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Abstract

This thesis is divided into two parts. The first part studies the response of Unruh DeWitt
detectors in different spacetimes. One of the main goals here is to demonstrate that Unruh
DeWitt detectors can detect spacetime features located far from the detectors themselves
faster than classical detectors. We do so by placing the detectors in massive shells inside
of which the spacetime is flat. We will show that detectors interacting with the quantum
vacuum for a finite amount of time will be able to (i) detect the presence of a spherical
shell, (ii) differentiate between a static shell and a rotating shell, and (iii) detect conical
deficits located outside cylindrical shells. Next, we move on to study how the entanglement
harvested between a pair of detectors is affected by the presence of Dirichlet boundaries
in 1+1 dimensional Minkowski spacetime. Moving reflecting boundaries lead to particle
creation, increasing the noise in the detectors which tends to suppress entanglement. How-
ever we find that in general optimal placement of the detectors from the mirror can instead
enhance the amount of entanglement harvested as compared to global Minkowski space-
time. Accelerating mirrors which approach the speed of light asymptotically give rise to
“information loss” in a toy analogy to the black hole scenario. We show that this leads to
a late time linear increase in the entanglement, similar to the behaviour of the regularised
entanglement entropy of the field.

In the second part of this thesis we will study the possible phase transitions of slowly
accelerating Anti-deSitter black holes. We will do so in the extended phase space, iden-
tifying the cosmological constant Λ as a thermodynamic pressure. The acceleration adds
another work term to the first law, coming from the tension of the cosmic string pulling
on the black hole. We find that while charged slowly accelerating black holes display Van
der Waal’s type phase transitions like their non-accelerating counterparts, this is only true
at low string tensions. At higher string tensions, we find reentrant phase transitions and a
no black hole region in the phase diagram not seen in the non-accelerating case. We will
also consider rotating slowly accelerating black holes. In addition to the reentrant phase
transition in the charged case, rotating black holes can further demonstrate zeroth order
phase transitions. The P − T phase diagrams also present subtle differences between the
two cases.
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Chapter 1

Introduction

This thesis consists of two parts. Part I deals with the detection of spacetime features using
Unruh-DeWitt detectors and Part II studies the thermodynamics of accelerating black holes
in anti-de Sitter spacetimes. These two seemingly disparate topics are ultimately linked
to quantum gravity: the quantum field with which the Unruh-DeWitt detector interacts is
quantized on a curved spacetime, a semi-classical approximation of how gravity interacts
with quantum matter, while the entropy of a black hole is quantum in origin. In this
introductory chapter, I will discuss (i) why a quantum theory of gravity is desirable, (ii)
how research in this direction branched into the two topics studied in this thesis and, (iii)
the specific questions pursued in later chapters.

For the rest of the thesis, we will work in units where the Planck’s constant ~, gravi-
tational constant G, speed of light c and the Boltzmann’s constant kB are all set to unity
and use the convention in which the spacetime metric has the mostly (+) signature.

Why quantum gravity?

The Einstein’s field equations
Gµν = 8πTµν (1.1)

tell us how the curvature of spacetime, described by the Einstein tensor Gµν , is sourced by
the presence of matter, encoded in the energy-momentum stress tensor Tµν . An important
example is provided by the energy-momentum tensor of the electromagnetic (EM) field. At
low energies, quantum corrections from quantum electro-dynamics (QED) are small, hence
the classical EM stress tensor can be used to compute the resulting curvature. However
at higher field strengths and energies, quantum effects need to be taken into account.
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We then face a difficulty due to the inherent incompatibility between general relativity,
where each event has a definite spacetime coordinate, and quantum theory, where events
are probabilistic with no definite coordinates. The incompatibility also expresses itself in
Eq. (1.1): while the left hand side of (1.1) continues existing as an ordinary tensor field,
the stress tensor on the right hand side would be an operator-valued tensor field T̂µν in
the quantum theory. This is the first indication that we need a new theory, one which
describes consistently how gravity interacts with quantum fields.

Going to even smaller scales brings us eventually to the Planck length `p ≡
(
G~
c3

)1/2
,

the characteristic length scale obtained from the three fundamental constants. This is
the scale where all three effects, quantum (~), relativistic (c) and gravity (G) will play
equally important roles in explaining physics i.e., no one effect is dominating over the
others. It is conjectured that at this scale even gravity and hence spacetime itself should
be “quantized”. Unfortunately, the corresponding energy scale is so high - about 15 orders
of magnitude above the scale at which the Large Hadron Collider operates - that we do
not know empirically how quantum gravity behaves, or even if gravity should be quantized
at all. Part of the unrelenting enthusiasm in quantizing gravity (see e.g., [8] for more)
stems from the hope that it would resolve many of the open problems today, including the
singularities and divergences which arise generically respectively in general relativity and
quantum field theory (QFT).

The semi-classical picture

In Part I of this thesis, we will not be quantising gravity and will instead work in the
semi-classical regime where gravity remains classical but quantum fields are quantised on
curved spacetimes. This is expected to be a good approximation describing how gravity
affects quantum matter above the Planck scale. Using this technique, Hawking made the
groundbreaking discovery of black hole radiation in the seminal paper [9]. This discov-
ery sparked off many interesting questions, such as if unitarity of quantum physics should
be preserved, what the source of black hole entropy is and what the end state of black
hole evaporation is [10, 11]. Another important discovery made using this technique was
the Unruh effect (also known as the Fulling-Davies-Unruh effect) [12, 13, 14] — accelerat-
ing observers in the Minkowski vacuum perceive thermal environments with temperatures
proportional to their proper accelerations. The utility of this technique also extends to
cosmological modelling of inflation, dark energy and so on.

What distinguishes this technique from ordinary QFT is the dependence of quantisa-
tion on spacetime geometry and topology, in particular, the background spacetime affects

2



the quantum state of the field and the entanglement present between different regions.
Entanglement in the quantum field [15, 16] is an interesting topic to study not least be-
cause it is a hallmark of quantum theory. On the application side, entanglement between
Hawking radiation and field modes inside the black hole is the source of the information
loss paradox [10, 11]. Holography [17, 18] has also placed entanglement in the spotlight,
with suggestions of entanglement entropy being the source of black hole entropy [19] and
spacetime geometry itself being built up from entanglement structures [20].

However, the study of entanglement in quantum fields is somewhat hampered by the
fact that conventional measures of entanglement such as the von Neumann entropy are
formally divergent. An indirect way of studying entanglement in the field is by allowing
atoms to interact with the field. The entanglement in the field may be “picked up” by
the atoms and we can treat the resulting amount of entanglement between the atoms as
a measure of entanglement present in the field (see e.g. [21] for more discussions). For
example, this method has been used to probe whether entanglement is severed [22] across
a firewall [23] and to study the entanglement present in the quantum vacuum [24, 25].
The use of atoms provides a concrete manifestation of entanglement in a form that we are
accustomed to thinking about and is a convenient way to bypass divergences.

Unruh DeWitt detectors

Indeed, while the theoretical entanglement and algebraic structure of the quantum field
is a rich and interesting subject, they remain as abstract notions unrelated to observer
experiences unless we find ways to probe and extract this information from the field. A
central theme of this thesis is the use of the aforementioned atoms for this purpose. For
example, we will look at how black holes and boundaries impact the amount of entangle-
ment between two atoms. In addition to studying the entanglement present in the field,
we will also demonstrate how vacuum fluctuations of the field, which depend on the global
spacetime geometry, affect the spontaneous excitation probability of these atoms. As a
result these atoms can be used to detect global spacetime features, presenting a “quantum
advantage” in this area over classical detectors.

Following this idea that structures within a quantum field can be operationally probed
using atoms, we consider a popular model known as the Unruh-DeWitt (UDW) model. In
this model the atom interacts with the field through a monopole type coupling. It was first
introduced in [14] to solve the ambiguity of “particles” in curved spacetimes: in general
curved spacetimes there are multiple ways to quantize the field, each having different
particle contents (see Chapter 2 for more details). The excitation probability of the atom
on the other hand is unambiguous. In this sense, the atom is a particle detector, with an
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excitation event corresponding to the detection of a field quantum. The Unruh effect, an
illustration of the quantum vacuum not being vacuous depending on who is observing it,
was first demonstrated using this model.

The versatility of the UDW model makes it useful in studying field properties as it brings
abstract concepts into the realm of quantum mechanical systems. Particle detection and
study of entanglement structure are two well-known examples. Other fundamental concepts
being explored include indefinite causal structure [26] and the existence of a bandlimit in the
field [27]. Meanwhile, the model itself can also be optimised, for example, by considering
derivative coupling [28], finite versus infinite time coupling [29, 30], coupling to fermionic
fields [31, 32], two-level systems versus simple harmonic oscillator systems [33, 34] and so on.
Finally, there are also various techniques that can be used to compute the time evolution
of the detector-field systems, including perturbation theory and evolution through Master
equations. Some of these are reviewed in [35]. These are all examples of active areas of
research on UDW detectors.

As mentioned above, spacetime curvature affects the quantization of the field. For ex-
ample, we would expect the vacuum of Minkowski spacetime to be quite different from that
of a black hole spacetime. Indeed, these differences can be picked up again by UDW detec-
tors, as they respond thermally far from a black hole but remain unexcited in Minkowski
spacetime. In the first part of this thesis, we shall look at more scenarios in which UDW
detectors can be used to detect spacetime features.

Black hole thermodynamics

Besides creating the information paradox [10, 11], the discovery of Hawking radiation also
established black holes as thermodynamic systems. The fact that entropy can be attributed
to a black hole (see below) is an indication that these gravitational systems do have some
quantum degrees of freedom (dof). The central theme of Part II of this thesis is to study
a consequence of this quantumness — phase transitions of black holes.

By making use of the semi-classical method above, Hawking discovered in [36] that black
holes radiate like black bodies at temperatures T proportional to their surface gravity κ
and obey the first law of thermodynamics,

δM = TδS + ΩδJ + ΦδQ , (1.2)

written in terms of the black hole mass M , angular velocity Ω, angular momentum J ,
electric charge Q, electric potential Φ and entropy S. We see that this is the usual ther-
modynamic first law if we interpret M as the internal energy of the black hole. Putting
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back fundamental constants for the moment, we have

T =
~κ

2πckB
, S =

c3A

4G~
, (1.3)

where the appearance of ~ in these formulae indicates a quantum origin for these quan-
tities. The anti-deSitter/conformal field theory (AdS/CFT) correspondence [17, 37, 18]
conjectures a duality between a bulk quantum gravity theory in AdS and a CFT residing
on the boundary of the AdS spacetime. According to the AdS/CFT “dictionary”, the tem-
perature and entropy of the black hole in the bulk is dual to the corresponding properties
of the field on the boundary. Using this correspondence it was shown that the Hawking-
Page transition between AdS black holes and thermal radiation in the bulk is dual to a
phase transition in the boundary, being the confinement/deconfinement [18] transition of
the gauge theory. The possibility that various bulk black hole transitions can find dual
microscopic quantum descriptions on the boundary has ignited much interests in study-
ing thermodynamics of AdS black holes. Comparing the critical phenomenology of black
holes to common thermodynamic systems provides insights on the dof of quantum gravity
and conversely, black hole phase transitions without analogies to common thermodynamic
systems could indicate novel behaviours of strong coupled gauge theories.

The thermodynamic phase space of AdS black holes was extended in [38], where the
authors considered the cosmological constant Λ as a thermodynamic variable. Since the
contribution of Λ to the Einstein’s field equation is equivalent to a fluid stress-energy whose
pressure is given by

P = − Λ

8π
,

the authors proposed to view Λ as a thermodynamic pressure. By considering variations
in Λ, the first law now becomes [38]

δM = TδS + ΩδJ + ΦδQ+ V δP , (1.4)

where the conjugate quantity to P is defined as V ≡ ∂M/∂P |S,J,Q, called the thermody-
namic volume of the black hole (which in general differs from the geometric volume of the
black hole).

The addition of this new pressure-volume term makes the first law look even more like
that of common fluids studied in thermodynamics. Note that the mass of the black hole
should now be interpreted as the enthalpy of the black hole. For a thermodynamic system
having internal energy E, pressure P and volume V , the enthalpy is given by H = E−PV .
As with usual thermodynamic systems, the various black hole variables can be collected
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into an equation of state, expressing P = P (T, V,Q, J). It was shown in [39] that the
equation of state of a charged AdS black hole is similar in many aspects to the equation of
state of a Van der Waals fluid. If we believe fully in the analogy between black holes and
thermodynamic systems, it then follows that charged AdS black holes can undergo first
and second order phase transitions in analogy to the liquid-gas transition of Van der Waals
fluids. Since then, various possible phase behaviours of AdS black holes have been found
(see [40] for a review and more complete references), including reentrant phase transitions
[41, 42], triple points [43] and zeroth order phase transitions [41].

Specific directions

In Part I of this thesis, we will look at how global spacetime features can be picked up
by UDW detectors. To set up notation, we will begin with two introductory chapters,
Chapter 2 on QFT in curved spacetimes and Chapter 3 on UDW detectors. In particular,
we will see how to compute the transition probability of the UDW detector using first order
perturbation theory as well as how to quantify the amount of entanglement between two
detectors. A main observation in these calculations is the dependence of the response of the
detector on the two point correlator of the field, which in turn depends on the background
geometry. This is the source of the detector’s ability to detect spacetime features.

In the following three chapters, we will look at situations in which the UDW detector is
placed in the quantum vacuum of a locally Minkowski environment, achieved by surround-
ing it with massive spherical or cylindrical shells. However outside the shell there may be
non-trivial curvature or topological defect. A classical detector placed inside the shell will
thus not be able to sense what is outside the shell, or even the presence of the shell, if it
is switched on only for a short duration within which no light signal can be transmitted
between the detector and the shell. The first consideration of this scenario appeared in
[44], which investigated if a UDW can detect the presence of a spherical shell. However, the
investigation there stopped at detectors having a Gaussian switching profile located at the
center of the shell. The Gaussian switching allows the detector to interact with the field
for an infinitely long time, even though the interaction is exponentially suppressed at early
and late times. One may thus suspect that a detection of the shell is due to signalling. We
shall see in Chapter 4 that this is not true by considering compact switchings. In addition,
by displacing the detector from the center of the shell, we will see that there is an optimal
position for shell detection.

In Chapter 5, we spice up the problem by adding rotation to the shell. This will drag
inertial frames inside the shell into co-rotation (albeit at a different angular velocity from
the shell) with respect to an inertial observer at infinity. This is the Lense-Thirring frame
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dragging effect, present whenever there is a rotating massive object. This effect is hard
to detect, with the Gravity Probe B experiment taking almost fifty years from its initial
conception to final detection of the frame-dragging of the Earth [45]. It is thus interesting
to investigate whether the UDW detector can be a better detector of this effect with the
help of the quantum field.

The last topic in this series is the detection of a conical deficit present outside a cylin-
drical shell. If we cut out a wedge (like a pizza slice) from a 2 dimensional (2D) circular
disk and paste the two edges together, the resulting 2D manifold will have a conical deficit.
In 4D spacetimes, conical deficits are usually used to model cosmic strings, but can also
be sourced by cylindrical shells. We will study whether this can be detected by a UDW
detector in Chapter 6. The physical difference between this and the previous scenarios is
the flatness of the exterior spacetime. Can the detector detect the conical deficit without
non-trivial curvature effects?

The last chapter of Part I, Chapter 7, studies how the entanglement between two detec-
tors is affected by moving Dirichlet boundaries. Physically a moving Dirichlet boundary
creates particles in what is called the dynamical Casimir effect [46]. This radiation might
be expected to create noise, disrupting the entanglement between the detectors. We shall
see however that this is not the full story. These boundaries can also mimic radiation from
eternal black holes and collapsing shells. In particular, asymptotically null boundaries re-
sult in some kind of information loss analogous to the black hole scenario. How will this
affect entanglement?

We then begin Part II in Chapter 8 with a quick introduction to black hole thermody-
namics in AdS spacetimes. In particular, we review how phase transitions can be inferred
from the free energy against temperature diagrams of a system, as well as recall some
previously observed phase behaviours of black holes. This sets up the stage for studying
the phase transitions of slowly accelerating black holes in Chapter 9. These black holes
belong to a constrained set of the C-metric family. Their accelerations can be thought of
as being due to the pull coming from cosmic strings attached to either the North or South
poles of the black holes. As a result, a new work term λdµ is added to the first law with
µ being the tension of the string and λ its conjugate quantity called the thermodynamic
length. We shall see what this new addition harbours for the phase transition of slowly
accelerating black holes.
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Part I

Probing the Quantum Vacuum
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Chapter 2

Quantum Vacuum in Curved
Spacetimes

Quantum field theory is a unifying computational technique that offers theoretical pre-
dictions for experimental measurements involving matter interacting via three of the four
fundamental forces of nature. These are the electromagnetic, weak and strong interac-
tions. On the other hand gravity, the last of these forces, is geometrical, encoded in the
curvature of spacetime itself. To describe how classical gravity interacts with the other
three quantum forces, one is led to study quantum field theory in curved spacetimes. In
this chapter, some concepts of this theory that are relevant for the later chapters will be
introduced. These include (i) the classical scalar wave equation, (ii) the Klein-Gordon
inner product, (iii) definition of a vacuum state via canonical quantization and (iv) the
two point correlator or, the Wightman function, of the field. The description here mainly
follows the book [47] in which more details can be found.

2.1 Classical Scalar Field

As the name suggests, quantum field theory deals with quantization of classical fields and
therefore we start by introducing a classical field on a curved spacetime. In this thesis, we
will only be concerned with a real, free, massless scalar field, which is a simple toy model
for more realistic fields such as fermionic fields involved in quantum electrodynamics.

LetM denote our (3 + 1)-dimensional globally hyperbolic spacetime and let gab denote
the Lorentzian metric tensor. The scalar field that we are interested in is a function
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Φ :M→ R satisfying the equation of motion

∇a∇aΦ = 0, (2.1)

where ∇ is the covariant derivative associated with gab. In a coordinate basis xµ, the
equation of motion is written as

1√
−g

∂µ(
√
−ggµν∂νΦ), (2.2)

where g is the determinant of the metric in this basis.

The equation of motion above can be derived by varying the action,

S[Φ] = −
∫
M
dt d3x

√
−g1

2
gab∂aΦ∂bΦ, (2.3)

and requiring δS
δΦ

= 0. In writing down the action S[Φ], we have specialised to a coordinate
(t,x), with x = (x1, x2, x3), such that the hypersurfaces Σt of constant t are Cauchy
surfaces. This choice is possible due to global hyperbolicity. From the action, we define
the canonical momentum conjugate to the field to be the function Π := δS

δ(∂tΦ)
. We are now

ready to quantize the theory.

2.2 Canonical quantization

Canonical quantization proceeds by promoting the field and its conjugate momentum to
operators-valued fields Φ̂(x) and Π̂(x), x ∈ M, acting on some Hilbert space HΦ, and
satisfying the canonical commutation relations,

[Φ̂(t,x), Π̂(t,x′)] = iδ3(x− x′) , [Φ̂(t,x), Φ̂(t,x′)] = 0 , [Π̂(t,x), Π̂(t,x′)] = 0. (2.4)

To define the Hilbert space HΦ on which these operators act, let S denote the space of
complex solutions to the scalar wave equation. Further, for any two φ1, φ2 ∈ S, define the
Klein-Gordon inner product between these two solutions to be

(φ1, φ2) := i

∫
Σt

d3x
√
hna(φ∗1∂aφ2 − φ2∂aφ

∗
1), (2.5)

where na is the unit normal to Σt, h is the determinant of the metric induced on Σt and
∗ denotes complex conjugation. This definition is independent of which time slice Σt is
chosen.
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Notice that if (φ, φ) > 0 then (φ∗, φ∗) = −(φ, φ) < 0 and furthermore, (φ, φ∗) = 0
i.e., the inner product is not positive definite, and a solution is orthogonal to its complex
conjugate. We can thus find orthonormal bases of the form {uk, u∗k}, where k is the index
(may be continuous) enumerating the complete basis, such that (uk, uk) > 0 i.e., the modes
uk have positive definite Klein-Gordon inner product. Given such a basis, we define the
creation and annihilation operators â†k, âk associated with these field modes to be the
“expansion coefficients” of the field operator in terms of these modes:

Φ̂ =
∑
k

âkuk + â†ku
∗
k . (2.6)

The canonical commutation relations in Eq. (2.4) then implies the following commutation
relations for these operators:

[âk, a
†
k′ ] = δkk′ , [âk, ak′ ] = [â†k, a

†
k′ ] = 0 . (2.7)

We can then define a vacuum state |0〉 of the field to be the normalised state annihilated
by all the annihilation operators:

âk|0〉 = 0 ∀k , 〈0|0〉 = 1. (2.8)

A state of the form
â†k1a

†
k2
...a†kN |0〉 , (2.9)

is called an N -particle state. The Hilbert space is then chosen to be the space spanned
by |0〉 and the N -particle states, for N ∈ N. The condition (uk, uk) > 0 ensures that the
states in this Hilbert space has positive definite inner product, for example,

||â†k|0〉||
2 = 〈0|âkâ†k|0〉 = 〈0|[âk, â†k]|0〉 = 1 . (2.10)

We thus have a free massless scalar field quantum theory. We note in passing that the
above definition of the vacuum state is not unique since one is free to choose another basis
to expand the field operator, giving rise to a different set of annihilation and creation
operators.

2.3 Wightman Function

The final quantity to introduce in this chapter is the two-point correlator of the field, which
is also known as the Wightman function,

W (t,x; t′,x′) := 〈0|Φ̂(t,x)Φ̂(t′,x′)|0〉 . (2.11)
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By substituting expression (2.6) for the expansion of the field into the above, we see that
the Wightman function can be written as a sum over the product of the field modes and
their complex conjugates:

〈0|Φ̂(x)Φ̂(x′)|0〉 =
∑
i,j

〈0|
(
âiui(x) + â†iu

∗
i (x)

)(
âjuj(x

′) + â†ju
∗
j(x
′)
)
|0〉

=
∑
i,j

〈0|âiui(x)â†ju
∗
j(x
′)|0〉

=
∑
i,j

ui(x)u∗j(x
′)〈0|[âi, â†j]|0〉

=
∑
i

ui(x)u∗i (x
′) . (2.12)

These are all the tools we need from quantum field theory in curved spacetime. In the
next chapter, we will be making use of these as we study Unruh-DeWitt detectors.

12



Chapter 3

Unruh-DeWitt Detectors

3.1 Operational meaning to particle detection

We have briefly mentioned in the previous chapter that the definition of vacuum states of
a quantum field in curved spacetimes is not unique. This is due to the fact that in general
curved spacetimes, there is no preferred way to choose the basis {uk, u∗k} with which to
expand the field operator. As a result, two vacua |0〉a and |0〉b defined with respect to two
different set of creation and annihilation operators {âk, â†k} and {b̂k, b̂†k} will in general not

agree on the expectation value of number operators, for example, a〈0|â†kâk|0〉a = 0, but

a〈0|b̂†kb̂k|0〉a 6= 0 in general. This makes the question “what is the total number of particles

in the vacuum |0〉a ?” ambiguous, since
∑

k a〈0|â†kâk|0〉a 6=
∑

k a〈0|b̂†kb̂k|0〉a.

An operational way of detecting particles is by using a particle detector model first
introduced by Unruh [14] and later simplified by DeWitt [48]. This Unruh-DeWitt (UDW)
detector is a quantum mechanical system with two energy states, moving throughM with
some trajectory x(τ) parametrised by the detector’s proper time τ . As it moves along this
trajectory, the detector interacts with the field via a monopole coupling (see below). If the
detector, starting from its initial ground state |0〉D of energy E0 = 0, makes a transition to
the excited state |1〉D of energy E1 = Ω > 0 after interacting with the field, we say that a
quantum of energy E1−E0 = Ω has been detected. This simple model has most famously
been used by Unruh to demonstrate the Unruh effect in which the transition probability
per unit time of a detector uniformly accelerating through the Minkowski vacuum at proper
acceleration a has the same functional dependence on Ω as a detector immersed in a thermal
state of the field at temperature T = 2π/a. In layman’s terms, a uniformly accelerating
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detector through vacuum sees thermal radiation. We shall also see other applications of
the model in the subsequent chapters.

In this chapter we will review the UDW detector with a “switching function” (see for
example [49, 29, 30]). The switching function allows us to switch on and off the detector in
a smooth manner, avoiding possible divergences in the detector response arising from sharp
cut-offs [49, 29, 30]. We will be looking at how the transition probability of a single detector
can be computed using first order perturbation theory and also at the entanglement that
can be generated when we have two detectors.

3.2 Transition probability of a single UDW detector

Let m̂(τ) := eiĤ0τm̂ e−iĤ0τ denote the monopole moment of the UDW detector in the
interaction picture, where m̂ is the Schrodinger picture monopole moment operator and
Ĥ0 = Ω|1〉D〈1|D is the free Hamiltonian of the detector. The interaction between the
detector and the quantum field is described by the following interaction Hamiltonian:

ĤI(τ) = λχ(τ) m̂(τ) Φ̂(x(τ)). (3.1)

In this expression λ is a small coupling constant, Φ̂(x(τ)) is the field operator evaluated
at the spacetime point of interaction with the detector and 0 ≤ χ(τ) ≤ 1 is a continuous
switching function that allows us to the vary the strength of the interaction in time.

Let us initialize the detector-field system at τ = −∞ in the state |0〉D|0〉. The final state
of the system, which we denote as |f〉, can be obtained using the unitary time evolution
operator Û :

Û = T exp{−i
∫ ∞
−∞

dτĤI(τ)} , (3.2)

|f〉 = Û |0〉D|0〉 . (3.3)

We have used the symbol T to represent time ordering of operators, defined as

T Ô1(t1)Ô2(t2) :=

{
Ô1(t1)Ô2(t2) , if t2 < t1 ,

Ô2(t2)Ô1(t1) , if t1 < t2 ,
(3.4)

for any two time dependent linear operators Ô1 and Ô2.
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Assuming that the interaction between the detector and the field is weak so that λ� 1,
we can expand the exponential in Eq. (3.2) as,

Û = Î − i
∫ ∞
−∞

ĤI(τ)dτ +
(−i)2

2

∫ ∞
−∞

∫ ∞
−∞
T ĤI(τ1)ĤI(τ2)dτ1dτ2 +O(λ3) . (3.5)

Substituting this into Eq. (3.3), we can compute the final state |f〉 to any order in λ.
However, we shall only do this to leading order and care only about the final state of the
detector by tracing over the field Φ. After a straightforward computation, the final reduced
state of the detector ρ̂D = TrΦ(|f〉〈f |) is of the form,

ρ̂D =

(
1− PD 0

0 PD

)
+O(λ4) , (3.6)

in the ordered basis {|0〉D, |1〉D}. A measurement of the detector in this basis will find the
detector in the excited state |1〉D with probability PD. This excitation probability takes
the form,

PD = λ2 |D〈0|m̂(0)|1〉D|2F(Ω) . (3.7)

The factor λ2 |D〈0|m̂(0)|1〉D|2 in front depends only on the internal structure of the detector
and neither on the trajectory nor on the field. For this thesis, we shall take

m̂(τ) = e−iΩτ |0〉D〈1|D + eiΩτ |1〉D〈0|D , (3.8)

which conveniently gives |D〈0|m̂(0)|1〉D|2 = 1. The non-trivial part of the transition prob-
ability is the second term,

F(Ω) =

∫ ∞
−∞

dτ

∫ ∞
−∞

dτ ′χ(τ)χ(τ ′)e−iΩ(τ−τ ′)W (x(τ);x(τ ′)) , (3.9)

which is called the response function of the detector. It depends on the switching of
the detector through χ(τ), the energy gap of the detector through Ω and the spacetime
background through W (x(τ);x(τ ′)), which is the Wightman function evaluated along the
detector trajectory. When studying the dependence of F on Ω it is customary to consider
both Ω ≥ 0 and Ω < 0. The latter case physically corresponds to initiating the detector in
the excited state. We shall be studying how the response function of the UDW depends
on Ω and global features of the spacetime in the next chapter.
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3.3 Entanglement harvesting with a pair of UDW de-

tectors

3.3.1 Final reduced state

The above results can be generalized easily to the case of two UDW detectors, labeled A
and B respectively, interacting independently with the quantum vacuum. In this case our
Hilbert space becomes HA ⊗ HB ⊗ HΦ, where Hj denotes the Hilbert space of detector
j ∈ {A,B}. Detectors A and B do not interact directly with each other and the interaction
Hamiltonian HS,I of the full system is given by,

ĤI,S(t) = ĤI,A(τA(t))
dτA
dt

+ ĤI,B(τB(t))
dτB
dt

, (3.10)

ĤI, j(τj) = λjχj(τj)ûj(τj)Φ̂(xj(τj)) . (3.11)

The terms λj, χj, m̂j, xj and τj in the above have the obvious interpretation of being the
coupling constant, the switching function, the monopole moment operator, the spacetime
trajectory and the proper time respectively, of detector j, while t is an arbitrary time
coordinate. For this thesis, we will consider only the case λA = λB and |A〈0|m̂A(0)|1〉A|2 =
|B〈0|m̂B(0)|1〉B|2 = 1, that is, the detectors couple to the field with the same strength, and
have the same internal structures given by Eq. (3.8).

Initializing the total system in the overall ground state |0〉S := |0〉A|0〉B|0〉, we can
compute the final reduced state ρ̂AB of two detectors using the same procedure as before:

ρ̂AB = TrΦ

(
ÛS|0〉S〈0|SÛ †S

)
, (3.12)

ÛS = e−iT
∫∞
−∞

{
ĤI,A(τA(t))

dτA
dt

+HI,B(τB(t))
dτB
dt

}
dt , (3.13)

where the dummy integration variable t in the second expression above is a common time
variable used to parametrize both detectors. This can once again be computed using
perturbation theory.

The resulting ρ̂AB when written in the canonical basis {|0〉A|0〉B, |0〉A|1〉B, |1〉A|0〉B, |1〉A|1〉B}
takes the following form:

ρ̂AB =


1− PA − PB 0 0 X

0 PB C 0
0 C∗ PA 0
X∗ 0 0 0

+O(λ4) . (3.14)

16



As the notation suggests, the terms Pj are the excitation probabilities of the two detectors,
given by

Pj = λ2

∫ ∞
−∞

dτ

∫ ∞
−∞

dτ ′χj(τ)χj(τ
′)e−iΩ(τ−τ ′)W (xj(τ);xj(τ

′)) . (3.15)

Meanwhile, the term X is related to the quantum correlation between the two detectors
and it reads

X = −λ2

∫ ∞
−∞

dτA
dt

dt
dτ ′B
dt′

dt′χA(τA)χB(τ ′B)e−i(ΩAτA+ΩBτ
′
B)

×
[
θ(t′ − t)W (xA(τA);xB(τ ′B))) + θ(t− t′)W (xB(τ ′B);xA(τA)))

]
, (3.16)

where θ(x) is the Heaviside step function, and to reduce clutter, we have written τA(t) as
τA and τ ′B(t′) as τ ′B.

Finally, the last term C is related to the classical correlation between the detectors (see
for example [50]). We will not be using this term in this thesis but for completeness, it is
given by,

C = λ2

∫ ∞
−∞

dτA dτB χA(τA)χB(τB)e−i(ΩAτA−ΩBτB)W (xA(τA);xB(τB))) . (3.17)

3.3.2 Measuring entanglement

The addition of a second detector into the picture allows us to indirectly probe the entan-
glement present in the quantum vacuum. Quantum entanglement is what sets quantum
and classical systems apart. It enables quantum systems to exhibit measurement statistics
that are impossible for what we perceive as classical systems, such as those admitting a
local hidden variable model (see for example [51]). While the theory of entanglement is well
understood in quantum mechanics, it is harder to describe in the case of quantum fields. As
a start, it is already a non-trivial task to to define the parties that are entangled, at least
using the rudimentary materials presented in the previous chapter, since we apparently
only have the Hilbert space of the single system Φ. Moreover, when we try to generalize
usual entanglement measures, such as the von Neumann entropy, to quantum fields, we
find that they are usually divergent and requires additional regularization techniques to
give useful results [15].

However, two causally separated UDW detectors can become entangled through their
interaction with the quantum field. This is due to the entanglement present between the
spacetime regions where the two detectors were switched on with the entanglement in the
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field being picked up by the detectors. Treating the amount of entanglement between the
detectors as a measure of the entanglement in the field brings us back to the familiar realm
of studying entanglement between two qubits.

In this realm, we have ready measures to quantify the amount of entanglement present
in a state. Formally, an entanglement measure is a non-negative, real-valued function
on a density operator, which does not increase under local operations on, and classical
communication between, subsystems; it is zero if the state is separable. In our specific case
where HA ⊗HB = C2 ⊗ C2, a convenient entanglement measure to use is the concurrence
C, which is in fact zero if and only if the state is not entangled [52].

Given a density operator ρ̂ acting on C2 ⊗ C2, its concurrence is defined as

C(ρ̂) := max[0, λ1 − λ2 − λ3 − λ4] , (3.18)

where λ1 ≥ λ2 ≥ λ3 ≥ λ4 are the square roots of the eigenvalues of ρ̂ ˆ̃ρ with ˆ̃ρ := (σ̂y ⊗
σ̂y) ◦ ρ̂∗ ◦ (σ̂y ⊗ σ̂y), σ̂y being the Pauli-y operator and ρ̂∗ being the adjoint to ρ̂.

Despite this complicated definition, computing the concurrence for the resultant state
of the two detectors gives a simple expression,

C(ρ̂AB) = 2 max[0, |X| −
√
PAPB] . (3.19)

Therefore, we see that the state is entangled if and only if |X| >
√
PAPB. A mnemonic

for remembering this result is: the detectors are entangled if and only if correlation (|X|)
beats noise (

√
PAPB).

In summary, a UDW detector is a qubit that interacts with the quantum field via a
monopole coupling. The excitation probability PD of the detector depends on the space-
time and the trajectory of the detector through the Wightman function of the field. When
we have a pair of detectors, we can heuristically view the resultant entanglement between
them as being a measure of the amount of entanglement in the field. For our bipartite
qubit system, the concurrence C provides a measure of entanglement. The detectors are
entangled if and only if C ≥ 0. The generation of entanglement between initially unen-
tangled detectors through interacting with the quantum field has come to be known as
entanglement harvesting [53]. We shall look at how entanglement harvesting is affected by
moving Dirichlet boundaries in a later chapter.
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Chapter 4

Detection of Spherical Shell

We have briefly discussed in the previous chapter how the response of UDW detectors has
been used to demonstrate the Unruh effect. Since then, UDW response has been studied
in a variety of contexts. These include for example, studying the response in black hole
spacetime [54], illustrating the sensitivity to spacetime topology [55, 56, 57, 58] and energy
densities [59]. More examples and references can be found in the review [35].

We shall see in this chapter and the subsequent two chapters that a detector interacting
locally with the quantum field for a finite amount of time can discern “global features” of
M by extracting information from the quantum field. For example, we know from first
year courses that the net gravitational field inside a spherical shell is identically zero. In
the language of general relativity, the spacetime inside the shell of radius R is described by
the Minkowski metric and is locally flat. However, the spacetime is not globally flat as it is
described by the Schwarzchild metric outside the shell. In this chapter, we will demonstrate
how the presence or absence of the shell affects the response of a UDW detector placed at
the center of the shell. This problem was first considered in [44]. We will mostly follow
the set-up there, but instead of using a Gaussian switching function as in [44], we will use
a compact switching to ensure that the detector does not communicate with the shell.

This chapter is based on the work done in [1].

4.1 Junction conditions

In each of the scenarios to be considered in this and the next two chapters, the spacetime
considered will consist of a timelike hypersurface Σ ⊂ M such that the metric on either
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Figure 4.1: Describing junction conditions. Spacetimes comprising of two distinct regions
joined at a hypersurface Σ need to satisfy the two junction conditions in the main text.
The two distinct regions are associated with metrics g+

ab and g−ab respectively and n is the
unit normal to Σ pointing from − to +. The first junction condition says that the induced
metric hij on Σ from both g+

ab and g−ab must agree.

sides of Σ belong to different families (see Fig. 4.1). Let us denote the two sides of Σ with
the ± sign and use a superscript ± to represent tensors in either sides of Σ. For example,
metric on the + side of Σ will be denoted as g+

ab. In order for these spacetimes to satisfy
the Einstein equations in a distributional sense, the following two junction conditions need
to be satisfied on Σ (see e.g. [60]).

The first junction condition states that the metrics induced on either side of Σ have to
agree:

[hij] = 0 , (4.1)

where hij is the three dimensional metric induced on Σ by gab, and [T ] := T+|Σ − T−|Σ
for any tensor T . We are also using {i, j, ...} as tensor indices on Σ and {a, b, ...} as tensor
indices on M.

The second junction condition specifies the stress-energy tensor Sij on Σ:

Sij = − 1

8π

(
[Kij]− [K]hij

)
, (4.2)

where Kij is the pull back of the extrinsic curvature of Σ to Σ and K is its trace.

In addition to these two junction conditions on the metric and the extrinsic curvature,
we will also require two physical boundary conditions on a solution Φ(x) to the classical
scalar field equation. These are the continuity of Φ(x) and its normal derivative across Σ,

[Φ(x)] = 0 (4.3)

[∇nΦ(x)] = 0 , (4.4)
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where n is the unit normal to Σ oriented as in Fig. 4.1.

4.2 Scalar field modes

The spacetime describing a spherical shell is obtained by “gluing” together the Schwarzchild
spacetime outside the shell with the flat spacetime inside the shell. Using (t, r, θ, φ) as our
coordinates, the surface Σ where the two metrics are matched is the r = R surface. The
metric inside the shell, i.e., r ≤ R, is the flat Minkowski metric,

ds2,− = −f(R)dt2 + dr2 + r2(dθ2 + sin2 θdφ2), (4.5)

while

ds2,+ = −f(r)dt2 +
1

f(r)
dr2 + r2(dθ2 + sin2 θdφ2), (4.6)

for r ≥ R. In addition, we have f(r) = 1 − 2M/r, with M being the mass and R the
radius of the shell. Clearly, this metric satisfies the first junction condition Eq. (4.1) since
both ds2,± induces the metric ds2

Σ = −f(R)dt2 + R2(dθ2 + sin2 θdφ2) on Σ. The second
junction condition determines the stress-energy tensor of the shell. We will not make use
of the stress-energy of the shell but we review it briefly in Appendix A.

Using this metric the massless scalar field Eq. (2.2) admits separable solutions of the
form

Φω`m(t, r, θ, φ) =
1√
4πω

e−iωtYm`(θ, φ)ψω`(r) . (4.7)

These modes are indexed by (ω, `,m), with ω ∈ (0,∞), ` ∈ Z andm = −`,−`+1, ..., `−1, `.
The functions Ym` are the spherical harmonics normalized as∫

S2

Y ∗m1`1
Ym2`2dA = δm1,m2δ`1,`2 .

Substituting the ansatz Eq. (4.7) into the field equation gives an ODE that ψω`(r) needs
to satisfy:

ω2ψω`(r) +
α

β r2

d

dr

(αr2

β

d

dr
ψω`(r)

)
−
(
α2`(`+ 1)

r2

)
ψω`(r) = 0, (4.8)
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where the functions α(r) and β(r) are,

α(r) =

{√
f(R), r ≤ R√
f(r), r > R

,

β(r) =

{
1, r ≤ R

1/
√
f(r), r > R .

(4.9)

In other words, ψω`(r) is governed by two different ODEs on either sides of the shell. Inside
the shell the equation explicitly reads

ω2

f(R)
r2ψω` + 2r

d

dr
ψω` + r2 d

2

dr2
ψω` − `(`+ 1)ψ = 0, (4.10)

whose solutions are spherical Bessel functions of the first kind, j`(ω̃r), where ω̃ = ω√
f(R)

.

Meanwhile, the equation outside the shell is more complicated and has to be determined
numerically.

In order to find the numerical solution to the second order ODE, we impose the two
boundary conditions (4.3) and (4.4) at r = R. The first of these, continuity of the radial
solution, gives

ψω`(R
+) = j`(ω̃R).

Meanwhile the second condition gives[
α(r)

β(r)

d

dr
ψω`

]
= 0 , (4.11)

where we note that the discontinuity in the coefficient β(r) across the shell implies a jump
discontinuity in d

dr
ψω`. These two boundary conditions then uniquely determine the radial

solution outside the shell for each {ω, `}.
Finally, to normalize the solution, we will follow the scheme presented in [44]. First,

the radial equation (4.8) for r > R can be rewritten in terms of a new coordinate r? such
that d/dr? = α

β
d/dr. Further, defining ρω` = rψω`, the radial equation takes the familiar

form,
d2

dr?2
ρω` + (ω2 − V (r))ρω` = 0 , (4.12)

where

V (r) =
α2`(`+ 1)

r2
+

1

r

α

β

d

dr

(
α

β

)
. (4.13)
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Asymptotically, V (r)→ 0 as r →∞ and hence ψω` ∼ sin(ωr?)/r?. Next, let the normalized
radial solution be written as ψω`(r

?) = Aω`ψ̃ω`(r
?). The solution (4.7) will be normalized

with respect to the Klein-Gordon inner product if we choose the normalization constant Aω`
such that Aω`ψ̃ω`(r

?) → 2 sin(ωr?)/r? as r? → ∞ [44]. This fixes the boundary condition
at infinity for the determination of Aω`.

We have thus determined the necessary mode solutions, from which the Wightman
function of the field can be obtained. Note that the mode solution in the region r < R
differs from the Minkowski modes only through the normalization constant Aω`. This
difference will allow a UDW detector placed inside the shell to detect the presence of the
shell. We remind the reader that the normalization constant in the Minkowski case is 2ω,
giving the full normalized solution, ΦM

ω`m(t, r, θ, φ) =
√

ω
π
e−iωtYm`(θ, φ)j`(ωr) [44].

4.3 Response function

A classical observer feeling no gravitational field can find out if he is in empty space or
in a large spherical shell by sending out a laser beam – a reflected signal will indicate the
presence of a shell. Can a UDW detect the shell faster? We can answer this by choosing
a compact switching function

χc(τ) =

{
cos4(ητ), − π

2η
≤ τ ≤ π

2η

0, otherwise
(4.14)

Thus the interaction switches on and off continuously and takes place between the finite
time interval τ ∈ (− π

2η
, π

2η
) for some η > 0. We denote this duration as ∆τ = π/η. We

have chosen this particular form of the switching because it has a shape similar to the
Gaussian switching function χG used in [44] (see Fig. 4.2),

χG(t) = e−
t2

2σ2 . (4.15)

However, χG has an infinite support, even though it is exponentially suppressed away from
t = 0. As a result, one may suspect a detection of the shell as being a result of (never
ending) signalling between the detector and the shell if χG were used. We shall see below
that the UDW detector can detect the shell before a light signal can bounce from the shell
back to the detector by using the compact χc.

Let |0〉 denote the field vacuum such that âω`m |0〉 = 0, where the annhilation operators
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Figure 4.2: Plot of Gaussian χG and χc switching. Here, the parameters used are
η = 1.2, σ = 3

8η

√
π
2
. These parameters give the same area under the graph for the two

switching profiles. Although both look similar, χc is compactly supported. The interaction
duration between the detector and the quantum field can thus be made truly shorter than
the light-crossing time of the shell.

are associated with the mode solutions in Eq. (4.7)1. The Wightman function evaluated
along the detector trajectory is given by the mode sum,

W (x(τ1);x(τ2)) =
∑
`,m

∫ ∞
0

dωΦω`m(x(τ1))Φ∗ω`m(x(τ2)) . (4.16)

From the previous section, we have seen that the normalized mode solutions are given by

Φω`m =
1√
4πω

e−iωtY`m(θ, φ)Aω`j`(ω̃r)

inside the shell.

We are interested in studying how the response of the detector differs when placed
respectively in a spherical shell and globally flat Minkowski spacetime. A simple choice

1This corresponds to the vacuum with respect to an observer located at infinity. We note that this
vacuum also corresponds to that of an inertial observer inside the shell, since the mode solutions in
Eq. (4.7) are positive frequency with respect to the proper times of both these observers – the Bogoliubov
transformation between the inside and outside modes does not mix creation and annihilation operators.
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for the trajectory x(τ) of the detector that will allow us to do this is the static trajectory
with r = rd, θ = π/2, φ = 0. In this case, noting that t = τ/

√
f(R), we have

F =

∫ ∞
−∞

dτ1

∫ ∞
−∞

dτ2 χc(τ1)χc(τ2)e−iΩ(τ1−τ2)
∑
`m

∫ ∞
0

dωΦω`m(x(τ1))Φ∗ω`m(x(τ2))

=

∫ ∞
−∞

dτ1

∫ ∞
−∞

dτ2 χc(τ1)χc(τ2)e−iΩ(τ1−τ2)
∑
`m

∫ ∞
0

dω

4πω
e−iω̃(τ1−τ2)|Y`m(

π

2
, 0)|2|Aω`|2|j`(ω̃ rd)|2

=
∑
`m

∫ ∞
0

dω

4πω

∫ ∞
−∞

dτ1

∫ ∞
−∞

dτ2 χc(τ1)χc(τ2)e−i(Ω+ω̃)(τ1−τ2)|Y`m(
π

2
, 0)|2|Aω`|2|j`(ω̃ rd)|2 ,

(4.17)

for the response function of the detector. This expression can be further simplified by
integrating over the τ1 and τ2 variables, which amounts to performing Fourier transforms
on the switching functions. Denoting the Fourier transform of the switching function as

χ̂c(k) =
1√
2π

∫ ∞
−∞

dτχc(τ)e−ikτ , (4.18)

the response function (4.17) simplifies to

F =
∑
`m

∫ ∞
0

dω

2ω
|χ̂c (Ω + ω̃)|2 |Aω`|2|Y`m(

π

2
, 0)|2|j`(ω̃rd)|2 , (4.19)

upon using the fact that χ̂c(−k) = χ̂c(k) for a real switching function. Explicitly, we have

χ̂c(k) =

√
2

π

24η4 sin πk
2η

64η4k − 20η2k3 + k5
. (4.20)

4.4 Results

Let us now look at how the presence of the shell affects the response of a UdW detector.
We will use FS to denote the response of a detector placed in a spherical shell, and FM to
denote its response in global Minkowski space.
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Figure 4.3: Detector response against Ω. Top: Plot of F against Ω for both the shell
(yellow) and globally flat Minkowksi spacetime (blue) for M = 0.5, R = 3 , η = 1.2, rd = 0.
The two cases are indistinguishable on the scale of this figure, but the differences can be
studied by looking at the bottom figure. Below: Plot of the difference FS −FM against Ω.
The results obtained using χc and χG (σ = 3

8η

√
π
2
) are qualitatively similar.
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Figure 4.4: Plot of FS −FM against rd. This plot is obtained by setting Ω = 0.5 ,M =
0.5, R = 3 (black, dashed) and η = 0.9, 1, 1.1, 1.2. The peaks indicate the optimal rd inside
the shell at which the detector, for a given η, can best detect the presence of the shell.
The vertical dashed lines indicate, for a given η, the causal boundary of the interaction
duration: to the left of these lines this duration is less than the light-travel time across the
shell.

Dependence on Ω

Fig. 4.3 shows a plot of F against Ω. In the figure, Ω is allowed to take on negative
values. Recall from the previous chapter that this represents a detector starting from
the state |1〉D with F indicating de-excitation probability. From the figure, we see that
the detector is indeed sensitive to the presence of the shell. This is most apparent when
we plot the difference FS − FM . We have chosen the parameter η such that interaction
duration ∆τ ≈ 2.6 between the field and detector is less than 2R = 6, the time needed
for a light signal to travel from the detector at the center to the shell and back. This
is in contrast to the classical case, where the fastest way a detector inside the shell can
detect its presence is by sending and waiting for a light signal to come back from the shell.
We thus strengthen the claim made in [44]: conclude that a UdW detector interacting
with the quantum vacuum can detect the shell faster than a classical detector even if its
interaction time is causally disconnected from the shell, a result already established in [44]
using Gaussian switching.
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Dependence on rd

We next consider the response of the detector as we vary its location rd within the shell.
Fig. 4.4 shows a plot of FS−FM against rd with Ω = 0.5 and various choices of the interac-
tion duration ∆τ . For each η, as rd increases, the difference in response first decreases very
slightly, before increasing to a peak lying between the left and right dashed lines in the
figure. This can be interpreted as the existence of an optimal position at which the UdW
detector can best detect the presence of the shell. However, at this position, the detector
is switched on for a time longer than the light-crossing time. The largest rd beyond which
this happens is indicated by the vertical dashed lines for each η.

Numerical convergence

We close this section by commenting on the stability of our results, which were computed
by evaluating expression (4.19) numerically. In doing so, we have chosen upper cut-offs
for the summation over ` and for the integral over ω. Both the integral and summation
exhibit clear numerical convergence, as shown in Fig. 4.5, with

SL =
L∑
`=0

∑̀
m=−`

I`m , (4.21)

I`m =

∫ b

0

dω

2ω
|χ̂c (Ω + ω̃)|2 |Aω`|2|Y`m(

π

2
, 0)|2|j`(ω̃rd)|2 . (4.22)

For the results presented in this chapter, we have chosen the cut-offs L and b such that
the contribution of the next term in the summation or the next integral interval is less
than 10−7.

4.5 Summary

In this chapter, we have built on the work done in [44], confirming again the result that a
UdW detector that is causally disconnected from the external environment of the shell can
still detect its presence relative to globally flat spacetime. In so doing we have demonstrated
a ‘quantum detection of local frame’ phenomenon, in which non-local information about
the global structure of spacetime contained in the vacuum state of a quantum field can be
read locally by a detector.
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Figure 4.5: Numerical convergence. In evaluating (4.19) numerically, an upper cut-off
for the sum in ` has to be chosen. Left: Plot of the partial sum SL against L. We see
that the summation over ` is clearly convergent. The parameters used here are the same
as those in Fig. 4.4, with rd = 3. Right: Plot of

∑
m I`m against the upper cut-off b. For

each ` (two examples are shown here), the integral over ω is also clearly convergent.

We carried the investigation further than that in [44] and shown that the detector can
be placed within the shell in different locations to optimally distinguish the local/global
cases; however this optimal placement is not causally disconnected from the shell boundary.

We note that, although our work was carried out in the context of general relativity,
its implications are considerably broader. The Aω` quantities depend on the form of the
effective potential (4.13), and thus upon the theory of gravity that governs the dynamics
of spacetime. In this sense a UdW detector is a non-local probe of the local dynamics of
gravity outside of the shell. A more complete study of this would be an interesting subject
for future investigation. We can likewise ask if a detector could be used to discern other
effects, such as the dragging of inertial frames. We shall do this in the next chapter.
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Chapter 5

Detection of Inertial Frame Dragging

5.1 Inertial frame dragging

Frame-dragging, also known as the Lense–Thirring effect [61, 62], is a general-relativistic
effect that arises due to moving, in particular rotating, matter [63] and “rotating” gravi-
tational waves [64, 65]. If a gyroscope is located in the vicinity of a rotating body, it will
keep its direction with respect to the axes of a local inertial frame at the same place but
both the inertial axes and the gyroscope will be rotating with respect to static distant
observers (“fixed stars” at asymptotically flat infinity). Its profound explicit manifestation
can be seen for a rotating black hole, which drags particles into co-rotation, the dragging
becoming so strong inside the ergosphere that no particle there can remain at rest with
respect to fixed stars [66]. Frame-dragging is also behind various astrophysical phenomena
such as relativistic jets and the Bardeen-Petterson effect [67], which aligns accretion disks
perpendicular to the axis of a rotating black hole.

In addition, frame-dragging inside a rotating shell was taken by Einstein to be in sup-
port of Mach’s principle. For a nice discussion on Mach’s principle, dragging effects and
their impact on astrophysics and cosmology, see [68] (also [69, 63]). Consider a slowly
rotating material shell [70, 71]. Observers inside the shell who are at rest with respect
to distant fixed stars will find that a particle moving inside the shell experiences a Cori-
olis acceleration (the centrifugal acceleration is of the second order in the shell’s angular
velocity). These observers are not inertial, therefore fictitious forces arise.

For inertial observers, without looking at or outside the rotating shell, there is no way
of determining, by employing classical physics, whether they are surrounded by a rotating
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shell. They can in principle determine its rotation by, for example, sending out a spherical
pulse which, upon reflection, will experience a differential Doppler effect, with different shell
latitudes Doppler shifting differently. Meanwhile, frame-dragging outside a rotating body,
the Earth, has taken the Gravity Probe B satellite mission [45, 72] almost a half-century
since its inception to detect.

In this chapter, we will show that frame-dragging inside a slowly rotating shell can
be observed by an inertial UDW detector. Moreover, as in the previous chapter, it can
do so in a time shorter than the light crossing time of the shell. The transition from
the previous chapter to the current one is much like the transition from electrostatics to
electromagnetism, or the transition from Schwarzchild to Kerr; it demonstrates that a
fundamentally relativistic (non-Newtonian) effect of dragging of inertial frames, namely
the existence of gravitomagnetism, can in principle be observed by a quantum detector in
settings that are not classically possible.

This chapter is based on [2].

5.2 Scalar field modes

5.2.1 Metric

We begin as before by describing the spacetime metric, this time of a slowly rotating shell.
The metric outside the shell can be written as

ds2,+ = −f(r)dt2 + r2 sin2 θ(dφ− 2Ma

r3
dt)2 + f(r)−1dr2 + r2dθ2 , (5.1)

where f(r) = 1−2M/r, M is the mass of the shell and a = J/M is the angular momentum
per unit mass. The r-coordinate ranges from [R,∞), R being the radius of the shell. To
first order in a, the above metric agrees with the Kerr metric and satisfies the vacuum
Einstein’s equations.

Inertial frame-dragging is characterized by the function $(r) = gφt/gφφ = 2J/r3, where
J = Ma is the fixed total angular momentum as measured at infinity. The gradients of
$(r) determine the precession of gyroscopes relative to the orthonormal frame of locally
non-rotating observers [66]. On the shell itself, r = R, and $s = 2J/R3.

For an inertial observer inside the shell (who rotates as seen from infinity) spacelike
geodesics (for example, φ = 0, θ = π/2, r = constant, t ∈ R) connected to fixed points at
infinity rotate backwards; the shell is rotating forward (the dragging of the inertial frame
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becomes complete i.e., inertial observers rotate at the same angular velocity as the shell,
only if the shell is at its Schwarzschild radius); the fixed stars are rotating backwards. In
[73] these effects are expressed quantitatively1.

The metric (5.1) is joined at Σ, given by r = R, to the metric

ds2,− = −f(R)dt2 + r2 sin2 θ

(
dφ− 2Ma

R3
dt

)2

+ dr2 + r2dθ2 , (5.2)

where now r ∈ [0, R]. It is easy to see that the first junction condition is satisfied since
both ds2,± induce the same intrinsic metric on Σ. In the coordinates (t, θ, φ), this is,

ds2
Σ = −f(R)dt2 +R2 sin2 θ

(
dφ− 2Ma

R3
dt

)2

+R2dθ2 . (5.3)

The stress energy tensor of the shell giving rise to this spacetime can be found using the
second junction condition and has been well-studied in the literature (see, e.g., [60]). We
review the results briefly in Appendix A.

The metric (5.2) inside the shell is flat – consider the coordinate transformation,

ϕ = φ− 2Ma

R3
t . (5.4)

This transforms the metric (5.2) to the flat metric in standard coordinates

ds2
Σ = −f(R)dt2 + dr2 + r2(dθ2 + sin2 θdϕ2) . (5.5)

The coordinates used in Eq. (5.1) are (spherical) Lorentzian at infinity and are naturally
associated with stationary observers at infinity. All observers at fixed (r, θ, ϕ) inside the
shell rotate rigidly at the rate dφ/dt = 2Ma/R3 with respect to observers at rest at infinity
(φ =constant). This effect is called the dragging of inertial frames, first discovered in 1918
by Thirring and Lense [61] as discussed in the introduction of this chapter.

5.2.2 Normalized mode solutions

To leading order in a, we can employ the same form of mode expansion as that in the
previous chapter for the scalar field,

Φω`m(t, r, θ, φ) =
1√
4πω

e−iωtYm`(θ, φ)ψ(r) . (5.6)

1In [73] the shell is in general considered to be collapsing but the results can be immediately specialized
if it is just rotating.
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As before, the modes are indexed by (ω, `,m), with ω > 0, ` ∈ Z and m = −`,−`+ 1, ...`.
However, the radial equation for ψ(r) now takes a more complicated form. For each
(ω, `,m), it reads,

α

β r2

d

dr

(α
β
r2dψ

dr

)
−
(
α2`(`+ 1)

r2
+ γ + ω2

)
ψ = 0 . (5.7)

The functions α, β and γ are

α(r) =

{√
f(R), r ≤ R,√
f(r), r > R,

β(r) =

{
1, r ≤ R

1/
√
f(r), r > R,

(5.8)

γ(r) =

{
4Mamω
R3 −

(
2Mam
R3

)2
, r ≤ R,

4Mamω
r3
−
(

2Mam
r3

)2
, r > R ,

which reduces to eq. (4.9) of the previous chapter upon setting a = 0.

For r ≤ R, the radial equation reduces to the spherical Bessel equation, with the
solution being

ψ(r) = j`(
√
b(ω)r) , b(ω) =

ω2

f(R)

(
1− 2Mam

R3ω

)2

. (5.9)

The solution outside the shell has to be determined numerically and matched to the
solution on the shell. The two boundary conditions on ψ(r) at the shell are:

ψ(R) = j`(
√
b(ω)R) , (5.10)[

α(r)

β(r)

d

dr
ψ

]
= 0 . (5.11)

Noting from (5.8) the discontinuity in β(r), this yields the required initial conditions ψ(R+)
and ψ′(R+) for numerically solving the radial equation outside the shell.

Finally, we have to normalize the solution. The approach follows that of the previous
chapter. Defining r? such that d/dr? = α

β
d/dr and ρ = rψ, the radial equation (5.7) reads

d2

dr?2
ρ+ (ω2 − V (r))ρ = 0 , (5.12)
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for r > R, where

V (r) =
α2`(`+ 1)

r2
+ γ +

1

r

α

β

d

dr

(
α

β

)
. (5.13)

Once again, we have V (r)→ 0 as r →∞ and hence ψ ∼ sin(ωr?)/r?. Let the normalized
radial solution be denoted as ψ̃ω`m(r?) = Aω`mψ(r?) where, unlike the non-rotating case,
now the normalization constant depends on the azimuthal number m. A solution will be
normalized with respect to the Klein-Gordon inner product if we choose the normalization
constant Aω`m such that Aω`mψ(r∗)→ 2 sin(ωr?)/r? as r? →∞ [44].

In summary, the normalized mode solution inside the shell is,

Φω`m =
1√
4πω

e−iωtYm`(θ, φ)Aω`mj`(
√
b(ω)r) . (5.14)

We will use this for the computation of the response function of a UDW detector placed
inside a slowly rotating shell in the next section.

5.3 Response function

Let us now consider an inertial UDW detector situated at r = rd < R, θ = π/2, ϕ = 0 i.e.,
φ = 2Ma

R3 t. Noting that t = τ/h, where h =
√
f(R), we can compute the response function

of the detector to be,

F =

∫ ∞
−∞

dτ1

∫ ∞
−∞

dτ2 χc(τ1)χc(τ2)e−iΩ(τ1−τ2)
∑
`m

∫ ∞
0

dωΦω`m(x(τ1))Φ∗ω`m(x(τ2))

=
∑
`m

∫ ∞
0

dω

4πω

∫ ∞
−∞

dτ1

∫ ∞
−∞

dτ2 χc(τ1)χc(τ2)e−i(Ω+ω
h
− 2Mam

R3h
)(τ1−τ2)|Y`m(

π

2
, 0)|2 (5.15)

× |Aω`m|2|j`(
√
b(ω) rd)|2

=
∑
`m

∫ ∞
0

dω

2ω

∣∣∣∣χ̂c(Ω +
ω

h
− 2Mam

R3h

)∣∣∣∣2 |Aω`m|2|Y`m(
π

2
, 0)|2|j`(

√
b(ω)rd)|2 . (5.16)

The rotation parameter a enters the response function F in three positions above: in the
Fourier transform of the switching function, in the normalization constant Aω`m, and in
the b(ω) of the spherical Bessel function. Denoting the detector response in the static
and rotating case as Fstat and Frot respectively, we shall see that the net effect of these
dependence is an increase in |Frot −Fstat| with a.
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We pause to comment that even though the metric (5.1) is a valid solution of the
Einstein equations only to first order in a, we have computed the modes (5.6) from the
radial equation (5.7) exactly (i.e., to all orders in a). This is because the Wightman function
is an even function2 in a and the leading corrections to it are of order a2. For sufficiently
small Ma/R2, terms of order above O(a2) will not significantly affect our quantitative
results, and so we work with (5.16) in what follows.

5.4 Results

We are now ready to look at how rotation of the shell affects the response of UDW detectors.
We do this by computing the expression (5.16) numerically, terminating the sum over ` at
sufficiently large `, chosen to give resultant errors not larger than 1%.

-5 5
Ω/η

-1⨯10-5

-2⨯10-5

-3⨯10-5

ℱrot-ℱstat

-1 1 2 3 4 5

-1⨯10-7

1⨯10-7

aη=0.5 aη=0.6 aη=0.7 aη=0.8 aη=0.9

Figure 5.1: Detector response against Ω/η. Shown here is the plot of the difference Frot−
Fstat against Ω/η for different (dimensionless) rotation parameters aη with Mη = 1, Rη =
3 , rdη = 0.5. The inset shows a zoom-in of the plot around Ω/η = 0. The difference
Frot −Fstat is small but non-zero, and is more sensitive to the rotation for negative Ω.

2Intuitively, the Wightman function is an even function in a as it is neutral to the direction of rotation.
We can also see this explicitly by noting that a and m always appear together in the radial equation (5.7)

as ma. Thus as a function of a, the Wightman function is of the form W (a) =
∑

ω`

∑`
m=−` g(ma) =∑

ω`

∑−`
m=` g((−m)a) =

∑
ω`

∑−`
m=` g(m(−a)) = W (−a)
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Figure 5.2: Dependence on radial distance rd/R. These plots are obtained for Mη = 1, and
Rη = 3. Left: Plot of detector response against rd/R for static and rotating (aη = 0.9)
shells, Ω/η = 0.5. Right: Frot −Fstat plots for different aη settings with Ω/η = 0.5.

Dependence on a

Fig. 5.1 shows a plot of Frot − Fstat (refer to fig.4.3 for the response of a detector in a
static shell) against Ω/η for various (dimensionless) rotation parameters aη. The difference
between the response of a detector placed in a slowly rotating shell and that placed in a
static shell, though small, is clearly non-zero. The difference is more pronounced when the
energy gap Ω/η < 0.

We emphasize that the interaction duration ∆τ η = π between the field and detector
is less than 2(R − rd)η = 5, the time needed for a light signal to travel from the detector
to the shell and back. This is in striking contrast to the classical case, where the fastest
way a detector inside the shell (with all possible classical fields in their vacuum states) can
detect the presence of rotation is by sending and waiting for a light signal to come back
from the shell.

Dependence on rd and θ

Next, let us study the effect of moving the detector radially outwards by looking at Fig. 5.2.
The three main observations from this are:

i. from the left figure (plot of Frot(aη = 0.9) and Fstat against rd/R) we see that the
responses peak at some intermediate rd, in agreement with the results of fig. 4.4 from
the previous chapter,
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Figure 5.3: Plot of Frot −Fstat against θ for Mη = 1, Rη = 3, aη = 0.8 and rdη = 0.5.

ii. from the right figure, we see that as as rd/R→ 1, the difference in response increases
by more than an order of magnitude as compared to the small rd scenario in Fig. 5.1.
Hence, a detector can be made more sensitive to the rotation as rd/R increases,
though the interaction duration will eventually exceed the light crossing time,

iii. a detector placed at the origin rd = 0 cannot distinguish between a rotating and a
static shell since Frot −Fstat = 0 there.

We can understand the last point explicitly by noting that the rotation parameter a
appears in the radial equation (5.7) through the term γ, where it is multiplied with the
azimuthal number m. Hence, it has only nontrivial effects when m 6= 0. However since
θ = 0 along the axis of rotation and Y`m(0, 0) is non-zero only when m = 0, the mode
solutions and hence the response function are insensitive to effects of rotation along this
axis. As another illustration of this, we plot in Fig. 5.3 Frot − Fstat against θ. From
this, we see that the sensitivity to rotation of detectors placed at the same rd increases
monotonically as θ increases from 0 to π/2.

5.5 Summary

Classically, the physical effect of a slowly rotating shell is the dragging of inertial frames.
We have shown that this effect can be discerned from local measurements of a quantum
particle detector inside the shell, on timescales much shorter than the light travel time
from the detector to the edge of the shell and back.

We note that the gravitational effects inside a rotating material shell are analogous to
the electromagnetic effects inside a rotating charged shell; but there are also fundamental
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differences. For a rotating charged shell, a dipolar magnetic field will be formed inside.
Such a field can be observed without the need of quantum detectors, for example as the
Larmor precession of charged particles.

By solving the scalar field equation numerically, we have obtained the response function
of the detector and seen how it depends on the rotation parameter a. Corrections to the
metric (5.1) to higher orders in a will quantitatively modify (5.16) but will not qualitatively
affect our results. Alternatively, we can regard (5.1) as a ‘kinematic spacetime’ that could
be employed in analogue gravity laboratory simulations, in which case our results would
hold exactly. Whether or not such effects can be directly detected remains a challenge for
future experiments.
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Chapter 6

Detection of Conical Deficit

6.1 Conical deficits

In this chapter, we will focus on quantum detection of spacetime conicity. Specifically, we
are interested in studying the sensitivity of a UDW detector to the global features of a
deficit angle when its quasilocal manifestation is absent. We do this by placing the detector
inside an infinite thin hollow cylinder (cylindrical shell), described by a special case of the
Levi-Civita metric [74], whose spacetime is flat everywhere (except at the shell itself), but
has a deficit angle outside the cylinder. Being induced by the energy-momentum of the
cylinder, the deficit angle is not present inside the cylinder (where the detector is situated)
and the axis is regular. This is in contrast to the usual idealized (distributional) cosmic
string spacetime [75, 76], where the conical deficit is present throughout1. The absence
of a deficit angle inside the cylinder provides an interesting set-up to study the response
of a UDW detector since an observer with access only to classical measuring devices in a
finite-sized quasilocal region within the cylinder could not detect its presence.

The effects of a “global conical deficit” on the vacua of quantum fields have been
studied in the literature, such as the vacuum polarisation of the field [82, 83, 84] and particle
creation in these spacetimes [85, 86]. UDW detectors and other quantum particles in cosmic
string spacetimes have also been studied in the literature and it has been demonstrated
that the detectors or particles are in general sensitive to the presence of a cosmic string

1The distributional cosmic string spacetime [77] is recovered upon the limit of the vanishing radius of
the cylinder. More elaborate models of cosmic strings where the distributional character is smoothed out
include, for example, constant density models [78], the abelian Higgs model [79, 80], or the recent model
[81], which takes into account a non-local description of the gravitomagnetism.
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[87, 88, 89, 90, 91, 92, 93, 94]. Contrary to all these studies, in our setup the UDW detector
is not situated in the region with the conical deficit and such a deficit is only present outside
the cylinder.

This chapter is based on [3].

6.2 Scalar field modes

6.2.1 Cylinder spacetime

Just as spherically symmetric massive shells are sources for the Schwarzschild spacetime,
cylinders are sources for the Levi-Civita metric. However, constructing physical cylinders
and relating their properties (such as mass) to the parameters of the Levi-Civita metric is
more involved than in the spherical case, see, e.g., [95, 96, 97]. As before, we will not be
using the stress-energy tensor of the cylindrical shell and hence we only briefly recall its
form in Appendix B.

The specific metric we shall employ is a specific case studied by Bičák and Žofka in [95]
where the mass parameter has been set to zero, giving a flat exterior with conical deficit.
Inside the cylinder we have the usual Minkowski spacetime, with the metric written in
cylindrical coordinates (t, z, ρ−, φ) as:

ds2,− = −dt2 + dz2 + dρ2
− + ρ2

−dφ
2 , 0 ≤ ρ− ≤ R1 (6.1)

The surface Σ given by ρ− = R1 ∈ R+ is where joining to the exterior metric takes place.
This exterior metric is given in terms of a new radial coordinate ρ+ by,

ds2,+ = −dt2 + dz2 + dρ2
+ +

ρ2
+

c2
dφ2 , cR1 ≤ ρ+ < cR2 , (6.2)

where c ≥ 1 is the conicity (see below). In these coordinates, the surface Σ is ρ+ = cR1.
Using (t, z, φ) as our coordinates on Σ, we see that both ds2,± induces the metric,

ds2|Σ = −dt2 + dz2 +R2
1dφ

2 , (6.3)

on Σ and thus the first junction condition is satisfied. The overall spacetime describes a
cylinder of proper radius R1.

The parameter c in Eq. (6.2) describes the “conicity” of the spacetime [95, 97]. Specifi-
cally, we can define a new angular coordinate ϕ = φ/c, for which the metric in (6.2) reduces
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to the usual Minkowski metric in cylindrical coordinates (i.e., of the form (6.1)) but with
ϕ ∈ [0, 2π/c]. In other words, the spacetime described by (6.2) has a conical deficit of
δ = 2π(1− 1/c), which is greater than zero provided c > 1. We shall restrict attention to
this case. The conical deficit gives rise to a non-zero mass per unit length of the cylinder
µ given by,

µ =
1

4

(
1− 1

c

)
, (6.4)

which is obtained from the second junction condition at Σ.

In order to avoid dealing with asymptotics of infinite cylindrical systems, in what follows
we will impose Dirichlet boundary conditions for the scalar field on the surface ρ+ = cR2.
This can be interpreted as a second infinitely long, perfectly reflecting cylinder, concentric
to the first and having a proper radius of R2 (see also [98]). We will not concern ourselves
with the metric outside this second cylinder as the Dirichlet boundary condition ensures
that the field will not respond to this part of the spacetime.

6.2.2 Scalar field modes

The massless scalar field equation in the above spacetime admits the mode decomposition:

Φkmq = Nkmqe
−iωteikzeimφψmq(ρ±), (6.5)

with ω2 ≡ q2 + k2 and Nkmq a normalisation constant. Inside the cylinder, ρ− < R1,
substituting this ansatz into the wave equation (2.2) leads to a radial ODE governing
ψmq(ρ−). This is given by,(

q2 − m2

ρ2
−

)
ψmq(ρ−) +

ψ′mq(ρ−)

ρ−
+ ψ′′mq(ρ−) = 0 , (6.6)

which admits the general solution

ψmq(ρ−) = a1J|m|(qρ−) + a2Y|m|(qρ−), (6.7)

where Jm and Ym are the Bessel functions of the first and second kind, respectively. To
impose regularity at ρ− = 0, we set a2 = 0, and to impose periodicity in φ, we have m ∈ Z.
We can take a1 = 1 without loss of generality by absorbing it into the normalisation
constant Nkmq.

Meanwhile, the radial equation outside the cylinder reads:(
q2 − c2m2

ρ2
+

)
ψmq(ρ+) +

ψ′mq(ρ+)

ρ+

+ ψ′′mq(ρ+) = 0 . (6.8)
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This admits the general solution

ψmq(ρ+) = c1J|cm|(qρ+) + c2Y|cm|(qρ+) . (6.9)

The arbitrary constants c1 and c2 are determined by the continuity of ψmq and its derivative
on the cylinder:

ψmq(ρ− = R1) = ψmq(ρ+ = cR1) , (6.10)

∂ρ−ψmq(ρ− = R1) = ∂ρ+ψmq(ρ+ = cR1) , (6.11)

which follows from the conditions (4.3) and (4.4) with n+ = ∂ρ+ and n− = ∂ρ− . Substituting
the general solutions (6.7) and (6.7) gives

c1(q) =
1

2
πqcR1

(
J|m|(qR1)Y|cm|−1(qcR1)− J|m|−1(qR1)Y|cm|(qcR1)

)
,

c2(q) =
1

2
πqcR1

(
J|m|−1(qR1)J|cm|(qcR1)− J|m|(qR1)J|cm|−1(qcR1)

)
. (6.12)

Next, to impose the Dirichlet boundary condition at ρ+ = cR2, we restrict the radial
quantum number q to the discrete set {q : ψmq(ρ+ = cR2) = 0} for each m.

Finally, the Nkmq’s are chosen such that the solutions are normalised with respect to
the Klein-Gordon (KG) inner product. Let us choose a constant t surface to evaluate the
inner product. This gives,

(Φkmq,Φk′m′q′) = i

∫
dA (Φ∗kmq∂tΦk′m′q′ − ∂t(Φ∗kmq)Φkmq)

= iNkmqNk′m′q′

∫
dA (−iω′ − iω)e−i(ω

′−ω)tei(k
′−k)zei(m

′−m)φψqmψq′m′

= NkmqNk′m′q′(ω
′ + ω)e−i(ω

′−ω)t

∫ ∞
−∞

dz ei(k
′−k)z

∫ 2π

0

dφ ei(m
′−m)φ×(∫ R1

0

(
ρ−dρ− ψqm(ρ−)ψq′m′(ρ−)

)
+

∫ cR2

cR1

(ρ+

c
dρ+ ψqm(ρ+)ψq′m′(ρ+)

))
= NkmqNk′m′q′(ω + ω′)e−i(ω

′−ω)t 2πδ(k − k′) 2πδmm′×(∫ R1

0

(
ρ−dρ− ψqm(ρ−)ψq′m′(ρ−)

)
+

∫ cR2

cR1

(ρ+

c
dρ+ ψqm(ρ+)ψq′m′(ρ+)

))
.

(6.13)

It can be checked easily that the last line of the above involving the sum of two radial
integrals evaluate to zero if q 6= q′. Therefore, requiring (Φkmq,Φk′m′q′) = δmm′δqq′δ(k − k′)
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gives,

Nkmq =
1

2π
√

2
√
k2 + q2||ψmq||

, (6.14)

with

||ψmq||2 =

∫ R1

0

[J|m|(qρ)]2ρdρ+

∫ cR2

cR1

[c1J|cm|(qρ) + c2Y|cm|(qρ)]2ρ/c dρ .

It can be checked that the solutions defined above are orthogonal with respect to the KG
inner product.

We can then proceed with canonical quantisation of the field by defining the field
operator as

Φ̂(x) =
∑
m,q

∫ ∞
−∞

dk
(
âkmqΦkmq(x) + â†kmqΦ

†
kmq(x)

)
, (6.15)

where âkmq and â†kmq are annihilation and creation operators respectively satisfying the
usual commutation relations. We will choose the vacuum state of the field |0〉 to be the
state such that âkmq |0〉 = 0 for all âkmq.

6.3 Response function

We now derive the response function of a UDW detector placed inside the cylinder. For our
purposes it is enough to consider simple stationary trajectories where the detector stays
at a fixed spatial position. In terms of the proper time τ of the detector, these trajectories
are given by:

x(τ) = (τ, ρd, zd, φd), (6.16)

for ρd ∈ [0, R1], zd ∈ (−∞,∞) and φd ∈ (0, 2π].

Substituting this trajectory and the mode sum expansion of the Wightman function
into (3.9) gives,

F =

∫ ∞
−∞

∫ ∞
−∞

dt dt′χc(t)χc(t
′)e−iΩ(t−t′)

∑
m,q

∫ ∞
−∞

dkN2
kmq|J|m|(q ρd)|2e−iω(t−t′)

=
∑
mq

|J|m|(qρd)|2

||ψmq||24π

∫ |χ̂c(Ω +
√
k2 + q2)|2√

k2 + q2
dk . (6.17)
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Note that the response of the detector depends, as expected, only on radial coordinate
of the detector, and not on its φ and z coordinates due to the symmetry of the set-up.
In addition, the response does have an implicit dependence on the conicity parameter c
coming from the normalisation term ||ψmq||2, see Eq. (6.15). The results of the next section
will illustrate this dependence.

6.4 Results

We are now ready to look at how the response Fc depends on the conicity c. The response
of a detector placed in a spacetime with no conical deficit (corresponding to c = 1) will be
denoted as Fc=1.

Dependence on Ω and c

The top diagram in Fig. 6.1 shows a plot of Fc −Fc=1 against Ω for c ∈ {1, 2, 3, 4}. From
this we see that the difference is indeed non-zero, peaks around Ω = 0, and increases as c
increases. In this plot, we have set ∆τ = R1 = 1, so that the detectors are switched on
only for a short duration, during which no signal could have travelled from the detector
to the shell and back to convey information about c. Intuitively, the dependence of the
response on c conveys the fact that the local vacuum fluctuations around the detector
carry non-local information about the spacetime. The dependence of F on c can be seen
more clearly in Fig. 6.2, which gives a plot of Fc against c for Ω = 0. This graph shows a
logarithmic increase in the response of the detector as c increases.

Dependence on ρd

The results shown in Fig. 6.1 were for ρd = 0, with the detector placed on the axis of
symmetry. This greatly reduces the computational effort since Jm(0) = δm,0 and only
the m = 0 term in Eq. (6.17) contributes. Fig. 6.3 shows that the difference in response
increases as the detector is moved closer to the cylindrical shell. Hence, it is easier for the
detector to measure c as it moves closer to the shell.

Dependence on R2

Recall that we have discretised the integral over q into a discrete sum by introducing a
Dirichlet boundary condition at ρ+ = cR2. Fig. 6.4 shows what happens as we push this
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Figure 6.1: Response against detector energy gap. Left: This figure shows how the differ-
ence Fc −Fc=1 varies with c and the detector energy gap Ω. The difference appears to be
symmetric in Ω, and peaks at Ω = 0. The magnitude of the difference also increases with
c. Right: This figure shows the general shape of F as a function of Ω. The value of c used
here was c = 1; the corresponding curves for the other c values in the top plot will simply
overlap with the existing curve due to scale of the figure. The other parameters used here
are R1 = 1, R2 = 5, ρd = 0 and ∆τ = 1.
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Figure 6.2: Dependence of response on c. This figure gives a plot of Fc against c for R1 = 1,
R2 = 5, Ω = 0, ρd = 0 and ∆τ = 1.
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Figure 6.3: Dependence of response on detector radial distance. The figure here shows
that the difference Fc − Fc=1 increases as ρd increases i.e., the detector gets closer to the
cylindrical shell. The parameters used here are R1 = 1, R2 = 5 and Ω = 2.

boundary outwards. From the top figure, we see that the difference in response asymptotes
to some finite value as R2 increases. Meanwhile, plotting the difference in response against
Ω at R2 = 50 displays the same trends as Fig. 6.1 but with slightly decreased magni-
tude. However, based on the top figure, we can expect non-zero differences even when the
Dirichlet boundary is pushed out towards infinity.

6.5 Summary

We have shown that a conical deficit exerts a detectable influence on the response of a
UDW detector even if that detector is in a flat spacetime region without access to the
region of spacetime where the deficit is manifest. An observer restricted to the same region
with access only to classical measuring devices would not be able to detect the presence
of the deficit outside the cylinder. However the UDW detector can discern the presence of
the deficit.

This situation is similar to that for a detector located inside a spherical shell considered
in chapter 4: it can read out information about the non-local structure of spacetime even
when switched on for scales much shorter than the characteristic scale of the non-locality
[44]. As with the spherical shell, we find the sensitivity to the deficit is strongest at
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Figure 6.4: Dependence of response on R2. Left: The figure shows a plot of Fc − Fc=1

against R2, the position of the Dirichlet boundary, for various c values. The difference
asymptotes to some non-zero value at large R2. Right: Plot of Fc − Fc=1 against Ω (cp
Fig. 6.1) for R2 = 50. The other parameters used here are R1 = 1 and ρd = 0.

vanishing energy gap for a detector located on the axis of the cylinder, and increases as
the detector is located further from the axis.

Finally, we note that one may also consider placing the UDW detector outside the
first cylinder. In this case, the R1 → 0 limit will correspond to a cosmic string placed
inside a reflective concentric cylinder. We can see this by noting that c2(q) → 0 in this
limit and the solution ψmq(ρ+) in Eq. (6.12) reduces to that in the cosmic string spacetime
after normalisation. The model can then be used to compare, for example, the difference
between the cases when the string is modelled as a Dirac delta source or as a finite cylinder.
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Chapter 7

Entanglement Harvesting in Presence
of Dirichlet BC

In the previous three chapters, we have seen how the response of a single UDW detec-
tor can be used to discern global features of the spacetime. It turns out that for the
purpose of probing global features, having two detectors is sometimes better than one.
For example, while a single detector displays the same response in the de-Sitter vacuum
and a (Minkowski) thermal bath at temperature κ

2π
, with κ being the surface gravity of

the cosmological horizon [99], the entanglement between two detectors can tell the two
situations apart [100]. Besides serving as a probe of spacetime structure, entanglement
harvesting is an interesting phenomenon in its own right. It tells us how much entangle-
ment can be extracted from the vacuum and has been studied in a variety of contexts
[101, 50, 53, 57, 102, 103, 104, 105, 106, 107, 108]. In this chapter, we will study how the
presence of a Dirichlet boundary in the spacetime affects entanglement harvesting.

This chapter is based on [4, 5].

7.1 1+1D mirror spacetimes

We will restrict our attention to the simple setting of 1 + 1 dimensional Minkowski space-
time, ds2 = −dt2 + dx2, where the study of detector response in the presence of Dirichlet
boundaries was initiated in [109, 110]. In this case, the boundary, or the “mirror” as it is
known, is a point having some arbitrary timelike trajectory at where the scalar field is set
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to vanish. Specifically, let us define the usual null coordinates as,

u = t− x , v = t+ x , (7.1)

and let the path of the mirror be described by,

v = p(u) . (7.2)

Then the field equation and the Dirichlet boundary condition on Φ(u, v) are

∂

∂u

∂

∂v
Φ(u, v) = 0 , Φ(u, p(u)) = 0 . (7.3)

Some example trajectories of the mirror considered in this chapter are shown in Fig. 7.2.

A complete set of solutions to Eq. (7.3) is given by {uinω , (uinω )∗}ω∈R+ , where

uinω (u, v) =
i√

4πω

(
e−iωv − e−iωp(u)

)
. (7.4)

Each of these “in”-modes consists of an incoming plane wave e−iωv and an outgoing part
e−iωp(u) whose dependence on u depends on the mirror trajectory. The vacuum |0〉in defined
using these modes is called the in-vacuum and is the state that appears to be void of
particles to an inertial observer located near past null infinity, I−. The corresponding
Wightman function is [47],

W (x;x′) = − 1

4π
ln

((
p(u)− p(u′)− iε

)(
v − v′ − iε

)(
v − p(u′)− iε

)(
p(u)− v′ − iε

)) , (7.5)

where ε is an UV regulator which is to be taken to zero at the end of computation of
physical quantities.

Mirror spacetimes started off as simple toy models for studying Hawking radiation when
Fulling and Davies showed [109, 110] that a thermal flux of radiation can be received at
future null infinity, I+, if a suitable trajectory for the mirror is chosen. The computation
of this flux is completely analogous to that done in the case of Hawking radiation from
black holes. Since then, different mirror trajectories have been constructed that give radi-
ation analogous to various situations, such as eternal black holes [111], black hole collapse
[112, 113, 114] and collapse to remnants [115], see also [116] for a collection of different
trajectories. Analogies aside, these studies are also a demonstration of particle creation by
moving mirrors, an effect now called the dynamical Casimir effect. Experimental demon-
stration of the dynamical Casimir effect [46] has elevated the status of mirror spacetimes
from a theoretical toy model to a physically significant effect in its own right.
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Below, we shall see a number of effects that mirrors have on entanglement harvest-
ing, namely, (i) enhancement and suppression of entanglement as compared to global
Minkowski spacetime, (ii) a zero entanglement region close to moving mirror which we
call the entanglement shadow region, and (iii) the effect of an asymptotically null trajec-
tory on harvesting.

In this chapter, we will use either χG or χc as our switching functions depending on
the situation. As in the introductory chapter, we will denote the two detectors using
j = A,B and use subscripts to refer to quantities associated to each detectors: Xj denote
the x coordinate of detector j, tj denote the time coordinate of the peak of the switching
function of detector j, dA denotes the distance of the detector closer to the mirror, A from
the mirror at t = tA and finally ∆x = XB −XA for the detector separation. In addition,
we shall only be considering static detectors, which are sufficient to illustrate the named
effects. As such, the proper times of the detectors agree with the coordinate time t.

7.2 Effects of mirrors on harvesting

7.2.1 Static mirror and entanglement enhancement/suppression

Let us begin by considering the simplest mirror, one having a static trajectory located at
x = 0. This trajectory is described by

pstatic(u) = u . (7.6)

We show in Fig. 7.1 the concurrence C[ρAB] plotted against dA/σ for detectors placed to the
right of this mirror. We use the Gaussian switching (4.15) here. Somewhat surprisingly, for
fixed detector separation ∆x/σ, we find that the presence of a mirror can actually enhance
entanglement.

Let us analyse the results in greater detail. First, observe that for all parameter choices,
the entanglement starts from zero at the mirror due to Dirichlet boundary condition in
Eq. (7.3) and then increases as the detectors move away from the mirror. Far from the
mirror, concurrence vanishes for large ∆x and small Ωσ (the blue and orange curves in the
right figure). When the detector separation ∆x is decreased it becomes easier to harvest
entanglement as we expect. Indeed, for small ∆x (Fig. 7.1, left), the region of entanglement
extraction is very large (possibly everywhere dA > 0). Conversely, for sufficiently large ∆x
the concurrence vanishes and so entanglement cannot be extracted anywhere.
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Figure 7.1: Concurrence as a function of distance from mirror dA with σ = 1 and for various
energy gaps. The left and right plots are obtained for different detector separations ∆x/σ
as indicated in the plots. The corresponding free space results are shown as dashed lines
in each plot. We observe entanglement enhancement relative to that of free-space in some
regions. For ∆x/σ = 3 (right plot) and Ωσ = 0.75, 1, the free space cases (computed by
choosing Λ = 10−12) have zero concurrence (dashed lines on dA/σ axis).

Let us now compare the results to free-space (i.e., no mirror). For the comparison, we
use the usual Minkowski vacuum, whose Wightman function is given by

WM(x;x′) = − 1

4π
ln
[
Λ2(u− u′ − iε)(v − v′ − iε)

]
, (7.7)

where Λ is an IR cutoff. In free space, the IR regulator cannot be removed, which is a
peculiarity of (1 + 1) dimensions alone [108]. This leads to the well-known IR ambiguity
in the response of a detector coupled linearly to (1 + 1) massless scalar field1.

The interesting observation from Fig. 7.1 is that concurrence in the presence of a mirror
can overtake the free-space result (dashed lines on the figure) at large enough dA/σ and
small enough detector separation ∆x/σ. As a representative example, consider ∆x/σ =
3,Ωσ = 1. Noting that the free space case (dashed line) has zero concurrence, we see that
entanglement harvesting would not have been possible at all if not for the presence of the
mirror. Heuristically, this can be understood as a reflection effect in which information
from one detector can reach the other detector after reflecting off the mirror. The trade
off between this reflection effect and the vanishing of the Wightman function close to the

1Note that the mirror “regulates” the IR ambiguity in the Wightman function (7.5) as the Λ2’s which
should be present in both the numerator and denominator inside the ln cancel each other.
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mirror leads to a peak in the concurrence at some optimal dA away from the mirror. This
qualitative behaviour is also present for the other mirror trajectories to be considered
below. The main feature displayed here is that of entanglement enhancement : mirrors can
amplify entanglement extraction relative to the free-space scenario.

Accelerating mirrors contain richer entanglement dynamics than the static one. Fur-
thermore, the field operator along the (static) detector trajectory will not be identically
zero during the switched on time of the detector. Hence naively we do not expect entan-
glement to completely vanish even if the detector coincides with the mirror at some single
instant in t. We will see that the dynamics of entanglement is indeed quite non-trivial, as
we explicitly demonstrate next for the so called Carlitz-Willey (CW) trajectory.

7.2.2 Carlitz-Willey mirror and shadow region

The CW mirror follows the trajectory given by,

pCW (u) = − 1

κc
e−κcu , (7.8)

where κc ∈ R+ parametrises the acceleration of the mirror. It corresponds to a mirror that
emits thermal radiation just like that of an eternal black hole [111] of surface gravity κc.
Fig. 7.2 shows some example trajectories having different κc values.

The concurrence results for CW mirrors are shown in Fig. 7.3. We focus on one par-
ticular choice – κcσ = 0.5,Ωσ = 1 – which captures all the qualitative features we hope to
highlight.

The CW mirror scenario contains more interesting physics compared to its static coun-
terpart. In contrast to the static mirror case, where entanglement vanishes only at the
mirror due to the boundary condition (cf. Fig. 7.1), we see from the first graph of Fig. 7.3
that there can be a small finite region of entanglement shadow near the mirror, i.e., a
region deprived of entanglement. However, this depends on the other detector parameters
as well. In the example shown, the shadow region is present for ∆x/σ = 3 and is absent
for ∆x/σ = 2. The possibility of a shadow region is reminiscent of the situation when
detectors are placed too close to a black hole event horizon [102], but the physical origin
is different since there is no black hole in our case. For the black hole, the origin of the
entanglement shadow is due to a redshift factor diminishing the non-local correlations rel-
ative to the local noise terms [102]. In the present case, superficially there is a (nonlinear)
competition between the local noise term

√
PAPB and the nonlocal term |X| due to the
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Figure 7.2: Carlitz-Willey (CW) mirror trajectories. CW mirrors are asympotically null,
approaching the v = 0 line (dashed) at late times.

logarithmic behaviour of the Wightman function since they each grow at a different pace
with distance from mirror at some fixed time t, as shown in the third plot of Fig. 7.3.

CW mirrors can also enhance entanglement. The size of the region of entanglement
enhancement depends on the relative separation of the two detectors, as the left plot of
Fig. 7.3 shows.

To summarize, we see that the main effect a non-trivial mirror trajectory has on en-
tanglement harvesting is the generic presence of an entanglement shadow near the mirror.
The strip where this occurs may increase or decrease in size depending on the proximity
of the detectors.

7.2.3 Digression: Derivative coupling

Upon closer scrutiny, two subtleties in the above sections may cause one to question the
validity of the results. The first is the ambiguity in the free-space concurrence results due
to the infrared cut-off and the second is the spurious effect of an unbounded growth in the
excitation probability of a detector in the mirror spacetime (see Fig. 7.3).

However, these two subtleties can be bypassed altogether by considering a derivative
type coupling (see for example [28]) between the detector and the field. In this subsection,
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Figure 7.3: Top: A plot of concurrence for the CW mirror (in red at time t = −1), as
a function of the position of detector A for various fixed detector separations ∆x, with
κc = 0.5,Ω = 1, σ = 1. Bottom Left: The nonlocal term |X| and local noise

√
PAPB

terms for the ∆x = 2σ trajectory in the left figure. Botton Right: The nonlocal term |X|
and local noise

√
PAPB terms for ∆x = 3σ. The small region where the two curves intersect

give the finite non-zero entanglement region. Note the small zones of entanglement shadow
near the mirror on the left plot for both cases; these appear in the other two plots where
we see that |X| <

√
PAPB very close to the mirror.
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Figure 7.4: Derivative coupling results. Left: The use of derivative coupling removes the
IR ambiguity in the free-space P (Ω) (dashed, green). The probability of excitation in
the CW mirror spacetime now remains bounded at large xA/σ. It asymptotes to a value
(dotted, yellow) slightly higher than the free-space result. Right: The concurrence against
xA/σ plot shows the same qualitative behaviour as linear coupling. Namely, we observe
a region of entanglement enhancement and a region of entanglement shadow close to the
mirror. The concurrence will asymptote to a value (dotted, yellow) slightly below the
free-space result (dashed, green). In this plot, κσ = 0.5, Ωσ = 1, tA/σ = 0 and ∆x/σ = 1.

we employ this alternative coupling, and show that in the absence of the above two effects,
the qualitative results obtained in the previous sections still hold.

Instead of the linear coupling between the detector monopole moment and the field
operator Φ̂ in Eq. 3.1, we can replace Φ̂(x(τ)) with its proper time derivative to obtain the
derivative coupling,

H̃I,j = λχj(τ)µ̂j(τ)⊗ uµj∇µφ̂(xj(τ)) ,

where uµj is the velocity vector along xj(τ). For detectors static in the (t, x) coordinates,
we have t = τ and the proper time derivative reduces to partial derivative ∂t.

As shown in [28], in addition to removing the dependence of the excitation probability
on the infrared cut-off, this coupling also results in an expression for the probability that
looks more similar to the (3 + 1)D case. In the current case, we can see this by the
following: the expressions for P (Ω) and X given in Sec. 3.3.1 can be easily modified to
accommodate the change in coupling by making the replacement W (xj1(τ);xj2(τ

′)) →
A(xj1(τ);xj2(τ

′)) ≡ ∂τ∂τ ′W (xj1(τ);xj2(τ
′)) whenever it appears.
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In particular, for the static trajectories considered here, we have

Af (x;x′) = − 1

4π

(
1

∆u− iε
+

1

∆v − iε

)
, (7.9)

Am(x;x′) = − 1

4π

(
p′(u)p′(u′)[

p(u)− p(u′)− iε
]2 +

1[
v − v′ − iε

]2 (7.10)

− p′(u′)[
v − p(u′)− iε

]2 − p′(u)[
p(u)− v′ − iε

]2
)

respectively for free space and mirror spacetimes. These replace the Wightman functions in
(7.7) and (7.5) respectively. Since Af does not require an IR regulator to be well-behaved,
the IR ambiguity in P (Ω) and |X| is removed. Furthermore, the similarity between Af
and the (3 + 1)D Wightman function also indicates that the results for P (Ω) and |X| in
(3 + 1)D using linear coupling will be similar to that obtained using derivative coupling in
(1 + 1)D. In fact, for the free space scenario the function Af (x, x

′) in (1 + 1) dimensions
only differs from the linear coupling Wightman function in (3 + 1)D by a constant factor
of 2, so the physics is practically identical.

In Fig. 7.4, we show the results obtained using derivative couplings between the de-
tectors and the field. From the P (Ω) plot, we see that the probability in the CW mirror
spacetime remains bounded at large dA rather than blowing up as in Fig. 7.3. We note
also that the free-space value in this case was computed without the need for choosing
an IR cut-off. In addition, we see that derivative coupling results in the same qualitative
findings as the previous subsections: there is a region of entanglement enhancement over
the free-space result and entanglement shadow near the mirror.

7.2.4 Effect of horizon

The CW mirror considered in the above is an example of a trajectory having an “horizon”.
For the trajectories shown in Fig. 7.2, the horizon is the dashed black line on the figure
given by v = 0. This is the line beyond which left moving wave modes originating from
the right past null infinity, I−R , will reach I+

L instead of I+
R (see Fig. 7.5). The presence

of such a horizon results in information loss to an observer located near I+
R as he will

never see information about the field modes that never get reflected. These field modes
are analogous to those that get trapped in a black hole, reaching the singularity, never to
return again. Left moving modes that do reflect are analogous to those waves that flow
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Figure 7.5: The trajectory, Eq. (7.11), plotted in a Penrose conformal diagram. Here κ = 1,
vH = 0 and ξ = 0.2, 0.4, 0.6 and 1 respectively. The mirror never forms a strict horizon
as long as ξ < 1: all left-moving modes ultimately reflect and become right-movers. When
ξ = 1, the trajectory ends on I+

L and light rays from I−R lying after the horizon (dashed)
will not get reflected by the mirror.

through the center of the collapsing star to eventually escape, reaching an outside observer.
Hence, mirror toy models of black hole evaporation tend to have horizons.

In this subsection, we will demonstrate the qualitative effect of the presence of a horizon
on entanglement harvesting using the cosine switching function χc. We do so by considering
a family of mirror trajectories [117],

pξ(u) = u+
ξ

κ
log

[
1 + ξ

2
W
( 2

1 + ξ
e

2κ(vH−u)
1+ξ

)]
, (7.11)

where W(·) is the product-log function. The parameter ξ represents the asymptotic final
future speed of the mirror, while κ parametrizes how fast this speed is achieved. The
trajectory can also be written in terms of the (t, x) coordinates as:

xξ(t) = ξ(vH − t)−
ξ

2κ
W
(
2e2κ(vH−t)

)
. (7.12)

We thus see that the last parameter vH simply translates the mirror trajectory in time
along the t axis. Each mirror in the family drifts at a constant velocity in the far future,
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with limt→∞ |dxξdt | = ξ. Some exemplary trajectories are shown in the Penrose diagram
Fig. 7.5. From this diagram, we see that trajectories with ξ < 1 end at future timelike
infinity while the ξ = 1 mirror ends on I+

L . The latter leads to the presence of a horizon,
given by the dashed line.

We note that when ξ = 1, the trajectory is also known as the “black hole collapse
trajectory” (BHC) trajectory,

pBHC(u) = vH −
1

κ
W (e−κ(u−vH)). (7.13)

This trajectory has a one-to-one correspondence with the canonical case of time dependent
particle creation from a collapsing star (null shell) [114]. Let us now look at entanglement
harvesting in these mirror spacetimes.

Shadow region

We begin by looking at how the C against dA curves change with increasing ξ in Fig. 7.6.
In the previous section, we have seen that for a fixed η, T , ∆x and Ω, there is a minimal
dA below which it is impossible to entangle the detectors. This region is the entanglement
shadow zone. The dashed purple curve in the top plot of Fig. 7.6 illustrates this for ξ = 1.
However, the shadow zone is not unique to this BHC mirror. For example, when ξ = 0.7
(blue), a shadow zone also exists. In fact we have checked that such entanglement shadow
zones are present even when the mirror is moving with constant, non-zero velocity, and
therefore is generally a characteristic of non-static mirrors (as opposed to mirrors with
horizons).

These results are commensurate with previous studies on entanglement harvesting.
While the presence of horizons certainly plays a role [102], other factors are also at play,
including the state of motion of the detectors [118, 119], local vs. global considerations
[120], and sensitivity of the detector to particular parameterizations [105, 121]. In partic-
ular, higher dimensional effects on entanglement shadow will be an interesting question to
address, since the evidence we present here is limited to (1+1)-dimensions.

In addition, we observe an emergence of entanglement close to the mirror at later
times. This is illustrated in the T = 1 plot (bottom) of Fig. 7.6: at T = 1, the shadow
zone disappears for near-null mirrors. However, this emergence is again not unique to the
BHC mirror. At this T , we have checked numerically that entanglement harvesting at
dA = 0 becomes possible, i.e. C > 0, when ξ & 0.9997.
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Figure 7.6: Plots of concurrence against dA. The curves for T = 0.1 (top) are similar to
that in Fig 7.3, namely at small dA, there is a zone of entanglement shadow with zero
concurrence, while the concurrence increases to some peak before asymptoting to some
constant value at large dA. We note that entanglement shadow is present even for the
ξ < 1 mirrors, indicating that it is not a feature unique to mirrors with horizons. At a
later time T = 1, we see an emergence of concurrence near the mirror when ξ . 1 and the
shadow zone disappears.
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Late time linear growth in C

A distinct difference in behaviour arises when we consider a second scenario: once again,
the detector separation ∆x is fixed but instead of varying dA, we fix this and consider the
effect of varying T . Some representative cases are shown in Fig. 7.7. From these plots we
see that while the concurrences for ξ < 1 mirrors asymptote to finite values at large T , an
asymptote does not seem to be present for the BHC mirror. In all cases, the C in the BHC
mirror spacetime seems to increase linearly at late times2.

At late times, the mirrors approximately move at constant speeds. It is thus natural
to expect the late time asymptotes for the ξ < 1 cases to be equal to the concurrence
of detectors situated in spacetimes with mirrors moving (eternally) at the corresponding
constant speeds. In fact, the dashed lines representing the asymptotic values of the different
mirrors in Fig. 7.7 are obtained precisely in this way. Roughly speaking, when ξ < 1, both
the P and X terms have finite large T limits, corresponding to the constant speed mirror
P and X values. This thus gives an asymptotic value for the concurrence. However
corresponding values for ξ = 1, do not exist.

Computing the asymptotic values

Let us now look explicitly at how this is done for PA. There are two ways to measure the
probability “at time t = T”: we can either directly include T in the switching function,
setting χ(t) = cos4(η(t − T )), or we can shift the trajectory down by T units by setting
vH = −T in the pξ(u) terms of the Wightman function Eq. (7.5). These two methods are
physically equivalent and yield the same results, but we will use the latter to explain the
asymptotic behaviour observed in Fig. 7.7.

Let us consider the first piece of the Wightman function given by ln
[
pξ(t−XA)−pξ(t′−

XA)− iε
]
, where we have written XA to indicate that this is evaluated along detector A’s

trajectory (the analysis for detector B is similar and will be skipped). Recall that detector
A is being placed XA = xξ(T ) + dA, where xξ(t) is the mirror trajectory Eq. (7.12) with

2Due to computational constraint, we checked this up to T ≈ 30, where the UV regulator ε in the
Wightman function needs to be ∼ 10−320 for convergence.
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Figure 7.7: Plots of concurrence against T for various dA. Note that the curves for ξ =
0.7, 0.8, 0.9 in the first plot overlaps on the T -axis, corresponding to the fact that dA = 0.01
lies within the entanglement shadow zone for these mirrors. The parameters used here are
κ =
√

48π, η = 23, Ω = 50 and ∆x = 0.05.
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vH = 0. Substituting this into the expression for pξ (with vH = −T ) we have

pξ(t−XA)− pξ(t′ −XA)

=u+
ξ

κ
log

[
1 + ξ

2
W
( 2

1 + ξ
e

2κ(−T−u)
1+ξ

)]
− u′ − ξ

κ
log

[
1 + ξ

2
W
( 2

1 + ξ
e

2κ(−T−u′)
1+ξ

)]
=t− t′ + ξ

κ
log

[
W
( 2

1 + ξ
e

2κ(−T−u)
1+ξ

)]
− ξ

κ
log

[
W
( 2

1 + ξ
e

2κ(−T−u′)
1+ξ

)]
=t− t′ + ξ

κ
log

[
2

1 + ξ
e

2κ(−T−u)
1+ξ

]
− ξ

κ
W
( 2

1 + ξ
e

2κ(−T−u)
1+ξ

)
− ξ

κ
log

[
2

1 + ξ
e

2κ(−T−u′)
1+ξ

]
+
ξ

κ
W
( 2

1 + ξ
e

2κ(−T−u′)
1+ξ

)
=t− t′ − 2ξ(T + u)

1 + ξ
− ξ

κ
W
( 2

1 + ξ
e

2κ(−T−u)
1+ξ

)
+

2ξ(T + u′)

1 + ξ
+
ξ

κ
W
( 2

1 + ξ
e

2κ(−T−u′)
1+ξ

)
,

(7.14)

where in going from the second to the third equality we used the identity log[W(x)] =
log[x]−W(x). Next, we would like to take the T →∞ limit. First, note that u = t−XA =
t− xm(T ) + dA. Meanwhile,

xξ(T ) = −ξT − ξ

2κ
W
(
2e−2κT

)
→ −ξT (7.15)

since W(0) = 0. Making use of this fact again for the terms involving W(·) in the previous
equation, we have

pξ(t−XA)− pξ(t′ −XA)→ t− t′ − 2ξ(T + u)

1 + ξ
+

2ξ(T + u′)

1 + ξ

= t− t′ − 2ξ(u− u′)
1 + ξ

=

(
1− 2ξ

1 + ξ

)
(t− t′) . (7.16)

Hence,

ln
[
pξ(t−XA)− pξ(t′ −XA)− iε

]
→ ln[

(
1− 2ξ

1 + ξ

)
(t− t′)− iε] . (7.17)

This asymptotic form coincides with the piece contained in the Wightman function of a
mirror moving to the left at constant time-like speed ξ < 1 passing through the origin.
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The trajectory of such a mirror is t = −x/ξ, or equivalently,

v = (1− 2ξ

1 + ξ
)u ≡ pc(u) . (7.18)

Therefore as promised, we have ln
[
pc(t−XA)−pc(t′−XA)− iε

]
= ln[

(
1− 2ξ

1+ξ

)
(t− t′)− iε]

which is the right hand side of Eq. (7.17). Repeating this for each of the three remaining
pieces in eq. (7.5), we will find that at large T , the Wightman function approaches that of the
constant speed mirror. Clearly, repeating this analysis for PB and X will demonstrate that
they too asymptote to the constant speed mirror value at large T . We have thus successfully
explained the asymptotic value of concurrence of the time-like mirrors in Fig. 7.7.

Finally, we attempt to investigate whether the concurrence with a ξ = 1 mirror asymp-
totes to a finite, non-zero value. For any ξ < 1, the expression in eq. (7.16) tends to a
finite value whenever t 6= t′. This gives a finite P when the UV-regulator is taken to ε→ 0
at the end. However when ξ = 1, the expression in eq. (7.16) is identically zero for all t , t′

values, giving ln
[
p(t− xd)− p(t′ − xd)− iε

]
→ ln(−iε) which diverges in the limit ε→ 0.

Due to this behavior of the Wightman function, an asymptotic value of P for large T does
not exist for ξ = 1. To investigate how the divergence occurs at large T , we expand the
terms involving the W(·) functions in eq. (7.14) to subleading order in e−κT :

− 1

κ
W
(
eκ(−T−u)

)
+

1

κ
W
(
eκ(−T−u′))

= −1

κ
W
(
e−κT−κ(t+dA+T+ 1

2κ
W
(

2e−2κT
))

+
1

κ
W
(
e−κT−κ(t′+dA+T+ 1

2κ
W
(

2e−2κT
)

)
)

→ e−2Tκ

κ
(eκ(dA−t′) − eκ(dA−t)) +O(e−4Tκ) . (7.19)

Hence for the BHC mirror, we have ln
[
pξ(t−XA)−pξ(t′−XA)− iε

]
→ ln( e

−2Tκ

κ
(eκ(dA−t′)−

eκ(dA−t)) − iε) = −2κT + log( 1
κ
(eκ(dA−t′) − eκ(dA−t)) − iε) after a rescaling of the small

parameter ε. An example of the plot of PA and |X| against T is shown in Fig. 7.8.

We thus have P and X →∞ at large T when ξ = 1. We note that the results obtained
are only valid to leading order in perturbation. In particular, the apparent linear increase
in P , |X|, and C in T for the ξ = 1 mirror at late times will not continue indefinitely in
the real world — perturbations of higher orders will eventually be needed to accurately
describe the large T behaviour.
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Figure 7.8: Linear increase in P and |X| for ξ = 1. The parameters used here are κ =
√

48π,
η = 23, Ω = 50, dA = 0.01 and ∆x = 0.05.

Comparison with entropy

Interestingly, such a linear late time growth is also observed for the regularised von Neu-
mann entanglement entropy, S(u), of the state |0〉in. This is given by S(u) = −(1/12) log p′(u)
[115] for mirror spacetimes. Roughly speaking, this measures the amount of entanglement
between the two spacetime regions lying respectively before and after the null-line u. A
plot of S(u) for the different trajectories is given in Fig. 7.9 (see also [122]). For the ξ = 1
trajectory, there is information loss that can be characterized by a divergent entanglement.
A diverging entanglement entropy has also been observed in null-shell collapse to a black
hole in [123]. There, the linear increase was interpreted as being due to a constant rate
of entanglement entropy production by the black hole. As mentioned in the introduction,
the UDW model serves as an operational way of measuring the amount of entanglement
present in the vacuum. It is thus satisfying to see an agreement in the qualitative be-
haviour between the concurrence of the detectors and the entanglement entropy between
different spacetime regions. This correspondence at least suggests that the ever-increasing
concurrence that appears for the horizon mirror can be intuitively thought of as a direct
result of loss of information in the system. Of course, further case studies are necessary to
see if this agreement is a mere coincidence.

7.3 Summary

We have performed in (1+1) dimensions investigations of entanglement harvesting between
two detectors in the presence of mirrors using linear and derivative couplings between the
detectors and the quantum field. We looked at both static and non-inertial trajectories.
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Figure 7.9: Plot of von Neumann entanglement entropy, S(u) = −(1/12) log p′(u), for the
class of mirror trajectories Eq. (7.11) with final drifting speeds ξ. Notice the asymptotic
divergent entropy for the horizon case ξ = 1, which is in qualitative agreement with results
of Fig. 7.7, suggesting non-unitary evolution -information loss in the horizon system is
responsible for the divergence in concurrence.
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We find that in both cases mirrors can enhance entanglement: entanglement harvested
between two detectors can be greater in the presence of a mirror as compared to free
space. However for non-inertial trajectories we find a region of entanglement shadow close
to the mirror, similar to what is observed close to black holes in [102]. Physically, our
results provide a theoretical prediction of what to expect of the entanglement detection in
the presence of the DCE.

We also found that concurrence can distinguish between the global property of a dy-
namic spacetime containing a horizon and one without. However, the effect is subtle and
harvesting without horizons does not dramatically affect entanglement. Entanglement
shadow regions can exist for both horizon mirrors and horizonless mirrors, as we depict in
C − dA plots of Fig. 7.6. However for horizon mirrors concurrence at small dA “revives” as
time increases. The most striking difference is illustrated in Fig. 7.7: concurrence for hori-
zonless mirrors asymptotes to finite values at large T , but for horizon mirrors concurrence
evidently has no asymptote.

It will be interesting for further studies to find out why concurrence in the presence
of horizons exhibits a shadow zone that can “revive” at large T , which may depend on
properties of the horizon. Likewise, it will be even more interesting to see what features of
this study are preserved in actual gravitational collapse.
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Part II

Black Hole Thermodynamics
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Chapter 8

Black Hole Thermodynamics in
Extended Phase Space

The second part of this thesis is devoted to the phase transitions of slowly accelerating
black holes in Anti-de Sitter spacetimes. We will begin in this chapter with a general
review of black hole thermodynamics, before moving on to the specific thermodynamics of
accelerating black holes in the next chapter.

8.1 Black hole as thermodynamic systems

Since Hawking’s discovery of black hole radiation [9], black holes have generally been ac-
cepted to be thermodynamic systems – systems to which can be attributed thermodynamic
variables such as entropy, temperature and energy, and for which the usual laws of ther-
modynamics apply. In particular, using techniques from quantum field theory in curved
spacetime, Hawking found that the particle spectrum coming from a black hole is a Planck
spectrum with temperature κ

2π
, where κ is the surface gravity (definition below) of the

black hole. Thus even though a classical black hole is simply a region from which no parti-
cles can escape, quantum mechanical considerations helped reveal its radiative properties.
In familiar thermodynamic systems such as the Ising model, the entropy is a measure of
the number of quantum mechanical microscopic states of the system. Furthermore, the
second law, which states that the total entropy of a closed system cannot decrease, is
statistical in nature and results from the overwhelming probability of a large number of
particles to disorder rather than order themselves. Surprisingly, each of the four laws of
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thermodynamics for black holes can be derived directly using general relativity [124]. As
a result, even though we do not have a theory of quantum gravity, by matching terms in
these laws, we are led to a value of A/4 for the entropy of a black hole where A is the area
of the event horizon. Let us now recall what these laws are for stationary black holes in 4D
Einstein-Maxwell theory. The derivation of these can be found for example in [124, 125].

First, recall that a stationary spacetime is one admitting a Killing vector field that is
timelike in a neighbourhood of I±, expressing the time translation invariance of the space-
time. Stationary black holes are thus equilibrium systems i.e., their physical attributes are
not changing in time, analogous to equilibrium thermodynamic systems. The four laws are
derived from the Einstein-Maxwell field equations, together with certain energy conditions
imposed on the energy-momentum tensor Tab, which are expected to be satisfied by ordi-
nary matter. The energy condition imposed can be either of the following:

Dominant energy condition. −T ab Xb is a future directed, causal vector for all timelike,
future directed vectors Xb.

Weak energy condition. TabX
aXb ≥ 0 for all causal vectors Xa. Replacing “causal”

with “null” gives us the null energy condition.

Strong energy condition. (Tab − 1/2gabT
c
c )XaXb ≥ 0 for all causal vectors Xa.

Zeroth law

The zeroth law concerns the surface gravity of the black hole. Recall that the surface
gravity κ of a black hole is the quantity satisfying,

ξa∇aξ
b|H = κξb , (8.1)

on the event horizon H of the black hole, where ξ is the generator of H. It is the force
required for an observer at infinity to hold a unit test mass at rest near the horizon.
The zeroth law of black hole mechanics states that κ is a constant on the event horizon
of a stationary black hole spacetime obeying the dominant energy condition [36]. Since
Hawking radiation tells us that the temperature T = κ

2π
, this is equivalent to saying that

the temperature of equilibrium black holes are constant.
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First law

The first law concerns how the change in mass M is related to changes in A, the angular
momentum J and the charge Q of a stationary, axisymmetric, charged, electrovacuum black
hole under small perturbations. The black hole uniqueness theorems tell us that such a
black hole must belong to the Kerr-Neumann family. The first law states that under a
linearised perturbation to the Kerr-Neumann solution, the variation of the parameters
satisfies,

δM =
κ

8π
δA+ ΩδJ + ΦδQ , (8.2)

where Ω is the angular velocity of the black hole and Φ is the difference in electrostatic
potential between the horizon and infinity. In fact, Wald and Sudarsky [126, 127] have
shown that the first law holds also for more general diffeomorphism covariant theories
of gravity in which case the quantities such as M and J are the conserved charges of
appropriate Killing vector fields of the spacetime.

We note that there are two distinct viewpoints one can take concerning the first law
[128]. One is the “physical states” viewpoint, which regards the first law as describing
actual tiny physical perturbations to a given physical black hole [129], which subsequently
settles down to another physical black hole described by parameters that are small changes
from the original ones. The viewpoint in [126] is a more general “equilibrium states”
viewpoint, being that the first law describes variations of the parameters characterizing a
family of black hole solutions of interest.

To cast the first law in more familiar form, we make the identifications M ↔ E,
κ
2π
↔ T and A/4↔ S between the black hole variables and their associated thermodynamic

quantities. Eqn. (8.2) thus reads,

δE = TδS + ΩδJ + ΦδQ , (8.3)

which is the usual form of the first law, with ΩδJ + ΦδQ being the “work terms” for
charged, rotating systems.

The first law together with Euler’s theorem for homogeneous functions can be used to
derive a Smarr formula, an expression for M in terms of A, J and Q. Euler’s theorem
states that if a function f(x, y, z, ...) satisfies the scaling relation f(αpx, αqy, αrz, ...) =
αsf(x, y, z, ...), then the function and its partial derivatives satisfy the relation

sf(x, y, z, ...) = p
∂f

∂x
x+ q

∂f

∂y
y + r

∂f

∂z
z + ... . (8.4)
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Since the Kerr-Neumann solution is fully specified by three parameters, we can treat M =
M(A, J,Q). Under a change in length scale `, each variable will scale according to their
length dimensions, with M ∝ `, A ∝ `2, J ∝ `2 and Q ∝ `. Therefore we have a scaling
relation for M under `→ α` given by M(α2A,α2J, αQ) = αM(A, J,Q). Using the Euler’s
theorem and the first law then gives us the Smarr formula for Kerr-Neumann black holes:

M = 2
κ

8π
A+ 2ΩJ + ΦQ . (8.5)

Second law

The second law is also known as the Hawking area theorem. It states that the area of
a black hole can never decrease provided that the null energy condition is satisfied and
the spacetime is strongly asymptotically predictable. In thermodynamic terms, this is the
statement that the entropy of isolated systems cannot decrease.

Third Law

Finally, the third law states that it is impossible to reduce the temperature of a black hole
to zero in any physical processes.

8.2 Extended phase space for AdS black holes

In the previous section, we have reviewed the laws of black hole thermodynamics in the
usual Einstein-Maxwell theory. In this section, we consider the addition of a negative
cosmological constant Λ and the resulting Anti-deSitter (AdS) black holes.

First law for AdS black holes

By treating Λ as a variable, Kastor, Ray and Traschen [38] derived a first law for static
AdS black holes in analogy to the calculation done in [127]. The result they obtained (for
uncharged, non-rotating AdS black holes) was

δM =
κ

8π
δA+

Θ

8π
δΛ , (8.6)
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where Θ is given by a boundary integral of some geometric quantities, which is unimportant
for us at the moment. The authors pointed out that since the addition of the cosmological
constant into the Einstein’s field equations can be interpreted as adding a perfect fluid
energy momentum tensor with pressure

P = − Λ

8π
,

we should interpret Λ as being related to the thermodynamic pressure P according to
the above equation. The thermodynamic conjugate variable to P , −Θ, which has the
dimensions of volume, should thus be interpreted as the thermodynamic volume, V ↔ −Θ.
With these identifications, Θ

8π
dΛ = V δP . As a result, Eqn. (8.6) suggests that the mass

of the black hole is actually its thermodynamic enthalpy, H = E + pV , and the equation
itself is once again the enthalpy version of the thermodynamic first law,

δH = TδS + V δP . (8.7)

We have thus extended the thermodynamic phase space of black holes by the (P, V ) vari-
ables by considering a varying Λ.

In the case of rotating and charged AdS black holes, the first law becomes

δM = TδS + ΩδJ + ΦδQ+ V δP . (8.8)

Addition of V δP term to the first law allows for a scaling derivation of the Smarr formula
of these black holes. Noting that P ∝ Λ ∝ `−2, Euler’s formula can be applied as before
giving

M = 2
κ

8π
A+ 2ΩJ + ΦQ− 2PV . (8.9)

Interpreting the thermodynamic volume

The thermodynamic volume of a black hole is given by its geometric volume in certain
simple examples such as the Schwarzchild black hole, but in general, it differs from the
geometric volume. In [130], it was conjectured that black holes satisfy the reverse isoperi-
metric inequality

R =

(
(D − 1)V

ΩD−2

) 1
D−1(ΩD−2

A

) 1
D−2 ≥ 1 (8.10)

for a D−dimensional spacetime. In this expression, ΩD−2 is the dimensionless surface area
of the unit ball in D − 1 dimensions and A is the surface area of the black hole horizon.
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The conjecture was motivated by the observation at the time that all known black holes
seemed to respect the inequality (8.10). Since A is proportional to the entropy of the
black hole, Eq. (8.10) is an inequality between the thermodynamic volume and entropy of
the black hole. When the inequality is saturated, a black hole of a given thermodynamic
volume is interpreted to have attained its maximal possible entropy.

Since then, the isoperimetric ratio R of various black hole families have been studied,
and some were found to violate this inequality [131, 132, 133, 134, 135, 136, 137, 138, 139].
Such black holes have come to be called super-entropic, since they have more entropy than
the relation (8.10) would admit. In the next chapter, we shall see that there exists charged,
slowly accelerating AdS black holes which are “mini-entropic”.

8.2.1 Phase transitions

As mentioned in the beginning of this chapter, the thermodynamic behaviour of black holes
is quantum origin, but we do not have a quantum theory to explain the microscopic degrees
of freedoms involved. However, if we believe in the above identification of thermodynamic
variables of black holes, then we can formally study other thermodynamic properties of
the black holes using these identifications. In particular, we can study the possible phase
transitions of black holes implied by (the relationship between) their thermodynamic vari-
ables.

One way to look for phase transitions of a thermodynamic system is by looking at the
(Gibb’s) free energy

F ≡M − TS (8.11)

of the system. At any fixed T, P , the configuration minimising F is thermodynamically
favoured. A phase transition occurs when there is a discontinuity in the system variables
(e.g., entropy, volume etc.) of the F−minimising configurations. To make things clearer,
we illustrate this now for charged AdS black holes.

VDW-like transitions of charged AdS black holes

The hallmark phase transitions of charged and rotating AdS black holes is a small-to-large
transition similar to the liquid-to-gas transition of Van der Waals fluids. This was studied
in detail in [39]. This phase transition is heralded by the swallowtail F −T diagram. Some
example swallowtail diagrams are displayed in fig. 8.1 for Q = 1 AdS black holes at various
pressures.
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Figure 8.1: Swallowtails. This figure shows plots of free energy as a function of temper-
ature for charged (Q = 1) AdS black holes at various pressures, measured in terms of the

critical pressure P
(0)
c (blue). For P < P

(0)
c (purple, red, green, yellow), the curves take on

a swallowtail shape, signifying first order phase transitions.

For pressures below a critical pressure, P < P
(0)
c , the free energy of the system exhibits

swallowtail behaviour, characteristic of first order phase transitions. Let us examine the
structures of the curves at different pressures: the curve is smooth for P > P

(0)
c , develops

a kink at P = P
(0)
c , and then a swallowtail for P < P

(0)
c , which grows in size as pressure

further decreases. Each swallowtail has two cusps and one self-intersection point. As we
move along any given swallowtail beginning from the left at T = 0 and following the curve
rightwards to its first cusp, then left and upwards to its second cusp, and then rightwards
again down the steeply negative slope, the radius of the black hole monotonically increases.
Hence it has become conventional to call black holes lying on the part of the curve between
T = 0 and the first cusp small black holes, those lying on on the steeply negative slope below
the self-intersection point large black holes and any black holes in between as intermediate
black holes. These represent the three thermodynamic phases of charged AdS black holes.

For temperatures between T = 0 and the temperature at the intersection, the free
energy is minimised by the small black holes, making them the favoured configuration.
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Figure 8.2: Phase diagram of a charged AdS black hole. The P − T diagram of a
charged AdS black hole is reminiscent of what happens for the liquid/gas phase transition.
The coexistence line between small black hole (SBH) phase (analogous to the liquid phase)
and large black hole (LBH) phase (analogous to the gas phase) emerges from the origin

on one end and terminates at a critical point at (T
(0)
c , P

(0)
c ) on the other end. The plot is

made for Q = 1.

However the global minimum of the free energy experiences a discontinuity at the inter-
section, at which it is thermodynamically favourable for the small black hole to undergo a
first-order phase transition to a large black hole.

The phase diagram of the charged AdS black holes is shown in Fig. 8.2. The curve on
this P − T plane is the coexistence line corresponding to the family of intersection points
of the swallowtails in Fig. 8.1 at each pressure. Above the coexistence line, a small black
hole is the preferred phase while below it a large black hole is the preferred phase. The
coexistence line emanates from the origin and terminates at a critical point, characterized
by the critical temperature and pressure

T (0)
c =

√
6

18πQ
, P (0)

c =
1

96πQ2
. (8.12)

At this critical point the phase transition becomes second order and is characterized by
the Ising universality class mean field theory critical exponents [39]. This phase transition
of charged AdS black holes is reminiscent of the liquid/gas transition of Van der Waals
fluids.
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Remarkably since [39], Van der Waals-like behaviour has been observed for many rotat-
ing and/or charged AdS black holes in various spacetime dimensions and for various gravity
theories. Although more complicated phase behaviour may occur (see [40] for a review),
Van der Waals behaviour can be regarded as prototypical thermodynamic behaviour for
AdS black holes in a canonical ensemble. For this reason it is rather instructive to find a
departure from this prototypical behaviour and seek more complicated phase diagrams for
AdS black holes. To this end the following features have been identified: reentrant phase
transitions (RPT) [42], triple points analogous to that of water [43], isolated critical points
[140, 141], and superfluid-like behaviour [142].

In the next chapter, we will find that acceleration of the black hole can bring about
RPT. RPT refers to the scenario in which a system undergoes two or more phase transi-
tions under the monotonic variation of a thermodynamic variable such that the final state
is macroscopically similar to the initial state. RPT was first observed in a thermodynamic
system in 1904 in a nicotine/water mixture and is commonly observed since then in mul-
ticomponent fluid systems [143]. In the context of black holes, RPT was first observed for
four dimensional Born-Infled black holes in [41] and later examples include [42, 144, 145].
Besides RPT, acceleration also brings about a “snapping” of the swallowtail in the F − T
diagram where the branch of small black holes snaps back and joins smoothly to branch
of intermediate black holes. This happens at another critical pressure which we denote as
Pt. A zeroth order phase transition, where there is a jump in the free energy between the
two phases, from small to intermediate black holes arises because of this snap. These novel
features will be illustrated in greater details in the next chapter.
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Chapter 9

Phase Transitions of Slowly
Accelerating AdS Black Holes

In the previous chapter, we have seen that by treating the cosmological constant Λ as a
thermodynamic variable, we arrive at a V δP term in the first law of black hole thermody-
namics. The addition of pressure gave rise to interesting phase behaviours for AdS black
holes, with the Van der Waal’s like phase transitions of charged AdS black holes being a
representative example. In this chapter, we will see how the phase behaviour is altered
when the black holes are accelerating.

This chapter is based on [6, 7].

9.1 Accelerating black holes

The history of accelerating black holes goes all the way back to the early days of general
relativity to the discovery of the C-metric [146, 147]. This metric has played an important
role for many developments in general relativity, has been rediscovered many times (see
[148] for references), and is understood now to describe accelerating black holes. The
C-metric yields an example of an exact radiative spacetime and was exploited to study
radiative patterns in spacetimes with various asymptotics e.g. [149]. It has been used
to study black hole nucleation in various backgrounds [150, 151], to provide the means
for splitting a cosmic string [152, 153], and in a generalized form was used to construct
5-dimensional black rings [154].
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Despite these interesting studies, it was only recently that the thermodynamic proper-
ties of these accelerating black holes were better understood. The effort had partly been
hampered by the cosmic strings attached to the black holes, making them different from
the usual isolated black holes solutions, and the generic presence of acceleration horizons
in the spacetime. The acceleration horizons are usually at different temperatures from
the black hole horizons, causing the black holes to not be in thermodynamic equilibrium.
In addition, C-metric solutions possess unconventional asymptotic structures due in part
to the cosmic strings that extend to infinity, making it difficult to correctly identify the
asymptotically timelike Killing vector ∂t with which mass should be defined. This has led
to conflicting results in the literature [155, 156, 157, 158, 159, 160] for the thermodynamic
mass of the black hole.

Surmounting these difficulties, the authors of [161, 162] described how to correctly
normalise ∂t to obtained a consistent thermodynamic description of slowly accelerating
AdS black holes. These are black holes that do not possess acceleration horizons and the
associated metric describes a single accelerated black hole in AdS space that is suspended
on a cosmic string represented by a conical deficit on one of the polar axes. Since there
is only one horizon (no acceleration or cosmological horizons are present in the limit of
slow acceleration), the system has a unique temperature and its thermodynamics can be
defined.

In the absence of charge and rotation, we might expect these slowly accelerating AdS
black holes to undergo a Hawking-Page [163] phase transition just as other uncharged and
non-rotating AdS black holes. However as already noted in [155, 156], transitions from
black holes to pure thermal radiation is impossible in the canonical ensemble since there is
a fixed conical deficit in the spacetime. We thus expect interesting phase transitions only
when charge or rotation is added.

As we saw in the last chapter, the addition of charge brings about a small-to-large black
hole phase transition which was also observed subsequently for rotating AdS black holes
[42]. The key observation in [161, 162] is that the tension µ of the string, which causes
the black hole to accelerate, can be treated as yet another thermodynamic quantity whose
variations add a new work term to the first law which now reads

δM = TδS + ΩδJ + ΦδQ+ V δP − λδµ , (9.1)

where λ is a conjugate thermodynamic quantity to the string tension µ, known as the
thermodynamic length [156]. We shall study in detail in this chapter how the addition of
this term affects the small-to-large black hole phase transition.

We begin in sec. 9.1.1 by reviewing the generalised C-metric which describes these black
holes and presenting their thermodynamic variables in sec. 9.1.2 as they were derived in
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[161, 162]. Next, we will move on to study the phase transitions of two subclasses of
slowly accelerating AdS black holes namely, (i) charged, non-rotating black holes, and (ii)
rotating, uncharged black holes. The analysis for each case proceeds via a standardised
procedure: finding the admissible parameter space, studying the free-energy diagram and
plotting the P − T phase diagram. However, the phase transitions of the rotating case is
slightly more involved than the charged case. We thus present the charged case first in
sec. 9.2, which will lay the groundwork for studying the rotating case in sec. 9.3.

9.1.1 Generalised C-metric

The charged, rotating and accelerating AdS C-metric can be written as follows [164, 165,
166]

ds2 =
1

Ω2

{
− f(r)

Σ

[
dt

α
− a sin2 θ

dφ

K

]2

+
Σ

f(r)
dr2 +

Σ r2

g(θ)
dθ2

+
g(θ) sin2θ

Σ r2

[
a dt

α
− (r2 + a2)

dφ

K

]2}
, (9.2)

F = dB , B = − e

Σr

[
dt

α
− asin2θ

dφ

K

]
+ Φdt (9.3)

where
Φ =

er+

(a2 + r2
+)α

. (9.4)

In this gauge, the electrostatic potential vanishes on the black hole horizon. The other
metric functions involved are given by

f = (1− A2r2)
(

1− 2m

r
+
a2 + e2

r2

)
+
r2 + a2

l2
,

g(θ) = 1 + 2mA cos θ +
(
A2(a2 + e2)− a2

l2

)
cos2θ ,

Σ = 1 +
a2

r2
cos2θ , Ω = 1 + Ar cos θ . (9.5)

with A being the acceleration parameter, Λ = −3/l2 the cosmological constant, m the mass
parameter, a the rotation parameter and e the charge parameter. The time coordinate has
been rescaled by the parameter α,

α =

√
(Ξ + a2/l2)(1− A2`2Ξ)

1 + a2A2
, Ξ = 1− a2

l2
+ A2(e2 + a2) , (9.6)
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in order to ensure a consistent variational principle and a correct normalization of the time-
like Killing vector at infinity [161, 162]. The conformal factor Ω determines the boundary
of the AdS spacetime, and the parameter K encodes information about the conical deficit
on the south and north poles, so that φ ∈ [0, 2π].

The metric and gauge potential (9.2) satisfy the Einstein-Maxwell equations everywhere
except along the polar axes θ = θ+ = 0 and θ = θ− = π, where there must exist a string of
stress-energy in order to offset the conical deficit about these axes. This can be done by
introducing cosmic strings whose tensions on the polar axes are

µ± =
1

4

(
1− Ξ± 2mA

K

)
, (9.7)

and are related to the conical deficits, δ± by δ± = 8πµ±. Thus we have the following range
for the tensions:

µ± ∈ [0, 1/4) , (9.8)

with the upper limit corresponding to a conical deficit of 2π. Defining further

K± = g(θ±) = Ξ± 2mA , (9.9)

we can by an appropriate choice of K = K+ or K = K− respectively set either of µ+ or
µ− to zero, but not both.

If the black hole has sufficiently slow acceleration (see discussion below) there will be
a single (black hole) horizon. This constrains the parameter space and allows for a single
temperature and consistent thermodynamics.
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9.1.2 Thermodynamic variables

Let us first present the thermodynamic quantities associated with charged, rotating, slowly
accelerating black holes [162]:

M =
m(Ξ + a2/l2)(1− A2l2Ξ)

KΞα(1 + a2A2)
, (9.10)

T =
f ′+ r

2
+

4πα(r2
+ + a2)

, S =
π(r2

+ + a2)

K(1− A2r2
+)
, (9.11)

Q =
e

K
, Φ =

er+

(r2
+ + a2)α

, (9.12)

J =
ma

K2
, Ω =

aK

α(r2
+ + a2)

+
aK(1− A2l2Ξ)

l2Ξα(1 + a2A2)
, (9.13)

P =
3

8πl2
, V =

4π

3Kα

[ r+(r2
+ + a2)

(1− A2r2
+)2

+
m[a2(1− A2l2Ξ) + A2l4Ξ(Ξ + a2

l2
)]

(1 + a2A2)Ξ

]
, (9.14)

λ± =
r+

α(1± Ar+)
− m

α

[
Ξ + a2

l2
(2− A2l2Ξ)

]
(1 + a2A2)Ξ2

∓ Al2(Ξ + a2/l2)

α(1 + a2A2)
. (9.15)

They satisfy

δM = TδS + ΦδQ+ ΩδJ + V δP − λ+δµ+ − λ−δµ− ,
M = 2(TS + ΩJ − PV ) + ΦQ , (9.16)

which are respectively the first law and Smarr relation. The first law holds under a linear
perturbation of the parameters qi ∈ {m, l, a, e, A,K} with δM =

∑
i
∂M
∂qi
δqi, etc. We note

also that the λ±µ± terms do not enter the Smarr relation as µ± is dimensionless. The
necessity for introducing these last two work terms to the first law was first demonstrated
in [156]. Examples of where string tensions do vary include “capture of cosmic string by a
black hole” and an “axisymmetric merger” of two accelerating black holes, each carrying
its own cosmic string.

In what follows we explicitly make the choice K = K+, so that

µ+ = 0 , µ = µ− =
mA

K+

. (9.17)

In other words, only one string (located at the south pole) pulls on the black hole, which
is completely regular on the north pole. The first law then takes the form (9.1).
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9.2 Charged, slowly accelerating AdS black holes

Now let us restrict attention to the charged case, setting a = 0 (hence Ω, J = 0).

9.2.1 Parameter space

Before discussing the possible phase transitions, we must determine the admissible space
of the parameters appearing in the metric (9.2) that ensure our problem is well-posed.
Clearly, we have a number of conditions to impose: i) positivity of the function g over the
range θ ∈ [0, π], ii) existence of a black hole in the bulk, and iii) validity of the derived ther-
modynamics. The latter entails working in the slow acceleration regime (9.23) and (9.26).
This ensures that α is positive and that there is a single horizon whose temperature is
given by its surface gravity.

In order to discuss these conditions, we introduce the new coordinates

x =
1

Ar
, y = cos θ (9.18)

so that the conformal boundary is situated at x = −y. We also consider the dimensionless
quantities

m̃ = mA , ẽ = eA , Ã = Al , r̃ = r/l . (9.19)

Using these variables, and the definition of µ, K, and Q, we find the following relations:

Ã =
ẽ(1− 2µ)

(1 + ẽ2)Q/l
, m̃ =

µ(1 + ẽ2)

1− 2µ
. (9.20)

Signature of g.

In order to have the right metric signature (−,+,+,+), we require g > 0 for y ∈ [−1, 1].
This yields

m̃ <

{
1
2
(1 + ẽ2) for |ẽ| < 1 ,

|ẽ| for |ẽ| > 1 ,
(9.21)

the boundaries of which give the black horizontal lines in Fig. 9.1.
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Existence of a bulk black hole.

Demanding that the spacetime admits a black hole and not a naked singularity, we require
that an horizon exists in the bulk, that is f has at least one root r+ in the range r ∈ (0, 1/A)
preserving the signature for r+ < r < 1/A.To find this we can appeal to the condition for
an extremal black hole

f(r̃e) = 0 = f ′(r̃e) , (9.22)

or in other words, that f has a double root r+ = re, corresponding to the coincidence of
the inner and outer black hole horizons. Solving these two equations yields Ã = Ã(r̃e, ẽ)
and m̃ = m̃(r̃e, ẽ), which can be plotted parametrically in terms of r̃e for a fixed ẽ. The
resultant curve provides a lower bound for the existence of the black hole, and is displayed
in Fig. 9.1b by the red line, denoting the extremal limit. Above this line, a black hole
(with two horizons) is present, whereas no black hole exists below it.

Validity of thermodynamics.

To ensure that the thermodynamic quantities (9.10) are well defined, it is necessary to
have α > 0, which in turn imposes

1− A2`2Ξ > 0 , (9.23)

or

Ã <
1√

1 + ẽ2
. (9.24)

The boundary is displayed in Fig. 9.1 by the vertical green lines.

On the other hand, the sufficient condition for the slow acceleration regime is that f
does not develop any roots on the boundary (neither acceleration nor cosmological horizons
are present [149]). Since the conformal boundary is situated at x = −y, the metric function
f develops a root on the boundary when

f(x = −y) = 0 = f ′(x = −y) , (9.25)

for some y ∈ [−1, 1]. This yields the following relations:

m̃ =
y(1 + 2ẽ2y2 − ẽ2)

1− 3y2
, Ã = ±

√
(1− ẽ2y2)(1− 3y2)

(1− y2)(1− ẽ2y2)
. (9.26)
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Figure 9.1: Parameter space. The admissible parameter space (denoted by shaded ar-
eas) is displayed in the m̃ vs. Ã plane for fixed ẽ = 0 (left) and ẽ ≈ 0.22 (right). Horizontal
black curves outline the boundary of positive g. The red curve is the boundary for the
existence of black holes in the bulk, with extremal black holes sitting on the curve. The
blue curve forming the right boundary of the admissible region gives the no-acceleration
horizon condition, and the green vertical line corresponds to α = 0. A non-trivial point
X is observed for 0 < ẽ ≤ ẽM . For ẽ = 0 the analogous point is situated at the at
Ã = 1, m̃ = 0 corner of the left diagram, which corresponds to pure AdS spacetime.

The corresponding parameter space can be plotted parametrically, for y ∈ [−1, 1]; it
corresponds to the blue curves forming the right-hand boundaries of the admissible regions
in Fig. 9.1.

Note that the condition α > 0, for which the thermodynamic quantities (9.10) are well
defined functions, is weaker than the requirement of the slow acceleration regime—the blue
curve cuts away an additional piece of the admissible region of the parameter space. One
might suspect that the thermodynamic quantities in this removed region would correspond
to the characteristics of a rapidly accelerating black hole. Even if so, the phase transition
interpretation in this regime would be questionable as there are additional horizons present
in the spacetime. We note, however, that a proposal [167] to treat additional horizons (in
that case de Sitter) as ‘independent thermodynamic systems’ that do not apriori affect the
phase transitions due to the black hole horizon has been recently put forward.
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Point X and a summary of constraints.

The above constraints dictate the admissible parameter space in the dimensionless (Ã, m̃, ẽ)
plane. Two dimensional slices of this three-dimensional parameter space can easily be
displayed; see Fig. 9.1 for two examples of ẽ: ẽ = 0 (left) and ẽ ≈ 0.22 (right). The full
admissible parameter region is a union of such slices.

For a non-trivial ẽ we note the presence of a ‘point X’ on each parameter slice, the
only point where the α = 0 line forms the boundary of the admissible region. As we
shall see this point plays a crucial role for the existence of snapping swallowtails. Point
X is characterized by the intersection of the following three curves: the α = 0 curve, the
extremal black hole curve, and the slow acceleration curve. Since the intersection of any
two is sufficient for finding X, this point is (for example) given by

α = 0 , f(r̃e) = 0 = f ′(r̃e) , (9.27)

which yields

Ã =
1√

1 + ẽ2
, m̃ = |ẽ|

√
1 + ẽ2 ,

r̃e =

√
1 + 6ẽ2 + 5ẽ4 − 1− ẽ2

2|ẽ|
. (9.28)

From the expressions of Q and µ, a black hole lying on this point must then have

Q =
ẽ
√

1 + ẽ2

1 + ẽ2 + 2|ẽ|
√

1 + ẽ2
, µ =

|Q|
l
, (9.29)

with the latter equivalent to a pressure which we call P
(Q)
t ,

P
(Q)
t =

3µ2

8πQ2
. (9.30)

We shall see later that P
(Q)
t corresponds to a critical pressure giving a novel lower end

point to the coexistence line in the P − T phase diagram.

As ẽ increases the point X ‘travels upwards’ and the admissible parameter region
shrinks, until at a maximum value ẽM the whole parameter space shrinks to one point.
This occurs when all boundary curves intersect, that is for

|ẽM | =
√

3

3
, m̃M =

2

3
, Ã =

√
3

2
. (9.31)
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For larger ẽ there is no physically admissible region. Hence ẽ is constrained to the range
ẽ ∈ [0, ẽM ], which in turn implies that the mass m̃ ∈ [0, m̃M ]. We note that these ranges
imply that only the upper formula in (9.21) and the plus sign in (9.26) are applicable.

9.2.2 Mini-entropic black holes

The point X, characterized above by (9.27) and (9.28)–(9.30), would correspond, via
(9.10)–(9.15), to a black hole of vanishing mass but finite radius and entropy, as well
as infinite volume, and potential1. Of course, this object cannot actually be physically
realized since X lies outside of the admissible region in parameter space (and thence the
above stated thermodynamics does not apply). However it is possible to come arbitrarily
close to it, for example following the slices of constant charge, pressure, and string tension,
as displayed in Fig. 9.4 below.

Computing the isoperimetric ratio R (8.10),

R =

(
(D − 1)V

ΩD−2

) 1
D−1

(
ΩD−2

A

) 1
D−2

, (9.32)

we see that it diverges as the point X is approached, where we have taken Ω2 = 4π/K
as the dimensionless volume of a ‘unit ball’, as determined by the r+-independent metric
conformal to the metric of a constant (t, r) hypersurface of Eqn.(9.2). From the perspective
of the reverse isoperimetric inequality R ≥ 1 [130], black holes in the vicinity of X are
mini-entropic: their volume diverges and their area is finite. This is in contrast to super-
entropic black holes [131], whose entropy exceeds the maximum implied by the black hole
volume (R < 1).

9.2.3 Novel phase behaviours

As per usual, to uncover the thermodynamic behaviour of the system, we study the free
energy, which is now also a function of the string tension µ,

F = M − TS = F (T, P,Q, µ) . (9.33)

Thermodynamic equilibrium corresponds to the global minimum of F . Non-analytic be-
haviour of this minimum indicates the presence of phase transitions.

1Note that the formula (9.28) admits a smooth limit ẽ→ 0, in which case we recover Ã = 1, m̃ = 0 = r̃e,
corresponding to empty AdS space.
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Figure 9.2: F − T diagram for charged accelerating black holes. A plot of free
energy as a function of temperature for accelerating charged black holes for various values
of the pressure, measured in terms of P

(0)
c , with µ = 0.05 and Q = 1; Whereas in the

non-accelerating case (Fig.8.1) the swallowtails exist for arbitrary small pressures, the

swallowtail disappears here for P < P
(Q)
t , see e.g. red curve where the swallowtail already

snapped.

Snapping swallowtails

As discussed in the previous chapter, charged AdS black holes without acceleration exhibit
Van der Waals-like phase behaviour [39]: for pressures P < P

(0)
c one observes swallowtail

behaviour of the free energy—corresponding to the first order small black hole/large black
hole phase transition, as illustrated in Fig. 8.1. In the presence of acceleration the situation
is much more interesting. As depicted in Fig. 9.2, for small tensions and pressures below
a critical value Pc ≈ P

(0)
c the swallowtail behaviour is preserved. However, contrary to

the non-accelerating case, the swallowtail ceases to exist for P < P
(Q)
t . Instead, as P

decreases through P
(Q)
t , the swallowtail ‘snaps’: the small black hole branch disappears

together with the extremal black hole, and re-appears as a new branch of unstable high
temperature black holes (that are mini-entropic for sufficiently high temperatures). The

resultant free energy diagram for P < P
(Q)
t is reminiscent of that of the ‘Schwarzschild-
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Figure 9.3: Snapping swallowtail at P ≈ P
(Q)
t . We display the qualitative change of

the behaviour of the free energy around P ≈ P
(Q)
t for µ = 0.1 and Q = 1. The blue dashed

curve together with the solid black curve show the behaviour of F for P & P
(Q)
t where the

swallowtail is present. At P
(Q)
t the swallowtail snaps, the blue dashed curve disappears

and a new branch of black holes displayed by the red curve appears. The black holes on
the dashed blue curve map to the black holes on the solid red curve in such a way that
the cusp point remains invariant and the extremal black hole located on the blue curve
at T = 0 maps to the (red curve) mini-entropic black hole at T → ∞. At P . P

(Q)
t we

observe the free energy, reminiscent of that of the Schwarzschild-AdS black hole, given by
a union of red and black curves.

AdS’ black hole (see Fig. 9.3 for more details). We stress, however, that in this case no
Hawking–Page transition can exist, as there is no radiation phase with non-trivial charge
Q and non-trivial string tension µ.

To get an intuitive feeling as to why the swallowtail snaps, let us study the P > P
(Q)
t ,

P = P
(Q)
t , and P < P

(Q)
t ‘swallowtails’ of the free energy from a perspective of the

corresponding parameter space slicing. Each swallowtail is characterized by fixed µ and Q,
and of course fixed pressure, and gives rise to a corresponding curve in the parameter space
(m̃, Ã, ẽ). In Fig. 9.4 we display the orthogonal projection of these curves (black arrows)
onto a fixed ẽ plane. On one end such curves asymptote to Ã = 0 corresponding to black
holes lying at the very bottom of the stable large black hole branch; on the other end they
terminate either on an extremal black hole curve (dashed case), at the point X (solid),
or on the slow acceleration blue curve (dot-dash). Note that each of these end points
happen on a different ẽ slice but they are all projected onto the same plane in Fig. 9.4 for
illustration.
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When P = P
(Q)
t (displayed in Fig. 9.4 by a solid black curve) the swallowtail terminates

at the point X and represents the critical case2. For P
(Q)
t < P < Pc the (dashed black)

curve lies to the left of the critical slice and represents a true swallowtail, terminating on
an extremal black hole curve at some value of ẽ. On the other hand, if P < P

(Q)
t the

(dot-dash black) curve lies to the right of the critical curve and necessarily terminates on
the slow acceleration boundary curve for some ẽ. Of course, this corresponds to the already
snapped swallowtail.

Summarizing, it is the ‘crossing’ of the point X in parameter space, together with the
existence of the slow acceleration boundary, that is responsible for the swallowtail snapping.

Zeroth order phase transition & bicritical point

The snap of the swallowtail at P = P
(Q)
t has the following rather interesting consequence

illustrated in Fig. 9.5. As we lower the pressure through P
(Q)
t , the entire branch of stable

small low temperature black holes (blue, dashed) present for P & P
(Q)
t disappears. Con-

sequently for P . P
(Q)
t there are no longer any black holes below T0, with T0 being the

temperature of the upper cusp of the critical swallowtail. At the same time the global
minimum of the free energy in between T0 and Tt, ‘jumps upwards’ from the small black
hole branch to the intermediate black hole branch, as schematically illustrated for a single
black hole in Fig. 9.5. Here Tt is the temperature of the bottom intersection of the critical
swallowtail.

In other words, in between T0 and Tt we observe a zeroth-order phase transition, as the
global minimum of the free energy experiences a finite jump across P

(Q)
t . Increasing the

temperature from T0, this jump gets smaller and smaller and finally disappears at T = Tt.
Thus, we have a special point, at

(Tt, P
(Q)
t ) , (9.34)

where the coexistence line (see Fig. 9.6) of the zeroth order phase transition characterized

by P
(Q)
t and T ∈ (T0, Tt) terminates and joins the first order coexistence line of the small

black hole/large black hole phase transition. We call this point the bicritical point.

2That this slice seems to lie beyond the admissible region is simply an artifact of displaying the 2d
projections of the full 3d parameter space. Since these regions get bigger as ẽ decreases, all points on the
slice actually belong to the admissible region.
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Figure 9.4: Swallowtail slicing of the parameter space. We display with black arrows
projections of three different free energy “swallowtail” curves in the (m̃, Ã) parameter space
for µ = 0.22 and Q = 1, with the associated point X; the shaded region is the admissible
region for the slice ẽ ≈ 0.4272, the plane on which the critical swallowtail intersects X.
The solid black curve corresponds to this critical swallowtail which has P = P

(Q)
t . The

dashed curve corresponds to P > P
(Q)
t : any such curve terminates on an extremal black

hole curve denoted by the red dashed curve of some ẽ slice (for pressures P < Pc this

is a true swallowtail). The dot-dash curve characterizes P < P
(Q)
t and terminates on a

slow black hole curve denoted by dot-dash blue curve; such curves, which we call snapped
swallowtails, display ‘Schwarzschild-AdS’-like behaviours of the free energy.
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Figure 9.5: Zeroth order phase transition. This figure is a zoomed in version of Fig.
9.3. Due to the swallowtail snap at P = P

(Q)
t , the entire branch of stable low temperature

black holes (blue dashed curve) disappears. This gives rise to a no black hole region to the

left of (T0, P
(Q)
t ) on the P − T phase diagram. As we transit from P > P

(Q)
t to P = P

(Q)
t ,

the dashed blue branch of small black holes disappears; the global minimum of the free
energy of black holes lying between T0 and Tt, ‘jumps upwards’ from the small black hole
branch to the intermediate black hole branch. An example of this jump is displayed in the
figure by the red point.

9.2.4 Phase diagrams

Having understood the free energy, we can now plot the phase diagrams, displayed for
various tensions in Fig. 9.6. Consider first a small string tension µ = 0.05, Fig. 9.6a. Similar
to the non-accelerating case the diagram features the first order phase transition coexistence
line (displayed by the blue curve) and the critical point (solid circle) where the first order
coexistence line terminates and the transition becomes second order. A novel feature,
when compared to Fig. 8.2, is the existence of a bicritical point (empty circle) and the
associated zeroth order phase transition (red dashed curve). We also observe the existence
of a no black hole region caused by the fact that low temperature, slowly accelerating small
black holes no longer exist below P

(Q)
t . Note that the situation is physically very different

from the Hawking–Page transition [163], where the ‘no black hole region’ is replaced by a
radiation phase with lower free energy. In our ensemble of fixed charge and fixed tension
of the semi-infinite string, no such radiation phase exists. It remains to be seen whether
some novel phase of solutions (preserving the ensemble conditions) may exist in this region
and be thermodynamically preferred.

As the string tension µ increases to µ = 0.15 in Fig. 9.6b, a region of RPT emerges.
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Figure 9.6: Phase diagrams. P − T diagrams are displayed for various string tensions.
The blue curve indicates the coexistence line of the first order phase transition. It termi-
nates at a critical point (denoted by a black solid circle) on one end and at a bicritical point

at (Tt, P
(Q)
t ) (denoted by empty circle) on the other end. A zeroth-order phase transition

coexistence curve emanates from the bicritical point, indicated by the dotted red line. The
black curves bound a region for which no slowly accelerating black holes exist, the ‘no
black hole’ region. The inset of the second diagram clearly illustrates the presence of a
reentrant phase transition with pressure as the control parameter. Note also the slope of
the blue coexistence line in the third diagram, which is ‘opposite to’ what happens for the
non-accelerated case.
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Figure 9.7: Reentrant phase transition. The inset of Fig. 9.6b, reproduced here,
displays the pressure driven reentrant phase transition present for µ = 0.15. Namely,
as we follow the black dashed line from the initial point I of high pressure, to the final
point F of low pressure, we cross twice the first order coexistence line (blue curve) and once
the zeroth order coexistence line (denoted by dashed red curve), undergoing a reentrant
phase transition from SBH to LBH back to SBH and finally to IBH. This is a first example
where the reentrance is observed for black holes with the pressure as a control parameter.

At this intermediate µ the co-existence line of the first order phase transitions becomes
double-valued, indicating the presence of a pressure driven RPT. This is shown in greater
detail in Fig. 9.7. As we follow the black dashed line from the initial point I of high
pressure, to the final point F of low pressure, we cross twice the first order coexistence
line (blue curve) and once the zeroth order coexistence line (denoted by dashed red curve),
undergoing a reentrant phase transition from SBH to LBH back to SBH and finally to IBH.
This is the first example where reentrance is observed for black holes with the pressure as
the control parameter.

Finally, for sufficiently large tensions, µ ≈ 1/4, the slope of the whole coexistence line
becomes negative, as pressure decreases from Pc, temperature increases instead of decreases
along the line, see Fig. 9.6c. This transition is very different from that of the liquid/gas
phase transition.

9.2.5 Summary for charged, slowly accelerating black holes

Let us now summarise the phase behaviour of charged, slowly accelerating black holes. We
have found that whereas the high pressure behaviour resembles that of the non-accelerating
case, there exists a second critical point P = P

(Q)
t at low pressures where the swallowtail
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snaps. We have provided an intuitive explanation of this by looking at how the swallowtail
plots cut the parameter space. We can understand the snapping of the swallowtail as
a result of the existence of a critical slice through the point X in the parameter space,
together with the existence of the slow acceleration boundary.

The coexistence line of the first order phase transition thus terminates at P
(Q)
t , where

it is joined to a zeroth order coexistence line, across which we find a small to intermediate
black hole phase transition. We refer to the point where the two coexistence lines intersect
as a bicritical point, and denote it by (P

(Q)
t , Tt).

So far in our investigations we have concentrated on the case when only one (south pole)

string is present and the north pole axis is regular, in which case the critical pressure P
(Q)
t

is given by formula (9.30). If both strings were present, the behaviour we have discovered
would remain qualitatively the same, with the critical pressure instead given by

P
(Q)
t =

3(µ+ − µ−)2

8πQ2
. (9.35)

Since it is the difference of the two string tensions that causes the black hole to accelerate,
we see that the existence of P

(Q)
t is immediately linked to the black hole acceleration.

We also found a new form of a reentrant phase transition from the double-valued co-
existence curve, as well as a no black hole region in the P−T plane. This is the first example
of a black hole RPT in which pressure is the parameter that montonically changes as we
shift from one phase to another and then back to the first.

Finally, we have discovered the existence of (charged) mini-entropic black holes, whose
temperature, electrostatic potential, and volume become unboundedly large whilst their
entropy, horizon size, and mass remain finite, with the latter approaching zero. The phys-
ical properties of these objects remain to be understood.

Let us now switch off the charge parameter e, and consider instead the case of non-zero
a, corresponding to rotating, slowly accelerating AdS black holes.

9.3 Rotating, slowly accelerating AdS black holes

We have seen in the previous section that the snapping swallowtail heralds several new
phenomena, namely (i) a termination of first order phase transitions, (ii) the emergence of
a ‘no black hole’ region in the P −T plane and (iii) the phenomenon of zeroth order phase
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transitions [42], all happening at the single pressure at which the swallowtail snaps. The
characteristics of the ‘snapping point’ were further analyzed subsequently in [168].

In this section we will see that all of the above phenomena observed for the charged case
remain present for the rotating case but with a number of subtle and interesting differences.
Namely, unlike the charged case, ‘point X’ no longer belongs to the admissible parameter
space and consequently slowly accelerating rotating uncharged mini-entropic black holes
do not exist. Although the swallow tail still snaps at [168]

P
(J)
t =

3(1− 2µ)2

8π|J |
x0

√
2x0 + 1

2
, (9.36)

where J is the angular momentum of the black hole, and

x0 =

√
1 + 12C2 − 1

3
, C =

µ

1− 2µ
, (9.37)

this happens for black holes outside of the slowly accelerating regime. Consequently, in-
stead of one transition pressure P

(Q)
t , we now observe 3 important critical pressures: the

pressure Pnbh at which the ‘no black hole’ region appears, the pressure P0 < Pnbh where
the zeroth order phase transition starts, and the pressure Pf < P0 at which zeroth and
first order phase transitions co-terminate. In this sense the presence of rotation provides a
“fine splitting” of the transition pressure Pt.

9.3.1 Parameter space

As before, let us first probe the admissible parameter space for which slowly accelerating
rotating black holes exist and compare it to the parameter space of the charged case.

As we have already fixed the parameter K by imposing (9.17), our family of rotating
black holes is characterized by the 4 parameters {a,A, l,m}. To simplify the analysis we
shall use the dimensionless parameters Ã and m̃ defined as before, and define also the
dimensionless rotation parameter

ã = aA . (9.38)

The same constraints as that in sec. 9.2.1 dictate the admissible parameter space in the
dimensionless (Ã, m̃, ã) plane. Two dimensional slices of this three-dimensional parameter
space can easily be displayed; see Fig. 9.8 a for a choice of ã = 0.2; the full admissible
parameter region would be a union over ã of such slices. Let us revisit the necessary
constraints as presented in 9.2.1, this time for rotating black holes.
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Signature of g.

The first condition g > 0 now yields

m̃ <
1

2
Ξ =

1

2
+

1

2

(
ã2 − ã2

Ã2

)
, (9.39)

the boundaries of which yield the black curve in the left diagram in Fig. 9.8.

Existence of a bulk black hole.

Second, for a black hole to exist within the boundaries of the spacetime, we require

f(r+) = 0 = f ′(r+) , (9.40)

which yields complicated equations for Ã = Ã(r̃+, ã) and m̃ = m̃(r̃+, ã). These can be
plotted parametrically, using r̃+ = r+/l as the parameter, and are displayed in the left
diagram in Fig. 9.8 as a red curve. Solutions on this curve represent extremal black holes
while those above this curve represent non-extremal bulk black holes.

Validity of thermodynamics

The last condition requires that there are no additional horizons in the bulk besides the
black hole horizon. We thus have to solve a condition for the existence of an extremal
horizon on the boundary, which is f(x = −y) = 0 = f ′(x = −y) (Eqn. (9.22)). This yields
the following equations:

m̃ =
y(1 + ã2y2)2

1− y2(ã2 + 3)− ã2y4
,

Ã =

√
1− y2(ã2 + 3)− ã2y4

(1− y2)
√

1− ã2y2
, (9.41)

which again can be plotted parameterically, with y ∈ [−1, 1] now playing the role of a
parameter. The result is displayed in the left diagram in Fig. 9.8 by the blue curve. The
spacetimes with additional (acceleration and cosmological) horizons are to the right of this
curve and are excluded by the slow acceleration condition.

Putting everything together, it is now obvious that the parameter space of the rotating
black holes (Fig. 9.8a) is qualitatively different from the parameter space of the charged
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Figure 9.8: Admissible parameter space comparison. The admissible parameter
space for rotating (left) and charged (right) slowly accelerating black holes is displayed
by the shaded region in the Ã − m̃ plane. The left figure, displayed for fixed ã = 0.2,
summarizes the constraints discussed in the main text as follows: the black, red, and blue
curves respectively correspond to the boundaries of the Lorentzian metric signature, the
existence of a bulk black hole, and the absence of an acceleration horizon; the green line
displays α = 0. The right figure displays the analogous curves for the charged case with a
fixed dimensionless charge parameter ẽ = eA = 0.2. While in the charged case the point X
lies at the intersection of three (red, blue, and green) boundary curves, rotation removes
this degeneracy and we now observe two salient intersection points: X and Y .

black holes (Fig. 9.8b). While in the charged case the point X lies at the intersection of
three (red, blue, and green) boundary curves, rotation removes this degeneracy and we
now observe two salient intersection points: X and Y . The point X, at the intersection of
green and red curves, corresponds to P

(J)
t given by (9.36), or

P
(J)
t ≈ 3µ2

8π|J |

(
1− µ2 +O(µ4)

)
. (9.42)

It lies strictly outside the admissible region. This prevents the formation of mini-entropic
black holes, which exist in the vicinity of the point X displayed in Fig. 9.8, and whose
thermodynamic volume grow unbounded whilst their entropies remain finite.

The point Y , located at the intersection of blue and red curves, marks the emergence of
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Figure 9.9: Swallowtail slicing of the parameter space. The arrows display the
projections of three important swallowtails (with J = 1 and µ = 0.24) into a single
ã = 0.4 plane of the parameter space near the points X and Y . The solid black arrow
corresponds to P = Pnbh ≈ 0.00688 and terminates at the point Y . On the F −T diagram,
this corresponds to a curve whose extremal black hole (T = 0 point) lies just within the
admissible parameter space. Note that the arrow does lie within the admissible parameter
space for all ã ∈ [0, 0.4]. This is not obvious in the figure because the admissible region
shrinks with increasing ã. The dashed arrow displays the swallowtail with P = P0 ≈ 0.0062.
Unlike the previous curve, it does not lie fully within the parameter space (and rather
terminates at the slow acceleration boundary). It corresponds to a swallowtail similar to
the one shown on Fig 9.12, but with the red point lying directly below the free-energy
peak of the swallowtail. The dotted arrow is for P = P

(J)
t ≈ 0.00601 and reaches the point

X. Like the dashed case, it lies partly outside of the admissible region. Strictly speaking,
swallowtails with different pressures terminate at different ã planes. However, for points
X and Y the variation of ã is of the order O(µ5) and can be in our figure neglected.
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the no black hole region and occurs at Pnbh. At this pressure, the metric function develops
two double roots—corresponding to the extremal black hole in the bulk and an extremal
horizon at the boundary, giving

m̃ = ã+ ã3 , Ã =
1√

1 + ã2
. (9.43)

Equating these with (9.46) below yields

Pnbh =
3µ2

8π|J |
. (9.44)

For small µ, this is very close to the transition pressure (9.36), as is clear from (9.42).
Note also that two important pressures P0 and Pf necessarily lie in between these two
pressures; we shall discuss these in the next section.

An additional piece of information is encoded in how the µ, J , P = const. swallowtail
curves cut through the parameter space. To display these, we use the following 3 equations:

J =
3ãm̃

8πPÃ2K2
+

, µ =
m̃

K+

, K+ = 1− ã2

Ã2
+ ã2 + 2m̃ , (9.45)

to find

m̃ =
(1 + ã2)µ2

8πãPJ/3 + µ− 2µ2
,

Ã =

√
ã2 + 3µã(1− 2µ)/(8πPJ)√

1 + ã2
, (9.46)

which can be plotted parameterically over ã. For illustration, the projections of the three
important swallowtails at Pnbh, P0 ≈ Pf , and P

(J)
t for J = 1 and µ = 0.24 are displayed in

Fig. 9.9. The fact that the latter two terminate at the slow acceleration boundary has far
reaching consequences for the phase transitions, which we turn to now.

9.3.2 Phase Transitions

In this section, we show that although similar in many aspects, the phase behaviour of
rotating black holes is richer than in the charged case. Perhaps most intriguing is the
phenomenon of ‘fine splitting’ of the transition pressure. In our considerations below, we
set J = 1 and plot the corresponding P − T phase diagrams for various string tensions µ,
see Figs. 9.10 and 9.11.
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Figure 9.10: Phase diagram: µ = 0.1. For small tensions, the P − T phase diagram is
similar to the charged case, with termination of the first order coexistence line (blue), the
presence of a zeroth order transition line (red) and a ‘no black hole’ (NBH) region delimited
by the black lines. The first order transition separates small black hole (SBH) and large
black hole (LBH) solutions. The inset shows an enlarged view near P = Pf , where the
first order phase transition terminates. At this µ, we have P0 ≈ Pf ≈ Pnbh ≈ 0.001194.

Fine Splitting of Transition Pressures

For small tensions, the phase diagram is qualitatively similar to that of the charged accel-
erating black hole, compare Fig. 9.10 with Fig. 9.6a. Namely, we observe a first order phase
transition (displayed by the blue curve), which terminates at a critical point at P = Pc
on one end and at a termination point at P = Pf on the other end. (Whereas the critical
point at Pc is a standard feature of many black holes, the existence of the termination
point seems unique for accelerating black holes.) From this termination point a zeroth-
order phase transition coexistence line (displayed by the red curve) emerges and eventually
ends at P = P0 on the boundary (black curve) of the no black hole region, which appears
at P = Pnbh.

In the charged case these pressures are in fact exactly equal, given by the transition
pressure P

(Q)
t , (9.30). However, in the rotating case this is only true approximately and

the situation is in fact much more subtle. Namely, these pressures order as follows:

Pnbh & P0 & Pf & P
(J)
t , (9.47)
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and though they seem indistinguishable in Fig. 9.10, the distinction is more apparent for
bigger string tensions µ, as shown in Fig. 9.11 and its inset.

The origin of this fine splitting can be traced to the qualitatively different parameter
space in the rotating case, and in particular to the different behaviour of the slow accel-
eration bound. In the charged case, such a bound does not play any role in equilibrium
thermodynamics: it is completely absent for P > P

(Q)
t , and below P

(Q)
t it only removes

small unstable black holes in the upper branch of the free energy that do not correspond
to the global minimum. In the rotating case, however, this bound can occur in the stable
branch and thus affects the thermodynamic behaviour, as illustrated in Fig. 9.12.
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Figure 9.11: Phase diagram: µ = 0.245. For this µ, the P − T diagram clearly illus-
trates the fine splitting of the transition pressures. Comparing with the µ = 0.1 case, the
first order phase transition and zeroth order phase transition curves shrank considerably.
However, the inset shows that the zeroth order transition line has a non-trivial negative
gradient, and the gradient of the first order phase transition went from positive to nega-
tive. For this tension we have Pnbh ≈ 0.007165, P0 ≈ 0.00637981, Pf ≈ 0.00637184, and

P
(J)
t ≈ 0.006215, all apparently distinct.

The appearance of a no black hole region, at Pnbh, corresponds to the pressure at which
the last slowly accelerating black hole (displayed by a red dot in Fig. 9.12) coincides with
an extremal black hole on the lower branch of the swallowtail. As pressure decreases,
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Figure 9.12: Slow acceleration bound and its effect on phase transitions. The
F−T diagram shows a swallowtail at a pressure Pf < P < P0. The ‘last’ slowly accelerating
black hole is highlighted by a red dot – the part of the lower temperature branch of black
holes (that develop extra horizons) denoted by a dashed curve is removed. This is the origin
of the temperature driven reentrant phase transition as well as of the no black hole region.
At T = T1, a first order phase transition occurs as the thermodynamically favoured state
moves from the large black hole branch to the small black hole branch, with a discontinuity
in the black hole radius. As the temperature decreases further to T0, a zeroth order phase
transition occurs, when the small black hole transits into an intermediate black hole with
a jump in the free-energy. At this pressure, the no black hole region starts at T = Tn, the
temperature of the upper cusp.

the last slowly accelerating black hole ‘moves to the right’, eliminating a branch of black
holes to the left (denoted by the dashed curve) that no longer obey the slow acceleration
condition. As a consequence, the no black hole region continuously grows larger, until a
zeroth order phase transition appears at P0, where the black hole at the red dot has the
same temperature as the upper cusp of the swallow tail. For a slightly smaller pressure,
there develops a small range of temperatures for which the lower branch is already removed
but there is a corresponding new branch of black holes (on the lower left branch of the
upper left cusp in Fig. 9.12) that become stable, and we observe a zeroth-order phase
transition. This situation holds until the pressure Pf is reached for which the red dot
black hole moves all the way to the intersection of the swallow tail, at which point both
the zeroth–order and the first order phase transitions simultaneously disappear. For even
smaller pressures, the red dot black hole keeps moving further right and no longer occurs

102



in the stable branch. This behaviour finally terminates at the transition pressure P
(J)
t for

which the swallowtail snaps and completely disappears, as in the case of a charged black
hole.

In other words, in the rotating case the interesting phase behaviour happens above the
pressure for which the the actual snapping occurs. This is a consequence of the existence
of solutions on the small black hole branch of the swallowtail that develop acceleration
horizons and thus do not lie in the admissible parameter space; the corresponding analysis
is depicted in Fig. 9.9. Recall from the introduction that solutions with an acceleration
horizon are excluded from our parameter space as it introduces a second temperature into
the picture which in general differs from the black hole temperature. The resulting black
hole will therefore not be in thermodynamic equilibrium.

Reentrant phase transitions

The fact that P0 > Pf results in a non-trivial negative slope of the zeroth-order coexistence
line. As a consequence there will be a temperature driven reentrant phase transition for
P0 > P > Pf . For any fixed P in this range, there is a large to small to large black
hole phase transition as the temperature monotonically increases, as shown in the inset of
Fig. 9.13.

This behaviour can be seen from a different perspective in Fig. 9.12. Beginning at
high temperatures T > Tf the stable solution is on the lowest branch of the swallowtail,
corresponding to a large black hole. As the temperature decreases the solution moves up
and to the left of the swallowtail with the black hole radius decreasing continuously. At
T = Tf a first order phase transition occurs as the thermodynamically favoured state moves
from the large black hole branch to the small black hole branch at the lower left, with a
discontinuity in the black hole radius. As T decreases further, once T = T0 a zeroth order
phase transition occurs, when the small black hole transits into an intermediate (large)
black hole with a jump in the free-energy. The corresponding branch finally disappears at
T = Tn, which marks the onset of the no black hole region – as no (slowly accelerating)
black holes exist below Tn.

As tension increases, the slope of the first order coexistence line becomes negative in
a certain range of temperatures and we can observe a pressure driven reentrant phase
transition similar to the charged case. This happens in a tiny range of tensions around
µ ≈ 0.19 as shown in main part of Fig. 9.13. The double valued first order transition curve
leads to a reentrant SBH/LBH/SBH/LBH phase transition as the pressure monotonically
decreases from I to F , crossing the first order coexistence line twice and zeroth-order
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Figure 9.13: Pressure and temperature driven reentrant phase transitions. First
order (blue) and zeroth order (red) coexistence lines are displayed for µ = 0.19. For this
tension the first order line is double-valued, which together with the zeroth-order phase
transition, gives rise to a pressure driven SBH/LBH/SBH/LBH reentrant phase transition
as we move from the initial point I to the final point F in the diagram. The inset dislays
the temperature driven LBH/SBH/LBH phase transition, innate to the rotating case, that
happens in the tiny range of pressure P ∈ (Pf , P0), as we move from the initial point I to
the final point F in the inset.

coexistence line once. Note that whereas the pressure driven reentrant phase transition
is also observed for the charged case, the temperature driven reentrant phase transition
described above is new.

9.4 Summary

We have discovered that the thermodynamic behaviour of rotating accelerating black holes
has subtle but significant distinctions as compared to the their charged counterparts. The
key distinction between them is that the coexistence line in a P − T plot separating small
black holes from large ones and the NBH region induces a ‘fine splitting’ of transition
pressures. Namely, we observe a sequence of pressures Pnbh > P0 > Pf in which the
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minimum pressure possible for a small black hole as T → 0 is larger than the pressure P0

at the onset of a zeroth order phase transition, which is larger still than the pressure Pf
at which the zeroth and first order phase transitions merge. Although the swallowtail still
snaps at P

(J)
t < Pf , this does not affect the global minimum of the free energy and thence

has no effect on the equilibrium thermodynamics. This is in contrast to the charged case,
for which Pnbh = P0 = Pf = P

(J)
t , and which in turn leads to the existence of mini-entropic

black holes. The splitting is fine in that Pnbh ≈ P0 ≈ Pf ≈ P
(J)
t , with the correction of the

order of µ2, c.f. Eqs. (9.42) and (9.44). Likewise, the lifting of this pressure degeneracy
means that mini-entropic black holes do not exist in the rotating case.

Furthermore, this splitting has an interesting physical consequence in that it admits
two kinds of reentrant phase transitions, one at fixed T where the pressure monotonically
decreases and one at fixed P in the range P0 > P > Pf where the temperature monotoni-
cally increases. Both these types of phase transitions (although qualitatively different from
our case) are also present for black holes with triple points [43].

It is clear that accelerating black holes contain interesting but often subtle new thermo-
dynamic phenomena, and there are still things to be learned. While a full study including
both charge and rotation remains to be carried out, of particular interest would be to go
beyond the slow-acceleration regime. This would involve the presence of two horizons,
with all the associated difficulties this scenario entails [167]. However it might be possible
to circumvent these problems by either by placing the system in a cavity [169, 170] or by
adjusting parameters to recover thermodynamic equilibrium [171], approaches that have
proved to be successful for asymptotically de Sitter black holes.

We have here considered the slow and fast cases as (thermodynamically) ‘disconnected’,
neglecting the branch of fast accelerating black holes completely. Despite the fact that
fast accelerating black holes are ‘smoothly connected’ to slowly accelerating ones in the
parameter space, the asymptotic structures of the spacetimes they describe are completely
different. A transition from slow to fast acceleration is in many respects similar to a
transition from AdS to dS asymptotics: new horizons appear in the fast accelerating case
and change drastically the asymptotic and thermodynamic properties of the spacetime, as a
comparison of the corresponding Penrose diagrams [149] clearly indicates. Whether or not
phase transitions can take place between them remains a question for future investigation.
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Chapter 10

Conclusions and Open Questions

10.1 Part I

What have we learned?

In Part I of this thesis, we have investigated how the response of UDW detectors detect
non-local spacetime features as well as how the entanglement harvested between a pair of
detectors is affected by the presence of moving mirrors in 1+1D.

It has been known that the localized vacuum excitations of quantum fields are affected
by global spacetime geometries but what was perhaps not so clear was whether these can be
picked up by point-like detectors switched on only for short periods of time. We have found
an affirmative answer from the examples in Chapters 4 - 6. In each of the scenarios, the
detectors were placed in a shell inside which the spacetime was Minkowski. By interacting
with the field for a duration during which no signal could have been exchanged between
the shell and the detectors, the detectors were able to detect features about the shell and
the exterior spacetime. In Chapter 4, we have seen that the detectors were able to detect
the presence of a spherical shell, and that there is an optimal position inside the shell
for the detection. In Chapter 5, we have shown that the detectors were further able to
distinguish between static and rotating shells of the same mass and radii. However, they
were able to do so only when displaced away from the axis of rotation. This illustrates
that detection of spacetime features does not follow trivially from the fact that the field
vacuum holds non-local information - specific calibration of the detector settings may be
necessary. Physically, the addition of rotation to the shell drags inertial detectors inside
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into rotation with respect to inertial observers located at infinity. We can thus consider
Chapter 5 to be an illustration of quantum detection of inertial frame dragging.

The two scenarios considered in Chapters 4 and 5 both featured curved spacetimes
outside of the shells. Chapter 6 presents a slightly different scenario in which the exterior
spacetimes are no longer curved but instead feature conical deficits. We have shown that
the detectors are able to once again detect the deficit and investigated how the detection
depends on parameters such as the detector energy gap, position of the detector and the
radius of a second perfectly reflecting shell concentric to the first. Recently, the authors of
[172] have considered the more practical aspect of how data collected from UDW detectors
can be processed using machine learning to efficiently extract knowledge about the presence
of a spherical shell. We refer the reader to this reference for a nice discussion on the general
principles behind using local quantum probes to detect global features of the field. We
should also stress again that all detections considered here involved the vacuum state of
the quantum field — detection of these features using a classical detector with all classical
fields in their ground state within the light-crossing time would have been impossible.
It will be interesting to investigate how the situation changes when thermal states are
considered instead.

In Chapter 7, we have seen a somewhat surprising enhancement of entanglement har-
vesting in the presence of moving mirrors when the naive expectation might have been
a suppression of entanglement due to the additional noise coming from the dynamical
Casimir effect. In addition, we found regions of entanglement shadow close to non-static
mirrors similar to those seen close to black holes. Another interesting finding is the late
time linear increase in entanglement harvested which is analogous to that observed for the
(regularized) entanglement entropy of the field when the mirror is asymptotically null.

Recall that our detector-massless scalar field interaction is a toy model for describing
interactions of atoms with the quantum EM field. The above investigations tell us that
theoretically, different spacetime geometries and boundary conditions will lead to small dif-
ferences in the spontaneous excitation probabilities of and entanglement harvested between
atoms.

Future prospects

Given the above results, there are various immediate extensions which can be considered.
For example, it will be interesting to investigate if there is any general correspondence
between the entanglement in UDW detectors and the entanglement entropy of the field as
seen in Chapter 7. This can be done by exploring situations in which both of these quan-
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tities can be computed, such as the various toy-models for gravitational collapse presented
in [123]. Such a correspondence, if found, could justify further the use of UDW detectors
for studying field entanglement.

One can also imagine placing detectors in the spacetime of a collapsing massive shell
and study the resulting response and entanglement between detectors. This would require
more advanced computations than that in Chapters 4 and 7, with the shell now being
dynamical and the scattering of wave modes being due to an effective potential coming
from spacetime curvature instead of a simple Dirichlet boundary. Such a task possibly
can only be accomplished fully numerically. It would be interesting to see how much of
the features observed in Part I of the thesis will be retained, e.g., can a detector placed
inside the shell detect its collapse, will the shell play a similar role to the mirrors of 7
and enhance the entanglement harvested between two detectors placed outside the shell,
will entanglement increase linearly in time once a horizon is formed? Entanglement in the
quantum field between the regions internal and external to the black hole is the source of
the information paradox [10, 11]. Imagine placing one detector inside the collapsing shell
and a second detector outside. Naively, the first detector will eventually be destroyed after
the shell collapses into a black hole, leaving the total field + second detector system in a
mixed state. What is worth considering then is how the entanglement between the two
detectors evolve. Perhaps at some point the entanglement drops to zero due to for example
the formation of a “firewall” [23] or perhaps a firewall is not necessary for breaking the
entanglement. In any case, this study will us provide some insights on the information loss
paradox.

Clearly, the situations studied in this thesis remain as toy models as they stand. The
considered parameters for the detection of a spherical shell will for example translate into
a shell of around 0.01M� ≈ 1028Kg for a radius of 50 cm while it will clearly be difficult to
accelerate a mirror close to the speed of light to investigate entanglement harvesting close to
the mirror. However it is not inconceivable that these effects can be experimentally studied
in analogue gravity systems [173]. Under this program, analogue systems for investigating
the Hawking effect [174, 175, 176], Unruh effect [177, 178, 179] and cosmological particle
production [180] have been considered. Experimental demonstration of the dynamical
Casimir effect was indeed not achieved by accelerating actual mirrors, but by changing
the electrical length of a cavity using a superconductor quantum interference device [46].
Other analogue systems for DCE includes for example [181, 182]. It will be interesting to
study whether a suitable analogue system for studying the effects of null mirrors can be
found.
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10.2 Part II

What have we learned?

In Part II of this thesis, we have studied the phase transitions of slowly accelerating black
holes in AdS spacetimes using the thermodynamic quantities found in [162, 161]. We have
found a new phenomenon of snapping swallowtails in the F −T diagram, where the entire
branch of small black holes disappears. This results in a no black hole phase in the P − T
phase diagram, a region in the parameter space where no slowly accelerating black holes
exists. We have also observed reentrant phase transitions in both charged and rotating
cases respectively at large µ values as well as zeroth order phase transitions in the rotating
case.

Future prospects

A natural extension of this work would be to include black holes that are beyond the
slowly accelerating regime. These black holes should be the new phase replacing the no
black hole region in our phase diagrams. However, the difficulty there is the presence of
multiple horizons, being the acceleration horizon in addition to the black hole horizon.
The different temperatures of these horizons implies that we no longer have a system in
thermodynamic equilibrium. However, one possibility put forward in [162] is to study the
thermodynamics of each horizon separately.

As we have seen in the introduction, one of the main motivations of studying black holes
in AdS is the AdS/CFT correspondence. Thus having looked at the phase transitions of
the bulk AdS black hole, it is natural to ask if it teaches us something about the dual
CFT living on the boundary (for example, is there a dual phase transition). Unfortunately
the holographic dictionary does not currently allow for a straightforward translation of
the studied bulk phase transition to the boundary as it unclear what a variation of Λ
corresponds to in the CFT. It has been suggested that variations in Λ correspond to varying
the number of degrees of freedom N of the CFT in [183, 184, 185, 186] but [187, 188] showed
it corresponded more accurately to variations in both N and the volume of the CFT. In
particular by considering variations in the Newton’s constant G, it is possible to keep N
fixed (which is desirable as this keeps us in the same CFT) while Λ is varied hence variations
in Λ should more appropriately be considered as variations in the volume of the CFT. It
will thus be interesting to use the dictionary in [187, 188] to translate the thermodynamics
in the bulk accelerating black holes to that of the boundary CFT. However as shown
recently in [189], variations in δG will redefine the bulk volume term (if N is to be kept
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fixed) and thus modify the phase behaviour of the black hole. Hence to understand the
phase transitions in the context of holography, the first steps would be to study the bulk
using the new volume term, find the dual to δµ and use the dictionary of [187, 188] to
relate the bulk to the boundary. While phase transitions of the bulk AdS black hole can be
derived solely from classical considerations, duality to the CFT on the boundary provides
the quantum degrees of freedom in explaining the origin of the thermodynamic properties
of the black hole.
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Appendix A

Stress-Energy of Spherical Shells

In this Appendix, we will recall the stress-energy tensor of a rotating spherical shell (setting
a = 0 gives the results for the static spherical shell). This follows closely the presentation
in [60].

As we have seen in Sec. 4.1, the second junction condition on the shell Σ relates the
discontinuity in the derivatives of the metric, or equivalently in the extrinsic curvature Kij,
to the stress-energy tensor Sij on Σ:

Sij = − 1

8π

(
[Kij]− [K]hij

)
. (A.1)

Using the metric (5.1) exterior to our rotating spherical shell, the nonvanishing com-
ponents of the extrinsic curvature turn out to be [60],

Kt
t =

M

R2
√

1− 2M/R
,

Kt
ϕ = − 3Ma sin2 θ

R2
√

1− 2M/R
,

Kϕ
t =

3Ma

R4

√
1− 2M/R ,

Kθ
θ =

1

R

√
1− 2M/R = Kϕ

ϕ . (A.2)

Meanwhile, the nonvanishing components of the extrinsic curvature as seen from the inside
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are Kθ
θ = Kϕ

ϕ = 1/R. From these, we obtain

Stt = − 1

4πR
(1−

√
1− 2M/R) ,

Stϕ =
3Ma sin2 θ

8πR2
√

1− 2M/R
,

Sϕt = − 3Ma

8πR4

√
1− 2M/R ,

Sθθ =
1−M/R−

√
1− 2M/R

8πR
√

1− 2M/R
= Sϕϕ . (A.3)

This stress energy can be understood as describing a 2D perfect-fluid with a velocity
field ui, a surface density σ and a surface pressure p by rewriting it in the form

Sij = σuiuj + p(hij + uiuj) . (A.4)

Specifically, we have [60]

σ =
1

4πR
(1−

√
1− 2M/R) ,

p =
1−M/R−

√
1− 2M/R

8πR
√

1− 2M/R
,

ui =
ti + Ω̃ϕi√
1− 2M/R

, (A.5)

where ti = (∂/∂t)i and ϕi = (∂/∂ϕ)i and

Ω̃ =
6Ma

R3

1− 2M/R

(1−
√

1− 2M/R)(1 + 3
√

1− 2M/R)
. (A.6)

Hence the stress-energy tensor describes a perfect-fluid rotating rigidly with angular ve-
locity dϕ/dt = Ω̃ with respect to inertial observers inside the shell. For R→ 2M, Ω̃→ 0,
the inertial observers are dragged completely by the shell. The angular velocity in the φ
coordinate, i.e. with respect to static observers at infinity, is Ω̃shell = dφ/dt = Ω̃+2Ma/R3,
which is,

Ω̃shell =
2Ma

R3

1 + 2
√

1− 2M/R

(1−
√

1− 2M/R)(1 + 3
√

1− 2M/R)
. (A.7)
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Appendix B

Stress-Energy of Cylindrical Shells

In this Appendix we briefly review the stress-energy tensor of the cylindrical shell following
the discussions in [95]. The general line element of a spacetime admitting cylindrical
symmetry has the form,

ds2 = −e2U(r̃)dt̃2 + e−2U(r̃)[A(r̃)2dr̃2 +B(r̃)2dϕ2 + C(r̃)2dz̃2] . (B.1)

By substituting this ansatz into the vacuum Einstein’s field equations, after appropriate
rescaling and translation of the coordinates, the general solution has three arbitrary con-
stants, r0,m and c [97]:

ds2 = −
( r
r0

)2m
dτ 2 +

( r
r0

)2m(m−1)
(dζ2 + dr2) + r2

( r
r0

)−2m
dϕ2/c2, (B.2)

with the coordinate ranges τ ∈ R, r ∈ R+, ζ ∈ R and ϕ ∈ [0, 2π). However, we can get rid
of r0 by another coordinate rescaling

(τ, ζ, r, ϕ)→ (r
m

m2−m+1

0 t, r
m(m−1)

m2−m+1

0 z, r
m(m−1)

m2−m+1

0 ρ, ϕ) ,

so that the final metric reads:

ds2 = −ρ2mdt2 + ρ−2m

[
ρ2m2

(dz2 + dρ2) + ρ2dϕ2/c2

]
. (B.3)

We are thus left with only 2 physical parameters m and c for the spacetime. This is the
common form of the Levi-Civita metric appearing in the literature.
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We now move on to discuss the cylindrical shell that can give rise to such a metric. A
general cylindrical shell spacetime consists of two regions, each described by the metric in
Eq. (B.3) with specific parameter choices: an “inside” region which is regular along the
z-axis with c− = 1 and m− = 0 running from 0 ≤ ρ− ≤ R−, and an “outside” region
with arbitrary c+ and m+ running from R̃1 ≤ ρ+ ≤ R̃2. These two regions are joined at
the shell surface using the junction conditions, which sets R1 = R̃

1−m+

1 /c, as well as the
non-vanishing components of the stress-tensor of the shell as:

8πStt = 1/R1 − R̃
m+−m2

+−1

1 (1−m+)2 ,

8πSzz = R̃
m+−m2

+−1

1 − 1/R1 ,

8πSϕϕ = R̃
m+−m2

+−1

1 m2
+ . (B.4)

We can define the mass per unit coordinate length of the cylinder as µ = 2πR1Stt, which
in terms of the spacetime parameters, reads,

µ =
1

4

(
1− 1

c+

(1−m+)2

R̃
m2

+

1

)
. (B.5)

As we were only interested in studying the sensitivity of a UDW to the conical deficit
outside the cylinder, we have set m+ = 0 in the main text to avoid any effects on the UDW
due to non-trivial curvature outside the cylinder. However, we see here that even in this
case, the shell has a non-zero mass per unit length, given by Eq. (6.4) in the main text.
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