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Abstract

Broadly, this thesis is concerned with trying to understand 4–manifolds through 3–
dimensional techniques. From the point of view of smooth manifolds, dimension four is
quite unique; one striking illustration of this is the fact that Rn admits either one (if n 6= 4)
or uncountably many (if n = 4) smooth structures. There are many remaining questions
about the differences between topological and smooth categories in dimension four: for
instance, the last remaining Poincaré conjecture asks whether S4 admits a unique smooth
structure. Nonetheless, one might attempt to use tools from lower dimensions to gain some
insight.

One highly useful tool in dimension three is the notion of a Heegaard splitting : a
symmetric decomposition of a closed 3–manifold into two handlebodies that meet along
an embedded closed surface. Originally introduced by Heegaard in 1898, they connect 3–
manifolds to fundamental objects like mapping class groups groups and the curve complex.
Recent techniques like Heegaard Floer homology theories have shown that they are also
an effective computational tool that can be used to distinguish 3–manifolds.

In analogy with Heegaard splittings, Gay and Kirby recently introduced the idea of a
trisection of an orientable closed 4–manifold: a decomposition into three 4–dimensional
handlebodies with controlled intersection data. Because a trisection is largely determined
by lower-dimensional information, one would hope to use 3–dimensional techniques to
understand 4–dimensional phenomena. Trisections have already been used to reprove fun-
damental results in gauge theory, and define new invariants for 4–manifolds. In this thesis,
we complete the theory of trisections for non-orientable 4–manifolds.

Chapter 1 gives the necessary preliminaries for the rest of the thesis. Chapter 2 is a
self-contained introduction to trisections that summarizes the current state of the literature
and contains many motivating examples.

Chapter 3 is concerned with developing the 3– and 4–dimensional results necessary to
carefully extend the theory of trisections to the non-orientable setting. In particular, we
prove an analogue of a theorem of Laudenbach-Poénaru which does not seem to appear in
the literature. We also give a non-orientable version of Waldhausen’s theorem on Heegaard
splittings of #S2 × S1 which may be of independent interest.

In Chapter 4, we extend the theory of trisections to non-orientable 4–manifolds. By
adapting the orientable case and results from §3, we give proofs of existence and sta-
ble uniqueness, along with many examples. We also cover non-orientable relative trisec-
tions (for 4–manifolds with boundary) and bridge trisections (for embedded surfaces in
4–manifolds).
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Chapter 1

Decompositions of smooth manifolds

This thesis is concerned with decompositions of 3– and 4– dimensional manifolds. One
of the most useful ways to study smooth manifolds arises through the study of Morse
functions, i.e. smooth functions from a manifold to R. This naturally leads to the idea of a
handle decomposition: a way of “building” a manifold from standard pieces. In particular,
3–manifolds admit special handle decompositions called Heegaard splittings. The theory of
trisections attempts to emulate these ideas for 4–manifolds.

While we will assume familiarity with Morse theory and handle decompositions, we
review the basic definitions in this chapter for convenience and in preparation for a brief
treatment of trisections in Chapter 2. Manifolds in this thesis are generally assumed to be
smooth, compact, and connected unless otherwise noted. Since non-orientable manifolds
will play a large role in this thesis, we will indicate whether manifolds must be assumed to
be orientable.

1.1 Morse functions and handle decompositions

Given a smooth manifold X, the study of smooth maps f : X → R provides considerable
insight into the topology of X. In this section, we review handle decompositions. For more
details, see [28, Part 2] and [60].

Definition 1.1.1. Let X be a smooth, closed, and connected manifold of dimension n. Let
f : X → R be a smooth function, and p ∈ X be a critical point for f , i.e Dfp = 0. Fixing
a local coordinate system (x1, . . . , xn) near p, the Hessian matrix at p is the symmetric

1



matrix of second order partial derivatives

Hp =

[
∂2f

∂xi∂xj
(p)

]
.

The point p is called a non-degenerate critical point if Hp is non-singular; one can show
that this property does not depend on the choice of coordinates.

Definition 1.1.2. Let X be a smooth, closed, and connected manifold of dimension n. A
smooth function f : X → R is called Morse if it has no degenerate critical points.

Any given compact manifold X admits many Morse functions. In fact, being Morse
is a generic property: Morse functions form an open dense subset of C∞(X;R) with the
compact-open topology.

In what follows, we will fix a compact connected manifold X and a Morse function
f : X → R. By a version of the implicit function theorem, the preimage f−1(a) of any
regular value a ∈ R is a smooth compact manifold that we will denote X[a] ⊂ X. On the
other hand, if a is a critical value, we can understand f−1(a) via the famous Morse lemma.

Lemma 1.1.3. Let X be a smooth, closed, and connected manifold of dimension n, and
let f : X → R be a Morse function. If a ∈ R is a critical value for f , then there are local
coordinates (x1, . . . , xn) in a neighbourhood U of p and an integer k so that xi(p) = 0 for
all i, and on U we have

f(z) = f(p)− (x1(z))2 − · · · − (xk(z))2 + (xk+1(z))2 + · · ·+ (xn(z))2.

The number k is called the index of f at p.

If a and b are two regular values of f , then f−1([a, b]) ⊂ X is a cobordism (i.e. an
n manifold with boundary f−1(a) t f−1(b)) between the manifolds X[a] and X[b]. In fact,
if [a, b] contains no critical values, then one can show that f−1([a, b]) is diffeomorphic to
the product X[a] × [a, b] (and in particular, X[a]

∼= X[b]). If [a, b] contains a single critical
point, then Lemma 1.1.3 gives a local model for the cobordism f−1([a, b]) called a handle
attachment.

Lemma 1.1.4. Let f : X → R be a Morse function, and let a and b be regular values for
f . If [a, b] contains no critical values, then f−1([a, b]) is diffeomorphic to f−1(a) × [a, b].
If [a, b] contains a single critical value of index k, then f−1([a, b]) is diffeomorphic to an
n–dimensional k–handle attached to f−1([a, a+ ε]) (for some small ε > 0).
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Since each critical point is isolated, the manifold X can built as a union of these specific
kinds of cobordisms, i.e. by Lemma 1.1.4, by attaching handles. In what follows, we will
set Dk = [−1, 1]k.

Definition 1.1.5. Let 0 ≤ k ≤ n. An n–dimensional k–handle h is the attachment of
Dk ×Dn−k to the boundary of an n–manifold along Sk−1 ×Dn−k. Here, we are using the
decomposition

∂(Dk ×Dn−k) = Sk−1 ×Dn−k ∪Dk × Sn−k−1.

The attaching sphere of h is the image of Sk−1 × {0}, and the core of h is the image of
Dk × {0}. The belt sphere of h is the image of {0} × Sn−k−1, and the co-core of h is the
image of {0} ×Dn−k.

An n–dimensional handle is always abstractly diffeomorphic to Dn, but each index
corresponds to a different kind of attachment. For a fixed n and k, an n–dimensional
k–handle h is generally determined by two things: the isotopy class of the attaching sphere
and a framing, i.e. a specific trivialization of neighbourhood of the the attaching sphere of
h. Once a trivialization is fixed, then any other trivialization differs from it by an element
of πk−1(GL(n − k)). Thus, isotopy classes of framings of n–dimensional k–handles are in
(non-canonical) bijection with πk−1(GL(n− k)). This is a known (and sometimes trivial)
group for small n and k. Applying a transversality argument to the attaching spheres, one
can show that all handles of index k may be assumed to be attached before any handles
of index k + 1, and we will usually assume this is the case.

Some handles are illustrated in Figure 1.1 for small k and n. In each case, the attaching
sphere is colored red and the belt sphere is colored blue (when they are non-empty).

In some cases, we need surprisingly little information to specify a handle attachment.
In what follows, suppose that X is an n–dimensional manifold. A 0–handle is “attached”
to X along S−1 ×Dn = ∅; we interpret this as taking the disjoint union with Dn. An n–
handle is attached to X along Sn−1×D0, and by the above discussion there is a unique way
to frame an (n− 1)– sphere in ∂X. For n ≤ 4, any orientation preserving diffeomorphism
of Sn−1 is smoothly isotopic to the identity map (though this is highly non-trivial when
n = 4), and so there is a unique way to attach an n–handle in these dimensions.

The attaching sphere of a 1–handle is S0 × {0}, i.e. two points. If ∂X is connected,
then there is a unique embedding of S0 in ∂X up to isotopy. A framing corresponds to
an element of π0(GL(n − 1)) ∼= Z2 (for n ≥ 2), and so there are two ways to attach a
1–handle to ∂X, depending on whether the loop determined by the core of the 1–handle
is orientation preserving or not.
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Figure 1.1: Various handles for small k and n. Each handle is diffeomorphic to an n–ball,
but attached along a neighbourhood of the attaching sphere (in red). A 4–dimensional
0–handle is a 4–ball. We “draw” the boundary by visualizing the page as most of S3.
Similarly, we only draw the “feet” of a 4–dimensional 1–handle, indicated by two 3–balls.
We only draw the attaching sphere for a 4–dimensional 2–handle (drawn in ∂B4 = S3).
The framing is indicated with an integer.

If n = 3, then the attaching sphere of a 2–handle is an embedding of S1 (into a surface).
A framing corresponds to an element of π1(GL(1)) ∼= {1}, and so a 2–handle attachment is
completely determined by the isotopy class of an embedded circle (the image of S1 × {0})
in ∂X.

If n = 4, then 2–handles are still attached along a knot K in ∂X (which is now a
3–manifold), but framings are now in bijection with π1(GL(2)) ∼= Z. Various conventions
exist to keep track of the framings of 2–handles; for more details see [28]. In the case that
2–handles are attached to ∂B4 = S3, one solution is to declare the 0–framing to be the
one which intersects a Seifert surface F ⊂ S3 for K zero times. Then, one can assign an
integer to a framing by counting the number of times a pushoff of K intersects F .

It is natural to ask how two handle decompositions of M are related. Note that since R
is contractible any two Morse functions are at least homotopic. Such a homotopy cannot
be taken to be Morse at all times, but Theorem 1.1.6 guarantees that there are only finitely
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many times where it fails to be Morse. At such times, there are two possible local models
for the change in the function, called handle cancellation, and handle sliding.

Theorem 1.1.6 ([18], e.g. see [28, §4]). Given any two handle decompositions (ordered in
levels of increasing index) corresponding to a Morse function f : M → R, it is possible to
get from one to the other by a sequence of the following moves:

1. Isotopy of handles within levels. This corresponds to an isotopy of the corresponding
Morse function.

2. Creating/cancelling a k– and (k + 1)–handle pair. In this case, there are local coor-
dinates (x1, . . . , xn) on on a neighbourhood U ⊂ M so that the homotopy ft has the
form

ft(x1, . . . , xn) = −x2
1 − · · · − x3

k − (t− t0)xk+1 + x2
k+2 + · · ·+ x2

n

for some t0 ∈ R. If the attaching sphere of a (k + 1)–handle and the belt sphere of
the k–handle intersect in exactly one point, then they can be cancelled.

3. A handle slide of a k–handle over another k–handle. In this case, two critical points
cross at some t0 ∈ R. On the level of handles, this is given by pushing the attaching
sphere of one handle through the belt sphere of the other handle; at the time t0, the
spheres will intersect in a single point.

In the 2–dimensional case, a cancelling handle pair is illustrated in Figure 1.2, and a
handle slide is illustrated in Figure 1.3.

Figure 1.2: A creation/cancellation of a 2–dimensional 1– and 2–handle. The attaching
sphere of the 2–handle (S1) intersects the belt sphere of the 1–handle (S0) transversely in
a single point. Attaching this pair of handles is diffeomorphic to attaching none at all.

The reader is referred to [28] for more details on handle decompositions, particularly
in low dimensions.

1.2 Heegaard splittings of 3–manifolds

An essential tool for studying 3–manifolds is a Heegaard splitting. We will now specialize
§1.1 to the case of 3–manifolds.
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Figure 1.3: A handle slide of 2–dimensional 1–handles. We slide the attaching sphere of
the left 1–handle through the belt sphere of the right 1–handle. In the middle time slice,
the attaching sphere of the left 1–handle intersects the belt sphere of the right 1–handle
transversely in a single point (purple). While the resulting manifolds are diffeomorphic,
they have been presented differently.

Definition 1.2.1. A handlebody of genus g is a compact manifold which can be built with
a single 0–handle and g 1–handles. Equivalently, an n–dimensional orientable handlebody
is a manifold which is diffeomorphic to a regular neighbourhood of a wedge of g circles in
Rn.

Definition 1.2.2. Let M be a smooth, closed, and connected 3–manifold. A Heegaard
splitting H = (Σ;H1, H2) of M is a decomposition M = H1 ∪Σ H2, where Σ ⊂ M is an
embedded surface, and H,H ′ are 3–dimensional handlebodies. If Σ has genus g, we will
call this a genus g splitting.

One imagines cutting a 3–manifold “in half,” or into two equal pieces. We will generally
not assume that M (and consequently H and H ′) are orientable.

Note. The boundary of a 3–dimensional handlebody is either a closed orientable surface
of genus g, or decomposes as a connected sum of an even number of RP2 summands. If Σ is
non-orientable and χ(Σ) is even, then to make certain statements simpler (e.g. Proposition
1.3.12) we will define the genus of Σ by g(Σ) = 1

2
(2− χ(Σ)). Equivalently, this is half the

number of RP2 summands appearing in a connected sum decomposition. For example, this
means that we will declare the “genus” of the Klein bottle to be equal to one.

Definition 1.2.3. Let M be a closed, connected 3–manifold, and suppose that H =
(Σ;H1, H2) and H′ = (Σ′;H ′1, H

′
2) are two Heegaard splittings of M . We say that H and

H are equivalent if there is a diffeomorphism φ : M →M sending H to H′. If φ is isotopic
to idM , then H and H′ are called isotopic.

Since a Heegaard splitting is entirely determined by the splitting surface, H and H′ are
isotopic if and only if Σ and Σ′ are ambiently isotopic. For brevity, we will occasionally
omit reference to the handlebodies in the decomposition.
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Given a Heegaard splitting of M , there is an easy way to produce another Heegaard
splitting of higher genus.

Definition 1.2.4. Let H = (Σ;H1, H2) be a Heegaard splitting of a 3–manifold M . Let
α ⊂ H1 be a properly embedded and boundary parallel arc, and define a new Heegaard
splitting H′ of M by:

• H ′1 = H1 \ ν(α);

• H ′2 = H2 ∪ ν(α);

• Σ′ = ∂H ′1 = ∂H ′2,

where ν(α) is an open tubular neighbourhood of α. We say that H′ is a stabilization of H,
or that H is a destabilization of H′.

It is easy to check that H′ is a Heegaard splitting of M , and that the isotopy class of
H′ does not depend on the choice of the arc α. Moreover, reversing the roles of H1 and H2

does not affect the resulting Heegaard splitting up isotopy.

While these decompositions may appear quite specialized, the following theorem of Rei-
demeister and Singer guarantees that every closed 3-manifold admits a Heegaard splitting,
and that such decompositions are unique up to stabilization. We will only outline a proof
of existence.

Theorem 1.2.5 ([64], [68], e.g. see [50]). Any closed and connected 3–manifold M admits
a Heegaard splitting. Any two Heegaard splittings for M are stably isotopic, i.e. become
isotopic after some number of stabilizations.

Proof Sketch (Existence). Let f : M → R be a Morse function. By re-ordering critical
points, we can assume that f is self-indexing (i.e. that if x is a critical point of index
i, then f(x) = i), and so f(M) = [0, 3]. We can also assume that f has only a single
critical point of index 0 and index 3. Indeed, such critical points can generally be cancelled
by index 1 and index 2 critical points. Consequently M admits a handle decomposition
consisting of a single 0–handle, some number of 1– and 2–handles, and a single 3–handle. In
fact, the argument below shows that M must have the same number of 1– and 2–handles.

Note that f−1([0, 3/2]) is a handlebody, since it is the result of attaching 1–handles
to B3. Similarly, by considering the Morse function −f we see that f−1([3/2, 3]) is also
a handlebody. These two handlebodies meet along the common surface f−1(3/2), and so
give a Heegaard splitting for M .
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Remark 1.2.6. The existence of Heegaard splittings may also be deduced from the tri-
angulability of 3–manifolds due to Moise [61]. Indeed, given a triangulation of M , a
neighbourhood of the 1–skeleton of this triangulation gives one obvious handlebody H1 for
M . The complement H2 = M \H1 is a regular neighbourhood of the corresponding dual
1–skeleton, and so is also a handlebody.

If H = (Σ;H1, H2) and H′ = (Σ′;H ′1, H
′
2) are Heegaard splittings of M and M ′, then

there is a natural Heegaard splitting of M#M ′ obtained by performing the connected sum
at points on the splitting surfaces. In other words, remove a small 3–ball centered on Σ
and Σ′ from each of M and M ′, respectively, and form the Heegaard splitting H#H′ =
(Σ#Σ′;H1#H ′1, H2#H ′2).

One might ask whether every Heegaard decomposition of M#M ′ decomposes in this
way. Remarkably, by the following fundamental result (known as Haken’s Lemma) this is
true.

Haken’s Lemma ([29], e.g. see [37, Chapter II]). Let M be a (possibly non-orientable)
3–manifold containing an essential 2–sphere. Let Σ be a Heegaard surface for M . Then
there exists an essential 2–sphere S in M that intersects Σ in a simple closed curve.

1.3 Heegaard diagrams of 3–manifolds

One of the most useful properties of Heegaard splittings is that they can be represented
by diagrams. If H = (Σ;H1, H2) is a Heegaard splitting of M , then we can record which
curves on Σ bound disks in Hi. By drawing these curves on a model surface (an abstract
copy of Σ), we will be able to reconstruct M .

Definition 1.3.1. Let Σ be a (possibly non-orientable) closed surface of genus g. A cut
system of curves for Σ is a collection C of g disjointly embedded closed curves such that
Σ \ C is a connected planar surface. Equivalently, performing surgery on all curves in C
(i.e. attaching 2–handles along each curve in C) gives S2.

Definition 1.3.2. A Heegaard diagram is a tuple (Σ;α, β) where Σ is a closed surface of
genus g, and α and β are cut systems of curves for Σ.

To distinguish the curves in a Heegaard diagram, the α curves will always be red, and
the β curves will always be blue.
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Remark 1.3.3. A Heegaard diagram (Σ;α, β) determines a closed 3–manifold M in the
following way. Beginning with Σ × I, attach 3–dimensional 2–handles corresponding to
the α curves to Σ × {0}, and 3–dimensional 2–handles corresponding to the β curves to
Σ×{1}. By hypothesis, the resulting 3-manifold has two 2–sphere boundary components,
which can uniquely be filled in with 3–balls. We say that (Σ;α, β) is a Heegaard diagram
for M .

Note. Since a Heegaard diagram depends on a choice of identification of the splitting
surface with a model surface, it can only record information up to diffeomorphism. In par-
ticular, Heegaard diagrams do not generally distinguish Heegaard splittings up to isotopy.

If two Heegaard diagrams for M describe the same Heegaard splitting up to diffeomor-
phism, then there is a complete set of moves relating these diagrams. For example, if we
modify either the α or β curves by an isotopy or a handle slide (illustrated below; compare
with §1.1), then this corresponds to isotopy or a handle slide of the 2–handles in the above
construction, and so does not affect the Heegaard splitting up to diffeomorphism. In fact,
these are essentially the only required moves.

Definition 1.3.4. Suppose that Σ is a closed surface and C is a cut system of curves for
Σ. If c1, c2 ∈ C, then we say that a curve c3 is the result of a handle slide of c1 over c2 (or
vice versa) if c1 ∪ c2 ∪ c3 bounds an embedded pair of pants P ⊂ Σ.

Figure 1.4: The effect on the attaching curves (technically, spheres) when sliding a 3–
dimensional 2–handles. For clarity, only the attaching curves and the disks they bound are
pictured. The key observation is that the curves c1, c2, c3 bound a pair of pants embedded
in Σ.
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Proposition 1.3.5 (e.g. see [50]). Suppose that D = (Σ;α, β) and D′ = (Σ;α′, β′) describe
diffeomorphic Heegaard diagrams for a 3–manifold M . Then D and D describe diffeomor-
phic Heegaard splittings if and only if they are related by a sequence of isotopies of curves,
handle slides (among curves of each type) and surface automorphisms. In other words,
there is a natural bijection

{Heegaard diagrams}
slides, surface automorphism

↔ {Heegaard splittings of 3–manifolds}
diffeomorphism

If two diagrams are related by a sequence of handle slides and surface automorphisms,
we will call them slide-diffeomorphic. We will now give several examples of Heegaard
splittings of some familiar closed 3-manifolds.

Example 1.3.6. The simplest Heegaard splitting is the genus zero splitting of the 3–
sphere. Viewing S3 as

S3 = B3 ∪S2 B3,

i.e. as two 3–balls glued along their boundary by the identity map, we obtain a genus
zero Heegaard splitting. Equivalently, viewing S3 as R3 ∪ {∞}, the unit 2–sphere S ⊂ R3

bounds a 3–ball to each side, and so is a genus 0 Heegaard surface. A Heegaard diagram
for this splitting is given by S2 with no curves.

A more interesting Heegaard splitting of the 3–sphere has genus one. Again, view S3

as R3 ∪ {∞} and define a splitting by:

H1 = ν(U)

where U is the unknotted circle U = {(x, y, z) ∈ R3 : x2 + y2 = 1 and z = 0} and

H2 = S3 \H1.

It is easy to see that both H1 and H2 are solid tori, and so we have exhibited a genus one
Heegaard splitting of S3. A diagram T for this splitting is given below1; this splitting is a
stabilization of the genus zero splitting given above.

It is easy to check that stabilization (Definition 1.2.4) is equivalent to taking the con-
nected sum with the above genus one Heegaard splitting of S3. Diagrammatically, this
corresponds to taking the connected sum with T (up to equivalence, the connected sum of
diagrams is well defined).

1This image is original but inspired by the excellent illustration in [8]
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Figure 1.5: In (a), an illustration of S3 as the union of concentric tori. The Heegaard
diagram T in (b) describes the corresponding Heegaard splitting. The curves on the torus
bound disks in the corresponding colored handlebodies in S3.

Definition 1.3.7. Let D be a Heegaard diagram. A stabilization of D is a diagram of the
form D#T. We say that D′ is a stabilization of D, or that D is a destabilization of D′.

It is generally difficult to check whether a Heegaard diagram D is stabilized, since one
has to perform handle slides to express D as a connected sum of the above form. The
Reidemeister-Singer Theorem (Theorem 1.2.5) can also be restated in terms of diagrams.

Theorem 1.3.8. Any closed and connected 3–manifold M admits a Heegaard diagram. If
D and D′ are Heegaard diagrams for M , then for some k and l, D#(#kT) and D′#(#lT)
are slide-diffeomorphic.

Example 1.3.9. The 3–torus T 3 = S1×S1×S1 admits an interesting genus three Heegaard
splitting. We will view T 3 as the quotient of [0, 1]3 obtained by identifying opposite faces.

There is an obvious handlebody H1 ⊂ T 3 depicted in Figure 1.6. In fact, H2 = T 3 \H1

is also a handlebody, since we can find three compressing disks. Thus, H2 is a handlebody,
and we have exhibited a genus three Heegaard splitting of T 3.2

2The author would like to thank Abigail Thompson for pointing out this highly symmetric planar
diagram.
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Figure 1.6: In (a), an illustration of a Heegaard surface for T 3. The edges of the faces
of the cubes are identified; the faces of the drawn solid are identified to form a genus 3
handlebody whose complement is also a handlebody. The planar Heegaard diagram in (b)
describes this Heegaard splitting. Circles opposite one another are identified to form a
genus 3 surface.

This is the lowest genus splitting possible for T 3. In general, each handlebody of a
Heegaard splitting generates the fundamental group, and so the genus of any splitting of
T 3 is bounded below by the rank of π1(T 3) = Z3, which is equal to 3.

Example 1.3.10. One of the most important Heegaard splittings that will appear in this
thesis is the standard Heegaard splitting of S2 × S1. Since S2 = D2 ∪S1 D2, the surface
S1 × S1 defines a genus 1 Heegaard splitting of S2 × S1. In Figure 1.7, we see that a
diagram for this splitting has two parallel curves.

Similarly, there is a standard (non-orientable) Heegaard splitting of S2 ∼× S1. Recall
that this 2–sphere bundle over S1 is obtained by gluing the boundary components of S2×I
via a reflection (which we will take to be across the equator of S2). Figure 1.8 illustrates
a “genus one” Heegaard splitting. In this case, the surface is a Klein bottle, and the
handlebodies are each diffeomorphic to B2 ∼× S1. Note that unlike the case of S2 × S1,
the image of S1 × I under the identification of the boundary components is a Klein bottle
which is non-separating (and hence does not define a Heegaard splitting in our sense).

Note. In fact, there are only four isotopy classes of essential embedded closed curves
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Figure 1.7: In (a), a schematic of a Heegaard splitting of S2 × S1, viewed as S2 × I with
S2 × {0} and S2 × {1} identified. The surface S1 × S1 (in grey) is a Heegaard surface.
In (b), a diagram for this Heegaard splitting. The schematic in (a) shows that the same
curve bounds a disk in both handlebodies.

on the Klein bottle [34]. Only one of these is both non-separating and has an annular
neighbourhood, and so Figure 1.8 is the only genus one non-orientable Heegaard diagram.

By taking connected sums of these standard Heegaard splittings, we obtain genus k
Heegaard splittings of #kS2 × S1 and #kS2 ∼× S1, which we will call standard. Note that
these splittings have minimal genus, but we can also stabilize them to obtain higher genus
splittings.

In fact, a theorem of Waldhausen guarantees that these are the only Heegaard splittings
of #kS2×S1. Waldhausen showed that Heegaard splittings of S3 are unique up to isotopy;
combining this with an easy application of Haken’s lemma shows that genus g Heegaard
splittings of #kS2 × S1 are unique up to diffeomorphism. Carvalho and Oertel (and more
recently Hensel and Schultens) have shown that this is actually true up to isotopy.

Theorem 1.3.11 ([71], see e.g. [10] and [32]). Let g ≥ k ≥ 0. Any genus g Heegaard
splitting of #kS2 × S1 is isotopic to the result of stabilizing the standard Heegaard surface
g − k times.

In particular, any genus g Heegaard diagram for #kS2 × S1 is slide-diffeomorphic to
the diagram in Figure 2.3.

A version of Theorem 1.3.11 for #kS2 ∼× S1 may be known to some experts, but does
not seem to appear in the literature. We include a proof up to diffeomorphism here. Using
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Figure 1.8: In (a), a schematic of a genus 1 Heegaard splitting of S2 ∼×S1, viewed as S2× I
with S2 × {0} and S2 × {1} identified by a reflection through the equator. The purple
curve traces out a separating Klein bottle. In (b), a diagram (on a Klein bottle) for this
Heegaard splitting.

the methods of Carvalho and Oertel, we will show that like the orientable case, this result
holds up to isotopy (Theorem 3.2.8).

Proposition 1.3.12. Let g ≥ k ≥ 0. Any genus g Heegaard splitting of #kS2 ∼× S1 is
equivalent to the result of stabilizing the standard Heegaard surface g − k times.

Proof. The proof will proceed by induction. If k = 0, then the claim holds by Waldhausen’s
theorem on Heegaard splittings of S3. Write Σg,k to indicate the result of stabilizing the
standard genus k surface in #kS2 ∼× S1 g − k times.

Now fix some n ≥ 1 and suppose the claim holds whenever k < n. Let Σ be some
genus g Heegaard surface in M := #nS2 ∼× S1. By Haken’s lemma, there is an essential
2–sphere S in M that intersects Σ in a simple closed curve. Let (M ′,Σ′) be the 3–manifold
and Heegaard surface obtained by compressing (M,Σ) along S. There are two cases to
consider.

Case 1: S is separating.

If S is separating, then M ′ is a disjoint union M ′ = M1 tM2 with Mi
∼= #kiS2 × S1

or Mi
∼= #kiS2 ∼× S1, and k1 + k2 = n. Since S is essential, k1, k2 6= 0 and so k1, k2 < n.

By Theorem 1.3.11 or the inductive hypothesis, the corresponding components of Σ′ are
equivalent to Σg1,k1 and Σg2,k2 for some g1, g2 with g1 + g2 = g. Thus in this case, (M,Σ) ∼=
(#nS2 ∼× S1,Σg,n).

Case 2: S is non-separating.

If S is non-separating, then either M ′ ∼= #n−1S2 × S2 or M ′ ∼= #n−1S2 ∼× S1. By
Theorem 1.3.11 or the inductive hypothesis, Σ′ is equivalent to Σg−1,n−1. Thus, in this case
we also have (M,Σ) ∼= (#nS2 ∼× S1,Σg,n).
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We conclude the claim holds for k = n, so Proposition 1.3.12 holds by induction.

1.4 Open book decompositions

We will need one more useful decomposition of a 3–manifold in this thesis, called an open
book decomposition. The reader may wish to skip this very short section; they will only
be used in passing for descriptions of trisections, and as a structure on the boundary of
a relative trisection in §4.3. For more details, we recommend the extensive treatment by
Etnyre in [19].

Definition 1.4.1. Let Y be a closed, connected 3–manifold. An open book decomposition
of Y is a pair (B, π), where

• B ⊂ Y is a link called the binding ;

• π : Y \ B → S1 is a fibration. For each θ ∈ S1, π−1(θ) is the interior of a compact
surface Σθ ⊂ Y , and ∂Σθ = B. The surface Σθ is called the page.

Abstractly, one can also start with a surface Σ with boundary, together with an auto-
morphism φ : Σ → Σ which is the identity on ∂Σ. By filling in the resulting boundary
components of the mapping torus Σ ×φ S1 with solid tori, we obtain a closed 3–manifold
Mφ equipped with a natural open book decomposition.

Like Heegaard splittings, every 3–manifold admits such a decomposition.

Theorem 1.4.2. Let Y be a closed, connected 3–manifold. Then Y admits an open book
decomposition.

Originally due to Alexander, the proof of this theorem proceeds by showing that every
closed 3–manifold arises as the branched cover of link L ⊂ S3. By braiding L around the
unknot in S3, one obtains a fibration of the desired kind.
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Chapter 2

Trisections of 4–manifolds

This thesis deals with extending the theory of trisections to non-orientable 4–manifolds.
In this chapter we review the orientable theory, and so the experienced reader may wish
to skip to later chapters and refer back as necessary.

This chapter is not intended as a complete guide. Rather, it is a brief introduction
containing all the fundamental results that will be used in this thesis, along with many
examples. For a more complete picture, the reader is encouraged to consult the following
excellent references. We will refer to them throughout this chapter, but also present them
here as a collection for the interested reader.

• For the original treatment of trisections by Gay and Kirby see [24]. For extensions
to 4–manifolds with boundary, see [13], [14]; for extensions to non-orientable 4–
manifolds see [59], [69] (as well as Chapter 3 and Chapter 4 of this thesis); for
decompositions involving more than three pieces see [36], [47], [67], and [66]. For
computations of the homology or intersection form of a closed 4–manifold from a
trisection, see [20] and [21]

• For the development of Weinstein trisections and other applications of trisections to
symplectic 4–manifolds see [46]; for a trisection-based proof of the Thom conjecture
and a proof of the adjunction inequality, see [43] and [44]. For invariants of 4–
manifolds that can be defined using trisections, see [15], [41], and [62].

• For the original treatment of bridge trisections see [56] and [58]; for applications to
embedded surfaces in 4–manifolds, see [25] [45], and [55].

• For more results on trisection diagrams and their applications to 4–manifolds, see
[16], [57], and [65].
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For a very first motivating example, we will consider the following decomposition of
the 2–sphere. While S2 is not a 4–manifold, it will be useful to illustrate the basic idea of
a trisection. We will identify S2 ⊂ R3 = C× R as

S2 = {(reiθ, z) ∈ R3 : |(reiθ, z)| = 1},

and imagine cutting S2 into three wedges (like an orange). Formally, one might define:

Xi = {(reiθ, z) ∈ S2 : 2π(i− 1)/3 ≤ θ ≤ 2πi/3}.

Each “sector” Xi is diffeomorphic to a 2–dimensional disk. The triple intersection is
X1 ∩ X2 ∩ X3 = {(0, 1), (0,−1)}, and so is diffeomorphic to S0. Similarly, Xi ∩ Xj ⊂ S2

is an embedded arc connecting (0, 1) and (0,−1), and so is diffeomorphic to B1. While
this example may seem trivial, it will be a useful schematic to keep in mind. In short,
we have decomposed S2 into three 2–dimensional pieces, so that the pairwise and triple
intersections are as simple as possible.

Figure 2.1: A “trisection” of the 2–sphere into three pieces. Each piece is a 2–dimensional
disk, each pairwise intersection is a 1–dimensional arc, and the triple intersection is a
0–dimensional.

The 4–dimensional sphere admits a similar decomposition. View S4 ⊂ R5 = C×R3 as

S4 = {(reiθ, x, y, z) ∈ R5 : |(reiθ, x, y, z)| = 1}

and set
Xi = {(reiθ, x, y, z) ∈ S4 : 2π(i− 1)/3 ≤ θ ≤ 2πi/3}.

In this case, each Xi is diffeomorphic to a 4–dimensional ball. As before, the triple inter-
section is

X1 ∩X2 ∩X3 = {(reiθ, x, y, z) ∈ S4 : r = 0},
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and so is diffeomorphic to a 2–dimensional sphere. Similarly, the pairwise intersections are
diffeomorphic to 3–dimensional balls. As in the first example, we have decomposed S4 into
three 4–dimensional pieces, so that the pairwise and triple intersections are as simple as
possible.

As a slightly more interesting 4–dimensional example, we will describe a trisection of
CP2. Recall that CP2 is the quotient of C3 \ {0} obtained by identifying lines through the
origin, i.e.

CP2 =
C3 \ {0}

z ∼ λz for 0 6= λ ∈ C
.

Points in CP2 are described using homogeneous coordinates, i.e. as elements [z0 : z1 : z2],
where zi are not all zero and points can be rescaled. The moment map µ : CP2 → R2 is
defined by:

µ([z1 : z2 : z3]) =

(
|z2|

|z1|+ |z2|+ |z3|
,

|z3|
|z1|+ |z2|+ |z3|

)
.

Note that µ is well defined, and that the image of µ is the polytope

∆ = {(x, y) ∈ R2 : 0 ≤ x, 0 ≤ y, x+ y ≤ 1}.

Consider the three “sectors” of CP2 (indices taken modulo 3) given by

Xi = {[z0 : z1 : z2] ∈ CP2 : |zi|, |zi+1| ≤ |zi+2|}.

Equivalently, Xi is the preimage under µ of ∆i in Figure 2.2. By rescaling, it is clear that
each Xi is diffeomorphic to a 4–ball. Although the intersections among the Xi are not
disks, they are fairly well behaved. For instance, we have:

X1 ∩X2 ∩X3 = {[z1 : z2 : z3] ∈ CP2 : |z1| = |z2| = |z3|}.

By rescaling (e.g. so that z1 = 1), it is easy to see that X1∩X2∩X3 is an embedded torus
in CP2. Similarly, Xi ∩Xj is a 3-dimensional handlebody, i.e. diffeomorphic to S1 × B2.
Each pairwise intersection Xi∩Xj has X1∩X2∩X3 as its boundary, but in different ways.
If we draw a schematic of X1 ∩ X2 ∩ X3 as a torus Σ, we can record its interaction with
Xi ∩ Xj by drawing the curve on Σ which bounds a disk in Xi ∩ Xj (i.e., a compressing
disk). Keeping track of these curves carefully (for details see Example 2.2.10), we might
draw the schematic in Figure 2.2.

As in the case of S4, we have exhibited a decomposition of CP2 into three simple pieces
(4–balls), whose pairwise intersections are 3–dimensional handlebodies, and whose triple
intersection is a surface. This is the foundation of the idea of a trisection. Just like a
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Figure 2.2: A schematic of a trisection of CP2. Each sector Xi = µ−1(∆i) is a 4–ball. Each
of the three coloured curves on Σ bounds a disk in the handlebody Xi∩Xj = µ−1(∆i∩∆j)
of the same color.

Heegaard splitting, much of the data of a trisection is carried by how the sectors intersect
along the surface, and so schematics like the one in Figure 2.2 will be very useful.

The outline of this chapter will be as follows. In §2.1, we will define a trisection of
a closed 4–manifold rigorously. In §2.2 we will introduce trisection diagrams, a way of
describing 4–manifolds via diagrams on surfaces (like Figure 2.2). Lastly, in §2.3 we will
briefly review some special kinds of trisections: relative trisections, an extension of trisec-
tions to 4–manifolds with boundary, and bridge trisections, a tool for studying embedded
surfaces in trisected 4–manifolds

2.1 Trisections of 4–manifolds

In this section, we rigorously introduce the definition of a trisection of a closed 4–manifold.
Later, we will also describe trisections of 4–manifolds with boundary, which are more
technical but useful for standard cut-and-paste operations.

In this chapter all manifolds are taken to be orientable, but in Chapter 4 we will relax
this assumption. Recall that an orientable handlebody of genus g is a compact manifold
which can be built with a single 0–handle and g orientable 1–handles.

Definition 2.1.1 ([24]). Suppose that X is a smooth, oriented, closed, and connected
4–manifold. A trisection T of X is a decomposition X = X1 ∪X2 ∪X3 such that

• Xi is diffeomorphic to a 4–dimensional handlebody of genus ki;
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• Xi ∩Xj is diffeomorphic to a 3–dimensional handlebody of genus g;

• Σ = X1 ∩X2 ∩X3 is diffeomorphic to a closed surface of genus g.

We will refer to T as a (g; k1, k2, k3)–trisection of X. When k1 = k2 = k3 = k, the trisection
is called balanced, and we will refer to T as a (g; k)–trisection. Each Xi is called a sector,
and the triple intersection Σ is called the central surface of T .

Note that by definition, for each i the central surface Σ induces a genus g Heegaard
splitting of ∂Xi. Since Xi

∼= \kiB3× S1, we have ∂Xi
∼= #kiS2× S1, and so we necessarily

have g ≥ ki. By the strong version of Waldhausen’s theorem on Heegaard splittings of
#kiS2 × S1 (Theorem 1.3.11), every such Heegaard splitting is standard, i.e. isotopic to a
stabilization of the standard genus ki splitting.

Remark 2.1.2. An Euler characteristic calculation shows that if X admits a (g; k1, k2, k3)–
trisection, then χ(X) = g + 2− k1 − k2 − k3.

If T and T ′ are (g, k1, k2, k3)– and (g′; k′1, k
′
2, k
′
3)– trisections of X and X ′, then there

is a natural trisection of X#X ′ obtained by performing the connected sum at points on
the central surfaces. In other words, remove a trisected 4–ball from each of X and X ′

and identify the resulting boundary components by a diffeomorphism which respects this
trisection structure. The result is a (g + g′; k1 + k′1, k2 + k′2, k3 + k′3)–trisection of X#X ′.

Like Heegaard splittings, there is a natural stabilization operations for trisections.

Definition 2.1.3. Suppose that T is a (g; k1, k2, k3)–trisection of a 4–manifold X, with
sectors X1, X2, X3. Let α ⊂ X1 ∩X2 be a properly embedded and boundary parallel arc,
and define a new trisection T ′ of X by:

• X ′1 = X1 \ ν(α);

• X ′2 = X2 \ ν(α);

• X ′3 = X3 ∪ ν(α).

One can check that this defines a (g+1; k1, k2, k3+1)–trisection ofX, and that this operation
is well defined up to isotopy of trisections. The trisection T ′ is called a 3–stabilization (or
simply stabilization) of T ; 1– and 2– stabilizations are defined analogously. Conversely, T
is called a destabilization of T ′.
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Note that (e.g. in the case of 3–stabilization) this procedure stabilizes the Heegaard
splittings of ∂X1 and ∂X2, while adding an S1 × S2 summand to ∂X3.

The reader may wish to compare this definition to the stabilization operation for Hee-
gaard splittings in §1.2. Unlike the 3–dimensional case, each kind of stabilization produces
a distinct kind of trisection. However, i– and j– stabilization commute up to isotopy.

As in the 3–dimensional case, one may also define stabilization as the connected sum
(respecting the trisection structure) of T with one of the three genus one trisections that
arise by 1–, 2– or 3–stabilizing the unique genus 0 trisection of S4. For more details, see
Definition 2.2.4.

The following fundamental theorem of Gay and Kirby allows us to study closed 4–
manifolds via trisections:

Theorem 2.1.4 ([24]). Every smooth, oriented, closed, and connected 4–manifold X ad-
mits a (g; k)–trisection for some 0 ≤ k ≤ g. Any two trisections of X become isotopic after
sufficiently many stabilizations.

For convenience, we give a short handle-theoretic proof of the existence of trisections.
This proof is well known, and various versions appear in [24] and [58]. One can also give
a proof via Morse 2–functions (i.e. generic maps to R2), but we will not discuss this point
of view.

Proof sketch of Theorem 2.1.4 (Existence). Begin with a self-indexing Morse function f :
X → [0, 4], inducing a handle decomposition for X with a single 0– and 4– handle, h1

1–handles, h2 2–handles, and h3 3–handles, and fix a gradient-like vector field ∇ for f .
From this handle decomposition, we will build a trisection of X. For convenience, we will
write X[a,b] for the cobordism f−1([a, b]), and simply write X[c] = f−1(c). If Y ⊂ X[a], we
will write Y[a,b] for the trace of flowing Y ⊂ X[a] along gradient flow lines to X[b].

Note that X[0,3/2]
∼= \h1B3 × S1 since it contains only critical points of index 0 or 1,

and so in particular X[3/2]
∼= #h1S2× S1. The descending manifolds of the index 2 critical

points intersect X[3/2] in h2 closed curves; this is the attaching link L for the 2–handles of
X, viewed in X[3/2]. Choose a genus g Heegaard splitting X[3/2] = H ∪Σ H

′ so that each
component of L is a core of H, i.e. is dual to a properly embedded disk in H that does not
intersect any other component of L. We claim that the following decomposition is now a
(g;h1, g − h2, h3)–trisection of X.

• X1 = X[0,3/2] ∪H ′[3/2,2];
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• X2 = H[3/2,5/2] = X \ (X1 ∪X3);

• X3 = H ′[2,5/2] ∪X[5/2,4].

Since H ′[3/2,2] and H ′[2,5/2] deformation retract onto H ′[3/2] and H ′[5/2], respectively, we

have X1
∼= \h1B3 × S1 and X3

∼= \h3B3 × S1. Lastly, we may view X2 as built from
ν(H[3/2]) ∼= (\gB2×S1)× I by the addition of h2 2–handles. This is a genus g handlebody;
by construction these 2–handles geometrically cancel h2 of the 1–handles and so X2

∼=
\g−h2B3 × S1. Thus the advertised decomposition is a trisection of X.

Note. A quick sanity check of this proof using Remark 2.1.2 shows that

χ(X) = g + 2− h1 − (g − h2)− h3 = 1− h1 + h2 − h3 + 1

as expected.

The above proof shows that a handle decomposition induces a trisection. Conversely,
we can also extract a handle decomposition from a trisection.

Proposition 2.1.5 ([24, Lemma 13]). Suppose that T is a (g; k1, k2, k3)–trisection of X.
Then X admits a handle decomposition with a single 0– and 4– handle, k1 1–handles, g−k2

2–handles, and k3 3–handles.

Proof. Let the sectors of T be X1, X2, and X3, and let X1 ∩ X2 ∩ X3 = Σ. Since X1
∼=

\k1B3 × S1, it is a handlebody, which we will take this to be the 0– and 1–handles of a
handle decomposition for X.

The sector X2 may now be viewed as a cobordism (of manifolds with boundary) of
X1 ∩ X2 to X2 ∩ X3. Note that the surface Σ is a genus g Heegaard splitting for ∂X2

∼=
#k2S2×S1. By Waldhausen’s theorem, this Heegaard splitting is standard, and so we can
find a collection L of g − k2 curves on Σ which bound disks in X2 ∩ X3 and are dual to
curves that bound disks in X1 ∩X2. We are now in a position to appeal to the following
well known lemma.

Lemma 2.1.6. Let H be a handlebody, and suppose that γ ⊂ ∂H is a curve so that
|γ ∩ ∂D| = 1 for some properly embedded disk D ⊂ H. Then, the result of pushing γ into
H and doing surgery is still a handlebody. If we surger γ with the surface framing, then γ
bounds a disk in the new surgered handlebody.
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Thus, attaching 2–handles to ν(X1 ∩ X2) ∼= (X1 ∩ X2) × I ∼= \gB3 × S1 along L is a
cobordism from X1 ∩ X2 to X2 ∩ X3. In fact, since the 2–handles are geometrically dual
to g − k2 of the 1–handles of ν(X1 ∩ X3), this cobordism is diffeomorphic to \k2B3 × S1.
By Theorem 3.0.1, any two ways of attaching \k2B3 × S1 are equivalent, and so we may
take X2 to be this specific cobordism. In other words, X1 ∪ X2 consists of k1 1–handles
together with g − k2 2–handles attached along a link L ⊂ X1 ∩X2 with surface framing.

All that remains is the sector X3
∼= \k3B3× S1, which we will take to be the 3– and 4–

handles of a handle decomposition for X.

The above arguments essentially give a correspondence between handle decompositions
and trisections. Via Cerf theory, any two handle decompositions of a fixed 4–manifold X
are related via handle slides and handle creation/cancellation, i.e. births and deaths of
pairs of handles. Like the 3–dimensional case, the stable equivalence statement in Theorem
2.1.4 can be proved by realizing changes in handle decompositions by stabilizations of the
corresponding trisections. The reader is referred to [24, Theorem 11] for more details; in
Chapter 4 we will give a version of their proof that also works in the non-orientable setting.

Remark 2.1.7. The above construction is highly symmetric in the sectors X1, X2, and
X3. We can take any Xi to be the 1–handles of a handle decomposition, and any other Xj

to be the 2–handles. This is one of the most interesting features of trisections: a trisection
induces up to six different handle decompositions. By comparison, one can only turn a
Kirby diagram “upside down” to get a new handle decomposition. This gives potentially
new ways to show that various 4–manifolds (i.e. homotopy spheres) are standard.

In particular, if a 4–manifold X admits a (g; k1, k2, k3)–trisection with some ki = 0, then
X admits a handle decomposition without 1–handles and is therefore simply connected.

2.2 Trisection diagrams and examples

A main feature of trisections is that, like Heegaard splittings, they can be described dia-
grammatically. In this section, we review the definition of a trisection diagram. We also
give many examples of trisected 4–manifolds and their associated diagrams.

Definition 2.2.1. A (g; k1, k2, k3)–trisection diagram is a tuple D = (Σ;α, β, γ), where Σ
is a closed orientable surface of genus g, and α, β, and γ are collections of g embedded
closed curves such that:

• Each of α, β, and γ is a cut system of curves for Σ;
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• Each pair of curves is standard, i.e. each of (Σ;α, β), (Σ; β, γ), and (Σ; γ, α) is
a genus g Heegaard diagram for #kiS1 × S2. Equivalently, each pair of curves is
standardizable, i.e. can be made to look like the curves in Figure 2.3 after handle
slides and possibly a diffeomorphism of Σ.

To distinguish each set of curves in a diagram, we will always draw the α, β, and γ curves
in red, blue, and green, respectively.

Figure 2.3: A standard diagram for a genus g Heegaard splitting of #kS2 × S1. In a
trisection diagram, every pair of curves (Σ; ?, ?) is slide-diffeomorphic to this one.

A trisected 4–manifold determines a trisection diagram in the following way. If T is a
trisection of X with sectors X1, X2, X3, then we may choose an identification of X1∩X2∩X3

with a model surface Σ. Since X1∩X2∩X3 induces a Heegaard splitting of each ∂Xi, there
are cut systems of curves α, β, γ on Σ recording curves that bound disks in each of Xi∩Xj

(which are well defined up to handle slides). Since ∂Xi
∼= #kiS2 × S1, these collections of

curves pairwise define Heegaard splittings for #kiS2 × S1.

By Theorem 1.3.11, every Heegaard splitting for #kiS2 × S1 is standard, and so after
handles slides and possibly a diffeomorphism of Σ, each pair of curves can be standardized,
i.e. made to look like the curves in Figure 2.3. In general, the three collections of curves
cannot be simultaneously standardized.

In fact, we can recover a trisected 4–manifold from a trisection diagram. The key ingre-
dient needed to show that a diagram determines a 4–manifold is a theorem of Laudenbach-
Poénaru. We will state it here for completeness, but postpone discussing it until Chapter
3. Note that an immediate corollary of Theorem 3.0.1 is that 4–dimensional handlebodies
may be attached uniquely, i.e. if a component of ∂X is diffeomorphic to #kS2×S1, then up
to diffeomorphism there is a unique 4–manifold that can be obtained by gluing \kB3 × S1

to this component. This is strikingly different from the 3–dimensional case, since a solid
torus in a 3–manifold may be cut out and re-glued in many in inequivalent ways.
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Theorem 3.0.1. Let p ≥ 0, and suppose that h : #pS2 × S1 → #pS2 × S1 is a dif-
feomorphism. Then there is a diffeomorphism H : \pB3 × S1 → \pB3 × S1 such that
H|∂ = h.

Proposition 2.2.2 ([24]). A (g; k1, k2, k3)–trisection diagram D uniquely determines a tri-
sected 4–manifold X(D) up to diffeomorphism. Moreover, this trisection of X(D) induces
the trisection diagram D.

Proof. Given a trisection diagram D, we will construct a closed 4–manifold equipped with
a natural trisection. Beginning with Σ × D2, attach Hα × I, Hβ × I, and Hγ × I along
Σ × {1}, Σ × {e2πi/3}, and Σ × {e4πi/3} respectively, where Hα, Hβ, and Hγ are the
handlebodies determined by the α, β, and γ curves and we have identified D ⊂ C. The
resulting 4–manifold has three boundary components, each diffeomorphic to #kiS2×S1 by
construction. By Theorem 3.0.1, we may uniquely fill in these boundary components with
\kiB3 × S1 to obtain a closed 4–manifold X(D) up to diffeomorphism. By construction,
X(D) admits a trisection which determines the trisection diagram D.

Remark 2.2.3. Note that Proposition 2.2.2 shows that trisection diagrams only describe
a trisected 4–manifold up to diffeomorphism, and vice versa. While there are interesting
questions about the isotopy classes of trisections of a fixed 4–manifold, facts about isotopy
are not generally recorded by a trisection diagram.

A connected sum of trisections corresponds directly to taking the connected sum of
trisection diagrams. In particular, we can define stabilization of diagrams in the following
way.

Definition 2.2.4. Let D = (Σ;α, β, γ) be a trisection diagram. A 1–, 2–, or 3–stabilization
of D is the diagram D′ obtained by taking the connected sum of D with the appropriate
trisection diagram of S4 in Figure 2.4. We say that D′ is a stabilization of D, or that D is
a destabilization of D′.

Note that the trisection determined by D′ is precisely a stabilization of the trisection
determined by D in the sense of Definition 2.1.3. Combining Theorem 2.1.4 and the above
discussion about trisection diagrams, we obtain the following fundamental diagrammatic
statement about 4–manifolds.

Theorem 2.2.5 ([24]). Suppose that X is a smooth, oriented, connected and closed 4–
manifold. Then X admits a (g; k)–trisection diagram for some g ≥ k. Any two trisection
diagrams for X become equivalent after some number of stabilizations.
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Figure 2.4: The three (unbalanced) trisection diagrams for S4, which correspond to the
three different kinds of stabilization. Taking the connected sum with (a), (b), or (c) is a
1–, 2–, or 3–stabilization, respectively.

In general, it may not be obvious whether two trisection diagrams describe diffeomor-
phic 4–manifolds; if they do, arbitrarily many stabilizations might be required to relate
them by handle slides. It is also usually difficult to decide if a given trisection diagram
can be destabilized. To do so, one must rearrange the curves to realize the diagram as a
connected sum with one of the stabilizations in Figure 2.4 above.

We now give several examples of trisections and trisection diagrams.

Example 2.2.6. The simplest trisection is the genus zero trisection of S4. As described
in the introduction to this chapter, we view S4 ⊂ R5 = C× R3 as

S4 = {reiθ, x3, x4, x5) ∈ R5 : |(reiθ, x3, x4, x5)| = 1}

and define three sectors by

Xk = {(reiθ, x3, x4, x5) ∈ S4 : 2πk/3 ≤ θ ≤ 2π(k + 1)/3}.

Equivalently, this trisection may be obtained by projecting S4 to the unit disk in C, and
lifting the pieces of the obvious trisection of D2. It is easy to check that each Xk is a
4–ball, and that the triple intersection X1 ∩ X2 ∩ X3 is the unknotted 2–sphere in S4 (it
is the the subset of points where r = 0). Thus, this is a (0; 0)–trisection of S4. A diagram
for this trisection is given by a 2–sphere with no curves, as in Figure 2.5. In fact, this
trisection is unique. Any 4–manifold with a such a trisection is diffeomorphic to S4, since
the result of constructing a 4–manifold from a (0; 0)–trisection diagram is diffeomorphic to
S4 by Theorem 3.0.1.

One can easily verify that the result of stabilizing the (0; 0)–trisection of S4 produces
one of the diagrams in Figure 2.4. Up to diffeomorphism these are the only possible genus
one trisections for S4.
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Figure 2.5: In (a), a schematic of projecting S4 to a 2–dimensional disk. The sectors of
the (0; 0)–trisection of S4 are obtained by taking preimages of each sector of D2. In (b),
the (0; 0)–trisection diagram for S4.

Remark 2.2.7. The equivalence classes of trisections of S4 are not presently well under-
stood. Like Heegaard splittings of S3, one might hope that an analogue of Waldhausen’s
theorem (Theorem 1.3.11) holds for trisections, i.e. that every trisection of S4 is isotopic
(or diffeomorphic) to a stabilization of the (0; 0)–trisection. To answer this question, one
would have to understand the intricate combinatorics of trisections diagrams of S4. This
question is also related to understanding π0(Diff+(S4)).

Gay has recently proved the following result1: two trisections of S4 are isotopic if and
only if they are diffeomorphic, i.e. their diagrams are slide diffeomorphic. Remarkably, the
proof does not give any insight into the structure of π0(Diff+(S4)). Instead, one proceeds
by showing that if f : (S4, T1) → (S4, T2) is a diffeomorphism of trisections, then the
spines of T1 and T2 are isotopic. This isotopy extends to an ambient isotopy of of S4,
and so one concludes that T1 and T2 are isotopic. However, the proof does not give any
indication whether f is isotopic to the identity map. The proof relies heavily on the fact
that the ambient manifold is S4, but one might ask whether the same result is true for
any simply connected 4-manifold. There are known to be non-diffeomorphic trisections of
some 4–manifolds, but all techniques presently used to distinguish them seem to require a
non-trivial fundamental group (e.g. see [35]).

We record these questions below. In Chapter 4, we will make some progress towards
an answer to Question 2.2.8.

Question 2.2.8 (Waldhausen’s Theorem for trisections of S4). Are all trisections of S4

standard? That is, is every trisection of S4 isotopic to a stabilization of the (0; 0)–trisection?

1Currently unpublished.
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Question 2.2.9 (Diffeomorphism vs. isotopy for trisections). Suppose that X is a simply
connected 4–manifold. If two trisections of X are diffeomorphic, are they isotopic?

Example 2.2.10. Another simple trisection is of CP2. As in the introduction to this
chapter, we can define three sectors X1, X2, and X3 of CP2 (in homogeneous coordinates,
with indices taken modulo 3) by:

Xk = {[z1 : z2 : z3] ∈ CP2 : |zk|, |zk+1| ≤ |zk+2|}.

By scaling coordinates so that zk+2 = 1, we see that:

Xk = {[z1 : z2 : z3] ∈ CP2 : |zk|, |zk+1| ≤ 1}

and so Xk is diffeomorphic to a 4-ball. The triple intersection is

Σ = X1 ∩X2 ∩X3 = {[z1 : z2 : z3] ∈ CP2 : |z1| = |z2| = |z3|}.

Again, by scaling some coordinate, it is clear that Σ is an embedded torus. Similarly, one
can also show that Xi ∩Xj is a genus one handlebody, i.e. Xi ∩Xj

∼= B2 × S1. Thus, this
decomposition defines a (1; 0)–trisection of CP2.

To obtain a diagram for this trisection, we need to identify which curve on Σ bounds a
disk in Xi ∩Xj. By scaling so that z1 = 1, we can identify Σ with

Σ ∼= {[1 : z2 : z3] ∈ CP2 : |z2| = |z3| = 1}.

Then, we see that

X1 ∩X2 = {[z1 : z2 : z3] ∈ CP2 : |z2| ≤ |z3| = |z1|}

and so the curve |z2| = 1 (i.e. the (1, 0) curve on Σ) bounds a disk in X1 ∩X2. Similarly,
the curve |z3| = 1 (i.e. the (0, 1) curve on Σ) bounds a disk in X2 ∩X3. In X3 ∩X1, the
curve |z2| = |z3| bounds a disk, which is the (1, 1) curve on Σ. Thus, a trisection diagram
for CP2 is given in Figure 2.6 below.

To obtain a diagram for CP2, we can simply take the mirror of the diagram for CP2,
i.e. the image of this diagram under an orientation reversing diffeomorphism. This follows
from Remark 2.2.11 below.

As in the introduction, we could also have built this trisection of CP2 by pulling back
a trisection of a specific map to D2. This is not an accident; trisections may be defined
via Morse 2-functions (as in [24]), but we will not focus on this aspect of the theory in this
thesis.
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Figure 2.6: In (a), a (1; 0)–trisection diagram for CP2. In (b), a (1; 0)–trisection diagram
for CP2; obtained by reflecting Σ by an orientation reversing diffeomorphism. The γ curve
is now the (1,−1) curve.

Remark 2.2.11. The careful reader will note that a trisection is a decomposition of an
oriented 4-manifold. In general, if D = (Σ;α, β, γ) is a (g; k1, k2, k3)–trisection diagram
for a 4-manifold X, then (Σ;α, β, γ) is a (g; k1, k2, k3)–trisection diagram for X. Here,
X denotes the mirror of X, i.e. X with the opposite orientation. Indeed, an orientation
of Σ (implicit when we draw a diagram in R3) determines an orientation of X(D) by
construction.

Example 2.2.12. As our first example of a trisection of a 4–manifold with a non-trivial
fundamental group, we will consider S3×S1. There is a natural trisection arising from the
trivial open book decomposition of S3. Indeed, start with the open book on S3 with disk
pages and binding given by the unknot U . Take three disjoint pages of this open book;
these pairwise cobound three 3–balls B1, B2, and B3.

Define Xi = Bi × S1 ⊂ S3 × S1. Then Xi
∼= B3 × S1, and Xi ∩ Xj

∼= S1 × B2. The
triple intersection is X1 ∩ X2 ∩ X3 = U × S1, which is an embedded torus. Thus, this
decomposition defines a (1; 1)–trisection of S3×S1. Since the curve U ×{?} bounds a disk
in each Xi ∩Xj, a diagram for this trisection is given in Figure 2.7 below. In fact, this is
the only possible (1; 1)–diagram.

Koenig has shown how to trisect the mapping torus M ×φ S1, where φ : M →M is an
automorphism fixing (or flipping) a Heegaard surface for M [42].

Remark 2.2.13. Given a trisection T of a 4–manifold X, Proposition 2.1.5 produces a
handle decomposition of X. Given a trisection diagram D for T , the proof can be refined
to produce a Kirby diagram of the corresponding handle decomposition. We remind the
reader that a Kirby diagram is simply a drawing of framed 2–handles in #S2 × S1, such
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Figure 2.7: A (1; 1)–trisection diagram for S3 × S1.

that their surgery is again #S2 × S1. Thus, our task is to concretely draw the attaching
curves for each 2–handle.

By standardizing the α and β curves, we can visualize a concrete copy of #S2 × S1,
where the handlebody determined by the α curves is the one “inside” the surface as drawn.
The proof of 2.1.5 shows that we can take the 1–handles to be the sector bounded by the
α and β curves. The 2–handles are attached along those γ curves which are dual (i.e. not
parallel) to the α curves, pushed into the α handle with surface framing.

Diagrammatically, this requires that we know which γ curves are dual to α curves,
which we might have to check by handle slides. If desired, we can also simply use all γ
curves as 2–handles as in [24]. Up to slides some will be parallel to the α curves and so will
be cancelled by additional 3–handles in the induced handle decomposition (which we do
not draw). There are several similar methods in the literature (see e.g. [24], [36],[54] [59])
for extracting a handle decomposition from a trisection, but all are essentially equivalent.
One such algorithm is outlined precisely below.

Algorithm 2.2.14 (Converting a trisection diagram to a Kirby diagram). Let (Σ;α, β, γ)
be a (g; k1, k2, k3) trisection diagram describing a 4–manifold X. The following procedure
produces a Kirby diagram for X.

• Step 1. Standardize the α and β curves. In other words, do handle slides among the
α and β curves, and apply a diffeomorphism of (Σ;α, β, γ) to arrange that (Σ;α, β)
looks like the curves in Figure 2.3.

• Step 2. Slide the γ curves so that (Σ; γ, α) has a standard intersection pattern,
i.e. any γ curve intersects exactly zero or one α curves. Equivalently, (Σ; γ, α) is
diffeomorphic to the curves in Figure 2.3.

• Step 3. Draw dotted 1–handles for each α curve that is parallel to a β curve, by
pushing the α curve slightly “out” of the surface. Equivalently, draw a 1–handle by
placing two 3–balls on either side of disk bounded by the α curve.
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• Step 4. For each γ curve that is dual to an α curve, draw a 2–handle curve.

• Step 5. Give each 2–handle curve its surface framing, i.e. the self linking number
of the curve as viewed in R3.

In many cases, Steps 1 and 2 have already been arranged. In most examples we will
consider, all α and β curves will be dual, and so no 1–handles are added. The reader may
wish to convert the trisection diagrams obtained thus far into familiar Kirby diagrams.

Example 2.2.15. We could define a trisection as a careful decomposition of S2×S2 as we
did for CP2. Instead, we will reverse engineer a trisection using Algorithm 2.2.14. Applying
the algorithm to each of the trisection diagrams in Figure 2.8 and Figure 2.9, we obtain
the usual Kirby diagrams for S2 × S2 or S2 ∼× S2. Thus, S2 × S2 and S2 ∼× S2 both admit
(2; 0)–trisections.

Figure 2.8: On the left, two equivalent trisection diagrams of S2 × S2 (related by handle
slides and diffeomorphism). By applying Algorithm 2.2.14 to the diagram on the bottom,
we obtain the familiar Kirby diagram for S2 × S2 on the right.

In fact, the trisection of S2 ∼× S2 in Figure 2.9 splits as a connected sum of (1; 0)–
trisections of CP2 and CP2, giving another proof that S2 ∼× S2 ∼= CP2#CP2.

Remark 2.2.16. So far, we have described the following (balanced) irreducible trisection
diagrams: the (0; 0)–trisection of S4; the (1; 0)– trisections of CP2 and CP2, the (1; 1)–
trisection of S3×S1, and a (2; 0)–trisection of S2×S2. By a theorem of Meier-Zupan [57],
these are all such trisection diagrams. In other words, all trisections of genus less than or
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Figure 2.9: Applying Algorithm 2.2.14 to this trisection diagram, we obtain a Kirby dia-
gram for S2 ∼× S2.

equal to two are standard. While this is easy to see for g = 1, their proof in the case that
g = 2 relies on deep results about genus two Heegaard splittings. This standardness result
has important consequences for trisections and exotic 4–manifolds.

Remark 2.2.17. One particularly motivating reason to study trisections might be the
following observation from Meier and Lambert-Cole [45]. If Y is a closed 3–manifold, then
we can define the Heegaard genus of Y by

g(Y ) = min{g : Y admits a genus g Heegaard splitting}.

A remarkable property is that this invariant is additive for connected sums, i.e. g(Y#Y ′) =
g(Y ) +g(Y ′). Indeed, this follows from Haken’s lemma: any Heegaard splitting (Y#Y ′,Σ)
for a non-trivial sum Y#Y ′ contains an essential 2–sphere which meets Σ in a single curve,
and so (Y#Y ′,Σ) = (Y,ΣY )#(Y ′,ΣY ′) for some Heegaard splittings of Y and Y ′. In
particular, g(Y#Y ′) ≥ g(Y ) + g(Y ′). Since the other inequality holds trivially, we obtain
the desired equality.

We can define a similar invariant for trisections. If X is a smooth, oriented, closed, and
connected 4–manifold, then we can define the trisection genus of X to be

g(X) = min{g : X admits a (g; k)–trisection}.

One might ask the seemingly innocuous question: is trisection genus additive under con-
nected sum? In fact, this would have remarkably strong consequences. If X and X ′ are an
exotic pair of 4–manifolds (i.e. homeomorphic but not diffeomorphic), then a theorem of
Gompf [27] or Wall [72] (in the simply connected case) shows that for some m ≥ 0,

X#(#mS2 × S2) ∼= X ′#(#m(S2 × S2).

That is, X and X ′ are stably diffeomorphic. If the trisection genus invariant were additive
under connected sum, we would have:

g(X) +m · g(S2 × S2) = g(X ′) +m · g(S2 × S2)
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and so g(X) = g(X ′). However, since trisections of genus at most two are known to
be standard, this would imply that there does not exist an exotic S2 × S2, CP2, CP2,
CP2#CP2, nor most notably an exotic S4. Interestingly, this lies on the edge of current
technology, since there is an exotic manifold homeomorphic to CP2#2CP2 [4].

The trisection genus invariant is not expected to be additive in general, but this dis-
cussion shows that these decompositions have deep connections to exotic 4–manifolds.

2.3 Special kinds of trisections

Trisections can be adapted to more specialized settings. In this section, we briefly outline
some extensions. In §2.3.1, we describe the structure of a relative trisection of a 4–manifold
with boundary. These structures connect trisections with open book decompositions of 3–
manifolds, and can be used to understand surgery along embedded submanifolds. In §2.3.2,
we discuss bridge trisections of embedded surfaces, introduced by Meier and Zupan in [56].
Both of these topics are treated in detail in Chapter 4.

2.3.1 Relative trisections

If X is a smooth, oriented, connected 4–manifold with non-empty boundary, there is a
notion of a relative trisection of X. These were introduced by Gay and Kirby in [24], and
subsequently studied in detail by Castro [12]. We will define these decompositions more
carefully in Chapter 4, and also extend them to the case when X is non-orientable.

As in the closed case, a relative trisection is a decomposition of a 4–manifold X into
three 4–dimensional handlebodies that meet in a prescribed way. However, the boundary
of each handlebody Xi now intersects ∂X as well as the other handlebodies.

If Z is a 4–dimensional handlebody, then one can define a decomposition of ∂Z into two
parts: ∂Z = ∂ inZ∪∂outZ, where ∂ inZ admits a natural (generalized) Heegaard splitting into
two compression bodies (see §4.3 for the definition of a compression body), i.e. ∂ inZ =
Y− ∪ Y+. With such a decomposition in mind, one defines a relative trisection in the
following way.

Definition 4.3.3. Let X be a smooth, connected, oriented 4–manifold with connected
non-empty boundary. A relative trisection T of X is a a decomposition X = X1∪X2∪X3

such that:
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• There are diffeomorphisms φi : Xi → Z such that φi(Xi ∩ ∂X) = ∂outZ,

• For each i, φi(Xi ∩Xi−1) = Y − and φi(Xi ∩Xi+1) = Y +.

A very rough schematic of this decomposition is illustrated in Figure 2.10 below.

Figure 2.10: A schematic of a relative trisection. Each sector is a 4–dimensional handlebody
which meets both the boundary and the other handlebodies.

One advantage of this structure is that it naturally induces an open book on ∂X
with binding L = ∂(X1 ∩ X2 ∩ X3), for which the surfaces Xi ∩ Xj ∩ ∂X are pages. If
X and Y are relatively trisected 4–manifolds with boundary, and f : ∂X → ∂Y is a
diffeomorphism respecting the open book decompositions, then the following theorem of
Castro [12] guarantees that there is a natural trisection of X ∪f Y .

Definition 4.3.8 ([12]). Let T and T ′ be relative trisections of 4–manifolds X and X ′,
respectively. Denote the open book decompositions induced on ∂X and ∂X ′ by O and
O′, respectively. Suppose that there is a diffeomorphism f : ∂X → ∂X ′, and that f(O) is
isotopic to O′. Then there is a naturally induced trisection T ∪ T ′ of X ∪f X ′.

There is also a notion of a relative trisection diagram. A relative trisection can be
described by a surface with non-empty boundary, together with three cut systems of curves.
An example is given in Figure 2.11 below. The monodromy of the induced open book
decomposition can be computed diagrammatically, and there is an analogue of the gluing
theorem for diagrams. A complete discussion of relative trisection diagrams, their uses,
and many examples are given in Chapter 4.

One reason that the definition of a relative trisection is noticeably more technical is
the absence of a “Waldhausen’s theorem” for compression bodies. Consequently, one must
take care to define the decompositions so that they are determined up to diffeomorphism
by a diagram, and vice versa.
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Figure 2.11: A relative trisection diagram of B4 inducing the Hopf open book on S3.

2.3.2 Bridge trisections

In [56] and [58], Meier and Zupan generalized bridge splittings of knots in S3 to knotted
surfaces in 4–manifolds. Recall that a knot K ⊂ S3 is in b–bridge position if it intersects the
equatorial 2–sphere in 2b points, and each 3–ball in boundary parallel arcs. Equivalently,
all local minima appear before maxima (with respect to the radial height function on S3).
An example is given in Figure 2.12 below.

Figure 2.12: A 2–dimensional schematic of a bridge splitting of the trefoil knot in S3.

We will denote the three sectors of the (0; 0)–trisection of S4 by X1, X2, and X3, the
pairwise intersections by X12, X23, and X31, and the central surface by Σ.

Definition 4.4.5 ([56]). A smoothly embedded surface S ⊂ S4 is in bridge position in S4

if:

• S ∩Xi = Di is a trivial ci–disk system,

• S ∩Xij = τij is a trivial b–tangle,

• S ∩ Σ is a collection of 2b points.

Here, a trivial ci–disk system is a collection of ci properly embedded and boundary parallel
disks in Xi, and a trivial b–tangle is a collection of b properly embedded and boundary
parallel arcs in Xij. The surface S is said to be in (b; c1, c2, c3)–bridge trisected position.
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Note that since each Di is boundary parallel, the union of any pair of tangles in Xij
∼=

S3 is necessarily an unlink. In fact, the unlink bounds a unique collection of boundary
parallel disks in B4 up to isotopy (rel the unlink), and so a bridge trisection is completely
determined by the union τ12 ∪ τ23 ∪ τ31. A schematic of this kind of decomposition is given
in Figure 2.13.

Figure 2.13: A “triplane” diagram for the spun trefoil S ⊂ S4 from [56]. This schematic
describes this embedded surface by recording the intersection of S with each Xij.

This decomposition can also be generalized to a smoothly embedded surface in a tri-
sected 4–manifold. In [58], Meier and Zupan show that if X is a 4–manifold with trisection
T , and S is an embedded surface, then S can be isotoped to lie in bridge trisected position
with respect to T . Analogous to the natural stabilization operation for bridge splittings
of knots in S3, there is also a stabilization operation for bridge trisections with respect
to a fixed trisection [56]. Hughes, Kim, and Miller [33] have shown that any two bridge
trisections for S ⊂ X can be made isotopic after some number of stabilizations.

In Chapter 4, we define these decompositions carefully, give several examples, and
explain how the theory can be modified to extend bridge trisections to non-orientable
4–manifolds.
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Chapter 3

Diffeomorphisms of 1–handlebodies

A fundamental tool for the modern-day study of 4–manifolds is the following theorem of
Laudenbach-Poénaru [51].

Theorem 3.0.1. Let p ≥ 0, and suppose that h : #pS2 × S1 → #pS2 × S1 is a diffeomor-
phism. Then there is a diffeomorphism H : \pB3 × S1 → \pB3 × S1 such that H|∂ = h.

One application is the following useful re-statement. A common slogan is that “4–
dimensional handlebodies can be attached uniquely.”

Corollary 3.0.2 ([51]). Suppose that X is a 4–manifold and that ∂X has a component
diffeomorphic to #pS2 × S1. Then up to diffeomorphism, there is a unique smooth 4–
manifold that can be obtained by gluing an orientable 4–dimensional handlebody to this
boundary component.

In particular, this theorem is critical for the usual descriptions of 4–manifolds via Kirby
diagrams.

A more complete description will be given in §3.2.2, but we remind the reader of
how a Kirby diagram determines a closed 4–manifold. One begins with a Morse function
f : X → R; the critical points of f can be re-organized to have increasing index, and we
may assume that f has a single 0– and 4–handle. Passing to a handle decomposition, we
see that X may be built from a single 0–handle (a 4–ball), followed by the attachment of 1–
and 2–handles. The remaining 3–handles and 4–handle are a 4–dimensional handlebody,
and so by Corollary 3.0.2 this portion is attached uniquely. Thus, to completely describe a
closed 4–manifold, we only need to specify the attaching regions of the 1– and 2–handles.
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A Kirby diagram is a framed link diagram in #S2 × S1 whose surgery is again #S2 × S1,
and thus describes a closed 4–manifold.

Theorem 3.0.1 is also extremely important for the description of 4–manifolds via tri-
section diagrams. In a similar fashion, one needs to guarantee that certain handlebodies
are attached uniquely.

In this chapter, we show that the same method may be used to study non-orientable 4-
manifolds. In §3.1, we give a self contained proof of a non-orientable analogue of Theorem
3.0.1. In §3.2, we give some applications, including a non-orientable version of Wald-
hausen’s theorem for #S2 ∼× S1 (up to isotopy). In §3.2.2 we illustrate how to describe
non-orientable 4–manifolds via Kirby diagrams with several examples.

3.1 Gluing non-orientable 1–handlebodies

In this section, we will give a self-contained proof of a non-orientable analogue of Theorem
3.0.1.

Theorem 3.1.1. Let p ≥ 0, and suppose that h : #pS2 ∼× S1 → #pS2 ∼× S1 is a diffeomor-
phism. Then there is a diffeomorphism H : \pB3 ∼× S1 → \pB3 ∼× S1 such that H|∂ = h.

While it may be known to experts, a proof of this theorem does not seem to appear
in the literature and is critical for diagrammatic descriptions of closed, non-orientable 4–
manifolds. In particular, Akbulut has used this result to draw difficult Kirby diagrams of
exotic non-orientable 4–manifolds, see e.g. [2].

The proof will proceed similarly to the orientable case in [51], with some modifications.
We begin by first reducing to the case that h acts trivially on π1(#pS2 ∼×S1) and π2(#pS2 ∼×
S1). Then, we use Laudenbach’s theorem on homotopy and isotopy of 2–spheres in 3–
manifolds [48] together with Cerf’s theorem on diffeomorphisms of the 3–sphere [17] to
isotope h to a diffeomorphism which obviously extends to \pB3 ∼×S1. In fact, the case when
p = 0 follows directly from Cerf’s theorem: every orientation preserving diffeomorphism of
S3 is isotopic to the identity, and so extends to a diffeomorphism of B4.

Theorem 3.1.2 ([17]). Any orientation preserving diffeomorphism of S3 (resp. D3, or D3

rel S2) is smoothly isotopic to the identity map on S3 (resp. D3, or D3 rel S2).

Specifically, we will use the following remarkable theorem of Laudenbach.1

1The author would like to thank François Laudenbach for his correspondence regarding this theorem.
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Theorem 3.1.3 ([48]). Let S and S ′ be embedded 2–spheres in a 3–manifold Y (which
may be non-orientable and have nonempty boundary). If S and S ′ are homotopic, then
they are isotopic.

The careful reader will note that the hypothesis that S and S ′ are 2–spheres is certainly
necessary; embedded tori in the 3–sphere are rarely isotopic (consider any pair of non-
isotopic knots in S3).

Before proving Theorem 3.1.1, we will prove several lemmas. For convenience, we will
denote Yp := #pS2 ∼× S1, and Xp = \pB3 ∼× S1. Given a map f : X → Y , we will write

f#
k : πk(X) → πk(Y ) and f ∗k : Hk(X;Z) → Hk(Y ;Z) for the maps induced by f on the

homotopy or homology groups of X and Y .

Observe that we have the following commutative triangle, where A and B are the maps
that send a diffeomorphism of Xp to its induced map on π1(Yp) or π1(Xp).

π0(Diff(Xp))

Aut(π1(Xp)) Aut(π1(Yp))

A B

id

Lemma 3.1.4. The maps A and B are surjective.

Proof. It is sufficient to show that the map A is surjective. Since π1(S2 ∼×S1) ∼= Z, it follows
that π1(Yp) = ?pZ. That is, π1(Yp) is a free group, with generators a1, . . . , ap corresponding
to loops around the S1 factor of each summand. These loops are also generators for π1(Xp),
using the inclusion Yp ↪→ ∂Xp.

Thus, automorphisms of π1(Yp) are generated by elementary automorphisms (sometimes
called Nielsen transformations) of the form:

(a) ai 7→ a−1
i , i.e. replacing a generator with its inverse;

(b) ai 7→ aj, aj 7→ ai, i.e. switching two generators;

(c) ai 7→ aiaj, i.e. multiplying one generator by another.

These are all realizable by elements of Diff(Xp). In particular, they correspond to either
isotopy or handle slides of the 4–dimensional 1–handles of Xp. Moves of type (a) may be
achieved by “interchanging the feet of a 1–handle,” and moves of type (b) may be achieved
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by interchanging two 1–handles. Moves of type (c) are slightly more difficult to visualize;
these correspond to a handle slide of a 1–handle over another. Each move is illustrated in
Figure 3.1 below.

Figure 3.1: A 3–dimensional schematic (inspired by the one in [49]) illustrating each type
of move. Moves (a) and (b) are realized by the isotopy indicated by the blue arrows. Move
(c) is realized by a handle slide, i.e. the diffeomorphism which is the result of dragging one
foot of a 1–handle over another (here, the pink 1–handle slides over the red 1–handle).

By Lemma 3.1.4, we can choose a diffeomorphism φ : Xp → Xp so that (φ|∂ ◦ h)#
1 :

π1(Yp) → π1(Yp) is the identity. Since (φ|∂ ◦ h) extends to a diffeomorphism of Xp if and

only if h does, we may assume without loss of generality that h#
1 = id. In fact, the following

lemma shows that this implies that h#
2 = id.

Lemma 3.1.5. Suppose that a diffeomorphism h : Yp → Yp is such that h#
1 : π1(Yp) →

π1(Yp) is the identity map. Then h#
2 : π2(Yp)→ π2(Yp) is also the identity map.

We will split the proof of Lemma 3.1.5 into several smaller lemmas. We will need the
corresponding orientable version from [51]. For completeness, we include the proof.
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Lemma 3.1.6 ([51], Lemma 3, see also [7]). Suppose that Y is an orientable 3–manifold and
that an orientation preserving diffeomorphism f : Y → Y is such that f#

1 : π1(Y )→ π1(Y )
is the identity. Then f#

2 : π2(Y )→ π2(Y ) is also the identity.

Proof of Lemma 3.1.6. The map f : Y → Y lifts to a map f̃ : Ỹ → Ỹ of the universal
cover of Y , and so by the Hurewicz theorem (since Ỹ is simply connected) we have the
following diagram.

H2(Ỹ ;Z) H2(Ỹ ;Z)

π2(Y ) π2(Y )

f̃∗2

∼= ∼=

f#2

This lemma now follows from the more general statement in Lemma 3.1.7 below.

Lemma 3.1.7 ([51], Lemma 4). Let X be a closed n–dimensional topological manifold.
Suppose that f : X → X is an orientation preserving homeomorphism such that f#

1 :

π1(X) → π1(X) is the identity map. Then f̃ ∗n−1 : Hn−1(X̃;Z) → Hn−1(X̃;Z) is also the
identity map.

Proof of Lemma 3.1.7. For convenience, let G = π1(X). By Poincaré duality, Hn−1(X̃;Z)

is isomorphic to H1
c (X̃;Z), via an isomorphism which is functorial for (orientation preserv-

ing) maps preserving the fundamental class of X̃. We will also use the fact (without proof)

that Hk(X;Z[G]) ∼= Hk(X̃;Z).

A spectral sequences argument2 shows that for any Z[G]-moduleR we have the following
short exact sequence:

0→ Ext1
R(H0(X;R), R)→ H1(X;R)→ Ext0

R(H1(X;R), R)→ 0.

We will simply apply this sequence in the case that R = Z[G]. Since H0(X;Z[G]) ∼=
H0(X̃;Z) = Z, by definition of group cohomology we have

Ext1
Z[G](H0(X;Z[G]),Z[G]) ∼= Ext1

Z[G](Z,Z[G]) = H1(G;Z[G]).

2The author would like to thank Patrick Orson for very helpful correspondence regarding the proof of
this lemma.
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Moreover, H1(X̃;Z) = 0 since X̃ is simply connected and so

Ext0
Z[G](H1(X;Z[G]),Z[G]) = Ext0

Z[G](H1(X̃;Z),Z[G]) = 0.

Applying these two facts to the short exact sequence above, we conclude that

H1(G;Z[G]) ∼= H1(X;Z[G]) ∼= H1
c (X̃,Z) ∼= Hn−1(X̃;Z).

Since f#
1 : G → G is the identity, it induces the identity map on H1(G;Z[G]). By

functoriality of the above isomorphisms, f induces the identity map on Hn−1(X̃;Z).

We can now prove Lemma 3.1.5.

Proof of Lemma 3.1.5. Since h#
1 is the identity map, h lifts to a diffeomorphism h̃ :

#2p−1S2 × S1 → #2p−1S2 × S1 of the orientation double cover Ỹp of Yp. In fact, there
are only two lifts: one of which is orientation preserving, and one of which is orientation
reversing. We will let h̃ be the orientation preserving lift, and h̃ ◦ τ be the orientation
reversing lift, where τ : #2p−1S2 × S1 → #2p−1S2 × S1 is the (orientation reversing) deck
transformation.

In fact, we can describe this covering explicitly. Using the identification Yp = S2 ∼×
S1#(#p−1S2× S1), let S be a 2–sphere of the form S2×{pt} ⊂ S2 ∼× S1 ⊂ Yp. By cutting
Yp along S, we obtain a twice punctured copy of #p−1S2 × S1. The orientation double
cover is obtained by gluing two such copies together; the deck transformation is the map
which interchanges them, and so #pS2 ∼× S1 = (#2p−1S2 × S1)/τ .

Since the fundamental domain (i.e. one of the two copies of a twice punctured #p−1S2×
S1 above) only has two boundary components, it is easy to check that h̃#

1 = id. Indeed,
we can choose the basepoint x for π1(Yp) on S, and also assume that h preserves a small

neighbourhood of this basepoint. Up to homotopy, any element of π1(Ỹp; x̃) is a union of
arcs starting and ending at one of x or τ(x). Since the lift of h is simply the result of
applying h to each fundamental domain, we see that h̃#

1 = id and that h̃ is orientation
preserving.

Consequently, we have the following commutative diagram.

π2(#2p−1S2 × S1) π2(#2p−1S2 × S1)

π2(Yp) π2(Yp)

h̃#2

∼= ∼=

h#2
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By Lemma 3.1.6, h̃#
2 is the identity. Since the covering map induces an isomorphism

on the second homotopy groups of Yp and Ỹp, we conclude that h#
2 is also the identity

map.

Consider the p essential 2–spheres S1, . . . , Sp of the form S2 × {?} ⊂ #pS2 ∼× S1. By
Lemma 3.1.5, we know that h(Si) is homotopic to Si for each 1 ≤ i ≤ p. By Laudenbach’s
theorem on 2–spheres in 3–manifolds (Theorem 3.1.3), we conclude that h(Si) is isotopic
to Si for each 1 ≤ i ≤ p. In fact, we will show that the collections {h(S1), . . . , h(Sp)} and
{S1, . . . , Sp} are isotopic in Yp. To do this, we will need the following lemma.

Lemma 3.1.8. Let Y be a (possibly non-orientable) 3–manifold whose boundary is a dis-
joint union of 2–spheres, and let W be a 3–manifold obtained by gluing S2 × I to Y along
two boundary components B1, B2 of Y . Suppose S1 and S2 are 2–spheres in Y that are not
homotopic to each other or to B1 or B2. Then S1 and S2 are also not homotopic in W .

Proof. Let Ỹ denote the universal cover of Y , and let B̃i ⊂ Ỹ be the collection of lifts of
Bi. Note that the universal cover W̃ of W may be constructed in the following recursive
way. To begin, attach S2 × I to any element of B̃1, along with a copy of Ỹ attached to
the remaining boundary component along an element of B̃2. Then, infinitely iterate this
process. In particular, this process yields an inclusion of Ỹ in W̃ .

Towards a contradiction, suppose that S1 and S2 are homotopic in W . In particular,
some lifts L1 and L2 of S1 and S2 cobound an immersion A of S2 × I in W̃ , with ∂A =
L1 ∪ L2. Now, let A′ denote the (one or two) components of A \ B̃1 ∪ B̃2 with Li as a
boundary component. Note that since S1 and S2 are not homotopic in Y , A′ 6= A.

Now, suppose that A \ A′ intersects a copy of Ỹ non-trivially. Then it follows that
the boundary components B1 and B2 are not free generators in π2(Y ). This implies that
Y ∼= S2 × I, which contradicts the assumption that S1 and S2 are not homotopic.

Thus, A \A′ ∼= S2× I, and so A′ consists of an immersed copy of S2× I connecting L1

to an element of B̃1 ∪ B̃2, and a similar copy of S2 × I connecting L2 to a corresponding
element of B̃1 ∪ B̃2. But this implies that S1 and S2 are each homotopic to some Bi, a
contradiction.

We conclude that S1 and S2 are not homotopic in W .

Lemma 3.1.9. Let h : Yp → Yp be a diffeomorphism. If h(Si) is isotopic to Si for each
1 ≤ i ≤ p, then h is isotopic to a diffeomorphism which is the identity on each Si.

Proof. The proof will proceed by induction. Since S1 and h(S1) are isotopic, we can
isotope h so that h|S1 = idS1 . Now suppose that for some k ≥ 1, we have h|Si

= id |Si
for
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all 1 ≤ i ≤ k. We will show that h(Sk+1) can be isotoped to Sk+1 in the complement of
{S1, . . . , Sk}.

Note that [Sk+1] = [h(Sk+1)] is not a linear combination of {[S1], . . . , [Sk]} in H2(Yp;Z).
By Lemma 3.1.8, since Sk+1 and h(Sk+1) are homotopic in Yp they are also homotopic in
Yp \ {S1 ∪ · · · ∪ Sk}, a 3–manifold with 2k boundary spherical boundary components. By
Laudenbach’s theorem (3.1.3), Sk+1 and h(Sk+1) are isotopic in Yp\{S1∪· · ·∪Sk}. In other
words, h can be further isotoped in the complement of {S1, . . . , Sk} so that h|Sk+1

= id |Sk+1
.

Thus, h is isotopic to a diffeomorphism such that h|Si
= id |Si

for all 1 ≤ i ≤ p.

For α ∈ π1(SO(3)), let Hα denote the diffeomorphism of S2 × I defined by Hα(x, t) =
(α(t) · x, t). Since π1(SO(3)) = Z/2Z, there are only two possibilities for such a map up
to isotopy rel boundary (depending on the homotopy class of α). If S ⊂ Y is a 2–sphere
embedded in a 3–manifold Y , we will use Hα(S) to denote Hα applied to the neighbourhood
ν(S) ∼= S2 × I ⊂ Y , and call this a sphere twist of S. Note that this map has order two
up to isotopy, i.e. Hα(S)2 = id as an element of Diff+(Y ).

We need one more lemma to complete the proof. Let S(k) denote the 3–manifold with
spherical boundary obtained by removing k open 3–balls from S3. The following lemma
asserts that the diffeotopy group of S(k) is generated by sphere twists along boundary
components. When k = 0 (or k = 1) this is precisely Cerf’s celebrated theorem (Theorem
3.1.2, [17]) on diffeomorphisms of S3. In fact, when k = 1 any such diffeomorphism is
isotopic to the identity (i.e. no sphere twist is necessary).

While relatively standard, the proof has a somewhat different flavour than the argu-
ments used thus far. Rather than proving it here, we will refer the reader to [7] for a modern
proof. The idea is to use a certain fiber bundle associated to gluing a 3–ball to a puncture,
and the long exact sequence in homotopy to show that π0(Diff+(S(k); ∂S(k)) ∼= (Z2)k−1,
generated by sphere twists along pushoffs of the boundary components. In fact, a twist
about every components is isotopic to the identity.

Lemma 3.1.10 ([17], see e.g. [7] or [49]). Any diffeomorphism of S(k) which is the identity
on ∂S(k) is isotopic rel boundary (i.e. through diffeomorphisms which are the identity on
∂S(k)) to a composition of sphere twists along pushoffs of elements of ∂S(k).

We can now prove Theorem 3.1.1.

Proof of Theorem 3.1.1. Note that the result of cutting Yp along S1, . . . , Sp is exactly S(2p).
Moreover, since h is the identity on each Si, h induces an orientation preserving diffeomor-
phism f : S(2p) → S(2p) which is the identity on all boundary components. By Lemma

44



3.1.10, f is isotopic (via an isotopy which is the identity on all boundary components) to
a composition of sphere twists along pushoffs of boundary components. Thus h is isotopic
to a composition of sphere twists about S1, . . . , Sp, i.e. for some α1, . . . , αp ∈ π1(SO(3))
we have

h ∼= Hαp(Sp) ◦ · · · ◦Hα1(S1).

Any diffeomorphism of Yp of the form Hα(Si) extends to Xp, since the rotation of Si ex-
tends to the 3–ball that it bounds in Xp. Thus, up to isotopy h extends to a diffeomorphism
H of Yp. This completes the proof of Theorem 3.1.1.

3.2 Applications

Theorem 3.1.1 has several applications in this thesis. The main application will be to
ensure that trisection diagrams of non-orientable 4–manifolds determine a unique closed
4–manifold. However, there are other applications to non-orientable 3– and 4–manifolds.
In §3.2.1, we extend Theorem 3.1.1 to a statement about diffeomorphisms of #pS2 ∼× S1.
We also give an analogue of Waldhausen’s Theorem (see Theorem 1.3.11) for Heegaard
splittings of #pS2 ∼× S1 up to isotopy, which may be of independent interest. In §3.2.2, we
discuss the implications of Theorem 3.1.1 for Kirby diagrams of non-orientable 4–manifolds,
and illustrate several examples.

3.2.1 Diffeomorphisms and splittings of #S2 ∼× S1

We can adapt the proof of Theorem 3.1.1 to give a statement about diffeomorphisms of
#pS2 ∼× S1. It seems likely that this theorem may have been known to experts, but it
does not seem to appear in the literature. As in §3.1, we will write Yp = #pS2 ∼× S1, and
S1, . . . , Sp for the p 2–spheres of the form S2 × {?} ⊂ Yp.

Theorem 3.2.1. Let h : #pS2 ∼× S1 → #pS2 ∼× S1 be a diffeomorphism homotopic to the
identity. Then h is isotopic to the identity.

The reader will recall that the proof of Theorem 3.1.1 begins by assuming that a
diffeomorphism h : Yp → Yp acts as the identity on π1(Yp). Under this hypotheses, we
show (Lemma 3.1.10) that h is isotopic to a diffeomorphism of the form

Hαp(Sp) ◦ · · · ◦Hα1(S1),
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for some elements α1, . . . , αp ∈ π1(SO(3)). If h is a diffeomorphism of Yp homotopic to the
identity map (i.e. not just the identity on π1(Yp) and π2(Yp)), then this same conclusion
certainly still follows, and is the starting point for the proof of Theorem 3.2.1.

Note that the assumption that h is honestly homotopic to the identity is necessary,
since the map Hαi

(Si) is non-trivial, yet does act trivially on π1(Yp) and π2(Yp).

Proof of Theorem 3.2.1. By Lemma 3.1.10, the map h is isotopic to a diffeomorphism of
the form

Hαp(Sp) ◦ · · · ◦Hα1(S1).

Applying the following general proposition due to Laudenbach completes the proof. For
the convenience of the reader (particularly for one who does not read French), we include
a short proof.

Proposition 3.2.2 ([49], Appendix II). Let Y be a (possibly non-orientable) 3–manifold,
and let S1, . . . , Sp ⊂ Y be disjointly embedded 2–spheres. Suppose that S1 does not separate
Y \ {S2 ∪ · · · ∪ Sp} and that the map H := Hαp(Sp) ◦ · · · ◦ Hα1(S1) is homotopic to the
identity. Then α1 = 0.

Proof. Since S1 does not separate Y \ {S2 ∪ · · · ∪ Sp}, there is an embedded loop γ ⊂
Y \ {S2, . . . , Sp} which intersects S1 once. Let N be a tubular neighbourhood of γ, and
note that this determines a splitting Y ∼= E#Y ′, where E is a 2–sphere bundle over S1,
and Y ′ is another 3–manifold. Indeed, ν(S1) ∪ N is homeomorphic to either S2 × S1 or
S2 ∼× S1 with a 3–ball removed, so this gives the advertised connected sum decomposition.
Moreover, by choosing γ to pass through the points fixed by the rotation ofHα1(S1), we may
assume that H preserves γ pointwise and N setwise. We will first prove the proposition in
the case that Y is orientable; if Y is non-orientable we will carefully surger the orientation
double cover in order to reduce to the orientable case.

Case 1: N is orientable, i.e. N ∼= D2 × S1 and E ∼= S2 × S1.

Let T0 : D2×S1 → N be a trivialization of N , and let T1 = T0◦dH be the trivialization
induced by H. Since H is homotopic to the identity, there is an embedded (framed) annulus
A : (D2 × S1)× I → Y × R with

A|D2×S1×{0} = T0

and
A|D2×S1×{1} = T1.
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In other words, A is the trace of N throughout the homotopy. Moreover, using the normal
bundle of A, T0 and T1 extend to trivializations R0 and R1 of νY×R(γ), and R0 and R1 are
homotopic. Note that such trivializations are in correspondence with π1(SO(3)) = Z2.

If α1 = 1, then when we view R0 and R1 as elements of π1(SO(3)) we see that they
differ exactly by a full 2π rotation about some axis. That is, R0 and R1 correspond to
different elements and so cannot be homotopic. We conclude that α1 = 0. Note that if Y is
orientable then N is always orientable, and so we have successfully proved the proposition
in the case that Y is orientable.

Case 2: N is non-orientable, i.e. N ∼= D2 ∼× S1 and E ∼= S2 ∼× S1.

Let p : Ỹ → Y be the orientation double cover of Y , with deck transformation τ : Ỹ →
Ỹ . For 1 ≤ i ≤ p, let S̃i denote one of the two possible lifts of Si. The map H lifts to a
map

H̃ = Hαp(S̃p) ◦ · · · ◦Hα1(S̃1) ◦Hαp(τ(S̃p)) ◦ · · · ◦Hα1(τ(S̃1)).

Since H is homotopic to the identity, H̃ must be homotopic to either the identity or
τ . However, H̃ is orientation preserving while τ is orientation reversing, and so it must be
the case that H̃ is also homotopic to the identity. Since Ỹ is orientable, our goal will be to
apply the first case to H̃. Since S̃1 may actually separate Ỹ \ {S̃2, . . . S̃p, τ(S̃1), . . . , τ(S̃p)},
we will carefully add another S2× S1 summand to Ỹ to guarantee that S̃1 meets the non-
separating hypothesis. For a visualization of why this is necessary, consider the schematic
in Figure 3.2 below.

Figure 3.2: A schematic in the case that p = 1. The 2–sphere S ⊂ S2 ∼× S1 lifts to the
2–spheres S̃, τ(S̃) ⊂ S2×S1; note that S̃ does separate S2×S1 \ τ(S̃). By adding another

S2 × S1 summand (green), we will ensure that S̃ is non-separating.
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To this end, let B be a small 3–ball centered on a point x0 ∈ E, chosen so that B is
fixed by H.

Lemma 3.2.3. There exists a homotopy ht from H to idY so that h−1
t (B) = B and

h−1
t (x0) = {x0} for all t. In other words, ht fixes B setwise and x0 pointwise.

Proof of Lemma 3.2.3. Consider any homotopy gt from H to idY . The loop gt(x0) traces
out some element η of π1(Y ;x0). If [η] is trivial, then we can contract η to obtain a new
homotopy of the desired form. There are two cases to consider.

Case (a): Y = E, and so π1(V ;x0) ∼= Z.

Since H is homotopic to the identity, η lifts to a loop η̃ ∈ π1(S2 × S1; x̃0) ∼= Z, where
x̃0 is a lift of x0. Thus, [η̃] ∈ 2Z.

Now, consider the homotopy ft of S2 ∼× S1 given by pushing S2 × {?} around the S1

factor twice. Then the trace of ft(x0) as t varies is the class [2] ∈ π1(S2 ∼×S1;x0). Thus, by
composing gt with some number of copies of ft or its inverse, we may assume that [η] = 0.

Case (b): Y 6= E, and so π1(V ;x0) ∼= Z ? π1(Y ′).

Since H is homotopic to the identity, the action of conjugation of [η] on π1(Y ;x0) is
trivial. Thus, [η] is in the center of π1(V ;x0). Since V 6= E, we know Y ′ 6∼= S3 and so by
the 3–dimensional Poincaré conjecture, π1(Y ′) is non-trivial. Thus, the center of Z?π1(Y ′)
is trivial, which implies that [η] = 0.

Remark 3.2.4. The apparently casual use of the 3–dimensional Poincaré conjecture in
the proof of Lemma 3.2.3 is not without reason. In fact, Laudenbach’s original work on
2–spheres in 3–manifolds [48] (in particular Theorem 3.1.3) assumed this conjecture, and
so we have effectively already used it in this section. By the remarkable work of Perelman,
we know that this conjecture is indeed true.

By Lemma 3.2.3, there is a homotopy ht from H to idY which fixes x0 pointwise and B
setwise. Let B̃ ⊂ Ỹ be a lift of B. Now, fix some identification φ : S2 → ∂B and consider
the manifold W obtained by removing the interior of B̃ and τ(B̃) and gluing in S2 × I,
i.e.,

W =
(Ỹ \ (intB̃ ∪ intτ(B̃))) t S2 × I

x× {0} ∼ φ(x) and x× {1} ∼ τ ◦ φ(x)
.

48



By construction, W = Ỹ#S2 × S1, and H naturally extends to the diffeomorphism G :
W → W given by:

G(x) =

{
H̃(x) if x 6∈ S2 × [0, 1],

x if x ∈ S2 × [0, 1].

In particular, G is a composition of sphere twists, and so we are now in a position to appeal
to the first case. Note that G is homotopic to idW via an extension of ht to S2×I. Observe
that all the following hold:

• W is orientable;

• S̃1, . . . , S̃p, τ(S̃1), . . . , τ(S̃p) are 2–spheres embedded in W ;

• G = Hαp(S̃p) ◦ · · · ◦Hα1(S̃1) ◦Hαp(τ S̃p) ◦ · · · ◦Hα1(τ S̃1);

• G is homotopic to the identity map;

• S̃1 is non-separating in W \ {S̃2, . . . , S̃p, τ(S̃1), . . . , τ(S̃p)}.

Thus, by applying the first case, we see that α1 = 0. This completes the proof of
Proposition 3.2.2.

Remark 3.2.5. When p = 1, Theorem 3.2.1 gives a proof that the diffeotopy group
(diffeomorphisms up to isotopy) of S2 ∼× S1 is equal to Z2 ⊕ Z2, which is recorded as a
corollary below. This group is generated by a reflection in the S1 factor, and a non-
trivial twist Hα(S2) about a 2–sphere fiber, which we will simply denote τ . This was
first computed by Kim and Raymond in [38], who also gave the corresponding analogue of
Theorem 3.2.1 for p = 1. The reflection induces a non-trivial automorphism on π1(S2 ∼×S1),
and the map τ is not homotopic to the identity by Proposition 3.2.2. This is analogous
to the fundamental result of Gluck [26], who showed that the diffeotopy group of S2 × S1

is equal to Z2 ⊕ Z2 ⊕ Z2, generated by a reflection in the S1 factor, a reflection in the S2

factor, and the twist map τ .

Corollary 3.2.6 ([38]). The diffeotopy group of S2 ∼×S1 is generated by a reflection in the
S1 factor, and a sphere twist τ along a 2-sphere fibre. That is, Diff(S2 ∼× S1) ∼= Z2 ⊕ Z2.

Remark 3.2.7. The map τ is particularly important for constructing homotopy 4–spheres.
Given an embedded 2–sphere S in S4 with regular neighbourhood ν(S) ∼= S2 × D2, the
Gluck twist of S is the 4–manifold

ΣS := (S4 \ ν(S)) ∪τ ν(S),
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i.e. the result of cutting out and regluing ν(S) by the map τ . In fact, ΣS is a homotopy
4–sphere, and so by the groundbreaking work of Freedman [22], ΣS is homeomorphic to
S4. However, despite study by many authors it remains an open question whether ΣS is
always standard, i.e. diffeomorphic to S4.

If S ⊂ S4 is an embedded 2–sphere, then ∂ν(S) is always diffeomorphic to S2 × S1,
and so there is not exactly a non-orientable analogue of a Gluck twist. However, τ can
still be used to construct interesting (non-orientable) 4–manifolds. First, observe that
S2 ∼×S1 = ∂(D2 ∼×RP2), the non-trivial disk bundle over RP2 obtained as the complement of
an orientation reversing loop in RP4 (for an illustration, see Figure 3.5). Gluing this bundle
to itself via either the identity map or τ yields S2 ∼× RP2 or the 4–manifold RP4#S1RP4,
sometimes called the circle sum of RP4 with itself. This process is analogous to gluing
S2 × D2 to itself via either the identity map or τ to produce S2 × S2 or S2 ∼× S2. While
S2 × S2 and S2 ∼× S2 are distinguished easily by their intersection forms, S2 ∼× RP4 and
RP4#S1RP4 are somewhat harder to distinguish (they have the same Z2–intersection form).
However, they are known to be homotopy inequivalent by the complete classification of
non-orientable 4–manifolds with fundamental group Z2 by Hambleton-Kreck-Teichner [30],
or the homotopy invariant for such manifolds given by Kim-Kojima-Raymond in [39].

As a last application of the results of this chapter, we show that there is a unique
Heegaard splitting of #kS2 ∼× S1 up to isotopy. Waldhausen originally showed that S3

admits a unique splitting up to isotopy, and that #kS2 × S1 admits a unique splitting up
to homeomorphism. In [10] Carvalho and Oertel showed that the result holds up to isotopy;
the same method can be used to improve the statement of Proposition 1.3.12 to isotopy.
To the best of our knowledge, this result is new and has not appeared in the literature.

Theorem 3.2.8. Let g ≥ k ≥ 0. Any genus g Heegaard splitting of #kS2 ∼× S1 is isotopic
to a stabilization of the standard Heegaard splitting.

Proof. We will show that any two genus k Heegaard splittings of #kS2 ∼× S1 are isotopic.
Since stabilization is well defined up to isotopy, this will complete the proof. To this end,
letH = (Σ;H1, H2) andH′ = (Σ′;H ′1, H

′
2) be two genus k Heegaard splittings of #kS2 ∼×S1.

By Proposition 1.3.12, H and H′ are equivalent. Choose any diffeomorphism f : H1 →
H ′1. This doubles to a diffeomorphism F : #kS2 ∼× S1 → #kS2 ∼× S1 which sends H′ to H′.
We will show that F is isotopic to a diffeomorphism which preserves H; the trace of such
an isotopy will take Σ′ to Σ, from which it follows that H and H’ are isotopic.

Consider the map (F#
1 )−1 : π1(#kS2 ∼× S1) → π1(#kS2 ∼× S1). Since π1(#kS2 ∼× S1) ∼=

π1(H1), by Lemma 3.1.4 we can find a map g : H1 → H1 so that g#
1 = (F#

1 )−1. Doubling
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this map, we obtain a map G : #kS2 ∼× S1 → #kS2 ∼× S1. Letting h = F ◦G, we see that
h takes H to H′ and that h#

1 = id.

Let S1, . . . , Sk be the k essential (non-separating) 2–spheres obtained by doubling non-
separating disks in H1. By Lemma 3.1.10, h is isotopic to a composition of sphere twists H
along S1, . . . , Sk. However, we can clearly choose any such sphere twist so that it preserves
H.

Thus, the isotopy from h to H takes Σ′ to Σ. We conclude that H and H′ are isotopic,
which completes the proof.

3.2.2 Kirby diagrams for non-orientable 4–manifolds

In this section, we discuss Kirby diagrams of non-orientable 4–manifolds. While these have
not enjoyed the same attention as the Kirby diagrams for orientable 4–manifolds, we can
still work with them in much the same way. For more details, the reader is referred to
[3], as well as [70]. The following result is an immediate corollary of Theorems 3.0.1 and
3.1.1, and is essential for descriptions of closed 4–manifolds. To the best of our knowledge,
a proof of this statement does not appear in the literature.

Corollary 3.2.9. Let X be a smooth, closed, and connected 4–manifold. Fix a handle
decomposition of X, and let X(n) denote the union of the 0–, 1–, . . . and n–handles of this
decomposition. Then X is determined up to diffeomorphism by X(2).

Since we only have to specify the 1– and 2–handles of a handle decomposition, we can
effectively draw diagrams for closed 4–manifolds. For our purposes, a Kirby diagram is a
depiction of a framed link in #S2×S1 (or #S2 ∼×S1), whose surgery is again #S2×S1 or
#S2 ∼×S1. Equivalently, this is a drawing of the 1– and 2–handles of a handle decomposition
without any extra information.

We will assume some familiarity with these diagrams, and refer the reader to [28] and
[3] for extensive treatment. However, we will discuss how to draw 1–handles, since this
depends on whether the 4–manifold is orientable.

As usual, we draw 1– and 2–handles attached to the boundary of a 0–handle, via their
attaching regions in ∂B4 = S3. Both orientable and non-orientable 1–handles are attached
along S0 × B3, but the essential difference is how these 3–balls are identified. The usual
convention is to draw orientable 1–handles as a pair of 3–balls, which are identified by a
(orientation reversing) reflection across an equator. The reader may wish to compare this
with the 2–dimensional case illustrated in Figure 3.3 and 3.4.
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Figure 3.3: Orientable 1–handles are drawn as a pair of 3–balls, identified by a reflection
through the (vertical) equator. Attaching curves of 2–handles that enter on one side leave
on the opposite side. The 4–dimensional case is illustrated in (a), and a 2–dimensional
analogue is illustrated in (b).

Non-orientable handles are drawn as a pair of 3–balls, which are identified by the
(orientation preserving) identity map. This convention differs slightly from [3], but is more
convenient for our purposes.

We will record the framing of a 2–handle the same way as [3]. If a 2–handle runs
over only orientable 1–handles, then we can specify a well defined framing with an integer.
However, if it runs over non-orientable 1–handles, then we have to assign an integer to
each arc of the 2–handle attaching circle minus the 1–handles. Indeed, if a twist is pushed
through a non-orientable 1–handle, it becomes a twist of the opposite sign.

Figure 3.4: Non-orientable 1–handles are drawn as a pair of 3–balls, identified by the
identity map. We will color one half of the 3–ball as a reminder that 2–handle attaching
curves that enter on one side leave on the same side. The 4–dimensional case is illustrated
in (a), and a 2–dimensional analogue is illustrated in (b).

In preparation for their trisections, we will now draw Kirby diagrams for several well-
known non-orientable 4–manifolds.

Example 3.2.10 (RP4). We begin with the well known diagram for D2 ∼× RP2 in Figure
3.5 (a) (see [3, Section 1.5] or [70]): it can be built with a single non-orientable 1–handle,
and a 2–handle attached along a curve that runs across the 1–handle twice, attached with
framing as described below.
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Figure 3.5: In (a), a Kirby diagram for D2 ∼×RP2, a neighbourhood of RP2 in RP4. In (b), an
illustration of the fibration structure of the boundary showing that ∂(D2 ∼×RP2) = S2 ∼×S1.
Each pair of disks forms an annulus that meets a tubular neighbour of the 2–handle curve
in two matching longitudes.

The boundary of this disk bundle over RP2 is S2 ∼× S1, whose fibration structure is
illustrated in Figure 3.5 (b). The exterior of the 2–handle attaching curve is fibered by
pairs of disks Dθ (one such disk is shaded blue); the disks Dθ and Dθ+π glue together to
form an annulus which meets the boundary of a neighbourhood of the 2–handle curve in
two longitudes. Since we attach the 2–handle with exactly the correct framing, we see
the (twisted) S2–bundle structure in ∂(D2 ∼× RP2). By adding a 3–handle (uniquely), we
obtain a Kirby diagram for RP4.

Example 3.2.11 (S2×RP2). A relative Kirby diagram for D2×RP2 is given in Figure 3.6
(a). We can obtain a Kirby diagram for the double of this manifold, S2×RP2, in the usual
way. To every 2–handle, we add a new 2–handle as a 0–framed meridian, corresponding to
the core of each new (doubled) 2–handle. Consequently, a diagram for S2 × RP2 is given
in Figure 3.6 (b).

Figure 3.6: In (a), a Kirby diagram for D2×RP2. In (b), a diagram for its double, S2×RP2.

Example 3.2.12 (Gluing together copies of D2 ∼× RP2). We can obtain more interesting
manifolds by gluing together copies of D2 ∼× RP2.
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A Kirby diagram of the double of this bundle may be obtained in the usual way, by
simply adding a 0-framed meridian to the 2–handle attaching curve. Consequently, a
diagram for S2 ∼× RP2 is given in Figure 3.7 (a).

Figure 3.7: In (a), a Kirby diagram for S2 ∼×RP2 = D2 ∼×RP2∪idD
2 ∼×RP2. In (b), a Kirby

diagram for D2 ∼× RP2 ∪τm D2 ∼× RP2. The result only depends on m modulo 2.

To draw a diagram of RP4#S1RP4 = D2 ∼×RP2 ∪τ D2 ∼×RP2 (see Example 3.2.7), note
that the map τ fixes γ pointwise, but adds (or subtracts) 2 to the framing. Thus we will
add a ±2–framed meridian, as illustrated in Figure 3.7 (b). What remains in both cases
is a 3– and 4–handle, which do not need to be specified. The map τ has order two, so the
framing of the meridian only matters modulo 4. The reader may also wish to check this
by handle slides.
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Chapter 4

Trisections of non-orientable
4–manifolds

In this chapter, we study trisections of non-orientable 4–manifolds. The goal will be to
fill in any gaps for the non-orientable setting, and give many examples. Consequently, we
will assume that the reader has at least some familiarity with trisections. Most of the
theory carries over unchanged, but there are are few places where it is necessary to be
careful. In particular, we will need several key results from Chapter 3. We will also give
a self-contained discussion of relative trisections (4–manifolds with boundary) and bridge
trisections (for surfaces embedded in 4–manifolds) that does not depend on orientability.

Trisections of non-orientable 4–manifolds may initially seem more complicated than
their orientable counterparts. This is largely because even small non-orientable manifolds
necessarily have non-trivial fundamental groups. However, they witness interesting exotic
phenomena in dimension four: although it is currently unknown whether an exotic S4

exists, there are known to be exotic versions of RP4. One might hope that these examples
are more accessible for study by trisections, or that they might give some fresh insight into
the relationship between trisections and exotic 4–dimensional behavior.

4.1 Existence, uniqueness, and diagrams

In what follows, manifolds are not assumed to be orientable. In particular, we will relax
the assumption that parts1 of a trisection are orientable.

1A part of a trisection is one of the 3– or 4–dimensional handlebodies, or the central surface.
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Recall that an n–dimensional handlebody is a manifold which can be built from a
single 0–handle and some number of 1–handles (see Definition 1.2.1). In other words, it is
diffeomorphic to either \kBn×S1 or \kBn ∼×S1. By sliding 1–handles it is easy to see that
(\kBn× S1)\(B

∼× S1) ∼= \k+1Bn ∼× S1, i.e. the presence of a single non-orientable 1–handle
makes a handlebody non-orientable.

The definition of a trisection from Chapter 2 carries over verbatim from the orientable
setting. The following observation shows that either all parts of a trisection are orientable,
or none of them are.

Lemma 4.1.1 ([69, Proposition 5]). Suppose that T is a trisection of a smooth, closed,
connected (but possibly not orientable) 4–manifold X. Then X is orientable if and only if
any part of T is orientable.

Proof. Suppose that the sectors of T are X1, X2, and X3. If X is orientable, then each Xi

is orientable, and so ∂Xi is orientable. Consequently, each Xi ∩Xj and X1 ∩X2 ∩X3 are
also orientable.

Conversely, note that if any handlebody of T is orientable, then the above argument
shows that X1 ∩X2 ∩X3 is orientable. Moreover, if X1 ∩X2 ∩X3 is orientable, then each
of ∂Xi is orientable, and hence each Xi is orientable. We can thus orient X by starting
with an orientation on X1 and extending it across X2 and X3.

Thus, the following definition is equivalent to Definition 2.1.1 in the non-orientable
setting.

Definition 4.1.2 ([24]). Suppose that X is a smooth, non-orientable, closed, and con-
nected 4–manifold. A (g; k1, k2, k3)– trisection T of X is a decomposition X = X1∪X2∪X3

such that

• Xi is diffeomorphic to \kiB3 ∼× S1;

• Xi ∩Xj is diffeomorphic to \gB2 ∼× S1;

• Σ = X1 ∩X2 ∩X3 is diffeomorphic to #g(RP2#RP2).

The proof of existence of trisections (Theorem 2.1.4) that begins with a handle de-
composition carries over verbatim. As part of a more general treatment of multisections,
Rubinstein and Tillman [66] give a proof of existence that does not require orientability.
The proof of Proposition 2.1.5 also follows without any serious modifications.
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Stable uniqueness in this setting requires more care, and has not previously appeared
in the literature. Essentially the same technique from [24] can be used, but requires the
strong version of Waldhausen’s theorem for #kS2 ∼× S1 proved in Chapter 3 (Theorem
3.2.8).

Theorem 4.1.3. Every smooth, closed, connected (but possibly not orientable) 4–manifold
X admits a (g; k)–trisection for some 0 ≤ k ≤ g. Any two trisections of X become isotopic
after sufficiently many stabilizations.

Proof of Uniqueness. We will only prove the stable uniqueness statement here. For exis-
tence, see the proof of Theorem 2.1.4 or [24].

Suppose that T and T ′ are two trisections of a fixed 4–manifold X. By Proposition
2.1.5, both T and T ′ induce handle decompositions of X, in which X1 and X ′1 are 1–
handles for X. As noted in [24], Cerf theory guarantees that these handle decompositions
are related by a sequence of:

• Adding cancelling 1/2 and 2/3 handles;

• Handle slides among handles of the same index;

• Isotopy of handles and handle attaching maps.

We have seen that we can add cancelling pairs of 1/2 or 2/3 handles by stabilizing
the trisection. Moreover, isotopy or handle slides among 1–handles or 3–handles can be
achieved without modifying the associated trisection, since they take place entirely within a
sector. Consequently, we only need to check that we can realize 2–handle slides and isotopy
of 2–handles, possibly up to trisection stabilization. As in Proposition 2.1.5, the trisections
T and T ′ induce Heegaard splittings of ∂X1 and ∂X ′1, in which the 2–handles attaching
curves are a core of H12 = X1 ∩ X2 or H ′12 = X ′1 ∩ X ′2. Any 2–handle slide is performed
along a framed arc, which we may assume is contained in the central surface. As in [24],
stabilization of this Heegaard splitting (which may be achieved by trisection stabilization)
allows us to assume that this framed arc is embedded and disjoint from any 2–handle
curves or dual meridional curves for each 2–handle. Consequently, up to stabilization
we can perform 2–handle slides while ensuring that the resulting handle decomposition is
induced by a trisection.

Lastly, suppose T and T ′ are related only by isotopy of the corresponding 2–handle
attaching maps. Since this isotopy extends to an isotopy of X, we can assume that the
handle decompositions are identical and that the only difference between the trisections is
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the induced Heegaard splittings on ∂X1. Suppose that these are given by ∂X1 = H12∪H31

and ∂X1 = H ′12∪H ′31, respectively. Denote the 2–handle attaching link by L; in both cases
L is dual to a system of meridional curves.

As noted in [24], either the strong version of Waldhausen’s theorem or Theorem 3.2.8
guarantees that these Heegaard splittings are isotopic. This does not imply that the
trisections are isotopic, since this process may move L. The process in [24] works verbatim;
we can stabilize the Heegaard splittings of ∂X1 to find an isotopy which also fixes L.
Indeed, this is guaranteed by Cerf theory: we can pick Morse functions for ∂X1 that agree
on a tubular neighbourhood of L. These can be made to agree up to 3–dimensional 1/2
stabilizations and slides that occur away from L.

Isotoping the Heegaard splittings (after possibly further stabilizations of the trisection)
to agree now completes the proof.

As in the orientable case, we would like to be able to study non-orientable 4–manifolds
via trisection diagrams. We can do so via the non-orientable version of Waldhausen’s
theorem, and the non-orientable version of the Laudenbach-Poénaru theorem.

Definition 4.1.4. A (non-orientable) (g; k1, k2, k3)–trisection diagram is a tuple D =
(Σ;α, β, γ), where Σ is a closed non-orientable surface of genus g (i.e. Σ ∼= #2gRP2),
and α, β, and γ are collections of g embedded closed curves such that:

• Each of α, β, and γ is a cut system of curves for Σ;

• Each pair of curves is standard, i.e. each of (Σ;α, β), (Σ; β, γ), and (Σ; γ, α) is a
genus g Heegaard diagram for #kiS2 ∼× S1.

By Proposition 1.3.12, each pair of curves describes a Heegaard diagram for #kiS2 ∼×S1

if and only if it is standardizeable, i.e. there is a sequence of handle slides and surface
automorphisms which converts it to the diagram in Figure 4.8. As in the orientable case,
we do not expect that the three sets of curves can be simultaneously standardized.

The same proof of Theorem 2.2.2 together with Theorem 3.1.1 shows that a trisection
diagram determines a unique closed 4–manifold and vice versa. Combining this with the
orientable case, we complete the diagrammatic theory of trisections for all 4–manifolds.

Theorem 4.1.5. Let T be a trisection of a (possibly non-orientable) 4–manifold X. Then
T determines a trisection diagram (Σ;α, β, γ) describing T that is well-defined up to au-
tomorphism of Σ and slides of α, β, γ. That is, there is a natural bijection

{trisection diagrams}
surface automorphism, slides

↔ {trisected 4–manifolds}
diffeomorphism

.
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Figure 4.1: A standard diagram for a genus g Heegaard splitting of #kS2 ∼× S1. In a
trisection diagram, every pair of curves (Σ; ?, ?) is slide-diffeomorphic to this one.

4.2 Examples

In this section, we give many examples of non-orientable trisections. In a sense, these
trisections tend to be more complicated than their orientable counterparts. By Lemma
4.1.1, if X is non-orientable, then so is any part of a trisection of X. In particular, the
sectors cannot be 4–balls.

Example 4.2.1. The simplest non-orientable trisection is of S3 ∼× S1. As in the case of
of S3 × S1 (see Example 2.2.12), consider the trivial open book on S3 with the unknot as
binding and disk pages. Let D1, D2, and D3 be three disjoint pages of this open book;
these cobound 3-balls B1, B2, and B3.

Now, note that S3 ∼× S1 can be built from S3 × I by gluing the boundary components
via a reflection r across the equatorial 2–sphere which intersects the unknot in two points.
This reflection preserves each Di and Bi setwise, but induces a reflection on each of ∂Di

and ∂Bi. Letting Xi = Bi ×r S1
∼= Bi

∼× S1, we obtain a trisection of S3 ∼× S1. The
central surface is a Klein bottle obtained by gluing the ends of U × I via r, and so this is
a (1; 1)–trisection. A diagram for this trisection is illustrated in Figure 4.2.

In fact, there are only four distinct isotopy classes of essential simple closed curves
on the Klein bottle. Of these, only one curve is both non-separating and has an annular
neighbourhood (rather than a Möbius band). Consequently, Figure 4.2 is the only possible
(1; 1)–trisection diagram.

Example 4.2.2. The next simplest non-orientable trisection is of RP4. We can reverse
engineer a trisection diagram from the usual (non-orientable) Kirby diagram of RP4, using
Algorithm 2.2.14 to check our work. In the non-orientable setting this needs only minor
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Figure 4.2: A (1; 1)–trisection of S3 ∼× S1. This is the only trisection diagram that occurs
on a Klein bottle.

modification; some 1–handles may be non-orientable. As usual, γ curves become 2–handle
attaching curves with a framing induced by the surface (possibly on arcs). Non-orientable
1–handles arise from non-orientable portions of the trisection surface as in Figure 4.3.
There are various ways to draw a Heegaard surface for #S2 ∼× S1, and so we will use the
most convenient one for the task at hand.

Figure 4.3: Two Heegaard surfaces in the boundary of B3 ∼× S1. The surface on the left
has genus one, and the surface on the left has genus two. The reader may wish to check
that the surface on the right is isotopic to a stabilization of the surface on the left, as
guaranteed by Theorem 3.2.8.

Figure 4.4 (a) shows a genus two Heegaard surface for S2 ∼× S1, in which the attaching
curves for the 2–handle for RP4 is a core of one of the handlebodies. In Figure 4.4 (b), the
attaching curve has been isotoped to lie with surface framing, and so we can convert this
to the trisection diagram. The other γ curve lies in the α handlebody, and one can check
that the β and γ handlebodies share a common curve. Consequently, the model surface
(obtained by a mild cut and paste) in Figure 4.4 (c) is a (2; 1)–trisection diagram for RP4.

This trisection induces the usual handle structure on RP4 with a single 0–, 1–, 2–, 3–,
and 4–handle.

Example 4.2.3. For more complicated examples, we consider the manifolds of the form
D2 ∼× RP2 ∪τm D2 ∼× RP2 from Example 3.2.12, where τ is the twist map along a fiber
of S2 ∼× S1. Like RP4, these admit relatively simple Kirby diagrams from which we can
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Figure 4.4: In (a) and (b), the process of arranging the 2–handle attaching curve to lie on
a Heegaard surface for S2 ∼× S1. In (c), a trisection diagram for RP4. Opposite ends of the
surface are identified to form a genus two non-orientable surface.

reverse engineer genus 3 trisection diagrams. This gives us a family of trisection diagrams
describing S2 ∼× RP2, and RP4#RP4. A diagram for S2 × RP2 can be obtained similarly.

These trisections are all minimal genus: the Euler characteristic of each of these mani-
folds is equal to 2, and so they cannot admit a (g; k)–trisection with g < 3.

Example 4.2.4. By lifting each sector, a trisection of a closed non-orientable 4–manifold
X naturally lifts to a trisection of its orientation double cover p : X̃ → X. Indeed, since p
restricts to the orientation cover on each sector, the lifts X̃i = p−1(Xi) are each orientable
4–dimensional handlebodies with the correct intersection data.

Starting with a (g; k)–trisection for X, one obtains a (2g − 1; 2k − 1)–trisection for X̃.

Moreover, note that the central surface Σ̃ for X̃ double covers the central surface Σ for X.
Thus, given a trisection diagram for X, we may easily draw the corresponding diagram for
X̃. Since each curve in Σ has an annular neighbourhood, it will lift to two disjoint curves
in Σ̃. One curve among the lifts of each of α, β, and γ will be homologically dependent,
and so can be discarded.

As an example of this process, we produce a (3; 1)–trisection of S4 as the double cover
of the trisection of RP4 from Example 4.2.2. This is illustrated in Figure 4.6. It is easy to
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Figure 4.5: In (a) and (b), the process of arranging the 2–handle attaching curves to lie on
a Heegaard surface for S2 ∼× S1 with surface framing. In (c), the case when m = 0. This is
a (3; 1)–trisection for S2 ∼× RP2.

check that this trisection is handle slide diffeomorphic to the standard (balanced) stabilized
trisection of S4. For fun, we illustrate the sequence of handle slides and destabilizations in
Figure 4.7.

Remark 4.2.5. As an interesting application of of Example 4.2.4, consider the Cappell-
Shaneson homotopy 4–spheres [9], some of which double cover an exotic RP4. By lifting
a trisection of such an exotic RP4, one would obtain a trisection of a Cappell-Shaneson
homotopy 4–sphere. It remains an open question whether Cappell-Shaneson homotopy 4–
spheres are always diffeomorphic to S4, and so this could be useful as a possible technique
for standardizing these manifolds.

This also has applications to Question 2.2.8; some Cappell-Shaneson homotopy spheres
are known to be standard. By taking the double cover of a trisection of such an exotic
RP4, we obtain a trisection of S4 which at least cannot be equivariantly destabilized to
the (0; 0)–trisection. Since Question 2.2.8 is related to the Andrew-Curtis conjecture it
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Figure 4.6: The double cover of the (2; 1)–trisection of RP4.

is likely difficult to decide whether such a trisection is standard, but this construction
produces many examples to test.

Explicitly obtaining a trisection of a homotopy RP4 (or S4) is likely to be difficult.
It would be particularly interesting to investigate whether any of the invariants use to
distinguish the manifolds in [9] can be computed from a trisection diagram (although this
is also likely to be very hard).

Question 4.2.6. Consider the trisections of S4 which arise as double covers of an exotic
RP4. Are these trisections standard?

A related question is whether one can use trisection diagrams to recover known results
about exotic versions of RP4.

Question 4.2.7. Can trisection diagrams (or trisection genus) distinguish exotic non-
orientable 4–manifolds?

We end this section with one last question. We will call a genus two trisection of a
non-orientable 4–manifold standard if it is either reducible or the trisection of RP4 above.

Question 4.2.8. Are all genus two non-orientable trisections standard?
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Figure 4.7: A sequence of handle slides and destabilizations that show that the (3; 1)–
trisection of S4 arising as the double cover of the (2; 1)–trisection of RP4 is standard.

Remark 4.2.9. The unique non-orientable (2; 2)–trisection is a reducible trisection of
#2S3 ∼× S1, i.e. a connected sum of two genus one trisections of S3 ∼× S1. Indeed, in
this case any pair (and hence all three) curves may be standardized simultaneously. Since
there are no non-orientable (2; 0)–trisections, Question 4.2.8 is specifically a question about
(2;1)–trisections.

In the orientable case, we know that (2; 1)–trisections are reducible by [57]. The main
tool is the following theorem of Gabai [23], which guarantees that there are no non-trivial
cosmetic surgeries of S2 × S1.

Theorem 4.2.10 ([23]). Suppose that K is a knot in S2 × S1 with a cosmetic surgery.
Then K is a (±1)–framed unknot.

However, we have seen that S2 ∼×S1 does admit at least one non-trivial cosmetic surgery
(along the curve that wraps twice around the S1 factor), a fact which produces the (2; 1)–
trisection of RP4. Whether or not this is the only cosmetic surgery is listed as a separate
conjecture below, since it is likely interesting for other reasons. It would also be interesting
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to see whether Conjecture 4.2.11 implies an positive answer to Question 4.2.8.

While (2; 0)–trisections are known to be standard by [57], the proof uses deep results on
Heegaard diagrams on genus two surfaces, and so may not have a non-orientable analogue.
It also does not seem likely that Question 4.2.8 can be answered by lifting to the orientation
cover. This would produce a (3; 1) trisection of an orientable 4–manifold, and these are
only conjecturally classified by Meier [53]. In particular, it is not presently known if every
(3; 1)–trisection of S4 is standard.

Conjecture 4.2.11. Suppose that K is a knot in S2 ∼× S1 with a cosmetic surgery. Then
K is either a (±1)–framed unknot, or the curve which wraps twice around the S1 with
(±1)–framing.

At this point, the reader might believe that most orientable 3–manifold theorems carry
over verbatim to the non-orientable setting. This conjecture illustrates that there are at
least some differences.

4.3 Relative trisections

In this section, we will discuss relative trisections of 4–manifolds with boundary. This
subject has been studied by several authors (e.g. see [12], [13], [14], [24]) in the orientable
case. While the treatment is quite similar, the aim of this section is to give some self-
contained exposition of the subject that also covers the non-orientable case. We will
include proofs when they differ from the orientable case, but otherwise refer the reader
to [12] and focus on new examples. For simplicity, we will not treat the case of multiple
boundary components.

As an analogue for Heegaard splittings in the closed case, we will first discuss compres-
sion bodies. Using this language, we will construct specific decompositions of 4–dimensional
handlebodies to use as the main building blocks for a trisection. One key feature of relative
trisections is the gluing theorem, proved by Castro in his thesis: under sufficient conditions
one can uniquely glue two relative trisections to obtain a trisected closed 4–manifold.

4.3.1 Compression bodies and definitions

Definition 4.3.1. Suppose that Σ is a connected surface with non-empty boundary. A
compression body on Σ is a 3–manifold C obtained by attaching 3–dimensional 2–handles
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to a thickening of Σ, i.e.

C = Σ× [0, 1] ∪Σ×{1} {3–dimensional 2–handles}.

The boundary of C decomposes as ∂C = (∂−Σ) ∪ (∂Σ× [0, 1]) ∪ (∂+Σ), where

∂−C = Σ× {0},

and
∂+C = ∂Σ \ (∂−Σ ∪ ∂Σ× (0, 1)).

We will assume that ∂+C is connected unless otherwise indicated.

Note. Let C be a compression body. It is not hard to check that C × I ∼= \kB3 × S1 if C
is orientable, and C × I ∼= \kB3 ∼× S1 if C is non-orientable, where

k = 1− χ(∂+C) + χ(∂−C)

2
= g(∂−Σ) + g(∂+Σ) + |∂Σ| − 1.

Indeed, we can alternatively view C as constructed from ∂+(C)×I by adding 3–dimensional
1–handles. Consequently, this is a sensible object to use as a building block for Heegaard
splitting of 3–manifolds with boundary. We will refer to this as a generalized Heegaard
splitting.

We will now describe specific decompositions of a 4–dimensional handlebody. Like the
closed case, these will make up the sectors of a relative trisection.

Definition 4.3.2. Let Σ be a connected surface with non-empty boundary, and let C be
a compression body on Σ. Note that Z = C × [0, 1] is a 4–dimensional handlebody. We
decompose ∂Z = ∂ inZ ∪ ∂outZ, where

∂ inZ = (C × {0}) ∪ (∂−C × [0, 1]) ∪ (C × {1}),

and
∂outZ = (∂Σ× [0, 1]× [0, 1]) ∪ (∂+C × [0, 1]).

Note that ∂ inZ admits a (generalized) Heegaard splitting as ∂ inZ = Y −0 ∪ Y +
0 , where

Y −0 = (C × {0}) ∪ (∂−C × [0, 1/2])

and
Y +

0 = (∂−C × [1/2, 1]) ∪ (C × {1}).
In particular, the splitting surface is Y −0 ∩ Y +

0 = ∂−C × {1/2}. Any Heegaard splitting of
∂ inZ obtained from this one by stabilization is called standard.
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Note. In what follows, C will always denote a compression body on a surface Σ and Z
will always denote C × I. Whenever we write ∂ inZ = Y − ∪ Y +, we mean that (Y −, Y +) is
a standard splitting of ∂ inZ.

A diagram (i.e. a depiction of a model surface with standard 2–handle attaching curves)
for this generalized Heegaard splitting is given in Figure 4.8 in the next section. With these
models in mind, we can now define a relative trisection.

Definition 4.3.3. Let X be a smooth, compact, and connected 4–manifold with connected
non-empty boundary. A relative trisection T of X is a a decomposition X = X1∪X2∪X3

such that:

• There are diffeomorphisms φi : Xi → Z such that φi(Xi ∩ ∂X) = ∂outZ,

• For each i, φi(Xi ∩Xi−1) = Y − and φi(Xi ∩Xi+1) = Y +.

In the literature, this often referred to as a (g, k; p, b)–relative trisection, where g =
g(X1 ∩ X2 ∩ X3), p = g(∂+C), and b = |∂Σ|. Depending on the author, the integer k
is either the genus of the handlebody Z or the number of S2–bundle summands in ∂ inZ.
Since it is usually clear, we will generally avoid giving these parameters unless necessary.

4.3.2 Gluing relative trisections

At first glance, the definition of a relative trisection seems quite technical. However, one of
the main features of these decompositions is that they induce a particularly nice structure
on the boundary.

Proposition 4.3.4. Suppose that T is a relative trisection of X. Then T induces a natural
open book decomposition on ∂X.

Proof. Let the sectors of T be X1, X2, and X3, and note that L := ∂(X1 ∩ X2 ∩ X3)
is a link in ∂X. By definition, φi(Xi ∩ ∂X) = ∂outZ = (∂Σ × I × I) ∪ (∂+C × I).
Consequently, Xi∩∂X consists of a tubular neighbourhood of L together with a thickened
Seifert surface for L. Piecing these together, we see that ∂X \ ν(L) fibers over S1, and
that Xi ∩Xi+1 ∩ (∂X \ ν(L)) is a fiber for each i. In other words, L is the binding of an
open book for ∂X for which each Xi ∩Xi+1 is a page.
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When X is orientable, then given an open book O on ∂X, there is a trisection of
X inducing O [12]. Moreover, trisections that induce the same open book can be made
isotopic after some number of interior stabilizations, i.e. stabilizations in the sense of
Definition 2.1.3.

Theorem 4.3.5 ([24]). Suppose that T1 and T2 are relative trisections of a 4–manifold X
inducing isotopic open books on ∂X. Then after some number of interior stabilizations of
each, T1 and T2 are isotopic.

While Theorem 4.3.5 was only originally stated in the orientable case, the proof carries
over verbatim, and so we will not discuss it here. The idea is to convert T1 and T2 to
relative handle decompositions, and carry out the same proof of uniqueness as the closed
case.

Remark 4.3.6. In the orientable case, there is a set of moves that relate trisections in-
ducing different open books. Relative trisections inducing different open books are related
by interior stabilization, relative double twists [15], and relative stabilization [12], in that
order. For the definitions of these operations, see the cited papers.

However, this uniqueness result relies heavily on the classification of open books on
orientable 3–manifolds and work of Giroux-Goodman. To prove such a result in the non-
orientable case, one would need to find a complete set of moves relating any two open
books of non-orientable 3–manifolds. Ozbagci [63] has shown that there are non-orientable
open books that are not related by Hopf stabilization, and so in general any two relative
trisections are not related by just interior and relative stabilizations in the above sense. In
particular, there is a genus two open book decomposition on RP2×S1 whose monodromy is
a cross-cap transposition. It would be interesting to explicitly see this monodromy induced
by a relative trisection.

Question 4.3.7. What moves are necessary to relate relative trisections of (possibly non-
orientable) 4–manifolds? Is the cross-cap slide monodromy from [63] ever induced by a
relative trisection?

One of the most important results on relative trisections is the gluing theorem, proved
by Castro in his thesis. Essentially, under suitable conditions, relative trisections of two
4–manifolds can be naturally glued together.

Theorem 4.3.8 ([12]). Let T and T ′ be relative trisections of 4–manifolds X and X ′,
respectively. Let O and O′ denote the open books of ∂X and ∂X ′ (respectively) induced by
T and T ′. Suppose there exists a diffeomorphism f : ∂X → ∂X ′ and that f(O) is isotopic
to O′. Then there is a naturally induced trisection T ∪ T ′ of X ∪f X ′.
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While Castro only stated this theorem in the orientable setting, it carries over verbatim
so we omit the proof.

4.3.3 Diagrams for relative trisections

As in the closed case, relative trisections can be represented by diagrams. We first define
a standard set of curves.

Definition 4.3.9. Let Σ be a (possibly non-orientable) surface of genus g, and that α and β
are cut systems for Σ. We say that the pair (α, β) is standard if there is a homeomorphism
of Σ taking α to the red curves, and β to the blue curves in Figure 4.8. We say that
the pair (α, β) is slide-standard if there is a pair (α′, β′) slide-equivalent to (α, β) which is
standard.

Figure 4.8: A slide-standard set of curves on a (possibly non-orientable) surface with
boundary.

Lemma 4.3.10. Let (α, β) be a slide-standard pair of cut systems on a surface Σ. Then
(Σ;α, β) determines a standard splitting ∂ inZ = Y − ∪ Y +.

Proof. Let V = Σ × I ∪ Hα ∪ Hβ, where Hα are 2–handles attached along α × {0} and
Hβ are 2–handles attached along β × {1}. Moreover, let Y − = Hα ∪ (Σ × [0, 1/2]) and
Y + = (Σ× [1/2, 1]) ∪Hβ.
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Then V ∼= ∂ inZ, where Z = C × I and C is a compression body on a surface Σ′ with
χ(Σ′) = χ(Σ)+2n and |∂Σ′| = |∂Σ|, where n is the number of pairs of dual α, β curves. The
surface Σ′ is orientable if and only if Σ is orientable. Lastly, the pair (Y −, Y +) is obtained
by stabilizing (Y −0 , Y

+
0 ) a total of n times, and so is a standard splitting of ∂ inZ.

Definition 4.3.11. A relative trisection diagram D is a tuple (Σ;α, β, γ), where Σ is a
(possibly non-orientable) connected surface of genus g with b > 0 boundary components,
and each of (α, β),(β, γ), (γ, α) are slide-standard pairs.

Castro–Gay–Pinzón-Caicedo proved the following proposition in the orientable case.
The proof here is essentially the same. Since we use Theorem 3.1.1 we include a short
proof for convenience. The experienced reader may simply refer to Figure 4.9.

Proposition 4.3.12. A relative trisection diagram D = (Σ;α, β, γ) determines a relatively
trisected 4–manifold X(D) up to diffeomorphism.

Proof. We will proceed as in the closed case. Beginning with Σ × D2, let W be the 4–
manifold obtained by attaching Hα× I, Hβ× I, and Hγ× I to neighbourhoods of Σ×{1},
Σ × {e2πi/3}, and Σ × {e4πi/3} respectively, where we view D2 ⊂ C. Denote the image of
H∗ × {0} by H−∗ , and the image of H∗ × {1} by H+

∗ , as illustrated in Figure 4.9

The resulting 4–manifold has 3–boundary components. The component ∂W ∩ (Σ ×
[0, 2π/3]∪H+

α ∪H−β ) is diffeomorphic to ∂ inZ and determines a standard splitting (Y −, Y +).
Consequently, there is a well-defined way to glue in a compression body Z1 along this
boundary component. Similarly, we may fill in the other two boundary components with
compression bodies Z2 and Z3.

After gluing in three copies of Z, the resulting 4–manifold has a single boundary com-
ponent. To see the relative trisection explicitly, consider the pieces

• X1 = Σ× ({0 ≤ θ ≤ 2π/3} ⊂ D2) ∪ Z1;

• X2 = Σ× ({2π/3 ≤ θ ≤ 4π/3} ⊂ D2) ∪ Z2;

• X3 = Σ× ({4π/3 ≤ θ ≤ 0} ⊂ D2) ∪ Z3.

This completes the proof.

Conversely, every relative trisection induces a relative trisection diagram.

Proposition 4.3.13. Let T be a relative trisection of a 4-manifold X. Then T determines
a relative trisection diagram (Σ;α, β, γ) up to slides of α, β, γ and automorphisms of Σ.
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Figure 4.9: A schematic that describes how to build a relative trisection from a diagram.
The process is similar to the closed case. The 4–dimensional compression bodies can be
attached uniquely because the curves are slide-standard.

Proof. Let Σ = X1 ∩X2 ∩X3. By definition, there is a diffeomorphism φi : Xi → Z, with
φi(Xi∩Xi+1) = Y +. Moreover, Y + is obtained by attaching 2–handles to φi(Σ)×I. Denote
the corresponding attaching curves for the 2–handles on Σ by α, β, and γ respectively.

Since φ1(X3 ∩X1) = Y − and φ1(X1 ∩X2) = Y +, the surface Σ determines a standard
splitting of φ−1(∂ inZ), and so (γ, α) is a slide-standard pair. Similarly, (α, β) and (β, γ)
are slide-standard.

Remark 4.3.14. Proposition 4.3.12 illustrates a major difference between closed and rela-
tive trisections. In the closed case, it was enough to know that each pair of curves described
a Heegaard diagram for #S2×S1 or #S2 ∼×S1, because Theorem 3.0.1 (or Theorem 3.1.1)
guarantees that 4–dimensional handlebodies can be attached uniquely in this case. By a
version Waldhausen’s theorem we also know that the curves will be standardizeable. Be-
cause there is no analogue of either of these theorems for compression bodies, we need to
assume that the curves are slide-standard to begin with.

This is one reason that the definition of a relative trisections is considerably more
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technical. Practically, one would like a trisection diagram to produce a trisected 4–manifold
to up to diffeomorphism, and vice versa. One might attempt to define a relative trisection
of a 4–manifold X as in the closed case: a decomposition of X into three handlebodies X1,
X2, X3 which pairwise intersect in handlebodies, and so that the neatly embedded surface
X1 ∩X2 ∩X3 is the binding of an open book decomposition of ∂X (with pages Xi ∩Xj).
While this turns out to be enough to glue relative trisections together, it is not enough to
ensure a diagrammatic theory.

Like the closed case, we conclude with the standard bijection between relative trisections
and relative trisection diagrams.

Corollary 4.3.15. There is a natural bijection

{relative trisection diagrams}
surface automorphism, slides

↔ {relatively trisected 4-manifolds}
diffeomorphism

.

As in the closed case, we remark that diagrams only represent relative trisections of
4–manifolds up to diffeomorphism, and as such do not record information about isotopy
of these decompositions.

4.3.4 Some new examples

In this section, we give some examples of non-orientable relative trisections and their
diagrams.

Example 4.3.16 (Diagrams on a punctured RP2). The simplest possible (non-orientable)
relative trisection diagram is pictured in Figure 4.10 (a) (when n = 0); this is the diagram
(M, ∅, ∅, ∅), where M is the Möbius band. Since there are no non-separating curves on
M with an annular neighbourhood, this is the unique diagram on the Möbius band. By
Proposition 4.3.12 we see that this describes the manifold M ×D2 ∼= B3 ∼× S1.

If we add some number of boundary components to M , we still get a valid relative
trisection diagram (Mn; ∅, ∅, ∅), where Mn denotes the Möbius band with n open disks
removed. Once again, this is the unique diagram on Mn, and via the same argument as
above, we see that this diagram describes Mn ×D2 ∼= \n+1B3 ∼× S1.

Example 4.3.17 (Diagrams on a punctured Klein bottle). Let Kn denote the Klein bottle
with n ≥ 1 open disks removed. There is only one non-separating curve on Kn with an
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Figure 4.10: Three examples of simple relative trisection diagrams. In (a) and (b), diagrams
for \n+1B3 ∼× S1. In (c), a diagram for (S3 ∼× S1 \B4)\(\n−1B3 ∼× S1).

annular neighbourhood (which we will denote by c), and so there are two possible relative
trisection diagrams on Kn: the diagram (Kn; ∅, ∅, ∅) with no curves (Figure 4.10 (b)) and
the diagram (Kn; c, c, c) (Figure 4.10 (c)). It is easy to see that these are diagrams of
Kn ×D2 ∼= \n+1B3 ∼× S1 and (S3 ∼× S1 \ B̊4)\(\n−1B3 ∼× S1).

Example 4.3.18 (A diagram of D2 ∼× RP2). Another irreducible trisection diagram is of
D2 ∼× RP2, pictured in Figure 4.11 below.

Figure 4.11: A relative trisection of D2 ∼× RP2. The induced open book has Mobiüs band
pages and trivial monodromy.

The α, β, and γ curves are each dual. We can use the algorithm of the next section to
extract a Kirby diagram to verify that this diagram does indeed describe D2 ∼× RP2.

The page of the induced open book decomposition on S2 ∼×S1 is a Möbius band, and the
induced monodromy is trivial. In particular, it is the same as the induced monodromy of
(M ; ∅, ∅, ∅) from Example 4.3.16. By the gluing theorem for diagrams in the next section,
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we can “glue” these two diagrams and recover the familiar decomposition

D2 ∼× RP2 ∪
S2∼×S1 B

3 ∼× S1 = RP4.

Example 4.3.19 (Puncturing closed diagrams). In general, if (Σ;α, β, γ) is a trisection
diagram for a closed 4–manifold X, then the diagram (Σ◦;α, β, γ) is a relative trisection
diagram for X \ B4, where Σ◦ denotes Σ with a small open disk removed. In fact, there
is a unique diagram (up to slides and surface automorphism) determined by removing an
open disk from Σ. The induced open book on ∂X◦ = S3 is the trivial one, with the unknot
binding and disk pages. For example, the diagram in Figure 4.12 describes RP4\B4 (rather
than RP4 \B3 ∼× S1 as above).

Figure 4.12: A relative trisection diagram for RP4 \ intB4.

If K ⊂ X is an embedded 2–sphere in 2–bridge position, then there is a diagram for
X \ ν(K) which can be obtained by removing two open disks from a trisection diagram for
X. For example, the diagram in Figure 4.13 describes the complement of a neighbourhood
of a 2–sphere fiber in S2 ∼× RP2.

Figure 4.13: A relative trisection diagram for the complement of a fiber in S2 ∼× RP2.

For more details on bridge position, see §2.3.2 and §4.4.
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4.3.5 Gluing diagrams

In this section, we discuss the monodromy algorithm for gluing relative trisections, which
works essentially the same as in the orientable case. Consequently, we will give the algo-
rithm precisely and illustrate it with some non-orientable examples. Figure 4.14 contains
an illustration which is likely more helpful than the ensuing wall of text.

Algorithm 4.3.20 (Monodromy algorithm). The monodromy algorithm of [13] provides a
way to compute the monodromy of the open book induced by a relative trisection diagram
(Σ;α, β, γ). We compute the monodromy φ as an automorphism of the “α page” Pα :=
X1 ∩X3 ∩ ∂X by identifying Pα with the result of compressing Σ along α.

• Step 0. Standardize the α β curves. Let a be a collection of disjoint properly
embedded arcs in Σ, disjoint from α and from β, so that compressing Σ \ (ν(a))
along α or along β yields a disk. (We say that a is a cut system of arcs for α and β).

• Step 1. Do slides of β, γ curves and slide a over β as necessary so that the arcs a are
transformed into arcs c that are disjoint from γ. Note that the arcs c might intersect
α many times. If β and γ are standard then we can avoid slides of β, γ curves, but
otherwise we may have to perform many slides before obtaining c.

• Step 2. Let α′ be another copy of α. Do slides of γ, α′ curves and slide c over γ as
necessary until transforming c into arcs a′ that are disjoint from α′.

• Step 3. In practice, α′ usually agrees with α. However, we may have performed
many slides. Now undo the slides to α′ from the previous step to make α′ again agree
with α while simultaneously sliding a′ to remain disjoint from α′. The monodromy
φ is now described by φ(a) = a′.

For a first example, consider the well-known relative trisection for B4 in Figure 4.14
below. This relative trisection induces the Hopf open book on S3, i.e. has annular pages
and monodromy equal to a left- (or right)-handed Dehn twist about the core of the annulus.

Monodromy calculations for non-orientable diagrams tend to be somewhat more compli-
cated than their orientable counterparts, but simple non-orientable examples are illustrated
in Figure 4.15 below. In particular, we can check that the monodromy of the open book
on S2 ∼× S1 induced by the diagram in Figure 4.11 is indeed trivial. Note that while this
diagram looks similar to the diagram for a punctured RP4, it is not the same. The page
of the induced open book is a punctured Klein bottle, rather than a disk.
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Figure 4.14: In (a), a well-known relative trisection diagram for B4. In (b), the diagram
is completed with arcs using Algorithm 4.3.20. In (c), the monodromy on the page Pα is
a left-handed Dehn twist.

One of the most useful features of the monodromy algorithm is that it allows us to
glue relative trisection diagrams. Let D1 = (Σ1, α1, β1, γ1) and D2 = (Σ2, α2, β2, γ2) be
relative trisection diagrams of 4–manifolds X, Y inducing open books O1,O2 on ∂X, ∂Y
respectively. Assume there exists a homeomorphism φ from ∂X to ∂Y taking the pages of
O1 to the pages of O2. In this case, we say that D1 and D2 are gluable.

By Theorem 4.3.8, we know that there is a naturally induced trisection of X ∪f Y .
In fact, we can glue the relative trisection diagrams in the following way. We begin by
choosing a cut system of arcs a1 in Σ1 in the complement of α1, as in Algorithm 4.3.20.
We perform the monodromy algorithm to obtain arcs b1 disjoint from β1 (if α, β are not
already standardized, in which case we can simply choose a1 so a1 = b1 as in Algorithm
4.3.20) and c1 disjoint from γ. Take the map φ : ∂X → ∂Y to take the α page of the
trisection induced by D1 to the α page of the trisection induced by D2. Then a2 := φ(a1)
can be viewed as a cut system of arcs in Σ2 for α2. We perform the monodromy algorithm
again in Σ2 to obtain arcs b2 disjoint from β2 and c2 disjoint from γ2.
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Figure 4.15: An illustration of the monodromy algorithm in two simple examples. Left:
The monodromy induced by the diagram (M ; ∅, ∅, ∅) is trivial; the arc remains unchanged
at each step. Right: The monodromy of the open book on S2 ∼× S1 induced by the genus
one diagram for D2 ∼× RP2 is also trivial, but the arcs produced by the algorithm are
illustrated. The reader may wish to check that the monodromy is trivial by completing
the last step of the monodromy algorithm.

Let Σ := Σ1 ∪∂ Σ2, using φ to identify boundary components of Σ1,Σ2, and set

α := α1 ∪ α2 ∪ (a1 ∪ a2),

β := β1 ∪ β2 ∪ (b1 ∪ b2),

γ := γ1 ∪ γ2 ∪ (c1 ∪ c2).

Then (Σ;α, β, γ) is a trisection diagram for X ∪φ Y .

Using the monodromy computed in Figure 4.15, we give various examples of this gluing
operation in Figure 4.16. The simplest application of this procedure is to simply double a
trisected 4–manifold with boundary, which we illustrate here. Some non-trivial examples
of surgery along surfaces are illustrated in [40].

Remark 4.3.21. As in the closed case, there is an algorithm to convert a relative trisection
diagram into a Kirby diagram containing a page of the induced open book decomposition
of the boundary. This is described in the orientable case in [13], as well as [33]. Given a
Kirby diagram together with a page of the induced open book, can also produce a relative
trisection diagram inducing the given open book [14]. These algorithms work essentially
the same way, except for the presence of non-orientable 1–handles. We will not use these
algorithms in this thesis, and instead refer the reader to [59] for some examples if desired.

77



Figure 4.16: Top: We obtain a trisection diagram for S3 ∼× S1 by doubling a diagram
for B3 ∼× S1. Bottom: We obtain a trisection diagram for RP4 by gluing diagrams for
D2 ∼×RP2 and B3 ∼× S1. It is easy to check that this diagram is slide equivalent to the one
in Example 4.2.2. Note that we could also double the diagram for D2 ∼× RP2 to obtain a
diagram for S2 ∼× RP2.

4.4 Bridge trisections

In this section, we give some self-contained treatment of bridge trisections with respect
to non-orientable 4–manifolds. As in §4.3, the goal will be to give some exposition that
does not depend on orientability. We will fill in any necessary gaps, but refer the reader
to existing literature when the proofs carry over unchanged.

Bridge trisections are a 4–dimensional version of the notion of a bridge splitting of a
knot in S3.

Definition 4.4.1. A knot K ⊂ S3 is said to be in b–bridge position if K intersects the
equatorial S2 ⊂ S3 in 2b points, and each 3–ball in b boundary parallel arcs.

Equivalently, local minima of K appear before local maxima with respect to the radial
height function. In fact, this definition makes sense with respect to a Heegaard splitting
of any 3–manifold: if M admits a Heegaard splitting along the surface Σ, then K ⊂ M is
in b–bridge position if K ∩ Σ is 2b discrete points, and K ∩ (M \ Σ) consists of boundary
parallel arcs.
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Meier and Zupan showed that knotted surfaces in 4–manifolds admit analogous decom-
positions with respect to a trisection. After giving the basic definitions, we will sketch how
to modify their existence proof for non-orientable 4–manifolds, and give some examples.
Hughes, Kim and Miller have shown that bridge trisections for a fixed surface in a trisected
4–manifold are unique up to a suitable perturbation operation. Similarly, we will show how
their proof can be modified to work in the non-orientable setting.

4.4.1 Definitions and diagrams

A collection D of properly embedded disks in a handlebody X is called trivial if the disks
in D are simultaneously boundary parallel. The following lemma is well-known in the
orientable case, but we give a short proof here.

Lemma 4.4.2. Suppose that X is a (possibly non-orientable) 4–dimensional handlebody,
and that U ⊂ ∂X is an unlink. Then L bounds a unique collection of boundary-parallel
disks in X up to isotopy rel L.

Proof. Suppose that D and D′ are two sets of disks with L = ∂D = ∂D′, and let S ⊂ ∂X
be a collection of 2–spheres with the property that surgering ∂X along S yields S3. Since
L is an unlink, we may isotope S so that S ∩ L = ∅.

If R ⊂ ∂X is any 2–sphere, we can attach 3–and 4–handles to ∂X × I to build a
4–manifold X ′ ∼= X with ∂X ′ and ∂X identified so that R bounds a 3–ball into X ′. We
conclude from [51] or Theorem 3.1.1 that there is a diffeomorphism rel boundary from X ′

to X, so R also bounds a 3–ball in X.

Using this fact, a standard innermost argument (using the fact that any 2–sphere
bounds a ball in X) shows that we may assume that S ∩ D = S ∩ D′ = ∅. Thus by
cutting along S, we reduce to the case that X ∼= B4. The result now follows from the
corresponding result of Livingston in [52].

Definition 4.4.3 ([58]). Let X be a closed, connected 4–manifold, and suppose that X
has a trisection T with sectors X1, X2, and X3. Let S ⊂ X be a smoothly embedded
surface. A bridge trisection of S with respect to T is a decomposition (X,S) = (X1,D1)∪
(X2,D2) ∪ (X3,D3), where

• Di is a collection of ci trivial (boundary parallel) disks;

• τij = Di ∩ Dj is a collection of trivial (boundary parallel) arcs in Xi ∩Xj;

• X1 ∩X2 ∩X3 ∩ S is a collection of 2b points.
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Such a decomposition is called a (b; c1, c2, c3)–bridge trisection of S with respect to T , or
if c = c1 = c2 = c3, simply a (b; c)–bridge trisection.

Note that each pairwise union τij ∪ τjk is an unlink in bridge position with respect to
the Heegaard splitting X1 ∩X2 ∩X3 of ∂Xi.

Example 4.4.4. For a brief illustration of this idea, consider the decomposition in Figure
4.17 (a), which describes three trivial tangles in 3-balls. Since the pairwise union of any
two tangles is an unlink in S3, this describes a bridge trisection of some surface with respect
to the trivial (0; 0)–trisection of S4.

One can easily check that this surface is orientable and has Euler characteristic equal
to 0, and so this diagram describes a torus embedded in S4. In fact, all tangles have been
arranged to have no crossings, and so this torus is unknotted.

Figure 4.17: In (a), a schematic of a bridge trisection of an unknotted torus in S4. In (b),
a shadow diagram for this same bridge trisection.

Note. If S is a surface in (b; c1, c2, c3)–bridge position, then from the obvious cell decom-
position induced on S we see that χ(S) = c1 + c2 + c3 − b.

A shadow for a trivial arc t in a handlebody H is an embedded arc s ⊂ ∂H, with the
property that t and s are isotopic in H rel endpoints. A collection of trivial arcs may
admit non-isotopic sets of shadows (in ∂H), but these are related by slides of one shadow
over another and over curves bounding disks into H. Unless H is a 3–ball, it is usually
much easier to draw shadows for trivial arcs in ∂H than to try to depict a tangle in H. A
shadow diagram on S2 for the unknotted torus is given in Figure 4.17 (b).

Trisection diagrams can be augmented to also record information about a bridge tri-
section.

Definition 4.4.5 ([58]). Let X be a closed, connected 4–manifold, and suppose that
S ⊂ X is a smoothly embedded surface. A (g, ki; b, ci)-bridge trisection diagram (or shadow
diagram) for S ⊂ X is a diagram (Σg;α, β, γ; sα, sβ, sγ), where:
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• (Σ;α, β, γ) is a (g; ki)–trisection diagram with 2b additional marked points;

• The arcs sα,sβ, and sγ are three collections of b shadows for trivial tangles tα ⊂ Hα,
tβ ⊂ Hβ, and tγ ⊂ Hγ, respectively;

• The pairwise unions tα ∪ tβ, tβ ∪ tγ, and tγ ∪ tα are c1–, c2–, and c3– component
unlinks.

By Lemma 4.4.2, the trivial disks in a bridge trisection are completely determined
by the tangles tij (or equivalently, shadows sij ⊂ Σ), and so this information completely
describes a surface S obtained by capping off each collection of unlinks with disk systems.

When studying knotted surfaces in S4, it is common practice to use tangle diagrams
(each tangle is a subset of B3, and so can be drawn as such). When working with more
complicated trisections, we are forced to use shadow diagrams.

In [58], Meier and Zupan gave a proof of the existence of bridge trisections for surfaces
in any trisected oriented 4–manifold. They also gave a proof of uniqueness in the following
precise sense for bridge trisections in S4. The general proof of uniqueness in this sense is
due to Hughes-Kim-Miller [33]. We will refer the reader to [58] and [33] for more details.
We state this theorem here with no assumptions on orientability.

Theorem 4.4.6. Let T be a trisection of a closed, connected 4–manifold X, and let S ⊂ X
a smoothly embedded surface. Then S may be isotoped to be in bridge trisected position
with respect to T . Moreover, if S ′ is isotopic to S, then any two bridge trisections for S
and S ′ become isotopic after some sequence of perturbations and de-perturbations.

We define the perturbation operation in §4.4.3, and sketch of a proof of this theorem.

4.4.2 Existence and examples

The existence of bridge trisections follows from the existence of banded unlink diagrams,
which we will briefly outline here.

Definition 4.4.7. Let X be a closed and connected 4–manifold, and let S ⊂ X a smoothly
embedded surface. A function f : X → R is a Morse function for the pair (X,S) if f is
Morse, and f |S : S → R is also Morse. Moreover, f is called self-indexing if the image of
all index k critical points for f are contained in f−1(k). We will always assume that f has
a unique index 0 critical points and a unique index 4 critical point.
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By a mild isotopy of S in X, f |S may be assumed to be Morse, so we will always work
with a Morse function of the pair (X,S). When necessary, we will also fix a gradient-like
vector field ∇ for f .

The proof of existence of trisections (Theorem 2.1.4) shows that a Morse function
f : X → R induces a trisection T of X. In particular, we chose a Heegaard splitting of
∂X[3/2] = H ∪Σ H

′ so that the attaching link L for the 2–handles of X is a core of H. The
trisection is then defined by:

• X1 = X[0,3/2] ∪H ′[3/2,2];

• X2 = H[3/2,5/2] = X \ (X1 ∪X3);

• X3 = H ′[2,5/2] ∪X[5/2,4].

In what follows, when we consider a trisection of X, we will implicitly assume it is the
one induced by a specified Morse function in this way. See Chapter 2 for more details.

By an ambient isotopy of S away from the critical points of f , we can arrange for f |S
to be self-indexing. We will additionally push all index 1 critical points of f |S into X[3/2].
This is essentially the definition of a surface in banded unlink position; for more details
see [33] or [58].

Definition 4.4.8. Let X be a 4–manifold, and let f : X → R be a self-indexing Morse
function. Let S ⊂ X be a smoothly embedded surface. We say that S is in banded unlink
position if:

• f(S) = [1/2, 5/2];

• S[1/2] ∩X[1/2] and S[5/2] ∩X[5/2] are collections of disjointly embedded disks;

• S is vertical on (1/2, 3/2) and (3/2, 5/2), i.e. S ∩ X(1/2,3/2) = S(1/2,3/2) and S ∩
X(3/2,5/2) = S(3/2,5/2);

• S[3/2] is a banded unlink (L, b), which is disjoint from the descending spheres of the
index 2 critical points of f .

A banded unlink is an unlink L ⊂ X[3/2] together with bands b = {b1, ..., bm} (corre-
sponding to the index 1 critical points for S), attached with the property that resolving
L along b is another unlink Lb ⊂ X[3/2]. Here, a band attached to a link L is a copy of
[0, 1]× [−ε, ε] meeting L along {0, 1}× [−ε, ε]. A banded unlink diagram is a Kirby diagram
K for X, together with L and b1, . . . , bm. By Lemma 4.4.2, the triple (K, L, b) describes
S ⊂ X. In [33], the authors study banded unlink diagrams in detail, and give a complete
set of moves relating such diagrams.
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Example 4.4.9. Figure 4.18 illustrates two very basic examples of banded unlink dia-
grams. On the left, we have a banded unlink diagram for one of two standard “unknotted”
embeddings of an RP2 ⊂ S4. The result of resolving the band is still an unknot in S3 and so
bounds a disk. On the right, we have a banded unlink diagram describing CP1 ⊂ CP2. In
this case, the unlink bounds the obvious disk in S3 as well as the core of the (+1)–framed
2–handle. For clarity, the unlinks in a banded unlink diagram will be coloured blue, and
the bands will be colored red.

Figure 4.18: In (a), a banded unlink diagram for the standard embedding of RP2 in S4 with
Euler number +2. In (b), a banded unlink diagram for a 2–sphere isotopic to CP1 ⊂ CP2.

Figure 4.19 illustrates two banded unlink diagrams in non-orientable 4–manifolds. On
the left, we have a banded unlink diagram for RP2 ⊂ RP4. Note that there is always an
induced handle decomposition for RPk ⊂ RPn obtained from the k–dimensional cores of
each n–dimensional handle. On the right, we have a banded unlink diagram for S2×{pt} ⊂
S2 × RP2.

In each case, the unknot bounds a disk in the 0–handle. After possibly resolving a
band, it also bounds a disk in the remaining higher index handles.

If a surface S ⊂ X is in banded unlink position, we can further modify it so that it lies
in bridge trisected position with respect to the induced trisection as in Definition 4.4.5. A
banded unlink for S ⊂ X is in bridge position with respect to the trisection T if:

• L ⊂ X[3/2] is in bridge position with respect to the central surface Σ ⊂ X[3/2];

• Each band is surface-framed with respect to Σ, i.e. for each i, bi ∩ Σ is a single arc;

• The bands are dual to a set of shadows sα for L ∩H, i.e. sα and b intersect only at
their ends, and sα ∪ (Σ ∩ bi) has no closed components.

This position is so named because it induces a bridge trisection of S with respect to T .
Meier and Zupan shows that every banded unlink decomposition of S can be upgraded to
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Figure 4.19: In (a), a banded unlink diagram for RP2 ⊂ RP4. In (b), a banded unlink
diagram describing S2 × {pt} ⊂ S2 ∼× RP2.

be in bridge position, and so proved the following theorem. We state it with no assumptions
about orientability.

Theorem 4.4.10 ([58]). Suppose that X is a 4–manifold and f : X → R is a self-indexing
Morse function. If S ⊂ X is a smoothly embedded surface, then S may be isotoped to lie
in bridge position with respect to the trisection T induced by f .

While Meier and Zupan only considered orientable manifolds, their proof does not use
any orientability assumptions and so we will only sketch the proof. First, represent S by
a banded unlink, and then further modify it to be in bridge position. Then, if S ⊂ X is in
banded unlink/bridge position as above, pushing the bands bi into H ⊂ ∂X[3/2] produces
a bridge trisection of S with respect to T [58, Lemma 3.1]. In other words, for each i
the intersections Di = S ∩ Xi are trivial disk systems. It is easy to see that D1 and D3

are trivial disk systems, and the duality condition guarantees that D2 is also a trivial disk
system. Similarly, tα and tβ are trivial tangles by construction, and the duality condition
guarantees that tγ is also a trivial tangle.

Given a shadow diagram for S ⊂ X, we can use the following lemma to extract a
banded unlink diagram together with a Kirby diagram for X.

Lemma 4.4.11. Suppose that X is a 4–manifold and S ⊂ X is a smoothly embedded
surface described by a (g, ki; b, ci)-bridge trisection diagram (Σ;α, β, γ; sα, sβ, sγ). Then we
may extract a banded unlink diagram (K, L, b) for S ⊂ X via the following procedure:

1. Standardize the α and β curves. Standardize the shadows so that sα∪sγ is a collection
of c2 embedded closed curves on Σ.
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2. Produce a Kirby diagram K from (Σ;α, β, γ) (e.g. see Chapter 3 or [24]). Moreover,
let L be the link obtained by pushing the arcs sα and sβ into Hα and Hβ, respectively.

3. Let {s′1, . . . , s′c2} be a sub-collection of arcs from sγ (one from each component of sα∪
sγ). Add b−c2 surface-framed arcs b = {bi} (bands) to L by pushing sγ−{s′1, . . . , s′c2}
into Hα.

If b = 1, then the resulting diagram is called a doubly pointed trisection diagram in
analogy with doubly pointed Heegaard diagrams for knots in 3–manifolds, since S ∩ Σ
consists of only two points. We need only draw these two points in a shadow diagram,
since there is a unique way to connect them in the complement of each cut system. Note
that in this case, no bands are added in Step 3, and a banded unlink diagram for the
resulting 2–sphere may be obtained by simply pushing sα ∪ sβ (an unknot) into Hα ∪Hβ.

The proof of Lemma 4.4.11 is almost the same as [56, Lemma 3.3], but with one
exception.

A key step in the proof of [58, Proposition 5.1] on the correspondence between banded
unlink diagrams and bridge trisections is the fact every bridge splitting of the n–component
unlink in #kS2 × S1 is standard. Such a bridge splitting is called standard if it is a
perturbation of n copies of the 1–bridge splitting of the unlink in S3 stabilized with k
copies of S2 × S1. Since this result relies on work of Bachman-Schleimer [5] which is only
stated for the orientable case, we give a proof of this fact.

Lemma 4.4.12. Let F be a Heegaard surface for #kS2 ∼× S1, and suppose that L ⊂
#kS2 ∼× S1 is an n–component unlink. Assume that L is in bridge position with respect to
F . Then L can be deperturbed with respect to F until each component of L is in 1–bridge
position.

Proof. If M ∼= S3, then this follows from [58]. As usual, we will proceed by induction and
an application of Haken’s lemma. Fix some m > 0, and denote M = #mS2 ∼×S1. Suppose
that the claim holds whenever k < m. Further, assume the claim is true in #mS2 ∼× S1 for
any unlink of fewer than n components.

Note that M \ν(L) ∼= #mS2 ∼×S1#n(S1×D2), and that each component of M \(ν(F )∪
ν(L)) is a compression body.

By Haken’s lemma for 3–manifolds with boundary (see e.g. [6] or [11], or Chapter II
of [37]2), there is an essential 2–sphere S in M \L that intersects F in a connected simple

2The proof is only for closed manifolds, but the relative case is similar. Orientability does not play a
role in the proof.
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closed curve. Surger M along S (i.e. delete ν(S) and replace it with two disjoint 3–balls).
There is a naturally induced Heegaard splitting of the resulting manifold M ′.

If M ′ is connected, then it is homeomorphic to #m−1S2 × S1 or #m−1S2 ∼× S1. In the
first case, the claim holds by [58]; in the second it holds by inductive hypothesis.

On the other hand, suppose that M ′ = M ′
1 tM ′

2 is disconnected. Let Li = M ′
i ∩ L.

Since S is essential in M \ L, for each i we have either:

• M ′
i
∼= #kS2 × S1 for k < m,

• M ′
i
∼= #kS2 ∼× S1 for k < m,

• Li has fewer than n components.

In any case, the claim holds in M ′
1 and M ′

2 by [58] or the inductive hypothesis.

Example 4.4.13. As an application, we convert shadow diagrams for RP2 ⊂ RP4 and
S2 × {pt} ⊂ S2 ∼× RP2 into banded unlink diagrams using Lemma 4.4.11, and so verify
that they are correct. To obtain banded unlink diagrams, push sα and sβ into Hα and Hβ

respectively. Then add a band corresponding to a framed arc from sγ (in Figure 4.20 (b)
no bands are added).

Figure 4.20: In (a), a shadow diagram describing RP2 ⊂ RP4, obtained by arranging a
banded unlink diagram to be in bridge position with respect to a Heegaard surface induced
by the (2; 1)–trisection of RP4. In (b), a shadow diagram for S2 × {pt} ⊂ S2 ∼× RP2.
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4.4.3 Perturbation and uniqueness

There is a natural way to perturb a knot in bridge position (see Figure 4.22). Similarly,
there is an analogous operation on surfaces in bridge position, which is illustrated in Figure
4.21. The definition is somewhat technical, but simply describes this illustration.

Figure 4.21: A schematic illustrating the process of perturbing a bridge trisection. In
short, one does a Whitney move on a disk ∆ ⊂ X1 satisfying certain conditions. Under
these conditions, the resulting surface is still in bridge position.

Definition 4.4.14 ([56],[58]). Let T be a trisection of a 4–manifold X, with sectors X1,
X2, and X3. Let Σ = X1∩X2∩X3 and suppose that S ⊂ X is a surface in bridge position
with respect to T . Since t1 = S∩X3∩X1 and t2 = S∩X1∩X2 cobound boundary parallel
disks in X1, it follows that t1 and t2 have shadows s1 and s2 (respectively) in the central
surface Σ = ∂(X3∩X1) = ∂(X1∩X2) that are disjoint in their interiors, and so that s1∪s2

is an unlink bounding disks D1, . . . , Dc in Σ. Consequently S ∩X1 is isotopic (rel ∂X1) to
D1 t · · · tDc.
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Let ∆ be a disk in X1 whose boundary can be decomposed into three arcs δ1, δ2, δ3 so
that the following hold:

• The arc δ1 is contained in X3 ∩ X1 and has one endpoint on S and the other on
Σ. Moreover, projecting δ1 to Σ yields an embedded arc with one endpoint on the
interior of s1, one endpoint on Σ \ S, and the interior of δ1 disjoint from s1.

• The arc δ2 is contained in S ∩X1 ∩X2 and has one endpoint on S and the other on
Σ. Moreover, projecting δ2 to Σ yields an embedded arc with one endpoint on the
interior of s2, one endpoint on Σ \ S, and the interior of δ2 disjoint from s2,

• The arc δ3 is contained in S, and properly embedded in X1.

Now let S ′ be the surface obtained by compressing S along ∆. That is, frame ∆ so that
(δ1 ∪ δ2)× I ⊂ ∂X1 and δ3× I ⊂ S, and then let S ′ be the result of performing a Whitney
move on S along ∆; see Figure 4.21. We say that S ′ is obtained from S by perturbation,
and S is obtained from S ′ by deperturbation.

The roles of X1, X2, and X3 may be permuted, i.e. we can obtain S ′ from compressing
a disk in either X2 or X3. We still say S ′ is obtained from S by perturbation and that S
is obtained from S ′ by deperturbation.

The point of this definition is to produce a surface which is still in bridge position.

Proposition 4.4.15. [56, Lemma 5.2],[58] Let T be a trisection of a 4–manifold X, with
sectors X1, X2, and X3. Suppose S ⊂ X is a surface in bridge position with respect to T ,
and that S ′ is obtained from S by perturbation. Then S ′ is in bridge position with respect
to T .

Perturbation of bridge trisections is (conveniently) very similar to perturbation of a
banded link in bridge position (see Figure 4.22). There is a correspondence between bridge
trisections of a surface S and bridge-split banded unlink diagrams of S [58],[33], in which
the two notions of perturbations agree.

We will now discuss Theorem 4.4.6. The proof in [33] in the orientable case works
almost verbatim. There, the authors use the correspondence between bridge trisections and
banded unlink diagrams, and explicitly show how to induce any band move on a banded
unlink via perturbations and deperturbations on the corresponding bridge trisection. In
particular, they show that any two bridge trisections corresponding to isotopic banded
unlinks are equivalent after a sequence of perturbations and deperturbations. However,
the final step of their proof requires the following additional lemma in the non-orientable
case.
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Figure 4.22: Right: a banded link (L, b) in a Heegaard split 3–manifold H1 ∪ H2 is in
bridge position with respect to H1 ∩H2 if each (L, b) ∩Hi is isotopic to this picture. Left:
perturbing a banded link in bridge position.

Lemma 4.4.16. Let M be a non-orientable 3–dimensional handlebody of genus g, and let
M = H1 ∪H2, where H1

∼= Σ× I is a collar neighborhood of ∂M and H2 = M \H1.

Let T be a boundary-parallel tangle in M that is in bridge position with respect to
H1 ∩H2, (i.e. the closure of any component of T \ (H1 ∩H2) is an arc properly embedded
in H1 or H2 which is either parallel to an arc in H1 ∩ H2 or of the form {pt} × I in
H1 = Σ× I).

Then after a finite sequence of deperturbations applied to T and an isotopy fixing H1∩H2

setwise, T can be taken to intersect H1 only in arcs of the form {pt} × I.

When M is an orientable handlebody, 4.4.16 is a theorem of Hayashi and Shimokawa
[31] (also see [73]). Their proof involves reducing the general case to when M is a 3–ball.
For completeness, we repeat that argument for non-orientable handlebodies.

Proof of Lemma 4.4.16. Once again, the proof proceeds by induction and an application
of Haken’s lemma. If M is a 3–ball, the claim follows from [31]. Assume that the claim
holds whenever the genus of M is less than g.

Observe that the claim is trivially true when T is the empty tangle. Further assume
that the claim holds whenever T has fewer than n components for some fixed n > 0, and
assume that T is an n-component tangle.

Since T is boundary parallel, M \ ν(T ) is a non-orientable handlebody. By Haken’s
lemma for 3–manifolds with boundary (as in Lemma 4.4.12), there exists a disk D neatly
embedded in M so that:

• D is disjoint from T ,
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• D intersects H1 ∩H2 in a connected simple closed curve,

• D is separating and each component of M \ ν(D) is either not a 3–ball or contains
at least one component of T .

Let M1 and M2 be the components of M \ ν(D), and Ti = Mi ∩ T . Note that Mi is a
handlebody. Let Fi be a surface in Mi parallel to the boundary of Mi, with Fi agreeing with
H1 ∩H2 away from D. Then Ti is in bridge position in Mi with respect to Fi. Moreover,
for each i, either the genus of Mi is less than g (and Mi may be orientable) or Ti is a tangle
of fewer than n components. Inductively, Ti can be deperturbed relative to Fi (and hence
relative to H1 ∩H2 since Fi agrees with H1 ∩H2 near Ti), to intersect H1 only in arcs of
the form {pt} × I as desired.

Using this lemma, we give a sketch of the proof of Theorem 4.4.6.

Sketch of the proof of Theorem 4.4.6. Suppose that S1 and S2 are isotopic surfaces that
are each in bridge position with respect to a trisection T of a closed non-orientable 4–
manifold X. Recall that there is a correspondence between bridge trisections of surfaces
with respect to T and banded unlink diagrams in bridge position in a Heegaard-split Kirby
diagram K related to T . By [33], two banded unlink diagrams of a surface in a 4–manifold
with respect to the same Kirby diagram are related by a sequence of band moves and
isotopy. In [56] and [33], it is shown how to achieve band moves of the banded unlinks
corresponding to S1 and S2 via a sequence of perturbations and deperturbations of S1 and
S2. Thus, we can assume that the associated banded unlinks for S1 and S2 are isotopic.

Now consider the following perspective of the situation, in which we have isotoped
the two banded unlinks to agree. We have a banded unlink (L, b) in #S2 ∼× S1 and two
Heegaard splittings H1 ∪F H2 = H ′1 ∪F ′ H ′2 of #S2 ∼× S1 so that (L, b) is in bridge position
with respect to both splittings. We want to prove that F and F ′ become isotopic as bridge
surfaces for (L, b) after a finite sequence of perturbations; we will use an argument from
[73, Theorem 2.2].

Let C1 and C ′2 be wedges of circles so that H1, H
′
2 deformation retract on C1, C

′
2,

respectively. Generically, we can take C1 and C ′2 to be disjoint. By isotoping F to lie
close to C1 and F ′ to lie close to C ′2, we may therefore take F and F ′ to be disjoint, with
H1 and H ′2 disjoint. Let W := H ′1 \ H1 = H2 \ H ′2. Then W is homeomorphic to F × I.
Let F ∗ = F × {1/2} ⊂ W . By Lemma 4.4.16 applied to the splitting (W,H1) of W ∪H1

and the tangle L∩ (W ∪H1), we find that F ∗ is obtained from F by perturbation. On the
other hand, by Lemma 4.4.16 applied to the splitting (W,H ′2) of W ∪ H ′2 and the tangle
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L ∩ (W ∪H ′2), we find that F ∗ is obtained from F ′ by perturbation (without moving b, as
in Figure 4.22). This completes the proof.
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1968.

[72] C. T. C. Wall. On simply-connected 4–manifolds. Journal of the London Mathematical
Society, 1(1):141–149, 1964.

[73] Alexander Zupan. Bridge and pants complexities of knots. Journal of the London
Mathematical Society, 87(1):43–68, 2013.

97


	List of Figures
	Decompositions of smooth manifolds
	Morse functions and handle decompositions
	Heegaard splittings of 3–manifolds
	Heegaard diagrams of 3–manifolds
	Open book decompositions

	Trisections of 4–manifolds
	Trisections of 4–manifolds
	Trisection diagrams and examples
	Special kinds of trisections
	Relative trisections
	Bridge trisections


	Diffeomorphisms of 1–handlebodies
	Gluing non-orientable 1–handlebodies
	Applications
	Diffeomorphisms and splittings of twisted 2–sphere bundles
	Kirby diagrams for non-orientable 4–manifolds


	Trisections of non-orientable 4–manifolds
	Existence, uniqueness, and diagrams
	Examples
	Relative trisections
	Compression bodies and definitions
	Gluing relative trisections
	Diagrams for relative trisections
	Some new examples
	Gluing diagrams

	Bridge trisections
	Definitions and diagrams
	Existence and examples
	Perturbation and uniqueness


	References

