
 

 

 

 

 In Vitro Selection, Characterization, and Application of a Sodium-Dependent 

DNAzyme and a Metal-Independent Ribozyme 

 

 

by 

Lingzi Ma 

 

A thesis 

presented to the University of Waterloo 

in fulfilment of the 

thesis requirement for the degree of 

Doctor of Philosophy 

in 

Chemistry 

 

 

Waterloo, Ontario, Canada, 2021 

© Lingzi Ma 2021  



 

 

ii 

Examining Committee Membership 

The following served on the Examining Committee for this thesis. The decision of the 

Examining Committee is by majority vote. 

 

External Examiner Dr. Dipankar Sen 

 Professor, Department of Molecular Biology & Biochemistry 

 Simon Fraser University, Burnaby, Canada. 

 

Supervisor Dr. Juewen Liu 

 Professor, Department of Chemistry, 

 University of Waterloo, Waterloo, Canada. 

 

Internal Member Dr. John Honek 

 Professor, Department of Chemistry, 

 University of Waterloo, Waterloo, Canada. 

 

Internal Member Dr. Thorsten Dieckmann 

 Associate professor, Department of Chemistry, 

 University of Waterloo, Waterloo, Canada. 

 

Internal Member Dr. Richard Manderville 

 Associate professor, Department of Chemistry, 



 

 

iii 

 University of Guelph, Guelph, Canada 

 

Internal- External Examiner Dr. Kesen Ma 

 Associate professor, Department of Biology, 

 University of Waterloo, Waterloo, Canada. 

 

  



 

 

iv 

Author’s Declaration 

“This thesis consists of material all of which I authored or co-authored: see Statement of 

Contributions included in the thesis. This is a true copy of the thesis, including any required final 

revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public.” 

  



 

 

v 

Statement of Contributions 

The work presented in this thesis is the result of work performed by the author and several 

scientific collaborations. Contributions from each scientist and the resulting publications are listed 

in detail below. 

The work in Chapter 2 has been published as: Ma, L.; Liu, J., An in vitro selected 

DNAzyme mutant highly specific for Na+ in slightly acidic conditions. ChemBioChem 2019, 20 

(4), 537-542. All the work in this chapter was performed by the author. 

The work in Chapter 3 has been published as: Ma, L.; Kartik, S.; Liu, B.; Liu, J., From 

general base to general acid catalysis in a sodium-specific DNAzyme by a guanine-to-adenine 

mutation. Nucleic Acids Research 2019, 47 (15), 8154-8162. Sanjana Kartik provided assistance 

on DNAzyme kinetics assays and gel electrophoresis. Biwu Liu provided assistance on 

mathematical analysis. Other work presented in this chapter was performed by the author. 

The work in Chapter 5 has been accepted as: Ma, L.; Huang, Z.; Liu, J., Selection of a self-

cleaving ribozyme activated in chemically and thermally denaturing environment. Chemical 

Communications 2021, 57 (62), 7641-7644. Zhicheng Huang provided assistance on in vitro 

transcription assays and gel electrophoresis. Other work presented in this chapter was performed 

by the author. 

  



 

 

vi 

Abstract 

Ribozymes and DNAzymes are collectively called catalytic nucleic acids. Compared to 

protein enzymes, catalytic nucleic acids are programmable in structure, easy to synthesize or 

modify, and more chemically stable especially for DNA. In particular, many RNA-cleaving 

DNAzymes display excellent activities and specificities to metal ions, making them attractive for 

metal ion sensing. In recent years, several Na+-dependent DNAzymes have been reported, 

indicating DNA catalysis without divalent or trivalent metal ions directly involved in the reaction. 

In Chapter 1, I reviewed the current state-of-the-art of the field, and provided the relevant 

background information regarding to catalytic nucleic acids. 

In Chapter 2, a new Na+-dependent DNAzyme, NaH1, was selected under a relatively 

acidic condition, which turned out to be a variant of a previously reported DNAzyme, NaA43. 

Compared to other competing monovalent ions, NaH1 also displays an excellent specificity for 

sodium. At low Na+ concentrations, the selected DNAzyme exhibited a higher cleavage rate than 

NaA43 and thus a tighter binding affinity. Thus, the NaH1 DNAzyme was engineered into a 

fluorescent Na+ biosensor by labeling a fluorophore/quencher pair. Preliminary work on detecting 

Na+ in serum matrix was demonstrated as well. This study provides a useful mutant that works in 

a slightly acidic environment, which might be useful for sensing Na+ in acidic intracellular 

environment. 

The NaA43 and NaH1 DNAzymes share the same 16-nt Na+-binding motif but differ in 

one or two nucleotides in a small catalytic loop. Nevertheless, they display an opposite pH-

dependency, implicating distinct catalytic mechanisms. In Chapter 3, rational mutation studies 

demonstrated conserved nucleotide residues in these DNAzymes. The pH-rate profiles using pKa-
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perturbed analogs further revealed their distinct general acid-base mechanisms. Further 

experiments with 2AP modifications and PS-modified substrates provided more insights into the 

active site. This is an interesting example where single point mutations shift the mechanism of 

cleavage from general base to general acid, and it can also explain this Na+-dependent DNAzyme 

scaffold sensitive to a broad range of metal ions and molecules. 

The Na+-dependent DNAzymes do not require multivalent metal ion for catalysis and can 

fold into well-defined structures. Thus, they provided an excellent platform for studying the metal 

ion effect at the cleavage site. In Chapter 4, I used them as models to explore the role of Pb2+ in 

RNA cleavage which has been frequently observed. By examining the Pb2+ effect in several 

representative DNAzymes, the capability of Pb2+ to bind specifically to the cleavage site has been 

demonstrated. Upon binding, the hydrated Pb2+ can serve as a poor general acid and facilitate the 

RNA cleavage. In a special case, Pb2+ can facilitate the binding of Ca2+ cofactor and significantly 

enhance the activity of a Ca2+-dependent DNAzyme. The mechanism study on Pb2+ activity further 

revealed versatile roles of Pb2+ in RNA cleavage which is important for understanding DNAzyme 

catalysis. This could also provide insights in rational design of catalytic DNA or RNA with desired 

cleavage activity. 

Given the excellent Na+-binding selectivity of DNAzymes, a natural question is whether 

similar ribozymes exist. In the last chapter, I further performed in vitro selection to search for Na+-

dependent self-cleaving ribozymes. Surprisingly, a novel ribozyme was obtained displaying a site-

specific cleavage activity under denaturing conditions, such as high temperatures, denaturing 

solvents, and low salt concentrations. Most importantly, unlike other self-cleaving ribozymes, 

divalent metal ions do not contribute to the catalysis but suppress its cleavage. Together, I proposed 

that both denaturants and temperatures facilitate a conformational change favorable to the cleavage 
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activity. In addition, BLAST was applied in searching its natural analogs among genomes. 

Interestingly, its conserved motif was founded in several extremophilic bacteria. This work further 

broadened the horizon of catalytic RNAs functioning under extreme environments, and thus 

provided another strong support for the RNA world hypothesis. 
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Chapter 1. Introduction to Catalytic Nucleic Acidsa 

Early discoveries on naturally occurring ribozymes (RNA molecules with catalytic 

activities) in the 1980s have broken the notion that all enzymes are proteins,1, 2 giving a strong 

evidence for the RNA world hypothesis.3 Since then, the catalytic functionality of RNA has been 

extensively explored revealing the diverse and crucial roles of ribozymes in living organisms.4 

Meanwhile, in vitro selection has been used to discover artificial ribozymes catalyzing a variety 

of chemical reactions in laboratory. In 1994, the first catalytic DNA (or DNAzyme, 

deoxyribozyme) was discovered to accelerate an RNA cleavage reaction.5 To date, although 

DNAzymes have not yet been found in nature, they have been isolated via in vitro selection to 

achieve a diverse range of activities including RNA cleavage and ligation, DNA phosphorylation, 

Diels−Alder reaction, and nucleopeptide bond formation.6, 7 Over the past 20 years, DNAzyme-

based applications have been thriving in different areas such as metal biosensing, gene silencing, 

pathogen detection, and nanotechnology.8-11 Ribozymes and DNAzymes are collectively called 

catalytic nucleic acids. Compared to protein enzymes, catalytic nucleic acids are programmable in 

structure, easy to synthesize or modify, and more chemically stable especially for DNA. In 

particular, many RNA-cleaving DNAzymes display excellent activity and specificity toward metal 

ions, making them attractive for metal ion sensing. The search for novel DNAzymes and 

                                                 
a Partial contents in this chapter are the basis for a published review manuscript: Ma, L.; Liu, J., Catalytic Nucleic 

Acids: Biochemistry, Chemical Biology, Biosensors, and Nanotechnology. iScience 2020, 23 (1), 100815. 
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ribozymes is facilitated by developments in DNA sequencing and computational algorithms, 

further broadening our fundamental understanding of biochemical processes. 

 

 

Figure 1.1 The chemical structure of nucleotides and five nucleobases including two purines (A, G) and 

three pyrimidines (C, T, U). 

1.1 Chemical structure of nucleic acids 

Along with carbohydrates, lipids, and proteins, nucleic acids are among the most important 

biological macromolecules in all forms of life. Within cells, nucleic acids, including 

deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), function in preserving, transmitting, 

regulating, and expressing genetic information. Essentially, DNA and RNA are linear polymers 

with nucleotides as their repeating units. The three essential components of a nucleotide are: a) a 

pentose sugar; b) a heterocyclic nucleobase linked to the 1-carbon on the sugar ring; and c) a 

phosphate group on the 5-carbon (Figure 1.1). A nucleoside refers to a nucleotide without a 

phosphate group attached. The major difference between DNA and RNA lies in the pentose sugar: 
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the hydroxyl group on the 2-carbon in an RNA ribose is missing in a DNA 2-deoxyribose. The 

presence of 2-OH in RNA provides more complexity in structure and more binding sites for metal 

ions. Meanwhile, it makes RNA more susceptible to hydrolysis compared to DNA. 

 

Figure 1.2 Watson-Crick base pairs (A•T and G•C) in DNA and a sugar–phosphate backbone with 5-to-

3 phosphodiester bonds. 

The four natural occurring nucleobases in DNA are adenine (A), thymine (T), cytosine (C), 

and guanine (G). In RNA, uracil (U) is used to replace thymine (Figure 1.1). Nucleobases contain 

multiple hydrogen bond donor and acceptor sites allowing them to form inter-base H-bindings. 

The predominant type is Watson-Crick base pairing formed between A•T (or A•U) and C•G 

(Figure 1.2). Apart from Watson-Crick base pairs, a variety of other pairings such as Wobble (e.g., 

G•U) and Hoogsteen (e.g., A•T) base pairs are also important in stabilizing nucleic acid structures. 

In addition to hydrogen binding, 𝜋–𝜋 stacking is another type of base-base interaction happening 

between neighboring planar bases.  
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The neighbouring nucleotides can be connected through a phosphodiester linkage between 

the 3-hydroxyl group of one nucleotide and 5-phosphate group of the next, forming a long 

polymer (Figure 1.2). The alternating phosphate group and sugar residues construct the DNA 

backbone with 5- and 3-terminus. Resulting from the low pKa value of the phosphate group 

(pKa1~1.0), the sugar-phosphate backbone is highly negatively charged at neutral pH. All the 

nucleobases carry no charge at physiological pH since their pKa values are far from neutrality 

(Figure 1.3). For example, the N1 position of adenine can be protonated when the pH is lower than 

its pKa of 3.5. Nevertheless, in catalytic nucleic acids, the pKa value of certain nucleobases can be 

largely altered in a particular microenvironment such as interacting with nearby nucleotide 

residues or metal ions.12 With its pKa shifted toward neutrality, a nucleobase can become 

deprotonated or protonated more easily under physiological condition. 

 

pKa=3.5

pKa=1.6 pKa=9.2

pKa=9.2pKa=4.2

pKa~1.0 pKa~6.0-7.0

Adenine

Guanine

Cytosine Uracil

Phosphate

1 1

7 7 1 1

3 3 3 3
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Figure 1.3 The unperturbed pKa values of nucleobases and ionization sites.13 

1.2 An overview on catalytic nucleic acids 

The notion that all enzymes are proteins was changed with the discovery of ribozymes in 

the early 1980s. Since then, researchers have been motivated to search for new ribozymes in nature, 

in test tubes, and even in silico. Although not yet found in nature, the first DNAzyme was isolated 

using in vitro selection in 1994 by Breaker and Joyce. With nearly four decades of development, 

nucleic acid enzymes have impacted many fields ranging from biosensing, anti-virus, to materials 

science.14-17 For in vivo applications, RNA has advantage over DNA since RNA can be transcribed 

in cells, but single-stranded DNA often requires delivery. For applications outside cells, DNA is 

more attractive than RNA for stability and cost considerations. For example, the chemical stability 

of DNA against hydrolysis is around one-million-fold higher than that of RNA.18 Chemical 

synthesis also allows convenient DNA labeling with various functional moieties such as 

fluorophores, conjugation groups, and spacers. 

 

Figure 1.4 Comparisons on the number of publications (A) and citations (B) from 1995 to 2020 with 

“ribozyme” and “DNAzyme” or “deoxyribozyme” as keywords. 
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A brief survey on the Web of Science revealed interesting trends (Figure 1.4). Publications 

on ribozymes peaked in the early 2000s, when the DNAzyme field just started to take off. In recent 

years, both the publications and citations on DNAzymes (including G4 DNAzymes) have 

outnumbered that on ribozymes, which was largely driven by emerging applications on biosensors, 

intracellular RNA cleavage, and bionanotechnology.19, 20 

1.3 Ribozymes in the early days 

RNA for a long time was only known for mediating the production of proteins. In the early 

1980s, the initial discovery of ribozymes was related to the RNA cleavage and self-splicing 

reactions, leading to the award of the Nobel Prize to Cech and Altman.1, 2 Since then, ribozymes 

for many important biological reactions were discovered in nature, such as the ribosomal RNA 

catalyzing the formation of peptide bonds.21 The ribosome in cells is composed of both protein 

and RNA, while the peptidyl transferase activity was performed by the RNA component (Figure 

1.5A). 

Given that RNA possesses both genotype and enzymatic functions, the RNA world 

hypothesis was proposed, stating that RNA dominated the early life before DNA and protein.3 

Many coenzymes or cofactors in protein enzymes, such as coenzyme A (CoA) and nicotinamide 

adenine dinucleotide (NAD), contain the basic structure of ribonucleotides, also supporting this 

hypothesis.22 In the meantime, in vitro evolution offers a powerful technique for exploring the 

capabilities of RNA in test tubes.23 In vitro selection resembles the natural evolution, in which a 

large RNA library is subjected to a selection pressure and only those sequences with a particular 

activity can survive and be enriched. Benefiting from this accelerated process, ribozymes 

catalyzing a great variety of chemical reactions, such as RNA ligation, phosphorylation, self-
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alkalytion, and Diels-Alder reaction, have been obtained over the past decades.24 Recently, 

interesting efforts were made for producing polymerizing ribozymes and self-replicating 

systems.25, 26 In 2021, a novel ribozyme was reported with abilities to recognize a promoter 

sequence and catalyze RNA polymerization using a clamp-like mechanism, providing more 

insights into the RNA-based self-evolving system.27 

Over the past 30 years, a variety of self-cleaving ribozymes catalyzing the cleavage of 

phosphodiester bonds have been discovered. The hammerhead ribozyme was first found in the 

tobacco ringspot virus satellite RNA.28 Other ribozymes, including the hairpin, hepatitis delta virus 

(HDV), glucosoamine-6-phosphate synthase (glmS), Varkud satellite (VS), twister, twister-sister, 

pistol, and hatchet ribozymes were subsequently identified in various organisms.29 These enzymes 

catalyze the site-specific cleavage of 3, 5-phosphodiester bonds with up to 106-fold rate 

enhancement. Extensive structural and biochemical studies have been performed to provide 

mechanistic understanding of ribozyme catalysis.30, 31 

In general, the RNA cleavage reaction can be accelerated through four pathways (Figure 

1.5C): arranging the in-line alignment between the 2-O nucleophile, scissile phosphorus, and 5-

leaving oxygen (α factor); facilitating the deprotonation of 2-OH in the nucleophilic attack (β 

factor); neutralizing the negative charge on the non-bridging phosphoryl oxygens in the transition 

state (γ factor); and stabilizing the negative charge on the 5-leaving oxygen (δ factor).32 Nowadays, 

the general acid-base mechanism has been widely accepted for explaining ribozyme-catalyzed 

RNA cleavage reactions. 

For a given ribozyme, critical nucleobases and metal ion cofactors can facilitate the 

cleavage reaction in the catalytic core. Experimental evidence has proved that conserved 
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nucleobases with shifted pKa values are able to participate directly in the catalysis at the active 

site.13 Both biochemical and structural studies are required to provide insights into the catalytic 

mechanism. In the active site of the hammerhead ribozyme, a conserved guanine, G-12, can act as 

a general base by hydrogen bonding with the 2-O nucleophile, while the 2-OH of the other 

guanine G-8 can stabilize the leaving oxygen as a general acid (Figure 1.5B).33 The HDV ribozyme 

utilizes a conserved cytosine (C75) as a general acid and a Mg2+ ion activating the 2-OH at the 

cleavage site.34 In the case of the glmS ribozyme, a metabolic molecule, glucosamine-6-phosphate 

(GlcN6P), is required as a cofactor for its catalysis instead of divalent metal ions.35 

 

Figure 1.5 (A) The peptidyl transferase activity of the ribosomal RNA during a peptide bond formation. 

(B) The minimal secondary structure of the hammerhead ribozyme containing 13 conserved nucleotides 

(top). The active site in the transition state where G-12 functions as a general base and G-8 as a general 

acid (bottom). Redrawn from ref 33. (C) The cleavage of a 3, 5-phosphodiester bond catalyzed by self-

cleaving ribozymes. The nucleophilic attack of the 2-OH to the nearest phosphate causes the leaving of the 

5-O, and produces a 2, 3-cyclic phosphate and a 5-OH. The , , , and  represent four catalytic 

mechanisms for the reaction. 



 

 

9 

1.4 Ribozymes for therapeutic applications 

After the discovery of self-cleaving ribozymes, their therapeutic potential in inhibiting 

gene expression was tested.36 For this purpose, several self-cleaving ribozymes (e.g., the 

hammerhead and hairpin ribozymes) were engineered to catalyze RNA cleavage in the trans-

cleaving manner (Figure 1.6A). By altering the binding sequence to be complementary to target 

mRNA, trans-cleaving ribozymes can selectively cleave essentially any mRNA target, such as HIV 

(human immunodeficiency virus) and cancer related genes.37, 38 However, many challenges remain 

in applying ribozymes in vivo, such as the short lifetime of ribozymes in vivo, ineffective delivery 

of ribozymes to target cells, and poor enzymatic activity. To improve the intracellular activity of 

the hammerhead ribozyme, in vivo selection of trans-cleaving hammerhead mutants was recently 

performed in E. coli cells.39 The selected variants showed an enhanced ability for intracellular 

gene-silencing toward various RNA targets. As a proof-of-concept, intracellularly expressed 

ribozymes were designed to cleave a reporter gene, spinach. The mutant suppressed fluorescence 

by disrupting the DFHBI (3,5-difluoro-4-hydroxybenzylidene imidazolinone) binding twice more 

efficiently than the original ribozyme (Figure 1.6B). 

Apart from RNA cleavage, another major direction is to develop ribozymes for chemical 

biology applications such as biomolecular synthesis and modification.40, 41 In a recent example, 

self-alkylating ribozymes were selected to achieve covalent labeling of a fluorophore on RNA 

(Figure 1.6C).42 Another branch of application is to combine aptamers and ribozymes to achieve 

ligand-responsive gene regulation. 

Riboswitches are natural RNA aptamers found in the untranslated regions of mRNA, which 

can regulate gene expression upon binding with target small molecules. The glmS ribozyme was 

identified in several Gram-positive bacteria to cleave certain messenger RNA using GlcN6P as a 
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cofactor.35 Even before the discovery of riboswitches, aptazymes or allosteric ribozymes have been 

rationally designed by fusing existing aptamers and ribozymes, or by direct in vitro selection.43 A 

rationally designed aptazyme is typically composed of an aptamer domain (e.g., for ATP, 

theophylline) and a ribozyme domain (e.g, hammerhead, hairpin).44, 45 Ligand binding induces a 

conformational change which subsequently influences the ribozyme activity and turns off or on 

the gene expression (Figure 1.6D). Recently, hammerhead-based aptazymes have been embedded 

in the guide RNAs of the CRISPR-Cas9 system to perform ligand-responsive genome editing.46 

 

 

Figure 1.6 (A) Trans-cleaving ribozymes for gene-silencing. (B) Intracellularly selected hammerhead 

ribozymes with enhanced cleavage activity in living cells. Spinach is a report RNA that binds with a small 

molecule, DFHBI, and emits fluorescence. Reprinted with permission from ref 39. Copyright © 2019 

Oxford University Press. (C) Covalent labeling of a fluorophore on RNA by a self-alkylating ribozyme. 

Redrawn from ref 42. (D) Rational design of an aptazyme for ligand-responsive gene expression. 
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1.5 RNA-cleaving DNAzymes 

Given the chemical similarity between DNA and RNA, a natural question is whether DNA 

can perform catalysis. Since most DNA molecules in nature are double-stranded, they are unlikely 

to be catalytically active. Single-stranded DNA, on the other hand, can form tertiary structures, 

allowing molecular recognition and catalysis. In the early 1990s, single-stranded DNAs with 

specific binding activity (aptamers) have been obtained through in vitro selection. Similar methods 

can also be used for the selection of DNAzymes, and the first DNAzyme was reported by Breaker 

and Joyce in 1994. This DNAzyme, named GR5 (Figure 1.7A), was selected for RNA cleavage in 

the presence of Pb2+.5 The initial choice of Pb2+ for the selection was probably motived by Pb2+ 

catalyzed RNA cleavage as observed in the leadzyme.47 GR5 is short with only 15 nucleotides in 

the catalytic loop, and its substrate contains a single RNA linkage serving as the cleavage site. In 

the original paper, the catalytic activity reached a turnover rate of 1 min-1 in the presence of 1 mM 

Pb2+. Later, after optimization of the buffer condition, its activity easily reached >10 min-1 with 10 

µM Pb2+.48 
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Figure 1.7 The secondary structures of the (A) GR5, (B) 8-17, and (C) 10-23 DNAzymes. (D) The 7-38-

32 DNAzyme containing three modified nucleotides: 8-histaminyl-deoxyadenosine (dAimTP), 5-

guanidinoallyl-deoxyuridine (dUgaTP), and 5-aminoallyl-deoxycytidine (dCaaTP). 

1.5.1 DNAzymes for gene-silencing in cells 

One of the first motivations to develop RNA-cleaving DNAzymes was to cleave viral RNA. 

GR5 is apparent not appropriate for this purpose since it cannot cleave all-RNA substrates (it only 

cleaves the substrate with a single RNA linkage), and it requires toxic Pb2+ (no activity in the 

presence of Mg2+ alone). Subsequently, Santoro and Joyce reported two DNAzymes named 8-17 

and 10-23 (Figure 1.7B and 1.7C), both of which can cleave full-RNA substrates with Mg2+ 

alone.49 The catalytic rate reached a catalytic rate of ~0.1 min-1 with 2 mM Mg2+, and the catalytic 

efficiency (kcat/Km) reached ~109 M-1·min-1 for the 10-23 DNAzyme, which is comparable with 

the most efficient protein enzyme. The requirement of substrate sequence is very simple. Further 

studies revealed that all the 16 junctions can be cleaved at different efficiencies.50 The specificity 

of cleavage is defined by the two substrate binding arms. With each arm containing 8 or more base 

pairs, these two DNAzymes can in principle be modified to target any specific RNA sequence. 

This discovery has excited the field for pursuing anti-viral and later anti-cancer 

applications.51, 52 However, to achieve a high cleavage activity, the required Mg2+ concentration is 

quite high and intracellular free Mg2+ can hardly meet the requirement. It has been argued that the 

observed intracellular inhibition of gene expression using DNAzymes could simply be due to the 

anti-sense effect.53 To address this issue, using modified nucleotides to mimic the chemical 

functionalities of RNase A has been attempted and metal-free cleavage was achieved in some cases. 
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An example is the DNAzyme 7-38-32 (Figure 1.7D), which cleaves an RNA substrate with a 

catalytic rate of 1.06 min-1 in the presence of only 0.5 mM Mg2+.54 

Apart from selection, chemical modifications have been used to engineer current 

DNAzymes to achieve improved activity and stability in vivo.55-57 In a recent study, xeno-nucleic 

acids (XNAs) such as 2-fluoroarabino (FANA) and α-L-threofuranosyl (TNA) nucleic acids were 

used to modify the 10-23 DNAzyme.58 XNA can provide an enhanced stability against nuclease 

degradation and support high binding affinity to RNA substrates. After optimization, the 

engineered 10-23 DNAzyme displayed enhanced biostability and multiple-turnover activity, 

which was successfully applied for knocking down mRNA sequences in living cells.59 

1.5.2 Representative metal-dependent DNAzymes 

Compared to biomedical applications, the development of designing DNAzymes into 

biosensors has advanced more. Lu and coworkers selected the 17E DNAzyme in the presence of 

Zn2+, which turned out to be very similar to the 8-17 DNAzyme.60 These DNAzymes can be 

activated with various divalent metal ions (e.g., Zn2+, Mg2+, Mn2+), but are most active with Pb2+.61 

Li and Lu first demonstrated designing the 17E DNAzyme into a fluorescent sensor for Pb2+ 

detection.62 Since then, the 17E DNAzyme has been used as a model system to develop different 

signaling mechanisms ranging from fluorescence, color, electrochemistry to Raman 

spectroscopy.19 

Many subsequent selections have been intentionally carried out in the presence of target 

metal ions to achieve desired specificity. Several representative RNA-cleaving DNAzymes and 

their metal ion cofactors are summarized in Figure 1.8. The 39E DNAzyme was isolated in the 

presence of UO2
2+ and it has over 1-million-fold higher selectivity for UO2

2+ over other metal ions 
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(Figure 1.8A).63 Several nucleotides in the budge loop were determined to contribute to the UO2
2+-

binding.64 The EtNa DNAzyme is highly specific for Ca2+ in water, but becomes more active for 

Na+ in ethanol (Figure 1.8D).65 Biochemical studies revealed that EtNa requires a cooperative 

binding of two Ca2+ ions at the scissile phosphate, which may explain its excellent specificity.66 

For the Ce13d DNAzyme, all trivalent lanthanide ions exhibit similar activity by neutralizing the 

negative charge on the non-bridging oxygens (Figure 1.8G).67 Furthermore, two more lanthanide-

dependent DNAzymes were identified whose activities require the binding of multiple lanthanide 

ions (Figure 1.8E and 1.8F).68, 69 By introducing a phosphorothioate (PS) modification at the 

cleavage junction, Cd2+ (Figure 1.8B) and Cu2+ (Figure 1.8C) specific DNAzymes were selected.70, 

71 The PS modification is critical for recognition of these softer metal ions, which in turn indicated 

that the binding of the scissile phosphate group is their main catalytic role. 

In most cases, a well-defined metal binding pocket (e.g., an aptamer motif) cannot be 

identified in a metal-specific DNAzyme. Metal ions typically perform their catalytic functions by 

transiently associating with the cleavage site. Interestingly, a few new DNAzymes were reported 

with defined aptamer motifs. The NaA43 DNAzyme (Figure 1.8H) was selected in the presence 

of Na+ and it can reach a rate of 0.1 min-1 with 400 mM Na+ alone.72 It shares sequence similarity 

with the Ce13d DNAzyme and the common loop was later identified as a Na+ aptamer.73 The Ag+-

specific DNAzyme, Ag10c, is another example in which two Ag+ ions bind to the aptamer motif 

(Figure 1.8I).74 The catalytic role of interacting with the scissile phosphate is fulfilled by the salt 

in buffer (e.g. Na+, Li+, K+, Mg2+).75 
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Figure 1.8 The secondary structures and metal binding sites of the (A) 39E, (B) Cd16, (C) PSCu10, (D) 

EtNa, (E) Dy10a, (F) Tm7, (G) Ce13d, (H) NaA43, and (I) Ag10c DNAzymes and their corresponding 

target meta ions. Some DNAzymes require multiple metal ions. 

1.5.3 In vitro selection for DNAzymes 

The method of in vitro selection has been widely used to discover DNA or RNA sequences 

with novel activities and target selectivity.24 A general procedure of in vitro selection for RNA-

cleaving DNAzymes is illustrated in Figure 1.9. For a typical selection experiment, a single-

stranded DNA library containing a random region (e.g., N50) is chemically synthesized. The library 
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is often designed to fold into a cis-cleaving secondary structure in which the cleavage site is close 

to the randomized region. Next, a selection pressure is applied to the DNA library aiming for 

inducing specific catalytic activity. Sequences with catalytic activities are isolated after the RNA 

cleavage. Commonly used separation methods are based on gel electrophoresis, streptavidin 

chromatography, and magnetic beads immobilization.76, 77 After PCR amplification, the library is 

enriched with active sequences and can be used for the next round of selection. 

 

 

Figure 1.9 A scheme showing the key steps of in vitro selection for RNA-cleaving DNAzymes starting 

from a random DNA library. The boxed region shows the secondary structure of a typical random library 

with a single RNA linkage embedded (in red). After step 4, the PCR amplification, the resulting duplex 

product needs to be separated and only one of the strands is useful.  

To enrich the DNA pool of catalytically active sequences, the above procedures are 

repeated for multiple rounds (e.g., 5-15 rounds) until the activity becomes saturated or sufficiently 

high. To improve the catalytic efficiency, a common way is to increase the selection pressure 

during the selection such as decreasing the target metal ion concentration. Meanwhile, negative 

1. Randomized DNA library 
(~N50)

3. Separate active sequences 
(e.g., cleaved) from library 

2. Selection for catalytic activity   
(e.g., RNA cleavage)

4. PCR amplification

5. Cloning and 
sequencing 

N50

cleavage site

(active)
(inactive)

(inactive)
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selections can be carried out to eliminate non-specific activity and improve selectivity.78 At the 

end of the selection, individual sequences in the pool are cloned and sequenced. In general, in vitro 

selection for DNAzymes is easier than the selection for ribozymes since no transcription/reverse 

transcription steps are needed. 

1.5.4 DNAzymes for metal sensing 

Since the majority of RNA-cleaving DNAzymes share a similar secondary structure, 

several universal strategies have been reported for converting DNAzymes into biosensors.8 A 

fluorophore/quencher pair can be labeled on one end of the substrate strand and the corresponding 

end of the enzyme strand, resulting in an initially quenched state (Figure 1.10A). With the addition 

of metal ions, the reaction occurs and the cleaved fragment bearing the fluorophore is released 

giving an enhanced fluorescence signal. Such a fluorescent beacon design is commonly used as a 

proof-of-concept sensing application for DNAzymes. To suppress the background signal, an 

additional quencher can be attached to the other end of the substrate. For example, the 39E 

DNAzyme was converted into a catalytic beacon for UO2
2+ detection with a detection limit of 45 

pM.63 Alternatively, the fluorophore and quencher can be internally labeled near the cleavage site. 

Thus, a fluorescence increase can be detected instantly after the cleavage step with a low 

background signal.79 

Apart from fluorescent beacons, DNAzyme-based colorimetric sensors have been 

constructed utilizing DNA-functionalized gold nanoparticles (AuNPs).19 A typical strategy is 

illustrated in Figure 1.10B, where DNAzymes were used as linkers to assemble the AuNPs forming 

blue colored aggregates.80 Upon cleavage, the AuNPs were disassembled resulting in a blue-to-

red color change. Additionally, DNAzyme-based sensing can also be achieved through 
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electrochemical signals. For example, the methylene blue-labeled enzyme strand (the 8-17 

DNAzyme) can efficiently transfer electrons to the electrode surface upon the Pb2+-induced 

cleavage (Figure 1.10C).81 

 

Figure 1.10 Three representative signaling strategies for RNA-cleaving DNAzymes. (A) Cleavage-induced 

fluorescent signal enhancement in a fluorescence beacon. (B) The disassembly of AuNPs after the cleavage 

reaction. (C) The conformational change of the 8-17 DNAzyme upon cleavage generates electrochemical 

signals for Pb2+ sensing. 

1.6 Metal ions in DNA catalysis 

To achieve catalytic activity, protein and nucleic acid enzymes often fold into ordered 

structures where functional groups are precisely positioned at the catalytic site. Unlike protein 

enzymes, nucleic acids inherently have limited functional groups (i.e., four nucleobases) available 

for catalysis in contrast to the variety of amino acids. Due to their pKa values, nucleobases are 

generally unwilling to deprotonate or protonate at physiological pH serving as functional groups. 

Moreover, the heavy negative charge carried by a phosphate backbone hinders an RNA or DNA 

molecule from folding into a compact structure. Therefore, cations especially metal ions often play 

critical roles in RNA or DNA catalysis. This is especially evident in RNA-cleaving DNAzymes 

considering their remarkable sensitivity and selectivity toward a given mental ion cofactor. 
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1.6.1 Metal binding sites in nucleic acids 

Metal ions can interact with various sites in nucleic acids including phosphate backbones, 

sugar rings, and nucleobases.82, 83 Metal ions can stabilize the secondary and tertiary structures by 

screening the charge repulsion between negatively charged phosphates. Group 1A and 2A metals, 

especially Na+, K+, and Mg2+, have been extensively studied for this purpose since they are the 

abundant inorganic cations in vivo. For example, thermodynamic studies demonstrated that 

monovalent ions and Mg2+ can stabilize DNA duplex and tRNA tertiary structures (e.g., increased 

melting temperatures, Tm).84, 85  

The electrostatic interaction can be divided into three classes depending on the interaction 

strength.8, 86 Most of the time, cations interact with a phosphate backbone by a simple diffusion 

(Figure 1.11A). In aqueous solutions, hydrated metal ions distribute in the electronegative field 

near nucleic acids forming a diffuse ion atmosphere. This interaction is via a non-specific long-

range attraction. For instance, the calculated electrostatic potential near a cross-section of an RNA 

hairpin was illustrated in Figure 1.11D.86 The higher concentrations of monovalent ions also locate 

at higher electrostatic potential regions. In some cases, metal ions can bind to nucleic acids more 

tightly and even lose part of their hydration shells. In the outer-sphere interaction, a metal ion 

interacts with a ligand through its bridging waters (Figure 1.11B), while the inner-sphere 

interaction indicates a direct coordination without intervening waters (Figure 1.11C). For example, 

in the solved crystal structure of group I intron, a tri-hydrated Mg2+ directly coordinates with three 

phosphate oxygens in an A-rich bulge (Figure 1.11F).87, 88 Meanwhile, another Mg2+ in the major 

groove forms hydrogen bonds with three guanines through its water ligands (Figure 1.11E). 
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Figure 1.11 A hydrated metal ion interacts with a phosphate through (A) diffusion, (B) outer-sphere binding, 

and (C) inner-sphere binding. Adapted with permission from ref 8. (D) The ion atmosphere around a cross-

section of an RNA hairpin. Reprinted with permission from ref 86. © Copyright 2004 by RNA Society. A 

Mg2+ ion binds with (E) three guanines through hydrogen bonds or (F) with phosphate groups through 

inner-sphere coordination. Adapted with permission from ref 8. 

Metal ions can also coordinate with nucleobases. For instance, transition metal ions such 

as Zn2+, Mn2+, Cd2+, and Cu2+ were found to decrease the melting temperature of DNA duplex at 

relatively high concentrations.89 These metal ions can interact with both phosphates and bases.90 

Thus, a moderate metal concentration contributes to the charge screening, while a high 

concentration interrupts the hydrogen binding between nucleobases. Trivalent lanthanide ions as 

hard Lewis acids can also coordinate with bases.91 Melting profiles measured by 

spectrophotometer showed that merely micromolar Tb3+ irreversibly denatured dsDNA.92 The 
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common binding sites in nucleobases for metal ions are summarized in Figure 1.12A. All the 

nucleobases carry no charge at physiological pH. Nevertheless, the endocyclic nitrogen atoms and 

the exocyclic carbonyl oxygen atoms are promising metal binding sites due to their lone pair 

electrons. Typical sites are N1, N3 and N7 in adenine; N3, N7 and O6 in guanine; N3 and O2 in 

cytosine; O2 and O4 in thymine. The exocyclic amino groups are not suitable for the task since 

their lone electron pairs are delocalized in the heterocyclic rings. The N3 atoms in purines are 

normally sterically hindered by the sugar, and rearrangement is required for metal binding.93 In 

addition, the N1 position of thymine can also serve as a binding site when it becomes protonated 

(pKa=9.9). A special case is the T-Hg2+-T base pair (Figure1.12C) where the binding of Hg2+ 

removes the N1 proton at neutral even acidic pH. An NMR study demonstrated that the Hg2+ 

coordination can stabilize a DNA duplex containing T-T mispairs.94 The site-specific binding 

between metal ions and nucleobases also exists in C-Ag+-C base pair (Figure 1.12B). 

Within specific sequences, monovalent ions can stabilize nucleic acid structures through 

inner-sphere coordination. G-quadruplex (GQ) is a noncanonical nucleic acid structure formed 

within G-rich sequences. A GQ consists of two or more G-tetrads stacking together. Each G-tetrad 

(Figure 1.12D) contains four guanines assembled by Hoogsteen hydrogen binding between N1/N2 

(donor) and O6/N7 (acceptor). Monovalent metal ions play important roles in stabilizing a GQ 

structure. A K+ ion can lie between two G-tetrads and coordinate with eight O6 atoms, while a 

smaller Na+ can coordinate within a G-tetrad plane.95 Overall, K+ is more efficient than Na+ in 

stabilizing a GQ structure which was corelated to the relatively lower energy cost of K+ 

dehydration.96 GQ is also an important structural motif for DNAzymes, enabling porphyrin 

metalation and peroxidase-liking activities.97, 98 
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Figure 1.12 (A) Metal ion-binding sites in nucleobases. (B) The C-Ag+-C base pair. (C) The T-Hg2+-T base 

pair. (D) A G-tetrad stabilized by K+ coordination. 

1.6.2 Metal ions in RNA cleavage reaction 

In a nucleic acid enzyme, metal ions can facilitate the catalysis by playing a structural role 

or directly participating in the chemistry. From a structural perspective, metal ions can stabilize 

the tertiary structure or initiate the folding into a native structure. To date, the metal-dependent 

folding of the 8-17 DNAzyme has been extensively studied.99-101 The 8-17 DNAzyme performs 

cleavage activity in the presence of various metal ions with the following descending order: Pb2+ > 

Zn2+ > Cd2+ >Mg2+ ~ Ca2+. Lu and others utilized FRET (fluorescence resonance energy transfer) 

at the single-molecular level (smFRET) to monitor the global folding of 8-17.102 The addition of 

Zn2+ and Mg2+ induced the folding of DNAzyme into a compact structure which supported the 

subsequent cleavage activity (Figure 1.13). On the contrary, no global folding was detected in the 

presence of Pb2+ which is the most effective cofactor for the cleavage. Since the cleavage happens 

without a precedent folding process, the Pb2+ ion may bind to a prearranged conformation and 

directly participate in the chemistry. These results also demonstrated the capability of DNAzymes 
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using multiple catalytic pathways which has been observed in some ribozymes.103 A later study 

using the contact photo-crosslinking demonstrated that Pb2+ can induce a local folding near the 

active site instead of a global folding.101 

 

Figure 1.13 Divalent metal ion-induced folding of the 8-17 DNAzyme studied by FRET. Reprinted from 

ref 102. Copyright © 2007 Nature Publishing Group. 

Apart from 8-17, the metal-induced folding was investigated in other DNAzymes. In the 

39E DNAzyme, a FRET study showed that UO2
2+-induced folding can only be detected under low 

ionic strength (30 mM Na+).104 Meanwhile, Zn2+ and Mg2+ also induced folding in 39E and 

inhibited the UO2
2+-specific cleavage activity. In the Ag10c DNAzyme, 2-aminopurine (2AP) 

modifications were applied to observe the folding of the Ag+-binding aptamer identified in the 

enzyme strand.105 By comparing with inactive mutants, they confirmed that the Ag+-induced 

folding is indeed crucial for its cleavage activity. 

On the other hand, metal ions can directly participate in the RNA cleavage reaction. To 

date, the metal ion-assisted mechanism has been well-established benefitting from the extensive 



 

 

24 

biochemical and structural studies on self-cleaving ribozymes.106 During a phosphoryl transfer 

reaction, metal ions can function in many possible ways (Figure 1.14). In aqueous solution, a 

metal-bound water molecule has a lower pKa value than a free water molecule. The hydrated metal 

ion may release a proton and undergo hydrolysis depending on its pKa value (Table 1). For example, 

the first pKa of Mg2+-bound water is lower than that of Pb2+, suggesting that water molecules 

coordinated with Pb2+ is easier to deprotonate than Mg2+. 

 

 

Figure 1.14 Possible catalytic roles of metal ions playing in an RNA cleavage reaction. 

After deprotonation, the metal-bound hydroxyl group can serve as a general base, 

abstracting a proton from the internal nucleophile. The activated 2-OH thus can better perform 

the nucleophilic attack on the neighboring phosphorus atom. Alternatively, inner-sphere 

coordination from a metal ion can also assist the deprotonation of 2-OH. In addition, metal ions 

can stabilize the transition state by coordinating to the non-bridging oxygens. Another mechanism 

involves interacting with the leaving group. A metal-bound water (as a general base) or metal ion 

(as a Lewis acid) can stabilize the developing negative charge on the 5-O. 
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Table 1. Chemical properties of several multivalent metal ions.106, 107 

 

1.6.3 Methods to study metal binding sites 

Due to limited availability of structural information, so far, mechanistic studies of 

DNAzymes were achieved mainly by biochemical methods. Since metal binding is often crucial 

for DNAzyme catalysis, extensive efforts have been made in identifying metal binding site in 

RNA-cleaving DNAzymes.108 Phosphorothioate (PS) modification on the cleavage site has been 

widely used to probe metal binding on the scissile phosphate (Figure 1.15).109, 110 In a typical case, 

a non-thiophilic metal ion such as Mg2+ can directly interact with one of the non-bridging oxygens. 

A PS modification can significantly inhibit (often >100-fold) the cleavage activity compared to 

the original PO-substrate (a normal thio effect).111, 112 The activity loss normally will be rescued 

by the addition of more thiophilic metal ions (e.g., Mn2+ or Cd2+). Most of time, metal ions were 

determined to interact with the pro-Rp oxygen in the catalysis of ribozymes and DNAzymes. This 

observation however has exceptions. For example, in the Dy10a DNAzyme (Figure 1.8E), a 

Ion Ionic radius (Å)
Coordination 

number

Typical geometry 
of inner-sphere 

complex

First pKa of 
[M(H2 O)x]n+

Mg2+ 0.57-0.89 6 Octahedral 11.4

Ca2+ 0.99 8 Square antiprism 12.6

Mn2+ 0.66-0.96 4,6,8 Octahedral 10.6

Zn2+ 0.60-0.90 4,6,8 Tetrahedral 8.2-9.8

Ni2+ 0.55-0.69 4,6 Octahedral 6.5-10.2

Fe2+ 0.63 4 Octahedral 6.0-6.7

Co2+ 0.72 6 Octahedral 7.6-9.9

Pb2+ 0.98-1.5 4,6,8,10,12 Octahedral 6.5-8.4

UO2
2+ 0.8 (U6+) 6,8 Octahedral 5.7

Eu3+ 0.95 9 Variable 4.8-8.5
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significant inhibition (>1000-fold) was observed for both the Rp and Sp isomers, indicating that 

both non-bridging oxygens are interacting with metal ions.69 

 

Figure 1.15 PS modification on the Rp substrate results in a thio effect by disturbing the interaction between 

a catalytic Mg2+ ion and the pro-Rp oxygen. Adapted with the permission from ref 112. 

When nucleobases are involved in metal binding, DNA footprinting can provide valuable 

information. For example, dimethyl sulfate (DMS) footprinting has been applied to identify metal 

ion-binding aptamer in DNAzyme sequences. DMS can methylate the N7 position of a guanosine 

residue allowing it to be cleaved by piperidine. However, when the guanosine is protected in a 

folded structure, it can be prevented from methylation and thus from cleavage. By comparing DMS 

footprinting patterns, a silver-specific aptamer has been identified in the Ag10c DNAzyme.75 

Nevertheless, it needs to be noted that most DNAzymes and ribozymes do not have such well-

defined metal binding aptamers. Metals only need to transiently bind to the active site to exert their 

catalytic functions. 

Spectroscopic methods are also very useful in characterizing metal ion-nucleic acid 

interaction. Ultraviolet–visible (UV-vis), nuclear magnetic resonance (NMR), electron 

paramagnetic resonance (EPR), and X-ray absorption spectroscopy (XAS) are just a few examples 
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to obtain metal binding information.83 The fluorescence spectroscopy is a popular tool due to its 

high sensitivity, rich molecular information, and simplicity in instrumentation. For example, the 

global or local folding of many RNA-cleaving DNAzymes have been studied by fluorescence 

techniques such as Tb3+ luminescence, 2AP modification, and fluorescence resonance energy 

transfer (FRET).73, 102, 113 

 

Figure 1.16 (A) The secondary (left) and crystal structure (right) of the RNA-cleaving DNAzyme, 8-17, 

revealing a V-shaped overall folding (PDB: 5XM8). (B) A Pb2+-bound water captured in the catalytic core. 

(C) A hypothetical mechanism of 8-17 catalysis including a Pb2+-bound water molecule as a general acid 

and a conserved guanine (G13) as a general base. Adapted with the permission from Ref 114. Copyright © 

2017 Springer Nature. 
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The most direct insights are often provided by structural biology data such as NMR and X-

ray crystallography. Many RNA-cleavage ribozymes have crystal structures, which contributed 

significantly to their fundamental understanding.31 So far, only two DNAzymes have crystal 

structures: one for RNA cleavage and the other for RNA ligation.114, 115 These structures were 

obtained after more than 20 years of the report of the first DNAzyme. The challenges of 

crystallization suggest floppy and dynamic behavior of DNAzymes and coexistence of multiple 

structures, which also posed challenges for NMR. The only crystal structure of an RNA-cleaving 

DNAzyme (8-17) revealed a V-shaped folding containing two helical substrate-binding arms and 

a 15-nt pseudoknot catalytic core (Figure 1.16A).114 The 8-17 DNAzyme catalyzes the RNA 

cleavage via the general acid-base mechanism. At the active site, a Pb2+ ion activates a water 

molecule and stabilizes the 5-leaving oxygen as a general acid (Figure 1.16B), while a conserved 

guanine serves as a general base facilitating the deprotonation of 2-OH group (Figure 1.16C). 

Biochemical studies on the pH-rate profiles also confirmed the general acid-base mechanism.116, 

117 A recent dynamical simulation further revealed the supporting role of Na+ during the 

catalysis.118 The crystal structure also revealed a similar conformation of the catalytic site between 

8-17 and the hammerhead ribozyme. 

1.7 Na+-dependent RNA-cleaving DNAzymes 

The study of nucleic acid enzymes has been mainly focusing on divalent and trivalent metal 

ions. With their ability to bind to DNA/RNA specifically, polyvalent metal ions are essential for 

folding and catalysis of nucleic acids.119 Monovalent ions such as Li+, Na+, K+ only bind to nucleic 

acids non-specifically and distribute as a “ion atmosphere”. Surprisingly, studies demonstrated 

that the exchange inert cobalt hexammine [Co(NH3)6
3+] can fully replace Mg2+ in the hairpin 
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ribozyme catalysis.120, 121 These results suggested that its catalytic mechanism requires no inner-

sphere coordination from metal cofactors. Instead, the rate enhancement could be explained by the 

structural role of divalent metal ions, or stabilization effect on the transition state through an outer-

sphere coordination. Furthermore, molar concentrations of monovalent cations (e.g., Li+, Na+, K+, 

NH4
+) were found to support cleavage without divalent metals in many self-cleaving ribozymes 

including the hairpin, hammerhead, VS, and HDV ribozymes.122, 123 These studies thus enabled us 

to reconsider the essential role of divalent ions in catalysis. Despite that metal ions are efficient 

cofactors, ribozymes are capable of performing catalysis using RNA functional groups. In addition, 

it is possible that ribozymes may adapt to multiple catalytic mechanisms depending on the 

experimental conditions.124 

1.7.1 The NaA43 DNAzyme 

The searching for RNA-cleaving DNAzyme in the absence of divalent metal ions started 

from 1997. Geyer and Sen performed the in vitro selection of DNAzyme in the presence of Na+ 

and EDTA.125 The activity of the obtained DNAzyme was indeed independent on divalent metal 

ions with a rate enhancement of ~108 over the uncatalyzed reaction. However, the catalytic role of 

Na+ can be replaced by other monovalent ions (e.g., NH4
+, K+) suggesting a lack of metal 

selectivity. From the analytical perspective, functional nucleic acids with selectivity and sensitivity 

toward Na+ are always attractive. As one of the most abundant cations in biology, Na+ 

concentration is highly important in regulating cellular processes such as signal transduction and 

hormone action.126 The detection of Na+ with high selectivity over other monovalent ions remains 

challenging both in vitro and in vivo. 
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Figure 1.17 (A) The NaA43 DNAzyme-based intracellular sensing of Na+ based on the photocaging 

strategy. (B) Confocal microscopy images of HeLa cells transfected with caged NaA43 complex showing 

the Na+ influx upon irradiation. Reprinted with permission from ref 72. Copyright 2015 National Academy 

of Sciences. 

In 2015, Lu and others reported the first Na+-selective DNAzyme obtained from in vitro 

selection.72 The NaA43 DNAzyme (Figure 1.8H) catalyzed the RNA cleavage with a rate constant 

of 0.11 ± 0.01 min-1 in 400 mM Na+. Most importantly, it displayed a remarkable selectivity 

(>10,000-fold) over other metal ions. They further designed a catalytic beacon by labeling 

fluorophore and quencher to the substrate and enzyme strands. By measuring the fluorescence 

signal, the cleavage rate of NaA43 increased with the addition of Na+, giving an apparent 

A

B
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dissociation constant of 39.1 ± 2.3 mM. The limit detection was determined to be 135 µM 

(3𝜎/slope). Furthermore, they applied the NaA43 sensor for intracellular Na+ imaging. To prevent 

cleavage during the DNAzyme delivery, they used a photolabile o-nitrobenzyl group to cage the 

2´-OH at the cleavage site (Figure 1.17A). The G8 polypeptide was then used to deliver the 

DNAzyme sensor into the cytoplasm of HeLa cells. Upon brief irradiation at 365 nm, the caging 

group was removed which in turn restored the cleavage activity. By monitoring the fluorescence, 

they imaged the influx of Na+ from extracellular medium into the cell induced by ionophores 

(Figure 1.17B). 

1.7.2 Identify the Na+-binding domain 

Interestingly, a close examination of the NaA43 DNAzyme revealed a 16-nt motif that is 

also present in the lanthanide-dependent DNAzyme, Ce13d (Figure 1.8G). Thus, biochemical 

studies have been conducted to understand their activities. The Ce13d DNAzyme was revealed to 

require not only lanthanide ions (e.g., Ce3+) but also Na+ for its cleavage activity.73 By studying 

the PS-modified substrates, Ce3+ was determined to interact with the scissile phosphate. Their 

common 16-nt motif was revealed to be a Na+-binding aptamer by studying the Tb3+ luminescence 

and DMS footprinting. Mutation studies identified a conserved guanine in NaA43 which may play 

a catalytic role. 

Furthermore, the Na+-induced folding was detected by using 2AP modifications. 2AP is a 

fluorescent adenine analog whose emission intensity is highly sensitive to local base stacking 

environment.127 By introducing a 2AP modification in the substrate strand, a gradual increase in 

fluorescence was detected by titrating Na+ indicating a relaxed base stacking near the 2AP probe 

(Figure 1.18). On the contrary, fluorescence quenching was observed after replacing a non-
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conserved adenine in the enzyme strand with 2AP. This result suggested the enzyme loop folding 

into a more compact structure upon Na+ binding. Since the signal was highly Na+-specific, they 

further designed a folding-based Na+ sensor by introducing a double mutation which largely 

enhanced the signal. This aptamer was later found to bind to K+, which resulted in misfolding of 

DNAzyme and an inhibited activity.128 

 

Figure 1.18 The folding-based sensing of Na+ using 2AP-labeled Ce13d DNAzyme and the chemical 

structure of 2-aminopurine. 

1.7.3 The EtNa DNAzyme 

The EtNa DNAzyme is another Na+-specific sequence selected by our lab.65 The 

unexpected cleavage of EtNa was determined to occur during the isopropanol precipitation step. 

The biochemical characterization revealed the requirement of both alcoholic solvents and Na+. In 

54% ethanol, the cleavage rate of EtNa measured in the presence of 120 mM Na+ was 2.0 h-1, 

whereas its activity in water was nearly undetectable. Interestingly, a later study found that freezing 

in water can enhance its Na+-mediated cleavage.129 For example, the apparent Kd measured under 

frozen condition was over 20 times lower than room temperature. The mechanism behind this 

unique activity of EtNa was related to a higher local Na+ concentration caused by both ethanol and 

freezing. 
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In water, the EtNa cleavage was more sensitive and selective toward Ca2+
.
66 For instance, 

the cleavage measured in 2 mM Ca2+ was ~90 time faster than in 2 mM Mg2+. The double-log plots 

of rate verses metal concentration indicated two Ca2+-binding sites in EtNa, but only one binding 

site for Mg2+. This result thus explained its high selectivity for Ca2+ over Mg2+. Strong thio effects 

were observed with both Rp and Sp isomers of PS-modified substrates, suggesting that Ca2+ bind 

to both non-bridging oxygens at the scissile phosphate. 

1.8 Research focus 

Compared to the development in DNAzyme applications, our fundamental understanding 

on the catalytic mechanism is still limited. Previous efforts have been mainly focusing on studying 

the role of metal ions, while the nucleotide-based catalysis has not been fully revealed in 

DNAzymes. In recent years, several Na+-dependent DNAzymes have been reported, indicating 

DNA catalysis without divalent or trivalent metal ions directly involved in the reaction. Therefore, 

my thesis research is focused on in vitro selection of monovalent-metal-dependent DNAzymes 

and ribozymes, and provide insights into their catalytic mechanism in the absence of divalent metal 

ions. In Chapter 2, a new Na+-dependent DNAzyme, NaH1, was selected under a relatively acidic 

condition, which turned out to be a variant of the previous NaA43 DNAzyme. Compared to other 

competing monovalent ions, NaH1 also displays an excellent selectivity for sodium. The NaA43 

and NaH1 DNAzymes share the same 16-nt Na+-binding motif but differ in one or two nucleotides 

in a small catalytic loop. Nevertheless, they display an opposite pH-dependency, implicating 

distinct catalytic mechanisms. In Chapter 3, rational mutation studies demonstrated conserved 

nucleotide residues in these DNAzymes. The pH-rate profiles using pKa-perturbed analogs further 
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revealed their distinct general acid-base mechanisms. Further biochemical experiments were 

conducted to provide more insights into the active site. 

The sodium-dependent DNAzymes do not require multivalent metal ion for catalysis and 

can fold into well-defined structures. Thus, they provided an excellent platform for studying the 

metal ion effect at the cleavage site. In Chapter 4, I used them as models to explore the role of Pb2+ 

in RNA cleavage which has been frequently observed. By examining the Pb2+ effect, the capability 

of Pb2+ to bind specifically to the cleavage site has been demonstrated. Upon binding, the hydrated 

Pb2+ can serve as a poor general acid and facilitate the RNA cleavage. In a special case, Pb2+ can 

facilitate the binding of Ca2+ cofactor and significantly enhance the activity of a Ca2+-dependent 

DNAzyme. The mechanism study on Pb2+ activity further revealed versatile roles of Pb2+ in RNA 

cleavage which is important for understanding DNAzyme catalysis. 

Given the excellent Na+-binding selectivity of DNAzymes, a natural question is whether 

similar ribozymes exist. In the last chapter, I further performed in vitro selection to search for Na+-

dependent self-cleaving ribozymes. Surprisingly, a novel ribozyme was obtained displaying a site-

specific cleavage activity under denaturing conditions, such as high temperatures, denaturing 

solvents, and low salt concentrations. 
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Chapter 2. An In Vitro Selected DNAzyme Mutant Highly Specific for Na+ in 

Slightly Acidic Conditionsb 

2.1 Introduction 

Sodium is one of the most common and important metal ions in the environment and in 

biology. A high sodium level is a reflection of physiological disorders such as high blood pressure 

and water retention. Over the years, various methods have been developed to detect Na+ and most 

efforts were focused on crown ether-based fluorescent chelators.130, 131 Using DNA as a platform 

for developing metal sensors has been practiced for nearly two decades and many DNA sequences 

have been identified to bind to a wide range of metals.8, 19 These mainly include two classes of 

functional DNA molecules: aptamers and DNAzymes.11, 132 Aptamers perform a simple binding 

function, while DNAzymes are catalysts and they usually require a divalent metal ion for activity, 

such as Pb2+,5 Zn2+,133 Cu2+,71, 134 UO2
2+,63 Cd2+,70 Ca2+,66 and Hg2+.135 Recently, trivalent 

lanthanides were also used in DNA-based catalysis.68 Aside from Ag+,74, 136 binding monovalent 

cations (e.g. K+, and Tl+) mainly relied on G-quadruplex DNA.137, 138 

Using DNA for Na+ recognition has not caught much attention until 2015. Before that, Na+ 

was mainly used as a buffer salt to control ionic strength without considering its specific binding 

by DNA.125 Recently, a few highly Na+-specific RNA-cleaving DNAzymes have been reported. 

The NaA43 DNAzyme was selected by Lu and coworkers, and it has a high sequence analogy to 

                                                 
b This chapter is the basis for a published manuscript: Ma, L.; Liu, J., An In Vitro Selected DNAzyme Mutant Highly 

Specific for Na+ in Slightly Acidic Conditions. ChemBioChem 2019, 20 (4), 537-542. 
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a lanthanide-dependent DNAzyme named Ce13d discovered in our lab.67, 72 Further assays 

indicated that Ce13d also requires Na+, suggesting a common Na+ aptamer in these two 

DNAzymes.73, 139 Previous studies also discovered the EtNa DNAzyme that uses a different 

mechanism for specific Na+ recognition.65 

So far, most of the work has been focused on the characterization of previously selected 

DNAzymes. Rational mutations were performed to understand individual nucleotides important 

for catalysis and metal binding,110, 140 while efforts on new selections were limited. New selections 

under different conditions can explore a larger sequence space and may offer new insights. In this 

chapter, I reported a mutant of NaA43, which was discovered from a selection effort using cobalt 

complexes as intended metal cofactors. The new DNAzyme sequence can be considered as a 

mutant since it is very similar to NaA43 in sequence, and it also catalyzes in the presence of Na+ 

alone with an excellent Na+ specificity. However, this mutant displayed a different pH optima 

indicating a distinct catalytic mechanism. This study further broadens our understanding of Na+-

dependent DNAzymes and demonstrates the performance of a sodium sensor derived from this 

mutant. 

2.2 Results and discussions 

2.2.1 In vitro selection 

The initial intention of in vitro selection was to obtain a RNA-cleaving DNAzyme using 

Co(NH3)6
3+ as metal cofactors. As an exchange-inert metal complex, Co(NH3)6

3+ cannot interact 

with nucleic acids through an inner-sphere coordination.141 With a similar size and geometry as 

Mg(H2O)6
2+,  Co(NH3)6

3+ was found to support the hairpin ribozyme cleavage with a comparable 

efficiency as Mg2+.121 Thus, a Co(NH3)6
3+-promoted DNAzyme can offer new insights into the 
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cleavage mechanism in terms of outer-sphere coordination. Our in vitro selection followed an 

established protocol in the lab with an initial library containing approximately 1014 random DNA 

sequences (Figure 2.1A).67 Each DNA sequence contains a 50-nt random region flanked by two 

short binding arms in a cis-cleaving form (Figure 2.1B). This size is chosen as a balance of 

complexity, diversity, and sequence space coverage. The single RNA linkage (rA, ribo-adenine) 

represents the cleavage site. 

 

Figure 2.1 In vitro selection. (A) Our scheme for Co(NH3)6
3+-dependent DNAzyme selection including 

five main steps. Two PCR steps were used to amplify the cleaved sequence and regenerate the full-length 

library. P3 primer had a FAM label and the rA, while P4 had a polymer spacer to stop PCR extension 

(denoted by a cross) beyond this point. Two denaturing polyacrylamide gel electrophoresis (dPAGE) steps 

were carried out to separate the cleavage product and to recover the positive strand from the duplex after 

PCR, respectively. (B) The sequence of the initial library containing an N50 randomized region with a FAM 
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labeled at the 5 end. (C) Progress of the in vitro selection at pH 6.0 showing the cleavage percentage of 

each round. Throughout the selection, the concentration of Co(NH3)6Cl3 was 10 M with 1 h incubation. 

The black bar is the cleavage yield at round 6 without the addition of Co(NH3)6Cl3. 

In each round, the library was incubated in the selection buffer (50 mM MES buffer, pH 6.0, 

25 mM NaCl, 1 mM EDTA) with 10 M Co(NH3)6Cl3 added. After 1 h of incubation, the cleaved 

sequences were harvested using gel electrophoresis and then amplified by two PCR reactions to 

seed the next round of selection. With a FAM-label attached, the cleavage yield of each round was 

quantified by 10% dPAGE (Figure 2.1C). A gradual increase in the cleavage yield was observed 

(blue bars). At round 6, ~24% of the library was cleaved after the selection step. To conform the 

activity, one round of negative selection was performed using the selection buffer alone without 

Co(NH3)6
3+. However, ~12% cleavage was still observed (black bar), indicating that DNA 

sequences enriched in the library may not require Co(NH3)6
3+ for activity. At this point, I decided 

to stop the selection and send the final library for deep sequencing. 

2.2.2 Sequence analysis 

The deep sequencing yielded a total of 97,533 sequences. After sequence alignment, 

21,919 reads were assembled into more than one thousand families. The most populated 200 

families accounted for around 50% of the analyzed sequences. Table 2 lists the sequences from 

the 20 most abundant families. Among them, 19 families contain a 16-nt motif of 

AGGTCAAAGGTGGGTG (purple colored) in the N50 region which is highly conserved. This 16-

nt motif was also found in the Ce13d and NaA43 DNAzymes.73, 139 Compared to the NaA43 

sequence, the major difference lies in two nucleotides near the 3-end of the N50 region. Statistically, 
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this position has roughly an equal chance of being T and A in our library, while NaA43 is a G at 

this position. 

Table 2. The N50 random region of representative families from the round 6 selection pool comparing with 

the NaA43 sequence. A homogeneous motif of 16 nucleotides (purple colored) was found in 19 out of the 

20 listed families. The nucleotide varies most frequently was highlighted in red color. W represents either 

A or T. 
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Due to sequence similarity, the secondary structures of trans-cleaving Ce13d (Figure 2.3A) 

and NaA43T DNAzymes (Figure 2.3B) are presented for comparison. NaA43T was a truncated 

version of NaA43 with a shortened hairpin loop in the enzyme strand which still retained its 

activity.73 For activity study, same substrate strands with a FAM labeled at the 3-end were used. 

The enzyme strand binds to the substrate via two duplex regions. For the newly selected sequences, 

the Mfold was used to predict their secondary structures (Figure 2.2).142 For example, the cis-

cleaving structure of family #1, named NaH1, was redrawn as shown in Figure 2.3C. Using 

NaA43T as a reference, I further designed its trans-cleaving structure (Figure 2.3D), which was 

used for subsequent activity assays. By examining the nucleotides in blue, NaH1 sequence is closer 

to NaA43 than to Ce13d. These three DNAzymes all have the conserved 16-nt loop highlighted in 

dark red, which is responsible for Na+ binding.73 

 

Figure 2.2 The secondary structure of NaH1 predicted using Mfold. The rA is at number 9 position.  
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The main difference in these three DNAzymes lies in the few nucleotides in blue. The 

Ce13d (Figure 2.3A) requires both Ce3+ and Na+ for activity. The small motif of TG23GCG in 

NaA43T was believed to replace the role of Ce3+ in the cleavage reaction. The guanine at the 23 

position (G23) cannot be mutated indicating its critical role for catalysis.73 Interestingly, NaH1 has 

a TACG motif located at the corresponding position, and the critical guanine in NaA43T was 

removed. A closer examination of our selection library did not yield any sequence with the exact 

TGGCG motif and likely a mutant of NaA43 was obtained. On the other hand, in the original 

NaA43 selection paper,72 sequences containing a TACG motif were found in their Class A-I but 

with incomplete Na+-binding loops. Therefore, the NaH1 obtained from selection is indeed a new 

sequence that was not reported before either from in vitro selection or from rational mutations. 

Since this sequence appears to be interesting, I mainly focused on it in this work. Future efforts 

will be made with Co(NH3)6
3+ in a Na+-free buffer, which may eliminate such Na+-dependent 

sequences. 
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Figure 2.3 Secondary structures of (A) the Ce13d and (B) the NaA43T DNAzymes (NaA43 with a 

shortened hairpin). (C)The cis-cleaving version of the selected Na+-dependent DNAzyme. (D) The trans-

cleaving form of the selected Na+-dependent DNAzyme with a shortened hairpin structure. 

In vitro selection sometimes yielded similar sequences, and a representative example is the 

17E DNAzyme.60, 143 The recurrence or tyranny of 17E has been a common problem in divalent 

metal-dependent selections. Li and coworkers attributed it to the small size, tolerance to mutation 

and high activity of the 17E motif.143, 144 The Ce13d DNAzyme was first reported to be lanthanide-

dependent.67 Interestingly, this sequence was demonstrated to be the most active family in a 

separate selection using Cr3+ as the intended target.145 In the case of NaA43 and NaH1, the 

sequence requirement is more stringent since the 16-nt motif is highly conserved. When a typical 

divalent metal ions are absent and Na+ is present in selection buffers, this motif appears to be a 

good solution for achieving activity. 

2.2.3 Biochemical characterization 

Co(NH3)6
3+ effect on activity. NaH1 activity was observed in the presence of 20 mM Na+ with 

~49% cleavage yield after a 30 min incubation (Figure 2.4). Since Co(NH3)6
3+ was used as the 

intended cofactor during the selection, its effect on NaH1 was first studied. The cleavage yield was 

measured with 10 M Co(NH3)6
3+ added but in the absence of Na+. In this case, no cleavage 

activity was observed. The addition of Co(NH3)6
3+ in the presence of Na+ resulted in ~32% 

cleavage which is slightly lower than the activity measured in Na+ alone. Thus, Co(NH3)6
3+ cannot 

support NaH1 activity but inhibits the Na+-induced activity. However, the insufficient inhibition 

caused by 10 M Co(NH3)6
3+ still allowed NaH1 to survive the selection process. 
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Figure 2.4 The inhibition effect of Co(NH3)6
3+ (10 M) on the cleavage activity of NaH1 in the presence 

of 20 mM NaCl. 

Cleavage kinetics. To characterize the activity of the NaH1 DNAzyme, its cleavage kinetics was 

measured in the presence of various concentrations of Na+ at pH 6.0 (Figure 2.5A). The kinetic 

traces were fitted into a first-order equation, %𝑃௖௟௘௔௩௔௚௘,௧ = %𝑃௠௔௫(1 − 𝑒ି௞௧), where %Pmax is 

the maximum cleavage yield at the end of the reaction and k is the cleavage rate constant. In the 

presence of 50 mM NaCl, NaH1 displayed a cleavage rate of 0.11 ± 0.01 min-1, which was around 

3-fold faster compared to that of NaA43T at the same Na+ concentration.72 The cleavage rate 

increased with a rising concentration of Na+ and approached saturation beyond 50 mM Na+ (Figure 

2.5B). This data was then fitted into a one-site binding curve with an apparent dissociation constant 

(Kd) of 12.0 ± 1.6 mM Na+ at pH 6.0. The Kd of NaA43 using gel-based assays was estimated to 

be ~70 mM Na+ at pH 7.0.72 Therefore, the NaH1 mutant shows a tighter binding affinity to Na+ 

than NaA43. 
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Figure 2.5 (A) Kinetic profile of the NaH1 DNAzyme with various concentrations of NaCl at pH 6.0. (B) 

The cleavage rate of NaH1 as a function of Na+ concentration. 

To confirm the cleavage activity of NaH1 and NaA43T, assays were carried out in the 

presence of 10 mM Na+ for both DNAzymes side-by-side (Figure 2.6). The cleavage rate of 

NaA43T was ~0.02 min-1 (pH 7.0), which agreed with the literature.72 With 10 mM Na+, NaH1 

(pH 6.0) had a cleavage rate that was about 3-fold higher. NaH1 was tested in pH 6.0 buffer while 

NaA43T was in pH 7.0 buffer since these are their respective optimal pH for activity (vide infra). 

 

Figure 2.6 A comparison of the cleavage rates of the NaH1and NaA43T DNAzymes with 10 mM NaCl. 

Note that NaH1 was tested in pH 6.0 MES buffer while NaA43T was in pH 7.0 HEPES buffer. 
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pH optima. NaH1 differs from NaA43T mainly on 2 nucleotides. Since NaH1 exhibited a higher 

cleavage rate at low Na+ concentrations, a systematic comparison was made for a better 

understanding of these two Na+-dependent DNAzymes. The reaction condition of NaA43 as 

reported was 50 mM Bis-Tris, pH 7.0, 90 mM LiCl, and it was also selected at this pH.72 The 

NaH1 DNAzyme was selected using 50 mM MES buffer, pH 6.0. To have a full understanding on 

the pH effect, I compared the kinetics of NaH1 and NaA43T in the presence of 10 mM NaCl at 

both pH’s. At pH 6.0, NaH1 displayed a higher cleavage rate than NaA43T (Figure 2.7A), while 

at pH 7.0, NaH1 became slower (Figure 2.7B). 

After noticing this difference, their cleavage yields were measured with 10 mM Na+ in 

various pH buffers (Figure 2.7C). The activity of NaH1 increased from pH 4.5 to 6.0 and then 

decreased at higher pH. The optimal reaction condition of NaH1 turned out to be pH 6.0, which is 

same as its selection condition. In contrast, the highest activity of NaA43 was observed at pH 7.0. 

Therefore, the fact that the NaH1 mutant was obtained instead of NaA43 might be related to the 

lower pH condition used during our selection experiment. 

 

Figure 2.7 The kinetics studies of the NaA43T and NaH1 DNAzymes with 10 mM NaCl at (A) pH 6.0 or 

(B) pH 7.0. (C) Cleavage yield of NaH1 and NaA43T with 10 mM NaCl at different pH’s after 30 min 

incubation. 
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Figure 2.8 (A) Gel images showing the cleavage in the presence of monovalent (10 mM), divalent (1 mM) 

and trivalent (100 µM) ions. (B) Quantification of the NaH1 cleavage yield with 20 different metal ions at 

pH 6.0 for 1 h. The background cleavage (without metal) was subtracted. 

Metal selectivity. Furthermore, the cleavage activity of NaH1 was compared in the presence of 

various metal ions to confirm if the Na+ specificity was retained. A total of 20 metal ions including 

monovalent, divalent, and trivalent ions were tested at pH 6.0 (Figure 2.8). NaH1 showed a 

significant cleavage only with Na+ but not with other monovalent ions tested. The only exception 

was Pb2+, which also showed ~35% cleavage. RNA cleavage by Pb2+ has been commonly observed 

in many DNAzymes.65, 67 Importantly, NaH1 displays an excellent Na+ selectivity comparing to 

other monovalent and all physiologically relevant metal ions. 

2.2.4 A Na+ biosensor 

Due to the superior activity of NaH1 under slightly acidic conditions (pH 5 to pH 6), a 

fluorescence-based biosensor was further designed for Na+ detection (Figure 2.9A). A FAM label 

was placed on the 3-end of the substrate strand, and a quencher was labeled at the 5-end of the 

enzyme strand. Upon hybridization, the fluorescence was quenched in the duplex structure. In the 
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presence of Na+, the cleavage reaction can release the FAM-labeled fragment and induce a 

fluorescence signal. The 5-end of the enzyme strand was shortened by two nucleotides to ensure 

a fast release of the fluorophore upon cleavage and thus a high fluorescence signal. 

 

Figure 2.9 (A) Schematic description of the Na+ DNAzyme sensor design. (B) Sensor signaling kinetics 

measured with various concentrations of Na+. (C) Initial rates of fluorescence increase were quantified 

between 10 min to 15 min, and ploted as a function of Na+ concentration. The one-site saturation binding 

equation used for fitting is 𝑣 = 𝑣௠௔௫ ∙ [𝐿ା]/(𝑘ௗ + [𝐿ା]), where 𝑣 is the reaction rate, [𝐿ା] is the Na+ 

concentration, and 𝑘ௗ is the apparent dissociation constant. Inset: the linear response with [Na+] below 2 

mM with an equation of y = 0.0037 + 0.0619x. 

To test the sensor performance in buffer solution, the background signal containing 100 

nM sensor complex was first monitored for 10 min. In the absence of Na+, the background 

fluorescence remained stable over 1 h of monitoring (Figure 2.9B). The addition of Na+ induced a 
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rising fluorescence signal. A higher Na+ concentration resulted in a faster fluorescence increase, 

and a 6-fold increase in fluorescence was detected with 20 mM Na+ compared to the background. 

The initial rates of the fluorescence traces were quantified from 10 to 15 min after the Na+ addition 

(Figure 2.9C). The fluorescence enhancement saturated at ~20 mM Na+. After fitting the curves 

with a one-site binding equation, an apparent Kd of 4.2 ± 0.5 mM was obtained. A linear calibration 

curve was obtained when Na+ concentration was ≤2 mM. The detection limit was calculated to be 

223 µM Na+ based on 3σ/slope (σ is the standard deviation of the background signal). The lower 

pH optima of this DNAzyme might be useful for detection of Na+ in acidic cellular environment 

such as the endosome and cancer cells. 

Using NaA43 for detecting Na+ in live cells has already been demonstrated.72 In this work, 

I further studied the fluorescent Na+ biosensor in another biological sample matrix, fetal bovine 

serum (FBS). In the presence of 1% FBS (v/v), the background signal remained low (Figure 2.10A), 

indicating that the sensor complex was stable in the diluted serum solution. Fluorescence increases 

were observed when Na+ was spiked in the solution. However, the fluorescence increase was 

lowered compared to the pure buffer which could be interfered by the component in serum. A 

linear response was obtained with Na+ concentration below 20 mM and the detection limit 

determined was 676 µM Na+ (Figure 2.10B). To confirm the fluorescence increase is due to the 

cleavage, the reaction products after 30 min incubation were characterized using dPAGE (Figure 

2.11). In the presence of 1% FBS (v/v), ~66% cleavage yield was detected with 10 mM NaCl. 

Meanwhile, the cleavage% increased with an increasing serum% which could be induced by Na+ 

from the FBS sample. As a reference, the Na+ concentration in FBS sample is approximately 142 

mM.146 
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Figure 2.10 (A) Sensor response in the presence of 1% FBS monitored over 1 h. (B) A linear response 

between the fluorescence signal and [Na+] in 1% FBS. 

 

Figure 2.11 Gel image showing the cleavage of NaH1 in 1%, 2%, or 4% FBS samples (v/v) measured after 

30 min incubation. 

2.3 Summary 

A new Na+-dependent DNAzyme mutant was discovered by a selection effort using a 

cobalt complex as the intended metal cofactor. The selected DNAzyme, named NaH1, possesses 

high selectivity for sodium over other monovalent ions and a fast catalytic rate of 0.11 ± 0.01 min-

1 with 50 mM Na+ at pH 6. With a few nucleotides mutated in the small loop, NaH1 can catalyze 

the RNA cleavage reaction more efficiently than the previously reported NaA43 especially at low 
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Na+ concentrations. Additionally, they displayed distinct pH optima in which NaH1 preferred a 

relatively acidic condition (i.e., pH 5 to 6), while NaA43 was more active at neutral pH. A 

fluorescent Na+ sensor was also demonstrated with an apparent Kd value of 4.2 ± 0.5 mM and a 

limit of detection of 223 µM Na+, which was further applied in a serum matrix. 

2.4 Materials and methods 

2.4.1 Oligonucleotides and chemicals 

All the DNA samples used in the in vitro selection and sensing experiments were from 

Integrated DNA Technologies (Coralville, IA). The rest of the DNAs were from Eurofins 

Genomics (Louisville, KY). Hexamminecobalt (III) chloride and other metal salts including 

lithium chloride hydrate, potassium chloride, rubidium chloride, cerium chloride heptahydrate, 

scandium chloride hydrate, manganese chloride tetrahydrate, iron chloride hexahydrate, nickel 

chloride hexahydrate, cobalt chloride hexahydrate, copper chloride dehydrate, zinc chloride, 

mercury perchlorate, lead acetate, barium chloride dihydrate, aluminium chloride hydrate, yttrium 

chloride hexahydrate were purchased from Sigma-Aldrich. Sodium chloride, calcium chloride 

dihydrate, magnesium chloride hexahydrate, acetate acid, tris(hydroxymethyl)aminomethane 

(Tris), 2-(N-morpholino)ethanesulfonic acid (MES), 2-[4-(2-hydroxyethyl)piperazin-1-

yl]ethanesulfonic acid (HEPES), ethylenediaminetetraacetic acid (EDTA) were from Mandel 

Scientific Inc. (Guelph, Ontario, Canada). Lithium hydroxide was from Alfa Aesar. Sso Fast 

EvaGreen supermix was from Bio-Rad. T4-DNA ligase, deoxynucleotide (dNTP) solution mix, 

Taq DNA polymerase with ThermoPol buffer, 10 gel loading dye, and low molecular weight 

DNA ladder were purchased from New England Biolabs. All solutions used in this chapter were 

prepared with Milli-Q water. 
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Table 3. List of all the DNA sequences and modifications used in the in vitro selection experiment. iSP18 

is an internal 18-atom hexa-ethyleneglycol spacer. 

2.4.2 In vitro selection 

To prepare the DNA library, Lib-FAM DNA (200 pmol), Lib-rA DNA (300 pmol), and 

splint DNA (300 pmol) were first mixed in annealing buffer (10 mM Tris-HCl buffer, pH 7.5, 10 

mM MgCl2). The mixture was then annealed at 90 °C followed by slow cooling down to room 

temperature. The ligation reaction followed the T4 ligation protocol provided by New England 

Biolabs. As prepared DNA library was further purified and extracted from 10% dPAGE (650 V, 1 

h). In this work, Bio-Rad ChemiDoc MP imaging system was used to take the gel images and 

quantify the fluorescence. A gel slice containing the DNA library was crushed and soaked in 

extraction buffer (1 mM EDTA, 10 mM Tris-HCl, pH 7.0). The further purification was achieved 

by using a Sep-Pak C18 column (Waters). The extracted DNA library was dried in an Eppendorf 

Vacufuge at 45 °C overnight. 
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For each round of selection, 10 M of Co(NH3)6Cl3 was introduced to the library in 

selection buffer (50 mM MES buffer, pH 6.0, 25 mM NaCl, 1 mM EDTA). After 1 h of incubation, 

8 M urea was added to quench the reaction. The active sequences after cleavage (91-nt length) 

were then separated from inactive sequences using 10% dPAGE (denaturing polyacrylamide gel 

electrophoresis) and extracted from gel slices using the “crush and soak” method. Next, the active 

sequences were amplified by two rounds of polymerase chain reactions (PCR). The cycling 

protocol used is as follows: 94 °C for 5 min; 94°C for 30 s; 55 °C for 30 s; and 72°C for 30 s. In 

PCR1, the cleaved sequences were extended and amplified to generate full-length templates for 

PCR2. In PCR2, two modified primers were used to regenerate the library. The P3 primer 

contained a 6-carboxyfluorescein (FAM) fluorophore on its 5-end terminus and a rA base on its 

3-end terminus. The P4 primer contained a polymer spacer that can stop the polymerase reaction. 

All the DNA sequences related to the selection are listed in Table 3. 

2.4.3 Deep sequencing 

To prepare the sample for deep sequencing, PCR1 was performed on the round 6 library. 

Then, PCR2 was performed to introduce specific index sequences into the library for the Illumina 

sequencing. Instead of P3 and P4, the forward primer (P701) and the reverse primer (P501) were 

used with their sequences listed in Table 3. The PCR product was then purified with 2% agarose 

gel (120 V, 50 min). A gel/PCR DNA fragment extraction kit (IBI Scientific) was used to extract 

the library from the gel. Finally, the purified DNA sample was eluted in 20 L of Milli-Q water. 

The DNA concentration measured with a NanoDrop spectrophotometer was ~10 ng/L. The 

sample was shipped to McMaster University for sequencing. 

2.4.4 Activity assays 
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For cleavage activity assays, the DNAzyme complex was prepared by annealing the FAM-

labeled substrate and enzyme (ratio 1:1.5) in sodium-free buffer A (10 mM HEPES buffer, pH 7.6, 

25 mM LiCl) to minimize background cleavage. Assays were performed with a final concentration 

of 0.3 M of DNAzyme complex in buffer B (50 mM MES buffer, pH 6.0, 25 mM LiCl). A small 

volume (1 L) of NaCl with various concentrations was added to initiate the cleavage reaction. 

After different incubation time periods, the reaction was quenched with 8 M urea. For pH-

dependent assays, acetate buffer was used for pH 4.5 and pH 5.0, and HEPES buffer was used for 

pH 7.0 and pH 7.5. All the buffer pH was adjusted using 1 M LiOH to avoid Na+. 

The FAM-labeled cleavage products were quantified by 15% dPAGE and analyzed by a 

Bio-Rad Chemi-Doc MP imaging system. The 15% dPAGE gel stock solution (500 mL) contains 

urea (240g), 40% acrylamide (29:1) (187.5 mL), and 10x TBE (50 mL). For each gel plate, 10% 

APS and TEMED are added to initiate the polymerization reaction. After a quick mix, the gel 

solution is transferred into a pre-assembled glass plate and set for over 30 min to allow 

solidification. After loading the reaction solution (~15 L) into one gel well, 200 V voltage is 

applied to the chamber and each gel runs for 1 h 20 min. The running buffer used for gel 

electrophoresis is 1x TBE. 

2.4.5 Fluorescence-based Na+ sensing 

Sensor signaling kinetics were measured in 96-well plates using a microplate reader 

(Infinite F200Pro, Tecan). The excitation wavelength was 485 nm and the emission wavelength 

was 535 nm. The sensor complex was prepared by annealing the FAM-labeled substrate (5 M) 

and the quencher-labeled enzyme (7.5 M) in buffer B. Next, 2 L of the sensor complex was 

diluted in 93 L buffer (50 mM MES buffer, pH 6.0). The background signal was first monitored 



 

 

54 

for at least 5 min, followed by a quick addition of 5 L of NaCl to induce the cleavage reaction. 

The fluorescence was continuously monitored for 1 h with 20 s intervals. For detection in serum, 

FBS sample was first filtered through a nitrocellulose membrane to remove aggregated proteins. 

The pre-treated FBS (1 L) was then added to the sensor solution and the background fluorescence 

was monitored for at least 5 min. Afterwards, different concentrations of NaCl were added in the 

plate followed by monitoring fluorescence for 1 h. 
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Chapter 3. From General Base to General Acid Catalysis in a Sodium-Specific 

DNAzyme by a Guanine-to-Adenine Mutationc 

3.1 Introduction 

DNAzymes are DNA sequences with catalytic activities.5 A variety of RNA-cleaving 

DNAzymes require various monovalent (e.g., Na+ ,65, 72 Ag+),74 divalent (e.g., Pb2+,5 Zn2+,133 

Cu2+,134 UO2
2+,63 Hg2+,135 Cd2+)70, and trivalent (e.g., lanthanides)68 metal ions for catalysis. 

DNAzymes are highly attractive for their excellent stability, programmability and cost-

effectiveness, leading to interesting applications in biosensing and therapeutics. However, our 

understanding of DNAzyme catalysis is still limited compared to the substantial knowledge in 

ribozyme catalysis due to their rich structural biology data. Most self-cleaving ribozymes (e.g. the 

Rzb hammerhead,147, 148 env25 pistol,149, 150 and twister ribozymes)151 utilize a general base 

mechanism, where a guanine helps activate the 2-OH nucleophile. Adenines or cytosines can play 

the general acid role in the pistol,149 twister,151 and hepatitis delta virus (HDV) ribozymes.152 

Compared to the development in DNAzyme applications, our fundamental understanding 

on the catalytic mechanism is still limited. Previous efforts have been mainly focusing on studying 

the role of metal ions, while the nucleotide-based catalysis has not been fully revealed in 

DNAzymes. The involvement of polyvalent metal ions may complicate data analysis. For 

mechanistic studies, monovalent-metal-dependent enzymes are more attractive. The first Na+-

                                                 
c This chapter is the basis for a published manuscript: Ma, L.;  Kartik, S.;  Liu, B.; Liu, J., From general base to general 

acid catalysis in a sodium-specific DNAzyme by a guanine-to-adenine mutation. Nucleic Acids Research 2019, 47 

(15), 8154-8162. 
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dependent DNAzyme, NaA43 was reported in 2015 by Lu and coworkers.72 Interestingly, its 

conserved sequence is quite similar to a lanthanide-dependent DNAzyme named Ce13d.67 Their 

overlapping sequence was revealed to be part of a Na+-binding aptamer, which is responsible for 

their Na+ specificity.73, 139 Extensive studies have been performed on the aptamer part to 

understand specific Na+ binding.113, 153 

Recently, the NaH1 DNAzyme was reported, which differs from the NaA43T DNAzyme 

(a mutated shorter version of NaA43) by only two nucleotides in the enzyme loop.154 An important 

guanine in NaA43 was replaced by an adenine in NaH1, and NaH1 also requires Na+ for activity. 

An interesting difference between them is their pH-dependency: the optimal pH being 7 for NaA43 

and 6 for NaH1. Such DNAzymes are ideal for mechanistic studies since no polyvalent metals are 

involved, and catalysis is likely achieved via nucleobases. In this chapter, I performed careful 

biochemical and spectroscopic experiments, providing compelling evidence that on the same 

DNAzyme scaffold, a simple point mutation can switch the mechanism from being general base 

(for NaA43) to general acid (for NaH1) catalysis. The tolerance of different mechanisms may also 

explain the activity of this scaffold (e.g. Ce13d) with a diverse range of metal ions and even non-

metals. 

3.2 Results and discussions 

3.2.1 The NaA43 and NaH1 DNAzymes 

The secondary structures of the NaA43T and NaH1 DNAzymes are shown in Figure 3.1A 

and 3.1B, respectively. NaA43T is a truncated version of NaA43 with retained specificity for 

Na+.73 These DNAzymes have the same substrate that contained a single RNA linkage (rA for 

ribo-adenine) serving as the cleavage site. NaA43T and NaH1 have the same 16-nt Na+-binding 
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motif. The catalytically important regions are drawn in red. Our previous study indicated that the 

G23 residue in NaA43 is highly conserved,73 but no guanine is present in the corresponding region 

of NaH1. Therefore, these two DNAzymes might have distinct catalytic mechanisms. 

The catalysis of many small self-cleaving ribozymes has been thoroughly studied.12, 30, 32 

In general, the RNA cleavage reaction is initiated by a nucleophilic attack from the 2-OH of the 

ribose to the scissile phosphate, resulting in the leaving of the 5-oxygen of the next nucleotide 

(Figure 3.1C). In self-cleaving ribozymes, the cleavage reaction is often accelerated by a general 

base (e.g., a guanine or a metal bound water after deprotonation)149, 155 to help deprotonate the 2-

OH, or by a general acid (e.g., adenine or cytosine)152, 156 to neutralize the developing negative 

charge on the 5-oxygen.30 This study intends to compare these two Na+-specific DNAzymes for 

mechanistic insights taking advantage that no polyvalent metal ions are involved. 

 

Figure 3.1 The secondary structures of two Na+-specific RNA-cleaving DNAzymes named (A) NaA43T 

and (B) NaH1. The key catalytic motifs are the small loops in red. (C) A general RNA cleavage reaction 

requires the nucleophilic attack from 2-OH resulting in the leaving of the 5-OH group, which can be 

accelerated by the general acid/base catalysis. 
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3.2.2 Rational evolution from NaA43T to NaH1 

Since these two DNAzymes are highly similar, I gradually mutated one DNAzyme into the 

other to identify important residues. As shown in Figure 3.2A, the cleavage rate of NaA43T 

measured at pH 7 was ~3-fold faster than that at pH 6. Before modifying the catalytic motif, I first 

deleted the C1 and C2, and then A19 in NaA43T (Mut1 and Mut2 in Figure 3.2B). Mut1 and Mut2 

showed gradually decreasing activity, but their activity became similar at both pH’s. Based on 

Mut2, G22 (or G23) was further deleted in the small loop resulting in Mut3, which had almost no 

activity detected at either pH values. Based on our previous study, NaA43 was still active when 

G22 was mutated to A, T, or C.73 However, deleting G22 inhibited the cleavage activity in this 

study. Therefore, G22 is likely to play a structural role (e.g. a spacer) to position the catalytically 

important G23 for catalysis. 

Based on Mut3, I mutated G23 into an adenine and NaH1 was obtained (this adenine is 

A22 in NaH1). NaH1 exhibited a higher cleavage rate under pH 6, while its activity at pH 7 

remained low. Additionally, a guanine was also added back to position 22 (Mut4), whose activity 

decreased at both pH’s, but the pH 6 activity was still higher than that at pH 7. Therefore, the 

activity of Mut4 is more similar to NaH1 than to NaA43T. However, the additional G22 

destabilizes the activity of NaH1 giving decreased rates. 

Overall, the highest activity was at pH 7 when G23 was present and was at pH 6 when A22 

was present. Based on this experiment, an enzyme can be defined to be from NaA43T if it has G23 

and the activity at pH 7 is higher or comparable to that at pH 6. On the other hand, if the enzyme 

has A22 and its activity is higher at pH 6, it is NaH1. If these nucleotides are directly involved in 

catalysis, they likely have very different reaction mechanisms, since G and A can play different 

acid/base catalysis roles.12, 30 
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Figure 3.2 (A) The cleavage rate of each mutant in the presence of 10 mM NaCl at pH 6 (grey bars) and 

pH 7 (black bars). (B) List of the DNAzyme sequences used in this study. The A22 residue is highlighted 

with blue squares. 

3.2.3 The A22 in NaH1 is highly conserved 

To further locate important nucleotides in the catalytic loop of NaH1, point mutaions were 

performed (Figure 3.3A). The cleavage rate of each mutant was measured at pH 6 (Figure 3.3B). 

Mutating T23 to A resulted in a ~1.6-fold reduction in rate, while mutating C21 to T or G decreased 

the rate by 2 to 3-fold. Besides, purine-to-purine replacement (G20A) was tolerated with ~50% 

rate remaining, which was also observed for the G20 site in NaA43T.73 On the contrary, mutation 

of A22 to T, C or G led to a ~100 to 1000-fold decrease in rate. Therefore, A22 indeed plays a 
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crucial role in the cleavage reaction, which is in agreement with the above rational evolution 

experiments. 

 

Figure 3.3 (A) The sequences used in this point mutaion study based on NaH1 from G20 to T23. (B) The 

cleavage rate of each mutant measured with 10 mM NaCl in pH 6 buffer. 

3.2.4 pH-rate profiles 

Catalytically important guanines often play a general base role in ribozymes such as the 

Rzb hammerhead,147, 148 env25 pistol,149, 150 and twister ribozymes.151 The pKa of the N1 position 

of guanine is ~9.4 (Figure 1.3), which can be lowered toward neutrality by coordinating with 

nearby nucleobases or metal ions, allowing its general base role at neutral pH.157, 158 Adenine, on 

the other hand, is often known for its general acid role in stabilizing the leaving group (i.e. 5-

O).149, 156 To better understand the reaction mechanism, I carefully examined the pH-rate profiles. 

For NaA43T, a gradual increase in cleavage rate was observed with increasing pH, plateauing at 
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pH 7.5 (Figure 3.4A, circles). Such a pH-rate profile implies that a single general base functions 

during the cleavage reaction until it is fully deprotonated. In contrast, a declining trend was 

observed for NaH1 between pH 5.0 to 8.0 (Figure 3.4A, diamonds), indicating a general acid 

catalysis and its protonation was inhibited by raising pH. 

 

Figure 3.4 (A) pH-rate profiles of NaH1 and NaA43T in the presence of 10 mM Na+. The pKa of the general 

acid catalyst in NaH1 was 6.3 ± 0.4 (R2=0.92), while the pKa of the general base in NaA43T was 6.6 ± 0.1 

(R2=0.97). (B) Chemical structures and pKa values of adenine, 2-aminopurine (2AP), 2,6-diaminopurine 

(2,6-diAP), guanine, and hypoxanthine (I). (C) pH-rate profiles of the wild-type NaH1 and its 2,6-diAP-, 

2AP- and G-substitutions in the presence of 10 mM NaCl. (D) pH-rate profiles of the wild-type NaA43T 

and its I- and A-substitutions in the presence of 10 mM NaCl. 
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In the mutation studies, G23 and A22 were determined to be crucial for the activity of 

NaA43 and NaH1, respectively. Taken together, I propose that G23 functions as a general base in 

NaA43T, while A22 as a general acid in NaH1 (see base analog studies below for further 

evideince). The pKa of the general base in NaA43T shifts from ~9.4 (N1 position) to 6.6 ± 0.1 

(Figure 3.4A, grey curve). For NaH1, a shifted pKa of 6.3 ± 0.4 (Figure 3.4A, black curve) for the 

catalytic adenine was observed in the presence of 10 mM Na+. 

It is very interesting that on the same DNAzyme scaffold, by just mutating one or two 

nucleotides, the catalytic mechanism is completely changed. Considering the very small size of 

these DNAzymes, the tolerance of different catalytic mechanisms by point mutations has not been 

seen previously. The closest example is a hamerhead ribozyme, where mutating an invariant 

guanine to adenine retained its general base role for the catalysis (instead of general acid).147 

Meanwhile, this mutant exhibited a 13 000-fold lower rate and required a high Mg2+ concentration. 

This tolerating property and switchable general acid/base catalysis mechanism have 

reminded us of another related DNAzyme called Ce13d, which requires both Ce3+ (or another 

trivalent lanthanide) and Na+ for activity. Ce13d has the same Na+ binding motif, but the small 

catalyitc loop is almost completely eliminated (Ce3+ to carry out the catalytic role). The Ce13d 

DNAzyme was extremely tolerant for various metal ions, including all the trivalent lanthanides, 

Y3+,110 a low activity with Cr3+,145 and a moderate activity with Pb2+.67 After making a single 

phosphorothioate modification at the cleavage site, it became active with all thiophilic metals such 

as Hg2+, Cd2+, Pb2+, Tl3+ and Au3+.159 It can even accelerate the cleavage of the PS substrate by I2, 

a non-metal.160 The activity with various metal ions and even elimination of polyvalent metal ions 

indicates that the DNAzyme scaffold is highly tolerant for catalysis. Thus, the swithcing of general 

acid/base mechanism might also be quite reasonable. 
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3.2.5 Base analogs further probing catalytic mechanism 

To confirm the general acid role of A22 in NaH1, I tested its mutants including using base 

analogs. A22 has three possible positions to donate protons to the 5-O: N1, N3 and N7. In small 

ribozymes, the N1 and N3 positions were reported for general acid catalysis.149, 151 With a higher 

pKa, N1 is more likely to donate protons.161 In this work, a series of pKa-perturbed analogs (Figure 

3.4B), such as 2-aminopurine (~3.8), 2,6-diaminopurine (~5.6), and guanine (~9.4) were tested 

(Figure 3.4C). The pH-rate profile of the 2,6-diaminopurine substitution (2,6-diAP, circles) 

overlapped with that of adenosine (diamonds). Mutating A to 2-aminopurine (2AP, grey triangles) 

decreased the activity by ~2 orders of magnitude, but its overall profile was parallel to that of the 

wild type NaH1. Therefore, the 6-amino group of A22 is important for catalytic rate, likely by 

forming hydrogen bonding to stabilize the transition state.12 With their N1 positions still available 

for protonation, these analogs displayed a similar pH-dependent activity plateauing at pH <6. 

When substituting A with G (red triangles), a gradual rate decrease was observed below pH 7, with 

its maximum activity occurring at a higher pH. Therefore, the N1 position of A22 is indeed 

responsible for the general acid catalysis of NaH1. 

In NaA43T, substitutions at G23 with hypoxanthine (I, pKa~8.7) and adenine (A, pKa~3.8) 

were tested to determine its catalytic role (Figure 3.4D). The G to I mutation did not affect its pH-

rate dependence (Figure 3.4D, grey circles) and gave a comparable rate at pH 7.0 (Figure 3.5B). 

Thus, the 2-exocyclic amino group of G23 may not play an important role in catalysis. On the 

contrary, mutating G23 into adenine resulted in a bell-shaped pH-rate profile with the highest 

activity at pH~5.5, similar to that of NaH1 (blue diamonds). Therefore, the N1 position of G23 is 

likely to directly participate in the catalysis by serving as a general base. 
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Figure 3.5 (A) Kinetics of NaH1 and the A22-to-2AP mutant measured in the presence of 10 mM Na+ at 

pH 6. (B) Kinetics of NaA43T and the G23-to-I mutant measured in the presence of 10 mM Na+ at pH 7. 

The above mutation studies primarily focused on general acid/base catalysis. After 

mutation, the loss of activity could also be due to perturbed enzyme folding or Na+ binding. The 

fluorescence of 2AP is highly sensitive to its nearby base stacking environment.162 Thus, 2AP has 

been frequently used to probe local folding of DNAzymes and ribozymes.127, 128, 163 I then 

substituted A22 by 2AP (Figure 3.6A). In activity assays, the enzyme bearing the A22-2AP 

mutation retained its cleavage activity with a ~100-fold lower rate compared to the wild type 

(Figure 3.5A). However, titrating NaCl induced a gradual increase in its fluorescence (Figure 3.6B). 

The fluorescence at 370 nm was further plotted as a function of Na+ concentration showing binding 

curve with a Kd of ~40 mM Na+ (Figure 3.6C). 
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Figure 3.6 (A) Using 2AP to probe the local environment of the catalytic adenine due to Na+ binding. (B) 

The fluorescence spectrum of the A22-to-2AP mutant after titrating NaCl. (C) The 2AP fluorescence at 370 

nm versus the Na+ concentration. (D) Fluorescence titration with Na+, K+ or Li+. 

To confirm the Na+ specificity, Li+ and K+ were also titrated. The intensity barely changed 

(less than 20%) with up to ~30 mM KCl, while a slight fluorescence decrease was observed with 

LiCl (Figure 3.6D). Therefore, the 2AP-substitution does not affect the enzyme folding upon Na+ 

binding. The activity drop of the A22-to-2AP mutant was likely caused by destabilizing the 

hydrogen bonding on the 6-amino of A22 instead of perturbed sodium binding. An enhanced 

fluorescence suggests a weakened base-base stacking near the catalytic residue,162 supporting the 

importance of A22 to the catalysis. A22 is likely to be released from stacking interactions from 

the neighbor bases due to Na+ binding and exposed to the active site. As shown in Figure 3.4C, the 

pH-rate profile of NaH1 revealed a slope close to 1 in the high pH region, indicating one proton 
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transfer is the rate-limiting step. A similar relationship was also seen in the low pH region of 

NaA43T. This supports the idea that chemistry is the rate-limiting step instead of the folding. 

3.2.6 Phosphorothioate substitution and metal rescue 

In self-cleaving ribozymes, non-bridging oxygens at the scissile phosphate often play 

important roles in directly coordinating with catalytic metal ions or nucleobases. Phosphorothioate 

(PS) substitution has been widely applied in probing the importance of non-bridging oxygens.110, 

112 Previous biochemical studies indicate that the Na+ binding site in NaA43 is the 16-nt loop 

(Figure 3.1A), instead of the cleavage site.73 To test metal binding at the cleavage site, the activity 

of NaH1 with the PS-substrates was examined in the presence of 10 mM Na+. First, a racemic 

mixture of the PS substrate was used, which contained an equal amount of the Rp and Sp 

diastereomers as shown in Figure 3.7A. 

The cleavage rate with the PS-substrate was ~68-fold slower than the PO-substrate (Figure 

3.7B), showing a normal thio effect at 10 mM Na+. A careful examination of the kinetic data can 

reveal that the cleavage did not have a fast phase and the yield was very low. Normally, for metal-

based interactions, if the metal binds specifically to one of the non-bridging oxygens, one of the 

stereoisomers should remain active.111 However, it is not the case here. In addition, adding 

thiophilic Cd2+ could not rescue the activity, also disapproving metal/phosphate interactions. For 

comparison, the lanthanide-dependent Ce13d DNAzyme has a normal thio effect which can be 

fully rescued by Cd2+.110 Therefore, the role of Na+ is to bind to the aptamer loop instead of directly 

interacting with the scissile phosphate. 
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Figure 3.7 (A) The Rp and Sp phosphorothioate diastereomers at the cleavage junction. (B) The comparison 

between the normal PO-substrate and the PS-substrates of NaH1 in the presence of 10 mM NaCl with or 

without 2 mM Cd2+. (C) Cleavage activity of NaH1 using PO-, Rp-, or Sp-substrates in the presence of 10 

mM NaCl. 

The loss of activity with PS-substrates could be due to a diminished hydrogen bonding 

between catalytic A22 and non-bridging oxygens caused by the sulfur substitution. The importance 

of the exocyclic amine of A22 has been addressed in the activity study of A22-to-2AP mutant. The 

activity of NaH1 was further measured with the two diastereomers Rp and Sp (Figure 3.7A). The 

cleavage rates of both Rp and Sp substrates were slower than the PO-substrate (Figure 3.7C). With 

a relatively lower activity, the pro-Rp oxygen seems to contribute more to interacting with the 

catalytic adenine at the cleavage site. Notably, the pro-Rp oxygen was reported to be more 

important in the catalysis of many RNA-cleaving ribozymes and DNAzymes including the 

hammerhead,164 HDV ribozymes,111, 112 and the Ce13d DNAzyme.110 For example, in the HDV 

ribozyme, the pro-Rp oxygen directly interacts with a Mg2+ ion and is within hydrogen bonding 

distance of a catalytic C75 according to its crystal structure.34, 111 

In addition, the activity difference between the Rp- and Sp-substitutions was only ~3-fold, 

suggesting that both of the non-bridging oxygens are involved in interacting with the catalytic 
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adenine. A similar difference was also seen in a study of the activity of Ce13d (<10-fold) with the 

PS-substrates.110 As a comparison, the activity of the Sp was >100-fold faster than the Rp in the 

hammerhead ribozyme.164, 165 The importance of the 6-amino group in A22 has been addressed in 

the previous mutation study. Together, I propose that both of the non-bridging oxygens can form 

hydrogen bonding with the 6-amino of A22 in NaH1. The pro-Rp oxygen likely plays a slightly 

more important role than the pro-Sp oxygen. The involvement of both oxygens might also 

contribute to the tolerance to different catalytic mechanisms. 

Finally, mass spectrometry has been applied to analyze the cleavage product of NaH1 

(Figure 3.9). The 5-fragment of the cleaved substrate terminated with a 2, 3-cyclic phasphate 

(Figure 3.8). Therefore, a normal RNA cleavage mechanism was confirmed. Taken together, 

Figure 3.10 schematically illustrates the catalytic mechanism of the Na+-dependent RNA-cleaving 

DNAzymes from this study. In NaH1, a N1-protonated adenine (A22) with a shifted pKa of ~6.3 

serves as a general acid, which could stabilize the negative charge on the 5-leaving oxygen. 

Meanwhile, 2AP- and PS-substitution assays suggested that 6-exocyclic amine directly 

participates in the cleavage by forming the hydrogen bonding with both of the non-bridging 

oxygens. In the wild-type NaA43, the N1 position of G23 functions as a general base with its pKa 

shifted to ~6.6 during the reaction. Its deprotonated form facilitates the deprotonation of the 2-

OH, which then performs the nucleophilic attack on the scissile phosphate. Due to their high 

sequence similarity, the Na+-dependent DNAzyme was proposed to fold into a defined structure 

upon Na+ binding with catalytic purine bases at the active site accelerating the RNA cleavage. 
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Figure 3.8 Scheme illustrating the cleavage products including a 2, 3-cyclic phasphate and a 5-hydroxyl. 

 

Figure 3.9 Mass spectrometry characterization of the NaH1 cleavage product. The red peaks represent the 

5-fragment of the cleaved-substrate containing a 2, 3-cyclic phosphate group (MW=4942.7 Da, 3, 4 and 

5 charges for three marked peaks). The blue peaks represent the 3-fragment of the cleaved-substrate 

(MW=4384.7 Da. 3, 4 and 5 charges for the three marked peaks). The sample was prepared by reacting 
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non-labeled substrates (Table 4) with NaH1 DNAzymes (in 1:1.5 ratio) in 50 mM MES buffer (pH 6, 25 

mM LiCl, 100 mM NaCl) for overnight. A Sep-Pak column was further used to desalt the sample. After 

dried, the sample was re-suspended in 20 µL Milli-Q water with a final substrate concentration of ~50 µM 

and analyzed with an ESI mass spectrometer. 

3.3 Summary 

The NaA43 and NaH1 DNAzymes were selected separately under different selection 

conditions. The pH optima of each DNAzyme matched the pH of their respective selection buffers. 

Despite their high sequence similarity, the minor differences near the cleavage site resulted in 

distinct pH preferences. In this work, rational evolution studies revealed a 4 to 5-nt catalytic motif 

in these DNAzymes. Furthermore, a series of mutation studies in NaH1 demonstrated that A22 is 

indispensable for its catalysis, and previous studies indicated that G23 plays an important role in 

NaA43. Combining with pH-rate profiles of their base analogs, the N1 position of A22 (pKa shifted 

to ~6.3) functions as a general acid in NaH1, while N1 of G23 (pKa shifted to ~6.6) serves as a 

general base in NaA43. Base analogs revealed the importance of 6-amine in A22 for the catalysis. 

To our knowledge, this is the first report of a shift between general acid and base catalysis 

mechanism by mutating only one or two nucleotides in a conserved DNAzyme scaffold. Notably, 

this scaffold is also active with a diverse range of polyvalent metal ions by removing the current 

catalytic motif. Such tolerance may explain the ability to use distinct reaction mechanisms on such 

a small structure. Future studies may include NMR spectroscopy to directly monitor the actual pKa 

values of critical residues in the DNAzymes and study kinetic isotope effects for probing proton 

transfer. 
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Figure 3.10 A model describing the general acid/base mechanism of the NaH1 and NaA43 DNAzymes in 

the RNA cleavage reaction. 

3.4 Materials and methods 

3.4.1 Oligonucleotides and chemicals 

All the DNA samples used in this chapter were purchased from Integrated DNA 

Technologies (Coralville, IA). Sodium chloride, lithium chloride, potassium chloride, acetate acid, 

2-(N-morpholino)ethanesulfonic acid (MES), 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic 

acid (HEPES), and 3-(N-morpholino)propanesulfonic acid (MOPES) were from Mandel Scientific 

(Guelph, ON, Canada). Lithium hydroxide was purchased from Alfa Aesar. All solutions and 

buffers used in this work were prepared with Milli-Q water. All the DNA sequences used in this 

work are listed in Table 4. 
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Table 4. A list of DNA sequences (from 5' to 3') used in chapter 3. 

 

3.4.2 Activity assays 

The FAM-labeled substrate (2 µM) was respectively hybridized with each enzyme or their 

mutants (3 µM) in the reaction buffer to form the DNAzyme complexes. The mixtures were 

annealed by heating at 93 C for 1 min and then gradually cooling down to 4 C for over 30 min. 

The DNAzyme complexes were then diluted in reaction buffer (6 L) to 0.3 M. A small volume 

(1 L) of NaCl was then added to initiate the cleavage reaction with a final concentration of 10 

mM Na+. At each time point, a 7 L reaction solution was quenched with 8 L of 8 M urea. The 

cleavage products were quantified by 15% denaturing polyacrylamine gel electrophoresis (dPAGE) 

DNA Names Sequences and modifications 

FAM-PO-Sub GTCACGAGTCACTATrAGGAAGATGGCGAAA-FAM 

NaH1 
TTTCGCCATAGGTCAAAGGTGGGTGGGAGTTTTTACTCCGCATTAGTGA

CTCGTGAC 

NaA43T 
TTTCGCCATCCAGGTCAAAGGTGGGTGAGGAGTTTTTACTCCGCGGTTA

GTGACTCGTGAC 

NaH1-G 
TTTCGCCATAGGTCAAAGGTGGGTGGGAGTTTTTACTCCGCGTTAGTGA

CTCGTGAC 

NaH1-2AP 
TTTCGCCATAGGTCAAAGGTGGGTGGGAGTTTTTACTCCGC/2AP/TTAGT

GACTCGTGAC 

NaH1-2,6diAP 
TTTCGCCATAGGTCAAAGGTGGGTGGGAGTTTTTACTCCGC/2,6-

diAP/TTAGTGACTCGTGAC 

NaA43T-A 
TTTCGCCATCCAGGTCAAAGGTGGGTGAGGAGTTTTTACTCCGCGATTA

GTGACTCGTGAC 

NaA43T-I 
TTTCGCCATCCAGGTCAAAGGTGGGTGAGGAGTTTTTACTCCGCG/I/TTA

GTGACTCGTGAC 

Sub GTCACGAGTCACTATrAGGAAGATGGCGAAA 

Sub-dA GTCACGAGTCACTATAGGAAGATGGCGAAA 

FAM-PS-Sub GTCACGAGTCACTATrA*GGAAGATGGCGAAA-FAM 
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and analyzed by a Bio-Rad Chemi-Doc MP imaging system. Reaction buffer A (50 mM MES, pH 

6.0, 25 mM LiCl) and buffer B (50 mM MOPES, pH 7.0, 25 mM LiCl) were used. 

Kinetic data were fit with the first-order equation, %𝑃௖௟௘௔௩௔௚௘,௧ = %𝑃௠௔௫(1 − 𝑒ି௞೚್ೞ௧), 

where %Pmax is the maximum cleavage yield at the end of the reaction and 𝑘௢௕௦ is the cleavage 

rate constant. For pH-rate profiles, acetate buffer (50 mM) was used for pH 4.0 and 4.5; MES 

buffer (50 mM) for pH 5.5 to 6.5; and MOPES buffer (50 mM) for pH 7.0 to 8.0. All the buffer 

solutions were adjusted by 1 M LiOH to eliminate background Na+. The pH-rate profiles of NaH1 

and NaA43 were fit with equations 𝑘௢௕௦ =
௞೘ೌೣ

ଵାଵ଴(೛ಹష೛ ೌ)  and 𝑘௢௕௦ =
௞೘ೌೣ

ଵାଵ଴(೛಼ೌష೛ಹ)  respectively, 

where 𝑘௢௕௦ is the observed rate constant, and 𝑘௠௔  is the maximal observed rate constant. 

3.4.3 Phosphorothioate substitution 

The FAM-labeled PS-modified substrates, Rp and Sp, were separated using HPLC as 

described previously.70 The substrates were annealed with the DNAzymes with a ratio of 1:1.5. 

Cleavage kinetics was measured in the presence of 10 mM NaCl for 1 h in reaction buffer A for 

NaH1 or buffer B for NaA43T. In the metal rescue assays, CdCl2 was introduced in the reaction 

with a final concentration of 2 mM. 

3.4.4 Fluorescence spectroscopy. 

The DNAzyme complex was prepared by annealing the 2-aminopurine (2AP)-modified 

enzyme and non-modified substrate with a ratio of 1:2 in buffer A (50 mM MES, 25 mM LiCl, pH 

6.0). The mixture was heated to 93°C for 1 min followed by gradual cooling down to 4°C. With 

excitation at 310 nm, the emission was measured from 360 to 450 nm. Small volumes of chloride 

salts were gradually titrated into the sample to achieve a final concentration up to 45 mM. After a 
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quick mix, the fluorescence signal was immediately measured in a 1 × 1 cm quartz fluorescence 

cuvette using a Cary Eclipse fluorometer. The emission intensity enhancement at 370 nm was 

normalized by F/F0, where F0 and F represent the fluorescence signal before and after the addition 

of Na+, respectively. The Kd value was obtained by fitting into the one-site binding equation: 𝐹 =

𝐹଴ + 𝑎 ∙ [𝐿ା]/(𝑘ௗ + [𝐿ା]). [L+] is the metal concentration, and 𝑎 is the fluorescence change when 

[L+] = ∞. 

3.4.5 Sample preparation for mass spectrometry 

The sample was prepared by reacting non-labeled substrates (Table 4) with NaH1 

DNAzymes (in 1:1.5 ratio) in 50 mM MES buffer (pH 6, 25 mM LiCl, 100 mM NaCl) for 

overnight. A Sep-Pak C18 column (Waters) was further used to desalt the reacted sample. The 

Sep-Pak column was first prepared by washing with following solvents according to the order: 95% 

methanol (10 mL), acetonitrile: methanol: H2O in 1:1:1 ratio (10 mL), Milli-Q water (20 mL), and 

2M ammonium acetate (10 mL). The DNA sample (<1 mL) was them loaded on the column by 

slowing flowing through several times, followed by rinsing with 10 mL Milli-Q water. The DNA 

sample was then eluted out with acetonitrile: methanol: H2O in 1:1:1 ratio. After dried, the sample 

was re-suspended in 20 µL Milli-Q water with a final substrate concentration of ~50 µM and 

analyzed with an ESI mass spectrometer. 
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Chapter 4. Explore the Ubiquitous Activity of Lead (II) Ion in RNA-Cleaving 

DNAzymes 

4.1 Introduction 

Lead (II) ions are known to promote RNA cleavage for a long time, and two types cleavage 

reactions have been extensively studied. In the 1990s, non-specific degradation of RNA with a 

high concentration of Pb2+ (mM level) at multiple sites was reported, which has been applied for 

probing RNA structure.166 In the other type, much lower Pb2+ concentrations (nM to µM) can 

enable specific RNA cleavage in highly structured RNAs. A well-studied example is the Pb2+-

induced site-specific cleavage observed in the yeast tRNAPhe.167, 168 Inspired by this, in vitro 

selection experiments were performed to obtain a small ribozyme that catalyzes site-specific RNA 

cleavage in the presence of Pb2+, known as the leadzyme.47, 169 Biochemical and crystallographic 

data provided insights into its cleavage mechanism.170-172 In the generally accepted mechanism, a 

Pb2+-bound hydroxyl group (first pKa of ~7.4) serves as a general base in promoting the 

deprotonation of 2'-hydroxyl group on the cleavage ribose.169, 171 The lead-induced cleavage rate 

was found to increase with an increasing pH up to pH 7.0-7.5, supporting the general base role 

played by Pb2+ hydroxides.170 Further studies also showed that the addition of other metal ions 

(e.g., Mg2+, Ba2+, Nd3+, Sm3+) can enhance the Pb2+-induced activity, indicating multiple metal 

binding sites in the leadzyme structure.173, 174 

The Pb2+-induced RNA cleavage has inspired early in vitro selection works in finding 

catalytic DNA motifs. In 1994, the first RNA-cleaving DNAzyme, GR5, was selected in the 

presence of Pb2+ by Breaker and Joyce.5 Its cleavage rate can easily reach >10 min-1 with only 10 

µM Pb2+.48 In recent years, selection efforts have been made to search a Pb2+-dependent DNAzyme 
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with a smaller enzyme loop similar to a leadzyme.175 These selections used Pb2+ and thus it is not 

surprising that the evolved DNAzymes were active with Pb2+. Interestingly, Pb2+-induced cleavage 

(even at µM and nM level) was frequently observed in many RNA-cleaving DNAzymes selected 

in the presence of other metal ions (Table 5). 

The best-studied example is the 8-17 and 17E DNAzymes that were initially selected with 

Mg2+ and Zn2+.49, 60 Nevertheless, the apparent Kd values are 13.5 µM Pb2+ and 0.97 mM Zn2+ (at 

pH 6.0), suggesting a higher binding affinity toward Pb2+.61, 62 Therefore, the 17E DNAzyme has 

been widely designed into lead biosensors by coupling with various signaling methods.11, 19 The 

crystal structure of 17E was recently solved revealing a Pb2+-bound water molecule as a general 

acid stabilizing the 5'-O on the leaving residue.114 Meanwhile, a conserved guanine near the 

cleavage site facilitates the deprotonation of 2'-OH as a general base. Biochemical studies on pH-

rate profiles revealed the general base role of a guanine,61, 116 and the general acid role of Pb2+ was 

confirmed based on pH-rate profiles and phosphorothioate-modified DNAzymes.117, 176  

The commonly detected cleavage induced by Pb2+ can be considered as a potential 

interference when designing other DNAzymes into biosensors. For example, the presence of 10 

µM Pb2+ can induce moderate fluorescence signal in DNAzyme-based molecular beacons for 

sensing metal ions such as lanthanide and calcium.66, 67 To overcome this issue, a thiol ligand such 

as mercaptohexanol (MCH) was introduced to mask the possible Pb2+ in the sensing environment. 

Table 5. A literature summary of all the RNA-cleaving DNAzymes in which the Pb2+-induced activity was 

detected in previous studies. Except for 17E, other Pb2+-induced cleavage rates were approximately 

calculated based on the reported cleavage yields. 
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DNAzymes Metal ion cofactor, kobs pH Pb2+ induced cleavage 

17E61 10 mM Zn2+, 1.35 min-1 6 100 µM, 5.75 min-1 

EtNa65, 66 1 mM Ca2+, 2.5 h-1 6 20 µM, ~0.4 h-1 

Ce13d67 10 µM Ce3+, 0.18 min-1 6 10 µM, ~0.01 min-1 

Lu12177 10 µM Nd3+, 0.12 min-1 6 100 µM, below 0.3 h-1 

NaH1154 50 mM Na+, 0.11 min-1 6 100 µM, below 0.1 h-1 

Ag10c74 10 µM Ag+, 0.41 min-1 7.5 100 µM, below 0.1 h-1 

39E178 10 µM UO2
2+, 1.23 min-1 5.5 1 mM, below 0.1 h-1 

 

While the Pb2+ interference problem to biosensors can be solved by adding a masking agent, 

we know very little mechanistically why can Pb2+ induce cleavage in these DNAzymes that are 

evolved to be specific for other metal ions, and how does Pb2+ influence their intrinsic metal-

specific activities? What makes Pb2+ more effective than other metal ions in catalyzing the RNA 

cleavage reaction? To answer these questions, I studied the effect of Pb2+ on two Na+-dependent 

DNAzymes. These DNAzymes share a common Na+-binding loop which forms a well-defined 

structure under a low Na+ concentration (e.g. ~10 mM). The activity of these DNAzymes depends 

solely on sodium ions which makes them an excellent model for studying this purpose since no 

divalent ion is present. Another DNAzyme that is active with both lanthanides and Pb2+ was 

studied. Finally, Pb2+ significantly enhanced the cleavage activity of a Ca2+-dependent DNAzyme. 

These studies point to the roles of Pb2+ as a general acid and a Lewis acid. The mechanistic 

versatility of Pb2+ may explain its ubiquitous promoting effect in DNAzymes.  
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4.2 Results 

4.2.1 Distinct Pb2+ effects on sodium DNAzymes 

I first investigated the effect of Pb2+ on two Na+-dependent DNAzymes, NaA43 and 

NaH1.72, 154 From their secondary structures, NaA43T (Figure 4.1A) and NaH1 (Figure 4.1B) both 

possess a Na+-binding aptamer loop (16-nt), which directs the global folding of DNAzymes into 

active structures.73, 127 NaA43T is a truncated form of NaA43 with a similar activity and specificity 

for Na+.73 Although these two DNAzymes differ only by one or two bases, their opposite pH 

dependencies revealed distinct catalytic mechanisms.179 Previous study demonstrated that 

NaA43T has a general base catalysis mechanism (G23 being the general base), while NaH1 has a 

general acid mechanism (A22 being the general acid). 

 

Figure 4.1 Secondary structures of two Na+-dependent DNAzymes including (A) NaA43T and (B) NaH1. 

(C) Gel images of cleavage results after 1 h incubation in the presence of 10 mM Na+ and various Pb2+ 
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concentrations. The cleavage reaction of NaA43T (top) and NaH1 (bottom) was measured at pH 7.0 and 

pH 6.0, respectively. (D) The cleavage ratio of NaA43T (black dots) and NaH1 (red triangles) in the 

presence of 10 mM Na+ and various Pb2+ concentrations. 𝑅𝑎𝑡𝑖𝑜 =
஼௟௘௔௩௔௚௘%

஼௟௘௔௩௔௚௘%(௪௜௧௛௢௨௧ ௉௕మశ)
. 

The activity of these two DNAzymes depends solely on sodium ions, which makes them 

excellent models for studying the effect of Pb2+ since no additional divalent ions are required. I 

first tested the effect of Pb2+ on their activity in the presence of 10 mM Na+. Interestingly, distinct 

results for NaH1 and NaA43T were observed. For NaA43T, a low concentration of Pb2+ (below 

100 µM) had almost no effect on its cleavage activity (Figure 4.1C, top). With over 100 µM Pb2+, 

the activity decreased with increasing Pb2+ concentration and thus Pb2+ acted as an inhibitor of the 

DNAzyme (Figure 4.1D). On the contrary, a significant inhibition effect was observed in NaH1 

with only 30% activity left in the presence of 100 µM Pb2+ (Figure 4.1C, bottom). Since a low 

Pb2+ concentration had no effect NaA43T, such an inhibition in NaH1 was not due to nonspecific 

perturbation of the structure. After that, the activity only slightly increased upon adding more Pb2+. 

Based on the small amount of activity increase (thus a large apparent Kd for Pb2+ beyond 100 µM), 

it is likely due to Pb2+ acting as a poor cofactor to catalyze this reaction (Figure 4.1D). The 

following study mainly focused on Pb2+ concentrations below 100 µM. 

Due to the distinct effects observed at low Pb2+ concentrations (below 100 µM), Pb2+ may 

play a specific role at the cleavage site of the Na+ DNAzymes instead of non-specific structural 

effects. Especially for NaH1, based on previous studies, Na+ does not interact with the cleavage 

site.179 Instead, Na+ indirectly assists the reaction by positioning A22 during the catalysis. This 

adenine is highly conserved and serves as a general acid by interacting with the 5'-O on the leaving 

residue. I suspected that the Pb2+-induced inhibition is likely through competing with a 
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catalytically important group at the cleavage site. To confirm the hypothesis, the cleavage rate of 

NaH1 was compared with or without 50 µM Pb2+. As shown in Figure 4.2A, when the Na+ 

concentration was sufficiently high (above 100 mM), the inhibition effect caused by Pb2+ was 

suppressed. On the contrary, the addition of 10 mM Na+ and 90 mM Li+ failed to resume the 

cleavage activity, ruling out the ionic strength effect of Na+ (Figure 4.2B). Consequently, Pb2+ 

competitively inhibits the functional group in the cleavage reaction, which can be overcome by a 

high Na+ concentration (above 100 mM). The apparent Ki was calculated to be 13.4 µM Pb2+ using 

the apparent Kd values measured with or without 50 µM Pb2+ (Figure 4.2A). A relatively high 

binding affinity further indicates a specific interaction of Pb2+ at the cleavage site which 

interrupting the catalysis mechanism. 

 

Figure 4.2 (A) A competitive inhibition of NaH1 induced by 50 µM Pb2+. In the absence of Pb2+, the 

binding curve is obtained by fitting data (black dots) into a single binding site equation: 𝑉 =
௏೘ೌೣ [ௌ]

௄೏ା[ௌ]
 (the 

apparent Kd=11.7±2.44 mM Na+). In the presence of 50 µM Pb2+, the sigmodal curve is obtained by fitting 

(blue squares) into a Hill equation: 𝑉 =
௏೘ೌೣ [ௌ]೙

௄೏
೙ା[ௌ]೙ (the apparent Kd'=55.5±2.03 mM Na+, n=2.8). Therefore, 
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the apparent Ki can be calculated from 
௄೏ [௉௕మశ]

௄೏ᇱି௄೏
=13.4 µM Pb2+. (B) The inhibition of NaH1 activity by 50 

µM Pb2+ was rescued by 100 mM Na+ but not by 10 mM Na+ and 90 mM Li+. 

It is notable that the shape of the two binding curves in Figure 4.2A was very different. 

Without Pb2+, NaH1 displayed one Na+ binding site with an apparent Kd of 11.7 mM Na+, which 

can be assigned to the 16-nt Na+ aptamer. However, with 50 µM Pb2+, a Hill coefficient of 2.8 was 

obtained indicating positive cooperativity of Na+ binding. I reason that in addition to the aptamer 

pocket, Na+ must also compete with Pb2+ at the active site to relief the inhibition effect (likely two 

Na+ ions were needed for this purpose to account for an overall Hill coefficient of close to 3). With 

Pb2+, the apparent Kd obtained was 55.5 mM Na+ which suggested an overall lower binding affinity 

caused by the Pb2+ binding. In previous studies, the general acid role of Pb2+ has been revealed in 

the 17E and 8-17 DNAzymes.117, 176 Combined with our results, Pb2+ was proposed serve as a non-

productive general acid to compete with the original general acid (adenine) mechanism in NaH1. 

The hydrated Pb2+ may be less efficient than the conserved adenine as a general acid, resulting in 

an inhibition on NaH1 activity. On the contrary, Pb2+ failed to affect the cleavage of NaA43T in 

which a general base (guanine) dominating the catalysis. 

4.2.2 Pb2+-induced cleavage in the Ce13d DNAzyme 

To further probe the Pb2+ role in these DNAzymes, the Pb2+ activity in another related 

DNAzyme, Ce13d, was studied.67 The secondary structure of the Ce13d DNAzyme is shown in 

Figure 4.3A. Its enzyme strand also contains the same Na+ aptamer representing an overall folding 

resembling NaH1 and NaA43T.73, 140 At its cleavage site, a lanthanide ion (e.g., Ce3+) is required 

to perform the cleavage, while no catalytic nucleobases were identified. Phosphorothioate (PS) 
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substitution at the cleavage site revealed the direct coordination between Ce3+ and non-bridging 

oxygens.110 In previous study, Pb2+ also activated Ce13d, although at a lower catalytic rate (~20-

fold) compared to Ce3+.67 Here, I carefully examined its enzyme activity with micromolar Pb2+. In 

the absence of Na+, the DNAzyme could not fold properly, and 200 µM Pb2+ only induced a mild 

cleavage (~20%) (Figure 4.3B, grey triangles). The observed cleavage cannot be simply attributed 

to non-specific RNA degradation since no product was detected in the rA-substrates alone (Figure 

4.3B, black squares). Interestingly, its original metal cofactor, Ce3+, lacked the ability to cleave in 

the absence of Na+ (Figure 4.4A). Meanwhile, the cleavage is not due to an increased ionic strength 

since 1 mM Mg2+ and Ca2+ failed to induce a comparable cleavage (Figure 4.4B). 

 

Figure 4.3 (A) Secondary structure of the Ce13d DNAzyme. (B) The Pb2+-dependent activity of Ce13d 

measured with or without 25 mM Na+. Black circles represent the cleavages of PO-substrates alone as a 
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control. (C) Cleavage rates of Ce13d measured with various concentrations of Pb2+ and 25 mM Na+. (D) 

Effect of Na+ concentration on the cleavage yields with 20 µM Pb2. 

In the presence of 25 mM Na+ (Figure 4.3B, blue circles), the activity of Ce13d became 

highly sensitive to low concentrations of Pb2+ (below 20 µM). The kinetics showed that the 

cleavage rates gradually increased with an increasing Pb2+ concentration up to 30 µM (Figure 

4.3C). The Pb2+-induced activity of Ce13d also depended on Na+ concentration. The addition of 

25 mM Na+ can promote the global folding of the DNAzyme allowing Pb2+ cofactor to function in 

the reaction more efficiently (Figure 4.3D). However, further increasing the Na+ concentration 

resulted in a lower cleavage yield. For example, almost no activity was detected in the presence of 

200 mM Na+. This can be explained by an increased salt concentration which prevents Pb2+ from 

reaching the cleavage site in the DNAzyme structure. Together, in Ce13d, the global folding 

induced by Na+ (~25 mM) allows Pb2+ to function in the cleavage reaction. 

 

Figure 4.4 (A) Cleavage yields of Ce13d measured in various concentrations of Pb2+ or Ce3+ without Na+ 

(1 h). (B) The comparison of cleavage% of Ce13d in the presence of 200 µM Pb2+ or 1 mM Mg2+/Ca2+ 

without Na+ (1 h). 
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The pH dependency was then studied to gain insights into the participation of general acid 

or base groups during the catalysis. As shown in Figure 4.5A, the Pb2+-induced activity gradually 

decreased when the pH increased from 6.4 to 7.3. The logarithm of rates linearly decreased in this 

pH range with a slope close to -1 (Figure 4.5B), indicating a single protonation step in the reaction. 

The first pKa of Pb2+-bound water is within 6.5 to 8.4. Thus, Pb2+ may serve as a general acid group 

functioning in the rate-limiting step. Interestingly, the Ce3+-induced activity in Ce13d remains 

between pH 6 to 7.110 Thus, Pb2+ can facilitate the Ce13d activity by acting as a general acid. This 

mechanism is different from that of Ce3+ (a Lewis acid interacting with the scissile phosphate) and 

the Pb2+ mechanism had a lower efficiency.110 

 

Figure 4.5 (A) Cleavage rates of 20 µM Pb2 (25 mM Na+) measured in different pH buffers from pH 6.4 

to 7.3. The buffers used here are 20 mM PIPES buffer (40 mM LiCl). (B) The logarithm of rate against pH 

revealing a linear relationship with a slope of -0.9373. 

4.2.3 Pb2+-enhanced cleavage activity in the EtNa DNAzyme 

Apart from these Na+ DNAzyme scaffold, I further investigated the Pb2+ activity in an 

unrelated DNAzyme, the EtNa DNAzyme. The EtNa DNAzyme (Figure 4.6A) was initially 

selected in the presence of Na+ and isopropanol.65 Further activity studies revealed its exceptional 
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selectivity toward Ca2+ in aqueous solutions.66 In particular, the EtNa DNAzyme is up to 90 times 

more active in Ca2+ than in Mg2+. Activity studies using PS substrates and a sigmodal binding 

curve suggested two Ca2+ ions binding to the scissile phosphate simultaneously. Most importantly, 

the Pb2+-induced cleavage of EtNa was observed in water, and herein I examined the Pb2+ activity 

in more detail.65 

 

Figure 4.6 (A) Secondary structure of the EtNa DNAzyme. (B) Kinetics study of EtNa in the presence of 

100 µM Ca2+ (black), 20 µM Pb2+ (red), or 100 µM Ca2+ and 20 µM Pb2+ (green). The cleavage reactions 

were performed in 50 mM MES buffer (25 mM LiCl), pH 6.0. Kinetic data were fit with the first-order 

equation, %𝑃௖௟௘௔௩௔௚௘,௧ = %𝑃௠௔௫(1 − 𝑒ି௞೚್ೞ௧), where %Pmax is the maximum cleavage yield at the end of 

the reaction and 𝑘௢௕௦  is the cleavage rate constant. (C) Gel images showing the cleavage% of EtNa 

measured at several time points in the presence of 100 µM Ca2+, 100 µM Ca2+ and 20 µM Pb2+, or 500 µM 

Ca2+ and 20 µM Pb2+, respectively. 
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Figure 4.7 Metal ion effects on the EtNa activity in 100 µM Ca2+. The reaction performed in 100 µM Ca2+ 

alone without additional metals was indicated as 0, which was the initial cleavage (C0). All the cleavage 

yields were measured after 1 h incubation with the addition of 20 µM divalent (Pb2+, Mg2+, Mn2+, Cu2+, 

Zn2+, Co2+, Cd2+) or trivalent (Ce3+, Al3+) metal ions. The y-axis was quantified by dividing the initial 

cleavage (C0). Thus, the C/C0 value >1 represents an enhancement, while C/C0 <1 represents an inhibition. 

When studying the effect of Pb2+ in EtNa, I found that Ca2+-induced activity can be 

significantly enhanced by the addition of a low concentration of Pb2+ (Figure 4.6B). For instance, 

in the presence of 100 µM Ca2+, a ~70-fold increase in cleavage rate was detected after the addition 

of 20 µM Pb2+ (Figure 4.6B, green). The cleavage activity with 20 µM Pb2+ alone (Figure 4.6B, 

red) was also less efficient compared to the combination of Pb2+ and Ca2+. Despite that Pb2+ can 

induce cleavage in many DNAzymes, this is the only case where we found that Pb2+ enhances the 

original activity. The maximal cleavage rate detected is ~0.4 min-1 in the presence of 500 µM Ca2+ 

and 20 µM Pb2+ (Figure 4.6C). While the previously reported saturated cleavage rate of EtNa was 

~0.067 min-1 in 2 mM Ca2+.66 Additionally, I compared the effect of other metal ions on the EtNa 

activity with 100 µM Ca2+. As shown in Figure 4.7, Mg2+ had no effect on cleavage, while other 
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metal ions inhibited the Ca2+-induced activity. Thus, the rate enhancement observed in Pb2+ is due 

to a specific function in the reaction. 

 

Figure 4.8 (A) Cleavage rates measured as a function of Ca2+ concentrations in the presence of 20 µM Pb2+. 

The sigmodal binding curve is fitted into a Hill equation, 𝑉 =
௏೘ೌೣ [௅]೙

௄೏
೙ା[௅]೙ ([𝐿] is the metal ion concentration), 

where the apparent Kd is 129.7±17.03 µM Ca2+, n=1.545. (B) Cleavage rates increased with increasing Pb2+ 

concentrations in the presence of 500 µM Ca2+. The binding curve is fitted into a single binding site equation: 

𝑉 =
௏೘ೌೣ [௅]

௄೏ା[௅]
 (the apparent Kd=2.268±0.747 M Pb2+). 

I then measured the cleavage rate of EtNa as a function of Ca2+ concentration. With 20 µM 

Pb2+ fixed, a sigmodal binding curve was obtained with an apparent Kd of 129.7 µM Ca2+ (Figure 

4.8A), which was approximately 8-fold smaller than that without Pb2+.66 A Hill coefficient (n) of 

1.5 was obtained indicating more than one binding site for Ca2+. This positive cooperativity is 

consistent with the binding curve reported in Ca2+ alone.66 Therefore, the addition of Pb2+ did not 

disturb the Ca2+ binding at the cleavage site. In fact, EtNa displayed a stronger binding affinity 

toward Ca2+ promoted by Pb2+. Thus, Pb2+ can be considered as an allosteric activator in protein 

enzymes, which binds to a different site than Ca2+ and stabilize the Ca2+ binding. To study the Pb2+ 
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binding, the Ca2+ concentration was then fixed and the Pb2+-dependent cleavage rate was measured 

in EtNa. In the presence of 500 µM Ca2+, an apparent Kd of 2.3 µM Pb2+ was obtained from a 

single-site (hyperbolic) binding curve of EtNa (Figure 4.8B). Thus, one Pb2+ ion and at least one 

Ca2+ ion can bind to EtNa simultaneously. 

To further explore the catalytic role of Pb2+, I compared the pH dependency of EtNa in the 

presence of Ca2+ or Pb2+, respectively. With 1 mM Ca2+ (Figure 4.9B, red), the EtNa activity 

remained constant between pH 6.4 to 7.3, which was in an agreement with the previously reported 

data.66 With 20 µM Pb2+ alone (Figure 4.9B, blue), however, the activity decreased when pH 

increased from pH 6.4 to 7.3 (Figure 4.9A). which is consistent with the general acid role of Pb2+. 

The linear decrease with a slope close to -1 supports the general acid role of Pb2+. When both Ca2+ 

(100 µM) and Pb2+ (10 µM) are present (Figure 4.9B, green), the pH dependency was consistent 

with the Ca2+-induced activity. This could be attributed to two possible scenarios. First, when the 

general acid (Pb2+) decreases, the concentration of a general base group increases (e.g., an 

important guanine waiting to be identified), which results in an unaffected rate (kobs). Alternatively, 

the combination effect of Ca2+ and Pb2+ may not be due to the general acid role of Pb2+, but a 

stabilization to the Ca2+-dominating catalysis (e.g. the rate-limiting step was related to Ca2+ instead 

of Pb2+). 
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Figure 4.9 (A) Cleavage rates of EtNa measured in various pH buffers. The reaction was performed in 20 

µM Pb2+ alone. (B) pH-rate profiles measured in 20 µM Pb2+ (blue), 1 mM Ca2+ (red), or 100 µM Ca2+ and 

10 µM Pb2 (green). The slope of 20 µM Pb2+ equals to -1.3498. The buffers used are: 20 mM MES buffer 

(40 mM LiCl) for pH 5.6 to 6.2; 20 mM PIPES buffer (40 mM LiCl) for pH 6.4 to 7.3. 

4.3 Discussion 

Lead-induced cleavage has been frequently reported when studying RNA-cleaving 

DNAzymes. By studying the Pb2+ effect on the two Na+ DNAzymes, distinct results were observed. 

Low concentrations of Pb2+ (below 100 µM) significantly inhibited the NaH1 activity, while no 

inhibition effect was detected in NaA43T despite of their similarities. Considering that their major 

difference is the functional nucleobase in catalysis, Pb2+ may play a specific role at the cleavage 

site. In NaH1, a competitive inhibition was revealed with apparent Ki of 13.4 µM Pb2+. Thus, the 

Pb2+ was proposed to specifically bind to the cleavage site and compete with the catalytic adenine 

(A22) in NaH1. 

In Ce13d, micromolar Pb2+ (e.g., 200 µM) can induce a mild cleavage. In the presence of 

millimolar Na+, the DNAzyme folds into a more compact structure which facilitates the binding 

Time (min)

0 20 40 60 80 100 120

C
le

v%

0

20

40

60 pH 6.4
pH 6.6
pH 6.8
pH 7.0
pH 7.3

pH

5.6 6.0 6.4 6.8 7.2

Lo
g 

k(
m

in
-1

)

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

20 µM Pb

100 µM Ca + 10 µM Pb

1 mM Ca

A B



 

 

90 

with even a lower concentration of Pb2+ (below 20 µM). The pH dependency revealed a general 

acid group functioning in the reaction. Since the first pKa of Pb2+-bound water is within 6.5 to 8.4, 

Pb2+ may fulfill this role by stabilizing the 5'-leaving oxygen. Thus, this provided another example 

for the same DNAzyme displaying alternative catalytic pathways. 

Despite that Pb2+ can induce cleavage in many DNAzymes, EtNa is the only case where 

an enhancement was observed to its original activity. The EtNa activity can be supported by Ca2+ 

or Pb2+ individually. Nevertheless, the combination of Ca2+ and Pb2+ is much more efficient. Table 

6 summarized cleavage rates of EtNa reported in different metal ions. Based on our results, Pb2+ 

ion performs a dual function in the catalysis (Figure 4.11D). First, Pb2+ can bind to EtNa 

specifically with an apparent Kd, Pb of 2.3 M. The binding of Pb2+ in turn promotes the Ca2+ 

binding affinity in EtNa as indicated by a decreased Kd, Ca value. However, the reason for this 

stabilization induced by Pb2+ remains unknown. Meanwhile, Pb2+ can directly participate in the 

cleavage reaction possibly through a general acid mechanism. This is deduced from the increased 

activity detected under a lower pH condition which is different from Ca2+ alone. This general acid 

mechanism was not available in the absence of Pb2+ and thus Pb2+ assisted Ca2+ instead of 

competing with it. 

Table 6. A summary of EtNa activity in various metal ions.  

Metal ions kobs 

2 mM Ca2+ 66 0.067 min-1 

2 mM Mg2+ 66 8.3·10-4 min-1 

20 µM Pb2+ 9.8·10-3 min-1 

500 µM Ca2+, 20 µM Pb2+ 0.4 min-1 
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Interestingly, a similar combined effect was also reported in the leadzyme, where rare earth 

ions (e.g., Nd3+, Gd3+, Tm3+, and La3+) enhanced its Pb2+-induced cleavage.174 Biochemical assays 

were carried out to study the combined effect of Nd3+ and Pb2+.173 The presence Nd3+ alone failed 

to induce cleavage and the enhancement highly depended on the concentration ratio of Nd3+ and 

Pb2+. The optimal ratio was 1:1 while further increasing the Nd3+ concentration eliminated the 

enhancement. In the EtNa DNAzyme, I did not observe a rate decrease caused by increasing Pb2+ 

concentrations (up to 50 µM), but the Ca2+ concentration used was always higher than Pb2+ due to 

the relatively low binding affinity of Ca2+ to EtNa. In the leadzyme, a two-metal-ion mechanism 

was proposed in which Nd3+-bound water serves as a general acid and the Pb2+ hydroxyl as a 

general base (Figure 4.11E).173 

Based on our observations, Pb2+ could affect catalysis of RNA-cleaving DNAzymes in 

multiple ways. In general, Pb2+, as a soft Lewis acid, can bind to both phosphate groups and 

nucleobases in DNA or RNA. Most of time, Pb2+ was identified to directly interact with the 

cleavage site rather than direct the enzyme folding. For example, the 8-17 DNAzyme is most active 

in Pb2+, and less active in Zn2+ and Mg2+.61 However, a smFRET study demonstrated that both 

Zn2+ and Mg2+ induced the folding of DNAzyme into a compact structure which supported the 

subsequent cleavage activity, while no global folding was detected in Pb2+, the most effective 

cofactor for the cleavage.102 Thus, Pb2+ does not necessarily require a global folding and can 

directly fit in the catalytic core of the 8-17 DNAzyme. In the uranyl-dependent DNAzyme (39E), 

FRET results suggested that Zn2+ and Mg2+ can induce global folding and thus inhibit its activity. 

No significant folding signal was observed with Pb2+ and UO2
2+.104 Therefore, Pb2+ tends to 

directly bind to the cleavage site without overly interfering the conformation. This can contribute 

to the ubiquitous activity of Pb2+ in RNA-cleaving DNAzymes. 
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With the pKa of Pb2+-bound water near neutral, Pb2+ is a natural candidate for general acid-

base catalysis during the RNA hydrolysis. A Pb2+-bound hydroxyl group was proposed to serve as 

a general base by deprotonating the 2'-OH which has been observed in tRNAPhe and leadzyme.168, 

169, 171 Alternatively, a Pb2+-bound water can stabilize the 5'-O on the leaving ribose and therefore 

play a general acid role. So far, only the general acid role of Pb2+ has been proven in RNA-cleaving 

DNAzymes. The crystal structure of the 17E DNAzyme captured a Pb2+ in the catalytic core 

coordinating with both a nearby guanine and water molecules, suggesting a general acid role.114 

However, biochemical studies on its pH-dependency revealed the protonation of a catalytic 

guanine being the rate-limiting step,61, 116 but the general acid role of Pb2+ was recently 

demonstrated as well.117, 176 In a recent study, by replacing the conserved guanine with 2-

aminopurine, the general acid group was unmasked on the pH-rate profile with a pKa value close 

to a hydrated Pb2+ (Figure 4.10).117 On the contrary, the Mg2+-induced activity of the variant 17E 

was insensitive in the high pH region. 

 

Figure 4.10 Comparison of pH dependency of the wild type 8-17 DNAzyme and the G14-AP variant in 

200 and 100 µM Pb2+, respectively. Reprinted with permission from ref 117. Copyright © Royal Society 

of Chemistry 2021. 
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In this current work, the Pb2+-induced cleavage in Ce13d and EtNa both indicated a general 

acid functioning in the reaction that is rate-limiting. However, these results cannot exclude the 

possibility of Pb2+ serving as a general base at the meantime which might not be the rate-limiting 

role. In principle, Pb2+ can also stabilize the transition state by directly coordinating with the 

scissile phosphate as a Lewis acid. For example, the PS-modified Ce13d DNAzyme performed a 

high binding affinity to Pb2+ with an apparent Kd of 4.2 nM.159 In this case, the PS modification at 

the cleavage site attracts the thiophilic Pb2+ ion to bind tightly (Figure 4.11A). 

 

 

Figure 4.11 A schematic summary of various Pb2+ effects in the RNA cleavage reaction catalyzed by 

nucleic acid enzymes. (A) In Ce13d, a Pb2+-bound water can function as a poor general acid. With a PS 

modification on the scissile phosphate, thiophilic Pb2+ ion can directly coordinate with the sulfur.159 (B) In 

NaH1, a Pb2+ ion inhibits the activity by competing with the conserved adenine. (C) In NaA43T, no 
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inhibition effect of Pb2+ observed in the general base mechanism. (D) The combined effect of Ca2+ and Pb2+ 

in the EtNa DNAzyme. (E) The combined effect of Pb3+ and Nd3+ in the leadzyme. Redraw from ref173. 

4.4 Summary 

In this chapter, I used several representative DNAzymes as examples to reveal the 

capability of Pb2+ binds specifically to the cleavage site (Figure 4.11). Upon binding, the hydrated 

Pb2+ can serve as a poor general acid and facilitate the RNA cleavage. In a special case, Pb2+ can 

corporate with Ca2+ cofactor and enhance the activity of the EtNa DNAzyme. The mechanistic 

study of Pb2+ activity is important for understanding the DNAzyme catalysis. This could also 

provide insights in rational design of catalytic DNA or RNA with cleavage activity. 

4.5 Materials and methods 

4.5.1 Chemicals 

The list of chemicals used in this chapter can be found in Chapter 2.4.1. 

4.5.2 Activity assays 

For cleavage activity assays, the DNAzyme complex was prepared by annealing the FAM-

labeled substrate and enzyme (ratio 1:1.5) in 5 mM MES buffer (pH 6.0, 50 mM LiCl). The 

mixtures were annealed by heating at 93 C for 2 min and then gradually cooling down to 4 C for 

over 30 min. The DNAzyme complexes were then diluted to 0.2 M in the reaction with a total 

volume of 7 L. To initiate the cleavage, 0.5 or 1 L metal ion solution was added. After 

incubation, a reaction solution (7 L) was quenched with 8 L of 8 M urea. The cleavage products 

were quantified by 15% denaturing polyacrylamine gel electrophoresis (dPAGE) and analyzed by 

a Bio-Rad Chemi-Doc MP imaging system. If not mentioned specifically, the reaction buffer used 
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was 50 mM MES buffer (pH 6, 25 mM LiCl). For pH-rate profiles, 20 mM MES buffers were used 

for pH 5.6 to 6.2, while 20 mM PIPES buffers were used for pH 6.4 to 7.3. All the buffers contain 

same LiCl concentration to eliminate the sale effect. 
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Chapter 5. In Vitro Selection of A Self-Cleaving Ribozyme Activated in 

Chemically and Thermally Denaturing Environmentd 

5.1 Introduction 

Many metal-specific DNAzymes have been isolated for biosensor development.8, 180, 181 

Recently, a few related Na+-specific RNA-cleaving DNAzymes have been reported, including the 

NaA43,72 Ce13d,67 and NaH1,182 all of which containing the same Na+ aptamer motif.73 Ribozymes, 

on the other hand, were mainly selected in the presence of Mg2+,180, 183 since they were intended 

to work in cells. Some naturally occurring RNA motifs can recognize metal ions, with the best 

examples present in riboswitches, where riboswitches for Co2+/Ni2+,184 W/Mo,185 and even F- have 

been reported.186 Given the excellent Na+-binding property of these DNAzymes, I wondered 

whether similar ribozymes exist. Since Na+ is an important metal in biology, its ribozymes and 

aptamers might also be important in regulating its concentration. In this work, a selection 

experiment was performed in searching Na+-dependent ribozymes. Strikingly, the obtained 

ribozyme showed no metal dependency and was even inhibited by metal ions. However, it is highly 

active under all typical denaturing conditions for nucleic acids, including high temperature, 

denaturing solvents, and low metal concentrations. 

Denaturants, such as formamide, urea, and DMSO, can disturb secondary and tertiary 

structures in nucleic acids resulting in a decreased melting temperature (Tm). An early interest in 

                                                 
d This chapter is the basis for an accepted manuscript: Ma, L.; Huang, Z.; Liu, J., Selection of a self-cleaving ribozyme 

activated in chemically and thermally denaturing environment. Chemical Communications 2021, 57 (62), 7641-7644. 
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using denaturants (1-5%) was to improve the specificity of primer annealing in PCR by minimizing 

unfavorable secondary structures.187 In nucleic acid enzyme activity assays, denaturants (~7 to 10 

M) along with EDTA were often added to destroy the active structures, thus quenching the 

reactions. A special example is the HDV ribozyme, where formamide (up to 20 M) or urea (up to 

10 M) can enhance its Mg2+-mediated cleavage activity.188, 189 Moreover, a vector sequence-

containing HDV ribozyme was initially inactive, but started to show cleavage under partially 

denaturing conditions.190 

Divalent metal ions in millimolar concentrations are typically used for studying ribozyme 

activity in vitro. Metal ions (e.g., Mg2+, Mn2+, Ca2+) can facilitate folding of active RNA structures 

and directly participate in catalytic reactions.119, 191 In the cleavage of a RNA phosphodiester bond, 

it is well established that hydrated metal ions can accelerate the reaction through a general acid-

base mechanism. Alternatively, metal ions, as Lewis acids, can stabilize the negative charge 

developed on the nucleophile, the leaving group, or the non-bridging oxygens. Cleavage activity 

induced by high concentrations (~1 to 4 M) of monovalent ions (e.g., Na+, Li+, K+, NH4
+) has been 

reported in a variety of ribozymes including hairpin, hammerhead, and hepatitis delta virus (HDV) 

ribozymes.122, 123, 192, 193 However, these activities are normally much slower (~10 to 100-fold) than 

the Mg2+-dependent cleavage. In this work, the selection and characterization of an interesting 

ribozyme were described whose activity is promoted by denaturing conditions but without metal 

ion dependency. 

5.2 Results and discussion 

5.2.1 In vitro selection of self-cleaving ribozymes 
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To isolate a self-cleaving Na+-dependent ribozyme, an RNA library was designed by 

partially randomizing the NaA43T DNAzyme sequence (Figure 3.1A). The NaA43T was derived 

from the original NaA43 after shortening the hairpin structure. Each RNA sequence contains a 20-

nt random region and a 7-nt random region flanked by constant domains (Figure 5.1B). In NaA43T, 

the 20- and 7-nt regions were for the Na+ binding aptamer domain and the catalytic domain, 

respectively. Two base pairs in the hairpin structure were also randomized to increase the 

flexibility of the RNA library. The initial RNA library was prepared by in vitro transcribing from 

its DNA template (Figure 5.1A). By designing the overall folding in a cis-cleaving structure, the 

underlined nucleotides flanked by two binding arms are potential cleavage sites. 

 

Figure 5.1 (A) The sense strand of the dsDNA template used to generate RNA library for in vitro selection. 

(B) The secondary structure of designed 80-nt RNA library containing two random regions N20 and N7. The 

six underlined nucleotides represent potential cleavage sites. (C) The cis-cleaving structure of Rn2 sequence. 

(D) The secondary structure of Rn2 sequence predicted by Mfold (including the primer binding domain) in 

which N20 and N7 regions are pointed by arrows. 
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The selection strategy is summarized in Figure 5.2. In each selection round, the RNA 

library (80-nt) was generated by in vitro transcription followed by dPAGE purification. The 

purified RNAs were incubated in the selection buffer (50 mM MES, pH 6, 100 mM NaCl, 2 mM 

EDTA•2Na+) at room temperature for 2 h. Afterwards, the downstream products with lengths 

between ~67 to 73-nt were purified by dPAGE and amplified by reverse transcription PCR. 

 

Figure 5.2 The in vitro selection procedure for self-cleaving ribozymes. In each selection round, the RNA 

library (80-nt) was generated by in vitro transcription followed by dPAGE purification. The purified RNAs 

were incubated in the selection buffer (50 mM MES, pH 6, 100 mM NaCl, 2 mM EDTA•2Na+) at room 

temperature for 2 h. Afterwards, the downstream products with lengths between ~67 to 73-nt were purified 

by dPAGE and amplified by reverse transcription PCR. 

After six rounds of selection, ~20% self-cleavage activity was achieved in the final RNA 

library (Figure 5.3), which presented as one single band on the dPAGE gel. The selection progress 

was also monitored by real-time PCR (Figure 5.4), which indicated a gradually enriched library 

along with the selection progress. Thus, the DNA amplification products of round 6 were further 
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analyzed by deep sequencing. The sequenced library showed a high diversity with a total of 18,068 

unique sequences. These sequences were further aligned into more than 1,000 families based on 

their sequence similarity. Some top families that contain the designed domains are listed in Table 

7. 

 

Figure 5.3 (A) Gel image showing the cleavage products of 1st and 6th round after selection step. 

 

Figure 5.4 (A) Real-time PCR used to monitor the gradual increase in RNA population in library along 

with the selection progress. (B) The fractional cycles (C1/2) at which reaction fluorescence reaches half of 

maximal (Fmax). 
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Among them, the Rn2 family was the most abundant and its sequence was also found in 

several other minor families adding up to a total of 181 sequences in the final library. The 

sequences in the Rn2 family are highly conserved as summarized in Figure 5.5A. After evolution, 

the N20 region possessed a high G+C content (75%). The secondary structure of the Rn2 sequence 

was predicted by Mfold (Figure 5.1D),142 showing a three-way junction structure. The short 3-bp 

hairpin structure appeared to shift positions compared to our original library design. Meanwhile, 

four nucleotides in N7 region formed base pairs with the potential cleavage region, leaving two 

nucleotides (AA) sitting between binding arms serving as the putative cleavage sites (Figure 5.1C). 

 

Figure 5.5 (A) Sequence analysis of Rn2 family by calculating the percentage of each nucleotide among a 

total of 98 sequences. (B) Comparison of two randomized domains in Rn2, Rn2.1, and Rn2.2 sequences. 

(C) Gel image showing the cleavage activity of Rn2, Rn2.1 and, Rn2.2. Lane 1 represents Rn2 without 

incubating. Lane 2-4 represents cleavage product of Rn2, Rn2.1 and, Rn2.2 in 50% formamide (25 mM 

Tris•HCl, pH 7.5, 1 mM EDTA•2Na+) after incubating at 65°C for 5 min. Top bands represent 80-nt 

complete ribozymes, and the bottom bands are cleaved products with shorter lengths. 
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Table 7. The eight most abundant families (from 5´ to 3´) after sequence alignment present in the final 

library. N20 region is in red, and N7 region is in blue. 

 

5.2.2 Formamide and high temperature enhance cleavage 

To test whether Rn2 had the intended activity, the corresponding DNA template was 

purchased and transcribed it to Rn2. In activity tests, site-specific cleavage of Rn2 was observed 

showing as one concentrated band with a shortened length (Figure 5.5C). To identify the key 

factors that induced the cleavage, I found that the cleavage happened under a denaturing condition 

(50 vol% formamide, 25 mM Tris•HCl, pH 7.5, 1 mM EDTA•2Na+, 65°C for 5 min), which was 

used before gel electrophoresis in our selection and activity assays. Under the same condition, no 

self-cleavage activity was observed in two other sequences that contained multiple differences 

compared to Rn2 as shown in Figure 5.5B. Therefore, the conserved sequence of the Rn2 ribozyme 

is functionally important for its site-specific self-cleavage activity. 

To understand the effect of formamide, I examed the cleavage yield of Rn2 by varying the 

volume fraction of formamide. As shown in Figure 5.6, when formamide was above 10% (v/v), 

the self-cleavage activity gradually enhanced. Especially, the highest cleavage yield was detected 

in the presence of 80% formamide (~20 M), which is typically a strong denaturing condition for 

2.GGGAAGAGAGGCCATCAGGTCACTCTCCCGCCCCCCAGTGTTGACTACCCCTTTAGGCACAAGCCTATAGGAAGATGGCC(98 reads)

5.GGGAAGAGAGGCCATCCCTCGGTCTCCTAGCTTCCCAGTGTTGACTACTCCCCTAGGCACAAGCCTATAGGAAGATGGCC(69 reads)

14.GGGAAGAGAGGCCATCCTATCATGGTCTCCGCTCCCAGTGTTGACTCCACACGTAGGCACAAGCCTATAGGAAGATGGCC(55 reads)

17.GGGAAGAGAGGCCATCATGGTCTCCGATCCCATCCCAGTGTTGACTCCTGACATAGGCACAAGCCTATAGGAAGATGGCC(52 reads)

19.GGGAAGAGAGGCCATCCCGGTCTCACGTTTCCCAGAGTGTTGACTCTCCCCTTAGGCACAAGCCTATAGGAAGATGGCC(50 reads)

20.GGGAAGAGAGGCCATCCATCTGGTCTAACTTCCCGAAGTGTTGACTCCCCCTCTAGGCACAAGCCTATAGGAAGATGGCC(50 reads)

23.GGGAAGAGAGGCCATCCCGGTCTCACGTTTCCCAGAGTGTTGACTCTCCCCTTAGGCACAAGCCTATAGGAAGATGGCC(48 reads)

24.GGGAAGAGAGGCCATCCGCGCACTCATTCCCAACCCAGTGTTGACTCATCCTTAGGCACAAGCCTATAGGAAGATGGCC(48 reads)
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nucleic acids. Thus, high concentrations of formamide substantially stimulated the cleavage of 

Rn2 instead of terminating the reaction. 

 

Figure 5.6 (A) The self-cleavage activity of Rn2 measured in various formamide vol% after incubating at 

65°C for 5 min. The buffer solution used in the reaction is 50 mM Tris•HCl (pH 7.5). Meanwhile, a final 

concentration of 1 mM EDTA•2Na+ was added to all the reactions to eliminate divalent metal ions. 

The formamide-enhanced activity was previously reported in the HDV ribozyme.188, 189 

The cleavage rate of the genomic HDV ribozyme was increased by 50-fold in 10 M formamide 

with ~2 mM Mg2+.189 However, >20 M formamide fully inhibited the cleavage likely by disturbing 

the structure. In the antigenomic HDV, a truncated version retained its activity even under 20 M 

formamide, but it was still more active at lower formamide concentrations.188 A structural study 

confirmed that the HDV ribozyme can preserve its structure even in 24 M formamide by 

monitoring the fluorescence of the bound ethidium bromide (EB).194 It was hypothesized that the 

HDV ribozyme was present in multiple conformations, and denaturants could lower the energy 
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barriers between them. Thus, an inactive folding can be destabilized and more easily converted to 

the active conformation. A similar mechanism can be applied here to understand the formamide-

dependency observed in Rn2. However, it may present an even higher stability in formamide since 

no activity decrease was observed even under a very high concentration of 20 M. 

I then examined the temperature effect on its cleavage activity. With 50 vol% (~12.5 M) 

formamide, the cleavage yields measured at -20°C ,4°C, and room temperature were fairly low 

after a 30 min incubation (Figure 5.7A). A high yield was observed when the samples were heated 

to above 50°C for 5 min, and the optimal temperature appeared to be between 65°C and 80°C. 

Note that even under such high temperatures, the cleavage was still specific and only a single 

major product band was observed (Figure 5.7A, gel image). This suggests a remarkable thermal 

stability of Rn2 ribozyme.  

When studying the kinetics of the cleavage reaction at 65°C, the reaction was completed 

as soon as 65°C was reached (Figure 5.9A). Therefore, I measured the cleavage process by slowly 

heating the reaction at several temperatures (from 30°C to 90°C). As shown in Figure 5.7B, the 

cleavage yield started to rise when the temperature was above 45°C. The yield gradually increased 

with an increasing temperature between 45°C to 65°C, and saturated at above 70°C. This suggested 

that the Rn2 ribozyme in 50% formamide was “switched on” when the temperature was higher 

than 45°C. The activation temperature was lowered with a higher formamide% (Figure 5.8), 

suggesting that temperature may accelerate catalysis through a similar denaturing mechanism as 

formamide. Likely, both formamide and high temperature stimulated Rn2 cleavage by accessing 

the active structure, despite that they normally denature RNA/DNA. 
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Figure 5.7 (A) The temperature effect on the self-cleavage activity of Rn2 in 50 vol% (~12.5 M) formamide. 

The reactions under -20°C, 4°C, and room temperature were incubated for 30 min, while the rest 

temperature points were measured after 5 min incubation. (B) The cleavage% of Rn2 measured during a 

slow heating process. The reaction was gradually heated from 30°C to 90°C. The reaction remained for 20 

s at each temperature point. An accumulated cleavage% was measured after being quenched at each 

temperature point. The cleavage% of Rn2 linearly increased within 45 to 65°C (inset). Reactions were 

performed in 50 vol% formamide (25 mM Tris•HCl, pH 7.5, 1 mM EDTA•2Na+) and quenched by cooling 

at -20°C. 

To study the kinetics of the cleavage reaction, the cleavage yield was measured at different 

time points at 53°C, which is a mild temperature condition for Rn2. As shown in Figure 5.9B, the 

cleavage in 50% formamide plateaued within 3 min with an apparent rate (Kobs) of 1.1 ± 0.1 min-

1. Interestingly, the self-cleavage activity of Rn2 was greatly enhanced in the presence of 80% 

formamide, resulting in a cleavage rate of 2.1 ± 0.3 min-1 and a higher maximal cleavage yield. On 

the contrary, the cleavage in buffer without formamide remained low. These results further 
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confirmed the importance of formamide solvent in promoting the active conformation of Rn2, 

which allowed the cleavage reaction to occur. 

 

Figure 5.8 The cleavage% of Rn2 measured in 50% or 80% formamide during a slow heating process. The 

reaction was gradually heated from 30°C to 90°C. The reaction remained for 20 s at each temperature point. 

An accumulated cleavage% was measured after being quenched at each temperature point. 

 

Figure 5.9 (A) The cleavage% measured at different time points in the presence of 50% and 90% 

formamide under 65℃. (B) Kinetics of Rn2 cleavage measured in buffer, 50%, or 80% formamide at 53°C. 

5.2.3 Divalent metal ions inhibit cleavage 
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All reactions discussed earlier were performed without additional metal ions apart from 1 

mM EDTA•2Na+, where only 2 mM Na+ was present. Since divalent metal ions are often added 

to promote RNA cleavage reaction, I tested the effect of Mg2+ and Ca2+ on the activity of Rn2. 

Surprisingly, Mg2+ and Ca2+ (up to 2 mM, 50% formamide, 53°C) significantly inhibited the 

cleavage activity (Figure 5.10A). On the contrary, the Rn2 showed a better tolerance for 

monovalent ions, where the cleavage started to decrease only when the concentration of Na+ or K+ 

was higher than 10 mM (Figure 5.10B). To fully inhibit the activity, more than 100 mM Na+ or K+ 

was required. In fact, a slight increase in the cleavage activity (~20 to 30%) was detected in the 

presence of relatively low concentrations of Na+ or K+ (below 1 mM). Metal ions can screen charge 

repulsion of nucleic acids. With an extremely low ionic strength, nucleic acids also tend to denature 

in aqueous solutions. 

The tolerance of Rn2 to monovalent metal ions is reasonable considering the selection was 

carried out in the presence of Na+ and divalent metal ions were strictly avoided. The inhibition 

observed under high concentrations of monovalent ions is likely due to an increased ionic strength 

which induced misfolding of the ribozyme thus disfavoring the active conformation. Divalent 

metal ions may interact with the ribozyme more strongly resulting in a more significant decrease 

in cleavage. This result also sets Rn2 apart from HDV since Mg2+ (~2 to 10 mM) was always 

required for the formamide-enhanced activity in the HDV ribozyme, and EDTA inhibited HDV 

cleavage.188, 189 Furthermore, monovalent metal ions could play a role in the chemical reaction 

since a cleavage increase was observed in low concentrations (below 1 mM) of Na+ and K+. This 

improvement in chemistry may be defeated by the structural disruption under higher salt 

concentrations. Since the cleavage is supported by denaturants or temperature rather than metal 

ions, the Rn2 catalysis may be rate-limited by the conformational change instead of the chemistry. 
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Figure 5.10 The cleavage activity of Rn2 measured in various concentration of (A) divalent and (B) 

monovalent metal ions. Reactions were performed in 50% formamide at 53°C (for 2 min). The y-axis was 

quantified by dividing the cleavage% measured in the absence of metal ions. (C) Gel images of Rn2 

cleavage in various concentrations of Mg2+ or Na+. 

5.2.4 Effect of other solvents 

Formamide is an effective denaturant for nucleic acids by weakening hydrogen bonds. 

Since formamide can promote Rn2 cleavage, I also studied the activity in other organic solvents 

and denaturing reagents at 65°C (Figure 5.11). Indeed, urea and DMSO also efficiently promoted 

the cleavage with similar cleavage yields as formamide. In pure buffer solution, the cleavage was 

nearly 50% less than that of formamide, while fairly low activities were observed in 50 vol% 

ethanol or methanol solutions. 
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Figure 5.11 Solvent effect on the self-cleavage activity of Rn2 (65°C, 5 min). The cleavage% was measured 

in 50 vol% of formamide, DMSO, ethanol, or methanol, while 10 M urea was used. Buffer used was 50 

mM Tris•HCl (pH 7.5), and 1 mM EDTA•2Na+ was added in all reactions. 

Cosolvents can affect the stability and catalytic activity of RNA and DNA via complicated 

mechanisms. Noticeable differences between these solvents are dielectric constant (𝜀௥) and water 

activity (𝑎௪). Formamide, urea, water, and DMSO have medium to high dielectric constants, while 

ethanol and methanol have lower dielectric constants. Based on the previous study of self-cleaving 

ribozymes, a low dielectric constant environment is generally more favorable for the cleavage 

activity.24 For example, the cleavage rate of hammerhead ribozyme mediated by 1.5 M NaCl was 

reported to be increased in ethanol and methanol (20 wt%). However, 20 wt% of urea and 

formamide decreased the rate by 100-fold.195 This was explained by a low dielectric constant 

medium promoting the electrostatic interaction between cations and ribozymes. In another study, 

the binding affinity of Mg2+ in the hammerhead ribozyme was also enhanced by over 10-fold in 

mixed solutions containing 20% ethanol or 1,2-dimethoxyethane.196 The fact that the Rn2 activity 

being promoted by high dielectric constant solvents suggested a distinct role of the solvent in 
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catalysis (e.g., acting on the ribozyme instead of mediating metal ion interactions). On the other 

hand, the water activity of organic solvents can also affect DNA/RNA structural stability. A 

reduced water activity was often correlated with a destabilized duplex structure.195, 197, 198 In Rn2, 

50% ethanol or methanol lowered the water activity but failed to support the cleavage. Thus, we 

can conclude that Rn2 cleavage requires a stronger destabilization effect provided by denaturants. 

5.2.5 Searching ribozyme sequence in nature 

Ribozymes are known to play critical roles in regulating gene expression in cells. Started 

from late 1980s, a great number of naturally occurring small self-cleaving ribozymes have been 

discovered, providing a powerful support for the RNA world hypothesis. In recent years, efforts 

have been made to combine experimental and bioinformatic approaches to identify ribozymes in 

genomes.199 A well-studied example is the hammerhead ribozyme (HHRz) that was initially found 

in plant virus such as viroids and viral satellites.28, 200 Bioinformatic approaches were later applied 

in searching HHRz motifs in genome databases, finding its ubiquitous and widespread existence 

in almost all life kingdoms.201-203 Typically, searching is based on the consensus motifs of a 

ribozyme identified in biochemical and structural studies. In HHRz, a minimized catalytic core 

containing ~11 to 15 conserved nucleotides was widely used.202 

Apart from known ribozymes, artificial RNAs with novel activities can be discovered by 

in vitro selection experiments, and bioinformatic methods can be used to look for their natural 

analogs. Our Rn2 ribozyme displays a unique denaturant-dependent and thermophilic activity. To 

search whether this novel catalytic RNA motif appears in nature, the BLASTN program was 

applied for searching the Rn2 motif among microbes.204 The entire N20 region in Rn2 sequence 

was used as the input since it’s a highly conserved sequence as shown in Figure 5.5B. The sequence 
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hits with highest query coverages were aligned in Figure 5.12. Interestingly, this motif was widely 

found in plasmid DNA of a thermophilic bacterium, Thermus thermophilus. It locates at the S8 

family serine peptidase genome, which is noted as incomplete with N-terminals missing. This 

motif is also present in the plasmid of another organism called Deinococcus wulumuqiensis, which 

also belongs to the Deinococcus family. Additionally, Rn2 motif was mapped in the chromosome 

of Deinococcus radiodurans, which is highly radiation-resistant. The presence of Rn2 motif in 

these extremophilic bacteria could be corelated with its unique activity under denaturing 

conditions. The phylogenetic tree based on the genomic alignments showed the close genetic-

distance between sequence hits (Figure 5.13). The biologically functional relevance of such hits 

will be a topic of future studies. 

 

Figure 5.12 Nucleotide NCBI-BLAST results showing the alignments of Rn2 motif in complete plasmids 

(A) or genomes (B) databases of microbes. The N20 region of Rn2 ribozyme was used as the input sequence. 

Sequence ID Start Alignment End Organism
1 201918171615141312111098765432

Query_24537 (+) 1 A G G T C A C T C T C C C G C C C C C C 20
NZ_CP011273.1(+) 4,501,... 4,501,... Planctomyces sp. SH-PL62
NZ_CP044543.1 (-) 5,745,... C 5,745,... Bradyrhizobium betae
NZ_CP027231.1(+) 1,292,... C 1,292,... Bacteroides zoogleoformans
NZ_CP043959.1(+) 1,732,... 1,732,... Streptomyces tendae
NZ_CP032402.1 (-) 219,217 219,201 Thermomonospora amylol...
NZ_CP009754.1(+) 802,726 802,742 Streptomyces sp. CCM_...
NZ_CP029788.1 (-) 1,409,... A 1,409,... Streptomyces actuosus
NZ_CP050120.1 (-) 2,248... G 2,248,... Deinococcus radiodurans
NZ_CP015219.1 (-) 3,089,... 3,089,... Rhodococcus sp. PBTS 1
CP042594.1 (+) 5,376,... 5,376,... Streptomyces albogriseolus
NZ_CP030263.1 (-) 62,235 62,219 Ensifer adhaerens

NCBI Multiple Sequence Alignment Viewer, Version 1.20.0

Sequence ID Start Alignment End Organism
1 201918171615141312111098765432

Query_11475 (+) 1 A G G T C A C T C T C C C G C C C C C C 20
NZ_CP053288.1 (-) 228,396 G 228,379 Thermus thermophilus
NZ_CP031163.1 (-) 234,704 G 234,688 Deinococcus wulumuqiensis
NC_017590.1 (-) 52,489 G 52,472 Thermus thermophilus JL-18
NC_005838.1 (-) 190,846 G 190,829 Thermus thermophilus HB27
NZ_LR027519.1 (+) 15,750 G 15,767 Thermus thermophilus
NC_017273.1 (+) 403,444 G 403,461 Thermus thermophilus SG0.5JP17...
NZ_AP024272.1 (-) 155,297 G 155,280 Thermus thermophilus
NZ_CP041241.1 (+) 443,659 G 443,675 Ensifer mexicanus
NZ_CP020572.1 (-) 46,027 G 46,010 Thermus aquaticus
NZ_CM007204.1 (-) 63,239 C 63,222 Streptomyces subrutilus
NZ_CP032054.1 (+) 94,623 A 94,639 Streptomyces clavuligerus
NZ_CP030263.1 (-) 62,235 62,219 Ensifer adhaerens
NZ_CP015881.1 (+) 365,221 365,237 Ensifer adhaerens

NCBI Multiple Sequence Alignment Viewer, Version 1.20.0

A. Complete plasmids database

B. Complete genomes database
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Figure 5.13 The phylogenetic tree generated by BLAST in complete genomes database. 

5.3 Summary 

In this chapter, the self-cleaving Rn2 ribozyme was in vitro selected with unexpected 

activity under chemically and thermally denaturing conditions. Its cleavage activity prefers a high 

formamide concentration (~20 M) and a high temperature (between 65 to 80°C). Most importantly, 

no additional metal ion is required for its activity which makes it unique among other self-cleaving 

ribozymes. In fact, low concentrations of Mg2+ and Ca2+ significantly inhibited its activity. Its rate-

limiting step might be a conformational change that can be promoted under various denaturing 

conditions. Finally, the bioinformatic method was tentatively applied to search the Rn2 motif in 

genomes. Several sequence hits were found in extremophilic bacteria genomes, indicating the 

promising presence of Rn2 analogs in nature. If a Rn2 resembling ribozyme functions in vivo, 

certain regulatory factors or unwinding process could mimic the denaturing condition. This work 

further broadened the horizon of catalytic RNAs functioning under extreme conditions, and thus 

provided another strong support for the RNA world hypothesis. 

Streptomyces actuosus(NZ_CP029788.1)

Streptomyces tendae(NZ_CP043959.1)

Rhodococcus sp. PBTS 1(NZ_CP015219.1)

Streptomyces albogriseolus(CP042594.1)

Streptomyces sp. CCM_MD2014(NZ_CP009754.1)

Thermomonospora amylolytica(NZ_CP032402.1)

Ensifer adhaerens(NZ_CP030263.1)

unknown(Query_24537)

Bacteroides zoogleoformans(NZ_CP027231.1)

Deinococcus radiodurans(NZ_CP050120.1)

Bradyrhizobium betae(NZ_CP044543.1)

Planctomyces sp. SH-PL62(NZ_CP011273.1)

0.04
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5.4 Materials and methods 

5.4.1 Oligonucleotides and chemicals 

All the oligonucleotide sequences involved in the selection experiment were purchased 

from Eurofins Genomics LLC (Table 8). Chemical reagents including T7 RNA polymerase, 10X 

RNAPol reaction buffer, NTPs mixture, ProtoScript® II reverse transcriptase, 5X ProtoScript II 

buffer, dNTPs mixture, 0.1 M DTT, low range ssRNA ladder, 2X RNA loading dye, and Taq DNA 

polymerase with standard Tag buffer were purchased from New England BioLabs. SYBR gold 

dye (10,000X) was purchased from Thermo Fisher Scientific. Water used in in vitro selection 

experiments was pre-treated with RNAsecureTM reagent (Thermo Fisher Scientific). 

Table 8. Oligonucleotide sequences used in the in vitro selection experiment. 

 

Antisense DNA
template (103-nt)

5’GGCCATCTTCCTATAGGCTTGTGCCTAN7AGTCAACACTN20GATGGCCTCTCTTCCCT
ATAGTGAGTCGTATTAGAATTC

Sense DNA 
template (103-nt)

5’GAATTCTAATACGACTCACTATAGGGAAGAGAGGCCATCN20AGTGTTGACTN7TAGGC
ACAAGCCTATAGGAAGATGGCC

Primer 1 (39 nt) 5’GAATTCTAATACGACTCACTATAGGGAAGAGAGGCCATC

Primer 2 (21 nt) 5’GGCCATCTTCCTATAGGCTTG

Primer 3 (27 nt) 5’GGCCATCTTCCTATAGGCTTGTGCCTA

S505 primer
5'AATGATACGGCGACCACCGAGATCTACAC-GTAAGGAG-
ACACTCTTTCCCTACACGACGCTCTTCCGATCT-NNNN-GGGAAGAGAGGCCATC

N702 primer
5'CAAGCAGAAGACGGCATACGAGAT-CTAGTACG-
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-GGCCATCTTCCTATAGGCTTG

Rn2 DNA 
template

5’GGGAAGAGAGGCCATCAGGTCACTCTCCCGCCCCCCAGTGTTGACTACCCCTTTAGGC
ACAAGCCTATAGGAAGATGGCC

Rn2.1 DNA 
template

5’GGGAAGAGAGGCCATCAACGGTCTCCGGTTCCCACTAGTGTTGACTACCCCATTAGGC
ACAAGCCTATAGGAAGATGGCC

Rn2.2 DNA 
template

5’GGGAAGAGAGGCCATCAGGTCGACTCGTCCCCGCCCAGTGTTGACTACCCAAATAGGC
ACAAGCCTATAGGAAGATGGCC

Note: Red coloured domain represents the T7 promotor sequence; Underlined domain is to ensure T7 
promotor in duplex; Grey coloured domain is for primer binding.
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5.4.2 In vitro selection 

The initial RNA library was in vitro transcribed from a double-stranded DNA template 

using T7 RNA polymerase. To generate the dsDNA template, one cycle of PCR extension (95℃ 

for 2 min, 95℃ for 20 s, 59℃ for 20 s, and 72℃ for 30 s) was performed using single-stranded 

antisense DNA template (200 pmol) and primer 1 (200 pmol). The dsDNA template contains 103 

base pairs as confirmed on a 2% agarose gel (Figure 5.14A). The extended DNA template was 

then purified with a PCR clean-up kit (IBI Scientific) and resuspended in water. The in vitro 

transcription was conducted in a 20 µL reaction (~100 pmol dsDNA template, 2 mM NTPs, 5 

U/µL T7 RNA polymerase) by incubating at 37℃ for 2 h. The transcription product was 

precipitated by incubating with 5M ammonium acetate (1 volume) and ethanol (2.5 volumes) at -

20 ℃ for 1 h. After centrifuge (at 4℃, 14000 rpm, >30 min), the supernatant was carefully 

removed followed by twice washing with 70% ethanol (ice cold). The air-dried pellet was 

resuspended and purified by 10% denaturing polyacrylamide gel electrophoresis (dPAGE, 400V, 

2 h). The gel was stained in 1x SYBR gold dye (ThermoFisher) and then imaged under a Bio-Rad 

Chemi-Doc MP imaging system. The intact RNA precursors (80-nt) were extracted from the gel 

and ethanol precipitated. The RNA precipitant was stored at -20 ℃ until further use. 

In each selection, the RNA library was resuspended in 20 µL of selection buffer (50 mM 

MES, pH 6, 100 mM Na+, 2 mM EDTA•2Na+) at room temperature for 2 h. After incubation, the 

reaction was quenched with 1x RNA loading dye (NEB) at 65℃ for 10 min. The RNA loading 

dye (1) contains 47.5% formamide, 0.01% SDS, 0.01% bromophenol blue, 0.005% Xylene 

Cyanol, and 0.5 mM EDTA. The RNA cleavage products (~67 to ~73-nt) were carefully isolated 

by aligning with ssRNA ladder on 10% dPAGE. The cleavage products were extracted by 

crush/soaking the gel slices and were ethanol precipitated. Next, the cleaved RNAs (10 µL) were 
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annealed with primer 3 (100 pmol) by incubating at 65℃ for 5 min. After chilling on ice, 0.5 mM 

dNTPs, 10 mM DTT, and 10 U/µL ProtoScript® II reverse transcriptase were added resulting in a 

total of 20 µL. The cDNA synthesis reaction was performed under 42℃ for 1 h followed by 

inactivation at 80℃ for 5 min. The sequence of primer 3 restores the lost 3'-fragments after the 

cleavage reaction. The reverse transcribed product was directly monitored using real-time PCR. 

As optimized in Figure 5.14B, the volume of cDNA product was kept ≤1/20 of the PCR reaction 

volume to eliminate the interference of residues from reverse transcription. In each round, the 

fractional cycles (C1/2) at which reaction fluorescence reaches half of maximal (Fmax) was used for 

PCR amplification (95℃ for 2 min, 95℃ for 20 s, 59℃ for 20 s, and 72℃ for 30 s). The optimized 

cycle# and template length were confirmed with 2% agarose gel (as shown in Figure 5.14C). Two 

rounds of PCR (primer 1 and 2) were performed to produce sufficient dsDNA template which is 

purified by isopropanol precipitation. After resuspended in water, ~200 pmol dsDNA was used for 

the next round of selection. 

 

Figure 5.14 (A) The extended dsDNA template use for in vitro transcription with a length of 103 bps. (B) 

Real-time PCR for optimizing the cDNA volume used in PCR reaction. The volume of cDNA was kept 
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≤1/20 of the PCR reaction volume to eliminate the interference of residues from reverse transcription. (C) 

The optimized cycle# and template length were confirmed with 2% agarose gel in each round of selection. 

5.4.3 Sequencing sample preparation 

To prepare the sample for deep sequencing, PCR1 was performed to generate the full-

length library. Next, PCR2 was performed to introduce specific index sequences into the library 

for the Illumina sequencing technology. Instead of primer 1 and 2, the forward primer (S505) and 

the reverse primer (N702) were used with their sequences listed in Table 8. The PCR product was 

then purified with 2% agarose gel (120 V, 50 min). A gel/PCR DNA fragment extraction kit (IBI 

Scientific) was used to extract the DNA library from the gel. Finally, the purified DNA sample 

was eluted in 20 L of Milli-Q water. The DNA concentration measured with a NanoDrop 

spectrophotometer was ~38.1 ng/L. The sample was shipped to McMaster University for deep 

sequencing. 

5.4.4 Characterization of cleavage activity 

After sequence analysis, single-stranded DNA templates (Table 8) encoded promising 

sequences were extended by PCR and in vitro transcribed into RNA sequences. The 80-nt RNA 

products were further purified by 10% dPAGE and ethanol precipitated. The purified ribozyme 

can be resuspended in water for activity assays. For cleavage reactions performed in 50% 

formamide, 5 µL pure formamide (≥ 99%) and 50 mM Tris•HCl buffer (pH 7.5) was added to a 

total of 10 µL reaction volume. Except for the metal dependency assays, a final concentration of 

1 mM EDTA•2Na+ was added in all reactions. After incubation, the self-cleavage reaction of Rn2 

was quenched by cooling at -20°C. The reaction products were then visualized and analyzed on 

10% dPAGE. Kinetic data were fit with the first-order equation, %𝑃௖௟௘௔௩௔௚௘,௧ = %𝑃௠௔௫(1 −
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𝑒ି௄೚್ೞ௧), where %Pmax is the maximum cleavage yield at the end of the reaction and 𝐾௢௕  is the 

cleavage rate constant. 
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