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Abstract 

Recently, time series forecasting has acquired considerable academic and industrial interest in 

various areas for different applications. Machine learning (ML) algorithms are known for their ability 

to capture the chaotic temporal non-linear relations in time series data. This research employs various 

ML concepts and algorithms into two different case studies of time series forecasting: 1-Regional wind 

power forecasting and 2-Air quality index (AQI) forecasting.  

 The first case study is conducted to focus on regional wind power forecasting comprehensively 

from different perspectives. First, the meteorological and spatial parameters with seasonal and temporal 

features were filtered and selected by a proposed deep feature selection approach consisting of series 

of steps. Later, multiple ML algorithms, including artificial neural network (ANN), deep neural 

network (DNN), long short-term memory (LSTM), bagging tree (BT), and support vector 

machine/regression (SVM/SVR), were used for training one-step-ahead forecasting models. Lastly, an 

assessment of the constructed models was conducted based on different error criteria metrics. The final 

comparative discussion concluded that the SVR-based model provided accurate generalized 

performance when tested on unseen data and surpassed other models, including LSTM. However, when 

constructing the multi-step ahead forecasting models, the predictions obtained from the multi-input 

multi-output (MIMO) LSTM approach were reliable with higher accuracies. Overall, for multi-step 

forecasting, it was concluded that the performance of the MIMO multi-step strategy was superior to the 

direct multi-step forecasting method, especially by employing algorithms with recursive properties. 

 It is also essential to mention that chapter 2 of this thesis is a comprehensive literature review 

of machine learning and metaheuristics methodologies of renewable power forecasting.  This review 

can guide scientists and engineers in analyzing and selecting the appropriate prediction approaches 

based on the different circumstances and applications. 

The second case proposes a comprehensive method to forecast AQI. The proposed methodology was 

tested on ambient air quality observations at Al-Jahra, a major city in Kuwait. The hourly levels of the 

six criteria pollutants (O3, SO2, NO2, CO, PM10, and PM2.5) were predicted using artificial neural 

networks, which then fed into the process of estimating AQI. The prediction of the AQI does not only 

require the selection of a robust forecasting model, rather it heavily relies on a sequence of pre-

processing steps to select predictors and handle different issues in data. One major problem that 

commonly appears in ambient air quality datasets is data gaps. The presented method dealt with this by 

imputing missing entries using miss-forest; a machine learning-based imputation technique.  The 
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effectiveness of this imputation method was examined against the linear imputation method for the six 

criteria pollutants and the AQI. Results obtained showed that models trained using miss-forest imputed 

data could generalize AQI forecasting and with a prediction accuracy of 92.41% when tested on new 

unseen data. 
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Chapter 1 

Introduction 

In this chapter, the motivation of this study is clearly defined, and the outline of the overall 

represented work in this thesis is also described.  

1.1 Overview 

Time series data is timely sequenced data that have high temporal dependencies. Time series analysis 

and forecasting aim to find and capture the trends in these data to build reliable models capable of 

representing these data. Models that provide timely, reliable predictions can then be used for different 

applications related to optimizing processes, scheduling and managing, waste prevention, and many 

other applications. Time series forecasting models can be built using only endogenous predictors, in 

other words, by only using the past observations of the target itself to forecast its future trends. While 

other forecasting models can be built by considering the impact of additional different time series 

independent factors, this type of forecasting is known as exogenous forecasting. Statistical and 

persistence models are the classical prediction models that provided reliable predictions in various 

applications. Although these models' primary focus is on linear relationships, these models are robust 

and perform adequately only if the employed data are pre-processed and appropriately prepared. On 

the other hand, the machine learning (ML)-based forecasting models recently proved their ability to 

capture and map non-linear relationships for different applications in industry, finance, and supply 

chain management.  

The main focus of this study is on these robust recent ML algorithms for time series forecasting. The 

motivation of this work is clearly defined in the following section.  

1.2 Motivation  

With the recent constant development and growth of the artificial intelligence (AI) discipline in 

general and ML in specific, wide ML applications have been proposed in the literature for different 

objectives. As mentioned before, time series forecasting is one of these objectives that has broad 

applications and implementations. Thus, our primary goal in this study is to assess ML learning 

algorithms by considering two different case studies: 

1- Regional wind power forecasting,  

2- Air quality index (AQI) forecasting.  
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 2 

Firstly, in each case study, a problem is clearly specified and motivated, then tackled by proposing 

systematic ML-based modelling consisting of all required pre-processing, feature selection, and 

dimensionality reduction steps to report results, finally, compare them, and recommend approaches, 

and provide guidance for future work. 

 It is essential to mention that the motivation of the two case studies is not only restricted to the ML 

methodologies implementation and testing, but the aim is also to provide reliable models that can 

contribute to industrial and environmental issues. For example, the regional wind power forecasting 

case study would provide a reliable, tested and verified model that can provide accurate regional wind 

power predictions. These predictions would be a part of the optimal scheduling and managing of the 

regional electrical grid, reducing the surplus energy production and increasing dependence on 

environmentally friendly resources. On the other hand, the AQI forecasting case study would help 

inhabitants prevent exposure to polluted low-quality air and help decision-makers cut off or reduce 

polluting actions at predicted peak hours. The more detailed, clear motivations for each case study will 

be presented later in chapters 4 and 5.  

1.3 Outline 

This thesis is compiled as follows:  

 Chapter 2:  Literature Review:  

The first section in Chapter 2 includes a comprehensive, in-depth literature review of ML 

applications for renewable power forecasting (including wind and solar power). 

 The other section of Chapter 2 briefly reviews the previous work represented for AQI 

forecasting.  

 Chapter 3: Concepts of Machine Learning Forecasting Models 

This chapter presents a conceptual and mathematical description of forecasting and evaluation 

methods utilized in the two studies. 

 Chapter 4: Regional Wind Power Forecasting  

A complete study is conducted in this chapter, evaluated, and concluded for wind power 

forecasting in Ontario using different machine learning methods.  
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 Chapter 5: Air Quality Index Forecasting.  

This chapter proposes an approach to forecast the AQI by applying different ML algorithms 

for different purposes to build a forecasting model, evaluate the proposed approach, and 

provide guidance for future work.  

 Chapter 6:  Thesis Conclusion and Future Work  

This chapter concludes the presented work and provides guidance and recommendations for 

future work.   
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Chapter 2 

Literature Review 

This chapter is divided into two sections as follows:  

 Section 2.1 includes a comprehensive, in-depth literature review of ML applications for 

renewable power forecasting (including wind and solar power).  

 Section 2.2 reviews the previous work represented for air quality index forecasting.  

2.1  Machine Learning and Metaheuristic Methods for Renewable Power Forecasting  

This section represents a comprehensive review of the recently published and proposed wind and 

solar power forecasting (ML)-based models. Comparing to the existing studies on the same topic, the 

contributions of this conducted study: 

1. A broad review of ML-based renewable power prediction methodologies and the metaheuristic 

optimizers of these methodologies is for the first time performed from a categorization viewpoint. 

Categorization is achieved by systematically allocating the ML prediction approaches and 

optimizers based on their similarities and differences and the type of forecasted renewable energy. 

This will provide an analytical review of the current renewable power forecasting studies based on 

renewable energy sort (wind or solar). 

2. Comparative evaluations of the ML-based renewable prediction methods and their metaheuristics 

optimizers are carried out. The drawn-out results would help other scholars decide on the 

appropriate ML-predictors and metaheuristic optimizers for various forecasting situations and 

purposes.  

3. Highlighting the ML applications' challenges for renewable power forecasting and providing key 

directions that would guide other scholars to focus on the potential issues that have not been 

resolved yet.  

In summary, despite the flourishing of related studies conducted to propose ML-based forecasting 

models, a review that summarizes these renewables' forecasting models and analytically evaluates their 

performance from a categorization perspective has not been investigated yet. 
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Therefore, this section analyses renewable power ML prediction tools and optimizers of these tools, 

emphasizes their weaknesses and strengths and underlines the challenges they accompanied to direct 

researchers on the issues that have not been settled yet. 

2.1.1 Introduction 

Governments and policymakers have promoted renewable energies' penetration into the electricity 

production sector to respond to the environmental crisis and reduce greenhouse gas emissions. 

According to the international renewable energy agency report, renewable energy resources 

contribution to electricity generation is projected to reach 85% by 2050, mainly due to the growth of 

solar and wind-produced power[1]. Although renewables are highly efficient, pollutant-free, and 

inexpensive to produce and distribute, they lack consistency. Unlike conventional resources (coal and 

fossil fuels), which can be generated according to the consumption and at specific, accurate schedules, 

renewable energies' production is variable; they rely on seasonal and weather conditions (eg., 

temperature, pressure, wind speed, visibility, etc.) [2]. These chaotic conditions can change 

dramatically from time to time, enforcing difficulties in the optimal electricity generation scheduling 

and managing and imposes concerns regarding electricity quality and stability[2,3]. In fact, if the 

integration of renewable energy into the electricity sector is not handled and controlled adequately, it 

could cause imbalanced and excess power production, which may increase the government's expenses 

instead of reducing them [4,5]. Moreover, this unpredictable stochastic nature of renewables resulted 

in serious unit commitment issues[6]. Therefore, accurate prediction of renewables has become an 

enduring worldwide interest in the literature.  

Thus far, various research studies have been employed to tackle the problem of unreliable and 

inaccurate renewable power forecasting models. These include persistence models, physical models, 

statistical models, AI models, and hybrid models consisting of a combination of two or more of these 

models. Lately, amongst these forecasting methodologies, AI-based models, particularly ML models, 

have gained researchers' interest. Unlike most of the traditional forecasting models, ML techniques can 

mainly capture the nonlinearity in power data. They can be applied for several purposes with only minor 

modifications. Therefore, because of their flexibility and compatibility, ML models could outperform 

and alternate the conventional ones [6] [7]. Moreover, these methods can significantly benefit the 

availability of large datasets to improve the forecasting performances, unlike the statistical models that 

typically are not expected to improve prediction with larger datasets.  
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2.1.2 An Overview of Renewable Power Forecasting 

In this section, recent structures in the literature for renewable power forecasting are reviewed. 

Various schemes and methodologies plus AI tools are discussed and described.  

Renewable power term generally encompasses all types of power gathered and generated from 

carbon-free renewable resources such as wind, sunlight, rainfall, and waves. Particularly wind and solar 

energies are fluctuating resources because their production rates depend on intermittent, unpredictable 

weather conditions (wind speed and directions and solar irradiation, respectively). Thereby, the 

renewable power forecasting-related research studies consider the wind and solar power outputs 

themselves and the wind speed and solar irradiation. From that perspective, renewable power 

forecasting methodologies will be reviewed, including wind speed or/and power and solar 

irradiance/power.  

Forecasting methodologies 

Figure 1 illustrates the differences between forecasting horizons and their applications in the 

electricity sector [7]. Including AI approaches, researchers proposed different forecasting structures by 

various methods and from multiple perspectives. These approaches and related research work for 

renewables forecasting (mainly wind and solar power) are reviewed in the following sections.  

Figure 1: Forecasting time horizons [7] 
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Persistence methodologies 

 These methodologies simply assume that power data values at the next time step are similar to the 

values of the current time step. Although these methodologies are not very practical for long-term 

forecasting, they perform well in very short-term and short-term forecasting(from a few seconds to 6 

hours-ahead ) [8]. 

Physical methodologies 

In addition to geographical locations and physical characteristics and layouts of wind turbines or 

solar panels, these methodologies depend on numerical weather predictions (NWP) such as 

(temperature, pressure, wind speed, wind density, roughness, turbulence intensity, etc.) [9]. Although 

these methodologies are reliable for medium and long-term forecasting, they cannot perform accurately 

for short-term forecasting [10]. Besides, they fail to adopt interferences, are computationally expensive, 

and require advanced computing machines[11]. Ref [12] comprehensively reviewed published studies 

tackling short-term forecasting by NWP models. This study was the last to summarize NWP-based 

models' applications because these models' implication was no longer attractive for researchers and 

many other recent methodologies started flourishing and outperforming physical and NWP-based 

models [9]. 

Statistical methodologies 

Statistical-based forecasting models are mathematical models that attempt to map and recognize the 

relationship between timer series historical data and target outputs [13]. They can clearly describe the 

data's linear relationship with basic simple mathematical equations  [7,8]. Furthermore, since they can 

be formulated easily, they can deliver timely predictions. Thus in the literature, these methods are 

mainly used for short-term forecasting [16]. 

A comprehensive literature review on statistical approaches for time series renewable energy 

forecasting was presented by Ghofrani et al. in Ref [17]. Autoregressive (AR) and moving average 

(MA) models are well-known examples of statistical forecasting systems [15]. The hybrid integration 

of these two techniques is known as the autoregressive moving average (ARMA). ARMA is widely 

used for forecasting and provides models with high accuracy for different applications. The work in 

[18] compared four other ARMA-based models for wind speed and direction forecasting. In another 

article, Gomes et al. presented a comparative study between ARMA and artificial neural networks 
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(ANN) for wind speed and power prediction. They concluded that both approaches result in similar 

results; however, the ARMA performance is slightly better [19]. In Ref [20], a non-linear autoregressive 

(NAR) model was suggested for short-term PV (Photovoltaic) power forecasting utilizing only 

historical data of the PV power (without using the NWP data). When comparing the NAR model's 

performance with the auto-regressive with exogenous input (ARX) model, it was determined that NAR 

gives better results than ARX. This conclusion contrasts with the result obtained in Ref [21], where 

ARX performed better.  

Another robust approach known as ARIMA (auto-regressive integrated moving average) is widely 

employed for different purposes in the literature until the date. For example, [22] used the ARIMA 

approach to predict daily solar energy production. Note that the application of ARIMA models requires 

the utilized data to be stationary; therefore, in their work, they transformed the non-stationary seasonal 

data into stationary ones. For longer-term forecasting, Ref [23] used the ARIMA model for one year 

ahead of wind speed and temperature forecasting. According to their conclusion, this generated model 

is generic, and with some minor modifications like increasing the input data size, this model can be 

applied for two-years ahead forecasting. 

A particular parsimonious type of ARIMA known as fractional-ARIMA was studied in Ref [24] for 

wind forecasting. Fractional-ARIMA is computationally simple and can capture time-series relations 

for both the long and short-term forecasting horizons. This paper employed this model for predicting 

hourly wind speed and up to two days ahead. The results were promising and showed that this simple 

model could improve the forecasting accuracy by 42 % compared to persistence forecasting models. 

In general, statistical models are considered attractive to researchers until the date because they are 

inexpensive and straightforward to apply. They presented acceptable accurate results for short-term 

horizons up to 2 days; however, they fail in forecasting and result in very unstable predictions for 

longer-term horizons  [16]. Besides, they require pre-processing time-series data (mostly when the data 

is discontinuous) to perform reliably and provide accurate prediction models. This pre-processing could 

cause issues and requires expensive computation machines. Thus, researchers started to use a hybrid 

combination of these statistical models with AI methods to resolve the pre-processing issues.  
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Regression methodologies 

This type of model aims to find the best mathematical representation that relates independent 

variables (generally NWP and some physical properties and operation conditions of the turbines or 

solar panels) to the dependent variables (wind or solar power) through curve fitting hyperparameter 

optimization techniques. Multilinear regression models are the simplest case of regression where the 

forecast variable is related to the predictors by a simple linear relationship [13]. For example, in [25], 

Abuella et al. utilized multilinear regression to build a solar power probabilistic forecasting model. 

Besides, simple linear quantile regression was used in Ref [26]  to create three different probabilistic 

models within the day (1-6 hours ahead) solar irradiation prediction. For building the three models, 

authors utilized historical data of solar irradiance as endogenous inputs and day-ahead NWP of 

irradiance as exogenous inputs. The obtained results showed that the presence of NWP as exogenous 

inputs improved the prediction results. However, similar to the results obtained in Ref [25], the 

comparative study of the model's performance in two different sites showed that the probabilistic 

models highly depend on the regional sky conditions. In the work done in Ref [27], the multilinear 

adaptive regression spline method was used with small training samples and a limited number of 

features to define a day-ahead solar power forecasting model. This proposed regression model used 

historical power output data and weather forecasts.  

In another article, Wang et al. in Ref [28] proposed a novel partial functional linear regression (PFLR) 

model to forecast a PV system's daily output energy. PFLR is similar to the multilinear regression, but 

it can also represent the nonlinearity structure in solar power data. Unlike statistical models that focus 

on utilizing historical data and underestimate the importance of the renewables data within the day 

pattern, PFLR incorporates the intra-day pattern of data and extracts valuable information from them. 

This work showed that this novel model that involves a few parameter estimates outperformed the ANN 

models and the regular multilinear regression. Another regression technique, known as multitasking 

Gaussian process regression (MTGP), was used in Ref [29]  as a post-processing step to improve the 

NWP of wind speed. This additional step tackled the unreliable predictions that yield from the NWP 

when the wind speed data's behavior is very complex and intermittent. The MTGP technique in this 

paper improved the forecasting accuracy of long-term forecasts and shorter-term forecasts. This 

improvement of NWP resulted in superior prediction results compared to the statistical predictors that 

are well known for their accuracy for short-term forecasting. Authors of Ref [30] performed a 

comparative study to compare four different heuristic regression techniques, including Kriging, 
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Figure 2: Relationship between artificial intelligence, machine learning, deep learning, and artificial neural 

networks [36] 

response surface method (RSM), multivariate adaptive regression (MARS), and M5 model tree (M5 

Tree) for solar irradiation modeling. Comparative results showed that Kriging executed a better 

performance compared to the other three methods.  

Overall, although regression forecasting methodologies are simple and performed promisingly in 

some applications, they lack generalization and highly depend on the input data. Besides increasing 

their accuracy, many explanatory variables are required, which is considered a limitation of this method 

[31]. Not to forget to mention that all the linear regression models share the assumption of a linear 

relationship between the independent and dependent variables, which is rare in most renewable power 

applications, especially in wind power-related problems. 

Machine learning forecasting methodologies  

AI is a subfield of computer science; in AI, intelligent machines or artifacts are designed and trained 

to function like humans by following specific commands in computer programming systems. AI-based 

forecasting models accelerate decision-making, data mining, and clustering problems because they can 

robustly handle big data fitting and develop good representations. Besides, they can employ too 

complex tasks with moderately short time and without being explicitly programmed. Thereby, AI 

methodologies have been used for various prediction applications in different areas of engineering, 

medicine, economy, and agriculture [32]. Thus, the focus on proposing AI-based forecasting models 

grew a lot in the past few years and even started to alternate the conventional known prediction models  

[33]. 
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ML, ANN, and deep learning (DL) are all subsets of AI Figure 2 illustrates the differences and 

relationships between these subsets [34]. The following sections will review the recent research routes 

of renewable power forecasting (both wind and solar power) based on the used machine learning 

algorithms for forecasting.  

ML is an approach for data analysis, which gives computer systems the power to learn from data 

through experience. ML techniques can generally capture the nonlinearity and adapt instability in data, 

resulting in more reliable predictions [15].  

Therefore, in the past few decades, ML tools were employed for forecasting various problems, such 

as renewable energy forecasting. According to our survey ANN, recurrent neural network (RNN), 

support vector machine (SVM), and extreme learning machine (ELM) are the most used ML techniques 

for renewable energy forecasting.  

2.1.3 Artificial Neural Networks-Based Methodologies 

All types of ANN have layers of neurons; The input layer is the layer where the network receives the 

input features; each neuron in this layer takes an input feature. The output layer is where the final targets 

are estimated. The hidden layer is the connection between the input and the output layer, where most 

of the required computational operations occur; Figure 3 represents the hidden layers' node structure. 

As shown in Figure 4, the outputs of the nodes of an ANN are determined by passing the input features 

multiplied by their corresponding weights to an activation function in the hidden layer's nodes. There 

are several types of ANN; Figure 4 represents the classical structure of an ANN. In this section, the 

applications of ANNs for wind and solar power forecasting are reviewed. 

 

 

 

 

 

 

 
Figure 3: Node structure of an ANN 
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ANN for wind power forecasting  

The systematic literature review for wind power forecasting in [35]  confirmed that ANNs are 

considered the most frequently applied intelligence models in the literature for wind power forecasting 

in the past five years. These networks provided adequate results because of their ability to capture 

nonlinearity in wind patterns, especially for short and medium-term forecasting [35], [36]. The simplest 

type of ANN is the feedforward NN (FFNN); in [37], this network was used to predict a 2.5 MW wind 

turbine's monthly energy production. To train this network and increase forecasting accuracy, Nielson 

et al. selected wind speed and density incorporated with the atmospheric stability (represented in 

turbulence intensity, Richardson number, and wind shear) as input features to this network. This 

proposed approach reduced the mean absolute error (MAE) of wind power estimation by 59% 

compared to the standard estimation method. 

On the other hand, the authors of [38] compared the performance of FFBP-ANN with the other two 

ANN types, namely adaptive linear element (ADALINE)NN and radial basis function ANN(RBF-

ANN) for wind speed forecasting. According to the evaluation metrics, none of the three networks 

showed universally superior performance to the other. Nevertheless, RBF-ANN resulted in favorably 

accurate predictions when utilized in the forecasting stage in the hybrid wind forecasting model in Ref 

[39].  

Although the logarithmic sigmoid function is the most commonly exploited transfer function, the 

work in [40] showed that building an ANN with two hidden layers with two different activation 

functions,  hyperbolic tangent transfer function in the first hidden layer and sigmoid transfer function 

Figure 4: Schematic diagram of ANN structure 
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in the second hidden layer could improve wind energy prediction accuracy and adequately map the 

data's features. It is essential to mention that, in this work, the monthly maintenance hours were used 

with metrological data as inputs to this ANN. Simulation results demonstrated that considering 

maintenance hours as an input improved the model reliability since they are inconsistent from month 

to month and directly affect the power production. Furthermore, another work incorporated the 

differential polynomial function in the ANN to build a wind speed correction model. This work's 

findings illustrated that the differential polynomial function could model an existing complex system 

by solving and forming differential equations. On the other side, wavelet neural networks (WNN) are 

also well-known powerful prediction tools when high accuracy predictions and fast convergence are 

needed [41]. For instance, the sine activation function was incorporated with the rough concept to build 

a rough sinusoidal ANN in  [42]. This work showed that the rough sinusoidal function handled the 

dramatic changes and the erratic stochastic behaviors in wind speed, especially at the peaks.  

The fuzzy concept also showed powerful, promising performance in wind prediction approaches. 

Although training an adaptive neuro-fuzzy inference system (ANFIS) is time-consuming and 

considered complex, it is a universal estimator that lowers convergence errors [43]. For instance,  Liu 

et al. in Ref [44] employed a hybrid ANFIS approach for 48-hour-ahead short-term wind power 

forecasting. This approach combines the predicted power by three different forecasting models and 

outputs the final forecasted power. By comprehensive performance comparison between the hybrid 

proposed model and three individual forecasting models, namely RBF-ANN, BPNN, and least square 

support vector machine (LSSVM), the authors demonstrated that their hybrid methodology has superior 

performance with respect to reliance and accuracy. In addition, unlike the three models that their 

accuracy differs from season to season, the ANFIS model significantly improved the forecasting data 

throughout different seasons.  

ANN for solar power forecasting  

Similar to wind forecasting, solar forecasting is widely achieved by the different types of ANN 

approaches. This section will review some proposed ANN-based methodologies for forecasting solar 

irradiation and power.  

The work done in  [45] showed that the 14 input FFNN outperformed the well-known multilinear 

regression methodology for hourly solar power forecasting. Despite the importance of normalization 

of input data that is always discussed in the literature, this paper's analysis showed that the normalized 
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input data does not significantly improve the forecasted data's accuracy. Nevertheless, their 

investigations revealed that data preparation and cleansing significantly affect the results and the ease 

of training the ANN. Moreover, the findings showed that eliminating the night hours from the input 

data could slightly improve the performance, and as expected, the predictions for clear sky hours and 

days were more reliable than cloudy and rainy days. To overcome the issue related to sky conditions 

for solar forecasting, O'Leary et al. in Ref [46] suggest using the input masking technique based on the 

error clustering in the time domain. They categorized time frames into four categories (Night, Sunrise, 

Day: when solar energy is consistent (on sunny days), and Sunset). Simulation results showed that input 

masking could improve the prediction outputs of the ANN by 1.3 %. They suggest performing the same 

input masking for different environments and scenarios to confirm the importance of masking.  

The correlation factor of monthly solar energy prediction was enhanced by 9 % in Ref [47] when the 

ANN was hybridized into the non-linear autoregressive method. Besides improving accuracy, this 

hybridization reduced the inputs' size to the non-linear autoregressive approach, saving memory. The 

technique was simulated using data from various sites with different climates in Nigeria to guarantee 

and prove the prediction generalization. This model generally showed adequate results for longer-term 

forecasting, which is considered essential for planning and scheduling solar power applications.  

With all of the proposed forecasting techniques in the literature, choosing the most reliable prediction 

method became challenging. To discourse this issue, authors of reference [48] raised an essential 

question on how to perform a fair comparison that reflects the models' actual superiority concerning 

the data's nature. This question was addressed by comparing 68 ML and statistical techniques for 1-

hour ahead global horizontal irradiance (GHI) forecasting, using data from 7 stations in 5 different 

climate zones in the US. This finding of this work contributes to suggesting the most appropriate 

prediction methodology for each specific climate zone.  

Authors of Ref [49] reinforced the dramatic influence of feature selection of inputs on ML-based 

methodologies. They used neighborhood component analysis to select the appropriate inputs from a 

pool of 85 different inputs in their work. Their selection was based on regularization and minimization 

of a specific objective function that gives the most reliable daily solar irradiation forecasting results. 

The analysis results showed that evaporation rate, maximum air temperatures, albedo, cloud cover, 

relative humidity at maximum temperature, and specific humidity at 1000 hPa are the inputs that 

resulted in more accurate predictions. Afterward, they compared the performance of different ML 
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Figure 5: RNN cell 

techniques, including SVM, process gaussian, and ANN. According to statistical evaluation metrics, a 

feedforward backpropagation ANN with Levenberg Marquardt as a training function shows 

significantly superior performance in the five different sites in Queensland in Australia.  

2.1.4 Recurrent Neural Networks-Based Methodologies 

Although the FFNN, as discussed before, is adequate for presenting the pattern that relates specific 

output into a set of inputs, it learns the pattern of the targets independently without having any context 

or memory of the previous targets [50]. To tackle this issue, (RNN) was introduced and used for time 

series forecasting. RNN is a subset of ANN, and it shows a robust performance when the order or the 

sequence of events or data matters and affects the following predictions [51]. Unlike the ANN, as shown 

in Figure 5, the RNN considers features from the current timestep inputs (xt) and features from the 

previous hidden step (ht-1).  Figure 6 shows the simple structure of RNN with respect to node 

connections where the hidden neurons take two input sets, one from the input layer and the other from 

the hidden layer's output of the previous step. Holding and using information from the past time is 

considered a memory that relates the prior knowledge to the current one. 

Nevertheless, RNN suffers from short-term memory, i.e., it cannot learn properly to preserve 

important information for long time sequences[52]. Moreover, during the training process of RNN, the 

error gradient starts to exponentially fall until it vanishes, interrupting the training process at early stages 

[53].  
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Two improved types of RNN nodes were proposed to overcome these issues, namely gated recurrent 

unit (GRU) and long short-term memory unit (LSTM). These two units have inner gates that can control 

the contribution of information from previous and current timesteps. By this, they pass significant 

attributes to long series sequences to predict and ignore un-significant information[52]. The GRU inputs 

are similar to the RNN ones; however, the mathematical operation that happens inside the GRU gates is 

slightly different. As shown in Figure 8, GRU's structure includes two gates, the update and the rest gate. 

The update gate decides on what previously stored information to remove and what new information to 

add. In comparison, the rest gate decides how much of previous attributes to overlook and forget.  

On the other hand, as illustrated in Figure 7, the LSTM has four different gates (forget, input gate, cell 

state, and output gate). The forget gate is similar to the update gate in the GRU. The input gate takes the 

same inputs as the forget gate and processes them into sigmoid and tanh functions. The sigmoid function 

decides what information should be updated, and the tanh bounds the information between -1 and 1 to 

regulate the information's flow. Next, the outputs of the sigmoid and tanh functions are multiplied to 

generate the input gate's output. Afterward, the input gate outputs and the forget gate outputs are added 

to give the new cell state. Finally, the result passed to the output gate, which calculates the following 

hidden state. 

 The following section will review some published literature papers proposing wind and solar 

forecasting models utilizing RNN concepts. 

 

 

 

Figure 6: Schematic diagram of RNN 
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RNN for wind power forecasting 

   Since the recursive structure of the RNN can handle the complex nonlinearity in time series wind 

data, RNN has been employed in various references to manage the forecasting of wind power and speed. 

This section will review different classes of RNN proposed for wind forecasting.  

Authors in [54] performed an ultra-short-term  (15 minutes ahead ) wind speed forecasting utilizing 

the GRU network. To determine the optimal input size required for training the GRU models, various 

input sizes were used. Results showed a considerable drop in the MAE when the input is the previous 

30 timesteps. Nevertheless, MAE and RSME values start to fluctuate after the 30-input length. Thus, 

the 30 previous timesteps were considered adequate for forecasting in this paper. Afterward, to validate 

the model's accuracy, its performance was compared to the simple RNN and LSTM. Although LSTM 

was always known for its robust execution for time series forecasting, it did not perform better than the 

GRU approach. In fact, the GRU requires less parameter tuning and can be trained in a considerably 

shorter time. Besides, as expected, the simple RNN with the fastest training time performed poorly, 

especially at peaks where wind speed changes severely. 

Consequently, it is more reasonable to consider using GRU when both the performance and training 

time are essential for forecasting wind speed. In fact, also for wind power forecasting, the same results 

confirming that the implementation of GRU is similar to the LSTM with faster convergence and less 

tuning were obtained in Ref [53]. To speed up the convergence, i.e., the training time of the LSTM, 

authors in [55] proposed an enhancement technique known as LSTM- enhancement forget gate (LSTM-

EFG). In this approach, four modifications on the classical LSTM are performed: 1) two peepholes are 

added, 2) the tanh function is changed into softsign, 3) the input gate is completely removed, 4) the data 

Figure 8: Structure of GRU Figure 7: structure of LSTM unit 
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update value is determined by subtracting the output of the forget gate from one matrix.  These 

modifications directly affect the forget-gate, which in its role accelerates the convergence. It is also 

important to mention that in order to maximize the LSTM-EFG approach's execution, a clustering 

technique combined with a temporal feature extraction methodology was incorporated into the system. 

The work's conclusions verified the surpassing performance of the LSTM-EFG compared to the 

classical one and other benchmarking models. On the other hand, authors in Ref [56] claimed that the 

single wind power and speed predictions in some cases fail to be sufficient for electricity grid managing 

and scheduling. From this perspective, they suggested a multiple-input multiple-output (MIMO) model 

that forecasts wind power at different time horizons by a one-step simulation. In this model, an attention 

mechanism GRU coupled with a sequence-to-sequence technique is employed to select features. Unlike 

the classical feature selectors, which are applied once to discover the target's dependency on the inputs, 

the attention mechanism estimates all the inputs' relevance to the target wind power outputs and creates 

weights representing these dependencies.  Besides that, the GRU blocks' hidden activations can extract 

both the spatial and temporal features for each time step, which contributes to improving the accuracy. 

Conclusions drawn from simulations confirmed that these two proposed strategies enhance the stability 

and accuracy of forecasting wind power simultaneously at different time horizons. Besides, the 

attention mechanism GRU lessened the error accumulation problem that always couple to the recursive 

forecasting models. In general, this proposed model resulted in the competitive performance of the 

LSTM with faster convergence.   

RNN for solar power forecasting 

   Since the recursive construction of the RNN validated its ability to learn the patterns of time sequence 

data with seasonal and unstable trends, utilizing RNN for solar power/ irradiance forecasting also 

recently attracted the researchers' interest  [57]. For instance, the comparative study in Ref [58] was 

carried out to compare different methodologies for long-term solar radiation forecasting (1-year 

interval). The simple RNN network and the RNN with GRU and LSTM units proved their effectiveness 

in learning temporal dynamic behavior between the inputs and outputs for this case study. Comparison 

results showed that these methods could accurately generate highly accurate outcomes with low means 

squared error (MSE) compared to the traditional forecasting techniques, i.e., random forest regression 

(RFR) and the conventional shallow FFNN. Another recurrent network, Elman-RNN, was trained by 

the cooperative neuro-evolution algorithm in Ref [59] to forecast the half-hourly PV power output. In 
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this paper, the suggested approach considered both univariate and multivariate models. The evaluation 

results, as expected, highlighted the improvement of the accuracy when training a multivariate model 

and verified the effectiveness of the proposed model by comparing it to three different persistence 

forecasting methodologies. Internal memory in this network that can deal with the variability of the PV 

data is considered a direct result of this promising performance. 

Authors of [60] chose to utilize the recurrent networks, namely GRU and LSTM, to compare the 

univariate and multivariate approaches for direct normal irradiance hourly forecasting. They detected 

that computational-wise, GRU exhibited better performance than the LSTM because LSTM is 

computationally time-consuming with no significant superiority, especially for the multivariate 

approaches. Besides, to confirm the importance of incorporating the wind speed and direction and the 

cloud coverage data to the networks' input layer, they trained the networks with and without these inputs 

and compared the model's accuracy. The comparison results reinforced the significance and 

effectiveness of incorporating these inputs for irradiance forecasting, where the accuracy increased by 

23.32 % and 8.91% for simulations with the wind and cloud coverage data, respectively.  

Commonly the meteorological stations categorically report the daily sky condition without 

considering the variations from area to area throughout the day. These data, when used for forecasting 

solar power they negatively affect the accuracy of the forecasts. Aiming to address this issue and 

increasing the reliance on solar power forecasts, Hossain et al. [61] proposed an approach based on 

LSTM-RNN as the forecasting step. In their model, after performing a statistical correlation analysis to 

choose the most suitable predictors for the LSTM, a k-mean analysis approach was used to tackle the 

sky type issue. In this approach, solar irradiance was dynamically clustered for each hour of the day 

according to the sky type. These clusters create an hourly numerical approximation of the solar 

irradiances. Unlike classical sky type information represented for the entire day, the clustering 

technique makes an hourly synthetic weather forecast. These synthetic data are coupled with weather 

variables such as humidity, temperature, wind speed, and historical PV data fed as input to the deep-

LSTM. When constructing a comparison simulation between the LSTM with the proposed approach 

and another two LSTM networks with hourly and daily categorical sky type data, findings verified the 

proposed approach's effectiveness to increase forecasting precision. Finally, to verify the LSTM's 

promising performance, it was compared to simple RNN, generalized regression NN, and ELM, all 

with the same synthetic input data. The LSTM followed by RNN outperformed the other two 

methodologies; this also supports the utilization of recursive forecasting structures.  
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2.1.5 Support Vector Machines-Based Methodologies 

   SVM is a powerful supervised machine learning technique based on a kernel-learning method that 

resolves the local minima issue that appears when training ANN [62]. The input datasets are mapped 

into linear features with a higher-dimensional space through a kernel function in SVM. This data 

mapping gives the SVM the ability to capture the nonlinearity in data and accurately predict erratic 

estimates such as wind and solar power [62]. In general, SVM is highly efficient in high dimensional 

spaces, comparatively memory effective, and resolves the local optimization problems in training ANN. 

However, in addition to its poor performance when the training data sets are relatively large, SVM's 

constrained optimization is computationally expensive. To overcome these drawbacks, (LSSVM) was 

recently introduced as a type of SVM with a loss function incorporating the summation of squared error 

(SSE) and transforming the inequality constraints to equality ones. This particular loss function of the 

LSSVM speeds up the training process and reduces the SVM's computational complexity [63]. 

Considering the appropriate kernel function has a significant impact on the performance of both the 

SVM and LSSVM. Linear kernel function, polynomial kernel function, radial basis kernel function, 

and wavelet kernel function are the most commonly employed functions in assembling the SVM.  

SVM for wind power forecasting 

As mentioned before, choosing the proper kernel function and tuning its parameters is a significant 

key when employing SVM models for forecasting. Thus, the authors of [62] suggested a new kernel 

function that can be incorporated into the SVM by holding the SVM's advantages and at the same time 

improving its accuracy in forecasting. This hybrid kernel function is a combination of a wavelet kernel 

function and a polynomial kernel function. Authors claim that this combined kernel function will 

preserve the good local interpolation ability in the wavelet function and, at the time, improve its 

extrapolation by combining it with a polynomial function. The claim was verified by training the SVM 

for ultra-short-term wind speed forecasting using this integrated kernel function. The cross-validation 

technique evaluated the performance, and the results showed that the hybrid function reduced the mean 

error by 3.94 %. In this paper, the input's dimensionality to SVM was reduced using the PCA approach, 

and the historical wind data were clustered according to their trend. This pre-processing step also 

contributed to improving the reliability of the proposed method. From the same perspective, in the study 

conducted in [64], the density-based spatial clustering of applications with noise (DBSCAN) clustering 

technique was employed after dimensionality reduction before using the SVM for wind speed 
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forecasting. This study also highlighted and reinforced the importance of clustering the data before 

implementing the SVM for forecasting, where the clustering decreased the MAE by 54 %. 

Because the SVM models provide the generalization, utilizing SVM for wind speed and power 

forecasting attracted scholars' interest. Nevertheless, optimizing the performance and tuning the SVM 

parameters remains challenging, and no specific optimization algorithm has been highlighted to have 

superiority over the other. Accordingly, SVM models are accompanied mainly by various optimization 

techniques creating hybrid forecasting models. More SVM forecasting approaches hybridized with 

optimization procedures will be reviewed later in Section 2.17.  

SVM for solar power forecasting 

In general, SVM models can positively tolerate the noise and the volatility in data, and they can, in 

most cases, outperform the other ML techniques [65]. This superiority was also proven in the recent 

work in [66], where SVM was compared to ANFIS and ANN for estimating global solar irradiance in 

humid areas. The solar irradiance in damp locations is very chaotic and affected by the cloud coverage 

and the rainfall, and in fact, it is not tackled enough in literature. Therefore, the research conducted in 

[66]incorporated the rainfall as input to the three different ML techniques and tested their performance. 

As mentioned before, the results confirmed the superiority of SVM and illustrated the importance of 

considering the rain precipitation when forecasting the irradiance in such humid areas. The performance 

of ANFIS and ANN was almost similar, and no considerable supremacy was investigated. 

To reduce the uncertainty in PV power generation forecasting and maintain the appropriate unit 

commitment in power plants, researchers in [67] suggested four different SVM forecasting models. 

Based on the seasons, four SVM models were trained to predict power generation and PV module 

parameters independently. Weather and PV power historical data were used as inputs to the SVM 

models.  RBF kernel and the polynomial kernel were tested to determine the suitable kernel function 

for each model. According to accuracy, reported simulations in this paper and comparisons showed that 

the RBF kernel performs better for PV module parameters forecasting than the polynomial kernel. In 

contrast, the polynomial kernel resulted in lower MSE and MAE for PV power production forecasting. 

In fact, the work in this paper can provide beneficial guidance for future work related to PV power plant 

management and scheduling.   

As mentioned before, the time horizon of forecasting can also affect the accuracy of ML models. For 

example, Fahteem et al. applied LSSVM with RBF kernel to forecast the solar irradiance at different 
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time horizons [68]. Among different inputs, they utilized sunshine durations and other weather data as 

inputs to build the models. Results showed that LSSVM performs better for short-term forecasting, and 

the accuracy of models decreases for longer-term forecasting. In fact, these results go along with the 

conclusions obtained in [44] where the LSSVM did not result in an adequate model for 48 hours ahead 

of forecasting. The authors of [69] addressed the weakness of LSSVM in longer-term forecasting by 

hybridizing it with the 3-D wavelet transform for 24-hours ahead PV power forecast. Their proposed 

approach handled and reduced the high dimensionality of the inputs to the LSSVM and considered the 

Spatio-temporal features, improving the long-term forecasting results.  

2.1.6 Extreme Learning Machines-Based Methodologies 

  ELM is a particular type of single-layer FFNN that does not require the backpropagation algorithm 

for training and weights update. Instead, the ELM uses the Moore-Penrose generalized inverse for 

estimating the target outputs [31]. Unlike the FFNN, this unique ELM structure reduces computational 

complexity and cuts the need for manually optimizing and tuning multiple parameters [70]. 

Nevertheless, since ELM's loss function is based on second-order statistics, it fails to perform with non-

linear or non-gaussian data. Most of the wind and solar power-related forecasting models are built based 

on chaotic and non-linear data. Therefore, an individual ELM approach for both wind and solar power 

forecasting is limited literature. Generally, when the ELM models are used, an optimization algorithm 

or other forecasting technique is combined with ELM to improve the prediction models' reliance and 

increase their accuracy.   

ELM for wind power forecasting 

To improve ELM's ability to capture the non-linear pattern in data and increase the forecasting model 

accuracy, the authors of [70] proposed a wind power forecasting model based on ELM with a modified 

loss function. They incorporated kernel mean p-power error loss instead of the classical MAE loss 

function in ELM. When authors conducted comparative experiments, they concluded that from a 

performance perspective, this adjustment in loss function improved the accuracy and provided reliable 

results compared to the classical ELM. Nevertheless, it resulted in losing the extreme computational 

speed of the ELM, which is considered a primary advantage when using the ELM. Therefore, as 

mentioned before, generally in the literature, to preserve the benefit of rapid learning in ELM and at 

the same time generate reliable models hybridizing the ELM with an optimization algorithm is 

necessary.  
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ELM for solar power forecasting 

Hossain et al. in [71] conducted a comparative study for hourly and daily PV power forecasting of 

three different girds using various ML techniques. Solar radiation, wind speed ambient, module 

temperature, and PV power output data were used to train the models. RBF kernel SVM, sigmoid ANN 

trained with Levenberg–Marquardt algorithm, and the ELM were all trained and evaluated. Reported 

experimental simulations illustrated that ELM could perform better for longer-term forecasting and has 

the highest learning speed than the other two ML techniques. Nevertheless, the authors highlighted that 

this ELM model could not tolerate exogenous input data and suggested addressing this issue in future 

work. 

2.1.7  Metaheuristic Optimized Machine Learning Forecasting Methodologies 

Generally, metaheuristics algorithms are implemented as a search guide to find the near-optimal 

approximate solutions that can improve specific systems' performance with moderate computational 

costs [74]. Based on the search strategy, metaheuristic algorithms are mainly classified into two main 

algorithm classes 1) trajectory-based algorithms and 2) population-based algorithms.  

According to what has been discussed and reviewed in the previous sections, it is clear that although 

single ML models can be trained to forecast renewable power, in some cases ML models, are inadequate 

to fulfill the accuracy required for electricity sector applications. For example, these models can easily 

fall into optimal local values issues and fail to generate generalized forecasting models. Besides, 

determining the networks' optimal structure and tuning their parameters can be time-consuming and 

requires an enormous number of trial-and-error experiments [33]. Therefore, scholars supplemented 

various ML approaches and metaheuristics optimization techniques together to build computationally 

inexpensive effective ML networks and reliable prediction results [73]. 

The metaheuristics are used with ML networks for two different purposes:  1) tuning and estimating 

the model parameters during the training process 2) tuning hyperparameters related to the network's 

structure [72]. The following section will briefly review the proposed metaheuristics techniques for 

tuning the hyperparameters of different ML methods.  

2.1.8 Metaheuristic Optimization of the Network Hyperparameters of the ML Systems 

  The ML networks' hyperparameters are the variables that are set to construct the network structure. 

Tuning these parameters is essential since they can directly affect the training algorithm's performance, 
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which will eventually have a crucial control on the precision of the prediction model that is being 

learned and trained [73]. These parameters generally obtain the networks' structures (i.e., the numbers 

of units in the hidden layer, the type of the activation functions) and the initializing schemes weights 

and biases based on the selected activation function [73]. Unlike the learning-related parameters, the 

network's structure hyperparameter tuning is mainly achievable through Grid search, random search, 

and Bayesian optimization[73].  

The applications of metaheuristics for hyperparameters tuning are not notably found in the literature. 

Only a few scholars reported their application of metaheuristics for networks' hyperparameters tuning. 

For example, for wind power forecasting systems, the authors of [74] conducted a study to validate the 

importance of tuning the number of hidden neurons of a wind power ANN forecaster through the swarm 

and evolutionary optimization algorithms. This study defines the ANN prediction system's structure as 

applying particle swarm optimization (PSO) and differential evolution (DE) algorithms through an 

automated selection approach. The proposed models were tested for predicting the wind power of 10 

different wind power stations in Germany. Reported results illustrated that the proposed automated 

system through the two optimization approaches reduced the prediction error for most power stations 

compared to the manually tuned ANN . The PSO tuning approach enhanced the prediction by 9.6% and 

the DE approach by 6.8. Another application route of this ML- metaheuristics integration can be found 

in [42], where authors employed the GA to determine the optimal configuration of a stacked denoising 

autoencoder that was used as a pre-wind speed forecasting approach to denoise the data before 

processing them into forecasting network.  

2.1.9 Comparative Discussion of Machine Learning and Metaheuristic Methodologies 

Machine learning techniques (ANN, RNN, SVM, and ELM) have been successfully utilized for 

renewable power forecasting. In many references, according to statistical evaluation metrics such as 

MAE, MSE, root mean squared error (RMSE), and correlation coefficient (R2), those techniques 

confirmed their ability. They surpassed various traditional forecasting approaches, especially for short 

and medium-term forecasting. 

With simple structures, ANN can capture the non-linear and chaotic features in data and generate 

reliable, accurate predictions, especially for short and medium-term forecasting horizons [76]. BPFF-

ANN is a robust ANN known for its ability to map non-linear patterns usually found in solar and wind 

power. Nevertheless, this type sometimes fails to tolerate oscillations and quickly falls in the local 
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minima [75]. Besides, it suffers from a low convergence rate [76].On the other hand, the RBF-ANN is 

usually introduced for renewable power forecasting problems because it is faster in learning, and it is 

not computationally expensive compared to the regular BP-ANN [59]. 

Nevertheless, several parameters related to the training process or the network structure directly 

affect the models' reliability [77]. Tuning these parameters requires an integration of different 

optimization algorithms that are considered time-consuming in some cases. Besides, sufficiently large 

historical data is needed to train the networks. ANN-based models based on different time horizons and 

approaches to renewable power forecasting in recent literature are summarized in Table A.1 (Appendix 

A). 

RNNs are special types of ANN that can preserve and utilize the features from previous time steps, 

making them able to learn to attain the temporal relations between data [57]. Although RNNs can 

generate accurate forecasting models, short-memory problems associated with them cause immature 

training issues. GRU and LSTM are special nodes introduced to overcome the RNN drawbacks; these 

nodes process data in different mathematical activation functions to benefit from the previous timesteps 

attributes with longer memory terms. They actively confirmed their superiority for time series 

forecasting with moderately short training times. However, this recursive mechanism in all types of 

RNN results in error accumulation, which causes exploding gradient concerns that affect the networks' 

training process [56]. Table A.2 (Appendix A) summarizes some studies that mitigated these issues, 

particularly for renewable power forecasting, and provided consistent, accurate results. 

SVM approaches are also powerful ML techniques that are well-known for their global 

approximation abilities. They can simplify complex mathematical computations, and unlike the ANN, 

they can learn patterns with a moderately small size of datasets with little dependence on prior 

knowledge[78]. Nevertheless, their performance highly depends on the kernel function parameters, 

which requires the incorporation of optimization algorithms for tuning and training [79]. Furthermore, 

their prediction stability diminishes for longer forecasting horizons and when the extensive training 

dataset [73]. Furthermore, the overfitting issue also comes with the SVM training process, necessitating 

different resolutions during the training process[31].  

System optimization requirement also appears when utilizing the ELM tools to estimate the 

appropriate weights and biases [69]. Although the convergence is quickly achieved for ELM training, 

this convergence could be premature in some case. Therefore, the created model fails to be generalized, 
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and forecasting precision becomes insufficient in some cases. In fact, this encouraged considering deep 

learning concepts with ELM approaches [33]. Furthermore, their applications in some cases are 

restricted to linear relationships and fail to present complex nonlinear patterns. Table A.2 (Appendix 

A). summarizes some recent papers utilizing SVM and ELM tools for wind and solar power forecasting.  

The hybridized ML approaches with metaheuristics algorithms are recommended solutions to 

increase ML models' reliability and resolve their limitations. The metaheuristic approaches are used to 

tune the ML model's parameters or/and the networks' structure. Incorporating these metaheuristics aims 

to achieve adequate convergence, resulting in higher prediction accuracy than standalone ML 

methodologies. Tuning the hyperparameters related to the ML network structure is another challenge 

when using ML approaches. This challenge is regularly tackled through search grid, random grid, and 

Bayesian optimization. However, in some cases, it is a time-consuming process that some researchers 

prefer to depend on previous knowledge and experience to tune these hyperparameters. 

Finally, Based on our investigations in this paper, to improve the ML-based forecasting techniques, 

the following steps are usually recommended: 1- increasing the dataset size, especially for ANN; 2- 

pre-processing and analyzing the data to detect and filter the outliers and missing data is essential and 

affects the prediction results; 3- the presence of NWP as input feature to the ML networks is crucial 

and improves forecasting results; 4- shorter-term forecasting horizons are preferable when using the 

ML techniques to ensure higher accuracies;  5-hybridizing the ML models with optimization techniques 

improves the outcomes, but might decelerate the training process in some case; therefore, it remains a 

trade-off process that scholars need to consider based on the forecasting applications; 6-hybridizing the 

ML approaches with metaheuristics improves the results of the multi-step prediction. 

The following section will also highlight some vital challenges of utilizing ML methods for 

renewable power forecasting to direct scholars to the problems requiring higher focus and 

considerations in future studies.   

2.1.10 Challenges and Future Directions  

Even though many research studies are conducted on the ML methodologies for renewable power, 

some remaining significant questions and problems have not been efficiently tackled: 

1- Minimal studies have been conducted for regional wind or solar power forecasting; most studies 

consider single locations or stations. However, regional electrical grid optimal scheduling and 
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managing would be achieved by constructing a model that forecasts the solar or wind power for 

multiple locations in a specific region. Hence, constructing a precise regional wind or solar power 

forecasting model is one of the critical problems to be tackled in the future. 

2- Probabilistic prediction of wind and solar energies is not adequately considered in the literature. 

These predictions can quantify the changes in renewable energies' resources. This could improve 

the scheduling of the electricity networks based on the estimated odd operating conditions. 

Therefore, focusing on probabilistic forecasting of renewable is a future key direction for 

researchers.  

3- While the one-step-ahead forecasting has been extensively studied and tested, the multi-step ahead 

forecasting proposed models remain a complex task that is not considered adequately in literature 

and needs to become more encountered by researchers.    

4- Currently, most of the published studies do not look at the problem of renewable power forecasting 

through the core structure of the ML model; The mathematical correlations between the input 

features and the renewable power prediction targets are not fully systematically disclosed and 

explained. Moreover, the input attributes that majorly affect the forecasting behaviors and precision 

are not entirely unambiguously indicated. In other words, the appropriate mathematical way to 

describe the renewable power forecasting model needs to be seen by scholars in the future.  

5- From the forecasting horizon perspective, it was investigated that the proposed ML methodologies 

in the literature mainly focused on very short and short-term forecasting. Although these time 

horizons of forecasting have various vital applications related to maintaining the microgrid's 

stability, medium, and long-term forecasting horizons are also essential for studying the economic 

feasibility of the renewable power integration to the electricity sector. Thus, a higher focus on 

longer-term forecasting is expected and needed and could improve the incorporation of renewables 

into electricity networks. 
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2.2  Machine Learning Models for Air Quality Index Forecasting 

This section presents a review of basic definitions of the air quality index with a brief review of the 

proposed air quality index forecasting approaches. This section aims to give a brief insight into the 

tackled problem in chapter 5.  

2.2.1 Background 

In the past decades, urban cities' economic and technological growth triggered different severe 

pollution problems, including air pollution. Besides the harmful impact of air pollution on the 

individual's health, it damages the ecosystem and harms forest life, plants, and marine life[80]. Poor air 

quality is mainly caused by burning fossil fuels for power production, oil and petroleum processing 

exhausts, vehicle vents, and other human habits[81]. Air pollutants include various types of gases and 

particulate matter. Air pollution is reported whenever high levels of different pollutants are detected in 

the air. US Environmental Protection Agency (EPA) defined six criteria pollutants that dangerously 

affect the respiratory system of humans[82]. Sulfur Dioxide (SO2), Nitrogen Dioxide (NO2), ground-

level Ozone (O3), Carbon Monoxide (CO), and Particulate Matter (PM) are all considered criteria 

pollutants. EPA reported specific guidelines and standards of the acceptable levels of these criteria 

pollutants[83].  

AQI quantifies the healthiness and harmfulness of the air based on the concentrations of the 

pollutants and reports the health effects associated with these concentrations. The AQI standard ranges 

specified by EPA are shown in Table 1 [83]. Appendix B presents the official agreed-on procedure of 

calculating AQI.  

Forecasting the criteria pollutants levels in the air to report the predicted AQI of the following hours 

would help the inhabitants prevent hazardous and low-quality air exposure. Besides, it could help 

decision-makers plan future operating conditions and/or cut off certain polluting activities at predicted 

peak pollution hours. Thus, developing accurate levels forecasting models hourly to report the AQI 

could provide reliable pollution alerts, protect the populations' health, and improve the ambient air 

quality.  
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2.2.2 Related Work 

Based on the prediction approaches, AQI forecasting can be divided into two main classes: statistical 

and (ML) based.  

Statistical forecasting methods build data-driven mathematical models to map the relationship 

between the time-series historical data and target data. With simple mathematical formulation, these 

methods can provide timely, accurate predictions. ARIMA is a well-known statistical forecasting 

approach that is usually employed for short-term forecasting. For example, ARIMA and auto-regressive 

fractionally integrated moving average (ARFIMA) statistical methods were used by [84] to forecast the 

monthly values of AQI in Malaysia. 

Table 1: EPA's definition of the six AQI categories. 

Index Value Level of health concern Description 

0-50 Good Air quality is satisfactory. 

51-100 Moderate 

Air quality is acceptable; however, there may be 

moderate health concerns for groups with unusual 

sensitivity to air pollution for some pollutants. 

101-150 
Unhealthy for sensitive 

groups 

Only sensitive groups may experience health 

effects. 

151-200 Unhealthy 

All individuals may start to experience health 

effects. 

Sensitive groups may experience more severe 

effects. 

201-300 Very unhealthy 
Health alert: everyone may experience serious 

health effects. 

301-500 Hazardous Health warning for emergency conditions 

 

The built models were able to predict the AQI with 95 % confidence. For shorter-term forecasting, 

ARIMA was utilized in  [85]  to forecast the daily values of AQI and the Holt exponential smoothing 

model. More recently, authors in [86] proposed a survey comparing classical statistical models for AQI 
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forecasting and concluded that ARIMA models have the superiority in mapping the trends and predict 

with the lowest RMSE comparing it to other statistical models. Nevertheless, these statistical-based 

models consider only the previous recorded level to forecast the following ones without accounting for 

the effect of other atmospheric variables and conditions. Moreover, unlike ML models, the statistical 

models require computationally expensive data pre-processing, especially in the case of discontinuity 

in historical data[87].  

On the other hand, ML algorithms, with their proven superiority and effectiveness in various 

forecasting problems, integrating their applications into environmental-related issues has become more 

attractive to researchers. For example, Wang et al. in [88] applied a radial basis neural network to 

forecast the SO2 levels and concluded that the achieved results could be promising for forecasting AQI 

in future researches. Similarly, [89] showed that a feedforward neural network was superior to 

multilinear regression in predicting different pollutant concentrations. The work proposed in [90] 

utilized another robust ML algorithm known as SVM for predicting the pollutants concentrations 

required to estimate the hourly AQI in California. The built models were able to predict the AQI with 

94.1% accuracy with the testing unseen data. An alternative approach was proposed in [91] to forecast 

AQI directly through ensemble learning. In this study, the predicted AQI outputs from five different 

ML and regression models were further processed and fed to ensemble models to increase the 

forecasting accuracy.  

From the brief review above, it can be seen that the accurate forecasting of AQI mainly relies on the 

forecasted pollutants concentrations in the ambient air. One significant issue associated with predicting 

pollutants concentrations is gaps in the ambient air quality and meteorological data. As a result of 

temporal dependencies between the two datasets, discarding observation with missing variables for 

training or building prediction models is generally impractical and affects the model's ability to capture 

the time relations between data accurately. Furthermore, imputing missing observations with mean or 

median values or any other single imputation approaches could fail to map extreme or abnormal 

behaviors in the data. Therefore, assigning values to these missing incidents with the consideration of 

other factors is essential, especially for the case of AQI predictions where the extreme and high values 

actually require attention and precautionary actions. 

Therefore, considering the approaches of forecasting mentioned above and the missing data issues, 

in chapter 5, an approach is proposed to tackle the missing data problem using the miss-forest 
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imputation technique, a multivariate ML-based imputation technique to impute missing observations 

in ambient air quality and meteorological datasets. The employed multivariate imputation's 

effectiveness was examined using the imputed data for training ML models to forecast the critical 

pollutants levels and AQI.  
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Chapter 3 

Concepts of Machine Learning Algorithms 

This chapter gives a conceptual mathematical overview of different machine learning algorithms. All 

methodologies utilized in the cases studies in chapters 4 and 5 are conceptually explained in this 

chapter. In addition, the evaluation metrics for comparing and evaluating the performance of the models 

are defined in section 3.8. 

3.1  Artificial Neural Networks 

ANNs are one of the most robust ML methods. They are known for their superior ability to capture 

and map complex nonlinear relations between data [92]. The learning approach in an ANN aims to 

simulate the actual biological neural networks in humans' brains. The ANN consists of connected units 

(artificial nodes) transmitting and processing information in specific functions between them to map 

complex relations. The simplest type of ANN is the feedforward neural network. In this type of network, 

weight parameters connect these networks' units. These weights regulate the learning process to map 

the input features into the targets with the lowest possible error between outputs and actual targets. 

Typically, the nodes are distributed into layers; each layer with its activation functions may perform 

different processes on their input before being fed into the following layers. The layer that takes the 

input features is the input layer; the layer that generates the final prediction of the target is the output 

layer, the layers between these two layers are the hidden layers. The number of nodes in the input layer 

is similar to the number of input features; the output layer units are equivalent to the size of the targets, 

while the number of nodes in a hidden layer is a hyperparameter that requires proper tuning and 

selection to avoid overfitting or underfitting the built models[93]. 

As shown in Figure 9, in this network, the input predictors(x) flow sequentially from the input layer 

to an intermediate layer (hidden layer) and finally to an output layer to estimate the final forecasted 

target (ŷ). 

The feedforward equations for estimating the final target ŷ are defined as follows:  

Where 𝑓ଵ is the activation function in the hidden layer, it is generally selected to be the sigmoid 

𝐻1 = 𝑓1( 𝑤1𝑋 + 𝑏1)                                  (1) 

ŷ = 𝑓2(𝑤2𝐻1 + 𝑏2) (2) 
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Figure 9: Structure of ANN 

function. 𝑓ଶ is the activation function in the output layer, a linear function in the case of regression 

problems. 𝑤ଵ and 𝑤ଶ are the weight matrices to connect the layers, and  𝑏ଵand 𝑏ଶ are the biases.  

The weights and biases are initialized randomly at the first epoch (iteration) of training and adjusted 

according to the selected training algorithm. The backpropagation with gradient descent algorithm is 

the most common approach for adjusting the networks' parameters. The backpropagation equation for 

updating the network's parameters ( 𝑤ଵ, 𝑏ଵ, 𝑤ଶ, 𝑏ଶ)  at iteration k using gradient descent with 

momentum algorithm is defined as follows:  

𝜑 represent the parameters that are being trained, E is total sum square error (objective function) in 

iteration k, β is a momentum factor [ 0,1], and α is the learning rate between 0 and 1. 

The gradient descent with momentum algorithm was mainly used in our applications because training 

a network with accounting the history of the parameter's updates eases the training process. Moreover, 

the momentum hyperparameter directly accelerates the training process and soothes out the noisy 

oscillations [94].  

 

𝜑(𝑘) = 𝜑(𝑘 − 1) − 𝛼 
𝜕𝐸 (𝑘−1)

𝜕𝜑 (𝑘−1)
+ 𝛽∆𝜑(𝑘 − 1)  (3) 
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Figure 10: Structure of LSTM unit 

3.2 Deep Neural Network  

The deep neural network (DNN)  is simply a neural network with more than one hidden layer [95]. 

The additional layers in this network allow further data processing into the activation functions aiming 

to improve the forecasting accuracy. A DNN can replace the feature selection or pre-processing step 

before the ANN because, with training, the first layers can learn what attributes are significant to predict 

the target accurately and what attributes are negligible[96]. Nevertheless, the additional layers increase 

the number of hyperparameters requiring tunings, such as the number of nodes in these layers, the type 

of activation functions, and the number of the extra layers themselves. In addition, the multiple complex 

computing tasks that happen in these networks are expensive and require advanced computing 

machines; otherwise, they are very time-consuming [97]. The general training procedure of a DNN and 

weights and biases adjustments is similar to the one followed for training an ANN.  

3.3 Long Short-Term Memory 

As explained and showed in section 2.1.4, LSTM is a type of a RNN. This method is mainly 

introduced to overcome the short-term memory issue that appears in RNN. Moreover, it prevents the 

error gradient accumulation  issue that causes the early truncation of the training process of the RNN.  

As seen in Figure 10 below, inside the LSTM node, multiple parallels and sequential computation 

tasks happen in different functions to generate this unit's output. The mathematical processes that occur 

inside the LSTM node are as follows:  
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The equations show that the LSTM has four different gates (forget, input gate, cell state, and output 

gate). The forget gate is the gate that decides what previously stored information to remove and what 

new information to add. The input gate takes the same inputs as the forget gate and processes them into 

sigmoid and tanh functions. The sigmoid function decides what information should be updated, and the 

tanh bounds the information between -1 and 1 to regulate the information's flow. Next, the outputs of 

the sigmoid and tanh functions are multiplied to generate the input gate's output. Afterward, the input 

gate outputs and the forget gate outputs are added to give the new cell state. Finally, the result passed 

to the output gate, which calculates the following hidden state. 

3.4 Bagging Regression Tree  

Bagging tree (BT) is a bootstrap ensemble model that improves the performance of a single decision 

tree model by combining prediction results from multiple decision trees. Each decision tree model is 

trained using a sub-set of the overall training set randomly drawn with replacement. The final prediction 

is estimated by taking the average value of the predictions of each tree model.  
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The induvial decision tree model is one of the simplest commonly used supervised models. As shown 

in Figure 11, this algorithm is nothing but a set of nested if statements or true/false questions with 

conditions sat based on the values of the attributes until the final node (leaf node) is reached. In the 

classification problems, the pure final leaf node will contain only one class. Therefore, when predicting 

a class using the single decision tree, the decision conditions that satisfy the features of the prediction 

target will lead to a final leaf node, having a specific class; this class will be assigned as the predicted 

class of that target from this single tree. In a similar approach, other trained trees will classify the target, 

and the final prediction of the bagged tress is estimated through majority voting of the classifications 

from all of these tree models [98]. 

On the other hand, for regression problems, decision conditions will not classify the data to a final 

value in the leaf node; the regression tree leaf node will contain a range of values; the regression tree 

classifies the data into regions.  The final prediction value is the average of the values in that region. 

Finally, the bagged tree model will take the average of predicted values from the different trees.  

Now, the question remains, what are the optimal splitting rules that result in the best model. Here is 

where the machine learning concepts appear. Multiple different decision rules and conditions are tested 

throughout the training process to compare and select the optimal conditions that maximize the 

information gain function for the classification problems and the variance reduction function for the 

regression problems [99]. 

Although this tree algorithm is easy to train and understand, it fails to generalize and usually falls in 

the overfitting issue when tested on unseen data. This is because their dependence on training datasets 

is high. This overfitting issue can be explained by the greedy approach used for training the decision 

trees, where the nodes are trained once to then train the following ones without the re-consideration of 

the previous ones. Thus, although the ensembles of tress might improve the globality of the model, in 

some cases, it is not enough. To overcome this issue, the RF models were introduced to alter the training 

data randomly to produce different trained models with higher flexibility. More details and explanations 

of the RF models are presented in the following section. 
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3.5 Random Forest  

As mentioned before, the RF model is based on the ensemble trees concept. However, in RF, the 

trees are trained on a random subset of the full features, not all features, using randomly selected 

samples from the overall dataset. RF model follows the same training algorithm of the bagging tree 

described in the previous section (section 3.4).  

RF model is used not only for building forecasting models but also for measuring the importance of 

features for feature selection and filtration. The application of RF for feature selection is tested in the 

AQI forecasting case study in chapter 5. Moreover, in this case study, the RF model is also used to 

impute missing data; all details will be further explained later in chapter 5. 

3.6 Support Vector Machine  

The literature review in section 2.1 concludes that the SVM / SVR is one of the most powerful ML 

algorithms that perform adequately for different regression and classification problems[100]. The 

objective of SVM is to find the hyperplane in N-dimensional space (N - number of features).  

As shown in Figure 12, the data are scattered on the sides of the thresholds of that hyperplane. These 

thresholds represent the margins. Comparing SVR to linear regression, the SVR algorithms aim to find 

Figure 11: Structure of decision tree 
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the optimal line within these two margins[101]. In comparison, linear regression aims to minimize the 

distance between the data point and a straight line. The main objective of SVR is not to minimize the 

error to a certain degree; the aim is to ensure that the error lies within an acceptable range. Thus, the 

hyperplane that satisfies the SVR should satisfy the equation below[66]. 

What makes SVR unique is that its cost function minimizes the training error and the regularization 

term[101]. This specialty improves the model's overall generalization and results in reliable prediction 

results when tested on a new testing dataset.  

The mathematical representation of general objective function for training the SVR model is as 

follows: 

 

Where w is the weight vector, b is the bias, and 𝜑 is the high dimensional feature space, linearly 

mapped from the input space x (linear projection of the input space to the feature space). The objective 

is to find the optimal function with the slightest double-sided deviation (±𝜀) from the targets. Usually, 

the minimization of the langrage function is used for the target dual optimization problem. In SVR, the 

dual form of the constraint optimization problem (equation 12) is represented as follows:  

 

 

 

K is a kernel function; by this objective function formulation, the SVR becomes employable for 

nonlinear relations while preserving the simplicity and practical computation of the linear SVR[101]. 

Thus K, C, and ε are the parameters of the SVR that we train the models for optimally estimating them.  
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3.7 Ensemble Models  

Ensemble models are generally built based on the hypothesis "unity is strength. " The basic idea of 

ensemble learning is to train multiple models for the same problem to use them as input blocks to build 

another model [102]. The main advantage of ensemble modeling is that when combining models with 

high bias and low variance with other models with lower bias and higher variance, a balance between 

them is achieved by preserving the advantages of the combined models.  

As mentioned, for training an ensemble model, a pre-training of base models is required. Some 

ensemble methods require homogenous base models trained in different ways. Other heterogeneous 

models use heterogenous base learners and combine them, creating a heterogeneous ensemble model. 

Combining these base models is also important and affects the overall performance of the final model 

[103]. Combining models can be achieved through the following three approaches:  

1- Bagging: This method combines homogenous predicters after being independently trained in 

parallel using the deterministic average, aiming to produce a model with lower variance.  

Figure 12: Illustration of support vector regression 
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2- Boosting: In boosting, the base models are trained sequentially; each model depends on the 

previous one. Then, they are combined either using adaptive boosting or gradient boosting 

deterministic algorithms.  

3- Stacking/Blending: In this approach, heterogenous methods are combined after being parallelly 

trained and connected through training a final model taking the predictions from the obtained 

base models. The base models are used to train the final meta-model in blending the hold-out 

validation predictions determined by the base models. 

In chapter 4, after training different ML models, a blending ensemble model is constructed using 

these trained models.  

3.8 Evaluation Metrics 

After clearly explaining the different ML forecasting models, the objective of the following chapters 

is to implement these methods into real-life problems to propose approaches for forecasting time series 

data. Employing the methods for testing them necessitates a clear definition of metrics that can be used 

to evaluate these built models, conduct comparisons, investigate superiorities, and draw out conclusions 

and recommendations. These evaluation metrics are defined based on the forecasting error with respect 

to the actual values. Several metrics are discussed and explained in this section to illustrate the basis of 

selecting a superior model or the analysis of the results that are conducted in the case studies.  

The following notation is followed in defining these metrics:  

y୲: Actual observed value.  

ŷ୲: Forecasted value. 

yത =
ଵ

୬
∑  y୲

୲ୀ୬
୲ୀଵ : Mean value of the data set where n is the size of that set.  

Equations (13-17) show the MAE, mean absolute percentage error (MAPE), MSE, RMSE, R2 formulas, 

respectively.  

MAE=
1

n
෍|y୲-ŷ୲|

୧ୀ୬

୧ୀଵ

 (13) 
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MAPE =
1

𝑛
෍ ฬ

y୲ − ŷ୲

y୲
ฬ × 100

௜ୀ௡

௜ୀଵ

 (14) 

MSE=
1

n
෍(y୲-ŷ୲)ଶ

୧ୀ୬

୧ୀଵ

 (15) 

RMSE=ඩ
1

n
෍(y୲-ŷ୲)ଶ

୧ୀ୬

୧ୀଵ

 (16) 

Rଶ=1-
∑ (y୲-ŷ୲)ଶ୧ୀ୬

୧ୀଵ

∑ (y୲-yത)ଶ୧ୀ୬
୧ୀଵ

 (17) 
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Chapter 4 

Case Study 1: Regional Wind Power Forecasting  

4.1 Motivation and Contribution  

Recalling the research gaps drawn out from the comprehensive literature review in section 2.1.10, 

the following points motivated us to conduct this case study:  

1- Minimal studies have been conducted for regional wind power forecasting; most studies 

consider single locations or stations. Regional electrical grid optimal scheduling and managing 

would be achieved by constructing a model that forecasts the wind power for multiple locations 

in a specific region.  

2- While the one-step-ahead forecasting has been extensively studied and tested, the multi-step 

ahead forecasting proposed models remains a complex task that is not considered adequately 

in literature and needs to be more encountered by researchers.    

3- Currently, most of the published studies do not look at the problem of renewable power 

forecasting through the core structure of the ML model. The mathematical correlations between 

the input features and the renewable power prediction targets are not fully systematically 

disclosed and explained. Moreover, the input attributes that majorly affect the forecasting 

behaviors and precision are not entirely unambiguously indicated.  

4- Lack of comprehensive and fair assessment of feature selection and ML forecasting methods 

for regional forecasting. 

To sum up, in this chapter, one-step ahead and multi-step ahead regional wind power forecasting 

is studied by constructing different ML algorithms and an ensemble model combining them to 

conduct a fair assessment between these models, to build a reliable regional wind power forecasting 

model, and to comprehensively and carefully investigate the significant predictors required for this 

forecasting problem. The flow chart in Figure 13 summarizes the proposed problem formulation of 

this case study. In the following sections, each step is clearly explained and discussed.  
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1-Forecasting target ? 
•1-step ahead / multi-step 

ahead

2-Predictors ?
•Historical wind power 
data + meteorological 
data

3-Spatial correlation? 
•Locations of wind farms 
with highest contributions

4-Feature selection 
and filtration ? 
•Deep feature selection 
approach 

5-Forecasting model
•ANN/LSTM/DNN/SVM/RF/ 

Ensemble model

6-Training algorithm 
and optimization 
•Gradient descent with 

momentum/  Bayesian 
optimization 

7-Hyperparameter 
tuning 
•Grid search/ Random 
search

8-Evaluate and 
compare models? 
•Error metrics such as 
MSE , MAPE , R2 ..

Figure 13: Flowchart of the proposed modeling approach 
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4.2 Raw Dataset Description and Pre-analysis  

4.2.1 Power Data 

This section aims to provide a brief insight into the wind power data used in this case study. This 

analysis is performed based on the available wind power data on Ontario Independent Electricity 

System Operator (IESO) website (public IESO data) during a period of eight years (2010-2018). 

According to the Canadian Wind Energy Association, Ontario produces clean wind power with a 

leading rate across Canada as of December 2019[104]. Ontario's annual actual wind power production 

has increased gradually over the past ten years to reach 10.57 TWh in 2018. The increment trend is 

presented in Figure 14. Of course, the growth of wind power was associated with the growth of the 

number of functioning wind farms across the province. Table 2 below demonstrates the total number 

of operating farms through the study period. As shown in Figure 15, Ontario's wind farms are scattered 

along the region; however, it can be seen that the southern region is more dominant in the production 

where most of the farms are located in this area. Each wind farm has various numbers of wind turbines 

with different physical specifications and production capacities. The contribution of the wind farms to 

the total production was conducted to uncover the locations of the farms with the highest contribution 

to Ontario's overall wind power production. The location of these farms is essential due to the direct 

relations between the wind power and the metrological measurements at these locations where wind 
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Figure 14: Ontario's annual wind energy output 2010-2018 
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speed is the primary key factor of estimating or studying wind power production. Moreover, other 

weather conditions could be necessary for building accurate, reliable wind power forecasting models, 

such as air temperature and relative humidity. Table 3 summarizes the individual production 

contribution of each wind farm to the overall production throughout the analysis period. 

Table 2: Number of Ontario's operational wind farms 

Copyright ©  

 

 

 

 Independent Electricity System Operator |public IESO data 

Year Number of wind farms 
2010 11 
2011 15 
2012 15 
2013 18 
2014 26 
2015 33 
2016 37 
2017 38 
2018 41 

Figure 15: Location of Ontario's operational wind farms (2017) 



`` 

 46 

Table 3: Annual production contribution percentage to the overall wind power production [104] 
 

Annual production contribution percentage to the overall wind power production 

Wind Farm 2010 2011 2012 2013 2014 2015 2016 2017 2018 

ADELAIDE - - - - 1.0% 1.9% 1.5% 1.3% 1.4% 
AMARANTH 15.5% 12.0% 10.1% 9.1% 7.1% 5.4% 4.8% 5.0% 4.0% 

AMHERST ISLAND - - - - - - - - 1.0% 
ARMOW - - - - - - 3.9% 4.2% 4.1% 

ARNPRIOR - - - - - - - - 1.4% 
BELLE RIVER - - - - - - - 1.0% 2.3% 

BLAKE - - - - 1.2% 2.1% 1.7% 1.5% 1.5% 
BORNISH - - - - 1.3% 2.3% 1.8% 1.6% 1.6% 

BOW LAKE - - - - - 0.1% 0.6% 0.5% 0.5% 
BOW LAKE 2 - - - - - 0.1% 1.2% 1.1% 1.0% 

COMBER - 2.5% 10.1% 9.4% 7.3% 5.4% 5.1% 4.7% 4.0% 
DILLON - 5.5% 5.1% 4.9% 3.6% 2.7% 2.6% 2.3% 1.8% 

EAST LAKE - - - 3.0% 4.3% 3.3% 3.2% 2.8% 2.6% 
ERIEAU - - - 2.8% 4.5% 3.3% 3.2% 2.9% 2.7% 

GOSFIELDWGS 1.8% 3.7% 3.0% 2.8% 2.1% 1.6% 1.4% 1.5% 1.2% 
GOSHEN - - - - - 2.2% 2.6% 2.4% 2.4% 
GOULAIS - - - - - 0.5% 0.7% 0.8% 0.7% 

GRAND VALLEY 3 - - - - - - 1.2% 1.5% 1.2% 
GRANDWF - - - - 0.4% 4.3% 3.4% 3.0% 3.0% 

GREENWICH - 2.0% 5.7% 4.8% 2.8% 2.6% 2.2% 2.2% 2.2% 
JERICHO - - - - 1.0% 4.4% 3.7% 3.3% 3.3% 
K2WIND - - - - - 6.6% 7.6% 6.4% 6.3% 

KINGSBRIDGE 3.8% 2.7% 2.4% 2.1% 1.6% 1.2% 1.1% 1.2% 1.0% 
LANDON - - - - - 1.2% 1.2% 0.9% 1.0% 

MCLEANSMTNWF - - - - 1.4% 1.5% 1.6% 1.6% 1.4% 
NORTH KENT - - - - - - - - 1.9% 

PAROCHES - 0.3% 3.1% 3.0% 2.3% 1.7% 1.6% 1.5% 1.3% 
PORT BURWELL 8.1% 6.1% 5.0% 4.8% 3.4% 2.1% 1.8% 1.7% 1.7% 
PORTALMA-T1 6.8% - - - - 2.8% 2.3% 2.1% 2.6% 
PORTALMA-T3 6.6% 16.0% 13.1% 12.4% 9.5% 3.0% 2.5% 2.2% 2.8% 
PRINCEFARM 16.3% 11.2% 10.3% 8.4% 5.9% 4.6% 4.4% 4.7% 3.5% 

South Kent - - - - 8.1% 8.1% 6.8% 5.0% 6.0% 
RIPLEY SOUTH 7.2% 5.5% 4.5% 4.4% 3.0% 1.8% 1.6% 1.6% 1.6% 

SANDUSK-LT_AG_T1 - - - 1.0% 4.5% 3.4% 3.5% 3.2% 2.8% 
SHANNON - - - - 0.4% 3.1% 3.0% 2.9% 2.5% 

SPENCE 0.4% 7.2% 6.0% 5.4% 3.8% 2.6% 2.2% 1.8% 1.9% 
SUMMERHAVEN - - - 2.5% 4.9% 3.5% 2.5% 2.1% 2.1% 

UNDERWOOD 16.8% 12.6% 10.7% 9.4% 6.5% 4.8% 4.0% 3.8% 3.6% 
WEST LINCOLN NRWF - - - - - - 1.4% 5.0% 4.3% 

WOLFE ISLAND 16.7% 12.8% 10.8% 9.6% 7.9% 5.7% 5.4% 5.3% 4.4% 
ZURICH - - - - - - 1.0% 3.4% 3.0% 
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According to the determined percentages, it can be observed that the individual contribution 

percentage of each wind farm decreased over time because the total number of wind farms has 

increased; nevertheless, its average actual production rates remained the same or even increased with 

years. Currently, Ontario's biggest wind farm is Henvey inlet with a capacity of 300 MW; this farm was 

launched in 2019 [105] (not included in our study period). 

 Generally, as observed in Figure 14, wind power production started to evolve and increase a lot after 

2014. The South Kent wind farm project that started operating in 2014 with a capacity of 270MW is a 

direct reason for this evolution and growth [106]. As seen in Table 3, this wind farm has contributed 

with high rates since the start-up until today. After this,  K2-wind was launched a year later with a 

similar capacity and almost similar contribution percentages [107]. After a year, West Lincoln, with a 

capacity of 230 MW, started operating in 2016; this farm is located in the Niagara region in southern 

Ontario, where most of the other farms function with high production rates [108]. When observing its 

contribution during 2017 and 2018, West Lincoln farm contributed at higher rates than the other farms. 

 On the other hand, when looking throughout the entire study period, Amaranth farm also contributed 

with high rates since 2010, where it contributed by 15.5 % of the total annual outputs of 2010 and 

attained its moderately high percentage even with the increased number of total wind farms across the 

years [109]. Amaranth is one of the largest wind farms in Ontario, with a capacity of 199.5 MW. 

Similarly, wolfe island maintained a consistently high contribution from 2010 until 2018;  wolf island 

was launched in 2009 [110].  

As mentioned before, studying and observing the farms' contribution is vital to specify their locations 

and involve their meteorological conditions when building the wind power forecasting models. Based 

on the calculations and analysis above, five wind farms were selected to consider the weather conditions 

surrounding them to build the forecasting models. The selected wind farms and some related 

information about them are listed in Table 4. 

From this section till the end of this case study, the locations of these wind farms are used to 

determine historical weather data that will be used for forecasting in the following sections. 
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Table 4: Summary of selected wind farms 

 

4.2.2 Meteorological Data 

As concluded in section 2.1, usually published papers in the scope of forecasting wind power apply 

their proposed forecasting models for predicting the output power of one specific site, where the 

weather data are primarily measured and recorded regularly with the power data. Nevertheless, in this 

case study, the target is the regional wind power from all the wind farms registered and owned by the 

IESO. Since weather conditions across Ontario differ, and no overall accurate representation of the 

entire province could guarantee precise weather features for the forecasting models, selecting a weather 

station measuring the essential parameters has become an issue that requires further analysis and search. 

Our proposed study addressed this matter by including the weather conditions recorded by weather 

stations near the wind farms with the highest contribution to Ontario's overall wind power output. 

In the previous section (section 4.1.1), in Table 4, five wind farms were selected to be the most 

contributing wind farms to the overall regional wind power production. Using the longitude and latitude 

of the five selected wind farms, the nearest five weather stations were located to use their historical 

weather data as predictors to the ML models. The data of these weather stations were collected from 

the Government website, where all the historical weather data from various weather stations are 

available. The selected weather stations record more than 25 hourly weather parameters; six parameters 

are used in this study: temperature, relative humidity, wind speed, wind direction, atmospheric pressure, 

and dew point temperature. These factors were mainly used in all the research papers reviewed in 

section 2.1. The five stations' summary information is listed in Table 5. Six weather features were 

selected from each weather station, resulting in (6×5=30) weather parameters considered as input 

predictors to the ML forecasting models.  

Farm Capacity 

(MW) 

Lunching year Location Reference 

South Kent 270 2014 42° 21' 1.3" N 82° 7' 11.8" W [106] 

K2-Wind 270 2015 43° 53' 44.6" N 81° 37' 21.1" W [107] 

West Lincoln 230 2016 42° 52′ 38″ N 79° 30′ 19″ W [108] 

Amaranth 199.5 2008 44° 06′ 00″ N 80° 16′ 15″ W [109] 

Wolfe Island 197 2009 44° 10′ 00″ N 76° 28′ 00″ W [110] 
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Table 5: Summary of selected weather stations 

4.3 Data Pre-processing and Feature Engineering 

In the previous section, power data from 2010 – 2018 were used for analysis; however, three years 

of hourly data (2016- 2018) (3x8760) were used for training and building the forecasting model. Before 

filtering un-important features and selecting the appropriate lags, data were pre-processed and 

extracted. This section illustrates the steps taken for preparing the data for the deep feature selection 

performed in section 4.4. 

4.3.1 Data Splitting for Training, Validation, and Testing 

The overall dataset (3x8760 samples) was divided into three sets: training, validation, and testing 

datasets with 72 %, 13 %, and 15 %, of the overall size of data, respectively. The training set is used to 

train the forecasting model, the validation set is used to test the learned parameters at each iteration 

during the training process, and the testing set is used to test the fitted parameters after the learning 

stops. The model's training is truncated when the MSE of the validation set starts to increase even 

though the training MSE is decreasing. This data splitting step prevents overfitting of the model, and 

generalization is ensured [111]. 

4.3.2 Outliers and Missing Data Handling 

Outliers in data: Data available on the IESO website is quite reliable, and no negative or significantly 

out of range high values were observed in the recorded wind power data.  

Missing data: No missing data in the power data were observed, and for the weather data, missing 

entry was linearly interpolated using the previous and following observation. This estimation is 

considered reasonable since high temporal relations exist between the meteorological parameters. No 

Station name Longitude Latitude Climate ID Elevation (m) 

Chatham Kent (SK) 42°18'21.000" N 42°18'21.000" N 6131414 196.60 

Goderich (KW) 81°43'00.000" W 43°46'00.000" N 6122847 213.70 

Welland-Pelham (WL) 79°20'00.000" W 42°58'00.000" N 6139449 178.0 

Mono Centre (AM) 80°01'28.010" W 44°01'56.100" N 6157000 436.0 

Kingston A(WI) 76°35'48.000" W 44°13'33.000" N 6104149 92.40 
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missing data were discarded because temporal relations between data are essential for the forecasting 

model. 

4.3.3 Feature Engineering (Extraction) 

Four new features were extracted to account for the temporal relations between weather and power 

data:  

1- Year (2016-2018) 

2- Month (1-12) 

3- Day of the month (1-30/31) 

4- Hour (0-23) 

The presence of these features as predictors of the exogenous forecasting model would help the ML 

model capture the temporal relations and repeated trends in wind power.  

An additional feature was added to relate the wind power at time=t to the wind power before 24 hours 

(time=t-24). This feature would also help the ML model in capturing the seasonality in data. It was 

calculated as illustrated in equation 18, where S is the seasonality feature, and WP is the wind power.  

S(t)=WP(t)-WP(t-24) (18) 

Two additional features were added to account for the production of wind farms based on the number 

of the operating wind farms (from Table 2) and the summation of their designed capacities (Max output 

wind power). 

4.3.4 Data Scaling 

Scaling data to become within [ 0,1] is vital since predictors and also the added features (year, month, 

day, and hour, seasonality) differ in ranges. High variations between data could slow the training 

process of the ML engines and cause the issue of falling into the minimal local values, which results in 

unreliable, poor forecasting models.  

In this case study, the predictors were scaled to become between 0 and 1 by applying equation 19 

P୧
*=

P୧(t)-min (P୧)

max(P୧) -min (P୧)
 

 

(19) 
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P is a vector of predictors at time = t, i is the index of the predictor, and min is the minimum value 

of predictor i, and max is the maximum value of predictor i. 

4.4 Deep Feature Selection 

Filtering ineffective features is essential to improve the reliability of the forecasting model. Until this 

step, 37 exogenous predictors were selected (5 stations× 6 meteorological parameters + 4 temporal 

features + seasonality+ No. of operating farms+ Max wind power) at time t with additional endogenous 

feature (Wind power) at time = t to predict wind power at time = t+1.  

This section proposed a deep feature selection approach to the three years data (2016-2018) to filter 

predictors, select appropriate lag features, and reduce data dimensionality.  

Figure 16 illustrates the proposed deep feature selection approach. In the following sections (4.4.1-

4.4. the results determined from applying these steps are discussed. 

Figure 16: Proposed deep feature selection approach. 
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4.4.1 Grey Correlation Analysis Features Selection 

This section will apply the grey correlation analysis (GCA) approach to select the most important 

features out of these 38 features. GCA approach is a good reliable approach for feature filtering and 

selection when dealing with big data (See Appendix C for details about GCA calculations). The 

determined correlation grades of the predictors to the target variable (Wind power) are presented in 

Figure 17. As expected, the highest correlation is observed for wind power with its previous reading. 

For the weather conditions, the results show that the wind speed from the different stations has the 

highest correlations compared to the other environmental data such as pressure and humidity. Similarly, 

the wind direction parameters have high grades of correlation.  To select only the related and vital input 

features, predictors with GCA grades <0.6 were discarded to end up with 22 features (Previous wind 

power +Wind speed ×5 stations + Wind direction ×5 stations + Temperature ×5 stations + Year + month 

+ day + hour + seasonality+ No. of operating plants). 
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Figure 17: Grey correlation grades 
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4.4.2 ACF and PACF for Lag Feature Selection 

Autocorrelation function (ACF) and partial autocorrelation function (PACF) are applied to determine 

the lag feature of wind power with respect to the previous hours (See Appendix C for a conceptual 

explanation of ACF and PACF). ACF and PACF are plotted in Figure 19 and Figure 18. As shown, 

wind power has a correlation =1 at lag =0 (itself) high correlation up until lag 24, where the correlation 

remains relatively high. This indicates that the seasonality feature created in the previous section was 

necessary, and that is why it showed a high grey correlation grade. Nevertheless, after removing the 

internal relation in PCF, it is observed that the lags 1, 2, and 3 are significant, and the correlation 

afterward starts to reach very low values. Based on that, a lag feature of 3 was used for all the 22 

selected features to ensure the accounting of the previous temporal relations between all features.  

Figure 19: Correlogram of wind power lags 

Figure 18: Partial correlogram of wind power lags 
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4.4.3 Principal Component Analysis for Dimensionality Reduction 

After selecting the crucial predictors and the lag feature, the overall number of input features 

becomes (3×22=66) features. In our proposed model, PCA is employed to re-represent these predictors 

(See Appendix C for a conceptual explanation of PCA). This approach will result in lower dimension 

features approximately representing the original data in a lower dimension. As seen in Table 6, 90 % 

of the original information is cumulatively preserved 15 components, and the unnecessary, redundant 

information is scattered in the remaining components. Thus, 90 % of the data can be represented by 15 

principal components. These 15 features are then used as input features to the ML prediction models 

for predicting 1-h ahead wind power. 

Table 6: Principal component analysis results of the first 15 components 

 

4.5 Simulation Results 1 (1-step ahead Forecasting) 

In this section, the final selected constructed input features (15 features) are used to build and train 

different ML algorithms to forecast Ontario’s hourly wind power production. For each model, the hold-

out validation error is tracked throughout the training process to truncate the training process whenever 

this validation error starts to increase while the training error is decreasing. 

The training process aims to find the optimal model parameters that minimize the cost function (the 

error function). Some hyperparameters related to the construction of the model, such as the number of 

Principal 
component Eigenvalue Variation % Cumulative variation % 

1 3.508 24.324 24.324 
2 2.292 15.893 40.216 
3 1.544 10.706 50.922 
4 1.015 7.035 57.957 
5 0.936 6.491 64.448 
6 0.882 6.116 70.563 
7 0.764 5.299 75.862 
8 0.519 3.601 79.463 
9 0.403 2.798 82.261 

10 0.325 2.253 84.514 
11 0.244 1.693 86.206 
12 0.226 1.566 87.772 
13 0.162 1.122 88.895 
14 0.130 0.904 89.799 
15 0.116 0.802 90.601 
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nodes, hyperparameters of SVR, are tuned using grid search, random search, or Bayesian optimization. 

See Appendix D for a conceptual explanation of these hyperparameter tuning methods. The validation 

error is also used for this tuning step to avoid bias tuning and training towards the training dataset.   

4.5.1 ANN Forecasting Model  

In this step, in the beginning, multiple experiments have been conducted to determine the optimal 

number of nodes for the ANN for hourly wind power forecasting. As mentioned, the training processes 

for all of these experiments are truncated according to the validation error to avoid overfitting, and all 

the networks were trained using backpropagation with gradient descent algorithms with a hidden 

sigmoid function.  As seen in Figure 20, the validation error metrics reach their lowest values with a 

network of 25 nodes, and then these metrics start to increase. This increment could reflect that the 

overfitting due to too many nodes or the network started to memorize the information in training data. 

Thus, the optimal number of nodes of the ANN was selected to be 25 nodes.  

 

 

Figure 20: Different error criteria variations for various nodes of an ANN 
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Afterward, the network was re-trained with the 25 nodes, 0.001 learning rate, 0.9 momentum to 

determine the optimal weights and biases of the forecasting model. The learning curve of this ANN is 

presented in Figure 21.  

 

 

 

 

 

 

 

 

 

 

Finally, the evaluation metrics defined in section 3.8 are used to evaluate the results using the training 

dataset and another unseen dataset (Testing dataset). Table 7 lists these final determined results. As 

shown in this Table, this built ANN was able to generalize the forecasting and attain reliable forecasting 

results when tested on the new dataset where the error criteria for the testing set were moderately as 

good as the training ones. Figure 22 compares the actual to the predicted hourly power data for 15 days 

selected from the testing dataset. As seen, the model captured the overall trend; slight overestimations 

can be seen at peaks. However, the predictions remain reliable. 

Error Criteria  Training  Testing 

R2 0.940  0.945 
MSE [MW2] 4.056 E+04  4.47E+04 
RMSE [MW] 201.45  211.35 
MAPE[%] 13.4%  13.5% 
MAE [MW] 143.68  150.33 

 

Figure 21: Learning curve of ANN (1-h ahead) 

Table 7: Training and testing  error criteria of ANN forecasting model 
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4.5.2 DNN Forecasting Model 

Training a DNN with more than one hidden layer increases the number of hyperparameters the 

require tuning, including the number of hidden layers, the number of nodes in these layers, the 

activation functions of these layers, in addition to the hyperparameters that are already needed for 

tuning a one-layer neural network and related to the training algorithms such as the learning rate. 

Building a DNN considering all of these issues and hyperparameters would be very computationally 

expensive and require multiple optimization algorithms with different settings. Moreover, in too many 

problems sticking to a one-layer neural network, in fact, performed robustly and adequately. Therefore, 

in this case study, a DNN with only two layers was constructed; the number of hidden units in the first 

layer was selected to be 10, and the number of hidden units in the second layer was determined through 

grid search. As illustrated in Figure 23, the MAPE reduced almost more than 1 % when increasing the 

number of nodes in the second layer from 15 to 30, while the reduction in the MAPE and the other 

metrics was almost negligible for the set of nodes ranging from 30 to 60. Therefore, the optimal number 

of nodes in the second layer was selected to be 30. This selection was not only made by considering 

the validation error or the accuracy of the model only; it was made to ease the training and simulation 

of the model, where too many nodes and layers require high computational machines and could be 

time-consuming 

Figure 22: ANN wind power prediction results between 19/Jul-03/Aug 
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When testing different combinations of activation functions in the two layers, it was investigated that 

using a sigmoid function and then a tanh function improved the forecasting slightly. It is essential to 

mention that training this network mini-batch gradient descent with a momentum algorithm was used. 

The mini-batch concept was employed because data are processed inside this network with different 

activation functions and layers; the mini-batch concept will accelerate the training process and reduce 

the training time. The mini-batch size was selected to be 10; this selection is made upon related 

applications in the literature [112]. As seen in Figure 24, the mini-batch technique results in a noisy 

cost function in contrast to the batch gradient descent, where the cost function decays smoothly.  

Nevertheless, since our code is built to store the best parameters that determined the best validation 

error metrics and truncate the training process when overfitting starts the gradient descent with 

momentum performed well, and the final evaluation metrics of the build model are presented in Table 

Figure 23: DNN different error criteria variation for various number of nodes in layer 2  
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8. Overall, although the model performed well, compared to those error metrics obtained from the 

ANN, ANN is considered better. This indicates that the employment of the DNN in our case is not 

superior, mainly because it is time-consuming compared to the ANN. However, it should be mentioned 

that the DNN’s hyperparameters are much more; this could also be a direct result of the superiority of 

the ANN in this case.  

 

 

 

 

 

 

 

 

 

 

 

 

The predictions of the same 15 days from the testing set are plotted in Figure 25. As illustrated, the 

predictions are noisy in some spots, and overestimations and underestimations at the peaks can be 

clearly observed; however, the general trend is mapped.  

Error Criteria  Training    Testing  

R2 0.93  0.94 
MSE [MW2] 4.47 E+04  5.19+04 
RMSE [MW] 211.41  227.71 
MAPE[%] 14.0%  14.6% 
MAE [MW] 152.38   164.69 

 

Figure 24: Learning curve of DNN (1-h ahead) 

Table 8: Training and testing error criteria of DNN forecasting model 
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4.5.3 LSTM Forecasting Model 

Being a type of RNN, LSTM proved its superiority to map time series data due to the recursive 

structure and the gates that preserve long previous sequences. The same 15 input features developed 

and used in previous sections are used now to train LSTM for wind power forecasting.  

As previously shown in section 3.3, the units of LSTM consist of multiple gates where different 

mathematical calculations and operations happen; this series of operations slow down the training 

process. Therefore, similar to DNN in the previous section, the LSTM model was trained using mini-

batch gradient descent with a momentum algorithm to help in accelerating the training process.  

Similar to previous models, multiple experiments with a different number of nodes were conducted 

to determine the optimal number of nodes. As presented in Figure 26, the error metrics start to increase 

for nodes higher than 30 but then decrease for a higher number of nodes. However, training and 

simulating the network with more nodes will become much more challenging and time-consuming. 

Hence, by a trade-off decision between accuracy and ease of training and simulation, 30 LSTM nodes 

were selected to train the final LSTM model. Figure 27 represents the training curve of this LSTM 

network. 

 

Figure 25: DNN wind power prediction results between 19/Jul-03/Aug 
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According to the calculated error metrics (Table 9)from simulating the final trained model using the 

training and testing datasets, it can be seen that the LSTM converged at values of MSE higher than 

those reached by the DNN and ANN. This earlier convergence results in less accurate predictions and 

higher MAE. Nevertheless, the testing metrics results are highly close to the training ones, indicating a 

suitable model generalization. When observing the plotted prediction in Figure 28, it can be seen that 

this forecasting model is susceptible to variations and resulted in a noisy prediction that oscillate a lot 

and overestimate minimal variations across hours of predictions.  

Table 9: Training and testing error criteria of LSTM forecasting model 

Figure 26: LSTM different error criteria variation for various number of nodes 

Error Criteria  Training    Testing  
R2 0.93  0.93 
MSE [MW2] 5.09E+04  5.36 E+04 
RMSE [MW] 225.69  231.57 
MAPE[%] 15.0%  14.7% 
MAE [MW] 161.60   162.84 
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Figure 27: Learning curve of LSTM (1-h ahead) 

Figure 28: LSTM wind power prediction results between 19/Jul-03/Aug 
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4.5.4 BT Forecasting Model  

As previously discussed, ensembling tree-based models together can reduce the variance of the tree 

models. In this section, the bagging tree method is trained to forecast the hourly wind power targets.  

The most crucial hyperparameter for the BT model is the number of weak individual trees we aim to 

combine to create the final ensemble model. In this case study with trial and error, 30 individual trees 

were trained. Each tree is trained using a subset of training data (65 % of the training data) randomly 

drawn with replacement from the shuffled training dataset. The training process of each tree is truncated 

based on the validation error. It is essential to mention that all the 15 features in the training subsets 

were used for building the individual trees (Bagging approach is used, this approach is explained 

previously in section 3.4)  

Table 10 lists the error metrics determined after simulating the final ensemble tree trained model 

using the complete training dataset and the unseen testing dataset. As expected for the training dataset, 

combined tress performed adequately and, in fact, surpassed all the previous tested models; However, 

this forecasting accuracy considerably dropped when the model was tested using the unseen data. For 

instance, MAPE increased from 11.1 % for the training set to 22.8 % for the testing set. This gap 

between the metrics for the two sets proves the high variance of the tree models and their high 

dependence on the training dataset. Even though for building the trees, the training sets were constantly 

altered and differed from tree to tree.  

Figure 29 compares the actual and the predicted wind power values during the 15 days selected 

period. As illustrated, the high MAE is quite evident in that plot where gaps between the forecasted 

power and the actual one are considerable. Nevertheless, it is vital to mention that the tree models are 

easy to train and simulate; therefore, the selection of this model remains a trade-off decision based on 

the importance of the level of accuracy required for the different applications and purposes. 

Error Criteria  Training    Testing  
R2 0.96  0.86 
MSE [MW2] 2.69E+04  11.75 E+04 
RMSE [MW] 163.94  342.74 
MAPE[%] 11.1%  22.8% 
MAE [MW] 118.28   249.17 

 

Table 10: Training and testing error criteria of BT forecasting model 
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4.5.5 SVM Forecasting Model  

In this section, a SVR model is built to predict the wind power targets with the same 15 features used 

for training the other models.  

Although SVR is a robust model that has been proven to be able to capture various nonlinear 

relationships for different applications, the training process of and determining its optimal parameters 

is a challenging process that requires advanced optimization packages. In this case study, a Bayesian 

optimization algorithm (See Appendix D for a conceptual explanation of Bayesian optimization) was 

employed to estimate the SVR model's optimal hyperparameters estimation.  

The three hyperparameters that the SVR model is being trained for are:  

1- The kernel functions  

2- C (Regularization parameter) 

3- ε (The intensive zone) 

Table 11 shows the chosen search space for each hyperparameter and their obtained optimal values 

using Bayesian optimization. 

Figure 29: BT wind power prediction results between 19/Jul-03/Aug 
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Finally, Table 

12 represents the evaluation metrics determined using the optimized SVR model with the training and 

testing.  The results show that the model is generic and very reliable. The MAPE and R2  of the testing 

set are even slightly better than those of the training set. Moreover, the determined MAE is the lowest 

determined among the different tested methods in this study. The model’s low variance results from 

the built-in regularization property in the SVR and SVM, which in most cases makes the SVR models 

superior compared to other models. The predictions of the same 15 days used in the previous section 

are shown in Figure 30; as seen, the SVR mode reliably mapped the relations and predicted the power 

with high accuracy.  

 

Table 12: Training and testing error criteria of SVR forecasting model 

Table 11: Determined Bayesian search optimal parameters  

Figure 30: SVR wind power prediction results between 19/Jul-03/Aug 

Error Criteria  Training    Testing  
R2 0.94  0.95 
MSE [MW2] 38783.00  41425.00 
RMSE [MW] 196.93  203.53 
MAPE[%] 13.2%  13.0% 
MAE [MW] 140.74   144.80 

Hyperparameter Search space Optimal value 
Kernel function  [ Linear, quadratic, cubic] Linear 

C [0.001,1000] 0.9709 

ε [0.854,8.54E+04] 121.6884 

 



`` 

 67 

4.5.6 Ensemble Forecasting Model  

This section tests ensemble learning by constructing an ensemble model combining the predictions 

from the models trained in the previous sections.  

As illustrated in Figure 31, a rotational quadratic Gaussian regression model is fitted using the 

predictions from trained models (ANN, DNN, LSTM, and SVM) to improve the final predictions of 

the hourly wind power. Table 13 below lists the calculated error metrics of this final ensemble model. 

 

Table 13: Training and testing error criteria of an ensemble forecasting model. 

 

 

 

The results above in Table 13 show that the testing MSE (objective function) reached the lowest 

value for the ensemble model compared to the trained models in previous sections. Similarly, the 

MAPE % reached a value of 12.8% for the testing dataset, indicating the model's reliable generalization 

and accuracy. Nevertheless, when comparing it specifically to the SVM model, the obtained results are 

close to each other. This shows that the superiority of the ensemble model over the SVR could be 

Figure 31: Proposed ensemble forecasting model 

 
Error Criteria  Training    Testing  
R2 0.94  0.95 
MSE [MW2] 3.76 E+04  4.11 E+04 
RMSE [MW] 193.96  202.71 
MAPE[%] 12.9%  12.8% 
MAE [MW] 138.07   144.38 
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negligible and confirm the robustness of the individual SVR models and their ability to map and capture 

different relationships between data.   

Finally, the forecasted wind power by the ensemble model during the same period studied in previous 

sections is plotted in Figure 32. As illustrated, the model predicted the power values smoothly with 

high accuracy at peaks and adapted the minor oscillations in values.  

 

4.5.7 Comparative Discussion  

Table 14 summarizes all tested models' evaluation metrics to compare them and evaluate their 

performances and conduct the superiority of one model over the others.  

By evaluating and analyzing the performance of the models when tested on unseen testing data, it 

can be concluded that SVR/SVM is one of the most promising robust ML-based forecasting models. 

This algorithm can build reliable generic models that can perform well with new data where the testing 

MAPE % reached a value of 13 % for the testing predictions. Although almost a similar MAPE was 

calculated from the ensemble model, the ensemble model results indicate that the utilized approach for 

combining the models was insufficient to improve the predictions. Hence, using a different ensembling 

approach such as boosting in future work could increase the accuracy of forecasting results.  

Figure 32: Ensemble model wind power prediction results between 19/Jul-03/Aug 
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When comparing the ANN and DNN, it can be seen that the additional layers did not improve the 

forecasting precision.   Although a hyperparameter tuning was employed to tune the number of nodes 

in the second and first layers and for activation function selection, this tuning was not enough. The 

assumption of inadequate tuning of this network is based on the fact that the random search was 

employed and the tuning process itself needed a long computational time. Moreover, other learning-

related hyperparameters such as batch size and learning rate were selected based on experience and 

other scholars' applications without turning them. Therefore, employing more powerful optimization 

algorithms is expected to improve the overall performance of a DNN. Eventually, a better performance 

by an ANN is considered favorable since training and simulating this network is easier and faster.    

   When comparing the DDN with the LSTM, the DNN reached a lower MSE; however, the LSTM’s 

MAE is lower. Generally, the LSTM performance was expected to be better due to the recursive nature 

of the units in this network. Nonetheless, as illustrated and observed from the obtained results, no clear 

superiority of the LSTM model over the non-recursive network. Where SVR and ANN mapped and 

presented the data with overall higher accuracies.  

 

For bagging tree ensemble, although the training process of this model is straightforward and time-

efficient, as the results confirmed and illustrated, this kind of algorithm builds data-dependent models. 

Similar to the ensemble model concluded idea, using different combining approaches for optimally 

Table 14: Training and testing error criteria of different forecasting models. 

 

Training Testing 

Model R2 
MSE 
[MW] 

RMSE 
[MW] 

MAPE 
MAE 
[MW] 

R2 
MSE 
[MW] 

RMSE 
[MW] 

MAPE 
MAE 
[MW] 

ANN 0.94 4.06E+04 201.45 13.4% 143.68 0.945 4.47E+04 211.35 13.5% 150.33 

MLP 0.93 4.47E+04 211.41 14.0% 152.38 0.94 5.19E+04 227.71 14.6% 164.69 

LSTM 0.93 5.09E+04 225.69 15.0% 161.60 0.93 5.36E+04 231.57 14.7% 162.84 

SVM 0.94 3.88E+04 196.93 13.2% 140.74 0.95 4.14E+04 203.53 13.0% 144.80 

BT 0.96 2.69E+04 163.94 11.1% 118.28 0.86 1.17E+05 342.74 22.8% 249.17 

Ensemble 0.94 3.76E+04 193.96 12.9% 138.07 0.95 4.11E+04 202.71 12.8% 144.38 
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enesambling the trees could improve the overall generalization of the trees. The implication of RF is 

also expected to be practical and reliable. Further consideration of the abilities of the RF algorithm is 

conducted in case study 2 ( chapter 5 ). 

To sum up, although better precisions were reported in the literature for wind power forecasting, our 

obtained accuracies are considered adequate for regional forecasting. This notation is based on the fact 

that all the published and conducted studies focus on specific sites or even one wind turbine with a 

known hub height, physical characteristics, and efficiency coefficients.  Furthermore, unlike the 

carefully measured weather parameters affecting a single turbine at specified heights, the 

meteorological data used in this study were from different locations across Ontario, measured with 

different apparatuses with different settings. Hence, these factors would definitely affect the overall 

forecasting results, even though the ML models will try to capture and adapt them and train the models 

for reliable predictions. Hence, with further spatial and weather data availability and more 

comprehensive optimization and tuning, a general regional model representing Ontario’s wind power 

could be constructed to be used for other purposes such as electricity pre-scheduling to avoid surplus 

production of other resources.   

4.6 Multi-Step Ahead Forecasting 

As mentioned before, multi-step forecasting is not an easy task that requires further attention from 

scholars. This type of forecasting objective requires compelling models to handle error accumulation 

resulting from the forecasting targets' temporal dependencies between each other. Before discussing 

the approaches that will be considered in this section for multi-step wind power forecasting, it is 

essential to mention that multi-step forecasting can be achieved using different approaches, namely: 

1- Direct multi-step forecasting: In this approach, N models are individually built for N forecasting 

steps without considering the dependencies of these steps on each other. This methodology 

requires multiple models training and tuning, which is eventually very expensive and time-

consuming [113].  

2- Recursive multi-step forecasting: In this method, a one-step model is trained for multiple steps 

forecasting using the predictions of previous steps to predict the following ones. Although this 

approach accounts for the dependencies of steps on each other, it can cause degradation of the 

training process, where error accumulates from step to step with the increasing length of the 

horizon (number of steps)[114]. 
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3-  Direct-Recursive multi-step forecasting: This methodology combines methods 1 and 2 together, 

where a model for each step forecasting is built, but the predictions from the model of the 

previous steps are used to build the model for the following step. In other words, prediction is 

performed sequentially to use the predictions from the previous model as inputs to the following 

model. Although hybrid strategy requires multiple model training, it is expected to overcome the 

drawbacks of the two individual models [115].  

4- Multiple output multi-step forecasting: This methodology aims to build one model capable of 

forecasting the entire target sequence in one simulation step without the recursive processing of 

data. These multiple outputs models are complex since they focus not only on capturing and 

mapping the relationship between inputs and outputs but also on learning the relations between 

outputs to capture temporal dependencies between them. This complexity slows down the 

training process and requires more training data to avoid over or underfitting[116].  

The direct multi-step forecasting and the (MIMO) methods are tested and compared in the 

following subsections of this section. Similar data and pre-processing approaches followed for 

one-step forecasting will be followed for multi-step forecasting. Some minor modifications of 

the selected lag features will be applied to handle the longer horizon of forecasting. These 

modifications would, of course, affect the dimensionality of data; therefore, dimensionality 

reduction of the new features will be considered to ease the training processes.  The following 

section will discuss these modifications to features and dimensionality. 

4.6.1 Feature Selection and Dimensionality Reduction  

 The same 21 features selected in section 4.4.1 are the first step for feature selection for multi-step 

forecasting: (Previous wind power +Wind speed ×5 stations + Wind direction ×5 stations + 

Temperature ×5 stations + Year + month + day + hour + seasonality+ No. of operating plants). 

For the lag feature, the lag feature selected for one-step ahead was 3; the last 3 hours features were 

considered to forecast the following one. Now, For the case of multiple steps, with trial and error, a lag 

of 6 was chosen to be enough for this case study to forecast wind power three hours ahead. Therefore, 

the new input features become (6×22=132 features). The dimensionality of these features is 

considerably high; therefore, using the PCA method for dimensionality reduction would ease and 

accelerate the training process. As seen in Table 15, 93 % of the original information is cumulatively 
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Table 15: Principal component analysis results of the first 29 components 

stored in the first 29 principal components. Hence, the final input vector to the MIMO forecasting 

model was chosen to be these 29 components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Principal 
component Eigenvalue Variation % Cumulative variation % 

1 7.014 24.317 24.317 
2 4.412 15.295 39.612 
3 2.983 10.342 49.954 
4 2.009 6.964 56.918 
5 1.854 6.427 63.345 
6 1.536 5.326 68.671 
7 1.313 4.552 73.223 
8 0.893 3.095 76.318 
9 0.659 2.285 78.603 

10 0.523 1.813 80.416 
11 0.476 1.651 82.067 
12 0.392 1.358 83.425 
13 0.336 1.163 84.588 
14 0.250 0.867 85.455 
15 0.224 0.778 86.233 
16 0.218 0.756 86.989 
17 0.193 0.670 87.659 
18 0.185 0.641 88.300 
19 0.174 0.603 88.904 
20 0.166 0.576 89.480 
21 0.154 0.533 90.012 
22 0.152 0.528 90.540 
23 0.123 0.428 90.968 
24 0.115 0.400 91.368 
25 0.112 0.387 91.755 
26 0.109 0.378 92.133 
27 0.109 0.376 92.509 
28 0.107 0.372 92.881 
29 0.098 0.341 93.222 
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4.6.2 Simulation Results 2 (3-steps ahead Forecasting –Direct Strategy)  

In this section, three independent models using the same 29 input features are trained to predict one-

step wind power. The models are built parallelly using the same features; the first model’s target is 

forecasting the wind power 1-h ahead, while the second is trained to forecast 2-h ahead, and finally, the 

third is constructed for 3-h ahead forecasting. Figure 33 below illustrates this proposed forecasting 

process. As shown, the three models were selected to be SVR; this selection was made based on the 

obtained results in the 1-step ahead forecasting, where SVR showed a robust performance and 

generalization when compared to other models. The hyperparameters of these SVR models are 

optimally obtained using random search. Table 16 lists the obtained parameters for the three models.  

 

Hyperparameter Search space Optimal value 

Model 1 

Kernel function [Linea,quadratic, qubic] Cubic 

C [0.001,1000] 1.72 

ε [0.845,8.54E+04] 26.21 

Model 2 

Kernel function [Linea,quadratic, qubic] Linear 

C [0.001,1000] 9.9308 

ε [0.845,8.54E+04] 2.7887 

Model 3 

Kernel function [Linea,quadratic, qubic] Linear 

C [0.001,1000] 56.89 

ε [0.845,8.54E+04] 1.1665 

Figure 33: Proposed direct multi-step forecasting model. 

Table 16: Random search optimal parameter results 
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According to the error criteria of each model in Table 17, the accuracy of the predictions reduces with 

longer horizons. For instance, the MAPE of the third step model for testing the data set is considered 

high, and according to [117], A MAPE > 30 % is considered reasonable forecasting. Overall, this 

decline of accuracy is, in fact, expected because the temporal relation between this third step and the 

previous 2 steps was not considered; this is one of the drawbacks of the direct multi-step forecasting 

that was previously mentioned. Moreover, as seen, the gap between the training and testing sets metrics 

is considerable, although the SVR models are known for their generalization ability.  

4.6.3 Simulating Results 3 (3-steps ahead Forecasting – MIMO Strategy)  

This section evaluates the MIMO models for 3-steps ahead forecasting based on different error 

metrics by simulating them using the training and testing datasets.  

Training a network for multiple outputs requires some modifications to the cost function. For this 

forecasting case study, for the sake of simplifying the application, the average of MSE for all the 

horizons is selected to be the cost function, that we aim to find the optimal parameters that minimize it. 

Similar to the previous training processes, the cross-validation concept is employed to avoid overfitting 

and truncate the training process.  

4.6.3.1 MIMO ANN Forecasting Model  

MIMO ANN with 60 nodes and sigmoid hidden activation function in hidden nodes was trained to 

forecast the 3-h ahead wind power. Table 18 lists the error metrics of each forecasting step. According 

to these results, the ANN model has not been robust enough for this multioutput problem, where the 

accuracy for the second and third steps is not as high as the one for the first step. Nevertheless, 

comparing these results to those obtained from the direct approach, it can be seen that, unlike the direct 

approach where the accuracy of the first step is considerably higher than the one for the second and 

Table 17: Training and testing error criteria of direct multi-step forecasting models. 

Error Criteria  Training    Testing  

 Step 1 Step 2 Step 3    Step 1 Step 2 Step 3 
R2 0.91 0.85 0.79  0.88 0.76 0.67 
MSE [MW2] 5.84E+04 1.05E+05 1.46E+05  1.01E+5 1.91E+05 2.67E+05 
RMSE [MW] 241.66 324.04 382.1  317.80 437.03 516.72 
MAPE[%] 16.2% 22.0% 26.2%  20.0% 28.11% 33.67% 
MAE [MW] 171.82 231.33 274.0  219.90 304.37 362.17 
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third step, the MIMO approach forecasted the three steps with a balanced accuracy, where on the 

expense of the first step precision the accuracies of the second and third steps increased. Furthermore, 

better reliable performance can be observed when the model is tested on the unseen data.  

Table 18: Training and testing error criteria of MIMO ANN forecasting model 

4.6.3.2 MIMO LSTM Forecasting Model  

As seen in Table 19, MIMO LSTM performed better than MIMO ANN; error metrics such as MSE, 

MAE, and MAPE for all the steps are considerably better than ANN. This superior performance could 

be explained by the recursive structure of the LSTM, where the information from previous steps is used 

in the following steps.  The MIMO LSTM was trained with 45 hidden units, this size of these nodes 

was determined with trial and error.  

Table 19: Training and testing error criteria of MIMO LSTM forecasting model. 

4.6.4 Comparative Discussion  

Multi-step step ahead forecasting is essential for some scheduling and managing objectives; 

however, this task is a complex task that requires special considerations of the dependence of the targets 

on each other. When comparing the direct and MIMO multi-step forecasting methodologies, it can be 

seen that although the MIMO approach is harder to train and require advanced machines, it can perform 

better, especially if the trained model has the built-in recursive property. Thus, the MIMO method with 

a type of recursive properties can capture the dependencies between steps. Moreover, it avoids the time-

Error Criteria  Training    Testing  

 Step 1 Step 2 Step 3    Step 1 Step 2 Step 3 
R2 0.93 0.87 0.80  0.88 0.84 0.77 
MSE [MW2] 4.94E+04 9.09E+04 1.36E+05  6.58E+4 1.15E+05 1.68E+05 
RMSE [MW] 222.26 301.50 368.78  256.52 339.12 409.88 
MAPE[%] 15.2% 20.5% 25.0%  16.9% 22.0% 26.6% 
MAE [MW] 163.3 220.65 269.87  190.02 284.06 299.63 

 

Error Criteria  Training    Testing  

 Step 1 Step 2 Step 3    Step 1 Step 2 Step 3 
R2 0.89 0.83 0.76  0.88 0.84 0.77 
MSE [MW2] 7.46E+04 1.15E+05 1.61E+05  9.32E+4 1.33E+05 1.83E+05 
RMSE [MW] 273.13 339.12 401.25 

 
305.29 364.69 427.78 

MAPE[%] 18.6% 22.8% 26.7%  20.1% 23.7% 27.5% 
MAE [MW] 211.28 259.45 304.71  234.90 277.84 321.74 
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consuming multi-model training for each step. From that perspective, in future studies, an attempt to 

apply different ML for MIMO forecasting could provide better insight into the ability of this approach. 

4.7 Conclusion (Case Study 1) 

This case study addressed Ontario’s wind power forecasting comprehensively from different 

perspectives. Besides the proposed deep feature selection approach, a comparative analysis was 

conducted in this case study to compare the performances for different ML algorithms for one-step and 

multi-step ahead forecasting.  

• For one-step ahead forecasting, by evaluating and analyzing the performance of the models 

when tested on unseen testing data, it can be concluded that SVR/SVM is one of the most promising 

robust ML-based forecasting models. This algorithm can build reliable generalized models that can 

perform well with new data where the testing MAPE % reached a value of 13 % for the testing 

predictions. Although almost a similar MAPE was calculated from the ensemble model, the ensemble 

model results indicate that the utilized approach for combining the models was insufficient to improve 

the predictions. Hence, using a different ensembling approach such as boosting in future work could 

increase the accuracy of forecasting results.  

• Multi-step step ahead forecasting is essential for some scheduling and managing objectives; 

however, this task is a complex task that requires special considerations of the dependence of the targets 

on each other. When comparing the direct and MIMO multi-step forecasting methodologies, it can be 

seen that although the MIMO approach is harder to train and require advanced machines, it can perform 

better, especially if the trained model has the built-in recursive property. Thus, the MIMO method with 

a type of recursive properties can capture the dependencies between steps. Moreover, it avoids the time-

consuming multi-model training for each step. From that perspective, in future studies, an attempt to 

apply different ML for MIMO forecasting could provide better insight into the ability of this approach. 

To sum up, although better precisions were reported in the literature for wind power forecasting, our 

obtained accuracies are considered adequate for regional forecasting. This notation is based on the fact 

that all the published and conducted studies focus on specific sites or even one wind turbine with a 

known hub height, physical characteristics, and loss coefficients.  Furthermore, unlike the carefully 

measured weather parameters affecting a single turbine at specified heights, the meteorological data 

used in this study were from different locations across Ontario, measured with different apparatuses 

with different settings. Hence, these factors would definitely affect the overall forecasting results, even 
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though the ML models will try to capture and adapt them and train the models for reliable predictions. 

Hence, with further spatial and weather data availability and more compressive optimization and 

tuning, a general regional model representing Ontario’s wind power could be constructed to be used 

for other purposes such as electricity pre-scheduling to avoid surplus production of other sources.   
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Chapter 5 

Case study 2: Air Quality Index Forecasting  

5.1 Motivation and Contribution  

As discussed and shown in the brief background and literature review in section 2.2, the AQI accurate 

forecasting relies on the forecasted pollutants levels in the ambient air. One significant issue associated 

with predicting these levels is the missing air monitoring data and the missing metrological data. As a 

result of temporal dependencies between these data, discarding observation with missing variables for 

training or building prediction models is generally impractical and affects the model's ability to capture 

the time relations between data. Furthermore, imputing missing observations with mean or median 

values or any other single imputation approaches could fail to map extreme or abnormal behaviors in 

the data. Therefore, assigning values to these missing incidents with the consideration of other factors 

is essential, especially for the case of AQI predictions where the extreme and high values actually 

require attention and precautionary actions. 

This chapter tackles the missing data problem using the miss-forest imputation technique, a multivariate 

random forest-based imputation technique to impute missing observations in meteorological and 

pollutant levels data. Afterward, the effectiveness of the employed multivariate imputation is examined 

by using the imputed data for training ANN models to forecast the criteria pollutants levels and AQI. 

Pre-processing of data and feature selection is comprehensively conducted before building models 

using different methodologies; as part of investigating features’ importance, random forest modeling 

was also employed to detect feature's importance.  

Then, further analysis is performed to compare models built using the proposed imputation technique 

with models trained using linear imputation. In order to conduct a fair comparison between the two 

imputation approaches and test their performance, the testing set of data (unseen by the fitted models) 

was selected to be complete with no missing data. This selection makes the actual data of the testing 

set similar for both built models. By this, the generalization of the constructed models by differently 

imputed datasets could be fairly compared and analyzed.    

To sum up, the following points mainly motivated this case study:  

1- Testing multivariate imputation technique for imputing missing environmental and meteorological 

parameters in datasets.  
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2- Forecasting the criteria for pollutants levels in the air to report the predicted AQI of the following 

hours. Accurate predictions would help the inhabitants prevent hazardous and low-quality air 

exposure. Moreover, it would help decision-makers plan future operating conditions and/or cut off 

certain polluting activities at predicted peak pollution hours. 

3- Evaluating the robust performance of random forest models, not only as a forecasting model but 

also for missing data imputation and features selection.   

5.2 Data Description and Feature Engineering 

5.2.1 Raw Data Sources and Pre-analysis 

The air quality monitoring data for training and testing the proposed model was collected by Kuwait 

Environmental Public Authority (KEPA) from a station located in Al-Jahra, a city in Kuwait. This data 

includes three types of hourly observations:  

1- Concentrations of different gaseous and particulate pollutants. 

2- Meteorological condition measurements such as ambient temperature, wind speed, wind 

direction, and pressure, etc. 

3- Temporal data; the time of recorded observations, including the year, month, and day in 

addition to the hour of the day. 

Three years of hourly data (24-2-2013- 23-2-2015) were gathered for this study. 

 Out of 38 different recorded parameters, the listed parameters in Table 20 are selected for this case 

study.  
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Table 20: Summary of selected parameters 

5.2.2 Data Splitting 

The overall dataset was divided into three sets: training, validation, and testing datasets with 80 %, 

10 %, and 10 %, of the overall data size, respectively. The training set is used to train the forecasting 

model, the validation set is used to test the learned parameters at each iteration during the training 

process, and the testing set is used to test the fitted parameters after the learning stops. The model's 

training is truncated when the MSE of the validation set starts to increase even though the training MSE 

is decreasing. This data splitting step prevents overfitting of the model, and generalization is 

ensured[111]. 

5.2.3 Missing Data Imputation 

5.2.3.1 Conceptual Explanation Missing Data Imputation Method by Random Forest   

As mentioned before, missing recorded measurements is a pretty common issue when dealing with 

real-life data. In research, two schemes of imputing these missing data are regularly followed, namely 

1- Single imputation and 2- Multiple imputations. 

The single imputation approach is a faster approach. The missing entry for a specific variable is 

simply assigned to that variable's mean or median value without considering other variables or even 

other related non-missing observations of the same variable. Conversely, missing values in the multiple 

Type Variable Measurement unit 

Meteorological 

Temperature Celsius 

Wind speed  m/s 

Wind direction deg 

Relative humidity  % 

Criteria gases level 

CO  mg/m³ 

NO2  µg/m³ 

O3  µg/m³ 

PM10  µg/m³ 

PM2.5 µg/m³ 

SO2  µg/m³ 

Criteria pollutants levels 



`` 

 81 

imputation techniques are estimated with lower biases and uncertainties using data analysis and 

regression tools[118]. In these approaches, models are built on the non-missing data to estimate the 

missing ones. In our study, the miss-forest imputation technique is employed and examined.  

Miss-forest imputation methodology employs the RF algorithm for estimating missing data. This 

method can be summarized into four steps as follows:  

1- Initialization: In this step, all missing observations of a specific variable are substituted by the 

mean value of this variable; a mean single imputation is performed as an initial step.  

2- Imputation: The imputation of missing data is performed in sequential order of missing entries for 

each variable. The variable with the missing entries being imputed is treated as a target variable 

(dependent variable) for training the RF model [119]. Other variables are used as predictors for this 

target variable. The complete non-missing entries of the target variable are used for training the RF 

model, whereas the missing ones are replaced by the estimated values using the trained model[118]. 

3- Repetition: Step 2 is repeated for all variables with missing entries by assigning other variables to 

be the predictors to build the RF model.  

4- End: Once RF models for all the variables with missing entries are trained, the first imputation 

iteration is achieved. Then, steps 2 and 3 will be repeated until the squared difference between the 

new and the previous imputation results increases. When detecting this increment, the imputation 

process will stop, and the final results will be selected to be the results determined from the previous 

iteration [118],[120]. 

5.2.3.2 Application of Proposed Imputation Technique 

The missing observations in our dataset are scattered randomly in the training and validation sets. 

From the analysis performed to conduct the percentage of missing entries in each variable, high 

missingness rates (>6 %) are observed in pollutants concentrations. On the other hand, moderately 

lower missingness percentages are for the meteorological data. The missingness percentages in the data 

are summarized in Table 21.  

As mentioned before, the missing entries are imputed using two different imputation approaches, 

namely, miss-forest imputation and linear interpolation; these two approaches imputed the missing data 

in the training and validation sets. Using different imputation techniques assign missing data 

differently; both data sets are then used to train ANN models to forecast the pollutants level and the 

AQI.  
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Nevertheless, because different methods imputed the missing entries, the imputed forecasting targets 

for the two datasets are not similar 

Therefore, comparing the obtained results to conduct the superiority of one approach over the other 

will not be fair in this case. Thus, to achieve a fair comparison between the models, the testing set was 

selected to be complete with no missing data. In this case, the targets of both models are the same; 

therefore, the model that results in better testing predictions can be considered superior with a better 

generalization when tested on the unseen data, which reflects an overall better estimation of missing 

data.  

Table 21: Percentages of missing observations 

5.2.4 Feature Engineering (Extraction) 

In this section, the time features, including month, day, and hour, are encoded to become cyclic using 

sin and cos functions. This encoding will improve forecasting models' ability to capture the cyclic 

temporal and seasonal relations between predictors and targets, ultimately increasing the model 

accuracy[121]. The following equations (20 and 21) were used to transform the temporal feature X into 

a cyclic feature.  

Where 𝑚𝑎𝑥. (𝑋) = 12, 31, and 24 for the month, day, and hour feature, respectively.  

Variable Missingness % 

NO2 Conc. 10.96 % 

PM2.5 Conc. 10.36% 

O3 Conc. 10.30% 

SO2 Conc. 8.01% 

PM10 Con. 7.89% 

CO Conc. 6.70% 

Temperature 4.59% 

Relative humidity 1.89% 

Wind speed 1.16% 

Wind direction 1.16% 

Time (year, month, day, hour) 0% 
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After this feature engineering step, a total number of 17 features (Concentrations of 6 pollutants + 

Temperature + Wind speed +Wind direction + Relative humidity + Sin (month, day, hour) + Cos 

(month, day, hour) +Year) are selected to be the inputs of the ANN. 

In section 5.3, unnecessary features, if found, will be filtered, and the appropriate lag features of the 

target pollutants levels are selected.  

5.2.5 Data Scaling 

Scaling data to become within [ 0,1] is vital since predictors differ in ranges. High variations between 

data could slow the training process of the ML engines and cause the issue of falling into the minimal 

local values, which results in unreliable, poor forecasting models [122].  

In this case study, the predictors were scaled to become between 0 and 1 as follows:  

P is a vector of predictors at time = t, i is the index of the predictor, and min is the minimum value 

of predictor i, and max is the maximum value of predictor i, and P* is the scaled value of predictor i. 

5.3 Feature Selection 

5.3.1 Feature Filtering and Selection 

Proper selection of predictors is essential because high dimensions of irrelevant features could delay 

the training process and necessitate the need for expensive, time-consuming computation 

machines[123]. Although previous research and experience were considered for carefully selecting 

attributes for forecasting the pollutants level, this step before predicting is vital. It could highly affect 

the forecasting results and give an insight for feature selection for related applications and studies. In 

our study, the famous Boruta algorithm analyzes the importance of the selected predictors and filters 

the irrelevant ones if found.  

𝑋𝑠𝑖𝑛 =  Sin (
2𝜋𝑋

𝑚𝑎𝑥. (𝑋)
) 

(20) 

𝑋𝑐𝑜𝑠 = 𝐶𝑜𝑠 (
2𝜋𝑋

𝑚𝑎𝑥. (𝑋)
) 

(21) 

𝑃𝑖
∗ =

𝑃𝑖(𝑡) − min (𝑃𝑖)

max(𝑃𝑖 ) − min (𝑃𝑖 )
 

(22) 
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Boruta's main objective is to conduct the significance of the feature by testing its effect on a random 

forest model through multiple iterations [124]. First, a copy of the predictors is created and randomly 

shuffled across the observations in each iteration to create shadow variables.  The shadow variable will 

erase out the actual relation between the predictors and the target. Next, the RF model is trained using 

the doubled dataset (The real predictors + their shadows). After training, a statistical Z-test is conducted 

to disclose the significance of the predictor and compare it to the importance of the shadow variable. 

To declare the feature as an important feature, its relevance must be higher than the maximum 

significance of all shadow variables (Z-score actual > max. Z-score shadow). After filtering out insignificant 

variables and their shadows, the previous steps are repeated until a filter/keep decision for all features 

is made[124]. R studio package for Boruta was employed in our study to determine the important 

features for forecasting each pollutant.  

Table 22 lists the final selected predictors for each forecasting target. As illustrated, almost all the 

features nominated in the previous section were declared to be necessary. Although sin hour was 

  O3 Conc. SO2 Conc. NO2 Conc. CO Conc. PM10 Conc PM2.5 Conc

Year * * * * * * 
sine month  * * * * * * 
cosine month  * * * * * * 
sine day  * * * * * * 
cosine day  * * * * * * 
sine hour  * * * * Rejected Rejected 
cosine hour  * * * * * * 
O3 Conc.  * * * * * 
SO2 Conc. *  * * * * 
NO2 Conc. * *  * *  
CO Conc. * * *  * * 
PM10 Conc * * * *  * 
PM2.5 Conc * * * * *  
Wind Speed * * * * * * 
Wind direction * * * Tentative * * 
Temperature * * * * * * 
RelativeHumidity * * * * * * 

 

Variable 

Target 

Table 22: Summary of selected features per target 
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rejected for PM10 and PM2.5, a decision to keep it was made since it was accepted for all the other 

targets. A similar conclusion was made for the wind direction for predicting the level of CO.   

5.3.2 Lag Feature Selection  

The final feature selection step is critical. This step is responsible for selecting the lag feature of the 

dependent variable, i.e., the pollutant levels. Like with any other time-series data, the pollutant levels 

in ambient air have significant dependencies on their observations at previous time steps. Therefore, 

ACF and PACF were used to select the appropriate lag features in our study. ACF and PACF are plotted 

in Figure 35-Figure 36 for (O3, SO2, NO2, CO, and PM10, PM2.5) respectively. As one can notice from 

the ACF plots, level patterns of O3, NO2, and CO are repeated every 24 hours. This repeated pattern 

cannot be seen in the ACF plots of the other pollutants. Nevertheless, when removing internal relations 

between lags and plotting the PCAF, lags ranging between 1 and 4 are considered significant for the 

different pollutants. Although in the case of CO, only the zero-lag (the observation with itself) and 1 

lag are considerable, in this study, the lag feature of all targets (pollutants levels) was selected to be 4 

because the lags<4 observed in ACF plots were high and neglecting them will not be sensible. By this, 

the final size of the input feature becomes 20. 

 

 

Figure 34: ACF and PACF plots for NO2 and CO 
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Figure 35: ACF and PACF plots for O3 and SO2 

Figure 36: ACF and PACF plots for PM10 and PM2.5 
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5.4 Numerical Study 

5.4.1 Forecasting Targets 

Reporting the AQI of O3 at a specific hour requires the midpoint 8-hour average ozone 

concentration[83]. Therefore, forecasting the AQI at time=t+1, concentrations at time = [ t-3, t+4] are 

needed. Based on that, at time =t, our built forecasting model predicts the average O3 concentrations of 

the next 4 hours [t+1, t+4]. Then the midpoint 8-h average concentration is calculated using the 

following equation:  

 

A similar approach is considered to forecast the 4-h average of CO concentration and calculate its 

midpoint 8-h average. 

For PM10 and PM2.5, the 24-hour average concentration is required; thus, the prediction model is 

designed to predict the 12-h average concentration of the following hours. Similarly, then the midpoint 

12-h concentration is calculated using the following equation: 

For NO2 and SO2, the 1-h concentrations of the next hour are forecasted. 

5.4.2 Settings of the Pollutants Forecasting Models 

In this study, ANN is applied to build the forecasting models of the six pollutants. As mentioned 

before, training an ANN with insufficient nodes generates unreliable under-fitted models. Whereas 

selecting a large number of hidden neurons when training an ANN provides an overfitted model lacking 

generalization performing poorly with another unseen dataset[125]. Therefore, finding the appropriate 

number of nodes when training an ANN is crucial and highly affects forecasting performance [126]. 

Besides that, excessive training by setting the iterations of training to a large number would result in a 

biased fit towards the training set and also cause the overfitting issue.  

Therefore, the data division accompanied the grid search optimization to address the overfitting issue 

and find the optimal number of nodes. The network will be trained multiple times with different sizes 

4 − h average of actual previous hours + forecasted 4 − h average of the following hours  

2
 

(22) 

 

12 − h average of actual previous hours + forecasted 12 − h average of the following hours  

2
 

(23) 
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Table 23: The training procedure of the ANN is presented by pseudo-code. 

Table 24: Optimal number of nodes 

of neurons between 2 and the input layer nodes (20); the number of neurons resulting in the lowest 

validation error is selected to be the optimal size of hidden nodes. 

The training procedure of the ANN is presented by pseudo-code in Table 23. The ANN for all the 

pollutants was trained using mini-batch gradient descent with a momentum algorithm with a batch size 

of 32, a learning rate=0.0001, and a momentum =0.9. The determined optimal number of nodes for the 

models of the six pollutants is presented below in Table 24.  

 

 

 

Pollutant 
Optimal no. of nodes (Miss-

forest imputed dataset) 

Optimal no. of nodes (linear imputed 

dataset) 

O3 12 12 

NO2 10 12 

SO2 16 18 

CO 14 16 

PM10 20 12 

PM2.5 18 16 

1: For neuros 1: neurons max  do 
2: While epoch< epoch max do 
3: For each input of the training dataset Do 
4: Drop out nodes.  
5: Forward propagation. 
6: Evaluate loss function of each input.  
7: Back-propagate error.  
8: Update weights and biases of the hidden and output layer. 
9: End for 
10: For each input in the Validation data set do 
11: Calculate Validation cost function and error metrics. 
12: End for  
13:  If Validation cost < best determined validation cost function (BestV) 
14: BestV=Validation cost  
15: epoch=epoch+1 
16: Else  
17: epoch=epoch max 

18: End if  
19: End while  
20: End for  
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5.5 Criteria Pollutants Forecasting Results 

In this section, the determined and selected features from the previous section will be utilized to build 

forecasting models of criteria pollutants to predict the AQI and its corresponding criteria pollutant. As 

previously stated, the prediction models are built using two different datasets. In this section, the 

forecasting results obtained from the two imputed datasets are reported and compared for the six 

pollutants (O3, NO2, SO2, CO, PM10, and PM2.5, respectively).  

5.5.1 Ozone (O3)  

Error criteria for the two forecasting models of ozone are shown in Table 25. As shown, the Miss -

forest trained imputed dataset generated a model with lower error metrics for both the training and 

testing datasets. Since the actual testing data set is complete with no missing data, it can be seen that 

MSE, RMSE, and MAE are lower for the model of the miss-forest imputed data, indicating a better 

generalization of the built model when tested on the new unseen data. Figure 38 and Figure 39 show 

the testing prediction results of the O3 level for both models. Figure 37 represents more detailed 

forecasted levels in fifteen days selected from the testing dataset. 

Table 25: Forecasting models' error metrics for O3 measurement in the training and testing sets. 

                           Miss-forest Imputed dataset Linear Imputed dataset 
  Training    Testing    Training    Testing  
R2 0.97  0.93   0.97  0.87 
MSE [µg/m³]2 26.80  31.11   28.45  55.23 
RMSE [µg/m³] 5.18  5.58   5.33  7.43 
MAE [µg/m³] 4.03  4.55   4.22  6.56 
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Figure 39: O3 testing forecasts using the model training by the linear imputed dataset. 

Figure 38: prediction results on Jan 21-Feb 08 -2015 

 

Figure 37: O3 testing forecasts using the model training by the miss-forest imputed dataset 
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5.5.2 Nitrogen Dioxide (NO2) 

The evaluation metrics of the two trained models for forecasting the hourly Nitrogen dioxide levels 

are presented in Table 26. When comparing the two models, the model trained by the linear 

interpolation imputed dataset performed slightly better with respect to the error criteria for both the 

training and testing datasets. When comparing the MAE, the values are almost similar, with a difference 

of decimal points. The forecasts of the testing set are illustrated in Figure 40 and Figure 41, and a 

comparison between the two forecasts over 15 days is also presented in Figure 42.  

Table 26: Forecasting models' error metrics for NO2 measurement in the training and testing sets. 

 

Figure 40: NO2 testing forecasts using the model training by the miss-forest imputed dataset. 

                           Miss-forest Imputed dataset Linear Imputed dataset 
  Training    Testing    Training    Testing  
R2 0.84 

 
0.78   0.87 

 
0.76 

MSE [µg/m³]2 166.62 
 

160.37   142.80 
 

144.798 
RMSE [µg/m³] 12.91 

 
12.66   11.95 

 
12.03 

MAE [µg/m³] 9.16 
 

9.99   7.86 
 

9.95 
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Figure 41: NO2 testing forecasts using the model training by the linear imputed dataset. 

5.5.3 Sulfur Dioxide (SO2) 

Based on the results reported in Table 27, both studied models did not predict the SO2 levels with 

high accuracies. Comparing the two methods, the miss-forest provided outputs with higher accuracy 

and a better generalization where the metrics of the testing set are close to the training set.  

Figure 43 and Figure 44 show the prediction of the two models. Figure 45 compares the results of 

the two examined models, where it is clear that both models perform not very accurately at high levels 

of SO2  and underestimate these peak concentrations.  

Figure 42: NO2 prediction results on Jan 21-Feb 08 -2015 
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Table 27: Forecasting models' error metrics for SO2 measurement in the training and testing sets. 

 

Figure 43:  SO2 testing forecasts using the model training by the miss-forest imputed dataset. 

Figure 44: SO2 testing forecasts using the model training by the linear imputed dataset. 

                           Miss-forest Imputed dataset Linear Imputed dataset 
  Training    Testing    Training    Testing  
R2 0.53 

 
0.51   0.49 

 
0.33 

MSE [µg/m³]2 297.40 
 

191.02   455.13 
 

261.05 
RMSE [µg/m³] 17.25 

 
13.82   21.33 

 
16.16 

MAE [µg/m³] 6.61 
 

6.01   7.20 
 

9.75 
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Figure 46: CO testing forecasts using the model training by the miss-forest imputed dataset 

Table 28: Forecasting models' error metrics for CO measurement in the training and testing sets. 

 

Figure 45: SO2 prediction results on Jan 21-Feb 08 -2015 

5.5.4 Carbon Monoxide (CO) 

As demonstrated in Table 28, CO forecasted levels are more accurate for the linear imputed model; 

nevertheless, both models could be considered accurate and reliable. Figure 46 and Figure 47 illustrate 

the forecasts of the testing sets, and Figure 48 compares the predictions of the two considered models 

in a period of 15 days. 

                           Miss-forest Imputed dataset Linear Imputed dataset 
  Training    Testing    Training    Testing  
R2 0.92 

 
0.92   0.93 

 
0.92 

MSE [µg/m³]2 0.02 
 

0.05   0.023 
 

0.04 
RMSE [µg/m³] 0.16 

 
0.21   0.15 

 
0.20 

MAE [µg/m³] 0.10 
 

0.17   0.09 
 

0.16 
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5.5.5 Particulate Matter 10 (PM10) 

When comparing the results reported in Table 29, the MSE of the linear imputed dataset is lower 

than the one achieved by the miss-forest imputed model. On the other hand, lower MAE is achieved by 

the miss-forest imputed model. Generally, all error metrics of both models are considered reliable. 

Figure 49 and Figure 50 show the estimated concentrations of both models, and Figure 51 compares 

these predicted concentrations on Jan 21st to Feb 8th, 2015.  

Figure 47: CO prediction results on Jan 21-Feb 08 -2015 

 

Figure 48: CO testing forecasts using the model training by linear imputed dataset 
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Table 29: Forecasting models' error metrics for PM10 measurement in the training and testing sets. 

 

 

 

 

                           Miss-forest Imputed dataset Linear Imputed dataset 
  Training    Testing    Training    Testing  
R2 0.978 

 
0.97   0.97 

 
0.98 

MSE [µg/m³]2 252.39 
 

482.35   371.86 
 

347.36 
RMSE [µg/m³] 15.89 

 
21.96   19.28 

 
18.64 

MAE [µg/m³] 6.14 
 

7.98   7.58 
 

9.40 

Figure 50: PM10 testing forecasts using the model training by linear imputed dataset 

Figure 49: PM10 testing forecasts using the model training by miss-forest imputed dataset 
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Figure 51: PM10 prediction results on Jan 21-Feb 08 -2015 

5.5.6 Particulate Matter 2.5 (PM2.5) 

According to the reported estimates in Table 30, similar to PM10, the two models for forecasting PM2.5 

are considered reliable with a slight superiority of miss-forest when comparing the MAE. Results of 

both built models are presented and compared in Figure 53-Figure 52. From Figure 52, it can be 

observed that both the minimum and maximum values of concentration are overestimated in some cases 

by both models.  

Table 30: Forecasting models' error metrics for PM2.5 measurement in the training and testing sets. 

 

 

 

 

 

 

Miss-forest Imputed dataset  Linear Imputed dataset  

  Training    Testing    Training    Testing  

R2 0.98 
 

0.97   0.98 
 

0.97 

MSE [µg/m³] 27.96 
 

14.11   26.21 
 

12.75 

RMSE [µg/m³] 5.29 
 

3.76   5.12 
 

3.57 

MAE [µg/m³] 2.46 
 

2.78   2.36 
 

2.89 
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  Figure 53: PM2.5 prediction results on Jan 21-Feb 08 -2015. 

Figure 52: testing forecasts using the model training by miss-forest imputed dataset 

 

Figure 54: PM2.5 testing forecasts using the model training by linear imputed dataset. 
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5.6 Hourly Forecast of Air Quality Index (AQI) 

The AQI calculated from the actual and forecasted data is analyzed and compared in this section. 

Figs. 55-58 represent a detailed confusion matrix chart comparing the actual and forecasted results of 

both models' training and testing sets. Table 31 summarizes the error metrics of forecasting the AQI 

values. Upon inspection, one observes that the miss-forest imputation technique outperforms the linear 

one in forecasting generalization, e.g., the miss-forest MAE value was 3.27 compared to 4.69 for the 

linear imputed data. The linear imputed datasets achieved an overall classification accuracy of 95.75% 

on the training set and 90.31% on the testing data set, whereas the miss-forest imputed dataset 

performed better and achieved a classification accuracy of 95.65% and 92.48% for training and testing 

sets, respectively. These results confirm that coupling ANN with miss-forest imputed data leads to 

higher accuracy forecasting and better generalization when tested on unseen data. Conversely, the gap 

between the testing and training accuracies of the linear imputed model is considerable and reflects the 

weakness of this model to perform with moderately consistent accuracy when validated with unseen 

data.  

In addition to the importance of forecasting the AQI and accurately classifying its category, it is also 

essential to report the corresponding critical pollutant with the highest AQI value. Reliable reporting 

of this pollutant can contribute to investigating the sources of pollution to take prior precautionary 

actions. Table 32 shows a precise count of the true and false defined categories and critical pollutants 

for both training and testing sets of the two models. From that table, similar superiority of the miss-

forest model can be observed where both the air quality category and the corresponding pollutant were 

correctly classified 95.64 % of overall cases of the training set and 92.41% for the testing set. 
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Figure 55: Training set confusion matrix for the AQI categories from the miss-forest model. 
 

Figure 56: Training set confusion matrix for the AQI categories from the linear model. 
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 Figure 58: Testing set confusion matrix for the AQI categories from the Linear model 

 

Figure 57: Testing set confusion matrix for the AQI categories from the miss-forest model 
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Table 31: Forecasting models' error metrics for AQI in the training and testing sets. 

 

Table 32:Count of true and false forecasted 

5.7 Conclusion (Case study 2 ) 

Forecasting AQI is a task that requires attention to multiple factors, including the missing 

observations raw data, the high inconsistency in data, the proper selection of predictors and lags, and 

the high temporal correlations between the concentrations of pollutants. Moreover, this task requires 

the appropriate choice of a robust, reliable methodology for training and building the forecasting 

Condition Training miss-forest 

imputed 

Testing miss-forest 

imputed 

Category=True & Critical 

pollutant=True 

12597 924 

Category=False & Critical 

pollutant=True 

551 76 

Category=True & Critical 

pollutant=False 

267 1 

Category=False & Critical 

pollutant=False 

35 0 

Condition Training linear imputed Testing linear imputed 

Category=True & Critical 

pollutant=True 

12646 901 

Category=False & Critical 

pollutant=True 

536 98 

Category=True & Critical 

pollutant=False 

251 2 

Category=False & Critical 

pollutant=False 

36 0 

 

Miss-forest Imputed dataset  Linear Imputed dataset  

  Training    Testing    Training    Testing  

R2 0.81   0.93   0.78   0.98 

MSE 131.25  95.18  178.56  297.05 

RMSE  11.46  9.76  13.36  17.24 

MAE  3.00  3.27  3.34  4.69 
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models and tuning their hyperparameters.  This chapter proposed an approach considering and tackling 

all of these mentioned important accuracy affecting factors.  

For missing data imputation, two different imputation methodologies were tested by training 

an optimizable ANN for forecasting the six pollutants levels and classify the hourly AQI and identify 

the pollutant with the highest AQI. Although both trained models performed adequately, more 

generalized forecasting was observed by the models trained using the miss-forest imputed dataset.  

All the pre-processing and data preparation steps were comprehensively considered after 

imputing the missing observations before building the forecasting models. Although modeling the 

pollutants’ levels with the selected features was adequate for almost all the pollutants, further analysis 

and testing should be taken for forecasting SO2 levels since its predictions were the least accurate 

compared to other pollutants.  
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Chapter 6 

Thesis Conclusions and Future Work 

Time series forecasting with machine learning algorithms is a complex task requiring the 

consideration of different factors, such as feature selection, feature scaling, feature extraction, and 

dimensionality reduction. Besides that, it requires a decent size of training data and powerful software. 

Moreover, the construction of the forecasting model itself needs the implications of different 

optimization algorithms for both the models’ parameters optimization and tuning their 

hyperparameters. 

The main objective of this research was to test different ML algorithm for time series 

forecasting, evaluate them, and employ them for different purposes in different applications. This 

research considered two different case studies of time-series forecasting: 

1- Regional wind power forecasting.  

2- Air quality index (AQI) forecasting. 

The first case study addressed Ontario’s wind power forecasting comprehensively from different 

perspectives. Besides the proposed deep feature selection approach, a comparative analysis was 

conducted in this case study to compare the performances for different ML algorithms for one-step and 

multi-step ahead forecasting.  

 For one-step ahead forecasting, by evaluating and analyzing the performance of the models when 

tested on unseen testing data, It can be concluded that SVR/SVM is one of the most promising 

robust ML-based forecasting models. This algorithm can build reliable generalized models that can 

perform well with new data where the testing MAPE % reached a value of 13 % for the testing 

predictions. Although almost a similar MAPE  was calculated from the ensemble model, the 

ensemble model results indicate that the utilized approach for combining the models was not 

adequate to improve the predictions. Hence,  using a different ensembling approach such as 

boosting in future work could increase the accuracy of forecasting results.  

 Multi-step step ahead forecasting is essential for some scheduling and managing objectives; 

however, this task is a complex task that requires special considerations of the dependence of the 

targets on each other. When comparing the direct and MIMO multi-step forecasting methodologies, 
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it can be seen that although the MIMO approach is harder to train and require advanced machines, 

it can perform better, especially if the trained model has the built-in recursive property. Thus, the 

MIMO method with a type of recursive properties can capture the dependencies between steps. 

Moreover, it avoids the time-consuming multi-model training for each step. From that perspective, 

in future studies, an attempt to apply different ML for MIMO forecasting could provide better 

insight into the ability of this approach. 

To sum up, although better precisions were reported in the literature for wind power forecasting, our 

obtained accuracies are considered adequate for regional forecasting. This notation is based on the fact 

that all the published and conducted studies focus on specific sites or even one wind turbine with a 

known hub height, physical characteristics, and loss coefficients.  Furthermore, unlike the carefully 

measured weather parameters affecting a single turbine at specified heights, the meteorological data 

used in this study were from different locations across Ontario, measured with different apparatuses 

with different settings. Hence, these factors would definitely affect the overall forecasting results, even 

though the ML models will try to capture and adapt them and train the models for reliable predictions. 

Hence, with further spatial and weather data availability and more compressive optimization and 

tuning, a general regional model representing Ontario’s wind power could be constructed to be used 

for other purposes such as electricity pre-scheduling to avoid surplus production of other sources.   

From the second case study, it can be concluded that forecasting AQI is a task that requires 

attention to multiple factors, including the missing observations raw data, the high inconsistency in 

data, the proper selection of predictors and lags, and the high temporal correlations between the 

concentrations of pollutants. Moreover, this task requires the appropriate choice of a robust, reliable 

methodology for training and building the forecasting models and tuning their hyperparameters. 

Therefore, this research proposed an approach considering and tackling all of these mentioned 

important accuracy affecting factors.  

For missing data imputation, two different imputation methodologies were tested by training 

an optimizable ANN for forecasting the six pollutants levels and classify the hourly AQI and identify 

the pollutant with the highest AQI. Although both trained models performed adequately, more 

generalized forecasting was observed by the models trained using the miss-forest imputed dataset. All 

the pre-processing and data preparation steps were comprehensively considered after imputing the 

missing observations before building the forecasting models. Although modeling the pollutants’ levels 
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with the selected features was adequate for almost all the pollutants, further analysis and testing should 

be taken for forecasting NO2 levels since its predictions were the least accurate compared to other 

pollutants.  

In future work, an investigation of the additional features that can improve the accuracy of the 

forecasted SO2   is intended because it would enhance the overall forecasted AQI. In addition, the 

employment of other robust ML forecasting methods such as support vector machines could be 

expected to improve the predictions’ accuracy and increase reliability.  
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Appendix A 

Summary of Reviewed Recent Papers Utilizing Machine Learning 
Algorithms for Renewable Power Forecasting 

 

 

Table A.1: Summary of ANN methods 
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Table A.2: Summary of RNN/ELM/SVM methods 
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Table A.3: Summary of ML-Metaheuristics methods 
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Appendix B 

Air Quality Index Calculation Procedure 

The presented procedure for calculating air quality index is from the US Environmental Protection 

Agency (US EPA), “Criteria air pollutants,” America’s Children and the Environment, USEPA, 

Washington, DC, USA, 2015.” 
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Appendix C 

Feature Selection and Dimensionality Reduction Methods 

 Grey correlation analysis: 

GCA is a powerful benchmarking tool for determining the correlation grades between predictors and 

prediction targets. The higher the correlation grade of a feature, the higher its influence on the 

dependent target. This method was used in case study 1 in chapter 4 to select features with high 

correlations with the target wind power and filter out features with lower influences.  

The GCA grades are calculated as follows: Assuming D is a matrix containing the m samples of n 

features, the number of rows is the number of time samples, and the number of columns represents the 

number of features (predictors).  

                                                   

To adopt the differences between the magnitudes of the different features, first of all, all the data are 

normalized as follows :  

 

Where z and t are the and t are feature index and time index, respectively. 

Using these normalized features, the grey coefficients are calculated using the four equations below : 

 

 

 

  

Where ξ is a distinguishing factor and has a value of [0.5,1], a value of 0.6 was used in our study. 𝜆ை
∗ (𝑡) 

is the target feature at time =t.  Finally, the grey correlation grade for different predictors is calculated 

by 
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 Autocorrelation and partial autocorrelation functions: 

The autocorrelation function (ACF) and partial autocorrelation functions (PACF) are well-known 

functions to investigate how a variable series is correlated with itself at different time lags. The ACF 

and PACF function were used in the two proposed case studies to select the appreciate time-lag features.  

ACF estimated the correlation of a variable between two lags 𝜌௛ defined as:  

 

where 𝑥ଵ௧is the target variable at time t, 𝑥ଵ(௧ି௛) is target at time t-1, 𝛾௛is the covariance of the variable 

at lag h, and 𝛾௢ is the current covariance of the variable.  

On the other hand, PACF represents the correlation between variable at lad h and lag t-h, after removing 

all the dependence on other variables between the two lags, which is defined as: 

 

where P(A|B) is the correlation between A and B 

 Principal component analysis: 

The high dimensional features affect the prediction accuracy and require high computation costs. 

The principal component analysis is employed for dimensionality reduction and redundant and related 

or necessary information removal. Thus, avoiding by PCA  the risk of overfitting and maintaining 

reliable prediction models. PCA transforms the data linearly by creating the linear combinations 

between them. By employing PCA, X matrix, the observations matrix is into a covariance matrix ∑, 

then the contribution rate (CR) and the cumulative contribution (CC) of i th principal component are, 

respectively, computed as follows:  

where w 𝜆௜ Is the eigenvalue corresponding to the ith principal component, and p is the number of 

parameters.  
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Appendix D 

Hyperparameter Tuning Methods  

 Grid search  

. This method tries every possible combination of each set of hyper-parameters. Using this method, we 

can find the best set of values in the parameter search space. This usually uses more computational 

power and takes a long time to run since this method needs to try every combination in the grid size. 

 Random search  

The random search method randomly chooses the hyperparameter sample combinations from grid space 

instead of trying every possible combination. Thus, there is no assurance that the best parameter will 

be found. Nevertheless, this search can be highly effective in practice as computational time is 

significantly less. 

 Bayesian optimization for hyperparameter tuning  

similar to grid search, a parameter space with the range of input values is created for evaluation as a 

first step. However, in contrast to random or grid search, Bayesian approaches keep track of past 

evaluation results, which they use to form a probabilistic model mapping hyperparameters to a 

probability of a score on the objective function. Bayesian tuning aims to become “less wrong” with more 

data which these approaches do by continually updating the surrogate probability model after each 

evaluation of the objective function. 

The steps of Bayesian optimization are summarized into four steps :  

1- Create a surrogate probability model of the objective function. 

2- Find the hyperparameters that perform best on the surrogate model. 

3- Use these values on the true model to return the objective function and update the surrogate 

model. 

4- Repeat steps 2 and 3 until maximum evaluations are reached. 
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