Algorithm Substitution Attacks:
Detecting ASAs Using State Reset
and Making ASAs Asymmetric

by

Philip Hodges

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in
Combinatorics and Optimization

Waterloo, Ontario, Canada, 2021

(© Philip Hodges 2021

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Statement of Contributions

This thesis is based on research contained in the publication |]. This publication was
written primarily by Philip Hodges under the supervision of Douglas Stebila, who provided
invaluable insights and editorial contributions. Both are co-authors of the published paper.
Differences between | | and this thesis were authored solely by Philip Hodges, including
the abstract, parts of the introduction, parts of the preliminaries, Chapter 3, and some
additional pedagogical explanations throughout.

111

Abstract

The field of cryptography has made incredible progress in the last several decades.
With the formalization of security goals and the methods of provable security, we have
achieved many privacy and integrity guarantees in a great variety of situations. However, all
guarantees are limited by their assumptions on the model’s adversaries. Edward Snowden’s
revelations of the participation of the National Security Agency (NSA) in the subversion
of standardized cryptography have shown that powerful adversaries will not always act in
the way that common cryptographic models assume. As such, it is important to continue
to expand the capabilities of the adversaries in our models to match the capabilities and
intentions of real world adversaries, and to examine the consequences on the security of
our cryptography.

In this thesis, we study Algorithm Substitution Attacks (ASAs), which are one way to
model this increase in adversary capability. In an ASA, an algorithm in a cryptographic
scheme A is substituted for a subverted version. The goal of the adversary is to recover
a secret that will allow them to compromise the security of A, while requiring that the
attack is undetectable to the users of the scheme. This model was first formally described
by Bellare, Paterson, and Rogaway (Crypto 2014), and allows for the possibility of a wide
variety of cryptographic subversion techniques. Since their paper, many successful ASAs on
various cryptographic primitives and potential countermeasures have been demonstrated.

We will address several shortcomings in the existing literature. First, we formalize and
study the use of state resets to detect ASAs. While state resets have been considered
as a possible detection method since the first papers on ASAs, future works have only
informally reasoned about the effect of state resets on ASAs. We show that many published
ASAs that use state are detectable with simple practical methods relying on state resets.
Second, we add to the study of asymmetric ASAs, where the ability to recover secrets is
restricted to the attacker who implemented the ASA. We describe two asymmetric ASAs
on symmetric encryption based on modifications to previous ASAs. We also generalize
this result, allowing for any symmetric ASA (on any cryptographic scheme) satisfying
certain properties to be transformed into an asymmetric ASA. This work demonstrates
the broad application of the techniques first introduced by Bellare, Paterson, and Rogaway
(Crypto 2014) and Bellare, Jaeger, and Kane (CCS 2015) and reinforces the need for precise
definitions surrounding detectability of stateful ASAs.

v

Acknowledgements

First and foremost, I would like to thank my supervisor, Dr. Stebila, for his critical role
in my development as a researcher. I am eternally grateful for the time spent helping me
guide my thoughts and refine my ideas until I could produce work I was truly proud of.
Furthermore, the work in this thesis was directly inspired by research of Dr. Stebila’s. I
could not have asked for a better mentor during my degree.

I would also like to thank both Dr. Stebila and Dr. Menezes for their extensive involve-
ment in my growth as an educator. Both have given me many opportunities to engage with
pedagogy in a meaningful way, and shared their many thoughts on the subject with me
through innumerable discussions. Most importantly, they both lead by example by always
delivering courses created with the utmost care and effort. Thank you for everything you

do.

I would like to thank those involved in the generous scholarship programs that have sup-
ported me during this degree. This includes everyone involved in the administration and
selection committees of the RBC Graduate Scholarship in Cybersecurity and the Queen
Elizabeth II Graduate Scholarship in Science and Technology, inside and outside the Uni-
versity of Waterloo. Generous programs such as these make all the difference in the lives
of graduate students across Canada.

[would like to thank the entire Department of Combinatorics and Optimization in the
Faculty of Mathematics at the University of Waterloo. Every faculty member and member
of the administrative staff put a lot of work into the development of graduate students in
the department, and the spirit of collegiality this supports cannot be understated.

Dedicated to Rebecca

vi

Table of Contents

List of Figures ix
List of Tables xi
1 Introduction 1
1.1 State resets for detection of ASAs L. 4
1.2 Asymmetric ASAs 5
2 Preliminaries and Definitions 8
2.1 Games and algorithms oo 8
2.2 Cryptographic schemes Lo 9
2.3 Pseudo-random functions and random oracles 9
3 Algorithm Substitution Attacks 12
3.1 ASAsin prior works 14
3.2 Countermeasures e 16
4 Using State Reset to Detect ASAs 18
4.1 Detection of ASAs using state reset 20

4.1.1 Detecting Ateniese, Magri, and Venturi’s ASA using simple state reset 21

4.1.2 Detecting Baek, Susilo, Kim, and Chow’s ASA using sophisticated
state reset Lo 22

vii

4.1.3 Detecting Chen, Huang, and Yung’s ASA using state resets
4.2 Undetectability of Bellare, Paterson, and Rogaway’s ASA

4.3 DISCUSSION

5 A Type 1 Asymmetric ASA on Symmetric Encryption
5.1 Undetectability of our type 1 asymmetric ASA
5.2 Key recovery of our type 1 asymmetric ASA

5.2.1 Key recovery in the presence of state resets

6 A Type 2 Asymmetric ASA on Symmetric Encryption
6.1 Undetectability of our type 2 asymmetric ASA
6.2 Security of our type 2 asymmetric ASAo
6.3 Key recovery of our type 2 asymmetric ASA

6.3.1 Key recovery in the presence of state resets

7 Generalized Modifications to Obtain Asymmetric ASAs
7.1 Making symmetric flexible ASAs asymmetric

8 Discussion and Future Work

References

viil

28
30
34
35

37
40
43
46
50

51
54

61

63

List of Figures

2.1

3.1
3.2

4.1
4.2
4.3
4.4

5.1

5.2
2.3
5.4

6.1

6.2
6.3
6.4
6.5

The PRF security game,

The basic detectability game
ASAs of [BPRI4] and [BJKIS] . . oo o oo

The augmented and non-augmented state reset detection games
Relationships between detectability definitions in several works
ASAs for analysis in Chapter 4

ASA on symmetric encryption by Bellare, Paterson, and Rogaway [BPR14]
and game H, for proof of its undetectability in Theorem 4.1

The ciphertext indistinguishability-from-random game for a public-key en-
cryption scheme

type 1 asymmetric ASA on symmetric encryption
Games G through G, for the proof of Theorem 5.1
Adversary B for the proof of Theorem 5.1

The IND-CPA games for a symmetric encryption scheme SE and a public-
key encryption scheme PKE L.

type 2 asymmetric ASA on symmetric encryption L.
Games I; and I, for the proof of Theorem 6.1
The IND-CPA’ game for asymmetric ASA ASub2

Games Jy, J1, and J, and adversaries By and Bs for proof of Theorem 6.2 .

X

6.6
6.7

7.1

7.2

7.3
7.4

Simulation for improved practical key recovery for a randomized ASA . . .

Key recovery parameter tradeoff

The regular and augmented state reset detection games for flexible ASAs

and the game ASRDETS,

Definitions of transformation I'y and I'y on flexible symmetric ASAs to ob-
tain flexible asymmetric ASAs

Adversary D; for the proof of Theorem 7.1
Adversaries Uy, Dy, and V, for the proof of Theorem 7.2

List of Tables

1.1 Comparison of properties of various ASAs

X1

Chapter 1

Introduction

In cryptography, one of the primary security models we use for reasoning about confiden-
tiality and privacy involves three parties: Alice, Bob, and Eve. Alice and Bob wish to
send messages between the two of them. Since their messages are of a private nature, they
encrypt them in some way, so that anyone reading the messages is unable to determine
what they mean. To illustrate this, we consider the eavesdropper Eve. If Eve is unable
to determine significant information about the messages, we say the encryption scheme is
secure. This model is very flexible, and a variety of restrictions and capabilities can be
given to the parties involved. Using this model, we can follow the methodology of provable
security in cryptography to come up with very strong guarantees on the privacy afforded
by our encryption scheme, subject to the assumptions we make along the way.

It is important to critically examine all of the assumptions we make when proving
cryptography secure in a given model, and we will consider one in particular. An ever-
present assumption when applying cryptographic results to real world situations is that
the model accurately reflects the real world situation in which we are implementing our
cryptography. In particular, the capabilities and limitations we give the adversary Eve
in our model need to accurately reflect the capabilities and intentions of our expected
adversaries in the real world. This can easily become a cat-and-mouse game: if an adversary
is effectively eavesdropping using a simple technique, which we then mitigate through
implementation of a new scheme with a more robust security analysis that precludes that
simple technique, will the adversary simply admit defeat? Or will they choose a new
technique outside of the model in which we have proved security?

A particular way that an adversary can work outside of most classical security models is
by undermining the cryptographic schemes being used. If Alice and Bob believe that they

are using a secure encryption scheme, but in reality they are not, then Eve may have an
advantage. If Eve is able to maliciously influence Alice and Bob to use an insecure scheme
without their knowledge, we would call this undermining cryptography. There are many
ways in which this could occur, including the introduction of backdoors | , |,
for example. More importantly, there are several instances where the undermining of
cryptography may have already occurred. After Snowden’s revelations of the activities
of the National Security Agency (NSA) of the United States in 2013 |], we know
that the NSA has worked to undermine cryptography in the past. This includes the
potential deliberate weakening of DES keys to only 56 bits at the time of standardization
[| and the potential that there was a backdoor implemented in the pseudorandom bit
generator Dual EC_DRBG | |, which was standardized in 2006 despite knowledge
of the possibility of the backdoor at the time.

In the presence of adversaries that are willing to work outside of our cryptographic
security model by undermining our cryptographic schemes (and are capable of doing so),
what are we to do? The ideal solution would be to include such subversion techniques
in our model, and re-develop schemes that are once again secure in this model. One way
to model such subversion is through Algorithm Substitution Attacks (ASAs). ASAs were
first presented by Bellare, Paterson, and Rogaway | |, as a specific case of a class
of attacks known as kleptography | , , , , |. In an ASA on a
symmetric encryption scheme, an attacker has the following goal: replace an encryption
function with a subverted version, such that, upon observing ciphertexts, the attacker is
able to recover the secret key while the user is unable to detect the difference between the
subverted and original encryption algorithms. This model captures any method that an
attacker might employ to undermine cryptography by modifying the algorithms used by
the users.

In this thesis, we continue the study of ASAs. We contribute two main improvements to
the existing literature. First, we formalize a possible method for detecting ASAs involving
the manipulation of the state maintained by the subverted algorithm. We describe a model
that allows a user who is trying to detect the presence of the subversion to force re-use
of the algorithm’s maintained state, as could happen when the algorithm is running on
a virtual machine. This changes the detectability analysis of several published ASAs,
rendering them easily detectable. Second, we describe two modifications to existing ASAs
that turn them into asymmetric ASAs, which are more resilient to exploitation by another
party who reverse engineers the subverted implementation.

Work prior to |]. The study of subverting a cryptographic algorithm by chang-
ing the implementation to differ from the specification is not new. Termed kleptography,

research in this area was initiated by Young and Yung | |, who did several follow-

up works | , ,]. Their work was inspired by subliminal channels
in public-key cryptosystems [,], which they then showed could create serious
problems. Several authors have studied backdoors in symmetric encryption | ,].
Goh, Boneh, Pinkas, and Golle |] studied implementations of TLS/SSL and SSH

that provide key recovery capabilities. Schneier, Fredrikson, Kohno, and Ristenpart pub-
lished a survey of cryptographic subversion in general |].

Algorithm substitution attacks (ASAs). Suppose a user U is using a symmetric
encryption scheme SE for encryption of their communications. An attacker (sometimes
referred to as Big Brother) is able to exchange the encryption algorithm SE.Enc for an
alternative algorithm Sub.Enc, which we call the subverted algorithm. While using the
algorithm Sub.Enc, U will send a set of ciphertexts. From observation of these ciphertexts,
the attacker wants to be able to recover the secret key k used for encryption. If this was
the only requirement, an ASA would be trivial: the subverted encryption algorithm could
simply output the secret key on any input. However, the attacker would like continuous
exploitation of the system, and so wishes for U to be unaware of the subversion. For
this we require an ASA to be undetectable, meaning that ¢ should not be able to (with
black box access) distinguish between Sub.Enc and SE.Enc. A minimum requirement for
undetectability would be that all (or all but a negligible fraction) of the possible ciphertexts
correctly decrypt, but this alone would not be enough. The formal requirement is captured
in a detectability game that the user U plays.

A variety of techniques can be used to create an ASA, but in general an ASA relies
on the attacker sharing a key k with the subverted algorithm, and requires that SE.Enc is
randomized. Bellare, Paterson, and Rogaway |], in their seminal paper, presented
a technique involving acceptance-rejection on ciphertexts generated by the unsubverted
encryption algorithm. A pseudorandom function is evaluated on k and a ciphertext, giving
a single bit b. If the first bit of secret key is equal to b, then that ciphertext is returned;
otherwise, a new one is computed. Since the attacker knows k, he can recover the first bit
of the secret key k from the ciphertext. Repeating this for each position within the secret
key (which the ASA maintains as state) allows for recovery of the whole key. Since k is
unknown to U, the ciphertexts still appear randomly generated. Hence both key recovery
and undetectability are achieved. | | called this the “biased-ciphertext attack.”

We will discuss other developments in the history of ASAs in Chapter 3.

1.1 State resets for detection of ASAs

In the literature, there has been a tendency towards ensuring that new ASAs are stateless,
meaning the subverted algorithm does not depend on any additional data saved between
executions. | |, who coined the term ASA, noted that the biased-ciphertext attack
they introduced was stateful. They said that, since the attack is stateful, “a reset of
the state will lead to increased detection ability for an observer, but ... this increase
does not appear to be enough to lead to actual detection.” Improving on the results
of | 1, [| presented a stateless version of the biased-ciphertext attack. They
seem to interpret some of the conclusions from | | differently, saying, with reference
to the previous work, “a state reset, as can happen with a reboot or cloning to create
a virtual machine, leads, in their attack, to detection.” They then define a notion of
undetectability that necessitates statelessness, and call this strong undetectability. As a
result of the interpretations and emphasis of | |, as well as the fact that stateless
subversions have proven more difficult to develop, later work has often acknowledged that
stateless schemes are surely preferable. Authors detailing stateful subversions have spent
time justifying that the amount of state that they are maintaining is small, and so more
palatable for the adversary to include | ,].

This begs a question: how does an adversary against the undetectability of a subversion
use state resets to detect the subversion? To our knowledge, this question has not been
addressed fully in the literature. The closest example is due to Baek, Susilo, Kim, and
Chow | |, who included a simple state reset oracle in their undetectability game,
which resets the state to the initial null value. However, as noted by [|, we also
wish to consider what happens when the algorithm is running on a virtual machine, where
the machine state can be cloned and re-run from the same intermediate point, potentially
many times. The simple state reset oracle is therefore insufficient.

Contributions. We present a stronger state reset oracle than that used by |],
which is able to reset the state of the ASA to any state previously used in the detection
game. Under this new definition, we show that ASAs given by Ateniese, Magri, and
Venturi | | (on signatures), Baek et al. |] (on DSA signatures), and Chen,
Huang, and Yung | | (on key exchange) are all easily detectable. On the other hand,
we show that original biased-ciphertext ASA by | | is actually just as undetectable
as the “upgraded”, stateless version given by |]. Our analysis of the ASA from
[| also uses the same game-playing proof framework as used in [], avoiding
the “coin-injective” assumption on the encryption scheme that was necessary in |].
We present these results in Chapter 4.

1.2 Asymmetric ASAs

When introducing ASAs, | | also considered the possibility of an asymmetric ASA on
symmetric encryption. An asymmetric ASA is one where the subverted algorithm uses an
embedded key that is different from the extraction key used for key recovery; for example,
the two keys could be a public-private key pair. The motivation for this comes from noticing
that the embedded subversion key is not particularly protected. Instead, it is embedded in,
for example, malware, distributed to the target. While we assume in this model that the
target themselves will not scrutinize the code they are using, some third party might find
out about the subversion, and reverse engineer the software to learn the embedded key. The
subverter would have a strong incentive to prevent a third party from obtaining the same
key recovery capabilities as the subverter. If the embedded key is presumed to be public
knowledge, and the ASA remains undetectable, then the subverter is assured that they are
the only one capable of exploiting the ASA. An example of a backdoor that is secure against
third parties is the suspected backdoor in the Dual EC_DRBG bit generator |] (if its
presence could be confirmed). In an appendix, | | give the necessary definitional
extensions for asymmetric ASAs, and leave the development of an asymmetric ASA as an
open problem. Later works considered asymmetric ASAs in certain specific contexts, like
on signature schemes and KEMs that satisfy certain conditions | :].

Contributions. In this thesis, we will consider two different kinds of asymmetric ASAs.
In a type 1 asymmetric ASA, the subversion is required to be undetectable to an adver-
sary in possession of the embedded subversion key; we call this augmented undetectability.
This is the simplest way of thinking about an asymmetric ASA, and the definition that
has been used in other literature. In a type 2 asymmetric ASA, we will instead require
that the subversion is only undetectable to an adversary who does not know the embed-
ded subversion key, as in the case of a symmetric ASA, but we also require that a type 2
asymmetric ASA is secure against exploitation (in the sense that the attacker exploits the
ASA) by an adversary in possession of the embedded subversion key. This less restrictive
requirement is a reflection of the fact that the main goals for an asymmetric ASA (be-
sides recovering the targeted information) are as follows: to ensure that the user of the
cryptographic scheme (or some entity with the decision-making authority to halt usage of
the cryptographic scheme) being attacked is unaware of the attack, and to ensure that no
other entity is able to exploit the ASA to recover the targeted information. While this is
accomplished by a type 1 asymmetric ASA (indeed, a type 1 ASA is also a type 2 ASA),
our stipulated requirements for a type 2 asymmetric ASA will also suffice. The relaxed
requirements allow for more flexibility when designing an ASA, and allows us to create an

ASA whose executions take less time.

In Chapter 5, we modify the ASA of |] to obtain a type 1 asymmetric ASA on
symmetric encryption, that is, an ASA undetectable by an adversary who is in possession of
the embedded subversion key and is able to use state resets on the encryption scheme. This
provides an answer to their open problem explicitly in the case of symmetric encryption.
In Chapter 6 we modify the ASA of | | (which is itself a modification of the ASA
from |]) to obtain a type 2 asymmetric ASA on symmetric encryption. To show
the advantages of this ASA, we do a thorough analysis of the parameters and techniques
the attacker can use in practice to recover the key. We show that our type 2 asymmetric
ASA can enable key recovery in practice with a subverted encryption function which runs
in less time, making it, in theory, less susceptible to detection by timing.

In order to give a better idea of how these new ASAs compare to other published ASAs,
we give a comparison of some basic properties in Table 1.1.

Finally, in Chapter 7 we give a generalization of the modifications we made to the
above ASAs, in order to apply our results to other cryptographic primitives and security
notions. Our results allow for a large class of ASAs to be modified to create type 1 and
type 2 asymmetric ASAs. These results apply to any cryptographic primitive, and in the
case of the type 2 modification, any game-based notion of security. These results will make
it easier for future researchers to evaluate whether their symmetric ASAs can be modified
to create asymmetric ASAs.

vz W “ 7 O’/f O”»
6,4
“o “e
7 4 A e <

Asymmetric O O ° ° ° °
No state reset
Undetectable vs. regular adversary ° ° [° ° °
Undetectable vs. augmented adversary O O ° ° ° o
Secure vs. augmented adversary O O ° ° ° °
State reset
Undetectable vs. regular adversary (SRDET) ° ° o O ° °
Undetectable vs. augmented adversary (ASRDET) o o ¢ o ° o
Secure vs. augmented adversary O O ° ° ° °
Intercepted transmissions needed 128 =~ 700 3 2 400 = 2600
Runtime multiplier >7 >2 =1 =1 >9 > 2

Table 1.1: Comparison of properties of various ASAs. An augmented adversary refers to
an adversary in possession of the embedded subversion key. If applicable, |k| = 128.

Chapter 2

Preliminaries and Definitions

2.1 Games and algorithms

Proofs in this work will use the cryptographic game-playing framework |]. In these
games, assignment is denoted by <—, while random sampling is denoted by <—s. We write
y <—s A(x) to denote running the probabilistic algorithm A on input z, and assigning the
result to y. If we wish to specify the random coins r used in a randomized algorithm, we
will write y <— A(z; 7). We will also write A = y to indicate that A returns y.

We will use min-entropy as a measure of the randomness of an algorithm. Define na
according to
27" = max (Prly < A(x;r)]) ,
x7y
where the probability is taken over the choice of coins r. The min-entropy of A is na. A
null value is denoted L. If G is a game, then Pr[G] indicates the probability that G returns
true.

We will denote game adversaries by script letters (e.g. A). An adversary A is simply
an algorithm. The notation A® indicates that the adversary A has access to the oracle
O for use as a subroutine. The running time of A is the worst-case execution time of A
including the time it takes to execute any subroutines.

The game-playing framework was nicely formalized by Bellare and Rogaway | |.
The framework enables more structured methods for cryptographic proofs, as it easily
allows for incremental steps and standardized techniques. The primary tool is that of
a “game transition”, where we bound the difference between the probabilities that two

games return true. We use many game transitions to create a chain of games between two
games (representing two security notions of interest), and obtain a total bound between
the success probabilities of the two games at the end of the chain. We will use several
common techniques for game transitions throughout this work, and introduce the details
as required.

2.2 Cryptographic schemes

A cryptographic scheme A is a set of algorithms A.Algy, ..., A.Alg,. We will be using sev-
eral cryptographic schemes in this thesis, including symmetric encryption and public-key
encryption. We introduce these here, and other schemes as needed.

A symmetric encryption scheme SE has three algorithms: SE.KeyGen, SE.Enc, and
SE.Dec. SE.KeyGen randomly selects a single secret key k of length SE.klen from {0, 1}5E-Keen,
SE.Enc is a randomized algorithm with coins 7 € {0, 1}°E" and takes a key and a plaintext
m € {0,1}°E™en and produces a ciphertext ¢ € {0,1}°<e" SE Dec is a deterministic
algorithm, takes a key and a ciphertext, and returns a plaintext or L, indicating an error.

A public-key (or asymmetric) encryption scheme PKE is similarly composed of three al-
gorithms: PKE.KeyGen, PKE.Enc, and PKE.Dec. PKE.KeyGen randomly generates a secret
key sk and a public key pk. PKE.Enc is a randomized algorithm with coins r € {0, 1}PKErlen
and takes a public key and a plaintext m € {0,1}PKEmen and produces a ciphertext
c € {0,1}PKEden (mote that we will consider only fixed length ciphertexts for public-key
schemes). PKE.Dec is a deterministic algorithm, takes a secret key and a ciphertext, and
returns a plaintext or L, indicating an error.

We say that a public-key encryption scheme is d-correct if, for all sk, pk generated from
PKE.KeyGen and m,

Pr[PKE.Dec(sk, PKE.Enc(pk,m)) =m] >4 ,

where the probability is taken over the choice of coins r for the encryption function. We
could define an analogous property for symmetric encryption, but we will mostly assume
that such a 0 value will always be 1 unless otherwise stated.

2.3 Pseudo-random functions and random oracles

In this work, we will make use of two standard ways of talking about functions whose
output is hard to predict on new inputs. The first is the notion of a pseudo-random

9

PRF¢(F) Ok (z)

1. k+sKg 1. if b =0 then w «+ F(k,x)
2. X<« 0 2. if b=1 then
3. b+s{0,1} 3. if ¢ X then
4. b s FOF 4. Wy 8 W
5. return b=1b 5. X XU {z}
6. return w,

Figure 2.1: The PRF security game for PRF F and adversary F.

function (PRF). Let F : K¢ x {0,1}* — W be a function, for some output set W and key
space Kg. Let the PRF game for F be as defined in Figure 2.1. For an adversary F in the
PRF game for F, we define the advantage of F as

Advi™ (F) = |Pr[PRFg(F)] — %

Note that we can also write the advantage as follows:

1 1
Pr[PRFg(F)] — 5‘ =|Pr[F=1landb=1]+Pr[F=0and b=0] — 5‘

1 1 1
- —Pr[}“:>1|b:1]+—Pr[}":>0|b:O]——‘

2 2 2

1 11 1
- §Pr[]-":>1|b:1]+§—§Pr[}":>1|b:0]—§’

1
= S [Pr[F=1]b=1]=Pr[F =1b=0]|.

We will use the equivalence of the above two forms in a variety of contexts. In particular,
for game transitions, it will be useful to recognize this equivalence when the b = 0 and
b = 1 cases of the PRF game define two other different games that F plays. Then the
difference between the success probability of the two games can be seen with the above
relation to be the advantage of F at the PRF game.

The second way to talk about functions with unpredictable output is by using the
random oracle model. This model is useful for situations in which there is no secret input
to the function F, so the game in Figure 2.1 is no longer relevant. In this model, we
replace F by a lazily-sampled random function, and provide oracle access to this function
to all game adversaries. A lazily-sampled random function will return random outputs on

10

previously-unseen queries, and outputs consistent with previous outputs for any previously-
seen queries. (In the case of b = 1 in the PRF game, the oracle O behaves as a lazily-
sampled random function.)

11

Chapter 3

Algorithm Substitution Attacks

In this chapter, we will introduce ASAs in detail. In particular, we will detail the common
notation that we use to describe ASAs, formalize the undetectability requirement most
often considered, and describe some of the history of ASAs that have been published so
far.

Let A be a cryptographic scheme composed of algorithms A.Algy, ..., A.Alg,. An ASA
on A, denoted Sub (for subversion), specifies the following:

e a subversion-key generation function Sub.KeyGen,
e an index A for the component algorithm of A to be subverted, and

e a subverted algorithm Sub.Alg, to replace the chosen algorithm A.Alg,.

The key generation algorithm Sub.KeyGen takes no arguments and returns a pair of
keys ek and zk (for embedded key and extraction key). The subverted algorithm Sub.Alg,
has the same input space as A.Alg,, represented by a tuple x, plus an embedded key ek, and
a state variable 7 (potentially L, for stateless ASAs); Sub.Alg, has the same output space
as N.Alg, plus the updated state variable 7. For example, if A is a symmetric encryption
scheme SE and A.Alg, is SE.Enc, then we have (¢, 7’) <—s Sub.Enc(k, m, ek, 7).!

The idea here is that the algorithm Sub.Alg, is chosen by an adversary A who is
trying to subvert the security of scheme A. A user U of A will unknowingly use Sub.Alg,,

For clarity we make a slight abuse of notation here, writing Sub.Enc(k,m,ek,T) instead of
Sub.Enc(z, ek, T) for z = (k,m).

12

DETsub(Z/[) OA|g>\ (.73)

1. k< Sub.KeyGen() 1. if b =0 then

2. T+ L 2 y s A.Alg, (z)

3. b+s{0,1} 3. if b=1 then

4. b «—sUONer 4 (y,T) 8 Sub.Alg, (x, k, T)
5. return b=1b 5. returny

Figure 3.1: The basic detectability game for ASA Sub and detector U.

which has the key ek embedded, in place of A.Alg,. The adversary A will observe U’s
communication with other users of the scheme A, and violate the security of A by making
use of the extraction key xk. Depending on the instantiation, A’s specific attack goal can
vary, although a common one is recovery of whatever secret key is used by U for Sub.Alg,.

Note that we consider here only the subversion of a single algorithm of the scheme A.
Other works have considered the case of total subversion (any or all of the algorithms are
substituted), mostly in the context of countermeasures | : :].

The two keys used by A can be the same, vk = ek. In this case, we may denote
them simply by k, and we refer to this type of ASA as a symmetric ASA. In other cases,
(zk, ek) will be a private key-public key pair, reflecting the fact that embedding the key
ek into an Sub.Alg, may lead to its recovery by some other party. We call such an ASA an
asymmetric ASA. Note that an asymmetric ASA can be used to attack a symmetric-key
primitive N (e.g. symmetric encryption), and vice versa. We will discuss the advantages
and disadvantages of an asymmetric ASA in Chapter 5.

The attacker A wants to complete their attack in a way that is not detectable by /. In
order to measure detectability, we allow U blackbox access to the algorithm Sub.Alg, (with
the embedded key and state implicitly provided), and calculate how well ¢ can differentiate
Sub.Alg, from A.Alg,. While we will formalize a new specific notion of undetectability in
Chapter 4, it will be useful to specify the undetectability notion that most past works
have used. For a cryptographic scheme A and an ASA Sub, the user U plays the game in
Figure 3.1. This is a distinguishability game, where U is asked to determine whether the
oracle it is using is returning values according to the subverted algorithm Sub.Alg, or the
original algorithm A.Alg,. In a sense, this is the “base” notion of undetectability, which can
be modified to suit specific needs. Importantly, this is equivalent to the detectability game
used by |]. This game is written with & = ek = xk, so considering only symmetric

ASAs for now.

13

Sub.Enc(k,m, k,) Sub.Enc(k,m, k,7)
1. ifr=1then7+0 1. 7«0
2. else 7+ 7+ 1 mod |k 2. do
3. j+0 3. jej+1
4. do 4. 743 {0,1)5E e
5 Jj<J+1 5. ¢ < SE.Enc(k,m;T)
6. r s {07 1}SE.rIen 6. (’LU,O') - F(I_C,C)
7 ¢ < SE.Enc(k,m;T) 7. until k[c]=wor j=s
8 w <+ F(k, c) 8. return (¢, 7)
9. untilk[r] =wor j=s
10. return (c,7) (b) ASA of [}
(a) ASA of |].
Figure 3.2: ASAs of | | and |].

For an adversary U/ in the detectability game, we define the advantage of U as

1
AdvERY (U) = |Pr[DETsy,(U)] — 3

Informally, we say that Sub is undetectable if the corresponding advantage is small for any
efficient adversary U. Otherwise, it is detectable, and an adversary U with large advantage
represents a strategy for detection.

3.1 ASAs in prior works

Many prior works have included successful ASAs on various cryptographic primitives. As
we have previously mentioned, the first ASA was included in |]. This is an ASA
targeting a symmetric encryption scheme A = SE, with SE.Enc as A.Alg,. While their
description differs slightly, their ASA is essentially equivalent to the ASA in Figure 3.2a.
In this ASA, F is a PRF which takes a key and a ciphertext of SE.Enc and returns a single
bit, and s is a predetermined parameter of the subversion which bounds the number of
loops the ASA will execute before returning a value.

This ASA targets recovery of the secret key k being used in the encryption scheme SE.
The subverted encryption algorithm encodes information about k£ into the ciphertexts c
it returns. The attacker will observe many ciphertexts, compute the 7* key bit of k as
k[7] = F(k,c) using ciphertext ¢, eventually fully reconstructing k. However, the ASA is
undetectable to U in the game Figure 3.1, since U does not know k, and hence the values w

14

generated appear random, and thus so do the ciphertexts c¢. In [|, the authors give
a proof relying on a property of the encryption scheme called “coin-injectivity” to prove
undetectability. Future works avoid this, relying only on the min-entropy of the scheme
instead. A proof of undetectability of this ASA using a stronger undetectability game is
given in Chapter 4.

After | |, Degabriele, Farshim, and Poettering | | gave some proposed re-
finements to their definitions. In particular, they relaxed a requirement that all ciphertexts
generated by the subverted encryption algorithm must decrypt correctly for the scheme to
be undetectable. Instead, they only required that at most a negligible proportion decrypt
incorrectly. They then introduced the notion of an “input-triggered” ASA, where a certain
input message would lead to leaking of the secret key k without regard for correct decrypt-
ability. This requires influence over the distribution of encrypted messages in order to
enable key recovery, in contrast to the ASA of | | that could recover keys no matter
the message distribution?. In this thesis, we will follow the convention of |] that the
attacker has no control over the distribution of the input to Sub.Alg,.

Bellare, Jaeger, and Kane |] improved on the results of |], notably in-
troducing a stateless version of the biased-ciphertext attack. In this attack, instead of
keeping an index as state, it is generated pseudorandomly along with the bit b, rendering
the ASA stateless. Their ASA is shown in Figure 3.2b. This ASA recovers keys and is
undetectable for much the same reasons as the ASA of | |, although as mentioned
before, | | provided an improved analysis using game-playing proofs that avoided
the coin-injectivity assumption. We adopt many of the conventions and techniques that
[| used in this work, including the description of the ASA of | | and our later
proof of its undetectability in Chapter 4.

One notable change to the detectability game made by | | was the handling of the
state 7. In order to avoid potential detection techniques caused by resets of the state, the
detectability game was modified to provide 7 directly to U on invocation of the encryption
oracle. This meant that any ASA that made use of state would immediately be detectable,
as U would see that 7 # 1. We will discuss this further in Chapter 4.

Besides symmetric encryption, ASAs on other cryptographic primitives have also been
studied. Several authors have published ASAs on signature schemes [, ,
|. In particular, Ateniese, Magri, and Venturi | | provided an ASA very

similar to that of [], as well as a new ASA on “coin-extractable” signatures. We will

2Some later works, such as [], include an arbitrary message distribution M as part of the re-
quirements for successful key recovery.

15

study the latter ASA in Section 4.1.1. Baek, Susilo, Kim, and Chow | | developed
an ASA specifically on DSA signatures, which we will study in Section 4.1.2.

Armour and Poettering explored ASAs on MAC schemes and the decryption side of
authenticated encryption [:]. These works notably considered subversion of
the receiver in a cryptographic scheme instead of the sender, which may be relevant to
situations where the sender holds no secret information, such as in public-key encryption
and key encapsulation. Chen, Huang, and Yung | | presented an ASA against KEMs
satisfying certain decomposition properties; we will study this ASA in Section 4.1.3. More
recently, Berndt et al. studied the implementation of ASAs on the TLS, WireGuard, and
Signal protocols [], rather than ASAs directly on the cryptographic primitives
themselves.

3.2 Countermeasures

Several solutions have already been proposed for deterring ASAs. Initial works | ,

,] indicated that deterministic schemes would thwart their ASAs, and showed
that the property of unique ciphertexts (there exists only one ciphertext that will decrypt
to a given plaintext, a subset of deterministic schemes) was sufficient to render encryption
schemes unsubvertible. Still, there are very good reasons to prefer randomized encryption
schemes over deterministic ones.

The concept of a reverse firewall was applied to signature schemes by |]. In
this context, a trusted server would monitor outgoing signatures, and re-randomize them
to ensure they had not been subverted. This re-randomizability is a specific property of
certain signature schemes.

Several methods for immunizing cryptographic schemes have been explored, notably the
“split-program” methodology | ,)], sometimes called cliptography.
In these works, the cryptographic scheme is no longer considered a blackbox, and instead is
split up into randomness generation and deterministic components. When more than one
randomness component is used, and all the components are able to be tested for subversion
independently, any ASA can be fully detected. This required that the composition of the
component algorithms itself was unsubvertible.

Fischlin and Mazaheri | | introduced the notion of a self-guarding cryptographic
scheme. These schemes have mechanisms to ensure that leakage of information is not
possible for a limited time, given that the scheme has been running unsubverted (perhaps
offline) for some period of time. They provide several primitives that satisfy this property.

16

All of these solutions assume some extra trusted component (for example, a trusted
firewall system, a period of time where the scheme is not subverted, or an unsubvertable al-
gorithm composition step) and/or a non-blackbox component to the cryptographic scheme
in question (in the case of the split-program methodology). Each solution is able to pro-
duce significant guarantees on the scheme’s resistance to ASAs, but may be difficult to
implement in practice.

17

Chapter 4

Using State Reset to Detect ASAs

State reset detection techniques against the undetectability of stateful ASAs have been

acknowledged since the work of Bellare, Paterson, and Rogaway | |, but apart from
Baek, Susilo, Kim, and Chow |], the formalization of the state reset capabilities
of a user U has been ignored. In their paper, | | capture the idea of state reset

with the ability of U to reset state to a null value. This is akin to wiping the memory
of the program running a cryptographic algorithm, or rebooting the machine. We wish,
however, to capture a stronger notion of state reset. For example, when running on a
virtual machine, instead of being wiped, memory could be cloned during imaging, allowing
a user to force a program to run from the same point of execution multiple times. This
would allow a user to reset the state of a subverted algorithm to any previously used state.

In order to capture this stronger notion of state reset, we will modify the detectability
game of Figure 3.1. We consider the general case where zk and ek are not necessarilly
equal, including the possibility of asymmetric ASAs. We define two similar games: an
augmented and a non-augmented (or regular) state reset detection game. These two games
differ only in that, in the augmented game, U is given the embedded key ek. Hence, the
augmented game is intended primarily for asymmetric ASAs, and the non-augmented game
is intended for symmetric ASAs (this is not an absolute requirement, and we will consider
regular detectability of asymmetric ASAs in Chapter 6). This captures the difference
between, for example, a nation state reverse-engineering one implementation to recover the
embedded key, and a casual end-user doing black-box detection. The state reset detection
games (ASRDETg,, () and SRDETg,, () respectively) are given in Figure 4.1, for some
cryptographic scheme A and ASA Sub. All state variables used by the subverted algorithm
are saved between oracle calls, and U has access to an oracle Reset which allows it to reset
state to any previously saved state (but does not give U the contents of the state).

18

ASRDETs,(A) Oapg, (2)

1. (zk,ek) <3 Sub.KeyGen() 1. if b =0 then
2. i+ 1 2 y s A.Alg, ()
3. 170+ L 3. if b=1 then
4. b+s{0,1} 4. (y, 75) <8 Sub.Alg, (z, ek, 7;—1)
5 b s MOA\g/\,Reset (ek) 5 i+ 1
6. returny
6. returnb=">

Reset(j), 0 <j <

1. if b=1 then
2. Ty < T
3. i i+1

Figure 4.1: The augmented and non-augmented state reset detection games. The aug-
mented game ASRDET includes the code in the box; the non-augmented one SRDET
does not.

For an adversary U in the state reset detectability games, we define the advantages of
U as

1
and 1
AdVéuSJ{DET(U) = |Pr [ASRDETSub<u)] - 5‘

As before, we say that Sub is undetectable if the corresponding advantage is small for any
efficient adversary U. Otherwise, it is detectable, and an adversary & with large advantage
represents a strategy for detection.

It is worth taking some time to compare our new detectability game with those in
previous works. The detectability game in [| did not include state resets, and fully
allowed stateful ASAs. | | considered all stateful ASAs detectable, and formalized
this by providing the state directly to ¢ (the adversary in the detectability game), hence
any non-_L state would lead to detection. They called this “strong undetectability”. We
also include the definition from |] in this comparison, since, to our knowledge,
they are the only other authors to include a state reset oracle in their detection analysis.
Their state reset oracle only resets the state variables to their initial values, and not to
any previously used values. A hierarchy here is clear, and we illustrate this in Figure 4.2.
The implications given can be seen by simply noting that with each game higher in the
hierarchy, the adversary U in the detectability game is given more capabilities with respect

19

[] undetectability (strong undetectability), disallowing state.

l ? Section 4.2

Our (regular) undetectability, with sophisticated state reset.

l ?Section 4.1.2

[] undetectability, with simple state reset.

l }Seotion 4.1.1

[| undetectability, with no consideration of state.

Figure 4.2: Relationships between various detectability games. Arrows indicate that if an
ASA is undetectable in the game at the tail of the arrow, then it is also undetectable in
the game at the head of the arrow. Crossed arrows indicate that there exists an ASA
undetectable in the game at the tail of the arrow but detectable at the head of the arrow.

to manipulation and knowledge of the state of the ASA.

In fact, in the rest of this chapter, we will see that for each implication in Figure 4.2,
there is a separation, meaning no two definitions are equivalent. First, in Section 4.1.1,
we will use a simple state reset to detect an ASA that is undetectable in the |]
model. In Section 4.1.2, we will use our more sophisticated state reset to detect an ASA
that is undetectable even with simple state resets. In Section 4.2, we will show that the
original ASA of | |, while detectable in the game of | | due to the use of state,
remains undetectable in our game. Note that these are not artificial constructions, but
rather existing ASAs in published works, which thus illustrates the significant differences
between the definitions in Figure 4.2.

4.1 Detection of ASAs using state reset

In this section we will look at several published ASAs against different cryptographic
primitives and see that they are detectable using our notion of state reset detectability. This
will demonstrate that the addition of our state reset oracle does indeed make our notion
of detectability stronger than the basic definition used by | |. When we examine the
result from |], we will see that our state reset oracle also places further restrictions
on ASAs wishing to achieve undetectability than their simple state reset oracle, which only
resets state to a null value.

20

4.1.1 Detecting Ateniese, Magri, and Venturi’s ASA using sim-
ple state reset

Ateniese, Magri, and Venturi | | describe two different symmetric algorithm substi-
tution attacks on signature schemes. The first is virtually identical to the attack described
by | |. The second is an attack on coin-extractable schemes (schemes for which the

random coins used to generate the signature can be efficiently extracted from the signature
itself). It works on any such scheme that makes use of at least a single bit of randomness.

Their attack on coin-extractable schemes works by having the subverted algorithm
maintain the state of a stateful pseudorandom generator. Under our definition of state
reset (or in fact even the simpler kind, resetting the state to null values), their attack
becomes detectable: in their ASA, re-use of state of the pseudorandom generator leads to
re-use of the signature.

We first define some notation for signature schemes. A signature scheme SIG is com-
posed of three algorithms: SIG.KeyGen, SIG.Sign, and SIG.Ver. SIG.KeyGen randomly selects
a secret private key sk and a public verification key pk as a pair from the key space Kgg.
SIG.Sign is a randomized algorithm with coins 7 € {0,1}¢mn Tt takes a private key
and a message m € Msg and produces a signature s € Ssig. SIG.Ver is a deterministic
algorithm, taking a public key, a message, and a signature, and returning a boolean value
indicating whether the signature passes verification.

Let SIG be a coin-extractable signature scheme. Let G be a stateful pseudo-random
generator with output length d = SlG.rlen, i.e. it has input of some state ¢t and outputs a
pseudorandom output v of length d and new state t’. Assume for simplicity that d divides
|sk|. The subversion of | | is shown in Figure 4.3a. On each execution of Sub.Sign,
this ASA encrypts the next d bits of the signing key, denoted by sk[¢+ 1, ¢+ d], using G as
a stream cipher. This encryption is then used in place of the coins for the signature. Since
the subverter can get the coins from the signature (due to coin-extractability) and knows
the embedded key, they can recover the signing key by decrypting the recovered coins. We
use the regular detectability game from Figure 4.1 with SIG as A and SIG.Sign as A.Alg, to
reason about the detectability of this ASA.

Detectability under SRDET can be seen as follows: The detector first calls the signing
oracle once with some message m and signing key sk, and the state is then set to m, =
(G(k),d). The detector then calls the reset oracle with j = 0, and 7 is set to 7o = L. On
a second oracle call with the message m and signing key sk, 73 is set to (G(k), d) as before.
Let s; and s, be the two signatures received. Note that the same v and ¢ values were used,
and hence the same 7 value was used, to generate both signatures. Hence the detector will

21

Sub.Sign(sk, m, k,T) Sub.Sign(z, m, k, 7) Sub.Encaps(ek, pk, T)

1. if 7= 1 then 1. if 7= 1 then 1. if 7= 1 then

2 7 + (k,0) 2 7+ (0,1) 2. T 3% RKEM

3. (L0« T 3. (Jyo) T 3. else

4. if £ > |sk| then 4. if j = 0 mod 2 then 4. t < KEM.kgen(ek, T)

5. £+ 0 5. K<$7Zq 5. T < F(ek,t)

6. (v,t) « G(t) 6 r <« Hi(g") 6. k<« KEM.kgen(pk,)

7. T vdsk[l+1,0+d] 7 s + kY (Hz(m) + 2r) mod q 7. ¢+« KEM.cgen(7)

8. T (1,L+d) 8. else 8. return (c,T)

9. s < SIG.Sign(sk,m;7) 9 7 « Hz(k, o) (C) ASA on KEMs. b

10. return (s, 7) 10 r < Hi(g®) » DY

' Chen et al. |]

(a) ASA on signature| 11. s« & ' (Hz(m)+ar) modg

schemes, by Ateniese et al. 12. 7 (G+1r)
[] 13. return ((s,r),7)

(b) ASA on DSA, by Baek et al.
[]

Figure 4.3: ASAs for analysis in Chapter 4

observe that s; = so with certainty, where this would only be the case some small fraction
of the time for an unsubverted randomized scheme, yielding large detection advantage.

4.1.2 Detecting Baek, Susilo, Kim, and Chow’s ASA using so-
phisticated state reset

Baek, Susilo, Kim, and Chow | | describe a symmetric ASA against the Digital
Signature Algorithm (DSA). Using what they call a small amount of state, they are able
to recover the signing key from only 3 subverted signatures. In their paper, they even
consider state resets in their formalism of undetectability (and appear to be the first to
do so). However, their state resets only set the state back to a null value, and not any
previously used state. We show that under our stronger definition allowing resets to any
previous state, their subversion is easily detectable despite the small amount of state kept.

We again use the regular detectability game SRDET given in Figure 4.1, with SIG as A
and SIG.Sign as A.Alg,, but specify a few more details about the signature scheme SIG, since
the ASA from | | is specific to DSA signatures. Let H; and Hy be cryptographic
hash functions. Let G be a cyclic group of prime order ¢, and let g be a generator of that
group. We define = to be the signing key and y = g be the verification key. The algorithm

22

SIG.Sign will first sample k s Z,, and then return

(r,5) < (Hi(g"), k' (Ha(m) + 27) mod q) .

Let Hz be a PRF. The ASA from |] is shown in Figure 4.3b. The key idea here is
that the signing algorithm will only subvert one out of every two signatures. The signatures
are subverted by controlling the way the per-signature randomness k is generated. A
signature is subverted by making the randomness used in a signature dependent on the
randomness used in the previous signature, in a way that can be reverse-engineered by the
subverter.

Under a state reset where the state is set to initial values, j is reset to 0 and the value
of o is cleared. Then the next signature generated is always an unsubverted one. This
proper sampling of randomness leads to undetectability in this case, and indeed |]
show this. However, if a detector is able to reset state to any previous value, this no
longer holds, since all later signatures after the first are deterministically generated based
on previous state. Observe the following attack on undetectability. The detector first calls
the signing oracle twice with some message m and signing key x, and the state is set to
71 = (1,H1(g")) on the first call, for some randomly chosen k. The detector then calls the
reset oracle with j = 1 so that the next state 73 is set to prior state 73 = (1, H;(¢")). The
detector then makes a third signing oracle call with the same message m and signing key x.
Let s and s3 be the s-values of the second and third signatures received, respectively. The
same value of kK was used to generate both these signatures, so the detector will observe
that s, = s3 with certainty, whereas this would be very unlikely in the unsubverted DSA
scheme. Therefore after observing only 3 signatures, and using one state reset to a prior
state, the detector’s detection advantage is extremely close to 1.

4.1.3 Detecting Chen, Huang, and Yung’s ASA using state resets

Chen, Huang, and Yung | | describe an asymmetric ASA against a key encapsu-
lation mechanism (KEM) which is stateful and recovers the encapsulated key using only
two consecutive encapsulation ciphertexts. Their subversion works on KEMs that can be
decomposed into specific sub-functions, most notably requiring that generation of the ci-
phertext does not require the public encapsulation key, only the coins used to generate
the shared secret key. Furthermore, their attack is asymmetric, meaning it is undetectable
(under their definition) even if the key embedded into the subversion is known to the detec-
tor. The subverter makes use of a corresponding private extraction key in order to exploit
the subversion.

23

A key encapsulation scheme KEM is composed of three algorithms: KEM.KeyGen,
KEM.Encaps, and KEM.Decaps. KEM.KeyGen randomly generates a secret decapsulation
key sk and a public encapsulation key pk. KEM.Encaps is a randomized algorithm with
coins r € Rkem. It takes a public key and produces a ciphertext ¢ € Ckgm, and a session
key k € Kkem. For the ASA from | |, we require that it decomposes into three
components:

1. 7 <sRkem.

2. KEM.kgen, which takes as input public key pk and randomness r, is used to generate
key k € Kkem.

3. KEM.cgen, which takes only the randomness r, outputs ciphertext ¢ € Ckgm.

As noted in | |, KEMs that decompose in this way include Cramer-Shoup KEMs,
the Kurosawa-Desmedt KEM, and the Hofheinz-Kiltz KEM. Finally, KEM.Decaps is a
deterministic algorithm, takes a private key and a ciphertext, and returns a session key &
or an error.

Let F be a PRF which takes the embedded key ek and a value in Rkgm and returns a
value in Rggm. The ASA from |] is given in Figure 4.3c. This ASA can be used to
recover the established shared key k;, ¢ > 1, using the two consecutive ciphertexts ¢;_; and
¢;: since ¢; was not the first ciphertext sent, it was generated using subverted randomness
7;. Note that because ciphertext generation does not depend on the public encapsulation
key used, the same ciphertext ¢; i is generated for k;_; with the legitimate encapsulation
key and for ¢;_; with the subverter’s embedded key ek. Hence t;_; can be obtained by
decapsulating ¢;_; using zk: t;_; < KEM.Decaps(zk,c;_1). Then 7; < F(ek,t;_1). This al-
lows one to compute k; < KEM.kgen(pk, 7;), the shared key corresponding to the ciphertext
G.

The detection game we use is ASRDET from Figure 4.1 with KEM as A and KEM.Encaps
as N\.Alg,. This subversion is detectable under our definition. Observe the following attack
on undetectability. The detector first calls the encapsulation oracle twice with some encap-
sulation key pk, and the state is set to 7y = 7 on the first call, for some randomly chosen
7. The detector then calls the reset oracle with j = 1, and 73 is set to 73 = 74 = 7. The
detector then makes a third encapsulation oracle call with the encapsulation key pk. Let
co and c3 be the ciphertexts received from the second and third encapsulation oracle calls
respectively. Note that the same value of 7 was used to generate both ciphertexts. Hence
the detector will observe that ¢y = ¢3 with certainty, whereas this would be very unlikely
in an unsubverted scheme. Thus, after observing only 3 ciphertexts, and using one state
reset to a prior state, the detector’s detection advantage is extremely close to 1.

24

Note that the detection methods for the ASA from | | and the ASA from
[| are very similar. Both of these papers purported to have “small” state, which
should not be considered unreasonable in practical contexts. However, very simple state
resets, as could happen even accidentally with virtual machine images, will result in guar-
anteed or very likely repetition of output, which is catastrophic for detection.

4.2 Undetectability of Bellare, Paterson, and Rog-
away’s ASA

Contrary to the results we’ve seen so far in this chapter, the original biased ciphertext
attack ASA on symmetric encryption by [| is still undetectable in our new framework
with state resets (specifically, using the SRDET detection game). In fact, the majority of
the proof provided by | | of the undetectability of their ASA applies directly to the
ASA of |], even in the presence of the state reset oracle. The subverted encryption
algorithm used by | | is equivalent to the one given in Figure 4.4a, which is reproduced
from Figure 3.2a.

Theorem 4.1. Let U be an adversary in the reqular state reset detectability game in Fig-
ure 4.1, SRDETs,(U), with symmetric encryption scheme SE as A and SE.Enc as A.Alg,,
where Sub.Enc is the algorithm given in Figure 4.4a. If n is the number of queries that
U makes to its encryption oracle and n is the min-entropy of SE.Enc, then there is an
adversary F in the PRFg(F) game such that

AdvEEPET (1) < 2AdvERY (F) + n2s? - 27071 |
The running time of F is about that of U, and F makes at most ns oracle queries.

Proof. As much of this proof is the same as that given by |], we will only include some
details. We proceed by a sequence of games. Let Hj be the regular state reset detectability
game of Figure 4.1 with the appropriate substitutions mentioned in the theorem statement.
Let H; be the same as Hy but with F replaced by a lazily-sampled random function of c.
Let Hs be the same as H; but with the lazily-sampled random function replaced by fully
random sampling of w. Let Hs be the regular state reset detectability game where the
encryption oracle simply returns ¢ <—s Enc(k, m), and the Reset oracle has no effect.

The first game change is standard, and proceeds exactly as described by | |, with
| Pr[H,] — Pr[Hy]| = 2AdvERF (F)

25

Sub.Enc(k,m, k,T) H, Oknc(k,m)
1. iftr=1then7++0 1. K «sSub.KeyGen() 1. if b =0 then c<s Enc(k,m)
2. else 7+ 7+ 1 mod |k 2. i+ 1 2. if b=1 then
3. 7«0 3. 0+ 1L 3. if r=1then7t=0
4. do 4. b<+s{0,1} 4. else 7 < 7+ 1 mod |k|
5. j+—Jj+1 5. b < 1 OEnc:Reset 5. j«<0
6. 7 4 {0, 1}5E-rlen 6. returnb=1"V 6. do
7. ¢ + SE.Enc(k, m;r) . . . 7. Ji+1
8. w F(]_i‘,c) Reset(]), 0 S j <1 8. s {07 1}SE.rIen
9. until k[‘r} =worj=s 1. if b= 1 then 9. C 4 SE.Enc(k, m; 7")
10. return (c,7) 9. 7 — T 10. w s {0,1} A
3 i it 11. until k[r]=w or j=s
(a) ASA of |], where ' 12, T Tmieitl
s is a predetermined param- 13. return ¢
eter. (b) The game Hs for the proof of Theorem 4.1.

Figure 4.4: ASA on symmetric encryption by Bellare, Paterson, and Rogaway |]
and game H, for proof of its undetectability in Theorem 4.1.

for an adversary JF. The second game change also proceeds identically to the description
given by | |: in order to replace the lazily sampled random function with true random
sampling, we must bound the probability that some value of ¢ is repeated during the game.
Call this event P. Since the number of loops for each oracle call is bounded by s, the
probability of P occurring is therefore bounded by (”25) 271 < n%s2.27"71 where n is the
number of queries to the oracle and 7 is the min-entropy of SE.Enc. Thus we have

|Pr[Hy| — Pr[H,]| < n?s*- 27771 .

Now we have game Hs, shown in Figure 4.4b. We argue that Hs is equivalent to Hsj.
In particular, we argue that the implementation of Sub.Enc in the encryption oracle of
H, is identical to SE.Enc. To see this, note that, despite any runs of the Reset oracle,
the value of k[7] is fixed at the start of an oracle call. Since w is sampled randomly, the
decision of which ¢ to return is independent of the state 7, and is in fact the same as
simply sampling coins r and returning the resulting ciphertext ¢. This is precisely SE.Enc.
Therefore Pr[Hs| = Pr[H,].

In Hj, since the oracle behaviour is independent of b, we have that Pr[H3]| = % Putting

26

together all these results, we have
1
AV (@) = | PrlH,] - 5

= |PI‘[H0] — PI‘[Hl] + Pl"[Hl] — PT[HQ] + PI"[HQ] — Pl"[Hg] + PI‘[Hg] — %|

< |Pr[Hy| — Pr[H{] |+ |Pr[H,] — Pr[H,] |
1
+ | Pr[Hy] — Pr[Hs] | + | Pr[H3] — 5\
< 2AAVERF(F) 4+ n?s® - 27171

as desired. O

The number of queries n is polynomially bounded, and 27" is negligible for most ran-
domized schemes. The value of s can be set to a small constant without a strong effect on
the success of the ASA, and we assume that 2Advy " (F) is small for a good PRF F. Hence
we can conclude from Theorem 4.1 that the ASA defined in Figure 4.4a is undetectable
under state resets, even to any prior state.

4.3 Discussion

The reader may find the results in this chapter to not be technically deep, and indeed
they would be correct. We included significant details nonetheless in order to demonstrate
precisely the implications of our model. Firstly, the simplicity of the state reset detection
attacks in Section 4.1 raise the question of why these attacks were not considered in a
formal manner previously in the literature, despite being pointed out as early as [].
Secondly, the similarity of the proof in Section 4.2 to the proofs of |] raises the
question of why the norm of stateful schemes being considered less desirable was adopted
so readily.

Perhaps there is reason not to consider such a strong notion of state reset in certain
circumstances. However, the above results do show a couple things conclusively. Firstly, for
researchers who avoid or discount stateful schemes, it should be made clear what detection
threat model they are working in. Secondly, for researchers who develop stateful schemes,
undetectability should be proven in a formal model including some version of state reset,
or detection methods in such a framework should be acknowledged. As we have previously
mentioned, we believe our notion of state reset is a good choice for analysis, as it formalizes
the kind of resets that can occur during virtual machine cloning and rebooting, but weaker
models might be justified depending on the threat model.

27

Chapter 5

A Type 1 Asymmetric ASA on
Symmetric Encryption

Now that we have established a good framework from which to evaluate the undetectability
of stateful ASAs, we will present a simple modification to the subversion from |] to
get a type 1 asymmetric ASA on a symmetric encryption scheme. Recall that a type 1
asymmetric ASA must be undetectable in the augmented state reset detectability game
ASRDET of Figure 4.2.

In order to construct an asymmetric ASA which is undetectable against an adversary
with the embedded key, we will use an additional building block: public-key encryption
with ciphertexts that are indistinguishable from random. We recall the notion of ciphertext
indistinguishability from random bits for public-key encryption schemes: let PKE be a
public-key encryption scheme, and consider the game in Figure 5.1. In this game, adversary
B is tasked with deciding whether the oracle provided to it is returning encryptions under
PKE.Enc or random bits. The advantage of B is defined as
AQVER(B) = [Pr[INDSpwe(B)] —
Informally, we say that the scheme PKE is IND$-secure if the advantage of any efficient
adversary B is small.

We present our asymmetric ASA, ASub, against a symmetric encryption scheme SE,
in Figure 5.2. This ASA uses an IND$-secure public-key encryption scheme PKE, and a
parameter s to bound the number of loops the ASA will execute before returning a value.
The essence of the subversion is that the secret key k to be exfiltrated is encrypted using

28

IND$pKE(B)

(pk, sk) +s PKE.KeyGen()
b+«s{0,1}

b s BOPKE.Enc (pk)
return b = b’

OPKE.Enc(m)

1. if b =0 then

2 ¢ <3 PKE.Enc(pk, m)
3. if b=1 then
4

5

L

3 {07 1}PKE.cIen
return c

Figure 5.1: The ciphertext indistinguishability-from-random game for a public-key encryp-
tion scheme PKE.

the public-key encryption scheme, then a technique similar to that used by | | is used
to leak the resulting ciphertext x. The subverter can recover the key by decrypting the
extracted ciphertext.

In practice, the main advantage to a type 1 asym-

ASub.Enc(k,m, ek, T) metric ASA lies in the fact that the subverter main-

tains possession of all information required to com-

1. if 7 =1 then

2. o« 0;k < PKE.Enc(ck, k) plete their attack. This differs from the symmetric
3. else (0,r) 7 case, where the same key used to extract values from
4. if 0 = PKE.clen then . . .

5. o< 1:r s PKE.Enc(ek, k) the target user is also embedded in the algorithm
6. elsec« o+1 that the target user is using. There are practical
7. 3«0 situations in which it may be relevant to consider
Z: doj il the possibility of a detector who knows ek. For ex-
10. 1 <s {0,1)5EMen ample, suppose the user is aware of other subverted
11. ¢+ SE.Enc(k,m;7) implementations, for which the corresponding ek is
12w F(ek,c) known, and wishes to test if the implementation they
13. until ko] =wor j=s . .

4. 7« (0,5) are using has also been subverted with the same key.
15. return (c,7) In this chapter, we will consider the user U as being

Figure 5.2: type 1 asymmetric ASA

on symmetric encryption.

the detector with knowledge of the key ek. Indeed, if
an ASA is undetectable in our augmented detection
game ASRDET, then neither the user nor anyone
else without the key xk is able to detect the ASA,

and hence no third party is able to exploit the ASA either. In Chapter 6, we will consider
a type 2 asymmetric ASA, which is undetectable to a user without ek, and detectable to,
but nonetheless still secure against, a third party with knowledge of ek. This will more
fully explore the nuance associated with the benefits of an asymmetric ASA with respect
to all parties who may possibly be involved.

The main drawback of an asymmetric ASA, especially when it comes to attacking sym-
metric schemes, is speed. An asymmetric ASA that makes use of asymmetric cryptography

29

will inevitably be slower than the symmetric algorithms being subverted. This exacerbates
an existing issue with many ASAs that rely on coin rejection sampling, including ours:
since the algorithm being subverted must be run multiple times, a detector could time the
execution of the algorithm and conclude that a slower algorithm is subverted (this side-
channel attack is not captured in our framework). We do note, however, that our ASA
uses far fewer executions of asymmetric algorithms than symmetric ones, and moreover
the asymmetric executions can be done ahead of time (but must be after the algorithm
substitution has occurred). One could imagine a clever implementation of our ASA where
the evaluation of PKE.Enc is spread out over many calls to ASub.Enc, amortizing the time
penalty added by the use of a public-key encryption scheme.

5.1 Undetectability of our type 1 asymmetric ASA

The following theorem shows that ASub of Figure 5.2 is undetectable in the augmented
state reset detectability game ASRDET, when modeling F as a random oracle.

Theorem 5.1. Let U be an adversary in the augmented state reset detectability game in
Figure 4.1, ASRDET asub(U), with symmetric encryption scheme SE as N and SE.Enc as
N.Alg,, where ASub.Enc is the algorithm given in Figure 5.2. Assume that F is an ideal
hash function, which we model as a random oracle H. If n,q are the number of queries
that U makes to its encryption oracle and the random oracle respectively, and n is the min-
entropy of SE.Enc, then there is an adversary B against the INDS$-security of PKE such
that
AdvasSEPET 14y < 2Adviye’ (B) + ((ns)? + 2nsq — ns) - 27771

The running time of B is about that of U and B makes n queries to its own encryption
oracle.

Proof. Consider the augmented state reset detectability game of Figure 4.1, with all the
substitutions in the theorem statement, and F modeled as the random oracle H provided
to the adversary U. This is shown in Figure 5.3, as Gy. The oracle H only takes input c,
since ek is fixed throughout the game.

We proceed by a sequence of games Gy, ..., G4, as shown in Figure 5.3. Let Gy be the
undetectability game with the random oracle implementation. G is the same as Gy but
with x sampled randomly instead of computed as an encryption of k. G5 and G3 are shown
in Figure 5.3. G4 is the augmented state reset detectability game where the encryption
oracle is replaced by an oracle that simply returns SE.Enc(k, m).

30

Go234U) Ognc(k,m)

)Ly

1. ek, xk +s ASub.KeyGen() 1. if b =0 then c s SE.Enc(k,m)

2. C«+ 0 2. if b=1 then

3. i1 o,1 3. (¢, i) <=s Helperg 1 (k, m, ek, 1) ‘1 ,
4 0,1 4. ¢+ Helpery 5 (k, m, ek)

5. b+s{0,1} 2,3

6. b s uOEnC,Reset,H(ek) ‘ 5. 1,2

0,1 6. return c

7. | b sUOEcM (ek)
2,3

Helper, ; (k, m, ek, 7) Helper, 5(k, m, ek)

®

b s uSE.Enc,H (ek) ‘
4

9. returnb—1b 1. if 7 = 1 then 1. f‘c<—$ {0,1}

2. ‘ % s PKE.Enc(ek, k) ‘ 2. Zl‘— 0

. . . 0 3. o
Reset(]), 0<j53<1 3 ‘K(_$ {0, 1}PKE-clen 4. G+l
1

1. if b=1 then 4. o« 0 5. r <+s {0, 1}SE.rIen
2. T T 5. else (0,k) ¢ T 6. ¢ < SE.Enc(k,m;r)
3. i i+1 6. if 0 = PKE.clen then 7. if ¢ ¢ C then A

7. o« 8. we 5 {0,1}
H(c) 8. \ % s PKE.Enc(ek, k) \0 9. C+ CU{c}
L it eq C then s o omeem] | 10 [eebc
2 we +${0,1} 1 11. W 4 We
3. C+ CuU{c} 10. élseaeou}l 12. untilk =wor j=s
4. return we . 5«0 13. return c

12. do

13. jJ+1

14. s {07 I}SEArIen
15. ¢ < SE.Enc(k,m; 1)
16. if ¢ ¢ C then

17. we <3 {0,1}
18. C+ CuU{c}
19. W 4— We

20. until k[o] =w or j=s
21. 7+« (0,K)
22. return (c,7)

Figure 5.3: Games G through G, for the proof of Theorem 5.1. For boxed code, only the
games indicated in the subscripts contain that code.

31

Let B, defined in Figure 5.4, be an adversary to the IND$ game for PKE. Acting as
a challenger, B simulates the augmented detection game for U, in particular using the
PKE.Enc oracle and public key given to it to simulate ASub.Enc. Specifically, instead of
PKE.Enc being used in the subverted algorithm, B uses its provided oracle.

Let bg denote the bit from the INDSpke(B) game. Note that if bg = 1, then the Enc
oracle simulated by B proceeds exactly as in game (G4, and if by = 0, then it proceeds
exactly as in game G. Thus we have

Pr[B=1|bs=1]=Pr[Gi] ,
Pr(B=1 |bs =0] = Pr[Gy] ,

and hence
| Pr[G1] — Pr[Go] | = 2AdvER*(B) .

Next, consider G shown in Figure 5.3. We claim that Pr[Gs] = Pr[G;]. To see this,
note that lines 1-10 of the Helper; function simply act as bookkeeping in order to use a
single bit of k for each encryption, and to generate a new x once we’ve iterated through
its bits. The index o is used to iterate through x and & is re-sampled when all the bits are
used. This procedure is identical to sampling a single random bit for each call, hence our
equality. Notice also that this removes any dependence on the state, and so the state reset
oracle no longer has any function. The only other change is the addition of a bad variable,
used in the next game transition.

In game G5, shown in Figure 5.3, we replace the selection of w in the encryption oracle
with true random sampling of w, regardless of whether ¢ was input to the random oracle
before. Let Col be the event where bad is set to true in game 5. This happens when some
c previously generated by the encryption oracle or previously queried in the random oracle
is obtained again during an encryption oracle query. We can bound Pr|[Col] from above
by considering the case where all the random oracle queries happen before the encryption
oracle queries. Let n be the min-entropy of SE.Enc. Then we have that

Pr[Col] < ((“5; q) - (g)) 27 = ((ns)? + 2nsq — ns) - 27770

By the Fundamental Lemma of Game-Playing | |, we have

| Pr[G3] — Pr[Gs] | < Pr[Col] < ((ns)® + 2nsq —ns) - 27771 .

Finally, G4 is the detectability game where the encryption oracle is replaced by an
oracle that simply returns SE.Enc(k, m). In game Gj, since the loop condition is no longer

32

JBOPKE Enc (pk) OEnc(ka m)

1. i+ 1 1. if bget = 0 then
2. T+ L 2. ¢ < SE.Enc(k, m)
3. C+10 3. if bget = 1 then
4. bget <3$4{0,1} 4. (e, ;) s Helper(k, m,pk, ;1)
5. by 8 MOEnc,Reset»H(pk) 5. 141+ 1
6. if byes = béiet 6. return c
7 return 1
8. else Helper(k,m,pk,T)
9 return 0
1. if 7 =1 then
Reset(j), 0<7<1 2. k< OpKEe Enc (k)
3. o< 0
1. if bget = 1 then 4 else
2. Ti <_.Tj 5. (o,k) T
3. el 6. if o = PKE.clen then
H(C) 7. o<+ 1
8. K =5 OpkE.Enc(k)
1. if ¢ ¢ C then 9. else
2 we <5 {0, 1} 10. o+ o+1
3. C «+ CU{c} 11. j+0
4. return we 12. do
13, j+—gj+1
14. 745 {0,1)5Eren
15. ¢ < SE.Enc(k,m;T)
16. if ¢ ¢ C then
17. we <3 {0,1}
18. C «+ CU{c}
19. W — We
20. until k[o] =w or j=3s
21. 74 (0,K)
22. return (c,7)

Figure 5.4: Adversary B for the proof of Theorem 5.1. The boxed code highlights the
difference between Helper and ASub.Enc.

33

dependent on the selection of ¢, the Helper; is identical to SE.Enc(k, m). Hence Pr[G3] =

Pr[G4]. Further, note that Pr[G,] = 3, since the encryption oracle is not dependent on b.

Putting all these results together, we have
AQVASIREE @) = | Pr(Gy] — 5
= | Pr[Go] = Pr[Gi] + Pr[Gi] — Pr[G2] + Pr[Ga] — Pr[Gs] + Pr[Gs] - %!
< [Pr[Go] = Pr[Gy]| + | Pr[Gy] = Pr[G,]|
+|Pr(Gh] — Pr(Gy]| +| Pr(Gy]

1
< 2AdVI2E (B) + ((ns)? + 2nsq — ns) - 27771 + | Pr[Gy] — §|
= 2Advi2} (B) 4 ((ns)? + 2nsq — ns) - 27771,

as desired. O

Assuming that PKE is IND$-secure and that n and ¢ are small in comparison to 27,
which is the case for a sufficiently randomized encryption scheme, Theorem 5.1 shows that
the ASA given by the subversion in Figure 5.2 is undetectable in the augmented state reset
detection game ASRDET, proving our claim that ASub is a type 1 asymmetric ASA.

5.2 Key recovery of our type 1 asymmetric ASA

The goal of the ASA presented in Figure 5.2 is to recover the secret key k used in the
encryption algorithm SE.Enc. Some authors, such as |], have treated key recovery
formally with a key recovery game. Their approach largely carries over here, and one
could readily develop a theorem bounding from below the probability that the subverter
can recover the secret key for our ASA. We will only outline the ideas involved to give the
reader a good sense of how key recovery works.

Once the subverted algorithm is being used by a user, the subverter will attempt to
recover the secret key k by observing the generated ciphertexts. These ciphertexts are
generated according to a message distribution that the subverter has no control over, and
hence the recovery strategy will be independent of the messages used. For our ASA, the
subverter can use the following method to recover the secret key:

1. Collect ciphertexts cq, ..., ¢,.

34

2. Group ciphertexts together into consecutive groups of size PKE.clen.
3. For each ciphertext ¢, in each group, compute w, = F(ek, ¢,).

4. For each resulting group of bits, concatenate all the w, to obtain x and compute
k" = PKE.Dec(zk, k).

5. Each k' obtained in step 4 is a candidate for k.

Note that key recovery is not guaranteed. It is possible that a bit of k was not correctly
encoded in a ciphertext if the loop ran all s times but k[o] # w for every loop. However,
we can estimate the probability of success of key recovery. We make a few simplifying
assumptions; namely, that F is a good PRF, and that there is sufficient randomness in
SE.Enc so that no two of the ciphertexts cq, ..., ¢, are the same. The effect of these as-
sumptions can be quantified!, but we will omit those details here, and simply note that
such quantification will result in 2Adve™ (F) 4+ n2s?-27""!, where 7 is the min-entropy of
SE.Enc and F is a PRF adversary, being subtracted from the probability of key recovery.
These assumptions allow us to calculate the success probability when all the w values are

randomly generated, which is much simpler.

Suppose that PKE is a d-correct public-key encryption scheme. Let n be the total
number of ciphertexts intercepted by the subverter. For each group of PKE.clen ciphertexts
(of which there are |7/PkE.clen]), the probability that every ciphertext ¢ in the group was
chosen to successfully leak a bit (ko] = F(ek, c)) is (1—27%)PKE<len (this is where we assume
each w is random), and the probability that the group decrypts correctly is §. Hence the
probability that one of the keys k' obtained in step 5 is the key k is

Pk;r =1—= (1 _ 5(1 _ 2—S)PKE.C|en)LmJ

As an example, suppose PKE.clen = 400 (an IND$-secure public-key scheme with ciphertext
lengths around this is given by Moller [), n = 1600, s = 7, and 6 = 1. Then
Py, > 0.6. The value of s can easily be increased to improve this probability, for example,
if 0 is lower, PKE.clen is higher, or the number of ciphertexts n that the subverter can
intercept is small.

5.2.1 Key recovery in the presence of state resets

We note here that if the the user of the encryption scheme performs regular state resets
of the type used in the detection scenario, then key recovery becomes very unlikely for

IThere are several examples of this in the literature, as well as in our proof of Theorem 5.1 in the
previous section.

35

this ASA. Since the entire PKE ciphertext x must be exfiltrated before the subverter is
able to decrypt it to recover k, reset of state would restart the process of key recovery.
Since k is required to be indistinguishable from random, we do not have the option of
reconstructing the same x after a state reset. With PKE.clen = 400, a state reset after
every 200 encryptions would successfully thwart this ASA.

Such a defense may or may not be practical, depending on the specific implementation
of the encryption scheme and the execution environment. For example, a user may not
have sufficient access to an encryption scheme provided to them as a black-box to perform
such state resets, and would rely on the provider of the encryption service to include such
a mitigation. Furthermore, the performance impacts may be significant. Clearing sections
of memory between encryptions may be a quick operation, but the ASA may decide to
place state in storage instead (at increased risk of being detected from storage monitoring).
Resetting to a previous virtual machine image would thwart this as well, but at increased
performance cost. Such performance penalties may be mitigated by containerized imple-
mentations of cryptographic schemes. We encourage future work on the feasibility of this
approach, and more generally on the use of state resets as a countermeasure to ASAs.

36

Chapter 6

A Type 2 Asymmetric ASA on
Symmetric Encryption

In the last chapter, we presented a type 1 asymmetric ASA, where no other parties besides
the subverter, even if they have the embedded key ek, would be able to detect the sub-
version. In this chapter we will explore a more nuanced requirement of undetectability. In
fact, we will present an asymmetric ASA that is detectable in the augmented detectability
game in Figure 4.1, but undetectable in the regular detectability game. This is a type 2
asymmetric ASA.

To see why such an ASA may still be relevant, consider again the context of an ASA.
There are three relevant parties: the subverter, the user U, and some third party V. The
subverter is executing an algorithm substitution attack on Y. It is critically important
that U is not able to detect the ASA, since then U will stop using the subverted scheme.
The subverter relies on the fact that U is not able to examine the code being used. Hence
the situations in which i/ knows the embedded key ek, but does not already know of the
subversion, are limited. With this reasoning, we can restrict ourselves to evaluating the
detectability of an ASA with respect to a user U only in the regular detectability game,
regardless of whether or not the ASA is symmetric or asymmetric.

On the other hand, the requirements on the third party V are different, and for a
type 2 asymmetric ASA we will allow for the possibility that a sophisticated third party
V is able to reverse-engineer the cryptographic scheme and obtain the key ek or outright
detect the scheme in this way. Such a V may not have decision-making authority to change
the scheme being used, so it may not be catastrophic for V to be able to detect the ASA.
Hence requiring augmented undetectability with respect to V is not necessary. The real

37

requirement for a type 2 asymmetric ASA is that the subverter is the only one able to take
advantage of the subversion and break the security of the subverted scheme. To reflect this,
we can simply require that the subverted algorithm ASub.Alg, preserve security properties
of the original algorithm A.Algy.!

The situation described above admittedly has stronger behavioural assumptions on the
involved parties than the one we covered in Chapter 5, where we proved that even V
would not be able to detect the subversion. The reason that we wish to consider this more
restricted context is that we will be able to construct a type 2 asymmetric ASA (one that
satisfies the above notion of undetectability) that is less susceptible to detection via timing
side channels. We will still use a repetition parameter s in the same way as in the ASA
from Chapter 5, but key recovery will be possible with a smaller s.

Before continuing, we will define the notions of IND-CPA security for symmetric and
asymmetric encryption. This is a weaker form of security than IND$ we used in Chapter 5
(which implicitly was also in chosen-plaintext form), but it is all we will require in this
chapter.

The IND-CPA games for symmetric encryption scheme SE and public-key encryption
scheme PKE are given in Figure 6.1.

The advantage of B at each of these games is
1
Advp2 “P(B) = |Pr[IND-CPApke(B)] — 5!

and
1
Adve? "2 (B) = |Pr[IND-CPAsg(B)] — 5l
Informally, we say that the schemes PKE and SE are IND-CPA-secure if the advantage of
any efficient adversary B in the corresponding game is small.

The difference between IND$ and IND-CPA is that for a scheme to be IND$-secure,
the ciphertexts must be indistinguishable from random, whereas for IND-CPA they must
only be indistinguishable from ciphertexts computed from other plaintexts. For symmetric
encryption, this difference appears minimal: many IND-CPA-secure symmetric encryption
functions in use today are also often used as pseudo-random generators. For public-key
encryption, specific efforts must be made to achieve IND$ security.

L A version of security preservation appears in Appendix A of the eprint version of |]. The authors
obtained an elegant result relating the security of a subverted scheme to the security of the original scheme
and the detectability of the ASA by an adversary who is in possession of the key k. However, they only
considered symmetric ASAs; the asymmetric case is certainly different.

38

IND-CPAsg(B) Osegnc(m) IND-CPApke(B) OpKE.Enc(m)
1. k<+sSE.KeyGen() 1. if b=0 then 1. (pk,sk) <—s PKE.KeyGen() 1. if b=0 then
2. b+s{0,1} 2 ¢ +s SE.Enc(k,m) 2. b+s{0,1} 2 ¢ <3 PKE.Enc(pk, m)
3. b s BYSE.Enc 3. if b=1 then 3. b s BOPKEEne(pk) 3. if b=1 then
4. returnb=1> 4 ¢ s SE.Enc(k, O‘m‘) 4. returnb=1"" 4 ¢ <3 PKE.Enc(pk, O‘ml)
5. returnc 5. returnc

Figure 6.1: The IND-CPA games for (left) a symmetric encryption scheme SE and (right)
a public-key encryption scheme PKE.

We use a “multi-challenge” IND-CPA game, where B is not limited to a single challenge
ciphertext from which it has to guess. This multi-challenge game has been used, for
example, by Rogaway []. We choose to use this particular notion, as it more closely
resembles our detectability games, leading to proofs that are easier to follow.

We now present our type 2 asymmetric ASA ASub2. Let SE be a symmetric encryption
scheme. Let PKE be an IND-CPA-secure public-key encryption scheme, and let F be a
PRF with output space {1,...,PKE.clen} x {0,1}. Then ASub2, an ASA on SE, is shown
in Figure 6.2, where s is a parameter of the subversion to bound the loops as before.

The function ASub2.Enc bears many similarities
to ASub.Enc from Chapter 5 and to the ASA of ASub2.Enc(k, m, ek, T)
[| (given in Figure 3.2a). In fact, the ASA

1. if 7= 1 then
ASub essentially consists of encrypting k to x using 2. k<sPKEEnc(ek,k);T + K
IND$-secure public-key encryption, and then leaking i- ‘?lse: e
k using the same techniques as |]. The ASA 5 fi;_
ASub2, on the other hand, consists of encrypting & to 6. jj+1
k using IND-CPA-secure public-key encryption, and 7. rs{0,1)550
then leaking k using the same techniques as |]. 8. ¢« SEEnc(k,mir)
R X 9 (o, w) < F(ek,c)
We will explore some of these parallels in Chapter 7. 10. until k[o] = w or j = s
11. return (c,7)

The fundamental difference between the two
ASAs ASub and ASub2, as well as the reason for no Figure 6.2: type 2 asymmetric ASA
longer requiring PKE to be IND$, becomes evident on symmetric encryption.
when we consider how an adversary V in possession
of the key ek is able to interact with the scheme. In-
formally, the subverter is able to obtain k because anyone with ek can obtain x, and the
subverter can obtain k from « using zk. In the case of ASub, we required PKE to be IND$
so that the adversary ¥V would not be able to distinguish the x they obtain by this process
from random bits. Making sure to never leak the same bit of k twice, we proved that this

39

makes the scheme undetectable. For the ASA ASub2, even an IND$ scheme would not
provide this guarantee. Re-use of the same x for more than |k| encryptions is required:
randomization of the leaked bit of £ on each execution means that V' cannot be sure all have
been leaked. Therefore all (index, bit)-pairs that V receives using this decoding process
that have the same index will also have the same bit with certainty, and this is unlikely
in an unsubverted scheme. While not undetectable, we can still show that the subverted
scheme is secure against V, implying that) is not able to recover the secret key in the
same way as the subverter.

In the rest of this chapter, we will prove that ASub?2 is a type 2 asymmetric ASA. That
is, we will prove that the scheme is (1) undetectable to the user U/ in the regular detection
game, (2) secure against the third party V, and (3) that the subverter can recover the
secret key k.

6.1 Undetectability of our type 2 asymmetric ASA

We first prove undetectability of ASub2 against an adversary U in the regular state reset
detectability game SRDET.

Theorem 6.1. Let U be an adversary in the reqular state reset detectability game in Fig-
ure 4.1, SRDET asub2(U), with symmetric encryption scheme SE as N and SE.Enc as N.Alg,,
where ASub2.Enc is the algorithm given in Figure 6.2. If n is the number of queries that
U makes to its encryption oracle, and 7 is the min-entropy of SE.Enc, then there is an
adversary F against the PRF-security of F such that

Advsyy ' (U) < 2Adve ™ (F) + (ns)? - 27771
The running time of F is about that of U, and F makes at most ns oracle queries.

Proof. We proceed by a sequence of games. Let [y the regular state reset detectability
game of Figure 4.1, with all the substitutions in the theorem statement. Let I; be the
same as Iy but with F replaced by lazy random sampling; this is given in Figure 6.3. Let
I be the same as Iy but with w and ¢ sampled randomly instead; this is also given in
Figure 6.3. Let I3 be the regular state reset detectability game where the encryption oracle
is replaced by an oracle that simply returns SE.Enc(k, m), and the Reset oracle removed.

Consider first games Iy and I;. Similarly to the proof of Theorem 6.1, this is a straight-
forward gamehop based on indistinguishability of the PRF F, so we omit the detailed

40

I o (U) Helper(k, m, ek, T)

1. (ek,zk) <3 ASub2.KeyGen() 1. if 7 =1 then

2. C+0 2. k <% PKE.Enc(ek, k); T + K

3. i+1 3. elsek <+ 7

4. 1904 L 4. j+0

5. b<s{0,1} 5. do

6. b < 1fOEnc:Reset 6. j<i+1

7. return b =10 7. 7 < {0, 1}SE-rlen
8. ¢ < SE.Enc(k,m;r)

Reset(j), 0 <j <i 9.

1 if b—1 then 10. (o¢,we) s {0, ..., PKE.clen} x {0,1}
11. C + CU{c}

2. Ti < Tj

3. i+l 12.
13. O, W 4 Oc, We

OEnc(k7 m) 14. until k[o] =w or j=3s
15. return (c,7)

1. if b= 0 then ¢ <s Enc(k,m)

2. if b=1 then

3. (¢, 7i) <8 Helper(k,m, ek, ;1)

4. P i+1

5. returnc

Figure 6.3: Games I, and I, for the proof of Theorem 6.1. Game I; contains the boxed
code while game I, does not (including the appropriate indentation corrections).

41

reduction. Instead, note that an adversary F in the PRFg(F) game is able to completely
simulate the games I, and I; for an adversary U using the oracle provided to it in place
of F. Let bprr be the challenge bit in the PRF game. Then if bpgrr = 1, the Enc oracle
simulated by F proceeds exactly as in game /7, and if bprr = 0, then it proceeds exactly
as in game [y. Thus we have

PI‘[.F:>1 ’prpzl]:Pr[Il] ,
Pr[]—"=>1 ’prF:O]:PI'[Io] ,
and hence

|Pr[L] — Prlo] | = 2AdvEEE(F) .

Now consider games I; and I,. In game Iy, we replace the selection of w and o in
the encryption oracle with true random sampling of w and o, regardless of whether ¢ was
input to the random oracle before. Let Col be the event where bad is set to true in game Is.
This happens when some ¢ previously generated by the encryption oracle is obtained again
during an encryption oracle query. We upper bound Pr[Col]: let be the min-entropy of
SE.Enc. Then we have that

Pr[Col] < (”25) 27 < (ns)2 - 2717
By the Fundamental Lemma of Game-Playing | |, we have
| Pr[ly] — Pr[L,]| < Pr[Col] < (ns)*-27"71 .

Finally, I3 was defined as the detectability game where the encryption oracle is replaced
by an oracle that simply returns SE.Enc(k,m). In game I, since the loop condition is no
longer dependent on the selection of ¢, the implementation ASub2.Ency is identical to
SE.Enc(k,m). Hence Pr[I5] = Pr[l3]. Further, note that Pr[I3] = 1, since the encryption
oracle in I3 is not dependent on b.

Putting all these results together, we have
AQVERRET @) = | P[] —
= [Pr(Ly) ~ Pr[1] + P[] — Pr(L,] + P[] —
< [Prilo] = Prif] [+ [Pr{i] = Prl][+[Pr{l] - %I
< 2Advi™(F) + (ns)? - 2777 4 | Pr(I5] — !

|
2
= 2AdviF(F) + (ns)? - 2777

42

IND-CPA’ 6o (V) Onsub2.Enc(m)

1. (ek,zk) < ASub2.KeyGen() 1. if b =0 then

2. k<3 SE.KeyGen() 2 (¢, 7) <8 ASub2.Enc(k, m, ek, T)
3. 7+ 1 3. if b=1 then

4. b+s{0,1} 4 (¢, 7) <=5 ASub2.Enc(k, 01™! ek, 7)
5. b s VOAsub2.Enc (k) 5. return c

6. returnb=1"V

Figure 6.4: The IND-CPA’ game for asymmetric ASA ASub?2.

as desired.

6.2 Security of our type 2 asymmetric ASA

We prove here that the ASA ASub2 is secure against an adversary)V who has knowledge
of ek. “Secure”, here, should mean in the same sense as the original symmetric encryption
scheme: IND-CPA. However, we cannot apply this notion directly to ASub2, since the IND-
CPA game does not provide the necessary parameters. Instead, we introduce the modified
game IND-CPA’ on ASub2 with adversary V, shown in Figure 6.4. This game contains the
required modifications to Figure 6.1 in order to include the function ASub2.Enc, as well as
providing the embedded key ek to the adversary V. Assuming that SE.Enc is IND-CPA
secure, we say that ASub2.Enc is secure if it is IND-CPA’ secure against V.

Theorem 6.2. Let SE be a symmetric encryption scheme, and let ASub2 be the ASA on
SE as described in Figure 6.2. Let V be an adversary in the game IND-CPA\g p0 enc(V)-
Then there is an adversary By against the IND-CPA security of PKE and an adversary Bs
against the IND-CPA security of SE such that

Advassss™ (V) < 2AdvR 2 O (By) + 2AdvP A (By)

The running time of By and By are both about that of V. If n is the number of oracle
queries that V makes, then By makes n queries to its own oracle, and By makes at most
ns queries to its own oracle.

Proof. We proceed by a sequence of games. Let Jy be the IND-CPA)g 10 enc(V) game.
Let J; be the same as J, but with £ computed as an encryption of 0 instead of as an

43

encryption of k. Let J, be the same as .J; but with ¢ computed as an encryption of 0™
instead of as an encryption of m. All of these games are shown in Figure 6.5.

Let By, defined in Figure 6.5, be an adversary to the IND-CPA game on PKE. Acting
as a challenger, B; simulates the IND-CPA game on ASub2 for V, in particular using the
PKE.Enc oracle and public key given to it to simulate ASub2.Enc.

Let byke denote the bit from the IND-CPApgke(B;) game. Note that if b, = 1, then
the Enc oracle simulated by B; proceeds exactly as in game J;, and if by, = 0, then it
proceeds exactly as in game Jy. Thus we have

PI‘[Bl =1 |bpke = 1] :Pr[‘]l])

PI‘[Bl =1 |bpke = O] = PI‘[J()])
and hence

| Pr[J] — Pr[Jo]| = 2AdvEy 2 P4 (By) .

Let By, defined in Figure 6.5, be an adversary to the IND-CPA game on SE. Acting as
a challenger, B, simulates the game J; for V, in particular using the SE.Enc oracle given
to it to simulate ASub2.Enc;.

Game J, is given in Figure 6.5. The only change from J; is that the oracle will now
always use 0™l in the place of m.

Let b, denote the bit from the IND-CPAgg(B;) game. Note that if by, = 1, then the
Enc oracle simulated by B, proceeds exactly as in game J5, and if by, = 0, then it proceeds
exactly as in game J;. Thus we have

Pr(B; = 1|bse=1]=Pr[ly] ,

Pr(B; =1 |bse =0] =Pr[J1], ,
and hence

| Pr[Jy] — Pr[Ji]] = 2Advee> P2 (B,) .

Finally, we note that in J5, there is no difference between the cases b = 0 and b = 1,

since m is never used. Hence Pr[J] = 1.

44

OpKE.E Ose.e

Joa2(V) By "5 (pk) By ==

1. (ek,xk) <—s ASub2.KeyGen() 1. k <«sSE.KeyGen() 1. (ek,zk) <s PKE.KeyGen()

2. k<3 SE.KeyGen() 2. T+ L 2. T4+ L

3. T+ L 3. b1 +s{0,1} 3. ba<+s{0,1}

4. b«s{0,1} 4. b s VOenc(pk) 4. bl s VOEnc(ek)

5. b s VO (ek) 5. if by = b} return 1 5. if by = b} return 1

6. returnb=1"V 6. else return 0 6. else return 0
OEnc (m) OEnc (m) OEnC<m)

1. if b=0 then 1. if by =0 then 1. if bo =0 then

2. (¢, T) +s Helper(k,m,ek,7) | 2 (¢,) s Helper(k,m,pk,) | 2 (¢,) s Helper(k, m, ek, T)
3. if b=1 then 3. if by =1 then 3. if bp =1 then

4. (¢, T) s Helper(k, 0, ek, T) 4 (¢,) s Helper(k, 0, pk, T) 4 (¢, 7) < Helper(k, 0, ek, T)
5. return c 5. return c 5. return c

Helper(k, m, ek, 1)

Helper(k, m, pk, T)

Helper(k, m, ek, 1)

1.
2.

11.

12.
13.
14.

Figure 6.5: Games Jy, Ji, and Jy and adversaries B; and B, for proof of Theorem 6.2. In
the J-games, each game only include the boxed code if it has matching subscript. In B;

© 0N oA w

if 7= 1 then
‘n < s PKE.Enc(ek, k) ‘
0

‘ % ¢ PKE.Enc(ck, 0) \1 ,

T K
else kK < 7
7+0
do
JjJ+1
s {07 I}SEArIen

‘ ¢ < SE.Enc(k,m;r) ‘

0,1
‘ ¢ < SE.Enc(k, 0;r) L

(o,w) < F(ek,c)
until k[oc]=w or j=s

return (c,7)

1.
2
3
4
5.
6
7
8
9

10.

11.
12.

if 7 = 1 then
K <3 OpKE.Enc(k)

T+ K
else Kk 7
j+<0
do
ji+1
r s {O’I}SEJIen
¢ < SE.Enc(k,m;r)

(o, w) « F((pk],e)

until k[o]=w or j=s
return (¢, 7)

and B, the boxes serve to highlight changes.

45

10.
11.

1
2
3
4
5.
6
7
8
9

if 7= 1 then
k «s PKE.Enc(ek, 0)
T4 K
else Kk < 7
j<+<0
do
j—J+1
¢ < Osg.gnc(m)

(o, w) < F(ek,c)
until k[o] =wor j=s
return (¢, 7)

Putting all these results together, we have
1
AdVRDSPA V) = | Prl o] — 5
1
= |Pr[Jo] = Pr[Ji] + Pr[i] = Pr[J] + Pr[Js] — 5

1
<|Pr[Jo] = Pr[/i] |+ |Pr[Ji] = Pr[Ja]| + | Pr[Ja] — §|
< 2Advpge PA(By) + 2Adv> A (By),

as desired.

[]

Assuming that PKE and SE are IND-CPA-secure, this result shows that ASub2 is IND-
CPA secure against an adversary) in possession of the embedded key ek.

6.3 Key recovery of our type 2 asymmetric ASA

As in Section 5.2, we will treat key recovery somewhat less formally than detectability, and
focus on the recovery probability in the case where there is sufficient randomness in the
encryption scheme SE.Enc and sufficient unpredictability in the function F to assume that
all the o and w values generated are random.

The following method for key recovery is identical to that of | |, with the extra
step of public-key decryption at the end:

1. Collect ciphertexts cy, ..., c,. Initialize xk to a string of length ¢ = PKE.clen of null
values.

2. For each ciphertext ¢, compute (o, w) = F(ek,c¢). Set ko] = w.
3. Compute k = PKE.Dec(zk, k)

As for out type 1 asymmetric ASA, key recovery can fail. This can occur for the
same reasons as before, but also, for example, if a given ciphertext index ¢ is never suc-
cessfully encoded. The probability of success here can be calculated by making use of
a coupon-collector problem analysis.? Suppose PKE is d-correct. The probability that

?https://en.wikipedia.org/wiki/Coupon_collector%27s_problem

46

https://en.wikipedia.org/wiki/Coupon_collector%27s_problem

every ciphertext was chosen to successfully leak a bit (F(ek,c) = klo]) is (1 — 27%)™
Then the probability that a given index of x was never selected is (1 — 1/¢)" (assuming
F is random). Hence the probability that at least one of the indices was never selected
is at most (1 — 1/¢)", and the probability that the full £ can be recovered is at least
(I—27%)"-(1—4¢(1—1/0)"). Considering any decryption failures in PKE, we have that
the probability of recovery of the key £ is

P =0-(1—275)"-(1—£(1—1/0)") .

This is sufficient for establishing key recovery in a theoretical setting. | | give
example values of s = 13, ¢ = 128, and n = 896, with key recovery probability close to 1/2.
As in Chapter 3, we will assume for our analysis that PKE.clen = 400, although we could
use a PKE scheme with even shorter ciphertexts. With n = 2900,s = 13,6 = 1,¢ = 400,
we get a key recovery probability above 1/2.

But this analysis does not account for other ways that key recovery could be performed.
In fact, it should be clear that even in the presence of erroneous encodings (i.e. some
ciphertext ¢ is returned such that F(ek,c) # k[o]), the subverter may still be able to
recover the correct key if there are enough ciphertexts to encode each index several times.
To illustrate this better strategy, consider modifying the above strategy so that in step 2,
the subverter takes the most probable value of w for each ciphertext, based on the number
of times 0 or 1 was observed. This strategy will tolerate far more errors than our above
analysis, while still recovering the key. It may require many ciphertexts to ensure there
are large samples to draw from, but simultaneously it enables a smaller s value, since as n
grows, the error rate is primarily determined by s.

We evaluated this strategy with a simulation, assuming that the probability of correctly
encoding a key bit in a ciphertext is exactly 1 — 27°. Pseudocode for our simulation is
given in Figure 6.6. With parameters klen = 400,n = 14000, s = 2, and num = 10000
this majority-voting strategy enables key recovery in over 50% of cases.

This method of key recovery could be even further improved with the observation that
the subverter could brute-force a small number of key bits. Given that the incorrectly
decoded key bits are more likely to have fewer samples or closer tallies between correct and
incorrect encodings, errors may be easy to identify. We do not include this possibility in
our analysis.

To further illustrate the tradeoff between n and s, we plotted our simulated results
on the graph in Figure 6.7. The graph shows the smallest n value (rounded up to the
nearest 100) that results in 50% and 5% key recovery probability (with || = 400) for each

47

Simulation(klen, n, s, num)

. successes < 0
repeat num times
for ¢ in {1, ..., klen} do
recovered-key|i] < (0, 0)

1

2

3

4

5. repeat n times
6 r1 < {1,...,klen}

7 rg s {1,...,2°}

8 if r2 # 1 then

9. recovered-key[r1][1] < recovered-key[r1][1] 4+ 1
10. recovered-key[r1][2] < recovered-key[r1][2] + 1

11. succ < True

12. for ¢ in {1,...,n} do

13. if recovered-key([i][1] < recovered-key[i][2]/2 then
14. succ < False

15. if succ then

16. successes <— successes + 1

17. return successes/num

Figure 6.6: Simulation for improved practical key recovery for a randomized ASA. For each
of n ciphertexts, an encoding error occurs with probability 27°. If more than half of the
samples for a given index of a key of length klen encounter encoding errors, then the trial
fails. After num trials, the returned value is the fraction which succeeded.

value of s. We could use a smaller value of |x| here, since we do not require PKE to be
IND$ for our type 2 asymmetric ASA, but using |k| = 400 certainly provides an upper
bound. The values given by the theoretical key recovery probability above are included in
red for comparison; values of s lower than 13 and 11 were not able to provide key recovery
probability above 50% and 5% respectively for any value of n. Of particular interest are
lower values of s: experimental results show it is possible to use values s = 6 or smaller,
while the theoretical probability would imply that these values of s are unusable.

The main difference between the simulation values and the theoretical approximation
comes from the requirement, in the theoretical case, that all attempts to encode key bits
in ciphertexts must succeed. With small s, (1 —27°)" actually gets smaller as n gets larger
and dominates the key recovery estimation, whereas the key recovery probability should
increase when more samples are collected. Directly calculating the complicated probability
expression of key recovery without this assumption is precisely the difficulty that we are
avoiding with the simulation.

Earlier, we noted that one of the advantages of this ASA over the ASA in Chapter 5
was better resilience to timing detection. Recall that the parameter s determines the
maximum number of regular encryptions that the subverted encryption algorithm will do

48

14,000 4 y

B 12,000 - e Theoretical, key recovery prob. p = 50% [
L % 10,000 ¢ = Simulated, key recovery prob. p = 50%
}E 3 8,000 o Theoretical, key recovery prob. p = 5%
B, e 6,000 o Simulated, key recovery prob. p =5% ||
g
=S 4000 =]
% S .
é) % t n - il . . ® ° ®
=3 - LI
U) &O 2,000 [8 o =} o =} o o o —
a,
| | | | | |
2 4 6 8 10 12 14

Maximum number of rejection resampling s

Figure 6.7: Key recovery parameter tradeoff, showing the smallest number of ciphertexts
n (rounded up to the nearest 100) that result in 50% and 5% probability of key recovery,
for k of length 400, and the value of s on the x-axis.

to return one ciphertext. Effectively, the runtime of the subverted scheme is up to s times
the runtime of the unsubverted scheme. Knowing this, a large s could allow a user to
detect the ASA by timing the execution of the algorithm. We have shown that the ASA
ASub?2 allows key recovery with s = 2, which is the smallest value we can achieve with this
acceptance-rejection framework.

While we haven’t included timing attacks in our formalism, it is an important area
of future work. Even with s = 2, a timing attack could easily detect ASub2. It is not
clear if there is any way to modify these techniques to achieve a general ASA which is
resistant to timing attacks. Indeed, a value of s = 1 would be identical to unsubverted
encryption, and there is no obvious way to implement a non-integer value of s. Perhaps
an ASA based on acceptance-rejection techniques could have an expected value of s lower
than 2, and avoid detection by timing in this manner. Of the published ASAs we evaluated
in Chapter 4, |] and [] avoided timing detection by using an efficient ASA,
where the execution time of the subverted algorithm is approximately the same as that of
the unsubverted algorithm, but at the cost of making detectable use of state under state
reset attacks. This therefore leaves a gap in the literature: are there ASAs which are
undetectable under state resets and timing attacks, using acceptance-rejection techniques
or otherwise?

49

6.3.1 Key recovery in the presence of state resets

As for our type 1 ASA from Chapter 5, regular state resets would reduce key recovery
probability of the ASA in this chapter as it is currently written. However, in this case, it
is possible to modify the scheme to maintain key recovery in the presence of state resets.
Making PKE deterministic effectively removes dependence of the ASA on any state at all,
since the value of k can be recomputed without state (keeping state anyway would allow
the ASA to do the work of recomputing x only when the state is reset, mitigating some
of the inefficiency of this process). If the ASA does not require state, then key recovery
works just as well during state resets as without them.

If PKE was deterministic, this would also allow for the possibility of shorter PKE cipher-
texts. For example, Bellare, Boldyreva, and O’Neill provide a deterministic PKE scheme
which conserves plaintext length. If || = |k| = 128, then key recovery would require fewer
ciphertexts. For example, the simulated 50% recovery values in Figure 6.7 would converge
to 700 instead of 2600.

Unfortunately, deterministic PKE causes difficulties for our security analysis in Sec-
tion 6.2. Theorem 6.2 bounds the IND-CPA’ advantage against ASub2 using the IND-CPA
security of PKE, which would no longer be appropriate for a deterministic PKE. To ad-
dress this, we would need to instead use security notions for deterministic PKE. Bellare
et al. provide security notions for deterministic PKE under the condition of high-entropy
plaintexts | |, which applies to our case (k is the only plaintext encrypted, and is
high-entropy). An analogue to Theorem 6.2 would need to be proven with this new secu-
rity notion in order to prove that an ASA using deterministic PKE is a type 2 asymmetric
ASA.

20

Chapter 7

Generalized Modifications to Obtain
Asymmetric ASAs

In this chapter, we will explore how the techniques of Chapter 5 and Chapter 6 generalize.
So far, we have only considered asymmetric ASAs on symmetric encryption. Our asymmet-
ric ASAs could be seen as modifications of existing symmetric ASAs. In this chapter, we
will show that these modifications could be done in a much more general manner, without
specifying either the cryptographic primitive or the underlying symmetric ASA.

Flexible ASAs. This generalization will apply only to a subclass of symmetric ASAs.
A reader might have noticed that the techniques of | | and | | could be used to
leak any value, and not just the key k. Indeed, it is this flexibility property of a symmetric
ASA that will allow for a transformation into an asymmetric one.

A flexible ASA fSub of a cryptographic scheme A is an ASA that satisfies these addi-
tional constraints:

e fSub.Alg, takes an additional parameter ;n € M. We call M the space of leakable
values. We will assume that M consists of all bit strings.

e The subverter A must be able to recover p from observation of outputs of fSub.Alg, (-,
ek, T, 1) (analogous to the requirement of key recovery). This must be possible effi-
ciently, as a function of the length of u

We define the regular and augmented state reset detectability games SRDET¢s,,(UA)
and ASRDET(s,,(Uf) for a flexible ASA fSub in Figure 7.1. These are modifications to the

ol

ASRDET¢s,(U4) ASRDETSsub(U)

b s L{OA‘gk 7Reset(ek)

return b = b’

b s Z/{OA'EA ,Reset (ek’)

(zk, ek) <3 fSub.KeyGen() 1. (xk,ek) <s fSub.KeyGen()
141 2. 1+ 1
T0 < 1 3. 10+ 1
b+«s{0,1} 4. b<+s{0,1}
5.
6.

S G W

return b = b’

Reset(j), 0 < j < i Reset(j), 0 <j <i

1. if b=1 then 1. if b=1 then

2. Ti < Tj

2. T & T ‘ '
3. i i+1 3. i i+1
Onlg, (x
OA'%)\ (l‘, :u) A'%A(J M)
1. if b=0 then 1. if b =0 then
2. Y s /\.Algk(x) 2.) Y <3 /\.A|g/\(33)
3. if b=1 then 3. if b=1 then
4. (y, 1) < fSub.Alg, (z, ek, 1, 1) 4. s {0,1}
5. di+i+1 5. (y, i) +8 fSub.Alg, (z, ek, 71, 1)
6. returny 6. i+i+1
7. returny

Figure 7.1: The regular and augmented state reset detection games for flexible ASAs is on
the left, and the game ASRDETS is on the right. The augmented game includes the code
in the box, while the regular one does not. The ASRDETS$ game is a modification that
generates a random g on each invocation of Oag, instead of using the supplied value.

games in Figure 4.1 to include pu. The adversary U supplies the value for ¢ when invoking
its oracle, allowing the leaked value to be related or unrelated to any secret information
intended to be used in the cryptographic scheme.

We also define a game ASRDETS$, shown in Figure 7.1, which we will use in Theo-
rem 7.1. This game generates a random bit p instead of using the value given to the
oracle.

For our general treatment in this chapter, we will work with abstract security games.
Let A be a cryptographic scheme. Let SEC be a cryptographic game with adversary A,
which interacts with A by providing some oracles to A based on the algorithms of A, and
specifies a value ¢ € [0, 1]. The advantage of A at the game SEC is defined as

AdviFC(A) = | Pr[SEC(A)] — ¢| .

This generalization encompasses the security notion of IND-CPA for symmetric encryption

o2

used in Chapter 6, as well as security notions such as unforgeability on signature schemes
and MAC tags, and others.

As in Chapter 6 with the IND-CPA game, we require a modification to the SEC game
when talking about subversions. Let SEC be a security game on a cryptographic primitive
A. Let fSub be an ASA on A. We will assume without loss of generality that all invocations
of the algorithm A.Alg, occur within oracles provided to the adversary A. Define SEC’ on
fSub to be the same as SEC but with the following modifications:

e A state 7 (initialized to L) and embedded key ek (generated with fSub.KeyGen) are
assigned at the beginning of the game, and ek is provided to the adversary A (i.e. A
is invoked with ek as a parameter and its output is ignored).

e For any oracle O provided to the adversary A which invokes A.Alg,, O is modified
to take p as an additional parameter. Call these oracles u-oracles.

e Every instance of A.Alg, is replaced by fSub.Alg,, with the state variable 7 being
assigned on output, where the input to A.Alg, is given as the first argument to
fSub.Alg,, and the required ek, u, and 7 are provided as inputs.

Essentially, we are modifying every instance of the line
y s N.Alg, (x)

to be of the form
(y,7) <—s fSub.Alg, (z, ek, T, 1) .

This SEC’ game will be used in Theorem 7.2.

We will also define another game as a further modification to SEC’. Let S be the
tuple of all variables assigned during the game SEC’, before the the first instance where a
p-oracle is provided to A. Let S" = S\ {7,ek}. Let g be a function whose domain is the
set of all possible tuples S’, and whose output is a bit string. We say a function ¢ of this
form is a selection function for the game SEC’. We define the game SEC{ , (A) the same
as SECf,,(AA) but where the p-oracles no longer accept p as a parameter, and instead,
each oracle has the line p < g(5’) at the start of its execution. We will still refer to these
oracles as the p-oracles.

SECY,, is an appropriate game with which to evaluate the security of fSub. The
selection function g represents what value is targeted as being leaked by the ASA, and the
adversary A is tasked with breaking the security of fSub when this value is being leaked.
For a secure flexible ASA, we require that Advic is small for all selection functions g

with a fixed output length.

23

'y (fSub).Alg, (z, ek, T,) [o(fSub).Alg, (z, ek, T, 1)

o+ 1

w' <3 PKE.Enc(ek’, i)
elsec+—o+1
(y,7") <3 fSub.Alg, (z, k, 7', 1’ [0])
return (y, ((o, '), 7))

1. (ek',k) < ek 1. (ek',k) < ek

2. if 7= 1 then 2. if 7= 1 then

3. u' <s PKE.Enc(ek’, i) 3. u' <s PKE.Enc(ek’, i)

4. o+ 0 4. T 1

5. L 5. else (u/,7) <1

6. else ((o,p),7") 7 6. (y,7') < fSub.Alg, (z, k, 7", u')
;. if 0 = PKE.clen then 7. return (y, (1/, 7))

9.

0.

== e
N =

Figure 7.2: Definitions of transformation I'y and I's on flexible symmetric ASAs to obtain
flexible asymmetric ASAs.

7.1 Making symmetric flexible ASAs asymmetric

We now define our two modifications to flexible symmetric ASAs which result in flexible
asymmetric ASAs, one of type 1 and the other of type 2. Let A be a cryptographic scheme.
Let fSub be a flexible symmetric ASA on A, subverting the function A.Alg,. Let PKE be
a public-key encryption scheme. Define I'1 (fSub) and I'y(fSub) as the flexible asymmetric
ASAs on A with I'y (fSub).Alg, and I'y(fSub).Alg, defined in Figure 7.2. The subversion-key
generation algorithms for both subversions are the same: the extraction key is the private
key generated by PKE.KeyGen and the embedded key is the concatenation of the public
key generated by PKE.KeyGen and the key generated by fSub.KeyGen.

These two modifications are exactly the techniques we used in Chapter 5 and Chapter 6
respectively, to build asymmetric ASAs on symmetric encryption, but written for a generic
scheme.

Recovery of . We will be treating the analysis of recovery of p for I'; and I'y relatively
informally. If fSub is a flexible symmetric ASA, then a subverter A in possession of the key
k, upon observing outputs of the function fSub.Alg, (-, k, 7, 1), will be able to recover j.
Then T'y(fSub).Alg, enables the same for an adversary in possession of the extraction key
xk: the value that fSub is asked to leak will always be a chosen encryption u' of p under
PKE, and since fSub enables recovery of p’ in this context, A can recover p using k.

The case of T'; is a little bit more complicated. In this case, u is encrypted to 1/,
each of whose bits is used exactly once before a new encryption is computed. Each bit

54

is leaked using fSub. In order to conclude that A is able to recover u', we require that
fSub is capable of leaking single bits with high probability after the observation of only one
output. Otherwise, a full value of ' would not be able to be recovered.

Proving I';(fSub) is a type 1 asymmetric ASA. We can now prove the main results
of this chapter. The first deals with the augmented undetectability of I';(fSub), showing
that it is a type 1 asymmetric ASA.

Theorem 7.1. Let A\ be a cryptographic scheme. Let fSub be a flexible symmetric ASA on
A. Let Uy be an adversary for the ASRDET game of Figure 7.1 on T'1(fSub). Then there
1s an adversary Dy such that

ACIIZET) < AT 0h) + 2B (D)

The running time of Dy 1s about that of Uy plus the running time of PKE.KeyGen and
fSub.KeyGen, and Dy makes the same number of queries to its own oracle as U;.

Proof. We will proceed by a sequence of games. This sequence will be similar to the first
part of the proof of Theorem 5.1. Let Ly be the augmented state reset detectability game
ASRDETY, (ssuby(U1). Let Ly be the same as Ly but with x4 sampled randomly instead of
computed as an encryption of u. Let Lo be the augmented state reset detectability game
ASRDET$¢syp.

Let Dy be an adversary to the IND$ game for PKE that simulates games L and L; for
U, by using its own Opkg.gnc Oracle in place of PKE.Enc, given in Figure 7.3.

Let bg denote the bit from the IND$pke(D;) game. Note that if by = 1, then the oracle
simulated by D; proceeds exactly as in game Ly, and if bg = 0, then it proceeds exactly as
in game Lg. Thus we have

Pr[Dy =1 |bs = 1] =Pr[L] ,

Pr[D; = 1 |bs = 0] = Pr[Lo] ,

and hence
| Pr[Ly] — Pr[Lo] | = 2Advie¥ (D) .

From here, we note that, as in the proof of Theorem 5.1, the first lines (lines 1-10 in
adversary D;’s Helper) of the implementation of I'y(fSub).Alg, in game L, act as book-
keeping in order to use exactly one new random bit p at a time in fSub.Alg,. Substituting

95

OpKE.E
DyPeete (pk) Onig, (7, 1)
1. (zk,(ek',k)) «s ' (fSub).KeyGen() 1. if bgey = 0 then
2. ek « (pk, k) 2. y+sNAAlg,(z)
3. i+1 3. if bget = 1 then
4. 1w+ L 4. (y,7) <8 Helper(z, ek, 751, 1)
5. bget <3 {0,1} 5. i—1+1
o R 6. return
6. bl <sU, B < (ek) Y
7. if baey = by
o e Helper(z, ek, T, 11)
9. else 1. (pk,k) < ek
10. return 0 2. if 7 =1 then
/
Reset(j), 0 < j < i 3. ‘ ' <=5 OpkE.Enc(1t) ‘
4. o+ 0
1. if bget = 1 then 5. e 1
2. Ti £ Tj 6. else ((o,u), ™)« 7
3. i+l 7. if o = PKE.clen then
8. o<+ 1
9. ' 8 OpKE.Enc (i)
10. elseog+ o+1
11. (y,7’) <8 fSub.Alg, (z, k, 7/, 1)
12. return (y,((o,p'), 7))

Figure 7.3: Adversary D; for the proof of Theorem 7.1. The boxed code highlights the
difference between Helper and the I'; (fSub).Alg,.

o6

these lines for ' <—s {0, 1} and moving this line to the first line of the oracle call gives us
precisely the game Ly = ASRDETS¢s,,(U;), and Pr[L,] = Pr[Ls].

Taken together we get
1
Adviian) Uh) = | Pr[Lo] — 3
1
= |PI‘[L0] — PI‘[Ll] + PI‘[Ll] - §|

1
< |Pr[Lo] — Pr[Ly]| + | Pr[Ls] — 5’
= AdviSEPETS 14y 4 9 Advin (Dy),

as desired.]

Proving [';(fSub) is a type 2 asymmetric ASA. Next we deal with both the regular
undetectability and the security of I'y(fSub), proving that I's(fSub) is a type 2 asymmetric
ASA. The security of I'y(fSub) is evaluated using the game SEC%2(fSub), and an adversary’s
advantage at this game is bounded by using the game SECj . In this sense, we are relating
the security of I'y(fSub) to the security of fSub in the situation where the adversary must
provide the value of u, the “value to be leaked” by fSub. If an adversary must provide the
value to be leaked, then we would expect that there is nothing more to be learned for the
adversary, unless the scheme is leaking information in other ways. Thus, intuitively, what
we require is that fSub is not leaking any additional information; this is codified in the
game SECi . This provides the intuition for our security result, and the formalization of
what is required from fSub to ensure that I';(fSub) is secure.

Theorem 7.2. Let A be a cryptographic scheme. Let fSub be a flexible symmetric ASA
on N. Let SEC be a security game on N. Let PKE be the public-key encryption scheme
used to define I'y. Let g be a selection function for the game SEC’ with fized output length
equal to PKE.mlen. Let U, be an adversary for the SRDET game on I'y(fSub) and V; be
an adversary for the SECY game on I's(fSub). Then there is an adversary Uy such that

AdvP]fsup) (Un) = Advigiy ™ (Us)
and adversaries Dy and Vo such that
AdVPS ey (V1) < AdviEl (V) + 2Advie O™ (Dy)

The running time of Us is about that of Uy and Us makes the same number of queries to
its own oracle as Uy. The running time of Dy is about that of Vi, and Dy makes the same

57

number of queries to its own oracle as Vy. If the number of oracle queries that Vi makes is
n, then the running time of Vs is about that of Vi, plus the running time of PKE.KeyGen,
plus the running time of PKE.Enc times n. For each oracle in the game SEC, V, makes
the same number of queries to its corresponding oracle as Vy does.

Proof. For the undetectability result, we will construct the adversary U, directly; the con-
struction is given in Figure 7.4. We claim that U/, exactly simulates the game SRDETT, fsup)
for U;.

To see this, observe that for any query to Or,sub).alg, that U makes, the value of p/
passed to Osub.alg, is an encryption of 4 under PKE. Furthermore, the same encrypted 74
is reused in all invocations of fSub.Alg, unless 7,_; = L, in which case it is recomputed.
This is exactly the behaviour of the SRDETT, ts,p) game. Hence Pr [SRDETFQ(fSLJb) (Lll)] =
Pr[SRDET¢sub(U2)], giving our result.

For the security inequality, we will proceed by a sequence of games. Let K be the
game SEC%Q(fSUb) (V1). Let Kj be the game SECIJ:(;(fSub) (V1), where fj is the function that
outputs OPKEMen on all inputs. Let Ky be the game SEC! sy (V2).

Let Dy be an adversary to the IND-CPA game for PKE that simulates games K, and
K, for V; by using its own Opkg gnc Oracle in place of PKE.Enc. This is shown in Figure 7.4.

Let bpkg denote the bit from the IND-CPApke(D;) game. Note that if bpgg = 1, then
the oracle simulated by D, proceeds exactly as in game K7, since in K7 the only value of
u passed to the Helper function is OPKEMen If pprp = 0, then D, proceeds exactly as in
game K. Thus we have

Pr[Dy =1 |bpkp = 1] =Pr[K;] ,

PI‘[DQ =1 |bPKE = O] = PI‘[KO] ,

and hence
| Pr[K;] — Pr[Ky] | = 2AdvE P (D,) .

Next, we will construct the adversary Vs in the game SEC'ss,;, directly. Suppose that
the game SEC provides oracles O; for 1 < j < ¢, each with inputs labeled x and outputs
labeled y as tuples. After being modified for game SEC’, assume that oracles Oy, ..., Oy,
for some 1 < t; < t are p-oracles, and the rest are not. The adversary Vs, is given in
Figure 7.4.

We claim that V, exactly simulates the game SEC{:‘;“Sub) for V;. The argument and
construction are very similar to the symmetric detectability result. Observe that for any

o8

Z/{Q(/)fSub.Alg/\,ResetQ D?PKEAEnc (p/{?) Vy (%)
1. (xk,ek') <s PKE.KeyGen() | 1. SECY with the first part of 1. (zk,ek’) <s PKE.KeyGen()
2. i+1 2. ek = (ek’, k), which is generated | 2. ek ¢+ (ek’,k)
3. o« L 3. by I'2(fSub).KeyGen, replaced by | 3. 7+ L
4 bes Mlor‘z(fsub)_;ug)\ ,Resety 4. pk, and T’y (fSub).A|gA 4. V1 (ek)
5. return b 5. replaced by Helper. O jesCiL)
Hel k V) (@)
Resetl(j), 0 S] < eper{x,e , T, M) L yessvloj’jejg{l t}(x)
2. 1+1+4+1
3. Reseta(j) 3 ‘M' <3 OpKE.Enc (1) ‘ Oj (95), 1< <t
/
Or,(tsub).Alg, (T, /1) ;l. cloe : L 7 =1 then
, 2 1’ <s PKE.Enc(ek’, 0)
. 6 (W) 7 /
1. if 7,_1 = 1 then , -, 3. elsepy <71
2.y s PKE.Enc(ek’, 1) T e fS”E"Alg*(x’ BTl e
3 else 8. return (y, (', 7)) 5. yes (’);(z,,u')
4. p =T 6. returny
5. T; ,LLI
6.y <= Ofsub.alg, (@, 1)) Oj(.??),tl < j <t
7. 1+1+1
8. returny L y+sOj(z)
2. returny

Figure 7.4: Adversaries U, Dy, and Vs for the proof of Theorem 7.2. For Uy and Vs, queries
made by U; and V; to their oracles are answered by using the oracles provided to them as
indicated. D runs the indicated code to simulate the SECY game, and any oracle query
that would use I'y(fSub).Alg, (x, ek, T, 1) is answered using the code in Helper.

query to any oracle accepting a parameter p that V; makes, the value of u' passed to Vy's
oracle O} is an encryption of OPKE-mlen ynder PKE. Furthermore, the same g is reused in all
future oracle invocations. All oracles not accepting a parameter y are provided directly to

V. This exactly simulates the SECI{‘;(fSub) game. Hence Pr[K;] = Pr SECJ;OQ(fSub)(Vl) -
Pr[SECts,p(V2)] = Pr[Ks].
Combining these results, we get
AdVFsur (V1) = | PrKo] = ¢
= |Pr[Ko] — Pr[Ki] + Pr[Ki]| — ¢
< | Pr[Ko] = PrKy]| + | Pr[Ks] — ¢
= Advigys (V2) + 2Advig “™(Dy),

29

as desired.]

For the symmetric subversions on symmetric encryption from |] and |],
we can show that the quantities AdvfsEug, and Adv%ﬁf}DEm are small for any adversary; the
proofs in Chapter 5 and Chapter 6 did essentially that. Proving these advantages are small
for a given flexible ASA fSub would allow one to draw conclusions about the undetectability
and security of I'; (fSub) and I'y(fSub) using the theorems in this chapter.

60

Chapter 8

Discussion and Future Work

In this work, we formalized the approach of using state resets to detect ASA, and showed
how asymmetric ASAs can be constructed from symmetric ASAs. A key observation of
our work is that many published ASAs are detectable via realistic state reset attacks (such
as virtual machine snapshotting) despite having small state. As such, we encourage future
threat models to incorporate this notion of state resets when evaluating the detectability
of new ASAs.

We identify several topics that warrant further exploration.

Our type 1 and type 2 asymmetric ASAs have running times that are multiple times
longer than the algorithms they subvert. This would make them detectable by a user or
other adversary who is able to time execution of the algorithm. Furthermore, all of the
published ASAs which are more efficient (in the sense of running times closer to those of
the underlying algorithm) are, to our knowledge, detectable in the presence of state resets.
An interesting direction for future work is modeling detection of ASAs based on running
time and developing ASAs that resist both time-based detection and state reset-based
detection, or proving that an ASA satisfying both is impossible. Timing attacks are but
one way to model increased detection capabilities on the part of the user; other capabilities
and their effects on known ASAs are also of interest.

Further improvements to our ASAs are possible. Our type 1 asymmetric ASA mod-
ification is dependent on the ability of the underlying ASA to leak single bits reliably,
and this requirement could potentially be removed. Perhaps modifications could also be
made on “non-flexible” ASAs. Methods to enable key recovery with fewer ciphertexts
likely exist, and would be more effective in certain contexts. For example, suppose a user
is changing their symmetric key too often for the ASAs in this work to effectively leak

61

the key. Consider an ASA on symmetric encryption that leaks values in 2 stages: first,
it leaks a longer encryption of a locally generated shorter key, resulting in a secret key
shared with the external subverter; this process would not be interrupted by key changes.
Next, it uses this new key to undetectably leak the targeted secret key directly, requiring
interception of fewer ciphertexts. This ASA could be formulated as a generic modification
to an underlying symmetric ASA, as we did in Chapter 7. Such an ASA could be a type 1
or type 2 asymmetric ASA depending on the exact implementation of the leaks, and, after
the initial shared key is established, would recover keys more quickly than the ASAs we
presented in this thesis.

Further to the above, it is an open question whether a stateless type 1 asymmetric
ASA exists. While we have argued that state does not lead immediately to detection, the
effectiveness of a stateful ASA can be mitigated by using state resets. In fact, any ASA that
requires state for key recovery can be fully countered by a state reset after every invocation
of the subverted algorithm (as mentioned before, this may have significant impacts on
performance). We see no straightforward way of modifying our type 1 asymmetric ASA
to make it stateless. We encourage work on discovery of a stateless type 1 ASA or on an
impossibility result.

We have addressed the topic of countermeasures to ASAs only briefly in this work.
As mentioned, several different avenues exist in the literature: deterministic algorithms
[: , |; reverse firewalls using re-randomization [|; immuniza-
tion methods | |, including a split-program methodology for preventing ASAs
[: , |; and so-called self-guarding cryptographic schemes | . All
of these solutions assume some extra trusted component (for example, a trusted firewall
system, a period of time where the scheme is not subverted, or an unsubvertable algo-
rithm composition step). Each solution is able to produce significant guarantees on the
scheme’s resistance to ASAs. These countermeasures work against our ASAs as well, but
we nonetheless encourage more work on methods to prevent ASAs which are simple and
easy to implement in practice.

62

References

[AFMV19] Giuseppe Ateniese, Danilo Francati, Bernardo Magri, and Daniele Venturi.

[AMV15]

[AP19a]

[AP19b)]

[BBG13]

[BBOOT]

[BJK15]

Public immunization against complete subversion without random oracles. In
Robert H. Deng, Valérie Gauthier-Umana, Martin Ochoa, and Moti Yung, ed-
itors, ACNS 19, volume 11464 of LNCS, pages 465—485. Springer, Heidelberg,
June 2019.

Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi. Subversion-resilient
signature schemes. In Indrajit Ray, Ninghui Li, and Christopher Kruegel,
editors, ACM CCS 2015, pages 364-375. ACM Press, October 2015.

Marcel Armour and Bertram Poettering. Substitution attacks against message
authentication. TACR Trans. Symm. Cryptol., 2019(3):152-168, 2019.

Marcel Armour and Bertram Poettering. Subverting decryption in AEAD.
In Martin Albrecht, editor, 17th IMA International Conference on Cryptogra-
phy and Coding, volume 11929 of LNCS, pages 22-41. Springer, Heidelberg,
December 2019.

James Ball, Julian Borger, and Glenn Greenwald. Revealed: how
US and UK spy agencies defeat internet privacy and security,
Sep 2013. https://www.theguardian.com/world/2013/sep/05/

nsa-gchqg-encryption-codes-security.

Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and
efficiently searchable encryption. In Alfred Menezes, editor, CRYPTO 2007,
volume 4622 of LNCS, pages 535-552. Springer, Heidelberg, August 2007.

Mihir Bellare, Joseph Jaeger, and Daniel Kane. Mass-surveillance without
the state: Strongly undetectable algorithm-substitution attacks. In Indrajit

63

https://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
https://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security

[BPR14]

[BROG]

[BSKC19]

[BWP+20]

[CHY20]

[CNE*14]

[Des90)]

[DFP15]

Ray, Ninghui Li, and Christopher Kruegel, editors, ACM CCS 2015, pages
1431-1440. ACM Press, October 2015.

Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Security of sym-
metric encryption against mass surveillance. In Juan A. Garay and Rosario
Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 1-19.

Springer, Heidelberg, August 2014.

Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Serge Vaudenay, editor,
EUROCRYPT 2006, volume 4004 of LNCS, pages 409-426. Springer, Heidel-
berg, May / June 2006.

Joonsang Baek, Willy Susilo, Jongkil Kim, and Yang-Wai Chow. Subversion
in practice: How to efficiently undermine signatures. IEFEE Access, 7:68799—
68811, 2019.

Sebastian Berndt, Jan Wichelmann, Claudius Pott, Tim-Henrik Traving, and
Thomas Eisenbarth. ASAP: Algorithm substitution attacks on cryptographic
protocols. Cryptology ePrint Archive, Report 2020/1452, 2020. https://
eprint.iacr.org/2020/1452.

Rongmao Chen, Xinyi Huang, and Moti Yung. Subvert KEM to break DEM:
Practical algorithm-substitution attacks on public-key encryption. In Shiho
Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part II, volume
12492 of LNCS, pages 98-128. Springer, Heidelberg, December 2020.

Stephen Checkoway, Ruben Niederhagen, Adam Everspaugh, Matthew Green,
Tanja Lange, Thomas Ristenpart, Daniel J. Bernstein, Jake Maskiewicz, Ho-
vav Shacham, and Matthew Fredrikson. On the practical exploitability of dual
EC in TLS implementations. In Kevin Fu and Jaeyeon Jung, editors, USENIX
Security 2014, pages 319-335. USENIX Association, August 2014.

Yvo Desmedt. Abuses in cryptography and how to fight them. In Shafi Gold-
wasser, editor, CRYPTO’8S, volume 403 of LNCS, pages 375—-389. Springer,
Heidelberg, August 1990.

Jean Paul Degabriele, Pooya Farshim, and Bertram Poettering. A more cau-
tious approach to security against mass surveillance. In Gregor Leander, ed-
itor, F'SE 2015, volume 9054 of LNCS, pages 579-598. Springer, Heidelberg,
March 2015.

64

https://eprint.iacr.org/2020/1452
https://eprint.iacr.org/2020/1452

[FM18]

[GBPGO03]

[HS21]

[LCWW18]

[M5104]

[Pat99]

[Rog04]

[RPY7]

[RTYZ16]

Marc Fischlin and Sogol Mazaheri. Self-guarding cryptographic protocols
against algorithm substitution attacks. In Steve Chong and Stephanie De-
laune, editors, CSF 2018 Computer Security Foundations Symposium, pages
76-90. IEEE Computer Society Press, 2018.

Eu-Jin Goh, Dan Boneh, Benny Pinkas, and Philippe Golle. The design
and implementation of protocol-based hidden key recovery. In Colin Boyd
and Wenbo Mao, editors, ISC 2003, volume 2851 of LNCS, pages 165-179.
Springer, Heidelberg, October 2003.

Philip Hodges and Douglas Stebila. Algorithm substitution attacks: State
reset detection and asymmetric modifications. TACR Transactions on Sym-
metric Cryptology, 2021(2):389-422, Jun. 2021.

Chi Liu, Rongmao Chen, Yi Wang, and Yongjun Wang. Asymmetric subver-
sion attacks on signature schemes. In Willy Susilo and Guomin Yang, editors,
ACISP 18, volume 10946 of LNCS, pages 376-395. Springer, Heidelberg, July
2018.

Bodo Moller. A public-key encryption scheme with pseudo-random cipher-
texts. In Pierangela Samarati, Peter Y. A. Ryan, Dieter Gollmann, and Re-
fik Molva, editors, ESORICS 200/, volume 3193 of LNCS, pages 335-351.

Springer, Heidelberg, September 2004.

Kenneth G. Paterson. Imprimitive permutation groups and trapdoors in it-
erated block ciphers. In Lars R. Knudsen, editor, FSE’99, volume 1636 of
LNCS, pages 201-214. Springer, Heidelberg, March 1999.

Phillip Rogaway. Nonce-based symmetric encryption. In Bimal K. Roy
and Willi Meier, editors, FSE 2004, volume 3017 of LNCS, pages 348-359.
Springer, Heidelberg, February 2004.

Vincent Rijmen and Bart Preneel. A family of trapdoor ciphers. In Eli Biham,
editor, F'SE’97, volume 1267 of LNCS, pages 139-148. Springer, Heidelberg,
January 1997.

Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Cliptog-
raphy: Clipping the power of kleptographic attacks. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, ASTACRYPT 2016, Part II, volume 10032 of LNCS,

pages 34—64. Springer, Heidelberg, December 2016.

65

[RTYZ17]

[SBSS]

[SFKR15]

[Sim85]

[TY17]

[YY96]

[YY97]

[YY93]

[YY03]

Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Generic
semantic security against a kleptographic adversary. In Bhavani M. Thurais-
ingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017,
pages 907-922. ACM Press, October / November 2017.

M.E. Smid and D.K. Branstad. Data encryption standard: past and future.
Proceedings of the IEEE, 76(5):550-559, 1988.

Bruce Schneier, Matthew Fredrikson, Tadayoshi Kohno, and Thomas Risten-
part. Surreptitiously weakening cryptographic systems. Cryptology ePrint
Archive, Report 2015/097, 2015. https://eprint.iacr.org/2015/097.

Gustavus J. Simmons. The subliminal channel and digital signature. In
Thomas Beth, Norbert Cot, and Ingemar Ingemarsson, editors, EURO-
CRYPT"84, volume 209 of LNCS, pages 364-378. Springer, Heidelberg, April
1985.

Qiang Tang and Moti Yung. Cliptography: Post-Snowden cryptography. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, ed-
itors, ACM CCS 2017, pages 2615-2616. ACM Press, October / November
2017.

Adam Young and Moti Yung. The dark side of “black-box” cryptography,
or: Should we trust Capstone? In Neal Koblitz, editor, CRYPTO’96, volume
1109 of LNCS, pages 89-103. Springer, Heidelberg, August 1996.

Adam Young and Moti Yung. Kleptography: Using cryptography against
cryptography. In Walter Fumy, editor, FUROCRYPT’97, volume 1233 of
LNCS, pages 62-74. Springer, Heidelberg, May 1997.

Adam Young and Moti Yung. Monkey: Black-Box symmetric ciphers designed
for MONopolizing KEYs. In Serge Vaudenay, editor, FSFE’98, volume 1372 of
LNCS, pages 122-133. Springer, Heidelberg, March 1998.

Adam L. Young and Moti Yung. Backdoor attacks on black-box ciphers ex-
ploiting low-entropy plaintexts. In Reihaneh Safavi-Naini and Jennifer Se-
berry, editors, ACISP 03, volume 2727 of LNCS, pages 297-311. Springer,
Heidelberg, July 2003.

66

https://eprint.iacr.org/2015/097

[YY04] Adam Young and Moti Yung. A subliminal channel in secret block ciphers.
In Helena Handschuh and Anwar Hasan, editors, SAC 2004, volume 3357 of
LNCS, pages 198-211. Springer, Heidelberg, August 2004.

67

	List of Figures
	List of Tables
	Introduction
	State resets for detection of ASAs
	Asymmetric ASAs

	Preliminaries and Definitions
	Games and algorithms
	Cryptographic schemes
	Pseudo-random functions and random oracles

	Algorithm Substitution Attacks
	ASAs in prior works
	Countermeasures

	Using State Reset to Detect ASAs
	Detection of ASAs using state reset
	Detecting Ateniese, Magri, and Venturi's ASA using simple state reset
	Detecting Baek, Susilo, Kim, and Chow's ASA using sophisticated state reset
	Detecting Chen, Huang, and Yung's ASA using state resets

	Undetectability of Bellare, Paterson, and Rogaway's ASA
	Discussion

	A Type 1 Asymmetric ASA on Symmetric Encryption
	Undetectability of our type 1 asymmetric ASA
	Key recovery of our type 1 asymmetric ASA
	Key recovery in the presence of state resets

	A Type 2 Asymmetric ASA on Symmetric Encryption
	Undetectability of our type 2 asymmetric ASA
	Security of our type 2 asymmetric ASA
	Key recovery of our type 2 asymmetric ASA
	Key recovery in the presence of state resets

	Generalized Modifications to Obtain Asymmetric ASAs
	Making symmetric flexible ASAs asymmetric

	Discussion and Future Work
	References

