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Abstract

The RADARSAT Constellation Mission (RCM) was launched in June 2019. RCM, in addi-
tion to dual-polarization (DP) and fully quad-polarimetric (QP) imaging modes, provides
compact polarimetric (CP) mode data. A CP synthetic aperture radar (SAR) is a coherent
DP system in which a single circular polarization is transmitted followed by the reception
in two orthogonal linear polarizations. A CP SAR fully characterizes the backscattered
field using the Stokes parameters, or equivalently, the complex coherence matrix. This is
the main advantage of a CP SAR over the traditional (non-coherent) DP SAR. There-
fore, designing scene segmentation and classification methods using CP complex coherence
matrix data is advocated in this thesis.

Scene classification of remotely captured images is an important task in monitoring
the Earth’s surface. The high-resolution RCM CP SAR data can be used for land cover
classification as well as sea-ice mapping. Mapping sea ice formed in ocean bodies is im-
portant for ship navigation and climate change modeling. The Canadian Ice Service (CIS)
has expert ice analysts who manually generate sea-ice maps of Arctic areas on a daily
basis. An automated sea-ice mapping process that can provide detailed yet reliable maps
of ice types and water is desirable for CIS. In addition to linear DP SAR data in ScanSAR
mode (500km), RCM wide-swath CP data (350km) can also be used in operational sea-ice
mapping of the vast expanses in the Arctic areas. The smaller swath coverage of QP SAR
data (50km) is the reason why the use of QP SAR data is limited for sea-ice mapping.

This thesis involves the design and development of CP classification methods that
consist of two steps: an unsupervised segmentation of CP data to identify homogeneous
regions (superpixels) and a labeling step where a ground truth label is assigned to each
super-pixel. An unsupervised segmentation algorithm is developed based on the existing
Iterative Region Growing using Semantics (IRGS) for CP data and is called CP-IRGS.
The constituents of feature model and spatial context model energy terms in CP-IRGS are
developed based on the statistical properties of CP complex coherence matrix data. The
superpixels generated by CP-IRGS are then used in a graph-based labeling method that
incorporates the global spatial correlation among super-pixels in CP data.

The classifications of sea-ice and land cover types using test scenes indicate that (a)
CP scenes provide improved sea-ice classification than the linear DP scenes, (b) CP-IRGS
performs more accurate segmentation than that using only CP channel intensity images,
and (c) using global spatial information (provided by a graph-based labeling approach)
provides an improvement in classification accuracy values over methods that do not exploit
global spatial correlation.
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Chapter 1

Introduction

1.1 Domain

The RADARSAT Constellation Mission (RCM) was launched in June 2019, supporting
Canada’s need for enhancing the operational use of synthetic aperture radar (SAR) data
for maritime surveillance, disaster management, and environmental monitoring [!]. In
addition to single, dual polarization (DP), and quad-polarimetric (QP) imaging modes,
RCM provides wide-swath compact polarimetric (CP) SAR data for which the SAR system
receives two coherent linear polarizations in response to a circularly-polarized field on
transmit. Moreover, the RCM has the benefit of near daily coverage of all of Canada’s
coastal areas improving the dynamic monitoring of the Arctic areas [2].

A CP SAR has many advantages over traditional DP SAR systems such as minimum
sensitivity to noise and cross-channel errors, being relatively simple to implement, and
self-calibration property [3]. Also, the data from a CP SAR is expected to be “as good
as” those of a fine QP SAR [1]. More importantly, like DP SAR, CP SAR sensor is able
to capture a wide swath width. An important shortcoming of QP SAR is its inability to
produce wide swaths which limits the use of QP data [5].

Scene classification is an important task in monitoring the Earth’s surface. The high-
resolution RCM CP SAR data can be used for land cover classification as well as sea-ice
mapping [0, 7]. Freezing of the ocean surface results in forming sea-ice which is mostly
formed in polar regions where, on average, it covers about 25 million square kilometers
of the Earth’s surface. In the Arctic, sea-ice can be an obstacle to shipping. The extent
of sea-ice in the Arctic can vary from year to year, which can greatly affect climate [3].



Therefore, sea-ice maps are important for environmental monitoring and climate change
modeling[1, 2, 9].

Remote sensing satellites are the main source of image data for sea-ice observation.
These satellites acquire images in visible, infrared, and microwave spectral ranges. Me-
teorological satellites (NOAA AVHAR, VIIRS, MODIS, Sentinel-3) provide visible and
infrared images with the resolutions of 250m - 1km. Satellites operating in passive mi-
crowave with coarser resolutions of 6 - 70km (AMSR2, NOAA AMSU, SSMIS) have cloud-
penetrating capability suitable for sea-ice observation. Most importantly, active microwave
SAR satellites (RADARSAT-2, Sentinel-1, TerraSAR-X, COSMO-SkyMed, ALOS-2, and
RCM satellites) provide data with better resolution (10 - 100m) [10].

Since the polar regions are dark roughly half of the year and often cloud-covered, SAR
satellites, which capture images with appropriate resolution and in all-weather and daylight
conditions, are very useful in sea-ice mapping [11-13]. Linear dual polarization (DP) SAR
data are used by the Canadian Ice Service (CIS) for sea-ice monitoring. CIS uses the
wide-swath 500km DP ScanSAR data to generate ice maps of Canadian waters on a daily
basis. After the launch of RCM satellites, using RCM CP data along with the DP data is
of interest of the CIS.

1.2 Thesis Objectives

Many SAR scenes are processed daily by human analysts, which is very time consuming.
CIS personnel classify different ice types in terms of stage of development in the form of ice
charts associated with “egg codes”. Egg codes contain the ice concentration information
interpreted from SAR scenes by CIS experts [3]. This process involves some approximations
and can lead to different results through various interpretations. These all make automated
SAR scene classification approaches attractive. Although there are many classification
methods using SAR data for sea-ice mapping proposed in the literature [11—14], there are
a limited number of scene classification studies dealing specifically with CP SAR data [9,
~17].

There are a number of challenges when designing a classification method using CP
SAR images. The input data in DP SAR classification are HH and HV intensity images,
and in the case of QP SAR data, are either the 3 x 3 complex covariance matrix or a set
of decomposition features. Unlike DP and QP, CP provides two different data sources:
the 2 x 2 complex coherence matrix and a set of features that are derived from the four-
element Stokes vector. The challenge when processing CP SAR data is to design a method



that integrates the special characteristics of CP data. If the data source used is the
complex coherence matrix data, the statistical characteristics of this data type need to
be incorporated in the classification method. If the input data to the method are Stokes
vector-derived features, an understanding of the nature of each feature is necessary for the
analysis of classification results.

Several characteristics of CP data make this data type unique compared to DP data
type. The intensity images of DP (HH and HV images) each provides different source
information, however, since the mean signal values in the two channels of CP (RH and RV
images) are at the same level and the first and second order statistics in the channels are
identical [3], RH and RV are similar data sources. Another distinction of CP over DP is
that DP SAR has the disadvantage of received vertical polarization being cross-polarized
(with a horizontally-polarized wave on transmit). However, neither of CP channels is cross-
polarized. Also, CP provides Stokes vector which can be used to derive decompositions

such as m — & or m — y [18] to apply a more accurate classification than the case using DP
data.
A common-sense approach to scene classification is a two-step method [11]. In the

first step, a segmentation is applied on SAR data to determine the homogeneous regions
each of which containing one ground truth class. In the second step, the regions spec-
ified in the segmentation step are labeled by the use of a supervised or semi-supervised
labeling method. Due to the challenges in sea-ice classification using SAR images such as
the existence of speckle noise, similar backscatter for different ice types, and intra-class
backscatter variability (different backscatter values for the same ice type in different parts
of a SAR scene), incorporating spatial context through modeling the spatial correlation
among pixels is effective in both segmentation and labeling steps.

Developing a region-based segmentation that models the spatial context information
reduces the impact of speckle noise in SAR imagery [11]. A main objective of this thesis
is to develop a region-based contextual image segmentation method using CP SAR data.
Markov random field (MRF') image segmentation methods are advocated for their use of
contextual information [19]. Iterative Region Growing using Semantics (IRGS) is a region-
based segmentation algorithm [20] that incorporates edge strength information in MRF's.
IRGS segmentation is also adapted to be used for full QP SAR data [21], DP SAR scene
classification [11], and hyperspectral images [22]. To the best of our knowledge, no research
has been done in contextual segmentation of CP SAR data.

Using a contextual segmentation, a CP SAR scene is divided to regions, also called
superpixels, that are assumed to be homogeneous. Classification then involves labeling
to assign ground truth labels to the segmentation regions. A labeling method that in-



corporates the global correlation among the superpixels is developed and evaluated. The
labeling method utilizes graph learning to predict labels in a semi-supervised manner.
Through modeling the global spatial context information by the graph-based method, the
labeling approach tackles the issue of intra-class variability over a SAR image. This is
because the correlation among superpixels from one certain ground truth class all over the
scene is integrated in to the classification model.

The contribution of the thesis resides in three main aspects:

1. The performance of scene classification using reconstructed full QP (namely pseudo-
QP) from a CP SAR scene and the derived features from the Stokes vector is in-
vestigated, and the result accuracy of CP data is compared to that of DP and full
QP data . In particular, a region-based QP-based segmentation models the spa-
tial context information using pseudo-QP data from CP and provides homogeneous
regions in a SAR scene. Then, a pixel-based labeling classification using the CP
Stokes vector-derived features is performed. The combination of the segmentation
and labeling results leads to the final classification maps. A thorough performance
analysis of QP reconstruction from CP for the application of sea-ice mapping was
also performed (Chapter 2).

2. The statistical properties of complex CP SAR data is described, and an unsupervised
segmentation method based on the statistical model of complex CP SAR data is
developed. IRGS, a well-known region-based segmentation algorithm, is extended to
complex CP data. First, it is demonstrated that the multilook complex (MLC) CP
data is complex Wishart-distributed. Then, the unary and pairwise constituents of
IRGS are derived specifically for multilook complex CP data type (Chapter 3). From
operational perspective, a contribution of the proposed unsupervised segmentation
in sea-ice mapping is that the segmentation method segments a CP scene to a certain
number of classes, where each class can then be assigned to an ice types by an ice
expert.

3. A CP classification methodology is designed that exploits the superpixels generated
by the unsupervised segmentation and performs labeling with a graph-based ap-
proach. Such a method includes the global correlation among superpixels by utilizing
the spatial distance between superpixels as well as the statistical significance between
the MLC matrices associated with superpixels. This is discussed in Chapter 4.



1.3 Thesis Structure

Each of Chapters 2, 3, and 4 proposes a novel classification method for CP SAR data. The
three chapters are based on three published/submitted journal manuscripts [23-25]. The
introduction to the chapters and the underlying theory in the three chapters may provide
overlapping information.

Following the two-step classification methodology (segmentation followed by labeling),
Chapter 2 aims to provide a full-scene classification method of sea-ice types using CP
SAR data. To use an existing QP-based segmentation method, QP data is reconstructed
from CP data. An SVM labeling method is then performed to assign ice type labels to
segmentation regions.

Since QP reconstruction from CP entails invoking certain symmetry arguments that
might be not valid, directly using complex CP data is more desirable. Chapter 3 proposes
an unsupervised region-based segmentation method based on the statistical properties of
complex CP SAR data. The segmentation method developed in Chapter 3 can be used to
identify homogeneous regions (superpixels) in the image. To model the spatial correlation
among all the superpixels in the image, a graph is used. Chapter 4 describes a semi-
supervised classification method which is based on the graph built on superpixels. A
summary of contributions and conclusions are provided in Chapter 5 where, finally, the
future work is described.



Chapter 2

Sea-Ice Type Classification
Methodology

The purpose of this chapter is to implement a CP dedicated automatic full scene classifi-
cation approach for sea-ice mapping. A two-step methodology comprising an unsupervised
segmentation method (to segment ice-class homogeneous regions) and a supervised la-
beling method (to classify the ice-type labels for each homogeneous region) is designed.
Two complex quad-polarimetric RADARSAT-2 scenes are used to mathematically derive
corresponding CP scenes for algorithm testing. This chapter is a refereed journal publica-
tion [23].

2.1 Introduction

Sea-ice maps are important for ship navigation, environmental monitoring, and climate
change modeling. Satellite synthetic aperture radar (SAR) imagery has been the most
important asset for sea-ice mapping for over two decades. The current SAR imagery, that is
acquired in any weather and day-light conditions, has proven to be beneficial, specifically for
Arctic regions [ 1-13]. Linear dual polarization (DP) SAR data provided by RADARSAT-2
is currently the primary SAR data source used by the Canadian Ice Service (CIS) for sea-
ice monitoring. CIS uses the wide-swath 500km DP ScanSAR data to generate ice maps
of Canadian waters on a daily basis. Recently, the RADARSAT Constellation Mission
(RCM) was launched supporting Canada’s need for enhancing the operational use of SAR
data for maritime surveillance, disaster management, and environmental monitoring [1].



In addition to single, DP, and quad-polarimetric (QP) imaging modes, RCM will pro-
vide wide-swath coverage CP SAR data for which the SAR system receives two coherent
linear polarizations in response to a circularly-polarized field on transmit. Moreover, the
RCM has the benefit of near daily coverage of all of Canada’s coastal areas improving the
dynamic monitoring of the Arctic areas [2]. A CP SAR has many advantages over other
DP SAR systems such as minimum sensitivity to noise and cross-channel errors, being
relatively simple to implement, and self-calibration property [3]. More importantly, like
a DP SAR, a CP SAR is able to capture a wide swath necessary for operational sea-ice
mapping. An important shortcoming of QP SAR is its inability to produce wide swaths
(limited to 100km in RADARSAT-2) which limits the use of QP data for operational sea-ice
mapping [5].

Many SAR scenes are processed daily by human analysts which is very time consuming,
making automated scene classification approaches attractive. Although there are many
classification methods using SAR data for sea-ice mapping proposed in the literature [I 1—

|, there are a limited number of papers published dealing specifically with CP SAR data
for ice-type mapping [9, 15-17]. To the best of our knowledge, there is no study that
utilizes the contextual information in CP SAR data to classify ice types. Incorporating a
region-based segmentation that models the spatial context information reduces the impact
of speckle noise in SAR imagery [11]. Here, we develop a multi-class ice-type classification
method that uses region-based segmentation for CP data.

Markov random field (MRF) image segmentation methods are advocated for their use
of spatial-context information [19]. We apply the unsupervised segmentation algorithm
called IRGS [20] to determine the homogeneous regions of ice types and open water. Other
than modeling spatial-context information, IRGS is advantageous since it is region-based,
and by using the statistical properties of regions, it is less sensitive to speckle noise and the
intra-class backscatter variability induced by incidence angle in SAR images [I1]. Also,
a region-based segmentation method is preferred in terms of computation speed as the
number of regions/superpixels, which are used to construct region adjacency graph (RAG),
is usually significantly less than the number of pixels [20].

IRGS, similar to other superpixel segmentation methods such as simple linear iterative
clustering (slic) [27], preserves image boundaries by generating homogeneous superpixels
that contain only one ground-truth class. However, a main advantage of IRGS is that
IRGS is adaptive, i.e., it captures the important local details without having to utilize
many superpixels in homogeneous regions. IRGS method models the backscatter based
on Gaussian statistics and changes the initial boundaries from a watershed algorithm [2]
by merging the regions to obtain the final segmentation image. A complex QP extension
of IRGS called PolarIRGS has also been published and applied to a land cover type data
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set [21]. PolarIRGS algorithm is performed here for sea-ice scene segmentation using
reconstructed QP data from CP data. This contributes to utilizing all the information
which can be extracted from a CP data set in a contextual segmentation.

Since the segmentation is unsupervised, a separately trained SVM model is used to
assign true ice-type labels to the regions. SVM classification algorithm has already proven
to be effective in discriminating between SAR signatures of ice and water [11,29]. The
segmentation maps are combined with the ice-type classification results obtained from the
SVM algorithm to generate the final ice-type maps.

The proposed sea-ice type classification method which combines the IRGS-based seg-
mentation and the SVM classification is applied to assess the capability of CP SAR data in
sea-ice type mapping compared to DP data. The performance of the classification method
is tested using a pair of fine complex quad-polarization SAR scenes from which the CP
data is derived (to mimic the RCM CP data).

Section 2.4 provides a literature review of the classification methods using CP SAR
data. In Section 2.2, a review of CP SAR features is provided. A review on the methods of
QP reconstruction from CP data is presented in Section 2.3. Section 4.4 presents the steps
of the proposed methodology. Section 2.6 describes the study area and the data used in
this chapter, and Section 2.7 presents the experiments and the corresponding results and
analyses.

2.2 Compact Polarimetric SAR Theory

The polarization of an electromagnetic wave characterizes the behavior of its electric field.
The polarization can be represented in general by the Jones vector E [30)]

_ gda cos ) cosxy — jsinsin x
E=Ae sin ) cos x + 7 cos ) sin (2.1)

where A, 1, and y parameterize the “polarization ellipse”, which is the trajectory of the
electric field at a fixed location along the propagation direction. A is the ellipse amplitude,
and ¢ and y are called the orientation angle and the ellipticity angle, respectively [31].
Also, the term « is an absolute phase term. The relationship between the incident field in
radar E; and the backscatter field E, is described by [30]
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where S is the scattering matrix. The term r is the distance between the target and
the radar antenna, and k is the wave number of the illuminating wave [32]. This is the
case where the transmitting and receiving antennas are at the same location (monostatic
backscattering case). Therefore, the incident and scattered Jones vector are expressed in
the same orthogonal basis with horizontal (H) and vertical (V) unit vectors (ug,dy). In
the case of a reciprocal propagation medium, the vector reciprocity theorem [32] requires
that the matrix S be symmetric, with Sgy = Sy g.

A SAR system that provides a complete scattering matrix is called a full QP SAR.
Despite the complete data source that a QP SAR provides, a QP SAR system requires
a higher frequency of pulse repetition than that of a DP SAR to transmit and receive in
two orthogonal polarizations. The pulse repetition frequency in QP system is twice the
frequency as in a single or DP SAR for a given coverage area [1]. The data requirements
restrict the use of fine QP SAR data in wide swaths when mapping vast expanses of
ice/water in oceans, and make wide-swath dual- and, especially, CP modes more favorable.

The first application of CP is attributed to Souyris et al.[33], who proposed using “7/4-
mode”, and reconstructed full QP data. In this mode, in response to a linearly-polarized
transmitted field with a 45° inclination, two coherent linear polarizations are received. The
CTLR-CP mode [3], where a circular polarization on transmit is followed by two coherent
orthogonal linear polarizations on receive, is another implementation of CP. This mode
has been more appealing due to the simpler and more robust implementation than that of
the other conventional coherent dual-polarized modes [!]. Raney et al. [31] described the
properties of the hybrid-polarity modes and compared the CTLR mode with the other CP
modes.

In the case of a CP SAR, a complex measurement vector E of the backscattered field,
which is the multiplication of scattering matrix (S) and the transmit polarization is used

E A
ECP = |:EI;:| = Sub (23>

where 1, is the unit Jones vector associated with the transmit wave. For instance, according
to (2.1), in the CTLR mode (¢ = 0, x = —7%), the unit Jones vector is \/Li[l — 4]%, and
therefore, E.;; p can be given by

E _ |:SHH SHVi| 7 _ b [SHH _jSHVj| (2.4)
SOTLE =\ Spy - Syv NG V2 [Sav — jSvv |’ ’

To characterize the scattering properties of a random medium using a CP SAR, the



2 x 2 Hermitian positive semidefinite coherence matrix (J) given by multiplying E by its
complex conjugate transpose [32] is used

BERS o [(Ea?) (ExE})
J= I = ECPECP - [<EVE}}> <|EV|2> :| (25)

where < --- > shows temporal or spatial averaging, 7 represents the transpose operator, *
indicates the complex conjugate, and L is the number of looks used for averaging. Accord-
ing to (2.4) and (2.5), the sample coherence matrix in the CTLR mode can also be given
by

=5 fems e |+ 5 | 7]

1[ —2Im ({(SwuSpv)) <5HH5Ev>+<5HVS§v>}
2 [(SunSyv) + (SvvShv) 2Im ((SvvSiry)) '

Consider the classical unitary Pauli matrix group [30)]

R A N A

To represent CP data by real values, equation (2.5) can be decomposed as [30]:

1
J= 5{500'0 + 5101 + Sp09 + S303}

_ L[S+ 8 (S2—iSs)
2 {<52 +5S3)  (So— Sh) } (2.8)

where the real-valued parameters {Sy, S1, S2, S3} form what is called the Stokes vector [32]
Sy = EyEjy + EyE} = |Eg|* + |Ev|?
S, = EyEj — EyvE; =|Ey* —|Ey|?

(2.9)

The Stokes vector fully characterizes the backscattered field by four real parameters.
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Table 2.1: List of CP features used in the ice-typing method.

Name Description #1
Qs scattering mechanism parameter [35] 1
e circular polarization ratio [4] 1
u conformity coefficient [7] 1
p correlation coefficient of RH and RV [7] 1
) relative phase angle between RH and RV [4,7] 1
m degree of polarization [18] 1
H; Shannon entropy, intensity component [7] 1
Hp Shannon entropy, polarimetric component [7] 1

m—x m-chi decomposition of CP data [18] 3

m—0 m-delta decomposition of CP data [4] 3

RH,RV  intensity values of RH and RV channels [30] 2
So, ..., S3 Stokes vector components [37] 4

IThis column indicates the number of features in each category.

The Stokes parameters can also be represented as a function of polarization ellipse pa-
rameters, i.e., A 1, x [32]. Several quantitative features characterizing the backscattered
field can be derived from the Stokes vector. The degree of polarization, circular polar-
ization ratio, relative phase, conformity coefficient, and the m-chi decomposition features
are examples of Stokes-vector-derived features. A list of some commonly-known CP SAR
features is presented in Table 2.1.

2.3 QP Reconstruction from CP Data

For a QP SAR, in some cases (e.g., distributed targets [32]), the scattering matrix can
not fully describe the scattering properties of all radar targets [31]. Therefore, the second-
order target descriptors such as covariance matrix are needed. Assuming reciprocity in the
monostatic radar case, 3 x 3 multilook complex covariance matrix is given by [3(0]

(Suul®  V2(SunSiv)  (SunSyv)
C=|V2(SuvSiu)  2(Suv’)  V2(SuvSiv)| . (2.10)
(SvvSim) V2 {(SvvSiy) (ISvv*)
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Uy k
Figure 2.1: Traverse P, and incident P planes involved in reflection symmetry (This figure
is based on Fig. 1 by Souyris et al. [35].)

which is a Hermitian positive semi-definite matrix, in which the main diagonal elements
are the real-valued intensities of the polarimetric channels, and the off-diagonal elements
represent their complex covariances.

The reconstruction of full QP from CP SAR data allows us to analyze the reconstructed
QP (pseudo-QP) data using the state-of-the-art full polarimetric SAR classification meth-
ods 2. To construct pseudo-QP 3 x 3 covariance matrix using 2 x 2 CP coherence matrix
Jorrr, according to (2.10) and (2.6), there are four equations (using one complex Ji2 and
two real measurements Ji1, Jo2) and nine unknown variables (three real elements Ciy, Cas,
(53, and three complex ones Cig, Ci3, and Ch3). To solve this underdetermined system
of equations, some assumptions regarding the symmetry of geophysical media have been
made [38,39]. A review of reconstruction methods is provided next.

The first QP reconstruction method is proposed by Souyris et al. [38] where they made
two symmetry assumptions. The first assumption is reflection symmetry [38, 40]. As-
sume the linear orthogonal basis (Gy, ty) in Fig. 2.1 is oriented such that (ay L P) and
(iy || P) where P is the plane containing the incident wave k and P, is the traverse
plane which is normal to the incident wave. Reflection symmetry occurs where the tar-
get is symmetrical about the plane P. Geophysical media such as ocean water, forest,
snow, and sea-ice can have reflection symmetry properties [38]. With this type of symme-

2As will be discussed later in this section, the symmetry assumptions that are made to reconstruct the
3 x 3 full QP covariance matrix from a 2 x 2 CP coherence matrix coerce the QP covariance matrix to be
sparse. Therefore, not all the QP classification methods will be applicable using pseudo-QP data.

12



try, the correlation between the co- and cross-pol coefficients is approximated to be zero,
(SuuStyv) = (SuvSyy) = 0. Accordingly, the covariance matrix is formed as [10]

(|1Suul?) 0 (SuuSyy)
c=| o " 2usm o | (2.11)
(SvvStm) 0 (ISvv]?)

and the CTLR coherence matrix with this assumption is given by

1 (1Suul?) + {|Suv]?) 3 ({SuuSyv) — {|Sav|?))

Jerir =5 | i ((SunSin) — (SuvP))  (Svvl?) + (v ) (2.12)

Rotation symmetry is another type of scattering symmetry. For a target with rotation
symmetry around the incident wave, covariance matrix coefficients are invariant to the
rotation of the orthogonal basis (g, ty) by any arbitrary angle « (see Fig. 2.1). Under

rotation symmetry assumption, Nghiem et al. (equations (34)-(38) [10]) provide a set of
equations which relate the scattering coefficients
(Surl*) = (ISvv*) (2.13)
(‘SHV‘2> _ <’SHV|2> _ 1 — pruvv
Saul?)  (Svv]2) 2 ’
(Sunl) ~ (Swl) ~ o1
) _ (SuuSpy)
HHVV =
VAISE) (1Svv]?)

where py vy is the correlation coefficient between Sy and Syy. The second assumption
in Souyris’s method is similar to (2.14) (or equivalently equation (41b) by Nghiem et

al. [10]) with making differentiation between (|Sgg|?) and (|Syv|?)
(Suul?) + ([Svv[?) 4

Therefore, this assumption is not based on a complete rotation symmetry but only one
condition of this type of symmetry. Souyris et al. derived (2.15) by linearly extrapolating
between two limits: fully polarized and fully depolarized waves [35].

After making these assumptions, the system of equations can be iteratively solved to
reconstruct QP covariance matrix [30,38]. According to (2.12) and (2.14), the correlation
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coefficient pggyy can be calculated by

(|Sav|*) — 27 J12

PHHVV = , (2.16)
V(2Ju = ([Suv[?) (2J22 = (|Suv[?)
and (2.15) can be rewritten as
(18uv ) = Yt Fnl0 = lommvvl) (2.17)

3— lpunvv|

Initially, (|Sgv|?) is set to zero and pggyy is calculated. Using this pg vy value, (| Sxv|?)
is calculated. The new value of (|Sgy|?) is injected back into (2.16), and this loop is iterated
until the difference between (|Sgy|?) values from the current and previous iterations is
less than a threshold. Whenever |pygyy| becomes greater than one for a pixel, or the
denominator of (2.16) is the square root of a negative value, |pgpyy| is set to 1 and
(|Szv|?) = 0 and the iterations are stopped [35]. After convergence, using the estimated
value of (|Sgv|?), we can form the reconstructed sample covariance matrix elements (2.11).
Note that, as seen in Eq. (2.16), all the elements can be written in terms of {|Sgy|?) and
CP coherence matrix elements.

Nord et al. [39] proposed a modified version of Souyris’s reconstruction method. They
demonstrated that the assumption (2.15) may not hold for some datasets. They used a QP
scene from urban and forest areas and demonstrated that Eq. (2.17) is not a strict equality
for terrain dataset [39]. Based on an inequality relating the arithmetic and geometric
means of co-pol terms (|Syx|*) and (|Syv[?), they derived

<‘SHV‘2> _ 1 — |parvv|

_ , 2.18
TGl + (S~ N (218)
where the term N is given by
(ISun — Svv|?)
N = 2.1
S (2.19)

which the ratio of double-bounce backscatter ((|Sgzr — Syv|?)) to cross-pol power ({|Sgv|*)).
The term N is the only difference between Nord’s and Souyris’s methods. The reconstruc-
tion algorithm then involves iterating between (2.16) and a modified version of (2.17) as

2(Ju + Ja2)(1 = |pumvv|)
N+2(1—|pgavv])

(|Suvl*) = (2.20)
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To start the iteration, N is initially set to 4, and the pseudo QP covariance matrix is
reconstructed. The value N is then estimated from (2.19) using the reconstructed covari-
ance matrix elements, and used for reconstructing the new pseudo QP covariance matrix
afterwards. Note that the following equation holds *

<|SHH - va’2> = <|SHH|2> + <|SV\/|2> — 2Re((SHHS§}V)) (2.21)

Espeseth et al. [17] proposed two methods to estimate the cross-pol term (|Sgy|? ): one
based on the degree of polarization (DoP), and the other based on the eigenvalues of CP
sample coherence matrix. In the DoP-based approach, the depolarized power is related to
the cross-pol intensity term. The authors assume that all the response power generated in
the cross-pol channel (|Syy|?) originates from the depolarization effects. Accordingly, the
surface scattering is assumed to have no contribution to the cross-pol channel power [17].
The cross-pol term (|Sgy|?) is assumed to be related to the power of depolarized scattering

mechanism P; as

{|Suv]*) = %Pd = %(1 — DoP)S,,

2.22
oop . VIS (2:22)

So

where S, ... S3 are the elements of the Stokes vector. By estimating (|Sgv|?), the pseudo
QP covariance elements can be calculated from (2.11) and (2.12). The main limitation of
the approach is the assumption of assigning all the cross-pol intensity to the depolarized
power [17]. The eigenvalue (Eig)-based method attempts to find the fraction of the total
power of the backscattered wave that belongs to the cross-pol intensity

2(|Suv[*) = vS, (2.23)

where the term ~ is proposed to be approximated by the ratio of two eigenvalues of the
sample coherence matrix J, Aq, Ay

T =1
A1 (2.24)

201 = So+4/S?+ 52+ 52, 2M\y =Sy —/S?+ 52+ Sz

3This equation holds for any pair of complex values such as Sy g and Syy. This equality has also been
used in Eq. (B5) in the work by Nord et al. [39]. Also, as noted by Collins et al. [11], the term (1 — |p|) in
Eq. (B5) [39] is misplaced and should be moved to the beginning of the last line.
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Therefore, according to (2.23) and (2.24), the cross-pol intensity is given by

{|Suv[*) = 2(1 —Dob) (2.25)

(1+ DoP) "%

As compared to the Souyris’s and Nord’s methods, the DoP-based and Eig-based recon-
struction methods noticeably execute faster. Therefore, the cross-pol intensity values es-
timated from the DoP- and eigenvalue-based methods can be used as the initial value for
the Souyris’s and Nord’s method.

2.4 Intelligent Systems for Satellite Scene Interpreta-
tion Using CP SAR Data

In this section, a brief review of the recent work in SAR scene classification using CP data
is presented. Then, the CP SAR classification methods specifically for sea-ice mapping
are described. Existing classification algorithms using CP SAR data can be divided into
two categories: classification algorithms using reconstructed full QP data from CP data or
features derived directly from CP data.

In the first category, the quad-polarimetric covariance matrix is estimated from CP
data [38], producing a pseudo-QP covariance matrix that can be used with QP scene
classification methods. Souyris et al. [38] proposed the reconstruction of QP data from CP
data and used the reconstructed QP data in crop field classification. They presented the
full-scene classification images as well as the quantitative results of the classification, and
showed the high level of information content preserved in the pseudo-QP data as compared
with the QP data. Ainsworth et al. [12] demonstrated that pseudo-QP data generated from
CP provides almost the same result of the classification of crop fields and forested areas as
those directly from CP data.

Li et al. [13] proposed a QP reconstruction method that is suited to the oil spill de-
tection on water surface where Bragg scattering is assumed to be dominant. In a work by
Collins et al. [11], an oil-water mixing index is derived from the reconstructed QP data for
oil spill characterization. In a more recent study, Zhang et al. [15] used the reconstructed
co- and cross-pol coefficients from CP data to calculate the relative phase parameter, and
proposed an unsupervised classification scheme to distinguish oil slicks from ocean water.

In the second category, the features derived from the Stokes vector such as decom-
position features [3,35] are used in classification. A multifrequency analysis of tropical
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vegetation classification utilizing CP data was done by Lardeux et al. [16]. An SVM clas-
sification using CP data was performed by Souissi et al. [17] to classify different types of
land cover. In another study [18], after extracting two main sets of features (one directly
from CP covariance and the other from the pseudo-QP covariance data each in different
CP modes), Aghabalaei et al. performed an SVM classification on a feature set selected by
a genetic algorithm to classify forest species. CP data was also utilized for other applica-
tions of classification, such as lake-ice breakup monitoring using a thresholding scheme on
a number of CP features derived from Stokes vector data [19] and rice monitoring using a
decision-tree classification [50].

Shirvany et al. [51], used the CP degree of polarization parameter for discriminat-
ing man-made objects and oil spills from the sea surface in different CP modes. Sal-
berg et al. [52] derived a coherence measure from CP data under a two-scale Bragg scat-
tering model, and demonstrated that this retrieved parameter from CP performs well in
suppressing lookalikes in oil spill detection. They also evaluated a number of CP-derived
measures in oil spill detection [52].

There have been other studies where based on either sea surface scattering in terms of
surfactants and wind conditions [53], or a physical scattering model called X-Bragg [71], a
number of parameters extracted from CP data were evaluated in distinguishing oil spills
from lookalikes. In another study by Buono et al. [55], the X-Bragg scattering model have
been used to compare two CP modes with full QP SAR data based on the performance of
three parameters derived from both CP coherence and QP covariance data.

Given the recent developments in CP for earth resource management, there are limited
papers that consider its use for sea-ice type classification. Dabboor et al. [7] applied
a maximum likelihood classifier trained and tested using selected pixels from the same
image (i.e., not a full scene classification). They analyzed the capability of CP features
to distinguish open water, first-year ice, and multi-year ice. Zhang et al. [15] investigated
different CP modes for sea-ice classification. They also determined the type of CP mode
that leads to the highest reconstruction accuracy of a number of polarimetric features.
Geldstezer et al. [9] used 26 derived CP features and assessed their discrimination capability
for different sea-ice types. These studies indicated the most useful set of CP-derived
features for sea-ice classification.

An analysis of the performance of m-chi decomposition parameters extracted from CP
data in distinguishing between sea-ice types was done by Li et al. [16] and the results were
compared with those obtained using classic decomposition parameters, entropy and scat-
tering angle, which are extracted from the true QP SAR data. Decomposition results were
discussed in a quantitative manner, however, no classification was performed. Espeseth et
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al. [17] proposed two new methods for reconstructing pseudo-QP data from CP data. The
methods are based on degree of polarization and eigenvalues of the CP covariance matrix.
The authors investigated the performance of their proposed reconstruction methods com-
pared with Souyris’s method [38] depending on the frequency of radar. In a recent study
by Singha et al. [14], 21 polarimetric features extracted from RISAT-1 CP SAR data were
ingested into an artificial neural network classifier to differentiate sea-ice types. Full scene
classification images as well as a feature information content analysis were reported in the
paper. Only a pixel-level classification was performed without using any spatial context.

To the best of our knowledge, there is no CP SAR sea-ice publication that performs
full scene classification with multiple classes and using spatial context. Our approach in
this chapter is a region-based segmentation integrated with SVM classification to provide
full scene, multi-class classification using CP data. Results of our algorithm are compared
to those when using DP and full QP data in the same context.

2.5 Classification System

The components of the sea-ice type classification methodology are described in this section.
After an overview of the proposed method, the details of the segmentation approach,
labeling method, and, finally, the method of combining segmentation and labeling results
are provided.

2.5.1 Overview

The ice-type classification methodology consists of three components as shown in Fig. 2.2.
The input data for the algorithm consists of the acquired SAR scene with the landmask
associated with the scene and trained labeling model. The landmask file is a binary image
that masks the land pixels. The labeling model is trained using the training sample data
collected from the SAR data set. The algorithm starts with a segmentation process of the
SAR data which is shown in the left part of Fig. 2.2. Unsupervised IRGS segmentation
approach [11,20,21] is used to identify homogeneous regions of ice types. The details of
IRGS segmentation approach for real-valued and complex-valued SAR data are described
in Section 2.5.2.

Since the segmentation process is unsupervised, the initial labels associated with the
regions are arbitrary, and do not correspond to ice types. Therefore, a pixel-based SVM
classification that was trained using a list of SAR features is applied to label the CP SAR
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Figure 2.2: General block diagram of the proposed sea-ice classification approach.
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scene under analysis. This step is shown in the right part of the block diagram of Fig. 2.2,
and is independent of the unsupervised IRGS segmentation. The SVM labeling step is de-
scribed in Section 2.5.3. The IRGS segmentation and SVM labeling are then combined in a
majority-voting process explained in Section 2.5.4. Using this combination, the contextual
information provided by IRGS is used to improve the noisy results of the SVM labeling
method. The final results of the ice-type classification method is a classification map of
different ice types.

The problem of image segmentation using IRGS is described next. First, we consider
the segmentation of real-valued SAR satellite data. Afterwards, the segmentation problem
formulation for complex full QP SAR data is provided. The labeling method is explained
at the end of this section.

2.5.2 Unsupervised segmentation

The capability of reducing the impact of intra-class variations in an image, which can be
a serious problem when dealing with wide-swath SAR scenes, using the spatial context
information makes MRF-based segmentation beneficial. A region-based solution to the
MRF-based segmentation is obtained by a region-growing method that keeps merging
regions in a pre-oversegmented image in an iterative manner. The algorithm is called
IRGS [20]. TRGS has been successfully used for sea-ice classification using SAR imagery [12,

,56-59]. Polarimetric IRGS (PolarIRGS), which is the IRGS extension for complex QP
data, was created by Yu et al . [21]. In this chapter, we analyze the use of PolarTRGS for
sea-ice type classification. Since the input data to PolarIRGS algorithm is complex QP
covariance matrix, the pseudocovariance matrix, which is reconstructed from complex CP
coherence matrix, is used here.

Segmentation of real-valued CP SAR data

This section describes the image segmentation problem using a SAR image that contains
real numbers for each pixel. The image can include a scalar (e.g., a CP SAR intensity
image) or a vector of real numbers for each pixel (e.g., different CP channel intensity
images). Assuming S indicates the two-dimensional lattice (i.e., the image) and s € S
denotes a site on the lattice (i.e., an image pixel), let X = {X|s € S} be a set of discrete-
valued random variables with each X having a value from £ = {1,...,C} that indicates
the set of labels for the pixels. Therefore, the image is to be segmented into C' classes.
Also, let Y = {Y,|s € S} be a random field on S§. Y represents the measurement vector
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at site s. Given x = {z4|zs € L,s € S} and y = {ys|s € S} as the realizations of X and
Y, respectively, the image segmentation process estimates a solution x given image y.

IRGS, as a region-level segmentation method, is based on the region adjacency graph
(RAG) representation of an image [20]. A RAG is defined by G = (V, ) where V and €
represent the set of vertices and arcs, respectively. Each vertex v € V denotes an image
region with S, indicating the set of image sites inside that region. Also, each arc e € £
determines the boundary between two adjacent regions. The random field configuration
based on region-level representation is defined as X" = {X7|X] € L,v € V}, with the
superscript “r” indicating the region-level definition. IRGS, as an MRF-based approach,
assumes X" = {2} |z} € L,v € V} is a realization of X" and attempts to find the optimal
label field configuration x™ that satisfies [20]

X" = arg max p(y[x") P(x) (2.26)
where p(y|x") is the conditional probability density function of the observed image y
given the label field configuration x” and P(x") is the probability of a specific label field
configuration x". p(y|x") and P(x") are respectively called the feature model, which models
the distribution of features, and the spatial context model, which models the distribution
of x". Under class conditionally independent assumption, p(y|x") is given by

pyx) =11 11 II»Gela; =) (2.27)

1=1 S5, €0Q; s€Sy

where the term p(ys|z}) is the probability of obtaining value y assuming the site s belongs
to the class specified by z]. Any configuration includes C' disjoint subsets €25 ... ¢, where
(2; indicates the regions with class label . P(x") follows the Gibbs distribution [19,58] and
sums up the clique potentials over all possible cliques in § according to the specific MRF
model chosen [19]. To solve equation (2.26), it is converted into an energy function and,
therefore, the products are changed into sums

x™ = arg mi)r(l Ei(y,x") + E4(x") (2.28)
XTE T

where E¢(y,x") and E4(x") correspond to the feature model and the spatial context model,
respectively. Based on the multivariate Gaussian distribution, as extensively used in the
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SAR sea-ice segmentation literature [11,20,26,00], Ef(y,x") is defined as

C
Erlyx) =30 3 S (GloglSi 4 5l - w) S v m)) (229)

i=1 SyEN; SESy

where u; and ¥J; denote mean vector and covariance matrix of class 7. To calculate the spa-
tial context model energy term E(x"), IRGS uses the multi-level logistic (MLL) model [19]
with a difference that IRGS incorporates an edge penalty function [20]

—1

Ex) =8> Y gV (2.30)

=1 jii-‘rl Seaﬂiﬂaﬂj

where g(V) is the edge penalty term, and 9€); denotes all the boundary sites that separate
the regions assigned to class ¢ from other regions. The term 0€2;N0S2; determines the shared
boundary sites between classes ¢ and j. The parameter S determines the weight of spatial
context model with larger 5 leading to smoother segmentation. Adding ¢g(Vs) to the
spatial context model, IRGS penalizes each boundary site s based on the amount of g(Vy),
a monotonically decreasing function of the edge strength V. This approach attempts to
assign adjacent regions to the same class only when the strength is weak [20].

IRGS algorithm starts with an oversegmentation using watershed algorithm [28]. Then,
it assigns each node a label using K-means algorithm to initialize the algorithm. After that,
based on a merging criterion OF [58] that is the configuration energy difference computed
according to the equation (2.28) before and after merging for each pair of regions and
merges the pair with the most negative 0F. This semantic region growing technique
only tests the regions that belong to the same class and have shared boundaries [20]. The
merging continues until no more negative 0F remain or the maximum number of iterations
is achieved. The final output is an unsupervised segmentation map of the scene with C'
arbitrary classes.

Segmentation of complex pseudo-QP SAR data
The image segmentation problem with full QP complex covariance data using PolarTRGS

algorithm is explained hereafter. Let Qs = Zle Q, Q;‘T be the full QP complex mea-
surement at the site s. The matrix Q, has a complex Wishart distribution [01]. Based on
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Wishart distribution as the feature model, we have

(det(Qs))" ™ exp [~tr (C;7'Qy)]
m2d@-D(L) .. . T(L — d+1)|CE|

P(Qslzy, = 1) = (2.31)

which corresponds to p(ys|z], = i) in (2.27). Here, det(-) is the determinant operator,
tr is the trace of a matrix, and I' is the Gamma function. C; is the ith class covariance
matrix which is estimated by taking the average of training covariance matrix samples from
class i. The value d is the number of elements in the vector Q (d = 3 under reciprocity
assumption). By substituting (2.31) into (2.27), Yu et al. derived [21]

Er(y,x") =Y > ) {n|Ci| +tr (C;'Q.) ). (2.32)

i=1 Sy€Q); s€ESy

To measure the edge strength V, in full QP data, two main sets of approaches were
proposed by Yu et al. [21]. In the first set of approaches, they used gradient magnitude
of either decomposition features or amplitudes of polarimetric channels HH, HV, and VV.
Second set of approaches was using complex polarimetric edge strength measures, which as
reported by Yu et al. do not show the consistency of the first approach in testing different
full QP scenes and, therefore, they used the gradient magnitudes as the edge measure [21].

2.5.3 Supervised labeling

The labels associated with the regions in unsupervised segmentation results are arbitrary
and do not represent the actual ground truth ice type labels. A supervised classification
has to be performed to assign the regions labels associated with the different ice types.
The SVM classification has proven to be beneficial in sea-ice classification using SAR
images [ 1]. The SVM classifier is designed to seek the boundary that provides maximum
margin between a subset of training samples called support vectors in a high-dimensional
space. Let x be the test feature vector to be classified and x; be the support vectors. The
SVM decision function is given as

flz) = Z oy K (25, x) (2.33)

where y; € {—1, 1} are the labels associated with the support vectors, «; are the Lagrange
multipliers, and K (z;, x) is the kernel function. After solving this optimization problem by
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formulating it as a dual-Lagrangian problem [62], the classification label can be defined for
any test vector. Non-linear decision boundaries suited to the non-linear SAR signatures of
ice types, short training time, and quick testing of a trained SVM on a large SAR scene
are among the advantages of the SVM classifier. However, SVM alone lacks the spatial
context information and does generate spatially noisy results. As a result, we combine the
SVM pixel-level labeling results with the unsupervised segmentation results to incorporate
contextual information into the SVM.

2.5.4 Combining segmentation and labeling

By performing TRGS segmentation, we identify the regions for different ice types. To
assign real labels to the regions, the region-based IRGS segmentation and pixel-based
SVM labeling results are combined. We perform a majority voting of the SVM class labels
for each region in the segmentation results. In particular, the number of pixels assigned to
each class of ice types by SVM within a region is counted and the label associated with the
maximum number of pixels is assigned to the region. Similar majority voting schemes have
been used in the literature [63-05]. Alternatively, one can perform an aggregation function,
such as average or median, for the features associated with the pixels within each region,
and, afterwards, apply the trained SVM on the aggregated feature set to determine the
region label. Since the feature set calculated through the aggregation process might not
be a good representative for the whole region, the majority voting method is preferable.
However, using an aggregated feature set when combining IRGS segmentation and SVM
labeling results has the advantage of lower computation than using majority voting. This
is because applying the trained SVM model to each region (as per the aggregate method)
is faster than applying to each pixel in the scene (as per the majority voting method).

The overall ice-typing algorithm using CP data is described below (see Fig. 2.2):

1. RH and RV channel intensity images as well as other CP features for the SAR scene
are extracted. The CP coherence matrix, which is derived from the Stokes vector
elements using (2.8), is used to reconstruct QP data.

2. PolarIRGS is used to perform unsupervised segmentation using the reconstructed QP
data.

3. The trained SVM classifier is used to label the scene pixels with four different ice
types. Note that all the CP features are used for training the SVM classifier.

4. The IRGS and SVM results are combined leading to the final ice-typing map.
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Figure 2.3: (a) The locations of the two RADARSAT-2 fine QP scenes in the Barrow Strait.
Scenes (b) 231156 and (c) 231158 images in m-chi RGB composite along with (d)-(e) the
images of the first element of Stokes vector with the ground truth overlaid. As presented
in the legend, the samples of the classes OW & NI, YI, FYI, and MYI are shown with
colors pink, purple, green, and red, respectively.
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Table 2.2: The number of training and testing samples.

Name Description # of train  # of test
OW/NI open water and new ice 5183 5227
YI young ice 5889 d57H
FYI first-year ice 6396 6067
MYI multi-year ice 5750 5637

The performance of the proposed method using CP data is compared with the cases where
DP, and the original QP data are used. The description of the test data set used in this
chapter is provided next.

2.6 Study Area and Data Set

The study area is the Barrow Strait, located near Somerset Island in the Canadian Arctic.
We used two RADARSAT-2 fine quad-polarized images acquired over the area with a time
difference of only two seconds identified as 231156 and 231158 (see Fig. 2.3(a)). Scene
231156 is used by Dabboor et al. [7] to train a maximum likelihood classifier with selected
pixels and test on another set of selected pixels. The data were collected on May 5, 2010
at an incidence angle range between 30.30° and 32.00° for the first scene, and 30.20° and
31.99° for the second one. The sampled pixel and line spacing for the data sets were 4.73m
and 5.61m, respectively.

The area covers approximately 23km by 14km, and contains open water and different ice
types including new ice, young ice, first-year ice, and multi-year ice, identified by experts
in the Canadian Ice Service. Roughly, 1000 samples per scene are identified by the CIS
experts. Based on the samples acquired by the CIS experts, we collected the remaining
samples for the classes. In the experiments, we have ensured that no pixels in the training
set are included in the test set, and no pixels in the test set are included in the training set.
The number of training and testing sample data for each class are presented in Table 2.2.

Four classes considered in this study are as follows: (1) open water and new ice
(OW/NI), (2) young ice (YI), (3) first-year ice (FYI), and (4) multi-year ice (MYT). The
classes OW and NI were combined because their backscatter signatures are very similar.
Scene 231156 is used for training and scene 231158 used for testing. Since scene 231156 had
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insufficient OW /NI samples, independent training and test data for OW /NI were obtained
from scene 231158.

Fig. 2.3 (a)-(b) depicts the m-chi decomposition color-coded images [18] of the two
scenes, where Red indicates double-bounce, Blue corresponds to single-bounce (and Bragg),

and Green is related to random volume scattering [18]. The ground truth labeled sam-
ple data are also overlaid on the images of the first element of Stokes vector, Sy, which
represents the total power of the backscatter field [30], and shown in Fig. 2.3 (c)-(d).

2.7 Experimental Results

The ice-type classification results are presented in this section, and the performance of the
classification is discussed for four cases:

Case 1: DP HH and HV channel intensity images as input to original IRGS and SVM
labeling methods

Case 2: CP RH and RV channel intensity images as input to original IRGS and SVM
labeling methods

Case 3: complex pseudo-QP data as input to PolarIRGS method and CP-derived
features ( 2.1) as input to SVM labeling method

Case 4: complex QP data as input to PolarIRGS and QP-derived features ( 2.5) as
input to SVM labeling method.

The intention is to assess the capability of CP data as compared to those of DP and
QP data in discriminating between different ice types, and evaluate whether using all
the information inherent in CP data including the Stokes vector and its derived features
can lead to more accurate results than those obtained using only intensities. To setup the
input data, an RCM-data simulator [!] was used. The simulator extracts the CP coherence
matrix from the QP scattering matrix, and based on the data specifications in each beam
mode of the RCM, the coherence matrix is resampled. The Stokes vector is then extracted
from the resampled coherence matrix. A box-car averaging filter is applied on the Stokes
vector elements resulting in the final Stokes vector that is used to derive features [60].
Here, the CP products are derived in the medium resolution RCM mode with the pixel
spacing equal to 50m x 50m (rangexazimuth). Also, the averaging filter window size is
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Figure 2.4: (a) HH and (b) HV channel intensity images together with the unsupervised
IRGS segmentation of the scene 231158 using only HH and HV intensities, and (d) the
segmentation image using original QP data. (e) RH and (f) RV channel intensity images
together with the (g) IRGS segmentation of the scene 231158 using only RH and RV
intensities, and (h) the segmentation image using pseudo-QP data derived from CP.

28



Table 2.3: Median and standard deviation values of errors for the reconstructed |Sgy |2
values from CP relative to the original full QP |Sgy|? for the four reconstruction methods
in the two SAR scenes.

Scene  Measure  Souyris [38] Nord [39] DoP-based [17] Eig-based [17]

931156 Median 0.235 0.012 0.302 0.334
Std. Dev. 0.265 0.256 0.174 0.169

931158 Median 0.300 0.207 0.213 0.255
Std. Dev. 0.306 0.334 0.313 0.331

set to 9 x 9. The linear polarizations HH and HV are also extracted with the same pixel
spacing and averaging filter size.

Using HH and HV intensity images for the linear DP case (Case 1), and RH and RV
intensity images for the CP-intensities case (Case 2), the real-valued-based IRGS segmen-
tation algorithm is applied. The segmentation results identify the ice-type regions and
contain six arbitrary classes. The number of arbitrary classes in the IRGS segmentation
does not correspond to the number of ice types since closed regions produced using the
unsupervised segmentation are each assumed to be homogeneous and will be assigned a
true class label via the labeling step. The number six for classes in segmentation was found
to perform well in all cases, however, the results were insensitive to minor variations of
this parameter. HH and HV, as well as RH and RV channel intensity images, and the
corresponding IRGS image segmentation results are shown in Fig. 2.4 (a)-(c) and (e)-(g).
The arbitrary nature of class labels is seen in these segmentation results as the class colors
are different in two cases. The analysis of different QP reconstruction methods and the
classification results are provided next.

2.7.1 QP data reconstruction results

Four reconstruction methods, namely Souyris’s, Nord’s, DoP-based, and Eig-based meth-
ods, that are described in Section 2.3, are analyzed here. The performance of the recon-
struction methods in terms of the relative error ((|Suv|Hp — [Suv|ep)/ISuv|hp) between
the original full QP cross-pol term [Spy|* values (|Spv|gp) and the reconstructed ones
from CP (|Syuv|%p) for all the image pixels is assessed. The reason for choosing the cross-
pol term is that |Syy|? is the most important term in the reconstruction process since
when the value of [Spy|? is known, the QP covariance matrix can be reconstructed (see
Section 2.3 and the work by Souyris et al. [38] for more details).
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Figure 2.5: Scatter plots of the two sides of the equations considered as the second assump-
tion in the (a) Souyris’s (equation (2.15))and (b)Nord’s (equation (2.18)) methods. The
compactness of the data points around the red diagonal line indicates the level of accuracy
of each assumption in the reconstruction methods. The values on the two sides for each
case are calculated using the original QP data.

Table 2.3 reports on the median and standard deviation values for the error in all image
pixels between the original and reconstructed |Spy |* for the two scenes 231156 and 231158.
As seen in Table 2.3, using Nord’s reconstruction method, the lowest median relative errors
is obtained among all the reconstruction methods. Nord’s method demonstrates consider-
ably better reconstruction performance (median error of 0.012) in scene 231156. Note that
all the median values of error are positive which indicates that there is a slight underesti-
mation of |Sgy|* for all the reconstruction methods in the two SAR sea-ice scenes. Low
standard deviation values for DoP- and Eig-based methods demonstrate the effectiveness
of these methods that have closed form solution.

For Case 3, CP coherence matrix is used to reconstruct the pseudo-QP multilook co-
variance matrix. The reflection symmetry assumption has been shown to be valid for many
natural targets [38,39]. Here, as shown in Fig. 2.5, the plots of the two sides of the equa-
tions (2.15) and (2.18) are provided, which are respectively used as the second assumption
in the Souyris’s and Nord’s reconstruction methods.

The values on each side of both equations (2.15) and (2.18) are calculated using all the
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Figure 2.6: Scatter plots of the two sides of the equations considered as the second as-
sumption in Souyris’s and Nord’s methods for (a)-(b) OW/NI (c)-(d) YI (e)-(f) FYI and
(g)-(h) MYT sea-ice types, respectively.

pixels in the original QP data, and their scatter plots are respectively shown in Fig. 2.5.
The pixels that fall along the diagonal support the validity of the assumption. The total
sum of squares (TSS), which is the difference between the two sides of equations in each
case, are also calculated and shown in Fig. 2.5. A lower TSS value for Nord’s second as-
sumption (2.18) in Fig. 2.5 (b) than than Souyris’s method (2.15) in Fig. 2.5 (a) indicates
that Nord’s method is more accurate than Souyris’s method for sea-ice application. Ac-
cording to Fig. 2.5 (a), the number 4 in the denominator of (2.15) should be larger as most
of the pixels fall above the equality line. Fig. 2.5 (b) shows the Nord’s method provides a
good approximation where the pixels are tightened to the 45° line (These results confirm
those by Nord et al. [39] where a data set from forestry and urban areas is used).

The median and standard deviation values of relative errors of reconstructing cross-
pol intensities | Sy |? for different sea-ice types are also calculated using the training and
testing samples, and presented in Table 2.4. Since Nord’s reconstruction method previously
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Table 2.4: Median and standard deviation values of Nord’s QP reconstruction errors for
the reconstructed |Syy|? values from CP relative to the original full QP | Sy |? in different
sea-ice types using training and testing samples.

Data source Measure ~ OW /NI YI FYI MYI
Median 0.322 —-0.035 0.101 -0.100
Std. Dev.  0.159 0.241  0.201 0.227
Median 0.322 0.107  0.250 0.071
Std. Dev.  0.159 0.180  0.187 0.219

Training samples

Testing samples

provided the best results, the analysis of different ice types was only performed using Nord’s
method. Relatively higher median values for OW /NI class than those for other classes,
especially, MYT class, indicate that Nord’s reconstruction process is more accurate for the
sea-ice types where random volume scattering is dominant. Nonetheless, for the case where
the training samples were used, the median error is equal to —0.035 for YI class which is
closer to zero than that of MYT class equaling —0.100, according to Table 2.4.

Moreover, to investigate the validity of the second symmetry assumption in Souyris’s
and Nord’s methods for different sea-ice types, the values on each side of equations (2.15)
and (2.18) are calculated for the pixels corresponding to the sample data in each sea-ice
class, and plotted in Fig. 2.6. The TSS values are also calculated for each case shown in the
corresponding plot. According to the scatter plots in Fig. 2.6, Nord’s second assumption
in (19) is an accurate equality and a good fit to the data. However, for Souyris’s method,
a majority of OW /NI pixels fall above the diagonal line indicating that the number 4
in the denominator in (2.15) should be higher. Relative to approximation in OW /NI
class, the assumption in Souyris’s method in (15) gives more accurate approximation for
YI, FYI, and, especially, MYT sea-ice types indicating that this assumption does not hold
particularly for the areas where single- and double-bounce scattering predominates such as
OW/NI areas; however, the assumption is relatively more accurate for MYI pixels which
mostly show random volume scattering.

2.7.2 Classification results

PolarTRGS segmentation described in Section 2.5.2 was then applied to the pseudo-QP
matrix. The original QP data set is also used to extract the full covariance matrix data
in Case 4. The segmentation results, which are respectively used in Cases 3 and 4, are
shown in last column of Fig. 2.4. The next step is to create an SVM model to label the
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Table 2.5: List of full QP features.

Name Description # of features
SPAN span of the sample 1
covariance matrix [30]
H, A, «a, entropy-based decomposition 9
A 0,7, B features [67]
coherency 7'3 matrix
T1,...,T3 clomants [30] 9
PHEVV,PHHVV:  correlation coefficients [30] 3
PHVVV
P, P, P, Yamaguchi decomposition [4] 3
7,1, Dy, oy Touzi decomposition [68] 4

segmented regions. For the first and second cases, only the DP and CP intensity images
were used to train the SVM classifier. However, a list of Stokes vector derived features,
shown in Table 2.1, are used in Case 3 as the feature vector in SVM. Also, for the full
QP case (Case 4), the box-car filtered original QP data is used to extract 29 PolSAR
features to leverage full polarimetric SAR capability in labeling. These features include
the original SAR features (full QP coherency matrix elements), SAR discriminators (SPAN
and correlation coefficients), and various decomposition parameters. The list of full QP
features are presented in Table 2.5.

For SVM, the radial basis function (RBF) is used as the kernel function. The scale
parameter v in the RBF and the precision hyperparameter ¢ in the SVM need to be tuned.
Using training sample data and through a grid search in ¢ € [271, 2% and v € [27%,2%] with
an increment factor of one, the parameters were tuned. In particular, through a random
selection, 4000 samples of training data are used for training the SVM model, and 1000
samples for testing. The values of ¢ and v associated with the highest classification overall
accuracy were selected. Test Case 3 in the experiments, where all the CP-derived features
are used in labeling, were used in parameter tuning. After this grid search, the values
¢ = 8 and v = 64 were obtained. As the purpose was to classify the scene into four classes,
the one-against-all (OAA) strategy is used as the multi-class SVM method. This method
tended to give better results in our application as compared to the one-against-one (OAQO)
method.

Using majority voting described in Section 2.5.4, the SVM labeling results, shown in
Fig. 2.7(a)-(d), are combined with the unsupervised segmentation results, which provided
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Figure 2.7: (a)-(d) Pixel-based SVM and (e)-(d) segmentation combined with SVM classi-
fication results using (a) and (e) HH and HV channel intensities only, (b) and (f) RH and
RV channel intensities only, (c) and (g) all the CP features, (d) and (h) original QP data.

well-identified homogeneous regions. The final combined classification results are shown in
Fig. 2.7(e)-(h), for the four cases. The noisy results of the SVM are improved by combining
them with the unsupervised segmentation results.
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Table 2.6: Segmentation method, features used for SVM, and error matrices on test samples
for each case: DP, CP, all CP features, and full QP.

Case | Segmentation | Labeling OW /NI YI FYI MYI User’s
Method Features Accuracy (%)
OW/NI 3772 4 1058 0 78.03
R . YI P 4075 239 2 94.37
5= |2 = =
= 2 g5 - FYI 1452 828 4762 ) 67.57
§d |BEg 5 MYT 1 668 8 5630 | 89.27
2Z |22 m 2 :
S~ | EHE R s=iie Overall Accuracy (%) 81.04
Kappa Coefficient 0.7465
OW /NI 5139 174 4 0 96.65
= %DE 5 E 5 YI 74 4120 45 6 97.06
n, A 3 g = g = FYI 13 748 6013 ) 88.70
°Z 18 : g = g MYT 1 533 5 5626 | 91.26
~ = =
pge e Overall Accuracy (%) 92.86
Kappa Coefficient 0.9046
0 OW/NI 5174 8 5 0 99.75
2%y g YI 48 4922 57 4 97.83
& ig % E g =y FYI 4 26 6002 5 99.42
=8 |EES & F MYT 1 619 3 5628 | 90.03
= = S O &
ig °C = Overall Accuracy (%) 96.53
Kappa Coefficient 0.9587
o0 ) OW/NI 5087 8 4 0 99.76
= A By o
%;‘ ) c 9 YI 7 5197 78 2 98.35
o % E g = FYI 133 25 5979 31 96.94
= |87 =, MYI 0 345 6 5604 94.11
=2 5 E Overall Accuracy (%) 97.16
e}
- § Kappa Coefficient 0.9621

The ice type classification performance on the test sampled data, as well as the segmen-
tation method and the features used in the SVM classification for each case are presented
in Table 2.6. The lowest overall accuracy was performed by the DP images (81.04%). In
this case, the SVM classifier could not differentiate the ice types very well, where, as shown
in Fig. 2.7(a), a high number of FYT pixels in the middle part of the scene are identified as
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YI. Also, some of the FYT pixels in the lower-left part of the scene are erroneously classified
in the OW /NI class. Some other cases of misclassification happened in the upper corners
of the scene where some parts of OW /NI class are recognized as FYI. As a result, the final
combined classification image in this case, Fig. 2.7(e), gives the lowest accuracy between
the four cases.

Using only the RH and RV channel intensities, the classification results are presented in
Fig. 2.7(b) and (f). Although there are some YT pixels in the upper-middle part of the scene
classified as FYI, the classification results in this case are free from the misclassification
cases in the DP case. This is evident when the overall accuracy and kappa coefficient (k)
values are compared for these two cases.

Combining the pseudo-QP-based segmentation and the SVM labeling using all of the
CP features in Case 3, we could achieve more accurate classification result with an overall
accuracy of 96.53%. The segmentation result using pseudo-QP data provides noticeably
improved identified ice regions and leads (long narrow fractures) compared to using only
RH and RV images (see Fig. 2.4 (g)-(h)). Note that the segmentation process takes about
3-5 minutes to execute in the case of using RH and RV images and about 15-20 minutes in
the case of complex pseudo-QP data. Future work involves a more detailed and separate
accuracy assessment of the segmentation step.

Finally, in Case 4, the classification overall accuracy achieved using the full QP data is
equal to 97.16%, which is the highest accuracy among the four cases. Higher classification
accuracy for the QP case than the CP case was expected because of the more polarimetric
information that a fully polarimetric SAR provides. At the upper part of the scene, there
are still some pixels in the boundary of OW /NI and YT classes incorrectly classified as MYT
in both Case 3 and Case 4, which may be because of the similar backscatter information
in these parts to those of the MYI-covered areas.

To assess the effect of number of training samples on the SVM and final classification
results, different numbers of training samples were used from the set

n = {5, 10, 25, 50, 100, 500, 1000, 2000, 3000, 4000, n; }

where n is the number of samples per class, and n; is the total number of training samples
(shown in Table II) for each ice type used to train the SVM classifier. Using all the CP-
derived features for labeling and the reconstructed QP data for PolarIRGS segmentation
(test Case 3), the SVM and final classifier with different number of samples were tested.
Fig. 2.8 shows the plot of x values of the SVM and final classification results using different
number of samples for training the SVM classifier. According to Fig. 2.8, as the number of
training samples increases, the x values of classification using only SVM gradually increase.
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Figure 2.8: Plot of the x coefficient values (ordinate) of SVM and final combined clas-
sification, using different number of training samples (abscissa) in test Case 3, where all
the CP-derived features are used for labeling and the reconstructed QP data are used for
PolarIRGS segmentation.

On the other hand, the final classification x values, after a significant boost from 5 to 10
number of samples, remain steady without significant change. This indicates that using
contextual information in the segmentation process and defining the segments in the image,
one can achieve a very accurate classification result using only a few training samples for
each class to train the classifier.

The classification using the aggregated feature sets for all the test cases described in
the beginning of Section VII were also tested. Table 2.7 presents the classification overall
accuracy and k coefficients using two different methods for combining the labeling and
segmentation results: majority voting and aggregated (median) feature sets. As shown in
Table 2.7, the classification performance does not significantly vary if aggregated feature
set is used instead of majority voting. Although the classification accuracy improves in
Case 2 (linear DP) using aggregated feature set, in general, better classification can be
obtained using majority voting as seen in other cases, CP, all CP features, and, especially,
full QP.

To evaluate the effectiveness of reconstructed QP covariance data as compared to RH
and RV intensities, and the reconstructed QP data against original QP data in the IRGS
segmentation, two other test experiments were conducted in addition to the four test
cases. First, only RH and RV intensity images were used in the segmentation step and all
the CP-derived features (Table I) were used for labeling. The final classification overall
accuracy and k coefficient in this case were 94.45% and 0.9260, respectively. In the other
case, the reconstructed QP data were used for segmentation, and the labeling were done
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Table 2.7: Classification Overall accuracy (OA) and & values of test samples using majority
voting (MV) against aggregated features (AF) for each test case: DP, CP, all CP features,
and full QP.

Case Measure MV AF

Linear DP (HH, HV) OA 81.04 80.94
K 0.7465 0.7452

CP (HH, HV) OA 92.86  95.04

K 0.9046 09337

All CP Features OA 96.53  96.54

K 0.9587 0.9539

Full QP OA 97.16  93.15

K 0.9621 0.9085

using the original full QP features (Table 2.5). The overall accuracy and k values were
obtained as 96.61% and 0.9547, respectively. The results for these two cases indicate that
using reconstructed QP data, the IRGS segmentation performs better than when only CP
intensity images were used. Moreover, as expected, the performance of IRGS segmentation
using the original full QP data is better than using reconstructed QP data from CP.

Using the reconstructed QP data, the QP features (Table 2.5) were extracted and
used for labeling. Since the pseudo covariance matrix is not full and four elements are
zero, not all of the original SAR features, SAR discriminators, and decomposition features
can be extracted from pseudo QP data. Here, a total number of nine features (A, H,
a, Py, T, Ths,..;, T3iae PHEHVYV, T) Were found to be informative among 29 features
listed in Table 2.5. Using these nine pseudo-QP derived features in labeling, and pseudo
QP covariance data for segmentation, overall accuracy and x coefficient were obtained
as 96.32% and 0.9504, respectively. These values are close to those obtained in Case 3.
This indicates that pseudo-QP derived features can also provide useful information in ice
typing. Future work can lie on using CP- and pseudo-QP derived as well as texture features
extracted from RH and RV intensities in ice typing. A feature selection process will likely
be necessary to select the most informative features for training model.

2.8 Summary

With CP SAR data becoming accessible from the recent launch of the RCM satellites,
automated CP SAR classification systems will be beneficial especially for CIS where the
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CP sea-ice scenes will be used for ice map generation purpose. In this chapter, by com-
bining the IRGS unsupervised segmentation results with supervised SVM labeling images,
we performed full-scene classification with multiple ice types including OW /NI, YI, FYT,
and MYI. The purpose was to compare the classification results using CP with those from
linear DP data. It was demonstrated that using reconstructed QP data from CP as the
input to PolarTRGS unsupervised segmentation algorithm and all CP-derived features for
the SVM labeling method, an overall accuracy as high as that using full QP data is ob-
tained. A comparison of the classification performance using only CP intensities against
DP intensities showed the superiority of CP data with 11% higher overall accuracy than
that of DP data.
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Chapter 3

Unsupervised Segmentation
Methodology

CP captures single-look complex (SLC) data which can be used to derive the multilook
complex (MLC) coherence matrix, or, equivalently, the Stokes vector data of the backscat-
tered field. The purpose of this chapter is to develop computer vision algorithms that
can be used to effectively segment the scene using this new data source. An unsupervised
region-based segmentation approach is designed and implemented that utilizes the com-
plex Wishart distribution characteristic of the MLC CP data. The algorithm is tested
using both simulated CP SAR images based on complex Wishart distribution and a pair of
available quad polarization SAR images. This chapter is based on a published article [24].

3.1 Introduction

A CP SAR maximizes the measurement potential of a radar illumination by providing
the four elements of Stokes vector, or equivalently, the 2 x 2 coherence matrix of the
backscattered field [09]. This is the main advantage of a CP SAR over the traditional
dual-polarized SARs. Self-calibration capability, less error sensitivity (to relative errors
and cross-talk), and comparable signal levels in the two received polarization channels are
other advantages of CP SARs [3]. The RADARSAT Constellation Mission (RCM), which
is the successor of the RADARSAT-1 and -2 satellites, includes three satellites that were
all launched June 2019. Each satellite, in addition to the QP and DP modes, also has a CP
mode that is implemented in wide swaths. This will be utilized extensively by a primary
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user of this data, the Canadian Ice Service (CIS). CIS experts process 1000s of SAR scenes
annually and manually generate maps of ice regimes on a daily basis. As such, automated
methods based on computer vision algorithms for mapping ice regimes using CP SAR data
are advocated.

CP data to support classification and segmentation methodologies can be categorized
into two main approaches. In the first approach, the four elements of the Stokes vector
and all the derived “child parameters” are used as features [38,412]. In the second ap-
proach, based on two target symmetry assumptions, the QP 3 x 3 covariance matrix is
reconstructed using the CP 2 x 2 coherence matrix. The reconstructed “pseudocovariance”
matrix (pseudo-QP data) is then used to support the classification algorithm [33].

In this chapter, a different approach is proposed. Directly using the 2 x 2 coherence
matrix, which is more favorable than using pseudocovariance matrix [70], an unsupervised
region-based segmentation method on the basis of the statistical properties of the CP co-
herence matrix is developed. The region-based segmentation is formulated using Markov
random fields (MRFs). A region-based segmentation algorithm uses the statistical prop-
erties of regions, and, as a result, is less sensitive to the multiplicative speckle noise and
intra-class nonstationarities that are prevalent in wide-swath SAR images. Also, a region-
based segmentation method is favorable in computation speed as the number of regions is
significantly smaller than the number of pixels. We know of no other published paper that
performs unsupervised region-based segmentation of complex CP SAR images.

The region-based segmentation approach proposed in this thesis is based on a published
unsupervised segmentation method called IRGS [20] which has been shown to be success-
ful when applied to generic imagery, hyperspectral imagery, amplitude SAR imagery, as
well as complex QP SAR data (PolarIRGS) [21,22,26,58]. IRGS is based on MRF's and
incorporates an edge strength measure in the MRF’s spatial context model as well as a
novel iterative region-merging process [26]. In an MRF-based segmentation model, using
Bayesian inference, the optimal label field is obtained through maximizing the multiplica-
tion of conditional probability density function (“feature model” or “likelihood”) and the
probability of a random field (“spatial context model” or “prior”) [21].

In this thesis, an extension to the IRGS algorithm for CP SAR data is formulated and
implemented. The backscattered field in a CP SAR is known to follow a complex Gaussian
distribution and, as such, this leads to the multilook CP coherence matrix to be Wishart
distributed and this acts as the unary and pairwise potentials of the MRF in the region-
based CP-IRGS segmentation method. The statistical significance of differences [71] in CP
coherence matrices is used in a novel definition of edge strength and the weight parameter
in the pairwise potential of the MRF model. Moreover, based on the assumption that the
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“product model” [72] is held for the CP backscatter field, a CP coherence matrix data set
is simulated and used in the performance evaluation of the proposed segmentation method.

In summary, in this chapter, we provide a detailed description of the statistical char-
acteristics of the CP data and develop a region-based unsupervised segmentation method
for CP data. Our main contributions are as follows:

e Despite the great amount of work in the literature on segmentation/classification
using DP and QP SAR data, the studies on segmentation/classification using CP data
are limited. Here, for what we expect is the first time in the literature, we propose
a region-based approach to unsupervised segmentation of CP data by developing a
CP extension of IRGS segmentation methodology.

e In the pairwise potential of IRGS, a new edge strength calculation and weight param-
eter estimation methods are developed particularly based on the complex CP data

type.

e Based on the statistical properties of the complex CP backscatter field data and the
product model, a method is proposed to simulate complex CP scenes. The simu-
lated scenes allow for accurately evaluating the proposed unsupervised segmentation
method since the boundaries are known.

Section 3.2 provides the statistical formulation of the complex CP data. Section 3.3
provides a method to simulate complex CP data. Section 3.4 outlines the IRGS algorithm
structure. Section 3.5 details the proposed CP-IRGS including the formulation of the MRF
data likelihood and the prior term. Section 3.7 describes the simulated and real complex
SAR images which are used to evaluate the performance of the CP-IRGS segmentation in
Section 3.8. Conclusions and future work are provided in Section 3.9.

3.2 Statistical Modeling of Complex CP SAR Data

The purpose of this section is to provide the statistical formulation of the MLC CP coher-
ence matrix data. In a CP SAR, a complex measurement vector E of the backscattered
field is measured. The radar scattering matrix S relates the incident field to the backscatter
one [30]

E A
Ecp = |:E1{L/I:| = Sllt (31)
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where 10 is the unit Jones vector related to the incident field. The 2 x 2 Hermitian positive
semidefinite MLC coherence matrix (J) is derived via multiplying Ecp by its complex
conjugate transpose [32]

1 <& Exl?) (EyE:
J= g2 Forber = Gty B (32)

where < --- > shows temporal or spatial averaging,  indicates Hermitian conjugate, and
L is the number of looks used for averaging.

Since a radar illuminates an area of many random scatterers, the 2D measurement
vector E¢p in (3.1) provided by a CP SAR can be assumed to have a bivariate complex
Gaussian distribution

p(Ecp) = exp (~E¢pBEcr) (3.3)

1
w*[B|
where B = &{EcpEf,}, in which & represents the mathematical expectation, is the
Hermitian complex coherence matrix. The value J (3.2) is the maximum likelihood esti-
mator and a sufficient estimator for B [73]. Then, Goodman et al. [73] showed the matrix
G=L] = Zle Ecp,Eflp, has a complex Wishart distribution. Given that the size of
the tuple of complex Gaussian variables in Eq. (1.6) is equal to 2 (the dimension of vector
Ecp) here, the probability density function of G is given by

’G’L_2

") = DL

exp [—tr (J7'G)] (3.4)

where || is the determinant operator, tr(-) represents the trace of a matrix, and I" is Gamma
function. p(G) is defined over the domain Dg where G is Hermitian semi-definite [73].

3.3 Simulation method of MLC CP

Simulating MLC CP scenes allows for accurately evaluating the proposed unsupervised
segmentation method since the boundaries are known. A multilook CP coherence matrix
data set can be simulated based on the assumption that the “product model” is held for

43



the complex vector of the backscattered field (2.3) *
Ecp = VTQ (3.5)

where Ecp consists of the CP complex measurements Ey and Ey. In Eq. (3.5), it is indi-
cated that the CP measurements are statistically modeled by the product of two terms: T
which is a positive scalar that models the texture (spatial variation in the mean backscat-
ter) and a random variable Q known as speckle parameter that is assumed to be complex
Gaussian distributed 2. Then, according to Eqgs. (3.2) and (3.5), the multilook complex
coherence matrix is given by [71]

I= 1 BBl = 1 > TOQOQ' () (3.6

=1

For a SAR scene with homogeneous areas, it can be assumed that T'(l) = T. Based
on the assumption that Q has a complex Gaussian distribution, as discussed earlier, the
matrix Zle Q(1)Q'(I) becomes complex Wishart distributed. Therefore, depending on
the probability distribution of 7" (3.5) that is chosen based on the homogeneity of the
scene, the MLC CP coherence matrix J obeys different parametric distributions [75]. The
simplest case is for homogeneous areas where texture is assumed to be constant. Other
probability distributions such as Gamma and generalized inverse Gaussian were also con-
sidered in the literature to model the texture parameter in the heterogeneous and extremely
heterogeneous areas, respectively [76].

3.4 Background

This section summarizes the fundamental steps of the IRGS segmentation algorithm [20].
Let S be the image and s € S be a site on the image (an image pixel). Also, assume
that x = {xs|s € S} represents the image data and y = {ys|lys € M,s € S} is a label
configuration on the image with discrete-valued random variables y, having a value from
the label set M = {1,...,m}. The purpose of an image segmentation is essentially to find
the optimum label configuration. IRGS is formulated based on the Bayesian theory where

!This assumption is valid when the mean number of scatterers that contribute to a pixel measurement
in a CP image is large. For more description, please refer to the work by Olivier et al. [72].

2This is the more general case of what discussed earlier where we mentioned the CP complex measure-
ments Ecp has a complex Gaussian distribution.
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the objective is to find a label configuration y* that satisfies
y" = argmax p(x|y)P(y) (3.7)
yeY

where Y is the set of possible label configurations. The term p(x|y) is called the fea-
ture model or data likelihood and is the conditional probability density function of the
image data x given the label configuration y. P(y) indicates the prior also called the spa-
tial context model. TRGS is a region-based method which uses a region adjacency graph
(RAG) [19] and aims to find the optimum label field over a RAG instead of all the image
sites separately. A RAG is defined as G = (V, &) where V and £ denote the image regions
as vertices and arcs that are the boundaries of adjacent regions. Thus, a region v € V' in
the image consists of a set of image sites S,.

In IRGS, a Gaussian mixture model [21] is used to model p(x|y) with an expectation-
maximization (EM) algorithm to estimate the parameters of the Gaussian mixture. Also,
the spatial context model P(y) is defined using an edge strength measure [20]. By taking
a logarithm and multiplying the terms (3.7) by —1 2, the problem is converted to the
minimization of two energy terms

y* = argggg{_ Z Z ¢u(xsa ys)

S’UEV SESU

N Z Z Z Up(Ys, Yn) } (3.8)

S,V s€S, neN,

where v, and 1, are called the unary and pairwise clique potentials. The unary potential
is summed up over all sites in the vertex §,, which is the region that includes the site s,
from the set V, and the pairwise potential is summed up over all the pair sites s and n,
where N is the set of neighbors of the site s. By substituting the corresponding spatial
context model in IRGS [20]

y* = argmin{~ DX In{p(xalys = i)}

=1 Sv E’qu SGS’U

BY Y Y gw) (3.9)

i=1 j=i+1 s€dv;NOv;

3The terms are multiplied by -1 to convert the probability maximization problem to an energy mini-
mization problem.
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where ¢g(Vy) is called the edge penalty term [21], v; is a subset of V with label i, and Ov;
indicates all the boundary sites between regions labeled 7 with other regions. Thus, dv;N0v;
denotes all the boundary sites between classes ¢ and j. In the first term on the right side
of (3.9), p(xs]ys = ©) is the probability value of obtaining x, given the label of the site s is i.
This term is modeled by a Gaussian mixture model in IRGS [20]. In the second term, the
edge penalty function g(V) is a monotonically decreasing function (when the edge strength
for a specific boundary site is high, the penalty is low) that generates a sequence of edge
penalties for each iteration of the algorithm [20]. The parameter § controls the smoothness
of the segmentation with the greater values of 8 leading to smoother segmentation results.

IRGS uses a simulated annealing (SA) algorithm to solve the combinatorial optimiza-
tion problem (3.9). Also, in each iteration before the optimization by SA, IRGS performs
a region merging process to reduce the number of regions and to avoid being trapped in
a local minima [20,26]. In summary, after constructing RAG on the “deliberate” overseg-
mentation image obtained by the watershed algorithm [25], IRGS starts its iterations. In
each iteration, SA assigns a label to each region to move the label configuration toward
the optimal solution. Adjacent regions that have the same class labels, are then merged in
a greedy fashion using a merging criterion OF [20], and, afterwards, the next iteration is
executed.

PolarIRGS, the extension to IRGS for QP SAR data, was developed by Yu et al. [21].
Based on Wishart distribution, the unary potential was derived in PolarIRGS. The data
input in PolarIRGS is the complex QP data which is different than the complex CP data
in terms of physical interpretation. The complex QP data is derived from the elements
of scattering matrix (S in Eq. (2.3)), however, the complex CP data is extracted from
the complex backscattered field (Ecp in Eq. (2.3)). These two data types are related by
Eq. (2.3) as discussed in Section 3.2. The unary based on complex Wishart distribution
and the region merging criterion in PolarTRGS [21] are used here by modifying the data
type to complex CP data and new methods are proposed for the calculation of edge penalty
and the weight parameters in the pairwise potential.

3.5 Proposed Unsupervised Segmentation: CP-IRGS

In this section, we describe the formulation of the proposed algorithm based on the complex
Wishart distribution. In Section 3.5.1 and 3.5.2, we will define the unary and pairwise
clique potentials in the formulation (3.8) of CP-IRGS.
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3.5.1 Complex CP-based unary potential

The data likelihood term p(xs|ys = i) (3.9) is defined here for MLC coherence matrix
data. For each site s in an MLC CP image, the observation data x is the MLC coherence
matrix, i.e., xy = G, where LJy, = G, was shown in Section 3.2 to have a complex
Wishart distribution. Therefore, the conditional probability of obtaining x, given the site
s is labeled v, p(Xs|ys), is given by *

L2L|GS |L72
rD(L)T(L 1)1,

where J, is the average MLC coherence matrix for all the sites labeled y;. According to
equations (3.8) and (3.9), the unary potential term in CP-IRGS is given by

p(Jslys) = rexp [—Ltr (J,'G)] (3.10)

Pu(s; ys) = In{p(Jslys)} (3.11)

By taking the natural logarithm of p(Js|ys), and eliminating all the elements that are not
a function of y, the unary term is given by

Yuls,ys) = D> {In|Jy | +tr (J,'G.)} (3.12)

S'u % SESU

3.5.2 Complex CP-based pairwise potential

We define the pairwise potential in CP-IRGS as

Bg(s7,) different labels

) (3.13)
0 otherwise

Up(Yss Yn) = {
where “different labels” means that the sites s and n are labeled differently. </, is the edge

strength measure at the site s, and the edge penalty function g(v/s) is defined as in the
original IRGS algorithm [20, Eq. 18]

9(Vs) = exp [— ( KV(;))QI (3.14)

“Note that the probability function in Eq. (3.10) directly models the MLC CP coherence matrix J,
and it is slightly different than Eq. (3.4). The probability function in Eq. (3.10) is often called the scaled
complex Wishart distribution [70].
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Figure 3.1: Bi-window configuration used in the edge strength map calculation.

where K () is a positive coefficient that monotonically increases with the iteration number
i to control the effect of the edge penalty term ([20, Section 3.1]). At a conceptual level,
Eq. (3.13) increases the pairwise potential by 5g(v/s) if adjacent regions are of different
labels, and in this manner, penalizes segmentations where neighboring regions have weak
edges and different labels.

Calculating edge strength

Measuring the edge strength v/, in each site s can essentially be considered as an edge
detection problem. Two edge strength calculation methods are developed. In the first
method, following the previous IRGS papers [20,21], the intensity values in the RH and RV
CP channels are used in the vector field gradient (VFG) method [77]. The second method
is to develop an edge strength measure that uses the MLC CP coherence matrix data as its
input. We propose to use the ratio-based edge detectors [78-80] with a complex-CP based
similarity measure. As shown in Section 3.2, since the MLC CP coherence matrix shares
statistical properties with the QP MLC covariance matrix, all the similarity measures for
the QP covariance matrices are immediately applicable to the CP coherence matrices.

The ratio-based detectors [78, 80] use a rectangle bi-window configuration shown in
Fig. 3.1. In particular, as shown in Fig. 3.1, the bi-window configuration consists of two
parallel rectangles which are specified by two parameters: length [; and width wy, a
spacing parameter df, and an orientation angle 6¢. Touzi et al. [78] proposed using the
ratio of mean intensity values in SAR images and operating a constant false alarm rate
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(CFAR)-based thresholding afterwards. This algorithm is called likelihood test ratio, and
has also been expanded for the QP SAR images [$0]. Here, we use the Hotelling-Lawley
trace (HLT) [31] as the similarity measure. The HLT statistic is considered as the matrix-
variate version of the intensity ratio test [$1]. The HLT measure has shown to be an
effective test statistic compared to the measures such as Kullback-Leibler divergence in
the problem of change detection using the MLC QP covariance matrix data [32]. Since
the change detection methods based on test statistics such as the HLT statistic are based
on the difference between two MLC QP covariance matrix in the time series, the problem
of change detection is similar to the edge strength calculation problem using a ratio-based
edge detector, where the difference between the two mean MLC matrices from the two
windows in Fig. 3.1 are measured. The HLT statistic measures the similarity between two
complex matrix-variates J; and Jo

maur = tr(J7 ' Js) (3.15)

where J; and J, are two mean MLC CP coherence matrices in the two rectangles in
Fig. 3.1. Note that 7yt becomes the intensity ratio when J; and J, are two scalars
indicating intensity values. In the case J; = Jo, the HLT statistic equals the dimension
of a complex CP coherence matrix, i.e., 7yrr = 2. In the case of “dissimilar” J; and
Jo, T obtains values distant from d. Based on the type of difference in the two mean
coherence matrices, Tgrr can obtain positive values either “smaller” or “much larger” than
the dimension of a complex CP coherence matrix [32]. Therefore, the maximum value of
tr(J7'J,) and tr(J5'J;) is used here as the test statistic

Tmaxrrr = max{tr(J71Js), tr(J5 1T )} (3.16)

Finally, considering there are ny different orientation angles, we take the minimum
value of Taqr from all the orientations

Ttotal = rlnin {TrinaxHLT(JlaJ2>}' (3'17)
i=1,....,ng

[ARR)

where 71 r is the Taqrr value for the i orientation. Each orientation angle i corre-
sponds to a pair of mean MLC coherence matrices J; and Jy (from the two rectangles in
the bi-window configuration). For each 4, the “dissimilarity” between the two mean MLC
coherence indicates that there is a change in radar backscatter in that orientation. Taking
the minimum value of all the dissimilarity values from different orientations captures the
smallest changes in backscatter values in all orientations. In this thesis, ng = 2, i.e., two
orientation angles are considered: 6y = 0 and 6y = 90, where the windows are in horizontal
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and vertical directions, respectively. Also, the dimension parameters, Iy = 5 and wy = 3
produced the best results in this thesis.

Estimating the weight parameter [

The weight parameter [ in the pairwise potential (3.13) and in the equation related to
the region growing (3.20) should be estimated in each iteration of the algorithm. In the
standard TRGS [20], the parameter [ is determined by the boundary length expected over
the whole image, and, then, it is adjusted to be adaptive to the noise strength of the image.
In particular, in each iteration i, a value [y(7) is estimated as a prior via maintaining the
expectation of the boundary length the same as the current [20,83]. To incorporate the
noise strength in each iteration of the segmentation into the parameter 3, Yu et al. [20, (23),
(24)] used the Fisher criterion as a separability measure between any pair of classes in the
image for adjusting the prior By(i). Here, we use Tpamrr statistic ®

h

B<i):0102+h

Bo(i), (3.18)

where /3 (t) represents the adjusted weight parameter. C and Cy are two constants which
are set based on the the homogeneity of the scene. For the SAR scenes with homogeneous
classes (less noise), C7 and Cy are set to 1.5 and 0.4, and if the classes in the scene are
noisy, a smaller number is set to C1: C; =1 and Cy = 0.4. The parameter h (3.18) is also
given by

h = min{TmaxHLT(Mia M])} (319)
Z?]

where h is a measure of separability between all pairs of classes ¢ and 7 with respect to the
mean value of the MLC CP coherence matrices of the two classes M; and M;.

3.5.3 Region merging criterion

One of the main features of the IRGS algorithm is incorporating a region merging technique
in each iteration of the optimization. Starting from an oversegmentation, a region merging
process is executed in each iteration. Only for all pairs of the neighboring regions with
the same labels, the energy terms (3.9) for two cases are calculated: (1) merging the two

5See Section 4.3 in the work by Yu et al. [20] for more description.
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Algorithm 1 CP-IRGS Algorithm

Input: Set C; and Cy (3.18), number of classes m, and maximum number of iterations

tmaac .

Output: Segmentation image with m classes.

Initialization:

1: Compute the edge strength Tyoa (3.17) for each site in the image.

10:
11:

Apply watershed to obtain an oversegmentation and construct a RAG with each wa-
tershed region as a vertex.
Assign a random label to each watershed region
Apply a region-based K-means algorithm [58] to obtain an initial segmentation from
which the average MLC coherence matrix for each class is calculated.
LOOP Process
for t =1 to t,,4, do
Update  and K.
Scan all the vertices in a random manner and assign a label to each vertex that
minimizes energy terms in y* (3.9).
Repeat: While all OF > 0
Compute OF (3.20) for all adjacent regions that have the same label.
Merge the region pair with the most negative 0F.
end for

regions and (2) keeping the regions separate. If the merged case reduces the energy, the
regions are merged. The region merging criterion is given by [20,21]

aE(’L,j) = ni]‘ lIl |M|” —n; ln |Mz| — TLj hl |M]|
-8 Y g(Vy) (3.20)

s€0v;NOV;

where 0F (i, 7) is the energy difference between before and after merging, n; is the number
of pixel sites in region 7, and 5 denotes the region obtained from merging regions ¢ and j.
M, is the average MLC CP coherence matrix of region i.
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3.5.4 CP-IRGS algorithm overview

An overview of the CP-IRGS algorithm is shown in Algorithm 1. After an oversegmentation
using the watershed algorithm [28], a RAG is constructed. To start the algorithm, an
initialization is required to input into the algorithm. Through this initialization, each
region is assigned a label and, then, the mean MLC CP coherence matrix for each class
is computed. The initialization image is obtained via applying a region-based K-means
algorithm [58] on the RH and RV channel intensity images.

CP-IRGS is executed in two main nested loops. The outer loop guides the segmentation
to the optimal configuration. In each iteration of this loop, the parameter 8 (3.18) and
K (3.14) are updated. Then, all the vertices in the RAG are assigned a label (3.9). In
particular, via a simulated annealing algorithm, all the vertices in the RAG are scanned in a
random manner, and each vertex is assigned a label that minimizes the energy terms (3.9).
The inner loop executes the region growing process. In each iteration of the inner loop, for
all the neighboring pairs of regions that have the same class label, the criterion OF (3.20)
is computed. The region pair with the most negative OF are merged. The inner loop ends
when there is no adjacent pair with the same label that has 0F < 0.

3.6 Experimental Setup

An unsupervised segmentation algorithm is expected to produce an image where each
pixel is assigned to a particular class with an unknown label. A labeling step is usually
followed to assign ground truth labels (the actual class labels of the scene) to the regions
in the image [11,23]. Since the objective of this chapter is unsupervised segmentation, to
evaluate the algorithm without any uncertainties due to an imperfect labeling process, the
segmentation regions are assigned labels based on the fully labeled ground truth image of
the scenes. The fully labeled ground truth images were produced using the labeled samples
from on a grid over the scene from the CIS ice experts and oversegmentation images from
the scene.

Each class in the unsupervised segmentation image is assigned a label via a majority
voting process on the ground truth labels of the pixels inside the class. In other words, in
each segmentation class, the number of pixels with each label in the ground truth image is
counted and all the regions of the segmentation class is assigned the label associated with
the maximum number of pixels. An accurate segmentation provides segmentation classes
that are homogeneous, i.e., each class in the segmentation image contains areas only from
one ground truth class.
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Figure 3.2: (a) The locations of the two RADARSAT-2 fine QP scenes in the Pond Inlet.
The Pauli RGB composites (Red: |HH — VV|; Green: 2|HV|; Blue |[HH + V'V|) of the
scenes (b) Decl6 and (c) Janl7. Example ice types in the scenes are labeled.

After labeling, the overall accuracy (OA), the accuracy of each class, and the Kappa
coefficient (k) are computed as accuracy measures of the algorithm. Moreover, to measure
the effectiveness of the region merging in the unsupervised segmentation algorithm, the
total number of regions in the segmentation image is counted. Favorably, the segmentation
algorithm should produce images where the regions are as homogeneous as possible (i.e.,
high accuracy values) and the number of regions is as low as possible.

Three cases are tested and compared:
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Table 3.1: The elements of the mean MLC CP coherence matrices for each class in the
simulated data

Class Ji1 Jio Joo
OW/NI 0.0069 0.0008-0.0056j 0.0118
YI 0.0400 0.0032-0.0272j 0.0407
FYI 0.0167 0.0006-0.0106j 0.0163
MYI 0.0549 0.0040-0.0338j 0.0556

Case 1: The standard IRGS method [20] using the RH and RV intensities.

Case 2: The CP-IRGS method described in Algorithm 1 using vector field gradients
(VFG) [77] method on the RH and RV intensities for edge strength map calculation.

Case 3: The CP-IRGS method using edge strength map method described in Sec-
tion 3.5.2, which will be referred to as the CP-IRGS using complex ratio (CR)-based
method.

The IRGS method in Case 1 uses only the CP channel intensities. In Case 2, the CP-
IRGS method uses the MLC CP coherence matrix data in the unary potential, however, in
the pairwise potential, the CP channel intensities are used in the VFG. In Case 3, both the
unary and pairwise potentials are calculated based on the MLC CP coherence matrix data.
The data sets will be described in the next section, and the experiments and analyses are
provided afterwards.

3.7 Data Sets

A multilook CP coherence matrix data set of sea-ice with 1500 x 1500 pixels were simulated
using the simulation method described in Section 3.3 based on the assumption that the
texture is constant. The mean coherence matrix for each class was derived from a real CP
SAR scene. Elements of the mean coherence matrices for sea-ice classes are presented in
Table 3.1. The class boundaries of a real SAR sea-ice scene were used for the simulated
MLC CP image, and, then, the regions of each class were populated by the corresponding
simulated pixel values of the MLC coherence matrix.
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(a) M —x (b) Ground truth
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(d) Labeled IRGS using R

Figure 3.3: (a) The M — x [I8] RGB composite: R = +/(mSy—S;)/2 G =

So(1—=m) B = +/(mSy+ S3)/2, where Sy, S1,S2, 53 are the Stokes parameters and
m = /S%+ 52+ 52/S; is the degree of polarization, (b) ground truth, and the unsu-
pervised segmentation and labeled images of the simulated MLC CP coherence data for
(c)-(d) original IRGS segmentation using RH and RV images

(c) IRGS using RH and RV
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(e) IRGS using M — x (f) Labeled IRGS using M — x
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Figure 3.3: (e)-(f) The unsupervised segmentation and labeled images of the simulated
MLC CP coherence data for original IRGS segmentation using M — x parameters (cont.)

3.7.1 MLC CP images

Two RADARASAT-2 SLC QP images are used for testing. The images are acquired over
Pond Inlet located in Northern Baffin Island. Pond Inlet is of importance in the Arctic
in terms of sea-ice mapping support as it has the largest community in Northern Baffin
Island. The scenes were collected on Dec 24, 2016 and Jan 31, 2017, identified here as
Dec16 and Janl7. The sampled pixel and line spacing were 4.7m and 4.7m for the scene
Dec16, and 4.7m and 5.1m for the scene Janl7, respectively. Fig. 3.2 depicts the RGB
composites along with some example ice types labeled in the scenes.

Over each scene, CIS experts assigned class labels to pixels via the MAGIC software [50].
Based on the sample pixels, each of the ground truth maps was generated from an over-
segmentation that was manually labeled. The incidence angle varies between 31° and 34°
for the scene Dec16, and 38° and 41° for the scene Jan17. The scenes have a large overlap,
however, the ice types in the scenes vary from one scene to the other. While the scene
Dec16 consists of different ice types including new ice (NI), young ice (YI), first-year ice
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(g) CP-IRGS using VFG
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(i) CP-IRGS using CR (j) Labeled CP-IRGS using CR

Figure 3.3: The unsupervised segmentation and labeled images of the simulated MLC
CP coherence data for CP-IRGS segmentation using (g)-(h) VFG and (i)-(j) CR-based
methods (cont.)

(FYI), and multi-year ice (MYI), due to the freeze-up process, the scene Janl7 includes
only FYI and MYT.

The full QP images were used to synthesize the MLC CP coherence matrix data via an
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(k) PolarIRGS using pseudo-QP ) Labeled PolarIRGS using pseudo QP

e

Figure 3.3: (k)-(1) The unsupervised segmentation overlaid on the reconstructed Pauli
RGB composite and the labeled images of the simulated MLC CP coherence data for
the reconstructed QP (pseudo-QP) from the simulated MLC CP coherence data using
PolarIRGS segmentation method [21] (cont.)

RCM-data generator [1]. The simulator uses elements of the full QP scattering matrix to
construct the complex CP measurement vector (3.1). The measurement vector was then
used to generate the coherence matrix which was then resampled based on each beam mode
of the RCM. Here, the CP coherence matrix data are in the medium resolution RCM mode
with the pixel spacing of 50mx50m (rangex azimuth). A “box-car” averaging with window
size of 9 x 9 is also applied on the data which is used as the input to the unsupervised
segmentation algorithm.

3.8 Results and Analyses

The results of the unsupervised segmentation methods, the labeled images, and the quan-
titative assessments of the methods are provided in this section. First, using a simulated
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(e) IRGS using M

Figure 3.4: Scene Decl6: (a) the M — x decomposition RGB composite: R =
v/ (mSy — 53)/2 G = /So(1 —m) B =+/(mSy + S3)/2, where Sy, S, Sa, S3 are the Stokes
parameters and m = \/S? + 53 4+ S2/Sp is the degree of polarization, (b) ground truth,
unsupervised segmentation, and the labeled images overlaid on top of land masks for the
cases: (c)-(d) the unsupervised IRGS segmentation using RH and RV intensity images,
and (e)-(f) the unsupervised IRGS segmentation using M — x G and B parameters (cont.)
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Figure 3.4: Scene Decl6: (g)-(h) CP-IRGS segmentation using VFG method, (i)-(j) CP-
IRGS segmentation using CR-based method, and Polar[RGS segmentation using the re-
constructed QP (pseudo-QP) from the simulated MLC CP coherence data overlaid on
reconstructed Pauli RGB composite (cont.)
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Table 3.2: Segmentation method, class accuracy values, the overall accuracy and the

coefficient, as well as the number of regions in each segmentation image for the simulated
and two RADARSAT-2 scenes.

I i H P-I i P-1 i
Data Set Measure Class RGS Using R CP-IRGS Using || CP-IRGS Using
and RV VFG CR
OW /NI - - -
Y1 80.03 90.32 89.23
] User’s Accuracy
Simulated FYI 97.71 97.06 96.86
Scene MYI 95.69 99.31 98.37
Overall Accuracy (%) 94.78 96.72 96.26
Kappa Coefficient 0.90 0.93 0.92
Number of Regions 4285 4144 3794
OW /NI 78.34 86.16 87.49
YI 60.76 71.37 71.24
User’s Accuracy
Scene FYI 60.11 76.94 82.76
Decl6 MYI 88.99 90.26 86.93
Overall Accuracy (%) 74.63 82.58 83.27
Kappa Coefficient 0.49 0.66 0.68
Number of Regions 3779 1063 953
OW /NI - - -
Y1 ; ; -
User’s Accuracy
Scene FYI 98.06 99.45 99.29
Janl17 MYI 92.25 85.60 90.48
Overall Accuracy (%) 97.48 97.76 98.29
Kappa Coefficient 0.87 0.89 0.91
Number of Regions 2816 2213 2069

MLC CP image, and, second, using the two MLC CP images described in Section 3.7.1,
we compare the three segmentation methods in terms of accuracy as well as the level of
oversegmentation.
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Figure 3.5: Scene Janl7: (a) the M — x decomposition RGB composite: R =
V(mSp — S3)/2 G = /So(1 —m) B =+/(mSy+ S3)/2, where Sy, S1, Sa, S3 are the Stokes
parameters and m = \/S} + S3 4+ S3/Sp is the degree of polarization, (b) ground truth,
unsupervised segmentation, and the labeled images overlaid on top of land masks for the
cases: (c)-(d) the unsupervised IRGS segmentation using RH and RV intensity images,
and (e)-(f) the unsupervised IRGS segmentation using M — x G and B parameters.
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Figure 3.5: Scene Janl7: (g)-(h) CP-IRGS segmentation using VFG method, (i)-(j) CP-

IRGS segmentation using CR-based method, and PolarIRGS segmentation using the re-

constructed QP (pseudo-QP) from the simulated MLC CP coherence data overlaid on

reconstructed Pauli RGB composite (cont.)

3.8.1 Results using the simulated MLC CP data

Here, the results of the simulated MLC CP scene including the unsupervised segmentation
images as well as their corresponding labeled images are provided. The M — x decompo-
sition RGB composite [18] image of the scene is shown in Fig. 3.3 (a). The results of the
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unsupervised segmentation methods in the three cases described in Section 3.6 overlaid
on the RGB image as well as their corresponding labeled images are also presented in
Fig. 3.3. All the three segmentation methods provided relatively accurate and identical
results as shown in Fig. 3.3 and also supported by the quantitative results in Table 3.2
where accuracy in the three cases does not significantly vary from one method to the other.

Other than the three cases described in Section 3.6, the segmentation results using
M — x parameters, derived from Stokes vector, were also provided. This allows for a com-
parison between these Stokes vector-derived features with CP intensities in unsupervised
segmentation. Two of the three M — y parameters that were more discriminative (the
parameters G and B from M — xy RGB composite) were selected. These parameters were
then used in Case 1 experiment. In particular, in Case 1, M — x parameters G and B were
used in the standard IRGS algorithm. Fig. 3.3 (e)-(f) shows the segmentation boundaries
and the corresponding ice-type labeled image using these parameters.

Moreover, the segmentation and labeled images using the reconstructed QP from CP
data (pseudo-QP data) were also provided in Fig. 3.3. The intention is to compare the
performance of pseudo-QP data with directly using 2 x 2 CP coherence matrix data. The
pseudo-QP data was reconstructed from the simulated MLC CP coherence matrix data
using Nord’s reconstruction method [39], which was described in Section 2.3. PolarIRGS
method [21] was performed on the pseudo-QP data. Fig. 3.3 (k) shows the segmentation
boundaries overlaid on top of the Paul RGB composite formed from the pseudo-QP data.
The corresponding ice-type labeled image was provided in Fig. 3.3 (1).

According to the values OA, k, and the total number regions, CP-IRGS provides more
accurate results with less number of regions than the original IRGS segmentation using RH
and RV intensities (Case 1). As delineated in ovals in Fig. 3.3 (e)-(h), a fairly large number
of FYT pixels in the middle of the scene are mislabeled as YI using original IRGS. This is
also demonstrated in the relatively low accuracy of YI class for this case, 80.03%, as seen
in Table 3.2. The performance of CP-IRGS using VFG and CR-based methods indicates
no significant difference where the VFG method provides higher accuracy, however, larger
number of regions than the CR-based approach as seen in Table 3.2.

3.8.2 Results of the MLC CP data

Since scene Decl6 consists of different ice types, this scene is more challenging than scene
Jan17 for segmentation. As labeled in Fig. 3.2 and as shown in the ground truth image of
scene Decl6 in Fig. 3.4 (b), the areas covered by YT have totally different radar backscatter
across the scene. Also, the ice types YI and FYI in the left part of the scene are very similar
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Table 3.3: Segmentation method, the overall accuracy and the r coefficient, as well as
the number of regions in each segmentation image for the simulated and two real MLC
CP scenes. The comparison of CP-IRGS segmentation results using CP RH and RV in-
tensities versus M — x parameters against PolarIRGS [21] segmentation results using the
reconstructed QP (pseudo-QP) data

IRGS IRGS CP-IRGS CP-IRGS PolarIRGS
Data Set Measure
RH,RV | M —x || VFG RH, RV | VFG M — x || pseudo-QP
. OA (%) 94.78 96.07 96.72 96.16 96.65
Simulated
Kappa 0.90 0.92 0.93 0.85 0.93
Scene
No Regions 4284 3751 4144 4206 4176
OA (%) 74.63 76.08 82.57 84.57 80.84
Scene
Kappa 0.49 0.54 0.66 0.70 0.62
Decl6
No Regions 3779 5642 1063 1089 1759
OA (%) 97.48 96.66 97.76 96.16 97.30
Scene
Kappa 0.87 0.81 0.89 0.77 0.87
Janl7
No Regions 2816 2858 2213 2247 2109

in backscatter. However, scene Jan17 only consists of FYI and MYI that seem to be much
more distinguishable for the segmentation algorithm. In Fig. 3.4, the M — y decomposition
image of scene Decl16, the ground truth, and the unsupervised segmentation results, as well
as the labeled images to the real ice types are provided for the three different methods in
Cases 1, 2, and 3 discussed in Section 3.6. Moreover, Fig. 3.4 (e)-(f) shows the segmentation
boundaries and the corresponding labeled image using M —y parameters. Also, Fig. 3.4 (i)-
(j) depicts PolarIRGS segmentation boundaries overlaid on top of the Paul RGB composite
formed from the pseudo-QP data and the labeled image.

As seen in the highlighted ovals in the labeled images in Fig. 3.4, the results of the
CP-IRGS algorithm (Fig. 3.4 (f) and (h)) provide better discrimination between YI and
FYT classes all over the scene compared to the IRGS results using RH and RV intensities
(Fig. 3.4 (d)). However, there are some misclassified areas highlighted in the left part of
the scene for the results of the CP-IRGS algorithm, Fig. 3.4 (f) and (h). Although the
segmentation images by the IRGS algorithm using RH and RV intensities in Fig. 3.4 (c) is
much more oversegmented than the CP-IRGS segmentation images in Fig. 3.4 (e) and (g),
the CP-IRGS algorithm produces more accurate labeled images than the IRGS algorithm,
as supported by the accuracy values in Table 3.2.

This demonstrates that the CP-IRGS algorithm produces segmentation classes that are
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more homogeneous than those in the segmentation by the original IRGS algorithm using
RH and RV intensities. In other words, some segmentation classes produced by the original
IRGS algorithm using only RH and RV intensities include multiple ice types (are not purely
from one ice type), and the majority voting process of labeling assigns only one ice type
to all the regions in the segmentation class. However, the CP-IRGS algorithm produces
more pure segmentation classes by leveraging the statistical characteristics of the MLC CP
coherence data. Moreover, for scene Dec16, the CP-IRGS using CR produces slightly better
labeling results than the CP-IRGS method using VFG (slightly higher overall accuracy and
smaller number of regions using CR-based method than the VFG method).

The unsupervised segmentation and the labeled images for scene Janl7 are also shown
in Fig. 3.5. All the three segmentation methods provide highly accurate discrimination
between the two classes FYI and MYT in the scene. This is because this scene only consists
of two ice types that are easily distinguishable by the segmentation algorithms due to the
noticeable backscatter difference between classes. Thus, the phase information provided
by the MLC CP data might be unnecessary particularly for this scene, and the original
IRGS using only RH and RV intensities produces highly accurate results.

Table 3.3 also shows the segmentation performance using M — y parameters in com-
parison with using CP intensities. These results were obtained using the parameters G
and B from M — y RGB composite were used in Case 1 and Case 2 experiments. In par-
ticular, in Case 1, M — x parameters G and B were used in the standard IRGS algorithm,
and in Case 2, these parameters were used in VFG method. According to Table 3.3, the
accuracy-based assessment of the comparison results demonstrated that M — y parameters
do not consistently provide better results than CP intensities. Investigation of using other
CP-derived parameters in unsupervised segmentation remains as a line of future work.

The last column of Table 3.3 shows the performance of PolarIRGS segmentation [21]
using pseudo-QP data. According to Table 3.3, the quantitative assessment of the seg-
mentation performance using pseudo-QP data for the application of ice mapping indicates
that using pseudo-QP data, segmentation results are almost as accurate as directly using
2 x 2 CP MLC coherence matrix data. However, since the symmetry assumptions in the
reconstruction of QP data might not be always valid, and may pose uncertainties, it is al-
ways preferred to directly use 2 x 2 CP coherence matrix data. Therefore, in any complex
QP-based segmentation algorithm, which is developed based on 3 x 3 QP MLC covariance
matrix, the QP MLC covariance matrix should be replaced with the 2CP MLC coherence
matrix.
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3.9 Summary

In this chapter, an unsupervised segmentation algorithm using complex CP data is pro-
posed. This is the first region-based unsupervised segmentation that uses complex CP sta-
tistical properties. The algorithm, called CP-IRGS, is developed based on the well-known
IRGS algorithm which exploits edge strength information in a region-growing approach
using MRFs. MLC CP data is extracted from the complex measurement of the backscat-
tered field of a CP SAR. It was demonstrated that the MLC data is complex Wishart
distributed, based on which the unary potential in CP-IRGS was derived. In the pairwise
potential, using a complex CP divergence measure in a bi-window configuration, an edge
strength calculation method was proposed.

Only this limited number of QP scenes of sea-ice with CIS ice labels were available
for this thesis. Future work involves applying the proposed unsupervised segmentation on
a more extensive QP SAR scene data set which would lead to more certain conclusions.
However, The results on CP sea-ice scenes demonstrate that the the proposed CP-IRGS
performs a better segmentation than IRGS that only uses the RH and RV intensity im-
ages. Also, the quantitative assessment of the segmentation results using the two edge
strength calculation methods, VFG and CR, indicates for complex scenes where the noise
strength is high, the CR method generates segmentation results that are slightly more
accurate. However, overall, no significant difference between the quantitative results of the
two algorithms were seen in the experimental results.

In the CR-based method, the data used are the complex CP coherence matrix data,
which includes intensity as well as phase information. This is advantageous over the VFG
method which only uses RH and RV intensity data. However, the performance of CP-IRGS
using the two edge strength calculation methods (VFG and CR) are comparable in all the
three cases of experiments. This indicates the effectiveness of the VFG method in defining
edge strength values. Therefore, developing a version of VFG method that uses complex
CP coherence matrix data as input might be an interesting line of future work.
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Chapter 4

Semi-Supervised Land-Cover
Classification Methodology

The MLC CP data have similar properties to the MLC QP data. In this chapter, a land
cover classification method using spatial information is designed based on the statistical
characteristics of the complex CP and QP SAR data. First, the local spatial correlation
among image pixels is captured by superpixels (segmentation regions). Second, a graph is
constructed on the superpixels to model the global spatial correlation among superpixels.
The land cover classification image with ground truth labels are then estimated by propa-
gating labels from the few labeled superpixels to the unlabeled superpixels. In this chapter,
real RCM complex CP and QP scenes are used to evaluate the performance of the proposed
classification method. This chapter is based on a paper submitted to a journal [25].

4.1 Introduction

Land cover classification is an important task in monitoring the Earth’s surface. The
high-resolution RCM complex SAR data can be used for land cover classification [6]. QP
SAR data has the full information acquired by a polarimetric SAR, however, the swaths
covered by a QP SAR are relatively small. Therefore, CP SAR is an attractive alternative
since, as demonstrated by many studies |1, 13,23,11], CP classifications are comparable to
those from a QP SAR, and the RCM CP scenes can be acquired in wide swaths (~350
km) which are more suitable for studying larger earth regions. Many studies on land cover
classification using SAR data are dedicated to QP SAR data [31-87], and there has been
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very limited work on CP land cover classification [33,89]. In this chapter, we propose a land
cover classification method that models the “local” (using a superpixel-based approach)
and “global” (using a graph-based formulation) spatial correlation information in the QP
and CP SAR data types.

Using superpixels [90] is advocated in computer vision algorithms since compared with
the rigid pixel representation of images, a superpixel representation utilizes the “local”
spatial correlation between adjacent pixels and, by forming pixel groups, greatly reduces
the number of image primitives [91-93]. A superpixel segmentation algorithm is expected
to preserve the image boundaries by generating homogeneous superpixels that contain only
one surface object type [93]. Moreover, the superpixel segmentation should be adaptive, in
that it should capture the important local details without having to utilize many superpix-
els in homogeneous regions [941]. Our proposed segmentation algorithm utilizes statistical
properties of QP and CP SAR data calculated based on superpixels.

Coherent acquisition of the backscatter in a CP SAR allows for constructing the Stokes
vector, or equivalently, the 2 x 2 complex coherence matrix. By averaging several inde-
pendent CP single-look complex (SLC) coherence matrices, the multilook complex (MLC)
coherence matrix is calculated. Both the CP 2 x 2 MLC coherence and the QP 3 x 3
MLC covariance matrices have a complex Wishart distribution [95]. Based on this char-
acteristic of the QP MLC covariance and CP MLC coherence matrices, Yu et al. [21]
and Ghanbari et al. [95], proposed QP SAR and CP SAR extensions of an unsupervised
segmentation algorithm called Iterative Region Growing with Semantics (IRGS).

PolarIRGS (full polarimetric IRGS) [21] and CP-IRGS (compact polarimetric IRGS) [95]
utilize the statistical properties of the QP and CP MLC data types in both the unary and
pairwise potentials of IRGS. IRGS is superpixel-based, in that the statistical properties of
superpixels are used, and, as a result, it is less sensitive to speckle noise and incidence angle
induced spatial non-stationarities in SAR images [11]. Also, IRGS uses edge strength in its
formulation to assist determining when adjacent superpixels should be merged [20]. These
characteristics make PolarIRGS and CP-IRGS algorithms effective for superpixel segmen-
tation. PolarTRGS and CP-IRGS model local spatial relationship using edge strength and
information from neighboring superpixels.

The superpixels are then used in a graph-based classification approach. Considering
each superpixel as a vertex, a fully-connected undirected graph is constructed on the su-
perpixels to model the “global” spatial correlation between superpixels. Once the graph
is constructed, learning involves assigning labels to the superpixels. Given a few labeled
superpixels, graph learning is performed in a semi-supervised manner. In a semi-supervised
method, the information from labeled as well as unlabeled superpixels is used to predict the
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labels of unlabeled superpixels [96]. The advantage of this method is that a very limited
number of superpixels are needed to be labeled [97].

A semi-supervised graph learning is based on the assumption that the vertices connected
by a high-similarity edge are likely to have the same label [95]. In essence, the labels of
labeled data propagate to the unlabeled data according to the adjacency information of
the graph vertices [99]. Inspired by the recent work on hyperspectral classification by
Sellars et al. [97] and Jia et al. [100], in this chapter, we propose semi-supervised fully-
connected graph learning based on label propagation [99] for complex QP and CP SAR
data. The adjacency relationship between the superpixels is measured by a metric that
consists of two components: spatial and backscatter difference. While the spatial difference
is based on the spatial distance between superpixel centroids, the backscatter distance is
measured by statistical significance between MLC matrices [71].

In summary, we have designed, implemented, and tested a scene classification approach
that coherently models the local and global spatial (LGS) correlation using MLC QP and CP
via superpixels and a graph-based approach. The novel approach involves semi-supervised
fully-connected graph learning to classify superpixels by modeling the global correlation
among all scene superpixels. The graph-based approach uniquely characterizes superpixel
differences by spatial distance and statistical properties of MLC matrices.

4.2 Related Work

Recently, the incorporation of spatial correlation among pixels in image classification meth-
ods has drawn increasing attention [100-102]. In general, studies have incorporated spatial
correlation information in classification in two main categories: (1) using derived features
for classification and (2) designing a classification method that inherently incorporates
spatial correlation. In the first category, “hand-crafted” texture features based on gray-
level co-occurrence matrices (GLCM) [103, 104] and Gabor filters [105] are extracted and
used in classification. To overcome the difficulties in effective feature representation, deep
convolutional neural networks (CNNs) inherently learn features [102, 106, 107].

In the second category, the spatial correlation effect is embodied in the classification
method [100, 108, 109]. Remote sensing image classification methods inherently incorpo-
rating spatial correlation effect are based on either pixels or superpixels. Chen et al. [108]
proposed an image classification method using sparse representation, where the spatial
correlation between a pixel and its neighbors is represented by a sparse linear combination
of a few common training samples in the feature space induced by a kernel function [105].
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In another pixel-based classification method [110], a hypergraph constructed on image pix-
els with spatial and spectral hyperedges was used in a semi-supervised method for image
classification.

In more recent studies, image classification based on superpixels has attracted signifi-
cant interest. In a study by Li et al. [I 1 1], by incorporating the local spatial correlation us-
ing superpixels, while avoiding the undersegmentation problem of superpixel segmentation
algorithm, both pixel-level and superpixel-level probability maps were derived, and, using
an adaptive probabilistic fusion model, the joint probability maps were calculated. Then,
the maximization optimization problem were transformed to an energy minimization prob-
lem, which was iteratively solved to obtain the final classification map. To overcome the
high computation demand of CNNs, Lv et al. proposed superpixel CNN classification [109].
They compared various superpixel segmentation methods while using different-scale deep
CNN features. Recently, a graph was constructed on superpixels generated from a hy-
perspectral imge using the entropy rate segmentation method [100]. Then, an adaptive
version of the dynamic label propagation method [112] was designed to pass labels from
labeled to unlabeled superpixels.

There have been numerous studies in the literature on land cover classification using
SAR data. In a study [¢4], using single-polarized SAR images, Esch et al. demonstrated
the analysis of mean and standard deviation of local backscatter values provided valuable
information in differentiating different land cover types such as water, open land, woodland,
and urban areas. A deep convolutional autoencoder was developed by Geng et al. [100]
for land cover classification. Using a single-polarization SAR image, they demonstrated
the superiority of features automatically derived by the autoencoder over the hand-crafted
GLCM and Gabor features. In another work [113] using single-polarized SAR images,
a superpixel segmentation through a probabilistic model based on the amplitude SAR
statistics was developed. It was demonstrated that their method, which utilizes amplitude
ratio distance, provides better land cover classification results than the other methods,
which mostly use Gaussian kernels to measure the similarity between pixel intensities.

Majority of recent studies on SAR land cover classification exploit the polarimetric
information of full QP and CP SAR data. Ohki et al. [39] investigated large-scale classi-
fication of land cover types such as forest, rice paddy, grass, urban area, and water using
three different SAR data types including linear DP, CP, and full QP. In their studies, the
support vector machine (SVM), random forest (RF), and a neural-network-based classifier
were employed. They indicated that the experiment with some selective QP SAR features
provides the most accurate classification results with a maximum overall accuracy of 73.4%.
Huang et al. [35] applied a deep neural network based on reinforcement learning called deep
Q-network [1 11] for QP SAR image classification using extracted target decomposition fea-
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Figure 4.1: General block diagram of the proposed land cover classification method.

tures as the input data, and demonstrated that the method achieves the same accuracy
as the compared deep-learning-based methods with a relatively smaller labeled data size.
In another attempt to address the classification with limited amount of labeled data, a
CNN classification inspired by principal component analysis network [115] is designed by
Guo et al. [1106].

With regard to capturing spatial correlation as well as accounting for the polarimetric
response variation by target orientation in QP SAR data, a dynamic texture based on the
sequence of polarimetric responses was employed in a work by Yang et al. [36]. In a QP SAR
classification of land cover by Zou et al. [117], the spatial information in the parameters
of a target decomposition in pixel-level (using morphological operators) and superpixel-
level (using a semantic indicator derived from the graph constructed on the superpixels)
is incorporated. To exploit the spatial correlation among neighboring pixels in the process
of dimensionality reduction in QP-SAR-derived features, graph embedding [1 18] was used
in a tensor-based representation [37].

Over the past decade, semi-supervised classification of QP SAR data has been used by
many researchers to exploit both labeled and unlabeled data information to obtain accurate
classifications using limited labeled samples. Studies on semi-supervised classification of
QP SAR data include various methods mostly in a pixel-based manner. Wei et al. [I19]
proposed a QP SAR semi-supervised classification based on a graph to capture the high-
order relationship between hypergraph vertices. Using image pixels as the hypergraph
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vertices and the Gaussian kernel as the similarity measure, they applied a regularization
framework [120] to find the labels. Hou et al. developed a graph-based semi-supervised
classification that incorporates the spatial consistency of labels using a Gaussian field
model [121] as a regularizer in the optimization framework. The classifier was proposed to
deal with the impurity of QP SAR pixels—containing more than one land cover type—and
inaccurate labeled data [122].

A QP SAR semi-supervised classification method was implemented based on co-training,
which utilizes two different classifiers with distinct feature spaces to boost the data reli-
ability [123]. Superpixels were only used in the selection of reliable unlabeled data to
enlarge the labeled data. Unlike co-training, in another multi-view learning approach, a
multi-attribute graph model was developed by Liu et al. [121] for QP SAR land cover clas-
sification. In their method, the QP-derived features were divided into attribute groups,
and multiple graphs were constructed on the attribute groups. Then, after the spatial cor-
relation effect was modeled as a term in their objective function, a weight for each graph
and the label of unlabeled pixels were optimized [124]. Following the idea of increasing
the diversity of classification, Wang et al. [125] proposed a tri-training-based algorithm
where three groups of QP-derived features were used to train three different classifiers.
The spatial information was utilized in the selection process of reliable unlabeled data for
adding to the labeled data.

In some recent semi-supervised classification studies, investigators exploited CNNs
while modeling the spatial correlation effect in their framework. A CNN classification
network incorporates two semantic priors to preserve the spatial consistency and bound-
aries [120]. Active learning has also been integrated into a CNN-based architecture [127]
to select the most informative training data for annotation based on the CNN’s output.
Also, a Markov random field (MRF) model was applied to the output probability maps
of the CNN to encourage the spatial consistency. Gadhiya et al. [128] utilized the infor-
mation of each pixel as well as the containing superpixel in a Wishart network [129]. A
few methods also aimed to integrate superpixel-driven information into the deep neural
networks [130, 131]. Other QP semi-supervised classification methods based on CNNs ei-
ther perform on a pixel-level basis, or they lack an effective model for spatial correlation
effect [132, 133]. Recently, a multi-scale graph constructed on superpixels to overcome the
limitations of pixel-based classification techniques [1341].

From this discussion, we recognize the following shortcomings based on observations
drawn from the research literature:

1) There is a limited number of CP land cover classification studies, despite a great deal
of land cover classification using QP data.
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2) Research using correlation among superpixels in SAR images in a graph-based ap-
proach is limited. We are not aware of published methods that learn the global
correlation using superpixel-based graphs for the purpose of SAR land cover classifi-
cation.

3) Superpixel segmentation methods used in the land cover classification studies are
generic and do not account for the statistical properties of QP SAR data.

We implement a method that is able to address these shortcomings:

1) We design and implement a land cover classification method for CP complex data
that is also applicable to complex QP.

2) This method utilizes the local spatial information via superpixels. A graph-learning
method is then developed to effectively model the global spatial correlation among
the superpixels.

3) The statistical properties of QP and CP SAR data are used to perform the superpixel
segmentation.

4.3 Complex CP and QP SAR

In an SLC CP SAR data set, the measurements are the elements of a complex vector E
that corresponds to the backscattered field. The radar scattering matrix S relates the
incident field to the backscattered field [30]:

_\Eu| _«sr _ |SeH SbV| .
e [E1] su— [t 3. o

where 10; is the unit Jones vector related to the incident field and E, is the backscattered
field that is shown by E¢p in CP SAR case. The measurement in the case of an SLC QP
SAR data set is the scattering matrix S in Eq. (4.1) which can be represented as a vector
using the lexicographic basis set as Qop = [Syn V2Syy  Syy] when the reciprocity
assumption, Sy = Sy g, holds.

By multiplying Ecp and €2gp by their Hermitian conjugates, the Hermitian positive
semidefinite MLC CP coherence (Cep) and QP covariance (Cgp) matrices are derived,
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respectively [30,32]
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where < --- > shows temporal or spatial averaging, T indicates Hermitian conjugate,
is complex conjugate, and L is the number of looks used for averaging. The matrices
S Ecp,Eflp, and P QQPZvQTQPi are both complex Wishart distributed [61,95]. The
similar statistical properties of the complex CP and QP data allow us to design a unified
classification method.

4.4 Proposed Method

4.4.1 Overview

The proposed land cover classification method mainly consists of two components. First,
using the multilook complex QP/CP data, the PolarIRGS/CP-IRGS algorithm generates
the superpixels on the scene. In this manner, the local spatial correlation among pixels
as well as the strong edges in the image are preserved. Second, a fully-connected undi-
rected graph is constructed on the superpixels. Each vertex in the graph corresponds to a
superpixel for which three different features are derived: the mean MLC complex matrix
(calculated using the superpixel’s pixels), the weighted superpixel-based mean MLC matrix
(calculated using the mean MLC matrices of a superpixel and its neighboring superpixels),
and the superpixel spatial centroid. The affinity matrix, where each element represents
the similarity between the corresponding superpixels, is then constructed using these three
features. The affinity matrix comprises the global correlation information between all pairs
of superpixels across the ML.C data.

A few pixels that are spatially distributed all over the image were manually labeled and,
then, the superpixels containing the labeled pixels were assigned the same label. The spa-

75



tial distribution of the labeled superpixels is important since the semi-supervised method
propagates labels from labeled to unlabeled superpixels. Using the labeled superpixels
and the affinity matrix, the graph-based method estimates the labels of all superpixels—
including the labeled and unlabeled ones—generating the land cover classification map of
the SAR scene. The block diagram of the proposed land cover classification method is
shown in Fig. 4.1. The PolarIRGS and CP-IRGS superpixel generation algorithms are
described next. Then, the details of the calculation of the graph affinity matrix and the
graph-based approach is explained.

4.4.2 Superpixel generation using PolarIRGS and CP-IRGS

To generate homogeneous superpixels, where each superpixel contains only one land cover
type, while preserving the edges in the scene, we apply PolarI[RGS and CP-IRGS seg-
mentation algorithms. PolarIRGS and CP-IRGS, as the extensions of IRGS algorithm
for QP and CP SAR data, were inherently developed for the application of unsupervised
image segmentation [21,95]. In the historic names of IRGS algorithms [20, 21, 95], “re-
gion” is used to describe a group of pixels. Equivalently, “superpixel” is used here due to
its current usage in the literature. There are three reasons for applying PolarIRGS and
CP-IRGS algorithms to generate superpixel segmentation: first, the IRGS algorithm starts
with a highly-oversegmented image and iteratively merges superpixels to obtain the final
segmentation. The parameters in the IRGS algorithms allows for choosing the level of
oversegmentation—in terms of the size of superpixels—that is suitable for the proposed
superpixel-based classification method. Second, the PolarIRGS and CP-IRGS were partic-
ularly designed based on the statistical properties of MLC QP and CP data, and, third,
these algorithms incorporate the concept of edge strength to preserve the edges in SAR
images. This is particularly important in superpixel segmentation where each superpixel
is assumed to be homogeneous.

Here, a short description of the PolarTRGS and CP-IRGS segmentation methods is
provided. Assuming S is the image and s € S be an image pixel. Also, let x = {z4|s € S}
represent the image data and y = {ys|ys € M, s € S} is a label configuration on the image
with discrete-valued random variables y, having a value from the label set M = {1, ..., m}.
The purpose of an image segmentation is to find the optimum label configuration y* from
the set of possible label configurations Y. IRGS is superpixel-based, and uses a region
adjacency graph (RAG) [19], G = (V,€), where V and € denote the image superpixels as
vertices and arcs that are the boundaries of adjacent superpixels. Thus, a superpixel v € V
in the image contains a set of image pixels denoted by S,. The optimization problem in
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PolarIRGS and CP-IRGS is solved by minimizing two energy terms [20,21,95]

y' = arg;rg(l{— Z Z Z{1H|Ci’ +tr (C;'Cy)}

i=1 Sy€Ev; SESy

SBY Y Y 4w (4.4

=1 j=i+1 s€0v;NIv;

where C; is the MLC QP or CP matrix of the pixel s, C; is the mean MLC matrix over all
the pixels that are labeled ¢ from the set M, g(Vy) is called the edge penalty term [20], v;
is a subset of all superpixels with label ¢, and dv; indicates all the boundary pixels between
superpixels labeled ¢ with other superpixels. Thus, dv; N Ov; denotes all the boundary
pixels between classes ¢ and j.

The edge penalty function g(V) is a monotonically decreasing function that is smaller
for a strong edge than when the edge between two superpixels assigned to different classes
is weak. In this manner, two neighboring superpixels are assigned same labels in segmen-
tation only when the edge between two superpixels is weak [20]. The parameter 3 controls
the smoothness of the segmentation with the greater values of § leading to smoother
segmentation results. This parameter, in particular, allows us to control the level of over-
segmentation of superpixels.

A main advantage of the IRGS algorithm is incorporating a greedy superpixel merging
method in each iteration of the optimization. This increases the algorithm speed in mov-
ing toward the optimized segmentation. Starting from an oversegmentation, a superpixel
merging process is executed in each iteration. For each pair of neighboring superpixels
with like labels, Eq. (4.4) is calculated. Adjacent superpixels with like labels that reduce
the energy the most are merged [20].

4.4.3 Semi-supervised graph-based method

The output of the PolarIRGS and CP-IRGS segmentation is a label configuration with
labels from the set M. To use this segmentation, we assign a unique label to each su-
perpixel in the segmentation map. In this manner, each superpixel in the segmentation is
assigned a unique label. Then, an undirected graph is constructed with each superpixel as
a vertex in the graph. The graph is shown by the affinity matrix A € RY*¥ (also called
weight /similarity matrix) that is N x N where N is the number of vertices/superpixels
and each element in the matrix indicates the similarity between a pair of superpixels in
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the graph. The affinity matrix in the proposed method is defined as
l c
Ay = ALAS (4.5)
where Aéj is related to the similarity of the superpixels ¢ and j in terms of their location
in the image
3 A2
C (e = Ll
Aj; = exp (U—zz (4.6)

where EZ is a vector of two scalars corresponding to the mean x and y coordinates for all
the pixels in the i*® superpixel. Also, || - || represents the lo-norm distance, and o; is the
width of Gaussian kernel. Af; is the term corresponding to the similarity of superpixels
based on the mean, C™ and the weighted superpixel-based mean, C*, MLC matrices [)7]

(v = D) Duu(CY, CF) — vDun(Cy", C}”))

L (4.7)

Afj = exp <

where C7" is the mean MLC matrix over all the pixels in the superpixel ¢ and C} is defined
as

K
Cr =) wCy (4.8)
k=1

which calculates a weighted average of the K neighboring superpixels of the superpixel i.
The weight from the k" superpixel is defined as

_ exXp ( — DMH(C;U, C}:)/h)
Sy exp (— Dyn(CY, C¥)/h)

where h is a scale parameter. ~ is a scale parameter that balances the effect from the
mean MLC matrices as against to the weighted superpixel-based mean MLC matrices.
o. indicates the width of the Gaussian kernel. Dyy(Ciq, Cs) represents the statistical
dissimilarity between the MLC matrices C; and Cy calculated by the maximum value of
Hotelling-Laweley traces (HLTs) [31]

Dyi(Ch, Cy) = max{tr(C;'Cy), tr(C;'Cy)}. (4.10)

This metric has been demonstrated to be more effective in the application of change
detection—similar to the problem here, the difference between two MLC matrices should be
measured in change detection—as compared to the likelihood ratio test [$1] and other sim-
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(a) Google Earth images (b) RH images
Figure 4.2: The Google Earth and RH images of the RCM CP data set. The magnified

areas indicate the two subscenes used in the experiments. Subscene 1 and Subscene 2 are
respectively the upper and lower images in the first and last columns.

ilar metrics such as symmetric Wishart distance and Kullback-Leibler divergence [82]. A
complete affinity matrix, that is equivalent to a fully-connected graph, models the global
spatial correlation effect between all pairs of superpixels in the image. Then, a semi-
supervised classification method based on label propagation [99] is performed. First, the
superpixels containing labeled pixels are assigned labels. Then, from a conceptual perspec-
tive, the semi-supervised method propagates the labels from the labeled superpixels to the
unlabeled ones.

Assume Z € RY*T is the initial label information, where 7" is the number of land cover
types. Each row of the matrix Z corresponds to a superpixel: if the superpixel ¢ is labeled
J, the element Z;; = 1, otherwise, for all j, Z;; = 0. For all the unlabeled superpixels,
Z;; = 0 for all j. The label propagation is performed based on the assumption that the
classification matrix F € R¥*T in each iteration is a function of the spatial correlation
information between superpixels and the initial label information [99]

F(i+1) = aBY2AB™Y2F(i) 4+ (1 — a)Z (4.11)

where F(i) indicates the classification matrix in iteration i, B € R¥*" is a diagonal
matrix with its iz-element equal to the sum of the ¢y, row of A, and the parameter «
balances the relative effect from the global spatial correlation information and the initial
labeling information. The classification matrix F converges to a closed-form solution F*
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as follows [99]

1
= M (1~ _B2AB 27 (4.12)
w1 w1
where [ is the N x N identity matrix and p is a weight parameter, where a = ﬁ The
final land cover labels of the superpixels are then calculated as z; = argmax; F;;.

4.5 Experimental Results

In this section, the RCM SLC data sets used in the experiments are described. The pre-
processing of the data sets is then explained followed by the experimental setup to evaluate
the proposed method and analyze the effects of local as well as global spatial correlation
in the land cover classification method.

4.5.1 RCM data sets

Two RCM SLC data sets were used in the experiments. The first data set is a very high-
resolution SLC CP data set that was acquired over the Winnipeg city in Manitoba, Canada,
on February 2, 2020. The sampled pixel and line spacing for the data set are 1.39m and
2.16m, respectively. The CP scene has a size of 14066 x 9734 pixels. The second data set is
an SLC full QP data acquired over the Québec City in Québec, Canada, on December 29,
2019. The sampled pixel and line spacing for the SLC QP data set are 3.13m and 3.31m,
respectively. The size of the QP scene is 8007 x 2935.

To evaluate the performance of the proposed method, two subscenes were acquired from
each SLC scene. Fig. 4.2 and Fig. 4.3 show the Google Earth and intensity images of the
CP and QP scenes, respectively. Each of the subscenes from the CP scene, indicated in
Fig. 4.2, consists of four land cover types that are visually identified. The size of Subscene 1
of CP data is 1622 x 1272 pixels and includes low-rise residential (LRR), high-rise residential
(HRR), vegetation (VEG), and asphalt (ASP) land cover classes. Subscene 2 of CP data
has a size of 1000 x 1200 with the same first three land cover types as those in Subscene
1: LRR, HRR, VEG, and another class as train (TRA).

The two subscenes taken from the QP scene, shown in Fig. 4.3, have 700 x 500 pixels,
for Subscene 1, and 500 x 700 pixels, for Subscene 2. Subscene 1 from the QP scene
consists of six classes: river (RIV), LRR, HRR, VEG1, VEG2, and shore (SHR). VEG1
and VEG2 correspond to the two types of vegetation that have different SAR backscatter
values. Subscene 2 includes all the classes in Subscene 1 except the class HRR. Next,
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(a) Google Earth images (b) HH images

Figure 4.3: The Google Earth and HH images of the RCM QP data set. The magnified
areas indicate the two subscenes used in the experiments. Subscene 1 and Subscene 2 are
respectively the upper and lower images in the first and last columns.

the experimental setup including the pre-processing of the SLC data sets, the parameter
setting of the proposed method, and the compared methods are described.

4.5.2 Experimental setup

The RCM SLC CP data set contains two files that represent the complex elements Eg
and Fy in Eq. (4.1). Also, the SLC QP data set includes three files corresponding to the
complex elements of the scattering matrix in Eq. (4.1). The MLC CP coherence (C¢op) and
the MLC QP covariance (Cgp) were respectively derived based on Eq. (4.2) and Eq. (4.3)
with the number of looks, L = 1. Box-car averaging with a window size of 5 x 5 was then
performed only on the MLC CP data. Averaging was found unnecessary for the MLC
QP data for both segmentation and classification—since the pixel and line spacing for
the QP scene are larger than those for the CP scene, to fully-preserve the boundaries in
segmentation and classification the averaging was not performed in the case of QP data.

To generate superpixels, CP-IRGS and PolarIRGS were performed with 10 segmenta-
tion classes. After the segmentation, each superpixel in the segmentation image, regardless
of its segmentation class, is given a unique label. Then, the graph is constructed on the
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Table 4.1: The number of train and test pixels for the two Subscenes of CP SAR data.

Subscene # | Class name Description # of train | # of test
LRR Low-rise residential 49 227
HRR High-rise residential 32 58
Subscene 1
VEG Vegetation 42 169
ASP Asphalt 32 61
LRR Low-rise residential 36 191
HRR High-rise residential 37 84
Subscene 2
VEG Vegetation 50 90
TRA Train 40 83

superpixels. We need to set the parameters of the proposed semi-supervised graph-based
method including h (4.9), o, (4.6), 0. (4.7), v (4.7), and p (4.12). The parameter h was
set to 10. The parameters o; and o, were set to 1000 and 1, respectively. The parameter
v was set to 0.9 allowing for more impact from C!" (the superpixel itself) than that of
CY (the neighboring superpixels). Finally, the parameter u was also set to 0.1. All these
values were kept the same for all experiments.

The parameter values were found using an empirical testing in a course-to-fine search
method. The two components of the affinity matrix elements in Eq. (4.5), naming Al; and
Af;, should have comparable values so that the effect from both spatial and backscatter
differences between superpixel pairs is balanced. The parameters o; and o, have a huge
impact on the values of affinity matrix elements. To incorporate effect from both spatial
and backscatter information, the width of the spatial Gaussian kernel o; are set to a large
value to balance the large values of ls-norm distance between superpixels very apart from
each other across the scene. Also, as shown in previous work [97], with a complex land cover
structure, information from neighboring superpixels (here modeled by the weighted MLC
matrix, C?) should be limited by choosing a high value for the parameter v to incorporate
more information from within each superpixel (here modeled by the mean MLC matrix,
Cr™). In general, the classification results were not considerably sensitive to the values of
the parameters v, h and p.

To evaluate the performance of the land cover classification method, the user’s accu-
racy values of the classes, the overall accuracy (OA), and the Kappa (k) coefficient were
used. For comparison, these values were also calculated for four other methods: support
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Table 4.2: The number of train and test pixels for the two Subscenes of QP SAR data.

Subscene # | Class name Description # of train | # of test
RIV River 50 66
LRR Low-rise residential 40 97
Subscene 1
HRR High-rise residential 51 56
VEG1 Vegetation 1 51 166
VEG2 Vegetation 2 44 180
SHR Shore 35 36
RIV River 50 o7
LRR Low-rise residential 54 127
Subscene 2
VEG1 Vegetation 1 46 110
VEG2 Vegetation 2 39 80
SHR Shore 15 31
vector machine (SVM) [29], random forest (RF) [135], superpixel-based SVM (SSVM),

and superpixel-based RF (SRF). The latter two methods, SSVM and SRF, exploit the
superpixels for the classification. In particular, the mean value of the feature vectors for
all pixels in each superpixel was calculated and used for estimating the label of the su-
perpixel. The input to the proposed method is the MLC data which was used to extract
several features as the input to the compared methods including SVM, RF, SSVM, and
SRF. In the case of CP data, all the Stokes-derived features, and in the case of QP data,
the features extracted from the QP covariance matrix (Cgp) including the original SAR
features (full QP coherency matrix elements), SAR discriminators (SPAN and correlation
coefficients), and various decomposition parameters were used in the experiments [23].

For each class, around 50 training pixels and a minimum of 30 test pixels (usually
much higher number) that were independently collected were used for all the classification
methods. The number of train and test samples for each land cover type in the QP
and CP SAR subscenes is provided in Table 4.1 and Table 4.2. For the four compared
methods, a hyperparameter tuning step was performed separately for each experiment.
The values of hyperparameters ¢ and v in SVM and the hyperparameters n, (number of
estimators) and my (maximum depth) in RF were calculated using a grid search strategy.
In each experiment where the methods RF, SVM, SRF, and SSVM were performed, a grid
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(a) RH (b) Segmentation (c) Proposed method (d) SRF (e) SSVM
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(g) Segmentation (h) Proposed method (i) SRF (j) SSVM
-Low-rise residential -High-rise residential l:lVegetatiou l:lAsphalt

Figure 4.4: Classification results on the CP data set. (a) and (f) The RH intensity for
Subscene 1 and the zoomed-in area, (b) superpixel segmentation with labeled train super-
pixels using train pixels and (g) superpixel segmentation of the zoomed-in area overlaid on
RH image, as well as the classification images of the (c¢) and (h) proposed method, (d) and
(i) superpixel-based RF, and (e) and (j) superpixel-based SVM for Subscene 1 of the CP
data.

search in ¢ € [275,2M] and v € [272,2""] (increment factor of one for the power of two)
or ne € [50,2000] (increment factor of 50) and my € [1,110] (increment factor of 2) was
executed to select the hyperparameter values that provide the highest x when half of the
training pixels were used for training and the remaining half for testing.

4.5.3 Results of MLC CP data

The RH image, superpixel segmentation with the labeled superpixels and the classification
images of the proposed method along with the SRF and SSVM are presented in Fig. 4.4
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(k) RH (1) Segmentation

(p) RH (q) Segmentation

Figure 4.4: Classification results on the CP data set. (k) and (p) The RH intensity for
Subscene 2 and the zoomed-in area, (1) superpixel segmentation with labeled train super-
pixels using train pixels and (q) superpixel segmentation of the zoomed-in area overlaid
on RH image, as well as the classification images of the (m) and (r) proposed method, (n)
and (s) superpixel-based RF, and (o) and (t) superpixel-based SVM for Subscene 2 of the

CP data.

Table 4.3: Classification performance of the five compared methods in terms of class accu-
racy values, the overall accuracy and the x coefficient on the Subscene 1 of the CP SAR

(m) Proposed method

- Low-rise residential - High-rise residential - Vegetation I:l Train

(r) Proposed method
- Low-rise residential - High-rise residential - Vegetation I:l Train

(n) SRF

(s) SRF

data
Measure Class | Proposed Method | SRF | SSVM | RF | SVM
LRR 94.47 69.59 | 67.28 | 40.55 | 37.79
User's Accuracy (%) HRR 80.95 96.83 | 96.83 | 77.78 | 85.71
VEG 93.87 93.25 | 85.28 | 47.24 | 40.49
ASP 84.72 95.83 | 95.83 | 75.00 | 87.50
Overall Accuracy (%) 91.26 84.08 | 80.58 | 52.04 | 51.46
Kappa Coefficient 0.87 0.78 0.73 0.34 | 0.38
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Figure 4.5: Classification results on the QP data set. (a) and (f) The HH intensity for
Subscene 1 and the zoomed-in area, (b) superpixel segmentation with labeled train super-
pixels using train pixels and (g) superpixel segmentation of the zoomed-in area overlaid
on HH image, as well as the classification images of (c) and (h) proposed method, (d) and
(i) superpixel-based RF, and (e) and (j) superpixel-based SVM for Subscene 1 of the QP
data.

(a) - (e). The quantitative results for the CP subscenes are shown in Table 4.3 and
Table 4.4. As seen in the first subscene (the first row in Fig. 4.4), the land cover types
have distinguishable radar backscatter. In this case, the classification images are similar.
Although the SRF and SSVM methods provide higher class accuracy values for HRR and
ASP classes, the proposed method provides better class accuracy values for LRR and
VEG classes and higher OA and x values than the compared methods, as demonstrated in
Table 4.3. The pixel-based RF and SVM classifiers, which do not exploit the local spatial
correlation effect of superpixels, perform poorly in land cover classification.
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(p) HH (q) Segmentation

Figure 4.5: Classification results on the QP data set. (k) and (p) The HH intensity for
Subscene 2 and the zoomed-in area, (1) superpixel segmentation with labeled train super-
pixels using train pixels and (q) superpixel segmentation of the zoomed-in area overlaid
on HH image, as well as the classification images of (m) and (r) proposed method, (n) and
(s) superpixel-based RF, and (o) and (t) superpixel-based SVM for Subscene 2 of the QP

data.

Table 4.4: Classification performance of the five compared methods in terms of class accu-
racy values, the overall accuracy and the k coefficient on the Subscene 2 of the CP SAR

(m) Proposed method

(r) Proposed method

~

(n) SRF
- River - Residential -Vegetatiou 1 l:l Vegetation 2 l:l Shore

(s) SRF
- River - Residential -Vegetatiou 1 l:l Vegetation 2 l:l Shore

data
Measure Class | Proposed Method | SRF | SSVM | RF | SVM
LRR 91.46 69.35 | 67.84 | 00.50 | 52.76
User’s Accuracy (%) HRR 87.18 84.62 | 85.90 | 0.00 | 65.39
VEG 97.62 98.81 | 98.81 | 98.81 | 96.43
TRA 83.91 91.95 | 20.69 | 99.99 | 47.13
Overall Accuracy (%) 90.40 81.92 | 67.63 | 38.17 | 62.05
Kappa Coefficient 0.86 0.75 0.56 0.23 | 0.49
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Table 4.5: Classification performance of the five compared methods in terms of class accu-
racy values, the overall accuracy and the k coefficient on the Subscene 1 of the QP SAR
data

Measure Class | Proposed Method | SRF | SSVM | RF | SVM

RIV 81.48 88.890 | 74.07 | 54.32 | 18.52

LRR 89.61 74.03 | 49.35 | 40.26 | 40.26

User’s Accuracy (%) HRR 86.89 70.49 | 67.21 | 32.79 | 34.42
VEG1 79.21 63.37 | 79.21 | 71.29 | 72.77

VEG2 97.89 80.99 | 92.25 | 75.35 | 92.25

SHR 89.47 86.84 | 89.47 | 78.95 | 84.21

Overall Accuracy (%) 86.69 74.54 | 77.20 | 62.56 | 62.73
Kappa Coefficient 0.83 0.68 0.71 0.52 | 0.52

The results of a zoomed-in area at the bottom-right of Subscene 1 were also provided
in Fig. 4.4 (f) - (j). The classification images indicate that the proposed method keeps the
consistency of the areas of the scene, which can lead to either accurate classification (some
LRR areas being mislabeled by SRF and SSVM as HRR) or incorrect classification (ASP
being mislabeled as VEG by the proposed method). Experiments showed that to obtain
accurate classification results using the proposed method and avoid these misclassifications,
the labeled superpixels should be selected from different parts of the scene. In other words,
the proposed method needs only few labeled superpixels in each part of the scene, where
there is a land cover type, to perform accurately.

In Subscene 2, the class TRA has a similar radar backscatter to that of HRR and
LRR classes as seen in Fig. 4.4 (k). The proposed method incorporates the global spatial
information among superpixels, and prevents the misclassifications of LRR and HRR classes
to TRA class which happen in the case of SRF and SSVM methods (see Fig. 4.4 (n) - (0)).
Most of TRA pixels are misclassified by SSVM method leading to a relatively lower OA
compared to that of SRF mehtod. The OA and x values of the proposed method in this case
are noticeably higher than the compared methods as seen in Table 4.4. The pixel-based RF,
in this case, assigns all the pixels to only VEG and TRA classes failing to correctly classify
this subscene. The zoomed-in area at the bottom-left part of the subscene highlights the
misclassified residential areas to TRA.
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Table 4.6: Classification performance of the five compared methods in terms of class accu-
racy values, the overall accuracy and the k coefficient on the Subscene 2 of the QP SAR
data

Measure Class | Proposed Method | SRF | SSVM | RF | SVM

RIV 92.86 96.43 0.00 75.00 | 66.07

LRR 78.81 86.75 | 70.86 | 52.32 | 47.02

User’s Accuracy (%) | VEG1 93.18 76.14 | 78.41 | 9.09 | 0.00
VEG2 97.10 95.65 | 98.56 | 94.20 | 98.55

SHR 75.67 75.61 | 80.49 4.87 0.00

Overall Accuracy (%) 86.67 86.00 | 68.40 | 48.40 | 43.46
Kappa Coefficient 0.83 0.82 0.58 0.33 0.28

4.5.4 Results of MLC QP data

In Fig. 4.5, the results for the two QP subscenes were shown. As seen in the HH images
of the two subscenes (Fig. 4.5 (a) and (k)), due to the similar backscatter values for the
classes, the classification task is more challenging in this case than the CP data set. Also,
as mentioned in the data set description in Section 4.5.1, the QP data set has a coarser
resolution than that of the CP data. This is the reason for lower accuracy values in the
case of QP data set. In subscene 1 of the QP data, shown in Fig. 4.5 (a) - (j), the proposed
method performed much better than the methods SRF and SSVM, where there are many
misclassified areas (misclassification of vegetation to river across the scene in the case of
SRF method, Fig. 4.5 (d) and more highlighted in the center of the zoomed-in area in
Fig. 4.5 (i), and misclassification of residential areas to vegetation types in the case of
SSVM method, Fig. 4.5 (e) and the bottom-left of the zoomed-in area in Fig. 4.5 (j)). The
accuracy values in Table 4.5 supports the latter conclusion.

In the second QP subscene, the SRF method provides classification results as accurate
as the proposed method. Although SRF method performs better for HRR and ASP than
the proposed method, SRF provides a much lower accuracy value for LRR, and given a
higher number of test samples for LRR class as seen in Table 4.2, a higher overall accuracy
is obtained for the proposed method. The other three methods including the SSVM, RF,
and SVM were unable to perform the classification accurately where each of these methods
misclassifies a whole class (see the user’s accuracy values in Table 4.6). For instance, the
RIV ares are misclassified as VEG1 using SSVM method as seen in Fig. 4.5 (o) - (t). Next,
the analyses of the variation of OA values as functions of the number of training pixels
and the number of superpixels are provided.
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4.5.5 Effects of number of training pixels and N

To assess the performance of the proposed method as compared to the other methods with
small numbers of training pixels, the classification OA values were calculated with choosing
the number of training pixels from the set {2, 5, 10, 20, 30,40, 50}, and plotted, as presented
in Fig. 4.6. As expected, in general, the OA values of all the methods increase with more
number of training pixels. The proposed method in all data sets provides consistently
higher classification rates compared to the other methods. Also, the accuracy values of the
RF method are mostly higher than those of the SVM method comparing either pixel-based
or superpixel-based versions of these two classifiers. In all cases, with only five training
pixels per class, the proposed method provides an accuracy of ~ 80% where the other
methods typically need more training pixels to obtain an accuracy as high as 80%.

Finally, the sensitivity of OA as a function of the number of superpixels was shown
in Fig. 4.7. By setting a large value of § in Eq. (4.4), the PolarIRGS and CP-IRGS
segmentation methods provide smoother segmentation images with fewer superpixels. The
[ values were reduced gradually allowing for more superpixels in the segmentation image.
For all cases, after an increase in OA accuracy, the values of OA remain relatively steady.
This indicates that it is unnecessary to construct a graph using a highly oversegmented
image as with a lower number of superpixels the algorithm executes much more quickly.
Using the spatial resolution and size of the scenes, as well as the numbers of superpixels,
the average ground area per superpixel can be calculated. For the number of superpixels
associated with the highest OA accuracy value for each subscene from Fig. 4.7, the average
ground area per superpixel were approximately 3191m? and 3486m? for the CP and QP
subcenes, respectively. The constant C; from Eq. (3.18) in Section 3.5.2 was used to control
the value of 5. In these experiments, C; = 2 and C} = 1.25 for CP and QP subscenes,
respectively. A proper value of C; should be selected based on the homogeneity and pixel
spacing of the scene.

4.6 Summary

In this chapter, the problem of land cover classification using RCM complex CP and QP
data types was addressed. Using superpixels is favorable in image classification since it
reduces the number of image primitives as compared to using pixels. The superpixel
segmentation methods here were generated using CP-IRGS and PolarIRGS unsupervised
segmentation algorithms, which respectively are the extensions of IRGS algorithm to com-
plex CP and QP data. By modeling the local spatial correlation information based on
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Figure 4.6: Overall accuracy of the five compared methods as functions of number of
training pixels per class.

the statistical properties of complex CP and QP data, CP-IRGS and PolarIRGS generate
superpixels where the boundaries are preserved without wasting too many superpixels in
homogeneous areas. Next, the global spatial information among superpixels are modeled
by a graph constructed on superpixels as the vertices of the graph. Then, with only a few
superpixels labeled, the labels of unlabeled superpixels were predicted in a semi-supervised
manner using a label propagation algorithm.

The classification results on a pair of CP and a pair QP images indicate that the pro-
posed method performs the classification with higher accuracy values than two superpixel-
based SVM and RF methods particularly when the number of labeled superpixels are low.
The analysis of classification accuracy relative to the number of superpixels in the image
indicates that, to a certain level, oversegmentation (higher number of superpixels) results
in higher classification accuracy values. After some level of oversegmentation, the accuracy
values do not vary significantly. Therefore, there is no need for a highly oversegmented
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Figure 4.7: Overall accuracy of the five compared methods as functions of number of
superpixels in the superpixel segmentation image.

image since that increases the execution time of the graph-based classification dramatically.
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Chapter 5

Conclusions and Future Work

The overall aim of this thesis was to design classification algorithms for CP SAR data.
With CP data becoming accessible from the recent launch of RCM, developing automated
CP classification methods is of interest for different application, especially, sea-ice mapping.
Throughout this thesis, the effort was to develop algorithms that make use of the whole
information in CP data, which is represented in the format of 2 x 2 complex coherence
matrix, or equivalently, the Stokes vector.

Symmetry assumptions allow for reconstructing 3 x 3 complex QP covariance matrix
from the complex CP coherence matrix. First contribution of this thesis is to develop a
scene classification method that combines the segmentation results using the reconstructed
QP data with an SVM labeling method using a set of derived features from the Stokes
vector. Second contribution involves developing a region-based unsupervised segmentation
method using complex CP coherence matrix data. Finally, the third main contribution of
this thesis is designing a superpixel-based semi-supervised RCM CP classification where
the global spatial information among the superpixels in image is modeled by a graph.

Unlike the QP reconstruction and the unsupervised segmentation methods that were
evaluated using sea-ice data, the performance of the superpixel-based classification method
was evaluated using real RCM scenes from rural areas that were accessible for this thesis.
A summary of contributions and experimental results of each chapter of the thesis are
provided next.
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5.1 Summary of Contributions and Results

Most of the previous work on CP classification exploits either the derived features from
Stokes vector or the reconstructed complex QP data from CP in a classification scheme. In
Chapter 2, a full-scene ice-type classification approach using CP SAR data was designed
where both reconstructed QP data from CP and the features derived from CP Stokes vector
are used. First, a full scene segmentation is performed for producing class-homogeneous
regions. Depending on the type of SAR data, either IRGS (in the cases of DP or CP inten-
sities only) or PolarIRGS (in the cases of reconstructed QP and full QP) are performed to
generate the segmentation images. Using the spatial-context information that is modeled
in the unsupervised segmentation regions, we aimed to improve the pixel-based classifi-
cation results of an SVM model which uses the CP-derived features. In particular, the
segmentation is combined with the SVM classification using a majority voting approach
to assign an ice-type label to each region of the unsupervised segmentation image.

In the experiments, four ice types were classified on the test scene. The performance
of four different reconstruction methods were assessed for various ice types. According
to the reconstruction accuracy values, Nord’s reconstruction method provides the lowest
error values in reconstruction. The classification results were obtained for four different
cases were tested: DP, CP (RH and RV only), CP (all features), and QP. The SVM
labeling model is trained on one scene and tested on another scene. Using CP with all
features generated the overall classification accuracy (96.53%) which is slightly lower than
that achieved using the full QP data. A direct comparison between the results of the
CP intensities (overall accuracy of 92.86%) case and those of the DP intensities (overall
accuracy of 81.04%) indicates the high potential of CP scenes in providing improved sea-
ice maps as compared to DP scenes. Also, the comparison of results of pixel-based SVM
with the method that combines segmentation and SVM labeling indicates that using an
unsupervised segmentation image of the scene, the pixel-based classification accuracy values
increases by 15%, where a very low number of training samples (10 samples per class)
were needed to obtain an accuracy as high as over 90%.

In Chapter 3, a region-based unsupervised segmentation algorithm using the MLC CP
coherence matrix data was proposed. The algorithm was structured based on the well-
known IRGS. In the proposed algorithm, CP-IRGS, both unary and pairwise potentials
were modeled based on the complex CP data. The experiments were conducted on a sim-
ulated CP scene and a pair of RADARASAT-2 QP SLC images. Three different methods
were tested: IRGS method using RH and RV intensities, CP-IRGS using VFG method,
and CP-IRGS using CR-based method. The results indicate that the CP-IRGS algorithm,
which is particularly developed for the MLC CP coherence matrix data, performs the unsu-
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pervised segmentation in a more accurate manner than the original IRGS algorithm using
RH and RV intensity images especially where the SAR scene consists of multiple classes.

The purpose of Chapter 4 was to exploit the segmentation images, also called superpix-
els, provided by the unsupervised CP-IRGS algorithm in a classification process. A unified
complex CP and QP SAR superpixel-based classification method was proposed. The pro-
posed method incorporates the spatial correlation information in both local and global
scales. The local spatial information was obtained by using the superpixels generated
by the CP-IRGS and PolarIRGS segmentation methods. The local spatial information
from an unsupervised segmentation was also used in Chapter 2 where the classification
approach combines segmentation and labeling using majority voting. In Chapter 4, a
semi-supervised graph-based learning method models the spatial correlation among the
superpixels in a global manner.

Two RCM SLC land cover data sets were used to evaluate the performance of the pro-
posed method. Comparing only the results of the SVM and RF classifiers in pixel-based
and superpixel-based methods demonstrates the effect of the local spatial correlation infor-
mation among pixels where much higher classification accuracy values were obtained using
superpixel-based methods than pixel-based ones. The effect of global spatial correlation was
shown by comparing the results of the proposed graph-based method against those of the
superpixel-based SVM and RF classifiers which do not take advantage of the global-scale
spatial information. The results show that, using global spatial correlation, the proposed
method prevents the misclassifications that happen in the case of superpixel-based SVM
and RF methods. Another important advantage of the proposed method is that, with
a very low number of training pixels, the method provides highly-accurate classification
images.

5.2 Future Work

This work demonstrated the advantage of using spatial information in local and global
scales in CP classification. The local spatial information was modeled using the unsuper-
vised segmentation discussed in Chapter 3. The global spatial information was also modeled
using graph models in Chapter 4. Previous work [11] has investigated the use of texture
features in sea-ice classification using DP SAR images. A future line of work would incor-
porate the spatial correlation information in CP classification using either “hand-crafted”
texture features such as gray-level coccurrence matrix (GLCM) [103, 1041] and Gabor fea-
tures [105] or a feature representation that is based on deep convolutional neural networks
(CNNs) derived from CP-derived features. Developing CNN-based classification methods
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that use the complex 2 x 2 coherence matrix data would be an interesting line of future
work.

In Chapter 3, an edge detection method using ratio-based edge detectors was designed.
Future work would involve exploring various edge strength map calculation methods and
adapting them to MLC CP coherence data. This can improve the performance of un-
supervised segmentation to a great extent. CP-IRGS segmentation, as demonstrated in
Chapter 3, successfully identifies superpixels in the image by performing an unsupervised
segmentation. This is particularly useful when designing superpixel-based classification
methods such as the one in Chapter 4. The remaining work will only be to label the ho-
mogeneous superpixels identified by CP-IRGS. A valuable future study would investigate
various graph convolutional networks for CP classification where a graph is constructed
over the superpixels generated by CP-IRGS.
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