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Local observers on linear Lie groups with linear estimation
error dynamics

Mikhail Koldychev and Christopher Nielsen

Abstract—This paper proposes local exponential observers for systems
on linear Lie groups. We study two classes of systems. In the first class,
the full state of the system evolves on a linear Lie group and is available
for measurement. In the second class, only part of the system’s state
evolves on a linear Lie group and this portion of the state is available for
measurement. In each case, we propose two different observer designs.
We show that, depending on the observer chosen, local exponential
stability of one of the two observation error dynamics, left- or right-
invariant error dynamics, is obtained. For the first class of systems these
results are developed by showing that the estimation error dynamics
are differentially equivalent to a stable linear differential equation on
a vector space. For the second class of system, the estimation error
dynamics are almost linear. We illustrate these observer designs on an
attitude estimation problem.

I. INTRODUCTION

Observers for systems on Lie groups is an active area of re-
search [1]. Interest in this research has been partially motivated by
the problem of controlling mobile robots, and in particular, unmanned
aerial vehicles (UAVs). Precise control of these systems requires
accurate estimates of the orientation of a rigid-body using low cost
on-board sensors [2]. Small autonomous robots usually undergo
significant vibration and other disturbances, while being restricted
to carrying only a basic light-weight sensor package. For this reason,
high-frequency noise is often present in the sensor measurements
of these robots. Nonlinear observers for systems on Lie groups are
useful because, in certain cases, they can be used to filter out the
sensor noise.

Recent work on full-state observers for systems on SO (3,R),
describing rigid-body rotational kinematics, was done in [3]. The
algorithms in [3] rely on a projection of the measurement error from
the Lie group to its Lie algebra. The projected vector in the Lie
algebra is then used to drive the observer to converge to the system
trajectory. While this projection based approach does not work for
systems on the general linear Lie group, GL (n,R), the work in [4]
may contain ideas to extend these projection based observers to the
general linear group.

For systems on SO (3,R) with partial state measurements, the
paper [5] proposes an observer that uses measurements of the orien-
tation and of the torque to estimate the angular velocity of the rigid-
body. The papers [6], [7] propose globally exponentially convergent
observers using partial state measurements. The work in [8] also uses
partial state measurements in their observers. The paper [9] analyses
the effect of noise on an attitude estimation observer. The authors
of [10] propose observers for SO (n,R).

For systems on SE (3,R), describing rigid-body pose, full-state ob-
servers were proposed in [11], [12], [13]. For systems on SL (3,R),
describing a homography transformation, partial-state observers were
proposed in [14].

In this paper, we consider left-invariant systems on closed sub-
groups of the general linear Lie group, i.e., the group of all invertible,
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real n × n matrices. The output of the system is taken to be that
portion of the state evolving on the linear Lie group. We first consider
the case in which the entire state evolves on the Lie group. We call
these Lie group full-state observers. Then we consider the case where
the states evolving on the Lie group are only a subset of the systems
entire state. We call these Lie group partial-state observers.

A recent breakthrough in observer design on the general linear
Lie group was achieved in [15], where exponentially converging
observers are proposed for left-invariant and right-invariant systems
on arbitrary finite dimensional, connected Lie groups. The proposed
exponential observer uses gradient-like driving terms, derived from
cost functions of the Lie group measurement error. In this paper
we propose an alternative to gradient-like observers. Our observers
are noteworthy because they yield linear estimation error dynamics.
A weakness of our result is that we only prove local exponential
stability. The research in [16], [17] considers systems that evolve on
a vector space, but are such that a certain Lie group action leaves the
system equations unchanged. They show that, if the plant is invariant
under the action of a Lie group, then a subset of its states can be
redefined as evolving on this Lie group, at least locally.

A. Contributions

The contributions of this paper are as follows: 1) We design a full-
state observer in Section III-A for left-invariant systems on any closed
subgroup of the general linear Lie group. The resulting estimation
error dynamics are linear, distinguishing it from other observers in
the literature. 2) Section III-A proposes an exponential partial-state
observer, for a larger class of system. This class of system has only
a proper subset of its states evolving on a closed subgroup of the
general linear group. 3) Section IV shows differential equivalence
between differential equations on GL (n,R). 4) The effectiveness of
the proposed observers is illustrated via simulation in Section VI. An
extended version of this paper is available [18].

B. Notation and Preliminaries

The symbols In and 0n denote the n×n identity matrix and n×n
zero matrix respectively. If A ∈ Rn×n then A> denotes the transpose
of A and trace(A) denotes its trace. We denote by GL (n,R) the
general linear Lie group of all invertible n × n matrices with real
entries. We denote by M (n,R) the algebra of all n×n matrices with
real entries. The bilinear product that makes M (n,R) an algebra is
the matrix commutator, i.e., given A,B ∈ M (n,R), the product of
A and B is [A,B] := AB − BA. For matrices A ∈ M (n,R) and
X ∈ GL (n,R), the adjoint map is AdX(A) := XAX−1.

For a vector x ∈ Rn, ‖x‖ denotes the Euclidean norm and for a
matrix A ∈ Rn×n, the induced matrix norm is denoted ‖A‖. Given
a matrix A ∈ Rn×n and a real scalar r > 0, define the open ball
B(A, r) :=

{
X ∈ Rn×n : ‖A−X‖ < r

}
.

Definition I.1. A linear Lie group G is a closed subgroup of
GL (n,R).

For brevity, the term Lie group is used in place of linear Lie group
throughout. The Lie algebra of a linear Lie group G is denoted by
Lie(G).
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II. PROBLEM STATEMENTS

We introduce the two problems studied in this paper. The first
problem deals with kinematic systems on linear Lie groups while the
second relates to dynamic systems on linear Lie groups.

A. Full state observers

Let G ⊆ GL (n,R) be a linear Lie group. Consider the following
system on G

Ẋ = Xu

Y = X,
(1)

where u : R→ Lie(G) is the control input to the system, and Y ∈ G
is the measured output of the system. System (1) is left-invariant.
This means that, for any fixed matrix A ∈ G, if we redefine the state
as Z := AX , then the new state Z satisfies the same differential
equation as X , i.e., Ż = Zu. We assume that the control signal u
in (1) is such that the corresponding solution is unique and piecewise
differentiable.

Assumption 1. For any initial condition X(0) ∈ G the correspond-
ing solution X(t) is bounded

(∀ X(0) ∈ G) (∃ B ≥ 0) (∀ t ≥ 0) ‖X(t)‖ ≤ B.

Assumption 1 is automatically satisfied if the group G is compact,
for example G = SO (3,R).
Problem 1: Given a left-invariant system (1) on a linear Lie group
G ⊆ GL (n,R) with input u ∈ Lie(G) such that Assumption 1 holds,
design a state estimator with estimate X̂ ∈ G, access to Y ∈ G
and u ∈ Lie(G), such that, for X̂(0) sufficiently close to X(0),
X̂(t) −→ X(t) exponentially, as t→∞.

The results of this paper can be extended to right-invariant systems
on Lie groups. However, we restrict the discussion to left-invariant
systems to avoid repetition and for clarity.

B. Partial state observers

Consider the following system

Ẋ = Xx2

ẋ2 = x3

...

ẋd = u

Y = X,

(2)

where X ∈ G evolves on a linear Lie group and xi ∈ Lie(G),
i ∈ {2, . . . , d}. The input to (2) is u : R → Lie(G) which
we assume is such that the corresponding solution is unique and
piecewise differentiable.

Assumption 2. For any initial condition X(0) ∈ G, x2(0),. . ., xd(0)
∈ Lie(G), the corresponding solution (X(t), x2(t), . . . , xd(t)) of (2)
is such that X(t) is bounded

(∀ X(0) ∈ G) (∃ B ≥ 0) (∀ t ≥ 0) ‖X(t)‖ ≤ B.

Problem 2: Given the system (1), design a state estimator with
estimate X̂ ∈ G, x̂i ∈ Lie (G), i ∈ {2, . . . , d}, access to the output
Y ∈ G and the input u ∈ Lie(G), such that, under Assumption 2,
if ‖X̂(0) − X(0)‖, ‖x̂2(0) − x2(0)‖, . . ., ‖x̂d(0) − xd(0)‖ are
sufficiently small, then ‖X̂(t) −X(t)‖ → 0, ‖x̂2(t) − x2(t)‖ → 0,
. . ., ‖x̂d(t)− xd(t)‖ → 0 exponentially, as t→∞.

III. PROPOSED OBSERVERS

In this section we propose various observers that solve Problems 1
and 2. The analysis of the observers is presented in Section V where,
using the results of Section IV, we provide conditions under which
the observers solve Problems 1 and 2.

A. Local full state observers

For system (1), we propose two different observers, which we call
local Lie group Full State Observers (LFSOs). The first is the passive
LFSO, given by

˙̂
X = X̂u− a0X̂ log(Y −1X̂). (3)

The second is the direct LFSO, given by

˙̂
X = Y uY −1X̂ − a0X̂ log(Y −1X̂). (4)

In the above two observers, the constant a0 > 0 is a design
parameter that, as we will show, can be used to change the rate
of observer convergence. Following the terminology of [15], we call
the term α(X̂, Y ) := −a0X̂ log(Y −1X̂), appearing in (3) and (4),
the innovation term of the observer. It can be verified that the term α
satisfies the definition, given in [15, Definition 15], of an innovation
term.

Remark III.1. It is computationally costly and inefficient to compute
the matrix logarithm map using the series definitions. Various studies
have looked at the problem of approximating this computation.
In particular the work [19], [20], [21], [22] may be useful for
implementing the observers proposed in this paper. While we do not
pursue the notion of using approximations to the matrix logarithm
to implement the observers, we do observe, in Section VI, that in the
special case G = SO (3,R) the logarithm can be computed efficiently.

B. Local partial state observers

For system (2), we propose two different observers which we call
local Lie group Partial State Observers (LPSOs). The first is the direct
LPSO, given by

˙̂
X = Y x̂2Y

−1X̂ − ad−1X̂ log(Y −1X̂)

˙̂x2 = x̂3 − ad−2 log(Y
−1X̂)

...
˙̂xd−1 = x̂d − a1 log(Y −1X̂)

˙̂xd = u− a0 log(Y −1X̂)

(5)

and the second is the passive LPSO, given by

˙̂
X = X̂x̂2 − ad−1X̂ log(Y −1X̂)

˙̂x2 = x̂3 − ad−2 log(Y
−1X̂)

...
˙̂xd−1 = x̂d − a1 log(Y −1X̂)

˙̂xd = u− a0 log(Y −1X̂).

(6)

In the above two observers, the constants a0, . . . , ad−1 ∈ R are
design parameters, chosen such that the polynomial p(s) = sd +
ad−1s

d−1 + · · ·+a1s+a0 is Hurwitz. These design parameters can
be used to modify the rate of convergence of the estimation error.

IV. DIFFERENTIAL EQUATIONS ON MATRICES

In this section we study the properties of a pair of differential
equations on linear Lie groups that arrise in the analysis of the error
dynamics associated with the observers proposed in Section III.
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A. A Differential Equation on GL (n,R)
Consider the differential equation evolving on GL (n,R) given by

Ė = −a0E log(E), (7)

where E ∈ GL (n,R) and a0 ∈ R is a positive constant. The
equation (7) arises in the analysis of the error dynamics associated
with the observers (3), (4). The crucial property of the differential
equation (7) is that the matrices Ė and E commute, i.e., EĖ = ĖE.
This property is a consequence of matrices E and log(E) commuting.
Commutativity of Ė and E, combined with the product rule, gives
us the following result.

Lemma IV.1. Let E : R→ GL (n,R) be a curve in GL (n,R), such
that E and Ė commute. Then for all positive integers k

d

dt

[
(E − In)k

]
= kĖ(E − In)k−1 = k(E − In)k−1Ė.

Lemma IV.1 is the key reason why (7) is differentially equivalent to
a linear differential equation. The change of coordinates that realizes
this equivalence is the matrix logarithm map defined on B(In, 1) ⊂
GL (n,R). The matrix logarithm map log : B(In, 1)→ M (n,R) is
a diffeomorphism onto its image. Furthermore, the codomain of the
log map is the set M (n,R), which is isomorphic to Rn

2

, as a vector
space. Therefore, the log map is a local coordinate transformation on
GL (n,R), defined on the ball B(In, 1).

We denote by e ∈ M (n,R) the log coordinates of the matrix
E ∈ B(In, 1)

e := log(E). (8)

To express the differential equation (7) in log coordinates we differ-
entiate e with respect to time, making use of Lemma IV.1, to obtain
ė =

∑∞
k=0(−1)

k(E − In)
kĖ = E−1Ė = −a0E−1E log(E) =

−a0e. The resulting differential equation is linear with n2 eigenvalues
located at −a0. Thus, for any positive constant a0 > 0, the point
e = 0n is an exponentially stable equilibrium of ė = −a0e. Since
stability of an equilibrium is a coordinate independent property, the
equilibrium point E = In is also locally exponentially stable for (7).
The above discussion proves the following.

Lemma IV.2. On the set E ∈ B(In, 1), the vector field (7) is
differentially equivalent to the vector field

ė = −a0e. (9)

If a0 > 0 then E = In is locally exponentially stable.

B. A Differential Equation on GL (n,R) and M (n,R)
Consider the following differential equation, which is a natural

extension of the differential equation (7),

Ė = e2E − ad−1E log(E)

ė2 = e3 − ad−2 log(E)

...

ėd−1 = ed − a1 log(E)

ėd = −a0 log(E),

(10)

where E ∈ GL (n,R), ei ∈ M (n,R) for i = 2, . . . , d and
a0, . . . , ad−1 ∈ R are constants such that the polynomial p(s) =
sd+ad−1s

d−1+ · · ·+a1s+a0 is Hurwitz. System (10) arises in the
analysis of the error dynamics associated with the direct LPSO (5).

In general the matrices E and Ė in (10) do not commute. This is
because E and e2 are generally non-commuting matrices. The non-
commutativity of E and Ė means that, defining e1 := log(E), the
expression for ė1 is not as simple as was the case for equation (7) in

Section IV-A. In particular, we do not obtain a closed-form expression
for ė1. Instead we have the following, weaker, result.

Proposition IV.3. In the open neighbourhood B(In, 1) ×
(M (n,R))d−1 the differential equation (10) is differentially equiva-
lent to

ė1 = e2 − ad−1e1 +K(e1, e2)

ė2 = e3 − ad−2e1

...

ėd−1 = ed − a1e1
ėd = −a0e1,

where e1 := log(E) and K : Lie(G) × Lie(G) → Lie(G) is a
smooth function that vanishes if e1 and e2 commute

(∀ e1, e2 ∈ M (n,R) [e1, e2] = 0n) K(e1, e2) = 0n.

Proof: Since e1 = log(E) is a Taylor series in E, term by term
differentiation yields that ė1 only depends on E and Ė. Furthermore,
from (10), we know that Ė only depends on E and e2. Thus, using
E = exp(e1), we have that ė1 only depends on e1 and e2. Let
K(e1, e2) := ė1 − e2 + ad−1e1.

Assume that e1 and e2 commute. This implies that E = exp(e1)
and e2 also commute and this implies that E and Ė commute. Since
EĖ = ĖE, we can repeat almost the same analysis that we used
in Section IV-A, doing this we get ė1 = ĖE−1 = e2 − ad−1e1.
Therefore K(e1, e2) = 0n for any commuting e1 and e2. The
expressions of ėi for i = 2, . . . , d are computed by substituting
log(E) = e1 into (10).

Lemma IV.4. If the constants a0, . . . , ad−1 ∈ R are chosen such that
the polynomial p(s) = sd + ad−1s

d−1 + · · ·+ a1s+ a0 is Hurwitz
then the equilibrium point (E, e2, . . . , ed) = (In, 0n, . . . , 0n) of the
differential equation (10) is locally exponentially stable.

Proof: Adapting the proof of [14, Theorem 3.1 (ii)], we show
that (10) is locally exponentially stable at the equilibrium point,
by showing that its linearization, around the equilibrium point
(In, 0n, . . . , 0n), is exponentially stable.

In a neighbourhood of the equilibrium point (In, 0n, . . . , 0n)
define δE := E − In, δe2 := e2 − 0n, . . ., δed := ed − 0n.
Using the series definition of the matrix logarithm we deduce that,
near δE = 0n, log(E) ≈ δE. Similarly, using E = δE + In, and
dropping higher order terms in δE, we get

E log(E) = (δE + In)

(
(δE)− 1

2
(δE)2 + · · ·

)
≈ δE.

Finally, near the equilibrium point (In, 0n, . . . , 0n), e2E =
(δe2) (δE + In) ≈ δe2. Substituting these approximations into
the differential equation (10), we get the linearization of (10) at
(In, 0n, . . . , 0n) has system matrix

−ad−1In In 0n . . . 0n 0n
−ad−2In 0n In . . . 0n 0n
−ad−3In 0n 0n . . . 0n 0n

...
...

...
. . .

...
...

−a1In 0n 0n . . . 0n In
−a0In 0n 0n . . . 0n 0n


.

The eigenvalues of the system matrix are located at the roots of
the polynomial p(s) = sd + ad−1s

d−1 + · · · + a1s + a0, with
multiplicity n, for each (possibly repeating) root of p(s). Since all
the eigenvalues have negative real parts, the linearization above is
exponentially stable. Therefore (E, e2, . . . , ed) = (In, 0n, . . . , 0n)
is a locally exponentially stable equilibrium of (10).
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V. ESTIMATION ERROR DYNAMICS

In this section we analyse the stability of the estimation error for
each of the observers proposed in Section III. We show that, under
Assumptions 1 and 2, the estimates exponentially converge to the
state of the system.

A. Estimation Error Functions

Following [15], we introduce two canonical choices of estimation
error functions for left-invariant systems on Lie groups.

Definition V.1. Given system (1) with X ∈ G, and an observer
with state estimate X̂ ∈ G, the canonical left-invariant error, El :
G× G→ G, is

El(X, X̂) := X−1X̂

and the canonical right-invariant error, Er : G× G→ G, is

Er(X, X̂) := X̂X−1.

In Problems 1 and 2 we seek to design observers so that ‖X̂ −
X‖ → 0 exponentially. To characterize this property we rely on the
following result.

Proposition V.2. Suppose that X : R→ G is uniformly bounded. If
either Er → In exponentially, or El → In exponentially, as t→∞,
then X̂ → X exponentially, as t→∞.

Proof: For any X , X̂ ∈ G, using Definition V.1, the following
identities hold X̂−X = X(El−In), X̂−X = (Er−In)X . Taking
the norms of these identities, we obtain

‖X̂ −X‖ ≤ ‖X‖‖El − In‖
‖X̂ −X‖ ≤ ‖X‖‖Er − In‖.

(11)

Additionally, for any X, X̂ ∈ G, El−In = X−1(X̂−X), Er−In =
(X̂ −X)X−1, so that

‖El − In‖ ≤ ‖X−1‖‖X̂ −X‖
‖Er − In‖ ≤ ‖X−1‖‖X̂ −X‖.

(12)

By hypothesis, ‖X(t)‖ is uniformly bounded, i.e.,
(∃K1 > 0)(∀t ≥ 0)‖X(t)‖ ≤ K1. This implies that X(t)
evolves on the compact subset G = {X ∈ GL (n,R) : ‖X‖ ≤ K1}.
Since the matrix inverse map is continuous, the image of G
under the matrix inverse map is also a compact subset of
GL (n,R). Therefore, ‖X−1(t)‖ is also uniformly bounded, i.e.,
(∃K2 > 0)(∀t ≥ 0)‖X−1(t)‖ ≤ K2.

Now suppose that ‖Er(t) − In‖ → 0 exponentially, as t → ∞,
then by the definition of exponential stability, we have (∃δ,m, α > 0)
(∀Er(0) ∈ B(In, δ)) (∀t ≥ 0) ‖Er(t) − In‖ < me−αt‖Er(0) −
In‖. By the inequalities (11), and uniform boundedness of ‖X‖,
we have that ‖Er − In‖ < m ⇒ ‖X̂ − X‖ < K1m. By the
inequalities (12), and uniform boundedness of ‖X−1‖, we have that
‖X̂ −X‖ < δ

K2
⇒ ‖Er − In‖ < δ. Combining the above results,

we have exponential convergence of ‖X̂ −X‖ → 0,

(∃δ,m, α > 0)
(
‖X̂(0)−X(0)‖ < δ/K2

)
(∀t ≥ 0) ‖X̂(t)−X(t)‖ < K1K2me

−αt‖X̂(0)−X(0)‖.

The proof for El is identical.

Definition V.3. For any El ∈ B(In, 1), the log left-invariant error,
el : G× G→ Lie(G), is

el(X, X̂) := log(El(X, X̂)) = log(X−1X̂).

For any Er ∈ B(In, 1), the log right-invariant error, er : G× G→
Lie(G), is

er(X, X̂) := log(Er(X, X̂)) = log(X̂X−1).

The variables el and er are useful because they are vectors in
Lie(G) and they allow us to convert a differential equation on a Lie
group into a differential equation on a vector space. The disadvantage
of el and er is that they are only defined for El, Er ∈ B(In, 1).

Lemma V.4. If El, Er ∈ B(In, 1), then

er = XelX
−1.

Proof: By direct calculation and using elementary properties of
the exp and log maps, we obtain er = log(Er) = log(XElX

−1) =
X log(El)X

−1 = XelX
−1.

Finally, in the context of partial state observers, since xi and x̂i,
for i = 2, . . . , d are vectors in Lie(G), to quantify the error between
xi and x̂i, we can use subtraction of vectors

ei := xi − x̂i, i = 2, . . . , d. (13)

Since xi and x̂i are elements of the vector space Lie(G), ei is also
an element of Lie(G).

B. Local full state observers

We first analyze the dynamics of the error functions El and Er
under the observers defined by (3) and (4). We assume that X̂ is
initialized sufficiently close to X , so that El, Er ∈ B(In, 1).

1) Passive Observer: When the passive observer (3) is used to
estimate the state of (1) dynamics of the right-invariant error, Er are

Ėr = −a0Er log(Er). (14)

The above differential equation is formally the same as equation (7).
Therefore if X̂ is sufficiently close to X so that Er ∈ B(In, 1) then,
by Lemma IV.2, system (14) is differentially equivalent to

ėr = −a0er, . (15)

By choosing a0 > 0, Lemma IV.2 states the equilibrium point Er =
In is locally exponentially stable for system (14). This discussion, in
light of Proposition V.2, proves the following solution to Problem (1).

Corollary V.5. For Er(0) ∈ B(In, 1), the passive observer (3)
exponentially stabilizes Er = In. Furthermore, under Assumption 1,
the passive observer solves Problem (1).

The convergence of Er to In does not rely on the trajectories of (1)
being bounded. Next, we examine the dynamics of the left-invariant
error, El, to see if Assumption 1 can be weakened. The dynamics of
the left invariant error El under the passive observer (3) are

Ėl = −a0El log(El) + δP (u,El), (16)

where δP (u,El) := Elu− uEl is a perturbation term that vanishes
when El = In. Since the matrices El and Ėl do not, in general,
commute, Lemma IV.1 does not hold for (16).

Next we transform the error dynamics (16) into log coordi-
nates. Recall, by Lemma V.4, if X̂ is sufficiently close to X then
el = X−1erX . Therefore to transform the dynamics (16) into el
coordinates, we differentiate this alternate expression for el

ėl = −a0el + [el, u] . (17)

The above system, rewritten ėl = −a0el+[el, u], is bilinear. If a0 <
0, then by [23, Corollary 4], system (17) is integral-input to state
stable (iISS). Specifically, see [23], there exist class-K∞ functions
α, γ and a class-KL function β such that for any el(0) ∈ M (n,R),
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and any input u(·), α(‖el(t)‖) ≤ β(el(0), t) +
∫ t
0
γ(‖u(τ)‖)dτ . As

a result, if u(t) → 0n as t → ∞, then el(t) → 0n as t → ∞.
Furthermore, if

∫∞
0
γ(‖u(t)‖)dt < ∞, then by [23, Proposition 6],

el(t) → 0n as t → ∞. Niether of these properties allow us to
weaken Assumption 1. First, because we have no guarantees that the
control signal satisfies the above properties and second, System (16)
is only differentially equivalent to (17) if El ∈ B(In, 1) and the iISS
property does not ensure that el ∈ log (B(In, 1)).

By showing that the system (16) is diffeomorphic to the sys-
tem (17), we have found an easy way to prove the following, non-
obvious, result.

Corollary V.6. Let G ⊆ GL (n,R) be a linear Lie group and
consider the system

Ė = [E, u], (18)

where E ∈ G ⊆ GL (n,R) is the state and u ∈ Lie(G) ⊆ M (n,R) is
an admissible input signal. On the open set B(In, 1)∩G, system (18)
is differentially equivalent to

ė = [e, u], (19)

where e = log(E).

Proof: Rewrite (18) as a difference of two vector fields

Ė = ([E, u] + E log(E))− (E log(E))

and let f(E, u) := [E, u] + E log(E) and g(E) := E log(E).
Since the system (16) transforms into the system (17), we know
that the vector field f(E, u) transforms into [e, u] + e. Also, since
the dynamics (7) transform into the dynamics (9), we know that the
vector field g(E) transforms into e. This means that the vector field
f(E, u)− g(E) transforms into [e, u] + e− e = [e, u].

The analysis of equation (18) is facilitated by taking the systemic
view of “splitting” the equation (18) into a pair consisting of
“system” (1), with state X , and “observer” (3), with state X̂ . The
splitting is done as E = X−1X̂ , and allows us to convert the
differential equation (18) into log coordinates.

2) Direct Observer: When the direct observer (4) is used to
estimate the state of (1) dynamics of the left-invariant error El are

Ėl = −a0El log(El). (20)

The above equation (20) is the same as the equation (7), if we identify
El with E. This means that if X̂ is sufficiently close to X so that
El ∈ B(In, 1), then by Lemma IV.2, system (20) in el-coordinates
reads

ėl = −a0el. (21)

If a0 > 0, Lemma IV.2 states that the equilibrium point El = In is
locally exponentially stable for the dynamics (20).

Corollary V.7. For El(0) ∈ B(In, 1), the direct observer (3)
exponentially stabilizes El = In. Furthermore, under Assumption 1,
the passive observer solves Problem (1).

As before, we seek to weaken Assumption 1 and hence we examine
the dynamics of the right-invariant error Er , when the direct observer
is used

Ėr = δD(u,X,Er)− a0Er log(Er). (22)

Here, δD(u,X,Er) := XuX−1Er − ErXuX−1 is a perturbation
term that vanishes when Er = In. The above equation (22) has
the same problem that we encountered when trying to analyze
equation (16). Namely, the matrices Er and Ėr do not commute in
general, because Er and δD(u,X,Er) do not commute in general.
Fortunately, we can transform equation (16) into log coordinates by
once again differentiating the identity er = XelX

−1. To be able to

do this, it is sufficient that the conditions of Lemma V.4 are satisfied,
i.e., that El, Er ∈ B(In, 1). Doing so, one obtains

ėr = −a0er +
[
XuX−1, er

]
. (23)

The above system, rewritten ėr = −a0er +
[
XuX−1, er

]
, is a

non-autonomous, bilinear system. Once again, we cannot weaken the
requirement of Assumption 1 and rely on Proposition V.2 to ensure
that El → 0n as t→∞ is equivalent to Er → 0n as t→∞.

C. Local partial state observers

We now analyze the estimation error dynamics when using the
observers proposed in Section III-B and defined by (6) and (5).

1) Direct Observer: When the direct observer (5) is applied to
estimate the state of system (2) the dynamics of the right-invariant
error El are

Ėl = e2El − ad−1El log(El)

ė2 = e3 − ad−2 log(El)

...

ėd−1 = ed − a1 log(El)
ėd = −a0 log(El).

(24)

The above differential equation is formally the same as equation (10),
if we identify E with El. Application of Lemma IV.4 immediately
yields the following solution to Problem 2.

Corollary V.8. For (El, e2, . . . , ed) ∈ B(In, I) × (M (n,R)), the
direct observer (5) exponentially stabilizes (In, 0n, . . . , 0n). Further-
more, under Assumption 2, the direct observer solves Problem 2.

2) Passive Observer: When the passive observer (6) is employed
to estimate the state of system (2) the dynamics of the right-invariant
error Er are given by

Ėr = Er AdX(e2)− ad−1Er log(Er)

ė2 = e3 − ad−2 log(Er)

...

ėd−1 = ed − a1 log(Er)
ėd = −a0 log(Er).

(25)

Lemma IV.4 cannot be used to deduce the stability of the equilibrium
point (Er, e2, . . . , ed) = (In, 0n, . . . , 0n). Unfortunately, we are not
able to prove the stability of these error dynamics. We conjecture that
the passive LPSO is locally exponentially convergent if Assumption 2
holds. This conjecture is supported by simulation, where the passive
LPSO performs better than the direct LPSO, when a large amount of
measurement noise is present in Y .

VI. EXAMPLE : DYNAMIC RIGID-BODY ORIENTATION

Consider a dynamic model of a rotating rigid body

Ṙ = Rω

ω̇ = u

Y = R

(26)

where R ∈ SO (3,R), ω and u are skew-symmetric matrices. Here
Y = R is directly measured as well as the angular acceleration u.
A similar model was discussed in [24, Example 2]. For system (26),
the proposed direct observer is

˙̂
R = Y ω̂Y −1R̂− a1R̂ log(Y −1R̂)

˙̂ω = u− a0 log(Y −1R̂)
(27)
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Fig. 1: ‖R̂−R‖ versus time with σ = 0.4.
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Fig. 2: ‖ω̂ − ω‖ versus time with σ = 0.4.

and the passive LPSO is

˙̂
R = R̂ω̂ − a1R̂ log(Y −1R̂)

˙̂ω = u− a0 log(Y −1R̂).
(28)

We simulate the direct and the passive LPSOs, with increasing
amounts of noise in the output. The initial conditions for the plant
and the observer are chosen as

R(0) =

 0 1 0
0 0 1
1 0 0

 , ω(0) =

 0 −1 1
1 0 −1
−1 1 0

 ,

R̂(0) = I3, ω̂(0) = 03. The angular acceleration input is chosen to
be

u(t) =

 0 −2 sin(t) cos(t)
2 sin(t) 0 − sin(t)
− cos(t) sin(t) 0

 .

The observer gains are chosen as a0 = 1, a1 = 2. Noise is injected
into the output via the random rotation matrix N ∈ SO (3,R), by
setting Y = RN . The disturbance N is obtained as exp (n) where
the elements of n ∈ Lie(SO (3)) are normally distributed, with zero-
mean and standard deviation σ. The simulation results are shown in
Figures 1, 2 with a large amount of measurement noise.

VII. CONCLUSIONS

We proposed observers for two classes of systems on linear Lie
groups. The first class of system is one in which the entire state
evolves on the general linear group and the entire state is measured.
We have shown that if the systems state is bounded, then both the
left- and right-invariant estimation errors are differentially equivalent
to a stable LTI system and hence are locally exponentially stable.
The second class of system is one in which only part of the state
evolves on the general linear group and only this portion of the state is

measured. We have shown that if the system’s state is bounded, then
the left and right estimation errors are locally exponentially stable
using the direct observer. The passive observer was shown to work
well in simulation in the presence of constant disturbances.
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