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Abstract

This thesis presents a novel electric permittivity sensor based on Bleustein-

Gulyaev (BG) waves; waves that propagate along the surface of shear-poled

piezoelectric materials. BG waves couple electromagnetic and acoustic waves,

thereby reducing the speed of electromagnetic propagation to near acoustic

speeds. Exploiting this property allows the development of permittivity sen-

sors that feature several orders of magnitude reduction in size and operating

frequency. This releases the limitations of RF complexity while reducing cost

considerably. It also makes the sensor attractive for biological applications, as

opposed to RF sensors that are limited by the water relaxation phenomenon at

frequencies beyond 4 GHz.

To date, sensors that used BG waves were limited to sensing mechanical prop-

erties, such as viscosity and density, which exploited the acoustic component

of the wave only. To our best knowledge, this is the first attempt to probe and

sense an electrical property acoustically using BG-waves.

Towards that end, the nonlinear partial differential equations governing an

electromechanical BG wave resonator are formulated. The permittivity of the

medium-under-test was found to influence the sensor eigenvalues, enabling the

implementation of a frequency-shift permittivity sensor. We also find that the

sensor sensitivity is enhanced by increasing bias voltage to drive the sensor

into the nonlinear regime, but this is limited by electrical breakdown.

Sensor prototypes were fabricated on PZT4 and LiNbO3shear-poled substrates.

A novel method to characterize shear-horizontal surface acoustic waves, SH-

SAW, using a 1D Laser Doppler Vibrometer was developed to test the sensors.
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The method was also shown to be able to estimate the in-plane displacement

field decay rate into the substrate. This technique provides researchers with a

quick and effective method for the characterization of SH-SAW. The resonator

model was validated using this experimental method.

A Vector Network Analyzer was employed to observe the shift in the funda-

mental natural frequency of the fabricated permittivity sensors in the presence

of various media-under-test. Measurements show deterministic and repeatable

frequency shifts in the natural frequency in the presence of ethanol and deion-

ized water compared to that of the bare surface, thereby demonstrating the

permittivity sensor.
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Chapter 1

Introduction

1.1 Piezoelectricity

Dielectric crystals, in general, are classified into either centrosymmetric or non-centrosym-

metric groups, and piezoelectricity is a property of the latter. Only 20 out of the 32 crystal-

lographic classes are piezoelectric. The absence of a center of symmetry is necessary for the

appearance of piezoelectricity, however, it is not sufficient. One of the non-centrosymmetric

classes (class-432) is not piezoelectric because the piezoelectric charges developed cancel each

other [4]. The relationships between the piezoelectric induced strain (S) and the applied electric

field (E), and between the electric displacement (D) and the stress (T ) can be written as:

Sij = dkijEk (1.1)

Dk = dkijTij (1.2)

where d is the zero-stress piezoelectric constant.

Furthermore, some piezoelectric dielectrics are ferroelectric. Ferroelectric materials are de-

1



CHAPTER 1. INTRODUCTION 2

fined as piezoelectrics that exhibit spontaneous polarization. When such materials are exposed to

an external electric field, the domains start to orient themselves, and an internal spontaneous po-

larization is created even after the external field is turned off. This creates a phenomenon called

hysteresis [4]. This property allows for poling, where high electric fields are applied, usually

with heat and the result is a remnant polarization.

The direction of poling affects the kind of Surface Acoustic Waves (SAW) that the piezo-

electric substrate will support. A shear poled piezoelectric means that the direction of the poling

electric field is parallel to the surface of the crystal that will support the wave.

1.2 Bleustein-Gulyaev Waves

Bleustein-Gulyaev Waves (BG waves) were discovered independently by Bleustein [5], and

Gulyaev [6]. Since then, they have been under research for their unique nature; coupled electro-

magnetic and mechanical components that propagate together. The surface shear wave is coupled

to a transverse magnetic, TM, electromagnetic field on the surface of shear poled piezoelectrics.

The direction of propagation of BG waves is orthogonal to the poling direction and parallel to

the surface itself [7]. This will be further explained in detail in Section 2.1 both mathematically

and graphically. More details on ferroelectricity and other nonlinearities will be discussed in

Section 3.1.

Excitation

Excitation of BG waves is usually achieved through inter-digitated transducers (IDT). They

are widely used to excite and detect various types of SAWs [8]. They are an array of thin metallic

electrodes on the surface of a piezoelectric substrate.



CHAPTER 1. INTRODUCTION 3

Figure 1.1 shows a top view for an IDT array used to excite SAWs, such as BG waves. The

electrodes consist of two interlocking sets of electrodes (fingers), where each set is comb-shaped.

The structure is periodic, and the period is used to define the wavelength of the excited/detected

SAW. The overlap of the fingers defines the aperture of the wave.

Ap
pe

rt
ur

e

λ

λ/4λ/4

~

Figure 1.1: Standard IDT geometry used to excite SAW

An IDT converts the applied voltage difference into mechanical SAW vibrations and vice

versa. The transduction efficiency depends on the IDT shape and the electromechanical coupling

coefficient of the substrate to the specific SAW. Several IDT designs try to enhance the coupling

efficiency, directionality, or the bandwidth of generated/detected SAW [9].

Applications

BG waves have been mainly used in two applications; liquid property sensing and radio

frequency filters. They are attractive for liquid sensing as they do not radiate (dissipate) acoustic
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energy into the liquid bulk and, thus, they avoid micro-streaming effects and realize a high-

quality factor. The viscosity and density of the liquid slow down wave propagation speed and

thus create a detectable phase difference with respect to a reference wave [10, 11, 12, 13]. BG

waves offer sensitive liquid sensors capable of operating at various pressures and temperatures

[14] and thus have wide applications. These sensors were also shown to work for conductive

[15, 16] and viscoelastic [17, 18] fluids.

The second most common BG waves application is RF filters. These require trapping of the

surface waves into a standing mode to create spectral selectivity. BG wave filters can be realized

in more compact designs than regular SAW filters [19, 20] since they reflect completely at the

edges of the piezoelectric material, eliminating the need for the cascaded electrodes that typical

SAW filters use to reflect waves [21]. These filters can operate up to frequencies of 190 MHz

and with a low insertion loss [22].

Successful commercial implementation of BG wave filters in television tuners has been

achieved [23]. One advantage of using BG waves filters is that the quality factor is in the few hun-

dreds [20], an advantage that is surpassed by micro-electromechanical systems (MEMS) based

resonators [24]. However, MEMS resonators usually suffer from high insertion losses due to

the mismatch between the low impedance transmission lines and the high impedance MEMS

capacitive-based devices, while BG wave filters have a low insertion loss.

Several other attempts to employ BG waves in applications are also mentioned in the liter-

ature. One application for BG waves exploits their sensitivity to rotation by building surface

wave-based gyroscopes. This was investigated mathematically [25, 26, 27, 28, 29], reporting a

dynamic range of up to ±150 ◦/s [30]. Another, Ivanov [31], suggests the use of BG waves si-

multaneously with other types of acoustic waves to sense the mass of bio-materials forming on a

surface and thus measure bacterial growth, reporting mass sensitivity on the order of 1 pico-gram

per square centimeter.
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Although the theory behind BG waves was based on the piezoelectric properties, which is by

definition a linear phenomenon, several factors can alter the linearity of the wave. For instance,

prestress can affect the linearity of the wave [32, 33, 34, 35]. Moreover, the effect of interface im-

perfections [36], and amplification by semiconductors or exposure to light for photo-conducting

crystals [37, 38, 39] were reported. However, other sources of nonlinearities exist, like elec-

trostriction which is the source of nonlinearity in piezoelectric ceramics. Such effects have not

been properly modeled and investigated. Indeed, some work was done to study nonlinear BG

waves [40], however, they have merely brushed the subject, only proving that such nonlinearities

are mathematically possible.

1.3 Permittivity Sensors

The dielectric constant is defined as the relative permittivity of the material. It is the ratio of

the permittivity of the material to that of free space and thus is dimensionless. Permittivity in

Maxwell’s equations, along with other constants, defines the propagation constant of the electro-

magnetic wave. In materials, it represents the capability to permit electric field lines, and thus it

characterizes the relationship between the electric displacement and the electric field [41]. The

value of free space permittivity is 8.854 × 10−12 F/m. Together with the magnetic permeability

of free space, these two constants define the speed of light and causality itself.

Permittivity sensors are widely used in industrial, environmental, and biological applica-

tions. Industrial applications include soil testing [42] for levels of moisture underground, oil

characterization [43, 44] for testing of oil wells, and several pharmaceutical applications [45].

Environmental applications like regular and seawater salinity testing are reported [46], as well as

for studying microwave radiation emitted by the ocean surface [47].

Biological applications of permittivity sensors were also reported, like DNA [48] and cell
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type [49, 50, 51] discrimination. For DNA, the electric permittivity was used to distinguish

single from double strands [48]. Cancer cell identification [52, 53] can also be performed by

inspecting fine differences in the dielectric constant, which allows for rapid, cheap, and reliable

cancer testing. Since the blood contains several electrolytes, any change of concentration would

create a shift in the effective permittivity. This was reported to be used in blood analysis [54],

noninvasive glucose detection [55], and blood alcohol content (ethanol) measurement [50, 56]. It

has also been suggested that different viral pathogens have unique dielectric properties [57, 58],

and thus a permittivity sensor can be developed towards the detection of viruses.

Current implementations are typically RF devices working beyond the GHz range. This

allows for the wavelengths to be in the order of millimeters and thus permits relatively compact

sensor size [49, 59, 60]. Using metamaterials, one group [61] managed to work in the THz range

in order to reach micrometer dimensions. However, the use of high-frequency signals introduces

additional complexity to the sensor, including specialized RF circuits. This introduces design

challenges that are reflected in cost, reliability, and overall device size. Indeed, using current

technology and operating at lower frequencies inflates the sensor size beyond a centimeter in

length [62]. One group, [63], report sub millimeter dimensions using relatively low operating

frequencies, through clever yet complex RF circuit design that exploits the higher harmonics of

the sensor.

A summary of permittivity sensors available in the literature, their principle of operation,

operating frequency, and dimensions is shown in Table 1.1. The table shows that current tech-

nology results in sensors that typically operate in GHz range and measure in the millimeter to

centimeter size. The only exceptions are senors that have tried to reduce size by increasing the

operating frequency to the THz range or using higher order modes.
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Table 1.1: Permittivity sensors in the literature

Sensor Frequency Size Notes

CMOS microwave cavity [64] 10 GHz 0.9 mm

CMOS microwave cavity [65] 0.62–10 GHz 1.4 mm

CMOS microwave cavity [66] 0.7–6 GHz ∼1.1 mm

CMOS microwave cavity [63] 0.1–10 GHz 100 µm Higher modes

Microwave cavity [67] 0.6 GHz ∼ 1 cm

Split-ring resonator [68] 2 GHz 1 cm Metamaterials

Split-ring resonator [69] 0.2–1.6 THz 36 µm Metamaterials

Split-ring resonator [70] 2.5 GHz 1 cm

Split-ring resonator [71] 2.6–2.9 GHz 3 cm

Split-ring resonator [72] 2.4 GHz 1 cm Planar circular design

Split-ring resonator [60] 5.8–7.9 GHz 6–11 mm

Open-ended waveguide [42] 4–6 GHz 10 cm

Open-ended waveguide [73] 0.2–20 GHz 3.6 mm

Open-ended waveguide [74] 0.01–1.8 GHz 4 cm

Open-ended waveguide [75] 1–8 GHz 11 mm

Microstrip planar resonator [76] 2 GHz 13 mm

Microstrip resonant cell [62] 0.17–0.29 GHz 2.3 mm

Microstrip resonant cell [59] 5 GHz 7-9 mm

Ultranarrow waveguide [77] 1–2 GHz 12.7 cm

Coplanar waveguide [49] 125 GHz 1.1 mm
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Coplanar waveguide [78] 3 GHz 20 cm

Metamaterial waveguide [61] 50 THz ∼ 10 µm

Interdigitated capacitor [79] 20 GHz 1.3 mm

Interdigitated capacitor* [80] Static-50 kHz 7.5 cm Low sensitivity due to

parasitics

Interdigitated capacitor* [81] Static-50 Hz 7 mm Low sensitivity due to

parasitics

Radio-Frequency Identifier

(RFID) [82]

4 GHz 3.6 cm

Radio-Frequency Identifier

(RFID) [83]

3 GHz 5 mm

We note that all of these sensors use a dynamic detection mode, they measure the frequency

shift of an electromagnetic resonator due to the presence of the media-under-test, except for the

two sensors marked with an asterisk. Those sensors use a static detection mode, measuring the

change in the sensor capacitance due to the presence of the media-under-test.

1.4 Problem Statement and Objectives

The use of BG waves in sensing is promising, as the shear wave is sensitive to any discon-

tinuity in properties at the surface. One major advantage is that the wave is localized at the

surface, which maximizes the efficiency in using it to detect target properties at that surface.

Indeed, there have been many successful attempts at detecting mechanical properties, like vis-

cosity and density, using BG waves [10, 11, 14, 15]. However, the wave is part mechanical and
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part electromagnetic, and few attempts have been made to exploit the latter, with none in sens-

ing applications. Amplification of BG waves using a semiconductor close to the surface is one

example [39]. However, since the wave has an electric field component, the potential remains of

acoustically sensing an electrical property, such as the electric permittivity.

Another issue found in the literature is that researchers seem to shy away from nonlinearities

such as electrostriction when performing the analysis for BG waves. Some attempts investigated

the effect of biasing or prestressing the piezoelectric material [34, 84, 85], but without allocating

proper explanations and without the utilization of nonlinearities to allow the application of the

phenomenon in a useful manner.

Additionally, as discussed, current limitations of permittivity sensors can be summed as a

trade-off between device size and the attendant complexity of RF devices. Devices operating

below the GHz range have sensors that are few centimeters wide [44, 62]. For compact designs,

the frequency of operation would have to be driven beyond 100GHz, which requires specialized

RF circuits. Another major issue with operating in the GHz range is observed when working with

aqueous-based samples. This is due to the relaxation phenomenon of water at frequencies beyond

4GHz [54]. Indeed, working in the RF range prohibits the measurement of the DC permittivity

of aqueous media. Alternatively, slowing down the phase velocities of electromagnetic waves

has been suggested to permit the design of compact and sensitive permittivity sensors [86].

In this work, a novel sensor based on BG waves that operates in the MHz range is presented.

BG waves couple electromagnetic and acoustic waves, thereby reducing the speed of electro-

magnetic propagation to near acoustic wave speeds. Therefore the BG wave permittivity sensor

feature several orders of magnitude reduction in both size and operating frequency. This allows

the development of compact sensors with micrometer wavelengths which breaks the limitations

of RF complexity and drops the cost considerably.
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Furthermore, we propose to exploit a nonlinearity that arises under high bias fields due to

electrostriction. This lowers the effective linearized permittivity of the piezoelectric substrate,

as seen by the wave. This promises to tune and match the effective piezoelectric permittivity to

enhance the sensitivity of the wave to the permittivity of the medium placed on the BG waves

surface. Indeed, several important biological and industrial properties can affect the dielectric

constant and, thus, the sensor could provide a cheap and accurate water salinity sensor or bio-

detector.

Moreover, the reported method for building a compact filter [21] into constructing the sensor

is implemented, ensuring that both size and cost are kept at a minimum. Additionally, this work

presents a first-of-a-kind approach to probe an electric property acoustically using BG waves.

Towards that end, the first objective of this work is to solve the BG wave equations under the

resonant boundary conditions in Chapter 2. The next objective is to analyze the nonlinearities

in BG waves and then investigate the possibility of the linearization of parameters around a

bias point, Chapter 3. Then, the eigenvalue analysis is carried out in Chapter 4, and the sensor

prototypes are proposed accordingly in Chapter 5. The fabrication process and the experimental

setups and techniques are also discussed in Chapter 5.

The following objective is the examination of the response of the BG wave to forced non-

resonant and static excitation. The effect of different kinds of damping in the system and the

method of wave excitation are also studied. This analysis is in Chapter 6, and it allows for the

expansion of the dynamic solution around the equilibrium solution, in the following chapter.

Lastly, the full dynamic linear and nonlinear solutions, as well as the experimental validation,

of the permittivity sensor are detailed in Chapter 7. In Chapter 8, the thesis is concluded, and the

suggested future work is outlined.



Chapter 2

BG Resonator

In this chapter, the basic model of the BG-wave-based sensor will be discussed. Specifically,

the undamped and unforced linear sensor model. The constitutive and governing equations, as

well as the boundary conditions, will be explained. The traditional homogeneous solution [5, 6]

of the wave, subject to boundary conditions set by the edge reflectors, will be formulated. Finally,

the quasi-static approximation will be discussed, and the system is nondimensionalized.

2.1 BG Wave Equations

The problem of the BG wave is described in two half-spaces, one containing the piezoelectric

and the other encompassing the space above it. Maxwell’s equations hold for both half-spaces,

but the lower one is also governed by piezoelectric relationships.

11
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2.1.1 Field Definitions

The BG wave has a displacement field (u) coupled to a transversely magnetic (TM) electro-

magnetic field (E and H), defined as [5, 6, 10, 87, 88]:

u(x, y, t) =

 0

0

uz

 , E(x, y, t) =

ExEy
0

 , H(x, y, t) =

 0

0

Hz

 (2.1)

where x and z are the propagation and poling directions, respectively. This dentition of the

displacement field results in a strain field (S) that can be written in Voigt notation, such as:

S(x, y, t) =



0

0

0

∂uz/∂y

∂uz/∂x

0


(2.2)

2.1.2 Constitutive Equations

Figure 2.1 shows the piezoelectric substrate, the medium-under-test, the axes, and poling

direction. The wave synchronously propagates in the x-direction along the surface of a piezo-

electric substrate. A thin metallic IDT is patterned on the surface of the substrate to excite the

wave. At x = 0 and x = l, two trenches are etched to acoustically reflect the wave, thereby

creating a resonator, where l is the total length of the resonator.

The positive direction of the y-axis is chosen to point into the more interesting (piezoelectric)

half-space. The medium-under-test is deposited on top of the sensor in the upper half-space.

The only non-trivial elements of the relevant stress and polarization tensors in the piezoelec-
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tric material (y > 0) are [5]:

Tyz = G
∂uz
∂y

− eEy (2.3)

Txz = G
∂uz
∂x

− eEx (2.4)

Dx = ϵEx + e
∂uz
∂x

(2.5)

Dy = ϵEy + e
∂uz
∂y

(2.6)

where ϵ = ϵxxis the zero-strain permittivity of the piezoelectric, G = c44 is the shear modulus of

the piezoelectric, and e = e15 = c44 d15 is the zero-strain shear piezoelectric constant.

In the medium-under-test (y < 0), the polarization tensors can be written, such as:

Du
x = ϵuEu

x (2.7)

Du
y = ϵuEu

y (2.8)

where ϵu is the permittivity of the medium-under-test and the superscript u denotes the field and

properties of the medium-under-test in the upper half-space (y < 0).

2.1.3 Governing Equations

The acoustic equation of motion for the displacement field for a unit volume is given by [88]:

∇ ·T = ρ
..
uz (2.9)

where ρ is the density of the piezoelectric material. Moreover, Maxwell’s equations state that

the divergence of the electric displacement field D vanishes in a volume with no net charge
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Figure 2.1: Sensor schematic showing the substrate, medium-under-test, and the IDT design.

The front section view is shown in (a) and the top view in (b).

(unforced). They also relates the electric E and magnetic H fields. This can be written such as:

∇ ·D = 0 (2.10)

∇× E = −µ
.
H (2.11)

∇×H =
.
D (2.12)

where µ is the magnetic permeability of the piezoelectric material.

2.1.4 Boundary Conditions

BG waves are surface waves and, thus, they decay along the y-axis into the substrate, within a

few wavelengths [5, 6]. Therefore, the field equations are solved subject to boundary conditions
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specifying that the surface wave vanishes at the far-side of the lower-half space, such as:

uz

∣∣∣
y=∞

= 0 , Hz

∣∣∣
y=∞

= 0 (2.13)

Ex

∣∣∣
y=∞

= 0 , Ey

∣∣∣
y=∞

= 0 (2.14)

as well as for the upper-half space:

Hu
z

∣∣∣
y=−∞

= 0 , Eu
x

∣∣∣
y=−∞

= 0 , Eu
y

∣∣∣
y=−∞

= 0 (2.15)

The air created by the trenches beyond the edges of the IDT offers a lower acoustic impedance

to the propagation of the wave than the piezoelectric substrate. Therefore, the resonator edges

represent free-end conditions, ideally with perfect acoustic reflection and no phase shift. This

can be formulated as:
∂uz
∂x

∣∣∣
x=0

= 0 ,
∂uz
∂x

∣∣∣
x=l

= 0 (2.16)

Further, assuming that there are no mechanical loads applied to the piezoelectric (interface) sur-

face, we set the shear component Tyz = 0, which yields:

G
∂uz
∂y

∣∣∣
y=0

− eEy

∣∣∣
y=0

= 0 (2.17)

Additionally, the continuity of the electromagnetic field necessitates the matching of its compo-

nents at the interface between the piezoelectric substrate and the medium-under-test, at (y = 0).

This can be written as:

Ex

∣∣∣
y=0

= Eu
x

∣∣∣
y=0

(2.18)

Hz

∣∣∣
y=0

= Hu
z

∣∣∣
y=0

(2.19)

Dy

∣∣∣
y=0

= Du
y

∣∣∣
y=0

(2.20)
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where Du
y = ϵuEu

y = ϵ
r
Eu
y and r = ϵ

ϵu
is the ratio of the permittivity of the substrate to that of

the piezoelectric medium-under-test. Using the constitutive equations (2.6) and (2.8), equation

(2.20) can be rewritten such as:

rϵEy

∣∣∣
y=0

+ re
∂uz
∂y

∣∣∣
y=0

= ϵEu
y

∣∣∣
y=0

(2.21)

2.2 Solution of the Homogeneous Equations

The acoustic equation of motion (2.9) and the electric displacement divergence equation

(2.10) can both be rewritten after substituting with the constitutive equations (2.3) to (2.6), such

as:

G
(∂2uz
∂x2

+
∂2uz
∂y2

)
− e
(∂Ex
∂x

+
∂Ey
∂y

)
= ρ

..
uz (2.22)

e
(∂2uz
∂x2

+
∂2uz
∂y2

)
+ ϵ
(∂Ex
∂x

+
∂Ey
∂y

)
= 0 (2.23)

These equations can be simplified by rewriting them to eliminate the electric field, such as:

ρ
..
uz = (G+

e2

ϵ
)
(∂2uz
∂x2

+
∂2uz
∂y2

)
..
uz = c2s∇2uz (2.24)

where cs =

√
(G+ e2

ϵ )
ρ

is the acoustic speed of the wave. It is important to note that this speed

is not the speed of the BG wave, but rather the speed of a shear acoustic wave, has it existed

independently and uncoupled.
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Similarly, equations (2.11) and (2.12) can be also written as:

µ
.
Hz =

∂Ex
∂y

− ∂Ey
∂x

(2.25)

∂Hz

∂y
= e

∂
.
uz
∂x

+ ϵ
.
Ex

∂Hz

∂x
= −e∂

.
uz
∂y

− ϵ
.
Ey

(2.26)

Differentiating equation (2.25) with respect to time and substituting in the result for the elec-

tric field with (2.26) , we obtain:

ϵµ
..
Hz =

∂2Hz

∂x2
+
∂2Hz

∂y2

..
Hz = c2l∇2Hz (2.27)

where cl =
√

1
ϵµ

is the speed of light in the piezoelectric.

Since no solid deformation exists in the upper-half space, we only have Maxwell’s equations

for the electric and magnetic fields in the medium, such as:

µϵu
..
Hu
z =

∂2Hu
z

∂x2
+
∂2Hu

z

∂y2
(2.28)

∂Hu
z

∂y
= ϵu

.
Eu
x

∂Hu
z

∂x
= ϵu

.
Eu
y

(2.29)

The solution describing the fields in the lower half-space (y > 0) can be obtained as follows:

Equations (2.24), and (2.27) can be solved for the displacement and magnetic fields, respectively.

Then, the electric field is obtained by substituting the solution into equation (2.26).

First, we assume a solution in the form [5, 6]:

uz = X(x)Y (y)T (t) (2.30)
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and substitute it into equation (2.24), to obtain:

c2s(X
′′
Y T +XY

′′
T ) = XY

..
T

where the primes stand for spatial derivatives and the overdots stand for time derivatives. Divid-

ing both sides of the equation by XY Tc2s yields:

X
′′

X
+
Y

′′

Y
=

..
T

c2sT
= −

( β
cs

)2
where β is the natural frequency of the mode shape. This equation can be solved as a set of two

equations describing variations in space and time. For the time variation, we write:

..
T + β2T = 0

The solution of this equation is:

T = a1(e
i(βt+θ◦) + e−i(βt+θ◦)) (2.31)

where a1 and θ◦ are real constants obtained by satisfying the initial conditions. Assuming

that the initial conditions start from rest, we set the phase angle equal to zero θ◦ = 0.

For the spatial variation, we can write:

X
′′

X
+
Y

′′

Y
= −

( β
cs

)2
Y

′′

Y
+
( β
cs

)2
=

−X ′′

X
= k2x

where kx is the wavenumber. We can solve for the spacial variation along the x, and y directions

separately. First, we write:

X
′′
+ k2xX = 0
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The solution of this equation is:

X = a2e
ikxx + ā2e

−ikxx

where a2 and kx are complex constants obtained by satisfying the boundary conditions.

Applying the boundary conditions (2.16), at time t = 0, we get:

dX

dx

∣∣∣
x=0

= ikx(a2 − ā2) = 0 → a2 = ā2

dX

dx

∣∣∣
x=l

= ikxa2(e
ikx − e−ikx) = 0 → kx =

mπ

l
, m = 1, 2, 3, ..

As a result, we can reduce the variation along the x-direction to:

X = a2e
imπx + a2e

−imπx = 2a2 cos (mπx) (2.32)

where m is the spatial mode number. Setting the number of inter-digitated fingers to m can be

used for selective excitation of the corresponding mode.

Similarly, the spatial variation in the y−direction is written as:

Y
′′

Y
+
( β
cs

)2
= k2x

This can be re-written, such as:

Y
′′ − κ2uY = 0

where κu is the decay constant in the y− direction, given by:

κ2u = k2x −
( β
cs

)2
(2.33)

Assuming that k2x > c2sβ
2 to keep κu as a real number, the solution is written in the form:

Y = a4e
−κuy + a5e

κuy
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Using the surface wave boundary condition (2.13), we observe that a5 must be identically zero,

therefore:

Y = a4e
−κuy (2.34)

Thus, substituting equations (2.31), (2.32), and (2.34) into equation (2.30), we can write the

displacement field such as [5, 6]:

uz = a1a2a4e
−κuy(ei

mπ
l
x + e−i

mπ
l
x)(eiβt + e−iβt)

= U◦e
−κuy(ei

mπ
l
x + e−i

mπ
l
x)(eiβt + e−iβt) (2.35)

where U◦ = a1a2a4 is the amplitude of the displacement field.

Following a similar approach, we can solve the magnetic field equations (2.27) and (2.28) for

Hz and Hu
z , respectively, and use the boundary conditions (2.13) and (2.16) to obtain [5, 6]:

Hz = H◦e
−κhy(ei

mπ
l
x + e−i

mπ
l
x)(eiβt + e−iβt) (2.36)

Hu
z = Hu

◦ e
κuhy(ei

mπ
l
x + e−i

mπ
l
x)(eiβt + e−iβt) (2.37)

where H and Hu are the amplitudes of the magnetic fields in the piezoelectric and the medium-

under-test, respectively, and

κ2h = k2x −
(β
cl

)2
and κu

2

h = k2x −
( β
cul

)2
where cul is the speed of light in the medium-under-test.

Finally, the electric field is obtained by substituting the displacement and magnetic fields (2.35)–

(2.37) into equations (2.26), and integrating over time. The solution is, thus, obtained such as
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[5, 6]:

Ex = i
H◦κh
ϵβ

e−κhy(ei
mπ
l
x + e−i

mπ
l
x)(eiβt − e−iβt)

− i
mπe

ϵl
U◦e

−κuy(ei
mπ
l
x − e−i

mπ
l
x)(eiβt + e−iβt)

(2.38)

Ey = −mπH◦

ϵlβ
e−κhy(ei

mπ
l
x − e−i

mπ
l
x)(eiβt − e−iβt)

+
κue

ϵ
U◦e

−κuy(ei
mπ
l
x + e−i

mπ
l
x)(eiβt + e−iβt)

(2.39)

Eu
x = −iκ

u
hrH

u
◦

ϵβ
eκ

u
hy(ei

mπ
l
x + e−i

mπ
l
x)(eiβt − e−iβt) (2.40)

Eu
y = −mπrH

u
◦

ϵlβ
eκ

u
hy(ei

mπ
l
x − e−i

mπ
l
x)(eiβt − e−iβt) (2.41)

2.3 Quasi-static approximation

The time constant of the wave’s electromagnetic component is five orders-of-magnitude

smaller than its elastic counterpart. Therefore, variations in the electromagnetic component in

response to the elastic component appear to happen instantaneously. This justifies the adoption

of a quasi-static approximation of the electromagnetic component. We note that this approxima-

tion remains valid as long as the effective wave speed is at the order of acoustic speeds. Under

this assumption, equation (2.11) can be reduced to:

.
Hz = 0 ⇒ ∂Ey

∂x
− ∂Ex

∂y
= 0 (2.42)

which can be satisfied by assuming a potential function ψ, such as:

Ex = −∂ψ
∂x

, Ey = −∂ψ
∂y

(2.43)
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Substituting in the governing equations (2.22) and (2.23), we obtain:

G
(∂2uz
∂x2

+
∂2uz
∂y2

)
+ e
(∂2ψ
∂x2

+
∂2ψ

∂y2

)
= ρ

..
uz

e
(∂2uz
∂x2

+
∂2uz
∂y2

)
− ϵ
(∂2ψ
∂x2

+
∂2ψ

∂y2

)
= 0

which can be rewritten as:

G∇2uz + e∇2ψ = ρ
..
uz (2.44)

e∇2uz − ϵ∇2ψ = 0 (2.45)

Substituting the potential function in the boundary conditions (2.14) to (2.20), we obtain:

ψ
∣∣∣
y=∞

= 0 , ψu
∣∣∣
y=−∞

= 0 (2.46)

G
∂uz
∂y

∣∣∣
y=0

+ e
∂ψ

∂y

∣∣∣
y=0

= 0 (2.47)

∂ψ

∂x

∣∣∣
y=0

− ∂ψu

∂x

∣∣∣
y=0

= 0 (2.48)

rϵ
∂ψ

∂y

∣∣∣
y=0

− re
∂uz
∂y

∣∣∣
y=0

− ϵ
∂ψu

∂y

∣∣∣
y=0

= 0 (2.49)

This system of equations is simpler to solve and will be handled in detail in upcoming chap-

ters. However, first, the eigenvalue problem will be considered in the next chapter.

2.4 Nondimensionalization

It is useful to nondimensionalize the system of equations, to be able to solve the system

numerically. It also helps understand and visualize the relevant terms in the equations. Towards
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that effect, the system is rewritten as follows:

x̂ =
x

l
, ŷ =

y

l
, t̂ =

t

τ
,

Ê =
E

E◦
, Ĥ =

H

h◦
, û =

u

u◦

Êu =
Eu

Eu
◦
, Ĥu =

Hu

hu◦
,

where l is the device’s length and u◦ is the linearized ideal response to a nominal 1 Volt applied,

or 1V . Both the electric and magnetic fields are also normalized to a nominal 1V . The time-

scale τ and the nominal values u◦, E◦, h◦ are defined, such as:

τ = λ/cs , cs =

√
G+ e2

ϵ

ρ

E◦ = Eu
◦ =

(1V )

l
=

1

l
h◦ =

(1V )

l

√
ϵ

µ
=

1

l

√
ϵ

µ

u◦ =
e

G
(1V ) =

e

G
hu◦ =

1

l

√
ϵu

µ

where λ is the wavelength. Dropping the hats for convenience, the non-dimensional governing

equations (2.22) and (2.23) can be written as:(∂2uz
∂x2

+
∂2uz
∂y2

)
−
(∂Ex
∂x

+
∂Ey
∂y

)
= α

..
uz (2.50)

e2

Gϵ

(∂2uz
∂x2

+
∂2uz
∂y2

)
+
(∂Ex
∂x

+
∂Ey
∂y

)
= 0 (2.51)

where α =
l2

λ2
(
e2

Gϵ
+ 1). Similarly, equations (2.24) and (2.27) can be written as:

..
uz =

λ2

l2
∇2uz (2.52)

..
Hz =

λ2δ2

l2
∇2Hz (2.53)
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where δ = cl
cs

. The boundary conditions in equations (2.13) to (2.16) can also be nondimension-

alized, such as:

uz

∣∣∣
y=∞

= 0, Hz

∣∣∣
y=∞

= 0, Hu
z

∣∣∣
y=−∞

= 0 (2.54)

∂uz
∂x

∣∣∣
x=0

=
∂uz
∂x

∣∣∣
x=1

= 0 (2.55)

∂Hz

∂x

∣∣∣
x=0

=
∂Hz

∂x

∣∣∣
x=1

= 0 (2.56)

Further, equations (2.17), (2.18), (2.19), and (2.21), are nondimensionalized, such as:

∂uz
∂y

∣∣∣
y=0

− Ey

∣∣∣
y=0

= 0 (2.57)

Ex

∣∣∣
y=0

− Eu
x

∣∣∣
y=0

= 0 (2.58)

√
rHz

∣∣∣
y=0

−Hu
z

∣∣∣
y=0

= 0 (2.59)

(r
e2

Gϵ

∂uz
∂y

∣∣∣
y=0

+ rEy

∣∣∣
y=0

) = Eu
y

∣∣∣
y=0

(2.60)

The quasistatic equations (2.44) and (2.45) can also be nondimensionalized, such as:

∇2uz +∇2ψ = α
..
uz (2.61)

∇2uz −
Gϵ

e2
∇2ψ = 0 (2.62)

where the potential, ψ, is nondimensionalized such as ψ̂ = ψ
ψ◦

and ψ◦ = 1V. The hats were

dropped for convenience. Lastly, the nondimensional boundary conditions under the quasistatic
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approximation are written, such as:

ψ
∣∣∣
y=∞

= 0 , ψu
∣∣∣
y=−∞

= 0 (2.63)

∂uz
∂y

∣∣∣
y=0

+
∂ψ

∂y

∣∣∣
y=0

= 0 (2.64)

∂ψ

∂x

∣∣∣
y=0

− ∂ψu

∂x

∣∣∣
y=0

= 0 (2.65)

rϵ
∂ψ

∂y

∣∣∣
y=0

− r
e2

G

∂uz
∂y

∣∣∣
y=0

− ϵ
∂ψu

∂y

∣∣∣
y=0

= 0 (2.66)

2.5 Summary

The BG wave is explained and the BG wave field definitions and constitutive equations are

outlined. The governing under the resonant boundary conditions were formulated and the ho-

mogenous system was solved. Moreover, the quasistatic approximation was applied. Finally the

system was nondimensionalized.



Chapter 3

Nonlinearity in BG Waves

Piezoelectricity is a linear phenomenon that relates stress in a material to the electric field

applied across it. Strain is generated when the electric field ‘pulls’ on the polarized crystals of

the material. The converse effect is also true, a stress-induced strain separates or squeezes the

crystal creating a net polarization, an overall internal electric field.

Nonlinearity in piezoelectrics arises from electrostriction, which is an entirely different phe-

nomenon. It occurs in all dielectrics, centrosymmetric or not, while piezoelectricity can only

occur in non-centrosymmetric crystals. It is described by a quadratic relationship between me-

chanical deformation and polarization of the crystal (S ∝ E2). As a result, the strain direction

does not flip when the electric field polarity is flipped. This behavior has occasionally been

misidentified as a piezoelectric nonlinearity. Other sources of nonlinearity in piezoelectrics in-

clude hysteresis and mechanical stress-strain nonlinearities.

In this chapter, the sources of nonlinearities in BG waves are investigated and applied to the

governing equations. Then the relative orders of these nonlinearities are considered, and the

constitutive relationships governing the BG waves are rewritten, thereby extending the linear

26
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equations into the nonlinear domain. Finally, the system is linearized as a first approximation to

study the effect of biasing on the sensor.

3.1 Sources of Nonlinearities

The three most important sources for the deviation from linear behavior in piezoelectrics are

mechanical nonlinearities, polarization hysteresis, and electrostriction. Mechanical nonlineari-

ties are either irreversible plasticity or geometric nonlinearities. The former is undesirable as it

permanently deforms the material and the latter is only significant under moderately large dis-

placements. For this work, we are interested in surface waves where loads are kept small enough

to avoid plasticity and deformations are infinitesimal.

The crystal structure of piezoelectric materials is non-centrosymmetric. The cells of those

crystals possess multiple equilibria, each exhibiting a non-zero polarization. When crystal dipoles

align inside grains in naturally occurring materials, they are randomly aligned. As a result, the

material exhibits zero internal polarization.

Once an external electric field E is applied, grains align their polarization with the field re-

sulting in a net internal polarization P proportional to the electric field, as shown by the red line

in Figure 3.1. After the field is removed, a fraction of the crystals retains their new equilibrium

and polarization, resulting in a remnant internal polarization, PR. This is the case because, under

room temperature, crystals do not possess enough energy to clear the potential barrier separating

multiple equilibria. Beyond a temperature threshold, the Currie Temperature Tc, crystals have

enough energy to clear that potential barrier. Above Tc, once the electric field is removed the

crystals and grains regain their random orientation, and the internal polarization disappears com-

pletely. As the temperature increases towards Tc, the likelihood of a crystal receiving enough
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Figure 3.1: The hysteresis loop of the polarization P created under an applied external electric

filed E in ferroelectric materials.

energy to clear the potential barrier increases. Therefore, it is usually advised to stay below half

Tc to reduce the likelihood of depolarization after prolonged operation [89].

The existence of remnant polarization is the source of hysteretic loops in ferroelectric piezo-

electrics. Application of an electric field opposite to the remnant polarization can force the mate-

rial to reorient its grains below Tc, as it provides the dipoles with enough energy to overcome the

barriers. The value of the minimum electric field required to eliminate the internal polarization

is called the coercive electric field Ec. This is, however, usually not a hard value as the applica-

tion of small electric fields for an extended amount of time could reorient the domains as well.

Increasing the electric field further beyond that point will polarize the material in the opposite
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direction. Repetitive polarization in opposite directions creates a hysteretic loop, as shown in

Figure 3.1.

Spontaneous polarization PS is defined as the saturation polarization due to the reorientation

of grains alone, under no piezoelectric effect. It is obtained by linear extrapolation, the dotted

line in Figure 3.1, that assumes a linear piezoelectric effect. It differs from remnant polarization

as the latter is the actual polarization at (E = 0) reduced by random reorientation of outlier

energetic grains at room temperature.

The process of creating remnant polarization is called poling and is shown by the red line

in Figure 3.1. It involves applying a strong electric field under heat to help orient the grains.

Although hysteresis is a form of nonlinearity, once the material becomes poled, it can operate al-

most linearly within a range extending from PS to another point close to the coercive field shown

in Figure 3.1. Electric fields applied in the same direction as the poling field must remain lower

than the poling value. Venturing beyond this point can create nonlinearities. Most piezoelectric

actuators in the literature try to remain inside this linear region.

Electrostriction, on the other hand, is the quadratic response of strain to applied electric fields.

By definition, it is a nonlinear relationship that exists in all dielectrics, including piezoelectrics,

between strain and polarization. Because the polarization and the electric field are linearly re-

lated, within limited regions of the hysteretic loop, strain can be related to the electric field within

such regions as follows:

Sij = QijklPkPl =MijklEkEl ; i, j, k, l = 1, 2, 3 (3.1)

whereQijkl andMijkl are elements of the electrostrictive polarization and electrostrictive electric

field constant tensors, respectively, and indicial notation is invoked. In subsequent sections, we

limit our interest to a linear region of the hysteretic loop, thereby leaving electrostriction as the

dominant source of nonlinearity.
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3.1.1 Electrostriction Nonlinearity

The binomial expansion of the crystal Gibbs free Energy (PE) including all possible nonlin-

earities is [90]:

PE = α1E
2 + α2T

2 + α3TE + α4E
3 + α5T

3 + α6T
2E + α7E

2T

+ α8T
4 + α9E

4 + α10E
3T + α11T

3E + α12T
2E2 + ...

We scale the electric field E at O(ϵ̂) and the stress tensor T at O(ϵ̂ 2), where ϵ̂ is a small book-

keeping parameter, and substitute in the energy formulation to obtain:

PE = ϵ̂2α1E
2 + ϵ̂4α2T

2 + ϵ̂3α3TE + ϵ̂3α4E
3 + ϵ̂6α5T

3 + ϵ̂5α6T
2E + ϵ̂4α7E

2T

+ ϵ̂8α8T
4 + ϵ̂4α9E

4 + ϵ̂5α10E
3T + ϵ̂7α11T

3E + ϵ̂6α12T
2E2 + ...

Dropping terms of order O(ϵ̂ 5) and higher and removing the bookkeeping parameter:

PE = α1E
2 + α2T

2 + α3TE + α4E
3 + α7E

2T + α9E
4 +H.O.T. (3.2)

The strain can be obtained from the potential energy by differentiating with respect to stress:

S =
∂PE

∂T
= 2α2T + α3E + α7E

2

Rearranging, we write the stress as:

T =
1

2α2

S − α3

2α2

E − α7

2α2

E2 (3.3)

Similarly, the electric displacement can be obtained from the potential energy by differentiating

with respect to the electric field:

D =
∂PE

∂E
= 2α1E + α3T + 3α4E

2 + 2α7TE + 4α9E
3 (3.4)
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Although this approach ensures that we capture all possible nonlinearities, it does little to

explain the physics behind each term. Thus, a more physical approach is taken, and the final

results are compared to (3.3) and (3.4) to verify accounting for all nonlinearities.

The strain tensor can be defined to account for all three phenomena under investigation,

elasticity, piezoelectricity, and electrostriction, as follows [91]:

S = C−1T+ dE+ME2

where C and M are the stiffness and electrostriction matrices respectively and d is the piezoelectric-

strain constant matrix. For the 3m-Rhombohedral crystal C and M are defined as [92]:

C =



C11C12C13 0 0 0

C12C11C13 0 0 0

C13C13C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 2
(
C11 − C12

)



M =



M11 M21 M31 M41 0 0

M21 M11 M31−M41 0 0

M13 M13 M33 0 0 0

M14−M14 0 M44 0 0

0 0 0 0 M44 2M14

0 0 0 0 M41 M66


Re-arranging, we write the stress tensor as:

T = CS−CdE−CME2

= CS− eE−CME2 (3.5)
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where piezoelectric-stress constant matrix e for the 3m-Rhombohedral crystal is defined as [92]:

e = Cd =



0 0 e31

0 0 e31

0 0 e33

0 e15 0

e15 0 0

0 0 0


and

E2 = EE⊺ =



E2
x

E2
y

E2
z

EyEz

ExEz

ExEy


=



E2
x

E2
y

0

0

0

ExEy


The electric displacement vector has also been defined empirically as [91]:

D = ϵTE+ dT+ 2MTE (3.6)

where ϵT is the zero-stress permittivity matrix. Substituting for the stress tensor with equa-

tion (3.5):

D = ϵE+ e⊺ S− e⊺ME2 − 2M eEE+ 2MCSE− 2MCME2E (3.7)

where ϵT = ϵ + d e and the zero strain permittivity matrix the 3m-Rhombohedral crystal is

defined as [92]:

ϵ =

ϵxx 0 0

0 ϵxx 0

0 0 ϵzz


Since T ,C ,S , e ,M, and E2 are originally higher-order tensors reduced using the Voigt

notation to matrices, while D , ϵ ,E are not, care must be taken when evaluating the last three
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terms in equation (3.7). These terms have both reduced and regular tensors multiplied with each

other. This issue is solved by un-reducing the tensors from their Voigt 6x1 form into the 3x3

tensor, as illustrated in Appendix B, before multiplication with E.

Comparing equations (3.5) and (3.6) to equations (3.3) and (3.4), we find that the electric

displacement equation in the literature does not capture all the nonlinearities, specifically the

terms associated with α4 and α9 are missing. However, when considering equation (3.7), the

missing nonlinearities are recaptured.

3.2 Nonlinear Constitutive and Governing Equations

Using the field definitions in equations (2.1), the non-trivial components of the stress tensor

T, equation (3.5), and polarization vector D, equation (3.6), inside the piezoelectric after tensor

manipulation, reduce to [91]:

Tyz = G
∂uz
∂y

− eEy −GME2
x +GME2

y (3.8)

Txz = G
∂uz
∂x

− eEx − 2GMExEy (3.9)

Dx = ϵEx + e
∂uz
∂x

+ 2MExTyz + 4MEyTxz (3.10)

Dy = ϵEy + e
∂uz
∂y

+ 4MExTxz − 2MEyTyz (3.11)

where M = M14 is the only relevant electrostrictive coefficient. Substituting with the shear

stress from equations (3.8) and (3.9) into the electric displacement equations (3.10) and (3.11),
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we obtain:

Dx = ϵEx + e
∂uz
∂x

+ 2GM
∂uz
∂y

Ex + 4GM
∂uz
∂x

Ey − 6eMExEy

− 6GM2ExE
2
y − 2GM2E3

x

(3.12)

Dy = ϵEy + e
∂uz
∂y

− 4eME2
x + 2eME2

y − 2GM
∂uz
∂y

Ey + 4GM
∂uz
∂x

Ex

− 6GM2E2
xEy − 2GM2E3

y

(3.13)

Rewriting equations (2.9)–(2.11), after using the higher-order expressions for stress and elec-

tric displacement, equations (3.8)–(3.13), we obtain

ρ
..
uz = G∇2uz − e∇ · E+ML1(Ex, Ey) (3.14)

0 = e∇2uz + ϵ∇ · E+ML2(uz, Ex, Ey) (3.15)

µ
.
Hz =

∂Ex
∂y

− ∂Ey
∂x

(3.16)

where the nonlinear electrostriction differential operators L1(Ex, Ey) and L2(uz, Ex, Ey) are

given in Appendix C by equations (C.1) and (C.2), respectively. Applying the quasistatic ass-

sumptions stated in section 2.3 we can rewrite these equations, such as:

ρ
..
uz = G∇2uz + e∇2ψ +MGL1(ψ) (3.17)

0 = e∇2uz − ϵ∇2ψ +ML2(uz, ψ) (3.18)

where L1(ψ) and L2(uz, ψ) are the quasistatic versions of the nonlinear electrostriction differ-

ential operators L1(Ex, Ey) and L2(uz, Ex, Ey), respectively, given in Appendix C by equations

(C.3) and (C.4)
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3.3 Linearization Around a Bias Point

It is useful to linearize the fields around an equilibrium (operating point), defined by applied

prestress (and the corresponding prestrain S◦) and DC electric field E◦. The linearized constants

can be used in investigating the effect of biasing. The relevant constants found in equations

(3.14) and (3.15) are the piezoelectric permittivity ϵ, the piezoelectric constant e, and the shear

stiffness G. These are defined from the constitutive equations (3.8) to (3.11), such as:

ϵL ij =
∂Di

∂Ej
|(Ej◦,Sm◦) (3.19)

CLmn =
∂Tn
∂Sm

|(Ej◦,Sm◦)= Cmn (3.20)

eL jn = −∂Tn
∂Ej

|(Ej◦,Sm◦)

or eL im =
∂Di

∂Sm
|(Ej◦,Sm◦)

(3.21)

Therefore, the effective linearized permittivity of the piezoelectric under a set of electrodes ap-

pling a bias of Ex◦ is:

ϵLxx = ϵ− 6GM2Ex◦
2 (3.22)

This will later be proven to allow the tuning of the sensitivity equation, and thus, the peak

of maximum sensitivity could be shifted to lower values to match that of the sample under test.

This will be discussed in detail in Chapter 4, specifically, equation (4.16) and Figure 4.2. For

example, using the sensor to detect small changes in the dielectric constant of aqueous media, like

blood plasma, is possible by applying a biasing electric field to drop down the effective relative

permittivity to match that of blood plasma. Thus, any small change in the dielectric constant

would create an observable shift in the resonance frequency of the BG wave. Figure 3.2 shows

the plot of the equation (3.19), in the case of using PZT4 and assuming that the electrostrictive

coefficient for PZT4 is M = 12.7 × 10−18. This value was experimentally identified, as will
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be discussed later in Chapter 6. The Figure shows that applying a DC bias in the x-direction of

about 14 MV/m is required to create a sensor that operates in water or blood plasma.
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Figure 3.2: Linearized relative effective permittivity as a function of bias electric field. ϵ◦ is the

free space permittivity.

3.4 Nondimensionalization

Following the nondimensionalization in section 2.4, the nonlinear equations (3.14) and (3.15)

can also be nondimensionalized, such as:

α
..
uz = ∇2uz − ∇ · E+ M̂L̂1(Ex, Ey) (3.23)

0 =
e2

Gϵ
∇2uz + ∇ · E+ M̂L̂2(uz, Ex, Ey) (3.24)
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where M̂ = MG
el

. The differential operator Li is replaced with a nondimensional version L̂i,

given in Appendix C. Similarly, the quasistatic nonlinear equations (3.17) and (3.18) can be

nondimensionalized, such as:

α
..
uz = ∇2uz +∇2ψ + M̂L̂1(ψ) (3.25)

0 = ∇2uz −
Gϵ

e2
∇2ψ + M̂L̂2A(uz, ψ) + M̂2L̂2B(uz, ψ) (3.26)

3.5 Summary

In this chapter, the sources of nonlinearities in BG waves were investigated. Specifically,

electrostriction in BG waves was analyzed and formulated into the constitutive equations of the

sensor. Then, the possibility of the linearization of parameters around a bias point was inves-

tigated. The linearization approach showed that the sensor sensitivity could be enhanced and

tuned towards aquatic media under test. Finally, the nondimensionalization was redone for the

nonlinear system of equations.



Chapter 4

Eigenvalue Analysis

In this chapter, the sensor eigenvalue problem is investigated, and the sensor sensitivity is

defined. Both cases of full and no metalization of the surface are considered. Finally, the mode

shapes are outlined.

4.1 Sensor Eigenvalue Problem

In order to state the eigenvalue problem, we first apply the remaining boundary conditions to

solve for the propagation constants. Substituting the solution from equations (2.35) to (2.41) in

the no-load boundary condition, equation (2.17), yields:

U◦κu(G+
e2

ϵ
)(ei

mπ
l
x+e−i

mπ
l
x)(eiβt+e−iβt)−H◦

mπe

ϵlβ
(ei

mπ
l
x−e−i

mπ
l
x)(eiβt−e−iβt) = 0 (4.1)

This can be simplified in trigonometric form, such as:

4U◦κu(G+
e2

ϵ
) cos(πmx) cos(βt) + 4H◦

mπe

ϵlβ
sin(πmx) sin(βt) = 0 (4.2)

38
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4.1.1 Metallized Surface

Applying a perfect conductor to the piezoelectric surface sets the transverse electric field at

the surface to vanish. This case can also represent the limiting case of using a conductive liquid

as the medium-under-test, and thus is important to analyze. It replaces the boundary condition in

equation (2.18) by:

Ex

∣∣∣
y=0

= 0

Substituting by the solution from (2.38) and transforming into the trigonometric form yields:

4
mπe

ϵl
U◦ sin(mπx) cos(βt)− 4

H◦κh
ϵβ

cos(mπx) sin(βt) = 0 (4.3)

For a non-trivial solution, the determinant of coefficients of the linear system obtained from

equations (4.2) and (4.3) must vanish, such as:∣∣∣∣∣κu(G+ e2

ϵ
)U◦

mπe
ϵLβ

H◦
mπe
ϵl
U◦ −κh

ϵβ
H◦

∣∣∣∣∣ = 0 (4.4)

We define the following ratios between the propagation constants:

η =
κh
kx

=
κhl

mπ
, ζ =

κu
kx

=
κul

mπ
(4.5)

and use them to rewrite the determinant (4.4), such as:∣∣∣∣∣ηmπl (G+ e2

ϵ
)U◦

mπe
ϵLβ

H◦
mπe
ϵl
U◦ − ζmπ

lϵβ
H◦

∣∣∣∣∣ = 0 (4.6)

For a nontrivial solution, the determinant must vanish, which yields:

ηζ =
e2

Gϵ+ e2
(4.7)

The positive value for η corresponds to the decaying displacement and magnetic fields in the

lower-half space (y < 0), and ζ is positive for physical positive mode numbers. The propagation
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ratios, equation (4.5), can be used to simplify the dispersion relation, equation (2.33), for the

displacement field, such as:

β2 = c2s(k
2
x − κ2u) = c2sk

2
x(1− ζ2) (4.8)

Likewise, we simplify the dispersion relation for the magnetic field as:

β2 = c2l (k
2
x − κ2h) = c2l k

2
x(1− η2) (4.9)

The wave velocity can, therefore, be written such as:

v2 =
β2

k2x
= c2s(1− ζ2) = c2l (1− η2) (4.10)

We can use equation (4.10) to solve for η as follows:

η =

√
1− (

cs
cl
)2(1− ζ2)

Since the ratio cs
cl

is of the order O(10−5), we can take η ≈ 1 and use equation (4.7) to obtain an

expression for the decay ratio of the displacement field in the lower-half space as:

ζ ≈ e2

Gϵ+ e2
(4.11)

This means that we can write κh ≈ kx = mπ
l

. This statement is also true for the upper half

space, and therefore we can write κuh ≈ κh ≈ kx as well.

4.1.2 Bare Surface

On the other hand, applying the bare surface boundary conditions, equations (2.18) and

(2.19), in trigonometric form, yields:

4
mπe

ϵl
U◦ sin(mπx) cos(βt)− 4

H◦(1 + r)κh
ϵβ

cos(mπx) sin(βt) = 0 (4.12)
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For a non-trivial solution, the determinant of coefficients of the linear system obtained from

equations (4.2) and (4.12), while using the definitions in (4.5), must vanish, such as:∣∣∣∣∣ηmπl (G+ e2

ϵ
)U◦

mπe
ϵLβ

H◦
mπe
ϵl
U◦ − ζmπ

lϵβ
H◦(1 + r)

∣∣∣∣∣ = 0

Taking η ≈ 1, the determinant is solved, such as:

ζ =
e2

Gϵ+ e2
1

1 + r
(4.13)

Finally, the boundary condition on the normal component of the electric displacement, equa-

tion (2.20), is identically satisfied by substituting the displacement and electric fields into the

equation. Therefore, the natural frequencies for a bare surface can be written following equation

(4.8), such as:

ω = β =
csmπ

l

√
1− ζ2

The expression indicates that the electromagnetic part of the mode shape acts like damping to

the acoustic part of the mode. Substituting for cs, α, kx, and ζ , we get:

ω =
mπ

l

√√√√√G+
e2

ϵ
ρ

√
1− e4

(Gϵ+ e2)2
1

(1 + r)2
(4.14)

This expression shows that the natural frequency of the resonant sensor depends on r, the ratio

of the zero strain electric permittivity of the piezoelectric material, ϵ, to that of the medium in

the upper half-space, ϵu.

4.1.3 Higher Modes

Since m was pinned to be the physical number of inter-digitated fingers used and not the

actual spatial mode number, a multiplier, n, is added to allow for modeling higher modes. There-

fore, a system with m = 4 and n = 2 has 4 IDT fingers (2 pairs) excited at the second resonant
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mode, Figure 4.1. Therefore, the resonant frequencies are rewritten, such as:

ωn = n
mπ

l

√√√√√G+
e2

ϵ
ρ

√
1− e4

(Gϵ+ e2)2
1

(1 + r)2
(4.15)

Figure 4.1: Excitation of the first and second modes, using 4 IDT fingers, including the two half-

electrodes at the edges.

4.2 Sensor Sensitivity

Equation (4.15) promises a correlation between the resonance frequency of a Bleustein-

Gulyaev wave propagating along a bare surface and the electric permittivity of the medium on top

of it. However, the equation is highly nonlinear. The sensitivity of the resonance shift depends
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on the permittivity of the medium and the piezoelectric. It can be calculated, such as:

Sωn =
∂ωn
∂ϵu

= −nmπ
l

e4ϵϵu

(ϵ+ ϵu)3(e2 +Gϵ)2
(1 + (ϵ/ϵu))(e2 +Gϵ)√

(1 + (ϵ/ϵu))2(e2 +Gϵ)2 − e4

√
e2 +Gϵ

ρϵ

= −n mπe4r2

l(1 + r)2
√
ρϵ3

1√
(1 + r)2(e2 +Gϵ)3 − e4(e2 +Gϵ)

(4.16)

Figure 4.2 shows the sensitivity Sω as a function of the medium relative permittivity ϵur =

ϵu/ϵ◦ for a sensor made of Lead Zirconate Titanate Navy Type I (PZT4), where ϵ◦ is the free

space permittivity. The figure shows the drop in the natural frequency for a unit change in the

medium relative permittivity. We note that the relative permittivity of PZT4 at zero strain is

ϵr = 718. It can be seen that maximum sensitivity occurs in the vicinity of half the piezoelectric

permittivity: ϵu ≈ 1

2
ϵ

Common applications of permittivity sensors target gaseous or aqueous media, which usually

have dielectric constants below 100. For the sensor to demonstrate optimal sensitivity in that

‘golden range’, the sensitivity curve needs to be shifted down. This can be achieved by selecting

a piezoelectric with a lower relative permittivity. However, the sensor, in this case, will have

optimal performance in a limited zone within the golden range.

Furthermore, there is a limited selection of piezoelectric materials with permittivities in that

range, such as Zinc Oxide, Lithium Tantalate, and Lithium Tetraborate. This subset of piezo-

electrics suffers from a low piezoelectric coefficient e < 1, see Table A.1. One promising candi-

date is Lithium Niobate, LiNbO3. LiNbO3 has a low permittivity and a low, but yet acceptable,

piezoelectric coefficient.

Therefore, we investigate an alternative approach that permits the tunability of the sensitivity

of the sensor in real-time to tune the optimal sensitivity in the range of interest. As a first ap-

proximation, the effective parameters, equations (3.19) to (3.21), linearized around a bias point,
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Figure 4.2: The sensitivity Sω of a frequency-shift PZT4 sensor as a function of the medium

relative permittivity ϵur .

can be used to estimate the effect of bias on the sensitivity. This is shown in Figure 4.3, where

the biasing electric field is observed to tune the sensor operating range on the fly.

4.3 Eigenfunctions

The harmonic form of the displacement field was found from equation (2.35) to be:

uz(x, y, t) = U◦ϕn(x, y)e
iωnt (4.17)

where ϕn(x, y) is the mode shape and n is the mode number. Substituting equation (4.17) for the

displacement into equation (2.24), yields:

G+ e2/ϵ

ρ
∇2ϕn + ω2

nϕn = 0 (4.18)
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Figure 4.3: Biased sensitivity of PZT4, under applied biasing electric fields of Ex◦ = 0 MV/m

(black) and Ex◦ = 10 MV/m (red). The blue markers track the position of maximum sensitivity.

Equation (4.18) is a Laplacian equation and can be solved similarly to the analysis in section 2.2.

Therefore, the mode shapes can be written, such as:

ϕn(x, y) = Ae−κny cos(knx) (4.19)

where κn = ζkn, kn = nmπ
l

, and n is an integer denoting the mode number. Additionally, they

can be normalized by requiring that:∫ ∞

0

∫ l

0

ϕ2
n(x, y) dxdy = 1

which is satisfied by setting: A =
√

κn/l. The first and second modeshapes ϕ1(x, y) and ϕ2(x, y),

for m = 4, are plotted in Figure 4.1.

Under the quasi-static approximation, the mode shape for the potential takes the same form,
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such as:

ψ(x, y, t) = ψ◦ϕn(x, y)e
iωnt (4.20)

4.4 Summary

In this chapter, the eigenvalue analysis for the resonator was carried out for the metallized

and bare surfaces. The analysis proved that the resonator can be used as a permittivity sensor,

and the sensor sensitivity was investigated. Finally, the linear mode shapes were formulated.

Additionally, the eigenvalue analysis shows that the BG wave speed is close to acoustic wave

speeds and that the ratio cs
cl

is of the order O(10−5). Since the higher (THz) frequencies of the

electromagnetic wave are not directly excited, the system will not respond in that fast time scale.

Moreover, the mechanical structure is too stiff to respond to THz excitations. This justifies the

use of the quasistatic approximation.



Chapter 5

Sensor Design, Fabrication, and

Characterization1

In this chapter, the basic sensor structure is explained in detail. Then, the fabrication and post-

fabrication steps are illustrated. Finally, the different experimental setups and configurations used

in characterization are elucidated.

5.1 Sensor Prototypes

5.1.1 Sensor Design

The proposed design, shown in Figure 5.1, employs an inter-digitated transducer, or IDT, in

order to excite the BG wave. The IDT is designed as an array of electrode “cells” with a spatial

1Parts of this chapter are adapted from Elhady, Alaa and E. M. Abdel-Rahman, “Characterization of shear

horizontal waves using a 1D laser Doppler vibrometer,” Sensors, vol. 21, no. 7, p. 2467, 2021

47
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Figure 5.1: The BG sensor IDT structure

periodicity equal to the wavelength. Each cell has two metal electrodes, each with a width of

λ/4, and separated by λ/4. The overlap of the fingers defines the aperture of the wave, where

the wave propagates.

To realize the resonator, two methods can be used to achieve wave reflection at the resonator

edges. The first and more traditional method [93] is using an array of shorted metal electrodes

with both the width and the separation of the fingers set at λ/4. This array needs to consist of

a large number of fingers [94] to achieve good reflectivity. Figure 5.2 shows the schematic of

metal electrode reflectors as means to reflect the wave.

Another approach utilizes edge reflectors [21], which promises a compact size with a better

resonant performance in terms of quality factor. The edge of the resonator is etched to create a

piezoelectric-air interface. This creates a sudden change in acoustic impedance, which leads to

acoustic reflection. Figure 5.3 shows the schematic of using trenches to reflect the wave.

One limitation in this design is the minimum feature of fabrication. It imposes a design
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Figure 5.2: Schematic of the use of metal electrode reflectors to reflect the wave and create the

resonator.

restriction on the minimum allowed wavelength. In edge reflectors, the smallest feature is λ/8

[21], and it occurs at the outermost (edge) electrodes, while electrode reflectors have λ/4 as their

smallest feature. Therefore, edge reflection is limited by the minimum feature of fabrication,

more than the traditional electrode reflection approach.

The number of fingers provides a trade-off between electric-to-acoustic energy coupling and

impedance matching. A large number of fingers improves the chance of exciting/capturing the

wave more efficiently, however, it also increases the resonator's capacitive impedance. Aperture

size was reported to alter the effective region of transduction and thus the insertion loss. It was

also found to affect the overall energy coupling and impedance matching [95], similar to the

number of fingers. The general IDT design rule sets the aperture size to be several multiples of

the wavelength [96].
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Figure 5.3: Schematic of the resonator using deep trench edges to reflect the wave.

5.1.2 PZT4 Sensors

The first choice for the substrate material was shear poled 15x15x1mm PZT4. It was pur-

chased from APC International [97], poled but un-electroded. It was selected because of its high

shear piezoelectric constant [98], e = 12.7, and high electromechanical coupling coefficient. The

relation describing the shear coupling coefficient was found to be [99]:

K2
15 =

e2

e2 +Gϵ

Using this formula, the coupling coefficient for PZT4 is approximately equal to 71%. The mate-

rial constants collected during the literature survey are tabulated in Appendix A for reference, in

Table A.1. PZT4 was selected because it scored the highest shear coupling coefficient and was

conveniently available commercially in a shear-poled state.
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Different designs were implemented using the edge reflection and the edge trenches tech-

niques. Two designs, one set to resonate at 64.8MHz, and the other at 161.9MHz were imple-

mented. However, during fabrication, the 161.9MHz resonator was destroyed. This was because

of unforeseen fabrication limitations on the minimum feature. Since the 161.9MHz design had a

minimum dimension (4 µm) smaller than that of the 64.8MHz design (10 µm), it was completely

etched.

One of the biggest fabrication issues that were found with this PZT4 chip was the grainy

lattice structure. This caused the surface roughness to be in the order of few microns and thus

had to be Chemically/Mechanically Polished (CMP) prior to fabrication. This was done using a

commercial service outside of the country.

The chips were polished to few tens of nanometers, however, the grain boundaries were still

visible. To further investigate, scanning electron microscopy, SEM, was used. Figures 5.4 show

SEM images obtained for one of the defects of the polished PZT4. Figures 5.4b to 5.4d show

successively increasing magnification of one of the defects visible in Figure 5.4a. The view in

Figure 5.4d shows the individual grains. They can be seen to vary in size between 50 nm and 75

nm.

Since these defects were only one order of magnitude less than the wavelength, they may have

interfered with the wave operation, reducing the coupling efficiency or distorting the frequency

response.

5.1.3 LiNbO3 Sensors

The grains and defects of PZT4 were a motivation to test another material, in parallel, as a

prototype. Therefore, Lithium Niobate was selected as a second prototype. LiNbO3 is a single

crystal material, and thus it would not suffer from the issue of grains. Moreover, its linear and
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(a) Wide view (X170) (b) First close-up view (X6,500)

(c) Second close-up view (X10,000) (d) Third close-up view (X25,000)

Figure 5.4: Post fabrication SEM photos for the PZT4. A grain defect was brought into focus

and several close-up views were taken.

nonlinear coefficients are attractive, and its permittivity is close to that of aqueous media, and thus

would be more sensitive as a sensor, as proven earlier in section 4.2. Although the permittivity

of LiNbO3 is much less than its counterpart in PZT4, LiNbO3 is much stiffer than PZT4. That

is why the coupling coefficient K15 for LiNbO3 is approximately equal to 65%, which is close

to PZT4 and is still considered quite high. The complete list of relevant material properties for

LiNbO3are listed in Appendix A, Table A.1. A shear poled and electroded 10x10x3mm substrate
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was purchased from Boston Piezo Optics [100], with a 41◦ X-cut.

Select design variations were implemented using the LiNbO3 at different frequencies. De-

signs using the electrode reflection and the edge trenches techniques were implemented.

(a) Design of different sensors, on a single chip (b) Design with wave reflection on chip’s edges

Figure 5.5: Different LiNbO3 designs

Figure 5.5a shows the first mask layout used in the LiNbO3based sensors. This mask included

sensors designed to operate at 21.4MHz and others at 117.5MHz. However, similarly to the

161.9MHz PZT4 design, the 117.5MHz LiNbO3 design also did not survive the fabrication.

The four sensors on the left column still required post-fabrication processing, namely using a

high-power laser to cut the grooves needed for edge reflection. In an attempt to avoid this post-

processing step, another design was implemented, close to the edges of the chip, as shown in

figure 5.5b. This design, however, was done at a lower resonant frequency, at 9.4MHz.
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5.2 Fabrication

The fabrication took place in the cleanroom at the Quantum Nano Center, QNC, at the Uni-

versity of Waterloo. This was partially funded by the Micro/Nanotechnology, MNT, award from

CMC Microsystems. The PZT4 mask was fabricated at Alberta University in the nanoFAB.

5.2.1 Fabrication Process

The fabrication process used was a single mask process. Figure 5.6 shows the PZT4 sample

during and after different steps of preparation and fabrication, and Figure 5.7 shows the fabrica-

tion process recipe where details of the steps are described below. Figures 5.8 and 5.9 show the

final electrodes patterned on the LiNbO3 substrate.

The metal sputtering step was only necessary for PZT4 since LiNbO3 was purchased pre-

coated with 350 nm of gold/chromium on both sides. The minimum Al layer thickness needs to

be 1% of the wavelength of the wave following the literature [101], which translates to 400 nm

for the 64.8MHz design. Moreover, this thickness must be kept below 5% of the wavelength to

avoid mechanical loading, which in turn drops the coupling efficiency. Therefore, the aluminum

thickness was set to 400 nm.

Additionally, the LiNbO3 designs were implemented using the Heidelberg MLA150 Mask-

less Aligner, while the PZT4 was patterned using the SUSS Mask Aligner. During the PZT4

fabrication, the Maskless Aligner was not yet operational. Indeed, using the Maskless Aligner

was considerably faster than waiting for the mask to be fabricated and then used.

Based on the wet etching process used to etch the thin deposited Al layer, an over-etch equal

to the layer thickness is expected from both sides of the Aluminum layer. This over-etch is

to be taken into consideration when designing the filter, and the dimensions on the mask are
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(a) Substrate during Al Sputter (b) Substrate after Lithography

(c) Substrate after Al etching (d) Final electrodes

Figure 5.6: Photos for the PZT4 at different steps during fabrication

extended beyond the actual intended dimensions. However, it is also vital that the over-etch

does not completely destroy the fingers. Figure 5.10 shows an image of the LiNbO3 electrodes,

with a close-up view of the outermost finger. This is where the smallest feature exists, and the

figure shows that it is only minimally over-etched and therefore is expected to function properly.

However, as mentioned at the beginning of this section, higher frequency designs did not survive.

The details of the process recipe were as follows:
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Process:

• Ultrasonic cleaning of the substrate in ultrasonic bath,

while:

– Immersed in Acetone for 10 Minutes

– Immersed in Isopropyl alcohol (IPA) for 5 Minutes

– Water rinsing

• (PZT4 Only) 400 nm Aluminum sputtering using the

AJA Sputter Twin Chamber (48 minutes with 50W at

10mT). Strike was 27sccm Argon Gas with 200W sput-

ter at 3mT.

• Spin coating of the Shipley-S1811 photoresist (PR) us-

ing REYNOLDSTECH twincoater on two steps (below),

followed by a bake at 110 °C for 90 seconds.

– 500 RPM, ramp of 100 RPM/s for 5 seconds

– 5000 RPM, ramp of 500 RPM/s for 60 seconds

• Photolithography using:

– (PZT4 Only) SUSS Mask Aligner, for 5 seconds

and 25 mW/cm2 intensity

– (LiNbO3 Only) Heidelberg MLA150 Maskless

Aligner with a dose of 100 mW/cm2

• UV development using MF319 for 60 seconds.

• Wet etching of AL/AU layer using AL/AU-Etchant.

• Striping of PR using Acetone, followed by IPA.

• Surface profiling using profilometer and microscope

Metal

B) Metal Sputter

PR

C) PR Coating

E) Metal Etch

F) PR Removal

D) Lithography

Polished PZT4 
Substrate

A) Cleaning

Figure 5.7: Process steps
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Figure 5.8: Microscopic image of the LiNbO3 substrate with patterned IDT electrodes.

The fabricated IDTs were investigated under a white-light interferometry profilometer to

assess the fabrication process. Figure 5.11 shows the readout of the profilometer, for the PZT4

sensor. The metalization thickness of the PZT4 IDT electrodes was measured at 510 nm. Since

the sputtering was set at 400 nm, this indicates that the process could use finer tuning. However,

for the purpose of this work, the extra 110 nm do not pose any risk and is not expected to affect

operation. Therefore, the fabrication process was not repeated.

Figure 5.12 shows the profilometer readout of the IDT electrodes of the LiNbO3 sensor. The

manufacturer-provided specifications state that the metalization layer is 350 nm, however from

Figure 5.12, it can be seen that the value is approximately 1.14 µm. This large difference creates

a limitation on the smallest BG wavelength possible on LiNbO3 . The metal thickness should be
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Figure 5.9: Microscopic image of the LiNbO3 substrate with patterned IDT electrodes using a

different illumination method. LiNbO3 is semitransparent.

less than 5% of the BG wavelength [101] to avoid mechanically loading the surface. Therefore,

the smallest BG wavelength possible is limited to 24 µm. This was smaller than the smallest

wavelength designed on LiNbO3 sensors and therefore should not create any issues with the

fabricated designs.

The profilometer was also used to assess the minor scratch-looking defects, Figures 5.8 and

5.9, and check if these scratches are deep enough to hinder operation. Figure 5.13, shows that

the scratches are superficial, at less than 15% of the metalization layer depth. This can also be

seen in Figure 5.12. Therefore, they do not affect electrical connectivity and are much smaller

than the BG wavelength to affect the sensor operation.
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Figure 5.10: Microscopic image of the LiNbO3 substrate with a close-up view of the edge elec-

trode. The electrode shows minimal over-etching.
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Figure 5.11: Profilometer measurement of the IDT fingers on the PZT4 sensor.
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Figure 5.12: Profilometer measurement of the IDT fingers on the LiNbO3 sensor. The measured

metal thickness does not match the manufacturer provided specifications.

Figure 5.13: Profilometer screenshot during the measurement of the LiNbO3 sensor. The

scratches on the surface are superficial and do not pose a problem.

5.2.2 Post-Processing

Post-processing of the sample was be performed using the QuickLaze-50 Laser Trimmer

to create vertical trenches, Figure 5.14. They created the sharp edge required to achieve edge
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reflection. The trenches were aligned at the edges of the outermost electrodes for each individual

sensor.

Figure 5.14: Laser trimming at resonator edges.

The trench depth created by the Laser trimmer depends on the etch rate of the laser. This is a

function of two fixed characteristics and other variable ones. The fixed factors affecting the etch

rate are the material (substrate to be etched) type and the laser wavelength. Although the latter is

sometimes variable, it is often just a choice between two (or more) pre-set values. For instance,

in the QuickLaze-50, there were two options; a green laser and an ultraviolet UV one. UV laser

usually packs more energy density, however, it depends on how it will interact with the material.

For LiNbO3, UV laser seemed to cause excessive heat damage in the region surrounding the

trench, and thus it was avoided.

The variable options are; power p, number of passes n, pulse repetition frequency f , speed s,

and spot size. The spot size can also control the width of the trench but was kept constant since

it also affects the trench width. The depth can, thus, be formulated such as:

d = n
kpf

s
(5.1)

where k is a constant defined by the fixed characteristics, as well as the spot size. The spot size

was set to 50 µm, and the green laser was chosen. The remaining variables were tuned to obtain

the desired depth.



CHAPTER 5. SENSOR DESIGN, FABRICATION, AND CHARACTERIZATION 62

The trench depth should be enough to completely reflect most of the wave. The BG wave

is a surface wave that attenuates rapidly into the substrate, following the term e−κuy from equa-

tion (2.35), where the value of ku was found to depend on the device wavelength and substrate

type, equation (4.5). However, this trench should not go all the way into the substrate to facilitate

handling the die after the cutting is complete. It would also take a huge time (tens of hours) using

the available laser trimmer.

Using Finite Element Analysis, FEA, the wave was simulated to investigate the minimum

trench depth needed. The wavelength used was 40µm, and the material was PZT4. Figure 5.15

shows the effect of different groove depths on the wave. From the figure, it is clear that at 50µm

deep, the wave is well contained, and no visible leakage is observed. Therefore, the depth should

be set to be larger than the BG wavelength. Shallower trenches can still work but would suffer

from lower edge reflectivity, and therefore a lower resonant quality factor.

Using the profilometer to directly characterize the trench depth was proven unsuccessful.

Figure 5.16 shows that the surface roughness at the bottom of the trench was extremely high.

This stopped the light from reflecting back to the sensor, and the software attempted to interpolate

the results. The width of the trench was found to be between 50µm and 70µm. The laser spot

size was set to 50µm, however, the nature of light diffraction caused the edges to experience a

lower non-zero dose of laser radiation.

In order to characterize the depth, a low-tech approach was used. Using the metered mi-

croscope belonging to the Laser Doppler Vibrometer, the laser was focused on the surface of

the substrate, and the microscope focus reading was recorded. Then the laser was focused on

the bottom surface, and the focus knob on the microscope was manually scanned until the spot

came into focus in the viewfinder. The microscope focus reading was recorded again, and the

difference in the readings indicated an approximate value for the depth.
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(a) At a depth of 1µm, almost all of the wave leaks. (b) At a depth of 10µm, the wave still leaks.

(c) At a depth of 50µm, the wave does not appear

to leak.

Figure 5.15: FEA COMSOL simulations of the effect of trench depth on containment of the BG

wave. The wave was excited at resonance.

After several iterations of trimming and depth measurement, the PZT4 sensor was laser-

etched until it was approximately 94.5 µm while the LiNbO3 sensor was etched approximately

76.3 µm. Table 5.1 shows the parameters used in equation (5.1).

The heat damage around the trenches due to the laser trimmer was kept at a minimum by
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Figure 5.16: Profilometer screenshot during trench depth measurement on the PZT4 sensor. The

gray line (lower left plot) represents interpolation by the profilometer software. The blue line

indicates true measurement. The bottom of the trench was not captured by the profilometer

sensor.

Table 5.1: Laser trimmer settings used and the corresponding depths etched.

Substrate k (µm2/MW) p (MW) s (µm /s) f (Hz) n d (µm)

PZT4 5.9 (fitted) 0.32 10 10 20 94.5

LiNbO3 4.77 (fitted) 0.32 10 10 20 76.3

reducing the pulse repetition frequency and increasing the scan speed. To compensate, the entire

scan was repeated 20 times at each trench. Figure 5.17 shows that the heat damage was kept

local to the vicinity of the trench. The figure shows the edge of the LiNbO3 resonator after

laser trimming was completed.
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Figure 5.17: Localized heat damage near the trench due to the laser trimmer.

5.3 Optical Detection

Two experimental setups were used for the sensor prototype characterization and model val-

idation. The first setup involved using the Polytec UHF-120 Laser Doppler Vibrometer, LDV, to

characterize the shear horizontal BG surface wave. Figure 5.18a shows the proposed setup. This

technique was also adapted for characterizing the DC response of the sensor. The method was

published [1] as a part of this Ph.D. work.

In the following section, the sensor is electrically characterized using a Vector Network Ana-

lyzer, VNA. This is a practical approach that resembles a reliable and compact end product. The

VNA can measure the S11 parameter of the resonant sensor. Figure 5.18b shows the proposed

setup for this stage in testing. In both approaches, the sensor pads were directly probed, under

the microscope, Figure 5.19.
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Figure 5.18: Experimental setups

Characterization of surface acoustic waves is integral to SAW technology and research. The

most common method involves the use of LDVs to measure out-of-plane vibrations [102, 103].

However, the optical detection of pure shear horizontal waves, SH-SAW, has proven to

be a considerable challenge since SH-SAWs often exhibit no out-of-plane components within

the wave aperture [99]. Few approaches were found in the literature detailing possible tech-

niques that can be used, however, they included nonstandard test rigs and/or expensive three-

dimensional vibrometers.

For SH-SAW on the surface of semi-transparent substrates, such as lithium tantalate, one

approach involves observing shear strain-induced polarization variation of a laser beam passing

through the substrate [104]. However, this method would not work with opaque substrates, nor

would it work with semi-transparent substrates covered with opaque films. It is therefore not

applicable for materials such as PZT4.

A second procedure tilts the orientation of the substrate with respect to the incident laser
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Figure 5.19: LiNbO3 sensor directly probed, under the microscope.

beam [105, 106]. The beam lands on the edge of an erected structure on the substrate surface

and in-plane vibration are captured through the vertical component of the motion using the LDV.

This tilt angle creates numerous challenges, increasing the experimental setup complexity. More

importantly, it is not applicable for SH-SAWs, since they have few or no erect structures on

the substrate surface other than the usually sub-micrometer thin IDT [107, 108]. This is much

smaller than the LDV laser spot size, and thus this method is not applicable with SH-SHAW.

Another approach involves using more than one laser beams [109, 110] simultaneously. The

lasers would be aligned at different angles with respect to the substrate. Therefore, the in-plane

and out-of-plane motions are both captured. Conversely, a single laser beam can be used while

the angle of the substrate is mechanically changed [111]. These techniques come at a signifi-

cantly increased experimental setup complexity and cost, and therefore, a simpler solution was

required.

A more common approach is full-field vibrometry. These utilize very fast cameras [112]

along with 3D digital image correlation (3D-DIC) [113]. The images are processed, and in-

plane motion is deduced. For high-frequency applications, a high-speed camera is required with
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a framerate considerably larger than the application frequency. This grossly inflates both the

complexity and cost of 3D-DIC-based systems.

In this section, we present a novel approach to detect SH-SAWs using traditional 1D vibrom-

eters. The proposed technique is verified using FEA, and it was published [1] with experimental

validation.

5.3.1 Optical Characterization of SH Wave

SH waves, such as BG waves, propagate within an aperture, defined by the IDT geome-

try. The aperture of the wave is confined to the area where the IDT fingers overlap. Typically,

the overlap is assumed to be large enough for the wave to be considered invariant along that di-

rection. Beyond this aperture, the behavior is usually not of interest to researchers and engineers.

However, just outside of the wave aperture at the fingertip, there is an area that can be of great

value. SH waves act as a boundary load on this area and result in out-of-plane surface strains

and deformations. Since this deformation is directly related to the SH wave’s time history, it is

ripe for exploitation as a measure of the SH wave. We propose to use the LDV to measure those

deformations by using an incident laser beam focused on this area.

Figure 5.20a shows a schematic of the proposed experimental configuration. In this section,

the origin of the coordinate system is taken on the surface of the substrate directly below the

intersection of the finger’s mid-line and its tip. The wave propagates along the x-axis, creating a

displacement field u(x, y, z, t) along the z-axis. A laser beam, incident along the y-axis, is used

to measure the out-of-plane surface deformation w(0, 0, z◦, t) at the point on the z-axis where the

deformation reaches a maximum.

Figure 5.20b shows the top view of the IDT, the SH wave, and the allowable locations of the

laser beam spot on the substrate. Any of those positions can be used in the proposed detection
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Figure 5.20: (a) The experimental configuration of the proposed measurement technique. (b)

Positions of the laser spot (marked by
⊗

), the displacement field u(x, y, z, t) (marked by the

dashed-line arrows), and the propagation direction of the shear horizontal (SH) wave (marked by

the double-line arrow).

scheme. To characterize the displacement field u(x, y, z, t), we need to identify a relationship

between the time history of the measurement signal w◦(t) = w(0, 0, z◦, t) and the instantaneous

amplitude of the shear wave u◦(t). We hypothesize the existence of a linear relationship with a

proportionality constant such that α◦ = w◦/u◦. The FEA software COMSOL was used to test

the validity of this hypothesis and estimate α◦.

5.3.2 Relationship Between In-Plane and Out-of-Plane Displacements

The region under study was a cuboid sector of the substrate bounded by the fingertip and

the substrate edge, Figure 5.21. The distance between those boundaries was on the order of

L = 2mm. The finger-width was wd = 10 µm and the total width of the region under study was

2wd, with a margin of
1

2
wd on either side of the finger. The substrate was made of PZT4 which
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has Young’s modulus equal to E = 63GPa, and Poisson ratio equal to ν = 0.32. The thickness

was set to H = 3mm to match the fabricated substrate. This region was meshed in the Finite

Element Model using 60,344 tetrahedral elements with 20,230 mesh vertices.

z

xy

wd

L

2wd

Figure 5.21: Interdigitated electrode (IDT) fingers and the piezoelectric substrate. The high-

lighted section represents the sector under study.

By assuming a wave frequency that is away from structural resonances of the sector under

study, we could analyze its quasi-static (forced) response under the in-plane displacement. The

term “quasi-static” should not be confused with the quasi-static approximation of electromag-

netic fields. It refers to forced actuation, that is away from any resonances, and thus is slow

enough with respect to the wave that it may be considered DC. The in-plane displacement can be

written as:

u(x, y, 0) = u◦e
−ζ 2π

λ
y; −1

2
wd ≤ x ≤ 1

2
wd & 0 ≤ y ≤ H. (5.2)

This prescribed displacement was applied by the finger to the left face (z = 0) of the sector,

where u◦ = u◦(t) is the instantaneous value of the displacement field at the fingertip, λ is the
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wavelength, and ζ is the wave decay rate. To preclude rigid body motions, the bottom plane of

the substrate was held fixed at u(x,H, z) = 0, while the substrate faces at y = 0, x = ±wd, and

z = L were left free.

Figure 5.22 shows the resulting surface deformation under compressive (positive) and tensile

(negative) prescribed in-plane displacements of u◦ = ±100 nm, where the wavelength and decay

rate were set to λ = 40µm and ζ = 0.5. Varying the prescribed displacement u◦ within this

range, the relationship between u◦ and the peak surface deformation w◦ = w(0, 0, z◦) was found

to be linear.

|w|

(a) (b)

Figure 5.22: Finite element analysis (FEA) of the out-of-plane deformation under (a) positive

and (b) negative in-plane displacement, u.

We investigated the variation in the surface deformation along the mid-line of the finger

(z-axis) beyond the tip w(0, 0, z) to determine the maximum point’s offset distance from the

fingertip z◦ and, therefore, the optimal location of the laser spot. Figure 5.23 shows w(0, 0, z)

normalized with respect to the maximum in-plane displacement u◦. The out-of-plane displace-
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ment decays exponentially away from the fingertip, and therefore, the optimum position to place

the laser beam is at the fingertip with z◦ = u◦.

Most SH waves have sub-micron shear displacements, while the LDV laser spot is typically

between 1 and 10 µm. Therefore, the translation of the fingertip would not interrupt measure-

ment, and the laser spot can keep the optimal point z◦ within focus. However, achieving optimal

positioning would require an infinitesimal spot size. Since the spot size is finite and the defor-

mation field decays exponentially, we propose the location of the spot's indirect “contact” with

the fingertip.
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Figure 5.23: The normalized surface deformation simulated by COMSOL.

The decay rate of the deformation field depends on the type of SH-SAW, the substrate proper-

ties, and the boundary conditions. This rate determines the degree of the SH wave’s localization

to the substrate surface. To determine whether variation in the decay rate may impose further

limits on the proposed experimental technique, we compare in Figure 5.24 the normalized defor-

mation along the fingertip mid-line w(0, 0, z)/u◦ for a range of ζ = 0.005 to 0.5 of decay rates.

It was found that the surface deformation resulting from less-confined shear waves decays at a
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slower rate. For ζ = 0.005, the surface deformation drops to half value at z = 370µm, which

is marked with an asterisk in Figure 5.24. The linear relationship between the peak in-plane dis-

placement u◦ and the peak surface deformation w◦ also changes from w◦ = −0.6u◦ at ζ = 0.5

to w◦ = −0.4u◦ at ζ = 0.005. Highly confined surface waves exhibit a higher deformation ratio

α◦ but require a smaller laser spot.

As expected, the relationship between in-plane displacement and out-of-plane deformation

was found to be independent of Young’s modulus and linearly dependent on Poisson’s ratio.

Specifically and for a decay rate of ζ = 0.5, the deformation ratio varied from α◦ = −0.45 for

ν = 0.1 to α◦ = −0.63 for ν = 0.5.
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Figure 5.24: Variation in the normalized surface deformation as a function of surface wave con-

finement.
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Validation

Validation of the FEA results was performed on two fronts, both using the microscope-based

Polytech MSA-600 Laser Doppler Vibrometer, LDV. First, the LDV laser was used to scan the

area in front of one of the fingertips. It was moved sequentially to draw a grid, while the PZT4

BG sensor was actuated at resonance, using direct probing of the IDT under the microscope.

Figure 5.25 shows the result of this LDV scan. The outline of the aluminum electrode fingers

can be seen in white, while the PZT4 surface is black. The out-of-plane bending is visualized by

the Vibrometer software. This is in agreement with both the theoretical and FEA predictions and

validates the proposed optical detection approach. For further clarification, Figure 5.26 shows

the FEA model of the entire sensor. The color map describes the out-of-plane displacements, and

the black square box resembles the portion scanned experimentally in Figure 5.25.

The second validation approach involved comparing the measured linear static response with

theoretical predictions. It is discussed in detail in the following sub-section.

Figure 5.25: Laser Doppler Vibrometer scan, showing the out-of-plane deflection in front of the

finger tip, when the PZT4 sensor was excited at resonance.
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Figure 5.26: FEA of out-of-plane motion in a BGW Sensor. The black box is the area scanned

experimentally.

5.3.3 Linear Static Response

Experimental Setup

The proposed technique was deployed to characterize the DC response of the BG resonator.

The resonator was placed under the LDV, and direct probing of the IDT under the microscope

was again employed to supply the drive voltage V (t). BGWs were excited quasi-statically via a

ramp waveform with a frequency of 30 kHz—far away from the 64.8MHz resonance—using the

B&K Precision-4054 function generator.

The behavior of BGWs in PZT4 is well documented [23, 98]. The response to a potential

field imposed by applying the voltage waveform V (t) to the substrate surface via an IDT is the

displacement field given by [2]:

u◦(t) = d15V (t), (5.3)

where d15 = 0.496 nm/V [98] is the shear stress piezoelectric constant. This relationship can be

expressed in terms of the measured out-of-plane deformation, such as:

w◦(t) = 0.496α◦V (t)(nm). (5.4)
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Therefore, for a known applied voltage and away from resonance, this equation can be used

to identify the parameter α◦. The proposed method was experimentally validated. Figure 5.27

shows the fabricated resonator under the microscope, with the laser position highlighted.

Figure 5.27: A microscopic image of the fabricated IDT for the BG wave resonator, showing the

location of the Laser Doppler Vibrometry (LDV) laser spot.

Results

The LDV laser beam spot was located directly in front of the fingertip, Figure 5.27. The

sensor was directly probed and excited using a ramp waveform. The measured response to the

rising side of the ramp was averaged 30 times. Figure 5.28 compares the experimental results

(black circles) to the values predicted by Equation (5.4) (blue line), where the displacement ratio

was set to α◦ = −0.56.
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Figure 5.28: Experimental validation for the proposed technique. Experimental measurements

are shown as black circles, and the model prediction line is shown as a solid blue line.

Assuming that the Vibrometer-measured displacement represents the average surface defor-

mation within the field illuminated by the spot, Figure 5.24 can be used to estimate the decay

rate ζ , given the spot size. In our case, the laser beam spot size was measured as 9µm. A FEM

simulation was employed to identify the decay rate ζ , where the average of the deformation ratio

α◦ over the initial 9µm along the z-axis was the same as that evaluated experimentally. Using

this method, it was found to be ζ = 0.078.

For the BG-resonator in air, this value is given by equation (4.13), such as ζ = 0.007. The

discrepancy in experimental and theoretical values for ζ is attributed to the effect of partial metal-

ization on the surface boundary condition. The IDT's partial metalization of the substrate surface

enhances wave confinement to the surface [20], thereby modifying the resonator response in the

y−direction. A fully metalized surface will have an effective r = 0, equation (4.11), while a bare

surface has r =
ϵ

ϵu
, equation (4.13). Therefore, a partially metalized surface will have r =

ϵ

ι ϵu
,
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where ι is a constant that depends on the percentage of surface metalization. Comparing the the-

oretical and measured values of ζ allows the constant to be experimentally identified as ι = 11.4.

This is a reasonable value that is close to the literature [20], and the value is applied in further

numerical analysis.

The relationship between displacement and applied voltage was found to be linear for PZT4,

as shown in Figure 5.28. This is in agreement with the literature on the small-displacement re-

sponse of piezoelectric materials [114], thereby further validating the proposed technique. It is

also in agreement with the linear relationship, equation (5.4), predicted through FEA. It is impor-

tant to note that in this experiment, the actuation was kept below 50V to avoid any electrostrictive

nonlinearity.

The proposed technique can, therefore, be used to characterize the instantaneous amplitude

of the shear displacement u◦(t) of SH-SAWs. It can also be used to estimate wave confinement ζ

to the surface. As a result, it can be used to characterize the time history and frequency response

of SH-wave-based sensors and actuators. However, the excitation frequency must be restricted

to a frequency range away from the resonances of the substrate sector in front of the fingertip.

This restriction does not represent an onerous limitation, since those resonances occur in a much

higher frequency range than resonances of the IDT due to the respective sizes of the IDT and the

sector.

Moreover, once the displacement ratio α◦ has been determined under forced excitation condi-

tions, away from the IDT resonances, the IDT can be excited at resonance in order to determine

its frequency response and identify its quality factor. The quality factor can be calculated as

the ratio of the response at resonance to the static response or using the half-power bandwidth

method.
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5.4 Electrical Detection

5.4.1 Experimental Setup

The deposition of any medium-under-test on top of the sensor impedes optical detection.

Therefore, the use of Vector Network Analyzers, VNAs, provides an electrical characterization

measurement and can be used to test the sensor operation. VNAs can identify key parameters,

called the S-Parameters, about high-frequency filters and resonators.

For a 1-port resonator, only the S11 exists. It defines the reflectivity of the resonator as a

function of frequency. Since the BG sensor is designed as a 1-port resonator, therefore S11 is

enough to fully characterize the sensor. Moreover, the only modes allowed inside the resonator

are resonant modes and, thus, the sensor is expected to reflect all frequencies except resonant

ones.

Figure 5.29 shows the experimental setup used. The sensor was characterized electrically

using the Agilent E5061B Vector Network Analyzer, VNA. The power level of the VNA was

set to 10 dBm, and the intermediate frequency bandwidth, IF-BW, was set to 30 kHz. Each

measurement was averaged 10 times. Port 1 of the VNA was directly connected to the probe

station using a short coaxial cable. The probes landed directly on the sensor ports, Figures

5.18b and 5.19. The probe station was operated under a microscope and was placed above two-

dimensional motorized positioners or micromanipulators. The microscope-positioner system

appearing in Figure 5.29 is a subsystem of the Polytech MSA-600 Laser Doppler Vibrometer.

The calibration process was performed to compensate for the probes and cables. Calibra-

tion also compensates for any source mismatch, directivity, or cross-talk. Mismatch refers to

impedance mismatch between the VNA and cables, cables and probes, or probes and the sensor.

Reflections due to the probes are called directivity, and interference between ports is referred to
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Figure 5.29: Experimental setup using the Agilent E5061B VNA.

as cross-talk. Calibration can track the reflectivity as frequency changes within the defined start

and stop frequencies. Therefore, measurement is only valid within this band. Changing the start

and stop frequencies, the number of points, or the IF-Bandwidth of the VNA voids the current

calibration and, thus, warrants a new calibration step.

Calibration was performed in three stages, as shown in Figure 5.30. The first stage was

the “open” calibration, Figure 5.30a. The probes were positioned in a similar orientation to

when measurement would take place but left unconnected or electrically open. Then, the “short”

calibration was performed, Figure 5.30b, similarly to the open case, but after touching the probe

tips to create an electrical short circuit. Lastly, a ”load” calibration step was executed, Figure,

5.30c, by placing a 50Ω load between the probes. This step, which is not necessary for S11

measurements, is still recommended to compensate for all mismatch errors. All the cables used

were rated as 50Ω.

The VNA can also measure the Z-Parameters, specifically Z11 for a 1-port network resonator.

Z11 measurements are redundant to S11 measurements, as the transformation is well known, and
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VNA

(a) Open VNA calibration

VNA

(b) Short VNA calibration

VNA

50 Ω

(c) Load VNA calibration

Figure 5.30: Measurement calibration stages for the vector network analyzer.

is given by [115]:

Z11 = Z11 θz = Z◦
1 + S11 θs
1− S11 θs

(5.5)

where Z◦ = 50Ω. However, a parasitic capacitance or inductance can cause theZ11 measurement

to appear deformed, with a shifted peak frequency from it’s resonance.

5.4.2 Modeling of S-Parameters

The scattering parameter S11 measures how much of the signal is reflected as a function of

frequency. From equation (5.5), it is a function of the impedance mismatch and can be written
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as:

S11 =
Z11 − Z◦

Z11 + Z◦

The resonator can thus be modeled using an R-L-C circuit however, the model must also account

for the parasitic capacitance of the IDT, Figure 5.31. This can be modeled, such as:

Z11 =
XcZ

Xc − Z
(5.6)

where Xc = (2πifcp)
−1, cp is the parasitic capacitance, Z = R + (2πifc)−1 + 2πifℓ, and R, ℓ,

and c are the equivalent RLC parameters of the resonator. The RLC parameters were extracted

from the experimental measurements, following [116]. However, it is important to note that

the parasitic capacitance varies when the medium-under-test is changed, and thus the analysis

requires a more involved approach.

The parasitic capacitance of the IDT is affected by the permittivities of both the substrate

and the medium-under-test. Since the IDT thickness is usually very small in comparison to

its length, width, and gap, the capacitor is considered to be dominated by the fringing effects

[117]. Therefore, the effective permittivity of the parasitic capacitor can be approximated as

the average of that of the piezoelectric and the medium-under-test. The ratio of the parasitic

capacitance of a specific medium-under-test, cpm, to that when no medium is present, cp◦, can

thus be approximated, such as:
cpm
cp◦

=
ϵ+ ϵu

ϵ+ 1

Therefore, the theoretical S11 response can be modeled, with only three experimentally iden-

tifiable unknowns, namely f◦, S11(f◦), and cp◦, where f◦ is the natural frequency of the resonator.

The value of f◦ can be obtained from the theoretically modeled values, Figures 7.5 or 7.6, and the

profile of S11(f◦) can be characterized by the quality factor,Q. In this work,Qwas initially set to

10, and this was found to agree with the experimentally measured value later on. It is important
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Figure 5.31: RLC equivalent circuit for the IDT BG resonator and the VNA cable.

to note that the value of Q is low compared to the literature [118, 119] due to challenges in the

last fabrication step of laser patterning. The trench depth directly affects the edge reflectivity,

and thus the quality factor. Therefore, to improve the quality factor, the depth of the trench needs

to be increased.

The values of f◦ and Q can then be used to identify the RLC parameters [116]. Next, the

parasitic capacitance is identified by fitting the experimental and theoretical S11 responses.

The effect of the media-under-test on the parasitic capacitance enhances the observed sensi-

tivity of the sensor and thus is desirable. However, on its own and without the BGW equations,

it is not nearly sufficient to explain the experimentally observed frequency shifts under different

media-under-test.



CHAPTER 5. SENSOR DESIGN, FABRICATION, AND CHARACTERIZATION 84

5.5 Summary

In this chapter, the sensor prototypes were presented. Two substrates were chosen for the

sensor, PZT4 and LiNbO3 based on the shear coupling coefficients. The fabrication process,

including post-processing, was presented in detail, and the process recipe was provided.

Additionally, the experimental setups and techniques used to characterize the sensor were dis-

cussed. An novel optical detection scheme for the BG wave using a 1D Laser Doppler Vibrometer

was developed and the method was published. Moreover, the electrical detection scheme using

the VNA was outlined to allow for the validation of the permittivity sensor.



Chapter 6

Non-Resonant Excitation2

In this chapter, the mechanism of excitation for the BG wave is first discussed, along with

the different sources of damping. Then the linear forced DC response of the BG wave sensor is

investigated, followed by the nonlinear response. Finally, the numerical and experimental results

are presented and discussed.

6.1 Excitation and Damping Mechanisms

6.1.1 Charge Excitation

Excitation of the BG wave is accomplished using the IDT. This can be modeled through the

charge distribution created by the IDT geometry and the potential difference applied between

its electrodes. The governing equations for the BG wave, equations (2.9) and (2.10), can be

2This chapter is adapted from Elhady, Alaa, M. Basha, and E. M. Abdel-Rahman, “Analysis of tunable

Bleustein-Gulyaev permittivity sensors,” Journal of Applied Physics, vol. 129, no. 16, p. 164501, 2021

85
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rewritten for a non-zero net charge, such as:

ρ
..
uz =

∂Txz
∂x

+
∂Tyz
∂y

(6.1)

∇ ·D = ϛ (6.2)

where ϛ is the charge distribution density. The free charges term, ϛ, is typically assumed to be

negligible. However, this assumption is not valid in our case due to the IDT excitation of BG

waves on the surface. The electrodes of the IDT can be used to apply a DC voltage distribution

V (x, y) to the piezoelectric substrate that results in a charge distribution with the steady-state

form:

ϛ(x, y) = ϵTβ
2
nV (x, y) (6.3)

where ϵT = ϵ+ e2

G
is the zero-stress permittivity of the piezoelectric and β2

n is a constant dependent

on the IDT geometry and the substrate losses.

6.1.2 Damping

Since the BG wave couples acoustic and electromagnetic fields, it will suffer two types of

damping. Dielectric losses can be modeled by the conductivity, σ, while mechanical losses can

be lumped into the viscous damping constant, c. Therefore , the governing equations, equations

(2.9) and (2.10), can be further expanded, such as:

ρ
..
uz + c

.
uz =

∂Txz
∂x

+
∂Tyz
∂y

(6.4)

∇ ·D = ϛ − σ

∫
∇ · E dt (6.5)

Substituting with nonlinear constitutive equations (3.8)–(3.11) into equations (6.4) and (6.5),
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the governing system of equations is obtained, such as:

ρ
..
uz = G∇2uz − e∇ · E+ML1(Ex, Ey) (6.6)

ϛ − σ

∫
∇ · E dt = e∇2uz + ϵ∇ · E+ML2(uz, Ex, Ey) (6.7)

Since the time constant of the electromagnetic component of the wave, appearing in equation

(3.16), is five orders-of-magnitude smaller than that of the elastic component, the quasistatic

approximation, section 2.3, is assumed. Substituting with equation (2.43) in equations (6.6) and

(6.7) and accounting for the mechanical viscous damping, the governing equations reduce to:

ρ
..
uz + c

.
uz = G∇2uz + e∇2ψ +MGL1(ψ) (6.8)

ϛ + σ

∫
∇2ψ dt = e∇2uz − ϵ∇2ψ +ML2(uz, ψ) (6.9)

6.2 Linear Static Response

The linear static response is evaluated by dropping the electrostriction operators, setting the

time derivative and accumulation terms, and substituting the charge by equation (6.3), thereby

reducing the equilibrium equations,equations (6.8) and (6.9), to:

G∇2uz + e∇2ψ = 0 (6.10)

e∇2uz − ϵ∇2ψ = ϵTβ
2
nV (6.11)

Adding and subtracting equations (6.10) and (6.11), results in:

∇2uz =
e

G
β2
nV (6.12)

∇2ψ = −β2
nV (6.13)
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Summing these two equations results in a Laplace equation of the form:

∇2(uz +
e

G
ψ) = 0 (6.14)

The mode shapes from (4.19) for both the displacement and the potential fields are substituted, to

observe that the equation has two solutions, the trivial solution uz = 0 and ψ = 0 when kn = κn

and

uz = − e

G
ψ

which means that the displacement field is enslaved to the potential field and the system of

equations (6.12) and (6.13) reduces to equation (6.13) only.

The voltage distribution imposed by the IDT can be approximated as a first order approxima-

tion, such as:

V (x, y) = V◦e
−κny cos(knx) (6.15)

Since the homogeneous solution of equation (6.13) is trivial, the particular solution is obtained

by substituting the form:

ψ(x, y) = ψ◦e
−κny cos(knx)

which yields:

(κ2n − k2n)ψ◦ = −β2
nV◦ (6.16)

We set β2
n = k2n − κ2n and ψ◦ = V◦, to write the field response as:

ψ(x, y) = V (x, y) (6.17)

uz(x, y) = − e

G
V◦e

−κny cos(knx) (6.18)
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6.3 Nonlinear Static Response

We can observe the forced DC nonlinear response to the charge distribution, by setting the

time derivative and accumulation terms in equations (6.8) and (6.9) equal to zero to obtain:

G∇2uz + e∇2ψ +MGL1(ψ) = 0 (6.19)

e∇2uz − ϵ∇2ψ +ML2(uz, ψ) = ϛ (6.20)

Similarly, rearranging equations (6.19) and (6.20), and using equation (6.3) yields:

∇2uz +
ϵM

ϵT
L1(ψ) +

eM

GϵT
L2(uz, ψ) =

e

G
β2
nV (6.21)

∇2ψ +
eM

ϵT
L1(ψ)−

M

ϵT
L2(uz, ψ) = −β2

nV (6.22)

We follow the nondimensionalization approach defined in section 2.4 and replace the differential

operatorLi with the nondimensional version L̂i. Introducing those variables into equations (6.19)

and (6.20), yields:

∇2uz +∇2ψ + M̂L1(ψ) = 0 (6.23)

∇2uz −
Gϵ

e2
∇2ψ + M̂L2A(uz, ψ) + M̂2L2B(uz, ψ) = (1 +

Gϵ

e2
)ϛ̂ (6.24)

where M̂ = MG
eL

and ϛ̂ = ϛ
l2

ϵT
. The hats on the nondimensional nonlinear operators are dropped

for convenience.

This system of partial differential equations can be converted into a system of algebraic equa-

tions using the Galerkin residuals method [120]. First, the system states are expanded in terms

of the unforced mode shapes, then the residuals are evaluated and set to vanish. The resulting

system of algebraic equations is solved numerically. Therefore, the displacement and potential
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fields in terms of the linear mode shapes ϕn(x, y) are given by:

uz(x, y) =
N∑
n=1

qsnϕn(x, y) (6.25)

ψ(x, y) =
N∑
n=1

psnϕn(x, y) (6.26)

where qsn and psn are the modal coordinates and N is the number of modes.

The voltage distribution imposed on the substrate by the IDT can be approximated by a

Fourier series in terms of the mode shapes:

V (x, y) = V◦

N∑
n=1

C(2n−1)e
−κ(2n−1)y cos ((2n− 1)mπx) (6.27)

where V◦ is the DC voltage applied to the electrodes, C2n−1 are empirically fitted constants.

The constants for the first four terms are listed in Table 6.1, and the resulting empirical voltage

distribution at the surface is shown in Figure 6.1. The x axis is normalized with respect to the

wavelength.

Table 6.1: Coefficients of the empirical fit for the spatial voltage distribution.

C1 = 1.115 C5 = −0.019

C3 = −0.103 C7 = 0.005

Substituting the modal expansion of equations (6.25) and (6.26) into equations (6.23) and

(6.24), multiplying the result by the individual mode shapes, and setting the integral over the
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Figure 6.1: Comparison of the ideal voltage distribution, generated by the geometric shape of the

IDT, and the empirical function V (x, y) used to represent it.

domain equal to zero, such as:∫ ∞

0

∫ 1

0

ϕn

(
qsn∇2(ϕn(x, y)) + psn∇2(ϕn(x, y)) + M̂L1(psnϕn(x, y))

)
dx dy = 0 (6.28)∫ ∞

0

∫ 1

0

ϕn

(
qsn∇2(ϕn(x, y))−

Gϵ

e2
psn∇2(ϕn(x, y)) + M̂L2A(qsnϕn(x, y), psnϕn(x, y))

+M̂2L2B(qsnϕn(x, y), psnϕn(x, y))− (1 +
Gϵ

e2
)ϛ
)
dx dy = 0 (6.29)

where n = 1, 2, ..., N , yields a system of nonlinear algebraic equations, equations (C.7) to

(C.14), in Appendix C.2.
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Figure 6.2: FEA model geometry showing the PZT4 box, and a 2D metal surface with the IDT

shape.

6.4 Simulation Results

6.4.1 Finite Element Model

The sensor was fabricated using a shear-poled Lead Zirconate Titanate Navy Type-I (PZT4)

substrate [98] selected because of its high shear piezoelectric constant (e = 12.7) and high elec-

tromechanical coupling coefficient [99]:
e2

e2 +Gϵ
= 0.71 to promote efficient wave generation,

where the shear modulus is G = 25.6GPa and the zero-strain relative permittivity is ϵr = 718.

The COMSOL Finite Element Model (FEM), Figure 6.2, was created to validate the linear sensor

model. A DC voltage of V◦ = 100V was applied to the IDT electrodes, and the static response

was calculated. The potential field was grounded, and the displacement field was set to zero at

the bottom surface of the substrate.
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Figure 6.3 shows the potential ψ(x, 0, z) and displacement uz(x, 0, z) field distributions on

the top surface. The (spatial) peak-to-peak displacement was 49.7 nm realized in the sensor

aperture, which is in close agreement with that predicted by the static model as per equation

(6.18):

(uz)pp =
e

G
V◦ = 49.6 nm

thereby validating the linear model.

(a) (b)

Figure 6.3: FEM predicted potential and displacement field distributions under 100 V applied

across the IDT electrodes. (a) Electric potential and (b) displacement field distribution.

6.4.2 Reduced-Order Model

The system of nonlinear algebraic equations, equations (C.7) to (C.14) represents a reduced-

order model of the static response. It was solved numerically using a Mathematica algebraic

solver [121] that implements the secant method to search for the roots, static equilibria.

In this work, the nonlinear electrostriction coefficient of PZT4 was set to M = 12.7 ×

10−18 m2/V2. This value was experimentally identified and is similar to values reported by others

in the literature [122].
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Figure 6.4: Convergence plots showing the peak-to-peak displacement uz(pp) as a function of

electrode voltage V◦ for PZT4 with air as the medium-under-test: linear static response (red),

nonlinear static response using 2 modes (black), 3 modes (green), and 4 modes (blue).

Convergence analysis was carried out to determine the number of modes N required for a

convergent solution. Figure 6.4 compares the nondimensional peak-to-peak static displacement

at the substrate surface (uz)pp, when the upper half-space was occupied by air, obtained from two,

three, and four-mode reduced-order models as functions of the DC voltage V◦ between the IDT

electrodes. We find that the difference between three- and four-mode expansions is negligible,

less than 1%. Therefore, we adopt four-mode (N = 4) approximations of the potential and

displacement fields.

Differences between the linear and nonlinear models are negligible up to 50V, Figure 6.4.

Beyond that point, a softening electrostrictive nonlinearity predicts progressively larger displace-

ments, compared to those predicted by the linear model, as the voltage increases.

Accounting for electrostriction in the nonlinear model allows us also to elucidate the impact
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of the medium in the upper half-space, represented by permittivity ratio r, on the electric and dis-

placement fields. The thickness of the medium-under-test was assumed to be more than several

wavelengths λ and, therefore, can be approximated to occupy the upper half-space.

Figure 6.5: The peak-to-peak displacement uz(pp) as a function of electrode voltage V◦ for a

PZT4 sensor with the medium-under-test set as air (green), deionized water (blue), and with a

metallized surface (black). The linear solution (red) is shown for reference.

Figure 6.5 shows the static displacement (uz)pp under higher applied voltages, where the

impact of the electrostriction nonlinearity is significant. It compares the static response of the

PZT4 substrate when the medium-under-test is air r = 718 (green line) or deionized water r = 9

(blue line) to the case when the substrate surface is covered with a perfect conductor r = 0 (black

line). The latter case corresponds to the metallization of the substrate surface. It also represents

the limiting case for a conductive liquid medium-under-test as ϵu → ∞̃. The linear response is

also shown as a red line for reference.

Metallization shields the wave in the substrate from the medium in the upper half-space,
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thereby disabling the sensor. Since metallization provides better wave confinement to the sub-

strate surface, electrostriction results in a larger displacement for a given voltage compared to the

linear case, as shown in Figure 6.5. For dielectric media with finite permittivity ϵ◦ < ϵu << ∞̃,

the displacement field is limited between a lower bound when the upper-medium is a vacuum

(or air) and the metallization case. Further, no solution was obtained for voltage values in excess

of 104 V for media with finite permittivity. The Figure also shows that perturbations in the per-

mittivity of the upper-half-space result in larger changes in the displacement field at higher DC

voltages. Therefore, the sensor is more sensitive under a higher DC bias.

We employed a numerical solver based on the pseudo-arc-length method [123] to find the

equilibria of the PZT4 sensor with deionized water serving as the medium-under-test. This is

the relevant medium for biological applications, such as blood plasma. Figure 6.6 shows the

peak-to-peak displacement (uz)pp at the substrate surface (y = 0). Stable equilibria are shown

in solid black lines, and unstable equilibria are shown in dashed red lines. The stability of each

equilibrium point was determined by numerically evaluating the eigenvalues corresponding to it.

The branch of equilibria passing by the origin, corresponding to those shown in Figures 6.4

and 6.5, extends across both positive and negative polarity. The continuation solver revealed that

it ends at two turning points V◦ = ±103.1V where it meets another branch of larger unstable

equilibria. Beyond these bifurcation points (V◦ > 103.1V), no equilibria exist.

The quadratic electrostriction nonlinearity results in response asymmetry since any electric

field yields a constrictive displacement regardless of its polarity. While this asymmetry is neg-

ligible along the primary branch, it is more pronounced along the larger unstable branch, with

the positive polarity side of that branch evincing larger displacements than those of the negative

polarity side.

The equilibria lose stability for voltage values larger than ±81V. To explore the underlying
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Figure 6.6: The peak-to-peak displacement uz(pp) as a function of electrode voltage V◦ for the

PZT4 sensor with deionized water as a medium-under-test. Stable equilibria are shown as solid

black lines, and unstable equilibria are shown as dashed red lines.

reasons, we linearized the discretized equations of motion, corresponding to equations (6.8) and

(6.9), around each equilibrium point and evaluated the linear system eigenvalues Λ. The conduc-

tivity of PZT4 was set to σ = 0.0517 [124] and the mechanical quality factor was set toQ = 300.

The eigenvalues are shown in the complex plane in Figure 6.7. The arrows appearing along the

eigenvalue traces indicate the direction of increasing voltage.

Along the primary branch of equilibria, two pairs of complex conjugate eigenvalues exit the

left-half of the complex plane simultaneously at ±81V. A pair of complex eigenvalues, corre-

sponding to the fourth mode ϕ4(x, y), crosses the imaginary axis transversely while another pair

of complex eigenvalues, corresponding to the third mode ϕ3(x, y), exits the complex plane via

−∞ and re-enters via +∞. The behavior of the latter pair explains the reason underlying loss

of stability: at this voltage, the effective permittivity of the third mode p3d(t) vanishes, leading
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to electrical breakdown. These points, therefore, represent the limits of the sensor operating

range. We note that omitting the third and fourth modes from the model would have led to false

conclusions about the sensor operating range.

Figure 6.7: The eigenvalues of the equilibria appearing along the lower branch in the voltage

range [0, 85]V for a PZT4 sensor with deionized water as the medium-under-test.

As indicated by equation (4.13), lower permittivity samples (larger r) reduce the field con-

finement to the surface, thereby reducing the electrostrictive contribution to the displacement

field. To investigate the impact of field confinement on the sensor response, we show in Figure

6.8 the peak-to-peak displacement (uz)pp as a function of applied voltage V◦ for an air sample,

which represents the limiting case for relative permittivity rmax = 718.

Compared to the displacement field for deionized water, Figure 6.6, it can be seen that the

lower permittivity of air leads to a smaller displacement field (see also Figure 6.5). While the

sensor also loses stability via voltage breakdown, it occurs at a higher voltage V◦ = ±92V and

the turning points along the primary branch appear at a higher voltage V◦ = 104V . In addition,
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Figure 6.8: The peak-to-peak displacement uz(pp) as a function of electrode voltage V◦ for the

PZT4 sensor with air as a medium-under-test. Stable equilibria are shown as solid black lines,

and unstable equilibria are shown as dashed red lines.

multiple secondary branches of unstable equilibria appear in the sensor response, Figure 6.8, with

asymmetry becoming more pronounced for the branches corresponding to larger displacement.

The eigenvalues of the equilibria along the primary branch are shown in Figure 6.9 for the

voltage range [0, 92]V. They reveal that in the presence of an air sample, the sensor loses stability

when the pair of eigenvalue corresponding to the third mode exits the complex plane via −∞ and

re-enters via +∞. However, the complex pair corresponding to the fourth mode does not cross

the imaginary axis. The eigenvalues of the equilibria along all branches are shown in Figure 6.10.

They indicate that voltage breakdown underlies the loss of stability along the secondary branches

of solutions. Additionally, the fourth eigenvalue (red line) in Figure 6.9 appears to interact with

the fifth mode in the voltage range from 50V to 90V.

We conclude that the limit on the sensor voltage varies with the sample permittivity from a
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maximum of 92V DC in air to lower values in the range of 81V for aqueous (water-like) media.

It is possible to retard voltage breakdown by choosing a softer substrate with a lower modulus of

rigidity G, thereby increasing the electromechanical coupling coefficient.

We also note that the static response of the sensor, even at high voltages, is rather small on the

order of a few nanometers. Therefore, it is advantageous to operate the sensor dynamically, in

order to exploit the high-quality factors of shear acoustic waves to generate larger displacement

and electric fields (signal-to-noise-ratio). In this case, the measurand used to estimate the sample

properties is the sensor resonant frequency.

Comparing Figures 6.7 and 6.9 it is clear that the sensor's eigenvalues (natural frequencies)

are sensitive to the medium-under-test. It can be seen from equation (4.15) that, aside from

the substrate properties, the natural frequencies of the sensor are a function only of the sample

permittivity.

Figure 6.9: The eigenvalues of the equilibria along the primary branch of the PZT4 sensor for an

air sample and the voltage range [0, 92]V. Arrows indicate the direction of increasing voltage.
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Figure 6.10: Eigenvalues of all equilibria of a PZT4 sensor for an air sample.

6.5 Experimental Verification

The sensor tested was designed as an IDT with m = 100 electrodes and a wavelength of

λ = 40µm, shown in Figure 6.11 prior to laser trimming. Two substrates with four identical

sensors on each of them were fabricated. The final experimental results shown below were

obtained from one of those sensors and found to be in agreement with those of a second sensor.

Using direct probing, a voltage bias was applied across the electrodes and the displacement at

the fingertip was measured optically using a laser Doppler vibrometer [1], as outlined in section

5.3. Figure 6.12 compares the experimentally measured peak-to-peak static displacement (gray

dots) in air to those predicted using the linear model (blue line), equation (6.18), and nonlinear

model (black line for stable equilibria and red dashed line for unstable equilibria), equations

(6.21) and (6.22), and shown previously in Figure 6.8. It is important to note that the experimental

results diverge from the linear model prediction to match those of the nonlinear model within
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Figure 6.11: A prototype of the fabricated PZT4 sensor, prior to laser patterning.

measurement error, thereby validating the latter model.

The electrostrictive constant was experimentally identified by matching the measured dis-

placement to the nonlinear model predictions as M = 12.7 × 10−18 m2/V2, which lies in the

range of values reported in the literature [122]. As the DC voltage was increased, electrical

breakdown damage was observed on the electrodes at V◦ = 96 V. This is in good agreement

with the model predicted voltage breakdown of V◦ = 92V. Figure 6.13 shows the sensor before

6.13a and after 6.13b breakdown.

6.6 Summary

In this chapter, the response of the BG wave to forced non-resonant and static excitation

was investigated. The effect of different kinds of damping in the system and the method of

wave excitation were also studied. Both the linear and the nonlinear forced damped sensors were
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Figure 6.12: Comparison of experimentally measured peak-to-peak displacement of the PZT4

sensor in air (gray line) as a function of DC voltage V◦ to those predicted by linear (blue line)

and nonlinear models (black and red dashed lines). The error bars show the standard deviation.

(a) (b)

Figure 6.13: The sensor before (a) and after (b) breakdown.
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solved for the static response. The numerical model was validated experimentally, and the results

were published.

Additionally, the eigenvalue analysis predicted an electrical instability that was validated

experimentally when electrical breakdown was observed.



Chapter 7

Resonant Excitation3

In this chapter, linear and nonlinear resonant excitations of the BG wave resonator are in-

vestigated. The response is analyzed numerically and then validated experimentally. Lastly, the

impact of different media-under-test on the BG resonator response is experimentally investigated,

and the sensor operation is demonstrated.

7.1 Linear BG Resonator

It is useful to initially investigate the linear response in order to understand the basic operation

of the sensor. The linear resonator equations of motion can be obtained by dropping the nonlinear

3This chapter is adapted from Elhady, Alaa, M. Basha, and E. M. Abdel-Rahman, “Measurement of electric

permittivity using Bleustein-Gulyaev wave sensors,” Journal of Micromechanics and Microengineering, 2021. In

progress
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terms from equations (6.8) and (6.9), which yields:

G∇2uz + e∇2ψ = ρ
..
uz + c

.
uz (7.1)

e∇2uz − ϵ∇2ψ = ϛ + σ

∫
∇2ψ dt (7.2)

These equations can be rewritten, after lumping the dielectric and mechanical loss terms into the

viscous damping term, multiplying the second equation by e/ϵ, and adding them, as:

ρ
..
uz + c

.
uz − (G+

e2

ϵ
)∇2uz = −e

ϵ
ϛ (7.3)

The equation represents a simple forced damped harmonic oscillator.

Similar to the static case, section 6.1.1, the IDT will be used to excite the nth mode of the

BG resonator by applying the time-varying voltage distribution

V (x, y, t) = V◦e
−κn y cos(knx) cos(Ωt) (7.4)

across its fingers, where Ω is the excitation frequency. Recalling that:

D = ϵT∇V

and using equation (6.5), the charge distribution can be written as:

ϛ(x, y, t) = ϵT∇2V (x, y, t)

= ϵTβ
2
nV (x, y, t) (7.5)

where βn = k2n − κ2n and n is the mode number. The displacement field can be assumed to take

the harmonic form given by equation (4.19):

uz(x, y, t) = e−κn y cos(knx)u(t)

Substituting with the charge distribution and displacement fields into equation (7.3) yields:

ρ
..
u+ c

.
u+ (G+

e2

ϵ
)β2

nu =
eϵT
ϵ
β2
nV◦ cos(Ωt) (7.6)
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This equation can be rewritten as:

..
u+

ωn
Q

.
u+ ω2

nu =
f◦
ρ
cos(Ωt) (7.7)

where ωn = βn

√
G+e2/ϵ

ρ
is the natural frequency, Q =

ρωn
c

is the quality factor, and

f◦ =
eϵT
ϵ
β2
nV◦

=
eω2

n

G
V◦ (7.8)

is the forcing amplitude imposed by the charge density.

For an under-damped system (Q >
1

2
), the solution of this equation is given by [125]:

u(t) =
f◦√

(ω2
n − Ω2)2 + ( ωnΩ

Q
)2

cos(Ωt)

=
e
G
V◦√

(1− Ω2

ω2
n
)2 + ( Ω

ωnQ
)2

cos(Ωt) (7.9)

Therefore, the displacement field is given by:

uz(x, y, t) =
e
G
V◦√

(1− Ω2

ω2
n
)2 + ( Ω

ωnQ
)2
e−κn y cos(knx) cos(Ωt)

7.2 Nonlinear BG Resonator

7.2.1 Problem Statement

To better capture the detailed dynamic response and exploit it to enhance the sensor sen-

sitivity, we retain the electrostrictive nonlinearity in the equations of motion and account ex-

plicitly for the damping present in the dielectric loss term. The quasi-static approximation of
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the nonlinear forced and damped system of equations (6.8) and (6.9) is an index-1 system of

Differential-Algebraic Equations (DAE). In fact, this is an nontraditional DAE form due to the

integral term on the right-hand side. We reduce the system to an index-0 differential system by

differentiating equation (6.9) once with respect to time, thereby disbanding with the integral term

to obtain:

ρ
..
uz + c

.
uz −G∇2uz − e∇2ψ −MGL1(ψ) = 0 (7.10)

.
ϛ + σ∇2ψ − e∇2 .

uz + ϵ∇2
.
ψ −M

.
L2(uz, ψ) = 0 (7.11)

This system is nondimensionalized following the scheme described in section 3.4 and using

the nondimensional variables:

x̂ =
x

l
, ŷ =

y

l
, t̂ =

cst

λ

ûz =
uz
u◦

, ψ̂ =
ψ

ψ◦
, ϛ̂ = ϛ

l2

ϵTψ◦

where u◦ = e
G
ψ◦ and ψ◦ = 1V. Therefore equations (7.10) and (7.11) can be written as:

ΛA
∆
= α

..
ûz + ĉ

.
ûz − ∇2ûz − ∇2ψ̂ − M̂L̂1(ψ̂) = 0 (7.12)

.
ΛB

∆
= (1 +

Gϵ

e2
)

.
ϛ̂ +

Gϵ

e2
χ∇2ψ̂ − ∇2

.
ûz +

Gϵ

e2
∇2

.
ψ̂ − M̂

.
L̂2(uz, ψ) = 0 (7.13)

where:

α =
l2

λ2
(1 +

e2

Gϵ
) , ĉ = c

√
α

ρG
l , M̂ =

MG

el
, χ =

λ

cs
σ

L̂1 and L̂2 are nondimensional versions of the differential operators, and ΛA and ΛB are operators

that encase the left-hand sides of the nondimensional system of equations.

7.2.2 Discretization

The system is discretized using the Galerkin residuals method [120]. Under the proportional

damping assumption, modes that are not directly, or indirectly, excited will undergo damping and
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vanish in the steady-state response. This leaves directly and indirectly excited modes to carry the

energy in the system. Therefore, the Galerkin residuals method is valid, provided enough modes

are taken in the expansion. Towards that end, the displacement and electric fields are rewritten

in terms of static and dynamic components, such that:

uz(x, y, t) = usz(x, y) + udz(x, y, t) (7.14)

ψ(x, y, t) = ψs(x, y) + ψd(x, y, t) (7.15)

where the superscripts s and d denote the static and dynamic components, respectively. Based

on the convergence analysis carried out in section 6.4.2, the number of modes was set to N = 4.

Thus, for a four-mode expansion, the static equilibrium can be evaluated as

usz(x, y) =
4∑

n=1

qsnϕn(x, y) (7.16)

ψs(x, y) =
4∑

n=1

psnϕn(x, y) (7.17)

where the modal coordinates qsn and psn are obtained by solving the algebraic system of equa-

tions (C.7) to (C.14). Likewise, the dynamic components are discretized in terms of the unforced

linear mode shapes, equation (4.19), as:

udz(x, y, t) =
4∑

n=1

qn(t)ϕn(x, y) (7.18)

ψd(x, y, t) =
4∑

n=1

pn(t)ϕn(x, y) (7.19)

where q(t) and p(t) are modal coordinates.
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Excitation

The forcing term in this system is the charge distribution ϛ imposed by the IDT, equation

(7.5). As shown in Chapter 6, it can be approximated by a Fourier series expansion as:

V (x, y, t) =
4∑

n=1

C2n−1e
−κ(2n−1)y cos ((2n− 1)m

πx

l
)(VDC + VAC cos(Ωt)) (7.20)

where C2n−1 are the empirically fitted constants listed in Table 6.1 and VDC and VAC are the bias

and amplitude of the voltage waveform.

Dynamic Conductive Losses

The conductivity of the dielectric substrate σ is strongly dependent on the excitation fre-

quency. Jonscher's power law relates conductivity to the frequency of the electric field by [126]:

σ = σDC + σAC

where σDC is a frequency invariant component, σAC is proportional to the s power of the excita-

tion frequency σAC ∝ Ωs, and s is a constant such that 0 ≤ s ≤ 1. At room temperature, s ≈ 1.

It decreases as the temperature increases [126]. As a result, AC conductivity is much larger than

its DC counterpart for frequencies in the MHz range. Therefore, in this work, DC conductivity

is neglected and total conductivity is approximated as:

σ ≈ ϵΩ tanδ (7.21)

where tanδ is an electrical dissipation factor called the loss tangent of the piezoelectric substrate.

The loss tangent for PZT4 is tanδ = 0.02 [124] and that for LiNbO3 is tanδ = 0.004 [127].
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7.2.3 Numerical Solution

The system of equations (7.12) and (7.13) is discretized by substituting for the displacement

and electric potential fields with equations (7.14) to (7.19), substituting for the forcing and damp-

ing terms with equations (7.20) and (7.21), respectively, multiplying by the left eigenfunction,

and setting the integral over the domain equal to zero. The residuals can thus be written as:

R1n =

∫ ∞

0

∫ l

0

ϕn(x, y)ΛA(qn, pn)dx dy (7.22)

R2n = ∂t

∫ ∞

0

∫ l

0

ϕn(x, y)ΛB(qn, pn)dx dy (7.23)

where ∂t denotes the time derivative and n = 1 to N , where N = 4. The order of integration

and differentiation was reversed in equation (7.23) in order to reduce the complexity of carrying

out the integration. The integration process was carried out symbolically in Mathematica [121].

Setting the residuals R1n and R2n to vanish, yields the discretized system of ordinary differential

equations, (C.15) to (C.22).

7.3 Simulation Results

The resulting system of ordinary differential equations was numerically solved in Mathemat-

ica. First, the equilibrium equations, (C.7) to (C.14), are solved for the static modal coordinates

qsj and psj . Next, they are substituted into the dynamic system, equations (C.15) to (C.22), which

is, then, integrated over time to obtain the dynamic modal coordinates qj(t) and pj(t). Finally,

the system response is obtained by substituting the modal coordinates into equations (7.14), and
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(7.15), as:

uz(x, y, t) = usz(x, y) + udz(x, y, t) =
N∑
j=1

(qsj + qj(t))ϕj(x, y) (7.24)

ψ(x, y, t) = ψs(x, y) + ψd(x, y, t) =
N∑
j=1

(psj + pj(t))ϕj(x, y) (7.25)

where N = 4. Figure 7.1 compares the time evolution of the potential field at the left edge of the

PZT4 resonator surface ψ(0, 0, t) to that of the LiNbO3 resonator. The resonators were excited

at their respective natural frequencies, Ω = 64.8 and 21.4MHz, respectively, with the voltage

waveform an VAC = 0.5V and VDC = 0V. In both cases, the mechanical quality factor was set

to Q = 10, whereas the dielectric loss was set as per equation (7.21).

Figure 7.1: The time evolution of the potential field ψ(0, 0, t) for the PZT4 (red line) and

LiNbO3 (black line) resonators under a pure AC excitation of 1Vpp at the excitation frequen-

cies Ω = 64.8MHz and 21.4MHz, respectively.

Since PZT4 is more conductive than LiNbO3, it exhibits larger electrical losses and a lower
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total quality factor than LiNbO3. As a result, its response, red line in Figure 7.1, has a shorter set-

tling time than that of LiNbO3 (black line). On the other hand, even though the LiNbO3 resonator

has a higher effective quality factor, its steady-state potential is lower than that of PZT4 due to

a lower electromechanical coupling coefficient
√
e2/(Gϵ+ e2) [99]. PZT4 is more efficient in

coupling the excitation voltage to the potential field with a coupling coefficient of 70.6%, com-

pared to 64.8% for LiNbO3. The same trends are also evident in comparing the displacement

fields, Figure 7.2, of the PZT4 and LiNbO3 resonators at uz(0, 0, t).

Figure 7.2: The time evolution of the shear displacement field uz(0, 0, t) for the PZT4 (red

line) and LiNbO3 (black line) resonators under a pure AC excitation of 1Vpp at the frequencies

Ω = 64.8MHz and 21.4MHz, respectively.

Three different media were tested, namely, air, ethanol, and deionized (DI) water. Although

BG waves have been previously used to sense viscosity, they were deployed in a line-delay

configuration rather than a resonator. When used in a resonant configuration, the medium-under-

test viscosity would not affect the natural frequency [10]. However, as a precaution, this was
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taken into consideration. At room temperature, ethanol and DI water have similar viscosities but

different relative permittivities at 24 and 78, respectively [128, 129]. Therefore they present good

candidates for the characterization of a permittivity sensor.

The frequency-response curves of the displacement and potential fields are shown in Figures

7.3 and 7.4, respectively, for the PZT4 sensor with air (black), ethanol (red), and DI water (blue)

media-under-test. The curves show the peak-to-peak displacement uz(pp) and potential ψ(pp) at

the origin, point (0, 0). The frequency sweep was carried out numerically by solving equations

(C.15) to (C.22) subject to a voltage waveform with a constant amplitude VAC = 0.5V and with

the frequency varying in the range Ω = [13, 265] MHz. The steady-state response was obtained

by carrying long-time integration for 300 excitation periods and recording the peak-to-peak re-

sponse during the last 10 periods of the time history. The excitation frequency was increased in

steps varying in size from 20 kHz, close to resonance, to 500 kHz away from resonances. After

each frequency step, the initial conditions were taken as the modal coordinates of the last point

in the time-history of the previous excitation frequency.

The response curves show evidence of primary resonance in the vicinity of the first and

third modes. This reflects the fact the IDT geometry, described in equation (7.20), represents

direct excitation for both modes. The effective quality factors of the first (f1 = 64.8) and third

(f3 = 194.4) modes were calculated from the response curves using the half-power bandwidth

method and found to be Q1 = 8.5 and Q3 = 27. It is interesting to note that the potential

response curves exhibit evidence of anti-resonance, Figure 7.4, but not those of the displacement

field, Figure 7.3, indicating lower electric losses.

Both resonant peaks, Figures 7.3 and 7.4, shift to lower frequencies as the permittivity of the

medium-under-test increases. The sensitivity of the third mode towards changes in permittivity is

more than that of the lower mode as evidenced by a larger frequency shift. Specifically, the reso-

nant frequency of the first mode shifts down by ∆f1 = 0.65MHz in the presence of ethanol and
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Figure 7.3: The frequency-response curves of the shear displacement field uz at the origin (0, 0)

of the PZT4 sensor under a voltage waveform with an amplitude of VAC = 0.5V for three media-

under-test.

by ∆f1 = 2.5MHz in the presence of water compared to ∆f3 = 1.84MHz and ∆f3 = 7.5MHz

for the third mode. The drop in the resonant frequency with increased medium-under-test permit-

tivity is excepted as per equation (4.15). Higher permittivity leads to stronger coupling between

BG waves and the medium-under-test represented by a larger capacitance of that medium. The

elevated sensitivity of the third mode compared to the first mode is also expected since the sen-

sitivity, equation (4.16), is linearly proportional to mode number n.

The amplitude of the higher mode is less than that of the lower mode because the direct

excitation of the IDT to the higher mode is smaller than that to the lower mode, see Table 6.1.

Further, higher modes are stiffer, therefore requiring larger forcing to realize similar amplitudes.

This presents a trade-off between modal sensitivity and their signal-to-noise ratio (SNR).

The frequency-response curves of the LiNbO3 sensor were obtained numerically using the
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Figure 7.4: The frequency-response curves of the potential field ψ at the origin (0, 0) of the PZT4

sensor under a voltage waveform with an amplitude of VAC = 0.5V for three media-under-test.

same procedure and voltage waveforms except that the frequency of excitation was swept in the

range Ω = [4, 88]MHz to capture the primary resonance of the first (f1 = 21MHz) and third

(f3 = 63MHz) modes. The frequency steps varied in size from 6.8 kHz, close to resonance, to

170 kHz away from the resonances. The frequency-response curves of the peak-to-peak displace-

ment uz(pp) and potential ψ(pp) at the origin (0, 0) are shown in Figures 7.5 and 7.6, respectively,

for air (black), ethanol (red), and DI water (blue) media-under-test. The sensor was designed

using a larger wavelength λ specifically in order to reduce its natural frequencies, thereby sim-

plifying the experimental setup.

Similar to the PZT4 sensor, both resonant peaks shift to lower frequencies as the permittivity

of the medium-under-test increases. Further, the third mode was also found to be more sensitive

than the first mode. Specifically, the resonant frequency of the first mode shifts down by ∆f1 =

1.38MHz in the presence of ethanol and by ∆f1 = 1.72MHz in the presence of water compared
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Figure 7.5: The frequency-response curves of the shear displacement field uz at the origin (0, 0)

of the LiNbO3 sensor under a voltage waveform with an amplitude of VAC = 0.5V for three

media-under-test.

to ∆f3 = 4.11MHz and ∆f3 = 5.12MHz for the third mode.

The ratio of the frequency shift to the first natural frequency in LiNbO3 sensor is 6.5% for

ethanol and 8% for DI water, while for the PZT4 sensor, it is 1% for ethanol and 3.8% for DI

water. Therefore, the LiNbO3 sensor is more sensitive to changes in permittivity than the PZT4

sensor. This is in agreement with the findings of section 4.2, namely that sensitivity improves

as the permittivity of the medium-under-test approaches half the permittivity of the sensor sub-

strate, Figure 4.2. However, this comes at the expense of a smaller SNR, weaker potential and

displacement fields, for the LiNbO3 sensor, and thus presents a trade-off between sensitivity and

SNR.

To investigate the impact of the electrostrictive nonlinearity, the frequency response of the

sensor was evaluated under biased and unbiased voltage waveforms. Figures 7.7 and 7.8 show the
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Figure 7.6: The frequency-response curves of the potential field ψ at the origin (0, 0) of the

LiNbO3 sensor under a voltage waveform with an amplitude of VAC = 0.5V for three media-

under-test.

frequency-response curves of the PZT4 sensor's peak-to-peak displacement uz(pp) and potential

ψ(pp) at the origin (0, 0), respectively, in the vicinity of the second mode natural frequency ω2.

Both waveforms had the same AC amplitude VAC = 0.5V, one was unbiased with VDC = 0V,

shown in solid lines, and the other was biased with VDC = 40V, shown in dashed lines.

The impact of the quadratic electrostrictive nonlinearity can be clearly seen in activation of

the second mode. While the biased voltage waveform excites primary resonance of that mode,

the unbiased voltage waveform fails to excite it. The resonant peak of the second mode does not

only shift to lower frequencies, like the first and third modes, but also increases in magnitude

as the permittivity of the medium-under-test increases. However, the use of DC voltage with

electrolytic test media, such as water, presents a challenge since it will result in electrolysis. This

issue will be further investigated in future work.



CHAPTER 7. RESONANT EXCITATION 119

Figure 7.7: The frequency-response curves of the shear displacement field uz at the origin (0, 0)

of the PZT4 sensor in the vicinity of the second mode natural frequency ω2 for three media-

under-test. The sensor is excited with an unbiased voltage waveform (solid lines) and a waveform

biased with VDC = 40V (dashed lines). The AC amplitude for both waveforms is VAC = 0.5V.

7.4 Experimental Validation

The designed IDT were limited by trenches on either side, as per the schematic shown in Fig-

ure 2.1b, to reflect generated BG waves, thus creating resonant standing waves. To test the opera-

tion of the permittivity sensor, two prototypes were fabricated using LiNbO3and PZT4 substrates.

They were designed to have first natural frequencies of f1 = 21.4MHz, and f1 = 64.8MHz, re-

spectively. The specification of the prototypes are summarized in Table 7.1. The linear material

constants, as specified by the manufactures and confirmed by comparison to the literature, are

listed in Table A.1. The electrostrictive constant of PZT4 was identified by matching the model

predictions to the experimentally measured out-of-plane displacement, Figure 6.12, and found to

be M = 12.7 × 10−18 m2/V2 [2]. Following a similar procedure, the electrostrictive constant of
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Figure 7.8: The frequency-response curves of the potential field ψ at the origin (0, 0) of the PZT4

sensor in the vicinity of the second mode natural frequency ω2 for three media-under-test. The

sensor is excited with an unbiased voltage waveform (solid lines) and a waveform biased with

VDC = 40V (dashed lines). The AC amplitude for both waveforms is VAC = 0.5V.

LiNbO3 was experimentally identified to be 1.3× 10−20 m2/V2.

Table 7.1: Specification of the fabricated prototypes.

Substrate

Material

λ

[µm]

Aperture

[µm]

Resonance Freq.

[MHz]

Purchased From

PZT4 40 400 64.8 APC International [97]

LiNbO3 220 2000 21.4 Boston Piezo Optics [100]
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7.4.1 Experimental Setup

As discussed earlier, ethanol and DI water are suitable for validating the operation of the per-

mittivity sensors. Therefore, the characterization of the sensor was performed using the two

aforementioned media-under-test, in addition to the case where no medium, except air, was

present. The sensor was characterized electrically using the Agilent E5061B Vector Network

Analyzer, VNA, as discussed in Section 5.4. Calibration of the VNA was performed using the

short-open-load approach.

The parasitic capacitance was identified by fitting the experimental and theoretical S11 re-

sponses, and the values of f◦ and Q were experimentally measured and then used to identify

the RLC parameters [116]. This was previously explained in detail, in Section 5.4.2. Figure 7.9

shows the modeled S11 of the LiNbO3 resonator as a function of the frequency. The empirically

fit parasitic capacitance, in that case, was found to be cp0 = 794 pF.

7.4.2 Permittivity Sensor Validation

The results of using the VNA to characterize the PZT4 based sensor are shown in Figure

7.10. This PZT4 sensor did not show promising results, as the minimum S11 recorded did not

drop below −10 dBm. Indeed, Figure 7.10 shows a return loss of only 5.5 dB. Additionally, the

recorded resonance frequency was 44.7MHz, which was much lower than the designed value of

64.8MHz. This deviation can be attributed to parasitics as well as uncertainty in the fabricated

IDT dimensions, and it was found to exist for other tested PZT4 based sensors.

The S11 vs. frequency measurements using the PZT4 sensor, with the medium-under-test

set as air (black), ethanol (red), and water (blue) are shown Figure 7.11. However, due to the

aforementioned challenges, it was concluded that further testing and analysis of the PZT4 is

suspended due to fabrication issues.
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Figure 7.9: Modeled S-parameters based on the RLC equivalent circuit for the LiNbO3 sensor.

The model includes parasitic capacitors for the different media-under-test.

On the other hand, the LiNbO3 based sensor showed promising results, Figure 7.12. The

Figure shows the S11 vs. frequency with the medium-under-test set as air (black), ethanol (red),

and water (blue). The ethanol and DI water were deposited using a pipette, Figure 7.13, on the

entire surface of the sensor and the IDT. The insertion loss observed for all the tests was well

above 15 dB.

The measurements in Figure 7.12 were repeated several times, and the statistical mean and

standard deviation were recorded in Table 7.2. Additionally, measurements of ethanol, diluted to

50 % using DI water, were performed, and the results are included in the table.

The frequency response of using either air or ethanol as the medium-under-test, Figure 7.12

is in good agreement with the modeled S-parameters, Figure 7.9, in terms of the position of the

S11 minima on the frequency axis. However, the values of the S11 minima on the y-axis do not

match. Such values depend on two factors, the electrical matching and the damping effect of
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Figure 7.10: Experimental S11 measurements for the PZT4 sensor in air.

the viscous loading of liquids on the surface, and they would not interfere with the operation of

the sensor. The error in the position of the S11 minima was found to be smaller than 3% when

compared with the numerical results, Table 7.3. However, the DI water was found to have an

enhanced frequency shift. This enhanced shift can be attributed to non-zero ionic concentrations

in the DI water used or variations in its temperature while in operation and warrants further

investigation in future work.

The results show a clear relation between the permittivity of the medium-under-test and the

resonance frequency of the BG wave sensor. Furthermore, the shift due to the permittivity of

medium-under-test from the natural frequency with the sensor in air is not linear. It depends

on the sensitivity of the eigenvalue of the BG wave sensor, equation (4.16), to the ratio of the

permittivity of the substrate to that of the medium-under-test, r. Moreover, the electrostrictive

nonlinearity in the substrate affects the sensitivity. This could be further exacerbated under DC
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Figure 7.11: Experimental S11 measurements for the PZT4 sensor for different media-under-test.

Table 7.2: Statistical results of the experimental measurements of the resonances for the

LiNbO3 based sensor for different media-under-test.

Medium-under-test Air Ethanol Diluted Ethanol

(50%)

DI Water

Mean (MHz) 25.27 21.76 18.89 17.78

Standard deviation (MHz) 0.09 0.48 0.28 0.49

bias, as outlined in chapter 6.

It is also influenced by several other factors, and they must all be taken into consideration.

The first factor is the effect of the partial metalization imposed by the IDT on the surface, which

directly affects the wave confinement to the surface. The confinement degree can be charac-
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Table 7.3: Comparison of theoretical with experimental natural frequencies for the LiNbO3

sensor under different media-under-test.

Medium-under-test Air Ethanol DI Water

Model (MHz) 24.54 22.09 20.73

Experiment (MHz) 25.27 21.76 17.78

Error 2.9% -1.5% -16.6%

terized using a Laser Doppler Vibrometer, as discussed in Section 5.3, in order to estimate the

surface metalization constant ι. The second factor is the parasitic capacitance, which influences

electrical measurements, such as S11. The parasitic capacitance acts in parallel to the resonator

Figure 7.12: Experimental S11 measurements for the LiNbO3 sensor for different media-under-

test.
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Figure 7.13: Probing of the LiNbO3 sensor, with a DI water droplet covering its surface.

and must be considered, equation (5.6), in order to correctly predict the frequency response of

the S11 parameter. Finally, the effect of the medium-under-test on the parasitic capacitor must be

taken into consideration.

7.5 Summary

The full dynamic linear and nonlinear equations were solved after the expansion of the dy-

namic solution around the equilibrium solution, using the Galerkin Residuals method. The nu-

merical time domain and frequency response of the model were presented and discussed. Finally,

the experimental validation of the permittivity sensor was presented. The sensor operation was

validated by comparing the frequency response of the sensor with air, ethanol, and DI water as

media under test.



Chapter 8

Conclusion and Future Work

8.1 Conclusion

A novel frequency-shift permittivity sensor based on the Bleustein-Gulyaev wave resonator

was proposed. The effective BG wave speed is close to acoustic speeds, and therefore the wave

presents an attractive option to acoustically sense an electric property. This reduces both device

size and operating frequencies by several orders of magnitude, allowing for a low-cost and com-

pact sensor. The sensor prototypes were fabricated using both PZT4 and LiNbO3 substrates, and

the fabrication was performed by the author, in-house, at the QNC-Cleanroom.

The sensor was numerically modeled to include electrostrictive nonlinearities, and the simu-

lation results were presented. Additionally, a linearized-parameters-approach was implemented

as an approximate alternative. Sensitivity tuning of the sensor is achieved by tapping into the non-

linearities of the material. This can be done by applying a large DC voltage, driving it towards

the electrostriction nonlinear regime. This affects the effective constants of the piezoelectric and

thus the overall sensor sensitivity profile.

127
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Towards that end, the static non-resonant response was analyzed, and the eigenvalues were

investigated. The results were verified experimentally and published [2]. The nonlinear equi-

librium equations were derived and solved under DC excitation using the Galerkin residuals

method, a pseudo-arclength continuation method, and a secant predictor. The excitation voltage

imposed by the IDT was empirically modeled through the charge distribution function.

The dynamic response of the sensor was also modeled and solved, and the frequency response

curves were plotted. The nonlinear equations of motion of the sensor were derived using the

Galerkin residuals method. The resulting differential-algebraic system of equation was reduced

to index-0 and then solved using long-time integration. Numerical results show a clear depen-

dence of the natural frequency of the resonator on the permittivity of the medium-under-test.

These results were experimentally validated through S-parameter measurements using a Vec-

tor Network Analyzer. Three materials were compared, namely, air, ethanol, and deionized wa-

ter. It was found that the permittivity of the sample on top of the substrate surface influences the

sensor eigenvalues and shifts the primary resonance frequency.

Finally, a novel detection scheme for shear-horizontal (in-plane) surface acoustic waves, SH-

SAW, using a single degree of freedom Laser Doppler Vibrometer was theorized, simulated, and

experimentally verified. The technique exploits the out-of-plane deformation appearing on the

boundaries of the wave aperture as it propagates within. This out-of-plane motion is usually a

fraction of the maximum shear displacement and can be detected using the vibrometer. This

approach was also published [1]. This technique provides researchers with a quick and effec-

tive method to characterize shear-horizontal surface acoustic waves. It was also successful in

estimating the in-plane displacement field decay rate into the substrate.

This work was completed with full-time involvement and was carried out solely by the author,

under the supervision of the academic supervisors.
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8.2 Future Work

The S-parameters of using deionized water as the medium-under-test with the BG wave sen-

sor were found to have an enhanced frequency shift. This enhanced shift is be attributed to

contamination in the deionized water used. Even clean DI water will still be contaminated by the

surface of the sensor. Moreover, variations in the DI water temperature while in operation will

affect the measured permittivity. The first step is to obtain highly purified deionized water from

another source and clean the sensor before each use. If the enhanced shift persists, then another

approach is to build a setup that allows for temperature control and observe the resonance shift

versus temperature. This must be compared to the temperature dependence of water permittivity

from the literature.

DC voltage has been shown to enhance and tune the sensitivity of the BG wave permittivity

sensor. However, aquatic-based media-under-test presents a challenge, as water tends to experi-

ence electrolysis. This is an open research challenge and would need to be further investigated.

One proposal is to actuate the device far away from resonance, but not at DC, and consider

the RMS value of the actuation signal as an equivalent to the DC effect. This approach holds

promise, but is yet to be proven experimentally.

The quality factor measured experimentally for the sensors was 10, while typical BG-filters

usually have quality factors in the order of few hundreds [20]. This was due to issues with

the post-processing step in the microfabrication, where the laser trimmer was used to create

the vertical trenches. The depth of the trenches must be increased to fully reflect the wave.

However, the process must be done slowly to avoid any heat damage that may occur at the edges.

An alternative solution is to develop a Deep Reactive Ion Etching (DRIE) recipe for PZT4 and

LiNbO3 to create the trenches while avoiding the heat damage resulting from laser trimmers.

Additionally, packaging for the sensor, including a fluidic enclosure, needs to be design and
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built. The packaging needs to allow for fluids and/or gases to be applied to the sensitive sensor

area without damaging the wiring or electronics. Moreover, the printed circuit board, PCB, must

be designed with the circuit required to derive and read the output of the sensor. The sensor can

be driven by a PLL [130], that can drive and track the resonance frequency of the resonant sensor.

The circuit must give a readout indicating the tracked resonance frequency.

Finally, the approach described in section 5.3 and published in [1] for characterization of

SH-SAW has been successfully used to identify the nonlinear shear-electrostrictive constant,

M = M14. Shear-electrostrictive constants are seldom reported in the literature, therefore, this

technique can be used to identify such constants for an array of materials.
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Appendix A

Material Constants

Table A.1: Properties of different material considered for the permittivity sensor substrate.

Property PZT4

[97, 131]

LiNbO3

[100, 132]

BaTiO3

[131]

Li2B4O7

[133]

LiTO3

[134]

PZT5

[131]

PZT6B

[131]

PZT7A

[131]

PZT7

[131]

ZnO

[135]

G

[GPa]

25.6 59.5 43.9 57.1 17.8 21.1 35.5 25.3 25 42.47

e

[N/(Vm)]

12.7 4.1 11.6 0.39 0.89 12.3 4.6 9.2 13.5 −0.48

ϵ ×8.85

×10−12[F/m]

718 44 1109.6 8.66 7.27 916.4 406.8 459.9 1932.2 8.55

ρ

[Kg/m3]

7600 4647 5700 2432 3402 7750 7550 7600 7800 5680
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Appendix B

Tensor Manipulations

Voigt reduction of a higher order tensor into a matrix form [136], and the reverse un-reduction

for the two cases encountered by this work are as follows:

For 3x3 tensors, like stress, the process is defined, provided there is diagonal symmetry, such

as:

γ11 γ12 γ13γ21 γ22 γ23

γ31 γ32 γ33

 =

γ1 γ6 γ5γ6 γ2 γ4

γ5 γ4 γ3

⇔



γ1

γ2

γ3

γ4

γ5

γ6


For all tensors other than the stress tensor the definition is slightly different, as there is an half

multiplicand in the definition of the non diagonal terms. For a 3x3x3x3 tensor reduced to a 6x6

151



APPENDIX B. TENSOR MANIPULATIONS 152

matrix, like in the case of the stiffness or the electrostrictive constant tensors:

Γ1111Γ2111Γ3111

Γ1112Γ2112Γ3112

Γ1113Γ2113Γ3113


Γ1121Γ2121Γ3121

Γ1122Γ2122Γ3122

Γ1123Γ2123Γ3123


Γ1131Γ2131Γ3131

Γ1132Γ2132Γ3132

Γ1133Γ2133Γ3133


Γ1211Γ2211Γ3211

Γ1212Γ2212Γ3212

Γ1213Γ2213Γ3213


Γ1221Γ2221Γ3221

Γ1222Γ2222Γ3222

Γ1223Γ2223Γ3223


Γ1231Γ2231Γ3231

Γ1232Γ2232Γ3232

Γ1233Γ2233Γ3233


Γ1311Γ2311Γ3311

Γ1312Γ2312Γ3312

Γ1313Γ2313Γ3313


Γ1321Γ2321Γ3321

Γ1322Γ2322Γ3322

Γ1323Γ2323Γ3323


Γ1331Γ2331Γ3331

Γ1332Γ2332Γ3332

Γ1333Γ2333Γ3333





=



Γ11Γ61Γ51

Γ16Γ66Γ56

Γ15Γ65Γ55


Γ16Γ66Γ56

Γ12Γ62Γ52

Γ14Γ64Γ54


Γ15Γ65Γ55

Γ14Γ64Γ54

Γ13Γ63Γ53


Γ61Γ21Γ41

Γ66Γ26Γ46

Γ65Γ25Γ45


Γ66Γ26Γ46

Γ62Γ22Γ42

Γ64Γ24Γ44


Γ65Γ25Γ45

Γ64Γ24Γ44

Γ63Γ23Γ43


Γ51Γ41Γ31

Γ56Γ46Γ36

Γ55Γ45Γ35


Γ56Γ46Γ36

Γ52Γ42Γ32

Γ54Γ44Γ34


Γ55Γ45Γ35

Γ54Γ44Γ34

Γ53Γ43Γ33




⇔



Γ11Γ12Γ13Γ14Γ15Γ16

Γ21Γ22Γ23Γ24Γ25Γ26

Γ31Γ32Γ33Γ34Γ35Γ36

Γ41Γ42Γ43Γ44Γ45Γ46

Γ51Γ52Γ53Γ54Γ55Γ56

Γ61Γ62Γ63Γ64Γ65Γ66





Appendix C

Nonlinear Operators and Equations

C.1 Electrostriction Operators

The electrostriction operators L1 and L2 appearing in the wave equations, (2.22) and (2.23),

are defined as:

(C.1)L1(Ex, Ey) = G∇ ·

 −2ExEy

E2
y − E2

x



L2(uz, Ex, Ey) = 2
(
−4eEx

∂Ex
∂y

−3eEx
∂Ey
∂x

−3eEy
∂Ex
∂x

+2eEy
∂Ey
∂y

+2G
∂uz
∂x

(
∂Ex
∂y

+
∂Ey
∂x

)

−G
∂uz
∂y

(
∂Ey
∂y

− ∂Ex
∂x

) + 2GEy
∂2uz
∂x2

−GEy
∂2uz
∂y2

+ 3GEx
∂2uz
∂x ∂y

− 3GM(E2
x + E2

y)∇ ·

(
Ex

Ey

)
− 6GMExEy∇ ·

(
Ey

Ex

))
(C.2)
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In potential form, the operators reduce to:

(C.3)L1(ψ) = 2(
∂ψ

∂y

∂2ψ

∂y2
− ∂ψ

∂y

∂2ψ

∂x2
− 2

∂ψ

∂x

∂2ψ

∂x ∂y
)

(C.4)L2(uz, ψ) = eL2A(uz, ψ) +MGL2B(uz, ψ)

L2A(uz, ψ) =
∂ψ

∂y
(−6

∂2ψ

∂x2
+ 4

∂2ψ

∂y2
− 4

G

e

∂2uz
∂x2

+ 2
G

e

∂2uz
∂y2

)

− ∂ψ

∂x
(14

∂2ψ

∂x ∂y
+ 6

G

e

∂2uz
∂x ∂y

) + 2
G

e

∂uz
∂y

(
∂2ψ

∂y2
− ∂2ψ

∂x2
)− 8

G

e

∂uz
∂x

∂2ψ

∂x ∂y
(C.5)

(C.6)L2B(uz, ψ) = 6(
∂2ψ

∂x2
+
∂2ψ

∂y2
)
(
(
∂ψ

∂y
)2 + (

∂ψ

∂x
)2
)
+ 24

∂ψ

∂x

∂ψ

∂y

∂2ψ

∂x ∂y

C.2 Equilibrium Equations

The discretized equilibrium equations for a four-mode expansion can be written as the fol-

lowing algebraic system:

(C.7)ps1 + qs1 + α1ps1ps2 + α2ps2ps3 + α3ps3ps4 = 0

(C.8)ps2 + qs2 + α4p
2
s1 + α5ps1ps3 + α6ps2ps4 = 0

(C.9)ps3 + qs3 + α7ps1ps2 + α8ps1ps4 = 0

(C.10)ps4 + qs4 + α9p
2
s2 + α10ps1ps3 = 0

(C.11)
qs1 + α11ps1 + α13ps1ps2 + α16ps2ps3 + α20ps3ps4 + α23ps2qs1 + α24ps1qs2

+α25ps3qs2+α26ps2qs3+α27ps4qs3+α28ps3qs4+α12p
3
s1+α14ps1p

2
s2+α15p

2
s1ps3

+ α17p
2
s2ps3 + α18ps1p

2
s3 + α22ps1p

2
s4 + α19ps1ps2ps4 + α21ps2ps3ps4 = α29VDC
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(C.12)
qs2 + α11ps2 + α30p

2
s1 + α33ps1ps3 + α37ps2ps4 + α41ps1qs1 + α42ps3qs1

+ α43ps4qs2 + α44ps1qs3 + α45ps2qs4 + α32p
3
s2 + α31p

2
s1ps2 + α35ps2p

2
s3

+ α36p
2
s1ps4 + α39p

2
s3ps4 + α40ps2p

2
s4 + α34ps1ps2ps3 + α38ps1ps3ps4 = 0

(C.13)
qs3 + α11ps3 + α47ps1ps2 + α52ps1ps4 + α56ps2qs1 + α57ps4qs1

+ α56ps1qs2 + α58ps1qs4 + α46p
3
s1 + α51p

3
s3 + α48ps1p

2
s2 + α49p

2
s1ps3

+ α50p
2
s2ps3 + α55ps3p

2
s4 + α53ps1ps2ps4 + α54ps2ps3ps4 = α59VDC
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where qsi and psi are the static modal coordinates and the coefficients αi depend on the substrate

properties and the permittivity ratio r.

C.3 Equations of Motion

The discretized dynamic system for a four-mode expansion is made of the following set of

ordinary differential equations:

(C.15)
..
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.
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(C.16)
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(C.17)
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(C.18)..
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