
Bounded Model Checking of
Industrial Code

by

Siddharth Priya

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2021

© Siddharth Priya 2021

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Some figures, tables, and text are restated from the Verifying Verified Code paper [45]
and Bounded Model Checking for LLVM paper [44] (submitted) with contributions
from Xiang Zhou, Yusen Su, Prof. Yakir Vizel, Dr. Yuyan Bao and Prof. Arie
Gurfinkel. Some of the described modifications to SeaHorn were implemented
by Prof. Arie Gurfinkel. Some of the experiments using aws-c-common were
conducted by Prof. Yakir Vizel, Xiang Zhou and Yusen Su.

iii

Abstract

Bounded Model Checking (BMC) is an effective and precise static analysis tech-
nique that reduces program verification to satisfiability (SAT) solving. However, with
a few exceptions, BMC is not actively used in software industry, especially, when
compared to dynamic analysis techniques such as fuzzing, or light-weight formal
static analysis. This thesis describes our experience of applying BMC to industrial
code using a novel BMC tool SeaBMC. We present three contributions.

First, a case study of (re)verifying the aws-c-common library from AWS using
SeaBMC— a novel BMC engine for SeaHorn— and KLEE which is a well known
symbolic checking tool. This study explores the methodology from the perspective of
three research questions: (a) can proof artifacts be used across verification tools; (b)
are there bugs in verified code; and (c) can specifications be improved. To study these
questions, we port the verification tasks for aws-c-common library to SeaHorn
and KLEE. We show the benefits of using compiler semantics and cross-checking
specifications with different verification techniques, and call for standardizing proof
library extensions to increase specification reuse.

Second, a description of SeaBMC. We start with a custom IR (called SEA-IR)
that explicitly purifies all memory operations by explicating dependencies between
them. We then run program transformations and allow for generating many different
styles of verification conditions. To support memory safety checking, we extend
our base approach with fat pointers and shadow bits of memory to keep track of
metadata, such as the size of a pointed-to object. To evaluate SeaBMC, we use
the aws-c-common library from AWS as a benchmark and compare with CBMC,
SMACK, and KLEE. We show that SeaBMC can provide an order of magnitude
improvement compared with state-of-the-art.

Third, a case study of extending SeaBMC to work with Rust— a young systems
programming language. We ask three research questions: (a) can SeaBMC be used
to verify Rust programs easily; (b) can the specification style of aws-c-common be
applied successfully to Rust programs; and (c) can verification become more efficient
when using higher level language information. We answer these questions by verifying
aspects of the Rust standard library using SeaUrchin, an extension of SeaBMC
for Rust.

iv

Acknowledgements

I would like to thank Prof. Arie Gurfinkel for teaching me about software verification
through countless one-on-one sessions. Moreover, his guidance throughout my MASc
program has improved my critical thinking and presentation skills. For this, I am
very grateful to him. I would like to thank Prof. Werner Dietl and Prof. Mahesh V.
Tripunitara for readily agreeing to read my thesis and for their insightful questions
during the seminar. Prof. Dietl painstakingly documented many errors in a draft
version of this document. I appreciate his careful review of my work.

During my MASc, I learnt a lot working with my collaborators – Xiang Zhou, Yusen
Su, Dr. Yuyan Bao and Prof. Yakir Vizel. Thank you for enriching my research
experience. Because of the pandemic, I worked from home for most of my master’s
program but I did not feel isolated thanks to weekly chats with fellow student Hari
Govind V.K. – who was always generous with his time. Before starting my master’s,
I grew as an engineer thanks to the mentorship provided over many years by Niket
Agarwal – my gratitude to him.

Many years ago, my uncle, Sanjay Chandra gifted me a Lego technic kit which
started my journey into how things work. I am grateful to him for giving me my
first engineering project. I am grateful to Rishika and Mario for always being great
listeners and asking insightful questions. Suyash helped me slow down and laugh
when things got busy – thank you for the late night chitchats. I am indebted to my
wife, Yashi, for being an inspiration and supporting me in my journey as a graduate
student.

v

Dedication

This thesis is dedicated to my parents who have always encouraged me on my journey
of curiosity. I also dedicate it to my children, Bhoomi and Avni. Hopefully, to them,
my experience provides evidence that it’s always worthwhile to pursue one’s dreams.

vi

Table of Contents

List of Figures ix

List of Tables xi

1 Introduction 1

2 Verifying Verified Code 3

2.1 Introduction . 3

2.2 Unit Proofs with Code-as-Specification 6

2.3 Case Study . 7

2.3.1 RQ1: Does CaS Empower Multiple Tools? 8

2.3.2 RQ2: Are there bugs in verified code? 11

2.3.3 RQ3: Can specifications be improved while maintaining the
CaS philosophy? . 13

2.4 Related work . 16

2.5 Conclusion . 17

3 SeaBMC: Bounded Model Checking using SeaHorn 19

3.1 Introduction . 19

3.2 Verification Condition Generation . 21

3.2.1 SEA-IR . 21

3.2.2 Program Transformation . 23

vii

3.2.3 Verification Condition Generation 26

3.3 Verifying Memory Safety . 29

3.3.1 Spatial memory safety . 32

3.3.2 Temporal memory safety . 33

3.4 Experiments . 33

3.5 Related Work . 35

3.6 Conclusion . 35

4 SeaUrchin: Bounded Model Checking for Rust 37

4.1 Introduction . 37

4.2 RQ1: Does LLVM bitcode as IR empower SeaBMC to work for Rust
out-of-box? . 38

4.3 RQ2: Does CaS philosophy apply effectively to Rust? 41

4.3.1 Panic freedom in Rust programs 41

4.4 RQ 3: Can verification become more efficient when using Rust lan-
guage specific information? . 44

4.5 Conclusion . 48

5 Conclusion 50

References 52

viii

List of Figures

2.1 The unit proof of aws array list get at ptr from [11]. The
commented out code is explained in Sec. 2.3.1. 7

2.2 Architecture of the case study (credit: Yusen Su). 8

2.3 Tool-specific implementations for initialize_byte_buf. 10

2.4 Simplified code for specification bugs. 11

2.5 Simplified code for differing CaS specifications. 13

2.6 Two styles of specifications for a read only buffer operation. 13

2.7 Linked list stubs for proofs. 15

2.8 SeaHorn unit proof for aws_linked_list_front. 15

3.1 Simplified grammar of SEA-IR, where E, L R and M are expressions,
labels, scalar registers and memory registers, respectively. 23

3.2 An example C program. 23

3.3 Program from Fig. 3.2 in: (a) SEA-IR, (b) SA, (c) SASA, and (d)
GSSA forms. 24

3.4 Program from Fig. 3.2 in PD and SMT-LIB forms. 26

3.5 Definition of sym. 27

3.6 Specifications for size, align, and alloc. 28

3.7 Translation of read and write. 28

3.8 SEA-IR syntax for memory safety. 29

3.9 Program from Fig. 3.2 with added isderef assertions in PD and
SMT-LIB forms. 29

ix

3.10 Memory-safety aware VCGen semantics. 30

3.11 Shadow memory semantics for memory safety. 30

3.12 Semantics for verifiying memory safety. 31

3.13 Memory state M3- when P0 is stored at location P1. 31

4.1 Architecture of SeaUrchin. 39

4.2 String creation — panic and no-panic versions. 42

4.3 unit proof for mutable borrow. 44

4.4 Borrow for reading - panic and no-panic versions. 44

4.5 An equivalent program in Rust and C to write and read data from an
array. 46

4.6 Comparision of verification time as array size increases for programs
in Fig. 4.5. 47

4.7 The function bong calls an unsafe function. 48

4.8 The noalias function bong calls an unsafe function. 48

x

List of Tables

2.1 Verification results for CBMC, SeaHorn and KLEE (repro. from
[45]). 7

3.1 Verification results for SeaBMC, CBMC, SMACK and KLEE.
Timeout is 200s. cnt, avg, std and time, are the number of verifica-
tion tasks, average run-time, standard deviation, and total run-time
in seconds, per category, respectively (repro. from [44]). 34

xi

Chapter 1

Introduction

Writing and shipping correct software remains a challenge in industry. The standard
practice of testing can only improve the quality of software. It cannot provide any
guarantees on correctness of software. Such guarantees are essential when software
failures have economic and human costs. Software verification based on formal tech-
niques can provide strong guarantees for software systems. Unfortunately, scaling
these techniques to industrial grade software has been difficult. In particular we ap-
ply Bounded Model Checking (BMC), to industrial grade software. By scaling BMC,
we mean three things: 1. large programs; 2. modelling of low-level instructions that
occur in practice; and 3. verifying software systems instead of single programs — this
may include more than one language. Our primary target is the aws-c-common
library, written in C, open sourced by AWS. We discuss the results of verifying
aws-c-common using SeaBMC, a new BMC engine developed for SeaHorn. We
also present early work in applying BMC to Rust programs.

Bounded Model Checking (BMC) is an effective static analysis technique that re-
duces program analysis to propositional satisfiability (SAT) or Satisfiability Modulo
Theories (SMT). It works directly on the source code. It is very precise, e.g., ac-
counting for semantics of the programming language, memory models, and machine
arithmetic. There is a vibrant ecosystem of tools from academia (e.g., SMACK [47],
CPAChecker [8], ESBMC [22]), industrial research labs (e.g., Corral [36], F-SOFT [29]),
and industry (e.g., CBMC [14], Crux [23], QPR [9]). There is an annual software
verification competition, SV-COMP [7], with many participants. However, with a
few exceptions, BMC is not actively used in software industry. Especially, when
compared to dynamic analysis techniques such as fuzzing [48], or light-weight for-
mal methods such as static analysis [6]. In Chapter 2, we report on our experience

1

of adapting the verification tasks of [11] to the new SeaBMC tool: a bit-precise
Bounded Model Checking engine of SeaHorn. SeaBMC was developed hand in
hand while verifying aws-c-common.

BMC can work on source code directly or on an Intermediate Representation (IR)
of a compiler. SeaBMC works on IR of the LLVM [37] compiler. In Chapter 3,
we look at the internals of SeaBMC. We look at two aspects broadly. First, we
propose a new IR, called SEA-IR, that extends LLVM IR, with explicit dependency
between memory operations. Different verification condition generation (VCGen)
strategies operate on a program in SEA-IR form. Second, we explore different
memory models which carry metadata about program state. Additional information
is attached to pointers (so called fat) and to memory (so called shadow) to simplify
tracking program metadata necessary for modelling many common safety properties.
Our design, as implemented in SeaBMC, is evaluated on aws-c-common against
state-of-the-art verification tools.

While C and C++ remain popular choices for writing system software, newer
languages like Rust and GO are increasingly being considered for similar applica-
tions. Rust provides an interesting design choice where a program has to satisfy
certain safety properties for compilation to be successful. Chapter 4 describes our
on-going work to use SeaBMC to verify Rust programs. Rust programs contain
more information than C because of a stronger type system. We want to explore if
this information can help scale BMC to cover larger and more complex programs.

2

Chapter 2

Verifying Verified Code

2.1 Introduction

Transitioning research tools into practice requires case-studies, methodology, and
best-practices to show how the tools are best applied. Until recently, there was no
publicly available industrial case study on successful application of BMC for con-
tinuous verification1 of C code. This has changed with [11] – a case study from
the Automated Reasoning Group (ARG) at Amazon Web Services (AWS) on the
use of CBMC for proving memory safety (and other properties) of several AWS C
libraries. This case study proposes a verification methodology with two core prin-
ciples: (a) verification tasks structured around units of functionality (i.e., around a
single function, as in a unit test), and (b) the use of code to express specifications
(i.e., pre-, post-conditions, and other contextual assumptions). We refer to these
as unit proofs, and Code as Specification (CaS), respectively. The methodology is
efficient because small verification tasks help alleviate scalability issues inherent in
BMC. More significantly, developers adopt, own, extend and even use specifications
(as code) in other contexts, e.g., unit tests. Admirably, AWS has released all of
the verification artifacts (code, specifications and verification libraries)2. Moreover,
these are maintained and integrated into Continuous Integration (CI). This gave us
a unique opportunity to study, validate, and refine the methodology of [11]. In this
chapter, we report on our experience of adapting the verification tasks of [11] to two
new verification tools: the SeaBMC Bounded Model Checking engine of SeaHorn,

1By continuous verification, we mean verification that is integrated with continuous integration
(CI) and is checked during every commit.

2https://github.com/awslabs/aws-c-common/tree/main/verification/cbmc

3

https://github.com/awslabs/aws-c-common/tree/main/verification/cbmc

and the symbolic execution tool KLEE. We present our experience as a case study
that is organized around three Research Questions (RQ):

RQ1: Does CaS empower multiple tools for a common verification task?
Code is the lingua franca among developers, compilers, and verification tools. Thus,
CaS makes specifications understandable by multiple verification tools. To validate
effectiveness of this hypothesis, we adapted the unit proofs from AWS to different
tools, and report on the experience in Sec. 2.3.1. While giving a positive answer to
RQ1, we highlight the importance of the semantics used to interpret CaS, and that
effectiveness of each tool depends on specification styles.

RQ2: Are there bugs in verified code? Specifications written by humans may
have errors. Do such errors hide bugs in verified implementations? What sanity
checks are helpful to find bugs in implementations and specifications? The public
availability of [11] is a unique opportunity to study this question. In contrast to [11],
we found no new bugs in the library being verified (aws-c-common). However, we
have found multiple errors in specifications! Reporting them to AWS triggered a
massive review of existing unit proofs with many similar issues found and fixed. We
report the bugs, and techniques that helped us discover them, in Sec. 2.3.2.

RQ3: Can specifications be improved while maintaining CaS philosophy?
Some mistakes in specifications can be prevented by improvements to the speci-
fication language. We propose a series of improvements that significantly reduce
specification burden. They are mostly in the form of built-in functions, thus, fa-
miliar to developers. In particular, we show how to make the verification of the
linked list data structure in aws-c-common significantly more efficient, while
making the proofs unbounded (i.e., correct for linked list of any size).

In our case study, we used the BMC engine of SeaHorn [26] and symbolic exe-
cution tool KLEE [10]. We have chosen SeaHorn because it is conceptually similar
to CBMC that was used in [11]. Thus, it was reasonable to assume that all verifi-
cation tasks can be ported to it. We are also intimately familiar with SeaHorn.
Thus, we did not only port verification tasks, but proposed improvements to Sea-
Horn to facilitate the process. We have chosen KLEE because it is a well-known
representative of symbolic execution – an approach that is the closest alternative to
Bounded Model Checking.

4

Overall, we have ported all of the 169 unit proofs of aws-c-common to Sea-
Horn, and 153 to KLEE. The case study represents a year of effort. The time was
divided between porting verification tasks, improving SeaHorn to allow for a better
comparison, and, many manual and semi-automated sanity checks to increase confi-
dence in specifications. Additionally, we have experimented with using unit proofs
as fuzz targets using LLVM fuzzing library libFuzzer [48] and adapted 146 of the
unit proofs to libFuzzer.

We make all results of our work publicly available and reproducible at https:
//github.com/seahorn/verify-c-common. In addition to what is reported
in this chapter, we have developed an extensive CMake build system that simplifies
integration of additional tools. The case study is live in the sense that it is integrated
in CI and is automatically re-run nightly. Thus, it is synchronized both with the
tools we use and the AWS library we verify.

We hope that our study inspires researchers to adapt their tools to industrial
code, and inspires industry to release verification efforts to study.

Caveats and non-goals. We focus on the issues of methodology and sharing ver-
ification tasks between different tools. The tools that we use have different strengths
and weaknesses. While they all validate user-supplied assertions, they check for
different built-in properties (e.g., numeric overflow, undefined behaviours, memory
safety). The goal is not to compare the tools head-to-head, or to find the best tool
for a given task. We have not attempted to account for the differences between the
tools. Nor have we tried to completely cover all verification tasks by all tools. Our
goal was to preserve the unit proofs of [11] as much as possible to allow for a better
comparison. For that reason, while we do report on performance results for the dif-
ferent tools, we do not describe them in detail. An interested reader is encouraged to
look at the detailed data we make available on GitHub. Furthermore, while we have
applied fuzzing to the unit proofs, we do not focus on effectiveness and applicability
of static vs dynamic verification but only on the issues of methodology.

To summarize, we make the following contributions: (a) we validate that CaS can
be used to share specifications between multiple tools, especially tools that share
the same techniques (i.e., BMC), or tools with related techniques (i.e., BMC and
Symbolic Execution); (b) we describe in details bugs that are found in verified code
(more specifically, in specifications), some are quite surprising; (c) we suggest a
direction to improve CaS with additional built-in functions that simplify common
specification; and (d) we make our system publicly available allowing other researches

5

https://github.com/seahorn/verify-c-common
https://github.com/seahorn/verify-c-common

to integrate their tools, use it as a benchmark, and to validate new verification
approaches on industrial code.

The rest of the chapter is structured as follows. Sec. 2.2 recalls the methodology
of unit proof and CaS. And Sec. 2.3 presents the architecture of the case study and
answers the three research questions. We discuss related work in Sec. 2.4 and offer
concluding remarks in Sec. 2.5.

2.2 Unit Proofs with Code-as-Specification

In [11], a methodology for program verification is proposed that allows developers to
write specifications and proofs using the C programming language. The core of the
methodology are unit proof 3 and Code as Specification (CaS). A unit proof is similar
to a unit test in that it is a piece of a code (usually a method) that invokes another
piece of code (under test) and checks its correctness [43]. Fig. 2.1 shows an example
of a unit proof for the method aws_array_list_get_at_ptr, from aws-c-common
library. It has three parts: (1) the specification of aws_array_list_get_at_ptr, i.e.,
pre- (line 8) and post-conditions (lines 10–11); (2) a call to the function under ver-
ification (line 9); and (3) the specification of the program context that the method
is called from (lines 2–7). Note that all specifications are written directly in C. We
call this specification style – CaS. Assumptions (or pre-conditions) correspond to
__CPROVER_assume, and assertions (or post-conditions) correspond to assert. Spec-
ifications are factored into functions. For example, aws_array_list_is_valid spec-
ifies a representation invariant of the array list. In this unit proof, the context is
restricted to a list of bounded size but with unconstrained elements and an index

with (intentionally) unspecified value of type size_t. Even without expanding the
code further, its meaning is clear to any C developer familiar with the library.

The unit proof is verified with CBMC [14]. CBMC uses a custom SMT solver to
check that there are no executions that satisfy the pre-conditions and violate at least
one of the assertions (i.e., a counterexample). Together with the explicit assertions,
CBMC checks built-in properties: memory safety and integer overflow.

According to [11], CaS and unit proofs are a practical and productive verification
methodology. It has been used successfully to verify memory safety (and other
properties) of multiple AWS projects, including the aws-c-common library that
we use in our case study. The library provides cross platform configuration, data

3In [11], these are called proof harnesses.

6

1 void aws_array_list_get_at_ptr_harness() {
2 struct aws_array_list list;
3 /* memhavoc(&list, sizeof(struct aws_array_list))); */
4 __CPROVER_assume(aws_array_list_is_bounded(&list));
5 ensure_array_list_has_allocated_data_member(&list);
6 void **val = can_fail_malloc(sizeof(void *));
7 size_t index /* = nd_size_t() */;
8 __CPROVER_assume(aws_array_list_is_valid(&list) && val != NULL);
9 if (aws_array_list_get_at_ptr(&list, val, index) == AWS_OP_SUCCESS)

10 assert(list.data != NULL && index < list.length);
11 assert(aws_array_list_is_valid(&list)); }

Figure 2.1: The unit proof of aws array list get at ptr from [11]. The commented
out code is explained in Sec. 2.3.1.

LOC CBMC (s) SeaHorn (s) KLEE (s)

category num avg min max avg std avg std count avg std

arithmetic 6 33 11 40 3.8 0.8 0.6 0.1 6 0.9 0.3
array 4 97 78 112 5.6 0.0 1.7 0.7 4 32.3 6.0
array list 23 126 77 181 35.8 60.8 2.5 3.3 23 55.4 49.3
byte buf 29 97 50 188 17.6 47.3 1.0 0.8 27 75.3 124.1
byte cursor 24 98 47 179 6.9 3.8 1.0 0.5 17 12.8 14.4
hash callback 3 115 49 198 9.7 5.5 4.9 3.6 3 64.0 45.5
hash iter 4 177 169 185 12.8 9.2 9.2 15.0 3 20.8 9.7
hash table 19 172 36 328 23.5 33.3 5.3 7.5 15 104.6 333.4
linked list 18 115 17 219 58.9 209.4 2.0 2.1 18 0.7 0.1
others 2 15 10 21 3.5 0.0 0.5 0.0 1 0.7 –
priority queue 15 187 136 258 208.1 303.4 10.6 16.9 15 46.4 11.6
ring buffer 6 155 56 227 20.0 19.5 29.5 34.2 6 48.1 26.4
string 15 87 11 209 6.3 1.3 2.9 1.8 15 139.7 159.7

Total 168 Loc 20,190 Time 6,475 Time 691 Time 8,577

Table 2.1: Verification results for CBMC, SeaHorn and KLEE (repro. from [45]).

structures, and error handling support to a range of other AWS C libraries and
SDKs. It is the foundation of many security related libraries, such as the AWS
Encryption SDK for C [11]. It contains 13 data structures, 169 unit proofs that
verify over 20K lines of code (LOC). Tab. 3.1 shows the LOC and running time for
each data structure.

2.3 Case Study

The architecture of our case study is shown in Fig. 2.2. To compare with CBMC,
we use two tools based on the LLVM framework [37]: SeaHorn and KLEE. Sea-
Horn [26] is a verification framework. We used the bit– and memory-precise BMC

7

EXE

LLVM IR

KLEE
Symbolic Execution Tests

CBMC
BMC Engine

 Coverage

 Cex

libFuzzer
Fuzz Testing Library

Coverage
Reports

LLVM IR

Goto-binGoto-cc

Clang

Clang

Clang
Proof Lib SeaHorn

KLEElibFuzzer

Unit Proof
Original

Adapted

Unit
proof
stubs

CBMC SeaHorn

aws-c-common Vacuity

Cex, Test

SeaHorn
BMC Engine

CBMC

Figure 2.2: Architecture of the case study (credit: Yusen Su).

developed during the case study. Its techniques are closest to CBMC. KLEE [10]
is a well-known symbolic execution tool. It is an alternative to BMC for bounded
exhaustive verification. In addition, we have experimented with libFuzzer – a
coverage-guided random testing framework. It does no symbolic reasoning, and, to-
gether with address sanitizer, is known to be effective at discovering memory errors.
Fuzzing results are available online 4. This section covers our experience primarily
with SeaHorn. The details for KLEE and libFuzzer are given in our companion
paper [45].

The rest of the section describes the research questions and our findings.

2.3.1 RQ1: Does CaS Empower Multiple Tools?

Hypothetically, the CaS methodology enables sharing the same formal specification
among multiple, potentially distinct, tools and techniques. For example, semantic
analyses of IDEs and compilers can catch simple semantics bugs and inconsistencies
in specifications. Fuzzers can validate specifications through testing. Symbolic ex-
ecution can supplement BMC by capitalizing on a different balance in performance
versus precision. Static analysis tools can be used to compute inductive invariants.
However, is the hypothesis true in practice?

To validate the hypothesis, we adapted the unit proofs from aws-c-common
to two distinct verification techniques: BMC with SeaHorn and symbolic execu-
tion with KLEE. We have also attempted to use unit proofs as fuzz targets for
libFuzzer. While our experience supports the hypothesis, we encountered two
major challenges: semantics and effectiveness of specifications.

4https://seahorn.github.io/verify-c-common/fuzzing_coverage/index.
html.

8

https://seahorn.github.io/verify-c-common/fuzzing_coverage/index.html
https://seahorn.github.io/verify-c-common/fuzzing_coverage/index.html

Semantics. Code without semantics is meaningless. Developers understand code
without being versed in formal semantics, however, many technical details and “cor-
ner cases” are often debated. This is especially true for C – “the semantics of C has
been a vexed question for much of the last 40 years” [40]. Clear semantics are crucial
when code (and CaS) are used with multiple tools.

The unit proofs in [11] do not follow the C semantics. For example, consider
the proof in Fig. 2.1. According to C, it has no meaning as both list (line 2)
and index (line 7) are used uninitialized. CBMC treats uninitialized variables as
non-deterministic. So it is well-defined for CBMC, but not for other tools.

What is a good choice of semantics for CaS? In [40], two semantics are described –
the ISO C Standard and the de facto semantics of compilers. Developers understand
(and use) the de facto semantics. For example, comparison of arbitrary pointers
is undefined according to ISO C, but defined consistently in mainstream compilers
(and used in aws-c-common!). Therefore, we argue that CaS must use the de facto
semantics. Furthermore, unit proofs must be compilable and, therefore, executable,
so developers can execute them not just in their heads (like with [11]). Note that
de facto semantics is not complete with regards to C semantics, but is a commonly
agreed upon subset. What de facto semantics does not cover is compiler dependent
semantics.

In our experience, using CaS with the de facto semantics is not hard. For example,
to adapt Fig. 2.1, we introduced memhavoc and nd_size_t, shown as comments, that
fills a memory region at a given address with non-deterministic bytes, and returns a
non-deterministic value of type size_t, respectively.

Effectiveness of specifications. We used three different tools on the same unit
proofs. Each tool requires slightly different styles of specifications to be effective.
We believe that these stylistic differences between specifications can be captured by
traditional code refactoring techniques (i.e., functions, macros, etc.). However, this
is not easy whenever the specifications have not been written with multiple tools
(and with their strengths and weaknesses) in mind. A significant part of our work
has been in refactoring unit proofs from [11] to be more modular.

We illustrate this with the pre-condition for the byte_buf data-structure. In [11],
data structures are assumed to be initially non-deterministic, and various assump-
tions throughout the unit proof are used to restrict it (e.g., lines 2–5 in Fig. 2.1).
This impedes specification re-use since different tools work well with different styles
of pre-conditions. For example, symbolic execution and fuzzing require memory to

9

1 size_t len = nd_size_t();
2 size_t cap = nd_size_t();
3 assume(len <= cap);
4 assume(cap <= MAX_BUFFER);
5
6 buf->len = len;
7 buf->capacity = cap;
8 buf->buffer = can_fail_malloc(
9 cap * sizeof(*(buf->buffer)));

10 buf->allocator = sea_allocator();
11
12
13
14
15

(a) for SeaHorn

size_t cap = nd_size_t();
assume(cap <= MAX_BUFFER);
buf->buffer = can_fail_malloc(
cap * sizeof(*(buf->buffer)));

if (buf->buffer) {
size_t len = nd_size_t();
assume(len <= cap);
buf->len = len;
buf->capacity = cap;

}
else {

buf->len = 0;
buf->capacity = 0;

}
buf->allocator = sea_allocator();

(b) for KLEE

size_t len = nd_size_t();
size_t cap = nd_size_t();
cap %= MAX_BUFFER;
len = (cap == 0) ? 0 : len % cap;

buf->len = len;
buf->capacity = cap;
buf->buffer = can_fail_malloc(
cap * sizeof(*(buf->buffer)));

buf->allocator = sea_allocator();

(c) for libFuzzer

Figure 2.3: Tool-specific implementations for initialize_byte_buf.

be explicitly allocated, and all tools that use de-facto semantics require all memory
be initialized before use.

For byte_buf, we factored out its pre-conditions into a function init_byte_buf.5

Fig. 2.3, reproduced from our companion paper [45], shows its implementations for
SeaHorn, KLEE, and libFuzzer. It takes buf structure as input, and initializes
its fields to be consistent with the representation invariant of byte_buf.

SeaHorn initialization is closest to the original of [11]. Fields are initialized via calls
to external functions (nd_<type>) that are assumed to return arbitrary values. Rep-
resentation invariants (i.e., length is less or equal to capacity), as well as any upper
bounds on buffer size are specified with assumptions. Note that can_fail_malloc

internally initializes allocated memory via a call to memhavoc, ensuring that reading
buf->buffer is well-defined.

Details for KLEE and libFuzzer are available in our companion paper [45].
Overall, our results indicate that CaS empowers multiple verification tools to share
specifications among them. Common refactoring techniques make specifications shar-
ing effective. Specifications are easiest to share among tools that use similar tech-
niques.

Discussion. We conclude this section with a discussion of our experience in us-
ing de facto semantics. First, the code of aws-c-common is written with de facto
semantics in mind. We found that in [11] it had to be extended with many condi-
tional compilation flags to provide alternative implementations that are compatible
with CBMC or that instruct CBMC to ignore some seemingly undefined behavior.
However, we have not changed any lines of aws-c-common. We analyze the code

5Similarly, we introduced init_array_list to replace lines 2–5 in Fig. 2.1.

10

1 typedef
2 struct byte_buf {
3 char* buf;
4 int len, cap;
5 } BB;
6 bool BB_is_ok(BB *b)
7 { return (b->len == 0
8 || b->buf); }

(a) bug 1

1 assume(0 <= b && b <= 10);
2 if (a < (b - 5) &&
3 a >= (b + 5))
4 {
5 assert(c > 0);
6 }
7
8
9

(b) bug 2

1 void ht_del_over(HASH_TB *t) {
2 /* remove entry */
3 /* t->entry_count--; */
4 }
5
6
7
8

(c) bug 3

Figure 2.4: Simplified code for specification bugs.

exactly how it is given to the compiler – improving coverage. Second, a compiler may
generate different target code for different architectures. By using the compiler as
front-end, we check that the code is correct as compiled on different platforms. This
is another advantage of CaS. Third, compilers may provide additional safety checks.
For example, aws-c-common uses GCC/Clang built-in functions for overflow-aware
arithmetic. By using de facto semantics, all the tools used in the case study were able
to deal with this in both CaS and code seamlessly. Fourth, aws-c-common uses
inline assembly to deal with speculative execution-based vulnerabilities [33]. While
inline assembly is not part of the ISO C standard, it is supported by compilers. Thus,
it is not a problem for libFuzzer. We developed techniques to handle inline asm
in SeaHorn. For KLEE, we had to ignore such unit proofs.

2.3.2 RQ2: Are there bugs in verified code?

Specifications may have errors as they are just programs: “Writing specifications
can be as error-prone as writing programs” [42]. Although [11] suggests to use code
coverage and code review to increase the confidence in specifications, we still found
non-trivial bugs. We reproduce three bugs from our companion paper [45].

Bug 1. Fig. 2.4a shows the definition of byte buf that is a length delimited byte
string. Its data representation should be either the buffer (buf) is NULL or its capacity
(cap) is 0 (not the len as defined in BB_is_ok). We found this bug by a combination
of sanity checks in SeaHorn and our model of the memory allocator (i.e., malloc).
The bug did not manifest in [11] because other pre-conditions ensured that buf is
always allocated. Our report of this bug to AWS triggered a massive code auditing
effort in aws-c-common and related libraries where many related issues were found.6

6An example is https://github.com/awslabs/aws-c-common/pull/686/commits.

11

https://github.com/awslabs/aws-c-common/pull/686/commits

Bug 2. Fig. 2.4b shows a verification pattern where a property (line 5) is checked
on the program path (from lines 1 to 5). As the condition at lines 2 and 3 can never
be true, the property cannot be checked either. Our vacuity detection (discussed
later) found the bugs occurring in this pattern. Note that the bug was missed by the
code coverage detection used by CBMC, thus, may have been present for several
years.

Bug 3. To make verification scalable, the verification of method A that calls an-
other method B may use a specification stub that approximates the functionality of
B. AWS adopts this methodology when verifying the iterator of a hash table. The
iterator calls a function ht_del to remove an element in a hash table. During verifi-
cation ht_del is approximated by a specification stub shown in Fig. 2.4c. However,
the approximation does not decrement entry_count, i.e., line 3 should be added to
the spec for correct behavior. In [11], the use of the buggy stub hides an error in the
specification.

Discussion. Code coverage of a unit proof is, at best, a sanity check for CaS. It
reports which source lines of the specification and code under verification are covered
under execution. However, because source lines can remain uncovered for legitimate
reasons e.g., dead code, interpreting a coverage report is not straightforward. There is
no obvious pass/fail criterion. Thus, we found that code coverage may be insufficient
to detect bugs in CaS reliably. In fact, bugs exist for multiple years even after code
coverage failures. To help find bugs in CaS with SeaHorn, we adapted vacuity
detection [35] to detect unreachable post-conditions. Vacuity detection checks that
every assert statement is reachable. We encountered engineering challenges when
developing vacuity detection. For example, we received spurious warnings due to
code duplication. We silenced such warnings by only reporting a warning if all
duplicate asserts reported a vacuity failure. In addition, due to CaS, an unreachable
assertions may be removed by compiler’s dead code elimination. This is not desirable
for vacuity detection. To mitigate this issue, we report when dead code is eliminated.
However, since many eliminations are unrelated to specs, there is noise in the report
which makes it un-actionable. Interaction between dead code removal by the compiler
and vacuity detection remains an open challenge for us.

We have found bugs in specifications, but we do not know what bugs remain. As
shown in this section, the bugs were found with a combination of manual auditing
and tools. However, these techniques are far from complete.

12

1 linked_list l;
2 Node *p = malloc(sizeof(Node));
3 l.head.next = p;
4 for (int idx=0; idx < MAX; idx++) {
5 Node *n = malloc(sizeof(Node));
6 p->next = n;
7 p = n; }
8 p->next = &l.tail;
9 l.tail.prev = p;

10 list_front(l);
11 Node *nnode = l.head.next;
12 for (int idx=0; idx < MAX; idx++) {
13 nnode = nnode->next; }
14 assert(nnode == l.tail);

(a) Spec in the style of [11]

1 linked_list l;
2 Node *n = malloc(sizeof(Node));
3 n->next = nd_voidp();
4 l.head.next = n;
5 l.tail.prev = nd_voidp();
6 list_front(l);
7 assert(l.head.next == n);

(b) New specification

Figure 2.5: Simplified code for differing CaS specifications.

1 char buf[SZ];
2 init_buf(buf, SZ);
3 int idx = nd_int();
4 assume(0 <= idx && idx < SZ);
5 char saved = buf[idx];
6 read_only_op(buf);
7 assert(saved == buf[idx]);

(a) Spec in style of [11]

1 char buf[SZ];
2 init_buf(buf, SZ);
3 tracking_on();
4 read_only_op(buf);
5 assert(!is_mod(buf));

(b) Spec using a built-in is_mod

Figure 2.6: Two styles of specifications for a read only buffer operation.

2.3.3 RQ3: Can specifications be improved while maintain-
ing the CaS philosophy?

There are many alternative ways to express a specification in CaS. In this section,
we illustrate how to make proofs more efficient and make specs more readable. For
example, a unit proof can fully instantiate a data structure (as in a unit test), or
minimally constrain it (as in [11]). In this section, we illustrate this by describing
our experience in making linked_list unit proofs unbounded (and more efficient).
Furthermore, we believe that extending the specification language with additional
verifier-supported built-in functions simplifies specs while making them easier to
verify. We illustrate this with the built-ins developed for SeaHorn to specify absence
of side-effects.

Linked List. A common pattern in unit proofs is to assume the representation
invariant of a data structure, and to assert it after invocation of the function under
verification along with other properties that must be maintained by the function.
For example, a simplified version of its unit proof from [11] is shown in Fig. 2.5a.
The pre-conditions are specified by (explicitly) creating a list in lines 4–7 using a
loop. The post-condition is checked by completely traversing the list in lines 12–14.

13

This specification is simple since it closely follows the style of unit tests. However, it
is inefficient for BMC: (a) unrolling the loops in the pre- and post-conditions blows
up the symbolic search space; (b) it makes verification of the loop-free function
list_front bounded, i.e., verification appears to depend on the size of the list in
the pre-conditions.

Our alternative formulation is to construct a partially defined linked list stub
as shown in Fig. 2.7a. This stub can be used to verify list_front since it is ex-
pected that only the first node after head is accessed. The resulting CaS is shown
in Fig. 2.5b. The next field of n points to a potentially invalid address (returned
by nd_voidp). Either list_front never touches n->next or has a memory fault.
Finally, the assert on line 7 in Fig. 2.5b checks that list_front did not modify the
head of the list either. If there is no memory fault, then list_front did not modify
the linked list after the node n. Our specification is not inductive. It uses the insight
that the given linked list API only ever accesses a single element. It, therefore, avoids
loops in both the pre- and post-conditions and verifies list_front for linked lists of
any size.

Unfortunately, our new spec in Fig. 2.5b is difficult to understand by non-
experts because it relies on the interplay between nd_voidp and memory safety
checking. To make the spec accessible, we hide the details behind a helper API.
Fig. 2.8 shows the unit proof for aws_linked_list_front with this API. The function
sea_nd_init_aws_linked_list_from_head constructs partial aws_linked_list in-
stances with non-deterministic length (as shown in Fig. 2.7a). The function aws_linked_list_save_to_tail

saves concrete linked list nodes from the partial aws_linked_list. Finally, the func-
tion is_aws_list_unchanged_to_tail is used in post-conditions to check that linked
list nodes are not modified. The unit proof for aws_linked_list_front is not only
more efficient than the original CBMC proof, but it is also a stronger specification.
For example, if aws_linked_list_front removes or modifies a linked list node, our
unit proof catches this as a violation, while the original proof only checks whether
the returned value is valid and whether the linked list is well formed. The API we
devised is generalized to work with all linked list operations in aws-c-common. For
operations which access the node before the tail we construct a partially defined stub
as shown in Fig. 2.7b while Fig. 2.7c is constructed for operations which access the
list from both ends. We provide corresponding versions of the above API to save
and check immutability of linked list nodes for each kind of stub.

Increasing CaS expressiveness. Verification tools should provide built-ins to
aid in concise specifications. Moreover, such built-ins enable specifications that are

14

front tailnon-det non-det***

a) Access from head only

back tail

b) Access from tail only

non-det non-det***

HEAD back tail

c) Access from both head and tail

head

head

head front non-det non-det***

Figure 2.7: Linked list stubs for proofs.

1 void aws_linked_list_front_harness() {
2 /* data structure */
3 struct aws_linked_list list;
4 struct saved_aws_linked_list to_save = {0};
5 size_t size;
6
7 sea_nd_init_aws_linked_list_from_head(&list, &size);
8 struct aws_linked_list_node *start = &list.head;
9 aws_linked_list_save_to_tail(&list, size, start, &to_save);

10
11 // precondition in function does not accept empty linked list
12 assume(!aws_linked_list_empty(&list));
13
14 /* perform operation under verification */
15 struct aws_linked_list_node *front = aws_linked_list_front(&list);
16
17 /* assertions */
18 sassert(list.head.next == front);
19 sassert(aws_linked_list_node_prev_is_valid(front));
20 sassert(aws_linked_list_node_next_is_valid(front));
21 sassert(is_aws_list_unchanged_to_tail(&list, &to_save));
22
23 return 0;
24 }

Figure 2.8: SeaHorn unit proof for aws_linked_list_front.

not otherwise expressible in CaS. For example, Fig. 2.6b uses a SeaHorn built-
in, is_mod, to specify that read_only_op does not change the buffer. This built-in
returns true if memory pointed by its argument is modified since the last call to
tracking_on. In contrast, the original specification for CBMC in Fig. 2.6a is tricky.
It saves a byte from some position in the buffer (lines 3–5), and checks that it is not
changed (line 7). This example illustrates that built-ins make specifications simpler
and more direct. They ease specification writing for users and might be exploited
efficiently by verification tools. As another example, SeaHorn provides a built-in
is_deref to check that a memory access is within bounds, which is not (easily)
expressible in C.

15

Discussion. CaS enables concise specifications and efficient proofs. As advanced
verification techniques may not generalize, a standard extension is needed, such as
verification-specific built-in functions. The semantics of these can be provided by a
run-time library, validated by fuzzing and supported by multiple verification tools.
Additional case studies are needed to identify a good set of built-ins. A standard
extension can increase specification reuse and make verification more productive and
effective.

2.4 Related work

To our knowledge, the recent study in [11] is the first significant, publicly available,
example of an application of BMC on industrial code that is actively maintained
with the code. Thus, our work is the first exploration of potential issues with soft-
ware verified in this way. The closest verification case studies are coreutils with
KLEE [10] and busybox ls with CBMC [32]. However, those focus on the scala-
bility of a specific verification technology, while we focus on methodology, reuse, and
what bugs might be hidden in the verification effort.

As we mentioned in the introduction, the Software Verification Competition (SV-
COMP) [7] provides a large collection of benchmarks and an annual evaluation of
many verification tools. However, it is focused on performance and soundness of the
tools. The benchmarks are pre-processed to fit the competition format. At that
stage, it is impossible to identify and evaluate the specifications, or to modify the
benchmarks to increase efficiency of any particular tool. We hope that our case study
can serve as an alternative benchmark to evaluate suitability of verification tools for
industrial transition.

In addition to [11], there have been a number of other recent applications of BMC
at AWS, including [13, 15, 16]. However, they are either not publicly available, too
specialized, or not as extensive as the case study in [11].

Using code as specification has a long history in verification tools, one prominent
example is Code Contracts [21]. One important difference is that in our case CaS
is used to share specifications between completely different tools that only share the
semantics of the underlying programming language, and the language itself is used
to adapt specifications to the tools.

16

2.5 Conclusion

This case study would not have been possible without artifacts released by AWS
in [11]. To our knowledge, it is the first publicly available application of BMC (to
software) in industry. Related case studies on verification are those on coreutils
with KLEE [10] and on busybox ls with CBMC [32]. SV-COMP is a large reposi-
tory of benchmarks, but its goals are different from an actively maintained industrial
project. The availability of both methodology and artifacts has given us a unique
opportunity to study how verification is applied in industry and to improve verifi-
cation methodology. We encourage industry to release more benchmarks to enable
further studies by the research community.

In addition to answering the research questions, we are contributing a complete
working system that might be of interest to other researchers. We have implemented
a custom build system using CMake that simplifies integrating new tools. We
provide Docker containers to reproduce all of the results. We created continuous
integration (CI) on GitHub that nightly re-runs all the tools on the current version
of aws-c-common. Since we use standard tools, the project integrates seamlessly
into IDEs and refactoring tools. The CI runs are done in parallel by CTest. Running
SeaHorn takes under 8 minutes!

While comparing different tools on performance is not our primary concern, in
Tab. 3.1, we show the running time for all of the verification tools, collected on the
same machine. For libFuzzer, we make the detailed coverage report available
online. We stress that while the tools check the same explicit assertions, they check
different built-in properties. Thus, running time comparison must be taken with a
grain of salt.

Our main conclusion is in agreement with [11], and we strengthen the evidence
for it. CaS is a practical and scalable approach for specifications that is easy to un-
derstand and empowers many tools. We argue that using de facto compiler semantics
in CaS is key for enabling many verification tools, each with its own characteristic,
to be used on the same verification problem. We find that specifications can be
written in different ways and specification writer must account for both verification
efficiency and developer readability. We suggest that a set of common built-ins be
shared by different verification tools. Such built-ins improve the expressive power of
CaS while retaining portability across verification tools. With built-ins defined in a
specification library, software developers will be able to write unit proofs in a way
no different than programming with libraries provided by some framework.

Today, formal verification is not the primary means of building confidence in

17

software quality. Our hope is that case studies like this one are useful to both soft-
ware engineering researchers and practitioners who want to make formal methods
an integral part of software development. To further this agenda, we plan to con-
tinue applying the CaS methodology to larger and more complex code bases (and
languages) in the future.

18

Chapter 3

SeaBMC: Bounded Model
Checking using SeaHorn

3.1 Introduction

Bounded Model Checking (BMC) is an effective technique for precise software static
analysis. It works by encoding a bounded (i.e., loop- and recursion-free) program P
with assertions into a verification condition V C in (propositional) logic, such that
V C is satisfiable iff P has an execution that violates an assertion. The satisfiability
of V C is decided by a SAT-solver (or, more commonly, by an SMT-solver). BMC can
be extremely precise, including path-sensitivity, bit-precision, and precise memory
model. Its main weakness is scalability – precise reasoning often requires careful
selection of what details to include into analysis and what to abstract away.

It is possible to implement a BMC engine directly at the source level of a pro-
gramming language. Best illustrated by CBMC [14] – perhaps the oldest and most
mature BMC for C. This allows verifying the absence of undefined behaviour and
other source-level properties, and improves error reporting since it can be done at the
source level. However, this is very difficult to implement because modern program-
ming languages are incredibly complex. Moreover, most industrial code uses de-facto,
rather than the standard language semantics [40] and relies on non-standard features
that are supported by common compilers. A second common alternative is to imple-
ment BMC on an intermediate representation (IR) of a compiler. IR of the LLVM [37]
compiler, called bitcode, is a common choice. This simplifies implementation to focus
only on capturing semantics of the IR, allows sharing infrastructure with the com-
piler, simplifies integration of verification into current build system, and simplifies

19

supporting multiple source languages (e.g., SMACK [47] supports 7 languages [24]).
This is the approach we take in this chapter.

Over the years, there have been multiple BMC tools developed for LLVM, in-
cluding SeaHorn (that we build on), SMACK, and LLBMC [41]. However, the
issue still remains that existing tools are either not maintained, commercial (and not
publicly available, e.g. LLBMC), or are not effective at bit- and memory-precise
reasoning (SeaHorn and SMACK). Our goal is to address this deficiency, while
re-examining and re-evaluating many of the design decisions.

While BMC is a mature technique, we believe that we identified a new interesting
point in the design space. First, we propose a new IR, called SEA-IR, that extends
LLVM IR with explicit dependency between memory operations. This, effectively,
purifies memory operations, i.e., there is no global memory, and no side-effects.
Second, we develop our verification condition generation (VCGen) as a series of
program transformations. The program is progressively reduced to a pure data-flow
form in which all instructions execute in parallel, and is only then, converted to
SMT-LIB supported logic. This allows experimenting with different strategies of
VCGen by controlling these transformations. Third, we explore two different forms
of representing memory content: lambda-based that represents memory as nested
ITE-expressions1, and array-based that uses SMT theory of arrays. In particular,
lambda-based representation allows precise and efficient modelling of wide memory
operations such as memcpy. Fourth, we explore the space of memory models between
the flat memory in which memory is a flat array, and an object memory model
where memory is represented by a set of arrays. We settle on a representation in
which each pointer operand of each memory instruction corresponds to an index of a
unique array. Fifth, we attach additional information to pointers (so called fat) and
to memory (so called shadow) to simplify tracking program metadata necessary for
modeling many common safety properties.

We have evaluated SeaBMC on verification tasks of the aws-c-common C
library developed by Amazon Web Services (AWS). The library is a collection of
common data-structures for C (including buffers, arrays, lists, etc.). We chose it for
several reasons. First of all, it has been recently verified using CBMC [11]. Thus, it
includes many meaningful verification tasks. Second, it is a live industrial project,
thus, it provides an example of how to integrate SeaBMC into a real project, and
shows that SeaBMC supports all of the necessary language features. Third, it
provides an opportunity to compare head-to-head against a mature tool (CBMC)
on industrial code. We feel this is a more interesting comparison than, for exam-

1ITE stands for If-Then-Else.

20

ple, comparing on isolated verification benchmarks of SVCOMP [7]. We show that
SeaBMC is sometimes an order of magnitude faster than CBMC. We also compare
with two mature LLVM-based verification tools: SMACK and KLEE [10].

3.2 Verification Condition Generation

This section presents our main verification condition generation (VCGen) algorithm.
We start with a new intermediate representation, that we call SEA-IR (Sec. 3.2.1).
The representation extends LLVM bitcode with purified memory operations. We then
describe a series of transformations that transform a program in SEA-IR to a pure
data-flow (PD) form where no part of computation depends on control (Sec. 3.2.2).
Finally, we show how PD programs can be converted to verification conditions in
SMT-LIB (Sec. 3.2.3). In this section, we assume that the input program contains
only one function, no loops or global variables. In practice, this is achieved by inlining
all functions, unrolling loops to a fixed depth, and eliminating global variables. The
loop unroll bound is often detected automatically, but can also be set by the user.

3.2.1 SEA-IR

SeaBMC transforms LLVM bitcode to an intermediate representation, called SEA-
IR. In practice, SEA-IR is an extension of LLVM bitcode where dependency infor-
mation between memory operations is made explicit. In LLVM IR, this information
does not exist in the program. Fig. 3.1 shows the simplified syntax of SEA-IR. Here,
we present a simplified version with many features removed, e.g., types, expressions,
function calls, etc. However, we assume that the type of each register is known (but
not shown). We use R to represent a scalar register, P for a pointer register and M

for a memory register. A SEA-IR program is well-formed if it is in a Static Single
Assignment (SSA) form, and satisfies other typical well-formedness conditions, such
as all registers are defined before used, all expressions are well-typed, a program
always ends with a halt, etc. We restrict the discussion to well-formed programs.

We use the term object to refer to an allocated sequence of bytes in memory.
Interestingly, we do not use a single addressable memory that maps from addresses
to values. Instead, a SEA-IR program uses a set of memory regions or memories,
which collectively contains all objects in a program. Each memory, in-turn, contains
a subset of objects used in the program. To maintain compatibility with de-facto
semantics, addresses are assigned from a single address space and are, thus, globally

21

unique. To aid program analysis, all memories are pure: storing in memory creates a
new memory i.e., definition; loading from a memory is a use. This def-use scheme [12]
is known as MemorySSA in LLVM. Partitioning memory into multiple memories
relieves the SMT-solver from some of the alias analysis reasoning.

To explain SEA-IR, we use a simple C program in Fig. 3.2. The program ini-
tializes variable x with a non-deterministic 8-bit integer obtained by the return value
of function nd_char(). The value of x is further constrained by the assume, such
that x > 0 && x < 10. Then, the program non-deterministically allocates a 1- or
2-byte memory region and assigns the address to the variable p. The first byte that
p points to is assigned by the value of x. The second byte (if any) is assigned 0. For
the moment, ignore that the second assignment might be undefined behaviour (we
expand on this in Sec 3.3). Finally, the two asserts describe the post-condition.

Fig. 3.3a shows the SEA-IR program transformed from the C program. For
presentation purposes, we do not strictly follow the syntax of SEA-IR. For example,
we allow immediate values to appear in place of registers, and write expressions in
infix form. The program is a single function main, which consists of four basic blocks
labeled by BB0, BB1, BB2 and BB3. A basic block consists of a label, zero or more
PHI-statements, one or more statements, an optional branch statement or a halt.

A SEA-IR program has two types of registers: scalar registers and memory
registers. Scalar registers store values of basic datatype – integers and pointers.
Memory registers store memory regions, and map from addresses to values. Each
memory register maps to a unique memory and we use memory register and memory
interchangeably. For example, in Fig. 3.3a, R0 is a scalar register which stores an
integer and P1 is a scalar register for a pointer. M0 and M1 are memory registers.
Since each program is finite, the number of registers is finite as well.

An assignment statement defines the register by the value of a given expression.
We assume that expressions include the usual set of operations, e.g., arithmetic,
bitwise operations, cast operations and pointer arithmetic. For example, in BB0 of
Fig. 3.3a, R2 = R0 < 10 defines the value of register R2 by the value of the expression
R0 < 10, where < is an unsigned 8-bit less-than operator.

A phi selects a value from a list of values when a control flow merges. For
example, M3 = phi[M1,BB1],[M2,BB2] in BB3 of Fig. 3.3a assigns M1 (M2) to M3 if
the previously executing was BB1 (BB2).

SEA-IR provides alloca and malloc instructions to allocate memory on the
stack and heap, respectively. A given number of bytes are allocated in memory on
RHS of the statement, defining a new memory on the LHS. While allocation itself

22

P ::= fun main(){BB+}
BB ::= L : PHI∗ S+ (BR | halt)

BR ::= br E, L, L | br L

PHI ::= R = phi [R, L](,[R, L])∗ | M = phi [M, L](,[M, L])∗

S ::= RDEF | MDEF | VS

RDEF ::= R = E | R, M = alloca R, M | R, M = malloc R, M |
R = load R, M | M = free R, M

MDEF ::= M = store R, R, M

VS ::= assert R | assume R

Figure 3.1: Simplified grammar of SEA-IR, where E, L R and M are expressions, labels,
scalar registers and memory registers, respectively.

1 int main() {
2 uint8_t x = nd_char();
3 assume(x > 0 && x < 10);
4 uint8_t *p = nd_bool() ? malloc(2*sizeof(uint8_t))
5 : malloc(sizeof(uint8_t));
6 *p = x;
7 *(p + 1) = 0; // potential UB
8 sassert(0 < *p && *p < 10);
9 sassert(*(p + 1) == 0); // potential UB

10 return 0;
11 }

Figure 3.2: An example C program.

does not define memory, the reason for this syntax is explained in Sec. 3.3. Consider
P1, M1 = malloc 2, M0 in BB1 of Fig. 3.3a. It allocates 2 bytes (in heap address
space) in memory M0, defines memory M1 and a fresh pointer in P1.

A store, e.g., M5 = store 0, R5, M4 in BB3, defines memory M5 by writing the
value 0 to the address pointed-to by the pointer register R5 in memory M4. Note
that the instruction is pure; i.e., all effects of the instructions are on the output
registers only. The result of the modification is stored in M5, while M4 is unchanged.
Similarly, a load reads the value pointed-to by a pointer register in memory register
M, and assigns the value to a new register. assert and assume represent the usual
verification statements for assertions and assumptions, respectively.

3.2.2 Program Transformation

Before generating verification conditions, a series of program transformations are
applied to a SEA-IR program. This section explains each program transformation.

23

fun main() {
BB0:
M0 = mem.init()
R0 = nd_char()
R1 = R0 > 0
assume R1
R2 = R0 < 10
assume R2
R3 = nd_bool()
br R3, BB1, BB2

BB1:
P1, M1 = malloc 2, M0
br BB3

BB2:
P2, M2 = malloc 1, M0
br BB3

BB3:
M3 = phi [M1,BB1],[M2,BB2]
R4 = phi [P1,BB1],[P2,BB2]
M4 = store R0, R4, M3
R5 = R4 + 1
M5 = store 0, R5, M4
R6 = R0 > 0 && R0 < 10
assert R6
assert 0 == 0
halt

}

(a) SEA-IR

fun main() {
BB0:
M0 = mem.init()
R0 = nd_char()
R1 = R0 > 0
assume R1
R2 = R0 < 10
assume R2
R3 = nd_bool()
br R3, BB1, BB2

BB1:
P1, M1 = malloc 2, M0
br BB3

BB2:
P2, M2 = malloc 1, M0
br BB3

BB3:
M3 = phi [M1,BB1],[M2,BB2]
R4 = phi [P1,BB1],[P2,BB2]
M4 = store R0, R4, M3
R5 = R4 + 1
M5 = store 0, R5, M4
R6 = R0 > 0 && R0 < 10
br R6, BB4, ERR

BB4:
assume 0 != 0
br ERR

ERR:
assert 0
halt

}

(b) Single Assert (SA)

fun main() {
BB0:
M0 = mem.init()
R0 = nd_char()
R1 = R0 > 0 && R0 < 10
R2 = nd_bool()
br R2, BB1, BB2

BB1:
P1, M1 = malloc 2, M0
br BB3

BB2:
P2, M2 = malloc 1, M0
br BB3

BB3:
M3 = phi [M1,BB1],[M2,BB2]
R3 = phi [P1,BB1],[P2,BB2]
M4 = store R0, R3, M3
R4 = R3 + 1
M5 = store 0, R4, M4
R5 = R0 > 0 && R0 < 10
br R5, BB4, ERR

BB4:
R6 = false
br ERR

ERR:
A = phi [R6,BB4],[R1,BB3]
assume A
assert 0
halt

}

(c) Single Assume (SASA)

fun main() {
BB0:
M0 = mem.init()
R0 = nd_char()
R1 = R0 > 0 && R0 < 10
R2 = nd_bool()
br R2, BB1, BB2

BB1:
P1, M1 = malloc 2, M0
br BB3

BB2:
P2, M2 = malloc 1, M0
br BB3

BB3:
M3 = select R2, M1, M2
R3 = select R2, P1, P2
M4 = store R0, R3, M3
R4 = R3 + 1
M5 = store 0, R4, M4
R5 = R0 > 0 && R0 < 10
br R5, BB4, ERR

BB4:
R6 = false
br ERR

ERR:
A = select R5, R6, R1
assume A
assert 0
halt

}

(d) Gated SSA (GSSA)

Figure 3.3: Program from Fig. 3.2 in: (a) SEA-IR, (b) SA, (c) SASA, and (d) GSSA
forms.

24

Single Assert Form A program is in a Single Assert (SA) form if it only contains
one assert, which appears as the last statement in the last block of a program before
halt. Fig. 3.3b shows the code in a SA form transformed from the one in Fig. 3.3a,
where an ERR label is added to the original code, and denotes an error state. In BB3,
assert R6 is transformed into br R6, BB4, ERR, meaning that if R6 is not true, then
the program’s execution trace is diverted to ERR. Similarly, assert 0 = 0 in BB3 is
transformed into assume 0 != 0 and br ERR.

Single Assume Single Assert Form A program is in a Single Assume Sin-
gle Assert (SASA) form if it is in SA form, and contains a single assume imme-
diately followed by a single assert. For example, the two definition of registers
R1 and R2 in BB0 of Fig. 3.3b are combined into one definitions of R1 in Fig. 3.3c,
where the two boolean expressions are combined by a conjunction. A phi-statement,
A = phi [R6,BB4],[R1,BB3], is added to ERR. Thus, a register A tracks the value of
the conjunction along an execution, and using the single assume to check the value
in the register is true.

Gated Single Static Assignment Form A program in SASA form is further
transformed into a Gated Single Static Assignment (GSSA) form, where phi-functions
are replaced by select expressions2. For example, phi [M1,BB1], [M2,BB2] in ERR

of Fig. 3.3c is transformed into select R2, M1, M2 in Fig. 3.3d, where R2 is the
condition that the program trace is diverted to BB1 or BB2.

Pure Dataflow Form A (loop-free) program is in a Pure Dataflow (PD) form if
it is in GSSA form and contains a single basic block. As shown in Fig. 3.4a, all the
labels and br are removed from Fig. 3.3d, and the five basic blocks are merged into
one single basic block.

Reduced Pure Dataflow Form A program is in a reduced PD form if every
definition appears on a def-use chain of either assume or assert. Each such definition
is said to be in the cone of influence (COI). In Fig. 3.4a, the highlighted code is not
in the cone of influence and is not considered.

A program in reduced pure data flow form has no control dependencies. It is
essentially a sequence of equations with two side-conditions determined by assume

2In LLVM, select is the usual ternary ITE such as c ? a : b in C.

25

fun main() {
entry:

M0 = mem.init()
R0 = nd_char()
R1 = R0 > 0 && R0 < 10
R2 = nd_bool()
P1, M1 = malloc 2, M0
P2, M2 = malloc 1, M0

M3 = select R2, M1, M2

R3 = select R2, P1, P2

M4 = store R0, R3, M3

R4 = R3 + 1

M5 = store 0, R4, M4

R5 = R0 > 0 && R0 < 10
R6 = false
A = select R5, R6, R1
assume A
assert 0
halt

}

(a) Pure-Dataflow (PD)

r1 = (r0 > 0 ∧ r0 < 10) ∧

p1 = addr0 ∧m1 = m0 ∧
p2 = addr0 + 4 ∧m2 = m0 ∧

r3 = ite(r2, p1, p2) ∧

r4 = r3 + 1 ∧

r5 = (r0 > 0 ∧ r0 < 10) ∧
r6 = false ∧
a = ite(r=5, r6, r1) ∧
a ∧
¬false

(b) SMT-LIB

Figure 3.4: Program from Fig. 3.2 in PD and SMT-LIB forms.

and assert. All definitions are used, directly, or indirectly, by either assume or
assert (or both). At this point, generating VC is a matter of mapping each definition
into an equation in a logic.

3.2.3 Verification Condition Generation

In this section, we describe the translation function sym that encodes a program
into a verification condition. Throughout the section, we illustrate sym using the
program in Fig. 3.4a and the corresponding VC in Fig. 3.4b.

The input to sym is a SEA-IR program in a reduced PD form, and the output is a
SMT-LIB program. For simplicity of presentation, we assume that two fundamental
sorts are used in the encoding: bit-vector of 64 bits, bv(64), and a map between bit-
vectors, bv(64) → bv(64).3 In addition, we use the following helper sorts: scalr :
bv(64), ptrs : scalr , and mems : bv(64)→ bv(64), where scalr is sorts of scalars, ptrs
of pointers, and mems of memories.

sym is defined recursively, bottom up, on the abstract syntax tree of SEA-IR.
First, each register, R, is mapped to a symbolic constant sym(R) of an appropriate
sort. To simplify the presentation, we use a lower-case math font for constants

3In practice, SeaBMC supports multiple bit-widths for scalars, and different ranges for values
for maps.

26

sym(R = E) , r = e sym(assume R) , r sym(assert R) , ¬r

sym(M1 = store R1,R2,M0) , m1 = write(m0, r1, r2)

sym(R1 = load R0,M) , r1 = read(m, r0)

sym(R1,M1 = alloca R0,M0) , r1 = alloc(alloca R0,M0) ∧ m1 = m0

sym(R1,M1 = malloc R0,M0) , r1 = alloc(malloc R0,M0) ∧ m1 = m0

Figure 3.5: Definition of sym.

corresponding to the register. For example, in Fig. 3.4a, sym(R0) is r0 of scalr sort,
sym(P2) is p2 of ptrs sort, and sym(M0) is m0 of mems sort, respectively.

Second, each expression E in SEA-IR is mapped into a corresponding SMT-LIB
expression sym(E). We omit the details of this step since they are fairly standard.
For example, a select is translated into an ite, scalar addition, such as R9 + 1

is translated into bit-vector addition bvadd, etc. Pointer manipulating expressions,
such as pointer arithmetic (gep) and pointer-to-integer cast (ptoi) are described
in Sec. 3.3.

Finally, sym translates each statement into an equality. For example, R = E is
translated into r = e, where e is sym(E). For example, in Fig. 3.4a, A = select R5,R6,R1

is translated into a = ite(r5, r6, r1) in Fig. 3.4b.

Translating alloca and malloc requires a memory allocator. We parameterize
sym by an allocation function alloc : A → ptrs that maps allocation expressions
in A to values of pointer sort. For example, in Fig. 3.5, R1, M1 = alloca R0, M0

is translated into r1 = alloc(alloca R0 M0) ∧ m1 = m0, and is reduced to p1 =
addr 0 ∧m1 = m0, where addr 0 is the return value of alloc.

For sym, alloc must satisfy the basic specifications of a memory allocator. The
spec is formalized in Fig. 3.6, where size and align return the size and alignment
of each allocation expression in A. Intuitively, each allocated segment must have a
statically known bound on size, all pointers returned by an allocation are aligned,
and all allocations are mutually disjoint. For example, in Fig. 3.4a, the memory
allocations in P2, M1 = malloc 2, M0 and P1, M2 = malloc 1, M0 are guaranteed
to be disjoint since Fig. 3.4b adds a constraint that p1 = addr0 ∧ p2 = addr0 + 4. In
practice, we also enforce that stack allocations (alloca) return high addresses, and
heap allocations (malloc) return low addresses. Other constraints, such as separating
kernel- and user-space addresses can be easily added.

The semantics for memory operations depends on the representation of memories
(see Sec. 3.3). We use two functions, read and write, to encapsulate the actual
translation when defining the meaning of load and store, respectively. The function

27

∀a ∈ A · size(a) is known ∀a ∈ A · (alloc(a) mod align(a)) = 0

∀a1 6= a2 ∈ A · (alloc(a1) + size(a1) ≤ alloc(a2)) ∨ (alloc(a2) + size(a2) ≤ alloc(a1))

Figure 3.6: Specifications for size, align, and alloc.

Array λ
read(m, r0) select m r0 m(r0)

write(m0, r1, r2) store m0 r1 r2 λx.ite(x = r1, r2,m0(x))

Figure 3.7: Translation of read and write.

read(m, r) represents the value of the memory register m at index r. The function
write(m, r1 , r2) represents a new memory obtained by writing the value r1 at index r2
in m. In Fig. 3.5, load R0, M and store R1, R2, M0 are translated into read(m, r0),
and write(m0, r1, r2), respectively.

SeaBMC has two memory representations:

Arrays Memories are modeled by an SMT-LIB theory of extensional arrays Ar-
raysEx4. A memory register M is mapped to a symbolic constant m, where m is of
sort mems . As shown in Fig. 3.7, a write is translated into an ArrayEx store, and a
read is translated into an ArrayEx select.

Lambdas Memories are modelled by λ-functions of the form λx.e, where e is an
expression with free occurrences of x. A memory register M is translated into an
uninterpreted function m of sort mems . As shown in Fig. 3.7 read(m, r0) is translated
into a function application m(r0), and write(m0, r1, r2) is translated into a new λ-
function, λx.ite(x = r1, r2,m0). In the final VC, function applications are β-reduced
to substitute formal arguments with actual parameters. Thus, the VC contains only
ite-expressions, and does not require underlying SMT-solver to support ArrayEx.

Overall, for a program P in a reduced PD form with a sequence of statements
S0 · · · Sk, followed by assume R0 and assert R1, sym(P) is defined as follows:

sym(P) ,

 ∧
0≤i≤k

sym(Si)

 ∧ sym(R0) ∧ ¬sym(R1).

4http://smtlib.cs.uiowa.edu/theories-ArraysEx.shtml.

28

http://smtlib.cs.uiowa.edu/theories-ArraysEx.shtml

RDEF ::= R = isderef R, R | R = isalloc R,M | R = ismod R, M

Figure 3.8: SEA-IR syntax for memory safety.

fun main() {
BB0:

M0 = mem.init()
R0 = nd_char()
R1 = R0 > 0 && R0 < 10
R2 = nd_bool()
p1, M1 = malloc 2, M0
p2, M2 = malloc 1, M0

M3 = select R2, M1, M2

R3 = select R2, p1, p2
R4 = isderef R3, 1

M4 = store R0, R3, M3

R5 = gep R3, 1
R6 = isderef R5, 1

M5 = store 0, R5, M4

R7 = R0 > 0 && R0 < 10
R8 = false
A0 = select R7, R8, R1
A1 = select R6, A0, R1
A2 = select R4, A1, R1
assume(A2)
assert(0)
halt

}

(a) Pure-Dataflow (PD)

r1 = r0 > 0 ∧ r0 < 10 ∧

p1.base = addr0 ∧ p1.offset = 0 ∧ p1.size = 4 ∧m1 = m0 ∧
p2.base = addr0 + 4 ∧ p2.offset = 0 ∧ p2.size = 4 ∧m2 = m0 ∧

r3 = ite(r5, p1, p2) ∧
r4 = 0 ≤ (1 + r3.offset) < r3.size ∧

r5.base = r3.base ∧ r5.offset = r3.offset + 1 ∧ r5.size = r3.size ∧
r6 = 0 ≤ (1 + r5.offset) < r5.size ∧

r7 = r0 > 0 ∧ r0 < 10 ∧
r8 = false ∧
a0 = ite(r7, r8, r1) ∧
a1 = ite(r6, a0, r1) ∧
a2 = ite(r4, a1, r1) ∧
a2 ∧
¬false

(b) VC in SMT-LIB

Figure 3.9: Program from Fig. 3.2 with added isderef assertions in PD and SMT-LIB
forms.

For example, the VC for a program in Fig. 3.4a is shown in Fig. 3.4b. Definitions in
Fig. 3.4a are translated into a conjunction of equalities, and assert 0 is translated
into ¬false. The VC is unsatisfiable since A evaluates to false.

Theorem 1 sym(P) is satisfiable iff P has an execution that satisfies the assumption
and violates the assertion.

3.3 Verifying Memory Safety

Memory safety is difficult to specify directly in many programming languages. In
C, for example, there is no mechanism for checking if a pointer dereference is within
allocated bounds. To make such specifications possible, we use fat pointers [30]

29

sym(R1,M1 = malloc R0,M0)) , r1 = alloc(malloc R0, M0) ∧m1 = allocsh(m0, r1)

sym(M1 = free R0,M0) , m1 = freesh(m0, r0)

sym(MR = store R1,R2,M1)) , 〈mr1, . . . ,mrj〉 = 〈write(m0.1, addr(r1), r2.1), . . . ,

write(m0.j, addr(r1), r2.j)〉 ∧
〈m1j+1, . . . ,m1k〉 = storesh(〈m0j+1, . . . ,m0k〉, r1)

sym(R1 = load R0,M0) , r1 = 〈read(m0.1, addr(r0)), . . . , read(m0.j, addr(r0))〉
Figure 3.10: Memory-safety aware VCGen semantics.

allocsh(m, r) , 〈m.val ,m.offset ,m.size,write(m.alloc, r.base, 1),m.mod〉
freesh(m, r) , 〈m.val ,m.offset ,m.size,write(m.alloc, r.base, 0),m.mod〉
storesh(〈m.alloc,m.mod〉, r) , 〈m.alloc,write(m.mod , r.base, 1)〉

Figure 3.11: Shadow memory semantics for memory safety.

and shadow memory to track extra data about pointers and memory, respectively.
Moreover, we present a general extension of both memory and pointer semantics.

Intuitively, we want to represent each fat pointer as a tuple of values that col-
lectively represent the value of the pointer and all the metadata (i.e., fat) that is
cached at it. We do not put restrictions on the number of values nor their sorts.
However, we assume that there is a function addr that maps a pointer to an ex-
pression representing an address. Thus, for a pointer register R, sym(R) is a tuple
〈t1, . . . , tj〉 of j constants that represents the pointer, and addr(〈t1, . . . , tj〉) is the
address of that pointer. For example, a common case is to use the first element
of the tuple to represent the address: addr(〈t1, . . . , tj〉) = t1. Fig. 3.13 presents a
small program (on the left) that writes a fat pointer P0 to memory at address P1.
Memory is divided into five parts with val memory used to store the actual program
data. Here, val stores the base value of the fat pointer and offset and size store the
fat. Memory operations are tracked by alloc and mod memory that mark whether
an address is allocated and whether it has been written to, respectively. Fig. 3.13
shows the memory state after the store operation. Both alloc and mod are set to 1
because P1 is allocated and has been modified.

Formally, we re-define ptrs to be a tuple of sorts, written as 〈s1, . . . , sj〉. We say
that a tuple τ = 〈c1, . . . , cp〉 of p constants is of a tuple sort 〈s1, . . . , sp〉 iff, for each
0 < i ≤ p, ci is of sort si. Tuples of sorts, and tuples of constants are only present
during VCGen, but not in the final verification condition. For that, we rewrite
equality between two tuples as conjunction of equalities between their elements, and
use τ.i for the ith element of tuple τ .

Similar to a pointer register, we re-define mems for a memory register M as a

30

sym(R1 = isderef R0 B) , r1 = 0 ≤ (b+ r0.offset) < r0.size

sym(R1 = isalloc R0 M) , r1 = read(m.alloc, r0.base)

sym(R1 = ismod R0 M) , r1 = read(m.mod , r0.base)

Figure 3.12: Semantics for verifiying memory safety.

fun main() {
BB0:

M0 = mem.init()
// addr=0x100
P0, M1 = malloc 1, M0
// addr=0x200
P1, M2 = malloc 1, M1
M3 = store P0, P1, M2
halt

}

(a) a program

Memory

0x100 0 1 1 1

base offset size
0x200 0 1

P1:

…
…

(b) memory state

Figure 3.13: Memory state M3 - when P0 is stored at location P1.

tuple of values that store program and shadow state . Thus, sym(M) = 〈v0, . . . , vk〉,
where each vi is the sort bv(64) → bv(64). If a pointer is represented by a j-tuple,
we assume that memory is represented by a k-tuple, with k ≥ j, so that the first j
entries in a memory register are wide enough to store the fat pointer. Specifically,
we require that the sort of vj is same as sort of tj for 1 ≤ j ≤ k.

We modify the semantics of malloc by storing meta data along with explicit
program states. The modification is defined in Fig. 3.10 (M1 is now a memory tuple).
The signature of alloc is unchanged, but now returns a fat pointer. Given a pointer p
of sort ptrs , a function size(〈t1, . . . , tj〉) returns the size of a memory object pointed-
to by p. An additional function allocsh : mems → mems operates on shadow memory.
The semantics of allocsh and freesh is described in Sec. 3.3.2.

A store is divided into two parts. First is the store of actual program data. Here,
since the program data can be of sort scalr or ptrs , a store of a k tuple of data on
memory m0 is translated into k write functions on each element of 〈m01, . . . ,m0j〉.
Second is changing metadata associated with the memory. This is abstracted by
the function storesh that works on 〈m0j+1, . . . ,m0k〉. The specifics of this function is
described in Sec. 3.3.2. Similarly a load operation expects to read 〈m01, . . . ,m0j〉 of
sort ptrs . The encoding described above is general and allows representing arbitrary
fat and shadows. Next, we illustrate specializations for memory safety.

31

3.3.1 Spatial memory safety

A program satisfies spatial memory safety iff every read and write is always inside
an allocated object. A fat pointer is defined as a tuple of three constants 〈s1, s2, s3〉
denoted as 〈base, offset , size〉 for convenience. Here base is the start address of the
object, offset is an index into the object, and size is its size. The address addr is
given by base + offset .

With fat pointers, we introduce instructions for pointer arithmetic and pointer
integer casts. The instruction gep is used for pointer arithmetic. Fig. 3.9a shows an
example use in R5 = gep R3, 1. Here, semantically, a new pointer R5 is created that
has the same base and size as R3, with offset incremented by 1. We also introduce
ptoi instruction that casts a pointer to an integer by adding offset to base. For an
integer to pointer cast, we use the itop instruction. This instruction sets base to the
integer value and fat to zero.

To assert that a pointer dereference is spatially memory safe, we provide an
isderef instruction, whose semantics is shown in Fig. 3.12. As an example, the
program in Fig. 3.9a executes assert(0) as R6 = isderef R5, 1 evaluates to false
causing A1 to evaluate to R1 and A2 to evaluate to true. This causes the VC in
Fig. 3.9b to be satisfiable and exposes the out of bounds error in Fig. 3.2 line 9.
Note that the same error is not caught by the VC in Sec. 3.2.3. In SeaBMC, we
can automatically add isderef instructions before memory accesses. Many of such
assertions are statically and, thus, cheaply resolved to true or false before SMT
solving is invoked.

Note that SeaBMC semantics for spatial safety differs from LLBMC [49].
LLBMC treats only accesses to unallocated memory as unsafe. This implies that it
is valid for a pointer to overflow into another object allocated just below or above. In
SeaBMC, jumping across the allocated boundary is invalid. SeaBMC also differs
from CBMC in this regard. In CBMC [14], the pointer representation is fixed and
a few bits in the pointer representation are reserved for fat data. These constrain the
available address range. Additionally, only limited metadata can be stored in each
pointer. In SeaBMC, we support composite pointer representations that maintain
parity with concrete pointer representation while allowing for a rich metadata in the
fat region of the pointer.

32

3.3.2 Temporal memory safety

A program satisfies temporal memory safety iff it never does one of the following:
(UAF) an object is used after it has been freed; and (RO) an object marked as read-
only (by programmers) is modified. We detect a violation of memory safety by track-
ing the status of a memory object using shadow memory. Each memory is a tuple
〈v1, . . . , v5〉 of constants of sort bv(64)→ bv(64), denoted 〈val , offset , size, alloc,mod〉,
where 〈val , offset , size〉 maps to pointer data 〈base, offset , size〉, and alloc and mod
track the allocated and modified status of an object, respectively.

An object can be in allocated or freed (unallocated) state. To track allocated
state, sym in Sec. 3.2.3 is extended for alloca, malloc, and free. The new semantics
is shown in Fig. 3.10. The function allocsh : mems → mems is defined, for temporal
memory safety, as shown in Fig. 3.11. Note that allocsh(m, r) marks m.mod memory
only at the start of an object, i.e., r.base. For this reason it is necessary to use the
fat pointer representation in Sec. 3.3.1 since it records the base for every pointer.
The isalloc instruction, shown in Fig. 3.8, is used to check the allocated state of
an object at any point in the program. The semantics for isalloc is defined in
Fig. 3.12.

A C program has no native mechanism for verifying that an object remains un-
modified when passed to a function. To remedy this, we extend the semantics for
store as shown in Fig. 3.10. The function storesh : mems → mems is implemented
for temporal memory safety as shown in Fig. 3.11. The ismod in Fig. 3.8 is used to
check the read-only state of an object at any program point. The semantics for ismod
is given in Fig. 3.12. We also provide a companion instruction resetmod R, M that
resets m.mod at address r.base to zero. This allows initializing an object, resetting
modified state, and then checking that the subsequent program does not modify the
object. We track memory state only at object granularity, therefore, the current
implementation is tied to using the fat pointer representation in Sec. 3.3.1.

3.4 Experiments

In this section, we reproduce key results from our companion work [44]. For the full
results, please refer to the paper.

We describe the evaluation of SeaBMC on verification tasks from aws-c-common.
Each task targets a single function from aws-c-common checking post-conditions

33

Statistics SeaBMC CBMC SMACK KLEE

category cnt loc avg (s) std (s) time (s) avg (s) std (s) time (s) cnt fld/to avg (s) std (s) time (s) cnt avg (s) std (s) time (s)

arithmetic 6 202 1 0 7 4 1 23 6 2/0 7 1 43 6 1 0 5
array 4 390 2 1 8 6 0 22 4 0/1 58 95 230 4 32 6 129
array list 23 2 901 5 6 114 36 61 824 23 0/0 13 2 303 23 55 49 1 275
byte buf 29 2 817 2 1 43 18 47 512 29 0/2 44 55 1 270 27 75 124 2 034
byte cursor 24 2 361 2 0 36 7 4 165 16 0/2 44 62 702 17 13 14 217
hash callback 3 347 2 1 7 10 6 29 3 0/0 9 4 26 3 64 46 192
hash iter 4 708 11 16 43 13 9 51 4 0/2 153 55 613 3 21 10 62
hash table 19 3 286 5 7 99 24 33 447 19 1/5 72 83 1 358 15 105 333 1 569
linked list 18 2 082 3 2 48 59 209 1 061 18 0/9 111 94 2 000 18 1 0 13
others 2 31 1 0 2 4 0 7 1 0/0 4 0 4 1 1 0 1
priority queue 15 2 817 16 25 243 208 303 3 121 15 0/1 29 47 432 15 46 12 695
ring buffer 6 934 12 10 75 20 20 120 6 0/4 137 97 824 6 48 26 289
string 15 1 314 3 1 44 6 1 94 15 0/3 48 79 720 15 140 160 2 096

total 168 20 190 769 6 476 159 3/29 8 525 153 8 577

Table 3.1: Verification results for SeaBMC, CBMC, SMACK and KLEE. Timeout
is 200s. cnt, avg, std and time, are the number of verification tasks, average run-
time, standard deviation, and total run-time in seconds, per category, respectively
(repro. from [44]).

and memory safety. Overall, there are 172 tasks, covering 20K LOC. All verifica-
tion tasks and detailed results are available at https://github.com/seahorn/
verify-c-common. We have chosen these tasks because they represent a real in-
dustrial use-case of BMC. We have adapted them from CBMC to be compatible with
LLVM-based C verification tools. The details are described in [45] [44].

When comparing SeaBMC to other state-of-the-art bounded analysis tools,
we use the optimal strategy as described in [44], Section 4. We compare against:
CBMC [14], SMACK [47], and KLEE [10]. CBMC is, perhaps, the oldest and
most well-known BMC for C programs (not based on LLVM). It is actively used by
AWS, and was used for the verification of aws-c-common. SMACK is an LLVM-
based BMC tool that uses Boogie [39] and Corral [47]. It performed very well on the
“SoftwareSystems” category in SV-COMP’21. KLEE is an LLVM-based symbolic
execution tool. It does not encode the VC in one shot but rather explores satisfiabil-
ity of path conditions in a program one path-at-a-time. It is a practical alternative
to BMC.

The results are shown in Tab. 3.1. SeaBMC and CBMC solve all verification
tasks from aws-c-common. SMACK timed out on most instances in its bit-precise
mode. It timed out on 29 and failed on 2 in arithmetic mode. KLEE is particularly
effective on linked list – showing the benefit of exploring path-at-a-time, when
the number of paths is small. Overall, SeaBMC outperforms the competitors on
most categories and in the overall run-time. Thus, we conclude that SeaBMC is a
highly efficient BMC engine.

34

https://github.com/seahorn/verify-c-common
https://github.com/seahorn/verify-c-common

3.5 Related Work

Bounded Software Model Checking is a mature program analysis technique. We
briefly review only some of the closest related work. Over the years, there have been
many model checking tools built on top of the LLVM platform. The closest to ours
is the work of Babic [3] and LLBMC [49]. Similarly to [3], we rely on the Gated
SSA form to remove all control dependence leaving only data-flows to be represented.
However, our encoding is significantly simplified by an intermediate representation
that purifies memory flows. Unfortunately, [3] has not been maintained making
head-to-head comparison difficult.

We borrow the idea of using lambda-encoding for representing memory from
LLBMC [49]. One important advantage of lambdas is that we can represent memory
operations such as memcpy efficiently (while with arrays, these have to be unfolded).
In particular, this allows for unbounded verification of loop-free programs that use
these operations. The most significant difference from LLBMC is in our encoding
of memory safety. In particular, we cache bounds information in the pointer, and
check that every access is inside the allocated memory object. In contrast, LLBMC
assumes an arbitrary allocator and checks that all accesses are into some allocated
memory, not necessarily into the expected object. Unfortunately, there is no public
version of LLBMC available, so head-to-head comparison was not possible.

SMACK [24, 47] is probably the most known BMC for LLVM. It is based on
Boogie and Corral from Microsoft Research. It is most effective for arithmetic ab-
straction of software (i.e., abstracting machine integers by arbitrary precision in-
tegers). Its model for memory safety relies on complex encoding using universally
quantified axioms in Boogie, leading to quantified reasoning in SMT. In contrast,
our representation is tuned to perform well with modern SMT solvers. SMACK
shares SeaDsa [27, 34] alias analysis with SeaBMC. DIVINE4 [4] is an explicit
state model checker that also targets LLVM. However, it uses LLVM 7 while Sea-
Horn uses LLVM 10. This makes head-to-head comparison difficult. It targets
parallel programs, which SeaBMC does not. For sequential programs, it is related
to libFuzzer and KLEE that we compare with.

3.6 Conclusion

In this chapter, we have presented the techniques behind SeaBMC, a new Bounded
Model Checker for C based on LLVM. SeaBMC is path-sensitive, bit-precise, and

35

provides precise model of memory. It extends traditional memory model with fat
pointers and shadow memory that allow attaching additional data to pointers and
memory. We have evaluated SeaBMC against CBMC, SMACK, and KLEE and
show significant performance improvements over the competition.

36

Chapter 4

SeaUrchin: Bounded Model
Checking for Rust

4.1 Introduction

Rust is a relatively new systems programming language with similar applications as C
and C++. It can run on tiny microcontrollers and high-end servers. Using a strong
type system, Rust ensures that successfully compiled programs possess certain safety
properties. At the same time, there is no runtime penalty for this safety and Rust
programs are as performant as equivalent C and C++ ones. The Rust compiler,
rustc, uses the LLVM backend to generate executables. With LLVM as a common
IR, a natural question is whether SeaHorn and SeaBMC can be used to verify
Rust programs. Additionally, since Rust has a strong type system, does it affect the
kinds of properties we would like to verify? One promise of Rust’s type system is
that programs don’t suffer from spatial and temporal memory safety bugs1. This
alone would obviate using BMC for verifying non-functional properties like memory
safety. However, the story is not so simple. Rust only guarantees safety for code
written in a subset of Rust called Safe Rust. For performance and other reasons,
programs can call into Unsafe Rust code where, for example, arbitrary memory reads
and writes are allowed. Once this happens, the Rust compiler, rustc, cannot verify
that safety is maintained and it simply assumes that unsafe code is safe. Thus,
even though Rust is safe, there are opportunities for verifying both non-functional
and functional properties. This chapter summarizes early experience on applying

1See Sec. 3.3.

37

SeaBMC to Rust using three Research Questions(RQ):

RQ 1: Does LLVM bitcode as IR empower SeaBMC to work for Rust
out-of-box? The SeaHorn tool is built to work with LLVM bitcode and when
verifying C source, it relies on clang turning it into LLVM bitcode. Since rustc,
the Rust compiler, also targets LLVM bitcode as a backend, it should empower
SeaBMC to be used as-is, i.e. without embedding any knowledge of Rust. We
explore this hypothesis using a new front-end processing tool called SeaUrchin
and show positively that using LLVM bitcode enables verification of Rust code with
minimal front-end processing.

RQ 2: Does CaS philosophy apply effectively to Rust? C does not have
built-in mechanisms to hide library code from client software. This enables library
code to be used effectively to write specifications since all logic to express pre–
and post–conditions is available to the user. On the other hand, Rust has strong
notions of visibility — all code is private across modules unless explicitly declared
public. To study this, we design an experiment to express invariants in Rust standard
library components so as to ensure that the components do not panic at runtime.
In summary, we find that CaS can be used effectively for Rust programs. However,
this can require changing library code to expose previously hidden state.

RQ 3: Can verification become more efficient when using Rust language
specific information? Using a common IR like LLVM bitcode removes the engi-
neering burden of writing operational semantics for different source languages. For
Rust, it offers the additional benefit that we do not need to build semantics for
Safe Rust and Unsafe Rust as these abstractions are removed when compiling into
LLVM bitcode. At the same time, a constant push for BMC is to improve efficiency
so that it can scale to larger or more complex programs. One way of scaling is to
use type information present in Rust programs to simplify the generated verification
conditions. Thus, there is a middle ground to explore — where we modify SEA-IR
to preserve source language information. This is a long term research direction of
SeaUrchin and we explore ideas for future work.

4.2 RQ1: Does LLVM bitcode as IR empower

SeaBMC to work for Rust out-of-box?

The Rust compiler, rustc, targets LLVM bitcode as its primary backend. Sea-
Horn (and the SeaBMC engine) work on LLVM bitcode. A natural question is

38

Modified RVT flow

Rust(cargo)
project
source

Xargo

patch-llvm

Generate
bitcode

stubs
added

LLVM
bitcode file

test function map

Rust
standard

library

Compile Patch Gen

SeaHorn

SAT/UNSAT

Verify

Figure 4.1: Architecture of SeaUrchin.

whether Rust programs can be verified by SeaBMC. To answer this, we imple-
mented a pre-processing pipeline SeaUrchin which converts Rust programs into
LLVM bitcode which can be verified by SeaBMC. As shown in Fig. 4.1, SeaU-
rchin has four stages: Compile compiles source (including Rust standard library)
into LLVM bitcode; Patch replaces computationally expensive code with stubs; and
Gen generates a source function name to bitcode function name mapping and the
writes the patched LLVM bitcode to disk. Finally, the Verify stage uses SeaHorn
to produce a SAT/UNSAT result.

SeaUrchin, as currently implemented, modifies the Rust Verification Tools
(RVT)2 program for the above steps. RVT is an open-source verification frame-
work from Google Research which enables Rust programs to be verified by different
verifiers like SeaHorn and KLEE. It also includes the patch-llvm program shown
in Fig. 4.1. The modifications to RVT are not very deep but needed for our use
case described in Sec. 4.3. For example, RVT (by way of Cargo) does not support
compiling the Rust standard library along with a Rust program. However, we need
this and we use the Xargo3 wrapper instead of Cargo.4

SeaUrchin is packaged as a startup script urchin and a docker image. The
script first calls the docker image which contains the modified RVT and then verifies
the produced LLVM bitcode using SeaBMC installed locally on a machine. This
removes the need for extensive system preparation to run the verification pipeline.
The pipeline is open sourced5. To put our approach in context, we compare our
experience with that of extending SMACK to Rust as documented in [5].

2https://github.com/project-oak/rust-verification-tools
3https://github.com/japaric/xargo
4Newer versions of Cargo obviate the need for Xargo.
5https://github.com/priyasiddharth/seaurchin

39

https://github.com/project-oak/rust-verification-tools
https://github.com/japaric/xargo
https://github.com/priyasiddharth/seaurchin

Extensions to CaS language. Both SMACK and SeaUrchin (through RVT)
provide a shallow API to the C verifier.

Generated LLVM bitcode. The work on SMACK [5] describes three differences
between LLVM bitcode generated by clang and rustc and the support added to
SMACK to be able to verify Rust code. In our experience SeaBMC worked out of
the box for these cases. Namely,

• support for exotic LLVM datatypes like i1;

• support for handling compound datatypes packed into primitive datatypes,
e.g., a pair {i32, i32} packed into a single i64 integer;

• support for LLVM intrinsics, e.g. llvm.uadd.with.overflow.i32.

From our experience in applying SeaBMC to aws-c-common, the above LLVM
bitcode patterns are produced by sufficiently varied (e.g., industrial) C code and,
therefore, SeaBMC was well prepared to handle such code. One similarity with
SMACK is that in both cases expensive and unnecessary functionality is stubbed
out.

Modifications to Rust standard library. SMACK replaces popular Rust stan-
dard library functions with simpler variants for verification. On the other hand,
SeaUrchin has the ability to build the Rust standard library from source, with
modifications as needed.

Discussion. We implemented SeaUrchin as a preprocessing pipeline for Rust code
to show that it is indeed possible to verify a new language out-of-box using a common
IR. We also contrast our approach with SMACK. After processing by SeaUrchin,
SeaBMC was able to interpret all LLVM bitcode generated by rustc. Addition-
ally, we verified Rust projects rather than individual source files like SMACK. We
believe this approach allows SeaUrchin to be easily integrated into a development
workflow than a single source mechanism would allow. SeaUrchin relies heavily on
RVT. The fact that RVT is open source allowed us to make modifications for our
use case quite easily. Finally, one advantage of Rust is that it provides a single build
mechanism, namely, Cargo. Thus, it is easy to design an integration mechanism
for verification tools that works in different contexts. This is useful for industrial
software since [6] reports that considerable effort may be spent on integrating static
analysis tools with existing build systems in industrial settings.

40

4.3 RQ2: Does CaS philosophy apply effectively

to Rust?

Taking aws-c-common as a baseline, it is easy to write specifications using CaS
since any data structure could be setup in a desired state as a precondition. Addition-
ally, the postcondition could use any state information. This was possible because
C has limited mechanisms for data hiding. This is usually considered a hindrance
to organize large software systems. However, data visibility is necessary for CaS to
be practical since it allows us to write specifications without modifying source code
to expose additional state information. Rust has well defined guidelines for data
visibility. The Rust language reference6 says the following:

“By default, everything in Rust is private, with two exceptions: Associated items in
a pub Trait are public by default; Enum variants in a pub enum are also public by
default.”

4.3.1 Panic freedom in Rust programs

Problem Definition To study how CaS applies to Rust programs, we devised a
task for specifying invariants for panic freedom in standard library components. A
panic is an error condition which causes a Rust program to execute a panic handler
to either correct the error or halt execution. Invariants for panic freedom are useful
for a Rust developer to know since maintaining these invariants ensures absence
of runtime panics. We specifically target standard library components like String

and RefCell, since they are used widely in practice. Additionally, the invariants for
these components are not formally specified but rather are documented informally in
prose7. For a rapidly evolving language like Rust, it may happen that a developer’s
understanding of invariants may become stale compared to the implementation. This
leads to programs that may panic at runtime.

Case Study We first took on the task of expressing invariants for panic freedom for
the String module. A String is the most common type of string with ownership over
contents8. A String causes runtime panic if it is created using invalid UTF-8 data.
For this case study, SeaUrchin wired the panic handler to the VERIFIER_error

intrinsic. This caused a panic to reach the error state in SeaBMC. Fig. 4.2a shows

6https://doc.rust-lang.org/reference/visibility-and-privacy.html
7https://doc.rust-lang.org/std/cell/struct.RefCell.html
8https://doc.rust-lang.org/std/string/struct.String.html

41

https://doc.rust-lang.org/reference/visibility-and-privacy.html
https://doc.rust-lang.org/std/cell/struct.RefCell.html
https://doc.rust-lang.org/std/string/struct.String.html

1 #[test]
2 fn test_string_from_bytes_panic() {
3 let b1: u8 = abstract_value();
4 let b2: u8 = abstract_value();
5 let bytes = vec![b1, b2];
6 let v = std::string::String::from_utf8(bytes).unwrap();
7 }

(a) String creation with potentially in-
valid UTF-8 data.

1 #[test]
2 fn test_string_from_bytes_nopanic() {
3 let b1: u8 = abstract_value();
4 let b2: u8 = abstract_value();
5 let bytes = vec![b1, b2];
6 assume(
7 std::str::from_utf8(&bytes).is_err() == false);
8 let v = std::string::String::from_utf8(bytes).unwrap();
9 }

(b) String creation with valid UTF-8 data.

Figure 4.2: String creation — panic and no-panic versions.

a unit proof which instantiated an invalid String. The panic occured in Line 6.
The function abstract_value() created a nondeterministic value of the requested
type. As an example, Line 3 assigns a nondeterministic byte value to b1.The function
assume maps to assume in SeaBMC. Similarly, the assert! macro maps to assert.
This specification language is exported by RVT.

To ensure that String creation is panic free, an invariant was added constrain-
ing bytes b1 and b2 to be valid UTF-8. Fig. 4.2b, Line 7 adds this assumption.
Note that the pre-conditions didn’t actually ensure that the bytes are UTF-8. We
merely constrained the String internal function to ensure UTF-8 validity returned
no error. Another option was to actually write the explicit preconditions to create
valid UTF-8 bytes. This would give stronger guarantees about validity since there
is no dependence on an unverified function str::from_utf8. We did not take this
approach since a simpler one suffices for our demonstration. With the unit proof for
String creation, it appeared that we can extend CaS from C to Rust quite naturally.
The unit proofs looked similar inspite of the cosmetic differences in the specification
language. However, this conclusion was premature. We looked at another example
RefCell where expressing invariants for panic freedom required modifying the code
under verification because required state was hidden from the unit proof.

RefCell is a container in the Rust standard library for data which validates
borrow checking rules at runtime (instead of compile-time), i.e. at each instance
during execution the following borrow rules should be invariant (amongst others).
The rules are: First borrow is never called on a RefCell instance when it is already
mutably borrowed for writing; and second borrow_mut is never called on a RefCell

instance when it is immutably borrowed for reading. If these rules are violated by a
program, panic ensues.

Operationally, the borrowed state is represented by a 32-bit signed integer. A
value of 0 means not borrowed. A positive value implies borrowed for reading where
the value denotes the number of readers. A value of -1 implies borrowed for writ-

42

ing. Note that there can only be one writer at a time. This borrowed state is
not visible outside the RefCell module. We added the following API functions to
the RefCell implementation in the standard library to set pre-conditions and assert
post-conditions.

1. cell::is_unused() – returns true if cell is not borrowed for reading or writing,
else false.

2. cell::is_reading() – returns true is cell is borrowed for reading, else false.

3. cell::is_writing() – returns true if cell is mutably borrowed for writing,
else false.

With this we were able to write the unit proof in Fig. 4.3. A new function we use
here is abstract_where. This serves the same purpose as an assume – taking a
lambda function as an argument. This unit proof shows that a mutable borrow for
writing from an unborrowed RefCell does not cause a panic, i.e. reality matches
expectation.

We then wrote a unit proof in Fig. 4.4a that was intended to verify that adding
readers to a RefCell which is already in a reading state is valid. Since a RefCell

can have multiple readers, we expected that the pre-conditions in Line 5 – Line 8
ensured panic freedom. Surprisingly, this was not the case and the test panicked!
Looking at the counterexample, this happened because before Line 10, the RefCell

could have the maximum number of readers that could fit into a signed 32-bit num-
ber. Consequently, when another reader was added by adding 1, the borrowed state
counter overflowed and rolled over to the maximum negative value possible. The
runtime borrow checker then reported an error since the RefCell was in the mutably
borrowed state (< 0) and therefore could not be borrowed for reading. To fix this,
we needed an additional precondition in Fig. 4.4a, Line 5 - Line 8 that assumes that
the number of readers is less than the maximum value of a signed 32-bit integer. For
this, we added a function cell::is_reader_limit_reached() to the RefCell API
and changed the precondition suitably in Fig. 4.4b.

Discussion We show that it is possible to extend CaS to Rust. In some cases, like
String, CaS works as it does in C. For others, like RefCell, we need to modify
the code under verification to expose additional state. This is undesirable from a
software engineering standpoint since we override data hiding (which exists for good
reasons). To mitigate the problem, we can use the conditional compile feature of
Cargo. This enable data visibility only for verification and hides it for production

43

1 #[test]
2 fn test_borrow_mut_nopanic() {
3 let val: u32 = abstract_value();
4 let c = RefCell::new(val);
5 let nd_borrow_flag: isize = abstract_where(
6 |x| cell::is_unused(*x));
7 c.set_borrow_state(nd_borrow_flag);
8 let m = c.borrow_mut();
9 }

Figure 4.3: unit proof for mutable borrow.

1 #[test]
2 fn test_borrow_panic() {
3 let val: u32 = abstract_value();
4 let c = RefCell::new(val);
5 let nd_borrow_flag: isize = abstract_where(|x| {
6 cell::is_unused(*x) ||
7 cell::is_reading(*x)
8 });
9 c.set_borrow_state(nd_borrow_flag);

10 let m = c.borrow();
11 }

(a) Borrow for reading causes panic.

1 #[test]
2 fn test_borrow_nopanic() {
3 let val: u32 = abstract_value();
4 let c = RefCell::new(val);
5 let nd_borrow_flag: isize = abstract_where(|x| {
6 cell::is_unused(*x) ||
7 (cell::is_reading(*x) &&
8 !cell::is_reader_limit_reached(*x))
9 });

10 c.set_borrow_state(nd_borrow_flag);
11 let m = c.borrow();
12 }

(b) Borrow for reading does not cause panic.

Figure 4.4: Borrow for reading - panic and no-panic versions.

use. Additionally, extending the API for verification also enables it to be used for
testing. Therefore, such extensions can become a standard way of writing Rust
modules enabling both easy testing and verification. Finally, we also note that
exposing methods for verification has been explored in the context of JML 9. Here
methods are introduced in JAVA for verification. This can be explored for Rust as
well.

4.4 RQ 3: Can verification become more efficient

when using Rust language specific informa-

tion?

A core feature of Rust is ownership, a way to record aliases and mutation of data.
Ownership is specified by three rules [17]: 1. All values have exactly one owner; 2. A
reference to a value cannot outlive the owner; and 3. A value can have one mutable
reference or many immutable references.

9See https://www.cs.ucf.edu/˜leavens/JML/jmlrefman/jmlrefman_2.html.

44

https://www.cs.ucf.edu/~leavens/JML/jmlrefman/jmlrefman_2.html

The Rust type system guarantees that once a value has a mutable references,
there are no other references (mutable or immutable) to that value. This aliasing in-
formation can help generate simpler verification conditions. This, in turn, decreases
verification time and enables larger and more complex programs to be verified in a
reasonable amount of time. We present our case using two example. In the first
example, the Rust type system generates simpler LLVM IR which leads to faster
verification. In the second case, the verification conditions generated can be simpli-
fied. Both examples use the ownership rule that a value can have only one mutable
reference at a time in Rust.

Rust can generate simpler LLVM IR than C We present an example in Fig. 4.5.
Here an equivalent program is written in both Rust and C. We first consider the
function bing in both Fig. 4.5a and Fig. 4.5b. This function takes as a parameter
an array of mutable references (pointers in C) to integers. The function then loops
through the array updating the memory location pointed to by element. Finally it
returns the content of the memory location pointed to by the zeroth element. In
the case of a C program, a given location in memory may be pointed to by multiple
array elements. For Rust, the fact that the array elements are mutable references
ensures that each element points to a unique memory location.

The rest of the program is set up the array similarly for both Rust and C versions.
In each case, the array is setup using a nondeterministic striding pattern that does
not alias, i.e., in Fig. 4.5b, Line 15 – Line 16, each arr[i] points to either p[2*i] or
p[2*i + 1] nondeterministically (similarly for Rust). In the case of C, this complex
pattern thwarts the compiler’s attempt to reason that there is no aliasing and the
compiler generates LLVM IR accounting for aliasing. For Rust, we use a mut& type
for array elements as shown in Fig. 4.5a, Line 10. Thus if this program is well-formed
(i.e. compiles successfully), the array elements are guaranteed to not alias. This
reasoning helps generate simpler LLVM IR for Rust. Finally during verification, in
the Rust program, reads and writes to all array elements in bing are just replaced by
a write to v[0] and a subsequent read since the assert is only on that element. In
the C program, array writes to all elements have to be simulated during verification.
How this complexity affects verification times in shown in Fig. 4.6.

Here, the Rust program is not affected by the size of the array but the C program
is. When studying the plot, the following aspects require some interpretation. First,
the C program has a considerably faster verification time than the Rust version for
small array sizes. This is because Rust programs have a higher preprocessing time
in SeaHorn before the SMT solver is hit. The slowness is yet to be root caused
but our hypothesis is that rustc produces LLVM IR with more abstractions than

45

1 fn bing(v: &mut Vec<&mut usize>) -> usize {
2 v.iter_mut().enumerate().for_each(|(idx, e)| {
3 **e = idx;
4 });
5 return *(v[0]);
6 }
7
8 fn main() {
9 let sz = 10;

10 let mut v: Vec<&mut usize> = Vec::new();
11 let mut p: [usize; 2 * sz] = [0; 2 * sz];
12 for chunk in p.chunks_mut(2) {
13 let idx: usize = verifier::AbstractValue::abstract_where(
14 |&x| x == 0 || x == 1);
15 v.push(&mut chunk[idx]);
16 }
17 let r = bing(&mut v);
18 verifier::assert!(r == 0);
19 }

(a) Rust program results in unsat .

1 #define MULT_FACTOR 4
2 #define SIZE 10
3 int bing(int **v, int size) {
4 for (int i = 0; i < size; i++) {
5 *(v[i]) = i;
6 }
7 return *(v[0]);
8 }
9

10 int main() {
11 int **v = malloc(sizeof(int *) * SIZE);
12 int *payload = malloc(sizeof(int) * SIZE * MULT_FACTOR);
13 memset(payload, 0, sizeof(int) * SIZE * MULT_FACTOR);
14 for (int i = 0; i < size; i++) {
15 int delta = nd_bool() ? 0 : 1;
16 v[i] = payload + (2 * i + delta) * sizeof(int);
17 }
18 int r = bing(v, size);
19 sassert(r == 0);
20 return 0;
21 }

(b) C program results in unsat .

Figure 4.5: An equivalent program in Rust and C to write and read data from an array.

clang does – this is expensive for SeaHorn to preprocess as-is. We believe we
may be able to engineer more optimized pre-processing for Rust. Second, we see
that the Rust program has a steep curve for small array sizes (size=3, size=10).
This is because in the Rust standard library, small arrays (vectors) are created on
the stack instead of the heap. Incidentally, the logic for small vectors causes a more
complex verification condition than the ones on the heap. This, again, requires more
analysis. One way to achieve more stable results is to replace the vector module with
our own implementation for verification since we have the ability to modify the Rust
standard library.

Caching metadata in fat pointers In the above case, we saw how the Rust type
system enables simpler VC generation. We look at another way to simplify VC
generation by using aliasing information. There are verification scenarios where we
want to verify whether a function has operated on some data stored in memory.
Fig. 4.7a is a motivating example of this in an extended SEA-IR form. We do
not provide a formal definition of the extension since this is still in development.
Informally, the IR has been extended to allow arbitrary functions. The functions are
pure since they explicitly take memory as input and return memory as output.

Here two pointers P0 and P1 along with memory M0 are passed to the function
bong. The pointers may alias. The function bong calls a function unsafe_fn in Line 9
and passes argument P0 and memory M1. We want to verify that unsafe_fn does
not operate on memory pointed to by P1. This can happen when P0 and P1 alias.
We use helper functions (intrinsics) to setup pre- and post-conditions. The intrinsic
sea.rst_chk sets the given memory at the given pointer argument to 0. The intrinsic

46

0 200 400 600 800 1000
Array Size

0

5

10

15

20
Ti

m
e

(s
)

Language
C
Rust

Figure 4.6: Comparision of verification time as array size increases for programs in Fig. 4.5.

sea.unsafe_fn_invk returns 1 if the given memory object given by the given pointer
was operated using unsafe_fn. Fig. 4.7b presents the corresponding VC. We use
shadow memory10. Shadow memory is given by the array msha. When unsafe_fn is
called, a constraint msha2[p0] is 1 is added. A counterexample has a constraint that
msha2[p1] is 1.

A simpler VC can be generated if aliasing information declares that P0 and P1

do not alias, as in Fig. 4.8a. The noalias keyword in SEA-IR adds this informa-
tion. The noalias keyword is present in LLVM IR and generated by the restrict

keyword in C and mutable references in Rust. When noalias is found then there is
no need to use shadow memory. Instead, we can use fat11 pointers to record accesses
on a memory object. This is shown in Fig. 4.8b. Since P0 and P1 do not alias, we
can cache information in the fat region of pointers denoted by fat . Thus, expensive
SMT array operations are replaced by constraints on scalar constants.

Discussion The type system of Rust is more expressive and stricter than that of
C. This presents unique opportunities for generating simpler VCs leading to faster
verification times. In the examples shown above, aliasing information can simplify

10See Sec. 3.3.
11See Sec. 3.3.

47

1 define bong(P0, P1, M0) {
2 BB0:
3 // reset metadata on memory
4 // pointed to by ptr P1
5 M1 = call sea.rst_chk(P1, M0)
6 M2 = call unsafe_fn(P0, M1)
7 // assert unsafe fn
8 // not called on ptr P1
9 R0 = call sea.unsafe_fn_invk(P1, M2)

10 assert(!R0)
11 ret M2
12 }

(a) P0 and P1 may alias.

m1 = m0 ∧msha1 = msha0[(p1 = 0)] ∧
m2 = m1 ∧msha2 = msha1[(p0 = 1)] ∧

r0 = msha2[p1] ∧
r0 = 1

(b) Generated VC

Figure 4.7: The function bong calls an unsafe function.

1 define bong(noalias P0, noalias P1, M0) {
2 BB0:
3 // reset metadata on memory
4 // pointed to by ptr P1
5 M1 = call sea.rst_chk(P1, M0)
6 M2 = call unsafe_fn(P0, M1)
7 // assert unsafe fn
8 // not called on ptr P1
9 R0 = call sea.unsafe_fn_invk(P1, M2)

10 assert(!R0)
11 ret M2
12 }

(a) P0 and P1 do not alias.

m1 = m0 ∧ p1.fat = 0 ∧
m2 = m1 ∧ p0.fat = 1 ∧

p1.fat = 1

(b) Generated VC

Figure 4.8: The noalias function bong calls an unsafe function.

VCs in different ways. In fact, optimizations using noalias information is not exclu-
sive to Rust. C programs which use the restrict keyword can also benefit in some
cases. The work on exploiting the Rust type system is still in development. Our
experiments so far are promising. We hope to work on getting more definitive results
by implementing these techniques in SeaBMC and verifying large Rust programs.

4.5 Conclusion

Rust is a higher level programming language than C. It has a strong type system
and unique ownership rules. Prima facie, it would seem that the abstractions in Rust
would make BMC impractical. However, as shown by the evidence in this chapter,
Rust’s drive for being as performant as C and C++ has a positive influence on
scalability of BMC since many of these abstraction are zero cost. Additionally,
the type system results in simpler LLVM IR because the compiler can reason more
definitively about a given program. Our extension of SeaBMC to Rust resulted

48

in the SeaUrchin system. Using SeaUrchin we showed that having a common
IR makes adding a new language easy (RQ1). However, to improve verification
efficiency, it is desirable to include language specific information (RQ3). We also
showed that CaS is generally applicable to a language like Rust. Though, in some
cases, deep modifications may be needed to code under verification (RQ2).

Future directions we would like to pursue include:

• scale BMC to work on Rust systems, e.g. a Rust crate, rather than small
program;

• automatically infer invariants rather than handcrafting them as in panic free-
dom example;

• integrate with complimentary verification systems, like the deductive verifier
Prusti [1]. Prusti assumes that certain standard library invariants hold. SeaU-
rchin can assert that the invariants actually hold for a given library imple-
mentation.

49

Chapter 5

Conclusion

In this thesis, we study various aspects of scaling BMC to work on industrial code.

First, we replicate the case study in [11] using SeaBMC and show that the tool is
effective an industrial quality library like aws-c-common. We further discuss issues
around how to write CaS to make it effective across various static and dynamic anal-
ysis tools. We also study what kind of bugs exist in code already verified thoroughly
using a single tool.

Second, we look at how SeaBMC operates in detail. Our contributions are: an IR,
SEA-IR, for LLVM bitcode that purifies memory operations; a VCGen that com-
bines program transformations with encoding into logic allowing for many different
styles of VCs; a memory model that combines fat-pointers with shadow-memory to
represent metadata; an open-sourced BMC tool; and, a thorough evaluation against
the state-of-the-art verification tools on production C code.

Lastly, we extend SeaBMC to work on Rust programs utilizing a common repre-
sentation format, LLVM bitcode. When expressing invariants for panic freedom, we
find that using CaS can be difficult to apply when code to setup and query state is
not visible to the unit proof. To overcome this, we propose a principled methodology
to modify code to expose state for verification only. We also look at using high-level
language information in Rust to generate more efficient verification conditions.

To end, we intend to scale BMC in industrial settings. We revisit our definition
from Chapter 1. By scaling BMC, we mean three things: 1. large programs; 2. mod-
elling of low-level instructions that occur in practice; and 3. verifying software sys-
tems instead of single programs — this may include more than one language. For
both aws-c-common and Rust programs, we have designed verification for systems

50

rather than individual programs. For aws-c-common, continuous verification builds
confidence in the correctness of the library as a whole. For Rust, we verify Cargo
projects – this is how Rust code is packaged for distribution. We compile both C
and Rust to LLVM IR for verification which ensures that low level instructions are
verified rather than a high-level source program. Finally, we verify small pieces of
a large system for both aws-c-common and Rust programs. BMC is expensive to
verify a large software system all at once. Pre- and post-conditions are also manually
added to unit proofs. To truly scale, we have to devise techniques that reduce the
cost of BMC and automate inferring pre- and post-conditions.

51

References

[1] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers. Leveraging Rust types
for modular specification and verification. In Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA), volume 3, pages 147:1–147:30.
ACM, 2019.

[2] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers. Leveraging Rust types
for modular specification and verification. Technical report, ETH Zurich, 2019.

[3] Domagoj Babić. Exploiting Structure for Scalable Software Verification. PhD
thesis, University of British Columbia, Canada, 2008.

[4] Zuzana Baranová, Jǐŕı Barnat, Kataŕına Kejstová, Tadeáš Kučera, Henrich
Lauko, Jan Mrázek, Petr Ročkai, and Vladimı́r Štill. Model checking of C and
C++ with DIVINE 4. In Automated Technology for Verification and Analysis,
volume 10482 of LNCS, pages 201–207. Springer, 2017.

[5] Marek S. Baranowski, Shaobo He, and Zvonimir Rakamaric. Verifying rust
programs with SMACK. In Shuvendu K. Lahiri and Chao Wang, editors, Auto-
mated Technology for Verification and Analysis - 16th International Symposium,
ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018, Proceedings, volume
11138 of Lecture Notes in Computer Science, pages 528–535. Springer, 2018.

[6] Al Bessey, Ken Block, Benjamin Chelf, Andy Chou, Bryan Fulton, Seth Hallem,
Charles-Henri Gros, Asya Kamsky, Scott McPeak, and Dawson R. Engler. A
few billion lines of code later: using static analysis to find bugs in the real world.
Commun. ACM, 53(2):66–75, 2010.

[7] Dirk Beyer. Advances in automatic software verification: SV-COMP 2020. In
Armin Biere and David Parker, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems - 26th International Conference, TACAS 2020,

52

Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part II,
volume 12079 of Lecture Notes in Computer Science, pages 347–367. Springer,
2020.

[8] Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A tool for configurable
software verification. In Computer Aided Verification - 23rd International Con-
ference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume
6806 of Lecture Notes in Computer Science, pages 184–190. Springer, 2011.

[9] Marko Kleine Büning, Carsten Sinz, and David Faragó. QPR verify: A static
analysis tool for embedded software based on bounded model checking. In Maria
Christakis, Nadia Polikarpova, Parasara Sridhar Duggirala, and Peter Schram-
mel, editors, Software Verification - 12th International Conference, VSTTE
2020, and 13th International Workshop, NSV 2020, Los Angeles, CA, USA,
July 20-21, 2020, Revised Selected Papers, volume 12549 of Lecture Notes in
Computer Science, pages 21–32. Springer, 2020.

[10] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs. In
Richard Draves and Robbert van Renesse, editors, 8th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2008, December 8-
10, 2008, San Diego, California, USA, Proceedings, pages 209–224. USENIX
Association, 2008.

[11] Nathan Chong, Byron Cook, Konstantinos Kallas, Kareem Khazem, Felipe R.
Monteiro, Daniel Schwartz-Narbonne, Serdar Tasiran, Michael Tautschnig, and
Mark R. Tuttle. Code-level model checking in the software development work-
flow. In ICSE-SEIP 2020: 42nd International Conference on Software Engi-
neering, Software Engineering in Practice, Seoul, South Korea, 27 June - 19
July, 2020, pages 11–20. ACM, 2020.

[12] Fred C. Chow, Sun Chan, Shin-Ming Liu, Raymond Lo, and Mark Streich. Ef-
fective representation of aliases and indirect memory operations in SSA form.
In Tibor Gyimóthy, editor, Compiler Construction, 6th International Confer-
ence, CC’96, Linköping, Sweden, April 24-26, 1996, Proceedings, volume 1060
of Lecture Notes in Computer Science, pages 253–267. Springer, 1996.

[13] Andrey Chudnov, Nathan Collins, Byron Cook, Joey Dodds, Brian Huff-
man, Colm MacCárthaigh, Stephen Magill, Eric Mertens, Eric Mullen, Serdar

53

Tasiran, Aaron Tomb, and Eddy Westbrook. Continuous formal verification of
amazon s2n. In Computer Aided Verification - 30th International Conference,
CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14-17, 2018, Proceedings, Part II, volume 10982 of Lecture Notes in
Computer Science, pages 430–446. Springer, 2018.

[14] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking
ANSI-C programs. In Kurt Jensen and Andreas Podelski, editors, Tools and
Algorithms for the Construction and Analysis of Systems, 10th International
Conference, TACAS 2004, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 -
April 2, 2004, Proceedings, volume 2988 of Lecture Notes in Computer Science,
pages 168–176. Springer, 2004.

[15] Byron Cook, Björn Döbel, Daniel Kroening, Norbert Manthey, Martin Pohlack,
Elizabeth Polgreen, Michael Tautschnig, and Pawel Wieczorkiewicz. Using
model checking tools to triage the severity of security bugs in the Xen hypervi-
sor. In 2020 Formal Methods in Computer Aided Design, FMCAD 2020, Haifa,
Israel, September 21-24, 2020, pages 185–193. IEEE, 2020.

[16] Byron Cook, Kareem Khazem, Daniel Kroening, Serdar Tasiran, Michael
Tautschnig, and Mark R. Tuttle. Model checking boot code from AWS data
centers. In Computer Aided Verification - 30th International Conference, CAV
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK,
July 14-17, 2018, Proceedings, Part II, volume 10982 of Lecture Notes in Com-
puter Science, pages 467–486. Springer, 2018.

[17] Will Crichton. The usability of ownership. CoRR, abs/2011.06171, 2020.

[18] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver.
In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the
Construction and Analysis of Systems, 14th International Conference, TACAS
2008, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Pro-
ceedings, volume 4963 of Lecture Notes in Computer Science, pages 337–340.
Springer, 2008.

[19] Rob DeLine and Rustan Leino. Boogiepl: A typed procedural language for
checking object-oriented programs. Technical Report MSR-TR-2005-70, March
2005.

54

[20] Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors,
Computer-Aided Verification (CAV’2014), volume 8559 of Lecture Notes in
Computer Science, pages 737–744. Springer, July 2014.

[21] Manuel Fähndrich, Michael Barnett, and Francesco Logozzo. Embedded con-
tract languages. In Sung Y. Shin, Sascha Ossowski, Michael Schumacher,
Mathew J. Palakal, and Chih-Cheng Hung, editors, Proceedings of the 2010
ACM Symposium on Applied Computing (SAC), Sierre, Switzerland, March 22-
26, 2010, pages 2103–2110. ACM, 2010.

[22] Mikhail Y. R. Gadelha, Felipe R. Monteiro, Jeremy Morse, Lucas C. Cordeiro,
Bernd Fischer, and Denis A. Nicole. ESBMC 5.0: an industrial-strength C
model checker. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ASE 2018, Montpellier, France, September
3-7, 2018, pages 888–891. ACM, 2018.

[23] Galois. Crux: A Tool for Improving the Assurance of Software Using Symbolic
Testing.

[24] Jack J. Garzella, Marek S. Baranowski, Shaobo He, and Zvonimir Rakamaric.
Leveraging compiler intermediate representation for multi- and cross-language
verification. In Dirk Beyer and Damien Zufferey, editors, Verification, Model
Checking, and Abstract Interpretation - 21st International Conference, VMCAI
2020, New Orleans, LA, USA, January 16-21, 2020, Proceedings, volume 11990
of Lecture Notes in Computer Science, pages 90–111. Springer, 2020.

[25] Arie Gurfinkel, Sagar Chaki, and Samir Sapra. Efficient predicate abstraction
of program summaries. In Mihaela Gheorghiu Bobaru, Klaus Havelund, Ger-
ard J. Holzmann, and Rajeev Joshi, editors, NASA Formal Methods - Third
International Symposium, NFM 2011, Pasadena, CA, USA, April 18-20, 2011.
Proceedings, volume 6617 of Lecture Notes in Computer Science, pages 131–145.
Springer, 2011.

[26] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.
The SeaHorn Verification Framework. In Computer Aided Verification - 27th
International Conference, CAV 2015, San Francisco, CA, USA, July 18-24,
2015, Proceedings, Part I, volume 9206 of Lecture Notes in Computer Science,
pages 343–361. Springer, 2015.

[27] Arie Gurfinkel and Jorge A. Navas. A context-sensitive memory model for
verification of C/C++ programs. In Francesco Ranzato, editor, Static Analysis

55

- 24th International Symposium, SAS 2017, New York, NY, USA, August 30
- September 1, 2017, Proceedings, volume 10422 of Lecture Notes in Computer
Science, pages 148–168. Springer, 2017.

[28] Paul Havlak. Construction of thinned gated single-assignment form. In Utpal
Banerjee, David Gelernter, Alexandru Nicolau, and David A. Padua, editors,
Languages and Compilers for Parallel Computing, 6th International Workshop,
Portland, Oregon, USA, August 12-14, 1993, Proceedings, volume 768 of Lecture
Notes in Computer Science, pages 477–499. Springer, 1993.

[29] Franjo Ivancic, Zijiang Yang, Malay K. Ganai, Aarti Gupta, Ilya Shlyakhter,
and Pranav Ashar. F-soft: Software verification platform. In Computer Aided
Verification, 17th International Conference, CAV 2005, Edinburgh, Scotland,
UK, July 6-10, 2005, Proceedings, volume 3576 of Lecture Notes in Computer
Science, pages 301–306. Springer, 2005.

[30] Trevor Jim, J. Gregory Morrisett, Dan Grossman, Michael W. Hicks, James
Cheney, and Yanling Wang. Cyclone: A safe dialect of C. In Carla Schlatter
Ellis, editor, Proceedings of the General Track: 2002 USENIX Annual Techni-
cal Conference, June 10-15, 2002, Monterey, California, USA, pages 275–288.
USENIX, 2002.

[31] Rajeev Joshi and Gerard J. Holzmann. A mini challenge: Build a verifiable
filesystem. In Verified Software: Theories, Tools, Experiments, First IFIP TC
2/WG 2.3 Conference, VSTTE 2005, Zurich, Switzerland, October 10-13, 2005,
Revised Selected Papers and Discussions, volume 4171 of Lecture Notes in Com-
puter Science, pages 49–56. Springer, 2005.

[32] Yunho Kim and Moonzoo Kim. SAT-Based Bounded Software Model Checking
for Embedded Software: A Case Study. In 21st Asia-Pacific Software Engineer-
ing Conference, APSEC 2014, Jeju, South Korea, December 1-4, 2014. Volume
1: Research Papers, pages 55–62. IEEE Computer Society, 2014.

[33] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,
Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval
Yarom. Spectre attacks: Exploiting speculative execution. meltdownattack.com,
2018.

[34] Jakub Kuderski, Jorge A. Navas, and Arie Gurfinkel. Unification-based pointer
analysis without oversharing. In Clark W. Barrett and Jin Yang, editors, 2019

56

Formal Methods in Computer Aided Design, FMCAD 2019, San Jose, CA, USA,
October 22-25, 2019, pages 37–45. IEEE, 2019.

[35] Orna Kupferman. Sanity checks in formal verification. In CONCUR 2006 -
Concurrency Theory, 17th International Conference, CONCUR 2006, Bonn,
Germany, August 27-30, 2006, Proceedings, volume 4137 of Lecture Notes in
Computer Science, pages 37–51. Springer, 2006.

[36] Akash Lal and Shaz Qadeer. Powering the static driver verifier using Corral.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, (FSE-22), Hong Kong, China, November 16 -
22, 2014, pages 202–212. ACM, 2014.

[37] Chris Lattner and Vikram S. Adve. LLVM: A compilation framework for life-
long program analysis & transformation. In 2nd IEEE / ACM International
Symposium on Code Generation and Optimization (CGO 2004), 20-24 March
2004, San Jose, CA, USA, pages 75–88. IEEE Computer Society, 2004.

[38] Chris Lattner and Vikram S. Adve. Automatic pool allocation: improving
performance by controlling data structure layout in the heap. In Vivek Sarkar
and Mary W. Hall, editors, Proceedings of the ACM SIGPLAN 2005 Conference
on Programming Language Design and Implementation, Chicago, IL, USA, June
12-15, 2005, pages 129–142. ACM, 2005.

[39] K. Rustan M. Leino. This is Boogie 2, 2008.

[40] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis,
David Chisnall, Robert N. M. Watson, and Peter Sewell. Into the depths of
C: elaborating the de facto standards. In Chandra Krintz and Emery Berger,
editors, Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA,
June 13-17, 2016, pages 1–15. ACM, 2016.

[41] Florian Merz, Stephan Falke, and Carsten Sinz. LLBMC: bounded model check-
ing of C and C++ programs using a compiler IR. In Rajeev Joshi, Peter Müller,
and Andreas Podelski, editors, Verified Software: Theories, Tools, Experiments
- 4th International Conference, VSTTE 2012, Philadelphia, PA, USA, January
28-29, 2012. Proceedings, volume 7152 of Lecture Notes in Computer Science,
pages 146–161. Springer, 2012.

57

[42] Yannick Moy and Angela Wallenburg. Tokeneer: Beyond formal program veri-
fication. Embedded Real Time Software and Systems, 24, 2010.

[43] Roy Osherove. The Art of Unit Testing: With Examples in .Net. Manning
Publications Co., 2009.

[44] Siddharth Priya, Xiang Zhou, Yusen Su, Yakir Vizel, Yuyan Bao, and Arie
Gurfinkel. Bounded model checking for llvm, 2021. Submitted to SEFM 2021.

[45] Siddharth Priya, Xiang Zhou, Yusen Su, Yakir Vizel, Yuyan Bao, and Arie
Gurfinkel. Verifying verified code. In Automated Technology for Verification
and Analysis - 19th International Symposium, ATVA 2021, Proceedings, Lecture
Notes in Computer Science. Springer, 2021.

[46] Siddharth Priya, Xiang Zhou, Yusen Su, Yakir Vizel, Yuyan Bao, and Arie
Gurfinkel. Verifying Verified Code. submitted, 2021.

[47] Zvonimir Rakamaric and Michael Emmi. SMACK: decoupling source language
details from verifier implementations. In Armin Biere and Roderick Bloem, ed-
itors, Computer Aided Verification - 26th International Conference, CAV 2014,
Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
18-22, 2014. Proceedings, volume 8559 of Lecture Notes in Computer Science,
pages 106–113. Springer, 2014.

[48] Kostya Serebryany. libFuzzer: A library for coverage-guided fuzz testing.

[49] Carsten Sinz, Stephan Falke, and Florian Merz. A precise memory model for
low-level bounded model checking. In Ralf Huuck, Gerwin Klein, and Bas-
tian Schlich, editors, 5th International Workshop on Systems Software Verifica-
tion, SSV’10, Vancouver, BC, Canada, October 6-7, 2010. USENIX Association,
2010.

58

	List of Figures
	List of Tables
	Introduction
	Verifying Verified Code
	Introduction
	Unit Proofs with Code-as-Specification
	Case Study
	RQ1: Does CaS Empower Multiple Tools?
	RQ2: Are there bugs in verified code?
	RQ3: Can specifications be improved while maintaining the CaS philosophy?

	Related work
	Conclusion

	SeaBMC: Bounded Model Checking using SeaHorn
	Introduction
	Verification Condition Generation
	SEA-IR
	Program Transformation
	Verification Condition Generation

	Verifying Memory Safety
	Spatial memory safety
	Temporal memory safety

	Experiments
	Related Work
	Conclusion

	SeaUrchin: Bounded Model Checking for Rust
	Introduction
	RQ1: Does LLVM bitcode as IR empower SeaBMC to work for Rust out-of-box?
	RQ2: Does CaS philosophy apply effectively to Rust?
	Panic freedom in Rust programs

	RQ 3: Can verification become more efficient when using Rust language specific information?
	Conclusion

	Conclusion
	References

