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Abstract

Energy storage plays a pivotal role in enabling intermittent renewable energy sources,

electrified transportation, and portable electronics. The rapidly growing energy demand in

these sectors requires improvement to the commercial lithium-ion systems. All-solid-state

batteries are candidates for next-generation batteries because of their potential to be paired

with a lithium metal anode, which leads to significant energy density gains. Furthermore,

solid electrolytes can dramatically improve the safety and longevity of battery technologies

by replacing the flammable liquid organic electrolytes that are typically used. This thesis

broadly focuses on two types of solid electrolytes: thiophosphates and thioborates.

Chapters 3 and 4 focus on thiophosphate type solid electrolytes. In chapter 3, an

in-situ variable temperature neutron powder diffraction study on Li3PS4 was conducted to

elucidate the crystal frameworks and lithium substructures of its respective polymorphs

(γ → β → α). The lithium diffusion pathways of both the bulk β and α polymorphs are

evaluated using the maximum entropy method and bond valence site energy calculations,

revealing that the structure of α-Li3PS4 favors facile 3D conduction. Building on these

concepts, chapter 4 focuses on the experimental elucidation of lithium ion conductors in

the Li1+2xZn1-xPS4 solid solution. Using neutron and synchrotron X-ray powder diffraction,

their crystalline structures are resolved to show the nature of likely pathways for lithium

ion conduction and this is correlated with the improved ion conductivity upon increasing

the lithium concentration and inducing Li/Zn site disorder.

In chapter 5, new quaternary lithium oxythioborosilicate glasses (termed ‘LIBOSS’)

were synthesized that exhibit high ion conductivity up to 2×10−3 S·cm−1. Superionic

conductivity can be achieved despite relatively high oxygen:sulfur ratios of more than 1:2,

which also greatly reduces H2S evolution upon exposure to air. Stripping/plating onto

lithium metal results in very low polarization at a current density of 0.1 mA·cm−2 over

repeated cycling. Evaluation of the optimal glass composition as an electrolyte in an all-

solid-state battery shows it exhibits excellent cycling stability and maintains near theoretical
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capacity for over 130 cycles at room temperature with Coulombic efficiency close to 99.9%,

opening up new avenues of exploration for these quaternary compositions.

In chapter 6, a new class of lithium thioborate halides is reported. These materials

adopt a so-called supertetrahedral adamantanoid structure that houses mobile lithium

ions and halide anions within interconnected 3D structural channels. Investigation of the

Li7.5B10S18X1.5 (X = Cl, Br, and I) structures using single-crystal XRD, neutron powder

diffraction, and neutron PDF reveals significant lithium and halide anion disorder. These

new superadamantanoid materials exhibit high ionic conductivities up to 1.4×10−3 S·cm−1.

In chapter 7, a new fast-ion conducting lithium thioborate halide, Li6B7S13I is presented.

Li6B7S13I exhibits a perovskite topology and an argyrodite-like lithium substructure that

leads to superionic conduction with a theoretical Li-ion conductivity of 5.2×10−3 S·cm−1.

Combined single-crystal XRD, neutron powder diffraction, and AIMD simulations elucidate

the Li+ ion conduction pathways through three-dimensional intra and inter-cage connections,

and Li-ion site disorder, which are all essential for high lithium mobility.
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Chapter 1

Introduction

Batteries have changed the global energy landscape by allowing us to easily store, transport,

and use electricity on demand whenever and wherever we want. In our world today, energy

storage solutions have enabled the emergence of portable electronic devices, electric vehicles,

and renewable energy sources such as solar and wind. These energy storage systems could

not have been possible without the development of novel advanced materials and their

chemistries. While significant progress has been made, a monumental global effort is taking

place to improve these technologies further. This is in part due to rapidly increasing energy

demands that stem from a variety of causes, such as the proliferation of electronic devices

to the growing electric vehicle industry. Electric vehicles are extremely important from

both an environmental and economical perspective as the automotive industry transitions

from gasoline powered vehicles to electric. On a broader scale, energy storage can improve

the reliability of intermittent renewable energy sources such as solar and wind to be used

as part of the grid-based supply system. Batteries can provide electricity during off-peak

production times when energy cannot be generated. As energy demand increases and the

effects of climate change become more severe, the need for new and improved energy storage

systems becomes crucial.
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1.1 Lithium-Ion Batteries (LIBs)

LIBs were developed on the basis of intercalation reactions, where ions are able to move into

and reside in a solid host. Looking at the intercalation of lithium ions into metal disulfides,

Whittingham1 developed the first rechargeable lithium battery in 1976 at then Exxon

Corporation, using a TiS2 cathode, a lithium metal anode, and an organic liquid electrolyte.

This exciting discovery spurred interest into many other intercalation materials. Although

this system was promising, the use of a sulfide based cathode limited the cell voltage to less

than 2.5 V, which in turn limits the energy density. Additionally, the use of a pure lithium-

metal anode leads to dendrite growth and ultimately short-circuiting that when paired with

an organic electrolyte presents a fire hazard. The low voltage problem was addressed by the

discovery of higher voltage (4 V) oxide based cathodes. Notably, the lithium layered oxide

LiCoO2, developed by Goodenough et al.2 at the University of Oxford, was fundamental

in enabling the commercialization of LIBs. LiCoO2 exhibits good structural stability along

with high electrical and lithium-ion conductivity, which allows it to be quickly charged and

discharged. The cell architecture and assembly is also simplified since a metallic lithium

anode is no longer required because Li+ is already contained within the structure of the

cathode material. Lithium-free anodes can then be paired with LiCoO2. Yoshino et al.

in 1987 at the Asahi Kasei Corporation in Japan did exactly that by studying LiCoO2

paired with various carbon based anodes.3 While there were many notable milestones on

each aspect of the battery, these three discoveries are the foundation for the modern LIB.

Sony Corporation in 1991 commercialized the LIB with a LiCoO2 cathode and graphite

anode. Prof. Stanley Whittingham, Dr. Akira Yoshino, and Prof. John B. Goodenough

were awarded the 2019 Nobel Prize in Chemistry for the development of the lithium-ion

battery.

In general, a battery is composed of a positive electrode (e.g. LiCoO2), a negative

electrode (e.g graphite) and an organic electrolyte with a Li salt (e.g. LiPF6 in ethylene

carbonate or dimethyl carbonate). An insulating and electrolyte permeable separator is
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used to avoid physical contact between the two electrodes. A schematic of a typical LIB

during charge and discharge is shown in Figure 1.1.

Figure 1.1: Schematic illustration of a typical lithium-ion battery during charge and
discharge consisting of a layered LiCoO2 positive electrode and a graphite negative electrode.

Starting from the fully discharged state, a battery must be charged by an external

power source, which applies a voltage that forces electrons to move from the positive to

the negative electrode through the external circuit. This loss of electrons results in the

oxidation of the positive electrode (e.g. Co3+ to Co4+ in Li1-xCoO2) during charge while Li+

deintercalates from the structure to compensate the charge. The Li-ions migrate through

the electrolyte and intercalate into the porous negative electrode (i.e. graphite layers). This

process is driven until a certain potential or time is reached where the structure of the

electrode is stable and no adverse effects take place in the cell. Once the cell reaches that

potential it is considered charged and the energy is stored. The equations for charge in each

electrode are given by:

Positive Electrode: LiCoO2 → Li1−xCoO2 + xLi+ + xe− (1.1)

Negative Electrode: C6 + xLi+ + xe− → LixC6 (1.2)
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The reverse process takes place spontaneously due to the higher chemical potential of the

positive electrode than the negative, which allows the battery to be used as an energy

source. During the discharge process, lithium ions move from the negative to the positive

electrode through the electrolyte. In the LiCoO2 positive electrode, the transition metal is

reduced from Co4+ to Co3+. The equations for discharge are given by:

Positive Electrode: Li1−xCoO2 + xLi+ + xe− → LiCoO2 (1.3)

Negative Electrode: LixC6 → C6 + xLi+ + xe− (1.4)

Although LiCoO2 has been a good positive electrode material for LIBs it has some

limitations with respect to energy density. Only half the lithium can be removed from the

structure without compromising structural stability, providing a practical specific capacity

of 140 mAh/g (theoretical capacity is 274 mAh/g). Charging further to higher voltage

results in removal of lattice oxygen, which collapses the structure and ultimately leads to

capacity fading and safety concerns. Furthermore, the high price and toxicity of cobalt Has

prompted both academia and industry to consider alternative cathode materials.

This has lead to substitution of Co for other transition metals and has given rise to

the “NCM” or “NCA” series of materials, which is quickly becoming the electric vehicle

industry standard for cathode materials. These layered lithium Ni-Co-Mn oxide (NCM) and

lithium Ni-Co-Al oxide (NCA) are widely used in commercial cells due to their high specific

capacities (>150 mAh/g), good cycle stability, and enhanced thermal stability.4 Furthermore,

the ratios between the transition metals can be tuned, where Ni-rich compositions are

favoured due to the reduction in Co content and increase in capacity, which in turn increases

the energy density of the battery.5
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1.2 All-Solid-State Batteries (ASSBs)

1.2.1 Motivation for ASSBs

It has become apparent that energy demand is out-pacing the theoretical limits of the LIB.

As manufactures attempt to squeeze more energy density out of the battery by pushing its

limits we have seen severe safety hazards such as battery fires and explosions become more

common. The Li-ion battery is limited by its Li+ intercalation chemistry and is approaching

the theoretical energy density limits, assuming a graphitic anode and transition metal oxide

cathode. In the case of electric vehicles, the energy density needs to be increased from the

current 260 W·h/kg to the targeted 500 to 700 W·h/kg to achieve long driving ranges of

more than 500 km.6 There are two main ways of increasing the theoretical energy density;

change the positive electrode or change the negative electrode material. A lot of work has

focused on developing higher capacity and high voltage cathodes to improve the energy

density or by developing batteries based on conversion chemistries such as Li-S and Li-O2.7

Irrespective of the cathode chemistry, the greatest theoretical increase in energy density

always comes from changing the anode to pure lithium metal (Figure 1.2).8 Achieving a

commercially viable battery using a lithium metal anode is considered the “holy grail” of

batteries. It’s important to note, for a lithium metal battery to truly provide high practical

energy densities, the Li foil needs to be extremely thin (a few microns). Alternatively, an

“anodeless” configuration is the best case, where the Li anode is formed upon charging the

assembled battery.

Lithium metal is one of the best choices as a negative electrode material for a battery

because of its light weight (6.941 g/mol) and low redox potential (-3.04 V vs. standard

hydrogen electrode (SHE)). Using a lithium metal anode could nearly double the energy

density to 500 W·h/kg.9 Unfortunately, a lithium metal anode comes with safety concerns

due to the unstable chemistry at the Li metal-electrolyte interface. Fire hazards are a

concern due to lithium’s tendency to form dendrites in liquid organic electrolytes, which
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Figure 1.2: (a) Gravimetric energy density for selected cathode materials (at different
loadings) in full cell configuration with metallic lithium (red lines), graphite (blue lines)
and silicon (black lines) as anode. Green bands: targets at cell’s level. (b) Corresponding
volumetric energy density. Calculations based on the theoretical energy density values of the
corresponding electrodes, using the materials stoichiometry and molecular weight, consid-
ering full range of Li. Reproduced with permission from The Royal Society of Chemistry.8

on its own are flammable and toxic liquids. These dendrites grow upon cycling and short-

circuits the cell, which ultimately cause thermal runaway and explosions. Furthermore, the

unstable interface chemistry results in the formation of a solid electrolyte interphase (SEI)

which increases the interfacial resistance, lowers the Coulombic efficiency, and depletes the

electrolyte. This results in rapidly deteriorating performance accompanied by the extreme

safety concerns of fire and explosion hazards due to the highly flammable organic electrolyte

component.

The most promising strategy to combat this problem is the use of inorganic solid

electrolytes to enable ASSBs. A solid electrolyte may be a viable alternative to prevent the

incompatibility between the lithium anode and liquid electrolyte. Flammability issues would

no longer be of concern in Li-ion systems as inorganic solids replace the flammable organic

liquids and a lithium anode can be used to achieve a high-energy density as dendrites are

inhibited by the mechanical strength of the solid. In addition to improved safety, there are
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several other advantages of ASSBs. LIBs have a limited operating temperature range, where

at low temperature the ionic conductivity of the liquid electrolyte is reduced such that

performance declines significantly, and at elevated tempeatures (≥ 60°C) the reactivity of

liquid electrolytes accelerates decomposition and deterioration of cell performance.10 Solid

electrolytes, on the other hand, can operate over a wider temperature range from -30 to

100°C.

1.2.2 Overview of ASSBs

Solid-state batteries and solid ion conductors have a long history that dates back to even

before the development of liquid-based LIB. In the 1960s, the discovery of the sodium

beta-alumina solid electrolyte led to the development of a commercial high-temperature

Na-S battery by the Ford Motor Company, although they used molten cathodes, precluding

a true all-solid-state approach.11 In the 1970s, fully all-solid-state cells were reported with

a Li metal anode and TiS2 cathode using solid electrolytes of lithium nitride,12 lithium

phosphates,13 and poly(ethylene oxide) (PEO) polymers.14 The discovery of lithium phos-

phorus oxynitride (LiPON) in the 1980s prompted the development of thin-film solid-state

batteries.15 While a tremendous amount of research on ion conductors and solid-state bat-

teries has been conducted, unsatisfactory performance of ASSBs and commercialization of

the LIB drove the focus away from solid-state batteries, leaving a nearly 20 year gap before

the resurgence of interest that has occurred in the last decade.16

All-solid-state batteries follow the same working principles as a typical rechargeable

battery and consist of a solid anode (negative electrode), cathode (positive electrode) and

electrolyte. The battery can use an intercalation or conversion type positive electrode, a

lithium negative electrode and a solid electrolyte that acts as a separator to block electrical

contact but allows the flow of lithium ions. A schematic of a typical solid-state battery is

shown in Figure 1.3.

A key difference between a traditional battery and a solid-state battery is the cathode

preparation – the cathode composite requires solid electrolyte material mixed in to achieve
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Figure 1.3: Schematic illustration of an all-solid-state battery and the different interfaces
within the cell. Reproduced with permission from Elsevier.17

sufficient ionic conductivity (i.e. an ionic conduit is required). The cathodes for solid-state

cells are typically a composite that contains active material (e.g. LiCoO2 for lithium ion

batteries), an ionic conductor (solid electrolyte) and sometimes an electronic conductor

(typically a carbon additive to provide electronic percolation). Most solid-state batteries in

laboratory-scale settings report using an anode composed of a double layer foil of lithium

and indium. This ensures that the highly reactive nature of lithium will play less of a role in

degrading the solid electrolyte material since no stable electrolyte currently exists, although

the goal is to eventually pair a pure lithium metal anode with a compatible solid electrolyte

material.

1.2.3 Challenges of ASSBs

While solid-state batteries bring about improved energy density and safety, there are still

many challenges to overcome owing to the higher resistances compared to that of liquid

cells at ambient temperature and due to the typically lower ionic conductivities of solid

electrolytes. Although solid-state cells can have longer lifetimes as they are not as sensitive

to shocks, leaks, and extreme temperatures, they experience additional stresses at each

solid-solid interface, which negatively affects performance and cell life.
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The biggest challenges solid-state batteries face are the high interfacial resistances.

There are a significant amount of interfaces to consider, and each have their own effects.

A visual illustration that provides an overview of all the types of interfaces are shown in

Figure 1.4.

Figure 1.4: Schematic illustration of interfacial phenomena that can arise in ASSBs.
Reprinted with permission from American Chemical Society.18

The two interfaces that are of the most concern are the Li-metal/solid electrolyte

and solid electrolyte/cathode interface. At the positive electrode, there are three main

considerations:

1. Chemical Stability: The interface between the solid electrolyte material and cathode
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active material should ideally remain unchanged during fabrication and storage over

the operating temperature range. A cathode electrolyte interphase (CEI) between

the two components will likely form because of the chemical potential difference

between the two materials, leading to a spontaneous reaction. This can lead to a

highly insulating layer or can undergo continuous decomposition that leads to cell

failure.

2. Electrochemical Stability: During the charge/discharge process the materials will be

subjected to a wide potential window. The electrolytes can be oxidized at high voltage

and reduced at low voltages if they are in contact with an electronic conductor in the

composite, which can lead to the formation of passivating and inactive interphases.

3. Mechanical Stability: The active material and solid electrolyte may face external or

internal stresses, which can lead to contact loss (void formation), particle cracking

or pulverization. This may stem from volume change of the cathode material upon

cycling, which would mechanically deform the electrode/electrolyte interface.

At a lithium metal negative electrode, we not only have to consider the interface, but

also how the solid electrolyte separator layer is processed (i.e. defects in the separator). In

general, there are two main considerations at the negative electrode:

1. Thermodynamic and Kinetic Stability: Li metal will reduce almost anything it comes

in contact with and the reaction products that form an interface layer may not be

ionically conductive. These thermodynamic considerations alone are not sufficient to

understand the interface. The thickness of the interphase formed will increase the cell

resistance, so kinetic considerations are important. Since thermodynamic stability of

a solid electrolyte with lithium metal is unlikely, the solid electrolyte interphase (SEI)

formed between the two components must be kinetically stable.

2. Mechanical Stability: The solid electrolyte separator must be processed in such a

way that it is free from interparticle voids or defects. The presence of voids and
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defects would not only hinder Li-ion diffusion but can induce dendritic growth of

Li metal through the separator. Defects on the separator surface may also lead to

nonuniform lithium plating, which prevents high-rate capability and increases dendrite

penetration.

1.2.4 Current Approaches Towards ASSBs

To combat some of these interface issues, researchers have used hybrid solid/liquid elec-

trolytes. Specifically in the cathode where it is necessary to obtain sufficient contact between

the cathode and solid electrolyte particles, a small amount of liquid or gel electrolyte is

used to reduce the interface resistance and improve mechanical contact.19 This is sometimes

referred to as a “quasi” solid-state battery.

An alternative method is to use thin coating layers to extend the stability window of the

materials or to apply a multiple solid electrolyte approach to mitigate the various interface

issues. A ductile and high-voltage stable solid electrolyte could be used in the composite

positive electrode to prevent any detrimental interface reactions. Then, the separator solid

electrolyte can be a material of any choice, ideally one that is easily processable and is a

very fast lithium-ion conductor to reduce the Ohmic drop across the cell. Finally, a thin

secondary separating solid electrolyte layer that is kinetically stable with Li metal can be

used as an artificial interphase to protect any detrimental side reactions at the negative

electrode. The challenge is these layers would also need to be compatible with each other.

1.3 Solid Electrolytes

An ideal electrolyte is an electronic insulator to prevent self-discharge, a fast ion conductor

to quickly transport Li+ between the electrodes, and electrochemically stable in the oper-

ating voltage range of the battery. Inorganic solid electrolytes are typically good electronic

insulators due to the predominant ionic bonding present in these materials. However, de-

spite the potential of ASSBs, a solid electrolyte material that achieves a high lithium ion
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conductivity coupled with good chemical and electrochemical stability has not yet been

found.

Solid electrolytes can generally be classified as polymeric or inorganic. While each

type has their unique advantages and disadvantages, the focus here will be on inorganic

solid electrolytes, due to their typically higher ionic conductivity at room temperature.

The inorganic solid electrolytes can be further divided by their structures or chemical

compositions. The inorganic materials can be broadly categorized as a halide, nitride, oxide,

or sulfide depending on the anion family. Finally, the materials can be crystalline or glassy

(amorphous) where most commonly they are crystalline in nature. The two most studied

classes of solid electrolytes are sulfides and oxides.

1.3.1 Crystalline Electrolytes

From the oxide electrolytes, crystalline phosphates with a NASICON (NAtrium Super

Ionic CONductor) structure exhibit good ionic conductivity approaching 10-3 S·cm−1 (e.g.

Li1+xAlxTi2-x(PO4)3 - LATP).20 Perovskite type oxide electrolytes such as Li0.5-3xLa0.5+xTiO3

(LLTO) exhibit very high bulk ionic conductivity (10-3 S·cm−1), but are limited by a much

lower total ionic conductivity due to large grain boundary resistances that decreases the

overall conductivity by up to two orders of magnitude.21 Unfortunately, these electrolytes

have very poor stability against lithium metal anodes due to Ti4+ being easily reduced.

Garnet type oxide electrolytes such as Li7La3Zr2O12 (LLZO) has garnered a lot of atten-

tion because of its high ionic conductivity (3x10-4 S·cm−1) and excellent chemical stability

against lithium.22 The garnet electrolytes typically require a mechanical or chemical surface

processing step due to build up of an insulating Li2CO3 layer that forms upon moisture

exposure and increases the interfacial resistance.23 Oxides in general also require high pro-

cessing temperatures to form a densified pellet, which is also required to minimize the grain

boundary resistances and achieve good ion conductivity. This makes the processing of these

materials into a battery challenging.

Sulfide electrolytes in comparison are extremely ductile, allowing for simple cold-pressing
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at room temperature. Some thio-LISICON (thio-Li Super Ionic Conductor) structures

exhibit very high ionic conductivities that exceed 10-3 S·cm−1. For reference, liquid elec-

trolytes typically have an ionic conductivity of 10-2 S·cm−1. Some examples are Li10GeP2S12

(LGPS)24 and the metastable phase Li7P3S11,25 which both exhibit an ionic conductivity up

to 10-2 S·cm−1. The compound Li9.54Si1.74P1.44S11.7Cl0.3, which has the same structure as

LGPS, is the fastest lithium ion conductor at room temperature with a total ionic conduc-

tivity of 2.5×10-2 S·cm−1.26 The argyrodite family (e.g. Li6PS5X where X = Cl, Br, I) are

equally fast ion conductors with conductivity up to 10-3 to 10-2 S·cm−1.27,28 The downside

of sulfides are the poor chemical stability with moisture in the atmosphere, which forms

H2S, requiring them to be handled in an inert atmosphere or dry room. These sulfides also

suffer from poor electrochemical stability, especially at high voltage due to the oxidation of

the S-2 anion at around 2.4 V vs Li/Li+.29 An overview of the various crystalline lithium

(and sodium) ion conductors are shown in Figure 1.5. It’s apparent that the fastest ion

conductors are overwhelmingly thiophosphate-based (P-S) electrolytes.

Figure 1.5: Overview of ionic conductivities for various classes of solid electrolytes. Certain
compositions are highlighted, whereas grey lines indicate all found transport properties
within the list of references. Reproduced with permission from IOP Publishing.30
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1.3.2 Glass Electrolytes

In general, glasses have unique properties because of their lack of long-range order. Glasses

do not exhibit a periodic arrangement of atoms and are thus amorphous. This leads to

isotropic conduction that doesn’t suffer from grain boundaries, which typically impede

charge transport. Additionally, no grain boundaries means monolithic films of the glass

material can be easily processed. However, despite the lack of grain boundaries, most glasses

have poor ionic conductivity, especially in oxide-based systems. Furthermore, studying the

structure of amorphous materials is incredibly challenging due to the lack of periodicity.

There are a limited number of techniques that can characterize the local structure and thus

the structure of glasses and its effect on ion transport is not well understood in comparison

to its crystalline counterparts.

Some examples of glass electrolytes are lithium ortho-oxosalts that exhibit conductivities

of 10-6 S·cm−1.31 The most well-known amorphous electrolyte might be LiPON (Lithium

Phosphorous Oxynitride), which has the same order of magnitude in ionic conductivity and

therefore is limited for use only in thin-film type batteries.32 Sulfide glasses with mixtures

such as Li2S-GeS2, Li2S-P2S5, Li2S-B2S3, and Li2S-SiS2 exhibit ionic conductivities of over

10-4 S·cm−1.33 Many studies also incorporate lithium halide salts into the sulfide glasses to

further increase the ionic conductivity.

Glasses may also be able to address the mechanical criterion when pairing an electrolyte

with lithium metal. Because thin, dense, and defect free films can be processed, dendrite

formation and penetration through the separator might be mitigated by mechanical means.

While dendrite growth has been observed in grain boundaries of polycrystalline materials

such as LLZO, studies on defect-free regions of amorphous thiophosphate pellets have

shown lithium deposition without any dendrite formation for current densities up to 5

mA·cm-2.34 A defect free amorphous film that does not contain grain boundaries and

has minimal or carefully controlled surface defects may be a suitable method to mitigate

dendrite penetration.
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1.4 Design Considerations for Solid Electrolytes

1.4.1 Effect of Synthesis

The synthesis method has been shown to influence the structure of the material and thus

the ion transport within it. Most solid electrolyte materials are synthesized by a solid-state

route, mechanical alloying (ball milling), or solution synthesis. Ball milling has been shown

to impact the local and average structure in thiophosphate materials such as Na3PS4.35,36

Generally speaking, solid-state or ball-milled synthesized samples tend to be higher in

ion conductivity than solution synthesized materials (Figure 1.6). The effect of solution

Figure 1.6: Overview of ionic conductivities for thiophosphate solid electrolytes obtained
by various synthesis methods. Reproduced with permission from The Royal Society of
Chemistry.37

synthesis is still unclear, however, it is suspected that solvent may be incorporated into the

structure. Depending on the synthesis method, the ionic conductivity can vary by several

orders of magnitude , which indicates that even subtle structural differences have a strong

influence on conductivity, underlining the importance of studying the structure to better

understand its effect on ion transport.30,37

15



1.4.2 Influence of Lattice Dynamics

It is typically assumed that a softer (i.e. more polarizable) anion sublattice leads to in-

creased alkali ion mobility due to the weaker coulombic interactions between the cation

and anion. Experimental studies on the “softness” of the lattice confirmed this by studying

the material’s Debye frequency38 or phonon band center39 (i.e. the average vibrational

frequency) and correlating it to the ion conductivity. It was found that for many cases,

a softer lattice does lower the activation energy barrier for transport but simultaneously

decreases the prefactor for ionic motion.

This can be understood from the equation of the prefactor (1.5) and conductivity (1.6):

σo =
zn(Ze)2

kBT
exp

(
∆Sm
kB

)
a2
oνo (1.5)

where z is the geometric factor for the structure (dimensionality of conduction pathways),

n is the density of mobile charge carriers, Ze is the charge of the ions, kB is the Boltzmann

constant, T is the tempeature, ∆Sm is the entropy of migration, ao is the jump distance,

and νo is the jump frequency.

σion = σo · exp
(
−∆Hm

kBT

)
(1.6)

where ∆Hm is the enthalpy of migration and often generalized as the activation energy Ea.

When the lattice softness increases, it results in weaker interatomic forces, which results

in larger atomic displacements of the mobile atoms and decreases the activation energy

barrier for migration. This also decreases the prefactor because the increased displacement

and softer lattice simultaneously lowers the jump frequency and the entropy of migration.

The entropy of migration is affected by the changing vibrations of the sublattice. The

decreasing prefactor that accompanies the decrease in activation energy is known as the

Meyer-Neldel rule.40 While the slope of this relationship may be related to the average

phonon energies,41 the exact origin of this relationship and the influence of the entropy of

migration is not well understood.
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1.4.3 Concerted Migration and Frustrated Energy Landscapes

The energy landscape of the structure ultimately dictates the ion mobility. Ideally, the

structure should lead to a flatter landscape with a lower activation barrier for ionic mo-

tion. However, the origin for some of these observed flatter energy landscapes is not well

understood. Theoretical work has suggested that self-correlation between mobile ions cause

concerted migration of multiple ions with low energy barriers instead of the classical isolated

ion hopping in solids.42 Unfortunately, this has not yet been experimentally proven.

Alternatively, a flattened energy landscape can be described by the frustrated energy

landscape concept. A frustrated energy landscape can occur by structural, chemical, and

dynamic frustration (i.e. anion vibrational/rotational dynamics). Structural frustration is

described by the disorder of the mobile ion over many available crystallographic sites (i.e.

no lattice site preference). Chemical frustration arises from local vs average structural dis-

tortions in a material, which modifies the shape of the energy landscape at the saddle points

and introduces anharmonicity into the energy wells. Dynamic frustration can also intro-

duce distortions in the local energy landscape that stems from anion vibrational/rotational

dynamics. The three different types are schematically shown in Figure 1.7A-C.

1.4.4 Inductive Effects

Recently, it was shown that chemical bonding interactions can be modulated to promote

Li-ion diffusion.43 The solid solution Li10Ge1-xSnxP2S12 was studied. Replacing GeS4 anions

with larger SnS4 should widen the diffusion channels and lower the activation barrier.

However, due to the inductive effect, the expected trend with respect to volume does not

occur. The electronegativity of the central cation (M) changes the M-S bonding interactions.

By putting more of the less electronegative element Sn, the Sn-S bonding is weaker (more

polar) than the Ge-S bond, and the charge density on the Sn bonded S2- increases. This

charge redistribution strengthens the bonding of nearby Li+ ions to the S2- anion framework

(Figure 1.7D), which increases the activation energy barrier and lowers ion conductivity.
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Figure 1.7: Possible frustrations that lead to flattened energy landscapes: (a) structural
frustration, (b) chemical frustration, (c) dynamic frustration. (D) Schematic of inductive
effects influencing ionic transport. Reproduced with permission from IOP Publishing.30

1.5 Thesis Objectives and Overview

It is abundantly clear that the development of new solid electrolytes will ultimately shape

whether the ASSB becomes a commercial success; starting from the inherent properties of

the material itself, to processing/preparation of the separating electrolyte layer, how it is

mixed into the cathode, and what interphases form on each electrode. Thus, the question

arises - is there one solid electrolyte to rule them all? Most likely, the best solution will

involve multiple different electrolytes. No matter what approach is taken towards achieving

ASSBs, more fast-ion conducting solid electrolytes must be developed that can tackle each

or multiple of these issues at once. In order to discover new superionic conductors, a better

understanding of the materials structures and the fundamental properties that govern ion

conduction is also required.

Building a fundamental atomic scale understanding of these materials and what drives

superionic conduction in them can assist in optimizing known materials or may serve as

a guideline for discovering new ones. Moreover, since properties such as electrochemical
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stability and mechanical stability are inherent to the materials structure, this knowledge

can help develop new electrolytes to tackle some of the aforementioned interface problems.

This thesis focuses on two general goals of 1) the design and synthesis of new lithium

ion conductors and 2) a deep understanding of the atomic structure and the properties that

govern fast ionic diffusion in solid electrolyte materials. Both experimental and computa-

tional methods are utilized to explore the bulk electrolyte properties such as ion transport.

Experimental techniques such as X-ray and neutron diffraction are invaluable to better

understand the inherent structure and how it affects transport and stability. Density func-

tional theory (DFT) calculations and ab-initio molecular dynamics (AIMD) simulations

can also provide a microscopic viewpoint on thermodynamic stability, favorable kinetics,

and atomic interactions at an interface.

Chapter 2 The background and theory for the experimental synthesis and characteriza-

tion techniques that are employed for the studies in this thesis are described

in detail.

Chapter 3 An in-situ neutron powder diffraction study is presented on Li3PS4, the

archetype of the thiophosphate family of solid electrolytes. The phase transi-

tions, the structure of the three polymorphs, and their corresponding lithium

substructures are elucidated in detail.

Chapter 4 A new thiophosphate lithium-ion conductor, Li1+2xZn1-xPS4 was synthesized

for the first time following computational predictions of exceptionally high

lithium-ion conductivity. The effect of lithium interstitials and Li/Zn site

disorder on ion conduction in this material was studied.

Chapter 5 Amorphous ion conductors are relatively unexplored in comparison to crys-

talline materials. Quaternary glass systems of Li2S-B2S3-SiO2-LiI were ex-

plored and new lithium oxythioborosilicate superionic glasses are presented.

These glasses have the highest oxygen:sulfur ratios and the fastest lithium ion
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conductivity of any known oxysulfide glass. Simultaneously, the higher oxygen

content improves the moisture stability.

Chapter 6 A different class of solid electrolytes are explored that have intriguing proper-

ties similar to thiophosphates. New fast-ion conducting crystalline thioborate

halides, Li7.5B10S18X1.5 (X = Cl, Br, I), were discovered that exhibit a super-

adamantanoid framework with massive channels of “glassy” or disordered Li

cation and halide anions.

Chapter 7 The first thioboracite material was discovered by a quasi solid-state conver-

sion process of a superadamantanoid phase. Li6B7S13I exhibits a perovskite

topology and argyrodite-like lithium substructure that leads to high ionic

conductivity. The fast lithium transport through the material is studied by

combining computational and experimental techniques. The importance of

controlling the grain boundary resistance is also highlighted.

Chapter 8 A summary of the advances made through the studies presented in this thesis

and an outlook on future directions in the field of solid electrolytes and solid-

state batteries.
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Chapter 2

Characterization Methods and

Techniques

2.1 Synthesis Techniques

2.1.1 Solid-state Synthesis

For preparation of solid electrolytes, exact stoichiometric quantities and pure starting

materials need to be used. Solid-state reactions can be performed by flame, furnace, heated

filament, ball mill, or microwave. In a typical solid-state reaction, an alkali or alkaline-

earth metal compound with the desired anion is reacted with a metal halide, oxide, or

sulfide. While there are many different types of solid-state synthesis routes, they will not

be described here, as the synthesis of the materials described in this thesis primarily use

the conventional method.

A conventional solid-state synthesis is one of the most widely used methods and is simply

composed of mixing powders together and heating in a furnace for prolonged periods of

time. Although the reactants are mixed well on a particle scale, the reaction itself is slow

because the reactants are inhomogeneous on an atomic scale. High temperature heating,
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long heating times, and repeated grinding and heating steps may be required to achieve

complete reaction.

In general, a typical synthesis has several steps with the following considerations:

1. Select and weigh out starting materials in accurate stoichiometries

• Starting materials with high purity and sufficient reactivity must be chosen.

• For air and moisture sensitive reagents, purity becomes an important factor, and

are stored and handled in a glovebox filled with inert gas to mitigate this issue.

2. Mix and pelletize

• Precursors are ground in an agate mortar and pestle to achieve sufficient mixing.

Sometimes liquid or gas phase transport may be used to bring atoms of different

elements together to achieve mixing on the atomic scale.

• The mixed reactants are pelletized to achieve close particle to particle contact,

which can facilitate the reaction.

3. Heat

• For annealing, factors such as heating rate, heating time, atmosphere, and crucible

container all need to be considered.

• The mixture cannot be heated under air if atmospheric sensitivity of the desired

product is of concern. An inert atmosphere such as argon must be used, or the

sample must be sealed under vacuum.

• A container that does not react with the sample must be selected. Quartz tubes,

alumina crucibles, or graphite/glassy carbon crucibles are commonly used.

• The heating temperature is selected to avoid any volatilization of one or more of

the reactants, while still being high enough to allow for reactions on a suitable

timescale (several hours or days).
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4. Grind and analyze products

• Samples are typically analyzed by X-ray diffraction to confirm if the reaction is

completed and no remaining unreacted precursors are present.

5. Repeat steps 2-4 if reaction is incomplete

2.1.2 Quenching

Thermodynamically stable solid solutions tend to exhibit a change in their solubility limits

with a change in temperature, and thus cooling rate can be important to stabilize the

solid solution at room temperature without any precipitation of secondary phases. High-

temperature crystal phases can sometimes be metastable, making it difficult to synthesize

by simple heating and cooling. In order to synthesize such materials at room temperature,

they must be stabilized by rapid cooling, otherwise precipitation of secondary phases may

occur. Most commonly this is done by quenching.

Glasses (i.e. amorphous materials), by definition, are always metastable. Melt quenching

is the most common technique of glass making. Precursors are mixed together, heated up

to high temperature (typically ≥700◦) to form a melt, and then quenched (rapidly cooled)

using an ice bath, liquid nitrogen, or a cooled plate. The quenched materials are sometimes

annealed to remove internal stresses from the glass.

2.1.3 Mechanochemical Synthesis (Ball Milling)

Mechanical mixing techniques such as ball milling is extremely useful to intimately mix

reactants on a level that cannot be achieved by simply grinding reactants in a mortar. A

mixture of reactants is placed inside a rotating vessel with a number of balls. The balls

and vessels can be made of a hard material such as agate, zirconia, or silicon nitride. The

container is then spun for some period of time, typically in the range of hours or in some

cases days. The constant impact between the balls and powder reduce the average particle

size of the reactants while simultaneously producing an intimate mixture. Sometimes milling
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is facilitated by the use of a liquid media, which is removed at the end of the milling process.

Many factors such as speed, milling time, and size of the balls and jars need to be considered

and have a major impact on the mixing of the reactants.

High-energy milling is achieved in planetary ball mills, which operate at very high speeds.

Rather than using high-temperature, reactions can be carried out by aggressively grinding

together reagents. It is still unclear exactly how solids react upon mechanochemical synthesis.

In general, precursors are reduced to nanometer size particles with mechanically induced

crystal defects. Despite no heating being applied, local heating with high temperatures

occurs as the mechanical energy from ball to particle impact is transferred to heat. This

local heating and reduced particle size speeds up inter-particle diffusion rates and formation

of products. This is especially useful for targetting metastable materials that contain some

compositional inhomogeniety, structural disorder, and high vacancy concentration.44 Given

the possible structural differences from mechanochemical synthesis, it is likely that properties

may also differ.

2.2 Materials Characterization

2.2.1 Powder X-Ray Diffraction (XRD)

Powder XRD is a common technique to analyze crystal structures and is widely used

for phase identification of crystalline materials. In 1912, Max von Laue discovered X-ray

radiation can be diffracted by crystals as their wavelength is on the same order of magnitude

as the interatomic spacing of crystal structures. When an incident beam of monochromatic

X-rays interacts with the target material, the atoms from within the sample scatter X-rays.

For materials with a crystalline structure, these scattered X-rays undergo constructive and

destructive interference in what is called diffraction. Bragg’s Law in Equation 2.1 describes

the diffraction of X-rays:

nλ = 2d sin θ (2.1)

24



This law relates the incoming parallel X-ray beams of wavelength λ to the diffraction angle

formed θ and the lattice spacing of the crystalline sample d ; the integer n refers to the

order of diffraction and is typically unity. When Bragg’s law is satisfied, the X-ray beams

scattered from successive planes in the crystal (Figure 2.1) travel distances that differ by

exactly one wavelength (for n = 1). These scattered X-rays interact constructively to form

the diffracted beam.

Figure 2.1: Schematic illustration of Bragg’s Law.45

The diffracted X-rays are then detected, processed, and counted by a detector. By scan-

ning through a range of 2θ angles we can account for all possible diffraction directions due

to the random orientation of the powder material. The directions of the various diffracted

waves depend on the size and shape of the unit cell of the material. The intensities depend

on the type of atoms and their arrangement in the crystal structure.

Because X-rays are scattered by the electron clouds around the atomic nucleus, the

intensity of the diffracted beam correlates to the number and position of electrons (i.e. the

specific atoms). The structure factor can be used to calculate the intensity and is given by:

Fhkl =
∑
n

fn exp[2πi(hx+ ky + lz)] (2.2)

where (hkl) are the Miller indices of the plane, (x, y, z) are the coordinates of the atom, f
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is the atomic scattering factor that depends on the type of atom and scattering angle, and

is sum over all atoms (n) in the cell.

The intensity of a specific reflection is then determined by the square of its structure

factor. In practice, there are several specimen (particle shape, size, etc.) and instrumental

factors that have an influence on the intensity. For simplicity, they are denoted as A here:

Ihkl = AF 2
hkl (2.3)

The most common method of measurement is using a flat-plate diffractometer, which makes

use of reflection geometry (also referred to as Bragg-Brentano geometry). The X-ray source

can be fixed and the sample and detector is rotated by θ and 2θ, respectively. Alternatively

the sample is fixed and the source and detector move by -θ and θ, respectively. While flat

sample holders are very easy to prepare, they may lead to preferential orientation effects,

depending on the crystal shape. In general, it is not necessary to rotate powder samples

because tiny crystals are randomly distributed and oriented through the powder. However,

for certain crystals shapes (e.g. plate or rod shaped crystals), preferential orientation may

occur where all the crystals are oriented in the same direction when packed, thus skewing

the diffracted pattern intensities.

Alternatively, transmission geometry can be used, which is also known as Debye-Scherrer

geometry. Samples are loaded into a capillary rather than packed in a flat stage, and the

source and detector move by -θ and θ, respectively. This has the advantage of being able

to run air-sensitive materials, since capillaries can be easily sealed under inert atmosphere

to prevent exposure to the air. Furthermore the capillary is aligned and spun, removing

any preferential orientation effects typically seen with a flat-plate diffractometer. The

disadvantage is sample preparation is more time consuming, and diffracted intensities are

generally weaker in transmission geometry, making data collection times longer.
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2.2.2 Neutron Powder Diffraction (NPD)

Neutrons are diffracted by crystals in a similar manner as X-rays, and can also be equipped

for single-crystal or powder diffraction. However, neutron powder diffraction (NPD) can

give additional information regarding magnetic structure and greater contrast between

some elements in the periodic table.

The scattering properties of an atom is determined by the interaction of the neutron spin

(spin one-half) with the spin state of the nucleus of the atom. The spin-spin interaction can

lead to coherent scattering or incoherent scattering. Coherent scattering is used in powder

diffraction, leading to patterns similar to X-rays, which can be used for structure refinement

using the Rietveld method. Incoherent scattering can be used for other types of analysis,

but simply adds to the background noise for the purpose of neutron powder diffraction.

Alternatively, neutrons can be absorbed by the nucleus of an atom. It’s also possible for the

spin of the neutron to interact with the spin of any unpaired electrons of an atom, which

leads to magnetic scattering.

For neutron diffraction, the structure factor is given using the exact same equation

as that for X-rays (Equation 2.2), except that the X-ray scattering factor, f , is replaced

with the neutron scattering length, b. These two differ quite significantly because X-ray

diffraction is due to the scattering by electrons of an atom, while neutron diffraction is due

to scattering from the nucleus of an atom. While the X-ray scattering factor has a form

factor that decreases with scattering angle, the neutron scattering factor is independent

of scattering angle, 2θ. This means NPD patterns have no drop in intensity at smaller d

spacings, unlike its X-ray counterpart. Thus, more precise atomic displacement parameters

can be determined from neutron powder diffraction.

Additionally, b does not vary in a systematic way that f does. Thus, heavy elements

that scatter well with X-rays may not necessarily scatter well with neutrons, or vice-versa.

For example, natural Li scatters X-rays very weakly (f = 3 e−/atom), but has a negative

neutron scattering length (b = -1.90 fm), which provides invaluable elemental contrast in
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the NPD patterns for detection of Li in a crystal structure. Note that this is for Li in its

natural abundance, the isotopes of a given element have different scattering lengths. These

differences between the two techniques allow neutron diffraction to provide complementary

information when elements in a structure are difficult to distinguish by X-rays alone. For

example, light X-ray scatterers as previously mentioned or distinguishing between two

elements next to each other on the periodic table due to their similar X-ray scattering

lengths.

Intense beams of neutrons are generated by either a nuclear reactor or a pulsed spalla-

tion source. These two methods differ quite significantly. Since neutron beamlines at the

Spallation Neutron Source (SNS) at Oak Ridge National Lab (ORNL) were used for the

studies described in this thesis, only pulsed spallation sources using the time-of-flight (TOF)

method will be discussed in detail below.

The de Broglie equation relates the wavelength of a neutron, λ, to its momentum, mv :

λ =
h

mv
(2.4)

where h is Planck’s constant (6.626×10−34 J·s) and m is the mass of the neutron (1.675×10−27

kg). By measuring the time a neutron takes to move over a fixed path length we can find its

velocity, and consequently its wavelength. This is known as the time-of-flight (TOF) method.

Combining the de Broglie equation (Equation 2.4) with the Bragg equation (Equation 2.1)

gives:

λ =
ht

mL
= 2d sin θ (2.5)

where t is the TOF and L is the path length. Thus, if the start time of the neutron is fixed,

only the arrival time at the end of the path length (i.e. the detector) needs to be measured.

At the reactor source, a constant flux of neutrons is time sliced by a mechanical chopper.

Pulsed neutron sources use a supply of charged heavy particles, such as H− ions, which

are accelerated in a linear accelerator (called a Linac). Electrons are then stripped off

to produce a proton beam, which is then further accelerated in a ring to higher energy
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(accumulator ring). The beam is then diverted to collide into a heavy-metal target, resulting

in spallation; the metal nucleus is destroyed into a few smaller nuclei plus several neutrons.

These high energies correspond to high-temperatures, which produce epi-thermal (very hot)

neutrons, as opposed to neutrons from a reactor source, which are called thermal neutrons.

A moderator is then used to slow the neutrons down on their way to the instruments (i.e.

the beamlines). A three-dimensional rendering of how the SNS facility is set up at ORNL

is shown in Figure 2.2.

Figure 2.2: Three-dimensional rendering of the Spallation Neutron Source facility at Oak
Ridge National Laborartory. Some components of the facility were developed in partnership
by other US national labs and are labelled accordingly. Image courtesy of Oak Ridge
National Laboratory, U.S. Dept. of Energy.46

2.2.3 Pair Distribution Function (PDF) Analysis

Pair distribution function (PDF) analysis is used to determine structural information of

disordered materials by utilizing all the information in the powder diffraction pattern. It is

commonly used in amorphous or nano-materials, where disorder is dominant or long-range

order does not exist. The Bragg scattering and the diffuse scattering in the measured

pattern are both used in the analysis. Thus, this technique is sometimes referred to as

total scattering analysis since it provides information on both long range ordering and local

29



structure. Long-range order is deduced from the Bragg peaks while short range order such

as local distortion can be deduced from the broad underlying features in the diffractogram.

The structure is then described by the atomic pair distribution function, which can be used

to describe the local structure.

The pair distribution function describes the probability of finding a correlation at a

specific distance in real space (i.e. two atoms bonded at a certain distance), which is

illustrated in Figure 2.3. It is determined from the Fourier transform of the total coherent

scattering function S(Q) and is defined as:

G(r) =
2

π

∫ Qmax

Qmin

Q[S(Q)− 1]sin(Qr)dQ (2.6)

S(Q) is obtained from the scattering intensity/total scattering cross section. Because the

underlying diffuse scattering is crucial for the analysis, extremely good signal to noise is

required with minimal background contribution from the measurement setup. Factors that

affect the background such as the sample environment and container, incoherent scattering,

absorption, and fluorescence all need to be taken into account. Thus, S(Q) is corrected for

these various factors and normalized by the incident flux, number of atoms, and square of

the scattering length (neutrons)/atomic form factors (X-rays).

Figure 2.3: PDF construction from the atomic interaction between the center atom and
first, second, and third nearest neighbours.
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PDF analysis requires measurement up to a high Q-range, which means large diffrac-

tion angles and short wavelength (high energy radiation) are required. These types of

measurements are usually performed at a synchrotron for high quality and high energy

X-ray beams or at a TOF neutron diffractometer where high Q measurement are possible.

Recently, there has been some progress in PDF measurements on laboratory X-ray diffrac-

tometers, although the data quality is still quite limited in comparison to measurements

on a synchrotron or neutron TOF diffractometer.

Simple inspection of the PDF can provide lots of insight. The PDF is presented in

real-space and is a straightforward representation of the atomic structure. The observed

distances describe bond lengths between atomic pairs while the peak widths can be used

to identify thermal motions and static disorder. The integrated intensity also contains

information about the coordination number of the atoms. For detailed analysis, small box

or large box modeling can be performed to fit the PDF and precisely determine the structure

of the disordered materials in question. Small box modeling utilizes a crystal structure and

can be considered a “real space Rietveld refinement”, where parameters and constraints can

be used to fit a model to the PDF pattern. The disadvantage is it may be difficult to find

solutions to highly distorted systems. Large box modeling with thousands of atoms utilizes

less constraints and can be very useful to explore such structures (e.g. amorphous materials),

however, it is extremely difficult due to the possibility of overfitting or degenerate solutions.

2.2.4 Raman Spectroscopy

Raman spectroscopy provides information regarding vibrational and rotational modes in a

system, thus providing spectral lines that are inherent to specific groups of atoms within a

structure. These molecular vibrations can be used for sample or structural identification.

Monochromatic light from a laser is shone on a sample where photons will either undergo

elastic scattering (Rayleigh scattering) or interact with the material and undergo inelastic

scattering (Stokes-Raman scattering). The inelastically scattered photons causes a shift in

the frequency equivalent to the vibration frequency of the molecules, which is then detected
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and used to generate the Raman spectra. The elastically scattered photons are filtered out.

Raman scattering can be thought of as a two-photon process. Electrons have different

vibration levels with specific energy differences. When an electron absorbs energy from an

incident photon, it rises to a virtual energy state. The electron then falls back to a lower

energy level by losing some energy. Rayleigh scattering is when the electron fall back to

its initial energy level by emitting a photon (energy lost equals energy of incident photon).

Sometimes electrons can fall back to a different energy level (energy lost does not equal

energy of incident photon) and the emitted photon has a different frequency (νs) than

the incident photon (νi). This is known as Raman scattering. Raman scattering can be

separated into Stokes lines (νs < νi) when the electron absorbs energy or anti-Stokes lines

(νs > νi) when the electron releases energy.

A Raman spectrum contains a number of peaks that have some intensity and position of

the Raman scattered light that corresponds to a specific bond vibration such as individual

bonds (e.g. C-C, C=C, C-H, etc.) or groups of bonds such as ring breathing modes, polymer

chain vibrations, or lattice modes. The spectra can be used as a chemical fingerprint to

identify chemical structures and phases. In some systems, Raman mapping is possible to

look at distribution of phases or variation within a sample.

2.2.5 Solid-state Nuclear Magnetic Resonance (NMR)

High-resolution NMR of solids has been implemented for many different types of experiments.

For glasses, solid-state NMR is particularly useful to study their structures as the lack of

long-range order prevents the use of typical diffraction techniques. In this section, the

background theory will focus on the interactions in the solid state and the Magic Angle

Spinning (MAS) technique, since this was the NMR technique used in this thesis.

NMR spectroscopy for solutions is extremely powerful to investigate the chemical struc-

ture by studying the chemical shifts, couplings, and relative intensities of the resonances

in their spectra. NMR spectra in solids by comparison are not so well defined, typically
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showing broad features. In high-resolution NMR experiments, the goal is to manipulate

the spin systems to remove or average the characteristic solid-state interactions in order

to simplify the spectrum to a point where chemical information can be inferred from the

spectrum for structural investigations. In the solid state, the different interactions that can

occur for a nuclear spin are dependent on the orientation of the nuclear spin vector to the

magnetic field, where the random distribution of possible orientations gives rise to signif-

icant spectral broadening. The different interactions that can occur are briefly described

below.

• Zeeman Interaction: Results from the interaction of the magnetic moment of the

nucleus µN with the applied static magnetic field Ho. It causes the initial splitting of

the energy levels of the nucleus, and determines the observed frequency of a particular

nucleus for a given magnetic field and strength, and the detection sensitivity of that

nucleus.

• Dipolar Interaction: Results from the interaction between two like or unlike spins. In

a single crystal, this would lead to separated peaks that depend on the gyromagnetic

ratio of the nuclei (γ), the distance between the two nuclei (r), and the angle (θ)

between the the internuclear vector and the magnetic field. For a polycrystalline

material, the interactions must be averaged over all angles of θ due to the random

distribution of crystallites and thus internuclear vector orientations. These two factors

lead to severe field-independent broadening of the spectrum.

• Chemical Shift Interaction: The chemical shift in NMR provides information about

the local structure surrounding the nucleus. It is caused by the electrons surrounding

the nucleus, which modifies the applied magnetic field experienced by the nucleus.

This slightly changes the difference between the energy levels on the order of Hz (in

comparison to the Zeeman interactions that are on the order of MHz). Averaging over

all possible random orientations in a polycrystalline sample produces a field-dependent

broadening.
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• Spin-spin Coupling: The interaction between two nuclear spins from the indirect

electron-coupled spin-spin interaction. This is also called scalar coupling (electron

coupled). Interactions are mediated through bonds rather than space like in dipole

interactions. This term is small in most cases but may be important for studying

chemical structures. These interactions are important for spin 1⁄2 nuclei, while for

nuclei with spin >1⁄2, quadrupolar interactions must also be considered.

• Quadrupolar Interactions: A quadrupole can be represented as two dipoles. Within

the nucleus of an atom, the charge can be distributed symmetrically (spin 1⁄2) or

asymmetrically (spin >1⁄2). Nuclei with spin I>1⁄2 (quadrupolar nuclei) exhibit a

quadrupolar moment, which arises from the interaction between the nuclear spin

and a non-spherically symmetric electric field gradient at the nucleus, resulting in

extensive peak broadening.

In solution NMR spectra, fast rotational and translational motion of molecules average

the interactions. This leads to dipolar and quadrupolar interactions not being observed,

while isotropic chemical shifts and spin-spin couplings can be used for structural determi-

nation. For obtaining high-resolution solid-state spectra, experimental procedures must be

implemented to remove the dipolar interaction and produce isotropic average values like in

solution.

Chemical Shift Anisotropy: Magic Angle Spinning (MAS) Technique

Chemical shift anisotropy is a major interaction for spin 1⁄2 nuclei. The chemical shift

interaction has an orientational dependence, which for a powder sample means there can be

severe asymmetric broadening. An asymmetric local electronic environment surrounding the

nucleus causes these peak shapes. In single crystals, this contains useful information of the

three-dimensional chemical shielding, and can be related to the coordination environment

and detailed nature of the bonding of the nucleus.

Using the magic angle spinning (MAS) technique, the anisotropic spectrum can be

averaged to the isotropic value. The sample is spun around an axis inclined at angle θ
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to the magnetic field axis at a frequency comparable to the frequency spread of the shift

anisotropy (typically on the order of tens of kHz). Effectively, the experiment modifies the

shift anisotropy by a factor of 3cos2θ − 1. If θ = 54.74◦ (the “magic-angle”), this term

becomes zero, leaving only the isotropic chemical shift. This setting also removes the dipolar

interactions. If the sample is spun fast enough at a rate equal to the size of the chemical

shift anisotropy, a single isotropic average peak will be observed. Spinning at slower rates

will yield a spectrum with an isotropic peak plus spinning side bands separated by spinning

frequency.

MAS at High Magnetic Field

There is often an advantage of carrying out MAS experiments on inorganic systems at

high field strengths. For spin 1⁄2 nuclei there can be substantial improvement in resolution

partly due to the high quality superconducting solenoid magnets used. Also, dipolar and

quadrupolar interactions will be minimized at high magnetic fields, while the chemical shift

dispersion is maximized.

Quadrupolar nuclei with non integral spins such as 11B or 27Al also have advantages

when working at high magnetic fields. For example, the line shape for a nucleus with spin

3⁄2 is mainly distorted and shifted due to the second-order quadrupole interaction, which is

inversely dependent on the magnetic field. Thus, undesired shifts and line shape distortions

are minimized at high magnetic fields.

2.2.6 Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry (DSC) measures the energy absorbed (endotherm) or

produced (exotherm) from a material as a function of time or temperature. DSC can be

used to provide information on a materials melting, crystallization, glass transition, degree

of crystallinity, crystallization kinetics, purity, and oxidative stability. Basically, any process

involving an energy change can be studied. The system is usually purged with inert gas

during the measurement.

35



In a DSC instrument, the sample and reference, with identical pans, are placed on

individual thermally conducting bases. A thermocouples is attached to each base. There are

two types of DSC based on their method of operation: power compensation and heat-flux.

In a power compensation DSC, electrical energy provided to the heaters below the pans is

measured and adjusted to maintain the two pans at the same temperature. The focus of

this section will be on a heat-flux DSC, since that was the type of instrument used for the

DSC measurements described in this thesis.

Typically the reference is an empty pan and the sample is loaded into an identical

pan. To remove the effects of the instrument, the heat flow from an empty reference pan

is compared and subtracted from the heat flow from the sample. The heat flow of the

sample is determined by measuring the difference in temperature between the two pans

(∆T ) during the heating program. The heat flow (q) can be found by dividing ∆T by the

resistance of the thermoelectric disk (R) connected to the base of the pans. This equation

can be further modified by applying correction terms to account for differences between

the sample and reference resistances and heating rates.

Interpreting the DSC Curve

DSC alone can provide a lot of thermal information on a material but it is especially

powerful when combined with additional techniques such as Thermogravimetric Analysis

(TGA) to measure mass loss or Gas Chromatography-Mass Spectrometry (GC-MS) to

evaluate off-gassing. A flow chart in Figure 2.4 outlines the general interpretation of DSC

curves and provides a guideline for identify different processes.

Baselines are complicated and not easy to establish. There is typically some initial

variation of the baseline that comes from mismatch of thermal properties between the

sample and reference or from the instrument bases. After a thermal event, there may be

some deviation in the baseline in comparison to before the event if the thermal properties

of the the sample at the elevated temperature differs from the thermal properties of the

low-temperature state. Abrupt changes in slope or position of the baselines are usually
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Figure 2.4: Flow chart outlining interpretation of DSC curves.

interpreted as second order transitions such as the glass transition temperature, where the

enthalpy change (∆H) is zero but there is a change in the heat capacity.

Endothermic and exothermic peaks are easier to identify. A sharp endothermic peak

is typically indicative of melting and is characterized by its onset position because the

peak apex (Tmax) is dependent on heating rate or sample size. For impure substances, the

endotherms are broad and it is possible to estimate the impurity content from a detailed

shape analysis. Some exothermic processes are not always reversible, in contrast to melting

and many solid-solid phase transitions. DSC can also provide quantitative information on

the processes. For example, the enthalpy change (∆H) can be determined by the peak area
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in both exothermic or endothermic peaks. By heating and cooling the sample, it is possible

to determine if a process is reversible or not.

Heating and cooling rates have a strongly influence on the signal quality as well. Tran-

sitions such as evaporation, crystallization, melting, and decomposition are kinetic events.

Faster heating rates shift these peaks to higher temperature because the total heat flow

increases linearly with heating rate due to the heat capacity of the sample. Thus, increasing

the heating rate increases sensitivity, while decreasing the scanning rate increases resolution.

2.3 Electrochemical Techniques

2.3.1 Solid-State Cell Configuration and Assembly

The positive electrodes are commonly prepared by hand mixing the cathode active material

and solid electrolyte. A solid electrolyte separator layer is first compressed, and then the

composite of the positive electrode is compressed on top of the solid electrolyte. The

other side of the solid electrolyte is interfaced with a lithium-indium alloy as the negative

electrode.

2.3.2 Cyclic Voltammetry

Cyclic voltammetry (CV) is commonly used to investigate the reduction and oxidation

processes of a material where current is measured as a function of the applied potential.

The potential is first changed negatively, starting from a greater potential and ending at a

lower potential. The potential extrema is called the switching potential, and is the point

where the voltage is sufficient to have caused an oxidation or reduction of the material

being analyzed. The reverse scan occurs after, where the potential scans positively and

reverts the oxidation or reduction process.

A cyclic voltammogram is obtained by measuring the current and shows the redox

reactions occurring in the cell. From the area and the width of the peaks, information about
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the amount of material involved and the kinetics in the reactions can be inferred. However,

this information will be used qualitatively in comparison to the quantitative data drawn

from the galvanostatic cycling

2.3.3 Galvanostatic Cycling

This is the standard technique used to charge and discharge a battery. A potential window

is defined and a constant current is applied to discharge the battery and then reversed to

charge it again. The performance of a battery is determined as a function of its charge

and discharge conditions: a given rate, within a given potential range. The cycling rate

(C-rate) is usually expressed as C/h, where h is the number of hours it takes to be fully

charged/discharged. For example, 1C is 1 hour to fully charge or discharge the cell, while

C/10 would be 10 hours for a full charge or discharge.

One typically considers the specific capacity of the electrode material per weight (mA·h/g

for example). Long-term performance is evaluated by the retained specific capacity values

as a function of cycle numbers. Adjusting the cycling rate by increasing the current applied

can also provide useful information regarding the performance behaviour.

Galvanostatic cycling will result in a charge/discharge voltage profile, as a function of

specific capacity. A minimum voltage difference between charge and discharge is ideal to

maximize energy efficiency, as it is indicative of good performance. The following parameters

are typically calculated and evaluated after performing the galvanostatic cycling:

• Potential and Cell Voltage - the free energy of the half reaction ∆G is given by

Equation 2.7, where n is the number of electrons involved in the reaction, F is Faraday’s

constant, and Eo is the standard reduction potential. The cell voltage is given by the

difference of the standard reduction potential for the half cell at the positive electrode

minus the negative electrode (Ecell = Eo
+ − Eo

−).

∆G = −nFEcell (2.7)
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• Specific Capacity (mA·h/g) – as described in Equation 2.8, is defined by the amount

of charge in milliamp-hours stored per mass of electrode for one full discharge/charge

(capacity divided by the mass of active material)

Specific Capacity =
Capacity (mA·h)

Mass of Active Material (g)
(2.8)

• Energy Density (W·h/kg) – battery energy in watt-hours per unit mass (product of

capacity and voltage per mass)

• Capacity Retention –the ability of the cell to achieve a reversible specific capacity

over a defined number of cycles (usually expressed as a fraction or percentage of the

first cycle)

• Cycle Life – the number of discharge-charge cycles the battery can experience before

it fails to meet specific performance criteria (typically 80% of specific capacity)

• Coulombic Efficiency – ratio of the discharge specific capacity to the charge specific

capacity of the same cycle, compared over many cycles

2.3.4 Electrochemical Impedance Spectroscopy (EIS)

Electrochemical impedance is determined by applying an AC potential to a cell while

measuring the current in the cell. The electrolyte material is pressed into a pellet and

placed in a cell between two metal blocking electrodes. Typically, a sinusoidal potential is

applied producing a response as an AC current signal. The excitation signal is sufficiently

small to ensure the cell’s current response is pseudo-linear. In linear systems, the current

response to a sinusoidal potential will be shifted in phase. The impedance is expressed as a

real and complex number. The data is plotted as a Nyquist plot, with the real part on the

x-axis and the imaginary part on the y-axis. Another popular representation is the Bode

plot where the impedance is plotted with log frequency on the x-axis and the absolute

values of the impedance as well as the phase shift on the y-axis.
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For impedance measurements on solid electrolytes, the Nyquist plot is composed of

one or more semicircles in the high frequency range, corresponding to bulk resistance and

capacitance, and the grain boundary resistance. After the semicircle, at low frequencies, a

straight line is seen that correlates to the overall resistance of the material. This straight

line is a result of diffusion that creates an impedance called a Warburg impedance. At

lower frequencies, reactants have longer diffusion distances, thus increasing the Warburg-

impedance.47

First, the pellet surface area (SA) in contact with the electrode, and pellet thickness

(t) is measured. Once the resistance (R) is calculated, either by fitting the Nyquist plot

to a corresponding circuit, or by extrapolating the linear part to the intersection with the

x-axis, the ionic conductivity (σ) can be calculated using Equation 2.9:

σ =
t

R× SA
(2.9)

2.4 Computational Techniques

First principles calculations are widely used in studying the fundamental properties of

materials. These simulations, based on the fundamental quantum physics of interaction

between atoms, can be used to study the physical and chemical properties of materials

to develop valuable understanding and insights as well as assist in the interpretation of

experimental observations. The computational techniques carried out in this thesis were

performed using the VASP software.48

2.4.1 Density Functional Theory (DFT)

To find the ground state of a collection of atoms we must solve the many-body Shrödinger

equation:

Ĥψ = Eψ (2.10)

This describes our system of atoms that are composed of a nuclei and electrons. E is
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the energy of the system and Ĥ is the Hamiltonian, which is an energy operator (kinetic

and Coulombic interaction terms) applied to the wavefunction ψ. Solving the equation is

extremely complicated due to the significant number of interactions between nuclei and

electrons. To simplify this we apply the Born-Oppenheimer approximation, which

decouples the dynamics of the nuclei and electrons by treating the nuclei as fixed. The time

electrons need to find the ground state is significantly faster than the rate the nuclei can

move and it can be considered that the electrons only see the external potentials of a static

nuclei. Thus, ψ is decoupled into a nuclei and electron wavefunction and we can focus on

solving the ground state of the electrons for a fixed set of atomic positions.

For solids and systems with many atoms, solving the electron wavefunction is still a

challenge because of the large number of electrons. To simplify this further we can consider

the electron density, which can be observed or measured. This reduces the problem from

3N dimensions to the 3 spatial dimensions of the electron density. Then, we can consider

the electron as a point charge in a field with all the other electrons, which simplifies the

many-electron problem to many single-electron problems:

ψ(r1, r2, r3...rN) = ψ1(r1) ∗ ψ2(r2) ∗ ψ3(r3) ∗ ... ∗ ψN(rN) (2.11)

Using the individual electron wave functions, the electron density can be defined as:

ρ(r) = 2
∑
i

ψ∗
i (r)ψi(r) (2.12)

At the heart of DFT are the Hohenberg-Kohn theorems, which states that ground

state energy is a unique functional of the electron density (i.e. E = E[ρ(r)]). Thus, the

electron density is all that is required to define the ground state energy and the electron

density that minimizes the energy of the overall functional is the true ground state electron

density. In other words, the ground state density can be found by minimizing the energy

functional.

The energy functional can be divided into two parts - one that is known and one that
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is unknown:

E(ψi) = Eknown(ψi) + Exc(ψi) (2.13)

The known part is composed of the kinetic energy term and the potential energy terms

that come from the Coulombic interactions. The unknown part is the exchange-correlation

functional (Exc) that takes care of the quantum mechanical interactions between electrons.

Unfortunately, this is not known and needs to be approximated. The simplest exchange-

correlation functionals are the local density approximation (LDA), which is based on local

electron density, and the generalized-gradient approximation (GGA), which accounts for

the gradient of the electron density.

To obtain the ground state in practice we can use the Kohn-Sham approach. First, we

consider a set of single-electron wavefunctions in a non-interacting system. The interactions

are implicity accounted for in these potentials:

[− ~
2m
∇2 + Vext(r) + VH(r) + Vxc(r)]ψ(r) = εi(r)ψi (2.14)

where the ∇2 operator on the wavefunction ψ gives the independent particle kinetic

energy, (Vext) is the external potential acting on the electrons due to the nuclei, VH is the

Hartree (or Coulomb) potential that describes the electron interacting with the electron

density, and Vxc is the approximated exchange-correlation potential that describes the

interactions among electrons.

We start with some trial or initial guess for the electron density and utilize a self-

consistency scheme. Using the trial density we can solve the set of Kohn-Sham equations

(one equation for each electron). Then, the obtained set of wavefunctions can be used to

recalculate the electron densities using Equation 2.12. This obtained electron density

is compared to the inputted density, and if it has converged to an acceptable degree of

tolerance, self-consistency is achieved and the ground state is found. If it has not converged,

the obtained electron density is used as the new initial density and looped through until it
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is converged.

Plane-wave DFT is typically used in periodic systems. In a crystal, there is a periodic

arrangement of atoms that has a periodic potential. In general, free electrons are represented

by a plane wave. Using Bloch’s theorem, the electrons in a periodic potential can be

considered as Bloch waves (i.e. perturbed free electrons) to give the electron wave function

in the crystal:

ψnk(r) = eik·runk(r) = eik·r
∑
G

cke
iG·r (2.15)

where k is the plane waves modulated by some periodic potential unk(r) within the

lattice and is expanded as a sum of plane waves in reciprocal space given by the reciprocal

lattice vectors G. Numerically, a cutoff energy needs to be defined in practice to truncate

the infinite expansion. The plane wave vectors span the reciprocal space and integration

of the plane-wave basis functions occurs over the 1st Brillouin zone. Thus, in practice an

appropriate number of k-points must be selected to sample the Brillouin Zone. Both the

energy cutoff and k-point density need to be carefully chosen to ensure convergence in the

DFT calculation while simultaneously keeping the computational cost low.

Finally, chemical bonding and other properties of the material are typically determined

from the interaction of the valence electrons. To simplify and make the calculations more

computationally feasible, the core electrons are “frozen” and the electron density of the core

is represented as a smoothed density in a pseudopotential. This is typically pre-calculated

and provided in libraries with the DFT software.

2.4.2 Ab-initio Molecular Dynamics (AIMD)

Molecular dynamics simulations are used to study the motion of atoms or molecules (i.e.

the time-dependent behaviour of a system). Interaction between atoms and molecules in a

system are simulated over a specific time period that allows us to study a dynamic picture

of the system. At each discrete step, atoms and molecules are moved along trajectories that

follow Newtonian dynamics. The forces acting on the particles and the potential energy of
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the system can be determined using empirical interatomic potentials or quantum mechanical

formulism. The former is referred to as classic molecular dynamics (MD) and the latter is

known as ab-initio molecular dynamics (AIMD). For studying solid electrolytes, AIMD is

more suitable than classical MD because of the limited accuracy of empirical potentials.

Many approximations are made to develop these empirical potentials and may need to

be re-developed from material to material. AIMD utilizes quantum mechanical methods

such as DFT to evaluate the interatomic potentials. The tradeoff is AIMD is much more

computationally expensive than classical MD.

From classical physics, a particle at position ro and velocity vo that feels a force F over

a time t is moved to a new position r(t):

r(t) = ro + (vo(t) +
1

2
at2)) (2.16)

where a is the acceleration (which equals F/m) and is assumed constant over the time

interval t. However, in reality a is not constant, so this is considered an approximation. A

smaller timestep would lead to a better approximation but longer computation time, so an

appropriate timestep must be chosen carefully. The force F that acts on a particle comes

from the derivative of the potential energy for the ions in the system, which is in part

determined from the electron interactions solved by DFT.

A molecular dynamics simulation cam be run in a microcanonical ensemble (NVE) where

the temperature is not controlled, or a canonincal ensemble (NVT), where the temperature

is controlled by a thermostat. The choice of ensemble depends on the properties that are

to be studied. For an NVT ensemble, thermostat algorithms can be used to control the

temperature of the simulation since temperature is related to particle velocities. One such

algorithm that is commonly used is the Nose-Hoover thermostat, which employs a “heat

bath” as an additional variable and introduces a variable called a friction coefficient that is

used to slow down or accelerate particles until the temperature reaches the desired value.
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Chapter 3

Impact of the Li substructure on the

diffusion pathways in α and β-Li3PS4:

an in-situ high temperature neutron

diffraction study

This section is reproduced in part with permission from the Royal Society of Chemistry:

Kavish Kaup, Laidong Zhou, Ashfia Huq, and Linda F. Nazar, Journal of Materials

Chemistry A, 2020, 8, 12446-12456 (DOI: 10.1039/D0TA02805C)

* Laidong Zhou synthesized the Li3.25Si0.25P0.75S4 material.

* Dr. Ashfia Huq provided guidance for the in-situ neutron diffraction measurements at

Oak Ridge National Lab.
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3.1 Introduction

Among all the sulfidic electrolytes, Li3PS4 is prominent for its excellent (quasi)stability with

lithium metal, ease of processability, and the decent ion conductivity of the β-polymorph.49

Li3PS4 is considered the archetype of the thiophosphate solid electrolyte family today, and

has been the subject, or launching point, of many experimental and computational stud-

ies.50–52 It exists as three polymorphs: γ, β, and α. The bulk γ phase exhibits extremely

low room temperature ionic conductivity - around 3×10-7 S·cm−1 - while at higher temper-

atures the γ phase transforms into the more conductive β phase, followed by conversion

to the α-phase. The β phase can be stabilized at room temperature as a nanoporous form

(via solution synthesis in THF) that exhibits a higher ion conductivity, on the order of

10-4 S·cm−1.53 Other solution-based syntheses have given similarly positive results,37,54–57

and the ionic conductivity of these materials may still be improved by engineering the grain

boundaries, an important area of research in fast-ion conducting materials.58–60 It has also

recently been shown that a “β-like” phase can be stabilized at room temperature via silicon

substitution on the phosphorus site, increasing the conductivity up to 10-3 S·cm−1.61

Numerous experimental studies on the parent Li3PS4 structures and their derivatives

have used techniques such as X-ray Diffraction (XRD) and Nuclear Magnetic Resonance

(NMR)51,62 in conjunction with ab initio molecular dynamics (AIMD) and Density Func-

tional Theory (DFT) calculations50,63–68 to develop an understanding of the relationship

between structure and properties. Homma et al. studied the phase transitions and struc-

tures of the polymorphs using synchrotron XRD.69,70 However, lithium scatters poorly by

X-rays owing to its low electron density and can result in ambiguity for the lithium siting,

occupancies, and atomic displacement parameters (ADPs). To solve this issue, neutron

diffraction is used to resolve lithium ions in a crystal structure, but because such studies

have not been applied to the bulk β and α-Li3PS4, their structures remain incomplete. The

structure of β-Li3PS4 was apparently solved by single crystal X-ray methods at 25◦C,71

but some degree of (Si + Li) substitution for P was clearly accidentally responsible for its
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stabilization at this temperature,61 since below 200◦C, only the γ phase exists even with

quenching. More significantly, the Li sublattice of the α-phase has never been resolved; early

XRD studies were able to identify only one lithium site in the unit cell.69,70 No complete

experimental structure of α-Li3PS4 exists to date. As recent calculations have predicted

that the α-phase may have true superionic conductivity - up to 8×10−2 S·cm−1 if it could be

stabilized at room temperature72 - it is of keen interest to determine the Li substructure in

this lattice, and understand the Li-transport pathways. Such knowledge may be helpful to

envisage if (and how) stabilization of α-Li3PS4 under ambient conditions could be possible.

In this work, in-situ, variable temperature, high resolution neutron powder diffraction

(NPD) studies are performed on several Li3PS4 related materials - bulk Li3PS4, nanoporous

β-Li3PS4, and Si-substituted Li3PS4 - to elucidate the structural differences of each com-

position that lead to fast-ion conductivity (summarized in Figure 3.1).

Figure 3.1: Overview of the synthesis procedure and results of the in-situ variable temper-
ature neutron powder diffraction for bulk Li3PS4, nanoporous β-Li3PS4, and Si-substituted
Li3PS4 (Li3.25Si0.25P0.75S4).

Using high-temperature NPD data, the structure of the α phase is solved for the first

time and compared to its γ and β polymorphs. Second, while Li-ion transport is essentially

similar in bulk β-Li3PS4 and its nanoporous β-form (which was examined previously by

neutron diffraction),63,66 the nanoporous material is shown here to be strongly affected by
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the incorporation of a hydrogen-containing amorphous component which is not released from

the structure until highly elevated temperatures. This may be the underlying cause of the

fast-ion conductivity and good stability witnessed in numerous studies.57,73–75 Furthermore,

while Si substitution of P in Li3PS4 stabilizes a β-like phase (referred to as β’) at room

temperature via entropic effects, it was found here that, intriguingly, this composition does

not exhibit a phase transition to the α-polymorph on heating even up to 600◦C. Thus, the

β’-Li3.25Si0.25P0.75S4 phase is stable on cooling back to room temperature. The rationale

behind the suppression of the phase transition is presented.

3.2 Results

3.2.1 Phase transitions: γ → β → α

Bulk γ-Li3PS4 was synthesized and examined by variable temperature NPD (on POWGEN,

Oak Ridge National Lab) to monitor the phase transitions as a function of temperature.

In good accord with previous studies on the phase transitions of Li3PS4,69 the in-situ

neutron studies (Figure 3.2A) show that the γ to β phase transition begins at 250◦C and

is complete at 300◦C, while the β to α phase transition begins at 450◦C and is complete

at 475◦C. The latter gradual transition between 450◦C to 500◦C is more clearly illustrated

in a contour format in Figure 3.2B. Upon cooling, Li3PS4 directly transforms back to the

thermodynamically stable γ phase, entirely skipping the β phase (Figure 3.3). While the

structure of the γ phase has been previously reported based on powder XRD and is not

relevant to this study, since it has never been solved from NPD those refinement details are

provided in Appendix A for the sake of comprehensiveness (Figure A.1 and Table A.1).

3.2.2 Nanoporous β-Li3PS4: stabilization by amorphous

H-components up to 400◦C

Nanoporous β-Li3PS4 was synthesized in THF following the procedure reported by Liu

et al.53 As described, the THF complex was then annealed for 16 hours at 160◦C under
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Figure 3.2: A) In-situ variable temperature neutron powder diffraction from 25◦C to 500◦C
showing the evolution of γ-Li3PS4 to the β and α phases. B) Contour plot of diffraction
patterns upon heating showing phase transition from the β to the α phase.

Figure 3.3: Contour plot upon cooling showing the phase transition from α directly to
the γ phase occurs around 260◦C.

vacuum to remove THF from the structure. Figure 3.4 shows NPD patterns of the 160◦C

annealed nanoporous β-Li3PS4 measured at 50◦C, 300◦C, 350◦C, and 400◦C. The pattern

at 50◦C shows a significant background contribution indicative of the presence of hydrogen.

The scattering length of the hydrogen nucleus has a large inelastic component, which results

in a high continuous background that masks the intensity of the Bragg peaks from the

coherent scattering component. Since the only possible source of hydrogen is THF, residual
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solvent or solvent decomposition products clearly remain in the β-Li3PS4 material after

annealing, although their correlation to the good ionic conductivity of the β-phase is unclear

at present. The hydrogen-containing component can only be completely removed from the

structure at about 400◦C - as monitored by the background contribution (see Figure 3.4) - a

temperature beyond what is typically used to synthesize nanoporous β-Li3PS4 (i.e. 160◦C).

Figure 3.4: Variable-temperature NPD patterns of nanoporous β-Li3PS4. High back-
ground originates from incoherent scattering of hydrogen, indicating presence of a hydrogen
containing component.

Inspection of the nanoporous and bulk diffraction patterns show no major differences

except for the degree of crystallinity (bulk is better crystallized than nanoporous). The

observed reflections are the same and both patterns are indexed to the Pnma space group.

A contraction in the a lattice parameter for the nanoporous phase occurs when heating

from 50 to 350◦C (from a = 12.960 to 12.820 Å) as presented in Figure 3.5. However, b

and c increase resulting in the lattice volumes of both phases to be nearly identical at 350◦C,

differing by approximately 4 Å3. The same trend in the lattice parameters was observed for

bulk Li3PS4 (see discussion section). Subsequent cooling of the material heated at 400◦C to
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room temperature results in transformation directly back to the γ phase. Thus, it is likely

that residual solvent decomposition products trapped in the material on the nanoporous

surfaces stabilize the β-phase at room temperature by helping to maintain the high surface

area of the material.53

Figure 3.5: Neutron powder diffraction patterns of nanoporous β-Li3PS4 at 50◦C and
350◦C, compared with bulk β-Li3PS4 at 350◦C. The lattice parameters were refined from
Pawley fits of each diffraction pattern.

3.2.3 Bulk β-Li3PS4

The structure of bulk β-Li3PS4 was refined in the space group Pnma using a model that

is quite similar to that from previous studies on bulk β-Li3PS4,69 and nanoporous β-

Li3PS4,63,66 with the notable difference here being the identification of the splitting of the

Li1 and Li2 sites (Wyckoff position 8d→(8d + 8d) and 4b→8d as seen in Figure 3.6A).

A comparison between the nanoporous and bulk β-Li3PS4 is summarized in Table 3.1

and the full details of the fit and refined structure can be found in Appendix A, Figure A.2

and Table A.2. A Fourier difference map revealed negative density for Li1 and Li2 that

could either be accounted for (in each case) by one site with a massive anisotropic atomic
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Figure 3.6: Crystal structures of A) β-Li3PS4 and B) α-Li3PS4. Sulfur atoms are omitted
for clarity.

Table 3.1: Comparison of the refined structure between nanoporous β-Li3PS4 (Stöffler et
al.)66 and bulk β-Li3PS4 (this work). Both structures are refined from NPD data.

Nanoporous
β-Li3PS4 (Stöffler et al.)

Bulk
β-Li3PS4 (This work)

Measurement Temperature 25◦C 350◦C
Space Group Pnma (62) Pnma (62)

Lattice Parameters (Å)

a

b

c

12.993

8.0458

6.1377

12.848

8.277

6.151

Atom Site Occ. (x, y, z) Site Occ (x, y, z)
Li1(A) 8d 1 (0.318, 0.017, 0.139) 8d 0.666 (0.849, 0.032, 0.104)
Li1(B) - - - 8d 0.334 (0.841, 0.996, 0.371)
Li2 4b 0.66 (0, 0, 1⁄2) 8d 0.356 (0.009, 0.045, 0.582)
Li3 4c 0.34 (0.442, 1⁄4, 0.55) 4c 0.288 (0.916, 1⁄4, 0.804)
P1 4c 1 (0.088, 1⁄4, 0.167) 4c 1 (0.088, 1⁄4, 0.177)
S1 8d 1 (0.155, 0.0402, 0.267) 8d 1 (0.155, 0.048, 0.298)
S2 4c 1 (0.941, 1⁄4, 0.254) 4c 1 (0.936, 1⁄4, 0.254)
S3 4c 1 (0.101, 1⁄4, 0.801) 4c 1 (0.105, 1⁄4, 0.846)

displacement parameter, or two distinct sites. The latter provided a much better Rietveld

fit. The site splitting may stem from the diffraction measurement being conducted at

an elevated temperature (350◦C), which leads to increased disordering of the lithium in
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the structure. In the case of Li1, the Li1 8d site is refined as split sites Li1A and Li1B

(tetrahedrally coordinated), separated by a relatively long distance of 1.75 Å, whereas the

sites are split by 1.28 Å in the case of Li2 (coordinated with 5 sulfur atoms after splitting,

but can be described as octahedrally coordinated for simplicity). Due to the high amount

of disorder, (β-Li3PS4 has a lithium ion conductivity of nearly 10-2 S·cm−1 at 350◦C)69

the atomic displacement parameters of identical elements were constrained to be the same.

This study pinpoints the lithium distribution, whereas previous reports used either X-ray

diffraction to attempt to define Li positions/occupancies in the bulk β-Li3PS4 phase at

elevated temperatures69,70 or neutron diffraction to analyze the nanoporous β phase at

room temperature.63,66 While the high background contribution in the latter study could

lead to inaccuracies with regard to lithium occupancy or ADPs as discussed above, their

reconstruction of the lithium pathways using MEM and bond-valence showed similar results

to what is determined here for the bulk variant; namely β-Li3PS4 exhibits a quasi-two-

dimensional pathway on the ac plane with a discontinuous pathway along the b-direction

as discussed below.

3.2.4 Crystal Structure of α-Li3PS4

The structure of α-Li3PS4 was previously reported in the space group Pbcn based on syn-

chrotron X-ray powder diffraction data by Homma et al.69,70 Unfortunately, the structural

information was incomplete, as only one lithium position (8 out of 12 lithium per unit cell)

was located, with errors on the atomic displacement parameter (ADP) almost as large as

the value itself (more than 60% error on the ADP).70 Nonetheless, computational studies

based on this model were conducted to discern the lithium ion diffusion mechanism.72 Using

NPD data, refinement of the structure in the Pbcn space group was attempted to fully

resolve the Li sites. However, closer inspection of the fit and structure revealed inaccuracies.

For example, all the observed reflections in the measured pattern obey a systematic absence

of h + k = 2n + 1, which indicates the crystal system is C -centered, and not primitive.

There are also no (102), (121), and (211) reflections, which are expected for a primitive Pbcn
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space group. The missing symmetry and correct space group (Cmcm) was identified using

the ADDSYM function within PLATON.76 Full profile and Rietveld fits confirm that the

space group is Cmcm - a supergroup of Pnma (the space group of β-Li3PS4) - as outlined

below. A comparison between the α-Li3PS4 structure solved in the Pbcn and Cmcm space

group is provided in Table 3.2. Thus, the transformation from β to α is accompanied by

a slight increase in symmetry from Pnma to its supergroup Cmcm. The lattice parameters

of β-Li3PS4 are a = 12.8483 Å, b = 8.2772 Å, and c = 6.1512; the α-phase approaches

cubic symmetry with lattice parameters a = 8.6435 Å, b = 9.0462 Å, and c = 8.4779 Å.

Table 3.2: Comparison of the refined structure for α-Li3PS4 between the synchrotron
powder XRD study by Homma et. al69,70 and the NPD study in this work.

α-Li3PS4 (Homma et al.) α-Li3PS4 (This work)
Measurement Temperature 538◦C 500◦C
Space Group Pbcn (60) Cmcm (63)

Lattice Parameters (Å)

a

b

c

8.603

8.997

8.439

8.644

9.046

8.478

Atom Site Occ. (x, y, z) Site Occ (x, y, z)
Li1 8d 1 (0.738, 0.591, 0.065) 16 0.42 (0.724, 0.353, 0.528)
Li2 8e 0.40 (0.714, 0, 0)
Li3 4c 0.43 (0, 0.196, 1⁄4)
P1 4c 1 (0, 0.827, 1⁄4) 4c 1 (0, 0.831, 1⁄4)
S1 8d 1 (0.307, 0.453, 0.251) 8g 1 (0.304, 0.456, 1⁄4)
S2 8d 1 (0.006, 0.294, 0.549) 8f 1 (0, 0.295, 0.554)

To resolve the structure of α-Li3PS4 from the NPD pattern collected at 500◦C, the

tetrahedral PS4
3- framework was first refined in Cmcm, and the lithium positions were

revealed using a Fourier difference map. Since lithium is highly visible to neutrons due

to its negative scattering length, the lithium positions are distinguished by their negative

intensities. This revealed an extremely disordered arrangement of Li+ ions distributed over

three sites in the Wyckoff positions 16h, 8e, and 4c as shown in Figure 3.6B. Owing to the

high degree of Li disorder due to the fast ion motion, the three sites were constrained to have

the same atomic displacement parameters. The structure is built of primarily edge-sharing
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LiS4 tetrahedra, but the Li2 site shares a face with the neighbouring Li1 tetrahedra. The

sites were also split (8e site into 16h, and 4c double split into 16h) in an attempt to further

improve the goodness-of-fit (GOF), but this was not successful (GOF of 2.35 vs. 2.38). Thus,

the simpler non-split model is used hereafter. The resulting fit and refined crystallographic

data using the preferred non-split site model is summarized in Figure 3.7 and Table 3.3

with corresponding bond lengths in Table 3.4. A comparison of the α structure in its split

vs. non-split configurations is given in Figure A.3 and the results from the split site model

are also provided in Appendix A (Figure A.4, Table A.3, and Table A.4). A detailed

description of the lithium ion pathways is given below in the discussion section.

Figure 3.7: Rietveld refinement of α-Li3PS4 using TOF neutron powder diffraction data
measured at 500◦C (contains 9 wt.% Li4P4S4 impurity).

3.2.5 Phase stability and structure of Si-substituted Li3PS4

Previous reports demonstrated that substitution of silicon into the phosphorus site of Li3PS4

results in stabilization of a β-like polymorph (space group Pnma), with optimal conductivity

found for the composition Li3.25Si0.25P0.75S4.61 It exhibits a similar orthorhombic structure

(space group Pnma) to that of β-Li3PS4 at room temperature but with site splitting of the

Li1 (Wyckoff position 8d), Li2 (4b), and Li3 (4c) sites. This splitting dramatically alters

the energy barriers of the lithium diffusion pathways by frustrating the energy landscape,
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Table 3.3: Crystallographic data of α-Li3PS4 obtained from Rietveld refinement of neutron
powder diffraction at 500◦C. Unit cell: orthorhombic Cmcm (63). a = 8.6435(5) Å, b =
9.0462(5) Å, c = 8.4779(5) Å, V = 662.90(7) Å3, Z = 4

Label
Wyck.
Pos.

x y z Occ. Biso (Å2)

Li1 16h 0.724(2) 0.353(3) 0.528(2) 0.415(19) 10.7(8)
Li2 8e 0.714(4) 0 0 0.40(2) 10.7(8)
Li3 4c 0 0.196(5) 0.25 0.43(3) 10.7(8)
P 4c 0 0.8306(5) 0.25 1 4.12(15)
S1 8g 0.3042(8) 0.4560(7) 0.25 1 5.98(15)
S2 8f 0 0.2949(7) 0.5537(8) 1 5.98(15)

Table 3.4: Interatomic distances in α-Li3PS4 obtained from Rietveld refinement (using
non-split site model) of neutron powder diffraction at 500◦C.

Center Atom Second Atom Interatomic Distance (Å)
Li1 S2 2.45(2) x 2

S1 2.55(2)
S1 2.57(2)

Li2 S1 2.293(12) x 2
S2 2.66(3) x 2

Li3 S2 2.727(16) x 2
S1 2.75(4) x 2

P S2 2.015(7) x 2
S1 2.037(7) x 2

Li1 Li2 1.45(3)
Li1 1.97(3)
Li3 2.73(2)

leading to enhanced lithium ion diffusion as previously reported.61 Variable temperature

NPD from room temperature to 600◦C reveals the effect that Si substitution has on the β

to α phase transition (Figure 3.8).

The fit and Rietveld refinement results are presented in Figure A.5 and Table A.5 and

are consistent with previous reports.61 The phase transition to the α-phase is completely

suppressed (Figure 3.8), indicating that the Si-substituted phase is significantly more stable

than the non-substituted β or α phases. In order to understand why this is the case, the

structures of bulk β-Li3PS4, α-Li3PS4, and Li3.25Si0.25P0.75S4 are compared in detail below.

57



Figure 3.8: High-temperature neutron powder diffraction of Li3.25Si0.25P0.75S4, showing
the suppression of the phase transformation to the α polymorph by Si-substitution.

3.3 Discussion

3.3.1 Structural Comparison

The structures of the three polymorphs (γ → β → α) are compared in Figure 3.9. In the

room temperature γ phase (Pmn21) - viewing the structure along [001] - the framework ex-

hibits an ordered polyhedral motif where each PS4 unit has its apex facing up (Figure 3.9A).

In contrast, in the higher temperature β phase - viewing the structure down [001] - every

PS4 anion along [100] alternates between facing up and down (Figure 3.9B). It has been

suggested that the zig-zag PS4 arrangements in the β-phase create lithium positions both

in octahedral (LiS6) and tetrahedral (LiS4) sites (compared to tetrahedral alone in the

γ-phase), giving rise to a change in the energy landscape which makes the Li-ions more

mobile.69,70 The difference in the anion motifs in the two polymorphs parallels that in their

oxide counterpart (Li3PO4), an isotype that exhibits a similar phase transition process

from β (Pmn21) to γ (Pnma) at 500◦C (note the opposite terminology in phase nomencla-

ture).77,78 The room temperature β-Li3PO4 (Pmn21) is comprised of PO4 tetrahedra all
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facing the same direction, analogous to γ-Li3PS4(Pmn21). The intermediate temperature

phase, γ-Li3PO4, exhibits alternating PO4 tetrahedra, as observed for β-Li3PS4. At 1170◦C,

γ-Li3PO4 undergoes a transition γ to α, where α is an unknown space group and structure.

Figure 3.9: Arrangement of PS4 tetrahedra in A) γ-Li3PS4, B) β-Li3PS4, and C) α-Li3PS4.

In Li3PS4, upon increasing the temperature between 400-450◦C, β-Li3PS4 (Pnma) trans-

forms into the higher symmetry α-Li3PS4 (Cmcm) phase. Along with the unit cell approach-

ing a more cubic-like symmetry as a result of this transition, the inherent PS4 tetrahedral

framework is altered. The view of α-Li3PS4 along the [110] directions shows that the PS4

tetrahedra that run along [001] are aligned facing up or down and alternate their orientation

(Figure 3.9C). Previous studies have proposed that the α-phase allows for the most random

distribution of lithium throughout the possible interstitial positions in the structure69,70

(i.e. cation sublattice melting due to high mobility), which leads to the high level of ionic
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conduction that has been predicted computationally. Note the calculations were carried

out in the Pbcn space group, rather than the Cmcm space group presented here, although

the conclusion is likely valid as discussed below.72

It was also predicted that a bcc S-sublattice leads to direct Li hopping between adjacent

tetrahedral sites, invoking fast Li-ion conduction.79 That study, using pymatgen,80 suggested

that the S-sublattice of β-Li3PS4 was bcc but with a large lattice length deviation. Using

the refined structures for β and α-Li3PS4, their sulfur sublattices were analyzed, but with

a different polyhedral template matching algorithm.81 There is a distinct difference in the

two arrangements. The S-sublattice of β-Li3PS4 is 100% hcp, in accord with results using

the same polyhedral template-matching algorithm,72 while α-Li3PS4 is composed of sulfur

that exists as 75% in a bcc sublattice, and 25% in hcp. This finding is in accord with

calculations of the α-phase that predict extremely fast ion conduction with a low activation

energy.72 In the α-structure, Li+ occupies tetrahedral sites in close proximity to each other

that leads to favorable intersite migration. Nevertheless, the polyhedral framework of β’-

Li3.25Si0.25P0.75S4, which is similar to β-Li3PS4, also exhibits a 100% hcp S-sublattice, and

yet still achieves fast-ion conduction >1×10−3 S·cm-1. It can be surmised that while a bcc

S-sublattice may lead to particularly high fast-ion mobility, good conductivity properties

can also be achieved through other means, such as extensive Li-ion disorder and population

of intermediate-energy sites that leads to correlated ion motion. Furthermore, while bulk

β-Li3PS4 and β’-Li3.25Si0.25P0.75S4 structures are identical in terms of their PS4 framework,

there is a notable difference in their unit cell volumes. The latter are plotted against

temperature for all of the polymorphs and Li3.25Si0.25P0.75S4 in Figure 3.10 (change in

lattice parameters are shown in Figure 3.11). Si-substituted Li3PS4 maintains a larger

unit cell volume than its β and α counterparts (by at least 6 Å3), owing to the larger ionic

radius of Si4+ (0.26 Å) compared to P5+ (0.17 Å), and increased Li fraction that expands the

lattice. Since the unit cell volume of the Si-substituted material is larger than the undoped

α-phase, conversion to the α polymorph on heating is not possible. Hence, Li3.25Si0.25P0.75S4

is more stable and the phase transition to α at high temperature is suppressed.
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Figure 3.10: Unit cell volumes of γ, β, α, and β’-Li3.25Si0.25P0.75S4 with increasing tem-
perature. Unit cell volume of the γ phase is multiplied by 2 in order to match the number
of formula units of the other polymorphs.

Figure 3.11: Lattice parameters with increasing temperature of A) bulk γ-LPS (red), B),
bulk β-LPS (blue) and β’-Li3.25Si0.25P0.75S4 (black), and C) bulk α-Li3PS4 (green).

61



3.3.2 Comparison of Li Diffusion Pathways

Analysis of the lithium diffusion pathways was conducted by looking at the negative com-

ponents of the nuclear density maps, since lithium has a negative neutron scattering length

(bLi = -1.9 fm). The nuclear density map was constructed by applying the maximum entropy

method (MEM) to the experimental structure factors extracted from Rietveld refinement of

the neutron diffraction data. MEM can provide more accurate electron and nuclear density

maps than Fourier analysis, which is prone to termination effects. A detailed examination

of the diffusion pathways of Li3.25Si0.25P0.75S4 can be found in previous studies, and is not

repeated here.61

As described above, the β and α-Li3PS4 structures are related by symmetry due to their

subgroup-supergroup relation. In the transformation from the β (Pnma) to the α (Cmcm)

phase, the a-axis becomes the b-axis (and is multiplied by 1/
√

2); the b-axis becomes the

c-axis; and the c-axis becomes the a-axis (multiplied by
√

2). The comparisons hereafter

are carried out with these transformations taken into consideration. The results from the

MEM maps were fully corroborated with Bond-Valence Site Energy (BVSE) maps derived

from the SoftBV program developed by S. Adams.82 The BVSE method can reliably model

pathways for mobile Li+ as regions of low bond valence site energy, using only the crystal

structure as an input.82 In this approach, lithium ion site energies are calculated for a dense

grid of points with a resolution of 0.1 Å using the transferable Morse-type softBV force field.

Such calculations have been used to study a wide variety of ion conductors and show good

agreement with experimental investigations, although the absolute values are generally

higher than experimental. Calculation of the Bond Valence Energy Landscape (BVEL)

corresponding to the visual presentation in the BVSE maps are performed for the β and α-

Li3PS4 polymorph (note that owing to the accuracy of softBV, the overall activation energy

may differ from the experimental value, but it still provides an approximate assessment of

the relative height of the barriers).82 Discussion of these pathways is provided in the next

section.
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Lithium-ion conduction in bulk β-Li3PS4

The crystallographic study here on bulk β-Li3PS4 shows the Li1 (tetrahedral) and Li2

(octahedral) positions are both split into two distinct sites, which reflects the disorder in

the structure at the elevated measurement temperature (350◦C). MEM and BVSE maps

reveal that Li-ion transport is primarily within the ac plane (i.e., Li2-Li2-Li1B-Li1A-i3-

Li1A, Figure 3.12A, cyan arrows) and consists of migration between these two sites and

an interstitial site, i3 (distorted octahedral with bond lengths 2.64-2.73 Å; Wyck. pos.

4a), to give an overall activation energy (Ea) of 0.36 eV as measured from the BVEL

(Figure 3.13A, cyan line). This value is effectively the same as that calculated for β-

Li3PS4 from molecular dynamics studies (0.35 eV),65 and as experimentally measured for

nanoporous β-Li3PS4 (0.36 eV),53,66 a material which was also shown to exhibit lithium

ion conduction predominantly in the ac plane via a Li1-Li2-Li1 connection.66 Although

not explicitly identified by the authors, the presence of an interstitial site between Li1 to

Li1 is evident in their “differential bond valence” map of the material,66 which is indicated

here as i3 for bulk β-Li3PS4. Although the experimentally determined activation energy for

Li-ion transport (Ea) for bulk β-Li3PS4 between 300-400◦C is reported to be two-fold lower

(0.16 eV),69 this likely reflects the difficulty of carrying out EIS measurements at greatly

elevated temperatures where impedance from the wire connections is anticipated to play a

dominant role. While BVEL can overestimate activation energies, other measurements of

Ea for the β-phase, as determined from 7Li NMR studies that favour local motion, also are

around 0.36 eV, ranging between 0.24 eV (nanoporous β-Li3PS4)66 and 0.40 eV (ball-milled

material).83 Furthermore, the predicted room temperature conductivity for the β-phase

was extrapolated from a plot of log σ vs 1/T measurements carried between 300-400◦C,

with a measured slope corresponding to an Ea of 0.16 eV. This extrapolated value of

8.9×10-7 S·cm-1 corresponds to a diffusion coefficient on the order of 7×10-12 cm2/s based

on the Nernst-Einstein equation that relates the diffusion coefficient and conductivity:

σ =
N (Ze)2D

kBT
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(where N is the number density of the mobile ions and in this case is taken as NLi =

2×1028 m-3 from previous studies on β-Li3PS4,66 Z is the ionic charge, e is the elementary

electron charge,D is the diffusion coefficient of the mobile species, σ is the ionic conductivity

of the mobile species, kB is the Boltzmann constant, and T is the temperature). That

diffusion coefficient is unreasonably low in light of the AIMD simulations that determine a

diffusion coefficient on the order of 10-8 cm2/s to 10-9 cm2/s at room temperature.50,65

Figure 3.12: MEM maps (isosurface of -0.01 fm/Å3) of β-Li3PS4 shown in A) 2D format
viewing the ac plane, B) 3D format viewing the ab plane, and C) 3D BVSE map of the
ab plane. Cyan arrows indicate the pathway along the ac plane. Purple and red arrows
indicate paths connecting parallel ac planes.

In β-Li3PS4, lithium ion diffusion along the b-direction can take place along two potential

pathways, where Li3 or an interstitial site i2, primarily act as connections between parallel

ac planes shown in Figure 3.12B,C to establish quasi-3D migration. The Li3 site acts as a

connection point between the Li2 sites in adjacent ac planes (Li2 Li3 Li2, Figure 3.12B,C,

red arrows), with an energy barrier of 0.255 eV (Figure 3.13A, red line); the density is

more apparent in the BVSE map than the MEM map. This Li2-Li3-Li2 path resembles the

pathway identified in previous neutron MEM studies on nanoporous β-Li3PS4, which was
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Figure 3.13: Bond-valence energy landscapes (BVEL) indicating the reaction pathways
and energy barriers of transport calculated from BVSE maps for A) bulk β-Li3PS4 and B)
bulk α-Li3PS4. Coloured lines correspond to the coloured arrows in Figure 3.12.

shown to connect adjacent ac-planes via the Li3 site.66 An alternative lower energy path

with an energy barrier of 0.135 eV (Figure 3.13A, purple line) links adjacent ac planes, as

seen here in both the MEM and BVSE maps of bulk β-Li3PS4. In this case, Li+ can migrate

between the Li1A sites in adjacent ac planes via an interstitial site (i2), which facilitates

Li+ diffusion along the b-direction (Li1A-i2-Li1A, Figure 3.12B,C, purple arrows).

Lithium-ion conduction in α-Li3PS4

MEM maps of the α-phase reveal linear Li+ diffusion pathways along the b-axis that are

connected by the Li3 site in the ac plane, observed in the 3D nuclear distribution in

Figure 3.14A. Compression of the b-axis by 1/
√

2 (relative to the a-axis of the β-phase)

causes a narrowing of the distance between the atoms along b. This forces the Li3 and Li1
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site in the α-phase to reside on the same plane (Figure 3.14, blue arrows), separated by

a distance of 2.76 Å, and allows for facile diffusion in the ac plane of the α-phase with a

low energy barrier of 0.207 eV (Figure 3.13B, blue line). The Li1 ions also form part of a

chain along the b-axis (Li1-Li2-Li1-Li1 pathway) that becomes the dominant pathway in

α-Li3PS4, which can be seen in the ab and bc planes (Figure 3.14B,C, red arrows). Note that

two adjacent Li1 sites are edge-sharing, and thus the Li1-Li1 hop must occur through an

interstitial site that connects the two tetrahedral faces. BVEL did not detect an interstitial

site in this location, however, both the MEM and BVSE maps show very weak density in

the space between the edge-sharing Li1-Li1 tetrahedra (see Figure 3.15).

Figure 3.14: 2D MEM (isosurface of -0.01 fm/Å3) maps of α-Li3PS4 illustrating the Li+

diffusion pathways in the A) ac plane, B) ab plane, and C) bc plane. Li1 is represented by
green atoms, Li2 by cyan atoms, Li3 by purple atoms, and interstitial sites by black atoms.

A low energy barrier of 0.22 eV along this path (Figure 3.13B, red line) is determined.

Importantly, the channels along b are connected by the Li3 site (in the ac plane) to enable

3D diffusion with an overall activation energy of about 0.22 eV (Figure 3.13B, red line). This

is in agreement with AIMD calculations of α-Li3PS4 that predict an overall activation energy
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Figure 3.15: BVSE and MEM map (isosurface of -0.01 fm/ Å3) of α-Li3PS4 showing the
linear Li+ diffusion pathways along the b-axis. Black arrows are pointing to the density
from the maps that indicate an interstitial site that connects adjacent Li1 sites.

of 0.18 eV, with an ionic conductivity of 8×10−2 S·cm-1 at room temperature.72 Furthermore,

visualization of the 3D nuclear densities from MEM for α-Li3PS4 (Figure 3.16A) closely

matches the Li-ion probability density distribution from the reported AIMD calculations,72

despite the latter being carried out in the lower symmetry Pbcn space group.

The Li-Li distances from the refined structure in this study are much shorter than those

predicted from the AIMD study, which all are in the range of 2.46-2.81 Å.72 The refined α-

Li3PS4 structure in Cmcm exhibits a Li1-Li2 distance of 1.45 Å, a Li1-Li1 distance of 1.97 Å,

and a Li1-Li3 distance of 2.73 Å. The shorter Li-Li distances are due to the high degree of Li

delocalization over the sites (i.e. a large ADP value of 10.7 Å2 was determined from Rietveld

refinement), which may explain the high lithium mobility observed by molecular dynamics.

The short Li-Li distances may be responsible for concerted ion migration as Li site energies

are pushed up due to the repulsion of the Li atoms in close proximity. Ab initio modeling

has pointed out that Li ions in high-energy sites can activate concerted migration with a
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Figure 3.16: 3D MEM (isosurface of -0.01 fm/Å3) maps illustrating the Li+ diffusion
pathways in A) of α-Li3PS4 at 500◦C and B) β-Li3PS4 at 350◦C

lowered migration energy barrier,42 which was previously observed in the Li3.25Si0.25P0.75S4

material using BVEL.61 Note that the short distances alone are not the reason for fast-ion

conduction, as the energy landscape will dictate the long-range lithium-ion transport. Short

bond-distances are also prevalent in β-Li3PS4, yet long range transport is more favourable

in α-Li3PS4 due to the energy landscape of the structure, as described above.

In short, in the α-structure, diffusion is extremely facile along channels in the b-axis, and

also predominates in the interconnected ac planes to result in 3D ion diffusion with a low

activation energy barrier. In the bulk β structure, the transport pathways are more limited.

They are dominant in the ac plane, making the material essentially a 2D conductor, but each

plane is weakly linked together (in a non-continuous fashion) by sites along the b-direction.

This agrees well with other MEM and BVSE analysis on nanoporous β-Li3PS4.61,66 There

is no experimental measurement for the activation energy of α-Li3PS4 to date due to the

aforementioned difficulty of measurement at the extremely high temperature range necessary

68



to perform the experiment (≥475◦C), but from the previously reported MD calculations, the

α-phase has an extremely high extrapolated “room temperature” lithium ion conductivity

of 8×10-2 S·cm-1. Regarding diffusivity, the diffusion prefactor Do:

Do = fa2
o νo e

−∆S
kB

plays a major role, where Do is composed of a correlation factor f accounting for the

fact that successive ion jumps can be related to one another, the jump distance ao, the

jump frequency νo, the Boltzmann constant kB, and the sum of migration (∆Sm) and

defect formation (∆Sf ) entropies, ∆S. The influence of activation energy and prefactor is

reflected in the MEM maps, where the difference in Li nuclear density distribution for α

vs. β is quite striking (Figure 3.16). Making allowances for the higher temperature of data

collection (500◦C vs 350◦C), lithium ions are nonetheless clearly much more delocalized

in the α phase, implying a difference in diffusivity that is likely indirectly reflected in

the doubling of the atomic displacement factor (from 5.4 to 10.7 Å2 , see Table 3.3 and

Table A.2). The prefactor has been shown to strongly affect the ionic conductivity of many

fast-ion conducting solid electrolytes, which is also influenced by the dynamics of the host

lattice.84 Considering that the anion framework for both structures should have the same

polarizability and the jump distances between the two structures are similar, polyhedral

anion rotation may also play a role here as it has been shown to couple to, and facilitate

long range cation mobility.85 Anion rotation would affect the phonon properties of the

material which is directly related to the entropy of migration, and that, in turn, governs

the prefactor, Do.

3.4 Conclusions

Variable-temperature in-situ neutron powder diffraction studies of the intermediate and high-

temperature β and α polymorphs of bulk-Li3PS4, nanoporous β-Li3PS4, and Li3.25Si0.25P0.75S4

- coupled with Rietveld refinement, and MEM and BVSE analysis to study the lithium

diffusion pathways - elucidate important structure-property relationships in these related
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materials. The high symmetry α-Li3PS4 phase (space group Cmcm) in its stability regime

(≥475◦C), exhibits highly delocalized Li-ion siting/distribution over three sites in the lattice,

and shorter Li-Li distances than were reported in previous studies based on a computed

structure. Furthermore, such proximate Li-Li sites result in high Li-site energies based on

the BVEL map due to Li-Li repulsion, and may be responsible for correlated ion motion.

Recent ab initio modelling shows mobile Li ions occupying high-energy sites can activate

concerted migration with a reduced migration energy barrier.42 The α-Li3PS4 structure

primarily exhibits a bcc like S-sublattice and the most favorable lithium diffusion pathways,

allowing for facile 3D lithium ion diffusivity in comparison to the β-Li3PS4 polymorph.

Pathways for Li migration by experimental BVSE calculations based on neutron diffraction

data are similar to those previously predicted by AIMD, with an Ea of 0.22 eV - a little

higher than calculated from AIMD (0.18 eV)72 – and in accord with that expected, since

BVEL often slightly overestimates Ea. These factors are undoubtedly responsible for the

ultra-high conductivity predicted by AIMD simulations. Not only is the overall Ea much

lower for the α vs. β-phase by about 0.14 eV but it is evident that the α-phase is a true

3D conductor with highly delocalized Li-density in both the ab, bc, and ac planes.

Determination of the Li-substructure of the bulk β-phase (350◦C - 450◦C) allows a better

understanding of transport in this material. The most facile migration pathway found here

is the same as the nanoporous β-phase (ac plane). However, whereas the latter is reported

to be a 2D ion conductor, bulk β-Li3PS4 also exhibits low energy 3D pathways owing to

split Li site populations, with an overall Ea of 0.36 eV from BVSE calculations based on

the refined neutron diffraction data. This value is much higher than the experimental Ea of

0.16 eV measured at high temperature,69 but in full accord with other estimates. That, in

turn, suggests that the “hypothetical” room temperature conductivity for bulk β-Li3PS4 of

8.9×10-7 S·cm-1 extrapolated from high temperature (assuming an activation energy of 0.16

eV) is orders of magnitude too low.70 Thus, it is possible that the three-orders-of-magnitude

greater conductivity of nanoporous β-Li3PS4 vis a vis hypothetical bulk β-Li3PS4 at room

temperature may be overestimated. Finally, while nanoporous β-Li3PS4 is quite stable at
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intermediate temperatures, not surprisingly the structure cannot be maintained after an

amorphous hydrogen containing component that stabilizes the phase is completely removed

upon heating above 400◦C (presumably the nanopores begin to collapse). Si-substitution

of Li3PS4 stabilizes the β’-Li3.25Si0.25P0.75S4 phase at room temperature and, interestingly,

also prevents phase transformation to the α polymorph upon heating owing to its larger

lattice volume.

This work provides in-depth elucidation of the structural details and ion transport in

various Li3PS4 polymorphs and their related analogues, which have long been of interest

due to their history as a basis for designing and modeling new ion-conductors. Moreover,

the findings further the current understanding of ion transport in solid electrolytes, which

may lead to the discovery of new materials based on the results presented in this study.

3.5 Methods

3.5.1 γ-Li3PS4 Synthesis

Stoichiometric molar ratios of the precursors, Li2S (Sigma Aldrich, 99.98% ) and P2S5

(Sigma Aldrich, 99% ), were ground together in a mortar inside an Ar filled glovebox. The

powder was pelletized and placed in a glassy carbon crucible which was sealed inside a

vacuumed quartz tube. The material was heated at 520◦C for 14 hours and then cooled

back to room temperature at a rate of 5◦C per minute.

3.5.2 Nanoporous β-Li3PS4 Synthesis

The precursor for the synthesis, the Li3PS4·3THF complex, was obtained from BASF. The

powder was dried under vacuum at a temperature of 160◦C for 16 hours to give pure

β-Li3PS4 as determined by XRD analysis.
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3.5.3 Li3.25Si0.25P0.75S4 Synthesis

Li2S (Sigma Aldrich, 99.98% ), P2S5 (Sigma Aldrich, 99% ), Si (Sigma-Aldrich, 99% ) and

sulfur (Sigma-Aldrich, 99.5% ) were mixed together in a mortar at the targeted ratio, and

5 wt.% excess sulfur was added to fully oxidize the Si. The mixture was pelletized and

placed in a glassy-carbon crucible in a sealed quartz tube under vacuum. The sample was

heated to 750◦C, slowly cooled to 725◦C over a period of 18 hours, and then cooled to room

temperature under ambient conditions.

3.5.4 Neutron Powder Diffraction and Rietveld Refinement

Time-of-flight (TOF) neutron diffraction samples were loaded into a 6 mm vanadium can

under He with a boronitride cover and molybdenum screws. Samples were collected on

POWGEN (Beamline 11A) at the Spallation Neutron Source (SNS) at Oak Ridge National

Laboratory. Data was collected using a beam of neutrons with a center wavelength of 1.5

Å. The resulting diffraction patterns were refined by the Rietveld method using TOPAS

version 6 (Bruker – AXS). The S-sublattice was analyzed using the polyhedral template

matching algorithm implemented in the software Ovito.86 Structural images and maps were

drawn using VESTA.87 Experimental nuclear density extracted from Rietveld refinement

of the neutron diffraction data was reconstructed using the Maximum Entropy Method

(MEM) implemented with the software Dysnomia.88 The refined crystal structure was used

as input for Bond Valence Site Energy (BVSE) calculations, which were performed with

the software SoftBV,82 using the bond-valence parameters from the softBV database.89
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Chapter 4

Correlation of Structure and Fast Ion

Conductivity in the Solid Solution

Series Li1+2xZn1-xPS4

This section is reproduced in part with permission from:

Kavish Kaup, Fabien Lalère, Ashfia Huq, Abhinandan Shyamsunder, Torben Adermann,

Pascal Hartmann, and Linda F. Nazar, Chemistry of Materials, 2018, 30, 3, 592–596

(DOI: 10.1021/acs.chemmater.7b05108). Copyright 2018 American Chemical Society.

* Dr. Fabien Lalère helped synthesize the ZnS nanoparticle precursors and refine the

synchrotron X-ray diffraction data.

* Dr. Ashfia Huq collected the neutron diffraction data at Oak Ridge National Lab.

* Abhinandan Shyamsunder assisted with the analysis of the local structure.
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4.1 Introduction

Richards et al.90 used density functional theory and ab initio molecular dynamics to investi-

gate the Li1+2xZn1-xPS4 (LZPS) system, which exhibits a body-centered cubic (bcc) sulfur

sublattice. Theory suggests that this arrangement of sulfur atoms, which is also adopted

by two other fast ion conductors (Li7P3S11 and LGPS), is correlated to a low lithium mi-

gration barrier.79 The stoichiometric parent phase LiZnPS4 and its optical properties have

been previously reported but no ionic conductivity data was provided.91,92 Its structure

consists of a framework of PS4
3− and ZnS4

6− tetrahedra that house Li+ ions, where Li fully

occupies the 2b site and Zn fully occupies the 2a site (Figure 4.1A). In the Li1+2xZn1-xPS4

non-stoichiometric phases (Figure 4.1B) the additional Li ions shares the 2a site with Zn

as shown below, with the excess Li distributing equally between the 2a and an additional

site, 2d. This 2d site is close to the “interstitial” site that was not explicitly identified in

the theoretical work.90

Figure 4.1: a) Crystal structure of stoichiometric LiZnPS4; b) non-stoichiometric, showing
addition of interstitial Li in the 2a site shared between Li and Zn and partial occupancy of
Li on the 2d site.
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The stoichiometric phase was predicted to have extremely poor conductivity based

on first-principles calculations (1.81×10−12 S·cm−1, Ea = 1.07 eV), while the introduc-

tion of interstitial lithium defects is predicted to yield ionic conductivities greater than

5×10−2 S·cm−1 (with Ea >0.17 eV) at room temperature up to a solid solution solubility

limit of x = 0.5;90 i.e., Li2Zn0.5PS4. Here, the synthesis of the solid solution series, and the

structure of the members within the solubility limit with the highest predicted conductivity,

derived from combined X-ray and neutron powder diffraction analysis are reported.

4.2 Results and Discussion

4.2.1 Formation and Structure of LZPS Phases

The highest value of x (i.e. of lithium excess) in a well crystallized sample was x = 0.35,

corresponding to Li1.7Zn0.65PS4. Lithium occupation of the 2d site was unequivocally iden-

tified, which is charge compensated by substitution of Zn2+ ions in the 2a site with Li+

ions and is crucial for improving ionic transport. Experimental ionic conductivities (σi)

measured by electrochemical impedance spectroscopy (EIS) show that the σi of the most

highly conductive phases are in the range of >10−4 S·cm−1 at 25◦C: a very significant

improvement over LiZnPS4, albeit less than predicted. Phases with high values of x (>0.5)

were experimentally unattainable as relatively pure crystalline phases, however. The obser-

vations found in this study demonstrate the enhancement in ionic conductivity for the x

= 0.75 phase is likely due to a glass-ceramic matrix effect rather than from its inherent

crystalline structure. Li1+2xZn1-xPS4 compositions were prepared at x = 0.25, 0.5, and 0.75

using solid-state synthesis consisting of ball-milling and annealing. Their synchrotron XRD

patterns are shown in Figure 4.2. The compositions contain small impurities of Li4P2S6

and ZnS which form upon slight decomposition of the LZPS solid solutions because of their

metastable nature. As the lithium content increases (up to x = 0.75), the formation of

significant γ-Li3PS4 impurities becomes evident, in accord with the pseudo-binary phase

diagram calculated by Richards et al.90
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Figure 4.2: Synchrotron powder XRD patterns (25◦C) of Li1.5Zn0.75PS4 (x = 0.25),
Li2Zn0.5PS4 (x = 0.5), and Li2Zn0.5PS4 (x = 0.75) with impurities of Li4P2S6, ZnS, and
Li3PS4 as marked. Region with the dashed box is expanded on the right, indicating the shift
in the (112) reflection (I 4̄ space group) toward higher angle. The corresponding synthesis
temperatures are listed above the compositions.

The a and c lattice parameters were extracted by performing a Pawley full powder

pattern fit of the synchrotron XRD patterns in the I4 space group. The trends are shown

in Figure 4.3 (with exact values given in Table 4.1), indicating that the cell volume

increases with increased lithium content (293 Å3 to 301 Å3). The increase in cell volume

stems from a significant increase in the a lattice parameter (with a small decrease in the

c lattice parameter). Larger lattice volume often correlates to an improvement in ionic

conductivity due to a reduced Li+ ion migration barrier.79,93 Since the targeted Li2Zn0.5PS4

phase is expected to have the highest ionic conductivity within the solid solution solubility

limit, its crystal structure was refined against combined synchrotron powder XRD data

(λ = 0.412 Å) and TOF neutron diffraction data.
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Figure 4.3: Lattice parameter and volume change in Li1+2xZn1-xPS4 for x = 0, 0.25, 0.5,
and 0.75. Solid black circles are from single crystal data taken from the literature91 and
blue squares are experimental data from this work (values are listed in Table 4.1).

Table 4.1: Comparison of lattice parameters for Li1+2xZn1-xPS4 for the full range of x
values.

Composition x Space Group a (Å) b (Å) c (Å) Volume (Å3)
LiZnPS4 * 0 I4 5.738 5.738 8.914 293.49
Li1.5Zn0.75PS4 0.25 I4 5.764 5.764 8.843 293.79
Li2Zn0.5PS4 0.5 I4 5.795 5.795 8.834 296.66
Li2.5Zn0.25PS4 0.75 I4 5.836 5.836 8.829 300.71
γ-Li3PS4 * 1 Pnma 6.101 8.015 13.066 638.92

* values taken from literature71,91
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The reflections were assigned to a body-centered tetragonal cell (space group I 4̄, no. 82)

with lattice parameters refined to a = 5.7945 Å, and c = 8.8337 Å. The crystallographic

details are summarized in Table 4.2 (note that bond lengths, Table B.1, are typical for all

environments) while the fit for the synchrotron and neutron data is shown in Figure 4.4.

Table 4.2: Atomic coordinates, Wyckoff symbols, and isotropic displacement parameters
for the targeted Li2Zn0.5PS4 phase in the space group I 4̄ (no. 82).

Atom
Wyck.
Pos.

x y z Occ. Biso (Å2)

Li1 2d 0 0.5 0.75 0.345(9) 6
Li2 2b 0 0 0.5 1 8
Li3 2a 0 0 0 0.344(4) 1.49(7)
Zn3 2a 0 0 0 0.656(4) 1.49(7)
P1 2c 0 0.5 0.25 1 0.81(4)
S1 8g 0.7952(2) 0.2821(2) 0.1220(2) 1 1.71(4)

Figure 4.4: Combined Rietveld refinement of Li2Zn0.5PS4 based on synchrotron XRD
and neutron diffraction data. Visual representation of the refined crystal structure (refined
to a composition of Li1.7Zn0.65PS4) is shown as an inset. Excluded regions correspond to
impurity phases, mainly Li4P2S6 which comprises < 5 % of the total (see Figure 4.2).
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The results of the refinement indicate that the actual lithium content of the crys-

talline material is x ≈ 0.35; lower than that targeted (i.e. x = 0.5). The crystalline

Li1.687Zn0.656PS4 (i.e., Li1.7Zn0.65PS4) phase thus exists in an amorphous Li-rich thiophos-

phate matrix. The degree of crystallinity was estimated to be 69% using Si as an internal

reference (Figure B.1). A proposed mixture of 77% Li1.7Zn0.65PS4 + 23% amorphous-

Li3PS4 accounts for the overall Li2Zn0.5PS4 target. The 8% discrepancy may be attributed

to the impurity phases (Figure 4.2). The refined structure of Li1.7Zn0.65PS4 shows that the

2a sites are partially occupied by Li (34%) and Zn (66%) while the 2d site has partial

occupancy of Li (34%) as visually represented in the inset in Figure 4.4. Owing to the

well-known difficulty in simultaneously refining thermal parameters and occupancies of

mobile ions, the thermal parameters for the 2d and 2b site were fixed to average values from

the literature.24,26,94,95 This resulted in convergence to site occupancies that yielded perfect

charge balance of the compound and an equal distribution of excess Li on the 2d and 2a

sites as expected. The results are in excellent accord with ab initio molecular dynamics

studies that predict significant lithium ion density on an “interstitial site”,90 which is similar

to the 2d Wyckoff site identified here.

While Li2.5Zn0.25PS4 (x = 0.75) was projected by theory to have the highest conductivity

(1.14×10−1 S·cm−1),90 its structure could not be refined owing to the low quality of the

X-ray and neutron data for this poorly crystallized compound. This is in accord with it lying

just outside of the predicted solubility limit.90 The structure of Li1.5Zn0.75PS4 was refined

from the synchrotron X-ray data owing to its low lithium content (and a paucity of neutron

time); and these results are shown in Table 4.3. The fit is shown in Figure 4.5 and refined

bond lengths (Table B.1) correspond to typical values for all environments. The lattice

parameters refined to a = 5.7641 Å and c = 8.8438 Å. Since lithium can not be accurately

refined from X-ray data, lithium occupation in the 2d and 2a site was fixed to be equal,

as determined by the Li1+2xZn1-xPS4 formulation. The Zn occupancy was refined and the

vacant occupancy was assumed to be lithium given that the 2a site occupancy is constrained

to 1. The refined composition of Li1.2Zn0.9PS4 (with a 70% degree of crystallinity determined
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by standard addition) shows that the target composition was also not achieved in this case.

This may be due to slow kinetics of the reaction that prevent achievement of the targeted

lithium contents, despite the employment of nano-sized ZnS in the synthesis. However,

synthesis at higher temperature or longer times is limited by thermodynamics: due to the

metastability of the substoichiometric phases, the LZPS structure partially decomposes

to Li4P2S6. The formation of such impurity phases can be prevented by heating at lower

temperatures; however, this comes at the cost of reduced degree of crystallinity.

Table 4.3: Atomic coordinates, Wyckoff symbols, and isotropic displacement parameters
for the targeted Li1.5Zn0.75PS4 phase in the space group I 4̄ (no. 82).

Atom
Wyck.
Pos.

x y z SOF Biso (Å2)

Li1 2d 0 0.5 0.75 0.097 6
Li2 2b 0 0 0.5 1 8
Li3 2a 0 0 0 0.097 1.30
Zn3 2a 0 0 0 0.903(4) 1.30 (6)
P1 2c 0 0.5 0.25 1 2.3(1)
S1 8g 0.7865(2) 0.2709(3) 0.1294(2) 1 0.89(4)

Figure 4.5: Rietveld refinement of Li1.5Zn0.75PS4 based on synchrotron XRD data only.
Excluded regions correspond to impurity phases, mainly Li4P2S6 which comprises < 10 %
of the total (see Figure 4.2).
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The importance of excess phonon free energy in stabilizing defect-type ionic conductors

with highly mobile Li+ ion lattices has been previously invoked, for example, in Li7P3S11,

and especially in Li1+2xZn1-xPS4.90 The limiting composition Li1.7Zn0.65PS4 (x = 0.35) is

approximately halfway between the predicted solubility limit for the solid solution series

without phonon contributions (x = 0.15) and with phonon contributions (x = 0.5).90

Clearly Li1.2Zn0.9PS4 (x = 0.1) falls within in the regime where phonon contributions are

not necessary to stabilize the material. All experimental attempts to increase the degree

of lithium substitution to attain x = 0.5 were unsuccessful - irrespective of temperature,

time and processing conditions - and resulted in significant levels of impurity phases. These

results confirm that phonon contributions do play a vital role in stabilizing these defect

structures but likely to a lower degree than presumed.

4.2.2 Ionic Conductivity of Crystalline LZPS

Partial occupancy of Li in the 2a and 2d site in the LZPS structure should facilitate the

ion conduction by creating low energy percolating pathways through the structure. The

Li+ ion conductivity of the various LZPS compositions was studied using EIS on pressed

pellets at variable temperatures. The impedance spectra in Nyquist form showed classic

semicircles at high frequency, and a linear Warburg component in the low-frequency range

(Figure 4.6A). Fitting the data (see inset for equivalent circuit and Table B.2 for fit

parameters) resulted in experimental conductivities at 25◦C plotted in Figure 4.6B as a

function of lithium content. The activation energy (Ea) was determined from a linear fit of

the Arrhenius plots of ln(σT ) vs. 1/T but plotted as log10(σ) vs. 1/T for convenience.

The conductivities range from 5.40×10−8 S·cm−1 at x = 0 to 8.4×10−4 S·cm−1 at x =

0.75. The conductivity of the refined phase Li1.7Zn0.65PS4 was 1.30×10−4 S·cm−1, which is

lower than predicted for either Li2Zn0.5PS4 (5.38×10−2 S·cm−1) or Li1.5Zn0.75PS4 (2.77×10−2

S·cm−1) as shown in Figure 4.6. The amorphous content may be responsible, although

temperature-dependent conductivity measurements exhibit Arrhenius behavior with a low

activation energy (Ea) of 0.22 eV. This value is close to the range predicted by MD simula-
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Figure 4.6: A) Activation energy plot of Li2Zn0.5PS4 and Li1.5Zn0.75PS4 along with an
inset of the Nyquist plots at each temperature plus the equivalent circuit used to fit the
impedance data and B) Li+ ion conductivity at 25◦C versus x in Li1+2xZn1-xPS4.

tions for the defect phases,90 namely 0.165 eV (Li2Zn0.5PS4) and 0.181 eV (Li1.5Zn0.75PS4).

While the possible amorphous phase (i.e., amorphous LPS; σi = 2.8×10−4 S·cm−1)96 may

contribute to the overall conductivity, its much lower reported Ea of 0.4 eV suggests that the

σi of Li1.7Zn0.65PS4 dominates. Similarly, the refined phase Li1.2Zn0.9PS4 has a room tem-

perature ionic conductivity of 1.65×10−5 S·cm−1, lower than the predicted Li1.25Zn0.875PS4

phase (3.44×10−3 S·cm−1), but the Ea is 0.25 eV, quite close to theory (0.252 eV).90

4.2.3 Enhanced Ionic Conductivity from the Glass-Ceramic

The highest ionic conductivity of 8.4×10−4 S·cm−1 was achieved when the x = 0.75 glassy

precursor was heated at lower temperatures (230◦C) to form a very poorly crystallized

material. An SEM image of its featureless morphology is shown in Figure 4.7. Heating

above that temperature results in a lower ionic conductivity of 2.4×10−4 S·cm−1, and clear

phase separation of the LZPS solid solution and γ-Li3PS4. The high conductivity in the

glassy phase formed at low temperature is exclusive to the x = 0.75 compound (Table 4.4).
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Figure 4.7: SEM image of the Li2.5Zn0.25PS4 glass-ceramic compound after low-
temperature annealing showing its glassy morphology.

Table 4.4: Ionic conductivity of compositions obtained at different synthesis temperatures.

Ionic Conductivity (S·cm−1)

Composition
High temp. synthesis

(360 - 400◦C)
Low temp. synthesis

(230 - 250◦C)
Li1.5Zn0.75PS4 3.9×10−6 1.6×10−6

Li2.5Zn0.25PS4 1.3×10−4 9.4×10−5

Li2.5Zn0.25PS4 2.4×10−4 8.4×10−4

Postulating that the improvement in ionic conductivity arises from the glass-ceramic

nature of the material, the local structure of Li2.5Zn0.25PS4 was probed via Raman spec-

troscopy, and compared to the other two phases (Figure 4.8). While Li2Zn0.5PS4 and

Li1.5Zn0.75PS4 show predominantly PS4
3- moieties characteristic of the crystalline structure

(along with Li4P2S6 impurity), the more highly conductive Li2.5Zn0.25PS4 synthesized at

low-temperature has an additional peak in the Raman spectrum not present in the other two

compositions. As shown in previous studies,97 it corresponds to the characteristic symmetric

P-S stretching in P2S7
4- units (P-S-P at 406 cm-1); inherent building blocks in the crys-

talline fast lithium ion conductor Li7P3S11.98 They exist in its amorphous precursor (70:30

Li2S-P2S5 glass), which is known to have very high conductivities of >10−4 S·cm−1 before

annealing.96 The glassy matrix likely play a significant role in the high ionic conductivity

of “Li2.5Zn0.25PS4”, rather than inherently enhanced pathways in the structure.

83



Figure 4.8: Raman spectra of glass and glass-ceramics for Li1+2xZn1-xPS4 compositions x
= 0.25, 0.5 and 0.75 showing the characteristic bands for the PS4, P2S7 and P2S6 moieties
as labelled.

4.3 Conclusion

In summary, these results provide an understanding of ion transport in the Li1+2xZn1-xPS4

solid solution series by defining the complex relationship between lithium site occupa-

tion/position and ionic conductivity. Ab initio computational techniques provide inspira-

tion and guidance in the search for new solid-state ion conductors. Here, the results of

introducing interstitial lithium defects in in the solid solution regime Li1+2xZn1-xPS4 pre-

dicted by theory are compared with that of experiment. The stability of the defect phases

owing to phonon contributions may be somewhat overestimated by theory, as all phases are

found to be highly metastable. Such metastability results in difficulty in overcoming the

kinetics necessary for mass transport in order to access the pure phases at the low tempera-

tures required for their synthesis. Nonetheless, phases close to the targeted Li2Zn0.5PS4 and

Li1.5Zn0.75PS4 were successfully synthesized. Their structures were elucidated via refinement

of neutron and synchrotron XRD data.
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The obtained phases, Li1.7Zn0.65PS4 and Li1.2Zn0.9PS4 respectively, demonstrated ionic

conductivities of 1.30×10−4 S·cm−1 and 1.65×10−5 S·cm−1. These values are more than four

orders of magnitude higher compared to that of the parent LiZnPS4, owing to occupation of

the 2d interstitial site in the lattice as predicted by theory. This represents a good demon-

stration of how information from ab initio molecular dynamics can augment experiment,

similar to Li10GeP2S12, where early reports using powder diffraction alone could not locate

a lithium site important to 3D mobility, but a combination of theory and single crystal

diffraction enabled full structure resolution.24,99–101 While the experimental lithium ion

conductivities were lower than predicted, this can be ascribed to a combination of not fully

accessing the targeted lithium defect concentrations (owing to the limitations of kinetics

and thermodynamics), and the accompanying reality of the presence of amorphous and

potentially poorly conductive materials. The fact that solid solutions close to the predicted

superionic phases can be synthesized is encouraging, however, and suggests that alternate

highly non-equilibrium synthetic routes may be required to access pure phases. This should

provide further inspiration for future endeavors. Moreover, LZPS compositions at high

lithium contents – Li2.5Zn0.25PS4 - exhibit conductivities up to 8×10−4 S·cm−1, showing

that a glassy matrix can play a key role in governing fast lithium ion conduction.

4.4 Experimental Methods

4.4.1 Material synthesis and characterization

ZnS nanoparticles were prepared by literature methods102 and used as a precursor along

with Li2S and P2S5. Starting materials of Li2S (Sigma Aldrich, 99.98%), P2S5 (Sigma

Aldrich, 99%) and ZnS were ground together in a mortar and pestle inside an Ar filled

glovebox. Amorphous precursors of the Li1+2xZn1-xPS4 compositions were prepared by

mechanochemical synthesis. The powder was placed in 45 mL Si3N4 jars with Si3N4 balls

and milled for 10 hours using a high energy planetary ball mill (Fritsch PULVERISETTE

7 Premium). The samples (200 mg) were cold pressed at 2 metric tons into 10-13 mm
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diameter pellets. These amorphous materials were crystallized via heat-treatment under

an Ar atmosphere. Samples with the highest crystallinity were synthesized by placing the

sample directly in the furnace at a temperature of 360 - 400◦C for 0.5 h in a glassy carbon

crucible, and cooled to room temperature.

4.4.2 Synchrotron X-ray and neutron diffraction of solid elec-

trolytes

The synchrotron XRD samples were loaded into 1.5 mm diameter Kapton capillaries and

sealed with epoxy inside an Ar filled glovebox. The samples were measured on 11-BM at

the Advanced Photon Source at the Argonne National Laboratory. TOF neutron diffraction

samples were loaded into a vanadium can sealed with a copper gasket and aluminum lid.

Samples were collected on POWGEN at the Spallation Neutron Source (SNS) in Oak Ridge

National Laboratory. The resulting diffraction patterns were refined using TOPAS version

6 (Bruker - AXS). The LiZnPS4 structure in the space group I4 by Mewis et al. was used

as a starting point for refinement.91

4.4.3 Raman spectroscopy of solid electrolytes

Samples were pelletized and then placed on a microscope slide, covered by a glass coverslip,

and sealed with epoxy. Raman spectra of the materials were obtained using a 514 nm laser

(Raman HORIBA HR800).

4.4.4 Conductivity measurements of solid electrolytes

Ionic conductivity was measured using AC impedance spectroscopy. The powder was pel-

letized in a 10 mm diameter custom-made Swagelok cell. The pellet was placed in between

two In foils in order to maintain a good interface at varying temperatures. The cell was

placed in an ITS oven (Bio-Logic) connected to a MTZ-35 impedance analyzer (Bio-Logic),

controlled by the software MT-LAB (Bio-Logic). The impedance was measured from 35

MHz to 1 Hz at temperatures ranging from -25◦C to 60◦C.
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4.4.5 Degree of crystallinity measurements

The laboratory X-ray powder diffraction data was collected on a Panalytical Empyrean

diffractometer outfitted with a PIXcel two-dimensional detector using Cu-Kα radiation.

The ground samples were loaded and sealed in a 0.3 mm diameter quartz capillary. Patterns

were recorded in Debye-Scherrer geometry using a parabolic X-ray mirror in the incident

beam. For the calculations of degree of crystallinity, samples were ground together with

approximately 10-11 weight percent of Si, which was used as an internal standard in the

Rietveld refinements.
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Chapter 5

A Lithium Oxythioborosilicate Solid

Electrolyte Glass with Superionic

Conductivity

This section is reproduced in part with permission from John Wiley & Sons, Inc.

publishing:

Kavish Kaup, J. David Bazak, Shahrzad Hosseini Vajargah, Xiaohan Wu, Joern Kulisch,

Gillian R. Goward, and Linda F. Nazar, Advanced Energy Materials, 2020, 10, 8, 1902783

(DOI: 10.1002/aenm.201902783)

* Dr. David Bazak and Prof. Gillian Goward carried out the MAS-NMR experiments at

McMaster University. The interpretation and analysis of the data was done by myself with

assistance from Dr. Bazak.

* Dr. Shahrzad Vajargah carried out the STEM and EELS measurements.

* Dr. Xiaohan Wu and Dr. Joern Kulisch provided elemental analysis of the glass sample.
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5.1 Introduction

Oxides and sulfides based materials are amongst the most extensively studied groups of

solid electrolytes. Garnet-type oxides,22,103 phosphates such as lithium aluminum titanium

phosphates, and anti-perovskites104 typically lead to better chemical and electrochemical sta-

bility. In contrast, thiophosphates105–107 usually exhibit higher ionic conductivity - ranging

up to 10−2 S·cm−1 - coupled with easier processability, but a relatively narrow electrochemi-

cal stability window.29 While the PS4
3- anion in thiophosphates are reduced in contact with

Li metal, this reaction can fortuitously form a passivating layer by in-situ redox chemistry

at the interface.108 However, a study of crystalline materials including β-Li3PS4 and the

garnet LLZO showed they did not prevent Li dendrite penetration due to the presence

of micro-cracks, whereas only a defect-free surface of glassy Li2S-P2S5 exhibited Li depo-

sition without Li metal penetration into the solid electrolyte at current densities up to

5 mA·cm−2.34 There is thus strong motivation to develop amorphous monolithic glasses

with minimal surface defects that can also combine the good chemical and electrochemical

stability of oxides with the soft nature of sulfides.

Glasses have long been investigated as solid state electrolytes. LiPON is probably the

best known glassy SE which has been widely studied and utilized in thin-film batteries.15

While its very low electronic conductivity has been proposed to be critical in inhibiting den-

drite penetration at high current densities,109 its low ionic conductivity (σi) of∼10−6 S·cm−1

limits its use to thin-film cells, not bulk solid state batteries.110 Pivotal efforts have been

made to transform garnet oxides into an amorphous glass via sputtering, but unfortunately

the resultant ionic conductivity (∼10−8 S·cm−1) again limits this approach to thin-film

batteries, at least to date.111 Generally speaking, oxide-based glasses exhibit rather low

conductivity but better stability, whereas principally, only sulfide-based amorphous mate-

rials have achieved conductivities greater than 10−4 S·cm−1, allowing them to be used in

bulk-type cells. For example, non-annealed glassy Li2S-P2S5
96 and Li2S-P2S5-LiI112 exhibit

conductivities of 2.8×10−4 and 5.6× 10−4 S·cm−1, respectively, while 10−3 S·cm−1 is gen-
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erally considered a benchmark for practical thick-electrode cells.113 While sulfide glasses

exhibit favourable mechanical properties and enable easy low-temperature processability,

they suffer from moisture stability.114 Oxysulfide glasses have been explored as a middle-

ground to provide an acceptable compromise, but to date, only very limited amounts of

oxygen have been incorporated in the glasses – for example as lithium ortho-oxosalts (e.g.

4-5 mole % Li4SiO4, Li3PO4)115,116 - without incurring a penalty in conductivity. Typically,

amorphous glasses contain Li2S in addition to a network glass former and modifier such

as P2S5, SiS2, or GeS2,114,117 and lithium halide salts (e.g. LiX - X = Cl, Br, I)118 to in-

crease the lithium concentration. B2S3 is also a glass former that was explored 20-30 years

ago,119–121 but has since received little attention. Most glasses are prepared by ball-milling

(which is also utilised for Li2S-P2S5 glass-ceramics) that can present limitations in terms

of scale-up. In vitreous glasses which can be synthesized directly via a melt, the absence

of any crystalline conduction pathways or particulate interfaces leads to isotropic ion mo-

bility without any grain boundary resistance. The absence of grain boundaries should (in

principle) disfavor dendrite formation, and dense films can be formed by a melt-quench

approach.

Here, the synthesis of the first quaternary glass compositions that achieve lithium ion

conductivities up to 2×10−3 S·cm−1 is reported, meeting the target for utilization in a

bulk-type solid state cell. These lithium oxythioborate halide glasses (Li2S – B2S3 – SiO2 –

LiI, or “LIBOSS”) are obtained directly from the melt, without ball-milling. Moreover, as a

result of SiO2 content as high as 50 mole%, they exhibit low H2S evolution upon exposure

to moisture under ambient conditions. The incorporation of the iodide provides a favorable

interface with Li metal as demonstrated by stable stripping/plating in a symmetric cell, with

polarization about 10 fold lower than β-Li3PS4. Solid-state MAS NMR is utilized to correlate

the structural entities in the glass with the significant changes in ionic conductivity as a

function of SiO2 content. The incorporation of silica re-structures the thioborate network to

enable much greater dissolution of LiI within the glass matrix, which increases both Li-ion

concentration and mobility. These properties directly translate to excellent cell performance
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of an all-solid-state battery at room temperature that exhibits stable cycling for over 130

cycles at room temperature with > 99.9% capacity retention, and close to 100% Coulombic

efficiency.

The quaternary compositions Li2S – B2S3 – SiO2 – LiI can be described by the general

phase diagram shown in Figure 5.1. A wide range of compositions was examined to screen

for glass forming ability coupled with good ion conductivity. The generalized formula (Li2S,

B2S3, and LiI sum to 1):

aLi2S + yB2S3 + zLiI + xSiO2 → Li2a+zB2ySixO2xSa+3y; a+ y + z = 1; 0 ≤ x ≤ 1

provides a description of a single horizontal slice in the quaternary phase diagram, as shown

in Figure 5.1 (right). A line on the quaternary phase diagram in Figure 5.1 was explored

using 30Li2S-25B2S3-45LiI with variable SiO2 content (x), namely 30Li2S-25B2S3-45LiI-

xSiO2 (Li1.05B0.5SixO2xS1.05I0.45). These compositions were found to be on the cusp of the

glass forming region. The compositions in mole % can also be normalized to compare Li,

O and S content (where the precursors sum to 1):

aLi2S + yB2S3 + zLiI + xSiO2 → Li2a+zB2ySixO2xSa+3yIz; a+ y + z + x = 1

Figure 5.1: Schematic of the quaternary phase diagram (left) with horizontal slices indi-
cating the conversion from the normalized to a general representation (right).
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5.2 Results and Discussion

5.2.1 Glass Forming Region and Conductivity

Glass precursors described above (Li2S, B2S3, LiI, and SiO2) were mixed in the targetted

stoichiometric ratio, and melted in a crucible at 800◦C. As energy-intensive ball-milling is

not required, melt processing achieves higher yields because all the material can be easily

removed from the container. The product was extracted, ground and subjected to X-ray

diffraction (XRD) analysis to map out the glass forming domain of the phase diagram.

The patterns shown in Figure 5.2 indicate that the x = 0 material, 30Li2S-25B2S3-45LiI,

contains a significant contribution of crystalline LiI (∼28 wt% based on standard addition

methods, see Figure C.1 in Appendix C for the fits) despite this composition ostensibly

being within the reported glass forming region (although no diffraction data were provided in

the report120–122). Most importantly, the addition of even a small fraction of SiO2 (x = 0.125)

dissolves most of the LiI into the glass owing to its strong network-forming ability. The small

remaining reflections in the XRD pattern suggest that this composition is near the cusp of

the fully amorphous glass forming domain. Between SiO2 fractions of x = 0.25 and up to

x = 0.75, all of the LiI is dissolved into the matrix evidenced by the lack of (or extremely

weak) reflections in the XRD pattern. Analysis of the glass at x = 0.25 by inductively

coupled plasma methods confirmed a composition of Li0.85B0.39Si0.17O0.41S0.76I0.43), very

close to that targeted (Li0.84B0.40Si0.2O0.4S0.84I0.36; see Table 5.1 for details). The strong

modification of the thioborate network by silica that enables the high fraction of dissolution

of LiI may be explained by the formation of tetrahedral SiS4 moities (as observed by 29Si

NMR, see below), which act as “glass-expanders” to create additional free volume that

accommodates the LiI. This is discussed in detail later in the section on local structure.

Beyond a critical concentration (x = 0.75), however, the solubility limit of LiI (and SiO2)

is reached and their exsolvation is observed as minority crystalline phases. Outside of the

glass region from 0.25 ≤ x ≤ 0.75, the material can be regarded as a composite or glass

92



ceramic. The incorporation of SiO2 also results in materials that exhibit suitable moisture

stability (see below), which is a common drawback of pure sulfide-based solid electrolytes,

whether they are glasses or ceramics.

Figure 5.2: Compositions Li1.05B0.5SixO2xS1.05I0.45 where 0≤x≤1 A) XRD patterns indi-
cating the glass forming region. Peaks corresponding to LiI and SiO2 are shown as labeled.
B) Room temperature conductivity, activation energy, and pre-exponential factor.

Table 5.1: Inductively coupled plasma elemental analysis on LIBOSS x = 0.25 composition.

Element Mass (g/100 g)
Iodine 54
Sulfur 24.4
Boron 4.2

Lithium 5.9
Silicon 4.9

The trend in ionic conductivity determined from electrochemical impedance spectroscopy

(EIS) is displayed in Figure 5.2B, and the compositions and their respective conductivities

are summarized in Table 5.2 (see Figure 5.3 for corresponding Nyquist plots). No semi-

circles are observed in the Nyquist plots due to the low resistance of the electrolytes and
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instrument limited frequency range of the measurements. Thus, a linear fit of the diffusive

tail at low frequencies was performed to determine the total resistance (intersection with

the x-axis) and subsequently used to calculate the ionic conductivity. Only a small fraction

of SiO2 is sufficient to increase the lithium ion conductivity from 5×10−4 S·cm−1 (x = 0)

to 1.6×10−3 S·cm−1 (x = 0.125). An optimal and quadrupled (with respect to x = 0) value

of 2.1×10−3 S·cm−1 is reached at a silica content of x = 0.25 (“LIBOSS-25”) where no

features are visible in the XRD pattern. Although nanodomains of LiI may still exist, these

would be below the scattering length that diffraction is able to probe (ca. 20 nm).

Table 5.2: Summary of room temperature conductivity and activation energy for the
compositions Li1.05B0.5SixO2xS1.05I0.45 for 0≤x≤1.

Composition (Generalized)
SiO2

(x-value)
Composition (Normalized)

Room Temp.
Conductivity

(S·cm-1)

Activation
Energy (eV)

30Li2S-25B2S3-45LiI-12.5SiO2 0.125 Li0.93B0.44Si0.11O0.22S0.93I0.4 1.6×10−3

30Li2S-25B2S3-45LiI-25SiO2 0.25 Li0.84B0.40Si0.2O0.4S0.84I0.36 2.1×10−3 0.33
30Li2S-25B2S3-45LiI-37.5SiO2 0.375 Li0.76B0.36Si0.27O0.55S0.76I0.33 1.4×10−3

30Li2S-25B2S3-45LiI-50SiO2 0.5 Li0.70B0.33Si0.33O0.67S0.7I0.3 1.0×10−3 0.35
30Li2S-25B2S3-45LiI-62.5SiO2 0.625 Li0.65B0.31Si0.38O0.77S0.65I0.28 9.2×10−4

30Li2S-25B2S3-45LiI-75SiO2 0.75 Li0.60B0.29Si0.43O0.86S0.6I0.26 9.4×10−4 0.35
30Li2S-25B2S3-45LiI-82.5SiO2 0.825 Li0.56B0.27Si0.47O0.93S0.56I0.24 4.3×10−4

30Li2S-25B2S3-45LiI-100SiO2 1.0 Li0.53B0.25Si0.50OS0.53I0.23 1.8×10−4 0.36

In order to verify that ionic conduction is dominant, DC polarization measurements

were performed on this composition, determining a low electronic conductivity on the

order of 10−9 S·cm−1 (see Figure 5.4 for representative I-V curves). Scanning electron

microscopy (SEM) images and their respective energy dispersive X-ray (EDX) analysis

(Figure 5.5), and scanning transmission electron microscopy (STEM) analysis with the

accompanying electron energy loss spectra (EELS) (Figure 5.6), indicate that LIBOSS-25

possesses uniform elemental homogeneity, at least on the submicron scale.

As the silica content increases above x = 0.25 the ionic conductivity decreases, but mi-

nority crystalline phases are significantly less than what is observed even for the x = 0.125

composition. A conductivity of 9×10−4 S·cm−1 is still maintained up to x = 0.75. Beyond

x = 0.75, crystalline SiO2 and LiI are observed in the XRD patterns, signalling the limit
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Figure 5.3: Nyquist plots of glass composition x = 0, 0.25, 0.5, 0.75, and 1.0 measured using
EIS (100 mV, 1 MHz to 100 mHz) in a stainless-steel/SE/stainless-steel cell configuration.

Figure 5.4: A) DC polarization curves for V = 125, 250, 500 and 750 mV and B) I-V
curve for the determination of the electronic conductivity for the x = 0.25 composition at
room temperature.

of SiO2 solubility in the 30Li2S-25B2S3-45LiI-xSiO2 compositional range. At x = 1 a drop

in conductivity to 1.8×10−4 S·cm−1 occurs, in part owing to the lower Li+ ion concen-

tration/unit volume. Notably, the glass compositions from 0.25 ≤ x ≤ 0.75 encompass

very high oxygen: sulfur ratios - more than to 1:1 - yet still maintain conductivity of 10−3

S·cm−1. Typically, oxygen substitution in sulfides decreases the ionic conductivity quite
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Figure 5.5: (A) SEM image of a glass particle, (B) corresponding EDX analysis, and
(C) elemental mapping showing homogenous distribution of elements through the glassy
particle.

Figure 5.6: (A) STEM images and corresponding EDX, and (B) STEM-EELS indicates
presence of boron through the particle with the motifs indicated.

significantly owing to stronger electrostatic attraction of the Li ions to the less polarizable

O2− anions. Most prior reports of oxygen substitution in sulfide glass, glass ceramic, and

crystalline materials have reported low O:S ratios of ∼1:5 to maintain conductivity of this

order of magnitude.115,116 In principle, more oxygen can be incorporated into a sulfide glass

in comparison to a crystalline material owing to the large difference in size between the
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two chalcogenide anions (ionic radius of 1.4 Å for O2− and 1.8 Å for S2−), and the rigid

structural requirements of a crystalline lattice. One of the highest oxygen contents in a

crystalline sulfide that has been reported is for Li9.42Si1.02P2.1S9.96O2.04, that exhibits a

conductivity of 3.2×10−4 S·cm−1.123 In a glass, one is also limited by the solubility of the

oxide, but the constraints are fewer.

The temperature dependence of the ionic conductivity for all the compositions was

examined and found to obey the Arrhenius law of the form σ = σo
T
e−

Ea
kT in the investigated

temperature range (see Figure 5.7 for Arrhenius and Nyquist plots). Despite the wide

frequency range used (10 MHz to 100 mHz), circuit fitting of the Nyquist plots were

complicated due to inductance effects at high frequency and some additional semicircles,

which is attributed to multiple secondary phases (as seen in the XRD patterns for high SiO2

contents). There may also be an additional interface present between the solid electrolyte

and In foil, as seen by the emergence of a low-frequency semicircle before the diffusive tail.

Figure 5.2B shows there is no clear dependence of the activation energy on the oxygen

content in the halosulfide glass. Even at the x = 0.5 composition where the S:O ratio is

approximately 1:1, the activation energy (0.35 eV) is the same as x = 0 (see Table 5.2).

There is only a very weak correlation between activation energy and conductivity unlike

that observed for most ion conductors.41 The prefactor σo of the Arrhenius equation can

be described as:

σo =
zn(Ze)2

kB
e

∆Sm
kB a2

oνo

where σo is composed of the Boltzmann constant kB, a geometrical factor z, the density

of mobile charge carriers n, the charge of the ions Ze, the entropy of migration ∆Sm, the

jump distance ao, and the jump frequency νo. In this case, the activation energy is also

not correlated with the decrease in the prefactor in the glass regime from 0.25≤x≤0.75, as

is the case for fast-ion conductors that follow the Meyer-Neldel rule,41,124 although such a

relationship may be obscured by the magnitude of the error bars on Ea and the presence

of crystalline precipitates in some of the glass compositions. In summary, the increase in
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conductivity from x = 0 to 0.25 is explained by the increase in density of Li-ion carriers as

more LiI is solubilized into the glass matrix; in turn, the subsequent decrease in conductivity

and prefactor (x>0.25) can be ascribed to a combination of decrease in the carrier density

(n) and the jump frequency, νo. The composition at x = 0.25 represents an optimum.

Figure 5.7: A) Arrhenius plots and B-F) corresponding Nyquist plots (10 MHz to 100 mHz)
for compositions Li1.05B0.5SixO2xS1.05I0.45 where 0 ≤ x ≤ 1 in In/SE/In cell configuration.
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5.2.2 Thermal Behavior

The thermal stability of the glass can be characterized by the softening (glass transition)

temperature (Tg) and the stability against crystallization, which is measured by the temper-

ature difference of the onset of crystallization (Tx) and Tg. Differential scanning calorimetry

(DSC) studies of the compositions in Figure 5.8 show that for x = 0, the Tg is observed

at 267◦C, with a subsequent Tx at 272◦C. This crystallization peak corresponds to LiI

crystallization, as confirmed by XRD measurements on samples annealed just above Tx. A

large endothermic peak corresponding to melting (Tl) occurs at 374◦C. The origin of this

melting is unknown but may be the melting of mixed LiI with hydrated LiI. LiI and its

hydrates have been shown to have congruent melting points.125

In the case of the x = 0.25 composition, a very broad exotherm (Tx = 330◦C) is present

after the glass transition temperature, which appear a lot sharper in other compositions.

Subsequent annealing at 375◦C, after the exotherm, results in exsolvation of LiI from the

amorphous matrix as in the case for the x = 0 composition. The various Tl’s seen in the

DSC curves do not correspond to the melting of the glass itself but are a result of the

melting of the LiI (with a slight trace of moisture picked up from the N2 flow, that slightly

lowers the melt temperature as it is a function of hydrate content), which was previously

recrystallized from the glass.

Upon incorporation of SiO2 into the network, there is only a small increase in Tg of about

30◦C. The value of Tg, 300 ◦C, is only a little higher than that of the classic thiophosphate

glass ion conductor, 0.30P2S5-0.70Li2S (212 ◦C).33 The fact that there is a linear correlation

between the softening temperature and the elastic (Young’s) modulus126 is in accord with

the observations here that both the thiophosphate and these oxythioborate glasses are

easily pelletized and relatively ductile. Both Tx and Tl are increased by about 60 ◦C, and

the thermal stability of each composition is summarized in Table 5.3. In effect, silica

incorporation into the glass increases the thermal stability parameter, ∆Tx (Tx-Tg) from

5 (at x = 0) to 36 (at x = 0.5), implying that the modified glass has greater stability with
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Figure 5.8: A) Differential scanning calorimetry curves of x = 0, 0.25, 0.375 and 0.5
compositions under a N2 flow of 50 mL/min; Tg = glass transition temperature; Tx = onset
of LiI crystallisation; Tl = melting of LiI; B) close-up of region where Tg occurs – this
is measured as the highest slope in the drop of the DSC baseline before the exothermic
crystallization peak.

respect to the crystallization of its vitreous structure.

Table 5.3: Summary of Tg, Tx, Tl, and calculated thermal stability parameters for
Li1.05B0.5SixO2xS1.05I0.45.

Composn. (x)
Glass Transition

(Tg, ◦C)
Crystallization

(Tx, ◦C)
Melting
(Tl,

◦C)
Thermal Stability
(∆Tx = Tx-Tg)

0 267 272 374 5
0.25 307 330 430 23
0.375 306 341 428 35
0.5 299 335 429 36

5.2.3 Air Stability

The incorporation of oxygen into the glass matrix also significantly improves stability to

hydrolysis in moist air that produces H2S. Figure 5.9 shows the results of monitoring H2S

evolution from pelletized samples of two glass compositions (x = 0.25; 0.5) subjected to
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ambient air exposure over the period of 3 hours (relative humidity; RH ∼ 30-35%).

Figure 5.9: H2S evolution from pelletized β-Li3PS4, Li7P3S11, LIBOSS (x = 0.25), and
LIBOSS (x = 0.5) upon exposure to ambient air.

The results are compared with those of two other well very known fast-ion conductors,

Li7P3S11 and β-Li3PS4. The latter, with an average conductivity of σi = 2×10−4 S·cm−1, was

prepared via a solution route because the β-polymorph is not stable at room temperature.53

It showed no H2S evolution, likely due to residual organic solvent in the material arising from

its low processing temperatures that aid in stabilizing the material. As anticipated, Li7P3S11

exhibits poor stability, showing rapid H2S evolution that reached more than 200 ppm after

100 minutes. At this point, the experiment was curtailed because the levels surpassed the

limits of the detector. In contrast, the two glass compositions were much more stable to

moisture. H2S evolution from the more oxygen-rich glass (x = 0.5) was negligible, and

comparable to nanoporous β-Li3PS4. The glass with the lower oxygen content (LIBOSS-25)

exhibited slightly higher H2S evolution, but this was relatively stable - unlike Li7P3S11 - and
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even decreased over the monitoring duration possibly due to the formation of a passivating

layer on the surface. Since lithium-ion batteries are processed under dry-room conditions

with significantly lower moisture (typically < 1% relative humidity), these results obtained

under more extreme conditions indicate that by tuning the SiO2 content, the thioborosilicate

glasses provide an acceptable middle ground for moisture sensitivity.

5.2.4 Local Structure

A combination of 11B, 29Si and 7Li fast spinning MAS NMR, and Raman spectroscopies

described below, conducted on three compositions (x = 0, 0.25, 0.5) reveal that addition of

SiO2 results in partial fragmentation of the Li-B-S network when it is added as a secondary

glass former to the Li2S-B2S3-LiI matrix.

The high-field, fast MAS 11B NMR spectra reveal a multitude of peaks that can be

assigned to specific moieties based on known assignments in the literature,127,128 as depicted

in Figure 5.10A. Boron in a tetrahedral sulfur environment typically appears at a range

of chemical shifts from -3 to 7 ppm, and the presence of bridging S at the apices shifts the

signal to lower frequency.129 Accordingly for the x = 0 composition, the intense symmetric

peak at -2.9 ppm is assigned to BS4 with two to four BS (“bridging sulfur”) at the apices,

while the slightly higher frequency neighbouring peak at -0.5 ppm corresponds to either

isolated BS4 tetrahedra or BS4 with one bridging sulfur. As more SiO2 is added to the

matrix (x = 0.25 and 0.5), the relative intensities of the two peaks swap. Thus, the BS4

tetrahedra play less of a bridging role when SiO2 is incorporated, favouring the formation

of more isolated or network terminating (one BS) tetrahedra. The increase in the number

of non-bridging sulfur (NBS) moieties generates smaller inorganic units, and increases the

solubility of LiI in the matrix (hence increasing the Li ion carrier density in the glass).

Boron in a trigonal environment appear at higher chemical shifts compared to boron in

a tetrahedral environment. The chenmical shift can have a large spread, depending on

the anion around the central boron and whether the anions are bridging. Pure thioborate

trigonal units are typically found around 60 ppm, while pure borate units can appear at
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5-15 ppm.127 Peaks of mixed oxysulfide trigonal boron units are spread within this range.

The ratio of tetrahedral B to trigonal B units is high in the absence of SiO2 addition,

while the fraction of mixed oxy-sulfide trigonal boron units (BOS2/BO2S) increases with

SiO2 content. There is a preference for the BO3 moiety as boron has a stronger affinity for

oxygen compared to sulfur. When the SiO2 content is high (x = 0.5), isolated BO3 units

(at 15 ppm), and BO3 groups with multiple bridging oxygen anions (at 11 ppm) become

more prominent.

The 29Si NMR (Figure 5.10B) spectra show that the ratio of the SiS4 (7 ppm) signal to

that of the SiOS3 (-4.5 ppm)115,130,131 slightly increases for x = 0.5 compared to x = 0.25.

Therefore, by increasing the SiO2 content in the overall composition, the fraction of SiS4

structural units in the glass increases relative to the SiOS3 units. While this may seem

counterintuitive, a more negative ∆G of formation for B2O3 vs SiO2 again suggests that

because boron has a stronger affinity for oxygen compared to sulfur, the sulfur preferentially

bonds with silicon. This is in accord with the increase in the trigonal boron units (B(S/O)3)

as a function of higher oxygen content observed in the 11B spectra, which are predominantly

oxygen based. The conversion of a glass with predominantly BS4 units at x = 0 to a

significant fraction of larger SiS4 units at x = 0.5 (a 1:1 ratio, based on the normalized

composition, Table 5.2) is anticipated to expand the free volume of the glass. This is

proposed to be responsible for the dissolution of the significant concentrations of LiI. The

results from the 29Si NMR and 11B spectra also correlate well with the results of Raman

spectroscopy, where a variety of tetrahedral silicon and both trigonal and tetrahedral boron

species are found to be present in the glass.

Incorporation of SiO2 into the ternary Li2S-B2S3-LiI composition shows a significant

change in the Raman spectra with as little as x = 0.25 SiO2 in LIBOSS-25 (Figure 5.11).

The Raman peak widths are broadened dramatically with the emergence of overlapping

peaks around 375 cm−1. The broadening is indicative of the amorphous nature of the glass.

The broad nature and overlap of these Si and B based peaks make the peak assignments

difficult. Nonetheless, from the apparent peak positions, the possible speciation can be
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Figure 5.10: MAS NMR of the compositions LiB0.5SixO2xSI0.5 for x = 0 (blue), 0.25
(orange) and 0.5 (green); A) 11B with an inset showing the trigonal peaks from 5 to 75
ppm, the entire spectral width can be found in Figure C.2; B) 29Si; C) 7Li. The asterisk
indicates spinning sidebands.
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postulated and correlated with the solid-state NMR spectra. The intensity of several peaks

corresponding to the boron network decreases with increasing SiO2 content, indicating

the transition to a silicon-based glass network structure. For example, the peaks at 296

and 315 cm−1 (unassigned) rapidly disappear with increasing x, as well as the peak at

448 cm−1 (assigned to BS3 with three BS). At higher wavenumbers, the peaks at 687 cm−1

(unassigned), 743 cm−1 (BS4 with four BS), 762 cm−1 (BO4 with zero or one BO), and

790 cm−1 (BS3 with one BS) display similar behaviour with a drop in intensity as SiO2 is

incorporated into the glass.

The broad peak around 375 cm−1 slowly increases in intensity as x increases and slightly

shifts to larger wavenumber (380 cm−1 at x = 0.5). This band can be considered as consisting

of two to three overlapping peaks at approximately 375, 400, and 405 cm−1. These features

may correspond to the symmetric vibration of the shared tetrahedral (bi-tetrahedral) motifs

which are indicative of chain-like units in the glass.132,133 An alternative description is that

assignment of the peak at 375 cm−1 is to silicon tetrahedra with one or two bridging sulfurs

(BS) while the band at 405 cm−1 is ascribed to zero BS (i.e. tetrahedral links, terminal

chain ends and free tetrahedra in the glass). Thus, the slight intensity increase of these

overlapping bands around 375 cm−1 and 405 cm−1 bands is proposed to be the result of

the creation of tetrahedral silicon with either sulfur bridges.127,134

Additional peaks associated with the B and Si network appear in the 500-700 cm−1

range which are assigned to BS3 units with up to two bridging sulfur (498 cm−1), or BO3

units with up to three BO. Two peaks that correspond to BS3 with two BS may be seen

at 437 cm−1 and 498 cm−1, with the latter also containing some overlapping contribution

from bridging BS3 and BO3 units, which may be indicative of mixed oxysulfide boron units.

The small peak at 435 cm−1 also has an overlapping contribution related to the I− content

in the glass as this peak is present in the x = 0 composition and is constant with increasing

SiO2 content. Although this feature is not well understood, it has previously been explained

on the basis that iodine does not modify the structure of the glass but the large negatively

charged I− anions may have a repulsive interaction with non-bridging sulfur.135 Finally, the
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low-frequency broad signals around 213 cm−1 for the x = 0 composition may correspond

to Li cation frequency modes with non-bridging sulfur (NBS) in the glass (e.g. Li+ −S-

B=).127,135 With increasing x (SiO2 content) several broad peaks likely overlap (125-215

cm−1) that correspond to lithium interaction with silicon and boron NBS in addition to

NBO.

Figure 5.11: Raman spectra of the compositions Li1.05B0.5SixO2xS1.05I0.45. The samples
were measured up to 1500 cm−1 but there are no peaks observed above 900 cm−1.

The 7Li NMR (Figure 5.10C) spectra exhibit two major features in all cases. The peak

at 4.5 ppm is assigned to LiI,136 and for the composition without any SiO2, its peak intensity

is high. This correlates with the observation of about 28 wt% LiI in the XRD pattern for

the x = 0 composition (Figure 5.2A). The 7Li NMR peak near 0 ppm corresponds to Li in

an environment next to either non-bridging sulfur (x = 0) or a mixture of sulfur/oxygen

(x = 0.25, 0.5).137 It shifts slightly to lower frequency with increasing oxygen content as

expected for a more “ionic” interaction between the Li and the glass network. At x > 0, as

the LiI becomes solubilised, a shoulder on this peak appears at -0.5 ppm that may reflect

Li in a slightly more ionic environment (i.e., in the vicinity of I− within the glass matrix).
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The 0 ppm peak undergoes very substantial motional narrowing with the addition of SiO2,

indicating a dramatic jump in the local Li-ion mobility. Note that at x = 0.5, the small

decrease in line width suggests more motional narrowing of the 7Li MAS signal, despite the

lower ionic conductivity of this composition. Of course, the Li-ion carrier density is lower

for the more SiO2-rich glass, and NMR is a local probe of Li-ion hopping, not of long-range

conductivity. Local phase segregation may also occur within the x = 0.5 glass. For x = 0.25

and 0.5, even though LiI is not evident in the XRD patterns, a small peak is still present

in the NMR spectra, which exhibits a larger ratio relative to the major peak at 0 ppm

for x = 0.5. This may indicate the increasing presence of nano-aggregates of LiI, whose

domains are below the scattering length that can be probed by XRD but are nonetheless

present in the glass, as postulated by Vinatier et al.137 Such nano-aggregates would hinder

the ion conduction on a macroscopic scale, irrespective of the local lithium ion mobility.137

Overall, the effect on the local structure by adding SiO2 to the matrix is to increase

the fraction of non-bridging sulfur/oxygen (NBS/NBO) anions relative to their bridging

sulfur/oxygen (BS/BO) counterparts, resulting in smaller inorganic-polymer units. These

smaller inorganic units allow for a greater degree of freedom of the glass network, and more

terminal chalcogenide anions, that in turn, likely generates a higher fraction of mobile Li+

ions. Beyond x = 0.25, the observed decrease in Li-ion conductivity is correlated to the

formation of structural units with non-bridging sulfur/oxygen. The ionic character of the

structural entities likely dominates, resulting in greater electrostatic attraction of the Li

ions to their sites near the non-bridging chalcogen, and reducing their mobility. This would

give rise to a decrease in the jump frequency (see above). While resolving the structure

of amorphous materials is a longstanding challenge, the combination of NMR and Raman

spectroscopies is a very useful local probe. Techniques such as ab initio molecular dynamics

coupled with neutron pair distribution function (PDF) analysis have also proven to be

powerful tools for elucidation of the local structure in LiPON.138 These methods, along

with detailed NMR studies of Li diffusion will be employed in subsequent studies to gain a

better understanding of ion conduction in these oxysulfide glasses.
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5.2.5 Electrochemical Studies

Interfacial reactivity of solid electrolytes with lithium metal is typically evaluated using

a combination of electrochemical impedance spectroscopy (EIS) in conjunction with gal-

vanostatic cycling measurements of symmetric Li|solid electrolyte|Li cells, as reported for

Nb-doped Li7La3Zr2O12 (LLZO) where the increase in impedance over time demonstrated

that Nb reduction occurs.139 Such studies of pressed pellets (ca. 0.12 mm thick) of LI-

BOSS-25 in symmetric Li|solid-electrolyte|Li cells were conducted here and compared to

nanoporous β-Li3PS4 as a electrolyte (Figure 5.12A).53 The cells were prepared and gal-

vanostatically cycled at a current density of 0.1 mA/cm2 to an areal capacity of 0.05 and

0.1 mAh/cm2, respectively. Simultaneously, the resistance of the cell was measured every

5 cycles using EIS, Figure 5.12B (see Figure 5.13 for the corresponding Nyquist plots).

The Nyquist plots for Li3PS4 (Figure 5.13A) show a typical spectra for a non-blocking

configuration, composed of semicircles with no linear diffusive tail at low frequencies. The

spectra for the LIBOSS cell (Figure 5.13B) show only the end of the semicircle due to the

low resistance of the electrolyte, and an additional feature at low frequencies that likely

corresponds to an interphase layer formed in contact with lithium metal upon cell assembly.

Figure 5.12: A) Galvanostatic cycling of Li symmetric cells run at 25◦C using β-Li3PS4

(red lines) and LIBOSS-25 glass (black lines) at 0.1 mA·cm-2 to a capacity of 0.05 and
0.1 mAh·cm-2, respectively. B) EIS measurements of the cell resistance change due to SEI
formation, monitored every 5 cycles at an applied voltage of 100 mV.
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Figure 5.13: Nyquist plots corresponding to lithium symmetric cells upon cycling of A)
β-Li3PS4 and B) LIBOSS-25. EIS was measured from 1 MHz to 100 mHz with an applied
voltage of 100 mV.

The LIBOSS glass exhibits stable cycling for 110 hours with one-tenth the polarization

voltage (10 mV) of β-Li3PS4 (100 mV), in large part owing to the much higher ionic

conductivity of the glass. The resistance of the β-Li3PS4 cell appears to fluctuate but

toward higher resistance over cycling, in good accord with findings reported elsewhere for

Li symmetric cells.53 This increasing resistance has been attributed to the formation of a

passivating interphase composed of Li2S and Li3P.140 Because of this, β-Li3PS4 is widely

regarded as one of the most stable solid-electrolytes with Li metal, by comparison to other

well-known materials.108,141,142 The stripping/plating performance of the LIBOSS glass is

markedly improved over the β-Li3PS4 cell that shows an increase in resistance over this

period (Figure 5.12B). This effect may stem from the incorporation of LiI, which has been

shown to have stabilizing effects vis a vis Li metal, whether incorporated into a glass such

as Li3PS4-LiI,113 or a crystalline material.143,144 Naturally, one cannot also expect an iodide-

containing material to be oxidatively stable to high potential; in this context, solid state

cells employing coated high voltage cathode materials, or dual solid electrolytes - one stable

at high potential and one stable at low potential - may be the most suitable option.145

A bulk-type all-solid-state cell was assembled using the x = 0.25 LIBOSS glass electrolyte.

The electrolyte layer was sandwiched between the anode and a TiS2 composite cathode (1:1

TiS2 and LIBOSS; this cell configuration is simply used to demonstrate the applicability
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of the electrolyte in a full cell, rather than to optimize a solid-state cell with high energy

density). Li-In was used as a test negative platform owing to its robustness to dendrite

formation over the long cycling duration, as non-fully densified glass pellets were utilized

as the electrolyte instead of a monolithic melt-cast glass. The cells were charged and

discharged at C/10 in the voltage range 0.9 to 2.4 V vs. Li-In (1.5 to 3 V vs. Li) at room

temperature (∼25◦C). Figure 5.14A shows that upon the first cycle charge at 2.7 V vs. Li,

a tiny irreversible capacity (6 mAh/g) is evident, which is attributed to initial electrolyte

oxidation at the cathode interface. The potential is similar to what has been observed in

thiophosphate-based electrolytes, where S2− undergoes oxidation.29,146

Figure 5.14: A) Charge–discharge curves of Li-In/LIBOSS/TiS2 all-solid-state cell cycled
at C/10 at 25◦C, and B) cycling performance of the cell at C/10 at 25◦C; C) rate capability
study; D) cycling data at 60◦C at a 1C rate.

This process is more clearly seen in the corresponding dQ/dV plots in Figure 5.15,

where the feature at 2.15 V vs. Li-In exhibits a rapid drop in intensity after the first

cycle and completely disappears by cycle 10, suggesting the formation of a stable cathode-

electrolyte interface. After the first cycle, the cell shows excellent cycling performance at

C/10, with virtually no capacity fade over three months of cycling. The cell maintains a

capacity of ∼239 mAh/g (TiS2 theoretical capacity: 240 mAh/g) for more than 130 cycles

with high coulombic efficiencies of 99.9% on average (Figure 5.14B). Rate capabilities on an

identical cell cycled within the same voltage range and at 25 ◦C are shown in Figure 5.14C.

Initially, the cell cycled at C/5 achieves a capacity of 213 mAh/g, which represents 90%
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Figure 5.15: dQ/dV plots for several charge-discharge cycles of Li-In/LIBOSS-25/TiS2

all-solid-state cell cycled at C/10 at 25°C.

capacity retention on doubling the current density. On subsequent increase of the current

density to a 1C rate, 75% of the capacity is retained and the capacity is fully recovered upon

returning to the initial C/5 rate. This performance augurs well for further development of

such glasses and their future implementation in high energy density solid state batteries.

5.3 Conclusions

In summary, a new class of vitreous lithium oxythioborate halides is reported, which are

prepared directly from a melt. This method improves scalability and (in principle), can

allow for roll-casting into vitreous sheets in the future if dry room conditions could be

employed. Contrary to the popular belief that oxygen doping reduces ionic conductivity in

sulfide-based materials due to the less polarizable anion sublattice, it is shown here that

fast ion conduction is possible even up to levels of 30-40 mole percent silica. These new

glasses exhibit ionic conductivities up to 2×10−3 S·cm−1, one of the highest for any known

lithium-ion conducting glasses. This is further coupled with improved moisture stability

with increasing SiO2 content, and in comparison with other well known solid state ion
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conductors. The origin of the rise in conductivity is elucidated by an understanding of the

structural units present in the amorphous matrix. A delicate balance is achieved between

the covalent network composed of BS/BO and the NBS/NBO units that are required for fast

ionic conduction. An optimized fraction of mobile lithium cations is achieved at the x = 0.25

composition due to the partial fragmentation of the glass chains. As initial proof-of-concept,

an all-solid-state battery with a TiS2 cathode and LIBOSS (x = 0.25) electrolyte shows

near theoretical capacity with extremely stable cycling for over 130 cycles. This promising

material class with its enhanced material properties make it a strong candidate for use in

all-solid-state lithium batteries. Furthermore, although a selected part of this quaternary

phase diagram is reported here, this concept can extend to a broader scope that includes

alternative halides and glass forming oxides, leading to a new avenue in the development

of solid electrolytes for all-solid-state batteries.

5.4 Experimental Methods

5.4.1 Synthesis

Stoichiometric masses of Li2S (Sigma Aldrich, 99.98%), 11B (Sigma Aldrich, 99%), S, LiI,

and SiO2 were ground together. As the glasses are sensitive to the LiI content and the

purity of the precursors. precursors were dried under vacuum before use. All handling of

powders was carried out in an Ar filled glovebox. The precursor mixture was pelletized and

supported in a glassy carbon crucible which was placed in a quartz tube. The quartz tubes

were sealed under vacuum and placed vertically in a furnace. The tube was heated up to

500◦C and held for 12 hours, then at 800◦C for 20 hours, and the melt was finally quenched

in ice water to obtain a glass. The final product was ground to a powder for processing as

a solid electrolyte, as the specialized facilities for melt casting a monolithic glass under a

moisture-free atmosphere were not available.

Nanoporous β-Li3PS4 was synthesized by the conventional procedure mixing Li2S and P2S5

in THF as reported by Liang et. al.53 Li7P3S11 glass-ceramic was synthesized by first mixing
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and grinding Li2S (Sigma Aldrich, 99.98%) and P2S5 (Sigma Aldrich, 99%) in stoichiometric

quantities. The precursor mixture was pelletized and supported in a glassy carbon crucible

which was placed in a quartz tube. The quartz tubes were sealed under vacuum and placed

vertically in a furnace. The tube was heated up to 750◦C and held for 10 hours, and the

melt was finally quenched in ice water to obtain a glass. The glass was then re-ground and

further heat-treated inside a furnace placed inside an argon-filled glovebox. The powder

was placed in an alumina crucible and heated at 335◦C for 30 minutes to crystallize the

material. Phase-pure Li7P3S11 was verified using X-ray diffraction.

5.4.2 X-ray Diffraction

XRD was conducted at room temperature on a PANalytical Empyrean diffractometer using

Cu-Kα radiation equipped with a PIXcel bidimensional detector with a Ni Kβ filter using

θ-θ Bragg-Brentano geometry. Powders were maintained under argon atmosphere using

a zero-background sample holder covered in Kapton film to avoid air exposure during

collection of the XRD pattern.

5.4.3 Weight Percent Measurements using Standard Addition

The ground samples were loaded and sealed in a 0.3 mm diameter quartz capillary. Patterns

were recorded in Debye-Scherrer geometry using a parabolic X-ray mirror in the incident

beam. For the calculations of the amount of crystalline LiI not dissolved in the glass, samples

were ground together with approximately 10 weight percent of Si, which was used as an

internal standard in the Rietveld refinements.

5.4.4 AC Impedance Spectroscopy

Bulk resistance of the samples was determined from electrochemical impedance spectroscopy

(EIS) with an amplitude of 100 mV in the frequency range 10 MHz to 100 mHz using a

Bio-logic MTZ-35 impedance analyzer (or 1 MHz to 100 mHz using a Bio-logic VMP-3).

The measurements were carried out in the temperature 25◦C to 80◦C. The powder was
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pelletized in a 10 mm diameter modified Swagelok cell. The electrolyte pellet (thickness of

1 to 2 mm for activation energy measurements) was sandwiched between indium foils in

order to obtain good contact at variable temperatures.

5.4.5 DC Polarization

The electronic conductivity was determined via DC polarization using a 10 mm diameter

modified Swagelok cell, where powder was pressed between two stainless steel pistons. A

voltage of 0.125, 0.25, 0.5, and 0.75 V was applied for 1 hour for each measurement.

5.4.6 Symmetric Cell Assembly and Cycling

Cells were assembled in a glovebox filled with an argon atmosphere. LIBOSS-25 and β-

Li3PS4 solid electrolyte was pressed in a 10 mm diameter PEEK cylinder to form a pellet of

thickness around 0.12 mm. Li metal foil (Sigma Aldrich) was pressed on either side and in

contact with the solid electrolyte. The cell was then sandwiched between two stainless steel

rods and held under pressure using a custom-made cell. The cell was tightened with a torque

wrench set at a pressure of 4 N·m. Galvanostatic cycling of the LIBOSS-25 and β-Li3PS4

cells was performed at 0.1 mA/cm2 to 0.1 mAh/cm2 and 0.05 mAh/cm2, respectively. Cells

were cycled at room temperature using a Bio-Logic VMP-3.

5.4.7 Full Cell Assembly and Battery Cycling

The composite cathode was prepared by mixing solid electrolyte (LIBOSS-25, x = 0.25) and

TiS2 (Sigma Aldrich, 99.9%, particle size 75 µm) in a 1:1 weight ratio with a mortar and

pestle. Cells were assembled in a glovebox filled with an argon atmosphere. The composite

cathode was used as the positive electrode, LIBOSS-25 as the solid electrolyte, and Li-In

alloy as the negative electrode. The positive electrode (8 mg; TiS2 content corresponding

to 5.13 mg·cm−2), and solid electrolyte (60 mg) were pressed in a 10 mm diameter PEEK

cylinder to form a bilayer pellet. The Li-In alloy was formed by pressing Li-foil with an In

foil in a 0.5 molar ratio, and placed in contact with the solid electrolyte. The cell was then
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sandwiched between two stainless steel rods and held under pressure using a custom-made

cell. The cell was allowed to rest for 8 hours before cycling in order to allow for pressure

relaxation of the cell, whose areal capacity was 1.2 mAh·cm−2. Galvanostatic cycling was

performed from 1.5 to 3.0 V vs. Li/Li+ (0.88 V to 2.38 V vs. In/LiIn) at a C-rate of C/10.

Cells were cycled at room temperature using a Bio-Logic VMP-3.

5.4.8 Differential Scanning Calorimetry

Approximately 5-10 mg of sample was loaded into an aluminum pan and hermetically sealed

in an argon filled glovebox with a Tzero sample press. The measurement was conducted

using a TA Instruments Q2000 DSC under nitrogen flow. Samples were heated at a rate of

5◦C/min from 25◦C to 500◦C.

5.4.9 Air Stability

Electrolyte powder (100 mg) was pressed into 10 mm diameter pellets. An air pump was

run in reverse in order to flow ambient air into a three-neck round bottom flask as the

container. The second neck contained a probe that was directly connected to an H2S sensor

(BW GasAlertMicro 5 Multi-Gas Detector). The probe was placed directly above the solid

electrolyte pellet in order to ensure accurate H2S monitoring. The third neck was used as

an exhaust/outlet port. The air temperature was approximately 23-25◦C with a relative

humidity of 40-50%.

5.4.10 Raman spectroscopy of solid electrolytes

Samples were pelletized and then placed on a microscope slide, covered by a glass coverslip,

and sealed with epoxy inside an Ar filled glovebox. Raman spectra of the materials were

obtained using a 633 nm laser (Raman HORIBA HR800). Spectra were obtained using 3 to

5 accumulations with acquisition times ranging from 10-20 seconds under a 10x objective

lens. A laser power of 50% was used to prevent sample damage or heating.
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5.4.11 7Li,11B, and 29Si MAS-NMR of solid electrolytes

Samples were packed in 1.9 mm and 3.2 mm zirconia rotors inside an argon-filled glovebox.

Magic Angle Spinning (NMR) NMR measurements were obtained at 20T and 298 K on a

850 MHz Bruker Avance III HD spectrometer operating at 330 MHz and 273 MHz for 7Li

and 11B, respectively, at a spinning rate of 30 kHz using a 1.9 mm broadband-tunable probe.

The 29Si NMR NMR spectra were again acquired at 20T (169 MHz Larmor frequency), but

instead using a 3.2 mm probe with a dedicated 29Si channel to obviate the possibility of

background signals and spinning at 16 kHz. The 7Li, 11B, and 29Si spectra were referenced

using external samples of 1M LiCl (aq), 0.1M boric acid (19.6 ppm versus BF3·Et2O at

zero ppm), and tetrikis trimethylsilyl silane (TTMSS; -9.8 ppm versus TMS at zero ppm),

respectively. 7Li spectra were acquired with a 3.25 µs π/2 pulse at 110 W, with 8 scans

collected using a 60 s recycle delay, which was established with a one-dimensional inversion

recovery experiment. For the 11B spectra, the very wide static linewidth and the probe

background were addressed using a two- π/2 solid echo sequence, with the echo delay

stretched to 100 µs to effectively T2-filter the probe background. The π/2 pulse was 1.8 µs

at 220 W, and 2048 scans were acquired using a 6 s recycle delay, which was found to be

sufficient for complete signal recovery. Using brief 64-scan saturation recovery experiments,

the recycle delay for the 29Si experiments was established as 48 s; spectra were then acquired

using 4800 scans, for a total experimental time of 64 hours, with a π/2 pulse of 5.25 µs at

120 W.
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Fast Li-Ion Conductivity in

Superadamantanoid Thioborate
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6.1 Introduction

Lithium thiophosphates, are the most promising material class for ASSBs because of their

high ionic conductivity (>10-3 S·cm−1) and excellent ductility,28,49,114,147 which allows for

easy processing into batteries. Lithium thioborates, a material class with similar proper-

ties to lithium thiophosphates, have been neglected in comparison, despite having shown

great promise.148 This phase space has been revived recently with computational studies

on lithium thioborate materials pointing to extremely fast ion conductivities and improved

electrochemical stability over lithium thiophosphate materials.149 Seminal work on thiobo-

rates during the 1980s-1990s focused on Li2S-B2S3 and Li2S-B2S3-LiI fast-ion conducting

glasses;120 which was expanded on recently by exploring the quaternary Li2S-B2S3-LiI-SiO2

system.150 Concomitant with the glass, Li2S-B2S3 crystalline analogues were discovered

by Krebs et al.151 One such thioborate is Li6+2x[B10S18]Sx (x ≈ 2),152 which exhibits a

thioborate network composed of supertetrahedral clusters (also referred to as superadaman-

tanoid) B10S20 structural units. Similar supertetrahedral structures were observed in lithium

and sodium phosphidosilicates,153,154 lithium nitridophosphates,155 sodium and silver thiob-

orates such as Ag6B10S18 and Na6B10S18,156,157 and many other sulphide-based materi-

als.158–162 Supertetrahedral networks are of interest because the structure forces cations and

anions to distribute into the void spaces between the clusters. For frameworks with a large

void space, the cations are weakly bonded to the surrounding anions, which facilitates cation

mobility within the structure. For such materials, the highest reported room-temperature

ionic conductivity is only 4×10−4 S·cm−1 for sodium phosphidosilicates,154 and ∼10−7

S·cm−1 for lithium phosphidosilicates.163 An ionic conductivity greater than 10−4 S·cm−1

is typically considered “fast”, but at least 10−3 S·cm−1 is necessary to achieve practical

solid-state batteries.16

The material Li6+2x[B10S18]Sx (x≈ 2), exhibits large three-dimensional channels between

the clusters that contain highly disordered lithium and sulphide ions.152 7Li NMR studies

of the lithium dynamics revealed a low activation energy of 12 kJ/mol (equivalent to 0.12
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eV),152 implying the thioborate is a fast-ion conductor; however, ionic conductivity was not

reported. Anion disorder in the form of substitutional disorder (e.g. argyrodite Li6PS5Cl

family),164 or rotational disorder (e.g. Li3PS4 family),165,166 both strongly influence Li+ ion

conduction. Additionally, the polarizability of the sublattice affects Li+ ion conduction by

weakening the interactions between the mobile Li+ ions and its surrounding anions.27 Thus,

increasing the polarizability of the anion (S2−) in the large channels of Li6+2x[B10S18]Sx

(where Li+ is coordinated by disordered S2−) should boost the lithium-ion mobility.

Here, three new lithium-ion conducting materials are reported, prepared by full substi-

tution of S2− with monovalent X− (Cl−, Br−, and I−) to form Li7.5B10S18X1.5. They exhibit

high room-temperature (25◦C) lithium-ion conductivities (0.5, 0.9, and 1.4×10−3 S·cm−1,

respectively) that are indeed tuned by the polarizability of the anion in the channel. Their

crystal structures were analyzed using a combination of single-crystal X-ray diffraction

(XRD), neutron powder diffraction (NPD), and neutron pair distribution function (PDF)

analysis to elucidate the critical effect of anion and cation disorder on lithium ion conduc-

tivity in these supertetrahedral structures. This work is the first report on a new class of

superionic conductors - crystalline halogenated lithium thioborates - that form an unprece-

dented fast-ion conducting superadamantanoid material.

6.2 Results and Discussion

6.2.1 Sublattice Polarizability Effect on Ion Transport

Synthesis of the previously reported Li6+2x[B10S18]Sx (x ≈ 2)152 resulted in a significant

fraction of Li5B7S13 and Li3BS3 impurities. Utilizing halides in place of sulfide (i.e., chlorine,

bromine, and iodine), new halide isomorphs were synthesized, Li7.5B10S18X1.5 (X = Cl, Br,

and I), that exhibit ionic conductivities up to 1.4×10−3 S·cm−1, depending on the halide

in the channel. Li+ ion conductivities were measured using electrochemical impedance

spectroscopy (EIS). The ion conductivity obeys the Arrhenius law of the form σ = σo
T
e−

Ea
kT

in the investigated temperature range as shown in Figure 6.1A. Corresponding Nyquist
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plots and a representative circuit fit are shown in Figure 6.2, Figure 6.3, and Table 6.1.

Details on the fitting procedure can be found in Appendix D (section D.1).

Figure 6.1: A) Arrhenius plots obtained from temperature dependent EIS measurements
of targeted Li7.5B10S18X1.5 (X = Cl, Br, I) and the corresponding B) room temperature
conductivity (25°C), activation energy, and pre-exponential factor.

Figure 6.2: Nyquist plots of A) Li7.5B10S18Cl1.5, B) Li7.5B10S18Br1.5, and C) Li7.5B10S18I1.5

at each temperature used to extract the ionic conductivity values for activation energy
measurements.
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Figure 6.3: Representative EIS measurement of Li7.5B10S18Cl1.5 at 25°C and corresponding
fit and fit parameters with the accompany circuit model. Details of the fitting procedure
are provided in Appendix D.

Table 6.1: Parameters of the fit for the impedance data of Li7.5B10S18Cl1.5 at 25°C.

Description Element Value Ceff

Stray L1 5.38×10-7 H
R1 96.46 Ω
R2 443.73 Ω

Electrolyte CPE1 – Q1 2.67×10-9 F·sα-1 3.4×10-10 F
α1 0.869
R3 102.45 Ω

Interface CPE2 – Q2 3.08×10-3 F·sα-1 3.2×10-4 F
α2 0.336

Electrode CPE3 – Q3 4.78×10-3 F·sα-1
α3 0.885

Activation energies and prefactors obtained from linear fits of the Arrhenius plots are

shown in Figure 6.1B. Both decrease with an increase in anion polarizability. This correla-

tion has been demonstrated in thiophosphate materials (e.g. argyrodite, Li6PS5X, X=Cl,

Br, I), where a softer sublattice lowers the activation barrier for a jump but simultaneously
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decreases the attempt frequency of the jump and the entropy of migration, which directly

influences the prefactor.27 The activation energy for Li7.5B10S18X1.5 is 0.36, 0.33, and 0.30

eV for X = Cl, Br, and I, respectively. The more polarizable anion (I−) results in a weaker

coulombic interaction with Li+, which facilitates transport. The activation energy is more

influential than prefactor and the decrease consequently leads to high Li+ ion conductivities

of 0.5, 0.9, and 1.4×10−3 S·cm−1 (X = Cl, Br, and I) at room temperature (Figure 6.1B).

Thus, by changing the anion in the channels, the ionic conductivity of the superadaman-

tanoid materials can be tuned. It is assumed that the halide ions do not significantly add

to the conductivity - especially in the case of the very large iodide ion (diameter: 4.4 Å).

6.2.2 Framework from Single-Crystal X-Ray Diffraction

The framework of the Li7.5B10S18X1.5 (X = Cl, Br, I) materials was unequivocally solved

using single-crystal XRD in the monoclinic space group C 2/c. All three compounds have

a framework composed of BS4-based supertetrahedral clusters. Ten condensed BS4
5− an-

ions form a three-dimensional superadamantanoid network, [B10S18
−6]n, where each B10S20

macro-tetrahedron is connected by one of its corner sulphur anions to form the framework

shown in Figure 6.4. Large interpenetrating voids exist between the rigid supertetrahedral

units, where a highly disordered partial sublattice composed of lithium cations and halide

anions reside. Complete crystallographic data from all the single-crystal XRD measure-

ments are presented in Table D.1-D.7. The largest channel is approximately 12×8 Å for

all three compounds (Figure 6.4A), where the lithium ions are coordinated by free halide

ions in the tunnel. The smaller channels (∼4.5 × 4.5 Å for all three compounds) along

the a and b axis (Figure 6.4B and C) intersect the larger tunnel along the c axis, forming

3D diffusion pathways. The halide ions only reside in the larger channel and are modelled

as a disordered array over 7-8 atomic sites with varying occupancies for the refinements.

This was determined in conjunction with refinement of neutron diffraction data, which is

described in detail below. Lithium ions, on the other hand, are distributed through the

large channel as well as the “smaller” channels. Note that the Li+ and X− ions in the void
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spaces are difficult to precisely resolve due to significant lithium and halide disorder.

Figure 6.4: Polyhedral representation of the [B10S18
-6]n framework: projected along A)

[001], B) [100], and C) [010]. The unit cell is represented by the dashed lines. Sulphur
atoms in the tetrahedral clusters, and lithium and halide atoms in the channels (voids) are
omitted for clarity here.

6.2.3 Variations Between Single-Crystals and Bulk Powder

The compositions can be described as Li6[B10S18]-(LiX)n, where Li6[B10S18] describes the

framework and its accompanying Li+ ions bound as Li-S polyhedra. The latter (LiX)

describes the lithium-halide pairs in the tunnels whose distribution is discussed below.

They represent a “glassy salt”, where both the Li+ cations and X− anions form a “liquid-

like” disordered sublattice in the large channel. The value of n varies from 1.6 to 1.8. Due to

the weak scattering of lithium by X-rays, it was difficult to find all the Li+ in the structure

by single-crystal XRD. The refined lithium contents from single-crystal XRD are deficient

in lithium for charge balance (Table 6.2). To ensure crystal quality was not a factor, three
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different crystals were measured for the iodine composition, two at a temperature of 280 K

and one at 150 K. All three crystals refined to an iodine content of 1.6. Given the variation

in the S/I ratio measured by EDX (see below), it is assumed that the I1.6 composition must

form high-quality crystals, making them easy to isolate and measure. The refined halide

contents from single-crystal XRD (1.8, 1.7, and 1.6 for X = Cl, Br, and I, respectively)

for all three phases are larger than expected (1.5) because the halide disorder makes it

difficult to determine the exact site occupancies. Thus, the single crystal composition is not

necessarily representative of the bulk powder. A comparison of the targeted to the refined

and estimated compositions discussed hereafter are summarized in Table 6.3.

Table 6.2: Targeted and refined compositions from single crystal analysis and crystallo-
graphic data for Li7.5B10S18X1.5 (X = Cl, Br, I) based on TOF neutron powder diffraction
measured at 300 K.

Composition (targeted) Li7.5B10S18Cl1.5 Li7.5B10S18Br1.5 Li7.5B10S18I1.5

Single crystal
Refined composition Li4.4B10S18Cl1.8 Li5.6B10S18Br1.7 Li6.8B10S18I1.6

Neutron powder diffraction
Refined composition Li7.5B10S18Cl2.5 Li7B10S18Br2.7 Li7B10S18I3.2

LiX impurity; percent LiCl; 0 % LiBr; 5.9-7.3% LiI; 6.8-9.9%
Temperature (NPD) 300 K 300 K 300 K
Space Group C 2/c (15) C 2/c (15) C 2/c (15)
a (Å)
b (Å)
c (Å)
β(°)
Volume (Å3)

21.1445(11)
21.1983(11)
16.2202(8)
128.675(3)
5676.0(6)

21.1741(6)
21.4467(7)
16.1145(5)
128.678(2)
5712.8(3)

21.2826(3)
21.4205(3)
16.1530(2)

128.7163(10)
5745.68(17)

The bulk powder samples encompass compositional inhomogeneity and are comprised of

a narrow distribution of stoichiometries in the superadamatanoid phases - i.e. Li6[B10S18]-

(LiX)n (X = Br, I) and thus a variation in “n”. Examination of microcrystalline powders

by Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX)

showed that crystalline regions in the samples contained variability in the sulphur/halide

ratios and a slight deviation from the targeted stoichiometry of Li7.5B10S18X1.5 (X = Br, I).

EDX was not performed on the chlorine substituted materials as elemental contrast between
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Table 6.3: Comparison of the targeted, refined and estimated compositions by single-crystal
XRD, EDX, NPD, estimated from side phase content, and neutron PDF.

Composition (targeted) Li7.5B10S18Cl1.5 Li7.5B10S18Br1.5 Li7.5B10S18I1.5

Single crystal
Refined composition Li4.4B10S18Cl1.8 Li5.6B10S18Br1.7 Li6.8B10S18I1.6

EDX
Estimated Composition N/A Li6.9B10S18Br0.9 Li6.9B10S18I0.9

Neutron powder diffraction
Refined composition
LiX impurity; percent

Li7.5B10S18Cl2.5

LiCl; 0 %
Li7.8B10S18Br2.7

LiBr; 5.9-7.3%
Li7B10S18I3.2

LiI; 6.8-9.9%
Composition estimated from
side phase content of NPD

Li7.5B10S18Cl1.5 Li6.8B10S18Br0.81 Li6.94B10S18I0.94

Neutron PDF
Refined composition Li7.5B10S18Cl2.3 Li7B10S18Br2.5 Li7B10S18I2.5

S and Cl is not possible due to their close characteristic X-ray energies (2.31 keV for S-Kα

and 2.63 keV for Cl-Kα). For the iodide, the S/I ratio ranges from 15-24 (iodine = 0.75 to 1.2)

and averages to 20, which corresponds to an iodine-deficient composition of Li6.9B10S18I0.9.

SEM images and EDX analysis are shown in Figure 6.5. Note that the large area EDX

analysis has a S/I ratio of approximately 12 (Figure 6.6), which matches the weighed-in

stoichiometry. The bromide has a similar variation in the S/Br ratio corresponding to

a bromine deficient stoichiometry of Li6.9B10S18Br0.9, estimated based on EDX analysis

(Figure 6.7). The halide deficiency in the individual crystals result in compositions less

than targeted but agrees with the impurity levels of exsolved LiX (X = Br, I; < 10 wt.% LiBr

or LiI) as determined by Rietveld refinement of the neutron powder diffraction (described

below). Note that the compositions from EDX are estimates, the S/I ratio may be slightly

lower than 20; and an average composition of Li7B10S18X is likely. The chloride analogue,

Li7.5B10S18Cl1.5 has no impurity reflections of LiCl in the diffraction patterns, unlike its

bromide and iodide counterparts, suggesting it is more stable.

Although stoichiometrically the iodide/bromide content is likely around 1.5, this is

difficult to attain in the large-scale preparation of the material. Indeed, attempted syn-

thesis of n = 1, Li7B10S18I showed that powder XRD patterns still contain LiI impurities
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Figure 6.5: SEM images of selected crystalline areas in the Li7.5B10S18I1.5 sample and the
corresponding S/I ratios for each point determined by EDX.

Figure 6.6: Large area SEM image and EDX of the Li7.5B10S18I1.5 sample. The corre-
sponding S/I ratio of the entire area is ∼12 as expected from the targeted stoichiometry.

(Figure D.1), confirming its thermodynamic instability. The adamantanoid phase may

be in a relatively deep local energy minimum and has not completely reconfigured to the

global minimum, which implies the phase is metastable. The variability of the S/halide

ratio from crystalline region to region poses an inherent problem of inhomogeneity in the

powder, making it a challenge to precisely fit peak intensities in the Rietveld refinement

of the NPD data (see below). Table 6.2 summarizes the data from both single crystal and

neutron diffraction refinements for the three halide compositions, both targeted and refined.
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Figure 6.7: SEM images of selected crystalline areas in the Li7.5B10S18Br1.5 sample and
the corresponding S/Br ratios for each point determined by EDX.

6.2.4 Lithium and Halide Sublattices Studied by Neutron Pow-

der Diffraction

Because the halides have large neutron scattering lengths (b = 9.6, 6.8, and 5.3 fm for

Cl, Br, and I, respectively) and lithium has a negative neutron scattering length (b =

-1.9 fm), to better define the disordered lithium and halide sublattices neutron powder

diffraction (NPD) was performed. The model determined from single-crystal XRD was used

as a starting point for the NPD refinements. Neutron diffraction data was collected at a

temperature of 300 K, as well as 10 K to minimize the impact of lithium and halide disorder.

The full crystallographic data from the NPD refinements are provided in Table D.8-D.13

and fits of the NPD data are provided in Figure 6.8 (300 K measurement) and Figure D.2

(10 K measurement). The unit cell volume at 300 K (Table 6.2) exhibits a minor expansion

from 5676 Å3 to 5745 Å3 with increasing halogen radius (Cl− = 1.81 Å, Br− = 1.96 Å,

and I− = 2.20 Å). Despite the significant difference in anion dimension, the lattice volume

increases by only 1% because the large voids easily accommodate the halide anions. The

structure does not change at 10 K and maintains monoclinic symmetry (space group C 2/c).

However, lithium and halide ions are still extremely disordered, perhaps because rapid

cooling may have frozen the lithium and halide disorder in place.
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Figure 6.8: Time-of-flight neutron diffraction patterns at 300 K and the corresponding
combined Rietveld refinement fits for ‘bank 2’ (CW 1.5 Å, bottom row) and ‘bank 3’ (CW
2.665 Å, top row) of Li7.5B10S18Cl1.5, B) Li7.5B10S18Br1.5, and C) Li7.5B10S18I1.5. Rwp and
GOF are the weighted profile R-factor and goodness of fit, respectively.

In the NPD refinements, the total lithium occupancy was constrained to 7 for the

bromide and iodide compounds, and 7.5 for the chloride compound. The Li contents were

calculated by charge balancing the average halide content from EDX analysis, which closely

matches the calculated Li contents accounting for LiX impurities (i.e. Li6.94B10S18I0.94,

Li6.81B10S18Br0.81; see Appendix D.2 for calculation of Li and halide contents based on

impurity amounts from refinement). Many highly disordered lithium sites made it difficult

to precisely determine site occupancies, although site positions were well established using

the single crystal data and Fourier difference mapping of the NPD data. The lithium was

modelled with 11 to 13 sites containing major lithium density (some weak density was

also found between the sites by Fourier mapping). The total lithium content was evenly

distributed across all the sites and the partial occupancy of each lithium site was fixed

for the refinement. This disordered model is in accord with the single-crystal data, and
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provides a picture of a high degree of Li+ ion delocalization in the channels (Figure 6.9A)

- i.e., dynamic disorder - as expected for fast-ion conductors.167,168 The model is a suitable

representation of the disorder as it gives a reasonable fit to the powder data and agrees with

previous 7Li NMR studies on Li6+2x[B10S18]Sx (x ≈ 2), suggesting that the Li+ ions are

randomly distributed among a large number of sites within the channels of the structure.169

Figure 6.9: A) Li7.5B10S18Cl1.5 structure with lithium and iodine in the channels. B)
Average structure (refined from NPD at 300 K) and C) local structure (refined from
neutron PDF at 290 K) of iodine in the tunnels.
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Regarding the halide anions, while their general location in the large channels is easily

identified in NPD Fourier difference maps (Figure D.3), it was not possible to precisely

refine their occupancies owing to the combined problem of extensive disorder and variable

content “n” in the inhomogeneous powder samples. Refinements were affected by smearing

of the density, which skewed the halide site occupancies. Constraining the total halide

content to 1.5 led to mismatched peak intensities and a poor-quality fit. When the halide

sites were allowed to freely refine, and the halide was distributed across many sites to

model the nuclear density (Figure 6.9B), the refined halide contents from both low and

room temperature NPD are higher than the targeted compositions. The stoichiometries

were refined to Li7.5B10S18Cl2.5, Li7B10S18Br2.7, and Li7B10S18I3. The NPD patterns at high

Q also contained broad ripples, indicative of possible local structure variations that stem

from the lithium and halide sublattices. Hence it is difficult to discern the halide sublattice

without resorting to PDF analysis as a probe of local structure.

6.2.5 Local Structure of the Halide Sublattice

Neutron total scattering analysis was performed to analyze the PDF of each material based

on the average structure model generated from the difference Fourier maps and single-

crystal data. In this model, the halide forms a plane in the large channel, distributed across

many sites and surrounded by lithium ions as shown in Figure 6.9A. The average structure

of the iodide sublattice is a disordered array of I− ions (Figure 6.9B). The iodide ions

distributed through the channel are positioned in “groups”, as indicated by the dashed

boxes. These groups correspond to areas of high nuclear density, and when analyzed on a

local scale, show ordering of the iodide position. Similar local structure deviation in solid

electrolytes has been reported for the argyrodite Li6PS5−xSexBr, where the substitution of

S2− by Se2− results in local ordering of the anions, and hence affects the ionic transport.170

The presence of short-range order or local distortion was apparent because the average

structural model used for the NPD refinements fits poorly for the PDF in the 1-10 Å range

(Figure 6.10A). Removing the disordered halide sites and freely refining the remaining
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Figure 6.10: Refinement of the A) average structure model (1-50 Å) and B) local structure
models (1-10 Å) of Li7.5B10S18X1.5 (X = Cl, Br, I) using neutron PDF analysis. Green boxes
highlight the larger difference from 1-10 Å, which suggest a deviation from the average
structure (i.e. difference in the local structure). C) Neutron PDFs (1-10 Å) overlaid to show
the effect of different halide interactions on the PDF pattern.

sites shows halide ordering in the channels with a significantly improved fit at a range of

less than 10 Å (Figure 6.10B). In general, the iodide sites sit far apart and are separated

by a distribution of distances from 3.1 to 5.3 Å (Figure 6.9C). These values are larger

than the bond lengths expected for polyiodides, and rule out halide-halide bonding in the

channels.171 Intense peaks corresponding to halide bonding would be expected around 2.2-

3.5 Å and are not present in the PDF profiles.172,173 Although the PDFs are dominated

by the B-S, B-B and S-S interactions (peaks labelled at 1.9, 3.1 and 3.7 angstroms in
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Figure 6.10), the weaker Li-halide interactions still influence the PDF. This difference is

clear in the overlay of the three patterns shown in Figure 6.10C. A similar ordering of

the halide sublattice occurs for the chloride and bromide compounds (Figure D.4 and

Figure D.5), and the corresponding crystallographic data for the local structure of each

material is provided in Table D.14-D.16. Due to the compositional inhomogeneity of

the powder samples, the PDF refinements also result in excess halide contents as in the

NPD refinements. With neutron PDF, however, local ordering of the halide ions is evident,

allowing for determination of the location of the halide in the channel.

6.3 Conclusions

Neutron PDF is an invaluable tool to study the local structure when faced with the

challenge of treating extreme cation and anion disorder. In this study, structural models

were developed that encompass a wide distribution of lithium and halide sites in the lattice

to simulate the disorder in these supertetrahedral frameworks. PDF refinements using these

models reveal local structure ordering of the halide anions in the large channel. Only Li+

cations sit in the smaller but still spacious 4.5 × 4.5 Å channels, while both halide anions and

Li+ cations reside in the large channels. The weak bonding of the anion-cation pairs leads to

an overall fast-ion conductivity. This unique combination of a highly crystalline framework

with large voids containing a disordered or “glassy salt” produces a system conducive to

fast-ion mobility. The lithium-ion conductivity is increased up to 1.4×10−3 S·cm−1 by

altering the polarizability of the halide sublattice in the channels. Substituting Cl− for

the more polarizable Br− and I− anions leads to a softer sublattice, and consequently a

systematic decrease in the activation energy, which in turn leads to an increase in ionic

conductivity. Lithium thioborate-based solid electrolytes present fascinating new model

systems to study the effect of disordered sublattices on ion-conduction. Furthermore, given

the substantial volume of the channels in the structure, an extensive phase space of alkali

thioborate materials can be discovered through facile substitution of either cations (lithium)

or anions (halide) in the channels.
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6.4 Experimental Procedures

6.4.1 Preparation of Li7.5B10S18X1.5 (X = Cl, Br, I)

Stoichiometric amounts of Li2S (Sigma Aldrich, 99.98%), 11B (Cambridge Isotope Labs,

99%), S (recrystallized from hot toluene), and LiCl/LiBr/LiI (Sigma Aldrich, >99.9%) were

ground together. All handling of powders was carried out in an Ar filled glovebox. The

precursor mixture was pelletized and supported in a glassy carbon crucible, which was

placed in a quartz tube. The quartz tubes were sealed under vacuum and placed vertically

in a furnace. The tube was heated up to 750°C in 49 hours and held for 3 hours, then

cooled to 550°C in 7 hours and held for 24 hours, cooled to 500°C in 10 hours and held for

60 hours, and finally cooled to room temperature in 9 hours. The resulting powder was

ground and then used for subsequent analysis. For single crystal growth the cooling was

slower. The tube was heated up to 750°C in 49 hours and held for 3 hours, then cooled to

550°C in 7 hours and held for 3 hours, cooled to 500°C in 120 hours and held for 100 hours,

and finally cooled to room temperature in 9 hours. The final product was gently separated

to find single crystals suitable for single-crystal X-ray diffraction.

6.4.2 Single-crystal XRD

Several colorless single crystals with dimensions of approximate 0.02 x 0.1 x 0.1 mm3

were scanned to determine their quality. The data were collected on a BRUKER KAPPA

diffractometer equipped with a SMART APEX II CCD, utilizing graphite-monochromated

Mo-Kα radiation. The crystals were protected by Paratone-N oil and a liquid nitrogen

flow using an OXFORD Cryostream controller 700 at 200-280K to ensure no reactivity

of the materials occurred. The data were collected by scanning ω and φ of 0.3° or 0.5°

in a few groups of frames at different ω and φ and an exposure time of 30 or 60 seconds

per frame. The data were corrected for Lorentz and polarization effects. The absorption

corrections were carried out by the multi-scan method using SADABS since the crystals

133



don’t have clear faces. The Cell now software was used to check for potential twinning. The

structures were solved using direct method to locate the positions of B, S, and X (X= Cl,

Br or I) atoms. After locating the B-S framework and the heavy halide sites, first, their

atomic positions were anisotropically refined using the least squares method incorporated

in the SHELXTL package, and then the Li positions were located in the remaining electron

density in the Fourier map, which revealed Li-S bonds very similar in length to those found

in binary and ternary Li sulfides. Subsequently, the Li site occupancies were freely and

anisotropically refined. The refinements were converged to good residual values R1 and

wR2. No constraints were used during the structure refinements. Indexing the unit cell

reflections (with I/sigma below 5) to check for a possible supercell was carried out, but no

supercells with either completely or partially ordered atomic positions were found for any

single crystal composition.

6.4.3 Neutron Powder Diffraction

11B was specifically used as a precursor in the synthesis because of the large absorption cross

section of natural B and 10B. Time-of-flight (TOF) neutron powder diffraction samples

were loaded into a 6 mm vanadium can under He with a copper gasket and aluminum

lid. Samples were collected on POWGEN (Beamline 1B) at the Spallation Neutron Source

(SNS) in Oak Ridge National Laboratory. Data was also collected at two different center

wavelengths; 1.5 Å, which can provide high resolution data up to dmax∼12 Å (and Qmax∼12

Å−1), and 2.665 Å, which can provide data up to dmax∼21 Å (and Qmax∼6 Å−1). The second

dataset is necessary because the (110) reflection occurs at approximately d=13 Å, outside

the range of the 1.5 Å bank. Each sample was measured at temperature of 10 and 300

K. The resulting diffraction patterns were refined by the Rietveld method using TOPAS

version 6 (Bruker - AXS). Standard NIST Si 640d was used as external calibrants for the

instrument. Time-of-flight (TOF) data were converted to d-spacing data using the modified

second order polynomial TOF = ZERO + DIFC*d + DIFA*d2 +DIFB/d, where ZERO is

a constant, DIFC is the diffractometer constant, DIFA and DIFB are empirical terms to
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correct the sample displacement and absorption caused peak shift.174 During the refinement,

ZERO and DIFC were determined from the refinement using a standard NIST Si 640d, while

DIFA and DIFB were allowed to vary to account for the sample displacements/absorption.

A back to back exponential function convoluted with symmetrical pseudo Voigt function

were used to describe the peak profile.

6.4.4 Neutron Total Scattering

Neutron total scattering data was collected on NOMAD (Beamline 11A) at the Spallation

Neutron Source (SNS) in Oak Ridge National Laboratory. The same samples measured on

POWGEN were later loaded on NOMAD. Four 48 min scans were collected for each powder

sample and then summed together to improve the statistics. The obtained diffraction

data were normalized against a vanadium rod, the background was subtracted. An ad-

hoc polynomial function was used to correct the inelastic (Placzek) scattering. The total

scattering structure function S(Q) data were transformed to the reduced pair distribution

function data G(r). The Q range used for the Fourier transfer is 0.2 Å−1 to 28 Å−1 for

the samples. For PDF data, small box refinements were carried out using TOPAS 6. The

instrumental parameters dQ and Qbroad were set to be 0.04607 and 0.02607 based on the

refinement of the NIST Si 640e standard.

6.4.5 Ionic Conductivity and Activation Energy Measurements

Bulk resistance of the samples was determined from electrochemical impedance spectroscopy

(EIS) with an amplitude of 100 mV in the frequency range 1 MHz to 100 mHz using a

Bio-logic VMP3 potentiostat/galvanostat. Approximately 150 mg of sample was placed

between two titanium rods in a custom-made Swagelok cell and pressed into a 10 mm

diameter pellet with a hydraulic press at 3 tons in an Ar filled glovebox.

For activation energy measurements, approximately 100-200 mg of powder was placed

between two titanium rods in a custom-made cell and pressed into a 10 mm diameter pellet

with a hydraulic press at 3 tons. In foil was attached on either side of the electrolyte pellet
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to ensure good contact. EIS was measured from 35 MHz to 100 mHz with an amplitude

of 100 mV using a Bio-logic MTZ-35 impedance analyzer. The measurements were carried

out in the temperature range 25°C to 60°C.

6.4.6 Scanning Electron Microscopy (SEM) and Energy Disper-

sive X-ray Spectroscopy (EDX)

Imaging and estimation of S/Halide ratios was performed using a LEO 1530 Zeiss field

emission scanning electron microscope equipped with an energy dispersive X-ray spectrom-

eter. Samples were mounted on an SEM holder with carbon tape inside an argon glovebox.

The samples were placed in a vial and sealed using parafilm. The sample vials were taken

out of the glovebox, opened under ambient air for less than 10 seconds, and immediately

transferred into the SEM sample chamber to minimize moisture exposure and oxygen

contamination.
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Chapter 7

Li6B7S13I: a fast-ion conducting

thioboracite with a perovskite

topology and argyrodite-like lithium

substructure

This section is reproduced in part with permission from:

Kavish Kaup, Kevin Bishop, Abdeljalil Assoud, Jue Liu, and Linda F. Nazar, Journal of

the American Chemical Society, 2021. DOI: 10.1021/jacs.1c00941. Copyright 2021

American Chemical Society.

* Dr. Kevin Bishop was involved in discussions regarding the implementation of the AIMD

calculations.

* Dr. Abdeljalil Assoud performed the single crystal XRD measurements and

corresponding refinements.

* Dr. Jue Liu provided guidance for conducting the neutron diffraction measurements at

Oak Ridge National Lab.
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7.1 Introduction

Development of solid-electrolytes has been centered around oxide and sulfide-based elec-

trolytes,147 with a strong focus on thiophosphates because of their high ionic conductivity

and good ductility that makes them amenable to cell fabrication.175 Amongst the many

thiophosphates, argyrodites are notable for their relative stability and ease of preparation,

where conductivities up to 10-2 S·cm-1 have been achieved with excellent performance

in ASSBs.28,176 Many fast-ion conductors are predicted to be metastable at intermediate

temperature but can be stabilized by entropic contributions upon heating to higher tem-

peratures. Some sodium and lithium anti-perovskites are formed this way,177,178 as well as

the thiophosphate Li7P3S11.179 As in the case of Na3PS4, metastable polymorphs can be

accessed by varying the synthesis conditions, which also influences the ionic conductivity.180

These techniques have led to the discovery of alternative lithium-ion conducting material

classes such as phosphidosilicates181 and rare-earth halides.182 Here, a new and unusual

superionic thioborate is reported, Li6B7S13I, that has an unprecedented perovskite topology

combined with an argyrodite-like lithium substructure. It was synthesized, not by a classic

heat-and-beat solid-state approach, but by a strategy termed here as “simmering”, which

exploits the reactivity of a metastable solid with a molten salt at intermediate temperatures.

The presence of the liquid-solid interface, together with highly facile ion mobility in both

reactant - and product (as confirmed here by theory) - likely favors the kinetics of the solid

transformation.

Despite having similar material properties to thiophosphates, Li-ion conducting thiobo-

rates have been surprisingly underexplored, resulting in a paucity of candidates for theo-

retical and experimental investigation. Thioborate glasses have shown high ionic conduc-

tivities,120,150 and have similar favorable mechanical properties to thiophosphate given the

highly polarizable nature of the S2- anion. However, to date, only a few crystalline thiob-

orates exist, most of which exhibit supertetrahedral frameworks such as Li6+2x[B10S18]Sx

(x=2),152 Li5B7S13,183 and Li9B19S33.183 These networks create large void spaces that form
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three-dimensional channels for cations to diffuse through the structure. However, revisi-

tation of the Li2S-B2S3 binary phase space in the last three years has uncovered some

very promising findings. Theoretical work on the lithium thioborate, Li3BS3, predicted a

very low activation energy barrier for ion migration of 0.25 eV, although no experimental

ionic conductivity was reported.184 A recent and exciting report on ab-initio molecular

dynamics (AIMD) simulations of Li5B7S13 predicted extremely high ionic conductivities

of 6.2×10−2 S·cm−1,149,185,186 much higher than any known superionic lithium conductor.

These findings inspired exploration of the ternary system Li2S-B2S3-LiI in this study, lead-

ing to the discovery of the novel cubic Li6B7S13I described here. This fast-ion conductor

represents an entirely new family of solid electrolyte materials. Ab initio molecular dy-

namics simulations in this study reveal facile three dimensional pathways for superionic

(5×10−3 S·cm−1) lithium-ion conduction in this thioboracite; the first to be reported.

7.2 Results and Discussion

7.2.1 Synthesis and Framework

Li6B7S13I was synthesized by deliberately annealing a composition close to the recently

reported superionic supertetrahedral lithium thioborate, Li7.5B10S18I1.5.187 This highly non-

stoichiometric material exhibits thermodynamic instability resulting in ex-solvation of LiI

impurities upon cooling. The mechanism for the synthesis of cubic Li6B7S13I exploits

the reactivity of this kinetically preferred metastable supertetrahedral phase that initially

crystallizes from a mixture with a stoichiometric composition equivalent to Li6B7S13I (i.e.,

[supertetrahedral Li7.14+xB10S18S0.57Ix + (1.43-x)LiI impurities]), based on the powder XRD

pattern (Figure 7.1, black line). Fine-grinding of the solid mixture is necessary to reduce

the particle size and homogenize the components, which are subsequently annealed at

500°C. The LiI component melts at 470°C, creating a liquid-solid interface that accelerates

the diffusion and triggers transformation to the thermodynamically stable cubic Li6B7S13I

phase. A significant activation energy is required to overcome the unfavorable kinetics of
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Figure 7.1: Powder XRD pattern of targeted Li6B7S13I after step 1 of heat-treatment
(black line) resulting in adamantanoid phase Li7.14+xB10S18S0.57Ix + LiI and after step 2
re-annealing resulting in pure cubic Li6B7S13I (blue line).

the solid transformation, as indicated by the fact that no reaction occurs if the mixture

is simply annealed without grinding. A low-temperature direct synthesis route was also

attempted. Grinding the precursors and annealing just above the LiI melting point for

two weeks resulted in the supertetrahedral phase along with LiI, further highlighting the

kinetic limitations of the reaction. Adopting the “simmering” approach overcomes these

limitations and the resulting material is a pure single phase (based on powder XRD, Fig-

ure 7.1). The measured S/I ratio determined by EDX agrees with the targeted stoichiometry

(Figure 7.2; SEM images and EDX analysis). The structure of Li6B7S13I (space group

F -43c) was unequivocally solved by single-crystal XRD and is shown in Figure 7.3A.

The crystallographic details are described in Table 7.1-7.2 (see Table E.1 for additional

details on the single-crystal refinement).

Based on the empirical formula, it might be expected that the structure of Li6B7S13I

is related to the halogen-free Li5B7S13 phase that was proposed to have high lithium

mobility based on activation energies of 0.3 eV measured by NMR.183,188 To compare the

structures, Li5B7S13 was targeted for synthesis, which resulted in a multi-phase mixture

that also encompassed Li6+2xB10S18Sx and Li9B19S33 (thus precluding ionic conductivity
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Figure 7.2: SEM images of selected crystalline areas and a large area of the cubic Li6B7S13I
sample and the corresponding S/I ratios determined by EDX.

Table 7.1: Atomic coordinates, occupation factor, and equivalent isotropic displacement
parameters of the cubic Li6B7S13I obtained from single-crystal XRD measured at 280 K.

Space Group: F -43c, a = 15.245(2) Å, V = 3543.1(14), Z = 8

Atom Wyck. Pos. x y z Occ. Ueq (Å2)
I1 8a 0.5 0.5 0.5 1 0.0287(2)
S1 96h 0.64478(7) 0.73643(6) 0.56936(6) 1 0.0107(3)
S2 8b 0.75 0.75 0.75 1 0.0082(3)
B1 24c 0.75 0.75 0.5 1 0.0041(13)
B2 32e 0.6730(3) 0.6730(3) 0.6730(3) 1 0.0041(13)
Li1 32e 0.6088(8) 0.8912(8) 0.6088(8) 1 0.054(3)
Li2 24d 0.5 0.75 0.5 0.68(11) 0.12(3)

Table 7.2: Anisotropic displacement parameters of Li6B7S13I obtained from single-crystal
X-ray diffraction measured at 280 K.

Atom U11 U22 U33 U23 U13 U12

I1 0.0287(3) 0.0287(3) 0.0287(3) 0 0 0
S1 0.0084(4) 0.0142(5) 0.0096(4) 0.0026(3) 0.0005(3) 0.0016(4)
S2 0.0082(5) 0.0082(5) 0.0082(5) 0 0 0
B1 0.0052(16) 0.0052(16) 0.002(3) 0 0 0
B2 0.0052(16) 0.0052(16) 0.002(3) 0 0 0
Li1 0.054(5) 0.054(5) 0.054(5) 0.010(5) -0.010(5) 0.010(5)
Li2 0.042(16) 0.26(8) 0.042(16) 0 0 0
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Figure 7.3: A) Structure of cubic Li6B7S13I from single-crystal XRD with Li+ and I- ions
shown as probability displacement ellipsoids (S2- ions omitted), s.g. F -43c, a = 15.245 Å;
B) one octant of the cube showing the large boron-sulfur anion cluster; the clusters are
centered at each of the eight octants in the cubic lattice, and an additional corner sharing
BS4 anion at all six sides connect neighboring cluster (light blue tetrahedra), C) Li6B7S13I
unit cell with the origin shifted, and D) a general perovskite AMX3 framework.

measurement). A single crystals of Li5B7S13 was isolated from the mixture and Rietveld

refinement showed that it crystallizes in the tetragonal space group I 41/a (Table E.1 and

Table E.2-E.3), in slight contradiction to the original assignment in the space group

C 2/c.183 The condensed B4S10 and B10S20 supertetrahedra in the Li5B7S13 framework

(Figure 7.4) are representative of previously reported superadamantanoid phases.152,183,187

However, surprisingly, it was found here that the incorporation of lithium and iodine into the

Li5B7S13 lattice to form Li6B7S13I triggers the transformation to a boracite crystal structure

(M3B7O13X, where M is an alkali-earth or transition metal divalent cation and X is typically
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a halide) shown in Figure 7.3A. Li6B7S13I has a three-dimensional framework composed of

corner sharing BS4 tetrahedra that form unique B4S13 anion clusters (dark blue tetrahedra

in Figure 7.3B). The building blocks can also be described as a central sulfur coordinated

by four boron atoms to form an SB4 tetrahedra bonded to six BS4 tetrahedra, i.e., a

[B4S(BS4)6]20- structural unit. This structural framework is unprecedented in boron-sulfur

chemistry although “zeolitic-like” sulfide hydrates Na5Ga7S13·6H2O and Na5In7S13·6H2O

also possess the same extended metal-sulfur clusters.189,190

Figure 7.4: Structure of tetragonal Li5B7S13 solved from single-crystal XRD, containing
B4S10 and B10S20 supertetrahedra.

While boracites only form cubic polymorphs at high temperature, the thioboracite is cu-

bic at room temperature which - importantly - leads to isotropic ion conduction properties

(see below). The tetrahedral boron-sulfur framework of Li6B7S13I also results in a large unit

cell volume (3543 Å3), which typically leads to enlarged diffusion pathways favorable for

high lithium-ion mobility,79,191 and may allow for some structural modification by isovalent

or aliovalent substitution.43 Remarkably, Li6B7S13I is the first known thioboracite and by

extension, the first sulfide-based lithium-ion conductor based on such phases. While not

adopting the same structure as a perovskite (AMX3 - e.g. CsPbBr3), it can be considered

to exhibit a “perovskite topology”; where in the case of Li6B7S13I, the [PbBr6]4- octahedra
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are replaced by the [B4S(BS4)6]20- clusters, and the Cs+ cations are replaced by I- anions

and Li+ cations (Figure 7.3C and D). All other known lithium-ion conducting solid elec-

trolytes with a perovskite (or anti-perovskite) framework are oxide-based materials such as

Li3xLa2/3-x�1/3-2xTiO3 (LLTO)192,193 and Li3OCl.58,104 For example, the long-sought-after

Li3SI antiperovskite that is anticipated to be a fast-ion conductor remains elusive.178

7.2.2 AIMD Simulations of Li-ion Transport

The Li substructure in Li6B7S13I facilitates excellent lithium-ion conduction, as determined

by AIMD simulations using VASP48 and starting from the refined single-crystal structure

shown in Figure 7.3A. The two lithium sites in Li6B7S13I have distinct coordination en-

vironments (Table 7.1). The fully occupied Li1 site is tetrahedrally coordinated (LiS3I),

while the partially occupied Li2 site (occ. 0.68) sites in an elongated octahedra with iodine

apices (LiS4I2), having long Li-I bonds of 3.81 Å. AIMD calculations were carried out at

elevated temperatures of 600 to 900 K to accelerate the diffusion, which shortens the overall

simulation time. The Li-ion probability density isosurface from AIMD at 750 K shown

in Figure 7.5A demonstrates the 3D diffusion pathways in the structure and significant

Li-ion mobility along the Li1-Li2-Li1 pathways. Given the cubic symmetry, this leads to

ideal three-dimensional isotropic conduction. Note that the Li2 site has a very anisotropic

probability density, consistent with the anisotropic atomic displacement parameters (ADP)

refined by single-crystal XRD and shown earlier in Figure 7.3.

7.2.3 Lithium substructure comparison to argyrodite

The Li+ ions in Li6B7S13I move in a localized trajectory that forms a cage around the iodine

site, where long-range ionic diffusion between cages is enabled by the connection via the

partially occupied and highly anisotropic Li2 site (Figure 7.5B). This comparison is better

viewed in an alternative representation generated by shifting the origin of the cell, shown

in Figure 7.3C. This illustrates that the iodide ions sit at the center of all eight octants of

the cube, surrounded by a cage of Li-ions (Figure 7.5B and Figure 7.6A).
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Figure 7.5: Li+ probability density distribution of Li6B7S13I obtained from AIMD simula-
tions at 750 K in A) cubic F -43c representation and B) the corresponding Li cages around
iodine atoms.

Figure 7.6: A) Li+ forms a cage around the I- in Li6B7S13I, B) LiS4I2 octahedron in
Li6B7S13I (F -43c) with a large anisotropic displacement of the Li2 site (24d) and its split
site representation (48f) as two square pyramids LiS4I. C) Li+ cages in argyrodite Li6PS5I,
D) LiS3I2 double tetrahedra in Li6PS5I (F -43m) with a large anisotropic displacement of
the 24g site and its common split site representation as face-sharing LiS3I tetrahedra.
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The large anisotropic ADP of Li2 (visually represented by the dark green thermal

ellipsoids) can also be represented as a split site with the lithium ions separated by about

1 Å (Figure 7.6B). The lithium substructure of Li6B7S13I bears strong similarities to the

argyrodites, Li6PS5X (X = Cl, Br, or I; space group F -43m), where Li-ions form cages

around disordered halide/sulfur sites (Figure 7.6C). In the argyrodite structure, the Li-ions

that resides at the center of a double tetrahedron also exhibit an anisotropic displacement,

which can be alternatively represented as split Li sites (Figure 7.6D). Ion conductivity

in the argyrodite structure is primarily dictated by the Li+ intra and intercage jump

distances.27,194 The Li1 and Li2 sites in Li6B7S13I also form cages around the I- ions as

shown in Figure 7.6A and 7.5B (Li1-Li2 distance of 3.18 Å or 2.89 Å considering site

splitting), and the Li2 site connects adjoining cages. The cubic symmetry enables isotropic

three-dimensional transport, as demonstrated by the AIMD simulations described earlier

(Figure 7.5).

7.2.4 Li-ion Diffusivity and Conductivity

The Li+ diffusivities for cubic-Li6B7S13I were calculated from the mean square displacement

of the Li ions from the AIMD calculations. Figure 7.7A shows the Arrhenius plot of ionic

conductivity derived from the diffusion coefficients at a temperature from 600 to 900 K.

Using this region, the diffusion coefficient extrapolates to a value of 6.3x10-8 cm2·s-1 at 300 K.

This represents very high diffusivity, comparable to the superionic conductor Li10GeP2S12,

whose average diffusivity is approximately 2x10-8 cm2·s-1 from AIMD calculations101 and

NMR spectroscopic measurements.195 The room temperature lithium-ion conductivity is

derived from the Nernst-Einstein equation:

σLi =
N (Ze)2

kBT
DLi

where kB refers to the Boltzmann constant; T denotes the temperature; N is the number

density of the mobile lithium ions in the unit cell, Z is the charge of the lithium ions, e

is the electron charge, and DLi is the diffusion coefficient of the lithium ions. Using this
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expression, the calculated ionic conductivity of Li6B7S13I is 5.2×10−3 S·cm−1 at 300 K. The

ionic conductivities at each temperature were calculated in the same manner, and a linear

fit of the data gives a bulk activation energy of 0.23 eV.

Figure 7.7: Arrhenius plots of Li6B7S13I obtained from temperature dependent A) AIMD
simulations and B) EIS measurements.

To compare theory to experiment, the ionic conductivity of a powder pellet of cubic-

Li6B7S13I was measured by electrochemical impedance spectroscopy over a temperature

range of 298 to 333 K. Nyquist plots measured at each temperature are shown in Fig-

ure 7.8A. The electronic conductivity is very low (σel = 1.25×10-9 S·cm-1) and has a

negligible influence on the total conductivity (DC polarization curve can be found in Fig-

ure E.1). The total resistance, as determined by a linear fit of the Warburg impedance, was

used to calculate the ionic conductivity at each temperature. The experimental ionic conduc-

tivity of cubic-Li6B7S13I at room temperature is 5×10−4 S·cm−1 with an overall activation

energy of 0.30 eV, determined by a linear fit of the Arrhenius plot (Figure 7.7B). There

is no discontinuity over this temperature range and linear Arrhenius behavior is observed,

indicating phase stability. Differential scanning calorimetry (DSC) results also confirm

that no phase transition occurs over a temperature range of 233 to 373 K (Figure 7.9).

The conductivity is lower than the calculated value of 5.2×10−3 S·cm−1 at 300 K (while
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the activation energy is slightly higher than 0.23 eV), which is likely because the AIMD

simulations capture the bulk properties and EIS measures both bulk and grain boundary

processes.179 Although grain boundaries in sulfide materials are typically assumed to have

a negligible influence on the total ion conductivity, they have been shown to significantly

impact the conductivity by more than an order of magnitude in some sulfides.107,179,196

Figure 7.8: A) Nyquist plots of Li6B7S13I at each temperature used to extract the ionic
conductivity values for activation energy measurements and B) a low-temperature Nyquist
plot at -78°C and the corresponding equivalent circuit and fit.

Figure 7.9: Differential scanning calorimetry curve of cubic-Li6B7S13I under a N2 flow of
50 mL/min.
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Therefore, low-temperature EIS measurements at 195 K (-78°C) were performed to

deconvolute the grain and grain boundary processes (Figure 7.8B and Table 7.3). The

capacitances obtained from the equivalent circuit fit of the low-temperature Nyquist plot

were in the expected range; 3.4×10-11 F for the bulk process (22 kΩ) and 1.5×10-9 F for

the grain boundary process (79 kΩ). The relatively low α value (0.42) implies there may be

overlapping semi-circles, and high resistance of the grain boundaries - almost four-fold that

of the bulk - suggests the presence of amorphous B2S3 or Li-B-S impurities at the grain

boundaries because there are no crystalline impurities in the powder XRD (see Figure 7.1).

These impurities are indeed apparent from the SEM images that show a predominance of

speckled particles on the crystalline surfaces (Figure 7.2). Despite the likely deleterious effect

of grain boundary resistance, the activation energy of 0.30 eV is identical to supertetrahedral

Li7.5B10S18I1.5 and lower than the reported values for the argyrodites Li6PS5I and Li6PS5Cl

(0.39 eV and 0.45 eV).27,164,197 This value is also on par with Li6PS5Br (0.30 eV)27 and Cl-

rich Li5.5PS4.5Cl1.5 (0.29 eV),164 indicating that Li6B7S13I has a favorable energy landscape

for Li+ ion migration. Considering the negative influence of grain boundaries, the measured

conductivity (and activation energy) is likely lower (higher) than the inherent bulk value.

Nonetheless, the values are in reasonable agreement, and it may be possible to enhance the

experimentally measured conductivity by optimization of the synthesis to reduce the grain

boundary resistance.

Table 7.3: Parameters of the fit for the impedance data of cubic-Li6B7S13I at -78°C.

Description Element Value Ceff

R1 21722 Ω
Bulk CPE1 – Q1 2.415×10-10 F·sα-1 3.43×10-11 F

α1 0.8616
R2 79159 Ω

Grain Boundary CPE2 – Q2 3.826×10-7 F·sα-1 1.53×10-9 F
α2 0.4215

Electrode CPE3 – Q3 8.373×10-6 F·sα-1
Polarization α3 0.7422

Stray C1 3.434×10-10 F
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Note that Li6B7S13I exhibits an ionic conductivity that is three orders of magnitude

higher than the argyrodite Li6PS5I (5×10-7 S·cm-1).194,197 Similar to Li6PS5I, it may be

possible to improve the ionic conductivity of Li6B7S13I by either aliovalent substitution,28

or by ball milling to induce a defect rich nanostructure.198 Substitution of I- for Cl-, Br-,

or even S2- to induce halide disorder may also improve the ionic conductivity.

7.2.5 Tetragonal Polymorph

Akin to the perovskites, the cubic Li6B7S13I structure is prone to subtle structural distor-

tions. By varying the synthesis conditions (see experimental section for details), a tetragonal

polymorph of Li6B7S13I is obtained, where changes in the B-S framework and Li siting

distorts the cell to reduce the symmetry. The formation of different phases depending on

the preparation method has also been observed in other solid electrolyte materials such as

the sodium thiophosphates.180 The distortion of the cubic symmetry is apparent from the

peak splitting in the powder XRD patterns shown in Figure 7.10A.

Figure 7.10: A) Powder XRD pattern of cubic and tetragonal Li6B7S13I. No LiI impurities
are present in both samples. B) TOF NPD patterns of tetragonal Li6B7S13I at 298 K and
the corresponding Rietveld refinement fit.

The new structure was determined using neutron powder diffraction and the data was

refined using a model derived from the transformation of the cubic space group F -43c to its

tetragonal subgroup I -4c2 (Figure 7.10B). A visual representation of the transformation to
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the tetragonal structure is shown in Figure 7.11 and crystallographic data from refinement

of the NPD data is provided in Table 7.4.

Figure 7.11: Cubic Li6B7S13I with lattice parameter a can be represented as a tetragonal
cell by the transformation a’ = a/

√
2 and c’ = a. The origin of the tetragonal unit cell is

shifted in the c-direction by 1⁄4.

Orthorhombic distortions were considered as well but did not yield an improved fit

over the tetragonal modification. The two boron sites and two lithium sites in the cubic

space group should each become three crystallographically distinct sites in the tetragonal

structure due to the site splitting. However, Li ordering in the tetragonal structure gives

rise to unoccupation of the Li3 (4b) site, a factor that elongates the c-axis due to the

electrostatic repulsion of neighbouring I- ions. The resultant Li ordering also impedes

conduction in the tetragonal polymorph, reducing the room temperature ionic conductivity

to 1.5×10−4 S·cm−1, compared to 5×10−4 S·cm−1 for the cubic modification.
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Table 7.4: Atomic coordinates, occupation factor, and isotropic displacement parameters
of the tetragonal Li6B7S13I obtained from neutron powder diffraction measured at 298 K.

Space Group: I -4c2, a = 10.72640(6) Å, c = 15.3355(2) Å, V = 1764.43(3), Z = 4

Atom Wyck. Pos. x y z Occ. Ueq (Å2)
I1 4a 0 0 0.25 1 0.0180(8)
S1 16i 0.9043(4) 0.3864(4) 0.3201(3) 1 0.0039(4)
S2 16i 0.9214(4) 0.2107(4) 0.4821(2) 1 0.0056(6)
S3 16i 0.1649(4) 0.3060(4) 0.3962(2) 1 0.0039(4)
S4 4d 0 0.5 0.5 1 0.0056(6)
B1 4c 0 0.5 0.25 1 0.0056(5)
B2 8h 0.2492(3) 0.7492(3) 0 1 0.0047(3)
B3 16i -0.0025(3) 0.34562(11) 0.42168(9) 1 0.0061(2)
Li1 16i 0.7086(6) 0.5079(14) 0.3756(6) 1 0.037(2)
Li2 8e 0.7315(7) 0.7315(7) 0.25 1 0.029(3)
Li3 4b 0 0 0.5 0 -

To confirm that the tetragonal Li6B7S13I structure is metastable vis a vis the cubic

polymorph, phonon calculations were performed on both materials to determine whether

they lie at a local minimum (dynamically stable) or a saddle point (dynamically unstable)

on the potential energy surface. Imaginary frequencies are present in the phonon dispersions

of the tetragonal structure but not in the cubic structure (see phonon band structures and

DOS in Figure 7.12), indicating that the cubic structure is dynamically stable and at

an energy minimum. The tetragonal structure is likely at a saddle point on the potential

energy surface but is presumably stabilized by entropic contributions at finite (non-zero)

temperature. This does not mean the tetragonal is more stable than the cubic polymorph at

elevated temperatures. The mechanism for the formation of the tetragonal phase is unclear

at present and will be explored in the future. The thermodynamic stability for the cubic

phase was also evaluated using a convex hull analysis. The convex hull connects phases that

are lower in energy than any other phase or linear combination of phases at the respective

composition. Thus, it provides a direct measure of the stability as phases that lie on the

convex hull are considered thermodynamically stable compounds (energy above hull, Ehull,

of 0), whereas ones above are metastable or unstable, and a large Ehull implies greater
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instability of the compound.199 The Ehull of cubic-Li6B7S13I is 0 meV/atom, indicating that

it is a stable compound. The calculated 0 K Li-B-S-I phase diagram and the pseudo-ternary

Li2S–B2S3–LiI phase diagram are shown in Figure E.2.

Figure 7.12: Calculated phonon band structure and phonon DOS of A) Cubic and B)
Tetragonal Li6B7S13I.

7.2.6 Electrochemical Stability

The electrochemical stability window of most lithium thiophosphate-based materials tends

to be narrow (∼0.3 V).29 These materials are reduced in contact with lithium metal and

undergo oxidation when paired with high-voltage (> 4 V) cathodes. Thiophosphates such

as Li3PS4, Li7P3S11, Li10GeP2S12 (LGPS) and Li6PS5Cl exhibits oxidative stability up to

2.5 V.29 Calculations on Li6B7S13I show a comparable electrochemical stability window

of 1.6-2.1 V vs. Li/Li+ for Li6B7S13I (see Figure 7.13 for the plot of Li uptake per

formula unit), which is verified experimentally by cyclic voltammetry (Figure 7.14). A

comparable voltage window for the Li5B7S13 system was recently predicted, although it

has been suggested that a passivating layer composed of superionic mixtures of Li-B-S

phases can kinetically stabilize the interface up to 4.0 V and down to 1.0 V.149 Although

argyrodites decompose at the lithium metal interface, they form kinetically passivating

interface layers composed of electronic and ionically insulating Li2S, Li3P, and LiCl in the

case of Li6PS5Cl.200 Similar properties for Li6B7S13I are expected, where Li2S and LiI will
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form as an interphase layer. The incorporation of nano-sized coating layers could further

stabilize both these interfaces.

Figure 7.13: Plot of Li uptake per formula unit (f.u.) of Li6B7S13I against voltage vs
Li/Li+. Text indicates the predicted phase equilibria at corresponding regions of the profile.

Figure 7.14: Cyclic voltammetry of cubic-Li6B7S13I mixed with carbon (Super P) at 25°C,
scanned over a potential range of 0 to 3.7 V vs. Li-In (0.62 – 4.32 V vs. Li/Li+) at scan
rate of 1 mV/s.
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7.3 Conclusion

This study reveals a new class of ion conductive materials based on Li6B7S13I, a promising

thioborate-based solid electrolyte with a high theoretical ionic conductivity of 5.2×10−3 S·cm−1,

owing to its partially occupied Li sites in the cubic lattice structure (solved from single-

crystal XRD and neutron diffraction). It exhibits an ordered anion arrangement akin to a

perovskite framework, with an argyroditelike lithium substructure in which the Li+ ions

form three-dimensional diffusion pathways connected by lithium sites in a cage-like fashion.

AIMD simulations verify the highly delocalized Li substructure conducive to fast-ion mo-

bility and determine a low energy barrier of 0.23 eV, close to the experimental value of 0.30

eV. This new class of materials provides an exciting platform for manipulating the conduc-

tivity by aliovalent substitution or by inducing anion disorder via changes in composition.

Such methods have been remarkably successful in ultimately increasing the conductivity

of argryodites such as Li6PS5I and Li6SbS5I by a factor of 104; for example, superionic

Li6.6P0.4Ge0.6S5I (1.8×10−2 S·cm−1)28 and Li6.6Si0.6Sb0.4S5I (2.4×10−2 S·cm−1).201

This work also highlights the importance of controlling (i.e., minimizing) the grain

boundary resistance. The grain boundary resistance of sulfides is typically assumed to have

a negligible effect on the ion conductivity because of their ductility and can be lowered by

sintering for a clean interface; however, this is not the case when amorphous impurities

are present. Here, the presence of even minor amounts of a glassy phase at the interface

between grains can strongly influence the total ion conductivity, and likely underlies the

lower experimental total conductivity of 5×10−4 S·cm−1 as indicated by EIS measurements

of Li6B7S13I that show high grain boundary impedance. The necessity to carry out low-

temperature EIS measurements on superionic conductors to deconvolute the bulk and grain

boundary components is emphasized, since the high conductivity typically prevents their

resolution at room temperature owing to frequency analyzer limits.

This is especially true when searching for new materials where the phase space is

not well mapped out. Differences in ion conductivity of an order of magnitude between
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theory and experiment are often the case for metastable glass ceramics such as Li7P3S11,

where the presence of less conductive glassy phases in the grain boundaries formed as

a result of incongruent melting are a negative influence: for example, AIMD simulations

predict the inherent theoretical conductivity of Li7P3S11 is 5.7×10−2 S·cm−1 whereas the

measured values are on the order of 1.3×10−3 S·cm−1.179 In contrast, for congruent melting

ceramic materials that form single-phase crystalline compositions such as Li10GeP2S12

or Na11Sn2PS12, theory and experimental conductivity values are similar. For the latter,

AIMD simulations predict 2.4×10−3 S·cm−1 in good agreement with the experimental

value of 1.4×10−3 S·cm−1 and for the former, theory predicts 9×10−3 S·cm−1 whereas the

experimental value is slightly higher at 1.2×10−2 S·cm−1.105,202

The synthesis of Li6B7S13I relies on two factors: achieving intimate mixing of the

metastable supertetrahedral precursor with LiI and taking advantage of the solid-liquid

interface formed by the molten halide salt. While the precise reaction mechanism is not yet

understood, dissolution of the adamantanoid into the molten salt and subsequent crystal-

lization of the cubic phase from the melt can be ruled out because the fraction of LiI is too

low. This reaction may occur via a quasi solid-state conversion process at 500°C – at the

LiI liquid interface - that is greatly aided by high diffusivity of lithium (and iodine) ions in

the solid-state. The latter would facilitate rearrangement of the adamantanoid framework

to form the boracite. Furthermore, by subtle variations in the second step of the synthesis,

a Li-ordered tetragonal polymorph of Li6B7S13I can be formed, which phonon calculations

determined to be dynamically unstable on the potential energy surface. Thus, synthetic

control is required to form cubic Li6B7S13I.

Future studies of this new thioboracite material class will aim at the discovery of related

isostructural, and ionically conductive materials that will provide a novel platform to study

and build on the fundamental understanding of ion-conduction.
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7.4 Experimental Procedures

7.4.1 Preparation of Li6B7S13I

Stoichiometric amounts of Li2S (Sigma Aldrich, 99.98%), 11B (Cambridge Isotope Labs,

99%), S (recrystallized from hot toluene), and LiI (Sigma Aldrich, >99.9%) with a total

mass of 500 mg were ground together. All handling of powders was carried out in an Ar-

filled glovebox. The precursor mixture was pelletized and supported in a glassy carbon

crucible, which was placed in a quartz tube. The quartz tubes were sealed under vacuum

and placed vertically in a furnace. The sample was heated following the same procedure to

synthesize Li7.5B10S18I1.5.187 After heat treatment, the powder was ground and pelletized

again. The tube was heated up to 500°C at a heating rate of 1°C/minute and held for 36

hours, followed by cooling to room temperature at a rate of 0.5°C/minute. The resulting

powder was ground and then used for subsequent analysis. The final product was gently

separated to pick out crystals suitable for single-crystal X-ray diffraction.

The tetragonal variant was prepared similarly by upscaling the total powder quantity to

2 grams. The larger mass may lead to slower heat transfer across the material in the crucible,

altering the cooling rate so that the tetragonal polymorph is stabilized, although the exact

reason for these conditions favoring the tetragonal phase is not yet well understood.

7.4.2 Preparation of Li5B7S13

Following the same procedure above, stoichiometric amounts of Li2S, 11B, and S were ground

together. The tube was heated up to 550°C at 1°C/minute and held for 3 hours, cooled

to 500°C at 0.4°C/minute and held for 100 hours, and then finally cooled to room tem-

perature at 0.25°C/minute. The resulting material was a multi-phase mixture of Li5B7S13,

Li6+2xB10S18Sx, Li2S, and Li3BS3. The powder was gently separated to pick out single

crystals of Li5B7S13.
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7.4.3 Powder X-ray Diffraction

Laboratory X-ray powder diffraction data was collected on a Panalytical Empyrean diffrac-

tometer outfitted with a PIXcel two-dimensional detector using Cu-Kα radiation. The

ground samples were spread on a zero-background Si holder. The surface of the Si was

covered with a thin layer of vacuum grease over which the powder was spread, and then

sealed with a Kapton film and vacuum grease to prevent any atmospheric exposure during

measurement. The measurement was recorded in Bragg-Brentano geometry.

7.4.4 Single-crystal X-ray Diffraction and Structure Resolution

Colorless single crystals with dimensions of 0.01×0.04×0.08 mm3 were covered by Paratone-

N oil, selected under an optical microscope, and scanned to determine their quality. The

data was collected on a diffractometer (BRUKER KAPPA equipped with a SMART APEX

II CCD) using graphite-monochromated Mo-Kα radiation. A flow of liquid nitrogen using

an OXFORD Cryostream controller 700 at 280K was used to prevent reactivity of the

crystals with air and moisture. The data was collected by scanning ω and φ of 0.36°in a

few groups of frames at different φ angles with an exposure time of 50 and 30 seconds

per frame for Li6B7S13I and Li5B7S13 respectively. The data was corrected for Lorentz and

polarization effects. The absorption corrections were carried out by the multi-scan method

using SADABS since the crystals do not have clear faces. The Cell now software was used

to check for potential twinning. The structures were solved using direct method to locate

the positions of B, S, and I atoms. After locating the B-S framework and the heavy iodide

sites, first, their atomic positions were anisotropically refined using the least squares method

(SHELXTL package), and then the Li positions were located from the electron density in the

Fourier map (Li-S bonds were very similar in length to those found in binary and ternary Li

sulfides). Li site occupancies were then anisotropically refined. The refinements converged

to good residual values R1 and wR2. No constraints were used during the refinements.

For Li6B7S13I, a lower symmetry refinement was carried out in the tetragonal space
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group I -4c2 (No. 120), which showed lead to an unstable refinement and negative atomic

displacement parameters on the boron atoms, confirming that the high-symmetry cubic

space group is correct for the single-crystal measurement.

7.4.5 Neutron Powder Diffraction (NPD) and Refinement

11B was used as a precursor in the synthesis because of the large absorption cross-section

of natural B containing 10B. Powder samples were loaded into a 6 mm vanadium can

under He atmosphere with a copper gasket and aluminum lid. Samples were collected on

POWGEN (Beamline 1B) at the Spallation Neutron Source (SNS) in Oak Ridge National

Laboratory with a center wavelength of 1.5 Å, which can provide high resolution data

up to dmax ∼ Å (and Qmax ∼12 Å-1). The sample was measured at a temperature of 300

K. The resulting diffraction patterns were refined by the Rietveld method using TOPAS

version 6 (Bruker – AXS). NIST Si 640d was used as an external standard for instrument

calibration. Time-of-flight (TOF) data was converted to d-spacing data using the modified

second-order polynomial TOF = ZERO + DIFC*d + DIFA*d2 +DIFB/d, where ZERO

is a constant, DIFC is the diffractometer constant, DIFA and DIFB are empirical terms

to correct the sample displacement and absorption caused peak shift.174 ZERO and DIFC

were determined from the refinement of the standard, while DIFA and DIFB were allowed

to vary to account for the sample displacements/absorption. To describe the peak profile,

a back-to-back exponential function convoluted with a symmetrical pseudo-Voigt function

were used.

7.4.6 Ionic Conductivity and Activation Energy Measurements

For activation energy measurements, 100-200 mg of powder was pressed between two ti-

tanium rods in a custom-made 10 mm diameter cell with a hydraulic press at 3 tons in

an Ar-filled glovebox. Electrochemical impedance spectroscopy (EIS) was measured from

7 MHz to 100 mHz with an amplitude of 100 mV using a Bio-logic MTZ-35 impedance

analyzer. The measurements were carried out in the temperature range of 25°C to 60°C.
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7.4.7 Cyclic Voltammetry

Handling and pressing of all powders were performed in an argon-filled glovebox. Approx-

imately 60 mg of argyrodite (Li6PS5Cl) was pressed between two titanium rods in a 10

mm diameter cell with a hydraulic press at 2 tons. Cubic-Li6B7S13I was ground with dried

carbon (Super P) in a 9:1 mass ratio and 12 mg of the composite was pressed on top at

2 tons. A 10 mm diameter In foil was layered with an 8 mm diameter Li foil to form the

Li-In negative electrode on the other side of the argyrodite layer. The cyclic voltammogram

was measured with a scan rate of 1 mV/s between 0 to 3.7 V vs Li-In (0.62 – 4.32 V vs.

Li/Li+) at room temperature (25°C).

7.4.8 Density Functional Theory (DFT) Calculations

DFT calculations were carried out using the Vienna ab initio simulation package (VASP)48

using the projected augmented wave (PAW) approach.203 The Perdew-Burke-Ernzerhof

(PBE) generalized gradient approximation (GGA) was used for the exchange-correlation

functional.204 The Python Materials Genomics (pymatgen)80 library and the pymatgen-

diffusion add-on package199 were used for some of the pre and post-processing of input

files. Due to the small amount of lithium disorder in the crystal structure, enumeration

of symmetrically distinct atomic configurations of the primitive cell was carried out using

pymatgen’s wrapper to Hart and Forcade’s enumlib.205 The two unique structures that were

derived were fully relaxed by employing DFT calculations to calculate their energies and

identify the lowest energy ordering. Geometry optimization was performed on the primitive

cell (54 atoms) with a plane wave energy cutoff set to 520 eV and a k-point density of

approximately 1000/atom. The total energy was converged to 10-6 eV.

7.4.9 Phase and Electrochemical Stability Calculation

Phase stability of cubic-Li6B7S13I was calculated by building a 0 K Li-B-S-I phase diagram.

The thermodynamic stability was predicted by constructing the convex hull of the DFT
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total energy for each phase. If a phase is not on the hull it can be quantified by its energy

above the hull (Ehull) - the driving force for decomposition to the ground states.

A grand potential phase diagram was made to estimate the phase equilibria at the

solid electrolyte/electrode interface.93,206 The SE/anode and SE/cathode interfaces are

approximated as open systems (assuming Li+ is the only mobile species) at µLi = µ0
Li

and µLi = µ0
Li − e∆V , respectively, where µ0

Li is the chemical potential of Li metal, e is

the elementary charge, and ∆V is the voltage of the charged cathode versus Li/Li+. The

thermodynamic potential at 0 K is the lithium grand potential; φ = E−µLiNLi, where E is

the enthalpy per formula unit (approximately equal to the computed DFT energy), and NLi

is the number of Li atoms per formula unit for a specific phase. The phase equilibria can

be predicted as the composition changes with lithium chemical potential by using a similar

phase diagram with φ instead of E. To speed up the computation, the Materials Project

(MP)207 open database was used for the computed energies of all known phases in the

Li-B-S-I phase space. The phase diagram can then be constructed using the phase diagram

module in pymatgen. The calculation parameters detailed earlier were chosen accordingly

to match those used in the MP for compatibility.

7.4.10 Ab-initio molecular dynamics (AIMD) simulations

AIMD simulations were performed in the canonical (NVT) ensemble with a Nosé-Hoover

thermostat.208,209 Cell parameters were fixed at the values obtained from the DFT structural

optimization step at 0 K. The initial temperature was set to 100 K after static calculations

and the samples were first heated up to the targeted temperature (600, 675, 750, 900 K)

by velocity scaling for 2 ps, and then equilibrated at the desired temperature for 5 ps. The

MD simulations at each temperature were carried out for 100 ps with a timestep of 1 fs.

Non-spin polarized calculations with a plane-wave energy cutoff of 520 eV and a Γ-centered

1×1×1 k-point grid was used.

From an AIMD simulation the diffusivity can be extracted using the relation:
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D =
1

2dt

〈
[∆r(t)]2

〉
Where d is the dimensionality factor (3 for three-dimensional crystal structures).

〈
[∆r(t)]2

〉
is the average mean square displacement (MSD) over a time duration t and is given as:

〈
[∆r(t)]2

〉
=

1

N

N∑
i=1

〈
[ri(t+ t0)]2 − [ri(t0)]2

〉
Which represents the average displacement of Li atoms over a time t. N is the number

of lithium ions, ri(t) is the displacement of an individual Li atom at time t, and to is the

initial time.

The diffusivity is obtained by performing a linear fit of the MSD vs 2dt plot and follows

the Arrhenius relation:

D = Doe
−Ea/kBT

where Ea is the activation energy, Do is the diffusivity at infinite temperature, kB is the

Boltzmann constant, and T is the temperature. AIMD simulations are carried out at several

temperatures, and the activation energy is extracted from a linear fit of an Arrhenius plot

of ln(Do) vs. 1/T .

The trajectories from the simulations are analyzed and the probability density function

is used to determine the low energy (high probability) sites in the crystal structure and the

migration pathways. The probability density function can be defined in a uniform spatial

grid and is determined by averaging the number of lithium ions at each grid point for a

given time scale.

7.4.11 Phonon Calculations

Phonon dispersion calculations were performed using the VASP implementation of density

functional perturbation theory (DFPT) and the PHONOPY software package.210 For the
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structure relaxation, the same parameters listed above were used. The DFPT was performed

with a convergence criterion for the total energy set to 10-8 eV. Phonon calculations were

performed on the primitive cell, with lattice vectors larger than 10 Å. The high-symmetry

band paths in the Brillouin zone of the crystal structures were determined using the SeeK-

path tool implemented in python.211
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Chapter 8

Summary and Outlook

This thesis presents many different solid electrolytes for all-solid-state batteries with a focus

on sulfide-based materials. This includes both crystalline and amorphous solid electrolyte

materials. Experimental and computational investigations into the structure of these ma-

terials is used to identify the factors that dictate fast ion transport. Depending on the

structural framework, different approaches can be used to tune or improve the conductivity.

The archetypal thiophosphate material, Li3PS4, was studied using in-situ variable tem-

perature neutron powder diffraction in chapter 3. Li3PS4 has been widely studied and

used as starting point to develop many other ion conductors, however, an in-depth un-

derstanding of the lithium substructure in the three polymorphs had been lacking. Using

MEMs and BVSE techniques with NPD to analyze the structure, it was discovered that

the high-temperature α-polymorph has superior three-dimensional Li+ diffusion pathways

compared to its β and γ polymorphs, which leads to a favourable energy landscape for

Li+ migration. This is correlated to the bcc anion framework of the α-phase that favours

the formation of edge and face-sharing Li tetrahedra. Additionally, the highly conductive

nanoporous stabilized β-Li3PS4 and Si-doped Li3.25Si0.25P0.75S4 phases were studied. It was

found that a significant amount of hydrogen containing amorphous component was present

in the nanoporous material. Heating resulted in the removal of the hydrogen containing
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component and the β-phase is no longer maintained, transforming back to the poorly con-

ducting γ-polymorph when cooled. Thus, the presence of this amorphous component is

what stabilizes the nanoporous β phase at room-temperature. The Si-substituted variant on

the other hand results in stabilization of the β structure by inducing entropic disorder of the

lithium, and the phase transition to an analogous α-polymorph upon heating is suppressed.

Building on the concepts pertaining to the Li3PS4 material, a new thiophosphate,

Li1+2xZn1-xPS4, was synthesized and is presented in chapter 4. This compound stems from

a solid solution between a mixture of LiZnPS4 and Li3PS4. It had previously been predicted

by computational methods to have high ionic conductivity based on its bcc anion framework.

The crystal structure was studied using synchrotron XRD and NPD, which allowed for clear

determination of interstitial lithium defects. The introduction of Li interstitials was found to

induce Li/Zn site disordering, and significantly increase the ionic conductivity. However, the

increased conductivity comes at the cost of an increased degree of metastability, ultimately

making the very lithium rich phases difficult to stabilize at room temperature. Despite this

challenge, a glass-ceramic variant of the lithium rich Li2.5Zn0.25PS4 phase can be formed

with ion conductivity approaching 10−3 S·cm−1.

The subsequent chapters turn the focus away from thiophosphates, to a relatively

underexplored class of sulfides, thioborates. In chapter 5, a different approach focusing of

glassy solid electrolytes was undertaken. Glasses in general are advantageous because they

can be processed into grain boundary and defect free monolithic sheets, which is ideal to

prevent dendrite formation through the electrolyte layer. A new amorphous thioborosilicate

lithium-ion conductor (termed ‘LIBOSS’) was synthesized by adding a SiO2 glass former

to the Li2S-B2S3-LiI thioborate mixture. This oxysulfide glass has unique advantages - it

is truly an oxysulfide ion conductor with high ionic conductivities (>1×10−3 S·cm−1) and

a very high oxygen:sulfur content of 1:1, which improves the air stability compared to pure

sulfide materials such as Li3PS4. The optimal composition has an ionic conductivity of

2.1×10−3 S·cm−1 and is one of the fastest amorphous lithium-ion conductors to date. The

structure of the glass was also studied using high-resolution MAS-NMR to understand
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what factors drive the high-level of ion transport. It was found that an optimum amount of

fragmented units must be achieved, which appears to be critical for increasing the number

of mobile lithium carriers in the glass. An all-solid-state battery using the LIBOSS glass

electrolyte with a TiS2 cathode shows excellent cycling performance with near theoretical

capacity for over 130 cycles. The LIBOSS glass is a promising material to explore for both

developing the understanding of transport in glasses and for practical application. This

concept can extend to a broader scope that includes alternative halides and glass forming

oxides, creating a new avenue in the development of solid electrolytes for all-solid-state

batteries.

The topic of thioborates is continued in chapter 6 and 7, but the focus is shifted to

crystalline materials. In chapter 6, a new lithium-ion conductor, Li7.5B10S18X1.5 (X = Cl,

Br, I), with a unique superadamantanoid structure is presented. The materials were studied

using single-crystal XRD and NPD. Li7.5B10S18X1.5 forms an ordered supertetrahedral

framework with a highly disordered “glassy salt” sublattice within the void spaces. Neutron

PDF was used to study the local structure of this disordered sublattice, where clear local

structure ordering of the halide is present within the channels. The weak bonding of the

anion-cation pairs and the highly disordered sublattice leads to overall fast-ion conduction,

which can be effectively increased by modifying the polarizability of the anion sublattice.

The lithium-ion conductivity is increased up to 1.4×10−3 S·cm−1 by substituting Cl- or Br-

for the more polarizable I- anion. A softer sublattice consequently leads to a decrease in

the activation energy, which in turn leads to an increase in ionic conductivity.

Continuing the exploration of these superadamantanoid phases, a new thermodynami-

cally stable thioboracite material was discovered. In chapter 7, a promising thioborate-based

solid electrolyte is discovered by using a quasi solid-state conversion process, which facil-

itates the rearrangement of the adamantanoid framework. Li6B7S13I is the first material

with a thio-boracite structure, which crystallizes in a cubic space group, resulting in a per-

ovskite topology and argyrodite-like lithium substructure that leads to a high theoretical

lithium ion conductivity of 5.2×10−3 S·cm−1. The fast Li+ transport is explored using both
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computational (DFT and AIMD) and experimental techniques (diffraction and EIS). By

altering the synthesis slightly, a less stable (confirmed by phonon calculations) and less

conductive Li-ordered tetragonal polymorph of Li6B7S13I can be formed. The importance

of controlling (i.e., minimizing) the grain boundary resistance is also highlighted, which

typically for sulfides are assumed to be negligible, but is shown here to be detrimental

when amorphous impurities reside at the interface. This new class of materials provides

an exciting platform for 1) manipulating the conductivity by aliovalent substitution or by

inducing anion disorder via changes in composition and 2) studying and building on the

fundamental understanding of ion-conduction.

The results of this thesis present some promising avenues for the development of solid

electrolytes and are important to understand some of the factors that govern ion transport.

These new classes of materials as well as a fundamental understanding of their structures

and the ion transport within them will hopefully lead to the development of many new and

improved fast-ion conductors. A solid electrolyte for commercial application should ideally

be cost-effective and easily processed at scale. The electrolytes presented here use relatively

cheap and abundant elements (e.g. sulfides and oxides of B, Si, P, etc.), although it remains

to be seen if sulfide based materials can be processed cheaply at scale. Thus, research into

alternate synthesis techniques and up-scaling is required. Amorphous electrolytes such as

the ones presented in this thesis may be a strong candidate for large scale production

because of the large glass manufacturing industry and the technical knowledge behind

synthesizing thin and defect free sheets of glasses.

It is an insurmountable challenge to create a solid electrolyte that can address every

single aspect of the battery - the positive electrode, the separating electrolyte, and the

anode. The solution to this problem may be to use several different electrolytes: one that

is kinetically stable with Li metal, a highly conductive material as the separator, and a

high voltage stable material that can be used in the positive electrode. Future work will

have to focus on the discovery of high-voltage electrolytes to pair with the cathode and

kinetically stable electrolytes to pair with the anode. Sulfides in contact with high-voltage
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cathodes tend to react and become ionic and electronic insulators, which passivate the

interface. Thus, alternate chemistries such as oxide and halide solid electrolytes need to

be explored that may be able to mitigate these issues. From the existing set of materials

in the literature, higher voltage stable materials tend to have a less polarizable sublattice

and may not be as ionically conductive as their sulfide counterparts. One way to mitigate

this issue is to process these high-voltage stable electrolytes into thin nanometer coating

layers on the surface of the cathode particles to act as a protective layer. Then, a sulfide

electrolytes with lower stability but higher ion conductivity can be used in the positive

electrode.

Finally, engineering the integration of these solid electrolytes into multi-layer stack cells

with higher capacity is another crucial target for commercialization. Industry is already

pursuing solid-state batteries and tackling these problems with very ambitious goals and

timelines, where some automotive manufactures have announced commercial solid-state cells

by 2022. Regardless of what stage of development they are in, solid-state batteries overall can

benefit from improved solid electrolyte materials that are more intrinsically electrochemically

and chemically stable and more ionically conductive. There is huge potential for solid-state

batteries to help meet global energy demands and enable renewable energy sources, but a

combination of creating the right materials and engineering to scale the manufacturing in

a cost-effective manner is required to successfully commercialize this technology.
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188 M. Grüne, “Complex lithium dynamics in the novel thioborate Li5B7S13 revealed by
NMR relaxation and lineshape studies,” Solid State Ionics, vol. 78, no. 3-4, pp. 305–313,
1995.

189 J. Rumble and P. Vaqueiro, “Na5(Ga4S)(GaS4)3·6H2O: A three-dimensional thiogallate
containing a novel octahedral building block,” Solid State Sciences, vol. 13, no. 5, pp. 1137–
1142, 2011.

185



190 N. Zheng, X. Bu, and P. Feng, “Na5(In4S)(InS4)3·6H2O, a zeolite-like structure with
unusual SIn4 tetrahedra,” Journal of the American Ceramic Society, vol. 127, no. 15,
pp. 5286–7, 2005.

191 J. C. Bachman, S. Muy, A. Grimaud, H. H. Chang, N. Pour, S. F. Lux, O. Paschos,
F. Maglia, S. Lupart, P. Lamp, L. Giordano, and Y. Shao-Horn, “Inorganic Solid-State
Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduc-
tion,” Chemical Reviews, vol. 116, no. 1, pp. 140–62, 2016.

192 S. Stramare, V. Thangadurai, and W. Weppner, “Lithium Lanthanum Titanates: A
Review,” Chemistry of Materials, vol. 15, no. 21, pp. 3974–3990, 2003.

193 M. Yashima, M. Itoh, Y. Inaguma, and Y. Morii, “Crystal structure and diffusion path
in the fast lithium-ion conductor La0.62Li0.16TiO3,” Journal of the American Chemical
Society, vol. 127, no. 10, pp. 3491–5, 2005.

194 P. R. Rayavarapu, N. Sharma, V. K. Peterson, and S. Adams, “Variation in structure
and Li+-ion migration in argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes,”
Journal of Solid State Electrochemistry, vol. 16, no. 5, pp. 1807–1813, 2011.

195 A. Kuhn, V. Duppel, and B. V. Lotsch, “Tetragonal Li10GeP2S12 and Li7GePS8 - ex-
ploring the Li ion dynamics in LGPS Li electrolytes,” Energy & Environmental Science,
vol. 6, no. 12, 2013.

196 C. Yu, S. Ganapathy, N. J. J. de Klerk, E. R. H. van Eck, and M. Wagemaker, “Na-ion
dynamics in tetragonal and cubic Na3PS4, a Na-ion conductor for solid state Na-ion
batteries,” Journal of Materials Chemistry A, vol. 4, no. 39, pp. 15095–15105, 2016.

197 H.-J. Deiseroth, J. Maier, K. Weichert, V. Nickel, S.-T. Kong, and C. Reiner, “Li7PS6 and
Li6PS5X (X: Cl, Br, I): Possible Three-dimensional Diffusion Pathways for Lithium Ions
and Temperature Dependence of the Ionic Conductivity by Impedance Measurements,”
Zeitschrift für anorganische und allgemeine Chemie, vol. 637, no. 10, pp. 1287–1294,
2011.

198 M. Brinek, C. Hiebl, K. Hogrefe, I. Hanghofer, and H. M. R. Wilkening, “Structural
Disorder in Li6PS5I Speeds 7Li Nuclear Spin Recovery and Slows Down 31P Relaxation-
Implications for Translational and Rotational Jumps as Seen by Nuclear Magnetic Res-
onance,” The Journal of Physical Chemistry C, vol. 124, no. 42, pp. 22934–22940, 2020.

199 Z. Deng, Z. Zhu, I.-H. Chu, and S. P. Ong, “Data-Driven First-Principles Methods for
the Study and Design of Alkali Superionic Conductors,” Chemistry of Materials, vol. 29,
no. 1, pp. 281–288, 2016.

200 S. Wenzel, S. J. Sedlmaier, C. Dietrich, W. G. Zeier, and J. Janek, “Interfacial reactivity
and interphase growth of argyrodite solid electrolytes at lithium metal electrodes,” Solid
State Ionics, vol. 318, pp. 102–112, 2018.

186



201 L. Zhou, A. Assoud, Q. Zhang, X. Wu, and L. F. Nazar, “New Family of Argyrodite
Thioantimonate Lithium Superionic Conductors,” Journal of the American Chemical
Society, vol. 141, no. 48, pp. 19002–19013, 2019.

202 Z. Zhang, E. Ramos, F. Lalère, A. Assoud, K. Kaup, P. Hartman, and L. F. Nazar,
“Na11Sn2PS12: a new solid state sodium superionic conductor,” Energy & Environmental
Science, vol. 11, no. 1, pp. 87–93, 2018.

203 P. E. Blochl, “Projector augmented-wave method,” Physical Review B, vol. 50, no. 24,
pp. 17953–17979, 1994.

204 J. P. Perdew, M. Ernzerhof, and K. Burke, “Rationale for mixing exact exchange with
density functional approximations,” The Journal of Chemical Physics, vol. 105, no. 22,
pp. 9982–9985, 1996.

205 G. L. W. Hart and R. W. Forcade, “Algorithm for generating derivative structures,”
Physical Review B, vol. 77, no. 22, 2008.

206 S. P. Ong, L. Wang, B. Kang, and G. Ceder, “Li-Fe-P-O2 Phase Diagram from First
Principles Calculations,” Chemistry of Materials, vol. 20, no. 5, pp. 1798–1807, 2008.

207 A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter,
D. Skinner, G. Ceder, and K. A. Persson, “Commentary: The Materials Project: A
materials genome approach to accelerating materials innovation,” APL Materials, vol. 1,
no. 1, 2013.

208 W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Physical
Review A, vol. 31, no. 3, pp. 1695–1697, 1985.
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A.1 List of Supplementary Figures and Tables

A.1.1 γ-Li3PS4

Figure A.1: Rietveld refinement of γ-Li3PS4 using TOF neutron powder diffraction data
measured at 25◦C (contains 9 wt.% Li4P2S6 impurity).

Table A.1: Crystallographic data for γ-Li3PS4 obtained from Rietveld refinement of neu-
tron powder diffraction at 25◦C. Unit Cell: Orthorhombic Pmn21 (31). a = 7.7557(3) Å, b
= 6.5627(3) Å, c = 6.1362(3) Å, V = 312.32(2) Å3, Z = 2.

Label Wyck. Pos. x y z Occ. Biso (Å2)
Li1 4b 0.2441(7) 0.3122(10) -0.0029(13) 1 1.50(9)
Li2 2a 0 0.1493(15) 0.475(2) 1 2.4(2)
P 2a 0 0.8174(5) 0.9955(4) 1 0.71(5)
S1 4b 0.2177(4) 0.6717(6) 0.8864(6) 1 0.76(7)
S2 2a 0 0.1115(8) 0.8935(9) 1 0.55(10)
S3 2a 0 0.8094(9) 0.3274(6) 1 0.64(11)
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A.1.2 β-Li3PS4

Figure A.2: Rietveld refinement of β-Li3PS4 using TOF neutron powder diffraction data
measured at 350◦C (contains 9 wt.% Li4P2S6 impurity).

Table A.2: Crystallographic data of β-Li3PS4 obtained from Rietveld refinement of neutron
powder diffraction at 350◦C. Unit Cell: Orthorhombic Pnma (62). a = 12.8483(8) Å, b =
8.2772(5) Å, c = 6.1512(3) Å, V = 654.17(7) Å3, Z = 4.

Label Wyck. Pos. x y z Occ. Biso (Å2)
Li1A 8d 0.8489(15) 0.032(2) 0.104(3) 0.666(14) 5.4(4)
Li1B 8d 0.841(3) 0.996(4) 0.371(6) 0.334(14) 5.4(4)
Li2 8d 0.009(3) 0.045(4) 0.582(5) 0.356(8) 5.4(4)
Li3 4c 0.916(5) 1/4 0.804(11) 0.288(16) 5.4(4)
P 4c 0.0876(4) 1/4 0.1772(10) 1 2.95(14)
S1 8d 0.1548(5) 0.0479(7) 0.2978(13) 1 2.50(11)
S2 4c 0.9360(7) 1/4 0.2543(17) 1 2.50(11)
S3 4c 0.1050(7) 1/4 0.8461(15) 1 2.50(11)
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A.1.3 α-Li3PS4

Figure A.3: Refined crystal structure of α-Li3PS4 using a model with no site splitting
(left) compared to a model with all three lithium sites split (right). Sulfur atoms are omitted
for clarity.

Figure A.4: Rietveld refinement of α-Li3PS4 (split-site model) using TOF neutron powder
diffraction data measured at 500◦C (contains 9 wt.% Li4P2S6 impurity).
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Table A.3: Crystallographic data of α-Li3PS4 (split-site model) obtained from Rietveld
refinement of neutron powder diffraction at 500◦C. Unit Cell: Orthorhombic Cmcm (63). a
= 8.6437(5) Å, b = 9.0464(5) Å, c = 8.4781(5) Å, V = 662.94(7) Å3, Z = 4.

Label Wyck. Pos. x y z Occ. Biso (Å2)
Li1 16h 0.724(2) 0.354(2) 0.528(2) 0.400(17) 7.9(8)
Li2 16h 0.716(4) -0.021(6) 0.047(5) 0.219(11) 7.9(8)
Li3 16h 0.059(4) 0.196(5) 0.207(7) 0.130(15) 7.9(8)
P 4c 0 0.8315(5) 1/4 1 4.04(16)
S1 8g 0.3030(8) 0.4569(7) 1/4 1 5.91(17)
S2 8f 0 0.2944(7) 0.5547(8) 1 5.91(17)

Table A.4: Interatomic distances in α-Li3PS4 obtained from Rietveld refinement (using
split-sites model) of neutron powder diffraction at 500◦C.

Center Atom Second Atom Interatomic Distance (Å)
Li1 S2 2.45(2)

S2 2.46(2)
S1 2.54(2)
S1 2.56(2)

Li2 S1 1.89(4)
S2 2.65(5)
S1 2.69(4)
S2 2.77(5)

Li3 S2 2.45(6)
S1 2.49(5)
S1 3.11(4)
S2 3.12(6)

P S2 2.010(7) x 2
S1 2.046(8) x 2
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A.1.4 Li3.25Si0.25P0.75S4

Figure A.5: Rietveld refinement of Li3.25Si0.25P0.75S4 using TOF neutron powder diffraction
data measured at 25◦C.

Table A.5: Crystallographic data of Li3.25Si0.25P0.75S4 obtained from Rietveld refinement
of neutron powder diffraction at 25◦C. Unit Cell: Orthorhombic Pnma (62). a = 13.1420(6)
Å, b = 8.0510(3) Å, c = 6.1327(2) Å, V = 648.88(5) Å3.

Label Wyck. Pos. x y z Occ. Biso (Å2)
Li1A 8d 0.3330(7) 0.0309(10) 0.3871(15) 0.886(13) 2.96(19)
Li1B 8d 0.360(4) 0.008(8) 0.223(11) 0.114(13) 2.96(19)
Li2 8d 0.0088(12) 0.0400(18) 0.558(2) 0.451(12) 2.1(4)
Li3A 4c -0.087(5) ¼ -0.159(15) 0.16(2) 2.0(8)
Li3B 4c -0.080(4) ¼ -0.301(10) 0.20(2) 2.0(8)
P 4c 0.0867(3) ¼ 0.1561(5) 0.75 1.58(7)
Si 4c 0.0867(3) ¼ 0.1561(5) 0.25 1.58(7)
S1 8d 0.1539(3) 0.0365(5) 0.2753(7) 1 2.02(10)
S2 4c -0.0620(4) ¼ 0.2669(12) 1 1.59(12)
S3 4c 0.1029(4) ¼ -0.1726(9) 1 1.39(11)
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Appendix B

Supplementary Information for:

Correlation of Structure and Fast Ion

Conductivity in the Solid Solution

Series Li1+2xZn1-xPS4
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B.1 List of Supplementary Tables

Table B.1: Bond length data of the targeted Li1.5Zn0.75PS4 (actual composition
Li1.194Zn0.903PS4 – i.e. Li1.2Zn0.9PS4) and the targeted Li2Zn0.5PS4 composition (actual
composition Li1.687Zn0.656PS4 – i.e. Li1.7Zn0.65PS4) compared to the stoichiometric com-
pound.

Composition Li - S (2b) Li - S (2d) Li/Zn - S (2a) P-S
LiZnPS4 2.408 - 2.337 2.044
Li1.194Zn0.903PS4 2.4044(15)* 2.5104(16)* 2.2939(17) 2.0967(16)
Li1.687Zn0.656PS4 2.3837(14) 2.6222(14) 2.2897(15) 2.0689(14)

*refinement from synchrotron X-ray data; hence nominal value only

Table B.2: Fitted parameters for the impedance data of the targeted Li1.5Zn0.75PS4 phase
at 60◦C.

Element Value
CPE1 1.054E-4 F·sa−1

a1 0.7501
CPE2 6.352E-10 F·sa−1

a2 0.9301
R2 3492 Ω
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B.2 List of Supplementary Figures

Figure B.1: Rietveld refinement of lab X-ray diffraction patterns of the targeted a)
Li1.5Zn0.75PS4 (70% crystallized) and b) Li2Zn0.5PS4 (69% crystallized) phases mixed with
10 - 11% Si which was used as an internal standard to calculate degree of crystallinity.
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Appendix C

Supplementary Information for:

A Lithium Oxythioborosilicate Solid

Electrolyte Glass with Superionic

Conductivity
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C.1 List of Supplementary Figures

Figure C.1: Rietveld refinement of x = 0 composition mixed with approximately 10 weight
percent Si, which was used as an internal standard to calculate the amount of crystalline
LiI not dissolved in the glass.

Figure C.2: 11B NMR for the x = 0 (blue), 0.25 (orange) and 0.5 (green) compositions
covering the entire spectral width showing the full size of the quadrupolar lineshape at
high field and fast MAS, and without intensity scaling to reflect the boron dilution with
increasing x.
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Appendix D

Supporting Information for:

Fast Li-Ion Conductivity in

Superadamantanoid Thioborate

Halides
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D.1 Details of fitting Nyquist plots

Given that the measurement performed here is at very high frequencies (> 1 MHz), we

see a pre-resistance that can be attributed to parasitic elements (e.g. stray inductance and

resistance of wires/cell) This is simply modeled as parallel inductor and resistor (Inductor1

+ Resistor 1), which gives rise to the initial shift and curvature at the beginning of the

semi-circle.

In general, a semi-circle can be attributed to bulk or grain boundary conductivity. Since

the CPE element is placed in parallel to a resistor (Resistor2 + CPE1), we can calculate

the effective capacitance Ceff using the formula Ceff = (RQ)1/α/R. For the large semi-circle

seen in Figure 6.3, a capacitance of 3.4×10−10 F is calculated, which implies the process

stems from both grain and grain boundary contributions,226 and thus the two contributions

cannot be deconvoluted. The measured resistance represents the total.

Before the linear spike there is also a depressed semi-circle that we attribute to the

solid electrolyte-indium interface. The effective capacitance for this component (Resistor

3 + CPE2) is 3.2×10−4 F, which is much higher than what is typically observed for any

bulk or grain boundary contributions and close to what is expected for sample-electrode

interfaces.226 Finally, at low frequencies, we see a typical linear spike for cells measured in

a blocking configuration (Warburg impedance) that is attributed to the accumulation of

Li+ ions at the interface. This is modelled by a CPE element (CPE 3).

In effect, the resistance of the large semi-circle (Resistor2) is equal to the value of

the intersection of the semi-circle with the real part of the impedance (i.e. the higher

value intercept with the x-axis). This resistance corresponds to the total resistance of the

electrolyte and is used to calculate the total ionic conductivity of the electrolyte at each

temperature.
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D.2 Example of calculating Li and halide content based

on impurity amount from refinement

Iodine material:

Approximately 8 wt%* of LiI impurity from refinement (for 1 g of Li7.5B10S18I1.5, ∼80

mg of LiI is in the mixture).

*Note: 8 wt% of LiI impurity in the final product corresponds to 37 mol% of the original

LiI precursor.

x = 7.5− a; y = 1.5− a

Li7.5B10S18I1.5 → LixB10S18Iy + a · LiI

• MLBSI= 932.19 g/mol, m = 1g n1 = 1.07274×10−3 mol

• MLiI = 133.846 g/mol, m = 80 mg n2 = 5.977×10−4 mol

a =
n2

n1

= 0.55566 ≈ 0.56

x = 7.5− 0.56 = 6.94

y = 1.5− 0.56 = 0.94

Assuming no gaseous side products were formed during synthesis and assuming no amor-

phous phases are present in the mixture, the exact composition of the adamantane phase

should be approximately Li6.94B10S18I0.94. Thus, Li content is then fixed to 7 in the Rietveld

refinement.

Bromine material:

Approximately 7 wt%* of LiBr impurity from refinement (for 1 g of Li7.5B10S18Br1.5,

∼70 mg of LiBr is in the mixture)

204



*Note: 7 wt% of LiBr impurity in the final product corresponds to 46 mol% of the

original LiBr precursor.

x = 7.5− a; y = 1.5− a

Li7.5B10S18Br1.5 → LixB10S18Bry + a · LiBr

• MLBSBr = 857.19 g/mol, m = 1g n1 = 1.1666×10−3 mol

• MLiBr = 86.845 g/mol, m = 70 mg n2 = 8.0603×10−4 mol

a =
n2

n1

= 0.690926 ≈ 0.69

x = 7.5− 0.69 = 6.81

y = 1.5− 0.69 = 0.81
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D.3 List of Supplementary Figures and Tables

D.3.1 Single-Crystal X-ray Diffraction

Table D.1: Crystallographic data for Li7.5B10S18X1.5 (X = Cl, Br, I) obtained from single
crystal XRD.

Crystal Data
Formula Li4.40B10S18Cl1.80 Li5.62B10S18Br1.69 Li6.75B10S18I1.62

Formula Weight 779.54 859.17 937.06
Crystal System Monoclinic Monoclinic Monoclinic
Space Group C 2/c (No. 15) C 2/c (No. 15) C 2/c (No. 15)
a (Å)
b (Å)
c (Å)
β (°)

21.162(2)
21.225(2)

16.1338(18)
128.9178(19)

21.2106(13)
21.2461(15)
16.2578(11)
128.8222(14)

21.3186(12)
21.2724(12)
16.2093(9)

128.7696(14)

V (Å3) 5638.3(10) 5708.0(7) 5731.3(6)
Z 8 8 8
Calc. Density (g/cm3) 1.837 2.000 2.174
Abs.coef. µ (Mo Kα) (mm−1) 1.543 3.720 3.099
F(000) 3055 3312 3554
Crystal Size (mm) 0.04 × 0.13 × 0.13 0.02 × 0.09 × 0.10 0.02 × 0.07 × 0.1
Data Collection
Temperature (K) 200 296 280
Radiation (Å) Mo Kα, 0.71073 Mo Kα, 0.71073 Mo Kα, 0.71073
Theta range for data collection 1.6 - 28.0° 1.6 - 28.0° 1.6 - 28.0°

Index ranges
-27 ≤ h ≤ 24
27 ≤ k ≤ 28
-20 ≤ l ≤ 21

-28 ≤ h ≤ 28
-28 ≤ k ≤ 25
-21 ≤ l ≤ 21

-28 ≤ h ≤ 28
-28 ≤ k ≤ 28
-21 ≤ l ≤ 21

Reflections collected 30170 26218 31038
Independent reflections 6807 (Rint = 0.023) 6702 (Rint = 0.046) 6926 (Rint = 0.054)
Completeness to θ = 25.242° 100% 97% 100%
Absorption correction Multi-scan Multi-scan Multi-scan
Max. and min. transmission 0.7460, 0.7025 0.7460, 0.6593 0.7460, 0.6605
Refinement

Refinement method
Full-matrix least-

squares on F2

Full-matrix least-
squares on F2

Full-matrix least-
squares on F2

Data/restraints/parameters 6807/0/336 6702/0/377 6926/0/428
Goodness of fit on F2 1.53 1.12 1.10

Final R indices [I>2sigma(I)]
R1 = 0.0636

wR2 = 0.1693
R1 = 0.0674

wR2 = 0.1656
R1 = 0.0510

wR2 = 0.1024

R indices (all data)
R1 = 0.0753

wR2 = 0.1693
R1 = 0.0971

wR2 = 0.1656
R1 = 0.0862

wR2 = 0.1024
Largest diff. peak and hole -0.97 and 5.41 e·Å−3 -1.72 and 2.30 e·Å−3 -2.36 and 2.53 e·Å−3
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Table D.2: Atomic coordinates, occupation factor, and equivalent isotropic displacement
parameters of Li7.5B10S18Cl1.5 obtained from single-crystal XRD measured at 200 K.

Atom Wyck. Pos. x y z Occ. Uiso (Å2)
B1 8f 0.0440(4) 0.1592(3) 0.4661(6) 1 0.0128(13)
B2 8f 0.0891(4) 0.1314(3) 0.0169(5) 1 0.0115(12)
B3 8f 0.0910(4) 0.0687(3) 0.1937(5) 1 0.0104(12)
B4 8f 0.1230(4) 0.2137(3) 0.2019(5) 1 0.0112(12)
B5 8f 0.2260(4) 0.1028(3) 0.0106(5) 1 0.0125(13)
B6 8f 0.2294(4) 0.0416(3) 0.1825(5) 1 0.0110(12)
B7 8f 0.2621(4) 0.1853(3) 0.1904(5) 1 0.0115(12)
B8 8f 0.2658(4) 0.1225(3) 0.3682(5) 1 0.0107(12)
B9 8f 0.2673(4) 0.4838(3) 0.1425(5) 1 0.0118(12)
B10 8f 0.2938(4) 0.2633(3) 0.3688(5) 1 0.0127(13)
S1 8f 0.01133(9) 0.23054(7) 0.12779(12) 1 0.0130(3)
S2 8f 0.02093(9) 0.08456(7) 0.38396(12) 1 0.0122(3)
S3 8f 0.02223(9) 0.15068(7) 0.56457(12) 1 0.0133(3)
S4 8f 0.11349(9) 0.05420(7) 0.09646(11) 1 0.0104(3)
S5 8f 0.14748(9) 0.20413(7) 0.10545(11) 1 0.0105(3)
S6 8f 0.15082(9) 0.13929(7) 0.28833(11) 1 0.0103(3)
S7 8f 0.15868(9) 0.16299(7) 0.54412(12) 1 0.0121(3)
S8 8f 0.18066(9) 0.28315(7) 0.29265(12) 1 0.0136(3)
S9 8f 0.23855(9) 0.40373(7) 0.07278(12) 1 0.0125(3)
S10 8f 0.24071(9) 0.46785(7) 0.23463(12) 1 0.0127(3)
S11 8f 0.25636(9) 0.02703(7) 0.09308(12) 1 0.0119(3)
S12 8f 0.28791(10) 0.17457(7) 0.09852(13) 1 0.0159(3)
S13 8f 0.29452(9) 0.11056(7) 0.27714(11) 1 0.0101(3)
S14 8f 0.29407(9) 0.05157(7) 0.45509(12) 1 0.0135(3)
S15 8f 0.32286(9) 0.25500(7) 0.27837(12) 1 0.0135(3)
S16 8f 0.32579(9) 0.19109(7) 0.46079(12) 1 0.0121(3)
S17 8f 0.38324(9) 0.49629(7) 0.22272(12) 1 0.0129(3)
S18 8f 0.38883(9) 0.37926(7) 0.07896(12) 1 0.0135(3)
Li1 4e 0 0.1645(10) 0.25 0.81(8) 0.019(7)
Li2 4e 0.5 0.4368(14) 0.25 1.02(10) 0.050(9)
Li3 8f 0.1736(12) -0.0569(9) -0.0379(15) 0.76(6) 0.033(7)
Li4 8f 0.4711(14) 0.2399(14) 0.373(3) 0.65(7) 0.058(12)
Li5 8f -0.0288(17) 0.3409(15) 0.074(3) 0.70(8) 0.085(17)
Li6 8f 0.342(2) 0.3843(17) 0.284(2) 0.58(7) 0.060(14)
Li7 4d 0.25 0.25 0.5 0.63(10) 0.056(16)
Li8 8f 0.348(3) 0.269(2) 0.084(4) 0.49(8) 0.08(2)
Cl1 4e 0.5 0.2329(3) 0.25 0.836(16) 0.080(3)
Cl2 8f 0.0297(3) 0.3591(2) -0.0253(6) 0.853(14) 0.123(3)
Cl3 4e 0 0.5543(4) 0.25 1.06(2) 0.240(9)
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Table D.3: Anisotropic displacement parameters of Li7.5B10S18Cl1.5 obtained from single-
crystal XRD measured at 200 K.

Atom U11 U22 U33 U23 U13 U12

B1 0.010(3) 0.013(3) 0.013(3) -0.001(2) 0.006(3) -0.001(2)
B2 0.010(3) 0.014(3) 0.011(3) -0.001(2) 0.006(3) -0.001(2)
B3 0.010(3) 0.012(3) 0.012(3) 0.000(2) 0.008(3) -0.001(2)
B4 0.010(3) 0.012(3) 0.011(3) 0.000(2) 0.006(3) -0.001(2)
B5 0.017(3) 0.012(3) 0.013(3) -0.002(2) 0.011(3) -0.002(3)
B6 0.012(3) 0.012(3) 0.010(3) 0.000(2) 0.008(3) 0.000(2)
B7 0.011(3) 0.013(3) 0.012(3) -0.002(2) 0.008(3) -0.001(2)
B8 0.010(3) 0.013(3) 0.011(3) -0.001(2) 0.007(3) -0.001(2)
B9 0.015(3) 0.011(3) 0.012(3) -0.001(2) 0.010(3) -0.001(2)
B10 0.010(3) 0.014(3) 0.012(3) -0.004(2) 0.005(3) -0.001(2)
S1 0.0085(6) 0.0145(7) 0.0145(7) -0.0025(5) 0.0065(6) -0.0006(5)
S2 0.0093(6) 0.0129(7) 0.0141(7) -0.0014(5) 0.0072(6) 0.0004(5)
S3 0.0094(6) 0.0184(7) 0.0100(6) -0.0005(5) 0.0050(6) -0.0008(5)
S4 0.0111(6) 0.0111(6) 0.0105(6) -0.0007(5) 0.0074(6) -0.0007(5)
S5 0.0102(6) 0.0112(6) 0.0102(6) -0.0006(5) 0.0065(6) -0.0004(5)
S6 0.0093(6) 0.0123(7) 0.0105(6) -0.0012(5) 0.0067(6) -0.0007(5)
S7 0.0086(6) 0.0116(7) 0.0131(7) -0.0034(5) 0.0054(6) -0.0006(5)
S8 0.0103(7) 0.0132(7) 0.0147(7) -0.0048(5) 0.0066(6) -0.0010(5)
S9 0.0174(7) 0.0116(7) 0.0148(7) -0.0025(5) 0.0131(6) -0.0034(5)
S10 0.0165(7) 0.0119(7) 0.0143(7) -0.0016(5) 0.0118(6) -0.0022(5)
S11 0.0150(7) 0.0126(7) 0.0123(7) -0.0010(5) 0.0106(6) -0.0003(5)
S12 0.0220(8) 0.0155(7) 0.0199(8) -0.0065(6) 0.0178(7) -0.0075(6)
S13 0.0103(6) 0.0105(6) 0.0103(6) -0.0007(5) 0.0069(6) -0.0006(5)
S14 0.0164(7) 0.0126(7) 0.0101(7) 0.0000(5) 0.0076(6) -0.0017(6)
S15 0.0143(7) 0.0127(7) 0.0152(7) -0.0045(5) 0.0101(6) -0.0044(5)
S16 0.0114(6) 0.0122(7) 0.0107(6) -0.0025(5) 0.0059(6) -0.0012(5)
S17 0.0126(7) 0.0131(7) 0.0143(7) -0.0027(5) 0.0090(6) 0.0005(5)
S18 0.0143(7) 0.0174(7) 0.0109(7) -0.0020(5) 0.0090(6) -0.0015(6)
Li2 0.031(13) 0.070(19) 0.041(14) 0 0.019(11) 0
Li3 0.040(12) 0.038(12) 0.034(11) -0.012(8) 0.030(10) -0.016(8)
Li4 0.018(12) 0.057(19) 0.09(2) -0.021(16) 0.026(14) 0.004(11)
Li5 0.031(15) 0.051(19) 0.09(3) 0.020(16) -0.002(15) -0.007(12)
Li6 0.06(2) 0.07(2) 0.036(17) 0.036(15) 0.022(16) 0.053(18)
Li8 0.07(3) 0.06(3) 0.08(3) 0.02(2) 0.04(3) -0.03(2)
Cl1 0.063(4) 0.058(3) 0.152(7) 0 0.083(4) 0
Cl2 0.044(2) 0.083(4) 0.187(7) 0.035(4) 0.047(3) -0.013(2)
Cl3 0.037(3) 0.085(5) 0.391(18) 0 0.035(6) 0
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Table D.4: Atomic coordinates, occupation factor, and equivalent isotropic displacement
parameters of Li7.5B10S18Br1.5 obtained from single-crystal XRD measured at 296 K.

Atom Wyck. Pos. x y z Occ. Uiso (Å2)
B1 8f 0.0453(4) 0.1584(3) 0.4653(5) 1 0.0045(6)
B2 8f 0.0888(5) 0.1312(4) 0.0190(7) 1 0.0142(16)
B3 8f 0.0911(4) 0.0680(4) 0.1938(6) 1 0.0125(15)
B4 8f 0.1220(4) 0.2131(3) 0.2023(5) 1 0.0045(6)
B5 8f 0.2271(4) 0.1037(3) 0.0117(5) 1 0.0045(6)
B6 8f 0.2294(5) 0.0419(4) 0.1828(6) 1 0.0123(15)
B7 8f 0.2609(4) 0.1858(4) 0.1902(6) 1 0.0110(15)
B8 8f 0.2655(5) 0.1224(4) 0.3675(6) 1 0.0115(15)
B9 8f 0.2665(4) 0.4813(3) 0.1422(5) 1 0.0045(6)
B10 8f 0.2926(4) 0.2643(4) 0.3701(6) 1 0.0103(14)
S1 8f 0.01035(10) 0.22942(8) 0.12886(15) 1 0.0153(4)
S2 8f 0.02094(10) 0.08330(8) 0.38371(14) 1 0.0141(4)
S3 8f 0.02287(10) 0.15014(9) 0.56371(14) 1 0.0162(4)
S4 8f 0.11386(10) 0.05413(8) 0.09750(14) 1 0.0119(3)
S5 8f 0.14665(10) 0.20412(8) 0.10641(14) 1 0.0120(3)
S6 8f 0.15049(10) 0.13855(8) 0.28852(14) 1 0.0114(3)
S7 8f 0.15974(10) 0.16254(8) 0.54326(15) 1 0.0156(4)
S8 8f 0.17881(10) 0.28292(8) 0.29233(15) 1 0.0156(4)
S9 8f 0.23812(12) 0.40199(9) 0.07221(16) 1 0.0191(4)
S10 8f 0.23987(11) 0.46713(8) 0.23563(15) 1 0.0172(4)
S11 8f 0.25658(11) 0.02687(8) 0.09368(14) 1 0.0148(4)
S12 8f 0.28748(12) 0.17629(9) 0.10005(16) 1 0.0197(4)
S13 8f 0.29431(10) 0.11086(8) 0.27729(14) 1 0.0116(3)
S14 8f 0.29499(11) 0.05136(8) 0.45489(14) 1 0.0162(4)
S15 8f 0.32115(11) 0.25586(8) 0.27818(15) 1 0.0157(4)
S16 8f 0.32470(10) 0.19097(8) 0.45999(14) 1 0.0140(4)
S17 8f 0.38398(11) 0.49497(8) 0.22432(15) 1 0.0158(4)
S18 8f 0.39011(11) 0.37970(9) 0.07825(14) 1 0.0159(4)
Li1 4e 0 0.1628(11) 0.25 0.74(8) 0.016(8)
Li2 8f 0.4677(18) 0.1610(13) 0.580(3) 0.53(7) 0.040(12)
Li3 4e 0.5 0.4379(19) 0.25 0.50(8) 0.020(13)
Li4 8f 0.4680(18) 0.2368(15) 0.381(3) 0.48(6) 0.033(12)
Li5 4d 0.25 0.25 0.5 0.88(12) 0.13(3)
Li6 8f 0.351(3) 0.272(2) 0.088(4) 0.59(9) 0.09(2)
Li7 8f 0.168(5) 0.357(4) 0.167(5) 0.54(11) 0.25(9)
Li8 8f 0.114(3) 0.000(2) -0.077(4) 0.59(9) 0.076(19)
Li9 8f 0.1745(16) -0.0563(12) -0.037(2) 0.72(7) 0.046(10)
Li10 8f 0.159(3) 0.113(3) 0.716(5) 0.79(13) 0.16(3)
Li11 8f 0.119(4) 0.070(4) 0.633(6) 0.32(9) 0.06(3)
Br1 4e 0.5 0.23172(12) 0.25 0.801(5) 0.0563(8)
Br2 8f 0.03096(19) 0.36638(19) -0.0051(3) 0.474(6) 0.0966(19)
Br3 4e 0 0.3867(2) 0.25 0.448(8) 0.109(3)
Br4 4e 0.5 0.05272(19) 0.25 0.623(11) 0.228(6)
Br5 8f 0.5038(11) 0.0064(8) 0.5351(18) 0.111(5) 0.105(11)
Br6 8f 0.5164(6) 0.0754(6) 0.5436(10) 0.109(3) 0.0563(16)
Br7 8f 0.5202(11) 0.0850(11) 0.6420(19) 0.059(3) 0.0563(16)
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Table D.5: Anisotropic displacement parameters of Li7.5B10S18Br1.5 obtained from single-
crystal XRD measured at 296 K.

Atom U11 U22 U33 U23 U13 U12

B1 0.0059(15) 0.0054(15) 0.0045(16) -0.0008(12) 0.0044(13) -0.0009(12)
B2 0.011(3) 0.014(4) 0.014(4) -0.002(3) 0.006(3) -0.002(3)
B3 0.008(3) 0.016(4) 0.014(4) 0.000(3) 0.007(3) 0.001(3)
B4 0.0059(15) 0.0054(15) 0.0045(16) -0.0008(12) 0.0044(13) -0.0009(12)
B5 0.0059(15) 0.0054(15) 0.0045(16) -0.0008(12) 0.0044(13) -0.0009(12)
B6 0.012(3) 0.015(4) 0.011(4) 0.000(3) 0.008(3) 0.001(3)
B7 0.008(3) 0.014(4) 0.013(4) 0.000(3) 0.008(3) 0.001(3)
B8 0.010(3) 0.013(4) 0.009(4) 0.001(3) 0.005(3) -0.001(3)
B9 0.0059(15) 0.0054(15) 0.0045(16) -0.0008(12) 0.0044(13) -0.0009(12)
B10 0.006(3) 0.012(3) 0.010(4) -0.003(3) 0.004(3) -0.002(3)
S1 0.0107(8) 0.0168(8) 0.0165(9) -0.0016(7) 0.0076(7) 0.0003(6)
S2 0.0107(7) 0.0163(8) 0.0154(9) -0.0010(7) 0.0082(7) 0.0010(6)
S3 0.0106(8) 0.0226(9) 0.0129(9) -0.0019(7) 0.0061(7) -0.0021(7)
S4 0.0124(8) 0.0135(8) 0.0107(8) -0.0002(6) 0.0077(7) -0.0003(6)
S5 0.0119(7) 0.0129(8) 0.0118(8) 0.0003(6) 0.0077(7) -0.0003(6)
S6 0.0109(7) 0.0128(8) 0.0116(8) -0.0018(6) 0.0075(7) -0.0015(6)
S7 0.0105(8) 0.0163(8) 0.0167(9) -0.0018(7) 0.0068(7) 0.0001(6)
S8 0.0134(8) 0.0147(8) 0.0161(9) -0.0046(7) 0.0079(7) -0.0016(6)
S9 0.0230(9) 0.0198(9) 0.0188(10) -0.0007(7) 0.0152(8) -0.0015(7)
S10 0.0204(9) 0.0141(8) 0.0199(10) -0.0037(7) 0.0141(8) -0.0032(7)
S11 0.0163(8) 0.0175(8) 0.0147(9) -0.0012(7) 0.0116(7) 0.0003(7)
S12 0.0254(9) 0.0208(9) 0.0254(10) -0.0031(8) 0.0220(9) -0.0046(7)
S13 0.0114(7) 0.0128(8) 0.0120(8) 0.0000(6) 0.0079(7) -0.0001(6)
S14 0.0204(9) 0.0150(8) 0.0129(9) 0.0014(7) 0.0103(7) -0.0005(7)
S15 0.0161(8) 0.0150(8) 0.0177(9) -0.0038(7) 0.0114(8) -0.0052(7)
S16 0.0129(8) 0.0147(8) 0.0122(9) -0.0028(6) 0.0068(7) -0.0013(6)
S17 0.0183(8) 0.0149(8) 0.0161(9) -0.0024(7) 0.0117(7) 0.0009(7)
S18 0.0166(8) 0.0202(9) 0.0130(9) -0.0014(7) 0.0102(7) -0.0014(7)
Li2 0.026(16) 0.021(16) 0.06(2) -0.017(14) 0.020(16) 0.002(11)
Li3 0.015(19) 0.04(2) 0.02(2) 0 0.016(17) 0
Li4 0.018(16) 0.027(18) 0.05(2) -0.004(15) 0.020(16) 0.003(12)
Li5 0.24(7) 0.11(4) 0.08(3) 0.07(3) 0.12(4) 0.14(4)
Li6 0.07(3) 0.07(3) 0.10(4) 0.03(3) 0.04(3) -0.02(2)
Li7 0.17(8) 0.22(9) 0.10(5) 0.10(6) -0.04(5) -0.17(7)
Li8 0.06(3) 0.07(3) 0.09(4) 0.01(2) 0.05(3) -0.01(2)
Li9 0.050(17) 0.046(16) 0.056(18) 0.005(12) 0.039(15) -0.011(12)
Li10 0.12(4) 0.14(5) 0.12(5) 0.03(4) 0.04(4) 0.08(4)
Li11 0.02(3) 0.08(6) 0.07(6) 0.02(4) 0.03(3) 0.02(3)
Br1 0.0325(10) 0.0697(14) 0.0686(15) 0 0.0326(10) 0
Br2 0.0453(18) 0.104(3) 0.102(3) 0.019(2) 0.0280(18) -0.0285(18)
Br3 0.134(5) 0.038(2) 0.031(3) 0 -0.008(3) 0
Br4 0.048(3) 0.042(2) 0.369(12) 0 0.022(4) 0
Br5 0.048(7) 0.031(8) 0.17(3) -0.021(10) 0.037(13) 0.003(6)
Br6 0.033(3) 0.0697(10) 0.0686(14) 0 0.0326(15) 0
Br7 0.033(3) 0.0697(10) 0.0686(14) 0 0.0326(15) 0
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Table D.6: Atomic coordinates, occupation factor, and equivalent isotropic displacement
parameters of Li7.5B10S18I1.5 obtained from single-crystal XRD measured at 280 K.

Atom Wyck. Pos. x y z Occ. Uiso (Å2)
B1 8f 0.0473(3) 0.1607(3) 0.4681(4) 1 0.0122(10)
B2 8f 0.0836(3) 0.1328(3) 0.0130(4) 1 0.0134(11)
B3 8f 0.0866(3) 0.0700(3) 0.1896(4) 1 0.0130(11)
B4 8f 0.1186(3) 0.2153(3) 0.1986(4) 1 0.0135(11)
B5 8f 0.2190(3) 0.1027(2) 0.0049(4) 1 0.0089(10)
B6 8f 0.2229(3) 0.0419(3) 0.1767(4) 1 0.0130(11)
B7 8f 0.2559(3) 0.1852(3) 0.1854(4) 1 0.0152(11)
B8 8f 0.2604(3) 0.1229(3) 0.3632(4) 1 0.0149(11)
B9 8f 0.2730(3) 0.4829(2) 0.1480(4) 1 0.0097(10)
B10 8f 0.2897(3) 0.2628(3) 0.3665(4) 1 0.0136(11)
S1 8f 0.00796(7) 0.23261(6) 0.12446(10) 1 0.0163(3)
S2 8f 0.02430(7) 0.08617(6) 0.38664(10) 1 0.0155(3)
S3 8f 0.02652(7) 0.15279(6) 0.56746(9) 1 0.0174(3)
S4 8f 0.10788(7) 0.05538(6) 0.09169(9) 1 0.0129(2)
S5 8f 0.14277(7) 0.20534(6) 0.10186(9) 1 0.0132(2)
S6 8f 0.14631(7) 0.14030(6) 0.28427(9) 1 0.0126(2)
S7 8f 0.16117(7) 0.16451(6) 0.54477(9) 1 0.0152(3)
S8 8f 0.17715(7) 0.28382(6) 0.28997(10) 1 0.0166(3)
S9 8f 0.24509(7) 0.40363(6) 0.07749(10) 1 0.0162(3)
S10 8f 0.24727(8) 0.46806(6) 0.24080(10) 1 0.0177(3)
S11 8f 0.25040(7) 0.02752(6) 0.08865(9) 1 0.0152(2)
S12 8f 0.28069(8) 0.17479(6) 0.09305(10) 1 0.0177(3)
S13 8f 0.28781(7) 0.11066(6) 0.27139(9) 1 0.0130(2)
S14 8f 0.28873(7) 0.05146(6) 0.44970(9) 1 0.0163(3)
S15 8f 0.31812(7) 0.25422(6) 0.27517(10) 1 0.0166(3)
S16 8f 0.32116(7) 0.19033(6) 0.45636(9) 1 0.0159(3)
S17 8f 0.38813(7) 0.49736(6) 0.22730(10) 1 0.0164(3)
S18 8f 0.39486(7) 0.37861(6) 0.08337(9) 1 0.0166(3)
Li1 8f 0.1737(8) -0.0583(7) -0.0377(11) 0.88(4) 0.046(5)
Li2 8f 0.4651(11) 0.2291(9) 0.392(2) 0.63(5) 0.070(12)
Li3 4d 0.25 0.25 0.5 0.96(8) 0.14(2)
Li4 8f 0.336(2) 0.3803(15) 0.281(2) 0.63(6) 0.105(17)
Li5 8f -0.0356(19) 0.3429(15) 0.083(3) 0.41(5) 0.071(16)
Li6 4e 0 0.1670(8) 0.25 0.92(6) 0.036(6)
Li7 4e 0 0.9388(9) 0.25 0.89(6) 0.038(7)
Li8 8f 0.152(3) 0.379(3) 0.189(4) 0.54(7) 0.29(7)
Li9 8f 0.104(2) 0.614(3) 0.381(4) 0.47(6) 0.16(4)
Li10 8f 0.390(4) 0.431(3) 0.379(7) 0.27(6) 0.09(4)
Li11 8f 0.3468(17) 0.2683(13) 0.081(2) 0.43(4) 0.055(13)
Li12 8f 0.109(5) 0.002(4) -0.077(6) 0.12(4) 0.03(3)
Li13 8f 0.444(3) 0.208(3) 0.446(5) 0.16(4) 0.03(2)
I1A 8f 0.4735(3) 0.1133(5) 0.0085(3) 0.352(11) 0.1054(18)
I1B 8f 0.4811(3) 0.09940(19) 0.0069(5) 0.273(11) 0.086(2)
I2 4e 0 0.72079(4) 0.25 0.843(3) 0.0574(4)
I3 4b 0 0.5 0 0.119(4) 0.124(6)

I4A 4e 0 0.50156(18) 0.25 0.259(3) 0.0667(15)
I4B 8f 0.0053(5) 0.5478(4) 0.3138(9) 0.094(3) 0.116(5)
I5A 4e 0 0.4082(4) 0.25 0.252(8) 0.218(8)
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Table D.7: Anisotropic displacement parameters of Li7.5B10S18I1.5 obtained from single-
crystal XRD measured at 280 K.

Atom U11 U22 U33 U23 U13 U12

B1 0.008(2) 0.014(3) 0.012(2) -0.002(2) 0.005(2) -0.001(2)
B2 0.013(2) 0.015(3) 0.013(3) 0.000(2) 0.008(2) 0.002(2)
B3 0.011(2) 0.013(3) 0.015(3) 0.000(2) 0.008(2) -0.001(2)
B4 0.011(2) 0.016(3) 0.014(3) -0.001(2) 0.008(2) 0.000(2)
B5 0.010(2) 0.010(2) 0.010(2) 0.000(2) 0.007(2) 0.000(2)
B6 0.012(2) 0.014(3) 0.014(3) 0.002(2) 0.008(2) 0.003(2)
B7 0.012(2) 0.018(3) 0.013(3) -0.001(2) 0.007(2) -0.001(2)
B8 0.011(2) 0.018(3) 0.012(3) -0.001(2) 0.005(2) -0.002(2)
B9 0.011(2) 0.013(3) 0.008(2) -0.001(2) 0.007(2) -0.001(2)
B10 0.009(2) 0.014(3) 0.015(3) 0.000(2) 0.005(2) 0.000(2)
S1 0.0098(5) 0.0169(6) 0.0190(6) -0.0016(5) 0.0075(5) 0.0006(5)
S2 0.0094(5) 0.0163(6) 0.0183(6) -0.0026(5) 0.0074(5) -0.0003(5)
S3 0.0111(5) 0.0247(7) 0.0131(6) -0.0019(5) 0.0060(5) -0.0021(5)
S4 0.0115(5) 0.0141(6) 0.0125(5) -0.0004(5) 0.0072(5) -0.0001(5)
S5 0.0110(5) 0.0143(6) 0.0129(6) 0.0002(5) 0.0068(5) -0.0004(5)
S6 0.0109(5) 0.0139(6) 0.0126(6) -0.0014(5) 0.0071(5) -0.0010(4)
S7 0.0094(5) 0.0145(6) 0.0174(6) -0.0042(5) 0.0063(5) -0.0015(5)
S8 0.0116(5) 0.0158(6) 0.0183(6) -0.0044(5) 0.0074(5) -0.0016(5)
S9 0.0184(6) 0.0164(6) 0.0179(6) -0.0032(5) 0.0134(5) -0.0035(5)
S10 0.0227(6) 0.0155(6) 0.0198(6) -0.0036(5) 0.0158(5) -0.0044(5)
S11 0.0169(6) 0.0166(6) 0.0153(6) -0.0003(5) 0.0117(5) 0.0002(5)
S12 0.0205(6) 0.0188(6) 0.0210(6) -0.0041(5) 0.0165(5) -0.0056(5)
S13 0.0113(5) 0.0150(6) 0.0129(6) -0.0009(5) 0.0077(5) -0.0006(5)
S14 0.0170(6) 0.0155(6) 0.0141(6) 0.0027(5) 0.0087(5) 0.0009(5)
S15 0.0163(6) 0.0165(6) 0.0183(6) -0.0042(5) 0.0115(5) -0.0051(5)
S16 0.0137(5) 0.0157(6) 0.0134(6) -0.0024(5) 0.0061(5) -0.0011(5)
S17 0.0141(5) 0.0167(6) 0.0183(6) -0.0039(5) 0.0102(5) -0.0011(5)
S18 0.0147(6) 0.0224(7) 0.0132(6) -0.0014(5) 0.0090(5) -0.0004(5)
I1A 0.055(2) 0.196(5) 0.0521(18) 0.000(2) 0.0268(14) -0.052(2)
I1B 0.0257(15) 0.034(3) 0.146(5) 0.0114(17) 0.0285(18) -0.0004(12)
I2 0.0239(4) 0.0569(6) 0.0724(7) 0 0.0209(4) 0
I3 0.101(8) 0.057(6) 0.208(14) -0.010(7) 0.094(9) 0.000(5)

I4A 0.0441(18) 0.081(3) 0.0429(19) 0 0.0117(14) 0
I4B 0.059(5) 0.071(6) 0.169(10) -0.044(5) 0.048(6) -0.009(4)
I5A 0.244(11) 0.214(9) 0.034(3) 0 0.008(4) 0
Li1 0.049(9) 0.048(9) 0.052(9) -0.017(7) 0.037(8) -0.024(7)
Li2 0.026(10) 0.023(11) 0.09(2) -0.011(11) 0.006(11) 0.016(8)
Li3 0.22(4) 0.15(3) 0.17(3) 0.05(2) 0.18(3) 0.11(3)
Li4 0.13(3) 0.09(2) 0.07(2) 0.049(18) 0.05(2) 0.09(2)
Li5 0.05(2) 0.035(19) 0.06(2) 0.007(16) -0.002(16) -0.010(14)
Li6 0.060(12) 0.034(10) 0.041(11) 0 0.045(10) 0
Li7 0.024(9) 0.048(12) 0.037(11) 0 0.016(8) 0
Li8 0.15(5) 0.23(7) 0.15(5) 0.15(5) -0.07(3) -0.15(5)
Li9 0.03(2) 0.22(6) 0.14(5) 0.13(4) 0.01(2) 0.00(3)
Li10 0.08(5) 0.09(5) 0.14(7) 0.05(5) 0.08(5) 0.03(4)
Li11 0.053(19) 0.033(17) 0.054(19) 0.015(13) 0.021(15) -0.028(13)
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Figure D.1: Powder X-ray diffraction pattern of Li7B10S18I with LiI impurities (marked
by blue circles). Large background comes from the vacuum grease and Kapton film used
to protect the sample from air and moisture exposure during measurement.
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D.3.2 TOF Neutron Powder Diffraction Data

Figure D.2: Time-of-flight neutron diffraction patterns at 10 K and the corresponding
combined Rietveld refinement fits for ‘bank 2’ (CW 1.5 Å, bottom row) and ‘bank 3’ (CW
2.665 Å, top row) of Li7.5B10S18Cl1.5, B) Li7.5B10S18Br1.5, and C) Li7.5B10S18I1.5. Rwp and
GOF are the weighted profile R-factor and goodness of fit, respectively.
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Table D.8: Crystallographic data, atomic coordinates, occupation factor, and equivalent
isotropic displacement parameters of Li7.5B10S18Cl1.5 obtained from TOF neutron powder
diffraction at 10 K.

C 2/c (no. 15): a = 21.1001(6) Å, b = 21.1291(6) Å, c = 16.2053(5) Å, β = 128.694(2) °
Refined Compsn.: Li7.5B10S18Cl2.6, Rwp = 7.60, Rexp = 0.88, GOF = 8.61

Atom Wyck. Pos. x y z Occ. Biso (Å2)
B(1-10) 8f Fixed from single-crystal refinement 1 0.58(5)
S(1-18) 8f Fixed from single-crystal refinement 1 0.13(9)

Li1 4e 0 0.1645 0.25 1 1.2(4)
Li2 4e 0.5 0.4368 0.25 1 1.2(4)
Li3 8f 0.1736 -0.0569 -0.0379 0.75 1.2(4)
Li4 8f 0.4711 0.2399 0.373 0.75 1.2(4)
Li5 8f -0.0288 0.3409 0.074 0.75 1.2(4)
Li6 8f 0.342 0.3843 0.284 0.75 1.2(4)
Li7 4d 0.25 0.25 0.5 1 1.2(4)
Li8 8f 0.348 0.269 0.084 0.75 1.2(4)
Li9 8f 0.146 0.3731 0.172 0.75 1.2(4)
Li10 8f 0.4143 0.1414 0.131 0.75 1.2(4)
Li11 8f 0.1143 -0.0003 -0.0729 0.75 1.2(4)
Cl2 4e 0.5 0.2348(7) 0.25 0.89(2) 1.63(17)

Cl1A 8f 0.0234(13) 0.3625(10) -0.0329(16) 0.476(15) 1.63(17)
Cl4A 4e 0 0.5498(10) 0.25 0.68(2) 1.63(17)
Cl1B 8f 0.0240(10) 0.4259(8) 0.0579(13) 0.583(17) 1.63(17)
Cl5 4e 0 0.3719(11) 0.25 0.592(19) 1.63(17)
Cl3 4b 0 0.5 0 0.17(2) 1.63(17)

Cl4B 8f 0.0308(17) 0.5938(13) 0.373(2) 0.353(14) 1.63(17)
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Table D.9: Crystallographic data, atomic coordinates, occupation factor, and equivalent
isotropic displacement parameters of Li7.5B10S18Cl1.5 obtained from TOF neutron powder
diffraction at 300 K.

C 2/c (no. 15): a = 21.1445(11) Å, b = 21.1983(11) Å, c = 16.2202(8) Å, β= 128.675(3) °
Refined Compsn.: Li7.5B10S18Cl2.5, Rwp = 6.68, Rexp = 0.86, GOF = 7.73

Atom Wyck. Pos. x y z Occ. Biso (Å2)
B(1-10) 8f Fixed from single-crystal refinement 1 1.11(7)
S(1-18) 8f Fixed from single-crystal refinement 1 0.64(11)

Li1 4e 0 0.1645 0.25 1 1.7(5)
Li2 4e 0.5 0.4368 0.25 1 1.7(5)
Li3 8f 0.1736 -0.0569 -0.0379 0.75 1.7(5)
Li4 8f 0.4711 0.2399 0.373 0.75 1.7(5)
Li5 8f -0.0288 0.3409 0.074 0.75 1.7(5)
Li6 8f 0.342 0.3843 0.284 0.75 1.7(5)
Li7 4d 0.25 0.25 0.5 1 1.7(5)
Li8 8f 0.348 0.269 0.084 0.75 1.7(5)
Li9 8f 0.146 0.3731 0.172 0.75 1.7(5)
Li10 8f 0.4143 0.1414 0.131 0.75 1.7(5)
Li11 8f 0.1143 -0.0003 -0.0729 0.75 1.7(5)
Cl2 4e 0.5 0.2333(9) 0.25 0.87(2) 2.0(2)

Cl1A 8f 0.0247(17) 0.3659(12) -0.030(2) 0.436(15) 2.0(2)
Cl4A 4e 0 0.5515(13) 0.25 0.64(2) 2.0(2)
Cl1B 8f 0.0181(13) 0.4239(10) 0.0541(17) 0.517(18) 2.0(2)
Cl5 4e 0 0.3807(12) 0.25 0.597(19) 2.0(2)
Cl3 4b 0 0.5 0 0.26(3) 2.0(2)

Cl4B 8f 0.020(2) 0.6083(15) 0.363(3) 0.331(14) 2.0(2)
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Table D.10: Crystallographic data, atomic coordinates, occupation factor, and equivalent
isotropic displacement parameters of Li7.5B10S18Br1.5 obtained from TOF neutron powder
diffraction at 10 K.

C 2/c (no. 15): a = 21.1462(5) Å, b = 21.3827(4) Å, c = 16.0988(3) Å, β = 128.7373(14) °
Refined Compsn.: Li7B10S18Br2.8, Impurity: 7.3 wt.% LiBr

Rwp = 7.45, Rexp = 0.89, GOF = 8.36

Atom Wyck. Pos. x y z Occ. Biso (Å2)
B(1-10) 8f Fixed from single-crystal refinement 1 0.79(4)
S(1-18) 8f Fixed from single-crystal refinement 1 0.58(8)

Li1 4e 0 0.1626 0.25 1 1.4(4)
Li2 8f 0.4674 0.1607 0.58 0.6875 1.4(4)
Li3 4e 0.5 0.4376 0.25 1 1.4(4)
Li4 8f 0.4685 0.2368 0.38 0.6875 1.4(4)
Li5 4d 0.25 0.25 0.5 1 1.4(4)
Li6 8f 0.351 0.271 0.086 0.6875 1.4(4)
Li7 8f 0.182 0.346 0.161 0.6875 1.4(4)
Li8 8f 0.114 0 -0.076 0.6875 1.4(4)
Li9 8f 0.1746 -0.0562 -0.037 0.6875 1.4(4)
Li10 8f 0.159 0.113 0.714 0.6875 1.4(4)
Li11 8f 0.12 0.071 0.634 0.6875 1.4(4)
Br2 4e 0.5 0.2327(9) 0.25 0.88(3) 1.8(2)

Br1A 8f 0.0277(12) 0.3769(8) -0.0152(15) 0.67(2) 1.8(2)
Br5A 4e 0 0.380(2) 0.25 0.35(3) 1.8(2)
Br4 4e 0.5 0.0507(15) 0.25 0.54(3) 1.8(2)
Br3 8f 0.4850(16) -0.0558(13) 0.561(2) 0.45(2) 1.8(2)

Br1B 8f 0.506(2) 0.0747(15) 0.530(3) 0.37(2) 1.8(2)
Br5B 8f 0.5264(17) 0.0800(14) 0.685(2) 0.43(2) 1.8(2)
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Table D.11: Crystallographic data, atomic coordinates, occupation factor, and equivalent
isotropic displacement parameters of Li7.5B10S18Br1.5 obtained from TOF neutron powder
diffraction at 300 K.

C 2/c (no. 15):a = 21.1741(6) Å, b = 21.4467(7) Å, c = 16.1145(5) Å, β = 128.678(2) °
Refined Compsn.: Li7B10S18Br2.7, Impurity: 5.9 wt.% LiBr

Rwp = 5.34, Rexp = 0.77, GOF = 6.9

Atom Wyck. Pos. x y z Occ. Biso (Å2)
B(1-10) 8f Fixed from single-crystal refinement 1 0.95(4)
S(1-18) 8f Fixed from single-crystal refinement 1 0.62(8)

Li1 4e 0 0.1626 0.25 1 2.2(5)
Li2 8f 0.4674 0.1607 0.58 0.6875 2.2(5)
Li3 4e 0.5 0.4376 0.25 1 2.2(5)
Li4 8f 0.4685 0.2368 0.38 0.6875 2.2(5)
Li5 4d 0.25 0.25 0.5 1 2.2(5)
Li6 8f 0.351 0.271 0.086 0.6875 2.2(5)
Li7 8f 0.182 0.346 0.161 0.6875 2.2(5)
Li8 8f 0.114 0 -0.076 0.6875 2.2(5)
Li9 8f 0.1746 -0.0562 -0.037 0.6875 2.2(5)
Li10 8f 0.159 0.113 0.714 0.6875 2.2(5)
Li11 8f 0.12 0.071 0.634 0.6875 2.2(5)
Br2 4e 0.5 0.2301(10) 0.25 0.85(3) 1.7(5)

Br1A 8f 0.0336(14) 0.3791(9) -0.0101(17) 0.61(2) 1.7(5)
Br5A 4e 0 0.392(2) 0.25 0.35(3) 1.7(5)
Br4 4e 0.5 0.0463(15) 0.25 0.55(3) 1.7(5)
Br3 8f 0.4945(15) -0.0582(12) 0.560(2) 0.48(2) 1.7(5)

Br1B 8f 0.520(3) 0.070(2) 0.548(4) 0.28(2) 1.7(5)
Br5B 8f 0.5245(18) 0.0787(15) 0.680(3) 0.41(2) 1.7(5)
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Table D.12: Crystallographic data, atomic coordinates, occupation factor, and equivalent
isotropic displacement parameters of Li7.5B10S18I1.5 obtained from TOF neutron powder
diffraction at 10 K.

C 2/c (no. 15): a = 21.2432(3) Å, b = 21.3490(3) Å, c = 16.1396(2) Å, β = 128.7241(11) °
Refined Compsn.: Li7B10S18I3.2, Impurity: 9.9 wt.% LiI

Rwp = 5.24, Rexp = 0.82, GOF = 6.43

Atom Wyck. Pos. x y z Occ. Biso (Å2)
B(1-10) 8f Fixed from single-crystal refinement 1 0.63(3)
S(1-18) 8f Fixed from single-crystal refinement 1 0.50(6)

Li1 8f 0.1737 -0.0583 -0.0377 0.55 0.9(3)
Li2 8f 0.4651 0.2291 0.392 0.55 0.9(3)
Li3 4d 0.25 0.25 0.5 1 0.9(3)
Li4 8f 0.336 0.3803 0.281 0.55 0.9(3)
Li5 8f -0.0356 0.3429 0.083 0.55 0.9(3)
Li6 4e 0 0.167 0.25 1 0.9(3)
Li7 4e 0 0.9388 0.25 1 0.9(3)
Li8 8f 0.152 0.379 0.189 0.55 0.9(3)
Li9 8f 0.104 0.614 0.381 0.55 0.9(3)
Li10 8f 0.39 0.431 0.379 0.55 0.9(3)
Li11 8f 0.3468 0.2683 0.081 0.55 0.9(3)
Li12 8f 0.109 0.002 -0.077 0.55 0.9(3)
Li13 8f 0.444 0.208 0.446 0.55 0.9(3)
I1A 8f 0.4771(9) 0.1114(7) 0.0166(12) 0.83(2) 2.3(2)
I1B 8f 0.4931(16) 0.0729(12) -0.0379(19) 0.54(2) 2.3(2)
I2 4e 0 0.7173(9) 0.25 1.00(3) 2.3(2)
I3 4b 0 0.5 0 0.09(3) 2.3(2)

I4A 4e 0 0.524(2) 0.25 0.41(3) 2.3(2)
I4B 8f 0.0224(18) 0.5578(13) 0.377(2) 0.46(2) 2.3(2)
I5A 4e 0 0.4383(15) 0.25 0.61(3) 2.3(2)
I5B 8f 0.028(3) 0.398(2) 0.175(4) 0.28(2) 2.3(2)

219



Table D.13: Crystallographic data, atomic coordinates, occupation factor, and equivalent
isotropic displacement parameters of Li7.5B10S18I1.5 obtained from TOF neutron powder
diffraction at 300 K.

C 2/c (no. 15): a = 21.2826(3) Å, b = 21.4205(3) Å, c = 16.1530(2) Å, β = 128.7163(10) °
Refined Compsn.: Li7B10S18I3, Impurity: 6.8 wt.% LiI

Rwp = 5.40, Rexp = 0.96, GOF = 5.64

Atom Wyck. Pos. x y z Occ. Biso (Å2)
B(1-10) 8f Fixed from single-crystal refinement 1 1.03(3)
S(1-18) 8f Fixed from single-crystal refinement 1 0.92(6)

Li1 8f 0.1737 -0.0583 -0.0377 0.55 3.3(4)
Li2 8f 0.4651 0.2291 0.392 0.55 3.3(4)
Li3 4d 0.25 0.25 0.5 1 3.3(4)
Li4 8f 0.336 0.3803 0.281 0.55 3.3(4)
Li5 8f -0.0356 0.3429 0.083 0.55 3.3(4)
Li6 4e 0 0.167 0.25 1 3.3(4)
Li7 4e 0 0.9388 0.25 1 3.3(4)
Li8 8f 0.152 0.379 0.189 0.55 3.3(4)
Li9 8f 0.104 0.614 0.381 0.55 3.3(4)
Li10 8f 0.39 0.431 0.379 0.55 3.3(4)
Li11 8f 0.3468 0.2683 0.081 0.55 3.3(4)
Li12 8f 0.109 0.002 -0.077 0.55 3.3(4)
Li13 8f 0.444 0.208 0.446 0.55 3.3(4)
I1A 8f 0.4772(10) 0.1101(9) 0.0110(14) 0.86(2) 4.3(4)
I1B 8f 0.486(2) 0.078(2) -0.039(3) 0.39(3) 4.3(4)
I2 4e 0 0.7152(10) 0.25 1.00(3) 4.3(4)
I3 4b 0 0.5 0 0.20(3) 4.3(4)

I4A 4e 0 0.519(3) 0.25 0.31(3) 4.3(4)
I4B 8f 0.024(2) 0.5587(17) 0.366(3) 0.44(2) 4.3(4)
I5A 4e 0 0.4347(17) 0.25 0.61(3) 4.3(4)
I5B 8f 0.028(4) 0.396(3) 0.179(5) 0.23(2) 4.3(4)
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Figure D.3: Fourier difference map of Li7.5B10S18I1.5 from TOPAS of the empty B10S18

framework (not including any Li or iodine). Bright yellow spots are areas of missing positive
density, corresponding to iodine positions in the channel with high occupancy.
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D.3.3 Neutron Pair Distribution Function (PDF) Analysis

Table D.14: Crystallographic data, atomic coordinates, occupation factor, and equivalent
isotropic displacement parameters of Li7.5B10S18Cl1.5 obtained from neutron PDF at 290 K
(1-10 Å).

C 2/c (no. 15): a = 20.98(4) Å, b = 21.35(2) Å, c = 16.21(2) Å, β = 128.56(13) °
Refined Compsn.: Li7.5B10S18Cl2.3, Rwp = 13.51

Atom Wyck. Pos. x y z Occ. Biso (Å2)
B(1-10) 8f Fixed from single-crystal refinement 1 0.81(3)
S(1-18) 8f Fixed from single-crystal refinement 1 0.54(3)

Li1 4e 0 0.1645 0.25 1 3.0(4)
Li2 4e 0.5 0.4368 0.25 1 3.0(4)
Li3 8f 0.1736 -0.0569 -0.0379 0.75 3.0(4)
Li4 8f 0.4711 0.2399 0.373 0.75 3.0(4)
Li5 8f -0.0288 0.3409 0.074 0.75 3.0(4)
Li6 8f 0.342 0.3843 0.284 0.75 3.0(4)
Li7 4d 0.25 0.25 0.5 1 3.0(4)
Li8 8f 0.348 0.269 0.084 0.75 3.0(4)
Li9 8f 0.146 0.3731 0.172 0.75 3.0(4)
Li10 8f 0.4143 0.1414 0.131 0.75 3.0(4)
Li11 8f 0.1143 -0.0003 -0.0729 0.75 3.0(4)
Cl1 8f 0.0110(19) 0.3472(15) -0.040(3) 0.77(5) 2.4(4)
Cl2 4e 0.5 0.238(3) 0.25 1.00(11) 2.4(4)

Cl4A 4e 0 0.561(2) 0.25 1.00(8) 2.4(4)
Cl5 4e 0 0.3829(18) 0.25 1.00(10) 2.4(4)
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Table D.15: Crystallographic data, atomic coordinates, occupation factor, and equivalent
isotropic displacement parameters of Li7.5B10S18Br1.5 obtained from neutron PDF at 290
K (1-10 Å).

C 2/c (no. 15): a = 20.97(3) Å, b = 21.49(3) Å, c = 16.23(2) Å, β = 129.30(9) °
Refined Compsn.: Li7B10S18Br2.5, Rwp = 13.58

Atom Wyck. Pos. x y z Occ. Biso (Å2)
B(1-10) 8f Fixed from single-crystal refinement 1 0.55(3)
S(1-18) 8f Fixed from single-crystal refinement 1 0.54(4)

Li1 4e 0 0.1626 0.25 1 1.9(2)
Li2 8f 0.4674 0.1607 0.58 0.6875 1.9(2)
Li3 4e 0.5 0.4376 0.25 1 1.9(2)
Li4 8f 0.4685 0.2368 0.38 0.6875 1.9(2)
Li5 4d 0.25 0.25 0.5 1 1.9(2)
Li6 8f 0.351 0.271 0.086 0.6875 1.9(2)
Li7 8f 0.182 0.346 0.161 0.6875 1.9(2)
Li8 8f 0.114 0 -0.076 0.6875 1.9(2)
Li9 8f 0.1746 -0.0562 -0.037 0.6875 1.9(2)
Li10 8f 0.159 0.113 0.714 0.6875 1.9(2)
Li11 8f 0.12 0.071 0.634 0.6875 1.9(2)
Br1A 8f 0.0149(12) 0.3671(11) 0.0385(19) 1.00(7) 1.3(2)
Br2 4e 0.5 0.2458(17) 0.25 1.00(14) 1.3(2)
Br4 4e 0.5 0.0737(18) 0.25 1.00(10) 1.3(2)

Br5A 4e 0 0.3807(14) 0.25 1.00(11) 1.3(2)
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Table D.16: Crystallographic data, atomic coordinates, occupation factor, and equivalent
isotropic displacement parameters of Li7.5B10S18I1.5 obtained from neutron PDF at 290 K
(1-10 Å).

C 2/c (no. 15): a = 21.37(4) Å, b = 21.32(3) Å, c = 16.11(2) Å, β = 128.35(12) °
Refined Compsn.: Li7B10S18I2.5, Rwp = 14.02

Atom Wyck. Pos. x y z Occ. Biso (Å2)
B(1-10) 8f Fixed from single-crystal refinement 1 0.84(2)
S(1-18) 8f Fixed from single-crystal refinement 1 0.72(2)

Li1 8f 0.1737 -0.0583 -0.0377 0.55 2.9(5)
Li2 8f 0.4651 0.2291 0.392 0.55 2.9(5)
Li3 4d 0.25 0.25 0.5 1 2.9(5)
Li4 8f 0.336 0.3803 0.281 0.55 2.9(5)
Li5 8f -0.0356 0.3429 0.083 0.55 2.9(5)
Li6 4e 0 0.167 0.25 1 2.9(5)
Li7 4e 0 0.9388 0.25 1 2.9(5)
Li8 8f 0.152 0.379 0.189 0.55 2.9(5)
Li9 8f 0.104 0.614 0.381 0.55 2.9(5)
Li10 8f 0.39 0.431 0.379 0.55 2.9(5)
Li11 8f 0.3468 0.2683 0.081 0.55 2.9(5)
Li12 8f 0.109 0.002 -0.077 0.55 2.9(5)
Li13 8f 0.444 0.208 0.446 0.55 2.9(5)
I1A 8f 0.4709(12) 0.1097(12) 0.0030(14) 1.00(7) 0.4(1)
I2 4e 0 0.7174(18) 0.25 1.00(13) 0.4(1)

I4A 4e 0 0.5233(15) 0.25 1.00(11) 0.4(1)
I5A 4e 0 0.3773(13) 0.25 1.00(14) 0.4(1)
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Figure D.4: A) Li7.5B10S18Cl1.5 structure with lithium and chlorine in the channels. B)
Average structure (refined from NPD at 300 K) and C) local structure (refined from NPDF
at 290 K) of chlorine in the tunnels.
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Figure D.5: A) Li7.5B10S18Br1.5 structure with lithium and bromine in the channels. B)
Average structure (refined from NPD at 300 K) and C) local structure (refined from NPDF
at 290 K) of bromine in the tunnels.
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Appendix E

Supporting Information for:

Li6B7S13I: a fast-ion conducting

thioboracite with a perovskite

topology and argyrodite-like lithium

substructure
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E.1 Supporting Figures

Figure E.1: DC polarization measurement for the Ti—Li6B7S13I—Ti cell with an applied
voltage of 500 mV.
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Figure E.2: A) Calculated 0 K phase diagram of Li-B-S-I showing stable phases (red
nodes), including the stable Li6B7S13I. B) Pseudoternary Li2S-B2S3-LiI phase diagram.
Green circles with labeled compositions indicate stable phases.
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E.2 Supporting Tables

Table E.1: Crystallographic data for cubic-Li6B7S13I and Li5B7S13 obtained from single
crystal X-ray diffraction data.

Crystal Data
Formula Li6.04B7S13I Li5B7S13

Formula Weight 661.27 527.15
Crystal System Cubic Tetragonal
Space Group F -43c (No. 219) I 41/a (No. 88)
a (Å) 15.245(2) 12.3120(4)
c (Å) 21.8638(7)
V (Å3) 3543.1(14) 3314.2(2)
Z 4 8
Calc. Density (g/cm3) 2.479 2.113
Abs. coef. µ(Mo Kα) (mm-1) 3.32 1.683
F(000) 2513 2064
Crystal Size (mm) 0.01 × 0.04 × 0.08 0.04 × 0.07 × 0.08
Data Collection

Temperature (K) 280 280
Radiation (Å) Mo Kα, 0.71073 Mo Kα, 0.71073
Theta range for data collection 2.7 – 27.9° 1.9 – 30.0°

Index ranges
-17 ≤ h ≤ 19
-20 ≤ k ≤ 12
-18 ≤ l ≤ 18

-17 ≤ h ≤ 17
-17 ≤ k ≤ 17
-30 ≤ l ≤ 30

Reflections collected 5006 22500
Independent reflections 367 (Rint = 0.049) 2430 (Rint = 0.030)
Completeness to θ = 25.242° 100% 100%
Absorption correction Multi-scan Multi-scan
Max. and min. transmission 0.7460, 0.6718 0.7460, 0.6960
Refinement

Refinement method Full-matrix least-squares on F2 Full-matrix least-squares on F2

Data/restraints/parameters 367/0/21 2430/0/119
Goodness of fit on F2 1.16 1.14

Final R indices [I>2sigma(I)]
R1 = 0.0221

wR2 = 0.0481
R1 = 0.0200
wR2 = 0.053

R indices (all data)
R1 = 0.0236
wR2 = 0.0486

R1 = 0.0295
wR2 = 0.0567

Largest diff. peak and hole -0.41 and 0.94 e·Å-3 -0.53 and 0.56 e·Å-3
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Table E.2: Atomic coordinates, occupation factor, and equivalent isotropic displacement
parameters of cubic Li5B7S13 obtained from single-crystal X-ray diffraction measured at
280 K.

Atom Wyck. Pos. x y z Occ. Ueq (Å2)
B1 16f 0.08994(15) 0.16538(15) 0.07592(8) 1 0.0096(3)
B2 16f 0.10674(15) 0.52834(15) 0.27598(8) 1 0.0102(3)
B3 16f 0.16993(14) 0.19182(15) 0.62408(9) 1 0.0099(3)
B4 8e 0 0.25 0.52375(11) 1 0.0094(5)
S1 16f 0.00463(3) 0.06579(3) 0.12475(2) 1 0.01175(9)
S2 16f 0.00698(3) 0.03724(3) 0.32521(2) 1 0.01109(9)
S3 16f 0.05702(3) 0.13136(3) 0.57259(2) 1 0.00901(8)
S4 16f 0.17570(3) 0.06820(3) 0.02561(2) 1 0.01077(9)
S5 16f 0.32723(3) 0.52481(3) 0.07654(2) 1 0.01093(9)
S6 8e 0 0.25 0.02257(3) 1 0.01244(12)
S7 16f 0.38801(3) 0.20009(3) 0.02729(2) 1 0.01249(9)
Li1 16f 0.1058(5) 0.0129(11) 0.2185(3) 1 0.154(6)
Li2 16f 0.3332(4) 0.0799(6) 0.1108(3) 1 0.073(2)
Li3 16f 0.1905(17) 0.2264(17) 0.2655(14) 0.5 0.160(11)

Table E.3: Anisotropic displacement parameters of Li5B7S13 obtained from single-crystal
X-ray diffraction measured at 280 K.

Atom U11 U22 U33 U23 U13 U12

B1 0.0099(8) 0.0094(8) 0.0095(8) -0.0011(6) 0.0017(6) 0.0002(6)
B2 0.0095(8) 0.0113(8) 0.0097(8) -0.0014(6) 0.0000(6) 0.0014(6)
B3 0.0102(8) 0.0098(8) 0.0096(8) 0.0010(6) 0.0008(6) 0.0008(6)
B4 0.0092(11) 0.0110(11) 0.0080(11) 0 0 -0.0023(9)
S1 0.01271(19) 0.00917(18) 0.01337(19) 0.00013(15) 0.00402(15) -0.00060(15)
S2 0.01143(19) 0.00964(18) 0.01219(19) 0.00259(14) -0.00254(14) -0.00026(14)
S3 0.00945(18) 0.00921(17) 0.00837(17) 0.00038(14) 0.00030(13) -0.00030(14)
S4 0.01203(19) 0.00814(18) 0.01215(19) -0.00080(14) 0.00499(14) -0.00117(14)
S5 0.01195(18) 0.00925(18) 0.01159(19) 0.00128(14) -0.00359(14) -0.00168(14)
S6 0.0134(3) 0.0146(3) 0.0093(3) 0 0 0.0025(2)
S7 0.01265(19) 0.0167(2) 0.00813(18) 0.00018(15) 0.00149(14) -0.00532(15)
Li1 0.030(3) 0.362(17) 0.071(5) 0.108(7) 0.019(3) 0.055(6)
Li2 0.038(3) 0.093(5) 0.088(4) 0.069(4) -0.012(3) -0.012(3)
Li3 0.136(17) 0.098(14) 0.24(3) -0.032(16) -0.10(2) 0.071(14)
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