEVAA Security test-case which extends the HTMLBasedXSS Attack class accepts
generic payload and component information i.e., ImageViewerActivity class name with
package name. As mentioned in the methodology section, the exploit driver and verifier
drives the payload and verifies the cross-site scripting attack and reports back to the actual
security test-case as callback result.

28

1 private void loadImage(String urlStr) {

2 try {

3 // ...

4 this.mImage.loadDataWithBaseURL(null, "<!DOCTYPE

html>\n<html><head><style>html, body, table { height:

100%; width: 100%; background-color:

#000;}</style></head>\n<body>\n<table><tr><td><img

src='" + new URL(urlStr).toString() + "' width='100%'

onerror='Android.imageFailed()'

onclick='Android.imageClicked()'

style='background-color:

#fff;'/>\n</td></tr></table></body>\n</html>",

"text/html", "UTF-8", null);

,→

,→

,→

,→

,→

,→

,→

,→

,→

Figure 4.2: Vulnerable code snippet of IRCCloud Android App - Cross-site scripting vul-
nerability - com/irccloud/android/activity/ImageViewerActivity.java

Mitigation & Severity

The corresponding security vulnerability is fixed in the GitHub source repository [20].
Additionally, the severity of this security vulnerability as determined by CVSS score [23]
analysis is 6.9 and classified under generic Cross-site scripting attack.

4.2.3 ContentProvider Attack on VLC Android Application

VLC Player Android app [26] is popular open-source Internet based video player Appli-
cation Android client written primarily in Java and with few other native libraries. This
section contains detailed information about the security report about content provider
vulnerability in VLC.

Security Report Summary

VLC Android application has exposed one of the Content Provider interface to share
thumbnail images with the third party application especially for Android TV. This provider

29

1 public ParcelFileDescriptor openFile(Uri uri, String mode) {

2 File file = File(uri.path)

3 if (file.exists()) {

4 return ParcelFileDescriptor.open(file,

ParcelFileDescriptor.MODE_READ_ONLY),→

5 }

6 throw FileNotFoundException(uri.path)

7 }

Figure 4.3: Vulnerable code snippet of VLC Android App - Content Provider vulnerability
- vlc-android/src/org/videolan/vlc/FileProvider.kt

is vulnerable to both directory traversal attack and internal file access attack which leads
to leak sandbox files and tokens without end-user knowledge.

Vulnerable Code Snippet

As seen in Lines in 1 and 4 of 4.3 with the source and sink are openFile() and ParcelFileDescrip-
tor#open() provided the FileProvider.class was accessible from the external application
caused internal file data leakage in the context of VLC Android application.

DEVAA security test-case & contribution

DEVAA Security test-case which extends the FileProviderRunner Attack class accepts
generic payload and component information i.e., FileProvider class name with package
name. As mentioned in the methodology section, the exploit driver and verifier drives
the payload and verifies the content provider data leakage attack and reports back to the
actual security test-case as callback result.

Mitigation & Severity

The corresponding security vulnerability is fixed in the GitHub source repository [27].
Additionally, the severity of this security vulnerability as determined by CVSS score [23]
analysis is 8.0 and classified under generic path traversal and unintended data leakage
attack.

30

Chapter 5

Discussion

5.1 Research Questions

RQ1: Can DEVAA be successfully applied to exploit any generic Android Application?
Yes. With the access to compilable source code and all dependency resolved, we could
apply vulnerability detection pattern to find vulnerabilities and try exploiting with the
defined payloads with the corresponding vulnerable Android application developed using
Java and Kotlin language. As Exploit driver code can be extendable and accepts payload
with component information, We could add generic Android application for testing as long
as a source and sinks are clearly defined.

RQ2: Can DEVAA successfully work with other static code analyzer tools apart Cod-
eQL? Yes. As of now DEVAA relies on results CodeQL but the vulnerability patterns
including source, sink are added as input are maintained within the project. As far as
any Static Code Analyzer that can produce output containing vulnerable pattern location
& component information, We could successfully extract and use it in our exploit module
directly.

5.2 Reducing False Positives

Although the ultimate aim of DEVAA is to reduce false positive, there might be cases
where the Android specific components aren’t exposed to the third party application as
mentioned in the Android manifest file. They are still potential security vulnerability

31

without actual exploit and marked as safe but they are still a recommendation for the
developers and security engineers to fix the reported security bug.

Another major shortcoming was to tweak Static Code Analyzer by adding more source
and sink with number of pass through configuration checks. In ideal scenario, Developers
tend to use lot of sanitization function before even invoking the vulnerable Android sink
API’s. Static code analyzer can still flag them as potential security vulnerability but
DEVAA would mark them safe if the code flow and exploit-ability of security vulnerability
isn’t reachable. In such cases, tweaking the static code analyzer to ensure the standard
sanitizing functions is more appropriate way to find even more security vulnerability and
bypasses around the code.

5.3 Contributions

We have presented the contributions of our study as follows:

• We have provided couple of vulnerability category namely cross-site scripting and
content Provider data access with exploitation scripts, sample code snippets to test
drive the security test-case.

• By demonstrating DEVAA on two distinct vulnerability that it is possible to build
and test generic security test-case suite to test different vulnerability category with
Android applications.

• We have open-sourced all the static code analysis processing interface, vulnerabil-
ity pattern for cross-site scripting attack, content provider data access and exploit
verification scripts.

• We have found and verified couple of previous security vulnerabilities with IRCCloud
and VLC Android application with the help of DEVAA.

5.4 Threats to Validity

• DEVAA relies on CodeQL static code analysis tool for processing and finding vulner-
ability patterns and they may not reflect the exact pattern matching or call-graph
based on our search query and result in true negative results in the source code.

32

• Diversifying the vulnerability pattern for all configuration based on developer usage
or pattern is ideal to find security vulnerability in generic manner. As the codebase
and DEVAA evolves the diversification is possible and this may result in true negative
results.

• Reproducing the exact vulnerability may require additional setups within the An-
droid application such as signup or login which is usecase specific driven and current
DEVAA tool may lack in few navigation API options.

• Reproducing the exact security vulnerability may be challenging with different emu-
lators and factors including CPU architecture, Android API levels, Development kit
updates. These selections are often made by the security engineer manually while
testing the application.

• We only derived generic exploit verification technique for cross-site scripting and
content provider issues covering few Android vulnerable APIs. As discussed before,
diversifying the pattern and payload is highly recommended for security testing to
reduce false positives and bringing up true negatives.

• Currently our framework can scan and operate on Java & Kotlin based compilable
gradle supported Android studio projects and limitation on legacy Android projects.
Hybrid apps that are powered by Java are still available to scan for security vulner-
ability but the primary JavaScript language isn’t supported with DEVAA.

33

Chapter 6

Conclusions

In our thesis, we have built a generic and extendable security testing tool that can help
security engineers and developers to automate security testing and help in finding ex-
ploitable vulnerabilities at scale. We have demonstrated the security tool with common
security vulnerabilities on real-life projects. We hope that this would encourage more se-
curity researchers and engineers to adopt, extend and contribute to build a payload and
vulnerability corpus that may help to detect exploitable vulnerabilities. Our work was
heavily influenced by the creating developer tools for finding reproducible security bugs
and day-to-day life of security engineers time to verify the security vulnerabilitys in larger
organizations putting the entire stack in risk.

6.1 Future Work

• Adding more payloads and vulnerability categories to help Mobile Application de-
velopers, security engineers in testing.

• Building Android Studio plugin for developers to automate security testing in few
clicks without leaving the development environment.

• Adding support for other programming language excluding Java and Kotlin which
includes React native and hybrid mobile apps which is getting popular over time.

• Building a corpus of pre-defined security test-cases and common vulnerabilities with
payloads that may help in finding and scanning source code for Android studio
projects.

34

References

[1] Cookies: Overview. https://en.wikipedia.org/wiki/HTTP_cookie, 2017.

[2] Researchers: Open android ports leave millions vulnerable. https://adtmag.com/

articles/2017/05/03/open-port-security.aspx, 2017.

[3] V. Atlidakis, P. Godefroid, and M. Polishchuk. Checking security properties of cloud
service rest apis. In 2020 IEEE 13th International Conference on Software Testing,
Validation and Verification (ICST), pages 387–397, Oct 2020.

[4] Android Documentation. Android fuzzing project. https://source.android.com/

devices/tech/debug/libfuzzer, 2017.

[5] Pär Emanuelsson and Ulf Nilsson. A comparative study of industrial static analysis
tools. Electronic Notes in Theoretical Computer Science, 217:5–21, 2008. Proceedings
of the 3rd International Workshop on Systems Software Verification (SSV 2008).

[6] Software Testing Help. Offensive security tools. https://www.

softwaretestinghelp.com/penetration-testing-tools/, 2020.

[7] Melina Kulenovic and Dzenana Donko. A survey of static code analysis methods for
security vulnerabilities detection. In 2014 37th International Convention on Infor-
mation and Communication Technology, Electronics and Microelectronics (MIPRO),
pages 1381–1386, 2014.

[8] Metasploit. Metasploit tools. https://www.metasploit.com/, 2020.

[9] Microfocus. Dynamic application security testing. https://www.microfocus.com/

en-us/what-is/dast, 2020.

35

https://en.wikipedia.org/wiki/HTTP_cookie
https://adtmag.com/articles/2017/05/03/open-port-security.aspx
https://adtmag.com/articles/2017/05/03/open-port-security.aspx
https://source.android.com/devices/tech/debug/libfuzzer
https://source.android.com/devices/tech/debug/libfuzzer
https://www.softwaretestinghelp.com/penetration-testing-tools/
https://www.softwaretestinghelp.com/penetration-testing-tools/
https://www.metasploit.com/
https://www.microfocus.com/en-us/what-is/dast
https://www.microfocus.com/en-us/what-is/dast

[10] O. Moor, D. Sereni, M. Verbaere, Elnar Hajiyev, Pavel Avgustinov, Torbjörn Ekman,
Neil Ongkingco, and J. Tibble. .ql: Object-oriented queries made easy. In GTTSE,
2007.

[11] Israel J. Mojica Ruiz, Meiyappan Nagappan, Bram Adams, and Ahmed E. Hassan.
Understanding reuse in the android market. In 2012 20th IEEE International Con-
ference on Program Comprehension (ICPC), pages 113–122, 2012.

[12] Check Point Software. Man in the disk attack surface. https://blog.checkpoint.

com/2018/08/12/man-in-the-disk-a-new-attack-surface-for-android-apps/,
2018.

[13] Synopsys. Static application security testing. https://www.synopsys.com/

glossary/what-is-sast.html, 2020.

[14] Android Team. Android debug bridge tool. https://developer.android.com/

studio/command-line/adb, 2020.

[15] Android Team. Android intent framework. https://developer.android.com/

guide/components/intents-filters, 2020.

[16] Android Opensource Team. Android manifest file content. https://developer.

android.com/guide/topics/manifest/manifest-intro.

[17] Google Security Team. Project zero. https://googleprojectzero.blogspot.com/,
2020.

[18] HashCat Opensource Team. Hashcat tools. https://hashcat.net/hashcat/, 2020.

[19] IRCCloud Development Team. Irccloud android application. https://play.google.
com/store/apps/details?id=com.irccloud.android&hl=en_CA&gl=US.

[20] IRCCloud Security Team. Irccloud security issue fix commit. https://github.com/
irccloud/android/commit/8ff145519bcd30da1898dd54a68629f53c62afe7.

[21] Mozilla Opensource Team. Firefox browser fuzzing project. https://hacks.mozilla.
org/2021/02/browser-fuzzing-at-mozilla/, 2020.

[22] NMap Team. Nmap tools. https://nmap.org/, 2020.

[23] NVD NIST Team. Cvss score metric. https://nvd.nist.gov/vuln-metrics/cvss.

36

https://blog.checkpoint.com/2018/08/12/man-in-the-disk-a-new-attack-surface-for-android-apps/
https://blog.checkpoint.com/2018/08/12/man-in-the-disk-a-new-attack-surface-for-android-apps/
https://www.synopsys.com/glossary/what-is-sast.html
https://www.synopsys.com/glossary/what-is-sast.html
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://googleprojectzero.blogspot.com/
https://hashcat.net/hashcat/
https://play.google.com/store/apps/details?id=com.irccloud.android&hl=en_CA&gl=US
https://play.google.com/store/apps/details?id=com.irccloud.android&hl=en_CA&gl=US
https://github.com/irccloud/android/commit/8ff145519bcd30da1898dd54a68629f53c62afe7
https://github.com/irccloud/android/commit/8ff145519bcd30da1898dd54a68629f53c62afe7
https://hacks.mozilla.org/2021/02/browser-fuzzing-at-mozilla/
https://hacks.mozilla.org/2021/02/browser-fuzzing-at-mozilla/
https://nmap.org/
https://nvd.nist.gov/vuln-metrics/cvss

[24] OWASP Team. Owasp mobile top 10 security vulnerabilities. https://owasp.org/

www-project-mobile-top-10/, 2020.

[25] OWASP Team. Owasp path traversal vulnerability. https://owasp.org/

www-community/attacks/Path_Traversal, 2020.

[26] VLC Development Team. Vlc android application. https://play.google.com/

store/apps/details?id=org.videolan.vlc&hl=en_CA&gl=US.

[27] VLC Security Team. Vlc security issue fix commit. https://code.videolan.org/

videolan/vlc-android/commit/86051dd9753a126e454726d9141566d4b1999262.

37

https://owasp.org/www-project-mobile-top-10/
https://owasp.org/www-project-mobile-top-10/
https://owasp.org/www-community/attacks/Path_Traversal
https://owasp.org/www-community/attacks/Path_Traversal
https://play.google.com/store/apps/details?id=org.videolan.vlc&hl=en_CA&gl=US
https://play.google.com/store/apps/details?id=org.videolan.vlc&hl=en_CA&gl=US
https://code.videolan.org/videolan/vlc-android/commit/86051dd9753a126e454726d9141566d4b1999262
https://code.videolan.org/videolan/vlc-android/commit/86051dd9753a126e454726d9141566d4b1999262

Appendix A

APPENDICES

A.1 Our Tools, Artifacts, Results

Links to our code, tools & and results are as follows:

• GitHub link to DEVAA Project

• TestCase Driver Android Application

• Nextcloud Android Source

• IRCCloud Android Source

• CodeQL Reference Example

A.2 Figures

38

https://github.com/uw-swag/devaa
https://github.com/shivasurya/DEVAA-TestCaseDriver
https://github.com/shivasurya/irccloud-android
https://github.com/shivasurya/irccloud-android
https://github.com/github/codeql

Figure A.1: Screenshot of Web App during Static Code Analysis

39

1 let HtmlEncodedXSS = require("./HtmlEncodedXSS");

2 class IRCCloudXSSTestCase extends HtmlEncodedXSS {

3 constructor(name) {

4 super();

5 this.xssPayload =

6 [

7 "https://picsum.photos/500",

8 "https:/jbdaksndf.com/dskjhbakjhsfh",

9];

10 this.domain = [

11 "https://zoho.com/",

12 "twitter.com"

13]

14 this.eventbasedXSS();

15 }

16

17 eventbasedXSS() {

18 this.addPayloads(this.xssPayload[0], "com.irccloud.android",

"com.irccloud.android.activity.ImageViewerActivity",

this.domain[0]);

,→

,→

19 this.executePayloads();

20 this.clearActivity();

21 this.clear();

22 this.assertTrue("/data/data/com.irccloud.android

23 /app_webview/Cookies", "zoho.com");

24 }

25 }

26 var IRCCloudXSSTestCase1 = new IRCCloudXSSTestCase();

Figure A.2: Example Security Testcase for IRCCloud Android App - Cross-site scripting
vulnerability

40

1 let FileProviderRunner = require("./FileProvider");

2 class VLCFileProviderTestCase extends FileProviderRunner {

3 constructor(name) {

4 super();

5 this.VLCPayloads =

6 [

7 "content://org.videolan.vlc.thumbprovider/data

8 /data/org.videolan.vlc/databases/vlc_database",

9];

10 this.directoryTraversalTestCase1();

11 this.sandboxBypassTestCase2();

12 }

13

14 directoryTraversalTestCase1() {

15 this.clear();

16 this.addPayloads(this.VLCPayloads[0]);

17 this.executePayloads();

18 this.assertTrue("exfiltrated-shared-pref-mei.xml");

19 this.clear();

20 this.removeTemporaryFiles();

21 }

22

23 sandboxBypassTestCase2() {

24 this.clear();

25 this.addPayloads(this.VLCPayloads[0]); // sets the payload

26 this.executePayloads(); // executes the payload

27 this.assertTrue("exfiltrated.sqlite");

28 this.clear(); // teardown testcase suite

29 this.removeTemporaryFiles();

30 }

31 }

32 var VLCFileProviderTestCase1 = new VLCFileProviderTestCase();

Figure A.3: Example Security Testcase for VLC Android App - ContentProvider vulnera-
bility

41

	List of Figures
	List of Tables
	Introduction
	Background and Related Work
	Background
	Static Application Security Testing & CodeQL
	Dynamic Application Security Testing
	Offensive Penetration testing tools

	Related Work
	Fuzz Testing

	Methodology
	Overview
	Source Code
	Static Code Analyzer
	Android Components with vulnerability warnings
	Vulnerability Runner Component
	Android Debug Bridge Interface
	Test-case Driver Component
	Android Emulator System

	DEVAA Workflow
	Vulnerability Runner and Installation Process
	Exploit Verification
	Cross-Site Scripting Attack Overview
	Content Provider Vulnerability Overview
	Manual Detection Technique
	Automated Detection Technique
	Teardown Test-case
	Test-case Reporting

	Results
	Initial Experiment
	DEVAA with Baseline
	Open-source Project security vulnerability
	Cross-Site Scripting on IRCCloud Android Application
	ContentProvider Attack on VLC Android Application

	Discussion
	Research Questions
	Reducing False Positives
	Contributions
	Threats to Validity

	Conclusions
	Future Work

	References
	APPENDICES
	APPENDICES
	Our Tools, Artifacts, Results
	Figures

