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Abstract

We investigate the support of the capacity-achieving input distribution to a vector-valued
Gaussian noise channel. The input is subject to a radial even-moment constraint and, in some
cases, is additionally restricted to a given compact subset of Rn. Unlike much of the prior work
in this field, the noise components are permitted to have different variances and the compact
input alphabet is not necessarily a ball. Therefore, the problem considered here is not limited to
being spherically symmetric, which forces the analysis to be done in n dimensions.

In contrast to a commonly held belief, we demonstrate that the n-dimensional (real-analytic)
Identity Theorem can be used to obtain results in a multivariate setting. In particular, it is de-
termined that when the even-moment constraint is greater than n, or when the input alphabet is
compact, the capacity-achieving distribution’s support has Lebesgue measure 0 and is nowhere
dense in Rn. An alternate proof of this result is then given by exploiting the geometry of the zero
set of a real-analytic function. Furthermore, this latter approach is used to show that the support
is composed of a countable union of submanifolds, each with dimension n− 1 or less. In the
compact case, the support is a finite union of submanifolds.
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Chapter 1

Introduction

Noise is known to impede transmissions from sender to receiver, limiting the rate at which in-
formation can be sent. Given an additive stochastic model for the noise, the following question
arises: how quickly can information be reliably transmitted through the channel? Unsurprisingly,
the answer to this question depends also on the limitations of the transmitter. If arbitrary input
signals are allowed, then under an additive Gaussian noise model, the rate of reliable information
transfer is unlimited [10]. However, practical transmitters are unable to produce arbitrary signals,
so the channel model must be adapted to include input constraints.

The scalar Additive White Gaussian Noise (AWGN) channel under an average power con-
straint is a classic problem. The optimal input distribution is known to be a zero-mean Gaussian
distribution with variance corresponding to the maximum allowable average input power [2, 10].
However, since the output of amplifiers used in transmitters is severely distorted when the input
is too large, an unbounded input is impractical [3, 8, 22]. For this reason, in addition to an av-
erage power constraint, there is interest in considering channels with bounded input amplitudes.
Inputs smaller than a certain threshold can also be difficult for transmitters to produce, further
motivating restriction of inputs to more general compact sets.

In many situations, it is necessary to consider vector-valued channels. For instance, quadra-
ture channels use complex-valued inputs and Multiple Input Multiple Output (MIMO) inputs
can have n complex components (or equivalently, 2n real components). Additionally, noise with
memory can be represented by correlated noise components in a vector-valued channel.

Under average power constraints, the optimal input to a channel with additive multivariate
Gaussian noise is also multivariate Gaussian [10]. The optimal average power allocation amongst
the input components is given by so-called “water-filling”. When the allowable average power
is small, power is committed to the component with the lowest noise variance. As the average
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power increases, water-filling seeks to allocate average power such that the output variance is
equal across all components. Amplifier saturation and distortion is an issue for the practicality
of this input as well, leading to the consideration of inputs restricted to compact subsets of Rn.

This thesis studies vector-valued inputs subject to additive multivariate Gaussian noise with
components that are not necessarily identically distributed. The input is subject to an average
even moment radial constraint, which is a generalization of the average power constraint. For
example, since a second moment constraint limits variance, a 4th moment constraint limits the
variance of the variance. The case of the input also being restricted to an arbitrary compact subset
of Rn is considered as well. Note that, due to technical reasons, if the input is allowed to take
arbitrary values in Rn, provided it satisfies a 2k’th moment constraint, then only the case 2k > n
is considered.

1.1 Achievable Rates and Capacity

Since noise and transmitter limitations are persistent features of a given channel, it was thought
prior to the 1940’s that a transmitted message could not be received error-free with arbitrarily
high probability [10]. Claude Shannon introduced the concept of adding redundancy to a mes-
sage to make it less susceptible to channel noise. The ratio of information bits to total uses of
the channel is called the rate. Suppose a transmitter wishes to send an arbitrary message from
a set indexed by {1, . . . ,M} at rate R over a channel that accepts inputs from the set X . Since
log2 M information bits are needed to describe an index from 1 to M, n = log2 M/R channel uses
are required. Therefore, rather than send a message directly, an associated codeword consisting
of n channel symbols from X is sent.

To utilize codewords, the transmitter and receiver prearrange a deterministic mapping xn(·)
of the M messages to M codewords. Each codeword consists of n channel symbols, so each
codeword belongs to X n. The mapping xn(·), known as an encoder, is then defined by

xn : {1, . . . ,M}→X n (1.1)
w 7→ xn(w). (1.2)

Therefore, the transmitter and receiver agree on a one-to-one correspondence from M messages
to the index set {1, . . . ,M} and from {1, . . . ,M} to M codewords in X n.

To send message w, the transmitter encodes it as xn(w). The sequence of symbols Y n(w),
a version of xn(w) possibly corrupted by noise, arrives at the receiver. The receiver uses a de-
terministic function known as a decoder to make a best guess ŵ of which index w was sent. If
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Figure 1.1: Channel Diagram

ŵ 6=w, then a transmission error is said to have taken place. In general, since the user’s behaviour
is unknown, message selection and the input codeword are treated as random variables. With the
random variable W ∈ {1, . . . ,M} representing the message index, the input is

Xn = (X1, . . . ,Xn) = (xn
1(W ), . . . ,xn

n(W )). (1.3)

The output of the channel is Y n = Y n(W ) and the message is decoded as Ŵ = Ŵ (Y n). Since the
encoding from {1, . . . ,M} to X n is an injective function, the sequence W → Xn→ Y n forms a
Markov chain. That is, Y n is conditionally independent of W given Xn. The channel diagram is
illustrated in Figure 1.1.

A rate R is called achievable over a channel if there exists a sequence of codes with increasing
block length n and rate R for which the probability of error P{W 6= Ŵ (Y n)} tends to 0 as n goes to
infinity. Shannon showed that for any channel, modeled by the probabilistic relationship between
input and output, there exists a fundamental limit to the rate at which reliable communication can
be achieved. This limit is called the channel capacity and is denoted by C.

Shannon’s Channel Coding Theorem shows that each rate R < C is achievable. It uses the
Weak Law of Large Numbers to show that for each ε > 0, provided n is sufficiently large, there
exists a coding scheme of rate R for which the probability of error is less than ε . Conversely, any
achievable rate must satisfy R ≤ C. Furthermore, Shannon expressed the capacity as the value
obtained by maximizing the mutual information between the channel input Xn and output Y n

[10].

Mutual information is closely related to entropy, which measures the average information
one gains by observing the outcome of a discrete random variable. The differential entropy is
the analogue of entropy for continuous random variables with densities. The channel model con-
sidered in this thesis uses continuous random variables, so our focus is restricted to differential
entropy. Section 1.2 introduces mutual information and differential entropy formally.
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1.2 Information Measures

The definitions of basic information measures of continuous random variables with densities
are briefly recalled here. Let X be a continuous random variable with density pX on X ⊆ R.
Let Y be a real-valued random variable such that X and Y have joint density pX ,Y = pX pY |X on
X ×Y . Denote the marginal density of Y by p(·; pX) to make explicit its dependence on pX for
fixed pY |X . For the purposes of this introduction, it is assumed that each of the integrals in the
following discussion are finite.

The differential entropy of X is defined as

h(X),−
∫

x∈X
pX(x) ln pX(x)dx. (1.4)

Differential entropy can be defined with logarithms of any base, resulting in units that differ from
each other by constant factors. A base of e is used in this thesis, corresponding to measurement
in nats. Since differential entropy is a function only of pX , it can also be expressed as h(pX).

The differential entropy of Y conditioned on a particular value x ∈X is given by

h(Y | X = x),−
∫

y∈Y
pY |X(y | x) ln pY |X(y | x)dy. (1.5)

This quantity averaged over X is called the conditional differential entropy of Y given X :

h(Y | X),−
∫
X

pX(x)h(Y | X = x)dx (1.6)

=−
∫
(x,y)∈X ×Y

pX ,Y (x,y) ln pY |X(y | x)dxdy. (1.7)

The mutual information between X and Y is defined as

I(X ;Y ) =
∫
X ×Y

pX ,Y (x,y) ln
pX ,Y (x,y)

pX(x)p(y; pX)
dxdy. (1.8)

The assumption of an input density pX is sometimes too restrictive, as it is in this thesis. Let
X have distribution F and suppose that Y has a density induced by F given by

p(y;F) =
∫
X

pY |X(y | x)dF(x). (1.9)

When pY |X is sufficiently well-behaved, the mutual information can be expressed as a function
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of F given by

I(F) = I(X ;Y ) (1.10)

=
∫
Y

∫
X

pY |X(y | x) ln
pY |X(y | x)

p(y;F)
dF(x)dy (1.11)

Mutual information can then be related to differential entropy by

I(F) = h(p(·;F))−h(Y | X). (1.12)

Consider the AWGN channel given by

Y = X +N, (1.13)

where N ∼N (0,σ2) is independent of X . For any x,y ∈ R, the conditional density of Y given
X is pY |X(y | x) = pN(y− x). Furthermore,

h(Y | X) = h(X +N | X) (1.14)

=−
∫
X

∫
∞

−∞

pN+X |X(n+ x | x) ln pN+X |X(n+ x | x)dndF(x) (1.15)

=−
∫
X

∫
∞

−∞

pN|X(n | x) ln pN|X(n | x)dndF(x) (1.16)

=−
∫
X

∫
∞

−∞

pN(n) ln pN(n)dndF(x) (1.17)

=
∫
X

h(N)dF(x) (1.18)

= h(N), (1.19)

where (1.17) is due to the independence of X and N. The differential entropy of a Gaussian
random variable with variance σ2 is 1

2 ln2πeσ2 nats and (1.12) becomes

I(F) = h(p(·;F))− 1
2

ln2πeσ
2. (1.20)
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1.3 Channel Capacity in Terms of Information Measures

With this understanding of information measures, the discussion regarding the Channel Coding
Theorem can be continued. Consider a code of length n transmitted over a memoryless AWGN
channel – i.e., for any xn,yn ∈ Rn,

pY n|Xn(yn | xn) =
n

∏
i=1

pY |X(yi | xi) (1.21)

=
n

∏
i=1

pN(yi− xi). (1.22)

Average and peak power constraints on the input are modeled by restricting input distribu-
tions to the set

P(A ,a) = {F ∈F (R) | F(A ) = 1,EX∼F [‖X‖2]≤ a}, (1.23)

where F (R) is the set of measures on R, A ⊆R and a > 0. To impose a peak power constraint,
A is often chosen to be compact.

The Channel Coding Theorem states that the capacity C of this channel is given by the opti-
mization problem [2, 10]

C = sup
F∈P(A ,a)

I(F). (1.24)

By (1.20), this can be rewritten as

C = sup
F∈P(A ,a)

h(p(·;F))− 1
2

ln2πeσ
2 (1.25)

It is well known that when A = R, the capacity-achieving distribution for (1.25) is X ∼
N (0,a) [2, 10]. When A is compact, this choice of X is inadmissible and the problem becomes
far less trivial [28].

A generalization of the scalar AWGN channel is to vector-valued channels. This is motivated
by quadrature modulators as well as Multiple Input Multiple Output channels, where multiple
antenna are utilized at the transmitter and receiver. The vector AWGN channel takes inputs
X ∈ Rn and generates outputs according to

Y =AX+N , (1.26)
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where A is an invertible matrix known to the receiver and N ∼N (0,Σ). For some a > 0, the
input is subject to

E[‖X‖2]≤ a. (1.27)

The extensions of the information measures to vector-valued random variables are as expected
and consist of integration over subsets of Rn, rather than R. When Σ is non-degenerate,

h(N) =
1
2

ln |2πeΣ| (1.28)

and the capacity-achieving input is known to be a multivariate Gaussian distribution [10].

This thesis studies the channel given by (1.26), with input possibly restricted to compact sets,
and under the constraint

E[‖X‖2k]≤ a, (1.29)

where k ∈ Z>0 and a > 0.

Chapter 2 summarizes the related prior work and Chapter 3 provides the main results. Section
3.1 frames the capacity-achieving distribution as the solution to a convex optimization problem.
Furthermore, it characterizes the support of the capacity-achieving distribution F∗ in terms of the
zeros of a particular analytic function, denoted as s(·;F∗). Section 3.2 uses Hilbert space theory
and Hermite polynomials to simplify the expression for s(·;F∗). Section 3.3 shows through con-
tradiction that s(·;F∗) is not constant, which implies that the support of the capacity-achieving
distribution is not all of Rn. However, the main utility of this observation is as an intermediary
result for Sections 3.4 and 3.5. Section 3.4 uses the n-dimensional real-analytic Identity Theo-
rem to show that the support of the capacity-achieving distribution is nowhere dense in Rn and
has Lebesgue measure 0. Section 3.5 shows that the support is contained in a countable union
of i-dimensional, i ∈ {0, . . . ,n−1}, submanifolds. In the compact case, this union is finite. The
geometric results are then used to provide alternate proofs for the results of Section 3.4.

The appendices are used to provide technical support for the discussions of Chapter 3. Ap-
pendix A recalls theorems from convex optimization. It also establishes the relationship between
the support of the capacity-achieving distribution and the zeros of s(·;F∗). Appendix B shows
that the feasible set is convex and compact. Appendix C establishes bounds and integrability re-
sults pertaining to the output density induced by the capacity-achieving input. Appendix D uses
results from Appendix C to prove the weak continuity, strict concavity and weak differentiability
of the optimization problem’s objective function. Finally, Appendix E shows that s(·;F∗) is an
entire function.
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Chapter 2

Prior Work

Dating back to Shannon’s work in [25], much of the research on continuous channels has fo-
cused on average power (equivalently, second moment) constraints on the input. A transmitter’s
inability to produce arbitrary peak powers then led to the consideration of additional peak power
constraints, modeled by restricting the input almost surely to compact sets.

2.1 Summary of Smith’s Contributions

The first major result on amplitude constrained channels was by Smith [28]. The methods
used in [28] inspired much of the subsequent literature in the area of channels with amplitude-
constrained inputs, including this thesis. A summary of the key ideas is presented here.

In [28], a scalar channel that relates the output Y to input X and Gaussian noise N is given by

Y = X +N. (2.1)

For some A > 0, a peak power constraint is given by X ∈ [−A,A] almost surely. A second case
in the paper considers an additional constraint given by E[X2] ≤ σ2, for some σ2 > 0. In each
case, Smith determines that the capacity-achieving distribution is discrete with a finite number
of mass points. Smith is then able to use this result to numerically search for the capacity under
various values of A and σ2.

Let P(A,σ2) be the set of distributions that satisfy the amplitude and average cost constraint
with parameters A and σ2, respectively. When the average cost constraint is inactive, the notation
P(A,∞) will be used.
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To avoid assuming the existence of a capacity-achieving density, the mutual information
is treated as in (1.10). In retrospect, this more general treatment is evidently necessary since
random variables with point masses do not have densities. Substituting the conditional density
pY |X(y | x) = pN(y− x), the mutual information, as a functional on P(A,σ2), is given by

I(F) =
∫

∞

−∞

∫ A

−A
pN(y− x) ln

pN(y− x)
p(y;F)

dF(x)dy, (2.2)

where F ∈P(A,σ2). The capacity C can be expressed as

C = sup
F∈P(A,σ2)

I(F). (2.3)

Consider first the case σ2 = ∞. Smith shows that P(A,∞) is convex and compact, while I(·)
is weak continuous, strictly concave and weak differentiable. By standard convex optimization
arguments, there is a unique F∗ ∈P(A,∞) for which I(F∗) = C. Moreover, Smith shows that
F∗ is capacity achieving if and only if for all F ∈P(A,∞),∫

∞

−∞

h(x;F∗)dF(x)−C−h(N)≤ 0. (2.4)

The quantity

h(x;F0),−
∫

∞

−∞

pN(y− x) ln p(y;F0)dy. (2.5)

is called the marginal entropy density of F0 ∈P(A,∞) at x ∈ [−A,A]

From (2.4), Smith proceeds to show that for all x ∈ [−A,A],

h(x;F∗)−C−h(N)≤ 0, (2.6)

and if x is a point at which F∗ increases, then equality holds in (2.6):

h(x;F∗)−C−h(N) = 0. (2.7)

Therefore, the points at which F∗ increases form a subset of the zeros of the function (in x) on the
left side of (2.7). This function has an entire extension to the complex plane, so the 1-dimensional
Identity Theorem gives conditions on its set of zeros under which it is identically 0 [7].

Theorem 2.1 (1-dimensional Identity Theorem). Suppose f (·) is analytic on a domain D ⊆ C
and let

Z = {z ∈ D | f (z) = 0}. (2.8)
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If there exists a sequence of distinct points {zi}∞
i=0 ⊆ Z converging to some z ∈ C, then Z = D.

In other words, Theorem 2.1 states that if Z has an accumulation point, then f (·) is identically
0 on D.

By way of contradiction, Smith assumes that the zero set Z of the function on the left side
of (2.7) has an accumulation point. By the Identity Theorem, this function is identically 0 on C.
Using Fourier analysis, Smith shows that this is a contradiction and concludes that Z cannot have
an accumulation point. Since the set of points of increase of F∗ is a subset of Z, it cannot have
an accumulation point either. Furthermore, since all points of increase must be in the compact
interval [−A,A], the Bolzano-Weierstrass Theorem implies that F∗ must have a finite number of
points of increase.

The argument for σ2 < ∞ proceeds in a similar fashion to the one above, but requires the use
of a Lagrange multiplier. In this case, there exists a constant γ > 0 such that any x∈ [−A,A] must
satisfy

h(x;F∗)− γ(x2−σ
2)−C−h(N)≤ 0. (2.9)

If x is a point of increase of F∗, then

h(x;F∗)− γ(x2−σ
2)−C−h(N) = 0. (2.10)

Fourier analysis is again used to show that if the extension of the left side of (2.10) to the complex
plane is identically 0, then a contradiction arises. It is concluded that F∗ has a finite number of
points of increase in this case as well.

Determining the capacity-achieving distribution for given A and σ2 reduces to finding the
magnitude and positions of a finite number of point masses. For a given guess of the number of
mass points, a finite-dimensional optimization problem is solved. If the resulting solution meets
the necessary and sufficient condition of (2.6) and (2.7) (or (2.9) and (2.10) when σ2 < ∞), then
it is known to be the capacity-achieving distribution. The number of mass points is iterated over
until the correct distribution is found.

2.2 Extensions of Smith’s Contributions

The results of [28] are extended to channels with 2-dimensional inputs with average and peak
radial constraints in [24]. Under the assumption that the noise has independent Gaussian compo-
nents of equal variance, they note that the phase of the capacity-achieving distribution is uniform
over [0,2π) and independent of the radius. The authors work in polar coordinates and use the
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univariate Identity Theorem to find conditions for which the distribution of the input’s radius
achieves capacity. They conclude that it is optimal to concentrate the input on a finite number of
concentric circles.

The case of inputs constrained to arbitrary compact sets and subject to a finite number of
quadratic cost constraints as well as non-degenerate multivariate Gaussian noise is considered in
[9]. It is concluded that the support of the capacity-achieving distribution must be “sparse”. That
is, there must exist a non-zero analytic function that is 0 on the support of the capacity-achieving
distribution. Assuming otherwise leads to a contradiction by the n-dimensional Identity Theo-
rem and Fourier analysis. These results, while quite general, do not consider either inputs of
unbounded support or inputs subject to higher moment constraints. Outside of the special cases
of n = 1 or spherically symmetric channels, they do not explore a characterization of sparse sets
in Rn.

The Identity Theorem for functions of a single complex variable is crucial to Smith’s argu-
ment and many papers that follow. The theorem can be applied to any univariate entire function
that has an accumulation point of zeros. The Identity Theorem in n complex dimensions can
only be applied to an analytic function with an open set of zeros in Cn. Therefore, to apply the
Identity Theorem for n > 1, an analogue of (2.7) would need to hold on an open subset of Cn. It
was suspected by some authors that since Rn is not open in Cn, no topological assumption on the
support of the capacity-achieving distribution would be sufficient for this purpose [13, 23, 29].
Therefore, many papers restrict their models to ones that maintain spherical symmetry so that
the 1-dimensional results can be exploited by working with the distribution of the input’s radius
(eg. [12, 14, 23, 24]).

It is shown in [23] that the optimal distribution under peak and quadratic average constraints
in Rn is concentrated on a finite number of concentric shells. This result is obtained by extending
the methods of [24]. When the average power constraint is removed, a closed form approxima-
tion for capacity is found for n sufficiently large.

In [12, 14], the number and positions of optimal concentric shells under a peak radial con-
straint are studied. In [12], the properties of subharmonic functions are employed to find the
least restrictive amplitude constraint for which the optimal distribution is concentrated on a sin-
gle sphere. In [14], Karlin’s Oscillation Theorem is used in conjunction with conditions like
(2.6) and (2.7), to find an upper bound on the number of shells that grows quadratically with
the amplitude constraint. A similar result is found for n = 1 under an additional average power
constraint.

In [15], MIMO channels of the form

Y =HX+N (2.11)
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are considered, where H ∈ Rm×n is constant and N ∼ N (0,Im). The input X is restricted
to a compact set, but no average power constraints are considered. Using the Real-Analytic
Identity Theorem and steps similar to [28], it is determined that the support of the optimal input
distribution is nowhere dense in Rn. The notion of nowhere dense is discussed in detail in
relation to the main results of this thesis in Chapter 3. The Real-Analytic Identity Theorem is
also employed to show that the support of the optimal input distribution has Lebesgue measure
0. When the marginal entropy density h(·;F∗), defined analogously to that defined in [28], is
spherically symmetric, the support is composed of a finite number of concentric shells. With
H = In, this result coincides with [23]. For the case considered in [9] that coincides with this
setup, [15] gives an instance of sparsity in terms of subsets of Rn, rather than analytic functions.

Subsequent sections of [15] give upper bounds on the size of the input space and conditions
on H for which the optimal distribution is concentrated only on the boundary of the input space.
Finally, [15] gives several upper and lower bounds on capacity.

In [17], a scalar channel with input subject to a combination of even moment constraints
and restrictions to compact or non-negative subsets of R is studied. Since the ideas used for the
treatment of even moment constraints are expanded to n dimensions in this thesis, a summary is
given for that case here. With f (x) = xl , l ∈ Z≥0, and N ∼N (0,1), the output of the channel is
given by

Y = f (X)+N. (2.12)

When the constraint E[X2k]≤ a is imposed, optimality conditions give rise to

h( f (x);F∗)−C−h(N)− γ(x2k−a)≤ 0, (2.13)

and, when x is a point of increase of F∗, equality must hold. Now consider the weighted L2 space

L2
pN
(R), {g : R→ R |

∫
∞

−∞

|g(x)|2 pN(x)dx < ∞} (2.14)

equipped with inner product

〈g,r〉=
∫

∞

−∞

g(x)r(x)pN(x)dx. (2.15)

In [28], it is shown that the marginal entropy density of F∗ at f (x) can be expressed as

h( f (x);F∗) =−
∫

∞

−∞

pN(y)e−
f (x)2

2 +y f (x) ln p(y;F∗)dy. (2.16)

The Hermite polynomials {Hm}∞
m=0 form an orthogonal basis for L2

pN
(R) and are given by the
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generating function

e−
u2
2 +yu =

∞

∑
m=0

Hm(y)
um

m!
. (2.17)

Since, as shown in [28], ln p(y;F∗) ∈ L2
pN
(R), ln p(y;F∗) can be expressed as a linear combina-

tion of Hermite polynomials:

ln p(y;F∗) =
∞

∑
m=0

cmHm(y). (2.18)

Substituting (2.17) and (2.18) into (2.16) and using the orthogonality of the Hermite polynomials,

h( f (x);F∗) =
∞

∑
m=0

cm f (x)m =
∞

∑
m=0

cmxlm. (2.19)

The existence of an accumulation point of the points of increase of F∗ is assumed. Since
the left side of (2.13) has an analytic extension to an entire function on C, the Identity Theorem
states that this extension is identically 0 on C. Substituting (2.19) into (2.13) allows solving for
the values of the constants cm, m ∈ Z≥0 by coefficient matching.

When k = l, the constraint is analogous to a quadratic average cost constraint on X l . If
the input is allowed to take arbitrary values in R, then this channel reflects the classic AWGN
channel. In this case, no contradiction arises if X l can be chosen to have a Gaussian density. This
can occur if and only if l is odd, allowing X l to take both positive and negative values in R.

For other values of the pair (k, l), rather than computing Fourier transforms directly, as is done
in [28], a contradiction is derived using Hardy’s Theorem. The authors upper bound the Fourier
transform of the output density, then use Hardy’s Theorem to lower bound the output density. For
many pairs (k, l), this lower bound is violated by the values of cm found by coefficient matching.
Therefore, (2.13) cannot hold everywhere and the points of increase of F∗ must not have an
accumulation point.

In [16], a complex-valued non-dispersive optical channel is considered under average costs
that grow super-quadratically in radius, peak constraints, or both. The noise is taken to be circu-
larly symmetric and under these conditions, so is the optimal input. The number of concentric
circles composing the support of the distribution is shown to be finite. The results are obtained
by looking at the limiting behaviour of the analytically extended optimality condition as the
amplitude increases.

In this thesis, we study an n-dimensional channel subject to non-degenerate Gaussian noise.
The input is sometimes restricted to a compact subset of Rn and its norm is subject to even
moment constraints. The possible differences in variance between noise components results in
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a channel that is not spherically symmetric. This problem is addressed through the use of two
alternative approaches:

1. application of the real-analytic Identity Theorem in n-dimensions, and

2. utilization of the structure of zero sets of real-analytic functions.

The novel contributions of this thesis are the results concerning the support of capacity-
achieving distribution in cases with even moment constraints greater than 2. Similarly to [15],
the results are in terms of subsets of Rn, rather than the notion of sparsity used in [9]. It is shown
that the support of the capacity-achieving distribution is nowhere dense in Rn and has Lebesgue
measure 0. Furthermore, the geometry of the zero set of a real analytic function is used to
prove that the support is contained in a countable union of i-dimensional, i ∈ {0, . . . ,n− 1},
submanifolds. This union is finite when the input alphabet is compact. Some of the methods
employed here have either no or limited exposure in this research community and may be used
in future study of spherically asymmetric channels.
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Chapter 3

Even-moment Radial Constraints

In this chapter, we consider Rn-valued inputs subject to additive non-degenerate multivariate
Gaussian noise. In Section 3.1, the capacity-achieving distribution is established as the objective
of an optimization problem. Its support is then framed in terms of the zero set of a certain real-
analytic function. Section 3.2 extends to Rn ideas regarding Hermite bases of Hilbert spaces
used in [17] to simplify the real-analytic function obtained in Section 3.1. Section 3.3 shows
that, other than in a trivial case, this function is non-constant. It is then shown that the support of
the capacity-achieving input has Lebesgue measure 0 and is “nowhere dense”. These results are
obtained in 2 different ways – Section 3.4 uses the n-dimensional real-analytic Identity Theorem
and Section 3.5 makes geometric arguments. Section 3.5 also uses the geometric properties of
zero sets of real-analytic functions to show that the support is contained in a countable union of
submanifolds of dimensions 0, . . . ,n−1.

As a first step towards defining the set of feasible input distributions, let F (Rn) be the set
of finite Borel measures on Rn. Note that F (Rn) is contained in the set of finite signed Borel
measures on Rn, which has an intrinsic vector space structure and can be equipped with a norm
[5]. Since F (Rn) lies within a normed vector space, the convexity and compactness of its subsets
can be discussed.

The possibility that the transmitter is unable to produce arbitrary signals in Rn is modeled
by restricting the input to an alphabet A ⊆ Rn. Denote the set of distributions for which the
associated random variable is almost surely in A by

Fn(A ), {F ∈F (Rn) | F(A ) = 1}. (3.1)

Two cases for A are considered:
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1. A = Rn, and

2. A ∈ Cn, where Cn is the set of compact subsets of Rn.

In addition to the restriction to A , a radial even-moment constraint is associated with the
input. For k ∈ Z>0, the input must belong to the set

Pn(A ,k,a) = {F ∈Fn(A ) | EX∼F [‖X‖2k]≤ a}. (3.2)

Due to an integrability condition presented in the appendix (see Lemma C.8), when A =Rn, we
only consider the case that 2k > n. That is, given n ≥ 1, we assume throughout this thesis that
the pair (A ,k) satisfies one of the following assumptions:

1. A ∈ Cn, or

2. A = Rn and 2k > n.

The resulting channel model, with input X ∼ F ∈Pn(A ,k,a), is

Y =AX+N , (3.3)

where Y and N ∼ N (0,Σ) are output and noise, respectively and A is an invertible matrix
known to the receiver. It is assumed that the noise covariance matrix Σ is positive-definite.

Note that by multiplying the output by A−1, the receiver obtains

Ỹ ,A−1Y (3.4)

=X+A−1N . (3.5)

Since A−1N ∼N (0,A−1Σ(A−1)T ) satisfies the assumptions made on the noise, no generality
is lost by setting A= In, where In is the n×n identity matrix. Substituting this into (3.3) yields
the channel model

Y =X+N . (3.6)

3.1 Optimization Problem

Motivated by the Channel Coding Theorem[10], we would like to solve the optimization problem

C = sup
X∼F∈Pn(A ,k,a)

I(X;Y ) = sup
F∈Fn(A )

EX∼F [‖X‖2k]≤a

I(X;Y ). (3.7)
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Since N has a fixed distribution and the function relating Y to X and N is deterministic, the
mutual information is a function of the distribution of X alone. Thus, the mutual information
induced between X ∼ F and Y will be denoted by I(F). Similarly, it is useful to think of the
even moment constraint in terms of a functional g : Fn(A )→ R∪{∞} given by

g(F),
∫
A
‖x‖2k dF(x)−a. (3.8)

Note that g(F)≤ 0 is equivalent to EX∼F [‖X‖2k]≤ a. Rewriting (3.7) in terms of I(·) and g(·)
yields

C = sup
F∈Pn(A ,k,a)

I(F) = sup
F∈Fn(A )

g(F)≤0

I(F). (3.9)

Much of the appendix is dedicated to understanding properties of the problem presented in
(3.9). It is shown in Theorem B.1 that Pn(A ,k,a) is convex and compact. Furthermore, by
Theorems D.1 and D.2, I(·) is a weak continuous and strictly concave function on Pn(A ,k,a).
Therefore, by Theorem A.1, the supremum is achieved by a unique input distribution F∗ ∈
Pn(A ,k,a). That is,

C = max
F∈Pn(A ,k,a)

I(F) = max
F∈Fn(A )

g(F)≤0

I(F) = I(F∗). (3.10)

We use the notation X∗ to describe a capacity-achieving input directly (ie. X∗ ∼ F∗).

In the remainder of this section, we derive, via the optimality condition of Theorem A.3, the
condition on the support of F∗ given by (P.2) of Theorem A.4. However, applying Theorem A.3
to the problem in (3.10) yields an analogue of (P.1) which holds only for F ∈Pn(A ,k,a) and
does not necessarily imply (P.2). That is, the constraint g(F) ≤ 0 is too strict to proceed with
(3.10) directly.

The theory of Lagrange multipliers can be utilized to reformulate (3.10) as an unconstrained
problem over a larger space. However, the optimality condition of Theorem A.3 requires the
weak differentiability of the functionals I(·) and g(·) in this larger space. When A = Rn, this
requirement is not satisfied by I(·) and g(·) on Fn(Rn). Instead, we define

Qn(A ,k),
⋃
b≥a

Pn(A ,k,b) (3.11)

= {F ∈Fn(A ) | g(F)< ∞}. (3.12)
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and consider the problem given by

C = max
F∈Qn(A ,k)

g(F)≤0

I(F), (3.13)

where we note that (3.10) and (3.13) have the same objective value and maximizing F∗.

To apply Theorem A.2, note that by Theorem D.3, g(·) is convex. Moreover, letting Fs ∈
Qn(A ,k) be a Heaviside step function at 0 ∈ Rn, Fs satisfies the Slater condition since g(Fs) =
−a < 0. Then, Theorem A.2 implies the existence of γ ≥ 0 such that

C = max
F∈Qn(A ,k)

{Jγ(F)}= Jγ(F∗), (3.14)

where
Jγ(F) = I(F)− γg(F). (3.15)

Furthermore, for arbitrary b≥ a, F∗ ∈Pn(A ,k,b) and Pn(A ,k,b)⊆Qn(A ,k). Therefore, for
this choice of γ , we also have

C = max
F∈Pn(A ,k,b)

{Jγ(F)}= Jγ(F∗). (3.16)

We derive the optimality condition for (3.16) and use the result to apply Theorem A.4, but
we must first define some notation: for F0 ∈Fn(A ), the output entropy is given by

hY (F0),−
∫
Rn

p(y;F0) ln p(y;F0)dy (3.17)

and the marginal entropy density at x ∈A is given by

h(x;F0),−
∫
Rn

pN (y−x) ln p(y;F0)dy, (3.18)

whenever the integrals exist. Now, Theorems D.4 and D.5 show that Jγ(·) has a weak derivative
at F∗ in the direction of F ∈Pn(A ,k,b) given by

J′γ(F
∗,F) = I′(F∗,F)− γg′(F∗,F) (3.19)

=
∫
Rn

h(x;F∗)dF(x)−hY (F∗)− γ(g(F)−g(F∗)), (3.20)

The expression given in (3.20) can be simplified by noting that the Lagrange multiplier γ
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given in Theorem A.2 must satisfy γg(F∗) = 0. Observing, in addition, that C = hY (F∗)−h(N)
gives

J′γ(F
∗,F) =

∫
Rn

h(x;F∗)dF(x)−C−h(N)− γg(F). (3.21)

Note that the differential entropy of the noise, h(N) = 1
2 ln |2πeΣ|, is finite since Σ is positive

definite.

By Theorems D.2 and D.3 and since γ ≥ 0, Jγ(·) is the difference between a strictly concave
function and a convex function. Therefore, Jγ(·) is strictly concave. By the optimality necessary
and sufficient condition for optimality presented in Theorem A.3, F∗ is optimal if and only if for
all F ∈Pn(A ,k,b),

J′γ(F
∗,F) =

∫
Rn

h(x;F∗)dF(x)−C−h(N)− γg(F)≤ 0. (3.22)

However, b ≥ a is arbitrary and each F ∈Qn(A ,k) satisfies F ∈Pn(A ,k,b) for some b ≥ a.
Therefore, we observe that F∗ is optimal if and only if for all F ∈Qn(A ,k),

J′γ(F
∗,F) =

∫
Rn

h(x;F∗)dF(x)−C−h(N)− γg(F)≤ 0. (3.23)

Before proceeding, we must formally introduce the notion of the support of a random vari-
able.

Definition 3.1. Let V be a random variable with alphabet A ⊆ Rn. Then the support of V is
the set given by

supp(V ), {x ∈A | ∀r > 0,P{V ∈ Br(x)}> 0}, (3.24)

where Br(x) is the ball of radius r in Rn centered at x. If V has distribution FV , we may
alternatively refer to supp(FV ) = supp(V ).

Similarly to the 1-dimensional channels considered in [1, 17, 28], we use the optimality
condition to obtain a characterization of supp(F∗). By (3.23), F∗ satisfies (P.1) of Theorem A.4,
so for all x ∈A ,

γ(‖x‖2k−a)+C+h(N)+
∫
Rn

pN (y−x) ln p(y;F∗)dy ≥ 0, (3.25)

and if x ∈ supp(F∗), then

γ(‖x‖2k−a)+C+h(N)+
∫
Rn

pN (y−x) ln p(y;F∗)dy = 0. (3.26)
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In other words, (3.26) provides a necessary condition for x ∈ supp(F∗) in terms of the zeros of
a function of x. Furthermore, this function’s extension to Cn is entire since ‖·‖2k is entire and,
by Lemma E.1, so is the integral term. Therefore, the function s(·;F∗) : Rn→ R given by

s(x;F∗), γ(‖x‖2k−a)+C+h(N)+
∫
Rn

pN (y−x) ln p(y;F∗)dy (3.27)

is real-analytic in x on Rn and

supp(F∗)⊆ {x ∈ Rn | s(x;F∗) = 0}∩A . (3.28)

The rest of this chapter is dedicated to studying supp(F∗) through the properties of s(·;F∗)
and, in particular, its zero set.

3.2 Hilbert Space and Hermite Polynomial Representation

To examine (3.27) further, it is helpful to think of the integral term as an inner product in a Hilbert
space. For Borel-measurable weighting function w : Rn→ R, define

L2
w(Rn),

{
ξ : Rn→ R

∣∣∣∣∫Rn
ξ

2(x)w(x)dx< ∞

}
, (3.29)

equipped with inner product

〈ξ ,ψ〉,
∫
Rn

ξ (x)ψ(x)w(x)dx. (3.30)

To simplify notation in this section, we define the following operations on vectors: for m ∈
Zn
≥0 and x ∈ Rn,

m!, m1! · · ·mn! (3.31)

and
xm , xm1

1 · · ·x
mn
n . (3.32)

The notion of orthogonality in a Hilbert space is crucial for representing an unknown function
in terms of known ones with nice properties. When n = 1, a complete orthogonal family of
polynomials can be found by orthogonalizing the monomials {xm}m∈Z≥0

. This sequence has an
essentially unique ordering. In contrast, when n > 1, the monomials of L2

w(Rn) are {xm}m∈Zn
≥0
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and form a so-called multisequence. Such a multisequence does not have a unique ordering and
distinct orderings yield different orthogonal systems that are asymmetric in their arguments [4].
As a result, much of the analysis of Hilbert spaces of functions of several variables is done with
biorthogonal systems.

A biorthogonal system comprised of {ξm}m∈Zn
≥0

and {ψm}m∈Zn
≥0

is one for which there
exist some non-zero constants {κm}m∈Zn

≥0
such that

〈ξm,ψn〉=

{
κm, if m= n

0, otherwise.
(3.33)

The flexibility of a biorthogonal system allows us to find basis functions that are symmetrical in
their arguments.

Consider L2
pN (Rn), where

pN (n) =
1

2π
√
|Σ|

e−
1
2n

T Σ−1n (3.34)

is the density of N . For the matrix Σ−1, define the Hermite polynomials {Hm}m∈Zn
≥0

and
{Gm}m∈Zn

≥0
respectively by the generating functions

e−
1
2x

T Σ−1x+xT Σ−1y = ∑
m∈Zn

≥0

xm

m!
Hm(y) (3.35)

and
e−

1
2x

T Σx+xTy = ∑
m∈Zn

≥0

xm

m!
Gm(y). (3.36)

Then {Hm}m∈Zn
≥0

and {Gm}m∈Zn
≥0

are complete and biorthogonal with [4]

〈Gm,Hn〉=

{
m! , if m= n

0, otherwise.
(3.37)

Furthermore, for each m ∈ Zn
≥0, Hm(x) and Gm(x) are of degree mi in xi. It should be noted

that these Hermite polynomials are dependent on the matrix Σ−1. However, the discussion here
is limited to a fixed system generated by a fixed matrix, so this dependence is omitted from the
chosen notation.
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Since, by Theorem C.1, ln p(·;F∗) ∈ L2
pN (Rn), there exist constants {ck}k∈Zn

≥0
for which

ln p(y;F∗) = ∑
k∈Zn

≥0

ckGk(y). (3.38)

Returning to the integral term in (3.27),∫
Rn

pN (y−x) ln p(y;F∗)dy =
∫
Rn

pN (y)e−
1
2x

T Σ−1x+xT Σ−1y
∑

k∈Zn
≥0

ckGk(y)dy (3.39)

=
∫
Rn

pN (y) ∑
m∈Zn

≥0

xm

m!
Hm(y) ∑

k∈Zn
≥0

ckGk(y)dy (3.40)

= ∑
m∈Zn

≥0

xm

m! ∑
k∈Zn

≥0

ck〈Hm(y),Gk(y)〉 (3.41)

= ∑
m∈Zn

≥0

cmxm. (3.42)

This simplification to a polynomial is particularly helpful since the cost function associated with
the even moment constraint is also a polynomial. This relationship is exploited in Section 3.3.

3.3 Non-constancy of s(·;F∗)

Since any x ∈ supp(F∗) must satisfy s(x;F∗) = 0, where s(·;F∗) is defined in (3.27), it is useful
to study the zeros of s(·;F∗). Note that since supp(F∗) 6= /0,

{x ∈ Rn | s(x;F∗) = 0} 6= /0. (3.43)

Therefore, s(·;F∗) being constant is equivalent to

{x ∈ Rn | s(x;F∗) = 0}= Rn. (3.44)

In this section, it is shown through contradiction that, in all non-trivial cases, (3.44) does not
hold. To that end, suppose that for all x ∈ Rn, s(x;F∗) = 0. Substituting (3.42) into (3.27), this
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is equivalent to

[γa−C−h(N)]− γ

( n

∑
i=1

x2
i

)k

= ∑
m∈Zn

≥0

cmxm1
1 . . .xmn

n , (3.45)

for all x ∈ Rn. The discussion proceeds in two cases: k = 1 and k > 1.

Case: k = 1. Note that for n > 1, since we require 2k > n when A = Rn, we only consider
A ∈Cn. However, the case of Pn(Rn,1,a) is a classic problem and X∗ is known to be Gaussian
[2]. Therefore, this case comprises 2 subcases for which most of the analysis is identical:

S.1 n≥ 1 and A ∈ Cn, and

S.2 n = k = 1 and A = R

Note that subcase (S.2) is the classic AWGN channel and is excluded from our main results, but
it is mentioned briefly here for completeness.

Let ei be the i’th row of the n×n identity matrix and let 0 ∈ Zn
≥0 be the all zero vector. Since

(3.45) holds for all x ∈ Rn, matching coefficients gives

cm =


γa−C−h(N), if m= 0

−γ, if m= 2ei, i ∈ {1, . . . ,n}
0, otherwise.

(3.46)

Substituting this into (3.38) yields

ln p(y;F∗) = c0G0(y)+
n

∑
i=1

c2eiG2ei(y) (3.47)

=−γ

n

∑
i=1

y2
i + lnκ (3.48)

for some normalizing constant κ . Equivalently,

p(y;F∗) = κe−γ‖y‖2
. (3.49)

By definition, γ ≥ 0, but γ = 0 results in a constant density on Rn, which is invalid. Thus, the
output achieved by X∗, Y ∗ ,X∗+N , has independent Gaussian components. That is, Y ∗ has
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zero mean and covariance matrix
ΣY =

1
2γ

In, (3.50)

where In is the n-dimensional identity matrix. Since X∗ and N are independent and N is
n-dimensional Gaussian, X∗ is also zero-mean n-dimensional Gaussian.

For subcase (S.2), X∗ ∼N (0, 1
2γ
−Σ) is consistent with A = Rn. Otherwise, in subcase

(S.1), this result is inconsistent with our stipulation that A ∈ Cn, so the assumption that s(·;F∗)
is identically 0 has led to a contradiction.

Case: k > 1. Similarly to [17], for this case, we make use of results on the rate of decay of a
function compared to that of its Fourier transform.

Lemma 3.1. Let U ∈ Rn have characteristic function satisfying, for all ω ∈ Rn,

|φU (ω)|, |E[eiωTU ]| ≤ e−
β‖ω‖2

2 (3.51)

for some β > 0. Let V be a random variable independent of U . Then the characteristic function
of W ,U +V satisfies, for all ω ∈ Rn,

|φW (ω)| ≤ e−
β‖ω‖2

2 .

Proof. By the independence of U and V and the fact that characteristic functions have pointwise
moduli upper bounded by 1,

|φW (ω)|= |φU (ω)||φV (ω)|

≤ |φV (ω)|e−
β‖ω‖2

2

≤ e−
β‖ω‖2

2 .

Lemma 3.2. Let U ∈ Rn have characteristic function satisfying, for all ω ∈ Rn,

|φU (ω)|, |E[eiωTU ]| ≤ Ke−
β‖ω‖2

2 (3.52)

for some positive constants β and K. Let V be a random variable independent of U and W ,

24



U +V have density pW (·). If α > 0 is such that, for all x ∈ Rn,

pW (x)≤ Ke−α‖x‖2
, (3.53)

then αβ ≤ 0.5.

Proof. Apply Lemma 3.1 and Theorem 4 of [27], noting that an identically 0 function cannot be
a density.

We make use of Lemma 3.2 by setting U = N , V = X and W = Y and using (3.45) to
obtain a contradiction. Note that, using Rayleigh quotients, the modulus of the characteristic
function of N can be upper-bounded for any ω ∈ Rn by

|E[eiωTN ]|= e−
1
2ω

T Σω ≤ e−
1
2 λ 2

0 ‖ω‖2
, (3.54)

where λ0 > 0 is the smallest eigenvalue of Σ. That is, N satisfies (3.51).

To complete the contradiction, we show that for α > 0 sufficiently large, p(·;F∗) satisfies the
bound in (3.53). Substituting the Multinomial Theorem in (3.45),

[γa−C−h(N)]− γ ∑
k1+...+kn=k

k!
k1! · · ·kn!

x2k1
1 · · ·x

2kn
n = ∑

m∈Zn
≥0

cmxm1
1 · · ·x

mn
n . (3.55)

Once again, γ = 0 results in a constant output density over Rn and can be disregarded as a
possibility. By coefficient matching in (3.55), the set of non-zero coefficients, other than c0, is
indexed by the set

B ,

{
b ∈ Zn

≥0

∣∣∣∣ n

∑
i=1

bi = 2k and bi is even ∀i ∈ {1, . . . ,n}
}
. (3.56)

Furthermore, cm < 0 for each m ∈ B and, in particular, c2kei = −γ for each i ∈ {1, . . . ,n}.
Therefore, setting κ = ln(γa−C−h(N)),

p(y;F∗) = κe∑m∈B cmGm(y) (3.57)

= κe∑
n
i=1 c2keiG2kei(y)+q(y) (3.58)

= κe−γ ∑
n
i=1 y2k

i +q(y), (3.59)

where q(y) has total degree 2k and has degree less than 2k in each yi.
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Now for α > 0, we consider the rate of decay of p(y;F∗) relative to that of e−α‖y‖2
through

the ratio

p(y;F∗)
e−α‖y‖2 = κe−γ ∑

n
i=1 y2k

i +q(y)+α(∑n
i=1 y2

i ) (3.60)

= κe−γ ∑
n
i=1 y2k

i +q0(y), (3.61)

where

q0(y), q(y)+α(
n

∑
i=1

y2
i ). (3.62)

Since k > 1, q0(y) also has total degree 2k and degree less than 2k in each yi. Therefore, D(α)>
0 can be chosen such that for all y ∈ Rn \BD(α)(0),

p(y;F∗)≤ e−α‖y‖2
, (3.63)

where the bar over a set denotes closure.

Let α = 1/(λ 2
0 ) and choose D > 0 large enough to satisfy (3.63) for all y ∈ Rn \BD(0).

Note that the continuous function p(·;F∗) attains a maximum M on the compact set BD(0). Let
K = max{1,MeαD2/2}. Then we have that for all y ∈ Rn,

p(y;F∗)≤ Ke−α‖y‖2
. (3.64)

That is, p(y;F∗) satisfies (3.53) with this choice of α . However, since αβ = 1 > 0.5, (3.54) and
(3.64) contradict Lemma 3.2. Therefore, (3.55) cannot hold for all x ∈Rn and we conclude that
for k > 1, s(·;F∗) cannot be identically 0 on Rn.

Summary: We summarize the results of the 2 above cases in a theorem.

Theorem 3.1. Suppose that either

1. A ∈ Cn, or

2. A = Rn, with 2k > n and (n,k) 6= (1,1).

Then
{x ∈ Rn | s(x;F∗) = 0}(Rn. (3.65)
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An immediate consequence of Theorem 3.1 is that supp(F∗) is a strict subset of Rn. Theorem
3.1 also shows that supp(F∗) is “sparse” in the sense used by [9]; s(·;F∗) is a non-zero function
with an analytic extension to Cn that is zero on supp(F∗). However, the main importance of
Theorem 3.1 is as an intermediary result that is used in Sections 3.4 and 3.5 to obtain a better
understanding of the structure of supp(F∗).

3.4 Results Due to the Identity Theorem

In the spirit of prior work (see e.g. [17, 23, 24, 28]), we obtain results in this section through
contradiction of the Identity Theorem. However, unlike this prior work, the channel model con-
sidered in this thesis uses the multivariate real-analytic Identity Theorem. That is, rather than
extending s(·;F∗) to Cn, we work directly in Rn, as is done in [15].

The Identity Theorem for functions of a single complex variable states that an entire function
whose zero set has an accumulation point is identically 0 on the complex plane. This allows the
authors of [17, 23, 24, 28] to conclude that if the optimal input’s support has an accumulation
point on the real line, then s(·;F∗) must be identically 0 on the complex plane.

In contrast, the Identity Theorem for functions of n > 1 complex variable states that if an
entire function is identically 0 on an open subset of Cn, then it is identically 0 on all of Cn. Since
no subset of Rn is an open set in Cn, no assumption on supp(F∗) leads to a direct application
of the Identity Theorem for n > 1. For this reason, the authors of [13, 23, 29] limit their consid-
eration to spherically symmetric channels, in which the capacity-achieving distribution is only a
function of radius. This simplification converts the problem from n dimensions to 1 dimension.
However, results can be obtained from the real-analytic Identity Theorem, or even the multivari-
ate complex Identity Theorem after proper consideration. We will only discuss the real-analytic
approach here.

We now present the real-analytic Identity Theorem [15].

Theorem 3.2 (Real-analytic Identity Theorem). Let U ⊆Rn and let f : U→R be a real-analytic
function that is zero on A ⊆U. If A has positive Lebesgue measure then f (·) is identically 0 on
U.

Remark. Since any open set has positive Lebesgue measure, if f (·) is 0 on some open set A,
then by Theorem 3.2, it is identically 0 on U.

In addition to showing that supp(F∗) has Lebesgue meausure 0, we show a stronger notion
than supp(F∗) containing no open subsets of Rn. We require the following definitions before
stating our results.
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Definition 3.2. A set A ⊆ B is called dense in B if for every b ∈ B, there exists a sequence
{ai}∞

i=0 ⊆ A that converges to b.

Definition 3.3. A set A ⊆ B is called nowhere dense in B if for every open set U ⊆ B, A∩U is
not dense in U .

Theorems 3.1 and 3.2 are used to obtain the main result of this section.

Theorem 3.3. Suppose that either

1. A ∈ Cn, or

2. A = Rn, with 2k > n and (n,k) 6= (1,1).

Then supp(F∗) is nowhere dense in Rn and has Lebesgue measure 0.

Proof. First note that, by (3.28),

supp(F∗)⊆ {x ∈ Rn | s(x;F∗) = 0}∩A . (3.66)

Therefore, it suffices to show that

S , {x ∈ Rn | s(x;F∗) = 0} (3.67)

is nowhere dense in Rn and has Lebesgue measure 0.

Recall that s(·;F∗) is real-analytic and, by Theorem 3.1, s(·;F∗) is not identically 0 on Rn.
Then by Theorem 3.2 and the subsequent remark,

P.1 S has Lebesgue measure 0, and

P.2 s(·;F∗) is not identically 0 on any open subset of Rn.

To complete the proof, we will use (P.2) to show that S is nowhere dense. Note that a subset
of Rn is nowhere dense if and only if the interior of its closure is the empty set. Furthermore,
since s(·;F∗) is continuous (it is real-analytic), S is closed. Therefore, S being nowhere dense is
equivalent to its interior being empty, which holds by (P.2).
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3.5 Geometry of a Real-analytic Function’s Zero Set

In this section, we use geometry to further investigate the properties of supp(F∗) and an alternate
proof for Theorem 3.3, which does not use the Identity Theorem, is given. These discussions
consider subsets of a vector’s components, so for x ∈ Rn and i ∈ {1, . . . ,n}, we introduce the
notation

xi , (x1, . . . ,xi) ∈ Ri. (3.68)

Recall that by (3.28),

supp(F∗)⊆ {x ∈ Rn | s(x;F∗) = 0}∩A (3.69)
= {x ∈A | s(x;F∗) = 0}. (3.70)

Since s(·;F∗) is real-analytic, it is in our interest to study the geometry of zero sets of real-
analytic functions. We turn to established results in analysis and state Theorem 6.3.3 of [20] to
the level that it is needed in this thesis.

Theorem 3.4 (Structure Theorem). Let ψ(·) : Rn → R be a real-analytic function, where
ψ(0, . . . ,0,xn) is not identically 0 in xn. After a rotation of the coordinates x1, . . . ,xn−1, there
exist constants δm, m ∈ {1, . . . ,n}, such that with

Q , {x ∈ Rn | |xm|< δm ∀m ∈ {1, . . . ,n}}, (3.71)

we have

{x ∈ Q | ψ(x) = 0}=
n−1⋃
i=0

Vi, (3.72)

where V0 is either empty or contains only the origin and Vi, i ∈ {1, . . . ,n−1}, is a finite disjoint
union of i-dimensional submanifolds. That is, for each i∈ {1, . . . ,n−1}, there exists ni for which

Vi =
ni⋃

j=0

Γ
j
i , (3.73)

where each Γ
j
i is an i-dimensional submanifold. Furthermore, letting

Qi , {xi ∈ Ri | |xm|< δm ∀m ∈ {1, . . . , i}}, (3.74)

there exist an open set Ω
j
i ⊆Qi and real-analytic functions α

j,m
i (·), m ∈ {i+1, . . . ,n}, on Ω

j
i for
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which
Γ

j
i = {(x

i,α
j,i+1

i (xi), . . . ,α
j,n

i (xi)) ∈ Rn | xi ∈Ω
j
i }. (3.75)

We apply Theorem 3.4 to characterize the zero set of s(·;F∗) in the form of (3.72) and obtain
the following result.

Theorem 3.5. Suppose that either

1. A ∈ Cn, or

2. A = Rn, with 2k > n and (n,k) 6= (1,1).

Then

supp(F∗)⊆ {x ∈A | s(x;F∗) = 0}= A ∩
(n−1⋃

i=0

Ti

)
, (3.76)

where T0 is a countable union of isolated points and Ti, i ∈ {1, . . . ,n−1}, is a countable disjoint
union of i-dimensional submanifolds. Furthermore, if A ∈ Cn, then these unions are finite.

Proof. First note that, by Theorem 3.1, s(·;F∗) is not identically 0 on Rn. Therefore, for any
q ∈ Qn we can translate s(·;F∗) by q and rotate its coordinate system to apply Theorem 3.4.
That is, there exists a sufficiently small neighbourhood Qq around q such that

{x ∈ Qq | s(x;F∗) = 0}=
n−1⋃
i=0

V q
i , (3.77)

where the Vi’s are as in Theorem 3.4.

Since Qn is dense in Rn,
A ⊆

⋃
q∈Qn

Qq (3.78)

Furthermore, if A = C ∈ Cn, then this open cover has a finite subcover {Qq j}m
j=1. That is,

C ⊆
m⋃

j=1

Qq j . (3.79)

Defining the index set

M ,

{
Qn, A = Rn

{q j}m
j=1, A ∈ Cn,

(3.80)

30



we obtain

{x ∈A | s(x;F∗) = 0}= A ∩
( ⋃

q∈M
{x ∈ Qq | s(x;F∗) = 0}

)
(3.81)

= A ∩
( ⋃

q∈M

n−1⋃
i=0

V q
i

)
(3.82)

= A ∩
(n−1⋃

i=0

⋃
q∈M

V q
i

)
. (3.83)

Since for each q ∈M , V q
0 is either empty or a single point,

T0 ,
⋃

q∈M
V q

0 (3.84)

is a countable set of points and is finite when A ∈ Cn. Furthermore, each V q
i , where i ∈

{1, . . . ,n− 1}, is itself a finite union of i-dimensional submanifolds. The countable union of
a finite union is countable, so

Ti ,
⋃

q∈M
V q

i (3.85)

is a countable union of i-dimensional submanifolds. When A ∈ Cn, this union is also finite.

Note that Theorem 3.5 agrees with the results of [23] when the cases overlap. That is, when
A ∈ Cn and k = 1, [23] shows that the capacity-achieving distribution is supported on a finite
number of concentric (n−1)-spheres. Each (n−1)-sphere is an n−1 dimensional submanifold.

In the next 2 theorems, we demonstrate that the results of Theorem 3.3 can be recovered
through Theorem 3.4 in a manner which does not use the Identity Theorem.

Theorem 3.6. Suppose that either

1. A ∈ Cn, or

2. A = Rn, with 2k > n and (n,k) 6= (1,1).

Let µ(·) denote the n-dimensional Lebesgue measure. Then,

µ(supp(F∗)) = 0. (3.86)
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Proof. By Theorem 3.5,

supp(F∗)⊆A ∩
(n−1⋃

i=0

Ti

)
(3.87)

⊆
n−1⋃
i=0

⋃
q∈M

V q
i , (3.88)

where M is countable. Note that for each q ∈M , V q
0 is either empty or a single point, so

µ(V q
0 ) = 0. Furthermore, for each q ∈M and i ∈ {1, . . . ,n− 1}, V q

i is a finite disjoint union
of nqi i-dimensional submanifolds. Therefore, it suffices to show that any of these i dimensional
submanifolds Γ

q, j
i , where j ∈ {1, . . . ,nqi }, satisfies µ(Γ

q, j
i )= 0. By (3.75), for each triple (i,q, j),

there exist an open set Ω
q, j
i ⊆ Ri and functions α

q, j,m
i (·), m ∈ {i+1, . . . ,n}, on Ω

q, j
i for which

Γ
q, j
i = {(xi,α

q, j,i+1
i (xi), . . . ,α

q, j,n
i (xi)) ∈ Rn | xi ∈Ω

q, j
i }. (3.89)

Then with 1
Γ
q, j
i
(·) denoting the indicator function of Γ

q, j
i ,

µ(Γ
q, j
i ) =

∫
Rn

1
Γ
q, j
i
(x)dx (3.90)

=
∫

Ω
q, j
i

∫
α
q, j,i+1
i (xi)

α
q, j,i+1
i (xi)

. . .
∫

α
q, j,n
i (xi)

α
q, j,n
i (xi)

dxn . . . dxi+1 dxi (3.91)

=
∫

Ω
q, j
i

0dxi (3.92)

= 0. (3.93)

Theorem 3.7. Suppose that either

1. A ∈ Cn, or

2. A = Rn, with 2k > n and (n,k) 6= (1,1).

Then supp(F∗) is nowhere dense in Rn.

Proof. Note that by Theorem 3.1, the set

A , {x ∈ Rn | s(x;F∗) = 0} (3.94)
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is a strict subset of Rn. Let U ⊆Rn be a non-empty open set – we will show the result by proving
that A∩U is not dense in U .

Fix x ∈U . Translating s(·;F∗) by x, rotating the coordinate system and applying Theorem
3.4 shows that there exists a sufficiently small open set Q containing x on which

A∩Q =
n−1⋃
i=0

Vi (3.95)

=V0∪
(n−1⋃

i=1

ni⋃
j=0

Γ
j
i

)
. (3.96)

First note that since U and Q are open, their intersection U ∩Q is open as well. Then for any
y ∈U ∩Q, any sequence converging to y has a subsequence in U ∩Q. It suffices to show that
there exists a point in U ∩Q that is not the limit of any sequence in A∩U ∩Q.

We proceed by using the parameterization of Γ
j
i given by (3.75). We will show the existence

of a point of the form (xn−1,un) ∈U ∩Q that is not the limit of any sequence whose first n−1
components converge to xn−1. Noting that any sequence whose first n− 1 components do not
converge to xn−1 cannot converge to (xn−1,un) will complete the proof.

Let {(yn−1,yn)m}∞
m=0 ⊆ A∩U ∩Q be a sequence converging to y , (xn−1,yn). Using the

parameterization from (3.75), the n’th component of sequence index m satisfies one of the fol-
lowing:

1. (yn)m ∈ {vn | v ∈V0}, or

2. for some i ∈ {1, . . . ,n−1} and j ∈ {1, . . . ,ni},

(yn)m = α
j,n

i (yi
m). (3.97)

Since α
j,n

i (·) is real-analytic, it is continuous. Then for (yn)m satisfying (3.97), we have

lim
m→∞

(yn)m = lim
m→∞

α
j,n

i (yi
m) (3.98)

= α
j,n

i ( lim
m→∞

yi
m) (3.99)

= α
j,n

i (xi). (3.100)
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Since V0 is either empty or a single point, the number of possible values for limm→∞(yn)m is at
most

|V0|+
n−1

∑
i=1

ni < ∞. (3.101)

However, since U ∩Q is open and x ∈ U ∩Q, the set {t ∈ R | (xn−1,xn + t) ∈ U ∩Q} is
uncountable. Thus, there exists t such that (xn−1,xn+ t) ∈U ∩Q is not the limit of any sequence
in A∩U ∩Q.
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Chapter 4

Conclusion

4.1 Summary

This thesis has considered vector-valued channels with additive Gaussian noise. The support
of the capacity-achieving input distribution was discussed when inputs were subjected to an
average even moment radial constraint and, in some cases, an additional restriction to a compact
set. When the input alphabet was the entire space Rn, the moment constraint was assumed to
satisfy 2k > n and the classic case n = k = 1 was omitted from most discussion.

Unlike much of the prior work in this area, the noise was not limited to having independent
or identically distributed components. Therefore, it could not be concluded that the optimal
input distribution was a function of only radius. This precluded the use of the 1-dimensional
Identity Theorem. Instead, the n-dimensional real-analytic Identity Theorem was required when
following that approach.

The optimal output density was expressed using the generalization of the 1-dimensional ap-
proach of [17]. Hermite polynomials in n-dimensions were used to simplify expressions involv-
ing the density of a multivariate Gaussian noise density with an arbitrary non-singular covariance
matrix. It was determined that the support of the capacity-achieving distribution has Lebesgue
measure 0 and is nowhere dense in Rn.

Finally, the geometry of supp(F∗) was studied by using the fact that it is a subset of the zero
set of a real analytic function. It was determined that the support is contained in a countable union
of single points and submanifolds of dimensions 1, . . . ,n−1. When the alphabet is compact, this
union is finite. Furthermore, geometric arguments were used to provide an alternate proof that
the capacity-achieving distribution has Lebesgue measure 0 and is nowhere dense in Rn.
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This thesis is an expansion of work concerning even moment input constraints in [17] to
vector-valued channels that are not necessarily spherical symmetry. Viewed as a generalization
of [9], it considers 2k’th rather than 2nd moment constraints and discusses an alphabet of Rn.
It also provides further detail regarding the supports of capacity-achieving input distributions.
Geometric discussions of capacity-achieving input support in prior work are limited to concentric
shells in spherically symmetric channels. This thesis uses submanifolds to geometrically describe
the supports of capacity-achieving inputs to more general channels.

4.2 Further Research

Given the geometric results of Theorem 3.5, the number of submanifolds forming a superset
of supp(F∗) can be explored for compact alphabets. A similar problem for channels under
amplitude constraints is studied in [12, 14]. Results of this type could lead to computational
methods for finding supp(F∗) and the corresponding capacity for a given choice of (A ,k,a).

The Hermite polynomial approach is well-suited for even moment constraints on inputs to
Gaussian noise channels, but it does not appear to generalize easily to other noise models. One
potential approach is to define a Hilbert space with weight function given by a different noise
density. However, the coefficients in the expansion of ln p(·;F∗) in (3.38) can only be easily
found when this Hilbert space gives rise to a Riesz basis. Furthermore, the noise distribution
must decay sufficiently quickly to ensure that the supporting technical results hold.

In [18], scalar channels under a wide variety of input-output functions, cost functions and
noise densities are studied. Results are obtained by examining these functions’ relative growth
rates. The results of this thesis could be generalized by adopting that approach in conjunction
with the observations that are made here regarding analytic functions of several variables.
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Appendix A

Theorems From Convex Optimization

The following theorems are standard concepts from convex optimization theory and are used in
[17]. They are stated here for reference.

Theorem A.1. If I0(·) is a weak continuous function on a compact set P ⊆ F , then I0(·)
achieves its maximum on P . If, in addition, P is convex and I0(·) strictly concave, then the
maximum is achieved by a unique element F∗ ∈P .

Theorem A.2 (Lagrange). Let F be a vector space and Ω⊆F be convex. Let I0(·) be a concave
real functional on Ω and let g0(·) be a convex real functional on Ω. Suppose a Slater condition
is satisfied; that is, suppose there exists F0 ∈Ω with g0(F0)< 0. Let

C0 = sup
F∈Ω

g0(F)≤0

I0(F) (A.1)

be finite. Then there exists λ ≥ 0 for which

C0 = sup
F∈Ω

{I0(F)−λg0(F)}. (A.2)

Furthermore, if C0 is achieved by F∗ in (A.1), then it is also achieved by F∗ in (A.2) and

λg0(F∗) = 0. (A.3)

Remark 1. The Slater condition being satisfied is absolutely essential for Theorem A.2 to hold.

Remark 2. In Theorem A.2, λ is known as the Lagrange multiplier and the condition given by
(A.3) is known as complementary slackness.
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Theorem A.3 (Optimality Condition). Let F be a normed vector space. Suppose that a weakly
differentiable concave function J(·) achieves its maximum on a compact and convex set Ω⊆F .
Then J(·) achieves its maximum at F∗ if and only if J′(F∗,F)≤ 0 for all F ∈Ω [28].

We present here the adaptation to our purposes of a technique that has been in several papers
to convert the optimality condition of Theorem A.3 to a condition on individual points (eg. [1,
28]). It is by this theorem that the necessary and sufficient conditions for optimality can be
expressed as in (3.25).

Recall the notation
hY (F),−

∫
Rn

p(y;F) ln p(y;F)dy (A.4)

to describe the entropy of the output induced by an input with distribution F . Similarly to [28],
denote the marginal entropy density

h(x;F),−
∫
Rn

pN (y−x) ln p(y;F)dy. (A.5)

Theorem A.4. Define

Qn(A ,k),
⋃
b≥a

Pn(A ,k,b) (A.6)

= {F ∈Fn(A ) | g(F)< ∞}. (A.7)

Suppose that F∗ satisfies (3.14), where γ ≥ 0 is the Lagrange multiplier corresponding to the
problem in (3.10). Then the following are equivalent:

P.1 For every F ∈Qn(A ,k),∫
A

h(x;F∗)dF(x)≤ γ(
∫
A
‖x‖2k dF(x)−a)+C+h(N). (A.8)

P.2 For all x ∈A ,
h(x;F∗)≤ γ(‖x‖2k−a)+C+h(N), (A.9)

and if x ∈ supp(F∗), then

h(x;F∗) = γ(‖x‖2k−a)+C+h(N). (A.10)

Proof. This proof proceeds in a similar manner to Theorem 4 of [1]. For any F ∈ Qn(A ,k),
integrating both sides of (A.9) with respect to dF(·) yields that (P.2) implies (P.1).
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It remains to show that (P.1) implies (P.2). Suppose this implication is false – that is, (P.1)
holds but there either exists v ∈A for which

h(v;F∗)> γ(‖v‖2k−a)+C+h(N), (A.11)

or there exists w ∈ supp(F∗) such that

h(w;F∗) 6= γ(‖w‖2k−a)+C+h(N). (A.12)

If (A.11) holds, then let b = max{‖v‖2k,a} and let F(x) = ∏
n
i=1 u1(xi− vi), where u1(·) is

the Heaviside step function. Then F ∈Pn(A ,k,b)⊆Qn(A ,k) and∫
A

h(x;F∗)dF(x)− γ(
∫
A
‖x‖2k dF(x)−a) = h(v;F∗)− γ(‖v‖2k−a) (A.13)

>C+h(N), (A.14)

contradicting (A.8). Therefore, (A.11) cannot be satisfied for any x ∈A and we are left with the
alternative that there exists w ∈ supp(F∗)⊆A for which (A.12) holds. That is,

h(w;F∗)< γ(‖w‖2k−a)+C+h(N). (A.15)

Note that since γg(F∗) = 0 by the complementary slackness condition of (A.3),

γa = γ

∫
A
‖x‖2k dF∗(x). (A.16)

Since h(·;F) and ‖·‖2k are continuous, (A.15) is satisfied on Bδ (w) for some δ > 0. Observe that
w ∈ supp(F∗), so there exists ε such that P{X∗ ∈ Bδ (w)}= ε > 0. Then substituting (A.16),

C+h(N)− γa = hY (F∗)− γa (A.17)

=
∫
A

[
h(x;F∗)− γ‖x‖2k

]
dF∗(x) (A.18)

=
∫

Bδ (w)

[
h(x;F∗)− γ‖x‖2k

]
dF∗(x)+

∫
A \Bδ (w)

[
h(x;F∗)− γ‖x‖2k

]
dF∗(x)

(A.19)

< ε

[
C+h(N)− γa

]
+(1− ε)

[
C+h(N)− γa

]
(A.20)

=C+h(N)− γa, (A.21)
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where the first term of (A.20) is due to (A.15) and the second is due to (A.9). The above is a
contradiction, which completes the proof.
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Appendix B

Convexity and Compactness of
Optimization Space

Theorem B.1. Fn(A ) is convex and Pn(A ,k,a) is convex and compact.

Proof. We first show the convexity of Fn(A ). Let F1,F2 ∈Fn(A ), λ ∈ [0,1] and Fλ = λF1 +
(1−λ )F2. Then since

supp(Fλ )⊆ supp(F1)∪ supp(F2)⊆A , (B.1)

Fn(A ) is convex.

To show convexity of Pn(A ,k,a), let F1,F2 ∈Pn(A ,k,a), λ ∈ [0,1] and Fλ = λF1 +(1−
λ )F2. Then ∫

Rn
‖x‖2k dFλ (x) = λ

∫
Rn
‖x‖2k dF1(x)+(1−λ )

∫
Rn
‖x‖2k dF2(x) (B.2)

≤ λa+(1−λ )a = a. (B.3)

Thus, Fλ satisfies both the moment constraint and the relation given in (B.1) and we conclude
that Pn(A ,k,a) is convex.

It remains to show the compactness of Pn(A ,k,a). Note that the Lévy-Prokhorov metric
metrizes weak convergence in F (Rn) [26], so sequential compactness is equivalent to compact-
ness. To prove compactness of Pn(A ,k,a), we first show relative compactness, which allows
us to conclude that any sequence in Pn(A ,k,a) has a subsequence that converges to some
F ∈Fn(A ). Showing further that F ∈Pn(A ,k,a) will complete the proof.
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Observe that each F ∈F (Rn) is defined on the complete separable metric space Rn equipped
with Euclidean distance. By Prokhorov’s Theorem (Theorem 3.2.1 of [26]), relative compactness
of Pn(A ,k,a) is equivalent to tightness of Pn(A ,k,a), so we will prove the latter.

To show tightness of Pn(A ,k,a), let X ∼ F ∈Pn(A ,k,a), ε > 0 and D = (a/ε)1/2k. Then
applying Markov’s inequality,

P{X ∈ Rn \BD(0)}= P{‖X‖> D} (B.4)

≤ P{‖X‖2k≥ D2k} (B.5)

≤ E[‖X‖2k]

D2k (B.6)

≤ a
D2k (B.7)

= ε. (B.8)

This is a uniform upper-bound for F ∈Pn(A ,k,a), so Pn(A ,k,a) is tight and as a result,
relatively compact.

By the relative compactness of Pn(A ,k,a), any sequence {Fm}∞
m=0 ⊆Pn(A ,k,a) has a

subsequence {Fm j}∞
m j=0 that converges weakly to F ∈F (Rn). To show compactness, we must

show that F ∈Pn(A ,k,a).

Since each Fm j ∈Pn(A ,k,a), ∫
A
‖x‖2k dFm j(x)≤ a. (B.9)

By Theorem A.3.12 of [11], since ‖x‖2k is non-negative and lower semicontinuous by virtue of
being continuous, ∫

A
‖x‖2k dF(x)≤ liminf

j→∞

∫
A
‖x‖2k dFm j(x)≤ a. (B.10)

Since ‖x‖2k≥ 0 for all x ∈A , ∫
A
‖x‖2k dF(x)≥ 0. (B.11)

By (B.10) and (B.11), the limiting distribution F satisfies the even moment constraint imposed
by Pn(A ,k,a). Therefore, when A = Rn, we conclude that F ∈Pn(A ,k,a).

For the case A = C ∈ Cn, we must also show that X ∈ C almost surely. For any index of
the subsequence m j, ∫

C
dFm j(x) = 1. (B.12)
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By the Portmanteau Theorem [6], since C is closed,∫
C

dF(x)≥ limsup
j→∞

∫
C

dFm j(x) = 1. (B.13)
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Appendix C

Properties of the Output Density

In Section C.1, the output density is shown to be continuous in y and bounded above by a
constant. In Section C.2, we present results related to the rate of decay of p(·;F), which are
used to show the integrability results of Section C.3. The findings of Section C.3 are then used
in Chapter 3 and Appendix D.

Throughout the remaining appendices, we make use of the eigenvalues of Σ−1 in order to
establish upper and lower bounds. We let η0 and ηn−1 be the respectively minimal and maximal
eigenvalues of Σ−1. Recall that since Σ is positive-definite, Σ−1 is as well and ηn−1 > η0 > 0.

C.1 Constant Upper Bound and Continuity in Rn

Lemma C.1. For any F ∈Fn(A ) and y ∈ Rn,

p(y;F)≤ 1
2π
√
|Σ|

. (C.1)

Proof.

p(y;F) =
∫
A

pN (y−x)dF(x) (C.2)

≤ 1
2π
√
|Σ|

∫
A

dF(x) (C.3)

=
1

2π
√
|Σ|

. (C.4)
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Lemma C.2. For any F ∈Fn(A ), p(·;F) is continuous in y.

Proof. Let {yi}∞
i=0 ⊆ Rn be a sequence converging to y ∈ Rn. Then,

lim
i→∞

p(yi;F) = lim
i→∞

∫
A

pN (yi−x)dF(x) (C.5)

=
∫
A

lim
i→∞

pN (yi−x)dF(x) (C.6)

=
∫
A

pN (y−x)dF(x) (C.7)

= p(y;F), (C.8)

where (C.6) is by the Dominated Convergence Theorem and Lemma C.1, while (C.7) is due to
the continuity of pN (·).

C.2 Upper and Lower Bounds on the Output Density

Lemma C.3. Let η0 > 0 be the minimal eigenvalue of Σ−1 and let C ∈ Cn. Then there exists
D > 0 such that for any F ∈Pn(C ,k,a) and any y ∈ Rn \BD(0),

p(y;F)≤ 1
2π
√
|Σ|

e−
1
8 η0‖y‖2

. (C.9)

Proof. Since C is compact, there exists D0 > 0 such that C ⊆ BD0(0). Note that the compactness
of BD0(0) and the continuity of pN (·) ensure the existence of

max
x∈BD(0)

pN (y−x). (C.10)
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Furthermore, from the theory of Rayleigh quotients, for y ∈ Rn \BD0(0),

max
x∈BD0(0)

pN (y−x) = max
x∈BD0(0)

1
2π
√
|Σ|

e−
1
2 (y−x)

T Σ−1(y−x) (C.11)

= max
x∈BD0(0)

1
2π
√
|Σ|

e
− 1

2
(y−x)T Σ−1(y−x)

‖y−x‖2
‖y−x‖2

(C.12)

≤ max
x∈BD0(0)

1
2π
√
|Σ|

e−
1
2 η0‖y−x‖2

(C.13)

=
1

2π
√
|Σ|

e−
1
2 η0‖y−

D0
‖y‖y‖

2
(C.14)

=
1

2π
√
|Σ|

e−
1
2 η0(1−

D0
‖y‖ )

2‖y‖2
. (C.15)

Setting D = 2D0 yields for y ∈ Rn \BD(0),

max
x∈BD0(0)

pN (y−x)≤ 1
2π
√
|Σ|

e−
1
2 η0(1−

D0
2D0

)2‖y‖2
(C.16)

=
1

2π
√
|Σ|

e−
1
8 η0‖y‖2

. (C.17)

Then we have for y ∈ Rn \BD(0),

p(y;F) =
∫
C

pN (y− x̂)dF(x̂) (C.18)

≤
∫
C

max
x∈C

pN (y−x)dF(x̂) (C.19)

= max
x∈C

pN (y−x) (C.20)

≤ max
x∈BD0(0)

pN (y−x) (C.21)

≤ 1
2π
√
|Σ|

e−
1
8 η0‖y‖2

. (C.22)

Lemma C.4. Let ηn−1 be the maximal eigenvalue of Σ−1 and let C ∈ Cn. Then there exists
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D > 0 such that for any F ∈Pn(C ,k,a) and any y ∈ Rn \BD(0),

p(y;F)≥ 1
2π
√
|Σ|

e−2ηn−1‖y‖2
(C.23)

Proof. Since C is compact, there exists D > 0 such that C ⊆ BD(0). Similarly to the proof of
Lemma C.3, Rayleigh quotients give

min
x∈BD(0)

pN (y−x)≥ 1
2π
√
|Σ|

e−
1
2 ηn−1(1+ D

‖y‖ )
2‖y‖2

(C.24)

Then for any y ∈ Rn,

p(y;F) =
∫
C

pN (y− x̂)dF(x̂) (C.25)

≥
∫
C

min
x∈C

pN (y−x)dF(x̂) (C.26)

= min
x∈C

pN (y−x) (C.27)

≥ min
x∈BD(0)

pN (y−x) (C.28)

=
1

2π
√
|Σ|

e−
1
2 ηn−1(1+ D

‖y‖ )
2‖y‖2

(C.29)

Now, for any y ∈ Rn \BD(0), (
1+

D
‖y‖

)
≤ 2, (C.30)

and we have
p(y;F)≥ 1

2π
√
|Σ|

e−2ηn−1‖y‖2
. (C.31)

Lemma C.5. Let D = (2a)
1
2k . Then for any F ∈Pn(Rn,k,a) and y ∈ Rn \BD(0),

p(y;F)≥ 1
4π
√
|Σ|

e−2ηn−1‖y‖2
. (C.32)
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Proof. For any y ∈ Rn \BD(0),

p(y;F)≥
∫

BD(0)
pN (y−x)dF(x) (C.33)

≥ P{‖X‖≤ D} 1
2π
√
|Σ|

e−
1
2 ηn−1‖y+ D

‖y‖y‖
2

(C.34)

≥ (1−P{‖X‖2k≥ 2a}) 1
2π
√
|Σ|

e−
1
2 ηn−1(1+ D

‖y‖ )
2‖y‖2

(C.35)

≥ (1− E[‖X‖2k]

2a
)

1
2π
√
|Σ|

e−
1
2 ηn−1(1+ D

‖y‖ )
2‖y‖2

(C.36)

≥ (1− a
2a

)
1

2π
√
|Σ|

e−2ηn−1‖y‖2
(C.37)

=
1

4π
√
|Σ|

e−2ηn−1‖y‖2
, (C.38)

where (C.36) is due to Markov’s Inequality.

Lemma C.6. There exist constants D > 0 and κ such that for every F ∈Pn(A ,k,a) and any
y ∈ Rn \BD(0),

|ln p(y;F)| ≤ 2ηn−1‖y‖2+κ. (C.39)

Proof. By either Lemma C.4 or C.5, depending on A , there exist constants D > 0 and M > 0
such that for any y ∈ Rn \BD(0),

cy , Me−2ηn−1‖y‖2
≤ p(y;F). (C.40)

Furthermore, by Lemma C.1, for any y ∈ Rn,

d ,
1

2π
√
|Σ|
≥ p(y;F). (C.41)

That is, for any y ∈ Rn \BD(0), we have that p(y;F) ∈ [cy,d].

Observe that f (t), |ln(t)| is continuous on (0,∞) with derivative

d f (t)
dt

=


−1

t , t ∈ (0,1)
1
t , t ∈ (1,∞)

undefinded, t = 1.
(C.42)
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The only critical point of f (t) occurs at t = 1, but f (1) = 0, which is a global minimum. There-
fore, f (t) attains its maximum on [cy,d] at one of the endpoints. Then for t ∈ [cy,d],

f (t)≤max{ f (cy), f (d)} (C.43)
≤ f (cy)+ f (d) (C.44)

= |−2ηn−1‖y‖2+ lnM|+ |ln(2π
√
|Σ|)| (C.45)

≤ 2ηn−1‖y‖2+|lnM|+ |ln(2π
√
|Σ|)|, (C.46)

where (C.44) is due to f (t) being non-negative on its domain. Setting

κ , |lnM|+ |ln(2π
√
|Σ|)| (C.47)

yields the result.

C.3 Integrability Results

The results in this section show that the output density is sufficiently well behaved in terms
of integrability. Theorem C.1 is used in Chapter 3. The other results are used in Appendix
D to prove the weak continuity and weak differentiability of the convex optimization objective
function Jγ(·).

Due to the spherically symmetric form of the upper bounds in Section C.2, we will make use
of the polar coordinates (‖y‖,θ1, . . . ,θn−1) ∈ [0,∞)× [0,π]n−2× [0,2π] when integrating in this
section. The absolute value of the Jacobian for n-dimensional polar coordinates satisfies [21]

|Jn| ≤ ‖y‖n−1. (C.48)

Define

βn ,
∫

π

0
. . .
∫

π

0

∫ 2π

0
dθn−1 . . . dθ2 dθ1 (C.49)

= 2π
n−1. (C.50)
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Note that for a function f (y) = f (‖y‖) and some D≥ 0,∫
Rn\BD(0)

f (‖y‖)dy ≤
∫

∞

D

∫
π

0
. . .
∫

π

0

∫ 2π

0
f (‖y‖)‖y‖n−1 dθn−1 . . . dθ2 dθ1 d‖y‖ (C.51)

= βn

∫
∞

D
f (‖y‖)‖y‖n−1d‖y‖. (C.52)

Theorem C.1. For any F ∈Pn(A ,k,a), ln p(·;F) ∈ L2
pN (Rn)

Proof. By Lemma C.6, there exist constants D > 0 and κ such that

ln2 p(y;F)≤ 4η
2
n−1‖y‖4+4κηn−1‖y‖2+κ

2 (C.53)

, M(‖y‖). (C.54)

Integrating against pN(·),∫
Rn\BD(0)

ln2 p(y;F)pN (y)dy≤
∫
Rn\BD(0)

M(‖y‖) 1
2π
√
|Σ|

e−
1
2y

T Σ−1y dy (C.55)

≤
∫
Rn\BD(0)

M(‖y‖) 1
2π
√
|Σ|

e−
1
2 η0‖y‖2

dy (C.56)

≤ βn

∫
∞

D
M(‖y‖)‖y‖n−1 1

2π
√
|Σ|

e−
1
2 η0‖y‖2

d ‖y‖ (C.57)

< ∞, (C.58)

since η0 > 0 and M(‖y‖)‖y‖n−1 is a polynomial in ‖y‖. Noting that ln2 p(·;F) is continous
and, thus integrable on the compact set BD(0), completes the proof.

Lemma C.7. Let C ∈ Cn and let F0,F1 ∈Pn(C ,k,a). Then∫
Rn
|p(y;F0) ln p(y;F1)|dy < ∞. (C.59)

Proof. Since |p(y;F0) ln p(y;F1)| is continuous, it is integrable on any closed ball BD(0), where
D > 0. Therefore, we need only show that there exists D > 0 for which |p(y;F0) ln p(y;F1)| is
integrable on Rn \BD(0).

Let ηn−1 ≥ η0 > 0 be the maximal and minimal eigenvalues of Σ−1. By Lemma C.3, there
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exists D0 > 0 such that for all y ∈ Rn \BD0(0),

p(y;F0)≤
1

2π
√
|Σ|

e−
1
8 η0‖y‖2

. (C.60)

Furthermore, by Lemma C.6, there exist constants D1 > 0 and κ such that for all y ∈Rn\BD1(0),

|ln p(y;F1)| ≤ 2ηn−1‖y‖2+κ. (C.61)

Let D = max{D0,D1}. Then by (C.61) and (C.60),∫
Rn\BD(0)

|p(y;F0) ln p(y;F1)|dy ≤
∫
Rn\BD(0)

1
2π
√
|Σ|

e−
1
8 η0‖y‖2

(2ηn−1‖y‖2+κ)dy (C.62)

≤ βn

∫
∞

D

1
2π
√
|Σ|

e−
1
8 η0‖y‖2

(2ηn−1‖y‖2+κ)‖y‖n−1 d‖y‖

(C.63)

< ∞. (C.64)

Therefore, |p(y;F0) ln p(y;F1)| is integrable on Rn \BD(0), which completes the proof.

Lemma C.8. For any F ∈Pn(Rn,k,a),∫
Rn
|p(y;F) ln p(y;F)|dy < ∞. (C.65)

Proof. This proof follows along the lines of the justification for the use of the Dominated Con-
vergence Theorem in (19) of Appendix E in [17]. The most obvious difference is the domain
of integration – the volume of a ball of radius r in Rn grows proportionally to rn and forces a
stricter upper-bound than would be needed for an integral over R. This is the reasoning for the
restriction 2k > n when A = Rn.

We proceed by partitioning Rn into 3 sets and showing that |p(y;F) ln p(y;F)| is integrable
over each of them. Let η0 > 0 be the smallest eigenvalue of Σ−1 and note that there exists D > 0
such that for all y ∈ Rn \BD(0),

e−η0
1
4‖y‖

2
≤ ‖y‖−2k. (C.66)
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Let F ∈Pn(A ,k,a) and let

A1 , {y ∈ Rn | ln p(y;F)> 0}, (C.67)

A2 , Rn \A1 \BD(0), (C.68)

A3 , BD(0)\A1. (C.69)

The continuity of ln p(y;F) implies that A1 is Lebesgue-measurable and the integral can be split
up as ∫

Rn
|p(y;F) ln p(y;F)|dy =

3

∑
i=1

∫
Ai

|p(y;F) ln p(y;F)|dy (C.70)

Since by Lemma C.1, p(y;F) is bounded above, we have for some M ≥ 1,∫
A1

|p(y;F) ln p(y;F)|dy =
∫

A1

p(y;F) ln p(y;F)dy (C.71)

≤
∫

A1

p(y;F) lnM dy (C.72)

≤ lnM. (C.73)

To see that the integral over A3 is finite, observe that |p(y;F) ln p(y;F)| is continuous in
y and therefore, integrable over the compact set BD(0). Furthermore, since the integrand is
non-negative, ∫

A3

|p(y;F) ln p(y;F)|dy =
∫

BD(0)\A1

|p(y;F) ln p(y;F)|dy (C.74)

≤
∫

BD(0)
|p(y;F) ln p(y;F)|dy (C.75)

< ∞. (C.76)
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It remains to show integrability over A2. For y ∈ A2,

p(y;F) =
∫

B‖y‖/2(0)
pN (y−x)dF(x)+

∫
Rn\B‖y‖/2(0)

pN (y−x)dF(x) (C.77)

≤ e−η0‖ 1
2y‖

2
P
{
‖X‖≤ ‖y‖

2

}
+ pN (0)P

{
‖X‖> ‖y‖

2

}
(C.78)

≤ e−η0
1
4‖y‖

2
+ pN (0)P

{
‖X‖2k>

‖y‖2k

22k

}
(C.79)

≤ e−η0
1
4‖y‖

2
+ pN (0)22kE[‖X‖2k]‖y‖−2k (C.80)

≤ e−η0
1
4‖y‖

2
+ pN (0)22ka‖y‖−2k (C.81)

≤
(

22k−1a
π|Σ|

+1
)
‖y‖−2k (C.82)

In the above, (C.80) is due to Markov’s inequality and (C.82) comes from y ∈ Rn \BD(0).

For any 0 < δ < 1 and 0 < x≤ 1, consider the inequality (see [17])

|x lnx| ≤ xδ

1−δ
. (C.83)

Since y /∈ A1, (C.83) may be applied to p(y;F), yielding

|p(y;F) ln p(y;F)| ≤ pδ (y;F)

1−δ
(C.84)

≤ κ‖y‖−2kδ , (C.85)

where

κ =
1

1−δ

(
22k−1a
π|Σ|

+1
)δ

. (C.86)
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Then, using polar coordinates,∫
A2

|p(y;F) ln p(y;F)|dy ≤ κ

∫
A2

‖y‖−2kδ dy (C.87)

= κ

∫
Rn\A1\BD(0)

‖y‖−2kδ dy (C.88)

≤ κ

∫
Rn\BD(0)

‖y‖−2kδ dy (C.89)

≤ κβn

∫
∞

D
‖y‖−2kδ‖y‖n−1d ‖y‖ (C.90)

= κβn

∫
∞

D
‖y‖−2kδ+n−1d ‖y‖ (C.91)

The integral in (C.91) is finite if and only if −2kδ +n−1 <−1, or equivalently when

k >
n

2δ
. (C.92)

Since δ < 1, this condition implies that k > n/2. Furthermore, if for some ε > 0, k = n/2+ ε ,
then

δ =
n

n+ ε
, (C.93)

satisfies (C.92). Therefore, the existence of δ ∈ (0,1) satisfying (C.92) is equivalent to

k >
n
2
. (C.94)

Therefore, when 2k > n, ∫
A2

|p(y;F) ln p(y;F)|dy < ∞. (C.95)

Together with (C.73) and (C.76), this gives the result.

58



Appendix D

Properties of the Objective Functional

The aim of this section is to discuss the weak continuity, strict concavity and weak differentia-
bility of the objective function,

Jγ(F), I(F)− γg(F), (D.1)

for the optimization problem posed in (3.14). These properties are instrumental in the establish-
ment and subsequent analysis of the convex optimization problem considered in Chapter 3.

To deal with a technical point in the proof of Theorem A.4, we introduce b ∈ R>0 and prove
concavity, convexity and weak differentiability on Pn(A ,k,b).

Weak Continuity: The first property we examine is the weak continuity of I(·), which is nec-
essary for the application of Theorem A.1.

Theorem D.1. I(·) is weak continuous on Pn(A ,k,a).

Proof. The proof here largely follows the proof in Appendix E of [17], the main difference being
the justification of the applicability of the Dominated Convergence Theorem in (19) of [17]. This
step requires that, for any F ∈Pn(A ,k,a),∫

Rn
|p(y;F) ln p(y;F)|dy < ∞, (D.2)

which holds by either Lemma C.7 or Lemma C.8, depending on A .
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Concavity and Convexity: The strict concavity of I(·) and the convexity of g(·) are needed
for the theorems in Appendix A. Note that since γ ≥ 0, these results imply that Jγ(·) is strictly
concave.

Theorem D.2. For any b ∈ R>0, I(·) is strictly concave on Pn(A ,k,b).

Proof. See Appendix E of [17].

Theorem D.3. For any b ∈ R>0, g(·) is convex on Pn(A ,k,b).

Proof. Let λ ∈ [0,1] and F0,F1 ∈Pn(A ,k,b). Then,

g(λF0 +(1−λ )F1) =
∫
Rn
‖x‖2k dλF0(x)+

∫
Rn
‖x‖2k d(1−λ )F1(x)−a (D.3)

= λ (
∫
Rn
‖x‖2k dF0(x)−a)+(1−λ )(

∫
Rn
‖x‖2k dF1(x)−a) (D.4)

= λg(F0)+(1−λ )g(F1). (D.5)

Weak Differentiability: We make use of the following notion of a derivative of a function
defined on a convex set Ω[17].

Definition D.1. Define the weak derivative of L : F → R at F0 in the direction F by

L′(F0,F) = lim
λ↓0

L((1−λ )F0 +λF)−L(F0)

λ
, (D.6)

whenever it exists.

Weak differentiability of Jγ(·) is necessary for the application of the optimality condition in
Theorem A.3.

Theorem D.4. For any b ∈ R>0, g(·) is weakly differentiable on Pn(A ,k,b). Furthermore, for
any F0,F ∈Pn(A ,k,b), the weak derivative is finite and given by

g′(F0,F) = g(F)−g(F0). (D.7)
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Proof. Let λ ∈ [0,1] and F0,F ∈Pn(A ,k,b). Then,

g(λF +(1−λ )F0)−g(F0) = g(λ (F−F0)+F0)−g(F0) (D.8)

=
∫
Rn
‖x‖2k d

[
λ (F(x)−F0(x))+F0(x)

]
−a

−
(∫

Rn
‖x‖2k dF0(x)−a

) (D.9)

= λ

(∫
Rn
‖x‖2k dF(x)−

∫
Rn
‖x‖2k dF0(x)

)
(D.10)

= λ

[∫
Rn
‖x‖2k dF(x)−a−

(∫
Rn
‖x‖2k dF0(x)−a

)]
(D.11)

= λ (g(F)−g(F0)). (D.12)

Dividing by λ and taking the limit as it goes to 0 gives (D.7). Finally, since F0,F ∈Pn(A ,k,b),
we have that g(F0),g(F) ∈ [−b,0], so this quantity is finite.

Theorem D.5. For any b ∈ R>0, I(·) is weakly-differentiable on Pn(A ,k,b). Furthermore, for
any F ∈Pn(A ,k,b), the weak derivative at F∗ is given by

I′(F∗,F) =
∫
Rn

h(x;F∗)dF(x)−hY (F∗). (D.13)

Proof. This proof largely follows Appendix E from [17]. The step that requires special attention
is the application of the Dominated Convergence Theorem in (27) of [17]. That is, we would like
to show the integrability of

|(p(y;F)+ p(y;F∗)) ln p(y;F∗)| ≤ |p(y;F) ln p(y;F∗)|+ |p(y;F∗) ln p(y;F∗)| (D.14)

Case 1: A ∈ Cn. The result follows by Lemma C.7.

Case 2: A = Rn. The second term on the right side of (D.14) is integrable by Lemma C.8.
Therefore, it remains only to show that |p(y;F) ln p(y;F∗)| is integrable. Define

S = {y ∈ Rn | ln p(y;F∗)≥ 0}. (D.15)
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Then∫
Rn
|p(y;F) ln p(y;F∗)|dy =

∫
S

p(y;F) ln p(y;F∗)dy−
∫
Rn\S

p(y;F) ln p(y;F∗)dy (D.16)

=
∫

S
p(y;F) ln p(y;F∗)dy−

(∫
Rn

p(y;F) ln p(y;F∗)dy

−
∫

S
p(y;F) ln p(y;F∗)dy

)
(D.17)

= 2
∫

S
p(y;F) ln p(y;F∗)dy−

∫
Rn

p(y;F) ln p(y;F∗)dy. (D.18)

The first term is finite by Lemma C.1 applied to ln p(y;F∗), so it remains to show that the second
term is finite.

Using a similar method to that of [17], let u(·) be the n-dimensional Heaviside step function
given by

u(x) =
n

∏
i=1

u1(xi), (D.19)

where u1(·) is the univariate Heaviside step function. For xs ∈ Rn with ‖xs‖≥ b
1
2k , let

Fs(x) = (1− b
‖xs‖2k )u(x)+

b
‖xs‖2k u(x−xs). (D.20)

Then since g(Fs) = 0, Fs ∈Pn(A ,k,b). We also have

p(y;Fs) = (1− b
‖xs‖2k )pN (y)+

b
‖xs‖2k pN (y−xs). (D.21)

Using the upper bound provided by Lemma C.6 on |ln p(·;F∗)|, we have that∫
Rn
|p(y;Fs) ln p(y;F∗)|dy < ∞. (D.22)

Therefore, the Dominated Convergence step in (27) of [17] goes through for I′(F∗,Fs) and hence

I′(F∗,Fs) =
∫
Rn

h(x;F∗)dFs(x)−hY (F∗). (D.23)
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By the complementary slackness of Theorem A.2, γg(F∗) = 0. It follows from Theorem D.4 that

γg′(F0,F) = γg(Fs)− γg(F∗) = 0 (D.24)

and J′(F∗,Fs) = I′(F∗,Fs).

To get an upper bound on h(·,F∗), let

Ω = {Fλ | λ ∈ [0,1],Fλ = λF∗+(1−λ )Fs}. (D.25)

Note that Ω⊆Pn(A ,k,b) is convex and, for Fλ ∈Ω,

p(y;Fλ ) = λ p(y;F∗)+(1−λ )p(y;Fs). (D.26)

Since both |p(·;Fs) ln p(·;F∗)| and |p(·;F∗) ln p(·;F∗)| are integrable, so is |p(·;Fλ ) ln p(·;F∗)|.
Therefore, I(·) is weak differentiable on Ω. Furthermore, since Ω⊆Pn(A ,k,b), F∗ is optimal
on Ω. By Theorem A.3 applied on Ω, I′(F∗,Fs) = J′(F∗,Fs)≤ 0, so that∫

Rn
h(x;F∗)dFs(x)≤ hY (F∗). (D.27)

Substituting Fs and rearranging, yields

h(xs;F∗)≤ hY (F∗)−h(0;F∗)
b

‖xs‖2k+h(0;F∗). (D.28)

Recalling that the above is true for any xs ∈ Rn \Bb1/2k(0), then for any F ∈Pn(A ,k,b),∫
Rn

h(x;F∗)dF(x) =
∫

B
b1/2k (0)

h(x;F∗)dF(x)+
∫
Rn\B

b1/2k (0)
h(x;F∗)dF(x) (D.29)

≤
∫

B
b1/2k (0)

h(x;F∗)dF(x)

+
∫
Rn\B

b1/2k (0)

[
hY (F∗)−h(0;F∗)

b
‖x‖2k+h(0;F∗)

]
dF(x)

(D.30)

≤
∫

B
b1/2k (0)

h(x;F∗)dF(x)+hY (F∗). (D.31)

By Lemma C.8, hY (F∗) is finite and the continuity of h(x;F∗) ensures the integrability of the
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first term on the compact set Bb1/2k(0). Then we have

∞ >
∫
Rn

h(x;F∗)dF(x) (D.32)

=−
∫
Rn

∫
Rn

pN (y−x) ln p(y;F∗)dydF(x) (D.33)

=−
∫
Rn

∫
Rn

pN (y−x) ln p(y;F∗)dF(x)dy (D.34)

=−
∫
Rn

p(y;F) ln p(y;F∗)dy, (D.35)

where (D.34) is justified by Lemma C.6 and Fubini’s Theorem. By (D.35), (D.18) is finite.
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Appendix E

Analycity of Marginal Entropy Density

Lemma E.1. For any F ∈Pn(A ,k,a), h(x;F) has an analytic extension to an entire function
on Cn.

Proof. For convenience of notation, we will prove the the case of n = 2 here.

We proceed by applying an orthogonal transformation to N to shift the analysis from 2
complex variables to 1. Since Σ is a real symmetric matrix, it can be diagonalized by orthogonal
matrices Q and QT . That is, letting λ1 ≥ λ0 > 0 be the eigenvalues of Σ,

Λ ,

[
λ0 0
0 λ1

]
=QT ΣQ. (E.1)

Moreover,
U ,QTN ∼N (0,Λ). (E.2)

Therefore, the density of U is given by

pU (u) = pU1(u1)pU2(u2) =
1√

2πλ0
e
− u2

1
2λ0

1√
2πλ1

e−
u2
2

2λ1 . (E.3)
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Consider the extension of h(x;F) to C2:

h(z;F) =−
∫
R2

pN(y−z) ln p(y;F)dy (E.4)

=−
∫
R2

1
2π
√
|Σ|

e−
1
2 (y−z)

T Σ−1(y−z) ln p(y;F)dy (E.5)

=−
∫
R2

1
2π
√
|Σ|

e−
1
2 (y−z)

TQΛ−1QT (y−z) ln p(y;F)dy. (E.6)

Applying the change of variables v =QTy and w =QTz gives

h(z;F) = h(Qw;F) (E.7)

=−
∫
R2

1
2π
√
|Σ|

e−
1
2 (v−w)T Λ−1(v−w) ln p(Qv;F)dv (E.8)

=−
∫
R2

1√
2πλ0

e
− (v1−w1)

2

2λ0
1√

2πλ1
e−

(v2−w2)
2

2λ1 ln p(Qv;F)dv (E.9)

=−
∫
R2

pU1(v1−w1)pU2(v2−w2) ln p(Qv;F)dv. (E.10)

Therefore, the analycity of h(z;F) on C2 is equivalent to the analycity of

hU (w;F),−
∫
R2

pU1(v1−w1)pU2(v2−w2) ln p(Qv;F)dv (E.11)

on C2.

Proof that hU (·;F) is an entire function on C2: We will first exploit the independence of U1
and U2 to prove that hU ((·,w2);F) is an entire function on C. The symmetry of the problem will
allow us to see that hU ((w1, ·);F) is entire as well. Finally, we will use Hartog’s Theorem to
conclude that hU (·;F) is an entire function on C2.

We will use Morera’s Theorem to show that hU ((·,w2);F) is entire. To that end, we would
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like to show that for any closed triangle ∆⊆ C with boundary ∂∆ and any fixed w2 ∈ C,

∮
∂∆

hU (w;F)dw1 =−
∮

∂∆

∫
∞

−∞

∫
∞

−∞

κ1e
− (v1−w1)

2

2σ2
1 pU2(v2−w2) ln p(Q(v1,v2)

T ;F)d v1d v2d w1

(E.12)

= 0. (E.13)

We do this by using Fubini’s Theorem to justify swapping the order of integration and using the
analycity of pU1(z) on C.

To upper bound the integrand on the right side of (E.12), let α0,β0 > 0 be sufficiently large
such that

∂∆⊆ {z ∈ C | Re{z} ∈ [−α0,α0], Im{z} ∈ [−β0,β0]}. (E.14)

By Lemma C.6, there exist constants D > α0 and κ such that for all v ∈ R2 \BD(0),

|ln p(Qv;F)| ≤ 2ηn−1‖Qv‖2+κ. (E.15)

Since Q is orthogonal, ‖Qv‖= ‖v‖ and (E.15) can be rewritten as

|ln p(Q(v1,v2)
T ;F)| ≤ 2ηn−1(v2

1 + v2
2)+κ (E.16)

We proceed by splitting the integral with respect to v1 into the intervals

A1 , (−∞,D), (E.17)

A2 , [−D,D], (E.18)

A3 , (D,∞). (E.19)

Then for w1 = α + iβ ∈ ∂∆ and v1 ∈ A3,

∣∣∣e− (v1−w1)
2

2σ2
1

∣∣∣= ∣∣∣e− 1
2σ2

1
((v1−α)2−β 2−2i(v1−α)β )∣∣∣ (E.20)

= e
1

2σ2
1

β 2

e
− 1

2σ2
1
(v1−α)2

(E.21)

≤ e
1

2σ2
1

β 2
0
e
− 1

2σ2
1
(v1−α0)

2

. (E.22)
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Therefore, substituting (E.16) and (E.22), for any w1 ∈ ∂∆,

∫
∞

D

∣∣∣κ1e
− (v1−w1)

2

2σ2
1 ln p(Q(v1,v2)

T ;F)
∣∣∣dv1 ≤ κ1e

1
2σ2

1
β 2

0
∫

∞

D
e
− 1

2σ2
1
(v1−α0)

2

(2ηn−1(v2
1 + v2

2)+κ)dv1

(E.23)

= c0v2
2 + c1, (E.24)

for some constants c0,c1 < ∞. Applying similar reasoning when v1 ∈ A1, shows that there are
constants c2,c3 < ∞ for which

∫ −D

−∞

∣∣∣κ1e
− (v1−w1)

2

2σ2
1 ln p(Q(v1,v2)

T ;F)
∣∣∣dv1 ≤ c2v2

2 + c3. (E.25)

Finally, since the integrand is continuous in v1, it is integrable on the compact set A2. Since
ln p(Q(v1, ·)T ;F) is continuous in v2, there exists a continuous real-valued function φ(·) such
that for any v2 ∈ R,

φ(v2) =
∫ D

−D

∣∣∣e− (v1−w1)
2

2σ2
1 ln p(Q(v1,v2)

T ;F)
∣∣∣dv1. (E.26)

Furthermore, by Lemma C.6 and the orthogonality of Q, for any v2 /∈ [−D,D],

φ(v2)≤
∫ D

−D

∣∣∣e− (v1−w1)
2

2σ2
1 2ηn−1(v2

1 + v2
2)+κ)

∣∣∣dv1 (E.27)

= c4v2
2 + c5, (E.28)

for some constants c4,c5 < ∞.

We proceed to integration with respect to v2 using the same intervals Ai, i ∈ {1,2,3}, that
were used for v1. For any w2 = t + ir ∈ C and w1 ∈ ∂∆,

ψ(w1,w2),
∫

∞

−∞

∫
∞

−∞

∣∣∣κ1e
− (v1−w1)

2

2σ2
1 pU2(v2−w2) ln p(Q(v1,v2)

T ;F)
∣∣∣d v1d v2 (E.29)

=
∫

∞

−∞

3

∑
i−1

∫
Ai

∣∣∣κ1e
− (v1−w1)

2

2σ2
1 κ2e

− (v2−w2)
2

2σ2
2 ln p(Q(v1,v2)

T ;F)
∣∣∣d v1d v2 (E.30)

≤ κ2e
r2

2σ2
2

∫
∞

−∞

e
− (v2−t)2

2σ2
2

[
c0v2

2 + c1 + c2v2
2 + c3 +φ(v2)

]
d v2. (E.31)
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Since φ(·) is continuous and A2 compact,

∫
A2

e
− (v2−t)2

2σ2
2

[
c0v2

2 + c1 + c2v2
2 + c3 +φ(v2)

]
d v2 < ∞. (E.32)

Let c6 = c0 + c2 + c4 and c7 = c1 + c3 + c5. Then by (E.28),

∫
R\A2

e
− (v2−t)2

2σ2
2

[
c0v2

2 + c1 + c2v2
2 + c3 +φ(v2)

]
d v2 ≤

∫
R\A2

e
− (v2−t)2

2σ2
2

[
c6v2

2 + c7

]
d v2 (E.33)

< ∞. (E.34)

Therefore, ψ(w1,w2) is finite for every w1 ∈ ∂∆ and∮
∂∆

ψ(w1,w2)d w1 < ∞. (E.35)

This justifies the use of Fubini’s Theorem in (E.12) so that∮
∂∆

hU (w;F)dw1 =−
∫

∞

−∞

∫
∞

−∞

∮
∂∆

pU1(v1−w1)pU2(v2−w2) ln p(Q(v1,v2)
T ;F)d w1d v1d v2

(E.36)

= 0, (E.37)

where equality to 0 is due to the analycity of pU1(v1−w1).

By Morera’s Theorem, hU ((w1,w2);F) is an entire function of w1 for fixed w2. Applying
similar logic to the above, hU ((w1,w2);F) is also an entire function of w2 for fixed w1. There-
fore, by Hartog’s Theorem, hU ((w1,w2);F) is entire on C2 [19].
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