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Abstract

Technological advancements in creating and commercializing novel unobtrusive
wearable physiological sensors have generated new opportunities to develop adaptive
human-robot interaction (HRI). Detecting complex human states such as engagement
and stress when interacting with social agents could bring numerous advantages to
creating meaningful interactive experiences. Bodily signals have classically been used
for post-interaction analysis in HRI. Despite this, real-time measurements of auto-
nomic responses have been used in other research domains to develop physiologically
adaptive systems with great success; increasing user-experience, task performance,
and reducing cognitive workload.

This thesis presents the HRI Physio Lib, a conceptual framework, and open-
source software library to facilitate the development of physiologically adaptive HRI
scenarios. Both the framework and architecture of the library are described in-depth,
along with descriptions of additional software tools that were developed to make the
inclusion of physiological signals easier for robotics frameworks. The framework
is structured around four main components for designing physiologically adaptive
experimental scenarios: signal acquisition, processing and analysis; social robot and
communication; and scenario and adaptation. Open-source software tools have been
developed to assist in the individual creation of each described component.

To showcase our framework and test the software library, we developed, as a
proof-of-concept, a simple scenario revolving around a physiologically aware exercise
coach, that modulates the speed and intensity of the activity to promote an effec-
tive cardiorespiratory exercise. We employed the socially assistive QT robot for our
exercise scenario, as it provides a comprehensive ROS interface, making prototyping
of behavioral responses fast and simple. Our exercise routine was designed following
guidelines by the American College of Sports Medicine. We describe our physio-
logically adaptive algorithm and propose an alternative second one with stochastic
elements.

Finally, a discussion about other HRI domains where the addition of a physio-
logically adaptive mechanism could result in novel advances in interaction quality is
provided as future extensions for this work. From the literature, we identified im-
proving engagement, providing deeper social connections, health care scenarios, and
also applications for self-driving vehicles as promising avenues for future research
where a physiologically adaptive social robot could improve user experience.
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Chapter 1

Introduction

Wearable technology in recent years has grown in a significant way, becoming a
common tool in people’s lives to monitor their daily steps, caloric burn, exercise
levels, heart rate, sleep patterns, and more [55]. The maturity of this technology
in the domain of research and commercialization is still quite new. With that said,
public adoption of this technology has boomed in recent years, so much so, that a 2019
study by the Pew Research Center [101] reported that over 1 in 5 U.S. adults reported
that they regularly wore a smart-watch or fitness-tracker. The costs associated with
equipping sensors such as electrocardiogram (ECG) and photoplethysmogram (PPG)
onto small devices have fallen dramatically in recent years, resulting in widespread
adoption. With the technology already in the hands of so many consumers, we have
an opportunity to develop software capable of widespread adoption.

The development of physiologically adaptive systems is still relatively novel, with
studies using the technology becoming somewhat more frequent in the domains of
human-robot interaction (HRI) and human-computer interaction (HCI). The pur-
pose of this project is to provide a framework for developing physiologically aware
scenarios, as well as software and tools to make the integration of physiological mea-
surements into experimental scenarios more accessible.

1.1 Motivation

A critical aspect of amiable HRI is the ability to reason about the subjective emo-
tional states of humans. Evidence suggests that the mechanisms of empathy and
perceiving the emotional states of others is phylogenetically ancient, going back to
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common ancestors of mammals and birds [18]. Paiva et al. [71] describes how empa-
thy in virtual agents could be a way of improving affinity, and overall perception of
the interaction quality.

The visual medium has classically been used in emotional recognition, utilizing
cues from facial and body language [24, 37, 91]. Typically these methods work well
in clean and predictable scenarios, such as when a person’s face is clearly visible in
a picture or video. However, this technology can struggle in real-world applications,
having challenges related to poor or uneven lighting, low resolution, motion blur,
as well as incomplete and obstructed facial features (e.g., people moving around
freely, facing away from the camera). State-of-the-art methods trained on real-world
datasets containing the aforementioned imaging conditions perform at near 50%
accuracies in classifying common prototypical expressions [28,67].

Another challenge in the utilization of the visual medium deals with end-users in
the real-world. Caine et al. [11] surveyed a population of 18 older adults and found
they had privacy concerns they felt when being monitored by either cameras or social
robots (which also usually have cameras embedded). A. Sharkey and N. Sharkey [93]
had similarly included loss of privacy as one of their major ethical issues in their
guidelines for introducing social robots to eldercare scenarios. Wearable sensor and
their widespread adoption may provide a more dignified non-invasive solution to
well-being monitoring in older populations. Motti and Caine [62] found that while
privacy concerns were present with wearable sensors, participants thought it was less
of a concern compared to camera-based monitoring. With the increasing popularity
of wearables and physiological sensing technologies, this has the potential to help
close-the-loop in HRI scenarios.

Psychophysiology is the field that studies the relationship between human psy-
chological states and physiological signals. Psychophysiological states such as stress,
workload, and engagement have been studied previously, demonstrating that human
physiological responses can be attributed to specific human states [10]. People are
typically able to deduce this through a repertoire of visual and auditory cues includ-
ing body language, facial expressions, gaze orientation, and tone of voice [74]. While
some algorithms have been developed to discern some of these cues [22,63], inferring
people’s affective states is by no means a categorically solved problem. Physiologi-
cal data may provide a window into a person’s affective state, allowing to capture
unconscious responses associated with both the central and peripheral nervous sys-
tems. Their inclusion may be the modality necessary to provide exceptional quality
interaction with social robots.
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1.2 Research Objectives and Challenges

This thesis aims at understanding the state-of-the-art of physiologically adaptive
systems, how they’re designed, what features are important in adaptations, how
real-time adaptations are perceived by users, and what adaptations social robots are
capable of as a part of being an adaptive system.

This information is used to formulate a framework to act as a structural base
from which future adaptive systems can be derived. Software tools and applications
are also developed to assist and provide a foundation for developing physiologically
adaptive scenarios. The research questions this project aims to answer are:

RQ1: How can we design a robotics software framework for the rapid
development of physiologically aware robots?

RQ2: How can we develop a robotics software framework capable of
integrating various communication libraries?

RQ3: Is the proposed software framework and HRI Physio Lib able to
be used for the rapid development of physiologically aware robots
capable of adapting their interactions?

RQ1 and RQ2 are addressed in Chapter 3, while RQ3 is addressed in Chapter 4.

1.3 Contributions and Thesis Outline

The contributions of this thesis can be summarized as:

1. Development and discussion of a general framework for developing physiologi-
cally adaptive HRI scenarios.

2. An open-source software library called HRI Physio Lib1, released under BSD
3-Clause License.

3. Development of a practical use case scenario involving a physiologically aware
exercise coach using our software library.

1https://github.com/kothiga/hri-physio
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4. Supplemental discussion regarding additional potential use case scenarios where
physiological adaptations could yield meaningfully positive user experiences.

The organization of this thesis has Chapter 2 providing the necessary background
information on human-robot interaction, affective computing, physiologically adap-
tive systems, and what tools currently exist for facilitating physiological computing
and complex robot interactions.

Next, Chapter 3 takes the information we’ve gathered to develop a structural
framework for developing physiologically adaptive HRI scenarios. This chapter also
includes the architectural structure of the software library that has been developed
to assist in the development of these scenarios. The implementation of applications
included in the software repository is detailed.

Chapter 4 uses the framework and software library to develop a physiologically
adaptive scenario using the QT robot as an exercise coach. The chapter begins with
a lite review of social robots and virtual agents in exercise-related studies, as mo-
tivation for the experimental scenario. The implementation of the physiologically
adaptive scenario is detailed, including information about the socially assistive QT
robot, our exercise routine, experimental design, and details of the software are pro-
vided. The results of the scenario and future extensions are discussed, providing
improvement recommendations for the system, alternative rule updates, and limi-
tations of the implementation. A supplemental discussion regarding additional use
cases for physiologically adaptive systems is also provided as extensions for this work.

Lastly, Chapter 5 concludes with remarks about the research project. A summary
of the contributions is discussed, along with lessons learned, limitations, and future
directions for this work.
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Chapter 2

Related Work

This chapter provides an overview of relevant research in order to provide the context
and motivation for developing a framework and software library to facilitate the
creation of physiologically adaptive HRI scenarios. In addition, we provide discussion
about existing tools, and how they’ve influenced our design.

2.1 Human-Robot Interaction

Human-robot interaction (HRI) provides a unique challenge of combining compu-
tation interfaces and social interaction. Where domains such as human-computer
interaction (HCI), rely on graphical interfaces for interaction, HRI simply has the
robot’s affordances (e.g., body language, gaze, speech, expressions) as the interface
for interaction. It is for this reason that the ability for HRI to possess some abil-
ity to dynamically adapt their behavior based on inferences about the human using
(interacting with) said system is such a widely desired quality.

Previous studies have shown that a system capable of inferring and approximating
the affective state of the user can lead to an increase in user-experience, task perfor-
mance, and reduced cognitive workload [42, 81, 106]. Paiva et al. [71], describes that
to truly provide a more natural and personalized HRI experience, robots too should
possess some level of awareness into the subjective emotional (affective) states.

Oertel et al. [69] describes engagement as the utmost important concept in human-
machine interaction. The authors state:
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“These agents [robots] all have a common goal, namely to have users
continue interacting with them and thus manage users’ engagement in
the interaction. Thus, for human-agent interaction engagement, both
perception and generation are important issues. Perceiving how engaged
users are can be beneficial information for adapting agent behavior.”

Detecting complex human states such as engagement and stress when interacting
with social robots could bring numerous advantages to create meaningful interactive
experiences. Robots of a great opportunity for sensor fusion, to combine multiple
dimensions perceptions (e.g., vision, auditory, touch) to understand contextual in-
formation. This is, of course, easier said than done. In many studies, this problem
is partially side steps, relying on the addition of peripheral devices, so that a focus
on the interaction can be developed.

The use of eye gaze has been ubiquitous in HRI studies. Gonzalez et al. [36]
developed a system that makes robots spot liars. This system used pupil dilations
recorded using a pair of Tobii Eyetracking glasses. Pupil dilations have been shown
to increase when a person is under stressful situations that cause a higher cognitive
load, such as not being prepared to lie. The scenario was set up with an investigator
(human or robot), interviewing a witness (human participant), about a video that
was shown to them of a person shoplifting. The goal for the participant was to
either truthfully or deceptively (depending on assigned role) describe the scene they
witnessed. The experimental setup for this study can be seen in Fig. 2.1. The authors
found that the robot investigator’s presence did not cause significant differences to
the pupillometry data compared against a human investigator; as well, the machine
learning model used in this scenario was found to accurately detect when a lie had
occurred.

Besides pupillometry, there are other wearable sensors capable of recording auto-
nomic response and physiological data, which can be used to develop systems that
adapt to the users’ affective states. Social robots have rarely been used in such
physiologically adaptive systems due to multiple complexities from both the human-
physiology and human-robot perspectives [54]. In the following sections, we’ll take
a small step back to discuss affective computing, state representation, physiologi-
cally adaptive systems, and some tools which we currently have for developing these
systems.
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Figure 2.1: Experimental setup: (Top) robot investigator (RI) debriefing a witness
(W); (Middle) human investigator (HI) debriefing a witness (W); (Bottom) interro-
gation room display (Informed consent of participants has been obtained for the use
of their photo). Obtained with permission [36].
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2.2 Affective Computing

Affective computing is defined by Picard [73] as “computing that relates to, arises
from, or influences emotions”. Previously described, the ability to sense and rec-
ognize the emotions of a user is a powerful asset, that can be used to empower
individuals. One domain with a clear perspective of how this technology can be used
for good is education. For a student, receiving tutoring can be a stressful and cogni-
tively demanding endeavor. A system that is capable of identifying when frustrations
of a user are rising could do well by deescalating the situation when the material isn’t
quite being retained. As well, detection of boredom and fatigue are useful indicators
that the current approach is not working. Woolf et al. [103] developed an agent-based
system to maximize the time of maintaining student interests in a tutoring scenario.
Their system utilized high and low-level observational behaviors, along with skin
conductance and facial electromyography (EMG), to approximate the students’ af-
fective state in terms of arousal and valence. They describe the purpose of their
student is not only to improve the quality of teaching, but also “... to support a
student’s meta-affective state, or reflection about their emotion”.

Robots are not anything new in affective computing. One such robot, PARO1

is designed as a therapeutic robot. PARO has commonly been used in studies in-
volving older populations. One such study by Šabanović et al. [86] used PARO with
10 participants who were residents of a nursing home with varying levels of demen-
tia. Over the seven weekly therapy sessions, PARO was shown to provide improved
cognitive abilities of the participants and attentiveness towards the robot and their
environment.

KASPAR (Kinesics And Synchronization in Personal Assistant Robotics) [17] is
another socially assistive robotics platform design around robot-assisted play and
therapy for children with autism. Wainer et al. [102] used KASPER in a long-term
study, across ten weeks, to understand the effects the robot had on the social behav-
iors of children with autism in a collaborative play scenario. The authors found that
the children engaged with the robot and each other during play. As well, the chil-
dren showed improvements in social behaviors with each other after collaboratively
playing with the robot.

We’ve shown some of the benefits affective computing can provide for users,
whether they’re interacting with a computer-based interface or a socially interactive
robot. One of the great challenges in affective computing is modeling, or representing

1http://www.parorobots.com/
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a users’ internal state. In the next section, we will describe a range of approaches
used in the literature for representing the subjective experiences of participants.

2.2.1 State Representation

Affect can be measured through a variety of methods, with most naive approaches
being rooted in scales and questionnaires for post-experiment analysis, as the most
direct approach is to simply ask the participant what their experiences in a scenario
were. Likert [53], and the Intrinsic Motivation Inventory (IMI) [85] are some of the
most common of these scales. Likert is often depicted as a 5 or 7-point scale with
responses ranging from “strongly disagree” to “strongly agree”. IMI is similarly a
7-point scaling system, however, what sets it apart is that it has 45 items (questions)
which are broken into different subscales to allow for multidimensional measures.

Other questionnaires and scales for system usability, enjoyment, positive af-
fect, which appear frequently in the literature include the NASA Task Load Index
(TLX) [40], Inclusion of Other in the Self (IOS) questionnaire [2], System Usabil-
ity Scale (SUS) [9], the Godspeed Questionnaire Series (GQS) [5], and the Robotic
Social Attributes Scale (RoSAS) [12], to name a few. These scales are valuable for
post-processing analysis (after the experiment has concluded) to understand if the
differences between two independent variables hold significance.

The first step in making intelligent decisions based on measured affect is to model
it. Extensive work has been done to reduce complex subjective emotions into a simple
continuous scale. One of these early models comes from Russel et al. [84], which
imagined affect as a grid with two dimensions, valence, and arousal (see Fig. 2.2).
Valence is associated with the pleasantry of an emotional state; i.e., positive valence
would be described as happy or enjoyable emotions, while negative valence would
be sad or unpleasant emotions. Arousal is associated with the intensity of emotion;
i.e., high arousal would be described as being surprised or very focused, while low
arousal would be feelings of boredom or sleepiness. Engagement—a topic discussed
at length already, might be thought of as a combination of positive valance and high
arousal. There are a number of datasets of physiological data which use variations of
Russell’s Affect Grid for self-reported scores of emotions from participants exposed to
different stimuli. Some of these include ASCERTAIN [96], AMIGOS [61], DECAF [1],
DEAP [49], and MAHNOB [95].

Another prominent model is designed by Mehrabian [60]. The Pleasure-Arousal-
Dominance (PAD) model builds off of Russell’s Affect Grid to add a third dimen-
sion, pertaining to the dominance the user feels. This is meant to help differentiate

9



Figure 2.2: The Affect Grid. The x-axes relates to valence, or the perceived pleasure
of the state; while the y-axes relates to arousal or the perceived intensity of the
emotion. Design inspired by Russell et al. [84].

between very similar emotions such as excitement, which according to PAD is char-
acterized as high pleasure, high arousal, and low dominance; from engagement which
is characterized with the same pleasure and arousal, but with high dominance.

2.3 Physiologically Adaptive Systems

Psychophysiology is the field that studies the relationship between subjective mental
states and objective physiological processes [10]. Psychophysiological states (also
described as affective states previously) include experiences such as engagement,
frustration, anxiety, and cognitive workload. Many metrics have been effectively
used for affective state prediction, such as electroencephalography (EEG), electro-
cardiography (ECG), electrodermal activity (EDA), photoplethysmography (PPG),
and pupillometry. The use of these physiological signals allows for data perception
in (ranging levels of) non-invasive measurements through wearable devices. These
measures ultimately could provide robots the ability to infer users’ affective states
through quantitative approximations of subjective feelings. This additional dimen-
sion of perception may enable a more natural and personalized HRI experience [71].
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Physiologically adaptive response technology, according to Loewe and Nadj [54],
can be broken up into three common categories: state display, assistance offering,
and challenge adaptation. Their review of 44 articles provides an excellent summary
of the state-of-the-art, and seven suggestions for future directions researchers might
pursue for novel research. Their review provides analysis on the different contexts,
signal types, algorithms, targeted states, and system adaptation types. As well, the
benefits of incorporating physiological computing, specifically for HRI research has
been discussed in a review by Roy et al. [83]. The authors discuss the need for online,
real-time classification of operators’ mental states to provide both operational safety
and improved performance. This review has less to do with social robotics, however,
it provides a welcome discussion into the need for inferences of robotic systems into
human collaborative environments. The benefits of a closed-loop system where a
robot is informed about the specific psychophysiological states of users with whom
it is interacting can provide real-time adaptations in behavior to the benefit of the
user.

2.3.1 Physiological Signals

We’ve described quite a few different types of physiological signals already. Not
to overwhelm the scope of this thesis, we will focus primarily on ECG, as it has an
extremely low degree of invasiveness and provides a data type from which a significant
amount of knowledge can be extracted [39]. As seen in Fig. 2.3, an ECG has four
points of interest for our discussion, namely the P-wave, R-peak, T-wave, and QRS
complex. Heart rate variability (HRV) encompasses an important set of metrics that
aim to explore the temporal dynamics of the heartbeats. HRV most importantly
can be used to describe many psychophysiological states; including stress, cognitive
workload, and engagement [48].

HRV specifically refers to the changes in the time interval between consecutive
heartbeats. HRV can be computed through the time variability of consecutive R-
peaks (also called the R-R interval—RRI). Shaffer and Ginsberg [90] provide an
extensive overview of HRV metrics, however a few important time-domain features
that we’d like to highlight include the following: SDNN, the standard deviation of
the interval between successive heartbeats; SDRR, the standard deviation of the
RRI; RMSSD, root-mean-square of successive RRI differences; pNN50, percentage
of successive RRI that differ by more than 50 milliseconds. The frequency-domain of
an ECG also provides useful features for describing affective states [99]. Some of the
more useful frequency-domain features include the analysis of the absolute power of
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high-frequency (HF) bands (0.15 to 0.4 Hz), low-frequency (LF) bands (0.04 to 0.15
Hz), and very-low-frequency (VLF) bands (0.0033 to 0.04 Hz). HRV features have
been shown to be helpful for inferring complex emotions [75] and affective states [23].
For instance, stress levels of human participants can be defined in terms of variations
of the ratio of low-frequency and high-frequency power (LF/HF) [99].

Figure 2.3: A simulated electrocardiogram (ECG) to show the structural features of
the signal.

2.3.2 Use in Research

Unsurprisingly, the use of physiological data can be quite messy, as recorded signals
can be filled with artifacts from movement, and electrical noise generated from sur-
rounding electrical infrastructure. Filtering of the time-series data can be applied,
but this doesn’t immediately tell you about the contributor’s affective state. Corre-
lations can be made through classical machine learning techniques. Rani et al. [76]
empirically studied the application of four different classical machine learning tech-
niques for affect recognition in two cognitively demanding tasks, solving anagrams
and playing Pong. The authors analyzed the success of K-Nearest Neighbor classi-
fiers, Regression Trees, Bayesian Networks, and Support Vector Machines on recorded
physiological measurements from 15 participants. The authors provide discussion as
to how these closed-loop scenarios can be extended towards HRI scenarios.
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While classical approaches perform well, the advent of deep learning challenges
these methods. Faust et al. [30] reviewed 53 articles relating to the application of deep
learning with physiological signals in health care scenarios. The authors explored the
recent influx of articles published regarding deep learning and physiological data for
classification tasks. In many recent publications, deep learning methods appear to be
outperforming classical approaches when provided with large and diverse datasets.
The review describes how 31 (of the 53) articles used data from one or more freely
available datasets. The ability to generalize well to never before seen participants,
especially in the case of using this data in an online-adaptive system, is an extremely
valuable asset.

In HRI research, there have been a number of physiologically adaptive robotic
scenarios that were developed. To complete this section, we highlight a few scenarios.
Itoh et al. [43] developed an adaptive stress reduction system by using HR and HRV
in a scenario involving a humanoid robot. In their experiment, the robot offered a
hand-shake to participants who were stressed. They found that participants’ stress
levels, measured using HRV metrics, were reduced when the robot offered a hand-
shake with an adaptive policy. Corrigan et al. [15] developed an adaptive system to
detect the engagement of participants while interacting with the NAO robot. They
highlighted that using physiological signals (EDA in this case) with post-experiment
surveys provides a better internal-state model.

Shao et al. [92] designed non-verbal affective behaviors for the Pepper robot to
evoke particular emotions in the participants. Users’ affective state was approxi-
mated using surveys and EEG. This study showed a consistent relationship between
the collected EEG data and self-reported valance and arousal levels. Furthermore,
this study used the collected EEG data to train both a support vector matching
and neural network, which found promising accuracies in classifying users’ intended
affective states. Similarly, Guo et al. [38] designed five emotional behaviors (joy, fear,
neutral, sadness, and anger) for a small form humanoid robot called Alpha 2, us-
ing combinations of head, arm, and leg actions. The authors then examined how
participants reacted to these emotional expressions through user-reported valence
and arousal levels. EEG and pupillometry were recorded and analyzed to verify the
success and intended responses of their designed robotic affective expressions.
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2.4 Existing Tools

In this final section, we provide a brief overview of some of the many tools which exist
to facilitate the development of physiological computing. This is not a comprehensive
list of all existing tools, but some notable ones which have inspired us in our design
of the framework and software library described in the following chapters.

In order to make use of psychophysiological measurements in HRI, a way to first
acquire the data in real-time to interface with the robot is necessary to produc-
ing closed-loop interaction between robots and humans. EventIDE2 is a commercial
software solution for real-time capture and processing of physiological data with sup-
port for a wide range of physiological sensors. Another similar commercial software is
iMotions3 which is tailored extensively towards research in user-experience, emotion
recognition, and mental workload.

BITalino [16] is a multi-parameter “do it yourself” (DIY) kit. This Arduino-based
hardware toolkit allows for easy acquisition of ECG, EDA, EMG, and PPG data while
having a relatively affordable cost. Benchmarking studies [6] have been performed to
compare performance with research-grade biomedical devices from BioPac4. Another
data acquisition solution is the FlyLoop [72], a lite-weight framework to assist users
to easily fuse physiological signals coming from different devices such as the Muse
headband, Tobii Eye Trackers, and Apple Watch.

Game development is a field where understanding how engaged a person is with
your product can make or break your project. Thus, various software tools have been
developed to provide ease of use for affective state prediction from physiological data,
developed specifically for this domain. OpenViBE [80] is an open-source software
platform that allows real-time processing of EEG. The platform offers various tools
to integrate these signals into VR applications and games. PhysSigTK [78] is a
toolkit for the Unity3D game engine designed around providing easily accessible real-
time signal data for engagement experiments. The Biocybernetic Loop Engine (BL
Engine) [65] provides an interface for designing physiologically adaptive scenarios in
the Unity3D game engine.

There has been a great deal of recent work to streamline the development of com-
plex HRI scenarios, and to fill in gaps between physical and social HRI. iCub-HRI [31]
is a software framework that integrates various components of the iCub ecosystem.

2http://www.okazolab.com/
3https://imotions.com/
4https://www.biopac.com/
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The framework also provides a 3D context-aware visual perception system, visual-
tactile reactive controller, and the ability to store symbolic knowledge [68]. Ad-
ditionally, Robotic Coach Architecture for Elder Care (ROCARE) [27], is another
software architecture designed for adaptive, multi-user measurement of engagement
in assistive living scenarios. The architecture features an easy to use GUI and utilizes
audio, visual, EEG, and EDA measurements.
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Chapter 3

HRI Physio Lib

This chapter describes the development of an open-source, integrative and modu-
lar software library created to facilitate the design of physiologically adaptive HRI
scenarios. The HRI Physio Lib helps to streamline the acquisition, analysis, and
translation of human body signals to be used as additional dimensions of perception
in HRI applications using social robots. Through exploring the designs of previously
developed systems, we can better provide a general structure and multi-purpose tools
to help facilitate the integration of physiological signals into HRI applications.

The software framework has four main components: signal acquisition; processing
and analysis; social robot and communication; and scenario and adaptation. Infor-
mation gathered from the sensors is synchronized and processed to allow designers
to create adaptive systems that can respond to detected human states.

Work in this chapter was motivated by two research questions which asked:

RQ1: How can we design a robotics software framework for the rapid
development of physiologically aware robots?

RQ2: How can we develop a robotics software framework capable of
integrating various communication libraries?

The goal of this software framework was to provide a comprehensive, integrative,
and openly accessible set of tools aimed at facilitating the integration of physiological
signals into HRI scenarios. The source code itself is hosted on GitHub1.

1https://github.com/kothiga/hri-physio
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3.1 Framework

Three key facets were carefully considered during the design of the framework. The
first was related to the design of a system that is modular in nature to allow for easy
integration and the addition of new sensors. The second being to develop a system
that is flexible as to support multiple robot systems and middle-wares (e.g., ROS,
YARP). The last was related to the system being open-source with nonrestrictive
licensing.

The software framework can be deconstructed into four main components: signal
acquisition, processing and analysis, social robot and communication, and scenario
and adaptation. We’ll go through each of these building-block components describing
their purpose in the larger framework, as well as provide an introduction to related
tools, of which have a complete description later in section 3.3.

3.1.1 Signal Acquisition

Wearable technologies equipped with the ability to capture and analyze physiological
data are becoming ubiquitous in daily life for many people [55]. The maturity of this
technology in the domain of research and commercialization is still young; however,
interest has exploded in recent years, so much so that in a 2019 study by the Pew
Research Center [101] reported that over 1 in 5 U.S. adults said they regularly wore
a smart-watch or fitness-tracker.

With so many different sensing technologies available; each running its own unique
communication protocols it can be a daunting challenge to try and incorporate them
into existing robotic frameworks. In an ideal scenario (security and privacy aside),
it would be advantageous to subscribe to the raw data stream transmitted from
the device (typically using Bluetooth Low Energy) to use the real-time readings of
cardiovascular or accelerometer data within an intelligent system. To try and bridge
the communication gap, we’ve chosen Lab Streaming Layer2 (LSL) as our primary
mode of signal acquisition.

LSL is a general-purpose, cross-platform communication library designed around
providing an easily accessible stream of time-domain data (signal data from lab
instruments, cardiovascular data, audio, etc.) onto the local area network (LAN).
This decision was made as LSL has become a widely popular software library, with
an open-source community and vendors providing projects developed for a large

2https://labstreaminglayer.readthedocs.io/
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Figure 3.1: Polar heart rate monitors. (left) Polar H10, a chest strap device capable
of transmitting ECG, HR, RRI, and accelerometer data over Bluetooth. (right)
Polar OH1, an armband optical device capable of transmitting PPG, HR, PPI, and
accelerometer data also over Bluetooth.

range of supported devices3. A majority of what has been developed relates to
electroencephalogram (EEG) systems, however, other exciting projects have brought
support for streaming data from the Tobii Eye trackers, as well as the Microsoft
Kinect, and even human interface hardware like Nintendo Wiimotes controllers.

The signal acquisition component primarily relates to tools for collecting phys-
iological signals and bringing them into the folds of robot systems. We devel-
oped a general-purpose bridge tool called the Physio Receiver capable of receiving
streamed data from LSL, logging, buffering, and translating out onto ROS, YARP,
or even LSL again. This tool is later expanded on in section 3.3.1. The tool is data
agnostic (supporting different C++ standard data types) and can receive streams from
not only LSL, but also ROS and YARP as a result of its polymorphic design.

As well, we’ve developed two tools for streaming data from the Polar fitness
trackers, specifically the chest strap heart rate monitor Polar H10 and the arm-
band optical heart rate monitor Polar OH1. These devices can be seen in Fig. 3.1.
The Polar sensors were chosen as our first supported devices for their accuracy to
sense cardiovascular activity [35], low-cost, commercial availability, general comfort
of wearing [39], and most importantly ability to interface data from. The first of these

3https://labstreaminglayer.readthedocs.io/info/supported_devices.html
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tools was a desktop application called Physio Streamer which is described later in
section 3.3.3, and the second was an Android application called Polar Streamer

which is also described later in section 3.3.2.

3.1.2 Processing and Analysis

The processing and analysis component primarily deals with methods that allow
transforming the raw data from both humans and robots into interpretable features.
In the HRI Physio Lib, we have included multiple existing and scientifically vali-
dated processing algorithms to process the body signals and extract the most used
features.

For analyzing the cardiovascular data, we have included scripts for signal process-
ing, outlier detection, and HRV analysis using NeuroKit2, an open-source Python

toolbox [57]. This toolbox allows for the transformation of an ECG signal into RRIs
which subsequently can be used to find various HRV features. In the time-domain
this can include the SDNN, RMSSD, and pNN50. The frequency-domain features
that can be acquired include LF, HF, and LF/HF ratio.

The module which uses the NeuroKit2 toolbox is called the NeuroKit Processor

and is described later in section 3.3.4. In short, this module is a command-line
interface that receives a specified LSL stream containing time series ECG data to
be processed before streaming it back out onto LSL. The processed cardiovascular
data, namely HRV features are what is most important for inferring complex human
states such as emotions [75].

It is important to maintain common timestamps of data to better infer causality
of physiological responses, i.e., what specific feedback of the robot may have lead
to the desired responses. Synchronization of recorded data is key in order to make
these inferences possible. It is for this reason that we maintain the LSL timestamps
throughout all transmissions.

We’ve also developed software to aid in the development of user-defined processing
pipelines. A common requirement for this type of time-domain data is a way to clean
signal artifacts produced by power line interference (50/60 Hz), electrodes location
(e.g., cross-talking), general movements, and other noise; digital filters should be
applied to the raw data [46]. We’ve included in the HRI Physio Lib a suite of
recursive Butterworth filters (e.g., low-pass, high-pass, band-pass, band-reject) based
on an outline from Dodge and Jerse [20] to assist in the data cleaning. As well,
we’ve implemented methods for producing the Hilbert transform and spectrogram of

19



a signal using the popular lightweight Fast Fourier Transform library PocketFFT4.
Other general mathematical methods can also be found in the software library.

3.1.3 Social Robot and Communication

The social robot and communication component primarily has to do with communi-
cation with the socially interactive robots. To create physiologically adaptive HRI
experiences, a set of robot states and capabilities should be previously defined. We’ve
outlined six general feedback modalities which we believe to be common across most
social robotic platforms. They are: screen-based, speech-sounds, vibrations, lights,
facial expressions, body language & movement. Feedback modalities such as facial
expression are discrete in that you have a limited number of appearances (i.e., happy,
calm, sad), while other modalities like lights can be thought of as continuous (range
of values). This is of course not categorical, and completely dependent on the robot
being developed around; e.g., it may be the case that a particular robot only has on
and off for some light feedback.

A way to describe screen-based feedback might be the use of playing pre-rendered
video, images, or even something complex such as a game using some form of a flat-
panel screen integrated with the robot; take for example the touch screen display
on the chest of the social robotic platform Pepper from SoftBank Robotics5, or the
LCD display which is the face of the QT robot from LuxAI6. Other ways to use
screen-based feedback might be through a peripheral device separate from the robot
such as a computer monitor, television, or even a commercial tablet.

Speech-sounds might be thought of as any principal method of verbal commu-
nication which a robot is capable of. This could include anything from minimal
“beeps” and “boops” to complex speech synthesis with emotional embeddings capa-
ble of tone and frequency modulation. There are a number of avenues of producing
amiable speech with today’s advancements; from premium services such as Acapela7

and Amazon Polly8 (which also offers a free tier) to open-source solutions like gnus-
peech9.

4https://gitlab.mpcdf.mpg.de/mtr/pocketfft/-/tree/cpp
5https://www.softbankrobotics.com/emea/en/pepper
6https://luxai.com/
7https://www.acapela-group.com/
8https://aws.amazon.com/polly/
9https://www.gnu.org/software/gnuspeech/
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(a) iCub humanoid robot (b) QT robot (c) Furhat robot

Figure 3.2: A few examples of the many different ways facial expressions can be
represented in social robots. (a) Multi-color LEDs under the face; (b) Screen-based
face display; (c) Backlit projection onto the faceplate.

Vibration-based feedback is likely to be one of the least common modalities found
on social robots, however, if present is to be expected in the form of one of two basic
types of vibration motor, being either an eccentric rotating mass type or a linear
resonant actuator type. In some cases, the usage of this feedback may be a discrete
on and off or it may possess some continuous range of values that represent intensity.

Lights have classically been used as a medium for feedback in HRI. LEDs have
previously been used to give robots an ambient-like display of low cognitive load
information communication, allowing for glances and unintrusive contextual obser-
vations to inform the human of the robot’s internal state (e.g., low battery, task
in progress, available for use) [79]. Light-based feedback has been observed by
Kayukawa et al. [47] to have a significant effect on the decision-making of participants
and effect their impressions of the robot, in an experimental prisoner’s dilemma-like
game. In this study different colored lights were used in the eyes of the NAO robot
from SoftBank Robotics10 to convey the emotional state of the robot (yellow: joy,
red: anger, blue: sadness, pink: shame).

Facial expressions are likely to be specific and highly different between robot

10https://www.softbankrobotics.com/emea/en/nao
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platforms. As an example, the iCub humanoid robot11 has a set of LEDs under its
faceplate which gives the perception that it has both a mouth and a set of eyebrows
which can be set to one of 16 predefined colors 3.2a. As well, there are a number of
redundant sets of LEDs that can give the imitation that the iCub is smiling, frown-
ing, excited, confused, etc.. Another robot platform like the QT robot previously
described uses an LCD display and plays pre-rendered avi video files to give the
perception of smiling, laughing, talking, and more 3.2b. The Furhat robot has a
revolutionary design for its facial expressions, allowing for extremely complex and
detailed designs 3.2c. This robot uses a wide-angle light projection inside the head
to display pre-rendered faces onto the back of the faceplate which shines through to
give the perception of a realistic face. Regardless of how the robot is designed, facial
expressions are an important aspect to consider in the experimental design.

The robot’s body language & movements are the last feedback modality which we
believe is the most important feedback for social robots. The levels of embodiment
vary widely among robotics platforms, however, the use of the robot’s body in com-
munication with others is paramount in producing positive affinity when interacting
with people [59]. It has also been shown in a study by Li and Chignell [52] that
prerecorded gestures on a plush bear robot can be used to express emotional states
through simple head and arm movements. Any sort of actuation of the robot can
elicit affective responses from a person in an interaction scenario [92], so it is im-
portant to consider this greatly in the design. The way to interface with the robot’s
motor systems as well varies widely. For robots such as the QT robot which contains
a total of 8 degrees of freedom (2 in the head, and 3 in each of the two arms) there
exist two ROS interfaces, one for controlling specific joints by providing the exact
degree of the joint, and a second which allows for recording and playback of motors;
in the recording state, the motors unparked allowing for complex movements of the
robot. Other robots such as the iCub offer similar motor interfaces to adjust its 53
degrees of freedom to specified degree positions, as well as provides an interface for
controlling the arms and legs in Cartesian (operational) space.

As discussed later in section 3.2.2, the HRI Physio Lib contains an abstract class
called robotInterface which can be used as the base to develop a concrete controller
for adaptive scenarios. This abstract class contains numerous virtual functions that
can be used as a starting point to build from or allows for polymorphic designs such
as reusing a scenario with a different robot.

11https://www.iit.it/web/icub/

22

https://www.iit.it/web/icub/


3.1.4 Scenario and Adaptation

The scenario and adaptation component primarily is responsible for merging the
data to create individual scenarios for HRI experiments. As described by Fairclough
and Gilleade [25], the creation of physiologically adaptive systems require a careful
design process to ensure the adaption itself is “perceived as accurate, timely, intuitive
and does not have any unintended consequences”. The incoming physiological data
must be interpreted and merged with the robot’s feedback to produce responsive
applications.

In order to make compelling adaptive scenarios, experimenters first need to define
two important elements to the context of their closed-loop system. The first is what
are the targeted human states described in terms of the physiological descriptors
(e.g., stress defined in terms of HRV metrics). The second being what behaviors
are possible in terms of the agent’s capabilities (e.g., emotional expression through
lights, voice, movements).

Designers of physiologically adaptive systems need to be aware of the specific
body metrics and ranges used to describe the desired human states and use them
accordingly for each scenario. As well, routines for the robot’s behavior must also
be specifically tailored to elicit desired responses from a human participant. For
instance, a scenario centered around participant relaxation using a social robot can
play defined routines such as pleasant background music, makes slow stable gestures,
and speech to encourage breathing patterns that are beneficial to induce a relaxed
state. Combining these two aspects with some form of a decision loop allows for
real-time adaptations of the robot’s behaviors.

To summarize, the framework provides a general structure and multi-purpose
tools to help facilitate the integration of physiological signals into HRI applications.
Later in Chapter 4 we go on to describe the implementation of a use case using our
framework related to an exercise scenario mediated by a social robot.

3.2 Architectural Structure

If the framework is the tools we use to build constructs, the architecture is the
blueprints that better define the software. IEEE 1471 [56] defines architecture as:

“The fundamental organization of a system, embodied in its components,
their relationships to each other and the environment, and the principles
governing its design and evolution.”
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In this next section, we will begin to descend into the details of what has been
implemented, and how extensions of the framework can be used to develop further
custom physiologically adaptive scenarios.

3.2.1 High-Level Architecture

The high-level architecture can be seen in Fig. 3.3. It is divided into the four primary
components of the framework discussed in the previous section. The loop detailed in
the figure begins first with the person wearing some sort of sensor to acquire physio-
logical data. In our implementation for the Signal Acquisition, we first chose to focus
primarily on an ECG chest strap (namely the Polar H10). For the later described
Polar Streamer(in section 3.13), the Data Receiver was a software development
kit (SDK) offered by the manufacturer for developing applications on mobile device
platforms (Android and iOS). This SDK provided a good interface for connecting
to the Polar device wirelessly to acquire a variety of measurements include the raw
ECG stream, accelerometer data, heart rate data (measured in beats per minute),
as well as computed RR intervals. Received data is prepared to be appropriate for
sending out onto Lab Streaming Layer (LSL).

For future implemented devices the mode for the Data Receiver may be something
completely different. For example, the Shimmer suite of devices can be interfaced
by connecting directly over Bluetooth. They can also be queried through the local
database (db file) created by Shimmer’s proprietary device management application
Consensys when requesting to log streamed Bluetooth data. As well, LSL is not
the only possible end output for the Signal Acquisition, other middleware such as
ROS and YARP could be used instead as the Data Stream Outlet. LSL was chosen
as the primary mode of sending and receiving sensor data, as a number of open-
source applications have already been developed to stream physiological data over
LSL (previously discussed in section 3.1.1). The ease of using ROS and YARP has
been made possible through an abstract design called the StreamerInterface and
concrete implementations for the respective middlewares. This is further described
in section 3.2.2.

Raw physiological signals are too noisy to describe psychophysiological states re-
liably for use in HRI experiments. A well-structured and careful process of signal
filtering and feature extraction must be conducted to successfully transform physio-
logical signals into usable descriptors and markers capable of representing the psy-
chophysiological signatures of human responses [26]. To help facilitate the creation
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Figure 3.3: Overview of the HRI Physio Lib. Color code explanation of the cat-
egories per each component as follows: purple–body process, yellow–hardware el-
ements, grey/white–software elements with their individual components, and blue–
data or information flow.

of these pipelines we’ve provided implementations of common signal processing al-
gorithms. Many of these signal processing algorithms require a fairly large window
of data to properly function. To assist in this, a module has been created called the
Physio Receiver (described in depth later in section 3.3.1) which acts as both a
bridge between middlewares (i.e., can receive data from LSL and transmit it back
out onto ROS), as well as provides a simple way to efficiently log, buffer, and win-
dow received data. When a variable amount of data has been buffered, the Physio

Receiver will then output a frame of data onto the specified network while keeping a
variable number of samples from the end of the frame to be used as the beginning of
the next. The primary reason to decouple data acquisition and processing is to pro-
vide a simple asynchronous design that ensures that data doesn’t become lost should
processing take longer than expected while new data samples arrive. The Physio

Receiver is data agnostic and provides a needed level of separation of responsibilities
in a modular system.
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Continuing with the initial focus on ECG data, we’ve developed a processing
module called the NeuroKit Processor, which leverages the previously discussed
Python toolbox NeuroKit2. This module receives ECG data from a specified LSL
stream, buffers the data, windows and processed it with a total of nine outputs LSL
streams. These nine outputs include a cleaned ECG stream (of the same length
as the specified frame size), a binary array (of the same length as the frame size)
containing a 1 in the indices if an R-peak is present, and a single value representation
for the mean heart rate of the frame. The remaining outputs are also single-valued
samples that represent the HRV feature of the processed frame. They are the: SDNN,
RMSSD, pNN50, LF band, HF band, and LF/HF ratio. This module is meant to be
a simple feature extraction tool, and while it doesn’t rely on the Physio Receiver

for buffering its data, it isn’t doing anything too computationally intensive as to
result in lost data.

Processed data can now be passed to the Scenario and Adaptation component.
The primary piece of this is the Decision Loop which acts as the primary driver
for a scenario and feeds commands to the (yet to be described) Robot Controller.
We describe later in Chapter 4 an exercise-based scenario to clearly convey how
these components for a physiologically adaptive scenario might be implemented.
The Physio Interpreter and Robot’s Behavior components will be fairly contextual
to the scenario which is being designed. For the exercise scenario we later describe
these two components were quite minor, while for more complex scenarios aimed at
approximating difficult human states and how the person in-the-loop responds to
feedback from the robot, they will play a more significant role.

The final component deals with controlling the robot, namely the Robot Con-
troller. Similar to the abstract design of the StreamerInterface, we developed an
abstract RobotInterface with the purpose of being a template to which concrete im-
plementations will follow. As described in section 3.1.3, we’ve outlined six feedback
modalities that we believe to be common across most social robotic platforms. The
abstract controller was used in the exercise scenario to develop the QT Controller

(described in section 4.2.3). The benefit of pursuing an abstract design is related to
polymorphism and the reusability of software. The software design pattern on which
these two interfaces are based off is the bridge pattern, which aims to allow imple-
mentations to vary independently from the abstraction. Gamma et al. [33] explains
the bridge pattern as being useful when:

“... you want to avoid a permanent binding between an abstraction and
its implementation. This might be the case, for example, when the im-
plementation must be selected or switched at run-time.”
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This can be particularly useful if at a later point it is decided a different robotics
platform should be used, or to reuse the same Robot Controller for a different fu-
ture scenario. In practice though, implementations are likely to vary widely and be
explicitly tailored towards the absolute needs of the robot with the context of the
scenario.

3.2.2 Low-Level Architecture

In this section, we will go one layer deeper and detail the low-level architecture of
the HRI Physio Lib. The software library itself is written in C++ and is broken up
into six namespaces, which act as identifiable organization groupings.

Core

The first namespace, Core, contains a set of generic implementations of data struc-
tures that are used elsewhere in the library. These data structures can also be used
to help designers in building their own implementations. Currently, there are two
classes in this category. The first is a simple Graph class, which could potentially be
used for keeping track of state transitions in an experimental scenario.

The second is a template class called RingBuffer, which is used frequently
throughout the library as a means of efficiently buffering information to later be
purposed. The advantage of using this container over something like a std::vector

or std::list, is really rooted during the enqueue and dequeue operations. Since
we’re expecting a lot of adding of data to the buffer, followed by large chunk removals,
it is important for us to ensure a good level of performance and cache locality as to
not cause unnecessary inefficiencies. For std::vector, it can be costly to remove
items from the front, as all remaining elements are copied sequentially to the front.
For std::list it is easy to remove elements from anywhere in the data structure, as
the implementation is built using pointers, however, we are likely to lose performance
due to poor stride locality of the stored data.

A ring buffer is conceptually a circular array; its implementation however is a flat
array with a pointer to the head and tail (seen in Fig. 3.5) to indicate where the data
begins and ends. The only drawback is the size of the buffer (allocated space) is not
dynamic, meaning any requests to resize or expand the buffer requires copying all
elements to new internal storage. This however can be averted by simply constructing
with an appropriate amount of storage to the context. This implementation was
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Figure 3.4: The Core namespace. Shown are the RingBuffer and Graph objects
which are generic data structures that are part of the software library. Future generic
implementations of useful data structures will be found here.

designed with the expectation that reading and writing to the data would need to
be done asynchronously. We’ve ensured these methods are atomic in nature through
the use of a std::mutex lock. Another advantage of our particular implementation
is when needing to dequeuing; we’ve added a feature to allow for overlapping chunks
of data through a sliding window, i.e., when removing data from the buffer, there is
an optional argument to keep a varied number of samples at the end.

Figure 3.5: (left) The conceptual idea of a ring buffer storage. (right) The actual
implementation of ring buffer storage. A pointer to the head and tail float along a
flat array to indicate where the start and end indices are. The last index of the flat
array precedes the first index to form a seamless ring shape.
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Factory

The Factory namespace is a location for implementations based on the factory ab-
stract design [33]. The idea of the factory pattern is to simply consolidate the creation
of polymorphic objects without explicitly stating their concrete type. This abstrac-
tion is exposed to the user through enumeration or simply a string-based request.
The benefit of utilizing a factory pattern is to bring both scalability and readability
to the interface.

Currently, our factory namespace has only one class, called the StreamerFactory,
which is used to produce the concrete implementations of the StreamerInterface.
The benefit for us is that if we choose to support an additional mode of streaming
data (e.g., UDP socket, Bluetooth socket, MQTT12) all we’d need to do is add
the new concrete implementation into the possible return types of the factory, and
automatically any module using the StreamerFactory to produce derived classes of
StreamerInterface will be able to utilize said new concrete streamer.

Figure 3.6: The Factory namespace. Shown is the StreamerFactory, which imple-
ments the factory software design pattern to abstract the process of instantiating
objects derived from the StreamerInterface found in the stream namespace. Fu-
ture implementations of factory-like objects will be found here.

Manager

The next namespace is called Manager, of which we have three classes. To begin we’ll
describe the ThreadManager class, a relatively simple design to abstract away the
complexities of producing asynchronous behaviors, and create a reusable interface

12https://mqtt.org/
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to which future driver like applications can inherit from. The ThreadManager has
a method for spawning a new thread for a given function. This manager keeps a
reference to the spawned thread so that when it’s time to end the program it can
clean everything up nicely. This manager also has a function which derived classes
can utilize to check each loop for if the manager is still running, or should it stop
itself.

The PhysioManager is the second class within the namespace. This class is
derived from the ThreadManager, and is inspired by the producer-consumer pat-
tern [44] since it is encapsulating two concrete implementations derived from the
StreamerInterfaces. One of these streamers was used for receiving data (pro-
ducer), while the other was used to send data (consumer). This manager also encap-
sulates the previously described RingBuffer object, which ensures atomic reads and
writes of the buffer. Both the input and output streams ran on their own threads
which the manager spawns. When the input stream received a new chunk of data,
it first writes a copy of the data and its timestamps to a csv file prior to writing the
data to the buffer. The output stream will periodically check to see if the buffer has
accumulated a set minimum number of samples. When this has occurred it requests
to dequeue the data.

Figure 3.7: The Manager namespace. Shown are the C++ manager classes which have
been designed to handle and manage objects and functions which they encapsulate.
In the case of the ThreadManager, it receives functions to spawn threads for, while
managing their lifetime. The PhysioManager and RobotManager objects have the
purpose to encapsulate polymorphic objects which are passed to them and manage
their individual behaviors. White arrow heads represent inheritance.
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The last class within this namespace is the RobotManager, whose purpose is to
manage concrete implementations of the RobotInterface class. This manager is also
derived from the ThreadManager, and uses the inherited methods to spawn threads
for the RobotInterface that need to be run asynchronously (such as the robot’s
command receiving methods and of overridden an internal loop for the robot). This
manager simply provides a convenient reusable interface to wrap a concrete robot
controller in.

Processing

The namespace Processing contains a number of digital signal filtering methods. In
the future, we’d like to expand the suite of implemented algorithms, but for now,
we currently have five main methods implemented, which can be utilized for data
cleaning and extraction.

Figure 3.8: The Processing namespace. Shown are the C++ processing algorithms
that have been developed so far. Future implementations of processing methods will
be organized into this namespace. Black arrowheads represent composition relation-
ships, while white arrowheads represent inheritance.

The first class in the list is an abstract class used by four of the implemented
methods. This abstract class is called Biquadratic and contains the necessary meth-
ods for implementing second-order infinite impulse response (IIR) filters. The only
method required to be overridden by derived classes is the updateCoefficients

method. The Biquadratic abstract class performs a bilinear transformation on a
chunk of received data with the specified coefficients. Its design is based on an out-
line from Dodge and Jerse [20]. Derived from this abstract class is a suite of recur-
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(c) Butterworth band-pass filter
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(d) Butterworth band-reject
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Figure 3.9: Equations for calculating the coefficients for various Butterworth filters.
fcut is the cutoff frequency for the high pass and low pass filters. fcent is the center
frequency for the band pass and band reject filters. frate is the sampling frequency
of the expected signal which the bilinear transformation will be applied to.
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sive Butterworth filters for low-pass, high-pass, band-pass, and band-reject filtering.
These four filters simply implement a constructor and method for calculating the
coefficients. The coefficients are also come from Dodge and Jerse, and are shown in
Fig. 3.9. The ButterworthLowPass, ButterworthHighPass, ButterworthBandPass,
and ButterworthBandReject are the respective derived classes that use these coef-
ficients.

The other implementation that we have included is a simple implementation of the
Hilbert transformation, which can be used to produce the analytical signal (also de-
scribed as the envelope of the signal), which can be useful in designing efficient feature
detection for ECG [64] and measuring the beat-to-beat time intervals from seismocar-
diogram (SCG) data [98]. This implementation can be found as HilbertTransform,
and utilizes the C++ compliant, header-only library, PocketFFT13.

Social

The Social namespace contains the RobotInterface, an abstract class that can be
used as a starting point for designing robot controllers. The interface only has a pure
virtual function that must be overridden by the derived class, being the configure

method. The interface contains a total of thirteen virtual functions which can op-
tionally be overridden; if a method is not overridden the default implementation will
be called stating that “Function function-name has not been implemented!!”. Nine
of the overridable methods are setter-like, providing support for setting peripheral
(robot body part) state and velocity, emotion, gesture, speech, speech configuration,
volume, audio file, and video file. The remaining four methods are getter-like, pro-
viding support for getting peripheral state and velocity, emotion, and commands
for the robot (this could include something like an open ROS subscriber to receive
commands from the outside the program). Derived classes can be passed to the
RobotManager class (previously described) which will handle input requests, and
calling for the appropriate overridden functions.

Stream

The final namespace of the HRI Physio Libis called Stream, which contains generic
implementations for receiving and sending streams of data. To start, we’ve created
an abstract class called StreamerInterface which is ultimately a part of the previ-
ously described bridge pattern. The purpose of this interface is to allow the derived

13https://gitlab.mpcdf.mpg.de/mtr/pocketfft/-/tree/cpp

33

https://gitlab.mpcdf.mpg.de/mtr/pocketfft/-/tree/cpp


Figure 3.10: The Social namespace. Shown is the abstract class RobotInterface.
This C++ interface acts as a starting point for developing robot controllers to inherit
from for designing complex behaviors.

concrete implementations a chance to vary widely, ultimately providing support for
receiving and sending data with vastly different sources and protocols (e.g., LSL,
ROS, YARP). The StreamerInterface can also be taken advantage of to support
arguably the most important facet of the bridge pattern, namely the ability to se-
lect or switch which derived class is used at run-time (thanks in part also to the
StreamerFactory). The combination of all these is later shown in the description of
the Physio Receiver in section 3.3.1. The StreamerInterface has a total of six
pure virtual functions which a derived class must overload. The first two methods
are for configuring the encapsulated streamer objects, namely openInputStream and
openOutputStream.

The next two methods are for receiving data; the function names are both
receive, however, the signatures (variables you pass in) are slightly different. The
first function signature takes a reference to a std::vector with a custom data type
called hriPhysio::varType (this data type is described in the next section, Helpers),
which is used as the buffer where incoming data will be stored. The alternative func-
tion signature takes for its first variable a reference to a std::string. The second
variable for both signatures is a pointer to a std::vector of type double which is
used for storing the received timestamps. Not all streams will support sending or
receiving timestamps, so this variable is by default pointing to the nullptr (i.e.,
timestamps are optional). These two separate functions exist to allow the derived
implementations to vary and specialize how they transmit signal data versus single
character-based strings.

The last two methods which must be overridden are for sending data; the function
names are both publish, and likewise to receive, follow the same two signatures
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Figure 3.11: The Stream namespace. Shown are the C++ derived classes from the
StreamerInterface. The four concrete streamers implement the pure virtual func-
tions from the parent class and encapsulate the necessary components to provide
data communication using their namesake. White arrowheads represent inheritance.

(one for a buffer and another for optional timestamps). The only difference is since
variables are being passed by reference (to prevent having to unnecessarily copy the
data) both the data and timestamps are passed as constants.

We have four concrete implementations of the StreamerInterface. So far, we
have created the LslStreamer which allows for communication with Lab Stream-
ing Layer, RosStreamer for connecting to publishers and subscribers on the ROS
network, YarpStreamer for connecting to nodes on the YARP network, and lastly
CsvStreamer for writing data out to or reading from a csv file. Their implementa-
tions are all very similar implementing the six pure virtual functions to specifically
tailor to their individual needs.

Helpers

While not a namespace, the helpers.h file contains a number of additional common
generic functions and minor objects with reusability in mind. The previously men-
tioned hriPhysio::varType is a specific definition of the C++ class std::variant, a
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type-safe implementation of union introduced in C++17. Our definition provides sup-
port for the following standard C++ data types: char, int16 t, int32 t, int64 t,
float, and double. Utilizing a definition of std::variant effectively allows the
data type of receiving and sending streams to be specified at run-time at the cost of
the storage required by the largest data type (64-bits).

Complementary to the data type is the hriPhysio::varTag, a simple enumera-
tion type for keeping track of what the actual data type was set at run-time. The only
other object of note within the helpers file is a custom-made parser for command-line
arguments, the hriPhysio::ArgParser.

3.3 Implemented Applications And Tools

Using our software library, we have developed a few multipurpose applications and
tools with reusability in mind. A common issue in designing experimental scenarios
is the great time investment in developing the technologies to make an experimental
trial run like clockwork. We’ve attempted to alleviate this by carefully designing the
following software to be used in any sort of relevant situation.

3.3.1 Physio Receiver

The Physio Receiver is the culmination of much of the previously described soft-
ware library. The Physio Receiver was designed with the idea of bridging commu-
nication libraries. We entered the design of this tool with the knowledge that a great
deal of open-sourced data acquisition tools have been developed using LSL. Should
we want to take advantage of these already developed tools in HRI scenarios, we
would need to ensure that using them is as convenient as possible should we want
to truly make this technology accessible. For some, the thought of adding additional
dependencies to an already otherwise complex software system (think a chaotic ROS
dependency graph) can be nauseating, while others might be completely fine adding
LSL into their system. The point is that we wanted to include a simple transla-
tion interface to bring physiological data into the systems roboticists are working
in (namely ROS and YARP) without asking for too much additional development
investment on their part.

Aside from bridging technologies, the Physio Receiver is also capable of accu-
mulating the potentially shorter windows of data that a device may be transmitting,
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Figure 3.12: The architecture of the Physio Receiver. The individual C++ classes
are shown, and how they relate to each other in a pseudo-UML format. Black
arrowheads represent composition relationships, while white arrowheads represent
inheritance.

and buffering them until some expected length is reached. The process of separat-
ing the data accumulation from the processing provides the advantage of ensuring
smaller chunks of data aren’t missed while processing is in progress. The Physio

Receiver also has an argument for specifying how many samples should overlap
between the current and next window of data.

As seen in Fig. 3.12, the Physio Receiver primarily encapsulates an instance
of the StreamerFactory and PhysioManager. Four command-line arguments are
available, namely the --input and --output flags as well as --conf for providing the
path to a yaml configuration file. An additional flag --interactive is also available,
and allows the PhysioManager to run in a mode which allows for text-based inputs
(primarily used for debugging). The input and output flags are used as inputs for
the StreamerFactory, which will return a pointer to a derived StreamerInterface

object. The PhysioManager has no knowledge about which derived class was created,
but because of the polymorphic design of the StreamerInterface, all necessary
methods to the PhysioManager have been required to be implemented.

The final instructions the Physio Receiver does before starting the manager is
passing the specified configuration file. This file should contain a number of variables
for specifying what the name of the input and output streams are, as well as the data
type, sampling rate of the data, expected input frame length, requested output frame
length, the number of channels being received, sample overlap between frames, the
number of samples in the ring buffer which should be allocated, and whether or
not to log data and where it should be stored. After configuring the manager,
the Physio Receiver starts the manager; if specified the receiver then calls the
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manager’s interactive mode method. If this is not called, the receiver will call the
manager’s wait method which will patiently wait until an event causes all threads to
close.

3.3.2 Polar Streamer

The Polar Streamer is an Android application (written in Java) design and imple-
mented by two undergraduate coop students we recruited in the fall 2020 semester.
We chose to pursue implementing this application for two reasons, the first relat-
ing to the accessibility to this sensor, and the second being the level of support the
manufacture provides for interfacing with the sensor. To expand on the first point,
the Polar H10 and OH1 sensors are commercial products that can be purchased for
a little over $100 Canadian dollars. These sensors are also designed with exercise in
mind, meaning they’ve been developed to be robust to various levels of noise caused
by movement. As well, Gilgen et al. [35] have compared the Polar H10 sensors to an
expensive research-grade sensor and showed that the signal quality of the H10 was
extremely comparable.

The second point about developer support from the manufacturer comes in the
form of an SDK14, a compiled Android library (aar). This SDK provides a simple
interface for connecting and interacting with their devices over Bluetooth Low Energy
(BLE). The SDK is also actively supported by the manufacturer’s development team,
providing frequent updates and patches.

The Polar Streamer uses the SDK to connect to the Polar H10 and OH1 devices,
to stream acquired data out onto LSL. The application opens an LSL stream for the
metric when a user taps the stream button associated with the said metric. The name
of the stream follows a standard format of /Polar{H10/OH1}/{Device-ID}/{metric}
to easily communicate to the user what data is being sent on a particular stream
name. When connected with a Polar H10 device the Polar Streamer can open an
ECG stream with a sampling rate of approximately 130 Hz and an accelerometer
stream which has the options of 25, 50, 100, and 200 Hz sampling rate. The SDK
also allows the acquisition of heart rate and RR interval data which have already
been processed through Polar’s own proprietary algorithms. These two metrics have
a sampling rate of approximately 1 Hz. Similarly, when a Polar OH1 device is con-
nected, the PPG and accelerometer stream is opened in a similar manner, with access
to the heart rate and PP interval data. The user-interface for the Polar Streamer

can be seen in Fig. 3.13.

14https://github.com/polarofficial/polar-ble-sdk
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Figure 3.13: The Polar Streamer an Android application designed to stream phys-
iological data over Lab Streaming Layer. The application supports the Polar H10
chest strap heart rate monitor and the Polar OH1 armband optical heart rate mon-
itor.
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3.3.3 Physio Streamer

The Physio Streamer is an in-development desktop data acquisition application.
The application is written in Python, and uses PyQt515 (Python bindings for the
cross-platform C++ library Qt-v516) for its graphical user-interface. The application
also uses the cross-platform package Bleak17 to allow the application to connect to
BLE devices by acting as a GATT server. This application is being developed with
cross-platform requirements in mind, thus all Python packages used to develop this
are required to support both Windows and Linux at the very least.

The purpose of this application is to be another possible tool that can be utilized
to easily provide a stream of physiological data onto the network. This application
will utilize LSL for its initial output stream. The application is planned to initially
support the Polar H10 and OH1 devices, with plans to later try expanding support
to the Shimmer318 suite of sensors which can also be interfaced with over Bluetooth.
This application is not yet complete, however, an early build of the application can
be seen in Fig. 3.14.

3.3.4 NeuroKit Processor

The NeuroKit Processor is a relatively simple command-line interface tool for sim-
ple feature extractions of ECG data, using the Python toolbox NeurKit2. This
module connects to a specified LSL stream which presumably contains ECG. The
module buffers the received chunks of data up to a specified number of samples before
processing the data. The NeuroKit Processor has a total of nine output streams,
two of these produce a frame of the same length as the specified buffer size; the
first contains cleaned ECG data, and the second contains a binary array where a 1
indicates the presence of an R-peak on that same ECG wave. The remaining seven
output streams are all single value features of the frame; this includes the mean
heart rate, and the following HRV features: SDNN, RMSSD, pNN50, LF band, HF
band, and LF/HF ratio. As the module is not doing anything too computationally
intensive, we’ve designed it to do its own buffering (and not rely on the Physio

Receiver). This module is also capable of providing overlapping samples between
frames of processed data. As well, the module maintains the original ECG signal’s
timestamps.

15https://pypi.org/project/PyQt5/
16https://www.qt.io/
17https://pypi.org/project/bleak/
18http://www.shimmersensing.com/
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Figure 3.14: The Physio Streamer is an in-development desktop application for
data acquisition from physiological devices. The user interface contains four “blocks”.
(top-left) Scan begins searching for Bluetooth devices which are broadcasting them-
selves that are near. Found devices are populated into the combo box which by
default reads “No devices found”. Clicking connect will establish a connection to
said device, and add it to the list of connected devices (bottom-left). Connected de-
vices can toggle streaming and recording based on the selected settings. (top-right)
Settings for the selected device. Buttons for minimizing the current device back into
the tray, or disconnecting the device are present. Update and clear change or reset the
prefix of the LSL stream to the string currently in the text box. Checkboxes enable or
disable acquisition of the relevant metric from the connected device. (bottom-right)
If checked in the graph settings, relevant plots will occur in the display.
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In the future, this module is planned to be expanded to support processing for
PPG and EDA data. The NeuroKit2 has a wide collection of processing methods for
various different physiological signals.

3.3.5 NeuroKit Simulator

The NeuroKit Simulator is a module that was initially developed to assist in the
debugging phase of the Physio Receiver module. This module is also a relatively
simple command-line interface tool for streaming out simulated physiological data
out onto LSL. The Python toolbox NeuroKit2 contains methods for producing simu-
lated ECG, PPG, EDA, EMG, and respiratory (RSP) data. We’ve included a sixth
additional data type which produces a linear (incremental) line of data to assist in
the trickiest of debugging cases.

Each of the simulated physiological signal types uses slightly different flags with
the exception of the following three which were used in all the simulators. They were
--seconds for the duration of the signal, rate for the sampling rate, and --noise

for the noise to be introduced in the signal. The ECG and PPG both utilized the
--bpm for the heart rate to simulate (measured in beats per minute). EDA used the
--scr flag for the number of skin conductance responses to produce, and --drift

for the amount of signal drift to add. EMG used the --bnum and --bdur flags for
the number and duration of bursts to synthesize. Lastly, RSP used the --resp flag
for the respiratory rate to simulate.

3.4 Discussion

We have detailed in this chapter a robotics framework to act as a general structure
for developing physiologically adaptive HRI scenarios. In section 3.1, we began by
describing the various components which should be considered when designing an
experimental scenario and aimed in doing so to answer RQ1 which asked:

RQ1: How can we design a robotics software framework for the rapid
development of physiologically aware robots?

We first sought to detail the current problems in acquiring real-time streams of
data and provided recommendations for how to incorporate physiological data into a
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system. Next, we looked through the literature to understand what physiological sig-
nals are most frequently used, and what types of processing algorithms and features
would be useful for an adaptive system. We then went through and identified six of
what we believed were the most common feedback modalities which could be used
in an adaptive scenario by a social robot. Lastly, we discussed what factors should
be taken into consideration when designing the scenario itself, and what might be
useful to keep in mind when developing the adaptations for the robot.

With the general structure established, we moved onto designing software to
address each part of the broader framework. In section 3.2 we aimed to describe at a
high-level what the architectural loop might look like applying our framework. This
section continued on to describe at a low-level the software which we’ve created, in
direct response to RQ2 which asked:

RQ2: How can we develop a robotics software framework capable of
integrating various communication libraries?

We’ve developed a software library called the HRI Physio Lib to address this.
Our library utilizes a number of software design patterns to provide scalable interfaces
capable of utilizing different popular communication libraries such as LSL, ROS, and
YARP. The code and software which we’ve provided act as a starting point to provide
more rapid development of physiologically aware systems.

As with many research applications, the software developed needs to be highly
contextual to the experiment at hand to ensure a seamless and non-distracting ex-
perience for any human participant you’re trying to collect data from. As a result,
our software library may not be perfect for every researchers’ experimental scenario.
However, we’ve provided enough software and elements of consideration to ensure
researchers can utilize at least a small amount of our work to more efficiently develop
their own physiologically adaptive scenarios.

In the next chapter, we will go on to addressing RQ3 which asks if the proposed
framework in practice can be used to rapidly develop scenarios.
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Chapter 4

QT Cardio-Aware Exercise Coach

This chapter describes the motivation, experimental design, and implementation of a
use case scenario framed around exercise mediated by a robot coach. The goal of this
scenario was to have a robot within the loop of a cardio-based fitness routine, in which
the intensity and speed are actively adapted in real-time using physiological measures
from the participant. Furthermore, details in the implementation are related back
to the HRI Physio Lib outlined in Chapter 3. Work in this chapter was motivated
by RQ3 which asked:

RQ3: Is the proposed software framework and HRI Physio Lib able to
be used for the rapid development of physiologically aware robots
capable of adapting their interactions?

The results of the use case are explored along with a discussion of other poten-
tial scenarios in which a physiologically aware robot may provide an improved user
experience. Due to the COVID-19 pandemic, in-person human studies had been pro-
hibited; therefore, the use case scenario was conducted with one of the postdoctoral
fellows of the Social and Intelligent Robotics Research Lab (SIRRL) as the partic-
ipant. All in all, this use case aims to show and validate the functionality of the
proposed framework (i.e., the data flow, logging system, and communication with
the robot) more than systematically validate the use of a robot as an exercise coach.
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4.1 Social Robots as Exercise Coaches

Promotion of physical activity has never before been a more apparent necessity.
Durations of sedentary behaviors such as sitting time in young adults have increased
as a result of stay-at-home orders during the COVID-19 pandemic [105], with mixed
observations of increased physical activity dependent on motivation [82]. Physical
inactivity is a common contributor to poor health, leading to increased rates of
morbidity and cardiovascular diseases [104]. Thus, efforts to increase motivation to
engage people in daily physical activities and better promote healthy lifestyles may
be a valuable endeavor to showcase the development of a physiologically adaptive
system using the HRI Physio Lib.

The intersection of exercise and games poses an interesting use case for adaptive
systems. Previous studies in exergaming have shown in general to yield positive user-
experiences and overall engagement in the system [58]. Physiological measurements
have not been uncommon in the exergaming space, however, it can potentially be
difficult to determine if a change in physiology is the result of differences in affect or if
they’re in response to the high-intensity exercise. A study by Barathi et al. [4] aimed
to discover which physiological measurements are best suited for affect recognition
in high-intensity exergaming. Their study identified that skin conductivity, pupil
dilations, and pupil fixations were positively correlated with affect, while blinking
was negatively correlated.

Other exergaming studies have found success in using physiologically adaptive
systems. Muñoz et al. [66] used real-time heart rate metrics acquired from a PPG
monitor on a smartwatch to modulate the difficulty of a pong-inspired exergame.
Their game not only increased the amount of time participants spent in recommended
levels of cardio-respiratory exertion but also provided a positive user-experience in
comparison to a non-adaptive version of the game.

Video game-based approaches provide levels of immersion that can attract and
provide engaging experiences to persuade people to “go just a bit longer”. It may
be the case that robots could offer a convenient level of authority to engage people
to–like games, “go just a bit longer”. A study by Cormier et al. [14] found the
authority which robots wield could be used to command participants to engage in a
repetitively tedious task that involved renaming thousands of image files from jpg

to png. Aroyo et al. [3] found that this robotic persuasion could be taken a step
further to push people into doing things they understand as wrong. Additionally,
Schneeberger et al. [87] found that virtual agents also held levels of authority to be
just as persuasive as a human-instructor in a scenario that required participants to
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do “stressful” and “shameful” tasks.

Robots are not necessarily a new mode for studies involving exercise. Sussen-
bach et al. [97] showed that a social robot could be used in a workout scenario to
promote higher motivation and improved training effects when compared against
a text-display system. A related study by Schneider and Kummert [88] compared
social robots against virtual agents in an exercise experiment which found that so-
cial robots provided more motivation and engaged participants longer than virtual
agents. In a follow-up study, Schnieder and Kummert developed an online prefer-
ence learning system to adapt to a participant during an exercise scenario via verbal
feedback [89]. They found that an adaptive social robot resulted in an overall more
engaging experience for the participants.

4.2 Implementation of the Experimental Scenario

Using fitness as a focal point for a compelling and practical use case, we designed
an experimental scenario revolving around a physiologically aware exercise coach.
The scenario we developed involved a human participant being led through a cardio-
based fitness routine, in which the intensity and speed were actively adapted in
real-time using physiological measures of the participant. By adapting the speed
of the activity, we aim to encourage an effective cardiorespiratory exercise for the
participant by maintaining them in a healthy training zone (i.e., not over or under
exerting themselves over the duration of the activity).

Using the tools and software from the HRI Physio Lib described in Chapter 3,
we designed a controller for the robot and peripheral systems (audio and visual)
which integrate with the socially interactive robotics platform QT robot. Exercise
intensities were adaptively changed by using heart rate (HR) readings from the par-
ticipant. We set our goal for this use case to illustrate the functioning of the HRI

Physio Lib and how it might be used to rapidly develop a scenario with the robot
in-the-loop.

4.2.1 The Socially Assistive QT Robot

For this use case, we utilized the socially assistive QT robot (seen previously in
Fig. 3.2b), a commercially available platform from LuxAI1. The QT robot provides an

1https://luxai.com/
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accessible gesture, emotion (face-display), and text-to-speech interfaces which made
quick prototyping of behavioral responses easy. The emotion and text-to-speech
interfaces could be accessed through a ROS publisher, while the gesture interface
could be accessed through a ROS service client. Custom-made audio and video
interfaces were developed which allowed exercise music and reference videos to be
dynamically swapped throughout the scenario (these are described more in-depth in
section 4.2.3).

The QT robot has a few additional interfaces which we did not utilize in this
scenario; one of which can be used for 3D body and facial tracking using the Intel
RealSense D435 depth camera that is embedded in the robot’s head. In future
studies with real human participants, this interface could be utilized for scoring the
participant throughout the exercise. The full documentation for the robot can be
found on its ROS wiki page2.

4.2.2 The Exercise Routine and Experimental Design

An exercise routine was created following the American College of Sports Medicine’s
(ACSM) guidelines for cardiorespiratory exercise prescription [34]. The routine was
comprised of four phases: a three-minute calibration–to establish the participant’s
HRrest, followed by a five-minute warm-up exercise, ten-minutes of cardiorespiratory
exercise, and lastly a five-minute cool-down exercise. The phases can be seen in
Fig. 4.2.

The Calibration Phase

During the calibration phase, the participant was seated on a chair in front of a table
that held the QT robot, a computer monitor, computer speakers, and a laptop. The
laptop acted as a command server which had the computer monitor and speakers
connected to it. The complete setup can be seen in Fig. 4.7.

The participant wore the Polar H10 chest-strap sensor which was connected to the
Android application Polar Streamer described in section 3.3. The Polar Streamer

transmitted the data over Lab Streaming Layer (LSL) to the Physio Receiver,
running on the laptop computer where the data was logged, buffered, and relayed
out onto ROS. The main behavioral loop QT Physio Coach subscribed to this ROS

2http://wiki.ros.org/Robots/qtrobot
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node, giving the robot knowledge of the participant’s real-time HR. The data received
by the behavioral loop was stored into HRbuffer.

Figure 4.1: The splash screen reads QT Physio Coach and is shown to the participant
during the exercise scenario. The splash screen contains an animated green ECG
signal which loops across the screen.

For the duration of the calibration phase, the robot instructed the participant
to relax and enjoy the music while it collected their HR. As feedback, the robot
would periodically make encouraging faces with its face-display, speak to participants
reminding them to breathe and relax, as well as informing the amount of time left
in the calibration phase.

At the end of the calibration phase, the resting heart rate (HRrest) was calcu-
lated by taking the mean of the collected HRbuffer. At this time, the maximal heart
rate (HRmax) was also approximated by using the following regression equation from
Tanaka et al. [100]

HRmax = 208− 0.7 · Participantage (4.1)

The maximal heart rate is then used to find the heart rate reserve (HRR) through
the difference with the resting heart rate

HRR = HRmax − HRrest (4.2)

The ACSM provides recommendations for cardiorespiratory fitness training, say-
ing that people should exert themselves into certain targeted HR zones defined in
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terms of HRR percentages [34]. For our exercise scenario, we established a light-to-
moderate target HR zone between 40% and 70% of the HRR (HRR40 and HRR70

respectively). This target HR zone can be seen as the green shaded region in Fig. 4.12.

At the end of the calibration phase, the QT robot thanks the participant for their
patience, notifies them of what their calculated HRrest, and tells them that it will try
to keep their HR between HRR40 and HRR70.

The Exercise Phases

At the beginning of the warm-up phase, the QT robot asked the participant to move
the chair out of the way and replace it with an aerobic stepping platform. The
stepping platform has an adjustable height, which we set at its lowest of 4 inches.
This can be seen in Fig. 4.8.

Figure 4.2: The timeline of the exercise routine. Beginning with a 5-minute warm-up
phase, followed by 10-minutes of conditioning exercise, and ending with a 5-minute
cool-down phase. Activities that occurred in each phase and their duration are shown
from top to bottom.

The first exercise begins with the QT robot telling the participant to follow its
lead with a “basic marching” activity (described in table 4.1). During this period,
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Figure 4.3: Basic marching; a complete description of movements for the activity in
table 4.1.

Figure 4.4: Step-up reach and pull (a1); a complete description of movements for the
activity in table 4.1.

motivational music began playing at 115 beats per minute (BPM). This music would
be changed with a ±5 BPM version of the same song during a rule update (described
later in this section; see algorithm 1). The ceiling for the speed of the exercise music
was 135 BPM, and the floor was 110 BPM.

The procedure of each exercise activity was similar, varying in length, intensity,
and which activity is being performed. The overall schedule of the routine can be
seen in Fig. 4.2. At the beginning of each exercise activity, a short reference video
of a human fitness instructor performing the current exercise begins playing. During
this, the QT robot asks the participant “Try to imitate the video, while keeping pace
with the music”. The reference video looped onto itself for 30 seconds, before the
robot’s decision loop turned the video to a splash screen reading QT Physio Coach,
with a photo of the robot and a looping animation of an ECG waveform (see Fig. 4.1).
The decision to cut away from the reference video of the fitness instructor to a splash
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Figure 4.5: Lateral knees (a2); a complete description of movements for the activity
in table 4.1.

Figure 4.6: Both arms forward (a3); a complete description of movements for the
activity in table 4.1.

screen after 30 seconds was made in an attempt to guide the participant’s attention
towards the robot once they were aware of the current exercise.

When the reference video started playing, the QT robot also began performing
a gesture unique to the current exercise activity. Along with the music, the speed
of these gestures was also modified by ±5% during a rule update. The initial speed
multiplier was set to 95% the original recorded gesture speed, maxing out at 115%
and a minimum of 90%.

Throughout the current exercise activity, the QT robot would periodically do
one of three behaviors at random. The first possible behavior was to deliver some
motivational speech to the participant, which was chosen at random from a predefined
list of positive phrases; the second behavior was to display a positive facial expression
on the QT robot’s face-display; the third behavior had the QT robot telling the
participant what their current average HR reading was (using the last 30 seconds of
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buffered data). This random behavior decision was on a 20 second timer and would
have a lower priority of action if a rule update were to also happen.

Algorithm 1: Heart Rate Rule Update used in the QT Physio Coach

HRexercise = mean(HRbuffer)
if HRexercise < HRR40 then

Increase the speed of music and gestures;
Tell the user we’re picking up the pace

else if HRR70 < HRexercise then
Decrease the speed of music and gestures;
Tell the user not to over exert themselves

else
Provide encouragement to continue keeping up to the pace

end

During the whole exercise scenario, HR data is streamed to and buffered by the
decision loop. A rule update occurred every 30 seconds and is detailed in algorithm 1.
In summary, the mean of the HR data currently in the buffer (HRbuffer) is computed
to find the average HR of the participant (HRexercise) for some window of time. After
this data has been used, the buffer is cleared, discarding all old data. This buffer
is also cleared at the beginning of each exercise activity, to ensure each rule update
contains approximately 30 seconds worth of HR data.

Now that the template for activities has been described, we can better describe
the macro view of the routine. As well, the complete description for each activity
can be seen in table 4.1.

As mentioned earlier, the warm-up phase began with three minutes of a “basic
marching” activity. The “basic marching” activity is used throughout the entire
routine as a means to give the participant a short break between periods of the
high-intensity activities to recover, further keeping them between 40% and 70% of
their HRR (target HR zone). After the initial “basic marching” activity, the first
high-intensity activity began, two minutes of a “step-up reach and pull” activity.
This activity concluded the warm-up phase.

The purpose of the conditioning phase is to keep the participant engaged and
within the target HR zone for the approximately ten minute long phase duration.
This phase begins with one minute of the “basic marching” activity before begin-
ning another high-intensity activity; the first of which was an activity called “lateral
knees” for two minutes. After the “lateral knees” concluded another minute of the
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Table 4.1: Description of the different exercise activities used in the QT Cardio-
Aware Exercise Coach use case. Note: Assumes a right-sided dominance; all activities
are repeated and alternate with the opposite foot beginning the next cycle.

Exercise Activity Description Reference

Basic marching

• Right foot steps onto the platform
• Left foot steps onto the platform
• Right foot steps off the platform
• Left foot steps off the platform

Fig. 4.3

Step-up reach
and pull (a1)

• Right foot steps onto the platform
• Both arms reach forward
• Left foot bends backward at the knee
• Both arms pull down
• Left foot drops back to the floor
• Right foot steps off the platform

Fig. 4.4

Lateral knees (a2)

• Right foot steps onto left side of the platform
• Left knee raises to be parallel with the floor
• Left foot bends backward at the knee to be

near the back of the right knee
• Arms pull forward or backward to

provide balance
• Left foot drops back to the floor
• Right foot steps off the platform

Fig. 4.5

Both arms
forward (a3)

• Right foot steps onto the platform
• Both arms reach forward past the platform
• While the left foot reaches backward to

provide balance
• Both arms lower and left foot returns to

the floor
• Right foot steps off the platform

Fig. 4.6
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Figure 4.7: Calibration phase of the exercise scenario. The QT robot plays relaxing
music and videos while collecting the participants’ heart rate for three minutes to
compute the resting heart rate.

“basic marching” began. This was followed by two minutes of the “both arms for-
ward” activity which is easily the highest intensity activity of the four. When this
finished, another minute of “basic marching” began. Finally, the conditioning phase
concluded with two minutes of “lateral knees” and one additional minute of “basic
marching”.

The final phase was the cool-down phase, which has the purpose to gradually
lower the heart rate and blood pressure of the participant back to a baseline level.
Abrupt stops after conditioning exercises can lead to blood pooling in the extremities
which can cause cardiovascular complications such as dizziness and even fainting [34].
The cool-down phase began with the same “step-up reach and pull” activity that was
in the warm-up for two minutes, before finishing with three-minutes of the “basic
marching” activity.

At the end of the cool-down phase, the QT robot congratulated and thanked the
participant for completing the fitness routine. Both, the physiological and the robot’s
feedback were synchronously stored in csv files using the Data Logger component of
the Physio Receiver.

This use case scenario was conducted with one of the postdoctoral fellows of the
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Figure 4.8: Conditioning phase of the exercise scenario. The QT robot leads the
participant through a variety of cardio activities with an aerobic stepping platform.

Social and Intelligent Robotics Research Lab (SIRRL) as the participant due to the
COVID-19 pandemic making in-person studies nonideal. The data recorded was used
to produce Fig. 4.12, which shows the cardiovascular behavior and how the robot
was capable to push the participant to achieve and maintain the individual target
HR zone. This is discussed more in-depth in section 4.3.

4.2.3 Implementation Details of Experimental Scenario

In the previous subsection, a variety of moving parts was described. In this sec-
tion, we’ll go in-depth to discuss the implementation details of each component used
which allows the experimental scenario to run smoothly. Other components in the
scenario included the Polar Streamer and Physio Receiver which were outlined
in section 3.3.

QT Physio Coach

The first of these was the QT Physio Coach, which was the decision loop and was
responsible for controlling the scenario. This module acts as the implementation of
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the Scenario and Adaptation component shown in Fig. 3.3. Like in this figure, the
physio interpreter, robot’s behavior, and decision loop were used as inspiration for
designing the facets of this software.

As seen in Fig. 4.9, the main creates an instance of the QtPhysioCoach class,
which it then configures, and proceeds to start the scenario. The coach inherits
from the ThreadManager class methods to provide a simple asynchronous threading
interface for the scenario. The coach starts by opening a provided yaml configuration
file and sets up the ROS interfaces for sending and receiving data. This file contains
information regarding the participant such as their name and age; the names of input
and output ports; paths to audio and videos used; as well as lists of speech prompts
which the coach will pull randomly from. The coach has a ROS subscriber for
receiving the heart rate data from the participant, and a ROS publisher for providing
commands to the QT Controller, which directly interfaces with the robot. Next,
the coach initializes a RingBuffer which is used to store the received heart rate data.

After finishing the configuration, the coach initializes two threads, one for the
scenario, and another for the input loop (which receives the heart rate data from
the ROS subscriber). If the QT Physio Coach was started in interactive mode,
it will wait for the user to provide the command “start”; else the scenario will
start right away. As previously described in section 4.2.2, the scenario involves a
calibration phase to calculate the participant’s resting heart rate, which is further
used to calculate the HRR40 and HRR70 used in the rule update. The coach follows
a linear process of executing the exercise for some specified duration with some
motivational dialogue in between. We describe later in section 4.3.1 some of the
limitations with this particular implementation.

QT Controller

The next component was the QT Controller, which was the aspect that received
commands from the Scenario and Adaptation component (QT Physio Coach). The
QT Controller contains a concrete implementation of the abstract RobotInterface
class called QtController, and provides implementations for the feedback modalities
to execute on the QT robot. The Robot Controller component of Fig. 3.3 can be
thought of as a funnel to interface with the robot, simplifying and abstracting away
the details needed to accomplish the feedback modalities used in the scenario.

As seen in Fig. 4.10, the QT Controller follows a similar architectural struc-
ture as the Physio Receiver (described in section 3.3.1). The controller begins by
instantiating a QtController which is passed to the RobotManager. The manager
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Figure 4.9: The architecture of the QT Physio Coach. The individual C++ classes are
shown, and how they relate to each other in a pseudo-UML format. Black arrowheads
represent composition relationships, while white arrowheads represent inheritance.

is described in section 3.2.2, but in short, its purpose is to encapsulate an object
derived from RobotInterface and provide streamlined functionality.

The QtController encapsulates seven ROS publishers and three ROS service
clients for controlling both the QT robot as well as the peripheral audio and video in-
terfaces (described next). Of the six feedback modalities outlined in the Social Robot
and Communication component (described in section 3.1.3), we have implemented
four which we felt were relevant and feasible for the QT robot in our experimental
scenario; they are screen-based, speech-sounds, facial expressions, and body language
& movements.

For screen-based, we used a peripheral computer monitor to display videos to the
participant during the exercise scenario. This was done by sending messages to the
video interface containing the path to the mp4 file it should open and begin playing.
The speech-sounds were implemented in two parts. The speech portion was handled
through the QT robot’s speech interface which allowed for real-time text to speech in-
terface, while the sound portion (like the screen-based feedback) was handled through
an external audio interface which handled playing music through the peripheral com-
puter speakers. Facial expressions were handled through the QT robot’s emotion
interface and would change the robot’s facial display to a pre-rendered expression.
Lastly, the body language & movement feedback was implemented through the QT

57



robot’s gesture playback interface. Prior to the scenario, four gestures were recorded
using the robot’s gesture interface; which effectively allows releasing the PWM mo-
tors and recording movements of the robot being puppeted by the developer, and
allows for playback of those gestures at a variable speed. The QtController was also
designed to allow individual controlling of specific joints on the QT robot, however,
this is not used in the experimental scenario.

Figure 4.10: The architecture of the QT Controller. The individual C++ classes are
shown, and how they relate to each other in a pseudo-UML format. Black arrowheads
represent composition relationships, while white arrowheads represent inheritance.

Audio and Video Interfaces

As described in the previous section, the exercise routine involved a lot of changing of
audio and video elements throughout the course of the exercise routine. To provide
smooth transitions and looping of assets, a custom-made audio and video interface
was developed. The general structure for both interfaces was quite similar, in that
both ROS nodes were written in Python and had a ROS subscriber exposed for
receiving a ros::std msgs::String which interrupts the interface and tells it which
file to dynamically change to.
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The Audio Streamer3 used the Python packages SoundFile4 for opening and
decoding audio files and the PortAudio5 binding PyAudio6 to open an audio stream
for playing the requested audio files. To prevent annoyances from the clipping of
the audio when a new file was requested, a fade-in and fade-out behavior was imple-
mented. The duration of this could be changed through a command-line flag --fade,
which is set to a default value of one second. As well, a looping behavior was also
included which would reset the playback window to the beginning when an audio
track ended.

The Video Streamer7 used the Python OpenCV binding8 to open and decode
the video file, as well as to open a window to visualize and playback the video.
The reference videos described in section 4.2.2 have a duration anywhere between
14 and 30 seconds long; to keep the visuals of the experimental scenario smooth,
when the current video ends it loops back to the beginning. Unlike with the Audio

Streamer, when the Video Streamer receives a new file to begin playing, the video
will immediately be swap to the new video without fading-out.

3https://github.com/kothiga/hri-physio/tree/main/modules/audioStreamer
4https://pysoundfile.readthedocs.io/en/latest/
5http://www.portaudio.com/
6https://people.csail.mit.edu/hubert/pyaudio/
7https://github.com/kothiga/hri-physio/tree/main/modules/videoStreamer
8https://github.com/opencv/opencv-python
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Figure 4.11: Overview of how the various modules used in the QT Cardio-Aware

Coach scenario communicate. All devices (with the exception of the Polar Device)
were connected over a local WiFi hotspot created by the QT robot. From left to
right, the Polar Device connects to the Polar Streamer (running on the Android
tablet) over Bluetooth Low Energy (BLE). Data received is streamed out onto Lab
Streaming Layer (LSL) which is then caught by the Physio Receiver. The data is
then transmitted over a Robot Operating System (ROS) publisher to the QT Physio
Coach (the primary decision loop of the scenario). Selected behaviors are sent to the
QT Controller over ROS which then translates the commands to correctly broadcasts
actions to the QT robot’s interfaces.

4.3 Results of Scenario and Future Extensions

The heart rate over the course of the experimental scenario can be seen in Fig. 4.12.
Our first steps at developing an experimental scenario revolving around an exercise
coach with physiologically aware behavior was successful at maintaining our single
human participant within their calculated target HR zone. While this mock exper-
iment was done with a postdoctoral fellow who was familiar with the project and
therefore results cannot be empirically described to make any generalizable claims,
it does manage to demonstrate the feasibility of using the HRI Physio Lib as an
adaptive mechanism to empower social robots with physiological awareness. Our
aim was to answer RQ3 which asked:

RQ3: Is the proposed software framework and HRI Physio Lib able to
be used for the rapid development of physiologically aware robots
capable of adapting their interactions?
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Figure 4.12: Change in heart rate (beats per minute – BPM) over time (minutes)
of exercising with the QT Cardio-Aware Coach. The green shaded region between
125.2 (HRR40) and 155.1 (HRR70) BPM shows the target heart rate zone of the
participant. The HRmax for our participant was 184.9 BPM and the HRrest was
85.4 BPM. Top shows the four phases of the exercise experiment. With the exception
of the calibration phase, times that do not have an orange box, the participant was
instructed to perform a basic marching exercise. The activities used were: (a1) step-
up reach and pull; (a2) lateral knees; (a3) both arms forward.

We’ve highlighted key components in developing a physiologically adaptive HRI
scenario from signal acquisition to real-time adaptation through facilitation of the
HRI Physio Lib. It is difficult to provide the qualitative research question with a
definitive accept or deny, however, our use case (while simple) demonstrates how a
physiologically aware scenario might be implemented.

As future work, this experimental scenario could be extended to a larger human
participant study to properly provide evidence data and rigorous analysis to support
the efficacy of such a physiologically aware exercise coach. A between-participant
experimental design would suit the scenario well, with the independent variables
comparing a dynamic adaptive robot coach with a static non-adaptive robot coach.
Dependent variables could include measurements from average heart rate over time;
to other interesting metrics related to maintaining stepping frequency to the BPM
of the music; as well as a number of additional physiological measures such as blink
rate, pupil dilation, gaze fixations (collected from a commercial eye tracker such as
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Tobii), or skin conductance (electrodermal activity collected from a wearable GSR
sensor such as the Shimmer3 GSR+ Unit). Additional qualitative dependent vari-
ables such as engagement or positive affect might be collected through questionnaires
such as Likert [53] or the Intrinsic Motivation Inventory (IMI) [85]. Modes of col-
lecting this could be through either or both scheduled experience sampling during
the exercise scenario (between exercise activities) and post-trial qualitative feedback
of experience.

There are a number of observed shortcomings to the current design. For starters,
in our one-shot run of the exercise scenario, the QT Physio Coach never had the
opportunity to reduce the speed and intensity of the activity; the reason for this being
the participant’s heart rate never went above the calculated HRR70 (155.1 BPM).
While it’s nice to imagine that this speaks to the effectiveness of the robot coach to
maintain the participant in their target HR zone, it’s more likely that 70% of the HRR
was a bit high. Further exploration should first be done to better evaluate the “best”
regions for an upper bound. On closer examination of the data and events, there
were a total of four instances where the QT Physio Coach increased the speed, all of
which occurred prior to the beginning of the “step-up reach and pull” (a1) activity
in the warm-up phase (between 5 and 8 minutes into the session). Further thought
is needed in the design of this phase, with consideration of potentially limiting the
number of speed-ups that can occur in the warm-up phase. Additionally, it may
be worth considering a 60 second pause on rule updates after one occurs to prevent
successive speed-ups.

Algorithm 2: Proposed Fuzzy Heart Rate Rule Update

HRexercise = mean(HRbuffer)
HRtarget = mean(HRR40, HRR70)

HRnorm =
abs(HRexercise − HRtarget)

HRtarget − HRR40

ε = rand(0, 1)
if HRexercise < HRtarget and ε < HRnorm then

Increase the speed of music and gestures;
Tell the user we’re picking up the pace

else if HRtarget < HRexercise and ε < HRnorm then
Decrease the speed of music and gestures;
Tell the user not to over exert themselves

else
Provide encouragement to continue keeping up to the pace

end
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Figure 4.13: Probability distribution of a rule update occurring with the proposed
fuzzy rule (algorithm 2). Using the measured HRR40 (125.2 BPM) and HRR70

(155.1 BPM) from the QT Cardio-Aware Coach scenario we find the HRtarget to be
140.2 BPM. The closer the HRexercise is to the HRtarget, the less likely it is for a rule
update to occur. If the HRexercise is bellow HRR40 it is guaranteed to trigger a rule
update (“speed up”), while if the HRexercise is above HRR70 a rule update (“slow
down”) will occur.

As well, it may be more desirable to use a “fuzzy logic” method over the current
“binary” (is over or under) decision method described in algorithm 1 for rule updates.
Such a fuzzy method could be based on the distance of the mid target HR zone to
the upper and lower bounds to determine increasing or decreasing of the speed and
intensity of the activity.

Other considerations should be taken regarding the warm-up and cool-down
phases; specifically with the rule updates and when they occur. At present, the
exercise scenario may have a rule update occur during the warm-up, conditioning, or
cool-down phases. It may be worth considering restricting the decision of a rule up-
date to only the conditioning phase and having scheduled decreases to the speed and
intensity during the cool-down phase. The overall purpose of the cool-down phase
is to bring the participant’s heart rate to some baseline level to prevent dizziness or
even potential fainting caused by abrupt stopping after high-intensity exercise [34].
Looking at Fig. 4.12, the participant is very much maintained in their target HR
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Figure 4.14: Probability distribution of rule update occurring with the proposed
fuzzy rule (algorithm 2), over top the data from the QT Cardio-Aware Coach sce-
nario. The closer the HRexercise is to HRR40 or HRR70, the more likely a rule update
is to occur. Red is used to show the likelihood of a “speed up” update occurring,
while blue is used to show the likelihood of a “slow down” update occurring. A
HRexercise bellow HRR40 or above HRR70 are guaranteed. See Fig. 4.13 for further
detail.
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zone during the cool-down phase, when their heart rate should instead be gradually
descending below HRR40.

Final considerations for a future human participant study might include providing
the QT robot with more knowledge of the person it’s interacting with. This might
include interesting verbal dictation elements such as acknowledgment prior to the
beginning of the warm-up phase where the participant would be required to tell
the QT robot they’re “ready” to begin, or providing the participant the ability to
explicitly tell the QT robot to “slow down” and that they’d like to “speed up”
the exercise scenario. Currently, the Intel RealSense D435 depth camera located
in the QT robot’s head is not being utilized in any capacity. Its incorporation
could provide a number of additional elements to the experimental scenario including
gamification through a scoring system-based repetitions of the skeletal-frame (pose)
of the participant.

4.3.1 Limitations in Implementation

As with many designs, there are always improvements that can be made. A short-
list of aspects that could have improved the speed of development of the use case
and make the scenario overall more smooth would have been the inclusion of some
sort of state machine library such as rFSM9 or BehaviorTree.CPP10. The current
implementation of the exercise scenario is rather linear in nature, therefore any
attempt to introduce additional complexities would require quite a bit of additional
development. This use case was simply naively taking the mean of the HR data stored
in the buffer. The Polar SDK11 that was used to develop the Android application
described in section 3.3.2 provides a processed HR in the form of beats per minute.
In a more complex scenario, it would be preferred to decouple the implementation
of processing modules from the scenario and adaptation.

As described earlier, the current design does not consider any auditory or visual
components, both of which are accessible through the QT robot. By adding some
form of speech dictation to allow the participant to acknowledge the QT robot or
manually decrease the speed could add a level of social interaction to make a potential
dynamic adaptive robot coach a more enjoyable experience over a static non-adaptive
robot coach. As well, introducing vision could add fun gamification elements such
as a scoring system of the participant based on repetitions.

9https://orocos.org/stable/documentation/rFSM/index.html
10https://www.behaviortree.dev/
11https://github.com/polarofficial/polar-ble-sdk
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4.4 Other Potential Use Cases

In this last section, we’d like to highlight a few additional use cases in which we
envision the addition of physiologically adaptive components could provide exciting
advances to the user-experience. This future extensions section is meant to act
as a collection of ideas for directions that this technology could be taken and to
encourage researchers who are looking for domains to apply physiological sensing to
social robots.

Improving Engagement

Engagement is a paradigm in human-computer interaction (HCI) literature that is
strongly agreed as a priority for designers’ interfaces [21]. ECG, EEG, and heat
fluctuations have been used previously by Belle et al. [7] to develop an engagement
and attention detection system using physiological data that was captured from 8
participants watching a series of videos. Bian et al. [8] showed the potential of a
physiologically-sensitive system for driving training in a scenario with participants
who had autism spectrum disorder, using a virtual-reality driving simulator. Their
developed system incorporated a fusion of EDA, PPG, and respiration to develop
a multimodal model of engagement. Real-time modifications were mode to the dif-
ficulty of the driving task either based on an engagement-sensitive (ES) based rule
using a combination of the participant’s engagement level and their performance; or
a strictly performance-sensitive (PS) based rule. The authors showed with a 5-point
Likert scale that between the two groups, the participants in the ES group had a
significantly higher engagement, compared to the purely PS group. As well, partic-
ipants within the ES group had subjectively reported that they liked the difficulty
adjustments more than the PS group did.

Having a window into the engagement of a person interacting with a robot could
yield similar increases to the effectiveness of the interaction. Rani and Sarkar [77]
have proposed a framework for implicit human-robot communication based on physi-
ological measurements to maintain task engagement of human operators when work-
ing with robots. In their proof-of-concept teleoperation experiment, they showed
the usefulness of an adaptive robot that reliably predicted the engagement of the
user. In another study, Foster et al. [32] developed the socially aware bartending
robot JAMES (Joint Action for Multimodal Embodied Social Systems) to gauge the
engagement of patrons (participants) through facial tracking to improve the inter-
action quality. A review by Oertel et al. [69], found that only 2% of the studies in
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their curated list of papers on engagement with human-agent interaction contained
physiological measurements in their evaluation methodology.

The potential for physiological measurements to be used for real-time readings
of user engagement to make intelligent adaptions is still quite novel and deserves
future investigation as wearable technology becomes evermore present in real-world
scenarios.

Deeper Social Connections

Closely related to engagement, providing deeper social connections with a social
robot is another area where the applications of physiologically-sensitive systems
might excel. Robots have been shown to evoke emotional responses in children when
they’re treated unfairly and forced to go “into a closet” [45]. Choi et al. [13] showed
that emotional expressions of virtual agents can cause physiological responses in the
person interacting with them. An extension of using physiological sensors could be
to provide robots with additional context and perception as to how its interactions
affect the human. Reactions to improve arousal and reduce stress with the robot
would aim to improve social connections.

Health Care Scenarios

Health care applications are an obvious extension of wearable technology, with enor-
mous social benefits associated. Wearable devices such as the Apple Watch and Fitbit
already provide support for leading users through exercise and meditation scenarios.
It would be interesting to use such sensors alongside an adaptive assistive robot to
promote well-being in older populations. Fasola and Matarić [29] developed both a
virtual and robotic exercise coach for use with older populations. The authors found
that both mediums provided an engaging scenario to promote well-being. Described
earlier in this chapter, Muñoz et al. [66] developed a physiologically-augmented ex-
ergame for older populations that provides real-time difficulty adaptations based on
the heart rate measured from a wearable device.

A. Sharkey and N. Sharkey [93] outline areas where the introduction of robotic
applications to assist older populations would be appropriate and provide six ethical
concerns which should greatly be considered in any sort of development. It is with
great importance that any care a social robot provides is not a direct replacement for
care from a human, however, it can be used to augment the interaction. Depending
on the comfort and privacy perception of physiological sensors by older populations,
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it could be used as a non-invasive form of well-being monitoring, which also maintains
the dignity of the wearer.

Difficulty adjustment in rehabilitation tasks is another area well suited for real-
time physiological measures. Ozkul et al. [70] compared two different algorithms for
difficulty adjustments in a rehabilitation scenario. Physiological measurements were
recorded in this scenario to provide objective evaluation alongside subjective ratings
to compare the two adaptation mechanisms. Future studies in a similar rehabilitation
task could potentially use the physiological measurements being recorded as another
input feature for real-time adaptations in rehabilitation.

Health care scenarios offer novel situations to truly make positive differences in
the lives of users. Physiologically endowed social robots provide a unique application
space for future studies in facets of health care.

Self-Driving Vehicles

While not specifically related to social robots, autonomous vehicles pose a partic-
ularly interesting problem space to incorporate physiological signals. In a study
relating to passenger comfort by Dillen et al. [19], electrodermal activity (EDA), was
found to be a significant predictor of comfort and anxiety in passengers in their self-
driving vehicle experimental scenario. The authors envisioned in their future works
section a system that modulates passenger-specific preferred driving profiles based
on implicit feedback from wearables. With the proliferation of smart wearable tech-
nology, it doesn’t seem too far-reaching that your future Apple Watch might have a
feature that connects to your future vehicle to communicate that the current driving
style is causing discomfort.
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Chapter 5

Conclusion

This thesis presents a general framework and an open-source software library for
developing physiologically adaptive HRI scenarios. The HRI Physio Lib provides
functionality to assist in the development of the necessary components of adaptive
HRI scenarios, including signal acquisition, processing and analysis, social robot and
communication, and scenario and adaptation. To showcase our framework and test
the software library, we developed a simple scenario revolving around a physiologi-
cally aware exercise coach. This is followed by a supplemental discussion about other
HRI domains where the addition of physiologically adaptive mechanisms could result
in interesting advances in user-experience.

5.1 Summary of Contributions

In this section, we provide the research questions for this project, and a brief answer
for each based on what has been done.

RQ1: How can we design a robotics software framework for the rapid
development of physiologically aware robots?

We chose to pursue a design that acted as a sort of roadmap or checklist for what
components are necessary for developing physiologically adaptive HRI scenarios. We
began by imagining a circuit starting with a person and ending up at a robot, which
doesn’t have an explicit connection to the person besides its affordances to provide
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perceptual feedback. We broke this loop into four primary components to provide fo-
cus to the problems and challenges associated with each; they are signal acquisition,
processing and analysis, social robot and communication, and scenario and adapta-
tion. The first component primarily dealt with the problems in acquiring real-time
streams of data and provide recommendations for how to incorporate physiological
data into a system. Next, we looked through the literature to understand what
physiological signals are most frequently used, and what types of features would be
useful for an adaptive system. For the robot portion, we identified six of what we
believe are the most common feedback modalities which could be used in an adaptive
scenario by a social robot. Lastly, we discussed what factors should be taken into
consideration when designing the scenario itself, and what might be useful to keep
in mind when developing the adaptations for the robot.

After providing the framework, we wanted to develop software that might be
useful for prototyping adaptive scenarios. For our research group, it was important
to not only consider ROS-based robots but to look at providing support for other
platforms such as the iCub humanoid robot. It is with this that we formulated our
second research question:

RQ2: How can we develop a robotics software framework capable of
integrating various communication libraries?

Our first step in pursuit of answering this question was to choose a programming
language. C++ was the obvious choice as it is the primary development language for
LSL, ROS, and YARP, as well as my most proficient. Python was used to rapidly
develop auxiliary tools and modules, and Java was used to develop an application for
Android devices. To ensure simple integration between physiological devices (likely
using LSL to initially stream data out), we carefully considered a range of design
patterns to implement tools to act as translators between communication libraries.
A philosophy for our design of accessibility was to ensure roboticists did not have
to do too much additional integration and technological investment to begin using
physiological sensors in their projects.

The HRI Physio Lib is a software library that contains sets of abstract classes
that can be derived from, as well as developed tools and applications with the purpose
of being used for prototyping and quickly creating adaptive scenarios. Implementing
software is a feat, but we felt we needed to show how the software could be used in
tandem with the framework to structure an adaptive scenario, which brought us to
the third research question:
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RQ3: Is the proposed software framework and HRI Physio Lib able to
be used for the rapid development of physiologically aware robots
capable of adapting their interactions?

We aimed to design a scenario with a clear and simple premise to act as a “base
case” for demonstrating how an adaptive scenario could be implemented. Exercise
lead by a social robot seemed like an exciting focus, as the abundance of literature on
robot-mediated exercise provided a convincing foundation to build off of. Previously
developed physiologically adaptive scenarios in HCI have utilized exercise as a focus
with motivations rooted in health and engagement to improve user-experience.

We developed our prototype scenario over the course of a little over a month and
tried a pilot run with one of the postdoctoral fellows involved in the project. Running
the experiment revealed a number of areas for improvement, as well as extensions
for a future study. Details for this were presented in section 4.3.

5.2 Lessons Learned

Working with physiological sensors can be arduous, requiring a great deal of technical
investment. It could, however, be an investment that propels HRI research into
exciting new territories, providing social robots with newfound abilities to adapt and
infer complex passive emotional states of their human interaction partner, ultimately
with the coal of improving the quality of the interaction.

Engineering a system from a perspective of generalizability is a difficult endeavor.
The design of our framework was a task of providing a roadmap for future HRI
research, as a lot of the exciting experimental scenarios which we wanted to pursue
at the beginning of this project were simply not possible due to the COVID-19
pandemic.

Auxiliary to the research itself, the challenges of disjointly working as a team in
a global pandemic proved difficult in the beginning. When it became apparent that
in-person studies would not be feasible for the foreseeable future the project itself
needed to be pivoted and a different direction chosen; thus, we set our attention on
conceptual ideas and frameworks. The true lessons learned in this project are rooted
in adapting and overcoming these challenges. The support of supervision, mentors,
and friends alike has proven to be vital in the success of this project.
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5.3 Limitations

This framework is obviously not a blanket solution for developing physiologically
adaptive scenarios but instead is designed to be a foundation from which development
can begin. This work has been developed with extension in mind. It is for that
reason the scenario and adaptation component of Fig. 3.3 might feel lacking. This
component is for all intents and purposes up to the designer, as HRI scenarios are
ultimately too contextual to what knowledge is trying to be gained.

The framework we’ve developed is a high-level idea about what necessary com-
ponents should be incorporated when designing a physiologically adaptive scenario.
Software that we’ve developed might not be right for all scenarios, but it might be
helpful for the initial prototyping of a scenario. Our design philosophy for the soft-
ware library was based on modularity and reusability; so that designers can pick and
choose which assets suit their needs and develop what was missing.

In section 4.3.1 we highlighted some of the limitations that we believed were
present in the implementation of the QT Cardio-Aware Exercise Coach scenario and
provided recommendations for how we’d like to improve on the design.

5.4 Future Directions

Future directions can be broken up into two groups: project level, and detail level.
For the project level, section 4.4 provides a discussion for how existing HRI domains
can be augmented by physiologically adaptive robots. We outlined engagement,
social connections, health care, and self-driving vehicles as topics this work can be
extended towards. As well, we provided several details in section 4.3 for future
extensions of the QT Cardio-Aware Exercise Coach scenario, and what changes can
be made for developing the prototype into a full human participant study.

For detail, there are several changes that can be made to improve the software
structure. For starters, providing a Docker1 container of the repository for releases
would be an asset for both deployments, as well as providing a common development
environment. Further development of data acquisition tools would not only help
streamline the process of connecting physiological data into the decision loop of
robots but can also benefit unrelated research areas in incorporating physiological

1https://www.docker.com/
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data into their systems. Finally, further expanding the methods provided in the
processing namespace (described in section 3.1.2) would be of great use.

Additional directions for our framework may be to include aspects of Edge Com-
puting [94] and Cloud Computing [41]. In many home and health care scenarios, it
is unlikely that adequate processing power will be readily available. For this reason,
a great deal of development has been done to offload data processing to specialized
external locations. Because we are working with physiological (health) data, it is
also important to consider the privacy and sensitivity of any data that leaves the
network. As processing becomes more sophisticated and demanding, simple mobile
devices and local machines may be unable to support the required processing. As a
result, it may be necessary to consider and draw a line for what data is acceptable
to transmit for external processing, and what data can be locally computed.
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