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Abstract Motivated by the ubiquitous sampled-data setup in applied control, we examine the stability of a
class of difference equations that arises by sampling a right- or left-invariant flow on a solvable matrix Lie
group. The map defining such a difference equation has three key properties that facilitate our analysis: 1)
its Lie series expansion enjoys a type of strong convergence; 2) the origin is an equilibrium; 3) the algebraic
ideals enumerated in the lower central series of the Lie algebra are dynamically invariant. We show that certain
global stability properties are implied by stability of the Jacobian linearization of the dynamics at the origin,
in particular, global asymptotic stability. If the Lie algebra is nilpotent, then the origin enjoys semiglobal
exponential stability.
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1 Introduction

We examine the stability of a class of difference equations that arises by sampling a right- or left-invariant flow
on a solvable matrix Lie group. There are many dynamical systems whose state spaces are naturally modelled
as matrix Lie groups. Networks of oscillators can be modelled on SO(2)n [1]. The group SE(3) captures the
kinematics and dynamics of rigid bodies in space, such as underwater vehicles [2], UAVs [3], robotic arms [4],
and spacecraft, the latter of which was explored in the early applications of geometric control theory [5,6].
Robots exhibiting planar motion can be modelled on SE(2) [7]. The unitary groups U(n) and SU(n) [8] can
be used to model the evolution of quantum systems. Even the noise responses of some circuits evolve on Lie
groups [9], specifically the solvable Lie group of invertible upper-triangular matrices.

Our main results – Theorems 4, 5, 6, and Corollaries 3 and 5 – assert that there exists a sufficiently small
spectral radius of the Jacobian linearization of the dynamics that implies various global stability properties of the
origin, the weakest of which is global asymptotic stability. Lyapunov’s Second Method can be used to establish
local stability of an equilibrium, and it is a strong and surprising result when this method establishes global
stability for a class of dynamical systems. In the continuous-time case, the Markus-Yamabe Conjecture [10]
supposes that global attractivity of a (unique) equilibrium is implied by the Jacobian of the vector field being
everywhere Hurwitz; this conjecture is true for vector fields on R2, but is in general false. The discrete-time
analog of the Conjecture – the key difference being that one supposes that the Jacobian is everywhere Schur
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– similarly to the continuous-time case, is true for polynomial maps on R2 [11, Theorem B] and in general
false on Rn, n ≥ 3. However, it is true for triangular maps on Rn [11, Theorem A]. Again in continuous-time,
Krasovskii’s Method [12, p. 183] asserts that if there exists a symmetric positive definite P ∈ Rn×n that solves
the Lyapunov equation for the Jacobian linearization at all x ∈ Rn, then the (unique) equilibrium is globally
asymptotically stable.

In this paper we study dynamics on solvable Lie algebras. A Lie algebra is solvable if and only if its derived
length (see Definition 2) is finite. The complementary classification of Lie algebras is called semi-simple, which
is defined as those Lie algebras whose maximal solvable ideal – the radical – is zero. Any Lie algebra g admits
a Levi decomposition, g = l A r, where r is the radical of g, l is a semi-simple subalgebra of g, and A means
semidirect sum1. This establishes that solvable Lie algebras are of fundamental importance in Lie theory.

Of the matrix Lie groups noted thus far, SE(2) is solvable and SO(2) is nilpotent, but the others are semi-
simple. However, similar to how nonlinear systems can be approximated by linear systems, sovlable Lie algebras
can be used to approximate certain classes of vector fields [6] and kinematic models on arbitrary Lie groups
can be approximated by systems on nilpotent Lie groups [15]. Indeed, a nilpotent approximation was used
to control a robotic arm on SE(3) in [16]. In continuous-time, there are conditions under which a feedback
transformation forces a system on an arbitrary Lie group to evolve on a nilpotent Lie group. The class of
chained-form systems, introduced by Murray in [17], can be shown to evolve on a particular nilpotent matrix
Lie group [15]. Consequently, systems that are feedback equivalent to chained-form systems can also be forced
to evolve on nilpotent matrix Lie groups.

In this paper, we study discrete-time dynamical systems of the form

X+ = f(X,W ), (1)

where X ∈ X := gn, n ≥ 1, W ∈ W := gr, r ≥ 1, and f : X ×W → X is a Lie function that belongs to class-A,
which we define in Section 3. We make no general assumptions on the evolution of the exogenous signal W . We
show that under mild technical assumptions, which we formalize in Assumption 1 in Section 3, for this class
of functions on solvable Lie algebras, global stability properties can be determined from the linear part of the
dynamics.

1.1 Step-Invariant Transforms

In this section, we motivate the study of the class of systems described by (1), by showing that it arises naturally
in the study of sampled-data control systems on Lie groups. In applied control, virtually all controllers are
implemented using computers, and therefore evolve in discrete-time. The plant is often physical in nature and
evolves in continuous-time. The combination of a discrete-time controller and a continuous-time plant is called
sampled-data. Figure 1 illustrates an example of this setup where the plant’s dynamics evolve according to a
right-invariant vector field on a matrix Lie group G with Lie algebra g.

Fig. 1: Sampled-data right-invariant control system on a matrix Lie group G.

The plant has state Ψ(t) ∈ G, which evolves according to Ψ̇ = A(t, u)Ψ , where A : R×Rm → g, and measured
output Y (t) ∈ G, which is defined by Y = exp(C(t))Ψ , where C : R → g. The H and S blocks represent ideal
zero-order hold and sample operations, respectively. By zero-order hold, we mean (Hu)(t) = u(kT ) for all
t ∈ [kT, (k+ 1)T ), where k ∈ Z is the discrete-time index and T > 0 is the sampling period. We assume that the
hold and sample operations are synchronized and that T is constant. The output Y passes through the ideal
sample, which is the identity map for all t ∈ TZ, but is undefined otherwise. This sampled output is available
for use by the controller, which generates the control signal u[k] := u(kT ). The discrete-time control signal

1 A detailed treatment of this decomposition can be found in, for example, [13, §4] or [14, §3.14].
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passes through the ideal hold, yielding u(t), which is piecewise constant. This piecewise constant control signal
drives the plant.

The solution Ψ(t) for the system in Figure 1 is given by the Magnus expansion [18], which provides an
expression for Log(Ψ(t)) ∈ g wherever the principal logarithm Log : G → g is well-defined. Recall the adjoint
operator of A ∈ g, adA : g→ g, X 7→ [A,X], where the Lie bracket [·, ·] is the commutator AX−XA. Recursively
define

Ω1(t) :=

∫ t

0

A(τ, u(τ))dτ

Ωn(t) :=
n−1∑
j=1

Bj
j!

∑
k1+···+kj=n−1
k1,...,kj≥1

∫ t

0

adΩk1
(s) · · · adΩkj

(s)A(s, u(s))ds, n ≥ 2,

Ω(t):=
∞∑
n=1

Ωn(t),

where the Bj are the Bernoulli numbers2. Then , whenever the series defining Ω, which is a linear combination
of the integral of A and nested Lie brackets Ωn(t), n ≥ 2, converges,

Ψ(t) = exp(Ω(t))Ψ(0). (2)

In the sampled-data setup, due to the hold operator H, the plant is driven by a piecewise constant input signal.
This motivates the step-invariant transform, which is easily derived from (2):

Log(Ψ [k + 1]) = Log(Ψ [k]) +

∫ (k+1)T

kT

A(τ, u[k])dτ

+
∞∑
n=2

n−1∑
j=1

Bj
j!

∑
k1+···+kj=n−1
k1,...,kj≥1

∫ (k+1)T

kT

adΩk1
(s) · · · adΩkj

(s)A(s, u[k])ds.

The solution simplifies significantly if for all t1, t2 ∈ [kT, (k+ 1)T ), A(t1, u(t1)) commutes with A(t2, u(t2))3:

Ψ(t) = exp

(∫ t

0

A(τ, u(τ)dτ

)
Ψ(0),

which yields the simplified step-invariant transform on the group G:

Ψ [k + 1] = exp

(∫ T

0

A(τ, u[k])dτ

)
Ψ [k]. (3)

We use the Baker-Campbell-Hausdorff formula to express these dynamics on the Lie algebra:

Log(exp(X) exp(Y )) = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]] +

1

12
[Y, [Y,X]] + · · · ,

which yields

Log(Ψ [k + 1]) = Log(Ψ [k]) +

∫ T

0

A(τ, u[k])dτ +
1

2

[∫ T

0

A(τ, u[k])dτ,Log(Ψ [k])

]

+
1

12

[∫ T

0

A(τ, u[k])dτ,

[∫ T

0

A(τ, u[k])dτ,Log(Ψ [k])

]]

+
1

12

[
Log(Ψ [k]),

[
Log(Ψ [k]),

∫ T

0

A(τ, u[k])dτ

]]
+ · · · ,

which is a linear combination of linear terms and nested Lie brackets.

2 Using the convention B1 = 1
2

.
3 This is the case, for example, with the driftless kinematics of a rigid body with velocity inputs: A(t, u) =

∑m
i=1 Biui, Bi ∈ g.
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Exact solutions, and therefore step-invariant transforms, are not unique to right- (or left-) invariant vector
fields. For example, the ODE in the variable X ∈ g,

Ẋ= adAX = XA−AX

has the closed-form solution

X(t) = eadtAX(0),

where eadtA := Idg + adtA + 1
2! ad2

tA + 1
3! ad3

tA + · · · , which furnishes the step-invariant transform

X[k + 1] = eadTAX[k] = X[k] + T [A,X[k]] +
T 2

2!
[A, [A,X[k]]] +

T 3

3!
[A, [A, [A,X[k]]]] + · · · .

All the sampled dynamics presented in this section are examples of Lie functions, in particular, they belong
to class-A, which we define in Section 3 and is the main class of systems studied in this paper.

1.2 Notation and Terminology

Given a set X , a map x : Z → X is a discrete-time signal. The notation x[k], with brackets, in contrast
to parentheses, implicitly defines the discrete-time signal x. The notation x and x+ will often be used as
shorthand for x[k] and x[k + 1], respectively, when the time index is clear or irrelevant. All vector spaces in
this paper are finite dimensional. The symbol 0 will be used to represent the additive identity on any vector
space. Given a vector space X with subspace V ⊆ X , X/V denotes the quotient (or factor) space with cosets
x̄ := {v ∈ X : x−v ∈ V}; we will sometimes use the notation x+V for this same coset. If T is a Cartesian product
of a vector space X with itself n times, and V ⊆ X , we will sometimes use the notation T /V as shorthand for
T /Vn = Xn/Vn = (X/V)n. Given a linear endomorphism of vector spaces A : X → X , let ρ(A) denote its spectral
radius, and ‖A‖ denote the operator norm induced by the vector norm ‖ · ‖ on X ; unless stated otherwise, the
choice of norm is immaterial. Given vector spaces X1, . . . ,Xn, with respective norms ‖ ·‖X1

, . . . , ‖ ·‖Xn
, we define

the product norm on X1×· · ·×Xn by ‖(X1, . . . , Xn)‖ :=
∑n
i=1 ‖Xi‖Xi

. Given a Lie algebra g, let [·, ·] : g×g→ g
denote its Lie bracket. Given two Lie subalgebras h1, h2 ⊆ g, [h1, h2] := {[H1, H2] ∈ g : H1 ∈ h1, H2 ∈ h2}. A word

ω ∈ g with length |ω| ∈ N over the n ∈ N letters X1, . . . , Xn ∈ g is a (nested) Lie bracket [Xω1 , [Xω2 , [. . . Xω|ω| ] · · · ],
where Xωi ∈ {X1, . . . , Xn}.

2 Preliminaries

We now define what it means for a Lie algebra to be solvable and nilpotent. We also state several algebraic
properties of such Lie algebras used in our analysis.

Definition 1 (Derived Series) The derived series of a Lie algebra g is defined recursively by g0 := g,
gi+1 := [gi, gi], for i ≥ 0 . .

A consequence of the definition of gi is that for all i ≥ 0, gi ⊇ gi+1.

Definition 2 (Solvable) A Lie algebra g is solvable if there exists a finite v such that gv+1 = 0. The smallest
such v is called the derived length of g. A Lie group is solvable if its Lie algebra is solvable. .

If g is solvable with derived length v, then for all i ≤ v, the containment gi ⊃ gi+1 is strict.

Definition 3 (Lower Central Series) The lower central series of a Lie algebra g is defined recursively by
g(1) := g, g(i+1) := [g(i), g], for i ≥ 1. .

There are two important consequences of Definition 3: the algebras of the lower central series g(i) are ideals,
and for all i ≥ 1, g(i) ⊇ g(i+1).

Definition 4 (Nilpotent) A Lie algebra g is nilpotent if there exists a finite p such that g(p+1) = 0. The
smallest such p is called the nilindex of g. A Lie group is nilpotent if its Lie algebra is nilpotent. .
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The property that serves as the foundation of our analysis, is that if g is nilpotent, then

g(1) ⊃ g(2) ⊃ · · · ⊃ g(p) ⊃ g(p+1) = 0.

Lemma 1 ([19, Lemma 1.1.1]) The ideals of the lower central series of a Lie algebra g satisfy [g(i), g(j)] ⊆ g(i+j).

Although Definition 2 is the formal definition of solvability, it is the structure endowed by the following
theorem that will be leveraged in our analysis.4

Theorem 1 ([13, p. 9, Corollary 3]) A Lie algebra g over C or R is solvable if and only if its derived algebra

[g, g] is nilpotent.

In the proofs of our main results, we examine the quotient dynamics on the quotient spaces modulo the
ideals of the lower central series. To that end, we require the notion of canonical projection.

Definition 5 (Canonical Projection) Let X be a vector space with subspace V ⊆ X . The canonical projec-

tion of X onto V is the unique linear map P : X → X/V, x 7→ x+ V. .

Proposition 1 ([20, §0.7]) Given a linear map A : X → X and an A-invariant subspace V ⊆ X , i.e., AV ⊆ V,

there exists a unique linear map Ā : X/V → X/V such that the following diagram commutes.

X

P

��

A // X

P

��
X/V

Ā

// X/V

The map Ā in Proposition 1 is called the map induced in X/V by A, or in short, the induced map.

Lemma 2 Let X be a vector space with subspace V ⊆ X . Let P : X → X/V be the canonical projection, and

ı : X/V → X be a right-inverse of P . Then (IdX − ı ◦ P )X ⊆ V.

Proof P (IdX − ı ◦ P ) = P − P ◦ ı ◦ P = P − P = 0, which implies (IdX − ı ◦ P )X ⊆ KerP . ut

Definition 6 (Quotient Norm) Given a vector space X with norm ‖ · ‖ and subspace V ⊆ X , if x ∈ X , then
the quotient norm of the coset x+ V is

‖x+ V‖X/V := inf
v∈V
‖x+ v‖.

.

The following result is an obvious consequence of Definition 6. We formally state it because it is important
in the proofs of our main results.

Lemma 3 Let X be a normed vector space with subspaces V1 and V2, such that V1 ⊆ V2. For all x ∈ X , we have

‖x+ V2‖X/V2
≤ ‖x+ V1‖X/V1

≤ ‖x‖.

The following result is elementary, but we state and prove it for completeness, and will use it in our analysis.

Proposition 2 Let X be a vector space with norm ‖ · ‖, and let V ⊆ X be a subspace. If the quotient norm is used

on X/V, then the canonical projection P : X → X/V has unit norm.

4 If h ⊆ g is a nilpotent ideal such that h ⊇ [g, g], then for all i ≥ 2, h(i) ⊆ [g, g](i).
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Proof Beginning with the definition of operator norm, we have

‖P‖ : = max
‖x‖=1

inf
v∈V
‖x+ v‖

≤ max
‖x‖=1

inf
v∈V
{‖x‖+ ‖v‖}

= max
‖x‖=1

‖x‖

= 1,

which establishes an upper bound of 1.
Consider a vector x ∈ X , x /∈ V. Then for all v ∈ V

‖Px‖X/V = ‖P (x+ v)‖X/V ≤ ‖P‖‖x+ v‖

=⇒ ‖Px‖X/V ≤ ‖P‖ inf
v∈V
‖x+ v‖︸ ︷︷ ︸

‖Px‖X/V

⇐⇒ 1 ≤ ‖P‖.

This establishes a lower bound of 1, and so ‖P‖ = 1. ut

Theorem 2 ([21, §7]) Given a linear map A : X → X and a constant ε > 0, there exists a vector norm ‖·‖ : X → R
such that the induced operator norm satisfies ‖A‖ < ρ(A) + ε.

Remark 1 Given a matrix Lie algebra g with norm ‖ · ‖, there exists µ ∈ [0, 2], such that for all X,Y ∈ g,
‖[X,Y ]‖ ≤ µ‖X‖‖Y ‖.

The lower bound of 0 holds when g is commutative, and the upper bound of 2 is verified by the triangle
inequality and submultiplicativity of induced norms:

‖[X,Y ]‖ = ‖XY − Y X‖ ≤ ‖X‖‖Y ‖+ ‖Y ‖‖X‖ = 2‖X‖‖Y ‖.

The constant µ is not necessarily either 0 or 2. For example, if g is any matrix Lie algebra equipped with
the Frobenius norm, then µ =

√
2 [22, Theorem 2.2]. ♦

3 The Class of Systems

Definition 7 (Lie Element) Let X1, . . . , Xn be elements of a Lie algebra g. The elements X1, . . . , Xn are called
Lie elements (in {X1, . . . , Xn}) of degree one. The Lie brackets [Xi, Xj ] are Lie elements of degree two,
[Xi, [Xj , Xk]] and [[Xi, Xj ], Xk] Lie elements of degree three, and so forth. Any F-linear combination of Lie
elements—not necessarily finite or convergent—is also a Lie element. .

Definition 7 allows both right and left iterated Lie brackets in any order, e.g., [[Xi, Xj ], [Xk, Xl]] is a Lie
element of degree four, despite not having been created from performing exclusively left or right brackets.

Definition 8 (Lie Function) A map f : gn → g is a Lie function if there exists a domain D ⊆ gn containing
the origin, and a Lie element E ∈ D in {X1, . . . , Xn}, such that, for all X ∈ D, f(X) = E; the Lie element E is
called the Lie series of f on the domain D. A product map f1 × · · · × fm : gn → gm is a Lie function if each
component map is a Lie function. .

We now develop a convenient and succinct expression for product Lie functions. Define the tensor product
(Fn⊗g,⊗). If f1, . . . , fm are Lie functions, whose scalar coefficients of the word ω are respectively c1ω, . . . , c

m
ω ∈ F,

where F is C or R, then

f(X1, . . . , Xn) :=


f1(X1, . . . , Xn)

...

fm(X1, . . . , Xn)

 =


∑
ω c

1
ωω

...∑
ω c

m
ω ω

 =
∑
ω


c1ω

...

cmω

⊗ ω,
which we write compactly as

f(X) =
∑
ω

cω ⊗ ω. (4)

Given f : gn → g, the following theorem can be used to test whether it is a Lie function.
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Theorem 3 (Friedrichs’ Theorem [23, Theorem 1]) A map f : gn → g equals a Lie element if and only if, for

all X1, . . . , Xn, Y1, . . . , Yn ∈ g such that for all i 6= j, [Xi, Yj ] = 0,

f(X1 + Y1, . . . , Xn + Yn) = f(X1, . . . , Xn) + f(Y1, . . . , Yn).

We consider systems whose dynamical maps are Lie functions, but we also impose that they enjoy a strong
form of convergence, as characterized in the following definition.

Definition 9 (Class-A Function) Let g be a normed Lie algebra, and let µ > 0 be such that, for all X,Y ∈ g,
‖[X,Y ]‖ ≤ µ‖X‖‖Y ‖. A Lie function f : gn → g belongs to class-A—which we write as f ∈ A—if there exists a
neighbourhood of the origin in gn where the Lie series of f satisfies the strong absolute convergence property∑

ω

µ|ω|−1|cω|‖Xω1‖ · · · ‖Xω|ω|‖ <∞. (5)

A product map f1 × · · · × fm : gn1 × · · · × gnm → gm belongs to class-A if each component map belongs to
class-A. .

Remark 2 Property (5), enjoyed by f ∈ A, is stronger than absolute convergence, i.e.,
∑
ω |cω|‖ω‖ < ∞, since

‖ω‖ ≤ µ|ω|−1‖Xω1‖ · · · ‖Xω|ω|‖. ♦

Remark 3 By the Baker-Campbell-Hausdorff formula, we have that the map Log(exp(X) exp(Y )) belongs to
class-A:

Log(exp(X) exp(Y )) = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]] +

1

12
[Y, [Y,X]] + · · · . (6)

To see that (6) satisfies (5), refer to [24, Proof of Theorem 8] or [25], and the references therein. ♦

Remark 4 That Log(exp(X) exp(Y )) belongs to class-A means that the sampled-data dynamics of a system on
a matrix Lie group of the form (3) have local dynamics that are class-A, which, as discussed in the Introduction,
motivates the study of this class of systems. ♦

Proposition 3 If the product map (4) belongs to class-A, then∑
ω

µ|ω|−1‖cω‖‖Xω1‖ · · · ‖Xω|ω|‖ <∞.

Proof By definition, f ∈ A implies fi ∈ A, which means that for all i ∈ {1, . . . ,m},∑
ω

µ|ω|−1|ciω|‖Xω1‖ · · · ‖Xω|ω|‖ <∞. (7)

Summing (7) over 1 ≤ j ≤ m: ∑
ω

µ|ω|−1‖cω‖1‖Xω1‖ · · · ‖Xω|ω|‖ <∞,

where ‖ · ‖1 is the 1-norm. On a finite dimensional vector space, all norms are equivalent, so this summation
differs from that in the proposition by at most a constant, finite factor γ, i.e., ‖cω‖ ≤ γ‖cω‖1, which implies∑

ω

µ|ω|−1‖cω‖‖Xω1‖ · · · ‖Xω|ω|‖ ≤ γ
∑
ω

µ|ω|−1‖cω‖1‖Xω1‖ · · · ‖Xω|ω|‖ <∞.

ut

If the Lie algebra g is nilpotent, then only finitely many words are nonzero; consequently (8) trivially satisfies
the class-A convergence property (5) globally. We now impose the major structural assumption on the class of
systems (1) under consideration.

Assumption 1 The function f : X ×W → X in (1) enjoys the following properties:

(a) f belongs to class-A;

(b) the origin of the state-space X is a unique fixed point,

f(X,W) = 0 ⇐⇒ X = 0;
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(c) there exists an ideal h ⊆ g with nilindex p, such that h ⊇ [g, g], whereof each ideal in the lower central series(
h(i)
)n
⊆ X is invariant under f , i.e.,

f
((

h(i)
)n

,W
)
⊆
(
h(i)
)n
.

Remark 5 Assumption 1(c) may seem restrictive, however, in the context of control theory, it is not unreason-
able, because the control signal can be used to enforce invariance. Consider, for example, the step-invariant
transform of the driftless kinematics of a fully actuated rigid body with velocity inputs on the solvable Lie
group SE(2):

X[k + 1] = exp

T

0 −1 0

1 0 0

0 0 0

u1[k] +

0 0 1

0 0 0

0 0 0

u2[k] +

0 0 0

0 0 1

0 0 0

u3[k]


X[k],

where X ∈ SE(2), u1, u2, u3 ∈ R, T > 0. The inputs u1, u2, u3 can be chosen to make any subspace of se(2)
invariant under the local dynamics. The current authors treat a more general class of systems in the context of
synchronization, and show this class of systems can be made to satisfy this dynamical invariance assumption
using feedback [26]. ♦

Define the notation X̃ := {X1, . . . , Xn} and W̃ := {W1, . . . ,Wr}. Henceforth, we adopt the convention that
summations over ω are restricted to words of length at least 2; words of length 1 will be written separately, in
particular, under Assumption 1, the dynamics (1) can be written as

f(X,W ) = AX +BW +
∑
ω

cω ⊗ ω, (8)

where A : X → X , B :W → X are linear maps, ω is a word with letters in X̃ ∪ W̃ , and cω ∈ Fn is the vector of
coefficients of ω in the series representation of each component function fi.

Proposition 4 If the function f : X ×W → X in (1) is a Lie function that satisfies Assumption 1(b), then every

word in the series of f has at least one letter in X̃.

Proof By bilinearity of the Lie bracket, all words with at least one letter in X̃ vanish at X = 0. Setting X = 0
in (8) yields

0 = BW +
∑

ω with no letters in X̃

cω ⊗ ω, (9)

which holds for all W ∈ W. ut

Therefore, without loss of generality, we can take B and the coefficients of all words ω with no letters in X̃

to be zero. By Proposition 4, henceforth, systems that satisfy Assumption 1 will be written:

X+ = AX +
∑
ω

cω ⊗ ω, (10)

where every word ω has at least one letter in X̃.

Proposition 5 If the function f : X ×W → X in (1) satisfies Assumptions 1(a) and 1(b), then its linearization at

the origin, (X,W ) = (0, 0) ∈ X ×W, is f(X,W ) ≈ AX.

Proof The Fréchet derivative of f(X,W ) at the origin in the direction H := (HX , HW ) ∈ X ×W is the unique
linear map Df := DXf ×DW f that satisfies

lim
H→0

‖f(HX , HW )− f(0, 0)−DfH‖
‖H‖ = 0. (11)

Substituting definitions, and invoking Assumption 1(b) and Proposition 4 to set B = 0, the left side of (11)
becomes

lim
H→0

‖(A−DXf)HX +
∑
ω cω ⊗ ω −DW fHW ‖
‖H‖ ,
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where the letters of ω are H1, . . . , Hn instead of X1, . . . , Xn and Hn+1, . . . , Hn+r instead of W1, . . . ,Wr. Suppose
DXf = A and DW f = 0, then

lim
H→0

‖f(HX , HW )− f(0, 0)−DfH‖
‖H‖ = lim

H→0

‖
∑
ω cω ⊗ ω‖
‖H‖ .

By the result discussed in Remark 1,

‖ω‖ = ‖[Hω1 , [. . . , Hω|ω| ] · · · ]‖ ≤ µ
|ω|−1‖Hω1‖ · · · ‖Hω|ω|‖ ≤ µ

|ω|−1‖H‖|ω|.

By the triangle inequality, ∥∥∥∥∥∑
ω

cω ⊗ ω

∥∥∥∥∥ ≤∑
ω

‖cω‖µ|ω|−1‖H‖|ω|,

whose right side converges, by Assumption 1(a). Therefore,

lim
H→0

‖
∑
ω cω ⊗ ω‖
‖H‖ ≤ lim

H→0

∑
ω ‖cω‖µ

|ω|−1‖H‖|ω|

‖H‖ = 0.

Since any such Df is unique, the choice of Df = A×0 is the Fréchet derivative of f at the origin. Therefore,
near the origin, f(X,W ) ≈ AX. ut

Our main results assert that global stability properties of (1) under Assumption 1 can be inferred from
its Jacobian linearization, as quantified in Proposition 5. The following proposition asserts that the dynamical
invariance described in Assumption 1(c) can also be inferred from the Jacobian linearization. This latter result
is due to strong centrality of the lower central series, i.e., the property described in Lemma 1.

Proposition 6 Let h ⊆ g be an ideal. If the function f : X × W → X in (1) is a Lie function that satisfies

Assumption 1(b), then f
((

h(i)
)n

,W
)
⊆
(
h(i)
)n

if and only if
(
h(i)
)n

is invariant under A.

Proof Let h ⊆ g be an ideal. Suppose X ∈
(
h(i)
)n

. Under Assumption 1(b), by Proposition 4, every word

ω has at least one letter in X̃. Since h(i) is an ideal, every word ω belongs to h(i). From (10), we conclude

f
((

h(i)
)n
×W

)
⊆
(
h(i)
)n

if and only if
(
h(i)
)n

is invariant under A. ut

Corollary 1 If the function f : X ×W → X in (1) is a Lie function that satisfies Assumption 1(b), then it satisfies

Assumption 1(c) if and only if
(
h(i)
)n

is invariant under A.

Our next result emphasizes that A-invariant subspaces induce well-defined quotient systems associated with
the nonlinear dynamics.

Proposition 7 If the function f : X × W → X in (1) satisfies Assumption 1, then, given an A-invariant ideal

V ⊆ X with canonical projection P : g → g/V, there exists a unique function f̄ : X/V ×W/V → X/V that satisfies

Assumptions 1(a) and 1(b), and makes the following diagram commute.

X ×W

(In⊗P )×(Ir⊗P )

��

f // X

In⊗P
��

X/V ×W/V
f̄

// X/V

Proof Along the path X ×W f−→ X In⊗P−−−−→ X/V, we have

(In ⊗ P )f(X,W ) = (In ⊗ P )AX + (In ⊗ P )
∑
ω

cω ⊗ ω.

By Proposition 1, there exists a unique map Ā : X/V → X/V such that (In ⊗ P )A = Ā(In ⊗ P ). Using the
property of tensor products that (M1 ⊗ N1)(M2 ⊗ N2) = (M1M2) ⊗ (N1N2), the projection of the summation
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over ω equals
∑
ω cω ⊗ (Pω). Then, since the canonical projection of an algebra onto an ideal is a morphism of

algebras [27, p. 537]5, we have

Pω = P [Yω1 , [. . . , Yω|ω| ] · · · ] = [PYω1 , [. . . , PYω|ω| ]g/V · · · ]g/V , Yωi ∈ X̃ ∪ W̃ .

The map f̄ : X/V ×W/V → X/V is then given by

f̄(X̄, W̄ ) := ĀX̄ +
∑
ω

cω ⊗ [Ȳω1 , [. . . , Ȳω|ω| ]g/V · · · ]g/V ,

where Ȳωi = PYωi . That f̄ satisfies Assumption 1(a) follows from Lemma 3; satisfaction of Assumption 1(b) is
clear from the definition of f̄ . ut

4 Nilpotent Lie Algebras

In this section, we present a global stability result in the case that g is nilpotent, and the ideal h satisfying
Assumption 1(c) is g itself. We devote this section to this specific case because, as will be seen, the results are
much stronger than in the general case. The general case where Assumption 1(c) is satisfied by a proper ideal
is addressed in Section 5. The stability property proved in this section is semiglobal-exponential stability. The
following definition is the natural adaptation of a continuous-time definition, taken from [28].

Definition 10 ([28, Definition 2.7]) Given a discrete-time dynamical system x[k + 1] = f(k, x[k]), x ∈ X , the
origin of X is semiglobally exponentially stable if for all M > 0, there exist α ≥ 0, λ < 1 such that , for all
k0 ∈ Z≥0, if ‖x[k0]‖ ≤M , then for all k ≥ k0,

‖x[k]‖ ≤ αλk‖x[k0]‖.

.

It follows immediately from the definition that semiglobal exponential stability implies local exponential
stability. Our main result in the nilpotent case is that a sufficiently small spectral radius of A implies semiglobal
exponential stability.

Theorem 4 Let g be a nilpotent Lie algebra, and define X := gn and W := gr. Consider the dynamics (1) and

suppose f : X ×W → X satisfies Assumption 1, where Assumption 1(c) is satisfied with h = g. If there exist β ≥ 0,

s ≥ 1 such that ‖W [k]‖ ≤ βsk, and ρ(A) < s
p(1−p)

2 , then the origin of X is semiglobally exponentially stable.

Remark 6 The assertion that W is bounded by a function of the form βsk implies that it is Z-transformable. ♦

Our proof of Theorem 4 makes extensive use of canonical projections of g onto g/g(i+1), where g(i+1) is
an ideal of the lower central series of g (recall Definition 3). Throughout this section, let Pi : g → g/g(i+1)

denote the canonical projection of g onto g(i+1), and let ıi : g/g(i+1) → g denote any linear injection such that
Pi ◦ ıi = Idg/g(i+1) . Before proving Theorem 4, we establish several intermediary results.

Lemma 4 Let g be a Lie algebra. Given a word ω with letters Y1, . . . , Y|ω| ∈ g,

Piω = Pi[ıi−1 ◦ Pi−1Y1, [. . . , ıi−1 ◦ Pi−1Y|ω|] · · · ].

Proof By bilinearity of the Lie bracket and Lemma 2,

Piω = Pi [(Idg − ıi−1 ◦ Pi−1)Y1︸ ︷︷ ︸
∈g(i)

, [Y2, [. . . , Y|ω|] · · · ]

︸ ︷︷ ︸
∈g(i+1)︸ ︷︷ ︸

0

+Pi[ıi−1 ◦ Pi−1Y1, [Y2, [. . . , Y|ω|] · · · ], (12)

where membership in g(i+1) follows from the property of the ideals discussed in Lemma 1; the first term is zero,
since Pig

(i+1) = 0, by definition of Pi. Applying the same decomposition to the second letter yields

Piω = Pi[ıi−1 ◦ Pi−1Y1, [ıi−1 ◦ Pi−1Y2, [Y3, [. . . , Y|ω|] · · · ].
Continuing in this way completes the proof. ut

5 In [27], a proof is provided in the context of graded algebras, but this additional structure is not used.
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Proof (Theorem 4) Assume that there exist β ≥ 0, s ≥ 1 such that ‖W [k]‖ ≤ βsk, and that ρ(A) < s
p(1−p)

2 ; the
latter implies that A is Schur, since p, s ≥ 1. Let M > 0 be arbitrary and assume ‖X[0]‖ ≤M . We examine the
quotient dynamics on X/g(i+1) for all i. Since g is nilpotent, the quotient algebra g/g(i+1) is nilpotent with
nilindex i, thus for all |ω| > i, Piω = 0. By Proposition 7,

X̄+
i = ĀiX̄i +

∑
|ω|≤i

cω ⊗ (Piω̄i−1), (13)

where ω̄i−1 ∈ g is the word ω with ıi−1 ◦ Pi−1 applied to each of its letters, per Lemma 4.

Since A : gn → gn is Schur, every induced map Āi :
(
g/g(i+1)

)n
→
(
g/g(i+1)

)n
is also Schur. The quotient

dynamics (13) have the form of a linear system with state X̄i and exogenous input

ui :=
∑
|ω|≤i

cω ⊗ (Piω̄i−1), (14)

which does not depend on X̄i. Even though quotient state i − 1 drives quotient state i, the analysis does not
exploit a serial structure; rather, each subsequent quotient system is a “larger piece” of the full dynamics. We
will show that each quotient system is semiglobally exponentially stable. Our proof is by finite induction. The
approach is to show that each quotient system is semiglobally exponentially stable, and, since g(i) = 0 for i > p,
the pth quotient system is simply the original system.

Before proceeding, we define some key values. Since A is Schur, for any ε ∈ (0, 1−ρ(A)), define Λ := ρ(A)+ε,
then there exists a σ ≥ 0 such that for all k ≥ 0, ‖Ak‖ ≤ σΛk [29, §5]. Define

Λi := ρ(Āi) +
i

p+ 1
ε, 1 ≤ i ≤ p,

then for all i, there exists σi ≥ 0 such that ‖Āki ‖ ≤ σiΛ
k
i . Note Λ1 < · · · < Λp < Λ < 1.

We begin with the base case, i = 1:
X̄+

1 = Ā1X̄1,

which is an unforced linear time-invariant system. Consequently, X̄1[k] = Āk1X̄1[0], so we have ‖X̄1[k]‖ ≤
σ1Λ

k
1‖X̄1[0]‖ ≤ σ1Λ

k‖X̄1[0]‖. Let α1 := σ1 and λ1 := Λ.
By way of induction, we assert that there exists αi−1 > 0 such that

‖X̄i−1[k]‖ ≤ αi−1λ
k
i−1‖X̄i−1[0]‖, (15)

where for 1 ≤ i − 1 ≤ p − 1, λi−1 := Λs
(i−1)(i−2)

2 . We remark that (i−1)(i−2)
2 is the sum of all natural numbers

less than i− 1. Note also that by Lemma 3, ‖X[0]‖ ≤M implies ‖X̄i−1[0]‖ ≤M .
We now prove that case i− 1 implies case i. Fix 1 ≤ j ≤ n and choose an arbitrary word ω in the series of

fj . Denote its letters by Yk ∈ X̃ ∪ W̃ , k ∈ {1, . . . , |ω|}, and the number of these letters in X̃ by q. We will show
that the projection of each word Piω converges to zero exponentially. Beginning with Lemma 4,

Piω = Pi[ıi−1 ◦ Pi−1Y1, [. . . , ıi−1 ◦ Pi−1Y|ω|] · · · ],

then

‖Piω‖ ≤ µ|ω|−1‖ıi−1‖|ω|
|ω|∏
j=1

‖Pi−1Yj‖.

We have ‖Pi−1Xj‖ ≤ ‖(In ⊗ Pi−1)X‖, and Lemma 3 implies ‖Pi−1Wj‖ ≤ ‖W‖. Combining these inequalities
with the induction hypothesis (15) yields

‖Piω̄i−1[k]‖ ≤ µ|ω|−1‖ıi−1‖|ω|‖X̄i−1[k]‖q‖W [k]‖|ω|−q

≤ µ|ω|−1‖ıi−1‖|ω|
(
αi−1λ

k
i−1‖X̄i−1[0]‖

)q
(βsk)|ω|−q

= µ|ω|−1‖ıi−1‖|ω|αqi−1β
|ω|−q(λqi−1s

|ω|−q)k‖X̄i−1[0]‖q. (16)

Since ‖X[0]‖ ≤ M , in (16), we use Lemma 3 to upper bound q − 1 of the factors of ‖X̄i−1[0]‖ by M , and the
single remaining factor by ‖X̄i[0]‖:

‖Piω̄i−1[k]‖ ≤ µ|ω|−1‖ıi−1‖|ω|αqi−1β
|ω|−q(λqi−1s

|ω|−q)kMq−1‖X̄i[0]‖. (17)
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Claim 1 There exists γi ≥ 0 such that the norm of the exogenous input (14) satisfies

‖ui[k]‖ ≤ γi(λi−1s
i−1︸ ︷︷ ︸

λi

)k‖X̄i[0]‖.

The proof of Claim 1 is in Appendix 6.1. Note that even though X̄i and X̄i−1 are both projections of the
state X, by the induction hypothesis, the trajectory of X̄i−1 is fixed, i.e., a function of only time. Thus, despite
X̄i−1[k] partially determining X̄i[k], we can view X̄i−1 in the dynamics of X̄i as an exogenous signal.

By linear systems theory, we can express X̄i[k] as the sum of a zero-input response X̄zi
i [k] = Āki X̄i[0] and a

zero-state response X̄zs
i [k] =

∑k−1
j=0 Ā

j
iui[k − 1− j]. We now bound the zero-state response thus:

‖X̄zs
i [k]‖ ≤

k−1∑
j=0

‖Āji‖‖ui[k − 1− j]‖

≤
k−1∑
j=0

σiΛ
j
iγiλ

k−1−j
i ‖X̄i[0]‖ (by Claim 1)

≤ σiγiλk−1
i ‖X̄i[0]‖

∞∑
j=0

(
Λi
λi

)j
.

Recall that for all 1 ≤ i ≤ p, Λi < Λ, and that by the induction hypothesis, λi ≥ Λ. Therefore, for all 1 ≤ i ≤ p,
λi > Λi. Hence,

‖X̄zs
i [k]‖ ≤ σiγi

λi − Λi
λki ‖X̄i[0]‖.

Applying the triangle inequality to X̄i[k] = X̄zi
i [k] + X̄zs

i [k], we have

‖X̄i[k]‖ ≤ σiΛki ‖X̄i[0]‖+
σiγi

λi − Λi
λki ‖X̄i[0]‖

≤ σi
(

1 +
γi

λi − Λi

)
︸ ︷︷ ︸

=:αi

λki ‖X̄i[0]‖.

This proves that the origin of PiX = gn/
(
g(i+1)

)n
is semiglobally exponentially stable. This concludes the

induction. Recall that Pp+jg = g/g(p+j) = g/0 ∼= g, so step i = p of the induction proves that the origin of
X = gn is semiglobally exponentially stable. ut

Corollary 2 Let g be a nilpotent Lie algebra and f : X ×W → X satisfy Assumption 1, where Assumption 1(c) is

satisfied with h = g. If W is bounded, then the origin of X is semiglobally exponentially stable if and only if A is

Schur.

Proof Suppose A is Schur. Since W is bounded, ‖W [k]‖ ≤ βsk, for s = 1 and some finite β. Theorem 4
implies semiglobal exponential stability. For necessity, recall that semiglobal exponential stability implies local
exponential stability, which implies that the linearization is Schur. By Proposition 5, the linearization is X+ ≈
AX.

Remark 7 If g has nilindex 1, i.e., g is commutative, then the dynamics (1) reduce to a linear time-invariant
system. The authors exploited this for output regulation and synchronization on commutative matrix Lie groups
in [30] and [31], respectively. ♦

Example 1 In this example, we illustrate the application of Theorem 4 to control design. We will first define
a simple regulator problem, then, using Theorem 4, we will show that the error dynamics are semiglobally
exponentially stable.

Let g be the 3-dimensional Heisenberg algebra, which is defined by the commutator relations

[h1, h2] = h3, [h1, h3] = 0, [h2, h3] = 0.
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The lower central series of g is g =: g(1) ⊃ g(2) ⊃ g(3) = 0, where g(2) = LieR{h3} ∼= SpanR{h3}, thus, g has
nilindex p = 2.

Consider the right-invariant dynamical system with state X ∈ G

Ẋ = (h1u1 + h2u2 + h3u3)X,

where u ∈ R3 is the control input. Suppose this system is sampled with period T = 1. The step-invariant
transform of this system is

X+ = exp(h1u1 + h2u2 + h3u3)X. (18)

Suppose we want X to track a reference that is given implicitly by the tracking error

E = exp((h1 + 2h2 + 3h3)w)X,

where w ∈ R is a known exogenous signal, which evolves according to

w+ = 2w. (19)

The goal is to choose u such that E tends to the identity in G. This is equivalent to driving Log(E) ∈ g to
0, where we express e := Log(E) in the basis {h1, h2, h3}:

Log(E) =: e1h1 + e2h2 + e3h3.

Using (18) and the definition of E, we find

E+ = exp(2(h1 + 2h2 + 3h3)w) exp(h1u1 + h2u2 + h3u3)X

= exp(2(h1 + 2h2 + 3h3)w) exp(h1u1 + h2u2 + h3u3) exp(−(h1 + 2h2 + 3h3)w)E.

Using a generalization of the Baker-Campbell-Hausdorff formula [24, §5], we express the error dynamics on
the Lie algebra:

e+ = 2(h1 + 2h2 + 3h3)w + (h1u1 + h2u2 + h3u3)− (h1 + 2h2 + 3h3)w + e

+
1

2
[2(h1 + 2h2 + 3h3)w, h1u1 + h2u2 + h3u3] +

1

2
[2(h1 + 2h2 + 3h3)w,−(h1 + 2h2 + 3h3)w]

+
1

2
[2(h1 + 2h2 + 3h3)w, e] +

1

2
[h1u1 + h2u2 + h3u3,−(h1 + 2h2 + 3h3)w] +

1

2
[h1u1 + h2u2 + h3u3, e]

+
1

2
[−(h1 + 2h2 + 3h3)w, e]

= (w + u1)h1 + (2w + u2)h2 + (3w + u3)h3 + e

+
1

2
[(w + u1)h1 + (2w + u2)h2 + (3w + u3)h3, e]−

3

2
[h1u1 + h2u2 + h3u3, (h1 + 2h2 + 3h3)w︸ ︷︷ ︸

=:W

].

The independent signal W evolves according to

W+ = (h1 + 2h2 + 3h3)w+

= 2(h1 + 2h2 + 3h3)w

= 2W,

which yields

W [k] = 2kW [0]

‖W [k]‖ = 2k‖W [0]‖.

Thus, setting β = ‖W [0]‖ and s = 2, we have ‖W [k]‖ ≤ βsk.
To apply Theorem 4 to the dynamics of e, we must choose the control law u such that Assumption 1 is

satisfied, and the linear part of (20) has spectral radius smaller than s−1 = 1
2 . After choosing our control law u,

we will verify that each of Assumptions 1(a), 1(b), and 1(c) are satisfied. Per Proposition 4, Assumption 1(b)
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is satisfied only if the linear part of the dynamics does not depend on W . This observation, in part, motivates
the control law

u =

−0.75 0.25 0

−0.25 −0.75 0

0 0 −0.99

 e−
1

2

3

w.
Substituting into the dynamics of e, we obtain

e+ = (0.25e1 + 0.25e2)h1 + (−0.25e1 + 0.25e2)h2 + (0.01e3)h3

+
1

2
[(0.25e1 + 0.25e2)h1 + (−0.25e1 + 0.25e2)h2, e1h1 + e2h2]

− 3

2
[(0.25e1 + 0.25e2)h1 + (−0.25e1 + 0.25e2)h2, (h1 + 2h2)w]. (20)

The dynamics (20) are of the form

e+ = Ae+
∑
|ω|=2

cωω,

where in the basis g = LieR{h1, h2, h3} ∼= SpanR{h1, h2, h3}, A : g→ g has matrix representation

MatA =

 0.25 0.25 0

−0.25 0.25 0

0 0 0.01

 . (21)

We now verify that (20) satisfies Assumption 1. By the form of (20) and nilpotency of g, the dynamics of
e are clearly class-A, thus Assumption 1(a) is satisfied.

That e = 0 is an equilibrium is verified by substituting e = 0 into (20). To verify that e = 0 is the only
equilibrium, note that by the definition of the Lie bracket on g, the bracket terms in (20) lie in SpanR{h3}.
Therefore, a point e is an equilibrium only if[

e1

e2

]
=

[
0.25 0.25

−0.25 0.25

][
e1

e2

]
,

which holds if and only if e1 = e2 = 0. If e1 = e2 = 0, then (20) reduces to e[k + 1] = 0.01e3h3, whose only
equilibrium is e3 = 0. This verifies Assumption 1(b).

The block diagonal structure of (21) makes it clear that g(2) = LieR{h3} ∼= SpanR{h3} is invariant. By
Corollary 1, this verifies Assumption 1(c). By Theorem 4, e = 0 is semiglobally exponentially stable if ρ(A) <
s−1 = 1

2 . The eigenvalues of (21) are {−0.25 + i0.25,−0.25− i0.25, 0.01}, thus ρ(A) = 1

2
√

2
. Therefore, e = 0 is

semiglobally exponentially stable. We simulate the dynamics of the tracking error using the initial conditions
e[0] = 3h1 + 2h2 − h3, w[0] = 1. The trajectory of e is in Figure 2. As can be seen, e tends to 0. 4

5 Solvable Lie Algebras

In this section we present various global stability results in the case that g is solvable, but not necessarily
nilpotent. Our analysis exploits the structure endowed by Theorem 1.

Theorem 5 Let g be a solvable Lie algebra, and define X := gn and W := gr. Consider the dynamics (1) and

suppose f : X ×W → X satisfies Assumption 1. If A is Schur, and as k → ∞, W [k] → hr, then there exists β > 0
such that if lim supk→∞ ‖W [k]‖ ≤ β, then the origin of X is globally attractive.

Theorem 5 is somewhat weaker than Theorem 4 for the nilpotent case. Although Theorem 5 would of course
apply when the Lie algebra is nilpotent, Theorem 4 is not a special case of Theorem 5. The proof of Theorem 5
takes a similar geometric approach to that of Theorem 4, but the analysis is significantly complicated by the
nontrivial quotient space K := g/h. The dynamics on K will be treated from an analysis perspective, rather
than using geometric arguments, and be shown to converge to the origin via contradiction. Throughout this
section, let Pi : g → g/h(i+1) ∼= K ⊕ h/h(i+1) denote the canonical projection of g onto h(i+1). We will require
the following lemma, which is the solvable analogue of Lemma 4 in the nilpotent case.
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Fig. 2: The tracking error e ∈ g at the sampling instants.

Lemma 5 Let g be a solvable Lie algebra. Then, given a word ω with letters Y1, . . . , Y|ω|,

Piω = Pi[ıi−1 ◦ Pi−1Y1, [. . . , ıi−1 ◦ Pi−1Y|ω|] · · · ]

+ Pi[

1st letter︷ ︸︸ ︷
(Idg − ıi−1 ◦ Pi−1)Y1, [ı0 ◦ P0Y2, [. . . , ı0 ◦ P0Y|ω|] · · · ]

+ Pi[ı0 ◦ P0Y1, [

2nd letter︷ ︸︸ ︷
(Idg − ıi−1 ◦ Pi−1)Y2, [ı0 ◦ P0Y3, [. . . , ı0 ◦ P0Y|ω|] · · · ] + · · ·

· · ·+ Pi[ı0 ◦ P0Y1, [. . . , [ı0 ◦ P0Y|ω|−1, (Idg − ıi−1 ◦ Pi−1)︸ ︷︷ ︸
|ω|th letter

Y|ω|] · · · ].

The proof of Lemma 5 is in Appendix 6.2.

Proof (Theorem 5) Analogous to the proof of Theorem 4, we will examine the quotient dynamics on X/h(i+1),
where i ≥ 0. By Proposition 7, the quotient dynamics on X/h(i+1) are

X̄+
i = ĀiX̄i +

∑
ω

cω ⊗ (Piω). (22)

We begin by examining the quotient dynamics on X/h = Kn:

X̄+
0 = Ā0X̄0, (23)

which is an unforced linear time-invariant system. That A is Schur implies Ā0 is Schur, so the origin of P0X =
gn/hn ∼= Kn is globally exponentially stable under the quotient dynamics (22).

We assert the induction hypothesis that the origin of Pi−1X ∼= Kn ⊕
(
h/h(i)

)n
is globally asymptotically

stable. We now show that the origin of PiX ∼= Kn ⊕ (h/h(i+1))n is globally asymptotically stable.
By Lemma 5,

Piω = Pi

ω̂i−1:=︷ ︸︸ ︷
[ıi−1 ◦ Pi−1Y1, [. . . , ıi−1 ◦ Pi−1Y|ω|] · · · ]

+ Pi[(Idg − ıi−1 ◦ Pi−1)Y1, [ı0 ◦ P0Y2, [. . . , ı0 ◦ P0Y|ω|] · · · ] + · · ·

· · ·+ Pi[ı0 ◦ P0Y1, [. . . , [ı0 ◦ P0Y|ω|−1, (Idg − ıi−1 ◦ Pi−1)Y|ω|] · · · ].
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By the induction hypothesis, each term Pi−1Yj in ω̂i−1 tends to zero, which implies ω̂i−1 → 0. We now show
Piω → 0. By the result discussed in Remark 1, Lemma 5, and that Pi is a morphism of algebras, the norm of
each projected word can be bounded thus

‖Piω‖ ≤ ‖ω̂i−1‖+ µ|ω|−1

|ω|∑
j=1

‖Pi ◦ (Idg − ıi−1 ◦ Pi−1)Yj‖
∏
` 6=j
‖Pi ◦ ı0 ◦ P0Y`‖

 . (24)

By submultiplicativity of operator norms and Proposition 2, we have

‖Pi ◦ ı0 ◦ P0Yj‖ ≤ ‖ı0 ◦ P0Yj‖ ≤ ‖ı0‖‖P0Yj‖. (25)

By Proposition 2 and the triangle inequality, we have

‖(Pi − Pi ◦ ıi−1 ◦ Pi−1)Yj‖ ≤ ‖PiYj‖+ ‖ıi−1‖‖Pi−1Yj‖ ≤ (1 + ‖ıi−1‖)‖PiYj‖, (26)

where the second inequality follows from Lemma 3. Recalling the notation X̃ = {X1, . . . , Xn} and W̃ =
{W1, . . . ,Wr}, we partition the words into the sets ΩX := {ω : every letter is in X̃} and
ΩW := {ω : at least one letter is in W̃}. First consider ω ∈ ΩX . Applying (25) and (26) to (24), we obtain

‖Piω‖ ≤ ‖ω̂i−1‖+ (µ‖ı0‖)|ω|−1(1 + ‖ıi−1‖)‖X̄i‖
|ω|∑
j=1

∏
` 6=j
‖P0Y`‖

≤ ‖ω̂i−1‖+ (µ‖ı0‖)|ω|−1|ω|(1 + ‖ıi−1‖)‖X̄0‖|ω|−1‖X̄i‖,

(27)

where we have used ‖PiXj‖ ≤ ‖(In ⊗ Pi)X‖ = ‖X̄i‖, for all j ∈ {1, . . . , n}.
Now consider ω ∈ ΩW and let 1 ≤ q ≤ |ω| − 1 be the number of letters in X̃. Without loss of generality,

suppose Y1, . . . , Yq ∈ X̃, and Yq+1, . . . , Y|ω| ∈ W̃ . Then

q∑
j=1

‖PiYj‖
∏
6̀=j
‖P0Y`‖ ≤ (µ‖ı0‖)|ω|−1(1 + ‖ıi−1‖)‖X̄i‖q‖X̄0‖q−1‖W̄0‖|ω|−q

and
|ω|∑

j=q+1

‖PiYj‖
∏
` 6=j
‖P0Y`‖ ≤ (µ‖ı0‖)|ω|−1(1 + ‖ıi−1‖)‖W‖(|ω| − q)‖X̄0‖q‖W̄0‖|ω|−q−1.

Using the bounds q, |ω| − q ≤ |ω| − 1, we have

‖Piω‖ ≤ ‖ω̂i−1‖+ (µ‖ı0‖)|ω|−1(1 + ‖ıi−1‖)(‖X̄i‖+ ‖W‖)(|ω| − 1) max{‖X̄0‖, ‖W̄0‖}|ω|−1. (28)

Using (27) and (28), we upper bound ‖X̄+
i ‖:

‖X̄+
i ‖ ≤ ‖Āi‖‖X̄i‖+

∑
ω∈ΩW

‖cω‖‖Piω‖+
∑
ω∈ΩX

‖cω‖‖Piω‖

≤ ‖Āi‖‖X̄i‖+
∑

ω∈ΩW∪ΩX

‖cω‖‖ω̂i−1‖

+ (1 + ‖ıi−1‖)‖X̄i‖
∑
ω∈ΩX

|ω|(µ‖ı0‖)|ω|−1‖cω‖‖X̄0‖|ω|−1

+ (1 + ‖ıi−1‖)(‖X̄i‖+ ‖W‖)
∑

ω∈ΩW

(|ω| − 1)(µ‖ı0‖)|ω|−1‖cω‖max{‖X̄0‖, ‖W̄0‖}|ω|−1

≤ ‖Āi‖‖X̄i‖+
∑
ω

‖cω‖‖ω̂i−1‖

+ (1 + ‖ıi−1‖)(2‖X̄i‖+ ‖W‖)
∑
ω

|ω|(µ‖ı0‖)|ω|−1‖cω‖max{‖X̄0‖, ‖W̄0‖}|ω|−1.

Claim 2 There exists % > 0 such that for all ‖X̄0‖, ‖W̄0‖ < %,∑
ω

|ω|(µ‖ı0‖)|ω|−1‖cω‖max{‖X̄0‖, ‖W̄0‖}|ω|−1 <∞. (29)
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The proof of Claim 2 is in Appendix 6.3. First, note that the hypothesis W [k]→ hr implies W̄0 → 0. Now,
since (29) converges for ‖X̄0‖, ‖W̄0‖ sufficiently small, it follows that since X̄0 and W̄0 tend to zero as k →∞,
that (29) tends to zero.

We divide both sides by ‖X̄i‖ and upper bound the limiting supremum thus

lim sup
k→∞

‖X̄+
i ‖

‖X̄i‖
≤ ‖Āi‖

+
1

lim infk→∞ ‖X̄i‖
lim sup
k→∞

∑
ω

‖cω‖
(
‖ω̂i−1‖ +(1 + ‖ıi−1‖)‖W‖|ω|(µ‖ı0‖)|ω|−1 max{‖X̄0‖, ‖W̄0‖}|ω|−1

)
.

Suppose, by way of contradiction, that lim infk→∞ ‖X̄i‖ > 0. Since ŵi−1 → 0 and W̄0 → 0 by hypothesis,
W is bounded, and X̄0 → 0, the limiting supremum on the right side is 0, so

lim sup
k→∞

‖X̄+
i ‖

‖X̄i‖
≤ ‖Āi‖. (30)

All our analysis heretofore has been independent of a specific choice of norm. However, at this point, we invoke
Theorem 2 and choose the norm ‖ · ‖ : g → R such that for some ε ∈ (0, 1 − ρ(Āi)), ‖Āi‖ = ρ(Āi) + ε < 1.
By (30), we have limk→∞ ‖X̄i‖ = 0, which is a contradiction6. Therefore, lim infk→∞ ‖X̄i‖ = 0, so given any
ε > 0, there exists a time kε such that ‖X̄i[kε]‖ < ε. By Proposition 5, A Schur and W = 0 implies local
exponential stability of the origin, so by a standard perturbation argument, for W sufficiently small, the origin
remains locally exponentially stable. Thus, there exist β > 0, k̄ ≥ 0 such that if for all k ≥ k̄, ‖W [k]‖ ≤ β, then
the origin of X is locally attractive. Therefore, X̄i eventually enters the basin of attraction, so X̄i → 0. This
establishes that the origin is globally attractive. This proves the induction. ut

Remark 8 Since the dynamics on X/h are linear, it could be argued that [g, g] is the “best” possibility for h,
since this maximizes the dimension of X/h. However, the choice of h does not change the analysis or results. ♦

If we assert that W is bounded, rather than ultimately bounded, then we can strengthen the attractivity
result of Theorem 5 to stability.

Corollary 3 Let g be a solvable Lie algebra, and define X := gn and W := gr. Consider the dynamics (1) and

suppose f : X ×W → X satisfies Assumption 1. If A is Schur, and as k → ∞, W [k] → hr, then there exists β > 0
such that if ‖W [k]‖ ≤ β, then the origin of X is globally asymptotically stable.

Proof The proof is the same as that of Theorem 5, where k̄ = 0 (defined near the end of the proof of Theorem 5),
which implies that the origin of X is locally exponentially stable for all k ≥ 0. ut

The requirement that W be indeterminately small in Theorem 5 and Corollary 3 is rather restrictive.
However, when the map A has spectral radius 0, W need not be bounded, and we can even relax the assumption
that f belongs to class-A.

Theorem 6 Consider the dynamics (1). Let g be a solvable Lie algebra and f : X ×W → X be a Lie function that

satisfies Assumptions 1(b) and 1(c). If ρ(A) = 0 and for all k ≥ 0, W [k] ∈ hr, then X converges to zero in finite

time.

Proof The quotient dynamics on X/h = Kn are

X̄+
0 = Ā0X̄0.

That A has spectral radius zero implies that Ā0 : Kn → Kn has spectral radius zero, which implies ĀdimK
0 = 0.

Therefore, for all k ≥ dimK, we have X̄0[k] = 0.

By way of induction, we assert that for all k ≥ idim g−
∑i
j=1 dim h(j), X̄i−1[k] = 0.

Define ω̂i−1, q, ΩX , and ΩW as in the proof of Theorem 5. If ω ∈ ΩX , then from (27), for all k ≥ dimK,
‖Piω‖ ≤ ‖ω̂i−1‖. Since ‖W̄0‖ = 0, if ω ∈ ΩW , then from (28),

‖Piω‖ ≤ ‖ω̂i−1‖+ (1 + ‖ıi−1‖)(µ‖ı0‖)|ω|−1‖W‖‖X̄0‖|ω|−1,

6 It is merely a coincidence that the contradiction here is the main result we are attempting to prove.
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which for k ≥ dimK, simplifies to ‖Piω‖ ≤ ‖ω̂i−1‖. Since every word ω has at least one letter in X̃, the induction

hypothesis implies ω̂i−1 = 0 for all k ≥ idim g −
∑i
j=1 dim h(j). Therefore, for all k ≥ idim g −

∑i
j=1 dim h(j),

the quotient dynamics reduce to

X̄+
i = ĀiX̄i,

where ρ(Āi) = 0, and so Ā
dim(g/h(i+1))
i = 0, where dim

(
g/h(i+1)

)
= dim g− dim h(i+1); in particular, dimK =

dim g− dim h. Thus, for all k ≥ (i+ 1) dim g−
∑i+1
j=1 dim h(j), X̄i[k] is zero.

Since p is the nilindex of h, we have Ppg = g/h(p+1) = g/0 ∼= g, and so the induction terminates at i = p.
Consequently, for all k ≥ (p+ 1) dim g−

∑p
j=1 dim h(j), X[k] = 0. ut

Corollary 4 Consider the dynamics (1). Let g be a solvable Lie algebra and f : X × W → X be a Lie function

that satisfies Assumptions 1(b) and 1(c). If ρ(A) = 0 and for all k ≥ 0, W [k] ∈ hr, then the origin of X is globally

attractive.

Proof By Theorem 6, the state X tends to the origin for any initial conditions. ut

Corollary 5 Consider the dynamics (1). Let g be a solvable Lie algebra and f : X ×W → X be a Lie function that

satisfies Assumptions 1(b) and 1(c). If ρ(A) = 0, there exists β ≥ 0 such that ‖W‖ ≤ β, and for all k ≥ 0, W [k] ∈ hr,

then the origin of X is semiglobally exponentially stable.

Proof By Theorem 6, X[k] converges to zero in finite time. Define k̄ := arg mink{X[k] = 0} and let M ≥ 0 be
arbitrary. Since ‖ · ‖ : X → R is continuous, ‖X[k]‖ attains its maximum on the compact set {X[k] : 0 ≤ k ≤
k̄, ‖W [k]‖ ≤ β, ‖X[0]‖ ≤ M}. Choosing any λ ∈ [0, 1), there exists finite α > 0 such that ‖X[k]‖ ≤ αλk‖X[0]‖,
where α depends on ‖X[0]‖ and β. ut

Remark 9 Theorem 6 and Corollaries 4 and 5 easily extend to the case where there exists kh ∈ Z≥0 such that
for all k ≥ kh, W [k] ∈ hr, but W [0] is not necessarily in hr. ♦

Example 2 Consider the 6-dimensional Lie algebra of 4×4 real upper triangular matrices, with basis {t1, . . . , t6},
such that the nonvanishing Lie brackets are given by

[t1, t4] = t4, [t1, t6] = t6, [t2, t4] = −t4, [t2, t5] = t5, [t3, t5] = −t5, [t3, t6] = −t6, [t4, t5] = t6.

The derived algebra is h = LieR{t4, t5, t6}, which has lower central series h =: h(1) ⊃ h(2) ⊃ h(3) = 0, where
h(2) = LieR{h6} ∼= SpanR{h6}. We remark that the derived algebra h and the Heisenberg algebra are isomorphic
as Lie algebras.

We will consider a dynamical system driven by the exogenous signal W := (W1,W2) ∈ g2 =:W

W+
1 = 2

(
1− k(1.1)−0.5k

)
sin(10k)W0

W+
2 =

(
2− k2(1.1)−2k

)
cos(20k)W0,

where W0 = t4 + 7t5 + 6t6 ∈ h. Note that W is bounded.
Consider the dynamical system with state X := (X1, X2) ∈ g2 =: X

X+
1 =

1

2
exp(W1)X1 exp(−W1)− exp(X2)X1 exp(−X2) +

1

2
exp(W2)X2 exp(−W2)

X+
2 =

1

2
exp(X2)X1 exp(−X2) +

1

4
exp(X1 +W1)X2 exp(−(X1 +W1)),

where for all Y ∈ g, exp(Y )Xi exp(−Y ) ∈ g [32, Propositions 2.16, 2.17]. To see that these dynamics are indeed
a Lie function, we use exp(Y )Xi exp(−Y ) = eadY Xi [32, Proposition 2.25]:

X+
1 =

(
1

2
eadW1 − eadX2

)
X1 +

1

2
eadW2X2

X+
2 =

1

2
eadX2X1 +

1

4
eadX1+W1X2.
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Recall eadY = Idg + adY + 1
2! ad2

Y + 1
3! ad3

Y + · · · , yielding

X+
1 = −1

2
X1 +

1

2
X2 +

∞∑
`=2

1

`!

((
1

2
ad`W1

− ad`X2

)
X1 +

1

2
ad`W2

X2

)

X+
2 =

1

2
X1 +

1

4
X2 +

∞∑
`=2

1

`!

(
1

2
ad`X2

X1 +
1

4
ad`X1+W1

X2

)
.

Using the basis {t1, t2, t3, t4, t5, t6} for g, and letting I6 ∈ R6×6 be the identity matrix, we can express the
dynamics of X as

X+ =

([
−1

2
1
2

1
2

1
4

]
⊗ I6

)
︸ ︷︷ ︸

MatA

X +
∞∑
`=2

1

`!

[(
1
2 ad`W1

− ad`X2

)
X1 + 1

2 ad`W2
X2

1
2 ad`X2

X1 + 1
4 ad`X1+W1

X2

]
.

We now verify that Assumption 1 is satisfied. For all Y ∈ g, ‖ ad`Y Xi‖ ≤ µ`‖Y ‖`‖Xi‖, yielding

‖eadY Xi‖ ≤
∞∑
`=0

(µ‖Y ‖)`

`!
‖Xi‖ = eµ‖Y ‖‖Xi‖ <∞,

so the dynamics of X belong to class-A, thereby satisfying Assumption 1(a).
That X = 0 is an equilibrium is verified by substituting X = 0 into the dynamics. To verify that X = 0 is

the only equilibrium, recall that the derived algebra is LieR{t4, t5, t6}, so a point is an equilibrium only if

P0X =

([
−1

2
1
2

1
2

1
4

]
⊗ I3

)
︸ ︷︷ ︸

MatĀ0

P0X,

where ρ(Ā0) =
⊔3
i=1

{
−3

4 ,
1
2

}
, implying that Ā0 is bijective. Therefore, a point can be an equilibrium only if

P0X = 0, or equivalently, X ∈ h2. As mentioned, h is isomorphic to the Heisenberg algebra, so the rest of the
argument that Assumption 1(b) is satisfied is similar to that in Example 1.

It is clear from the form of MatA that Ah2
i ⊆ h2

i . By Corollary 1, this verifies Assumption 1(c).
From MatA, we find ρ(A) =

⊔6
i=1

{
−3

4 ,
1
2

}
. Thus, by Theorem 5, if the limiting supremum of W is sufficiently

small, then the origin of X is globally attractive. By Corollary 3, if W is bounded sufficiently small, then the
origin is globally asymptotically stable. We illustrate simply that for the arbitrary choice of W in this example,
that X → 0 as k →∞, as seen in Figure 3. 4

6 Summary

We showed that for a class of systems evolving on solvable Lie algebras, global stability properties can be
inferred from the linear part the dynamics. If the Lie algebra is solvable, then global asymptotic stability
can be established. If the Lie algebra is nilpotent, then semiglobal exponential stability can be established.
An interesting topic of future research would be strengthening the results in the more general, non-nilpotent
case. Given an arbitrary finite-dimensional Lie algebra, it would be interesting to explore the use of the Levi
decomposition to study the quotient dynamics on the radical, and see what utility this offers for studying
stability on the full Lie algebra.

Appendix

6.1 Proof of Claim 1

Proof (Claim 1) Fix the word length ` ≥ 2 and the number of letters in X̃, 1 ≤ q ≤ `. There are nq choices of
letters in X̃, r`−q choices of letters in W̃ , and (`q) ways to position the letters in X̃. Thus, there are (`q)n

qr`−q
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Fig. 3: The norms of the states X1, X2 ∈ g.

words of length ` with q letters in X̃. First, recall from (14), that ui :=
∑
|ω|≤i cω ⊗ (Piω̄i−1). Applying (17),

we have

‖ui[k]‖ ≤

 ∑
2≤`≤i
1≤q≤`

max
|ω|=`

{‖cω‖}

(
`

q

)
nqr`−qµ`−1‖ıi−1‖`αqi−1‖X̄i−1[0]‖qβ`−q

 max
2≤`≤i
1≤q≤`

{λqi−1s
`−q}k,

whose right side is bounded above by(
i∑

`=2

max
|ω|=`

{‖cω‖}µ`−1‖ıi−1‖`
∑̀
q=1

(
`

q

)
nqr`−qαqi−1M

q−1β`−q
)

︸ ︷︷ ︸
=:γi

max
2≤`≤i
1≤q≤`

{λqi−1s
`−q}

︸ ︷︷ ︸
λi

k
‖X̄i[0]‖.

Since 0 < λi−1 < 1 and s ≥ 1, the maximization is solved by ` = i and q = 1, thus, the maximization term
is equal to λi. ut

6.2 Proof of Lemma 5

Proof (Lemma 5) Using Idg − ıi−1 ◦ Pi−1 + ıi−1 ◦ Pi−1 = Idg and bilinearity of the Lie bracket,

Piω = Pi[(Idg − ıi−1 ◦ Pi−1)Y1, [Y2, [. . . , Y|ω|] · · · ] + Pi[ıi−1 ◦ Pi−1Y1, [Y2, [. . . , Y|ω|] · · · ], Yj ∈ X̃ ∪ W̃ . (31)

We next decompose the second letter of the first term in (31) with respect to ı0 ◦ P0 and invoke Lemma 2:

Pi[(Idg − ıi−1 ◦ Pi−1)Y1, [Y2, [. . . , Y|ω|] · · · ] = Pi[(Idg − ıi−1 ◦ Pi−1)Y1, [ı0 ◦ P0Y2, [. . . , Y|ω|] · · · ]

+ Pi [(Idg − ıi−1 ◦ Pi−1)Y1︸ ︷︷ ︸
∈h(i)

, [(Idg − ı0 ◦ P0)Y2︸ ︷︷ ︸
∈h(1)

, [. . . , Y|ω|] · · · ]

︸ ︷︷ ︸
∈h(i+1)

, (32)
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where membership in h(i+1) follows from Lemma 1; the second term is zero, since Pih
(i+1) = 0. Decomposing

the rest of the letters in (32) with respect to ı0 ◦ P0 yields

Pi[(Idg − ıi−1 ◦ Pi−1)Y1, [Y2, [. . . , Y|ω|] · · · ] = Pi[(Idg − ıi−1 ◦ Pi−1)Y1, [ı0 ◦ P0Y2, [. . . , ı0 ◦ P0Y|ω|] · · · ]. (33)

Now decompose the second letter of the second term in (31) with respect to ıi−1 ◦ Pi−1:

Pi[ıi−1 ◦ Pi−1Y1, [Y2, [. . . , Y|ω|] · · · ] = Pi[ıi−1 ◦ Pi−1Y1, [

∈h(i)︷ ︸︸ ︷
(Idg − ıi−1 ◦ Pi−1)Y2, [Y3, [. . . , Y|ω|] · · · ]

+ Pi[ıi−1 ◦ Pi−1Y1, [ıi−1 ◦ Pi−1Y2, [Y3, [. . . , Y|ω|] · · · ]. (34)

We continue in a fashion similar to that following (31), the only noteworthy difference is the decomposition
of ıi−1 ◦ Pi−1Y1 with respect to ı0 ◦ P0.

Claim 3 For all i ≥ 1, the following diagram commutes.

g

P0

((

Pi−1// g/h(i) ıi−1 // g

P0

��
g/h

Proof (Claim 3) From the definitions of P0, Pi−1, and ıi−1, we have g = Im ıi−1 ⊕ h(i) and KerP0 = h ⊇ h(i) =
KerPi−1. Then P0g = P0 Im ıi−1 ⊕ P0h

(i) = P0 Im ıi−1. ut

It follows immediately from Claim 3 that ı0 ◦ P0 ◦ ıi−1 ◦ Pi−1 = ı0 ◦ P0. Thus, the decomposition process
specified above yields

Piω = Pi[ıi−1 ◦ Pi−1Y1, [ıi−1 ◦ Pi−1Y2, [Y3, [. . . , Y|ω|] · · · ]

+ Pi[(Idg − ıi−1 ◦ Pi−1)Y1, [ı0 ◦ P0Y2, [. . . , ı0 ◦ P0Y|ω|] · · · ]

+ Pi[ı0 ◦ P0Y1, [(Idg − ıi−1 ◦ Pi−1)Y2, [ı0 ◦ P0Y3, [. . . , ı0 ◦ P0Y|ω|] · · · ]. (35)

Applying this process to the rest of the letters in the first word of (35) completes the proof. ut

6.3 Proof of Claim 2

Proof (Claim 2) Suppose f satisfies (5). In particular, suppose there exists %1 ≤ 1 such that

‖X1‖, . . . , ‖Xn‖, ‖W1‖, . . . , ‖Wr‖ < %1.

On this domain, we have ‖ω‖ ≤ µ|ω|−1%
|ω|
1 and∑

ω

µ|ω|−1‖cω‖%|ω|1 <∞.

We can rewrite this summation by grouping all words of the same length:

∞∑
`=2

µ`−1

∑
|ω|=`

‖cω‖

 %`1,

which can be viewed as a series over the single index `. Since this series converges, by the root test [33, Theorem
3.33], we have

lim sup
`→∞

√̀
µ`−1%`1

∑
|ω|=`

‖cω‖ = %1 lim sup
`→∞

µ1− 1
` lim sup

`→∞

√̀ ∑
|ω|=`

‖cω‖

= %1µ lim sup
`→∞

√̀ ∑
|ω|=`

‖cω‖

≤ 1.
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Let 0 < %2 <
%1
‖ı0‖ . Applying the root test to the series∑

ω

(µ‖ı0‖)|ω|−1|ω|‖cω‖%|ω|2 , (36)

we have

lim sup
`→∞

√̀
`(µ‖ı0‖)`−1%`2

∑
|ω|=`

‖cω‖ = %2µ‖ı0‖ lim sup
`→∞

√̀
` lim sup

`→∞

√̀ ∑
|ω|=`

‖cω‖

= %2µ‖ı0‖ lim sup
`→∞

√̀ ∑
|ω|=`

‖cω‖

< %1µ lim sup
`→∞

√̀ ∑
|ω|=`

‖cω‖

< 1,

which implies that (36) converges. Let % ≤ %2
2, then for all |ω| ≥ 2, %|ω|−1 < %

|ω|
2 . Then, by the comparison

test [33, Theorem 3.25], if ‖X̄0‖, ‖W̄0‖ ≤ %, then (29) converges. ut
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