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Statement of Contribution 

This thesis develops new methodologies to address the problem of modeling and control of machine tool 

feed drives to improve tracking accuracy and disturbance rejection capabilities. The result of this thesis 

have been published or submitted as follows: 

[J1] H. K. Shirvani, Y. Hosseinkhani, K. Erkorkmaz, “Suppression of Harmonic Positioning Errors in Ball-

Screw Drives using Adaptive Feedforward Cancellation,” Precision Engineering, vol. 68, pp. 235-255, 

2021. 

This paper presents: 

 Analysis and design of adaptive feedforward cancellation (AFC) within the dual (i.e., rotational and 

translational) position feedback structure used in ball-screw drives. 

 Definition of a new frequency-dependent parameter, named here as the response modification factor 

 . This parameter allows for the impact of AFC on the response to different input channels to be 

gauged in a unified manner. 

 Development of a design strategy to adjust the resonator gains (𝑔𝑛) using the response modification 

factor, which allows the consideration of both robust stability and performance retention requirements, 

particularly at frequencies outside those targeted by the resonators. 

 Validation of the effectiveness of the proposed design in counteracting harmonic positioning errors of 

temporal (time-dependent) or spatial (position-dependent) nature, caused by machining (i.e., milling) 

forces or ball-screw mechanical (e.g., lead) errors. 

The author, conducting research with Prof. Erkorkmaz, developed the theory behind this approach and 

performed tracking experiments. Dr. Hosseinkhani, who was an earlier Ph.D. student, is given the credit 

for having initiated the earlier research on AFC during his Ph.D. thesis. He had also conducted machining 

tests to demonstrate the rejection of cutting force disturbances and had initially used AFC in combination 

with a ball-screw system. 

The more advanced formal frequency-domain modeling and analysis applicable to the dual-feedback 

structure of a ball-screw drive, which is critical for guaranteeing stability, was developed in the scope of 

the author’s Ph.D. research, and is reported in this publication and in Chapter 6 of this thesis. This 

development also includes the definition of the response modification factor 𝛼, and the connection to robust 

stability analysis and guarantee in designing multiple resonators. The author also performed all of the 

tracking experiments and simulations reported in this paper and thesis.   
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[J2] H. K. Shirvani, J. Q. C. Zeng, P. Bevers, T. Oomen, K. Erkorkmaz, “Linear Time-Invariant (LTI) 

Model Identification Algorithm for Mechatronic Systems based on Multi-Input Multi-Output (MIMO) 

Frequency Response Data ” (under preparation for submission). 

This paper presents: 

 Development of a MIMO model estimation method from frequency-domain data for servo systems that 

can capture the effects of time-delay, structural resonances, highly damped modes (originating from 

the excessive friction and potential filtering effects), real poles and any direct / derivate-like terms.  

 Validation of the effectiveness of the proposed identification algorithm through model fitting to 

different sets of frequency responses from a ball-screw, gantry type, and direct linear drive systems.  

 Comparison of the new identification method with general transfer function estimation and modal 

parameter estimation tools as benchmarks. 

 

The author has realized the majority of the development, integration, formulation, iterations of 

programming, and extensive testing of the algorithm, as well as the writing of the manuscript. An earlier 

SISO version of the algorithm was developed and tested by MASc student, Mr. Jason Zeng. The initial 

prototype in extending the SISO algorithm to the MIMO case and developing the first software 

implementation was accomplished with the assistance of Mr. Patrick Bevers, who was a visiting MASc 

student from TU Eindhoven and had participated in the research under the oversight of Prof. Erkorkmaz 

and the author. Prof. Tom Oomen is Mr. Bevers’ supervisor from his home institution. Some of the 

frequency domain data from a precision T-Type gantry, which is used in the validation of the algorithm, 

had been collected by Mr. Daniel Gordon during his MASc thesis back in 2010, which is also to be 

acknowledged in the manuscript. The valuable additions made by all of the co-authors and contributors are 

gratefully acknowledged. 
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[J3] H. K. Shirvani, J. Q. C. Zeng, K. Erkorkmaz, “Robust Tracking and Active Vibration Damping Control 

of Feed Drive Systems,” (under preparation for submission). 

This paper presents: 

 Development of a new model-based tracking and vibration damping control technique for multiple-

mode vibration suppression of feed drive systems using a vibration-damping controller based on mixed-

sensitivity ℋ2 and ℋ∞ and a lead-lag compensator as the tracking controller.  

 Comparison of the new control synthesis methods against the conventional parameterization of the 

weighting functions for mixed-sensitivity ℋ2 and ℋ∞ controllers. 

 Validation of the effectiveness of the proposed control strategy through high-speed tracking 

experiments and closed-loop disturbance rejection measurements. 

 Comparison of the newly proposed method with the industry-standard P-PI position-velocity cascade 

controller and a vibration-damping pole-placement controller.   

 
The author developed and implemented the complete methodology for ball-screw drives in this paper. The 

application of ℋ2/ℋ∞ to fixed structures, such as stationary columns, rams, etc., had been earlier studied 

and experimentally investigated by Mr. Jason Zeng (MASc student), which provided some of the 

foundation in active damping controller design. The application of ℋ2/ℋ∞ active damping to moving 

(servo) systems was initiated by the author, integrated into a more elaborate control scheme suitable for 

ball-screw drives, and validated experimentally both for disturbance rejection and position tracking. 
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Abstract 

In this thesis, precision modeling, multivariable system identification, and advanced motion control 

techniques are developed in order to improve the positioning accuracy and disturbance rejection of machine 

tool servo systems. Improving the positioning accuracy and disturbance rejection in machine tools enables 

the increase of manufacturing productivity, energy efficiency, and part quality of products produced on 

such industrial equipment. The implementation results in this thesis were developed on a ball-screw drive, 

which is the principal motion delivery mechanism used in a vast majority of machine tools. However, the 

proposed modeling, model estimation, and controller design methodologies are also applicable to other 

kinds of mechatronic systems, which possess multi-input multi-output linear time-invariant dynamics. 

In enabling the realization of better productivity, process throughput, and part quality, accurate 

generation of the relative motion between the workpiece and the tool is critical in multi-axis machining 

operations. The higher the closed-loop bandwidth (i.e., responsive frequency range) that can be achieved 

for the servo control system, the more accurately the corresponding feed drives replicate the desired multi-

axis tool movements in producing the manufactured parts. Furthermore, the dynamic stiffness (i.e., inverse 

of mechanical compliance) achieved between the tool and workpiece is critical to absorbing the relatively 

large machining forces, which are also typically rich in frequency content. Servo bandwidth increase also 

enables equivalent dynamic stiffness increase, especially in the frequency ranges that overlap with the most 

significant structural vibration modes of a feed drive assembly. However, the achievable servo bandwidth 

is typically limited by the mechanical vibrations, which can lead to feedback loop stability problems, if they 

are not explicitly considered in the control law design. 

The research in this thesis aims at overcoming the limitations posed by a feed drive’s structural 

vibrations, through detailed modeling, dynamic model estimation, and advanced motion controller design 

with active vibration damping capability, in order to achieve improved disturbance rejection near the cutting 

force application point (i.e., load side), as well as high accuracy motion tracking. Thus, the achieved 

contributions and results can be summarized as follows: 

1. A new frequency-domain Multi-Input Multi-Output (MIMO) system identification algorithm has 

been developed and validated, which is suitable for mechatronic motion delivery systems with LTI 

dynamics.  

The new algorithm can capture both the effects of lightly damped modes (coming from the mechanical 

structure) as well as other highly damped dynamics. The proposed algorithm is able to achieve pole 

commonality across multiple output-input channels. In benchmarks conducted with experimental MIMO 
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frequency response data, the proposed algorithm has been able to demonstrate 1-2 orders of improvement 

over other MIMO model fitting algorithms, such as modalfit and tfest available in MATLAB. 

 

2. The disturbance rejection capability of a ball-screw drive has been enhanced through active 

damping of multiple vibration modes. 

In the best of the author’s knowledge, this thesis is the first time that successful active damping of 

multiple vibration modes has been demonstrated experimentally for a ball-screw drive. The proposed 

methodology is based on applying ℋ2/ℋ∞ synthesis to damp vibrations and further improve the position 

tracking using loop-shaping, in conjunction with suitable feedforward terms. In experimental benchmarks, 

the new designs have demonstrated, for wide frequency ranges, 2…3 better disturbance rejection 

compared to other control techniques, such as P-PI position-velocity cascade (used extensively in industry) 

and pole-placement control (PPC, proposed earlier in research). The proposed designs have also achieved 

2.5 better damping of the most significant axial vibration mode, which is the common weak point in ball-

screw mechanisms. The achieved tracking performance is comparable to that of PPC, and better than that 

of P-PI, maintaining <10 microns of dynamic accuracy under 420 mm/s velocity and 0.12 g acceleration 

conditions. However, proposed controller design requires expert knowledge and interaction. Thus, further 

development is needed before it can be used safely and effectively in industry. 

3. A robust Adaptive Feedforward Cancellation (AFC) framework has been proposed for the 

mitigating harmonic (oscillatory) positioning errors which occur in ball-screw drives, due to 

mechanism and sensor imperfections, misalignment, and repetitive disturbances (e.g., cutting 

forces). 

In this contribution, a new methodology has been developed for adopting the multi-resonator AFC 

design to the dual-feedback structure of ball-screw drives. The methodology allows for the performance 

degradation outside the target compensation frequencies of the resonators to be quantified and capped, 

while guaranteeing the robust stability requirements from the point of view of the vector (i.e., inverse 

closed-loop sensitivity) margin. 

To achieve the above listed contributions, detailed modeling, experimental identification, controller 

design, and testing were also undertaken extensively, and documented in detail throughout the relevant 

chapters of this thesis, to facilitate the reproducibility of the results as much as possible.  
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Chapter 1  

Introduction 

1.1. Background 

In recent decades, significant amount of research in the field of manufacturing has focused on high-

speed machining and ways to shorten machining times, while continuing to produce high-quality finished 

parts. Examples of such parts include: intricate and critical aircraft engine components produced from 

aerospace alloys (e.g., fans, blades, turbine disks), automotive components (for engines and powertrains), 

consumer electronics parts (e.g., cases for high-end cell phones and computers), green energy installation 

equipment (e.g., wind-turbine gearboxes), and biomedical devices (e.g., implants, surgical markers, etc.). 

To enable the realization of better productivity and part quality in machining, the accurate generation of the 

relative motion between the workpiece and the tool is critical, which is realized by a machine tool’s feed 

drive (i.e., servo positioning) system. Furthermore, a minimal degree of dynamic stiffness (i.e., inverse of 

mechanical compliance) needs to be achieved between the tool and workpiece, in order to absorb the 

relatively large machining forces, which are typically rich in frequency content. Dynamic stiffness also 

helps prevent excessive susceptibility to part errors due to elastic deformations, as well as machining 

vibrations, which are detrimental to the part quality, the tooling, and machine life. 

Thus, the control design of the feed drive system plays a central role, affecting all of the above 

outcomes. Ball-screw drives are widely used in machine tools as the principal motion delivery mechanism, 

due to their low cost and high efficiency. They can meet the precise positioning and stiffness requirements 

between the tool and workpiece, typically described in microns for tolerances, and tens-to-hundreds of 

Newtons per microns for stiffness values. 

Whether using ball-screws or other means of motion delivery, such as rack and double-pinion 

mechanisms or direct drives, the control of feed drives is critical to meeting the growing demands for higher 

productivity, accuracy, and part quality. Consequently, research related to motion control systems for multi-

axis production machines has constantly been evolving over the past decades, especially in the following 

three categories:  

i) Trajectory generation for multi-axis machines, to enhance the motion smoothness, accuracy, 

and production throughput enabled by machine tool feed drives.  
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ii) Detailed modeling of feed drive systems, ball-screw, gantry type, and direct linear drives, and 

more recently rack-and-pinion mechanisms, for simulation, monitoring, machine design, and 

controls purposes.  

iii) Design of the model-based controllers to achieve high-accuracy tracking and improved 

rejection of external disturbance forces, typically through active vibration damping.  

Regarding the first category, smooth trajectory generation and optimization of the feedrate (i.e., the 

traverse rate between the tool and workpiece along a given toolpath) enables the reduction of machining 

cycle time while adhering to cutting force limitations, as well as velocity, acceleration, and jerk limits of 

the drive system. This indirectly helps to preserve the high-speed positioning accuracy and linear (stable 

and safe) operation of the actuation system [1][2]. Generating a smooth trajectory prevents the feed drive 

from rapidly accelerating and decelerating, which consequently reduces the excitation of the resonant 

vibration modes that can trigger residual vibrations and reduce part quality. On the other hand, high-speed 

positioning requires a controller with high positioning bandwidth as well.  

As with all mechanical systems, ball-screw drives have resonant frequencies corresponding to the 

natural modes of vibration. Transmission components like couplings, as well as bearings, gears, and the 

machine frame can also influence the resonant frequencies. Excitation of the natural modes, via the servo 

system or cutting process, can lead to excessive vibration, which can result in long-term wear and ultimately 

failure of the components in a machine tool. Furthermore, the vibration modes constitute a major bottleneck 

in the way of achieving high positioning and disturbance rejection in feed drive structures. 

The mechanical resonances in a feed drive system can broadly be categorized into low- and high-

frequency types. Low-frequency resonances occur more often due to large and heavy structural components 

that are connected to, or driven by, the feed drives, such as gantry or column structures. They can also 

originate from the machine base structural response. High-frequency resonances, on the other hand, 

typically originate from the light-weight and stiffer components, such as torsional vibration modes of a ball-

screw itself, from tool/workpiece fixturing, or from a sensor (e.g., encoder) or actuator mounting 

assemblies. There are several methods available for addressing low-frequency vibrations, such as using 

various filtering approaches (high-pass or low-pass) and using acceleration feedback for active vibration 

suppression [3]. High-frequency resonances normally occur at frequencies beyond the position closed-loop 

bandwidth (typically above 100-200 Hz). However, they can have a detrimental influence on the stability 

margins of the servo system. Overall, both low- and high-frequency resonances can lead to reduction of the 
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stability margins and the responsive frequency range (i.e., bandwidth). Their detrimental effect can only be 

avoided or overcome by developing more advanced, and also robust, motion control algorithms. 

The research proposed in this thesis addresses the problem of modeling and control of CNC feed drives 

to achieve better disturbance rejection near the cutting force application point (i.e., load side) as well as 

better positioning accuracy. This has to be realized in the presence of control challenges posed by the 

mechanical vibration modes. Realizing better disturbance rejection and higher control bandwidth translates 

directly into better quality and accuracy for parts produced on CNC machine tools. Higher control 

bandwidth also means that similar or better tool positioning accuracy can be maintained, in a dynamic 

sense, during elevated speeds and accelerations of the feed drives. This contributes to enhanced productivity 

in machining parts at higher speeds. The results of such a solution would be applicable, also, to other types 

of manufacturing operations, like additive manufacturing (3D printing) or laser-based processing (e.g., 

cutting or drilling). This is particularly relevant, because advances in high-speed machining spindle and 

laser processing technologies are now enabling over 10-fold increase in the achievable process rates, thus 

requiring motion control systems that can also keep up, by executing high speed trajectories at 

correspondingly accelerated rates while retaining (or possibly improving) the dynamic positioning 

accuracy.   

 

1.2. Thesis Overview and Contributions 

As ball-screw drives are among the most widely used feed drive mechanism, the target implementation 

platform in this thesis has also been selected as a ball-screw drive. However, the modeling, model 

estimation, and controller design methodologies developed and applied in this thesis are also applicable to 

other kinds of mechatronic systems for motion control, which possess multi-input multi-output linear time-

invariant dynamics. 

Henceforth in this thesis, Chapter 2 presents a literature review and background information related to 

the modeling and control of ball-screw drives. Chapter 3 presents the initial modeling and identification of 

a single-axis ball-screw. This includes the modeling and identification of the current loop dynamics for a 

PWM (pulse-width modulated) driver and a high-bandwidth linear amplifier. The estimation of rigid-body 

parameters, a discrete two-inertia dynamic model (to capture a single vibration mode), and friction 

modeling are also included. The friction modeling and identification consist of Stribeck-type friction, as 

well as the generalized Maxwell-slip model, which is particularly successful in modeling stick-slip 

behavior. At the end of the chapter, experimental modal analysis of the feed drive setup is presented, in 

order to establish deeper insight into the vibratory behavior of the ball-screw setup. 
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Chapter 4 introduces a new MIMO frequency-domain model estimation algorithm for the system 

identification of servo drives. The model can capture the effect of lightly damped structural vibrations as 

well as highly damped complex or real poles. The effectiveness of the algorithm is evaluated by model 

fitting to different sets of experimental MIMO frequency response measurements. The measurements were 

obtained from single- and multiple (coupled gantry type axes) of ball-screw and linear motor-driven 

machines. 

Chapter 5 describes a new model-based damping and tracking controller for the suppression of multiple 

vibration modes in ball-screw drives using mixed-sensitivity ℋ2/ℋ∞ control synthesis, in conjunction with 

loop shaping and feed forward controllers. The performance of the controller in counteracting the 

disturbances and in tracking trajectories is validated with experiments. The proposed ℋ2 and ℋ∞ versions 

of the control law have been compared to the industry-standard P-PI position-velocity cascade controller, 

and a pole-placement controller (PPC) with vibration damping and precision motion tracking, which have 

been chosen as benchmarks. 

In Chapter 6, the suppression of harmonic positioning errors in ball-screw drives using the adaptive 

feedforward cancelation (AFC) is studied. For the first time, AFC is adapted to the dual (rotational and 

translational) feedback structure of ball screw drives, and new analysis and tuning guidelines are 

established. Finally, the conclusions and future research directions are presented in Chapter 7. 

The main contributions of this thesis can be listed as follows: 

C.1 Development of a new frequency-domain MIMO system identification algorithm suitable for 

mechatronic motion control systems with LTI dynamics. The new algorithm, presented in Chapter 4, 

can capture both the effects of lightly damped modes (coming from the mechanical structure) as well 

as other highly damped dynamics, originating from the existence of friction and any potential filtering 

effects due to the sensing and actuation components. The proposed algorithm is also able to achieve 

pole commonality across multiple output-input channels. Thus, in situations where the experimental 

frequency response data contains several input and output channels, and response components 

originating from lightly damped structural modes as well as well-damped dynamics (e.g., rigid body 

interactions with friction), the proposed algorithm has been able to achieve 1-2 orders of improvement 

over other MIMO model-fitting algorithms, such as modalfit and tfest available in MATLAB. 

C.2 Enhancement of the disturbance rejection capability of ball-screw drives through active damping of 

multiple vibration modes. To the best of the author’s knowledge, this thesis is the first time that 

successful active damping of multiple vibration modes has been demonstrated experimentally for a ball-
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screw drive. The proposed methodology is based on applying ℋ2./ℋ∞ synthesis to damp vibrations 

and further improve the position tracking using loop-shaping, in conjunction with suitable feedforward 

terms. The new design, in experimental benchmarks, has demonstrated in wide frequency ranges 

typically 2…3 better disturbance rejection compared to P-PI and PPC designs, and has also achieved 

2.5 better damping of the most significant axial vibration mode, which is the common weak point in 

ball-screw mechanisms. The tracking performance is also as good (for PPC) or typically better (for P-

PI), maintaining <10 𝜇𝑚 of dynamic accuracy under 420 mm/s velocity and 0.12 g acceleration 

conditions. However, design of the proposed controller requires expert knowledge and interaction. 

Thus, some more development is needed before it can be safely and effectively used in industry. 

C.3 A robust AFC framework for the mitigating harmonic positioning errors which occur in ball-screw 

drives, due mechanism and sensor imperfections, misalignment, as well as repetitive disturbances. 

In this thesis, a new methodology is developed for adopting the multi-resonator AFC design to the dual-

feedback structure of ball-screw drives. The methodology allows for the performance degradation 

outside the target compensation frequencies of the resonators to be quantified and capped, while 

guaranteeing the robust stability requirements from the point of view of the vector (i.e., inverse closed-

loop sensitivity) margin. 

To achieve these three main contributions (see Figure 1.1), detailed modeling, experimental 

identification, controller design, and testing were also undertaken extensively, and documented in detail 

throughout the relevant chapters of this thesis, to facilitate reproducibility of the results as much as possible.  



6 

 

 

Figure 1.1: Thesis overview. 
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Chapter 2  

Literature Review 

2.1. Introduction  

CNC feed drives are a vital component of high-speed machine tools that have been the focus of many 

studies. In the past few decades, there have been many significant developments in high-speed machine 

tools, corresponding, in more advanced trajectory planning, dynamic modeling, and control for feed drives. 

The successful application of modeling and control techniques will undoubtedly improve the high-speed 

machining operations in terms of part quality and cycle time reduction. The modeling and identification 

techniques for feed drive systems involve efforts to capture the current loop dynamics of the actuators, the 

vibratory and rigid body dynamics, as well as disturbance effects such as friction. High-bandwidth control 

design for a feed drive system also requires suitable analysis methods to guarantee stability in the presence 

of structural vibration modes and disturbances, while preventing significant tracking errors at high 

accelerations. 

In the following, Section 2.2 reviews the literature related to modeling and identification of feed drives, 

including a discussion of several approaches with varying levels of complexity and detail related to ball-

screw drives (Sections 2.2.1 and 2.2.2). The significance of modal testing in the study of the structural 

behavior of machine tools is also highlighted in Section 2.2.3. Section 2.2.4 covers the literature related to 

the multivariable system identification of machine tool feed drives. Section 2.3 addresses the friction 

force as being one of the main sources of disturbances, which negatively affect the tracking accuracy in 

feed drives. This section discusses various friction models, which have been developed for motion control 

systems.  

Section 2.4 presents various precision motion and vibration control methods that have been proposed 

for servo systems, including techniques like sliding mode (2.4.1), pole-placement (2.4.2), linear quadratic 

Gaussian (LQG) (2.4.3), and mixed-sensitivity ℋ∞ control synthesis (2.4.4). Section 2.5 introduces the 

concept of adaptive feedforward cancellation (AFC) for eliminating harmonic positioning error in feedback 

control systems. This approach is proposed for ball-screw drives in this thesis, for dealing with harmonic 

servo errors originating from the ball-screw lead or repetitive machining force profiles. 
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2.2. Modeling and Identification of Ball-Screw Drives 

Before a high-bandwidth controller can be designed, it is essential to accurately model and identify the 

dynamics of feed drives. This section examines the literature related to modeling and identifying ball-screw 

drives with different levels of complexity. 

 

2.2.1. Rigid Body Dynamics 

The rigid body model simplifies the dynamic analysis by reducing the parameters to describe only rigid 

mass behavior is only capable of capturing the low-frequency dynamics of the system. Erkorkmaz and 

Altintas [4] introduced an open-loop identification method for least-squares estimation of the axis inertia, 

viscous friction, and Coulomb friction parameters. In another study, a technique for quickly identifying the 

closed-loop response of a machine tool’s feed drive was presented by Erkorkmaz and Wong [5]. In this 

study, the whole system is considered, including the feed drive mechanism, motor amplifier, and control 

law. The pole locations were constrained by limiting the frequency and damping ratio values, which also 

guarantees the stability of the identified model. They cast the identification problem as a Lagrange 

Multipliers based constrained optimization, which was later also solved using a genetic algorithm (GA) 

[5][6]. Altintas and Sencer [7] proposed a similar closed-loop identification method for 5-axis CNC 

machine tools, and used the particle swarm optimization (PSO) to solve the nonlinear estimation problem. 

Considering only rigid-body dynamics, a drive’s velocity response in the s- (i.e., Laplace) domain can be 

expressed using the following equation, where 𝐽 is the inertia, and 𝐵 is the viscous damping, as scaled in 

terms of the actuator’s rotational displacement (𝜃) and velocity (𝜔). When machining is not taking place, 

the external disturbance is considered to be a constant Coulomb friction term 𝑇𝑑, which applies in the 

opposite direction of the feed drive’s velocity. Thus, 

𝜔(𝑠) =  
1

𝐽𝑠 + 𝐵
(𝜏 − 𝑇𝑑) (2.1) 

The motor torque can be expressed as 𝜏 = 𝐾𝑎𝐾𝑡𝑢, where 𝐾𝑎 and 𝐾𝑡 are the current amplifier and the 

motor torque constant, respectively, and 𝑢 represents the input voltage. The above modeling assumes that 

the bandwidth of the current loop response is much higher than the bandwidth of the mechanical response 

(𝐵/𝐽 [rad/s]). 



9 

 

2.2.2. Lumped Mass-Spring-Damper, Hybrid, and Finite Element Models 

In reality, feed drives are flexible systems that display a large number of vibration modes. These 

dynamics have been captured, with varying degrees of complexity, using methods like lumped (i.e., 

discrete-element) modeling, hybrid approaches, finite element models, and through modal analysis.  

A two-mass discrete model, as shown in Figure 2.1, is often adequate for capturing the most significant 

dynamics of a ball-screw drive, including the rigid body motion and the 1st axial vibration mode, which is 

critical from the controls point of view. In a two-mass model, the first mass represents the inertia of the 

rotating components, for example, the motor, coupling, and the screw shaft. The second mass represents 

the inertia associated with the translating load side of the ball-screw drive, which is the nut, the table 

assembly, and the workpiece. The two-mass model has been widely used in the literature [8][9][10][11][12]. 

In the model, the viscous friction terms 𝑏1and 𝑏2 represent the damping effect in the rotary bearings 

and linear guideways, respectively. The spring element represents the equivalent overall axial stiffness of 

the feed drive mechanism, and the damper represents the damping in the preloaded nut. The input torque 

produced by the servo motor is given by 𝑢, 𝑑1 and 𝑑2 are the disturbances acting on the motor and the table 

respectively. The table disturbance term occurs due to the cutting force, friction force (on the table/load 

side), or can also be used to capture the effect of unmodeled dynamics acting on the table.  

 

Figure 2.1: Two-inertia model. 

Another approach to studying ball-screw drive dynamics is to decouple the response into rigid body 

motion and second-order resonators, which can be expressed as flexible modes: 

𝜃(𝑠) =  
1

𝑠(𝐽𝑠 + 𝐵)⏟      
Rigid body 

+∑
𝑅𝑘

𝑠2 + 2𝜁𝑘𝜔𝑛,𝑘𝑠 + 𝜔𝑛,𝑘
2

𝑁

𝑘=1⏟                
 flexible modes 

 (2.2) 

In the above equation, 𝜔𝑛,𝑘 and 𝜁𝑘 are the natural frequency and damping ratio of the kth flexible mode. 

𝑁 is the number of modes considered in the model. 𝑅𝑘 is the ‘residue’, also referred to as the modal 

participation factor. In some cases, when a mode is not at 0° or 180° in-phase with its excitation input (e.g., 

when the damping in the system is not proportionally distributed as a linear combination of stiffness and 



10 

 

mass matrices), 𝑅𝑘 can assume the form of a complex number, to capture this phase shift. When the 

influence of external sensors, actuators, and control and filtering dynamics are considered, the numerator 

of the mode can be modified to a more general form as well, like as 𝑅𝑘𝑠 + 𝑄𝑘. The frequency response of 

the plant can be constructed by applying 𝑠 → 𝑗𝜔 in the above equation. At present, modal parameter 

estimation methods based on single and multiple degree-of-freedom systems have been commercialized in 

modal analysis packages. One such example is the rational fraction (Orthogonal) polynomial (RFOP) 

method [13] for SISO systems, which is a least-squares based method. This method has been developed 

into a global method, known as GRFOP, that enables SIMO systems to be successfully identified and 

modeled as high-order systems [13][14] as well. 

Generally speaking, a ball-screw drive can be characterized as a system that possesses axial, rotational, 

and flexural eigenmodes [15] (see Figure 2.2). The low frequency axial and rotational modes have the most 

significant effect on the overall response of the mechanism. However, the modes at higher frequencies also 

have a somewhat smaller contribution, but they can still be excited by, and interact with, the feedback 

control system. The frequency, damping, and flexibility contributions of the modes can be highly dependent 

on the mounting conditions. Various discrete and hybrid models have been proposed to gain further 

understanding of the low-frequency modes. Varanasi and Nayfeh [16] introduced a hybrid modeling 

approach that observes the axial and rotational modes while ignoring the flexural dynamics. This model 

uses a distributed beam as the screw itself, based on the Euler-Bernoulli beam element. Other components 

in the mechanism are represented as lumped mass / spring elements. A different yet comparable study was 

conducted using a hybrid distributed–lumped model [17]. In another hybrid model introduced by Frey et 

al. [18], the feed drive was modeled using a combination of continuous (distributed) and lumped (discrete) 

mass elements. They separated the physical characteristics of the shaft into axial and rotational systems and 

studied the dominant effects via a simple lumped-mass model. Vicente et al. [19] proposed a model based 

on the Ritz series that could approximate the continuous field displacement of the ball-screw. Their model 

was used to predict the first lowest vibration mode. In addition to the axial and rotational modes of the 

screw, Dong and Tang [20] modeled the flexural dynamics of the screw as a Timoshenko beam. 

More complicated models that are capable of capturing structural flexibility have also been proposed 

in the literature. As a means of structural analysis and optimization, the finite element method (FEM) 

continues to be an accepted and verified stage of the machine tool design [21]. This is also an efficient tool 

for capturing the essential dynamics of structures and has been applied for hybrid modeling of ball-screw 

drives. For instance, Zaeh et al. [21] proposed a FE model of the ball-screw drive system, in which the 

stiffness matrix between the screw and the nut represents the ball contact interface between these two 

components. They considered both the lateral and vertical motions of the balls. Their model was successful 
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in capturing the coupling between the torsional and axial dynamics of the ball-screw drive. Later, Okwudire 

and Altintas [22] developed a hybrid FE model in which the screw was modeled using Timoshenko beam 

elements, while the other parts including the table assembly, the coupling, and the motor shaft were modeled 

as lumped masses. Two advantage of their model was its ability to capture the lateral dynamics of the ball-

screw-nut mechanism, in addition to the axial and torsional directions, and its ability to predict the system’s 

response as a function of the table position. 

 

 

Figure 2.2: Schematic of the axial (a) and rotational (b) decoupled models [15]. 

 

2.2.3. Modal Analysis  

Additionally to FE modeling, modal analysis is an efficient tool for studying the structural (vibratory) 

dynamics of feed drives, and it has been widely used in the field of machine tool design and analysis. For 

a ball-screw drive, modal analysis can reveal parameters that constitute each mode of vibration, such as 

natural frequency, damping ratio, and the associated mode shapes. Modal analysis is particularly critical 

from a control point of view, as it enables the vibration modes that can be excited by the actuation from the 

servo motor to be clearly identified. This, in turn, enables the control law to be designed in a way to avoid 

unwanted instability that could arise from the interaction of the control algorithm with the structural 

dynamics. 

In addition to axial and torsional directions, vibration modes that run laterally to the feed direction are 

also critical, since their influence can be detected in the measurement (position feedback) system [23]. The 

peak-picking algorithm [24] is a simple and widely-used method for estimating modal parameters. In this 

method, it is recognized that a system’s frequency response at the vicinity of a resonance mode is 

dominated, mainly by the contribution of that specific mode. The effects of the other modes remain 
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negligible. With this in mind, a system that behaves with multi-degree-of-freedom or, more realistically, a 

distributed system with infinite degrees of freedom can be treated as a superposition of multiple single-

degree-of-freedom mass-spring-damper systems. While peak-picking is intuitively useful and practical, it 

is not as effective when the vibration modes of a system have close frequencies or when over-damped 

modes and additional dynamics (e.g., due to filtering) are also captured in the measurement. Figure 2.3 

shows the excitation of a lateral vibration mode (i.e. due to the dynamic behavior of the guide system) at 

300 Hz in a linear direct driven motion control system. Proper estimation of the modal frequency, damping, 

and residues allows for resonant dynamics within the bandwidth of the controller to be efficiently attenuated 

by adequate shaping of the control signal and those beyond the bandwidth to be suitably avoided, through 

notch or low-pass filtering approaches.  

 

 

Figure 2.3: Drive system with linear direct drive and mode shape for natural frequency at 300 Hz [23]. 

 

2.2.4. Multivariable System Identification 

System identification algorithms are widely used as efficient tools for estimating numerical models of 

dynamic systems from their respective experimental data. In this context, the identification of multi-input 
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multi-output (MIMO) models for mechatronic motion control systems can play a critical role in enabling 

more accurate simulation and higher performance control. However, estimating such models is not trivial, 

especially in the presence of challenging factors, such as high-order dynamics due to structural flexibilities, 

potential friction effects in the motion delivery mechanism, as well as filtering effects, which may originate 

from the sensor(s) and actuator(s), due to for example, conditioning circuitry on sensors or limited 

bandwidth of actuator power modules. The estimation of accurate linear time-invariant models is central to 

the application of model-based control techniques, such as linear quadratic Gaussian (LQG), and mixed 

sensitivity ℋ2 and  ℋ∞ control [25]. 

Among mechatronic motion control systems, feed drives used in machine tools have received particular 

attention in both modeling and system identification efforts. A variety of first principle based models with 

different levels of complexity have been surveyed in the previous subsections, to capture the essential 

dynamics of feed drive systems in machine tools. These approaches assume a physical model and identify 

the system parameters from the observed data. However, the development of the mathematical descriptions 

for feed drives and other mechatronic actuation systems requires sophisticated modeling efforts, and the 

predicted models may often include uncertainties. The discrepancies between an identified model and the 

system’s true response can also cause stability and robustness issues in the implementation of feedback 

control laws. 

Other studies in the field of machine tools have focused on estimating dynamic models of the closed-

loop trajectory tracking and disturbance (e.g., friction) response transfer functions directly, using in-process 

gathered time-domain motion control data [5][6][7][26]. For this purpose, simplified models of the feed 

drive systems were used, which assumed SISO plants and rigid body dynamics. Recently, Tseng et at. [27] 

developed a high-order MIMO extension of [26] for application to feed drives, which can capture vibration 

modes as well as coupling effects between the multiple input and output channels. This method works by 

matching the candidate models’ time domain predictions to the experimental field data. They were able to 

reconstruct the servo error and acceleration response of a feed drive system, with a mechanical flexibility, 

achieving 2-3% RMS accuracy. In another effort to identify the feed drive models, an automated 

identification method was proposed by Kehne et al. [28] again targeting machine tool servo systems. They 

used a rational fraction polynomial [13] to estimate the total transfer function, considering a single-input 

single-output (SISO) ball-screw drive model, followed by solving an optimization problem. 

General multi-input multi-output (MIMO) transfer function estimation methods such as tfest and 

modalfit functions in MATLAB [29][30][31] are capable of constructing models using measured MIMO 

frequency response data. 
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In the case of tfest, Sanathanan-Koerner (SK) [32] and Instrumental Variable (IV) [33] iterations 

are applied with orthonormal rational basis functions (OVF). The number of poles are specified and the 

number of zeros are determined automatically by the function. The numbers of zeros, input/output delays, 

and other estimation options (e.g., objective function, handling of initial conditions, numerical search 

method, etc.) can also be specified if needed [34]. However, achieving the commonality of pole locations, 

across multiple output-input channels, does not seem to be guaranteed. This can lead to shortcomings when 

working with multi-channel data, as pole (i.e., eigenvalue) commonality is an expected result of first-

principles LTI modeling for mechatronic systems. This capability is captured with the methodology 

proposed in this thesis. Other algorithms in the tfest function that can be applied to initialize the values 

for the numerator and denominator of the estimated transfer functions are State Variable Filters ‘svf’, 

Generalized Poisson Moment Functions ‘gpmf’, Subspace state-space estimation ‘n4sid’ and the 

combination of all of the previous approaches using  ‘all’. 

Another commonly available solution is the modalfit function as a modal parameter estimation tool 

in the frequency-domain. It can be used to identify SISO or MIMO models. The number of structural 

resonances can be entered as an input, or selected by using the modalsd function, which generates a 

stability diagram for modal analysis using the least-squares complex exponential (LSCE) algorithm [24]. 

The modalfit function provides the option of using the peak-picking (PP) algorithm [24], the least-

squares complex exponential (LSCE), as well as the least-squares rational function (LSRF) estimation 

method for modal parameter estimation [24]. Peak-picking assumes that each significant peak in the 

frequency-response function corresponds to precisely one natural mode (i.e., 2nd order transfer function), 

while the least-squares complex exponential method considers the impulse response of each pair of complex 

conjugate poles. In the LSRF and LSCE methods, the natural frequencies and damping ratios of several 

modes are analyzed simultaneously, and the parameters are estimated to obtain a ‘global fit’ across a broad 

frequency range. 

The methods provided within the modalfit function work well in modeling frequency responses 

composed of the superposition of multiple lightly damped modes, which is applicable mainly to linear 

elastic mechanical structures. However, it has been observed as reported in Section 4.6, that these methods 

are not as effective in capturing models with additional poles which possess high damping ratio and which 

exhibit non-resonant behavior.  

Upon surveying and testing tfest and modalfit, it was observed that the effectiveness of their 

corresponding system identification algorithms can diminish when attempting to construct multivariable 

models to MIMO frequency response data which originate from mechatronic systems containing a 
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combination of lightly and highly damped poles. This has been the principal motivation behind the 

algorithm developed in Chapter 4 of this thesis. 

2.3. Friction Identification and Compensation  

Friction is inevitable and exists in almost all motion control systems with mechanical contact. It is 

considered one of the major disturbances that affect a ball-screw drive’s tracking performance, and it can 

produce undesired effects such as stick-slip and hysteresis. Friction consists of two main regimes, namely, 

the pre-sliding regime and the sliding regime. In the pre-sliding regime, the friction force is dominantly 

dependent on displacement. During sliding, it displays a dependency on velocity rather than displacement 

[35]. 

The Coulomb friction model, which is a simplified quantification of frictional force, has evolved into 

more sophisticated friction models. Static friction models comprising Coulomb, viscous, and Stribeck type 

effects are static maps that describe the relationship between frictional force and the relative velocity 

between two sliding surfaces. Such a model would only describe the behavior of friction during the sliding 

regime. One of the earliest attempts to describe the characteristics of friction in the pre-sliding regime was 

the Dahl model [36], which was proposed in the late 1960s. The Dahl model was further developed and 

refined by subsequent efforts, such as the LuGre friction model [37], which generalizes Dahl’s model to 

capture the Stribeck effect and stick-slip motion.  

Furthermore, Swevers et al. [38][39] proposed a more elaborate model, called the Leuven model, which 

includes the frictional properties of the LuGre model and an accurate description of the pre-sliding regime 

using a hysteresis function with non-local memory. Building on these earlier works, the generalized 

Maxwell-slip (GMS) model [35] was developed, which is one of the most recent dynamic models that best 

captures, both, the pre-sliding and sliding dynamics of friction. This model is essentially a hybrid of the 

LuGre model and the Maxwell-slip model that was used in the Leuven model. The GMS model is essentially 

made up of N-elementary slip-blocks and spring elements. Hence, GMS captures both the hysteresis effect 

and frictional memory observed during the pre-sliding phenomenon (i.e., when an element is in sticking 

state). It also captures the Stribeck-type velocity-dependent properties, when an element is over-stretched 

and transitions into the slipping state. Jamaludin [40] highlighted GMS model’s effectiveness by using a 

GMS based feed-forward compensation to counteract the friction in an x-y cross-feed table. In this and 

other works [41][42], it has been shown that the nonlinear friction encountered in a ball-screw mechanism 

arises due to the Stribeck effect and rolling friction. Moreover, the static friction that exists in the interface 

between the screw and the nut deteriorates the circular contouring accuracy when a feed drive reverses 

velocity direction (e.g., at circular arc quadrants), and also when motion is first initiated from standstill. In 
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order to achieve better tracking performance, it is important to accurately identify and compensate for the 

friction in a feed drive. 

The correct application of dynamic friction compensation reduces the large spikes normally seen in the 

instantaneous dynamic positioning error when the motion is initiated or terminated or at velocity reversal 

points. Figure 2.4 shows the schematic of the Maxwell-slip model with N-elementary components. 

 

Figure 2.4: Schematic of the Maxwell-slip model with N-elementary blocks. 

In the GMS model, the friction force can be described as a function of the position 𝑥, the velocity 𝑣 of 

the moving part, and the average deflection of bristles that is denoted as the state variable 𝑧. 

𝐹𝑓 = ℱ(𝑧, 𝑣, 𝑥) (2.3) 

The dynamics of the internal state vector 𝑧 can be described by the following differential equation. 

𝑑𝑧

𝑑𝑡
= 𝒢(𝑧, 𝑣, 𝑥) (2.4) 

Above ℱ(∙) and 𝒢(∙) are general nonlinear functions. The sticking force in presliding is described by a 

spring element with stiffness  𝑘𝑖. 

𝑑𝐹𝑖
𝑑𝑡

= 𝑘𝑖𝑣 (2.5) 

Then, the following static model describes the steady-state behavior of the friction in sliding regime 

collectively when all elements are sliding. 

𝑆(𝑣) = 𝑠𝑔𝑛(𝑣)(𝐹𝑐 + (𝐹𝑠−𝐹𝑐)𝑒
−|
𝑣
𝑉𝑠
|
𝛿

) (2.6) 
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In Eq. (2.5) 𝐹𝑖 is the elementary friction force.When each elementary force component 𝐹𝑖 reaches a 

maximum value of  𝑊𝑖 = 𝛼𝑖𝑆(𝑣) where 𝑆(𝑣) is the Stribeck friction and 𝛼𝑖 is the saturation limit (for each 

element), that element enters slippping regime. The static and the Coloumb friction forces are denoted by 

𝐹𝑠 and 𝐹𝑐 in Eq. (2.6). 𝑉𝑠 and 𝛿 represent the Stribeck velocity and velocity shape factor. The following 

equation describes the dynamic behavior of an elementary slip-block: 

𝑑𝐹𝑖
𝑑𝑡

= 𝑠𝑖𝑔𝑛(𝑣) ∙ 𝐶 ∙ (𝛼𝑖 −
𝐹𝑖
𝑆(𝑣)

) (2.7) 

The factor 𝐶 in Eq. (2.7) shows the rate at which the friction force follows the Stribeck effect in the 

sliding regime. The total friction force can be stated as the summation of all the elementary components 

and the visous term 𝜎. 

𝐹𝑓 =∑𝐹𝑖(𝑡)

𝑁

𝑖=1

+ 𝜎𝑣(𝑡) (2.8) 

The influence of friction on the frequency response of servo systems has also been studied by Yoon 

and Trumper [43][44]. They developed a parameter identification method for the GMS friction model using 

frequency-domain measurements. They showed that as the input amplitude of the applied signal becomes 

smaller, the response has a smaller DC gain and the frequency of Dahl resonance becomes higher.  

 

Figure 2.5: Input-amplitude-dependent frequency responses of the open-loop servo system with Dahl 

resonances [44]. 



18 

 

2.4. Control for Precision Motion and Active Vibration Damping 

Precision control and active vibration damping of flexible structures have been the focus of many 

studies on devices such as servo drives [45][46], hard disk drives [47][48][49], flexible robotic manipulators 

[50][51], and smart structures [52]. Many control techniques have been proposed to tackle this issue, 

including sliding mode control (SMC) and nonlinear methods [53], model predictive control (MPC) 

[54][55][56], positive position feedback [57], input shaping[58], and integral-based controllers [59].  

As mentioned earlier, one of the main challenges in high-speed high-accuracy positioning of the ball-

screw drive is the excitation of structural modes, by both external disturbances as well as the control input. 

The excitation of structural vibrations deteriorates the tracking performance and imposes limitations on the 

achievable bandwidth. Moreover, the unmodeled modes can interact with the reduced-order controller and 

can cause unstable behavior [60]. Hence, in order to achieve a wide bandwidth for the closed-loop system, 

stability issues originating from the interaction of a flexible ball-screw drive with the control law dynamics 

have to be resolved. When a vibration mode is not explicitly controlled or damped via feedback, the 

application of notch or low-pass filters can also be used to avoid exciting these modes, which may otherwise 

lead to instability. However, the addition of notch filters can further reduce the phase margin due to the 

notch filter’s phase loss before its blocking frequency, and this can consequently affect a control system’s 

overall robustness. Hence, good design is a trade-off between choosing the vibratory dynamics that are 

actively damped, and those that are suppressed, i.e., ignored.  

In addition to actively damping out vibrations, the avoidance of vibration modes due to command 

generation must also be considered. Recently, extending the ‘input shaping’ concept that was earlier 

proposed for single-axis systems, Altintas and Khoshdarregi [61] presented a vibration avoidance and 

contouring error compensation algorithm that uses input-shaping filters on the commanded trajectory. They 

pre-compensated for the estimated contouring error from the closed-loop transfer function of the drive and 

the kinematics of the machine.  

One of the critical physical restrictions in achieving successful active suppression of vibrations in 

flexible structures, such as machine tools, is the excitation of counter-phase modes (see Figure 2.6). The 

destabilization of counter modes prevents further improvement in the dynamic response of the system via 

use of loop shaping principles alone. Beudaert et al. [62] showed this could be seen as a significant limiting 

factor in the damping of chatter vibrations, which are caused by the interaction of the dynamic compliance 

with the cutting force process dynamics. Recently, they developed a tuning procedure for feed drive control 

that considers machine dynamics and chatter stability [63]. They reported up to 30% increase in 

productivity as a result of the new tuning technique. 
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Figure 2.6: Excitation of the counter-phase mode in a vertical ram-type machining center [62]. 

They also showed limitations related to technical implementation, such as low sampling rate that causes 

significant phase lag, and noise issues can result in unsuccessful damping of the vibration modes. 

 

2.4.1. Sliding Mode Control (SMC) 

Sliding mode control (SMC) [53] is one of the most frequently studied approaches for vibration control 

in flexible systems, as its robustness helps provide stability in the presence of disturbances and parameter 

variations. The original sliding mode controller proposed by Utkin [53] has several drawbacks, most 

notably the high control authority (i.e., effort) and chattering issues. Chattering is undesirable since it 

involves high control activity at high frequency, and may excite the plant’s high-frequency dynamics that 

have not been considered in the model. The concept of using ‘sliding modes’ was further developed by 

Slotine and Li [64] into an adaptive framework, in an attempt to address both the control signal continuity 

issue and provide the capability of tracking changing system parameters. SMC has been proposed for the 

control of ball-screw drives. Altintas and Erkorkmaz [65] used an adaptive sliding mode controller (ASMC) 

for high-speed positioning considering a rigid body model and disturbance force variations. Kamalzadeh 
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and Erkorkmaz [66] proposed a high-bandwidth ASMC and through experimental compensation of the first 

axial vibration mode (~133 Hz). This controller also incorporated feedforward compensation of friction, 

lead errors, as well as notch filtering of higher-order (torsional vibration) modes at 445, 1080, and 1755 

Hz.  

Okwudire and Altintas [67] proposed discrete-time adaptive sliding mode controller (DADSC) to 

compensate for vibration modes in ball-screw-driven and linear drives by using a MIMO model and by 

decoupling the disturbance estimation from the tracking performance. A mode-compensating adaptive 

back-stepping sliding-mode controller was proposed by Dong and Tang [12], who used a two-mass model 

to actively dampen out the first mode. They estimated the time-varying uncertainties and disturbances using 

a finite-term Fourier series. Hosseinabadi and Altintas [68] used a high-bandwidth active-vibration damping 

controller for CNC machine tools based on sliding-mode control with a damping network. They used a 

Kalman filter to minimize the noise in the estimation of acceleration and velocity from the encoder signals. 

 

2.4.2. Pole-Placement Control 

Pole-placement is a well-known technique for placing closed-loop system poles at desired locations in 

the s-plane by using appropriate feedback gains to achieve desired performance [69]. The state feedback 

gain of the pole-placement controller can be calculated using Ackerman’s formula. A robust version of the 

pole-placement controller that is less sensitive to perturbations was proposed by Kautsky et al. [70]. The 

successful implementation of the pole-placement method for damping vibration in ball-screw drives has 

been reported by Erkorkmaz and Hosseinkhani [71]. They were able to use disturbance response 

optimization, in conjunction with pole-placement and loop shaping principles, to minimize the load (table) 

side disturbance response against cutting forces, and compensate for the phase delay caused by the power 

electronics using a lead filter (see Figure 2.7). In a precursor study, Gordon and Erkorkmaz [72] presented 

an active vibration damping by means of pole-placement, which was able to achieve higher bandwidth than 

the P-PI position-velocity cascade control approach, commonly used in industry. They also introduced a 

new pre-filtering technique to counteract the artefacts in the tracking error, which are correlated to the 

velocity, acceleration, jerk, and snap of the commanded trajectory due to existing imperfections in the 

control law discretization and open-loop dynamics inversion. 



21 

 

 

 

 

 
 

 

 

Figure 2.7: PPC versus P-PI [71]. Top left: Concept of damping via pole shifting. Top right: Loop transfer 

function gain comparison between mode-compensating PPC and P-PI. Bottom left: Optimization of table 

side cutting force response in PPC. Bottom right: Improvement in disturbance rejection during machining 

tests. 

Hosseinkhani [73] proposed a pole-placement controller for multiple-mode vibration damping. Figure 

2.8 shows the schematic of this design. In this approach, several vibration modes are modeled in modal 

coordinates, in addition to the rigid-body response. The controller uses a Kalman filter for estimating the 

unmeasurable states. Following the concept of low-authority vibration damping, the amount of leftward 

shift to be applied to each complex pole pair determines the extra damping to be injected at each mode. The 

integrated table position 𝑥2 is also used as a state to ensure that the control law eliminates steady-state 

positioning at the load side. In an attempt to improve co-prime factorization stability, Glover–McFarlane 

loop shaping robustification was also incorporated [74]. 
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Figure 2.8: Multi-mode Pole Placement Controller (PPC) with a Kalman Filter observer [73]. 

This resulted in the oscillatory poles (whose locations were set during the pole placement step) to move 

back closer towards the imaginary axis and the ineffectiveness of the disturbance rejection controller.  

While this approach seems promising in simulation, its experimental implementation had suffered from 

several challenges. First, decoupled design of the state observer and feedback controller are required, which 

is not easy. Second, the selection of independent damping factors for each conjugate pole pair is not a trivial 

choice. Thus, due to the multitude of design choices, and difficulty in obtaining stable experimental 

implementation (which may have been related to the design choices) the multi-mode pole placement 

damping is theoretically interesting, but was found to be very difficult to implement experimentally. 

 

2.4.3. Linear Quadratic Gaussian (LQG) Control 

A linear quadratic Gaussian controller is a basic optimal controller used for linear and nonlinear systems 

with different applications, for example, in servo systems [75], flight and missile navigation control systems 

[76][77], and vibration (structural) control [78][79]. The controller is named as such because it is linear, 

the performance index or the cost is in quadratic form, and the disturbance signals and noise are assumed 

to be driven by Gaussian white noise. 

Sencer et at. [80] proposed an optimal control design for high-speed feed drive systems based on a 

linear quadratic regulator (LQR) that uses load side feedback measurements to actively dampen the first 

vibration mode of the structure. In their state-space representation, they used an additional integral state 

similar to [73]. The addition of the integral term results in better low-frequency disturbance rejection on 

the load side by enforcing integral action. They also proposed a kinematic state observer design to fuse 

analog accelerometer measurements with linear encoder feedback to achieve high-fidelity state feedback 

and wide bandwidth non-collocated motion control [81]. This approach uses a ‘jerk’ feedback, in 

correspondence to a 4th order system, in damping vibrations of a single mode. However, its extension to 

feed drives with multiple vibration modes is not clear. 
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2.4.4. 𝓗𝟐/𝓗∞ Control 

The ℋ2/ℋ∞ control was proposed in the 1980s to overcome the robustness issues associated with LQG 

control [82], as there are no guaranteed stability margins for LQG-controlled systems that incorporate both 

a Kalman filer and the LQR control law. One major drawback of the LQG controller is that the assumption 

of Gaussian white noise as an additional input to the system to represent uncertainty cannot always be 

considered valid. In contrast to the measurement noise, parametric uncertainty cannot be described using 

this assumption. Another main issue is that the parametric uncertainty between the input and output 

mapping of a dynamic system cannot always be described with extra state or output perturbations. This is 

due to the fact that the discrepancy in output, between the modeled and true plant, may in many cases be a 

function of the size of the applied input [83]. 

Several control designs that utilize this technique have been proposed for machine tool feed drives 

[84][85]. Braembussche et al. [86] used a scheme based on ℋ∞ control for a linear motor and compared the 

robustness of the tracking performance with a discrete sliding mode controller for load (inertia) changes of 

up to 300%. Their results showed that the ℋ∞ controller with standard weighting functions did not offer as 

robust a performance as SMC. To overcome this drawback, they proposed a new performance weighting 

function that was inspired by SMC. Dong et al. [87] used a gain-scheduled ℋ∞ loop-shaping controller for 

the high-speed positioning of ball-screw drives. They also achieved vibration damping for the first axial 

mode in order to widen the controller bandwidth. Hanifzadegan and Nagamune [88] proposed a parallel-

structure feedback controller for ball-screw drives that consists of both a tracking and structural vibration 

controller. The tracking and structural controller designs were based on gain scheduling adjacent ℋ∞ 

designs. They demonstrated this approach’s advantages over a conventional PID controller by incorporating 

vibration damping for the first flexible mode and reducing the effect of resonance mode. They also proposed 

a switching gain-scheduled control design for ball-screw drives [89] that can decrease the effect of 1st  

vibration mode by 45%. They did not consider vibration damping for higher-order (2nd, 3rd, etc.) modes. 

In their study, they used the linear parameter varying (LPV) framework to identify and compensate for 

dynamic model variations in the feed drive system, as a result of posture (i.e,. displacement). 

In the design of mixed sensitivity ℋ2/ℋ∞ control laws, the selection of the sensitivity (i.e., 

performance) weighting function can have a significant impact on the achieved closed-loop response. While 

mainstream designs in literature typically employ weighting functions in the structure of a low-pass, band-

pass, or high-pass filters, using a more targeted approach, such as directly employing the open-loop 

disturbance response of a mechanical system with flexibility, can help to achieve even more effective 

damping of structural vibrations as well as improved rejection of external disturbance forces. This concept 
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was explored in a master’s thesis by Zeng [90] for damping the vibrations of fixed structures, such as rams, 

columns, and plate/shell type workpieces. In this thesis, as shown in Chapter 5, the application of targeted 

sensitivity weighting has been extended to the motion control (i.e., servo drive) problem, and successfully 

demonstrated for multiple mode vibration damping in a ball screw drive. 

2.5. Suppression of Harmonic Positioning Errors using Adaptive Feedforward Cancelation 

(AFC)  

As mentioned earlier, ball-screw drives provide a low cost means of achieving precision motion 

delivery in machine tools and various industrial automation applications. However, since their operation 

relies on mechanical contact, imperfections in the mating components as well as assembly errors can result 

in the deterioration of the achievable dynamic positioning accuracy. For example, inconsistencies in the 

helix angle of the screw, as well as alignment errors in the assembly of the mechanism, can cause harmonic 

positioning errors, commonly referred to as ‘lead errors’. During high traversal speeds, imperfections in the 

groove of the threads can cause change in the effective lead over the length of the screw shaft. This 

consequently results in inaccurate and oscillatory motion. These errors are difficult to correct using classical 

feedback techniques, especially when the frequency of the error harmonics is close to or beyond that of the 

closed-loop bandwidth. Although model-based feedforward approaches are available for correction 

purposes [8], such compensation techniques may become ineffective when there are variations in the error 

characteristics, for example a change in the lead error profile due to thermal deformations or wear on the 

ball-screw. 

Disturbances that are harmonic in nature, such as cutting force components in milling operations, can 

also contribute to repetitive positioning errors. The frequency of the first few harmonics in milling is 

typically beyond the closed-loop bandwidth of the servo control system. Thus, the feedback controller 

would be able to reduce the average value of the positioning error caused by the disturbance, but would be 

unable to compensate for the high-frequency oscillatory components. The ability to counteract these 

harmonics would undoubtedly improve the dynamic positioning accuracy of a drive system, and may also 

help improve the surface quality in manufactured parts [91]. 

The problem of harmonic disturbance cancellation is encountered in a multitude of engineering 

applications, ranging from noise control to precision mechatronic devices. Example applications include 

accuracy improvement in fast tool servos [46][92][93][94], hard disk drives [95][96], and robotic 

manipulators [97]. Due to its wide application range, there have been a number of solutions proposed for 

counteracting harmonic disturbances. Among them are the Internal Model Principle (IMP), Repetitive 

Control (RC), and Adaptive Feedforward Cancellation (AFC). IMP states that in order to asymptotically 
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reject an external disturbance [98], the controller must include a model of this disturbance. This is also the 

main idea behind the design of Repetitive Controllers (RC) [99][100]. In both IMP and RC, the controller 

gain is infinite at the frequency of the disturbance, as the controller has a pair of poles on the imaginary 

axis corresponding to that frequency. In these methods it is assumed that the fundamental disturbance 

frequency is known and not varying. Successful application of RC in mitigating the detrimental effects of 

harmonic cutting forces is reported in [91][101]. In [91], a vertical CNC machine is retrofitted with a 

dynamometer and a piezoelectric actuator. The dynamometer measures the component of the cutting force 

in the direction normal to the feed direction, while RC regulates this force by manipulating the radial depth 

of cut through the piezoelectric actuator. It was shown that this strategy is effective in improving the surface 

finish of the machined part, by reducing the magnitude of fluctuations in the cutting force. In comparison 

to the method in [91], the RC strategy proposed in [101] does not require additional hardware, such as a 

dynamometer or piezoelectric actuator, and acts directly upon the position error of the feed drive system. 

In this regard, it carries some similarity with the experimental approach that will be presented in this thesis. 

However, in this thesis, Adaptive Feedforward Cancellation (AFC) is proposed for harmonic error 

mitigation in ball-screw drives. AFC offers more flexibility and convenience in targeting specific harmonics 

with known frequency, compared to dealing with the design of a stable repetitive controller. Just as a 

feedback controller with integral action is theoretically able to apply unbounded input at zero frequency, 

which helps achieve zero steady state error at DC, AFC is able to apply unbounded input at a nonzero 

frequency 𝜔𝑛, which helps remove the error component caused by a sinusoidal reference or disturbance 

input acting at this corresponding frequency [102]. 

Adaptive feedforward cancellation (AFC) [103][104] is a type of repetitive control that significantly 

improves periodic disturbance rejection, by injecting sinusoidal correction signals into a closed-loop system 

to cancel out harmonic components observed in the error signal. Although AFC, in general, can lead to a 

nonlinear compensator, it assumes the form of a linear time invariant (LTI) filter when the disturbance 

frequency is constant [105][106][107]. This makes it possible to use classical loop-shaping and analysis 

tools in designing an AFC. An extended form of AFC, for improving periodic disturbance rejection with 

time-varying frequency, was proposed by Guo and Bodson [108]. They showed that for certain adaptation 

laws, even if the disturbance frequency is time varying, the AFC still produces a linear but time-varying 

filter. 

In [109], to tackle non-periodic disturbances which cannot be handled by the classical AFC method, 

Yabui et al. proposed an enhanced AFC implementation. They included a damping term in the denominator 

of the resonator, to ensure that the correction signal dissipates when the harmonic component of the error 

disappears. Yabui et al. also performed robustness analysis for the feedback system using the Nyquist 
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criterion [110]. In tuning the AFC resonator gain(s), they considered the implication of AFC on the loop 

sensitivity function. 

Many of the earlier works on AFC focused on SISO (single-input single-output) plant configurations. 

However, ball-screw mechanisms usually have multiple output measurements. Typically, a rotational 

encoder mounted on the motor shaft provides feedback for velocity control, and a linear (translational) 

encoder scale mounted on the moving table provides sensing for the position control loop. Naturally, the 

dynamic response registered from each of these measurement points is different. Therefore, adequate 

implementation of AFC with a ball-screw drive requires consideration of the dual feedback dynamics, as 

reported by Hosseinkhani and Erkorkmaz in [111], which presents early results. 

In this thesis, the earlier study in [111] has been systematically extended into a unified analysis 

considering the MIMO nature of ball-screw drives, and in a manner in which the impact of AFC on the 

response to different perturbation inputs can be analyzed with the help of a single frequency-dependent 

parameter (i.e., the response modification factor: 𝛼). The resulting work, also contained in Chapter 6 of this 

thesis, has been published in [112]. To the best of the authors’ knowledge, this is the first time in which a 

systematic design procedure for AFC in conjunction with a ball-screw drive as a multi-output plant has 

been presented in literature. 

 

2.5.1. Brief Review of AFC 

In this section, a brief review of AFC is presented, in order to provide foundation to the developed new 

methodology and results in Chapter 6. 

Figure 2.9a shows the typical integration of AFC within a feedback control loop. Here, 𝐴 = 𝐴(𝑠) 

represents the AFC filter, 𝐾 the feedback controller, and 𝐺 the open loop plant (for notation brevity, the 

Laplace and z-domain operators, i.e., 𝑠  and 𝑧  accompanying a transfer function or a signal name are 

omitted). The AFC generates the cancellation signal 𝑐, which is injected back into the control loop on top 

of the regulation error 𝑒. The resulting signal is then applied to the feedback controller 𝐾. Figure 2.9b shows 

an alternate block diagram representation, which produces the same closed-loop dynamics as in Figure 2.9a 

(i.e., 𝑥 𝑟⁄ = [𝐺𝐾(1 + 𝐴)]/[1 + 𝐺𝐾(1 + 𝐴)]). As can be seen in Figure 2.9b, the correction signal 𝑐 

essentially perturbs the original command 𝑟, thus producing the modified command 𝑟∗. The modified 

command can then be considered to be fed into the original feedback control system (without AFC), which 

possesses the dynamics 𝑥/𝑟∗ = 𝐺𝐾/(1 + 𝐺𝐾). Consequently, in tuning the AFC, the equivalent response 
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from the modified command 𝑟∗ to the closed loop plant output 𝑥 needs to be considered, as noted in the 

loop-shaping procedure outlined by Byl et al. [107]. This procedure relies on the principle that the stability 

of an LTI system does not depend on the reference input, but is a property of the system dynamics. 

Therefore, in the stability analysis conducted by inspecting the ‘loop’ transfer function, the influence of the 

original command input 𝑟 can be neglected, as shown in Figure 2.9c. Then, the AFC block 𝐴 and remainder 

dynamics 𝐺𝐾/(1 + 𝐺𝐾) form a closed loop. Thus, the loop transfer function to be considered for the final 

closed-loop system’s stability analysis becomes 𝐿 = 𝐴𝐺𝐾/(1 + 𝐺𝐾). 

 

Figure 2.9: Brief review of AFC. 

AFC can be comprised of one or more resonators, each designed to target a specific harmonic frequency 

in the regulation error. The structure of a single resonator 𝐴𝑛(𝑠), with target frequency 𝜔𝑛, is shown in 

Figure 2.9d.  The equivalence of the implementation in Figure 2.9d to the following LTI dynamics is shown 

in [107]: 

𝐴𝑛(𝑠) = 𝑔𝑛
𝑠𝑐𝑜𝑠ϕ𝑛 +𝜔𝑛𝑠𝑖𝑛ϕ𝑛

𝑠2 +𝜔𝑛
2  (2.9) 
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Above, 𝑔𝑛 and 𝜙𝑛 are the constant gain and phase advance of the resonator, which need to be selected 

adequately to respond with sufficient strength and still preserve closed loop stability with a certain degree 

of robustness (e.g., stability margins). The implementation of multiple resonators to target multiple 

frequency components can be seen in Figure 2.9e, where the equivalent AFC transfer function for such a 

system can be stated as: 

𝐴(𝑠) =∑ 𝐴𝑛(𝑠)
𝑁

𝑛=1
 (2.10) 

The frequency response of an AFC resonator can be calculated for different values of 𝜙𝑛 (the phase 

advance parameter) using Eq. (2.9) as shown in Figure 2.10. 

 

Figure 2.10: Frequency response of an AFC resonator with a pair of complex conjugate poles at 100 Hz 

for different values of the phase advance parameter. 

The phase of an individual resonator changes sharply by -180° in the vicinity of 𝜔𝑛, due to the absence 

of a damping factor in the denominator. This phase change is discontinuous, but is centered around the 

angle of −𝜙𝑛 [107]. Considering Figure 2.9c, a given harmonic error component with frequency 𝜔𝑛 

permeates through the closed loop response of 𝐺𝑟∗→𝑥 with a phase shift of  ∠𝐺𝑟∗→𝑥(𝑗𝜔𝑛). If the resonator 

phase parameter is set to 𝜙𝑛 = ∠𝐺𝑟∗→𝑥(𝑗𝜔𝑛), the AFC’s averaged phase around this frequency becomes 

−∠𝐺𝑟∗→𝑥(𝑗𝜔𝑛). It is important to note that the local gain provided by each resonator around its natural 

frequency overpowers the gain and phase contribution from the other resonators outside their resonance 

frequencies. This enables the phase shift of the loop (depicted in Figure 2.9c to be 0  around the resonator’s 
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frequency. In other words, the timing of the cancellation signal is adjusted to take into consideration the 

phase latency (or lead) of the closed loop dynamics ahead of the injection point. Once this is achieved, the 

negative feedback realized by closing the loop enables the oscillatory signal to cancel itself out, as it is fed 

back through the AFC. Hence, following the guideline in [107], for each AFC the phase parameter is set to 

be 𝜙𝑛 = ∠𝐺𝑟∗→𝑥(𝑗𝜔𝑛). 

The final parameter in the AFC that must be set is the resonator gain 𝑔𝑛, which allows the disturbance 

rejection to be maximized. While the initial loop shaping procedure in [107] considered 𝐿 = 𝐺𝑟∗→𝑥 × 𝐴 as 

the loop transfer function (Figure 2.9c) in setting the stability margins, a later implementation of AFC for 

diamond turning fast tool servos took into consideration the structure in Figure 2.9a (𝐿 = 𝐺𝐾(1 + 𝐴)) as 

the loop transfer function [45]. Recalling the definition of *r xG  , it can be verified that both analyses lead 

to the same characteristic equation. 

From observation, it is known that higher gain leads to faster cancellation of the harmonic error. 

However, excessive values for 𝑔𝑛 can also lead to problems with stability and loop robustness, which can 

be identified from the waterbed effect [25], or sensitivity integral. If the sensitivity function (𝑆 =

(1 + 𝐿)−1) is decreased in order to improve the disturbance rejection at a target frequency (|𝑆(𝑗𝜔𝑛)|<<1) 

by increasing the resonator gain 𝑔𝑛, its magnitude will have to increase at other frequencies. At frequencies 

where |𝑆(𝜔)| > 1, the feedback control actually has a deteriorating effect on the closed-loop disturbance 

rejection, compared to the open-loop case. 

In addition to potentially causing performance loss, excessive gain for the AFC can also lead to the 

excitation of other dynamics outside the target frequency, possibly triggering instability. Furthermore, the 

robust stability analysis of a multiple resonator structure is more complex than the case of tuning a single 

resonator at a time, as all resonator gains have to be considered simultaneously. Thus, the analysis and 

tuning method proposed in this thesis, which revolves around the definition of the ‘response modification 

factor 𝛼’  (in Section 6.3), allows for the performance improvement versus deterioration to be gauged across 

the frequency spectrum when adjusting multiple AFC resonators. It also enables a robust stability margin 

to be maintained, based on an admissible peak sensitivity value. 

 

2.6. Conclusions 

The literature review in this chapter constitutes the background knowledge upon which this thesis is 

built. The literature related to modeling and identification of a feed drive system, using various approaches, 
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has been discussed. Also, the importance of modal analysis in the structural study of machine tools 

dynamics was highlighted. Furthermore, some of the static and dynamic friction models for motion control 

systems were explored. Accordingly, Chapter 3 of this thesis covers the initial modeling and identification 

for the main experimental setup, a precision ball screw drive. In Chapter 4, a new frequency-domain LTI 

MIMO model estimation algorithm is introduced, to address the challenge of estimating suitable models 

for CNC feed drive dynamics. The proposed new method can handle systems involving multiple actuation 

inputs, sensing outputs, a multitude of vibration modes, as well as a combination other (lightly-damped or 

well-damped) dynamics, and even direct- or derivative-like terms. 

Various tracking and active vibration-damping control methods were reviewed in Section 2.4. 

Accordingly, in Chapter 5, a new control strategy is proposed to achieve high-bandwidth and superior 

(load-side) disturbance rejection, through multiple-mode vibration suppression in the inner loop, used 

alongside a loop-shaping based tracking controller in the outer loop. Finally, adaptive feedforward 

cancellation (AFC) for counteracting harmonic disturbances was reviewed in Section 2.5. This technique 

has been extended to match the multiple output nature of ball-screw drives, and a new AFC design method 

has been developed, capable of simultaneously adjusting multiple resonators while analyzing any potential 

performance degradation to any input sources (e.g., disturbances, mechanical imperfections, and noise) in 

a unified manner, as presented in Chapter 6.  
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Chapter 3  

Modeling and Identification of Ball-Screw Driven Feed Drives 

3.1. Introduction 

Modeling and identification of the feed drive dynamics is a crucial step prior to designing a model-

based motion controller. To achieve high motion precision, it is essential to consider nonlinear effects, such 

as friction, which deteriorates the positioning accuracy, or limitations on the available motor torque, such 

as drive saturation, due to the drive systems physics. Feed drive models can be constructed using a variety 

of methods, including a simplified rigid body approach for capturing low-frequency behavior, or more 

elaborate approaches, which also consider the influence mechanical flexibilities and vibration modes. 

This chapter is organized as follows. Section 3.2 presents the experimental setup that was used for a 

majority of the validation studies in this thesis. Section 3.3 shows the frequency responses of the current 

loop dynamics, utilizing rotary and linear encoders and a pulse-width modulated (PWM) driver as the 

actuation system. In Section 3.4, a summary of modeling, and parameter estimation of for current loop 

dynamics is presented considering a high-bandwidth linear voltage amplifier. The identification of rigid 

body parameters is reported in Section 3.5. Section 3.6 shows the rotary and linear encoder frequency 

responses obtained using the linear amplifier for driving the motor. A two-inertia lumped model is used to 

capture the first axial mode of the feed drive system in Section 3.7. Sections 3.8 and 3.9 present a summary 

of friction identification for the experimental setup considering both a Stribeck-type model and then a 

generalized Maxwell slip (GMS) model. The identified models are demonstrated in friction compensation 

in Section 3.10. To better understand the high-frequency dynamics of the stage, vibration modal analysis 

was conducted and its results are discussed in Section 3.11. Finally, Section 3.12 covers the conclusions 

for this chapter. 

 

3.2. Experimental Setup 

Figure 3.1 shows the setup, which is a single-axis ball-screw (THK BNK 2020-3.6G0 + 1220 LC5-Y) 

driven by a 3kW AC servo motor (Omron R88M-K3K030H) permanent magnet synchronous motor 

(PMSM). The mechanism is a double start screw possessing 20 mm diameter and 20 mm lead (i.e., 

containing two 10 mm pitch helical grooves). The ball-screw has a simple free mounting arrangement, 

which is affected by thermal deflection. The screw shaft is attached to the servomotor by double-flex disc-

type couplings to eliminate backlash and to tolerate possible misalignments between the screw and rotor 

shaft. The worktable moves along the two cylindrical guideways, which support four air bushings. As a 
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small deviation from the photograph in Figure 3.1, the two rotary encoders (Encoders 1 and 2) had been 

disassembled from the setup prior to the collection of the data.  

 The rotary encoder integrated into the motor (K3K030H) can generate up to 262144 pulses per rotation, 

based on quadrature signal output (i.e., Phases A and B, 20-bit resolution). When identification tests were 

first being conducted, as reported in Section 3.3, the rotary encoder resolution was set to produce 5000 sine 

waves (of quadrature type) per revolution. However, later on, when designing the current loop 

commutation, this resolution was reduced to allow sufficient decoding bandwidth in the motion control 

hardware (dSPACE DS3002 encoder interface) to ensure that encoder pulses can be counted without any 

loss. 

The rotary encoder generates 5000 pulses/rev. Considering 400 interpolation of the sinusoidal encoder 

signals, this achieves a measurement resolution equivalent to 10 nm to table translation. A linear encoder 

directly measures the table translation, which has 350 mm stroke length. After adequate interpolation of 

sinusoidal encoder signals, 10 nm of measurement resolution is obtained. 

 

Figure 3.1: Single-axis ball-screw setup. 

3.3. Frequency Response Measurements using a PWM Driver  

As mentioned earlier, control bandwidth and disturbance suppression are limited by the mechanical 

resonances, resolution of the feedback device, time delay in the loop, and the current loop response time. 

To evaluate the achievable bandwidth by the PWM driver (Omron K3K030T), a frequency response 

measurement was conducted between the analog input voltage of the amplifier  (representing the current or 
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torque command) and the output current, at a sampling frequency of 20 kHz.  The torque commands are 

sent to the servo amplifier by a DS1005 dSPACE platform, as control signals ranging between -10…10 V. 

The motor torque constant and amplifier gain are 0.41 Nm/A and 2.33 A/V, respectively. Figure 3.2 shows 

the frequency response of the current loop dynamics generated with a sine-sweep excitation at 8 V and for 

frequencies between 10 Hz – 1 kHz. As can be seen, the bandwidth of the PWM driver is limited to 388 

Hz. At this frequncy, the phase margin is around 35°, indicating significant phase loss (-145°). The pure 

delay was estimated as 0.33 ms, by plotting the phase response on a linear frequncy scale Figure 3.2. 

In practical applications, the assumption of a perfectly linear system may not always be valid due to 

nonlinear effects, such as friction, hysteresis (e.g. due to backlash in the preloaded nut in a ball-screw), 

actuator saturation, etc. In this case, there are two basic options: (1) to obtain an FRF of the underlying 

linear system, by minimizing the nonlinear phenomena’s impact on the response; (2) to try to find the best 

possible linear approximation of the nonlinear response data [113]. The first option is preferred if a linear 

model of the system already exists. In contrast, the second option is more applicable if the user wants to 

most accurately describe a relationship between the input and output, at the expense of losing some 

contextual or physics-based information about the nonlinearity causes. Different excitation signals have 

been recommended for addressing this issue [114]. 

Several methods were developed to visualize the nonlinearity in a system. For a linear system, the 

response is independent of its input amplitude, whereas, for a nonlinear system, the measured FRF would 

depend on the input amplitude and for example, the direction of frequency sweeping. For the ball-screw 

drive, a Gaussian white noise excitation signal was used at four, six, and eight-volt amplitudes to examine 

the consistency of the system’s motion response. Figure 3.3 shows the rotary and linear encoder responses 

to this excitation. Here, the displacements have been scaled in terms of motor and screw shaft rotation in 

the unit of radian. Due to the roll-off effect in the current control loop, the accuracy of measurements at 

frequencies higher than 400 Hz is reduced, and the effect of friction and backlash-like motion loss in the 

preloaded nut are also dominant.  This is because as smaller displacements are generated, static friction 

cannot always be fully overcome, and the transmission of rotary screw motion to the table displacement 

does not occur perfectly. Based on this measurement, the observable natural frequencies were, at first 

glance, identified to be at 135 Hz, 276 Hz, 673 Hz, 1192 Hz, and 1632 Hz. Later, vibration modal analysis 

carried out in Section 3.11 provides further insight into the mode shapes of some of these frequencies. 
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Figure 3.2: Current loop frequency response measurement using the PWM driver in logarithmic (left) and 

linear scale (right). 

  

Figure 3.3: Rotary (left) and linear encoder (right) position frequency responses. 

 

3.4. Modeling and Identification of the Current Loop Dynamics upon Retrofitting the Setup 

with a Linear Amplifier 

A high-bandwidth amplifier is required to shorten the transient response time, which can be used to 

improve the tracking accuracy and disturbance suppression by enabling a higher bandwidth feedback 

controller design. The main advantage of PWM drivers over linear amplifiers is their transfer efficiency 

[115], since much less power dissipation has to take place in the electronics, in the form of heat, when in 

modulating the armature voltage applied to the actuator. However, in spite of their lower efficiency, linear 

amplifiers can generate smoother motion, lower noise levels, and negligible distortion in the generated 
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armature voltage, in comparison with PWM drivers. For these reasons, a LA-1555T Varedan linear 

amplifier was integrated into the experimental setup to achieve higher bandwidth for current control, 

compared to the existing Omron PWM driver described in Section 3.3. Table 3.1 shows the specifications 

of the permanent magnet synchronous motor (PMSM) used in the setup, for which the LA-1555T was 

selected. 

Table 3.1: 3-phase PMSM motor specification. 

Variable Description Unit Value Unit 

𝐿𝑠 Inductance (direct and quadrature)  

𝐿𝑠 = 𝐿𝑑 = 𝐿𝑞 

0.004 [𝐻] 

𝑅𝑠 Winding resistance (direct and quadrature)   

𝑅𝑠 = 𝑅𝑑 = 𝑅𝑞 

0.035 [𝛺] 

𝐾𝑡 Torque constant 0.41 [𝑁 ∙ 𝑚/𝐴] 

𝐽𝑚 Motor inertia Estimated [𝑘𝑔 ∙ 𝑚2] 

𝑍𝑝 Number of pole pairs 5 [ ] 

𝐵𝑚 Viscous friction coefficient of motor Estimated [𝑁 ∙ 𝑠 𝑟𝑎𝑑⁄ ] 

𝜆0 Back-emf constant 0.19 [𝑉 𝑟𝑎𝑑 𝑠⁄⁄ ] 

𝜔𝑒 Electrical speed − [𝑟𝑎𝑑 𝑠⁄ ] 

𝜔𝑟 Rotary encoder angular velocity − [𝑟𝑎𝑑 𝑠⁄ ] 

 

Some of the most widely used vector control techniques of PMSM are field-oriented control (FOC) 

[116] and direct torque control (DTC) [117]. FOC is the most adopted vector control method in the industry. 

In this section, the control of the PMSM using FOC technique is described. 
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Figure 3.4: Illustration of space vector (𝑎𝑏𝑐), stationary (𝛼 − 𝛽) and synchronous (𝑑 − 𝑞) reference frames. 

In Figure 3.4, 𝑎𝑏𝑐 frame represents the space vector, which has three equally spaced stator windings 

with a neutral connection in the center. The tip voltages have the following relationship with the space 

vector components: 

𝑈1 − 𝑈𝑎 = 𝑈2 − 𝑈𝑏 = 𝑈3 − 𝑈𝑐 (3.1) 

This can be stated in the matrix form as follows. 

[

𝑈𝑎
𝑈𝑏
𝑈𝑐

] = 𝐴𝑎𝑏𝑐
123 =

1

3
[
2 −1 −1
−1 2 −1
−1 −1 2

] [
𝑈1
𝑈2
𝑈3

] (3.2) 

The transformation between the three phases of variables to their components in the 𝛼 − 𝛽 frame is 

done by Clarke transformation as shown below [118]. 

[
𝑈𝛼
𝑈𝛽
] = 𝐴𝛼𝛽

𝑎𝑏𝑐 =
2

3
[
 
 
 1 −

1

2
−
1

2

0
√3

2
−
√3

2 ]
 
 
 

[

𝑈𝑎
𝑈𝑏
𝑈𝑐

] (3.3) 

The transformation of components in the 𝛼𝛽 frame to its components in rotating 𝑑𝑞 reference frame is 

achieved by the Park transformation. The voltage relation between the two reference frames is described 

as. 
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[
𝑈𝑑
𝑈𝑞
] = 𝐴𝑑𝑞

𝛼𝛽
= [

cos 𝜃𝑒 sin 𝜃𝑒
−sin𝜃𝑒 cos 𝜃𝑒

] [
𝑈𝛼
𝑈𝛽
] (3.4) 

Combining Clarke transformation with Park transformation gives the Park-Clarke transformation from 

the three-phase values to the rotating 𝑑𝑞 reference frame, which can be stated by. 

[
𝑈𝑑
𝑈𝑞
] = 𝐴𝑑𝑞

𝑎𝑏𝑐 =
2

3
[
cos 𝜃𝑒 cos( 𝜃𝑒 −

2𝜋

3
) cos( 𝜃𝑒 −

4𝜋

3
)

−sin𝜃𝑒 −sin( 𝜃𝑒 −
2𝜋

3
) −sin( 𝜃𝑒 −

4𝜋

3
)

] [

𝑈𝑎
𝑈𝑏
𝑈𝑐

] (3.5) 

The following can represent the complete model of the PMSM. 

𝑑𝑖𝑑
𝑑𝑡

=
1

𝐿𝑑
(𝑈𝑑 − 𝑅𝑠𝑖𝑑 +𝜔𝑒𝐿𝑞𝑖𝑞) (3.6) 

𝑑𝑖𝑞
𝑑𝑡

=
1

𝐿𝑞
(𝑈𝑞 − 𝑅𝑠𝑖𝑞 −𝜔𝑒𝜆0) (3.7) 

𝑑𝜔𝑒
𝑑𝑡

=
𝑍𝑝
𝐽𝑚
(
3

2
𝑍𝑝𝜆0𝑖𝑞 −

𝐵𝑚
𝑍𝑝
𝜔𝑒 − 𝑇𝐿) (3.8) 

Above  𝑖𝑑, 𝑖𝑞, 𝑈𝑑, 𝑈𝑞 are direct and quadrature current and voltages, 𝑅𝑠, 𝐿𝑑 , 𝐿𝑞 are stator winding 

resistance and 𝑑𝑞 axis inductances. 𝜔𝑒 is the electrical angular velocity. 𝑍𝑝 is the number of pole pairs, and 

 𝜆0 is the back-emf constant. The inertia and viscous damping of the motor are represented by 𝐽𝑚 and 𝐵𝑚 

respectively and 𝑇𝐿 is the load torque. Knowing that 𝐿𝑑 = 𝐿𝑞 = 𝐿𝑠, the electrical characteristic can be 

represented in the Laplace domain as, 

𝐺(𝑠) =
𝑖𝑑(𝑠)

𝑈𝑑(𝑠)
=
𝑖𝑞(𝑠)

𝑈𝑞(𝑠)
=

1

𝐿𝑠𝑠 + 𝑅𝑠
 (3.9) 

The current loop controller is typically a proportional integral (PI) type and can be represented by the 

following transfer function: 

𝐺𝑐(𝑠) =
𝐾𝑝𝑠 + 𝐾𝑖

𝑠
 (3.10) 

The simplified electrical dynamics with PI controller is shown in Figure 3.5. In the block diagram, the 

equivalent rotor back electromagnetic force which acts as a disturbance is denoted by 𝑈𝑒𝑚𝑓. The reference 

and measured current signals are shown by 𝑖𝑟 and 𝑖, respectively. 
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Figure 3.5: Simplified electrical dynamics with PI controller. 

The linear amplifier has a low-pass filter with cut-off frequency, which was 30 kHz in the case of the 

Varedan amplifier. The maximum sampling frequency by dSPACE in the experiments was 30 kHz. As the 

cut-off of this filter is very high, in PI current control parameter setting, its influence can be neglected.  

𝐺𝑓𝑖𝑙𝑡𝑒𝑟(𝑠) =
𝜔𝑛𝑓
2

𝑠2 + 2𝜁𝑓𝜔𝑛𝑓𝑠 + 𝜔𝑛𝑓
2  (3.11) 

By analysis of the block diagram in Figure 3.5, it is expected that a PI-controlled current response will 

have 2nd order dynamics with natural frequency 𝜔𝑛 and damping 𝜁. Additionally, there will also be a zero 

in the numerator, designated with 2𝜋𝑓𝑧.. 

𝐺(𝑠) =
𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2

(𝑠 + 2𝜋𝑓𝑧)

2𝜋𝑓𝑧
=

(
𝜔𝑛
2

2𝜋𝑓𝑧
𝑠 + 𝜔𝑛

2)

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 

(3.12) 

The PI control parameters are correlated to the natural frequency and damping ratio of the system as: 

𝜔𝑛
2 =

𝐾𝑖
𝐿
→ 𝐾𝑖 = 𝐿𝜔𝑛

2 (3.13) 

2𝜁𝜔𝑛 =
𝐾𝑝 + 𝑅

𝐿
→ 𝐾𝑝 = 2𝜁𝜔𝑛𝐿 − 𝑅 (3.14) 

Based on the experimental response of the current loop, the transmission zero frequency 𝑓𝑧 can be 

adjusted to better match the observed frequency response function (FRF), thus helping account for the 

influence of additional or unmodeled dynamics. It is also expected that the measurement may contain a 

pure constant delay (𝑇𝑑), which again can be estimated from the frequency response measurement phase 

graph. 

𝐺𝑑𝑒𝑙𝑎𝑦(𝑠) ≅ 𝑒
−𝑇𝑑𝑠 (3.15) 
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The delay can also be modeled by a second order Padé approximation, which can be used in performing 

simulations to corroborate the model with the observed time-domain signals. 

𝐺𝑑𝑒𝑙𝑎𝑦(𝑠) ≅
1 −

𝑇𝑑
2 𝑠 +

𝑇𝑑
2

12 𝑠
2

1 +
𝑇𝑑
2
𝑠 +

𝑇𝑑
2

12
𝑠2

 (3.16) 

The effective quadrature rate from the encoder at maximum translational velocity of the ball-screw is 

about 52 MHz ( = 262144 [pulses/rev] × 4 [quadrature edges/pulse] × 1000 [mm/s] × 1/20 [rev/mm]). Such 

high frequency can cause problems for achieving the commutation control law around the linear amplifier. 

Moreover, the maximum input analog frequency the dSPACE board (DS3002) can process is 750 kHz. To 

overcome this issue, the resolution of the encoder was lowered to 2500 pulses/rev, to generate encoder 

signals at maximum frequency of 500 kHz in the worst-case scenario. 

Figure 3.6 shows the overall schematic of the experimental setup, which includes the dSPACE 

platform, the linear amplifier, the PWM driver, and the permanent magnet synchronous motor. As can be 

seen from the figure, the PWM driver is only used to decode the rotary encoder data into an analog signal 

that can be sent to the dSPACE system. The commutation of the PMSM is carried out using the dSPACE 

and linear amplifier. The two-input sinusoidal command signals are sent to the linear amplifier from the 

dSPACE. The current sensors on the linear amplifier (LEM-LAH 25-NP) are used as the feedback in the 

current loop diagram. It is worth noting that this is a synthesized current monitor and does not reflect the 

full bandwidth of the current signals. This signal shows some quantization, and it is used primarily for 

diagnostic monitoring. For this reason, additional current transducers (Tamura-LA01P035S05) were added 

to the experimental setup, to measure the actual current response of the system as shown in Figure 3.6. 

While in the actual implementation the three phases were measured separately, only two current transducers 

are sufficient to obtain the current in the third phase. 

https://www.lem.com/sites/default/files/products_datasheets/lah_25-np.pdf
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 Figure 3.6: Schematic of the current-loop implementation. 

The linear amplifier in sinusoidal mode requires an external controller to properly commutate the two-

phase current commands for the motor, as low voltage signal 𝑈𝑎 , 𝑈𝑏, as shown in  Figure 3.6. The third 

command signal is generated internally in the amplifier. Figure 3.7 shows the block diagram of the current 

loop with a PI controller and PMSM dynamics. The rotary encoder signal is used for the commutation using 

the inverse of Park transformation.  

Since the encoder is an incremental type, a homing procedure is required to synchronize the electrical 

angle 𝜃𝑒 = 𝑍𝑝𝜃𝑟  of the PMSM with the stator phases. This angle is essential to transform the 𝑑𝑞 frame 

inputs into the two-phase sine inputs (inverse Park transformation). The z-index pulse of the rotary encoder 

is obtained by the slow rotation of the rotor using sinusoidal waves with 120-degree phase shifts as inputs 

in 𝑎𝑏𝑐-frame. Once the index pulse is generated, the input signal is changed to a constant. Consequently, 

the rotor locks magnetically and is aligned with the nearest active stator winding. While one winding has a 

constant current value, the other two have half of this amount in the negative direction. The abrupt change 

of current value to a constant (i.e., step) causes an oscillation in the position response of the rotor. In the 

implementation, a stabilization time is considered to let this oscillation dissipate.  

The PI control parameters were identified from the servo motor current loop frequency response 

measurement using the values from Table 3.1 and estimated parameters (inertia and viscous damping). 
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Figure 3.7: Block diagram of the current-loop controller and PMSM dynamics. 

The total dynamics of the system includes the effect of the controller, open-loop plant, a second order 

low-pass filter and the estimated pure constant delay. The measurement was carried out with a sampling 

frequency of 20 kHz using a band-passed (between 1 Hz -10 kHz) white noise excitation at 0.5 V amplitude. 

The amplitude of the input signal was chosen sufficiently small so that nonlinear distortion (slew rate 

limiting) is avoided. Considering the band-limited white noise excitation 𝑥(𝑡) as a complex, wide-sense 

stationary (i.e. its mean and autocorrelation functions are time invariant), random process with the 

autocorrelation function 𝑅𝑥𝑥(𝜏), the continuous-time Fourier transform of its autocorrelation function is 

defined by [119]: 

𝑃𝑥𝑥(𝜔) = ∫ 𝑅𝑥𝑥(𝜏)𝑒
−𝑗𝜔𝜏𝑑𝜏

∞

−∞

 (3.17) 

The power spectral density (PSD) of the output 𝑦(𝑡), induced by the input excitation signal 𝑥(𝑡) is 

given by [119]: 

𝑃𝑦𝑦(𝜔) = |𝐻𝑥𝑦(𝜔)|
2
𝑃𝑥𝑥(𝜔) 

(3.18) 
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Above, 𝐻𝑥𝑦(𝜔) is the frequency response measurement for the SISO system in Eq. (3.9). The 

magnitude-squared coherence is a function of the power spectral densities, 𝑃𝑥𝑥(𝜔),  𝑃𝑦𝑦(𝜔), and the cross 

power spectral density 𝑃𝑥𝑦(𝜔) = ∫ 𝑅𝑥𝑦(𝜏)𝑒
−𝑗𝜔𝜏𝑑𝜏

∞

−∞
 of 𝑥 and 𝑦 signals [119]: 

𝐶𝑥𝑦(𝜔) =
|𝑃𝑥𝑦(𝜔)|

2

𝑃𝑥𝑥(𝜔)𝑃𝑦𝑦(𝜔)
, 0 ≤ 𝐶𝑥𝑦(𝑗𝜔) ≤ 1 (3.19) 

Figure 3.8 shows the measured current loop from DC to 10 kHz with a resolution of 1 Hz (left column) 

and the magnitude-squared coherence function (right column) of the measurement. In order to enhance the 

spectral estimation, Welch’s overlapped averaged periodogram method [120] was applied using the cpsd 

command in MATLAB. The measurement data series of ten seconds (for both input and output vectors) 

was divided into ten frames with 50% overlap. A Hanning window was applied to minimize the leakage 

effect. The estimated transfer function 𝐺(𝑠) (Eq. (3.12)) is overlaid on top of the experimental data. As can 

be seen, the theoretical transfer function captures the dynamics of the measured current loop up to about 5 

kHz. The bandwidth of the current loop controller is significantly higher with the linear amplifier (~ranging 

between 1.5 … 5 kHz) compared to using the PWM driver (388 Hz). The measured time delay from the 

FRF is approximately 0.0394 ms, which is about one-tenth of the delay measured by the PWM driver (0.33 

ms). Table 3.2 shows a summary of the current loop identified parameters based on the measured data 

shown in Figure 3.8.  

 

Figure 3.8: Measured and estimated FRF of the current loop dynamics (left), coherence of the FRF 

(right). 
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Table 3.2: Summary of the identified current loop dynamics. 

Parameter Value Unit 

𝐾𝑝 69.47 [𝑉 𝐴⁄ ] 

𝐾𝑖 1.06 [𝑉 (𝐴 ∙ 𝜇𝑠)⁄ ] 

𝑇𝑑 0.0394 [𝑚𝑠] 

𝐾𝑎 5.5 [𝐴 𝑉⁄ ] 

𝑓𝑧 1600 [𝐻𝑧] 

𝜔𝑛 2594 [𝐻𝑧] 

𝜁 0.53 [ ] 

𝐵𝑊 1.5 … 5 [𝑘𝐻𝑧] 

A time-domain simulation was run to further validate the modeling of the current loop response using 

a chirp signal with linearly increasing frequency as the input. The instantaneous frequency of the excitation 

is expressed by: 

𝑓(𝑡) = 𝑓0 + 𝑘𝑡   (3.20) 

Above, 𝑓0 is the starting frequency, 𝑡 is the current time, and 𝑘 is the rate of frequency change. It can 

be calculated from the following: 

𝑘 =
𝑓1 − 𝑓0
𝑇

   (3.21) 

In the above equation, 𝑓1 is the final frequency, and 𝑇 is the final time. The linear chirp signal can be 

stated by [121]: 

𝑑(𝑡) = 𝐴 ∙ sin (2𝜋 ∙ (𝑓0𝑡 + 𝑘
𝑡2

2
)) (3.22) 

where 𝐴 is the amplitude. The slew rate (𝑑𝑖𝑎 𝑑𝑡⁄ = 𝑈𝑎 𝐿⁄ ) limits the maximum rate of change of the output 

of the amplifier. This effect was considered in the time-domain simulation to emulate the dynamics of the 

current loop more precisely. Then, an experiment was performed using a similar excitation signal (𝐴 =

 0.5 𝑉 amplitude chirp signal 1 Hz-10 kHz). As can be observed from Figure 3.9, the simulated response is 

in good agreement with the experimental data up to 1.2 kHz, while it begins to deviate at higher frequencies. 

Due to slew rate limiting, small-amplitude input signals result in a higher bandwidth than larger amplitudes, 

since the distortion effect (slew rate = 2𝜋𝑓𝑉𝑝𝑒𝑎𝑘) becomes less dominant. This effect has been shown in 
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Figure 3.10. The minimum achievable bandwidth of the current loop dynamics is 1523 Hz at the 𝑉𝑝𝑒𝑎𝑘= 

8V which is approximately four times higher than the bandwidth of the PWM driver.  

 

Figure 3.9: Measured and simulated current loop responses using a chirp excitation signal. 

 

Figure 3.10: Measured frequency response of the linear amplifier current loop dynamics at different 

output voltages. 
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Figure 3.11 and Table 3.3 show a comparison between the performance of the linear amplifier and the 

PWM driver. Time delay effect imposes an upper bound limit on achievable bandwidth of the closed-loop 

system (𝜔𝑐𝑙 < 1 𝜏𝑑𝑒𝑙𝑎𝑦⁄ ), and this directly affects the performance of tracking and disturbance rejection. 

 

Figure 3.11: Measured linear amplifier vs measured 

PWM current loop frequency responses. 

 

Table 3.3: Current loop dynamics linear 

amplifier vs. PWM driver. 

Parameter Linear 

amplifier 

PWM 

driver 

Bandwidth 1.523 kHz 388 Hz 

Time delay 0.0394 ms 0.33 ms 
 

 

3.5. Identification of Rigid Body Dynamics 

A method similar to that described by Erkorkmaz and Altintas [4] was used to perform the identification 

of rigid-body dynamics, using a Least-Squares (LS) parameter identification. The transfer function between 

the amplifier input voltage 𝑈𝑞 (i.e., motor torque command) and angular velocity of the motor rotor 𝜔 can 

be described by the following expression. 

𝜔

𝑈𝑞
=
𝐾𝑡𝐾𝑎
𝐵𝑚

𝐵𝑚
𝐽𝑚

𝑠 +
𝐵𝑚
𝐽𝑚

 (3.23) 

The discrete-time form of Eq. (3.23) using the zero-order hold equivalent discretization transformation 

can be stated as. 

𝐵(1 − 𝑒−𝐴𝑇𝑠)

𝑧 − 𝑒−𝐴𝑇𝑠
=

𝑄

𝑧 − 𝑃
 (3.24) 
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In the above equation, 𝐴 = −
1

𝑇𝑠
𝑙𝑛𝑃, 𝐵 = 

𝑄

1−𝑒𝐴𝑇𝑠
 where 𝑃 = 𝑒−𝐴𝑇𝑠 and 𝑄 = 𝐵(1 − 𝑒−𝐴𝑇𝑠). To obtain 

the difference equation Eq. (3.24) is inverse transformed. 

𝜔𝑘+1 = 𝑃𝜔𝑘 + 𝑄𝑈𝑞,𝑘 (3.25) 

A Coulomb friction term model (𝑑𝑓) is added to Eq. (3.25) to reduce the input amplitude dependent 

bias in the estimation of the system parameters, 

𝑑𝑓(𝜔𝑘) = 𝐴(𝜔𝑘) ∙ 𝑑
+ + 𝐵(𝜔𝑘) ∙ 𝑑

− (3.26) 

𝜔𝑘+1 = 𝑃𝜔𝑘 + 𝑄(𝑈𝑞,𝑘 − 𝑑𝑓(𝜔𝑘)) (3.27) 

In Eq. (3.26) 𝑑+, and 𝑑−are the Coulomb coefficients in positive and negative directions of motion. 

The following equation shows the construction of the regressor matrix Ф, for the parameter estimate vector 

𝜃. The output (𝜔) and input (𝑈𝑞) vectors are 𝑌 and 𝑈 respectively.  

[

𝑦2
𝑦3
⋮
𝑦𝑛

]

⏟
𝑌

= [

𝑦1 𝑢1 −𝐴𝑦1 −𝐵𝑦1
𝑦2 𝑢2 −𝐴𝑦2 −𝐵𝑦2
⋮ ⋮ ⋮ ⋮

𝑦𝑛−1 𝑢𝑛−1 −𝐴𝑦𝑛−1 −𝐵𝑦𝑛−1

]

⏟                      
Ф

[

𝑃
𝑄

𝑄𝑑+

𝑄𝑑−

]

⏟  
𝜃

+ [

𝑒2
𝑒3
⋮
𝑒𝑛

]

⏟
𝐸

 (3.28) 

The estimated parameters are 𝜃 = (Ф𝑇Ф)−1Ф𝑇𝑌, 𝑑+ = 𝐾𝑡𝐾𝑎 ∙ (𝜃3 𝜃2)⁄ , 𝑑− = 𝐾𝑡𝐾𝑎 ∙ (𝜃4 𝜃2)⁄ , 𝐵𝑚 =

𝐾𝑡𝐾𝑎 𝐵⁄ , and 𝐽𝑚 = 𝐵𝑚 𝐴⁄ . 𝜃1, … 𝜃4 represent the entries of the estimated parameter vector. In this 

estimation, the PWM driver was used as the actuation system, with input application and data collection 

from the setup at 20 kHz. The applied excitation is shown in Figure 3.12. The estimated rotor inertia (see 

Table 3.4) is in close agreement with the manufacturer’s data sheet (9.5 × 10−4 𝑘𝑔.𝑚2).  

Table 3.4: Estimated inertia and viscous coefficients of the servo motor.  

Parameter Value Unit 

𝐽𝑚 9.57 × 10−4  𝑘𝑔.𝑚2 

𝐵𝑚 0.0069 (𝑁𝑚)/(𝑟𝑎𝑑/𝑠) 

Considering the peak torque (9.55 𝑁𝑚), the motor torque constant (0.41 𝑁𝑚/𝐴), and the maximum 

control signal amplitude (10 𝑉), the PWM amplifier gain is 𝐾𝑎 = 2.3293 𝐴/𝑉. Figure 3.12  illustrates the 

predicted and measured velocity responses, prediction errors, and input signals used for estimation of the 

ball-screw drive’s rigid body parameters. A moving average filter was applied to smoothen the velocity 
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estimation obtained by differentiating the rotary encoder readings. While the estimated value of inertia 

remains constant at different amplitudes of excitation, the estimation of viscous damping and Coulomb 

coefficients vary slightly. For that reason, the Stribeck curve in Section 3.8 is used to further adjust the 

viscous damping term and to correct for overestimation. The Coulomb coefficients can also be obtained 

from the friction curve in the sliding regime. Table 3.5 shows the estimated rigid body parameters of the 

ball-screw drive using the PWM driver as the actuation system. In later sections, the inertia and viscous 

damping values are also further adjusted to match the low-frequency characteristics of the frequency 

response measurements. 

 

Figure 3.12: Predicted and actual velocity responses, 

perdition error, and the input signal. 

Table 3.5: Estimated rigid body parameters of 

the ball-screw drive.  

Parameter Value Unit 

𝐽 0.0022 𝑘𝑔.𝑚2 

𝐵 0.0052 𝑁𝑚 (𝑟𝑎𝑑/𝑠)⁄  

𝑑𝑐𝑜𝑢𝑙
+  0.119 𝑁𝑚 

𝑑𝑐𝑜𝑢𝑙
−  −0.134 𝑁𝑚 

 

 

3.6. Frequency Response Measurement using Linear Amplifier 

Due to the high power dissipation in the linear amplifier, the application of the random type (Gaussian 

white noise) resulted in imperfect quality frequency response measurements. Thus, the frequency response 

of the ball-screw drive was obtained using a sine-sweep test at 4 V amplitude excitation and frequencies 

between 10…1600 Hz. The data was collected at 15 kHz. Indeed, stepped-sine excitation enabled enough 

power to be applied at each frequency to generate meaningfully detectable motion. The measurement was 

carried out while the axis was stationary. Figure 3.13 show the position and acceleration responses 

registered from the rotary and linear encoders. As can be seen, the rotary encoder response is affected by 

the noise at high frequencies. 
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Figure 3.13: Rotary and linear encoder position (upper-hand panels) and acceleration (lower-hand panels) 

frequency responses. 

3.7. Modeling and Identification of a Lumped Two-Inertia System Model 

The rotary and linear encoder responses of the ball-screw drive to the inputs of actuation (i.e., control) 

𝑢 and disturbance 𝑑 was measured using stepped-sine motor torque commands and impact hammer testing. 

The resulting FRF data was used to identify a two-inertia discrete element model similar to the one shown 

in Figure 2.1. In the sweep sine measurements, the high-bandwidth linear amplifier (see Section 3.4) was 

used to provide the actuation system. According to measured FRFs, the first axial mode of vibration was 

observed at 132 Hz, with a damping ratio of 0.02. Based on this mode, the parameters for the two lumped-

mass model were identified as: 𝑚1 = 5.49 × 10
−4 𝑉 (𝑟𝑎𝑑 𝑠2⁄ )⁄ , 𝑚2 = 1.51 × 10

−4 𝑉 (𝑟𝑎𝑑 𝑠2⁄ )⁄ , 𝑏1 =

4 × 10−4 𝑉 (𝑟𝑎𝑑 𝑠⁄ )⁄ , 𝑏2 = 0 𝑉 (𝑟𝑎𝑑 𝑠⁄ )⁄  (air guideway system), 𝑘 = 81.4549𝑉 𝑟𝑎𝑑⁄ , and 𝑐 =
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0.0075𝑉 (𝑟𝑎𝑑 𝑠⁄ )⁄ . These values were obtained by trial-and-error tuning of the mass ratio (knowing the 

total inertia) and comparing the synthesized FRF’s with the measured ones, for both amplifier torque 

command input (𝑢, measured by sine sweeping), and the tableside disturbance force input (𝑑, measured by 

impact hammer testing). The axial stiffness of the ball-screw mechanism 𝑘𝑎𝑥𝑖𝑎𝑙 includes a combination of 

the system’s relevant axial flexibilities, namely the axial rigidity due to the bearing and its mounting support 

𝑘𝑏𝑒𝑎𝑟𝑖𝑛𝑔; the equivalent axial rigidity of the ball-screw shaft 𝑘𝑠ℎ𝑎𝑓𝑡; and the rigidity of the preloaded nut 

𝑘𝑛𝑢𝑡. This results in 𝑘𝑎𝑥𝑖𝑎𝑙
−1 = 𝑘𝑠ℎ𝑎𝑓𝑡

−1 + 𝑘𝑏𝑒𝑎𝑟𝑖𝑛𝑔
−1 + 𝑘𝑛𝑢𝑡

−1 . 

 

Figure 3.14: Measured (dashed line) and modeled (solid line) open-loop FRFs. 

Considering Figure 3.14, the identified model is in reasonable agreement with the experimental data 

for the control input and load side disturbance. Selecting the state vector as 𝑥 = [𝑥2 𝑥̇2 𝑥1 𝑥̇1]
𝑇 yields 

the following state-space system:  

[

𝑥̇2
𝑥̈2
𝑥̇1
𝑥̈1

]

⏟
𝑥̇

=

[
 
 
 
 
 
0 1 0 0

−
𝑘

𝑚2
−
𝑐 + 𝑏2
𝑚2

𝑘

𝑚2

𝑐

𝑚2
0 0 0 1
𝑘

𝑚1

𝑐

𝑚1
−
𝑘

𝑚1
−
𝑐 + 𝑏1
𝑚1 ]

 
 
 
 
 

⏟                        
𝐴

[

𝑥2
𝑥̇2
𝑥1
𝑥̇1

]

⏟
𝑥

+

[
 
 
 
 
0
0
0
1

𝑚1]
 
 
 
 

⏟
𝐵

[𝑢]⏟
𝑢

+

[
 
 
 
 
0

−
1

𝑚2
0
0 ]
 
 
 
 

⏟    
𝑊

[𝑑]⏟
𝑑

 (3.29) 
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3.8. Identification of a Stribeck-Type Friction Model using a Kalman Filter 

A proportional derivative (PD) controller was designed with a low crossover frequency of 7 Hz to 

estimate the static friction from the experimental setup. The low crossover frequency, achieved via small 

feedback gains, allows sufficient motor torque to be generated to overcome static friction and initiate 

primarily rigid-body motion, while leaving the feed drive’s mid- and high-frequency pole locations 

relatively unaltered. The worktable was jogged at constant velocities in forward and backward motion while 

capturing the control input signal. The following captures the state-space formulation of the system, 

including an equivalent disturbance input to represent friction. 

[
𝜃̇(𝑡)
𝜔̇(𝑡)

] = 𝐴𝑐 [
𝜃(𝑡)
𝜔(𝑡)

] + [𝐵𝑐 −𝐵𝑐] [
𝑢(𝑡)
𝑑(𝑡)

], 𝐴𝑐 = [
0 1
0 𝑃𝑣

] , and 𝐵𝑐 = [
0
𝐾𝑣
] (3.30) 

Above, 𝜃 and 𝜔 are the angular position and velocity, and 𝐴𝑐 and 𝐵𝑐 are the continuous system and 

input matrices. In the above equation, 𝑃𝑣 and 𝐾𝑣 are defined by 𝑃𝑣 = −𝐵 𝐽⁄  , and 𝐾𝑣 = 𝐾𝑎𝐾𝑡 𝐽⁄ . The 

discrete-time state-space model can be described by the following, using the zero-order hold equivalent 

discretization transformation [69].  

[
𝜃(𝑘 + 1)
𝜔(𝑘 + 1)

]
⏟      

𝑥(𝑘+1)

= 𝐴𝑑 [
𝜃(𝑘)
𝜔(𝑘)

]
⏟    
𝑥(𝑘)

+ [𝐵𝑑 −𝐵𝑑] [
𝑢(𝑘)
𝑑(𝑘)

]
⏟  
𝑈(𝑘)

 (3.31) 

Above, 𝐴𝑑 , 𝐵𝑑, 𝐶𝑑 are the discrete-time state transition, input and output matrices. For better estimation 

of the input torque, a Kalman filter [122] was designed which considers the rigid body feed drive model. 

In designing the Kalman filter, the disturbance dynamics was considered an integrated white noise process 

(e.g., random walk): 𝑑(𝑘) = 𝑑(𝑘 − 1) + 𝑤𝑑(𝑘). Thus, the Kalman filter can be expressed as a discrete-

time system, given by the following: 

[

𝜃(𝑘)
𝜔̂(𝑘)

𝑑̂(𝑘)

]

⏟    
𝑧̂(𝑘)

= (1 − 𝐾𝑜𝑏𝑠𝐶𝑑)𝐴𝑑⏟          
𝐴𝑧

[

𝜃(𝑘 − 1)

𝜔̂(𝑘 − 1)

𝑑̂(𝑘 − 1)

]

⏟      
𝑧̂(𝑘−1)

+ (1 − 𝐾𝑜𝑏𝑠𝐶𝑑)𝐵𝑑⏟          
𝐵𝑧

[𝑢(𝑘 − 1)]⏟      
𝑈(𝑘−1)

+ 𝐾𝑜𝑏𝑠 [
𝜃𝑚(𝑘)
𝜔𝑚(𝑘)

]
⏟    
𝑌𝑚(𝑘)

 (3.32) 

In the Eq. (3.32), 𝐾𝑜𝑏𝑠 represents the observer gain. 𝐴𝑧, and 𝐵𝑧, are the augmented model state, and 

input matrices for rigid body dynamics. 𝑑̂ is the estimated disturbance, which is mainly attributed to friction, 

and 𝜃, 𝜔̂, 𝜃𝑚, and 𝜔𝑚 are the estimated and measured angular position and velocity signals, respectively. 

Further details of the state-space modeling and Kalman filter design for friction estimation can be found in 

[4]. 
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In the design of the Kalman filter, the process input perturbation and measurement noise statistical 

properties also need to be determined or tuned. The input to the current amplifier is generated by a 16-bit 

DAC converter between ±10 V. The resolution of the input voltage is 𝛿𝑢 = 20 216⁄  𝑉. Thus, assuming a 

uniform random distribution of input error, caused by the DAC quantization, the variance for the input can 

be calculated as 𝑅𝑢̃ = (𝛿𝑢)
2 12 = 7.61 × 10−9 𝑉2⁄ . The detailed derivation can be found in [4].The 

resolution of the encoder after 400 times interpolation of the sinusoidal signal is 𝛿𝜃 =

2𝜋 (5000 × 400)⁄  𝑟𝑎𝑑, which is equivalent to 10 nm of the worktable linear motion. The position 

measurement variance can be calculated as 𝑅𝜃̃ = (𝛿𝜃)
2 12 = 8.2247 × 10−13 𝑟𝑎𝑑2⁄ . The variance of the 

perturbation 𝑅𝑤𝑑 = 𝑣𝑎𝑟{𝑤𝑑} in the random walk disturbance model 𝑑(𝑘 + 1) = 𝑑(𝑘) + 𝑤𝑑(𝑘) is used as 

a tuning parameter, and adjusted to give a quick estimate of the detected friction force while avoiding an 

excessively oscillatory or noisy signal. Its value was tuned to be 7.7 × 10−10 [V2]. The optimal observer 

gain 𝐾𝑜𝑏𝑠 can thus be computed by iterating the following equation. 

𝑃𝑘|𝑘−1 = 𝐴𝑑𝑃𝑘−1|𝑘−1𝐴𝑑
𝑇 +𝑊𝑅𝑤𝑊

𝑇 

𝐾𝑜𝑏𝑠(𝑘) = 𝑃𝑘|𝑘−1𝐶𝑑
𝑇[𝐶𝑑𝑃𝑘|𝑘−1𝐶𝑑

𝑇 + 𝑅𝑣]
−1 

𝑃𝑘|𝑘 = [𝐼 − 𝐾𝑜𝑏𝑠(𝑘)𝐶𝑑] 𝑃𝑘|𝑘−1 

(3.33) 

Above 𝑅𝑤 = 𝑑𝑖𝑎𝑔{𝑅𝑢̃, 𝑅𝑤𝑑} and 𝑅𝑣 = 𝑅𝜃̃. The first part of the above equation is the propagation of 

the covariance of state estimation. 𝑊 matrix indicates how the process noise vector [𝑢̃ 𝑤𝑑]
𝑇 affects the 

state transition. In the second line, optimal gain is computed to minimize 𝑡𝑟{𝑃𝑘|𝑘}, i.e. the covariance of 

state estimation error. In the last line, the state estimation error is updated based on the calculated optimal 

gain. In iterating the calculation, 𝑃𝑘|𝑘 is initially set to a large value of, e.g.,  𝛼𝐼 =  1010. For the identified 

system model and specified covariance terms, the observer gain was eventually obtained as 𝐾𝑜𝑏𝑠 =

[0.0791 43.1409 −6.5674]𝑇. Using the resulting Kalman filter, Figure 3.15 shows the measured and 

estimated disturbance signals at 15 mm/s and 100 mm/s jogging speeds. 
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Figure 3.15: Measured motor torque command and estimated disturbance with Kalman filtering at 15 

mm/s and 100 mm/s. 

The identified Stribeck curve for velocities between zero and 350 mm/s is shown in Figure 3.16. The 

over-estimated viscous damping from rigid body identification was further modified by (∆𝑏) by considering 

the negative slope in the originally estimated Stribeck curve (black dotted characteristic). With this 

correction, the value of 𝐵 was updated from 1.6 × 10−3 to 9.02 × 10−4 𝑁𝑚/(𝑟𝑎𝑑/𝑠). Then, the updated 

viscous damping was used once more in augmented state formulation, and re-design of the Kalman filter, 

which then yielded the updated Coulomb friction characteristic in Figure 3.16 shown with the blue dotted 

line. 

 

Figure 3.16: Stribeck curve. 

The friction parameters were identified based on the following model, also used in [4]. 
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𝑑 = {
𝐴+𝑒

−𝑣
𝑉1
+⁄
+ 𝐵+𝑒

−𝑣
𝑉2
+⁄
+ 𝑑𝑐𝑜𝑢𝑙

+ , 𝑣 > 0

𝐴−𝑒
−𝑣

𝑉1
−⁄ + 𝐵−𝑒

−𝑣
𝑉2
−⁄ + 𝑑𝑐𝑜𝑢𝑙

− , 𝑣 < 0
 (3.34) 

The static friction terms can be stated as: 

𝑑𝑠𝑡𝑎𝑡 = {
𝐴+ + 𝐵+ + 𝑑𝑐𝑜𝑢𝑙

+ , 𝑣 > 0

𝐴− + 𝐵− + 𝑑𝑐𝑜𝑢𝑙
− , 𝑣 < 0

 (3.35) 

In the above equations 𝑑𝑐𝑜𝑢𝑙 and 𝑑𝑠𝑡𝑎𝑡 are the Coulomb and static friction terms, and 𝐴, 𝐵, 𝑉1, and 𝑉2 

are the exponential term coefficients and velocity constants. The positive and negative subscripts denote 

the direction of the motion. Table 3.6 shows the identified parameters from the Eq. (3.34) and (3.35).  

Table 3.6: Identified Stribeck friction parameters.   

𝐴+ 𝐵+ 𝑉1
+ 𝑉2

+ 𝑑𝑐𝑜𝑢𝑙
+  𝑑𝑠𝑡𝑎𝑡

+  

(𝑁𝑚) (𝑁𝑚) (𝑚𝑚/𝑠) (𝑚𝑚/𝑠) (𝑁𝑚) (𝑁𝑚) 

0.662 -0.37 38.98 60.1 0.334 0.6263 

𝐴− 𝐵− 𝑉1
− 𝑉2

− 𝑑𝑐𝑜𝑢𝑙
−  𝑑𝑠𝑡𝑎𝑡

−  

(𝑁𝑚) (𝑁𝑚) (𝑚𝑚/𝑠) (𝑚𝑚/𝑠) (𝑁𝑚) (𝑁𝑚) 

-0.373 -0.015 21.26 524.78 -0.321 -0.71 

The parameters were estimated using least squares involving both nonlinear and linear iterations. This 

model is later used in Chapter 5 and Chapter 6 for feedforward compensation of the Stribeck effect of 

friction, in the controller design.  

 

3.9. Identification of Friction Considering the Generalized Maxwell-Slip (GMS) Model  

The GMS friction model is used to capture the pre-siding behavior of systems with noticeable stick-

slip behavior. In this context, it has also been applied to the ball-scerw drive. Load side displacement 

measurements were realized while applying sinusoidal torque command excitations at different amplitudes 

with a relatively low frequency (0.1 Hz). The data obtained helps identify the so-called ‘virgin curve’ used 

to build the GMS model [35]. Figure 3.17 shows the transition from pre-sliding to sliding regime, through 

gradual increase in the excitation amplitude.   
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Figure 3.17: Experimental friction torque vs. load side displacement at different amplitudes of excitation 

(frequency of excitation: 0.1 Hz).   

The estimated breakaway torque and corresponding displacement are at 0.327 Nm, and 0.031 mm. Here 

a GMS model with seven elementary slip-blocks is chosen that consists of seven 𝛼𝑖 and 𝑘𝑖 (incremental 

torque contribution factors and stiffness values) parameters estimated from the piecewise linear 

approximation of the virgin curve (Figure 3.18). Each elementary component slips when the friction force 

equals the maximum value 𝑊𝑖 = 𝛼𝑖𝑆(𝑣) for that element (see Eq. (2.7)). Table 3.7 shows the summary of 

the identified pre-sliding parameters. A factor of 𝐶 = 𝐹𝑠 𝜏𝑐⁄  = 13.53 𝑁𝑚/𝑠 with a time constant of 𝜏𝑐 = 

0.05 s was used to denote the rate at which the friction force transitions from pre-sliding into the Stribeck 

sliding regime. 

𝑘𝑎 = 𝑘1 + 𝑘2 +⋯+ 𝑘7 

𝑘𝑏 = 𝑘2 + 𝑘3 +⋯+ 𝑘7 

𝑘𝑐 = 𝑘3 + 𝑘4 +⋯+ 𝑘7 

𝑘𝑑 = 𝑘4 + 𝑘5 +⋯+ 𝑘7 

𝑘𝑒 = 𝑘5 + 𝑘6 + 𝑘7 

𝑘𝑓 = 𝑘6 + 𝑘7 

𝑘𝑔 = 𝑘7 

 

(3.36) 
Table 3.7: Identified pre-sliding GMS model 

parameters.   

𝛼𝑖 𝑘𝑖(𝑁𝑚/𝑚𝑚) 

0.2147 97.19 

0.1289 19.37 

0.0835 4.68 

0.0782 2.2 

0.0717 1.19 

0.1804 2.22 

0.2427 2.47 
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Figure 3.18: Virgin curve with selected knots for identification of stiffness in pre-sliding regime (left), 

and the measured and estimated virgin curves (right). 

The steady-state behavior of the friction in sliding regime is described by Eq. (2.6). Figure 3.19 shows 

the measured and fitted static friction curves. Table 3.8 shows the summary of the static friction identified 

parameters. The effect of viscous friction is added as a separate term using the corrected estimation term 

from Section 3.8.  

  

Figure 3.19: The Stribeck curve used in GMS 

model. 

Table 3.8: Identified sliding GMS model parameters.   

𝐹𝑠(𝑁𝑚) 𝐹𝑐(𝑁𝑚) 𝑉𝑠(𝑚𝑚/𝑠) 𝛿 

0.6765 0.3270 31.83 1 
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3.10. Friction Compensation using Stribeck-Type Model vs. GMS Model 

In order to verify the effectiveness of the estimated friction model, especially in respresenting and 

compensating the actuatl friction, a closed-loop tracking experiment was conducted using a jerk-limited 

motion profile with 200 mm/s translational speed, 816.5 mm/s2 acceleration, and 5000 mm/s3 jerk values. 

The feedback loop is based on the P-PI cascade controller, which will be presented in Section 5.3. Figure 

3.20 shows the tracking results without feedforward friction compensation, compensation using the 

Stribeck model from Section 3.8, and compensation using the GMS model from Section 3.9. 

 

Figure 3.20: Tracking error profile without compensation, with Stribeck model-based compensation, and 

with GMS model-based compensation. 

The summary of the tracking experiment is shown in Table 3.9. As can be seen, the GMS friction model 

makes an additional 14.9 % improvement over the Stribeck model for the maximum value of the tracking 

error. However, the improvement in the RMS of the tracking error (7.1 %) is less since the GMS model 

behaves like the Stribeck model in the sliding regime. This can be verified from the zoomed views of the 

tracking error profile. While the GMS feedforward compensation significantly reduces the peak value of 

the tracking error, especially when transitioning from the sticking regime, the higher velocity part of the 

compensation is identical that of Stribeck-based compensation. This portion of the tracking error also has 

a noticeable harmonic component, due to the lead (i.e., helix) imperfections in the ball-screw as well as 

potential mechanism and sensor misalignments. The harmonic error, however, is compensated separately 

using AFC in Chapter 6. 
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Table 3.9: Friction compensation using Stribeck-type model vs GMS model. 

Tracking error (RMS) (µm) Max. tracking error (µm) 

w/o comp. w/ Stribeck w/ GMS w/o comp. w/ Stribeck w/ GMS 

4.2 3.6 (14.3%) 3.3 (21.4%) 34.2 26.5 (22.5%) 21.4 (37.4%) 

 

3.11. Vibration Modal Analysis 

A vibration modal analysis of the ball-screw setup was carried out using two different methods. First, 

the peak-picking method [24] was applied for modal parameter estimation and then the PolyMAX method 

[123] was used to analyze the vibratory behavior. In the peak-picking method (similar to circle fitting in 

the complex numbers’ domain), the modes are locally fitted and their estimated transfer functions are 

stacked, while in the PolyMAX method (similar to least squares complex exponential (LSCE) method) the 

natural frequencies and damping ratios of several modes are analyzed simultaneously, and parameters are 

estimated to achieve a good fit across the frequency spectrum of interest. The data acquisition of the first 

method (peak-picking method) was performed using CutPRO software, MalTF module. Ideally, modal 

analysis should be unaffected by the roving of the accelerometer or the hammer, if the measurement artefact 

is a linear elastic system. This is due to the reciprocity principle applicable to such systems, implying that 

a compliance transfer function for exciting at point A and measuring at point B should be identical to the 

case where the actuation and measurement points are switched (𝐺𝐴𝐵(𝜔) = 𝐺𝐵𝐴(𝜔)). 

For expediency, the measurements were carried out by roving of the hammer along specific points on 

the feed drive table geometry, while the accelerometer was fixed at one reference point, which ideally 

should not be a nodal (zero) vibration point for any of the vibration modes of interest. The FRFs were 

captured along different planes of motion, in order to accumulate enough spatial information about each 

observed mode. In this method, the mode shapes associated with each vibration mode were drawn manually 

on 2D planes as shown in the left-hand panel of Figure 3.26. While slower and less accurate compared to 

using automated modal analysis algorithms, such practice of manually estimating modal parameters and 

sketching out mode shapes is especially helpful in establishing a solid intuitive understanding of the plant’s 

modal characteristics, and also in verifying the accuracy of the automatically fitted modes by an algorithm, 

such as PolyMAX, afterwards.  

Figure 3.21 shows the locations of the impact points and the accelerometer, as placed on the feed drive’s 

moving table, in different testing scenarios. 
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(a) 

 

(b) 

 

(c) 

Figure 3.21: Impact locations for peak-picking method (a) Impact in x and y-direction and measuring in 

the x-direction (axial), (b) Impact and measurement in the y-direction (lateral) (c) Impact and 

measurement in the z-direction. 

A Dytran 5802A impact sledgehammer with 1.36 kg head weight was used to excite the table up to 1 

kHz with a 0.5 Hz measurement resolution. The sensitivity of the impact hammer is 0.24279 mV/N. The 

accelerometer, in this case, was a one-dimensional Dytran 3035 with a sensitivity of 98.8 mV/g. The 

measurement spectrum was verified by inspecting the coherence function of the recorded impact force. 

The accelerance FRF is defined as the acceleration magnitude per force at each frequency as: 

𝛼(𝜔) =
𝑥̈(𝜔)

𝐹(𝜔)
= −𝜔2

𝑥(𝜔)

𝐹(𝜔)
 (3.37) 

The accelerance can be approximated as the superposition 𝑁 of second-order systems as follows:  

𝛼(𝜔) =∑−𝑟𝑖
2𝜙𝑖

′(𝑟𝑖)

𝑁

𝑖=1

=∑
−𝑟𝑖(𝜔)

2𝐾𝑖
′

1 − 𝑟𝑖(𝜔)
2 + 𝑗2𝜁𝑖𝑟𝑖(𝜔)

𝑁

𝑖=1

 (3.38) 

Above, 𝜙𝑖(𝑟𝑖) = 𝐺(𝑟) + 𝑗 𝐻(𝑟) and  𝜙𝑖
′(𝑟𝑖) = 𝜔𝑛,𝑖

2 𝜙𝑖(𝑟𝑖). Each second-order summand has real and 

imaginary parts which are expressed as: 

−𝑟2𝜔𝑛
2𝜙(𝑟) = −𝑟2𝜔𝑛

2𝐺(𝑟) − 𝑟2𝜔𝑛
2𝑗𝐻(𝑟) (3.39) 

Above, 𝜔𝑛,𝑖 is the ith mode’s natural frequency,  𝜁𝑖 is the damping ratio, and 𝐾𝑖 is the ith modal 

contribution factor (𝐾𝑖
′ = 𝜔𝑛,𝑖

2 𝐾𝑖 = 1 𝑚𝑖⁄ , where 𝑚𝑖 is the modal mass, and 𝐾𝑖
′ 𝜔𝑛,𝑖

2⁄ = 1 𝑘𝑖⁄ , where 𝑘𝑖 is 

the modal stiffness). 𝑟𝑖(𝜔) = 𝜔 𝜔𝑛,𝑖⁄  is the normalized excitation frequency with respect to 𝜔𝑛,𝑖. 

In order to obtain the modal parameters via peak picking from the measured accelerance responses, for 

each mode, the natural frequency 𝜔𝑛 is identified by inspecting the frequency of the local peak in the 

imaginary portion of the response [24][124]. Then, the frequencies 𝜔1 and 𝜔2 are recorded, corresponding 
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to the local maximum and minimum in the real component of the response within the vicinity of 𝜔𝑛 ≅

𝜔𝑚𝑖𝑛 (assuming small 𝜁, typically 𝜁 ≤ 0.1). The damping ratio, which indicates how sharply or gradually 

the FRF for a single mode transitions from spring-like behavior into mass-like behavior (or basically how 

narrow or wide the shape of the resonance is) can be practically identified from the real component of 

accelerance (acceleration per unit force) plot as 𝜁 = (𝜔2
2 −𝜔1

2) 4𝜔𝑛
2⁄  (see Figure 3.22) [124]. Once the 

damping ratio for each mode is calculated, the real and imaginary parts of the identified second-order FRF 

are overlaid on top of the measurements and the modal stiffness’s values can be adjusted to match the 

magnitude of the transition in the real part and the peak in the imaginary part. Figure 3.23 illustrates some 

of the reconstructed (i.e., synthesized) FRFs after model fitting, for the measurements obtained at different 

impact points, based on manual modal analysis accomplished by applying the above summarized parameter 

estimation method. 

 

Figure 3.22: Second-order accelerance plot. 

 

Figure 3.23: Experimental and synthesized FRF for impact point 𝐹1 in the x- (left), and y-direction (right). 

As mentioned earlier, the PolyMAX or polyreference least-squares complex frequency-domain method 

allows for the estimation of natural frequencies and damping ratios for multiple vibration modes 

simultaneously.  Using the PolyMAX method, the modal parameters were also estimated in LMS Test.Lab 
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software. In this measurement, accelerometer roving was applied and the hammer was considered as the 

reference point. A tri-axial PCB 356A02 accelerometer (x-axis sensitivity: 10.02 mV/g, y-axis sensitivity: 

9.86 mV/g, z-axis sensitivity: 9.92 mV/g) was placed at the eight corners of the table for each measurement, 

while the same 3-pound (1.36 kg) impact hammer was used. Using the LMS software and the modeled 3D 

geometry of the feed drive table, the mode shapes could be estimated and presented as automated 3D 

animations using the FRF collected from the various measurement points (𝑃1, ⋯𝑃8). Figure 3.24 shows the 

impact location and accelerometer roving for PolyMAX modal parameter estimation method. Figure 3.25 

shows the measured and synthesized frequency responses for point 1 (𝑃1) in x, y, and z-directions.  

 

Figure 3.24: Accelerometer roving and impact location for PolyMAX method. 

 

Figure 3.25: Experimental and synthesized FRF for impact point 𝑃1 in the x- (left), y- (middle), and z-

directions (right). 

For comparative purposes, the mode shapes on 2D planes (estimated manually), and planar projections 

of the results from the LMS Test.Lab software are presented in Figure 3.26. This figure shows the main 

vibration modes in 1-350 Hz frequency range. According to the mode shapes, the first mode at 28 Hz 

belongs to the machine base frame. The second vibration mode at 48 Hz is predominantly the yawing-



61 

 

pitching motion of the table pivoted by the guideway blocks (see Figure 3.1). This vibration mode can be 

excited by load side disturbances (e.g., cutting forces).  The 141 Hz component in the frequency response 

is the axial vibration mode, which can interact with the control law and result in instability. Considering 

the FRFs shown in Figure 3.13, this mode is the most significant in the rotary and linear encoder 

measurement responses, especially in the 10-300 Hz range, which overlaps with the target control servo 

control bandwidth. 

The modes at 255 Hz (yaw), 289 Hz (yaw & roll), and 312 Hz (yaw & pitch), which have lateral z-

direction components to the feed drive motion, pose limitations on the achievable controller bandwidth as 

mentioned earlier in [23]. It is already very difficult to control these modes using excitation from the ball 

screw drive, and their relatively higher frequency further complicates the ability to stabilize them actively. 

Another observation is that the first two vibration modes (machine base & yawing-pitching motion) appear 

to have much lower damping ratios (≈0.01) compared to the first axial and yaw modes (≈0.1). They are 

also barely visible in the open-loop servo system response FRFs in Figure 3.13. However, their 

consideration in control law design, as shown in Chapter 5, can make a dramatic improvement in the 

achievable load-side disturbance rejection. 

The modal analysis carried out is foundational to interpreting the physical significance of the measured 

FRFs, and the dynamic models estimated with the MIMO identification algorithm developed in Chapter 4. 

This is because while MIMO transfer function fitting can be useful for model-based control synthesis 

purposes, the true physical and spatial nature of the individual modes is unfortunately not contained in this 

data. This information is invaluable in understanding, which modes can be successfully controlled, or 

excited by the inputs of concern, and which modes present physical limitations that cannot be overcome by 

active controls. Such modes are best left unmodified, either through careful selection of the controller 

synthesis performance weights to achieve attenuation in the loop gain, or by placing, as needed, suitable 

low-pass or notch filters. 
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Manual Modal Analysis  Automated Modal Analysis 

 
 

𝜔1 = 28 𝐻𝑧, 𝜁1 = 0.011 𝜔1 = 28 𝐻𝑧, 𝜁1 = 0.0106 

 

 

𝜔2 = 48 𝐻𝑧, 𝜁2 = 0.0125 𝜔2 = 47 𝐻𝑧, 𝜁2 = 0.0172 

 

 

𝜔3 = 141 𝐻𝑧, 𝜁3 = 0.1 𝜔3 = 136 𝐻𝑧, 𝜁3 = 0.112 
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𝜔4 = 255 𝐻𝑧, 𝜁4 = 0.125 𝜔4 = 252 𝐻𝑧, 𝜁4 = 0.0925 

 

 

𝜔5 = 289 𝐻𝑧, 𝜁5 = 0.01 𝜔5 = 294 𝐻𝑧, 𝜁5 = 0.0103 

 

 

𝜔6 = 312 𝐻𝑧, 𝜁6 = 0.02 𝜔6 = 309 𝐻𝑧, 𝜁6 = 0.018 

 

Figure 3.26: Mode shapes of the ball-screw drive, estimated by manual (left) and automated (right) modal 

analysis methods. 
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3.12. Conclusions 

In this chapter, thorough modeling and identification for the principal experimental setup, a precision 

ball-screw drive, has been accomplished. 

First, the dynamic modeling and identification of the current loop has been realized. For that reason, a 

PWM driver was initially used to capture the frequency response measured from the rotary and linear 

encoders. Later, a high bandwidth linear amplifier was integrated to the setup, with the required 3-phase 

commutation being achieved digitally, in order to command the current loop closed within this amplifier. 

This step provided nearly 4-fold improvement in the current loop bandwidth, from 388 Hz to 1523 Hz. 

Next, rigid body parameters were estimated from time-domain data to capture the low-frequency 

behavior of the drive system. A two-inertia model was identified to capture both the rigid body and the 1st 

axial mode vibration dynamics. This model is suitable for vibration damping-based precision positioning 

control laws, such as pole placement (PPC), which are among the state-of-the-art that was accomplished by 

earlier researchers prior to this thesis. The identified state-space representation, with rotational and 

translational encoder feedback, is both controllable and observable. However, the limitation of the two-

mass model is that only a single vibration mode can be modeled and compensated. As demonstrated in the 

latter parts of this thesis, by using the open-loop FRFs measured in this chapter, and the new MIMO model 

identification algorithm and controller design developed in Chapter 4 and Chapter 5, several vibration 

modes will be modeled and experimentally compensated simultaneously, to achieve even better disturbance 

rejection results compared to PPC and the industry-standard P-PI position-velocity cascade control. 

The friction, which is one of the main (non-machining) disturbances in the feed drive system, was also 

identified using both a Stribeck-type static friction model, as well as the generalized dynamic-type 

Maxwell-slip model, which in the author’s best knowledge is currently the most accurate friction model for 

motion control systems in the literature. 

In the last section, vibration modal analysis of the experimental setup was carried out to reveal the 

spatial behavior of the ball screw drive’s vibrations at different frequencies, thus allowing the establishment 

of deeper insight into the physics of the setup when interpreting the frequency characteristics of the 

modeling, identification, and controller design results. Essentially, the most significant mode is at 148 Hz, 

coinciding with the axial vibrations of the ball-screw mechanism. Lower frequency modes were identified 

at 28 and 48 Hz, which are typically ignored when designing servo controllers. Other modes at 255, 289, 

and 312 Hz are difficult to damp actively, due to the challenge of exciting these modes through the motor, 

and also their relatively high frequency, as they require much higher level of energy input. 
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Chapter 4  

Linear Time-Invariant (LTI) Model Identification Algorithm for 

Mechatronics Systems based on Multi-Input Multi-Output (MIMO) 

Frequency Response Data 

 

4.1. Introduction 

In this chapter, a new MIMO frequency-domain identification algorithm is introduced to estimate the 

MIMO models, capturing the effects of lightly and highly damped poles on the frequency response, as well 

as potential direct-transmission or derivative-like terms, and also pure time-delay. To compare the 

effectiveness of the proposed algorithm with the existing methods, tfest and the modalfit functions 

from the MATLAB System Identification [29] and Signal Processing Toolboxes [31] were selected as 

candidates for performance benchmarking. 

 

In the following, Section 4.2 presents the details of the MIMO model estimation algorithm. Section 4.3 

shows step-by-step progression of the algorithm via experimental data from a T-type gantry mechanism for 

precision motion delivery. The evaluation of the algorithm on a ball screw driven feed drive system is 

presented in Section 4.4. In Section 4.5, an industry-scale H-type gantry flatbed router is used as the last 

experimental setup in the evaluation of the system identification algorithm. These case studies have 

produced models with output-input channels sizes of 2 × 2, 1 × 1, 2 × 2, 4 × 4, and 2 × 1. Finally, the 

performance of the newly proposed algorithm is compared with MATLAB’s tfest function as a general 

transfer function estimation method, and modalfit function as a modal parameter estimation method. 

The performance of the newly proposed algorithm is compared against MATLAB’s tfest function as a 

general transfer function estimation method, and modalfit function as a modal parameter estimation tool 

in Section 4.6. The conclusions of this chapter are presented in Section 4.7.  

4.2. MIMO LTI Model Identification Algorithm 

4.2.1. Formulation of the MIMO model and overview of the identification algorithm 

The general form for a MIMO LTI dynamic system with 𝑁𝑖 input channels, clustered in input vector 

𝒖 = [𝑢1 … 𝑢𝑁𝑖]𝑇, and 𝑁𝑜 output channels, denoted with output vector 𝒚 = [𝑦1 … 𝑦𝑁𝑜]𝑇, can be 

represented in the Laplace domain with the following expression: 

https://www.mathworks.com/help/signal/ref/modalfit.html#d117e107603
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𝒚(𝑠) = 𝑮′(𝑠)𝒖(𝑠) →  [

𝑦1(𝑠)
⋮

𝑦𝑁𝑜(𝑠)
] = [

𝐺′11(𝑠) …  𝐺′1𝑁𝑖(𝑠)

⋮ ⋱ ⋮
𝐺′𝑁𝑜1(𝑠) … 𝐺′𝑁𝑜𝑁𝑖(𝑠)

]

⏟                
𝑮′

[

𝑢1(𝑠)
⋮

𝑢𝑁𝑖(𝑠)
] (4.1) 

In the MIMO model identification algorithm presented henceforth any particular entry 𝐺′𝑘0𝑘𝑖
(𝑠) of the 

matrix transfer function 𝑮′, which links the input in channel 𝑘𝑖 to the response in channel 𝑘𝑜, is assumed 

to have the following form: 

𝐺𝑘𝑜𝑘𝑖
′ (𝑠) = 𝐺𝑘𝑜𝑘𝑖(𝑠) ∙ 𝑒

−𝑇𝑑𝑠           , where: 

𝐺𝑘𝑜𝑘𝑖(𝑠) = ∑
𝛽𝑘
𝑘𝑜𝑘𝑖𝑠 + 𝛼𝑘

𝑘𝑜𝑘𝑖

𝑠2 + 2𝜁𝑘𝜔𝑘𝑠 + 𝜔𝑘
2

𝑛𝑐

𝑘=1

+∑
𝛾𝑘
𝑘𝑜𝑘𝑖

𝑠 + 𝑝𝑘

𝑛𝑟

𝑘=1

+ 𝛿0
𝑘𝑜𝑘𝑖 + 𝛿1

𝑘𝑜𝑘𝑖𝑠 + ⋯+ 𝛿𝑑𝑘𝑜𝑘𝑖
𝑘𝑜𝑘𝑖 𝑠𝑑𝑘𝑜𝑘𝑖  

(4.2) 

In the above expression, 𝑛𝑐 represents the total number of complex conjugate poles, and 𝑛𝑟 the number 

of real poles. As all input and output channels belong to the same physical system, the characteristic 

equation (i.e., pole locations) are assumed to be common among all input/output transfer functions. The 

delay term, 𝑒−𝑇𝑑𝑠 allows for the detection and removal of any possible pure delay that may be common to 

all channels (e.g., due ADC/DAC conversion and/or computational latencies encountered in the 

instrumentation or real-time control platform). Hence, 𝐺𝑘𝑜𝑘𝑖(𝑠) (without the ‘prime’ symbol) is used to 

represent the component of the transfer function with the pure delay effect removed. 𝜔𝑘 and 𝜁𝑘 represent 

the natural frequency and damping ratio for to the kth complex conjugate pole pair. −𝑝𝑘 represents the 

location of the kth real pole. 𝛽𝑘
𝑘𝑜𝑘𝑖, 𝛼𝑘

𝑘𝑜𝑘𝑖, and 𝛾𝑘
𝑘𝑜𝑘𝑖 define the participation factors (i.e., ‘weights’) needed 

to combine the contribution of each pole’s response (real or complex conjugate) in constituting the overall 

response exhibited by the dynamics 𝐺𝑘𝑜𝑘𝑖. 

The expansion 𝛿0
𝑘𝑜𝑘𝑖 + 𝛿1

𝑘𝑜𝑘𝑖𝑠 + ⋯+ 𝛿𝑑𝑘𝑜𝑘𝑖
𝑘𝑜𝑘𝑖 𝑠𝑑𝑘𝑜𝑘𝑖  enables the optional inclusion of direct transmission 

or time derivative-like terms up to order 𝑑𝑘𝑜𝑘𝑖. Their inclusion and order can be individually enabled or 

disabled, and separately defined for each transfer function channel 𝐺𝑘𝑜𝑘𝑖(𝑠). For example, if acceleration 

response is being modelled in response to a force input, 𝛿0
𝑘𝑜𝑘𝑖 would be nonzero. Similarly, if an 

accelerometer signal is considered as the output in response to a position command for a limited frequency 

range, 𝛿2
𝑘𝑜𝑘𝑖 needs to be chosen as nonzero in order to enable the term 𝛿2

𝑘𝑜𝑘𝑖𝑠2. For strictly proper transfer 

functions, these terms (𝛿𝑘
𝑘𝑜𝑘𝑖, 𝑘 = 0,1,… , 𝑑𝑘𝑜𝑘𝑖) are all set to zero. Enabling such optional direct terms is 
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to allow the proposed identification algorithm to work successfully with experimental data gathered 

simultaneously from a variety of sensors. 

In an LTI dynamic system, complex conjugate poles can either possess light damping (𝜁𝑘 ≤ 𝜁𝑐, e.g. 

𝜁𝑐 ≈ 0…0.2) and lead to easily noticeable resonances in the frequency response function (FRF), or assume 

higher damping values (𝜁𝑐 < 𝜁𝑘 < 0.707) making their resonances subtle and spread over wider frequency 

band. In the damping interval 0.707 ≤ 𝜁𝑘 < 1.0, no resonance is generated, but the presence of complex 

conjugate poles still affects the magnitude and phase characteristics [127]. 

Typical practice in frequency domain system identification is to discern the resonances (local 

magnitude maxima) contributed by the most significant vibration modes, sometimes via manual inspection, 

and to select frequency ranges around these modes to be used in local model fitting. In the expression for 

𝐺𝑘𝑜𝑘𝑖(𝑠), the dynamics contributed by the complex conjugate poles can be separated into two groups: 

Group 1: 𝑛𝑐1 pole pairs which lead to resonances that can be clearly distinguished and selected by a 

user or an automated algorithm. This facilitates semi-decoupled estimation of the modal parameters like 

𝜔𝑘, and 𝜁𝑘 from the rest of the dynamics. 

Group 2: 𝑛𝑐2 = 𝑛𝑐 − 𝑛𝑐1 pole pairs, which lead to either subtle resonances or none at all. They exhibit 

a more gradual magnitude and phase transition, thus are more difficult to spot via manual inspection. These 

poles can still be estimated via numerical methods, such as the fitting of a higher order transfer function. In 

this case, these poles are estimated together with the dynamics contributed by other nearby poles, which 

also exert their influence in the frequency range of interest in a superposed manner. 

Based on the above separation, 𝐺𝑘𝑜𝑘𝑖(𝑠) in Eq. (4.2) can be rewritten in the following form: 

𝐺𝑘𝑜𝑘𝑖(𝑠) = ∑
𝛽𝑘
𝑘𝑜𝑘𝑖𝑠 + 𝛼𝑘

𝑘𝑜𝑘𝑖

𝑠2 + 2𝜁𝑘𝜔𝑘𝑠 + 𝜔𝑘
2

𝑛𝑐1

𝑘=1⏟              
𝐶𝑘𝑜𝑘𝑖

(𝑠)

+ ∑
𝛽𝑘
𝑘𝑜𝑘𝑖𝑠 + 𝛼𝑘

𝑘𝑜𝑘𝑖

𝑠2 + 2𝜁𝑘𝜔𝑘𝑠 + 𝜔𝑘
2

𝑛𝑐

𝑘=𝑛𝑐1+1⏟                
𝐿𝑘𝑜𝑘𝑖

(𝑠)

+∑
𝛾𝑘
𝑘𝑜𝑘𝑖

𝑠 + 𝑝𝑘

𝑛𝑟

𝑘=1⏟      
𝑅𝑘𝑜𝑘𝑖

(𝑠)

+ 

  𝛿0
𝑘𝑜𝑘𝑖 + 𝛿1

𝑘𝑜𝑘𝑖𝑠 + ⋯+ 𝛿𝑑𝑘𝑜𝑘𝑖
𝑘𝑜𝑘𝑖 𝑠𝑑𝑘𝑜𝑘𝑖

⏟                      
𝐷𝑘𝑜𝑘𝑖(𝑠)

= 𝐶𝑘𝑜𝑘𝑖(𝑠) + 𝐿𝑘𝑜𝑘𝑖
(𝑠) + 𝑅𝑘𝑜𝑘𝑖

(𝑠) + 𝐷𝑘𝑜𝑘𝑖(𝑠) 

 

(4.3) 

where: 

𝐶𝑘𝑜𝑘𝑖(𝑠): Dynamics due to complex conjugate poles which cause significant resonance 
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𝐿𝑘𝑜𝑘𝑖(𝑠): Dynamics due to complex conjugate poles with little or no resonance 

𝑅𝑘𝑜𝑘𝑖(𝑠): Dynamics due to real poles (no resonance) 

𝐷𝑘𝑜𝑘𝑖(𝑠): Dynamics due to direct transmission and/or derivative-like effects 

Another way of expressing 𝐺𝑘𝑜𝑘𝑖(𝑠) would be to combine the dynamics of all terms, excluding the 

complex conjugate poles with significant resonance contribution, into a single rational transfer function 

𝑇𝑘𝑜𝑘𝑖
(𝑠): 

𝐺𝑘𝑜𝑘𝑖(𝑠) = ∑
𝛽𝑘
𝑘𝑜𝑘𝑖𝑠 + 𝛼𝑘

𝑘𝑜𝑘𝑖

𝑠2 + 2𝜁𝑘𝜔𝑘𝑠 + 𝜔𝑘
2

𝑛𝑐1

𝑘=1⏟              
𝐶𝑘𝑜𝑘𝑖

(𝑠)

+
𝑏0
𝑘𝑜𝑘𝑖𝑠𝑚𝑘𝑜𝑘𝑖 + 𝑏1

𝑘𝑜𝑘𝑖𝑠𝑚𝑘𝑜𝑘𝑖
−1  + ⋯+ 𝑏𝑚𝑘𝑜𝑘𝑖

𝑘𝑜𝑘𝑖

𝑠𝑛 + 𝑎1𝑠
𝑛−1 +⋯+ 𝑎𝑛⏟                            
𝑇𝑘𝑜𝑘𝑖

(𝑠)

= 𝐶𝑘𝑜𝑘𝑖(𝑠) + 𝑇𝑘𝑜𝑘𝑖
(𝑠) 

(4.4) 

By inspecting the number of the complex and real poles 𝑛𝑐1, 𝑛𝑐2, 𝑛𝑟, and the presence and order 

(denoted by 𝑑𝑘𝑜𝑘𝑖) of any direct terms in Eq. (4.3), it can be verified that the numerator and denominator 

orders (𝑚𝑘𝑜𝑘𝑖 and 𝑛) for the rational transfer function 𝑇𝑘𝑜𝑘𝑖(𝑠) in Eq. (4.4) must satisfy: 

𝑛 = 2𝑛𝑐2 + 𝑛𝑟 

𝑚𝑘𝑜𝑘𝑖 = {
2𝑛𝑐2 + 𝑛𝑟 − 1 if 𝛿0 = 0 , 𝛿1 = 0 , … , 𝛿𝑑 = 0 ⇒ no direct terms

2𝑛𝑐2 + 𝑛𝑟 + 𝑑𝑘𝑜𝑘𝑖 if 𝛿0 ≠ 0 or  … or 𝛿𝑑 ≠ 0 ⇒ highest order direct term: 𝑑𝑘𝑜𝑘𝑖  
 

(4.5) 

Considering the different formats in Eq. (4.2)-(4.4) to represent 𝐺𝑘𝑜𝑘𝑖(𝑠), the following observations 

can be made: 

  Eq. (4.2) is useful for reconstructing the overall response from the simultaneous influence of all terms, 

especially during the task of further optimizing the locations of the poles once their approximate value 

and type (complex or real) are determined. For a candidate set of pole locations being tested, this 

formulation enables the best fitting participation factors (𝛼𝑘
𝑘𝑜𝑘𝑖, 𝛽𝑘

𝑘𝑜𝑘𝑖, 𝛾𝑘
𝑘𝑜𝑘𝑖, 𝛿𝑘

𝑘𝑜𝑘𝑖) to be conveniently 

calculated using LS (Least Squares) parameter estimation. 

  Eq. (4.3) is helpful in estimating complex conjugate poles, which have very low damping (𝜁𝑘 < 𝜁𝑐). 

Such poles exert strong influence on 𝐺𝑘𝑜𝑘𝑖(𝑠) within a narrow frequency band centered around their 

resonance [79]. In this format, the dynamics contributed by each oscillatory mode ‘𝑟’ (𝑟 ∈ {1,… , 𝑛𝑐1}) 
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are estimated by distinguishing their influence from those of the other lightly damped poles. The 

remainder dynamics are captured with the terms 𝐿𝑘𝑜𝑘𝑖(𝑠), 𝑅𝑘𝑜𝑘𝑖(𝑠), and 𝐷𝑘𝑜𝑘𝑖(𝑠). 

   Eq. (4.4) enables the estimation of the combined remainder dynamics contributed by the complex poles 

with significant damping, the real poles, and the direct or derivative-like terms, using a single rational 

transfer function 𝑇𝑘𝑜𝑘𝑖(𝑠) to capture their influences. Comparing Eq. (4.3) and (4.4), it can be seen that 

𝑇𝑘𝑜𝑘𝑖(𝑠) = 𝐿𝑘𝑜𝑘𝑖(𝑠) + 𝑅𝑘𝑜𝑘𝑖(𝑠) + 𝐷𝑘𝑜𝑘𝑖(𝑠). Estimation of 𝑇𝑘𝑜𝑘𝑖(𝑠) is accomplished after the estimated 

dynamics with the lightly damped poles in 𝐶𝑘𝑜𝑘𝑖(𝑠) are subtracted from the measured FRFs, which 

have also been corrected for pure delays. 

Based on the above formulations, the proposed identification strategy is presented, from a bird’s eye 

view, as illustrated in Figure 4.1. 

 

Figure 4.1. Flow chart for the proposed identification algorithm. 

Considering Figure 4.1, in Step 1 the pure delay is estimated and removed from the FRF measurement 

data. In Step 2, the lightly damped (resonant) modes are determined by using a ‘mode indicator function’, 

and their natural frequency (𝜔𝑘) and damping ratio (𝜁𝑘) are individually estimated. In Step 3, the 
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corresponding participation factors (𝛽𝑘
𝑘𝑜𝑘𝑖 and 𝛼𝑘

𝑘𝑜𝑘𝑖) for the resonant modes are calculated. In Step 4, the 

remainder dynamics represented with the expression 𝑇𝑘𝑜𝑘𝑖(𝑠) (in Eq. (4.4)) are estimated, by removing the 

influence of the lightly damped modes determined in Steps 2 and 3 from the delay–corrected measurement 

FRF. In Step 5, all estimated dynamics are consolidated and reformatted into the form in Eq. (4.2) (i.e., 

separating the contributions of complex conjugate poles, real poles, and direct or derivative-like terms). In 

this step, the participation factors (𝛼𝑘
𝑘𝑜𝑘𝑖, 𝛽𝑘

𝑘𝑜𝑘𝑖, 𝛾𝑘
𝑘𝑜𝑘𝑖, 𝛿𝑘

𝑘𝑜𝑘𝑖) are also updated to yield a further optimal fit, 

in the presence of each of the dynamic terms weighted by these terms. Finally, in Step 6, a nonlinear 

optimization is invoked targeting further improvement to the model, by perturbing the pole locations into 

new candidate locations and updating the best fitting participation factors for each candidate set of poles. 

As currently described, the algorithm puts the same level of weighting on every output/input channel 

data. However, in a situation where the MIMO transfer function entries for 𝐺𝑘𝑜𝑘𝑖 may have significantly 

different magnitude, for example due to a variety of different physical outputs and/or input sources being  

considered, the best practice would be to apply prior scaling to the raw MIMO frequency response data, to 

ensure that a good numerical fit can be achieved across all output/input channels [25][27]. On the other 

hand, if certain entries for the estimated MIMO transfer function require a higher degree of accuracy in 

fitting, adequate weighting to further emphasize certain output/input channels can also be introduced into 

the objective functions which are minimized during Steps 2-6, similar to the concept of Weighted Least 

Squares (WLS) [128]. To keep the presentation in this thesis focused on the main identification algorithm, 

the topics of signal scaling and objective function weighting have been kept outside the scope of this thesis. 

 

4.2.2. Details of the algorithm considering an LTI model 

The mathematical details of each step are presented in the proceeding subsections (4.2.2.1–4.2.2.6). 

The direct application of each step to experimental data, obtained from a MIMO mechatronic system, is 

demonstrated in Section 4.3. 

4.2.2.1. Step 1: Time delay estimation and removal 

To correctly estimate the poles and zeros of a transfer function, any pure delay originating from the 

electro-mechanical system’s dynamics itself, the associated instrumentation, or the real-time data 

acquisition and control system must be accurately identified and removed. Otherwise, the phase lag 

introduced by such delays can cause an error in the estimation of the poles and zeros. In Figure 4.1, the first 

panel labeled ‘Step 1’ clearly illustrates this effect, in which the real and imaginary components of the FRF 

may get shifted, or even switch polarity, due to the influence of pure delay. 
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The methodology in this thesis assumes one single delay value 𝜏𝑑, which applies to all input/output 

channels, per Eq. (4.2). While it is possible to extend the idea to consider different delay values for different 

input/output channels, in the scope of experimental validations performed in this research, a single delay 

value was sufficient. 

It is assumed that frequency response measurements for the SISO or MIMO system to be identified are 

available as an array of complex numbers  𝑯1
′ , …𝑯𝑁

′ 𝜖ℂ𝑁𝑜×𝑁𝑖 at discrete frequency values 𝜔𝑖 [rad/s] for 𝑖 =

1,…𝑁. If the pure delay amount is known or estimated, then its frequency response 𝐻𝑑𝑒𝑙𝑎𝑦(𝜔𝑖) can be 

computed as follows: 

𝐻𝑑𝑒𝑙𝑎𝑦(𝜔𝑖) = exp(−𝑗𝜔𝑖𝑇𝑑) = cos(𝑇𝑑𝜔𝑖) − 𝑗 ∙ sin(𝑇𝑑𝜔𝑖) (4.6) 

Hence, the FRF measurement can be corrected for the assumed pure delay as: 

𝑯𝑖 = [𝐻𝑑𝑒𝑙𝑎𝑦(𝜔𝑖)]
−1
𝑯𝑖
′ = [cos(𝑇𝑑𝜔𝑖) + 𝑗 sin(𝑇𝑑𝜔𝑖)] ∙ 𝑯𝑖

′ = Re{𝑯𝑖}⏟    
𝒈𝑖

+ 𝑗 Im{𝑯𝑖}⏟    
𝒉𝑖

= 𝒈𝑖 + 𝑗𝒉𝑖   

(4.7) 

In scalar form, the delay-corrected FRF relating output channel 𝑘𝑜 to input in channel 𝑘𝑖 can be 

expressed as: 

𝐻𝑘𝑜𝑘𝑖(𝜔𝑖) = 𝑔
𝑘𝑜𝑘𝑖(𝜔𝑖) + 𝑗ℎ

𝑘𝑜𝑘𝑖(𝜔𝑖) = 𝑔𝑖
𝑘𝑜𝑘𝑖 + 𝑗ℎ𝑖

𝑘𝑜𝑘𝑖   (4.8) 

In implementing the identification algorithm in Figure 4.1, 𝜏𝑑 is iterated by testing a range of predefined 

delay values 𝜏𝑑 ∈ [𝜏𝑑,min, 𝜏𝑑,max], and executing Steps 1 through 6. The candidate for 𝜏𝑑, which leads to 

the smallest discrepancy between the experimental FRF data and the frequency response for the overall 

estimated model, is identified as the best estimate of the system’s pure delay. Naturally, having a close 

initial value obtained through inspection of the raw FRF measurements for a linearly decreasing trend in 

the phase also helps in the estimation. 

 

4.2.2.2. Step 2: Initial estimation of natural frequency and damping ratio for resonant modes 

After having removed the pure delay in Step 1, frequencies belonging to the lightly damped poles are 

determined by inspecting the Complex Mode Indicator Function (CMIF). The MIMO frequency response 

𝑯𝑖 = 𝑯(𝜔𝑖) can be expressed for each frequency 𝜔𝑖 as a Singular Value Decomposition (SVD) [25]: 
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𝑯(𝜔𝑖) = [𝑼(𝜔𝑖)] ∙ [𝚺(𝜔𝑖)] ∙ [𝑽(𝜔𝑖)]
𝐻  (4.9) 

Above, [𝑽(𝜔𝑖)]𝑁𝑖×𝑁𝑖 = [𝒗1(𝜔𝑖) … 𝒗𝑁𝑖(𝜔𝑖)] and [𝑼(𝜔𝑖)]𝑁𝑜×𝑁𝑜 = [𝒖1(𝜔𝑖) … 𝒖𝑁𝑜(𝜔𝑖)] are, in 

the mentioned order, unitary matrices containing the input and output singular vectors as a function of 

frequency. The singular value matrix [𝚺(𝜔𝑖)]𝑁𝑜×𝑁𝑖, which has non-zero entries only along its diagonal, 

contains the gains which relate how different input combinations (i.e., directions), defined with the input 

singular vectors 𝒗𝑘(𝜔𝑖), propagate into the output channels via the output singular vectors 𝒖𝑘(𝜔𝑖). Using 

the SVD, the CMIF is computed as [24]: 

[𝑪𝑴𝑰𝑭(𝜔𝑖)]𝑁𝑖×𝑁𝑖 = [𝚺(𝜔𝑖)]
𝑇 ∙ [𝚺(𝜔𝑖)]   (4.10) 

Sample CMIFs for a SISO and a 22 MIMO dynamic system are shown in Figure 4.2. These belong to 

the single motor (x-axis) and double motor (y-axis) responses of the linear motor driven T-type gantry, 

shown in Figure 4.4. 

(a) 

 

(b) 

 

 Figure 4.2: Use of the CMIF in identifying resonant frequencies and selecting frequency ranges to fit 

individual modes: (a) acceleration response to torque command for single-axis linear motor drive. (b) 

position response to torque command due a dual linear motor driven gantry axis. 
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Figure 4.3: Use of the SISO MIF in identifying resonant frequencies and selecting frequency ranges to fit 

individual modes: position response to torque command for a dual linear motor-driven gantry axis. 

The normalized MIF of the individual SISO transfer functions for the 22 MIMO dynamic system in 

Figure 4.2b is illustrated in Figure 4.3. The SISO MIFs are used as supplementary information for revealing 

more modes than the dominant ones.  In this case, the 2nd and the 3rd modes can be observed more visibly 

from Figure 4.3. 

𝑀𝐼𝐹𝑘𝑜𝑘𝑖(𝜔𝑖) = 𝑯𝑘𝑜𝑘𝑖 (𝜔𝑖) ∘ 𝑯̅𝑘𝑜𝑘𝑖 (𝜔𝑖) (4.11) 

Above, the operator ‘𝐴 ∘ 𝐵’ designates Hadamard (i.e., element-wise) product of two arrays. The 

normalized MIF can be expressed by 𝑀𝐼𝐹𝑘𝑜𝑘𝑖(𝜔𝑖) ∘ (1/max (𝑀𝐼𝐹𝑘𝑜𝑘𝑖(𝜔𝑖))). 

Inspection of the CMIF reveals the frequencies at which resonance is observed, attributed to the lightly 

damped modes. The CMIF also aids in the selection of suitable frequency ranges to approximately identify 

the parameters for these modes in a decoupled manner (i.e., one mode at a time). For example, around the 

vicinity of mode 𝑘, the frequency response data can be selected by indexing the range [𝑖𝑘
−, 𝑖𝑘

+], where 1 ≤

𝑖𝑘
− < 𝑖𝑘

+ ≤ 𝑁. The extracted frequency array 𝝎 and corresponding real and imaginary response arrays 𝒈 

and 𝒉 are defined as: 
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𝝎 = [𝜔𝑖𝑘
− … 𝜔𝑖𝑘

+]𝑇   ,   𝒈 = [𝑔(𝜔𝑖𝑘
−) … 𝑔 (𝜔𝑖𝑘

+)]
𝑇
= [𝑔𝑖𝑘

− … 𝑔𝑖𝑘
+]𝑇 

𝒉 = [ℎ(𝜔𝑖𝑘
−) … ℎ (𝜔𝑖𝑘

+)]
𝑇
= [ℎ𝑖𝑘

− … ℎ𝑖𝑘
+]
𝑇
 ,   number of data points: 𝑁𝑘 = 𝑖𝑘

+ − 𝑖𝑘
− + 1 

(4.12) 

As known from vibration modal analysis and control literature [24][79], the frequency response of a 

system near one of its lightly damped modes (i.e., complex conjugate poles) with natural frequency 𝜔𝑘 can 

be approximated by the response contributed solely by that mode; which constitutes most of the magnitude 

contribution around 𝜔𝑘, when the damping ratio associated with that mode 𝜁𝑘 is relatively small (e.g., 

<0.05) . However, as can be verified from Eq. (4.3), other poles at frequencies below and above this mode 

also present a frequency response influence around 𝜔𝑘. For the purpose of estimating 𝜔𝑘 and 𝜁𝑘, which is 

done in a narrow frequency band around the resonance, the response contributed by the other dynamics 

(which demonstrate more gradual transition in the same frequency band) can be captured using a constant 

complex offset (𝑟𝑘𝑜𝑘𝑖 + 𝑗𝑞𝑘𝑜𝑘𝑖). Thus, the FRF of the model in Eq. (4.3) can be approximated as: 

𝐺𝑘𝑜𝑘𝑖(𝜔)⏟      
FRF of model

≅
𝑗𝜔𝛽𝑘

𝑘𝑜𝑘𝑖 + 𝛼𝑘
𝑘𝑜𝑘𝑖

𝜔𝑘
2 −𝜔2 + 𝑗2𝜁𝑘𝜔𝑘𝜔⏟            

mode 'k' - which is being fitted

+ 𝑟𝑘
𝑘𝑜𝑘𝑖 + 𝑗𝑞𝑘

𝑘𝑜𝑘𝑖
⏟        
offset contributed 

by poles other than of mode '𝑘'

   ,      for   𝜔 ≈ 𝜔𝑘 (4.13) 

Equating the real and imaginary components of the model FRF with those obtained from the delay-

corrected measurement (𝐻𝑘𝑜𝑘𝑖(𝜔) = 𝑔
𝑘𝑜𝑘𝑖(𝜔) + 𝑗ℎ𝑘𝑜𝑘𝑖(𝜔)), 𝜔𝑘 and 𝜁𝑘 can be solved by setting up a Least 

Squares parameter estimation problem. For notation simplification, initially considering only the SISO 

case, the output/input channel designations (i.e., superscript or subscript of ‘𝑘𝑜𝑘𝑖’) are dropped. Also, for 

mathematical convenience, two new auxiliary variables are defined as: 

𝑢 = 𝜔𝑘
2    ,   𝑣 = 2𝜁𝑘𝜔𝑘    ⟺   𝜔𝑘 = √𝑢   ,   𝜁𝑘 = 𝑣 (2√𝑢)⁄  (4.14) 

The model error, representing the discrepancy between the measurement and the model prediction can 

be expressed as 𝐸(𝜔) = 𝐻(𝜔) − 𝐺(𝜔). This should, in the ideal case, be equal to zero:  

𝐸(𝜔) = 𝐻(𝜔) − 𝐺(𝜔) = 𝑔(𝜔) + 𝑗ℎ(𝜔) − 𝑟 − 𝑗𝑞 −
𝑗𝜔𝛽 + 𝛼

𝑢 − 𝜔2 + 𝑗𝜔𝑣
= 0 (4.15) 

Eq. (4.15) implies that both the real and imaginary components of 𝐸(𝜔) should be zero, leading to: 

𝑅𝑒{𝐸(𝜔)} = 0 ⇒ 𝜔−2𝑔(𝜔)𝑢 − 𝜔−2𝑟𝑢 + 𝑟 − 𝜔−1ℎ(𝜔)𝑣 + 𝜔−1𝑞𝑣 − 𝜔−2𝛼 = 𝑔(𝜔)

𝐼𝑚{𝐸(𝜔)} = 0 ⇒ 𝜔−2ℎ(𝜔)𝑢 − 𝜔−2𝑞𝑢 + 𝑞 + 𝜔−1𝑔(𝜔)𝑣 − 𝜔−1𝑟𝑣 − 𝜔−1𝛽 = ℎ(𝜔)
} (4.16) 
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The unknown variables that need to be identified can be ordered inside a parameter vector, defined as: 

𝜽 = [𝑢 𝑣 𝑟𝑢 𝑞𝑢 𝑟𝑣 𝑞𝑣 𝑟 𝑞 𝛼 𝛽]𝑇 (4.17) 

This enables for the expressions in Eq. (4.16) to be written in a regressor (𝚽′) - parameter (𝜽), and 

observation/output (𝐘′) format, which is regularly used in Least Squares parameter estimation [128]: 

𝚽′ = [
𝜔−2𝑔(𝜔) −𝜔−1ℎ(𝜔) −𝜔−2 0 0 𝜔−1 1 0 −𝜔−2 0

𝜔−2ℎ(𝜔) 𝜔−1𝑔(𝜔) 0 −𝜔−2 −𝜔−1 0 0 1 0 −𝜔−1
]

𝒀′ = [𝑔(𝜔) ℎ(𝜔)]𝑇
} (4.18) 

In Eq. (4.18), the regressor and output expressions are based on an FRF value at only a single frequency, 

𝜔. Generalizing this formulation to consider the selected data range in arrays 𝝎, 𝒈, 𝒉 in Eq. (4.12), the 

regressor matrix (𝚽) and output (observation) vector (𝒀) can be re-written in the following format: 

𝚽 = [
𝝎∘−2 ∘ 𝒈 −𝝎∘−1 ∘ 𝒉 −𝝎∘−2 𝟎 𝟎 𝝎∘−1 𝟏 𝟎 −𝝎∘−2 𝟎

𝝎∘−2 ∘ 𝒉 𝝎∘−1 ∘ 𝒈 𝟎 −𝝎∘−2 −𝝎∘−1 𝟎 𝟎 𝟏 𝟎 −𝝎∘−1
]

𝒀 = [𝒈𝑇 𝒉𝑇]𝑇
} (4.19) 

𝝎∘𝑋 represents the Hadamard power operator which takes each entry in vector 𝝎 to its 𝑋th  power. 𝟏 

and 𝟎 are arrays full of ones and zeros, respectively, with the adequate dimensions (𝑁𝑘 × 1). 

The optimal parameter set can be solved using the Least Squares formulation [128], leading to: 

𝜽̂ = [𝑢̂ 𝑣 𝑟𝑢̂ 𝑞𝑢̂ 𝑟𝑣̂ 𝑞𝑣̂ 𝑟̂ 𝑞̂ 𝛼̂ 𝛽̂]𝑇 = (𝚽𝑇𝚽)−1𝚽𝑇𝒀 (4.20) 

The only two parameters of interest in this step are 𝑢 and 𝑣, which help determine a close estimate for 

the natural frequency 𝜔𝑘 and damping ratio 𝜁𝑘, per Eq. (4.14). The other eight parameters (𝑟𝑢,… , 𝛽) are 

discarded. The mode participation factors 𝛼 and 𝛽, are estimated later in Step 3 of the overall algorithm 

(Figure 4.1), using the 𝜔𝑘, 𝜁𝑘 values computed during this current step, and are further refined during Steps 

5 and 6 of the overall algorithm. 

To extend this idea to the case of working with MIMO FRF data, the output/input channel designation 

‘𝑘𝑜𝑘𝑖’ is reintroduced into the notation. Hence, the following measurement data is assumed to be available 

and preselected in the vicinity of 𝜔𝑘 for each output/input channel pair: 
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𝝎 = [𝜔𝑖𝑘
− … 𝜔𝑖𝑘

+]𝑇   ,   𝒈𝑘𝑜𝑘𝑖 = [𝑔𝑘𝑜𝑘𝑖(𝜔𝑖𝑘
−) … 𝑔𝑘𝑜𝑘𝑖 (𝜔𝑖𝑘

+)]
𝑇
= [𝑔𝑖𝑘

−
𝑘𝑜𝑘𝑖 … 𝑔

𝑖𝑘
+
𝑘𝑜𝑘𝑖]

𝑇
 

𝒉𝑘𝑜𝑘𝑖 = [ℎ𝑘𝑜𝑘𝑖(𝜔𝑖𝑘
−) … ℎ𝑘𝑜𝑘𝑖 (𝜔𝑖𝑘

+)]
𝑇
= [ℎ𝑖𝑘

−
𝑘𝑜𝑘𝑖 … ℎ

𝑖𝑘
+
𝑘𝑜𝑘𝑖]

𝑇
   , 

  1 ≤ 𝑘𝑜 ≤ 𝑁𝑜   ,  1 ≤ 𝑘𝑖 ≤ 𝑁𝑖 

(4.21) 

Considering Eq. (4.13), the first two entries of 𝜽 in Eq. (4.17) (𝑢 = 𝜔𝑘
2 and 𝑣 = 2𝜁𝑘𝜔𝑘) have to be 

common across all output/input channels. However, the other entries for the parameter vector (i.e., the terms 

(𝑟𝑘𝑜𝑘𝑖𝑢), … , (𝛽𝑘𝑜𝑘𝑖) per Eq. (4.17)), are specific to the output-input channel designation 𝑘𝑜𝑘𝑖. Hence, the 

parameter vector in Eq. (4.17) can be partitioned into a common portion 𝜽𝑢𝑣, and channel-specific 

individual portions 𝝃𝑘𝑜𝑘𝑖: 

𝜽𝑘𝑜𝑘𝑖 = [𝜽𝑢𝑣
𝑇 ⋮ 𝝃𝑘𝑜𝑘𝑖

𝑇]
𝑇
  ,  𝜽𝑢𝑣 = [𝑢 𝑣]𝑇 

 
𝝃
𝑘𝑜𝑘𝑖

= [𝑟𝑘𝑜𝑘𝑖𝑢 𝑞𝑘𝑜𝑘𝑖𝑢 𝑟𝑘𝑜𝑘𝑖𝑣 𝑞𝑘𝑜𝑘𝑖𝑣 𝑟𝑘𝑜𝑘𝑖 𝑞𝑘𝑜𝑘𝑖 𝛼𝑘𝑜𝑘𝑖 𝛽𝑘𝑜𝑘𝑖]𝑇  

(4.22) 

Reapplying Eq. (4.18) - (4.19), the regressor matrix 𝚽 can thus be written for the output/input response 

pair 𝑘𝑜𝑘𝑖 in partitioned form, according to the definition of 𝜽𝑘𝑜𝑘𝑖 in Eq. (4.22). Also, the notation for the 

output (observation) array 𝒀 can be augmented with the superscript 𝑘𝑜𝑘𝑖, to designate the output/input 

channels to which the data applies: 

𝚽𝑘𝑜𝑘𝑖 = [𝚽𝑢𝑣
𝑘𝑜𝑘𝑖 ⋮ 𝚪]  ,  𝚽𝑢𝑣

𝑘𝑜𝑘𝑖 = [
𝝎∘−2 ∘ 𝒈𝑘𝑜𝑘𝑖 −𝝎∘−1 ∘ 𝒉𝑘𝑜𝑘𝑖

𝝎∘−2 ∘ 𝒉𝑘𝑜𝑘𝑖 𝝎∘−1 ∘ 𝒈𝑘𝑜𝑘𝑖
]

𝚪 = [−𝝎
∘−2 𝟎 𝟎 𝝎∘−1 𝟏 𝟎 −𝝎∘−2 𝟎
𝟎 −𝝎∘−2 −𝝎∘−1 𝟎 𝟎 𝟏 𝟎 −𝝎∘−1

]  , 𝒀𝑘𝑜𝑘𝑖 = [
𝒈𝑘𝑜𝑘𝑖

𝒉𝑘𝑜𝑘𝑖
]
}
 
 

 
 

 (4.23) 

Now, considering a 𝑁𝑜 × 𝑁𝑖 MIMO system’s response, the complete set of regressors (𝚽), parameters 

(𝜽), and output arrays (𝒀) needed to define and solve a LS parameter estimation problem can be written as: 

𝚽 =

[
 
 
 
 
 
 
 
𝚽𝑢𝑣
11 𝚪 𝟎     𝟎
⋮ 𝟎 ⋱      𝟎

𝚽𝑢𝑣
1𝑁𝑖   𝚪     
⋮    ⋱    

𝚽𝑢𝑣
𝑁𝑜1     𝚪   
⋮      ⋱ 𝟎

𝚽𝑢𝑣
𝑁𝑜𝑁𝑖 𝟎 𝟎    𝟎 𝚪]

 
 
 
 
 
 
 

  ,  𝒀 =

[
 
 
 
 
 
 
 
𝒀𝑢𝑣
11

⋮

𝒀𝑢𝑣
1𝑁𝑖

⋮

𝒀𝑢𝑣
𝑁𝑜1

⋮

𝒀𝑢𝑣
𝑁𝑜𝑁𝑖]

 
 
 
 
 
 
 

  ,  𝜽 =

[
 
 
 
 
 
 
 
𝜽𝑢𝑣
𝝃11

⋮
𝝃1𝑁𝑖

⋮
𝝃𝑁𝑜1

⋮
𝝃𝑁𝑜𝑁𝑖]

 
 
 
 
 
 
 

 (4.24) 
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Above, the symbol 𝟎 represents a block array of zeros with the adequate dimension of (2𝑁𝑘 × 8). The 

optimal solution in the MIMO case, similar to that in Eq. (4.20), assumes the form: 

𝜽̂ = [𝑢̂ 𝑣 ⋮ (𝝃̂11)𝑇 … (𝝃̂1𝑁𝑖)𝑇 … (𝝃̂𝑁𝑜1)𝑇 … (𝝃̂𝑁𝑜𝑁𝑖)𝑇]𝑇 = (𝚽𝑇𝚽)−1𝚽𝑇𝒀 (4.25) 

Once again only the first two terms (𝑢̂, 𝑣) are of interest are kept, which now enable the optimal 

estimates 𝜔̂𝑘 and 𝜁𝑘 based on the available multi-channel frequency response data in the selected range 

[𝜔𝑖𝑘
− , 𝜔𝑖𝑘

+]. If data from certain measurement channels are missing (e.g., 𝑘𝑜̅̅ ̅𝑘𝑖̅), then their corresponding 

block entries can be removed from the construction of 𝚽, 𝒀, and 𝜽 in Eq. (4.24), and estimation of the best-

fit natural frequency and damping can still proceed with partially available data. 

 

4.2.2.3. Step 3: Estimation of the participation factors for the resonant modes 

Once approximate values for 𝜔𝑘 and 𝜁𝑘 are determined, the next step is to find close values for the 

participation factors 𝛽𝑘
𝑘𝑜𝑘𝑖 and 𝛼𝑘

𝑘𝑜𝑘𝑖. In doing so, the frequency response of the model is approximated by 

the contribution coming from the mode of interest, as well as residual terms. In this case, the residual terms 

are further refined compared to the earlier step of just considering a complex offset, as shown in Eq. (4.26). 

𝐺𝑎𝑝𝑝𝑟𝑜𝑥
𝑘𝑜𝑘𝑖 (𝜔) =

𝑎̅

(𝑗𝜔)2
+
𝑏̅

𝑗𝜔
+ 𝑐̅ + (𝑗𝜔)𝑑̅

⏟                
residual terms

+
𝑗𝜔𝛽𝑘

𝑘𝑜𝑘𝑖 + 𝛼𝑘
𝑘𝑜𝑘𝑖

𝜔𝑘
2 −𝜔2 + 𝑗2𝜁𝑘𝜔𝑘𝜔⏟            

mode being fitted

 (4.26) 

While the main purpose of this step is to estimate only the participation factors (𝛽𝑘
𝑘𝑜𝑘𝑖 and 𝛼𝑘

𝑘𝑜𝑘𝑖) at the 

mode of interest, frequency response contributions from other dynamics also need to be captured and 

isolated adequately, to avoid biasing the estimates for 𝛽 and 𝛼 terms. As noticeable, rather than using only 

a complex constant offset to capture the residual dynamics, as is done in Step 2, a more elaborate structure 

is proposed. For example, as noted in [24], vibration modes with lower frequency than 𝜔𝑘 would 

collectively contribute a mass-like (i.e., double-integrator) influence, which can be captured with the 

(𝑗𝜔)−2𝑎̅ term. Vibration modes with higher frequency than 𝜔𝑘 would collectively contribute a stiffness-

like effect, which can be captured with real scalar constant 𝑐̅. Furthermore, to keep the removal of residual 

dynamics as general as possible, a single integrator and single derivative type term ((𝑗𝜔)−1𝑏̅ and (𝑗𝜔)𝑑̅) 

are also included. This is because realistic mechatronic systems may have additional dynamics originating 

from well-damped poles, sensors, actuators, or various filtering and feedback control effects. The combined 

influence of such effects are captured and kept apart from 𝛽𝑘
𝑘𝑜𝑘𝑖 and 𝛼𝑘

𝑘𝑜𝑘𝑖 by estimating their contributions 
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through the coefficients 𝑎̅, 𝑏̅, 𝑐̅, 𝑑̅. However, these auxiliary coefficients are not stored permanently. After 

fulfilling their principal duty of helping in the estimation of 𝛽𝑘
𝑘𝑜𝑘𝑖 and 𝛼𝑘

𝑘𝑜𝑘𝑖, they are discarded. 

To facilitate convenience in the formulation and computations, an auxiliary frequency response 

function 𝐺2 is defined, representing a scaled version of the current mode’s receptance (i.e., dynamic 

compliance) characteristic:  

𝐺2(𝜔) =
1

𝜔𝑘
2 −𝜔2 + 𝑗2𝜁𝑘𝜔𝑘𝜔

 , where: 𝑔2(𝜔) = 𝑅𝑒{𝐺2(𝜔)} , ℎ2(𝜔) = 𝐼𝑚{𝐺2(𝜔)} (4.27) 

Thus, the real and imaginary components of 𝐺𝑎𝑝𝑝𝑟𝑜𝑥
𝑘𝑜𝑘𝑖 (𝜔) in Eq. (4.26) can be re-expressed as, 

𝑅𝑒{𝐺𝑎𝑝𝑝𝑟𝑜𝑥
𝑘𝑜𝑘𝑖 (𝜔)} = 𝑔2(𝜔)𝛼𝑘

𝑘𝑜𝑘𝑖 −𝜔ℎ2(𝜔)𝛽𝑘
𝑘𝑜𝑘𝑖 −𝜔−2𝑎̅ + 𝑐̅

𝐼𝑚{𝐺𝑎𝑝𝑝𝑟𝑜𝑥
𝑘𝑜𝑘𝑖 (𝜔)} = ℎ2(𝜔)𝛼𝑘

𝑘𝑜𝑘𝑖 +𝜔𝑔2(𝜔)𝛽𝑘
𝑘𝑜𝑘𝑖 −𝜔−1𝑏̅ + 𝜔𝑑̅

} (4.28) 

The objective is to represent the delay-corrected experimental FRF data for output/input channel 𝑘𝑜𝑘𝑖 

with the approximation 𝐺𝑎𝑝𝑝𝑟𝑜𝑥
𝑘𝑜𝑘𝑖 (𝜔). For a single frequency 𝜔, this can be expressed in regressor (𝚽′) - 

parameter (𝜽), and observation/output (𝐘′) format, suitable for Least Squares parameter estimation [128] 

as, 

𝚽′ = [
𝑔2(𝜔) −𝜔ℎ2(𝜔) −𝜔−2 0 1 0

ℎ2(𝜔) 𝜔𝑔2(𝜔) 0 −𝜔−1 0 𝜔
]

𝜽 = [𝛼𝑘
𝑘𝑜𝑘𝑖 𝛽𝑘

𝑘𝑜𝑘𝑖 𝑎̅ 𝑏̅ 𝑐̅ 𝑑̅]

𝒀′ = [𝑔𝑘𝑜𝑘𝑖(𝜔) ℎ𝑘𝑜𝑘𝑖(𝜔)]𝑇

 (4.29) 

Expanding this formulation to the selected frequency array 𝝎 and the FRF real and imaginary 

component arrays 𝒈𝑘𝑜𝑘𝑖 and 𝒉𝑘𝑜𝑘𝑖 (per Eq. (4.21)), the regressor matrix (𝚽) and output (observation) vector 

(𝒀) can be re-written in the following manner (using the Hadamard product and power operators, as earlier 

defined and used for Step 2): 

𝚽 = [
𝒈𝟐 −𝝎 ∘ 𝒉𝟐 −𝝎∘−2 𝟎 𝟏 𝟎

𝒉𝟐 𝝎 ∘ 𝒈𝟐 𝟎 −𝝎∘−1 𝟎 𝝎
]

𝒀 = [(𝒈𝑘𝑜𝑘𝑖)𝑇 (𝒉𝑘𝑜𝑘𝑖)𝑇]𝑇
} (4.30) 

In Eq. (4.30), the arrays 𝒈2 and 𝒉2 are obtained by enumerating the frequency array 𝝎 in the expression 

for 𝐺2 in Eq. (4.27), and afterwards taking the real and imaginary components of the frequency response of 
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𝐺2(𝝎) in the mentioned order. The terms 𝟎 and 𝟏 represent arrays of zeros and ones of suitable dimension, 

(𝑁𝑘 × 1). 

The optimal solution for the parameter vector, in this step, is obtained as, 

𝜽̂ = [𝛼̂𝑘
𝑘𝑜𝑘𝑖 𝛽̂𝑘

𝑘𝑜𝑘𝑖 ⋮ 𝑎̂̅ 𝑏̂̅ 𝑐̅̂ 𝑑̂̅]
𝑇
= (𝚽𝑇𝚽)−1𝚽𝑇𝒀 (4.31) 

Since 𝜔𝑘 and 𝜁𝑘 define the complex conjugate pole locations that are fixed to be common across all 

output/input channel pairs, estimation of the mode participation factor 𝛽𝑘
𝑘𝑜𝑘𝑖 and 𝛼𝑘

𝑘𝑜𝑘𝑖 for different 

input/output channels is simply achieved by updating the output/observation vector 𝒀 =

[(𝒈𝑘𝑜𝑘𝑖)𝑇 (𝒉𝑘𝑜𝑘𝑖)𝑇]𝑇 in Eq. (4.30) with the correct FRF data for 𝑘𝑖 = 1,… ,𝑁𝑖 , and 𝑘𝑜 = 1,… ,𝑁𝑜, and 

re-applying the solution in Eq. (4.31). Naturally, to save on computational time, the left pseudo-inverse 

matrix (𝚽𝑇𝚽)−1𝚽𝑇 may also be reused after its computation for the first mode. 

Hence, while all available output/input channels of FRF data need to be simultaneously considered 

during the estimation of 𝜔𝑘 and 𝜁𝑘 in Step 2, the participation factors for a given mode are then solved 

independently for each output/input channel combination. 

 

4.2.2.4. Step 4: Estimation of the remainder dynamics using the Rational Fraction Polynomial 

(RFP) method 

While Steps 2 and 3 distinguish and identify the resonant modes, the remainder dynamics typically 

comprising real poles, complex conjugate poles with higher damping (i.e., not displaying noticeable 

resonance), and possibly direct and derivative-like terms, cannot be estimated by simply curve fitting in 

localized frequency ranges. The estimation of these dynamics, spread typically over a wider frequency 

range, needs to consider a broad spectrum which can be coincident with the measurement range 𝝎 =

[𝜔1 … 𝜔𝑁]𝑇. 

Recalling from Eq. (4.4) (𝐺𝑘𝑜𝑘𝑖 = 𝐶𝑘𝑜𝑘𝑖 + 𝑇𝑘𝑜𝑘𝑖), 𝐶𝑘𝑜𝑘𝑖 represents the contribution of resonant modes 

and 𝑇𝑘𝑜𝑘𝑖 the remainder dynamics. Before 𝑇𝑘𝑜𝑘𝑖 can be estimated from experimental data, the influence of 

so-far identified and modeled resonant modes must be subtracted, as shown in Eq. (4.32). 
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𝐻𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟
𝑘𝑜𝑘𝑖 (𝜔) = 𝑔𝑘𝑜𝑘𝑖(𝜔) + 𝑗ℎ𝑘𝑜𝑘𝑖(𝜔) −∑

𝑗𝛽𝑘
𝑘𝑜𝑘𝑖𝜔+ 𝛼𝑘

𝑘𝑜𝑘𝑖

𝜔𝑘
2 −𝜔2 + 𝑗2𝜁𝑘𝜔̂𝑘𝜔

𝑛𝑐1

𝑘=1

 

𝑔𝑟
𝑘𝑜𝑘𝑖(𝜔) = 𝑅𝑒{𝐻𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟

𝑘𝑜𝑘𝑖 (𝜔)}    ,    ℎ𝑟
𝑘𝑜𝑘𝑖(𝜔) = 𝐼𝑚{𝐻𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟

𝑘𝑜𝑘𝑖 (𝜔)} 

(4.32) 

Above, 𝑔𝑘𝑜𝑘𝑖(𝜔) + 𝑗ℎ𝑘𝑜𝑘𝑖(𝜔) represents the delay-corrected MIMO frequency response data at each 

discrete frequency 𝜔, as defined in Eq. (4.8). The summation term (Σ) represents the contribution of the 

identified lightly damped modes, i.e., 𝐶𝑘𝑜𝑘𝑖 as defined in Eq. (4.3). The objective is to match this 

‘remainder’ frequency response (𝐻rem
𝑘𝑜𝑘𝑖) with a suitable rational transfer function 𝑇𝑘𝑜𝑘𝑖, as defined in Eq. 

(4.4). 

The proceeding mathematical derivation first focusses on estimating the transfer function for a single 

channel 𝑇𝑘𝑜𝑘𝑖(𝑠) of the generalized remainder dynamics. In developing the initial solution, to keep the 

derivations simple, the channel superscripts (or subscripts) 𝑘𝑜𝑘𝑖 are dropped, similar to the approach in 

explaining the formulation for Step 2 (Section 4.2.2.2). Additionally, while in the general case the 

numerator order 𝑚𝑘𝑜𝑘𝑖 for 𝑇𝑘𝑜𝑘𝑖 can be different for each output/input channel pair (per Eq. (4.5)), for 

simplicity this order is also just denoted as 𝑚. Proceeding the derivation of model fitting for a single SISO 

transfer function entry, in the generalization to the MIMO case, adequate output/input channel and 

numerator order designations are also reintroduced. 

In the ideal case, at each frequency 𝜔 the response of the rational fraction polynomial 𝑇(𝜔) = 𝑇𝑘𝑜𝑘𝑖(𝜔) 

should match the remainder measurement FRF (i.e., 𝐻rem(𝜔) = 𝑔𝑟(𝜔) + 𝑗ℎ𝑟(𝜔)): 

𝑇(𝜔) =
𝑏0(𝑗𝜔)

𝑚 + 𝑏1(𝑗𝜔)
𝑚−1 +⋯+ 𝑏𝑚−1(𝑗𝜔) + 𝑏𝑚

(𝑗𝜔)𝑛 + 𝑎1(𝑗𝜔)
𝑛−1 + 𝑎2(𝑗𝜔)

𝑛−2 +⋯+ 𝑎𝑛−1(𝑗𝜔) + 𝑎𝑛
= 𝑔𝑟(𝜔) + 𝑗ℎ𝑟(𝜔) (4.33) 

Arranging Eq. (4.33) leads to: 

𝑏𝑚 + (𝑗𝜔)𝑏𝑚−1 + (𝑗𝜔)
2𝑏𝑚−2 +⋯+ (𝑗𝜔)

𝑚−1𝑏1 + (𝑗𝜔)
𝑚𝑏0 

              −[𝑎𝑛 + (𝑗𝜔)𝑎𝑛−1 + (𝑗𝜔)
2𝑎𝑛−2 +⋯+ (𝑗𝜔)

𝑛−1𝑎1 + (𝑗𝜔)
𝑛] ∙ [𝑔𝑟(𝜔) + 𝑗ℎ𝑟(𝜔)] = 0 

(4.34) 

The real and imaginary terms of Eq. (4.34) can be separated from one another. During this process, to 

allow for the right-hand side to represent the actual components of the transfer function being fitted, the 

equation is normalized by multiplying both sides with 𝜔−𝑛. Additionally, depending on the integer value 

of 𝑛, the right-hand side of the real and imaginary components will possess either 𝑔𝑟 or ℎ𝑟 terms, with 
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either positive or negative sign. To enable for the correct entry to occur with correct sign, two auxiliary 

functions are defined: 

𝜎(𝑛) = {
+1 , 𝑛 = 0,4,8,…
−1 , 𝑛 = 2,6,10,…
0 , 𝑛 = 1,3,5,7,…

   ,   𝜌(𝑛) = {
+1 , 𝑛 = 3,7,11,…
−1 , 𝑛 = 1,5,9,…
0 , 𝑛 = 0,2,4,6,…

 (4.35) 

As a result, the real and imaginary components of Eq. (4.34) can now be expressed in the following 

manner (after performing some algebra to facilitate neater organization): 

𝑅𝑒{𝑇(𝜔) − (𝑔𝑟(𝜔) + 𝑗ℎ𝑟(𝜔)) } = 0 ⇒ 

      −𝜔−𝑛𝑔𝑟𝑎𝑛 +𝜔
−𝑛+1ℎ𝑟𝑎𝑛−1 +𝜔

−𝑛+2𝑔𝑟𝑎𝑛−2 −𝜔
−𝑛+3ℎ𝑟𝑎𝑛−3 −𝜔

−𝑛+4𝑔𝑟𝑎𝑛−4 +⋯ 

      +𝜔−𝑛𝑏𝑚 −𝜔
−𝑛+2𝑏𝑚−2 +𝜔

−𝑛+4𝑏𝑚−4 −𝜔
−𝑛+6𝑏𝑚−6 +⋯ = 𝜎𝑟(𝑛) ∙ 𝑔𝑟 + 𝜌𝑟(𝑛) ∙ ℎ𝑟 

𝐼𝑚{𝑇(𝜔) − (𝑔𝑟(𝜔) + 𝑗ℎ𝑟(𝜔))} = 0 ⇒ 

      −𝜔−𝑛ℎ𝑟𝑎𝑛 −𝜔
−𝑛+1𝑔𝑟𝑎𝑛−1 +𝜔

−𝑛+2ℎ𝑟𝑎𝑛−2 +𝜔
−𝑛+3𝑔𝑟𝑎𝑛−3 −𝜔

−𝑛+4ℎ𝑟𝑎𝑛−4 −⋯ 

     +𝜔−𝑛+1𝑏𝑚−1 −𝜔
−𝑛+3𝑏𝑚−3 +𝜔

−𝑛+5𝑏𝑚−5 −𝜔
−𝑛+7𝑏𝑚−7 +⋯

= −𝜌𝑟(𝑛) ∙ 𝑔𝑟 + 𝜎𝑟(𝑛) ∙ ℎ𝑟 

(4.36) 

Thus, for a single frequency 𝜔, fitting of the remainder dynamics as a rational polynomial (transfer 

function) 𝑇(𝑠) can be expressed in regressor (𝚽′) - parameter (𝜽), and observation/output (𝐘′) format for 

LS parameter estimation [128]: 

𝚽′(𝜔) = [𝚽𝑎
′ (𝜔) ⋮ 𝚽′

𝑏(𝜔)]

𝜽 = [𝜽𝑎
𝑇 ⋮ 𝜽𝑏

𝑇]𝑇

𝒀′(𝜔) = [𝜎𝑟(𝑛) ∙ 𝑔𝑟(𝜔) + 𝜌𝑟(𝑛) ∙ ℎ𝑟(𝜔) ⋮ −𝜌𝑟(𝑛) ∙ 𝑔𝑟(𝜔) + 𝜎𝑟(𝑛) ∙ ℎ𝑟(𝜔)]
𝑇

 
where:
 
𝜽𝑎 = [𝑎𝑛 𝑎𝑛−1 … 𝑎1]𝑇   ,   𝜽𝑏 = [𝑏𝑚 𝑏𝑚−1 … 𝑏0]

𝑇

 

𝚽𝑎
′ (𝜔) = [

−𝜔−𝑛𝑔𝑟 𝜔−𝑛+1ℎ𝑟 𝜔−𝑛+2𝑔𝑟 −𝜔−𝑛+3ℎ𝑟 −𝜔−𝑛+4𝑔𝑟 …

−𝜔−𝑛ℎ𝑟⏟    
𝑎𝑛

−𝜔−𝑛+1𝑔𝑟⏟      
𝑎𝑛−1

𝜔−𝑛+2ℎ𝑟⏟      
𝑎𝑛−2

𝜔−𝑛+3𝑔𝑟⏟      
𝑎𝑛−3

−𝜔−𝑛+4ℎ𝑟⏟      
𝑎𝑛−4

…]

 
 

𝚽𝑏
′ (𝜔) = [

𝜔−𝑛 0 −𝜔−𝑛+2 0 𝜔−𝑛+4 …
0⏟
𝑏𝑚

𝜔−𝑛+1⏟  
𝑏𝑚−1

0⏟
𝑏𝑚−2

−𝜔−𝑛+3⏟    
𝑏𝑚−3

0⏟
𝑏𝑚−4

…]

 (4.37) 

The formulation in Eq. (4.37) can now be expanded to use the frequency response data in arrays 𝝎, 𝒈𝑟, 

𝒉𝑟, defined in Eq. (4.21), via adequate Hadamard (i.e., element-wise) product and power operators. 
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𝝎 = [𝜔1 … 𝜔𝑁]𝑇   ,   𝒈𝑟 = [𝑔𝑟(𝜔1) … 𝑔𝑟(𝜔𝑁)]
𝑇   ,   𝒉𝑟 = [ℎ𝑟(𝜔1) … ℎ𝑟(𝜔𝑁)]

𝑇 (4.38) 

In this case, the regressor matrix (𝚽) and observation/output vector (𝒀) take the proceeding 

forms: 
 

𝚽 = [𝚽𝑎 ⋮ 𝚽𝑏]

𝒀 = [
𝜎𝑟(𝑛) ∙ 𝒈𝑟 + 𝜌𝑟(𝑛) ∙ 𝒉𝑟

−𝜌𝑟(𝑛) ∙ 𝒈𝑟 + 𝜎𝑟(𝑛) ∙ 𝒉𝑟
]

 
where:
 

𝚽𝑎 = [
−𝝎∘(−𝑛) ∘ 𝒈𝑟 𝝎∘(−𝑛+1) ∘ 𝒉𝑟 𝝎∘(−𝑛+2) ∘ 𝒈𝑟 −𝝎∘(−𝑛+3) ∘ 𝒉𝑟 −𝝎∘(−𝑛+4) ∘ 𝒈𝑟 …

−𝝎∘(−𝑛) ∘ 𝒉𝑟⏟        
𝑎𝑛

−𝝎∘(−𝑛+1) ∘ 𝒈𝑟⏟          
𝑎𝑛−1

𝝎∘(−𝑛+2) ∘ 𝒉𝑟⏟        
𝑎𝑛−2

𝝎∘(−𝑛+3) ∘ 𝒈𝑟⏟        
𝑎𝑛−3

−𝝎∘(−𝑛+4) ∘ 𝒉𝑟⏟        
𝑎𝑛−4

…]

 

𝚽𝑏 = [
𝝎∘(−𝑛) 𝟎 −𝝎∘(−𝑛+2) 𝟎 𝝎∘(−𝑛+4) …
𝟎⏟
𝑏𝑚

𝝎∘(−𝑛+1)⏟      
𝑏𝑚−1

𝟎⏟
𝑏𝑚−2

−𝝎∘(−𝑛+3)⏟      
𝑏𝑚−3

𝟎⏟
𝑏𝑚−4

…]

 (4.39) 

Thus, the optimal parameter solution for a single output/input channel has the structure: 

𝜽̂ = [𝜽̂𝑎
𝑇 ⋮ 𝜽̂𝑏

𝑇]𝑇 = [𝑎̂𝑛 𝑎̂𝑛−1 … 𝑎̂1 ⋮ 𝑏̂𝑚 𝑏̂𝑚−1 … 𝑏̂0]
𝑻 = (𝚽𝑇𝚽)−1𝚽𝑇𝒀 (4.40) 

Extension of the above formulation to the MIMO case requires the consideration of the commonality 

of the poles, as also done in Section 4.2.2.2. Hence, 𝜽𝑎 portion of the parameter vector in Eq. (4.37) has to 

be the same across all output/input channels. The size and entries of the numerator vector 𝜽𝑏
𝑘𝑜𝑘𝑖, however, 

can be different for each output/input channel pair (𝑘𝑜𝑘𝑖). The size of the numerator vector, and its 

corresponding regressor matrix 𝚽𝑏
𝑘𝑜𝑘𝑖, will be 𝑚𝑘𝑜𝑘𝑖 + 1. 

Using the formulation developed through Eqs. (4.35)-(4.41), the output (𝒀), model prediction (𝚽𝜽), 

and model prediction error (𝑬) terms for a single output/input channel pair (𝑘𝑜𝑘𝑖) can be expressed as, 

𝒀𝑘𝑜𝑘𝑖 = [𝚽𝑎
𝑘𝑜𝑘𝑖 𝚽𝑏

𝑘𝑜𝑘𝑖] ∙ [
𝜽𝑎

𝜽𝑏
𝑘𝑜𝑘𝑖] + 𝑬

𝑘𝑜𝑘𝑖 (4.41) 

In constructing 𝒀𝑘𝑜𝑘𝑖, 𝚽𝑎
𝑘𝑜𝑘𝑖, and 𝚽𝑏

𝑘𝑜𝑘𝑖, the expressions in Eq. (4.39) is applied by substituting the 

occurrences of 𝒈𝑟, 𝒉𝑟, and 𝑚 with 𝒈𝑟
𝑘𝑜𝑘𝑖, 𝒉𝑟

𝑘𝑜𝑘𝑖, and 𝑚𝑘𝑜𝑘𝑖 respectively. The superscript ‘𝑘𝑜𝑘𝑖’ is appended 

to the terms 𝒀, 𝚽𝑎, and 𝚽𝑏. Following this step, the LS parameter estimation for the MIMO case can be 

formulated by concatenating the occurrences of Eq. (4.41) for the available output/input channels (1 ≤
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𝑘𝑜 ≤ 𝑁𝑜, 1 ≤ 𝑘𝑖 ≤ 𝑁𝑖), and factoring the common denominator (i.e. system poles) related portion of the 

parameter vector (𝜽𝑎) accordingly. 

[
 
 
 
 
 
 
𝒀11

⋮
𝒀1𝑁𝑖

⋮
𝒀𝑁𝑜1

⋮
𝒀𝑁𝑜𝑁𝑖]

 
 
 
 
 
 

⏟    
𝒀

=

[
 
 
 
 
 
 
 
 
 
𝚽𝑎
11 𝚽𝑏

11 … 𝟎 … 𝟎 … 𝟎
⋮ ⋮ ⋱ ⋮ … ⋮ … ⋮

𝚽𝑎
1𝑁𝑖 𝟎 … 𝚽𝑏

1𝑁𝑖 … 𝟎 … 𝟎

⋮ ⋮ … ⋮ ⋱ ⋮ … ⋮

𝚽𝑎
𝑁𝑜1 𝟎 … 𝟎 … 𝚽𝑏

𝑁𝑜1 … 𝟎 

⋮ ⋮ … ⋮ … ⋮ ⋱ ⋮

𝚽𝑎
𝑁𝑜𝑁𝑖 𝟎⏟

𝑘𝑜=1
𝑘𝑖=1 

… 𝟎⏟
𝑘𝑜=1
𝑘𝑖=𝑁𝑖 

… 𝟎⏟
𝑘𝑜=𝑁𝑜
𝑘𝑖=1 

… 𝚽𝑏
𝑁𝑜𝑁𝑖

⏟  
𝑘𝑜=𝑁𝑜
𝑘𝑖=𝑁𝑖 ]

 
 
 
 
 
 
 
 
 

⏟                                  
𝚽

[
 
 
 
 
 
 
 
 
𝜽𝑎
𝜽𝑏
11

⋮

𝜽𝑏
1𝑁𝑖

⋮

𝜽𝑏
𝑁𝑜1

⋮

𝜽𝑏
𝑁𝑜𝑁𝑖]

 
 
 
 
 
 
 
 

⏟    
𝜽

+

[
 
 
 
 
 
 
𝑬11

⋮
𝑬1𝑁𝑖

⋮
𝑬𝑁𝑜1

⋮
𝑬𝑁𝑜𝑁𝑖]

 
 
 
 
 
 

⏟    
𝑬

 (4.42) 

Above, the 𝟎 terms represent block arrays of zeros with adequate dimensions (i.e., 2𝑁 × (𝑚𝑘𝑜𝑘𝑖 + 1)).  

The optimal solution for the parameter vector is thus founds as [128]: 

𝜽̂ = [(𝜽̂𝑎)
𝑇

⋮ (𝜽̂𝑏
11)

𝑇
… (𝜽̂𝑏

1𝑁𝑖)
𝑇

… (𝜽̂𝑏
𝑁𝑜1)

𝑇
 … (𝜽̂𝑏

𝑁𝑜𝑁𝑖)
𝑇
]
𝑇
= (𝚽𝑇𝚽)−1𝚽𝑇𝒀 (4.43) 

Thus, an overall fit for the remainder dynamics (excluding the resonant modes) is established using the 

available multi-channel FRF data. While the choice for the denominator order 𝑛, and the numerator orders 

for each channel 𝑚𝑘𝑜𝑘𝑖 are not trivial, in the developed approach these are determined in a semi-automated 

manner. The implementation iterates through different integer values for 𝑛 and 𝑚𝑘𝑜𝑘𝑖, within preset bounds, 

while applying Steps 4 and 5 of the algorithm shown in Figure 4.1. Afterwards, the user is presented with 

topology visualization for the objective function (i.e., RMS of modeling error) as a function of 𝑛 and 𝑚𝑘𝑜𝑘𝑖, 

which facilitates the selection of reasonably low values for these orders which still enabling good modeling 

accuracy. 

 

4.2.2.5. Step 5: Consolidation of lightly and highly damped pole and joint fitting of participation 

factors 

In this step, the participation factors (𝛽𝑘
𝑘𝑜𝑘𝑖, 𝛼𝑘

𝑘𝑜𝑘𝑖, 𝛾𝑘
𝑘𝑜𝑘𝑖, and 𝛿𝑘

𝑘𝑜𝑘𝑖) for the candidate pole locations 

and potential direct or derivative-like terms, identified so far, are simultaneously adjusted, now considering 

a broad spectrum of frequency response data that is available. This is performed to further improve the 

model fitting over Steps 2-4, particularly considering that Steps 2-3 use only narrow frequency range data 

near the resonances, and that the expressions for 𝐶𝑘𝑜𝑘𝑖 and 𝑇𝑘𝑜𝑘𝑖 were so far estimated sequentially, not 

simultaneously. 
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The expression of  𝑇𝑘𝑜𝑘𝑖 in Eq. (4.4) can be put into the form 𝑇𝑘𝑜𝑘𝑖(𝑠) = 𝐿𝑘𝑜𝑘𝑖(𝑠) + 𝑅𝑘𝑜𝑘𝑖(𝑠) +

𝐷𝑘𝑜𝑘𝑖(𝑠) as in Eq. (4.3). If the numerator order 𝑚𝑘𝑜𝑘𝑖 is equal to or higher than the denominator order 𝑛, 

polynomial deconvolution is also applied to determine the quotient (i.e., direct or derivative-like terms 

𝐷𝑘𝑜𝑘𝑖) and the remainder 𝐹𝑘𝑜𝑘𝑖: 

𝑇𝑘𝑜𝑘𝑖(𝑠) =
𝑓0
𝑘𝑜𝑘𝑖𝑠𝑛−1 + 𝑓1

𝑘𝑜𝑘𝑖𝑠𝑛−2  + ⋯+ 𝑓𝑛−1
𝑘𝑜𝑘𝑖⏞                        

Remainder: 𝐹𝑘𝑜𝑘𝑖(𝑠)

𝑠𝑛 + 𝑎1𝑠
𝑛−1 +⋯+ 𝑎𝑛⏟              

Poles of RFP: 𝑃′(𝑠)

+ 𝛿0
𝑘𝑜𝑘𝑖 + 𝛿1

𝑘𝑜𝑘𝑖𝑠 + ⋯+ 𝛿𝑑𝑘𝑜𝑘𝑖
𝑘𝑜𝑘𝑖 𝑠𝑑𝑘𝑜𝑘𝑖

⏟                      
Quotient: 𝐷𝑘𝑜𝑘𝑖

(𝑠)

 
(4.44) 

Afterwards, solving and grouping the poles of 𝑃′(𝑠) based on whether they are complex conjugate or 

real establishes the locations for the 𝑛𝑐2 complex and 𝑛𝑟 real poles contained within 𝐿𝑘𝑜𝑘𝑖(𝑠) and 𝑅𝑘𝑜𝑘𝑖(𝑠). 

In software such as MATLAB, deconvolution and pole finding can be achieved with commands like 

‘deconv’, ‘pole’, ‘damp’, and ‘residue’. The latter, given 𝐹𝑘𝑜𝑘𝑖, can also determine the numerator 

coefficients for the expressions of 𝐿𝑘𝑜𝑘𝑖 and 𝑅𝑘𝑜𝑘𝑖. After combining all complex conjugate poles into one 

set (𝑛𝑐 = 𝑛𝑐1 + 𝑛𝑐2), the formulation for 𝐺𝑘𝑜𝑘𝑖 in Eq. (4.2) can be applied to concurrently solve the 

unknown coefficients (i.e., 𝛽’s, 𝛼’s, 𝛾’s, and 𝛿’s). At this point, a candidate set of poles is either given or 

identified in terms of 𝜁𝑘, 𝜔𝑘, and 𝑝𝑘 values, and also the existence and structure (𝑑𝑘𝑜𝑘𝑖) of any direct terms 

has been determined for each output/input channel pair. Thus, the frequency response contribution of each 

term is computed and used to setup a LS parameter estimation problem. 

Considering Eq. (4.2), for each frequency 𝜔 the response contribution from each complex conjugate 

pole pair −𝜁𝑘𝜔𝑘 ± 𝑗𝜔𝑘√1− 𝜁𝑘
2 (for 𝑘 = 1,… , 𝑛𝑐) at can be represented by defining the auxiliary function 

𝐺2,𝑘, similar to that in Eq. (4.27).  

𝐺2,𝑘(𝜔) =
1

𝜔𝑘
2 −𝜔2 + 𝑗2𝜁𝑘𝜔𝑘𝜔

  ,  with:   𝑔2,𝑘(𝜔) = 𝑅𝑒{𝐺2,𝑘(𝜔)}  ,  ℎ2,𝑘(𝜔) = 𝐼𝑚{𝐺2,𝑘(𝜔)} (4.45) 

Above, the subscript ‘𝑘’ is included to designate the separate contribution of each complex mode, as 

they all have to be considered simultaneously. Similarly, the frequency response from a real pole at −𝑝𝑘 

for 𝑘 = 1,… , 𝑛𝑟 can be represented with the auxiliary function 𝐺1,𝑘: 

𝐺1,𝑘(𝜔) =
1

𝑗𝜔 + 𝑝𝑘
   ,   with:   𝑔1,𝑘(𝜔) = 𝑅𝑒{𝐺1,𝑘(𝜔)}   ,   ℎ1,𝑘(𝜔) = 𝐼𝑚{𝐺1,𝑘(𝜔)} (4.46) 
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Substituting (𝑗𝜔) in the place of ‘𝑠’ in Eq. (4.2), and by considering the auxiliary functions defined in 

Eqs. (4.45) and (4.46), the real and imaginary components of the frequency response of 𝐺𝑘𝑜𝑘𝑖(𝜔) can thus 

be expressed as, 

𝑅𝑒{𝐺𝑘𝑜𝑘𝑖(𝜔) } = ∑(𝑔2,𝑘(𝜔) ∙ 𝛼𝑘
𝑘𝑜𝑘𝑖 −𝜔ℎ2,𝑘(𝜔) ∙ 𝛽𝑘

𝑘𝑜𝑘𝑖)

𝑛𝑐

𝑘=1

+∑𝑔1,𝑘(𝜔) ∙ 𝛾𝑘
𝑘𝑜𝑘𝑖

𝑛𝑟

𝑘=1

 

                               +𝛿0
𝑘𝑜𝑘𝑖 − 𝜔2𝛿2

𝑘𝑜𝑘𝑖 +𝜔4𝛿4
𝑘𝑜𝑘𝑖 −𝜔6𝛿6

𝑘𝑜𝑘𝑖 +⋯ 

𝐼𝑚{𝐺𝑘𝑜𝑘𝑖(𝜔) } = ∑(ℎ2,𝑘(𝜔) ∙ 𝛼𝑘
𝑘𝑜𝑘𝑖 +𝜔𝑔2,𝑘(𝜔) ∙ 𝛽𝑘

𝑘𝑜𝑘𝑖)

𝑛𝑐

𝑘=1

+∑ℎ1,𝑘(𝜔) ∙ 𝛾𝑘
𝑘𝑜𝑘𝑖

𝑛𝑟

𝑘=1

 

                               +𝜔𝛿1
𝑘𝑜𝑘𝑖 −𝜔3𝛿3

𝑘𝑜𝑘𝑖 +𝜔5𝛿5
𝑘𝑜𝑘𝑖 −𝜔7𝛿7

𝑘𝑜𝑘𝑖 +⋯ 

(4.47) 

The objective in this adjustment step is to have 𝐺𝑘𝑜𝑘𝑖(𝜔) match the delay-corrected experimental data 

as closely as possible. Thus, the LS parameter estimation problem can be defined by introducing the arrays 

for the parameters (𝜽), the regressors (𝚽′(𝜔)), and the output measurements (𝒀′(𝜔)), as shown in the 

proceeding equations: 

Parameter vector:   𝜽 = [𝜽𝛼𝛽
𝑇 ⋮ 𝜽𝛾

𝑇 ⋮ 𝜽𝛿
𝑇]
𝑇

 

𝜽𝛼𝛽 = [𝛼1
𝑘𝑜𝑘𝑖 𝛽1

𝑘𝑜𝑘𝑖 ⋮ 𝛼2
𝑘𝑜𝑘𝑖 𝛽2

𝑘𝑜𝑘𝑖 ⋮ … ⋮ 𝛼𝑛𝑐
𝑘𝑜𝑘𝑖 𝛽𝑛𝑐

𝑘𝑜𝑘𝑖]
𝑇

 

𝜽𝛾 = [𝛾1
𝑘𝑜𝑘𝑖 𝛾2

𝑘𝑜𝑘𝑖 … 𝛾𝑛𝑟
𝑘𝑜𝑘𝑖]

𝑇
 

𝜽𝛿 = [𝛿0
𝑘𝑜𝑘𝑖 𝛿1

𝑘𝑜𝑘𝑖 … 𝛿𝑑𝑘𝑜𝑘𝑖
𝑘𝑜𝑘𝑖 ]

𝑇
 

(4.48) 

Regressor matrix:   𝚽′(𝜔) = [𝚽𝛼𝛽
′ (𝜔) ⋮ 𝚽𝛾

′ (𝜔) ⋮ 𝚽𝛿
′ 𝑘𝑜𝑘𝑖(𝜔)] 

𝚽𝛼𝛽
′ (𝜔) = [𝚽𝛼𝛽,1

′ (𝜔) 𝚽𝛼𝛽,2
′ (𝜔) … 𝚽𝛼𝛽,𝑛𝑐

′ (𝜔)] 

𝚽𝛼𝛽,𝑘
′ (𝜔) = [

𝑔2,𝑘(𝜔) −𝜔ℎ2,𝑘(𝜔)

ℎ2,𝑘(𝜔) 𝜔𝑔2,𝑘(𝜔)
]    ,   where:  𝑘 = 1,… , 𝑛𝑐 

𝚽𝛾
′ (𝜔) = [𝚽𝛾,1

′ (𝜔) 𝚽𝛾,2
′ (𝜔) … 𝚽𝛾,𝑛𝑟

′ (𝜔)] 

𝚽𝛾,𝑘
′ (𝜔) = [

𝑔1,𝑘(𝜔)

ℎ1,𝑘(𝜔)
]    ,   where:   𝑘 = 1,… , 𝑛𝑟 

𝚽𝛿
′ 𝑘𝑜𝑘𝑖(𝜔) = [1 0 −𝜔2 0 𝜔4 0 −𝜔6 0 …

0 𝜔 0 −𝜔3 0 𝜔5 0 −𝜔7 …
]    ,   size:   2 × (𝑑𝑘𝑜𝑘𝑖 + 1 ) 

(4.49) 

Output vector:    𝒀′(𝜔) = [𝑔𝑘𝑜𝑘𝑖(𝜔) ⋮ ℎ𝑘𝑜𝑘𝑖(𝜔)] (4.50) 
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As applied earlier in Steps 3 and 4, the extension of the LS formulation in Eq. (4.48)-(4.50) to the data 

in the frequency range 𝝎 = [𝜔1 … 𝜔𝑁]𝑇 is realized by replacing the product and power operations with 

their Hadamard (i.e., element-wise) counterparts, leading to the regressor matrix (𝚽) and output vector (𝒀) 

for the whole frequency range. 

Regressor matrix:   Φ = [𝚽𝛼𝛽 ⋮ 𝚽𝛾 ⋮ 𝚽𝛿
𝑘𝑜𝑘𝑖] 

𝚽𝛼𝛽 = [𝚽𝛼𝛽,1 𝚽𝛼𝛽,2 … 𝚽𝛼𝛽,𝑛𝑐]   ,   𝚽𝛼𝛽,𝑘 = [
𝒈2,𝑘 −𝝎 ∘ 𝒉2,𝑘
𝒉2,𝑘 𝝎 ∘ 𝒈2,𝑘

]  , where:  𝑘 = 1,… , 𝑛𝑐 

𝚽𝛾 = [𝚽𝛾,1 𝚽𝛾,2 … 𝚽𝛾,𝑛𝑟]   ,   𝚽𝛾,𝑘 = [
𝒈1,𝑘
𝒉1,𝑘

]    ,   where:   𝑘 = 1,… , 𝑛𝑟 

𝚽𝛿
𝑘𝑜𝑘𝑖 = [𝟏 𝟎 −𝝎∘2 𝟎 𝝎∘4 𝟎 −𝝎∘6 𝟎 …

𝟎 𝝎 𝟎 −𝝎∘3 𝟎 𝝎∘5 𝟎 −𝝎∘7 …
]  , size:  2𝑁 × (𝑑𝑘𝑜𝑘𝑖 + 1 ) 

(4.51) 

Output vector:    𝒀 = [
𝒈𝑘𝑜𝑘𝑖

𝒉𝑘𝑜𝑘𝑖
] (4.52) 

In Eq. (4.51), the arrays 𝒈2,𝑘, 𝒉2,𝑘 and 𝒈1,𝑘, 𝒉1,𝑘 are obtained by enumerating the frequency array 𝝎 =

[𝜔1 … 𝜔𝑁]𝑇 in the expressions for 𝐺2,𝑘 in Eq. (4.45) and 𝐺1,𝑘 in Eq. (4.46), and afterwards taking the 

real and imaginary components of the frequency response of 𝐺2,𝑘(𝝎) and 𝐺1,𝑘(𝝎), in the mentioned order. 

The terms 𝟎 and 𝟏 represent arrays of zeros and ones of suitable dimension, (𝑁 × 1). The expressions 𝒈𝑘𝑜𝑘𝑖 

and 𝒉𝑘𝑜𝑘𝑖 in Eq. (4.52) represent the real and imaginary components of the delay-corrected frequency 

response measurement described in Eqs. (4.7) and (4.8), corresponding to the frequency array 𝝎. Thus,  

𝝎 = [𝜔1 … 𝜔𝑁]𝑇   ,   𝒈𝑘𝑜𝑘𝑖 = [𝑔𝑘𝑜𝑘𝑖(𝜔1) … 𝑔𝑘𝑜𝑘𝑖(𝜔𝑁)]
𝑇 = [𝑔1

𝑘𝑜𝑘𝑖 … 𝑔𝑁
𝑘𝑜𝑘𝑖]

𝑇
 

𝒉𝑘𝑜𝑘𝑖 = [ℎ𝑘𝑜𝑘𝑖( 𝜔1) … ℎ𝑘𝑜𝑘𝑖(𝜔𝑁)]
𝑇 = [ℎ1

𝑘𝑜𝑘𝑖 … ℎ𝑁
𝑘𝑜𝑘𝑖]

𝑇
 

(4.53) 

The optimal solution for the participation factors, thus considering the simultaneous contribution of all 

poles (complex and real) as well as direct or derivative-like terms in Eq. (4.2), is obtained by [128], 

𝜽̂ = [𝜽̂𝛼𝛽
𝑇 𝜽̂𝛾

𝑇 𝜽̂𝛿
𝑇]
𝑇
= (𝚽𝑇𝚽)−1𝚽𝑇𝒀 (4.54) 

Thus, the estimates 𝛼̂𝑘
𝑘𝑜𝑘𝑖, 𝛽̂𝑘

𝑘𝑜𝑘𝑖, 𝛾𝑘
𝑘𝑜𝑘𝑖, and 𝛿𝑘

𝑘𝑜𝑘𝑖 can be extracted per Eq. (4.48). Since the pole 

locations are common for all output/input channels the participation factors for each channel pair 𝑘𝑜𝑘𝑖 can 

be solved independently. Also, considering Eq. (4.49), a portion of the regressor matrix [𝚽𝛼𝛽 ⋮ 𝚽𝛾] can 
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be re-used. However, the third part of 𝚽, i.e., 𝚽𝛿
𝑘𝑜𝑘𝑖, and the output vector 𝒀 in Eq. (4.52) still need to be 

updated with the correct structure before using each new data set. 

It is important to note that in the developed algorithm, the treatment of root multiplicity has not been 

incorporated; neither in the main model structure in Eq. (4.2), nor in its conversion from Eq. (4.44). This is 

because sufficiently accurate models for most mechatronic systems can still be typically identified using 

only distinct poles, which can also be located arbitrarily close if needed. The implementation of root 

multiplicity would add another level of complexity to the overall identification algorithm. Hence, currently 

this limitation is acknowledged and root multiplicity was kept out of the research scope in this thesis. 

However, is still considered as an interesting future improvement idea. 

 

4.2.2.6. Step 6: Nonlinear optimization by perturbing pole locations  

During this step, further potential improvement is sought to the model by perturbing the pole locations 

using a nonlinear optimization algorithm.  

The pole locations determined initially during Steps 2 and 4 are used as initial guess values in a global 

optimization algorithm available with MATLAB [129]. While different algorithms are available in [129], 

the one utilized in this study was ‘fmincon’ which combines Sequential Quadratic Programming (SQP), 

suitable for converging accurately to local minima, alongside a systematic procedure for trying out different 

SQP starting conditions. In an earlier work, pole search in conjunction with LS projection-based updating 

of numerator terms was applied to identify MIMO LTI models based on time-domain data [27]. In this 

study, the global optimization is utilized for frequency-domain model fitting, in an integrated manner with 

the methodology outlined in Figure 4.1. 

The search variables are the pole parameters 𝒙, defined within pre-determined lower and upper bounds 

(𝒙𝑙𝑏 and 𝒙𝑢𝑏, respectively). 

𝒙 = [𝜔1 𝜁1 … 𝜔𝑛𝑐 𝜁𝑛𝑐 ⋮ 𝑝1 … 𝑝𝑛𝑟]
𝑇   ,   such that   𝒙𝑙𝑏 ≤ 𝒙 ≤ 𝒙𝑢𝑏 (4.55) 

For each candidate pole set, the corresponding participation factors are using Step 5, as described in 

the preceding subsection. Afterwards, the fitness of the model is determined by evaluating an objective 

function, which computes the root-mean square (RMS) value for the model fitting error in a multi-channel 

sense. 
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During the repeated application of Step 5, for each output-input channel pair 𝑘𝑜𝑘𝑖, as the solution for 

the parameter vector (of participation factors) is constructed and solved, the residual (i.e., fitting error) 

vector 𝑬𝑘𝑜𝑘𝑖 is also estimated. 

𝑬𝑘𝑜𝑘𝑖 = 𝒀𝑘𝑜𝑘𝑖 −𝚽𝑘𝑜𝑘𝑖𝜽̂𝑘𝑜𝑘𝑖    ,   𝑘𝑜 = 1,… ,𝑁𝑜   ,   𝑘𝑖 = 1,… ,𝑁𝑖 (4.56) 

Above, 𝚽𝑘𝑜𝑘𝑖, 𝒀𝑘𝑜𝑘𝑖, and 𝜽̂𝑘𝑜𝑘𝑖 correspond to the terms of Φ, 𝒀, and 𝜽̂ from Eqs. (4.51), (4.52), and 

(4.54), in the mentioned order. Once the frequency domain modeling error is determined for each channel 

pair, an overall objective function 𝐽 which considers the RMS of model fitting errors from all channels is 

computed, by concatenating the individual error vectors: 

𝑬 = [(𝑬11)𝑇 … (𝑬1𝑁𝑖)𝑇 … (𝑬𝑁𝑜1)𝑇 … (𝑬𝑁𝑜𝑁𝑖)𝑇]𝑇   ,   𝐽 = rms(𝑬) (4.57) 

Considering the definition of root mean square operator: (i.e., rms(𝒆) = √(
1

𝑁
)∑𝑒𝑖

2), the objective 

function 𝐽 can also be computed by taking the RMS of individual objective function values 𝐽𝑘𝑜𝑘𝑖 calculated 

for each output-input channel pair, by applying the RMS to their corresponding model fitting error vectors: 

𝐽 = rms(𝑱𝑎𝑟𝑟𝑎𝑦) 

where:   𝑱𝑎𝑟𝑟𝑎𝑦 = [𝐽
11 … 𝐽1𝑁𝑖 … 𝐽𝑁𝑜1 … 𝐽𝑁𝑜𝑁𝑖]𝑇   ,   𝐽𝑘𝑜𝑘𝑖 = 𝑟𝑚𝑠(𝑬𝑘𝑜𝑘𝑖  ) 

(4.58) 

The algorithm is stopped upon the error converging below a set tolerance, or the maximum number of 

iterations exceeding their limit. 

 

4.3. Experimental Validation on a Precision T-Type Gantry Machine 

In this section, the application of the algorithm is demonstrated step-by-step, using frequency response 

data collected from a T-type precision x-y gantry stage, which is shown in Figure 4.4. The stage is driven 

by ironless linear motors (ETELILM06-060-3RB) powered by 3-phase pulse width modulated (PWM) 

amplifiers (DSC2P154-32) which operate in current-control mode. 1 V of current command generates 20.38 

N of force from each actuator (Motor force constant 𝐾𝑡 = 46.4 N/A, peak force 𝐹𝑝 = 1247 N, maximum 

input voltage 𝑉𝑝 = 10 V, and the amplifier gain 𝐾𝐴 = 0.4392 A/V). As shown in the figure, the guideways 

are all air bearing type, provided by New Way Precision. Thus, any perceivable nonlinear stick-slip friction 

effect is eliminated. The encoders are Heidenhain LIP 581C, which provide a measurement resolution, after 

signal interpolation, of 10-20 nm. The data collection was performed using a modular DS 1005 dSPACE 

platform, by injecting distinct sine wave excitation at different frequencies (with 2 Hz increments) from 
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one actuator at a time, and measuring the displacement response from the encoders at sampling a frequency 

of 15 kHz. Due to the lack of nonlinear stick-slip friction, the tests could be conducted while the axes were 

all stationary. Further details about the setup can be found in [130].  

 

 

 

Figure 4.4: Linear motor driven T-type gantry and worktable (left) and the schematic of the setup (right) 

[130]. 

4.3.1. MIMO Identification of Y-Axis 

The gantry-style y-axis is a two-input two-output system with a strong dynamic coupling between the 

left-hand and right-hand actuators. The four air bearings around the granite guideway exhibit the behavior 

of a torsional spring, creating a yaw vibration mode at around 96 Hz. In the data collection, systems inputs 

1 and 2 coincide with the current (i.e., force) commands (𝑓𝑦1 , 𝑓𝑦2) applied to the left- and right-hand 

actuators’ amplifiers. Outputs 1 and 2 correspond to the position measurements (𝑦1 , 𝑦2) obtained from the 

left- and right-hand linear encoders. 

Figure 4.5 shows the raw frequency response data, in which the influence of delay can also be clearly 

seen as a linearly decreasing component with frequency in the individual phase plots (∠𝐻11
′ , ∠𝐻12

′ , ∠𝐻21
′ , 

∠𝐻22
′ ). By iterating through Steps 1 to 5 in constant delay increments of 0.1 ms, the value of the pure delay 

was determined to be 1 ms, and ultimately removed from the measurement data per Section 4.2.2.1. 
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Figure 4.5: Raw FRFs, also containing the system’s pure delay in the measurement. 

Figure 4.6 shows the measured frequency response data before and after the delay removal (i.e., Step 

1 of the algorithm). A clearer comparison of the raw FRFs and their delay-corrected counterparts are shown 

in the right-hand panels of Figure 4.6. While the Bode plots on the left hand are shown with logarithmic 

magnitude to discern the general shape, the right hand plots showing fitting consistency are presented as 

real and imaginary components for more convenient comparison. As can be seen, correction of the delay 

has a dramatic impact on the contents of the real and imaginary components of the FRFs, especially at 

frequencies beyond 200 Hz where the delay-induced phase lag exceeds 57.6°.  

 

Figure 4.6: Frequency response data before and after the removal of pure delay (Step 1). 
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The application of Steps 2 and 3 (i.e., fitting of the modes and approximate participation factors in the 

vicinity of observed resonances) is shown in Figure 4.7. As can be seen, the FRF reconstructed solely with 

the estimates of these components already captures most of the trends in the experimental data. 

 

Figure 4.7: Fitting of vibration modes and residual FRFs (left) and zoomed view (right) (Steps 2 and 3). 

 

 

Figure 4.8: Subtraction of fitted modes to reveal remainder frequency response contributions (start of Step 

4), shown from 50 Hz onwards. 
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Figure 4.8 shows the subtraction of the identified resonant modes from the delay-corrected FRF data, 

which constitutes the first part of Step 4. This reveals the remainder dynamics that must be matched by the 

RFP estimation. Fitting of the remainder dynamics (𝑇𝑘𝑜𝑘𝑖) via RFP estimation, i.e., completion of Step 4, 

is shown in Figure 4.9. While the most significant trends are well-captured in the fitting, especially with 

the imaginary components of 𝐺11, 𝐺12, 𝐺21, 𝐺22,  and with the low frequency portion of the real parts of 

these transfer functions, the fitting for frequencies beyond 40 Hz, at this time, is not ideal. This is attributed 

to two factors. The first is that the identified and subtracted modes are only local approximations around 

their resonances, without considering at this time a global improvement in all participation factors. This is 

believed to be the cause of the fitting errors around 96, 303, 321, and 373 Hz, which coincide with such 

modes, as listed in Appendix A.1. The second factor is that the RFP algorithm in Step 4 places the highest 

emphasis in reducing the fitting error where the response magnitude is largest. Since the gantry drive 

(ideally) has no friction, it displays double-integrator type behavior. Thus accurate fitting of the low 

frequencies, and the imaginary component of the response (which is an order of magnitude larger than the 

real component), becomes the priority. However, as will be shown in Steps 5 and 6, these discrepancy 

problems are largely mitigated by the simultaneous (global) adjustment of all participation factors, and 

ultimately further refinement of pole locations via nonlinear optimization. 

 

 

Figure 4.9: Fitting of the remainder dynamics 𝑇𝑘𝑜𝑘𝑖 (Step 4). 
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The application of Step 5, i.e. consolidation of complex vs. real poles and simultaneous adjustment of 

all participation factors, is shown in Figure 4.10. As can be seen, a significant improvement is obtained for 

both the magnitude and phase components of all four responses. Additionally, the topologies for the RMS 

of MIMO fitting error per Eq. (4.58), including the global minimum values, are shown in Figure 4.11. These 

were computed through iterations of different system delay values (e.g., 0.0008, 0.0009, 0.0010, and 0.0011 

s), as well as denominator and numerator orders (i.e., 𝑛 and 𝑚 = 𝑚11 = 𝑚12 = 𝑚21 = 𝑚22) for the 

remainder dynamics. It can be seen that 3rd order remainder dynamics with 2nd order numerators yield the 

best possible (and minimal order) realization for the poles not captured with the resonant modes. This is 

reasonable, as two of the orders are attributed to the double-integrator-like behavior of the stage, and the 

third may be originating from the current loop. As the algorithm is iterated through Steps 1-5 in assumed 

delay increments of 0.1 ms, the delay value of 𝑇𝑑 = 0.0010 s yields the best overall fit. Thus, at this point 

the parameters 𝑇𝑑, 𝑛, and 𝑚 are fixed and the algorithm can proceed to Step 6. 

 

Figure 4.10: Measured and fitted model before (shown in left hand panels) and after (shown in right hand 

panels) pole consolidation and simultaneous fitting of all participation factors (Step 5). 
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Figure 4.11: Topologies of RMS values for the MIMO fitting error, obtained by iterating different values 

for the assumed pure delay (𝑇𝑑) and denominator / numerator model orders for the remainder dynamics 

(Steps 1-5). 

 

Figure 4.12: Experimental FRF (including delay) and fitted model before and after the nonlinear 

optimization of the pole locations. (left), and the corresponding real and imaginary response fitting errors 

(right) (Step 6). 
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Finally, the outcome of pole location nonlinear optimization, via Step 6, is shown in Figure 4.12. The 

left hand panels show the magnitude and phase components for the actual and fitted responses. The right 

hand panels show the real and imaginary components of the fitting errors, before and after the nonlinear 

pole adjustment. Additionally, the system poles estimated before and after Step 6 are summarized in Table 

A.1.1 in Appendix A.1 As can be seen, while several of the poles only change location by a relatively lower 

amount, the complex poles at 217.1, 228.68, and 369.8 Hz are replaced with new ones at 10.76, 124.41, 

3696 Hz. Most importantly, the MIMO RMS value for the fitting error, per Eq. (4.58), is reduced from 

0.0015 to 0.0010 mm/V, which is a 33% improvement achieved in Step 6, of course by also recursively 

invoking Step 5 during the nonlinear search. 

 

4.3.2. SISO Identification of the X-Axis 

The proposed model identification algorithm has also been tested on the x-axis response of the same 

setup. In this case, with a single actuator and encoder the plant model is SISO. The fit was configured to 

capture the acceleration response, by considering numerically differentiated encoder signals with respect to 

time, in computing the FRFs. The measurement data and model fits obtained at Steps 5 and 6 are shown in 

Figure 4.13. As can be seen, the estimated model replicates very closely the measured FRF at both steps, 

and further improvement is observed for Step 6, upon inspecting the RMS of fitting error value, which 

decreases from 94.5 (mm/s2)/V to 28.1 (mm/s2)/V, thus achieving additional 70% enhancement, reported 

in Appendix A.2. The summary of the identified parameters are also presented in the same appendix. The 

original FRF and final fitted model (at Step 6) are also shown in polar plot (Nyquist) format in Figure 4.14. 

It is interesting to note that the optimum estimate for the delay, in this case, is 0.5 ms, after also having used 

0.1 ms search steps. This could possibly originate from having used different real-time data collection 

scripts on the dSPACE platform, which less delay being induced when lower data collection channels are 

used. Nevertheless, the achieved overall fit, as can be seen, is quite close for a wide frequency range. 
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Figure 4.13: Experimental FRF (including delay) and 

fitted model before (RMS (E) = 94.57) & after the 

optimization (RMS(E) = 28.13). 

Figure 4.14: Nyquist diagram for 

experimental FRF and fitted model at Step 6. 

 

4.4. Experimental Validation on a Single-Axis Ball Screw Drive 

The second validation was performed with data from a precision ball-screw motion mechanism, which 

was introduced in Section 3.2. As mentioned, the ball-screw drive has air bushing type guideway system. 

Thus, the effect of nonlinear stick-slip friction is greatly mitigated and it only originates from the rotational 

bearings supporting the motor and screw, and the interface between the screw and nut, which contains 

recirculating ball elements. The schematic of the setup is shown in Figure 4.15.  

The motor is powered via a Varedan LA-1555T amplifier introduced in Section 3.4. The real-time 

controller used is dSPACE DS1005, which performs command signal generation to the linear amplifier and 

the required data collection from the encoders on the setup. The system is considered as a two-input two-

output plant. The inputs are, 𝑢1: motor torque command at the current amplifier input, and 𝑢2: the 

disturbance force applied on the table side. The outputs are, 𝑥1: the displacement registered from the 

rotational encoder (Encoder 3) at the back of the motor, and 𝑥2: the linear scale measurement of the table 

translation. The motor encoder signals were collected using specialized circuitry built into the Omron 

K3K030T driver. The translation was measured using a Heidenhain LIF 101 R linear scale. The current 

input commands to the amplifier are analog voltage signals between -10 … 10 V. In representing the motor 

torque command, 1 V input corresponds to 708.4291 N of force at table translation level. 
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Figure 4.15: Schematic of the Single-axis ball-screw drive and worktable. 

The frequency response functions for the first input were obtained by applying sinusoidal motor current 

commands to the amplifier and measuring the rotary and linear encoder position responses at 15 kHz 

sampling frequency. The disturbance input response was measured by applying impact excitation with a 

force sensor instrumented hammer (Dytran 5800, sensitivity: 2.36 mV/N). In representing the disturbance 

force, its unit was also scaled in terms of equivalent motor torque command in Volt acting at the amplifier 

input (i.e., 1 V   708.4291 N). 

Figure 4.16 shows the measured FRF, and fitted 22 MIMO model FRFs in both Bode and Nyquist 

forms. As can be seen, the model is once again in very close agreement with the experimental data. The 

summary of the identified parameters is provided in Appendix A.3. 
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Figure 4.16: Measured MIMO FRF and fitted model (after Step 6) for the single-axis ball screw drive. 

 

4.5. Experimental Validation on a 3-Axis H-Type Gantry Machine 

The third validation was performed on a 3-axis H-type CNC gantry equipped with ball-screw drives 

and supported by linear bearing guideways. The experimental setup is shown in Figure 4.17. 

 

 

Figure 4.17: 3-axis H-type CNC router (left) and schematic view of actuation and measurement points 

(right). 

The gantry x-axis has two drives, on the left-hand side and right-hand side. Both have stationary screws, 

which do not rotate, and the actuation is obtained by rotating the nut on each side using a pulley-

synchronous belt mechanism. The y-axis, which has shorter travel, comprises a rotating screw and 



99 

 

translating nut. It too utilizes a pulley-synchronous belt mechanism, this time between the motor and screw. 

All axis are driven by Pittman 14207S008 brush commutated DC motors. The (vertical) z-axis has been 

kept outside the scope of the identification results reported in this work. 

The rotary encoders mounted on the motors have a resolution of 500 pulses/rev with quadrature 

interpolation. Considering the 25 mm lead of the ball-screws, and the pulley ratio of 4.8 at each drive, a 

position measurement resolution equivalent to 2.6 μm of translation is achieved by the rotary encoders. 

Additionally, both sides of the x-axis gantry, and the y-axis, were retrofitted with LIDA 485 type linear 

encoders from Heidenhain. These generate sinusoidal signals with 20 μm period. With 4-fold quadrature 

decoding, and reliable ADC interpolation of 100-fold, the achieved measurement resolution, including 

electrical noise effects, was around 50 nm. A modular DS 1103 dSPACE platform was used for the 

measurements at a sampling frequency of 5 kHz. 

Due to the strong mechanical coupling between the left- and right-hand sides, and the existence of a 

multitude of vibration modes, the x-axis has been measured and identified as a 44 MIMO dynamic system. 

Of interest are both the command (i.e., motor actuation) response, and also the response to disturbance input 

forces at both the left- and right-hand sides. Considering the 3D schematic in Figure 4.17, the first two 

inputs to the plant correspond to the motor voltage commands applied at the amplifier inputs for both sides: 

𝑢𝑥1 and 𝑢𝑥2. The last two inputs are the external disturbance forces that can be applied or modeled at the 

moving columns of the gantry, shown with 𝑑1 and 𝑑2. These two inputs can be used to independently 

simulate the dynamic response to the nonlinear stick-slip friction acting at the guideway on each side, or in 

gauging the impact of the machining forces, as they would be reflected to the feed drive system. The 

excitation of the disturbance inputs was achieved using an impact sledgehammer with 1.36 kg proof mass 

(Dytran 5802A, sensitivity of 0.24279 mV/N). In all cases, the disturbance force was also represented in 

terms of the equivalent voltage signal that would be applied at the amplifier input, in which 1 V corresponds 

to 7.2456 N of translational force. Similarly, the system outputs considered are, respectively, the rotary 

encoder measurements (𝑥1 and 𝑥2) and linear encoder measurements (𝑥3 and 𝑥4), obtained from the left-

hand and right-hand sides, in the mentioned order. In the case of the y-axis, the system model was cast as 

being a SIMO (single-input multi-output) 21 system, with the input being the motor voltage command 

(𝑢𝑦) and the outputs being the rotary encoder and linear encoder measurements (𝑦1, 𝑦2). 

Due to large amount of stick-slip friction in the feed drive mechanisms, the actuation input related 

frequency response measurement for the x- and y-axes was performed using the two-stage indirect method 

[121][131][132], with the axes being in motion while following a constant-velocity trajectory. This helps 

to remove the influence of the sticking dynamics typically observed in guideways with friction. The closed-
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loop system response was measured by injecting an additional excitation signal on top of the control signal 

(i.e., at the plant input), and by evaluating its impact on the outputs of interest. From this data, and with 

knowledge of the stabilizing feedback controller 𝑲 and its frequency response 𝑲(𝜔), the open-loop MIMO 

FRF 𝑯(𝜔) is estimated from the closed-loop frequency response. The testing procedure and open loop FRF 

estimation are explained in Appendix A.6.  

In performing the FRF measurements for the actuation inputs, a simple proportional controller with low 

feedback gain was used, achieving a cross-over frequency of 3 Hz and 4 Hz in x- and y-axes, respectively. 

The small feedback gain allows for sufficient motor torque generation to overcome the sticking friction in 

order to achieve the primary rigid-body motion, while leaving the electromechanical system’s mid- and 

high-frequency pole locations relatively unaltered. During post-processing of the measurement, the 

dynamic contribution of the controller is also removed from the measured closed-loop FRFs, as detailed in 

Appendix A.4. However, this decoupling is realized under the assumption of linearity. Thus, keeping the 

cross-over frequency low also allows various nonlinear phenomena to be avoided, such as actuator 

saturation or limit cycles due to the interaction of measurement quantization or friction effects with high 

feedback gain. 

As the excitation signal, in the x-axis white noise perturbation, band-passed between 1…400 Hz, was 

applied to each side of the gantry, one at a time. In the y-axis, chirp type excitation, between 1…400 Hz, 

was applied.  The FRF’s were then computed by relating the cross-power spectrum with the auto-power 

spectrum, and applying suitable averaging using Welch’s method [120]. 

In measuring the disturbance response, impact hammer testing with the machine covers removed was 

not possible while the axes were in motion, due to safety interlocks built into machine. Hence, the 

disturbance response FRFs for the gantry (𝐻13, 𝐻23, 𝐻33, 𝐻43, 𝐻14, 𝐻24, 𝐻34, 𝐻44) were measured while 

the axis was stationary. In the case of the y-axis, the disturbance response measurement was not obtained. 

Such measurements are already presented for a single axis ball screw in Section 4.4, and the dual gantry x-

axis in this section. 

Figure 4.18 and Figure 4.19 show the experimentally measured FRFs and fitted MIMO (44) model 

FRFs for the gantry. The model fitting was based on imposing common pole location across all output/input 

channels, as explained in Section 4.2. Additionally, Figure 4.20 shows the visualization of the first two 

vibration modes of the gantry, determined by performing modal analysis on the machine structure. The 

identified model parameters and participation factors are summarized in Appendix A.4. It is important to 

note the large amount of friction present in the system, which results in the complex conjugate poles, 

especially related to the low frequency response of the gantry, to assume significant damping values 
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(𝜁𝑘>0.1). The nonlinear influence of friction can also be spotted in the FRF measurements shown in Figure 

A.6.2 in Appendix A.6, which were conducted under different input excitation amplitudes. At higher 

excitation magnitude, the apparent low frequency gain for the plant increases due to the Coulomb / Stribeck 

type friction assuming a less dominant role in relation to the motor actuation torques. 

Since the response to the disturbance inputs (channels 3 and 4 for inputs: 𝑑1, 𝑑2) were measured while 

the axis was stationary, the influence of static friction is also clear in the low frequency asymptote for the 

corresponding gain plots. Thus, the slope is close 0 db/dec (demonstrating spring-like behavior), rather than 

-20 db/dec (which would represent motion capability against viscous friction). Comparing the estimated 

poles and mode shape visualization (Figure 4.20), it is seen that the pole pair at 25.9 Hz corresponds to 

axial-like movement of the gantry, and the pole pair at 46.6 Hz relates to yaw motion. The physical 

interpretation of the other poles merit further investigation, but this is not fully in the scope of the presented 

MIMO model fitting algorithm. Overall, it can be seen that the model fitting is in fairly close agreement 

with the experimental FRF measurements. 

Figure 4.21 presents the measurement and SIMO (21) model FRFs for the y-axis. The parameters are 

summarized in Appendix A.5. Once again, a very close fit is achieved.  
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Figure 4.18: Raw FRF data and fitted model for the x-axis of the CNC router. 
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Figure 4.19: Nyquist plots of the experimental FRF including delay and fitted model. 
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Figure 4.20: Mode shape visualization for the gantry x-axis. 

 

 

Figure 4.21: FRF (left), Nyquist plots (right) of the raw data including delay and fitted model for the y-

axis of the CNC gantry machine. 

 

4.6. Comparison of Proposed MIMO Algorithm with MATLAB’s tfest and modalfit 

Functions 

This section presents a comparison of the fitting results between the proposed algorithm and two widely 

used algorithms available in MATLAB, which are tfest and modalfit. 

For a consistent comparison between the proposed algorithm and tfest, both algorithms were 

configured to use the same nonlinear optimization solver (i.e. fmincon). The poles of the system were 

constrained to be on the left-hand plane, to guarantee the stability of the identified models. Different 
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denominator degrees were examined in order to obtain the case with the least fitting error. While tfest 

can estimate MIMO models, the identified characteristic equation (i.e., pole locations) for the individual 

transfer function entries is not necessarily common across all output/input channels. However, as mentioned 

earlier, pole (i.e., eigenvalue) commonality is an expected result of first-principles based LTI modeling for 

mechatronic systems. This essential attribute is captured with the proposed MIMO identification algorithm. 

In addition to Instrumental Variable (iv) approach, other available algorithms in tfest (i.e. svf, 

gpmf,n4sid) were also examined to obtain the lowest fitting error between the measured frequency 

responses and the estimated model.  

In the second case, the modalfit function, as a modal parameter estimation tool in frequency-domain, 

was used to identify models for SISO and MIMO feed drive systems. Since the function modalfit does 

not capture the effect of remainder dynamics (excluding resonances), increasing the order of the estimated 

model does not necessarily reduce the fitting error to the experimentally measured FRF. In using 

modalfit, all three available methods (lsce, lsrf – global fitting, pp – peak picking) were examined 

to achieve similar results. 

In the proceeding comparisons, the data obtained from the T-type gantry, presented in Section 4.3, was 

used. 

The first comparison is in fitting a SISO model based on the x-axis acceleration response, discussed in 

Section 4.3.2. For consistency, the model order for each method; tfest, modalfit, and the proposed 

algorithm, was set to be the same, as 𝑛 = 18. This was the model order optimally determined in Section 

4.3.2 for the corresponding setup data. In using tfest, the delay estimate obtained from the proposed 

MIMO algorithm was applied as an additional parameter. modalfit, on the other hand, does not allow 

the specification of pure system delay. 

Figure 4.22 shows the experimental FRFs and fitted models using all three methods. For convenience, 

frequency-wise fitting errors are also displayed. The RMS values for the fitting errors, computed using Eq. 

(4.58), are summarized in Table 4.1. As can be seen, tfest generally works better than modalfit, 

achieving lower fitting error (RMS(E) = 25.2844 (mm/s2)/V vs. RMS(E) = 1511.2 (mm/s2)/V). This is 

primarily due to its ability to capture a wider variety of poles, not just the lightly damped complex conjugate 

pairs. Due to the inability to capture remainder dynamics or system delay, there is significant mismatch in 

the imaginary component of the model identified using modalfit. On the other hand, it is seen that the 

model estimated with the proposed algorithm yields slightly higher fitting error than tfest method 
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(RMS(E) = 28.126 (mm/s2)/V vs. RMS(E) = 25.2844 (mm/s2)/V), while it shows significantly lower fitting 

error when compared to modalfit method, demonstrating 98.14% improvement. 

 

Figure 4.22: Raw FRF data and fitted models using tfest (left) modalfit (right) vs. the proposed 

algorithm. 

 

Table 4.1: Comparison between the proposed algorithm, tfest and modalfit (SISO case). 

Fitting algorithm RMS error (mm/s2)/V Order 

Proposed 28.126 18 

tfest 25.2844 18 

Modalfit(lsrf) 1511.2 18 

The second comparison is in fitting a MIMO model based on the y-axis displacement response of the 

high precision gantry discussed in Section 4.3.1. The model order identified earlier with the proposed 

algorithm (𝑛= 23) was propagated into this comparison as well in configuring tfest. However, 

modalfit requires an even model order. For the use of this function, the model order was rounded up to 

24. Figure 4.23 and Figure 4.24 show the original MIMO FRF data, the model fitted using the proposed 

MIMO estimation algorithm, and in the mentioned order: overlays of the models fitted using tfest and 

modalfit. Once again, frequency-wise fitting errors are also presented. Table 4.2 shows the comparison 

of fitting error RMS values, per Eq. (4.58), computed for all three methods. 

Similar to the SISO case, tfest achieves lower fitting error in comparison to modalfit (RMS(E) 

= 0.2242 mm/V vs. RMS(E) = 0.3032 mm/V). However, the proposed algorithm achieves even lower fitting 

error, RMS(E) = 0.001004 mm/V. Compared to the result of tfest, this is an additional 99.55% 

improvement. 
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Figure 4.23: Raw FRF data and fitted models using the proposed algorithm vs. tfest. 

 

 

Figure 4.24: Raw FRF data and fitted models using the proposed algorithm vs. modalfit. 
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Furthermore, through its ability to enforce the commonality of pole locations across all designated 

output and input channels, the proposed algorithm is able to estimate a minimal order MIMO LTI model 

with ideally the least amount of ‘superfluous modes’. In mainstream identification practice, superfluous 

modes can originate from estimating and attempting to merge multiple SISO realizations, obtained from 

different output-input channel combinations, into a single MIMO model. However, the proposed algorithm 

simultaneously considers all available multivariate data, and systematically optimizes the pole locations 

and participation factors, to achieve a constrained-order model with the best possible fit across all transfer 

function entries. Such a compact and carefully optimized MIMO model can provide significant advantages 

in controller design and implementation, especially in the implementation of model-based methods like 

state-feedback, pole-placement, LQG, and 𝐻2/𝐻∞ optimal control. As can be observed from Table 4.2, for 

the y-axis of the gantry, the fitting error of the model constructed by concatenation of the individual SISO 

transfer functions is significantly lower than the model considering the MIMO system for the same order. 

The stability was enforced for the identification of each SISO transfer function. Due to lack of constraint 

on the commonality of the system’s poles, the minimal realization of the identified MIMO system by 

tfest function results in 92 states as compared to 46 states estimated by the proposed algorithm 

(considering the data from all the input/output channels). There were some cases where tfest achieved 

better fitting results compared to the proposed algorithm. However, these were obtained only when the 

optimization of tfest was not constrained to enforce left-hand plane poles and in each of these cases, the 

model estimated by tfest was unstable. These cases are shown in Appendix A.7. The convergence result 

was the same regardless of the solver algorithm chosen. 

Overall, the presented SISO and MIMO benchmark studies demonstrate that the proposed MIMO 

identification algorithm is able to achieve two order of magnitude improvement in the frequency-domain 

fitting compared to some of the well-established algorithms currently available in MATLAB’s tfest and 

modalfit. In addition, the MIMO models estimated with the proposed method are highly suitable for 

model-based controller design.  

Table 4.2: Comparison between the proposed algorithm, tfest and modalfit (MIMO case). 

Fitting algorithm RMS error (mm)/V Order 

Proposed 0.001004 23 

tfest (Concatenation of SISO models) 0.1121 23 (2×2) 

tfest (MIMO model) 0.2242 23 (2×2) 

modalfit(lsrf) 0.3032 24 
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4.7. Conclusions 

This chapter has presented a new frequency-domain MIMO LTI model identification algorithm, which 

can be used for mechatronic systems with multiple actuation and disturbance inputs, as well as multiple 

sensor and measurement channels. The algorithm is particularly successful in identifying models for 

systems with mixed dynamics, comprising delays, lightly damped (highly resonant) as well as well-damped 

(lightly-resonant or non-resonant) complex conjugate and real poles. The systematic procedure has first 

been described from bird’s eye view (Section 4.2.1), then with full-detailed formulation (Section 4.2.2), 

and afterwards in the context of step-by-step numerical implementation with experimental MIMO data 

(Section 4.3). 

As case studies of different mechatronic systems, the proposed method has been successfully validated 

in model identification for: i) A T-type precision gantry with linear motors and air bearings (22 MIMO y-

axis, 11 SISO x-axis); ii) A precision ball screw with air bushing (22 MIMO with different types of 

actuation inputs (motor and impact hammer) and rotary and linear encoders outputs, and ; iii) An industrial 

flatbed router with long ball-screws, significant friction, and belt-pulleys transmission systems (44 MIMO 

x-axis: motor and impact hammer inputs, rotary, linear outputs, plus, 21 SIMO y-axis). 

In all cases, it is seen that the proposed algorithm, made up of: Iterating for the system delay estimate 

(Step 1), Initially decoupled estimation of the resonant modes and remainder dynamics (Steps 2-4), 

Consolidation of all dynamics and joint adjustment of all participation factors (Step 5), and, Nonlinear 

optimization of the pole locations (Step 6), has achieved very close fits to the experimental data. 

Furthermore, the method has been benchmarked against two of the most widely used estimation algorithms 

available through MATLAB, tfest and modalfit. The proposed algorithm has demonstrated two 

order-of-magnitude or better (i.e., 99.55% - 99.67%) improvement over the results obtained with these 

methods in MIMO case. The use of the identified models, obtained via the proposed approach, is now being 

investigated in MIMO control design strategies. 
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Chapter 5  

Control for Precision Motion and Active Vibration Damping 

5.1. Introduction 

Aside from fundamental limitations, such as time delays and non-minimum phase zeros, the excitation 

of structural resonances by the control input remains one of the limiting factors in achieving high servo-

bandwidth control in motion control systems, such as machine tool feed drives. This is especially true if the 

modes that are excited have poor controllability or observability in relation to the feedback controller output 

and input, or lie in a frequency range where the required control action exceeds the actuators’ capabilities, 

or the sensor’s feedback quality diminishes. The latter two points are especially prevalent in dealing with 

high-frequency vibration modes, for which the required damping effort can be excessive, and the signal-to-

noise ratio deteriorates due to relatively small motions registered, when using industry-standard 

displacement (encoder) signals for feedback. 

While most servo control architectures with active damping capability typically consider only one 

vibration mode at a time [55][71][72][80], namely the most dominant axial mode in ball-screw drives, the 

existence of other modes at lower and higher frequencies can have a diminishing effect on the achievable 

closed-loop control performance, especially in terms of rejecting external (e.g., cutting force or friction) 

type disturbances on the load side for a wide frequency range. The rejection of such disturbances, 

nevertheless, plays a critical role in improving both the dynamic positioning accuracy of a production 

machine [71][133][134] (i.e., the manufactured part quality), and also the stability of a machining process 

(i.e., productivity), by reducing the susceptibility of the feed drive system to cause unstable machining 

chatter vibrations due to exhibiting a high value for dynamic compliance [63][135]. 

In this chapter, a new tracking and vibration damping control strategy is proposed in order to attenuate 

multiple vibration modes and obtain superior disturbance rejection in ball-screw drive systems. In the best 

of the author’s knowledge, this study is the first time in literature in which multiple vibration modes for a 

ball-screw drive are successfully modelled and actively attenuated with experimental validation. The 

proposed controller includes an inner loop that is synthesized using the mixed-sensitivity optimization 

method based on the ℋ2 or ℋ∞ norm to achieve active vibration damping, and an outer loop designed using 

loop shaping principles to achieve suitable tracking of trajectory commands. The vibration damping 

controller synthesis, which is at the heart of the proposed design, is made possible especially due to the 

high-fidelity MIMO model that could be estimated from FRF data of a ball-screw, using the algorithm 

developed in Chapter 4. In addition to the two-loop structure, suitable feedforward control terms to 
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overcome repeatable disturbances, such as friction, and to correct for trajectory following distortions, are 

also included into the overall control structure.  

The performance of the proposed controller is compared against the industry-standard P-PI position-

velocity cascade controller, and the vibration-damping pole-placement controller (PPC) [72] in tracking 

and disturbance rejection experiments. The benchmarked controllers (i.e. P-PI position-velocity & PPC) 

are designed, and optimally tuned based on a two-inertia model of the feed drive system described in Section 

3.7. 

In the following, Section 5.2 introduces a motivating case study to highlight the importance of 

considering structural vibrations when designing servo control laws for machine tool feed drive systems. 

Section 5.3 reviews the design of the industry standard P-PI position-velocity cascade controller, which 

will be used as the first benchmark (i.e., baseline) in this chapter. Section 5.4 describes a more recent 

vibration damping based position controller presented in the literature based on the pole-placement method, 

considered as the second benchmark. Afterwards, the general formulation of the mixed-sensitivity ℋ2 and 

ℋ∞ optimization problem is reviewed in Section 5.5, which is used in synthesizing the proposed control 

law’s vibration damping functionality. Setting this work apart from earlier applications of ℋ2 and ℋ∞ 

control for feed drives, in this thesis, multiple vibration modes are targeted instead of just one. 

The design and integration of the tracking controller and active vibration-damping optimal controller 

is discussed in Section 5.6. Section 5.7 compares the proposed control synthesis against the conventional 

weighting approach used in sensitivity function parameterization. The former directly aims to minimize the 

load-side compliance transfer function, whereas the latter typically adopts a conventional filter structure 

that is reported and proposed in literature. 

Lastly, Section 5.8 evaluates the performance of the proposed design (mixed-sensitivity with ℋ2 or  

ℋ∞ based vibration damping, in conjunction with Loop Shaping (LS)) against the two benchmarked 

controllers (P-PI and PPC). Section 5.9 presents the conclusions for this chapter. 
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5.2. Case Study Demonstrating Limiting Influence of Vibration Modes 

Figure 5.1c shows an H-type gantry machine, which was measured and described in Chapter 4 in the 

context of model estimation. Considering the ball-screw driven y-axis (i.e., cross-axis), which contains 

feedback measurement from a rotary encoder on the motor, and a linear encoder mounted along the axis, 

the outcomes of applying a similar control strategy, but with different feedback points, are shown in Figure 

5.1 and Figure 5.3, in terms of loop stability and sensitivity, and in terms of time- and frequency-domain 

servo error and control signals. The frequency response measurements obtained for the gantry in Chapter 4 

were used in the stability and sensitivity analyses per [25]. The control structure, shown in Figure 5.2, is a 

PID controller with feedforward friction and open-loop rigid body dynamics compensation. The plants 

outputs 𝑦1 and 𝑦2 are the rotational and translational feedback channels. The input represents the motor 

armature voltage commanded to the actuator’s amplifier input. The feedback gains were originally designed 

to achieve 20 Hz crossover frequency and 35° phase margin, by considering only a single-mass rigid-body 

based model of the feed drive system (𝐺 =
𝑦

𝑢
=

1

𝑠(𝑚𝑠+𝑏)
 ). It is known, from the measurements presented in 

Chapter 4 that the true frequency response is indeed more complex. 

(a) Nyquist plots of the 

controller designs 

 

(b) Sensitivity and co-sensitivity 

plots 

 

(c) Yaw vibration mode at 50 

Hz 

 

 

 

Figure 5.1: Frequency-domain analysis of y-axis PID control feedback loop closed using different 

measurement signals.  
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Figure 5.2: Block diagram of the dual-feedback loop-shaping PID controller. 

In the first case, when translational feedback (𝑦2) is used as the sole plant output, the control loop is 

unstable, with the source of instability being associated with the frequency of 49 Hz, as seen in the 

sensitivity and complementary sensitivity magnitude plots in Figure 5.1b. Modal analysis performed on the 

setup reveals that at 50 Hz, the parallel x-axes of the gantry constitutes a yaw-type vibration mode (Figure 

5.1c). Clearly, this behaviour cannot be captured with a simplified rigid-body based plant model. Although 

the actuation and feedback are obtained from the perpendicular y-axis, as a result of the mechanical cross-

talk between the axes, in this feedback configuration, the y-axis servo system and yaw-vibration mode 

affecting the x-axis couple together to form an unstable system. This is seen with the highly oscillatory 

control signal in Figure 5.3a, followed by emergency software shut-down of axis power, which results in 

the commanded motion profile not being tracked, as seen in the servo error profile. 

(a) Linear encoder feedback 

 

(b) Rotary encoder feedback 

 

(c) Dual-feedback structure 
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Figure 5.3: Tracking error profiles and control signals using different feedback structure.  

In the second case, if only rotational feedback is used, which is less sensitive to the yaw vibration mode, 

the control loop can then be stabilized, as shown in Figure 5.1b. However, as seen in the servo error profile 

in Figure 5.3b, which is estimated using the table translational motion (𝑒 = 𝑦𝑟𝑒𝑓 − 𝑦2), closing the loop 

from the rotary encoder alone can result in positioning drift to accumulate along the travel due to various 

factors, such as the misalignment of the ball-screw mechanism, backlash, and through longer time 

durations, the effect of thermal deformations.  

In the third case, using the rotary encoder to close the ‘high-frequency’ component of the feedback loop 

(i.e., the PD-control terms, similar to the concept of using PI-type velocity control) and applying linear 

encoder feedback for the ‘low frequency’ portion, (i.e., the integral control action in position control), a 

good stabilization is obtained providing immunity against the external vibration mode (Figure 5.1b), and 

the low-frequency drift in the servo positioning error is also prevented, as can be verified from Figure 5.3c. 

Indeed, there is nearly 70% improvement in accuracy compared to the second case, in spite of the 

commanded velocity having doubled over case two (from 50 to 100 mm/s). This is the main reason that in 

the practical application of ball-screw drives, the rotational feedback is used to close the velocity control 

loop (typically with PI-control) to achieve high bandwidth control with reduced influence from vibration 

modes, and translational feedback is used to control the position control loop (usually with P-control) to 

accomplish better steady-state positioning accuracy.  

In addition to clarifying the use of different feedback points in feed axes, this example shows the critical 

influence of vibration modes on the stability and performance of a servo control system. In some cases, 

adequate choice of feedback locations can help avoid the excitation of a vibration mode, or even achieve 

its suppression in comparison to the open-loop case as will be shown in the proceeding subsections. 

However, due to the non-collocated nature of sensor and actuator placement in feed drives, this approach 
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typically has the limitation of being effective against perhaps one or two modes at a time, thus motivating 

the study for more advanced, and ideally model-based, controller design techniques. 

Further, complementary to the vibration modes originating from the active drive elements (e.g., ball 

screw, bearings, motor, guideways, sensor mounting), the flexibilities arising from large components in 

machine tools such as columns and rams, or the joints, contribute to low eigenfrequencies, as seen with the 

50 Hz yaw mode example in this case study. Based on the observations in Section 3.11, the responses of a 

feed drive often contains highly as well as lightly damped modes with close frequency. For example, in the 

case of the single-axis ball-screw drive (Section 3.11), there are three vibration modes at 255 Hz, 289 Hz, 

and 312 Hz, which exhibit seemingly similar combinations of yaw-roll and yaw-pitch motions. 

Additionally, machine tool / feed drive structures are also susceptible to possessing counter-phase modes, 

which are very difficult to stabilize via manual loop shaping or simple dual-sensor placement strategies. 

All of these factors necessitate a more powerful, systematic, and, holistic approach to feed drive controller 

design in dealing with structural vibrations. The ideal approach needs to incorporate adequate system 

identification, when possible active compensation, and when not possible, suitable suppression or 

avoidance, of detected vibration modes that may be inclined to interact with the servo system’s feedback 

law. Thus, the proposed methodology that will be presented in Sections 5.6 and 5.7 was developed to 

achieve this goal. 

 

5.3. Benchmark #1 Industry-Standard P-PI Position-Velocity Cascade Controller 

The P-PI position-velocity cascade controller is the most widely used structure by the machine tool 

industry to achieve high tracking accuracy and disturbance suppression. To a certain extent, this structure 

is also used in industrial robots. Figure 5.4 depicts the dual-feedback structure of the P-PI controller. The 

velocity feedback is taken from the rotary encoder directly on the motor. This way, structural modes appear 

mostly as anti-resonances, thereby not leading to limitations in terms of increasing the feedback gain and 

bandwidth. On the other hand, the position feedback is typically taken from a linear encoder close to the 

location of the workpiece-tooltip interface. This leads to more accurate measurement and regulation of the 

actual cutting motion, but creates the challenges of amplified resonances and additional phase lag in the 

feedback loop, which can be a limiting factor on the achievable motion bandwidth. P-PI position-velocity 

cascade control is typically tuned in industry following guidelines that emphasize maximizing the 

bandwidth of individual loops to enhance the dynamic accuracy. Certain filters and trade-offs in the 

bandwidth are also considered to ensure stability of the overall system. As an alternate tuning methodology, 

Beudaert et al. [63] proposed tuning the velocity loop gain directly to maximize the damping factors of 
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vibration modes, which are most prone to causing chatter vibrations during machining. While this can lead 

to more productive rough machining operations with better chatter stability, it has a negative impact on the 

dynamic positioning accuracy. 

In this thesis, as the objective is to improve the dynamic accuracy as much as possible, the 

benchmarking is done with respect to the design methodology that maximizes the bandwidth of the P-PI 

control system while ensuring that the robustness and stability margins are satisfied. 

 

Figure 5.4: Dual-feedback P-PI position-velocity cascade control structure. 

The P-PI controller design is achieved based on the two-inertia model of the drive system to actively 

damp its first axial vibration mode (see Section 3.7). The gain tuning procedure follows the guideline in 

[136].  First, the inner loop of the controller (velocity loop) is designed to achieve five percent overshoot 

in the step response. Then, the proportional gain in the outer position loop is increased incrementally until 

an overshoot is observed in the position. Lastly, feedforward terms are added to further improve the tracking 

accuracy of the motion. The feedforward terms include velocity (using the estimated viscous damping 

coefficient), acceleration, a trajectory pre-filter [130] (to remove un-compensated velocity, acceleration, 

and jerk artefacts from the servo error), and Stribeck model-based friction compensation. 

 

5.4. Benchmark #2 PPC Vibration Damping Controller 

As the second benchmark, a vibration-damping pole-placement controller was chosen. The feedback 

controller design follows the method proposed by Gordon and Erkorkmaz [72]. With this method, the 

objective is to widen the bandwidth of the controller by increasing the dynamic stiffness near the first axial 

vibration mode, while also achieving high tracking and disturbance rejection for the low-frequency range. 

The state-space model includes five states. Two of the poles are placed to increase the decay ratio in the 

vibratory response without modification to the damped oscillation frequency, as this would directly affect 
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the control effort. To further move the poles to the left side of the s-plane, a shifting factor is defined for 

the real component of the complex conjugate poles. This idea is similar to the concept of low authority 

LQG vibration control [79]. The state-space model can be expressed by:  

[

𝑥̇1
𝑥̇2
𝑥̈1
𝑥̈2

]

⏟
𝑧̇

 = [

0 0 1 0
0 0 0 1

−𝑘 𝑚1⁄ 𝑘 𝑚1⁄ −(𝑐 + 𝑏1) 𝑚1⁄ 𝑐 𝑚1⁄

𝑘 𝑚2⁄ −𝑘 𝑚2⁄ 𝑐 𝑚2⁄ −(𝑐 + 𝑏2) 𝑚2⁄

]

⏟                                  
𝐴

[

𝑥1
𝑥2
𝑥̇1
𝑥̇2

]

⏟
𝑧

+

[

0 0 0
0 0 0

1 𝑚1⁄ 1 𝑚1⁄ 0

0 0 1 𝑚2⁄

] 

⏟                

[

𝑢
𝑑1
𝑑2
] 

⏟
𝑈

 

𝐵

,

[
𝑥1
𝑥2
]

⏟
𝑦

= [
1 0 0 0
0 1 0 0

]
⏟        

𝐶

𝑧

 (5.1) 

The low-frequency disturbance rejection was enhanced by applying an additional state that represents 

the integral of load-side position (𝑥2𝑖(𝑡) = ∫ 𝑥2(𝜏)𝑑𝜏
𝑡

0
). The pole-placement controller takes the form of a 

simple PD-PID structure, which applies weighting to the rotary encoder (𝑥1) and linear encoder (𝑥2) 

feedback channels: 

𝐾𝑝𝑝𝑐(𝑠)  = [
𝐾𝑥1 + 𝐾𝑣1𝑠⏟      

𝐾1

, 𝐾𝑥2 +
𝐾𝑖2
𝑠
+ 𝐾𝑣2𝑠⏟          

𝐾2

 ] (5.2) 

The shifted poles (𝑝1, 𝑝2) in the s-plane will become:  

𝑝1, 𝑝2  = −𝛽𝜎1 ± 𝑗𝜔𝑑 (5.3) 

In the above equation 𝛽 ≥ 1 is the shifting factor, 𝜔𝑑 is the damped natural frequency, and 𝜎1 is the 

real component of the complex conjugate poles for the open-loop plant. The three remaining poles 

{𝑝3, 𝑝4, 𝑝5} are related to rigid body dynamics. 

𝑝3, 𝑝4  = −𝜁2𝜔2 ± 𝑗𝜔2√1− 𝜁2
2

𝑝5 = −𝜔2

 (5.4) 

Due to its low order, the state feedback gain for the pole-placement controller can be calculated using 

Ackerman’s formula. Figure 5.5 shows the structure of the vibration damping pole-placement controller. 

In the controller design, different shifting factors and pole locations were examined to achieve the 
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maximum crossover frequency, while adhering to a peak sensitivity requirement. A shifting factor of 𝛽 =

4 and desired rigid-body pole locations at 𝜔2 = 30 Hz and 𝜁2 = 0.7, were found to be successful in this 

respect. The plant inversion based on the two-inertia model was used as a feedforward term to improve the 

tracking accuracy.  

  

Figure 5.5: Vibration-damping pole-placement control structure [72]. 

As mentioned, this pole-placement controller design can only be successfully used to suppress a single 

vibration mode. While the two-inertia model is helpful in performing simulation studies and gaining insight 

into various dynamic interactions, it has its limitation in handling more realistic feed drive dynamics, which 

have both low and high frequency modes outside the main axial mode. Another limitation of the pole-

placement controller is the choice of feedback sensors. In cases where more actuation and feedback points 

are available (e.g., gantry drive, multiple position / velocity/ acceleration sensors etc.), the extendibility of 

this approach is not clear.  

 

5.5. Mixed-Sensitivity 𝓗𝟐 and 𝓗∞ Optimization Problem 

This subsection briefly reviews the ℋ2 and ℋ∞ optimization based controller synthesis problem, which 

will be used in subsequent sections in vibration damping controller design. 

 

Figure 5.6: Structure of a feedback control system. 
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The typical structure of an LTI feedback control system is shown in Figure 5.6, where 𝐺 and 𝐺𝑑 

represent the actuation and disturbance inputs of the plant, 𝐾 the feedback controller, 𝑦 the true plant output, 

𝑑 the disturbance input, 𝑛 the measurement noise, 𝑟 the command input, and 𝑢 the feedback control signal. 

The dynamics blocks and signals can be SISO or MIMO. Based on the above, the closed-loop system output 

(𝑦) and the control effort (𝑢) can be expressed in terms of the three main inputs (𝑟, 𝑑, 𝑛) as.  

𝑦 = (𝐼 + 𝐺𝐾)−1𝐺𝐾 ∙ 𝑟 + (𝐼 + 𝐺𝐾)−1𝐺𝑑  ∙ 𝑑 − (𝐼 + 𝐺𝐾)−1𝐺𝐾 ∙ 𝑛 

𝑢 = 𝐾(𝐼 + 𝐺𝐾)−1 ∙ 𝑟 − 𝐾(𝐼 + 𝐺𝐾)−1𝐺𝑑 ∙ 𝑑 − 𝐾(𝐼 + 𝐺𝐾)
−1 ∙ 𝑛 

(5.5) 

In the expression for 𝑢, the term 𝐾(𝐼 + 𝐺𝐾)−1 originates from the expression for (𝐼 + 𝐾𝐺)−1𝐾. The 

two are equivalent per the ‘push-through’ rule [25], which can be verified by multiplying the matrix inverse 

form of one with the un-inverted form of the other to obtain the unity matrix. The expression (𝐼 + 𝐺𝐾)−1, 

also referred to as the sensitivity (𝑆)  plays a critical role in determining how feedback control improves the 

disturbance response at certain frequencies ((𝐼 + 𝐺𝐾)−1𝐺𝑑) compared to the open-loop case (𝐺𝑑). Indeed, 

at frequencies where the maximum matrix gain (i.e. upper singular value) is less than one,  𝜎̅(𝑆(𝜔)) < 1, 

improvement via feedback control is obtained. However, this is limited in frequency range due to the 

expected ‘waterbed’ effect [25]. Very high values of sensitivity (𝜎̅(𝑆(𝜔) > 2) also indicate stability and 

robustness problems. The term 𝐾𝑆 = 𝐾(𝐼 + 𝐺𝐾)−1, on the other hand, represents the amount of control 

effort that is generated as a result of command inputs and especially measurement noise at each frequency. 

This function has to be limited, in order to avoid an excessively ‘active’ control law, that would be 

detrimental in terms of causing actuator saturations and/or high-frequency high-amplitude outputs, which 

can be very detrimental to the electromechanical system, and also lead to the excitation of high frequency 

dynamics that were not originally considered in the controller design. 

Hence, the mixed-sensitivity ℋ2 and ℋ∞ control synthesis problem is based on minimizing a stacked 

version of the two expressions (i.e., S over KS), as shown with Eq. (5.6) [137][138]: 

𝑚𝑖𝑛⏟
𝐾 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑖𝑛𝑔

‖
(𝐼 + 𝐺𝐾)−1

𝐾(𝐼 + 𝐺𝐾)−1
‖
2 & ∞

 (5.6) 

Further information about system and signal norms can be found in [25]. Given a plant in terms of state-

space matrices 𝐴 ∈ 𝑅𝑛×𝑛, 𝐵 ∈ 𝑅𝑛×𝑛𝑢, 𝐶 ∈ 𝑅𝑛𝑦×𝑛, and 𝐷 ∈ 𝑅𝑛𝑦×𝑛𝑢, the continuous-time linear time-

invariant plant can be described as: 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)
 (5.7) 
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The MIMO transfer function for the above LTI can be stated as 𝐺(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷: 

 

 

[
𝑧
𝑦] = [

𝑃11 𝑃12
𝑃21 𝑃22

] [
𝑤
𝑢
] 

𝑢 = 𝐾𝑦 

Figure 5.7: General control configuration. 

In a more generalized formulation, as shown in Figure 5.7, the input channels can be expanded into 

exogenous disturbances (𝑤) and controlled inputs (𝑢). Exogenous disturbances may contain generalized 

command inputs, disturbances, and sensor noise. Similarly, the output channels can be expanded into 

outputs for evaluating performance (𝑧), versus outputs used in feedback control (𝑦). In defining the 

performance outputs (𝑧), certain weighting functions, like 𝑊𝑒 and 𝑊𝑢, can be included into the structure, as 

shown in Figure 5.8. These are used to define weights for 𝑆 and 𝐾𝑆 in the standard mixed-sensitivity ℋ2 

& ℋ∞ control configuration, which help shape the frequency-dependent bounds for this function. In this 

case, the ‘generalized plant’ expression, 𝑃, can be written in state-space form as: 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵1𝑤(𝑡) + 𝐵2𝑢(𝑡) 

𝑧(𝑡) = 𝐶1𝑥(𝑡) + 𝐷11𝑤(𝑡) + 𝐷12𝑢(𝑡) 

𝑦(𝑡) = 𝐶2𝑥(𝑡) + 𝐷21𝑤(𝑡) + 𝐷22𝑢(𝑡) 

(5.8) 

The 𝑃 and 𝐾 state-space systems, defined in matrix form, are expressed as: 

𝑃 ≔ (
[𝐴] [𝐵1 𝐵2]

[
𝐶1
𝐶2
] [

𝐷11 𝐷12
𝐷21 𝐷22

]
) , 𝐾 ≔ (

𝐴𝑓 𝐵𝑓
𝐶𝑓 𝐷𝑓

) (5.9) 
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Figure 5.8: Standard mixed-sensitivity ℋ2 and ℋ∞ control configuration. 

The closed-loop system matrix 𝐴𝑐𝑙 (i.e. a Hurwitz matrix) and closed-loop transfer function matrix 𝑇𝑐𝑙 

(in state-space realization) are given as: 

𝐴𝑐𝑙 ≔ (
𝐴 + 𝐵2𝐷𝑓𝐶2 𝐵2𝐶𝑓

𝐵𝑓𝐶2 𝐴𝑓
) (5.10) 

𝑇𝑐𝑙 ≔ (
[
𝐴 + 𝐵2𝐷𝑓𝐶2 𝐵2𝐶𝑓
𝐵𝑓𝐶2 𝐴𝑓

] [
𝐵1 + 𝐵2𝐷𝑓𝐷12

𝐵𝑓𝐷21
]

[𝐶1 + 𝐷12𝐷𝑓𝐶2 𝐷12𝐶𝑓] [𝐷11 + 𝐷12𝐷𝑓𝐷21]

) (5.11) 

The following assumptions need to be satisfied in ℋ2 and ℋ∞ controller synthesis: 

 (𝐴, 𝐵2) is stabilizable and (𝐶2, 𝐴) is detectable. 

 𝐷12 and 𝐷21 have full rank. 

 [
𝐴 − 𝑗𝜔𝐼 𝐵2
𝐶1 𝐷12

] has full rank for ∀𝜔 ∈ ℝ. 

 [
𝐴 − 𝑗𝜔𝐼 𝐵1
𝐶2 𝐷21

] has full rank for ∀𝜔 ∈ ℝ. 

 𝐷11 = 0 and 𝐷22 = 0.  

The last assumption (𝐷11 = 0 and 𝐷22 = 0) makes 𝑃11, and 𝑃22, respectively, strictly proper.  

The following weighting function [139] is often used to synthesize the mixed-sensitivity controller by 

suppressing the peak of the sensitivity function 𝑆(𝑠) = (𝐼 + 𝐾(𝑠)𝐺(𝑠))−1:  

1

𝑊𝑒(𝑠)
=

𝑠 + 𝜔𝑏𝜀

𝑠 𝑀𝑠⁄ + 𝜔𝑏
 (5.12) 
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The sensitivity peak is typically limited by 𝑀𝑠 (e.g. 𝑀𝑠 < 2 (6 𝑑𝐵)) to ensure sufficient module margin 

(i.e., distance between the MIMO Nyquist plot, obtained via det (𝐼 + 𝐺𝐾) and the origin), which acts as a 

stability margin measure. The low frequency gain of the inverse of the weighting function 𝑊𝑒
−1 is 

determined by 𝜀, showing the amount of improvement targeted via controls. Generally, 𝜔𝑏 influences the 

closed-loop bandwidth and it is chosen to be high enough to ensure faster disturbance rejection and better 

command tracking response. Figure 5.9 presents a visualization of how such a weighting function (or its 

inverse 𝑊𝑒
−1) can be used to impose a bound on the sensitivity function 𝑆(𝜔). 

 

Figure 5.9: Conventional sensitivity shaping function. 

In the vibration controller in this thesis, the ℋ2/ℋ∞ stacked sensitivity optimization algorithms 

available in MATLAB, which have their origins in the works of Zhou, Glover, and Doyle [139], have been 

applied. 

 

5.6. Proposed Control Design for Multiple-Mode Vibration Damping and Tracking Control of 

Feed Drive Systems 

In this section, a new high-bandwidth control design is proposed for tracking and active vibration 

suppression in CNC feed drives. Figure 5.10 shows the overall control scheme. The vibration damping is 

based on a mixed-sensitivity ℋ2 and ℋ∞ control synthesis leading to the inner loop feedback controller 

𝐾𝐻2/𝐻∞ , which can actively damp multiple modes of vibration. Successful synthesis of 𝐾𝐻2/𝐻∞  is achieved 

using the feed drive model estimated with the proposed MIMO model identification algorithm in Chapter 

4. In order to achieve rapid response to control commands, which enhances disturbance suppression, the 

linear amplifier detailed in Chapter 3 was used as the source of power for the motor. The tracking controller 

is based on a loop shaping filter 𝐶𝑓, comprising a lead-lag controller. Lag compensation increases the 

control gain to further improve the low-frequency disturbance rejection, while the lead filter boosts the 

phase margin around the target crossover frequency. A filter pack 𝐺𝑓𝑝 helps to avoid the excitation of 
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unmodeled or high frequency dynamics. Additionally, a friction model 𝐹𝑓 and trajectory pre-filter 𝑃𝑓 are 

used in feedforward, to further improve the tracking accuracy with knowledge of the expected motion 

commands. The performance of the proposed controller has been validated in high-speed tracking 

experiments and closed-loop disturbance response measurements. The proposed controller design is also 

compared against the two benchmark controllers (P-PI and PPC) detailed earlier Sections 5.3 and 5.4.  

 

Figure 5.10: Vibration damping and tracking controller design. 

5.6.1. Feed Drive Model 

Considering the ball-screw drive dual-feedback structure, the setup is modeled as a two-input two-

output system. The inputs are motor torque command (control input (𝑢)) and load side disturbance force 

(𝑑). Rotational and translational position feedback measurements (𝑥1 and 𝑥2, respectively) are the outputs 

of the system. The identified MIMO model can be stated in transfer matrix form as: 

[
𝑥1(𝑠)
𝑥2(𝑠)

] = [

𝐺11(𝑠) 𝐺12(𝑠)
𝐺21(𝑠)⏟  
𝐺𝑢(𝑠)

𝐺22(𝑠)⏟  
𝐺𝑑(𝑠)

] [
𝑢(𝑠)
𝑑(𝑠)

] (5.13) 

Above, 𝐺11 , 𝐺12 and 𝐺21 , 𝐺22 are the rotary and linear encoders’ responses to motor command and 

load side disturbance inputs. The identified model (using the method in Chapter 4) is a 12th order strictly 

proper transfer matrix. The identified model captures the effect of the base frame vibration mode at 26 Hz 

and the first axial vibration mode at 138 Hz.  

An additional mode was also measured at 37 Hz, which is very clear in the encoder response 

measurement. However, during the experimental modal analysis in Section 3.11, this mode could not be 

spotted with the mounted accelerometers. Instead, another mode at 48 Hz was captured, demonstrating 

predominantly yawing-pitching motion. While the experimental modal analysis was conducted using 
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impact hammer excitation with the axis being stationary, and therefore susceptible to stick-slip friction, the 

controlled input FRF measurement was performed with the motor by applying higher excitation amplitudes, 

thus reducing the effect of friction. It is believed that the 37 Hz resonance measured with the motor 

corresponds to the 48 Hz mode measured with the impact hammer. The perceived increase in the natural 

frequency with the hammer measurement is attributed to the Dahl resonance effect [43][44], which becomes 

prevalent under the influence of friction. In any case, the model identification algorithm in Chapter 4 

estimated other poles, as listed in Appendix A.3, but not the 37 Hz resonance in fitting a MIMO model to 

match all input/output channels. Other poles locations seemed to play a more dominant role in coming up 

with an overall close fit. 

Figure 5.11 shows the disturbance response measurement of the load side and the corresponding mode 

shapes. The anti-resonance frequency 𝜔𝐴𝑅 at 60 Hz corresponds to 𝜔𝐴𝑅 = √𝑘𝑎𝑥𝑖𝑎𝑙 𝑚1⁄  in the two-inertia 

system (Figure 2.1), which is the resonance constituted by the primary side inertia and equivalent axial 

stiffness. This corresponds to the frequency at which the primary side absorbs the most amount of energy 

applied to the secondary load side.  

 

Figure 5.11: Worktable disturbance FRF obtained by impact hammer test, the mode shapes, and their 

corresponding frequencies. 

Considering a generalized MIMO model describing the output/input channel pairs 𝑘𝑜𝑘𝑖, the identified 

model takes the structure: 



125 

 

𝐺𝑘𝑜𝑘𝑖(𝑠) = ∑
𝛽𝑘
𝑘𝑜𝑘𝑖𝑠 + 𝛼𝑘

𝑘𝑜𝑘𝑖

𝑠2 + 2𝜁𝑘𝜔𝑘𝑠 + 𝜔𝑘
2

𝑛𝑐

𝑘=1

+∑
𝛾𝑘
𝑘𝑜𝑘𝑖

𝑠 + 𝑝𝑘

𝑛𝑟

𝑘=1

+ 𝛿0
𝑘𝑜𝑘𝑖 + 𝛿1

𝑘𝑜𝑘𝑖𝑠 + ⋯+ 𝛿𝑑
𝑘𝑜𝑘𝑖𝑠𝑑𝑘𝑜𝑘𝑖  (5.14) 

The identified system parameters can be found in Appendix A.3. It is interesting to note that while 

some poles have very small damping (26.8, 131.1, 134.1 Hz), other poles have more significant damping 

and therefore do not display very noticeable resonance (e.g., poles at 16.5 and 30.3 Hz), No direct terms 

(𝛿0 = 0 , 𝛿1 = 0 , … , 𝛿𝑑 = 0) were estimated, since only rotary and linear encoder (displacement) 

measurements were used in the system identification and no direct transmission and/or derivative-like 

effects were observed. 

The state space realization of the feed drive model can be stated in the structure in Eq. (5.7), where 𝑥 =

[𝑥1, 𝑥2, ⋯𝑥24]
𝑇, 𝑢 = [𝑢1, 𝑢2]

𝑇,  𝑦 = [𝑦1, 𝑦2]
𝑇 represent the state, input, and output vectors. 𝑢1 = 𝑢 

corresponds to the motor input. 𝑢2 = 𝑑 is the load side disturbance. 𝑦1, 𝑦2 are the rotary and linear encoder 

displacement outputs. The system matrices can be written as: 

𝐴 = [
𝐴1 012×12

012×12 𝐴2
], 𝐴𝑛 =

[
 
 
 
 
𝑎𝑛1,1 𝑎𝑛1,2 ⋯ 𝑎𝑛1,11 𝑎𝑛1,12
𝑎𝑛2,1 0 ⋯ 0 0

0 𝑎𝑛3,2 ⋱ ⋮ ⋮

⋮ ⋱ ⋱ 0 0
0 ⋯ 0 𝑎𝑛12,11 0 ]

 
 
 
 

 , 𝑛 = 1,2. 

𝐵 =

[
 
 
 
 
𝑏1,1 012×1
0 𝑏2,2
0 0
⋮ ⋮
0 0 ]

 
 
 
 

 , 𝐶 = [
𝑐1,1 𝑐1,2 ⋯ 𝑐1,24
𝑐2,1 𝑐2,2 ⋯ 𝑐2,24

], 𝐷 = 02×2 

(5.15) 

The contribution of each complex conjugate pole pair (Eq. (5.14)) of the identified system to the ∞-

norm of the plant model are shown in Figure 5.12. From this figure we can observe the system norm (the 

largest of the mode norms) [79] to be ‖𝐺‖∞≌ 63.73, based on the available frequency range data. At this 

point, the possibility of attempting model order reduction (from 12th order to 10th order) was investigated, 

by truncating the mode at 30.3 Hz.  
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Figure 5.12: ‖𝐺‖∞ of the system modes. 

The low frequency complex conjugate poles at 0.87 Hz contribute to mass-like (i.e. double-integrator) 

influence on the system response. While this formulation is only approximate, the low frequency high 

feedback gain achieved via loop shaping for the position tracking control loop, overcomes any complication 

this approximation may cause in the control of the ball screw drive.  

Figure 5.13 shows the reduced model fit (10th order) versus the full-order system (12th order). The 

reduced-order approximation of the feed drive system was obtained by truncating the least important states 

(i.e. mode with the smallest norm). The balred function in MATLAB was used for model order reduction. 

The minimal state-space realization of the reduced-order model leads to 10 states.  

As can be seen, the reduced-order mode shows significant deterioration in fitting results, particularly 

around the identified natural frequencies (see Figure 5.14). In this figure 𝐻 represents measurement and 𝐺 

represents the estimated model. For that reason, the full-order model was used for control synthesis analysis.  
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Figure 5.13: Model order reduction through truncation. 

 

 

Figure 5.14: Model reduction error for output-input channel terms |𝐻𝑘𝑜𝑘𝑖(𝜔) − 𝐺𝑘𝑜𝑘𝑖(𝜔)|. 
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5.6.2. Mixed-Sensitivity  𝓗𝟐 and 𝓗∞ Control for Multiple-Mode Vibration Suppression 

The objective is to find a feedback controller 𝐾 = [𝐾1 𝐾2] that minimizes the effect of disturbance 

force on the load-side 𝑑 to the position 𝑥2 in the frequency range of 0 ≤ 𝜔 ≤ 𝜔𝑚𝑎𝑥, both in terms of peak 

value and the overall shape. The closed-loop disturbance response for the feed drive system can be 

described by the following: 

𝐺𝑑𝑖𝑠𝑡(𝑠) = 𝑆21(𝑠)𝐺12(𝑠) + 𝑆22(𝑠)𝐺22(𝑠)   , 𝑆 = [
𝑆11(𝑠) 𝑆12(𝑠)
𝑆21(𝑠)⏟  
𝑆𝑢(𝑠)

𝑆22(𝑠)⏟  
𝑆𝑑(𝑠)

] = (𝐼 + 𝐺𝐾)−1 (5.16) 

To facilitate stability analysis using the SISO form of the Nyquist criterion, while the system has two 

outputs (rotary and linear encoder feedback), it can be simplified into a SISO form (𝐿 = 𝐾1𝐺1 + 𝐾2𝐺2) 

using block manipulation [72] as shown in Figure 5.15. Hence the stability of any dual-channel feedback 

controller for the ball-screw drive has been analyzed with this approach in this thesis.  

 

Figure 5.15: Block diagram manipulation for closed-loop analysis [72]. 

Following the established mixed sensitivity design rules, weighting functions are used to characterize 

load-side disturbance response, measurement noise, and control input. 

Regarding the performance (or servo error) weighting function 𝑊𝑒, differing from classical choice of 

weighting functions which are typically low-pass, band-pass, or high-pass [25], in this work the load side 

disturbance response (𝐺22) has been adopted to shape the sensitivity function to achieve 𝑚𝑎𝑥⏟
𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔 

|𝑆(𝑗𝜔)| ≤

|𝑊𝑒
−1(𝑗𝜔)|. The outcome of this is the direct reduction of the load-side mechanical compliance through 

feedback control. Eq. (5.17) describes the corresponding weighting function.  

𝑊𝑒 = 𝛼𝐹
𝐺22

‖𝐺22‖2/∞
 (5.17) 

Above, 𝛼𝐹 ∈ ℝ is used as the improvement factor to minimize the peak value or area below of load 

side disturbance response 𝐺22. The norm term (‖𝐺22‖2/∞) in the denominator decouples the design choice 
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from the representation units or magnitude of 𝐺22, allowing a some-what non-dimensional assignment for 

the ‘improvement factor’ 𝛼𝐹. Hence, the above weighting function directs the mixed sensitivity 

optimization to focus primarily on attenuating the mechanical resonances by shaping the closed-loop 

sensitivity 𝑆, rather than trying to achieve a wide-band overall improvement in the sensitivity function.  

The control input weighting function 𝑊𝑢 can affect the closed-loop bandwidth and can be used to limit 

the controller gain around the crossover frequency. This weighting function was determined as a constant 

value through observation from multiple time-domain simulations. Simulations were conducted to 

maximize vibration suppression on the load side of the feed drive system 𝐺22 while actuator saturation is 

avoided for expected command trajectories and disturbance input forces. The measurement noise weighting 

functions 𝑊𝑛1 ,  𝑊𝑛2 were selected as first-order low-pass filters, since the encoders pick up high-order 

modes in the high-frequency range, which are not the intention of feedback control. 

𝑊𝑛1 = 𝑊𝑛2 = 𝑘𝑊𝑛
𝜔𝑊𝑛

𝑠 + 𝜔𝑊𝑛
 (5.18) 

Overall, the weighting functions required the selection of the terms: 𝛼𝐹, 𝑊𝑢, 𝑘𝑊𝑛, and 𝜔𝑊𝑛. Most 

importantly, the open loop load-side direct compliance 𝐺22 was integrated into the automatic selection of 

the performance weight 𝑊𝑒, by a simple improvement factor 𝛼𝐹, as mentioned earlier. Considering the 

system plant as in Eq. (5.13), the augmented plant with the weighting functions is described by the following 

weighting matrix: 

[

𝑧𝑒
𝑧𝑢
𝑥1
𝑥2

] =

[
 
 
 
𝑊𝑒𝐺22 0 0 𝑊𝑒𝐺21
0 0 0 𝑊𝑢
𝐺12 𝑊𝑛1 0 𝐺11
𝐺22 0 𝑊𝑛2 𝐺21 ]

 
 
 

⏟                  
𝑃(𝑠)

[

𝑑
𝑛1
𝑛2
𝑢

] 
(5.19) 

 

 
 

Figure 5.16: Augmented plant with the sensitivity weighting function 𝑊𝑒, control input weighting 

function 𝑊𝑢, and measurement noise weighting functions 𝑊𝑛1, 𝑊𝑛2.  
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Figure 5.16 shows the augmented plant with the corresponding weighting functions. By partitioning 

the interconnected system 𝑃(𝑠) the following are set: 

𝑃11 = [
𝑊𝑒𝐺22 0 0
0 0 0

], 𝑃12 = [
𝑊𝑒𝐺21
𝑊𝑢

] 

𝑃21 = [
𝐺12 𝑊𝑛1 0

𝐺22 0 𝑊𝑛2
], 𝑃22 = [

𝐺11
𝐺21

] 

(5.20) 

The response of the generalized plant 𝑃 under the closed-loop influence of the feedback controller 𝐾 

can be found by applying the lower linear fractional transformation: 

ℱ𝑙(𝑃, 𝐾) = [𝑃11 + 𝑃12𝐾(𝐼 − 𝑃22𝐾)
−1𝑃21] (5.21) 

To compute the stabilizing ℋ2 or ℋ∞ optimal controllers for the augmented plant 𝑃, h2syn and 

hinfsyn functions from MATLAB’s Robust Control Toolbox were used [140]. Therefore, the optimal 

feedback control calculation is done offline. For the ball-screw drive this calculation takes only a 

few seconds on a personal computer. Afterwards, the vibration-damping controller can be 

implemented as an LTI state-space system. One problematic feature of optimally synthesized ℋ2/ℋ∞ 

controllers is their relatively high order, containing the orders of the plant and all weighting functions. 

Hence, it is common to attempt to reduce the controller order, after an optimal control law has been 

synthesized. In controller order reduction, the main concern is preserving the stability and performance of 

the closed-loop system. In order to guarantee the stability of the controller itself, the pole locations of the 

reduced-order feedback controller 𝐾𝑟 were inspected to be on the left-hand side of the s-plane. The balanced 

truncation method was used for order reduction [141]. Figure 5.17 shows the frequency response of the 

full-order (ℋ2: 44 and ℋ∞: 50 states) and reduced order (ℋ2: 16 and ℋ∞: 16 states) synthesized vibration 

damping controllers. 
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Figure 5.17: Frequency responses of the originally synthesized and reduced-order mixed-sensitivity ℋ2 

and ℋ∞ vibration damping controllers. 

As can be seen from the zoomed view of the magnitudes around the natural frequencies in Figure 5.17, 

there are minor deviations between original and reduced-order controller designs. From observing the 

synthesized controllers, the attenuation at the first and second natural frequencies are higher in the ℋ2 

controller than the ℋ∞ design. This is due to the fact that an ℋ∞ controller minimizes the ∞-norm (i.e., 

peak-value) of the disturbance response and an ℋ2 controller is designed to minimize the 2-norm (area 

underneath) of 𝐺22. 

In order to suppress high-frequency resonances outside the crossover frequency of the feedback 

controller a filter package was manually added to the damped plant. The notch filters inside the filter 

package 𝐺𝑓𝑝 are designed to target the high-frequency resonances at 𝜔𝑛1 = 4274 rad/s (676 Hz), 𝜁𝑛1 =

0.017, 𝜁𝑑1 = 0.7, 𝜔𝑛2 =7250 rad/s (1154 Hz), 𝜁𝑛2 = 0.032, 𝜁𝑑2 = 0.7. A low-pass filter is also designed 

to filter frequencies above 1.2 kHz. The filter pack is stated by. 

𝐺𝑓𝑝(𝑠) =∏(
𝑠2 + 2𝜁𝑛𝑖𝜔𝑛𝑖 +𝜔𝑛𝑖

2

𝑠2 + 2𝜁𝑑𝑖𝜔𝑛𝑖 +𝜔𝑛𝑖
2 ) ∙

𝜔𝑙𝑝𝑓

𝑠 + 𝜔𝑙𝑝𝑓

2

𝑖=1

 (5.22) 

The same filter package was also applied when testing the other two benchmark controllers, P-PI and 

PPC. 

The overall loop transfer function for the mixed-sensitivity ℋ2 and ℋ∞ controlled plants can be found 

as 𝐿 = 𝐺𝑓𝑝(𝐺11𝐾1 + 𝐺21𝐾2). In the above equation 𝐾1 and 𝐾2 are the synthesized damping controllers for 

the rotational and translational feedback channels. Figure 5.18 shows the frequency responses of the 
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continuous (s-domain) and discrete time (z-domain) synthesized controllers with the addition of the filter 

package. The discretization of the controllers was achieved via zero-order hold equivalent method.  

 

Figure 5.18: Frequency responses of the synthesized mixed-sensitivity ℋ2 and ℋ∞ damping controllers 

with the addition of filter package (𝐺𝑓𝑝) in continuous and discrete forms. 

5.6.3. Tracking Controller Design 

Once the vibration-damping controller is designed, the tracking controller can be constructed based on 

the actively damped plant. The tracking controller 𝐶𝑓 is a simple lead-lag compensator that applies the 

worktable linear encoder feedback 𝑥2. The lag compensator increases the control gain and improves error 

rejection in the low-frequency region, while the lead compensator enhances the phase margin and crossover 

frequency of the overall system. The lead-lag compensator has the following transfer function.  

𝐶𝑓(𝑠) = 𝐾𝑓 (
𝑇𝑏𝑠 + 1

𝑇𝑎𝑠 + 1
) ∙ (

𝑇𝑑𝑠 + 1

𝑇𝑓𝑠 + 1
) (5.23) 

The frequencies of the zero (-1/𝑇𝑏) and pole (−1/𝑇𝑎) of the lag controller were placed at 10 Hz and 

0.05 Hz respectively. In the loop shaping controller design, a phase margin of PM=35° was chosen at the 

desired crossover frequencies of  𝜔𝑐 = 50 Hz (for the ℋ2 damped plant FRF) & 𝜔𝑐 = 60 Hz (ℋ∞ damped 

plant FRF). The required phase lead is found as, 
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ϕ𝑙𝑒𝑎𝑑 = −180° + 𝑃𝑀 − ∠𝐿(𝑗𝜔𝑐) − ϕ𝑙𝑎𝑔 (5.24) 

Above, −∠𝐿(𝑗𝜔𝑐) is the phase angle of the damped plant FRF at 𝜔𝑐. The phase leads were obtained as 

ϕ𝑙𝑒𝑎𝑑 = 46.21° for the ℋ2 damped plant FRF and ϕ𝑙𝑒𝑎𝑑 = 44.39° for the ℋ∞ damped plant FRF. This 

requires the filters to have a lead ratio of 𝛾 =  √(1 +  𝑠𝑖𝑛 (ϕ𝑙𝑒𝑎𝑑))/(1 − 𝑠𝑖𝑛 (ϕ𝑙𝑒𝑎𝑑) = 2.48, and 2.38, 

respectively. The compensator parameters are summarized in Table 5.1. 

Table 5.1: Lead-lag compensator parameters. 

Parameter ℋ2 controlled plant FRF ℋ∞ controlled plant FRF 

1/𝑇𝑏(rad/s) 2π×10 2π×10 

1/𝑇𝑎(rad/s) 2π×0.05 2π×0.05 

1/𝑇𝑑 (rad/s) 2π×20.15 2π×25.263 

1/𝑇𝑓 (rad/s) 2π×124.42 2π×142.7 

𝐾𝑓 4028 4658 

With the addition of the lead/lag filter, the overall loop transfer function becomes:  𝐿′ = 𝐾1𝐺1 + 𝐾2
′𝐺2. 

Here, the modified translational feedback channel can be expressed as: 𝐾2
′=𝐾2 + 𝐶𝑓. The Nyquist plot and 

sensitivity function  𝑆 = 1 (1 +⁄ 𝐿′) are used to examine the crossover frequency, phase margins, and peak 

sensitivity value [25]. 

In addition to the feedback based tracking controller, feedforward friction and dynamics compensation 

were added to further improve the tracking performance. In the tracking experiments, the identified Stribeck 

parameters from Chapter 3 were used in the friction model. To improve the tracking accuracy, inversion of 

the open-loop rigid body dynamics was achieved, by injecting the velocity and acceleration commands by 

weighting them with the estimated model inertia and translational damping. A trajectory-prefiltering term 

was also added to counteract the artefacts in the tracking error which are correlated to the velocity, 

acceleration, jerk, and snap of the commanded trajectory [130]. The trajectory pre-filter flattens the overall 

tracking transfer function and bring its phase lag closer to zero. It has the form: 

𝑃(𝑠) = 1 + 𝐾𝑣𝑒𝑙𝐺𝑙𝑝𝑓𝑠 + 𝐾𝑎𝑐𝑐𝐺𝑙𝑝𝑓
2 𝑠2 +𝐾𝑗𝑒𝑟𝑘𝐺𝑙𝑝𝑓

3 𝑠3 + 𝐾𝑠𝑛𝑎𝑝𝐺𝑙𝑝𝑓
4 𝑠4 (5.25) 

The coefficients 𝐾𝑣𝑒𝑙, 𝐾𝑎𝑐𝑐, 𝐾𝑗𝑒𝑟𝑘 , and 𝐾𝑠𝑛𝑎𝑝 are computed using least-squares fitting of the observed 

error as a function of the low-pass filtered commanded velocity, acceleration, jerk, and snap (4th time 

derivative of position). The low-pass filter lpfG was chosen to be as 1st order at 80 Hz, to avoid amplifying 
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numerical round-off errors during discrete differentiation. Hence, the overall control system, which includes 

the vibration-damping control loop and a tracking controller, is designed according to the structure shown 

in Figure 5.10. 

 

5.7. Proposed versus Conventional Design for the Sensitivity Weighting Function 

In this section, two different approaches for the selection of sensitivity weighting functions are 

compared in terms of disturbance rejection capabilities. In the first design, the proposed sensitivity shaping 

function in Eq. (5.17) was used for the damping control synthesis. In the second design, the sensitivity 

weighting function follows one of my most widely used conventional choices in performing ℋ2 or ℋ∞ 

stacked sensitivity optimization: 𝑊𝑒
−1(𝑠) = 𝐾𝑒

−1 𝑠+𝜔𝑏𝜀

𝑠 𝑀𝑠⁄ +𝜔𝑏
. The proposed ℋ2 and ℋ∞ designs require the 

selection of four parameters in comparison to seven variables that need to be adjusted in the conventional 

method. The comparison of the design parameters can be found in Table 5.2 and Table 5.3. In setting the 

conventional parameters, care was taken to achieve as favorable vibration damping, disturbance rejection, 

and noise immunity characteristics as possible, by running extensive simulations and carrying out 

complementary frequency domain analyses, just as done for the proposed method. 

Table 5.2: Proposed controller design 

parameters. 

Parameter ℋ2 ℋ∞ 

𝛼𝐹 0.05 0.005 

𝑊𝑢 0.005 0.002 

𝜔𝑊𝑛(rad/s) 2π×200 2π×200 

𝑘𝑊𝑛 0.1 0.1 
  

Table 5.3: Conventional controller design 

parameters. 

Parameter ℋ2 ℋ∞ 

𝜔𝑏(rad/s) 2π×150 2π×150 

𝜀 1e-3 1e-3 

𝑀𝑠 2 2 

𝐾𝑒 1e-4 1e-5 

𝑊𝑢 0.005 0.001 

𝜔𝑊𝑛(rad/s) 2π×200 2π×200 

𝑘𝑊𝑛 0.1 0.1 
  

The proposed ℋ2 and ℋ∞ vibration damping controller designs were compared to those obtained via 

the conventional method of setting the sensitivity weight. The comparisons were conducted via frequency 

domain analyses as well as impact hammer testing on the load side of the setup. Figure 5.19 shows the 

magnitude plots for the proposed versus the conventional sensitivity shaping functions applied in 

mixed-sensitivity ℋ2 and ℋ∞ designs. Compared to the conventional practice, the proposed approach 

directly considers the open-loop load side compliance in shaping the sensitivity function.  
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Figure 5.19: Magnitude plots of the proposed and conventional sensitivity shaping function for mixed-

sensitivity ℋ2 (left) and ℋ∞ (right) damping controllers. 

  

Figure 5.20: Open loop and closed loop load-side disturbance response measurements for the proposed 

ℋ2 (left) and conventional ℋ2 (right) mixed-sensitivity vibration damping controllers, measured via 

impact hammer tests. 

  

Figure 5.21: Open loop and closed loop load-side disturbance response measurements for the proposed 

ℋ∞ (left) and conventional ℋ∞ (right) mixed-sensitivity vibration damping controllers, measured via 

impact hammer tests. 

In the impulse excitation experiments, as the focus is at first on the influence of the weighting function 

on vibration damping, the additional position tracking loop was not activated. The results, in terms of load 

side compliance, are shown in Figure 5.20 and Figure 5.21. The table displacements were measured directly 

using the linear encoder on the load side. In Figure 5.20, which compares the ℋ2 designs, it is seen that 
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compared to the open-loop case (shown with grey), the proposed (i.e., more targeted) approach to setting 

the sensitivity weighting improves the disturbance over the conventional approach. Indeed, the attenuation 

of the axial vibration mode at 138 Hz improves from 2.2 to 3.65. Furthermore, the low frequency part of 

the compliance is also better suppressed, especially up to and around the resonances at 26 and 37 Hz. 

The results for ℋ∞ control based damping design are shown Figure 5.21. While similar attenuation of 

3.65 is achieved for the axial mode, in the lower frequency part, the conventional weighting seems to yield 

more favorable suppression this time. However, the latter does not perform as well in attenuating the axial 

vibration mode, achieving 2.87 improvement. Hence, these results in overall demonstrate that with the 

proposed approach to setting the sensitivity weighting, even more effective disturbance rejection can be 

achieved in comparison to the more widely used ‘conventional’ filter-type choice. Thus, the proposed 

sensitivity weighting method has adopted and used henceforth. 

 

5.8. Experimental Evaluation of the Developed Control Laws 

The developed control law, in ℋ2 and ℋ∞ versions for vibration damping, has been implemented on 

the ball screw drive and compared in frequency domain analyses, disturbance response tests, and trajectory 

tracking tests, to the benchmark PPI and PPC designs from Sections 5.3 and 5.4. In the evaluations, both 

the modeled and measured frequency response functions were considered. To gauge the robustness of the 

different control laws against frequency response changes due to the feed drive’s axial position (which 

relates to machine posture), the FRFs were taken at three different points along the travel length, as depicted 

schematically in Figure 5.22. In the figure, Point B corresponds to the midpoint of travel. Points A and C 

correspond to -150 and +150 displacements from Point B.  

 

Figure 5.22: Schematic of the feed drive system. 
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In the measurements, the high-bandwidth linear amplifier in Section 3.6 was used as the source of 

power. The open-loop frequency response measurements, in response to the motor torque command input, 

were obtained using the rotary and linear encoders at a sampling rate of 15 kHz. To acquire high quality 

data, the first set of measurements were conducted using sine-sweep excitation between 10-200 Hz, the 

results of which are shown in Figure 5.23. As can be observed, depending on the axial location of the table, 

the frequency and damping ratio of the first axial vibration mode varies between 131 Hz and 140 Hz, and 

0.012 to 0.02, respectively. Lower natural frequency and higher damping ratio are obtained when the table 

is at its furthest location. It is also interesting to note that, especially clearly for points A and B, the main 

resonance is actually a double mode, as confirmed with the 5th and 6th modes, both describing the axial 

mode and being very close to each other in frequency (131.1 Hz and 134.1 Hz). 

  

Figure 5.23: Axial vibration mode FRFs at different table locations. Rotary (left) and linear encoder 

(right) frequency response measurements at motor end (A), middle point (B) and free end (C). 

In order to observe the dynamic response over a wider frequency range, rotational and translational 

position measurements were also conducted by applying chirp-type excitation between 10 Hz and 2 kHz. 

Figure 5.24 shows the measurement results. It can be seen that while the rotational displacement response 

is not heavily affected by the table position, after around 300 Hz, greater variation is seen in the table 

displacement response. 
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Figure 5.24: Rotary (left) and linear encoder (right) frequency response measurements at motor end (A), 

middle point (B) and free end (C). 

In the following subsections, the following feedback control laws are compared: 

i. ℋ2+ LS: ℋ2 based vibration damping (with proposed sensitivity weighting) + loop shaping based 

tracking control 

i) ℋ∞+ LS: ℋ∞ based vibration damping (with proposed sensitivity weighting) + loop shaping 

based tracking control  

ii) P-PI: P-PI position-velocity cascade control (Benchmark #1 from Section 5.3)  

iii) PPC: Pole-placement based vibration damping control (Benchmark #2 from Section 5.4) 

 

5.8.1. Frequency-Domain Loop Gain, Stability, and Sensitivity Comparison 

In this section, the loop gain crossover frequencies, stability margins, and minimum distances to the ‘-

1’ point are inspected from Bode and Nyquist plots of the loop transfer functions for each design.  

To allow a fair comparison between the proposed (mixed-sensitivity ℋ2 and ℋ∞ + loop shaping) and 

benchmarked designs (P-PI and PPC), the controllers were tuned to possess minimum phase and gain 

margins of PM  30°, GM  2, and a maximum sensitivity value of 𝑆  𝑆𝑚𝑎𝑥 = 2.25. 

The following figures are based on loop transfer function FRFs which have been calculated using both 

experimental frequency responses from the setup (designated with ‘exp.’ in the plot legends), and via 
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frequency response prediction from the plant model used in the controller design (designated with 

‘modeled’ or ‘predicted’). The plant model used in ℋ2+ LS and ℋ∞+ LS controllers is based on the system 

identification result in Section 5.6.1 for the 10-200 Hz frequency range. In the case of P-PI and PPC 

controllers, the ball screw dynamics was approximated with a two-inertia model. 

The loop transfer function was calculated, as indicated in Section 5.6.3, as 𝐿′ = 𝐾1𝐺1 + 𝐾2
′𝐺2, with the 

feedback path 𝐾2
′ containing both the vibration damping and tracking loops (𝐾2

′=𝐾2 + 𝐶𝑓).  

The loop magnitude plots are shown in Figure 5.25.As can be seen, the proposed controllers have active 

low frequency ranges up to 36 Hz and also achieve |𝐿| > 1 around the axial resonance, up to 139 Hz, 

indicating expected performance improvement via vibration damping. While the P-PI controller has slightly 

wider low frequency active range (up to 40 Hz), it does not achieve a second cross-over near the resonance, 

implying a lesser degree of active vibration damping. The PPC, on the other hand, demonstrates the widest 

low frequency cross-over (59 Hz), while also having an effective loop gain of |𝐿| > 1 around the axial 

resonance, with a second cross-over at 138 Hz. 

(a) 

 

(b)

 

(c) 

 

(d) 

 

Figure 5.25: Loop transfer function magnitudes for: (a) proposed ℋ2+ LS, (b) P-PI Cascade Structure, (c) 

proposed ℋ∞+ LS, and (d) the vibration-damping PPC. 

 

Figure 5.26 shows the Nyquist diagam for the loop transfer function considering the four different 

controller designs. The plots present frequency response characteristics considering both the applicable 
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model(s) and experimentally measured FRFs for the plant. As can be verified, all designs have larger than 

30° phase margin (PM). In constructing the Nyquist plots and conducting the stability analyses, the locus 

of 𝐿(𝜔) was carefully checked to ensure there would be no clockwise encirclements of the ‘-1’ point, in 

order to guarantee the stability of the closed loop system.  

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 5.26: Nyquist plots for: (a) proposed ℋ2+ LS control, (b) P-PI cascade structure, (c) proposed 

ℋ∞+ LS, (d) vibration-damping PPC. 

 

The sensitivity function can be used to inspect the stability robustness, as its reciprocal is in indication 

of how closely the Nyquist plot passes to the ‘-1’point, or in the multivariable case, how closely det (𝐼 +

𝐺(𝜔)𝐾(𝜔)) passes to the origin [25]. Considering the reduction of the dual feedback loop structure into a 
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single loop (Figure 5.15), in this evaluation the sensitivity function has been computed as a SISO equivalent 

as 𝑆 = 1 (1 +⁄ 𝐿). 

The magnitude of the computed sensitivity function for the four designs is shown in Figure 5.27. As 

can be seen, the peak value is limited to 2.22. For P-PI, the critical mode is near 37-40 Hz, implying that 

the yawing-pitching motion of the table can be easily excited. For the other designs, the peak sensitivity is  

associated with the axial vibration mode near 140 Hz.  

All designs achieve small sensitivity (|𝑆| < 1) at low frequencies and show damping improvement 

around the axial resonance near 136 Hz. The proposed ℋ2+ LS and ℋ∞+ LS designs seem to achieve even 

greater suppression of the sensitivity function (i.e., potentially better disturbance rejection) up to the 

resonance frequency. However, the true sensitivity function is actually a frequency-dependent multivariable 

matrix: 𝑆(𝜔) = (𝐼 + 𝐺(𝜔)𝐾(𝜔))
−1

, with lower and upper singular values which represent the best-case 

and worst-case disturbance transmission possibilities, depending on the nature of the open-loop disturbance 

response transfer function. Thus, the true disturbance rejection achieved with the four controllers is best 

evaluated through direct physical measurements, as carried out in the next subsection. 

 

(a) 

 

 

(b) 

 

 

(c) (d) 
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Figure 5.27: Equivalent SISO analysis based sensitivity function gain plots for: (a) proposed ℋ2+ LS (a), 

(b) P-PI cascade structure, (c) proposed ℋ∞+ LS, (d) vibration-damping PPC. 

 

5.8.2. Load Side Mechanical Disturbance Rejection 

The mechanical disturbance rejection capability achieved with the four controllers has been measured 

by impact hammer testing on the worktable of the experimental setup. The feed drive’s table displacement 

was measured using the linear encoder. Differing from the intermediate results presented in Section 5.7, 

which considered mainly the vibration damping capability for different sensitivity weighting functions, for 

the tests presented here, the position tracking loop (i.e. loop shaping lead/lag filter) was also activated. The 

measurement results are presented in Figure 5.28 for the individual controllers, and in overlaid 

combinations in Figure 5.28, which compare the experimental dynamic compliance achieved with the 

proposed two control designs to their benchmark counterparts. 

Considering Figure 5.28, the predicted dynamic compliance FRFs shown with dashed lines are based 

on the feed drive models used in the controller design (i.e., 12th order model for ℋ2+ LS & ℋ∞+ LS, versus 

4th order lumped mass model for P-PI and PPC). Thus, in describing the open-loop dynamics and in 

predicting the different control methods’ outcomes, better consistency is observed with the proposed 

modeling and design method, over the benchmarks #1 and #2. This is especially true in the frequency range 

of 30…140 Hz. In general, the prediction accuracy in the lower frequency range however seems to suffer 

for all cases, due to the existence of nonlinear friction in the setup. 

Comparing the proposed ℋ2+ LS with the cascade P-PI controller in both figures, it is seen that around 

2.5 better damping of the axial mode is achieved, which can have a dramatic impact on mitigating the 

permeation of cutting force disturbances to the servo positioning accuracy around this frequency [71]. ℋ∞+ 
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LS also shows better disturbance rejection at low-frequency range and at the vicinity of the axial mode 

(~3.85× vs. ~2.3× for P-PI, ~1.86× for PPC). 

In the vicinity of the mechanical anti-resonance around 60 Hz, P-PI and PPC designs worsen the 

disturbance response with the application of closed-loop control. ℋ2+ LS, however, is able to take 

advantage of the ‘natural’ disturbance suppression originating from the damping properties of the 

mechanical structure (i.e., the motor and rotational inertia of the drive mechanism absorbing the energy for 

force input from the load side). There is some worsening around the anti-resonance for the ℋ∞+ LS 

controller. This is because ℋ∞ design focuses on attenuating the ∞-norm (i.e., ‘peak value’), whereas ℋ2 

tries to flatten out the overall compliance response (i.e., ‘area underneath’) by minimizing the 2-norm. 

Due to the waterbed effect, deteriorations can be expected at other frequencies outside the target design 

range. In P-PI and PPC, there is worsening of the dynamic compliance beyond the axial mode at 136 Hz. 

This is especially visible for PPC at 225 Hz, which seems to correlate to the excitation of the yaw mode of 

the table, earlier identified at 255 Hz (Section 3.11). Dynamic compliance deterioration can also be seen in 

P-PI and PPC after 1 kHz. In the proposed designs, however, the deterioration seems to take place near the 

anti-resonance at 1 kHz, which is already a lower response amplitude region. Thus, its detrimental impact 

on the disturbance rejection of the feed drive system is diminished. 

 

 

Figure 5.28: Open-loop and closed-loop load-side disturbance response predictions and impact hammer 

based measurements for: (top-left) proposed ℋ2 + 𝐿𝑆 control, (top-right) P-PI cascade control, (bottom-

left) proposed ℋ∞ + 𝐿𝑆 control, and (bottom-right) vibration damping PPC (right). 
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The overlays in Figure 5.29 show the disturbance rejection improvements accomplished over the two 

benchmarks for wide frequency ranges by the proposed ℋ2 + 𝐿𝑆 and ℋ∞ + 𝐿𝑆 controller designs. In 

comparison to P-PI, which is the industrial state-of-the-art, both proposed designs achieve enhanced 

disturbance rejection nearly for the complete frequency range. In fact, ℋ2 + 𝐿𝑆 achieves 2-3 improvement 

up to 100 Hz, with a small exception near 90…110 Hz. In addition to 2.5 better damping of the axial mode 

at 136 Hz, comparable or even better high-frequency attenuation is also achieved. Compared to PPC, better 

or at least equivalent disturbance rejection is obtained up to 70…80 Hz, and at some frequencies achieving 

an improvement almost by 3. However, the improvement is not as consistent across all frequencies as the 

previous case. The axial resonance damping is enhanced by 3.1, and again similar or more favorable high-

frequency characteristics are achieved beyond the axial vibration mode. ℋ∞+ LS displays similar trends, 

but the ℋ2 + 𝐿𝑆 design seems to achieve a better overall performance across the frequency spectrum. 

 

 

Figure 5.29: Comparison of experimental dynamic compliance characteristics achieved with the proposed 

controllers versus the other two benchmarks: (top row) ℋ2 + 𝐿𝑆 versus P-PI and PPC, (bottom row) 

ℋ∞ + 𝐿𝑆 versus P-PI and PPC. 

These experimental results demonstrate and validate one of the most important contributions developed 

in this thesis, namely superior mechanical disturbance rejection obtained by the proposed high-fidelity 

model identification and position controller design with multiple vibration mode damping capability. 
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5.8.3. Tracking Performance Evaluation 

In order to evaluate the tracking performance of the proposed controllers, trajectory-tracking 

experiments were conducted at 420 mm/s velocity, and 1200 mm/s2 acceleration. Figure 5.30 shows the 

jerk-limited commanded trajectory used in the tests. Feedforward velocity and acceleration terms were 

enabled in the  proposed controller designs to further improve the tracking accuracy. In addition to these 

terms, a trajectory prefilter [130] was tuned experimentally to remove any correlations in the tracking error 

profile to the reference velocity, acceleration, or jerk. Figure 5.31 and Figure 5.32 illustrate the tracking 

improvement obtained with the inclusion of the feedforward terms. According to the experimental results, 

the feedforward terms enable the reduction of the RMS and MAX error values from 3.2 µm & 11.3 µm to 

2.4 µm & 8.5 µm for the proposed ℋ2 + 𝐿𝑆 controller. Similarly, for the proposed ℋ∞ + 𝐿𝑆, the RMS and 

MAX values are reduced from 2.6 µm & 9.6 µm to 2 µm & 6.7 µm, respectively. As mentioned earlier, the 

harmonic error and control signal components at 20 and 40 Hz are attributed to the ball-screw mechanism 

and sensor alignment imperfections, which can separately be compensated using the Adaptive Feedforward 

Control (AFC) method presented in Chapter 6 was kept outside the scope of the feedback controller design 

developed in this chapter. 

 

Figure 5.30: Reference trajectory used in the tracking experiments (displacement 300 mm). 
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Figure 5.31: Experimentally measured tracking errors and control signals for the proposed ℋ2 + 𝐿𝑆 

controller without (left) and with (right) velocity and acceleration feedforward terms. 

 

Figure 5.32: Experimentally measured tracking errors and control signals for the proposed ℋ∞ + 𝐿𝑆 

controller design without (left) and with (right) velocity and acceleration feedforward terms. 

In the proceeding, the proposed controller desings are compared to P-PI and PPC benchmarks in 

tracking. The trajectory prefilter was tuned individally for each controller, including P-PI and PPC, to 

improve their dynamic accuracy as much as possible. In implementing the cascade P-PI control, similar 

velocity and acceleration feedforward terms were used based on the identified inertia and viscous damping 
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parameters (per Figure 5.4). In PPC, the plant inversion based on the lumped-mass model was used in 

feedfoward per [72] and also a separate state command generator was applied to coordinate the rotational 

motion commands for the feed drive (i.e., adjusting for expected elastic deformations based on the 

commanded acceleration). Figure 5.33 illustrates the tracking results obtained by using the four different 

controllers. As can be seen, the proposed ℋ2 + 𝐿𝑆, and ℋ∞ + 𝐿𝑆 show better tracking performance over 

the cascade P-PI controller. The tracking error for the vibration-damping PPC is similar to that of the ℋ2 +

𝐿𝑆 controller, and slightly worse than that of the ℋ∞ + 𝐿𝑆 design. It is interesting to note that the proposed 

controllers also produce less high frequency control activity in comparison to the P-PI and PPC designs, 

thereby making them also more favorable in terms of energy efficiency. 

Overall, the tracking results indicate that in addition to the superior disturbance rejection obtained with 

the proposed controller designs, high dynamic positioning accuracy can also be simultaneously achieved. 

This makes the developed control law suitable for application in high precision machine tools. 

(a) 

 

(b) 

 

(c) (d) 
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Figure 5.33: Experimentally measured tracking errors and control signals for: (a) proposed ℋ2 + 𝐿𝑆, (b) 

cascade P-PI, (c) proposed ℋ∞ + 𝐿𝑆, (d) the vibration-damping pole-placement controllers. 

 

5.9. Conclusions 

In this chapter, new ℋ2 + 𝐿𝑆 and ℋ∞ + 𝐿𝑆 control schemes have been proposed for enhanced 

disturbance rejection in machine tool feed drives. To the best of the author’s knowledge, multiple vibration 

mode damping has been developed and experimentally demonstrated for the first time, for a ball-screw 

drive mechanism. As a result, significant improvement is obtained in the load (table) side dynamic 

compliance, compared to applying the industry standard P-PI position-velocity cascade control solution, or 

applying a more advanced model-based vibration-damping controller reported in literature, based on pole-

placement. 

The controllers were synthesized using the MIMO and high-order feed drive plant identified by the new 

estimation algorithm developed in Chapter 4. This was key to achieving the reported results. Diverging 

from the conventional means of setting sensitivity weights in ℋ2 and ℋ∞ control synthesis, the proposed 

method sets the sensitivity (i.e., performance) weight to directly minimize the load-side disturbance 

compliance. In addition to the automated synthesis of vibration damping, loop-shaping principles are used 

in conjunction to improve the trajectory tracking, along with several feedforward terms. 

In disturbance rejection, the proposed designs have achieved 2-3 times improvement over P-PI at nearly 

all frequencies, and 2.5 times better damping of the most critical axial vibration mode at 136 Hz. Compared 

to PPC, similar improvements were also observed at different frequency ranges, but not for all frequencies. 

The proposed designs were also able to exploit the feed drive’s natural mechanical damping capability, 
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around its relatively wide anti-resonance (60 Hz), implying better energy efficiency in responding to cutting 

forces around this frequency.  

In trajectory tracking, the proposed ℋ2 + 𝐿𝑆 and ℋ∞ + 𝐿𝑆 designs have achieved comparable or better 

accuracy. For example, compared to the industry standard P-PI controller with all feedforward features 

enabled, the proposed controllers (due to their higher closed-loop bandwidth) have achieved 45-57% 

reduction in the MAX and 35-46% reduction in the RMS values of the positioning error, while producing 

control signals which also exhibit less activity in the high frequency range. 

It is important to mention that while setting the controller design weights and loop shaping parameters, 

the loop transfer function Bode and Nyquist plots, the stability and sensitivity margins, and achieved load 

side compliance FRF need to be iteratively monitored. Thus, while yielding highly promising results, the 

proposed methodology, at the moment, still requires a noticeable amount of expert input and interaction 

before it can be applied successfully and reliably in industry. Nevertheless, the results are quite promising 

and the methodology, in the authors’ opinion, can be further developed. 
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Chapter 6  

Suppression of Harmonic Positioning Errors in Ball-Screw Drives using AFC 

6.1. Introduction 

Harmonic positioning errors can negatively affect the positioning accuracy of the ball-screw drive 

system. This chapter addresses the problem of harmonic positioning error suppression in ball-screw drives 

using Adaptive Feedforward Cancellation (AFC). A brief review of the AFC was presented in Section 2.5.1.  

In the following, Section 6.2 extends the structure, analysis, and, design to the dual feedback 

configuration used in ball-screw drives, considering the disturbance and tracking response modification, 

performance degradation, and robust stability issues. Section 6.3 describes the effect of AFC on rejecting 

harmonic disturbance sources in closed-loop control of ball-screw drive. The influence of AFC on 

positioning errors due to command trajectory is investigated in Section 6.4.  AFC design in conjunction 

with two different control schemes for ball-screw drives is presented in Section 6.5.  

Section 6.6 demonstrates on-the-fly compensation of position-periodic errors induced by lead 

imperfections and/or mechanical/sensor misalignments. Sections 6.7 and 6.8 present additional simulation 

results, comparing the proposed tuning procedure for AFC resonators with the current conventional 

approach, and also investigating the effectiveness of AFC’s harmonic positioning error correction under a 

variable velocity trajectory. The conclusions for the study are presented in Section 6.9. 

 

6.2. AFC Design for Dual-Feedback Ball-Screw Drive Control System 

6.2.1. Basic Structure 

The proposed integration of AFC with the dual feedback structure used in ball-screw drives is shown 

in Figure 6.1. The transfer functions 𝐺1 and 𝐺2 represent the rotational and translational position response 

of the feed drive. 𝑢 is the motor current command, which in this study is considered as the control signal. 

For analysis purposes, the block diagram has been arranged so that the control signal can be written as a 

combination of the rotational and translational feedback measurements (𝑥1 and 𝑥2, respectively) and the 

modified position command (𝑟∗): 

𝑢 = 𝑅𝑟∗ − 𝐾1𝑥1 − 𝐾2𝑥2 (6.1) 
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Above, and in Figure 6.1, 𝑅, represents the feedforward control dynamics, and 𝐾1, and 𝐾2 the feedback 

control dynamics as applied on the rotational and translational measurement channels. Optionally, the 

control structure may also possess plant inversion and/or trajectory pre-filtering terms, which are designated 

by 𝐼 and 𝑃, respectively. The positioning error 𝑒 is calculated by comparing the translational position 

measurement 𝑥2 (the target feedback) with the original position command 𝑟. The AFC block, designated 

with the transfer function 𝐴, generates the harmonic cancellation signal 𝑐 which offsets the position 

command to produce the modified position reference 𝑟∗. The AFC block can contain one or more resonator, 

as described earlier in Section 2.5.1. In tuning the phase parameter 𝜙𝑛 for each resonator, the phase of the 

closed loop response from the modified command input to the ball-screw translational response 𝐺𝑟∗→𝑥2 is 

considered, as shown in Figure 6.1.  

 

Figure 6.1: AFC integrated inside the dual feedback ball-screw drive control structure. 

In the proposed method, the phase selection rule in [107] described in Section 2.5.1, was adopted 

without modification. It was observed, through extensive simulations, that this rule yields the fastest 

cancellation when the oscillator gain is kept constant. Here, 𝐺𝑟∗→𝑥2 can be found by applying the necessary 

block diagram reduction to Figure 6.2: 

𝐺𝑟∗→𝑥2 =
𝐺2𝑅

1 + 𝐾1𝐺1 + 𝐾2𝐺2
 (6.2) 

The overall closed-loop response with the inclusion of AFC can be conveniently analyzed by 

considering the AFC to be an augmentation to the existing translational position feedback filter 𝐾2, as 

shown in Figure 6.2. In this case, the new translational position feedback controller becomes: 

𝐾2
′ = 𝐾2 + 𝐴𝑅 (6.3) 
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Figure 6.2: Equivalent dynamics in translational position feedback channel, due to inclusion of AFC. 

 

6.3. Influence of AFC on Rejecting Harmonic Disturbances 

In ball-screw drive control systems, four main sources of disturbance with harmonic nature are: 

i) Torque ripples in the drive/motor system, which can be considered as input 

disturbance[142][143][144]; 

ii) Alignment errors of the rotary encoder mounted on the ball-screw or motor shaft; 

iii) Ball-screw helix (i.e. lead) errors [8]; and, 

iv) Machining forces that have periodic nature, such as in a manufacturing processes like 

milling, and thus can be decomposed into harmonic components. 

While sensor misalignment on the load side (translational) feedback, originating from the linear scale 

and reader head, can also lead to harmonic positioning errors, this source of error has been kept outside the 

scope of this thesis’s study. In the experimental setup, all care was taken to properly align the linear encoder 

head with respect to the measurement scale, and to ensure the necessary parallelism between the scale and 

the linear motion of the table, as recommended by the encoder manufacturer. In literature, there have been 

studies examining how machine tool structural vibrations affect linear encoder readings [145][146][147]. 

However, in this research work, the linear encoder (Heidenhain LIF 101R) is considered as a reference in 

detecting and compensating for the translational positioning errors caused by the other harmonic error 

sources listed in factors (i)-(iv). Figure 6.3 illustrates these sources of disturbance in the context of the ball-

screw drive control system. In the figure, 𝐺𝑑1 and 𝐺𝑑2 represent the motor and load side response to 

disturbance forces acting on the load (i.e., nut and table) side. 

It is important to mention that the true nature of the lead error can be more accurately described as a 

position dependent gain variation, due to very small changes in the ball-screw gearing ratio, as the table 

and nut translate via an imperfect helical groove. This, in turn, modifies the manner in which the equivalent 
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translational inertia is reflected back onto the motor shaft. However, since this fluctuation is extremely 

small (i.e., in the order of 0.01% for a 20 mm lead ball-screw), it is not easy to directly observe the changes 

to the system dynamics caused by this subtle nonlinearity. Instead, to simplify the analysis this error source 

can be reasonably approximated as an output disturbance acting on the translational motion of the ball-

screw drive, as shown in Figure 6.3. 

The closed loop response of the translational motion 𝑥2 as a function of the disturbance sources can be 

derived by applying the relevant block diagram algebra, which results in: 

𝑥2 =
𝐺2

1 + 𝐺1𝐾1 + 𝐺2𝐾2⏟          
𝐺𝑑1→𝑥2

𝑑1 +
(1 + 𝐺1𝐾1)𝐺𝑑2 − 𝐺2𝐾1𝐺𝑑1

1 + 𝐺1𝐾1 + 𝐺2𝐾2⏟                
𝐺𝑑2→𝑥2

𝑑2 +
−𝐺2𝐾1

1 + 𝐺1𝐾1 + 𝐺2𝐾2⏟          
𝐺𝑣1→𝑥2

𝑣1 +⋯

+
1 + 𝐺1𝐾1

1 + 𝐺1𝐾1 + 𝐺2𝐾2⏟          
𝐺𝑙2→𝑥2

𝑙2 

(6.4) 

 

Figure 6.3: Expected harmonic disturbance sources in closed-loop control of a ball-screw drive. 

It is interesting to note that the translational feedback 𝐾2 only appears in the denominator of the 

disturbance transfer functions in Eq. (6.4). When AFC is applied, these transfer functions are modified by 

the substitution of 𝐾2
′, from Eq. (6.3), in the place of 𝐾2 in Eq.  (6.4), leading to: 

𝐺𝑑1→𝑥2
′ =

𝐺2
1 + 𝐺1𝐾1 + 𝐺2𝐾2

′   , 𝐺𝑑2→𝑥2
′ =

(1 + 𝐺1𝐾1)𝐺𝑑2 − 𝐺2𝐾1𝐺𝑑1
1 + 𝐺1𝐾1 + 𝐺2𝐾2

′

𝐺𝑣1→𝑥2
′ =

−𝐺2𝐾1
1 + 𝐺1𝐾1 + 𝐺2𝐾2

′   , 𝐺𝑙2→𝑥2
′ =

1 + 𝐺1𝐾1
1 + 𝐺1𝐾1 + 𝐺2𝐾2

′
}
 
 

 
 

  (6.5) 

The disturbance transfer functions in Eqs. (6.4) and (6.5) represent frequency dependent complex gains. 

For example, in Figure 6.4, the magnitude of the transfer function related to lead errors (|𝐺𝑙2→𝑥2|) is shown. 

In this case, the dynamic response of a ball-screw drive coupled with a P-PI position-velocity cascade 
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controller is taken into account. The control structure is shown in Figure 6.5a. In obtaining the FRF’s in 

Figure 6.4, the open-loop feed drive model and experimental frequency response measurements 

representing the terms 𝐺1, 𝐺2, 𝐺𝑑1, and 𝐺𝑑2 were obtained following the procedure in [72]. The 

configuration of 𝐾1 and 𝐾2 terms related to P-PI cascade control elements is also discussed in detailed in 

[72]. 

 

Figure 6.4: Closed-loop response of table position to lead error disturbance, without (w/o) and with (w/) 

AFC in the translational feedback loop. 

 

Figure 6.5: Integration of AFC with: (a) P-PI position velocity cascade and, (b) pole-placement control 

schemes. 



155 

 

In this example, the lead length of the ball-screw (displacement per revolution of the screw shaft) is 20 

mm. Hence, when the drive is traveling at 300 mm/s, the principal frequency due to lead error will be 15 

Hz and a secondary harmonic at 30 Hz may also exist. Figure 6.4 shows the suppression of |𝐺𝑙2→𝑥2| (leading 

to |𝐺𝑙2′→𝑥2|) at 15 Hz (i.e., once per screw revolution) and 30 Hz (twice per screw revolution) through AFC 

design. 

The principal function of AFC is to diminish the magnitude of the disturbance response near the 

expected error harmonic frequencies. However, due to the waterbed effect encountered in linear control 

systems [25], mitigating the disturbance response at certain target frequencies worsens the performance at 

others. Since inclusion of the AFC to correct for translational positioning errors only alters the feedback 

controller 𝐾2, it can be shown as in the proceeding analysis that the relative change in the four disturbance 

transfer functions in Eq. (6.4) will be identical. 

Comparing the gains of the updated disturbance transfer functions in Eq. (6.5) with their non-AFC 

counterparts’ in Eq. (6.4), it can be seen that a frequency dependent factor (𝛼), defined here as the response 

modification factor via Eq. (6.6), would be sufficient to evaluate the relative improvement (or deterioration) 

achieved through the inclusion of AFC into the translational feedback loop. 

𝛼(𝜔) = |
𝐺𝑑1→𝑥2
′ (𝑠)

𝐺𝑑1→𝑥2(𝑠)
|
𝑠=𝑗𝜔

= |
𝐺𝑑2→𝑥2
′ (𝑠)

𝐺𝑑2→𝑥2(𝑠)
|
𝑠=𝑗𝜔

= |
𝐺𝑣1→𝑥2
′ (𝑠)

𝐺𝑣1→𝑥2
(𝑠)
|

𝑠=𝑗𝜔

= |
𝐺𝑙2→𝑥2
′ (𝑠)

𝐺𝑙2→𝑥2(𝑠)
|
𝑠=𝑗𝜔

= |
1 + 𝐺1𝐾1 + 𝐺2𝐾2
1 + 𝐺1𝐾1 + 𝐺2𝐾2

′|
𝑠=𝑗𝜔

 (6.6) 

The response modification factor implies that at frequencies where 𝛼 < 1, improvement is achieved 

over the earlier design excluding AFC. Conversely, at frequencies where 𝛼 > 1, the response is worsened. 

An advantage of using 𝛼 is that it applies simultaneously to all concerned disturbance response functions 

related to the ball-screw drive. Typically, the feedback control law (𝐾1 and 𝐾2) is first designed by 

excluding the resonators. The AFC is added afterwards. Thus, it makes sense to use the original disturbance 

response achieved with the initial design as a baseline for quantifying the AFC’s performance gain or loss 

in the frequency-domain. For example, if no more than 20% deterioration is desirable at frequencies other 

than the suppressed harmonics, an upper limit on the value of 𝛼 can be imposed as 𝛼 < 1.2. This rule can 

be generalized as, 

𝛼(𝜔) ≤ 𝛼𝑃  (6.7) 
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Above, 𝛼𝑃 represents an upper limit on the response modification factor as a performance requirement, 

defined with respect to the nominal feedback design without the AFC. In Eq. (6.4), considering the 1 +

𝐺1𝐾1 + 𝐺2𝐾2 term common to all denominators, application of the Nyquist stability criterion requires the 

consideration of 𝐿 = 𝐺1𝐾1 + 𝐺2𝐾2  (or when AFC is used, 𝐿 = 𝐺1𝐾1 + 𝐺2𝐾2
′) as the loop-transfer function 

[25]. This result can also be arrived at by inspecting the parallel forward branches 𝐾1𝐺1 and 𝐾2𝐺2 (or 𝐾2
′𝐺2) 

in Figure 6.3., which join together to form a negative feedback loop at the scalar control signal point 𝑢. 

In setting a robustness boundary for stability, if the vector margin (i.e., reciprocal of the peak sensitivity 

value 𝑆𝑚𝑎𝑥) is used, then the robust stability requirement can also be conveniently integrated into the 

analysis of the response modification factor 𝛼. Defining the sensitivity function [25] corresponding to the 

cases without and with AFC as 𝑆 = 1 (1 + 𝐿) = 1 (1 + 𝐺1𝐾1 + 𝐺2𝐾2)⁄⁄  and 𝑆′ =

1 (1 + 𝐿′) = 1 (1 + 𝐺1𝐾1 + 𝐺2𝐾2
′)⁄⁄ , respectively, the response modification factor 𝛼 can be regarded as 

the magnitude ratio between these two sensitivity functions: 

𝛼 = |
1 + 𝐺1𝐾1 + 𝐺2𝐾2
1 + 𝐺1𝐾1 + 𝐺2𝐾2

′|
𝑠=𝑗𝜔

= |
1

1 + 𝐺1𝐾1 + 𝐺2𝐾2
′

1 + 𝐺1𝐾1 + 𝐺2𝐾2
1

|
𝑠=𝑗𝜔

= |
𝑆′

𝑆
|
𝑠=𝑗𝜔

 (6.8) 

If the original sensitivity function S  is already known, the upper bound on 𝛼 to achieve such robust 

stability can be computed, as shown in Eq. (6.8). This ensures that the peak sensitivity of the closed-loop 

system with AFC remains below 𝑆𝑚𝑎𝑥: 

|𝑆′(𝑠)|𝑠=𝑗𝜔 ≤ 𝑆𝑚𝑎𝑥 ⟺ 𝛼(𝜔) ≤
𝑆𝑚𝑎𝑥

|𝑆(𝑠)|𝑠=𝑗𝜔
= 𝛼𝑅𝑆(𝜔), ∀𝜔 (6.9) 

In the above equation, 𝛼𝑅𝑆(𝜔) represents the frequency dependent upper limit on 𝛼, in order to hold 

|𝑆′(𝜔)| ≤ 𝑆𝑚𝑎𝑥. The resonator gains 𝑔𝑛 are tuned and increased as much as possible, while simultaneously 

monitoring the frequency dependent profile for 𝛼(𝜔) to continue satisfying Eq. (6.7) and Eq. (6.9). Thus, 

a new and practical way to tune the AFC gains is introduced, which keeps in mind both the performance 

deterioration issue outside the target harmonic frequencies, and also the robust stability requirement for the 

closed-loop system with the AFC resonator(s). 

For example, robust gain selection for two AFC’s at 15 and 30 Hz integrated inside the translational 

feedback channel is shown in Figure 6.6 and Figure 6.7. As mentioned earlier, the AFC’s have been 

designed to block out the first and second harmonic components of the screw’s rotation, which can originate 

from lead errors, torque ripple-type factors, and other potential sources of mechanical or sensor 

misalignment. Inspection of these figures indicates that successful attenuation is achieved at the target 
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frequencies while ensuring that performance degradation at other frequencies (due to the two AFC’s) does 

not exceed 20%, and that a desired robust stability margin of 𝑆 ≤ 𝑆𝑚𝑎𝑥 = 2.0 is also maintained. 

To verify the stability in the sense of classical gain and phase margins (GM, PM), and to inspect the 

achieved loop transfer function crossover frequency (𝜔𝑐) as a commonly used measure for control 

bandwidth (|𝐿(𝑗𝜔𝑐| = 1) [25], the Bode and Nyquist plots for the loop transfer function without and with 

AFC (𝐿 and 𝐿′) are analyzed, as presented in Figure 6.8 and Figure 6.9. These plots are based on the loop 

transfer function FRFs which have been calculated both using experimentally recorded frequency response 

data from the plant (designated with ‘exp’ in the plot legend), and via frequency response prediction from 

a model approximation of the feed drive (designated with ‘model plant’). The ball screw dynamics was 

approximated with a two-inertia model, to capture the first axial vibration mode [71][72]. As the controller 

dynamics is already known, its frequency domain contribution is directly computed analytically. 

The fact that the Nyquist plot makes no clockwise encirclement of the ‘-1’ point indicates nominal 

stability for the closed-loop system. Thus, the peak value of the sensitivity plot in Figure 6.6 can be used to 

determine stability robustness. It is also noted that the crossover frequency (i.e.., ‘bandwidth’) for the P-PI 

control without and with AFC is 34 Hz, and local gain amplifications at 15 and 30 Hz help reject the 

corresponding harmonic disturbances at these frequencies. 

 

Figure 6.6: Loop sensitivity without and with 

AFC. 

 

Figure 6.7: Design of AFC through inspection of the 

response modification factor (𝛼). 
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Figure 6.8: Loop transfer function for P-PI 

controller without and with AFC resonators 

(target frequencies: 15 Hz, and 30 Hz). 

 

Figure 6.9: Nyquist plot of the loop transfer function 

for P-PI controller without and with AFC resonators 

(target frequencies: 15 Hz, and 30 Hz). 

 

6.4. Influence of AFC on Positioning Errors Due to Command Following 

Extending the translational response in Eq. (6.4) to consider the effect of the commanded trajectory 𝑟, 

by merging the block diagrams in Figure 6.1 and Figure 6.3, it is possible to obtain the translational response 

as, 

 

𝑥2 =
𝐺2((𝐼 + 𝑅)𝑃 + 𝑅𝐴)

1 + 𝐺1𝐾1 + 𝐺2𝐾2
′

⏟            
𝐺𝑟→𝑥2
′

𝑟 +
𝐺2

1 + 𝐺1𝐾1 + 𝐺2𝐾2
′

⏟          
𝐺𝑑1→𝑥2
′

𝑑1 +
(1 + 𝐺1𝐾1)𝐺𝑑2 − 𝐺2𝐾1𝐺𝑑1

1 + 𝐺1𝐾1 + 𝐺2𝐾2
′

⏟                
𝐺𝑑2→𝑥2
′

𝑑2 +⋯

+
−𝐺2𝐾1

1 + 𝐺1𝐾1 + 𝐺2𝐾2
′

⏟          
𝐺𝑣1→𝑥2
′

𝑣1 +
1 + 𝐺1𝐾1

1 + 𝐺1𝐾1 + 𝐺2𝐾2
′

⏟          
𝐺𝑙2→𝑥2
′

𝑙2 

(6.10) 

 

Following Eq. (6.10), the true positioning error can be written as = 𝑟 − 𝑥2 , which leads to: 
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𝑒 =
1 + 𝐺1𝐾1 + 𝐺2𝐾2 − 𝐺2𝑃(𝐼 + 𝑅)

1 + 𝐺1𝐾1 + 𝐺2𝐾2
′

⏟                    
𝐺𝑟→𝑒
′

𝑟 +
−𝐺2

1 + 𝐺1𝐾1 + 𝐺2𝐾2
′

⏟          
𝐺𝑑1→𝑒
′

𝑑1 +⋯

+
𝐺2𝐾1𝐺𝑑1 − (1 + 𝐺1𝐾1)𝐺𝑑2

1 + 𝐺1𝐾1 + 𝐺2𝐾2
′

⏟                
𝐺𝑑2→𝑒
′

𝑑2 +
𝐺2𝐾1

1 + 𝐺1𝐾1 + 𝐺2𝐾2
′

⏟          
𝐺𝑣1→𝑒
′

𝑣1 +⋯

+
−(1 + 𝐺1𝐾1)

1 + 𝐺1𝐾1 + 𝐺2𝐾2
′

⏟          
𝐺𝑙2→𝑒
′

𝑙2 

(6.11) 

Focusing on the error response due to the trajectory command (𝐺𝑟→𝑒), it can be seen that the updated 

translational feedback term due to AFC (𝐾2
′ = 𝐾2 + 𝐴𝑅) appears, once again, only in the denominator. In 

the numerator, 𝐾2 represents the translational feedback controller without the AFC. Thus, the same 

observation which was made for 𝛼 regarding for four disturbance responses in Section 6.3 also applies to 

the command response: 

𝛼(𝜔) = |
𝐺𝑟→𝑒
′ (𝑠)

𝐺𝑟→𝑒(𝑠)
|
𝑠=𝑗𝜔

= |
𝐺𝑑1→𝑒
′ (𝑠)

𝐺𝑑1→𝑒(𝑠)
|

𝑠=𝑗𝜔

= |
𝐺𝑑2→𝑒
′ (𝑠)

𝐺𝑑2→𝑒(𝑠)
|
𝑠=𝑗𝜔

= |
𝐺𝑣1→𝑒
′ (𝑠)

𝐺𝑣1→𝑒(𝑠)
|
𝑠=𝑗𝜔

= |
𝐺𝑙2→𝑒
′ (𝑠)

𝐺𝑙2→𝑒(𝑠)
|
𝑠=𝑗𝜔

= |
1 + 𝐺1𝐾1 + 𝐺2𝐾2
1 + 𝐺1𝐾1 + 𝐺2𝐾2

′|
𝑠=𝑗𝜔

 (6.12) 

At a frequency where 𝛼 < 1, the positioning error due to the command input is reduced by 𝛼. 

Conversely, when 𝛼 > 1, the response with AFC deteriorates by 𝛼 with respect to the baseline (no AFC) 

design. Thus, AFC can also be used to mitigate harmonics in the tracking error which occur in response to 

a commanded trajectory. While this property can be exploited in high-speed repetitive trajectory tracking 

devices, such as fast tool servos [92][93], in the case of machine tool feed drives with ball-screw 

mechanisms or direct drives, the commanded position is usually made up of ramp, parabola, polynomial, 

or exponential terms. Thus, distinct harmonic components would typically be lacking in the command 

signal 𝑟, and this renders the mitigation of harmonic error components originating from the commanded 

trajectory to secondary importance. Nevertheless, the impact of AFC on the command following response 

with respect to a baseline design can be conveniently analyzed and designed by the help of Eq. (6.11) and 

(6.12) considering the parameter 𝛼, just as done for the disturbance response in Section 6.3. 

6.5. AFC in Conjunction with Different Motion Control Laws for Ball-Screw Drives 

Figure 6.5 demonstrates the integration of AFC inside two different control structures for ball-screw 

drives. Figure 6.5a shows the P-PI position-velocity cascade control arrangement, which is widely used in 
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industry. The PI velocity loop is closed via rotational velocity measurement from the motor side (𝑑𝑥1/𝑑𝑡), 

whereas the P position control loop is closed via translational feedback from the load side (𝑥2). Feedforward 

compensation, by injecting the expected velocity command (𝑑𝑟/𝑑𝑡) and pre-computed inertial force (𝑚̂ ∙

𝑑2𝑟/𝑑𝑡2) is available, in order to improve the dynamic tracking accuracy. The filter pack 𝐺𝑓𝑝 contains 

additional filters, such as notch (for suppressing known structural resonances) and low pass (to facilitate 

high frequency gain attenuation), in order to achieve a stable loop shape with acceptable stability margins. 

Figure 6.5b demonstrates a more advanced scheme based on pole-placement control, which is capable 

of actively damping the first vibration mode of the ball-screw mechanism, thus accomplishing an even 

higher active frequency range than P-PI for disturbance rejection and command tracking. Details of the 

PPC design can be found in [72].  

Here, for conciseness only the basic structure is reviewed. The two feedback controllers 𝐾𝑓𝑏1 and 𝐾𝑓𝑏2 

assume the structure of PD and PID controllers, respectively, and enable the modification of the feed drive’s 

vibratory and rigid body response. 𝐺𝑟 is used to coordinate the rotational position commands for the motor 

side, considering the anticipated elastic deformations of the drive induced by the commanded trajectory. 

𝐺2
−1 is an approximation of the feed drive’s inverse response (from torque input to translational position 

output, 𝐺2), and 𝑃 is a trajectory pre-filter, which is tuned experimentally to remove any artefact in the 

tracking error correlated to the commanded velocity, acceleration, or jerk profiles. 

The feedforward action in both control schemes is essential, in order to yield a tracking error profile 

which has zero mean (i.e., almost no correlation to the commanded kinematic derivative profiles). This 

makes it much easier for the AFC to directly target the harmonic error component(s), which need to be 

suppressed. 

6.6. Experimental Implementation: AFC for Rejecting Position Dependent Harmonic Errors 

In designing AFC to target errors, which are cyclical with axis position, the AFC resonator frequencies 

need to be gain-scheduled as a function of velocity. An example of this is the servo error caused by the ball-

screw drive’s lead imperfection, sometimes referred to as ‘run-out’. The lead error profile on our 

experimental setup was estimated by taking the difference between linear and rotary encoder measurements 

while jogging the axis forward and backward at low speeds (around 20 mm/s). The ball-screw drive used 

in the tests is the same one reported in [72]. The feed drive was mounted onto the machine tool to provide 

actuation along the x-axis. However, the ball-screw mechanism was replaced due to a need for 

refurbishment. A new ball-screw with the closest external dimensions to the earlier one was procured. The 

new model is THK BNK 2020-3.6G0 + 1220 LC5-Y. The motor and amplifier were refurbished as well, 
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with a 3kW Omron R88M-K3K030H servo motor and K3K030T drive. The new mechanism is a double 

start ball-screw possessing 20 mm diameter and 20 mm lead (i.e., two 10 mm pitch helical grooves). A 

typical measurement of the lead error profile is shown in Figure 6.10. It is clear that the main component 

of lead error (𝑙2) can be approximated with a position dependent sinusoidal function, by considering a 

spatial frequency of Ω𝑛 (1/L) (=1/0.02 m-1) in the form: 

𝑙2(𝑥(𝑡)) = 𝐿2sin (Ω𝑛𝑥(𝑡) + Φ𝑛) (6.13) 

Above, 𝑥 = 𝑥(𝑡) = 𝑥2(𝑡) designates the drive’s translational position, 𝐿2 the lead error magnitude, and 

Ω𝑛 the phase shift.  

 

Figure 6.10: Measured and modeled lead error. 

During trajectory tracking with velocity 𝑣(𝑡), the disturbance source in Eq. (6.13) will contribute to a 

servo error which has a time dependent form as, 

𝑒(𝑡) = 𝐸𝑠𝑖𝑛(𝜔𝑛𝑡 + 𝜙𝑛) (6.14) 

Approximating the instantaneous position 𝑥(𝑡) with 1st order Taylor expansion around an earlier state 

of position and velocity (𝑥0, 𝑣0) = (𝑥(𝑡0), 𝑣(𝑡0)) corresponding to time 𝑡0 leads to, 

𝑥(𝑡) ≅ 𝑥(𝑡0) + (𝑡 − 𝑡0)𝑣(𝑡0) = 𝑥0 + (𝑡 − 𝑡0)𝑣0 (6.15) 

Eq. (6.13) can then be re-written as, 
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𝑙2(𝑥(𝑡)) ≅ 𝐿2 sin(Ω𝑛[𝑥0 + 𝑣(𝑡0)(𝑡 − 𝑡0)] + Φ𝑛) = 𝐿2sin(Ω𝑛𝑣0⏟  
𝜔𝑛

𝑡 + Φ𝑛 + Ω𝑛(𝑥0 − 𝑣0𝑡0)⏟            
Φ𝑛
′

)

= 𝐿2sin (𝜔𝑛𝑡 + Φ𝑛
′ ) 

(6.16) 

Hence, the temporal frequency 𝜔𝑛 contributed by the mechanical lead error becomes the product of the 

translational velocity 𝑣0 and the lead error’s spatial frequency Ω𝑛. Obviously, this approximation does not 

consider 2nd or higher order terms, which would account for the influence of nonzero acceleration or jerk 

values. These effects, for the time being, have been kept outside the scope of this study. Nonetheless, even 

1st order approximation is effective in achieving a reduction in the position-dependent harmonic error 

components through AFC.  

Considering Eq. (6.11), the magnitude and phase of the servo error referenced in Eq. (6.14), which are 

contributed by the disturbance input in Eq. (6.16), can be determined as: 

𝐸 = |𝐺𝑙2→𝑒
′ (𝑗𝜔𝑛)|𝐿2         , Φ𝑛 = ∠{𝐺𝑙2→𝑒

′ (𝑗𝜔𝑛)} + Φ𝑛
′  (6.17) 

In the case that the lead error has multiple harmonics, the same treatment would apply for each 

harmonic with different spatial frequency. Moreover, if there are other position dependent disturbances 

originating, for example, from motor or load side torque ripples, or component/sensor (e.g., rotational 

encoder head) misalignment in the feed drive assembly, their effects would yield similar temporal harmonic 

components as explained in Eqs. (6.13) - (6.17) through one of the transfer functions (𝐺𝑑1→𝑒
′ , 𝐺𝑑2→𝑒

′ , 𝐺𝑣1→𝑒
′  

, …) given in Eq. (6.11). In either case, an AFC designed for a particular temporal frequency would be 

effective in suppressing the error contribution from any one of these sources regardless of origin, as shown 

in Eq. (6.12). 

As the temporal disturbance frequency 𝜔𝑛 to be used in the AFC design varies as a function of the axis 

velocity, its value and as required the AFC gain and phase parameters need to be updated at every sampling 

instant in the form 𝜔𝑛(𝑡) = Ω𝑛 ∙ 𝑣0(𝑡). When multiple resonators are used, every set of simultaneous 

frequencies at which the resonators would operate need to be considered in advance, by sweeping the axis 

velocity envelope. The resonator phase values can be gain-scheduled in a straight-forward manner, using 

ϕ𝑛 = ∠𝐺𝑟∗→𝑥2(𝑗𝜔𝑛). The concurrently active resonator gains have to be pre-designed for each velocity, 

considering both performance deterioration and stability robustness specifications. 

Considering a 20 (mm/rev) displacement ball-screw with a maximum expected travel velocity of 400 

mm/s, designing a gain-scheduled AFC with two resonators to suppress the first and second harmonics 
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related to the screw’s rotation can be accomplished by targeting, for example in 50 mm/s velocity 

increments, the following frequency pairs shown in  Table 6.1. 

Table 6.1: Sweep of expected traversal speeds and corresponding 1st and 2nd harmonic frequencies.  

50 mm/s  (2.5,5) Hz   100 mm/s  (5,10) Hz 150 mm/s  (7.5,15) Hz 200 mm/s  (10,20) Hz 

250 mm/s  (12.5,25) Hz 300 mm/s  (15,30) Hz 350 mm/s  (17.5,35) Hz 400 mm/s  (20,40) Hz 

 

When a P-PI position velocity cascade control structure is considered along with the ball-screw drive’s 

dynamics [72], the resonator gain and phase values which have to be gain-scheduled at each frequency can 

be obtained as summarized in Table 6.2. The corresponding response modification factor for traveling 

speeds of 200 mm/s, 300 mm/s, and 400 mm/s are shown in Figure 6.11 and Figure 6.12. The graphs 

indicate that the robust stability (𝑆𝑚𝑎𝑥 ≤ 2.0) and performance retention (𝛼 ≤ 1.2) conditions are always 

respected. Thus, the values in Table 6.2 have been used in real-time gain scheduling, via an interpolation 

table, during the experiments. The correct parameters for the resonators are updated at each sampling 

period, based on the instantaneous commanded velocity. 

Table 6.2: AFC resonator gains and phase values for different traversal speeds.  

Case Resonator frequencies / Hz Resonator gains (𝑔1, 𝑔2)  Phase (𝜙1, 𝜙2) / rad 

1 50 mm/s  (2.5, 5) 5, 1 -0.5734, -0.9237 

2 100 mm/s  (5, 10) 5, 2 -0.9237, -1.2914 

3 150 mm/s  (7.5, 15) 7.5, 2 -1.1408, -1.5023 

4 200 mm/s  (10, 20) 20, 10 -1.3012, -1.7020 

5 250 mm/s  (12.5, 25) 20, 22.5 -1.4398, -1.8248 

6 300 mm/s   (15, 30) 17.5, 7.5 -1.5228, -2.0769 

7 350 mm/s  (17.5, 35) 20, 7.5 -1.6091, -2.6760 

8 400 mm/s  (20, 40) 15, 7.5 -1.7020, 2.6934 

To evaluate the effectiveness of AFC in counteracting the harmonic positioning errors, the table was 

commanded in forward and backwards motions using the profile shown in Figure 6.13. In the figure, the 

trajectory has a peak velocity of 100 mm/s, acceleration of 1000 mm/s2, and a jerk of 20,000 mm/s3. Tests 

were also performed for 200, 300, and 400 mm/s traversal rates. 

Figure 6.14 shows the tracking error profile in time and frequency domains. Table 6.3 shows a summary 

of the tracking performance based on the measurements from Figure 6.14. To ensure repeatability of the 

results, each test was performance five times. Figure 6.15 shows the RMS value of tracking error registered, 

without and with AFC, as observed during each sample test. 
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As can be seen from Figure 6.14 and Table 6.3, after implementation of the AFC the tracking error 

components, particularly at the target harmonics, are reduced significantly. However, there are still 

noticeable spikes in the time-domain signal, which occur when the table reverses direction or goes into 

motion from standstill. These spikes are mainly due to the nonlinear friction, dominant in pre-sliding and 

hysteresis regimes. These effects cannot be compensated adequately with a simple friction model of static 

nature, such as a Coulomb-Striebeck type as was used in the tests. 

 

Figure 6.11: Loop sensitivity without and with 

AFC (target frequencies: 10 Hz & 20 Hz, 15 Hz & 

30 Hz, 20 Hz & 40 Hz.  

 

Figure 6.12: Robust design of AFC for 200 mm/s 

(10 Hz, 20 Hz), 300 mm/s (15 Hz, 30 Hz), 400 

mm/s (20 Hz, 40 Hz) through inspection 𝛼. 

A more elaborate friction model based on the generalized Maxwell-slip (GMS) approach [35] would 

be more suitable in future research for feedforward compensation, to improve the overall servo accuracy. 

For example for the case of 100 mm/s velocity, while the harmonic components are successfully quenched, 

the servo errors due to interaction of the static friction with the feedback loop dynamics tend to be slightly 

worse (around 3%) than the case with no AFC compensation. More accurate cancellation of friction would 

ensure that AFC is not misled into producing an erroneous compensation signal, which can deteriorate the 

servo performance near zero velocity points. Also, while AFC is successful during continuous motion of 

the feed drive, further investigation is required to ensure that the AFC is smoothly switched off during the 

stationary (i.e., zero velocity) portions of the commanded trajectory, and smoothly switched on back again 

during nonzero velocity portions. 
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Figure 6.13: Commanded trajectory (displacement: 300 mm). 

 

Figure 6.14: Tracking errors at different table speeds in time (left) and frequency-domain components 

(right). 
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Table 6.3: Summary of the tracking experiments. 

Traveling speed 

(Principal frequency) 
(mm/s) 

Tracking error (STD) (µm) Max. tracking error (µm) 

w/o AFC w/ AFC % w/o AFC w/ AFC 

100 (5 Hz) 6.918 7.116 -2.86 23.6 38.48 

200 (10 Hz) 8.652 6.335 26.55 26.31 25.57 

300 (15 Hz) 9.231 7.668 16.93 29.81 25.03 

400 (20 Hz) 9.307 8.62 7.31 29.97 29.82 

 

 

 

Figure 6.15: RMS value of tracking error without and with AFC, observed over five tests. 

Overall, the experimental results validate the effectiveness of AFC in mitigating servo errors of 

harmonic nature, which exhibit a displacement dependent pattern in ball-screw drives. 
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6.7. Simulation Results #1: Comparison of the New Tuning Strategy with the Conventional 

Method 

As mentioned earlier, higher resonator gains facilitate faster attenuation of the harmonic error 

components. However, high resonator gains can also result in performance deterioration at other 

frequencies, which can adversely affect trajectory tracking or disturbance rejection. In this section, two 

cases are compared in simulation, to demonstrate the advantage of the proposed tuning over the 

conventional method [107]. For the plant, a flexible feed drive model is considered with the same dynamics 

as in Section 4. The lead error is simulated using a model similar to the one in [8]. Considering two 

significant harmonics (1 and 2 per revolution), corresponding to a ball screw with a double-start thread 

profile, the below model was used: 

𝑙2,𝑚𝑜𝑑𝑒𝑙 =∑𝐴𝑖𝑠𝑖𝑛(𝑓𝑖𝜃 + 𝜙𝑖)

2

𝑖=1

 (6.18) 

 

Above, 𝐴𝑖 [V] and 𝜙𝑖 [rad] are the amplitude and phase shift for the ith harmonic. 𝑓𝑖 is the harmonic 

frequency ( 𝑓1 = 1, 𝑓2 = 2). 𝜃 [rad] is the rotation angle. Additionally, the friction was simulated with 

Coulomb friction. As the base controller, a P-PI position-velocity cascade controller with 34 Hz crossover, 

2.7 gain margin, and 40.8 deg phase margin was designed and used in both AFC implementations. The 

AFCs were designed to target 10 and 20 Hz (corresponding to 200 mm/s traverse rate), with appropriate 

phase adjustments as explained in Section 2.5.1.  

In implementing the proposed design, the response modification factor 𝛼 was used to take into account 

both robust stability and performance requirements, particularly outside the target frequencies. The 

resonator gains were adjusted to ensure that no more than 5% deterioration occurs throughout the frequency 

range considered (𝛼 ≤ 1.05). The applied gains correspond to those reported in Table 6.2.  

In replicating conventional tuning, the AFC resonators were increased by 2.25. In this case, the loop 

phase and gain margins were still preserved, thus complying with the guidelines in [107]. However, the 

performance retention at other frequencies (𝛼) was not checked. 

The loop sensitivity (𝑆), performance retention (𝛼), and Nyquist plots for both designs are compared in 

Figure 6.16. Both designs successfully attenuate 10 and 20 Hz, with the conventional approach realizing 

this to a greater extent (Figure 6.16: panels (b) and (d)). While the Nyquist plots (panels (c) and (f)) show 

that the AFCs in either case does not affect the phase and gain margins, Figure 6.16d indicates further 
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deterioration of the performance (𝛼 > 1.05) around 16 and 34 Hz, due to the more ambitious tuning of the 

resonator gains. 

The tracking simulation results and a summary of tracking error values (as standard deviation) are 

presented in Figure 6.17 and Table 6.4. As can be verified, the proposed tuning, while being a bit less 

aggressive on the 10 and 20 Hz harmonics, succeeds in retaining a lower RMS value for the tracking error, 

by limiting the performance degradation at other frequencies. This enables another 14% reduction in the 

RMS value of the servo error, in comparison to that achieved by the conventional AFC tuning approach. 

 

Proposed Tuning Method 

(a)

 

(b) 

 

(c) 

 
Conventional Tuning Method 

(d)

 

(e) 

 

(f) 

 

Figure 6.16:  Loop sensitivity ((a), (c)), response modification factor ((b), (d)) and Nyquist ((c) and (f)) plots, 

comparing the proposed AFC tuning method ((a), (b), (c)) with the conventional design ((d), (e), (f)). Target 

frequencies: 10, 20 Hz. 
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Figure 6.17: Simulated tracking errors at 200 mm/s feed rate using the proposed tuning procedure (top) 

vs. the conventional tuning procedure (bottom). 

 

Table 6.4: Summary of the tracking simulations. 

Tracking error (STD) (µm) 

Proposed tuning method 

Tracking error (STD) (µm) 

Conventional method 

w/o AFC w/ AFC % w/o AFC w/ AFC % 

9.43 6.07 35.63 9.43 7.37 21.85 

 

6.8. Simulation Results #2: Rejection of Position Dependent Harmonic Errors During Variable 

Velocity Motion 

In multi-axis manufacturing applications like contour machining, commanded trajectories may often 

include significant variation in the axis velocity. To evaluate the effectiveness of the position-dependent 

AFC in handling a variable velocity trajectory, an airfoil path (FX 66-17All-182 airfoil [150]) was 

considered. Figure 6.18 shows the airfoil profile generated for 1000 mm chord length using cubic spline 

interpolation. To avoid unwanted feedrate (i.e., tangential velocity) fluctuation during the trajectory 

generation, 1st order Taylor series based spline interpolation was used [151]. The feedrate, tangential 
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acceleration, and tangential jerk limits considered were 100 mm/s, 1000 mm/s2, and 20 000 mm/s3. In the 

simulation, the feed drive, lead error (ripple), P-PI axis controller, and AFC model and parameters were the 

same as those used in Sections 6.5 and 6.7, complying with the corresponding robust stability (S ≤ Smax=2.0) 

and performance retention (α≤1.2) conditions. In evaluating the AFC, the y-axis component of the trajectory 

was used, as it displays continual velocity variation and sharp acceleration transients in the middle part, 

when traversing the leading edge of the airfoil shortly after 10 s into the motion. 

Figure 6.19 shows the tracking error obtained without and with AFC. The maximum value and standard 

deviation are summarized in Table 6.5. As can be seen, even when the frequency of the disturbance changes 

continuously, due to varying velocity, the position-dependent compensation developed in Section 6.5 is still 

able to achieve significant improvement in the dynamic accuracy. The RMS and MAX error values are 

reduced by around 58%. Similar to the case of a constant feedrate trajectory (Section 4), there are 

deteriorations around the friction transition points. Also, as only the first-order term is considered in the 

compensation per Equations (6.15) and (6.16), AFC naturally loses some of its effectiveness during the 

high acceleration portion of the trajectory (i.e., tight curvature area).  

As described in Section  ,armonic disturbancethe frequency of the error h 𝜔𝑛 is approximated as a 

product of the lead error spatial frequency Ω𝑛 and the traversal speed 𝑣0. This approximation is effective 

in implementing the compensation via gain scheduling. It provides suitable instantaneous values for the 

anticipated error frequency, and the AFC gain and phase values that need to be applied, which would 

effectively quench the error if the exogenous harmonic input retained the same frequency. However, the 

transient response of the closed-loop system, under the influence of the AFC, still requires a certain duration 

to pass before the AFC-targeted error harmonics can be mitigated. 

If the rate of change in the harmonic disturbance frequency becomes significant (i.e., during high 

acceleration movements), a deterioration in the AFC’s compensation can be expected, originating mainly 

from the lag in the transient response governing the AFC’s attenuation behavior. In addition, it is clear that 

gain scheduling of the AFC parameters gain and phase (in a way that satisfies 0th order continuity) may 

also introduce additional dynamics. These factors would be interesting to study in future research. 

Overall, while this simulation example indicates some of the limitations of the position dependent AFC 

approach, it also highlights that a noticeable improvement can still be achieved in the dynamic accuracy, 

even in the presence of varying traversal velocity. 
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Figure 6.18: Airfoil profile and commanded trajectories for the x- and y-axes. 
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Figure 6.19: Tracking error without (w/o) and with (w/) AFC compensation. 

 

Table 6.5: Summary of the tracking simulation y-axis. 

Tracking error (STD) (µm) Max. tracking error (µm) 
w/o AFC w/ AFC % w/o AFC w/ AFC 

7.6 3.13 58.82 40.8 16.95 
 

 

6.9. Conclusions 

In this chapter, a new methodology for the design of AFC compensators towards reducing harmonic 

positioning errors in ball-screw drives has been introduced. The AFC has been adapted to suit the dual (i.e., 

rotational and translational) feedback structure used in machine tool ball-screw drives. The approach takes 

into account both robust stability and performance retention requirements in the presence of adding AFC 

resonators into the feedback loop. It is also shown that the reduction of harmonic errors due to different 

input sources, i.e. the commanded trajectory, motor and load-side disturbances, lead/mechanism errors, and 

rotational feedback errors, can all be analyzed with respect to a baseline design (before the AFC is added), 

using a unified parameter named here as the response modification factor. The proposed approach enables 

multiple AFC resonators to be designed and updated simultaneously. The effectiveness of the proposed 

AFC design has been demonstrated in experimental results involving the mitigation of harmonic servo 

errors due to position-periodic disturbances, which can originate from the ball-screw mechanism lead and 

alignment errors. 
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While in the conducted experiments, actuator saturation did not pose a major problem, future research 

needs to focus on limiting the output amplitude for each resonator, such that saturation avoidance can be 

guaranteed. Also, bump-less activation and de-activation of AFC can help make this approach more easily 

and reliably deployable on industrial ball-screw drives used in machine tools. 
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Chapter 7  

Conclusions and Future Work 

 

7.1. Conclusions 

In this thesis, precision modeling, multivariable system identification, and advanced motion control 

techniques were proposed in order to improve the positioning accuracy and disturbance rejection of 

machine tool servo systems, with direct implementation results being developed on a ball-screw drive. The 

main conclusions and contributions of this thesis are summarized as follows: 

A new frequency-domain MIMO LTI identification algorithm for accurate model construction of 

motion control systems was proposed in Chapter 4. The algorithm captures the effect of structural 

resonances, highly damped complex and real poles, and also enables the inclusion of direct / derivative-like 

terms (if needed). A key strength of the algorithm is its ability to enforce the commonality of pole locations 

across all output / input channels. The effectiveness of the algorithm was validated using experimental 

frequency response measurements obtained from different types of motion control mechanisms (i.e., single 

axis as well as gantry type ball-screw drives and linear motors). This led to the estimation of MIMO models 

with output  input channel sizes of 2 × 1, 2 × 2, and 4 × 4. Furthermore, the proposed method has been 

benchmarked against two of the most widely used estimation algorithms available in MATLAB software, 

tfest and modalfit. The proposed algorithm has demonstrated two order-of-magnitude or better (i.e., 

99.55% - 99.67%) improvement over the results obtained with these methods when fitting MIMO models. 

The developed MIMO model identification algorithm also enabled the second main contribution in this 

thesis, targeting enhanced disturbance rejection through controller design to actively damp multiple 

vibration modes.  

As the second contribution, presented in Chapter 5, control techniques were proposed for multiple-

mode vibration damping and tracking control in feed drive systems using mixed sensitivity ℋ2/ℋ∞ optimal 

control in conjunction with loop shaping. The proposed controllers have dual-feedback structure and are 

synthesized to capture and attenuate not only the principal (axial) vibration mode, but other vibration modes 

as well, originating from the machine’s base frame and interaction of the moving table with the drive’s 

linear guideways. The vibration damping controllers were tuned to minimize the load side disturbance 

response, by using the corresponding open-loop compliance (i.e. force-to-position response) for the 

worktable to external (e.g., cutting force) disturbances. Consideration of this transfer function as the inverse 

sensitivity (i.e., performance) weight enhanced the disturbance rejection over applying a more common 

filter-type weighting function, that is used typically in mixed sensitivity controller design. This 
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improvement was verified using experimental impact hammer testing for the proposed and conventional 

designs. 

The performance of the two proposed control laws was compared to the industry-standard P-PI 

position-velocity cascade controller, and to a vibration damping pole-placement controller (PPC), in terms 

of disturbance rejection and trajectory tracking. The proposed controllers achieved, on average, 2-3 times 

better disturbance rejection for wide frequency ranges, and typically 2.5 better damping of the most 

significant (i.e., axial) vibration mode. The proposed controllers also achieved comparable or better tracking 

performance in relation to the P-PI and PPC benchmarks, maintaining less than 10 𝜇m of dynamic error 

during traversals with 420 mm/s velocity and 0.12 g acceleration. While the achievable performance of the 

proposed designs is impressive, significant amount of expert input was needed to implement these 

controllers, thus indicating the need for further research and development before they can be effectively 

and safely used in industry. 

As the last contribution, presented in Chapter 6, the analysis and design of adaptive feedforward 

cancellation (AFC) considering the dual position feedback structure of the ball-screw drives was developed 

for the suppression of harmonic positioning errors that occur in such mechanisms. A new frequency-

dependent parameter, named as the ‘response modification factor ‘𝛼’ was introduced to allow for 

quantification of the improvement (or worsening) of the response across all frequencies, after the inclusion 

of the AFC into an existing feedback control structure. Additionally, a new tuning procedure has been 

proposed for multi-resonator AFC designs considering robust stability and performance preservation, 

particularly at frequencies outside those targeted by the AFC resonators. The rejection of position dependent 

harmonic errors during variable velocity motion was also studied in simulation. Finally, the effectiveness 

of the proposed design was validated in high-speed tracking experiments, which demonstrated clear 

improvements in suppressing the expected harmonic components of error. Additional sources of error, 

especially due to stick-slip friction however, also need to be compensated separately. This can be achieved 

by following the GMS-based friction compensation, which was demonstrated experimentally in Chapter 3. 

 

7.2. Future Research Directions 

The control methods developed in this thesis were proven on a single-axis ball-screw drive. While the 

LTI designs indicate improvement in disturbance rejection and tracking, the robust control framework can 

be utilized for defining various uncertainty specifications, both parametric and structural (e.g., unknown 

dynamics at certain frequency ranges). One of the greatest challenges in the vibration control of structures 

with very little damping is that small changes in the natural frequency can result in drastic amounts of 
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relative changes in the plant’s gain and phase response, due to the sharpness of these profiles around the 

resonances. To handle this issue, the suitability of Structured Singular Value (SSV) (µ-) analysis and 

synthesis methods can be evaluated in the future. 

Additionally, multi-degree of freedom motion control systems with mechanical flexibility tend to 

display different structural properties (i.e., natural frequency, damping, as well as modal stiffness and mass) 

based on the current posture (i.e., geometric displacements of the axes). Hence, extension of the vibration 

damping ℋ2 + 𝐿𝑆 and ℋ∞ + 𝐿𝑆 designs to the linear parameter varying (LPV) framework is worth 

investigating. It is expected that being able to incorporate active damping designs into an LPV framework 

will enable more aggressive bandwidths and disturbance rejection performance specifications to be 

achieved, allowing the controllers to be tuned more ambitiously without risking closed-loop de-

stabilization. However, developing LPV based high-order models, with parameters that can be interpolated 

linearly between different operating points, can be challenging. The controller design would need to 

consider, for example, stiffness variations in the flexible modes along the screw shaft, based on axis 

position, or apparent joint level inertia changes felt by actuators as a result of the posture change in different 

axes, as often encountered in robotics literature. In the time frame of this thesis, the disturbance rejection 

of the proposed controllers could be tested successfully via impact hammer measurements. However, 

machining experiments (e.g., via milling) can further validate the effectiveness of the proposed designs 

over the benchmarked controllers, like P-PI and PPC. A follow-up inspection of the machined part quality, 

in terms of dimensional accuracy and surface finish, would also provide insight into the benefits that can 

be gained with the proposed approach. 

Another potential study is the design of controllers with different choice of feedback sensors in cases 

where multiple actuation and measurement points are available, and structural resonances due to the 

machine tool are prevalent. Some examples include gantry drives, as well as ram- and column-type multiple 

tool structures. Especially if integrated position, velocity, and acceleration sensors are available within the 

machine tool, the generalized MIMO model identification and vibration damping methods developed in 

this thesis can potentially be applied on such systems. 

Regarding the positioning accuracy improvement by AFC, actuator saturation as a limiting factor can 

be studied and included when implementing the multi-resonator design, which targets multiple frequency 

components. Another idea would be to use a blended approach of model-based (feedforward) and feedback-

based (AFC) compensation, with a suitable adaptation or ‘learning’ algorithm to coordinate the two 

components. Also, the use of AFC in the context of multiple axes would be interesting to investigate. 
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Appendices 

 

Appendix A.1 

Summary of the Identified Parameters for the Y-Axis of the T-Type Gantry (MIMO) 

Table A.1.1: Summary of identified pole locations for the y-axis gantry before and after nonlinear 

optimization. 

Step 5: Linear LS fit 

(RMS(E) = 0.0015 mm/V) 

Step 6: Nonlinear optimization + linear LS 

(RMS(E) =  0.0010 mm/V) 

𝑘 𝜔𝑘 (𝐻𝑧) 𝜁𝑘 𝑝𝑘 (𝐻𝑧) 𝜔𝑘 (𝐻𝑧) 𝜁𝑘 𝑝𝑘 (𝐻𝑧) 

1 0.7725 0.0367 0.4122 0.6054 0.0439 1.158 

2 0.7958 0.23 - 0.3559 0.5953 - 

3 96.0514 0.0463 - 93.4028 0.0370 - 

4 105.5881 0.0475 - 97.8552 0.0532 - 

5 217.0555 0.0345 - 10.7554 0.0618 - 

6 227.2733 0.0059 - 124.4146 0.0067 - 

7 303.4766 0.0352 - 328.0024 0.0719 - 

8 321.0633 0.0205 - 304.9090 0.0342 - 

9 369.7806 0.0529 - 3696.4 0.1124 - 

10 373.2661 0.0606 - 375.8603 0.0216 - 

11 485.9478 0.0361 - 558.4906 0.0511 - 
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Table A.1.2: Summary of the identified participation factors after Step 6: Nonlinear optim. + LS fit 

(𝑇𝑑𝑒𝑙𝑎𝑦  = 1 ms). 

Input/output 

channels 

Input #1 Left-hand actuation Input #2 Right-hand actuation 

 

 

 

 

 

Output #1 

Left-hand 

linear 

encoder 

𝑘 𝛼𝑘 𝛽𝑘 𝛾𝑘 𝛿𝑘 𝑘 𝛼𝑘 𝛽𝑘 𝛾𝑘 𝛿𝑘 

1 -4.2765 -50.433 38.77 - 1 -44.0730 -42.8472 44.97 - 

2 594.8513 11.8146 - - 2 643.4440 -2.0155 - - 

3 99.3734 0.2708 - - 3 -298.3519 -0.1973 - - 

4 581.7626 -0.2656 - - 4 -693.4306 0.1310 - - 

5 5.2842 0.0273 - - 5 4.1450 0.0265 - - 

6 -0.0798 -4.4e-04 - - 6 0.2471 0.0022 - - 

7 320.7744 0.1597 - - 7 433.4434 0.0565 - - 

8 76.5300 0.0395 - - 8 20.8878 0.0021 - - 

9 1.6418e+05 -16.774 - - 9 -1.844e+05 132.3665 - - 

10 234.4709 0.0909 - - 10 103.8694 0.0695 - - 

11 -470.4945 0.0206 - - 11 3.7402e+03 -0.6567 - - 

 

 

 

 

 

Output #2 

Right-hand 

linear 

encoder 

 

𝑘 𝛼𝑘 𝛽𝑘 𝛾𝑘 𝛿𝑘 𝑘 𝛼𝑘 𝛽𝑘 𝛾𝑘 𝛿𝑘 

1 -26.8775 -52.30 40.08 - 1 -13.3100 -40.25 43.17 - 

2 628.3018 12.3646 - - 2 597.7111 -2.815 - - 

3 -139.6877 -0.3908 - - 3 436.1143 0.3343 - - 

4 -879.0439 0.3407 - - 4 1.0074e+03 -0.157 - - 

5 5.1913 0.0269 - - 5 4.0760 0.0270 - - 

6 -1.1185 4.79e-4 - - 6 -2.9589 -0.003 - - 

7 621.0314 0.1644 - - 7 241.2479 0.151 - - 

8 36.7284 0.0081 - - 8 64.4772 0.025 - - 

9 -2.08e+04 92.9744 - - 9 2.4686e+04 -52.92 - - 

10 136.3533 0.1576 - - 10 85.3106 0.0865 - - 

11 426.5035 -0.4931 - - 11 231.2455 0.4425 - - 
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Appendix A.2 

Summary of the Identified Parameters for the X-Axis of the T-Type Gantry (SISO) 

 

Table A.2.1: Summary of identified pole locations for the x-axis gantry before and after nonlinear 

optimization. 

Step 5: Linear LS fit 

(RMS(E) =  94.57 mm/s2/V) 

Step 6: Nonlinear optimization + linear LS 

(RMS(E) =  28.13 mm/s2/V) 

𝑘 𝜔𝑘 (𝐻𝑧) 𝜁𝑘 𝑝𝑘 (𝐻𝑧) 𝜔𝑘 (𝐻𝑧) 𝜁𝑘 𝑝𝑘 (𝐻𝑧) 

1 15.6373 0.1229 4.5630 96.6626 0.7967 11.6931 

2 183.5226 0.0322 674.8170 182.9265 0.0337 896.0423 

3 220.5508 0.0058 - 245.0420 0.0471 - 

4 234.3168 0.0045 - 284.6926 0.0147 - 

5 262.1107 0.0590 - 327.6355 0.0377 - 

6 285.9383 0.0078 - 252.3723 0.1173 - 

7 330.0826 0.0335 - 358.6669 0.0629 - 

8 399.0095 0.0291 - 400.3442 0.0315 - 

 

Table A.2.2: Summary of the identified participation factors after Step 6: Nonlinear optim. + LS fit (Tdelay 

= 0.5 ms). 

𝑘 𝛼𝑘 𝛽𝑘 𝛾𝑘 𝛿𝑘 

1 3.97e+07 7.93e+04 3.1058e+03 - 

2 -2.04e+07 3.48e+03 1.0072e+07 - 

3 -4.55e+06 -1.7e+04 - - 

4 -2.24e+07 3.02e+03 - - 

5 -9.92e+08 4.23e+04 - - 

6 -8.28e+07 1.94e+04 - - 

7 6.22e+08 -4.6e+04 - - 

8 -1.68e+09 3.48e+05 - - 
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Appendix A.3  

Summary of the Identified Parameters for the Two-Input Two-Output Ball-Screw Drive System 

(MIMO) 

 

Table A.3.1: Summary of identified pole locations for the single-axis ball-screw drive after Step 6: 

Nonlinear optim. + LS fit. 

𝑘 𝜔𝑘 (𝐻𝑧) 𝜁𝑘 𝑝𝑘 (𝐻𝑧) 

1  0.87 Hz 0.4957 - 

2  16.54 Hz 0.4494 - 

3 26.8 Hz 0.0094 - 

4 30.33 Hz 0.1046 - 

5 131.1 Hz 0.0239 - 

6 134.1 Hz 0.0455 - 

 

Table A.3.2: Summary of identified pole locations for the single-axis ball-screw drive after Step 6: 

Nonlinear optim. + LS fit. 

Input/output channels Input #1 Motor Input #2 Load-side disturbance 

 

 

Output #1 

Rotary encoder 

𝑘 𝛼𝑘 𝛽𝑘 𝛾𝑘 𝛿𝑘 𝑘 𝛼𝑘 𝛽𝑘 𝛾𝑘 𝛿𝑘 

1 1.161e+03 -0.1574 - - 6 -38.5413 4.3339 - - 

2 -8.5782 0.0154 - - 5 346.3009 -5.1795 - - 

3 -0.3298 -0.0071 - - 1 0.1887 0.0063 - - 

4 -2.2730 -0.0716 - - 2 -35.5480 0.2801 - - 

5 129.7006 0.0978 - - 3 -478.0567 0.3467 - - 

6 101.0017 -0.1505 - - 4 -109.0282 -0.0822 - - 

 

Output #2 

Linear encoder 

𝑘 𝛼𝑘 𝛽𝑘 𝛾𝑘 𝛿𝑘 𝑘 𝛼𝑘 𝛽𝑘 𝛾𝑘 𝛿𝑘 

1 1.168e+03 0.0693 - - 6 -31.8097 4.2015  - 

2 -0.2329 0.0395 - - 5 387.5805 -4.8010  - 

3 -0.2417 -0.0051 - - 1 10.0583 0.0534  - 

4 -1.1139 -0.0478 - - 2 -53.6894 0.2776  - 

5 -370.1848 -0.4534 - - 3 2.755e+03 -1.1658  - 

6 -725.4591 0.4203 - - 4 49.2432 1.0847  - 
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Appendix A.4  

Summary of the Identified Parameters for the X-Axis of the H-Type Gantry (MIMO) 

 

Table A.4.1: Summary of identified pole locations for the H-type gantry after Step 6: Nonlinear optim. + 

LS fit (Tdelay = 0.05 ms). 

𝑘 𝜔𝑘 (𝐻𝑧) 𝜁𝑘 𝑝𝑘 (𝐻𝑧) 

1 0.0007 0.0347 0.3303 

2 0.4879 0.1684 3.1947 

3 1.3975 0.0179 - 

4 25.4048 0.1098 - 

5 44.1560 0.0794 - 

6 53.2638 0.0226 - 
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Table A.4.2: Summary of the identified participation factors after Step 6: Nonlinear optim. + LS fit (Tdelay 

= 0.05 ms). 
In

p
u

t 
#
2

 R
ig

h
t-

h
an

d
 m

o
to

r 
 

𝛿
𝑘

 

- - - - - - - - - - - - - - - - - - - - - - - - 

𝛾 𝑘
 

3
.1

1
e+

8
 

-2
.2

0
6

e+
4
 

- - - - 

-3
.4

1
7

e+
8
 

1
.8

6
e+

4
 

- - - - 

5
.9

5
6

e+
7
 

-4
.0

8
4

e+
3
 

- - - - 

-5
.3

6
5

e+
8
 

2
.4

1
6

e+
4
 

- - - - 

𝛽
𝑘

 

-4
.7

7
8

e+
8
 

1
.6

9
6

e+
8
 

-2
.3

2
9

e+
6
 

0
.2

4
8
9
 

-0
.0

2
2
1
 

0
.0

1
3
9
 

5
.2

9
e+

8
 

-1
.9

0
3

e+
8
 

2
.6

8
e+

6
 

0
.2

8
7
9
 

0
.1

0
9
3
 

-0
.0

1
2
4
 

-9
.1

2
8

e+
7
 

3
.2

1
7

e+
7
 

-4
.4

8
8

e+
5
 

0
.1

4
1
3
 

0
.0

1
3
4
 

-0
.0

7
3
7
 

8
.3

4
6

e+
8
 

-3
.0

2
5

e+
8
 

4
.3

2
e+

6
 

0
.1

6
5
6
 

-0
.2

1
9
3
 

0
.0

2
4
9
 

𝛼
𝑘
 

7
.3

0
e+

8
 

9
.3

4
e+

7
 

-4
.9

9
e+

6
 

9
9

.5
6
4

3
 

-3
5

.4
4
2

3
 

-2
.9

1
4
8
 

-8
.2

3
5

e+
8
 

-8
.4

1
6

e+
7
 

3
.2

6
e+

6
 

7
2

.9
9
6

2
 

3
7

.7
1
8

2
 

2
.5

1
3
7
 

1
.3

6
8

e+
8
 

2
.1

2
e+

7
 

-1
.4

1
e+

6
 

-9
6

.6
5
8

3
 

1
4

6
.4

4
6
4
 

1
7

.6
7
5

9
 

-1
.3

1
6

e+
9
 

-1
.1

1
e+

8
 

2
.4

8
e+

6
 

-5
0

.5
6
2

1
 

-1
5
9

.4
9

5
8
 

-1
6

.8
8
8

4
 

In
p
u

t 
#
1

 L
ef

t-
h

an
d
 m

o
to

r 
 

𝛿
𝑘

 

- - - - - - - - - - - - - - - - - - - - - - - - 

𝛾 𝑘
 

-2
.8

6
8

e+
7
 

-3
.3

0
5

e+
3
 

- - - - 

-5
.7

9
3

e+
7
 

4
.5

1
1

e+
3
 

- - - - 

-5
.6

7
e+

8
 

3
.2

8
e+

4
 

- - - - 

4
.8

6
8

e+
8
 

-3
.3

6
6

e+
4
 

- - - - 

𝛽
𝑘

 

4
.7

7
4

e+
7
 

-1
.9

4
e+

7
 

3
.3

0
4
4

e+
5
 

0
.2

7
0
3
 

0
.0

9
4
7
 

-0
.0

0
4
0
 

8
.8

8
1

e+
7
 

-3
.1

3
1

e+
7
 

4
.2

5
6

e+
5
 

0
.3

1
9
6
 

-0
.0

3
6
4
 

0
.0

1
5
0
 

8
.7

8
3
6

e+
8
 

-3
.1

5
8

e+
8
 

4
.4

1
2

e+
6
 

0
.1

4
8
3
 

-0
.2

1
4
3
 

0
.0

6
4
1
 

-7
.5

0
7

e+
8
 

2
.6

7
6

e+
8
 

-3
.6

7
e+

6
 

0
.3

2
2
5
 

0
.1

0
9
2
 

-0
.0

5
3
8
 

𝛼
𝑘
 

-8
.9

0
3

e+
7
 

1
.1

5
3

e+
7
 

-1
.9

9
2

e+
6
 

1
2

9
.0

4
5
2
 

3
0

.7
4
9

7
 

4
.2

6
0
0
 

-1
.3

4
1

e+
8
 

-1
.9

3
7

e+
7
 

1
.1

7
4
5

e+
6
 

1
0

2
.5

5
6
5
 

-3
2

.1
9
4

6
 

-3
.3

6
6
6
 

-1
.3

7
e+

9
 

-1
.3

5
e+

8
 

4
.7

0
9
1

e+
6
 

-1
0
0

.3
4

3
1
 

-1
2
8

.8
7

8
2
 

-3
2

.7
8
2

4
 

1
.1

5
7
1

e+
9
 

1
.3

4
e+

8
 

-6
.1

9
1

e+
6
 

-8
1

.4
5
1

2
 

1
1

7
.3

7
4
2
 

8
.8

3
3
8
 

𝑘
 

1
 

2
 

3
 

4
 

5
 

6
 

1
 

2
 

3
 

4
 

5
 

6
 

1
 

2
 

3
 

4
 

5
 

6
 

1
 

2
 

3
 

4
 

5
 

6
 

In
p
u

t/
o
u

tp
u

t 
ch

an
n

el
s 

   

O
u

tp
u
t 

#
1
 

L
ef

t-
h

an
d
 r

o
ta

ry
 

en
co

d
er

 

   

O
u

tp
u
t 

#
2
 

R
ig

h
t-

h
an

d
 r

o
ta

ry
 

en
co

d
er

 

  

O
u

tp
u
t 

#
3
 

L
ef

t-
h

an
d
 l

in
ea

r 

en
co

d
er

 

  

O
u

tp
u
t 

#
4
 

R
ig

h
t-

h
an

d
 l

in
ea

r 

en
co

d
er

 

 



193 

 

In
p
u

t 
#
4

 R
ig

h
t-

h
an

d
 d

is
tu

rb
an

ce
  

𝛿
𝑘

 

- - - - - - - - - - - - - - - - - - - - - - - - 

𝛾 𝑘
 

-2
.5

8
3

e+
7
 

2
.6

7
7

e+
3
 

- - - - 

3
.7

9
5

e+
7
 

-1
.2

8
6

e+
3
 

- - - - 

-1
.1

7
2

e+
8
 

3
4

4
.4

7
5
3
 

- - - - 

8
.9

5
6

e+
8
 

-5
.6

0
8

e+
4
 

- - - - 

𝛽
𝑘

 

3
.9

2
e+

7
 

-1
.3

5
5

e+
7
 

1
.7

5
9

e+
5
 

0
.0

9
9
8
 

-0
.1

4
8
0
 

-0
.0

0
7
9
 

-5
.9

3
e+

7
 

2
.1

6
3

e+
7
 

-3
.1

3
e+

5
 

0
.0

6
7
6
 

0
.2

2
5
5
 

0
.0

0
3
8
 

1
.8

5
8

e+
8
 

-6
.9

6
1

e+
7
 

1
.0

5
1

e+
6
 

-0
.0

1
7
9
 

0
.6

1
1
1
  

0
.0

3
0
5
 

-1
.3

8
5

e+
9
 

4
.9

6
3

e+
8
 

-6
.8

7
3

e+
6
 

0
.0

4
8
6
 

-0
.6

3
7
1
 

-0
.0

2
0
1
 

𝛼
𝑘
 

-5
.7

5
4

e+
7
 

-1
.0

7
0
4

e+
7
 

7
.6

8
2

e+
5
 

5
.3

7
0
6
 

-9
.7

8
3
0
 

-1
.6

4
7
7
 

9
.4

3
8

e+
7
 

6
.6

2
7

e+
6
 

-3
.8

2
7

e+
4
 

1
4

.1
3
4

7
 

3
.4

6
1
4
 

2
.8

1
2
9
 

-3
.0

8
0

e+
8
 

-4
.9

4
6

e+
6
 

-1
.7

9
3

e+
6
 

-1
6

.7
0
2

3
 

1
0

3
.0

6
1
7
 

1
6

.4
8
0

0
 

2
.1

5
2

e+
9
 

2
.2

5
e+

8
 

-8
.8

2
9

e+
6
 

-2
1

.0
4
3

8
 

-3
4

.0
0
0

1
 

-1
1

.0
2
2

3
 

In
p
u

t 
#
3

 L
ef

t-
h

an
d
 d

is
tu

rb
an

ce
  

𝛿
𝑘

 

- - - - - - - - - - - - - - - - - - - - - - - - 

𝛾 𝑘
 

-1
.1

6
2

e+
7
 

-4
.5

2
9

e+
3
 

- - - - 

4
.8

5
9

e+
6
 

-1
.1

4
e+

3
 

- - - - 

-3
.8

2
5

e+
8
 

1
.9

7
8

e+
4
 

- - - - 

-2
.0

6
8

e+
8
 

1
.3

3
6

e+
4
 

- - - - 

𝛽
𝑘

 

2
.1

6
6

e+
7
 

-1
.0

2
4

e+
7
 

2
.0

3
4

e+
5
 

-0
.0

3
9
8
 

-0
.2

4
6
3
 

-0
.0

0
7
1
 

-7
.0

2
3

e+
6
 

2
.1

8
4

e+
6
 

-1
.9

0
e+

4
 

-0
.0

2
4
9
 

0
.1

0
2
8
 

0
.0

1
4
7
 

5
.9

4
5

e+
8
 

-2
.1

5
e+

8
 

3
.0

2
1

e+
6
 

0
.0

2
2
6
 

0
.9

2
8
3
 

-0
.0

0
2
1
 

3
.1

9
5

e+
8
 

-1
.1

4
4

e+
8
 

1
.5

7
9

e+
6
 

0
.0

0
1
5
 

-0
.4

5
2
5
 

-0
.0

4
8
0
 

𝛼
𝑘
 

-5
.0

2
1

e+
7
 

1
.7

9
e+

7
 

-2
.4

2
6

e+
6
 

-1
5

.1
6
3

5
 

-1
6

.8
8
0

8
 

0
.6

8
8
0
 

8
.9

2
6

e+
6
 

3
.7

3
e+

6
 

-3
.4

5
3

e+
5
 

1
.1

6
8
9
 

-8
.0

7
6
3
 

0
.2

2
8
1
 

-9
.3

7
6

e+
8
 

-7
.8

4
7

e+
7
 

1
.6

1
8

e+
6
 

2
6

.5
9
1

8
 

9
6

.8
9
2

5
 

1
.2

2
5
5
 

-4
.9

5
4

e+
8
 

-5
.3

1
1

e+
7
 

2
.1

7
2

e+
6
 

1
7

.4
5
9

4
 

-6
5

.9
7
6

0
 

-9
.0

0
1
0
 

𝑘
 

1
 

2
 

3
 

4
 

5
 

6
 

1
 

2
 

3
 

4
 

5
 

6
 

1
 

2
 

3
 

4
 

5
 

6
 

1
 

2
 

3
 

4
 

5
 

6
 

In
p
u

t/
o
u

tp
u

t 
ch

an
n

el
s 

   

O
u

tp
u
t 

#
1
 

L
ef

t-
h

an
d
 r

o
ta

ry
 

en
co

d
er

 

   

O
u

tp
u
t 

#
2
 

R
ig

h
t-

h
an

d
 r

o
ta

ry
 

en
co

d
er

 

  

O
u

tp
u
t 

#
3
 

L
ef

t-
h

an
d
 l

in
ea

r 

en
co

d
er

 

  

O
u

tp
u
t 

#
4
 

R
ig

h
t-

h
an

d
 l

in
ea

r 

en
co

d
er

 

 

 

 
 



194 

 

Appendix A.5  

Summary of the Identified Parameters for the Y-Axis of the H-Type Gantry (SIMO) 

 

Table A.5.1: Summary of identified pole locations for the H-type gantry y-axis after Step 6: Nonlinear 

optim. + LS. 

𝑘 𝜔𝑘 (𝐻𝑧) 𝜁𝑘 𝑝𝑘 (𝐻𝑧) 

1 5.573 0.0389 22.577 

2 11.944 0.0364 - 

3 16.789 0.0652 - 

4 18.812 0.0491 - 

5 21.278 0.01672 - 

6 22.697 0.01825 - 

7 42.229 0.11122 - 

8 57.29 0.066 - 

9 59.098 0.0097 - 

10 62.36 0.0373 - 

11 550.787 0.33 - 

12 2542.715 0.01 - 
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Table A.5.2: Summary of the identified participation factors after Step 6: Nonlinear optim. + LS fit (Tdelay 

= 1.6 ms). 

Input/output channels Input #1 Motor 

 

 

 

 

 

Output #1 

Rotary encoder 

 

 

𝑘 𝛼𝑘 𝛽𝑘 𝛾𝑘 𝛿𝑘 

1 468.7561 4.3683 -6.43 - 

2 17.9430 0.2216 - - 

3 -22.3687 -0.0432 - - 

4 120.0595 0.3452 - - 

5 6.1385 0.0536 - - 

6 7.0548 0.0923 - - 

7 5.4764 0.1607 - - 

8 51.5460 0.0316 - - 

9 14.0208 -0.0291 - - 

10 107.1990 0.0371 - - 

11 -3.9323e+07 7.6907e+03 - - 

12 8.3996e+08 -3.3000e+05 - - 

 

 

 

 

 

Output #2 

Linear encoder 

𝑘 𝛼𝑘 𝛽𝑘 𝛾𝑘 𝛿𝑘 

1 474.0822 4.6598 -5.14 - 

2 14.2697 0.2125 - - 

3 -18.9298 -0.0029 - - 

4 66.1065 0.3635 - - 

5 1.2997 0.0353 - - 

6 -1.7462 0.0441 - - 

7 -12.0812 -0.1446 - - 

8 -103.5899 0.0157 - - 

9 -22.2749 0.0549 - - 

10 -217.3243 -0.0309 - - 

11 2.0101e+07 -2.9745e+03 - - 

12 -4.2972e+08 1.4785e+05 - - 
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Appendix A.6  

Application of the Two-Stage Indirect Method for Open-Loop Frequency Response Estimation of 

the H-Type Gantry Machine (MIMO) 

 
Having known the stabilizing controller 𝐾, the frequency response of the closed-loop system was 

measured between the input control signal 𝑢 and disturbance excitation 𝑑 as shown in Figure A.6.1 a and 

b for the y (SISO) and x-axis (MIMO) of the gantry machine. Then the estimated open loop plants 𝐻(𝜔) 

were derived from the closed-loop frequency responses. The control input for the block diagrams in Figure 

A.6.1 a and b can be stated by: 

𝑈(𝜔) = 𝐷(𝜔) + 𝐾(𝜔)𝑅(𝜔) − 𝐾(𝜔)𝑁(𝜔) − 𝐾(𝜔)𝐻(𝜔)𝑈(𝜔) (A.6.1) 

In the above equation, 𝑈(𝜔), 𝐷(𝜔), 𝑅(𝜔), and 𝑁(𝜔) are the Fourier transformed signals of the control 

signal 𝑢(𝑡), disturbance input 𝑑(𝑡), command signal 𝑟(𝑡), and measurement noise 𝑛(𝑡). 

The cross power spectral density between the control input 𝑢 and excitation signal 𝑑 (𝑆𝑢𝑑(𝜔) =

𝑈(𝜔)𝐷∗(𝜔)) can be expressed by: 

𝑆𝑢𝑑(𝜔) = 𝑆𝑑𝑑(𝜔) + 𝐾(𝜔)𝑆𝑟𝑑(𝜔) − 𝐾(𝜔)𝑆𝑛𝑑(𝜔) − 𝐾(𝜔)𝐻(𝜔)𝑆𝑢𝑑(𝜔) 

𝑆𝑢𝑑(𝜔) = (𝐼 + 𝐾(𝜔)𝐻(𝜔))
−1𝑆𝑑𝑑(𝜔) + 𝐾(𝜔)(𝐼 + 𝐾(𝜔)𝐻(𝜔))

−1
(𝑆𝑟𝑑(𝜔)−𝑆𝑛𝑑(𝜔))⏟                            

𝑏𝑖𝑎𝑠

 
(A.6.2) 

where, 𝑆𝑑𝑑(𝜔) = 𝐷(𝜔)𝐷
∗(𝜔) is the auto power spectral density of the disturbance signal, 𝑆𝑟𝑑(𝜔) =

𝑅(𝜔)𝐷∗(𝜔), is the cross power spectral density between the reference command 𝑟 and disturbance input 

𝑑, 𝑆𝑛𝑑(𝜔) = 𝑁(𝜔)𝐷
∗(𝜔) is the cross power spectral density between the measurement noise and the 

disturbance input. The star sign denotes complex conjugate form.  

When the reference command 𝑟, the disturbance signal 𝑑, and the measurement noise 𝑛 are 

uncorrelated, the sensitivity is described by the following: 

𝑆(𝜔)  = (𝐼 + 𝐻(𝜔)𝐾(𝜔))−1 ≈ 𝑆𝑢𝑑(𝜔) 𝑆𝑑𝑑(𝜔)⁄  (A.6.3) 

Applying a white noise as the excitation signal 𝑑, and a constant velocity reference trajectory make 

𝑆𝑛𝑑(𝜔) = 0, and 𝑆𝑟𝑑(𝜔) = 0, respectively. This enables an unbiased estimation of the sensitivity function 

𝑆. Considering the closed-loop system’s response to input level disturbances of each axis as 𝑀(𝜔)  =

(𝐼 + 𝐻(𝜔)𝐾(𝜔))
−1
𝐻(𝜔) where 𝐾 is the feedback controller the open-loop plant can be obtained as: 
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𝐻(𝜔)  = 𝑀(𝜔)(𝐼 − 𝐾(𝜔)𝑀(𝜔))−1 (A.6.4) 

 

(a) 

 

(b) 

 

Figure A.6.1: Equivalent SISO (top) and MIMO (bottom) control scheme used in the closed-loop 

frequency response measurement of the gantry. 

For the x-axis of the gantry (MIMO case), the closed-loop measurements, the estimated open-loop 

frequency responses and the controller can be described by 𝑀 = [
𝑀11 𝑀12
𝑀21 𝑀22

], 𝐻 = [
𝐻11 𝐻12
𝐻21 𝐻22

], and 𝐾 =

[
𝐾11 𝐾12
𝐾21 𝐾22

], respectively. In the implementation, the controller cross terms (𝐾12 = 𝐾21 = 0) were set to 

zero to simplify the open-loop extraction of FRFs. To simplify the notation, 𝐾11 and 𝐾22 are denoted by 

𝐾1, and 𝐾2, respectively. The following state the individual SISO transfer functions: 

𝑀∆  = 𝑀11𝑀22   ,   𝑀12  = −𝑀21 (A.6.5) 
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𝐻11  =
𝐾2𝑀∆ −𝑀11

𝐾1𝑀11 +𝐾2𝑀22 − 𝐾1𝐾2𝑀∆ − 1
 

(A.6.6) 

𝐻21  =
−𝑀21

𝐾1𝑀11 + 𝐾2𝑀22 −𝐾1𝐾2𝑀∆ − 1
 

(A.6.7) 

𝐻12  =
−𝑀12

𝐾1𝑀11 +𝐾2𝑀22 − 𝐾1𝐾2𝑀∆ − 1
 

(A.6.8) 

𝐻22  =
𝐾1𝑀∆ −𝑀22

𝐾1𝑀11 + 𝐾2𝑀22 −𝐾1𝐾2𝑀∆ − 1
 

(A.6.9) 

 

 

Figure A.6.2: Rotary and linear encoder estimated open-loop frequency responses at different amplitude 

of excitation. 
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Appendix A.7 

Option Set for MATLAB’s tfest Function 

Note: Regardless of the choice of solver, for the data set used, when the stability bounds were not 

enforced on the pole locations, the output of the function "tfest" converged to the same solution each 

time. 

 

Figure A.7.1: Raw FRF data and fitted models using tfest(stability not enforced) function. 

 

Figure A.7.2: Pole zero map of the identified plant (unstable system) by tfest. 

Table A.7.1: Application of different tfest algorithms (MIMO case). 

Fitting algorithm RMS error (mm)/V Order 

tfest(iv, svf, gpmf, n4sid)  1.4290e-04 23 (2×2) 
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