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Abstract

Despite the widespread belief that quantum computers cannot be efficiently simulated
classically, efficient simulation is known to be possible in certain restricted regimes. In partic-
ular, the Gottesman-Knill theorem states that Clifford circuits can be efficiently simulated.
We begin this thesis by reviewing and comparing several known techniques for efficient sim-
ulation of Clifford circuits: the stabilizer formalism, CH form, affine form, and the graph
state formalism. We describe each simulation method and give four different proofs of the
Gottesman-Knill theorem.

Next we review a recent work [15], which shows that restricting the geometry of Clifford
circuits can lead to a further speedup. We give an algorithm for simulating Pauli basis
measurements on a planar graph state in time Õ(nω/2), where ω < 2.373 is the matrix
multiplication exponent. This algorithm achieves a quadratic speedup over using Clifford
simulation methods directly. As an application of this algorithm, we consider a depth-d
Clifford circuit whose two-qubit gates act along edges of a planar graph and describe how
to sample from its output distribution or compute an output probability in time Õ(nω/2dω).
For d = O(log n), both of these results are quadratic speedups over using Clifford simulation
methods directly.

Finally, we extend these simulation algorithms to universal circuits by using stabilizer
rank methods. We follow a previously known gadgetization procedure [9] to show that given
a depth-d Clifford+T circuit with t T gates and whose two-qubit gates act along edges of a
planar graph, we can sample from its output distribution in time Õ(20.7926tn5/2t6d3) and can

compute output probabilities in time Õ(20.3963tn3/2t6d3). Previous work [9, 6], applied to the
case d = O(log n), gives algorithms for sampling in time O(20.3963tn6t6) and computation of
output probabilities in time O(20.3963tn3t3). Our sampling algorithm offers improved scaling
in n but poorer scaling in the exponential term, while our algorithm for computing output
probabilities offers improved scaling in n with identical scaling in the exponential term.
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Overview

The topic of this thesis is classical simulation of quantum computation. It is widely believed
that classical computers cannot efficiently simulate quantum computers in general, so why
should we pursue simulation in the first place?

The simplest reason is to offer support to this belief. After all, perhaps we just haven’t
looked hard enough for an efficient simulation algorithm. Just as hardness assumptions in
cryptography become more widely accepted after standing the test of time, so too can our
confidence in the superiority of quantum computers increase if attempt after attempt to find
an efficient simulation algorithm comes up empty.

Another reason is that studying classical simulation can shed light on exactly why quan-
tum computers seem to be more powerful than classical ones. Superposition and entan-
glement are both typically cited as the source of quantum advantage. However, this is an
incomplete characterization, as Clifford circuits display both of these properties yet are still
efficiently simulable [16]. Having a more nuanced understanding of the nature of quan-
tum computing’s power may help us determine which information processing tasks admit a
quantum speedup, and how to maximize the speedup when one exists.

On the practical side, studying both the theory and implementation of classical simulation
algorithms can help justify the usefulness of quantum computers for particular tasks. For
the foreseeable future, quantum computers will be far more difficult to build than classical
computers. Given this difficulty, anyone wanting to build a quantum computer for the
purpose of running a particular quantum algorithm will likely want a guarantee that a
classical computer could not simulate that algorithm in a comparable amount of time. The
magnitude of a quantum speedup may also play a role. Is it worth building a quantum
computer for a polynomial speedup? What about an exponential speedup?

We now state some standard definitions. An n-qubit quantum state |ψ〉 is a unit vector
in C2n . The conjugate transpose of |ψ〉 is denoted 〈ψ|. The computational basis is the set
{|z〉 : z ∈ {0, 1}n}. For k ≤ n, a k-qubit gate is a unitary operator in C2n×2n which acts
nontrivially only on k qubits of any given state. We often express such a gate as an operator
in C2k×2k and extend its action to C2n×2n by taking a tensor product with the identity
operator. A quantum circuit is a product of gates. If a circuit is expressed as the product of
several gates, we can express it using a circuit diagram. In Fig. 1, each rectangle represents
a gate, and each horizontal line, called a wire, represents a qubit. A state is given as input
to the circuit on the left hand side and proceeds in discrete time steps from left to right.
When it passes through a gate, that gate is applied to the state. The wires passing through a
gate correspond to the qubits on which that gate acts. If two gates act on disjoint subsets of
qubits then they commute, and therefore may be drawn as though they act simultaneously.
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|ψ〉

U1

U4

U4U3U2U1 |ψ〉
U3

U2

Figure 1: A depth-3 circuit that takes as input the 3-qubit state |ψ〉, applies the gates
U1, U2, U3, and U4, and outputs U4U3U2U1 |ψ〉.

We say that the depth of a circuit is the number of discrete time steps needed. Because
some gates may be applied simultaneously, the depth may be less than the number of gates.

The two most basic simulation tasks are sampling from a circuit’s output distribution
and computing an output probability. Given an n-qubit circuit C, sampling from its output
distribution means sampling z ∈ {0, 1}n from the distribution

Pr[z] = |〈z|C|0n〉|2 . (1)

Computing an output probability refers to, when given a fixed z ∈ {0, 1}n, computing Pr[z].
The sampling task is what a noiseless quantum computer does. Computation of output
probabilities is not performed by quantum computers, but can be a useful tool for verifying
their correctness: Consider a quantum computer that applies the circuit C to input |0n〉 and
performs a computational basis measurement. If Pr[z] is known, then comparing it to the
number of times that result z is observed can help us determine whether or not the quantum
computer is working correctly.

Both simulation tasks can be performed in exponential time1 on a classical computer
as follows. Suppose C = Um . . . U1, where each Uj is a one- or two-qubit gate. We start
by storing |0n〉 in memory as a vector in C2n . Next we sequentially compute U1 |0n〉, then
U2(U1 |0n〉), and so on until we reach Um(Um−1 . . . U1 |0n〉) = C |0n〉. Each Uj is represented
by a matrix with O(1) nonzero entries, so computing each Uj(Uj−1 . . . U1 |0n〉) amounts to
a sparse matrix-vector multiplication. Therefore, C |0n〉 may be computed in time O(2nm).
To compute an output probability we can then look at the z-entry of C |0n〉 and take the
modulus squared. To sample, we can then use C |0n〉 to learn the entire distribution by
computing Pr[z] for each z ∈ {0, 1}n, which takes time O(2n), and then use any technique
for sampling from a discrete distribution.2

In contrast to the exponential runtime that seems to be needed in general, there exist
certain restricted classes of circuits that admit faster classical simulation.

A classic result of Markov and Shi [25] offers an improved simulation algorithm based
on the geometry of C. Consider a graph G with vertex set [m] and an edge ij whenever
a wire segment joins Ui and Uj in a circuit diagram representation of C. Markov and Shi
show that either simulation task can be performed classically in time 2O(tw(G))mO(1). Here
tw(G) denotes treewidth [30], a graph-theoretic quantity defined formally in Chapter 2 which

1By time, we mean the number of arithmetic operations.
2For example, if we can generate a uniformly random r ∈ (0, 1), then we can sample from Pr[z] by

selecting min{z : r <
∑

y≤z Pr[y]}.
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roughly measures how much G resembles a tree. Therefore if G is planar, using the fact that
a planar graph on k vertices has treewidth O(

√
k) together with the fact that m ≤ dn,

the algorithm runs in time 2O(
√
dn)(dn)O(1). For low-depth circuits, this is an improvement

over the näıve algorithm described above, which has runtime O(2ndn). Finding improved
simulation algorithms exploiting geometry is an active area of research [e.g. 23, 17, 13].

We can also obtain an improved simulation algorithm if we restrict the gate set. A
Clifford circuit is any circuit that takes |0n〉 as input, applies a product of the gates

H =
1√
2

[
1 1
1 −1

]
, S =

[
1 0
0 i

]
, CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , (2)

and optionally measures a subset of qubits in computational basis. The Gottesman-Knill
theorem [16] says that an n-qubit Clifford circuit with m gates can be simulated classically
in time poly(m,n).

In Chapter 1 we will summarize four previously known approaches to proving the Gottesman-
Knill theorem. Although each of the four algorithms run in polynomial time, they all incur
slightly different costs depending on the number of gates of each type that are applied, the
number of measurements, as well as the order in which these operations occur. Consequently,
when simulating a given circuit, the overall runtime may depend on which simulation tech-
nique is used. In Section 1.3 we improve the algorithm described in [34] by giving a faster
subroutine for simulating the application of Hadamard gates and describing a subroutine for
measuring multiple qubits simultaneously. We also pay special attention to storing global
phase information, which is necessary for the use of stabilizer rank methods [9], discussed in
Chapter 3. Chapter 1 concludes with a discussion of the merits of each simulation technique
as well as future research directions.

In Chapter 2 we describe a result of [15], the main application of which can be seen
as a combination of the idea of restricting a circuit’s geometry with the Gottesman-Knill
theorem. Given a graph G = (V,E), its corresponding graph state is defined as

|G〉 =

(∏
ij∈E

CZij

)
|+|V |〉 , (3)

where |+〉 = (|0〉 + |1〉)/
√

2, and CZij acts on qubits i, j. We consider two tasks. (For
simplicity we only describe a special case of the tasks here.) In both tasks we are given a
planar graph G, and for each v ∈ V we are given a Pauli operator Pv ∈ {X, Y, Z}. Let Uv be
the local Clifford operator that maps the Pv eigenbasis to the computational basis: If Pv = X
then Uv = H, if Pv = Y then Uv = HS†, and if Pv = Z then Uv = I. The first task is to
sample from the output distribution Pr[z] = | 〈z|

⊗
v Uv|G〉 |2, for z ∈ {0, 1}n. In the second

task, we are additionally given a fixed string z ∈ {0, 1}n and must compute | 〈z|
⊗

v Uv|G〉 |2.
The matrix-multiplication-time version of Clifford simulation described in [15] can be used
directly to solve both problems classically in time O(nω), where ω ∈ [2, 2.37286) [2] is the

matrix multiplication exponent. We give a quadratic speedup by describing Õ(nω/2)-time
classical algorithms for both tasks.
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The results of Chapter 2 can be used to achieve improved algorithms for simulating
certain Clifford circuits. For a depth-d Clifford circuit C on n qubits, let G be the graph
with vertex set [n] and an edge ij if and only if CZij is present in U . Through a reduction
to the two tasks described above, we show that when G is planar, a classical algorithm can
sample from C |0n〉 in time Õ(nω/2dω), and given z ∈ {0, 1}n we can compute | 〈z|U |0n〉 |2
in the same runtime. If d = O(log n) then these are again quadratic speedups over directly
applying the Clifford circuit simulation algorithm from [15].

In Chapter 3 we discuss stabilizer rank methods [9, 7, 6]. Let T = diag(1, eiπ/4) and let
|T 〉 = T |+〉. The set of states produced by Clifford circuits, which are known as stabilizer
states, span C2n , and therefore for any t ≥ 1 there exists χ ≥ 1, {αj}j ⊂ C, and stabilizer
states {|φj〉}j such that

|T 〉⊗t =

χ∑
j=1

αj |φj〉 . (4)

We say that the minimum possible χ, denoted χt, is the stabilizer rank of |T 〉⊗t. Let C
be a depth-d circuit built from the universal gate set {H,S,CZ} ∪ {T}, with input state
|0n〉 and computational basis measurements. Let G be as defined above, and let t be the
number of T gates in C. Using a technique described by [9] together with the results of
Chapter 2, we show that if G is planar, then we can sample from the output distribution
of C |0n〉 in time Õ(χ2

tn
5/2t6d3), and given z ∈ {0, 1}n, we can compute | 〈z|C|0n〉 |2 in

time Õ(χtn
3/2t6d3). Substituting in the best known upper bound χt ≤ 20.3963t [27] gives

runtimes of Õ(20.3963tn3/2t6d3) and Õ(20.7926tn5/2t6d3), respectively. The techniques used in
Chapter 3 closely follow previous uses [9, 7, 6] of stabilizer rank methods. For d = O(log n)
previous work [9, 6] allows sampling to be done in time O(χtn

6t6) and computation of output
probabilities to be done in time O(χtn

3t3). For the sampling task our result offers improved
scaling in n, but with poorer scaling in χt. For the task of computing output probabilities
we improve the scaling in n and leave the scaling in χt unchanged.

By considering restricted models of quantum computation in this thesis, we hope to
shed light on the relationship between the capabilities of quantum and classical computers.
Understanding this relationship has theoretical and practical implications, as simulation can
be a useful tool for both understanding the source of quantum advantage, as well as verifying
the correctness of actual quantum devices. As technology for physically realizing quantum
computers continues to mature, working towards a better characterization of this relationship
will become increasingly important.

4



Chapter 1

Clifford circuit simulation

The Gottesman-Knill theorem says that n-qubit Clifford circuits with m gates can be simu-
lated in time poly(m,n) [16]. In this section we review four different simulation algorithms.
A stabilizer state is any state that can be produced by a Clifford circuit acting on |0n〉. Each
simulation algorithm relies on having an efficient classical representation of stabilizer states.
Given such a representation, each algorithm then provides rules for efficiently updating that
representation when a gate H,S, or CZ is applied. To simulate a single-qubit measurement,
every algorithm describes an efficient way to determine the probabilities of observing re-
sults 0 and 1, respectively. Using these probabilities we can then sample a measurement
outcome r ∈ {0, 1}. Finally, each algorithm has a rule for efficiently updating its classical
representation upon the application of the projection |r〉 〈r|.

The Gottesman-Knill theorem allows us to accomplish either of the circuit simulation
tasks described in the introduction. To sample from the output distribution of a circuit C,
we can begin with an efficient classical representation of the input state |0n〉, simulate the
application of each gate in C one by one to find an efficient representation of C |0n〉, and then
simulate measurements on qubits one by one. To compute an output probability | 〈z|C|0n〉 |2
for fixed z ∈ {0, 1}n, we again produce a representation of C |0n〉 and simulate measurements
one by one. However, rather than determining the measurement outcome r ∈ {0, 1} by
sampling from a distribution, we simply choose r = zj, where j is the qubit being measured.
If at any point the measurement is deterministic with result 1−zj, we conclude | 〈z|C|0n〉 |2 =
0 and stop. Conveniently, we will see that every single-qubit measurement on stabilizer states
is either deterministic or uniformly random. Therefore if we manage to correctly choose the
measurement outcome for each qubit, then we will have | 〈z|C|0n〉 |2 = 2−k, where k is the
number of nondeterministic measurements encountered.

Throughout this thesis we will often use the fact that X = HS2H,Z = S2, and CNOT =∑
x∈{0,1}2 |x1, x1 + x2〉 〈x1, x2| = (I⊗H)CZ(I⊗H) are all Clifford operators. For a ∈ {0, 1}n

and j ∈ [n] we write X(a) = Xa1⊗ . . .⊗Xan and Xj = I⊗ . . .⊗ I⊗X⊗ I⊗ . . .⊗ I, with the
X in the jth position, and define Z(a), Zj, H(a), Hj, etc. similarly. For example, if n = 3
and a = 101 then H(a) = H ⊗ I ⊗H and X1Z2 = X ⊗ Z ⊗ I.

5



1.1 The stabilizer formalism

The generalized Pauli group Pn is the multiplicative group

Pn = {iγX(a)Z(b) : γ ∈ {0, 1, 2, 3}, a, b ∈ {0, 1}n}. (1.1)

In the stabilizer formalism [16] we represent a stabilizer state |ψ〉 as the subgroup

Stab(|ψ〉) = {P ∈ Pn : P |ψ〉 = |ψ〉}. (1.2)

This subgroup is called a stabilizer group. We say that Paulis P (1), . . . , P (m) ∈ Pn are inde-
pendent if Pj /∈ 〈P (1), . . . , P (j−1), P (j+1), . . . P (m)〉 for each j, where angled brackets denote
the subgroup generated by P (1), . . . , P (j−1), P (j+1), . . . P (m). Rather than storing every group
element, a stabilizer group can always be described by a set of independent generators, called
stabilizer generators. For example,

Stab(|00〉) = {I, Z1, Z2, Z1Z2} = 〈Z1, Z2〉 (1.3)

Stab(|++〉) = {I,X1, X2, X1X2} = 〈X1, X2〉 (1.4)

Stab

(
|00〉+ |11〉√

2

)
= {I,X1X2, Z1Z2,−Y1Y2} = 〈X1X2, Z1Z2〉 (1.5)

Stab(|0n〉) = {Z(a) : a ∈ {0, 1}n} = 〈Z1, . . . , Zn〉. (1.6)

What happens to a stabilizer group when we apply a Clifford gate U to |ψ〉? For any
Pauli P ,

P |ψ〉 = |ψ〉 ⇐⇒ (UPU †)U |ψ〉 = U |ψ〉 . (1.7)

Claim 1. Let P ∈ Pn and j, k ∈ [n] be given. Then HjPH
†
j , SjPS

†
j , and CZjkPCZ†jk are all

in Pn and may be computed in time O(1).

Proof. Let U ∈ {H,S}, and let us write P = iγX(a)Z(b). Then because

UjPU
†
j = iγXa1Zb1 ⊗ . . .⊗Xaj−1Zbj−1 ⊗ UXajZbjU † ⊗Xaj+1Zbj+1 ⊗ . . .⊗XanZan , (1.8)

showing that UjPU
†
j ∈ Pn can be done by showing that UXajZbjU † ∈ P1. Since there are

only eight combinations of U and XajZbj , the fact that UXajZbjU † ∈ P1 can be checked
directly. Moreover, computing UjPU

†
j amounts to replacing the jth tensor element of P with

UXajZbjU † (and possibly also changing γ). Because there are O(1) combinations of U , and
XajZbj , this update can be done in constant time using a lookup table like the one shown in
Table 1.1. The case where U = CZjk for some j, k ∈ [n] is very similar. The only difference

is that we must instead compute CZjk(X
ajZbj ⊗XakZbk)CZ†jk.

When combined with Eq. 1.7, Claim 1 tells us that for Paulis P (1), . . . , P (m),

Stab(|ψ〉) = 〈P (1), . . . , P (m)〉 ⇐⇒ Stab(U |ψ〉) = 〈UP (1)U †, . . . , UP (m)U †〉. (1.9)

Therefore, given a set of generators for Stab(|ψ〉), to represent the state U |ψ〉 it suffices
to replace each generator P with P ← UPU †. Because Z1, . . . , Zn are independent and

6



U P UPU †

X Z
H Y −Y

Z X
X Y

S Y −X
Z Z
Xa XaZb

CZab Ya YaZb
Za Za

Table 1.1: Recreated from [26]. Lookup table for updating a stabilizer group after applying
the gate U ∈ {H,S,CZ}. The value of UY U † is completely determined by UXU † and UZU †

but is included for convenience.

generate Stab(|0n〉), and every stabilizer state is obtained by a series of Clifford gates acting
on |0n〉, Eq. 1.9 tells us that every stabilizer group requires exactly n independent generators
to describe. Because UPU † can be computed in time O(1), updating the entire set of
generators takes time O(n).

For example, suppose we start with the state |00〉, with Stab(|00〉) = 〈Z1, Z2〉. If we
apply the gate H1, we update our generators by computing H1Z1H

†
1 = X1 (using the third

row of Table 1.1) and H1Z2H
†
1 = Z2, to get Stab(H1 |00〉) = 〈X1, Z2〉. If we then apply a

CZ gate, we compute CZX1CZ† = X1Z2 (using the seventh row) and CZZ2CZ† = Z2 (using
the last row) to get Stab(CZH1 |00〉) = 〈X1Z2, Z2〉. Notice that the CZ gate changes the
generators, but not the overall stabilizer group, as 〈X1, Z2〉 = 〈X1Z2, Z2〉. This reflects the
fact that CZ |+〉 |0〉 = |+〉 |0〉.

Stabilizer generators P (1), . . . , P (n) are typically stored in a block matrix, known as a
tableau, of the form [

C D δ
]
, (1.10)

where C,D ∈ {0, 1}n×n, δ ∈ {0, 1}n, and P (j) = (−1)δj iCjD
T
j X(Cj)Z(Dj), where Cj and

Dj denote the jth rows of C and D. Note that the form (−1)δj iCjD
T
j X(Cj)Z(Dj) can only

represent the Hermitian elements of Pn. This is not a problem, because all elements of
Stab(|ψ〉) must be Hermitian. Suppose for contradiction we had some P ∈ Stab(|ψ〉) that
was not Hermitian, we would then have P 2 |ψ〉 = P |ψ〉 = |ψ〉 since P ∈ Stab(|ψ〉), but also
P 2 |ψ〉 6= (PP †) |ψ〉 = |ψ〉. Using row vectors to represent the X- and Z-components of Pauli
operators also makes it easy to express commutation relations. If a, a′, b, b′ ∈ {0, 1}n, then
X(a)Z(b) and X(a′)Z(b′) commute if and only if

[
aT bT

]
Λ

[
a′

b′

]
= 0 mod 2, with Λ =

[
0 I
I 0

]
. (1.11)

We can now prove that Stab(|ψ〉) uniquely identifies |ψ〉 up to a global phase. The
fact that global phase information is lost in the stabilizer formalism reflects the fact that if
P |ψ〉 = |ψ〉, then P (α |ψ〉) = α |ψ〉 for any α.
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Claim 2 ([26]). Let P (1), . . . , P (n) ∈ Pn all commute and be independent. If−I /∈ 〈P (1), . . . , P (n)〉
then the subspace {|ψ〉 : P (j) |ψ〉 = |ψ〉 ∀j} is one-dimensional.

Before proving the claim we will show how it allows us to prove that a stabilizer group
uniquely identifies a stabilizer state up to a global phase. That is, if 〈P (1), . . . , P (n)〉 =
Stab(|ψ1〉) = Stab(|ψ2〉) for stabilizer states |ψ1〉 , |ψ2〉, then |ψ1〉 ∝ |ψ2〉. To do this, we
just need to argue that for any stabilizer generators P (1), . . . , P (n), the premises of Claim 2
are satisfied. Because Z1, . . . , Zn all commute and generate Stab(|0n〉), and conjugation by
a unitary preserves commutation relations, it is true that all stabilizer groups are abelian.
Therefore P (1), . . . , P (n) all commute. The condition −I /∈ 〈P (1), . . . , P (n)〉 will also always
be true for stabilizer generators, since −I |ψ〉 6= |ψ〉.

Proof of Claim 2. We start by claiming that if [ C D δ ] is the tableau representation of P (1), . . . , P (n)

then [ C D ] has full rank. Suppose that s ∈ {0, 1}n satisfies

n∑
j=1

sj
[
Cj Dj

]
= 0. (1.12)

Then because a linear combination of the rows of [ C D ] corresponds to a product of the P (j)

with phases being ignored, we then have

n∏
j=1

(P (j))sj ∈ {±I,±iI}. (1.13)

Because −I /∈ 〈P (1), . . . , P (n)〉, this product must be equal to +I. Since the P (j) are inde-
pendent, we must have s = 0n, which means that [ C D ] has full rank.

For each j, the projector onto the +1 eigenspace of P (j) is given by (I + P (j))/2. For
each x ∈ {0, 1}n, define the projection operator

Px =
n∏
j=1

I + (−1)xjP (j)

2
. (1.14)

Claim 2 says that P0n , which projects onto the intersection of all +1 eigenspaces, has rank
1. Because

∑
x Px = I has rank 2n and rank is subadditive, it suffices to show that each Px

has equal rank. We do this by showing Rank(Px) = Rank(P0n) for all x.
Because [ C D ] has full rank, for each j there exists a solution [ ab ] to [ C D ]Λ[ ab ] = ej,

where ej is the usual standard basis vector. In other words, there exists R(j) := X(a)Z(b)
that commutes with P (k) if and only if j = k. Then for any x,( ∏

j:xj=1

R(j)

)
Px

( ∏
j:xj=1

R(j)

)†
= P0n

( ∏
j:xj=1

R(j)

)( ∏
j:xj=1

R(j)

)†
= P0n . (1.15)

Since each R(j) is invertible, taking the rank on both sides gives Rank(P0n) = Rank(Px).
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We will now describe how to perform single-qubit measurements in O(n2) time, shown in
[1], which improves on an earlier algorithm running in time O(nω) [16, 26]. In order to do so,
we must also store another set of n Paulis, known as destabilizer generators. We will describe
how to update destabilizer generators when a gate is applied and when a measurement is
performed. If P (1), . . . , P (n) are the stabilizer generators and Q(1), . . . , Q(n) the destabilizer
generators of a state, then we will also show that the following properties are preserved by
our update rules whenever we apply a gate or perform a measurement:

(D1) The set {P (1), Q(1), . . . , P (n), Q(n)} is independent.

(D2) For each j, the operator Q(j) is Hermitian.

(D3) For each j, k, the operators Q(j) and Q(k) commute.

(D4) For each j, k, if j 6= k then P (j) and Q(k) commute, and if j = k then P (j) and Q(k)

anticommute.

For the state |0n〉, we may take P (j) = Zj and Q(j) = Xj for each j. To update destabilizer
generators after applying a gate U to |ψ〉, we use the exact same rules as with the stabilizer
generators: Using Table 1.1, we set Q(j) ← UQ(j)U † for each j. Since there are n destabilizer
generators, this takes time O(n) in total. Notice that properties (D1) – (D4) are preserved:
Conjugation by a unitary preserves independence, Hermiticity, and commutation relations.

Given that the Q(j) are Hermitian, we can also augment the tableau from Eq. 1.10 to
form [

A B γ
C D δ

]
, (1.16)

where Q(j) = (−1)γj iAjB
T
j X(Aj)Z(Bj).

We can now describe the measurement subroutine. Suppose we wish to measure a single
qubit ` in the computational basis.
Case 1: Suppose first that Z`P

(j) = −P (j)Z` for some stabilizer generator P (j). If P (j) is
not unique we can replace all other anticommuting generators with P (k) ← P (j)P (k) in time
O(n2). We will also replace every anticommuting destabilizer generator withQ(k) ← P (j)Q(k).
A straightforward calculation shows that this preserves properties (D1) – (D4).

Both measurement outcomes can then be seen to occur with probability 1
2
:

| 〈ψ| I + Z`
2
|ψ〉 |2 = | 〈ψ| I + Z`

2
P (j) |ψ〉 |2 (1.17)

= | 〈ψ|P (j) I − Z`
2
|ψ〉 |2 (1.18)

= | 〈ψ| I − Z`
2
|ψ〉 |2. (1.19)

After flipping a coin to determine the measurement result r we update our tableau by
replacing Q(j) ← P (j) and P (j) ← (−1)rZ`. The time complexity in this case is dominated
by the cost of updating the anticommuting generators, which takes time O(n2).
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Next we show that the updated set of stabilizer generators do in fact stabilize the post-
measurement state. For each P (k) with k 6= j, we have

P (k) I + (−1)rZ`
2

|ψ〉 =
I + (−1)rZ`

2
P (k) |ψ〉 =

I + (−1)rZ`
2

|ψ〉 . (1.20)

Since (−1)rZ` anticommutes with P (k) for each k 6= j, and stabilizer groups are abelian,
(−1)rZ` could not have been in the pre-measurement stabilizer group. Therefore the updated
set of stabilizer generators are independent. They also cannot generate −I (since we would
then have −I |ψ〉 = |ψ〉), so by Claim 2, they do in fact generate Stab((I + (−1)rZ) |ψ〉).

We will now show that (D1) is preserved. Showing that (D2) – (D4) are preserved is
straightforward. By induction, {P (1), Q(1), . . . , P (n), Q(n)} \ {Q(j)} is independent. By (D4)
together with the fact that stabilizer groups are abelian, every element of this set commutes
with P (j). But since (−1)rZ` anticommutes with P (j), it cannot be generated by this set.
Therefore the updated set of stabilizer and destabilizer generators are independent, so (D1)
is preserved.

Case 2: Suppose instead that Z`P
(j) = P (j)Z` for all j. Therefore for each j we have

P (j)Z` |ψ〉 = Z`P
(j) |ψ〉 = Z` |ψ〉. By Claim 2, together with the fact that Z has eigenvalues

±1, we then have Z` |ψ〉 = (−1)r |ψ〉 for some r ∈ {0, 1}. This tells us that the measurement
is deterministic with result r. We just need to determine what r is.

Let us ignore phases for a moment. Suppose we could find a solution s ∈ {0, 1}n to

Z` ∝
n∏
j=1

(P (j))sj , (1.21)

where the ∝ sign hides a power of i. Note that a solution always exists, because (−1)Z` ∈
Stab(|ψ〉) and P (1), . . . , P (n) generate Stab(|ψ〉). A solution can be found by solving the
system of linear equations [

C
D

]
s =

[
0
e`

]
. (1.22)

Given s we could determine r by explicitly computing the right hand side of Eq. 1.21 and
checking its sign. This system can be solved in time O(n3) using Gaussian elimination or
O(nω) using fast matrix multiplication (see Appendix A). Aaronson and Gottesman [1],
however, describe an alternative way of finding r in time O(n2) without resorting to linear
algebra.

Recall that for a, a′, b, b′ ∈ {0, 1}n, the Paulis X(a)Z(b) and X(a′)Z(b′) commute if and
only if [ aT bT ]Λ

[
a′

b′

]
= 0 mod 2. Modulo 2, we then have

sj = sj
[
Aj Bj

]
Λ
[
Cj Dj

]T
(1.23)

=
n∑
k=1

sk
[
Aj Bj

]
Λ
[
Ck Dk

]T
(1.24)

=
[
Aj Bj

]
Λ

n∑
k=1

sk
[
Ck Dk

]T
(1.25)

=
[
Aj Bj

]
Λ
[
0 e`

]T
(1.26)

= Aj`. (1.27)
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In the first equality, we have used (D4) to multiply sj by one. In the second equality, we
have also used (D4), which tells us that the only nonzero summand is the one where k = j.
The final equality tells us that s turns out to just be the `th column of A. We can now check
which of ±Z` is in the stabilizer group by calculating the right hand side of Eq. 1.21. Doing
so takes time O(n2), and dominates the time complexity of measurement in this case. Since
the state is unchanged, no generators are updated, so properties (D1) – (D4) are preserved.

This completes the first proof of the Gottesman-Knill theorem.
Tableau representations can also be used to describe Clifford operators. If U is a Clifford

operator, then we can represent U by storing a tableau containing UX1U
†, . . . , UXnU

† and
UZ1U

†, . . . , UZnU
†. Given a stabilizer generator P for a state |ψ〉, one could then compute

UPU † by using the tableau for U . For example, if P = X1Z2Z3, we can compute UPU † =
(UX1U

†)(UZ2U
†)(UZ3U

†), where each term may be looked up in the tableau for U . The
tableau for U is equivalently the tableau for the state U |0n〉.

This idea can be used to frame all operations in the stabilizer formalism in terms of linear
algebra. It has been shown [15] that using this framework, any collection of CZ gates can
be applied in time O(nω) and measuring k qubits can be done in time O(n2kω−2). Using the
techniques of this section alone, these operations would take time O(n3) and O(kn2) in the
worst case.

1.2 CH form

CH form [6] is an adaptation of tableau-based simulation which also stores global phase.
Clifford simulators that store global phase information are said to be phase-sensitive. To
simulate a Clifford circuit, phase-sensitivity is unnecessary, however stabilizer rank methods
[9, 6], discussed in Chapter 3, allow universal circuits to be simulated using a phase-sensitive
Clifford simulator. In CH form, stabilizer states are represented as

|ψ〉 = ewiπ/4UCH(r) |s〉 , (1.28)

where w ∈ {0, 1, . . . , 7}, UC is a Clifford operator with UC |0n〉 = |0n〉, and r, s ∈ {0, 1}n. To
store UC , we store the tableau for U †C . We call operators that map |0n〉 to |0n〉, as is the case
with UC , C-type or control-type operators. The tableau representation of a Clifford operator
only identifies that operator up to a global phase, so we must also require UC |0n〉 = |0n〉 in
order to fix its global phase.

To apply an S gate to qubit j, notice that SjUC is a control-type operator. Therefore to

apply Sj, it suffices to update UC ← SjUC . The tableau for U †C stores U †CXiUC and U †CZiUC
for i ∈ [n]. The tableau for (SjUC)† must store U †CS

†
jXiSjUC and U †CS

†
jZiSjUC . However,

for all i, we have U †CS
†
jZiSjUC = U †CZiUC , and for i 6= j we have U †CS

†
jXiSjUC = U †CXiUC ,

so all that’s needed is to compute U †CS
†
jXjSjUC . To do so, we use the fact that S†XS =

−Y = −iXZ. Then

U †CS
†
jXjSjUC = −iU †CXjZjUC = −i(U †CXjUC)(U †CZjUC). (1.29)

We can then use the original tableau for U †C to look up (U †CXjUC) and (U †CZjUC). This
process takes time O(1). The same idea can also be used to apply the control-type operators
CZ and CNOT in time O(1).
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Claim 3. In CH form, a Hadamard gate can be applied in time O(n2).

Proof. Using the decomposition H = (X + Z)/
√

2 we have

Hj |ψ〉 = ewiπ/4UCH(r)

(
P |s〉+Q |s〉√

2

)
(1.30)

= ew
′iπ/4UCH(r)

(
|t〉+ iα |t′〉√

2

)
, (1.31)

where P = H(r)U †CXjUCH(r) and Q = H(r)U †CZjUCH(r) are both in Pn, and w′, α, t, t′

are determined by P |s〉 , Q |s〉. To compute P and Q, we first use the tableau for U †C to
look up U †CXjUC and U †CZjUC . From there, conjugating by H(r) can be done in time O(n).
Computing w′, α, t, t′ can also be done in time O(n).

If t = t′ then α ∈ {1, 3}, since otherwise we would have ||Hj |ψ〉 || 6= 1. In this case,
referring to Eq. 1.31, we update s ← t, and w ← w′ + 1 mod 8 if α = 1 or w ← w′ − 1
mod 8 if α = 3. If t 6= t′ then we will rewrite the product H(r)(|t〉 + iα |t′〉) appearing in
Eq. 1.31. First, choose any q ∈ [n] with tq 6= t′q and let

VC = H(r)

 ∏
j:tj 6=t′j
j 6=q

CNOTqj

H(r). (1.32)

Using the identity CZ = (I ⊗H)CNOT(I ⊗H), we can see that VC is a product of CNOT
gates (when rj = 0) and CZ gates (when rj = 1), and is therefore a C-type operator. Then
we have

H(r)(|t〉+ iα |t′〉) = VC
[
H(r[n]\q) |t[n]\q〉 ⊗H(rq)(|tq〉+ iα |1 + tq〉)

]
(1.33)

=
√

2eviπ/4VC
[
H(r[n]\q) |t[n]\q〉 ⊗ SaqHb

q |c〉
]

(1.34)

for some a ∈ {0, 1, 2, 3}, b, c ∈ {0, 1}, and v ∈ {0, 1, . . . , 7}. Substituting this into Eq. 1.31
gives us

Hj |ψ〉 = e(w′+v)iπ/4UCVC
[
H(r[n]\q) |t[n]\q〉 ⊗ SaqHb

q |c〉
]
. (1.35)

We can now simplify this expression to put it into CH form. Let us first replace UC ←
UCVCS

a
q , which is a C-type operator. We will perform this update by writing VCS

a
q as a

product of O(n) CZ and CNOT gates, followed by the Saq gate, and update the tableau for

U †C one gate at a time. We will show how to perform the update for a CZ gate (the CNOT
and S gates are similar). Given the tableau for U †C , which stores products like U †CXiUC (and
similarly for Zi), we’d like to compute (UCCZ)†Xi(UCCZ) = CZ†(U †CXiUC)CZ. Using the
original tableau for UC , we look up (U †CXiUC), and then we simply conjugate by CZ as we
did in Section 1.1 in time O(1).1 To update all 2n generators we need time O(n) per gate,
leading to the total runtime of O(n2). After updating UC ← UCVCS

a
q in time O(n2), we

perform the updates w ← w′ + v, rq ← rq + b, s[n]\q ← t[n]\q, and sq ← c in time O(n).

1To apply the final gate Sa
q , we will need to find (Sa

q )†(U†CXiUC)Sa
q . However, Table 1.1 only stores

information about conjugation by S1, not by (Sa)†. This can be handled by using the fact that (Sa)† = S3a,
and then repeatedly conjugating by S using Table 1.1.
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A similar trick can be used to measure a qubit j in the computational basis in time
O(n2). First we choose a random z ∈ {0, 1}. Then

I + (−1)zZj
2

ewiπ/4UCH(r) |s〉 = ewiπ/4UCH(r)
|s〉+Q |s〉

2
, (1.36)

where Q = (−1)zH(r)U †CZjUCH(r) can be computed in time O(n) as in the Hadamard gate
case. If Q |s〉 = |s〉 then the state is unchanged, so the measurement is deterministic with
result z. If Q |s〉 = − |s〉 then the right hand side of Eq. 1.36 is zero, so the measurement
must have been deterministic with result 1 − z. If neither of these are the case, then the
measurement is random with result z. To represent the post-measurement state, write
Q = iγX(a)Z(b). To renormalize the state we multiply Eq. 1.36 by

√
2, since z is observed

with probability 1
2
. Then taking w′ ← w, t ← s, t′ ← s + a, and α ← γ +

∑
j bjsj puts

Eq. 1.36 into the form of Eq. 1.31. We can then proceed as in the proof of Claim 3.

1.3 Affine form

Tableau representation and CH form are both somewhat removed from the usual compu-
tational basis representation of a state. In this section we describe a simulation technique
that tracks the computational basis representation of a stabilizer state [12, 34]. We will
present a slightly modified version of the algorithm described by Van den Nest [34]. These
modifications allow global phase to be stored, Hadamard gates to be applied in time O(n2),
and k single-qubit measurements to be performed in time O(n2kω−2).

The affine form of an n-qubit stabilizer state |ψ〉 consists of an affine space A ⊆ {0, 1}n of
dimensionm, linear function ` : {0, 1}n → {0, 1, 2, 3}, quadratic function q : {0, 1}n → {0, 1},
and scalar p ∈ {e0iπ/4, e1iπ/4, . . . , e7iπ/4}, such that

|ψ〉 =
p√
2m

∑
x∈A

i`(x)(−1)q(x) |x〉 . (1.37)

We will see that, roughly speaking, ` and q encode information about S and CZ gates that
have been applied, since for all j, k ∈ [n] we have Sj |x〉 = ixj |x〉 and CZjk |x〉 = (−1)xjxk |x〉.
The affine space A will be expressed as {Ru+ t : u ∈ {0, 1}m}, where R is a full rank n×m
binary matrix. We require that R is kept in reduced column echelon form (RCEF),2 up to
a permutation of rows or columns. Throughout this section, when we say “finding an affine
space,” we will always mean finding a representation of that space in which the generating
matrix R has this form.

A few observations will be useful when handling R:

• Permuting columns of R has no effect on A.

• If we swap row a with row b of R, swap ta with tb, and swap xa with xb whenever they
appear in `(x), q(x), then we have effectively swapped the indices of qubits a and b of
|ψ〉. This can be done in time O(n).

2A matrix R is in RCEF if RT is in reduced row echelon form.
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• Adding column a of R to column b when a 6= b has no effect on A. More generally,
replacing R← RW when W is an invertible binary matrix has no effect on A.

In light of the first two facts we will often assume that the rows or columns of R are permuted
however we like. Any permutation on the n rows of R can be written as a product of O(n)
transpositions, which, by the second observation, can be performed in time O(n2). We will
only need to permute rows in the Hadamard and measurement subroutines. Because these
take time O(n2) and O(n2kω−2) anyway, the extra cost of O(n2) can be ignored.

Because R is in RCEF up to a permutation of rows and columns, for the remainder of
this section we will assume that we have gone ahead and performed these row and column
permutations, and that R takes the form R = [ I∗ ], where I is the m × m identity matrix
and ∗ is an arbitrary (n −m) ×m matrix. We will also sometimes refer to pivot rows of a
matrix. If a matrix is in RCEF up to a permutation of rows and columns then a pivot row
is a row that contains a leading one. For example, the following matrix is in RCEF up to a
permutation of rows and columns, and its pivot rows are rows 2, 4, and 5:

1 1 0
0 1 0
1 1 1
1 0 0
0 0 1

 . (1.38)

We now describe the simulation algorithm. To represent the state |0n〉 we use the con-
vention that R is the n × 0 matrix, and set t = 0n, p = 1, and `(x) = q(x) ≡ 0. Applying
Sa and CZab for a, b ∈ [n] can both be done in O(1) time. For a computational basis state
|x〉 we have Sa |x〉 = ixa |x〉, so we perform the update `(x) ← `(x) + xa mod 4 to apply
Sa. Similarly, we have CZab |x〉 = (−1)xaxb |x〉, so we update q(x) ← q(x) + xaxb mod 2 to
apply CZab.

Hadamard gates are more costly. We will show that single Hadamard gate can be applied
in time O(n2). Before doing this, note that the näıve way to apply an X gate is to decompose
it as X = HS2H, which would take time O(n2) to simulate. A shortcut is to instead perform
the update ta ← ta + 1 mod 2. Since we also have Z = S2, we can apply any local Pauli in
constant time without having to resort to Hadamard gates.

We’ll now show to apply a single Hadamard gate Hh to a state |ψ〉 represented in affine
form. We consider the cases h > m (i.e. row h is not a pivot row) and h ≤ m (row h is a
pivot row) separately.

Case 1: Non-pivot rows. We will assume for simpler notation that h = n. If this is
not the case we can just permute rows h and n of R. Because row n, which we’ll denote Rn

is not a pivot row, we can express xn in terms of x1, . . . , xm. Because R1, . . . , Rm are pivot
rows, we have xj = uj + tj for j = 1, . . . ,m. Substituting this into xn = Rnu+ tn gives us

xn = Rn

[
x1 . . . xm

]T −Rn

[
t1 . . . tm

]T
+ tn. (1.39)

Using the identity H |a〉 = 1√
2

∑1
b=0(−1)ab |b〉 we have

Hn |ψ〉 =
p√

2m+1

∑
v∈{0,1}

∑
x∈A

i`(x)(−1)q(x)+vxn |x1 . . . xn−1v〉 . (1.40)
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Strings of the form x1 . . . xn−1v form an affine space B = {
[
R̃ 0
0 1

]
u +

[
t̃
0

]
: u ∈ {0, 1}m},

where tildes denote the first n − 1 rows of R and t. Notice that
[
R̃ 0
0 1

]
is in RCEF (up to

a permutation of rows). The only problem is that `(x) and q(x) + vxn still include xn as a
variable.

To remedy this issue, we substitute the expression for xn from Eq. 1.39 into `(x) and
q(x) + vxn.3 This takes time O(n2). Let us call these new functions q′(x1 . . . xn−1v) and
`′(x1 . . . xn−1v). We now have the affine form expression

Hn |ψ〉 =
p√

2m+1

∑
x1...xn−1v∈B

i`
′(x1...xn−1v)(−1)q

′(x1...xn−1v) |x1 . . . xn−1v〉 . (1.41)

Case 2: Pivot rows. We will assume that h = 1, since otherwise we just permute rows
1 and h and columns 1 and h. Recall that R1 = [1, 0, . . . , 0]. Because R1 is a pivot row, it
will only be possible to write x1 in terms of the other xj if there exists some other Ri with
Ri1 = 1. This can be checked in time O(n). We then proceed in two sub-subcases.

Suppose first that such an i exists. We will then add column 1 to column j for each j
with Rij = 1. This will cause Ri to be a pivot row, and R1 to become a non-pivot row. Since
R21 = . . . = Rm1 = 0, rows R2, . . . , Rm will remain pivot rows. Here is an example with
i = 5.

R =


1 0 0
0 1 0
0 0 1
0 1 1
1 1 1
1 0 1

←


1 1 1
0 1 0
0 0 1
0 1 1
1 0 0
1 1 0

 (1.42)

This takes time O(n2) and transforms R1 into a non-pivot row. We can then proceed as in
Case 1.

The difficult sub-subcase is when no such i exists. After applying H1 we have

H1 |ψ〉 =
p√

2m+1

∑
v∈{0,1}

∑
x∈A

i`(x)(−1)q(x)+vx1 |vx̄〉 , (1.43)

where x̄ = x2 . . . xn. Strings of the form vx̄ form an affine space B = {Ru+[ 0
t̄ ] : u ∈ {0, 1}m}.

The amplitude on |vx̄〉 in Eq. 1.43 is given by

p√
2m+1

1∑
x1=0

i`(x)(−1)q(x)+vx1 . (1.44)

The following lemma, proved in Appendix A, can be used to rewrite this sum as a single
term. We give as input to the lemma N = n+ 1, f(vx) = `(x) + 0v, and g(vx) = q(x) +x1v.

3This may result in some linear terms appearing in q and some constant terms appearing in `. This is
not a problem, as those terms can just be transferred to ` and p, respectively.
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Lemma 4. Let N ≥ 1, let f : {0, 1}N → {0, 1, 2, 3} be a linear function, let g : {0, 1}N →
{0, 1} be quadratic, and for y ∈ {0, 1}N write ȳ = y2 . . . yN . An O(N2)-time algorithm can
find a linear function f ′ : {0, 1}N−1 → {0, 1, 2, 3}, affine function f ′′ : {0, 1}N−1 → {0, 1},
quadratic function g′ : {0, 1}N−1 → {0, 1}, and scalar α ∈ C such that

1∑
y1=0

if(y)(−1)g(y) = αif
′(ȳ)(−1)g

′(ȳ)δf ′′(ȳ),0. (1.45)

After applying the lemma and writing y = vx̄, we have

H1 |ψ〉 =
pα√
2m+1

∑
y∈B:

f ′′(y)=0

if
′(y)(−1)g

′(y) |y〉 . (1.46)

All that remains is to show that {y ∈ B : f ′′(y) = 0} can be computed in time O(n2). To
do so we use the following lemma, proved in Appendix A.

Lemma 5. Let n > 1, let B = {Ru + t′ : u ∈ {0, 1}m} ⊆ {0, 1}n be an affine space with R
in RCEF, and let f ′′ : {0, 1}n → {0, 1} be an affine function. Then {y ∈ B : f(y) = 0} can
be found in time O(n2).

We have now shown that Hh can always be applied in time O(n2). To complete the proof
of the Gottesman-Knill theorem we will describe how to perform measurements on single
qubits.

There are three cases to consider when performing measurements. Consider an arbitrary
qubit j.

• If Rj = 0 then measurement on qubit j is deterministic with result tj.

• If Rj is a pivot row the measurement result is random and determined entirely by uj.
We therefore choose a random uj ∈ {0, 1} and set our measurement result to uj + tj.
We then fix xj = uj + tj and update `, q, and p accordingly. To update t, we add uj
times the jth column of R and then remove the jth column. As with the measurement
subroutines in the previous two sections, we can just as easily choose the value of uj
however we like, rather than choosing randomly. This clearly has no effect on the total
runtime.

• If the qubit to be measured corresponds to a nonzero, non-pivot row of R, then we
can perform column reduction on R so that that row becomes a pivot row, similarly
to what is shown in Eq. 1.42, and then proceed as in the second case.

The first two cases take time O(n), and the third takes time O(n2).
We now give a subroutine for measuring k qubit simultaneously in time O(n2kω−2), an

improvement over performing measurements one at a time, which would take time O(n2k).
Because the first two cases take time O(n), it suffices to consider a batched version of the
third case, in which all qubits correspond to nonzero, non-pivot rows of R. This case requires
the following technical lemma, proved in Appendix A.
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Lemma 6. Let A be an n×m matrix in RCEF and let Γ ⊆ [n]. There exists an invertible
m×m matrix W such that AW is in RCEF and can be computed in time O(|Γ|ω−2n2) and
the set {(AW )j : j ∈ Γ and (AW )j is a pivot row} is maximal over all possible W .

Using Lemma 6 with A = R and Γ equal to the set of qubits to be measured, we get
a new matrix R′ = RW . For each j ∈ Γ for which R′j is a pivot row, we can proceed as
already described. Because the set {R′j : j ∈ Γ and R′j is a pivot row} is maximal, once the
pivot rows have been measured, the remaining rows R′i for which i is not a pivot row will be
identically zero. We can then proceed as already described.

Finally, we mention that if several CNOT gates must be applied successively, we can do
better than using the decomposition CNOT = (I ⊗ H)CZ(I ⊗ H). To apply CNOTab, we
replace Rb ← Ra+Rb and tb ← ta+tb. We will do this for each of CNOT gates to be applied.
Unfortunately, this may bring R out of RCEF. To bring R back into RCEF in time O(nω)
we apply Lemma 6 with Γ = [n]. Replacements of the form Rb ← Ra + Rb and tb ← ta + tb
can be accomplished by multiplying R and t on the left by some m× n matrix, which takes
time O(nω). Therefore, an arbitrary layer of CNOT gates can be applied in time O(nω).

1.4 The graph state formalism

Given any graph G = (V,E) we can define its graph state as

|G〉 =

(∏
ij∈E

CZij

)
|+|V |〉 . (1.47)

It is known [e.g. 3, 18] that for any stabilizer state |ψ〉, there exists a graph G and local
Clifford operators U1, . . . , Un such that

|ψ〉 = (U1 ⊗ . . .⊗ Un) |G〉 . (1.48)

In this section we describe the results of [18, 3] to show how to perform Clifford simulation
using the representation of Eq. 1.48. The starting state |0n〉 has G = ([n],∅) and Uj = H
for each j. Applying a local operator W to a qubit j can be done in time O(1) by replacing
Uj ← WUj.

To apply CZ gates we need to make use of the fact that graph state formalism represen-
tations need not be unique. Equivalent representations can be characterized using the local
complementation operation on graphs [11, 35]. For a ∈ V (G), let N(a) = {b ∈ V (G) : ab ∈
E(G)} be its neighbourhood, and for two sets A,B let A∆B = (A\B)∪ (B \A) denote their
symmetric difference. Local complementation at a is an operation La : (V,E) 7→ (V,E ′),
with

E ′ = E∆{bc : b, c ∈ N(a), b 6= c}. (1.49)

Fig. 1.1 shows an example. In words, local complementation maps the subgraph induced by
N(a) to its complement and leaves the rest of G unchanged. We will often make use of the
fact that if Q is an adjacency matrix, then La maps Qij to Qij +QaiQaj mod 2. Updating
Q in this way takes time O(n2).
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Lemma 7. For any graph G and vertex a,

|G〉 = eiπ/4S3
aHaS

3
a

∏
b∈N(a)

S3
b |La(G)〉 . (1.50)

We will use this lemma as a way to alter certain local operators without changing |ψ〉.
For example, if we want to replace Ua ← UaS

3
aHaS

3
a, we can rewrite |ψ〉 as

|ψ〉 = (U1 ⊗ . . .⊗ Un) |G〉 = eiπ/4(U1 ⊗ . . .⊗ Un)S3
aHaS

3
a

∏
b∈N(a)

S3
b |La(G)〉 . (1.51)

Proof. We will prove the equivalent statement

SaHaSa
∏

b∈N(a)

Sb |G〉 = eiπ/4 |La(G)〉 . (1.52)

Let Q be the upper triangular part of the adjacency matrix of G. Then

|G〉 =
∑

x∈{0,1}n
(−1)x

TQx |x〉 . (1.53)

To simplify notation we take a = 1. By viewing Eq. 1.53 as an affine form representation of
|G〉, we use the update rules from Section 1.3 to find

H1S1 |G〉 = eiπ/4
∑

x∈{0,1}n
i`(x)(−1)q(x) |x〉 , where (1.54)

`(x) = 3x1 + 3
∑
j>1

Q1jxj, (1.55)

q(x) =
∑
k>j>1

(Qjk +Q1jQ1k)xjxk +
∑
j>1

Q1jx1xj. (1.56)

The function q(x) is equal to xTLa(Q)x, where La(Q) is the upper triangular part of the
adjacency matrix for La(G). Using the fact that Sj |x〉 = ixj |x〉, we see that applying the
remaining S operators S1

∏
b∈N(1) Sb eliminates `(x), leaving us with

SaHaSa
∏

b∈N(a)

Sb |G〉 = eiπ/4
∑

x∈{0,1}n
(−1)x

TLa(Q)x |x〉 = eiπ/4 |La(G)〉 . (1.57)

We now show how for a, b ∈ V , the gate CZab can be applied in time O(n2). Our
discussion here follows [3]. Application of CZab is broken down into several subcases. The
simplest case is if Ua and Ub are both diagonal, in which case CZab commutes past them. In
this case we just replace E(G)← E(G)∆{ab} in time O(1).

We will now assume that at least one of Ua, Ub is not diagonal. We will try to perform
local complementation so as to find an equivalent representation of |ψ〉 in which Ua and Ub
are diagonal.
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a a

Figure 1.1: Left: A graph G. Right: The graph La(G).

Suppose next that at least one of a and b is not isolated. We’ll assume that b has
a neighbour c. Using Lemma 7 it is always possible to find a representation of |ψ〉 with
Ub = I: Start by decomposing Ub in terms of S and SHS. Such a decomposition can always
be found with O(1) terms. To remove a factor of SHS, perform local complementation at b.
To remove a factor of S, perform local complementation at c. Because local complementation
at a vertex does not change its neighbourhood, c will remain a neighbour of b throughout
this process, so local complementation at c will always remove a factor of S. This takes time
O(n2).

Now Ub is diagonal. At this point, a may or may not have a neighbour d 6= b. If d
exists, we repeat the procedure above using a and d, which brings Ua to the identity. This
procedure may alter Ub, but since local complementation at b won’t be performed, Ub will
only accumulate diagonal factors of S3. Now Ua and Ub are both diagonal, so we can replace
E ← E∆{ab} as before. If no such d exists, then N(a) is either {b} or ∅. We then set
y = |N(a)| and use the following claim. This claim can be proved by enumerating all O(1)
possibilities.

Claim 8. Let Ua, Ub be local Clifford operators and y ∈ {0, 1}. Then in time O(1) we can find
local Cliffords U ′a, U

′
b and x ∈ {0, 1} such that CZ(Ua ⊗ Ub)CZy |++〉 = (U ′a ⊗ U ′b)CZx |++〉

and if Ub is diagonal then so is U ′b.

We can then rewrite CZab |ψ〉 as follows. We give an example of this rewriting procedure
in Fig. 1.2. Here we implicitly take each Ui to be acting on qubit i.

CZab
∏
i

Ui
∏
jk∈E

CZjk |+n〉 =

( ∏
i/∈{a,b}

Ui
∏

jk∈E\{ab}

CZjk

)
CZabUaUbCZyab |+

n〉 (1.58)

=

( ∏
i/∈{a,b}

Ui
∏

jk∈E\{ab}

CZjk

)
U ′aU

′
bCZxab |+n〉 (1.59)

=

( ∏
i/∈{a,b}

Ui

)
U ′aU

′
bCZxab

∏
jk∈E\{ab}

CZjk |+n〉 (1.60)

The first equality uses the fact Ub is diagonal, so it commutes past any CZ gates acting
on b. It also uses the fact that a has no neighbours other than possibly b to commute Ua
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past the CZ gates. The third equality uses the same idea. Eq. 1.60 tells us to perform the
update E ← E ∪ {ab} if x = 1 and E ← E \ {ab} otherwise, and to update Ua, Ub ← U ′a, U

′
b.

The total runtime in this case is O(n2), because we performed a constant number of local
complementations in O(n2) time, and then used Claim 8 in O(1) time.

The final case to consider is when N(a) = N(b) = ∅. In this case we use Claim 8
with y = 0. Because a and b are isolated, Ua, Ub and U ′a, U

′
b commute with

∏
jk∈E CZ, so

Eqs. 1.58–1.60 will still hold.
Because local complementation induces a global phase (see Eq. 1.50), the representation of

CZab |ψ〉 that this subroutine leaves us with has a global phase ewiπ/4, for some w ∈ {0, . . . , 7}.
If w 6= 0, then this representation is not technically be in the form of Eq. 1.48. The simplest
way to handle this is to just store w as another component of the classical representation.
Alternatively, if we insist that Eq. 1.48 has phase 1, then we can choose an arbitrary vertex
and perform local complementation 8− w times using Lemma 7.

|+〉a SH

|+〉b I

|+〉

|+〉

|+〉

(a)

|+〉a SH

|+〉b I

|+〉

|+〉

|+〉

(b)

|+〉a H

|+〉b S

|+〉

|+〉

|+〉

(c)

|+〉a H

|+〉b S

|+〉

|+〉

|+〉

(d)

Figure 1.2: Circuit diagram depiction of using Claim 8 to apply a CZ gate. To go from
Fig. 1.2b to Fig. 1.2c we have used Claim 8 to produce the identity (H ⊗ S)CZ |++〉 =
CZ(SH ⊗ I)CZ |++〉.

Finally, we show how a computational basis measurement on a qubit a can be performed
in time O(n2). Computational basis measurements can be simplified by using the fact that
local Clifford operators map Pauli bases to Pauli bases. Projecting a qubit a with local
operator Ua, gives

(I ± Z)

2
Ua = Ua

I ± U †aZUa
2

. (1.61)

Because U †aZUa ∈ P1, applying Ua and then measuring in the computational basis is equiva-
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lent to measuring directly in the U †aZUa basis and then applying Ua. It’s therefore sufficient
to describe algorithms for performing X-, Y -, and Z-basis measurements on graph states.

The rules for updating the post-measurement state have previously been shown using the
stabilizer formalism [18]. However because the stabilizer formalism is not phase-sensitive,
these update rules are only proved up to a global phase. Here we give a phase-sensitive proof
using affine form. We also assume that N(a) 6= ∅. If N(a) = ∅ then |ψ〉 = |ψ〉a ⊗ |ψ〉V \a.
In this case the measurement on |ψ〉a can be done in time O(1).

Choose an arbitrary b ∈ N(a). We’ll now show that measurement in the P basis is
random for any P ∈ {X, Y, Z}, and that for a measurement result r ∈ {0, 1} the post-
measurement state 1

2
(I + (−1)rPa) |G〉 is equal to U(P, r) |r〉 |GP 〉, where the U(P, r) are

defined by:

U(Z, r) =
∏

c∈N(a)

Zr
c , U(Y, r) = 1−ir√

2

∏
c∈N(a)

Sc,

U(X, 0) = Hb

∏
c∈N(b)∩N(a)

Zc , U(X, 1) = XbHb

∏
c∈N(b)\N(a)\{a}

Zc.
(1.62)

The graphs GZ , GY are given by GZ = G− a, GY = La(G)− a. Finally, the graph GX has
vertex set V (G) \ {a} and edge set

E(GX) = E(G)∆N(a)×N(b)

∆ (N(a) ∩N(b))× (N(a) ∩N(b)) (1.63)

∆{b} ×N(a).

Applying each U(P, r) takes time O(n), and updating G takes time O(n2). To simplify
notation we will assume that a is the first qubit and b the second. Let us also write x̄ =
x2 . . . xn for x ∈ {0, 1}n. We will use the affine form representation of |G〉 from Eq. 1.53,
and set q(x) = xTQx.

Case 1: Z basis. Up to relative phases, each computational basis state in Eq. 1.53, has
equal probability amplitude. Therefore both results {0, 1} occur with equal probability. To
choose the result r we set xa ← r, leaving the state

1√
2n−1

∑
x̄∈{0,1}n−1

(−1)q(rx̄) |r〉 |x̄〉 = U(Z, r) |r〉 |GZ〉 . (1.64)

We can write q(rx̄) as

q(rx̄) =
∑
j>1

Q1jrxj +
∑
k>j>1

Qjkxjxk. (1.65)

Since Zj |x〉 = (−1)xj |x〉, the first sum tells us that we have applied
∏

j∈N(1) Z
r
j = U(Z, r).

Because the adjacency matrix for G−a is just Q with the ath row and column removed, the
second sum tells us that the remaining n− 1 qubits are in state |GZ〉.
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Case 2: Y basis. Using the update rules for affine representation, we apply HaS
†
a to

map the Y basis to the computational basis. This leaves

HaS
†
a |G〉 =

eiπ/4√
2n

∑
x∈{0,1}n

i`
′(x)(−1)q

′(x) |x〉 , with (1.66)

`′(x) = x1 + 1 +
∑
j>1

Q1jxj, (1.67)

q′(x) = x1 + 1 +
∑
k>j>1

(Qjk +Q1jQ1k)xjxk +
∑
j>1

Q1jx1xj. (1.68)

The double sum in Eq. 1.68 indicates that we have performed local complementation at a.
After choosing the result r, the post-measurement state is U(Y, r) |r〉 |GY 〉.

Case 3: X basis. After changing bases we have

H1 |G〉 =
1√
2n+1

∑
y∈{0,1}

x̄∈{0,1}n−1

(−1)q
′(x̄)(1 + (−1)`

′(yx̄)) |yx̄〉 , where (1.69)

q′(x̄) =
∑
k>j>1

Qjkxjxk (1.70)

`′(yx̄) = y +
∑
j>1

Q1jxj. (1.71)

Using the fact that the summands of Eq. 1.69 vanish whenever `′ is odd, we can write

H1 |G〉 =
1√
2n−1

∑
x̄∈{0,1}n−1

(−1)q
′(x̄) |

∑
j>1

Q1jxj〉 |x̄〉 . (1.72)

After choosing a measurement result r we have

x2 = r +
∑
j>2

Q1jxj. (1.73)

Substituting this into Eq. 1.72 gives the post-measurement state

1√
2n−2

∑
x3...xn∈{0,1}n−2

(−1)q
′′(x̄) |r〉 |r +

∑
j>2

Q1jxj〉 |x3 . . . xn〉 , where (1.74)

q′′(x̄) =
∑
k>j>2

(Qjk +Q2kQ1j +Q2jQ1k)xkxj +
∑
j>2

(r +Q1j)Q2jxj. (1.75)

Using the identity CNOTj2 = H2CZj2H2 this can be rewritten as

Xr
2H2

1√
2n−1

∑
x̄∈{0,1}n−1

(−1)q
′′′(x̄) |r〉 |x2 . . . xn〉 , where (1.76)

q′′′(x̄) = q′′(x̄) +
∑
j>2

Q1jx2xj. (1.77)

Applying the remaining Z operators removes any linear terms from q′′′. The remaining terms
then correspond to the adjacency matrix of GX .
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1.5 Discussion

S H CZ CNOT X Z Tens. prod. Measure Global phase
Tableau n n min(kn, nω) n n n mn n2kω−2 7

Affine form 1 n2 1 min(kn2, nω) 1 1 mn n2kω−2 3

Graph states 1 1 n2 n2 1 1 mn n2 3

CH form 1 n2 1 1 n2 1 mn n2 3

Table 1.2: Time complexity of performing various operations on stabilizer states when using
each of the Clifford simulation techniques of Chapter 1. Tensor products refer to taking
the tensor product with an m-qubit stabilizer state. Expressions involving k denote “batch
operations” in which we either apply k gates or perform k computational basis measurements
in succession. The constant ω ∈ [2, 2.37286) [2] is the matrix multiplication exponent.

In this chapter we have described four algorithms for simulating Clifford circuits. Table
1.2 summarizes the time complexity of standard operations. Each algorithm uses its own
representation of stabilizer states, and consequently incurs different time costs depending
on which operation is performed. Depending on the makeup of the circuit to be simulated,
one may want to choose one simulation method over another. For example, a tableau-based
simulator would be a good choice for a high-depth circuit with many Hadamard and CZ
gates, because any other simulation method requires time O(n2) to apply either H or CZ.

The most obvious open problem is whether any of these simulation techniques can be
improved. Each simulation method has at least one type of operation that takes time Ω(n2)
in the worst case. Must this be true for any Clifford simulator? Or is there a way to perform
every type of operation in sub-quadratic time? There are several ways one might hope
to do so. One option is to simply find better update rules. For example, perhaps in the
graph state formalism there is a way to apply a CZ gate or perform a measurement without
requiring local complementation. Another way one might hope to do this is by somehow
combining multiple simulation methods. For example, we might hope to represent a state in
affine form to apply S and CZ gates quickly, and then convert to a tableau representation
to apply Hadamards. This seems improbable, as the cost of converting one representation
to another is likely to be quadratic in general. A third way of finding a speedup might be to
find a completely new representation of stabilizer states. One technique not discussed in this
chapter is that of simulating Clifford circuits by computing the Tutte polynomial of binary
matroids [31, 24].

One significant advantage that tableau representation has over its phase-sensitive coun-
terparts is that any elementary gate can be applied in O(n) time. In a high-depth circuit,
phase-sensitive simulation may therefore be quite costly. Speeding up the application of
single-qubit gates in these three frameworks may help improve the viability of stabilizer
rank methods, discussed in Chapter 3, which require phase-sensitivity.
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Chapter 2

Graph state simulation

In this chapter we summarize joint work with David Gosset, Daniel Grier, and Luke Schaeffer
[15]. We consider a task called the graph state simulation problem. Before stating the problem
in full, let us give an informal description of a special case to build intuition. The input is
a graph G = (V,E) and a Pauli basis Pv ∈ {X, Y, Z} for each vertex v ∈ V . The task is to
simulate a measurement of |G〉 with qubits measured in the Pv bases. In the general version
of the graph state simulation problem, which we now state, this special case corresponds to
the case where P = ∅, and consequently Eq. 2.2 evaluates to 1.

Graph State Simulation Problem. The input to the graph state simulation task is
a graph G = (V,E) with n = |V | vertices, a partition V = S ∪P , a string m ∈ {0, 1}|P|,
and a Pauli Pv ∈ {X, Y, Z} for each v ∈ V . For each v, let Uv be the local Clifford
mapping each Pv basis to the computational basis. That is,

Uv =


H, if Pv = X

HS†, if Pv = Y

I, if Pv = Z.

(2.1)

Let
pP(m) = || 〈m|P

⊗
v

Uv |G〉 ||22. (2.2)

The task is to output z ∈ {0, 1}|S| sampled from

p(z) =
1

pP(m)
| 〈z|S 〈m|P

⊗
v

Uv |G〉 |2, (2.3)

or else report that pP(m) = 0.

We sometimes refer to the cases where P 6= ∅ and P = ∅ as the graph state simulation
problem with and without postselection, respectively. We have already given some intuition
about the graph state simulation without postselection. The graph state simulation problem
with postselection also corresponds to simulating a measurement of |G〉 with qubits measured
in the Pv bases, but this time we must postselect on the qubits corresponding to P and require
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that they have measurement results given by m.
A classical algorithm can solve the graph state simulation problem without postselection

in time O(nω): Using the tableau representation of stabilizer states, we can form |G〉 by ini-
tializing a tableau representation of |0n〉 and simulating the application of (

∏
e∈E CZe)H

⊗n,
all in time O(nω). Then we simulate applying

⊗
v Uv in time O(n2) and simulate measure-

ments on all qubits in time O(nω). Postselection can also be incorporated with the same
runtime, but we will not prove this. The main theorem of this chapter gives a quadratic
improvement on the näıve approach described above when G is planar.

Theorem 9. Let G be planar. Any instance of the graph state simulation problem on G can
be solved classically in time Õ(nω/2).

A consequence of Theorem 9 is that if ω = 2 then quantum computers have essen-
tially no advantage in terms of gate complexity – which we use synonymously with time
complexity – when solving the graph state simulation problem without postselection on pla-
nar graphs. A simple quantum algorithm for doing this would be to prepare |+n〉, apply
(
⊗

v Uv)(
∏

e∈E CZe), and measure. Because planar graphs have O(n) edges, this algorithm
has gate complexity O(n), and because planar graphs may have as many as 3n − 6 edges,
any quantum algorithm will need time Ω(n) in the worst case. On the other hand, if ω = 2

then the classical algorithm from Theorem 9 runs in time Õ(n). Our results do, however,
leave open the possibility of a gate complexity advantage in the case where G has Ω(n) edges
but is nonplanar. In contrast, the related problem where G is any subgraph of the

√
n×
√
n

grid graph, P = ∅, and it suffices to output any z with p(z) 6= 0 (not necessarily sampled
from the distribution of Eq. 2.3), has been previously used to show a depth-advantage for
quantum circuits [8]. The simple quantum algorithm for doing this by preparing |+n〉, ap-
plying (

⊗
v Uv)(

∏
e∈E CZe), and then measuring, can be implemented in constant depth by

layering CZ gates according to an edge colouring of the grid graph [19], which has constant
chromatic index. However, this problem cannot be solved by a classical circuit in NC0 [8] or
even AC0 [36].

The main applications of graph state simulation are proved in Section 2.7. For an n-qubit
Clifford circuit C, let G be the graph with vertex set [n] and an edge ij if and only if CZij
is a gate in C. We say that the two-qubit gates of C act along the edges of G.

Theorem 10. Let C be an n-qubit depth-d Clifford circuit whose two-qubit gates act along
the edges of a planar graph G. There exist classical algorithms for the following tasks.

a. Sampling z from the output distribution Pr[z] = | 〈z|C|0n〉 |2 in time Õ(nω/2dω).

b. Given z ∈ {0, 1}n, computing | 〈z|C|0n〉 |2 in time Õ(nω/2dω).

c. Given z ∈ {0, 1}n, computing 〈z|C|0n〉 in time Õ(n3/2d3).

In the case where d = O(polylog(n)) these algorithms each give quadratic improvements
over the standard Clifford simulation techniques of Chapter 1. The powers of ω in Theorems
10a and 10b arise from the use of the matrix-multiplication-time version of tableau simulation
[15]. On the other hand, the powers of 3 in Theorem 10c arise from the fact that computing
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〈z|C|0n〉 requires information about global phase, and therefore we must use a slower phase-
sensitive simulator like CH form or affine form.

An outline of this chapter is as follows. In Section 2.1 we build intuition for our solution
to the graph state simulation problem by considering two concrete examples. In Section 2.2
we cover some graph-theoretic preliminaries. In Section 2.3 we describe a quantum circuit
C. We show that simulating C with some postselected measurements can help solve the
graph state simulation problem, and that if G is planar it can be simulated in time Õ(nω/2)
without postselection. In Section 2.4 we show how to modify the result obtained in Section
2.3 to account for postselection, which also takes time Õ(nω/2) if G is planar. In Section 2.5
we work through an explicit example of the subroutine from Section 2.4. In Section 2.6 we
describe two variants of the graph state simulation problem. In one variant, the task is to
compute | 〈z|

⊗
v Uv|G〉 |2 for a given z ∈ {0, 1}n, and in the other the task is to compute

〈z|
⊗

v Uv|G〉. We show that these tasks can be performed classically in time Õ(nω/2) and

Õ(n3/2), respectively, with only small modifications to Sections 2.3 and 2.4. Finally, in
Section 2.7 we prove Theorems 10a, 10b, and 10c and also give analogous theorems for
contracting Clifford tensor networks.

2.1 Algorithms for graph state simulation

The time complexity of simulating a general n-qubit Clifford circuit depends on n. Using a
tableau-based simulator, for example, we saw in Section 1.1 that applying any Clifford gate
takes time O(n). In order to solve the graph state simulation problem quickly we will try to
minimize the number of qubits stored (classically) in memory at any given moment. In this
section we illustrate this idea by giving two algorithms for solving the graph state simulation
problem without postselection on specific graphs. Both algorithms perform better than the
O(nω)-time algorithm described at the start of this chapter.

The n-vertex star graph has vertex set {v1, . . . , vn} and edge set {v1v2, v1v3, . . . , v1vn}.
Fig. 2.1 shows the 4-vertex star graph and an algorithm for solving the graph state simulation
problem without postselection on it, which we now describe. First, initialize a tableau
representation of |+〉 ⊗ |+〉 corresponding to vertices v1 and v2. Simulate applying CZv1,v2 .
Then simulate applying Uv2 and measuring v2, and remove that qubit from our classical
representation. Next, initialize a qubit |+〉 corresponding to v3, and continue the process.
After the qubits corresponding to v2, . . . , vn have all been measured, we also simulate a
measurement on v1. This algorithm does return a solution to the graph state simulation
problem. We have used the fact that measuring one qubit (e.g. v2) commutes with applying
an operation to another (e.g. v3). At any given moment, only the qubits corresponding to
v1 and some other vj are stored in memory. Therefore all operations on vj take time O(1).
The total runtime of this algorithm is then O(n).

A more complicated example of graph state simulation without postselection is shown by
the
√
n×
√
n grid graph and is similar to the nested dissection method for solving systems

of linear equations [14]. We begin by partitioning the grid into quadrants, and consider the

four subgrids of size ≈
√
n

2
×
√
n

2
on the interior of each quadrant. (See Fig. 2.2a.) For each of

these subgrids, we recursively initialize a classical representation of qubits corresponding to
the vertices of the subgrid, apply CZ gates for every edge in the subgrid, measure all qubits

26



|+〉 Uv1

|+〉 Uv2

|+〉 Uv3

|+〉 Uv4

Step 1 Step 2 Step 3

Figure 2.1: Left: Four-vertex star graph. Right: Circuit diagram depicting the sequence of
operations taken in solving the graph state simulation problem.

(a) (b) (c) (d)

Figure 2.2: Solving the graph state simulation problem on the
√
n ×
√
n grid graph. Red

qubits are stored in memory as the active set, blue qubits have been measured and are no
longer stored in memory, white qubits have not yet been operated on, and edges represent
CZ gates that have already been applied. In Fig. 2.2a we use recursion on the interior of
each quadrant of the overall grid. In Fig. 2.2b we initialize the qubits that are not on the
interior of the quadrants used in the recursive step. In Fig. 2.2c we apply all remaining CZ
gates. In Fig. 2.2d we complete the recursion by simulating measurements on all qubits in
the interior of the overall grid.

on the interior of the subgrid in the Pv bases, and remove the measured qubits from our
representation. This step, shown in Fig. 2.2a, leaves O(

√
n) unmeasured qubits being stored

in memory. There are also O(
√
n) qubits that are not part of any subgrid (these are the

white qubits in Fig. 2.2a), which we then initialize in our classical representation (shown in
Fig. 2.2b). As there are now O(

√
n) qubits being stored in memory, we can apply the matrix-

multiplication-time version of tableau simulation from [15] to simulate the application of all
remaining CZ gates (Fig. 2.2c) and measure the qubits on the interior of the grid (Fig. 2.2d).
This takes time O(nω/2). At the final layer of recursion we can also simulate measurements
on the O(

√
n) qubits on the perimeter of the grid in time O(nω/2) (not shown in Fig. 2.2).

If T (n) is the runtime on a grid of size
√
n×
√
n, then we have the recurrence relation

T (n) = 4T
(n

4

)
+O(nω/2) = Õ(nω/2). (2.4)
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Both of the above algorithms are examples of what we call the active set approach, first
described in [8]. This approach relies on a schedule for initializing qubits, applying gates,
and performing measurements, all the while only storing a small set of “active” qubits in
memory. We were unable to generalize the active set approach while retaining a runtime of
Õ(nω/2). A key feature of our algorithm, which illustrates its deviation from the active set
approach, is that there may be many qubits corresponding to the same vertex. To describe
this algorithm in full we must define tree decompositions.

2.2 Tree decompositions

Definition 11 ([30]). Let G = (V,E) be a graph. A tree decomposition is a set {Bi}i of
subsets of V , known as bags, which are arranged at the nodes of a tree graph ({Bi}i, E ′)
such that the following three conditions hold.

• Each vertex appears in a bag:
⋃
iBi = V .

• Each edge appears in a bag: For each uv ∈ E, there exists i with u, v ∈ Bi.

• For each v ∈ V , the set of bags containing v form a connected subtree of ({Bi}, E ′).

A B C

D E F

G H I ABD

DGH

BCF

FHI

BDEH

BEFH

BEH

Figure 2.3: Left: A graph. Right: A tree decomposition of width 3. It can be shown that
the graph on the left has treewidth exactly 3.

An example is shown in Fig. 2.3. Every graph admits a trivial tree decomposition by
placing all vertices into a single bag, but most applications favour tree decompositions in
which each bag is small. The width of a tree decomposition is defined as |T | = maxi |Bi|−1,
and the treewidth tw(G) of a graph as the minimum |T | over all tree decompositions T . For
c > 0 we also use the notation

||T ||c =

(∑
i

|Bi|c
)1/c

. (2.5)

We will insist that our algorithm uses a particular type of tree decomposition.

Definition 12. A nice tree decomposition is tree decomposition in which the tree has been
rooted, the root bag is empty, and each node B falls into exactly one of three categories:

28



Introduce nodes: B is a leaf node, or B has exactly one child and Child(B) ⊆ B.

Forget nodes: B has exactly one child and B ⊆ Child(B).

Merge nodes: B has two children and is equal to their union.

An example of a nice tree decomposition is shown in Fig. 2.5, top. We use without proof
a result which finds a nice tree decomposition for planar graphs.

Theorem 13 ([15]). Let G be a planar graph on n vertices. There exists a classical algorithm

running in time Õ(nω/2) finding a nice tree decomposition T of G with ||T ||cc = Õ(nc/2) for
all c ≥ 2.

Our algorithm for solving the graph state simulation problem actually has a runtime
that is upper bounded by O(||T ||ωω). Theorem 9, which says that the graph state simulation

problem can be solved classically in time Õ(nω/2) for planar graphs, can be proved by using
Theorem 13 and then the following theorem. The next two sections will prove Theorem 14.

Theorem 14. Given a tree decomposition T for a graph G, any instance of the graph state
simulation problem on G can be solved classically in time O(||T ||ωω).

The algorithm of Theorem 13 is the key reason why the simulation algorithms of this
chapter are specialized to planar graphs. Partially, this is because finding a tree decomposi-
tion of a general graph G with width relatively close to tw(G) is quite hard [e.g. 5]. However,
even given a nice tree decomposition T for G, the best upper bound we were able to find
was ||T ||ωω = O(n|T |ω−1). Our algorithms therefore can be used to solve the graph state
simulation problem on nonplanar graphs in time O(n|T |ω−1), but only if T is also given as
input.

2.3 Sampling subroutine

This section and the next are devoted to proving Theorem 14 by describing an algorithm
solving the graph state simulation problem. We will start by using the given tree decom-
position T and bases {Pv}v to define a circuit C = C(G, T, {Pv}v). The circuit C will have
a structure that is similar to that of T . Qubits of C will be initialized in the portion cor-
responding to the leaves of T . The computation described by C will then proceed from the
leaves of T to the root. We will show that if certain qubits are postselected, then C pre-
pares the state

⊗
v Uv |G〉. We will then show how to simulate C and also accommodate the

necessary postselection.
Each node B of T is mapped to a circuit gadget. That gadget is determined by whether B

is an introduce, forget, or merge node. Gadgets are then arranged in the same tree structure
as T , so that the input qubits to the gadget for B are the output qubits of the gadget for
Child(B). Note that the gadget for B always contains at least one qubit corresponding to
each v ∈ B.

Introduce nodes: If B is a leaf node, the state |+|B|〉 is initialized. Otherwise let
C be the child of B. The gadget acts as the identity on the qubits corresponding to
v ∈ B ∩ C, and for each v ∈ B \ C a qubit in state |+〉 is initialized.
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B ∩ C C \B
Uv

C ∩D
Uw

B \ C
|+〉

B C∆D
|+〉

Figure 2.4: Left: Introduce node gadget. Centre: Forget node gadget when {v, w} = C \B.
The top two qubits are data qubits. Right: Merge node gadget (C∆D denotes the symmetric
difference of C and D). The top qubit is a merge ancilla.

Forget nodes: Let C be the child of B. For each uv ∈ E(G) with u, v ∈ C and at
least one of u, v not in B, the gadget will receive exactly one qubit corresponding to
each of u, v as input. Apply CZ between these qubits. After all such CZ gates have
been applied, for each v ∈ C\B we then apply Uv and measure the qubit corresponding
to v. We call the measured qubit a data qubit.

Merge nodes: Let C,D be the children of B. For each v ∈ C ∩ D, there are two
qubits corresponding to v given as input to B’s gadget: one from C’s gadget and one
from D’s gadget. For each such v, apply a CNOT gate between them (the choice of
which of the two qubits is the control and which is the target is arbitrary) and measure
the target qubit. We call the measured qubit a merge ancilla.

We will use C to denote the unitary part of this circuit. Examples of the individual
gadgets and a complete circuit are shown in Figs. 2.4 and 2.5, respectively. The presence
of merge ancillas highlights how our algorithm differs from the active set approach. In the
active set approach, there is a one-to-one correspondence between qubits and vertices. In
C, there may be several qubits corresponding to the same vertex. Note however that there
is exactly one data qubit for each vertex v. The set of bags containing v form a connected
subtree of T with some root B. Therefore all qubits corresponding to v must be merged in
the portion of C corresponding to this subtree, except for the qubit corresponding to v that
appears in B, which is measured as a data qubit in the gadget corresponding to Parent(B).

We will write na for the number of merge ancillas and nt := n+ na for the total number
of qubits in C. Lemma 15 tells us that postselecting merge ancillas leaves the remaining n
qubits to in the state

⊗
v |G〉.

Lemma 15. Let C be as above and let 〈0na| act on merge ancillas. Then

(〈0na | ⊗ I⊗n)C |+nt〉 = 2−na/2
⊗
v

Uv |G〉 . (2.6)

Proof. For each edge uv ∈ E, there is a unique CZ gate in C that acts between some pair of
qubits corresponding to u and v, respectively. (These qubits could be either merge ancillas
or data qubits.) To see that this is true, we use the fact that u and v must appear together
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C

B

A

D

AB B

B BD ∅

BC B Introduce node
Forget node
Merge node

|+〉a H

|+〉b′

|+〉b H

|+〉c H

|+〉d H

Figure 2.5: Top: A graph and a nice tree decomposition. Bottom: The circuit C in the case
where

⊗
v Uv = H⊗4 (i.e. all data qubits are to be measured in the X-basis). The qubits

a, b, c, d are data qubits, and b′ is a merge ancilla.

in some bag of T . Let B be the bag containing both u and v that is nearest to the root of
T . By the connectivity property, B is unique. By definition of C, there is a CZ gate between
qubits corresponding to u, v in the forget node gadget of Parent(B). Because CZ gates are
only applied when a qubit is forgotten, there is only one such CZ gate in all of C. Some
of these CZ gates are applied to merge ancillas instead of data qubits. We will show that
postselecting a merge ancilla “transfers” the effect of a CZ gate on that merge ancilla to the
qubit to which it is merged. One way of understanding this fact is that applying the CNOT
gate of a merge gadget and then postselecting the merge ancilla to be in state |0〉 applies
the map (I ⊗ 〈0|)CNOT = |0〉 〈00|+ |1〉 〈11|.

We will rewrite C using the two circuit identities of Fig. 2.6. The circuit C consists of a
layer of CNOT and CZ gates, and then a layer of local operators

⊗
v Uv. We will rewrite

(〈0na | ⊗ I⊗n)C |+nt〉 as a layer of CNOT gates, then CZ gates, and then
⊗

v Uv. Because
CNOT |++〉 = |++〉, any CNOT gates can then be ignored. Fig. 2.6 shows how CNOT gates
can be moved to the left of CZ gates. In particular, if a, b, c are qubits with CZab appearing
in C and b later being merged to c, then we can move the CZab gate to the left of CNOTcb
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=
0

=
0

Figure 2.6: Commutation relations needed for Lemma 15. The second equality, which cor-
responds to Eq. 2.7, depends on the centre qubit being postselected.

using

(Ia ⊗ 〈0|b ⊗ Ic)CNOTcbCZab = (Ia ⊗ 〈0|b ⊗ Ic)CZacCNOTcb. (2.7)

By shifting all CNOT gates to the start of the circuit, we rewrite the circuit such that no
CZ gates act on merge ancillas. Because there is one CZ gate in C for each edge, and all CZ
gates have been transferred to data qubits, we have

(I⊗〈0na |)C(|+n〉⊗|+na〉) =

(⊗
v

Uv
∏
ij∈E

CZij |+n〉

)
⊗〈0na|+na〉 = 2−na/2

⊗
v

Uv |G〉 . (2.8)

For a string y ∈ {0, 1}nt indexed by qubits of C, and a vertex v ∈ V , let us write j(v) ∈ [nt]
to denote the index of y that represents the data qubit corresponding to v. Lemma 15 tells
us that if y ∈ {0, 1}nt is chosen uniformly from the subset of {0, 1}nt satisfying

• | 〈y|C|+nt〉 |2 6= 0;

• yj = 0 for each merge ancilla j; and

• yj(v) = mv for each v ∈ P ;

then the |S| bits of y corresponding to data qubits for vertices in S form a solution to the
graph state simulation problem. The first phase of our algorithm consists of the sampling
subroutine, in which we find a string y with | 〈y|C|+nt〉 |2 6= 0. The second phase is the
correction subroutine, in which we show how y can be modified so that it also satisfies the
other two criteria above. Both algorithms run in time O(||T ||ωω), which will prove Theorem
14.

Lemma 16 (Sampling subroutine). A classical algorithm running in time O(||T ||ωω) can find
y ∈ {0, 1}nt with | 〈y|C|+nt〉 |2 6= 0.

We set some notation before proving the theorem. For each bag B, let TB be the subtree
of T rooted at B. Let C|B denote the portion of C corresponding to B’s gadget, and define
C|TB similarly. For example, in the circuit C of Fig. 2.5, if B is the lone merge node, C|B
consists of two wires and a CNOT gate, and C|TB consists of four wires, two CZ gates, two
Hadamard gates, and one CNOT gate.
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Proof. Recall that in the two examples of Section 2.1 our goal was to store as few qubits
in memory as possible. We will employ the same strategy here to simulate C. For any bag
B we will show that a recursive classical algorithm running in time O(||TB||ωω) can simulate
C|TB |+nt〉 and output (1) measurement outcomes for qubits appearing in C|TB but nowhere
else in C; and (2) a classical representation of the qubits of C|TB |+nt〉 that appear in C|TB
and also somewhere else in C. Taking B to be the root node then proves the theorem. For
example, running the algorithm when B is the merge node in the circuit of Fig. 2.5 would
output (1) measurement outcomes on the qubits labelled a, b′, and c; and (2) a classical
representation of a one-qubit state corresponding to the qubit labelled b.

The base case occurs when B is a leaf node. In this case the algorithm outputs a
representation of |+|B|〉. Otherwise, let C (and D, if B is a merge node) be the child(ren) of
B. In every other case we use recursion on TC , leaving us with the state |ψC〉. The same is
done for D if applicable. Then depending on what type of node B is, we do as follows.

Introduce nodes: Output a classical representation of |ψC〉 ⊗ |+|B\C|〉.

Forget nodes: Simulate the application of C|B to |ψC〉, simulate measurements on
the qubits that do not appear in C|Parent(B), and return the state on the unmeasured
qubits.

Merge nodes: Form |ψC〉 ⊗ |ψD〉, simulate the application of C|B, simulate measure-
ments on merge ancillas, and return the state on the unmeasured qubits.

We will carry out the simulation by representing all states in tableau form. The runtime
in the base case is O(|B|2) as we initialize |B| qubits. For non-leaf introduce nodes the
runtime is O(|B||C|), as we initialize |B \ C| qubits. For forget nodes, there are O(|C|)
qubits, so all CZ gates can be applied simultaneously in time O(|C|ω). Next, we apply the
Uv operators to some subset of qubits and measure. Measuring all qubits simultaneously
also takes time O(|C|ω). For merge nodes there are O(|B|) CNOT gates to apply, which
takes time O(|B|2), and then measuring merge ancillas takes time O(|B|ω).

The total runtime including the recursive step can therefore be upper bounded as

O(||TC ||ωω) +O(|B|2 + |C|ω) or O(||TC ||ωω + ||TD||ωω) +O(|B|ω), (2.9)

which are both O(||TB||ωω). Taking B to be the root of T gives us a runtime of O(||T ||ωω).

Before continuing we state two facts about the sampling subroutine that are not necessary
for solving the graph state simulation problem, but will be useful in Section 2.6.

Lemma 17. Given y ∈ {0, 1}nt, a classical algorithm running in time O(||T ||ωω) can compute
| 〈y|C|+nt〉 |2.

Proof. We use the algorithm described by the proof of Lemma 16, but this time postselect
on measurement outcomes given by y. If we ever encounter a deterministic measurement on
a qubit that must give result 1− yj, we can immediately stop and report | 〈y|C|+nt〉 |2 = 0.
Otherwise, since C is a Clifford circuit, we have | 〈y|C|+nt〉 |2 = 2−k, where k is the number
of nondeterministic measurements encountered.
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Lemma 18. Given y ∈ {0, 1}nt, a classical algorithm running in time O(||T ||33) can compute
〈y|C|+nt〉.

Proof. Running the sampling algorithm using CH form or affine form can be done in time
O(||T ||33). The slowdown comes from the fact that in forget nodes we may need to apply as
many as |B| Hadamard gates, which would take time O(|B|3). If we perform the simulation
in this way, we can postselect on y as in Lemma 17 to find | 〈y|C|+nt〉 |. After the last qubit
has been measured, the global phase given by the simulator will be the phase (as a complex
number) of 〈y|C|+nt〉.

2.4 Correction subroutine

Lemma 16 gives us y ∈ {0, 1}nt with | 〈y|C|+nt〉 |2 6= 0. The core idea of the correction
subroutine is the following fact: If α, β ∈ {0, 1}nt are such that iγX(α)Z(β) ∈ Stab(C |+nt〉)
for some γ (i.e. X(α)Z(β) is proportional to a stabilizer of C |+nt〉), then

0 6= | 〈y|C|+nt〉 |2 = | 〈y|X(α)Z(β)C|+nt〉 |2 = | 〈y + α|C|+nt〉 |2. (2.10)

Lemma 19 tells us that if iγX(α)Z(β) is a uniformly random stabilizer of C |+nt〉 then
y + α is sampled from the output distribution of C |+nt〉.

Lemma 19 ([15]). Let |ψ〉 be a stabilizer state, a ∈ {0, 1}n with 〈a|ψ〉 6= 0, and P a uniformly
random stabilizer of |ψ〉. Let b ∈ {0, 1}n be such that P |a〉 ∝ |b〉. Then b is drawn from the
distribution Pr[b] = | 〈b|ψ〉 |2.

The correction subroutine consists of choosing a Pauli Pcor := X(α)Z(β) uniformly from
the set of Paulis that (1) are proportional to a stabilizer of C |+nt〉; (2) have (y + α)j = 0
for all merge ancillas j; and (3) have (y + α)j(v) = mv for all v ∈ P . Let z be the |S| bits
of y + α corresponding to the data qubits of S. By Lemma 15, we have p(z) 6= 0, and by
Lemma 19, we have that z is drawn from the distribution p(z).

Proof of Lemma 19. Let Ω = {Q ∈ Stab(|ψ〉) : Q |a〉 ∝ |b〉}. Then Pr[b] = |Ω|/2n. If
〈b|ψ〉 = 0 the statement holds, because if a stabilizer P satisfying P |a〉 ∝ |b〉 existed, we
would have 〈b|ψ〉 ∝ 〈a|ψ〉 6= 0, a contradiction. Assume now that 〈b|ψ〉 6= 0. If P |a〉 = c |b〉
for some c ∈ C with |c| = 1, then c is independent of P , as 〈b|ψ〉 = 〈b|P |ψ〉 = c̄ 〈a|ψ〉. Then
taking Q1, . . . , Qn as the generators of Stab(|ψ〉), we have

〈b|ψ〉 〈ψ|a〉 =
1

2n
〈b|

n∏
j=1

(I +Qj)|a〉 =
∑

Q∈Stab(|ψ〉)

〈b|Q|a〉 = c
|Ω|
2n
, (2.11)

where the first equality comes from Claim 2, which tells us that |ψ〉 〈ψ| projects onto the
intersection of all +1 eigenspaces of the Qj. Since |ψ〉 is a stabilizer state and 〈b|ψ〉 6= 0,
we have | 〈b|ψ〉 | = | 〈a|ψ〉 |. Therefore the left hand side has modulus Pr[b]. Since |c| = 1,
taking the modulus on both sides completes the proof.
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For k > 0, the correction subroutine will represent Paulis icX(a)Z(b) ∈ Pk as elements
(a, b) ∈ {0, 1}2k. We can safely ignore the phase ic because it has no impact on Eq. 2.10.

We will often need to search for a Pauli whose X- or Z-components are of a particular
form. We can represent any desired X- and Z-components by a pattern π = (π(X), π(Z)) ∈
{0, 1, ∗}2k, where ∗ indicates that an entry may be 0 or 1. The set of all strings agreeing
with π on non-∗ entries is denoted

Π = {(a, b) ∈ {0, 1}2k : ai = π
(X)
i if π

(X)
j ∈ {0, 1}, bj = π

(Z)
j if π

(X)
j ∈ {0, 1}}. (2.12)

We will say that a Pauli icX(a)Z(b) respects π if (a, b) ∈ Π. The main result of this section
is the following theorem.

Lemma 20 (Correction subroutine). Let a pattern π ∈ {0, 1}2nt be given and let Stab ⊆
{0, 1}2nt be the stabilizer group of C |+nt〉. Then a uniformly random element Pcor ∈ Stab∩Π
can be found in time O(||T ||ωω).

Before proving Lemma 20, we’ll summarize how it allows us to complete the proof of
Theorem 14, which we restate for convenience.

Theorem 14. Given a tree decomposition T for a graph G, any instance of the graph state
simulation problem on G can be solved classically in time O(||T ||ωω).

Proof of Theorem 14. Using Lemma 16 we find y ∈ {0, 1}nt with | 〈y|C|+nt〉 |2 6= 0 in time

O(||T ||ωω). For each merge ancilla j, let π
(X)
j = yj; for each v ∈ P , let π

(X)
j(v) = yj(v) +mv; for

each v ∈ S, let π
(X)
j(v) = ∗; and let π(Z) = ∗nt . Using Lemma 20 we find a uniformly random

Pauli X(α)Z(β) ∈ Stab ∩ Π in time O(||T ||ωω). Let z be the bits of y + α corresponding
to data qubits of S. By Lemma 15, p(z) 6= 0, and by Lemma 19, z is drawn from the
distribution p(z).

We now build toward proving Lemma 20. For a given k-qubit stabilizer state |ψ〉 it will
be useful to define certain subsets of its stabilizer group that are given by affine subspaces
A = {[ AB ]x + [ ab ] : x ∈ {0, 1}K}, where K ≤ k and the columns of [ AB ] correspond to
independent stabilizers of |ψ〉. For example, if A = Stab(|ψ〉), then [ ab ] = 02k, and the K = k
columns of [ AB ] list the generators of Stab(|ψ〉). We call A an affine stabilizer subspace. In
particular, the set Stab ∩ Π is an affine stabilizer subspace, since it is the intersection of an
affine stabilizer subspace (Stab) and an affine space (Π). Let us now state some facts about
the manipulation of affine stabilizer subspaces.

• For any pattern π, the affine stabilizer subspace A ∩ Π will be

{
[
A
B

]
x+

[
a
b

]
:

[
A′

B′

]
x =

[
a′

b′

]
+ π′}, (2.13)

where A′, B′, a′, b′ and π′ are obtained by removing row j from [ AB ], [ ab ], and π whenever
πj = ∗. This set is an affine stabilizer subspace and can be found in time O(kω) using a
result of Ibarra, Moran, and Hui [20], stated as Theorem 35b in Appendix A. Therefore
for any affine stabilizer subspace A and pattern π, we can find A ∩ Π in time O(kω).
We call the act of computing A ∩ Π from A enforcing the pattern π.
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• When a gate U is applied, A becomes UAU †, which is also an affine stabilizer subspace.
That is, we conjugate each Pauli from A by U . This can be done by conjugating the
Pauli represented by each column of [ AB ] by U and doing the same for [ ab ]. Moreover, if

all elements of A respect π and U acts only on qubits j for which π
(X)
j = π

(Z)
j = ∗, then

all elements of UAU † will also respect π. Using the matrix-multiplication time version
of the stabilizer formalism described in [15], we can update A when an arbitrary layer
of CZ gates or local Cliffords are applied in time O(kω).

• For two stabilizer states |ψ1〉 , |ψ2〉, and patterns π1, π2, the set of stabilizers of |ψ1〉 ⊗
|ψ2〉 that respect π1π2 is given by

{P : P respects π1π2} = {P1 ⊗ P2 : P1 respects π1 and P2 respects π2}. (2.14)

Therefore if A1 and A2 represent the set of stabilizers respecting patterns π1, π2, then
the set of stabilizers of |ψ1〉 ⊗ |ψ2〉 respecting π1π2 is the direct product A1 ⊕ A2. In
particular, if |ψ2〉 = |+`〉 and π2 = ∗2`, then A2 = I := {[ I0 ]u : u ∈ {0, 1}`}.

• Tracing out a qubit j from A amounts to removing the jth rows of A,B, a, b. This
may cause the matrix [ AB ] to no longer have full column rank, so we use another result
from [20], stated as Theorem 35a, which also allows to remove any linearly dependent
columns in time O(kω).

Proof of Lemma 20. A näıve way to sample an element from Stab ∩ Π would be to first
compute all of Stab in time O(nωt ) by computing CXjC

† for each j, then compute Stab ∩ Π
using linear algebra, and finally choose a random element in the intersection. This approach
takes time O(nωt ), which is too slow. Instead, we will combine all three steps into one and use
the tree structure of T to get the runtime bound O(||T ||ωω). In Section 2.5 we work through
an example of the algorithm described below.

In the first phase of the subroutine we construct an affine stabilizer subspace AB for each
bag B. Recall that C|B and C|TB denote the portions of C corresponding to B and to the
subtree of T rooted at B. Let YB be the set of stabilizers of C|TB |+nt〉 that respect π when
π is restricted to the qubits that appear in CTB but nowhere else in C. For example, YRoot =

Stab ∩ Π, or if B is a leaf node with 2 qubits, then YB = {
[

1 0
0 1
0 0
0 0

]
u : u ∈ {0, 1}2} ∩ {0, 1}4.

We define AB to be the restriction of YB to the qubits of C|B. For example, in the circuit
of Fig. 2.5, we have AB ⊆ F4

2 for each B, since each gadget contains 2 wires, and each wire
contributes an X- and Z-component to AB.

The AB are constructed inductively by moving from leaf nodes to the root. In the base
case, we have AB = I, corresponding to the stabilizers of |+|B|〉. Otherwise, let C (and D,
if B is a merge node) be the child(ren) of B. The first step will always be to take AC and
restrict it to coordinates of C|B, and do the same for D if applicable. This gives two new
affine stabilizer subspaces, and reflects the fact that there may be some qubits in C|C or C|D
that do not appear in C|B. If B is an introduce node, we then take the direct product with I,
corresponding to the qubits being introduced. If B is a forget node, we conjugate this affine
stabilizer subspace through the gates of C|B and enforce π on the qubits being forgotten. If
B is a merge node, we take the direct product of the affine spaces inherited from C and D,
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conjugate it through the gates of C|B, and then enforce π on the merge ancillas. Using the
tools described earlier in this section, producing all of the AB takes time O(||T ||ωω).

If at any point we have AB = ∅ we can stop and conclude that no stabilizers respecting
π exist. Suppose instead that we reach the root node and ARoot 6= ∅. For any element
(a, b) ∈ ARoot there exists a longer string (α, β) ∈ Stab ∩ Π that agrees with (a, b) on
coordinates in ARoot. All that remains is to reconstruct the other coordinates of α and β.

In the second phase we reconstruct (α, β), working our way back down the tree. We
start by choosing a uniformly random (a, b) ∈ ARoot and for each qubit j in C|Root, setting

the jth tensor element of Pcor to X
aj
j Z

bj
j . Next, we conjugate X(a)Z(b) backward through

the gates of C|Root, which leaves us with some new X(c)Z(d) = (C|Root)
†X(a)Z(b)(C|Root).

Let C be the child of the root node. By definition of AC , there exists (e, f) ∈ AC that
agrees with (c, d) on all coordinates of (c, d).1 Therefore we enforce the pattern (c, d) onto
AC (appending some ∗-entries to account for any qubits in C|C that are not in C|Root) and
choose a random element (e, f). For each qubit j appearing in C|C but not C|Root, set the

jth tensor element of Pcor to X
ej
j Z

fj
j . We then conjugate X(e)Z(f) backward through C|C ,

continuing this process. When we reach a merge node and wish to continue down the tree to
its children, we split up the coordinates and work on each child’s subtree separately. Each
qubit is merged or forgotten at some point in C, so eventually every tensor element of Pcor

will be reconstructed.
All that remains is to show that Pcor is sampled uniformly from Π ∩ Stab. To do so,

we first state some general facts about sampling from affine spaces. Consider affine spaces
V ,V ′ ⊆ {0, 1}n, and let m < n. Let L : V ′ → V be an invertible linear map for which
(L(y))1 . . . (L(y))m = y1 . . . ym for each y ∈ {0, 1}n. In other words, the first m coordinates
of {0, 1}n are invariant under L. Suppose we first sample the string xm+1 . . . xn ∈ {0, 1}n−m
uniformly from {ym+1 . . . yn : y ∈ V}. Next, we sample x1 . . . xm uniformly from

{y1 . . . ym : y ∈ V ′ and (L(y))j = xj∀j > m}. (2.15)

We claim that x = x1 . . . xn is a uniformly random sample from V . First, notice that this
procedure does in fact return an element of V : Because L is invertible, there must be some
string in V ′ that agrees with xm+1 . . . xn when mapped by L.

For a consistent system of linear equations, the size of the solution space is indepen-
dent of the right hand side. Therefore |{y ∈ V : ym+1 . . . yn = xm+1 . . . xn}| is indepen-
dent of xm+1 . . . xn. Because L is an invertible linear transformation, the size of the set
in Eq. 2.15 is also independent of xm+1 . . . xn. The probability of choosing x is given by
Pr[x] = Pr[x1 . . . xm|xm+1 . . . xn] · Pr[xm+1 . . . xn]. Since Pr[x1 . . . xm|xm+1 . . . xn] is indepen-
dent of xm+1 . . . xn, and Pr[xm+1 . . . xn] is uniform, x is uniform, which proves the claim.

More generally, suppose we have some finite number of affine spaces V(k) ⊆ {0, 1}n
and invertible linear transformations Lk : Vk → Vk−1. Suppose we also have a partition⋃
k Pk = [n], and that for each k, the subspace of {0, 1}n corresponding to the bits in Pk

is invariant under Lj for all j ≤ k. Consider the following protocol. We start by sampling
x(1) ∈ {0, 1}|P1| uniformly from {yP1 : y ∈ V(1)}. Next, we sample x(2) from

{yP2 : y ∈ V(2) and (L2(y))P1 = x(1)}. (2.16)

1The string (e, f) may be longer than (c, d).
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Continuing in this way, for each k > 1 we sample x(k) from

{yPk
: y ∈ V(k) and (L`(L`+1(. . .Lk(y) . . .)))P`−1

= x(`−1)∀` < k}. (2.17)

A similar argument to the previous case shows that x is a uniformly random element of V(1).
We claim that the second phase of the sampling subroutine can be described in this way.

Fix an order on the bags of T so that j < k whenever Bj is an ancestor of Bk. In our case
we have V(k) := Yk for each k. Recall that a qubit in C corresponds to two bits in each Yk.
The Pk are subsets of [2nt] in which we put both coordinates corresponding to qubit i if and
only if i is merged or forgotten in C|Bk

. The map Lk−1 corresponds to the action of C|Bk

on stabilizers. Although these linear transformations do not act on 2nt bits, they can be
seen as acting on all of {0, 1}2nt by taking a direct product with the identity map. Because
C|Bj

does not act on any qubits in Pk for j < k, we get that the bits of {0, 1}2nt in Pk are
invariant under Lj. Finally, the condition in Eq. 2.17 corresponds to how each new tensor
element of Pcor is chosen so as to agree with choices made farther up the tree.

The following claim is not necessary for running the above correction subroutine, but will
be useful in Section 2.6.

Claim 21. Let π ∈ {0, 1, ∗}2n be given and let Stab ⊆ {0, 1}2n be the stabilizer group of
C |+nt〉. Then |Stab ∩ Π| can be computed classically in time O(||T ||ωω).

Proof. We start by using the sampling subroutine to find any y with | 〈y|C|+nt〉 |2 6= 0.
Suppose we then run the first part of the correction subroutine, constructing AB for each
B. In the proof of Lemma 20 we saw that the second phase of the sampling subroutine can
be viewed as having a partition

⋃
k Pk = [2nt], and sampling an element x ∈ Stab ∩ Π by

sampling bits xPk
for k = 1, . . . , n from

{yPk
: y ∈ Stab ∩ Π and yP`

= xP`
∀` < k}. (2.18)

The set from Eq. 2.18 is obtained by enforcing a pattern on someAB, which yields another
affine stabilizer subspace. If this new subspace has the form {[ AB ]u + [ ab ] : u ∈ {0, 1}N} for
some N , then assuming [ AB ] has full rank,2 the total number of choices for xPk

is 2N . The
total number of choices for x, and therefore the size |Stab ∩ Π| is equal to the product of
the number of choices for each xPk

. This algorithm has the same runtime as the correction
subroutine, which is O(||T ||ωω).

In the case of the graph state simulation problem without postselection, the correction
subroutine can be dramatically simplified. We now present a simplified correction subroutine
for this case. In this case, π

(X)
j is in {0, 1} if and only if j is a merge ancilla, and π(Z) = ∗nt .

Because
⊗

v Uv does not act on merge ancillas, finding a stabilizer of C |+nt〉 that respects π
is equivalent to finding a stabilizer of C′ |+nt〉 that respects π, where we define C′ to be only
the CZ and CNOT gates of C. That is, C′ = ((

⊗
v U
†
v )⊗ I⊗na)C.

2This will always be the case in our algorithm, because any time we enforce a pattern, we use Theorem
35 to remove any linearly dependent columns of the generating matrix for the resulting subspace. (See the
paragraph containing Eq. 2.13.)
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Lemma 22. For any α ∈ {0, 1}nt, a stabilizer of C′ |+nt〉 with X-component α can be found
in time O(n+ |E|).

Proof. We start by computing (C′)†X(α)C′. This yields a Pauli proportional to X(γ)Z(δ)
for some γ, δ ∈ {0, 1}nt . The claim is that C′X(γ)(C′)† is the desired stabilizer. Because
X(γ) stabilizes the initial state |+nt〉 no matter what γ is, we know C′X(γ)(C′)† stabilizes
C′ |+nt〉. We just need to show that C′X(γ)(C′)† has X-component α.

Fig. 2.7 shows that any stabilizer Z-components that accumulate when conjugating X(γ)
forward through C′ will have no effect on the X-component of CX(γ)(C′)†. Therefore by
choice of γ, the stabilizer CX(γ)(C′)† has X-component α. The runtime bound follows from
the fact that C′ has O(n+ |E|) gates through which we must conjugate X(α) and then X(γ).

Z Z Z

Z Z

Z Z

Figure 2.7: Behaviour of stabilizer Z-components when CNOT and CZ gates are applied.
Left: CNOT(Z1)CNOT† = Z1. Centre: CNOT(Z2)CNOT† = Z1Z2. Right: CZ(Z1)CZ† =
Z1.

The stabilizer given by Lemma 22 is not uniformly random. By Lemma 19, we can ac-
count for this by choosing a random stabilizer of

⊗
v Uv |G〉 and applying it to the data qubits.

We can do that by choosing a random stabilizer P of |G〉 and computing (
⊗

Uv)P (
⊗

v Uv)
†

in time O(n). It can be shown that Stab(|G〉) is generated by {XvZN(v) : v ∈ V }. Choosing
a random subset of these generators and multiplying them together can be done in time
O(n+ |E|).

2.5 Correction subroutine example

In this section we work through an example of the correction subroutine described in the
proof of Lemma 20. We assume that Pv = X for all v, and thus Uv = H for all v. In Fig. 2.8
we show the input graph, a nice tree decomposition, and C. We also show the state to which
each affine stabilizer subspace corresponds. Vertices of the graph are labelled by uppercase
letters while qubits of C are labelled by lowercase letters, with the data qubit and merge
ancilla for vertex B being labelled b and b′, respectively. Let us take π = (∗1 ∗ ∗1, ∗ ∗ ∗ ∗ ∗)
as the desired pattern, where qubits are ordered ab′bcd. That is, we would like Pcor to have
nonzero X-components acting on qubits b′ and d.

We first compute the affine spaces A1,A2, . . . ,A5 as shown in Fig. 2.8. By symmetry,
A′1 ∼= A1 and A′2 ∼= A2, so we omit the calculation of them. The leaf node containing A and
B is an introduce node, so we set

A1 = {
(

1 0
0 1
0 0
0 0

)
x : x ∈ F2

2}, (2.19)
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corresponding to the stabilizer generators Xa and Xb′ of |+〉a ⊗ |+〉b′ . Throughout this
example, we will order the rows of matrices first by grouping X- and Z-components together,
and then in the same descending order as in π and C. In the matrix above, the first and
third rows correspond to qubit a while the second and fourth correspond to b′.

Next we conjugate A1 by (H⊗I)CZ. Since qubit a is forgotten, we would in general need

to enforce π
(X)
a and π

(Z)
a , but since π

(X)
a = π

(Z)
a = ∗, there is nothing to be done. Therefore

we have

A2 = ((H ⊗ I)CZ)A1((H ⊗ I)CZ)† = {
(

0 1
0 1
1 0
1 0

)
x : x ∈ F2

2}. (2.20)

To compute A3, we first remove the rows of the matrix in A2 corresponding to a (i.e. the
first and third) to obtain {( 0 1

1 0 )x : x ∈ F2
2}. By symmetry, we would obtain the same set

C

B

A

D

AB B

B BD ∅

BC B Introduce node
Forget node
Merge node

|+〉a H

|+〉b′

|+〉b H

|+〉c H

|+〉d H

A1

A′1

A2

A′2

A3 A4 A5

Figure 2.8: Top: A graph and a nice tree decomposition. Bottom: The resulting circuit
C in the case where Pv = X for all v, which implies that Uv = H for all v. Each affine
stabilizer subspace Ai or A′i formed during the correction subroutine is associated with the
bag immediately to the left of its dashed line. E.g. A3 is associated with the lone merge
node.
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after removing qubit c from A′2. We then take the direct product

{( 0 1
1 0 )x : x ∈ F2

2} ⊕ {( 0 1
1 0 )x : x ∈ F2

2} ∼= {
(

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

)
x : x ∈ F4

2}. (2.21)

We have rearranged the right hand side matrix so that the X-components form the first two
rows and the Z-components the last two. Next, we apply the CNOT gate to obtain

{
(

0 1 0 1
0 0 0 1
1 0 0 0
1 0 1 0

)
x : x ∈ F4

2}. (2.22)

Finally, we must enforce the pattern on the merge ancilla b′. Since π
(X)
b′ = 1, this means

finding the subset of elements in Eq. 2.22 that have the form (1, ∗, ∗, ∗)T . Basic linear algebra
tells us that x must take the form x = e4 + y1e1 + y2(e2 + e4) + y3e3, where ej is the usual
standard basis vector and y1, y2, y3 ∈ {0, 1} are free. The desired subset therefore is

A3 = {
(

0 1 0 1
0 0 0 1
1 0 0 0
1 0 1 0

)
(

(
1 0 0
0 1 0
0 0 1
0 1 0

)
y +

(
0
0
0
1

)
) : y ∈ F3

2} = {
(

0 0 0
0 1 0
1 0 0
1 0 1

)
y +

(
1
1
0
0

)
: y ∈ F3

2}. (2.23)

We then restrict A3 to coordinates corresponding to b to obtain {( 0 1 0
1 0 1 )x + ( 1

0 ) : x ∈ F3
2}.

Since the matrix has more columns than rows, we search for a maximum linearly independent
subset of columns. In general we would apply Theorem 35a, but by inspection, we can simply
remove the third column to get {( 0 1

1 0 )x + ( 1
0 ) : x ∈ F2

2}. Taking a direct product with the
affine space I for the stabilizer generator of |+〉d gives us

A4 = {
(

0 1 0
0 0 1
1 0 0
0 0 0

)
x+

(
1
0
0
0

)
: x ∈ F3

2}. (2.24)

To compute A5, we conjugate the affine space by the CZ and Hadamard gates to obtain

{
(

1 0 1
0 1 0
0 1 0
0 0 1

)
x+

(
0
1
1
0

)
: x ∈ F3

2}, (2.25)

and since π
(X)
d = 1, we search for all elements in this space of the form (∗, 1, ∗, ∗)T . Using

the same approach as in the computation of A3 we arrive at

A5 = {
(

1 1
0 0
0 0
0 1

)
y +

(
0
1
1
0

)
: y ∈ F2

2}. (2.26)

We are now ready to construct Pcor. We first choose a random element from A5, say,
(0, 1, 1, 0)T . This fixes two tensor elements of the Pauli correction: Pcor = ?⊗ ?⊗Z⊗ ?⊗X.
We will move down the tree to fill in the remaining question marks.

Since ((H ⊗ H)CZ)†Z ⊗ X((H ⊗ H)CZ) = X ⊗ I, pushing the chosen element of A5

backward through the H and CZ gates gives us (1, 0, 0, 0)T ∈ A4. We then remove qubit d
to obtain (1, 0)T and select a random element in A3 of the form (∗, 1, ∗, 0)T , say, (1, 1, 0, 0)T .
Since b′ is measured immediately after the merge node, we can fill in another tensor element
in the Pauli correction: Pcor = ?⊗X ⊗ Z ⊗ ?⊗X.
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Pushing (1, 1, 0, 0)T back through the CNOT gate gives (0, 1, 0, 0)T . Removing b gives us
(0, 0)T , so we search for an element of A2 of the form (∗, 0, ∗, 0)T . The only such element is
(0, 0, 0, 0)T , so we now have Pcor = I ⊗ X ⊗ Z ⊗ ? ⊗ X. Similarly, we can reconstruct the
tensor element corresponding to qubit c and find that Pcor = I ⊗X ⊗ Z ⊗X ⊗X is a valid
choice; indeed, we have (01011, 00100) ∈ Π. We do not need to use A1 or A′1 as we now have
all tensor elements of Pcor.

2.6 Variants of the graph state simulation problem

Our algorithm for the graph state simulation problem can be adapted to solve the following
two related problems.

Strong Graph State Simulation Problem. Let G, {Pv}v,
⊗

v Uv,P ,S, and m be as in
the graph state simulation problem and let z ∈ {0, 1}|S| also be given. The task is to compute

p(z) =
1

pP(m)
| 〈z|S 〈m|P

⊗
v

Uv |G〉 |2. (2.27)

Phase-Sensitive Graph State Simulation Problem. Let G, {Pv}v,
⊗

v Uv,P ,S, and m
be as in the graph state simulation problem and let z ∈ {0, 1}|S| also be given. The task is
to compute

1√
pP(m)

〈z|S 〈m|P
⊗
v

Uv |G〉 . (2.28)

Theorem 23. Given a nice tree decomposition T of G, the strong graph state simulation
problem on G can be solved classically in time O(||T ||ωω).

Theorem 24. Given a nice tree decomposition T of G, the phase-sensitive graph state sim-
ulation problem on G can be solved classically in time O(||T ||33).

When G is planar we can use Theorem 13 to construct a nice tree decomposition for G.
This gives the following corollaries.

Theorem 25. Let G be a planar graph. Then any instance of the strong graph state simu-
lation problem on G can be solved in time Õ(nω/2).

Theorem 26. Let G be a planar graph. Then any instance of the phase-sensitive graph state
simulation problem on G can be solved in time Õ(n3/2).

Proof of Theorem 23. We will compute | 〈z|S 〈m|P
⊗

v Uv |G〉 |2 and pP(m) separately. Let
C be as defined in Section 2.3. Let y = zm0na ∈ {0, 1}nt be the concatenation of z,m, and
0na . We will compute | 〈y|C|+nt〉 |2 using Lemma 17 in time O(||T ||ωω). By Lemma 15, we
have

| 〈z|S 〈m|P
⊗
v

Uv |G〉 |2 = 2na| 〈y|C|+nt〉 |2. (2.29)

Now we compute pP(m). Let α ∈ {0, 1, ∗}nt have indices associated with qubits of C,
and suppose that for all v ∈ P we have αj(v) = 0, for v ∈ S we have αj(v) = ∗, and for merge
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ancillas αj = 0. Let Π ⊆ {0, 1}2nt be the set of strings respecting the pattern (α, ∗nt), and
let Stab ⊆ {0, 1}2n represent the stabilizer group of C |+nt〉 with phases ignored. Then

2na
|Π ∩ Stab|

2nt
= 2na

∑
s∈{0,1}S

| 〈s| 〈m| 〈0na|C |+na〉 |2 by Lemma 19 (2.30)

=
∑

s∈{0,1}S
| 〈s|S 〈m|P

⊗
v

Uv |G〉 |2 by Lemma 15 (2.31)

= pP(m). (2.32)

By Claim 21 we can compute |Π ∩ Stab| in time O(||T ||ωω), which completes the proof.

The proof of Theorem 24 is identical, except we use Lemma 18 to get 〈y|C|+nt〉 in time

Õ(n3/2), and use
√
pP(m) instead of pP(m).

2.7 Applications of graph state simulation

In this section we describe some problems that can be reduced to graph state simulation.
Our main applications are in the simulation of a restricted family of Clifford circuits. We
also consider analogous problems involving Clifford tensor networks. The latter problems
can be shown to be generalizations of the former, however we present the first applications
separately because (1) Clifford circuit simulation is a very common task; (2) our algorithms
are simpler when we restrict our attention to Clifford circuits; and (3) we will explicitly use
one of the Clifford simulation algorithms in Chapter 3.

We start by proving Theorems 10a, 10b, and 10c, restated here. Fig. 2.9 gives an example
of a Clifford circuit whose two-qubit gates act along the edges of a planar graph.

Theorem 10. Let C be an n-qubit depth-d Clifford circuit whose two-qubit gates act along
the edges of a planar graph G. There exist classical algorithms for the following tasks.

a. Sampling z from the output distribution Pr[z] = | 〈z|C|0n〉 |2 in time Õ(nω/2dω).

b. Given z ∈ {0, 1}n, computing | 〈z|C|0n〉 |2 in time Õ(nω/2dω).

c. Given z ∈ {0, 1}n, computing 〈z|C|0n〉 in time Õ(n3/2d3).

These three theorems use reductions to the three versions of the graph state simulation
problem. We will sometimes need to solve these problems on graphs that are nonplanar, but
are in some sense close to being planar. Consider graphs G′ = (V ′, E ′) and G = (V,E), and
a map f : V (G′) → V (G). For r > 0 we say that f is an r-coarse-graining if (1) for each
u′v′ ∈ E ′ we have either f(u′) = f(v′) or f(u′)f(v′) ∈ E; and (2) |{u′ ∈ E ′ : f(u′) = v}| ≤ r
for each v ∈ V . Fig. 2.10 gives an example of a 5-coarse-graining.

Lemma 27. Let G′ = (V ′, E ′) and G = (V,E) be graphs and f : G′ → G an r-coarse-
graining. Given a nice tree decomposition T for G, a nice tree decomposition T ′ for G′ can
be found in time O(|V |) such that for all c > 0 we have ||T ′||cc = O(rc||T ||cc).
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|0〉1 H H H

|0〉2 H H

|0〉3 H S H

|0〉4 H S H

1 2

3 4

Figure 2.9: The CZ gates in the circuit on the left act along edges of the planar graph on
the right.

Figure 2.10: The graph on the left admits a 5-coarse-graining to the one on the right.

Proof. For each bag Bi in T , define a bag B′i of T ′ as B′i = {v′ ∈ V ′ : f(v′) ∈ Bi}. Arranging
the nodes B′i in the same way as the nodes Bi (i.e. B′i, B

′
j share an edge in T ′ if and only if

Bi, Bj share an edge in T ) will yield a valid nice tree decomposition. Because |B′i| ≤ r|Bi|
for each i, we have ||T ′||cc = O(rc||T ||cc).

Proofs in this section will use measurement-based quantum computing gadgets [28, 29].
Any Clifford operation on a single-qubit state |ψ〉 can be implemented, up to some Pauli
error, by entangling |ψ〉 with the four-qubit graph state shown in Fig. 2.11 with a CZ
gate and measuring all but one qubit in some Pauli bases. Fig. 2.11 also shows the Pauli
bases needed for the Hadamard and S gate gadgets. If the measurement results are, from
left to right, r0, r1, r2, r3, then the unmeasured qubit is left in state Xr1+r3Zr0+r2H |ψ〉 or
Xr1+r3Zr0+r2S |ψ〉 [21]. For example, let V (G) = {v1, v2, v3, v4} and E(G) = {v1v2, v2v3, v3v4}.
Then Fig. 2.11a indicates that

(〈r0|H ⊗ 〈r1|HS† ⊗ 〈r2|HS† ⊗ 〈r3|HS† ⊗ I)CZψ,v1 |ψ〉 |G〉 ∝ Xr1+r3Zr0+r2H |ψ〉 . (2.33)

We have used the fact that H and HS† map the computational basis to the X- and Y -bases.
The output qubit of one gadget can also be used as the input qubit of another gadget to
apply products of single-qubit gates, as shown in Fig. 2.11c. By linearity, these gadgets can
be used when |ψ〉 has multiple qubits by applying the CZ gate to the appropriate qubit of
|ψ〉.

Proof of Theorem 10a. An example of the reduction described in this proof is shown in
Fig. 2.12. We will consider the circuit C ′ = CH⊗n on input |+n〉, as for any z we have
〈z|C ′|+n〉 = 〈z|C|0n〉. Each single-qubit gate is replaced by its measurement-based gadget.
To apply the gates in succession we take the input qubit of one gadget to be the output qubit
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X

|ψ〉

Y Y Y

output

(a) H gate gadget.

X

|ψ〉

X Y X

output

(b) S gate gadget.

X

|ψ〉

Y Y Y X X Y X

output

(c) SH gate gadget.

Figure 2.11: Vertices represent qubits and edges represent CZ gates. All qubits other than
|ψ〉 begin in the state |+〉. Measuring each qubit of Fig. 2.11a or 2.11b in the designated
Pauli bases leaves the output qubit in state QH |ψ〉 or QS |ψ〉, where Q is a Pauli error
determined by measurement outcomes. Gadgets can be joined together. Measuring the
qubits of Fig. 2.11c applies the gate Q′SQH, where Q,Q′ are determined by the measurement
outcomes.

|0〉 S

|0〉
→

|+〉 H S

|+〉 H

X Y Y Y X X Y X Z

X Y Y Y Z

Figure 2.12: Top: Replacing C with C ′. Bottom: Replacing each single-qubit gate of C ′

with one of the gadgets from Fig. 2.11 to form |G′〉.

of the previous gadget on its wire. (The first gadget on each wire takes |+〉 as its input.) The
CZ gates of C ′ are applied between the output qubits of the two gadgets preceding that CZ
gate. This procedure leaves us with some graph state |G′〉. The graph G′ has n+4s = O(nd)
vertices, where s is the number of single-qubit gates in C ′.

All but n qubits of |G′〉 have Pauli bases in which they are to be measured as part of a
gadget. The final n qubits correspond to the output qubits of the final gadget on each wire.
We will simulate measurements on all qubits of |G〉 in the designated Pauli bases, with these
last n qubits measured in the computational basis. This is an instance of the weak graph
simulation problem on G′ without postselection.

To see how a solution can be used to sample from C, let y ∈ {0, 1}n be the measurement
results on the final n qubits of |G′〉. The remaining results indicate the Pauli error Q(j)

introduced at each single-qubit gate U (j) of C ′. The string y is sampled from Pr[y] =
| 〈y|C ′err|+n〉 |2, where C ′err is obtained by replacing each single-qubit gate U (j) with Q(j)U (j).
Using the results of Section 1.1, we can conjugate each error through to the end of C ′ in
time O(nd) to get a single Pauli error Q with 〈y|C ′err|+n〉 = 〈y|QC ′|+n〉. Then for the
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a, b ∈ {0, 1}n satisfying Q ∝ X(a)Z(b), we have

| 〈y|C ′err|+n〉 |2 = | 〈y|QC ′|+n〉 |2 = | 〈y ⊕ a|C ′|+n〉 |2 = | 〈y ⊕ a|C|0n〉 |2. (2.34)

Therefore y ⊕ a is sampled from the output distribution of C.
Finally, we must show that the graph state simulation problem on G′ can be solved in

time Õ(nω/2dω). Let f : G′ → G be an O(d)-coarse-graining defined as follows: For each
vertex v ∈ V (G′) that is part of a gadget acting on wire j, take f(v) = j. For each vertex v
that corresponds to the input qubit along a wire j, set f(v) = j. Because each gadget has
constant size and there are at most d gadgets on each wire, f is an O(d)-coarse-graining.

Next we use Theorem 13 to get a nice tree decomposition T for G with ||T ||ωω = Õ(nω/2),
and then use Lemma 27 to transform T into a nice tree decomposition T ′ for G′ with
||T ′||ωω = Õ(nω/2dω). By Theorem 14 we can solve the graph state simulation problem on G′

in time O(||T ′||) = Õ(nω/2dω).

The proof of Theorems 10b and 10c are very similar, so we will only highlight the differ-
ences.

Proof of Theorems 10b and 10c. We will form C ′ and replace each gate with its measurement-
based quantum computing gadget to form |G′〉 exactly as in the previous proof. For each
gadget, if all measurement outcomes are postselected to be 0, the gadget is implemented
with zero error. We will solve the strong graph state simulation problem with postselection
to force all gadgets to be implemented with zero error. Let ng be the number of vertices of
G′ that do not correspond to the output of C ′, and let P be the set of all such vertices. Let
S be the remaining n vertices. For example, in Fig. 2.12 we have ng = 12 and S equal to the
two vertices labelled with “Z”. As in the proof of Theorem 10a, each vertex of G′ is labelled
with a Pauli basis Pv (either X or Y for gadget qubits, and Z for output qubits).

To prove Theorem 10b, we solve the strong graph state simulation problem on G′ with
{Pv}v,P and S as above, m = 0ng , and z as in the statement of the theorem using Theorem
23. This gives the value | 〈z|C|0n〉 |2. Constructing f and forming the tree decomposition T ′

as in the proof of Theorem 10a gives the runtime bound. To prove Theorem 10c, we solve
the phase-sensitive graph state simulation problem on G′ with the parameters listed above
using Theorem 24, which gives 〈z|C|0n〉. Taking f and T ′ again as described above gives
the runtime bound.

In Chapter 3 we will wish to compute 〈z|C|0n〉 in the case where the two-qubit gates of
C act along a graph G which is not planar, and for which we might not have an r-coarse-
graining for small r. The above proof of Theorem 10c can be modified to yield the following
result, which we will not prove. The only modification necessary is to use T directly, rather
than using Theorem 13 to compute a nice tree decomposition.

Theorem 28. Let C be a depth-d Clifford circuit with n qubits, whose two-qubit gates act
along the edges of a graph G. Let z ∈ {0, 1}n and a nice tree decomposition T of G be given.
Then a classical algorithm can compute 〈z|C|0n〉 in time O(||T ||33d3).

We now introduce tensor networks, which generalize quantum circuits to allow for nonuni-
tary operations. As a warm-up, consider the task of computing the output probability
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Figure 2.13: Simulation of the circuit at the top can be done in time O(n) using the ordering
shown here.
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Pr[z] := | 〈z|U1 . . . Un−1Vn−2 . . . V1|0n〉 |2 in the circuit shown at the top of Fig. 2.13. We will
describe an algorithm that views the circuit as a tensor network, leading to an improved
runtime.

A näıve approach would be to initialize a classical representation of |0n〉, simulate the
applications of each gate one at a time, and then read off the entry of the state vector given
by z. Merely writing down the state vector takes time Ω(2n), so this algorithm is inefficient.
A slightly better approach would be to again proceed from left to right through the circuit,
but only initialize qubits when they’re needed: First, |00〉 is initialized and U1 is applied,
then a third qubit is initialized to |0〉 and the application of U2 is simulated, and so on. This
algorithm fares slightly better than the first one, but once Un−1 is applied, we must store all
2n amplitudes of the state vector.

An improved algorithm shown in Fig. 2.13 yields a better runtime by not simulating
the circuit from left to right. First, we replace Un−1 with Wn−1 := (I ⊗ 〈zn|)Un−1(I ⊗ |0〉).
Simulation of the resulting (n − 1)-qubit circuit (which may be nonunitary) will still yield
Pr[z]. We then replace Un−2(I ⊗Wn−1)Vn−2 with

Wn−2 := (I ⊗ 〈zn−1|)Un−2(I ⊗Wn−1)Vn−2(I ⊗ |0〉), (2.35)

leaving an (n− 2)-qubit circuit whose simulation yields Pr[z]. Repeating this process even-
tually leaves Pr[z] = | 〈0|W1|z1〉 |2, which can be computed directly. Since we only ever need
to operate on 4 × 4 matrices, and there are O(n) steps, this algorithm has runtime O(n).
The idea of performing a simulation by choosing a favourable ordering in which to carry out
operations characterizes tensor network contraction algorithms, which we describe now. The
exposition here follows that of [25].

Definition 29. A rank-r tensor M is an array of 2r complex numbers.3 Each entry is
labelled by r indices i1, . . . , ir ∈ {0, 1}. We abuse notation slightly and write M = Mi1,...,ir

both to make the indices explicit and also to refer to the (i1, . . . , ir) entry.

If Mi1,...,in,j1,...,jm and Ni1,...,in,k1,...,k` are tensors sharing the indices i1, . . . , in, the contrac-
tion operation defines a new tensor (MN)j1,...,jm,k1,...,k` with entries given by

(MN)j1,...,jm,k1,...,k` =
1∑

i1,...,in=0

Mi1,...,in,j1,...,jmNi1,...,in,k1,...,k` . (2.36)

Definition 30. A tensor network is a set of tensors in which no index is shared by more
than two elementary tensors.

Contracting every shared index of a tensor network yields a tensor. For this reason, if T
is a tensor network we will often write T to also represent the tensor that results when all
shared indices are contracted. Tensors and tensor networks can be illustrated graphically. In
Fig. 2.14 each tensor is depicted by a central node with r “legs,” corresponding to indices.
Contraction of a shared index is represented by joining the legs corresponding to that index
and then contracting the edge.

3Most definitions allow the base 2 to be replaced with any integer d ≥ 2.
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Figure 2.14: Left: The rank-3 and rank-4 tensors Mj1,j2,i and Nk1,k2,k3,i form a tensor network.
Right: The rank-5 tensor (MN)j1,j2,k1,k2,k3 formed by contracting index i.

The time needed to contract a tensor network using Eq. 2.36 repeatedly is upper bounded
by 2O(ξ)s, where s is the number of tensors in the network and ξ is the maximum rank
of any tensor encountered during the contraction process. This sheds some light on why
the improved algorithm for the warm-up problem fares better than the näıve ones. Every
quantum circuit can be thought of as a tensor network by viewing each m-qubit gate M as a
rank-2m tensor with entries Mi1,...,im,j1,...,jm = 〈i|M |j〉, wire segments as shared indices, and
k-qubit input or output states as rank-k tensors. The three different algorithms for solving
the warm-up problem all consisted of different orders for contracting the tensor network
described by 〈z|U1 . . . Un−1Vn−2 . . . V1|0n〉. In the third algorithm, we chose an ordering such
that ξ was constant.

Markov and Shi [25] give an algorithm that takes as input a tensor network and outputs
an ordering of indices that will keep ξ relatively small. For a tensor network T made up of
tensors T (1), . . . , T (s), let G(T ) be the graph vertex set [s] and an edge ij for each T (i), T (j)

that share one or more legs. We say that G(T ) is the underlying graph of T . Markov and Shi
show that the minimum possible ξ is related to the treewidth of G(T ) and give a contraction
ordering that leads to a relatively small ξ. Many other works [23, 17, 13] consider various
techniques for finding a favourable contraction ordering.

Tensors can also be thought of as quantum states. If Mi1,...,im is a tensor, we can consider
the unnormalized state

|M〉 =
1∑

i1,...,im=0

Mi1,...,im |i1 . . . im〉 . (2.37)

In this picture, contraction of two tensors can be seen as applying the map 〈00|+ 〈11| to the
shared index in their corresponding states. For example, if Mi,j and Ni,k are tensors then

1∑
j,k=0

(MN)j,k |jk〉 =
1∑

j,k=0

1∑
i=0

Mi,jNi,k |jk〉 (2.38)

= 〈00|13 + 〈11|13

(
1∑

i,j=0

Mi,j |ij〉

)(
1∑

i′,k=0

Ni′,k |i′k〉

)
. (2.39)
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Let Mi1,...,in be a rank-n tensor. We say that Mi1,...,in is a Clifford tensor if

1∑
i1,...,in=0

Mi1,...,in |i1 . . . in〉 (2.40)

is proportional to a stabilizer state. A Clifford tensor network is a tensor network made up
exclusively of Clifford tensors.

Theorem 31. Let T be a Clifford tensor network made up of n tensors T (1), . . . , T (n), each
of which has rank at most r, let G(T ) be the underlying graph, and let N = rank(T ). Then
there exist classical algorithms for the following tasks.

a. Sampling a uniformly random element of T in time Õ(nω/2rω).

b. Given z ∈ {0, 1}N , compute |Tz1,...,zN |2 in time Õ(nω/2rω).

c. Given z ∈ {0, 1}N , compute Tz1,...,zN in time Õ(n3/2r3).

Similarly to Theorem 10, we will describe a reduction to the three versions of the graph
state simulation problem using measurement-based quantum computing gadgets. We will
prove Theorem 31a in full and then describe the small modifications needed for Theorems
31b and 31c.

T (1) T (2)

Y Y Y X

X Y Y Y Y Y Y X X Y Y Y

Y Y Y X

Z Y Y Y X

X

X

Y Y Y X X Y Y Y X X Y Y Y Z

X Y Y Y X Z

Figure 2.15: Example of the reduction described in the proof of Theorem 31a. Top: A
tensor network with two shared legs. Centre: Each elementary tensor is mapped to a graph
state with gadgetized local Cliffords. In this example we assume that all local Cliffords are
either Hadamard (see Fig. 2.11) or identity. Bottom: Shared legs are contracted by applying
〈++|CZ. The remaining three output qubits are measured in the computational basis.

Proof of Theorem 31a. We will assume that each |T (k)〉 is a stabilizer state and not just
proportional to one. If this is not the case then T is just rescaled by a constant factor.
We give an example of the reduction to graph state simulation described by this proof in

50



Fig. 2.15. Our algorithm requires that each T (k) is given to us as |T (k)〉, expressed as a graph
state with local Clifford operators (see Section 1.4). Before performing any contraction we
have

|T (1)〉 ⊗ . . .⊗ |T (n)〉 = (U1 ⊗ . . .⊗ Um) |G1〉 ⊗ . . .⊗ |Gn〉 . (2.41)

For each Gk, we will replace every Uj that acts on |Gk〉 with a gadget like the ones shown
in Fig. 2.11. If Uj ∈ {H,S} we can use the H and S gadgets directly. Otherwise, Uj can be
expressed as a finite product of H and S, so we can implement Uj by linking together O(1)
gadgets (see Fig. 2.11c). If Uj = I then we do not add any gadgets. Let us call the resulting
graph state |G′k〉. Because we add O(1) gadgets for each vertex of Gk, and each gadget has
O(1) vertices, G′k has O(rank(T (k))) vertices.

Recall that if measurement outcomes on the H or S gate gadgets are given by r0, r1, r2, r3,
then the gadget implements Xr1+r3Zr0+r2H or Xr1+r3Zr2+r4S. For each local unitary Uj, let
|φ(j)〉 be the stabilizer state with the following property: When the qubits in the gadget for
Uj are projected onto |φ(j)〉, the gate Uj is applied with no error. For example, if Uj = S,

then Fig. 2.11b shows that we may take |φ(j)〉 = |+〉 ⊗ |+〉 ⊗ |0〉+i|1〉√
2
⊗ |+〉, and if Uj = H we

have |φ(j)〉 = |+〉⊗ |0〉+i|1〉√
2
⊗ |0〉+i|1〉√

2
⊗ |0〉+i|1〉√

2
. Since all gadgets are created by linking together

the H and S gadgets, |φ(j)〉 always exists. Then

|T (1)〉 ⊗ . . .⊗ |T (n)〉 ∝

(∏
j

〈φ(j)|

)
|G′1〉 ⊗ . . .⊗ |G′n〉 . (2.42)

(The ∝ sign hides a normalization factor, which is some power of
√

2.)
All we’ve done so far is rewrite the tensor network pre-contraction. We will now contract

all shared indices. For every shared index i in T there are two graphs Ga, Gb that correspond
to the two tensors T (a), T (b) sharing i. Both Ga and Gb have a vertex corresponding to the
index i. Each of these two vertices have gadgets associated with them arising from the
process above in which we replaced each Uj with a gadget. Let `(a), `(b) be the vertices of
G′a, G

′
b corresponding to the output qubits of these two gadgets. For each shared index i, we

can find `(a), `(b) as above. Let L be the set of all such pairs {`(a), `(b)}.
To contract the index i we must apply (〈00| + 〈11|)`(a),`(b) ∝ (〈++|CZ(I ⊗ H))`(a),`(b).

Let us ignore the local operators I ⊗H because they could have been incorporated into the
Uj earlier. Then

|T 〉 ∝

(∏
j

〈φ(j)|

)(∏
`∈L

〈++|` CZ`

)
|G′1〉 ⊗ . . .⊗ |G′n〉 . (2.43)

Here we applied
∏

`∈L 〈++|` CZ` to Eq. 2.42 and used the fact that it acts on different qubits
than

∏
j 〈φ(j)|, so they commute.

Because each |φ(j)〉 is a tensor product of single-qubit stabilizer states, Eq. 2.43 is nothing
more than the projection of a graph state |G〉 onto a product of single-qubit stabilizer states.
Choosing a uniformly random element of T , which is equivalent to sampling z from Pr[z] =
| 〈z|T 〉 |2, is therefore also equivalent to solving an instance of the graph state simulation
problem with postselection. We now describe this instance.
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To form the graph G, form ∪kG′k, and then add the edge `(a)`(b) for each shared index,
where `(a), `(b) are as defined above. The S consists of all vertices corresponding to qubits
in Eq. 2.43 that are not projected. The set P consists of all other vertices. For v ∈ S, we
have Pv = Z. For v ∈ P , the value of Pv is determined by 〈+| or 〈φ(j)|. Finally, we will take
m = 0|P|, which ensures that all gadgets are implemented with no error.

To prove the theorem we show that the graph state simulation on G can be solved in
time Õ(nω/2rω). We will construct an O(r)-coarse-graining f : G 7→ G(T ). Since G(T )
is assumed to be planar we can then use Theorem 13 to get a nice tree decomposition T
for G(T ) with ||T ||ωω = Õ(nω/2), then Lemma 27 to get a tree decomposition T ′ for G with

||T ′|| = Õ(nω/2rω), and finally Theorem 14 to solve the graph state simulation problem on
G.

To define f , first let [n] = V (G(T )). Then for each k ∈ [n], map all vertices of G′k to k.
If u′v′ ∈ G, then either u′ and v′ are both in the same G′k, or u′ ∈ G′j and v′ ∈ G′k for some

j 6= k with T (j) and T (k) sharing an index. If u′, v′ ∈ G′k, then f(u′) = f(v′). Otherwise,
because T (j) and T (k) share an index, we must have f(u′)f(v′) ∈ E(G(T )). Therefore f
is a coarse-graining. Because each T (k) has rank O(r) and each gadget has constant size,
|V (G′k)| = O(r) for all k, and so f is in fact an O(r)-coarse-graining.

Proof of Theorems 31b and 31c. We will replace the tensor network with the graph state |G〉
and form the tree decomposition T ′ for G in the same way as we did in the previous proof.
The parameters P ,S, {Pv}v, etc. which were given as input to the graph state simulation
problem in the previous proof are defined in the same way.

The solution to the strong graph state simulation problem on |G〉 with these parameters
is equal to |Tz1,...,zN |2. To prove Theorem 31b we solve this instance of the strong graph state

simulation problem by calling Theorem 23, which gives the runtime bound of Õ(nω/2rω). To
prove Theorem 31c we call Theorem 24 to solve the phase-sensitive graph state simulation
problem in time Õ(n3/2r3), which gives Tz1,...,zN .

It will also be useful in Chapter 3 to use the following minor extension of Theorem 31c,
which we will not prove. The only difference is that we use T directly instead of constructing
it using Theorem 13.

Theorem 32. Let T be a Clifford tensor network made up of n tensors T (1), . . . , T (n), each
of which has rank at most r. Set N = rank(T ), let z ∈ {0, 1}N , let G(T ) be the underlying
graph of T , and let T be a nice tree decomposition of G(T ). Then a classical algorithm can

compute Tz1,...,zN in time Õ(||T ||33r3).

2.8 Discussion

At the beginning of this chapter we stated that [8] showed that quantum computers have
a depth advantage over their classical counterparts when solving the graph state simulation
problem on grid graphs. Theorem 9 tells us that if ω = 2, then this advantage is not present
when considering gate complexity, as our algorithm runs in time Õ(nω/2). However, it may
still be possible to prove a gate complexity advantage in the case where G is nonplanar but
sparse. If G is nonplanar, our algorithm requires that a tree decomposition T is given as
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input, and runs in time O(n|T |ω−1). Since G is sparse, the näıve quantum algorithm for
solving the graph state simulation problem on G takes time O(n). On the other hand, if G
does not have treewidth O(1), then the classical algorithm presented in this chapter will not
run in time O(n).

Another open problem is whether local complementation can allow us to solve the graph
state simulation problem in time Õ(nω/2) on nonplanar graphs. The complete graph Kn has
treewidth n− 1 and is nonplanar for n ≥ 5. Even when given a tree decomposition, running
our algorithm directly would therefore yield a runtime of O(n · nω−1) = O(nω), which is no
better than the näıve algorithm. However, Kn is equivalent through local complementation
to the star graph, which is planar. In Section 1.4 we saw that for any vertex a and graph
G, we have |G〉 = U |La(G)〉, where U is a product of local Clifford operators. Because
local Clifford operators map Pauli bases to Pauli bases, instead of solving the graph state
simulation problem on Kn in time O(nω), we can solve the graph state simulation problem on
the star graph in time O(n), albeit with different {Pv}v bases. More generally, understanding

how local complementation can affect planarity might allow us to extend the Õ(nω/2) runtime
of our algorithm to a broader range of graphs.

Finally, it remains unknown whether our algorithm is truly more powerful than the active
set approach. Although we were unable to show that the active set approach can always
be used to achieve a runtime of Õ(nω/2), it may still be possible. A path decomposition is
a tree decomposition in which the tree is a path graph. If T is a path decomposition for a
graph G, then it has no merge nodes, which means that C has no merge ancillas. If C has no
merge ancillas, then our algorithm is an instance of the active set approach, because there
is a one-to-one correspondence between vertices and qubits. If it could be shown that for all
planar graphs there exists a path decomposition T with ||T ||ωω = Õ(nω/2), then it would be
true that the active set approach can always be used to give a solution to the graph state
simulation problem in time Õ(nω/2). A fact that may be useful is that for every n-vertex
graph G and tree decomposition T of G, there exists a path decomposition T ′ of G with
|T ′| = O(|T | log n) [22]. This fact implies that in the nonplanar case our algorithm has no
advantage over the active set approach.
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Chapter 3

Stabilizer rank methods

In this chapter we will extend the circuit simulation results of Chapter 2 to universal circuits.
We will write T = diag(1, eiπ/4) and for t > 0 we will write χt to denote the stabilizer rank
of the state (T |+〉)⊗t, a quantity which we will define shortly. We say that circuits with
input |0n〉, gates from the set {H,S,CZ} ∪ {T}, and computational basis measurements are
Clifford+T circuits. Before defining the stabilizer rank, we state the results of this chapter.

Theorem 33. Let C be an n-qubit Clifford+T circuit with t T gates and depth d. Suppose
the two-qubit gates of C act along the edges of a planar graph G. Given z ∈ {0, 1}n, a
classical algorithm can find | 〈z|C|0n〉 |2 in time O(χtn

3/2t6d3) ≤ O(20.3963tn3/2t6d3).

Theorem 34. Let C,G, t, and d be as in Theorem 33. A classical algorithm can sample z ∈
{0, 1}n from the distribution Pr[z] = | 〈z|C|0n〉 |2 in time O(χ2

tn
5/2t6d3) ≤ O(20.7926tn5/2t6d3).

Although Clifford circuits are not universal, Clifford+T circuits are [26]. The gadget in
Fig. 3.1 shows that a T gate can be replaced with a Clifford gate and postselected measure-
ment when given access to the non-stabilizer ancilla state |T 〉 := T |+〉 = (|0〉+ eiπ/4 |1〉)/

√
2

[E.g. 32]. To simulate a universal quantum circuit it is therefore sufficient to simulate cir-
cuits with Clifford gates, postselected computational basis measurements, and non-stabilizer
input states of the form |0n〉 ⊗ |T 〉⊗t, for t ≥ 0.

Stabilizer states span C2n , so every quantum state |ψ〉 can be expressed in the form

|ψ〉 =

χ∑
j=1

αj |φj〉 , (3.1)

where each |φj〉 is a stabilizer state, each αj is in C, and 1 ≤ χ ≤ 2n. We call such a
decomposition a stabilizer decomposition. The stabilizer rank of |ψ〉, written χ(|ψ〉) is the

|ψ〉 T → 0

|ψ〉 T |ψ〉

|T 〉

Figure 3.1: A Clifford operation and a postselected measurement can be used to apply T to
|ψ〉, given the non-stabilizer ancilla state |T 〉 = (|0〉+ eiπ/4 |1〉)

√
2.
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minimum χ over all stabilizer decompositions [9]. In particular, it is known that χ(|T 〉⊗t) ≤
20.3963t [27]. Since χ(|φ〉 ⊗ |ψ〉) = χ(|ψ〉) for any stabilizer state |φ〉, we also have χ(|0n〉 ⊗
|T 〉⊗t) = χ(|T 〉⊗t) for any n, t > 0. From now on, we will write |T t〉 := |T 〉⊗t and χt :=
χ(|T t〉).

Informally, stabilizer rank methods [9, 7, 6] simulate a circuit C that has Clifford gates
but a non-stabilizer input state by forming a stabilizer decomposition for the input state,
computing C |φj〉 for each j, and then recombining the results to either compute an amplitude
or sample from the output distribution of C. In this chapter we will show how stabilizer
rank methods can be used in conjunction with planarity to obtain extensions of the results
of Section 2.7. We will closely follow the techniques of [9, 7, 6].

3.1 Planar Clifford+T circuits

In this section we prove Theorems 33 and 34. For d = O(log n) previous work [9, 6] allows
computation of output probabilities to be done in time O(χtn

3t3) and sampling to be done
in time O(χtn

6t6). Theorem 33 offers improved scaling in the polynomial terms and identical
scaling in the exponential term. Theorem 34 offers improved scaling in the polynomial terms
but poorer scaling in the exponential term.

The proofs of Theorems 33 and 34 both require us to replace all T gates in the circuit
C with the T gate gadget. Let us write this (n + t)-qubit circuit as Cgadg. An example of
this circuit is shown in Fig. 3.2, centre. Using the calculation (I ⊗ 〈0|)CNOT(|ψ〉 ⊗ |T 〉) =
T |ψ〉 /

√
2, we then have

C |0n〉 = 2t/2(I⊗n ⊗ 〈0t|)Cgadg(|0n〉 ⊗ |T t〉 . (3.2)

Consider a stabilizer decomposition |T t〉 =
∑χt

j=1 αj |φj〉. For each |φj〉, let D(j) be a

circuit of depth O(t) such that |φj〉 = D(j) |0t〉. To see that such a D(j) exists, recall from
Section 1.4 that we can write |φ(j)〉 = (V1 ⊗ . . . ⊗ Vt) |Fj〉 for some local Clifford operators
V1, . . . , Vt and graph Fj. The state |Fj〉 can be prepared by preparing the state |+t〉 and
layering CZ gates according to an edge colouring of Fj [19]. The chromatic index of Fj is at
most t+ 1, so D(j) has depth O(t). Using this decomposition we can rewrite Eq. 3.2 as

C |0n〉 = 2t/2
χt∑
j=1

αj(I
⊗n ⊗ 〈0t|)Cgadg(I ⊗D(j)) |0n+t〉 . (3.3)

The two-qubit gates of Cgadg(I ⊗ D(j)) act along the edges of some graph Gj, which
we now describe. Let us write the vertices of Fj as {u1, . . . , ut} and the vertices of G as
{v1, . . . , vn}. Note that there is a one-to-one correspondence between V (Fj) and the T gates
in C, as each qubit in D(j) corresponds to the ancilla qubit in some T gate gadget. To form
Gj, we begin with G∪Fj, and then add an edge uivk whenever the T gate corresponding to
ui acts on wire k of C.

Next, we construct a nice tree decomposition T that is a valid nice tree decomposition
for all Gj. (This is possible because each Gj has the same vertex set.) Using Theorem 13

we find a nice tree decomposition T (G) for G with ||T (G)||33 = Õ(n3/2). We form T by
adding {u1, . . . , ut} to every bag of T (G) except the root bag. To see that this is a valid
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nice tree decomposition, first notice that because T (G) is rooted and has root bag equal
to ∅, so does T . Since T (G) is a nice tree decomposition, every vertex vi appears in some
bag, the endpoints of every edge of the form vivk appear together in some bag, and the
bags containing any given vi form a connected subtree. Because we formed T by adding
all ui to the non-root bags, clearly every ui appears in some bag, and the endpoints of any
edge of the form uiuk appear together in some bag. Since each vi appears in some bag, we
also have that every edge of the form viuk has vi and uk appearing together in some bag.
Finally, we must show that the bags containing any given ui form a connected subtree. This
condition is true if the root node (i.e. the only bag not containing ui) has only one child.
This must be true because the root node of a nice tree decomposition is always a forget
node, and forget nodes have just one child. Since we have added t vertices to every bag,
||T ||33 = O(||T (G)||33t3) = Õ(n3/2t3). We now prove Theorems 33 and 34.

Proof of Theorem 33. We will compute | 〈z|C|0n〉 |2 as

| 〈z|C|0n〉 |2 = 2t

∣∣∣∣∣
χt∑
j=1

αj(〈z| ⊗ 〈0t|)Cgadg(I ⊗D(j)) |0n+t〉

∣∣∣∣∣
2

. (3.4)

For each j, the circuit Cgadg(I⊗D(j)) has depth O(d+ t) ≤ O(dt). Therefore by Theorem
28, we can compute a single term (〈z| ⊗ 〈0t|)Cgadg(I ⊗ D(j)) |0n+t〉 in time O(||T ||33d3t3) =

Õ(n3/2t6d3). Repeating this for each j gives a total runtime of Õ(χtn
3/2t6d3), as desired.

Proof of Theorem 34. Let |ψ〉 = C |0n〉. Suppose first that we have an algorithm which takes
as input a stabilizer decomposition of a (possibly non-normalized) state and outputs that
state’s norm. Such an algorithm could be used to sample from the distribution Pr[z] =
| 〈z|ψ〉 |2 as follows. First, we compute

Pr[z1 = 0] =
||(|0〉1 〈0|1 ⊗ I) |ψ〉 ||2

|| |ψ〉 ||2
, (3.5)

and sample z1 ∈ {0, 1} from this distribution. Next, we sample the second qubit by com-
puting the conditional probability

Pr[z2 = 0|z1] =
||(|z1〉1 〈z1|1 ⊗ |0〉2 〈0|2 ⊗ I) |ψ〉 ||2

||(|0〉1 〈0|1 ⊗ I) |ψ〉 ||2
, (3.6)

and then selecting z2 according to this distribution. Continuing in this way, we sample all
bits of z one at a time, computing Pr[zk = 0|z1, . . . , zk−1] as

Pr[zk = 0|z1, . . . , zk−1] =
||(
⊗k−1

i=1 |zi〉i 〈zi|i ⊗ |0〉k 〈0|k ⊗ I) |ψ〉 ||2

||(
⊗k−1

i=1 |zi〉i 〈zi|i ⊗ I) |ψ〉 ||2
. (3.7)

Because this process uses a total of O(n) calls to the algorithm for computing norms, if

we can describe an Õ(χ2
tn

3/2t6d3)-time algorithm for computing an expression of the form

||(
k⊗
i=1

|zi〉 〈zi| ⊗ I) |ψ〉 ||2, (3.8)
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0

0

|0〉v1 H S H

|0〉v2 H H

|0〉v3 H T H

|0〉v4 H T H

|0〉v1 H S H

|0〉v2 H H

|0〉v3 H H

|0〉v4 H H

|T 〉u1

|T 〉u2

|0〉v1 H S H

|0〉v2 H H

|0〉v3 H H

|0〉v4 H H

|0〉u1 H

|0〉u2 H

D(j)

v1 v2

v3 v4

v1 v2

v3 v4

u1 u2

Figure 3.2: Example of the formation of Cgadg(I ⊗D(j)) and Gj. Top: Circuit C and graph
G. Centre: Circuit Cgadg. The CNOT gates can be written as (I ⊗ H)CZ(I ⊗ H) but we
omit this for simplicity. Bottom: Circuit Cgadg(I ⊗ D(j)) and the graph Gj. Here we have
supposed that |φ(j)〉 = (|00〉+ |01〉+ |10〉 − |11〉)/2.
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|0n+t〉

Cgadg

|z1〉 〈z1|

C†gadg

〈0n+t||z2〉 〈z2|

|0n+t〉 D(j)

|0〉 〈0|
(D(i))† 〈0n+t|

|0〉 〈0|

Figure 3.3: A small example of the circuit C, defined by Eq. 3.11

for some k ≤ n, then we’ll be done. Let us write Π =
⊗k

i=1 |zi〉 〈zi|.
Using a stabilizer rank decomposition for |T t〉, we have

||(Π⊗ I) |ψ〉||2 = 2t

∣∣∣∣∣
∣∣∣∣∣
χt∑
j=1

αj(Π⊗ I ⊗ |0t〉 〈0t|)Cgadg(I ⊗D(j)) |0n+t〉

∣∣∣∣∣
∣∣∣∣∣
2

(3.9)

This can be rewritten as

2t
χt∑

i,j=1

ᾱiαj 〈0n+t| (I ⊗D(i))†C†gadg(Π⊗ I ⊗ |0t〉 〈0t|)Cgadg(I ⊗D(j)) |0n+t〉 . (3.10)

There are χ2
t terms, so it will suffice to show how to compute a single summand in time

Õ(n3/2t6d3).
The quantity

〈0n+t| (I ⊗D(i))†C†gadg(Π⊗ I ⊗ |0t〉 〈0t|)Cgadg(I ⊗D(j)) |0n+t〉 (3.11)

can be viewed in two ways. One way to view it is as a probability amplitude from a nonunitary
circuit C, shown in Fig. 3.3. The two-qubit gates of this circuit act along the edges of a graph
G(C) = (V (Gi), E(Gi) ∪ E(Gj)). We can also view it as a fully contracted Clifford tensor
network N , made up of Clifford tensors {N (`)}` from the set

{|0〉 , |1〉 , H, S,CZ, |0〉 〈0| , |1〉 〈1|}. (3.12)

We will write N (`) to refer to both a tensor in N and a gate in C. If we can find a nice tree
decomposition T (N ) of the underlying graph G(N ) of N with ||T (N )||33 = Õ(n3/2t6d3), then
we’ll be done, because we can then use Theorem 32 to compute Eq. 3.11 by contracting N .

Because T is a valid tree decomposition for both Gj and Gi, it is also a valid tree
decomposition for G(C). An O(d+ t)-coarse-graining f : G(N )→ G(C) is defined as follows.
For each `, if N (`) is not a CZ gate, set f(`) to the wire on which N (`) acts in C. If N (`) is a
CZ gate acting on qubits a, b, set f(`) to a or b arbitrarily.

To show that f is an O(d + t)-coarse-graining, consider an edge ``′ ∈ E(G(N )). If N (`)

and N (`′) are one-qubit gates acting on the same wire of C, then f(`) = f(`′). If N (`) acts on
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qubit a and N (`′) acts on qubits a, b, then either f(`) = f(`) = a; or f(`) = a and f(`′) = b,
in which case f(`)f(`′) = ab is an edge of G(C) by definition of G(C). The remaining two
cases are similar. Therefore f is a coarse-graining. Because C has depth O(d + t), f is an
O(d+ t)-coarse-graining. Since d+ t = O(dt), f is also and O(dt)-coarse-graining

Because f is an O(dt)-coarse-graining and ||T || = Õ(n3/2t3), we have ||T (N )||33 =

Õ(n3/2t6d3), by Lemma 27. By Theorem 32, we can contract N in time Õ(n3/2t6d3).

We conclude this chapter with two open problems. The powers of 3 that appear in
Theorems 33 and 34 arise from the need to use a phase-sensitive Clifford simulator when
solving the phase-sensitive graph state simulation problem. If affine form could be improved
so that k Hadamard gates could be applied in time O(n2kω−2), or even O(nω), then given a
tree decomposition T , the phase-sensitive graph state simulation problem would be solvable
in time O(||T ||ωω) rather than O(||T ||33). This would allow us to replace every 3 and 6 in
these theorems with ω and 2ω. Another open problem is whether the algorithm described
by Theorem 34 can be modified to have linear scaling in χt rather than quadratic. Methods
for computing norms in time χt rather than χ2

t are known [7, 6], but these methods do not
seem to be compatible with our approach, as they may require us to simulate circuits whose
edges act along the edges of arbitrary graphs.
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Appendix A

Fast linear algebra

The näıve algorithm for n× n matrix multiplication takes time O(n3), but it is known that
this approach is not optimal [33]. We define ω to be the infimum of the set of ω′ such that
there exists an O(nω

′
)-time algorithm for matrix multiplication. It is currently known that

2 ≤ ω < 2.37286 [2]. Any matrix multiplication algorithm also yields a matrix-inversion
algorithm with the same asymptotic runtime [10]. In this appendix we first extend a result
of Ibarra, Moran, and Hui, who show that several linear algebra tasks on non-square matrices
can also be performed in matrix-multiplication time [20]. Then we prove some facts needed
in Section 1.3.

Theorem 35 (Ibarra, Moran, Hui [20]). Let A be an m × n matrix. There exist classical
algorithms for the following tasks, with all operations over the field {0, 1}.

a. In time O(min(m,n)ω−1 max(m,n)), find a maximum set of linearly independent rows
or columns of A.

b. In time O(nω), find the affine solution space {Ru + t : u ∈ {0, 1}m} for the system of
equations Ax = b, with R having full rank.

Theorem 35a is shown explicitly in [20] but Theorem 35b is not, so we provide a proof
here.

Proof of Theorem 35b. A generalized inverse of an m × n matrix A is an n ×m matrix Ag

such that A = AAgA. We begin by finding Ag. Another algorithm of [20] allows us to do this
directly if m ≤ n. Otherwise we can use the fact that taking a generalized inverse commutes
with matrix transposition and use the same algorithm on AT . Either way, the running time
is O(nω).

A system Ax = b has a solution if and only if Agb = b, and if it does, the set of solutions
is given by [4]

{(I − AgA)z + Agb : z ∈ {0, 1}n}. (A.1)

Since I −AgA might not have full rank1, we use the first part of the theorem to remove any
linearly dependent columns of I − AgA in time O(nω).

1For example, if A is invertible then I −AgA = I −A−1A = 0.
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We now restate and prove some lemmas from Section 1.3.

Lemma 4. Let N ≥ 1, let f : {0, 1}N → {0, 1, 2, 3} be a linear function, let g : {0, 1}N →
{0, 1} be quadratic, and for y ∈ {0, 1}N write ȳ = y2 . . . yN . An O(N2)-time algorithm can
find a linear function f ′ : {0, 1}N−1 → {0, 1, 2, 3}, affine function f ′′ : {0, 1}N−1 → {0, 1},
quadratic function g′ : {0, 1}N−1 → {0, 1}, and scalar α ∈ C such that

1∑
y1=0

if(y)(−1)g(y) = αif
′(ȳ)(−1)g

′(ȳ)δf ′′(ȳ),0. (A.2)

Proof. For j, k ≤ n, let us write fj and gjk for the yj and yjyk coefficients in f and g,
respectively. Then we have

1∑
y1=0

if(y)(−1)g(y) = if(0ȳ)(−1)g(0ȳ) + if(1ȳ)(−1)g(1ȳ) (A.3)

= if(0ȳ)(−1)g(0ȳ)(1 + if1(−1)g11+
∑

j>1 g1jyj). (A.4)

We can assume that f1 ∈ {0, 1}. If f1 = 2 then we set f1 ← 0 and g11 ← g11 + 1 in
Eq. A.4. If f1 = 3 we set f1 ← 1 and g11 ← g11 + 1. If f1 = 1 we can use the identity
1 + (−1)ki = (1 + i)(−1)kik

2
for integer k to rewrite this as

1∑
y1=0

if(y)(−1)g(y) = (1 + i)if(0ȳ)+
∑

j>1(g1j+g11)yj(−1)g(0ȳ)+
∑

j>k>1 g1jg1kyjyk (A.5)

This is in the form of Eq. A.2 with f ′′ = 0 and α = 1 + i. Computing the coefficients of the
new function g′ = g(0ȳ) +

∑
j>k>1 g1jg1kyjyk may be done in time O(N2). If f1 = 0 then

taking f ′′(ȳ) = g11 +
∑

j>1 g1jyj gives

1∑
y1=0

if(y)(−1)g(y) = 2if(0ȳ)(−1)g(0ȳ)δf ′′(ȳ). (A.6)

This is also in the form of Eq. A.2, with α = 2. In this case, f ′, f ′′ and g′ may be computed
in time O(N).

Lemma 5. Let n > 1, let B = {Ru + t′ : u ∈ {0, 1}m} ⊆ {0, 1}n be an affine space with R
in RCEF, and let f ′′ : {0, 1}n → {0, 1} be an affine function. Then {y ∈ B : f(y) = 0} can
be found in time O(n2).

Proof. Let f ′′(y) = F Ty + c for F ∈ {0, 1}n and c ∈ {0, 1}, and let us write R(i) for the ith
column of R. We can find the desired subset by solving

F TRu+ F T t′ + c = 0. (A.7)

If no j with F TR(j) 6= 0 exists, then the desired subset is either empty (if F T t′ + c = 1)
or all of B (if F T t′ + c = 0). Otherwise, choose such a j arbitrarily. Then we must have
uj = F T t′ + c +

∑
i 6=j F

TR(i)ui. We will use this representation to rewrite y in terms

of all ui with i 6= j. For each column i 6= j, set R(i) ← R(i) + R(j)(F TR(i)) and set
t′ ← t′ + (F T t′ + c)RTF . Finally, remove R(j) and set m← m− 1. This process leaves R in
RCEF and takes time O(n2).
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Lemma 6. Let A be an n×m matrix in RCEF and let Γ ⊆ [n]. There exists an invertible
m×m matrix W such that AW is in RCEF and can be computed in time O(|Γ|ω−2n2) and
the set {(AW )j : j ∈ Γ and (AW )j is a pivot row} is maximal over all possible W .

Proof. Let us assume for simpler notation that A takes the form [ I∗ ] and that Γ = {m +
1, . . . ,m+ |Γ|}. We will write A as

A =

IS
T

 , (A.8)

where S is |Γ| × m and T is (n − m − |Γ|) × m. Using Theorem 35a we find a maximum
subset of linearly independent rows of S. Then we consider only these rows and use the
theorem again to find a maximum subset of linearly independent columns of the submatrix
of S consisting of those rows. This takes time O(|Γ|ω−1n) and gives us an invertible r × r
submatrix S1 of S, where r = rank(S) ≤ |Γ|. Without loss of generality we assume that
these rows and columns are the first r rows and columns of S. We can now write A as

A =


Ir 0
0 Im−r
S1 S2

S3 S4

T1 T2

 . (A.9)

We will take W = W1W2, where

W1 =

[
S−1

1 0
0 I

]
and W2 =

[
I 0
−S2 I

]
. (A.10)

Computing S−1
1 takes time O(|Γ|ω) ≤ O(|Γ|ω−2n2). To compute AW1 in time O(|Γ|ω−1n),

notice that multiplying by W1 does not affect columns r+1, . . . ,m of A, so we are effectively
performing an (n×r)× (r×r) matrix multiplication, which can be done in time O(rω−1n) ≤
O(|Γ|ω−1n). To multiply by W2, observe that we need to multiply the first r columns of
AW1 by −S2 and add that to the last n − r columns. This is an (n × r) × (r × (m − r))
matrix product, which takes time O(n2rω−2) ≤ O(n2|Γ|ω−2). Finally, we note that the set
{(AW )j : j ∈ Γ and (AW )j is a pivot row} is maximum because of the fact that S1 was an
invertible submatrix of S of maximum size.
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