
Secrecy Resilience of Authorization
Policies and Its Application to Role

Mining

by

Qiang Guo

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2021

© Qiang Guo 2021

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

We propose and study a new property that we call secrecy resilience in the context of
authorization policies that are used to secure information systems.

An authorization policy expresses whether a principal (e.g., a user or process) is allowed
to exercise a privilege (e.g., read or write) on a resource (e.g., a device or file). Access control
is a process by which authorizations are enforced. We address the problem that disclosure
of portions of an authorization policy is a threat that needs to be mitigated and argue that
the ease with which an adversary can learn such portions of a policy can be a property of
the policy itself. We then introduce the term secrecy resilience as a quantitative measure
of the computational hardness that such an adversary encounters. We instantiate secrecy
resilience for authorization policy which could be expressed as access control policy and
Role-Based Access Control (RBAC) policy, and more specifically, consider the problem of
role mining, in which a policy expressed as an access matrix is converted to a RBAC policy.
We present a number of analytical results while highlighting that underlying assumptions
we make, with regards to a priori knowledge an adversary has, is an important consideration
in any such analysis. We present also our results from an empirical study of role mining
algorithms from the literature and two new ”baseline” algorithms we propose. The results
of our study suggest that when secrecy resilience is the objective, a role mining algorithm
that performs well along a different criterion for goodness, e.g., minimization of roles (e.g.,
RBAC policy generated by User-Role Miner), does not necessarily perform well for some
disclosure events. Moreover, under the assumptions we made for empirical study, for the
disclosure event that the victim user has a role from the adversary, Permission-Role Miner
is the best role mining algorithm from the standpoint of secrecy resilience.

iii

Acknowledgements

I would like to express my sincere appreciation to my supervisor, Mahesh Tripunitara,
for his continuing help and advice on my master thesis. I would also like to express my
thanks to my readers, Professor Patrick Mitran and Professor John Thistle, for taking
their time to review my work and provide with professional suggestions. Last but not
least, I would like to express my sincere gratitude to my family for all their support and
encouragement in the way of pursuing my master’s degree.

iv

Dedication

I would like to give my deepest gratitude and appreciation to my advisor, Professor
Mahesh Tripunitara, for guiding me, and for helping me develop my research skills over the
past few years.

Meanwhile, I will always be thankful to my wife, Meng Li for her unwavering love and
support. Finally, I will give my whole love to my daughter, Zijia Guo. Her birth during the
writing of the thesis brings me much joy in my life.

v

Table of Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Problem Statement . 2

1.2 Our Work . 2

1.3 Outline . 3

2 Background and Related Work 4

2.1 Access Control . 4

2.1.1 Principle of Access Control . 4

2.1.2 Access Control Subjects and Objects 5

2.1.3 Access Control Process . 7

2.2 Role Based Access Control . 9

2.2.1 Design of RBAC . 10

2.2.2 Benefits of RBAC . 12

2.2.3 RBAC Research Overview . 13

3 Secrecy Resilience 14

3.1 Probability and Entropy . 14

3.1.1 Probability . 14

vi

3.1.2 Entropy . 15

3.2 Secrecy Resilience . 17

3.2.1 Application to Access Matrix . 18

3.2.2 Application to Two Basic Role Mining Algorithms 19

4 Application to Role Mining Algorithm 24

4.1 Role Mining Algorithms . 24

4.1.1 Fast Miner(Fast) . 25

4.1.2 Dynamic Miner(DM) . 29

4.1.3 PairCount Miner(PC) . 31

4.2 Input Datasets . 32

4.2.1 Datasets from the Literature . 33

4.2.2 Generated Data . 33

4.3 Assumptions . 33

4.4 Experiment Analysis . 34

4.4.1 Experiment and Analysis for Event One 35

4.4.2 Experiment and Analysis for Event Two 38

5 Conclusion and Future Work 43

References 44

vii

List of Figures

2.1 The access control process . 7

2.2 RBAC96 module . 10

viii

List of Tables

4.1 Sizes of the real-world datasets presented 33

4.2 Worst-Case of Secrecy Resilience for Event One 35

4.3 Best-Case of Secrecy Resilience for Event One 36

4.4 Worst-Case of Secrecy Resilience for Event Two 39

4.5 Best-Case of Secrecy Resilience for Event Two 41

ix

Chapter 1

Introduction

Computer systems contain large amounts of information, much of which is of a sensitive
nature. It is necessary to be able to define what entities have access to this information
and in what ways they can access it. These functions are variously known as authorization
policy[13].

Organizations usually need to deal with authorization, which typically follows authenti-
cation from the standpoint of the security of a system. Authentication confirms a claimed
identity, e.g., that Alice is indeed Alice. Authorization complements authentication —
simply because both Alice and Bob are authenticated, legitimate users of the shared system
does not necessarily mean that they both have access to every resource in the system.
Authorization is used to specify who has access to what, and this is usually expressed in an
authorization policy.

A simple and natural syntax for an authorization policy is an Access Matrix. An instance
of an access matrix, M [·], comprises a set S of subjects, a set O of objects and a set of
rights, R. The matrix M can then be seen as an encoding of a function M : S ×O → 2R,
where 2R is the power-set or set of all subsets of R.

Role Based Access Control (RBAC) is another syntax for an authorization policy. We
can think of RBAC as also comprising a set of subjects or users U and a set of rights
or permissions, P . However, rather than assigning each u ∈ U directly to a p ∈ P , we
introduce an indirection called a role.

Correspondingly, we have a set of roles, L. An instance of an RBAC policy, then,
comprises two relations. One is the user-role relation UA ⊆ U × L, and the other is the
role-permission relation PA ⊆ P × L. A user u ∈ U is authorized to permission p if and
only if there exists a role r ∈ L such that 〈u, r〉 ∈ UA and 〈p, r〉 ∈ PA. A RBAC policy is

1

typically visualized as a kind of graph, with nodes to represent each member of U, P and L,
and edges to represent each member of UA and PA.

Employing RBAC is not only convenient but reduces the complexity of access control
because the number of roles in an organization is significantly smaller than that of users.
Moreover, the use of roles as authorization subjects, instead of users, avoids having to
revoke and regrant authorizations whenever users change their positions and/or duties
within the organization.

1.1 Problem Statement

It is often acknowledged that the greatest information security threat to an enterprise
is not from outsiders, but from insiders, e.g., employees or contractors who are not fully
trustworthy. Also, while authorization and access control are used to protect resources and
assets, the authorization policy itself is often perceived as an asset. That is, enterprises may
not want an outsider, or an insider who is not fully trusted, to know who has access to what.
For example, if Alice is an insider and has some privileges, what is the probability with
which she can infer some privileges of some other employee Bob? So we need to characterize
a notion as some measure of resilience that an authorization policy has to discovery of
components of it.

1.2 Our Work

In this study, we get the inspiration from the entropy in information theory and propose
the notion of secrecy resilience. Informally, we characterize it as some measure of resilience
that an authorization policy has to discovery of components of it.

Then with two baseline role mining algorithms we proposed (User-Role Miner, Permission-
Role Miner) and three role mining algorithms from the literature [10] (Fast Miner, Dynamic
Miner and PairCount Miner), we generate the corresponding RBAC policy from both
generated datasets and datasets from literature. Finally we conduct experiment for the
performance of secrecy resilience for the generated RBAC policy, and analysis the result
with the best case and worst case of secrecy resilience.

2

1.3 Outline

The chapters of the thesis are organized as below.

In Chapter 2, we first introduce the notion of access control and RBAC policy. Then
we overview the previous research about them.

In Chapter 3, we first introduce the probability models that we use in our experiment.
Then we give a concise introduction to information entropy. After that, we propose the
notion of secrecy resilience as a measure of resilience of an authorization policy. Finally, we
introduce the application of secrecy resilience to access matrix and two basic role mining
algorithms in this chapter.

In Chapter 4, except for the two basic role mining algorithms we built in previous
chapter, first we set up three role mining algorithms (Fast Miner(Fast), Dynamic Miner(DM),
PairCount Miner(Pair)) from literature to generate the corresponding RBAC policy. Then
we give a concise description for the datasets we use in our experiment. Next we build
some assumptions for the experiment. Finally, we analyse the result with the best-case and
worst-case of secrecy resilience.

In Chapter 5, we first summarize the work in this thesis. Then we propose that the
work could be continued from two aspects in order to supplement the research of secrecy
resilience.

3

Chapter 2

Background and Related Work

In this chapter, we introduce access control policy and Role Based Access Control.

2.1 Access Control

Access control are the methods by which users gain access to resources to fulfill business
needs. Business drivers should always be at the heart of any access control system, because
even the most secure system is useless if it does not advance or support the goals of the
organization [1].

2.1.1 Principle of Access Control

Access control is the formalization of those rules for allowing or denying access. Access
control defines exactly who can interact with what, and what the subject may do during
that interaction. It is based on the granting of rights, or privileges, to a subject with respect
to an object.

When discussing access control, a ”right” is a permission to perform a given action. In
the preceding scenarios, the chief executive officer (CEO) of the company would have the
right to interact directly with the executive, but the person who delivers the executive’s
mail would not. Your roommate or spouse would have the right to enter your house (as
proven by ownership of a key to the door), while someone who lives down the street would
not have permission to enter.

There are three principal components of any access control scenario:

4

• Policies: The rules that govern who gets access to which resources.

• Subjects: The user, network, process, or application requesting access to a resource.

• Objects: The resource to which the subject desires access

Any time you have to decide whether to allow or deny access by a subject to a resource,
you have entered the access control problem domain.

A well-defined access control system consists of three elements:

• Policies: Rules developed by someone with a strong knowledge of the organization,
its assets, goals, and challenges.

• Procedures: Nontechnical methods used to enforce policies.

• Tools: Technical methods used to enforce policies.

Organizations typically use procedures and tools together to enforce policies. For
example, most companies have strict policies to determine who has access to personnel
records. These records contain sensitive and confidential information that could be used to
inflict serious harm on individual employees and the company as a whole if those records
were compromised. The policy may state that only employees within the human resources
department, with a specific need for the information contained within a given record, may
have access to it.

To enforce this policy, the company has procedures that state that a record can only be
given to employees with the proper credentials (the authentication process) who fill out a
form stating their specific need for the information contained in the record they request.
When the request is approved, the employees may be given a username and password to
access the employee records intranet site (the authorization process). The intranet site,
along with the username and password, are the tools required to grant access to personnel
records.

2.1.2 Access Control Subjects and Objects

The subject in an access control policy is a person or another application requesting
access to a resource such as the network, a file system, or a printer.

There are three types of subjects when it comes to access control for a specific resource:

5

• Authorized: Those who have presented credentials and have been approved for
access to the resource.

• Unauthorized: Those who do not possess the proper credentials or do not have the
appropriate privileges to access the resource.

• Unknown: Those who have not presented any credentials at all; it is unknown
whether they should be given access or not.

The difference between an unknown person and an unauthorized one is timing. An
unknown person is anonymous. They have not attempted to log in or access a restricted
resource yet. As soon as an unknown person attempts to access a restricted resource, they
must fall into one of the other two categories: authorized or unauthorized.

Four broad categories of technologies can be subjects for the purposes of access control:

• Networks: A network is a subject when a resource on one network requests access to
a resource on another network. A firewall rule that authorizes access to the Internet
might use the internal network as a subject, with the Internet as the object.

• Systems: A system is a subject when one system requests access to resources on
another system or on the network. This usually happens when a PC attempts to
access a printer across the network.

• Processes: A process is most commonly a subject when an application process
requests low-level access to the file system.

• Applications: An application is a subject when it needs to access external resources
such as a printer or the network.

A technology subject does not have a username and password the way a human subject
might, but it does have the same authorized, unauthorized, or unknown status.

There are three main categories of objects to be protected by access controls:

• Information: Any type of data asset.

• Technology: Applications, systems, and networks.

• Physical location: Physical locations such as buildings and rooms.

6

Information is the most common asset in terms of IT access controls. You put passwords
on databases and applications to ensure that only authorized users can access them.
Technology objects are just as important, because a malicious user can easily compromise
the integrity of data by attacking the technology that stores and uses it. If an unauthorized
user gains access to a file server, that user can easily steal, delete, or change the data stored
on the file server.

2.1.3 Access Control Process

There are three steps to the access control process:

1. Identification: The process by which a subject identifies itself to the access control.

2. Authentication: Verification of the subject’s identity.

3. Authorization: The decision to allow or deny access to an object.

The second step usually happens behind the scenes, so the subject is really only aware of
two stages: they enter their credentials and are either given or denied access to a resource.
Figure 2.1 illustrates the access control process using human interaction as an example.

Figure 2.1: The access control process

7

2.1.3.1 Identification

The first step in any access control process is identification. The system must be able
to apply labels to the two parts of the access equation: the subject and the object. In this
case, a label is a purely logical description that is easy for the computer to understand. A
human might easily recognize that “Beth” and “Elizabeth” are the same individual, but a
computer cannot necessarily make that logical connection.

To make things simpler, you can assign a universal label to each subject and object. That
label remains with that individual or resource throughout the life cycle of the privileged
interaction with the object. The object also has a label to distinguish it from other resources.
For example, a network might have six printers available, labeled “printer1”,“printer2” and
so on. A person’s label might be a user ID, his or her e-mail address, employee ID, or some
other unique identifier.

The key is that each label must be unique, because it also provides accountability. When
combined with the authentication system (which correlates the identified subject with the
resources they are allowed to use) and system logging facilities, unique labels correlate
subjects with their actions. This becomes especially important when trying to track down
the cause of a system failure. This correlation relies on the trust between the subject and
the access control policy. If you do not trust that a subject is who they say they are (and
this trust is predicated on proof), the use of a uniquely identifying label is pointless.

2.1.3.2 Authentication

Authentication takes identification one step further by requiring proof of identity. There
are many ways to authenticate a subject. The most common ones are:

• Password: A secret word or combination of characters that is known only to the
subject. A good password is difficult to guess but easy for the subject to remember.

• Token: Something the subject has that no one else does, such as a smart card or a
challenge-response device.

• Shared secret: Something only the subject and the authentication system know,
such as the name of the subject’s favorite pet or the mother’s maiden name.

The key to both a password and a shared secret is secrecy. If the subject shares its
password or shared secret information with someone else, the authentication system becomes
less secure and the ability to correlate an action to a subject becomes less precise. Many

8

companies regulate this problem with a policy that an employee is personally responsible
for anything done under his or her credentials. If an employee shares his credentials with a
friend, for example, he is personally responsible for anything the friend might do.

Most authentication systems only require a single-stage authentication, but those
protecting highly sensitive assets might use multiple factors. The three most common
factors are:

• Something you know: Generally a password or shared secret.

• Something you have: A token or smart card ID badge.

• Something you are: Fingerprints or other biometric factors.

The last two factors are often used to provide or restrict physical access to secure
buildings or rooms within buildings, although they can be used in access control systems
protecting data as well.

Confidence in any authentication system can be measured by two components: the
type of correlation and the number of authentication factors. A “retinal scan” (which is a
biometric method) is inherently more secure than a simple password because it is much
more difficult to copy or steal an eyeball than it is to guess or steal a password. Using more
than one authentication factor increases the security of the system, because if one stage of
the authentication system is compromised, the second can still restrict access to those who
do not have the proper credentials.

2.2 Role Based Access Control

Privacy is increasing in importance since it becomes a major concern for both customers
and enterprises in today’s corporate marketing strategies. This raises challenging questions
and problems regarding the use and protection of private messages.

One principle of protecting private information is based on who is allowed to access
private information and for what purpose[12]. The workflow of any organization depends on
the continuous and consistent execution of the assigned tasks by all the employees belonging
to that organization.

The execution of these tasks, in turn, requires that each and every employee be given
the necessary authorizations and privileges. Employees can acquire the relevant permis-
sions based on some predefined rules, policies and mechanisms. These rules, policies and

9

mechanisms need to ensure not only that each user is given all the required permissions but
also that no user is given any extra privilege. Failure to ensure the first aspect may lead
to discontent among users or at most, may create some sort of hindrance in the smooth
execution of tasks. However, failure to take care of the second aspect will most definitely
lead to serious security breaches which can cause far more severe damages than displeasure
or discontinuity in organizational workflow. Thus, the rules, policies and mechanisms need
to be enforced properly so that none of the above mentioned adverse scenarios occur at any
point of time.

2.2.1 Design of RBAC

Role-based access control(RBAC) is a policy that access control mechanism is defined
around roles and privileges. The components of RBAC such as role-permissions, user-
role and role-role relationships make it simple to perform user assignments. A study by
NIST has demonstrated that RBAC addresses many needs of commercial and government
organizations[8]. RBAC can be used to facilitate administration of security in large
organizations with hundreds of users and thousands of permissions. Although RBAC is
different from MAC and DAC access control frameworks, it can enforce these policies
without any complication. Figure shows a RBAC96 module [20].

Figure 2.2: RBAC96 module

Within an organization, roles are created for various job functions. The permissions
to perform certain operations are assigned to specific roles. Members or staff (or other
system users) are assigned particular roles, and through those role assignments acquire the
permissions needed to perform particular system functions. Since users are not assigned

10

permissions directly, but only acquire them through their role (or roles), management of
individual user rights becomes a matter of simply assigning appropriate roles to the user’s
account; this simplifies common operations, such as adding a user, or changing a user’s
department.

RBAC interference is a relatively new issue in security applications, where multiple user
accounts with dynamic access levels may lead to encryption key instability, allowing an
outside user to exploit the weakness for unauthorized access. Key sharing applications within
dynamic virtualized environments have shown some success in addressing this problem[11].

Three primary rules are defined for RBAC:

1. Role assignment: A subject can exercise a permission only if the subject has been
assigned with a role.

2. Role authorization: A subject’s role must be authorized for the subject. This rule
ensures that users can take on only roles for which they are authorized.

3. Permission authorization: A subject can exercise a permission only if the permission
is authorized for the subject’s active role. With rules 1 and 2, this rule ensures that users
can exercise only permissions for which they are authorized.

Additional constraints may be applied as well, and roles can be combined in a hierarchy
where higher-level roles subsume permissions owned by sub-roles.

When defining an RBAC model, the following conventions are useful:

• S = Subject = A person or automated agent.

• R = Role = Job function or title which defines an authority level.

• P = Permissions = An approval of a mode of access to a resource.

• SA = Subject Assignment.

• PA = Permission Assignment.

• RH = Partially ordered Role Hierarchy. RH can also be written: ≥ (The notation:
x ≥ y means that x inherits the permissions of y.)

– A subject can have multiple roles.

– A role can have multiple subjects.

– A role can have many permissions.

11

– A permission can be assigned to many roles.

– An operation can be assigned to many permissions.

– A permission can be assigned to many operations.

The RBAC policy could be described with set theory notation:

• PA ⊆ P ×R and is a many to many permission to role assignment relation.

• UA ⊆ U ×R and is a many to many user to role assignment relation.

• RH ⊆ R×R

A subject may have multiple simultaneous sessions with/in different roles.

2.2.2 Benefits of RBAC

There are a number of benefits to using RBAC to restrict unnecessary authorization
access based on people’s roles within an organization, including:

• Improving operational efficiency. With RBAC, companies can decrease the need for
paperwork and password changes when they hire new employees or switch the roles
of existing employees. RBAC lets organizations quickly add and change roles, as well
as implement them across platforms, operating systems (OSes) and applications. It
also cuts down on the potential for error when user permissions are being assigned.
Additionally, with RBAC, companies can more easily integrate third-party users into
their networks by giving them predefined roles.

• Enhancing compliance. Every organization must comply with local, state and federal
regulations. Companies generally prefer to implement RBAC systems to meet the reg-
ulatory and statutory requirements for confidentiality and privacy because executives
and IT departments can more effectively manage how the data is accessed and used.
This is particularly important for financial institutions and healthcare companies that
manage sensitive data.

• Giving administrators increased visibility. RBAC gives administrators and managers
more visibility and oversight into the business, while also guaranteeing that authorized
users and guests on the system are only given access to what they need to do their
jobs.

12

• Reducing costs. By not allowing user access to certain processes and applications,
companies may conserve or more cost-effectively use resources, such as network
bandwidth, memory and storage.

• Decreasing risk of breaches and data leakage. Implementing RBAC means restricting
access to sensitive information, thus reducing the potential for data breaches or data
leakage.

2.2.3 RBAC Research Overview

The roles in the RBAC strategy accurately reflect the activities, responsibilities, and
functions of an organization. Therefore, many role engineering methods, role mining algo-
rithms, hierarchical role construction algorithms, and least privilege assignment algorithms
are born to generate role sets.

The reason that the RBAC strategy is safe is to avoid conflicts of interest with the
separation of duties. Static Separation of Statistic Separation of Duty (SSD) is the
introduction of constraints in the user-role assignment process and the role-role inheritance
relationship. Dynamic Separation of Duty (DSD, Dynamic Separation of Duty) introduces
authority constraints during user session activation, and the method of conflict detection of
separation of duties is also very popular among researchers. With the continuous expansion
of the scope of RBAC applications, new problems will continue to arise, such as the RBAC
strategy based on time constraints. In 2005, the GTRBAC model proposed by Joshi et
al[5] gave the simple method of SoD based on time constraints. By definition, there are
two common types: periodic time constraints and continuous time constraints[6]. Each
type of time constraint includes weak constraints, strong constraints, and super-strong
constraints. Yamazaki et al. enumerated in more detail various SoD constrained by
overtime[19, 2]. Chadwick et al. proposed a multi-session SoD (MSoD) constraint. In some
virtual institutions, users need to access resources in multiple domains, and the user-role
assignment relationship is also done by administrators of multiple domains. Therefore, no
single RBAC system can know all the roles a user has.

13

Chapter 3

Secrecy Resilience

In this chapter, we first introduce the probability that we use in our experiment. Then
we give a concise description for information entropy. Next we propose a measure of secrecy
resilience to characterize an authorization policy. Finally, we introduce the application of
secrecy resilience to access matrices and two basic role mining algorithms in this chapter.

3.1 Probability and Entropy

3.1.1 Probability

Probability is the branch of mathematics concerning numerical descriptions of how likely
an event is to occur, or how likely it is that a proposition is true. The probability of an
event is a number between 0 and 1, where, roughly speaking, 0 indicates impossibility of
the event and 1 indicates certainty. The higher the probability of an event, the more likely
it is that the event will occur.

In the experiment of this thesis, we assume that the event that victim b is assigned
to at least one role in {r1, . . . , rk} follows the inclusion–exclusion principle. That is, the
probability that victim b is assigned to at least one role in {r1, . . . , rk} is:

P [
n⋃

i=1

Ai] =
n∑

i=1

P [Ai]−
∑

1≤i<j≤n

P [Ai∩Aj]+
∑

1≤i<j<k≤n

P [Ai∩Aj∩Ak]−· · ·+(−1)n−1P [
n⋂

i=1

Ai]

Ai is the event that victim b has role ri.

14

Meanwhile, we also assume that permissions are orthogonal to one another, i.e., pos-
session of permission p has no implications for possession of another permission q, and
possession of a permission on a resource r has no implications for possession of a permission
on another resource s. Hence we can assume that the adversary user makes uniformity and
independence assumptions on user-permission assignment in the access matrix, i.e., p = Pr
{u is assigned permission p} = 1/2 and the event that u has permission pi and u has
permission pj are independent for every i 6= j. So P[u is assigned with permissions pi1 , . . . ,
pi2] = 1/2N , where N is the number of permissions.

3.1.2 Entropy

Entropy in information theory is directly analogous to the entropy in statistical thermo-
dynamics. The analogy results when the values of the random variable designate energies
of microstates. Entropy has relevance to other areas of mathematics such as combinatorics.
The definition can be derived from a set of axioms establishing that entropy should be a
measure of how “surprising” the average outcome of a variable is. For a continuous random
variable, differential entropy is analogous to entropy.

The development of the idea of entropy of random variables and processes by Claude
Shannon provided the beginnings of information theory. We shall see that entropy and
related information measures provide useful descriptions of the long term behavior of
random processes and that this behavior is a key factor in developing the coding theorems
of information theory.

3.1.2.1 Introduction of Information Entropy

The basic idea of information theory is that the “informational value” of a communicated
message depends on the degree to which the content of the message is surprising. If an event
is very probable, it is of no surprise (and generally uninteresting) when that event happens;
hence transmission of such a message carries very little new information. However, if an
event is unlikely to occur, it is much more informative to learn that the event happened
or will happen. For instance, the knowledge that some particular number will not be
the winning number of a lottery provides very little information, because any particular
chosen number will almost certainly not win. However, knowledge that a particular number
will win a lottery has high value because it communicates the occurrence of a very low
probability event.

The information content of an event E is a function which decreases as the probabil-
ity p(E) of an event increases, defined by I(E) = −log2(p(E)) or equivalently I(E) =

15

log2(1/p(E)), where log is the logarithm. Entropy measures the expected (i.e., average)
amount of information conveyed by identifying the outcome of a random trial. This implies
that casting a die has higher entropy than tossing a coin because each outcome of a die
toss has smaller probability (about p = 1/6 than each outcome of a coin toss (p = 1/2)).

Shannon’s theorem also implies that no lossless compression scheme can shorten all
messages. If some messages come out shorter, at least one must come out as long as the
original message due to the pigeonhole principle. In practical use, this is generally not a
problem, because one is usually only interested in compressing certain types of messages,
such as a document in English, as opposed to gibberish text, or digital photographs rather
than noise, and it is unimportant if a compression algorithm makes some unlikely or
uninteresting sequences larger.

3.1.2.2 Definition of Information Entropy

Named after Boltzmann’s H-theorem, Shannon defined the entropy H of a discrete
random variable X with possible values {x1, ..., xn} and probability mass function P (Xi) =
P [X = Xi] as [16]:

H(X) = E[I(X)] = E[−log(P (X))]

Here E is the expected value operator, and I is the information content of X. I(X) is
itself a random variable.

The entropy can explicitly be written as [16]:

H(X) = −
n∑

i−1

P (xi)logbP (xi)

where b is the base of the logarithm used. Common values of b are 2, Euler’s number e,
and 10, and the corresponding units of entropy are bits for b = 2, nats for b = e, and digits
for b = 10.

In the case of P (xi) = 0 for some i, the value of the corresponding summand 0 ∗ logb(0)
is taken to be 0, which is consistent with the limit:

lim
p→0+

p ∗ log(p) = 0

3.1.2.3 Characterization of Information Entropy

To understand the meaning of −
∑
pilog(pi), first define an information function I in

terms of an event i with probability pi. The amount of information follows from Shannon’s
solution to the fundamental properties that information should have:

16

1. I(p) is monotonically decreasing in p: an increase in the probability of an event
decreases the information from an observed event, and vice versa.

2. I(p) ≥ 0: information is a non-negative quantity.

3. I(1) = 0: events that always occur do not communicate information.

4. I(p1p2) = I(p1) + I(p2): the information learned from two independent events is the
sum of the information learned from each event.

3.2 Secrecy Resilience

It is often recognized that the biggest information security threat to an organization
does not come from outsiders, but from insiders, such as employees or contractors who are
not entirely trustworthy. In addition, although authorization and access control are used to
protect resources and assets, the authorization policy itself is usually regarded as an asset.
In other words, the organization may not want outsiders or insiders if does not fully trust
to know any piece of the user-permission mapping picture.

Inspired by the notion and implementation of information entropy, we propose the
notion of secrecy resilience. To define secrecy resilience, we first adopt an event that is a
disclosure of a part of the authorization policy that is of interest to an adversary. We call
this the disclosure event.

Two examples of a disclosure event are:

• Given an RBAC user a who is the adversary and a role r, the event that a victim
user is a member of the role r.

• Given an RBAC user a who is the adversary, the event that a victim user is a member
of some roles of which a is a member.

Once we identify a disclosure event, there are only two possibilities for it: either the
event occurs, or it does not, i.e., it is natural to associate a random variable, denote it X,
which takes on the value true if the disclosure event occurs and false if it does not. Denote
as Pr {X = true} the probability of the former and Pr {X = false} the probability of the
latter.

Now, we define secrecy resilience as follows:

17

Definition 3.2.1 (Secrecy Resilience). Given (i) an authorization policy P , (ii) a disclosure
event t, suppose X ∈ {true, false} is a random variable that takes on the value true if the
disclosure event t occurs, and false otherwise. Then, we say that the secrecy resilience of
〈P , t〉 is:

S(X) = −Pr {X = true} · log2 (Pr {X = true})− Pr {X = false} · log2 (Pr {X = false})

From the above definition for secrecy resilience, the two events: 1) the disclosure event
it true and 2) the disclosure event is false are mutually exclusivity. As a result, we have
two theorems:

Theorem 1. When it is ascertained that that the disclosure event t is true, i.e,. Pr {X = true}
= 1 and Pr {X = false} = 0, or the disclosure event t is false, i.e,. Pr {X = true} = 0 and
Pr {X = false} = 1, the secrecy resilience of 〈P , t〉 = 0

Theorem 2. When there is no information to decide whether the disclosure event t is
true or false, i.e,. Pr {X = true} = 1/2 and Pr {X = false} = 1/2, the secrecy resilience of
〈P , t〉 = 1

From the above theorems, we can see that theorem 1 and theorem 2 set the boundary
of secrecy resilience. So we have another theorem:

Theorem 3. For any disclosure event t in an authorization policy, the secrecy resilience of
〈P , t〉 is always greater than or equal to 0 and less than or equal to 1.

The value of Pr {X = true} and Pr {X = false} is between 0 and 1 and Pr {X = true} +
Pr {X = false} = 1, so that the value of S(X) could be no less than 0 and no more than 1.

Since for any disclosure event in an authorization policy, if the secrecy resilience is close
to 1, then we could say that the policy performs well in secrecy resilience. Or if the secrecy
resilience is close to 0, then we could say that the policy performs badly in the secrecy
resilience. So when we choose or set up the authorization policy, the secrecy resilience can
be a measure to justify the risk form the inside. What’s more, the organization can use it
to improve or comply with the inside risk.

3.2.1 Application to Access Matrix

In access matrix, the disclosure event could be: given an access matrix user a is the
adversary, the event that a victim user opposes a member of a permission of which a has.
Then we could have a theorem for the application to access matrix.

Here are two assumptions we make for the theorem.

18

• Given an access control matrix D.

• Permissions are orthogonal to one another, i.e., possession of permission p has no
implications for the possession of another permission q, and possession of a permission
on a resource r has no implications for the possession of a permission on another
resource s. Hence adversary user has uniformity and independence assumptions in
the access matrix, i.e., p = Pr {u is assigned with permission p} = 1/2 and the event
that u has permission pi and the u has permission pj are independent for every i 6= j.

Theorem 4. With the assumptions we adopted, the secrecy resilience of the disclosure
event t in an access matrix is always 1.

For the disclosure event t in an access matrix, since we make uniformity and indepen-
dence assumptions, the Pr {u is assigned with permission p} = 1/2, i.e., Pr {X = true} =
Pr {X = false} = 1/2, so that the secrecy resilience of the disclosure event in an access
matrix is always 1. That also means access matrix performs well in secrecy resilience.

3.2.2 Application to Two Basic Role Mining Algorithms

First we set up and introduce two basic role mining algorithms: User-Role Miner and
Permission-Role Miner.

3.2.2.1 User-Role Miner (UR)

The User-Role Miner consists of two phases, described as below:

1. Generation of roles: Firstly, we identify the permission set for each user, then we
create a new role for each distinct permission set. The process could also be described
as follows: we suppose P = {p1, p2, . . . , pn} is the set of all permissions, let S ⊆ P
be some subset of P . If some user u’s set of permissions is exactly the set S in the
access matrix, then we create a role rS.

2. Generation UA and PA: We assign all the permissions in S to the newly created
rS. Then, for every user u whose permission set is S, we assign that user to role rS.

19

Algorithm 1 User-Role Miner Algorithm

Input: Access Matrix D ≡ (U, P, UP)
Output: 〈R,UA, PA〉

1 GenRoles← ∅, UA← ∅, PA← ∅, R← ∅, P ermSet← ∅
2 {Generation of roles}
3 foreach user u ∈ U do
4 if R(P (u)) 6∈ GenRoles then
5 GenRoles← GenRoles ∪ {R(P (u))}
6 {Generation of UA and PA}
7 foreach user u ∈ U do
8 foreach Role(x) ∈ GenRoles do
9 R← R ∪Role(x)

10 if x ≡ P (u) then
11 UA← UA ∪ {〈u,Role(x)〉}
12 foreach Role(x) ∈ GenRoles do
13 foreach permission p ∈ P do
14 if p ∈ x then
15 PermSet← PermSet ∪ p
16 PA← PA ∪ {〈Role(x), P ermSet〉}
17 return 〈GenRoles, UA, PA〉

Algorithm 1 gives the detailed steps. The first phase consists of lines 3-5. The for loop
in line 3 iterates over all users while if the permission set of user u is not in the generated
role set GenRoles, then add the permission set as a new role R(P (u)) in the generated role
set GenRoles.

The second phase consists of lines 7-17. The for loop in line 7 iterates over all users
in the U set. Then the for loop in line 8 iterates over all generated roles Role(x) in the
GenRoles set. If the permission set x of the Role(x) is just the same as the permission set
of user u, then add the user-role tuple 〈u,Role(x)〉 to the user-role set UA. After that, the
for loop in line 12 iterates over all generated roles Role(x) in the GenRoles set. Then the
for loop in line 13 iterates over all permissions p in the permission set P . If the permission p
is in the permission set of Role(x), then add permission p to the permission set of PermSet.
Finally, after the iteration in line 13, add the role-permission tuple 〈Role(x), P ermSet〉 to
the role-permission set PA.

20

3.2.2.2 Permission-Role Miner (PR)

The Permission-Role Miner consists of two phases, described below:

1. Generation of PA: We first identify each of the permissions in the permission set.
That is, suppose P = {p1, p2, . . . , pn} is the set of all permissions. Then, for every
permission pi ∈ P , we assign a role ri to it.

2. Generation of UA: For each user u in the U set, if the permission set of the user u
is P (u), then for each pi ∈ P (u), we assign role ri to user u.

Algorithm 2 Permission-Role Miner Algorithm

Input: Access Matrix D ≡ (U, P, UP)
Output: 〈R,UA, PA〉

1 R← ∅, UA← ∅, PA← ∅
2 {Generation of PA}
3 foreach permission pi ∈ P do
4 R← R ∪ {ri}
5 PA← PA ∪ {〈pi, ri〉}
6 {Generation of UA}
7 foreach user u ∈ U do
8 RoleSet← ∅
9 foreach pi ∈ P (u) do

10 RoleSet← RoleSet ∪ ri
11 UA← UA ∪ {〈u,RoleSet〉}
12 return〈R,UA, PA〉

Algorithm 2 gives the detailed steps. The first phase consists of lines 2-5. The for loop
in line 3 iterates over all permission pi in the permission set P . For each permission pi in
the permission set P , generate and assign a role ri with it. Then add the role ri to the role
set R. Meanwhile, add the tuple 〈pi, ri〉 to the permission-role set PA.

The second phase consists of lines 7-11. The for loop in line 7 iterates over all users u
in the U set. For each user u, the permission set of it is P (u). Then for each permission pi
in the permission set P (u), assign the corresponding ri to the RoleSet. Finally, after the
loop in line 9, add the tuple 〈u,RoleSet〉 to the user-role set UA.

21

3.2.2.3 Assumption and Theorem

Here are the assumptions for the theorem of User-Role Miner:

• Given an access control matrix D.

• Permissions are orthogonal to one another, i.e., possession of permission p has no
implications for the possession of another permission q, and possession of a permission
on a resource r has no implications for the possession of a permission on another
resource s. Hence adversary user has uniformity and independence assumptions in
the access matrix, i.e., p = Pr {u is assigned with permission p} = 1/2 and the event
that u has permission pi and the u has permission pj are independent for every i 6= j.

• For users and permissions in D, the User-Role Miner algorithm is used to generate
roles and the RBAC policy.

• The disclosure event t is: given a RBAC policy user a who is the adversary, the event
that a victim user is a member of some roles of which a is a member.

Theorem 5. Suppose k is the number of permissions the adversary has. With the
assumptions we adopted, the secrecy resilience of the disclosure event t in RBAC policy
which is generated by User-Role Miner is:

S(X) = −(1/2)k · log2 (1/2)k − (1− (1/2)k) · log2 (1− (1/2)k)

That’s because for the RBAC policy generated by User-Role Miner, adversary user
could only be assigned with one role, which means this role has all of the permissions that
user has. So the probability that the victim has this role is (1/2)k, where k is the number
of permissions the adversary user has.

Here are the assumptions for the theorem of Permission-Role Miner:

• Given an access control matrix D.

• Permissions are orthogonal to one another, i.e., possession of permission p has no
implications for the possession of another permission q, and possession of a permission
on a resource r has no implications for the possession of a permission on another
resource s. Hence adversary user has uniformity and independence assumptions in
the access matrix, i.e., p = Pr {u is assigned with permission p} = 1/2 and the event
that u has permission pi and the u has permission pj are independent for every i 6= j.

22

• For users and permissions in D, using Permission-Role Miner algorithm to generate
roles and the RBAC policy.

• The disclosure event t is given a RBAC policy user a who is the adversary, the event
that a victim user is a member of some roles of which a is a member.

Theorem 6. Suppose k is the number of roles the adversary has. With the assumptions we
adopted, the secrecy resilience of the disclosure event t in RBAC policy which is generated
by Permission-Role Miner is:

S(X) = −(1/2)k · log2 (1/2)k − (1− (1/2)k) · log2 (1− (1/2)k)

That’s because for the RBAC policy generated by Permission-Role Miner, each permis-
sion will be assigned with one role. So if the adversary user has k permissions, then it will
be assigned with k roles in the RBAC policy. So the probability that the victim doesn’t
have a role which the adversary has is (1/2)k, where k is the number of roles the adversary
user has.

23

Chapter 4

Application to Role Mining
Algorithm

In this chapter, we first build three role mining algorithms from the literature (Fast
Miner(Fast), Dynamic Miner(DM) and PairCount Miner(Pair)) and generate the flat RBAC
policy from an access matrix. Then, both the generated datasets and the datasets from
previous role mining literature are introduced. Finally, we discuss the case study of secrecy
resilience and the application to these role mining algorithms.

4.1 Role Mining Algorithms

Recently, there has been increasing interest in role mining, which uses data mining
techniques to discover roles from existing system configuration data. Because role mining
uses automated techniques, it has the potential to accelerate the role engineering process,
which is the costliest part of migrating to a RBAC system. While many role mining
algorithms have been proposed in recent years.

Most of the existing role mining algorithms can be divided into two classes based on
their output. The first class outs a prioritized list of candidate roles, each of which is a set
of permissions. These algorithms output a vector of candidate roles C ordered by their
priority. Examples include Complete Miner and Fast Miner in [18]. While the algorithms
in the second class output a complete RBAC state. Examples include ORCA Miner [14],
Graph Optimization Miner [21], Role Edge Minimization Miner [3], and Hierarchical Miner
[9].

24

In the experiment of this thesis, except for the User-Role Miner and Permission-Role
Miner which we introduce in the previous chapter, we also set up Fast Miner(Fast), Dynamic
Miner(DM) and PairCount Miner(Pair) to generate the flat RBAC policy.

4.1.1 Fast Miner(Fast)

Fast Miner(Fast) was proposed by Vaidya et al.[18] in 2006. It starts by creating an
initial set of roles from the distinct user permission sets. It then computes all possible
intersection sets of all pairs of roles in the initial roles set. Specifically, the set of candidate
roles generated by Fast Miner is:

⋃
{
⋂

pair of initial RolesRinitial}.
Vaidya et al.[18] proposed a role prioritization method of a candidate role r as:

|e(r)| × α + |n(r)|

where e(r) denotes the set of users that have exactly the permissions in r, n(r) is the
number of users whose permissions are a superset of r, and α is a tunable parameter to
favor initial roles.

The time complexity of Fast Miner is O(n2m).

The Fast Miner consists of two phases, described below:

1. Generation of Roles

(a) Identification of Initial Set of Roles: In this phase, we group all users who
have the exact same set of permissions. This can be done in a single pass over
the data by maintaining a hash table of the sets of permissions seen. This
significantly reduces the size of the data set since all users who have the same
roles have the exact same permissions. These form the initial set of roles, say
InitRoles.

(b) Subset Enumeration: In this phase, we determine all of the potentially
interesting roles by computing all possible intersection sets of all pairs of roles
created in the initial phase. Let this set be GenRoles. Each unique intersection
set is added to the set of generated roles (thus only the unique set of intersections
is maintained). Though the number of intersections is equal to the size of
the power set of the initial roles (C2

InitRoles), the actual roles enumerated are
much smaller (since many intersections result in the empty set, or in the same
intersection set). Note that the generated roles are the maximal set of interesting
roles.

25

(c) User Count Computation: In this phase, for each generated role in GenRoles,
we count the number of users who have the permissions associated with that
role. We actually maintain two sets of counts: (i) the orig count(i), the original
number of users who have exactly the set of permissions corresponding to role i
and nothing else, and (ii) count(i), an updated count of users whose permissions
are a superset of the permissions associated with this role i. It should be obvious
that each initial role will have an updated count greater than its original count
if and only if it is a subset of one of the other initial roles.

2. Role Prioritization and Generation of UA, PA: In the algorithm, we could
typically identify many potential role, these need to be prioritized/ordered in some way.
One possibility is to simply order the roles according to the number of users having that
role. That is, we use the following predicate to sort: (orig count ∗ priority + Count).
Here, priority is simply the multiplication factor used to bias the results towards the
roles found in the initial phase (i.e., do not report a generated set as a role unless it
is really interesting). Thus, this ensures that a well supported original role does not
get lost in the chaff of generated roles (i.e., roles that are not part of InitRoles). We
experimented with 1 as the value for priority.

26

Algorithm 3 Fast Miner Algorithm - Phase One

Input: Access Matrix D ≡ (U, P, UP)
Output: GenRoles, InitRoles, Count, orig count

1 InitRoles← ∅, GenRoles← ∅
2 {Identification of Initial Set of Roles}
3 foreach user u ∈ U do
4 if R(P (u)) 6∈ InitRoles then
5 InitRoles← InitRoles ∪ {R(P (u))}
6 set orig count of R(P (u)) to 1

7 else
8 Increment orig count of R(P (u))

9 {Subset Enumeration and User Count Computation}
10 foreach Role(i) ∈ InitRoles do
11 InitRoles← InitRoles \ {Role(i)}
12 foreach Role(j) ∈ InitRoles do
13 if Role(i ∩ j) /∈ GenRoles then
14 Count(Role(i ∩ j))← Count(Role(i ∩ j)) + orig count(i)
15 Count(Role(i ∩ j))← Count(Role(i ∩ j)) + orig count(j)
16 Add i, j to the list of contributors for Role(i ∩ j)
17 GenRoles← GenRoles ∪ {Role(i ∩ j)}
18 else
19 if i has not contributed before to Role(i ∩ j) then
20 Count(Role(i ∩ j))← Count(Role(i ∩ j)) + orig count(i)
21 Add i to the list of contributors for Role(i ∩ j)
22 if j has not contributed before to Role(i ∩ j) then
23 Count(Role(i ∩ j))← Count(Role(i ∩ j)) + orig count(j)
24 Add j to the list of contributors for Role(i ∩ j)
25 return GenRoles, InitRoles, Count, orin count

Algorithm 3 gives the details about the first phase of Fast Miner algorithm. The first
part consists of lines 3-8. The for loop iterates over all users while the if statement at line 4
either increments the count of the role (if present) or adds it to the initial set.

The second part consists of lines 10-24. The for loop in line 10 iterates over all of the
roles initially created. Then the for loop in lines 12-24 intersect this set with all of the
remaining roles initially created and adds all the unique intersections between pair of roles
formed to GenRoles. If any of the two users haven’t contribute to the count of the new
role, we need to add the count of user in the initial set to the count of new roles. This is

27

necessary to ensure that all possible intersections take place.

Algorithm 4 Fast Miner Algorithm - Phase Two

Input: Access Matrix D ≡ (U, P), GenRoles, InitRoles, Count, orig count
Output: 〈R,UA, PA〉

1 R← ∅, UA← ∅, PA← ∅
2 {Role Prioritization}
3 Sorted GenRoles by orig count + Count
4 {Generation of UA, PA}
5 foreach user u ∈ U do

6 if ∃ CanditRole = {Ri, Ri+1, .., Rj} ⊆ GenRoles
∧ j⋃

i

Ri then

7 UA← UA ∪ {〈u, the i roles〉}
8 R← R ∪ CanditRole
9 else

10 foreach role R(x) ∈ InitRoles do
11 if x ≡ P (u) then
12 UA← UA ∪ {〈u,R(x)〉}
13 R← R ∪R(x)

14 foreach role R(x) ∈ R do
15 PA← PA ∪ {〈x,R(x)〉}
16 return〈R,UA, PA〉

Algorithm 4 gives the details about the second phase of Fast Miner algorithm. The first
part consists of line 3. It sorted the GenReols got from phase one by orig count+ Count.
The second part consists of lines 5-15. The for loop in line 5 iterates over all users u
in the U set. First match the user u’s permissions with roles from GenRoles set. Here
we try to make the number of roles for each user as small as possible, i.e., first check if
one role ∈ GenRoles and its permission set match the user’s permission set. If yes, add
the user-role tuple 〈u, role〉 to UA; otherwise check if exists two roles ∈ GenRoles and the
combination of their permissions match the user’s permissions. If yes, add the use-role tuple
〈u, roles〉 to the UA; otherwise continue to check if exists three roles ∈ GenRoles...until
the combination of all the role ∈ GenRoles are checked. Otherwise, if the user can’t match
its permissions with roles from GenRoles, match its permissions with roles from InitRoles.
In this thesis, we refer the experiment in [18] and set the maximum number of roles a user
could have in RBAC policy generated by Fast Miner as 3.

28

4.1.2 Dynamic Miner(DM)

Dynamic Miner [7] introduces a new idea for prioritizing candidate roles. For role
generation one can use Fast Miner or a new method based on the FP-Tree algorithm[4]. We
evaluate their algorithm using Fast Miner for role generation, allowing us to more directly
compare prioritization methods. That is, for role generation, we use the Fast Miner to
generate the candidate role set - GenRoles

The main observation behind Dynamic Miner is the static prioritization used in Fast
Miner does not consider candidate roles that have already been chosen, i.e., given two roles
r1 and r2, the priority of r2 does not depend on the creation of r1. The set of candidate
roles GenRoles generated in Fast Miner is often large and only a subset of the candidate
roles are needed. The role selection phase selects a subset R of roles from the candidate
set for the RBAC system. It takes the set of candidate roles GenRoles as the input and
outputs a set of roles R as the roles of the RBAC system. This is the critical step in mining
a flat RBAC system.

Dynamic Miner’s prioritization identifies the candidate role with the highest priority ri
first, and then updates all subsequent roles under the assumption that ri is created. For
example, consider two roles ri and rj such that ri ⊂ rj. If rj is created and no users have
permissions Pi ⊂ rj, it may not be beneficial to create ri once rj is created. Dynamic
Miner takes at most min{m,n} iterations since each iteration creates a role and there are
at most min{m,n} roles. Each iteration takes at most n ∗ |C| operations to update the
“benefit” values, where C is the set of candidate roles. Therefore, the total time complexity
of Dynamic Miner is O(n ∗ |C| ∗min{m,n}).

We define the size of a role r (denoted as m(r)) as the number of permissions the
role has and the support (denoted as n(r)) of a role as the number of users that have all
permissions of the role. Vaidya et al. [18] proposed a static prioritization method for role
selection. The priority of each candidate role r is (on(r)p+ n(r)), where on(r) denotes the
number of users who have exactly the permissions associated with R, and p is a tunable
parameter to favor roles found in the initial set of roles. We refer this approach as Static
Prioritization. The static prioritization method is limited in the following aspects. Firstly,
the priority is static in that it does not consider the choice of other roles. The user set of a
role r inherits all users of its parent roles. Once a parent role is created, a subset of users
in USERS(r) can be explained by the newly-created role and should be removed from the
user set of r. Secondly, this approach does not consider the size of the role.

29

Algorithm 5 Role Selection of Dynamic Miner

Input: Access Matrix D ≡ (U, P, UP), GenRoles
Output: CanditRole

1 CanditRole← ∅
2 foreach r ∈ GenRoles do
3 an(r)← n(r)
4 find r ∈ GenReols s.t. value = |m(r)| ∗ |n(r)| − |m(r)| − |n(r)| = maxr′∈GenRoles{|m(r)| ∗
|n(r)| − |m(r)| − |n(r)|}

5 if value ≤ 1 then
6 return CanditRole
7 CanditRole = CanditRole ∪{r}
8 foreach r’ ∈ CanditRole do
9 n(r′) = n(r′)− n(r′) ∩ an(r)

10 CanditRole = CanditRole \ r
11 go back to line 1

Algorithm 5 gives the details of the algorithm. Dynamic Prioritization starts from an
empty set of roles CanditRole, sequentially adds the current best role to CanditRoles,
and updates the user set of other roles. For simplicity of presentation, the algorithm uses
v(r) = |m(r)| ∗ |n(r)| − |m(r)| − |n(r)| to prioritize the candidate roles and will choose a
role only if v(r) ≥ 1.

If we set wr, wu, wp and wd as coefficients of the above prioritization algorithm, this
approach can be generalized if different values for wr ,wu ,wp and wd are chosen. In general,
the “benefit” of creating role r is wd ∗ |m(r)| ∗ |n(r)|−wp ∗ |m(r)|−wu ∗ |n(r)|−wr. (When
wd =∞, one can use a suitably large value for wd in the calculation.)

Each time we pick the current best role r that maximizes the above criteria and add it
to R, we update the user set of other roles r since the permissions of a user can be explained
by r and may not support r any more. To do this, we keep track of two user sets for each
role r: the actual user set an(r) and the current user set n(r). The current user count |n(r)|
is used in evaluating the goodness of creating the role r while the actual user set an(r)
is used in updating the user set of other roles in GenRoles. This process stops when we
cannot find a role with non-negative benefit, i.e., when |m(r)| ∗ |n(r)| − |m(r)| − |n(r)| ≤ 1
for all r ∈ GenRoles.

For the generation of UA set, as what we did in Fast Miner, we refer to the experiment
in [18] and set the maximum number of roles a user could have in RBAC policy generated
by Dynamic Miner as 3.

30

4.1.3 PairCount Miner(PC)

The PairCount Miner algorithm is based on a new idea for prioritizing roles and is
presented as an alternative prioritization method for Fast Miner. It is based on the following
observation. In Fast Miner’s static prioritization[18], the priority of a permission set P
depends on the number of exact matches and assignable users. However, in all data
generation algorithms, multiple roles are assigned to a user. If almost every user is assigned
more than one role, then the exact count for any original role is 0, and only using the
number of assignable users does not perform well. Even when multiple roles are assigned to
any user, it is possible that among all the users that share a role, there are many pairs of
users that share only that role, but no other. Hence if we compute how many pairs of users
share exactly P , we would obtain a high count for original roles.

Specifically, given a candidate role P , its pair count is:

PC(P) = |{(ui, uj)|ui 6= uj ∧ P (ui) ∩ P (uj) = P}|

In the above equation, P (u) is the permission set of a user u. We note that if a candidate

roles has an exact count of n, then this will contribute n(n−1)
2

to its pair count. PC also
has the same time complexity as Fast Miner, and can naturally be extended to large tuples
(triples, quads, etc.).

PairCount Miner introduces a new idea for prioritizing candidate roles. Just like the
Fast Miner and Dynamic Mier, for role generation one uses the approach in Fast Miner. In
this thesis, we evaluate their algorithm using Fast Miner for role generation.

31

Algorithm 6 Enumerate and Count interesting roles of PairCount Miner

Input: Access Matrix D ≡ (U, P, UP), InitRoles
Output: GenRoles, Count

1 GenRoles← ∅
2 foreach Role(i) ∈ InitRoles do
3 InitRoles← InitRoles \ {Role(i)}
4 foreach Role(j) ∈ InitRoles do
5 if Role(i ∩ j) /∈ GenRoles then
6 Count(Role(i ∩ j))← 1
7 Add 〈i, j〉 to the list of contributors for Role(i ∩ j)
8 GenRoles← GenRoles ∪ {Role(i ∩ j)}
9 else

10 if 〈i, j〉 has not contributed before to Role(i ∩ j) then
11 Count(Role(i ∩ j))← Count(Role(i ∩ j)) + 1

12 return GenRoles, Count

Algorithm 6 gives the detailed steps of the enumeration and counting interesting roles
process in PairCount Miner algorithm. The for loop in line 2 iterates over all of the roles
initially created. The for loop in lines 4-11 iterates this set with all of the remaining
roles initially created and adds all the unique intersections between pair of roles formed to
GenRoles. Meanwhile, add the tuple 〈i, j〉 to the list of contributors for Role(i ∩ j) and
set the count of Role(i ∩ j) as 1. Otherwise, if Role(i ∩ j) already exists in GenRoles and
tuple 〈i, j〉 doesn’t have contribute before to Role(i∩ j), increment the count of Role(i∩ j).
Finally after the iteration in line 2, return Genroles and Count.

For the generation of UA set, as what we did in Fast Miner, we refer the experiment in
[18] and set the maximum number of roles a user could have in RBAC policy generated by
PairCount Miner as 3.

4.2 Input Datasets

The majority of role mining algorithms use user-permission information as the input
data. That is, the input to a role mining algorithm is an access matrix. We choose to use
only user-permission information of different access matrix in this paper.

32

4.2.1 Datasets from the Literature

We use datasets that have been mostly used in previous role mining papers and literature.
The datasets that will be used in the literature are shown in Table 4.1.

Dataset |User| |Perm| |UP|
Mailer 189 678 3955

Healthcare 46 46 1486
Domino 79 231 730
EMEA 35 3046 7220
APJ 2044 1164 6841

Firewall 1 365 709 31951
Firewall 2 325 590 36428
Americas 3477 1587 105205

Table 4.1: Sizes of the real-world datasets presented

The above real word datasets were obtained from researchers at HP Labs and used for
evaluation in [3]. The Healthcare data was from the US Veteran’s Administration; the
Domino data was from a Lotus Domino server; Americas (referring to americas small
in [3]), EMEA, and APJ data were from Cisco firewalls used to provide external users
access to HP resources. We also use their Firewall1 and Firewall2 policies.

4.2.2 Generated Data

The synthetic dataset was generated based on a template used in a recent paper[17].
Researchers from Stony Brook University generated a template for an RBAC system in
a university setting, presumably through a process similar to top-down role engineering.
They created this template for the purpose of studying security analysis in role based access
control, rather than role engineering. Thus, the main consideration was to make the RBAC
system as realistic as possible. Molloy et al. [9] used this template to generate a dataset for
evaluation. We use that dataset as the generated dataset for the experiment.

4.3 Assumptions

Before we conduct the experiment of secrecy resilience, we make some assumption as a
priori knowledge:

1. There exists adversary user and victim user in the access matrix. The adversary
user only knows the existing roles and permissions he/her is assigned with and

33

the adversary always wants to know whether the victim user has those roles and
permissions.

2. The probability that the victim has a role from adversary only be impacted by the
structure of RBAC policy.

3. Permissions are orthogonal to one another, i.e., possession of permission p has no
implications to possession of another permission q, and possession of a permission on
a resource r has no implications to possession of a permission on another resource
s. Hence adversary user has uniformity and independence assumptions in the access
matrix, i.e., p = Pr {u is assigned with permission p} = 1/2 and the event that u has
permission pi and the u has permission pj are independent for every i 6= j.

4. Suppose adversary user a is assigned to roles r1, . . . , rk. Then, the only possible events
for a victim user b are: (i) b is assigned no roles in {r1, . . . , rk}, and, (ii) b is assigned
at least one role in {r1, . . . , rk}.

5. The event that victim b is assigned to at least on role in {r1, . . . , rk} follows the
inclusion–exclusion principle.

Based on the above assumptions, here are several theorems we concluded and will be
deployed in the calculation of secrecy resilience:

Theorem 7. For access matrixD, if we use any algorithm from User-Role Miner, Permission-
Role Miner, Fast Miner, Dynamic Miner and PairCount Miner to generate the RBAC policy
and k is the number of permissions that role r has, with the assumptions we adopted, from
the view of adversary user m, the probability that a victim user n possesses role r that m
has is always: 2−k.

Since we assume the user has uniformity and independence assumptions in the access
matrix, a victim user has a role means the user has all the permissions that role has, hence
the probability that a victim user n possesses role r that adversary m has is always: 2−k.

4.4 Experiment Analysis

In this thesis, we make empirical results and analysis for two disclosure events:

• Event One: Given a RBAC policy user a who is the adversary and a role r, the
event that a victim user is a member of the role r.

34

• Event Two: Given a RBAC policy user a who is the adversary, the event that a
victim user is a member of some roles of which a is a member.

4.4.1 Experiment and Analysis for Event One

4.4.1.1 The Worst-Case Study

In order to get the “worst-case” for each dataset, we first generate the RBAC policy
with different role mining algorithm with each of the dataset. Then, we calculate the secrecy
resilience for each user in the RBAC policy as adversary. Finally, we filter the worst-case
for each generated RBAC policy(The worst-case are the the smallest secrecy resilience for
each of users as adversary).

Dataset User-Role Miner Permission-Role Miner Fast Miner Dynamic Miner PairCount Miner
Mailer 3.44 ×10−13 1 3.44 ×10−13 3.44 ×10−13 3.44 ×10−13

Healthcare 6.74 ×10−13 1 1.32 ×10−12 1.32 ×10−12 1.32 ×10−12

Domino 2.54 ×10−61 1 2.54 ×10−61 2.54 ×10−61 2.54 ×10−61

EMEA 9.39 ×10−165 1 9.39 ×10−165 9.39 ×10−165 9.39 ×10−165

APJ 2.01 ×10−16 1 2.01 ×10−16 2.01 ×10−16 2.01 ×10−16

Firewall 1 1.13 ×10−183 1 1.13 ×10−183 1.13 ×10−183 1.13 ×10−183

Firewall 2 1.46 ×10−175 1 1.46 ×10−175 1.46 ×10−175 1.46 ×10−175

Americas 1.49 ×10−91 1 1.49 ×10−91 1.49 ×10−91 1.49 ×10−91

University 3.77 ×10−11 1 3.77 ×10−11 3.77 ×10−11 3.77 ×10−11

Table 4.2: Worst-Case of Secrecy Resilience for Event One

From the result, we could see that:

• An adversary that elicits the worst-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in Mailer dataset is user grr, who has a single role which
is assigned with 47 of the 678 permissions.

• An adversary that elicits the worst-case for the User-Role Miner in Healthcare dataset
is user U19, who has a single role which is assigned with 46 of the 46 permissions.
An adversary that elicits the worst-case for the Fast Miner, Dynamic Miner and
PairCount Miner in Healthcare dataset is user U10, who has a role which is assigned
with 45 of the 46 permissions.

• An adversary that elicits the worst-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in Domino dataset is user U23, who has a role which is
assigned with 209 of the 231 permissions.

35

• An adversary that elicits the worst-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in EMEA dataset is user U10, who has a role which is
assigned with 554 of the 3046 permissions.

• An adversary that elicits the worst-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in APJ dataset is user U375, who has a role which is
assigned with 58 of the 1164 permissions.

• An adversary that elicits the worst-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in Firewall1 dataset is user U550, who has a role which
is assigned with 617 of the 709 permissions.

• An adversary that elicits the worst-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in Firewall2 dataset is user U271, who has a role which
is assigned with 590 of the 590 permissions.

• An adversary that elicits the worst-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in Americas dataset is user U91, who has a role which is
assigned with 310 of the 1587 permissions.

• An adversary that elicits the worst-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in University dataset is user PPF401, who has a role
which is assigned with 40 of the 56 permissions.

4.4.1.2 The Best-Case Study

Like what we did for “worst-case”, in order to get the “best-case” for each dataset,
we first generate the RBAC policy with different role mining algorithm with each of the
dataset. Then, we calculate the secrecy resilience for each user in the RBAC policy as
adversary. Finally, we filter the best-case for each generated RBAC policy(The best-case
are the the smallest secrecy resilience for each of users as adversary).

Dataset User-Role Miner Permission-Role Miner Fast Miner Dynamic Miner PairCount Miner
Mailer 0.811 1 1 1 1

Healthcare 0.066 1 0.066 0.066 0.066
Domino 1 1 1 1 1
EMEA 0.02 1 0.02 0.02 0.02
APJ 1 1 1 1 1

Firewall 1 1 1 1 1 1
Firewall 2 0.116 1 0.116 0.116 0.116
Americas 1 1 1 1 1
University 0.811 1 0.811 0.811 0.811

Table 4.3: Best-Case of Secrecy Resilience for Event One

36

From the result, we could see that:

• An adversary that elicits the best-case for the User-Role Miner in Mailer dataset is
user aazad, who has a single role which is assigned with 2 of the 678 permissions. An
adversary that elicits the best-case for the Fast Miner, Dynamic Miner and PairCount
Miner is user mchaten, which has a role with only one permission.

• An adversary that elicits the best-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in Healthcare is user U7, who has a role which is assigned
with 7 of the 46 permissions.

• An adversary that elicits the best-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in Domino dataset is user U15, who has a role which is
assigned with only one permission.

• An adversary that elicits the best-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in EMEA dataset is user U0, who has a role which is
assigned with 9 permissions.

• An adversary that elicits the best-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in APJ dataset is user U1002, who has a role which is
assigned with only one permission.

• An adversary that elicits the best-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in Firewall1 dataset is user U105, who has a role which
is assigned with only one permission.

• An adversary that elicits the best-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in Firewall2 dataset is user U365, who has a role which
is assigned with 6 permissions.

• An adversary that elicits the best-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in Americas dataset is user U2197, who has a role which
is assigned with only one permission.

• An adversary that elicits the best-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in University dataset is user FHF316, who has a role
which is assigned with 2 permissions.

Based on the results and analysis, we could get two theorems for disclosure event one:

37

Theorem 8. Given any access matrix with any number n of users and any number k of
permissions, for disclosure event one, under our assumptions, role mining algorithms Fast,
DM, Pair output the RBAC policy whose secrecy resilience is at most as high as for the
policy output by Permission-Role Miner algorithm and as low as for the policy output by
User-Role Miner algorithm.

Since for each user, the number of permissions of his/her role has in RBAC policy which
outputted by Fast, DM, Pair Miner is no more than that of User-Role Miner and no less
than that of Permission-Role Miner. So for disclosure event one, under our assumptions,
role mining algorithms Fast, DM, Pair output the RBAC policy whose secrecy resilience is
at most as high as for the policy output by Permission-Role Miner algorithm and as low as
for the policy output by User-Role Miner algorithm.

Theorem 9. Given any access matrix with any number n of users and any number k
of permissions, under our assumptions, Permission-Role Miner is the best role mining
algorithm from the standpoint of secrecy resilience.

Since the role in RBAC policy generated by Permission-Role Miner always has one
permission, the probability that the victim has a role from adversary is always 1/2. So that
under our assumptions, the secrecy resilience of RBAC policy generated by Permission-Role
Miner is always 1, which means Permission-Role Miner is the best role mining algorithm
from the standpoint of secrecy resilience.

4.4.2 Experiment and Analysis for Event Two

4.4.2.1 The Worst-Case Study

In order to get the “worst-case” for each dataset, firstly, we generate the RBAC policy
with different role mining algorithm with each of the dataset. Then we calculate the secrecy
resilience for each user in the RBAC policy as adversary. Finally, we filter the worst-case
for each generated RBAC policy.

38

Dataset User-Role Miner Permission-Role Miner Fast Miner Dynamic Miner PairCount Miner
Mailer 3.44× 10−13 3.44× 10−13 3.44× 10−13 3.44× 10−13 3.44× 10−13

Healthcare 6.74× 10−13 6.74× 10−13 1.32× 10−12 1.32× 10−12 1.32× 10−12

Domino 2.54× 10−61 2.54× 10−61 2.54× 10−61 2.54× 10−61 2.54× 10−61

EMEA 9.39× 10−165 9.39× 10−165 9.39× 10−165 9.39× 10−165 9.39× 10−165

APJ 2.01× 10−16 2.01× 10−16 2.01× 10−16 2.01× 10−16 2.01× 10−16

Firewall 1 1.13× 10−183 1.13× 10−183 1.13× 10−183 1.13× 10−183 1.13× 10−183

Firewall 2 1.46× 10−175 1.46× 10−175 1.46× 10−175 1.46× 10−175 1.46× 10−175

Americas 1.49× 10−91 1.49× 10−91 1.49× 10−91 1.49× 10−91 1.49× 10−91

University 3.77× 10−11 3.77× 10−11 3.77× 10−11 3.77× 10−11 3.77× 10−11

Table 4.4: Worst-Case of Secrecy Resilience for Event Two

From the result, we could see that:

1. An adversary that elicits the worst-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in Mailer dataset is user grr, who has a role which is
assigned with 47 in 678 permissions. An adversary that elicits the worst-case for the
Permission-Role Miner in Mailer dataset is user grr, who has 47 roles and each of the
role is assigned with 1 permission.

2. An adversary that elicits the worst-case for the User-Role Miner in Healthcare dataset
is user U19, who has a role which is assigned with 46 in 46 permissions. An adversary
that elicits the worst-case for the Permission-Role Miner in Healthcare dataset is user
U19, who has 47 roles and each role is assigned with 1 permission. An adversary that
elicits the worst-case for the Fast Miner, Dynamic Miner and PairCount Miner in
Healthcare dataset is user U19, who has 2 roles and one of which has 31 permissions
and the other has 45 permissions.

3. An adversary that elicits the worst-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in Domino dataset is user U23, who has a role which is
assigned with 209 in 231 permissions. An adversary that elicits the worst-case for the
Permission-Role Miner in Domino dataset is user U23, who has 209 roles and each
role is assigned with 1 permission.

4. An adversary that elicits the worst-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in EMEA dataset is user U10, who has a role which is
assigned with 554 in 3046 permissions. An adversary that elicits the worst-case for
the Permission-Role Miner in EMEA dataset is user U10, who has 554 roles and each
role is assigned with 1 permission.

5. An adversary that elicits the worst-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in APJ dataset is user U375, who has a role which is

39

assigned with 58 in 1164 permissions. An adversary that elicits the worst-case for the
Permission-Role Miner in APJ dataset is user U375, who has 58 roles and each role is
assigned with 1 permission.

6. An adversary that elicits the worst-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in Firewall1 dataset is user U550, who has a role which
is assigned with 617 in 709 permissions. An adversary that elicits the worst-case for
the Permission-Role Miner in Firewall1 dataset is user U550, who has 617 roles and
each role is assigned with 1 permission.

7. An adversary that elicits the worst-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in Firewall2 dataset is user U271, who has a role which
is assigned with 590 in 590 permissions. An adversary that elicits the worst-case for
the Permission-Role Miner in Firewall2 dataset is user U271, who has 590 roles and
each role is assigned with 1 permission.

8. An adversary that elicits the worst-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in Americas dataset is user U91, who has a role which is
assigned with 310 in 1587 permissions. An adversary that elicits the worst-case for
the Permission-Role Miner in Firewall2 dataset is user U91, who has 310 roles and
each role is assigned with 1 permission.

9. An adversary that elicits the worst-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in University dataset is user PPF401, who has a role
which is assigned with 40 in 56 permissions. An adversary that elicits the worst-case
for the Permission-Role Miner in University dataset is user PPF401, who has 40 roles
and each role is assigned with 1 permission.

4.4.2.2 The Best-Case Study

Like what we did for “worst-case”, in order to get the “best-case” for each dataset,
firstly, we generate the RBAC policy with different role mining algorithm with each of
the dataset. Then we calculate the secrecy resilience for each user in the RBAC policy as
adversary. Finally, we filter the best-case for each generated RBAC policy.

40

Dataset User-Role Miner Permission-Role Miner Fast Miner Dynamic Miner PairCount Miner
Mailer 0.811 0.811 0.954 0.811 0.954

Healthcare 0.0659 0.0659 0.0659 0.0659 0.0659
Domino 1 1 1 1 1
EMEA 0.02 0.02 0.02 0.02 0.02
APJ 1 1 1 1 1

Firewall 1 1 1 1 1 1
Firewall 2 0.116 0.116 0.116 0.116 0.116
Americas 1 1 1 1 1
University 0.814 0.814 0.814 0.814 0.814

Table 4.5: Best-Case of Secrecy Resilience for Event Two

From the result, we could see that:

1. An adversary that elicits the best-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in Mailer dataset is user ahanna, who has a role which is
assigned with 2 in 678 permissions. An adversary that elicits the best-case for the
Permission-Role Miner, in Mailer dataset is user ahanna, who has 2 roles and each of
the role is assigned with 1 permission.

2. An adversary that elicits the best-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in Healthcare dataset is user U17, who has a role which
is assigned with 7 in 46 permissions. An adversary that elicits the best-case for the
Permission-Role Miner in Healthcare dataset is user U17, who has 7 roles and each of
the role is assigned with 1 permission.

3. An adversary that elicits the best-case for the User-Role Miner, Permission-Role
Miner, Fast Miner, Dynamic Miner and PairCount Miner in Domino dataset is user
U15, who has a role which is assigned with 1 permission.

4. An adversary that elicits the best-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in EMEA dataset is user U0, who has a role which is
assigned with 9 permissions. An adversary that elicits the best-case for the Permission-
Role Miner in EMEA dataset is user U0, who has 9 role and each of the role is assigned
with 1 permissions.

5. An adversary that elicits the best-case for the User-Role Miner, Permission-Role
Miner, Fast Miner, Dynamic Miner and PairCount Miner in APJ dataset is user
U1002, who has a role which is assigned with 1 permissions.

6. An adversary that elicits the best-case for the User-Role Miner, Permission-Role
Miner, Fast Miner, Dynamic Miner and PairCount Miner in Firewall1 dataset is user
U105, who has a role which is assigned with 1 permission.

41

7. An adversary that elicits the best-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in Firewall2 dataset is user U365, who has a role which is
assigned with 6 permissions. An adversary that elicits the best-case for the Permission-
Role Miner in Firewall2 dataset is user U365, who has 6 roles and each of them is
assigned with 1 permission.

8. An adversary that elicits the best-case for the User-Role Miner, Permission-Role
Miner, Fast Miner, Dynamic Miner and PairCount Miner in Americas dataset is user
U2197, who has a role which is assigned with 1 permission.

9. An adversary that elicits the best-case for the User-Role Miner, Fast Miner, Dynamic
Miner and PairCount Miner in University dataset is user FHF316, who has a role
which is assigned with 2 permissions. An adversary that elicits the best-case for the
Permission-Role Miner in University dataset is user FHF316, who has 2 roles and
each of them is assigned with 1 permission.

42

Chapter 5

Conclusion and Future Work

In this thesis, we propose and introduce the notion of secrecy resilience as some measure
of resilience that an authorization policy has to discovery of components of it. Then we
implement five role mining algorithms (User-Role Miner, Permission-Role Miner, Fast Miner,
Dynamic Miner and PairCount Miner) and generate the corresponding RBAC policy from
both generated dataset and datasets from literature. Finally, we conduct experiment for
the performance of secrecy resilience for the generated RBAC policy, and analyze the result
with the best-case and worst-case of secrecy resilience.

There are amounts of topics and research areas for future work. First with a more
powerful server, the maximum number of roles a user could have in the RBAC policy could
be increased from 3 to a bigger number and the experiment could be conducted with the
improved RBAC policy. Secondly, in this thesis, the building of notion of secrecy resilience
and the role mining algorithms we used all fall in RBAC policy with a flat structure. In
the future, we will set up the notion of secrecy resilience for RBAC policy with hierarchy.

43

References

[1] Bill Ballad. Access Control, Authentication and Public Key Infrastructure. Place of
publication not identified Jones Bartlett Publishers Incorporated, 2010.

[2] D. Chadwick, W. Xu, and S. Otenko. Muti-session separation of duties (msod) for
rbac. In Proceedings of 23rd International Conference on Data Engineering Workshop,
pages 744–753, 2007.

[3] A. Ene, W. Horne, N. Milosavljevic, P. Rao, R. Schreiber, and R. E. Tarjan. Fast exact
and heuristic methods for role minimization problems. In Proc. ACM Symposium on
Access Control Models and Technologies (SACMAT), pages 1–10, 2008.

[4] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In
Proc. ACM International Conference on Management of Data (SIGMOD), pages 1–12,
2000.

[5] J. Joshi, E. Bertino, and U. Latif. A generalized temporal role-based access control
model. IEEE Transactions on Knowledge and Data Engineering, pages 17(1): 4–23,
2005.

[6] J. Joshi, B. Shafiq, and A. Ghafoor. Dependencies and separation of duty constraints
in gtrbac. In Proceedings of the 8th ACM symposium on Access control models and
technologies, pages 51–64, 2003.

[7] Ninghui Li, Tiancheng Li, Ian Molloy, Qihua Wang, and Elisa Bertino. Role mining
for engineering and optimizing role based access control systems. Technical Report
2007-60, CERIAS, Purdue University, pages 1–12, 2007.

[8] Gilbert MD, Lynch N, and Ferraiolo FD. An examination of federal and commercial
access control policy needs. In National Computer Security Conference, page 107, 1995.

44

[9] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. Calo, and J. Lobo. Mining
roles with semantic meanings. In ACM Symposium on Access Control Models and
Technologies (SACMAT), pages 21–30, 2008.

[10] Ian Molloy, Ninghui Li andTiancheng Li, Ziqing Mao, Qihua Wang, and Jorge Lobo.
Evaluating role mining algorithms. Proceedings of the 14th ACM symposium on Access
control models and technologies, pages 95–104, 2009.

[11] P.Marikkannu, J.J. Adri Jovin, and T.Purusothaman. Fault-tolerant adaptive mobile
agent system using dynamic role based access control. International Journal of
Computer Applications, page 20 (2): 1–6, 2011.

[12] Agrawal R., J. Kiernan, R. Srikant, and Y Xu. Hippocratic databases. In: Proc. 28th
Int’l Conf. on Very Large Data Bases, pages 143–154, 2002.

[13] Gregory Saunders, Michael Hitchens, and Vijay Varadharajan. Role-based access
control and the access control matrix. Information and Communications Security,
pages 145–157, 2003.

[14] J. Schlegelmilch and U. Steffens. Role mining with orca. In ACM Symposium on
Access Control Models and Technologies (SACMAT), pages 168–176, 2005.

[15] J. Schlegelmilch and U. Steffens. Role mining with orca. In Proc. ACM Symposium
on Access Control Models and Technologies (SACMAT), pages 168–176, 2005.

[16] Claude Elwood Shannon and Weaver Warren. The mathematical theory of communi-
cation. Urbana : University of Illinois Press, pages 11–55, 1949.

[17] S. D. Stoller, P. Yang, C. R. Ramakrishnan, and M. I. Gofman. Efficient policy analysis
for administrative role based access control. 14th ACM Conference on Computer and
Communications Security 2007, pages 445–455, 2007.

[18] J. Vaidya, V. Atluri, and J. Warner. Roleminer: Mining roles using subset enumeration.
In In Proc. ACM Conference on Computer and Communications Security (CCS), pages
144–153, 2006.

[19] W. Yamazaki and H. Hiraishi. Designing an agent based rbac system dynamic security
policy enabling technologies: Infrastructure for collaborative enterprises. In The 13th
IEEE International Workshops on Enabling Technologies, pages 199–204, 2004.

[20] Dong Yan, Zhengqiu Yang, and Chen Liu. An improved rbac96 model with range
restricted. In 2009 International Forum on Information Technology and Applications,
pages 591–594, 2009-05, Vol.3.

45

[21] D. Zhang, K. Ramamohanarao, and T. Ebringer. Role engineering using graph optimi-
sation. In ACM Symposium on Access Control Models and Technologies (SACMAT),
pages 139–144, 2007.

46

	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Our Work
	Outline

	Background and Related Work
	Access Control
	Principle of Access Control
	Access Control Subjects and Objects
	Access Control Process

	Role Based Access Control
	Design of RBAC
	Benefits of RBAC
	RBAC Research Overview

	Secrecy Resilience
	Probability and Entropy
	Probability
	Entropy

	Secrecy Resilience
	Application to Access Matrix
	Application to Two Basic Role Mining Algorithms

	Application to Role Mining Algorithm
	Role Mining Algorithms
	Fast Miner(Fast)
	Dynamic Miner(DM)
	PairCount Miner(PC)

	Input Datasets
	Datasets from the Literature
	Generated Data

	Assumptions
	Experiment Analysis
	Experiment and Analysis for Event One
	Experiment and Analysis for Event Two

	Conclusion and Future Work
	References

