
Signorini conditions for inviscid fluids

by

Yu Gu

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Science

in

Computer Science

Waterloo, Ontario, Canada, 2021

c© Yu Gu 2021

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In this thesis, we present a new type of boundary condition for the simulation of invis-
cid fluids – the Signorini boundary condition. The new condition models the non-sticky
contact of a fluid with other fluids or solids. Euler equations with Signorini boundary
conditions are analyzed using variational inequalities. We derived the weak form of the
PDEs, as well as an equivalent optimization based formulation. We proposed a finite el-
ement method to numerically solve the Signorini problems. Our method is based on a
staggered grid and a level set representation of the fluid surfaces, which may be plugged
into an existing fluid solver. We implemented our algorithm and tested it with some 2D
fluid simulations. Our results show that the Signorini boundary condition successfully
models some interesting contact behavior of fluids, such as the hydrophobic contact and
the non-coalescence phenomenon.

iii

Acknowledgements

I would like to thank my supervisor professor Christopher Batty. During my study at
University of Waterloo, I was able to freely explore any idea that interests me and always
get his support and helpful guidance. He was also very supportive when I made new career
choices. The time at Waterloo has been enjoyable and rewarding. All of this would not
have been possible without him.

I would like to also thank professor Justin Wan and professor Yuying Li for taking the
time to read my proposal and thesis, and to be a committee member.

iv

Table of Contents

List of Figures vii

List of Tables viii

1 Introduction 1

2 Preliminaries 4

2.1 The basics of fluid simulation . 4

2.2 Related studies on numerical methods for Poisson’s equation 6

2.3 Linear complementarity problems . 7

2.4 Continuous unilateral contact . 9

3 Weak form of Signorini problems 10

3.1 Signorini boundary conditions . 11

3.1.1 Motivation . 11

3.1.2 The weak form of homogeneous Signorini problem 12

3.2 Signorini jump conditions . 14

3.3 Non-homogeneous Signorini conditions . 16

3.3.1 An optimization perspective . 18

v

4 A finite element method for 2D Signorini problems 21

4.1 The computational mesh . 21

4.2 The assembly process . 22

4.2.1 discretized function space . 24

4.2.2 Bilinear forms . 24

4.2.3 Linear forms . 26

4.2.4 Pressure jump . 26

4.2.5 Colliding velocity tolerance . 27

4.2.6 Volume compensation . 28

4.3 The algorithm . 29

5 Experiments 31

6 Conclusions and discussions 39

References 42

vi

List of Figures

1.1 Various fluid contact phenomena. 2

3.1 Two fluid bodies in contact. 15

3.2 Pressure jump across the fluid-fluid surface. 16

4.1 Nodes of a cut-cell mesh. 23

4.2 Subdivided cut-cell shapes. 23

4.3 A linear triangle element and a bilinear square element. 25

4.4 A cell containing two fluid phases. 28

4.5 3 different velocity update configurations. 30

5.1 Experiment: hydrophobic blades. 32

5.2 Experiment: normal and tangential separation. 33

5.3 Experiment: bouncing droplet. 35

5.4 Experiment: 2-phase dam break. 35

5.5 Effect of the corrective term b3. 36

5.6 Effect of volume compensation. 36

5.7 The domain and boundaries of the model problem. 37

5.8 ε−∆x plot. 38

6.1 Non-coalescence behavior of viscous fluids. 41

vii

List of Tables

5.1 Experiment configurations and timing results. 34

5.2 Convergence test results. 38

viii

Chapter 1

Introduction

Simulating fluids realistically has been a popular topic of computer graphics since the
1990s. Fluid mechanics, as a well studied subject, is able to explain a wide range of
common fluid related phenomena. Computational fluid dynamics (CFD), based on fluid
mechanical principles, provides qualitative approaches for analyzing and simulating fluids.
Computer graphics researchers have taken advantage of these theories to produce high
quality animation of fluids. In the past few decades, basic fluid animation techniques have
been intensively studied, and researchers have begun to work on simulating many more
exotic phenomena, such as ferrofluid [27] and bubble rings [45].

In this thesis, we introduce a new boundary condition for simulating inviscid fluids: the
Signorini condition. In continuum mechanics, the Signorini condition models the unilateral
contact between objects that disallows penetration and attraction. We apply the condition
to inviscid fluids to model certain behavior of fluids. Figure 1.1 illustrates some potential
applications of the new condition:

Contact of fluids through a membrane. Consider a frictionless balloon filled with
water, where the mass of the balloon is much smaller than the water it contains. The liquid
inside the balloon follows the Euler equations, and the balloon creates strong tension on
the surface. When the balloon contacts other solid objects (e.g., another balloon), the
observed contact behavior is that of two solids. Therefore it make senses to model the
overall motion by Euler equations with a solid-like boundary condition. In practice, we
do not consider or implement this physical system, but it provides a useful and intuitive
analogy for the phenomena to be considered.

Non-coalescing fluids. This phenomenon is usually expected when two different
types of immiscible fluid, such as water and oil, collide with each other. Each fluid would

1

(a) Two water-filled balloons
collide.

(b) A droplet lands on a wa-
ter surface and bounces off.

(c) A droplet is cut by a hy-
drophobic knife.

Figure 1.1: Various fluid contact phenomena.

retain its clear boundary with the other fluid, and under forces (e.g., surface tension), the
two fluids may separate. The possibility of non-coalescence between two fluid bodies of the
same type may appear counterintuitive at first, but it occurs very often even for common
fluids like water. It is observed in dripping coffee, falling raindrops, floating oil droplets,
lava lamps, etc.

The bouncing water droplet is a good example of non-coalescence of fluids. When a
water droplet (with diameter ≈ 5mm) falls onto a water pool, often it will not merge with
the water pool immediately. Instead, it collides against the surface of the water pool and
then bounces off, as if they were two immiscible fluids.

Hydrophobic surfaces. Hydrophobic surfaces, like the surface of a lotus leaf, are
very difficult to wet. The mechanism of hydrophobicity is complicated. One possible cause
of hydrophobicity is that the microstructure on the surface prevents a substantial contact
between the solid and the fluid.

A physically truthful simulation of the above phenomena requires resolving objects of
contrasting scales at the same time. For example, the thickness of a balloon is around
10−3 of its diameter; for the bouncing droplets, one of the dominant factors behind these
phenomena is the “trapped fluid”. In the bouncing droplet example, when the droplet
approaches the underlying surface, it would squeeze the ambient air and finally trap a little
bit of air in between the two fluid bodies. The two fluid bodies are not directly interacting
with each other, but through a thin layer of air, the thickness of which is estimated to be
O(µm) [55, 42]. That is also around 10−3 of the diameter of the droplet. The contrasting
scales make the simulation very difficult. On the other hand, if we do not care much about

2

the details of the balloon or the trapped air, we may make some reasonable assumptions
and build models that approximate reality. Using simplified models to encapsulate low-
level details is a common practice in mechanical simulation. For example, friction is a result
of complicated microscopic interactions, but it is often well approximated by Coulomb’s
law. In this thesis, we will use Signorini conditions as a simplified model of the contact
behavior, and propose numerical methods for simulating these interesting phenomena.

3

Chapter 2

Preliminaries

In this chapter, we will summarize the necessary preliminary knowledge for our work, and
review some recent advances in related fields.

We first clarify our conventions for notations. In mathematical formulae, we use italic
letters (e.g., a) to denote scalar constants or fields, bold letters (e.g., a) to denote vector
or vector fields and bold capital letters (e.g., A) for matrices. We use ≡ to indicate either
a definition or an identity which holds regardless of the choice of an involving variable.
Number subscripts (e.g., a1, ai) are used to identify variables for different fluid phases, and
superscripts (e.g., an) are used to indicate the number of time steps.

2.1 The basics of fluid simulation

In this thesis, we are concerned with the simulation of incompressible inviscid fluids, which
are characterized by incompressible Euler equations:

∂u

∂t
+ u · ∇u =

1

ρ
(−∇p+ f), (2.1)

∇ · u = 0. (2.2)

Let Ω ∈ R3 be an open set representing the space occupied by the fluid. Equations (2.1)
and (2.2) are the equations that hold in Ω. To solve these equations, boundary conditions
must be specified on the boundary Γ = ∂Ω. We use Γ with a subscript (e.g., ΓD,ΓN) to
denotes a subset of Γ. Two most commonly used types of boundary conditions are:

4

• Dirichlet boundary condition, applied in areas where the pressure is known:

p = g, on ΓD. (2.3)

• Neumann boundary condition, applied in areas where velocity in the direction of the
surface normal n is known:

u · n = un, on ΓN . (2.4)

The advection-projection scheme is a popular split-step method to solve these PDEs.
Bridson has a comprehensive discussion on this topic in his book [9]. Here is an outline of
a single iteration of the method:

1. Advect the current velocity field in itself using semi-Lagrangian advection [52]:

u′(x) = un(x− un(x)∆t). (2.5)

2. Apply external forces to u′ using Forward Euler w.r.t. t:

u∗ = u′ + ρ−1f∆t. (2.6)

3. u∗ is in general not divergence-free and does not satisfy the boundary conditions. We
need to solve for a pressure field p that makes un+1 divergence-free and satisfy the
boundary conditions, where

un+1 = u∗ − ρ−1∇p∆t. (2.7)

4. Compute un+1 with equation (2.7) and start a new cycle.

In the above procedure, steps 1, 2 and 4 are conceptually simple and computationally
inexpensive, while step 3, also called the “projection” step, encapsulates most of the com-
plexity. In the case of liquid simulation, the simulation domain Ω is constantly evolving.
We need surface tracking mechanisms, which are often based on the level set method [2],
in addition to these steps.

When multiple immiscible fluids are present, equations (2.1) and (2.2) still hold inside
each of the fluids, but we will need a new equation to model how two fluids interact at
their interface of contact ΓI . For inviscid fluids, the free-slip condition is the most often
used:

u1 · n1 + u2 · n2 = 0, on ΓI . (2.8)

5

This condition ensures that the volume is not gained or lost, while allowing the fluids to
freely slide against each other. Surface tracking becomes more complicated in multi-phase
liquid simulation, as we need to maintain a consistent representation for all liquids. Losasso
et al. [35] addressed this challenge using multiple level sets and proposed modifications to
the advection-projection scheme accordingly to support multi-phase simulation.

2.2 Related studies on numerical methods for Pois-

son’s equation

Setting ∇ · un+1 = 0, we get the following equation:

∇ ·
Å

1

ρ
∇p
ã

=
1

∆t
∇ · u∗. (2.9)

It is an instance of the Poisson’s equation, which is one of the simplest forms of elliptic
PDEs. It has important application in many other fields, and it has been extensively stud-
ied. Generally, the equation has no analytical solution. The numerical algorithms to solve
the PDE vary significantly depending on a number of factors, such as the types of boundary
conditions, the geometry properties of the domain and the method of discretization.

The Marker-and-Cell (MAC) method [25] was invented to solve PDEs arising from in-
compressible flows in the 1960s. It is a finite difference method based on a staggered grid
and it is widely adopted in the computer graphics community. Fedkiw et al. [18] proposed
the Ghost Fluid Method (GFM) to better address free surface (Dirichlet) conditions. GFM
has become popular since it adds no cost to the MAC method but significantly improves
the quality of the simulation. For Neumann boundary conditions, Batty et al. proposed
a minimization approach [6], which was later interpreted in a finite volume method con-
text [43]. Both GFM and Batty’s finite volume method exhibit second order accuracy in
pressure [60, 43]. However, GFM is only for Dirichlet boundary conditions and Batty’s
finite volume method is only for Neumann boundary conditions, and they are not naturally
compatible with each other when non-axis-aligned boundaries are present. Helgadottir et
al. combined the two methods to give a second order accurate algorithm for problems that
have mixed Dirichlet, Neumann and Robin boundary conditions [26].

Instead of relying entirely on a regular Cartesian grid, some other methods use non-
Cartesian meshes to better capture irregular boundaries. Feldman et al. [19] combined
regular grids and unstructured tetrahedral meshes for the simulation of gas inside an ir-
regular domain. Chentanez et al. [13] extended the idea to support dynamic boundaries

6

and free-surface liquid. Brochu et al. [10] discretize the simulation domain using Voronoi
meshes, which captures more thin features than a plain grid. Guittet et al. [23] proposed
the Voronoi interface method, which uses a hybrid mesh consisting of a Voronoi mesh near
the boundary and a Cartesian grid for the interior. The Voronoi mesh is generated such
that boundary Voronoi cell faces are aligned with the surface, thus allowing accurate treat-
ment of Neumann conditions. The method of Brochu et al. correctly resolves thin gaps
formed by two surfaces next to each other , but it is designed for single phase simulation,
meaning that the method either treats both surfaces as free surfaces, or merges the two
volumes so that the surfaces become the interior. The Voronoi interface method is for
multiphase problems with submerged interfaces, which does not allow different phases to
separate. For our purpose, we need a method that combines the merits of both. However,
robustly generating Voronoi meshes for multiphase simulation is a non-trivial task. There
has been dedicated research on such problems [1], but the code is proprietary and not
readily available.

There are also methods based on unstructured meshes. Klingner et al. [29] used unstruc-
tured meshes to simulate gases. Some used finite element method (FEM) based approaches
for simulating gases and liquids [37, 15]. The difficulty of applying FEM to fluid simulation
mostly lies in geometry processing. Unstructured meshes enable comfortable treatment of
both Dirichlet and Neumann boundary conditions, however, as pointed out by Clausen et
al., obtaining high quality tetrahedral meshes and handling topological changes are tricky
and computationally expensive [15].

All the methods mentioned above, despite having different mesh structures and dis-
cretization schemes, support problems involving only Dirichlet or Neumann boundary con-
ditions. Studies on PDEs with Signorini boundary conditions will be reviewed in section
2.4.

2.3 Linear complementarity problems

A linear complementarity problem (LCP) refers to the following algebraic problem: given
a square matrix M and a vector q, we seek a pair of vectors w, z, s.t.

w = Mz + q, (2.10a)

z,w ∈ R+n

, (2.10b)

zTw = 0. (2.10c)

7

The last constraint is called the complementarity condition. Note that equations (2.10b)
and (2.10c) are equivalent to component-wise constraints

wi, zi ≥ 0 and wizi = 0, i = 1, . . . , n. (2.11)

The following properties hold true if M is positive definite:

1. The LCP instance has a unique solution (vector pair w, z).

2. The solution z minimizes f(x) = 1
2
xTMx + qTx subject to x ∈ R+n

.

3. The LCP can be equivalently formulated as: find z, s.t. ∀v ∈ R+n
:

(Mz + q)Tz = 0, (2.12a)

(Mz + q)Tv ≥ 0. (2.12b)

The first property suggests the importance of having a positive definite linear system
in our discretization. In many other discretization schemes positive definite systems are
preferred because they may be solved efficiently with methods like the conjugate gradient
method. For our problem, it is also a guarantee for solvability. The second and third
properties are useful for making connections between the variational forms of the PDEs
and their discretized counterparts, which we will further discuss in chapter 3. We refer
readers to the textbook by Cottle [16] for basic theory of LCP.

A variant of LCP, called mixed LCP (MLCP), does not impose conditions (2.11) on all
components, but a subset of all components C ⊂ {1, . . . n}:

wi, zi ≥ 0 and wizi = 0, ∀i ∈ C; (2.13)

for other components, MLCP only requires

wi = 0, zi ∈ R, ∀i ∈ C̄. (2.14)

When C is empty, the MLCP is reduced to the linear system Mz + q = 0. If M is positive
definite, the MLCP is equivalent to the following quadratic minimization problem:

min
xi≥0|i∈C

1

2
xTMx + qTx. (2.15)

8

2.4 Continuous unilateral contact

In contact mechanics, unilateral contact or unilateral constraint refers to a mechanical con-
straint that forbids both penetration and attraction between two rigid/deformable bodies.
It effectively models how solid objects in our daily life behave when they are in contact.
The Signorini condition was proposed to model such contact. The condition was proposed
by Antonio Signorini, an Italian mathematician, in an elastostatic problem in linear elas-
ticity [51]. Since the 1960s, elasticity problems with Signorini conditions have been studied
extensively. A new mathematical tool, the variational inequality, was born to examine the
theoretical aspects of PDEs with Signorini conditions [20]. In the engineering commu-
nity, numerical methods were devised to directly tackle problems with Signorini conditions
[28]. Unlike in computer graphics, they focused more on obtaining accurate solutions on a
limited number of simple geometries.

In computer graphics, contact problems have been systematically studied for simulation
of rigid bodies since the late 1980s [5]. For deformable bodies, most research in computer
graphics treats contact between different bodies as an instantaneous collision. A post-
impact status is calculated for the involved bodies after integrating over one time step.
This formulation is simple and convenient, but intrinsically heuristic. Since the 2000s,
researchers have been putting an increasing effort into accurately modelling contact using
Signorini conditions [47, 3, 58].

Despite its significance in the field of contact dynamics, the Signorini condition is
rarely mentioned in the CFD community. There are studies on numerically solving elliptic
PDEs with Signorini boundary conditions (e.g., [62]). In computer graphics, Narain et
al. [41] proposed the unilateral incompressibility constraint (UIC), which is a pressure-
density complementarity condition, for the simulation of granular materials. Gerszewski
and Bargteil [22] introduced UIC into fluid simulation to allow fluids to break up, creat-
ing splashy fluid motions. Despite having similar LCP formulations, these studies do not
model a contact constraint. Batty et al. proposed a complementarity condition for elimi-
nating “wall-sticking” artifacts [6]. Follow-up studies [13, 4, 30] proposed various efficient
LCP solvers to tackle the scalability issue in the method of Batty et al. [6]. These studies
are the closest to a serious treatment of Signorini condition in the CFD field. The poten-
tial of Signorini conditions in modelling more fluid dynamics phenomena remains largely
unexplored.

9

Chapter 3

Weak form of Signorini problems

As discussed in section 2.1, a key part of the fluid simulation algorithm is the projection
step, which aims to solve the following equations:

∇ ·
Å

1

ρ
∇p
ã

=
1

∆t
∇ · u∗ in Ω, (3.1a)

p = 0 on ΓD, (3.1b)Å
u∗ − ∆t

ρ
∇p
ã
· n = un on ΓN . (3.1c)

In the above equations, Ω denotes the interior of the fluid, ΓD denotes the free surface,
and ΓN denotes the fluid-solid interface, where the normal component of the solid velocity
is prescribed by un. In multiphase fluid simulations, we also have a free-slip condition for
fluid-fluid contact:

u1 · n1 + u2 · n2 = 0, on ΓI , (3.2)

where ni is the normal vector pointing away from fluid Ωi and ΓI is the boundary shared
by two phases.

In this chapter, we will introduce a new type of boundary condition in addition to
(3.1b) and (3.1c): the Signorini boundary condition. We discuss its generalization as a
replacement of the free-slip condition (3.2) in multiphase fluid simulation.

10

3.1 Signorini boundary conditions

3.1.1 Motivation

At fluid-solid boundaries, condition (3.1c) only allows tangential slip. The velocity of the
fluid and the solid must agree in the normal direction. Although the Neumann condition is
physically sound, it may cause certain artifacts, e.g., inviscid fluid may appear to stick onto
solid surfaces. This is expected on small scale, but usually the simulation is done in larger
scale where this becomes undesirable from a visual perspective. Batty et al. suggested
that imposing non-negativity constraints on the discrete pressure samples at the boundary
may help resolve this artifact [6]. The linear system resulting from discretizing equation
(3.1a) is then replaced by a mixed linear complementarity problem. Later, Chentanez and
Müller-Fischer [14] proposed a multigrid solver for the MLCP, which was further improved
by Lai et al. [30].

However, in all of the work above, there is no continuous characterization (in the form
of PDEs) for the physics we aim to model, making these methods difficult to generalize
to multiphase scenarios and other numerical methods. We will fill this gap by finding
the correct continuous PDE characterization, and perform a variational analysis on the
proposed PDEs. This allows us to formulate the problem as an optimization problem, and
employ existing results from the finite element method.

We now introduce the Signorini boundary condition. For the simplicity of subsequent
analysis, we assume that the Neumann boundary condition (equation (3.1c)) is replaced
everywhere by the Signorini condition (ΓS = ΓN):

p ≥ 0, and (3.3a)

un −
Å

u∗ − ∆t

ρ
∇p
ã
· n ≥ 0, and (3.3b)

p

Å
un −

Å
u∗ − ∆t

ρ
∇p
ã
· n
ã

= 0 on ΓS. (3.3c)

When the right-hand side of (3.3a) is zero, we say the Signorini condition is homogeneous.
Non-homogeneous conditions will be discussed in section 3.3. If a Neumann boundary
condition is present alongside the Signorini boundary condition, it will go through the
same transformations as condition (3.3b) and be absorbed into the linear form in the
resulting weak form. This is also why Neumann boundary conditions are also called natural
boundary conditions in FEM.

11

Note that un+1 = u∗ −∆t∇p/ρ. If we define a new notation ⊥≥0 as

a ⊥≥0 b ⇐⇒ (a, b ≥ 0) and (ab = 0), (3.4)

the relations in (3.3) may be written compactly as

p ⊥≥0 (un − un+1 · n) on ΓS. (3.5)

The intuition behind Signorini boundary conditions (3.3) is that the pressure of the fluid
at the boundary should be no less than an ambient value, which prevents attraction by
“negative pressure”. Moreover, it may exceed the ambient value only when the fluid is not
leaving the solid. This is exactly the implication of “no penetration” and “no attraction”
in the fluid dynamics context.

3.1.2 The weak form of homogeneous Signorini problem

In this section we analyze the elliptic equation (3.1a) with Dirichlet boundary condition
(3.1b) and Signorini boundary conditions (3.3). Physically, these equations describe the
behavior of a single liquid phase in contact with a solid.

Before diving into derivations, we would like to point out first that our analysis is not
meant to be rigorous in the mathematical sense. We assume that all functions we are
interested in are as smooth as desired, that all domains and their boundaries are regular,
and that all weak solutions are also strong solutions. It is not in our interest nor within
our expertise to undertake such formalities, but we do believe that our derivations provide
useful insight into the problem, and by fixing the details along the steps we take, a solid
foundation for our work may be established.

Let us start by defining the function space K(Ω) as

K(Ω) = {(f ≥ 0 on ΓS) and (f = 0 on ΓD)|f : Ω̄→ R}. (3.6)

It is clear that the solution p ∈ K(Ω). Like in many other functional analyses (or finite
element analyses), we first multiply both sides of equation (3.1a) by a trial function v ∈
K(Ω) and integrate the equation over Ω:∫

Ω

∇ ·
Å

1

ρ
∇p
ã
vdx ≡

∫
Ω

1

∆t
∇ · u∗vdx. (3.7)

12

Integrating by parts, we get∫
∂Ω

v

ρ
∇p · ds−

∫
Ω

1

ρ
∇p · ∇vdx ≡ 1

∆t

Å∫
∂Ω

u∗v · ds−
∫

Ω

u∗ · ∇vdx
ã
. (3.8)

Rearranging the terms:∫
Ω

ρ−1∇p · ∇vdx+
1

∆t

∫
ΓS

v

Å
u∗ − ∆t

ρ
∇p
ã
· ds− 1

∆t

∫
Ω

u∗ · ∇vdx ≡ 0. (3.9)

Since v ≥ 0 on ΓS, by inequality (3.3b) we have∫
ΓS

v

Å
u∗ − ∆t

ρ
∇p
ã
· ds ≤

∫
ΓS

vunds. (3.10)

Combining (3.9) and (3.10), and letting

a(u, v) =

∫
Ω

ρ−1∇u · ∇vdx (3.11)

and

b(v) =
1

∆t

∫
ΓS

vunds−
1

∆t

∫
Ω

u∗ · ∇vdx, (3.12)

we get:
a(p, v) + b(v) ≥ 0, ∀v ∈ K. (3.13)

Next we will compute a(p, p) + b(p). Note that everywhere on ΓS, equality holds at
least in one of the inequalities (3.3a) or (3.3b). Therefore we can split the the following
integral:∫

ΓS

p

Å
u∗ − ∆t

ρ
∇p
ã
· ds =

∫
ΓS∩{x|p=0}

0ds+

∫
ΓS∩{x|p>0}

p

Å
u∗ − ∆t

ρ
∇p
ã
· ds

=

∫
ΓS∩{x|p=0}

punds+

∫
ΓS∩{x|p>0}

punds

=

∫
ΓS

punds.

(3.14)

Then by identity (3.9),

a(p, p)+b(p) =

∫
Ω

ρ−1∇p·∇pdx+
1

∆t

∫
ΓS

p

Å
u∗ − ∆t

ρ
∇p
ã
·ds− 1

∆t

∫
Ω

u∗·∇pdx = 0. (3.15)

We are now ready to write down the weak form of the problem.

13

Definition 1 (Weak form of PDEs with Signorini boundary conditions). For PDE (3.1a)
with boundary conditions (3.1b) and (3.3), its weak form is defined as:

Let K be defined as in (3.6), a, b be defined as in equations (3.11) and (3.12). We seek
p ∈ K(Ω), s.t. ∀v ∈ K(Ω)

a(p, p) + b(p) = 0, (3.16a)

a(p, v) + b(v) ≥ 0. (3.16b)

Equations (3.16a),(3.16b) resemble the LCP formulation (2.12a),(2.12b). In fact, the
latter may be seen as variational inequalities in the finite dimensional Euclidean space Rn,
in which {z ∈ Rn|zi ≥ 0} is an infinite cone. Likewise, K(Ω) is an infinite cone in the
Sobolev space H(Ω). In (2.12a) and (2.12b), M is symmetric positive definite, and so is
the bilinear form a here. There has been research on variational inequalities in the form of
(3.16) in Banach spaces, which suggest a unique solution does exist for the problem [32].

3.2 Signorini jump conditions

In this section, we consider a multiphase scenario, and extend the Signorini boundary
conditions to model the contact of two fluid bodies. We first write down the known
equations for a two-phase projection. For i = 1, 2 :

∇ ·
Å

1

ρ
∇p
ã

=
1

∆t
∇ · u∗i in Ωi, (3.17a)

p = 0 on ΓD,i (3.17b)

p ⊥≥0 (un,i − un+1
i · ni) on ΓS,i. (3.17c)

Ω1,Ω2,ΓD,1,ΓD,2,ΓS,1,ΓS,2,ΓI are as illustrated in Figure 3.1. On ΓI , we would like a
different condition than the free-slip condition, which reads:

un+1
1 · n1 + un+1

2 · n2 = 0 on ΓI . (3.18)

When there is surface tension, pressure is discontinuous across ΓI . Therefore, we further
need

p−1 − p−2 = J on ΓI , (3.19)

where p−i is the one-sided limit of p taken from the side of Ωi and J is value of the pressure
jump. In this section, we assume J = 0, i.e., zero surface tension. The “no penetration,
no attraction” idea in this context translates to

p ⊥≥0 −(un+1
1 · n1 + un+1

2 · n2) on ΓI . (3.20)

14

fluid Ω1

solid

fluid Ω2

ΓS,1
ΓI

ΓD,1

ΓD,1

ΓD,2

ΓD,2

Air

Figure 3.1: Two fluid bodies in contact.

Equations (3.17a)–(3.17c),(3.20) together give the complete PDE formulation, which
we will refer to as the Signorini Interface Problem (SIP). Following similar steps as in the
last section, we may get the weak form of the SIP. A solution p to an SIP is a pair of
continuous fields (p1, p2). We will omit the subscript when it is clear from the context
which field is being referred to, e.g., p = p1 in Ω1.

Definition 2 (Weak form of SIP) Let a and b be defined as

a(u, v) =
∑
i=1,2

∫
Ωi

ρ−1∇ui · ∇vidx, (3.21a)

b(v) =
∑
i=1,2

1

∆t

∫
ΓS,i

viun,ids−
1

∆t

∫
Ωi

u∗i · ∇vidx (3.21b)

respectively, and

KI = {f = (f1, f2) ∈ K(Ω1)×K(Ω2)|f1 = f2 on ΓI}. (3.22)

The weak form of PDEs (3.17a)–(3.17c) and (3.20) seeks to find p ∈ KI s.t. ∀v ∈ KI :

a(p, p) + b(p) = 0, (3.23a)

a(p, v) + b(v) ≥ 0. (3.23b)

15

p−1 = p+
1 + J1

p−2 = p+
2 + J2

p+
1 = p+

2 ≥ 0
Ω1 Ω2

ΓI

Figure 3.2: Pressure jump across the fluid-fluid surface.

3.3 Non-homogeneous Signorini conditions

In this section, we will look into non-homogeneous boundary/jump conditions, which is
necessary when we take surface tension into account. Surface tension will incur a pressure
jump J = σκ across the surface, where σ is the coefficient of surface tension and κ is
the local mean curvature of the surface. That means if p+ is the pressure on the outside
the fluid surface, and p− is the pressure on the inside of the fluid surface, their difference
p− − p+ = J (see figure 3.2).

Now let us revisit the Dirichlet conditions (3.1b), (3.17b), the Signorini boundary con-
ditions (3.3), (3.17c) and the Signorini jump condition (3.20). The pressure p in these
conditions represents p+ though it is not specified. We may think of the fluids as being
wrapped in balloons of zero thickness, and p+ is the pressure on the outside of the balloon
and p− is the pressure on the inside of the balloon at the same point. p+ is the pressure we
should compare with the ambient value. On the fluid-fluid interface ΓI , p

+
1 and p+

2 should
be greater than or equal to 0 to prevent attraction. If there are no forces between the
fluids, we have p+

1 = p+
2 = 0. If there are forces, p+

1 = p+
2 ≥ 0 by Newton’s third law. In

both cases, we have p+
1 = p+

2 .

With this in mind, we may write down the non-homogeneous equations:

∇ ·
Å

1

ρ
∇pi
ã

=
1

∆t
∇ · u∗i in Ωi, (3.24a)

p+
i = 0 on ΓD,i (3.24b)

p+
i ⊥≥0 (un,i − un+1

i · ni) on ΓS,i, (3.24c)

p+
i ⊥≥0 −(un+1

1 · n1 + un+1
2 · n2) on ΓI , (3.24d)

p+ ≡ p+
i = pi − Ji on ∂Ωi. (3.24e)

In these equations, we may write p+ ≡ p+
i without concerns of ambiguity, because p+

1 and
p+

2 agree on the common interface ΓI , and only one of them is defined on other parts of
the boundary. p−i = pi, since pi is continuous in Ω̄.

16

The technique used in previous sections is no longer applicable, because the set L of all
admissible p = (p1, p2) is no longer a “cone” whose apex is at the origin. In other words,
{λf |λ ≥ 0, f ∈ KI} = KI (cf. (3.22)), but {λf |λ ≥ 0, f ∈ L} 6= L, which breaks the
fundamental assumption in the analysis of variational inequalities. To apply our earlier
results, we need to separate the non-homogeneous part from the problem.

To simplify our discussion, we first define a few linear operators:

L(u) = ∇ ·
Å

1

ρ
∇u
ã

in Ω1 ∪ Ω2, (3.25)

Ni(u) =

Å
u∗i −

∆t

ρ
∇u
ã
· ni on ∂Ωi, (3.26)

V(u) = N1(u1) +N2(u2) on ΓI . (3.27)

L is the operator on the left-hand side of equation (3.24a). Ni(u) gives the normal velocity
of fluid i on its boundaries after updating ui with pressure field u. V(u) gives the relative
normal velocity, at which the two fluid bodies are approaching each other, on their common
boundary ΓI . To prevent penetration, V(u) should be zero or negative.

Next we write down three PDE systems, solving for p, pD and pS respectively:

p = pD + pS

L(pi) =
1

∆t
∇ · u∗i

pi = Ji

pi ≥ Ji

un,i ≥ Ni(pi)
(pi − Ji) ⊥ (un,i −Ni(pi))
pi − Ji ≥ 0

0 ≥ V(p)

(pi − Ji) ⊥ V(p)

pD

L(pDi) = 0

pDi = Ji

pDi = Ji

pDi = Ji

pS

L(pSi) =
1

∆t
∇ · u∗i

pSi = 0

pSi ≥ 0

un,i ≥ Ni(pDi + pSi)

pSi ⊥ un,i −Ni(pDi + pSi)

pS ≥ 0

0 ≥ V(pD + pS)

pS ⊥ V(pD + pS)

in/on

Ωi

ΓD,i

ΓS,i

ΓS,i

ΓS,i

ΓI

ΓI

ΓI

Each column is a PDE system. The left column rewrites equations (3.24a)–(3.24e);
the middle column represents two independent Poisson’s equations with pure Dirichlet
boundary conditions; the right column is an instance of homogeneous Signorini interface
problem (cf. Definition 2), whose inputs are dependent on pD.

17

Equations for pD and pS have been shown solvable. By adding the corresponding
equations, we can easily verify that pD+pS is a solution for the non-homogeneous problem.
This decomposition is a constructive proof that a solution exists for (3.24a)–(3.24e). We
will use this decomposition to derive an optimization formulation for the problem, which
eventually will not rely on this construction but instead solve the original PDEs directly.

3.3.1 An optimization perspective

In section 2.3, we mentioned that LCPs may be formulated as optimization problems.
Signorini problems may be formulated as optimization problems, too. In the homogeneous
Signorini boundary problem (cf. Definition 1) and homogeneous SIP (cf. Definition 2), the
solution p minimizes

F (p) =
1

2
a(p, p) + b(p) (3.28)

in K and KI respectively.

For the non-homogeneous problem, we may write the solutions of its two subproblems
as pD = (pD1 , p

D
2) and pS = (pS1 , p

S
2). ∀u, v ∈ KI , let

ai(u, v) =

∫
Ωi

1

ρ
∇ui · ∇vidx (3.29)

and

bi(v) =
1

∆t

Ç∫
ΓS,i

viun,ids−
∫

Ωi

u∗i · ∇vidx
å
, (3.30)

18

then pS minimizes the following functional s.t. u ∈ KI :

F S(u) =
1

2

∑
i=1,2

ai(u, u) +
∑
i=1,2

bi(u) +
∑
i=1,2

∫
ΓN,i∪ΓS,i

u

ρ
∇pDi · ds (eq. (3.28))

=
1

2

∑
i=1,2

ai(u, u) +
∑
i=1,2

bi(u) +
∑
i=1,2

∫
∂Ωi

u

ρ
∇pDi · ds (u = 0 on ΓD,i)

=
1

2

∑
i=1,2

ai(u, u) +
∑
i=1,2

bi(u) +
∑
i=1,2

Å∫
Ωi

1

ρ
∇pDi · ∇udx+

∫
Ωi

∇ ·
Å

1

ρ
∇pD
ã
udx

ã
=

1

2

∑
i=1,2

ai(u, u) +
∑
i=1,2

bi(u) +
∑
i=1,2

ai(p
D
i , u) + 0 (since L(pD) = 0)

=
∑
i=1,2

Å
1

2
ai(u, u) + bi(u) + ai(p

D
i , u)

ã
.

(3.31)
Since pD is a constant field, we have

pS = arg min
u∈KI

F (u)

= arg min
u∈KI

∑
i=1,2

Å
1

2
ai(u, u) + bi(u) + ai(p

D
i , u) +

1

2
ai(p

D
i , p

D
i) + b(pDi)

ã
= arg min

u∈KI

∑
i=1,2

Å
1

2
ai(u+ pDi , u+ pDi) + bi(u+ pDi)

ã
= arg min

u−pD∈KI

∑
i=1,2

Å
1

2
ai(u, u) + bi(u)

ã
− pD.

(3.32)

Therefore, the solution p = pD + pS of the non-homogeneous SIP (3.24a)–(3.24e) is also
the solution of the minimization problem:

min
u|u−pD∈KI

∑
i=1,2

Å
1

2
ai(u, u) + bi(u)

ã
. (3.33)

The domain of minimization in (3.33) may be rewritten as

{u|u− pD ∈ KI} = {u = (u1, u2)|∀i(ui = Ji on ΓD,i) and (ui ≥ Ji on ΓN,i ∪ ΓI)}
= {u|u− J̄ ∈ KI},

(3.34)

19

where J̄ = (J̄1, J̄2) and J̄i is an arbitrary continuous function in Ω̄i s.t. J̄i = Ji on ∂Ωi. This
suggests we do not need to explicitly calculate pD to get p. We can continue to simplify
(3.33):

p = arg min
u|u−pD∈KI

∑
i=1,2

Å
1

2
ai(u, u) + bi(u)

ã
= arg min

u|u−J̄∈KI

∑
i=1,2

Å
1

2
ai(u, u) + bi(u)

ã
= arg min

u∈KI

∑
i=1,2

Å
1

2
ai(u+ J̄i, u+ J̄i) + bi(u+ J̄i)

ã
+ J̄

= arg min
u∈KI

∑
i=1,2

Å
1

2
ai(u, u) + bi(u) + ai(J̄i, u)

ã
+ J̄ .

(3.35)

Now the domain of minimization becomes KI , and ai(J̄i, u) is just another term linear in
u. (3.35) may be reduced to variational inequalities and be solved the same way (3.28) is
solved.

Our FEM discretization, developed in the next chapter, will be based on minimization
(3.35).

20

Chapter 4

A finite element method for 2D
Signorini problems

In this chapter, we will develop a first order finite element method for the 2D non-
homogeneous Signorini interface problem based on the variational formulation (3.35). Then
in section 4.3, we will give the complete description of how we incorporate the finite element
solve into the fluid simulation procedure.

4.1 The computational mesh

Our discretization is based on a staggered grid. The state of a fluid body at time step
tn consists of two parts: the volume it occupies Ωn

i and the velocity field uni defined in
Ωn
i . We use level sets for surface tracking. A level set encodes a closed surface implicitly

as the zero-contour of a signed distance field φ. At any location x, the sign of φ(x)
indicates whether x is inside the surface and |φ(x)| is the distance to the nearest point
on the surface. Ωn

i is represented by a level set sampled at integer grid positions, and the
discretized velocity is sampled at staggered positions (along the edges of the grid) in a
component-wise manner. For different fluid phases, the level sets and discretized velocity
fields are defined separately, which may overlap and hold different values in the overlapping
area. If one connected fluid body breaks apart duration the simulation, and we would like
to impose Signorini conditions if those two chunks contact later, we divide the broken
fluid body into multiple phases, each with a separate level set and a separate velocity
field. Maintaining separate level sets and velocity fields is necessary for imposing Signorini

21

conditions, otherwise we cannot correctly locate the interface or have distinct velocities
assigned to different phases.

We will use linear triangle elements and bilinear square elements in our FEM discretiza-
tion. We first calculate the position of the nodes from the level set presentation (see figure
4.1). Let V be the set of all nodes. It consists of the following types:

• Gi: grid nodes inside the fluid body Ωh
i (blue nodes in figure 4.1).

• Boundary nodes. A boundary node is added between neighboring grid nodes if the
signed distance values have opposite signs. Boundary nodes are further divided into
three types:

– Di: boundary nodes on the fluid-air interface ΓD,i (white);

– Si: boundary nodes on the fluid-solid interface ΓS,i (grey);

– I: merged boundary nodes (see the discussion below) on the fluid-fluid interface
ΓI (red).

Within each cell ([i, i + 1] × [j, j + 1]), we connect the nodes to form cut-cell shapes
and then divide these cut-cell shapes into triangles and squares by the method shown in
figure 4.2. We will solve for pressure on all nodes with FEM on these triangle and square
elements. In the FEM solve, each node is assigned one degree of freedom for pressure,
except for the fluid-fluid interface nodes (red nodes in figure 4.1). For fluid-fluid interface
nodes, we will assign one degree of freedom for each pair of interface nodes between the
same pair of grid nodes, since the pressure on the two nodes are coupled as discussed in
section 3.3. The boundary nodes sometimes do not lie exactly on the boundary or do not
agree at the interface, due to either a physically present gap or a numerical error in the
geometrical representation. We will address this inexactness in section 4.2.5.

We are now ready to assemble the FEM matrices and vectors.

4.2 The assembly process

In this section we will find the discretized definitions for terms in minimization problem
(3.35), namely, KI , ai, bi and J̄i.

22

fluid Ω1

solid

fluid Ω2

internal grid node

free surface node

fluid-solid interface
node

fluid-fluid interface
node

s− s+

θ = s−∆x
s−−s+

coupled DOF

Air

Figure 4.1: Nodes of a cut-cell mesh. The position of the boundary nodes are given by the
bottom-right equation, where s is the signed distance value. Velocity samples are on the
edges of the grid. Each fluid body keeps a different velocity field, but it is valid only in the
region of the corresponding fluid body. Velocity outside the fluid needs to be extrapolated
from valid samples.

(a) (b) (c) (d)

Figure 4.2: Subdivided cut-cell shapes. (a): a full submerged cell becomes a bilinear square
element. (b): a triangle cut-cell becomes one linear triangle element. (c): a trapezoid cut-
cell is subdivided into two triangle elements along its shorter diagonal. (d): a pentagon
cut-cell is subdivided into three triangle elements by connecting two boundary nodes to
their opposite grid node.

23

4.2.1 discretized function space

Based on the types of elements we use for the discretization, the set of basis functions of
the discretized function space Kh

I are the “hat functions”

φv(x) =
∑

E incident on v

φE,v(x), v ∈ V, (4.1)

where φE,v is the linear (if E is a triangle) or bilinear (if E is a square) shape function that
is non-zero only on element E and

φE,v(x) =

®
1 at node v,

0 at nodes v′ of E s.t. v′ 6= v.
(4.2)

Let Φ = (φv|v ∈ V)T . Kh
I consists of linear combinations of functions in Φ:

Kh
I = { xTΦ |x ∈ R|V |;

xv = 0 if (v ∈ D1 ∪D2);

xv ≥ 0 if (v ∈ S1 ∪ S2 ∪ I) } ,
(4.3)

which are globally continuous, element-wise linear or bilinear functions. Equation (4.3)
establishes the relation between a field (function) uh ∈ Kh

I and a vector x ∈ R|V |.

4.2.2 Bilinear forms

For uh = xTΦ, vh = yTΦ ∈ Kh
I ,

ai(u
h, vh) =

∫
Ωh

i

ρ−1∇uh · ∇vhdx

=
∑
E⊂Ωh

i

∫
E

ρ−1∇

(∑
v∈E

xvφE,v

)
· ∇

(∑
v′∈E

yv′φE,v′

)
dx

=
∑
E⊂Ωh

i

∑
v,v′∈E

xvyv′

∫
E

ρ−1∇φE,v · ∇φE,v′dx

=
∑
E⊂Ωh

i

∑
v,v′∈E

xvyv′AE:v,v′

=
∑
E⊂Ωh

i

xTAEy

= xTAiy,

(4.4)

24

Q

∆x

∆x

v1

v2

v3

v1 v2

v3 v4

T

p3 = (x3, y3)

p2 = (x2, y2)

p1 = (x1, y1)

Figure 4.3: A linear triangle element T and a bilinear square element Q.

where AE is the local stiffness matrix of element E whose non-zero entries are defined by

AE:v,v′ =

∫
E

ρ−1∇φE,v · ∇φE,v′dx (4.5)

and
Ai =

∑
E⊂Ωh

i

AE (4.6)

is the global stiffness matrix for fluid body Ωi.

Linear triangle elements and bilinear square elements are the simplest elements in
FEM. A detailed derivation of local stiffness matrices for them may be found in many
FEM textbooks (e.g., [63]). Here we directly note down the matrices. Assuming that ρ is
constant on each individual element, the local stiffness matrices for a linear triangle T and
a bilinear square element as in figure 4.3 are given by

AT =
1

4ρ× Area(T)

Ñ
‖r23‖2 −r13 · r23 −r32 · r12

−r13 · r23 ‖r13‖2 −r21 · r31

−r12 · r32 −r21 · r31 ‖r12‖2

é
(4.7)

and

AQ =
1

6ρ

Ü
4 −1 −1 2
−1 4 −2 −1
−1 −2 4 −1
−2 −1 −1 4

ê
, (4.8)

where rij = pj−pi is the relative position of node vi and vj. With (4.7) and (4.8), we may
construct the discretized bilinear forms (or stiffness matrices) Ai.

25

4.2.3 Linear forms

Next we will express the discretization of two linear terms in (3.21b) as vector products.
∀vh = xTΦ ∈ Kh

I , we try to write b(vh) as the sum of two vector products. For the first
term: ∑

i=1,2

1

∆t

∫
ΓS,i

vhun,ids =
∑
v∈V

xv

Ç∫
ΓS,1∪ΓS,2

1

∆t
φvunds

å
≡ bT1 x, (4.9)

the entries of b1 are

b1,v =

∫
ΓS,1∪ΓS,2

1

∆t
φvunds

=


∑

edge e incident
on v

∫
e

1

∆t
φvunds if v ∈ S1 ∪ S2,

0 otherwise.

(4.10)

Similarly, for the second term:

−
∑
i=1,2

1

∆t

∫
Ωi

u∗i · ∇vhdx =
∑
v∈V

xv

Å∫
Ω1∪Ω2

−1

∆t
u∗i · ∇φvdx

ã
≡ bT2 x, (4.11)

the entries of b2 are

b2,v =

∫
Ω1∪Ω2

−1

∆t
u∗i · ∇φvdx =

∑
Element E in-
cident on v

− 1

∆t

∫
E

u∗i · ∇φE,vdx. (4.12)

The integral in (4.10) or (4.12) may be approximated using one point quadrature (or higher
order if desired) on each edge e (in (4.10)) or element E (in (4.12)). Together, we may
write

b(vh) = (b1 + b2)Tx. (4.13)

4.2.4 Pressure jump

The discretized pressure jump ji is given by

ji,v =

®
σiκi,v if v ∈ Di ∪ Si ∪ I,
0 otherwise,

(4.14)

26

where σi is the coefficient of surface tension for fluid body i and κi is the local mean
curvature of ∂Ωi at v. The mean curvature κ is estimated using the “height function”
technique. Readers are referred to the paper of Sussman and Ohta [54] for details of the
technique.

4.2.5 Colliding velocity tolerance

In the last section, we have discretized every concept in (3.35). In this section we will
introduce another linear corrective term to counteract the numerical error caused by both
spatial and temporal discretization.

According to the discussion in section 4.1, if two surfaces pass through the same pair
of neighboring grid nodes, we consider them as being in contact. The “no penetration”
conditions (3.24c) and (3.24d) will prevent the two surfaces from getting closer, even though
they could be as far as 1∆x apart. This could result in persisting gaps at fluid-solid or fluid-
fluid interfaces, degrade the quality of surfaces and have significant impact on curvature
computation. To tackle this problem, we propose a mechanism that allows surfaces to get
closer until they close the gap.

If the gap between the two surfaces is sufficiently thin, we can model the gap as a
thickness field δ : ΓS ∪ ΓI → R on the surface. We propose that instead of enforcing
(3.24c) and (3.24d), which stops the surfaces from moving closer at tn+1, we allow the two
surfaces to approach at a velocity uδ that will not cause penetration within the time frame
[tn+1, tn+1 + ∆t]. Conditions (3.24c) and (3.24d) become

p+
i ⊥≥0 (un,i +

δ

∆t
− un+1

i · ni) on ΓS,i, (4.15a)

p+
i ⊥≥0 (

δ

∆t
− (un+1

1 · n1 + un+1
2 · n2)) on ΓI . (4.15b)

This will result in modifications to linear form b:

b′(v) =
∑
i=1,2

1

∆t

Ç∫
ΓS,i

v

Å
un,i +

δ

∆t

ã
ds−

∫
Ωi

u∗i · ∇vdx
å

+
1

∆t2

∫
ΓI

vδds.

= b(v) +
1

∆t2

∫
ΓS,1∪ΓS,2∪ΓI

vδds.

(4.16)

In the discretized setting, we need to estimate the extra integral for each basis function.
In figure 4.4, we have shown a cell with two fluid phases. The integral over the shown

27

Ω1

Ω2

v1

v2

e

Figure 4.4: A cell containing two fluid phases. We may use the middle line e as an
approximation of the shared boundary ΓI , since the two surfaces do not exactly agree in
this cell.

fragment of ΓI may be estimated as∫
e

φvδds ≈ φv

∫
e

δds ≈ 1

2
× (Area of the gap). (4.17)

In (4.17), we have assumed that φv and δ are independent variables. When the area of the
gap approaches 0, the extra integral vanishes, too. Therefore, let b3 ∈ R|V | and

b3,v =

∫
ΓS,1∪ΓS,2∪ΓI

φvδds

=


1

2∆t2
×
Å

Sum of gap area in
neighboring cells

ã
if v ∈ S1 ∪ S2 ∪ I,

0 otherwise.

(4.18)

Then ∀vh = xTΦ ∈ Kh
I ,

b′(vh) = b(vh) + bT3 x. (4.19)

4.2.6 Volume compensation

Standard level sets and semi-Lagrangian advection cause noticeable volume loss during the
simulation. We may optionally impose a positive divergence inside the fluids to compensate
for the volume loss. This is done by adding a linear term bT4 x, where

b4,v =


(V n

i − V 0
i)

V n
i N∆t2

if v ∈ Gi,

0 otherwise.

(4.20)

28

Intuitively, we distribute the task of sneaking in the lost volume −(V n
i −V 0

i) evenly across
the domain Ωn

i , which currently has volume V n, and evenly over a planned time of N∆t.
The remaining ∆t is derived from equation (3.1a). Setting N = 100 works well in our
experiments.

4.3 The algorithm

Putting everything together, we obtain the discretized minimization problem:

min
xT Φ∈Kh

I

1

2
xT

(∑
i=1,2

Ai

)
x +

(
bT1 + bT2 + bT3 + bT4 +

∑
i=1,2

jTi Ai

)
x. (4.21)

The constraint xTΦ ∈ Kh
I is a mixture of equalities and inequalities. Minimization (4.21)

may be solved with optimization solvers like Gurobi [24]. The solution of (4.21) concludes
the projection step. In the rest of this chapter, we will review the complete simulation
procedure and make some additional notes on the implementation details.

Algorithm 1: A single time step of the simulation

Input : discretized velocity fields uni , level sets si, time increment ∆t.
Output: updated fluid states un+1

i , sn+1
i .

1 Advect si in uni , using semi-Lagrangian advection;
2 Advect uni in uni to get u∗i , using semi-Lagrangian advection;
3 Apply external force to u∗i : u∗i = u∗i + f∆t/ρi;
4 Resolve conflicts in advected level sets s1 and s2 using the method in [35]; store

the conflict-free level sets in sn+1
i ;

5 Perturb si s.t. at every grid node x, |si(x)| ≥ 0.01∆x; store the perturbed level
sets in s̃i;

6 Pressure p = Project(u∗i , s̃i,∆t, motion of the solid boundary);
7 Update u∗i with pi; store the new velocity fields in un+1

i ;
8 Extrapolate un+1

i to the outside of Ωi;
9 Output un+1

i and sn+1
i ;

Line 5: this may be done by setting s = sgn(s) max(|s|, 0.01). It improves the numerical
stability of the method, similar to the clamping of θ (see figure 4.1) in the ghost fluid
method. The perturbed geometry is used for projection (line 6) and velocity update (line
7), but is not passed on to the next time step.

29

Line 7: the final pressure field of fluid body i is given by pi = p + ji. u∗i is only
updated with values in pi, and the position of nodes are calculated according to s̃i (to be
consistent with the projection). Figure 4.5 shows three possible configurations and we will
demonstrate how the velocity samples are updated in each of them. Let pL, pI , pR be value
of p at nodes vL, vI , vR as in the figures:

vR

u

vL

(a)

vL

u

vI

(b)

vL vRvI

u1 , u2

(c)

Figure 4.5: 3 different velocity update configurations: (a) the interior of a fluid phase; (b)
the boundary of a single fluid phase; (c) the interface between two fluid phases.

• (a) In the interior region of a fluid, central difference is used:

un+1 = u∗ − (pR − pL)∆t

ρ∆x
. (4.22)

• (b) At a fluid-solid or fluid-air interface, the ghost fluid method is used:

θ =
s̃L∆x

s̃L − s̃R
, (4.23)

un+1 = u∗ − (pI − pL)∆t

ρθ
. (4.24)

• (c) At a fluid-fluid interface, the two velocity samples at the same location for different
fluid phases are updated independently using the ghost fluid method:

θ1 =
s̃1,L∆x

s̃1,L − s̃1,R

, θ2 =
s̃2,R∆x

s̃2,R − s̃2,L

, (4.25)

un+1
1 = u∗1 −

(pI + j1,I − pL)∆t

ρθ1

, un+1
2 = u∗2 −

(pR − pI − j2,I)∆t

ρθ2

. (4.26)

Line 8: if a velocity sample ui(x) of fluid phase i is not updated in line 7, which happens if
there are no neighboring nodes of fluid i, we use constant extrapolation from valid velocity
samples in ui to override ui(x). Note that even though velocity may be defined and valid
for other fluid phases at location x, we will not use them.

30

Chapter 5

Experiments

In this chapter, we present some numerical experiments on our proposed algorithm. We
implemented our algorithm in C++, with Gurobi [24] as our MLCP solver. Here we show
the results of a series of experiments that demonstrate different aspects of our algorithm.
We did not spend much effort optimizing our code, but the Gurobi MLCP solver is the
bottleneck even though it is the only parallelized part of our implementation. Experiment
configurations and timing results are summarized in table 5.1.

Hydrophobic knife. This experiment showcases the difference between a Neumann
boundary condition and a Signorini boundary condition. As shown in figure 5.1, a rectan-
gular chunk of fluid is placed between a pair of hydrophilic walls (modelled by Neumann
boundary conditions) and a pair of hydrophobic blades (modelled by Signorini boundary
conditions), in a zero gravity environment. As the hydrophobic blades contact the fluid,
the fluid deforms under surface tension forces. As soon as the fluid is cut into halves, it
detaches from the hydrophobic blades immediately while continuing to adhere to the outer
Neumann boundaries. The difference between a hydrophobic surface and a hydrophilic
surface is well modelled by the different boundary conditions.

Normal and tangential separation. Two initially contacting fluid bodies as shown in
figure 5.2a are assigned opposite velocity in the normal (figures 5.2c and 5.2d) or tangential
direction (figure 5.2b). The fluid bodies are in a zero gravity environment and the surface
tension coefficient is 0.

With Signorini conditions on the interface, the fluid PDEs have a trivial solution: p = 0
and ui(t) = ui(0). This suggests that both fluid bodies will move with their initial velocity

31

(a) Initial configuration. (b) The blades move towards the center.

(c) The blades meet and cut the fluid into
halves.

(d) The fluid detaches from the hy-
drophobic blades and stays on the wall.

Figure 5.1: Hydrophobic blades. Different shades of curves indicate a sequence of samples
evenly spaced in time. Earlier samples have lighter shades.

32

(a) Initial configuration.
(b) Tangential separation under Neu-
mann/Signorini conditions.

(c) Normal separation under Neumann
conditions

(d) Normal separation under Signorini
conditions

Figure 5.2: Normal and tangential separation.

33

HK NS/TS BD DB2
Surface tension coefficient σ 1 0 1 0

Density ρ 50 50 50 50
Gravity gy 0 0 -5 -1
Resolution 1002 502 200× 120 1002

∆x 0.01 0.1 0.01 0.1
∆t 2× 10−4 0.01 10−3 0.02

Total time steps 600 50 3000 1000
Total MLCP solve time (s) 103 3.0 3590 1280
Total simulation time (s) 124 3.6 3780 1320

Table 5.1: Experiment configurations and timing results. Experiments: HK – hydrophobic
knife; NS/TS – normal/tangential separation; BD – bouncing droplet; DB2 – 2-phase dam
break.

without deforming. Under Neumann (free-slip) condition, the tangential slip may happen,
but the separation in the normal direction is disallowed.

In figure 5.2b, the fluid bodies are given opposite velocities in the tangential direction of
the interface. The behavior of the fluid bodies are the same under Neumann and Signorini
conditions. In figures 5.2c and 5.2d, the fluid bodies are given opposite velocities in the
normal direction. the Neumann condition is enforced in figure 5.2c. As a result, the two
fluid bodies drag each other. In figure 5.2d, the Signorini condition is enforced and they
separate without dragging.

Bouncing droplet. In this experiment, we simulate the collision of a droplet with a
water pool. A round droplet hit the pool with a downward velocity vy = −8 (equivalent
to falling from a height that is 3.2 times of the width of the water pool). Figure 5.3a
shows the motion of fluids at the beginning of the impact and figure 5.3b shows the motion
after the impact. Under Signorini conditions, the droplet bounces off the surface instead
of sticking to it.

2-phase dam break. In figure 5.4, we showed the evolution of two fluid bodies from
their initial configuration (figure 5.4a). We use this experiment to demonstrate the effects
of the corrective term b3 and the volume compensation term b4. We execute the simulation
three times. The first time is the original simulation (figure 5.4). In the second and third
run, we turn off b3 and b4 respectively.

34

(a) The droplet (blue) hits the pool (red). (b) The droplet bounces up.

Figure 5.3: Bouncing droplet.

(a) t ∈ [0, 1] (b) t ∈ [2, 3] (c) t ∈ [4, 5]

(d) t ∈ [8, 9] (e) t ∈ [10, 11] (f) t ∈ [12, 13]

Figure 5.4: 2-phase dam break test.

35

(a)

(b) (c)

(d) (e)

Figure 5.5: Effect of the corrective term b3. (a) A still frame from a simulation with the
corrective term. (b)(c) Zoom in views of fluid-fluid and fluid-solid interfaces. (d)(e) Same
patches in the corresponding frame of the simulation without the corrective term.

(a) The 500th frame (t = 10). (b) The 1000th frame (t = 20).

Figure 5.6: Effect of the volume compensation term b4. The red curves are the fluids in
the simulation with volume compensation, while blue curves are the fluids at the same
time step of the simulation without volume compensation.

36

O x

y

1

1

−1

−1

Dirichlet boundary condition
f = p.

Signorini boundary condition
with ∂f/∂n = ∂p/∂n active.

Signorini boundary condition
with f = p active.

Figure 5.7: The domain and boundaries of the model problem.

In the simulation without b3, gaps emerge at fluid-fluid and fluid-solid interfaces. Figure
5.5a is a still frame from the two-phase simulation in the original simulation, showing the
relative position of the two fluid phases. Figures 5.5b and 5.5c are the zoom in views
of the corresponding patches in figure 5.5a. The level sets of the fluid phases and solid
agree at the interfaces. Figures 5.5d and 5.5e are extracted from the same patches of the
corresponding frame in the simulation without the corrective term. There are visible gaps
between the surfaces and such gaps are common in the entire simulation.

Figure 5.6 shows the how the simulation without b4 (blue) differs from the original
simulation (red) after 500 and 1000 time steps. At the 500th time step, Vred = 99.2%V0

and Vblue = 89.0%V0. At the 1000th time step, Vred = 98.5%V0 and Vblue = 79.6%V0. We
see clearly that volume loss is significant without volume compensation.

Convergence test. Like other first order finite element methods, our method for solving
the Signorini boundary problem is second order accurate, which is validated by the following
numerical experiment. However, we point out that second order accuracy is only achieved
with no perturbation of geometries (cf. algorithm 1, line 5) and accurate integration of
boundary conditions. These two premises often do not hold for the full Euler equations.

Let p(x, y) = ex cos y. We construct a model problem about p and solve for it numeri-

37

∆x L∞ error εn−1/εn
1/4 0.0274
1/8 8.04× 10−3 3.41
1/16 2.03× 10−3 3.96
1/32 3.70× 10−4 5.48
1/64 1.32× 10−4 2.80

Table 5.2: Convergence test re-
sults.

2 3 4 5 6
10−4

10−3

10−2

− log2 ∆x

‖f̂
−
p‖
∞

Figure 5.8: ε−∆x plot.

cally:

∇ · ∇f = 0 x2 + y2 < 1, (5.1a)

f = p x2 + y2 = 1 and x < 0, (5.1b)

(f − (p− |xy|)) ⊥≥0

Å
∂f

∂n
− ∂p

∂n

ã
x2 + y2 = 1 and x, y ≥ 0, (5.1c)

(f − p) ⊥≥0

Å
∂f

∂n
−
Å
∂p

∂n
− |xy|

ãã
x2 + y2 = 1 and y < 0 < x. (5.1d)

The domain and boundary conditions are illustrated in figure 5.7. Signorini conditions
(5.1c) and (5.1d) relax on f and its gradient respectively. The positive relaxation term
|xy| should not affect the solution (f = p) as the relaxed condition becomes inactive.

We solve for the approximate fields f̂n on grids with resolution (4 × 2n)2, and record
the errors εn = ‖f̂n − p‖∞ in table 5.2. Figure 5.8 shows the ε − ∆x plot in logarithmic
scale. A regression analysis suggests

log2 ε ≈ 1.984 log2 ∆x− 1.141. (5.2)

The results show that our algorithm correctly identifies the active condition in a Signorini
condition and is approximately second order accurate.

38

Chapter 6

Conclusions and discussions

In this thesis, we introduced the Signorini boundary condition for the Euler equations and
proposed a numerical solution to the problem in two dimensions. We further evaluated this
method in some representative scenarios and demonstrated that it successfully achieved
the intended behavior. In this chapter, we will make some additional remarks on our
algorithm, share some lessons we learned during our research, and discuss some potential
future work.

Challenges of discretization. We identify two challenges in the discretization of Sig-
norini problems, regardless of the numerical schemes being used. Our 2D FEM discretiza-
tion meets both requirements.

1. Signorini boundary conditions are ambiguous at the time of discretization. The DOFs
must be defined in a way that they could handle both Dirichlet and Neumann (or
free-slip) conditions.

2. The discretization must be continuous across the fluid-fluid interface. No matter how
the MLCP is derived, each individual inequality for an interface DOF eventually boils
down to a discrete pressure-flux (velocity) complementarity condition, which requires
the DOFs being shared by the two phases. E.g., if the two phases are discretized with
unrelated tetrahedron meshes, the contacting area must be remeshed to properly set
up DOFs.

Colliding velocity tolerance. For any method that uses multiple independent level sets
and velocity fields, determining whether two surfaces are in contact (separated by numerical

39

errors) or separated by a small physical distance is a tricky task. The corrective term
introduced in section 4.2.5 is a neat solution to this problem. It handles the ambiguity in a
smooth and robust way without relying on sophisticated geometry processing techniques.

Disadvantages of FEM. We have discretized 2D domains into finite elements relatively
easily. However, this is not as easy in 3D. For partial boundary cells in 3D, there are up
to 15 different cut-cell shapes (there are 3 in 2D, cf. figure 4.2) that we need to further
subdivide into tetrahedron or pyramid elements. Certain cut-cell shapes require more than
10 tetrahedrons for the subdivision. This also makes coding more complicated. In terms
of efficiency, 2D FEM has a 9-point stencil, which is much larger than the 5-point stencil
resulting from a standard finite difference discretization. The MLCP solve is therefore
slower.

We also list some potential directions for future work.

Implementation in 3D. It is the obvious next step. Standard 3D tri-linear cube ele-
ments will cause a 27-point stencil. A lumped stiffness matrix may help improve efficiency.

Better surface tracking. Volume compensation is an effective workaround to reduce
volume loss, but after all it has no physical foundation. It is possible to reduce volume loss
by using better surface tracking methods, such as the particle level set method [17].

Implicit treatment of surface tension. Many of the fluid phenomena we are interested
in are dominated by surface tension forces. Strong surface tension poses a very stringent
restriction on the size of the time step. This causes increased running time. Moreover, the
volume loss typical for a level set representation becomes more visible after thousands of
time steps. It may help to adopt an implicit treatment for surface tension [54].

Coalescence of fluids. For many fluids, the non-coalescence phenomenon is often fol-
lowed by (delayed) coalescence. In the bouncing droplet example, the droplet will sit on
the water pool after a few bounces, then after a few seconds, the droplet may suddenly
coalesce with the water pool. Sometimes this process generates a smaller droplet that
bounces, which is referred to as the “cascading coalescence”. It would be interesting to
visually simulate these phenomena.

40

(a) Floating oil droplets in water (b) Kaye effect

Figure 6.1: Non-coalescence behavior of viscous fluids.

Viscous fluids. Non-coalescence is observed in viscous fluids, too. For example, when
oil is poured into water, it is scattered into small droplets. The droplets float up to the
surface because its density is lower. At the surface, however, those contacting oil droplets
will not immediately merge into a larger one. They remain small oil droplets for some time,
as shown in figure 6.1a. A similar phenomenon also happens inside a lava lamp, where
molten wax blobs float to the top of the container without immediately merging. Another
complicated behavior of some non-Newtonian fluids, the Kaye effect, is also believed to
have connections with the non-coalescence phenomenon [59]. The Kaye effect refers to the
phenomenon where a fluid jet pouring downward occasionally slips off the pile and shoots
sideways, as shown in figure 6.1b.

For viscous fluid, the “no attraction” condition also involves viscous stress, instead of
just the pressure. In the case of floating oil droplets, the droplets are submerged in water,
instead of air which we treat as vacuum or a constant pressure field, and thus it would
require support for three or more distinct phases. In the case of Kaye effect, we need to
handle the self-contact of surfaces. All of these add complexity to our problem.

41

References

[1] Ahmed Abdelkader, Chandrajit L Bajaj, Mohamed S Ebeida, Ahmed H Mahmoud,
Scott A Mitchell, John D Owens, and Ahmad A Rushdi. Vorocrust: Voronoi meshing
without clipping. ACM Transactions on Graphics (TOG), 39(3):1–16, 2020.

[2] David Adalsteinsson and James A Sethian. A fast level set method for propagating
interfaces. Journal of computational physics, 118(2):269–277, 1995.

[3] Jérémie Allard, François Faure, Hadrien Courtecuisse, Florent Falipou, Christian
Duriez, and Paul G Kry. Volume contact constraints at arbitrary resolution. In
ACM SIGGRAPH 2010 papers, pages 1–10. 2010.

[4] Michael Andersen, Sarah Niebe, and Kenny Erleben. A fast linear complementarity
problem (lcp) solver for separating fluid-solid wall boundary conditions. In Proceedings
of the 13th Workshop on Virtual Reality Interactions and Physical Simulations, pages
39–48, 2017.

[5] David Baraff. Analytical methods for dynamic simulation of non-penetrating rigid
bodies. In Proceedings of the 16th annual conference on Computer graphics and in-
teractive techniques, pages 223–232, 1989.

[6] Christopher Batty, Florence Bertails, and Robert Bridson. A fast variational frame-
work for accurate solid-fluid coupling. In ACM Transactions on Graphics (TOG),
volume 26, page 100. ACM, 2007.

[7] Christopher Batty and Ben Houston. A simple finite volume method for adaptive vis-
cous liquids. In Proceedings of the 2011 ACM SIGGRAPH /Eurographics Symposium
on Computer Animation, SCA ’11, pages 111–118, New York, NY, USA, 2011. ACM.

[8] Landon Boyd and Robert Bridson. Multiflip for energetic two-phase fluid simulation.
ACM Transactions on Graphics (TOG), 31(2):16, 2012.

42

[9] Robert Bridson. Fluid simulation for computer graphics. AK Peters/CRC Press, 2015.

[10] Tyson Brochu, Christopher Batty, and Robert Bridson. Matching fluid simulation
elements to surface geometry and topology. In ACM SIGGRAPH 2010 papers, pages
1–9. 2010.

[11] John WM Bush. The new wave of pilot-wave theory. 2015.

[12] G Eo Charles and So Go Mason. The mechanism of partial coalescence of liquid drops
at liquid/liquid interfaces. Journal of Colloid Science, 15(2):105–122, 1960.

[13] Nuttapong Chentanez, Bryan E Feldman, François Labelle, James F O’Brien, and
Jonathan R Shewchuk. Liquid simulation on lattice-based tetrahedral meshes. In
Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer an-
imation, pages 219–228, 2007.

[14] Nuttapong Chentanez and Matthias Mueller-Fischer. A multigrid fluid pressure solver
handling separating solid boundary conditions. IEEE transactions on visualization and
computer graphics, 18(8):1191–1201, 2012.

[15] Pascal Clausen, Martin Wicke, Jonathan R Shewchuk, and James F O’Brien. Simu-
lating liquids and solid-liquid interactions with lagrangian meshes. ACM Transactions
on Graphics (TOG), 32(2):1–15, 2013.

[16] Richard W Cottle. Linear complementarity problem. Springer, 2009.

[17] Douglas Enright, Ronald Fedkiw, Joel Ferziger, and Ian Mitchell. A hybrid particle
level set method for improved interface capturing. Journal of Computational physics,
183(1):83–116, 2002.

[18] Ronald P Fedkiw, Tariq Aslam, Barry Merriman, and Stanley Osher. A non-oscillatory
eulerian approach to interfaces in multimaterial flows (the ghost fluid method). Journal
of computational physics, 152(2):457–492, 1999.

[19] Bryan E Feldman, James F O’Brien, and Bryan M Klingner. Animating gases with
hybrid meshes. ACM Transactions on Graphics (TOG), 24(3):904–909, 2005.

[20] Gaetano Fichera. Existence theorems in elasticity. In Linear theories of elasticity and
thermoelasticity, pages 347–389. Springer, 1973.

[21] Nick Foster and Dimitri Metaxas. Realistic animation of liquids. Graphical models
and image processing, 58(5):471–483, 1996.

43

[22] Dan Gerszewski and Adam W Bargteil. Physics-based animation of large-scale splash-
ing liquids. ACM Trans. Graph., 32(6):185–1, 2013.

[23] Arthur Guittet, Mathieu Lepilliez, Sebastien Tanguy, and Frédéric Gibou. Solv-
ing elliptic problems with discontinuities on irregular domains–the voronoi interface
method. Journal of Computational Physics, 298:747–765, 2015.

[24] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2021.

[25] FH Harlow. The marker-and-cell method. In Von Karman Inst. for Fluid Dyn.
Numerical Methods in Fluid Dyn. 38 p (SEE N79-27448 18-34, 1972.

[26] Ásd́ıs Helgadóttir, Yen Ting Ng, Chohong Min, and Frédéric Gibou. Imposing mixed
dirichlet–neumann–robin boundary conditions in a level-set framework. Computers &
Fluids, 121:68–80, 2015.

[27] Libo Huang, Torsten Hädrich, and Dominik L Michels. On the accurate large-scale
simulation of ferrofluids. ACM Transactions on Graphics (TOG), 38(4):1–15, 2019.

[28] Noboru Kikuchi and John Tinsley Oden. Contact problems in elasticity: a study of
variational inequalities and finite element methods. SIAM, 1988.

[29] Bryan M Klingner, Bryan E Feldman, Nuttapong Chentanez, and James F O’Brien.
Fluid animation with dynamic meshes. In ACM SIGGRAPH 2006 Papers, pages
820–825. 2006.

[30] Junyu Lai, Yangang Chen, Yu Gu, Christopher Batty, and Justin WL Wan. Fast
and scalable solvers for the fluid pressure equations with separating solid boundary
conditions. In Computer Graphics Forum, volume 39, pages 23–33. Wiley Online
Library, 2020.

[31] Egor Larionov, Christopher Batty, and Robert Bridson. Variational stokes: a unified
pressure-viscosity solver for accurate viscous liquids. ACM Transactions on Graphics
(TOG), 36(4):101, 2017.

[32] Jun Li and Nan-jing Huang. Vector F-implicit complementarity problems in banach
spaces. Applied mathematics letters, 19(5):464–471, 2006.

[33] Konstantin Lipnikov, Gianmarco Manzini, and Mikhail Shashkov. Mimetic finite dif-
ference method. Journal of Computational Physics, 257:1163–1227, 2014.

44

[34] Konstantin Lipnikov, Mikhail Shashkov, and Ivan Yotov. Local flux mimetic finite
difference methods. Numerische Mathematik, 112(1):115–152, 2009.

[35] Frank Losasso, Tamar Shinar, Andrew Selle, and Ronald Fedkiw. Multiple interacting
liquids. In ACM Transactions on Graphics (TOG), volume 25, pages 812–819. ACM,
2006.

[36] Per Lötstedt. Mechanical systems of rigid bodies subject to unilateral constraints.
SIAM Journal on Applied Mathematics, 42(2):281–296, 1982.

[37] Marek Krzysztof Misztal, Kenny Erleben, Adam Bargteil, Jens Fursund, Brian Bunch
Christensen, Jakob Andreas Bærentzen, and Robert Bridson. Multiphase flow of
immiscible fluids on unstructured moving meshes. IEEE transactions on visualization
and computer graphics, 20(1):4–16, 2013.

[38] Nathan Mitchell, Mridul Aanjaneya, Rajsekhar Setaluri, and Eftychios Sifakis. Non-
manifold level sets: A multivalued implicit surface representation with applications to
self-collision processing. ACM Transactions on Graphics (TOG), 34(6):247, 2015.

[39] Joe J Monaghan. Smoothed particle hydrodynamics. Annual review of astronomy and
astrophysics, 30(1):543–574, 1992.

[40] José Luis Morales, Jorge Nocedal, and Mikhail Smelyanskiy. An algorithm for the
fast solution of symmetric linear complementarity problems. Numerische Mathematik,
111(2):251–266, 2008.

[41] Rahul Narain, Abhinav Golas, and Ming C Lin. Free-flowing granular materials with
two-way solid coupling. In ACM SIGGRAPH Asia 2010 papers, pages 1–10. 2010.

[42] G Paul Neitzel and Pasquale Dell’Aversana. Noncoalescence and nonwetting behavior
of liquids. Annual review of fluid mechanics, 34(1):267–289, 2002.

[43] Yen Ting Ng, Chohong Min, and Frédéric Gibou. An efficient fluid–solid coupling
algorithm for single-phase flows. Journal of Computational Physics, 228(23):8807–
8829, 2009.

[44] Melissa Orme. Experiments on droplet collisions, bounce, coalescence and disruption.
Progress in Energy and Combustion Science, 23(1):65–79, 1997.

[45] Marcel Padilla, Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. On
bubble rings and ink chandeliers. ACM Transactions on Graphics (TOG), 38(4):129,
2019.

45

[46] Joseph Papac, Frédéric Gibou, and Christian Ratsch. Efficient symmetric discretiza-
tion for the poisson, heat and stefan-type problems with robin boundary conditions.
Journal of Computational Physics, 229(3):875–889, 2010.

[47] Mark Pauly, Dinesh K Pai, and Leonidas J Guibas. Quasi-rigid objects in contact.
In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer
animation, pages 109–119, 2004.

[48] Stéphane Popinet. Numerical models of surface tension. Annual Review of Fluid
Mechanics, 50:49–75, 2018.

[49] Daniel Ram, Theodore Gast, Chenfanfu Jiang, Craig Schroeder, Alexey Stomakhin,
Joseph Teran, and Pirouz Kavehpour. A material point method for viscoelastic flu-
ids, foams and sponges. In Proceedings of the 14th ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 157–163. ACM, 2015.

[50] WD Ristenpart, JC Bird, A Belmonte, F Dollar, and Howard A Stone. Non-
coalescence of oppositely charged drops. Nature, 461(7262):377, 2009.

[51] Antonio Signorini. Sopra alcune questioni di elastostatica. Atti della Societa Italiana
per il Progresso delle Scienze, 27:69, 1933.

[52] Jos Stam. Stable fluids. In Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, pages 121–128, 1999.

[53] Mark Sussman. A second order coupled level set and volume-of-fluid method for
computing growth and collapse of vapor bubbles. Journal of Computational Physics,
187(1):110–136, 2003.

[54] Mark Sussman and Mitsuhiro Ohta. A stable and efficient method for treating surface
tension in incompressible two-phase flow. SIAM Journal on Scientific Computing,
31(4):2447–2471, 2009.

[55] Denis Terwagne, Nicolas Vandewalle, and Stéphane Dorbolo. Lifetime of a bouncing
droplet. Physical Review E, 76(5):056311, 2007.

[56] Steven Trainoff. Watch the bouncing droplet. https://www.youtube.com/watch?v=
pbGz1njqhxU. Accessed: 2019-07-07.

[57] Nicolas Vandewalle, Denis Terwagne, K Mulleners, Tristan Gilet, and Stéphane Dor-
bolo. Dancing droplets onto liquid surfaces. Physics of Fluids, 18(9):091106, 2006.

46

https://www.youtube.com/watch?v=pbGz1njqhxU
https://www.youtube.com/watch?v=pbGz1njqhxU

[58] Mickeal Verschoor and Andrei C Jalba. Efficient and accurate collision response for
elastically deformable models. ACM Transactions on Graphics (TOG), 38(2):1–20,
2019.

[59] Michel Versluis, Cor Blom, Devaraj van der Meer, Ko van der Weele, and Detlef Lohse.
Leaping shampoo and the stable kaye effect. Journal of statistical mechanics: theory
and experiment, 2006(07):P07007, 2006.

[60] Gangjoon Yoon and Chohong Min. Analyses on the finite difference method by gibou
et al. for poisson equation. Journal of Computational Physics, 280:184–194, 2015.

[61] Yonghao Yue, Breannan Smith, Christopher Batty, Changxi Zheng, and Eitan Grin-
spun. Continuum foam: A material point method for shear-dependent flows. ACM
Transactions on Graphics (TOG), 34(5):160, 2015.

[62] Tie Zhang and Zheng Li. An analysis of finite volume element method for solving the
signorini problem. Applied Mathematics and Computation, 270:830–841, 2015.

[63] Olek C Zienkiewicz, Robert L Taylor, and Jian Z Zhu. The finite element method: its
basis and fundamentals. Elsevier, 2005.

47

	List of Figures
	List of Tables
	Introduction
	Preliminaries
	The basics of fluid simulation
	Related studies on numerical methods for Poisson's equation
	Linear complementarity problems
	Continuous unilateral contact

	Weak form of Signorini problems
	Signorini boundary conditions
	Motivation
	The weak form of homogeneous Signorini problem

	Signorini jump conditions
	Non-homogeneous Signorini conditions
	An optimization perspective

	A finite element method for 2D Signorini problems
	The computational mesh
	The assembly process
	discretized function space
	Bilinear forms
	Linear forms
	Pressure jump
	Colliding velocity tolerance
	Volume compensation

	The algorithm

	Experiments
	Conclusions and discussions
	References

