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Abstract

Over the last few years, gravitational wave detections have become ubiquitous, giving the
physics community vast information about fundamental physics. As some of the universe’s
highest energy events, neutron mergers allow us to explore extreme matter states through
the gravitational waves they emit. The gravitational waves from binary neutron star mergers
allow us, among other things, to probe the physics of the densest matter, reveal the equation
of state of neutron stars, learn about the mechanism behind gamma ray bursts, and test
general relativity itself. At the same time, black holes also allow us to test general relativity
and probe the fields in their surroundings. In particular, black holes could shine a light
on massive boson fields proposed by extensions of the Standard Model. Massive boson
under the right circumstances will form bound states around black holes. Under the right
conditions, bosons will extract energy and angular momentum from spinning black holes
through superradiance. This energy extraction mechanism, along with the bound bosons,
causes a boson cloud to grow around the black hole which dissipates its energy through
gravitational waves. Detecting these gravitational waves can then help us learn about the
bosons bound to the black hole, thereby making the black hole akin to a particle detector.
In this thesis we further the understanding of the dynamics of massive boson superradiance
instability by extending previous studies to include the self-interactions of the bosons. We
then propose a phenomenological model for binary neutron star post-merger waveforms.
The proposed model is based on a machine learning technique that requires large amounts
of data. We attempt to estimate how much data would be required to have a functional
model and discuss the issues that arise when validating the model.
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Chapter 1

Introduction

With ground-based gravitational wave detectors such as LIGO and VIRGO having detected
over 50 gravitational waves from black hole (BH) mergers, [3, 2, 7, 6, 8, 48, 10, 15, 14, 12],
and several ones involving neutron stars [5, 13, 11, 4], gravitational wave astronomy is
well on its way to giving the scientific community an abundance of data to learn about
fundamental physics. We can only expect to see more detection with increased quality
with next generation-detectors [1, 16, 23]. Gravitational waves by allowing us to tap into
large sums of energy through compact objects open up the possibility of learning about
fundamental physics in regimes not previously available. The gravitational signals from
these compact objects allow us, among other things, to (1) test our theories of gravity
[9, 87], (2) probe particle physics through BH instabilities [37, 22], (3) understand the
behaviour of matter in extreme conditions, which we could not recreate in experiments here
on earth [5, 13, 11, 4].

A potentially exciting avenue of gravitational wave physics is to access the large sums
of energy of BHs and use them as particle detectors. Penrose first showed that one could
extract energy from BHs [86] through wave scattering; then, soon after, as we will see
in Chapter 2, the Zel’Dovich group demonstrated a similar energy extraction process for
bosonic waves through superradiance [103]. Since low-frequency massive bosons form bound
states around BHs [88], superradiance leads to an instability where the BH will dump its
energy and angular momentum into the bound bosons, leading to gravitational radiation.
This means that we can use BHs to detect massive bosons that only interact weakly with
gravity, such as axions proposed in [21, 22] or other massive bosons proposed in many
extensions of the Standard Model [46, 65, 97]. Detecting the gravitational waves from these
sources from the stochastic background is a prospect already being explored in [39, 40].
There have also been studies exploring the dynamics of boson superradiant, which are
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weakly coupled to gravity that establish the existence of the instability and explore some of
the phenomenology along. These studies considered bosons that have no self-interactions
but it is reasonable to expect self-interaction of the bosons at considerable energies. Work
still needs to be done to understand the nonlinear dynamics of self-interacting boson fields
around BHs and the potential gravitational wave signatures.

Neutron stars, being the densest detected objects after BHs, are of interest in under-
standing matter’s behavior in extreme conditions. They are filled with mysteries such as
their equation of state, and the mechanism behind gamma ray bursts [94, 90, 80, 84, 93, 51].
The detection of gravitational waves emitted by neutron star mergers can offer hints to
help understand these mysteries. Specifically, the detection of the post-merger gravitational
waves from neutron stars which avoid prompt collapse to a black hole, would allow us to
constrain the equation of state of neutron stars, test deviation from General Relativity,
learn about the behaviour of hot matter at supra-nuclear densities, and help understand
the inner engine of gamma ray bursts. So far, detecting a post-merger has not occurred
and is prohibitively difficult due to theoretical uncertainties.

In Chapter. 2 of this thesis, we study the superradiance instability of massive bosons
modeled by Proca fields with self-interactions around spinning black holes through numerical
simulations. This work extends previous studies of the superradiance instability where
nonlinear studies of Proca fields with no self-interaction were done. Understanding how
the nonlinear potential from the self-interaction affects the instability is crucial since it is
possible that the self-interactions may lead to more dynamical processes not present in
the purely massive case. In Chapter. 3, we propose a phenomenological model for binary
neutron star post-merger gravitational waves and attempt to establish an estimate of data
required for the model to be of use. We discuss subtleties that arise when trying to evaluate
the performance of the model. This model, if given enough data to train it, will help the
community build a waveform bank that can be used to detect the post-merger gravitational
waves from binary neutron stars.
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Chapter 2

Superradiant Instability and
Backreaction of Self-Interacting
Massive Vector Fields around
Spinning Black Holes

Measurements of stellar and supermassive BHs find their masses to be & 5M� for stellar
BHs and . 1010M� for supermassive BHs. That is, a large amount of energy is stored
in astrophysical BHs. Under the right conditions, fields around BHs can extract some of
the mass and angular momentum of the BHs through a process called superradiance. If
the particles are bosonic with small masses (. 10−10 eV), then the bound states of these
particles are susceptible to exponential amplification by astrophysically relevant BHs. These
bound states then accrue large occupation numbers that lead to many potential detection
opportunities. The particle cloud may dissipate its energy through gravitational waves,
through bosonic radiation which could be detected here on earth. These signals can then be
used to constrain particle models. Thus, BHs can be used as particle detectors. In the case
of earth based detectors such as LIGO, there would be an opportunity to probe ultralight
bosons of masses 10−10 − 10−14 eV using stellar BHs. The space based detectors such as
LISA on the other hand could use supermassive BHs to probe bosons with masses ranging
from 10−16 to 10−20 eV.

Many beyond Standard Model particles are ultralight bosons. Some examples include
the QCD axion which is a massive boson conjectured to solve the CP problem in QCD,
and the massive dark photon proposed as a dark matter candidate. The ultralight bosons
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generically have self-interactions at high energies. Understanding the instability when
particles are interacting is crucial to understand the potential signals from these systems.
While there have been many studies of the superradiant instability of bosons around spinning
BHs, there are no studies following the evolution of the instability for vector bosons with
self-interaction. This work attempts to fill this gap.

In this chapter, we study the superradiance instability of vector bosons with self
interactions. We model the vector bosons with a Proca field and use a quartic potential
as the self-interaction term. Due to the complexity of the equations for the system, we
numerically evolved Einstein’s field equations coupled to a Proca field with quartic self-
interaction in axissymetry. We use a small seed field as the initial data of the Proca field.
We find that the attractive self-interaction leads to less energy and angular momentum
is extracted at saturation when compared to the case where the Proca field has no self-
interaction. When the self-interaction is repulsive, then the Proca field extracts more energy
and angular momentum at saturation. This is consistent with the frequency shift observed
at saturation, when the self-interaction is attractive, the frequency of the cloud at saturation
is greater than in the non interactive case. Similarly, when it is repulsive, the frequency is
less than the non interactive case. Comparing this frequency shift to perturbation results,
we find that our numerical results deviate quickly when as the self-interaction increases
indicating our studied scenarios are beyond the nonrelativistic limit. Finally, we study
the possibility of the cloud collapsing in the bosenova scenario. The bosenova scenario
states that if the self-interaction strength is large, then the cloud will become unstable as it
extracts energy and collapses in itself. We find no evidence of the Proca cloud collapsing in
any of our simulations. To test if we were close to the scenario, we study the to profile of
the clouds with different self-interactions. We find the self-interaction did not significantly
affect the profile of the cloud indicating that we are not close to the bosenova scenario.

2.1 Background

The equivalence principle imposes that all matter must interact with gravitational fields
the same way. This means that matter such as dark matter, which interacts weakly with
matter in the Standard Model, will be affected by strong gravitational fields such as the
gravitational fields of BHs. Additionally, in certain scenarios, the particles can extract
energy from the BH with processes such as the Penrose process [86] or the superradiant
process [103]. In the case of bosons, at low-frequency radiation stay bound to the BH [88],
forming a boson cloud around the BH, which leads to an instability – the superradiance
instability. The cloud’s gained energy can then be dissipated through gravitational radiation.
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The BH superradiant instability opens up the possibility to observe massive boson particles
which weakly interact with gravity through the gravitational waves emitted by the bound
cloud.

To help understand how superradiance extracts energy and angular momentum from
BHs, we will go through the derivation of the instability with a Kerr BH. Superradiance
around a Kerr BH can be understood through BH thermodynamics [30, 38]. We begin by
considering a Kerr-(A)dS BH with mass M and spin a. In Boyer-Lindquist coordinates,
the metric reads as,

ds2 = −∆r

ρ2

(
dt− a

Σ
sin2 ϑdϕ

)
+
ρ2

∆r

dr2 +
ρ2

∆ϑ

dϑ2 +
∆ϑ

ρ2

(
adt− r2 + a2

Σ
dϕ

)2

(2.1)

where,

∆r = (r2a2)

(
1− Λ

3
r2

)
− 2Mr Σ = 1 +

Λ

3
a2

∆ϑ = 1 +
Λ

3
a2 cos2 ϑ ρ2 = r2 + a2 cos2 ϑ.

We can now define the area (AH), temperature (TH), and angular velocity of the event
horizon (ΩH),

AH =
4π(r2

+ + a2)

Σ
, TH =

r+

(
1− Λ

3
a2 − Λr2

+ − a2r−2
+

)
4π(r2

+ + a2)
, ΩH =

a

r2
+ + a2

(
1 +

Λ

3
a2

)
.

With r+ = M +
√
M2 − a2 being the location of the event horizon. We now consider the

first law which relates changes in the BH’s mass M , area AH , and angular momentum J ,

δM =
k

8π
δAH + ΩHδJ. (2.2)

Where k = 2πTH . If the matter around the BH obeys the weak energy conditions, then we
get the second law which states the BH area can only increase, that is,

δA ≥ 0. (2.3)

Now consider the energy and angular momentum flux of a wave with frequency ω and
azimuthal number m

δJ/δM = m/ω. (2.4)
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Now using this in eq. 2.2,

δM =
ωk

8π

δAH
ω −mΩH

. (2.5)

Now using the second law, δAH ≥ 0 we get the condition for superradiance,

ω ≤ mΩH . (2.6)

Where ΩBH is the BH horizon frequency and m is the azimuthal number of the wave.

This energy and angular momentum extraction process is susceptible to becoming
unstable if particles do not escape from the BH, i.e. form a bound state around the BH;
this is the superradiance instability. In principle, the extraction will happen until eq. 2.6
becomes an equality. It was shown that low-frequency boson radiation with mass could
form bound states around BHs [88]. Massive bosons have a natural mechanism to stay
bound to BHs, making them subject to superradiance instability.

Here we will be specifically interested in massive bosons, which have small masses,
the ultralight bosons. To motivate the study of ultralight bosons under the superradiant
instability, we consider the bosons from the Standard Model, such as the W , Z or Higgs
boson; we notice that they are either massless or have large masses. Meanwhile, ultralight
bosons have only been proposed as extensions to the Standard Model and have yet to be
detected. Since the superradiance instability with a BH of mass M and bosons of mass
µ requires µM � 1 [38], to be pertinent, the instability would be sensitive to ultralight
bosons. Considering stellar mass BH, then would allow to probe bosons with µ ≤ 10−10 eV,
which might occur in scenarios such as the string axisverse [21], the QCD axion [20], and
dark photon [83]. The superradiance instability then allows us to explore an energy regime
not previously available.

Using the superradiance instability as a probe of ultralight bosons was first proposed in
[21]. Since then, the superradiance instability has been studied for spin-0 [22, 54, 20, 62],
spin-1 [56, 55, 92, 25] and spin-2 fields [36, 41]. These studies have looked at the instability
with boson fields with no self-interactions, apart from a few spin-0 studies [101, 24, 62].
The numerical studies of the spin-1 case in axisymmetry find that the boson cloud can
extract up to 9% of the BH’s mass and up to 38% of the BH’s angular momentum. The
instability terminates once the cloud’s frequency matches the BH’s event horizon frequency
[56]. In the case of the full general relativistic study with no symmetry assumption, it was
found that the superradiant instability efficiently extracts a significant amount of the BH’s
mass to produce gravitational waves. It was found that the studied scenario would produce
gravitational waves with frequency f ≈ (400Hz)(60M�/M0) with a characteristic timescale
of t ∼ 30 sec(M0/60M�) [55], where M0 is the initial BH mass.
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Many constraints on the masses from ultralight bosons have been proposed over the
years. Experiments, as well as astrophysical observations, have set these constraints [82].
The superradiance instability will allow constraining the masses with gravitational wave
detectors to 10−14 < µ < 10−10 eV [19, 39, 20].

Here, we focus on studying quartic self-interaction since symmetric self-interacting
potentials for ultralight bosons will generically contain a dominant quartic term after the
massive term. For instance, the spin-0 self-interaction potential of QCD axions are of the
form [52],

V (φ) =
µ2

2
(1− cos(φ)) ∼ µ2

4
φ2 + λφ4

Where µ is the mass of the cloud and λ is the coupling strength. For small λ, the nonlinear
interactions do not affect the superradiance instability but the interactions may become
relevant for large λ or large clouds. One could expect the term to have an impact once
λ ∼ µ2

φ2
. We will see that the spin-1 superradiance instability does deviate from the purely

massive case when λ ∼ µ2

XaX̄a where Xa is the boson vector field.

Recently, work on the superradiant instability with self-interacting spin-0 fields in the
non-relativistic regime has been done [24]. While we focus on the spin-1 case here, this work
offers hints as to what to look for from the self-interaction. It is shown that having self-
interactions lead to new processes for the energy and angular momentum to be transferred.
While in the massive case, the BH is the source of energy and angular momentum for the
cloud and gravitational radiation dissipates energy and angular momentum to infinity, the
self-interaction introduces new ways for the energy to be transferred. Namely, it introduces
the emission of relativistic axion waves to infinity, emission of non-relativistic axion waves
to infinity, and excitation of forced oscillations. This work also discusses the possibility of
the “bosenova scenario.” In the bosenova scenario, the self-interaction, when strong enough,
as we will see in section, can cause the radius of the cloud to become unstable, leading to
collapse. The analysis performed in this work shows that the scenario is ruled out except
for a small region small region in the parameter space.

It is worth noting that there is also numerical evidence for the bosenova scenario in the
spin-0 case of self-interacting superradiance from massive bosons when the self-interaction
is large enough [100, 101]. The numerical studies have found evidence for this occurring by
starting the simulation with a field strong enough for the self-interaction to be relevant,
which may have introduced the scenario artificially. It is not obvious that the cloud could
reach such amplitude with self-interaction. Our study follows the cloud throughout its
evolution from a seed field.

In this part of the thesis, we study, through numerical simulations, the superradiance of
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a massive vector field with quartic self-interaction in axisymmetry and discuss extending
the work to full 3D. We choose to study the vector case as the timescale of the instability
is shorter making, the simulations more tractable. In Section. 2.2 we discuss the specifics of
the system we are studying and the method for evolving the system, Section. 2.3 discusses
the main findings of the axisymmetric simulations, and in Section. 2.4 we summarize.

2.2 Methods

2.2.1 Equations of Motion

To model the massive bosons, we consider a complex Proca field, Xa = XR
a + iXI

a , with
mass µ, and with the non-linear potential, V (XaX̄

a), to model the self-interaction. We
study the complex Proca field around a BH with initial mass M0 and dimensionless spin
a = 0.99. The action for the Einstein-Proca system is as follows,

S =

∫
d4x

(
R

4
− 1

4
FabF̄

ab + V (XaX̄
a)

)
. (2.7)

Where R is the Ricci scalar, and Fab = ∇aXb−∇bXa. As discussed in the previous section,
we study the quartic potential V (XaX̄

a) = (1
2
µ2 + λXcX̄

c)XcX̄
c, to capture the dynamics

of symmetric self-interacting potentials, where λ is the strength of the nonlinear interaction.
Varying the action then leads to the following equations of motion for the Proca field with
self-interaction,

∇aF
ab =

(
µ2 + 4λXcX̄

c
)
Xb. (2.8)

Where ∇a is the covariant derivative. We allow λ to take on positive and negative values to
represent attractive and repulsive potentials. Note that, unlike the non-interacting Proca
case, the Lorenz condition is not implied from eq. 2.8. Also, the real and imaginary parts
of the field are coupled, unlike the non-interacting Proca case where the real and imaginary
field are essentially independent.

The associated stress-energy tensor for the complex Proca field with self-interaction is
given by,

Tab =
1

2

(
FacF̄bd + F̄acFbd

)
gcd − 1

4
gabFcdF̄

cd

+
1

2
µ2
(
XaX̄b + X̄aXb − gabXcX̄

c
)

+
1

2
λXcX̄

c
[
8(XaX̄b + X̄aXb)− 4gabXcX̄

c
]
.
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The EoM for the spacetime,

Rab −
1

2
gabR = Tab. (2.9)

Where Rab is the Ricci tensor, and gab is the metric. So the system of equations we want to
solve is,

∇aF
ab =

(
µ2 + 4λXcX̄

c
)
Xb (2.10)

Rab −
1

2
gabR = Tab (2.11)

2.2.2 (3+1) Decomposition

To solve the equations of motion numerically, we first perform a (3+1) decomposition. We
briefly define the (3+1) decomposition tools here following [18, 17, 61].

Consider a spacetime (M, g) which can be foliated by a one-parameter family of hyper-
surfaces Σt, t ∈ R, the manifold’s topology can then expressed as M = Σt × t. We want to
project our given fields and operators onto and orthogonally to the surface Σt. We begin
by defining the vector field na, which is normal to Σt and is normalized as follows,

nan
a = −1.

We can now define a projector, γab, onto Σt,

γab = δab + nanb.

Using γab and na, we can write the full 4-dimensional metric as,

ds2 = gabdx
adxb = −

(
α2 − βaβa

)
dt2 + 2γabβ

adtdxb + γabdx
adxb. (2.12)

Where α is the lapse function and β is the shift vector. These objects reflect the coordinate
degrees of freedom in general relativity. We can now define another useful object, the
extrinsic curvature of Σt,

Kab = −1

2
Lnγab = − 1

2α
(∂t − Lβ) γab.

Where L is the Lie derivative. Its trace is,

K = −∇cn
c.
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We now have the tools to decompose the Proca EoMs. We begin by decomposing the
Proca vector field as,

Xa = χa + naχ χa := γbaχb χ := −naXa

and introduce the Ea and Ba fields,

Ea := Fabn
b Bi := (3)εijkDjχk.

Where Di the covariant derivative associated with the metric on Σt, and (3)εabc is the total
antisymmetric tensor on Σt. We decompose the EoM by projecting eq. 2.8 and

∇b

[(
µ2 + 4λXcX̄

c
)
Xb
]

= 0

onto γab and na. Additionally, we introduce the auxilary scalar field Z to dampen violations
of the Proca field constraints as in [56, 104] by some rate σ. Doing so, we get the following
set of equations for the real fields,

α−1 (∂t − Lβ)Z = DiE
i + (µ2 + 4λXcX̄

c)χ− σZ (2.13)

α−1 (∂t − Lβ)Ei = (µ2 + 4λXcX̄
c)χi + (3)εijk∂jBk

+ EiK +DiZ − (3)εijkBj∂k logα (2.14)

α−1 (∂t − Lβ)χi = −Diχ− Ei − χ logα (2.15)

α−1 (∂t − Lβ)χ = Γ(R)

(
λ0(R) − λ̃(R) + λm(R)

)
(2.16)

where,

Γ(R) =
(
1−∆χ2

R − (∆χRχI)(1−∆χ2
I)
−1
)

λ0(R) = −Diχ
i
R + χRK − χiR∂i logα

λ̃(R) = 8λ(χbI [χ
I
cDb(χ

c
I)− χIDb(χI)]

χbI [χ
R
c Db(χ

c
R)− χRDb(χR)]+

χI [χ
I
cLn(χcI) + χcIχ

I
cK]+

χI [χ
I
cLn(χcR) + χcRχ

R
c K]+

λm(R) = ∆χRχI(1−∆χ2
I)
−1(λ0I − λ̃I)

∆ =
8λ

(µ2 + 4λXcX̄c)
.
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The imaginary part of the equations are found by replacing R → I. This is the set of
equations we will be solving numerically for the axisymetric case. For the 3D case, we only
evolve the real fields. The equations we solve are then,

α−1 (∂t − Lβ)Z = DiE
i + (µ2 + 4λXcX

c)χ− σZ (2.17)

α−1 (∂t − Lβ)Ei = (µ2 + 4λXcX
c)χi + (3)εijk∂jBk

+ EiK +DiZ − (3)εijkBj∂k logα (2.18)

α−1 (∂t − Lβ)χi = −Diχ− Ei − χ logα (2.19)

α−1 (∂t − Lβ)χ = Γλ0 (2.20)

where,

Γ =
(
1−∆χ2

)
λ0 = −Diχ

i + χK − χi∂i logα

∆ =
8λ

(µ2 + 4λXcXc)
.

Decomposing the Einstein equations we get the two evolution equations and two constraint
equations for the metric,

1

2α
(∂t − Lβ) γab = −Kab (2.21)

(∂t − Lβ)Kab = −DaDbα + α (Rab − 2KacK
c
b +KKab) + 2αSab (2.22)

H = 3R +K2 −KabK
ab − 16πE = 0 (2.23)

Ma = DbK
ab −DaK − 8πJa = 0. (2.24)

Where we have Rab the Ricci tensor, 3R the Ricci curvature on Σt and,

Ja = −hcandTdc
E = nanbTab

Sab = hcah
d
bTcd.

2.2.3 Numerical Methods

Due to the complexity of solving the equations of the Proca-Einstein system in full 3D,
we start by solving the equations in axisymmetry with a complex field. We then use
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the axisymmetric solution as the initial data for the 3D case. Solving the axisymmetric
case allows us to resolve the equations in (2+1) dimensions significantly reducing the
computational cost.

We assume a specific azimuthal dependence on the Proca field which makes the problem
a tractable (2+1) dimensional problem as in [56]. We specifically have,

Lφ̂Xa = imXa

Where φ̂ is the Killing vector in axisymmetry. We restrict our studies to cases where m = 1.

To solve the Einstein equations have we need to specify the gauge to deal with the
coordinate degree of freedoms. Here, we use the generalized harmonic formulation [89] to
evolve the Einstein equations. The idea behind the generalized harmonic formulation is to
introduce four source functions, Ha, where,

Ha = 2xa

=
1√−g∂b

(√−ggab) .
Now using these source functions in Einsteins equation and treating Ha as independent
variables, we can rewrite the Einsteins equation as,

gde∂e∂dgab+∂bg
ed∂egad+∂ag

de∂egdb+2H(a,b)−2HdΓ
d
ab+2ΓedbΓ

d
ea = −8π (2Tab − gabT ) (2.25)

where T is the trace of the stress-energy tensor, Γcab is the Christoffel symbols, and

H(a,b) = (ln
√−g)ab −

1

2

(
∂bg

cd∂cgad + ∂ag
cd∂cgbd

)
− gcd

2
(∂a∂cgdb + ∂b∂cgda) .

It can be shown that this system of equations is equivalent to the Einstein equation given
that the harmonic constraints are satisfied, that is,

Ca = Ha −2xa = 0 (2.26)

for all times. In this case, we pick the source functions to be the ones from the Kerr BH.

The imaginary and real part of the fields {χ, χi, Ei, Z} are evolved using fourth-order
Runge-Kutta time stepping and fourth-order stencils for spatial derivatives. We solve the
equations on a grid with 2:1 refinement. The lowest resolution simulation uses 65 × 33
points on each refinement level. The convergence of the methods for the axisymmetric case
can be seen in appendix A.
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To solve the system in 3D, we first evolve the system in axisymmetry as above until the
instability has begun but still is in the regime where the massive term dominates. We then
deform the data according to the method described in appendix B and use this deformed
data as initial data. We then only evolve the real part of the EoM, as described in the
previous section. To simplify the 3D case further, we fix the spacetime to a Kerr background
and only evolve the Proca field.

2.2.4 Measured Quantities

As in [56] we follow the cloud’s energy, E, and angular momentum, J throughout the
evolution,

E =

∫
ρE
√−g d3x = −

∫
αT tt
√−g d3x (2.27)

J =

∫
ρJ
√−g d3x = −

∫
αT tφ
√−g d3x. (2.28)

Where we use ρE and ρJ to denote the energy and angular momentum density. We also
keep track of some BH quantities. We track the apparent horizon and its area A, and
its angular momentum JBH . These quantities are related to the BH’s mass MBH by the
Christodoulou formula,

MBH =

(
M2

irr +
J2
BH

4M2
irr

)1/2

. (2.29)

Where Mirr = (A/16π)1/2.

The Newman-Penrose Weyl scalar, Ψ4, and the scalar, φ2 are also followed through
the evolution. These quantities allow us to follow gravitational and Proca radiation in the
far field [32, 81]. The quantities are defined using the Newman-Penrose formalism. We
first define a set of independent vectors ea, where, eaeb = ηab, this is the tetrad basis. The
tetrad basis is related to the coordinate basis through the vierbein, e b

a ,

ea = e b
a ∂b.

We then rewrite the metric using tetrads,

gab = eaebdx
adxb. (2.30)
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We can now define the null vectors in terms of the tetrads,

`a =
1√
2

(
ea(0) + ea(1)

)
ka =

1√
2

(
ea(0) − ea(1)

)
ma =

1√
2

(
ea(2) + iea(3)

)
m̄a =

1√
2

(
ea(2) − iea(3)

)
.

The Weyl scalar, Ψ4, and the scalar, φ2 are then defined as,

Ψ4 = Cabcdk
am̄bkcm̄d. (2.31)

Where Cabcd is the Weyl tensor. Taking the asymptotic limit of Ψ4 in the TT gauge shows
us how we can extract gravitational waves from it,

Ψ4(r→∞) = ∂2
t (h+ + ih×) .

With h+ and h× being the two polarization of the metric perturbation. The φ2 scalar is
defined as,

φ2 = Fabm̄
anb. (2.32)

In the asymptotic limit we have that φ2 gives the radiation from the Proca field.

2.3 Results in axisymmetry

We observe how the self-interaction term affects the properties of the final Proca cloud and
the BH through numerical simulations. We impose axisymmetry and focus on m = 1 as
discussed in the previous section. The instability is triggered by a small seed field close
to the BH with dimensionless spin a = 0.99 and initial mass M0. We experiment with
−0.1 < λ̃ = λ

µ2
< 1.5 and µ̃ = M0µ = {0.25, 0.30, 0.40, 0.50}. We find that the instability

saturates at a higher frequency than the massive case leading to less energy being extracted
from the BH. Similarly, when λ is negative, we find that the instability saturates at a lower
frequency than the massive case, leading to more energy being extracted. We look into the
possibility of the “bosenova” collapse and find no evidence of it occurring in our parameter
space. We compare the numerical results to a perturbation computation of the frequency
shift due to the strength of the self-interaction. We also find no evidence of gravitational
radiation far from the BH. Finally, we compare the frequency shift from the non-linear
potential obtained through the numerical simulations to the frequency shift expected in the
non-relativistic limit. We find that the numerical results quickly deviate from the expected
results. This is not too surprising as our tested scenarios are relativistic.
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2.3.1 Proca Cloud Energy and Angular Momentum

We follow the energy of angular momentum of the Proca cloud as defined in eq. 2.27,2.28
throughout the evolution of the cloud. Similarly, we keep track of the spin and mass of the
BH. Fig. 2.1 shows the energy of the Proca cloud throughout the instability for various
values of λ̃ and µ̃. The self-interacting case of the instability follows the growth of the
massive instability closely up until saturation, where the self-interacting instability saturates
at a lower energy for positive λ̃, which is associated with an attractive self-interaction.
When the self-interaction takes on the opposite sign, which is associated with a repulsive
self-interaction, the instability saturates at a larger energy than the massive case. Fig. 2.2
shows the change of mass of the BH throughout the instability for various λ̃ and µ̃ over the
energy of the Proca cloud. We see that the energy of the BH is efficiently being transferred
to the Proca cloud. We find that the growth rate of the cloud closely follows the massive
case at low energies but quickly becomes sub-exponential at larger energies. This can
be seen in Fig. 2.3 where we show log(E/M0) through time and see that for large values
of λ̃, the growth of the cloud deviates from the massive case. This deviation starts the
nonlinear term starts to dominate in the potential, i.e., when λ̃ ∼ 1

XaX̄a . We stop the study

at λ̃ = 1.5 since we found that higher values required higher resolution, which becomes
computationally expensive. We can nonetheless see from Fig. 2.7 that the saturation energy
follows a linear trend with respect to λ̃ and so we could expect similar behaviour for stronger
self-interactions.

The angular momentum of the cloud and the BH follow similar trends to the energy of
the cloud and BH. Fig. 2.4 shows how the angular momentum of the cloud at saturation is
lower when there are self-interactions; this is consistent with the BH losing less angular
momentum, as can be seen in Fig. 2.5. Fig. 2.6 shows the growth of the cloud’s angular
momentum following the massive case until λ̃ ∼ 1

XaX̄a where the growth slows down.

We only looked at small deviations from the massive case when looking at negative
values of λ. The reason being that when λ gets too negative, the energy then also becomes
negative. This might be fixed by looking at a more complete potential than simply a quartic
one that is unbounded from below.

2.3.2 Cloud Size & Bosenova

It is conjectured that scalar Proca fields subject to the superradiance instability will undergo
“bosenova” collapse under the right circumstance. The idea is that, given a strong enough
self-interaction, i.e. λ large enough, the cloud’s radius will shrink due to the self-interaction
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Figure 2.1: Energy of the Proca cloud through time during the superradiance instability for
various µ̃ and λ̃. The self-interaction affects the saturation energy of the cloud. Stronger
self-interaction causes the cloud to saturate at a lower energy than the purely massive case.
Conversly, negative self-interaction leads to higher energy at saturation.

while gaining energy from the BH until the cloud’s radius becomes unstable and the cloud
collapses. There is some numerical evidence for the scalar case [100, 102] and some evidence
in a non-relativistic limit analysis [24] for small regions of the parameter space.

The numerical studies which have investigated this scenario for spin-0 bosons [100, 102]
do not evolve the cloud with its nonlinearities up to the point where the bosenova occurs
but instead, start with a boson cloud large enough where the non-linear interaction is
significant. This may artificially lead to bosenova scenarios. Since we evolve vector bosons
in this study, which have a shorter instability timescale than the scalar case, we can follow
the whole non-linear evolution of the cloud.

The simulations performed showed no evidence of “bosenova” collapse occurring in the
parameter space we have explored. We can nonetheless look at the radius of the Proca
cloud at saturation for various λ to gain some insight into the possibility of a collapse. In
[24], the Bosenova scenario in the non-relativistic limit is explored by considering the stable
minima of the effective potential of the cloud’s radius. In the scalar case, the potential of
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Figure 2.2: Energy of the Proca cloud and the negative change in mass of the BH through
the evolution for λ̃ = {0, 0.5}, µ̃ = 0.4, a = 0.99 and M0 = 1.0. We can see that all the
energy dissipated by the BH is absorbed into the cloud.

the Proca field’s radius with self-interaction, ignoring self-gravity goes like,

V (R̃) =
α4ε

Gµ

(
1

8R̃2
− 1

4R̃
− 3α3ε

16384πGR̃3f 2

)
. (2.33)

Where we use notation from [24]. We have the energy scale f = µ2/λ, α = GMµ, and the
normalized occupation number ε = N

GM2 . The potential has then has extrema at

R̃±extrema =
1

2
±
√

1

4
− 9α3ε

4096πGf 2
.

Now there is a point as we decrease f where the extrema vanishes and the potential then no
longer has a stable minimum which then causes a “bosenova”. We can then see how close
to the bosenova our cases our by measuring the deviation from the Bohr radius, a = 1/(µ̃µ).
In the massive case with µ̃ = 0.40, we have the Bohr radius, a = 6.25. This will be the
Bohr radius in the non-relativistic limit.

Fig. 2.8 shows the energy density of the clouds with different self-interaction strengths
overlayed with the contours of the energy density normalized by the total energy. These
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Figure 2.3: Growth rate of the cloud’s energy for various self-interaction stregnths. We can
see at which times to nonlinear effects of the potential become relevant. Once the nonlinear
term become relevent the growth rate diverges downward from the massive only case.

plots illustrate how the energy density distribution of the cloud is not affected by the
non-linear potential, and it only affects the total energy. Fig. 2.9 shows the energy density
profile along the equatorial plane for µ̃ = 0.40, λ̃ = {0, 0.05, 0.2, 0.5}. We can see again
that the self-interaction does not appear to affect the profile of the cloud. We compare
these profiles to the one expected from a cloud with a Bohr radius a = 1/(µ̃µ). We find
that the clouds all follow this profile closely. This could indicate that the strength of the
self-interactions we tested is not strong enough for the bosenova scenario to happen but
considering that we go up to µ̃ = 0.5, which is a strong self-interaction, with no deviation,
we can know the bosenova scenario, if it occurs, only occurs in extreme cases. Further work
with higher λ values is required to test the bosenova scenario properly.

2.3.3 Comparison to non-relativistic limit

The saturation point of the instability can be understood through the condition discussed in
chapter 2, ω ≤ mΩBH , when the cloud’s frequency matches the BHs’ event horizon frequency.
This behaviour is observed in numerical studies for the massive case [56]. The instability
with the self-interaction also saturates when ω = mΩBH , except that the nonlinear potential
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Figure 2.4: Angular momentum of the Proca cloud through the superradiance instability for
various µ̃ and λ̃. Positive self-interaction leads to smaller angular momentum at saturation
while negative self-interaction leads to larger sums of angular momentum extracted.

causes ω to shift. This section, estimates the frequency shift caused by the nonlinear
potential and compares it to the numerical results.

In the spin-0, the frequency shift arising from the nonlinear potential was estimated in
ref [24] in the nonrelativistic limit. We follow a similar derivation of the frequency shift for
the spin-1 case to compare the shift in frequency according to perturbation theory to the
numerical result. We begin with the EoM in the non-relativistic limit,

DµF
µν = µ2Xν + λXµX

µXν . (2.34)

Where F µν = DµXν −DνXµ. Expanding we get,(
D2 − µ2

)
Xν = λXµX

µXν −DνDµX
µ. (2.35)

Now, unlike the massive case, in the self-interacting case we have that,

DµX
µ = −λ

µ
Dµ ((XνX

ν)Xµ) . (2.36)
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Figure 2.5: Angular momentum of the Proca cloud and the negative change in angular
momentum of the BH through the evolution for λ̃ = {0, 0.5}, µ̃ = 0.4, a = 0.99 and
M0 = 1.0. We can see that all the angular momentum dissipated by the BH is absorbed
into the cloud.

Then if we expand D2 to first order in rg/r, where rg = GM , we get,(
∂2

∂t2
−∇2 + µ2

)
Xµ − 2µ̃

r

(
µ+ K̂

)
Xµ = λ(XρX

ρ)Xµ (2.37)

where,

K̂ =
1

r

∂

∂r
− 2

(
µ2 +

∂2

∂t2

)
− L̂2

r2
(2.38)

is small compared to µ in the non-relativistic case and so can be omitted. Here L̂2 is the
total momentum operator. We are then concerned with the following equation,(

∂2

∂t2
−∇2 + µ2

)
Xµ − 2µ̃

r
µXµ = λ(XρX

ρ)Xµ. (2.39)

We now expand Xµ in terms of λ to solve perturbatively to first order,

Xµ = X(0)
µ + λX(1)

µ + . . . (2.40)
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Figure 2.6: Growth rate of the cloud’s energy for various self-interaction strengths. We can
see at which times to nonlinear effects of the potential become relevant. Once the nonlinear
term become relevant the growth rate diverges downward from the massive only case.

At zeroth order we have (
∂2

∂t2
−∇2 + µ2

)
X(0)
ν −

2µ̃µ

r
X(0)
ν = 0. (2.41)

As in [25] this admits the bound state,

Xµ = A
(
Ψµe−iωt + c.c.

)
(2.42)

where we can write Ψµ as a radial and orbital part,

Ψµ = Rn`(r)Y `,jm
µ (θ, φ) (2.43)

R being the hydrogenic radial wavefunction and Y `,jm
µ being the vector spherical harmonics.

We focus on the ` = 0, m = j = 1 state as it is the fastest growing bound state [25]. The
real part of this state is of the form,

X
(0)
i = Ae−µ̃µr

 cos(ωt)
− sin(ωt)

0

 (2.44)
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Figure 2.7: Energy of the Proca cloud at saturation as a function of λ̃. A linear fit,
y = −0.019λ̃+ 0.061 is overlayed on the numerical data.

X
(0)
0 = Aµ̃e−µ̃µr sin(θ) cos(ωt− φ) (2.45)

The first order energy correction from the nonlinear potential is then,

∆E(1) = λ

∫ ∞
0

4πr2|X(0)|4dr. (2.46)

The energy of the cloud is related to the frequency through the occupation number, N ,

E = Nω

and to first order N goes as E(0)/µ. So the frequency shift will be,

∆ω(1) =
λµ∆E(1)

E(0)
(2.47)

Using the zeroth order solution we get,∫ ∞
0

4πr2|X|4dr ∼ A4

∫ ∞
0

4πr2e−4µ̃µrdr = 4πA4

(
2

(−4µ̃µ)3

)
where we take that X

(0)
0 � X

(0)
i in the non-relativistic limit [25]. So,

∆ω(1) ∼ 4πλµA4

E(0)

(
2

(−4µ̃µ)3

)
(2.48)
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Figure 2.8: Contours of energy density with λ̃ = 0 (red curves), λ̃ = 0.05 (green curves),
λ̃ = 0.2 (yellow curves) , and λ̃ = 0.5 (blue curves) overlapped with the energy density of
the λ = 0 in the background normalized by the total energy of the cloud. We can see that
the non linear potential does not affect the profile of the cloud but only the total energy.

Now we can rewrite A4 in terms of the cloud’s energy, E(0).

E(0) =

∫ ∞
0

ρWdV ∼
∫ ∞

0

4πr2µ
2

2
((X

(0)
0 )2 +X

(0)
i X i(0))dr

from which we get,

A2 ∼ −
(

2E(0)µ̃3µ

π

)
Then,

∆ω(1) =
4πλµ

E(0)

(
2

(4µ̃µ)3

)(
2E(0)µ̃3µ

π

)2

=
λ

2π
E(0)µ̃3 (2.49)

Figures 2.10, 2.11, 2.12 and 2.13 show the predicted frequency shift as a function of
λ̃ with the black curve and the estimated frequency shift from the numerical simulations
for µ̃ = 0.25, 0.30, 0.40, 0.50 as the red dots. To get an idea of goodness of fit from the
perturbation calculation, we also fit the µ̃ = 0.40 numerical data with a line of best fit as
shown by the blue curve in the figures. The fit and perturbation appear to predict ∆ω well
for weak self-interactions in most cases apart for µ̃ = 0.25. Since ∆ω ∝ E(0)µ̃3, we can
take the fit from the µ̃ = 0.40 and rescale it to the other cases. This rescaled fit is show in
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Figure 2.9: Energy density along the equator for various strengths of self- interactions. The
length scale of the radius is set by multiplying it by Mµ2. The self-interaction does not
seem to affect the profile of the cloud, it only lowers the amplitude. We added the curve
e−2reqMµ2 to show that the curves follow the profile of a cloud with Bohr radius a = 1/(µ̃µ).

figures 2.11, 2.12 and 2.13. We see that the perturbation computation differs from the fit
quickly as λ̃ increases. This is to be expected since we are in the relativistic regime where
we don’t necessarily expect the non-relativistic results to hold.

2.4 Discussion

Combining energy extraction processes such as the superradiance with a confinement
mechanism to bound matter near a BH causes an instability which allows for efficient energy
extraction from spinning BHs. Bosons have a natural confinement mechanism around BHs;
when the Compton wavelength is comparable to, or larger than, the horizon radius of
the BH, the bosons will form a bound state. We should then expect the superradiance
instability to be triggered when bosons are found around spinning BHs. Furthermore, the
mass of astrophysical BHs and the mass of theoretically proposed particles such as axions
makes for relevant instability timescales. This scenario opens up the possibility of using
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Figure 2.10: Frequency change of the cloud due to the self-interactions as a function of the
self-interaction strength. We compare the numerical results (red dots) with the perturbation
results (black line) for µ̃ = 0.40. We also include the line of best fit (dashed blue line).

BHs as particle detectors through the gravitation waves emitted by the cloud extracting
the BH’s energy. Allowing us to constrain a whole new regime of particles. In this chapter,
we extended previous works of massive vector superradiance instability with axisymmetry
by asking what happens to the instability when the bosons self-interact with a quartic
potential.

Considering that we expect the proposed ultralight bosons to have self-interactions,
understanding the effects of these self-interactions on the instability is crucial if we hope
to detect and understand signals from the superradiance scenario. This work establishes
some results in the dynamics of the axisymmetric case. Through numerical simulations of a
complex Proca field with quartic self-interaction around a spinning BH in axisymmetry, we
find the superradiance instability suppressed when λ > 0 and amplified when λ < 0. The
instability saturates with a cloud with lower energies and angular momentum when the
self-interaction is positive. The Proca field with self-interaction qualitatively behaved in a
similar way to the purely massive case, it followed a similar growth until the self-interaction
term became large, at which point the growth slowed down and showed no evidence of
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Figure 2.11: Frequency change of the cloud due to the self-interactions. We compare the
numerical results (red dots) with the perturbation results (solid black line) for µ̃ = 0.50.
We include the rescaled line of best fit from the µ̃ = 0.40 case as the dashed blue line.

radiation in the far field. We looked into the possibility of the bosenova collapse scenario
and found no evidence of it occurring in our parameter space. We found that the cloud’s
profile had not been changed by the self-interaction and followed the expected falloff rate
for that given mass. These results are significant as they show that having self-interacting
bosons in axisymmetry does not cause the superradiance instability to be terminated by
scenarios such as the bosenova collapse. It might be the case that the λ we have tested
are not strong enough for the bosenova to occur. More work needs to be done with larger
values of λ to properly test the bosenova scenario but considering that we tried cases where
λ̃ is comparable to µ̃, we have strong evidence that it will not occur. Finally, we compared
the frequency shift ∆ω at saturation from the numerical simulations and a perturbation
calculation. We find that the perturbation calculation agrees for small values of λ̃ but the
perturbation computation fails at larger λ̃. This is to be expected since we are not in the
non-relativistic regime.

We have described the methods to study the 3D case in a fixed background but the
simulations have not been completed yet. One interesting aspect that will be worth looking
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Figure 2.12: Change of the frequency of the cloud due to the self-interactions. We compare
the numerical results (red dots) with the perturbation results (solid black line) for µ̃ = 0.30.
We include the rescaled line of best fit from the µ̃ = 0.40 case as the dashed blue line.

into is mode mixing. While in the axisymmetric case, we restrict the Proca field to have
m = 1, in the full 3D case, we do not; if the vector case behaves similarly to the scalar case,
then we can expect this mode mixing to lead to radiation from the cloud as described in
[24]. We did not observe this radiation in the axisymmetric case but will potentially see
it in the 3D case. Finally, we have not observed evidence of the “bosenova’ scenario in
axisymmetry, but the possibility of the “bosenova” might differ with the relaxed symmetry
assumptions and hence worth looking into.
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Figure 2.13: Change of the frequency of the cloud due to the self-interactions. We compare
the numerical results (red dots) with the perturbation results (solid black line) for µ̃ = 0.25.
We include the rescaled line of best fit from the µ̃ = 0.40 case as the dashed blue line.
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Chapter 3

Semi-supervised deep learning for
postmerger binary neutron star
waveforms

When massive iron core stars collapse, they trigger the supernova explosion from which
neutron stars are born. These neutron stars are of extreme density with masses around
∼ 1−2M� and radii around ∼ 10−15km [79] – matter densities unlike anywhere else in the
universe. Neutron stars can then form binary systems which radiate gravitational energy as
they inspiral until they merge. Merger events of binary neutron stars are rich in information
as they involve, gravitational and electromagnetic radiation. To this date, LIGO/Virgo is
believed to have detected up to 5 binary neutron star inspiral gravitational waves. In some
cases, after the neutron stars have merged, the remnant does not collapse immediately into
a black hole. This remnant emits gravitational waves known as the post-merger signal.
This post-merger signal is rich in information about the nature of the remnant object, and
the high density and out-of-equilibrium physics of the post-merger processes, which would
complement that coming from the accompanying electromagnetic signals. The detection of
the post-merger will offer a wealth of information but, at the same time this means that it
will be difficult to detect. The detection is difficult since the frequency of the post merger
waveforms are in the kHz, where the detectors are less sensitive and the detection of the
signal requires a catalog of waveforms spanning the physical parameters and the theoretical
uncertainties. Generating this catalog requires performing numerical simulations of these
mergers which are expensive. A method to generate quick post-merger waveforms is then
sought.

In this chapter, we study the possibility of leveraging the power of machine learning to
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build a post-merger waveform model under theoretical uncertainty using the conditional vari-
ation autoencoder framework (CVAE) which we implement as a neural network (NN). The
idea is to create a model P (h|Θ) where h is the waveform and Θ are the known parameters.
Now since the theoretical models for post-merger waveforms have theoretical uncertainty,
we need to marginalize out the uncertainties, that is P (h|Θ) =

∫
dzP (h|Θ, z)P (z) where z

is the theoretical uncertainty. It turns out this integral is intractable. As we will see, to get
around this we can approximate this distribution by training a CVAE. The CVAE does
so by compressing the waveforms h into latent variables z and then decoding the latent
variables back into some output h′. The CVAE is trained such that the error between the
input and output is minimized. To evaluate the performance of the CVAE, we measure the
match between the waveforms from the data and the ones generated by the CVAE. The
match is a metric which measures how well a signal projects onto another. This metric
is crucial to realize since gravitational wave detections are made by scoring high matches
with the detector data. Once trained, the CVAE could have the possibility of generating
waveforms seemingly instantaneously.

By training the CVAE with numerical simulation data, we find that the number of
elements in the numerical simulation dataset is not sufficient to train the NN to an acceptable
level. The problem being that the CVAE can recreate waveforms it has seen before but fails
to recreate ones that it has not seen, that is, it is overfitting. This is reasonable considering
the small amount of data we have. We then turn our attention to estimate how much data
would be required to train the CVAE. To do so, we build a fiducial model which is a rough
model of the numerical simulation data. The fiducial model is a stochastic model which
depends on the mean mass and compactness of the remnant. This fiducial model is then
used to generate mock waveform data. We find that using the fiducial data, the CVAE can
be trained with no overfitting occur when we have ∼ 10, 000 elements. We find that the
distribution of the data is well recreated by the CVAE despite it having a poor match. As
we will discuss, this poor match appears to be a result of the fiducial model being stochastic.
Finally, we find evidence of the latent space learns about the features from the fiducial
model which are not exposed during the training. We can see this by the fact that some
latent variables are correlated with the compactness.

3.1 Introduction

With over 50 detections of gravitational waves from merging compact binaries since 2015 [3,
2, 7, 6, 8, 48, 10, 15, 14, 12], including up to five involving neutron stars [5, 13, 11, 4], a
key goal of gravitational-wave astronomy is to maximize the scientific pay off of current
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and future detections. Neutron star mergers are especially interesting since they have the
potential to elucidate many physical phenomena from gravitational to nuclear physics.

There have been several proposals to combine observations from multiple events to
increase the signal-to-noise ratio (SNR) of specific information (e.g., [76, 98, 99, 35]). For
instance, by analyzing different stages of a non-vacuum binary merger, one can extract
the signatures of tidal effects, the rate of relaxation to equilibrium of different multipolar
perturbations, the connection of a binary’s intrinsic parameters to the object formed after
the merger, and potential new measurements of the Hubble constant using only gravitational
waves (e.g. [77, 42, 78]). Such efforts would help reveal the equation of state (EOS) of
neutron stars, probe possible deviations from General Relativity, allow for stringent tests of
the final state conjecture1 [85], explore the behavior of hot matter at supra-nuclear densities,
and help elucidate the inner engine of gamma ray bursts [94, 90, 80, 84, 93, 51].

In this work, we focus on the post-merger stage of binary neutron star (BNS) coalescence.
In particular, we seek a method to extract key properties of the hyper/massive neutron
star that results if a prompt collapse to a black hole is avoided. This occurs if the total
mass M of the system is not too high with respect to the maximum allowed mass Mmax of
a nonrotating star with the same EOS [MT ' (1.2− 1.7)Mmax], see e.g. Refs. [95, 66, 26].
The gravitational radiation from this stage, sourced by the oscillating, differentially-rotating
object produced by the merger, is rich in information about the hot EOS of the system, which
can be exploited, in particular, to measure the Hubble constant, guide the understanding
of the central engine of intense electromagnetic outbursts, and determine the maximum
mass of neutron stars.

Achieving this goal will require both knowledge of the waveform produced during this
stage, as well as improved sensitivity of detectors at the high frequencies (1–4 kHz) that
characterize such waveforms [78, 75]. A theoretical understanding of the expected waveform
not only aids in detection, but is crucial for the physical interpretation of such signals.
Naturally, the degree of completeness of such knowledge, together with the sensitivity of
the detector, impacts the depth of the analysis that can be carried out. For instance,
LIGO/Virgo reported no such signal following GW170817 [10], consistent with theoretical
expectations that it would be have been too weak to detect. Indeed, the study [10] searched
for extra power in spectrograms, but even with detailed models a sensitivity three times
greater than aLIGO design would be required for the detection of the leading mode in the
aftermerger gravitational-wave signal [96].

Building models for BNS postmerger signals is challenging for several reasons. First,
a BNS merger is a highly nonlinear event, which can only be treated numerically. BNS

1Sometimes also referred to as the “generalized Israel conjecture.”
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merger simulations are expensive compared to those of binary black holes, since in addi-
tion to solving the Einstein equation, they must incorporate magnetohydrodynamics and
microphysical modeling. Typically, this means that BNS simulations converge at lower
order in discretization length compared to vacuum simulations. The BNS merger also gives
rise to small-scale features, such as turbulence, which are difficult to resolve numerically,
but which can significantly affect the gravitational-wave phase and ultimate fate of the
remnant. Finally, simulations must be sufficiently long and accurate to smoothly match
to perturbation theory in the early inspiral as well and capture the after-merger behavior.
Consequently, the number of numerical simulations available at present from which to build
a model is limited, and these simulations involve uncertainties not present in binary black
hole simulations.

Any model must cover the full parameter space for BNS systems, which in principle
includes all parameters for binary black holes, plus the EOS, which for a cold neutron
star gives the pressure as a function of energy density. During the inspiral the EOS
manifests through the tidal deformabilities of the individual neutron stars, which can be
measured through their impact on the phase evolution [58]. Postmerger gravitational waves
probe a hot, dense, high-mass regime complementary to the inspiral. Using numerical
simulations the dominant postmerger frequency fpeak has been connected to the radius
R1.6 of a nonrotating star of mass 1.6 M� [27]. However this relation is not exact, but
rather depends weakly on the average mass of the neutron stars [91] and mass ratio [73].
The signal is further complicated by the presence of secondary modes, which could contain
additional EOS information. Thus, in addition to the challenges of limited numbers of
simulations, and uncertainties inherent in simulations, a third challenge is to parametrize
the EOS in a manner that would facilitate inference.

In this work, we address these challenges using a deep-learning technique called a CVAE
[72] to build a distributional latent-variable model for postmerger signals h. The basic
idea is to partition the parameters characterizing the signal into two sets. The first set
consists of those parameters θ that we have direct access to from simulations and that we
know a priori should form part of the characterization of the system. For a postmerger
signal, θ could include, e.g., the total mass and spin of the system. The second set of
parameters—the latent variables z—includes the EOS as well as any other physics-modeling
or numerical differences between simulations. It is a priori unclear how best to parametrize
these properties of the system and simulations, so this task is left to the CVAE. During
training we do not provide any information about latent parameters, rather the CVAE
learns to use z to efficiently represent differences in training waveforms h(i) that are not
accounted for in the parameters θ(i).

Through training, the CVAE learns a model p(h|z, θ) for the waveform h given z and θ.
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The CVAE also learns an “encoder” model q(z|h, θ) for the latent variables z, conditioned
on h and θ. Using the encoder to identify latent variables with numerical simulations,
we show that z encodes information about the EOS in a useful way. Given a signal, one
could then perform inference jointly over θ and z using p(h|z, θ) to determine the EOS and
distinguish modeling uncertainties in simulations.

Existing postmerger models have been designed mostly to facilitate the extraction of
ringdown spectral information, guided by the empirical R1.6–fpeak relation. Past works
have included the use of principal component analysis [47], phenomenological waveform
modeling [33], agnostic modeling such as BayesWave [49], and searches for specific principal
frequencies tied to the physical parameters (e.g. [28, 63, 73, 74, 57, 29, 31].) A major
advantage of the CVAE is that it learns automatically to connect features of the waveform
to aspects of the EOS, rather than depending on fortuitous discoveries of empirical relations.
In this way, it can be applied more generally, and, with sufficient training data, has the
potential to discover new relations between the EOS and the waveform.

There have been several recent applications of machine learning to waveform modeling [44,
69, 45] (see also [50]). These approaches use neural networks to interpolate a set of training
waveforms across parameter space. Since waveform generation requires forward neural-
network passes, these models are fast, and they furthermore allow for rapid computation
of derivatives with respect to model parameters, facilitating derivative-based inference
algorithms. Our CVAE-based method generalizes these approaches to include a latent space
for representing properties of the training waveforms for which a convenient parametrization
may not be known in advance. We also note that CVAEs have in the past been applied to
gravitational waves [59], but to the problem of parameter estimation rather than waveform
modeling.

This paper is organized as follows. In Section. 3.2, we outline our basic approach and
introduce the CVAE. Then in Section. 3.3, we build a simplified CVAE model p(h|z,M),
depending only on the total mass and the latent variables, for postmerger waveforms using
numerical data from simulations. We find that the number of available simulations is
at present too small to successfully train the model, so in Section. 3.4, we fit instead to
artificial waveforms. By examining the latent space, we find evidence that the neutron
star compactness is encoded in the latent space. We discuss the results of this study in
Section. 3.5.
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3.2 CVAE framework

Suppose we have a set of pairs (θ(i), h(i)) arising from BNS simulations, where h denotes the
signal waveform, and θ denotes the binary system parameters, in particular the constituent
masses (and potentially the spins, although we will not consider them here). However, the
simulations have additional underlying parameters not included in θ, including the EOS,
discretization errors, and additional modeling choices for the matter physics, which would
confound an attempt to build a distributional model p(h|θ). To capture the dependence on
these additional parameters, we suppose that they can be represented by a set of latent
variables z, and we augment our model by conditioning on these as well, i.e., p(h|θ, z).

We treat the latent variables as a priori unknown, and we not not provide them when
building the model. Rather, our aim is to learn a useful latent representation (of the
EOS, etc.) based on patterns in the training waveforms. To do so, we fix a suitably
restrictive parameterized form for p(h|θ, z), typically a Gaussian distribution, with mean
and covariance specified as outputs of a neural network (with input (theta, z)). We also
fix a prior p(z), typically standard normal. Only by encoding information in z can the
marginalized distribution, now a Gaussian mixture,

p(h|θ) =

∫
dz p(h|θ, z)p(z), (3.1)

be sufficiently general to represent the training data.

Given parameterized forms for p(h|θ, z) and p(z), we would like to tune the neural-
network parameters to maximize the likelihood that the training outputs {h(i)}Ni=1 came
from the inputs {θ(i)}Ni=1 under the model p(h|θ), i.e., we would like to minimize the loss
function,

LMLL ≡ Epdata(θ)Epdata(h|θ) [− log p(h|θ)] . (3.2)

However, the integral over z in Eq. (3.1) is intractable, so this cannot be evaluated.

To obtain a tractable loss, we use the variational autoencoder framework [72]. Intuitively,
the integral in Eq. (3.1) could be made tractable if we knew which z contributes most for
given h and θ, i.e., if we had access to p(z|h, θ). However, this density is also intractable.
As an approximation, one therefore introduces an encoder distribution q(z|h, θ). Then

log p(h|θ) = Eq(z|h,θ) log p(h|θ)
= Eq(z|h,θ) log p(h|z, θ)−DKL (q(z|h, θ)‖p(z))

+DKL (q(z|h, θ)‖p(z|h, θ)) . (3.3)
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This expression involves the Kullback-Leibler (KL) divergence,

DKL(q(x)‖p(x)) ≡ Eq(x) log
q(x)

p(x)
, (3.4)

which is nonnegative and vanishes if q = p. We therefore take the loss function to be

L ≡ Epdata(h,θ)

[
−Eq(z|h,θ) log p(h|z, θ)
+DKL (q(z|h, θ)‖p(z))] (3.5)

= LMLL + Epdata(h,θ)DKL (q(z|h, θ)‖p(z|h, θ)) . (3.6)

The expression in Eq. (3.5) is now tractable. By Eq. (3.6), if q(z|h, θ) is identical to the
posterior p(z|h, θ) then the CVAE loss function is equal to the maximum-log-likelihood loss.

The loss (3.5) consists of two terms. By minimizing the first term (the reconstruction
loss) the CVAE attempts to reconstruct h as well as possible after first being encoded by
q(z|h, θ) into a latent representation, and then decoded by p(h|z, θ) into a new waveform.
In this sense, the CVAE is similar to a vanilla autoencoder (see, e.g., [60]). The second
term (the KL loss) pushes q(z|h, θ) to match the prior p(z). In this way, it regularizes
the model, discouraging q(z|h, θ) from memorizing the training data. See Fig. 3.1 for an
illustration of the overall structure.

Following standard practice, we take all distributions comprising our CVAE to be
multivariate normal with diagonal covariance,

q(z|h, θ) = N (~µq(h, θ), ~σq(h, θ)), (3.7)

p(h|z, θ) = N (~µp(z, θ),~1), (3.8)

p(z) = N (0, 1)l. (3.9)

The functions (~µq(h, θ), ~σq(h, θ)) defining the mean and variance of the encoder are given
as outputs of an encoder neural network, which takes as input (h, θ). Likewise, the decoder
mean ~µp(z, θ) is given as the output of a decoder network, which takes as input (z, θ). The
covariance of the decoder is fixed to the identity, and, following standard practice, the prior
over z is taken to be a standard multivariate normal distribution.

When written in the form (3.5), the loss L may be evaluated, and the neural networks
trained. Since q(z|h, θ) and p(z) are both multivariate normal, the KL divergence can
be evaluated analytically for any (h, θ). The reconstruction loss is evaluated using a
single-sample Monte Carlo approximation as follows:

1. Use the encoder network to evaluate (~µq(h, θ), ~σq(h, θ)).
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2. Sample z ∼ q(z|h, θ) by first sampling ~ε ∼ N (0, 1)l and then setting z = ~µq(h, θ) +
~ε� ~σq(h, θ). This is known as the reparameterization trick [72].

3. Use the decoder network to evaluate ~µp(z, θ).

4. Evaluate the loss − log p(h|z, θ).

The loss L and its derivatives with respect to neural network parameters may then be
evaluated on minibatches and minimized using a standard gradient-based stochastic op-
timizer (we use Adam [70]). The reparameterization trick was used to separate out the
stochastic aspect of sampling from q(z|h, θ) and enable backpropagation for calculating the
derivatives.

We now comment on the relation of this procedure to standard fitting techniques for
model building. If p(h|z, θ) were independent of z, then the reconstruction loss would no
longer depend on q(z|h, θ). For the multivariate normal p(h|θ) given in Eq. (3.8) (now

omitting z) this reduces (up to normalization) to the mean squared difference 1
N

∑N
i=1 ‖~h(i)−

~µp(θ
(i))‖2, i.e., ~µp(θ) becomes a model for the waveform given by a standard least-squares

fit to training data. (One could additionally modify the covariance of p(h|θ), to specialize
the fit, e.g., by including information about detector noise properties, or to allow it to be
fit as well during training.)

By allowing for dependence on the latent variables z, the marginalized distribution
p(h|θ) can have a more complicated (non-Gaussian) structure. This is needed to build
a model from simulations that depend on parameters not included in θ, as these could
give rise to different h for the same θ. In the following sections, using a toy model for
binary neutron star postmerger waveforms, we provide evidence that the latent variables
can learn about the hidden variables of the training data, in this case the EOS. Given a
gravitational-wave detection, by using p(h|z, θ) to perform Bayesian parameter estimation
jointly over θ and z, one could, therefore, learn useful information about which of these
parameters are preferred; see Fig. 3.2.

The fact that one optimizes L rather than LMLL when training a CVAE gives rise to
a possible pitfall. Notice that if the last term in Eq. (3.6) vanishes (i.e., if q(z|h, θ) and
p(z|h, θ) are identical) then the two losses coincide. Typically, though, the form (3.7) of the
encoder q(z|h, θ) is too restrictive to properly represent the posterior p(z|h, θ), so L > LMLL.
Another way equality can be achieved, however, is by ignoring the latent space entirely, i.e.,
by setting p(h|z, θ) = p(h|θ) and q(z|h, θ) = p(z|h, θ) = p(z). This is known as posterior
collapse. In other words, optimizing L rather than LMLL means that the use of the latent
space incurs a cost. If this cost exceeds the gain in reconstruction performance achieved
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by using the latent variables, then the CVAE can fail to autoencode [43]. To mitigate this
problem, one approach is to multiply the KL loss term by a factor β < 1 [64], and possibly
anneal this term to one during training [34]. In this work, we determine experimentally a
fixed value for β that gives good performance. Other approaches include generalizing the
form of the encoder distribution so that it more easily approximates the posterior [71]. In
Appendix D, we demonstrate these methods on a toy model where the data is a simple
sum of sine waves.

3.3 Postmerger waveform model

In this section we apply the CVAE framework to construct a model for postmerger waveforms
based on numerical relativity simulations. We build a simplified model p(h|M, z), taking
the parameter space to be the total mass of the system, i.e., θ = M , and representing
waveforms in terms of several phenomenological fit parameters. We find that the small
number of available numerical relativity simulations leads to overfitting, so in the following
section we assess the CVAE approach further using synthetic training data.

3.3.1 Training data

We obtain numerical training waveforms from the CoRe database [53]. This comprises 367
BNS waveforms, with varying component masses, spins, and equations of state, as well as
different numerical resolutions and starting frequencies. (There are 163 unique choices of
masses, spins, and equations of state.) From these inspiral-merger-ringdown waveforms, we
extract the postmerger signal by identifying the moment in time of peak gravitational-wave
luminosity, and truncating the preceding signal. Note that although the neutron stars come
into contact prior to this peak, this definition of the postmerger signal is sufficient for our
purposes. We drop all waveforms that exhibit prompt collapse to a black hole, requiring
that the post-peak waveform lasts at least 5 ms.

The CoRe simulations have been performed at different resolutions and for varying time
durations. To prepare the waveform data for the neural network, we standardize the time
resolution and total time by resampling using a quadratic spline and padding with zeros
at the end. We represent waveforms using 1000 time samples, with a total duration of
45 ms, which is the duration of the longest postmerger signal. Finally, for simplicity, we
only take the real part of the ` = m = 2 component of the complex strain h = h+ − ih×,
after multiplying by a phase such that the real part vanishes at the merger time, t = 0,
i.e., h(t) ≡ Re(eiθh22(t)), with h(t = 0) = 0.
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When fitting the model directly to these strain data sets, we find that the zero padding
leads to poor waveform reconstruction with overdamping at late times (see App. E). Instead,
we find it more effective to use a compressed representation, where waveforms are expressed
in terms of parameters of a phenomenological model [33],

h(t) = α1e
−t/τ1 {sin (2πf1t) + sin [2π(f1 − f1ε)t]

+ sin [2π(f1 + f1ε)t]}
+ α2e

−t/τ2 sin
(
2πf2t+ 2πγ2t

2

+2πξ2t
3 + πβ2

)
. (3.10)

Here, f1ε = 50 Hz, and the parameters {α1, α2, τ1, τ2, f1, f2, β2, γ2, ξ2} are determined by
least-squares fit. This model is motivated by the fact that BNS postmerger signals tend to
consist of two damped sinusoids, with corrections added for improved accuracy [33].

The parameterized form (3.10) is capable of representing the numerical-relativity post-
merger signals with M > 0.8, where

M(h, h̃) =
〈h|h̃〉√
〈h|h〉〈h̃|h̃〉

, 〈h|h̃〉 =

∫ tf

0

h(t)h̃∗(t)dt, (3.11)

is the match between two waveforms, assuming a flat noise spectrum. We additionally
restrict to those waveforms with M > 0.9. This reduces our data set to 123 waveforms.
Finally, we use principle component analysis whitening to decorrelate and standardize the
waveform parameters (see App. F).

To summarize, our training data consist of 123 (M,h) pairs, where h is a 9-component
vector describing a postmerger signal. This discards labels for the mass ratio, spins, EOS,
and numerical resolutions, but keeps that of the total mass. This omitted information,
however, gives rise to differences between the waveforms, so it (along with any other
differences between simulations) should be understood as latent variables. In the following
subsection we construct a CVAE to model these waveforms and characterize the latent
information.

3.3.2 Experiments

We model p(h|M) with a CVAE with latent dimension l = 4. The encoder and decoder
are fully-connected networks with rectified linear unit nonlinearities. Exploring various
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hyperparameter choices, we find best performance with a 2-hidden-layer encoder with
(100, 50) units, a decoder with inverted structure, and β = 0.003.

We split our dataset into training (60%) and validation (40%) sets, and train for 4000
epochs. The training history is plotted in Fig. 3.3. Since the validation loss is much higher
than the training loss, we conclude that the CVAE is overfitting, and that the training set
is too small for the network to successfully generalize to previously unseen waveforms. We
have also tried methods for mitigating overfitting such as adding dropout layers. There was
no significant improvements using that method.

3.4 Extended training set

The number of available numerical simulations is at present too small to properly train a
CVAE to model postmerger waveforms. Nevertheless, we can assess the viability of the
approach for the future by training on synthetic data. In this section, we first construct a
“fiducial” waveform model pfid(h|M̄, C) based on the CoRe waveforms. The fiducial model
depends on the average mass M̄ = (M1 +M2)/2 and the compactness C = GM/(Rc2) of
the remnant neutron star. We then generate a much larger training set by sampling from
this model, and we show that with this we can successfully train the CVAE. This exercise
also provides an estimate for the number of numerical waveforms needed to train a CVAE.

3.4.1 Fiducial model

We now construct the fiducial model pfid(h|M̄, C) for postmerger waveforms h given M̄
and C. We do not have direct access to C from the numerical-relativity simulations, so
instead we extract it based on the dominant postmerger frequency [73, 33, 91]. Indeed,
Ref. [33] found that, for a remnant with M̄ = 1.6 M�, the dominant postmerger frequencies
approximately satisfy the relations,

f1 =
(
a5 + a6C + a7C2 + a8C3

)
(1.6 M�/M̄), (3.12)

f2 =
(
a9 + a10C + a11C2

)
(1.6 M�/M̄), (3.13)

with the numerical parameters a5 = −35.17 kHz, a6 = 727.99 kHz, a7 = −4858.54 kHz,
a8 = 10989.88 kHz, a9 = −3.12 kHz, a10 = 51.90 kHz, and a11 = −89.07 kHz. On
dimensionful grounds, we have added an extra factor 1/M̄ to extend these relations to
other BNS masses. We therefore take Eq. (3.13) as given and use it to define C in terms of
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f2 and M̄ . After solving for C, we plot all the parameters from fitting Eq. (3.10) to the
numerical waveforms versus C in Fig. 3.4. The parameters of f1 are then fitted to our data.
We find a5 = 10.65 kHz, a6 = −262.69 kHz, a7 = 2329.10 kHz, and a8 = −6254.30 kHz.
These values are different from the ones found in Ref. [33], but as can be seen in Fig. 3.4,
the curve defined by [33] is within one standard deviation of the parameters we find.

We fit a generalized linear model for the remaining waveform parameters in terms of
the compactness, i.e., 

α1

α2

log(τ1)
log(τ2)
M̄

1.6M�
f1

M̄
1.6M�

f2

β2
M̄2

1.6M�
γ2

M̄3

1.6M�
ξ2


∼ N ( ~B + ~AC,Σ), (3.14)

where

~A =



a1

a2

a3

a4

(a5/C + a6 + a7C + a8C2)
(a9/C + a10 + a11C)

a12

a13

a14


, (3.15)

~B =



b1

b2

b3

b4

b5

b6

b7

b8

b9


, (3.16)
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and where Σ is a generic covariance matrix, and ai and bi are constants which are ob-
tained by fitting the numerical waveforms except for {a5, a6, a7, a8, a9, a10, a11}, where we
use the values discussed previously. We determine Σ by first subtracting the mean of
{α1, α2, log(τ1), log(τ2), β2, γ2, ξ2}, and subtracting Eq. (3.12) and Eq. (3.13) for the frequen-
cies. This method of computing Σ is conservative in the sense that it overestimates the noise
in the model. The covariance matrix can also be estimated by first removing ~A · C + ~B from
the data, or by simultaneously fitting for the linear dependence and covariance. However,
we have checked that doing the former only reduces the magnitude of the covariance ∼ 2%,
and does not significantly affect the results of the estimate.

Note that we took logarithms of τ1 and τ2 so as to normalize their distributions. The
values of the parameters are recorded in appendix G. We add a factor of 1/M̄ in the
frequencies to roughly model mass dependence of the frequency on the mass, inspired by
Ref. [73]. The estimated variance on γ2 and ξ2 is large which leads to issues with the
waveforms at late times. On dimensional grounds, we also add a factor of 1/M̄2 to γ2 and
1/M̄3 to ξ2.

3.4.2 Experiments

With the fiducial model, we are now able to generate artificial postmerger signals, which
we take as training data for the CVAE. We first generate a dataset with 1,010,000 samples
h ∼ pfid(h|M̄, C) by randomly choosing the remnant mass, 1.2 M� < M̄ < 1.7 M� and
C ∈ (0.1, 0.2) from uniform distributions. We pick the compactness in this range in
accordance to the range given in [33]. The dataset is then whitened and normalized. We
then train CVAEs (with ` = 4) using 500, 1000, 5000, 8000, 9000, 104, 1.5× 104, 105, and
106 elements. We set aside 104 elements for the validation set.

While the CVAE showed no signs of overfitting with a dataset with 10,000 elements or
more, it failed to get a good match, with M = 0.27 for the training set and M = 0.24 for
the validation set. Given the stochastic nature of the fiducial model, using the match as the
metric to evaluate the performance of the CVAE may not be the best choice of metric. By
generating a set of waveforms using the fiducial model with fixed M̄ and C then computing
the match between these waveforms, we get an average match of 0.38. We should not
expect the CVAE to produce a match greater than this since, if the CVAE is well trained,
then the CVAE model could recreate any of the waveforms from the fiducial model giving
an average match close to 0.38. What is more important then is that the distribution of
parameters reproduced by the CVAE is similar to the ones from the fiducial model. By
looking at Fig. 3.5, we see that the recreated parameters from the CVAE (orange dots) are
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similar to the input parameters (blue dots); this figure shows that the CVAE can recreate
the parameters well. The amplitude part of the waveforms are well recreated by the CVAE,
as shown in Fig. 3.6, where we have the amplitude part of the match is computed and
plotted versus different training set sizes. Some more work needs to be done to find the
correct metric. Details of the CVAE architecture are provided in Appendix G. We train
the CVAE over 2000 epochs with a batch size of 150. The training of the largest dataset
took approximately three days on a laptop.

We can now address the question of how the CVAE encodes information about the
compactness in the latent space. In Fig. 3.7 we plot the latent distribution of encoded
waveforms h ∼ p(M̄, C) for fixed M̄ = 1.35 M�, but sampling C ∼ p(C). We see that the
latent variables clearly encode information, as they trace a path in the latent space rather
than sampling the normal distribution. However, there is no obvious connection to the
compactness C.

To probe whether correlations between z and C can be obtained under more idealized
conditions, we train the CVAE once again, but this time based on a fiducial model with a
reduced noise level. Fig. 3.8 shows the latent space of the CVAE trained with the noise
reduced by half, i.e., Σ→ 0.5Σ. We see that there is a clear correlation between z0 and C.
The CVAE has therefore learned about the compactness based on waveforms alone, without
ever having been provided compactness information. This is evidence of the NN learning
the simple C − f2 relationship. While this is a simple relationship to uncover, it shows how
the CVAE can expose interesting relationships in the latent space.

3.5 Discussion

The detection of a gravitational wave signal from the post-merger oscillations of a BNS
would be a major accomplishment with important consequences for our understanding of
physics in extreme regimes. Given the weaker amplitude and high frequency of such a signal,
a good model will be essential in making and learning from such a detection. However,
our ability to build such a model is hampered by a number of theoretical uncertainties,
including our lack of knowledge of the true neutron star EOS, uncertainties regarding
the behavior of magnetized matter, viscous, cooling, and other microphysical effects, and
difficulties adequately resolving turbulence and other small scale effects, while still covering
the allowed parameter space. Machine learning offers a way to build partially informed
models with relatively few assumptions about the unknown physics. To build the CVAE,
we assume that the unknown physics can be encoded in a small latent space, and that there
is a way to interpolate between different theoretical models of the unknown physics. By
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training a neural network with samples covering not only different unknown physics (e.g.
different EOSs), but also different theoretical errors (e.g. numerical resolutions used in the
simulations), we can attempt to build a model that interpolates over both, and thus is
sufficiently robust to be used to look for real signals. The neural network approach also
easily adapts to incorporate new information as it is obtained, and does so with a low
associated computational cost at training time. In this approach, the main cost lies in the
amount of data that is required to train the model. In this case, training the model with
106 elements took approximately three days on a laptop. This training time can be reduced
significantly by taking advantage of GPUs.

By building CVAEs for toy model data, we first showed that the CVAE is capable of
learning simple waveform time series consisting of a sum of sine functions. We then moved
on to training the CVAE on real numerical waveforms using the CoRe database [53], and
found that the neural network is overfitting, which is unsurprising given the dearth of data to
train on, and the complexity of the waveforms. Instead of training directly on the time series
from the numerical waveforms, we fit a nine parameter function [Eq. (3.10)] to waveforms,
and used these parameters as the training data. We combined this with some preprocessing
to improve the learning outcome, but still found that we were overfitting. Given that we
could not avoid overfitting with the data we had, we turned our attention to estimating
how much data would be required for the CVAE to work. To perform the estimate, we
built a fiducial model of the parameters to generate data to train on. We generated data
using the fiducial model, trained a CVAE with four latent variables, and found that we
could create a CVAE which would recreate a similar parameter space to the fiducial model
without overfitting with ∼ 10, 000 training elements. Unfortunately, the CVAE did not
manage to recreate the phases accurately enough to get sufficient matches. Nonetheless,
the CVAE model does show evidence of learning how to recreate the waveforms by being
able to reproduce a similar parameter distribution to the fiducial model and encoding the
compactness in the latent space. A better metric to evaluate the model needs to be found.
The particular choice of fitting function we used was chosen mainly for illustration, and
other choices, for example using a greater number of free parameters, should also work with
these methods, though would presumably increase the required size of the training set.

In investigating the latent space generated by the training process, we found evidence
that the latent space was encoding the hidden variables, but we were unable to obtain a
clear correspondence between the main hidden variable (the neutron star compactness)
and some combination of the latent variables. A readily apparent relationship does show
up once the noise of the fiducial model is reduced. This suggests that in the case without
reduced noise, the latent space still encodes the compactness, but in a more complicated
way. This relation could perhaps be found by training a secondary neural network for this
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purpose. We leave further study of the latent space to future work.

In this work, we considered two ways to present the data to the neural network: the
full time series, and the parameters of a model which was fit to the time series. However,
these are far from the only choices. Another method which we attempted, but found poor
results, is to decompose the spectrum of the waveforms with principle component analysis
[47], and then train on the coefficients. We found that we needed more than 10 principle
components to get a match above 0.90. The combination of large variance and needing
many coefficients made the learning of the data more difficult.

It is also important to keep in mind that the estimate given in Sec. 3.4.2 depends heavily
on the specific neural network architecture (number of layers, number of neurons per layer,
etc.) that we train on. The space of neural network implementations of a CVAE is large,
and the one we picked might not be the optimal one despite our search. One could envision
trying to adapt tools such as autoML [68], which searches over the space of neural networks,
to build a CVAE optimal for the post-merger data.

From our studies, we conclude that more training data is required to train the CVAE to
properly represent BNS post-merger waveforms. We found that with ∼ 104 waveforms, the
CVAE could recreate similar parameters to the fiducial model but could not get a good
fit. Given that the CVAE recreates the parameter space of the fiducial model well and the
stochastic nature of the fiducial model, we suspect that the choice of metric to evaluate the
CVAE should not be match. More work needs to be done to determine the correct metric.
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Figure 3.1: Diagram of a CVAE. The white circles of the image represent the neurons
of the neural network, which are nonlinear functions, while the connection between the
neurons are represented by the black arrows. The CVAE in the diagram is broken up
into four pieces: the input, the encoder, the decoder, and the output. The information
flows through the CVAE from left to right and is compressed in the latent space. At the
intersection of the encoder and decoder, we have the latent space, which consists of the
latent variables z and the conditional variables θ where dim(z) < dim(h). This latent
layer is connected to the previous layer with a different function than the other layers,
represented by the squiggly arrows. The last layer of the encoder outputs ~µq, ~σq which
are used to define a normal distribution N (~µq, ~σq). The latent layer then samples from
this distribution, z ∼ q(z|h, θ) = N (~µq(h, θ), ~σq(h, θ)). The last layer of the of the encoder
consists the ~µq(h, θ) and ~σq(h, θ) variables which are, respectively, used as the mean and
standard deviation of the normal distribution sampled from the latent variables. These
variables facilitate interpolation by forcing the latent variables to be normally distributed.
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Figure 3.2: After the CVAE is trained, one can disregard the input and the encoder and
only consider the layers after the latent space. Doing so results in a model ~µp = Dec(θ, z)
where Dec is the decoder network.
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Figure 3.3: Training history for a CVAE trained with numerical waveforms in the repre-
sentation (3.10). The upper plot shows the total loss (3.5), while the bottom two plots
show the KL (left) and reconstruction loss (right) contributions to the total. The red and
black curves correspond to the training and validation sets, respectively. The gap between
training and validation sets is an indication of overfitting.
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Figure 3.4: The parameters in Eq. (3.10), obtained from fitting the numerical waveforms,
versus compactness C, color coded by the average mass (M̄) of the two stars in units of
solar mass. Since we do not have direct access to C from the simulations, here we define it
be given by f2 = (b0 + b1C + b2C2)(1.6 M�/M̄) with b0 = −3.12 kHz, b1 = 51.90 kHz, and
b2 = −89.07 kHz. We then fit for the parameters of f1 = (a0+a1C+a2C2+a3C3)(1.6 M�/M̄)
to our data. The blue curve in the f1 plot represents the fit from Ref. [33]. Though this
curve roughly lies within the range of the data points, we find different values for the best fit
parameters for the mean of f1. The remaining parameters, on the other hand, appear to be
roughly linear in C, with some noise. We overlay the fiducial model at a fixed M̄ = 1.35 M�
on the numerical data: the solid red line is the mean of the data, i.e. ~A · C + ~B, while
the shaded regions are the the one standard deviation ranges. From this, we see that the
fiducial model captures most of the numerical data.
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Figure 3.5: Parameters from the fiducial model (blue dots) with recreated parameters from
the CVAE (orange dots.) The recreated data is generated by inputting the fiducial model
data into the CVAE. The CVAE was trained with 10,000 elements. Here we fix the value
of β = 0.0008, which is different from the β value used in the numerical data experiment.
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Figure 3.6: Amplitude match of training and testing data with varying sizes of dataset
for the fiducial model data. The neural network was trained and tested over five different
datasets for each dataset size. Here we again fix the value of β = 0.0008.
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Figure 3.7: Pairplot of latent variables generated with data generated with the fiducial
model with fixed masses and random compactness. That is we sample z ∼ p(z|M̄ =
1.35M�, h(M̄ = 1.35M�, C))p(C). We can see that the data traces out a one dimensional
path with noise in the latent space in some of the latent variables. This can be seen
clearly with the variables (z1, z2). This indicates the CVAE is avoiding posterior collapse.
By looking at the compactness column one would hope to see a relationship between the
compactness and the latent variables, unfortunately the relationship is not obvious here.
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Figure 3.8: Similar to Fig. 3.7, but for a fiducial model with half the variance (Σ→ 0.5Σ),
we show a pairplot of latent variables generated with fixed masses and random compactness.
That is, we sample z ∼ p(z|M̄ = 1.35M�, h(M̄ = 1.35M�, C))p(C). In this case we can see
that there is a relationship between the first latent variable z0 and the compactness.
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Appendix A

Convergence Axisymmetry

To verify that the integration converges, we run the simulation at three different resolutions.
We verify that the measured proca and black hole quantities converge to the same solution
at different resolutions. We also take a look at the constraints at the different resolutions.

Figures. A.4,A.2 shows the energy and angular momentum quantities at three different
resolutions. The medium resolution being twice the resolution of the low one, and the high
one being twice the resolution of the medium one. We can see that the three resolutions
converge the same solution. Similarly, we look at the BHs quantities at different resolutions.
Figures. A.5,A.3, show the angular momentum and mass of the cloud at two different
resolutions. Again, the higher resolution is twice the resolution of the lower one. We
see again that the quantities converge to the same solution at both resolutions. Since
the numerical scheme is fourth order, we expect that when doubling the resolution of a
simulation, the norm should decrease by a factor of 16. Figure. A.1 shows the convergence
of the norm of the constraint violation. We see from this figure that we do not get this
factor. This is due to the norm being violated initially by the perturbation introduced with
the Proca field.
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Figure A.1: Norm of the constraints violation at low and high resolution through time. The
high resolution simulation is double the resolution of the low resolution one. We expect
the numerical scheme to converge to fourth order, and so we expect the norm to decrease
by a factor of 16 when the resolution is doubled. We do not observe this here since the
constraints are initially violated by the Proca field perturbation.
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Figure A.2: Cloud energy as a function of time for µ̃ = 0.5, λ = 0.5, a = 0.99, at three
different resolutions. The finer resolution simulations are double the resolution of the
coarser ones and started with half the amplitude of the Proca cloud. They are then time
shifted. We see that three simulations match, indicating convergence.
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Figure A.3: BHs mass as a function of time for µ̃ = 0.5, λ = 0.5, a = 0.99, at two different
resolutions. The finer resolution simulations are double the resolution of the coarser ones.
We see that two simulations match, indicating convergence.
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Figure A.4: Cloud angular momentum as a function of time for µ̃ = 0.5, λ = 0.5, a = 0.99,
at three different resolutions. The finer resolution simulations are double the resolution of
the coarser ones and started with half the amplitude of the Proca cloud. They are then
time shifted. We see that three simulations match, indicating convergence.
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Figure A.5: BHs angular momentum as a function of time for µ̃ = 0.5, λ = 0.5, a = 0.99,
at two different resolutions. The finer resolution simulations are double the resolution of
the coarser ones. We see that two simulations match, indicating convergence.
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Appendix B

Deforming Axisymmetric Data

Suppose we have initial data (Ei, χi, χ) which satisfy the axisymmetric massive Proca
constraints, we want to find a new set of data (Ẽi, χ̃i, χ̃) which satisfy the full nonlinear
Proca constraints.

Let χ̃ = χ+ g and χ̃i = χi, then we have that,

DiE
i = −µ2χ (B.1)

Now suppose λ is small, we want to find g such that,

D̃iẼ
i = −(µ2 + 4λX̃iX̃

i)χ̃ (B.2)

Expanding eq. B.2 with χ̃→ χ+ g we get,

DiE
i = −(µ2(χ+ g) + 4λ(χiχ

i − g2 + χ2)(χ+ g)) (B.3)

Now since, (Ei, χi, χ) satisfy the massive Proca equations,

0 = −(µ2 + 4λ(χ̃iχ̃
i − g2 + χ2))(χ̃− g) (B.4)

0 = 4λg3 + χg2 −
[
µ2 + 4λXiX

i
]
g − 4λXiX

iχ (B.5)

We can solve for g by solving for the cubic,

ag3 + bg2 + cg + d = 0
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Where,

a = 4λ

b = χ

c = −µ2 − 4λXiX
i

d = −4λXiX
iχ

We can analytically solve for g when λ 6= 0 with,

g =
(
q +
√
q2 + (`− p2)3

)1/3

+
(
q −
√
q2 + (`− p2)3

)1/3

+ p

p = − b

3a

q = p3 +
bc− 3ad

6a2

` =
c

3a

This equation will works for cubics with a single real root, that is, in the case where

∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2 < 0

We can approximate the solution with no symmetry assumption by first evolving the
fields in axissymmetry until the instability sets in and then deforming the fields as proposed
above and evolving the new fields in full 3D.
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Appendix C

Waveform model with partial
information

Thanks to numerous developments in solving the equations of general relativity, the binary
black hole waveform is largely known (for comparable mass ratios). The corresponding
waveform models, whether they are constructed phenomenologically by matching numerical
waveforms with analytical approximations, or through other methods such as the effective-
one-body approach, are all deterministic. On the other hand, to construct the waveform
model for post-merger neutron stars, we are facing a different problem where our current
knowledge is insufficient to predict an accurate waveform given the orbital parameters. This
problem is likely to persist until there are significant improvements in our understanding
of the neutron star EOS (which likely will come from the detections themselves) and in
our modelling of the merger/post-merger process with a sufficiently complete physical
prescription.

Nevertheless, although current numerical simulations do not provide the full answer, they
do converge on certain features (such as the dominant peak in the post-merger spectrum). It
is natural to ask how one could construct a waveform model utilizing this partial information,
while taking into account the inherent uncertainties. To answer this question, we present a
general framework for waveforms with partial information.

A non-deterministic waveform model can be written as h = h(C; I). The control
variables C are the physical quantities that determine the waveform assuming perfect
knowledge. In the binary case, they are the orbital parameters, which can be determined
from the inspiral waveform measurement (which in general will be much louder than
the post-merger signal) to a certain accuracy. The latent variables I encapsulate all the
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theoretical uncertainties and modelling errors. In the limit that a waveform model becomes
deterministic, dim(I) = 0.

C.0.1 Detection

For the purpose of detection, the control variables are already constrained by the inspiral
measurement. As a result, the posterior distribution of the control variables Pin(C) can be
used as a prior distribution for post-merger detection. One way to quantify the statistical
significance of a post-merger event detection is using the hypothesis test framework. Using
the post-merger gravitational wave data stream s, we compare the following two hypotheses:

H1 : s = h+ n ,

H2 : s = n (C.1)

where n represents noise.

The significance of detection can be characterized by the Bayes factor, which is defined
as

B :=
P (s|H1)

P (s|H2)
, (C.2)

and the evidence function P (s|Hi) can be computed by

P (s|Hi) =

∫
dCdILi(C, I)Pin(C)Pin(I) , (C.3)

where Pin(I) is the prior weight function for the latent variables. The likelihood function
Li is given by

L1 =
1

Zn

∏
f>0

exp

(
−2|s− h|2

Sn

)
,

L2 =
1

Zn

∏
f>0

exp

(
−2|s|2

Sn

)
, (C.4)

where Sn is the single-side spectral density of the detector, and Zn is a common normalization
constant. The larger the Bayes factor is, the more significant the detection.

According to the Jeffreys scale of interpretation of Bayes Factor [67], the evidence is
“very strong” if B > 10.
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Even without prior knowledge of the control variables, we can still define the SNR of an
event as

SNR := 2MaxC,I

(∫
df
h(C, I)s∗ + h.c.

Sn

)
. (C.5)

Given a threshold in SNR, it is straightforward to evaluate the average rate of detecting a
false signal due to the detector noise background, which is often referred to as the false-alarm
rate. This part is similar to binary black hole detection. Generally speaking, for a given
false alarm rate, the threshold SNR is higher if the latent space is larger.

C.0.2 Parameter estimation

While we will not focus on using the model discussed in this paper for parameter estimation,
here we briefly outline how such a non-deterministic waveform model might be used for
parameter estimation. After we compute the posterior distribution of C and I based on
the gravitational-wave data s, the posterior distribution of the control variables can be
obtained by marginalizing the latent variables:

P (C|s) =

∫
dIP (C, I|s) . (C.6)

In reality, the computational cost for constructing the posterior distribution of C and
I increases with the size of the latent space. Therefore, an efficient non-deterministic
waveform model should minimize the size of the latent space while still being able to fit the
true waveforms.

The latent space encodes information about the unknown physical parameters and so it
is also possible to use the latent space to infer the unknown physical parameters. This can
be accomplished if a map between the unknown physical parameters and latent space is
built. In general this is not an easy task as the mapping can be quite complicated, but we
have seen that this is possible in Fig. 3.8 with our fiducial model.
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Appendix D

Toy Model

As a simple demonstration of a CVAE being used as a generative model, we train a CVAE on
toy data which consists of a sum of sine functions. This is motivated by the observation that
the post-merger waveform seems to be dominated by a small number of main frequencies
which are believed to not vary significantly in time [47].

We generate O(103) waveforms of the form

w =
3∑
i=1

sin(ωit+ φi) (D.1)

where φi ∈ [0, 2π] and ωi ∈ [1, 4], t ∈ [0, 15] with a sample frequency of 1000/15. The phase
and frequencies are picked randomly from a uniform distribution. The data set is then split
into a training and a testing set. We randomly pick 60% of the total set for training, and
the other 40% as the testing set. Once the network is trained, we measure the match using
eq. 3.11.

We train the neural network using the frequencies as the conditional variables and let
the latent space have three variables. The neural network has three encoding layers with
{100, 50, 10} neurons in the layers. The decoder has the same structure but inverted. The
encoder and decoder have rectified linear unit functions as the activation functions, and the
latent and output have linear functions as activation functions. Figure D.1 is an example
output of the waveform recreated by the CVAE. We found that the CVAE was easily able
to recreate the waveform given sufficient amounts of data (∼ 600 waveforms).
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Figure D.1: A comparison of the waveform generated by Eq. (D.1) (black curve) to the
one recreated by the CVAE (red curve). The waveform is produced by sampling the latent
space and picking the latent variables which produce the highest match. The match is 0.95.
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Figure D.2: To see that the latent space learned information about the parameters φi we
generate a new wave using Eq. (D.1) with the same ωi as Fig D.1 but different φi. We
search over our latent space to see if we can also recreate that waveform. Here we see the
waveform generated by Eq. (D.1) (black curve) could be recreated by the CVAE (red curve).
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Appendix E

Fitting in time domain

In this section we discuss the issues of training the CVAE directly on the numerical
waveforms. We show that training directly on the numerical waveforms with the amount of
data we have leads to overfitting.

We constructed a CVAE similar to the one in section D.1 where the input layer took
in the time series of the numerical waveform. The training set consisted of the numerical
waveforms and we augmented the dataset by adding random phases to the waveforms.
Using this method we increased our dataset to 500 elements.

After training, we compute the match of the recreated waveforms, finding that the
neural network was in fact capable of recreating the waveforms it trained on, but could not
interpolate between different waveforms. That is, the neural network was overfitting. The
overfitting can be seen in Fig. E.1 where we have the history of the MSE throughout the
training. We see that the MSE of the training and testing sets is diverging, indicating that
the CVAE is learning the training set well, but is not able to interpolate. This is expected
given the small amount of training data. In the following section, we will discuss methods
to alleviate this problem, and provide an estimate of the amount of data required for this
model to function.
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Figure E.1: Training history of the CVAE with time domain numerical waveform data. The
plot depicts the MSE contribution of the loss function, that is how well can it recreate the
waveform. The difference between the training data and validation data is a symptom of
overfitting.
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Appendix F

Data preprocessing

In this section we discuss the details of the data processing done to the data in the main
text. The technique used here to preprocess the data is called data whitening, the basic
idea is to center the dataset, normalize it, and remove the correlations.

Certain subsets of the parameters in the model given by Eq. (3.10) turn out to be
strongly correlated. This is illustrated by the correlation matrix (Fig. F.1) of the data.
Intuitively, you would suspect that this would make it easier for the CVAE to reproduce the
data. This turns out to not be completely true since it creates an incentive to only learn
the highly correlated parameters and disregard the uncorrelated ones. This occurs since the
correlated terms end up dominating the mean square term of the cost function. We also
found that our data tends toward posterior collapse when the correlations are left as is.

To deal with these issues, we can use some basic data processing methods such as the
whitening transform. This transformation consists of three steps: (i) centering the dataset,
(ii) decorrelating the dataset, and (iii) rescaling the dataset. To center the dataset, we
simply find the mean of every feature and subtract it from the dataset. This guarantees
that the mean of the new dataset is 0. To decorrelate the data we find the eigenvalues
λi and eigenvectors vi of the covariance matrix and define V = [v1, v2, ..., vn] where the
columns are the eigenvectors. The decorrelated data Xdec is found with respect to the
original data X by projecting X on V :

Xdec = X · V . (F.1)

Finally, to rescale the data, we divide through by the eigenvalues by defining the diagonal
matrix P = diag(1/

√
λ1 + ε, 1/

√
λ2 + ε, ..., 1/

√
λn + ε),

Xwhiten = Xdec · P (F.2)
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where Xwhiten is the whitened data, and ε is a small number to deal with the cases where
the eigenvalue is zero (though this does not arise for the cases we consider). Once the data
is whitened, we can also tune the parameter β in the cost function such that no posterior
collapse occurs. The tuning of the parameter is done by varying the parameter over many
training sessions to find the optimal value [64]. After performing these steps, the correlation
matrix of the transformed data will just be the identity matrix.
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Figure F.1: Normalized covariance matrix of the parameters defined in Eq. (3.10), when
fitted to the numerical relativity waveforms.

81



Appendix G

Fiducial Model and CVAE
Parameters

Tables G.1 and G.2 give the parameters for Eq. (3.14) presented in Sec. 3.4.1 by fitting the
numerical waveforms from the CoRe database [53]. The fits are found by first finding the
compactness using the f2 - C relation. Then we fit f1 with the compactness to Eq. (3.12),

and perform a linear fit to the other parameters. This gives us the vectors ~A and ~B, with
the specific values shown in Tables G.1 and G.2. We then compute the covariance matrix
Σ, finding the values shown in Table G.3.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14

-0.99 0.78 2.73 2.41 -6254.30 2329.10 -262.69 10.65 -3.12 51.90 89.07 -0.03 -2.22 0.04

Table G.1: Parameters for ~A in the fiducial model

b1 b2 b3 b4 b5 b6 b7 b8 b8

0.12 0.00 2.73 2.42 0.00 0.00 0.04 0.31 0.00

Table G.2: Parameters for ~B in the fiducial model
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8.23× 10−3 −1.54× 10−4 4.95× 10−2 2.19× 10−3 −4.39× 10−3 4.28× 10−3 1.08× 10−4 4.85× 10−3 −1.20× 10−5

−1.54× 10−4 1.00× 10−3 −3.04× 10−3 −6.87× 10−3 −8.23× 10−4 −3.41× 10−3 −7.05× 10−5 2.55× 10−4 7.06× 10−6

4.95× 10−2 −3.04× 10−3 2.01 1.28× 10−1 −8.74× 10−2 1.12× 10−1 −5.41× 10−4 1.29× 10−1 1.30× 10−6

2.19× 10−3 −6.87× 10−3 1.28× 10−1 2.64× 10−1 −3.34× 10−3 8.79× 10−3 −1.48× 10−4 −5.18× 10−3 −3.41× 10−5

−4.39× 10−3 −8.23× 10−4 −8.74× 10−2 −3.34× 10−3 2.92× 10−2 −2.66× 10−15 5.44× 10−5 −1.05× 10−2 −3.34× 10−5

4.28× 10−3 −3.41× 10−3 1.12× 10−1 8.79× 10−3 −2.66× 10−15 7.24× 10−2 1.32× 10−3 9.34× 10−3 −1.96× 10−4

1.08× 10−4 −7.05× 10−5 −5.41× 10−4 −1.48× 10−4 5.44× 10−5 1.32× 10−3 9.19× 10−5 −7.99× 10−4 −1.09× 10−5

4.85× 10−3 2.55× 10−4 1.29× 10−1 −5.18× 10−3 −1.05× 10−2 9.34× 10−3 −7.99× 10−4 1.75× 10−1 1.01× 10−4

−1.20× 10−5 7.06× 10−6 1.30× 10−6 −3.41× 10−5 −3.34× 10−5 −1.96× 10−4 −1.09× 10−5 1.01× 10−4 1.61× 10−6

Table G.3: Elements of the covariance matrix Σ in the fiducial model

Finally, the details of the CVAE used in Sec. 3.4.2 are given in Table G.4.

Input Layer 1 Layer 2 Latent Layer Layer 3 Layer 4 Output
Number of Neurons 9 345 335 4 335 345 9
Activation Function – ReLu ReLu Linear ReLu ReLu tanh
Type Dense Dense Lambda Dense Dense

Table G.4: Parameters for the CVAE used in Sec. 3.4.2. All the layers in the neural network
consist of dense layers, except for the latent space where we have a lambda layer which
takes the output of layer 2 as the mean and variance of a multivariate normal and outputs
a sample from the multivariate normal.
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