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Abstract 

Municipal governments have the responsibility to provide safe drinking water to residents. 

Maintaining water infrastructure systems to keep a certain level of service is a vital service. It is 

possible by assessing all assets and planning capital work activities to renew and renovate the 

existing assets. The municipalities prioritize the capital activities of their infrastructure and are 

required to optimize their available resources. 

Past studies confirmed due to several complexities and imperfections of the available water 

network data, there is a need for a comprehensive multicriteria database to prioritize pipe capital 

plan decisions based on engineering expert judgment. This database must include information 

about water pipe physical condition and performance up to an acceptable level of service and 

criticality based on the water pipe location. In addition, the lack of standard regulatory 

requirements due to incomplete condition, criticality and performance assessment of the entire 

Municipal Water Network (MWN) leads to bias and undefendable engineering judgment. 

Although several pipe prioritization models have been developed and published in the literature, 

no comprehensive multi-decision criterion model is available to date, including the pipe segment 

condition, performance, and criticality. 

In this research, a novel Priority Action Number (PAN) is developed and parameterized 

based on pipe segment condition, performance and criticality. An automated Naïve Bayes 

Classifier (NBC) with a supervised machine learning model is proposed for consistent, defensible 

and personnel independence ranking of existing water pipe condition, performance, and criticality 

of all water pipes through MWN. This methodology automates the capital activities decision-

making process. The research presents and develops a prioritizing approach for the MWN capital 

activities and aids in selecting assistive technology for rehabilitation and renewal capital activities.  

The developed model is applied to the City of London MWN database in a Geographical 

Information System (ArcGIS) database to validate and verify the model. The multi-level classifier 

model classified and assigned a capital work activity to all pipes in the City of London MWN.  
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The presented multi-level NBC with a supervised learning algorithm replicates the expert's 

opinion and engineering judgement. Through NBC supervised machine learning algorithm, the 

capital project decision-making process is automated. This methodology will add consistency and 

defensibility to capital programs. Using this algorithm can help utility save money by automating 

industry best practices and optimizing long-term decisions about the order in which pipes need to 

be staged into capital works programs.  
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1.1 Background 

The Canadian Infrastructure Report Card (2012) estimates the replacement value of water 

assets to be $362 billion. Lack of effective and proactive capital work activities has resulted in this 

huge infrastructure backlog over the past decade. To reduce this backlog and to stop its growth, 

massive infrastructure investments are required. To generate revenue for these investments, 

utilities are required to rapidly increase the cost of water to their customers (residents and 

businesses). This rapid cost increase often results in affordability issues, especially for low-income 

families and businesses. Ontario Regulation 453/07 (MEO, 2007) and Public Sector Accounting 

Board (PSAB) Statement 3150 (CICA, 2007) require all public water utilities to prepare annual 

reports on the current and the future condition of their in-service assets. Managing ageing water 

infrastructure systems with limited financial resources requires comprehensive multicriteria 

decision support methodology to make defensible capital activity decisions for all Municipal 

Water Network (MWN) assets to maintain and/or enhance service levels.  

This research uses Artificial Intelligence (AI) to automate the classification activity for all 

pipes within MWN for condition, performance, criticality and assign a capital work activity. A 

Naïve Bayes Classifier (NBC) with a supervised learning algorithm is employed to automate the 

capital planning activities for MWN. The supervised learning algorithm uses the responses 

obtained from an expert survey developed and analyzed as part of this research project; these 

expert's opinions are used as target values to parameterize the NBC model.  

A novel Priority Action Number (PAN) is developed and parameterized based on pipe 

segment Condition, Performance and Criticality Score. Models are applied in a Geographic 

Information System (ArcGIS) with the geospatial capability to identify each pipe within MWN for 

all criteria. The model is developed to run on very large MWN in southern Ontario municipality 

and tested on the City of London MWN. The results are validated with the City of London water 

replacement program for 2016 and 2017.  
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The proposed methodology develops a standardized decision-making framework that 

allows for defensible, repeatable and auditable prioritization decisions that are automated and 

implemented into an ArcGIS system. The prioritization model is based on expert opinion using a 

machine learning algorithm.  

Prioritizing capital activities requires considerations of several variables and attributes. The 

common strategy prioritizing capital work decisions involved linear asset physical condition 

attributes, and other attributes such as pipe performance and criticality are neglected (OSWCA, 

2018). The common theme of the current methodology is focused on one type of mitigation 

decision, such as rehabilitation and replacement of water infrastructure (Halfawy & Hengmeechai, 

2014). North American municipalities are struggling to develop tools and processes that respond 

to the problem proactively instead of reactively (Kumar, et al., 2018). An important barrier to a 

proactive capital program is the lack of standard regulatory requirements due to complete 

condition, criticality and performance assessment of the entire system. Municipalities are 

following a different decision-making technique developed by their internal municipal engineer. 

While engineering judgements are subjective, it's required to be supported by consistent decision-

making methodology (Aven, 2016). Often the engineer judgements are questioned by elected 

officials in each City due to capital activity price tag and dollar values.  

Municipalities spend billions of dollars assessing linear infrastructure and planning capital 

works activities to provide sufficient support for capital activities decisions. By automating capital 

activity decision-making processes, not only consistency repeatability and defence-ability would 

be added to capital activities decisions, but also the resources can be spending on much-needed 

water asset maintenance activities. This study proposes a decision support tool that would add 

consistency and defence-ability to capital activity decisions. 

1.2 Research Goal and Objectives  

The overall goal of this research is to propose a novel framework for a comprehensive 

multicriteria methodology to automate planning of the water capital activities, prioritize them with 

a scientific methodology and demonstrate its application merits on the City of London.  
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This goal is achieved by pursuing eight specific research objectives as follows:   

1. Review the available frameworks assessing water pipes for capital activities to 

identify attributes affecting condition, performance and criticality.     

2. Define a multicriteria framework assessing all pipes in the MWN for their 

condition, performance, criticality and suggesting a capital work mitigation 

methodology to all pipes in the MWN. 

3. Propose a novel Priority Action Number (PAN) to prioritize the proposed capital 

activity to all pipes within the MWN. 

4. Prepare a survey gathering expert's opinion on the water pipe's condition, 

performance, criticality, and assigning a water capital activity in a systematic 

approach to the supervised machine learning algorithm. 

5. Define a Naïve Bayes Classifier with a supervised machine learning algorithm to 

automate the water pipe assessment for condition, performance and criticality (level 

1 - Prioritization Model). 

6. Define a Naïve Bayes Classifier with a supervised machine learning algorithm to 

assign capital activities to all pipes in the MWN calibrated to the expert's opinion 

(level 2 - Mitigation Model). 

7. Demonstrate the proposed framework's application and apply the developed NBC 

with a supervised machine learning model using a case study on an existing the 

MWN database.  

8. Validating the NBC with a supervised machine learning model with the comparison 

with an actual municipal engineer prepared watermain replacement program. 

1.3 Thesis Organization 

This thesis is organized in an integrated-article format – that is, each of Chapters 2 to 5 

addresses one or several of the above-listed research objectives. Figure 1-1 presents a graphical 

summary of the remainder of the thesis chapters and the main research tasks performed in each of 

them. 
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Figure 1-1 Thesis chapters organization and objectives. 
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Chapter 2 presents the Priority Action Number (PAN) that is developed and parameterized 

based on pipe segment Condition, Performance and Criticality Score. Scores are developed so that 

higher Scores and a higher PAN indicate higher priority for the pipe segment replacement or 

rehabilitation. Two scenarios are presented to demonstrate how the PAN is determined and how it 

can be used in an automated computer program and/or ArcGIS program to establish defensible 

and auditable pipe segment replacement decisions for a water network.    

Chapter 3 presents a prioritizing approach for the watermain networks' capital activities 

and aids in selecting assistive technology for rehabilitation and renewal. Using a MWN 

comprehensive database that is mapped in an ArcGIS system, a machine learning classifier model 

is proposed to classify all pipes in the MWN and assign a capital work activity. The capital project 

decision-making process is automated through the NBC supervised learning algorithm. 

In Chapter 4, a survey questioner is presented. The survey obtains expert opinion using a 

set of standardized questions framework on prioritizing municipal water network capital activities. 

This methodology will add consistency and defensibility to capital programs. 

In Chapter 5, a descriptive analysis of the water network pipes is presented for their 

condition, performance and criticality, including capital planning decisions regarding all pipe 

within the London database. Different maintenance and capital work scenarios are presented and 

compared with the actual 2016 and 2017 replacement programs from the City of London to verify 

and validate the model. 

Chapter 6 presents a general summary of conclusions, original contributions to the state of 

knowledge, and directions for future research. 
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A Novel Priority Action Number for Linear Water Network 

Capital Activities Prioritization 

Abstract  

Most water utilities in North America have a massive backlog of deteriorated and aged 

watermains and are faced with the daunting task of determining which pipe segments need 

replacement and rehabilitation now. Although many pipe prioritization models have been 

developed and published in the literature, no capital activity prioritizing model is available to date 

that is based on a multi-decision criterion that includes the pipe segment condition, performance, 

and criticality. In this chapter, a Priority Action Number (PAN) is developed and parameterized 

based on pipe segment Condition, Performance and Criticality Score. The score is developed so 

that higher scores and a higher PAN indicate higher priority for the pipe segment replacement or 

rehabilitation. Two Scenarios are presented to demonstrate how the PAN is determined and how 

it can be used in an automated computer program and/or ArcGIS program to establish defensible 

and auditable pipe segment replacement decisions for a water network.    

Keywords: watermain, capital works activities, asset management, municipal water 

network, prioritization, condition, water pipe performance, water pipe criticality, number of 

breaks, mitigation technology  
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2.1 Introduction  

Watermain transmission and distribution pipes are the arteries and veins of a water utility 

system that supply potable water from treatment plants to businesses and homes and provide water 

for fire protection. The construction of these pressured water distribution networks started in the 

late 1800s mainly as a fire protection system. Once constructed, it did not take long for them to 

also be used to supply drinking water to homes and businesses. Today, most North American water 

systems are still designed for both purposes.  

Over the past 150 plus years, city boundaries have expanded, and the length and size of 

these water distribution networks have expanded exponentially with little maintenance, 

replacement and/ or renovation. Thus, many cities have hundreds of kilometres of water pipes in 

service that have exceeded their design life of 50 to 100 years. This backlog of deteriorated 

infrastructure has resulted in a significant number of annual watermain breaks with ever-increasing 

operational and maintenance expenditures.  For example, corrosion of end-of-life cast iron and 

ductile iron pipes in the City of Toronto has resulted in over 4000 watermain breaks in 2018 alone, 

with an annual repair cost of over $20 million.  Because most cities in North America have set 

user fees to recover operational costs only, limited capital funds are available to replace ageing, 

deteriorating and failing watermain pipes. This lack of capital works continues the cycle of the 

growing infrastructure backlog. To resolve this issue, municipalities have started the process to 

prioritize which pipes in their network need to be replaced immediately relative to those targeted 

for replacement as part of later projects and allocating capital to fund these replacement programs.  

Several methods have been proposed in the published literature to rank and prioritize pipes 

for replacement. Table 1-1 provides a review and analysis of the published research literature based 

on four pipe prioritization methods and three pipe ranking criteria. These prioritization methods 

are:  (a) individual pipe segments using a cost-benefit analysis; (b) network-wide pipe segments 

using a cost-benefit analysis; (c) statistical analysis using pipe age, material type, and/or location; 

and (d) classify and score pipe attributes such as material, type, age or other pipe properties such 

as size, location, etc.. The three ranking criteria for individual pipe segments are: (1) condition, (2) 

performance, and (3) criticality. Condition is a measure of the physical properties of a watermain 

pipe, such as water pipe material and number of breaks. According to the Ontario best practice 



 

8 

OSWCA (2018), the condition is the degree of structural deterioration of the water pipe. The most 

common type of physical assessment is the age of the pipe segment.  However, some municipalities 

are moving towards assessing alternative physical attributes instead of relying on age only 

(OSWCA, 2018). Pipe performance measures the ability of a watermain segment to comply with 

all regulatory guidelines for operating a water system while delivering acceptable Levels of 

Service (NRC•CNRC, 2007). Finally, pipe criticality measures the relative importance of a given 

water pipe to be able to provide acceptable Levels of Service to consumers (WRc, 2011). For 

example, a watermain pipe that provides service to a hospital is more critical than one that provides 

service to a few single-family dwellings along a residential road. 

Shamir and Howard (1979) and Walski (1987) began the process of ranking and 

prioritizing maintenance activities of individual pipe segments. For example, they considered the 

cost-benefit of whether incurring the capital expense of replacing a pipe segment has greater 

beneficial value than maintaining its current service level, based on its annual operational and 

maintenance expenditures (NRC•CNRC, 2003). This type of planning is called "age-based" 

(OSWCA, 2018) because the cost-benefit calculation requires the water pipe segment's expected 

remaining life.  Thereafter, Kleiner and Rajani (2008), Hong et al. (2006), Loganathan et al. (2002), 

Kleiner and Rajani (2001), Walski (1987) and Shamir and Howard (1979) used the cost-benefit 

analysis method based on pipe condition to determine the optimized ratio for individual pipe repair 

and replacement. A limitation of the individual cost-benefit analysis method is that it can only be 

used until the number of water pipes requiring capital activities does not exceed the municipality 

budget's capacity. For instance, if the number of watermain pipe replacement activities targeted 

for delivery in a certain year exceeds the utility resources to perform the activities, then further 

prioritization needs to be undertaken to limit capital expenditures. Therefore, there is a need to 

look at the water network as a whole rather than as a collection of individual pipe segments 

(AWWA, 2012). 
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Table 2-1 Water System Prioritization Methods with Pipe Ranking Criteria 

 

Prioritization Method  

Ranking 

Criteria 

C
o
n

d
it

io
n

 

P
er

fo
rm

a
n

ce
 

C
ri

ti
ca

li
ty

 

1- Ranking Individual Pipe Segments using a Cost-Benefit Analysis 

Kleiner & Rajani, 2008   

Hong et al., 2006   

            Loganathan et al., 2002   

Kleiner & Rajani, 2001   

2- Network Wide Pipe Ranking using a Cost-Benefit Analysis 

Moglia et al., 2006 
  

Sægrov et al., 2003 
  

Burn et al., 2003 
  

3- Statistical Analysis 

Xu et al., 2013 
  

Rogers, 2011 
  

Zayed & Fares, 2010 
  

Kleiner et al., 2010 
  

Saldarriaga et al., 2010 
  

Giustolisi et al., 2009   

Berardi et al., 2008   

Kleiner et al., 2006   

Dandy & Engelhardt, 2001   
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Kleiner et al., 1998 
  

4- Scoring Methods Based on a Pipe Segments Physical Properties 

Asnaashari et al., 2013   

Wang et al., 2009   

Boxall et al., 2007   

Al Barqawi & Zayed, 2006   

Ranjani et al., 2006   

Milhot et al., 2003   

Moglia et al. (2006), Sægrov et al. (2003), Burn et al. (2003) and Deb et al. (1998) 

developed a network-wide pipe ranking approach utilizing a cost-benefit ratio based on the 

condition of individual pipe segments. Their methodology follows an age-based analysis 

comparing the cost-benefit ratio for pipe replacement and/or rehabilitation relative to maintaining 

the pipe network in a minimum condition. While this approach does prioritize maintenance 

activities subject to financial constraints (OSWCA, 2018), the ranking of pipe segments is done 

without considering the criticality of a given pipe segment service within the network. Moreover, 

many other parameters are required for accurate prioritization of watermain segments within a 

network. 

Statistical models attempt to prioritize maintenance activities for watermain pipe segments 

by using physical properties such as age, number of breaks, soil conditions, and pipe internal 

deterioration factors to predict their expected failure time. Berardi et al. (2008), Saldarriaga et al. 

(2010), Rogers (2011) and Xu et al. (2013) used the pipe break rate as a variable to prioritize 

replacement. Zayed and Fares (2010), Kleiner et al. (2010) and Kleiner et al. (2006) proposed 

correlations between soil conditions and pipe corrosion to prioritize replacement. Dandy and 

Engelhardt (2001) used optimization strategies utilizing statistical models of physical properties 

to minimize maintenance costs and to predict pipe replacement time. Therafter, Giustolisi et al. 

(2009) used economic models based on pipe age to prioritize watermain replacement. Kleiner et 

al. (1998) combined watermain pipe hydraulic and age-based physical properties and pipe 

performance parameters to develop a cost-benefit analysis for individual pipe segments in a 
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network. Statistical models have not been used to prioritize watermain pipe segments for 

rehabilitation technologies rather than replacement. Additionally, statistical models have not 

considered the type and criticality of the account type that they service when prioritizing 

maintenance activities.  

Another common strategy to prioritizing maintenance and capital work decisions involves 

scoring and ranking individual pipe segments based on attributes related to their physical 

condition, such as age, break rate, pipe material, pipe diameter and soil conditions (OSWCA, 

2018).  Asnaashari et al. (2013), Wang et al. (2009), and Kleiner et al. (2006) considered pipe 

diameter, pipe age, break rate and pipe material to classify and rank watermains when prioritizing 

pipe replacement. Boxall et al. (2007) and  Mailhot et al. (2003) focused on ranking cast iron (CI) 

pipes for a replacement program. Al Barqawi and Zeyed (2006) considered condition, performance 

and criticality measurements to score and rank pipe segments. These measurements include 

condition factors such as: material, age, diameter, and past maintenance; criticality factors such 

as: soil type, pipe location, and disturbance (crossings); and performance factors such as: water 

pressure, water quality, and water flow. The objective of their work is to score and rank individual 

pipe segments to prioritize water capital activities. However, they did not consider capital works 

activities such as rehabilitation and/or replacement. The main objective for these models was the 

pipe deterioration rating for identifying which pipe would experience more breakage or which 

factor is more critical on water pipe deterioration.  

This study aims to present a framework for the development of a novel Priority Action 

Number (PAN) that scores and ranks watermain pipe segments to prioritize them for mitigation 

activities such as rehabilitation and/or replacement. The PAN is comprised of independent 

attributes of a given pipe segment that contribute to the condition, performance, and criticality 

scores. The sum of these scores is the PAN. The outcome of the PAN is to be able to design a 

consistent, defensible, repeatable, and auditable set of rules that can be implemented and 

automated as an algorithm within computer programs with a framework such as ArcGIS. 

Thereafter, the PAN for all pipe segments in the network can be used to develop projects and 

programs to resolve the infrastructure backlog that utilities face regarding their inventory of 

watermain assets.  
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The following sections present the main components of the PAN and explain in detail: an 

itemized list of all variables contributing towards the condition, performance and criticality scores; 

how these variables are separated into bins intervals and enumerated; and the processes of 

weighting these scores to calculate the PAN for each pipe segment.  Two scenarios involving pipe 

segments with a varying condition, performance and criticality properties and hence scores are 

presented. Thereafter, these same scores are weighted to enumerate a PAN. Finally, the 

combination of condition, performance and criticality scores and PAN are then used to propose a 

mitigation method.  

2.2 Priority Action Number 

The Priority Action Number (𝑃𝐴𝑁) is developed by calculating a Condition, Performance 

and Criticality Score for each pipe segment within the network. Water pipe segments are 

considered from node to node. For this research, a node constitutes a pipe junction, where two or 

more water pipes are connected. Pipe segments are deemed to be a standard unit irrespective that 

they can have no standard length.  

The Condition Score, 𝑆𝐶, represents the physical condition of the segment, while the 

Performance Score, 𝑆𝑃 , represents the measure of a pipe's ability to operate at and otherwise meet 

established Levels of Service. The Criticality Score, 𝑆𝐶𝑟
, represents the impact of a pipe if service 

is lost, the likelihood of failure, and the consequences of failure, also known as risk of service loss. 

All Scores are assumed to be independent of each other. Thus, a change in one Score will not 

impact another Score. Each Score is enumerated using several key variables that are also 

independent of one another. Figure 2-1 presents key variables used to develop the Condition, 

Performance and Critically Scores.  These variables are established to measure, evaluate and 

prioritize attributes representing the operation and maintenance required by each watermain pipe 

segment according to available standards and best practices (NRC•CNRC, 2005).  

 

The PAN is calculated for each pipe segment using Equation 2-1: 
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Figure 2-1 PAN Scores and variables 

where 𝑊𝐶, 𝑊𝑃 and 𝑊𝐶𝑟 are the weighting factors for Condition, Performance and 

Criticality, respectively. Weighting factors are applied against each Score for two reasons. First, 

the relative importance of condition, performance and criticality may vary between water utility 

service providers as they attempt to prioritize each pipe segment for mitigation activity. Second, 

Figure 2-1 shows that each of the Condition, Performance and Criticality Scores is enumerated 

based on a different number of variables that contribute equally to a given score. Specifically, both 

Performance and Criticality Scores have three variables, while Condition Score has four. The 

weighing factor adjusts these disparities so that these variables contribute in relative proportion to 

the overall 𝑃𝐴𝑁.  The outcome of the 𝑃𝐴𝑁 Score for a given pipe segment is such that the higher 

𝑃𝐴𝑁 = 𝑆𝐶  𝑊𝐶 + 𝑆𝑃 𝑊𝑃 +  𝑆𝐶𝑟
𝑊𝐶𝑟  2-1 
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its value is relative to other pipe segments in the prioritization list, the greater its need is for action 

in terms of rehabilitation or replacement.  

The following sections describe the variables that contribute towards the Condition, 

Performance and Criticality Scores.  

2.2.1 Condition Score (𝑺𝑪) 

Condition is a physical attribute of a pipe segment based on its structural and operational 

properties, such as water pressure, flow rate, external loads and water quality. Each property is 

assumed to be independent of the others. In the context of the Condition Score, the four properties, 

𝒫, are: (1) the Remaining Service Life, 𝑅𝑆𝐿; (2) the total number of breaks since installation, 𝑇𝐵; 

(3) the total number of breaks in the last five years, 𝑇𝐵5𝑦𝑟𝑠; and, (4) the maintenance index, 𝑀𝐼. 

The contribution of each measured property to the Condition Score is quantified by 𝒫𝑏𝑖𝑛 into 

intervals, where the thresholds that bound these intervals have engineering significance based on 

standards or criteria relevant to each variable. The Condition Score variable, 𝑉𝒫, is derived by 

applying a dimensionless weight to each bin, such that 𝑉𝒫𝑏𝑖𝑛
= 𝑓(𝒫𝑏𝑖𝑛). The Condition Score, 

𝑆𝐶 = 𝑓(𝑉𝒫𝑏𝑖𝑛
), for each pipe segment, is a dependent variable on 𝑉𝒫𝑏𝑖𝑛

 and is evaluated in 

Equation 2-2 as:  

𝑆𝐶 = 𝑉𝑅𝑆𝐿 + 𝑉𝑇𝐵 + 𝑉𝑇𝐵5𝑦𝑟𝑠
+ 𝑉𝑀𝐼 2-2 

Note that bin weightings for each of 𝑉𝑅𝑆𝐿, 𝑉𝑇𝐵, 𝑉𝑇𝐵5𝑦𝑟𝑠
 and 𝑉𝑀𝐼 must be estimated subject to the 

constraint that the outcome of constructing the Condition Score is that an increase in 𝑆𝐶 denotes 

the pipe segment should receive greater priority for replacement or rehabilitation.  

2.2.1.1  Remaining Service Life (𝑹𝑺𝑳) 

Every watermain pipe segment is designed for an expected service life (𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑖𝑓𝑒 ), which 

denotes the time, in years, from the installation of the pipe segment that will provide acceptable 

Levels of Service. For most pipes, this is 50 to 100 years.  
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The  𝐸𝑥𝑝𝑒𝑐𝑡𝑒d 𝐿𝑖𝑓𝑒  of a water pipe will be reduced by corrosion. The corrosion rate depends on 

the type of pipe material and soil conditions around the pipe. Clay-type soils are known to be 

corrosive soil conditions (Kleiner et al., 2010). A dimensionless corrosive soil Reduction Factors 

(ℛℳ), developed by Stradiotto (2016), are provided in Table 2-2. This reduction factor is used to 

reduce the pipe segment's expected life.  

Table 2-2 Pipe Materials in Corrosive Soil Expected Life Reduction Factors. 

 

 

 

 

 

 

 

A watermain pipe segment Remaining Service Life (𝑅𝑆𝐿) is the difference between the 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑖𝑓𝑒 and the time, in years, the pipe has been in service (𝐴𝑔𝑒 𝑖𝑛 𝑆𝑒𝑟𝑣𝑖𝑐𝑒). The  𝑅𝑆𝐿 

can be calculated using Equation 3 with ℛℳ obtained from Table 2-3 when the pipe is placed in 

corrosive soils and ℛℳ = 0 when the soils are not corrosive.  

𝑅𝑆𝐿 =  [𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑖𝑓𝑒 −  (ℛ𝑀 ∗ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑖𝑓𝑒)] –  𝐴𝑔𝑒 𝑖𝑛 𝑆𝑒𝑟𝑣𝑖𝑐𝑒] 2-3 

 

The Remaining Service Life variable 𝑉𝑅𝑆𝐿 can be computed by binning the calculated 𝑅𝑆𝐿 

into four separate intervals, 𝑉𝑅𝑆𝐿,𝑖, provided in Table 2-3.  

Table 2-3 Remaining Service Life Bins 

𝑅𝑆𝐿 [𝑦𝑒𝑎𝑟𝑠]           𝑉𝑅𝑆𝐿 [−]  

𝑅𝑆𝐿 ≤ 15 𝑦𝑒𝑎𝑟𝑠 𝑉𝑅𝑆𝐿,1 

Material Type 
ℳ 

Reduction Factors 
ℛℳ 

Asbestos Cement  (AC)        0.1 

Cast Iron (CI)        0.3 

Ductile Iron (DI)        0.5 

PVC        0.1 

Steel (ST)        0.3 

CPP/CONC        1.0 

HDPE        0.1 
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15 < 𝑅𝑆𝐿 ≤ 30 𝑦𝑒𝑎𝑟𝑠  𝑉𝑅𝑆𝐿,2 

30 < 𝑅𝑆𝐿 ≤ 50 𝑦𝑒𝑎𝑟𝑠 𝑉𝑅𝑆𝐿,3 

𝑅𝑆𝐿 > 50 𝑦𝑒𝑎𝑟𝑠 𝑉𝑅𝑆𝐿,4 = 0 

The rationale for bounding the range of the four bin intervals is described as follows. The first bin 

occurs on the interval of 𝑅𝑆𝐿 ≤ 15 𝑦𝑒𝑎𝑟𝑠 to coincide with the typical maximum lifespan of a road 

surface. In this bin, planners would weigh the need to renovate or replace watermain pipe segments 

based on their condition during capital expenditure activities associated with the current road 

infrastructure. This bin would result in most weight placed on 𝑉𝑅𝑆𝐿. The second and third bin 

follows the same premise but under the second and third lifecycle of the road. Therefore, 𝑉𝑅𝑆𝐿,3 <

𝑉𝑅𝑆𝐿,2 < 𝑉𝑅𝑆𝐿,1, with all values dimensionless. If the design service life for watermain pipes is 70 

years, a 𝑅𝑆𝐿 >  50 𝑦𝑒𝑎𝑟𝑠 is effectively new and a 𝑉𝑅𝑆𝐿,4 = 0 is assigned as shown in Table 2-3. 

𝑉𝑅𝑆𝐿 is a decreasing function as 𝑅𝑆𝐿 increases. 

2.2.1.2 Total Number of Breaks (𝑻𝑩) 

Total breaks are a leading indicator of a given watermain pipe segment's condition (Al 

Barqawi & Zayed, 2006). It is also an important indicator for water utilities since it indicates a 

significant increase in Operational Expenses (OpEx) and service disruptions. The Total Number 

of Breaks (𝑇𝐵) is the total number of breaks since the pipe segment installation.   

Once a pipe break occurs, normal operation and maintenance practice involve replacing or 

rehabilitating the standard pipe section in which the break has occurred. A standard pipe section 

that is constructed from PVC or HDPE is normally 8m long and is bounded by nodes/pipe 

junctions, where two water pipes are connected. Some municipalities normalize the total number 

of breaks by pipe section length or by either the age in service or expected service life of the pipe 

segment (Harvey, 2015). In the context of this study, 𝑇𝐵 is an integer number and not normalized 

by the pipe segment length. The rationale for not normalizing is that the entire pipe segment length 

serves a single functional purpose, and the objective is to place the entire pipe segment into a 

project for either replacement or rehabilitation. 
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The 𝑇𝐵 variable, 𝑉𝑇𝐵, is computed by binning the calculated 𝑇𝐵 into four intervals, 𝑉𝑇𝐵 𝑖, 

as shown in Table 2-4. 

The rationale for bounding the range of the four bin intervals is described as follows. The 

𝑇𝐵 before renovation or replacement varies between municipalities based on location and Levels 

of Service. Generally, due to costs associated with loss of service, municipalities target the 

replacement of a pipe segment between nine to eleven breaks since installation (Folkman, 2018). 

Here, the first bin denotes more than nine breaks since installation. This bin would result in the 

most weight placed on 𝑉𝑇𝐵. The second and third bin motivate the utility provider to investigate 

the cause of the observed break events, although they do not necessitate the renovation or 

replacement of the pipe segment. Therefore, 𝑉𝑇𝐵,1 > 𝑉𝑇𝐵,2 > 𝑉𝑇𝐵,3, with all values being 

dimensionless. Finally, when 𝑇𝐵 = 0, then 𝑉𝑇𝐵,4 = 0 and hence 𝑉𝑇𝐵 is a monotonically decreasing 

function as 𝑇𝐵 decreases. 

Table 2-4 Bins for Total Number of Breaks 

𝑇𝐵 [−] 𝑉𝑇𝐵 [−] 

𝑇𝐵 ≥ 9 𝑉𝑇𝐵,1 

8 ≥ 𝑇𝐵 ≥ 5 𝑉𝑇𝐵,2 

4 ≥ 𝑇𝐵 ≥ 1 𝑉𝑇𝐵,3 

 

 

𝑇𝐵 = 0 𝑉𝑇𝐵,4 = 0 

2.2.1.3 Total Number of Breaks within the Last Five Years (𝑻𝑩𝟓𝒚𝒓𝒔) 

The North American watermain break rates have increased by 27% per annum in recent 

years (Folkman, 2018). Number of breaks for a given pipe segment that have occurred within the 

last five years,  𝑇𝐵5𝑦𝑟𝑠, identifies pipes with high Operational Expense (OpEx). 𝑇𝐵5𝑦𝑟𝑠 and its 

dependant variable, 𝑉𝑇𝐵5𝑦𝑟𝑠
, act as an indicator that the pipe is reaching the end of its lifespan. An 

increase in the break frequency suggests pipe segment failure in the future and a progressive 

increase in the OpEx (NRC•CNRC, 2007).  
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The total number of breaks within the last five years variable, 𝑉𝑇𝐵5𝑦𝑟𝑠
, is computed by 

binning the measured 𝑇𝐵5𝑦𝑟𝑠 into four separate intervals, 𝑉𝑇𝐵5𝑦𝑟𝑠,𝑖,  as itemized in Table 2-5. 

A common practice is that more than one break per year in a pipe segment over the last 

five years is denoted as the worst acceptable condition by the utility provider NRC•CNRC (2007), 

and that pipe should be prioritized for immediate repair. Therefore, it is assigned the highest value, 

𝑉𝑇𝐵5𝑦𝑟𝑠,1. Then, progressively smaller values are assigned to pipes that experience fewer breaks 

per year with 𝑉𝑇𝐵5𝑦𝑟𝑠,1 > 𝑉𝑇𝐵5𝑦𝑟𝑠,2 > 𝑉𝑇𝐵5𝑦𝑟𝑠,1.  Finally, when 𝑇𝐵5𝑦𝑟𝑠 = 0, then 𝑉𝑇𝐵5𝑦𝑟𝑠,4 = 0, and 

hence 𝑉𝑇𝐵5𝑦𝑟𝑠
 is a monotonically decreasing function as 𝑇𝐵5𝑦𝑟𝑠 decreases.  

Table 2-5 summarizes the assigned bins and values for the number of breaks in the last five 

years. 

Table 2-5 Bins for Number of Breaks within the Last Five Years 

𝑇𝐵5𝑦𝑟𝑠 [𝑝𝑒𝑟 𝑦𝑒𝑎𝑟] 𝑉𝑇𝐵5𝑦𝑟𝑠
 [−] 

𝑇𝐵5𝑦𝑟𝑠 ≥ 5 𝑉𝑇𝐵5𝑦𝑟𝑠,1 

4 ≥ 𝑇𝐵5𝑦𝑟𝑠 ≥ 3 𝑉𝑇𝐵5𝑦𝑟𝑠,2 

2 ≥ 𝑇𝐵5𝑦𝑟𝑠 ≥ 1 𝑉𝑇𝐵5𝑦𝑟𝑠,3 

 

 

 

 

 

 

 

𝑇𝐵5𝑦𝑟𝑠 = 0 𝑉𝑇𝐵5𝑦𝑟𝑠 ,4 = 0 

2.2.1.4 Maintenance Index (𝑴𝑰) 

Maintenance activities are itemized as Operational Expenses (𝑂𝑝𝐸𝑥 [$ 𝑝𝑒𝑟 𝑎𝑛𝑛𝑢𝑚]) and 

include maintenance activities (flushing, regular inspection) and repair and rehabilitation (break/ 

leakage repair) work conducted over the life cycle of the watermain asset. The Maintenance Index 

(𝑀𝐼) is defined in Equation 2-4 as the ratio of the net present value of 𝑂𝑝𝐸𝑥 multiplied by the 

Remaining Service Life, 𝑅𝑆𝐿 [𝑦𝑒𝑎𝑟𝑠], and then divided by the pipe replacement capital expense, 

𝐶𝑎𝑝𝐸𝑥 [$]. 
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𝑀𝐼 = (𝑂𝑝𝐸𝑥 × 𝑅𝑆𝐿 )/𝐶𝑎𝑝𝐸𝑥 2-4 

Each municipality has knowledge of its annual operation and maintenance expenses to 

forecast its annual budget requirements. According to Ontario's Long-Term Infrastructure Plan, 

published in December 2016, all Ontario Municipalities are required to have a 10-year plan. 

Therefore, all municipalities are required to assess their assets, including watermain infrastructure, 

at least once every ten years (NRC•CNRC, 2007). OpEx plus CapEx depend on the pipe diameter, 

length, and depth of the watermain pipe (NRC.CNRC, 2003). The average overall operation, 

maintenance and replacement cost per meter for general watermain pipes can be used for this 

index. An increasing value of 𝑀𝐼 indicates that the annual operational and maintenance costs 

aggregated over the Remaining Service Life of the pipe are greater than the renewal cost. Hence, an 

increase in 𝑀𝐼 can be used to prioritize a pipe for replacement. 

The Maintenance Index variable, 𝑉𝑀𝐼, is computed by binning the calculated 𝑀𝐼 into three 

separate intervals, 𝑉𝑀𝐼,𝑖, as shown in Table 2-6. Common practice denotes that if the operating 

expenses of a pipe segment over its Remaining Service Life are more than five times greater than 

the capital expense of replacing the pipe segment, then the pipe should be replaced (NRC•CNRC, 

2005). Therefore, the hierarchy of the assigned values are:  𝑉𝑀𝐼,1 > 𝑉𝑀𝐼,2 > 𝑉𝑀𝐼,3, with all values 

being dimensionless. All MI assigned bins and values are provided in Table 2-6. 

 

 

Table 2-6 Assigned Bins for Maintenance Index  

𝑀𝐼 [−] 𝑉𝑀𝐼 [−] 

𝑀𝐼 ≤ 0.01  𝑉𝑀𝐼,1 

          0.01 <  𝑀𝐼 ≤ 0.05 𝑉𝑀𝐼,2 

𝑀𝐼 > 0.05 𝑉𝑀𝐼,3 



 

20 

2.2.2 Performance Score (𝑺𝑷) 

Pipe performance measures the ability of a watermain segment to comply with all 

guidelines for operating a water system while delivering acceptable Levels of Service 

(NRC•CNRC, 2007). Relevant properties are associated with Performance such that 𝑉𝒫𝑏𝑖𝑛
=

𝑓(𝒫𝑏𝑖𝑛). The Performance Score, 𝑆𝑃 = 𝑓(𝑉𝒫𝑏𝑖𝑛
), for each pipe segment is a dependant variable 

on 𝑉𝒫𝑏𝑖𝑛
 and is determined using Equation 2-5.  

𝑆𝑃 = 𝑉𝑃𝐿 + 𝑉𝑊𝑄 + 𝑉𝐶𝐿𝑆   2-5 

Bin weightings variables are constructed such that an increase in 𝑆𝐶 denotes that the pipe 

segment should receive greater priority for replacement or rehabilitation.  

2.2.2.1 Water Pressure Loss (𝑷𝑳) 

Hydraulic properties relevant to quantifying pipe performance include capacity, head loss, 

flow velocity, and pressure. Pipe performance is associated with its ability to provide a service, 

such as the need for water pressure to remain above 690 kPa at all locations within the network to 

comply with the Ontario Fire Marshal Guideline (OFM-TG-03, 1999). This study focuses on 

pressure loss as the performance criterion for transmission mains, distribution feeder-mains, and 

local watermains. Excessive pressure loss diminishes pipe performance by causing pressure losses 

along its length that may reduce its ability to provide its intended service. Pressure losses typically 

result from pipe friction due to mineral deposits and corrosion, valves that impede flow and 

generate energy losses, bends in the alignment of the pipe, T-connections between pipe segments, 

and unusually long pipe segments between the typical spacing of valve connections, defining the 

node to node length.  

In this study, pressure loss along the length of a watermain pipe segment is calculated using 

the Bernoulli Equation according to the following methodology and assumptions. Water pressure 

is measured at pipe junctions where two or more watermain segments are connected, or valves can 

control flow. Hence, each pipe segment is bounded by its junctions to its neighbouring pipe 

segments. To simplify the calculation of the Pressure Loss, 𝑃𝐿, the following two key assumptions 

are made. First, the elevation of the start and endpoints of the pipe segment is assumed to be the 



 

21 

same. Second, the diameter of the pipe segment is assumed to remain constant along its length, 

and hence the water velocity remains constant. Therefore, Pressure Loss, 𝑃𝐿 [𝑚], can be calculated 

by using only the pressure potential component of the Bernoulli Equation, as shown in Equation 

2-6. 

𝑃𝐿 = ℙ𝑠𝑡𝑎𝑟𝑡 − ℙ𝑒𝑛𝑑 2-6 

where: ℙ𝑠𝑡𝑎𝑟𝑡 and ℙ𝑒𝑛𝑑 [𝑘𝑃𝑎] are the water pressures at the inflow and outflow ends of a 

given pipe segment, respectively. Similar to the Total Number of Breaks, the pressure loss is not 

normalized by the length of the pipe segment, given that the entire pipe segment length serves a 

single functional purpose and the objective is to place the entire length of the pipe segment into a 

project for either replacement or rehabilitation. 

The pressure loss variable is denoted as a function of two pipe size categories demarked 

by being either larger than or smaller than a 600𝑚𝑚 diameter. In most municipalities, water pipes 

larger than 600𝑚𝑚 are considered as "feeder mains". Thereafter, each 𝑃𝐿 category (i.e. 𝑃𝐿≤600𝑚𝑚 

and 𝑃𝐿>600𝑚𝑚) is divided into different bins to assign a value of 𝑉𝑃𝐿 as shown in Table 2-7.  

Baseline values of pressure loss across a pipe section denoting major performance issues are 

defined here as 34.5 [𝑘𝑃𝑎] (or 5 [𝑃𝑆𝐼]) for pipes ≤ 600mm and 17 [𝑘𝑃𝑎] (or 2.5 [𝑃𝑆𝐼]) for pipes 

>600mm. These threshold values yield maximum value for 𝑉𝑃𝐿,1 and indicate that the pipe segment 

should be immediately prioritized for rehabilitation or replacement. The threshold values may be 

adjusted by specific flow monitoring and pressure control points installed by a utility provider 

within their specific network or further informed by hydraulic model simulations. The second bin 

captures the notion that most watermain pipe segments lose some pressure along their length due 

to pipe friction while still providing acceptable Levels of Service. However, their pressure loss 

denotes that they warrant attention when prioritizing future rehabilitation and replacement activity. 

Hence, 𝑉𝑃𝐿,2 < 𝑉𝑃𝐿,1. Finally, the third bin reflects pressure losses of a new installation, resulting 

in 𝑉𝑃𝐿,3 = 0. Hence, 𝑉𝑃𝐿 is a monotonic decreasing function as 𝑃𝐿 decreases. 

Table 2-7 Pressure Loss Bins  

Pipe Diameter Categories 
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𝑷𝑳<𝟔𝟎𝟎𝒎𝒎 [𝒌𝑷𝒂]  𝑷𝑳>𝟔𝟎𝟎𝒎𝒎 [𝒌𝑷𝒂] 𝑽𝑷𝑳 [−] 

𝑃𝐿 > 34.5          𝑃𝐿 > 17  𝑉𝑃𝐿,1 

14 < 𝑃𝐿 ≤  34.5 10 < 𝑃𝐿 ≤ 17 𝑉𝑃𝐿,2 

𝑃𝐿 ≤ 14 𝑃𝐿 ≤ 10 𝑉𝑃𝐿,3 = 0 

2.2.2.2 Water Quality (𝑾𝑸) 

Water quality is an important property denoting the performance of a segment of watermain 

pipe, given that the water quality standards within the Province of Ontario must conform to the 

Clean Water Act (2006). Each municipality typically records instances of customer complaints 

about poor water quality, including odour, colour, and sediments. Chlorine residuals are also used 

to identify dead-ends and pipes that no longer conform to water quality standards. Unlined cast 

iron watermain pipes or pipe junctions containing lead joints are also recognized as not conforming 

to water quality standards. The notion that a pipe segment does or does not conform to the water 

quality standards is a binary decision and is denoted in Table 2-8 using two bins. Those watermain 

pipes that do not conform are placed in the first bin and assigned a dimensionless value of 𝑉𝑊𝑄,1. 

The remaining pipes that do conform are placed in the second bin and assigned a value of 𝑉𝑊𝑄,2 =

0.  

Table 2-8 Water Quality Bins 

𝑾𝑸 [−] 𝑽𝑾𝑸 [−] 

Does not conform 𝑉𝑊𝑄,1 

Does conform 𝑉𝑊𝑄,2 = 0 

2.2.2.3 Conformance to Latest Standards (𝑪𝑳𝑺) 

Performance of a watermain pipe segment based on conformance to the latest standards 

typically involves assessing whether the diameter of the pipe is sufficiently large to provide 

minimum Levels of Service to the target consumer class. For instance, each residential, 

commercial, institutional, and industrial consumer is required to be serviced by, at minimum, a 

specified pipe diameter that is stipulated by a given municipality design manual. A pipe segment 
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that conforms to an acceptable condition but is undersized should be considered for replacement 

by a watermain pipe segment of larger diameter (Bennett & Glaser, 2011).  

Certain pipe materials, such as lead, may not conform to current drinking water standards. 

Moreover, a historic capital works program may have ubiquitously installed material, such as 

galvanized steel pipes or substandard pipe diameters (100 mm diameter or smaller), which is now 

targeted by the municipalities for replacement due to changes in their design manual. 

The notion that a pipe segment does or does not conform to the latest standards is a binary 

decision and is denoted in Table 2-9 using two bins. Those watermain pipes that do not conform 

are placed in the first bin and assigned a dimensionless value of 𝑉𝐶𝐿𝑆,1. The remaining pipes that 

do conform are placed in the second bin and assigned a value of 𝑉𝐶𝐿𝑆,2 = 0.  

Table 2-9 Standard Conformance Bins 

𝑪𝑳𝑺 [−] 𝑉𝐶𝐿𝑆 [−] 

Does not conform 𝑉𝐶𝐿𝑆,1 

Does conform 𝑉𝐶𝐿𝑆,2 = 0 

2.2.3 Criticality Score (𝑺𝑪𝒓
) 

Pipe criticality measures the relative importance of the given watermain segment to provide 

acceptable Levels of Service to consumers and the water utility provider as a whole. Key measures 

of criticality are: (1) the impact of watermain failure to loss of water services for essential 

consumers; (2) the impact of watermain failure on the surrounding environment, and (3) the ability 

to effectively repair a watermain pipe promptly. Watermain pipe diameter, location, type of water 

service, and accessibility (depth and easements) are all variables that impact the operation and 

maintenance cost and the time associated with emergency watermain repairs (Al Barqawi & 

Zayed, 2006). For example, repairing a large diameter watermain servicing a hospital located in 

an environmentally sensitive area with poor accessibility is more critical than repairing a 

watermain of an identical diameter that is located along a local road. Each criticality property is 

assumed to be independent of the others and those from the Condition and Performance Scores. In 

the context of the Criticality Score, the three properties, 𝒫, are: (1) pipe diameter, 𝐷; (2) pipe 
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location, 𝐿; and (3) pipe accessibility, 𝐴𝐶. Similar to the Condition and Performance Scores above, 

the contribution of each measured property on the Criticality Score is quantified by binning, 𝒫𝑏𝑖𝑛, 

into intervals, where the thresholds that bound these intervals have engineering significance based 

on standards or criteria relevant to each variable. The Criticality Score variable, 𝑉𝒫, for each 

property is derived by applying a dimensionless weight to each bin, such that 𝑉𝒫𝑏𝑖𝑛
= 𝑓(𝒫𝑏𝑖𝑛). 

The Criticality Score, 𝑆𝐶𝑟
= 𝑓(𝑉𝒫𝑏𝑖𝑛

), for each pipe segment is a dependent variable on 𝑉𝒫𝑏𝑖𝑛
 and 

is determined using Equation 2-7.  

𝑆𝐶𝑟
= 𝑉𝐷 + 𝑉𝐿 + 𝑉𝐴𝐶 2-7 

Consistent with the Condition and Performance Scores, bin weightings for the Criticality 

Score variables are constructed such that an increase in 𝑆𝐶𝑟 denotes that the pipe segment should 

receive greater priority for replacement or rehabilitation.  

2.2.3.1 Pipe Diameter (𝑫) 

The impact of the failure of a water pipe segment in terms of service interruptions to 

residential, commercial, industrial and institutional consumers, damage to the surrounding 

environment and infrastructure, and the time and effort required to replace or rehabilitate the pipe 

segment all increase with pipe diameter. Therefore, pipe diameter, 𝐷, is an important variable 

when considering the criticality of a pipe segment.  

For brevity, the categorization of water pipe diameter is reduced into only four bins. 

Watermain pipes that are larger than 600 𝑚𝑚 are generally considered feeder mains (or trunk 

lines) and are indispensable to service an entire community. Moreover, very large watermains 

pipes are greater than 750 𝑚𝑚 in diameter service municipalities with large populations; hence, 

their relative impact is more significant than those feeder mains that service smaller communities. 

Watermain pipe segments with a diameter of less than 600 𝑚𝑚 diameters service progressively 

smaller sections of the municipality down to individual accounts. Hence, their impact on the 

overall Criticality Score diminishes. Therefore, 𝑉𝐷,1 > 𝑉𝐷,2 > 𝑉𝐷,3 >  𝑉𝐷,4, with 𝑉𝐷,4 = 0. The 

assigned bins and values are presented in Table 2-10.  

Table 2-10 Pipe Diameter Bins 



 

25 

𝑫 [−] 𝑽𝑫 [−] 

               𝐷 > 750 𝑚𝑚 𝑉𝐷,1 

600 𝑚𝑚 < 𝐷 ≤  750 𝑚𝑚 𝑉𝐷,2 

300 𝑚𝑚 < 𝐷 ≤  600 𝑚𝑚 𝑉𝐷,3 

               𝐷 ≤ 300 𝑚𝑚 𝑉𝐷,4 = 0 

2.2.3.2 Pipe Location (𝑳) 

Pipe location becomes critical when high-risk environmental areas or Environmentally 

Significant Policy Areas (ESPAs) become impacted by break events. ESPAs are denoted on most 

municipalities' natural heritage maps and are recognized and protected on the premise that they 

provide significant municipal or natural services and ecological functions. Typical locations 

include watercourses such as creeks, rivers, and ponds; land subject to flooding and erosion 

hazards; contaminated soils; abandoned oil and gas pipelines and those currently in service; 

electric power corridors; major intersections, highway crossings, and railway crossings; lands 

containing aggregate, mineral or petroleum resources; hospitals, airports, and long-term care 

centres. The notion that a pipe segment is or is not located in an ESPAs is a binary decision and is 

denoted in Table 2-11 using two bins. Those water pipes that are in an ESPA are placed in the first 

bin and assigned a dimensionless value of 𝑉𝐿,1. The remaining pipes that are not in an ESPA are 

placed in the second bin and assigned a value of 𝑉𝐿,2 = 0.  

 

 

Table 2-11 Water Pipe Location Bins 

𝑳 [−] 𝑽𝑳 [−] 

Located within ESPA 𝑉𝐿1 

Located outside ESPA 𝑉𝐿,2 = 0 
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2.2.3.3 Pipe Accessibility (𝑨𝑪) 

Pipe accessibility is a critical factor in reducing outage times during an emergency break 

repair.  Thus, the pipe needs to have immediate and unfettered access to repair to prevent further 

damage and interruption of the service (Zayed & Fares, 2010). Watermain locations that have 

narrow or no easements, watermains that are buried deeper than normal depth, and watermains 

located in an area that is impassible by vehicles can create prompt emergency repair issues. The 

notion that a pipe segment is or is not accessible is a binary decision and is denoted in Table 2-12 

using two bins. Those watermain pipes that are not accessible are placed in the first bin and 

assigned a dimensionless value of 𝑉𝐴𝐶,1. The remaining pipes that are accessible are placed in the 

second bin and assigned a value of 𝑉𝐴𝐶,2 = 0.  

Table 2-12 Accessibility Bins 

𝑨𝑪 [−] 𝑽𝑨𝑪 [−] 

Not accessible 𝑉𝐴𝐶,1 

Accessible 𝑉𝐴𝐶,2 = 0 

2.2.4 PAN Weighting Factors (𝑾𝑪 , 𝑾𝑷 𝒂𝒏𝒅 𝑾𝑪𝒓
) 

Table 2-1 indicates that most of the literature involved in prioritizing watermain pipe 

segments for rehabilitation or replacement focuses on pipe conditions under the premise that each 

pipe segment in the network has sufficient performance to provide specific Levels of Service. 

Therefore, it can be inferred that a given watermain pipe's performance is relatively more important 

than its condition. For instance, if a given pipe segment is in good condition but exhibits poor 

performance because it does not conform to the latest standard, there is a need to mitigate the 

performance issue to maintain the same Level of Service. Criticality is the least important attribute 

relative to performance and condition to prioritize a specific pipe segment rehabilitation or 

replacement. For instance, a watermain pipe segment that exhibits poor condition must be 

maintained regardless of its location and criticality. However, of the set of pipe segments 

exhibiting poor conditions, those that provide service to critical locations are given priority relative 

to others in the same set. The idea of relative importance is conveyed through the weighting factors 

for Condition, Performance and Criticality as  𝑊𝑃 > 𝑊𝐶 >  𝑊𝐶𝑟. 
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This study assumed that all variables are independent and do not correlate with one another. 

2.3 Application of the Priority Action Number (PAN) 

To demonstrate the application of the PAN for quantifying the condition, performance and 

criticality of a pipe segment, and thereafter ranking the pipe as part of a capital works project for 

replacement and/or rehabilitation, two scenarios are developed to enumerate all property bin 

values, 𝑉𝒫𝑏𝑖𝑛
 , and weight factors, 𝑊𝑃, 𝑊𝐶 and 𝑊𝐶𝑟 to determine the PAN. All assigned bin values 

and weight factors are scaled between 0 to 15, with 0 being the least important and 15 being the 

most important. This scale is an assumption for consistency among all variable values. The scale 

may change but needs to stay consistent for all variable values.  

Scenario A consists of a 50 m long, 400 mm in diameter ductile iron (DI) watermain pipe 

segment that services a hospital. The DI pipe was installed in 1980 within corrosive soil and 

crosses a creek and wetland that is not accessible. The pipe segment has an expected 70 years of 

service life and has experienced eleven breaks, with nine breaks occurring within the last five 

years. The pressure loss is 48.6 [kPa]. The operation and maintenance cost (OpEx) is $25 𝑚 𝑦𝑟⁄⁄  

and replacement cost (CapEx) is $1,500 𝑚⁄ . 

Scenario B consists of a 50 m long, 400 mm in diameter concrete (CONC) watermain pipe 

segment that services a hospital.  The concrete pipe segment was installed in 1980 within non-

corrosive soil and expected 70 years of service life. The pipe segment crosses a creek and wetland 

but is accessible via an access road. Since installation, the pipe segment has experienced a total of 

eleven breaks, with nine breaks occurring with the last five years. The pressure loss is 13.8 [kPa]. 

The operation and maintenance cost (OpEx) is $25 𝑚 𝑦𝑟⁄⁄  and replacement cost (CapEx) is 

$1,500 𝑚⁄ .  

2.3.1 Condition Score (𝑺𝑪) determination 

Scenario A:  

The Remaining Service Life can be calculated using Equation 2-3. 

𝑹𝑺𝑳 =  [𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝑳𝒊𝒇𝒆 −  (𝓡𝑴 ∗ 𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝑳𝒊𝒇𝒆)] –  𝑨𝒈𝒆_𝒊𝒏_𝑺𝒆𝒓𝒗𝒊𝒄𝒆 
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For this scenario, the 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑖𝑓𝑒 = 70 years and the 𝐴𝑔𝑒_𝑖𝑛_𝑆𝑒𝑟𝑣𝑖𝑐𝑒 = 2020-1980 = 

40 years. Since the AC pipe segment is placed in corrosive soil Table 2-2 determines ℛ𝑀 = 0.5. 

Thus, the 𝑅𝑆𝐿 = [70 −  (0.5 ∗ 70)] −  40 =  −5 𝑦𝑒𝑎𝑟𝑠 which means it is 5 years past its service 

life. Table 2-13 with 𝑅𝑆𝐿 ≤ 15 years  gives 𝑉𝑅𝑆𝐿,1 = 15. The negative service life would fit in the 

RSL< 15 bin which has the highest variable value. 

Table 2-13 Bin Values for Remaining Service Life Assumed. 

𝑅𝑆𝐿 [𝑦𝑒𝑎𝑟𝑠]        𝑉𝑅𝑆𝐿 [−]  

𝑅𝑆𝐿 ≤ 15 𝑦𝑒𝑎𝑟𝑠 𝑉𝑅𝑆𝐿,1 = 15 

15 < 𝑅𝑆𝐿 ≤ 30 𝑦𝑒𝑎𝑟𝑠  𝑉𝑅𝑆𝐿,2 = 10 

30 < 𝑅𝑆𝐿 ≤ 50 𝑦𝑒𝑎𝑟𝑠 𝑉𝑅𝑆𝐿,3 = 5 

𝑅𝑆𝐿 > 50 𝑦𝑒𝑎𝑟𝑠 𝑉𝑅𝑆𝐿,4 = 0 

The Total Number of Breaks since installation is 11, so 𝑇𝐵 = 11. Table 2-14 with TB ≥9 

gives 𝑉𝑇𝐵,1 = 15.  

Table 2-14 Bin Values for Total Number of Breaks.  

𝑇𝐵 [−] 𝑉𝑇𝐵 [−] 

𝑇𝐵 ≥ 9 𝑉𝑇𝐵,1 = 15 

8 ≥ 𝑇𝐵 ≥ 5 𝑉𝑇𝐵,2 = 10 

4 ≥ 𝑇𝐵 ≥ 1 𝑉𝑇𝐵,3 = 5 

 

 

𝑇𝐵 = 0 𝑉𝑇𝐵,4 = 0 

The number of watermain breaks within the last five years is nine so 𝑇𝐵5𝑦𝑟𝑠 = 9. Table 

2-15 with 𝑇𝐵5𝑦𝑟𝑠 ≥ 5 gives 𝑉𝑇𝐵5𝑦𝑟𝑠,1 = 15. 

Table 2-15 Bin Values for Number of Breaks within the Last Five Years. 

𝑇𝐵5𝑦𝑟𝑠 [𝑝𝑒𝑟 𝑦𝑒𝑎𝑟] 𝑉𝑇𝐵5𝑦𝑟𝑠
 [−] 

𝑇𝐵5𝑦𝑟𝑠 ≥ 5 𝑉𝑇𝐵5𝑦𝑟𝑠,1 = 15 

4 ≥ 𝑇𝐵5𝑦𝑟𝑠 ≥ 3 𝑉𝑇𝐵5𝑦𝑟𝑠,2 = 10 

2 ≥ 𝑇𝐵5𝑦𝑟𝑠 ≥ 1 𝑉𝑇𝐵5𝑦𝑟𝑠,3 = 5 
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𝑇𝐵5𝑦𝑟𝑠 = 0 𝑉𝑇𝐵5𝑦𝑟𝑠,4 = 0 

The Maintenance Index is calculated using Equation 2-4.  

𝑀𝐼 = (𝑂𝑝𝐸𝑥 × 𝑅𝑆𝐿)/𝐶𝑎𝑝𝐸𝑥 = (25 × -5)/1500 = -0.083 

 where 𝑂𝑝𝐸𝑥 = $25 𝑚 𝑦𝑟⁄⁄  , 𝑅𝑆𝐿 = -5 and 𝐶𝑎𝑝𝐸𝑥 = $1,500 𝑚⁄  

 Since 𝑀𝐼 = −0.083 , all negative MI is considered as a higher priority because pipe 

passed its service life. Therefore regardless of the value, it would fit into the highest bin 𝑉𝑀𝐼,3 =

15. 

Table 2-16 Bin Values for Maintenance Index  

𝑀𝐼 [−] 𝑉𝑀𝐼 [−] 

𝑀𝐼 ≤ 0.01  𝑉𝑀𝐼,1 = 0 

          0.01 <  𝑀𝐼 ≤ 0.05 𝑉𝑀𝐼,2 = 10 

𝑀𝐼 > 0.05 𝑉𝑀𝐼,3 = 15 

The Condition Score is determined using Equation 2-2: 

𝑆𝐶𝐴 = 𝑉𝑅𝑆𝐿 + 𝑉𝑇𝐵 + 𝑉𝑇𝐵5𝑦𝑟𝑠
+ 𝑉𝑀𝐼 = 15 + 15 + 15 + 15 = 60 

Given that all four properties that comprise the Condition Score are enumerated on the 

interval of 0 to 15, the maximum 𝑆𝐶 would be 60. If a Condition Score between 30 to 60 is deemed 

to be "High" and less than 30 is deemed to be "Low" a 𝑆𝐶𝐴
= 60 indicates that pipe Segment A 

has a high condition score and therefore is a high priority for replacement and/or rehabilitation. 

Scenario B:  

Following the same method as for Scenario A, the Condition Score is determined for 

Scenario B.   

First, the Remaining Service Life, 𝑅𝑆𝐿, is determined using Equation 2-3.  

RSL = [70 – (0.0 x 70)] - 40 = 30 years 
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where the 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑖𝑓𝑒 = 70 years and the 𝐴𝑔𝑒_𝑖𝑛_𝑆𝑒𝑟𝑣𝑖𝑐𝑒 = 2020-1980 = 40 years and 

ℛ𝑀 = 0.0 since the pipe segment is placed in non-corrosive soil. Thus, there is no reduction to the 

pipe's expected life. 

Using Table 2-13 15 < 𝑅𝑆𝐿 ≤ 30 𝑦𝑒𝑎𝑟𝑠  gives 𝑉𝑅𝑆𝐿,2 = 10.  

Total Number Breaks and breaks in the last five years are the same as the pipe in Scenario 

A, therefore, 𝑉𝑇𝐵5𝑦𝑟𝑠,1 = 15.  

The Maintenance Index calculated using Equation 2-4  

𝑀𝐼 = (𝑂𝑝𝐸𝑥 × 𝑅𝑆𝐿 )/𝐶𝑎𝑝𝐸𝑥 = (25 ×30)/1500 = 0.5 

 where 𝑂𝑝𝐸𝑥 = $25 𝑚 𝑦𝑟⁄⁄  , 𝑅𝑆𝐿 = 30 yr and 𝐶𝑎𝑝𝐸𝑥 = $1,500 𝑚⁄  

 For  𝑀𝐼 > 0.05 Table 2-16  gives 𝑉𝑀𝐼,3 = 15.  

The Condition Score is calculated using Equation 2-2.  

𝑆𝐶𝐵 = 𝑉𝑅𝑆𝐿 + 𝑉𝑇𝐵 + 𝑉𝑇𝐵5𝑦𝑟𝑠
+ 𝑉𝑀𝐼 = 10 + 15 + 15 + 15 = 55 

Using 30 to 60 Condition Score to be "High" and less than 30 is deemed to be "Low" a 

𝑆𝐶𝐴
= 40 indicates that pipe Segment B has a high condition score is a high priority for 

replacement and/or rehabilitation. Since 𝑆𝐶𝐴
= 60 >  𝑆𝐶𝐵 = 55 the pipe in scenario A will have 

a higher priority than the pipe in scenario B.  

 

2.3.2 Performance Score (𝑺𝑷) Calculation 

Scenario A:  

The pressure loss along the pipe segment is given as 48.6 kPa. Using Table 2-17 

𝑃𝐿 > 34.5 for a 400mm diameter pipe gives 𝑉𝑃𝐿1
= 15. 

Table 2-17 Bin Values for Pressure Loss [kPa] 

Pipe Diameter Categories 
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𝑷𝑳<𝟔𝟎𝟎𝒎𝒎 [𝒌𝑷𝒂]  𝑷𝑳>𝟔𝟎𝟎𝒎𝒎 [𝒌𝑷𝒂] 𝑽𝑷𝑳 [−] 

𝑃𝐿 > 34.5        𝑃𝐿 > 17  𝑉𝑃𝐿,1 = 15 

14 < 𝑃𝐿 ≤  34.5 10 < 𝑃𝐿 ≤ 17 𝑉𝑃𝐿,2 = 5 

𝑃𝐿 ≤ 14 𝑃𝐿 ≤ 10 𝑉𝑃𝐿,3 = 0 

There is no information on recorded water quality complaints, so it is assumed that the 

Water Quality does conform. Using Table 2-18 𝑉𝑊𝑄,2 = 0 for a pipe the conforms to Water Quality 

Table 2-18 Assumed Bin Values for Water Quality 

𝑾𝑸 [−] 𝑽𝑾𝑸 [−] 

Does not conform 𝑉𝑊𝑄,1 = 15 

Does conform 𝑉𝑊𝑄,2 = 0 

With respect to Standard Conformance, no information is provided to indicate that no 

conformance to Standards. Thus, using Table 2-19, the bin values for standard conformance gives 

𝑉𝐶𝐿𝑆,2 = 0. 

Table 2-19 Assumed Standard Conformance Bin Values 

The Performance Score for the pipe in Scenario A is calculated using Equation 2-5.  

𝑆𝑃𝐴 = 𝑉𝑃𝐿 + 𝑉𝑊𝑄 + 𝑉𝐶𝐿𝑆 = 15 + 0 + 0 = 15 

The highest Performance Score using a maximum value of 15 will be 45. If a Performance 

Score between 22.5 to 45 denotes "High" and less than 22.5 is "Low" as 𝑆𝑃𝐴
= 15 is considered 

to be "Low". This low Performance Score indicates that pipe Segment A has no performance issues 

at this time. 

Scenario B:  

Following the same procedure as Scenario A, the Performance Score for pipe Segment B 

is determined.  

𝑪𝑳𝑺 [−] 𝑉𝐶𝐿𝑆 [−] 

Does not conform 𝑉𝐶𝐿𝑆,1 = 15 

Does conform 𝑉𝐶𝐿𝑆,2 = 0 
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The Pressure-loss is given as 13.8 kPa. Thus, using Table 2-17 𝑃𝐿 ≤ 14 and 400mm 

diameter pipe gives 𝑉𝑃𝐿3
= 0. 

There are no water quality complaints therefore 𝑉𝑊𝑄,2 = 0.  There is also no indication that 

it does not conform to Standards therefore 𝑉𝐶𝐿𝑆,2 = 0.  

The Performance Score for the pipe in Scenario B is calculated using Equation 2-5.  

𝑆𝑃𝐵 = 𝑉𝑃𝐿 + 𝑉𝑊𝑄 + 𝑉𝐶𝐿𝑆 = 0 + 0 + 0 = 0 

Using the same methodology assumed for the pipe in Scenario A,  𝑆𝑃 = 0 indicates a 

"Low" Performance Score and that the pipe has no performance issues.  

2.3.3 Criticality Score (𝑺𝑪𝒓
) Calculation 

Scenario A:  

The watermain pipe diameter, 𝐷 is 400mm. Using Table 2-20 𝑉𝐷,3 = 5 for  

300 𝑚𝑚 < 𝐷 ≤  600 𝑚𝑚 diameter pipes. 

Table 2-20 Assumed Bin Values for Pipe Diameter 

𝑫 [−] 𝑽𝑫 [−] 

               𝐷 > 750 𝑚𝑚 𝑉𝐷,1 = 15 

600 𝑚𝑚 < 𝐷 ≤  750 𝑚𝑚 𝑉𝐷,2 = 10 

300 𝑚𝑚 < 𝐷 ≤  600 𝑚𝑚 𝑉𝐷,3 = 5 

               𝐷 ≤ 300 𝑚𝑚 𝑉𝐷,4 = 0 

The pipe crosses a creek within an environmentally sensitive area. Using Table 2-21 𝑉𝐿,1 =

15 pipe as it is within the ESPA area. 

Table 2-21 Assumed Bin Values for Water Pipe Location 

𝑳 [−] 𝑽𝑳 [−] 

Located within ESPA 𝑉𝐿,1 = 15 

Located outside ESPA 𝑉𝐿,2 = 0 

Since the pipe is not accessible, Table 2-22 assigns 𝑉𝐴𝐶,1 = 15. 

Table 2-22 Assumed values for Accessibility Bins 
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𝑨𝑪 [−] 𝑽𝑨𝑪 [−] 

Not accessible  𝑉𝐴𝐶,1 = 15 

Accessible 𝑉𝐴𝐶,2 = 0 

The Criticality Score for the pipe in Scenario A is calculated using Equation 2-7. 

𝑆𝐶𝑟
= 𝑉𝐷 + 𝑉𝐿 + 𝑉𝐴𝐶 = 5 + 15 + 15 = 35 

Scores between 22.5 to 45 are deemed to be "High" and less than 22.5 to be "Low". As 

with 𝑆𝐶 and 𝑆𝑃, the "High" category and higher Criticality Score denotes a higher case for priority. 

Accordingly, 𝑆𝐶𝑟𝐴
= 35 indicates that this particular pipe segment is considered critical and has a 

"High" Criticality Score.  

Scenario B:  

The diameter of the pipe is 400mm in Scenario B and the same as for Scenario A. Hence 

𝑉𝐷,3 = 5.  

The pipe also crosses a creek within an environmentally sensitive area, thus 𝑉𝐿,1 = 15. The 

pipe is accessible therefore 𝑉𝐴𝐶,0 = 0.  

The Criticality Score for the pipe in Scenario B is calculated using Equation 2-7. 

𝑆𝐶𝑟𝐵
= 𝑉𝐷 + 𝑉𝐿 + 𝑉𝐴𝐶 = 5 + 15 + 0 = 20 

The 𝑆𝐶𝑟𝐵
= 20 will be "Low" and indicates this particular pipe segment is not critical. 

Since  𝑆𝐶𝑟𝐴
> 𝑆𝐶𝑟𝐵

 Scenario A is more critical than Scenario B.  

2.3.4 PAN Calculation  

The PAN is calculated using Equation 2-1 

𝑃𝐴𝑁 = 𝑆𝐶  𝑊𝐶 + 𝑆𝑃 𝑊𝑃 +  𝑆𝐶𝑟
𝑊𝐶𝑟  
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where the Condition, Performance and Criticality Scores multiplied by their respective 

weighting factors with 𝑊𝑃 > 𝑊𝐶 >  𝑊𝐶𝑟.The weight factors for this analysis are assigned as 𝑊𝐶 =

8; 𝑊𝑃 = 10; and, 𝑊𝐶𝑟
= 6 using a scale of 0 to 15.  

The resulting PAN for Scenario A and B pipe segments are determined as 

𝑃𝐴𝑁𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐴 = 60 × 8 +  15 × 10 +  35 × 6 = 840  

𝑃𝐴𝑁𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐵 = 55 × 8 +  0 × 10 +  20 × 6 = 560  

Using maximum scores 𝑃𝐴𝑁𝑚𝑎𝑥 = 1200. For this analysis “High” is 1200 ≥ PAN ≥ 800, 

“Medium” is 800 > PAN > 400, and “Low” is 400 ≥ PAN ≥ 0. Scenario, A PAN of 840 is "High" 

while Scenario B PAN of 560 is "Medium" using these PAN categories. Thus, Scenario A has a 

higher priority for replacement and/or rehabilitation than pipe Segment B.  

2.3.5 Mitigation Technology  

Table 2-23 provides an example of potential mitigation classification outcomes that are 

differentiated based on abstract boundaries denoted by "Low", "Medium," and "High" Scores and 

for the PAN, Condition, Performance and Criticality Scores.  

 

 

Table 2-23 Potential Mitigation Solutions based on Condition, Performance, Criticality Scores, 

and PAN 

Mitigation 

Strategy 

Condition 

Score 

Performance 

Score 

Criticality 

Score 
PAN 

Mitigation 

Technology 

1 High High High High Up-Size 

2 High High Low High Up-Size 

3 High Low High High Replace 

4 High Low Low Medium Repair 

5 Low High High High Up-Size 

6 Low High Low Low Do Nothing 

7 Low Low High Low Do Nothing 
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8 Low Low Low Low Do Nothing 

Using Table 2-23 Scenario A pipe has "High" Condition Score, "Low" Performance Score, 

"High" Criticality Score, and "High" PAN falls into the mitigation Strategy 3 Replace”. Scenario 

B pipe has "High" Condition Score, "Low" Performance Score, "Low" Criticality Score and 

"Medium" PAN falls into Mitigation Strategy 4 Repair.  

2.4 Conclusions  

In this study, a Priority Action Number (PAN) is proposed and developed to score and rank 

pipe segments to prioritize them for replacement and rehabilitation. The PAN develops a 

standardized set of rules that allow for defensible, repeatable and auditable prioritization decisions 

that can be automated in computer programs and implemented into ArcGIS. 

 The PAN consists of determining the summation of condition, performance and criticality 

score multiplied by each score appropriate assigned weight.  Each score is considered independent, 

and weighting factors for Condition, Performance and Criticality are set as 𝑊𝑃 > 𝑊𝐶 >  𝑊𝐶𝑟. 

Each Score is developed so that a higher Score and thus higher PAN means pipe segment higher 

priority for replacement and/or rehabilitation.  

Two pipe segment Scenarios are presented to demonstrate the PAN calculation 

methodology, and an example of a pipe mitigation matrix is shown to demonstrate how the PAN 

Scores and be used to develop repeatable, defensible and audible pipe segments prioritization 

decisions.  

Further work is required to establish appropriate weights for Scores and rationale and an 

industry-applicable pipe segment decision matrix.   

 

 

 

 



 

36 

 

 

 

 

 

 

 

 

 

 

An Expert Opinion Algorithm for Prioritizing and 

Mitigating Watermain Networks: Model Development 

Abstract 

MWN is a significant fundamental system used in delivering potable water. Due to the 

deterioration of MWN that results in the structural and hydraulic capacity reduction of these 

systems, municipalities are faced with obstacles in defining the process of deterioration and the 

factors affecting the deterioration rate. The municipalities then prioritize the maintenance of their 

infrastructure under this circumstance with optimum use of resources. This chapter presents and 

develops a prioritizing approach for the watermain networks' capital activities and aids in selecting 

assistive technology for rehabilitation and renewal. Using the MWN comprehensive database that 

is mapped in an ArcGIS system,  a machine learning classifier model is proposed to classify all 

pipes in MWN and assign a capital work activity to all pipes in MWN. Through the NBC 

supervised learning algorithm, the capital project decision-making process is automated.  
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3.1 Introduction  

Watermain Networks are deteriorating and ageing over time. Deterioration reduces the 

hydraulic and structural capacity of the water distribution networks. All over the world, 

metropolises are faced with the challenges of recognizing the factors that can affect the rate of 

water pipes deterioration. To address these challenges, municipalities need to define technologies 

and methodologies for Water network rehabilitation, assessment, management, construction, 

design, and planning that consider the social, environmental, and economic factors. This chapter 

outlines models that prioritize and mitigates Watermain networks and assist in the recovery of 

Artificial Intelligence (AI). It builds on expert opinions to develop a relatively standard method of 

managing water networks and replicate expert opinions using AI.  

Key findings demonstrate a comprehensive database preparation and a method to capture 

engineering decisions and propose a machine learning algorithm that is capable of replicating 

expert opinions on planning capital activities is needed. The capital activities of water pipe are 

based on the current condition, performance and criticality of every pipe within the water system 

(Halfawy & Hengmeechai, 2014). Two analysis methods have been undertaken to ensure that the 

correct data is obtained upon completing this study. These include surveys and supervised machine 
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learning algorithms and applications to prioritize water pipes condition, performance and 

criticality, and a mitigating maintenance solution for every pipe through the water system.  

3.1.1 Background 

Unlike wastewater infrastructure, water systems do not have a standardized method to 

measure and rank their condition or having a certain solution for a defect (NRC.CNRC, 2003). 

Each municipality has a different way of managing its drinking water infrastructure, and each 

expert has different opinions. There is no standard way, even within the same organization to date, 

to assess all water pipes and plan water capital activities (NRC, CNRC, 2005). American Society 

for Civil Engineers reported in 2013 a $3.6 trillion investment need by 2020 to replace ageing 

infrastructure in North America (ASCE, 2013). Combining expert opinion and machine learning 

methodologies is a relatively new technology in the engineering industry (Iqbal & Yan, 2015). 

There are new areas such as automated bridge and roadway inspection using machine learning 

algorithms recently (Tagh Bostani, 2015); (Ravikumar et al., 2011). These efforts focused on 

automating visual inspection using a support vector machine to classify road or bridge defect 

patterns.  

Machine learning models are used primarily in other civil engineering fields thus far rather 

than complex water pipe networks. Halfawy & Hengmeechai (2014) advises using automated 

deficiency detection tools for sanitary sewer inspection pattern recognition algorithms to classify 

pipe defects captured by CCTV inspection videos. A set of histograms of oriented gradients 

features extracted from positive and negative examples of the defect are used as classifiers to train 

the algorithm. Yang & Su (2008), used three neural network approaches, back-propagation neural 

network, radial basis network, and support vector machine to classify sewer pipe defect patterns. 

For this research, CCTV inspection is used as an expert opinion. The learning algorithm is yet to 

be used in a water pipe to classify defects and propose a mitigation methodology.  

The machine-learning algorithm has been used rarely as a decision-making tool in the water 

industry. Kumar et al. (2018) used a machine-learning algorithm to predict the risk of failure on 

water infrastructure. The model considered limited pipe physical condition properties as variables 

in the machine learning model. Kabir et al. (2015) used Bayesian Model Averaging method to 
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predict pipe failure. The influential pipe-dependent and time-dependent covariates are used to 

develop the survival curves and predict the water pipe failure rates. Asnaashari et al. (2013) used 

the Artificial Neural Network method to prioritize Watermain repair and replacement activities. 

Eight independent pipe physical properties are employed as variables influencing the water pipe 

failure rate. Al Barqawi & Zayed (2006) proposed another Artificial Neural Network approach on 

condition rating model to prioritize water pipe rehabilitation. Water pipe physical, environmental, 

and operational factors are considered on limited water pipe materials. Table 3-1 summarizes 

linear machine learning models.  A comprehensive machine learning algorithm model, which 

includes condition, performance, and criticality variables and automates capital project decisions, 

is yet to be proposed.  

Neglecting ageing infrastructure, especially in older cities; where large portions of the 

water infrastructure were laid more than a century ago and have passed their operating life, such 

as the Cty of Toronto; can cause massive property damage by flooding homes and businesses, 

creating large sinkholes that destroy roads and vehicles on those roads, lead to leaks into gas lines 

preventing homes from receiving heat, and destroy power lines preventing homes from receiving 

power (Jerome, 2017). 

Table 3-1 Literature Review Summary 

Machine Learning 

Models  

Water 

Network 

Study 

Research Fields 

C
o
n

d
it

io
n

 

P
er

fo
rm

a
n

ce
 

C
ri

ti
ca

li
ty

 

M
it

ig
a
ti

o
n

 

T
ec

h
n

o
lo

g
y 

Caradot et al. 2018 No 
Sanitary Sewer Pipe 

Deterioration Model 
   

 Tagh Bostani, 2015 No 
Prioritizing and Ranking 

Bridge Rehabilitation 
   

Sousa et al., 2014 No 
Classifying Sanitary 

Sewer Condition 
   

Halfawy & Hengmeechai, 

2014  
No 

Automate Sanitary Sewer 

Pipe Deficiency Ranking 
   

Harvey, & McBean 2013 No 
Prioritizing Sanitary 

Sewer Inspection 
   
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Ravikumar et al., 2011 No 
Prioritizing Road Way 

Rehabilitation 
   

Yang & Su, 2008 No 
Classify Sanitary Sewer 

Pipe Defect Patterns 
   

Kumar et al. 2018 Yes 
Classify the Risk of 

Watermain Breakage 
   

Ahmadi et al., 2015 Yes 
Prioritizing Water Pipe 

inspection 
   

Kabir et al., 2015 Yes 
Predicting the Water Pipe 

Failure 
   

Asnaashari et al., 2013 Yes 
Prioritizing Water Pipe 

Repair and Rehabilitation 
   

Al Barqawi & Zayed, 2006 Yes 
Classify Water Pipe 

Condition Rating 
   

With the onset of ageing water infrastructure, limited available resources to maintain the 

same Level of Service (LOS) are an onerous responsibility (NRC, CNRC, 2007). By automating 

capital activity decision-making processes, not only consistency and defence-ability would be 

added to capital activities decisions, but also the resources can be spending on much-needed water 

asset maintenance activities.  

While expert opinions are subjective, it’s required to be supported by consistent decision-

making models (Aven, 2016). Prioritizing watermain capital activities, a complete modelling 

approach is needed and yet to be proposed. This study's results may provide a baseline that could 

potentially be used to benchmark the watermain performance measurement at different levels of 

municipal organizations. The proposed method automates and replicates expert opinion. Classifier 

models with machine learning are inspired by various disciplines, including computer science, 

medical, and other engineering fields. Machine learning to the author's knowledge has not been 

applied to prioritize capital works activities for a municipal water pipe network. The core function 

of Machine Learning attempts to determine a good predictor using available data to automatically 

classify the output (Iqbal & Yan, 2015). Classification is the process of using a model to predict 

unknown values using several known values. The database with all known variables is called a 

training database that is used to develop the Naïve Bayes Classifier (NBC) model. 
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In summary, past studies confirm that due to several complexities, uncertainties, and 

imperfection of the water network and its available data, there is a need for a comprehensive multi-

criteria database to prioritize pipe maintenance decisions based on engineering expert judgment. 

An automated machine learning model for consistent raking of existing water pipe condition, 

performance, and criticality of all water pipes through MWN is required to automate the capital 

activities decision-making process.  

3.1.2 Methodology 

This chapter's main objective is to build supervised machine learning models on 

rehabilitation and replacement of water infrastructure to replicate engineering judgment for linear 

water infrastructure's capital activities. This study proposes a decision support tool that will add 

consistency and defence-ability to the water pipes capital program. This study would save 

municipalities much-needed resources by automating the screening process by categorizing data 

to classified score systems assigned by professionals. The learning algorithm will repeat 

engineering decisions automatically. This chapter will explain the machine learning methodology 

to rank the entire water system with multi-objective mitigation scenarios.  

This research introduces two models to prioritize water pipes based on their condition, 

performance, and criticality properties and mitigating capital project decisions based on expert’s 

opinions. The outcome of these models are classifying all water pipes within the MWN for 

condition and performance into five prioritizing classes as (very poor, poor, moderate, good, and 

very good) and criticality of water pipes in five classes as (very high, moderately high, medium, 

moderately low and very low); mitigating capital activities in four different classes as (do nothing, 

rehab and renovate using trenchless technology, replace with the same pipe size, upsize or replace 

with larger size pipe). This chapter introduces the  NBC model with a supervised learning 

algorithm. The proposed model will be trained using engineering judgment and expert opinion and 

can replicate the same decisions. 

Figure 3-1 summarizes the NBC model in a flow chart. NBC requires having prior, 

posterior, and likelihood distributions. The prior and posterior classes are calculated from separate 

information for the same water pipes within the MWN. Variable values to calculate prior and 
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posterior classes are gathered from two different sources. The left part of the Figure 3-1 shows 

prior classes are calculated using initial assigned variable values by a municipal engineer. The 

right part of the Figure 3-1 shows posterior classes or target classes are calculated using the survey 

results by asking professional engineers who are considered experts in the municipal water 

industry. Class boundaries are set based on the minimum and maximum scores calculated for all 

pipes within the database. The supervised machine learning algorithm calculates the likelihood 

distributions to develop the decision tree rules and weights where it replicates the information 

contained within the likelihood distribution.  
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Figure 3-1 Naïve Bayes Classifier Flow Chart 
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The proposed model is organized into two levels.  The first is a prioritization model that 

classifies each pipe within the MWN into five classes for condition, performance and criticality 

based on expert opinion. The second is a mitigation model that assigns a capital plan activity to 

each pipe within MWN is based on expert judgement. The following sections explain the database 

and two-level model development. The model is downloaded from NumPy and SciPy library and 

prepared in Python scripting language available in GIS.  

3.2 Data and Variables  

According to recommended best practice 2005, all North American Municipalities are 

obligated to store their water assets information in ArcGIS format. The stored ArcGIS shapefile 

water database is called the MWN. This database included but is not limited to all water pipe 

attributes required properties for the proposed NBC models. These databases are included water 

pipe information such as diameter, the total number of breaks, soil conditions, location, and 

location or accessibility. Some water pipe information is not time-dependent that will not change 

over time. But there is time-dependent information; for example, pipe diameter and material will 

not change, but the Remaining Service Life and number of breaks may change over time. This 

information is collected as a set of attributes 𝑋, and with each attribute being assigned a variable 

value 𝑉𝑋𝑖 by being categorized into one of several bins  𝑖 with set boundaries. All bin thresholds 

and boundaries are described in detail in Chapter 2. Table 3-2 summarizes the list of variables 

considered in Condition, Performance and Criticality classifiers. 
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Table 3-2 List of Variables Considered for Condition, Performance and Criticality 

Condition Variables (𝑆𝐶) Performance Variables (𝑆𝑃) Criticality Variables (𝑆𝐶𝑟
) 

Remaining Service 

Life 

𝑉𝑅𝑆𝐿𝑖
 Water pressure loss 𝑉𝑃𝐿𝑖

 Pipe diameter 𝑉𝐷𝑖
 

Total number of 

breaks 

𝑉𝑇𝐵𝑖
 Water quality 𝑉𝑊𝑄𝑖

 Pipe location 𝑉𝐿𝑖
 

Total number of 

breaks within the 

last five years 

𝑉𝑇𝐵5𝑦𝑟𝑠𝑖
 Conformance to 

latest standards 

𝑉𝐶𝐿𝑆𝑖
 Pipe accessibility 𝑉𝐴𝐶𝑖

 

Maintenance index 𝑉𝑀𝐼𝑖
     

Scores are the sum of all variable values. The equation for Condition Score 𝑆𝐶, 

Performance Score 𝑆𝑃, and Criticality Score 𝑆𝐶𝑟, is repeated from Chapter 2 as: 

𝑆𝐶 = 𝑉𝑅𝑆𝐿 + 𝑉𝑇𝐵 + 𝑉𝐵𝐿𝐹𝑉𝑌 + 𝑉𝑀𝐼 
3-1 

 
𝑆𝑃 = 𝑉𝐻𝐿 + 𝑉𝑊𝑄 + 𝑉𝐶𝐿𝑆 

3-2 

𝑆𝐶𝑟
= 𝑉𝐷 + 𝑉𝐿 + 𝑉𝐴𝑐 

3-3 

𝑃𝐴𝑁 = 𝑆𝐶  𝑊𝐶 + 𝑆𝑃 𝑊𝑃 +  𝑆𝐶𝑟
𝑊𝐶𝑟   

3-4 

Municipal engineers working for municipalities are responsible for reviewing and keep 

MWN up-to-date. Municipal engineers are also responsible for capital activities according to 

information available in the MWN database for pipe condition, performance, and criticality. Based 

on engineering judgment, each municipal engineer follows different criteria for planning and 

prioritizing capital activities within a different municipality to keep the LOS. There is no 

standardized method among all municipalities for planning and prioritizing capital activities. The 

goal of this effort is to produce a model predicted classification of watermain that standardize and 

prioritize capital activities for water pipes to keep the same LOS among all municipalities based 

on expert judgment 
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NBC algorithm is well suited for the extensive database with many data points, such as the 

MWN database. MWN is a water pipe inventory, and each pipe is considered a data point in the 

database. The MWN database includes all variable measuring conditions, performance, and 

criticality explained in Chapter 2. Variables could be continuous, categorical, or binary. Variable 

collection and boundaries are done by a municipal engineer initially, as described in Chapter 2. 

The expert opinion may deviate from the municipal engineer's decision. Since the municipal 

engineer judgement is aggregated to local MWN and expert opinion is mainly aligned with general 

industry best practice. For instance, one MWN maybe consist of pipes, which are all relatively 

short Remaining Service Life, but not all pipes with low Remaining Service Life would be 

classified the same, especially compared to the networks that the “experts” deal with. Hence, 

prioritizing pipes in the MWN based on their excessive age is not informative. 

 To benchmark the variable values and boundaries, a survey questioner is prepared and 

asked professional engineers experts in the water industry to evaluate the variables, assign variable 

values and boundaries to all selected attributes. As shown in Table 3-3, each data point represents 

a water pipe in the MWN database; every pipe have all variable values assigned by the Municipal 

engineer 𝑉𝑋𝑖
 and assigned by expert 𝑉̅𝑋𝑖

. Each water pipe fits into one bin for each variable with 

one variable value that is assigned a municipal engineer and one bin with one variable value that 

is accredited by expert opinion.  Therefore, each pipe within the MWN has one score 

𝑆𝐶 , 𝑆𝑃, 𝑎𝑛𝑑 𝑆𝐶𝑟
 and 𝑃𝐴𝑁 computed from municipal engineer assign variable values and one Target 

Score 𝑆𝐶̅ , 𝑆𝑃̅, 𝑆𝐶̅𝑟 𝑎𝑛𝑑 𝑃𝐴𝑁̅̅ ̅̅ ̅̅  calculated from expert’s assigned variable values for condition, 

performance, and criticality.   
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Table 3-3 Supervised Learning Data Organization 

 

As it shows in Table 3-3, each pipe within the MWN have condition, performance and 

criticality and mitigation classifiers ℂ𝐶𝑗
∈ {𝑉𝑒𝑟𝑦 𝑃𝑜𝑜𝑟, 𝑃𝑜𝑜𝑟, 𝐹𝑎𝑖𝑟, 𝐺𝑜𝑜𝑑, 𝑉𝑒𝑟𝑦 𝐺𝑜𝑜𝑑} and 

ℂ𝑃𝐴𝑁  ∈ {𝐷𝑜 𝑁𝑜𝑡ℎ𝑖𝑛𝑔, 𝑅𝑒ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑎𝑡𝑖𝑜𝑛, 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛, 𝑈𝑝𝑠𝑖𝑧𝑒}) that are assigned by a municipal 

engineer ℂ𝐶𝑗
, ℂ𝑃𝑗

, ℂ𝐶𝑟𝑗
𝑎𝑛𝑑 ℂ𝑃𝐴𝑁 and Classifiers assigned by experts ℂ̅𝐶𝑗

, ℂ̅𝑃𝑗
, ℂ̅𝐶𝑟𝑗

𝑎𝑛𝑑 ℂ̅𝑃𝐴𝑁 and 

model predicted classifiers ℂ̿𝐶𝑗
, ℂ̿𝑃𝑗

, ℂ̿𝐶𝑟𝑗
𝑎𝑛𝑑 ℂ̿𝑃𝐴𝑁. In the supervised learning algorithm, all 

classifiers and variables must be independent (Marucci-Wellmana et al., 2017). For example, water 

pipe variables such as pipe diameter and pipe location are not statistically related. Therefore, NBC 

is an excellent candidate to be used in a water pipe system.  

The following sections discuss model development and how the classifiers are assigned for 

both municipal engineers assigned classes and target classes. The mitigation algorithm ensures 
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reproducibility on the defensible engineering decision, while the prioritization model provides 

explanatory evidence supporting the decision. 

3.3 Model Development 

The model is developed using NBC with supervised learning algorithm methods. The 

presence of target values in the training database makes the machine learning algorithm consider 

supervised learning (Iqbal & Yan, 2015). The variables 𝑉𝑋𝑖
 are selected using a pre-set bin 

threshold for properties measuring condition, performance, and criticality explained in Chapter 2. 

The model consists of several modules using the same MWN databases. The models’ output 

classifies all water pipes within MWN based on their condition, performance, criticality. This 

model classifies capital work mitigation technology such as (Do Nothing, Rehabilitation, 

Replacement, and Upsize) for each pipe within the MWN.   

 

Figure 3-2 Supervised Naïve Bayes Learning Algorithm Flow Chart 
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Figure 3-2 summarizes the NBC model in a flow chart. The NBC model requires having 

prior, posterior, and likelihood distributions. As shown in Figure 3-2, prior and posterior classes 

are calculated from separate information for the same pipes within the same MWN. Variable 

values to calculate prior and posterior classes are gathered from two different sources. Prior classes 

are calculated using initial assigned variable values by a municipal engineer. Posterior classes or 

target classes are calculated using the survey results by asking professional engineers who are 

considered experts in the municipal water industry. Class boundaries are set based on the minimum 

and maximum scores calculated for all pipes within the database. The supervised machine learning 

algorithm calculates the likelihood distributions between each variable bin and posterior classes 

(target classes) to develop the decision tree matrix to replicate the information contained within 

the likelihood distribution.  

Therefore, the NBC model is trained on posterior classes and is able to replicate the same 

classes for similar water pipes with similar attributes. Thus, the NBC, with a supervised learning 

algorithm model, is capable of repeating expert opinion for condition, performance, criticality, and 

mitigation classes. 

3.3.1 Naïve Bayes Classifier 

Bayes’ Theorem is a simple but powerful prediction model widely used to perform 

classification tasks with a strong assumption of independence among variables (Nilsson, 1965). 

The NBC algorithm is a method that uses the probabilities of each variable belonging to each class 

to make a prediction (Kuhn & Johnson, 2013). It often performs well in many real-world 

applications, regardless of the strong assumption that features are independent in each class (Taheri 

& Mammadov, 2013). NBC assumes that all variables are independent of each other, and each 

variable only depends on the class (Taheri & Mammadov, 2012).  

NBC is useful for high-dimensional data as the probability of each feature is estimated 

independently. If ℂ𝑗  represent the class (𝑗) of an observation Variable Value 𝑉𝑋𝑖
. Then, to predict 

the class of the observation 𝑉𝑋𝑖+1
 by the Bayes rule, the highest posterior probability should be 

found. In the NBC, using the assumption that variables 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛 are conditionally 

independent of each other given the class. 
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𝑃(ℂ𝑗|𝑉𝑋𝑖
) =

𝑃(ℂ𝑗) ∏ 𝑃(𝑉𝑋𝑖
|ℂ𝑗)𝑛

𝑖=1

𝑃(𝑉𝑋𝑖
)

 3-5 

 

NBC assumes the effects of a predictor 𝑉𝑋𝑖
 on class ℂ𝑗  that is assigned by the municipal 

engineer. All predictors or variables and their bins and all classes are independent. 𝑃(ℂ𝑗) is the 

prior probability of each variable value in a particular prior class (𝑗) that is initially assigned by a 

municipal engineer. 𝑃(𝑉𝑋𝑖
|ℂ𝑗) is the likelihood probability of a pipe which the municipal engineer 

assigned variable 𝑉𝑋 and bin (𝑖) appear in class ℂ𝑗 . 𝑃(𝑉𝑋𝑖
) is the probability of a pipe within MWN 

that have engineer assigned variable value 𝑉𝑋 and bin (𝑖). 𝑃(ℂ𝑗|𝑉𝑋𝑖
) is the posterior probability 

of class for a given predictor 𝑉𝑋𝑖
 that is variable (𝑋) and bin (𝑖). The goal of the NBC model is to 

predict a posterior class using the highest probability of occurrence of the predictor 𝑉𝑋𝑖
 on class 

ℂ𝑗  (Taheri & Mammadov, 2013) . This means the model determines the probability of a pipe with 

certain variable values 𝑉𝑋𝑖
 would be in certain condition class (𝑗). The NBC model replicate the 

likelihood distribution 𝑃(𝑉𝑋𝑖
|ℂ𝑗) using decision-tree-like-rules assuming that 𝑃(ℂ𝑗) and 

𝑃(𝑉𝑋𝑖
) are fixed, while being trained to the posterior distribution 𝑃(ℂ𝑗|𝑉𝑋𝑖

). The NBC predicts 

a posterior probabilities using Equation 3-5 and expert assigned variable values. A supervised 

learning algorithm uses the prior and posterior distributions to the expected class ℂ̿𝑗  similar to 

expert assigned classes (target classes) ℂ̅𝑗 .  

3.3.2 Supervised Machine Learning Algorithm 

In the machine learning algorithm, each data point or water pipe in MWN is represented as 

a set of variables (𝑉𝑋1
, 𝑉𝑋2

, 𝑉𝑋3
 … , 𝑉𝑋𝑛

). These variables could be continuous, categorical, or 

binary. When the training database have the same attributes and variable information as a known 

target class ℂ̅𝑗 , the learning scheme is recognized as supervised (Iqbal & Yan, 2015). 

Supervised learning aims to build a concise model of the distribution of classes in terms of 

predictor features (Kotsiantis, 2007). Supervised learning is the machine learning task of learning 

a function that maps an input 𝑉𝑋𝑖
 to an output ℂ̅𝑗   based on example, input-output pairs called 

target classes (Russell & Norvig, 2010). This process is called model training, and this target data 
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is called training data consisting of a set of training examples (Mohri et al., 2012). The search 

algorithm looks for similar instances to train the NBC model using a training database with 

supervised machine learning to produce rules, making predictions in future instances using the 

same rules in other water networks, excluding the training database (Iqbal & Yan, 2015). In 

supervised learning, each example is a pair consisting of an input object (variable value) 𝑉𝑋𝑖
 and 

the desired output value (target class) ℂ̅𝑗 . A supervised learning algorithm analyzes the training 

data (target classes) ℂ̅𝑗 and produces an inferred function (weights for each variable values), which 

can be used for mapping new examples (Russell & Norvig, 2010). 

Machine learning rules are very similar to decision trees (Iqbal & Yan, 2015). The decision 

trees can be translated into a set of rules. A separate rule for all possible paths that predict a class 

(Salzberg, 1993). Therefore, the supervised learning algorithm is capable of replicating target 

classes ℂ̅𝑗  that is assigned by expert with relatively high accuracy using the likelihood distributions  

∏ 𝑃(𝑉𝑋𝑖
|ℂ𝑗)𝑛

𝑖=1  from Equation 3-5 (Furnkranz, 1999). Classification rules summarize likelihood 

distributions similar to decision-tree that applies the decision route to represent each class by the 

disjunctive normal distribution. If each data points have the same variable information 𝑉𝑋𝑖
 with 

known prior class ℂ𝑗  and target class ℂ̅𝑗 , then the learning scheme is known as supervised (Iqbal 

& Yan, 2015). The supervised learning algorithm goes through the database and adjusts the 

weights for each variable 𝑉𝑋𝑖
 after each line. Machine learning repeats the weight-adjusting over 

and over again to get the highest accuracy possible, predicting the target classes. By comparing 

the ℂ𝑗  and ℂ̅𝑗 for all data points within the training database, the supervised learning algorithm is 

trained to predict the classes 𝐶𝑗̿ similar to target classes. Thus the model is trained to predict the 

target class with high accuracy.  

The MWN database from a municipality in southern Ontario is used to develop and train 

this model. This model is tested on another MWN database from a different municipality in 

southern Ontario. Using NBC, supervised learning algorithms is a novel contribution to the water 

industry.  
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A comprehensive MWN database with all pipe attributes and variable values for properties 

measuring condition, performance, criticality, and mitigation is needed to have prior and posterior 

distributions and classes. 

3.3.2.1 Prior Distribution 

To compute the prior distribution 𝑃(ℂ𝑗) for the prior classes ℂ𝑗  the model takes several 

steps using the municipality water network database. Figure 3-3 that is the left part of Figure 3-1 

summarizes the prior distribution methodology. The following sections provide detailed 

information for all enumerated green sections included in Figure 3-3.  

 As it is explained in Section 3.2 in this chapter, the MWN database contains all variables 

and variable values for every pipe within MWN to calculate Condition, Performance and 

Criticality Scores. 

Typically, municipal engineers at municipalities are responsible for identifying the 

factors and attributes to be used in prioritizing and planning Capital work, where these variables 

and attributes are measured and hence relevant to their municipality, based on their engineering 

judgment. Although the variable and variable bin thresholds are explained in Chapter 2, they can 

be changed as needed by different municipality unique MWN database. The municipal engineer 

assigned values is the initial assumption that will be benchmarked against the expert opinion.  

Municipal engineers assign variable values 𝑉𝑋𝑖
 are assigned based on their importance 

to all bins on the scale of 0 to 15 (0 to the least important and 15 to the most important) using their 

engineering judgment. The 0 to 15 scale is consistent for all variable values and scores. 

Condition, Performance and Criticality Score 𝑆𝐶 , 𝑆𝑃, 𝑎𝑛𝑑 𝑆𝐶𝑟
 and PAN for each pipe 

segment within MWN is calculated using Equations 3-1 to 3-4 with municipal engineer assigned 

variable values 𝑉𝑋𝑖
 and weights 𝑊𝐶 , 𝑊𝑃, 𝑎𝑛𝑑 𝑊𝐶𝑟

 for all pipes in MWN as it is shown in Table 

3-3.   

All attributes(𝑋), bins (𝑖), variable values 𝑉𝑋𝑖
, Condition Score 𝑆𝐶, Performance Score 

𝑆𝑃 and Criticality Score 𝑆𝐶𝑟
 and PAN that the municipal engineers assigned are determined. 
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Therefore, the NBC model can compute the frequency of each pipe occurrence in each class to 

compute prior distribution 𝑃(ℂ𝑗) using Equation 3-5. The Maximum and Minimum Scores and 

PAN are calculated within the MWN. Figure 3-4 shows the sample frequency histogram for a few 

variables in the MWN. The NBC deduce all probabilities of different Scores and PANs.  

Figure 3-5 shows sample probability density graphs for Scores and PAN for the MWN 

database. The O&P prioritization model requires having all variables distributed in the MWN.  

The NBC distributions classify the calculated municipal engineer Condition, and 

Performance Scores into five uniform classes (Very Poor, Poor, Moderate, Good, and Very Good) 

(𝑃𝐶𝑖
). The NBC classifies the Criticality Score into five uniform classes (Very High, Moderately 

High, Medium, Moderately Low, Very Low). As shown in Equation 3-6, the intersection of 

variable values represents a number that would identify the classes. The calculated number would 

fit into one classifier interval. 
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Figure 3-3 Posterior Distribution Flow Chart  
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 Figure 3-4 Frequency Histograms for a few Variables 

(𝑉𝑋𝑖
∧  𝑉𝑋𝑖

∧ … . ) ≡ ℂ𝐶𝑗
    3-6 

 

All classifier’s intervals are separated by equal size between the smallest and highest 

scores within the water network system. All intervals are evenly distributed between the best 

pipe and the worst pipe within the MWN. Equations 3-7, 3-8 and 3-9 show the calculation and  

Table 3-4 shows the classifier’s intervals.  

(𝐿𝑎𝑟𝑔𝑒𝑡 𝑆𝐶 − 𝑆𝑚𝑎𝑙𝑙𝑒𝑠𝑡  𝑆𝐶)

5 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
=   𝑎𝐶 3-7 

(𝐿𝑎𝑟𝑔𝑒𝑡 𝑆𝑃 − 𝑆𝑚𝑎𝑙𝑙𝑒𝑠𝑡  𝑆𝑃)

5 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
= 𝑎𝑃 3-8 

(𝐿𝑎𝑟𝑔𝑒𝑡  𝑆𝐶𝑟
−  𝑆𝑚𝑎𝑙𝑒𝑠𝑡  𝑆𝐶𝑟

)

5 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
= 𝑎𝐶𝑟

 3-9 
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Table 3-4 Municipal Engineer Class Intervals 

Boundaries 
Condition and 

Performance Class 
Criticality Class 

0 to smallest score + 𝑎𝑖 Very Good  Very Low 

(smallest score + 𝑎𝑖 ) to (smallest 

Score + 2𝑎𝑖) 
Good   Moderately Low 

(smallest Score + 2 𝑎𝑖 ) to (smallest 

Score + 3𝑎𝑖) 
Moderate Medium 

(smallest Score + 3 𝑎𝑖) to (smallest 

Score + 4𝑎𝑖) 
Poor Moderately High 

(smallest Score + 4 𝑎𝑖) to (smallest 

Score + 5𝑎𝑖) 
Very Poor Very High 

The PAN is calculated using municipal engineer assigned variable values and weights with 

Equation 3-4 classified into four even intervals. The PAN intervals are the equal size between the 

smallest PAN and the highest PAN calculated for all pipes within the MWN. Equation 3-10 shows 

the calculation, and Table 3-5 shows the classifier’s intervals.  

(Largest PAN − Smallest PAN)

Four classes
=   𝑎𝑃𝐴𝑁 

3-10 

 

Knowing all classifier intervals, Scores, and PAN, the NBC classifies all pipes within 

MWN into five classes for Condition, Performance and Criticality and four Classes for PAN. Thus 

each water pipe within the MWN has a Condition Class, Performance Class, Criticality class, and 

Mitigation class.  

Table 3-5 Municipal Engineer PAN Intervals 

Boundaries Target Class 

0 to smallest PAN + 𝑎𝑃𝐴𝑁 Do Nothing 

(smallest PAN + 𝑎𝑃𝐴𝑁 ) to (smallest PAN + 2𝑎𝑃𝐴𝑁) 
Rehabilitate and Renovate Using 

Trenchless Technology 

(smallest PAN + 2𝑎𝑃𝐴𝑁 ) to (smallest PAN + 3𝑎𝑃𝐴𝑁) Replace with the Same Pipe Size 

(smallest PAN + 3𝑎𝑃𝐴𝑁 ) to (smallest PAN + 4𝑎𝑃𝐴𝑁) 
Replace with Larger Pipe Size – Up 

Size 
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Figure 3-5 Probability Density of Different Scores and PAN 
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Figure 3-6 Sample Variable Value Frequency for Condition, Performance and Criticality Classes  

At this stage, when all municipal engineer assigned classes are known. The NBC will 

compute the frequency of a pipe within each bin that appears in each class for all Conditions, 

Performance, Criticality, and PAN, creating the likelihood distribution 𝑃(𝑋𝑖|𝐶𝑗) in Equation 3-

1. The model calculates all distributions for all possible pipe scenarios in the water network. These 

distributions are used as the prior distribution in NBC supervised learning.  

Figure 3-6 shows a few frequency histograms as an example for Condition, Performance 

and Criticality Classes.  NBC requires to have posterior distribution to continue. 
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3.3.2.2 Posterior Distribution 

To compute the posterior distribution for the posterior classes model takes several steps. 

Figure 3-7 that is the right part of Figure 3-1 summarizes the posterior distribution methodology.  

The following yellow enumerated sections are referencing the numbers presented in Figure 3-7.  

The primary goal of the proposed methodology is to have a prioritized capital activities 

plan for MWN based on expert opinion. A survey questioner is prepared and circulated among 

experts in the municipal water industry to capture expert opinion. Survey preparation and model 

parameterization is explained in the next chapter in detail.   

In the survey questioner, the experts are asked to assign variable values 𝑉̅𝑋𝑖
 to all 

variables 𝑋 each bin 𝑖 that is identified by a municipal engineer explained in the previous section. 

All experts assigned variable values 𝑉̅𝑋𝑖
 and weights 𝑊̅𝑖 are collected from the survey questioned, 

and they all are explained in the next chapter.  

The arithmetic means of all expert assigned variable values are used as the expert 

assigned a variable value 𝑉̅𝑋𝑖
 for each bin 𝑖. All survey questions, expert assigned variable bins, 

and arithmetic mean calculations are presented in detail in the next chapter.  

The Experts assigned variable values and weights are appointed all pipes in the MWN 

database. This is a link between prior ∏ 𝑃(𝑉𝑋𝑖
|𝐶̅𝑗)𝑛

𝑖=1  and posterior 𝑃(𝐶̅𝑗|𝑉𝑋𝑖
) distributions (see 

Equation 3-5) that both distributions used the same database and the same network. Condition 

Score 𝑆𝐶̅, Performance Score 𝑆𝑃̅, Criticality Score 𝑆𝐶̅𝑟, and 𝑃𝐴𝑁̅̅ ̅̅ ̅̅  are once again calculated for pipe 

within the MWN using the expert’s assigned variable bin values and weights. The scores calculated 

with the expert assigned values are called Target Scores and the 𝑃𝐴𝑁̅̅ ̅̅ ̅̅  is called Target PAN. The 

same equations are used to calculate Target Scores and Target PAN as municipal engineer scores 

and PAN.  
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Figure 3-7 Posterior Distribution Flow Chart 
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Figure 3-8 Probability Density of Different Target Scores and Target PAN 
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Having all expert assigned variable values, Target Condition, Performance and 

Criticality Scores and Target PAN, the NBC model can compute the frequency of each pipe 

occurrence from the MWN in each bin. The Maximum and Minimum Target Scores and Target 

PAN are calculated for pipes in MWN. Figure 3-8 shows a sample distribution for Target Scores 

and PAN. 

Similar to municipal engineer assigned scores, Target Scores are classified into five 

uniform classes (Very Poor, Poor, Moderate, Good, and Very Good) for Condition, and 

Performance and (Very Low, Moderately Low, Medium, Moderately High, and Very High) for 

Criticality that is called Target Classes ℂ̅𝑗 . As shown in the equation, the intersection of all expert 

assigned variable values leads to a number that is fitted into a classifier interval for assigning a 

pipe class. 

(𝑉̅𝑋𝑖
∧ 𝑉̅𝑋𝑖

∧ … . ) ≡ ℂ̅𝐶𝑗
    3-11 

 

All classifier’s intervals are separated by equal size between the smallest Target Score and 

the largest Target Score calculated for pipes within the MWN system. All boundaries are evenly 

distributed between the best pipe and the worst pipe within the water network. Equations 3-12, 

3-13 and 3-14 show the calculation and Table 3-6 shows the classifier’s boundaries.  

(𝐿𝑎𝑟𝑔𝑒𝑡𝑠 𝑆̅𝐶 − 𝑆𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑆̅𝐶)

5 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
=   𝑎̅𝐶 3-12 

(𝐿𝑎𝑟𝑔𝑒𝑠𝑡 𝑆̅𝑃 − 𝑆𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑆̅𝑃)

5 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
=   𝑎̅𝑃 3-13 

𝐿𝑎𝑟𝑔𝑒𝑠𝑡 𝑆̅𝐶𝑟 − 𝑆𝑚𝑙𝑙𝑒𝑠𝑡 𝑆̅𝐶𝑟)

5 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
=   𝑎̅𝐶𝑟 3-14 

 

 

 

Table 3-6 Expert Assigned Class Intervals 
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Boundaries 
Condition and 

Performance Class 
Criticality Class 

0 to smallest Target Score + 𝑎̅𝑖 Very Good  Very Low 

(smallest Target Score + 𝑐𝑖 ) to 

(smallest Target Score + 2𝑎̅𝑖) 
Good  Moderately Low 

(smallest Target Score + 2𝑎̅𝑖 ) to 

(smallest Target Score + 3𝑐𝑖) 
Moderate  Medium 

(smallest Target Score + 3𝑎̅𝑖) to 

(smallest Target Score + 4𝑐𝑖) 
Poor  Moderately High 

(smallest Target Score + 4𝑎̅𝑖) to (largest 

Target Score) 
Very Poor  Very High 

Target 𝑃𝐴𝑁̅̅ ̅̅ ̅̅  computed using Equation 3-4. Target 𝑃𝐴𝑁̅̅ ̅̅ ̅̅  classified into 4 uniform classes.   

Target 𝑃𝐴𝑁̅̅ ̅̅ ̅̅  classifier’s intervals are assigned using expert opinion captured by survey 

results using several pipe scenarios. All water pipes within the MWN have a Target Mitigation 

class ℂ̅𝑗 assigned to it. 

 Knowing all target classifier intervals, Scores and 𝑃𝐴𝑁̅̅ ̅̅ ̅̅ , the NBC classifies all pipes 

within the MWN into five classes for Target Condition, Performance and Criticality and 4 Classes 

for (𝑃𝐴𝑁̅̅ ̅̅ ̅̅ ) according to expert opinion. Thus, each pipe within the MWN has a Target Condition 

Class, Target Performance Class, Target Criticality Class and Target Mitigation Class assigned by 

expert opinion. 

All Target Classes are known, the NBC model will compute the frequency of a pipe 

within each bin that appears in each Target Class as the posterior distribution 𝑃(𝐶𝑗̅ 𝑉𝑋𝑖
)⁄  in 

Equation 3-1 for all Conditions, Performance, Criticality and PAN. The model calculates all 

distributions for all possible pipe scenarios in the water network. These distributions are the 

posterior distribution in NBC supervised learning.  

Figure 3-9 shows a few frequency histograms as an example for Target Condition, 

Performance and Criticality Classes.   
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At this stage, the NBC model has all ℂ𝑗  and Target ℂ𝑗̅ classes. Based on the frequency of 

each occurrence, the learning algorithm will link between each bin variable (𝑖) to the municipal 

engineer assigned class ℂ𝑗 . Then compares the difference between the municipal engineer assigned 

class ℂ𝑗  and expert opinion Target Class ℂ𝑗̅.  

 

 Figure 3-9 Sample Variable Value Frequency for Target Condition, Performance and 

Criticality Classes  

3.3.3 Prioritization Models 

The model outputs' first level is condition, performance, and criticality classes to prioritize 

all pipes in the MWN. For example, a pipe within the poor engineer assigned Condition Class 
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ℂ𝐶 = 𝑃𝑜𝑜𝑟 and poor Target Condition Class ℂ̅𝐶 = 𝑃𝑜𝑜𝑟 would have variable 𝑉𝑋𝑖
 (X = total 

number of breaks (TB)) in(𝑖) =  𝑏𝑖𝑛 (𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 9 𝑏𝑟𝑒𝑎𝑘𝑠). The model predicts that pipe A 

belongs to the class  ℂ̿𝐶 = 𝑃𝑜𝑜𝑟, given the observations 𝑇𝐵1 (pipe A experienced more than nine 

breaks). The probability that pipes A is conditioned on 𝑉𝑇𝐵1
; provided some evidence 𝑇𝐵1; what 

is the probability that pipe A belongs to a particular condition class ℂ1. The NBC model computes 

all probabilities for all bins for all variables 𝑉𝑋𝑖
. 

𝑃(𝑉𝑋𝑖
 | ℂ̅𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑗

) estimated by 𝑓 (ℂ̅𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑗
(𝑉𝑋𝑛

) )). The classifier model sets 

the probability of expert predicted classes equal to model predicted classes. Therefore the model 

predicts the prioritization class ℂ𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑗
 by assigning weights 𝑊̿𝑋𝑖

 for each variable value. 

The probability of the model predicted class ℂ̿𝑗 based on the variable value 𝑉𝑋𝑖
 is: 

𝑃(ℂ̅𝑗|𝑉𝑋𝑖
) ≡ 𝑃(ℂ̿𝑗|𝑉𝑋𝑖

) 
3-15 

ℂ̿𝑗 = 𝑊̿̿̿𝑋𝑖
𝑉𝑋𝑖

+ 𝑊̿̿̿𝑋𝑖
(𝑉𝑋𝑖

)2 + 𝑊̿̿̿𝑋𝑖
(𝑉𝑋𝑖

)3 … 

   
  3-16 

∑(ℂ̅𝑗 − ℂ̿𝑗)2

𝑉𝑋𝑛

𝑉𝑋𝑖

 3-17 

The accuracy of the model is calculated based on comparing expert opinion assigned class 

ℂ̅𝑗  and model forecasted class ℂ̿𝑗 for each pipe ℂ̅𝑗 ≡ ℂ̿𝑗. The NBC supervised learning algorithm 

adjusts the classifier prediction weights 𝑊̿𝑋𝑖
 at every prediction (each pipe in the MWN) until the 

model prediction class is as accurate as possible comparing to Target Classes (expert’s assigned 

classes) ℂ̅𝑗 . Therefore, after repeating the adjustment as many times as the number of data points 

(pipes in the MWN), the initial municipal engineer assigned class ℂ𝑗  is obsolete (Kotsiantis, 2007). 

The reason is model predicted classes are compared, and prediction weights are adjusted based on 

expert assigned classes ℂ̅𝑗  as many times as the MWN pipes. The NBC supervised learning 

algorithm uses the deliberated weights from the training database and can apply them to any other 

MWN database with similar water pipe attribute information (Harvey et al., 2014). Therefore, 
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using NBC supervised learning algorithm, assigning expert opinion on prioritizing water pipes for 

Condition, Performance, and Criticality is automated.   

 

Figure 3-10 NB Prioritization Classifier Decision Tree 

All problematic pipes with regards to condition, performance and criticality measurements 

are identified and marked using the prioritization models. The higher class pipes are to be 

considered for future investigation. The core function of supervised machine learning attempts is 

to ask an algorithm to automatically find a good predictor based on training data and repeat the 

decision after training for new instances (Iqbal & Yan, 2015).  

Figure 3-10 visualized the learning algorithm that predicts classes using Municipal 

engineer assigned classes with the related variable for the corresponding prioritization model. Then 

compares the initial prediction with target classes assigned by experts to create weights 𝑊̿𝑋𝑖
 for 
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each variable. The learning algorithm repeats the comparison and weight adjustment process as 

many times as the number of pipes included in the MWN database. The model would then predict 

the same classes ℂ̿𝑗 for any other pipe with a similar attribute that is not in the training database.  

The proposed method will automate the condition prioritization for water pipes within a MWN 

database. 

3.3.4 Mitigation Model 

Having all pipe Condition, Performance and Criticality Classes, the mitigation model can make 

a capital work decision for each pipe through the MWN. The Mitigation Classifier predicts a 

mitigation class for each pipe in MWN by developing weights 𝑊̿𝑋𝑖
 for each variable 𝑉𝑋𝑖

 similar to 

the Prioritization Classifier using Equations 3-15 to 3-17 with a training database.  The supervised 

learning algorithm automates capital project decisions by predicting mitigation decisions like 

Target Mitigation classes ℂ̅𝑃𝐴𝑁𝑗
 for each pipe in MWN. The learning algorithm compares the 

predicted Mitigation Class ℂ̿𝑃𝐴𝑁𝑗
 with the mitigation classes given by experts ℂ̅𝑃𝐴𝑁𝑗

 and adjust the 

predicted weights 𝑊̿𝑋𝑖
 as many times as the number of pipes in the training database. The model 

continuously identifies pipe incidents, learns the probabilities and adapts weights 𝑊̿𝑋𝑖
 for all 

variables until the model is capable of predicting the same Mitigation Class ℂ̿𝑃𝐴𝑁𝑗
 as Target Class 

ℂ̅𝑃𝐴𝑁𝑗
 for pipes with similar variable values with high accuracy. The Learning algorithm repeats 

the comparison and weight adjustment until creating the weights that are capable of predicting the 

most accurate classifiers comparing with expert assigned classifiers ℂ̅𝑃𝐴𝑁𝑗
≡ ℂ̿𝑃𝐴𝑁𝑗

. 

Figure 3-11 summarizes the decision tree logic of the Mitigation Model. The difference 

between the Prioritization models and Mitigation model are: (1) Prioritization models use different 

variable and variable values measuring condition, performance and criticality, but the mitigation 

model uses all variable values used in prioritization models. (2) The Target Mitigation Classes are 

assigned by experts directly using sample scenarios. In Prioritization models, the expert assigned 

classes are given using minimum and maximum scores. 
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Figure 3-11 Mitigation Classifier Decision Tree 

The supervised learning algorithm memorizes the developed rules from expert opinion and 

weights from the training database. The predicted weights 𝑊̿𝑋𝑖
 are applied to deduce the same 

decisions for all future instances. Therefore, the Mitigation Model can replicate the expert opinion 

and engineering judgements on other MWN pipes that are not included in the training database. 

This model automates and standardizes the municipal engineer capital activities decisions 

according to the expert’s judgement. This approach's utility is that NBC can be trained to replicate 

the capital project mitigation decision based on professional best practices.  
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The outcome of this approach is to introduce consistency and audit-ability into tactical and 

operational decisions making whereby engineering professionals select and stage sets of 

watermain pipes into projects for replacement and rehabilitation. All mitigation classes are 

populated in ArcGIS attribute data for each pipe. This automated engineering judgement algorithm 

would save municipalities resources (time, money and human resources). These much-needed 

resources could be used on much-needed capital and maintenance activities for ageing water 

infrastructure. 

3.4 Conclusions 

This chapter attempts to develop a novel approach that would be a valuable link between 

strategic, tactical, and operational levels to evaluate the Watermain system. This study could 

automate the capital planning process using an artificial intelligence machine learning algorithm 

that can replicate expert opinions. The first of its kind, the study investigates the feasibility of 

developing a multiple criteria scoring system and measures the weighting factors among different 

parameters to classify the condition, performance, and criticality of the Watermain section based 

on expert opinion. This attempt is using NBC supervised machine learning algorithms measuring 

the condition, performance and criticality of all water pipes within the MWN and assigned a capital 

work activity for all pipes in the MWN for the first time. Finally, this method could be applied as 

a decision-making support tool for a smarter, safer, faster, more consistent, defensible and reliable 

Watermain Capital activity decision-making system that saves taxpayers money. 

This chapter is focused on model development and how to deduce the distributions and 

explained the supervised machine learning algorithm that classifies all pipes in the MWN. The 

next chapter will describe the expert opinion gathering with a scientific survey methodology and 

calculate the target values to parameterize the NBC model. 
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Capturing Expert Opinion: Survey Questioner 

Abstract 

The municipal water planning needs to make prudent asset management decisions for water 

infrastructure projects. North American water infrastructure is beginning to show its age, 

particularly through water main breaks. Main breaks cause major disruptions in everyday life for 

residents and businesses especially in larger cities. North American municipalities are struggling 

to develop tools and processes that respond to the problem proactively instead of reactively 

(Kumar, et al., 2018). Barriers to a proactive maintenance program lack standard regulatory 

requirements due to complete condition, criticality and performance assessment of the entire 

system. In research provides complete condition, performance and criticality assessments using 

expert opinion gathered from a survey. The survey intends to gather expert opinion using a 

scientific methodology to set a standardized framework on prioritizing municipal water network 

capital activities. This methodology will add consistency and defensibility to capital programs.  

Keywords: survey questioner, expert’s opinion, engineer judgement, parametrization, 

ranking, mitigation technology, and capital work activity 
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4.1 Introduction  

This Chapter is designed to capture expert opinions via survey questioner to prioritize 

condition, performance and criticality and provide a standardized engineering judgment on capital 

plan mitigation solutions for all pipes within the MWN. This effort is to develop a relatively 

standard repeatable and defensible engineering decision-making method for water assets within a 

municipal water network.   

4.1.1 Background 

Several studies have been completed to identify the essential water-pipes asset-

management parameters in decision making (Poole, 2014). Aven (2016) suggests that decisions 

should be supplemented with expert opinion lacking historical data and standards.  Engineering 

judgement and expert opinion vary by different people and different municipalities. The lack of 

standardized and structured planning for watermain pipe replacement or renewal affects the 

defence-ability of capital work decisions (Black & Veatch, 2018). Therefore, gathering expert 

opinions will provide a broader understanding of risk and uncertainty and make the decision-

making process clearer (Linkov & Ramadan, 2005). Currently, the available methodology and the 

tangled nature of parameters affect the water system and the technologies applied to mitigate the 

matter are not standardized (West et al., 2017). Identifying important parameters affecting the 

watermain capital activities will also help improve frameworks and guidelines for the planning 

and watermain capital activities (Moglia et al., 2011). Despite considerable research on wastewater 

systems, few attempts have been made to explicitly define the complex water capital activities  

(Kunz et al., 2016).  

Engineering judgment and expert opinion are aggregated by municipalities' geographical 

needs and specific water system requirements. The absence of standardized attributes for ranking 

water pipes for condition, performance and criticality results in a lack of reliable capital activity 

decisions by an expert (Jung, 2009). Table 4-1 summarizes the related research in ranking and 

prioritizing capital activities. Only three studies developed a survey to gather industry or expert 

opinion. The Ontario Sewer and Water Construction Association published a report in 2018 to 

rank the state of water and wastewater infrastructure in Ontario based on essential factors such as 
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condition, performance and criticality. The general state of Ontario's watermains is ranked 

relatively poor for most municipalities. Although this report summarizes crucial factors in the 

ranking, it did not assign any resolution to improve the pipe state.  

Table 4-1 Water Survey Literature 

Related Research  

Includes a 

Survey that 

includes 

ranking 

criteria 

Research Fields 

C
o
n

d
it

io
n

 

P
er

fo
rm

a
n

ce
 

C
ri

ti
ca

li
ty

 

M
it

ig
a
ti

o
n

 

Black & Veatch, 2018 Yes 
Strategic Direction in the U.S.Water 

Industry 
  



(OSWCA), 2018 Yes 
State of Ontario Water and 

Wastewater Infrastructure 
  





West et al., 2017 Yes 

Expert opinion on risks to the long-

term viability of residential 

recycled water schemes: An 

Australian study 

   

Kunz et al., 2016 No 
Drivers for and against municipal 

wastewater recycling 
  





Carriço et al., 2012 Yes 
Prioritizing Water Network 

Rehabilitation 
  





Moglia et al., 2011 No 

Multi-criteria decision assessments 

using Subjective Logic: 

Methodology 

and the case of urban water 

strategies 

  







Jung, 2009 Yes Sub Surface Linear Utilities   





Linkov & Ramadan, 

2005 
No 

Comparative Risk Assessment and 

Environmental Decision Making 
   

Black & Vetch (2018) generated a report about the water industry's strategic decision that 

used condition, performance, and criticality variables to rank water pipes. There is no mitigation 

technology offered to improve condition, performance and criticality state of the pipe. West et al. 

(2017) gathered expert opinions to rank the recycling water usage in Australia, including water 

condition attributes for measuring long-term risks. They have created a survey to gather risk 
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factors. Kunz et al. (2016) developed a list of essential criteria ranking municipal wastewater 

infrastructure. They only relied on condition variables in ranking models. Carrico et al. (2012) 

gathered information regarding prioritizing rehabilitation planned work for the water network. A 

survey is used to rank condition and performance variables in the prioritization model. Moglia et 

al. (2011) developed a multi-criteria decision assessment technique prioritizing capital activities 

on MWN. This research did not gather any expert opinion and only considered condition and 

performance criteria. Jung (2009) ranked the importance of the linear infrastructure based on their 

location and criticality variables. Some expert opinion is gathered for data comparison. Linkov & 

Ramadan  (2005) compared risk assessments in prioritizing the maintenance activities, but only 

criticality factors are used in their research. No survey questioner is found in gathering expert 

opinion for ranking criteria and variables measuring condition, performance and criticality of water 

pipes. The knowledge gap is having a standardized method gathering expert’s opinions for 

condition, performance and criticality of the water pipe. There is no standardized opinion 

mitigation solution to improve pipe conditions, performance and criticality scores.   

4.1.2 Methodology 

This chapter's main goal is to create, conduct and analyze results from an expert opinion 

survey in order to obtain target values of water pipe condition, performance and criticality ranking. 

The survey questioner also gathered expert’s assigned mitigation decisions such as rehabilitation 

and replacement of water infrastructure. These target values are used to train a Naïve-Bayes-based 

supervised machine learning model. This study proposes an expert’s opinion benchmark to the 

proposed decision support tool. 

To address this knowledge gap, a survey questioner is prepared to gather expert opinions 

regarding the importance of criticality, condition, and performance on capital decisions.  Experts 

are asked to assign capital activities to several pipe scenarios. The survey data has been used as 

target values to train the NBC model to replicate the expert opinion. Also gathers engineering 

judgment in mitigating a maintenance technology for different pipe conditions, performance and 

criticality. This study's results may provide a baseline that could potentially be used to benchmark 

the watermain performance measurement at different levels of municipal organizations. A method 

to capture expert opinion is proposed. This study would save municipalities much-needed 
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resources by automating the screening process by categorizing data to classified score systems 

assigned by professionals. The learning algorithm is able to repeat engineering decisions 

automatically. This chapter will explain the database preparation effort, gathering expert opinion 

on a multi-objective mitigation scenario.  

4.2 Survey Preparation 

There are several survey questioner methods available (Sheatsley, 1983). The method used 

for this questioner is the special population method (Presser, et al., 2004). This method is designed 

in a way to facilitate easy answers for the participants to ensure clarity by rating using numbers to 

gather expert opinion. The method used in this questioner is called statistical modelling, developed 

in the 1950s and enhanced in 2004 by Biemer. This method allows researchers to design shorter 

scales that show more clear results (Couper & Miller, 2008). Using this method will shorten the 

questioner by eliminating the remaining area question and improving the survey's clarity by setting 

smaller boundaries (Reeve & Mâsse, 2004).  

This survey is formulated using a common, consistent method to support the experts in 

consistently presenting their knowledge. All possible risk factors affecting water infrastructure are 

identified and asked to be ranked consistently. Hence, these factors are adopted as an expert 

opinion for setting target values explained in Chapters 2 and 3 for machine learning watermain 

planning mitigation. The mitigation technologies are clearly defined and presented in a four-by-

four matrix. A five-point rating scale was adopted to enable ease of use Baxter et al. (2015) to 

reflect the scales commonly used in the industry. Participants are also requested to identify and 

rate any additional factors that could potentially impact water infrastructure.  

To keep this survey in a manageable length, the Venn method has been employed. Venn 

method shows all possible logical relations between a finite collection of different sets in separate 

diagrams (Bardou et al., 2014). Also, using the Venn diagram method is aligned with the Naïve 

Bayes Algorithm requirement since it keeps all parameters separate and not related to each other 

for better consistency. Venn diagrams depict elements in the plane and sets as regions inside closed 

curves separate and not related to each other (Cipra, 2003). For this survey, it is assumed each 

curve represents one type of mitigation for pipe. For example, pipe replacement, up-sizing or 
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rehabilitation. Therefore, sample scenarios are designed to capture the expert's opinions in 

overlapping areas to avoid repeating questions or add any confusion.  

This survey set up in Survey Monkey and have three main sections. The first section collected 

information about the experts and their experience in managing water distribution assets. The 

second part is to rank the condition, performance and criticality of each water pipe by the expert 

to set target values 𝑉̅𝑋𝑖
 for prioritizing models. The survey result is used as target values 𝑉̅𝑋𝑖

 to train 

the model for the supervised learning algorithm to classify watermain pipe segments ℂ̿𝑗  to be able 

to replicate the expert's opinion or target classes ℂ̅𝑗. Questions are set to gather expert's variable 

values 𝑉̅𝑋𝑖
 and assigned weights 𝑊̅𝑗.  

The five-point scale is deemed to reflect the scales commonly used in the industry. Hence 

expert's assigned values for each bin are adopted as an expert opinion for setting variable values 

𝑉̅𝑋𝑖
. Participants are also requested to identify and rate any additional factors that could potentially 

impact water infrastructure. The survey results provided target variable values 𝑉̅𝑋𝑖
to calculate 

Target Condition Score 𝑆𝐶̅𝑖
, Target Performance Score 𝑆𝑃̅𝑖

 and Target Criticality Scores 𝑆𝐶̅𝑟𝑖
.  

There are four ranking questions regarding pipe conditions. These questions are found in 

Appendix A1, Questions 12 to 15. The ranking questions are asked based on common current 

planning practices in Ontario. Hence, all survey participates should have been familiar with these 

questions, and their responses can reasonably be expected to be random samples of industry best 

practices. There are three ranking questions regarding the performance watermain. These questions 

are found in Appendix A1, Question 16, Part a, b and c. There are questions regarding the criticality 

measurement of the pipes. These questions are found in Appendix A1, questions 17 and 18. It is 

also asked if experts believe any other critical scenario they would like to add in this part. This 

part of the survey set the target values 𝑉̅𝑋𝑖
 for the first layer of the supervised NBC proposed 

automating initial water pipe assessment based on their condition and performance into five classes 

(Very Good, Good, Moderate, Poor, and Very Poor) and criticality into five classes (Very Low, 

Moderately Low, Medium, Moderately High and Very High). 

The third part of the survey contained questions using different water pipe scenarios to capture 

engineering judgement on assigning capital decisions for each pipe fit to different scenarios. 
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Questions contain a specific pipe scenario using condition ℂ𝐶𝑗
, performance ℂ𝑃𝑗

, and criticality 

ℂ𝐶𝑟𝑗
 classes to gather engineering decisions, mitigating pipe condition, performance and 

criticality. This is to set the target classes ℂ̅𝑃𝐴𝑁𝑗
 for the supervised NBC to mitigate a capital 

activity solution into four classes ℂ̅𝑃𝐴𝑁𝑗
 such as (Do Nothing, Rehabilitate and Renovate using 

Trenchless Technology, Replace the pipe with the same pipe Size and Replace the pipe with Larger 

Pipe Size (Up-Size)) for all pipes through the MWN. Table 4-2 summarizes all Target Classes 

used to classify all water pipes in MWN data. 

Table 4-2 Target Classes 

 

It assumed each Venn diagram curve represents one type of mitigation for pipe, for 

example, doing nothing, replacing with the same pipe size, and replacing the larger pipe size (up-

sizing). Since each pipe only fits in one scenario due to its independent bins, the Venn diagram is 

a well-suited and useful methodology to keep scenarios separated and clear for an expert to 

understand. Figure 4-1 presents the Venn diagram used for different pipe scenarios.  

Each question's pipe scenarios are designed to focus on the key variable that affects the 

expert opinion. For example, the difference between rehabilitation and replacement with the same 

pipe size is the pipe criticality. Due to the pipe's criticality, it would be beneficial to replace the 
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pipe for the longer pipe life expectancy than rehabilitate it for shorter life expectancy. Questions 

are designed to cover all possible scenarios only once to keep the survey's length manageable. 

 

Figure 4-1 Venn Diagram for Different Pipe Scenarios  

4.3 Parameterization of the NBC with Supervised Learning Model  

The model includes two levels of analysis. This section explains the calculation of variable 

values for Mitigation Models and expert assigned mitigation technologies.  

4.3.1 Survey Part I – Background Information about the Expert Respondents 

The first part of the survey that included ten questions is designed to determine the level 

of expertise, type of decision that they make and the size of the municipality and projects that they 

have experience. Forty-four experts and decision-makers completed the survey. Figure 4-3 

summarizes information about the experts who filled the survey. The majority of experts are from 
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Ontario, with only six from another Canadian province (two from British Colombia, two from 

Alberta, one from Nunavut, and Quebec). Figure 4-2 shows the spatial spread of expert's filled the 

survey questioner from the different municipality. 

Table 4-3 Information about Experts who filled our Survey Questioner 

Total number of experts that filled out the survey 44 

Total number of experts from Ontario 38 

Total number of experts from other provinces 6 

Total number of experts that have an asset management group in their municipality 20 

Total number of experts that have sufficient funds and a program for the next 5 five 

years 
8 

Total number of experts that have a large watermain network (more than 800 km) in 

their municipality 
9 

Total number of experts that have a watermain network with an average age between 

50 and 70 years 
15 

 

Figure 4-2 Number of Experts Filled the Survey Questioner from Municipalities in Ontario 

Detailed information about survey results and all diagrams and data are presented in 

Appendix A2. Most experts are from large municipalities with more than 100,000 people 
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population. According to this collected information about experts, they represent various experts 

who make decisions for water pipes. Therefore, no results are eliminated due to non-relevant 

experience. 

Eighty percent of experts who filled this survey are capital decision-makers in their 

municipalities. Eighty percent have a separate asset management section and capital planning 

department for their water assets. Fifty percent y spent more than $10 million on their water system 

in the current fiscal year 2016. Thirty percent believed that their municipality has sufficient funds 

and budget for capital activities of their watermain system to keep the same service level. Forty 

percent believe that their municipality has sufficient programs and plans for the next ten years to 

maintain and keep the current level of service for their watermain system. 

4.3.2 Survey Part II – Ranking Questions For Prioritization Models Target 

Variable Values 

The questions are designed to match the variables and variable bins presented in Chapter 

2 to calculate the expert assigned variable's values. Experts are asked to use their engineering 

judgement and experience to rank variables identified to measure the condition, performance and 

criticality of water pipes. The same scale is used in the entire survey, and the assigned score is 

used as a variable value for each bin. These expert's assigned variable values are used to calculate 

target score values of condition, performance and criticality and subsequently classify each pipe 

based on Table 3-3. The target classes are used to train the NBC with a supervised learning 

algorithm. Calculating target variable values 𝑉̅𝑋𝑖
 are explained in the following sections. 

4.3.2.1 Target Condition Score (𝐒̅𝐂) 

As in Chapter 2, four variables defined water pipe conditions: (1) The Remaining Service 

Life variable 𝑉̅𝑅𝑆𝐿; (2) the total number of breaks variable 𝑉̅𝑇𝐵 (3) the total number of breaks in the 

last five years variable 𝑉̅𝑇𝐵5𝑦𝑟𝑠; and (4) the maintenance index variable 𝑉̅𝑀𝐼. Each variable is 

dimensionless and enumerated using bins, where the values that bound each bin depend on 

assigned thresholds based on standard or criteria relevant to each variable. There are four questions 
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regarding pipe condition: the importance of pipe age, pipe material, soil type, number of breaks 

that each pipe experiences (Question 12 to 15). These questions are presented in Appendix A1.  

The variable values assigned by an expert via survey are used to calculate the Target 

Condition Score 𝑆𝐶̅ using Equation 4-1. 

𝑆̅𝐶 = 𝑉̅𝑅𝑆𝐿𝑖
+ 𝑉̅𝑇𝐵𝑖

+ 𝑉̅𝑇𝐵5𝑦𝑟𝑠𝑖
+ 𝑉̅𝑀𝐼𝑖

 4-1 

4.3.2.1.1 Target Variable Values for Remaining Service Life (𝑽̅𝑹𝑺𝑳𝒊
) 

To collect the expert's opinion regarding soil corrosiveness and its effects on water pipe 

remaining service life, experts answered questions 14 and 15. The expert's answers confirmed that 

experts believe soil corrosiveness will affect the pipe's service life. Therefore, the pipe material 

corrosion factor is needed.  

To calculate the expert's pipe martial corrosive factor, two assigned life expectancies of the 

same pipe material in corrosive and non-corrosive pipes are deducted, then translated to a 

percentage to get the life reduction factor. For instance, experts believed the life expectancy of 

Asbestos Cement (AC) pipes in non-corrosive soil is 67 years and in corrosive soil is 49 years. As 

a result, experts believed corrosive soil would shorten the AC pipe's life expectancy by 18 years, 

equal to 26% of the total life expectancy. The same type of calculation is used to measure all 

corrosion material corrosion factors. Table 4-4 shows an expert's assigned expected service life 

for different pipe materials in corrosive and non-corrosive soils and calculated reduction factors. 

Using expert corrosive factors, a single pipe's Remaining Service Life is calculated for 

every pipe in the system based on their soil type and soil environment. Below is a sample 

calculation for the Remaining Service Life in non-corrosive soil and corrosive soil for an AC pipe. 

Table 4-4 Expert's Assigned Reduction Factors 

Material Type 
ℳ 

 

Expert's Opinion for 

Estimated Service Life of 

Different Pipe Materials in 

Non-Corrosive Soil 

Condition (Years) 

Expert's Opinion for 

Estimated Service Life 

of Different Pipe 

Materials in Corrosive 

Soil Condition (Years) 

Expert's Reduction 

Factor 

ℛ̅ℳ 



 

81 

 The expected service life for an AC pipe is 70 years. The RSL for this pipe in corrosive 

soil would be calculated as:  

 Using the assumed Reduction Factor (𝑅𝑀) presented in Chapter 2:     50 – (0.1x50) = 45 

years 

 Expert’s Reduction Factor (𝑅̅𝑀) calculated from survey results:   50 – (0.25x50) = 37.5 

years 

Experts asked to assign values to the different RSL bins for water pipes (Question 12). 

Table 4-5 summarizes all variable values assigned by experts to different RSL bins. The arithmetic 

mean or final target values 𝑉̅𝑋𝑖
 calculated and used in the model is presented in Table 4-5. All 

individual probability density histograms are in Appendix A2. 

All variable values are introduced and explained in Chapter 2. The initial assigned variable 

values are called Municipal Engineer assigned values. The Municipal Engineer values are 

explained in Chapter 3, Figure 3-1, on the left side of the figure under the prior distribution section. 

All Municipal Engineer Assigned values are introduced in Chapter 3, Table 3-3 under Municipal 

Engineer Assigned Section. All Municipal Engineer-assigned variable values are on the scale of 0 

to 15.  The five-point rating scale (Baxter, Courage, & Caine, 2015)  is used in the survey 

questioner. Therefore, to compare these two-scale, all five points variable values assigned by 

experts' via survey questioner are converted into an interval from 0 to 15 points to be consistent 

with the PAN in Chapter 2. The arithmetic mean values calculated to be used as expert's assigned 

variable values presented in 15 points in all the below charts.  

Table 4-5 Expert Opinion Distribution for Water Pipes Remaining Service Life (𝑽̅𝑹𝑺𝑳) 

How important is the Remaining Service Life of the Watermain for capital works (such as replacement or 

rehabilitation) decision-making? The score of 1 to 5 ("1" is not important while "5" is extremely important) 

     Survey Response 

Asbestos Cement (AC) 67 49 0.26 

Cast Iron (CI) 84 63 0.25 

Ductile Iron (DI) 71 52 0.26 

PVC 85 81 0.04 

CPP/CONC 88 66 1 

HDPE 91 87 0.25 
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Survey 

Question 

  

Remaining 

Service 

Life of Pipe 

(Years) 

𝑉̅𝑅𝑆𝐿𝑖
 Bin 

Thresholds 1 2 3 4 5 
Total 

Responses 

Arithmetic 

Mean 

(0 - 15) 

12 (a), 12 

(b), and 

12 (c) 

𝑉̅𝑅𝑆𝐿1
 <15 0 2 8 15 2 28 10.5 

𝑉̅𝑅𝑆𝐿2
 15 - 29 5 13 8 2 0 28 6.7 

𝑉̅𝑅𝑆𝐿3
 30 - 50 20 2 2 2 2 28 5.1 

𝑉̅𝑅𝑆𝐿4
 >50 0 0 0 0 0 0 0 

4.3.2.1.2 Variable Values for Total Number of Breaks (𝑽̅𝑻𝑩) 

To calculate the target values 𝑉̅𝑥 for the water pipe number of breaks, experts asked to 

assign a value on the scale of 1 to 5 to each bin for the number of breaks that water pipe experienced 

in its lifetime (Question 13). Then the arithmetic mean of all numbers is assigned as the target 

variable value for each bin. All experts assigned value distributions are in Appendix A2. Table 4-6 

shows all experts' assigned values and all arithmetic mean values calculated for each bin in (0 to 

15 scale).  

Table 4-6 Expert Assigned Value Distribution for Total Number of Breaks (𝑽̅𝑻𝑩) 

How important is the total number of Watermain breaks for Watermain capital works (replacement or 

rehabilitation) decision making? The score of 1 to 5 ("1" is not important, while "5" is extremely important). 

Survey 

Question  

  

  

Total 

Number of 

Watermain 

Breaks 

𝑉̅𝑇𝐵𝑖
 

  

Bin 

Thresholds 

Survey Response Total 

Responses 

Arithmetic 

Mean  

(0-15) 1 2 3 4 5 

13(a), 

13(b), 

13(c) and 

13(d) 

𝑉̅𝑇𝐵1
 ≥9 0 2 0 9 18 29 13.4 

𝑉̅𝑇𝐵2
 5 - 8 2 2 2 18 5 29 11.2 

𝑉̅𝑇𝐵3
 1 - 4 8 5 14 0 2 29 7.2 

𝑉̅𝑇𝐵4
 0 17 6 2 2 2 29 5.4 

4.3.2.1.3 Variable Values for Number of Breaks in Last Five Years (𝑽̅𝑻𝑩𝟓𝒚𝒓𝒔) 

To eliminate confusion and repeat the total number of breaks question and keep the length 

of the survey manageable; no additional question asked regarding the number of breaks in the last 

five years. Therefore, the same assigned values as the total number of breaks to bins in the number 

of breaks in the last five years variable 𝑉̅𝑇𝐵5𝑦𝑟𝑠.  

4.3.2.1.4 Variable Values for Maintenance Index (𝑽̅𝑴𝑰) 
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Since Maintenance Index is a calculated value and presented as a cost-benefit analysis 

method for the prioritization model, it is considered scientific and non-expert related. Therefore, 

there is no questions about this value. Thus, the same assigned values and bins are used for this 

variable. Table 4-7 summarized the assigned values for 𝑉̅𝑀𝐼. 

Table 4-7 Assigned Variable Values for Maintenance Index (𝑽̅𝑴𝑰) 

MI Bins (i) ratio Values (𝑽̅𝑴𝑰𝒊
) 

>5% 15 

1 – 5% 10 

<1% 5 

4.3.2.2 Target Performance Score (𝐒̅𝐏) 

Three variables define Performance Scores 𝑆𝑃: (1) Water pipe Head-Loss pressure 

loss 𝑉̅𝐻𝐿;  (2) Variable Water Quality 𝑉̅𝑊𝑄 and; (3) Variable Conformance to Latest Standard 𝑉̅𝐶𝐿𝑆. 

All variables and variable bins are explained in Chapter 2. The variable values assigned by experts 

via survey questioner are used as target values to set the Target classes for the performance model. 

Each variable is dimensionless and enumerated using bins, where the values that bound each bin 

depend on assigned thresholds based on standard or criteria relevant to each variable. The 

arithmetic means of all variable values assigned to each bin by experts are used to calculate the 

Target Performance Score 𝑆𝑃̅ using Equation 4-2. 

𝑆̅𝑃 = 𝑉̅𝐻𝐿𝑖
+ 𝑉̅𝑊𝑄𝑖

+ 𝑉̅𝐶𝐿𝑆𝑖
 4-2 

There are four questions regarding the water quality and performance watermain, such as 

poor chlorine residual of the pipe, water quality complaints, and pipes no longer according to the 

current standard (Question 16). 

4.3.2.2.1 Target Variable Values for Pressure Loss (𝑽̅𝑷𝑳) 

Since pressure loss is a scientific calculation using Bernoulli's equation, as it is explained 

in Chapter 2, there is no pressure loss question in the survey. Variable values are set on a scale of 
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0-15 based on the importance of a uniform scale. Table 4-8 summarized water pipe pressure-loss 

bins and their assigned variable values. The target variable values are the same as an engineer 

assigned variable values that are explained in Chater 2. 

Table 4-8 Variable Values for Pressure-Loss (𝑽̅𝑷𝑳) Bins 

Pipe Diameter Categories  

𝑽𝑷𝑳 HL for Small (0 – 600 

mm) Bins i (Pressure-Loss) 

HL for Large (≥ 600 

mm) Bins i (Pressure-Loss) 

        > 5.0           > 2.5 15 

      2.0 – 5.0         1.5 – 2.5 5 

         ≤ 2.0           ≤ 1.5 0 

4.3.2.2.2 Target Variable Values for Water Quality (𝑽̅𝑾𝑸𝒊
) 

The three criteria considered for water quality variables are: (1) Water quality-related 

complaint, (2) Poor chlorine residual test, (3) Unlined CI (lead joint WM only). Questions asked 

experts regarding these criteria (Question 16). Table 4-9 shows all expert's answers, calculations, 

or the arithmetic mean value for each bin used as target values 𝑉̅𝑋𝑖
. Since this variable is binary, 

only one value is used as a target value. Therefore, the median of these three Arithmetic means is 

calculated for three criteria considered for this variable. Thus, water pipes that do not meet water 

quality criteria and are in these three categories are assigned the variable value 𝑉̅𝑊𝑄1
= 10.7 for 

Water Quality. 

Table 4-9 Expert Assigned Variable Value Distribution for Water Quality-Related Issues 

(𝑽̅𝑾𝑸) 

Rank the following Watermain quality scenarios with respect to Watermain capital works 

(replacement or rehabilitation) decision making. The score of 1 to 5 ("1" is not important, while "5" is 

extremely important). 

Survey 

Question 

 

𝑉̅𝑊𝑄𝑖
 

  

Parameters 

Survey Response 
Total 

Responses 

Arithmetic 

Mean 

(0-15) 
1 2 3 4 5 

16(a), 

16(b) and 

16(c) 

Watermain with 

poor chlorine 

residual tests 

0 4 7 7 7 25 11 
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Watermain with 

water quality-

related complaints 

0 3 10 5 7 25 10.9 

Unlined CI 

Watermain 
0 5 8 8 4 25 10.3 

𝑉̅𝑊𝑄1
 Total Mean Value Used as Target Variable Value 10.7 

4.3.2.2.3 Target Variable Values for Conforming Latest Standard (𝑽̅𝑪𝑳𝑺𝒊
) 

One question regarding this variable asks experts to assign their variable value to pipes that 

do not conform to the latest standard (Question 16). Table 4-10 showed all experts assigned values 

and the arithmetic mean value calculated based on the expert's assigned variable value. Therefore, 

value 𝑉̅𝐶𝐿𝑆1
 = 9.5 is assigned as the pipe's target variable value that does not conform to the latest 

standard. 

Table 4-10 Target Value Distribution for Conformance of Latest Standard (𝑽̅𝑪𝑳𝑺) 

Rank the following Watermain quality scenarios with respect to Watermain capital works (replacement or 

rehabilitation) decision making. The score of 1 to 5 ("1" is not important while "5" is extremely important). 

Survey 

Question  
 

𝑉̅𝐶𝐿𝑆𝑖
 

 

Criteria 

Survey Response 
Total 

Response 

Arithmetic 

Mean  

(0-15)  1 2 3 4 5 

16(d)  
 

𝑉̅𝐶𝐿𝑆1
 

Watermain that was not installed 

according to current standards (for 

example, safe drinking water, 

engineering and construction design 

standard) 

3 7 3 7 

 

 

5 

 

 

25 9.5 

Variables chosen for performance may vary for each municipality since each municipality 

has a unique water system and requirement. The model's parameters are head loss that depends on 

the pipe material, pipe diameter and pipe length, water quality and compliance, and standard 

conformance. Water quality and standard pressure are very important to keep the service (Kunz et 

al. 2016). Some municipalities keep records of residents' complaints in different databases, and 

hard to access or cross-reference the data to the ArcGIS water network based on the limited 

provided information.  

Also, standard change over time based on experience; for instance, led water services are 

not in standard due to toxic material, or some pipe diameter like less than 150mm diameter is not 
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in standard based on reducing pressure. These standards vary in each city, and most often, these 

pipes are the priority and flagged for replacement and upsize. Therefore, water pipes that do not 

meet the latest standard are assigned the variable value 𝑉̅𝐶𝐿𝑆1
 = 9.5 for not conforming to the latest 

standard. 

4.3.2.3 Target Criticality Score (𝑺̅𝐂𝐫
) 

As it is also explained in Chapter 2, three variables  are defined to measure the criticality 

for water pipes: (1) Variable Pipe Diameter 𝑉̅𝐷𝑖
; (2) Variable Pipe Location 𝑉̅𝐿𝑖

 and; (3) Variable 

Pipe Accessibility 𝑉̅𝐴𝐶𝑖
.  

The Target Criticality Score 𝑆𝐶̅𝑟
 is equal to the sum of target variable values assigned to 

the above-mentioned variables using Equation 4-3. 

𝑆̅𝐶𝑟
= 𝑉̅𝐷𝑖

+ 𝑉̅𝐿𝑖
+ 𝑉̅𝐴𝐶𝑖

 4-3 

This part includes two questions (17 and 18) that include a few sections covering criticality 

considered variables for water pipes. In these questions, experts are asked to rank the importance 

of pipe based on the consequence of failure in different water pipe scenarios such as pipes 

diameters, crossings highways, creeks, and environmentally sensitive areas, railway or hydro and 

gas crossings. It is also asked if experts believe any other critical scenario they would like to add 

in this part. 

4.3.2.3.1  Target Variable Value for Pipe Diameter  (𝑽̅𝑫𝒊
)  

To assign target values for the pipe diameter variable, the question is asked experts to 

assign a value to several pipe diameters (Question 17). All distribution histograms are in Appendix 

A2. Experts believed small pipes are important but not as important as large diameter pipes based 

on survey results. It means experts assigned ranked lower values to smaller pipe diameter and 

higher values to larger diameter pipes. Table 4-11 shows all distributions and calculated arithmetic 

mean values for all experts' opinions. The number of bins for pipe diameter is reduced, and a few 

pipe diameters are combined into one category. For example, water pipes <300 mm diameter are 
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considered local according to the latest standard. Therefore, all <300 mm diameter pipes are fitted 

in one bin. Table 4-11 shows all experts' assigned values for each pipe diameter and the calculated 

arithmetic mean value used as the target value for experts' assigned values.  

 

 

 

 

 

 

Table 4-11 Target Variable Values for Pipe Diameters (𝑽̅𝑫𝒊
) 

Rank the importance of the following pipe sizes with respect to Watermain capital works 

(replacement or rehabilitation) decision making. The score of 1 to 5 ("1" is not important while 

"5" is extremely important) 

Survey 

Question 

 

 

Pipe 

Diameters 

(mm) 

 

𝑉𝐷𝑖
 

Bin 

Thresholds 

Survey Response Total 

Response 

Arithmetic 

Mean (0-15) 1 2 3 4 5 

17  

 

𝑉𝐷1
 

>900 2 0 4 8 8 22 11.7 

750 - 900 2 0 5 5 10 22 11.8 

Total Mean Value Used as Target Variable 

Value for >750 mm 
11.8 

𝑉𝐷2
 600 - 750 2 0 4 14 2 22 10.9 

400 - 600 2 0 4 16 0 22 10.6 

 

𝑉𝐷3
 

200 - 400  2 4 14 2 0 22 8.1 

Total Mean Value Used as Target Variable 

Value for 300 mm - 600 mm 
9.8 

 

 

 

𝑉𝐷4
 

200 - 400  2 4 14 2 0 22 8.1 

150 4 7 11 0 0 22 6.9 

<150 9 4 7 0 2 22 6.3 

Total Mean Value Used as Target Variable 

Value for <300 mm 
7.1 

4.3.2.3.2 Target Variable Value for Pipe Location (𝐕̅𝐋𝐢
) 
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This parameter is considered for a location that includes an Environmentally Significant 

Policy Area (ESPA). These variables are introduced and marked as a binary variable for water 

pipe Criticality Score 𝑆𝐶𝑟
. Experts are asked to rank the importance of these variables on water 

pipes' capital activities (Question 18 parts a, b, c, d, and e). The rest of the previous expert's 

assigned values represent the importance of different pipe locations on Watermain capital 

activities. As it clearly is shown in Table 4-12, all experts recognized the importance of the ESPA.  

 

 

 

 

Table 4-12 Expert Assigned Variable Value for Pipe Crossing the ESPA Location (𝑽̅𝑳𝒊
) 

Rank the importance of the following pipe locations for Watermain capital works (replacement or 

rehabilitation) prioritization. The score of 1 to 5 ("1" is not important while "5" is extremely important) 

Survey 

Question  
 

𝑉𝐿𝑖
 

  

Bin Thresholds 

Survey Response 
Total 

Response 

Arithmetic 

Mean 

(0-15) 
1 2 3 4 5 

18(a), 

(b), (c), 

(d), and 

(e) 

Watermain crossing watercourses such as 

creeks, rivers, and ponds 
0 0 4 12 4 20 12 

Watermain servicing hospitals, airports, and 

long term care centres 
0 2 2 8 8 20 12.3 

Watermain crossing power line corridors and 

high voltage poles 
0 2 11 9 0 22 9.9 

Watermain crossing gas and oil pipelines 0 2 11 6 2 21 10.1 

Watermain crossing major intersections, 

highway crossings, and railway crossings 
0 2 4 8 6 20 11.7 

𝑉𝐿1
 Total Mean Value Used for ESPA Target Variable Value 11.2 

4.3.2.3.3 Target Variable Value for Accessibility (𝑽̅𝑨𝑪) 

Similar to water pipe location, accessibility becomes an issue for Watermain capital 

activities. Areas, where accessibility to infrastructure may hamper corrective measures include: 

(1) Pipes with Narrow or No Access Easements, (2) Extra deep water infrastructure, (3) Pipes 

Located in Impassable Access by Vehicles. Questions are asked from experts to assign values 

based on the importance of accessibility via a survey (Question 18 parts f, g and h). Table 4-13 
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shows experts assigned values for water pipes with accessibility issues and the mean value 

calculated and used for water pipe accessibility in binary format. 

 

 

 

 

 

Table 4-13 Expert Assigned Values for NOT Accessible Water Pipes (𝑽̅𝑨𝑪) 

Rank the importance of the following pipe locations for Watermain capital works (replacement or 

rehabilitation) prioritization. The score of 1 to 5 ("1" is not important while "5" is extremely important) 

Survey 

Questi

on  

  
𝑉𝐴𝐶𝑖

 

  

 

Bin Thresholds 

 

Survey Response Total 

Response 

Arithmetic 

Mean 

(0-15) 
 1 2 3 4 5 

18(f), 

(g), 

and (h) 

Watermain installed along narrow 

roads or with no easements 
0 6 7 6 0 19 7.9 

Watermain installed extra deep (for 

example: deeper than 5m) below 

ground surface 

0 4 4 12 0 20 10.2 

Watermain installed in areas without 

vehicle access 
2 2 10 6 0 20 9 

𝑉𝐴𝐶1
 Total Mean Value Used as the Target value for NOT Accessible Water 

Pipe  
9 

4.3.3 Survey Part III - Mitigation Model Target Classes 

The final mitigation technology is assigned based on the highest number of assigned 

mitigation methodologies for each scenario. For example, 80 percent of experts agreed to be 

assigned the rehabilitate and renovate a pipe with many breaks located in an environmentally 

sensitive area. Another example, 89 percent agreed on open cut replacement of the pipe within bad 

condition but the low performance and criticality classes. The calculation target of variable values 

using the survey result is explained in the next section. 
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Table 4-14 summarizes all scenarios and links them to five different conditions, 

performance and criticality classes concerning survey questions. Using these results from an 

expert's judgement for different water pipe scenarios, the NBC supervised learning algorithm 

predicts a mitigating classifier similar to classifiers assigned by experts to water pipe scenarios 

presented in the survey questioner. 

 

 

Table 4-14 Engineering Judgment Mitigating different pipe scenarios 

For Pipe Group a) and b), select one of the following options: 1) do nothing, 2) renovate using 

trench-less technologies, 3)open cut and replace with the same pipe size, or 4) open cut and 

replace with largest pipe size: 

Survey 

Question  
Class Combinations 

Survey Response Total 

Responses 
ℂ̅𝑃𝐴𝑁 

1 2 3 4 

20 (a),(b) 

22 (c),(d) 

Pipe condition in ℂ̅𝐶 ∈ {1,2,3} 

Pipe performance in ℂ̅𝑃 ∈ {1,2} 

Pipe criticality in ℂ̅𝐶𝑟
∈ {1,2,3,4,5}  

42 11 11 0 63 1 

21 (a),(b) 

Pipe condition in ℂ̅𝐶 ∈ {2,3,4,5}  

Pipe performance in ℂ̅𝑃 ∈ {1,2,3,4}  

Pipe criticality in ℂ̅𝐶𝑟
∈ {1,2,3,4}  

2 22 7 0 31 2 

22 (a),(b)  

Pipe condition in ℂ̅𝐶 ∈ {3,4,5}  

Pipe performance in ℂ̅𝑃 ∈
{1,2,3,4,5}  

Pipe criticality in ℂ̅𝐶𝑟
∈ {1,2,3,4,5}  

4 6 26 0 36 3 

23 (a), (b), 

(c), (d), (e), 

(f), (g), (h) 

Pipe condition in ℂ̅𝐶 ∈ {4,5}  

Pipe performance in ℂ̅𝑃 ∈ {3,4,5}  

Pipe criticality in ℂ̅𝐶𝑟
∈ {3,4,5}  

0 0 27 84 111 4 

This model proposed the ability to repeat the engineering judgements on mitigating the 

condition, performance and criticality of every pipe through the entire MWN using a supervised 

learning algorithm. Inputs for this model are all variables used in prioritization models, and outputs 

are classified into four categories: Do Nothing, Rehab and Renovate using Trenchless 

Technologies, Replace, and Upsize. The same classes are used in the Naïve Bayes algorithm to 

keep classes and categories independent. Based on the survey questioner's captured engineering 

judgment data, a similar mitigation plan is assigned for each pipe through the entire water system 
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using an expert's assigned classes by learning algorithm. The experts assigned values captured in 

the survey questioner are translated into a set of capital decision-making rules. Figure 4-3 

visualizes the captured capital decision rules from survey results, as itemized in Table 4-14.  

 Figure 4-3 shows the two-level model; Level 1 (left part of the figure) shows prioritization 

model classifiers for Condition, Performance and Criticality. Level 2 (right part of the figure) 

summarizes the rules that are translated from the survey result. The translated rules from the survey 

are colour-coded, showing in this figure. The final Mitigation classifiers are listed in colour and 

linked to prioritization classifiers according to survey results. Each colour represents a mitigation 

classifier rule. 
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Figure 4-3 Experts Capital work Decisions  

 

For example, the blue directional lines emanating from the condition, performance, 

criticality classifiers in the Level One model towards the Level Two model result in a “Do 

Nothing” mitigation classification. The blue lines contain condition classifier ℂ̅𝐶 ∈ {1,2,3}, 

performance classifier ℂ̅𝑃 ∈ {1,2}, and criticality classifier ℂ̅𝐶𝑟
∈ {1,2,3,4,5}) in level 1 model and 
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leads to “Do Nothing” mitigation classifier ℂ̅𝑃𝐴𝑁1
= 1. This is the summary of the outcomes from 

questions 20 parts (a) and (b), 22 parts (c) and (d) in the survey. These rules are applied to similar 

pipe scenarios, and the classifiers are used as target mitigation classes. All classes are populated 

in ArcGIS attribute data for each pipe. The NBC supervised learning algorithm is capable of taking 

all input variables and replicates the engineering judgement with relatively high accuracy.  The 

learning algorithm can replicate engineering judgment for all pipes through the water system in a 

very short time period.   

The mitigation model's goal is to automate the capital decision-making process based on 

experts' standard and engineering judgements. The expert capital decisions observed from the 

survey translated to a set of decision rules to assign a mitigation technology to all pipes within the 

training database as Target Mitigation Class ℂ̅𝑃𝐴𝑁𝑗
. 

4.4 Conclusions 

Based on this research, the following conclusions can be drawn. This research is the first 

of its kind trying to standardize engineering decisions about water infrastructure. At present, 

however, there is no standard, defensible engineering decision-making technique for water 

infrastructure. The survey results confirm the chosen parameters are affecting factors water pipes 

condition, criticality and performance. Using this methodology, all pipes within the water system 

are ranked for their condition, performance and criticality. The proposed models are capable of 

replicating target scores, and maintenance activities are assigned from the survey's result capturing 

expert opinion and engineering judgement. The final model output identifies the most critical pipes 

to be replaced, rehabilitate and upsize based on expert opinion. This model would possibly provide 

bases for making more consistent, efficient, and reliable maintenance decisions.  

This chapter focuses on gathering engineering judgement to rank individual pipe sections 

within water transmission and distribution lines and replicating the expert opinion using the 

supervised learning algorithm model's target variable values. Also, capturing expert opinion for 

capital activities for every pipe within the water system depends on its condition, performance and 

criticality. Survey results are set as target values for the supervised learning algorithms in the Naïve 
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Bayes model capable of replicating the entire watermain system's engineering decision relative to 

several parameters within a multi-criteria database.  

This chapter is part of an attempt to develop a novel approach to automate engineering 

judgement and expert opinion regarding the condition, performance, and criticality of all pipes in 

MWN and mitigate the capital decision.  To automate and replicate the expert opinion, there is a 

need to capture the expert’s opinion in a systematic methodology. The survey questionnaire 

apprehended engineering judgements and experts' opinions to build target values to parameterize 

the Naïve Bayes Classifier model's target values. Therefore, the model would be trained based on 

expert opinion and can replicate the engineering judgement.  

The survey questioner is designed based on bins and thresholds set for PAN that are 

explained in detail in Chapter 2. The sensitivity analysis based on thresholds and survey results 

may be needed, but it is considered out of scope for this research. Also, a few expert's assigned 

variable values are considered as high for example, experts assigned value 5.4 to pipes that never 

experienced any breakage. This value is assumed 0 on Engineer assumed variable value.  

These models are built on a very large database from a southern Ontario municipality and 

validated on another municipality database. The next chapter will explain the model results and 

show all the results in a case study. All results are explained in the next chapter. The method 

developed a valuable capital activity measurement tool to evaluate the current watermain system 

that is disaggregated from a certain type of pipe material, location, and any other limitation. This 

study's results may provide a baseline that could potentially be used to benchmark the watermain 

performance measurement at different levels of municipal organizations. A scientific prioritization 

model that is based on expert opinion is proposed. This research attempts to develop a novel 

approach that would be a valuable link between strategic, tactical, and operational levels to 

evaluate the watermain system.  

 

Model Application: Case Study 

Abstract 
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The proposed multi-level NBC with a supervised learning algorithm can replicate 

engineering judgement. This model is applied to the prepared comprehensive database from 

London, Ontario. This chapter presents a descriptive analysis of the water network pipes for their 

condition, performance and criticality, and capital activities decisions regarding all pipes within 

the London database. Different maintenance and capital work scenarios are presented and 

compared with the actual 2016 and 2017 replacement programs from the City of London to 

validate the accuracy of the proposed model. 

This methodology will add consistency and defensibility to capital programs. Using this 

algorithm can help utility save money by automating industry best practices and optimizing long-

term decisions about the order in which pipes need to be staged into your capital works programs.  

Keywords: model application, case study, municipal water network, prioritization model, 

mitigation model, do nothing, replacement, rehabilitation, up-sizing, capital work activities, 

validation, and verification 

 

 

 

 

 

5.1 Introduction 

Assigning capital work activity for a water pipe called mitigation decision in this research 

requires information such as pipe condition, performance and criticality. Past studies have focused 

on pipe condition and physical attributes as a primary decision-making factor for capital activities. 

There are several prioritizing methodologies in the water industry, but only a few models are 

applied and tested on real water pipe data. Using complicated models on imperfect water pipe data 

often shows ineffective results (Savic, 2009).  
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The literature for models applied on real data for water pipe began to appear in the 1980s 

(Rogers & Grigg, 2009). Several modelling methodologies are tried in different MWN databases 

so far. (1) Economic models define the present worth of a pipe's operation and maintenance costs 

based on its remaining service life and replacement costs, using different statistical models to 

forecast the number of breaks. This model is applied to St. Louis, Missouri MWN database to 

prioritize the water pipes as part of a replacement program (Grablutz & Hanneken, 2000). (2) 

Mechanistic models are focused on pipe physical deterioration attributes, such as; temperature, 

pressure, frost stress, corrosion due to soil properties, pipe coatings, water quality parameters, and 

installation depth (Agbenowosi, 2000). These models were used in Des Moines, Iowa, to prioritize 

watermains for different soil conditions by McMullen (1982) and Winnipeg, Manitoba, to 

prioritize watermains by pipe diameter (Kettler & Goulter, 1985). (3) Probability models attempt 

to predict the probability of pipe failure in future time during the pipe life cycle. Several versions 

of this model are applied on the MWN of New Haven, Connecticut, by Marks (1985) and Andreou 

(1986).  This model is also applied to MWN data in Paris, France, by Brémond (1997). A 

probability model called KANEW, created by Deb et al. (1998) is applied to Denver, Colorado 

MWN data. AWWA funded a study in 2001 to forecast future pipe replacement for 20 different 

municipalities throughout the United States using the KANEW model. This model is currently 

used in the City of Toronto to benchmark the water capital activities. (4) Deterioration Point 

Assignment methods define a set of failure contributor factors such as pipe age, pipe material, 

location, soil type, and break history. This method uses the different categories and assigned 

weights for each factor. A total score is calculated for each pipe. If the total score exceeds the 

threshold value, then the pipe is a candidate for renewal (Loganathan et al., 2002). This model was 

used to evaluate Louisville Water, Kentucky.  

Table 5-1 summarizes all past models applied to the MWN database. It demonstrates no 

comprehensive method that prioritizes capital work technologies such as rehabilitation and 

replacement of water infrastructure while measuring condition, performance, and criticality 

attributes of each pipe based on expert opinion have been applied or validated using a MWN 

database. Also, machine learning methodologies have not been used in water pipe capital activities 

to prioritize pipe segments for mitigation technologies. Thus far, no comprehensive model 
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available to consider all pipe factors measuring condition, performance, and criticality and 

proposes a capital works mitigation technology for each pipe through the water system. 

Table 5-1 Water Pipe Modeling Criteria 

  Ranking Criteria  

Real Data Modeling Literature 

C
o
n

d
it

io
n

 

P
er

fo
rm

a
n

ce
 

C
ri

ti
ca

li
ty

 

 

M
it

ig
a
ti

o
n

 

Economic models or Cost-Benefit Models 

Grablutz & Hanneken, 2000    

Mechanistic models 

McMullen, 1982    

Kettler & Goulter, 1985    

Agbenowosi, 2000    

Regression and Failure Probability Methods  

Marks, 1985    

Andreou, 1986    

Brémond, 1997    

Deb et al., 1998    

Deterioration Point Assignment (DPA) Methods or Scoring System method 

Loganathan et al., 2002    

This chapter aims to collect and organize observations and measurements relating to the 

City of London's watermain network into attributes pertaining to condition, performance, and 

criticality scores. Thereafter, this information is used to construct a MWN database connected to 

the machine-learning model. The model is used to rank every watermain segment within the 

network for condition, performance, criticality, and suggested mitigation technologies. Model 

verification is assessed by replicating the prioritization of pipe segments and mitigation 

technologies chosen by City of London municipal engineers as part of their 2016 and 2017 

watermain capital works programs. 
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In this chapter, the PAN classification ℂ𝑃𝐴𝑁𝑗
 using municipal engineer-assigned variable 

values and the calculation of all initial municipal engineer-assigned classifiers ℂ𝐶𝑗
, ℂ𝑃𝑗

 and ℂ𝐶𝑟𝑗
 

are compared with the expert's assigned classifiers ℂ̅𝑃𝐴𝑁𝑗
, ℂ̅𝐶𝑗

, ℂ̅𝑃𝑗
 and ℂ̅𝐶𝑟𝑗

. All symbols are 

explained in Table 3-3 in Chapter 3.  

All variables and engineer-assigned variable values are organized in a comprehensive 

shapefile explained in section two. The sum of the engineer-assigned variable values 𝑉𝑋𝑖
 is 

Condition Score 𝑆𝐶, Performance Score 𝑆𝑃 and Criticality Scores 𝑆𝐶𝑟. The engineer-assigned 

classifiers are categorizing all scores into five uniform classes between the minimum and 

maximum calculated scores. The engineer-assigned PAN is the sum of all scores multiple by an 

engineer-assigned corresponding weight 𝑊𝐶, 𝑊𝑃 and 𝑊𝐶𝑟. Engineer-assigned mitigation classifier 

ℂ𝑃𝐴𝑁𝑗
 is also assigned based on the minimum and maximum PAN.   

All expert's assigned variable values 𝑉̅𝑋𝑖
 or target variable values calculated using the 

arithmetic mean captured from the survey. All target variable values are organized in a MWN 

database GIS attribute table. The sum of expert's assigned variable values are expert's assigned 

scores 𝑆𝐶̅, 𝑆𝑃̅ and 𝑆𝐶̅𝑟. The expert's assigned prioritization classifiers ℂ̅𝐶𝑗
, ℂ̅𝑃𝑗

 and ℂ̅𝐶𝑟𝑗
 are 

categorizing into five uniform classes between the minimum and maximum calculated scores. The 

expert's assigned mitigation classifiers ℂ̅𝑃𝐴𝑁𝑗
 are assigned based on different scenarios from the 

survey questioner.  

It is explained in chapter three that the NBC model determines the prior distributions with 

engineer-assigned classifiers ℂ𝑃𝐴𝑁𝑗
, ℂ𝐶𝑗

, ℂ𝑃𝑗
, ℂ𝐶𝑟𝑗

and posterior distributions with expert's 

assigned classifiers ℂ̅𝑃𝐴𝑁𝑗
, ℂ̅𝐶𝑗

, ℂ̅𝑃𝑗
 and ℂ̅𝐶𝑟𝑗

. The NBC generates the likelihood distributions to 

replicate the expert's assigned classifiers by assigning weights 𝑊̿𝑥𝑖
 for variables 𝑉𝑥𝑖

. The learning 

algorithm adjusts the assigned weights as many times to predict classifiers ℂ̿𝑃𝐴𝑁𝑗
, ℂ̿𝐶𝑗

, ℂ̿𝑃𝑗
 and 

ℂ̿𝐶𝑟𝑗
 that are close to the expert's assigned classifiers.    

In this chapter, the results of the NBC with supervised learning algorithm applied on the 

City of London MWN database are presented in this chapter. All engineer-assigned ℂ𝑃𝐴𝑁𝑗
, ℂ𝐶𝑗

, 
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ℂ𝑃𝑗
 and ℂ𝐶𝑟𝑗

, expert's assigned  ℂ̅𝑃𝐴𝑁𝑗
, ℂ̅𝐶𝑗

, ℂ̅𝑃𝑗
 and ℂ̅𝐶𝑟𝑗

 and model results in classifiers ℂ̿𝑃𝐴𝑁𝑗
, 

ℂ̿𝐶𝑗
, ℂ̿𝑃𝑗

 and ℂ̿𝐶𝑟𝑗
 are presented, compared and analyzed.  

The proposed methodology is a capital activity measurement tool to evaluate the current 

watermain system that is disaggregated from a certain type of pipe material, location, and any other 

limitation. This study's results may provide a baseline that could potentially be used to benchmark 

the watermain performance measurement at different levels of municipal organizations. An 

automated scientific prioritization model based on a professional judgment that can replicate 

professional capital activity decisions for pipes within MWN is proposed. The next step would be 

having more data from another municipality to further model validation.  

5.2 The Municipal Watermain Network Database  

Ontario best practice (2005) recommended that water utilities keep all of their pipe 

condition, performance, and criticality information in ArcGIS format with their exact GPS 

coordination location and all its characteristics such as age, rehabilitation, break data, crossings, 

easement, accessibility and much other information (NRC•CNRC, 2005). London Ontario is one 

of few municipalities that organized their water pipe information in ArcGIS shapefile format. Two 

ArcGIS shapefiles were received from the Water Department at the City of London. One file 

contained data from MWN pipe information constructed from 1900 to date (24082 pipes) is shown 

in Figure B2-1 in Appendix B2. The second file contained break information that included water 

pipe break cause, time, type and result from 1960 to date (7341 data points), is shown in Figure 

B2-2 in Appendix B2. The shapefiles have spatial coordinates; therefore, these two shapefiles can 

be spatially matched into one shapefile with all pipe network data that included the break data. The 

exported shapefile is used as baseline data to build a comprehensive database consisting of all pipe 

information and breaks data. All additional information is added into this file according to exact 

spatial coordination and mapped in ArcGIS.  

Using all ArcGIS base maps includes streets, watercourses, critical services locations such 

as hospital and fire stations, wetlands, landfills, bridges, and environmentally sensitive areas. The 

base maps are available for free by Esri in shapefile format. The base maps do not include water 
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infrastructure information such as pipes location and pipe diameter. Using the base map shapefile 

cross-referenced with the City of London Pipe location shapefile, pipelines that are not located 

within the right of way and required easement are identified. Cross-reference these files and 

information from the City of London legal department, pipe with no easement and hard to access 

areas are identified in the shapefile. Binary values are identified for all crossings and locations for 

the criticality model. The sample binary attribute table is shown in FigureB2-5 and Figure B2-6 in 

Appendix B2.   

The staff at the City of London provided a shapefile for critical service locations that 

included all critical water service locations such as hospitals, airports, schools, fire departments, 

etc. The critical location shapefile is shown in Figure B2-4 in Appendix B2. Spatial cross-

referencing these locations with a pipe database. The crucial service locations are identified and 

marked in binary values in separate columns.  

Watermain replacement and rehabilitation plans for capital work programs that contain 

total length, material, service locations and construction method for 2017 are received in excel 

format. This data is used to evaluate the model output and check the pipes that are chosen for 

replacement by the City of London experts. For water pipes that are not located within the right of 

way, access road information is evaluated from ArcGIS base maps. All pipes with accessibility 

issues are identified. Although the proposed model can take information from other software 

compatible with ArcGIS, the City of London did not have water pressure database information 

available. Instead, City of London engineers shared information regarding locations that 

experienced pressure loss and water pressure complaints. Based on fire department requirements, 

the City of London engineers also shared locations with low water pressure issues. These water 

pipes are marked for pressure loss issues as part of the performance model. Table 5-2 summarizes 

all received data from the City of London and their allocation to one of the conditions, 

performance, or criticality classifiers contributing to the prioritization model.  

Table 5-2 Database List 

Database  Type Information Classifier 
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Water Main 

System  

GIS Shapefile of the water 

infrastructure 

Pipe Location, Pipe 

Length, Pipe Diameter, 

Installation Date 

Condition, 

Performance 

and Criticality 

Water Main 

Breaks History  
GIS point file of all break information  

Break Date, Break 

Cause, Break Location 
Condition 

Critical 

Service 

Location 

GIS Point file of all critical locations 

such as Hospitals, Fire Departments, 

Schools,… 

Critical Service 

Location 
Criticality  

Base Maps 

GIS Shapefile of City including 

railways, creeks and all 

environmentally sensitive areas 

Crossing Location Criticality  

Street Map 
GIS Shapefile with all public right of 

way information 

Crossing Location, 

Easement availability 

and requirements 

Criticality  

Utility 

location 

GIS shapefile of all utilities (sewer, 

gas, hydro,..) 

Other Pipe Crossing 

Location 
Criticality  

Soil Data  

GIS Shapefile on soil type and rock 

type provided by Ministry 

Environment  

Soil Type, Corrosive 

and non-Corrosive Soil  

Condition and 

Criticality 

Pressure Zone 

information 

GIS shapefile for all different pressure 

zones 

Pipe Performance and 

water Pressure 

Complains  

Performance 

New 

Development 

Information 

GIS shapefile for all new 

developments single house or semi 
Pressure Issues Performance 

Assessed 

Condo 

Development 

GIS shapefile for condo activities that 

are already assessed but not approved 
Pressure Issues Performance 

Draft Condo 

Development 
GIS shapefile for draft condo proposal Pressure Issues Performance 

Registered 

Development 

GIS shapefile for registered 

developments that there is no proposal 
Pressure Issues Performance 

Proposed 

Structure 

GIS shapefile that shows all proposed 

structure such as street furniture bus 

terminal or any other structure 

Pressure Issues Performance 

Moratorium 

and Road 

Work 

GIS shapefile included information 

regarding newly paved road  

Road Restriction 

Information 
Criticality  

Water 

Complains 

excel sheet that has information 

regarding pressure issue and area with 

a water pressure problem 

Water Capacity and 

standard information - 

Head Loss and pressure 

Loss 

Performance 

Water Capital 

work 

information 

Excel sheets that include data about all 

2016 and 2017 replacement projects 

new Pipe info, Pipe 

Diameter - Pipe Length 

and new Installation 

Date 

Condition and 

model 

validation 
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Other Projects  
Excel sheets that include information 

about all other projects 

location of other 

projects or limitation for 

water pipe project 

Criticality  

Pubic 

Properties and 

Easement 

information 

Information regarding the access roads 

and access availability 

assess ability 

information 
Criticality  

One of the modelling complexity of the water system is that the database is not complete. 

They all have lots of missing information; for example, construction dates were missing for 863 

pipes in the City of London database. A data quality control check is done throughout the prepared 

database to fill in missing data. For instance, for missing construction dates, all information is 

checked for any other available date from other sources, such as the water break database 

construction date. For 582 records construction date is found in the rehab work column and 

comment column. Some assumptions have been made to fill the data gaps; for example, the year 

1900 is assumed for the pipes with no construction year information.   

Several watermains breaks are caused by temperature or winter weather and fixed by the 

operation and maintenance department on an emergency basis. Records for emergency workers 

are not available or accessible in many municipalities. Missing information would result in 

maintenance work, or capital activity may be planned for a pipe that is already fixed or replaced.  

Water pipe flow information and pressure information are not available by the City of 

London. Therefore, head-loss and pressure-loss are not calculated due to a lack of information.  

City engineers provided some locations with water pressure issues due to population and service 

increases for new developments. These identified pipes are considered for maximum pressure-loss 

and placed in the highest pressure-loss bins corresponding to the pipe diameter explained in 

Chapter 2, section 2.2.2.1. 

Water complaints and water quality information is not available from the City of London. 

Therefore, the Water Quality column is considered as all zero as a binary value. Typically, soil 

toxicity, soil composition, construction, and some service de-activation on old services are not 

available from municipalities; this is the same from London's City. All available data combined 

into a comprehensive database included all information about all water pipes in the City of London 

water network database recommended by best practice (NRC•CNRC, 2005). The final complete 
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attribute table columns and their information are presented in detail in Appendix B1. The City of 

London water network data and pipes attribute histograms are shown in Appendix B3. 

For the purpose of NBC with a supervised learning algorithm, it was assumed all variables 

are independent and do not correlate with each other. The NBC is mainly used for real-life 

problems, and most variables in real-life examples are not 100% independent. To check the 

correlations of the variables, Table 5-3 is prepared to show the correlations among the variable 

values for the City of London data. 

 

Table 5-3 All Variables Correlation Matrix 

 

5.3 Model Application 

This section explains the classification models. They used the prior distributions from the 

municipal engineer-assigned variable values and posterior distributions from the expert's assigned 

variable values to adjust the likelihood distributions with generating weights for all variables and 

replicate the expert's assigned classifiers.  

This section explains the two-level classification models. The first level or prioritization 

model classifies all pipes for condition ℂ𝐶𝑗
, performance ℂ𝑃𝑗

, and criticality ℂ𝐶𝑟𝑗
,. The second 

level of mitigation classifier would use all engineer-assigned variable values 𝑉𝑋𝑖
 to predict 

mitigation classifiers ℂ̿𝑃𝐴𝑁𝑗
as close as possible to expert assigned mitigation classes ℂ̅𝑃𝐴𝑁𝑗

.  
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5.3.1 The Prioritization Model 

The prioritization model uses engineer-assigned classifiers ℂ𝐶𝑗
, ℂ𝑃𝑗

 and ℂ𝐶𝑟𝑗
 to generate 

prior distributions. The prioritization model uses target classifiers ℂ̅𝐶𝑗
, ℂ̅𝑃𝑗

 and ℂ̅𝐶𝑟𝑗
 to generate 

posterior distributions. The prioritization model adjust model assigned weights 𝑊̿𝑥𝑖
 to predict the 

classifiers ℂ̿𝐶𝑗
, ℂ̿𝑃𝑗

 and ℂ̿𝐶𝑟𝑗
with high accuracy comparing with target classifiers.  

The NBC model classifies every pipe within the MWN according to its condition and 

performance to five uniform classes ℂ̿𝐶𝑗
, ℂ̿𝑃𝑗

 (1-VERY GOOD, 2-GOOD, 3-MODERATE, 4-

POOR, and 5-VERY POOR) and criticality to five classes ℂ̿𝐶𝑟𝑗
 (1-VERY LOW, 2- 

MODERATELY LOW, 3- MEDIUM, 4- MODERATELY HIGH and 5 – VERY HIGH). 

Therefore, each pipe segment is assigned a classifier consisting of a "descriptor" and an 

"enumerated value" in the interval of one to five.  

5.3.1.1 Condition 

There are four attributes considered in the condition model 𝑉𝑅𝑆𝐿𝑖
, 𝑉𝑇𝐵𝑖

, 𝑉𝐵𝐿𝐹𝑉𝑌1
, and 𝑉𝑀𝐼𝑖

 

each attribute has two sets of variable values. The municipal engineer assigns the first set as the 

initial variable value 𝑉𝑋𝑖
, and the second set is assigned by the expert 𝑉̅𝑋𝑖

 that is captured from the 

survey questioner. All values are presented in Table 5-4. All variable values and scores in the 

ArcGIS attribute table are shown in Figure  B2-9 in Appendix B2. 

The NBC links all variable bins to target classes assigned by experts as part of the survey 

by calculating each variable's probability of appearance value in every class. Figure 5-1 shows the 

condition variables histograms. The supervised machine learning will repeat this step until the 

model can predict a class as close as possible. The condition model is capable of replicating target 

classes with up to 78 percent accuracy Figure B2-10 in Appendix B2. It means the condition model 

is able to predict professional opinion correctly, 78 percent of the time. All classes are populated 

in a separate column in the ArcGIS attribute table. The ArcGIS attribute tables are shown in, Figure 

B2-8 and Figure B2-9 in Appendix B2. 
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Table 5-4 Variable Values for Condition Model 

 

The condition model levels are classified into five categories, as shown in Table 5-5.  For 

example, most pipes with low condition scores 𝑆𝐶𝑖
and 𝑆𝐶̅𝑖

 are in relatively good condition. 

According to survey results, experts believed that based on the number of breaks and age, the City 

of London pipes are in relatively good condition in classes ℂ̅𝐶1
= 1 and ℂ̅𝐶2

= 2. This is professional 

judgement, and it varies by different engineers and different municipalities. The expert agreed that 

only very few pipes are in ℂ̿𝐶5
= VERY POOR condition class five. These results are clearly shown 

in condition histogram Figure 5-2. Thus, most pipes in City of London MWN are generally in ℂ̿𝐶1
= 

VERY GOOD and ℂ̿𝐶2
= GOOD condition classes making maintenance decisions or prioritizing 

maintenance decisions require further information about these pipes, such as performance and 

criticality measurements.   

Table 5-5 Condition Classes 

Condition Categories 
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𝑆𝐶𝑖
 𝑆𝐶̅𝑖

 Classifiers ℂ𝐶𝑗
, ℂ̅𝐶𝑗

 and ℂ̿𝐶𝑗
 Relative Prioritization Order 

0 - 10 0 – 17.9 VERY GOOD 1 

A pipe is in VERY GOOD 

condition. No mitigation is 

required. 

10 - 20 17.9 – 24.9 GOOD 2 
A pipe is in GOOD condition. 

No mitigation is required. 

20 – 30 24.9– 32 MODERATE 3 

A pipe is in MODERATE 

condition and should be 

prioritized for mitigation. 

30 – 40 32 – 39 POOR 4 

A pipe is in POOR condition 

and should be prioritized for 

mitigation. 

40 – 50 39 – 46.1 VERY POOR 5 

A pipe is in VERY POOR 

condition and requires 

immediate mitigation. 

 

The condition model's result on the ArcGIS interface is shown in Figure B2-14 in Appendix 

B2. These colour-coded results highlight all pipes according to their physical condition. This 

model identifies pipes that require more attention within the entire system. 
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Figure 5-1 Condition Variables PDFs  

 

Figure 5-2 Condition Result Histogram 
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5.3.1.2 Performance  

The City of London has very limited pipe performance information. They only identified 

a few areas with pressure-related issues, including all new and proposed development plan areas. 

These areas are identified by spatially cross-referencing new developments shapefile and the 

pressure issue file. Variables chosen for performance can be different at each municipality based 

on their needs. There are three attributes considered in the performance model 𝑉𝑃𝐿𝑖
, 𝑉𝑊𝑄𝑖

, and 

𝑉𝐶𝐿𝑆𝑖
 each attribute has two sets of variable values. The municipal engineer-assigns 𝑉𝑋𝑖

 the expert 

assigns the first set as the initial variable value and the second set 𝑉̅𝑋𝑖
that is captured from the 

survey questioner. All values are presented in Table 5-6. 

Table 5-6 Variable Values for Performance Model 
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Each municipality has a unique water system and requirements; for example, in the City of 

London, pipes of any pipe smaller than 150mm diameter do not conform to current standards and 

must be changed. All variable values are populated in ArcGIS for this model, shown in Figure B2-

13 and Figure B2-14 in Appendix B2.  

A few variables have binary values in the prioritization model. The Naïve Bayes classifier 

with a supervised learning algorithm is well-suited to utilize binary data. Even when the variable 

value for any attribute is not available, the Naïve Bayes classifier with a supervised learning 

algorithm would be able to use other attributes and variable values to predict the classifier ℂ̿𝑃𝑗
. In 

the City of London database, the performance model predicts a performance class ℂ̿𝑃𝑗
 that is very 

close to the class that the expert may assign with very high (99%).  

The performance model levels are classified into five categories, as shown in Table 5-7  

According to survey results, experts believed the City of London pipes perform well, attribute 

them into classes ℂ̿𝑃1
= 1 and ℂ̿𝑃2

=2. Although the engineer-assigned classifiers ℂ𝑃𝑗
for the City of 

London is ℂ𝑃1
 =1 and ℂ𝑃3

=3. The engineers believed the City of London pipes mostly exhibit ℂ𝑃3
= 

MODERATE performance, whereas the experts believe the City of London pipes exhibits ℂ̅𝑃2
= 

GOOD performance. The reason for this discrepancy is mostly the lack of data for this model.  

Using this model, all problematic pipes can be identified and marked to be considered for 

future investigation. Also, performance issues would help identify water pressure and capacity 

issues important for the building permit department and develop any condo proposal or high-rise 

applications on top of the hydraulic modelling or any additional requirements. This additional 

information would be very valuable information to plan and prioritize capital activities. 

Figure B2-15 in Appendix B2 shows the ArcGIS interface that categorizes all pipes in five 

different classifiers with different colours. This model identifies pipes that are not performing well 

in the entire water system. In addition to physical pipe conditions, a performance indicator is 

crucial to prioritize linear infrastructure capital activities. 
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Figure 5-3 Performance Variables PDFs  
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Table 5-7 Performance Classes 

Performance Categories 

𝑆𝑃𝑖
 𝑆𝑃̅𝑖

 Classifiers ℂ𝑃𝑗
, ℂ̅𝑃𝑗

 and 

ℂ̿𝑃𝑗
 

Relative Prioritization Order 

 

0-6 

 

0-4.9 VERY GOOD 1 
Pipe exhibits a VERY GOOD 

performance. No mitigation is required. 

 

6-12 

 

4.9-9.8 GOOD 2 
Pipe exhibits GOOD performance. No 

mitigation is required. 

 

12-18 

 

9.8-14.7 MODERATE 3 

Pipe exhibits MODERATE 

performance and should be prioritized 

for mitigation. 

 

18-24 

 

14.7-19.6 POOR 4 
Pipe exhibits POOR performance and 

should be prioritized for mitigation. 

 

24-30 

 

19.6-24.5 VERY POOR 5 

Pipe exhibits VERY POOR 

performance and requires immediate 

mitigation 

 

 

Figure 5-4 performance Result Histogram 
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5.3.1.3 Criticality 

The criticality of each pipe is measured based on the consequence of failure. For example, 

failure impacts for large diameter pipes are greater than for small diameter pipes. Failure for pipes 

providing service to critical locations such as hospitals or airports is more critical than a small pipe 

that provides service to few residential properties. Pipes passing or crossing environmentally 

sensitive areas without an access road or easement have a very high failure impact relative to other 

pipes. Therefore, these pipes are identified, and data are populated in the ArcGIS attribute table in 

binary format, as shown in Figure B2-16 and Figure B2-17 Appendix B2. Due to each city's unique 

geographic location, the list of criticality variables may differ between municipalities. For the City 

of London, there are three attributes considered in the criticality model 𝑉𝐷𝑖
, 𝑉𝐿, and 𝑉𝐴𝐶𝑖

 each 

attribute has two sets of variable values. The municipal engineer assigns the first set as the initial 

variable value 𝑉𝑋𝑖
, and the second set is assigned by the expert 𝑉̅𝑋𝑖

 that is captured from the survey 

questioner. All values are presented in Table 5-8.  

Table 5-8 Variable Values for Criticality Model 
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The NBC model identified critical pipes based on engineering judgement that is captured 

via survey for all pipes through the City of London water system.  Figure 5-5 presents all criticality 

attributes pdfs. The supervised learning algorithm is able to learn professional opinion from target 

criticality levels up ℂ̅𝐶𝑟𝑗
to 90 percent accuracy. Figure B2-10 in Appendix B2 shows the model 

accuracy on the python interface in ArcGIS. This model, like the other sections, categorizes the 

criticality scores into five classifiers.  

The criticality model levels ℂ̿𝐶𝑟𝑗
are classified into five categories, as shown in Table 5-9 

According to experts, a very small number of pipes in the City of London are considered ℂ̿𝐶𝑟4
= 

MODERATELY HIGH and ℂ̿𝐶𝑟5
= VERY HIGH criticality class. Using this model, all critical 

pipes are identified to be considered as higher priorities for capital activities. Figure B2-18 in 

Appendix B2 shows City of London Water System criticality model results. 

 

Figure 5-5 Criticality Variables PDFs  
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Table 5-9 Criticality Classes 

Criticality Categories 

𝑆𝐶𝑟𝑖
 𝑆𝐶̅𝑟𝑖

 Classifiers ℂ𝐶𝑟𝑗
,  ℂ̅𝐶𝑟𝑗

 and ℂ̿𝐶𝑟𝑗
 

Relative Prioritization 

Order 

0 - 9 
0 – 12.1 

VERY LOW 1 
A Pipe exhibits VERY 

LOW criticality. 

9 – 18 

12.1 – 17.1 

MODERATELY LOW 2 

A pipe is in 

MODERATELY LOW 

criticality. 

18 – 27 
17.1 - 22 

MEDIUM 3 
A Pipe exhibits MEDIUM 

criticality. 

27 – 36 

22 - 27 

MODERATELY HIGH 4 

A Pipe exhibits 

MODERATELY HIGH 

criticality. 

36 – 45 
27 - 32 

VERY HIGH 5 
A pipe has VERY HIGH 

criticality. 

 

 

Figure 5-6 Criticality Result Histogram 
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5.3.2 The Mitigation Model 

The second level model classifies all water pipes for mitigating the capital works activities. 

The PAN is the sum of all engineer-assigned condition, performance, and criticality scores 𝑆𝐶, 𝑆𝑃 

and 𝑆𝐶𝑟 multiplied by their respective weight  𝑊𝐶, 𝑊𝑃 and 𝑊𝐶𝑟. PAN is used to rank pipes or 

"prioritize" them for a selected mitigation activity ℂ𝑃𝐴𝑁𝑗
. The engineer-assigned mitigation 

classifiers ℂ𝑃𝐴𝑁𝑗
 is assigned uniformly based on the minimum and maximum PAN into four 

categories which are called mitigation classes. Table 5-10 shows PAN classifier boundaries. 

Table 5-10  PAN Scores and Levels 

Mitigation Categories 

PAN  Relative Prioritization Order Classifiers ℂ𝑃𝐴𝑁𝑗
  

0 - 312 DO NOTHING 1 

312 - 475 
RELINE-REHAB using trenchless 

technology 
2 

475 - 637 
REPLACE the pipe with one of the 

same size 
3 

637 - 800 
replace and UP-SIZE the Pipe with one 

of a larger diameter. 
4 

The mitigation model uses engineer-assigned PAN classifiers ℂ𝑃𝐴𝑁𝑗
 to create prior 

distributions and experts assigned mitigation classifiers or target classifiers ℂ̅𝑃𝐴𝑁𝑗
to generate 

posterior distributions. Figure B2-20 in Appendix B2 shows the ArcGIS interface showing the 

City of London PAN. Target classifiers ℂ̅𝑃𝐴𝑁𝑗
 are the outcome of sample water pipe scenarios 

from the survey. The NBC generate likelihood distributions to create weights 𝑊̿𝑋𝑖
for all variable 

values, engineer-assigned variable values 𝑉𝑋𝑖
to classify the mitigation results into four different 

classes ℂ̿𝑃𝐴𝑁𝑗
(1- DO NOTHING, 2- RELINE - REHAB 3- REPLACE with the same pipe size, 

and 4-UP-SIZE or replace with larger pipe size categories). The supervised learning algorithm, 

through the training process, adjust the weights 𝑊̿𝑋𝑖
to increase the accuracy of the model predicted 

mitigation classes ℂ̿𝑃𝐴𝑁𝑗
 to target classes ℂ̅𝑃𝐴𝑁𝑗

. The mitigation model is able to automate 
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assigning a capital works activity to every pipe within the MWN that are based on each pipe target 

condition, performance and criticality classes ℂ̅𝐶𝑗
, ℂ̅𝑃𝑗

 and ℂ̅𝐶𝑟𝑗
. 

The mitigation model assigned ℂ̿𝑃𝐴𝑁1
= DO NOTHING classifier for pipes with condition 

classifiers ℂ̿𝐶𝑗
∈ (VERY GOOD and GOOD) , performance classifiers ℂ̿𝑃𝑗

∈ (VERY GOOD and 

GOOD) and criticality classifiers  ℂ̿𝐶𝑟𝑗
∈ (VERY LOW, MODERATELY LOW, MEDIUM, 

MODERATELY HIGH and VERY HIGH). The NBC supervised learning algorithm assigned 

ℂ̿𝑃𝐴𝑁2
= RELINE-REHAB. Pipe classified by the NBC supervised learning algorithm in this 

classifier belongs to ℂ̿𝐶𝑗
∈ (GOOD, MODERATE, POOR and VERY POOR) condition classes 

and ℂ̿𝑃𝑗
∈ (VERY GOOD, GOOD, MODERATE and POOR) performance classes with criticality 

class ℂ̿𝐶𝑟𝑗
∈ ( VERY LOW, MODERATELY LOW, MEDIUM and MODERATELY HIGH). The 

criticality classifier would prioritize the capital work. 

The NBC supervised learning algorithm assigns ℂ̿𝑃𝐴𝑁3
= REPLACE to pipes with condition 

classifiers ℂ̿𝐶𝑗
∈ (MODERATE, POOR or VERY POOR) and performance classifiers as ℂ̿𝑃𝑗

∈ 

(GOOD, MODERATE, POOR and VERY POOR). Pipes with REPLACE mitigation class may 

have any criticality classifier ℂ̿𝐶𝑟𝑗
∈ (VERY LOW, MODERATELY LOW, MEDIUM, 

MODERATELY HIGH or VERY HIGH). The criticality classifier would prioritize the 

replacement program. For example, pipes with ℂ̿𝐶𝑟5
= VERY HIGH criticality would prioritize 

over Pipe's ℂ̿𝐶𝑟1
= VERY LOW criticality class. The NBC supervised learning algorithm classifies 

pipes with performance issues in ℂ̿𝑃𝐴𝑁4
= UP-SIZE class. This classifier is assigned when 

conditions classifier ℂ̿𝐶𝑗
∈ (POOR or VERY POOR), performance classifiers are ℂ̿𝑃𝑗

∈ 

(MEDIUM, POOR or VERY POOR) and criticality classifiers are ℂ̿𝐶𝑟𝑗
∈ (MEDIUM, 

MODERATELY HIGH or VERY HIGH). Figure 5-7 summarizes the classification rules as 

explained. 
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Figure 5-7 Survey Result Classifications 
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Figure 5-8 Prioritization Classes vs Mitigation Class 

The NBC supervised learning model is applied to the City of London MWN. The 

mitigation decisions reflecting the expert’s classifiers are achieved with relatively high accuracy 

of 88 percent. Figure 5-8 summarizes the frequency of appearance of each prioritization class in 

each mitigation class. Figure 5-8 shows higher condition and performance classes ℂ̿𝐶𝑗
and ℂ̿𝑃𝑗

 

appeared in high mitigation classes ℂ̿𝑃𝐴𝑁𝑗
, but all criticality classes ℂ̿𝐶𝑟𝑗

appeared the same on all 

mitigation classes ℂ̿𝑃𝐴𝑁𝑗
. Therefore, pipes with condition and performance issues are identified 

for capital activities, and the pipe's criticality classifier would make the capital activity more 

urgent. All results are populated in ArcGIS attribute data for each pipe. Figure B2-21 in Appendix 

B2 shows all mitigation model results in the ArcGIS interface. 

All variables 𝑉𝑋𝑖
from prioritization, models are used in the mitigation model. Figure 5-9 

shows all probability in mitigation classifier ℂ̿𝑃𝐴𝑁𝑗
. This result confirms that prioritizing capital 

activities requires much more information than pipe conditions. A performance or criticality 

attribute may change the mitigation classification of a given pipe segment. This is the most 
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important shortcoming from the available literature that primarily focused on pipes' physical 

condition for capital activity decisions.  

The mitigation distribution histogram in Figure 5-10 shows most pipes that appeared in 

class  ℂ̿𝑃𝐴𝑁1
= 1 are required to DO NOTHING. A few pipes are in class four require ℂ̿𝑃𝐴𝑁4

 UP-

SIZE, and there are pipes in class two ℂ̿𝑃𝐴𝑁2
= REHABILITATION and three ℂ̿𝑃𝐴𝑁3

=

 REPLACEMENT. In addition to mitigation solutions, condition, performance and criticality 

model would prioritize the required maintenance activity. For example, a pipe that requires 

upsizing classifies ℂ̿𝑃𝐴𝑁4
as exhibiting class four condition ℂ̿𝐶4

and class four criticality ℂ̿𝐶𝑟4
should 

be given a higher priority than another pipe that requires upsizing ℂ̿𝑃𝐴𝑁4
with class four condition 

ℂ̿𝐶4
and class one criticality ℂ̿𝐶𝑟1

.  
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Figure 5-9 Mitigation Model Variables 
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Figure 5-10 Mitigation Results Histogram 

5.4 Verification Exercises 

This section presents and compares all engineer-assigned classifiers ℂ𝐶𝑗
, ℂ𝑃𝑗

, ℂ𝐶𝑟𝑗
 and 

ℂ𝑃𝐴𝑁𝑗
 experts assigned classifiers (target classifiers)  ℂ̅𝐶𝑗

, ℂ̅𝑃𝑗
, ℂ̅𝐶𝑟𝑗

and ℂ̅𝑃𝐴𝑁𝑗
and all model 

predicted classifiers ℂ̿𝐶𝑗
, ℂ̿𝑃𝑗

, ℂ̿𝐶𝑟𝑗
 and ℂ̿𝑃𝐴𝑁𝑗

. The mitigation model results and how municipalities 

may use the PAN, condition, performance and criticality classifiers to make capital project 

decisions are presented. 

The PAN calculated by municipal engineer-assigned variable values would set the priority 

of the assigned mitigation. For example, using MWN data and apply the NBC model; the result 

would be bins that include many pipes for ℂ̿𝑃𝐴𝑁2
= RELINE-REHAB or ℂ̿𝑃𝐴𝑁3

= REPLACEMENT, 

but there are restrictions such as time and resources, which pipe has to go first. The prioritization 

decision would be made by the municipal engineer looking at the criticality classifier ℂ̿𝐶𝑟𝑗
 and 

PAN. The higher criticality classes would be prioritized over lower priority classes. The larger the 

PAN value is, the higher the pipe priority would be. This section explains the automated mitigation 

solution assigned using NBC supervised learning algorithm and prioritizing process using all 

prioritization classifiers and PAN.  
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5.4.1 DO NOTHING Mitigation Classification 

To demonstrate this methodology using the City of London database, a sample pipe is 

chosen for each mitigation classifier ℂ̿𝑃𝐴𝑁𝑗
. There are 15994 pipe sections in the City of London 

that meet the criterion for this classifier. Figure 5-11shows the locations of these pipes. 

 

Figure 5-11 DO NOTHING Mitigation Result 

For example, a 150mm cast iron pipe on Wilking St. is selected that conforms to this 

classification description. Figure 5-12 shows all information in the ArcGIS interface. The engineer 

- assigned condition classifier is ℂ𝐶1
= VERY GOOD, the target classifiers are ℂ̅𝐶1

= VERY GOOD 

and model predicted condition classifier is ℂ̿𝐶1
= VERY GOOD. This pipe did not experience any 

break, and it was constructed in 1977 with more than 25 years of Remaining Service Life. The 

engineer-assigned performance classifier is performance classifier is ℂ𝑃3
= MODERATE, target 

performance classifier is  ℂ̅𝑃2
= GOOD the model predicted performance classifier for this pipe is 

ℂ̿𝐶𝑟1
= GOOD. This pipe is not critical with a ℂ𝐶𝑟1

= ℂ̅𝐶𝑟1
= ℂ̿𝐶𝑟1

= VERY LOW criticality classifier 

for engineer-assigned, target and model predicted. Thus, the mitigation result for all engineer-

assigned, target and model predicted is ℂ𝑃𝐴𝑁1
= ℂ̅𝑃𝐴𝑁1

= ℂ̿𝑃𝐴𝑁1
= DO NOTHING. All pipes with 

DO NOTHING mitigation classes are prioritized at the bottom of the MWN list for any capital 
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activity. The PAN for this Pipe is 220 that is low. Therefore, this pipe does not qualify for any 

capital work activity, as the model confirms. 

 

Figure 5-12 DO NOTHING Example  

5.4.2 RELINE-REHAB Mitigation Classification 

The second mitigation classifier is ℂ̿𝑃𝐴𝑁2
= RELINE – REHAB using trenchless 

technology. The algorithm identified 2435 pipes from the City of London in this category. These 

pipes only need minor maintenance work to extend their service life. Figure 5-13 shows the 

location of these pipes.  

Figure 5-14 shows an example of a pipe identified for ℂ̿𝑃𝐴𝑁2
= RELINE- REHAB. The 

selected pipe is a 150mm cast iron pipe located on Nashua Ave. constructed in 1967. This pipe has 

-4 Remaining Service Life and only break once. This pipe identified as ℂ𝐶5
= POOR by engineers 

and experts ℂ̅𝐶5
= POOR and the model ℂ̿𝐶5

= POOR for condition classifier. The engineer-assigned  

performance classifier is ℂ𝐶3
= MODERATE but expert’s assigned ℂ̅𝐶2

= GOOD performance 

classifier. The model result performance classifier is ℂ̿𝑃2
= GOOD.  
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Figure 5-13 RELINE – REHAB Mitigation Results 

 

 

Figure 5-14 RELINE – REHAB Example 
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This pipe is identified ℂ𝐶𝑟1
= ℂ̅𝐶𝑟1

= ℂ̿𝐶𝑟1
= VERY LOW criticality class by an engineer, 

experts and model. This pipe is identified for ℂ̿𝑃𝐴𝑁2
= RELINE-REHAB by the algorithm. The 

PAN for this Pipe is 430, and according to Figure 5-14 is in the RELINE-REHAB bin. The 

criticality of this Pipe is ℂ̿𝐶𝑟1
= VERY LOW; therefore, this pipe is not in urgent need of 

rehabilitation and will plan after pipes with ℂ̿𝐶𝑟5
= VERY HIGH, ℂ̿𝐶𝑟4

= MODERATELY HIGH, 

ℂ̿𝐶𝑟3
= MEDIUM and ℂ̿𝐶𝑟2

= MODERATELY LOW criticality classes. 

5.4.3 REPLACE Mitigation Classification 

The third classifier in the mitigation model is ℂ̿𝑃𝐴𝑁3
= REPLACE. Figure 5-15 shows 

locations of the pipes that are identified for replacement by the algorithm locations. There are 5512 

pipes from the City of London water network classified in this category. 

Figure 5-16 shows an example of a pipe that is identified for replacement by the model. It 

is a 150mm spun-cast iron located in Riverside Dr. This Pipe is constructed in 1961 and has ten 

years Remaining Service Life. This pipe experienced three breaks in the recent five years. This 

pipe is classified as ℂ𝐶3
= MODERATE condition by municipal engineer, ℂ̅𝐶4

= POOR condition 

by expert and ℂ̿𝐶4
= POOR by the NBC supervised learning algorithm. This pipe has ℂ𝑃3

= 

MODERATE performance class by municipal engineer, ℂ̅𝑃2
=  ℂ̿𝑃2

= GOOD performance classifier 

by experts and the model. This pipe is identified as ℂ̅𝐶𝑟5
= VERY HIGH criticality by experts, but 

engineer -assigned criticality and model result classifier is ℂ𝐶𝑟4
=  ℂ̿𝐶𝑟4

= MODERATELY HIGH 

criticality.  This pipe is classified for replacement by the model with 570 PAN. According to Table 

5-10, this pipe is in the REPLACEMENT bin. This pipe would be prioritized before pipes with 

ℂ̿𝐶𝑟3
= MEDIUM, ℂ̿𝐶𝑟2

= MODERATELY LOW and  ℂ̿𝐶𝑟1
= VERY LOW criticality classes and 

after pipes with ℂ̿𝐶𝑟5
= VERY HIGH criticality classifier. 
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Figure 5-15 REPLACE Mitigation Results 

 

 

Figure 5-16 REPLACE Example 
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5.4.4 UP-SIZE Mitigation Classification 

The last classifier in the mitigation model is ℂ̿𝑃𝐴𝑁4
= UP-SIZE. The model identified 150 

pipes in the City of London MWN in this class. The location of these pipes is shown in Figure 

5-17.  

Figure 5-18 shows a ℂ̿𝑃𝐴𝑁4
= UP-SIZE mitigation class example. The selected example 

pipe is a 150mm cast iron pipe located on Tabbart Terr.  This pipe is constructed in 1956 and has 

the Remaining Service Life of -11 (11 years passed from its designed life). This pipe experienced 

17 breaks in its lifespan and four breaks in the recent five years. This pipe is classified as ℂ𝐶5
= 

ℂ̅𝐶5
= ℂ̿𝐶5

= VERY POOR condition for engineer-assigned, target and model predicted classifiers. 

This pipe is classified as ℂ𝑃5
= ℂ̅𝑃5

= ℂ̿𝑃5
= VERY POOR performance for engineer-assigned, target 

and model predicted classifiers. This pipe appears in a ℂ𝐶𝑟2
= ℂ̅𝐶𝑟2

= ℂ̿𝐶𝑟2
= MODERATELY LOW 

criticality classifier for all engineer-assigned, target, and model predicted classes. The PAN is 790 

and according to Table 5-10 is in the UP-SIZING range. According to this pipe's criticality 

classifier of ℂ̿𝐶𝑟2
= MODERATELY LOW, this pipe would be prioritized after pipes with ℂ̿𝐶𝑟3

= 

MEDIUM, ℂ̿𝐶𝑟4
= MODERATELY HIGH, and ℂ̿𝐶𝑟5

= VERY HIGH model predicted criticality 

classifiers. For instance, the pipe in section 5.4.3 would be planned before the pipe in section 5.4.4. 
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Figure 5-17 UP SIZE Mitigation Results 

 

 

Figure 5-18 UP SIZE Example 
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5.4.5 Pipe Replacement Program Replication 

In section two of this Chapter, the information received from the City of London, including 

the capital programs for watermain replacement planned for 2016 and 2017, is explained. This 

data is used to compare the City of London engineer assigned with the model results to validate 

model prediction and benchmark the proposed methodology for accuracy. 

The City of London water pipe replacement program data is mapped in ArcGIS shown in 

Figure 5-19. The City of London planned watermain replacement for 109 pipes for a total length 

of 16 km in 2016 and 2017. The replacement methodology is the only technology used in the City 

of London. Table 5-11 summarizes the replacement program, and Table 5-12 shows the age of 

pipes selected to be replaced by the City of London engineers. The majority of the selected pipes 

are less than 300mm in diameter. Most of the selected pipes have more than 100 years of age that 

suggests condition attributes such as pipe vintage driving the replacement capital program decision 

by engineers in the City of London. As explained in Chapter 2, pipe age and Remaining Service 

Life are not the same. Therefore, for comparison between pipe age and the pipe's Remaining 

Service Life, Table 5-13 shows the Remaining Service Life of the selected pipes. The majority of 

the selected pipes have less than 15 years of Remaining Service Life, but there are 12 pipes with 

more than 50 years Remaining Service Life.   

Figure 5-20 shows the comparison between the City of London replacement program and 

the mitigation model results. As expected, 85 pipes from the total of 109 selected pipes are also 

chosen for ℂ̿𝑃𝐴𝑁3
= REPLACEMENT by the model. Fourteen pipes are identified for ℂ̿𝑃𝐴𝑁2

= 

REHAB-RELINE by the model and could be REHAB-RELINE instead of REPLACEMENT, and 

ten pipes needed to be ℂ̿𝑃𝐴𝑁4
= UP-SIZED due to their performance issues that are not going to be 

resolve by replacement. This result would confirm the accuracy of the model for the capital plan. 

Figure 5-21, Figure 5-22 and Figure 5-23 show the model predicted condition, performance and 

criticality classifiers ℂ̿𝐶𝑗
, ℂ̿𝑃𝑗

and ℂ̿𝐶𝑟𝑗
for the selected City of London pipes. The priority for 

replacing these pipes is dubious since the criticality model ℂ̿𝐶𝑟𝑗
shows that not all these pipes are 

critical. The model result is calibrated by the expert opinion; the PAN for the selected pipes is 

compared with the total City of London database PAN to determine the priority ranking for the 
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selected pipes by City of London Engineers. Figure 5-24 presents PAN for all City of London 

water pipes. There are 1008 pipes with PAN larger than 500 in the City of London database. Figure 

5-25 presents the PAN for the selected 109 pipes. There are 44 pipes out of 109 selected pipes with 

PAN less than 500. It suggests the city of London has more critical pipes, according to experts, 

that require more immediate attention than the selected 109 pipes by the City of London Engineers.   

 

  Figure 5-19 City of London Replacement Program 

 



 

131 

Table 5-11 City of London Pipe Replacement Program, Pipe Diameter and Pipe Length  

Pipe Diameter 

(mm) 
# of pipe Pipe Length (m) 

D < 300 108 16081.1 

300 < D < 600 0 0.0 

600 < D < 750 1 38.1 

D >750 0 0.0 

Table 5-12 City of London Replacement Program Pipe Age 

Pipe Age (Years) # of pipe Pipe Length (m) 

<50 17 2079 

50-70 13 4098 

70-80 0 0 

80-90 6 1203 

90-100 4 499 

>100 69 8240 

Table 5-13 City of London Replacement Program Remaining Service Life (RSL) 

RSL (Years) # of pipe Pipe Length (m) 

RSL≤ 15 96 14294.2 

15 < RSL ≤ 30 0 0.0 

30 < RSL ≤ 50 1 6.3 

RSL >50 12 1818.7 
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Figure 5-20 City of London Replacement Program vs Mitigation Model Result 

 

Figure 5-21 City of London Replacement Program vs Condition Model Result 

 

Figure 5-22 City of London Replacement Program vs Performance Model Result 
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Figure 5-23 City of London Replacement Program vs Criticality Model Result 

 

Figure 5-24 Municipal Engineer Assigned PAN for all City of London Water pipes 
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Figure 5-25 City of London Engineer Assigned PAN for 109 Pipes Selected for Replacement 

5.5 Conclusions 

Currently, capital program decisions are made manually by very few engineers in the City of 

London. Different professionals would have a different opinion, and water infrastructure suffers 

from bias decisions for a long time.  In this study, a novel analysis on water pipes applied NBC 

supervised learning algorithm on the City of London comprehensive MWN database. This model 

is used to determine capital activities based on every pipe's condition, performance, and criticality 

in the City of London water network. This method is to benchmark and add defence-ability to 

capital asset planning and prioritize maintenance activities. Using a supervised machine learning 

algorithm would help municipalities to use their resources smarter. All models are built using real 

water pipe data from a municipality in southern Ontario. It is tested and validated with a large 

MWN database from the City of London.    

Managing ageing water assets to keep their level of service through their life cycle can add up 

to billions of dollars for every city. Municipalities could use their resources in much-needed capital 

work such as repair, rehabilitation or replacement (Aven, 2016). There is a need to rank the entire 

water network to prioritize necessary capital activities of assets that needed the most attention 

((NRC•CNRC), 2003). Using a machine learning approach to develop a prediction model that can 
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replicate expert opinion (target values) for condition, performance and criticality, and a mitigation 

plan for the entire water system would be a very smart solution addressing the resource usage. This 

methodology would be a revolutionary standard for water linear asset management. This 

methodology would fill the neglected water infrastructure knowledge gap. These models' outputs 

can benchmark the capital work activities and add consistency and defence-ability to capital works 

planning. 

These models significantly improve and automate watermain capital project decision-

making process. The outputs of these models make proactive maintenance and keeping watermain 

service level at entire municipality possible.   
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Conclusions, contributions, and future research  

6.1 General conclusions 

Specific conclusions for various aspects of this research are provided in Chapters 2 to 5 

under their respective conclusion sections. A general summary is presented below.  

The development of a novel approach to a valuable link between strategic, tactical, and 

operational levels to evaluate the watermain system is proposed. The proposed methodology 

automates the capital planning process using AI with NBC with a supervised machine learning 

algorithm that is able to replicate expert opinions. This study would be the first of its kind to 

investigate the feasibility of developing a multiple criteria scoring system and measure the 

weighting factors among different parameters to quantify the condition, performance, and 

criticality of the watermain section based on expert opinion. This methodology is using NBC 

supervised learning algorithm to measure the condition, performance and criticality and assign a 

capital activity to all pipes in the water network based on the expert’s opinion for the first time. 

This methodology provides the prioritization measurements to assigned capital activities. Finally, 

this method could be applied as a decision-making support tool for a smarter, safer, more reliable 

watermain system that saves taxpayers money. 

6.2 Statement of Contributions  

This research makes the following original contribution to the state of knowledge: 

1. A novel Priority Action Number is developed to prioritize the watermain capital planning 

activities.  

2. A scientific methodology is developed to capture and organize expert’s opinions about the 

different variables affecting the water pipe condition, performance, criticality and water 

capital activities. 
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3. A Naïve Bayes Classifier with a supervised machine learning algorithm is used to replicate 

the expert’s opinion to classify all pipes in the MWN for condition, performance and 

criticality. 

4. A Naïve Bayes Classifier with a supervised machine learning algorithm to replicate the 

expert’s opinion for capital work activities and assign mitigation technology to all pipes in 

the MWN  

5. Model application is presented on City of London water network ranking all water pipes 

for condition, performance and criticality and assigned a capital activity for each pipe 

calibrated with expert’s opinion. 

6. Model validation is presented by comparing the City of London water replacement 

program for 2016 and 2017 with the model results. 

Figure 6-1 presents the specific contributions being made in each chapter of this thesis.  
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Figure 6-1: Contributions made in each chapter. 
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6.3 Future research  

This research's most important contribution is that it presents an innovative framework for 

automating capital work planning and assessing the entire MWN in a faster and more efficient 

methodology. However, the application of this framework can be extended to each municipality 

based on their chosen attributes variables.  Supported by the same conceptual framework, each 

municipality may further be extended by including the following ideas:    

1. Extension of the expert’s opinion to a broader geographical area, for example, expand the 

survey to international municipal engineers to calibrate the model with a more 

comprehensive expert opinion 

2. More comprehensive survey questioner to cover additional pipe scenario’s for more clarity 

about expert’s opinion on assigning mitigation technology  

3. Add more variables prioritization and mitigation models to coordinate with other capital 

projects at the same location, such as sanitary sewer,  storm sewer and road work 

4. Improving the model with continuous update time, such as adding an additional dimension 

to the database to predict the classifiers for future years 

5. Improving the variables meaningfulness, such as add hydrological model to condition 

classifier to have more accurate pressure loss and head loss variable values   

6. Coordinating with other models such as Ganjidoost (2020) for capital program 

enhancement to group the assigned capital projects into a capital program to realize the 

cost-saving benefits  
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 Appendix A1 - Survey Questioner 

A 1.1 Survey Part I - Background Information about the Expert Respondents 
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A 1.2 Survey Part II – Ranking Questions For Prioritization Models Target Variable Values 

 



 

163 

 



 

164 

 



 

165 

 



 

166 

 



 

167 

 

A 1.3 Survey Part III – Mitigation Questions – Based on Pipe Scenarios 
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 Appendix A2 - Survey Results and Details 

A 2.1 Results Part I - Background Information about the Expert Respondents 

The first part of the survey gathered information about experts who filled this survey 
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A 2.2 Results Part II – Ranking Questions For Prioritization Models Target Variable Values 

This section is designed to capture expert assigned variable values. 
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A 2.3 Results Part III - Mitigation Model Target Classes 

This section of the survey is designed to captured expert's opinion for capital decision based 

on different pipe scenario using the classes mentioned in section II. 
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B 1 Appendix B1 - Data in ArcGIS Attribute Table 

The below table is colour-coded yellow cells containing information for Condition Model. 

Green cells contained information regarding the Criticality Model. Blue cells contained 

information used in the Performance Model, and Red cells representing information used in the 

Mitigation Model. White cells are containing information that is used in more than one model.  

  
Column 

Title 

Information Contained in this 

Column 
Model Data Source 

1 FID 
Unique ID number for every 

pipe 
General  

Assigned consecutive 

number starting 1 

2 Shape  Line, Point, Shape General  
Water Main System 

shapefile 

3 
OBJECT 

ID 
Pipe ID General  

Water Main System 

shapefile 

4 GIS_Featur 
Longitude and latitude 

information - GIS coordination 
General  

Water Main System 

shapefile 

5 
FRM_NOD

E 
Starting Pipe Node General  

Water Main System 

shapefile 

6 TO_NODE Ending Pipe Node General  
Water Main System 

shapefile 

7 
StreetNum

b 
Pipe location Street number General  

Water Main System 

shapefile 

8 StreetName Pipe location Street name General  
Water Main System 

shapefile 

9 StreetFrom 
Pipe location starting point 

Street name 
General  

Water Main System 

shapefile 

10 StreetTo 
Pipe location ending point Street 

name 
General  

Water Main System 

shapefile 

11 
TEXTLAB

EL 

Pipe Label show is surface - 

diameter mm 
General  

Water Main System 

shapefile 

12 Rehabilita 

Have this Pipe being 

Rehabilitated in Past - Binary 

Value 

This information 

used to assess 

the Mitigation 

Result 

Water Capital Project 

Excel Sheet 

13 
MATERIA

L 
Pipe Material Condition  

Water Main System 

shapefile 
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14 Mat_Fact 
Material Factor Effecting Pipe 

Remaining Service Life 
Condition  

Used Values 

Recommended by 

Estimated Material 

Service Life of Drainage 

Pipe, 2016 

15 
TARGET_

Mat_Fact 

Material Factor Effecting Pipe 

Age from Survey Result 
Condition  Survey Result 

16 Age Pipe Age Condition  

Simple Calculation of 

Current Year subtracting 

Installation year 

17 RSL 
Remaining Service Live of each 

Pipe 
Condition  

Calculated using 

Equation 2-3 from  

Chapter 2 

18 
TARGET_

RSL 

Remaining Service Live of each 

Pipe based on Survey Result 
Condition  Survey Result 

19 
INSTALL_

DA 
Pipe Installation Date Condition  

Water Main System 

shapefile 

20 
Operation_

Cost 

Cost of operating Pipe for 

Remaining Service Life in 

present value - Calculated by 

Operation Unit cost in 2016 

Condition  

Calculated using 2017 

unit rate from Ontario 

Management and 

Planning Manual - 

Capital and Operational 

Cost Section 

21 
Maintenanc

e_Cost 

Maintenance cost of the pipe for 

Remaining Service Life in 

present value - Calculated with 

maintenance unit cost in 2016 

Condition  

Calculated using 2017 

unit rate from Ontario 

Management and 

Planning Manual - 

Capital and Operational 

Cost Section 

22 
REPLC_C

OST 

Replacement cost of the pipe in 

present value - calculated with 

replacement cost unit rate 2016 

Condition  

Calculated using 2017 

unit rate from Ontario 

Management and 

Planning Manual - 

Capital and Operational 

Cost Section 

23 MI Maintenance Index Condition  

Calculated using 

Equation 2-4 in Chapter 

2 
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24 INST_YR Pipe Installation Year Condition  
Water Main System 

shapefile 

25 TotBrks 
Total Number of Breaks 

experienced by this pipe 
Condition  

Water Main Breaks 

History shapefile  

26 
BRKS_FV

YRS 

Number of Breaks each Pipe 

experienced during recent 5 

years 

Condition  
Water Main Breaks 

History shapefile  

27 
Condition_

Score 
Total Condition Score Condition  

Calculated using 

Equation 2-2 in Chapter 

2 

28 

TARGET_

Condition_

Score 

Total Condition Score based on 

Survey Result 
Condition  Survey Result 

29 

Condition_

Score_Leve

l 

Condition Categories from 

assumed scores (Very Poor, 

Poor, Medium, Good, Very 

Good) 

Condition  
Condition Classifiers 

Categories 

30 

TARGET_

Condition_

Score_Leve

l 

Condition Categories from 

Survey Results and Target 

scores (Very Bad, Bad, Medium, 

Good, Very Good) 

Condition  Survey Result 

31 
Condition_l

evel 

Condition Categories from 

assumed scores (1, 2, 3, 4, and 

5) 

Condition  
Condition Classifiers 

numeric Values 

32 

TARGET_

Condition_l

evel 

Condition Categories from 

Survey Results and Target 

scores (1, 2, 3, 4, and 5) 

Condition  Survey Result 

33 TotBrks Pipe number of pipe break Condition  
Water Main Breaks 

History shapefile  

34 SOIL Soil Type Condition  Soil Data shapefile 

35 CorrosionP 
Soil Corrosion Factor affecting 

Pipe Service Life 
Condition  

Used values 

recommended by 

Environmental 

Chemistry Letters, 2017 

36 LEN_M Pipe Length Condition   
Water Main System 

shapefile 

37 RSL_SCR Remaining Service Life Score 
Condition  - 

Mitigation  

Assigned Value Using 

Table 2-2 in Chapter 2 

38 
TARGET_

RSL_SCR 

Remaining Service Life Score 

calculated from survey result  

Condition  - 

Mitigation  
Survey Result 

39 MI_SCR Maintenance Index Score 
Condition  - 

Mitigation  

Assigned score using 

Table 2-6 in Chapter 2 
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40 BRK_SCR 
Break score for number of 

breaks that this pipe experienced  

Condition  - 

Mitigation  

Assigned a value using 

Table 2-4in Chapter 2 

41 
BRK_SCR

_TARGET 

Total Break Score from Survey 

Result 

Condition  - 

Mitigation  
Survey Result 

42 
BRKS_FV

YRS_SCR 

Break score for number of 

breaks that this pipe experienced 

in recent 5 years 

Condition  - 

Mitigation  

Assigned a value using 

Table 2-5 in Chapter 2 

43 

BRKS_FV

YRS_SCR

_TARGET 

Recent 5 years Breaks scores 

from Survey Result 

Condition  - 

Mitigation  
Survey Result 

44 
condition_

model_pred 

Condition Categories from 

Survey Results and Target 

scores (1, 2, 3, 4, and 5) 

Condition  

Result 

Model Generated 

Values 

45 
DIAMETE

R 
Pipe Diameter 

Condition , 

Criticality  and 

Performance  

Water Main System 

shapefile 

46 
Diameter 

Category 

Diameter category according to 

model organization explained in 

PAN Chapter 

Condition , 

Criticality  and 

Performance  

Assigned score from 

Table 2-10 in Chapter 2 

47 TRANS Is this pipe a transmission pipe Criticality  

Gathered information 

from different sources, 

mostly from Water 

System Shapefile 

48 
WaterBodi

e 

Is this pipe crossing a water 

body - Binary Value 
Criticality  Base Maps shapefile 

49 
Under 

Bridger 

Is this pipe crossing a bridge - 

Binary value 
Criticality  Base Maps shapefile 

50 RoadWay 
Is this pipe within right of way - 

Binary Value 
Criticality  Base Maps shapefile 

51 Forest_Gre 
Is this pipe crossing Forest or 

Green belt - Binary Value 
Criticality  Base Maps shapefile 

52 River_cree 
Is this pipe crossing creek or 

river - Binary Value 
Criticality  Base Maps shapefile 

53 LandFill 
Is this pipe crossing a landfill 

area - Binary Value 
Criticality  Base Maps shapefile 

54 WL 
Is this pipe crossing a Wet Land 

- Binary Value 
Criticality  Base Maps shapefile 

55 HWY 
Is this Pipe crossing Highway - 

Binary Value 
Criticality  Base Maps shapefile 

56 RWY 
Is this pipe crossing Rail Way - 

Binary Value 
Criticality  Base Maps shapefile 

57 Easement 
Assessing this pipe require an 

easement - Binary Value 
Criticality  

Pubic Properties and 

Easement information 

Excel Sheets 
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58 
EasementL

o 

Is required easement granted by 

Municipality - Binary Value 
Criticality  

Pubic Properties and 

Easement information 

Excel Sheets 

59 RoadClass 

What is the Road Class of the 

pipe location - how important is 

this pipe 

Criticality  
Road Closer and Road 

Moratorium Information 

60 
HydrantCo

n 

Is this pipe connecting to a Fire 

Hydrant - Binary Value 
Criticality  

Gathered information 

from different sources, 

mostly from Water 

System Shapefile 

61 PipeLocati 
Is this pipe providing service to 

Critical Location - Binary Value 
Criticality  

Critical Location 

shapefile 

62 ImportantC 

Is this pipe providing service to 

important location - Binary 

Value 

Criticality  
Critical Location 

shapefile 

63 
Medical_Se

rvices 

Is this pipe providing service to 

medical building - Binary Value 
Criticality  

Critical Location 

shapefile 

64 
NEW_DE

VELO 

Is this pipe providing service to 

a new development - Binary 

Value 

Criticality  
New Development 

Information 

65 
Developme

nt 

Is this pipe providing service to 

a new development - Binary 

Value 

Criticality  
New Development 

Information 

66 
Criticality_

SCR 
Total Criticality score Criticality  

Calculated using 

Equasion 2-7 in Chapter 

2 

67 

TARGET_

Criticality_

SCR 

Total criticality score from 

survey results and target values 
Criticality  

Calculated Using 

Equasion 2-7 in Chapter 

2 using target values 

68 

Criticality_

Score_Leve

l 

Criticality categories based on 

assumed scores (Very High, 

Moderately High, Medium, 

Moderately Low, Very Low) 

Criticality  
Criticality Classifiers 

Categories 

69 

TARGET_

Criticality_

Score_Leve

l 

Criticality categories based on 

survey result scores (Very High, 

Moderately High, Medium, 

Moderately Low, Very Low) 

Criticality  
Target Criticality 

Classifiers Categories 
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70 
Criticality_

Level 

Criticality Categories from 

assumed scores (1, 2, 3, 4, and 

5) 

Criticality  
Criticality Classifiers 

Numeric Values 

71 

TARGET_

Criticality_

Level 

Criticality Categories from 

survey results (1, 2, 3, 4, and 5) 
Criticality  

Target Criticality 

Classifiers Numeric 

Values 

72 DIA_SCR Diameter Score 
Criticality  - 

Mitigation  

Assigned score using 

Table 4-10 in Chapter 2 

73 
TARGET_

DIA_SCR 

Target Diameter scores from 

survey results 

Criticality  - 

Mitigation  
Survey Result 

74 
ENVMT_S

CR 
Environmental score 

Criticality  - 

Mitigation  

Assigned score using 

Table 2-11 in Chapter 2 

75 

TARGET_

ENVMT_S

CR 

Target Environmental score 

from survey result 

Criticality  - 

Mitigation  
Survey Result 

76 
ACCESS_

SCR 
Accessibility score 

Criticality  - 

Mitigation  

Assigned score using 

Table 2-12 in Chapter 2 

77 

TARGET_

ACCESS_

SCR 

Target accessibility score from 

Survey Result 

Criticality  - 

Mitigation  
Survey Result 

78 
criticality_

model_pred 

Criticality Model Result (1, 2, 3, 

4, and 5) 

Criticality  

Result 

Model Generated 

Values 

79 
PressureCo

mplaints 

If there has been any complaint 

regarding water pressure for this 

pipe and this location - Binary 

Value 

Performance 

Gathered information 

from different sources 

mostly excel sheets 

filled with Operation 

and maintenance field 

forms 

80 
WaterCom

plaints 

If there has been any complaint 

regarding this Pipe - Binary 

Value 

Performance 
Assigned a value using 

Table 2-11 in Chapter 2 

81 TracerWire 

Does this pipe have Tracer Wire 

- According to standard - Binary 

Value 

Performance  

Gathered from several 

sources such as final as-

built drawings and 

maintenance reports 

82 DeadEnd 

Does this pipe located at the 

dead-end - Standard 

conformance (without a loop) - 

Binary Value 

Performance  Water System Shapefile 
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83 

STANDAR

D_CONFO

R 

Is this pipe conforming the latest 

standard for material and size,,,,  
Performance  

Assigned a value using 

Table 2-9 in Chapter 2 

84 f 
Pipe material friction roughness 

value 
Performance  

Used values 

recommended by Fluid 

Mechanics for 

Engineers By David A. 

Chin, 2017 

85 R 
Pipe Length divided by Pipe 

Diameter 
Performance  

Simple calculation of 

dividing pipe length by 

pipe diameter 

86 HL 

Head Loss calculated based on 

the pipe material, diameter, pipe 

length according to the Darcy-

Weisbach equation 

Performance  
Calculated using Darcy–

Weisbach equation 

87 
Performanc

_SCR 
Total Performance score Performance  

Calculated using 

Equation 2-5 in Chapter 

2 

88 

TARGET_

Performanc

_SCR 

Total Performance score based 

on Target values from survey 

results 

Performance  Survey Result 

89 

Performanc

e_Score_Le

vel 

Performance Categories based 

on assumed score (Very Poor, 

Poor, Moderate, Good, Very 

Good) 

Performance  
Performance Classifiers 

Categories 

90 

TARGET_

Performanc

e_Score_Le

vel 

Performance Categories based 

on survey result score (Very 

Poor, Poor, Moderate, Good, 

Very Good) 

Performance  
Target Performance 

Classifiers Categories 

91 
Performanc

e_Level 

Performance Categories from 

assumed scores (1, 2, 3, 4, and 

5) 

Performance  
Performance Classifiers 

Numeric Values 

92 

TARGET_

Performanc

e_Level 

Performance Categories from 

survey results (1, 2, 3, 4, and 5) 
Performance  

Target Performance 

Classifiers Numeric 

Values 

93 
HEAD_LO

SS_SCR 
Head Loss score 

Performance  - 

Mitigation  

Assigned a value using 

Table 2-6 in Chapter 2 
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94 
QUALIT_S

CR 
Water Quality score  

Performance  - 

Mitigation  

Assigned value using 

Table 2-7 in Chapter 2 

95 

TARGET_

QUALIT_S

CR 

Water Quality score based on 

survey result 

Performance  - 

Mitigation  
Survey Result 

96 

performanc

e_model_pr

ed 

Performance Model Result (1, 2, 

3, 4, and) 

Performance 

Results 

Model Generated 

Values 

97 PAN 
Total Priority Action Number 

scores 
Mitigation  

Calculated Using 

Equation 2-1 in Chapter 

2 

98 
TARGET_

PAN 

Total Priority Action Number 

from survey results 
Mitigation  

Calculated Using 

Equation 2-1 in Chapter 

2 with Target values 

99 

MITIGATI

ON_Score_

Level 

Mitigation levels based on PAN 

(Do Nothing, Repair and 

Renovate, Replace, and Upsize) 

Mitigation  
PAN Classifiers 

Categories 

100 

TARGET_

MITIGATI

ON_Score_

Level 

Mitigation levels based on 

Target PAN from survey results 

(Do Nothing, Repair and 

Renovate, Replace, and Upsize) 

Mitigation  
Target PAN Classifiers 

Categories 

101 

MITIGATI

ON_Level_

PAN 

Mitigation Categories from PAN  

(1, 2, 3, and 4) 
Mitigation  

PAN Classifiers 

Numeric Values 

102 

TARGET_

MITIGATI

ON_Level_

PAN 

Mitigation Categories from 

Target PAN  (1, 2, 3, and 4) 
Mitigation  

Target PAN Classifiers 

Numeric Values 

103 
mitigation_

model_pred 

Mitigation Model Results (1, 2, 

3, and 4) 

Mitigation  

Result 

Model Generated 

Values 

104 

Mitigation_

Model_Lev

el 

Mitigation Model Results (Do 

Nothing, Repair and Renovate, 

Replace, and Upsize) 

Mitigation  

Result 

Model Generated 

Values 
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B 2 Appendix B2 - ArcGIS Figures 

 
Figure B2-1 City of London Water Network System Shapefile 
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Figure B2-2 City of London Break Data Point file 
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Figure B2-3 Development and Condo proposal location Shapefile 

 
Figure B2-4 Critical Service Locations Shapefile 
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FigureB2-5 Binary Values  

 

 
Figure B2-6 Binary Value showing Critical Location 
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 Figure B2-7 Variable and Data information in ArcGIS 

 
Figure B2-8 Target values are from Survey Results 
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Figure B2-9 Variables for Condition Model 

 

 
Figure B2-10 All Models Results 
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Figure B2-11 Assigned Condition Level, Target Condition Level and Model Predicted Condition 

Level 

 

 

 
 

Figure B2-12 Condition Categories in ArcGIS Interface 
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Figure B2-13 Performance Variables in ArcGIS Attribute table 

 

 
Figure B2-14 Performance Values in ArcGIS Attribute Table 
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Figure B2-15 Performance Model Result in ArcGIS 

 

 

 
Figure B2-16 Variables for Criticality Model in ArcGIS Attribute Table 
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Figure B2-17 Criticality Values in ArcGIS Attribute Table 

 

 
Figure B2-18 Criticality Model Results in ArcGIS 
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Figure B2-19 PAN and Mitigation Values 

 

 
FigureB2-20 PAN Result in ArcGIS 
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Figure B2-21 Mitigation model Results in ArcGIS 
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B 3 Appendix B3 - The City of London Water Network Data 

 

Figure B3-1 City of London Pipe Information Histograms 
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Figure B3-2 City of London Performance Attributes Histograms 
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Figure B3-3 City of London Criticality Attributes Histograms 

 

 


