
 

Comparing Paleohydrograph Reconstructions from Subsurface Stratigraphy and 

Topography at the Sault Ste. Marie Strandplain 

 

 

by 

Marcel Rene Heather 

 

 

 

A thesis 

presented to the University of Waterloo 

in fulfilment of the 

thesis requirement for the degree of 

Honours Bachelor of Science 

in 

Environmental Science 

 

 

 

 

Waterloo, Ontario, Canada, 2021 

© Marcel Heather, 2021



	 ii	

Declaration 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including 

any required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

Marcel Heather 

 



	 iii	

Abstract 

The Great Lakes are currently at high water levels, which are negatively impacting coastal 

infrastructure, coastal ecosystems, and stakeholders that rely on the lakes. To better understand 

natural fluctuations, which includes high lake levels, geoscientists study ancient shorelines to 

reconstruct paleohydrographs. Reconstructing past lake level elevations from a specific subsurface 

sedimentary contact or foreshore base (FSB) contact is the most accurate way to gain insight into 

ancient lake levels. The objective of this thesis is to establish an alternative method to use 

topographic elevations as a proxy for the FSB in the reconstruction of inferred paleohydrographs 

from the Sault Ste. Marie (SSM) strandplain. Light detection and ranging (LiDAR) data was used 

to obtain topographic elevations for this topographic reconstruction. Topographic elevations 

measured in the field were compared to LiDAR data and these topographic elevations were also 

compared to FSB elevations measured in cores. Elevation trends and patterns were statistically 

analyzed and visually analyzed in graph to justify that topographic elevations from LiDAR could 

be used as a proxy for the FSB or past lake level elevation, but so far this only applies to the SSM 

strandplain deposited during the Nipissing phase. The field measured topographic swale elevations 

could be used as an alternative to FSB elevations when a correction factor of 1.49 m was subtracted 

from each individual swale elevation. LiDAR data was then used to obtain one swale elevation for 

every beach ridge in the SSM strandplain and then a correction factor of 1.49 m was applied to the 

LiDAR swale elevations. Results from this thesis found that an inferred paleohydrograph 

reconstructed from LiDAR swale elevations was an appropriate alternative to infer ancient lake 

level elevations and trends. However, this has only been shown to apply for the SSM strandplain 

deposited during the Nipissing phase. Further comparisons at different sites and for different ages 

of strandplains need to be investigated. In summary, this thesis determined that LiDAR swale 

elevations can potentially provide an alternative method to reconstruct paleohydrographs, and thus 

gain valuable insight into natural lake-level trends and patterns to help place current high levels 

and potential future lake-level fluctuations into context for stakeholders. 
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Introduction 

The Great Lakes are currently near record high water levels that are negatively 

impacting infrastructure and causing coastal erosion and flooding along their extensive coastlines 

(Gronewold & Rood, 2019). The Great Lakes watershed is home to over 30 million people in 

Canada and the United States, and spans over 1,200 km from west to east, including the 

University of Waterloo at the center of three of the five lake basins (Figure 1) (Fuller et 

al., 1995). This transboundary watershed supports a thriving environment and a vital economy 

and society.   

 

Figure 1. Map of the Great Lakes Drainage Basin. University of Waterloo is located near the 

center between three of the five lakes of the basin. Modified from IJC (n.d.).    

The Great Lakes account for approximately 20% of the world’s freshwater, and the 

millions of residents in the watershed rely on the lakes as a source for their drinking 

water (Gronewold et al., 2013). Other stakeholders in the Great Lakes watershed include the 
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shipping, fishing and tourism industries, as well as power generation (Rau et al., 2020). These 

industries employ millions of people and are the backbone to the economy of this transboundary 

watershed (Rau et al., 2020).   

Fluctuations in the elevation of the water level, either up or down in elevation, within the 

Great Lakes can negatively impact the many stakeholders within the watershed. For example, the 

operating costs of shipping vessels could increase a considerable amount if lake levels were to 

drop significantly as they have done in the recent past (Millerd, 2011). Along with a large 

economy, the Great Lakes support a thriving ecosystem that will also be impacted by lake-level 

fluctuations. These fluctuations could potentially reduce beneficial ecosystem services that 

the lakes provide, for example, wetlands that provide fish breeding habitats could be reduced by 

large fluctuations (Hartman, 1990). Another negative impact of rising lake levels would be for 

property owners on the Great Lakes coastlines. As water levels rise, coastal erosion and flooding 

could increase and pose a risk to coastal properties. Properties could shrink as the 

water level rises and infrastructure could be damaged or lost. Having insight into the fluctuations 

of lake levels will give these stakeholders context for modern lake levels and help them be 

prepared for potential future fluctuations so they can continue to thrive.   

Lake levels of the Great Lakes have been recorded since the mid-1800s, providing a 

useful historic record (Gronewold et al., 2013). The modern recording of lake levels is done by 

water-level gauges that are installed across all five lakes in both Canada and the United 

States (Gronewold et al., 2013). The data collected from these gauges provides insight into 

modern lake levels by showing variations and averages over recent history (Figure 2). The 

gauges record lake levels that are heavily influenced by human activities, but do not provide the 

whole picture of Great Lakes water level fluxes. This is because the time period of some 
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fluctuations are beyond the length of the gauge record, and also because human impacts are 

occurring at the same time as natural fluxes.   

  

Figure 2. Monthly mean lake level and historic average in Great Lakes. Includes lakes Superior, 

Michigan-Huron, Erie, and Ontario since 1918. Note the relatively steep increase during the last 

seven years in lakes Superior, Michigan-Huron, and Erie (USACE, 2020).   

The modern water levels that the gauges record includes natural fluxes, but due to the 

anthropogenic impact on the Great Lakes it would be nearly impossible to separate the natural 

and anthropogenic trends and patterns from each other. A record that goes back into geologic 

time before large anthropogenic impacts is required to observe the natural fluxes of the Great 

Lakes. By knowing the ancient natural trends and patterns separately from 

anthropogenic ones, the modern fluctuations can be understood to a greater depth. This 

knowledge could reveal what parts of modern fluctuations are caused by natural fluxes. An 

insight into the natural and modern trends and patterns can provide context to understand modern 

high lake levels and may help create realistic scenarios for stakeholders to plan for future 

potential natural and anthropogenic fluxes. 
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Literature Review 

Ancient lake levels are recorded in beach ridges that were formed at the time their 

respective lake level occurred (Thompson, 1992). Over time these ancient beaches were 

preserved when subsequent beach ridges formed in front of them and the shoreline prograded, 

creating strandplains (Figure 3) (Otvos, 2000). These strandplains create a lateral 

chronosequence of preserved ancient beach ridges. Within the Great Lakes strandplains, beach 

ridges preserve ancient lake levels from the late Holocene (Johnston et al., 2014). There have 

been many variable approaches used in the past that attempted to reconstruct the ancient lake 

levels recorded in Great Lakes strandplains. The relationship between what was measured in the 

field and interpreted as lake level was not consistent or accurate. The lack of accuracy and 

consistency prevented reconstructions from being truly representative of ancient lake levels. One 

example of this is in Larsen (1994), where topography and stratigraphy were used as indicators 

of ancient lake levels. Multiple contacts from within the sediments were used and these contacts 

were not all directly related to ancient water levels. To obtain a better understanding of lake 

levels, a method that is more consistent and accurate was required.    
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Figure 3. Two examples of strandplain topography. A) Photo of a strandplain near Manistique, 

Michigan along the coastline of Lake Michigan. Beach ridges are covered with trees and 

wetlands are between beach ridges. B) Au-Train Bay strandplain aerial photo. Beach ridges are 

light coloured linear features covered in trees (Wilcox et al., 2007 and Johnston et al., 2007).  

Each beach ridge within a strandplain contains a subsurface sedimentary contact 

that records the elevation of an ancient lake level (Johnston et al., 2014). The subsurface contact 

that records the ancient lake level is the foreshore base (FSB) contact, this contact records the 

ancient lake level because the sediments of the foreshore are water-lain (Figure 4) (Thompson, 

1992). This sediment and contact can be observed at water level on a modern beach where the 

beach sand at water level has a steep dip downward to coarser sediment. A new and consistent 

approach to reconstruct ancient lake levels was developed using the FSB contact and improved 

upon the inconsistent and inaccurate methods used previously. This method was developed in 

Thompson (1992). In this method, the beach ridge of interest is vibracored and the sediments in 

the core are analyzed for grain size distribution as well as physical structures (Thompson, 

1992). The contact is found by using the grain size and physical characteristics that are 

representative of the foreshore, and then elevation is determined by using the elevation of the 
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core site and then subtracting the depth of the contact found within the core itself as described in 

Thompson (1992).   

  

Figure 4. A cross section of a typical beach ridge within the Great Lakes. Aeolian, Dn: dune. 

Water-lain, Fs: foreshore, Ush: upper shoreface. Locations of where elevation data is collected is 

denoted with blue star symbols. Note the difference in elevation between subsurface contact and 

topography as well as variable topography of dunes. Modified from Johnston et al. (2014).  

To reconstruct a paleohydrograph the elevation and age of multiple beach ridges from 

within a strandplain are required. In the Thompson (1992) method, the elevation is obtained from 

the FSB contact as described previously. The age of the ancient lake level was previously based 

off of peat, or organic rich sediments from near the location of the core that were assumed to 

have formed between the ridges immediately after time of deposition of the subsurface contact 

(Thompson, 1992). This was an inaccurate method to obtain ages as the organic sediments are 

not directly related to the subsurface contact and their age may not be representative of time of 

deposition. A more accurate dating method was developed where optically stimulated 

luminescence (OSL) is used to date the sediments from around the subsurface contact itself 

(Argyilan et al., 2005). To complete the paleohydrograph, glacial isostatic adjustment (GIA) 
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must also be considered. The rate of surface adjustment post glaciation can be different between 

sites, therefore applying the respective GIA to the sites allows them to be a true representations 

of ancient lake levels (Johnston et al., 2014). Using the elevation method of Thompson (1992), 

applying ages collected with OSL methods described here, and applying proper GIA to the 

elevations is accepted to be the most accurate method to reconstruct paleohydrographs.   

Thompson’s (1992) method has been applied in many papers at multiple strandplain sites 

within the Great Lakes. In Thompson and Baedke (1997), and Baedke and Thompson (2000), 

this method was applied in Lake Michigan strandplains. Both of these papers used the subsurface 

contact method to obtain elevations and make lake-level curves, and discover information 

regarding GIA. In Thompson and Baedke (1997) quasiperiodic lake-level fluctuations were 

established by using paleohydrographs reconstructed with the subsurface contact method. In 

Johnston et al. (2012) the subsurface contact method of obtaining elevations was applied to sites 

in Lake Superior. Johnston et al. (2012) used the reconstructed paleohydrographs to establish a 

lake level record in relation to the Lake Superior outlet. The multiple applications of the 

Thompson (1992) method demonstrates that obtaining elevations from the subsurface 

sedimentary contact for paleohydrograph reconstruction is the most accurate way to decipher 

past natural trends and patterns of lake level changes. Paleohydrographs reconstructed in this 

manner can reveal multi-decadal to millennial scale trends and patterns in ancient lake-level 

fluctuations. 

Although the subsurface stratigraphic contact method is widely accepted to be the most 

accurate method to obtain elevations for paleohydrographs, there is an opportunity to revisit 

using topography as a method to reconstruct ancient lake levels. The major difference between 

using strandplain topography and the FSB contact to reconstruct paleohydrographs is in how the 
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two were deposited. The FSB contact is a water-lain sediment that is directly related to lake level 

(Thomson, 1992). Alternatively, topographic elevation is from aeolian dune sediments that could 

have formed at different times than the FSB contact. The aeolian processes which form the dune 

caps can be inconsistent and cause variable elevations and topography of the beach ridges 

(Tamura, 2012). Dunes will therefore show inconsistent morphology and elevations compared to 

the water-lain FSB contact (Figure 4). The variation in the dune morphology could also be 

caused by post-depositional changes. The dune cap of a beach ridge is exposed to weather and 

vegetation which can affect the ridges elevation, making it a less accurate representation of its 

original depositional environment (Tamura, 2012). The FSB contact would be less susceptible to 

post depositional changes since it is buried and protected from overlying sediments. This 

difference in consistency of the elevations will require a correction factor or multiple factors to 

account for the inconsistency and inaccuracy of topography. 

One recent application that briefly used the topographic method to reconstruct a 

paleohydrograph was in Johnston et al. (2012). In this paper, a consistent relationship was found 

between topographic elevation and the elevation of the subsurface contact within strandplains 

(Johnston et al., 2012). This relationship was on average a two-meter difference in elevation 

(Johnston et al., 2012). The average difference of two meters was used as a correction factor that 

was applied to the entire strandplain to bring topographic elevations down closer to the water-

lain subsurface sedimentary contact (Johnston et al., 2012). Applying the correction factor 

involved subtracting the factor from the topographic elevation (Johnston et al., 2012). After 

applying this correction factor, it was found that there were similarities between 

paleohydrographs reconstructed using topographic elevations and the elevations of the 

subsurface contacts (Johnston et al., 2012). 
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The use of topographic elevation in Johnston et al. (2012) creates an opportunity to 

further explore the use of topographic elevations as a method to obtain ancient lake levels. The 

application of a single correction factor to make topographic elevations closer to those of the 

FSB contact provide a starting point for this opportunity. However, the use of one correction 

factor may not be realistic for all sites, as there is variation in topography across different 

strandplains (Figure 4). To accurately represent multiple beach ridges and multiple strandplain 

sites, trends and patterns in the difference between topographic elevation and the elevation of the 

FSB contact within a strandplain and across multiple strandplains will need to be found. By 

accounting for these trends and patterns the correction factor(s) can be established and applied to 

the strandplain sites to make topographic elevations a more accurate representation of lake level.   

Topographic data can be collected in many ways including field surveys, aerial 

photographs, and topographic maps. One of the most accurate ways to remotely obtain 

topographic data is through light detection and ranging (LiDAR) (NOAA, 2012). The method of 

obtaining LiDAR data involves flying a plane over the area of focus that emits beams of light 

and calculates ranges based on return times of the light reflections (NOAA, 2012). The remote 

nature of LiDAR is beneficial because it provides detailed information for a field site without the 

challenges of completing field work. LiDAR is also easily accessible and available on 

government websites, including LiDAR data of the Great Lakes coastal areas in the United 

States. There is a high potential for the use of LiDAR for strandplains since LiDAR can resolve 

beach ridges within 15cm of vertical accuracy (Sallenger et al., 2003). The use of a correction 

factor on topographic elevations to allow them to better reflect the subsurface contact in Johnston 

et al. (2012) creates an opportunity to further explore using the topographic method. By 
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providing accurate remote topographic data, LiDAR helps with the potential to create 

paleohydrographs from topography to compare with subsurface stratigraphic paleohydrographs.   

Objective and Goals 

The objective of this project is to evaluate the use of paleohydrographs reconstructed 

from topography to represent ancient lake levels. This will be done by comparing 

paleohydrographs from topography with paleohydrographs from subsurface stratigraphy, both 

reconstructed from the same landforms at the Sault Ste. Marie strandplain. This comparison will 

aim to determine if paleohydrographs derived using topography or surface elevations can be used 

to accurately represent the elevation of ancient lake levels associated with individual beach 

ridges in strandplains. Recommendations for the use of paleohydrographs from topography will 

be made along with any correction factor(s) that is/are required for the topographic 

paleohydrograph to accurately represent ancient lake level.  

 The main goal of this thesis will be to reconstruct a paleohydrograph from topography for 

the SSM strandplain deposited during the Nipissing phase. A correction factor may be needed, 

and applied to topographic elevations to be similar to paleohydrographs derived from subsurface 

stratigraphy. By establishing the correction factor(s), guidelines will be created for the 

application of paleohydrographs from topography in strandplains. Developing guidelines for the 

use of topography from LiDAR data to reconstruct paleohydrographs will create new potential 

opportunities of reconstructing ancient water level trends and patterns for areas that have not 

been cored and have not had field work completed but have been age dated.  

Methods 

To reconstruct a paleohydrograph, an elevation from a beach ridge representative of an 

ancient lake level, and an age for the time that ancient lake level occurred are required. 
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Elevations and ages for the Sault Ste. Marie (SSM) strandplain were obtained from Johnston et 

al. (2012). The FSB elevations were collected from the water-lain subsurface stratigraphic 

contact within the beach ridges as described in Thompson (1992). These elevations were related 

to the International Great Lakes Datum of 1985 (IGLD85) by surveying between the current lake 

level, recorded by water level gauges and the ground surface where the cores were taken 

(Coordinating Committee on Great Lakes Basic Hydraulic and Hydrologic Data, 1995). 

Topographic elevations for the swales and ridge crests were also collected in the SSM 

strandplain (Johnston et al., 2012). The organic samples used for radiocarbon dating that provide 

relative ages for the strandplain were collected from the base of the wetlands found in the swales 

between ridges. In this thesis the topographic ridge crest and swale elevations as well as the FSB 

elevation data from Johnston et al. (2012) were graphed together to recreate part of figure 9 in 

Johnston et al. (2012) and develop a method to recreate a paleohydrograph inferred from 

topography. Distance landward of the ridge crests was used as the independent variable and the 

corresponding elevations of the ridge crest, swale, and FSB as the dependent variables. 

Connecting each data point together using a linear interpolation helped create two separate cross-

strandplain elevation trends and a relative paleohydrograph. The resulting cross-strandplain 

elevation trends were visually analyzed to determine if there were any similarities between the 

ridge crest and swale elevation trends and the FSB relative paleohydrograph. 

Statistical Analyses 

The elevation data from Johnston et al. (2012) for the SSM strandplain was analyzed to 

determine if there were similarities between the ridge crest and swale elevations and the FSB 

elevations. The first statistical test done was two separate paired t-test that compared the range of 

elevations of the ridge crest to the FSB elevations as well as the range of swale elevations to the 
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FSB elevations. This test was done to determine if there was a statistically significant difference 

between either the ridge crest elevations or the swale elevations and FSB elevations. The next 

analysis that was done was finding the descriptive statistics of the calculated differences between 

the ridge crest and FSB elevations and the swale and FSB elevations. The FSB elevations were 

subtracted from their corresponding ridge crest and swale elevations to obtain two ranges of 

differences between the topographic and subsurface elevations. The descriptive statistics of these 

ranges were calculated. The descriptive statistics included the quartiles, range, mean, median, 

and standard deviation. Box plots representative of the ridge crest to FSB elevation difference 

and swale to FSB elevation difference were created to compare the elevation differences. The 

mean difference between the elevations that were most accurate to the FSB and the FSB 

elevations was then used to obtain a potential correction factor for the corresponding topographic 

elevations. 

Cross-strandplain Trend Analysis 

The following methods analyzed only the swale elevations and their relation to the FSB 

elevations, this was done because the statistical analyses determined the swale elevations were 

the most accurate topographic elevations compared to the FSB elevations. The swale cross-

strandplain elevation trend and FSB relative paleohydrograph were divided into two sections, 

this was done at five separate cores and linear regressions were created for each of the four 

sections. This was done because at distance landward of 400m there is a visible change in the 

trend of the FSB relative paleohydrograph and the cross-strandplain elevation trends. The 

division at core 1218 was chosen to analyze further since the regressions of the four separate sets 

of elevations showed the most similarities between the swale elevations and the FSB elevations. 
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The slopes and R-squared values of these regressions were then compared to determine 

similarities between the FSB elevations and swale elevations. 

Ages 

The ages from Johnston et al. (2012) were graphed against their corresponding samples 

distance landward. A linear regression was created through this scatter plot to create an age 

model for the strandplain data to assign an age for every ridge. This age model was applied to the 

swale cross-strandplain elevation trend and the FSB relative paleohydrographs by using each 

individual elevations distance landward as the horizontal value in the models equation to replace 

distance landward with calendar year BP. The new cross-strandplain elevation trend and relative 

paleohydrograph with age BP as the independent variable were visually analyzed for trends and 

patterns. The trends and patterns seen in the elevations should be the same as seen in the 

statistical analysis because the age model only changed the horizontal values and made no 

changes to the vertical elevation values.  

LiDAR 

A relative paleohydrograph was reconstructed using LiDAR data to obtain the 

topographic elevation values. LiDAR data was obtained from the NOAA digital coast, this data 

contained LiDAR ground points for the study site (NOAA Digital Coast Data Access Viewer, 

2021). The LiDAR ground points for the study site were converted into a digital elevation model 

(DEM) raster layer to help resolve individual ridges and to create continuous elevations for the 

site. A transect line that extends approximately perpendicular to ridge crests and across the 

largest distance between ridges was created from the DEM. The ridge crests that were visible on 

the DEM and were observed along the transect were counted to provide the number of swales 

that will occur between them, and the distance from the most lakeward side of the transect to the 
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individual ridge crests were measured and recorded to mimic methods of coring locations during 

fieldwork. A topographic profile that extends along the transect was generated. The recorded 

distances of the visible ridges on the DEM were used to determine the location of their 

corresponding ridge crests along the cross section. The elevation and distances of the swales 

were then chosen to be the lowest elevation point between two known ridge crests, in the case 

where two ridges were separated by a long distance and by many different low points the mid-

point was found and the lowest point closest to that mid-point was used for elevation. The 

elevation of the ridges was found at a single point along with that points corresponding distance 

landward. The elevations were converted to the IGLD 85 datum and graphed as a 

paleohydrograph with distance landward versus elevation (Coordinating Committee on Great 

Lakes Basic Hydraulic and Hydrologic Data, 1995).  

 The mean difference between the swale elevations and FSB elevations from Johnston et 

al. (2012) was used as a correction factor for the LiDAR swale elevations. This correction factor 

was subtracted from the individual LiDAR swale elevations to create a cross-strandplain 

elevation trend that is a proxy for the FSB relative paleohydrograph and is also representative of 

ancient lake levels. The corrected swale elevations were then visually compared to the FSB 

relative paleohydrograph to ensure the LiDAR swale elevations were a relatively good proxy to 

the FSB elevations needed to recreate a relative paleohydrograph for the SSM strandplain.  

Results 

Field Data 

A paleohydrograph was reconstructed using the elevations measured in the field of the 

ridge crest, swale and subsurface FSB contact versus the distance landward from the modern 

shoreline, relative to the IGLD85 datum in meters (Figure 5). Figure 5 shows relative 
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topographic or surface elevations (ridge crest and swale) and subsurface elevations (FSB). The 

most accurate approximation of past lake level elevations are the FSB elevations. However, the 

elevations have been vertically adjusting since their formation by the process of GIA. Therefore, 

FSB elevations are collectively referred to as a relative paleohydrograph, applicable only to the 

SSM strandplain or that specific location in Lake Superior. Straight lines are used to connect the 

data points to reduce unknown inferences, and to keep interpolations simple between the 

measured points. Figure 5 shows that both the ridge crest and swale elevations follow a similar 

overall cross-strandplain trend compared to the FSB elevations, but the swale elevations are 

more consistent with less variation. This is seen in Figure 5 where the ridge crest cross-

strandplain trends have frequent inflections between individual points. These inflections would 

not accurately represent lake-level fluctuations as they are not seen in the FSB cross-strandplain 

trend. The swale elevations follow the patterns seen between individual FSB elevations more 

closely than the ridge crest elevations and has less inflection points that don’t match the FSB 

relative paleohydrograph. The less variable swale cross-strandplain elevation trend better reflects 

the FSB relative paleohydrograph than the ridge crest cross-strandplain elevation trend does. 

This shows that swale elevations would be the best option to reflect the elevation of ancient lake 

levels, however these elevations are consistently higher. 
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Figure 5. Plotted field data from the SSM strandplain. This includes topographic elevations 

surveyed from ridge crests and intervening swales, and subsurface elevation of FSB contacts 

collected from vibracores through ridges (Johnston et al., 2012). Data points of FSB relate to 

ancient lake levels and collectively form a relative paleohydrograph for the SSM strandplain 

with labelled vibracore numbers. 

Analyses were completed for data from the SSM strandplain to determine if there were 

similarities in the trends and patterns observed in the cross-strandplain elevation trends and FSB 

relative paleohydrograph reconstructed from topography and subsurface stratigraphy. These 

analyses focused exclusively on relict shorelines that formed during the Nipissing phase at SSM 

and therefore may not be directly applicable to other lake phases (i.e. Algoma), or strandplain 

sites. Topographic elevations of ridge crests and swales at SSM were compared to the previously 
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established (Johnston et al. 2012), more accurate representation of ancient lake levels, which is 

the FSB contact elevation. To compare surface and subsurface elevations, t-tests were completed 

to determine if the differences between the different sets of elevation data were statistically 

similar. Box plots were created to help visibly compare datasets. Relative paleohydrographs were 

reconstructed from surface and subsurface data to explore for trends, patterns and elevation 

differences across the entire SSM strandplain. 

T-Tests 

A paired t-test was used to compare field-measured elevations. The elevations being 

compared were two separate sets of topographic elevations of ridge crests and swales from 

surveying and FSB elevations from surveying and coring. A paired t-test was used because the 

individual elevations were associated with similar ridges and therefore represent multiple 

elevation measurements from one strandplain or one population. The paired t-test showed that 

the field measured ridge crest and swale elevations were significantly different than the FSB 

elevations (Table 1).  
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Table 1. Summary table of paired t-test results. The ridge crest column and swale column 

represent two separate paired t-tests with the FSB column. P(T<=t) two tail row shows 

statistically significant difference results of both of the paired t-tests. 

  Ridge Crest Swale FSB 

Mean 197.05828 196.1060622 194.6114133 

Variance 3.890557063 3.387165222 3.565313763 

Observations 27 27 27 

Pearson Correlation 0.944884701 0.985945887  

Hypothesized Mean 

Difference 

 

0 0 

 

df 26 26  

t Stat 19.6739614 24.5643001  

P(T<=t) one-tail 1.94423E-17 8.05946E-20  

t Critical one-tail 1.70561792 1.70561792  

P(T<=t) two-tail 3.88846E-17 1.61189E-19  

t Critical two-tail 2.055529439 2.055529439  

 

Descriptive Statistics 

An analysis of the calculated differences between the field measured topographic 

elevations of the ridge crests and swales to the FSB at the SSM site has shown that within the 

study site, the topographic elevation of the swales within the strandplain have a consistent 

difference in elevation with the FSB contact elevation when compared to the elevation difference 

between the ridge crest and the FSB (Figure 5). The mean elevation difference between the swale 
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and the FSB was 1.49 m with a standard deviation of 0.32 m and a range of 1.28 m (Table 2). 

For the SSM strandplain the elevation difference between the swale and the FSB had a smaller 

standard deviation, 0.32 m versus 0.65 m, and range, 1.28 m versus 2.06 m, than that of the ridge 

crest and the FSB, respectively (Table 2). The swale to FSB difference was also more 

symmetrically spaced around the median when compared to the box plot for the ridge crest to 

FSB difference (Figure 6). The smaller and more symmetrical deviation around the median 

demonstrates that the swale elevation would be more appropriate to use as a proxy for FSB 

elevation within the SSM strandplain than the ridge crest elevation would be. The ridge crest 

elevation is more variable and less consistent with the FSB. However, the swale elevation is 

elevated somewhat consistently from the FSB elevations. To help infer an FSB elevation from a 

swale elevation one must subtract a value or values from swale elevations. Because the swale 

elevations are somewhat consistent with FSB elevations, applying an average value was chosen. 

A value of 1.49 m was used for the SSM strandplain as a specific correction factor. To use this 

correction factor, the value of 1.49 m was subtracted from the topographic swale elevations, 

resulting in a more accurate representation of ancient lake levels than the swale elevations alone, 

inferred from topography. 
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Table 2. Descriptive statistics.  Descriptive statistics are for the difference in elevation between 

the ridge crest and FSB and between the swale and FSB. The swale to FSB elevation comparison 

has smaller standard deviation and range than the ridge crest to FSB elevation comparison. 

Ridge Crest - FSB Swale - FSB 

Mean 2.45 Mean 1.49 

Std. Deviation 0.65 Std. Deviation 0.32 

Minimum 1.52 Minimum 0.71 

Quartile 1 1.96 Quartile 1 1.37 

Median 2.35 Median 1.51 

Quartile 3 3.03 Quartile 3 1.65 

Maximum 3.58 Maximum 1.99 
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Figure 6. Box plots for SSM strandplain field elevations. Box plots show the differences 

between the ridge crest elevation and swale elevation with the foreshore base elevation. The 

swale to FSB box plot shows smaller and more symmetrical deviation than that of the ridge crest 

to FSB box plot. 

Cross-strandplain Trend Analysis 

Within Figure 5 there is a change in the cross-strandplain elevation trend reconstructed 

from swale elevations and the FSB relative paleohydrograph at approximately 400 m landward. 

On the landward side of 400 m the cross-strandplain trend and relative paleohydrograph become 

more level than the lakeward side of 400 m, where the trend is steeper. The change observed at 

400 m landward could potentially be seen as a point of change in the rate of change of relative 

lake level, even though this is distance and not age. To determine if the swale elevations 
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accurately reflected the FSB elevations on both sides of 400 m landward the cross-strandplain 

elevation trend and relative paleohydrograph were divided into two separate front and back sets 

of elevations at core 1218. Core 1218 is included as the last point of the front sets of the 

elevation, because it provided the best alignment of linear regressions with the plotted elevation 

data.  

After splitting the trends into front (lakeward) and back (landward) sets, linear 

regressions were made to visualize the two individual elevation trends in each set (Figure 7). The 

four regression lines were a relatively good fit, shown by the relatively high R-squared values for 

the swale and FSB elevations at 0.971 and 0.977 respectively for the lakeward sets, and 0.911 

and 0.722 respectively for the landward sets. The regression slopes for the swale cross-

strandplain elevation trend and FSB relative paleohydrograph were 0.0121 m/m and 0.0129 m/m 

respectively for the front set of elevations and 0.0022 m/m and 0.0014 m/m respectively for the 

back set of elevations. Five different piecewise regressions were done with the midpoint being 

changed from core 1215 to 1219. Splitting the trends at different cores was done to determine if 

there were any cores where there were visible differences in the sets of elevations, and also to 

determine which core was the best to divide the trends at. In these different tests it was found 

that splitting the cross-strandplain elevation trend and relative paleohydrograph at core 1218 

provided the highest R-squared values and slopes that were the most similar to each other. The 

high R-squared values show their respectively regressions and regression slopes accurately 

reflect the overall trend of the field-measured elevations. The observed similarity in slopes 

between the swale elevations and FSB elevations in the front and back sets show that the swale 

elevations are an appropriate proxy for FSB elevations on either side of the observed point of 

change in the cross-strandplain trend. Therefore, a single correction factor can be used to correct 
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the swale elevations for the SSM strandplain since the swale cross-strandplain trend most closely 

reflects the FSB relative paleohydrograph across the entire strandplain.  

 

Figure 7. Piecewise regressions. Regressions are of the swale cross-strandplain elevation trend 

and FSB relative paleohydrograph. Reconstructed from swale and FSB elevations. All four 

regressions show relatively high R-squared values for each set of elevations and slopes that are 

similar to each other between the swale and FSB regressions. 

Ages 

Radiocarbon ages were obtained from Johnston et al. (2012). The sediments that were 

collected for age dating the SSM study site were collected from the bottom of wetland sediments 

found in the swale areas between ridges. The distance landward of these samples was recorded. 

The reported ages from Johnston et al. (2012) were recalibrated using the CALIB program due to 



	 24	

there being a change in calibration values since 2012 (Table 3) (Stuiver et al., 2021). These 

values were then graphed versus the distance landward of their respective samples (Figure 8). 

Three samples (lab codes: GX30560, GX30559, and GX30558), were removed from the analysis 

and not graphed because they seemed to be outliers and plotted much older than the majority of 

the ages further landward in the SSM strandplain. The cross-strandplain trend in ages also helped 

identify outliers. The ridges closer to the modern shoreline should be younger than the ridges 

further landward within the study site because the landward ridges would have to form before the 

subsequent ridges were able to form. The three most lakeward samples did not follow this 

expected trend, necessary to make geologic sense in strandplain formation and therefore were 

removed from the graph to avoid them incorrectly influencing the age model that was created for 

the study site. Variability in radiocarbon ages collected in other Lake Superior strandplains has 

also been identified by Johnston et al. (2012) and are problematic when creating age models 

from radiocarbon ages. 
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Table 3. Radiocarbon age data for the SSM strandplain. Original ages collected in 

Johnston et al., (2012). Ages recalibrated using CALIB program (Version 8.2html; Stuiver et al., 

2021) to account for change in calibration values since 2012. 

 

Lab 

Code 

 

Distance 

(m) 

 

Reported 

Age 

 

Calibrated 

two sigma 

age range 

 

Relative 

area under 

distribution 

 

Median 

Probability 

 

Johnston 

et al. 

(2012) 

Median 

Probability 

 

Difference 

in 

Calibrated 

Ages 

GX-

30560 

23 3300+/-

70 

3379 - 

3652 

0.94 3528 3533 5 

GX-

30559 

103 3760+/- 

80 

3921-

3951 

0.034 4131 4133 2 

GX-

30559 

103 3760+/- 

80 

3958 - 

4359 

0.923 4131 4133 2 

GX-

30559 

103 3760+/- 

80 

4365 - 

4405 

0.037 4131 4133 2 

GX-

30558 

158 3900+/-

90 

4005 - 

4033 

0.011 4321 4324 3 

GX-

30558 

158 3900+/-

90 

4082 - 

4573 

0.989 4321 4324 3 

GX-

30557 

227 2170+/-

60 

2002 - 

2031 

0.058 2170 2182 12 
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Table 3. Continued. 

 

Lab 

Code 

 

Distance 

(m) 

 

Reported 

Age 

 

Calibrated 

two sigma 

age range 

 

Relative 

area under 

distribution 

 

Median 

Probability 

 

Johnston 

et al. 

(2012) 

Median 

Probability 

 

Difference 

in 

Calibrated 

Ages 

GX-

30557 

227 2170+/-

60 

2038 - 

2327 

0.942 2170 2182 12 

GX-

30556 

332 1470+/-

60 

1287 - 

1422 

0.884 1359 1367 8 

GX-

30556 

332 1470+/-

60 

1448 - 

1476 

0.049 1359 1367 8 

GX-

30556 

332 1470+/-

60 

1484 - 

1516 

0.051 1359 1367 8 

GX-

30555 

479 1720+/-

70 

1412 - 

1463 

0.053 1612 1634 22 

GX-

30555 

479 1720+/-

70 

1466 - 

1743 

0.947 1612 1634 22 

GX-

30554 

575 1890+/-

70 

1623 - 

1668 

0.055 1805 1830 25 

GX-

30554 

575 1890+/-

70 

1693 - 

1949 

0.912 1805 1830 25 
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Table 3. Continued.  

 

Lab 

Code 

 

Distance 

(m) 

 

Reported 

Age 

 

Calibrated 

two sigma 

age range 

 

Relative 

area under 

distribution 

 

Median 

Probability 

 

Johnston 

et al. 

(2012) 

Median 

Probability 

 

Difference 

in 

Calibrated 

Ages 

GX-

30554 

575 1890+/-

70 

1959 - 

1989 

0.033 1805 1830 25 

GX-

30553 

657 3070+/-

70 

3073 - 

3407 

0.98 3271 3278 7 

GX-

30553 

657 3070+/-

70 

3425 - 

3445 

0.02 3271 3278 7 

GX-

30552 

827 3590+/-

90 

3640 - 

3668 

0.019 3896 3897 1 

GX-

30552 

827 3590+/-

90 

3683 - 

4104 

0.95 3896 3897 1 

GX-

30552 

827 3590+/-

90 

4106 - 

4149 

0.03 3896 3897 1 

GX-

30551 

939 3800+/-

80 

3976 - 

4416 

0.998 4193 4195 2 

GX-

30550 

1046 3330+/-

70 

3396 - 

3434 

0.04 3558 3565 7 
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Table 3. Continued.  

 

Lab 

Code 

 

Distance 

(m) 

 

Reported 

Age 

 

Calibrated 

two sigma 

age range 

 

Relative 

area under 

distribution 

 

Median 

Probability 

 

Johnston 

et al. 

(2012) 

Median 

Probability 

 

Difference 

in 

Calibrated 

Ages 

GX-

30550 

1046 3330+/-

70 

3438 - 

3719 

0.946 3558 3565 7 

GX-

30549 

1095 2890+/-

70 

2847 - 

3232 

0.998 3029 3035 6 

GX-

30548 

1158 4130+/-

90 

4436 - 

4842 

0.991 4656 4658 2 
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Figure 8. Calibrated radiocarbon ages of SSM beach ridges. Graphed versus their respective 

distance landward from the modern shoreline in the SSM strandplain. Linear age model showing 

a rate of change of approximately 2.9 meters per year. 

As demonstrated in Figure 8 radiocarbon ages can be variable, but still generally follow 

the expected trend of getting younger as the ridges become more lakeward. In Johnston et al. 

(2012) this variability was also noticed and therefore OSL ages were collected, but OSL ages 

were not available for this project. The observed variability in radiocarbon can be caused by 

many factors that are beyond the scope of this thesis, and will not be discussed here. The ages 

observed in Figure 8 that do not follow the trend of being younger as the ridges move more 

lakeward could be variable due to the inaccuracy of the radiocarbon ages. Radiocarbon ages 

from basal wetland sediments found in swales are not direct measurements of the ridges where 
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cores were collected that best represent ancient lake levels. Radiocarbon ages reflect the age of 

their respective wetland instead which only forms sometime after the next lakeward adjacent 

ridge forms. So these wetlands could have also not immediately formed after the creation of their 

confining ridges and post depositional processes such as external water inputs from groundwater 

could alter the radiocarbon ages in wetlands. Both of these factors could cause the variability 

seen between the samples in Figure 8. The linear age model constructed for the SSM strandplain 

from radiocarbon ages of wetland sediments shows a slope of approximately 2.9 meters per year 

landward, which described an average progradation rate for the study site (Figure 8). 

The age model constructed for the SSM strandplain in Figure 8 (Distance versus age) was 

used to calculate an age for every beach ridge, relative to distance from the modern shoreline. 

This was then applied to the distances in Figure 5 (distance versus elevation) to create a swale 

cross-strandplain elevation trend and FSB relative paleohydrograph with approximate ages on 

the horizontal axis and elevations on the vertical axis (Figure 9). To apply this age model, the 

distance landward that was measured at the location of each core on the lakeward side of the 

ridges was input as the x value in the age model in Figure 8 to obtain an approximate calendar 

year BP for every beach ridge in the SSM strandplain. The age of each ridge was then graphed 

versus their respective swale and FSB elevations. In Figure 9 the average difference between the 

field measured swale elevations and FSB elevations would still apply since the elevations were 

not changed by using the age model and the swale cross-strandplain elevation trend continues to 

show the same similarities to the FSB relative paleohydrograph. Figure 9 shows that the swale 

elevations would be suitable to use as a proxy for FSB elevations when the correction factor of 

1.49m is applied, and the resulting cross-strandplain elevation trend could be used as a 
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representation of ancient lake levels when elevations are graphed versus time, resulting in an 

inferred paleohydrograph. 

 

Figure 9. Field measured elevations versus age of ridges. Plot of age versus elevation data 

related to individual beach ridges in the SSM strandplain. An updated SSM paleohydrograph 

(FSB) from Johnston et al. (2012) with calibrated radiocarbon ages and a new age model. 

LiDAR 

Elevations of swales within the SSM strandplain were collected from LiDAR data to 

create a new cross-strandplain elevation trend. Swale elevations were collected from LiDAR data 

because in the field measured elevation data the swale elevations most closely matched the FSB 

elevations within the Nipissing phase at the SSM site. The topography of the SSM strandplain 

was obtained from a DEM raster (Figure 10) that was generated from the LiDAR ground points 
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of the SSM study site obtained from the NOAA digital coast (NOAA Digital Coast Data Access 

Viewer, 2021). A topographic profile that provides a cross sectional view of the SSM strandplain 

was constructed from a transect line that was created to be approximately perpendicular to the 

ridges that are seen on the DEM of the SSM strandplain (Figure 11). This transect was created to 

extend across the entire distance of the ridges in the SSM strandplain, and used the cores 

originally from Johnston et al. (2012) to interpolate the best location for the transect by 

attempting to follow the same path landward as the cores did while keeping the core locations 

equally distant from the transect.  
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Figure 10. Sault Ste. Marie strandplain DEM. DEM map of the SSM strandplain shows the 

topography of the SSM strandplain and surrounding area. The locations of the cores in Johnston 

et al. (2012) and transect line used in this project are shown on the map. 
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Figure 11. Sault Ste. Marie strandplain elevation profile. The topographic profile occurs along 

the transect line shown in Figure 10. The cross-strandplain topographic profile shows ridges as 

increases in elevation and swales occur between those ridges. From left to right the cross-

strandplain topographic profile extends approximately in the north east to south west direction. 

The cross sectional topographic profile derived from LiDAR data of the SSM strandplain 

in Figure 11 shows a trend similar to the cross-strandplain elevation trends seen in Figure 5 

(swale cross-strandplain elevation trends and FSB relative paleohydrographs). The cross 

sectional topographic profile shows much greater variability between the elevations along its 

distance when compared to the cross-strandplain elevation trend of the field measured swale 

elevations and the FSB relative paleohydrograph in Figure 9. This is due to the large amount of 

elevation data points along its distance which record both swales and ridges. The high level of 

variation seen along the cross sectional topographic profile when compared to the FSB relative 

paleohydrograph is what prevents the topographic profile from being used in its entirety as a 

proxy for FSB elevations and ancient lake levels. To reduce the variation seen in the cross 

section and create a cross-strandplain elevation trend that is an appropriate proxy for FSB 
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elevations the elevations of the swales in the study site were collected using the procedure in the 

LiDAR section of the methods. 

Swale elevations were collected from the cross-strandplain topographic profile in Figure 

11 by using ArcGIS Pro and following the procedure laid out in the LiDAR subsection of the 

methods. The distance landward of each individual swale used to obtain elevations were 

converted to approximate calendar year BP by using the individual swales distance landward as 

the x value in the age model from Figure 8. The elevations of the individual swales and their 

corresponding approximate calendar year BP were then graphed to show a cross-strandplain 

elevation trend in Figure 12 and are represented by the blue markers and line.  
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Figure 12. Paleohydrograph of the SSM strandplain including LiDAR swale elevations. LiDAR 

swale elevations create cross-strandplain elevation trend reconstructed from LiDAR swale 

elevations. The LiDAR swale cross-strandplain elevation trend shows a similar trend to both 

FSB and field swale trends. The LiDAR and field swale trends overlap in places and have similar 

elevation values across their distances. 

The cross-strandplain elevation trend made from LiDAR swale elevations in Figure 12 

shows a similar trend to those seen in the trends reconstructed from field swale elevations and 

FSB elevations. More detailed patters seen in the field swale and FSB trends can also be seen in 

LiDAR swale cross-strandplain elevation trend. The minimum elevation value for the LiDAR 

swale cross-strandplain elevation trend is almost the same as the minimum in the field swale 

elevation trend at 192.27 m and 192.31 m respectively. The end points of the field and LiDAR 
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swale cross-strandplain elevation trends are also similar at 197.95 m and 197.88 m respectively. 

One area where there is a noticeable difference between the field and LiDAR swale elevation 

trends is between 2000 years BP and 2500 years BP. Between these ages the max of the LiDAR 

trend is 197.24 m while the field swale max elevation is 196.8 m.  Figure 12 shows that, although 

there are differences between the field swale and LiDAR swale cross-strandplain elevation 

trends, they show a similar cross-strandplain trend. Due to this similarity between the LiDAR 

and field swale elevations, the LiDAR swale elevations can be used as a proxy for the FSB 

elevations and relative lake level when the correction factor of 1.49 m is applied. 

The mean difference between the field swale elevations and the FSB elevations of 1.49 m 

in Table 2 was applied as a correction factor to the swale elevations obtained from LiDAR 

(Table 4). These corrected elevations were graphed versus calibrated age BP for the strandplain 

as an inferred paleohydrograph alongside the FSB relative paleohydrograph (Figure 13). Figure 

13 shows that with the correction factor applied, the LiDAR swale inferred paleohydrograph is 

an accurate proxy for the ancient levels in the FSB relative paleohydrograph. Since LiDAR 

swale elevations are an accurate proxy for FSB elevations, the LiDAR swale elevations can be 

used to infer ancient lake levels and ancient lake-level trends recorded by relict shorelines at the 

SSM strandplain deposited during the Nipissing phase. Some variations can be seen between the 

two trends notably between 1500 and 2000 calendar years BP as well as 4000 and 4500 calendar 

years BP. Between these ages the LiDAR swale elevations show the greatest difference to the 

FSB elevations. The difference between the mean elevations of the inferred paleohydrograph and 

relative paleohydrograph is approximately 0.37 m.  



	 38	

Table 4. LiDAR swale elevation data. Includes IGLD85 datum adjustments done using 

National Geodetic Survey (NGS) Tool Kit online program IGLD85 Height Conversion (NGS, 

n.d.) Also includes elevations corrected with correction factor. Uses correction factor of -1.49 m. 

Swale 

Number 

Distance Landward 

(m) 

Elevation 

NAVD88 

(m) 

Elevation 

IGLD85 

(m) 

Corrected 

Elevation 

IGLD85 (m) 

1 0 192.16 192.27 190.78 

2 25.2 192.24 192.35 190.86 

3 61.2 192.42 192.53 191.04 

4 112.19 192.78 192.89 191.4 

5 140.39 193.25 193.36 191.87 

6 179.39 193.52 193.63 192.14 

7 227.98 194.42 194.53 193.04 

8 262.18 194.98 195.09 193.6 

9 309.58 195.23 195.34 193.85 

10 337.17 195.79 195.9 194.41 

11 394.17 195.92 196.03 194.54 

12 427.77 197.13 197.24 195.75 

13 458.97 196.7 196.81 195.32 

14 479.36 197.15 197.26 195.77 

15 531.56 196.78 196.89 195.4 

16 582.56 196.7 196.81 195.32 

17 653.35 196.88 196.99 195.5 
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Table 4. Continued. 

Swale 

Number 

Distance Landward 

(m) 

Elevation 

NAVD88 

(m) 

Elevation 

IGLD85 

(m) 

Corrected 

Elevation 

IGLD85 (m) 

18 747.54 196.89 197 195.51 

19 855.53 197.2 197.31 195.82 

21 970.13 197.49 197.6 196.11 

23 1079.32 197.95 198.06 196.57 

24 1126.71 197.98 198.094 196.604 

25 1201.71 197.84 197.95 196.46 
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Figure 13. Inferred paleohydrograph for the SSM strandplain site. Relative lake-level trends 

reconstructed from the FSB elevations and corrected LiDAR swale elevations. 

Discussion 

Field Measured Elevation Data Analysis  

 Analyses of the SSM strandplain determined that the topographic elevation of the swales 

formed during the Nipissing phase in the SSM strandplain were the best topographic proxy for 

the FSB elevations. The consistent difference in elevation, with a small standard deviation and 

small range showed that the elevation of the swales within the SSM strandplain would be the 

best topographic proxy for the FSB. The ridge crest to FSB elevation differences had a standard 

deviation and range that were larger than the swale to FSB elevation differences, making the 
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ridge crest less representative of the FSB across the SSM strandplain. The cross-strandplain 

elevation trend of the ridge crests also had more points where the trend changed direction and 

was more variable than that of the swale (Figure 5). The results also showed that when there is a 

noticeable change in the trend of the FSB relative paleohydrograph, the swale cross-strandplain 

trend follows approximately the same path as the FSB relative paleohydrograph. By determining 

that the swale elevations were the best topographic proxy for the FSB elevations, and that they 

were consistently similar to the FSB relative paleohydrograph across the entire distance 

landward, a correction factor was established. This correction factor was the calculated mean 

difference between the swale topographic elevations and the FSB elevations. The final correction 

factor value for the SSM strandplain site was 1.49 m and was subtracted from the LiDAR swale 

elevations.  

 The results showing that the ridge crest elevations were variable and inconsistent when 

compared to the FSB were expected. The dune cap which contributes to many ridge crest 

elevation changes in strandplains are related to aeolian processes and not necessarily lacustrine 

processes. Erosion, transportation and deposition, of dune caps are dependent on many factors 

that include weather or specifically wind direction and velocity, vegetation and sediment. 

Elevation of dune caps on ridges can be unrelated to the ancient lake level and not the most 

accurate representation of the environmental conditions at the time of deposition (c.f. Tamura, 

2012). The lacustrine sediment which forms the core of the ridge and the FSB is preserved inside 

ridges and considered “protected” from subsequent processes after the core of the ridge forms. 

Since the FSB sediments are buried, the lake level that resulted in their deposition is preserved. 

With the variation in elevation of the ridge crests created through aeolian processes and not 

lacustrine processes the elevations of the ridge crests are not the best predictors of ancient lake 
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levels. The multiple increases and decreases between individual ridge crest elevation points do 

not reflect the trends of water levels over time, and therefore would be misleading to interpret 

past lake-level trends and patterns. The observed elevation consistency of the swales could be 

partially due to the lacustrine and not aeolian nature of this sediment and not being covered or 

modified after the lake water initially formed the ridge.   

 Results in this thesis also found that the swale cross-strandplain elevation trend and FSB 

relative paleohydrograph were separated at a point of visible change in their cross-strandplain 

trends, the swale elevation trend followed a similar trend to the corresponding FSB cross-

strandplain elevation trend (relative paleohydrograph) even though the two plots were 

consistently separated (Figure 7). A common cross-strandplain elevation trend was important in 

determining if the swale elevations would be appropriate to use as a proxy for the FSB because 

the change observed at 400 m in the FSB relative paleohydrograph is important and associated 

with high relative lake levels at SSM. This point of change in the cross-strandplain trends 

represents a point of change in the rate of lake level change, and to be an alternative for the FSB 

the swale elevations must follow the same trend as the FSB on both sides of the changing trend. 

If the swale elevations were found to not follow a similar trend on both sides of core 1218, two 

separate correction factors would be needed to adjust the swale elevation down to the FSB 

elevations, representing the relative elevation of ancient lake levels. Finding that the swale 

elevations are similar to the FSB elevations on both sides of the observed point of change 

showed that even with changes in lake-level trends swale elevations will still accurately reflect 

lake level when a single correction factor is applied. This result reinforces the finding that the 

swale elevations can be used as an alternative elevation to elevations derived from coring FSB in 
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ridges, representing ancient lake level elevations. This alternative approach provides new 

knowledge that the swale elevations follow FSB trends in the SSM strandplain. 

Application of Topographic Elevation Data 

 In the literature review it was discussed that topographic methods previously applied to 

strandplain studies were inaccurate and variable. Reconstructing paleohydrographs for lake 

basins from Great Lakes strandplains with variable topographic methods would have resulted in 

paleohydrographs that were not an accurate representations of ancient lake levels. In Larsen 

(1994) the methods used topography along with various subsurface elevations and were 

inconsistent in the application of these elevations, which resulted in paleohydrographs that did 

not accurately reflect ancient lake levels and their associated trends. These paleohydrographs 

were not representative of ancient lake levels and their trends and patterns because the 

topography of a strandplain is not directly generated by the water in the lake but other processes 

that include aeolian processes. Lake levels do influence the formation of the strandplains and 

their associated topographic features, however the effects of other depositional and erosional 

processes that occurred after the ridges initially formed could alter the topography of the 

strandplain. Since topographic elevations of features within a strandplain are not directly 

associated with lake level and include deposition from additional process at the time of their 

formation, an elevation measurement could relate to aeolian deposition and erosion rather than 

lacustrine processes. The methods developed in Thompson (1992) resolved the issue of variable 

topographic methods and suggested the use of a direct representation of lake level by using the 

water-lain foreshore base contact elevation or FSB. The results of this thesis connect the variable 

topographic methods used in Larsen (1994) and the most accurate methods developed in 

Thompson (1992).  
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 Comparing FSB elevations, directly deposited by ancient lake level with topographic 

swale elevations allowed for a detailed evaluation of the strengths and weaknesses of using 

topographic swale elevations to reflect ancient lake levels. Topographic elevations could not be 

used alone, with confidence, until a relationship was established that ensured topographic 

elevations could be an appropriate reflection of ancient lake levels at the SSM strandplain. This 

thesis showed that swale elevations can be used as an alternative measurement to infer ancient 

lake levels in the SSM strandplain.  

A correction factor was needed to adjust indirect topographic measurements down to 

inferred elevations that better represented ancient lake level elevations. The correction factor was 

calculated by using the relationship between the FSB elevations and the swale elevations across 

the entire SSM strandplain. The correction factor vertically brings down each of the individual 

swale elevations, on average to the FSB, and therefore to a better inferred ancient lake level 

elevation. Since the correction factor adjusts the swale elevations down to an estimated water-

lain FSB contact elevation it helps interpret ancient lake levels when coring data is not available. 

However, the correction is applied as one factor to all swale elevations and not individually 

unique values in this study. It is recommended that in future studies correction factors for smaller 

groupings of ridges, as shown in cross-strandplain geomorphic and sedimentologic trends 

(Johnston et al. 2007) are explored to improve estimates of past lake level when correcting 

topographic swale elevations. Once the swale elevations are corrected they can be used to infer 

ancient lake levels and thus creates an alternative method for the reconstruction of an inferred 

paleohydrograph at the SSM strandplain.  

 Although this thesis provides a consistent way to use topographic elevations as an 

alternative method to create an inferred paleohydrograph for the SSM strandplain, there are 
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limitations. Researchers had to visit the SSM strandplain and measure topographic elevations 

(crest and swale point elevations) using survey equipment. This took funds and time to complete. 

The topographic and subsurface elevations (from cores) that were analyzed in this project were 

only from the SSM strandplain deposited during the Nipissing phase. Therefore, the alternative 

approach is only applicable to the SSM strandplain deposited in the Nipissing phase. These 

methods potentially could be applied to other strandplains that were deposited during the 

Nipissing phase but the 1.49 m average correction factor may not be appropriate for other 

strandplain locations. Other time periods need to be investigated as well. This thesis forms the 

basis to continue investigating the connection between strandplains topography as an alternative 

to FSB elevations at sites with no previous coring done.  

LiDAR  

A cross sectional topographic profile of the SSM strandplain was obtained by creating a 

transect along the entire length of the strandplain on a DEM created from LiDAR ground points. 

The topographic elevation cross section showed a high level of variability in elevation along its 

length, and would not have been appropriate to use as a proxy to infer ancient lake levels for the 

SSM strandplain. The variability in elevation of the topographic cross section was the result of it 

representing the entire strandplains topography, including both ridge crests and swales. The 

elevations of each individual swale within the SSM strandplain were extracted from the 

topographic cross section so that the LiDAR data could be better applied in the reconstruction of 

an inferred paleohydrograph. Swale elevations were then graphed versus their approximate age 

obtained from the age model, the single correction factor of 1.49 m was applied to the swale 

elevations in this graph. The resulting corrected swale topography cross-strandplain elevation 

trend was similar to the FSB relative paleohydrograph and thus the method used to reconstruct it 
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can be used as an alternative to reconstruct a paleohydrograph for a strandplain in the form of an 

inferred paleohydrograph for the SSM strandplain during the Nipissing phase.  

LiDAR is a highly accurate way to remotely obtain ground elevations. Due to this high 

level of accuracy the cross sectional topographic view of the SSM strandplain was variable in 

elevation and showed changes in elevation that would not normally be observed and recorded in 

the field. These small changes in elevation appeared on Figure 11 (cross sectional topographic 

profile) and could be misinterpreted as ridges in the SSM strandplain. If LiDAR was being used 

at a strandplain without previous cores, these small changes in elevation could cause a 

misinterpretation of how many beach ridges are in the strandplain. By misinterpreting the 

number of beach ridges in a strandplain, the swale elevations that are collected could potentially 

not be representative of actual swales in the strandplain, and could therefore result in the 

reconstruction of a paleohydrograph that is not representative of inferred ancient lake levels. To 

avoid this problem at the SSM strandplain, and to create a method that could work for a site 

without previous cores the swales were identified and then extracted from the cross section. It is 

recommended that the use of air photos in identifying swales at a study site is explored to 

provide another method of obtaining the locations of swales on a cross-sectional topographic 

profile.  Swales were chosen to be identified because the in-field elevations showed that swale 

elevations were the best topographic proxy for FSB elevations.  

To identify the swales in the SSM strandplain, the ridges were first identified on the 

DEM, then the distance landward of those ridges along the transect was transferred onto the 

corresponding topographic cross section. The swales were then considered as the lowest points 

between those ridges, and in some cases with long swale sections between ridges it was the 

lowest point closest to the half way point. After identifying the individual points where there 
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were swales, the points respective elevation and distance landward was recorded and used to 

create a cross-strandplain elevation trend. This method was successful in reducing the variation 

seen in the topographic cross section by providing a way to reduce the need for inferring what 

was a beach ridge and what was a slight change in ground surface that the LiDAR ground points 

resolved. Using this method makes the application of LiDAR more reliable by reducing the 

chances of using an elevation that is not actually a swale and therefore not reflective of ancient 

lake levels.  

One area that posed a challenge when extracting the swale elevation data from the cross 

sectional topographic profile was the selection of a distance landward to use for the elevations. In 

figure 5 (in-field cross-strandplain topographic profiles) all of the field measured elevations had 

the same distance landward and that distance was in respect to each ridges crest. The age model 

for the strandplain was also in respect to the distance landward of the ridges, so it would be 

preferable if the LiDAR swale elevations were also measured with distance landward to ridges. 

This would allow the distance landward to correspond to the FSB distance landward and thus 

make a more accurate inferred paleohydrograph. When the distance landward of the ridges on 

the cross-strandplain topographic profile were used for the swale elevations it created an inferred 

paleohydrograph that was much less accurate than the one in figure 13. This inaccuracy could 

have been caused by the variability seen in the ridge crests. As discussed previously, the ridge 

crests are subject to erosion, transportation and deposition processes unrelated to ancient lake 

level. These processes unrelated to lake level could potentially affect the distance landward of 

ridges creating variability between the ridges with no consistent distance between them. This 

could have affected the accuracy of the attempted inferred paleohydrograph with ridge crests as 

distance landward. To keep the methods of reconstructing and inferred paleohydrograph simple, 
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the distance landward of the elevation point used to measure the swale was used as its distance 

landward when graphing the cross-strandplain elevation trend and also in the age model. It is 

recommended that a method to relate the swales elevation to the ridge crest should be explored in 

the future. This would allow the swale elevation to directly overlie the FSB and thus create a 

more accurate inferred paleohydrograph.  

Creating a topographic cross section in an appropriate location of the strandplain may be 

difficult without previous cores to base the creation of the transect off of. It is essential to create 

a transect that best represents the topography of the strandplain to properly interpret its 

topography with LiDAR elevation data. The first aspect of the cross section to consider is that it 

needs to be perpendicular to the ridges. By making the transect for the topographic cross section 

perpendicular, the distances between ridges will be the best representation of the movement of 

the margins of the water and thus lake level. The transect should also cover every ridge that 

needs to be studied, if it appears that there are more ridges within the distance landward of focus 

in one area over another those ridges should be included in the transect to ensure an accurate 

representation of ancient lake level. The transect should be created where the ridges have the 

greatest distance between them. This would allow easier resolution of individual ridges and 

swales easier by maximizing the distance between them and thus making the changes in 

topographic elevation more evident on the cross sectional topographic profile. This means 

sections like the south west of SSM where the ridges are close together would not be appropriate 

for a transect. Further research should be done into this factor of using LiDAR to ensure that 

transects are providing accurate representation of the strandplain sites being studied. 
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Ages 

 The ages used in this project were radiocarbon ages of sediment samples collected from 

the bottom of wetlands in Johnston et al. (2012) that occur in the swales of the SSM strandplain. 

The use of these wetland samples for ages is based off of the assumption that the wetlands 

formed immediately after the formation of the confining ridges. This assumption may not be 

correct for the wetlands. It was found that multiple ages of samples that did not follow the 

expected trend of the ridges getting younger as they become more lakeward. These ages of these 

wetland samples could have been altered from external factors, or the formation of the wetlands 

may have not followed the assumption that they formed immediately after the confining ridges. 

The use of OSL ages has been determined to be more accurate than radiocarbon since the 

sediments being dated are directly from the foreshore and are therefore directly related to the 

water level (Argyilan et al., 2005). To create a more accurate age model for future applications 

of this projects methods the use of a site with OSL ages of the ridges is recommended.  

 A limitation of the methods presented in this project involves the need for age data to 

reconstruct paelohydrographs. LiDAR data provides highly accurate spatial data that can be used 

to remotely find elevation and distance landward that can be used in the reconstruction of 

paleohydrographs. However, to reconstruct a paleohydrograph the ages of the ridges and an age 

model for the strandplain study site are required. There is no remote way to obtain age data, so 

these methods would still require the collection of sediment samples to obtain the ages of the 

ridges at the study site and to develop an appropriate age model for the study site.  

Implications 

 This thesis showed that LiDAR swale elevations along with an appropriate correction 

factor can be used as an alternative to FSB elevations to reflect ancient lake levels when 
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reconstructing paleohydrographs. The use of LiDAR to reconstruct inferred paleohydrographs 

creates the opportunity to study strandplains that are difficult to access for field work and core. 

This new method uses a remote method by analyzing LiDAR to estimate the elevation of past 

lake levels in ancient shorelines. Analysis of more strandplain sites across the Great Lakes can 

help refine the spatial and temporal understanding of ancient lake levels, providing insight into 

natural trends and patterns of ancient lake levels impacted by climate, GIA and changes in active 

outlets. The use of LiDAR could help fill in gaps of time that have not been studied yet 

providing a more comprehensive understanding of ancient lake levels. This method could also be 

applied to new strandplain sites in different locations around the lake basins to help study the 

effects of GIA to relative lake level. A major application of the new method presented in this 

thesis would also be in the preparation aspect before for field work is conducted. Reconstructing 

paleohydrographs from LiDAR topography can help gain insight into a new site before 

completing field work. The results from this could help guide the field work and potentially alter 

plans before field work has begun. For example, the inferred paleohydrograph could help 

identify areas in the strandplain with the most number of beach ridges and reveal potential core 

locations to obtain FSB elevations. This could also help select potential sampling areas for age 

analysis like OSL age-dating. LiDAR data is the most detailed method to obtain topographic 

elevations and has provided a pathway for remote spatial analysis unlike anything previous. And 

much of this LiDAR data is free to obtain especially along the U.S.A coastline of the Great 

Lakes, as the Canadian coastline is being collected. This allows for an inferred paleohydrograph 

to be reconstructed in an inexpensive manner which can help reduce costs of field work by 

guiding the process and making the researches better prepared for field work. One such 

preliminary application is in Opersko (2021) where a fellow undergraduate student applied this 
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method to strandplain data in the Stockton Island Tombolo (SIT), Apostle Island National Park, 

Wisconsin, U.S.A. Opersko’s (2021) inferred paleohydrograph for SIT is helping guide field 

work and will be evaluated after field work has been completed. The new methods presented in 

this thesis has incredible potential but should really be investigated in different strandplains and 

different parts of the strandplain that were deposited in time periods other than the Nipissing 

phase.  

Conclusion 

 The Great Lakes are currently experiencing high water levels, which are negatively 

impacting stakeholders, coastal infrastructure, and coastal environments. Understanding the 

context for the high lake levels that are being experienced today, and past natural lake-level 

fluctuations is essential in mitigation their impacts and preparation efforts. To understand lake-

level fluctuations stakeholders normally examine the historical or instrumental records of lake 

level to gain insight into past trends and patterns that could be projected into the future. But it is 

also essential to understand the long-term or natural fluctuations of ancient lake-level trends and 

patterns that provide context for modern changes in lake levels. Ancient natural lake-level trends 

and patterns are derived from strandplains of beach ridges that have within them a preserved 

record of ancient lake levels, providing a valuable source of detailed information about natural 

conditions. 

 Summarized in Johnston et al. (2014), they describe that Baedke and Thompson (2000) in 

the Michigan basin and Johnston et al. (2012) in the Lake Superior basin have applied the 

subsurface coring method developed in Thompson (1992) to study strandplains and reconstruct 

the most detailed account of ancient lake-level trends and patterns in paleohydrographs. This 

thesis provides a potential alternative method, where coring individual beach ridges has not been 
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completed yet or is not feasible to preliminarily infer the elevation of ancient lake levels 

recorded in strandplains. The potential to reduce costs and increase the accessibility of studying 

relict shorelines of the Great Lakes strandplains creates an opportunity to apply this alternative 

method in many future studies. This alternative method could expand insight into ancient lake-

level trends and patterns by bridging gaps of time that have not been studied, and by studying 

new strandplains that have previously had no field completed. By expanding insight into ancient 

lake-level trends and patterns stakeholders can gain more detailed and refined context for current 

high levels, historical fluctuations and the underlying natural geological fluctuations. In doing 

this, stakeholders can then gain new perspectives and better context to the relatively high lake 

levels causing erosion and flooding and can better prepare for potential future fluctuations in lake 

levels of the Great Lakes.  

Recommendations 

 The results of this thesis are limited to only the SSM strandplain within the Nipissing 

phase, and therefore it is recommended that the methods of this thesis should be expanded to 

new locations with strandplains and lake level phases within the Great Lakes (i.e. Algoma, Sault, 

Sub-Sault described in Johnston et al. 2014). The methods used in this project should first be 

applied to additional strandplain sites within Lake Superior that have previously had field work 

completed for them to determine if the elevations of the swales within the strandplains are 

consistently the best proxy for the FSB elevations. This can be done by applying the same 

statistical tests to the strandplain sites being studied, and by reconstructing cross-strandplain 

elevation trends, relative paleohydrographs and inferred paleohydrographs to visually analyze for 

similarities. If it is determined that the topographic elevation of the swales at different 

strandplain sites are also the best proxy for the respective strandplains FSB elevations a 
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correction factor should be established for those individual strandplains. The correction factors 

for the new sites should then be compared to determine if there are any similarities between 

them, by determining similarities a basin-wide correction factor could potentially be established. 

This basin-wide correction factor could potentially represent all strandplains within the Lake 

Superior basin and be used to correct swale elevations to be representative of ancient lake levels 

at sites that have previously not had field work done on them. However, one correction factor 

may not be appropriate for an entire basin or even within a single strandplain. The cross-

strandplain trend of FSB elevations could change relative to swale elevations across a strandplain 

and therefore require multiple correction factors. This should be explored further to see if 

multiple correction factors could be used within a strandplain for groups of ridges to reconstruct 

a more accurate inferred paleohydrograph. The relation of individual swales distant landwards to 

their corresponding ridge crests distance landward should also be explored to determine if the 

ridge crest distance landward can be applied to swale elevations when graphed and in age 

models. 

 If there is an appropriate basin-wide correction factor for Lake Superior, or any other 

Great Lake basins, it should be attempted to try to apply the correction factor to a strandplain site 

that has not previous had field work completed. To do this field work would have to be done to 

collect the ages of the ridges at the site to reconstruct an inferred paleohydrograph. The 

elevations should be obtained from LiDAR and then graphed versus the ridges approximate age 

in calendar years BP. The resulting inferred paleohydrograph should then be compared to other 

paleohydrographs that have been reconstructed from other sites. By comparing the new inferred 

paleohydrograph to existing ones reconstructed from FSB elevations it can be determined if the 

LiDAR swale elevations created an appropriate inferred paleohydrograph. If it is found the 
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LiDAR swale elevations are an appropriate alternative to FSB elevations in the reconstructions at 

sites with no previous field work completed this method could be used in future applications to 

expand the understanding of the Great Lakes ancient lake-level trends and patterns.  
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