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Abstract 

This thesis provides a combined experimental and numerical study to explore the mechanical and forming behavior 

of E-form Plus Mg alloy. For the last few decades, Mg alloys are a key of interest for replacing heavier steel and 

aluminum car body parts in the automotive industry. Mg alloys are known due to their outstanding mechanical 

properties. However, the formability of Mg alloys at room temperature needs to be improved. In these regards, E-form 

Plus Mg was chosen for the study due to the improved formability at room and elevated temperatures. The goal of this 

work is to enhance the understanding of the mechanical behavior of the material and microstructure-property 

relationship at various strain rates and temperatures. 

In these regards, the experimental investigation of mechanical behavior and texture evolution for E-form Plus Mg 

alloy at various strain rates and temperatures is performed. In order to establish the correlation between mechanical 

properties of the alloy and temperature, strain rate, an energy-based material model using on Arrhenius-type relation 

is proposed. The model is incorporated into Taylor-type crystal plasticity framework. This model is used as a 

predictive tool to obtain the stress-strain response and the texture evolution for E-form Mg alloys at different strain 

rates and temperatures. The predictive capability is shown by comparison the experimental and simulated data. 

Next, the developed model is applied to build a linkage between the mechanical response and deformation 

mechanisms. The activity of various deformation mechanisms at different strain rates and temperatures is obtained. 

The simulated data were analyzed to understand the influence of temperature and strain rate on mechanical properties 

and microstructure and texture evolution of E-form Plus Mg alloy. 

Finally, the developed modeling approach in conjunction with the M-K framework is applied to generate the forming 

limit diagrams (FLDs) for E-from plus Mg alloy. The simulated results were used to analyze temperature and strain 

rate effects on forming behavior of the material. The obtained results successfully predict the effect of temperature on 

FLD. It is shown that a decrease in temperature improves the formability of Mg alloys. However, the models show 

the inability to capture the strain rate influence on the forming limit curves (FLCs). The analysis of deformation 

mechanisms is provided to explain the strain rate dependence of the E-form Plus Mg alloy forming behavior. 
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 1 

1 Introduction 
The automotive industry is currently focused on improving fuel efficiency and minimizing adverse environmental 

aspects. Fuel is one of the major operational expenses and thus, the improvement in fuel efficiency is a way to save 

money for years to come. Second, due to the environmental policies imposed by the CAFÉ (Corporate Average Fuel 

Economy) regulations, the amount of greenhouses gases produced by fuel burning, mostly in the form of carbon 

dioxide (CO2) and NOx, have to be reduced. These emissions contribute to climate change. Therefore, the automobile 

industry has to use new lightweight materials for producing car components. In these regards, magnesium alloys have 

attracted enormous attention as they are the lightest engineering structural materials and possess high specific tensile 

strength and rigidity. 

Currently, the light materials, which are used for producing automobile parts, are mostly aluminum alloys [1]. 

Replacing steel parts by aluminum parts gives a weight reduction of ~40%. However, using magnesium alloys for the 

same needs lead to a weight reduction of ~60% compared to steel.  

Thereby, the successful implementation of magnesium alloys to the automotive industry is a way to get a significant 

weight reduction. Some vehicle manufacture companies have successfully produced car components from Mg alloy 

sheets by warm metal forming processes. Figure 1 shows the prototypes of car tools made of AZ31 produced by 

different companies [2].  

 
(a) 

 

(b) 

 

(c) 

 

(d) 

 
Figure 1. Prototypes of car tools successfully produced from AZ31: (a) shows door inner reinforcement produced (FhG, 
IWU Chemnitz), (b) car roof (MgF Magnesium Flachprodukte GmbH), (c) automobile rear panel (BMW) and (c) part of 

crossmember (AWEBA Werkzeugbau GmbH and Karosseriewerke Dresden GmbH) [2]. 
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Figure 2 demonstrates other potential applications of Mg alloys for the car industry, such as closures and doors, outer 

panels [3]. To produce these body parts, different manufacturing processes can be applied, such as forging, casting, 

die-casting and sheet metal forming. 

Among the fabrication processes, sheet metal stamping is favorable for the production of thin-walled structural 

components. Therefore, all materials have their drawbacks, and magnesium is not an exception. Amongst various 

reasons for the limitation of the usage of Mg alloys in automotive manufacture, such as low material strength at 

elevated temperatures, poor corrosion, and galvanic corrosion resistance, the major problem is the poor formability at 

room temperature (some crack formation happens), which limits the usage of these materials in forming processes at 

room temperature [1, 3, 4]. To improve the performance of Mg alloys, i.e., improve the formability, the warm forming 

processes could be used. However, warm forming techniques are rather costly and time consuming operation, which 

makes crucial to choose the most efficient conditions for forming processes (material, temperature, strain rate) [5].  

 

 
Figure 2. Potential applications of Mg alloys for car industry [5]. 

Figure 3 shows the specimen of ZEK100 after three-point bending at room temperature [6]. It is seen that some crack 

formation happened during deformation process. To improve the fabrication process, numerical models, along with 

experimental investigation, can be applied for optimization of manufacturing techniques [1].  
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(a) (b) 

Figure 3. The deformed three-point bend specimen: (a) tension and (b) compression zones [6]. 

Numerical models based on crystal plasticity theory are powerful tools to predict microscopic behavior of a material. 

Hence, understanding of the deformation mechanisms and their influence on the material mechanical response of the 

material and texture evolution starts playing a crucial role [1].  Mg alloys have various deformation mechanisms: 

crystallographic slip, deformation twinning, and grain boundary sliding. There are fewer slip systems operational in 

Mg: basal <a> slip systems – are easily activated, prismatic <a> and pyramidal <a> slip systems require higher applied 

load or elevated temperature to be active. However, the slip systems mentioned above are not capable of 

accommodating the strain along c-axis. To accommodate deformation along c-axis, second pyramidal <c+a> slip 

system has to be activated, and/or deformation twinning needs to occur [7]. Deformation twinning has a tremendous 

influence on the evolution of crystallographic texture, asymmetry of tension/compression yield limit, plastic 

anisotropy and strain-hardening rates [7-13].   

Various factors strongly affect the mechanical response of Mg alloys. Among them are the initial texture of a Mg 

alloy, the temperature regime used during the deformation process, and the strain rate applied. Crystal plasticity 

models are capable of predicting the mechanical behavior and the texture evolution of Mg alloys [1]. However, there 

is no accurate implementation of the model that captures both strain rate and temperature effects to the crystal plasticity 

framework. The ‘virtual try-outs’ of the forming processes at a certain strain rate and temperature through numerical 

models can drastically improve the part optimization and reduce time-to-market.  

Lately, E-form Plus Mg alloy (easy-form) with improved formability at a room to elevated temperatures has garnered 

attention. However, there is a lack of a comprehensive analysis of the mechanical behavior and texture evolution of 

E-form Plus Mg alloy at various strain rates and temperatures. This research project is focused on the experimental 

and computational analysis of mechanical and forming behavior for E-form plus Mg alloy. To understand the linkage 

between mechanical response and microstructure evolution, a new energy-based model based on the Arrhenius-type 

equation will be developed to predict the mechanical response at a given temperature and strain rate. The energy-

based model will be implemented within the Taylor-type crystal plasticity model for HCP alloys proposed by 

Levesque et al. (2010) [1]. The model will be used to analyze slip activity and twin formation for E-form plus Mg 

alloy.  The strain rate and temperature effects on deformation mechanisms and texture evolution will be discussed. 

Lastly, the analysis of the temperature and strain rate effect on the forming behavior of E-form plus Mg alloy will be 

provided. The developed model will be implemented into Marciniak and Kuczynski (M-K) framework to predict the 

forming limit diagrams for the material at various strain rates and temperatures. The FLCs obtained at different strain 
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rates and temperatures will be observed to capture the influence of these parameters on the formability of E-form plus 

Mg alloy. 
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2 Background 
The previous section provided a brief introduction the research work. This section explores the relevant background 

information and provide some important details on the material science and microstructural aspects (such as crystal 

structure, crystallographic slip, Schmid’s law, deformation twinning) of magnesium alloys. 

2.1 Crystal Structure 
Two-thirds of all elements on our planet are metals. Furthermore, metals make up approximately 24% of the planet's 

mass. These materials are widely used because of their valuable properties, such as strength, high electrical and 

thermal conductivity, high ductility, corrosion resistance [14]. 

Metals are crystalline solids that have the long-range periodicity of atom arrangement. This periodicity is known as a 

‘crystal structure’, and the basic repeating structure is the ‘unit cell’. By periodical repeating the unit cell, the location 

of all atoms is determined in the material. There are 14 different types of crystal lattices [15, 16]. Figure 4 illustrates 

some of the typical unit cells. 

 

Figure 4. Crystal lattices: body-centered cubic (BCC), face-centered cubic (FCC), hexagonal closed-packed (HCP). [16] 

These are the most common crystal structures for the metal materials – the main interest of the automotive industry. 

The metals with BCC crystal lattice are chromium, vanadium, and iron. Metals such as aluminum, copper, nickel, and 

silver represent the materials with FCC crystal lattice, while magnesium, titanium, and zirconium have the HCP crystal 

structure. This document will focus on magnesium with the hexagonal close-packed crystal structure (HCP) [17]. It is 

known that magnesium has a c/a ratio of 1.624, which slightly differs from the ideal ratio of 1.633. This difference in 

the c/a ratio makes basal slip systems glide easier in Mg in comparison to other HCP metals [18, 7]. 

2.2 Deformation Mechanisms in HCP Polycrystals 

2.2.1 Crystallographic Slip 
A perfect crystal with all atoms in its correct positions does not exist in nature. Real materials contain imperfections 

(defects) in their structure. These defects play an essential role in the mechanical properties of a material. There are 

some main types of defects in the crystal lattice: point, linear, and planar defects. The most common example of point 

defects is a vacancy when one atom is missing or irregularly located in the crystal lattice. Vacancies contribute 

significantly to the behavior of the material during the deformation at high temperatures. Linear defects are 

imperfections in which a group of atoms places in its' irregular positions. Linear imperfections are commonly known 

as dislocations. 
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Two types of linear dislocations can be identified: screw dislocation and edge dislocation. The screw dislocation is 

shown in Figure 5 (a). This dislocation type can be described by cutting a perfect crystal along a plane that shears one 

half across the other by one atom space. The Burgers vector b is parallel to the screw dislocation. An edge dislocation 

can be illustrated by slicing partway through a perfect crystal, spreading the crystal apart, and partly filling the cut 

with an extra plane of atoms. The schematic representation of the edge dislocation is shown in Figure 5 (b). The 

Burgers vector b is perpendicular to the edge dislocation [19].  

 

 
(a) 

 
(b) 

Figure 5. The screw dislocation (a) and the edge dislocation (b) [19]. 

Movement of dislocations plays a crucial role in the plastic deformation [20]. The dislocation motion can be 

represented as a movement of a caterpillar (Fig. 6) [21]. The caterpillar hump is representative of the edge dislocation 

motion happens along the preferable plane in the particular direction.  

  

 
Figure 6. Illustration of dislocation movement similar to the motion of a caterpillar [21]. 

This plastic deformation mechanism is known as crystallographic slip and occurs parallel to a definite plane and in a 

definite direction. The set consists of a slip plane and a slip direction is known as slip system [22]. The Miller-Bravais 

index system is used to determine slip plane and slip directions for HCP crystal lattice. The Miller-Bravais notation is 

4-index notation {hkil} (Fig. 7) [23].  

 



 7 

 
Figure 7. Miller-Bravais notation for the hexagonal system [23]. 

 

The first three indices of this notation - h, k, and i – are aligned by a1, a2 and a3 axis and related to the basal plane. 

The i-index is called redundant, cause this index could be represented from the first two indices by the formula i = - 

(h+k). The l-index represents c-axis, which is perpendicular to the basal plane [23]. Thus, a family of slip planes and 

slip directions are defined by four integers {hkil} and <hkil> respectively [24].  

 

 

Figure 8. Slip system: basal, prismatic, pyramidal <a> and pyramidal <c+a> [25]. 

There are four different slip systems in HCP: basal, prismatic, pyramidal <a> order, and pyramidal <c+a> order (Fig. 

8) [25]. The Miller-Bravais indexes for slip systems are presented in Table 1 [1]. Among these slip systems, only 

pyramidal slip systems can accommodate the deformation along c-axis, and this will be important later on [7]. 
 
Table 1. Active slip systems in magnesium alloy [1]. 

Slip systems {0001} <12#10> Basal 

{101#0} <12#10> Prismatic 

{11#01} <112#0> Pyramidal <a> 

{12#12} <12#13#> Pyramidal <c+a> 
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Liu et al. (2019) [26] in their work illustrate the process of plastic deformation due to crystallographic slip in the 

single-crystal sample. The mechanism of dislocation generation and further glide in high purity Mg single-crystal 

during in-situ micro compression along c-axis was investigated. The experiment was carried out in a transmission 

electron microscope. Figure 9 shows the scheme of the experiment, stress-strain curve obtained during the experiment 

and in-situ TEM images of Mg single-crystal pillar at different strain levels. Dislocations were generated at the top 

part and propagated through the pillar towards the bottom part. 

 

 
Figure 9. In-situ compression test provided for Mg single-crystal pillar along c-axis [26]. 

Previously, it was found that yield stress obtained during uniaxial tension or compression tests on a single crystal 

sample significantly depends on the angle the loading axis makes with the crystal lattice orientation [27]. Moreover, 

the crystallographic slip mostly occurs on the close-packed planes and in the close-packed directions, i.e., planes and 

directions with a maximum density of atoms [25]. 

In 1924 Schmid carried out the uniaxial tension experiment on a single crystal of zinc and found out that the stress 

applied on the slip plane along the slip direction (called resolved shear stress or RSS) determines the initiation of 

plastic deformation [27]. If RSS reaches its critical value, i.e., the critical resolved shear stress (CRSS), a particular 

slip system gets activated, and plastic deformation begins. The CRSS is the material parameter and varies from one 

material to another. This relationship between applied stress and the orientation of a slip system is known as Schmid’s 

law. The following scheme [28, 29] represents this law: the force F is applied to a cylindrical object made of a single 

crystal along the axis of the cylinder. The shear stress resolved on the slip plane in slip direction induced by the applied 

force is following the equation:  

 

𝜏! = s 𝑐𝑜𝑠 l ∙ 𝑐𝑜𝑠y =
𝐹
𝐴"
𝑐𝑜𝑠 l ∙ 𝑐𝑜𝑠y	

 

(1) 

𝑀 = 𝑐𝑜𝑠l ∙ 𝑐𝑜𝑠y (2) 

  

where s is applied uniaxial stress, F is applied unidirectional force, A0 – the initial area of the section, y - the angle 

between the normal vector to the slip plane and applied force, l - the angle between the glide (slip) direction and 

applied force and M – the parameter known as Schmid factor (Fig. 10). 
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Figure 10. Schematic representation of Schmid’s law [28]. 

 
2.2.2 Crystallographic Twinning 
A twin is a special structure which could be formed during such processes as recrystallization of cold-worked material 

(annealing twins), solidification from liquid phase (growth twins), solid-state transformation (phase transformation 

twins) and plastic deformation mechanism under stress applied. The last group of twins are also known as deformation 

twins. The twinning process induces a rotation within part of an initial crystal matrix (parent matrix) and forms its 

mirror reflection along some mirror plane [30]. The schematic representation of the difference between 

crystallographic slip and twinning is shown in Figure 11 [31]. 

 

 

Figure 11. Crystallographic slip and deformation twinning in a face-centered cubic crystal [31]. 

 

Materials with an HCP crystal lattice have two important deformation mechanism: crystallographic slip and 

deformation twinning. There are fewer slip systems that can be easily activated at room temperature in the HCP crystal 

lattice than, for instance, in a cubic lattice [1]. Moreover, only pyramidal slip systems can accommodate deformation 
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along c-axis. Thus, to compensate for the insufficiency of slip modes to accommodate the deformation along c-axis, 

deformation twinning has an important role in the mechanical behavior of magnesium [7]. Figure 12 shows two main 

twinning systems in magnesium: extension (a) and contraction (b) twins [26]. 

 

 
Figure 12. Twin systems in HCP magnesium alloy [26]. 

Extension twinning occurs on the {101-2} plane in the <1-011> direction, when c-axis is in extension, and the 

contraction twinning occurs on the {101-1} plane in the <101-2-> direction, which gives contraction along c-axis [1]. 

Extension and contraction twins re-orient initial crystal lattice differently. The extension twins rotate the crystal lattice 

by 86.3° about <112-0> directions, while the contraction twins re-orient the initial matrix by 56.2° about the same 

directions. The resulting twin thickness depends on twinning shear s value, which is to equal 0.1289 for extension 

twins and 0.138 for contraction twins [10]. Jeong et al. (2018) [32] in their work illustrate the process of twin growth 

and reorientation of the initial crystal matrix in the single-crystal sample. The mechanism of twin nucleation in high 

purity Mg single-crystal during in-situ micro compression was investigated. The experiment was carried out in a 

transmission electron microscope. Figure 13 shows the {101-2} twin nucleation and propagation during this 

experiment. The twin starts to form under 1.2% of compression.  

 

 

Figure 13. A series images of {101 ̅2} twin formation at different obtained by of in-situ TEM compression of high purity 
Mg single crystal pillar: a) before compression; b) compression strain is 1.0%; c) compression strain is 1.2%; d) 

compression strain is 1.2% (the arrow indicates the area of initial twin formation); e) compression strain is 1.5% (twin 
propagation) [32]. 

The schematic representation of orientations of parent matrix and {101-2} twin formed in Mg single crystal pillar is 

shown in Figure 14 [32]. 
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Figure 14. Schematics representation of orientations of the initial crystal matrix and {101 ̅2} twin formed during 

compression till 3% of strain [32]. 

In the polycrystal, deformation twinning influence both initial microstructure and texture of a material [12]. Figure 15 

shows the inverse pole figure maps demonstrating the microstructure evolution during in-situ compression of pure Mg 

at different strain levels: (a) un-deformed, (b) 3.3% and (c) ~20%. It is seen, that at 3% of strain some extension twins 

got formed (indicated here as green needle-like shapes), while at ~20% strain, a significant volume fraction of 

microstructure has reoriented by twinning. The volume fraction of extension twins reported in this work is calculated 

to be ∼95% for pure Mg after 20% strain. 

 

 
Figure 15. IPF EBSD maps showing the evolution of microstructure with compression in pure Mg at: (a) 0%, (b) 3.3% 

and (c) ~20% strains [12]. 

 

The texture evolution is presented in Figure 16 [12]. Pole figures show texture re-orientation due to the formation of 

extension twins. The texture gets rotated ~86° relatively to the initial orientation along the loading direction, i.e., CD 

or compression direction in the figure.   
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Figure 16. Texture evolution with compression for pure Mg at 0% (a), 3.3% (b) and 20% (c) strain [12]. 

 

The crystallographic relationship between the parent matrix and a twin is described by interdependent four elements 

(K1, K2, h1, h2) [33, 31]. The K1 symbol describes the undistorted habit plane or invariant plane where twinning shear 

occurs, h1 represents the twinning direction or its also known as shear direction. The shear plane S is perpendicular 

to habit plane K1 and contains K1 and K2 plane normal and shear direction vector h1. The  K2 symbol describes the 

second undistorted or invariant plane and the vector of the intersection of this plane with the shear one is given the h2 

symbol – conjugate twinning direction (Fig. 17).  

 

 
Figure 17. Twinning crystallographic elements [33]. 

During the twinning process, the part of the material above K1 plane is sheared by an amount s. The value of this 

twinning shear is defined by the formula:  

𝑠 = 2𝑡𝑎𝑛	(j)	 (3) 

  

where j is the half of the angle between h2  and h2T. In magnesium, contraction and extension twins induce 180° 

crystal rotation around the normal to the plane K1. The deformation twinning produces a new reoriented crystal lattice, 

which leads to macroscopic shape changes [33].  

2.3 Texture 
Most of the materials are polycrystalline. Predicting the mechanical response of polycrystalline aggregate from single-

crystal properties involves the understanding of material crystallographic texture, i.e., the preferential orientation of 

all crystals (grains) in a polycrystal [34, 35]. The word “orientation” describes the relationship between two coordinate 
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frames: a crystal lattice orientation of particular grain and sample coordinate frame. Each grain in the polycrystal has 

its orientation, and this orientation can be represented by three Euler angles (j1, f, j2) [35, 36]. These angles are used 

to represent the texture of the material. There are few methods to describe the texture by using Euler angels: pole 

figures, inverse pole figures, and orientation distribution function. 

The actual distribution of orientations in a polycrystal is a result of the manufacturing process and has a significant 

effect on the mechanical properties of the material [34]. To give a better understanding of the crystallographic texture 

of the material, a pole figure representation can be used [36]. A pole figure shows the stereographic projection of 

crystallographic directions of all grains. Figure 18 presents the standard scheme of pole figure stereogram. To build a 

pole figure, the sphere with unit radius is used (projection sphere). The coordinate frame of the projection sphere is 

aligned with the sample frame [35]. The sample coordinate frame for a rolled product is usually defined by three 

directions: normal direction (ND), rolling direction (RD) and transverse direction (TD) [35].  

 

 

Figure 18. The schematic representation of pole figure projection sphere [35]. 

 

The pole figure stereogram represents not only the preferred orientations in a material, but the density of orientations 

by using contouring lines of equal intensity, or iso-density lines [36]. 

A crystallographic texture of polycrystalline aggregate can also be represented by the inverse pole figure [36]. In an 

inverse pole figure, the coordinate frame of the projection sphere is aligned with the crystal frame. An inverse pole 

figure visualizes the stereographic projections of sample axes: ND, RD, and TD; and is used to show a certain texture 

type. As a result, an inverse pole figure shows some textures more clearly.  

Crystallographic texture can also be characterized by an orientation distribution function or Euler angle space. The 

Euler angle space is a series of two 2D cross-sections, where one of the Euler angles is fixed, and two others are varied 

[35, 36].  
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2.4 Grain Boundaries 
The microstructure of polycrystalline metals consists of many grains. Figure 19 shows the typical EBSD (Electron 

Backscatter Diffraction) inverse pole figure map [37]. Each grain represents a portion of material with identical 

crystallographic orientation. The colors on the map identify different crystallographic orientations. The red color 

represents [0001] basal orientation, and the green color introduces the [211----0] orientation.  

 
Figure 19. EBSD inverse pole figure map for Mg-0.2%Ce [37]. 

 

The grain boundary is an interface between two neighboring grains and can be described by misorientation between 

the grains. Grain boundaries can be defined as surface defects and play a crucial role in the mechanical response of 

material (Hall-Petch effect). Formation of twins inside the grain rotates the initial matrix into its mirror reflection and 

divides the grain into parts. The interface between parent grain and formed twins acts as a grain boundary and affects 

mechanical properties (Hall-Petch-like effect). Figure 20 (a, b) shows transmission electron microscopy images of 

twins formed in AM30 alloy [38]. It is seen, that the initial grain gets subdivided due to the formation of twins, and 

the boundary between formed twins and their respective parent grains plays the same role in deformation process as 

an ordinary grain boundary. In both cases, grain boundaries act like obstacles and prevent the movement of 

dislocations and slip transmission across grains, thereby influencing the strain hardening behavior of a material. 

 

  
Figure 20. TEM images of twins formed in the matrix of a parent grain due to deformation [38]. 



 15 

2.5 Formability 
It has been an issue to find a correlation between metal stamping process and the knowledge of material properties. 

The “formability” or “forming limit” is a concept used to characterize forming capabilities of metals and is determined 

by the onset of localized necking. In a practical sense, the forming limit diagram (FLD) was introduced by Keeler 

(1961) from his experimental investigation on plastic instability and fracture for sheets stretched over rigid punches 

[39]. His idea was proven to be successful in the prediction of the onset of necking during deformation. Another 

approximation was provided by Goodwin. The idea was based on an analysis of FLD and used to determine the factors, 

which should be changed to produce stampings with less scrap and lower cost [40].  

The Considère Criterion, which is when the strength increases due to hardening, #$
#%
, is equal to the stress due to 

thinning, is the criterion of necking occurrence: 
 

𝑑𝜎
𝑑𝜀 = 𝜎 (4) 

  

The concept of forming limit curve (FLC) is based on the series of points that corresponds to the limit strain of the 

material for proportional stretching within a range from uniaxial to biaxial tensions. The proportional stretching ratio 

r is defined as follows: 

 

𝜌 =
𝐷&&
𝐷''

=
𝜀&̇&
𝜀''

, −0.5 ≤ 𝜌 ≤ 1.0	 (5) 

  

Where Dij is the symmetric part of the velocity gradient and is equal to logarithmic strain rates 𝜀()̇ . If the proportional 

stretching ratio 𝜌 is equal -0.5, then uniaxial tension happens. If 𝜌	is equal 1.0, the equibiaxial deformation occurs. 

Figure 21 shows the schematic representation of FLC of FLD obtained by the summation of the major and minor 

strains [41].  
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Figure 21. Schematic sample of FLD [41]. 

Experimentally, there are few techniques to obtain FLD for metal sheets: Nakazima [42], Marciniak [43], and Erichsen 

tests [44]. These techniques use a punch to deform sheets of various dimensions and notch combinations to vary the 

strain path as it is shown in figure 22 [45]. 

 

 
Figure 22. Specimen dimensions for the generation of forming limit diagram [45]. 

 
2.5.1 Theoretical Prediction of FLDs 
Recent studies show that numerous parameters affect the prediction of FLDs. Although experimental techniques for 

generation FLDs are widely used and well-developed, it is difficult to evaluate the influence of each parameter on an 

FLD experimentally, since it is impossible to change one at a time. Also, experiments are expensive and time-

consuming compared to numerical simulations of FLDs.  There are few numerical models to obtain a forming limit 

diagram.  

Swift in 1952 [46] proposed a method for defining the diffused necking onset in homogenous metal sheets. The 

instability criterion based on the definition of maximum load under proportional loading was developed. It was shown 
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that the limit for major strain in diffuse necking could be obtained as: 

 

e'*+,+- =
2𝑛(1 + 𝜌 + 𝜌&)

(𝜌 + 1)(2𝜌& − 𝜌 + 2) ,−0.5 ≤ 𝜌 ≤ 1.0 
(6) 

  

Where n is the hardening exponent of the sheet, the flow stress behavior is assumed to be defined by a power-law 

behavior. The same year, Hill [47] proposed the criterion for localized necking along a zero extension direction. 

However, when a metal sheet is subjected to biaxial tension, there is no line of zero extension in the plane. Thus, the 

criterion proposed by Hill does not predict the localized necking onset in this case. 

Marciniak and Kuczynski (M-K approach) [48] in 1967 introduced the first analytical model for evaluating sheet metal 

formability. The M-K analysis is based on the assumption of an inherent geometric or structural non-homogeneity or 

imperfection within the material. It was shown that the presence of even slight inhomogeneities throughout a 

deforming sheet could lead to unstable growth of strain in the weaker regions, and subsequently, the localized necking 

and failure occur. 

Since then, the M-K analysis has received a significant amount of attention. Hence, the M-K approach is one of the 

most powerful and widely used methods for evaluation sheet metal formability.  

2.5.2 Numerical Simulations of FLDs. 
Within the M-K approach framework, the phenomenological models were used to investigate the influence of various 

constitutive features on FLDs. It is known, that such parameters as material rate sensitivity, the anisotropy of material 

and yield surface vertices, affect the FLD. Hutchinson and Neal in 1978 [49] presented a series of works on necking 

in metal sheets and discussed the difference of deformation theory and flow theory methods for formability analysis 

with strain-rate and time dependence on the FLD. Neal and Chater (1980) [50], Lian et al. (1989) [51] showed that a 

slight change of the shape of the yield surface for a metal sheet could lead to a large variation in FLDs. However, 

since microstructure and microscopic properties determine the mechanical properties of material, phenomenological 

models are not able to account the effect of the microstructure and its evolution and remain a diagnostic rather than 

predictive tool. 

To incorporate the effect of microstructural evolution, crystal plasticity FLD analyses are used. Bassani et al. [52] and 

Barlat and co-workers (1987, 1989) [53, 54, 55] introduced a series of Bishop-Hill yield surfaces. It was concluded 

that there is a good agreement between FLDs with corresponding experimental data. However, the evolution of yield 

surfaces during deformation process and effect of elasticity were not considered in these works. Zhou and Neale 

(1995) [56] used a rate-sensitivity crystal plasticity model in conjunction with M-K approach to predict FLD for FCC 

metals. Although, the initial texture and its evolution were incorporated in their analysis, the groove imperfection was 

assumed to be normal to the major principal stretch direction and elasticity effect was neglected. Wu et al. (1997) [57] 

developed a rate-sensitive polycrystal model to compute the FLDs. The model is based on the elasto-viscoplastic 

Taylor-type crystal plasticity mode along with M-K analysis. The effect of initial imperfection intensity and 
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orientation, initial texture and its evolution, crystal elasticity, strain-rate sensitivity, single slip hardening, and latent 

hardening on FLD predictions were discussed in details. Inal et al. (2005) [58] used the elasto-viscoplastic Taylor-

type model along with M-K approach to predict and compare FLDs for FCC and BCC metals. In this work, FCC and 

BCC aggregates with identical initial textures were subjected to uniaxial tension. The difference between FLDs for 

FCC and BCC aggregates were compared. In their work, it was shown that BCC crystal structure has a higher 

formability than FCC crystal structure in the uniaxial tension region. Levesque et al. (2010, 2016) [1, 59] used a rate-

dependent crystal plasticity Taylor-type model in conjunction with M-K analysis to predict FLDs for Mg tubes.  The 

effect of crystallographic slip and deformation twinning om the FLDs was considered. 

2.6 Numerical Models 
Various relevant numerical models are briefly reviewed in this section.  

2.6.1 Crystal Plasticity Framework 
The rate-dependent Crystal Plasticity (CP) framework was offered by Asaro and Needleman (1985) [60]. Schmid’s 

law serves as a yield criterion for each slip system, and plastic deformation starts when applied stress resolved on a 

slip system, i.e., resolved shear stress, reaches the critical resolved shear stress value.  

In crystal plasticity framework, the total deformation consists of two different mechanisms. The first one is elastic 

deformation and rigid body rotation, the second one – permanent plastic deformation cause of crystallographic slip 

(Fig. 23) [61].  

The deformation gradient tensor F is defined as: 

 

𝐹+. =
𝑑𝑥+
𝑑𝑋.
 

(7) 

 

Where 𝑥i is the current material point location in space and 𝑋i is the initial material point location in space. 
 

 

Figure 23. Decomposition of total deformation gradient [61]. 
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The total deformation F is decomposed written as: 

 

𝐹 = 𝐹/𝐹0 (8) 

  

Where 𝐹/ consists of elastic stretching and rigid body rotation, and 𝐹0 denotes plastic deformation from shearing on 

the ath crystallographic slip systems (𝑠(a),	𝑚(a)), where 𝑠(a) is the vector of slip direction and 𝑚(a) is the slip plane 

normal. These vectors are orthonormal in the un-deformed lattice and get converted with the lattice, so in the deformed 

state the vectors are defined as follows: 

 

𝑠∗(4) = 𝐹/𝑠(4), 𝑚∗(4) = 𝑚(4)𝐹/5' (9) 

 

The velocity gradient for the current configuration is defined as: 

 

𝐿 = 𝐹̇𝐹5' = 𝐷 +W (10) 

 

Where D is the symmetric part of velocity gradient tensor, which represents the strain-rate. The skew-symmetric part 

W represents the spin.  

The strain-rate tensor D can be decomposed into elastic and plastic parts as follows: 

 

𝐷 = 𝐷/ +𝐷0 (11) 

 

Whereas the spin tensor W can be decomposed into elastic and plastic spin: 

 

W = W/ +W0 (12) 

 

Where 
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𝐷0 =G 𝛾̇(4)
6!"

47'

1
2 (𝑠

∗(4)⊗𝑚∗(4) +𝑚∗(4)⊗𝑠∗(4)) 
(13) 

W0 =G 𝛾̇(4)
6!"

47'

1
2 (𝑠

∗(4)⊗𝑚∗(4) −𝑚∗(4)⊗𝑠∗(4)) 
(14) 

 

By introducing symmetric and skew-symmetric tensors for the 𝛼-8 slip system: 

 

𝑃(4) =
1
2 (𝑠

∗(4)⊗𝑚∗(4) +𝑚∗(4)⊗𝑠∗(4)) (15) 

𝑊(4) =
1
2 (𝑠

∗(4)⊗𝑚∗(4) −𝑚∗(4)⊗𝑠∗(4)) (16) 

 

the plastic strain-rate and spin can be represented as follows: 

 

𝐷0 =G𝑃(4)𝛾̇(4)
6!"

47'

 
(17) 

			W0 =G𝑊(4)𝛾̇(4)
6!"

47'

 
(18) 

 

where 𝛾̇(4)	is the shear rate on each slip system 𝛼. 

The elastic constitutive equation for a single crystal is written as below: 

 

	!∗"!̇$W9t%tW9"&'9
∇  (19) 

where 	!∗
∇  is the Jaumann rate of the Kirchhoff stress tensor t formed on axes spin with the lattice and L is the tensor 

pf the elastic moduli. This relationship can be expressed in the terms of the Jaumann rate of Cauchy stress 	s	∇  by 
introducing a 𝑅(4)	tensor as follows: 

 

𝑅(4) = 𝐿𝑃(4) −𝑊(4)𝜎 + 𝜎𝑊(4) (20) 
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Using equations, the constitutive equation for the Jaumann rate of Cauchy stress can be written as below: 

 

	s	"ℒ'$*̇;$*+,'
∇  (21) 

 

Where 𝜎̇" is a visco-plastic type stress rate and defined as follows: 

 

𝜎̇" =G𝑅(4)𝛾̇(4)
6!"

47'

 
(22) 

 

The relationship between stress resolved on the ath slip system and the Cauchy stress s is defined as follows: 

 

𝜏(4) = 𝐷(4): 𝜎 (23) 

 

The shear rate of the ath slip system is represented as: 

 

𝛾̇(4) = 𝛾̇"𝑠𝑔𝑛𝜏(4) P
𝜏(4)

𝑔(4)P
'/,

 
(24) 

 

where 𝛾̇" is a reference shear rate taken to be the same for all the slip systems, and 𝑔(4) is the hardness of the ath  slip 

system. The m is the constant, which determines strain-rate sensitivity of a material (the same for each slip system). 

The hardening law for the ath slip system is defined as: 

𝑔̇(4) =Gℎ(4=)R𝛾̇(=)R
=

 (25) 

Where 𝑔"(4) is the constant characterizes the initial hardness, and equal t0  for each slip system, and ℎ(4=)	are the 

hardening moduli in the form: 

 

ℎ(4=) = 𝑞(4=)ℎ(=) (26) 
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Where ℎ(=) is the hardening rate of a single slip, and 𝑞(4=)	is the matrix describing the latent hardening behavior of 

the crystalline. The latent hardening matrix 𝑞(4=) is defined as: 

 

𝑞(4=) = T

𝐴			𝑞𝐴			𝑞𝐴			𝑞𝐴
𝑞𝐴			𝐴			𝑞𝐴			𝑞𝐴
𝑞𝐴			𝑞𝐴			𝐴			𝑞𝐴
𝑞𝐴			𝑞𝐴			𝑞𝐴			𝐴

U 

(27) 

 

where q represents the ratio of latent hardening rate to self-hardening rate and A is a 3×3 matrix fully populated by 

ones.  

There are several hardening models proposed in the literature, such as Peirce et al. (1982) [62], Anand et al. (1992) 

[63, 64], Chang-Asaro (1981) [65] and Bassani and Wu (1991) [66]. In this work, the power law hardening model is 

used to calculate the hardness of various slip and twinning systems during deformation. The power law hardening 

model is written as follows: 

 

ℎ(4) = ℎ(") W
ℎ(")𝛾>
𝜏(4)𝑛

+ 1X
?5'

 
(28) 

 

where ℎ(") is the initial hardness of the slip systems, n is the hardening exponent and 𝛾> is the accumulated slip on all 

slip systems calculated by: 

 

𝛾> = Y GR𝛾̇(4)R
6!"

47'

𝑑𝑡
-

"
 

(29) 

 

A direct implementation of the numerical framework introduced above leads to an explicit Euler integration scheme, 

which requires a significantly smaller time step to provide the numerical stability. In order to reduce the calculation 

time, Pierce et al. (1983) [67] developed the semi-explicit rate tangent modulus method. According to this method, 

the slip increment on each a slip system at time t is given by: 

 

∆𝛾> = 𝛾>-@∆- − 𝛾>- (30) 
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The linear interpolation of slip increment within the time increment ∆𝑡 is given as below: 

 

Δ𝛾>	 = [(1 − 𝜃)𝛾̇>- + 𝜃𝛾̇>-@∆-]∆𝑡 (31) 

 

where 𝜃 is a parameter of interpolation within the range from 0 to 1; 𝜃 = 0 corresponds to Euler integration scheme. 

The 𝜃 range between 0.5 and 1 is recommended by Pierce et al. (1984) [68].  

The last term in the equation introduced above can be approximated by using Taylor series as follows: 

 

𝛾̇>-@∆- ≅ 𝛾̇>- +
𝜕𝛾̇>	

𝜕𝜏>
_
-
∆𝜏> +

𝜕𝛾̇>	

𝜕𝑔>
_
-
∆𝑔> 

(32) 

 

where ∆𝜏> and ∆𝑔> are increments of the resolved shear stress and the current hardening in a slip system within the 

time increment ∆𝑡. Thus, a slip increment according to equation (32), can be written as: 

  

∆𝛾> = (𝑓̇> + 𝐹>: 𝐷)	∆𝑡 (33) 

 

where 

𝑓̇> =G𝑀4=𝛾̇>-
=

 (34) 

 

and 

𝐹> =G𝑀4=𝑄>
=

 (35) 

 

The term 𝑄> can be expressed as below: 

 

𝑄> = b
𝜃∆𝑡𝛾̇>-

𝑚𝜏>
c𝑅> 

(36) 
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Here 𝑀4= is the inverse matrix of 𝑁4= defined by: 

 

𝑁4= = 𝛿4= + b
𝜃∆𝑡𝛾̇>-

𝑚 c × W
𝑅4: 𝑃=
𝜏>

+ 𝑠𝑔𝑛(𝜏=)
ℎ4=
𝑔> X 

(37) 

 

From the equation (33), the constitutive equation (21) can be written as: 

  

	s	fghij̇'ijklh
∇  (38) 

 

where the moduli C are defined as: 

 

𝐶 = ℒ −G𝑅4𝐹>
4

 (39) 

 

where 𝜎̇" is a visco-plastic type stress rate and defined as follows: 

 

𝜎̇" =G𝑅(4)𝑓̇(4)
6!"

47'

 
(40) 

 

2.6.2 Finite Element Approach 
Finite Element Methods (FEM) is a powerful modeling tool that incorporates existing knowledge of physics of 

deformation processes into computational tools of continuum mechanics.  This framework is based on the 

approximation, which serves the variational solution of equilibrium of the forces and the compatibility of 

displacements using a weak form of a principle of virtual work in given finite-volume elements used for discretization 

of the entire sample.  

The numerical approach seeks the solution to the momentum equation: 

 

𝜎+.,. + 𝜌𝑓+ = 𝜌𝑥̈+ (41) 
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which should satisfy the traction and boundary conditions: 

 

𝜎+.𝑛+ = 𝑡+(𝑡) (42) 

𝑥+(𝑋4 , 𝑡) = 𝐷+(𝑡) (43) 

(𝜎+.@ − 𝜎+.5)𝑛+ = 0 (44) 

 

where	𝜎+. are components of Cauchy stress tensor, f is the body force, t is the traction, 𝜌 is the density of material, 𝑥̈	 

is the acceleration, 𝜎+.@ and 𝜎+.5 are the stresses along an interior boundary. By applying boundary conditions and using 

divergence theorem, the weak form of the equilibrium equation is written as follows: 

 

𝛿𝜋 = Y 𝜌𝑥̈+𝛿𝑥+𝑑𝑣 +Y𝜎+.𝛿𝑥+,.𝑑𝑣
	

C

	

C
−Y𝜌𝑓+𝛿𝑥+𝑑𝑣

	

C
−Y𝑡+𝛿𝑥+𝑑𝑠

	

D
= 0 (45) 

 

By superimposing a finite element grid with nodal points connected to each other and by using shape functions, the 

weak form of equilibrium equation can be represented as below: 

 

GbY 𝜌𝑁E𝑁𝑎𝑑𝑣 + Y𝐵E𝜎𝑑𝑣
	

C

	

C
−Y 𝜌𝑁E𝑏𝑑𝑣 −Y𝑁E𝑡𝑑𝑠

	

D

	

C
c

?

F7'

= 0 
(46) 

 

where N is the matrix of shape functions, B is the matrix which contains the partial derivatives of displacements, a is 

the nodal acceleration vector, b is the body force and t is applied traction. By solving the system of equations, the 

nodal displacements could be found. 

2.6.3 Forming Limit Calculations 
This work is focused on M-K method. This method was named after Marciniak and Kuczynski (1967) and is a well-

known approach to analyze the process of the loss of stability. The framework was introduced into crystal plasticity 

was introduced by Wu et al. (1997) [57] and implemented by Inal et al. (2005) [58] and Levesque et al. (2010, 2016) 

[1, 59]. The scheme of the model is shown on Figure 24 [1]. 
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Figure 24. Schematic of the geometry and groove orientation for M-K method [1]. 

 

The model assumes that sheet material has an initial non-uniformity in the thickness region in the form of a band or 

groove <b>, herein as region “b”. This non-uniformity is inclined by the angle Ψ0 with respect to x1 direction. The 

initial thickness of the band is 𝑡"D. The region outside the groove, “a” region, has an initial thickness 𝑡">.  

The initial geometric non-uniformity parameter f is defined as: 

 

𝑓 =
𝑡"D

𝑡">
 

(47) 

 

The loading imposed on the edges of the sheet is assumed to be: 

 

𝐷&&
𝐷''

=
𝜀&̇&
𝜀'̇'

= 𝜌 = 𝑐𝑜𝑛𝑠𝑡. , 𝐷'& = 0,𝑊'& = 0 (48) 

 

where 𝜀&̇& ≡ 𝐷&&	 and 𝜀'̇' ≡ 𝐷''	are the principal logarithmic strain rates, 𝜌 is the strain proportionality constant and 

Wij are the spin tensor components. Additionally, it is further assumed that D13 = D23 = W13 = W23 = 0, while D33 is 

defined by the condition 𝜎̇GG = 0 (plane stress). Under this deformation mode, the evolution of the groove orientation 

Y is given as follows: 

 

𝑡𝑎𝑛𝛹 = 𝑒𝑥𝑝[(1 − 𝜌)𝜀''] 𝑡𝑎𝑛𝛹" (49) 

 

Since the uniform deformations are assumed both inside and outside the band, equilibrium and compatibility 

conditions are automatically satisfied inside and outside the band, apart from the necessary conditions at the band 

interface. Following Hutchinson and Neal (1978) [49], the compatibility condition at the band interface is written in 



 27 

terms of the differences in the velocity gradients inside and outside the band as below: 

 

𝐿4=D = 𝐿4= + 𝑐̇4𝑛= (50) 

 

For symmetric and skew-symmetric parts of velocity gradient, this condition can be written as: 

 

𝐷4=D = 𝐷4= +
1
2 (𝑐̇4𝑛= + 𝑛4𝑐̇=) 

(51) 

𝑊4=
D = 𝑊4= +

1
2 (𝑐̇4𝑛= − 𝑛4𝑐̇=) 

(52) 

 

Here 𝑐̇4 values are parameters to be determined, 𝑛' = 𝑐𝑜𝑠Y and 𝑛& = 𝑠𝑖𝑛Y are the components of the unit normal 

vector to the band in the current configuration. 

Force equilibrium condition on each side of the interface requires that: 

 

𝑛4=D 𝜎4=D 𝑡D = 𝑛4=> 𝜎4=> 𝑡> (53) 

 

By substituting the incremental constitutive equation of crystal plasticity model into the equation (53), the 𝑐̇4 values 

could be obtained; and by using the equation (51) the strain increments 𝐷4=D  could be determined. The elastic-

viscoplastic crystal plasticity formulation is then used to calculate the corresponding moduli, 𝕃, and viscoplastic stress 

rates, 𝜎̇" inside and outside the band. Thus, the rates 𝑐̇4 or 𝐷4=D  and 𝐷GGD 	are calculated by solving three equations as 

mentioned above. The sheet thickness inside and outside the band are obtained according to 

 

𝑡̇> = 𝐷GG𝑡>, 𝑡̇D = 𝐷GGD 𝑡D (54) 

 

According to Hutchinson and Neal, the onset of necking is defined by the occurrence of a much higher maximum 

principal logarithmic strain rate inside the band than outside: 

 

𝜀ĠGD

𝐷''
≥ 10H 

(55) 



 28 

 

2.7 Experimental Characterization Techniques. 
This part provides a brief review on the experimental characterization techniques used in the present work, such as 

scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron backscatter diffraction 

(EBSD), and digital image correlation (DIC). 

 

2.7.1 Scanning Electron Microscopy (SEM) 
The scanning electron microscopy (SEM) is a powerful tool for the examination, analysis and characterization of 

microstructure morphology and chemical compositions. SEM utilizes a focused beam of electrons to scan across the 

specimen surface and produce a number of signals that later converted to the image of sample’s surface topography 

and composition. The schematic representation of a scanning electron microscope (JSM-5410, courtesy of JEOL, 

USA) is shown in Figure 25 [69].   

 

 
Figure 25. The schematic image of a scanning electron microscope [69]. 

The type of signals generated by the electron beam can be divided by two major categories: elastic and inelastic. The 

elastic detection mode uses the deflection of incident electrons by sample atomic nucleus or by outer shell electrons 

of similar energy to form an image displaying the surface topography. This mode is characterized by negligible loss 

of energy and a wide range of scattered electrons’ angles. Due to backscattered electrons through the angle more than 

90° the elastic mode is named backscattered electrons (BSE) detention. On the other hand, the inelastic detention 

mode occurs through interactions between incident electrons and specimen electrons and atoms. These interactions 

lead to the energy transfer from the beam electron to the atom of the sample. As a result, the ionization of specimen 

atoms occurs, and the generation of the secondary electrons (SE) happens.  
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2.7.2 Electron Backscatter Diffraction (EBSD) 
Electron Backscatter diffraction is a comparatively new microstructural characterization tool which links the material 

properties to microstructure and crystallographic texture. The EBSD technique enables to differentiate grain 

orientations, grin boundaries, different crystallographic phases and particle inclusions at grain boundaries or within 

grains. During the EBSD analysis, the image is formed during a focus electron beam moving point by point across a 

grid of positions on the specimen surface, and at each position some of incident electrons backscattered from the 

surface and collected by a photon sensitive imaging detector to form an electron backscattered diffraction pattern. The 

sample is tilted by ~60°-80° toward the detector as shown in Figure 26 [70]. The backscattered electrons form the 

pattern consists of a number of bands (Kikuchi bands) (Figure 3 (a)) [69]. 

 

 
Figure 26. Schematic image of EBSD technique [70]. 

After getting the bands, the system searches the available datasets to compare the crystal structures and identify the 

crystallographic phase as shown in Figure 27 (b) [70]. Hence, the information about grain size, grain orientation, 

texture, grain boundaries and various phases can be obtained through EBSD analysis.  

 

 
(a) 

 
(b) 

Figure 27. (a) The electron backscatter patterns [69]; (b) The EBSP with overlaid solution [70]. 

The example of a material microstructure obtained though EBSD analysis is shown in Figure 28 [12]. In the present 

work, EBSD analysis is used to characterize the initial texture and microstructure, and texture evolution of E-form 
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Plus Mg alloy subjected to uniaxial tension along rolling and transverse directions at various temperatures and strain 

rates. 

 

 
Figure 28. EBSD map showing material microstructure (i.e. grain size, grain boundaries, grain orientations) of pure Mg 

alloy [12]. 

 
2.7.3 Transmission Electron Microscopy 
Transmission electron microscopy is a research tool by transmitting an electron beam through an ultra-thin specimen 

to produce a specimen image. The images are formed through the interactions of incident electrons with a specimen 

with a section less than 100nm. The resolution of TEM imaging is to the order of a only few Angstroms (10-10 m). 

TEM imagining can be used to study precipitates distribution, dislocations and grain boundary zones as shown in 

Figure 29 [71].  

 

 
Figure 29. The TEM image of the dislocation structure in AZ31 after four passes of equal channel angular extrusion [71]. 

 
2.7.4 Digital Image Correlation. 
Digital image correlation (DIC) technique is a non-contact optical method to measure the strains and displacements 

in the sample by comparing two component images before and after deformation. In this manner, the displacements 

of a sample are tracked over a series of images, and the resulted strain is calculated afterwards. To successfully track 

the displacements in the region, the speckle pattern with contrasting points (i.e. black, white and grey) is usually 

sprayed on the specimen surface. The images of the specimen are snapshot automatically with a particular frame rate 

during deformation process. The tracked images are analyzed using DIC software. The schematic diagram of DIC 

technique is presented on Figure 30 [72]. 
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Figure 30. Schematic diagram of 2D DIC setup [72]. 

The example of DIC mapping during the standard uniaxial tensile test is shown in Figure 31 [73]. DIC method is 

based on a calculation of mapping functions determined from the comparison of pixels on the facet in the reference 

frame and deformed sample. The strain values are obtained from displacement distribution by using deformation 

tensors.  DIC is used in this work for strain mapping on specimen surface during mechanical testing. 

 

 
Figure 31. DIC colormap of major strain of a sample subjected to uniaxial tensile test [73]. 
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3 Literature Review 
This section provides the review on the existing approaches used to simulate the mechanical response of the material, 

deformation twinning, and models to capture this process. 

3.1 Constitutive Modeling of Mg alloys  
Currently, the usage of Mg alloys in the automotive industry is limited due to their poor formability at room 

temperature. Since acquiring experimental FLDs is expensive, complicated, and time-consuming, the availability of 

accurate numerical models is crucial for successful numerical analysis. Thus, different numerical constitutive models 

have been developed to predict the mechanical response of Mg alloys for accurate calculation of FLDs. Constitutive 

approaches to model Mg alloys can be divided into two parts: Phenomenological and Crystal Plasticity-based 

approaches.  

3.1.1 Phenomenological Constitutive Models 
Phenomenological-based models are focused on the idea of fitting a mathematical function known as yield function 

to experimental data. Several approaches were introduced to model the difficult mechanical behavior of Mg alloys, 

such as tension/compression asymmetry of the yield limit and anisotropy of a material. Cazacu et al. (2006) [74] 

proposed a macroscopic orthotropic yield criterion named CPB06, which describes both the anisotropic behavior of a 

material and yielding asymmetry between tension and compression. The yield function is expressed in terms of the 

principal values of Cauchy stress tensor. The example of modified yield function is shown in Figure 32. The criterion 

was able to capture asymmetry and anisotropy in Mg-Th and Mg-Li alloys. However, the proposed orthotropic yield 

function involves 11 calibrating parameters, and the experimental analysis needed to obtain the material coefficients 

is routine.  

 

 
Figure 32. The yield loci of the proposed criterion [74]. 

 

Plunkett et al. (2008) [75] introduced CPB06ex2, the approach based on two linear transformations of the stress 

deviator. The proposed anisotropic yield criterion accurately represents the tension/compression asymmetry and r-

values of AZ31B alloy. Two linear transformations were applied. The introduced CPB06ex2 function has 18 
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anisotropy coefficients. Lee et al. (2008) [76] used a two-surface plasticity model to capture anisotropic/asymmetric 

hardening behavior of Mg alloys. The proposed approach was validated using the springback of AZ31B magnesium 

alloy sheet and showed good prediction capability. Li et al. (2010) [77] proposed TWINLAW to model the reverse 

loading behavior of magnesium alloys. The model was based on three phenomenological deformation modes for 

AZ31B magnesium alloy: slip, twinning and untwinning. A von Mises yield surface with initial non-zero back stress 

was applied to reproduce the unusual yield and hardening characteristics. Kim et al. (2013) [78] proposed a model to 

capture the temperature-dependent asymmetric cyclic behavior for AZ31 magnesium alloy. The two yield criteria, 

corresponding to the twinning/untwining and slip deformation mechanisms, were implemented. The model was 

validated with simple shear and cyclic loading tests. Nguyen et al. (2013) [79] introduced a multi-yield surface 

approach to model cyclic hardening behavior of AZ31B metal sheets. Three separate von Mises yield criteria for three 

deformation modes (slip, twinning and untwining) were used in this work. Muhammad et al. (2015) [80] introduced 

the anisotropic model to capture the cyclic hardening behavior of Mg alloys (AZ31 and ZEK100). A CPB06 type 

anisotropic yield surfaces for each of three deformation modes were applied.  

The model showed excellent agreement with experimental results for r-values and cyclic flow responses. However, 

even the models mentioned above give the excellent agreement with experimental results and are able to capture the 

complex material behavior, these models do not have a physical basis and are not able to capture the deformation 

micro mechanisms. Moreover, the phenomenological models are hard to calibrate cause of the noticeable amount of 

parameters, and they do not describe the texture evolution in a material.  

3.1.2 Crystal Plasticity Constitutive Models.   
A polycrystal deformation model should be able to describe some phenomena which cannot be captured by 

phenomenological approaches, such as crystallographic slip, deformation twinning, texture evolution, grain 

morphology. Usually, such a model can be derived from the deformation model for a single crystal. The main concern 

is how to relate the overall behavior of polycrystal to microstructural deformation mechanisms operating in its 

constituent single crystals. To establish the relationship between a polycrystalline aggregate and its single crystals, 

some homogenization (or averaging) schemes are required. The following models can be distinguished by assumptions 

which are made about the distribution of stresses and strains in the crystalline aggregate, and total mechanical response 

depends on some average response of its grains. There are few main models: Sachs [81], Taylor [82], self-consistent 

[83] and crystal plasticity finite element models [84]. 

3.1.2.1 Sach’s Model 

Sach’s crystal plasticity model (1928), one of the earliest polycrystal models, assumes the homogeneous distribution 

of stress overall grains. In this “iso-stress” approach, a crystalline aggregate is treated as a set of independent, isolated 

single crystals that can deform independently from each other. Each crystal is subjected to the same amount of stress, 

which is equal to the external stress, and the shear strain is not the same in each grain. In general, the continuity of 

strain across grain boundaries is violated [85]. As a result, this theory is not efficient enough in predicting texture 

evolution. Nowadays, the “iso-stress” approach is known as an oversimplified model and hardly used anymore. 
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3.1.2.2 Taylor-type Model 
In order to overcome the objections to Sach’s model, the alternative model was proposed by Taylor. The Taylor model 

assumes the homogeneous distribution of the strain on all grains, hence, equal deformation gradient over the crystalline 

aggregate. The stress state is not continuous and varies from grain to grain.  This assumption makes the Taylor-type 

model the most widely used one, which satisfies the compatibility issue by enjoining the macroscopic deformation 

gradient on each grain, so no voids appear. The model gives a good texture evolution prediction. However, this model 

does not let to include local micro defects to prediction the macro-mechanical response (such as dislocation densities, 

micro stresses, strain incompatibility factor). 

Summarizing the assumptions made in Taylor type model, there are two main points: 

1. Each grain experiences the same deformation as the macroscopic deformation; the shapes of the constituent 

crystals do not enter in the idealization; 

2. The macroscopic stress of a polycrystalline aggregate is calculated as the average value of the stresses of all 

constituent single crystals. 

3.1.2.3 Relaxed Constraints Models 
Classical Taylor-type model based on the assumption, that at least five independent slip systems required to be 

activated to guarantee the compatibility of deformation in the whole specimen. The number of constraints in the 

Taylor-type model is as large as five, and the model is known as “full constraint” model.  

However, the Taylor-type models overestimate both texture and the stresses in a polycrystalline aggregate. To answer 

these limitations, the modified “relaxed constraints” method was proposed by Honnef and Mecking (1978) [86], and 

some further developments of this method were made Canova et al. (1984) [87]. The proposed method assumes that 

when grains get re-oriented took on very distorted shapes, characterized by large aspect ratios of the principal lengths; 

it is possible to partially relax the strict compatibility requirements imposed in the Taylor model. Non-uniform 

deformations are observed to occur at the grain boundaries, which accommodates the incompatibilities implied by the 

non-imposed strain components. The model could account for material texture effects. 

Canova et al. (1984) showed that the improved methodology predicted texture development following large simple 

shear is in better agreement with experimental results. 

3.1.2.4 Self-Consistent Models 

Self-consistent models are based on Eshelby’s concept (1957) [88]. The method was proposed by Kröner (1958) [89], 

Budiansky and Wu (1962) [90], and Hill (1965) [91]. This scheme considers a crystalline material as a heterogeneous 

aggregate, where material properties differ for different grains, and each grain is included in an infinite homogeneous 

matrix as an ellipsoidal inclusion. The macroscopic behavior is determined by taking an average on all grains. Only 

the plastic and elastic interaction between each grain and its surrounded matrix are considered, but grain-to-grain 

interactions, as in real material, are not included in the model.  
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3.1.2.5 Full-Field Approaches 
Thus, the models described are based on the assumption of a homogeneous distribution of the stress or the strain and 

do not include local deformation mechanisms caused by grain-to-grain interactions. Here, the term “full-field” denotes 

a type of models, which use a finite element discretization to compute certain variable fields, for instance, stress or 

stain fields in the microstructure. These models are able to resolve both long-range and short-range interactions and 

predict the actual micromechanical state (stress and strain fields) based on accounting microstructure aspects: texture, 

grain morphologies, grain interactions. Among the available full-field models are such methods as: 

• Crystal Plasticity-fast Fourier Transform (CPFFT) 

The crystal plasticity fast Fourier transform (CPFFT) method was initially developed by Moulinec and Suquet (1994, 

1998) [92, 93] to compute the macro and micro mechanical responses of composite materials. Since then, several 

authors proposed modifications and improvements to the existing method (Eyre and Milton (1999) [94], Zeman and 

co-authors (2010, 2014) [95, 96], Eisenlohr et al. (2013) [97]). This scheme is based on the fact that the local 

mechanical response of a heterogeneous medium can be calculated as a convolution integral between Green functions 

associated with appropriate fields of a linear reference homogeneous medium and the actual heterogeneity field. 

However, this method uses the only uniform grid, which makes hard the prediction of stress and strain fields near 

grain boundaries; and the fundamental requirement of periodic boundary conditions restrict the range of problems 

where this method might be applied in comparison with CPFEM. Also, the CPFEM gives the flexibility of the usage 

of local mesh refinements to capture localization of strain and abrupt discontinuities of material properties. 

• Crystal Plasticity Finite Element Method (CPFEM) 

The CPFE approach uses the discretization of the sample on finite-volume elements and solves the equilibrium of the 

forces and the compatibility of the displacements by using a weak form of the principle of virtual work for each finite-

volume element. The model has a few main advantages:  

• the efficiency to predict mechanical response in dealing with complicated internal and/or external boundary 

conditions, inter- and intra-grain interactions. 

• the ability to include in the model various constitutive formulations, such as size-dependent effects, which 

leads to the anisotropy of a material, such as dislocations, twinning, martensitic transformations. 

Thus, this approach can be used to solve various mechanical problems: Hall-Petch behavior, grain 

interactions, deformation twinning, etc.  

 
3.2 Advancements in Crystal Plasticity Theory for Mg alloys 

This section presents the main crystal plasticity models in the literature included both crystallographic slip and 

deformation twinning for modeling plastic deformation in Mg alloys.  

Van Houtte (1978) [98] proposed the Predominant twin reorientation (PTR) method with Taylor assumption, which 

was improved by Tome et al. (1991) [99]. The growth of volume fractions of twinned regions is tracked in each grain, 

and based on the statistical criterion; the entire grain gets reoriented into a dominant twin orientation. The model has 
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two main disadvantages, which were noticed by Kalidindi (1998) [8]. First, for the proper usage of the statistical 

criterion, the large number of grain orientations is required. Second, the grain gets entirely reoriented into a twin 

orientation independently from the previous deformation history, and this orientation may not be the most dominant 

one. To solve the second disadvantage of van Houtte’s method, the Volume Fraction Transfer (VFT) scheme with 

Taylor assumption was proposed by Tome et al. (1991) [99]. This method uses the concept of weighted grain 

orientations to track the large number of new orientations created by deformation twinning process. The twinned parts 

of each grain are reoriented at the end of each time step. However, the twinned grain is treated as a parent grain and 

can be reoriented in another twin orientation later, which is not an agreement with the experimental observation of the 

twinning process.  

In the 1985 Asaro and Needleman [60] have established a new rate dependent crystal plasticity framework for 

modeling both the anisotropic stress-strain response and crystallographic texture evolution for polycrystals subjected 

to finite plastic deformations. The model was created for materials with a crystallographic slip as a single deformation 

mechanism. Kalidindi (1998) [8] proposed the model, where deformation twinning was treated as a pseudo-slip 

deformation mechanism. This model provided a clear distinction between twinned and un-twinned regions, and as 

well as the texture evolution of these regions. The efficient time-integration procedure was incorporated to the 

proposed model [64]. However, a simple hardening law was assigned to twin deformation systems. The advantage of 

this model is that the relationship between the parent matrix and a twin was preserved throughout the deformation, so 

the number of different orientations is restricted. Staroselsky and Anand (2003) [100] proposed a rate-independent 

CPFE model with PTR criterion to account twinning shear and lattice reorientation due to the twinning process occur 

during the plastic deformation in AZ31. The prediction of stress-strain curves in some loading paths was not 

satisfactory compared with the experimental results. Proust et al. (2009) [101] proposed a self-consistent viscoplastic 

model (VPSC) that accounts the effect of twinning and detwinning deformation mechanisms during strain-path 

changes in AZ31. However, the simulation results are susceptible to the stiffness of the grain-matrix interaction 

associated with the Self-Consistent Schemes. Izadbakhsh et al. (2011) [102] proposed a rate-dependent elastic-

viscoplastic crystal plasticity constitutive model to simulate the large strain deformation in Mg single crystals. The 

proposed model incorporates the deformation mechanisms of primary extension, primary contraction, and secondary 

extension (double) twinning along with the basal and non-basal slip systems in the parent grain, primary and double 

twins. Levesque et al. (2010) [1] firstly extended M-K method in a Taylor-type polycrystal model. The model was 

used to simulate the large strain behavior of HCP metals and used to investigate the formability of AM30 alloy at 

200°C. 

Levesque et al. (2016) [59] expanded the previous work and performed simulations for AM30 and AZ31B. The effect 

of the material texture on formability was investigated in this work. The proposed framework leads to different FLDs 

and predicts higher formability, which is explained as the new formulation accommodates higher slip activity and 

more realistic interaction between formed twins and parent matrices. Nagra et al. (2018) [103] presented a new full-

field, mesh-free numerical framework to model the microstructure evolution, dynamic recrystallization (DRX) and 

formability in HCP AZ31 magnesium alloy at 100ºC, 200ºC and 300ºC. The predicted FLDs with DRX showed were 

in an agreement with experimental results. 
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All these models capture the crystallographic slip deformation twinning as a pseudo-slip mechanism and give a good 

prediction of the evolution of crystallographic texture, mechanical response and forming behavior. However, there is 

no accurate implementation of the model to crystal plasticity framework which captures both the strain rate and 

temperature effects on the mechanical behavior of a material.  

3.3. The Formability of Magnesium Alloys 
The practical usage of Mg alloys as lightweight structural components in the automotive industry is limited by the low 

ductility and low formability that the material exhibit at room temperature. To alleviate the poor room temperature 

formability, Mg alloy sheets are typically formed at elevated temperatures, which leads to undesirable expenses. To 

optimize the forming process, a better understanding of the mechanisms affecting the material's mechanical response 

is required. 

 

3.3.1 The effect of Initial Texture on the Mechanical and Forming Behavior of Mg Alloys 
Various factors influence the mechanical behavior of Mg alloys. Among them, the initial texture plays a crucial role 

in the course of a material's mechanical behavior [104-109]. There are a few methods which are used to control the 

texture of a Mg alloy [110]. One of them is the addition of other alloying elements to the pure Mg alloy. Another one 

is to tailor the manufacturing processes: heat treatment, conventional extrusion, equal channel angular processing, and 

many others. These approaches result in various microstructures, mechanical properties, and forming behavior 

determining these alloys' potential use. 

 

3.3.1.1 Developments in Commercial. wrought Mg Alloys 

The main interest of automotive industry lays in the production of Mg sheet and extruded profiles due to their better 

mechanical properties and the ability to obtain thin-walled structures [110]. Among commercially established Mg 

alloys are ones containing Al, Mn, RE (rare-earth), Y, Zn and Zr [110, 111]. AZ31 (Mg-3Al-1Zn) is one of the most 

widely used commercial wrought Mg alloy based on the number of articles [112]. The processing, mechanical 

properties, microstructure, texture and formability are extensively investigated by numerous of authors [1, 103-107, 

110, 113-122]. However, the low formability and poor mechanical properties of AZ31 Mg alloy at room temperature 

restrict the vast applications of this alloy in automotive industry [1, 103-107, 118]. Also, the rare-earth element Mg 

alloys attracted the attention of researchers during recent years [107, 110, 117, 123-126]. The adding of the small 

percentage of rare-earth elements results in a weakening of the crystallographic texture and grain refinement, and 

therefore, the improvement of ductility and formability [110, 123, 127, 128]. Antoniswamy et al. (2013) [110] 

investigated the forming behavior of AZ31 and ZEK100 at various strain rates and temperatures. The FLCs obtained 

at 10-2s-1 strain rate for AZ31 and ZEK100 are compared for temperatures of 350ºC and 450ºC (Figure 33). It is seen 

that ZEK100 demonstrates the better forming behavior for all temperatures. 
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(a) 

 
(b) 

Figure 33. FLCs for AZ31 and ZEK100 obtained at 10-2s-1 and 10-3s-1 for (a) 350ºC and (b) 450ºC [110]. 

The effect of texture and microstructure of AZ31B and ZEK100 on mechanical behavior was investigated by Ray et 

al. (2016) [107]. Analysis of true stress-strain curve shows that the AZ31B specimen pulled in TD shows the higher 

yield strength than value obtained during tension along RD (Figure 34 (ii)). The slight anisotropy between TD and 

RD can correspond to the initial texture spread along RD (Fig. 34 (i)). The spread of basal poles along RD results in 

higher activity of basal crystallographic slip when the specimen is pulled along RD than TD. The basal slip has the 

lowest Schmid factor, hence, it is the easiest slip to become active. It explains, why the tensile response for RD is 

lower than TD. Moreover, the tensile results for ZEK100 demonstrated lower yield strength values in comparison to 

those obtained for AZ31B. In addition, ZEK100 specimens pulled in RD and TD exhibit a significant anisotropy 

compare to AZ31B tensile results. The anisotropic tensile response which can be attributed to the initial texture, which 

basal poles are spread along TD. This favors the activation of deformation twinning during tension along TD, which 

explains the lower yield strength obtained for this loading direction. The dot points indicate the onset of diffuse 

necking.  

 

 
(i) 

 
(ii) 

Figure 34. (i) IPF map and corresponding {0002} basal and prism pole figures of (a) AZ31B and (b) ZEK100; (ii) True 
stress – strain curves deformed during tension along RD and TD [107]. 
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In order to reduce the product cost of rare-earth element Mg alloy sheets, the Ca element was proposed as a cheaper 

alternative to expensive rare-earth elements in order to improve ductility, formability and corrosion resistance of Mg 

alloys [129, 130, 28]. Kim et al. (2009) [130] studied AZ31, AZ31-0.7wt.%Ca and AZ31-2.0wt.%Ca alloys. 

Crystallographic orientation maps for microstructure and grain size distribution of (a) AZ31, (b) Az31-0.7wt.%Ca and 

(c) AZ31-2.0wt.%Ca are shown in Figure 35. The significant grain refinement can be noticed in the Ca-containing 

Mg alloys. Clearly, the addition of Ca alloying element decreases the grain size and makes the grain size distribution 

more homogeneous. Also, there is no significant difference between the grain size distribution of Az31-0.7wt.%Ca 

and AZ31-2.0wt.%Ca. It is known, that 0.70wt.% of calcium is enough for grain refinement. The stress-strain curves 

obtained during tensile tests till failure for the alloys at 10-1s-1 and 10-3s-1 strain rates at 150ºC and 400ºC are shown in 

Figure 36. It is seen that the addition of Ca alloying element increases the elongation to failure parameter. Also, AZ31-

2.0wt.%Ca demonstrates the superelasticity behavior and reaches 200% and 600% of deformation during tension at 

400ºC with 10-1s-1 and 10-3s-1 strain rates respectively. The improvement of mechanical properties of AZ31-2.0wt.%Ca 

Mg alloy through Al2Ca particle strengthening was reported. 

 

 
(i) 

 
(ii) 

Figure 35. (a) EBSD microstructures of (a) AZ31, (b) AZ31-0.7wt.%Ca and (c) AZ31-2.0wt.%Ca; (b) The grain size 
distribution plots of (a) AZ31, (b) AZ31-0.7wt.%Ca and (c) AZ31-2.0wt.%Ca [129]. 
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Figure 36. Tensile stress-strain curves obtained for AZ31, AZ31-0.7wt.%Ca and AZ31-2.0wt.%Ca at 150ºC and 400ºC at 

10-1s-1 and 10-3s-1 strain rates [129]. 

 

Masoudpanah et al. [130] showed the improved the strength of AZ31-0.6wt.%Ca due to grain refinement and particle 

strengthening. The engineering stress strain curves obtained for AZ31, AZ31–0.6wt.%RE, AZ31–0.6wt.%Ca and 

AZ31–0.3wt.%RE–0.3wt.%Ca alloys, and the as-extruded AZ31 alloy are shown in Figure 37. However, it is seen 

that the addition of Ca and RE element decreases the ductility. The AZ31–0.3wt.%RE–0.3wt.%Ca Mg alloy showed 

optimum combination of strength and ductility. 

 

 
Figure 37. Engineering stress – strain curves obtained during tensile tests for AZ31, as-extruded AZ31, AZ31–0.6%RE, 

AZ31–0.6%Ca and AZ31–0.3%RE–0.3%Ca alloys at 10-3s-1 strain rate at room temperature [130]. 
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The Mg alloys with addition of Ca alloying elements is a new developed field, and there is a lack of comprehensive 

study of effect of Ca element on the mechanical behavior of Mg alloys. Thus, the influence of Ca content on 

microstructure, texture, mechanical properties, and formability of AZ31 Mg alloy requires a detailed, in-depth study. 

 

3.3.1.2 Developments in Manufacturing Processes 
Agnew et al. (2004) [104] showed that the enhancement in ductility can be reached through the change in the initial 

texture of material. Figure 38 (i) demonstrates pole figures for (a) conventionally extruded, (b) equal channel angular 

processed (ECA) and (c) annealed AZ31B Mg alloy.  

 

 
(i) 

 
(ii) 

Figure 38. (i) Initial texture for AZ31B Mg alloy subjected to: (a) conventionally extrusion, (b) ECA processing, (c) 
annealing; (ii) Tensile stress-strain curves obtained for conventionally extruded, ECA processed and annealed AZ31B Mg 

alloy samples [104]. 

 
The initial texture was inclined by ~45º to the extrusion direction due to ECA process, which resulted in the significant 

ductility improvement. It was shown, that the orientation of the tensile test sample has a stronger effect on the 

mechanical response than the Hall-Petch effect for some HCP metals. The sample with the C-type orientation has the 

similar orientation as the extruded sample and demonstrates the similar mechanical response (Fig. 39). However, CEA 

samples have significantly smaller grain size in comparison to the extruded sample. It can be expected that CEA C-
type sample would have a higher yield stress. 
 

 
(i) 

 
(ii) 

Figure 39. (i) Stress-strain curves obtained during tensile tests of ECA samples with various orientations; (ii) Scheme 
represents the orientation of tensile samples with the respect to ECA process geometry [104]. 
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Huang et al. (2008) [105] compared the mechanical tensile properties of the normal rolled AZ31 Mg alloy sheet to 

those of differential speed rolling (DSR) processed with c-axis tilted by ~15º to RD at room temperature. Despite the 

fact that both samples exhibited approximately the same grain size, the initial textures and microstructure differed 

(Figure 40 (i)). The DSR processed samples demonstrated better a larger uniform elongation and elongation before 

failure (Figure 40 (ii)). 

 

 
(i) 

 
(ii) 

Figure 40. (i) EBSD (0002) and (101 ̅1) pole figures of (a) the normal rolled and (b) the DSR processed AZ31B Mg sheets; 
(ii) Nominal tensile stress-strain curves of normal rolled and DSR processed samples obtained in RD, 45º and TD [105]. 

 

Chino et al. (2008) [106] showed that the AZ31 specimens produced by the torsion extrusion with the initial texture 

inclined by ~30º to the extrusion direction demonstrate a significantly enhanced ductility in comparison to the 

reference specimens. The obtained texture results in the enhancement of Schmid factors for basal crystallographic slip 

and deformation twinning, which leads to the ductility improvement (Fig. 41). 

 

 
(i) 

 
(ii) 

Figure 41. (i) (101 ̅0) pole figures of AZ31 Mg alloy: (a) reference specimen before annealing, (b) reference specimen after 
annealing, (c) torsion-extruded specimen before annealing and (d) torsion-extruded specimen after annealing; (ii) 

Engineering stress – engineering strain curves for the AZ31Mg alloy obtained during tension at room temperature along 
[106]. 
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Hence, materials such as Mg with HCP crystal structure exhibit a strong dependence of the mechanical response on 

the initial texture and microstructure. Furthermore, the role of initial texture can be overwhelmed in comparison to the 

Hall-Patch effect. The better understanding of the texture evolution is crucial to improve the forming response of a 

material. Also, the forming performance is highly dependent on initial texture. The mechanical and forming behavior 

of a Mg alloy can be improved by developing of material with suitable initial texture. 

 

3.3.2 The Effect of Temperature on the Mechanical and Forming Behavior of Mg Alloys 
Another factor which has a strong impact on a material response is a temperature regime. It is known that the forming 

temperature has a strong influence on the forming and mechanical behavior of Mg alloys [6, 7]. It is known that Mg 

alloys have a limited formability at room temperature, however, the forming properties become better at elevated 

temperatures [59]. Jäger et al. (2004) [115] investigated the dependence of mechanical properties of commercial hot 

rolled AZ31B Mg alloy on temperature during tensile tests at the temperature range between room temperature and 

400ºC at a strain rate of 1.3x10-4s-1 (Figure 42 (a)). It was shown, that there is a decrease in the yield stress and the 

maximum stress with an increase in temperature (Figure 42 (b)). The ductility improves significantly with increasing 

temperature (Figure 7 (c)). The offered explanation of temperature dependence of the elongation to failure is an 

increase in the non-basal slip system activity with an increase in temperature. The activation of non-basal slip systems 

leads to annihilation of dislocations and deformation twinning, which results in an enhancement of the ductility. The 

experiments carried out at high temperatures above 300ºC demonstrated that the material exhibits superplasticity 

[116]. An elongation before failure can reach 120% at 400ºC and 320% at 500ºC [116]. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 42. (a) True stress – strain curves for AZ31B Mg alloy obtained during tension at various temperatures; (b) The 
variation of the yield stress (black mark) and the maximum stress (empty mark) as a function of temperature; (c) The 

dependence of elongation to failure of temperature [115]. 

 

Another analysis of the mechanical response and its dependence on the temperature regime was done by Habib et al. 

(2017) [117]. The mechanical properties of rare-earth-containing Mg alloy, ZEK100, were measured during uniaxial 

tension and compression tests along rolling direction (RD), 45º to rolling direction (DD), transverse and normal 

directions – TD and ND respectively. The temperatures of 22ºC and 150ºC was used. The tests were carried out at 

various strain rates between 10-4 and 3x103s-1. The tension-compression asymmetry decreases with an increase in 

temperature and decrease in strain-rate for all loading directions. The strain rate insensitivity of yield strength was 



 44 

found in compression for all directions and tension along TD and DD at 22ºC. This phenomenon was explained by 

strain rate insensitivity of basal slip and deformation twinning. The positive strain rate sensitivity was discovered with 

increase in temperature to 150ºC due to the non-basal slip activity. 

The influence of temperature on forming behavior of AZ31 and ZEK100 was investigated by Antoniswamy et al. 

(2013) [110]. The improvement of formability was discovered with the increase in temperature from 250ºC to 450ºC 

for AZ31 and from 300ºC to 450ºC for ZEK100 (Figure 43). 

 

 
(a) 

 
(b) 

Figure 43. FLCs obtained at 10-2s-1 strain rate for (a) AZ31 and (b) ZEK100 for various temperatures [110]. 

 

The improvement of mechanical behavior and formability with an increase in temperature was demonstrated for Mg 

alloys. However, lower forming temperatures are more attractive for automotive industry due to significant savings in 

energy, reduction of manufacturing process complexity and easier part handling [110]. Hence, the better understanding 

of influence of temperature on the material response, texture evolution and the activity of various deformation 

mechanisms becomes crucial in order to choose the best temperature regime for automotive production.   

3.3.3 The Effect of Strain Rate on the Mechanical and Forming Behavior of Mg Alloys 

The last, but not the least crucial factor affecting the mechanical properties of a material is a strain rate with which a 

deformation process is performed [110, 117, 131]. Bruni et al. (2010) [131] studied the influence of temperature, strain 

rate and the initial texture on mechanical response and forming behavior of AZ31 Mg alloy. The formability was 

described in the terms of forming limit diagrams (FLCs). The tensile tests were performed at the temperatures of 

200ºC, 250ºC and 300ºC for four different strain rates: 1s-1, 0.1s-1, 0.01s-1, and 0.001s-1. The FLCs were plot for the 

same temperatures and two strain rates: 1s-1 and 0.1s-1. The tensile stress-strain curves are shown in Figure 44 for 

various strain rates and temperatures. The material exhibits positive strain rate sensitivity for all temperatures. The 

softening effect becomes remarkable with a decrease in strain rate and increase in temperature. It is shown that the 

ductility increases with an increase in temperature and a decrease in strain rate. 
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Figure 44. Tensile stress-strain curves obtained along RD and TD for AZ31 Mg alloy at various strain rates and 
temperatures [131]. 

 

The forming behavior is shown in Figure 45. It was shown that formability described in terms of FLCs increases with 

increasing temperature from 200ºC to 300ºC.  The decrease in strain rate from 1mm/s to 0.1mm/s leads to the increase 

in formability.  

 
Figure 45. FLCs obtained along RD and TD for AZ31 at different strain rates and temperatures [131]. 
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3.3.4 Advancements in Mg Production Technology 

Recently, the new Mg alloy sheet named E-formTM (easy-form) was developed by POSCO Mg Inc. (South Korea) – 

one of the major steel making companies – by adding 0.5wt.% Ca to commercial AZ31 [132, 133]. The new Mg alloy 

demonstrated the improved deformability from room to elevated temperatures [132-135].  

Chaudry et al. (2019) [134] noticed the improvement performance of E-form Mg alloy. It was revealed that AZ31-

0.5Ca exhibits the higher activity of non-basal prismatic slip system as compared to AZ31 Mg alloy. The weakening 

of basal slip activity attributed to the formation of the intermetallic particles (Mg, Al)2Ca during the primary 

processing. These particles change the relative CRSS of basal and non-basal slip systems. As it was mentioned above, 

an increase in activity of non-basal slips leads to the improvement of mechanical and forming properties of HCP Mg 

alloys. The tensile tests were performed for AZ31 and AZ31-0.5Ca at room temperature along three different 

directions: RD, TD and 45º. The FLCs for both materials were carried out by cylindrical dome method at a punch 

speed of 100 mm/s. The cups left after the FLD test at a punch speed of 0.33 mm/s are shown on Figure 46 (a). It is 

seen that E-form Mg alloy demonstrates a significantly enhanced formability. The engineering stress – engineering 

strain tensile curves are shown in Figure 46 (b). It was found that AZ31-0.5Ca is more ductile and weaker than AZ31. 

However, E-form Mg alloy exhibits a lower plastic anisotropy as compared to AZ31.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 46. (a) The cups used for Erichsen tests for AZ31 and AZ31-0.5Ca; (b) Engineering stress – engineering strain 
tensile curves for the alloys obtained at room temperature along RD, TD and 45º; (c) Specimens used for FLD tests; (d) 

FLCs of the alloys [134]. 

 

Lee et al. (2019) [136] studied the formability of E-form Mg alloy sheet at elevated temperatures. The tensile 

engineering stress – engineering strain curves obtained at 150ºC and 200ºC for 1s-1, 0.1s-1, 0.01s-1, and 0.001s-1 are 

presented in Figure 47. The material demonstrated the positive strain-rate sensitivity, the high elongation before failure 

values and limited uniform elongation values. The limited uniform elongation can be attributed to early localization, 

softening process and dynamic recrystallization [13]. The FLD tests were conducted for both 150ºC and 200ºC 

temperatures at 0.01s-1 strain rate.  
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(a) 

 
(b) 

Figure 47. Engineering stress – engineering strain curves obtained for E-FORM Mg alloy for different strain rates at (a) 
150ºC and (b) 200ºC [136]. 

 

3.4 Physical Models to Predict the Temperature and Strain Rate Influence on the Mechanical 

Behavior of Material 

3.4.1 Parametric Studies of Material Parameters at Various Strain Rates and Temperatures 

Several studies were performed to capture and characterize the temperature and strain rate effects on the mechanical 

response of Mg alloys. One of important material parameters, which has a high influence on the mechanical behavior 

of the material is critical resolved shear stress (CRSS) value. It is known, that critical CRSSs parameters are 

responsible for yielding, affects the strength of the material ad determine the course of plastic deformation [60, 137-

139]. Chapius and Driver (2011) [137] studied the influence of temperature on CRSSs of crystallographic slip systems 

and twinning systems in Mg single crystals. Plain strain compression tests were carried out on 99.99% pure Mg single 

crystals grown in the laboratory by directional solidification in a horizontal furnace under argon pressure at room 

temperature, 150°C, 250°C, 350°C and 450°C. The studied orientations were chosen as (90 90 30), (90 15 30), (0 0 

0), and (0 90 30) as the most representative ones. The observation of basal slip, prismatic slip, {101-2} twinning and 

compressive twinning modes was done. The table 2 shows the chosen Mg single crystal orientation and corresponding 

deformation mechanisms.  

 
Table 2. The orientation of Mg single crystals and deformation mechanisms [137]. 

Orientation (90 90 30) (90 15 30) (0 0 0) (0 90 30) 
Real orientation (88 84 32) (82 15 33) (45 01 17) (01 89 32) 
Major system (011#2) 2 basal slips (1#101) or (11#03) 1 Prismatic slip 
Minor systems (101#2)  Double twinning 1 Basal slip 

 

The CRSSs are measured by EBSD orientation mapping and the calculations made by the following formula [137]: 

 

experimental CRSS = ((applied 𝜎II	stress) ́  (best fit input CRSS)) / (theoretical 𝜎II stress) (program output) (56) 
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The obtained results are shown in Figure 48. The temperature independence of basal slip and  {101-2} twinning was 

shown. Also, prismatic and pyramidal <c+a> slip systems were obtained only for temperatures above 300°C, which 

is a result of a constrained deformation mode due to a channel die-compression test (channel die compression test 

requires significantly higher stress level than the uniaxial test needs). The CRSSs of prismatic and pyramidal <c+a> 

slip systems decrease with increase in temperature [137]. 

 

 
Figure 48. Estimated CRSSs of crystallographic slip systems and twinning systems in Mg single crystal at 1% strain [137]. 

 

The similar results were obtained by Wonziewicz and Backofen (1967), Kelley and Hosford (1968), Yoshinaga and 

Horiuchi (1963, 1964), Obara et al. (1973) (Figure 49) [138]. There is a noticeable decay of CRSSs for prismatic and 

pyramidal slip systems with increasing temperature. 

  

 
Figure 49. CRSSs of crystallographic slip systems and twinning systems in Mg from: (a) Wonziewicz and Backofen 

(1967), (b) Kelley and Hosford (1968), (c) Yoshinaga and Horiuchi (1964), (d)Yoshinaga and Horiuchi (1964), Obara et al. 
(1973) [138]. 

 

Jain and Agnew (2007) [138] used the viscoplastic self-consistent polycrystal model to capture the changes at flow 

stress, the strain anisotropy, and texture evolution of AZ31B Mg sheet during uniaxial compression along RD, TD 

and ND at temperature between 22°C and 250°C. By varying CRSSs and hardening behaviors of the crystallographic 

slip systems and twinning system, the stress-strain curves were modeled. The obtained simulation results showed a 



 50 

good agreement with experimental data. The basal slip and twinning were described as a-thermal deformation 

mechanisms, prismatic and pyramidal <c+a> order slip systems were observed as thermally activated modes (Figure 

50). The CRSSs values were normalized by CRSS for basal slip, which was ~25MPa. 

 

 
Figure 50. The dependence of CRSSs (solid symbols) for various deformation mechanisms on temperature [138]. 

 

The evolution of hardening parameters with an increase in temperature is shown in Table 3. The 𝜃' and 𝜃" are 

parameters responsible for the hardening process. It is seen that hardening parameters are decreasing with an increase 

in temperature, which can be explained by recovery mechanisms such as Dynamic Recrystallization (DRX) and the 

increasing activity of <c+a> dislocations with temperature increase [138].  

 
Table 3. The evolution of material parameters with temperature for various deformation modes [138]. 

Temperature Mode τ0  τ1  θ0  θ1  Latent  
20°C Basal slip  1.0 0.5 80 3.0 4.0 

Prismatic slip 3.2 2.0 20 0.5 4.0 
Pyr <c+a> 5.0 6.0 500 0.0 2.0 
Twinning 1.5 0.0 0 0.0 4.0 

150°C Basal slip  1.0 0.5 80 3.0 1.5 
Prismatic slip 2.0 2.5 20 0.0 1.5 
Pyr <c+a> 2.0 5.0 100 0.0 1.0 
Twinning 1.7 0.0 0 0.0 1.5 

175°C Basal slip  1.0 0.5 80 1.0 1.2 
Prismatic slip 1.9 1.5 20 0.0 1.2 
Pyr <c+a> 1.9 3.3 50 0.0 1.0 
Twinning 1.9 0 0 0.0 1.2 

200°C Basal slip  1.0 0.5 80 0.0 1.2 
Prismatic slip 1.8 0.8 20 0.0 1.2 
Pyr <c+a> 1.8 2.0 35 0.0 1.0 
Twinning 2.1 0.0 0 0.0 1.2 

 

Another crucial material parameter, which affect the deformation behavior of material is strain rate sensitivity (SRS). 

Particularly, SRS determines such properties as the work-hardening rate and the material strength [140, 141]. 

Generally speaking, SRS depends on chemical composition of a material, grain size, strain rate, and temperature [140]. 

Moreover, it was shown that SRS is dependent on the slip system. Spitzig and Keh (1970) [141] investigated the 

temperature and strain rate sensitivity for the shear stress in ZrH2-iron single crystals at 77°C, 143°C, 195°C, 250°C, 
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and 295°C temperatures. It was shown that strain rate sensitivity is temperature and slip orientation dependent 

parameter. Movahedi-Rad and Alizadeh (2017) [140] employed Molecular Dynamic approach to simulate SRS 

dependence on strain rate, temperature and the orientation of slip system in Al single crystal. The following modified 

power-law equation for the flow stress was used: 

 

𝛾̇ = 𝐴′𝜏
'
,exp Ç−

𝑄
𝑅𝑇Ñ 

(57) 

 

where 𝐴′ is a material constant. The constant activation energy at constant temperature was assumed to resolve the 

equation for SRS as following: 

 

𝑚 = Ç
𝜕 ln(𝜏)
𝜕 ln(𝛾̇)ÑE

 
(58) 

 

To compare the dependence of SRS on strain rate and temperature, the shear stress-strain curves were simulated for 

various orientations at different strain rates and temperatures. The ultimate tensile strength (UTS) values were obtained 

for all stress-strain curves. Based on the evolution of UTS parameters with temperature and strain rate, the analysis of 

SRS of various slip systems was provided. It was shown that SRS values of the material are strongly dependent on the 

slip system. Also, SRS parameters were higher for the less compact slip systems with a more difficult slip. It is 

reasonable, since CRSSs for more compact slip systems are lower, which makes the slip activation easier. The obtained 

dependence of SRS for various slip systems on strain rates and temperatures is shown in Figure 51. It is seen that SRS 

increases with the increase in temperature for all considered slip systems.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 51. Variation of UTS with strain rate and temperature for various slip systems for ZrH2-iron single crystals [140]. 

 

Ayoub et al. (2018) [142] used the crystal plasticity model to study the evolution of some model parameters with 

temperature. The model parameters were identified by fitting tensile stress-strain curves for AZ31B Mg alloy at 

different strain rate and temperatures. The evolution of the material parameters is shown in Figure 52 [142]. It was 

found that at room temperature the material demonstrates less sensitivity to the strain rate variation. Hence, the 1/m is 

equal 100 at room temperature. However, the material shows the high strain rate sensitivity at 300°C, so 1/m is equal 

7. It is seen that SRS increases with the increase in temperature. The hardening modulus demonstrates non-linear 

decreasing with increase in temperature. CRSSs for crystallographic slip and deformation twinning show 

approximately linear decrease with increasing temperature.  
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(a) 

 
(b) 

 
(c) 

Figure 52. Evolution of material parameters with the temperature variation: (a) strain rate sensitivity (SRS); (b) 
hardening moduli and (c) CRSSs of crystallographic slip systems and twinning system [142]. 

 

3.4.2 Phenomenological energy-based temperature and strain rate sensitive approaches. 

Arrhenius-type of equation is commonly applied to predict a temperature dependent constitutive behavior in wide 

range of alloys. Jonas et al. (1969) [143] proposed a phenomenological approach to express the dependence of flow 

stress on temperature as the hyperbolic law in an Arrhenius-type equation. It is well-known that this type of equation 

successfully describes the correlation between the flow stress and the deformation temperature, and strain rate, and 

strain level. Pu et al. (1995) [144] used the hyperbolic-sine Arrhenius-type equation to characterize the experimental 

data of Ti-AI-Cr-V and Ti-AI-Cr-V+B alloys and predict the hot-workability map of the intermetallic compounds. 

The hyperbolic-sine Arrhenius-type equation has a form of: 

 

𝜀̇ = 𝐴𝑠𝑖𝑛ℎ(𝛼𝜎)?exp	 Ç−
𝑄
𝑅𝑇Ñ 

(59) 

 

where A and 𝛼	are material constants, n is the constant related to the strain rate, and Q is the activation energy, R is 

the gas constant, and T is the absolute temperature in Kelvin.  

 

 
Figure 53. Comparison between measured and calculated stresses at a fixed true strain of 0.6 [145]. 
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Slooff et al. (2007) [145] introduced a strain-dependent parameter into Zener-Holloman equation to predict the flow 

stress behavior of a wrought Mg alloy at temperature rage between 250-500°C and at strain rates of 0.01s-1, 0.1s-1, 1s-

1, 10s-1 and 100s-1. The predicted flow stress at a fixed true strain of 0.6 showed the good agreement with experimental 

data (Figure 53). The solid line shows the perfect much with experimental data. The diamond solid symbols showed 

the calculated stress values. 

Mandal et al. (2009) [146] used the hyperbolic-sine Arrhenius-type equation to predict the flow stress for Ti-modified 

austenitic stainless steel at a wide range of temperatures (1123-1523K) and strain rates (10-2-10-3s-1). Further, the 

Zener-Holloman parameter was used to incorporate the effects of temperature and strain rate on the deformation 

behavior. The predicted curves showed a good agreement with experimental results (Figure 54). However, the fitting 

process of this model is complicated due to the significant number of parameters. 

 

 
Figure 54. Comparison the predicted and experimental stress-strain curves obtained during compression tests for Ti-

modified austenitic stainless steel at various strain rates and temperatures [146]. 



 55 

The constitutive models based on the activation energy proven to be a powerful tool to predict the correlation between 

flow stress, temperature regime and the applied strain rate. It is reasonable, the deformation of a material is mainly a 

process of dislocation movement. Peierls (1940) [147, 148] assumed that some force has to be applied for the 

dislocation to move it over the Peierls hill. Estimation of this stress can be made in terms of bond energy of atoms. 

The  dependence of velocity of the dislocation follows the exponential law as written [148]: 

 

𝜈? ≅ 𝜈J
𝐿
2𝑏 exp	(−𝑈?/𝑅𝑇) 

(60) 

 

where L is the length of a dislocation, 𝜈J is the Einstein frequency, 𝑈? is the energy of nucleation of a pair of kinks, 

and b is the Burgers vector. Hence, the influence of temperature on a dislocation movement follows can be described 

exponential law, and the activation energy assumed to be a material parameter and varies from material to material. 

 

3.4.3 Advancements in crystal plasticity modeling including temperature and strain rate 

effects on the mechanical response of polycrystal materials. 

To date, there are various approaches proposed in Crystal Plasticity theory to capture strain rate and temperature 

influences on the mechanical response of a material. There are two main modelling techniques used to capture the 

temperature and strain rate sensitive mechanical behavior of a material: bottom-up and top-down approaches [149].  

The top-down approach is used to characterize and calibrate the material behavior on macro-scale. In this approach, 

the deformation micro mechanisms and texture evolution are inferred [1, 139, 149]. For instance, Levesque et al. 

(2010) [1] modified the following expression by Johnson and Cook (1983) for the yield stress dependence on strain 

rate: 

𝜎(") = 𝜎("),!/K Ç1 + 𝐶 ln Ç
𝜀̇
𝜀L̇
ÑÑ (61) 

 

where C is a constant, 𝜀̇	is the strain rate, 𝜀L̇	is the reference strain rate and 𝜎("),!/K is the yield stress at the reference 

strain rate. Since the critical resolved shear stresses (CRSSs) of the slip systems and twinning systems determine the 

yield stress in the material, the same expression can be written for CRSSs as a function of strain rate:  

𝐶𝑅𝑆𝑆(4)	 = 𝐶𝑅𝑆𝑆(4)!/K Ç1 + 𝐶(4) ln Ç
𝜀̇
𝜀L̇
ÑÑ (62) 

 

where 𝐶(4) is the same for all slip systems and twinning systems and can be found by fitting the tension (for slip 

systems) and compression (twinning) stress-strain curves [1]. The hardening of the material caused by twinning 

boundaries was assumed to be a logarithmic function of strain rate, and written as:  
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ℎ-M(𝜀̇)	 = ℎ-M,!/K Ç1 + 𝐶8-M	 ln Ç
𝜀̇
𝜀L̇
ÑÑ (63) 

 

 

The constants for the equations were found by curve fitting the uniaxial tension and compression curves for AM30 at 

0.1s-1 and 0.001s-1 strain rate at 200°C, and then employed to simulate tension and compression tests at 0.01s-1 at 

200°C. The predicted curves were in a good agreement with experimental results (Figure 55). The top row presents 

the results obtained during uniaxial tension along extrusion direction for AM30 at 0.1s-1, 0.01s-1, and 0.001s-1 strain 

rates at 200°C. The bottom row shows the results for uniaxial compression along extrusion direction at 0.1s-1, 0.01s-1 

and 0.001s-1 strain rates at 200°C. 

 

 
(a) 

 
(b) 
 

 
(c) 
 

 
(d) 

 
(e) 

 
(f) 

Figure 55. Stress-strain curves obtained during tension at (a) 0.1s-1, (b) 0.01s-1 and (c) 0.001s-1 and compression at (d)  
0.1s-1, (e) 0.01s-1 and (f) 0.001s-1 strain rates for AM30 at 200°C [1]. 

 

The top-down approaches mainly use the calibrating process to obtain the material parameters for each strain rate and 

temperature. Among approaches, that attempt to capture the temperature and strain rate effects on the mechanical 

response of a material, no numerical models exist that are able to predict both these effects. 

Among some successful examples of bottom-up approaches are Lu et al. (2017) [150], Lim et al. (2015) [151], 

Cereceda et al. (2016) [152]. Lu et al. (2017) [150] combined the crystal plasticity approach with the Peierls stress’ 

based on atomistic dislocation-based kink-pair theory to incorporate temperature and strain rate effects in the 

modelling behavior of mechanical behavior of BCC 42CrMo steel. The dislocation-based kink theory considers the 

energy required to create a dislocation over the Peierls potential at different strain rates and temperatures. The concept 

was introduced by Peierls (1940) [147] as a viscous resistance to slip strain that functions as a rate controlling 

mechanism. The Peierls stress is known to be very sensitive to strain rate and temperature variations. The free energy 
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of the atom and the amplitude of the atom oscillation increases with the increase in temperature. As a result, the energy 

barrier preventing the atom movement reduces with increasing in temperature. Moreover, the time needs to overcome 

the energy barrier decreases suddenly with the increase in strain rate. Hence, the height of energy barrier becomes 

higher and more difficult to overcome. The Peierls stress was included in crystal plasticity formula for crystallographic 

slip shear rate as following: 

 

𝛾̇4 = 𝛾̇" b
𝜏N*+04

𝜏O4 + 𝜏04
c

'
,
 

(64) 

  

where m is strain rate sensitivity, 𝛾̇" is the reference shear rate, 𝜏O4	is the slip resistance, 𝜏N*+04  is the stress resolved on 

the slip system, and 𝜏04 is the Peierls stress.  

The temperature raise due to work-hardening was considered as an additional adiabatic process to calculate the 

hardening modulus for dynamic loading conditions. The dynamic deformation process was assumed to be a result of 

two processes: strain-hardening and thermal-softening due to adiabatic temperature raise. In the case of quasi-static 

loading, the hardening modulus was assumed to be constant. The model showed the good agreement with experimental 

results (Figure 56). Moreover, the developed model was able to capture the yield stress variation with temperature and 

strain rate. However, the parameters for micro mechanisms are determined through single crystal experiments and 

atomistic modeling of various deformation mechanisms. The bottom-up models need higher computational resources 

and experimental validations for single crystals and polycrystal behavior. 

 

 
(a) 

 
(b) 

Figure 56. Comparison of experimental and predicted stress-strain curves under (a) quasi-static loading at 0.001s-1 strain 
rate and (b) dynamic loading at 2400s-1 strain rate [150]. 
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3.5 Summary 
The mechanical and forming response of Mg alloys demonstrates a significant dependence on various factors, such as 

initial texture (alloying elements, manufacturing processes, etc.), temperature regime, and the rate of a deformation 

process. The temperature regime has a strong influence on the mechanical properties and formability. It was shown 

that the forming behavior of the material improves with the increase in temperature. Also, strain rate affects the 

mechanical response of a material. A decrease in strain rate improves material formability. Moreover, in some cases 

there is no significant improvement in mechanical properties between the higher and the lower strain rates. Hence, the 

usage of a faster strain rate makes the production process more efficient. In order to improve the behavior of Mg alloy 

and save the cost of the forming process, the best combination of these factors is required. 

There are various studies that showed the contribution of different alloying elements into the mechanical response of 

a material. It was shown that Ca-element and Rare-Earth element additions could significantly improve the corrosion 

resistance, ductility, and mechanical properties. Recently, the newly developed E-form Plus Mg alloy has gathered 

attention due to its’ potentially better formability and mechanical properties. However, there is no in-depth, 

comprehensive study of mechanical properties, texture evolution, and formability of E-form Plus Mg alloy at different 

temperatures and strain rates. Also, the literature lacks discussions on the linkages between mechanical properties and 

the responsible deformation mechanisms for the present alloy. Thus, the analysis of texture evolution and the 

activation of various deformation mechanisms needs to be provided. However, there is no existing constitutive model 

in the literature that can predict the influence of temperature and strain rate on the mechanical behavior, texture 

evolution and deformation micro mechanisms for E-form Plus Mg alloy. Also, the literature lacks the analysis of 

crystallographic slip and deformation twinning activities.  

The material parameters are proven to be functions of chemical composition, temperature, strain rate, and 

crystallographic slip/deformation twinning system.  Numerous parametric studies were performed to estimate the 

evolution of some material parameters with strain rate and temperature. The dependence of strain rate sensitivity on 

slip system, temperature, and strain rate was demonstrated. It was shown that hardening parameters and CRSSs of 

non-basal slip systems decrease with the increase in temperature. Various phenomenological and crystal plasticity 

models were offered to capture the temperature and strain-rate dependent behavior of alloys. Phenomenological 

approaches demonstrate the ability to capture the influence of temperature and strain rate on the mechanical behavior 

of a material. However, these models are unable to characterize the microstructure evolution and give an insight on 

the deformation micro mechanisms. The understanding of these processes is crucial to improve the material 

performance. On the other hand, fewer crystal plasticity models were offered to capture strain rate and temperature 

effects on the mechanical behavior of materials. However, there is no model which can accurately predict the 

mechanical response of HCP Mg alloy at various strain rates and temperatures.  

The aim of this work is to provide a comprehensive analysis of the experimental data of E-form Plus Mg alloy and 

propose a constitutive model to characterize the influence of temperature and strain rate on the texture evolution and 

activities of different deformation micro mechanisms. Moreover, the proposed model will be used to characterize the 

forming behavior of the material at various strain rates and temperatures. The effects of strain rate and temperature on 

the mechanical and forming behavior of E-form plus Mg alloy will be investigated.  
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4 Scopes and Objectives 

Mg alloys are well-known due to their excellent mechanical properties. However, these metals exhibit poor formability 

at room temperature. There are two main ways to improve the forming properties of Mg alloy sheets:  

• improving the initial texture through adding another alloying element into pure Mg alloy;  

• choosing the proper temperature and strain rate regime to improve the forming behavior of a material; 

Hence, modeling the dependencies of material behavior on temperature and strain rate is a crucial problem due to its 

significant importance for the forming design. Models which are able to accurately capture the temperature and strain 

rate influences on the material parameters are beneficial for reducing the forming process cost and production time. 

The main scope of this research is to investigate and characterize the mechanical behavior of E-form Plus Mg alloy at 

various strain rates and temperatures. Also, the work aims are to offer the material model to capture the strain rate and 

temperature effects on the mechanical and forming behavior. Moreover, it is crucial to provide insight into the activity 

of crystallographic slip and deformation twinning mechanisms at different strain rates and temperatures. Thus, the 

main objectives of the current research are: 

1. Characterize and analyze the experimental data of E-form Plus Mg alloy obtained during tensile tests along 

at various strain rates and temperatures.  

2. Develop an energy-based material model able to capture the temperature and strain rate effects on the 

mechanical response of Mg alloy at certain temperatures and strain rates.  

3. Incorporate the model into the Taylor-type Crystal Plasticity framework for HCP Mg polycrystals.  

4. Validate the model with available experimental data: stress-strain curves, texture evolution. 

5. Study the effect of temperature and strain rate on the activity of various deformation mechanisms 

(crystallographic slip, deformation twinning) and texture evolution. 

6. Incorporate the model into M-K Taylor-model for HCP materials.  
7. Analyze the dependence of forming behavior of E-form Plus Mg alloy on strain rate and temperature 

numerically. 
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5 Development and Validation 

5.1 Material Characterization 

This part of the thesis provides the information about the material studied in this research and experimental 

techniques used to characterize the mechanical properties, texture and microstructure.  

5.1.1 Material 

The material used in this research is E-form Plus Mg alloy. E-form Plus Mg alloy sheets with a nominal thickness of 

1.2mm were used in the present study. The experimental samples were provided by POSCO Mg Inc. (South Korea). 

The chemical composition of the material is shown in Table 4.  

 
Table 4. Chemical composition (max. wt%) of E-form Plus magnesium alloy. 

Material Mg Al Zn Ca Mn 
E-form Plus 95.7 2 1 1 0.3 

 

5.1.2 Experimental Procedures 

In order to characterize the mechanical behavior of E-form Plus Mg alloy, quasi-static, high-temperature uniaxial 

tensile tests were performed along the rolling direction (RD) and transverse direction (TD) using standard specimens. 

Dog-bone-shaped specimens were made by the ASTM E8 geometry bone testing dimensions (testing length is 

203.2mm and the width of 19.05mm tapering to 12.07 mm). Uniaxial tensile tests were carried out at 150ºC, 200ºC 

and 250ºC at three different strain rates: 0.1s-1, 0.01s-1 and 0.004s-1. The commercially available digital image 

correlation (DIC) system was used to control the strain rate on the specimen surface. The special black and white 

speckle pattern was sprayed on the specimen surface to make the DIC measurements from a set of snapshots. The 

images were acquired at 100 frames/second for ~5seconds (~500+ images). To analyze the set of snapshots from the 

camera VIC3d software was used.  

EBSD texture measurements were performed for characterizing the texture evolution of E-form Plus Mg alloy at 

150ºC for 0.1s-1, 200ºC for 0.01s-1, and 250ºC for 0.01s-1. The EBSD measurements were made on RD-TD plane. All 

EBSD measurements were made using a Zeiss N-Vision SEM equipped with a TSL EBSD camera. A step size of 

0.2mm was used for all EBSD measurements. The obtained data was further processed using the MTEX MATLAB 

toolbox.  

5.1.3 Experimental Results and Discussions 

5.1.3.1 Flow Behavior 

The obtained the engineering stress - engineering strain curves during uniaxial tensile tests along TD and RD at 150ºC 

for 0.1s-1, 0.01s-1 and 0.004s-1 are shown in Figure 57. Figure 58 shows the engineering stress - engineering strain 

curves obtained during tensile tests along TD and RD at 200ºC for various strain rates. The engineering stress – 

engineering strain curves obtained for 250ºC are shown in Figure 59.  
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The material properties were measured using the obtained stress-strain curves. The yield limit was measured as 𝜎".&. 

The ultimate tensile stress as a maximum stress on a stress-strain curve. The uniform elongation was measured as a 

strain value corresponds to the ultimate tensile stress. Also, the elongation to failure was obtained as the maximum 

strain value before the failure. 

 

 
(a) 

 
(b) 

Figure 57. Engineering stress – engineering strain curves of the E-form Plus Mg alloy along (a) TD and (b) RD at 150oC 
for different strain rates. 

 

 
(a)  

(b) 
Figure 58. Engineering stress – engineering strain curves of the E-form Plus Mg alloy along (a) TD and (b) RD at 200oC 

for different strain rates. 
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(a) 

 
(b) 

Figure 59. Engineering stress – engineering strain curves of the E-form Plus Mg alloy along (a) TD and (b) RD at 250oC 
for different strain rates. 

 

The measured mechanical parameters obtained for all temperatures, loading directions and strain rates are presented 

in the Table 5. The material parameters were obtained as average of three measured values. The quadratic deviation 

for each parameter was obtained. To characterize the evolution of mechanical properties with the strain rate and 

temperature, the dependences of material parameters on the logarithm of the strain rate were plotted for all 

temperatures and directions. The evolution of mechanical properties is discussed in detail in part 5.1.3.2.  

 
Table 5. The yield strength, the ultimate tensile strength (UTS), the uniaxial elongation and the elongation before failure 
obtained during tensile tests along TD and RD for different strain rates at 150oC, 200oC and 250oC. 

Temperature Loading Direction Strain Rate Yield Strength UTS Uniaxial Elongation Elongation before 
Failure 

150oC RD 0.1s-1 126.7±2.2 [MPa] 171.9±0.7 [MPa] 11.6±0.2 % 73.6±1.0 % 
 0.01s-1 97.7±2.0 [MPa] 147.0±1.8 [MPa] 14.0±0.4 % 103.5±1.1 % 
 0.004s-1 90.6±1.1 [MPa] 132.5±1.5 [MPa] 14.7±0.2 % 117.5±4.0 % 
 TD 0.1s-1 93.4±2.2 [MPa] 152.8±0.8 [MPa] 17.0±0.03 % 87.0±5.0 % 
 0.01s-1 90.9±1.2 [MPa] 137.3±0.4 [MPa] 18.5±0.02 % 109.5±10.6 % 
 0.004s-1 82.5±1.1 [MPa] 124.2±0.7 [MPa] 18.6±0.1 % 139.2±5.0 % 
200oC RD 0.1s-1 98.2±2.9 [MPa] 134.9±0.2 [MPa] 11.47±0.15% 96.2±2.0 % 
 0.01s-1 82.7±2.0 [MPa] 112.8±2.7 [MPa] 12.7±0.05% 140.7±1.1 % 
 0.004s-1 71.7±3.8 [MPa] 99.3±4.2 [MPa] 12.6±0.6 % 139.1±7.1 % 
 TD 0.1s-1 90.14±1.4 [MPa] 125.02±0.7 [MPa] 16.5±0.2 % 104.1±1.9 % 
 0.01s-1 76.9±1.3 [MPa] 102.6±3.5 [MPa] 15.0±0.4 % 130.0±25.3 % 
 0.004s-1 64.5±0.8 [MPa] 89.6±0.9 [MPa] 13.8±0.4 % 135.1±21.5 % 
250oC RD 0.1s-1 73.9±1.1 [MPa] 102.7±1.3 [MPa] 11.8±0.11 % 106.2±2.4 % 

 0.01s-1 45.5±0.7 [MPa] 66.1±1.1 [MPa] 10.7±0.8 % 129.2±8.1 % 
 0.004s-1 52.7±1.6 [MPa] 66.1±1.0 [MPa] 10.6±0.1 % 110.8±6.3 % 

 TD 0.1s-1 64.8±0.7 [MPa] 97.8±0.5 [MPa] 15.0±0.01 % 103.5±7.1 % 
 0.01s-1 43.3±0.2 [MPa] 61.3±0.3 [MPa] 10.4±0.4 % 82.1±3.0 % 
 0.004s-1 51.5±1.0 [MPa] 64.7±0.8 [MPa] 9.0±0.1 % 89.8±1.7 % 
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5.1.3.2 Effect of temperature and Strain Rate on the mechanical Properties of E-form Plus 

Mg Alloy 

Figure 60 shows the dependence of yield strength (YS) on the strain rate at various temperatures and loading 

directions. All YS values obtained during tensile tests along RD are higher than the values measured for TD for all 

temperatures and strain rates. To explain this phenomenon, the initial texture of E-form Plus Mg alloy should be 

considered. The initial texture of the material, shown in Figure 64 (a), demonstrates that there is a broader distribution 

of basal poles along the TD rather than along the RD. This asymmetry of basal pole figures distribution favors the 

activation of twin formation during tension along TD. The activation of twinning explains the lower YS values for all 

strain rates and temperatures for TD. Muhammad et al. (2015) [41] and Kurukuri et al. (2014) [42] described the 

similar mechanical behavior for ZEK100 Mg alloy. Moreover, it is observed that the increase in temperature leads to 

a decrease in YS parameters. It is known that crystallographic slip is a temperature dependent process and the CRSS 

values responsible for the activation of non-basal slip systems decrease with increasing temperature [34, 44]. Thus, 

the activation of crystallographic slip happens earlier with an increase in temperature, which can explain a decrease 

in yield limit. Hence, with a decrease in CRSS parameters for non-basal crystallographic slip systems, deformation 

caused by crystallographic slip becomes significantly more competitive compare to deformation twinning. The 

difference between yield limits obtained for RD and TD decreases with an increase in temperature, which means that 

less amount of twinning involves into plastic deformation process with higher temperature. It can be assumed that 

CRSS for basal slip and deformation twinning do not experience the dramatic change in comparison to CRSSs for 

non-basal crystallographic slip systems. The lowering of non-basal CRSSs favors the crystallographic slip as the main 

deformation mechanism at higher temperatures. The resolved shear stress for deformation twinning does not reach its 

critical value. Hence, less twin formation happens during deformation process with an increase in temperature. Thus, 

deformation twinning does not play a significant role in plastic deformation at temperatures above 200ºC.  

 

 
Figure 60. Dependence of yield strength on strain rate for different temperatures and loading directions. 
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Furthermore, there is very small change in YS values during deformation along TD with the decrease in strain rate at 

150ºC, where the deformation twinning plays a significant role in the deformation process. Hence, the deformation 

twinning is assumed to be insensitive to the change in  temperatures and strain rates. On the other hand, YS values for 

RD at 150ºC decrease with the decrease in strain rate. It is known, that crystallographic slip is the major deformation 

mechanisms activated during tension along RD. Hence, the crystallographic slip is strongly dependent on the change 

in temperatures and strain rates. 

The dependence of ultimate tensile strength (UTS) on the logarithm of the strain rate for all temperatures and loading 

directions is shown in Figure 61. It is seen that UTS values obtained for RD are higher than the values obtained for 

TD for all temperatures and strain rates. Moreover, the decrease in strain rate leads to the decrease in UTS for all 

considered temperatures and loading directions. Also, UTS values decrease with the increase in temperature at any 

strain rate. It indicates the obvious softening of the alloy at warm temperatures. The difference in UTS becomes more 

distinct with an increase in strain rate which shows the strain rate sensitivity of crystallographic slip. 

 

 

 
Figure 61. Dependence of ultimate tensile strength on strain rate for different temperatures and loading directions. 

 

It is noticeable that UTS values are higher than YS values for all strain rates and all temperatures. This difference 

corresponds to the significant work hardening process. Moreover, the difference between TD and RD in YS values is 

higher than in UTS parameters.  An increase for UTS for TD for all strain rates and temperatures can be explained by 

a combination of two mechanisms: Hall-Petch-like effect and texture rotation. The formed twins subdivide the parent 

grains, and twin boundaries act like obstacles and prevent dislocations from gliding. Additionally, the twins formed 

rotates the initial texture of a parent grain by approx. ~86º into the orientation parallel to loading axis. As a result, 

neither basal nor pyramidal <a> slips are favorable to accommodate deformation. The re-oriented region 

accommodates deformation via pyramidal <c+a> slip, which makes the twinned grain harder to deform [5, 6].  

The dependence of uniform elongation (UE) values on temperature and strain rate is shown in Figure 62 for all loading 

directions. The decrease in strain rate leads to an increase in UE for RD and TD at 150ºC. The UE values obtained 

after tension along TD are higher than ones obtained for RD for all strain rates and temperatures, except of the ones 

measured for 250ºC. Barnett (2007) [43] showed that twinning formation leads to an increase in the uniform elongation 
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for Mg alloys. In addition, an increase in temperature decreases the UE values for a constant strain rate and loading 

direction. The drop in the uniform elongation with an increase in temperature is to be expected by the lowering of 

twinning occurrence over the temperature range 150-250ºC. 

 

 
Figure 62. Dependence of uniform elongation on strain rate for different temperatures and loading directions. 

Figure 63 shows the elongation to failure (EF) obtained for all loading directions, temperatures and strain rates is 

shown. The elongation decreases remarkably with an increase in strain rate for 150oC and 200oC for both RD and TD. 

Thus, the strain-rate dependence of EF can be explained by an increase in non-basal slip activities, which leads to 

annihilation of twinning, so the ductility of the material improves. Also, an increase in temperature leads to there is 

an increase in EF. It can be explained by a drop off in twin formation with increase in temperature, which improves 

the ductility of a material. 

 

 
Figure 63. Dependence of elongation to failure on strain rate for different temperatures and loading directions. 

 

5.1.3.3 Texture Evolution 
In this section the texture evolution results obtained during tension along TD at 150°C for 0.1s-1 strain rate, 200°C for 

0.1s-1 strain rate and 250°C for 0.1s-1 strain rate are presented (Figure 64). The initial orientation of the microstructure, 
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shown in Figure 64 (a), has its c-axis spread away from the ND and along the loading direction i.e. TD. Initially the 

maximum basal pole intensity tilted by ~35-40° from ND towards TD. It can be expected that two other major 

deformation mechanisms in addition to the basal slip viz. prismatic <a> and pyramidal <c+a> slip are active. Also, 

the initial grains suitable for twin formation are those in which basal poles are aligned with the loading direction 

during tensile deformation. Figure 64 (a) does show orientations close to the TD pole; these orientations are most 

likely to twin when subjected to tension along the TD. 

Figure 64 (b-d) show the deformed textures after the tension at 0.1s-1 strain rate along TD for 150°C, 200°C and 250°C 

respectively. It is seen that the maximum basal (0001-) pole intensity increases after the deformation. The intensity of 

the basal poles aligned along TD decreases after the tension. Hence, the crystal reorientation of the c-axis from the 

TD to the ND occurs after the deformation due to the extension twinning activity.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 64. Initial (a) and deformed textures of E-form Plus Mg alloy obtained during tension along TD at (b) 150oC for 

0.1s-1 strain rate, (c) 200oC for 0.1s-1 strain rate and (d) 250oC for 0.1s-1. 
 

Furthermore, there is a noticeable influence of temperature on the texture evolution of E-form Plus Mg alloy. It can 

be observed from the basal pole figures that more crystal reorientation is present at a lower temperature. As it was 

mentioned, twinning is almost a temperature insensitive process, and the reduction in reorientation might be related 

to the amount of twins formed. As the CRSSs for crystallographic slip get lower with an increase in temperature, 

this leads to less twinning formation during the deformation process. Thus, less crystal reorientation due to twinning 

is noticeable at higher temperatures.  

5.2 Constitutive Modelling 

This section provides an overview on crystal plasticity constitutive model and proposes the new energy-based 

material model to capture the effect of temperature and strain-rate on material parameters.  

5.2.1 Modeling Framework 

Crystal plasticity modeling framework was offered by Asaro and Needleman [42], and twinning deformation 

mechanism was incorporated as a pseudo-slip mechanism by Kalidindi (1998) [5]. The model was later extended for 

HCP metals by Levesque et al. (2010). Deformation process consists of three mechanisms: crystallographic slip, 

deformation twinning, and elastic lattice distortion (Fig. 65) [5].  
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Figure 65. Decomposition of total deformation gradient [5]. 

 

Accordingly, the deformation gradient includes two parts: F* - elastic and rigid body rotation, and FP – 

crystallographic slip and twinning:  

F=F*FP (63) 

The list of active slip and twin systems is presented in Table 6.  

 

Table 6. HSP crystallographic slip and twin systems. 

{0001} <12#10> Basal slip 

{101#0} <12#10> Prismatic slip 

{11#01} <112#0> Pyramidal <a> slip 

{12#12} <12#13#> Pyramidal <c+a> slip 

{101#2}<1#011> Extension twins 

{11#01}<1#012> Contraction twins 

 

Lattice orientation of every integration point is presented as a pair of vectors s(a) and m(a), where s(a) – slip direction, 

m(a) – slip plane normal, and a is equal 3 for basal slip system, 3 for prismatic slip system, 6 for both pyramidal slip 

systems, and 6 for each of twin systems.  

Rotation and stretch of the lattice can be found as follows:  

s*(a)=F* s(a),         m*(a)= m(a)F* -1 (64) 

The elastic and plastic parts of the velocity gradient can be written as: 

𝐿∗ = 𝐹∗̇𝐹∗5', 𝐿Q = 𝐹∗(𝐹Q̇𝐹Q5')𝐹∗5' (65) 

and the velocity gradient tensor is a sum of its elastic and plastic parts: 
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𝐿 = 𝐹̇𝐹5' = 𝐿∗ + 𝐿Q (66) 

Antisymmetric and symmetric parts of the velocity gradient give spin and strain rate: 

𝐷 = 𝐷∗ +𝐷Q, 𝛺 = 𝛺∗ + 𝛺Q (67) 

The symmetric and skew-symmetric tensors for each slip system are written as follows: 

𝑃(4) =
'
&
[𝑠(4)∗ ⊗𝑚(4)

∗ +𝑚(4)
∗ ⊗𝑠(4)∗ ] (68) 

𝑊(4) =
'
&
[𝑠(4)∗ ⊗𝑚(4)

∗ −𝑚(4)
∗ ⊗𝑠(4)∗ ] (69) 

The plastic strain rate and spin can be formulated:  

𝐷Q = å1 −G𝑓(=)
6#$

=7'

çéG𝑃(4)
6!

47'

𝛾̇(4) +G𝑃(=)
6#$

=7'

𝑓(̇=)𝛾-Mè +G[	𝑓=G(𝑃(4)
-M=

6!

47'

𝛾̇(4)
-M=)]

6!

=7'

 
(70) 

WQ = å1 −G𝑓(=)
6#$

=7'

çéG𝑊(4)

6!

47'

𝛾̇(4) +G𝑊(=)

6#$

=7'

𝑓̇(=)𝛾-Mè +G[	𝑓=G(𝑊(4)
-M=

6!

47'

𝛾̇(4)
-M=)]

6!

=7'

 
(71) 

where 𝑓(=) and 𝑓̇(=) are the volume fraction of twinning system b and its rate respectively, 𝛾-M is shear strain associated 

with twinning and 𝛾̇(4) is the shear rate of the a slip system. Finally, 𝑁N and 𝑁-M are numbers of slip systems and 

twin systems, respectively.  

To calculate the shear rate and the twin rate formulas below are used: 

𝛾̇(4) = 𝛾̇(")𝑠𝑔𝑛𝜏(4) P
𝜏(4)
𝑔(4)

P
'/,

 
(72) 

𝑓̇(b) =
𝑓̇(")
𝛾-M 𝑠𝑔𝑛𝜏(b) P

𝜏(b)
𝑔(b)

P
'/,

 
(73) 

where 𝛾̇(") is the reference shear rate, m is the strain rate sensitivity, 𝑔(4) is the hardness, 𝜏(4) is the resolved shear 

stress for the system a: 

𝜏(4) = 𝑃(4) ∶ 𝜎 (74) 

The hardening law is defined as: 

𝑔̇(4) =Gℎ(4=)

	

=

R𝛾̇(=)R 
(75) 

where ℎ(4=) are the hardening moduli: 
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ℎ(4=) = 𝑞(4=)ℎ=	(𝑛𝑜	𝑠𝑢𝑚	𝑜𝑛	𝛽	) (76) 

where ℎ= is a hardening rate of single slip and 𝑞(4=) is the matrix, which describes the latent hardening behavior of 

the crystallite.  

The hardening rate is presented by a Voce-type equation as follows: 

ℎ(4) = ℎ(",4)𝑐>exp	(−𝑐>𝛾>)	 + ℎ' (77) 

where ℎ(",4) and 𝑐> are hardening parameters for each slip system that require calibration, ℎ' is the hardening caused 

by twin boundaries and 𝛾> is a sum of accumulated shear on each slip system: 

𝛾> = Y GR𝛾̇(4)R
6!

47'

-

"
𝑑𝑡 

(78) 

The total Cauchy stress is calculated as the average of stress values in un-twinned (matrix) and twinned grain parts: 

𝜎 = å1 −G𝑓(=)
6#$

=7'

ç𝜎,- +G𝑓(=)

6#$

=7'

𝜎-M= 
(79) 

The elastic moduli for twinned regions are written as: 

𝐸+.F*-M = 𝐸,?R0,- 𝑄+,𝑄.?𝑄FR𝑄*0 (80) 

where 𝐸,?R0,-  is elastic moduli for matrix, and the transformation matrix 𝑄+. offered by Van Houtte [43] is written as: 

𝑄+. = 2𝑚+𝑚. − 𝛿+. (81) 

where 𝛿+. 	is Kronecker symbol. 

 

5.2.2 Energy-based Material Model 

The effect of temperature and strain rates on mechanical response of Mg alloys were explicitly studied by numerous 

authors [110-115, 131, 137, 138, 149, 150]. It was shown that critical resolved shear stresses (CRSS values (𝜏"
(4))) 

decrease with an increase in temperature for non-basal slip systems. The CRSSs for basal slip and twinning do not 

experience a dramatic change with the change in temperature. Thus, that basal slip and twinning are almost a-thermal 

processes [137, 138]. There is a slight change in the CRSSs for these deformation mechanisms. Moreover, it can be 

assumed that CRSSs for the prismatic and pyramidal slip systems decay linearly with temperature [137, 138]. Hence, 

the dependence of CRSSs on temperature can be described by following linear equation (82) for basal, prismatic, 

pyramidal <a> and <c+a> slip systems: 

 

𝜏"
(4)(𝑇) = −𝑘 ∙ 𝑇 + 𝑏 (82) 
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where T is the temperature in [K], k and b are calibrating material constants. The obtained parameter is used to calculate 

the shear rate based on following formula: 

 

𝛾̇(4) = 𝛾̇(")𝑠𝑔𝑛𝜏(4) P
𝜏(4)
𝑔(4)

P
'/,

 

 

(83) 

 

where 𝛾̇" is a reference shear rate (the same for all the slip systems), the m is the strain-rate sensitivity of a material, 

and the initial hardness parameter for the a  slip system is 𝑔"(4)(𝑇) = 	 𝜏"
(4)(𝑇). 

The evolution of hardening parameters was studied by [1, 59, 138, 142, 149, 150]. Ayoub et al. (2017) [142] used a 

crystal plasticity model to fit the stress-strain curves obtained during tensile tests of AZ31B at different strain rates 

and temperatures. It was shown during a numerical analysis that hardening parameters for different slip systems decay 

exponentially with an increase in temperature. Also, Lu et al. (2017) [150] implemented the Peierls stress’ atomistic 

dislocation-based kink-pair theory into crystal plasticity framework. The Peierls stress was included into crystal 

plasticity formula as an additional hardness component. It is known, that Peierls stress is sensitive to the temperature 

change and plays a role of an energy barrier for dislocation movement. The energy barrier preventing the dislocation 

movement decrease with increase in temperature. In metals, dislocations interact along their length with various other 

dislocations that surround them. Beyerlein and Tome (2008) [153] discussed the thermal energy which the dislocation 

segments need to overcome their energy barriers and move. The rest of the dislocations untangle, spread, and stop 

again. Various types of dislocation interactions: attractive and repulsive – were discussed. The attractive interaction 

of dislocations describes the interconnection of dislocation pairs. The attractive dislocation interaction requires 

thermal activation. Hence, the attractive interconnection of dislocation segments is temperature-dependent process 

and follows the Arrhenius-type equation. Hence, the hardening parameters, which determine the ability of newly 

formed dislocations to move in the matrix of previously accumulated ones, follows the Arrhenius-type of the equation. 

Hence, it can be assumed that the hardness which defines the dislocation movement follows the exponential law. The 

Arrhenius-type equation was used to describe the hardening behavior of the material at different temperatures: 

 

ℎ"(4)	 (𝑇) = ℎ(4)" ∙ 𝑒
S%
LE  

(84) 

 

where R is the universal gas constant (8.314 [J·mol-1·K-1]); Qh is the activation energy of hardening process in  

[kJ·mol-1] and ℎ(4)" 	is a calibrating material constant which is unique for each slip system.  

The sensitivity of material mechanical response to the change in the strain rate is incorporated as a strain rate sensitivity 

m-parameter. Duygulu et al. (2003) [40] and Khan et al. (2011) [13] showed for AZ31 Mg alloy that the strain rate 

sensitivity is a temperature-dependent parameter. It was demonstrated that the m-parameter increases with an increase 

in temperature [12, 35, 37, 40]. Also, Movahedi-Rad and Alizadeh (2017) [140] showed that strain rate sensitivity 
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value depends on the slip system and m-values increase with an increase in temperature for all slip systems. Hence, 

the m-parameter is temperature-dependent and unique for each slip system. Moreover, it can be assumed that the strain 

rate sensitivity value has an exponential dependence on temperature is described as: 

𝑚(4)
	 (𝑇) = 𝑚(4)

" ∙ 𝑒5
S&
LE  

(85) 

 

where 𝑄, is the strain-rate sensitivity activation energy in [kJ·mol-1] and 𝑚(4)
"  are calibrating material parameter. The 

activation energy is assumed to be a material parameter, and equal for all slip systems.  

 

5.3 Numerical Analysis 

In the previous section, an energy-based material model is proposed which can capture the influence of temperature 

and strain rate on the material mechanical behavior. These temperature and strain rate changes lead to change in 

material properties and positive strain rate sensitivity. In this section, the new energy-based model is applied to 

deformation due tensile tests along RD and TD at various strain rates and temperatures. The stress-strain curves 

presented in section 5.1.3.1 were chosen to calibrate and validate the proposed model. The energy-based model is 

incorporated into the preceding Taylor-type crystal plasticity framework for HCP metals [1].  

5.3.1 Results and Discussions 

5.3.1.1 Analysis of Flow Stress Behavior 

Tensile tests were carried out along RD and TD at three different temperatures and strain rate regimes are used for 

simulation. The experimental temperatures were chosen as 150°C, 200°C and 250°C. The experimental strain rates 

were 0.1s-1, 0.01s-1 and 0.004s-1. The specimens were pulled in rolling (RD) and transverse (TD) directions. The curves 

plotted correspond to the average response from a minimum of three experiments at each strain rate. The experimental 

true tensile stress-strain curves obtained for all strain rates (0.1s-1, 0.01s-1 and 0.004s-1) and loading directions (RD, 

TD) are shown in Figure 66 for 150°C, Figure 67 for 200°C, Figure 68 for 250°C respectively. It is seen that there is 

a presence of initial “linear hardening” obtained during tensile tests along TD at 150ºC. This “linear hardening” is the 

result of activated twinning process. It can be noticed that the twinning formation saturates at approx. ~10% of strain, 

and hardening rate decreases after reaching this strain value. Thus, the rate of twinning formation achieves its’ 

maximum and remains stable after ~10% of deformation.   
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(a) 

 
(b) 

Figure 66. True stress-strain curves of the E-form Plus Mg alloy for different strain rates at 150℃ for:  (a) TD, (b) RD. 

 

 
(a) 

 
(b) 

Figure 67. True stress-strain curves of the E-form Plus Mg alloy for different strain rates at 200℃ for:  (a) TD, (b) RD. 

 

 
(a) 

 
(b) 

Figure 68. True stress-strain curves of the E-form Plus Mg alloy for different strain rates at 250℃ for:  (a) TD, (b) RD. 

Based on the initial texture, it is expected that the main deformation mechanism activated during tensile test along RD 

is crystallographic slip. Thus, the material parameters for modeling the crystallographic slip at 150°C and 200°C were 
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calibrated for stress-strain curves obtained during tensile tests along RD at 0.1s-1 strain rates. Also, tension along TD 

favors the twinning formation. Hence, the material parameters for twinning have been found by using the stress-strain 

curves for TD at 0.1s-1 and 0.01s-1 strain rate. The parameters obtained for both temperature of 150°C and 200°C are 

shown in the Table 7. 

 
Table 7. Calibration parameters used in the current simulations. 

Parameter (eqn. number) 150ºC 200ºC 

𝜏!"#$#%	[MPa] (10) 8.5  7.0 

𝜏!
&'($)	[MPa] (10) 39.5 31.0 

𝜏!
&+',	[MPa] (10) 70.5 48.0 

𝜏!
&+'-	[MPa] (10) 70.5 48.0 

ℎ	"#$#%	[MPa] (13) 2.0 2.0 

ℎ	&'($)	[MPa] (13) 8.9 5.24 

ℎ	&+',	[MPa] (13) 41.5 28.0 

ℎ	&+'-	[MPa] (13) 41.5 28.0 

𝑚"#$#% (10) 0.01 0.017 

𝑚&'($) (10) 0.042 0.065 

𝑚&+', (10) 0.075 0.116 

𝑚&+'- (10) 0.075 0.116 

𝛾!̇ 0.001 0.001 

𝜏!./(0	[MPa] (11) 39 39 

ℎ	./(0	[MPa] (13) 0.0 0.0 

HP [MPa] 100 100 

𝑓!̇ 10e(-11) 10e(-11) 

 

The obtained parameters from Table 7 were used to calculate the material parameters for simulation of the tensile tests 

along TD and RD for 250ºC at different strain rates. The calibrated material parameters were inserted into the 

equations of the model proposed in the section 5.2.2. The equations were resolved to obtain the material constants and 

activation energy values. The equations represent the dependence of material parameters for crystallographic slip in 

the given temperature range are written as follows: 
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𝜏"D>N>* = −0.03 ∙ 𝑇 + 13	
𝜏"
0!+N, = −0.17 ∙ 𝑇 + 65	
𝜏"
0T!' = −0.45 ∙ 𝑇 + 138	
𝜏"
0T!& = −0.45 ∙ 𝑇 + 138 

(25) 

ℎ	D>N>* = 2	

ℎ	0!+N,	 = 0.06 ∙ 𝑒
'UVUV
LE  

ℎ	0T!' = 0.32 ∙ 𝑒
'UVUV
LE  

ℎ	0T!& = 0.32 ∙ 𝑒
'UVUV
LE  

(26) 

𝑚D>N>* 	= 0.58 ∙ 𝑒5
'H&'G
LE 	

𝑚0!+N, = 2.41 ∙ 𝑒5
'H&'G
LE 	

𝑚0T!' = 4.27 ∙ 𝑒5
'H&'G
LE 	

𝑚0T!& = 4.27 ∙ 𝑒5
'H&'G
LE  

(27) 

 

where the activation energy for hardening process Qh is equal 17575 [kJ·mol-1] and strain rate sensitivity energy 𝑄, 

is 14213 [kJ·mol-1]. The material constants found for 250ºC are shown in Table 8. 

 

Table 8. Calibration parameters used in the current simulations for 250°C. 

Parameter (eqn. number) 250°C 

𝜏!"#$#%	[MPa] (10) 5.5 

𝜏!
&'($)	[MPa] (10) 22.5 

𝜏!
&+',	[MPa] (10) 25.5 

𝜏!
&+'-	[MPa] (10) 25.5 

ℎ	"#$#%	[MPa] (13) 2 

ℎ	&'($)	[MPa] (13) 3.42 

ℎ	&+',	[MPa] (13) 18.57 

ℎ	&+'-	[MPa] (13) 18.57 

𝑚"#$#% (10) 0.024 

𝑚&'($) (10) 0.0920 

𝑚&+', (10) 0.1626 

𝑚&+'- (10) 0.1626 

𝛾!̇ 0.001 

𝜏!./(0	[MPa] (11) 39 

ℎ	./(0	[MPa] (13) 0.0 

HP [MPa] 100 

𝑓!̇ 10e(-11) 

 
Figure 69 shows the comparison between calibrated and experimental true stress-strain curves for RD at 0.1s-1 strain 

rate and TD at 0.1s-1 and 0.01s-1 strain rates and predicted and experimental trues stress-strain curves for RD at  

0.01s-1 and 0.004s-1 and TD at 0.004s-1 for 150°C. Figure 70 presents the comparison of calibrated stress-strain curves 
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for RD at 0.1s-1 strain rate and TD at 0.1s-1 and 0.01s-1 strain rates and predicted stress-strain curves for RD at  

0.01s-1 and 0.004s-1 and TD at 0.004s-1 for 200°C with experimental data. Figure 71 shows the prediction of the stress-

strain response for TD and RD at 0.1s-1, 0.01s-1 and 0.004s-1 for 250°C using material parameters presented in  

Table 8. It can be seen, that all predicted stress-strain curves are in a fairly good agreement with experimental results 

for the given temperatures, strain rates and loading directions. The predicted curves also capture of a decrease in yield 

limit with increase in temperature was observed. Hence, it can be concluded that model predicts well the positive 

strain rate sensitivity effect for all temperatures and loading directions is well captured by the model. Moreover, the 

proposed parameters for 150°C, 200°C and 250°C predict well the hardening behavior of E-form Plus Mg alloy.  

 

 
(a) 

 
(b) 

Figure 69. Experimental and simulated stress-strain curve for tensile tests at 150°C along (a) TD and (b) RD at 0.1s-1, 
0.01s-1 and 0.004s-1 strain rates. 

 

 
(a) 

 
(b) 

Figure 70. Experimental and simulated stress-strain curve for tensile tests at 200°C along (a) TD and (b) RD at 0.1s-1, 
0.01s-1 and 0.004s-1 strain rates. 
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(a) 

 
(b) 

Figure 71. Experimental and simulated stress-strain curve for tensile tests at 250°C along (a) TD and (b) RD at 0.1s-1, 
0.01s-1 and 0.004s-1 strain rates. 

 

5.3.1.2 Numerical Analysis of Texture Evolution 

Figure 72 shows the experimental and simulated deformed textures of E-form Plus Mg alloy obtained during tensile 

tests along TD at 150°C for 0.1s-1 strain rate, 200°C for 0.1s-1 strain rate and 250°C for 0.1s-1 strain rate. The initial 

texture of the experimental sample and the initial texture used for the simulation are presented in Figure 72 (a, b) 

respectively. There is a good agreement of predicted final textures with experimental results. The initial pole figures 

show a presence of grains with orientation such that the c-axis is aligned with the TD. These grains are the ones that 

can undergo extension twinning when pulled along TD. Both, the experimental and the simulated results at 150°C 

show the presence of significant amount of twinning. This is reflected in the reduction of the intensities of c-axis along 

the TD. As the temperature increases the likelihood of twinning decreases and this too can be seen in the pole figures 

which show that the intensity of the poles close to TD is similar to the original value. 

Figure 73 demonstrates predicted deformed textures obtained during tensile tests along TD for E-form Plus Mg alloy 

at various strain rates and temperatures. The loading in the TD activates both crystallographic slip and extension 

twinning.  As it was mentioned previously, the basal poles along the TD undergo the direct extension of c-axis which 

activates the twinning formation. The intensity of basal pole increases due to reorientation of grains undergoing the 

twinning process.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
Figure 72. Initial (a) experimental and (b) simulation textures of E-form Plus Mg alloy; experimental deformed textures 
obtained after tension along TD (c) 150°C for 0.1s-1 strain rate, (e) 200°C for 0.1s-1 strain rate and (g) 250°C for 0.1s-1 

strain rate; predicted deformed textures obtained after tension along TD (d) 150°C for 0.1s-1 strain rate, 
 (f) 200°C for 0.1s-1 strain rate and (h) 250°C for 0.1s-1 strain rate. 

 

Also, it can be noticed that the deformed texture is affected by the strain rate. The intensity of basal poles decreases 

with a decrease in the strain rate at 150°C, which can be attributed to an increase in the crystallographic slip activity. 

As more strain is accommodated by the crystallographic slip and less twin formation occurs. The same trend can be 

noticed for 200°C. However, the increase in maximum intensity for basal poles is observed with a decrease in the 

strain rate for 250°C. It can be assumed that the crystallographic slip is the main deformation mechanism at 250°C 

due to almost the lack of crystal reorientation corresponds to extension twin formation. The main reason for the 

increase in intensity at this temperature maybe explained by the rapid increase in slip activity which leads to the lattice 

rotation. 
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 0.1s-1 0.01s-1 0.004s-1 

150°C 

 
(a) 

 
(b) 

 
(c) 

200°C 

 
(d) 

 
(e) 

 
(f) 

250°C 

 
(g) 

 
(h) 

 
(i) 

 
Figure 73. Predicted deformed textures for E-form Plus Mg alloy obtained during tensile tests along TD at different 
temperatures: (a, b, c) 150°C for 0.1s-1, 0.01s-1 and 0.004s-1 respectively; (d, e, f) 200°C for 0.1s-1, 0.01s-1 and 0.004s-1;  

(g, h, i) 250°C for 0.1s-1, 0.01s-1 and 0.004s-1. 

 
Figure 74 shows deformed textures obtained during tensile tests along RD at various strain rates and temperatures. No 

sign of crystal reorientation due to the extension twinning is noticed after the tension along RD. The maximum 

intensity increases after the deformation which may be associated with the rotation of the lattice due to crystallographic 

slip. Also, the spread of basal poles along RD becomes more compact after the deformation for all temperatures and 

strain rates. This might be a result of activation of the other deformation mechanisms in addition to basal 

crystallographic slip viz. associated with prismatic crystallographic slip. Habib et al. (2017) [117] observed the similar 

trend for ZEK100. The activation of slip systems is discussed in detail in the next section. 

It is seen that final textures are affected by temperature and strain rate. There is an increase in maximum intensity with 

a decrease in strain rate for all temperatures. Hence, crystallographic slip systems become active earlier, which leads 

to more strain accommodated by crystallographic slip. Thus, more lattice rotation due to crystallographic slip happens. 

Also, there is an influence of temperature regime on the deformed texture. It proves that crystallographic slip is a 

temperature sensitive process.  
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 0.1s-1 0.01s-1 0.004s-1 

150°C 

 
(a) 

 
(b) 

 
(c) 

200°C 

 
(d) 

 
(e) 

 
(f) 

250°C 

 
(g) 

 
(h) 

 
(i) 

Figure 74. Predicted deformed textures for E-form Plus Mg alloy obtained during tensile tests along RD at different 
temperatures: (a, b, c) 150°C for 0.1s-1, 0.01s-1 and 0.004s-1 respectively; (d, e, f) 200°C for 0.1s-1, 0.01s-1 and 0.004s-1;  

(g, h, i) 250°C for 0.1s-1, 0.01s-1 and 0.004s-1. 

 

5.3.1.3 Analysis of Activities of Various Deformation Mechanisms 

The evolution of the volume fraction of twinning obtained during tensile tests at 150°C along (a) TD and (b) RD and 

at 200°C along (c) TD and (d) RD is presented in Figure 75. The graphs show the twin formation exhibits the highest 

rate in the beginning of deformation, and twin formation rate starts decaying around approx. 10% of strain.  After this 

percentage of strain, the less twins are formed during deformation. Hence, the saturation of twin formation occurs 

when strain reaches the value of 10%. The obtained data shows a good agreement with the previous assumptions. 

Moreover, the volume fraction of twinning does not experience the dramatic change with the change in strain rates. 

Thus, supporting the hypothesis that the deformation twinning is strain rate insensitive process. Also, the accumulated 

volume fraction of twinning does not change drastically with the increase in temperature from 150°C to 200°C. The 

values measured for the tension along TD at 20% of strain are approx. ~35% for 150ºC and ~33% for 200ºC 

respectively. Thus, the twinning process is temperature and strain rate insensitive deformation mechanism. 

 



 80 
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Figure 75. Relative accumulated volume fraction of twinning obtained during tensile tests at different strain rates along 
TD at (a) 150°C, (b) 200°C, (c) 250°C and along RD (e) 150°C, (f) 200°C and (g) 250°C. 

Figure 76 shows the accumulated relative slip activity of the basal slip system during tensile tests at 150ºC, 200ºC and 

250ºC along TD and RD at all three strain rates. The plotted graphs are shown only till 10% of deformation due to 

saturation of the curves at this strain value. The plotted curves reach the plateau. There is a peak of basal slip activity 

in the beginning of deformation for all temperature and strain rates. It can be explained by the fact, that the basal slip 

is activated first due to the low CRSS of this slip system in comparison to the CRSS values of other slip systems. 

There is a slight drop of basal slip activity during the deformation along TD for 150ºC and 200ºC. On the other hand, 

the activity of basal slip during RD reaches the peak in the beginning of deformation with the following drop and 

stabilized during the rest of deformation. It is seen, that during the tension along TD basal slip activity is almost not 

affected by the change in the strain rate or temperature. The exception is a uniaxial tension along RD at 250ºC, where 

the decrease in the basal slip system activity occurs with decrease in the strain rate from 0.1s-1 to  

0.004s-1.  
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Figure 76. Relative accumulated slip on the basal slip system during tensile tests at different strain rates along TD at (a) 

150°C, (b) 200°C, (c) 250°C and along RD (e) 150°C, (f) 200°C and (g) 250°C. 

 

The accumulated relative slip activity of the prismatic slip system during tensile tests at 150ºC, 200ºC and 250ºC along 

TD and RD at all three different strain rates is shown in Figure 77. The decrease in the activity of prismatic slip system 

can be noticed with the increase in temperature from 50% at 150ºC to 25% at 250ºC for tension along TD. However, 

there is no change in the relative prismatic slip activity for the deformation along RD. The effect of strain rate becomes 

stronger with increase in temperature for both directions. It is seen that a decrease in strain rate almost does not affect 

the activity of prismatic slip at the temperatures below 250ºC for RD. However, at the temperature of 250ºC the 

prismatic slip activity decreases with decreasing strain rate.  
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Figure 77. Relative accumulated slip on the prismatic slip system during tensile tests at different strain rates along TD at 
(a) 150°C, (b) 200°C, (c) 250°C and along RD (e) 150°C, (f) 200°C and (g) 250°C. 

 

The accumulated relative slip of the pyramidal <a> slip system during tensile tests at 150ºC, 200ºC and 250ºC along 

TD and RD at all three different strain rates is presented in Figure 78. The increase in temperature leads to the increase 

in the activity of pyramidal <a> slip system for both loading directions. It can be seen that for both loading directions 

the activity of pyramidal <a> slip system decreases with a decrease in strain rate. 

Figure 79 presents the accumulated relative slip of the pyramidal <c+a> slip system during tensile tests at 150ºC, 

200ºC and 250ºC along TD and RD at all strain rates. It is seen that the activity of pyramidal <c+a> slip system raises 

with an increase in temperature for both loading directions. Moreover, the behavior of pyramidal <c+a> slip system 

differs from the behaviors of other slip systems. The increase in the activity of pyramidal <c+a> order slip system was 

observed with a decrease in strain rate for all temperatures and loading directions. Moreover, it is seen that for 150ºC 

more and more pyramidal <c+a> crystallographic slips get activated during the deformation. However, for 150ºC, 

200ºC and 250ºC the activity the pyramidal <c+a> slip has the peak in the beginning of deformation and almost doesn’t 

during the rest of deformation. This can primarily be attributed to the twin formation. Due to reorientation, the most 

preferred deformation in the twinned region is pyramidal <c+a> slip. As the volume fraction of twins increase so does 

the activity of <c+a>. Also, the effect of the strain rate on the pyramidal <c+a> slip system activity gets stronger with 

an increase in temperature for both loading directions.  
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Figure 78. Relative accumulated slip on the pyramidal <a> slip system during tensile tests at different strain rates along 
TD at (a) 150°C, (b) 200°C, (c) 250ºC and along RD (e) 150°C, (f) 200°C and (g) 250°C. 
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Figure 79. Relative accumulated slip on the pyramidal <c+a> slip system during tensile tests at different strain rates along 
TD at (a) 150°C, (b) 200°C, (c) 250°C and along RD (e) 150°C, (f) 200°C and (g) 250°C. 

 
The deformation is dominated by prismatic and pyramidal <c+a>, an increase in the activity for <c+a> slip system for 

TD with an increase in strain is due to the twin formation. It can be noted that <c+a> saturates in the beginning of 
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deformation and stay stable with an increase in strain during the tension along RD. The deformation twinning reorients 

approx. 35% of the texture at 150°C and 250°C, and it becomes favorable for <c+a> gliding. The majority of 

deformation is accommodated by basal, prismatic, and pyramidal <c+a> slip systems. 

In order to clarify the correlation between the mechanical response and the deformation mechanisms responsible for 

the material behavior, dependence of activities of crystallographic slip systems and twinning on the stress applied was 

analyzed (Table 9). Figure 80 shows the correlation between the relative activities of various deformation mechanisms 

and the applied stress during tensile tests along TD and RD at 150°C for three different strain rates.  
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Figure 80. Relative slip system activity during tension along (a) TD and (b) RD for 0.1s-1, 0.01s-1 and 0.004s-1 strain rates 
at 150°C: (c, d, e) and (f, g, h) respectively. 

 

The characterization of this correlation reveals that initial yielding along RD is defined by activities of initially basal 

and the next slip system to become active is the prismatic slip systems. After this, pyramidal <c+a> order slip system 

becomes active, and crystallographic slip contributes into the change in the change of the hardening rate. Deformation 
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twinning becomes active between 85-94 MPa for different strain rates, but the volume fraction of twins remains low 

(less than 10%) after tension along RD for all strain rates. Hence, deformation twinning does not play a crucial role in 

the plastic deformation along RD at 150°C. However, twinning along TD becomes active at approx. 60 MPa, and the 

amount of twinning indicates that the twinning plays a significant role in the formation of “linear hardening” region 

during tension along TD. Thus, the yielding along TD is dominated by deformation twinning. Also, the measured 

volume fraction of twinning after tension along TD is approx. 35%, hence, the 35% of material experienced twin 

formation. The twin formation is probably responsible for the high values of UTS obtained for TD. Also, the 

accumulated activities of prismatic and pyramidal slip systems are lower for tension along TD. It is seen that there is 

a drop in the activities of prismatic and pyramidal <c+a> slip systems due to the activation of twinning mechanism. 

Hence, the initial texture of E-form Plus Mg alloy favors the accommodation of plastic deformation through the twin 

formation rather than pyramidal slip. 
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Figure 81. Relative slip system activity during tension along (a) TD and (b) RD for 0.1s-1, 0.01s-1 and 0.004s-1 strain rates 
at 200°C: (c, d, e) and (f, g, h) respectively. 
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The dependence of the activity of different deformation mechanisms on the stress obtained at 200°C is shown in Fig. 

81. It is seen that basal slip becomes active at the initial stage of deformation between 6-12 MPa. After this, the 

activation of prismatic slip occurs around 50 MPa.  

There is an amount of pyramidal <c+a> activity happens at approx. 36-56 MPa for RD and 30-36 MPa for TD. 

Yielding mainly happens due to crystallographic slip along RD and due to deformation twinning along TD. It is 

observed that the activation of pyramidal <c+a> occurs much later than the activation of prismatic slip during tension 

along RD in comparison to the tensile test along TD, where both slip systems become active around the same stress. 
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Figure 82. Relative slip system activity during tension along (a) TD and (b) RD for 0.1s-1, 0.01s-1 and 0.004s-1 strain rates 
at 250°C: (c, d, e) and (f, g, h) respectively. 

Figure 82 shows the evolution of relative accumulated activities of various deformation mechanisms with the applied 

stress obtained during tensile tests at 250oC at different strain rates and directions. At higher temperature, the 

deformation twinning is not observed due to the low values of non-basal slip systems. Also, it is seen that basal slip 

is the dominant deformation mechanism for all strain rates and directions. The activation of prismatic and pyramidal 

<c+a> order slip systems happen at approx. the same stress level at the highest strain rate. However, the decrease in 
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strain rate leads to the activation the pyramidal <c+a> slip system before the prismatic slip system. It is seen that there 

is the significant drop in the stress level at which the activation of both prismatic and pyramidal <c+a> happens with 

the decrease in the strain rate. It can be noticed that all crystallographic slip systems contribute to the change of 

hardening rate, and the yielding happens. Basal slip and prismatic slip systems are dominant deformation mechanisms 

during tension along RD. However, this is evident from the activity of those components, that both prismatic and 

pyramidal <c+a> order slip systems become active at the same stress during tension along TD, and these systems 

equally contribute to the yielding process. It is known that the rotation of texture due to crystallographic slip as the 

main deformation mechanism reaches up to approx. 30° in magnesium alloys, and texture does not experience a 

significant change during uniaxial deformation. Thus, the final textures do not differ dramatically from initial textures 

at 250°C. 

Table 9. The correlation between the stress and the activity of various deformation mechanisms. 

Temperatur
e 

Loading 
Direction 

Strain Rate Basal [MPa] Prismatic 
[MPa] 

Pyramidal <a> 
[MPa] 

Pyramidal <c+a> [MPa] Twinning 
[MPa] 

150°C TD 0.1s-1 12.0 53.0 - 67.0 60.0 
  0.01s-1 8.0 44.0 - 57.0 59.0 
  0.004s-1 6.0 42.0 - 53.0 58.0 
 RD 0.1s-1 11.0 58.0 - 85.0 94.0 
  0.01s-1 8.0 47.0 - 74.0 90.0 
  0.004s-1 7.0 43.0 - 67.0 85.0 

200°C TD 0.1s-1 12.0 44.0 50.0 36.0 64.0 
  0.01s-1 8.0 32.0 48.0 32.0 62.0 
  0.004s-1 6.0 29.0 - 30.0 60.0 
 RD 0.1s-1 11.0 48.0 56.0 56.0 94.0 
  0.01s-1 8.0 34.0 50.0 40.0 85.0 
  0.004s-1 7.0 26.0 - 36.0 85.0 

250°C TD 0.1s-1 11.6 20.0 11.6 20.0 - 
  0.01s-1 5.8 16.0 14.0 13.0 - 
  0.004s-1 5.1 14.0 13.0 12.0 - 
 RD 0.1s-1 11.0 54.0 - 63.0 - 
  0.01s-1 7.0 14.0 14.0 13.0 - 
  0.004s-1 5.5 11.0 14.0 12.0 - 

 
 
The analysis of slip activity has shown, that with decrease in strain rate the drop of basal slip activity occurs faster as 

compared to non-basal slip systems, which keeps increasing along the deformation process. The growth rate of non-

basal slip activity increases with a decrease in strain rate for all temperatures. Moreover, the activity of pyramidal 

<c+a> slip system increases with the increase in temperature from 150°C to 250°C, as therefore, the rate of growth of 

prismatic slip system becomes higher. Thus, the activity of non-basal slip systems increasing with increase in 

temperature and decrease in strain rate. Chaudry et al. (2019) [44] showed that better formability of HCP Mg alloys 

attributed to the higher activity of non-basal slip systems. Moreover, Jager et al. (2004) [45] showed that annihilation 

of <c+a> dislocations due to cross slip can result in a decrease in work hardening rate. The increase in activity of non-

basal slip glides with decrease in strain rate and increase in temperature can lead to softening due to cross slip or/and 

dislocation glide. 
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5.3.2 FLD analysis of E-form Plus Mg alloy 

In this section, the formability of E-form Plus Mg alloy sheet it studied using MK-Taylor model combined with 

energy-based approach. Elevating temperatures and low strain rates affect the formability of Mg alloys. To verify this, 

the predictions of FLDs using the MK-Taylor model are studied at 150oC, 200oC and 250oC temperatures and 0.1s-1,  

0.01s-1 and 0.004s-1 strain rates. 

5.3.3.1 Model Calibration 

For E-form Plus Mg alloy, the overall stress-strain responses were fitted at different strain rates, temperatures and 

loading directions. For validation, the experimental left side of FLD obtained along TD at 150ºC for 0.01s-1 is used. 

To analyze the influence of temperature on forming behavior, the simulated FLCs for 150ºC, 200ºC and 250ºC at  

0.1s-1, 0.01s-1 and 0.004s-1. Characterization of the strain rate influence on the forming response obtained by 

comparison FLDs for TD at 150ºC, 200ºC and 250ºC for three different strain rates. The model imperfection parameter 

is found by matching the limit strain associated with in-plane plane strain tension (𝜌 = 0.0) to the corresponding 

experimental strain limit 150ºC. The imperfection parameter obtained for 150ºC  was kept constant for all temperatures 

and strain rates. It is known that the imperfection band orientation is an important factor that affects the strain limit 

values. The orientations of imperfection bands which produce the lowest values of strain limits are analyzed for 

various strain rates and temperatures.  

5.3.3.2 Forming Limit Analysis 

The predicted FLDs for various temperatures at 0.01s-1 strain rate are shown in Figure 83. The imperfection parameter 

f0 obtained by matching the in-plane plain strain tension case (𝜌 = 0.0) to the corresponding experimental value for 

150ºC is 0.9949. The value of fitted major strain for in-plane plane strain tension was 48.98%. On the left side of 

FLDs for 𝜌 ∈ {−0.5, 0.0}, the predicted major strain limit values decrease with the change of strain path from uniaxial 

tension (𝜌 = −0.5) to in-plane plane strain tension (𝜌 = 0.0) and in a good agreement with experimental results. On 

the right side of FLDs, the predicted major strain limit values increase with the change of strain path from in-plane 

plane strain tension (𝜌 = 0.0) to equibiaxial tension (𝜌 = 1.0). The imperfection parameter obtained for 150ºC was 

maintained constant for all temperatures. The model was able to capture the shift of FLD due to an increase in 

temperature and showed a good agreement with experimental results 
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Figure 83. Comparison of FLD predictions with experimental data for E-form Plus Mg alloy at 0.01s-1 strain rate for 
various temperatures. 

 
The results of the effects of temperatures on FLDs obtained at different strain rates are presented in Figure 84. The 

model depicts the effect of strain rate on the predicted FLCs. The effect of temperature is pronounced for FLDs at 

150oC, 200oC and 250oC. At 0.004s-1 strain rate (Figure 84 (a)), an increase in temperature from 150oC to 200oC leads 

to an increase in the in-plane plane strain limit by ~5%. However, an increase in temperature 200oC to 250oC at 0.004s-

1 strain rate improves the forming behavior by ~18% (based on the comparison of major strain values in in-plane plane 

strain intercept). From Figure 84 (b), it is evident that an increase in temperature from 150oC to 200oC at 0.01s-1 strain 

rate leads to the improvement in forming performance by ~7% (based on the increase in in-plane plane strain 

intercept). Also, the increase in temperature from 200oC to 250oC at 0.01s-1 strain rate improves the formability by 

~19% in in-plane plane strain intercept. Figure 84 (c) demonstrates that an increase in temperature from 150oC to 

200oC and from 200oC to 250oC leads to an improvement in forming performance in in-plane plane strain tension by 

~13% and ~22% respectively. 
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Figure 84. Predicted FLDs for E-form Plus Mg alloy for different temperatures at (a) 0.1s-1, (b) 0.01s-1 and (c) 0.004s-1 
strain rates. 
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The orientation of the imperfection band is an important factor determines the limit strain values. Figure 85 shows the 

evolution of imperfection band orientation with strain path for various strain rates and temperatures. It is seen that the 

lower orientations give the lowest limit strains except at the equibiaxial tension (𝜌 = 1.0) where the orientation of 90o 

gives the lowest limit strain value. 

 

 
(a) 
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Figure 85. Evolution of imperfection band angle with strain path at various strain rates at (a) 150oC, (b) 200oC and (c) 
250oC. 
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Figure 86. Predicted FLDs for E-form Plus Mg alloy for various strain rates at (a) 150ºC, (b) 200ºC and (c) 250ºC. 

 
The activity of various deformation mechanisms was studied for various temperatures and strain rates. Figure 86 

shows the strain rate effect on FLCs at various temperatures. It is seen that an increase in strain rate improves the 
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forming behavior, which is in contradictory with experimental results for Mg alloys. The improvement of formability 

is noticed at lower strain rates by [131, 154, 155]. Figure 87 demonstrates the accumulated slip for an in-plane plane 

strain intercept obtained at 150ºC and 200ºC for 0.1s-1 and 0.01s-1 strain rates. It is seen, that there is a negligible 

difference in the activity of various slip systems at two different strain rates for both temperatures. However, the 

dramatic increase in the slip activity of non-basal slip systems happens at the higher strain rate at lower strain limit, 

which could be a reason of the lower strain limits at the lower strain rate. Particularly, Figure 87 shows that the failure 

is preceded by activation of pyramidal <a> slip, which remained inactive for the entire deformation up to failure. At 

the strain rate of 0.001s-1 this activation of pyramidal <a> happens earlier and leads to early failure. Future studies 

should be performed to develop an additional criterion to ascertain whether this negative strain rate effect in the model 

will be corrected. 
 

 
(a) 

 
(b) 

Figure 87. Relative slip system activity inside the imperfection band during tension along TD for 0.1s-1 and 0.01s-1 strain 
rates at (a) 150°C and (b) 200°C. 
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6 Conclusions and Future Work 

6.1 Strain Rate and Temperature Effects on Mechanical Properties, Texture Evolution and 

Forming Behavior of E-form Plus Mg Alloy 

The effect of temperature and strain rate on the flow stress behavior in E-from Plus Mg alloy was investigated using 

the energy-based model. The tension tests along rolling (RD) and transverse (TD) directions were carried out at 150oC, 

200oC and 250oC temperatures with 0.1s-1, 0.01s-1 and 0.004s-1 strain rates. The simulations for these conditions of 

were done using Taylor-type crystal plasticity model combined with the proposed energy-based model. The analysis 

of influences of various temperatures and strain rates on mechanical behavior of E-form plus Mg alloy was provided. 

The analysis of influences of various temperatures and strain rates on mechanical behavior of E-form plus Mg alloy 

was provided. The major conclusions of this work are as follows: 

• The YS and UTS parameters measured for RD are higher than the values obtained for TD for any given 

constant strain rate and temperature. A decrease in strain rate leads to the decrease in YS and UTS for both 

RD and TD. Also, in YS and UTS both decrease with an increase in temperature for any given strain rate  

and loading direction. A decrease in stress flow indicates the softening process happens. The noticeable 

difference between YS and UTS parameters is due to the work hardening process. 

• There is an improvement in the ductility of E-form Plus Mg alloy with an increase in temperature till 200oC 

and a decrease in stain rate till 0.004s-1. The exception is the data obtained during tension at 250oC, where an 

increase in temperature above 200oC leads to the decrease in UE values for any constant strain rate. Hence, 

the ductility of the material drops down if temperature reaches the value of 250oC. 

• E-form Plus Mg alloy demonstrates positive strain-rate sensitivity in all directions and temperatures. 

• The analysis of final pole figures showed the presence of the grains that were reoriented due to the twin 

formation. The influence of the temperature on the twin formation is noticed. The experimental data shows 

that the increase in temperature leads to less amount of twin formation. 

• There are two active deformation mechanisms observed during tension along TD and RD: crystallographic 

slip and deformation twinning. Crystallographic slip is the dominant deformation mechanism at all strain 

rates and temperatures. The saturation of slip activities is observed at approx. 10% of strain. CRSSs of slip 

systems decrease with an increase in temperature. Hence, less twin formation occurs. At 250oC 

crystallographic slip is the main deformation mechanism, CRSSs of slip systems are much lower than CRSS 

of twinning, and twin formation never happens. 

• The numerical analysis of summarized volume fraction of twinning (VFT) shows that the accommodation 

rate of deformation twinning increases rapidly in the beginning of plastic deformation and saturates around 

approx. ~10% of strain. Thus, the main twin formation and growth happens till ~10% of strain. The most 

accumulation of twinning occurs in uniaxial tension along TD. The numerical study of the effect of the strain-

rate and temperature regime on VFT shows that deformation twinning mechanism is strain rate and 

temperature insensitive process.  



 95 

• The predicted final textures are a good agreement with the experimental results. The predicted final textures 

showed the reorientation of the grains due to the twin formation. Also, the simulation showed that approx. 

35% of the grains underwent twinning. Moreover, the predicted pole figures show the influence of strain rate 

on the final texture obtained during tensile tests along TD and RD. The decrease in the strain rate is 

accompanied by an increase in the maximum intensity, which indicates crystallographic slip activates earlier 

at lower strain rates. There is a noticeable influence of strain rate on the crystallographic slip. 

• The change in strain rate and temperature has a strong impact on crystallographic slip. The numerical analysis 

of crystallographic slip system activities shows that basal slip is almost insensitive to the change in strain-

rate and temperature. However, the analysis of non-basal slip activities shows that at 150oC prismatic slip 

accommodates 50% of strain, but at 250oC this value gets down to 38% for tensile tests along TD. However, 

there is no change in the accommodated strain by prismatic slip with the increase in temperature for tensile 

tests along RD. Moreover, the decrease in strain-rate leads to lesser strain being accommodated by prismatic 

slip system. The amount of strain accommodated by pyramidal <a> slip system decreases with a decrease in 

the strain-rate for both loading directions. The increase in temperature leads to an increase in the strain 

accommodated by pyramidal <a> slip activity for both loading directions. Furthermore, the pyramidal <c+a> 

slip system accommodates more strain with temperature growth and less with the decrease in the strain-rate 

for both loading directions. The increase in slip activity of pyramidal <c+a> slip system is more sensitive to 

the increase in temperature as compared to the decrease in strain rate. 

• The non-basal slip system activity becomes higher with increase in temperature and decrease in strain rate. 

Non-basal dislocation glide contributes into the softening of material with increasing temperature and 

decreasing strain rate. Moreover, non-basal higher slip activity leads to better material deformability. 

• There is a noticeable asymmetry in the yield strength values between RD and TD for 150oC, 200oC and 

250oC. This behavior successfully captured by model. It is seen, that for the tension along TD at the 

temperatures of 200oC and 150oC, the yield limit obtained during tension along TD is controlled by the 

activation of deformation twinning. However, for 250oC the difference in the yield limits obtained for these 

loading directions is not due to the activated twinning process anymore. The difference between TD and RD 

for this temperature can be explained by the earlier activation of pyramidal <c+a> slip system during tension 

along TD. It is noticeable for temperatures 200oC and below that the activation of the deformation twinning 

is almost not affected by the change in the strain rate and temperature. This result proves the assumption that 

deformation twinning is temperature and strain rate insensitive process. 

The developed model was implemented into Taylor-type crystal plasticity model in conjunction with M-K framework. 

The model was calibrated to the experimental FLC obtained at 200ºC for 0.1s-1 strain rate for in-plane plane strain 

tension case. The predicted FLC at 200ºC for 0.1s-1 was validated to the experimental data for 𝜌 ∈ {−0.5, 0.0}. The 

FLCs were predicted for various strain rates and temperatures. To analyze the influence of temperature and strain rate 

on the formability of E-form plus Mg alloy, the FLCs for various strain rates and temperatures was predicted. The 

major conclusions are following: 

• The model depicts the improvement of formability of E-form Mg alloy with an increase in temperature 
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• The orientation of the imperfection band plays a crucial role in predicting the limit strain values; the lower 

orientation values (around 0º-5º of inclination) give the lowest limit strain values except at the equibiaxial 

tension case, where the imperfection band perpendicular to the loading direction gives the lowest limit strain 

values 

• The model predicts the improvement of the formability of E-for Mg alloy with an increase in the strain rate, 

which is in contradictory with experimental results for Mg alloys.   

6.3 Future Work 
The results of this thesis highlighted the effect of temperature and strain rate on the mechanical response of the present 

material for different loading conditions, as well as the influence on texture evolution and deformation micro 

mechanisms, and forming behavior. The following recommendations are suggested for future work: 

1) In the present work, the uniaxial stress-strain curves obtained along TD and RD at 150oC were used to 

calibrate the model. However, the mechanical response and texture evolution are sensitive to twin formation; 

the volume fraction of twinning is highly affected by temperature. It is necessary to calibrate the volume 

fraction of twinning. It is recommended to obtain the EBSD measurements should be performed at different 

intervals to obtain the actual volume fraction of twinning.  

2) The model implemented into the Taylor-type crystal plasticity framework in conjunction with M-K analysis 

predicted the opposite trend of the strain rate influence on the formability compares to experimental 

measurements. The proposed model accounts twin formation as a volume fraction of twinning. Thus, it does 

not incorporate the actual twins, the model does not consider the negative effects of twinning, such as the 

void formation at the twin matrix interface, which can be a possible reason for the inability to capture the 

influence of strain rate on formability [1]. Popova et al. (2016) [156] developed CPFEM framework, which 

considers the effect of actual twin formation on the mechanical response and final texture. Hence, the 

developed energy-based model needs to be implemented into CPFEM framework. This concept should be 

implemented and explored in future research.  

3) Popova et al. (2015) [157] developed CPFEM coupled with probabilistic cellular automata (CA) to model 

dynamic recrystallization (DRX) in Mg alloys. DRX is known to take place during deformation at high 

temperatures for Mg alloys. It is known that DRX has a strong influence on the formability of a metal due to 

its ability to control the final texture and the size of grains. The developed model can be introduced into 

CPFEM CA approach to study the effect of strain rate and temperature on the nucleation of the new grains 

and their subsequent growth. The combined approach can be used to improve the mechanical properties and 

formability of Mg alloys. 
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