
How I wasted too long finding a concentration
inequality for sums of geometric variables

Daniel G. Brown

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo ON N2L 3G1 Canada
browndg@uwaterloo.ca

Abstract. I wanted a concentration inequality for sums of iid geometric
random variables. This took way too long.

1 What I wanted, and how I didn’t get it

I needed a concentration inequality for sums of iid geometric random variables.
I need this because I am interested in the height of a certain type of random
tree; in what follows, you can pretend it’s a random binary search tree, but that
doesn’t really matter.

First, some reminders. A geometrically distributed random variable G(p) with
expectation p has probability distribution function Pr[G(p) = i] = (1/p)(1 −
1/p)i−1. One way to think about it is that it’s the index of the first coin flip that
comes up “heads” if you repeatedly toss a coin that’s “heads” with probability
1/p and “tails” with probability 1− 1/p.

Let the variable Y (n, p) be the sum of n iid G(p) random variables. (The
name of such a random variable is “negative binomial”, but I’d forgotten that.)

Because expectations add, E[Y (n, p)] = np. But how strongly concentrated is
that? In my case, each of the G(p) variables talks about the number of additions I
have to make to the path in a tree from the root to a given leaf before the subtree
at the current node is dropped by a factor of at least 6/5 (starting from T , the
number of leaves in the tree). In our application, p turns out to be a constant.
(Perhaps 21, but that doesn’t matter much.) The length of the path from a root
to a leaf is a random variable bounded above by a variable with distribution
Y (log6/5 T, 21); since ln 1.2 ≈ .18, this is approximately Y (5.5 lnT, 21). Again,
the expectation of this random variable is 5.5 · 21 lnT , or 115 lnT .

But how strongly concentrated is it? For example, what’s the probability
that it’s more than twice its mean?

The standard way for computer scientists to address this is with concen-
tration inequalities, like Chernoff bounds or Azuma’s inequality or Bernstein’s
inequality. But all of the versions of this that I know assume that the individual
summands (the geometric variables) are bounded above by some known amount.
That’s not true here; geometric variables have unbounded value (since you could
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have a huge number of coin flips before it finally comes up heads; see [5]). To be
more proper, these summands aren’t Lipschitz.

You might imagine, “what if I bound it by some really big bound beyond
which the probability is really tiny?” But that doesn’t seem to work well: ge-
ometric distributions are pretty pernicious, and all of the methods I know for
that don’t work in this domain. One recent book gives relatively little time over
to sums of unbounded variables; when it does cover them, it’s in the context
of graph properties much more complicated than the ones I cared about [3]. (It
also gives an interlude on this called “The Infamous Upper Tail,” which seemed
really quite ominous.)

But it has to be possible to give this sort of bound, right? I mean, this is the
sum of n iid variables with mean p and standard deviation p; everyone knows
that converges to a normally distributed variable with mean np and standard
deviation p

√
n. What the heck?

Well, I’m dumb, so I kept looking. I remembered, finally, that these were
“negative binomial” random variables, so I did the obligatory Google search for
things like “negative binomial Chernoff” and “negative binomial tail inequality”
with no real luck. Well, that’s not even true. There’s a paper [4] that might
prove something almost identical to what I wanted, but I can’t read past the
second paragraph, despite many attempts. I don’t even see anything like an
exponentially decaying tail. I don’t know what their D operator does. It mostly
reminded me how bad of a mathematician I am.

I vaguely think that Gord Willmot (from here at Waterloo, even!) may have
proved something like what I want [6], but we don’t have that journal here.

And good grief, this should be easy.

2 The way to get it

Then I looked at “negative binomial distribution” in Wikipedia [2], and it of
course has a link to the cumulative distribution function for negative binomial
variables: it’s the regularized incomplete β function [1]. Oh, dear. That’s scary.
It has calculus in it. I hate calculus.

And then the answer is right there. Consider Pr[Y (n, p) > knp]. This is the
probability that it takes more than knp trials before we get to the n-th head,
right? Well, that’s the probability that in knp trials, there are fewer than n
heads. (And yes, this is pointed out in the Wikipedia article [2].)

Let {Xi(1/p)} for i > 0 be a collection of iid Bernoulli trials, each of which
has probability 1/p of having value 1 and probability 1− 1/p of having value 0.
Then Pr[Y (n, p) > knp] = Pr[

∑
i=1...knpXi(1/p) < n]. But that latter sum is a

binomial random variable, B(knp, 1/p) =
∑

i=1...knpXi(1/p), and I know how
to study them. I just want Pr[B(knp, 1/p) < n].

OK, now what? Well, the mean of B(knp, 1/p) is kn, so being less than
n means being less than 1/k times the mean. A standard theorem ([3], p. 6)
says that for a variable of the sort of B(knp, 1/p), Pr[X < (1 − ε)E[X]] ≤
exp(− ε2

2 E[X]). Here, ε = 1−1/k and E[X] = kn, so this is just Pr[B(knp, 1/p) <
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n] ≤ exp(−kn(1−1/k)2

2 ), which, indeed, is the kind of strong concentration I
wanted.

3 A proper statement

Theorem 1. Let Y (n, p) be a negative binomially distributed random variable
that arises as the sum of n iid geometrically distributed random variables with
expectation p.

Then E[Y (n, p)] = np, and for k > 1, Pr[Y (n, p) > knp] ≤ exp(−kn(1−1/k)2

2 ).

4 The upshot

In my specific case, p is 21 and n is 5.5 lnT , so we wind up with Pr[Y > 2·E[Y ]] ≤
T−1.35, which means that the path in the tree to any leaf isn’t likely to be more
than twice our upper bound on its expected length. And indeed, since the tree
has T leaves, the probability that any leaf has path length more than twice our
upper bound on the expected length is at most T ·T−1.35 = T−0.35 ≈ 1

3√
T

, which
is o(1).

And now I feel really stupid over how long this took.
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